Wireless World

Golden Jubilee
 Number

Radio Electronics Television

We make three germanium NPN alloy high speed switching transistors, each one an ace in its own class, and if you don't think that's something to write home about, just look at these brief specifications:

	Maximum	Maximum	Maximum	Minimum
XA70:	$V_{c b}$ (Vols)	$V_{\text {ceo }}($ Volts $)$	$I_{c}(m A)$	$f_{a}($ Mc $s)$
XA702	25	15	200	3
XA703	25	15	400	5
	25	12	400	10

But before you tell the folks back home about them,
why not drop us a live first and get the whole story? Go on. Ask.

EDISWAN SEMICONDUCTORS

Wireless World

ELECTRONICS, RADIO, TELEVISION

Managing Editor:

HCGH S. POCOCK, M.I.E.E

Editor:
F. L. DEVEREUX, B.Se

Assistan Editor:
H. W. BARNARD

VOLUME 67 No 4.
PRICE: TWO SHILLINGS

FIFTY-FIRST YEAR
OF PUBLICATION

APRIL 1961

155	Editorial Comment
156	Since the Wireless World Began
185	Low-cost Stereo Amplifier-1 By E. Jeffery
191	International Semiconductor Symposium
192	Letters to the Editor
194	Paris International Sound Festival
196	Elements of Electronic Circuits-24 By 7. M. Peters
198	World of Wireless
200	News from Industry
201	Personalities
203	Fifty Years' Research in Radio Wave Propagation By R. L. Smith-Rose
208	Manufacturers' Products
210	Technical Notebook
211	International Electronic Components Show
213	Response Curves and Tone Quality By M. G. Scroggie
217	Some Thoughts on Inductance By Thomas Roddam
220	Short-wave Conditions
221	Multivibrator Design By R.C.Foss and M. F. Sizmur
225	Negative Feedback and Non-Linearity By " Cathode Ray"
231	Amateur Teleprinting By A. C. Gee
232	Unbiased By "Free Grid"
234	Random Reflections By "Diallist"
236	April Meetings

Iliffe Electrical Publications Ltd. Managing Director: H. S. Pocock, M.I.E.E. Dorset House, Stamford Street, London, S.E. 1

Please address to Editor, Advertisement Manager, or Publisher as appropriate

[^0]

This new manual of transistor circuitry has been prepared by Mullard engineers, as an up-to-date and readable volume which will be of use and interest to technicians, service engineers, junior designers and electronics students.
It has a page size of $8 \frac{1^{1}}{} 1 \times 5 \frac{1}{2}^{17}$ and describes more than 60 circuits-over 30 are made generally available for the first time-including both domestic and industrial applications.

308 PAGES • 241 DIAGRAMS • U.K. PRICE 12s. 6d.

PUBLISHED BY MULLARD LTD.
Get your copy of the Mullard "Reference Manual of Transistor Circults" today from your radio dealer, or order direct from Mullard Ltd. (postage and packing 1s. Od. extra in U.K.).
MULLARD LIMITED • MULLARD HOUSE • TORRINGTON PLACE • LONDON • W.C.1.
Overseas readers should enquire of thelr local Mullard Agents.

HALF A CENTURY

IN 1911 the business and profession of wireless communication was already established, but as yet it had made little impact on the daily lives of most people. There was a certain novelty in sending a telegram " via Marconi" and a few amateurs dabbling with spark coils and crystal and electrolytic detectors made a welcome diversion from lantern lectures and microscopy at the local literary and scientific society. But the seeds of future developments had germinated. Every day more ships were being fitted with wireless, and more amateurs were proudly passing their headphones to admiring friends to listen to the musical morse of Clifden or the growl of Eiffel Tower and Poldhu.

Until then technical information had been scattered in occasional articles in the electrical journals and in one or two papers read before the learned societies. Now it was decided that there was sufficient interest to support a journal "the aim. of which will be to acquaint the reader with the latest possibilities of this most marvellous invention." Such was the success of the Marconigraph that two years later it was decided to give it a new format and a new title in keeping with its wider circulation. In the first editorial of the new series we said, "The Wireless World will still be the medium, as was the Marconigraph, for the interchange of ideas concerning the further scientific and commercial development of wireless telegraphy, with its bearing upon national and economic interests. But these long words do not mean that we intend to take up the standpoint of a dry and educational science. Our Magazine is to be popular, and while the information we shall print will compel the attention of the scientist, it will not be beyond the scope of the general public."

If at times we seem to have become more complex it is because we reflect the growth of our subject, which even in its beginnings called for more than a little application to gain mastery. We invite those who doubt this to turn up some of our earliest issues (e.g., the series on aerial capacitance
by Professor G. W. O. Howe in 1915). While many of our articles have been addressed exclusively to the professional quite as many have been prepared specially for the beginner who may be at the start of his career as a radio engineer or technician or just interested in the subject as an amateur. The dividing line, if indeed one exists, is hard to draw. Many of our readers who earn their living by research on semiconductors or development on microwaves find relaxation as amateur transmitters or high-quality sound enthusiasts. We welcome them all as readers and take this opportunity of thanking them for their sustained interest, which as our recent questionnaire has shown, more often than not is of long standing.

The entity and character of a journal is something which is difficult to define in words. It transcends all outward forms of print and styling; it cannot be detected in the contents of individual articles; it exists as like-minded thought and a community of interests between readers and staff. We are all of different ages, have divergent personal interests and while retaining our independence are prepared to argue, to listen and to learn-all with one object: as far as this journal is concerned to keep the record straight.

Looking back we pay tribute to our predecessors in office, to past members of the staff, to our contributors and to all those whose ability and loyalty have laid the foundations upon which we build. Looking to the future we shall strive to improve our journal as the medium of communication between all whose vocation or interest lies with radio and electronics, to serve as a forum for discussion, as a medium for enlightenment and exposition, and as a bulletin for news of the world of wireless.
"This then is our policy: to be of use and interest to our readers, and through them to be a factor for progress." These words are quoted from Volume 1, No. 1 of Wireless World and we can find no reason for altering them today.

the state of the art in 1911

THE Edwardian age into which The Marconigraph was launched was less prone than is the NeoElizabethan to the unquestioning acceptance of scientific marvels. Many people still looked upon wireless telegraphy as "against Nature "; as something akin to a music-hall trick. That attitude of mind was certainly not discouraged by wire telegraphy and submarine cable interests, with whom we were to remain in bitter competition for many years. By way of counterattack, we made great play of the fact that the so-called "KR factor," which limited the speed of cable transmission, did not apply to us. High-speed wircless transmissionwhich then meant about 60 words per minute-had already been demonstrated experimentally, but the volume of traffic on offer was generally not great enough to encourage its commercial use.

Whatever the reason may have been, wireless telegraphy had hardly made spectacular prozress during the first dozen years of its existence. When we began publication there were, according to official figures published later, a mere 1,740 licensed land and ship stations in the whole world.

But that understates the position rather seriously. The United States had not ratified the International

Convention and had no licensing system; thus the true number of her stations cannot be ascertained. For once, America had made a slow start in taking up a scientific innovation; when the first wirelessequipped ships gailed from Europe to the New World there were no coastal stations in the North American continent with which they could communicate. But America was soon to catch up, and by 1911 probably had a greater number of stations than any other single country. Going by the few figures available and working backwards from the time when licensing came in, it is fairly safe to guess at a round 1,000 , or something not far short of it. Thus the world total of stations in 1911 was over 2,500 . The total number of people gaiaing their livelihood in wireless, from Mr . Marconi himself down to the humblest messenger boy, could hardly have exceeded 8,000 .

Though the commercial growth of wireless may have been disappointingly slow, technical progress had been quite impressive. An oldtimer dating back to 1911 might make out some sort of case for claiming that the effectiveness of the gear of his period had increased as much since 1897 as it has done between 1911 and the present day. Be that as it may, he would be on

Wireless World BEGAN

Wireless World, the first radio journal, appeared in April, 1911, as The Marconigraph. The present title was assumed two years later. We were originally published by the Marconi Company and circulated largely among engineers and operators, though from the start there was a public readership. We became an independent journal 36 years ago. This review traces the significant advances in radio and electronics since we began. Except in the introductory section, the material is taken entirely from our own pages. In the introduction an attempt is made to give the reader a glimpse of " what everybody knew " in 1911.

A " coil set "'; the kind of transmitter that was going out as we came in. Right to left: induction coil, spark gap, " bottery"." of Leyden jar condensers, " jigger."

pretty sure grounds in going on to claim that by 1911 the foundations of nearly all modern techniques had been laid and the majority of the great basic inventions had been made. Practitioners of the art certainly did not look on themselves as being in the Dark Ages. They had already seen great technical progress and were full of confidence for the future. To them, it was a kind of Elizabethan age, when everything was bright, new and exciting.

Many of the inventions that had been made were waiting-and some had to wait for many years-for the means to put them usefully into practice. Christian Hülsmeyer's radar pulses, first suggested by him in 1904, had to wait 30 years for the means of generating them and usefully detecting their reflections. Oliver Lodge's moving-coil loudspeaker looks, in the patent specification drawing of 1898 , surprisingly like the instrument of today, even if the "hi-fi" enthusiast would hardly approve of his diaphragm or its suspension. But valve amplifiers capable of working moving-coil speakers did not appear until 20 years later.

Fleming's diode, which we used to call, rather confusingly, an oscillation valve, was already ancient history, and was not especially esteemed as a signal rectifier. De Forest had added a grid in 1907, but his triode had made no impact. Probably fewer than five per cent of our early readers had ever heard of it and there was no mention of triodes in our pages for the first two or three years. The triode remained in obscurity until the discovery of regeneration caused many workers to concentrate their efforts on its improvement. Those efforts were probably triggered off by von Lieben's work on the amplifying triode in 1910-11.
"Tele-vision"
(generally
so
printed) was a word that appeared surprisingly early. Nipkow had enunciated the basic principles of scanning in the nineteenth century, but few seemed seriously to expect that "moving pictures by wireless" would be achieved. One of the exceptions was Campbell Swinton, a versatile engineer and wireless enthusiast who had already forecast that, if the difficulties were ever to be overcome, it would be by means of "the weightless cathode rays" of the Braun tube, the forerunner of the c.r. tube of today. Magnetic recording-on wire, not coated tape -was already known and had been used for the recording of high-speed signals.

Transistors? Well, hardly. But oscillating crystal circuits had been devised by Dr. W. H. Eccles, one

Photo: Deutsches Museum, München.

An historic volvethe Lieben-Reisz triode of 1911 .

of the "founder members" of wireless technology whose name recurred constantly in our pages for many years. In another sphere, he was one of the first to accept and interpret Heaviside's theory of a conductive layer in the upper atmosphere as an explanation of observed phenomena in long-distance wave propagation. For a long time to come there was a tendency to ignore or even to scoff at Heaviside's theory; his American co-worker Kennelly had even less recognition on this side of the Atlantic.

In Britain the art we practised was always called "wireless." The official international word "radio" had been introduced some years earlier but had had a chilly reception. It did not trip easily off English tongues; worse, to use it was considered "non- U " and aping the foreigner. In fact, though, most nationalities still preferred their own versions of "wireless": sans fil, drahtlose, sin hilos. But in Germany they soon began to show a preference for the word Funk (spark) which still survives strongly in Rundfunk (broadcasting).

Naturally enough, wireless had already produced its own jargon. Equally naturally, many of the earlier examples have now disappeared, some of them frozen out by changing techniques. One of the queer words was "jigger" (r.f. transformer for coupling the closed circuit, transmitting or receiving, to the open acrial). The derivation of this term is obscure and has apparently been lost in the mists of time. Maurice Child, in a historical lecture in the early 20 s , admitted his inability to trace it. "Billi" is easier; it was a small variable condenser reputed to have a capacitance measured in billionths of a farad. Though by international agreement wavelengths were measured in metres, the foot still served occasion-
ally as the unit. It had not been so long ago that only two wavelengths were in use, officially for merchant ship communication, but in fact for other purposes as well: Tune A, $1,000 \mathrm{ft}$ and Tune B, 2,000ft-quite near enough to 300 and 600 metres for the order of accuracy then prevailing. Whether chosen by luck or judgment, Tune B, the more popular, was in fact an excellent generalpurpose wavelength for the techniques of the times. The foot (length of wire used in winding a coil) sometimes served also as a unit of inductance!
The Postmaster-General's control of all wireless activities in Britain had been firmly established by the Wireless Telegraphy Act of 1904. Even before that date the Post Office had quietly assumed power over us by virtue of the monopoly in telegraphy conferred on it by Disraeli in Victorian times. This control may at times have seemed somewhat heavy-handed; indeed, Wireless World has on many occasions throughout its life been at odds with the Post Office over allegedly restrictive practices or other departures from rectitude. But we must remember that the Post Office, as one of its historians has said, " is not iust another Department." It functions under a long-established tradition of providing a public service, first in carrying the mails, then in transmitting telegrams and later in running a telephone service. In return, Parliament has granted certain monopolies and privileges, which have always been jealously guarded. Each successive development in wireless must have seemed to the official mind to threaten serious encroachment on these monopolies and it is small wonder there have been occasional bunglings and examples of over-cautiousness. However, it is a pleasant thought that Post Office control has generally been benevolent and beneficent.

Apart from the exercise of his monopolistic powers, it was (and is) the duty of the Postmaster-General to ensure the observance of international regulations. In 1911 we were governed by the Convention of 1906, to which nearly all nations had adhered. The United States was an exception; neither had she ratified the Convention (was that a manifestation of the Monroe Doctrine?) nor had Congress as yet passed any law to regulate or control wireless communication. America was indeed the land of the free. But, according to stories-perhaps exag-gerated-filtering across the Atlantic,
jungle law prevailed. Deliberate jamming of competing stations was commonplace and powerful stations shouted down the weaker. And there was nothing to protect the secrecy of messages, According to the folklore of the time, submarine cable interests intercepted telegrams sent by the Marconi transatlantic station at Glace Bay, Nova Scotia, and published a selection of themreputedly the most scandalous-as advertisements in New York newspapers. They are also said to have published intercepted messages relating to interruptions in communication, such as "stand by for three hours; atmospherics too bad," thus hoping further to discourage potential users of the new and then struggling wireless service. This latter

Both arc transmitters and rotary r.f. generators capable of producing continuous waves had been developed, but in the absence of valves the problem of modulation was indeed difficult. Water-cooled and liquid jet microphones, inserted directly in the aerial circuit had been used in some of the experiments.
For telegraphy, spark transmitters were almost universal. A big station of the period was an impressive affair; the sight, and still more the sound, of tens of kilowatts being dissipated in a crashing oscillatory discharge was something not easily forgotten. There was even a strong characteristic smell, generally referred to as "ozone". All the socalled "systems" were basically similar; the circuit arrangement,
|||

||
kind of interception was eventually circumvented by the use of code words for inter-station messages relating to interruptions and similar matters.

Some support for the truth of these stories comes from the fact that American legislation, when it eventually came, was not particularly onerous in most respects but imposed severe penalties for deliberate jamming and failure to observe secrecy. As things turned out, the American free-for-all had worked remarkably well in the early stages. No doubt most of the stations did in fact establish a tacit modus vivendi with their competitors. But control was bound to come sooner or later; in the event, it came sooner than expected, and for a reason that nobody could have foreseen.

Wireless telephony had already been accomplished experimentally when we began publication, but was as yet of no practical significance.
shown in the accompanying diagram, was simple enough. The a.c. supply, of 50 or $60 \mathrm{c} / \mathrm{s}$, was stepped up to 15 or 20 kV , an iron-cored choke being inserted in the transformer primary circuit to bring it into resonance with the alternator frequency. The condenser of the closed oscillatory circuit, charged through protective h.f. chokes, discharged itself through a spark gap, the electrodes of which, in all but the most up-to-date sets, were stationary, though adjustable as to distance. The closed circuit was coupled to the open aerial through a double-wound "jigger" or an autotransformer.

These fixed-gap sets gave a lowpitched, irregular tone distinguishable with difficulty from atmospherics and radiated heavily-damped wave trains, due to interaction between closed and aerial circuits. The "rotary discharger " sets which were just being introduced were a great improvement in both these respects. In the most
highly developed form the rotary electrode, mounted on an extension of the alternator shaft, carried a number of projecting studs arranged to give a spark for each half-cycle of the supply frequency; this had now been increased to several hundred cycles per second. Thus a clear high-pitched note was produced, and, as the primary circuit was opened after a very short interval of time, interaction was reduced and there were more persistent oscillations in the aerial circuit.
Transmitters fed from alternators were known as "power sets" and were mostly fairly up-to-date. But there were in 1911 many relics of the not-so-distant past with induction coils drawing their supply from accumulators or d.c. mains. These were mostly fitted in merchant ships but the British Post Office station at Malin Head in the remote NorthWest of Ireland is thought to have had at this time a coil set worked from an accumulator battery charged from banks of primary cells.

Input power of the typical and more modern transmitters of the period for ships and coastal stations was generally betucen one and three kilowatts; anything more was considered high power. A fair number of point-to-point and special-service stations used as much as 30 kW ; anything more was quite exceptional. The lower-powered stations seldom achieved a daylight range of much over 300 miles, depending on their aerial height.
The most common type of receiver used the Marconi magnetic detector, a rugged and reliable but relatively rather insensitive device. It depended for its action on hysteresis changes in an endless soft-iron-wire band moved by clockwork through a coil carrying the received signal current. A magnetic field was provided by a pair of permanent magnets and a secondary winding, concentric with the r.f. coil, was connected to a pair of telephones. Unlike other detectors, the magnetic was a current-operated device and
||

Typical Marconi ship's wireless installation of the period showing (left) receiving tuner with magnetic detector on bulkhead above it ; (centre) eme., gency spark-coil transmitter and (right) II kW rotary converter and spark gap of the main transmitter with (above) boxed coils of "jigger" and aerial tuning inductances.
the associated three-circuit tuner had circuits with a low L/C ratio.
The only other kind of detector in widespread use was the crystal rectifier, the combinations most favoured being carborundum-steel, zincitebornite and silicon-gold. Crystals were almost always used with twocircuit tuners having variable coupling between primary and secondary. A few stations had Fleming diodes.
Work on rotary r.f. generators had been going on for some years, but they had barely reached the stage of commercial use. The fact that an electric arc, shunted by a tuned circuit, could produce continuous oscillations had been known for some time. This had been turned to practical use by enclosing the arc in a chamber filled with hydrogen or alcohol vapour and subjecting it to a strong magnetic field. A small number of arc stations were in operation, mostly in America, but efficiency was low and continuous waves had little advantage until heterodyne reception became possible. The mechanical interrupters ("tickers") used in early c.w. receivers did not allow aural discrimination between signals and atmospherics.

Constructionally, the gear of the period tended to follow contemporary scientific instrument practice, with lacquered brasswork much in evidence, especially in Britain. Nickel-plated finish was more popular on the Continent and in the U.S.A., where ceramic insulants tended to be more widely used. Ebonite was, however, the most favoured material; plastic mouldings were virtually unknown. The concept of a "packaged" station had not arrived; the majority of transmitters and receivers consisted of a collection of units mounted where convenient and then wired together. But complete single-unit receivers were fairly common.

Some of the older stations used tinfoil-coated Leyden jars as transmitter condensers (the "jar" still did occasional duty as a unit of capacitance, but not in our pages). There were more modern tubular versions with sputtered or electrically de, posited metal coatings on superior glass. Oil-filled condensers with metal plates and sheet-glass dielectric were perhaps the most common. Receiving variable condensers often had ebonite dielectric.

By far the most important applica||

Log cabin station typical of those used by North American miners, trappers and fishermen to keep in touch with civilization.

both in merchant ships and the navies of the world. Next came coastal stations for working with the ships. These were often sited on prominent headlands; a relic of the days when ranges were even shorter than in 1911. A few strategic naval and military stations, mostly of relatively high power, had been erected.

With the exception of the transatlantic service (of which more later), wireless had so far made little progress in its competition with landline and cable for point-to-point work. There were, however, a certain number of stations providing a telegraph service for isolated communities in cases where a wire connection was uneconomic. In particular, the so-called log-cabin stations on the North American continent allowed local miners, trappers or fishermen to keep in touch with the outside world. A few of the early point-to-point sta'ions, working at distances well beyond normal daylight range, provided a rather erratic service by taking advantage of night-time pronagation conditions. Indeed. what might be called the "Heaviside bonus" was extremely valuable in the early days, particularly to ships. With its help, extraordinary ranges were attained with some consistency, especially outside the equarorial armospheriss belt. Atmospherics, or X's, were the
great enemy. X-stoppers, optimistically so-called, had already appeared, but no real solution was in sight. About the best that could be done was to use pairs of crystal detectors working in opposition as limiters.

Spzcial-purpose equipment for military and similar uses was already being designed and wireless had managed to stagger into the air in both lighter- and heavier-than-air machines.

Prominent among the handful of famous stations of the time was Poldhu, in Cornwall, whose main task, together with its counterpart Cape Cod, U.S.A., was to provide a Press Service for the big liners which already printed daily newspapers on board. Poldhu was the first a.c.operated "power set," as distinct from an instrument-maker's job powered from an induct on coil. It had been used by Marconi just after the turn of the century for the first transatlantic experiments. Dr. J. A. (a?terwards Sir Ambrose) Fleming had been called in to do the original eng:neering design. Fleming is mainly remembered for his invention of the diode, but he has an equalperhaps even greater-claim to fame as the first of the wireless engineers. Incidentally, he was the author of the first severely technical article (on r,f. resistance measurement) ever to be published in The Marconigraph.

The French military station on the Eiffel Tower, with its fixed spark gap and $25-\mathrm{c} / \mathrm{s}$ a.c. supply (" one spark for a dot and three for a dash ') was known throughout Europe for its time-signal service. Thanks to the exceptional height of aerial, very long ranges were achieved, though the signals were often quite difficult to read through X's. The German stations of Nauen and Norddeich were also well known. Most of the high-power transmitters worked on wavelengths around 2,000 metres but the transatlantic station Clifden and Glace Bay were on about $6,000 \mathrm{~m}$.

Commercially, the Marconi Company and its associates throughout the world were in a dominant position, if only by virtue of the patent position. In our very first issue we reported a successful action for patent infringement against the British Radio Telegraph and Telephone Company which did much to consolidate that position. Marconi's personal claims as the originator of wireless telegraphy had been hotly challenged for a dozen years or more. But, now the smoke has cleared away, it is not difficult to see that those claims were fully justified. He may not have contributed any great fundamental invention but, put in the simplest possible way, he had " made it work." The last word in the controversy had in reality been said as long ago as 1897, when the Editor of the Electrical Review, is answer to the rhetorical question "What did Marconi invent?" said, quite simply, "the elevated electrode." A prolonged subsequent correspondence in the pages of the journal failed to establish any valid claim to the anticipation of Marconi's invention of the aerial. It is clear enough now that an elevated aerial, plus an earth connection, was all that was basically necessary to turn Hertz's transmitting oscillator and Branly's receiving coherer at one step into a communication system with a useful beyond-the-horizon range. Subsequent detail improvements were not so difficult, but especial credit should be given to Lodge, whose "syntonic jars" experiment of 1889 had paved the way for syntony or tuning, without which wireless could never have got very far.

The race for priority had been close run and several rivals were breathing hard down Marconi's neck for the golden prize. And golden it turned out to be. When the young Marconi, in his early 20's, formed his company in 1897 he received $£ 15,000$-in golden sover-

Construction and electrical characteristics of the Telefunken quenched spark gap (based on Figs.8, 10, 11, page 155 of Telefunken Zeitung, Vol. 26, No. 100

Air-blast cooling of multiple quenched spark gaps in a Telefunken highpowered transmitter.
||
eigns, not depreciated paper pounds -and $£ 60,000$ in shares, which gave him a controlling interest. He was no guinea-pig director; at the time we began he was playing a dominant part in technical development.

At that time Marconi had no significant competition in England but his American company had to struggle against the United Wireless Company which controlled some 500 stations. But, in a year's time United Wireless was to be absorbed after admitting the validity of the Marconi patents. The real and most serious competitor, both commercially and technically, was the Telefunken Company in Germany, an amalgamation of several German wireless interests.

Telefunken had produced a distinctive and extremely effective spark transmitter of which the main feature was a multiple spark gap made up of a number of silver-faced copper discs with deep cooling flanges separated by thin mica rings. In the standard $2 \frac{1}{2} k W$ set there were eight series-connected gaps. Thanks to the rapid dissipation of heat, excellent quenching of the primary circuit oscillations was secured, with wave-trains of high persistence in the aerial circuit. An alternator frequency of $500 \mathrm{c} / \mathrm{s}$ gave a spark frequency of 1,000 ; the high-pitched note of Telefunken transmitters was quite distinctive. Efficiency was high; probably over 60%.

The Telefunken receiver had a tuned aerial circuit variably coupled to a semi-aperiodic secondary shunted by a crystal detector and headphones. An alternative type of set, giving higher selectivity, had an intermediate tuned circuit. Clip-in interchangeable coils were used. The detector, a sealed cartridge usually with a silicon-gold combination, was interesting as a kind of forerunner of the modern crystal diode.

Germany's contribution to wireless development had been acknowledged when Ferdinand Braun shared with Marconi the Nobel Prize for physics in 1909.
In the early days the transatlantic station at Clifden, in the wilds of Connemara, was the wonder of the world of wireless. And rightly so; there was nothing remotely approaching it, either in technology or performance, except its communicating station at Glace Bay, Nova Scotia, which, being more remote, was less in the limelight. Marconi himself gave a detailed description of Clif-
den, which had recently been rebuilt, in a lecture to the Royal Institution, reported in our first volume. This fantastic station was unique in being powered by d.c., drawing 300 kW from a 6,000 -cell accumulator battery, "the largest of its kind in existence," which, when fully charged, gave a voltage of 15,000 . Charging of the battery was by three seriesconnected high-voltage generators, the prime mover being a steam engine. The six boilers were fired with peat, brought by a light railway from the adjacent bog. Still more fantastic was the closed circuit airdielectric condenser; the metal plates were spaced a foot apart and this component-the first to which the term "low-loss" was appliedneeded an enormous shed to house it. The sotary spark gap was run at a speed giving a sparking rate of 500 p.s. As the rate was independent of load, the note was exceptionally pure.
For the year to April, 1911, it was proudly claimed that 812,200 words of paid traffic had been pumped across the Atlantic. That would sound pitifully small to the manager of a modern communication circuit, but

DISC DISCHARGER
COMTINUQUS CURRENT
Circuit diagram of the Clifden "d.c." transmilter.
||

General view of the transatlantic high-power spark station at Clifden, Connemara. On the right is the peat-burning power house.
||
was probably a great improvement over that achieved with earlier apparatus. Detailed records are lacking, but in the Marconi archives there are some figures relating to the period beginning October, 1907, when a limited public service had been opened. Traffic was then running at the rate of a mere 300,000 words a year and average delays ranged from $2 \frac{1}{2}$ hours at best to over 14 hours.

And-supreme humiliation to wireless men-well over 7,000 words had to be handed over for transmission by cable. Apart from the humiliation, that involved a dead financial loss of 4d a word: the "via Marconi" service was cut-price.

We do not know what were the delays and "cablings," as they were called, in 1910/11, but it seems certain that the new apparatus just
described had brought about a great improvement in communication. Independent testimony given a year or two later suggested that average delays did not exceed those of the cable. But highly detailed signalstrength curves shown in Marconi's 1911 lecture make it appear that communication was liable to fail for a few hours nightly at times when X's were prevalent. Still, it is fair to

OSCILLATIONS CORRESPONOITE TO ABOVE RESOMANCE CURVE

SERIES or WAVE TRAINS RADIATED from LlIFDEM AERIAL SPARK FREQUEMCY 500 per sec.

Characteristics of the Clifden tronsmitter. (From Marconi's Royal Institution Lecture, June 2nd, 1911.)

Air-dielectric condenser of the closed circuit ot Clifden.

say the Atlantic had been conquered at last after many failures and disappointments. The epic struggle to get consistent signals across had started from the Canadian end* eight years earlier, at a time when nothing was known about long-distance propagation; the engineers did not even know on what wavelength they were transmitting! Countless changes in circuitry, power and aerial arrangement had been made. Glace Bay station had even been shifted to a different site.

Clifden came to a sad end in "The Troubles" of 1922, when the station buildings were burned to the ground. Still, it had nearly served its time and a radically new long-distance technique was soon to emerge. The station has no memorial, though, by a strange coincidence, near the site is a commemoration stone to the flyers Alceck and Brown, who crashlanded there after conquering the Atlantic through a different medium.

[^1]1912
A CATASTROPHE which stirred the minds of men-and still does so-was the sinking of the Titanic. That great liner, believed to be unsinkable, struck an iceberg on her maiden voyage and sank in a few hours. Over 1,500 lives were lost, but some 700 were saved by ships summoned by wireless.
|||||น|||

Increase in the number of the world's licensed stations between 1903 and 1914. (Based on data from the International Radiotelegraphic Bureau, Berne.)

That " epic tragedy of the sea," as we called it, was to have far-reaching effects. In earlier shipwrecks lives had been saved by wireless, but the part it had played in the Titanic disaster fired the public imagination; no longer did anyone doubt its value. America quickly passed a law to regulate wireless communication and, at long last, ratified the International Convention. Wireless men had become benefactors of humanity and, if our pages can be taken as reflecting their attitude, felt they "had never had it so good." Indeed, over-confidence began to creep in.

A grandiose, and what now seems over-optimistic, "Imperial Wireless Scheme" for linking the units of the British Empire was planned and a contract between the PostmasterGeneral and the Marconi Company was signed in July. A few extracts from the specification will give some idea of the giant spark stations proposed: "Capable of transmitting to the distant station at any time of day or night. . . . Wavelengths as great as possible within the limits of 17,000 and 50000 ft Aerials over $3,000 \mathrm{ft}$ to $8,000 \mathrm{ft}$ long, supported by tubular masts 300 ft high. ... Prime mover to be a steam turbine of between 1,300 and 2,500 h.p."

A name that has constantly recurred in our pages since the begin-ning-and happily still recurs-is that of H. J. Round, one of Marconi's engineers. In an article on the strength of atmospherics in relation to signals, Round described the use of a Fleming diode as a valve voltmeter to measure voltages set up by the X's-certainly our first mention of what we would now call electronics. Round has played a prominent part in many important developments.

High-speed automatic telegraphy was discussed. The transmitter was keyed by a Wheatstone machine and, for reception, there was the choice of photographic or phonographic methods. The phonograph, which allowed better discrimination between signals and X's, seems to have won the day; before long, speeds of 100 words per minute were demonstrated.

Heaviside's theory of wave propagation, enunciated some ten years earlier and now expanded and championed by Eccles, became the subject of quite violent controversy. It is pleasing to record that we came down editorially on the right side-but very cautiously: " at the moment there is a disposition to accept the hypothesis
put forward by Dr. W. H. Eccles as yielding the best explanation of the observed phenomena."

Direction finding, a brand-new application of wireless, now appeared. Thanks to the large size of the pair of fixed loops used in the original d.f. gear, sufficient signal pick-up was obtained to give fairly useful ranges without amplifying valves.

Throughout the early period wireless was bedevilled by patent litigation. During this year some sort of agreement seems to have been reached between Marconi's and their rivals Telefunken; actions and counter-actions with Siemens, who exploited the German system in Britain, were called off.

1513

EVER since the Imperial wireless scheme had been announced the Government had been constantly under criticism, mainly on the grounds that the contract had not been thrown open to tender. A technical committee was now appointed " to report on the merits of the existing systems of long-distance wireless telegraphy." The distinguished members, all Fellows of the Royal Society, included the Director of the N.P.L. and the President of the I.E.E. They obviously did a conscientious job and produced a report providing a valuable and unbiased commentary on the state of the art in 1913. The systems examined were Marconi and Telefunken (spark), Poulsen (arc) and Goldschmidt (alternator), which used a rotary r.f. generator with contrarotating field and armature, frequency multiplication being obtained by feedback. Those responsible for these systems were invited to give practical demonstrations "if possible over distances of 2,000 miles and upwards."
According to the committee's report " Except in the case of the Marconi system we did not, however, obtain any demonstrations over a distance of even 1,000 miles". Of Telefunken, it was said that experiments were being made between Nauen and Togoland (4,000 miles) and that communication seemed possible at night. Results of the Poulsen arc system working between San Francisco and Honolulu (2,100 miles) "do not appear to have been very satisfactory". The Goldschmidt machine being set up at Hannover " was ad-

Disc discharger for the 75 kW Marconi spark installation.

The huge primary winding of one of the "jiggers" (aerial coupling transformers) for the 300 kW synchronous spark transmitter at Caernarvon.

mirable both in design and workmanship" and expected to be capable of conimunicating across the Atlantic.
The Clifden transatlantic station was visited by the committee members, to whom high-speed and duplex working were successfully demonstrated. Of the general performance, it was said "Communication is practically continuous, though there are, no doubt, periods when the signals become very weak and even occasional periods when no signals can get through ". But a note of warning was wisely sounded about the possibilities of atmospheric interference in the tropics.
In spite of this favourable report, the Imperial wireless scheme was not to have a smooth passage. Critic-

The Round-Marconi triade, one of the early practical amplifying valves.
and a political scandal had developed. To cut a long story short, although the contract was eventually ratified by Parliament, the scheme never came to fruition. It ended with the conferring of the G.C.V.O. on Marconi and the award to his company, many years later, of $£ 590,000$ damages against the PostmasterGeneral for breach of contract.

Thanks to the attention focused on wireless by the Titanic disaster the amateur movement had begun, and we were already publishing instructional articles for the benefit of amateur readers. We showed them it was quite easy to make a start: "An old motor-cycle ignition coil will do for the transmitter and a simple crystal set for the receiver". American amateurs were now controlled, being restricted to wavelengths below 200 m and input powers of not more than 1 kW .

1914

THIS year was marked by the most momentous advance so far described in our pages-the practical introduction of the triode, which had got off to a false start in 1907. This

was used in "a practical standard set for wireless telephony" developed by Marconi. This transmitter took $10-12 \mathrm{~mA}$ from a $500-\mathrm{V}$ dry battery and was stated to have a range up to 45 miles. Hardly any details were given.
The Marconi transatlantic station at Caernarvon was opened, working on the "timed spark" system in which more-or-less continuous waves were produced by overlapping spark discharges in appropriate phase. The "tone wheel", a mechanical beatfrequency generator for c.w. reception was introduced in Germany.

1915-18

THE FIRST
WORLD WAR

DURING the war our activities were severely circumscribed by what we called "the heavy hand of censorship" and, in particular, we were prevented from writing anything about the rapidly increasing use of valves for war purposes. In fact, the only "safe" rechnical news was that coming from neutral America. David Sarnoff, then in Marconi's W.T. Co. of America, and later to become President of the Radio Corporation of America, was for a time our New York correspondent.
Without any doubt, the most important news coming from the U.S.A. concerned the development of the triode: in particular "the simultaneous use of a single bulb as rectifier, amplifier and oscillator has already produced startling results". That may raise a smile nowadays but, at the time, it was difficult to believe that anything more sensitive and selective than a good singlevalve regenerative receiver would ever be devised. The importance of heterodyne reception was fully realized, thus giving continuous wave systems a new lease of life.
Towards the end of the war there was some relaxation by the censor and theoretical articles on valves were printed. Among the authors of these were two distinguished founder-members of Phase II of wireless technology: Dr.R.L.SmithRose and E. V. (later Sir Edward) Appleton. Smith-Rose wrote a long series of articles, starting with elementary thermionics, while Appleton's contribution gave our first mathematical treatment of valve characteristics. Valve manufacture was advancing rapidly and as early as 1916 transatlantic wireless telephone tests were made, using 300

Police wireless car in New York (1918).

Dame Nellie Melba giving her famous broadcast concert from Cheimsford long-wave station on June 15th, 1920.
receiving-type valves in parallel in the transmitter.
In the early days most wireless stations were designed empirically but by 1917 it was thought possible to design a complete station of specified performance by applying accepted formulx; to "fly 'em straight off the drawing board", as they say in aviation circles. A
theoretical exercise of this kind was now offered to readers in a series of articles.

The end of the spark transmitter era was now drawing nearer, thanks to improvements in continuous-wave gear and still more to heterodyne valve reception. The last of the great spark stations were those built for spanning the Pacific in two hops; from San Francisco to Honolulu (2,100 miles) and from Honolulu to Funabashi, Japan (3,350 miles).

British amateur activities had been entirely suspended since the outbreak of war but in the U.S.A. the movement steadily gained strength until America's entry into the war in 1917; by that time the supply of amateur equipment had become big business.

Television; a contributor's prophesy that went wrong: "The idea of wireless television is . . . absurdly improbable. . . . To construct wireless apparatus capable of receiving 40,000 signals in one-tenth of a second and arranging them in their correct order [would be beyond] the limit of human ingenuity."

1919

WITH the end of the war, articles of the "it-can-now-be-revealed" type were printed. One of the developments disclosed was the multi-stage r.f. amplifier with semi-aperiodic couplings.
Valves were now being produced by improved processes and the "soft" kind was fast disappearing. The generation of oscillations (by van der Pol) on a wavelength as short as 3.65 m was considered a notable advance. Eccles suggested the modern valve nomenclature; diode, triode, tetrode and pentode. We were not quite at our best in editorially stigmatizing these now-universal terms as "too academic and refined to become familiar." High-power transmitting valves were now being made, allowing Marconi to span the Atlantic by telephony in daylight.
Amateur transmitting licences were not restored by the Post Office until a year after the war had ended; this delay caused much complaint.

1920

THIS was the heyday or the great long-wave stations with arcs or r.f. machine generators, operating on

A famous r.f. amplifier-detector-the Marconi 55A with V24 type valves.

A group of passengers about to embark for Paris on the first commercial machine (Handley Page) to be equipped with radiotelephony (1920).

Circuit diagram of the Moullin valve voltmeter (1922) showing method of calibration.
wavelengths most conveniently measured in miles; the longest (Bordeaux) was 14 miles. Powers were up to $1,000 \mathrm{~kW}$ or even more. In spite of improvements, the arcs radiated a rich assortment of harmonics and "arc hash."

Continuous-wave sets for ships, wireless gear (including telephony) for the new airlines and commercially available direction finders were new developinents.

The Wireless Society of London, suspended during the war, had now resumed full activity. Though by constitution an amateur body, this unique institution did in fact represent a happy mingling of amateurism and professionalism. Many of the most "eminent wireless telegraphists," as we used to call them in our earliest days, lectured before the Society. The first five Presi-dents-Campbell Swinton, Erskine Murray, Admiral of the Fleet Sir Henry Jackson, Eccles and Sir Oliver Lodge-had all from before the turn of the century played distinguished parts in wireless development. The Society changed its name to Radio Society of Great Britain in 1922.

1821

THERE had by now been several casual mentions in our pages of what is now called "electronics"; Appleton, in a tailpiece to a book review, referred to the valve as "an invaluable laboratory instrument " to the general physicist. The use of amplifying valves in conjunction with photoelectric cells for measuring light intensities had also been mentioned. Now came our first full-dress electronics article in a report of a paper read before the Wireless Society of London by Prof. R. Whiddington on the measurement of physical quantities. He described the measurement of short distances by capacitance variation using the beat-note method with two oscillating valves. Sensitivity claimed was 50 to 100 times greater than that of the optical interferometer.

Broadcasting in America was already under way and regular "Dutch concerts" from The Hague were started. The Marconi Company's transmissions from Writtle were licensed by the Post Office early next year. With increased interest in telephony loudspeakers became important. Most of them consisted essentially of a telephone earpiece with a horn, but the American Mag-

navox moving coil and the Western Electric balanced-armature types had appeared.

1822

AMATEUR transatlantic tests were successfully carried out on 200 metres, Wireless World organizing the arrangements on this side. Moullin described his valve voltmeter, the first widely used electronic device. Dull-emitter valves
with a filament wattage about $1 / 15$ th that of earlier types were introduced and news of Armstrong's superregenerative receiver came from America.
C. S. Franklin of Marconi's described an important developmentthe use of highly directional aerial ariays on wavelengths below 20 m . But so far there was no suggestion that such waves were usable over very grear distances.
Towards the end of the year the British Broadcasting Company, fore-
runner of the Corporation, began official transmissions. Wireless World started weekly publication.

1923

WITH broadcasting in full swing, the biggest do-it-yourself boom of all time got under way; a high proportion of receivers were homeassembled The typical valve set of the period had a regenerative de-

"Messrs. W. G. Pye \& Co. (Makers of Physical and Electrical Apparatus) beg to announce that they have opened a Wireless Dept. at their works " (Advertisement from W.W. May 27th. 1922).

The unit receiver was popular in the early broadcasting era.
tector with two transformer-coupled a.f. stages and sometimes a rather ineffective r.f. stage, stabil.zed by aerial loading or positive grid bias. Neutralizing of anode-grid capacitance was already known, but its use did not become widespread for several years. Cost of valve receivers was high, so many listeners used crystal sets with headphones.

The superheterodyne principle of reception was first described; this was one of the great basic inventions which got off to a slow start.
"Electromagnetic Screening," the subject of an article by R. A. (later Sir Robert) Watson Watt, seems a far cry from the author's future work in radar. More in character was his R.S.G.B. lecture "Observations on Atmospherics" (using recording gear and direction-finding) reported later in the year. "The greatest unsolved problem in radiotelegraphy is interference by X's."

1924

THIS was the year of the "wavelength revolution," a distinct landmark of the half-century. Marconi exploded his "beam wireless bombshell" by disclosing how, in the spring of 1923, he had conducted short-wave receiving tests on 93 m while cruising in his yacht Elettra in the S . Atlantic. The transmitting station was at Poldhu, where Franklin had erected a parabolic reflector array. The British Government hastily revised their scheme of expensive mile-wavelength stations for Imperial communications and the Marconi Company undertook a contract to erect beam transmitters on a strict " no play, no pay" basis. That was probably one of the boldest commercial enterprises ever undertaken; nothing was known about short-wave propagation theory and the phased multiple "grid" aerials which were to replace the parabolic reflector system existed only on the drawing board. But fortune had favoured the brave; we now know 1923 was a sunspot minimum year; the frequencies chosen for the early experiments, though on the low side, were not so low as to be unworkable; on the other hand, they were not so nearly correct for prevailing conditions as to give an over-optimistic impression of the potentialities of short waves.
Short-wave working had by now become widesptead, particularly among amateurs, pind s.w. broadcasting had started in America. Other
highlights of the year: Campbell Swinton's detailed pronouncement on the possibilities of cathode-ray television and Baird's first article on his mechanical system.

1925

SOMETHING approaching the modern theory of short-wave propagation was now put forward by Applaton; Round wrote our first art.cle on second-channel interference and other troubles to which the supstheterodyne, now becoming of practical signifizance, is prone. Baird wrote on television by reflected light (as opposed to shadowgraphs) and that versatile genius, A. D. Blumlein, in collaboration with N. V. Kipping, discussed valve
theory. Electrical recording and reproduction of gramophone records was introduced and the quartz oscillator and piezoelectric effect were described.

The amateurs' position had, we considered, been steadily undermined by the Post Office and, feeling diplomatic methods would no longer suffice, we publicly offered $£ 500$ towards the cost of fighting a test case against the Postmaster-General. It so happened the Marconi Company (then our publisher) was at the time engaged in delicate negotiations with the Post Office: an embarrassing situation seemed likely to arise, so the obvious course was to get rid of Wirelcss World as quickly as possible. Thus the transfer to our present publishers came about. That, needless to say, is a story which did not appear in Wireless World.

Wireless World " Everyman 4 " receiver (1926) set a new standard in range and selectivity for broadcast receivers.

Details of the low-loss tuning coils used in the "Everyman 4."

1926

SO far as we were concerned, the event of the year was the introduction of the "Everyman Four," a receiver design of outstanding performance produced by us for home constructors. The feature of the set, which survived for many years in various modifications, was a highgain neutralized r.f. stage with coils of exceptional "goodness," based on the classical work of Butterworth and on tests of coils submitted by readers.

The first mains-operated broadcast set (Gambrell) made its appearance. The series-connected $60-\mathrm{mA}$ valve filaments were heated with rectified current from the h.t. supply source. Battery eliminators were now commonplace.

1927

AT last, Heaviside's theory of a conductive layer in the upper atmosphere was experimentally verified. Amplifying work done in the previous year, Appleton wrote an article showing how, by a method of distinguishing between waves travelling horizontally and those arriving in a downward direction, he had concluded the height of the layer of ionized air at night was $80-100 \mathrm{~km}$.

The first public transatlantic telephone service was opened and we conducted a campaign for Empire broadcasting on short waves.

1928

A MORE scientific approach to many problems, particularly to the details of receiver design, now becomes evident. It had already been shown (by M. G. Scroggie) that even a very low value of impedance common to several anode c:rcuits could completely spoil the performance of an a.f. amplifier. Th:s trouble was overcome by "decoupling" individual circuits, a method originated by Ferranti. The isolation of circuits by "scientific wiring" was also described

By now, the neutralized triode was being replaced by the screened tetrode for r.f. amplification. Output pentodes, fed directly from the detector, helped to simplify and cheapen broadcast receivers: the three-valve set was becoming the most popular.

Detection of signal echoes "from the depth of space," with a time delay of 15 sec , gave a foretaste of extra-terrestrial communication.

1929

BAIRD'S 30-line mechanical television system, with flying spot scanning, was now sufficiently developed for the B.B.C. to give experimental transmissions of it for half-an-hour a day; these were continued until 1935. The broadcasting of "still" pictures by the Fultograph system by the B.B.C. and many European countries enjoyed a short-lived vogue.

Spark transmission for ships and coast stations was slowly giving way to i.c.w. (interrupted continuous wave); for long-distance point-topoint communication short waves had almost entirely replaced longwaves except on the N. Atlantic circuit.

Broadcast receivers were now built more or less in the modern manner, with metal chassis and, quite often, built-in speakers. Mains sets with the recently introduced indirectly-heated valves were commonplace. But there were still few sets with ganged tuning. Efforts were being made to provide greater selectivity in preparation for the "Regional" broadcasting plan, which was to offer listeners a choice of two programmes. The architect of the scheme, of which many traces remain in the present B.B.C. distribution system, was P. P. Eckersley, then chief engineer, who for many years has projected his ebullient personality and original thoughts through occasional Wireless World articles.

1930

A LIVELY controversy arose over the so-called "Stenode" receiving system, in which sidebands lost by extremely sharp tuning were restored by tone correction. The crucial question: "was interference put back equally with the sidebands?" A related controversy concerned the physical reality of s'debands; there were several notable " heretics."
The suscept:bility to cross-modulation of screen-grid valves brought about a wave of interest in bandpass filters; as a corollary, ganged single knob tuning was widely adopted for broadcast and other receivers. Per-
manent-magnet moving coil loudspeakers were now in general use.
Our funny man "Free Grid," shrugging off an Editorial footnote threatening imminent "earthing" soon after starting his whimsical writings in September, 1930, has carried on ever since with his task of preventing us all from taking ourselves too seriously. One of his outstanding contributions (in our issue of March 10th, 1933) contained a remarkable anticipation by 16 years of Orwell's "1984." "Free Grid" went one better than Orwell in giving his Big Brother an electronic " thoughtcrime" detector.

1931

PAVING the way for a better understanding of short-wave propagation, Appleton showed for the first time in our pages that there was more than one reflecting layer in the upper atmosphere. He had earlier sought the help of our readers in reporting distortion of the Baird 30-line television picture brought about by multipath propagation and reproduced a reader's sketch of a picture which clearly showed the effect.
Short-wave telegraph and telephone services had by now linked many, if not most, of the more advanced countries of the world and lack of secrecy, a handicap of wireless since the earliest days, was overcome by "scrambling."
The N.P.L. was taking steps to develop a standardized form of test for the sensitivity, selectivity and fidelity of receivers. The decibel scale began to come into general use in place of such expressions as "times amplification," etc.
So far as receivers were concerned, the introduction of the variable-mu valve with linear characteristics largely overcoming the difficulties of cross-modulation, was an important development. "Straight versus superhet" became a burning issue, but the outcome was not in much doubt. Realizing that ganged tuning with " potted" coils would soon become universal, we commissioned a special investigation of the characteristics of coils. Moving-coil speakers, now generally built into the receiver, were almost universal: during this and the preceding year the finer points of their design were discussed in a long series of important articles by Dr. N. W. McLachlan.

1932

THOUGH many ships still had spark transmitters, marine wireless had by now made considerable progress. Short-wave equipment for telegraphy was commonplace and some 15 transatlantic liners provided a radio-
telephone service for passengers. The G.P.O.'s long-dıstance station for working to ships had been much improved and now had a rotating beam array with an electrically-interconrected receiving beam turning in unison at the remote controlling station.

The cathode-ray tube had by now

Marconi-Stille steel tape recorder.
|||||||| ||||||||| ||:|||||||||||||||||||||||||||||่||||||||||||||||||||

An historic high-quality loudspeaker: the Voigt domestic corner horn in its original form (1934).

become a regular article of commerce and its applications were no longer restricted to research work; it was being used for routine factory testing.

A stir was caused by the introduction (from Germany) of coils with powder-iron cores; inductors of this type were soon to be widely used in receivers in place of bulky air-cored windings.

A B.B.C. service of official "Empire " broadcasting, for which we had campaigned for some six years, was at last started. Wire and wireless were linked by a five-metre Post Office telephone link across the Bristol channel.

1933

WITH the increase in sensitivity of receivers and the growing electrification of the country, man-made interference had become a serious problem. Following suggestions made in Wireless World the I.E.E. had set up a committee to consider the possibility of legislation and interference complaint questionnaire forms could be had from post offices. This service is still available to the public.
The " small superheterodyne" was soon to become Britain's standard broadcast receiver: early versions had bandpass input, single-valve fre-quency-changer, one i.f. stage and a second detector feeding a pentode output valve. R.F. pentodes were by now widely used and the electroncoupled frequency-changer had appeared. Refinements like automatic gain control, noise-suppression switches and, ocsasionally, "quiet " a.g.c., were coming in. For battery sets, economy circuits with push-pull output valves biased to cut-off were being used. Built-in car sets had arrived, so we described methods of suppressing ignition interference.
S.T.C. put up for the Air Ministry a decimetre-wave (17.5 cm) link working across the English Channel.

1934

SEVERAL high-definition television systems were now being described and Zworykin's "Iconoscope" camera tube was announced. Apparently the audience of the Baird 30 -line broadcasts was greater than we had thought; publication of a proposal to suspend the transmissions brought,

Forerunner of the (transistor) pocket portable: chassis of a super - regenerative valve set (1935).
|||
within the week, protests from a large number of readers. No doubt the transmissions on this system, crude as it was, did a great deal to stimulate work on television; some correspondents were now using cathode-ray receivers.

The introduction of suitable valves
now made practicable the "universal" a.c./d.c. receiver, without a transformer.

Our contributor "Cathode Ray" started his inimitable series of expository articles in 1934. Apart from his services as a talented and sympathetic expositor of the trickier aspects of
technology he has been a doughty fighter against the many irrational and confusing technical terms which make life so difficult for the student and beginner. And "Cathode Ray" has won many of his battles: few of us now dare to speak of "non-linear distortion " un'ess we really mean it is the distortion which is non-linear!
Other innovations of the year: investigations of the effect of sunspots on h.f. propagation: the MarconiStille magnetic wire recorder: highnote speakers (tweeters): the Wireless World Quality Amplifier, with resistance-coupled push-pull, which set a standard for high-quality reproduction for many years: the Voigt domestic corner horn loudspeaker.

1935

THE scene was now set for the start of a regular British television service

Characteristics of the Marconi-E.M.I. television system as first issued in 1935.

SINCE THE WIRELESS WORLD BEGAN-Continued

Radar: S.F.R. " obstacle detector" fitted in the liner Normandie (1936).
|||
next year and it was decided that alternative test transmissions should be made on the Marconi-E.M.I. system (405 lines interlaced; characteristics basically as at present) and a new Baird system (240 lines with sequential scanning; 25 frames per second). One of the television systems much discussed was the "intermediate film," with a time delay of about half a minute; it was easier to scan the film image than the direct scene.

Our "Diallist" now started his non-stop radiations of his random and highly individualistic commentary on the happenings of the times.
Some developments of the year: Armstrong's frequency modulation in America: the electron multiplier: "all-wave" tuning and refinements like contrast expansion and automatic selectivity control in broadcast receivers: public address became important.

1936

THIS year marks the end of our first quarter-century and it is time for a backward glance. And a very appropriate time, as it happens: technical development was moving rapidly into Phase III, the era of high-definition television, industrial electronics, microwaves, radar and pulse techniques. Phase I had been the evolution of spark telegraphy on medium and long waves. Phase II, coming to an end in 1936, had began with the practical development of the amplifying and oscillating valve in 1911-1913, followed by radio-telephony, broadcasting, the full exploitation of the multi-mile wavelengths and then of those rich bonanzas the h.f. and v.h.f. frequency bands; also
the start of electronics for scientific purposes. Most of this progress had been made possible by valve improvements; our contributor, "Cathode Ray," produced detailed support for the assertion that 92 valves of the 1921 type would be needed to provide the performance of the typical five-valve broadcast receiver of 1936. And a resourceful designer, well primed with the accumulated knowledge of 1936, would have been needed to achieve that performance.
A quick glance through our 1936 volume shows how fast radio technology was then moving into modern times: The B.B.C.'s London television station started the world's first regular high-definition service; the French S.F.R. company introduced the " obstacle detector," a non-pulse radar device; "plumbing" was coming in and waveguide theory was treated; there was a number of articles on electronics; an editorial plea was made for the abolition of spark transmission.
A quarter-century's progress in wireless telegraphy; the Queen Mary on her maiden voyage handled as many words of traffic in the few days of the crossing as the great transatlantic station Clifden had averaged in two months in 1910/1911.

[1937

NOW that regular transmissions had started, television became the centre of interest and was much discussed both in theory and practice. The first 405 -line commercial receiver to be reviewed was an H.M.V. model giving a picture 10 in by 8 in viewed indirectly in an inclined mirror. The vision unit had a "straight" six-
stage r.f. amplifier, the sound receiver being a superheterodyne. Deflection was magnetic and the set, complete with aerial, cost 95 gns . After a few weeks' trial the Baird 240 -line transmissions were discontinued, leaving the 405 -line system, basically as it is today, as the British standard. One of the first television outside broadcasts was that of the coronation procession of King George VI.
Designs for the home construction of ordinary broadcast receivers were now seldom offered in our pages; the readership was undergoing a change, as was shown by a questionnaire. About half our readers were now professionally concerned with radio.
The "all-wave" broadcast receiver, often with three short-wave bands, was now firmly established and the complicated switching required had made the wafer switch almost universal.
||

Guglielmo Marconi who died in July 1937, aged 63.
||

1938

THE days were long past when the vagaries of short-wave propagation had been stoically accepted as something to be endured, like the weather. Diversity reception was now well established; a description of the B.B.C.'s highly developed receiving station at Tatsfield was published. And the minor deficiencies of equipment generally were less readily tolerated. Now came a determined effort to overcome tuning drift by more basic and cheaper means than automatic frequency control; much attention was given to temperaturecompensated components.

The public demand for television receivers had so far been disappointing. Now, in an attempt to attract buyers, cheap sets with small $5-\mathrm{in}$, 6 -in or 7 -in tubes were introduced. One example, costing 29 gns , had a 5 -in tube giving a picture $4 \frac{3}{3}$ in by 4 in .

Push-button tuning became the vogue in sound broadcast receivers. There were three main methods: mechanical location of the condenser; motor drive of the condenser; separate pre-tuned circuits for each station.

In brief: electronic techniques used for neurological research and Grey Walter's electro-encephalograph produced; improved electron microscope announced; "wobbulator" and Cossor double-beam oscilloscope introduced.

1939

EVER-INCREASING interest in sound reproduction was further stimulated by B.B.C. experimental transmissions of high quality on $45 \mathrm{Mc} / \mathrm{s}$; this was Britain's first taste of v.h.f. broadcasting, though f.m. had already started in America.
The Western Electric " radio altimeter" for aircraft, an f.m. device working on frequency differences between the emitted wave and reflections received from the ground, was described.
In television, the public had not taken kindly to the small " peephole" sets introduced last year and there was a reversion to larger tubes, the 12 -in size being most favoured. Ignition interference was being discussed and voluntary suppression was suggested.

Some new introductions: the cathode follower; "all-glass" valves with short, well-spaced internal leads;

Cossor Model 54 with 6 -in tube (1938).
||

Drum-type commutator of the H.M.V. motor-driven tuning mechonism (1938).
forced air cooling for high-power transmitting valves; short-wave therapy.
With the threat of imminent war, Wireless World had, with official approval and collaboration, instituted early in the year a "National Wireless Register" through which readers were able, without any liability, to have a record of their technical qualifications made available to the appropriate authorities. The Register was later to prove a valuable source of technical man-power for war-time radar as well as for communications.

1940-44 The second $\begin{gathered}\text { WORLD WAR }\end{gathered}$

AMONG the immediate results of the outbreak of war in Scpiember 1939 was the closing down of the television service and of amateur transmission; car radio was banned later. B.B.C. headquarters " moved into the country" and a single-programme service was transmitted from syncnronized stations to avoid giving direction-finding help to the enemy. There was a short-lived boom in receivers, especially in the recentlyintroduced "semi-communications" models, which offered an exceptionally good performance on short waves. This was mainly wanted for the reception of news bulletins from overseas, and especially from neurral sources. Information on short-wave receiving conditions was also wanted; for some time we published ionosphere forecasts provided by Cable and Wireless, but these were eventually stopped by the censor. However, no objection was raised against "do-it-yourself" forecasting and general articles on propagation by T. W. Bennington were continued.
||

One of the popular, "semi-communications" receivers of the early days of the war: the Pye " International" with bond-spreading on six short-wave ranges.

||

SINCE THE WIRELESS WORLD BEGAN-ContInued

So far as Wireless World was concerned, the war brought an abrupt change from weekly to monthly publication and, with a depleted staff, we did our best to meet the changing needs of readers, especially in producing instructional articles on new subjects: morse telegraphy was

Sir Oliver Lodge, the pioneer of "' syntony " (tuning), died in August 1940, aged 89.
now important. And a rather unexpected demand arose for the treatment of topics bearing no relation to the grim realities of the times-for maintaining the journal, as a correspondent put it, as " one of the few remaining links with norma'ity." Escapism also manifested itself in lively discussions by contributors and correspondents of the changes in radio and electronics they hoped to see in the brave new post-war world. The phrase "after the war" recurred constantly.

Maintenance of interest in highquality sound reproduction was probably another manifestation of escapism. In this sphere an important war-time article was "The Acoustics of Small Rooms," by J. Moir. The kind of acoustics discussed by Moir had hitherto been studied mainly in relation to halls and large rooms.

In spite of restrictions, readers were kept fairly well-informed on the underlying reasons why valves were working better and better on everhigher frequencies by a series of articles by Dr. Martin Johnson.

Though censorship was quite different from that prevailing in World War I, it did in fact bear quite heavily on the contents of the journal, as most of the developments now emerging were being applied to purposes of war. Radar and everything
connected with it, especially pulse techniques, were completely banned. The authorities had taken us into their confidence about radar before the outbreak of war, so we knew what to avo:d. There was a transient lifting of the veil of radar secrecy in 1941, mainly as an aid to the recruitment of civilian techn:cians, especially from America, but we were allowed to print only a few dozen words of basic description. One of the few electronics deve.opments which could be treated at length was radio-frequency heating.

The fusion of the Institute of Wireless Technology with the British Institute of Radio Engineers and the deaths of Sir Oliver Lodge, of the German pioneer von Arco, and of Nipkow, the originator of television scanning were reported.

1945

WITH the end of the war in sight, we were able to publish the first full article on the fundamental principles of radar. Appropriately enough, the

John Logie Baird, the pioneer of practical television, who died in 1946, aged 57.

||

author was Smith-Rose, who, towards the end of World War I, had given our first detailed exposition of the amplifying valve. Pulse modulation, an offshoot of radar, was described later, as was the proximity fuse, " a radio station in a shell

Sir Ambrose Fleming, who died in 1945, aged 95.

nose-cap," which made use of the Doppler effect. The fuse marked the start of the trend towards miniaturization of components, one of the features of the coming decade.
What may well turn out to be a striking'y accurate forecast of things to come was given in Arthur Clarke's article "Extra-Terrestrial Relays." Clarke contended that artificial earth satellites would provide the most effective and economical means for inter-continental telegraph and telephone communications and for distributing world-wide te'evision. His proposals were described in considerable detail; their essential practicability has not been controverted.

1946

MUCH new information on radar was now published, but Wircless World considered it had come too late. Many of the devices, including some of essentially British origin, had already been described in American journals, and subsequently repeated in the technical Press of the world without emphasis on the country of origin. It was thought that British prestige
"The greatest invention of the war": cavity magnetron with a peak output of $2,500 \mathrm{~kW}$, photograph alongside a 6 -in rule.

|||
had suffered through these delays. The cavity magnetron, produced by Randall, Boot and Sayers was considered the most important single development.
Parts of the inner story of radar development were still coming out as late as 1952, when Government awards were made to the pioneers: $£ 50,000$ to Watson-Watt "for the initiation of radar " and other awards ranging from $£ 12,000$ to $£ 250$ to twenty others.
The Physical Society's first postwar exhibition in 1946 showed in an impressive manner how deeply radio techniques had infiltrated into most
branches of applied physics during the war years.
In brief: London relevision station re-opened; the Decca navigational system described; death of Baird, aged 57; the German Magnetophon tape recorder described.

1947

THE first post-war Radio Exhibition gave a clear indication of how the industry had progressed during the past seven years. Equipment of every kind was better designed and better

The proximity fuse, " a radio station (sending and receiving) in the nose of a shell."

One of the first photographs of radar equipment to be released: an underground station for location of enemy aircraft and f.ghter control.

made, while the uses of radio and radio-like devices had been vastly extended, partly thanks to miniaturization and tropicalization. In communications, the greatest advance had been in pulse modulation techniques and in the attainment of a high degree of secrecy by the use of centimetric waves in narrow beams.
The Williamson amplifier design, published this year, seemed to satisfy the most exacting requirements of the "high-fidelity" enthusiasts and soon variants of it were to appear in many countries. It was the first design for home construction to exploit the use of direct coupling and meticulous design in the output transformer to reduce phase shifts and to enable a high degree of negative feedback to be used with stability.
The Marconi Company celebrated its 50th anniversary.

Sir Edward Appleton, whose pioneer scientific work paved the way for rodar.

Sir Robert Wotson-Watt who directed the initial investigations into the use of radio wave reflections for the location of aircraft.

1943

THE transistor, probably one of the half-dozen most significant radio devices of the half-century, was announced. What was now briefly described was the original point transistor produced by Shockley, Bardeen and Brattain in the Bell Telephone Laboratories.

The International Radio Convention, the first to be held since 1938, issued its decisions. Since the previous Convention in 1938, the highest frequency allotted had risen from $200 \mathrm{Mc} / \mathrm{s}$ to $10,500 \mathrm{Mc} / \mathrm{s}$.

In brief: Appleton awarded the Nobel Prize for ionosphere researches; British sub-miniature valves, 10 mm diameter, $25-\mathrm{mA}$ filaments introduced by Mullard; fre-quency-shift keying now widely used for high-speed telegraphy; mobile radio licences granted more freely by the G.P.O.

1949

AROUND this time there was much discussion of television standards. In the previous year the PostmasterGeneral had decided the 405-line British system was to be retained "for a number of years": later, an international study was made to decide upon the standards for the concinent of Europe. Wireless World now decided the British system was even better than had been originally thought, being economical in both bandwidth and receiver cost. Its general adoption was therefore advocated and much information was published on line standards in relation to true definition in both horizontal and vertical planes.
In brief: commercial radar began to make spectacular progress; printed circuits were coming into the limelight; a new Wireless Telegraphy Act, extending the P.M.G.'s powers and allowing him to control interference, was passed.

1950

TELEVISION was now beginning to spread over the country and, as a result, the tunable receiver appeared. It was more usual, though, to provide interchangeable tuning units for the various channels. In anticipation of v.h.f. sound broadcasting, the provincial television stations were fitted

- There may possibly be a sufficiently conducting layer in the upper air. ..". Oliver Heoviside, the centenary of whose birth was celebrated in 1950.
with a superstructure carrying a slot aerial.

At the British Sound Recording Association's exhibition $33 \frac{1}{3}$-r.p.m. records (which had been exported for some time) made a first appearance. In addition to longer playing time they offered, thanks to the use of improved moulding material, lower surface noise, increased dynamic range and longer life.
In brief: centenary of Heaviside's birth; television boom in America (2 $\frac{1}{2}$ million sets sold in 1949).

[195]

WHAT amounted virtually to a new use of radio technique was now coming into prominence. As long ago as 1932 it had been known that radio waves were reaching this planet from outer space; in 1948, localized sources of emission, since known as radio stars, had been detected. Now radio astronomy-the use of the socalled radio telescope-was made possible by improved low-noise receiving techniques. The famous station at Jodrell Bank, with its huge steerable "dish," had already begun probing into space at distances far beyond the range of optical telescopes.
In brief: Interest in electronic computers began to widen; much discussion on frequency versus amplitude modulation for v.h.f. broadcasting; marked growth of mobile radio telephony, including installations in London taxicabs; tape recorders the centre of interest in sound reproduction.

SOME of the exhibits at the Physical Society's annual exhibition showed how widely electronic techniques had now been adopted for "run-of-the-mill " industrial processes, as opposed to their original laboratory uses. In the textile industry it was being used for measuring the tension of yarn and for showing irregularities in its weight per unit length. Supersonic waves were being used as a matter of routine for the detection of flaws and for determining thicknesses with high accuracy. Perhaps the most important of all was the growing use of electronic controls in the chemical industry.

Detailed information came from the U.S. Bureau of Standards on "a new kind of v.h.f. propagation," later to be known as "ionospheric scatter." Weak but consistent signals on a frequency of $50 \mathrm{Mc} / \mathrm{s}$ had been received over a period of many months at a distance of 774 miles. The power used was 23 kW , the signals being radiated from a high-gain aerial set at an elevation angle of seven degrees.

1953

FOR nearly a quarter of a century there had been agitation for control by law of man-made interference with radio reception. In 1933 a committee had been set up at the suggestion of Wireless World to investigate the possibilities but the labours of that committee and of various successors had failed to produce an agreed basis for legislation. Now, at last, the Postmaster-General, using powers conferred on him by the Wireless Telegraphy Act of 1949, made a start by issuing regulations for the compulsory suppression of interference from newly-built internal combustion engines.

A minor difficulty in presenting information on a rapidly growing science is that the terminology, sometimes hastily and arbitrarily chosen, is often quickly out-dated by developments. One of the words about which ambiguity had long existed was "electronics." Transistors were now coming into general use and the fact was recognized by the addition of the words "and semiconductors" to the official definition.

In brief: The Coronation broadcast, the B.B.C.'s most ambitious undertaking, relayed on television to the Continent; SOth anniversary of the first international radio conference.

Edwin H. Armstrong, pioneer of frequency modulation and among the earliest workers in regeneration, super-regereration and the superheterodyne.

-
Radio-astronomy: two spaced paraboloids for producing a multi-lobed interference pattern (Cambridge University).

A
Interest in sound reproduction: G. A. Briggs' demonstration of comparisons between reproduced and "live "musical performances filled the Royal Festival Hall, London.

1954

WE had the sad duty of recording the death, by his own hand, of Edwin Armstrong, one of America's most distinguished radio pioneers. His most important work had been in the fields of valve regeneration, the superheterodyne receiver, super-regeneration and frequency modulation. He had been involved in much patent litigation. Only a few weeks before his r'eath Armstrong had written a lette for our correspondence columns "to keep the history

1955

NARROW-BAND ionospheric "scatter" transm.ssion, first reported some years earlier, had now been tested up to ranges of 1,250 miles on the vh.f. band. This year attention was turned to tropospheric u.h.f. scatter, offering ranges up to 200 miles with a much wider bandwidih. Both systems called for highly directional aerials and, between them, were thought to have a useful future for communication at ranges too long for normal v.h.f. and too short for
reliable high-frequency working.
Electrostatic loudspeakers had hitherto been considered incapable of reproducing low notes. The description (by P. J. Walker) of a wide-range electrostatic speaker, working from $40 \mathrm{c} / \mathrm{s}$ upwards, caused great interest.
"Automation," the witch-word of the year, enjoyed a short-lived vogue. Though there was some uncertainty as to its precise meaning it did clearly signify more work for industrial electronic control devices.

In brief: Atlantic telephone cable laid; B.B.C. started f.m. broadcast service.

straight" on the early development of the triode. Nobody, he contended, had made a serious study of how it worked until six years after it had been introduced.

Parliament passed an Act setting up the Independent Television Authority. As a result, there was a minor revolution in the design of television receivers, which in future would have to work on Bands I and III.

In brief: Printed circuit techniques now widely used; ferrite rod aerials in portable receivers; permanent "Eurovision" television links set up on the Continent; interest in highquality sound reproduction reached new heights.

Doppler navigation equipment (Marconi) in a Viking aircraft.

BY now transistors had ousted valves in hearing aids and some all-transistor "personal portables" had appeared. But the transistor was still incapable of equalling valve performance at the higher frequencies and some of these sets had valves in the r.f. and i.f. stages, with transistors in the a.f. section.

For point-to-point radio-telegraphy the teleprinter had been steadily replacing older methods. Accuracy and speed had bsen progressively improved by refined and highly developed methods of "clean-

1951

THE terms psycho-acoustics and psycho-optics were by now becoming fairly familiar and it was real'zed increasingly that the "classical mechanist.c approach" d'd not provide solutions to all the problems of electr.cal communication. As Dr. Colin Cherry pointed out in an important article, that approach often ignores the real purpose, which is to transmit information from person to person. Chains of communication should sometimes be modified to suit psycholog.cal needs.

An exciting event was the recep-

Experimental tropospheric scotter station at Start Point: frequency $858 \mathrm{Mc} / \mathrm{s}$, power 10 kW .

|||

ing up" the received wave form.
W'e were able to take our courage in both hands and assert that the British television receiver was virtually standardized at last. "For the first time it is possible to put forward a general description of a receiver which will apply with remarkable accuracy to the great majority of modern sets." The "straight" r.f. amplifier had disappeared some years earlier and tubes were getting bigger; $17-\mathrm{in}$ was now the most popular.

In br"ef: Decca introduced "truemotion" radar, Ampex television tape recorder announced; Shockley, Bardeen and Brattain awarded Nobel Prize for work on transistors.
tion at many places in Britain of signals from the 1 -watt transmitter in the first of the Russian artificial satellites.

In brief: Marconi Doppler nav'gat.on system for aircraft described first British all-trans stor digital computer (Metropolitan Vickers).

11958

THE introduction of an experimental all-trans stor televis.on receiver gave an indication of the notable advances in transistors, which could now work at v.h.f. and also deal with considerable power.
Gencrally speaking Wireless

World has through the years stuck closely to its last and, except when our specialized interests are directly affected, has taken little notice of the great social, economic and political changes of the half-century. We have, though, commented on the fact that the emancipation of women has had cur.ously little effect in technical radio, which remains an almost exclusively male preserve. This year we reported that Kathleen A. Gough had the distinction of being the first woman in nearly sixty years to be elected to full corporate membership of the I.E.E.

In brief: $1 \frac{1}{4}$ milion l:censed stations in U.S.A. (against under 1,000 when we started in 1911), stereophon'c reproduction commercially established.

1959

AN article on automatic error correction in multiplex teleprinter working showed in an impressive way how radio-telegraphy had been improved and refined during recent years. It was suggested that, on a poor " unprotected" circuit producing one error per hundred characters, the introduction of automatic repetition of detected errors might well reduce the error rate to one character in 10,000 .
Within the s'rort space of ten years the digital electronic computer had grown from a university or Government laboratory curiosity into a fully developed and engineered commercial product. So far most of them had been "scientific" computers, but machines for business data processing were rapidly emerging.
Two "quiet" microwave amplifiers, the maser and the parametric amplifier, were described. Both offered a solution of one of the most basic problems of radio-how to improve signal/noise ratio.
In brief: much diszussion of stereophonic reproduction; B.B.C. serving 98.7% of population with television and 96.4% with v.h.f. sound.

1980

THE idea of radio communcation via artificial earth satellites, which seemed little more than "a pleasant exerc:se in speculation" when first put forward by Arthur Clarke in our pages 15 years earlier, now began to look much nearer realization. The practical possibilities of using both

A. D. Blumlein whose early and thorough investigations of stereophonic recording ond reproduction were "re-discovered "' in 1958.
||
passive (reflecting) and active (retransmitting) satellites were discussed in an article by R. J. Hitchcock, who drew attention to the need for early international agreement on the allocation of suitable frequencies for the purpose, preferably in the band $2,000-6,000 \mathrm{Mc} / \mathrm{s}$.
Tribute was paid in an article by M. G. Scroggie to the memory of A. D. Blumlein, one of the most talented, versatile and prolific of British electronics technologists. During his tragically short working life of 17 years Blumlein was granted 132 patents-one every 46 days! " It is significant that the E.M.I. equipment of the Alexandra Palace [tele-
vision] station, almost every part of which owed something to Blumlein, made straight up from drawings to begin the world's first public highdefinition service in 1936, was still in use in 1950."
The death of Dr. G. W. O. Howe severed a link with our earliest days, since when he had been prominent in academic wireless circles. For 30 years he had been Technical Editor of our associated journal Wireless Engineer (now Electronic Technology).

1961

IT is easy enough to see in proper perspective the progress made during the first quarter-century covered by this survey and to say with confidence that at the end of it electronics technology was rapidly moving into Phase III, the era of highdefinition television, industrial electronics, microwaves and radar. Enormous advances have been made during our second quarter-century, but have we in fact moved into a distinctly new phase of development during the period? If so, when and why? Has anything been introduced to compare with such far-reaching developments of the 1911-1936 period as the amplifying/oscillating valve, the exploitation of the h.f. and v.h.f. bands, telephony, sound broadcasting and scientific electronics?
All those questions are more appropriate to a debating society
meeting than subjects for dogmatic pronouncements. It would be ridiculous to deny, though, that most of the techniques of 1936 have been refined almost beyond recognition and that many basically new things have come in. Of these, outstanding examples are transistors and masers, both of which depend on recent extensions of man's knowledge of the nature of matter.
Looking back over the longer term, it seems impossible to find a yardstick to measure the tremendous progress of the full half-century. Nearly all the activities with which we and our readers are now concerned had not even started when we began in 1911. A Rip van Winkle from our Volume I, resuming his readership during the past few months, would find most of our present contents entirely beyond his comprehension.
But our Rip Van Winkle of 1911 would discover one thing to seize upon. In his day, range of communication was the simple yardstick and the main criterion of progress; since wireless began each successive increase of distance had been a landmark. Remembering that Clifden, the wonder-station of his time, had just managed to achieve a dependable range of 2,000 miles, he would read with amazement of " successful communication out to a distance of 23 million miles" with a space vehicle. And would he be far from the truth in thinking that increase in range gives a fair measure of the achievements of the half-century?
|||
The Puerto Rico ground station for working to the "Courier " satellite.

AAFTER a thorough field trial in one hundred blind person's homes, a new "talking book" tape cassette reproducer will be introduced in a few months by the Royal National Institute for the Blind. It is hoped that this new tape reproducer will completely replace the present talking-book long-playing record reproducers within the next few years.

Apart from the usual advantages that tape has over disc of being more durable and less easily damaged, for this particular application tape has the additional advantage of enabling the recording and copying to be carried out by the Institute itself rather than by an outside company, so that there is less delay in providing "readers" with their choice.

In the new tape reproducer the speech is recorded on $\frac{1}{2}$-in tape using 18 tracks. Up to $1,500 \mathrm{ft}$ of tape can be used in one "book," giving a maximum total playing time of 20 hours. The tape, the take-up and supply spools as well as the replay head are all housed in a cassette. In use this cassette is simply placed on the deck so that it engages with the tape drive spindle and is connected via a jack plug to the replay amplifier and loudspeaker.

The size of the whole cassette is kept down to only $8 \frac{3}{3}$ in by 10 tin by 2 in by mounting the supply spool on top of the take-up spool. The tape passes from one side of the supply spool to the other side of the take up spool so that the tape which is momentarily on neither spool is slightly inclined to the horizontal. The tape is driven solely by the take-up spool which engages with the driving spindle when the cassette is placed on the deck: the supply spool is pulled round by the winding of the tape on to the take-up spool. Depending on the amount of tape on the take-up spool, the tape speed thus varies from about 3 to $7 \mathrm{in} / \mathrm{sec}$. This speed change does not alter the speech pitch since the recording is made with an equally-varying speed on the same cassette. The changing tape replay frequency response due to the same speed variation is compensated for by an opposite response when recording.

A recorded announcement indicates the end of each track. The listener then simply stops the drive mechanism, turns the cassette over so that the full take-up spool becomes the new supply spool, and then restarts the drive to replay and the next tape track.

Two safety devices operate should the listener not switch off at the end of the track. First, the track end recorded announcement is followed by a high-pitch whistle. The replay head output produced by this whistle is rectified and then used to cut off a valve whose anode current flows through the hold-on solenoid of the motor supply switch. When the valve is cut of this switch thus opens and stops the tape drive motor. The second safety device operates in the unli'kely event of this whistle switch-off arrangement failing. It consists
simply of a slipping clutch on the take-up spool which prevents the tape from being pulled off the supply spool. Spring-loaded pads bear on the tape on the spools to prevent tape spillage if the spools are inadvertently hand wound in the wrong direction.

A portion of speech can be repeared by turning the cassette over, playing a portion of the next track (which is equivalent to winding back a portion of the first track) and then turning the cassette over again to replay the desired portion.

The tape replay head is mounted near the middle of a lever which is pivoted at one end and fitted with cogged teeth at the other. These teeth engage a spring-loaded ratchet wheel so that, when a button is depressed, the wheel advances one step and the head is moved opposite to the adjacent track. This must be done every second time the cassette is turned over on the deck. The head can be returned opposite to the first track by a relatively simple adjustment which does not entail opening the cassette. This would normally be done when the "book" is returned to the library, but could be carried out by a skilled user.
This tape reproducer is a development of the model described on page 32 of the January 1954 issue of "Wircless World."

Novel Hearing Aid

USING A "WIRELESS" EARPIECE

TELEX in the United States have recently developed a new type of hearing aid, called "Telex Radiant," that is actually a transmitter and receiver built into a pair of spectacles. A miniaturized transmitter located in the temple bows accepts sound waves, converts them into elec:rical energy and transmits them through the air to the receiver located in the ear. The receiver picks up the signal, amplifies it, and converts it back to sound waves in the ear canal. The "Telex Radiant" uses Six miniature transistors.

Pair of spectacles equipped with the "Telex Rasiant" hearin! aid. At the bottom left is shown the receiving unit: this is normally fitted inside the ear.

By E. JEFFERY, A.m.I.E.E.

LOW-COST STEREO AMPLIFIER

SOME years ago the writer published in this journal ${ }^{1}$ a design for a high-gain phase-splitting circuit which, using only two valve stages, provided a gain to either output terminal of approximately 1,000 . As an illustration of the principles described an amplifier design was also given using KT.66's as triodes in the output stage. Although intended essentially to be a design article many readers chose to regard the amplifier as a high-quality system (we didn't use the term " high fidelity" much in those days*) as it gave a distortion harmonic content of less than 0.5%.

The phase-splitting circuit was later used fairly widely in commercial amplifiers, e.g. the R.C.A. Orthophonic, and has also been used in the design of industrial equipment. Mullard have published a "starvation" version of the circuit", whilst more recently in this journal ${ }^{3}$ and in Electronic Technology ${ }^{4.7}$ A. R. Bailey has evolved single-ended versions of the circuit for special purposes.
Principle of the High-gain Circuit.-G. W. Short has recently surveyed ${ }^{5}$, very exhaustively, this and circuits of a similar nature, and it will only be necessary to restate the principles involved very briefly.

Let us first consider the circuit to the right of A-B in Fig. 1; the stage V2 has the general configuration of a divided load phase-splitter, the anode load is R_{8} and the effective cathode load consists of R_{2} in parallel with R_{1}; since h.t. + and h.t. - are at the same a.c. potential, it is immaterial from the point of view of $V 2$ whether the point C of R_{1} is returned to the positive or to the negative rail. Consequently, if the value of R_{1} and R_{2} in parallel is made equal to R_{3} then, for a given impressed voltage between A and B, the output voltages $V_{o 1}$ and $V_{o 2}$ will be equal. There is no a priori reason why R_{1} and R_{2} should be made equal but the author chooses to make them so to make the sums easier because then $\mathbf{R}_{1}=\mathbf{R}_{2}$ $=2 \mathrm{R}_{8}$ for equality of output.

From our general knowledge of such circuits we know that $\mathrm{V}_{o 1}\left(=\mathrm{V}_{o 2}\right)$ will be slightly less than $\mathrm{V}_{\Delta \mathrm{B}}$
since the grid-cathode voltage of V2 will be such that $\mathrm{V}_{02}=\mathrm{V}_{\mathrm{AB}}-\mathrm{V}_{0}$.

If we choose a triode of the following characteristics for V2; $g_{m}=8.5 \mathrm{~mA} / \mathrm{V}, \mu=40, r_{a}=5 \mathrm{k} \Omega$ and make $\mathbf{R}_{1}=\mathbf{R}_{2}=100 \mathrm{k} \Omega$ and $\mathrm{R}_{4}=50 \mathrm{k} \Omega$, then $\mathrm{V}_{\mathrm{g}} / \mathrm{V}_{A B}$ will be about 10 or V_{g} will be about $1 / 11$ of $\mathrm{V}_{A B}$. Now R_{4} and R_{5} are in parallel so that the effective grid-cathode impedance $\mathbf{R}_{g}{ }^{\prime}=\frac{\mathbf{R}_{4} \cdot \mathbf{R}_{5}}{\mathbf{R}_{4}+\mathbf{R}_{5}}$. The current flowing through this impedance will be $i_{i n}=\frac{\mathbf{V}_{g}}{\mathbf{R}_{g}^{\prime}}$ and this current is supplied from the anode circuit of V1. Viewed from $\bar{A}-B$, the input impedance will be $\mathrm{V}_{\mathrm{AB}} / \mathrm{V}_{g}$ or, in terms of V_{g}, this impedance will be $\frac{\mathrm{V}_{\mathrm{AB}}}{\mathrm{V}_{g}} \cdot \mathrm{R}_{g}{ }_{g}$. We have already seen that $\frac{\mathrm{V}_{\mathrm{AB}}}{\mathrm{V}_{g}}$ may be about 10 (actually 11 in our calculated case) so that the effective impedance presented to the anode circuit of V1 is some 10 times the physical gridcathode impedance of V2.

The d.c. required for the anode of V1 sets a limit to the maximum permissible value of R_{1} and these d.c. considerations will usually fix R_{4} at a value from $100 \mathrm{k} \Omega$ to about $1 \mathrm{M} \Omega$.

In our practical case $R_{4}=820 \mathrm{k} \Omega$ and $\mathrm{R}_{5}=2.2 \mathrm{M} \Omega$ so that $\mathrm{R}_{g}^{\prime}=598 \mathrm{k} \Omega$. We have also seen that $\mathrm{V}_{A B}{ }^{\prime}$ V_{g} may be about 10 so that the apparent input impedance to the right of $A B$ becomes of the order $10 \times 598 \mathrm{k} \Omega \bumpeq 6 \mathrm{M} \Omega$. As we have seen, this appears as the anode load to the pentode V1 and the value is in the same world as the a.c. resistance of the pentode. By this means we can realize a substantial proportion of the μ of the pentode as gain and since this μ may be very high (frequently of the order of $\times 5000$) it is possible to achieve a gain of the order of 3000 to either output point, without much difficulty.

Even with separate valve envelopes for V1 and V2, the circuit offers substantial benefits of gain over any other similar arrangement: the recent introduc-

Fig. I. Bosic circuit of high-gain phase splitter.
tion of a suitable audio-frequency triode-pentode, the Brimar 6BR8, enables these benefits to be achieved in a single envelope. The values shown on the circuit of Fig. 1 do, in fact, relate to a 6BR8; with an h.t. supply of 300 V the values shown give a gain of over 3000 times (to either output $\mathrm{V}_{\text {o1 }}$ or $\mathrm{V}_{o 2}$). At 10V r.m.s. output the measured distortion was 0.6%. This distortion was almost entirely second harmonic in content. The a.c. and d.c. loads on V1 are very different and the circuit component values were therefore finally determined experimentally to give a reasonable compromise between the somewhat conflicting factors of gain and available output.

It will be seen that the circuit operates in a semistarvation condition which has the effect of raising the available μ considerably above the value given in the relevant application report; the makers characteristics for the pentode portion are quoted as $\mathrm{g}_{m}=5.25$ mA / V and $r_{a}=500 \mathrm{k} \Omega$ for a bias resistor of 80 ohms and a cathode current of 12.8 mA . This gives a computed value of $\mu=2600$, which is less than the gain which we can realize; it follows therefore that by operating the pentode stage in a lower current regime the available μ is significantly increased, in fact the anode current under our chosen condition of operation is less than 0.25 mA . A circuit virtuoso could probably soar to even greater heights of gain in a cadenza on this theme.

In the practical application of this circuit some of the gain is deliberately thrown away in the interests of low frequency stability when negative feedback is applied over the whole amplifier, thus in the applied
version the bypass capacitor on V2 bias resistor is omitted.
Advantages of the Circuit.-It is, of course, easy to achieve the same total gain by other means using more stages but in addition to the obvious economy in valves and components there are substantial advantages to be obtained in achieving a large gain in as few stages as possible since this gain is thereby associated with a correspondingly smaller number of phase-shifting networks. This greatly simplifies the application of negative feedback over a whole amplifier system; in fact the real virtue of the circuit resides in this property and it is this which makes it most suitable for inclusion in a design which has to be constructed by readers who, for all I know, may not possess wide-range oscillators, phase-sensitive valve voltmeters, long persistence oscilloscopes or even transfer function analysers!
Comparison with Other Two-valve Phasesplitter Arrangements.-There are, of course, many other methods of connecting two (similar or dissimilar) valves in a phase-splitting arrangement; we must of course regard any two-valve combination in a single envelope as two valves for the purpose of the act.

The following table sets out the gains available with different valve combinations, for comparison purposes.

It is seen therefore that the circuit of Fig. 1 offers very substantial advantages of gain over any comparable arrangement.
Advantages of the Circuit for Stereo Use. We have already seen that the circuit of Fig. 1 can save a complete valve compared with other methods of phase splitting, for equivalent gain; the saving of one valve has not tended to be a matter of prime importance in recent years but with the advent of stereo a possible saving of two valves becomes well worth having. It must be a matter of regret to manufacturers that only two channels were adopted for stereo but even so the ark-like need for two of everything is a strain on most pockets.

The high gain permits another substantial benefit, however. As designed, a gain of well over 2,000 is obtained from the phase splitter; if we use the circuit to drive EL84s which requires 8 V r.m.s. grid drive, the input signal without negative feedback is some 3 mV ; when overall feedback of 20 dB is applied the overall sensitivity is better than 40 mV . This enables the relatively insensitive ceramic type of pickup to be fed directly into the main amplifier and, if desired, it is possible to dispense entirely with a pre-amplifier.

The author is of the opinion-and will no doubt live to regret it in the correspondence columns-

Valve Combination	Triode Triode	Triode Triode	$\begin{aligned} & \text { Triode } \\ & ++ \\ & \text { Triode } \end{aligned}$	$\begin{gathered} \text { Pentode } \\ + \\ \text { Triode } \end{gathered}$	$\begin{gathered} \text { Pentode } \\ \quad+ \\ \text { Triode } \end{gathered}$
Typical Valves	ECC83 (both sections)	ECC83 (both sections)	$\begin{gathered} \text { ECC83 } \\ \text { (both sections) } \end{gathered}$	$\begin{gathered} \text { EF86 }+ \\ \text { EF86 (as triode) } \end{gathered}$	6BR8 (both sections)
Method of Connection	Triode amplifier + divided load splitter	See-saw	Schmitt (longtailed pair) or cathode-coupled	Pentode amplifier + divided load splitter	As in Fig. 1
Gain	54	62	27	200	3500

Fig. 2. Block diogram of either channel of stereo power amplifier.

that with a good pickup and loudspeaker system the modern pre-amplifier with its multiplicity of possible settings is more trouble than it is worth. One example has 14 panel controls alone, if we assume that a 2 dB change of level is just discernible on the tone controls then there are some 1,200 possible combinations of tonal quality alone for a given volume, and the probability of the domestic user selecting the optimum setting is low. If any reader doubts this suggestion let him play the same record on different days and on the two occasions let him set the controls with his eyes shut; the comparison, even of volume setting, will be a little daunting. We also have it on the excellent authority of Mr. P. J. Walker that " With a very good loudspeaker it should seldom be possible to improve the balance professionally.achieved at the transmitting studio." Even the impressive unit referred to earlier, which aims to be all things to all men, is not really complete as no provision is made for equalizing Edison Bell cylindrical records.

For those who do wish to have auxiliary bass and treble controls the amplifier sensitivity is sufficient to permit the insertion of passive networks between a crystal or ceramic pickup and the amplifier.

One final advantage associated with the saving of two valves is, of course, the reduction in total size, which can significantly affect the cost of the cabinet or enclosure required.

Design of a $9 \mathbf{W}+9 \mathbf{W}$ Amplifier

The circuit has been applied to the design of a $9 \mathbf{W}+9 \mathbf{W}$ Stereo power amplifier using EL84s in the "ultra-linear" mode as the output stage, a block schematic of either channel is given in Fig. 2.

Although the output valves are nominally rated for 11 watts output the author has the same trouble as a previous contributor, G. W. Short, for whom circuits never do what the manufacturers or designers claim, and has, therefore, deliberately down-rated the amplifier output. He also holds another heretical

Fig. 3. Circuit diagram of either channel of power amplifier and power supply unit for both channels.

belief, that amplifiers should give something like the designed performance, even when only unmatched valves are available and without the need for setting phase-splitter balance controls.

The complete circuit for a single channel together with the power supply system required to serve both channels is given in Fig. 3.

V1 and V2 constitute the pentode and triode sections respectively of a 6BR8 and as pointed out earlier the circuit differs slightly from Fig. 1 in that there is no bypass capacitor across the bias resistor of V2. In this form the gain of the phasesplitter from the V1 grid to either output grid, including the loading effect of the resistor R_{10} (or R_{11}) was measured to be 2,300 , a number of prototypes produced values of gain within 10% of this value without any special precautions in the selection of components.

Overall negative feedback is derived from the secondary of the output transformer and applied through the feedback resistor R_{18} to resistor R_{8} in the cathode circuit of V1. The average overall gain of the system from V1 grid to the output transformer secondary load is some 4,200 so that, for a
feedback ratio $B=\frac{R_{8}}{R_{8}+R_{9}}=\frac{15}{4,700+15}=\frac{1}{314}$, the calculated feedback factor $1+\mathrm{AB}=1+\frac{4,200}{314}$ $=13.4$ which is equivalent to 23 dB . This compares very well with the measured value of 23 dB .
Stereo Balance Arrangements.-A number of factors operate which can lead to an overall difference in the acoustical performance between the two channels, in particular:
(a) The ideal siting of loudspeakers may not be feasible in domestic surroundings.
(b) It is quite usual to create a stereo system from existing "bricks" and this may lead to the employment of loudspeakers which have different characteristics.
(c) There may be differences in the basic sensitivity of the pickup between the two channels.
It is usual therefore to provide some method of adjusting, on a pre-set basis, the balance, or relative, gains of the two channels.

The best method of achieving this depends on the overall system chosen and therefore two alternatives are offered.
If no pre-amplifier is used.-In this case the control RV_{1} and its counterpart in the RH channel will be two sections of a ganged volume control, and this control will be the main volume adjust-
ment of the system. The balance control can then take the form of an adjustment of one of the channel amplifier feedback resistors. Since the range of adjustment is small (about $4 \frac{1}{2} \mathrm{~dB}$) and since there is a generous margin of stability in the amplifier the adjustment needed makes no significant difference to the designed performance.

To provide the variation required the feedback resistor R19 on one of the amplifiers is replaced by the arrangement of Fig. 4.
If a pre-amplifier is used the main volume control will normally be associated with the preamplifier so that the input volume control RV_{1} of Fig. 3, and its related component in the RH channel, will be redundant. Two methods of providing the stereo balance adjustment are, therefore, available:
(a) An adjustment of one channel can be provided as shown in Fig. 4, in which case the input volume controls can be replaced by fixed resistors of say $1 \mathrm{M} \Omega$,
or (b) the input volume controls can be replaced by ganged logarithmic/antilogarithmic potentiometers following the 10% law. In this system the LH channel is connected to a logarithmic potentiometer reversed, and the RH channel is connected normally to antilogarithmic potentiometer as shown in Fig. 5. This method has the advantage that no internal modification to either amplifier is required and the insertion loss of the balance circuit at the midposition is less than 1 dB .
The gain adjustment is then differential over the whole range of maximum to minimum, but in practice this wide range of adjustment can sometimes be an embarrassment and of course the cost of this type of control is considerably higher than the simpler arrangement of Fig. 4.

Power Supply Unit

The power supply unit is common to both amplifiers and consists of a standard mains transformer feeding a GZ34 rectifier operating in the capacitorinput condition.

Although in recent years there has been a tendency to adopt resistor-capacitor smoothing for small amplifiers, in this instance choke-capacitor smoothing has been adopted for the following reasons:
(a) The combined current of the two amplifiers is quite high (approximately 180 mA) and common resistive smoothing would not be practicable.
(b) The regulation of the h.t. system is not significantly affected by drawing current for a preamplifier or tuner unit.
A single heater supply has been provided to feed all valves in the main amplifiers (other than the rectifier). This supply is earthed on one side and there may be some further advantage, from a hum point of view, if a true or artificial centre tap were provided. A separate heater winding is provided for use with a pre-amplifier or tuner unit. If this supply is used alternatively for a pre-amplifier or tuner unit care should be taken to ensure that the earthing arrangements cannot lead to a short circuit, as some commercial f.m. tuners have internal earth connections to the heater circuit.

The h.t. circuit is capable of providing a current up to 20 mA to a separate pre-amplifier or tuner. Any auxiliary unit should have its own adequate decoupling circuits to ensure that the overall system remains stable.

To simplify the construction of the amplifier all the smoothing electrolytic capacitors are provided in the form of two $64+100 \mu \mathrm{~F}$ units. The $64 \mu \mathrm{~F}$ portion of the can mounted in the LH portion of the chassis serves as the rectifier reservoir and the associated $100 \mu \mathrm{~F}$ section acts as the choke filter capacitor. The other can provides the $64 \mu \mathrm{~F}$ for smoothing to the early stages of the LH amplifier and the $100 \mu \mathrm{~F}$ serves the same function to the RH channel. There is no significance in the difference in value, the selected components are combined in this particular way and there is no measurable difference in the $100-\mathrm{c} / \mathrm{s}$ hum level between the two channels of the amplifier.

Measured Performance of the Amplifier

The following measurements were taken on one channel of a representative prototype with the overall negative feedback applied.
Input Sensitivity. 38 mV at $400 \mathrm{c} / \mathrm{s}$ applied to the input produced 12 V across a 16 -ohm load connected at the output transformer secondary. Power Output.-With the conditions given in the foregoing paragraph, the 12 V across a 16 -ohm purely resistive load was equivalent to 9 W power output. Distortion.-At 9W power output in the 16 -ohm

Balance of Channel Gains.-The overall gains of the left-hand, right-hand channels with the gain controls at maximum were within $\frac{1}{2} \mathrm{~dB}$ of each other (this was also true when dissimilar transformers from different manufacturers were used in the two channels).
Additional Measured Data.-Other measurements taken, including internal measurements on the phase splitter and the overall loop gain characteristics, are given in Appendix I.
Comment on Measured Performance.-The measurements relate to a typical prototype; by selection of output valves and accurate adjustment of supply voltages it was possible to improve the distortion content to less than 0.1%, on the other hand the worst combination of available valves and output transformer gave 0.24% total distortion.

One of the most important features of any amplifier is its ability to perform adequately under conditions other than those obtaining in the closely controlled world of measurement. A. J. Kander suggests ${ }^{6}$ that all amplifiers should be stable under conditions ranging from half the nominal load impedance up to open circuit and also suggests that the amplifier should be stable with $0.1-\mu \mathrm{F}$ in shunt with the load. He finds, however, that many "amplifiers seen by the author have not been capable of meeting such a stability test."

One famous amplifier at least is known to dislike the shunt capacitance of long loudspeaker leads and by the geographical limitations which stereo imposes it is often necessary for loudspeaker leads to run considerable distances.

The present amplifier has, therefore, been checked for stability under the following load conditions:-
(a) A pure resistive load from zero to infinity (in fact the author uses an identical amplifier as part of a power oscillator which is frequently fed into an open circuit).
(b) A number of loudspeakers of impedance from 3 ohms to 15 .ohms, including units with built-in crossovers.
(c) A 15 -ohm load shunted by a $0.5 \mu \mathrm{~F}$ capacitor.

The amplifier was found to be completely stable under all these test conditions. By using highstability, close-tolerance resistors in the feedback circuits the gains of the two channels are very closely controlled (a maximum deviation of $\frac{1}{2} \mathrm{~dB}$ between prototypes was recorded). It is unlikely that the basic gains will need resetting as a 4 dB change of internal gain results in an overall change of gain of only $\frac{1}{2} d B$, such a change would normally be the symptom of some discernible catastrophic condition.
(To be continued.)
The next instalment will deal with constructional data, and will give guidance on various alternative input circuits including, where necessary, pickup equalizers and pre-amplifiers.

REFERENCES

1 "A New High-gain Push-pull Phase Splitter Circuit," E. Jeffery, Wireless World, Aug. 1947, pp. 274.

2 "High Stage Gain at Low Frequencies." Mullard Technical Communications, No. 6, Jan. 1954, pp. 137-141. 3 "Economical High-Gain A.F. Amplification," A. R. Bailey, Wireless World, Jan. 1960, pp. 25.. \because
" Low-distortion Sine-wave Generator," A. R. Bailey, Electronic Technology, Feb. 1960, pp. 64-7.

Fig. A.
s "The Bootstrap Follower," G. W. Short, Wireless World, Jan., 1961, pp. 21-5; Feb., 1961, pp. 79-82.
6 "Universal Feedback Amplifier Circuit," A. J. Kauder, Audio, Jan. 1960, pp. 19-21.
7 "The Bootstrap Amplifier", W. Tusting, Electronic Technology, Jan. 1961, pp. 27-31.

APPENDIX I

Additional Measurements on Stereo Amplifier.

1. The frequency response and loop gain characteristic of the amplifier are given in Fig. A.
2. Distortion before overall negative feedback is applied. Measured at $400 \mathrm{c} / \mathrm{s}$ with 12 V r.m.s. across the $16-\Omega$ output load.

Harmonic order	2nd	3rd	4th	5th	6th	7th	8th	9th
Distortion \%	0.71	0.24	0.38	0.35	0.22	0.19	0.16	0.14

Total r.m.s. distortion $=0.98 \%$
3. Sensitivity before negative feedback is applied.
1.09 mV input at $400 \mathrm{c} / \mathrm{s}$ gave 4.9 V output.
(i.e. overall gain at this frequency ≈ 4500).
4. Hum levels before negative feedback is applied. At $50 \mathrm{c} / \mathrm{s} 21 \mathrm{mV}$ or 55 dB below maximum output. At $100 \mathrm{c} / \mathrm{s} 7 \mathrm{mV}$ or 63 dB below maximum output.
At $150 \mathrm{c} / \mathrm{s} 8.3 \mathrm{mV}$ or 63.5 dB below maximum output.
5. Measurement of phase-splitter output.
(a) Distortion at V3 grid with 12 V output across $16-\Omega$ output load, at $400 \mathrm{c} / \mathrm{s}$ i.e. approx. 8 r.m.s. at grid.

Harmonic order or Distortion \%	2nd	3rd	4th	5th	6th	7th	8th	9th

Total r.m.s. distortion 1.08\%
(b) Distortion at V4 grid under conditions set out above.

Harmonic order O	2nd	3rd	4th	5th	6th	7th	8th	9th
Distortion $\%$	1.39	0.37	0.39	0.28	0.27	0.28	0.25	0.19

Total r.m.s. distortion 1.6\%
(c) Grid-to-grid unbalance at $400 \mathrm{c} / \mathrm{s}=1.02 \%$ (This figure will inevitably depend on the resistor equality in the loads on V2.)
A note on a.c. voltage and harmonic distortion measurement.
The author has noted a tendency to imply accuracies of a.c. measurement which are not realizable with commercial equipment, e.g.; the excellent Avo Model 8 has an accuracy of $\pm 2 t \%$ of full scale on the a.c. voltage ranges and power measurements are therefore liable to a $\pm 5 \%$
error. The best commercially available valve voltmeter claims an accuracy of $\pm 1 \%$ (of full scale) although in fact the indicating meter fitted has itself this degree of inaccuracy. Elaborate precision laboratory equipment is needed to achieve better results than this. The author's distortion percentages are computed from ratios of fundamental and harmonic voltages and for this reason are liable to the errors of a.c. measurement.

"Wireless World" Books-New Editions

Principles of Transistor Circuits (2nd Edition) by S. W. Amos, B.Sc.(Hons.), A.M.I.E.E. The author, who is Editor of the Technical Instruction Section of the B.B.C. Engineering Department, has revised completely and brought up to date the first edition, incorporating six new chapters. Starting with a clear, simple exposition of the physical principles on which the operation of semiconductor devices depends, a lucid and logical development leads to consideration of the factors affecting the use of transistors and other semiconductor components in equipment. Principles are illustrated by reference to typical circuit applications, including f.m. receivers and pulse techniques. The author's final chapter deals with some of the recently-developed devices such as the tecnetron, tunnel diode and controlled silicon rectifier. Pp. 211 with 125 diagrams; price 21s (by post 22s).
Learning Morse.-First published in 1939 and now in its 13th edition this guide to a mastery of the international telegraph code contains the Morse alphabet, numerals, punctuations and other commonly used signs. It explains how to hold and operate a telegraph key in the easiest way and contains a description of a simple transistor oscillator for practising and teaching the code. Included also is the revised "Q" code abbreviations approved at the 1959 International Radio Conference at Geneva. Pp. 20 with 7 illustrations. Price 1 s 6 d (1 s 9 d by post).

Both books are published for Wireless World by Ilife Books Ltd., Dorset House, Stamford Street, London, S.E.1.

This method is not recommended in "Leorning Morse."

International Semiconductor Symposium

Colloque International sur les Disposifs à Semiconducteurs-Paris, 20-25 February, 1961

0RGANIZED by the Society of French Electronicians and Radioelectricians (S.F.E.R.) and under the patronage of the National Federation of Electronic Industries (F.N.I.E.) this colloquium followed the French Components Exhibition (in fact the two events overlapped by two days). More than 900 participants from all parts of the world attended. There were 140 lectures and discussions in three concurrent sessions, two in the UNESCO building and the third in the adjacent headquarters of the French P.T.T. Many supplementary discussion groups were organized spontaneously by specialists. The success of the symposium was proved by the attendance which was sustained to the end.
The main purpose of the conference was the exchange of ideas on the possibilities and limitations of semiconductor devices, and to promote a better undestanding of the ponts of view of manufacturers and users. To this end the papers were grouped under three main headings, with various sub-divisions. (The figures in brackets indicate the number of papers in each section.)

Production. H.F. transistors (11); power transistors (6); miscellaneous transistors (6); p-n-p-n diode and triode switching devices (5); tunnel effect devices (7); parametric diodes (3); photo-diodes, solar cells (7); thermo elements (7); miscellaneous techniques (7); miscellaneous devices (8).
Applications. Thyratrons (8); pulse circuits (9); amplifying and oscillating circuits (10); "equipments" (4); measurement (7); micro-electronics (4); tunnel diode applications (6); new devices (4).
Reliability. General (4); physical data and technology (7); methods of measurement (5).

Inevitably in such a rapidly developing subject as semiconductors, rigid classification was impossible and many papers seemed to sit uneasily in the sessions to which they had been assigned. The following notes are intended to give an impression of some of the highlights rather than a balanced survey of the conference, for which prolonged study of the published papers and discussions will be necessary.

All lectures containing any reference to mesa structures or to epitaxal techniques (the growth of very thin layers of high resistivity material by vapour deposition in which the new layer continues the crystalline alignment of the substrate) were well attended in the hope that something might be disclosed in the way of new manufacturing recipes and "cooking." Undoubtedly the customers learned much, but some of the "chefs" to whom we spoke did not think that their colleagues had been particularly communicative. Undoubtedly a lot of work is being done in gallium arsenide and other intermetallic compounds for use in transistors and diodes but much of this is clearly of an experimental nature and there are as yet no signs of their general adoption in production. Sintered semiconductor thermo-elements are not isotropic according to M . Alais and G. Fournet (Soc. Alsacienne de Constructions Mécanique) who showed that the figure of merit, as defined by thermo-electric power and thermal and electrical conductivity, is greatest at right angles to the direction of application of pressure during the forming process. Double-diffused transistors of the planar (as distinct from the mesa) type were reported by V. H. Grinich (Fairchild Semiconductor Corp.) in which the active base region is limited by masking with a film of silicon oxide using a photo-lithographic process to define the surfaces exposed for treatment. After diffusion all
the exposed surface is completely re-covered by a regrown SiO_{2} layer which prevents contamination and gives mechanical protection when the transistor is encapsulated in "micro" circuit elements. A comparable technique was described by Fromageot, Michelet and Saintesprit (Lignes Télégraphique et Téléphonique).

Among special-purpose junctions the most interesting were those designed for the detection of nuclear radiation. These give rise to electron-hole pairs in the depletion layer and a ray counter junction of $n-i-p$ type, described by Mme L. Koch and J. Messier (Centre d'Etudes Nucleaires de Saclay) has made possible the detection of individual gamma rays. Modification of the collector junction reverse current in l.f. transistors (e.g. OC72) due to flaws in the material has been used by J. Bok and R. Schuttler (Centre d'Etudes Nucleaires a Fontenay-aux-Roses) to measure neutron flux. Irradiated transistors of this rype can be used to measure gamma radiation in the presence of neutron fluxes below that of the maximum irradiation.
Germanium grain boundary photocells of high sensitivity and extremely small size (smaller than a light spot can be focused) were described by Dr. H. A. Schell (Te-Ka-De), and field effect transistors utilizing grain boundaries and having a negligible temperature coefficient at low temperatures were discussed by H. F. Matare of the same company.
The papers on micro-circuit techniques were well attended. A somewhat more sober approach, with a revision of early astronomical estimates of packing densities for components, was evident; no answer was forthcoming to the problem of interconnecting microunits in large and complex combinations. Research on the simulation of inductance by impedance inversion and multiplication by means of diode and transistor circuits was reported by Nishizawa, Kojima and Yoneyama (Tohoku University, Sandai) who have obtained stable impedances equivalent to 1 H and $100 \mu \mathrm{~F}$. The importance of these devices, which do not involve magnetic fields, and therefore unwanted couplings, in micro-circuits are obvious. The future of micro-circuits and indeed of the extension of semiconductor techniques in general towards higher frequencies and faster switching times seems now to rest with tunnel diodes which are cheap to produce, have fewer connections and are therefore more reliable, and are immune from surface effects and more suitable for encapsulation in microcircuit modules.
The symposium was honoured by the presidency of Prince Louis de Broglie who, in his opening address, traced the development of atomic physics and its bearing on semiconductor theory with the lucidity and simplicity which is characteristic of the greatest scientific minds. Cogent speeches were contributed to the opening session by M. R. Gueur (chairman of the organizing committee), M. Jeanneney (Minister for Industry) and General Guerin (chairman of the S.F.E.R.) who described the recent rate of development as "explosive," the result of a "chain reaction between research and application in industry."

In the space available it has been possible to touch only on some of the highlights of the symposium, but the full proceedings will be printed and will be available to non-participants in two or three months' time from the Société Française des Electroniciens et des Radioélectriciens, 10 avenue Pierre Larousse, Malakoff (Siene), at a cost of about 150NF (£11).

LETTERS TO THE EDITOR

The Editor does not necessarily endorse the opinions expressed by his correspondents

Bootstrap Follower Amplifier

In the January issue of Electronic Technology, W. Tusting gives an interesting theoretical analysis of the low-frequency response of this type of circuit. If the lower coupling capacitor (C_{3} in my Fig. 9, p. 79, February Wireless World) is very large compared with the upper one $\left(\mathrm{C}_{2}\right)$, then the l.f. response of a typical circuit is similar to that of a normal amplifier with one RC coupling. Mr. Tusting says that, generally speaking, it will suffice to choose the main coupling $\left(\mathrm{C}_{2} \mathrm{R}_{5}\right)$ so that it alone will give the required response, and then make the lower capacitor about 50 times as big as the upper one. This looks like a useful rule of thumb. It may seem surprising that it is necessary to choose C_{2} and R_{5} so that they will give the required response in the absence of any impedance multiplication. When C_{3} is large enough R_{4} is effectively returned to the cathode of V2, however, and because of this the time constant $\mathrm{C}_{2} \mathrm{R}_{5}$ is unaffected by feedback.

If the lower capacitor is appreciably less than 50 times as big as the upper, a step appears in the l.f. response. In the example given, the response levels out after an initial drop of about 7 dB , remains level as the frequency is reduced, then falls again, at very low frequencies. This type of response is undesirable in a straightforward amplifier, but Mr. Tusting points out that it may be useful in a negative feedback amplifier because the l.f. phase shift is less than that of the ordinary RC coupling ($\mathrm{C}_{2} \mathrm{R}_{5}$) alone.

The writer has confirmed the existence of the step in the l.f. response by experiment.

Croydon.
G. W. SHORT.

THIS circuit has received considerable attention from the technical press this year, and additional analytical treatment appears in Electronic Technology (January 1961), as well as in the January and February issues of this journal. However, I find it difficult to accept certain explanations of its behaviour.
First, a.c. coupling to the cathode follower is not essential. Secondly, the high input impedance of the cathode follower is not primarily responsible for the substantial increase in gain of the pentode. I would suggest that the bootstrapping is merely a form of positive feedback, or servo assistance.

It is well known that if the anode load of a pentode
valve be progressively increased the gain ceases to rise appreciably because of the fall in anode current, and mutual conductance. The h.t. supply has to be progressively increased to avoid this effect which is frequently uneconomical, and moreover the valve ratings may be exceeded. In the bootstrap circuit the cathode follower regulates the h.t. supply to the pentode (junction of $\mathbf{R}_{\text {I.P }}$ and $R_{\text {IL }}$) at signal frequency and in phase with the output of the pentode. This may be regarded as positive feedback, and the cathode follower is able to do this because of its low output impedance.

The accompanying circuits illustrate these points and a circuit which I have used for some time. It yields a gain of 2,500 with complete reliability. Other readers may be interested to know that this type of circuit has also been discussed by Mr. A. W. Keen in a paper entitled "Bootstrap Technique" (Electronic \& Radio Engineer, Sept. 1958).
An EF86 and half a 12AT7 in one envelope would be very useful in low level audio circuits because the signal-to-hum ratio would be superior to the 6BR8.
It has, like the cascode amplifier, the advantage of high gain with a single phase inversion, but in contrast a lower output impedance. For this reason the circuit may also find application as a time base or shunt amplifier circuit in an h.t. stabilizer.

Sevenoaks.
J. R. OGILVIE.

The author replies:

It is certainly possible to regard the bootstrap follower as an amplifier containing a positive feedback loop. This does not clash with the approach used in my article: it leads to precisely the same results for the overall performance of the circuit.
Personally I prefer not to stress the positive feedback, because there is also a negative feedback loop, and, with resistive circuit components, the negative feedback always predominates. It is impossible for the positive feedback to make the circuit unstable, because the most it can do is to counteract the negative.

It seems simpler to treat the circuit just as a "circuit," without harbouring any preconceived notions about it, than to begin with the assumption that the triode is a true cathode-follower with 100% negative feedback, and then allow for the effect of the reduction of this negative feedback by the potential divider in the triode grid circuit. (Or, taking Mr. Ogilvie's standpoint, to allow

for the application of positive feedback by the same means.)

Mr. Ogilvie's circuit uses the same type of interstage coupling as my experimental phase-splitter (February issue, p. 82, Fig. 17). It is gratifying to learn that he has found it completely reliable. He does not, however, say anything about the frequency response of his singleended high gain circuit. The amplification factor of the 6BR8 pentode is 2080 (with $\mathrm{I}_{n}=10 \mathrm{~mA}$) so his circuit must be operating near the performance limit!
G. W. SHORT.

Aerial Models

IN his article entitled "Practical Aerial Measurements" in the December, 1960 issue, Mr. F. C. Judd includes many useful points of practical nature. It may be helpful to add certain others which have arisen during the installation of a similar aerial model table at the Royal Military College of Science.
The reciprocity principle implies that the radiation pattern of an aerial system is the same for transmission and for reception. One may, therefore, use the model aerial either as a transmitter or as a receiver. The first alternative demands and r.f. coupling between klystron and aerial to permit continuous rotation through 360°; whereas if the model aerial is used as receiver, the crystal diode may be built into its base and simple slip rings may be used to pass the a.f. modulation to the subsequent amplifying stages.

When the author refers to " the use of scale models... for determining performance under working conditions," his definitions of "model" includes not only the correct scaling of the aerial under test, but equally faithful reproduction of site obstacles, as shown in the photograph at the foot of page 581. Three points arise in this context, which must be borne in mind in determining the construction and the dimensions of the " V " frame carrying (in Mr. Judd's case) the receiving aerial:
(i) The use of a nearby receiver implies sphericalwave rather than plane-wave geometry, and if the resulting phase discrepancies are to be kept below 45°, the receiving aerial must be at a distance greater than a^{2} / λ from the nearest point on the model, where a is the width of the complete model (i.e., the test aerial together with the site obstructions).
(ii) The receiving aerial must itself have a radiation pattern sufficiently uniform to "see" the complete model; otherwise reflections from site obstructions near the extremities of the model will be unduly attenuated.
(iii) The "V" frame itself should be constructed in such a way as to minimize additional reflections from its legs. We have used legs of triangular crosssection and have coated their inclined surfaces with Aquadag; thus reflection from the frame legs is not only cut down in amplitude but is also directed away from the receiving aerial.
For his receiver, the author uses a simple crystal-audio system, but we have found this technique to be inadequate for a very fundamental reason. One normally assumes square-law operation for the receiver crystal and, therefore, regards the crystal current reading (after appropriate amplification and demodulation) as a direct measure of received power. Unfortunately crystal performance checks show that this law does not hold good over the 20 dB range which is essential if one is to evaluate satisfactorily the side lobes of many practical aerials.
The accompanying figure shows readings taken on a batch of five CV 111 crystals newly drawn from store. The scales are logarithmic, so that a square law would appear as a straight line parallel to the line PQ. Even greater departure from square law behaviour was found in the case of CV 102 crystals which had been in use for several months.
Errors arising from this cause may be avoided by operating the crystals at a fixed power level, and two methods have been widely used to accomplish this. In

the first, a piston attenuator adjusts the transmitter output so that the received power always remains at a fixed level. Such an attenuator may, indeed, be servocontrolled from the receiver, the driving shaft being coupled to a pen recorder to facilitate automatic operation. Alternatively, normal superheterodyne techniques may be used, with a second klystron serving as receiver local oscillator.
The power incident on the crystal remains effectively constant, provided the local oscillator delivers a signal substantially greater than that picked up by the receiving aerial. One may either feed the receiver output to a normal p.p.i. display to permit inspection or photographic recordings, or one may meter and record receiver output in the normal way.
J. LAIT.

Principal Lecturer,
Radar \& Telecommunications Branch, Royal Military College of Science.
Shrivenham, Wilts.

Transatlantic Radio Telegraphy

NO doubt A. M. Humby is right in saying (March issue) that the long-distance l.f. stations, even when at their zenith in 1924, never managed to carry more than a very small proportion of world traffic. But I think he does rather less than justice to the pioneer stations Clifden and Glace Bay which, 50 years ago, maintained what appears to have been remarkably consistent transatlantic communication.

A tribute to the service was paid in 1912 by an apparently satisfied user, the New York Times, which was then receiving its European news telegrams, running at about 25,000 words weekly, by the Clifden-Glace Bay route. Refuting allegations by a cable company that the news was so much delayed as to be no longer "live," the New York Times issued a table showing average delays of under two hours*. Much of that delay was ascribed to the long and indirect landlines but, even so, results compared well with the cable service.

The Clifden circuit was still without a long-range rival in 1913, when the Government-appointed Parker Committee reported "practically continuous" communication.

Chichester, Sussex.
H. F. SMITH.

* See The Marconigraph, April, 1912, p. 23.

Paris International Sound Exhibition

NEW LOUDSPEAKER DEVELOPMENTS

0$\mathbf{0}_{\mathrm{NE}}$ of the characteristics of the third International Sound Festival held recently in Paris was the considerable support given to the organization of stereo and other demonstrations by RadiodiffusionTélévision Française. Foreign radio organizations from Italy, Holland and Switzerland also took part.
"Foreigners" were also well represented among the exhibitors, although in this case the "foreigners" were mainly British. In fact, of the total of forty-three stands, eleven formed a joint British section organized by the Audio Manufacturers Group of B.R.E.M.A. and paid for by the Board of Trade. British equipment was also shown in several cases by its French distributors.

As it happened, almost all the unusual items we noted were in the fields of loudspeakers or amplifiers, and so we are confining this report almost entirely to these two fields.

Mention should however be made of the Frei "Echolette"-a compact device for producing artificial reverberation effects which was shown by Lyrec. This device uses an endless band of magnetic tape in association with three record and two replay heads. These may be used to produce single echos with several delay values lying between about 0.05 and 1 sec . By combining a number of such echoes at various levels, artificial reverberation effects may be produced.

LOUDSPEAKERS

Perhaps the most interesting exhibit was the Orthophase loudspeaker shown by Ge-Go. This might be described as a modernized version of the Blatthaller loudspeaker developed in the nineteen twenties. In both cases a number of long magnets placed side by side are used. In the long magnet gaps lie corresponding long driving conductors: adjacent conductor ends are joined so as to form a single zig-zig shaped conductor. This driving conductor is distributed over the diaphragm so that this latter (as in electrostatic speak-
ers) is driven over the whole of its area. The Orthophase loudspeaker uses a foam plastic diaphragm which is flat on one side and ridged on the other. To the ridges are attached the light-metal ribbon driving conductors and these lie between the pole pieces of a set of ferrite magnets (see diagram).
Seventeen magnets and driving ribbons distributed evenly over an area of four by five inches form a single cell unit, and any number of such units may be combined as required. The high-frequency res-
ponse of each cell extends within 2 dB to $25 \mathrm{kc} / \mathrm{s}$-the low-frequency response extends (also within 2 dB) to $1 \mathrm{kc} / \mathrm{s}$ or lower, depending on the total cell area in use and how the cells are loaded acoustically. The intermodulation distortion is claimed to be less than 2% at 5 watts output (for each cell). A square wave reproduced by this loudspeaker bears a considerable resemblance to the original: readers who have seen oscillograms of square waves as reproduced even by high-quality conventional moving-coil loudspeakers will know that this is a remarkable achievement. Each cell has a directional characteristic covering an angle of 30° at $15 \mathrm{kc} / \mathrm{s}$ (for 6 dB down). The fundamental resonance is at $40 \mathrm{c} / \mathrm{s}$ and the diaphragm can move up to one quarter of an inch. The efficiency is somewhat below that of a conventional moving-coil loudspeaker and the impedance of each cell is 0.35Ω.
A private demonstration was given of a 24 -cell full-range free-standing version of this loudspeaker. 30in/ sec master tapes (with obviously a very-close microphone recording technique) produced some of the most "immediate" sound your reporter has ever heard. No distortion could be detected, and the bassdrum appeared to be reproduced accurately in that it was partly heard and partly felt.
Another unusual type of loudspeaker was introduced by Philco International. This used "exploded"

Free standing 24-element Orthophose loudspeaker with (inset) rear view of a single element and (above) diagram showing the construction of one element.
polystyrene as a diaphragm material in order to achieve a high stiffness-to-weight ratio and thus reduce breakupa ${ }^{-}$Although driven normally by a centrally attached voice coil, the diaphragm was unconventionally shaped-convex rather than concave and saucer- rather than cone-shaped. The diaphragm thickness also varied considerably from about 4 in at its centre to only about 0.2 in at its rim. This rim was suspended by means of special rubberized linen so as to eliminate reflections at the diaphragm edge. The diaphragm was also suspended in various other places, not disclosed. The resonant frequency of this loudspeaker is only about $10 \mathrm{c} / \mathrm{s}$ in free air: when mounted in its totally enclosed cabinet, the enclosed air stiffness increases this frequency to about $40 \mathrm{c} / \mathrm{s}$. The cabinet volume is less than 2 cu . ft . It

Reflector used in one of the AndreRadio "Clevox" range of loudspeakers. The conical indentations resonate at different frequencies to correct for deficiencies in the treble response of the loudspeakers.
is claimed that this diaphragm does not break up below about $2000 \mathrm{c} / \mathrm{s}$ frequencies above this value are reproduced by a capacitive-fed conventional pressure-driven tweeter.

A high stiffness-to-weight ratio can also be obtained for the diaphragm by making it in sandwich form with the skin material denser and stronger than the filler, as described by D. A. Barlow in our December 1958 issue. The production version of a sandwich cone loudspeaker was shown by Leak. Unlike the prototype first shown at the 1959 Northern Audio Fair, this is associated with a conventional 3 -in cone tweeter loudspeaker (crossing over at $1 \mathrm{kc} / \mathrm{s}$) rather than an electrostatic unit. Cabinet resonances are, it is claimed, almost completely eliminated by means of a new damping material.

A range of unusual column-shaped loudspeaker systems-the Clevoxwas shown by Andre-Radio. Each column contains a number of irregularly positioned flat baffles pro-

Frei artificial reverberation device using on endless loop of mag. netic tope (shown by Lyrec).

truding from the interior of its walls. These baffles both increase the effective column length (by forcing the sound to follow a longer path) and, it is claimed, effectively provide a number of pipes of different lengths and thus produce resonant loading over a considerable frequency range. An unusual reffector is also mounted
above the speaker at the top of each of these columns. The surface of each such reflector is indented with a number of conical depressions of different sizes. These depressions resonate at different frequencies to compensate for deficiencies in the high-frequency response of the loudspeaker.

AMPLIFIERS AND PRE-AMPLIFIERS

Two unusual features noted in Gaillard equipment were, in their "Europe" amplifier, a separate ECL82 output stage for feeding an electrostatic loudspeaker with frequencies above $10 \mathrm{kc} / \mathrm{s}$ and, in their Himalaya amplifier, a voltage-stabilizing circuit (using a 6BQ7A doubletriode) for counteracting mains supply variations (these are proportionately greater in France than England).

The Ribet Desjardins "Mozart" stereo radio-gram is unusual in that a single power amplifier is used for frequencies below $300 \mathrm{c} / \mathrm{s}$, and two separate power amplifiers for frequencies above $300 \mathrm{c} / \mathrm{s}$.

A fully transistorized pre-amplifier and 2×5-watt amplifier formed part of the S.P.E.S. "Monteverdi" stereo sound reproducing system. The amplifier response is claimed to be
within 2 dB from $20 \mathrm{c} / \mathrm{s}$ to $50 \mathrm{kc} / \mathrm{s}$ with overall feedback of 28 dB .
The Innovation demonstration featured a number of American units which, so far as we know, have not yet been exhibited in England. This enabled one to get an idea of some of the more unusual (dare we say exotic) facilities often available in American equipment. For example, a Marantz pre-amplifier could compensate for five different lowfrequency and (independently) five different high-frequency record characteristics. In the corresponding power amplifier, the bias of the output stage as well as its d.c. and a.c. balance could be monitored and adjusted. The output valves could be operated either as triodes or in an "ultra-linear" connection and the damping factor of this amplifier could also be varied.

Digital Computer Kit

The Nash and Thompson transistorized kit shown in the photograph enables complete computers to be built directly from schematic diagrams and is suitable for educational or training purposes. The individual sub-unit "brickettes", which are also available separately, include AND gates, OR gates, inverters, delay units, flipflops and power packs. The majority of the units have emitter-follower outputs so that several units can be connected directly to one output.

Elements of Electronic Circuits

24.-Delay Circuits

By J. M. PETERS, B.8c. (Eng.), A.M.I.E.E., A.M.Brit.I.R.E.

ADELAY circuit is one which is arranged to allow the passage of a period of time after the application of an input before an output appears. This property enables it to be used in a variety of roles which are principally:-
(1) To act as a delay or store for pulses in computers so that slow-acting circuits can be permitted to operate.
(2) To generate rectangular pulses.
(3) To duplicate an existing pulse at a later time. Naturally, trigger circuits can be used to produce delays; however the output from these is synthesized and not the original input delayed: in a true delay circuit the input re-appears as the output after the passage of time.

Various forms and modifications of transmission lines are commonly used as delay circuits and an explanation of the properties of transmission lines will assist the reader in following and understanding their operation.

Properties of Transmission Lines

We will assume that L, R, C and G represent the inductance, resistance, capacitance and leakance* of the line per unit length (metre). If the line is uniform and lossless i.e. $\omega L \geqslant>R$ and $\omega C \geqslant G$

fig. I.
then a travelling wave of any shape will move along the line at a uniform velocity without change of shape: if this line is infinite the input impedance is constant and is not affected by the type of waveform applied. Also if the line is of finite length, but properly terminated, the line will appear to the generator to be infinite and the properties of the infinite line will still obtain. An improper termination will cause a reflection and the interaction between incident and reflected waves will create a change in input condition; this effect is used in the generation of rectangular pulses.
Characteristic Impedance.-Still assuming that the line is uniform and lossless, for a travelling wave at any point in the line the ratio (change in voltage)/ (change in current) is constant and is equal to

[^2]$\mathcal{V}(\mathrm{L} / \mathrm{C}) \Omega$ which is known as the "characteristic impedance" of the line (this ratio implies that the voltage and current are in phase with each other). For our hypothetical ideal line the characteristic impedance is a pure resistance denoted by R_{0}; but for the general case of a line which is not loss-free, the expression for characteristic impedance is complex and introduces the terms R and G : this is usually referred to as Z_{0}. Another name is the "surge impedance" of the line.
Parallel-Wire Line.-For a balanced line, that is, one formed of two parallel wires, L and C depend on the dimensions of the conductors, their separation and the characteristics of the material between them. If we embed the conductors in a material which has a dielectric constant, κ, different from air this will alter the characteristic impedance, the formula for which can be reduced to:-
$Z_{0} \approx(276 / \sqrt{ } \kappa) \log _{10}(d / r) \Omega$
where $r=$ radius of the conductor, $d=$ spacing between conductors and $d \gg r$.
Coaxial Cable.-The coaxial or unbalanced line is made up of a central conductor surrounded by dielectric sheathed by an outer earthed screen. The expression for Z_{0} is of similar form and can be reduced to:-
$$
Z_{0} \approx(138 / \sqrt{ } \kappa) \log _{10}\left(r_{2} / r_{1}\right) \Omega
$$
where r_{2} is the internal radius of the outer conductor and r_{1} is the radius of the inner conductor.
Losses.-As the frequency is raised both the resistive (R) and dielectric (G) losses increase. It may seem odd that the resistance of a piece of wire can vary with frequency; but a phenomenon known as the " skin effect" occurs. This, as its name suggests, is the confining of the current to a thin layer at the surface of the conductor. The "inside" of the wire carries no current and can even be removed, leaving a tube.

Transmission Delay

The velocity of propagation along the loss-free line is $1 / \sqrt{ } \overline{\mathrm{LC}}$ representing a delay of $\sqrt{\overline{\mathrm{LC}}} \mathrm{sec} /$ metre. For a uniform open-wire line in free space (strictly, in a vacuum) which does not dissipate energy, L and C are so related that their product is equal to the speed of light $\approx 3 \times 10^{8}$ metres $/ \mathrm{sec}$ so that the time delay on an ideal line of this sort is $1 /\left(3 \times 10^{8}\right)=$ $0.003 \mu \mathrm{sec} / \mathrm{m}$.
In practice the conductors are usually separated by a dielectric other than air. The general expression for the speed of an electro-magnetic plane wave is:-

$$
v=c / \sqrt{\kappa \mu} .
$$

where $c=$ velocity of light, $\kappa=$ dielectric constant, $\mu=$ magnetic permeability of the dielectric which in practice can be taken as unity.
The time delay is therefore $0.003 \mathrm{~V} \kappa(\mu \mathrm{sec} /$ metre $)$.

Fig. 2.

A characteristic often quoted by cable manufacturers is "velocity factor"-this is the ratio between transmission speed in free space and in the cable.

Delay Times and Types of Line

For delays as short as $0.005 \mu \mathrm{sec}$ it is usual to use coaxial lines where $\kappa \approx 2.5$ (e.g. $0.003 \sqrt{ } 2.5 \approx$ $0.005 \mu \mathrm{sec} / \mathrm{m}$). Longer delays entail what is usually an unacceptably long coaxial line; however by increasing the length of the inner conductor (by winding it into a spiral) it is possible to obtain delays of the order of $1 \mu \mathrm{sec} /$ metre. Some special cables use a magnetic material to further slow progress of the wave. The characteristic impedance of these modified lines is usually high and for time delays of this order it is often necessary to resort to artificial lines.
Lumped-Constant Lines.-Artificial lines comprise a number of low-pass filters connected in series. The filter section possesses a delaying characteristic; hence it is possible, by suitable choice of capacitors and inductors, to simulate the true line as the transmission line itself can be regarded as comprising an infinite number of filters in series. One of the difficulties, especially when it is desired to delay steep waveforms, is the preservation of the wave shape. All the frequency components of the pulse (and for an ideal rectangular pulse these extend to infinite frequency) must lie within the filter pass band. In other words the frequency components of the pulse must pass through the section with a constant time delay and amplitude. This is impossible to achieve in practice but a compromise is reached in which the filter possesses amplitude and time delay characteristics independent of frequency over a fairly wide band of frequencies. With a line comprising simple filter sections (" constant k ") (see Fig. 1), it is necessary for the cut-off frequency to be very much higher than the frequencies to be passed, if distortion is to be avoided. If more complex sections with mutual coupling between the coils are resorted to (" M-derived ") (Fig. 2), then it is possible to pass, without distortion, frequencies which are a much higher percentage of the cut-off frequency. In other words, the Mderived section possesses a flatter characteristic with a sharper fall at the cut-off point.
Mechanical Lines.-Lumped-constant lines can give long delays, but even these constructions become cumbersome and it is usually necessary to resort to the use of "mechanical", rather than electrical, transmission. Mechanical lines are diverse in form; but three common types are considered here:

Mercury Tubes: The electrical pulse is converted into a supersonic compression wave by means of a quartz or magnetostriction transducer. The
wave is applied to a tube of mercury through which it passes at a relatively low velocity.

$$
v=\sqrt{ }(E / \rho)
$$

where \mathbf{E} is Young's modulus of the medium and $\rho=$ density of the medium.
Another transducer reconverts the acoustic wave to an electro-magnetic wave. It is necessary to maintain the medium at a controlled temperature since the velocity of the supersonic wave varies with temperature. Special precautions are also necessary to prevent unwanted reflections.
Torsion Wire: The mercury tube is long and can be inconvenient. A simpler form of delay line makes use of the transmission of a " twist " applied to a length of wire, which can be coiled up and supported on a compliant suspension without deleterious effects. The "twist " is usually applied by magnetic means.

Quartz Plate: Another form of mechanical line uses a many-sided plate of quartz arranged so that a wave fed in at one side is reflected internally from the other sides in turn until it either returns to the input or reaches an output transducer.

Satellite Tape Recorder

FIVE tape recorders like the one shown in the photograph are in use in the U.S. Army's Courier 1B "de-layed-repeater" communications satellite. When in range of the Puerto Rican or Fort Monmouth (New Jersey) ground station, the satellite can either receive and record or replay and transmit 340,000 words in a five-minute period. Fous of the tape recorders are used for transmitting and receiving digital data at a rate of SSkilobits per second, and the remaining one for analogue signals from 300 to $50,000 \mathrm{c} / \mathrm{s}$ (the tape speed is $30 \mathrm{in} / \mathrm{sec}$).

As it is hoped that the satellite will remain in orbit for at least a year, a tape was required which could withstand at least 10,000 passes across the heads. The tape selected was "Scotch" Brand No. 199, a heavyduty instrumentation tape made by the Minnesota Mining and Manufacturing Company. To produce the low wear required, the same binder is used as is normally employed with videotape. The tape must also be capable of withstanding extremes of temperature: this binder showed no deterioration when tested from -40 up to $+250^{\circ} \mathrm{F}$.

Tape recorder used in the Courier IB "delayed repeater' communicotions satellite.

WORLD OF WIRELESS

German TV Chaos

THE opening date for West Germany's u.h.f. television network, originally planned for January lst, is again postponed; this time for a further two or three months. This decision was taken by the West German Federal Court, who ruled that the Federal Government is not allowed to set up and operate a television network of its own as, according to the Constitution, all broadcasting activities must be conducted by the Länder Governments.

The thirty u.h.f. transmitters constructed by the German Post Office in readiness for the government network have so far had to confine themselves to test transmissions. It is not yet known whether or not these stations will be used by the Länder. Another problem is what will happen to the private company, Freies Fernsehen G.m.b.H., which was designated sole programme contractor to the government u.h.f. network. The company has a library full of recorded TV programmes and no transmitters to broadcast them.

West German set manufacturers who have been advertising and producing u.h.f. sets for more than six months are facing trouble, too. The uncertainty about the start of the u.h.f. network has made the public reluctant to buy u.h.f.equipped sets and stocks of old models (without u.h.f.) are mounting despite price cutting.

It is still not known whether the Länder u.h.f. network will operate on a commercial basis (the government u.h.f. plans were for commercial broadcasts) or whether it will follow the pattern set in the v.h.f. bands by local stations which are non-profitmaking but have up to 15 minutes of commercial time per day.

Tape Recorder Import Duty

TWO consolidated actions were recently brought by Grundig (Great Britain) against the Commissioners of Customs \& Excise to recover part of the 20% ad valorem duty charged on tape recorders imported from Germany in 1958 and 1959; their claim being that they should have come under the category of dictating machines and subject to only 10% duty. In a reserved judgment Mr. Justice Barry granted Grundig a declaration that recorders imported between June and November, 1958, were dictating machines liable for only 10% duty and were not musical instruments. He dismissed their claim for a similar declaration on other recorders and found that they were "combined recorders and reproducers" suitable for reproducing music and were liable for 20% duty.

It was stated that on instructions from Grundig, the German makers had removed small resistors from the machines to reduce their frequency response, but similar resistors were installed after the machines arrived in Britain. Plaintiffs had frankly admitted that the sole purpose for the machines being "maimed" in Germany was to attract the lower import duty rate and they had not attempted to conceal what they had done from the Commissioners.

Stockholm Broadcasting Conference

AT the invitation of the Swedish Government, the European VHF/UHF Broadcasting Conference, convened by the International Telecommunication Union, is to be held in Stockholm from May 26th to June 22nd. The delegations, representing the telecommunication administrations of Europe, will have two principal tasks. First, to examine the present situation of v.h.f. sound and television broadcasting in the European Broadcasting Area (which includes North Africa and part of Asia Minor). The Conference will therefore have to consider whether experience has brought to light any serious defects in the 1952 Stockholm Plans and, if so, to decide what remedies might be applied.

The second and, perhaps, most important task will be in the field of u.h.f. television for which no allocations were made at the 1952 Conference.

To undertake the technical preparatory work for the Conference, a meeting of experts organized by the C.C.I.R. was held in Cannes early in March. Four committees were constituted, dealing respectively with propagation, sound broadcasting, television broadcasting and planning methods for Bands IV and V.
The question of planning methods is a more delicate one in Bands IV and V, compared with Bands I and III, because the u.h.f. bands represent an almost continuous region of the spectrum from 470 to $960 \mathrm{Mc} / \mathrm{s}$, which means that second-channel and receiver-oscillator interference have also to be taken into account when assigning frequencies to stations. It is consequently rather doubtful whether the arbitrary methods adopted at earlier conferences can be applied successfully. The European Broadcasting Union has proposed the use of computers; the problem being the large number of variables in each case and the repercussions of any particular assignment on many other channels.

All the European administrations have adopted $8 \mathrm{Mc} / \mathrm{s}$ channel spacing and all Continental European administrations have agreed to utilize a $625-$ line standard for u.h.f. television.
In the field of sound broadcasting, the experts have come to the conclusion that as yet insufficient data exist to take the special requirements of stereophonic broadcasting into account and it is, therefore, probable that the Conference will plan Band II for " mono" only.

Electronics Review

AN ever-increasing proportion of the cost of " military" aircraft is for the electronic equipment installed. Whereas in the Scimitar it was 5% and in the Sea Vixen 14%, in the new NA39 it is 20%. These figures were given by C. I. Orr-Ewing, Civil Lord of the Board of Admiralty, who was guest of honour at the annual luncheon of the Electronic Engineering Association. He also stated that 21% of the cost of a Leander frigate was for the electronic content.

The Association has again issued a well-illustrated
annual review, "British Electronics Engineering," which in its 28 pages outlines the various fields for which its members manufacture capital equipment. The British radio and electronics industry as a whole is now producing some $£ 500 \mathrm{M}$ worth of equipment a year (increasing at the rate of 10%) and $£ 175 \mathrm{M}$ of this total is manufactured by the capital goods division of the industry.
E.E.A. Council.-The new Council of the Electronic Engineering Association consists of the following member firms, whose representatives' names are in parenthesis:-
A.E.I. (V. M. Roberts); Decca Radar (C. H. T. Johnson); E.M.I. Electronics (C. Metcalfe); Elliott Brothers (W. R. Thomas); Ferranti (W. D. H. Gregson, vicechairman); G.E.C. (Dr. D. N. Truscott, chairman); Kelvin \& Hughes (C. G. White); Marconi's W/T (F. S. Mockford); Mullard Equipment (R. R. C. Rankin); Murphy Radio (K. S. Davies); Plessey Co. (P. D. Canning); Pye Telecommunications (J. R. Brinkley); Redifon (A.V.-M. E. B. Addison); and S.T.C. (L. T. Hinton).
A.P.A.E.-The Association of Public Address Engineers is negotiating with the Post Office for the allocation of a frequency for radio microphones which are being marketed by some of its members. At the Association's recent exhibition two of these, one from West Germany and another from Japan, were shown. The new president of the association is J. Maurice, managing director of Lustraphone Ltd.
B.M.E.W.S.-In order to "protect operating personnel from the extremely high r.f. radiated power ... and to ensure interference-free conditions for the varied electronic equipment" used on the B.M.E.W.S. site at Fylingdales, Yorks, extensive screening is necessary. Belling and Lee announce that they have been engaged to assist in the design and implementation of r.f. shielding and interference suppression.

Via the Moon.-The first England-Australia radio link using the moon as a reflector was made on February 24 by Pye engineers working in co-operation with the staffs manning the radio telescopes at Jodrell Bank and Sydney. A Pye 1-kW double-sideband a.m..transmitter was used to feed the signals from voice-frequency teleprinter equipment into the 250 ft paraboloid at Jodrell Bank. At Sydney a new $60 f t$ radiotelescope was used.

VOR/DME.-A plan for the provision of the shortrange navigation aids VOR and DME in the EuropeanMediterranean area has been prepared by an International Civil Aviation Organization regional meeting recently held in Paris. The plan, which will now be submitted to the Air Navigation Commission and the Council of I.C.A.O. for approval, involves over 550 facilities at approximately 380 locations.

Tape Recording.-Over 1,300 tapes were submitted for a competition for $2 \frac{1}{2}$-minute tape recordings sponsored by Curry's, the radio and electrical dealers, in a Radio Luxembourg programme.

Receiving Licences.-January's increase in the number of combined TV/sound licences was 72,459 , bringing the total to $11,148,463$. Domestic sound-only licences totalled $3,532,922$ and the number of licensed sets fitted in cars was 464,226 .
Training schemes operated by the Ultra group of companies are outlined in the booklet "Guide to Training Schemes" available from the company's head office at Western Avenue, Acton, London, W.3.

Another Jubilee.-The 50th anniversary of the establishment of the British Electrical and Allied Manufacturers' Association this year will be marked by a number of special events, including the issue of a new Electrical Export Directory with a reference section in five languages, including Russian. Reference is made in the 50 th annual report of the Association to its two latest sections-"Semiconductor Devices" and "Industrial Electronics." The latter has been established "to provide the means of closer discussions with other associations and help towards the wider examination of general policy questions affecting the industrial electronics industry as a whole."

Higher Technological Education.-The reasons for comparatively fewer students electing to read for technological qualifications in this country than in the U.S.A. and Russia are to be investigated by the University of Oxford's Department of Education led by its director, A. D. C. Peterson. The research, which will continue for two years, has been made possible by a grant of $£ 2,500$ from the Capitol Radio Engineering Institute, of Washington, through its International Division, C.R.E.I. (London).

Dip.Tech. and M.C.T.-A revised edition of the booklet giving details of the two awards (Dip.Tech. and Membership of the College of Technologists) conferred by the National Council for Technological Awards, is now available from the Council at 9, Cavendish Square, London, W.1.

Technical Authorship.-The results of the first examination in technical authorship conducted by the City and Guilds of London Institute will be discussed by W. Hazel, of the Ministry of Aviation, at a meeting of the Technical Publications Association at 7.0 on April 20th at Monotype House, Fetter Lane, London, E.C.4. The meeting is not confined to members of the Association.

Audio Centre.-On May 17th a Centre of Sound for both industrial and amateur "devotees of the science of sound" will open at 12, Archer Street, London, W. 1. It is sponsored by the newly formed Audio Industries Club Ltd, in association with the British Recording Club. The centre will incorporate an exhibition of sound equipment, a demonstration theatre for both sound and vision, an information bureau and a restaurant.

Maurice Child, the well-known radio amateur, has presented to the Radio Society of Great Britain a collection of antique radio equipment. The collection of 26 items is almost entirely of pre-1914/18 vintage. Mr. Child is a vice-president of the Society and was for many years principal of the London Telegraph Training College.

Demonstrations of loudspeakers (both domestic and monitoring) and professional recording equipment are being given by Lockwood and Co. in collaboration with other manufacturers at the I.B.C. Recording Studios, 35, Portland Place, London, W.1, on April 6 th and 7th from 6 to 9.30 p.m. and on April 8th and 9 th from 9.30 a.m. to 9.30 p.m.

Westward TV.-Full-power trade tests have been radiated since March 20th from both the I.T.A. transmitters which will serve S.W. England. They are transmitted daily (except Sundays) from 10 a.m. to 9 p.m. The programme contractors for both transmitters, Stockland Hill, Devon (Channel 9) and Caradon Hill, Cornwall (Channel 12), are Westward Television who plan to start their service on April 29th.
"Applications of Frequency-Sweep Oscillators."Unfortunately, due to pressure on space, the concluding part of R. Brown's article has had to be held over until our next issue.

News from Industry

Marconi's.-The 63rd annual report of Marconi's W/T Company and its subsidiaries shows a group profit for 1960 of $£ 57,892$ compared with $£ 411,470$ for the previous year. This decline has resulted from the writing off of a loss of $£ 670,000$ incurred during the year by Marconi Italiana S.p.A. The company became a wholly owned subsidiary in September 1959, and Lord Nelson of Stafford in his reference to this at the Marconi annual general meeting said that investigation had disclosed that inadequate provision had been made for losses incurred by the Italian company prior to 1960. The 61st annual report of the Marconi International Marine Communication Company shows a net profit of £304,276 against £264,624 for 1959.

Relay Exchanges Ltd. and its subsidiary companies announced a group trading profit for 1960 of $£ 3,949,892$, almost $£ 600,000$ above the 1959 figure. After allowing for taxation and $£ 2.75 \mathrm{M}$ for depreciation the net group profit was just over £1M.
Radio Rentals have changed the name of their setmanufacturing subsidiary from Mains Radio Gramophones Lid. to Baird Television Ltd. It will be recalled that they recently acquired the trade name from Hartley Baird Ltd. The chairman's annual report records a record trading profit of $£ 5.95 \mathrm{M}$ which is some $£ 850,000$ above the previous year. After charging $£ 3.44 \mathrm{M}$ for depreciation and allowing for taxation the net group profit showed an increase of nearly $£ 500,000$.
T.C.C.-A trading profit of $£ 701,737$ for 1960 , compared with $£ 770,679$ for the previous year, is announced by the Telegraph Condenser Company.

Packaged television stations, costing under $£ 10,000$, are being marketed by E.M.I. Electronics Ltd. to provide a low-cost, uncomplicated television system for mass education and instruction by television. In a region with flat terrain, good reception should be obtained within 15 miles radius of the transmitter. A number of receivers is supplied with each transmitter.

Power System Computers Ltd., of Team Valley, Gateshead-on-Tyne, 11, have undertaken to manufacture the analogue computers developed in the Department of Electrical Engineering at Sunderland Technica! College.

EMIFAIR-an exhibition of medical, musical and scientific developments of the E.M.I. family of com-panies-will shortly commence a tour of the country. The exhibition contains 16 stands. The major emphasis is on Ardente hearing aid equipment, but included among the other exhibits are records and record reproducers, and tape recorders for sound reproduction and dictation.

Anglo-Czechoslovak trade agreement for 1961 provides for about $£ 5.6 \mathrm{M}$ worth of U.K. goods to go to Czechoslovakia and about $£ 8 \mathrm{M}$ worth in the reverse direction. The quota includes Czech valves and transistors to the value $£ 60,000$ (not more than a fifth of which may be transistors) and gramophone records and tapes to the value of $£ 20,000$. The quota of U.K. exports under the agreement lists $£ 50,000$ worth of electronic and communication equipment including sound ard television receivers.

Anglo-French co-operation in the field of communication earth satellites is provided for in a joint study to be undertaken by the Hawker Siddeley group and SEREB (Société pour l'Etude et la Realisation d'Engins Ballistiques) of Paris. SEREB was set up two years ago by the French government to act as systems managers for all ballistic weapon development to be undertaken in France or in association with other countries.

Computer appreciation courses for executives are conducted from time to time by Leo Computers Ltd. The week's course " providing a sound introduction to data processing in general," is non-residential and costs 25 gn . Particulars of the next series of courses, which will be held on April 10th to 14th, July 10th to 14th and September 11 th to 15 th, are obtainable from Leo Computers Ltd., 151A-159A Queensway, London, W.2.

Rank Precision Industries have been granted exclusive selling rights in the U.K. and many overseas territories for the Dage range of closed-circuit television equipment manufactured by Thompson Ramo Wooldridge, of Michigan City, Indiana. The Dage range of cameras includes one of only $7!^{\prime \prime}$ long and weighing only 4 lb . It is "completely transistorised" and is available with a three-lens turret.

B \& K Laboratories, of 4 Tilney Street, London, W.1, are to market in this country two new spectrum analysers developed by the Polarad Electronics Corp., of New York. One (type WSA) covers $10-40,000 \mathrm{Mc} / \mathrm{s}$ in 20 bands and the other (type DA70) $50-100 \mathrm{Gc} / \mathrm{s}$ in three bands.

Vicsteels Ltd., of Craven House, 16, Northumberland Avenue, London, W.C.2, have been appointed U.K. agents of Lumalampan AB, of Stockholm, manufacturers of tungsten and molybdenum wire and the Luma wire cutting, stripping and twisting machine.

Ultra Electronics are to supply 40 sets of their UA60 intercom. equipment for the Westland P. 531 aircraft being supplied to the Army Air Corps. The value of the contract is approximately $£ 21,000$.
W.S. Electronics Ltd., a member of the K.G. (Holdings) Group, has been awarded a contract for a further 300 u.h.f. airborne emergency transmitter-receivers, (Type D103) for the Royal Air Force.

Livingston Laboratories Ltd. are moving to new premises at 31, Camden Road, London, N.W. 1 (Tel.: Gulliver 8501) on April 4th.

EXPORTS

Rhodesian police are to be equipped with Cossor packset transmitter-receivers. These v.h.f. sets, which weigh only 5 lb , will be used for ground and ground-to-air communications.

Signal generators to the value of approximately $\$ 160,000$ have been ordered from Marconi Instruments for the Royal Canadian Air Force. The instruments, which cover the $10-470 \mathrm{Mc} / \mathrm{s}$ frequency range, are amplitude molulated.

A Continental tour to promote the next International Instruments, Electronics and Automation Exhibition, to be held in London in May, 1962, is being undertaken by the organizing committee. They have already visited several cities and from April to June will visit Milan, Brussels, Amsterdam, Paris, Stockholm and Frankfurt.
Sweden has placed a further contract with Marconi's (following substantial orders in 1959) for the supply of "secret electronic equipment" for her air defence system. The contract is valued at over $£ 1.7 \mathrm{M}$.

Personalities

Lord Nelson of Stafford, LL.D., chairman of the English Electric group of companies, has been elected to honorary membership of the Institution of Electrical Engineers "in recognition of his outstanding contribution to the development of electrical science and engineering, and for his many services to The Institution." Lord Nelson, who was a post-graduate student with the Brush Electrical Company, Loughborough, became their chief outside engineer at the age of 22 . He later joined the British Westinghouse Company (which became Metropolitan-Vickers). His association with the English Electric Company started in 1930 when he was appointed managing director. Lord Nelson was created a Baronet in 1959 and raised to the peerage in 1960.

Julius A. Stratton, Sc.D., LL.D., president of the Massachusetts Institute of Technology, is the 39th recipient of the Faraday Medal of the I.E.E., which he is awarded for "his notable contributions in the fields of technological education and research in radio communication." Dr. Stratton, who will be 60 in May, has been on the staff of M.I.T. since 1924 when he joined as a research associate. He was in the radiation laboratory from 1940 until 1945 when he became director of the research laboratory (electronics). He remained in that post until his appointment as president in 1959. Dr. Stratton has made "an outstanding contribution to the theory of transmission line, waveguide and antenna systems in relation to the wartime development of centi-metre-wave radar."
D. N. Truscott, O.B.E., A.C.G.I., D.I.C., B.Sc., Ph.D., Sc.D., general manager of the electronics division of the G.E.C., which he joined ten years ago, has been elected chairman of the Electronic Engineering Association in succession to L. T. Hinton (Standard Telephones and Cables). Dr. Truscott was for four years in the engineering department of Murphy Radio which he left in 1939 to join the Ministry of Aircraft Production where he was an assistant director from 1944 to 1945. He then spent six years in the Ministry of Supply as an assistant secretary.
N. McAdam, B.Sc., has been appointed chief engineer of the industrial valves and cathode-ray tubes department of the A.E.I. Radio and Electronic Components Division. After spending five years with A. Reyrolle and Company as a student apprentice he graduated in electrical engineering in 1933. In 1934 he joined Mullards and a year later went to the Edison Swan Electric Company as a junior development engineer. In 1947

Dr. D. N. Truscott

N. McAdam
he went to the company's valve factory at Sunderland as chief factory engineer. He became divisional chief inspector for the Edison Swan group of factories in 1955.

Clifford Metcalfe, C.B.E., will, at his own request, relinquish the managing directorship of E.M.I. Electronics Ltd., on July lst. He will remain a full-time director of Electric \& Musical Industries Ltd,, and will devote his main attention to initiating technical and development policy for new products. He will be succeeded as managing director of E.M.I. Electronics Ltd. by Percy A. Allaway who has been his deputy since 1957. Mr. Metcalfe spent his early years with Bristol Aeroplane Company on engine design. He joined the Gramophone Company in 1930 as a mechanical designer and was appointed a director of E.M.I. Engineering Development Ltd. in 1946. Mr. Allaway also joined the Gramophone Company in 1930. He spent the war years designing equipment for radar and similar electronic devices. He was appointed general manager of E.M.I. Engineering Development Lid. in 1953, and works director in 1956.

Charles Bovill, A.M.I.E.E., M.Brit.I.R.E., A.F.R.Ae.S., has ;oined Multisignals Lid. as executive engineer. He had previously been with the Decca group since 1946, first with the Navigator Company and since 1954 with Decca Radar as overseas technical representative working mainly in France. Trained at the University of Grenoble, France, and the Regent Street Polytechnic, he joined the development department of the Gramophone Company in 1933. From 1936 to 1937 he was with the Air Ministry, and in 1938 joined the air division of Marconi's, later becoming liaison engineer with R.A.F. Bomber and Coastal Commands. Mr. Bovill was commissioned in the R.A.F.V.R. in 1942 and was appointed officer in charge of the Air Operational Research Group of the Inter-Services Research Bureau.
D. Edmundson, general manager of the Rugby works of A.E.I. since January last year, is appointed manufacturing manager, A.E.I. Electronic Apparatus Division in succession to the late E. T. W. Barnes. Mr. Edmundson served an engineering apprenticeship with B.T.H. In 1940 he was appointed head of the electrical laboratory, and in 1946 test engineer, Rugby works, eventually becoming superintendent, test department. G. P. Thompson, who becomes manager of the Rugby works of A.E.I., ioined B.T.H., Rugby, as a student apprentice in 1930.

P. A. Allaway

C. Bovill
E. A. W. Spreadbury, M.Brit.I.R.E., associate editor of the Wireless E Electrical Trader, has been elected chairman of the Radio Trades Examination Board for a second term of office. He has been associated with the work of the Board since its inception in 1944 and was for many years an examiner in both sound radio and television servicing. He joined the laboratory staff of Wireless Trader in 1937 where he was responsible for the preparation of the service sheets issued by the journal.

Three appointments to the directorate are announced by the Solartron group. R. Catherall, B.Sc., who joined Solartron Laboratory Instruments as a development engineer in 1952 and since 1957 has been a director of Solartron Research and Development, joins the group board as director of research and development. After graduating at Manchester University he joined Rotol Ltd. where he was concerned with the development of electronic equipment for vibration measurements in aircraft propellers. In 1948 he went to S. Smith and Sons on automatic pilot design. Soon after joining Solartron

in 1952 he became responsible for the development of their transfer function analyser. H. D. Binyon has joined the group board as director of product sales. He joined Solartron Laboratory Instruments in 1952. After coming down from Magdalen College in 1940 he joined the R.A.F. Signals Branch and in 1947 went to the Cavendish Laboratory, Cambridge, for two years. L. Malec, M.B.E., who joined the group two years ago as managing director of Solartron Radar Simulators is appointed director of systems sales to the group. After war service in the R.A.F. he joined British European Airways. From 1948 to 1959 he was with Air Trainers Ltd., of which he subsequently became managing director.
J. Reekie, B.Sc., Ph.D., M.I.E.E., who joined Semiconductors Lid., the Plessey-Philco company, in 1957 as chief engineer and subsequently became executive director and general manager, is being detached for special duties by the board of the Plessey company, and will shortly be visiting a number of overseas territories on behalf of the company. G. W. Pratt has been seconded by the Philco Corporation of America to act as general manager of Semiconductors Ltd.
J. W. Haig-Ferguson, M.A., A.M.I.E.E., has recently been appointed managing director of R. \& J. Beck Ltd., one of the Griffin \& George group of companies. Mr. Haig-Ferguson, who was born in 1923 and is a graduate of Queen's College, Cambridge, was in R.E.M.E. in the latter part of the war. He was until recently divisional director (electronics) of Bruce Peebles \& Co. Lid., Edinburgh.
K. A. Robinson, A.M.Brit.I.R.E., who joined Lancashire Dynamo Electronic Products in 1948 as chief development engineer, has been appointed to the board of the company, which is a member of the Metal Industries group. Mr. Robinson, who is 34, was appointed chief engineer in 1959. Before joining the company he was concerned with the development of industrial electronic equipment with the English Electric Company.
A. S. D. Barrett, B.Sc.(Eng.), M.I.Mech.E., M.I.Chem.E., has been appointed consultant to Research and Control Instruments Ltd., and has joined the board of directors. Prior to setting up in private practice as an industrial consultant at the beginning of this year Mr. Barrett was technical director of Edwards High Vacuum Lid. He is a vice-chairman of the Scientific Instrument Research Association and secretary of the International Organisation for Vacuum Science and Technology.

The board of Livingston Laboratories has been enlarged and now includes F. Livingston Hogg as chairman and joint managing director, D. C. Rennie (joint managing director), M. R. Hogg, H. Sellers, S. W. Urry and F. R. G. Webb.

OUR AUTHORS

Richard C. Foss, B.Sc., Grad.I.E.E., joint author of the article on multivibrator design in this issue, joined E.M.I. Electronics on leaving school in 1952. During four years' training he spent two years working on digital computers. He studied at Southall Technical College and won an I.E.E. prize and a Technical State Scholarship, going to King's College, Newcastle-upon-Tyne, in the University of Durham, where in 1959 he graduated with first class honours in electronics. He is now carrying on research on second-harmonic magnetic modulators and some applications using ferrites, having been awarded the Oliver Lodge Scholarship of the I.E.E. (made honorary by the financial support of E.M.I. Electronics). His co-author, Malcolm F. Sizmur, B.Sc., also joined E.M.I. Electronics in 1952. He took his H.N.C. at Slough Technical College and won an I.E.E. prize and Technical State Scholarship. He spent two years in the digital computer division of the company and he too went to King's College, Newcastle-uponTyne, where he obtained a general degree in electrical engineering.
E. Jeffery, A.M.I.E.E., the first part of whose article on a low-cost stereo amplifier appears in this issue, has been an engineering superintendent at the Bracknell Division of the Sperry Gyroscope Co. since 1956. He entered the Post Office Engineering Dept. in 1936 and during the war was an officer instructor at the Army Radio School at Petersham. At the end of the war he took a regular commission in R.E.M.E. and was for some years Major Chief Instructor (first in telecommunications and later in radar and control equipment) at the R.E.M.E. Training Centre, Arborfield, Berks. He was at one time in charge of the electronics branch of R.E.M.E. Base Workshops, Singapore. After resigning from R.E.M.E. he was technical executive to Modern Telephones Lid. until joining Sperry. His present article derives from his personal interests and is not related to his work at Sperry.

Arthur C. Gee, who reviews on page 231 the growing interest among amateurs in the use of teleprinters, is a doctor by profession and, "believing that hobbies are essential for the well-being of mankind," has been a radio amateur for many years. Dr. Gee is chairman of the Radio Amateur Emergency Network committee of the R.S.G.B.

Fifty Years' Research in

RADIO WAVE PROPAGATION

By R. L. SMITH-ROSE,* c.b.E., d.Sc., F.c.g.I., f.I.R.E., m.I.E.E.

WHILE in 1911 great achievements had been attained in the practical developments of wireless telegraphy, there was little understanding of the manner in which the electromagnetic or radio waves involved travelled over the earth's surface; and particularly as to how it came about that these waves, which normally travel in straight lines, could bend round the spherical earth.

This was brought out very clearly in a lecture given by G. Marconi before the Royal Institution on 2nd June, 1911. The following extract is taken from the report of this lecture in the July, 1911, issue of the Marconigraph, a journal which was incorporated in the Wireless World less than two years later (April, 1913).
"Although we have-or believe we have-all the data necessary for the satisfactory production and reception of electric waves, we are yet far from possessing any very exact knowiedge concerning the conditions governing the transmission of these waves through spaceespecially over what may be termed long distances. Although it is now easy to design, construct and operate stations capable of satisfactory commercial working over distances up to 2,500 miles, no clear explanation has yet been given of many absolutely authenticated facts concerning these waves."
Later on in the same lecture, Marconi said:
"Although the mathematical theory of electric wave propagation through space was worked out by Clerk Maxwell more than fifty years ago, and notwithstanding all the experimental evidence obtained in laboratories concerning these waves, yet so far we understand but incompletely the true fundamental principles concerning the manner of propagation of the waves on which wireless telegraph transmission is based."
Such statements, based on experimental measurements, aroused great interest since it had hitherto been considered that the electromagnetic waves involved travelled over the surface of the earth. The attenuation of the waves was less over sea than over land owing to the much greater electrical conductivity of salt water. W. Duddell and J. E. Taylor had shown in 1905 that for distances up to about 60 miles, the signal strength of radio waves was nearly inversely proportional to the distance between transmitter and receiver. But for distances beyond 100 or 200 miles, it was found by other investigators that signal strength decreased more rapidly; and L. W. Austin and L. Cohen obtained better agreement between calculated and measured signal strength by adding an exponential factor, involving both distance and wavelength, to the inverse distance relationship. Although this "Austin-Cohen formula" was used for several years by radio design engineers as a convenient practical guide, it was soon found to have serious limitations. The most important of

[^3]these was the discovery that at distances greater than a few hundred miles, the strength of received signals varied from day to night: for the wavelengths and conditions then in use, the signal strength was usually greater, but more variable, by night than by day.

The first systematic discussion of these phenomena is also recorded in the issues of the Marconigraph for September to November, 1912, particularly by Drs. W. H. Eccles and J. A. Fleming, both of whom were closely associated with Marconi in his pioneer development of wircless communication. What was termed "The Effect of Daylight upon Radiotelegraphic Waves" became an active subject of discussion; and H. J. Round was the leading Marconi engineer who, with K. W. Tremellen, made many systematic measurements of the changes in signal strength over short and long distances due to the passage of the sunrise and sunset boundaries across the path. (See Fig. 1.)

At the 1912 Dundee meeting of the British Association Professor Fleming opened a discussion on the subject of "Unsolved Problems of Wireless Telegraphy," which was published in the Marconigraph for October, 1912. From the theoretical contributions made by Professors J. W. Nicholson and A. Somerfield, it became clear that diffraction alone could not account for the transmission of waves round the surface of the earth to the extent that had

Fig. I. Measurements of strength of signals and atmospheric noise made at Chelmsford in July 1911. (a) The upper curves relate to the reception of signals from Clifden and Glace Bay. (b) Observations of the number of atmospherics per minute which produced peak voltages of $3(L), 6(M)$ and $12(N)$ respectively. Note the effect of day and night conditions on both signals and atmospherics.
already been demonstrated. Having regard to the long waves used, however, 6 km or more, and the difference in conductivity between land and sea, it was still necessary to consider the ground wave propagation phenomena up to moderate distances.

It was in the course of this discussion that the effect of sunlight on the propagation of radio waves was emphasized by Dr. Eccles; and he described in some detail his study of the possibilities of an ionized layer in the atmosphere acting as a reflector of radio waves as first suggested by Oliver Heaviside in 1900. With a further contribution from Professor A. E. Kennelly at the British Association discussion, the foundations were laid of an understanding of the characteristics of an ionospheric shell surrounding the earth and which, subject to variations in time and place due to the influence of solar radiation, could reflect upgoing radio waves back towards the earth's surface.

International Collaboration

It was clear from this meeting (in 1912) that progress in investigating the complex phenomena involved could best be achieved by forming a committee or similar body comprising both theoretical and practical workers in the subject. It is therefore significant that in the following year a meeting was held in Brussels to discuss the formation of an international committee to organize and conduct scientific experiments in wireless telegraphy. A reunion was held in Brussels in April, 1914, at which a programme of scientific measurements was drawn up and discussed in some detail. This included observations of the variations in signal strength received in different directions and at various distances from the transmitter; and also simultaneous measurements of the strength of atmospheric disturbances in different places.

This body became the International Scientific Radio Union (U.R.S.I.), which held its first meeting in Brussels in 1922, and its XIIIth General Assembly† in London in September, 1960. During its nearly forty years of existence, the work of U.R.S.I. has covered a range of scientific subjects, such as standards of radio measurements and their application to wave propagation and radio noise, for the study of which on a world-wide scale, international co-operation is not only a great advantage, but indeed a necessity. In addition to pursuing scientific research on radio matters, U.R.S.I. has, for the past thirty years or more, collaborated with the International Radio Consultative Committee (C.C.I.R.) on many problems of mutual interest, particularly those concerned with the design and operation of long-distance communication circuits. It is natural to find that this co-operation is actively continuing in connection with the more recent problems of radio astronomy and communication to and from vehicles in space.

The lonosphere and Round-the-world Transmission

It was not until 1925 that the first experiments which demonstrated the existence of the KennellyHeaviside layer were made by Sir Edward Appleton and his co-workers using the Bournemouth trans-
t A brief account of this meeting was given in Wireless World, January 1961, p. 10.

Fig. 2. (a) Paths of direct and indirect waves from transmitter to receiver; and the measured-or virtual-height of reflection of the indirect wave. (b) Interference fringes in received signal due to ground and ionospheric waves, as the frequency of the transmitter is varied over a small range. The ratio of the number of signal maxima to the change of frequency gives the difference in time of arrival of the two signals, and so the height of reflection of the indirect wave. (c) Echoes of transmitted pulses after reflection from the lower (E) and upper (F) ionized regions: and also of an echo of a pulse which has been twice reflected from F with an intermediate reflection at the ground.
mitter of the B.B.C. By changing the frequency of this station, the strength of the received signal was found to vary, indicating an interference pattern such as would be produced by two sets of arriving waves, one travelling along the ground and another coming down after reflection at the ionized layer. (See Fig. 2 (a) and (b).) Confirmatory evidence was found by comparing the signal variations obtained when receiving on a loop and vertical aerial. An alternative method was used by R. L. Smith-Rose and R. H. Barfield, who compared the strength of signal from a transmitting station received simultaneously on a loop and vertical aerial. All these experiments indicated that the radio waves usedabout 300 m in wavelength-were reflected from an ionized layer at a height of about 100 km . Almost concurrently with this work G. Breit and M. A. Tuve used a pulse technique to measure directly the time interval between the arrival of the pulses travelling along the ground and those which arrived later after travelling up to the ionized layer and down to the receiving station. (See Fig. 2 (c).) A year or two later, by using shorter wavelengths, Appleton and his co-workers showed that at certain times the radio waves could penetrate the first reflecting (or E) region and be reflected from an upper region, termed F, at a height of some 400 or 500 km .

These pioneer experiments and discoveries provided, first the complete explanation of the manner in which radio waves can travel right round the earth by successive reflections between the earth and the upper atmosphere; and, secondly, the basis of the subsequent exploration of the physical characteristics of our upper atmosphere which has been in progress for the past thirty years or more. Ionospheric observatories have come into operation for measuring the height and density of ionization of the various reflecting regions, and the manner in which these change from day to night and from summer to winter. The installation of such observatories has gradually spread throughout the world, to over 250 which were in operation on a regular and systematic basis during the International Geophysical Year of 1957-58.

As a result of the international collaboration obtained under the auspices of U.R.S.I. observations made in different parts of the world are freely exchanged, so that national laboratories can prepare charts showing the state of ionization in the upper atmosphere all over the world. Based on data accumulated in this way, over one or more solar cycles of 11 years duration, accurate forecasts can now be made of the ionospheric conditions to be expected up to six months in advance.

Concurrently with this observatory work on conditions at vertical incidence, continuous studies have been made on the transmission of radio waves over oblique incidence paths at distances from a few hundred up to several thousand miles between sending and receiving stations. In this way, a detailed and fairly accurate knowledge has become available for use in the design and operation of long-distance radio communication services throughout the world. The frequencies or wavelengths to be used for such services can be selected in advance according to the time and geographical location of operation, and systematic planning can take place to deal with the diurnal fluctuations in ionospheric conditions as well as with the longer-term variations which follow the solar cycle.

Radar Technique and Back-scatter

It is well known that the use of pulse transmission and receiving technique formed the basis of the development of radar for detecting and locating ships, aircraft and geographical features. It seemed only just, therefore, that research workers concerned with the exploration of the ionosphere should take advantage of advanced and powerful radar techniques for their continued investigations. Following earlier work by T. L. Eckersley on the scattering -as distinct from reflection-of radio waves from ionospheric clouds or regions, E. D. R. Shearman used a high-power radar transmitter to direct a beam of waves horizontally. The waves after reflection from the ionosphere reached the earth's surface at some one or two thousand miles from the transmitter. Some of the energy of the waves was scattered backwards, and after a second reflection at the ionosphere was detected at a receiver alongside or incorporated with the transmitter. From a measurement of the time taken for the pulses of radio waves to travel to and from the sending station, the path of the waves was determined. Furthermore observations made on various frequencies soon showed the characteristics of the ionosphere at the distant
reflecting region. By suitably rotating the aerial system, the beam of waves was made to scan the horizon, and in this way the conditions in the ionosphere all round the observing station could be explored at ranges up to 7,000 miles or so. This technique has proved to be a powerful tool not only for the scientist investigating the ionosphere all round him, but it also enables the radio operator of a long-distance circuit to determine from time to time the best and most suitable frequencies to use in the prevailing circumstances.

Propagation at V.H.F.

In general, radio communication services which make use of ionospheric propagation are confined to frequencies below $30 \mathrm{Mc} / \mathrm{s}$ (wavelengths above 10 metres): although it has long been known that under appropriate conditions the density of ionization in the ionosphere is at times sufficient to support the transmission of radio waves within the band 30 to $50 \mathrm{Mc} / \mathrm{s}$. But experience has shown that this type of transmission is comparatively rare and inefficient with normal transmitter powers and receiver sensitivities. To obtain anything approaching a regular service, it is necessary to use the scattering of the waves at the ionosphere which, on account of the weakness of the resulting signals, entails the use of very high power and concentrated beams of radiation. This technique is, however, used in certain "ionospheric scatter" services where the utmost reliability is necessary at all times, irrespective of economy and efficiency.
The main use of the v.h.f. band between 30 and $300 \mathrm{Mc} / \mathrm{s}$ (wavelengths 1 to 10 m) is, however, for the localized services involved in broadcasting, television, police and private mobile services, and certain types of beacon and navigational aids mainly perhaps, for aircraft services. These services as used today, are based on the knowledge obtained in research on the propagation of such waves over the past thirty years or so. The subject here is broadly divisible into two parts. First, a study of the electrical characteristics and the physical features of thz earth's surface, which mainly determine the transmission of the waves to short distances broadly within the horizon as seen from the sending aerial. Secondly, and particularly at the longer distances beyond the horizon, the strength of the waves arriving at the receiver may be affected to a varying extent by the bending of the waves due to the refractive index gradient in the atmosphere. This refractive index gradient is determined by the temperature, pressure, and more especially, the humidity of the atmosphere, and so the extent to which the waves are bent is very dependent on the weather conditions prevailing over the transmission path.

But considering the shorter-range phenomena first, in order to extend the horizon and so the service of a transmitting station, it is usual to elevate the aerial of the latter as much as possible. It then becomes clear that there are two paths by which the waves can travel towards the receiver. One of these is directly through the air from transmitting to receiving aerial: while the other path involves reflection from the ground, the inverse of reflection from the upper atmosphere. The resulting signal at the receiver is the combination of these two sets of waves, which are usually out-of-phase in practice, and result in the signal strength being inversely propor-
tional to the square of the distance between sending and receiving stations. There are, of course, wide variations in practice from this simple law, mainly due to the effect of obstacles such as hills and buildings in the path of the ground reflected waves.
Next, as already suggested, the direct waves which travel through the air may be subject to bending which may result in their being propagated appreciably beyond the horizon. As a result the "service area " of such a transmitting station is increased beyond the limits of the optical horizon, albeit the extended range is variable and dependent upon the prevailing atmospheric conditions. For practical purposes, in such cases as broadcasting and television services, measurements are made over long periods of time and in various parts of the world to obtain sufficient data to express the results on a statistical basis. An example of the application of this type of study is shown in Fig. 3 which is reproduced from a recommendation of the C.C.I.R. in 1959, setting out the field strengths likely to be received at various distances beyond the horizon for typical proportions of the time of observation. Such information is of direct importance to designers of broadcasting services, and assists them to determine the minimum separation in distance necessary between stations operating in the same frequency channel to secure comparative freedom from any specified degree of mutual interference.

Future Research in Radio Wave Propagation

A general view of the trend of future scientific research in this subject of radio wave propagation can be obtained from the conclusions and recommendations of the various Commissions of U.R.S.I. concerned with this subject. In the first place interest in the propagation of waves through the lower atmosphere is not confined to those concerned with communications. As Commission I indicated, the measurement of standards of frequency and time has become so precise that it is very important to know what changes in phase of both low and very low frequency waves occur over various transmission paths. Furthermore, since both light and radio waves are used in geodetic surveying, it is important to standardize the formulx used for calculating the re-

Fig. 3. Frequency range: 40 to $600 \mathrm{Mc} / \mathrm{s}$. Values of fieldstrength for 50% of locations for 1 kW radiated power by a half-wave dipole with vertical or horizontal polarization exceeded for $1 \%, 10 \%$, and 50% of the time. (The dashed portions of the curves are less reliable than the portions shown .n full lines.)
fractive index of the air at the working frequencies. Commission II, dealing with propagation through the troposphere, pointed out that, while further quantitative studies were required to elucidate the statistical facts of propagation beyond the horizon, it was also important to investigate the fine structure of irregularities in the atmosphere. The latter become of increasing importance in connection with the absorption and scattering in the atmosphere at centimetre and millimetre wavelengths. Also, since many of the frequencies likely to be used in space research are susceptible to tropospheric influences, the importance of the effects of these should be examined.

With regard to the propagation of waves through the ionosphere, a subject concern to Commission III, the great co-operative work carried out during the International Geophysical Year (1957-58) has been described in previous publications.§ At last year's General Assembly of U.R.S.I. it was noted that several scientific unions, including the International Committee on Geophysics, were organizing a Sunspor Minimum Programme to be conducted during 1964-65 as a companion enterprise to the I.G.Y. which, as is well known, took place during a period of maximum solar activity. The results of this international effort should do much to elucidate some of the outstanding features in our knowledge of the ionosphere, which by 1965 will have been the subject of study by radio scientists for over forty years. By this date also, it may be anticipated that the use of rockets and artificial earth satellites will also have appreciably added to our knowledge of the upper reaches of the ionosphere, which it has so far been difficult to explore by radio waves sent up from ground stations.

Fifty years ago, Marconi engineers and others were recording the number of atmospherics-or X's as they were then termed-which produced a certain voltage across the receiver terminals (see Fig. 1). This study of "Radio Noise of Terrestrial Origin"to use the present title of Commission IV of U.R.S.I. -has continued ever since on a continually increasing scale all over the world. The number and variety of the various types of noise which produce an audible or detectable response on modern sensitive receivers is now so great that it was decided at the recent General Assembly of U.R.S.I. to draw up an agreed terminology of the subject. Terrestrial Noise comprises those natural electromagnetic disturbances which originate in the earth's atmosphere, and there appear to be four recognizable classes of such noise:
(i) Atmospheric noise which originates in natural electrical discharges below the ionosphere, and which travels to the receiver by the normal paths of propagation between the earth and the lower boundary of the ionosphere.
(ii) Ionospheric noise which originates in the ionosphere and is usually associated with magnetic disturbances.
(iii) Whistlers which are a form of terrestrial noise, originating in electrical discharges in the lower atmosphere, and which are propagated through the ionosphere along dispersive paths. The whister type of noise when heard at a receiver is characterized by one or more components of the nature of gliding tones, which descend in frequency through the audible range in a period ranging from a fraction of a second to several seconds.

[^4](iv) Finally, composite noises are recognized as having the combined characteristics of whistlers and ionospheric noise. Such "interactions," as they are termed, may be initiated by lightning discharges and are often associated with magnetic disturbances.
The continued study of this subject is helping to clucidate some outstanding problems on the nature of the earth's magnetism as well as on the physical characteristics of the upper atmosphere.
In this article, an attempt has been made to describe briefly some of the advances made, during
the past fifty years, in the study of the propagation of radio waves around our earth and also through its atmosphere.

Much has been learnt and understood about the physical processes and conditions involved: much more remains to be discovered; and interest in future research will be greatly quickened by the possibilities of the new tools available to the radio scientist in the form of rockets and artificial satellites and the associated measuring techniques and instruments.

The Victorion origin of the wireless industry in this country is opporent from this photogroph token in the Marconi works over 60 years ago.

THE history of the Marconi company, and therefore that of the radio industry, started with the formation on July 20th 1897 of the Wireless Telegraph and Signal Company (soon afterwards renamed Marconi's Wireless Telegraph Company). Two years later the company established its, first factory in Chelmsford, Essex. Since 1946 Marceni's W/T Company, together with its subsidiaries and associated companies has been part of the English Electric Group.

As will be seen from the following list the group,

English Electric Co. Led.

D. Napier \& Son and its subsidiaries

Marconi's Wireless Telegraph Co and its overseas subsidiaries
Marconi Inserumencs Led
Marconi International Code Co.
Marconi International Marine Communication Co. and subsid-aries
Marconi Radio Sounding Device Co.
Marconi Television Co.
Radio Communication Co.
Scanners
Vulcan Foundry
Robert Stephenson \& Hawchorns Led
English Electric Valve Co.
English Electric Export and Trading Co
Canadian Marconi Co.
John Inglis Co., Toronto.
English Electric Canada
English Electric Company of Souch Africa (Pty.) Led.
English Electric Company (Central Africa) Led.
English Electric de Venezuela
English Electric Company of India (Pcy.) Led.
English Electric Company of Australia Pcy. Led.
English Electric Company of New Zealand Led.
English Electric Espanola
English Electrica de Portugal
English Electric Marconi Argentina
Associated Transistors Led.
British Aircraft Corporation and its subsidiaries
English Electric, Babcock \& Wilcox and Taylor Woodrow Atomic Power Construction Co.
Kingsway Housing Associacion
Power Traction Finance Co.
of which Lord Nelson of Stafford is chairman, now comprises over 30 allied and associated companies. It employs 84,000 people in its 24 principal works in this country and abroad. The group's interests are too diverse to be covered adequately in a short survey, but they range from aviation to aromic power plant, electrical generation to electric cookers, traction equipment to transistors, marine engines to marine radio, transmitters to turbines, and klystrons to computers. Its radio and electronics interests are not, however, concentrated in the Marconi section of the group, for the English Electric Company itself has been in the forefront of the development of electronic computers and, jointly with the Automatic Telephone and Electric Company, operates Associated Transistors Ltd., manufacturers of semiconductors. Also the English Electric Valve Company produces the "glassware" which is the very heart of the transmitters, radars, television cameras, etc., produced by Marconi's.
The English Electric group profit for 1960 of £3,142,580 (after providing nearly £3M for taxation) is slightly above the previous year's figure. The group has an issued share capital of nearly $£ 33 \mathrm{M}$, fixed assets of nearly $£ 44 \mathrm{M}$ and current assets of $£ 48 \mathrm{M}$.

Reactance Calculator

A SLIDE-RULE Calculator measuring $8 \frac{3}{3} \times 3 \frac{1}{2}$ in providing a simplified means of calculating resonance frequency of tuned circuits, reactance of inductors and capacitors, Q of coils and dissipation factor, all over a wide range of values, has been introduced by Shure Brothers Inc. of Evanston, Illinois, U.S.A. It is, however, obtainable in the IJ.K. from J. W. Maunder, 22 Orchard Street, Londisa, W.l, at the modest price of 12 s 6 d .

NEW ELECTRONIC EQUIPMENT AND ACCESSORIES

Fast Pulse Generator

WITH the American Du Mont Type 404 pulse generator the pulse width can be continuously varied from 0.05 to $100 \mu \mathrm{sec}$ and the pulse repetition rate can be continuously varied from as high as 100,000 down to 10 pulses $/ \mathrm{sec}$ with internal triggering or, with externa triggering, even down to a single pulse. The maximum allowable duty cycle is 10%, and a warning cut-out prevents higher duty cycle pulse trains from being generated. The pulse rise and fall times are at most 0.02 and $0.025 \mu \mathrm{sec}$ respectively and the overshoot less

Du Mont Type 404 fast pulse generator (Aveley Electric).
than 3%. The maximum peak pulse output is $50 \mathrm{~V} \pm 10 \%$ (into 50:?) and this can be attenuated in $\frac{1}{2} \mathrm{~dB}$ steps up to 59.5 dB to an accuracy of $\pm 3 \%$. The leading pulse can be delayed from 3 to $125 \mu \mathrm{sec}$ relative to an external 2 V trigger with a jitter of less than $4 \mathrm{~m} \mu \mathrm{sec}+0.1^{\circ}$ 。 of the delay time. This generator costs $£ 280$ and is imported into this country by Aveley Electric Ltd., of Ayron Road, Aveley Industrial Estate, South Ockendon, Essex.

Vacuum Switch

SHOWN in the illustration is the B. \& R. Relays new Type 85 vacuum switch, a moderate-sized, single-pole make and break unit capable of switching loads of up to 2 kW at voltages up to 3 kV . The contacts are enclosed in an evacuated glass capsule fitted with metal end-caps and these provide the external electrical connections.

It is mechanically operated by means of the small rod seen projecting from the larger-diameter end-cap. This actuating rod is attached to a flexible diaphragm to which is fixed also the internal moving switch contact.
Although rated for relatively heavy loads a switch of this kind has many applications in radio and electronic equipments, especially where only very infrequent operation is required or highly inductive loads have to be switched. As the contacts are in vacuum they are protected against all forms of contamination.
The switch capsule is available separately as Type 183, and enclosed in the plastic housing shown in the illustration it becomes Type 85. Up to four Type 85 switches may be fitted to either an a.c. or a d.c. relay which will provide change-over or make and break facilities as required. These relays (Type C12 d.c., or C62 a.c. operated) consume about 6 W (20VA a.c.) and are fitted with coils of 12 k ? nominal resistance. Further details can be obtained from B. \& R. Relays Lid., Temple Fields, Harlow, Essex.

Wide Range Communications Receiver

A COMPLETELY new communications receiver, the Type S1S-1, offering extreme frequency accuracy and operational simplicity has been introduced by the Collins Radio Company. Continuous coverage of the 2 to $30 \mathrm{Mc} / \mathrm{s}$ range is provided in $1-\mathrm{Mc} / \mathrm{s}$ bands with $1-\mathrm{kc} / \mathrm{s}$ increments on the main tuning dial. Additional coverage from 0.2 to $2.0 \mathrm{Mc} / \mathrm{s}$ permits broadcast monitoring or laboratory use. Reception of upper sideband, lower sideband, a.m. or c.w. signals is provided at any frequency within the tuning range.
A.G.C. characteristics and a separate product detector contribute to optimum s.s.b. performance. A rejection notch tuning feature provides at least 40 dB attenuation of unwanted signals and a level meter may be switched to indicate either r.f. signal or audio output levels. Turret construction of the r.f. section results in increased efficiency and the R.F. gain may be remotely controlled, if required, by simplexing on the audio output line.

The 51S-1 receiver is fitted with a gray simulated leather panel and housed in a gray enamel cabinet. As the illustration shows the set not only has an attractive appearance but the controls are neatly and conveniently arranged. Operation is from either a 115 or $230 \mathrm{~V}, 50$ to $400 \mathrm{c} / \mathrm{s}$ power supply. A 28 V , d.c. model is also available. The receiver may be mounted in the standard 19 in rack and a special fittings kit is available for this purpose.

It is understood that the price of the 51S-1 receiver

B. \& R. Relays vacuum switch withdrawn from its plastic housing.

Collins new communication receiver, Type 515-1 which has a very comprehensive specification.
is of the order of 1,920 dollars f.o.b. U.S.A. Further details can be obtained from Collins Radio Co. of Fngland Lid., 242 London Road, Staines, Middx.

Low Torque Precision Potentiometer

SPECIAL features of a new precision wire-wound potentiometer introduced recently by Miles Electronics are: low rotational torque, not exceeding $7 \mathrm{gm} / \mathrm{cm}$ for any resistance value; multi-contact wiper assembly of

Miles Electronics precision potentiometer.
precious metal alloy; spindle carried in a miniature ballrace; intermediate tappings up to 33 in number and ganging of up to 6 units normally, and to 8 if specially required.

Resistance range is $0.5 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$ in 8 standard values with a normal tolerance of 5%, but 1% can be supplied if necessary. The rating is 4.5 W and the dimensions are 2_{35}^{5} in diameter \times lin deep.

Linear resistance elements are fitted wound normally with enamelled nickel-chrome or cupreous-nickel wire, but windings of precious alloy wire, such as silverpalladium, can be fitted if specially required.

Further details can be obtained from Miles Electronics Litd., Shoreham Airport, Sussex.

Sound Spectrometer

WITH the new Advance Type SPM1 battery sound spectrometer sounds at frequencies between 20 and $12,000 \mathrm{c} / \mathrm{s}$ and at levels between 20 and 150 dB (referred to 2×10^{-1} dynes $/ \mathrm{cm}^{2}$) can have their levels measured and can also be analysed by making use of the eight alternative filters provided. These filters consist of a low-pass filter covering up to $90 \mathrm{c} / \mathrm{s}$, six band-pass octave filters covering in all from $90 \mathrm{c} / \mathrm{s}$ to $5,600 \mathrm{c} / \mathrm{s}$, and a high-pass filter covering upwards from $5,600 \mathrm{c} / \mathrm{s}$. The attenuations produced by these filters outside their nominal pass bands are, for the low-pass filter, 40 dB at $450 \mathrm{c} / \mathrm{s}$; for the band-pass filters, 30 dB at one half and twice the lower and upper cut-off frequencies respectively and 50 dB at one quarter of and four times these

Advance battery sound spectrometer Type SPMI with cover remaved.
frequencies (except for the lowest octave ($90-175 \mathrm{c} / \mathrm{s}$) filter for which these attenuations are somewhat less); and, for the high-pass filter, at least 40 dB at $1,200 \mathrm{c} / \mathrm{s}$. This spectrometer costs $£ 210$ and is manufactured by Advance Components Ltd., of Roebuck Road, Hainault. Essex.

Transistor Analyser

RAPID and convenient measurement of many of the parameters of both p.n.p. and n.p.n. transistors is made possible by the Microcell Transistor Analyser type 440. The measurements are carried out in common-emitter configuration, and include current-gain, cut-off frequency, leakage current and turnover voltage. Diode characteristics may also be determined.

The signal source is a Wien-bridge oscillator which covers the range $1 \mathrm{kc} / \mathrm{s}-10 \mathrm{Mc} / \mathrm{s}$, and which is amplitude stabilized to within $\pm 1.5 \mathrm{~dB}$. Current gain up to a maximum of 200 is measured by a differential-input, wide band valve voltmeter, while collector voltage and

$$
\text { Microcell Transistor Analyser Type } 440 .
$$

current are continuously adjustable up to 100 V and 3 A respectively, and are monitored by edge reading meters. External adaptors may be used to determine " h " parameters.

The instrument is obtainable from Microcell Electionics Division, Blackwater, Camberley, Surrey.

Tape Revolution Counter

SUITABLE for use with Scotch Boy $5 \frac{3}{3}$ in and 7 in and Emitape 7 in reels, the "Call-Boy" revolution counter is attached to the supply spool by a three-pronged rubber clip. The three-digit resettable counter is driven

Colton "Call Boy" tape revolution counter.

from this clip via a flexible shaft, and can be attached to any smooth surface by means of a suction cup. The "Call-Boy" costs 42 s 6 d , and is manufactured by Colton \& Co. (Lapidaries) Ltd., of The Crescent, Wimbledon, London, S.W.19.

Radio Star Survey recently reported by Ryle showed that, per unit angular area of sky, the number of radio stars increases rapidly as their intensity decreases. Even when the many possible modifying factors are allowed for, this result corresponds to an increase in the density of radio sources with increasing distance. Bearing in mind the time taken for the radio noise to travel from its source, this result thus also corresponds to an increase in the density of radio sources at increasing times in the past. It is this final deduction which appears to support theories in which the mean density of matter in the universe decreases with time (evolutionary theories) rather than theories in which this density remains constant (steady-state theories). (In steady-state theories, in order to nullify the decrease in density which would otherwise be produced by the expansion of the universe, continuous creation of matter must be postulated.) Most of the ratio sources are vastly more intense than their optical counterparts and so can be observed to far greater distances. The increase in density in fact only becomes noticeable beyond the limit reached by presentday optical telescopes.
C.W. Optical Maser has been recently developed at the Bell Telephone Laboratories. Unlike the pulsed optical maser which was also recently developed by Bell and which was described in the Technical Notebook section of our December 1960 issue, the new maser uses a gas (a mixture of helium and neon) rather than a solid (ruby) as its active material. An ordinary low-power ($\approx 10 \mathrm{~W}$) electrical discharge is used to excite the helium atoms. These atoms collide with the neon atoms and in the process excite them in
turn to one of four upper energy levels. Transitions of the neon atoms to one of ten intermediate energy levels can then be stimulated, continuous radiation (at a level of the order of 0.01 W) being emitted as the transitions take place. Thirty different transitions are in fact possible, so that there are thirty possible maser emission wavelengths. These all lie in the infra-red between 9,000 and $17,000 \mathrm{~A}$: operation at five of them (between 11,000 and $12,000.1$) has at present been observed. As in the Bell ruby optical maser, semireflecting accurately-parallel endplates are used to reflect the stimulated radiation back and forth along the gas-filled tube and thus to increase its intensity. Some of the stimulated radiation passes through the end plates forming a beam whose spread is less than a minute of arc in the case of the new gas maser. The spectral line width of this new maser is more than one hundred thousand times narrower than that of the ruby maser, and more than one thousand times narrower even than the narrowest hitherto-obtainab:e optical lines. This very narrow line width has already permitted the first observation of difference signals at radio frequencies between two optical lines. Broadband modulation of the beam at frequencies up to $60 \mathrm{kc} / \mathrm{s}$ has also been accomplished using a Kerr cell.
Piezoelectric Ignition is used in the U.S. Clinton industrial engine shown by Trojan at the recent Smithfield Show. This ignition system utilizes the voltage developed by compressing a piezoelectric material-in this case PZT (the trade name for the lead zirconate titanate group of ceramics). In the ignition unit the PZT is enclosed in a plastic container which is squeezed by a lever mechanism driven off the crankshaft or camshaft. The generated voltage is fed to the sparking plug via a timing switch which can be operated from the flywheel. Thus no capacitor or spark coil is required. With this ignition system the voltage generated is nearly independent of the engine speed so that starting is made easier. The voltage rate of rise can also be made fast enough (\approx $10^{5} \mathrm{~V} / \mu \mathrm{sec}$) to fire sparking plugs which seem to be fouled when used with ordinary ignition systems.

These units can be made very small (occupying only $3 \frac{1}{2} \mathrm{cu}$ in) and light (weighing only $80 z$). In this country, PZT is manufactured under licence, by Brush.)
Very-Low Distortion single-ended push-pull audio output stage is described by C. T. Murray in the March 1960 issue of Proc.I.R.E. Australia. The basic circuit is shown in the diagram. From this it can be seen that, whereas one of the two output valves, V1, is fed directly

from the input, the other output valve, V2, is fed from an amplifier, V3, which is itself fed both from the output and from the input. The low distortion results from the fact that any distortion in the output is amplified and phase reversed by V3, and then fed back to V2 so as to oppose the distortion produced in the load by V1. V3 must be fed with the correct fraction (determined by \mathbf{R}_{1}, $\mathbf{R}_{2}, P_{1}, P_{z}$) of the input and output voltages to produce a signal input to V2 equal to that to V1 and thus to correctly balance the push-pull stage. The negative supply is used to back off the positive voltage at the cathode of V2 and thus produce the correct voltage at the grid of V3. The dotted capacitive "bootstrap" connection shown both ensures that V3 can provide sufficient drive for V2 and effectively increases the gain of V3 and thus still further reduces the distortion. With this type of circuit at full output a total harmonic distortion of only 0.02% was achieved without applying any overall feedback.

Salon International des Composants Electronique, Tub Paris, 17-21 February, 1961

1LTHOUGH this annual exhibition has for the past four years been open to foreign exhibitors it still retains much of the character of the old French Components Show which started in 1934. Of the total of 435 stands about three-quarters were taken by French exhibitors, the remaining quarter by firms from eight other countries among which Germany (28), United States (27) and Great Britain (21) predominated. As in recent years the décor of the stands was uniform and the width of the allées ample, allowing those who wished, to saunter without impeding the movement of any with more urgent business (e.g., journalists?). To look at every stand it was necessary to walk at least a mile-two if both sides of each avenue were examined in detail.

Electronic accessories and measuring instruments are admitted, but
the show remains predominantly one of pièces détachées. The fact that most of the products had been seen in previous years can be taken as indicating their general acceptability, but there were enough nouveautés (so marked by stick-on labels) to keep interest alive. A wide range of very small components for printed wiring and of tuner, i.f. and a.f. "modules" for incorporation in small portables were shown by Orega (a subsidiary of C.S.F.). Both Orega and S.E.C.R.E. (Soc. d'Etudes et de Constructions Electroniques) were showing fixed inductances, with end wires resembling fixed resistors, for use in filters and similar applications. S.E.C.R.E. here also introduced, in addition to their lumped-constant delay lines, a range of distributed-constant lines in moulded form with end wires for suspension in circuit wiring.

For test and measurement a num-

Right: Encopsuloted fixed inductors (Orego).

Below: Pair of i.f. coupling transformers for transistor printed circuits. $Q>160$; dimensions $20 \times 13 \times 13 \mathrm{~mm}$ (Orega).

ber of new signal sources made their first appearance. Metrix were showing a response curve tracer for v.h.f. covering a frequency range of 5 to $220 \mathrm{Mc} / \mathrm{s}$ and comprising an assembly of wobbulator, marker and c.r. oscilloscope units which can be used separately. Férisol have added two new high-level (40 mW) oscillators to their range of microwave signal generators: Type OS501 (4 to $8 \mathrm{kMc} / \mathrm{s}$) and Type

OS601 (7 to $11 \mathrm{kMc} / \mathrm{s}$). A special stabilized power supply (SCF 300) is available for these klystron oscillators. Solartron were showing their decade pulse generator (GO1005) which has a p.r.f. range of $10 \mathrm{c} / \mathrm{s}$ to $1 \mathrm{Mc} / \mathrm{s}$ and pulse width variable from $250 \mathrm{~m} \mu \mathrm{sec}$ to $100 \mathrm{msec} \pm 5 \%$. A lightweight transistor a.f. generator shown by S.E.C.R.E. working in conjunction with a transistor frequency meter with direct-reading, 6decade luminous display were recent additions to their range of measuring instruments. Quartz-controlled transistor oscillators with self-containcd $9-V$ battery in cylindrical cans 22 mm in diameter and from 600 to 100 mm high have been produced by Quartz et Electronique. Frequencies between $1 \mathrm{kc} / \mathrm{s}$ and $1 \mathrm{Mc} / \mathrm{s}$ are available and typical characteristics (for the $1 \mathrm{Mc} / \mathrm{s}$ oscillator) are: output 700 mV (impedance 1500Ω); distortion $<5 \%$; stability $18 \mathrm{c} / \mathrm{s}\left(-60^{\circ}\right.$ to $\left.+90^{\circ} \mathrm{C}\right)$.

Powers in excess of 5 mW at a frequency of $2.2 \mathrm{kMc} / \mathrm{s}$ are provided by an all-solid-state generator shown by Philco and developed in the Lansdale Division. Improvements in efficiency of up to two orders of magnitude, compared with klystrons, are claimed and the power supply is four 4 -volt mercury cells. The total volume of the equipment is about 100 cubic inches and the weight 4lb. A crystal-controlled $110 \mathrm{Mc} / \mathrm{s}$ oscillator (2N1158) is followed by a "field flow" (L5437) transistor amplifier which raises the signal level to 100 mW . This is then applied to a varactor (L4105) harmonic generator and the fourth harmonic selected. After passing through a bandpass filter the 440 Mc / s signal is applied to a further varactor (L4102) and the fifth harmonic ($2.2 \mathrm{kMc} / \mathrm{s}$) selected. It is claimed that the unit is particularly

Transistor a.f. generator and transistor frequency meter (0 to $1 \mathrm{Mc} / \mathrm{s}$) shown by S.E.C.R.E.

Test instrument for routine meosurement of carrier lifetime in semiconductors (J. L. Amiot).
suitable for airborne and space applications (rechargeable n:ckelcadmium batteries can be used if the duration- 100 hours-of the mercury batteries is inadequate). The frequency stability is suitable for a Doppler system local standard, and amplitude modulation can be applied through variation of the varactor bias.

Ribet-Desjardins were showing a new signal generator (428A) with a

Resbonse curve tracer for v.h.f. (Metrix).
constant-level output $\pm 2 \%$ over the frequency range of $10 \mathrm{Ckc} / \mathrm{s}$ to $30 \mathrm{Mc} / \mathrm{s}$ and a laboratory type wobbulator and osc.lloscope (411A) covering 0 to $320 \mathrm{Mc} / \mathrm{s}$ in three ranges. Modulation is $\pm 10 \mathrm{Mc} / \mathrm{s}$ for the middle range ($80-160 \mathrm{Mc} / \mathrm{s}$) and $\pm 20 \mathrm{Mc} / \mathrm{s}$ for the upper and lower ranges. Solartron were showing a neat double-beam oscilloscope (CD1016) for rack mounting, covering 0 to $5 \mathrm{Mc} / \mathrm{s}$ and also a portable double - beam oscilloscope (CD1C14). Another interesting Solartron portable instrument shown at this exhibition for the first time was a transistor direct-reading frequency and capacitance meter covering 0 to $10 \mathrm{k}=/ \mathrm{s}$ in seven ranges and 0 to $0.3 \mu \mathrm{~F}$ in six ranges.
Equipment for the routine testing of carrer lifetme in semiconductor specimens has bsen developed by J. L. Amiot. It makes use of the fact that intense illumination can be used to produce minority carriers. The

Above: Transistor noise level meter for hand or stand (L.E.A.).

Left: Type CD1016 doublebeam oscilloscope (Solartron).
specimen under test is placed over a hole in a horizontal shelf on the front of the instrument and connected in series with a resistance to a d.c. source. Light from a flash tube with a pulse duration of, typically, $10^{-7} \mathrm{sec}$ is concentrated by a mirror and lens system on the underside of the specimen. The output signal from the specimen triggers a sawtooth time base which runs until the signal falls to $1 / \mathrm{e}$ of its initial value, when the time-base voltage rise is stopped and the time-base returns to zero. The sawtooth maximum is read by a peak voltmeter which is calibrated to give direct readings of carrier lifetime.

Incidentally, a small portable flash stroboscope was chosen by Ferranti as an example of an application of their four-layer p-n-p-n switching diodes.

Sound level meters were shown by several firms. Many of these are transistor instruments, e.g., the "Minophon" pocket instrument made by the Swiss firm of Ing. Heinrich Spyri S.A. which measures only $125 \times 85 \times 40 \mathrm{~mm}$; and the Sonometre S.S.T. 1 made by Laboratoire ElectroAcoustique (LEA) which incorporates checking facilities for battery voltage and amplifier gain.
A "wireless" microphone demonstrated by Sennheiser made use of a transistor pocket f.m. transmitter work'ng on $35 \mathrm{Mc} / \mathrm{s}$ and was effective at considerable distances from the stand under adverse exhibition conditions, showing no signs of interference pick-up.

Sonocolor mounted an effective demonstration of magnetic recordings as revealed by the Bitter technique, of applying colloidal iron oxide and then viewing the patterns produced on the screen of a projection microscope.
Many interesting audio exhibits were seen, but as these were also shown at the Festival of Sound in the Palais d'Orsay in March they are described elsewhere in this issue.

Response Curves and Tone Quality

By M. G. SCROGGIE, b.Sc., M.I.E.E.

AMPLITUDE/FREQUENCY response curves have had their ups and downs, in more senses than one. Until about 1925 the reception of programmes by radio was considered so wonderful that it would have seemed churlish to criticize the quality of reproduction. Effort was still being concentrated mainly on the feat of being able to hear them at all. But as the art of amplification reached the stage of ensuring adequate volume, people began to get quality-conscious. Technical enthusiasts, then as now, were unimpressed by the inevitable slogans" Perfect Tone," "Reproduction Absolutely Indistinguishable from the Original Performance," etc. -and wanted scientific evidence. This first came in the form of amplitude/frequency response curves, hereinafter to be called just " response curves."

The typical a.f. amplifier of the period comprised two transformer-coupled stages (sometimes more than two!), the response curve of which consisted mainly of a fairly sharp peak somewhere in the range $1-3 \mathrm{kc} / \mathrm{s}$. Clearly such curves were commercially unpublishable, but may have had something to do with the rapidity with which amplifier design began to progress. What the amplifier was doing below $300 \mathrm{c} / \mathrm{s}$-or not doing, more likely-was at first concealed by the linear frequency scale (Fig. 1).

Fig. 1. Response curve of a single-stage transformercoupled amplifier doted 1925.

Ferranti deserve remembrance for their pioneering of level-response a.f. transformers and publication of logarithmic frequency curves (if they could be called curves in their case!) with which to commend them factually. Soon, however, the development of r.f. tetrodes was to render a.f. transformer coupling unnecessary, and resistance coupling gradually superseded it. By about 1927, a.f. amplifiers had so much improved that even overall response curves began to be worth advertising. And so the passion
for high-quality sound reproduction gained momentum. Loudspeakers were still extras, however, externally connected and not included in the price of a broadcast receiver, so naturally they did not come within the scope of the response curveswhich was fortunate for the advertisers.

For some years a response curve was almost the only available objective index of tone quality, and enthusiasts attached great importance to ironing out every fraction of a decibel departure from perfect horizontality, regardless of what the loudspeaker and listening room were doing-a striking example of straining at a gnat and swallowing a camel. Some attention was beginning to be given to non-linearity, but mainly among the technical avant-garde. Outstanding was an article by J. H. O. Harries ${ }^{1}$ in which he brought forward experimental evidence that the largely third-harmonic distortion generated by pentodes sounded worse than the same amount of triode distortion (mainly second-harmonic).

As the frequency range of a.f. amplifiers-and to a lesser degree other equipment such as pickups and loudspeakers-continued to be extended, a controversy arose as to the desirability or otherwise of such development, especially at the top end of the scale. Some held uncompromisingly that the higher the fi-er; others, while generally conceding this as an ideal, argued that noise, interference, and (dare one whisper it?) distortion made it expedient to cut off everything above, say, $5,000 \mathrm{c} / \mathrm{s}$. Capt. P. P. Eckersley had, as usual, a memorably picturesque way of putting it-"The wider the window is opened, the more dirt comes in." This controversy, challenging the validity of the response curve as a measure of fidelity, reached a peak of intensity in the correspondence columns of Wireless World during 1932, and continued indecisively until smothered by the outbreak of war.

The end of the war released a greatly augmented number of enthusiasts, amateur and professional, to pursue the search for perfect sound reproduction. Almost at once the "flat from 20 to 20,000 " school of thought-and with it the prestige of the response curve-received a severe blow by the publication of experiments by Chinn and Eisenberg ${ }^{2}$ which produced an impressive mass of evidence to show that few listeners had any use for reproduction of frequencies outside $70-6,500 \mathrm{c} / \mathrm{s}$, and many chose to be restricted to $150-4,000 \mathrm{c} / \mathrm{s}$. This was what a lot of people, including the more successful manufacturers, had believed for a long time, but it was no doubt comforting for them to find that their heresy had suddenly become respectable.

As was to be expected, the orthodox reacted vigorously, and many attempts were made to discredit the findings of Chinn and Eisenberg. The

[^5]

Fig. 2. Overall electrical response curves of a number of present-day tope recorders, lettered in descending order of listeners' preference. They were all measured efectrically under the same conditions, with tone controls set to maximum bass and treble.
main weight of the attack was launched against their statement that distortion from the equipment used for the experiments was imperceptible to the most highly critical listener. Clearly (it was said) the lack of enthusiasm for the widest window must have been due to harmonic and intermodulation dirt too fine to be detected as such but nevertheless spoiling the reproduction. Otherwise-and this was their trump card-the original sounds themselves would be unacceptable if heard with their full natural frequency range.

Direct Hearing

Not long afterwards H. F. Olson ${ }^{3}$ took them up on this point by testing listeners' preferences in the same room with the original sounds, no electrical apparatus being used. It was something of a shock to read that about a third of the listeners preferred to hear the music and speech restricted to a top frequency of $4,000 \mathrm{c} / \mathrm{s}$ by means of an acoustical filter. The shock was considerably allayed when one read on and learned that from overhearing the comments made afterwards by the listeners it could be concluded that those who voted for the restricted hearing were mainly those who disliked the programmes anyway, so would naturally be glad to hear as little of them as possible. That even a small minority should prefer sounds to be muffled-especially speech, which is so often heard naturally that nobody would regard loudspeaker reproduction as the standard-does, however, seem to call for some explanation by the authorities who insist that anything less than 15,000 or even $20,000 \mathrm{c} / \mathrm{s}$ is not good enough.

The difference between the results of the two sets of experiments-especially if allowance is made for those who were merely using the only means open to them to protect themselves from Mr. Olsen's pro-grammes-is sufficiently marked to give possible or even probable support to the unmeasurable-distortion theory. It seems that many listeners who prefer to hear original sounds with all their crispness would reach for the "top cut" control if they were presented with even the highest-fi reproductions of them. Complete proof is lacking, however, because Chinn and Eisenberg's reproductions were monophonic, and it can be argued that the difference between this and direct (or stereophonic) hearing may affect the preferred frequency range. So far from stopping to straighten out this tangle, I am pausing, just long enough to add the observation that members of my family consistently tolerate much more "modern" symphonic music when they hear it direct than via hi-fi. But that may be merely because their attention is diverted by the antics of the executants.

The last decade seems to have brought forth little to aid interpretation of response curves or restore confidence in them. Nevertheless, and in spite of the obstinate refusal of the ordinary listener to prefer what he ought to prefer-full frequency range reproduction-there is still a tendency to assume that the higher the top frequency that can be advertised the higher the "fi" it implies. Recently I had occasion to see some frequency response measurements on tape recorders which were also judged by

[^6]systematic listening tests, and thought a comparison might be instructive. The tests were carried out under the auspices of the Consumers' Association Ltd.

Measurements and tests were made under like conditions on all models, and (with exceptions to be mentioned) the listening tests were under conditions similar to those for the response measurements. All were at $3 \frac{3}{4} \mathrm{in} / \mathrm{sec}$ tape speed.

The measurements were made by recording sinusoidal signals at 27 frequencies from $40 \mathrm{c} / \mathrm{s}$ to 16 kc / s, the a.f. source being connected to the microphone input. The tape was then played back and the power output into rated load was measured. The ratio of output to input overall was expressed in dB relative to that at $1 \mathrm{kc} / \mathrm{s}$. Tone controls were set to give maximum bass and treble, except Model E, in which there was only a single tone control, which was set at its extremes and two separate curves taken.

The listening tests likewise embraced recording and replay, and also the microphone and loudspeaker included in or prescribed for the recorder; this of course was a significant difference in conditions. Another difference was that the tone controls were adjusted by the panel of three listeners to what they judged to be optimum settings. In each case one male and one female speaker were recorded " live," and also some piano playing. The tone quality for each was separately assessed by each of the listeners, who awarded marks out of 100 . They were not aware of the names of the machines being heard, or of their measured characteristics. Scores were weighted in the ratio 2 to 1 for piano and speech respectively. The results quoted here are the overall averages for the panel. In most cases the three listeners' scores were reasonably similar, but a minority showed a wider spread from average.

The response curves are arranged in Fig. 2 in descending order of listener preference. The corresponding average scores are as follows:

Model	Score	Model	Score
A	58	1	35
B	57	J	34
C	51	K	34
D	51	L	32
E	48	M	32
F	47	N	30
G	38	O	29
H	37	P	16

To forestall one query that might be made on comparing the curves with this table, mention should be made that harmonic distortion measurements were also carried out, but do not shed any certain light on the matter. For listening, the output level was kept low, in a room of average domestic size.

One's first conclusion, especially after noting the widely different placings of B and N despite the similarity of their curves, might well be that response curves couldn't matter less. More mature consideration is likely to reduce this to some such statement as that response curves are not an entirely safe index of tone quality. With regard to B and N in particular, it should be mentioned that they were about the least consistently judged, and also that the excessive bass
in B could be and probably was reduced by the listeners' tone adjustments. A more damaging comparison is that between the exemplary curve of M and its mediocre placing.

The first definite conclusion could be one in harmony with Chinn and Eisenberg-that response above $7 \mathrm{kc} / \mathrm{s}$ is not essential for pleasing reproduction (note A and B). Furthermore, an excess of very high frequencies is particularly distasteful (P). A more puzzling conclusion is that a very narrow response, so long as it comes well in the middle (H and I), is not wholly unacceptable to listeners; it can in fact be preferred to more level curves ($\mathrm{J}, \mathrm{K}, \mathrm{L}$ and M). An interesting point is that in general the machines with the most level curves were the most consistently judged by the listeners.

Almost certainly the picture would have differed somewhat if the overall response tests had been really overall, including microphone and loudspeaker, and been measured at the listeners' tone control settings; but since most of the response curves presented by manufacturers are obtained under conditions similar to those shown here, the general conclusions stand. It is doubtful whether they would have been far out even if the conditions had been identical to those for listening.

Audio Festival Exhibitors

MANUFACTURERS from the Continent, Japan and the U.S.A. are among the 72 exhibitors at the International Audio Festival, which opens at the Hotel Russell, London, W.C.1, on April 6th, for four days. In addition to the usual demonstration room for each of

AKG

Acoustical
Allied Records
Ampex
Armstrong
Audio Fidelity
Aveley Electric

BASF

Brenell Engincering
British Ferrograph
Challen Instrument Co.
Chapman (Ultrasonics)
Chitnis Electronic A.G.
Ciné Accessories
Clarke \& Smith
Collel
Cosmocord
E.M.I. Records
E.M.I. Sales \& Service

Faraday Electronic Insts.
Fi-Cord (Distribution)
Field, N. S. B.
Garrard
Gevaert Photo-Reproduction
Goodmans
Gramophone Co.
Grampian
Grundig
Leak
Lowther
Lustraphone
M.S.S. Recording

Magnavox

Minnesota Mining \& Mfg. Mullard
Multimusic
Orr Industries
Pamphonic
Philharmonic Records
Philips
Projection
Radford Electronics
Robuck Electrical Industries
Rogers Developments Rola Celestion
S.M.E.
S.T.C.

Schwarzalder UhrwerkeFabrik Burger
Shure
Simon Sound Equipment
Sony
Sugden
Tannoy
Tape Recorders
Telefunken
Teppaz
Veritone
Vitavox
Vortexion
Wellington Acoustic Labs. Wharfedale
Whiteley Electrical Wyndsor Recording Co.

Zonal Films
the manufacturers listed there will be an audio theatre, seating 200, in which frequent lecture-demonstrations will be given.

Tickets for the Festival, which is open from 11.0 to 9.0 each day, are obtainable from manufacturers, audio dealers or from Wireless World. Until 4.0 on the first two days admission is restricted to the trade.

CLUB NEWS

Barnet.-H. W. Pope (G3HT) will speak about d.f. gear to members of the Barnet \& District Radio Club on April 28 th . The club meets on the last Tuesday of each month at 8.0 at the Red Lion Hotel.
Birmingham.-April meetings of the Slade Radio Society include a talk on the 7th on transistors by N. B. Simmonds and another on the 21 st on 2 -metre amateur gear. The club's first d.f. contest of the year will be held on April 23 rd. Slade Radio Society meets at 7.45 at Church House, High Street, Erdington.

Bury.-Future meetings of the Bury Radio Society will be held at 8.0 at The Knowsley Hotel, Kay Gardens. At the April 11 th meeting K. Taylor (G 3 NNW) will talk on "My First Eighteen Months."

Derby.-Meetings of the Derby \& District Amateur Radio Society, which incorporates the Derby Wireless Club formed in 1911, are held each Wednesday at 7.30 at 119 Green Lane.

Guildford-Maurice Child will speak on "The Early Development of Radio" at the April 13th meeting of the Guildford and District Radio Society, which meets on the 2nd Thursday and 4th Friday of each month at 7.30 at the City Cafe, Onslow Sureet.

Halifax.-At the April 4th meeting of the Halifax \& District Amateur Radio Society H. Swift (G3ADG), the club's chairman, will speak on efficiency modulation. The society meets on alternate Tuesdays at 7.30 at the Sportsman Inn, Ogden.

Leeds.-Mobile equipment is the topic of the talk to be given to H . Brooks (G3GJV) at the April 12th meeting of the Leeds Amateur Radio Society. Meetings are normally held at 7.45 each Wednesday at Swarthmore Education Centre, 3 Woodhouse Square, but on April 26th members are visiting the Batley Works of Fane Acoustics.

Transistor Battery Tape Recorder recently introduced by Grundig, the TKI, is shown in the photograph. At the operating speed of $33 \mathrm{in} / \mathrm{sec}$ the frequency response is 80 to $8,000 \mathrm{c} / \mathrm{s} \pm$ 3 dB and the total wow and flutter 1%. The output power is 250 mW . High-frequency bias is used and permanent-magnet erase. The weight of this recorder is 81 b and its dimensions $11 \frac{3}{4}$ in by 7 in by $4 \frac{1}{2}$ in.

SOME
 THOUGHTS
 ON INDUCTANCE

HENRYS OR VOLT-SECONDS?

By THOMAS RODDAM

IN recent months I have been constrained to think about a varicty of devices in which a coil is wound on a piece of ferromagnetic material and a current is passed through the coil. The practice of my temperate youth was to restrict the current so that this system remained linear, or fairly linear anyway, air gaps and extra iron being added whenever it became necessary to avoid the unwanted nonlinearities. The characteristic property of such an arrangement is, of course, its inductance and it has become a matter of habit to assume that a thing having this sort of construction will also have associated with it the inductance-property, the idea of an inductance, the pure characteristic to which in this imperfect world we can only approximate.

There are now, however, a number of what appear to be inductance-devices which seems to have lost this old, this familiar, inductance property. Clearly the essential characteristics of a coil wound on a ferromagnetic core are unaltered by the circuit in which it is connected and the defect must therefore be one of understanding. One great aid to clarity of thought is freedom from reference books: it is therefore my practice annually to abandon my library and retire to some inexpensive retreat where the gentle susurration of the rain and the heavier patter of the boots of a large but inefficient hotel staff can encourage the search for comprehension.

What, then, is an iron-cored coil? Digging into memory I recall that the passage of a current produces in the core a magnetomotive force, H , which is proportional to the current and to the number of turns and which is the same sort of thing as an

Fig. I. Idealized B-H characteristic of a "square-loop" ferramagnetic material.
electric field in that it is proportionately diluted by the length over which the current acts. In fact

$$
\mathrm{H}=4 \pi \mathrm{NI} / 10 l
$$

The effect of this magnetomotive force H is to produce a magnetic flux. This is where the energy is stored in the magnetic system. We commonly write the simple equation

$$
\mathbf{B}=\mu \mathrm{H}
$$

to express the connection between the flux and the m.m.f. but although I quote this highly memorable equation further exploration shows that its use is attended with some danger.

A safer approach is based on the fact that when we change the flux which links the turns of a coil we produce a voltage across the terminals. The equation connecting these factors is

$$
\mathrm{V}=\mathrm{NA} \cdot 10^{-8} \cdot \mathrm{~dB} / \mathrm{d} t
$$

where A is the area.
From these two equations we can go on to consider the very important term $\mathrm{dI} / \mathrm{d} t$. Since

$$
\begin{aligned}
& \mathrm{I}=(10 l / 4 \pi \mathrm{~N}) \mathrm{H} \\
& \mathrm{dI} \\
& \frac{\mathrm{~d} t}{\mathrm{~d} t}=(10 / / 4 \pi \mathrm{~N}) \frac{\mathrm{dH}}{\mathrm{~d} t}
\end{aligned}
$$

Now let us define the inductance by the equation

$$
\mathrm{L} \mathrm{~d} \mathrm{I} / \mathrm{d} t=\mathrm{V}
$$

and we find that

$$
\begin{aligned}
\mathrm{L} & =\frac{\mathrm{NA} \cdot 10^{-8}}{(10 l / 4 \pi \mathrm{~N})} \cdot \mathrm{dB} / \mathrm{d} t \\
& =\frac{4 \pi \mathrm{~N}^{2} \mathrm{~A} \cdot 10^{9}}{l} \cdot \frac{\mathrm{~dB} / \mathrm{d} t}{\mathrm{dH} / \mathrm{d} t} \\
& =\frac{4 \pi \mathrm{~N}^{2} \mathrm{~A} \cdot 10^{-\theta}}{\mathrm{dB}} \cdot \frac{\mathrm{dH}}{}
\end{aligned}
$$

When $\mathrm{B}=\mu \mathrm{H}$ we obviously have $\mathrm{dB} / \mathrm{dH}=\mu$ and the expression for the inductance has a similar form. When, however, this simple proportionality between B and H no longer holds the expression for inductance in terms of $\mathrm{dB} / \mathrm{dH}$ is still true. The only trouble with it is that it depends on this differential term, which in strictness we must remember is actually $(\mathrm{dB} / \mathrm{d} t)(\mathrm{dH} / \mathrm{d} t)$. This is by no means a pedantic distinction, as we shall see at a later stage. It retains in our equations the very important element of time. For engineering purposes you cannot put the clocks back and any expression containing time has built into it an arrow showing which way you are going.

Let us now look at the sort of relationship which we may encounter between B and H with some of the specially prepared ferromagnetic materials. The typical form is shown in Fig. 1, and it will easily be
appreciated why materials which give a close approximation to this are called "square-loop" materials. First of all note that there is no indication in this diagram of what happens near the origin. This is rather a consequence of the way in which the squareloop materials are used than of their properties. In the region of the origin there is, in fact, a fairly conventional high-permeability loop. When used in this way a coil wound on such a core has an inductance of conventional meaning. One material which is of value in both modes is Mumetal.

In considering the square-loop behaviour of a core of this kind it is most convenient to start off by passing a very large current through the coil so that the flux is brought up to the point J . We now reduce the current without reversal to zero and after passing through A we follow along the line $A B$ to the point B. Here the magnetomotive force H, and equally the current, is zero, so that we can disconnect the circuit. The core, however, remains magnetized with a stored flux B.

Connected back in circuit we apply a small current in the reverse direction along the path BD. The change in flux is very small so that the inductance, as we have defined it, is also very small. As we continue to increase the current we reach the point D. Quite suddenly $\mathrm{dB} / \mathrm{dH}$ changes to a very large value, for the jump in flux from D to E involves only a small change in magnetomotive force. The inductance for this region traversed in this direction is very high. When we reach E we turn sharply again towards H and the inductance is again low since EH is almost parallel to the magnetomotive force axis.

The description of the changes in inductance in the last paragraph depends on our definition of inductance in terms of the volts per ampere per second, the tendency of inductance to prevent changes in current. We could also consider inductance in its energy storage character: if a current is flowing through an inductive element the stored energy is $\frac{1}{2} L I^{2}$. It is this property which makes inductance such an important element in filter theory, where the network elements must hold the energy introduced at stop-band frequencies and then force it back to the generator. I would remind you that a filter using only inductance and capacitance cannot actually attenuate a signal passing through it as there is nowhere for the energy to be dissipated. Such filters operate by presenting a reactive load to the generator in the stop band so that the energy is all flung back.

In this sense of inductance the word seems to have practically no meaning when the device is operated

Fig. 2. Measured properties of two-terminal device with current drive.

Fig. 3. An alternative woy of drawing Fiz. 2.
round the loop shown in Fig. 1. The stored energy has become virtually inaccessible and certainly unpredictable for any pattern of current other than a regular full excursion from H to J and back again. The energy which we force in up the path GCA is locked up in the remanent flux at the point B when we try to get it back: to move from C to A we find we are putting energy into a high inductance device and the small current (and m.m.f.) change takes a good deal of energy but when we try to get it out again the device decides to be a low-inductance one. It is all rather like the operations of a bucket shop or some new fairy story in which the princess when kissed turns into a frog, though these columns are no place for comments on marriage.

By now, no doubt, several familiar figures are reaching for their reference books, their slates and pencils. How many readers, I wonder, traced their first faltering characters, to the accompaniment of excruciating squeaks, on the economical slate: how long before their children complain that electric typewriters have not been provided for every infant in the village school? But s.f.f. are on my track with the revelation that if I consult Ezekiel Spanheim I shall find a clear definition of inductance which will dispose of all these difficulties. This I do not doubt, but neither do I doubt that the trick of producing such a clear definition is to restrict one's thought to ideal linear systems. Once we do this it is not really important which definition we adopt, since the alternatives can be easily and unambiguously derived.

What is the circuit designer to do? He is not concerned with magnetic flux and magnetomotive force: he has a black box with two terminals and has to define its properties in terms of voltage and current at these terminals. As a user of this black box it is merely vulgar curiosity which excites him to enquire why the behaviour is as he finds it. There are two experiments which he can profitably conduct. These will define the properties of his two-terminal device in a form which he can use.
In the first experiment a source of current is required. This, of course, is a circuit which produces a specified current no matter what the impedance through which the current must be driven may be, There are a number of ways of approximating to this: the simplest is a sufficiently high voltage source in series with a sufficiently high resistance, while in more sophisticated versions the high slope resistance at a pentode anode or a transistor collector can offer the wanted approximation with economy

Fig. 4. Measured properties of two-terminal device with voltage drive.
of voltage. I do not think we need to explore the details of a suitable circuit here.

We set the current at a substantial negative value, corresponding to the point H and then increase it. " Increase" is used here in a strictly formal way to mean that $\mathrm{dI} / \mathrm{d} t$ is positive: numerically the current shown on a meter, which is $|\mathrm{I}|$, will fall to zero and then rise in the opposite direction. We measure the voltage across the terminals and we also measure, or fix in advance, the rate of change of current with time. Let us assume that we have arranged matters so that $\mathrm{dI} / \mathrm{d} t$ is constant. Then, equally, as we allow (and what else can we do, indeed) the passage of time, H increases steadily, with $\mathrm{dH} / \mathrm{d} t$ also constant. (Again, since $\mathrm{dH} / \mathrm{d} t$ is positive, I use "increase".) From H through E, F to G we have $\mathrm{dB} / \mathrm{d} t$ which is constant and small, so that we observe a small and constant voltage across the terminals. At G there is a sudden change. As we go along G, C to A the terminals voltage becomes very high but at A , and as we progress towards J it drops again. The voltages we observe are proportional to $\mathrm{dB} / \mathrm{d} t$, and thus proportional to $\mathrm{dI} / \mathrm{d} \mathrm{t}$. We can therefore plot the diagram of Fig. 2. This may be more familiar to some readers in the form shown in Fig. 3 which takes account of the fact that to traverse the system from right to left we must have $\mathrm{dI} / \mathrm{d} t$ negative and we shall therefore observe a negative voltage across the terminals. This effect is slightly obscured in Fig. 2.

In a second experiment we apply a constant voltage to the terminals and observe the current. We shall assume that initially we are at the point F of Fig. 1. As we have already said, the rate of change of magnetic flux is proportional to voltage and since the voltage is constant the flux must be changing at a constant rate. The projection of the working point on the B axis moves steadily upwards. There is a rapid transition from F to G, associated with a rapid rise in current but then as we move along G, C to A the current changes very little. Once A is reached only a short time is occupied by the run along AJ towards unlimited current. This is the pattern shown in Fig. 4.

The important feature of the current-time characteristic at constant voltage is the plateau GCA. Since we have $V=N A \cdot 10^{-8} \mathrm{~dB} / \mathrm{d} t$ and V is constant we can integrate this very easily to get

$$
V t=N A \cdot 10^{-8}\left(B_{1}-B_{0}\right)
$$

where B_{1} and B_{0} are the values of flux corresponding to the points A and G respectively. $\left(B_{1}-B_{0}\right)$ is equal
to the spacing between points B and F , or twice the remanent flux $B_{r} \cdot \mathrm{~A}$ coil of N turns of area A on a material having a remanent flux B_{r} has therefore a characteristic
$2 \mathrm{NAB}_{\mathrm{r}} 1^{-8}$ volts-seconds.
It may be useful to notice the sort of values to be expected. A coil of 1,000 turns will give volts-seconds products in the region of 1-10 volt milliseconds while draining away only milliamperes. Thus such a coil might take an almost constant current of a few milliamps for perhaps 10 milliseconds and then allow some hundreds of milliamps to flow. With only a few turns the characteristic will be a few volts-microseconds and the current required to reach the point G will be some hundreds of milliamps.

For many practical applications we do not operate with ideal voltage or current sources but with sources of finite (which means in practice comparable with the load) impedance. Let us consider a source of voltage V_{o} and resistance R_{u}. Now in Fig. 4 the step from F to G is very short and we can therefore get a quick picture of the sequence of events by assuming that there is somehow a jump to a constant current I_{0} which is the value for the whole GCA plateau. When the generator is first connected the full voltage V_{0} appears across the coil but as soon as the current I_{0} is established the voltage across the coil falls to ($\mathrm{V}_{0}-\mathrm{I}_{0} \mathrm{R}$). This value remains constant for a time $\left(2 \mathrm{NAB}_{r} .10^{-8}\right) /\left(\mathrm{V}_{0}-\mathrm{I}_{0} \mathrm{R}\right)$ and then the current through the coil increases rapidly and, if the coil resistance can be neglected the current rises to V_{0} / R and the voltage drop across the coil is zero. This is shown in Fig. 5. The idealized characteristic shown in Fig. 5(b) can be turned into a closer approximation by replacing the three linear segments by the exponential which would be calculated using the appropriate values of inductance, defined in terms of the value of $\mathrm{dB} / \mathrm{dH}$ for the corresponding segment.

It is this property of square-loop materials which has led to their widespread use in transistor squarewave oscillators which are now becoming popular as inverters for producing an a.c. supply from a battery source and, by extension, producing high

Fig. 5. The voltage with a finite source resistance.
voltages by the subsequent transformation and rectification. In these circuits the duration of each half-cycle is fixed by the plateau A Fig. 5(b). Another way of looking at these circuits is to consider them to be LR multivibrators, with a very large inductance corresponding to the steep slope of GCA in Fig. 1. The half-cycle time, which depends upon L / R has barely begun, and the characteristic sag is only just discernible, when the core reaches its limit at A . The inductance changes to a very small

fig. 6. The current into a finite resistance fed from a fixed voltage through a saturable choke.
value and the remainder of the half-cycle is performed with a very small L / R value.

Another application is, of course, the memory core. We have seen that with no current applied we must be at B or F, depending on whether the last active point was J or H . Suppose we are at B. A current pulse, with positive current, will run up the track BAJ. The change of flux will not be very great so that the voltage generated in a winding on the core, which depends on dB / d t, will be small. But if the last state were F, this current pulse would traverse the path FGCAJAB and we can see from Fig. 2 or Fig. 3 a substantial voltage pulse would be produced. By setting the core to either B or F we can thus "write in "one bit of information, a yes or no, a 1 or 0 , and can extract it at our leisure. Moreover, since a current, or more exactly ampere-turns, which does not carry us to G will not affect the setting at F but will let the core fall back again we can use several windings which must be simultaneously pulled to bring the information out. It is in structures of this kind that we encounter the cores switched in times measured in microseconds, perhaps using only single turns.

The memory cores are perhaps a couple of millimetres in diameter, the inverter cores the size familiar in ordinary low-frequency amplifier design. In yet another application, magnetic amplifiers, which find application in a wide field from aircraft
controls to the regulation of the supplies to large furnaces, the sizes range upwards from a few ounces into the hundredweights. Fig. 6 is merely a rearrangement of Fig. 5 with attention focused on the current through the resistor R. It will be seen that until A is reached there is only a small current in the load resistor. Suppose, then, that just as we reach A we reverse the voltage: we shall then traverse the path ABDKE with a similar, but oppositely sensed, current. At E we again reverse the voltage and this alternating voltage drives only a small alternating current through the load. Now let us, by means of another winding carrying a steady current, bring the starting point to C . To move from C to A under the influence of V_{0} takes only one-half the time for the movement from G to A and so for the remainder of the time before the reversal the fuil current of V_{0} / R will flow in the load.

Having regard to the space I have already filled I do not propose to describe how the core is reset and how this second winding is disposed of so that, in fact, by the use of several windings on separate lines, it is protected from having excessive voltages induced in it. These matters of ingenuity are used to make practicable the magnetic amplifiers in which relatively small control currents affect the discharge of large powers into the loads by altering the fraction of a cycle during which the current is free to flow.
I had hoped that at some point in this study the idea of inductance would have forced itself in. It has not done so except as a means for improving some of the approximations and even then I am sure we could have managed without it. In its place we find a factor which has no name but which we might call endurance, the volts-seconds product before collapse. This is a very real characteristic of a square-loop cored coil and a much less sharply defined characteristic of a coil with a silicon iron core or with a small air-gap. It is a characteristic to which I fear we must all become accustomed. But how I wish it had a name.

THE full-line curves indicate the highest frequencies likely to be usable at any time of the day or night for reliable communications over four long-distance paths from this country during April.
Broken-line curves give the highest frequencies that will sustain a partial service throughout the same period.

........... FREQUENCY BELOW WHICH COMMUNICATION SHDULD BE POSSIBLE
FOR 25% OF THE TOTAL TIME
— — PREDICTED MEDIAN STANDARD MAXIMUM USABLE FREQUENCY
— FREQUENCY BELOW WHICH COMMUNICATION SHOULD BE POSSIBLE DN ALL UNDISTURBED DAYS

Multivibrator Design

USE OF CONSTANT-CURRENT PRINCIPLE

By R. C. FOSS, B.Sc., Grad.I.E.E., and M. F. SIZMUR, B.sc.

AN engineer designing electronic circuits has a number of special problems which are not commonly met in other branches of engineering. One such problem arises from the use of valves and transistors, which have unavoidably wide tolerances on their characteristics. Steam engines manufactured with a tolerance of $\pm 50 \%$ on piston diameter would hardly be expected to perform well or even work at all! However, it is often necessary to make electronic circuits perform reliably with tolerances of this order on transistor parameters. Evidently to achieve this aim, the performance of the circuit must be made as far as possible independent of the precise values of such parameters. The designer must use techniques which ensure that the behaviour of the circuit depends upon those components whose values are

Fig. 1. Abrahom and Bloch multivibrator circuit.
under his control, such as capacitors, resistors and inductors.

Because it is a comparatively easy task to assemble and modify a prototype, there is often a strong temptation to "design", circuits by cut and try methods. This temptation should be resisted as this method has numerous drawbacks. First, there is no reason why the performance of a circuit arrived at by cut and try should be governed by the values of passive components and not depend critically upon valve or transistor parameters. The circuit may have this desirable property but most likely it will not. The second drawback is that the circuit can only be developed into a form suitable for production by an experimental investigation in which the effects of all tolerance changes are explored in a systematic manner. This may well turn out to be a lengthy process and there is always the possibility that at some late stage the circuit may be found unsuitable for production, necessitating a fresh start. Another drawback is that it will be purely fortuitous
if an optimum design is achieved at the first attempt, and it is impossible to tell how far away from the optimum the design is without experimental investigation. Lastly, the lack of a quantitative understanding of the way in which the circuit works may well complicate maintenance because of the difficulty in deciding whether it is operating correctly or not.

These difficulties may all be avoided if circuits can be designed which are not critical as to the precise values of valve or transistor parameters and whose behaviour is determined by the values of passive components. Experience shows that the design procedures for such circuits are often quite simple; the amount of effort needed may be reduced to little more than an exercise in Ohm's Law and the solution of the transient response of an R-C circuit!

The way to achieve this state of affairs is to use the valve or transistor as a switch with " on " and "off" states determined by passive components, the transition between states being governed by R-C timing circuits. The characteristics of the active element are thus involved only in the transition from one state to the other.

Because the multivibrator is one of the most useful and most widely known of waveform-generating circuits, it has been taken as an example to illustrate these techniques. Fig. 1 shows the Abraham and Bloch multivibrator circuit. Neglecting the time taken for change of state, the periodic time for this arrangement is the sum of the "off" periods for both valves. Fig. 2 shows the exponential waveform appearing on each grid in turn during its "off" period, E_{0} being the initial value, E_{1} the value at which the circuit changes state and T the circuit time constant. If the " off" period, t_{1}, is to be accurately specified, it is necessary to fix E_{0} and E_{1} or at least the ratio of these voltages.

The appendix describes a simple method of finding

Fig. 2. Exponential woveform oppearing in turn ot each grid in Fig. I during its "off " period.

Fig. 3. Illustration of the important design point that E_{1} should not be mode too small relative to E_{0} so that a small change in E_{1} does not produce too large a change in t_{1}.
t_{1} in terms of this ratio and the circuit time constant. It should be noted that if E_{1} is made small with respect to E_{02} then small changes in the value of E_{1} will produce disproportionately large changes in t_{1} and hence in the periodic time of the circuit. Fig. 3 illustrates this point and it should be emphasized that this is most important in practice when E_{1} is dependent on valve or transistor characteristics.

The basic multivibrator of Fig. 1 is not a "designable" circuit as it stands because the " on " state of the triode valve is made dependent on its characteristics, including the grid current/grid voltage relationship. Thus the change in anode potential between cut-off and cut-on and therefore the output amplitude and the starting point of the grid timing exponential are poorly defined. Furthermore, in this particular circuit the value of grid voltage, E_{1}, at which the transition occurs is small compared with the initial value, E_{0}, and is likely to change as the valves age or are replaced.

It has been shown by Williams (Ref. 1) that these unsound features of the circuit can be avoided by the use of " bottoming " pentodes to give a well-defined anode swing, and by returning the grid leaks to the h.t. positive rail to make changes in the effective grid base have little effect.

The circuit known as the long-tailed pair (Ref. 2) can be used to achieve equal case and soundness of design in a wide range of waveform circuits, while retaining the economic advantage of the triode, particularly the double triode. Although circuits employing feedback in a common-cathode resistor are fairly well known, it does not seem to be so well appreciated that it is possible to use this resistor to largely define the total cathode current, or "tail current " of the pair. The tail current in the circuit of Fig. 4 is given by:-

$$
\begin{equation*}
\mathrm{I}_{\mathrm{T}}=\frac{\mathrm{E}_{\mathrm{T}}+v_{k}}{\mathrm{R}_{\mathrm{T}}} \tag{1}
\end{equation*}
$$

where the cathode voltage v_{k} is determined by the values of $v_{p_{1},}, v_{g 2}$, and the valve bias. Provided that these quantities, and changes in them, are made appreciably less than the fixed "tail voltage" E_{T}, say up to 20% of $E_{\text {r }}$, it will often be possible to take the tail current as constant.

$$
\begin{equation*}
I_{T} \approx \frac{E_{T}}{R_{T}} \tag{2}
\end{equation*}
$$

For waveform-generating circuits, this current is normally arranged to flow entirely in one or other of the pair, and this current is switched from one to the other by a differential voltage applied to the grids. To estimate the value of differential grid voltage necessary to produce this switching action, suppose that the valve characteristics of each of the pair are identical. Suppose also that a value of grid-cathode bias $-e_{b}$ is necessary for the valve to draw current I_{T}, and that a value $-e_{c}$ just cuts off the valve. As changes in anode voltage are not normally large: the effective grid base, defined as ($e_{e}-e_{b}$), may be assumed constant. Considering again the circuit of Fig. 4; if $v_{g 1}$ is made zero and $v_{g 2}$ very negative, V2 will be cut off, and V1 will be conducting. By the assumption, the cathode potential is $+e_{b}$. If $v_{g g}$ is now allowed to rise, then when it passes a value $-e_{c}$ relative to the common cathode, that is $-\left(e_{c}-e_{b}\right)$ relative to earth, V 2 starts to conduct. With $v_{g 2}$ continuing to rise the cathode voltage increases until it reaches a value $+e_{c}$ when V1 will be completely cut off. The value of $v_{g 2}$ at this point is ($e_{c}-e_{b}$), and it is seen that a differential change in grid voltage of two effective grid bases is required to switch I_{T}. This thermionic equivalent of the two-way switch has been very successfully used in the design of digital computors (Ref. 3).

The multivibrator about to be described, due originally to E. L. C. White (Ref. 4), can be thought of as just such a switch actuated by positive feedback through a timing network from one anode to the opposite grid (see Fig. 5). With this circuit the freerunning repetition rate is not well-defined, since it is very dependent upon the valve cut-off bias as shown in Fig. 3. However, this is an excellent circuit for use where a square wave synchronized to an external waveform is required. As it is the differential grid voltage which actuates the " switch", the synchronizing waveform is applied to the "free " grid (with acknowledgements to a well-known contributor to Wireless World!). This grid takes no part in the regenerative action, so it will not inject any signal back into the synchronizing circuit.

The anode of V2 also plays no part in the regenerative action, and from this anode an output can be taken without affecting the operation of the circuit, a feature which may eliminate the necessity for a buffer stage.

To analyse the operation of the circuit, a few

Fig. 4. Long-toiled pair circuit.
additional assumptions will be helpful. These are:-
(i) That R_{3} is large relative to R_{1} so that the grid circuit loading on the anode of V1 may be neglected.
(ii) That stray capacitances may be neglected.
(iii) That neither valve is forced to draw grid current.
(iv) The circuit is free-running, the grid of V1 being at earth potential.
To begin the analysis, suppose that I_{T} has just started to flow through V1, the valve having previously been cut off. The fall in anode voltage, $E=I_{T} R_{1}$, will have been coupled to the grid of V2 by the capacitor C , as shown in the waveform diagram Fig. 6. This fall cuts off V2 and drives the current into V1 as postulated. C will now discharge through R_{3} and R_{1} and the grid voltage waveform will be an exponential rise towards earth. Meanwhile the cathode is at e_{b}, held by the grid of V1. When the grid of V2 reaches a point one effective grid base below earth, V2 can start to conduct just as was considered in the case of the circuit of Fig. 4. The current in V1 falls and this rapidly turns V2 on and V1 completely off, transmitting a positive swing of E to the grid of V2. The cathode follows this rise, and also the ensuing fall towards earth. Finally, when the grid has reached a point one effective grid base above earth, V1 can start to conduct and the cycle recommences.

From the analysis, it can be seen that the mark and space times are equal, and are governed by an exponential curve from $\mathrm{E}-\left(e_{c}-e_{b}\right)$ to $\left(e_{c}-e_{b}\right)$, relative to earth, on a time constant of CR_{3} seconds approximately. The free-running period can thus be estimated using log tables, or graphically as shown in the appendix.

Some practical design points arising from the assumptions made for the analysis can now be considered.

The designer must ensure that neither valve is forced to draw grid current. In the case of V2 this would alter the effective time constant in an unpredictable way on one half cycle only, giving unequal mark and space times. The most critical instant in the cycle is t_{1}, Fig. 6, when the anode-tocathode voltage of V2 has its minimum value. This must be sufficient to enable the valve to pass current I_{T} with negative grid bias.

During the transitions R_{3} is effectively in parallel with R_{1}, and if R_{3} is made comparable with R_{1}, the anode and grid swings will be reduced to $I_{T} R_{1} R_{3}$ / $\left(R_{1}+R_{3}\right)$. Also the time constant of the exponential grid voltage should be taken as $C\left(R_{1}+R_{3}\right)$.

Stray capacitances cannot be neglected in practice. At an anode, stray capacitance C_{s} will turn the theoretically instantaneous rise and fall into exponentials of time constant C_{8} times the anode load. The effect of stray capacitance at the grid of V2 will depend upon the value chosen for the coupling capacitor C. Should the two be comparable then only an unknown proportion of the anode swing appears at the grid of V 2 .

To show how easy the design procedure is in practice, suppose a synchronized multivibrator is required, using a 12 AT7 valve to give two antiphase outputs of 100 volts. Although the design would be easier if a negative supply were available for the "tail", it will be assumed that only a 300 volts supply is available. Of this 300 volts, 100 are used

Fig. 5. White's mu'ivibrotor circult.

Fig. 6. Woveforms oppeoring ot various points in the multivibrotor circuit of Fig. 5.
for the tail. This leaves only 100 volts for the conducting valve, and to avoid driving it into grid current, a small value of tail current, 2 mA , is chosen, making $\mathrm{R}_{\mathrm{T}}=47$ kilohms. For two 100 volt outputs, both anode loads are 47 kilohms also. If the whole 100 -volt swing is coupled to the grid of V2, the assumption of constant I_{T} will fail miserably, and V 2 will be left with no anode voltage. The circuit of Fig. 7 shows how this is overcome by transferring only 20 volts of the swing. The approximate freerunning half-period will be governed by (20-4) volts decaying to 4 volts, the effective grid base. As shown in the appendix, this decay to 0.25 of the initial value takes $1.4 \mathrm{CR}_{3}$ seconds, CR_{3} being the

Fig. 7. Illustrative multivibrator design.
time constant. Finally the rise and fall times with $\mathrm{C}_{\mathrm{s}}=20 \mathrm{pF}$ at each anode will be about $3 \mu \mathrm{sec}$, with anode time constants of $1 \mu \mathrm{sec}$. This figure compares favourably with the rise time obtainable from a circuit of the type shown in Fig. 1; at a repetition frequency of $500 \mathrm{c} / \mathrm{s}$ values of the order of $100 \mu \mathrm{sec}$ are more typical.
For many purposes, the measured performance of the circuit will correspond sufficiently closely to these design figures. The negative swing at the anode of V2 is about 20% greater than 100 volts due to the increase in I_{T} at time t_{1} in Fig. 6. The only other major discrepancy likely to arise is in the free-running half-period, as this depends on the grid base as previously mentioned.

In the concluding part of this article, a similar circuit will be described in which the free-running period of oscillation can be defined to within a few per cent, the circuit being particularly suitable for use with transistors.

APPENDIX

Graphical Solution of the Exponential Equation. The solution to expressions of the form

$$
\mathrm{E}_{1}=\mathrm{E}_{0} \mathrm{e}^{-1 / \mathrm{T}}
$$

where E_{0} and E_{1} are known, and it is required to find t in terms of the time constant T , can be obtained by taking logs or by log-log slide-rule scales. A quick alternative method, which is usually sufficiently accurate, is to use a graph of the function $\mathrm{e}^{-t / \mathrm{T}}$

Fig. 8. Graph of $\exp (-t / T)$ plotted against t / T.
plotted against τ / T, Fig. 8:. Taking the example of a decay from 16 volts to 4 volts, that is $E_{1} / E_{0}=0.25$, this corresponds to a time of 1.4 T . Because this graph is, in effect, a scale drawing of the circuit waveshape, gross errors in calculation are ualikely and the effects of small changes of E_{1} on the timing of a circuit are more easily seen.

REFERENCES

Ref. 1. Williams, F. C., "Introduction to Circuit Techniques for Radiolocation", Э.I.E.E. 1946, Vol. 93, IIIA, p. 289.

Ref. 2. Blumlein, A. D., British Patent No. 482,740 (1938).

Ref. 3. Newman, E. A., Clayden, D. O., Wright, M. H., "The Mecury-Delay-Line Storage System of the ACE Pilot Model Electronic Computer", Proc. I.E.E., 1953, Vol. 100, Pt. 11, p. 445.

Ref. 4. White, E. L. C., British Patent No. 535,778 (1941).

Commercial Literature

Sheet Insulation may be adversely affected by discharges taking place on or near its surface. Eight plastics materials and silicone rubber, Perspex and synthetic-resin-bonded laminates have been tested for the resistance to surface discharges by the Electrical Research Association Laboratory. Copies of the 42 -page report enuitled "The Resistance of Sheet Insulation to Surface Discharges" by J. H. Mason may be obtained from Publication Sales Department, Electrical Research Association, Thorncroft Manor, Dorking Road, Leatherhead, Surrey. Price 15 s or 15 s 8 d by post.
Semiconductor Rectifiers.-Quick selection of G.E.C. silicon and germanium rectifiers in six basic circuit arrangements up to $400-\mathrm{V}$ 100-A output is possible with rotary chart from G.E.C., Semiconductor Division, School Street, Hazel Grove, Stockport, Cheshire.
Transistor Converters for changing low-voltage d.c. supplies into high-voltage a.c. or d.c. are made in both hermeticallysealed and open constructions by Transipack. Information on converters from 2 W to 1 kW rating from Transipack, 28 Burnt Ash Hill, London, S.E.12.
Demonstration Servo System made by Feedback Lid., of Crowborough, Sussex, uses part "bread-board," part unit construction to make clear the tunctioning of d.c. closed- and open-loop position control. The front panel of the control unit carries a simplified diagram fitted with terminals for interconnecting links.
Resistors, Capacitors and Inductors having glass dielectrics and insulators are among the many devices using special glasses made by Corning Glass Works. Glass construction makes possible employment of components under adverse working conditions: for instance, very high levels of nuclear radiation have little effect. Loose-leaf catalogue containing data sheets on components and subassemblies from Corning Glass Works, Bradford, PA (U.S.A.) or James A. Jobling, Wear Glass Works, Sunderland.
Measurement Accuracy of 0.05% is achieved in the Muirhead Wigan D-930-A precision r.m.s. decade voltmeter. This accuracy is achieved over the greater part of the range of 1 mV to 300 V and $5 \mathrm{c} / \mathrm{s}$ to $100 \mathrm{kc} / \mathrm{s}$. Weston cells are used for standardization. Publication No. 150 from Muirhead \& Co. Ltd., Beckenham, Kent.
Plastics Diaphragm resistant to deterioration at high temperatures enables the S.T.C. Type 4105 moving-coil cardioid microphone to be used under adverse conditions, such as amid the footlights in a theatre. Total harmonic distortion is of the order to $\frac{1}{2}$ to 1% at intensity levels approaching the threshold of pain. Leafiet describing the Type 4105 and "An Introduction to Microphones" (pamphlet giving general advice on choice of type) from Public Address Department, Standard Telephones and Cables Lid., Connaught House, 63 Aldwych, London, W.C.2.

Negative Feedhack and Non-Linearity

IT is commonly believed that negative feedback reduces undesirable things, such as distortion, to the same extent as it reduces amplification. This belief is not without some foundation, but like many others it is an over-simplification and ought not to be applied indiscriminately.

For instance, one of the undesirable things (in a.c.-driven equipment) is hum. So far from invariably reducing it in the same ratio as amplification, negative feedback sometimes reduces it less than that, or not at all, or even considerably increases it.* Another of the undesirable things is the random noise we were considering only a month or two ago. It is certainly possible to reduce such noise by negative feedback, but, since the wanted signals are likewise reduced, the signal-to-noise ratio (which is what matters) is in no way improved. Increasing the overall amplification to make good the loss due to feedback increases the noise too.

By this time some may be beginning to wonder what advantage negative feedback ever does give. What about distortion? Might not the necessary extra amplification re-introduce it and leave one no better off?

Well, of course, there are several different kinds of distortion, and one can't cover them all at once with a simple Yes or No. There is non-linearity, which alters the shape of even a single pure sinewave signal. This it can be regarded as doing by introducing signal frequencies that were not present in the original. Then there is amplitude/frequency distortion, which alters the shape of signals only when they include more than one frequency, and upsets the balance of tone in sound programmes. Phase distortion makes no perceptible difference to sound, but it alters the shape of multiple-frequency signals, so it affects the appearance of television pictures.

Reducing non-linearity is usually the main object of negative feedback, because that is the most unpleasant form of distortion where sound is concerned. No amplifier with any claim to be suitable for high-quality reproduction would be without negative feedback. So presumably it does do some good. The question is whether it does as much good as is commonly believed.
Readers who were born, so to speak, with Nyquist diagrams on their bibs, and who are merely following my plough on the off-chance of its unearthing some stray fragment of novelty, must be prepared to show forbearance while for the next few paragraphs I recapitulate the basic principles of negative feedback for their juniors in the art.

The box in Fig. 1(a) represents an amplifier; its voltage amplification or gain is customarily denoted by A, which means that for every signal volt (or millivolt, more likely) applied between the input

[^7]terminals it gives A volts (etc.) between the output terminals.

If now we take some fraction B of this output voltage and introduce it in series with the input voltage, as at (b), the gain of the amplifier, reckoned between its own two pairs of terminals, is still A. But for practical purposes the feedback connection becomes part of the amplifier, so the input terminals become those marked XX. The net gain between them and the output terminals is called A^{\prime}. If we try to calculate A^{\prime} in terms of A and B by supposing (for simplicity) that the signal source delivers 1 volt to the new input terminals, we get stuck. The thing to do is to work from the fact that 1 volt at the old input terminals gives A volts at the output. The voltage fed back is then $A B$.

Now this is where we have to be careful about signs. Negative feedback, represented by a negative value of $A B$, is defined as feedback that opposes the input voltage to XX , requiring it to be greater than 1 volt in order to maintain the 1 volt at the input to the amplifier itself. A positive value if AB therefore means an $\mathbf{X X}$ input less than 1: So in either case it must be $1-\mathrm{AB}$ volts. The corresponding output being A volts, the overall gain. is

$$
\mathbf{A}^{\prime}=\stackrel{\text { output }}{\text { input }}=\frac{\mathbf{A}}{1-\overline{\mathbf{A B}}}
$$

This is the "Ohm's law" or ABC of feedback.

Fig. I (a) represents an amplifier without feedback, and (b) the some amplifier with feedback, a fraction B of the output voltage being tapped off and returned to the input. The arrows show the relative polarities for positive values of all instantaneous voltages. If the feedback is negative, the minus sign in l-AB is concelled out.

Although for simplicity we assumed 1 volt at the original or internal input, the above result would have been just the same if it had been any other amount, say V .

One of the first things usually pointed out about this equation is that if the negative voltage fed back is made much larger than the internal input, an approximate formula for A^{\prime} can be obtained by neglecting the relatively small 1 in the denominator, the result being

$$
A^{\prime}=\frac{1}{-B}
$$

which means that the overall gain is almost independent of the internal gain, A, and is decided mainly by B. In other words, ample quantities of negative feedback prevent the gain of an amplifier from being much affected by the usual uncertainties such as ageing valves and fluctuating supply voltages.

By the way, newcomers may have been wondering why we take the trouble to put a minus in these formulae, only to cancel it with another minus by making the feedback negative. Why not define $A B$ as the negative voltage fed back, making the denominator $1+A B$? That would be quite sensible if in a negative-feedback amplifier the feedback were always negative, but in all but the simplest circuits (such as cathode followers) there are some frequencies at which a 180° phase shift makes the feedback positive, and the risk of confusion might be even greater if we decided to denote this by a negative value of AB . Nevertheless, it is sometimes done (in case Mr. D. L. Clay is reading this, I hasten to point out that I did it myself in Feb. 1946) so one must be prepared for either.

The recapitulation is now over and those who were dozing off may wake up. We were saying that the belief that negative feedback reduces non-linearity distortion in the same ratio as it

(a)

(b)

Fig. 2. These diograms correspond to Fig. 1, with the same signal voltages present but not shown. Instead, the voltages shown refer to distortion products created by the nonlinearity of the amplifier at that particular signal level. They enable the apparent reduction of distortion by feedback to be calculated.

reduces the gain of an amplifier may need to be looked at again.
The basis for the belief can be explained simply as follows. Suppose we still have our 1 volt of signal at the input of the amplifier itself, yielding A volts of signal at the output. But owing to non-linearity the amplifier generates harmonics and intermodulation products. Suppose the amplitude of any or all of these, relative to the signal output, is p. Then the distortion output (without feedback) is $p \mathrm{~A}$ volts. This can be regarded as due to a distortion signal $1 \mathrm{~A} /$ as large (i.e., p volts) at the input, but to make clear that this is an internal signal, not applied from without, it can be shown as in Fig. 2(a), which takes account of distortion only. The corresponding state of affairs with feedback is shown at (b), and as we don't know how much distortion is emerging we call it x volts. The voltage fed back is of course $B x$, so the total input is $B x+p$. When multiplied by the gain of the amplifier, A, this must amount to x :

$$
\begin{aligned}
& \mathrm{A}(\mathrm{~B} x+\mathrm{p})=x \\
& \mathrm{~A} p=x(1-\mathrm{AB}) \\
& \frac{x}{\mathrm{~A} p}=\frac{1}{1}-\frac{\mathrm{A}^{\prime}}{\mathrm{AB}}=\frac{\mathrm{A}}{\mathrm{~A}}
\end{aligned}
$$

proving that feedback affects the amount of distortion emerging from the amplifier in the same ratio as it affects the overall gain of the amplifier.

In this calculation we quietly assumed that the signal output (not shown) was the same in both (a) and (b), for that is what determines the amount of distortion generated internally, as is represented in both diagrams by the same " p volts." This means that the input (to XX) must have been increased to the same extent as the internal gain was reduced by negative feedback. And of course that could cause serious distortion in the pre-amplifier. But even with the increased signal level at XX it is generally easy to keep it negligible. However, if the use of feedback raises the level there so much that it is not easy, the feedback should be taken to an earlier stage, or A increased with perhaps a reduction in B . That is all part of routine feedback technique.

The basis of belief having been proved, we may think we can all go home. But actually this is just where we begin. For a start, what precisely do we mean by A? We defined it-or, to be quite fair to you, I defined it-as the number of signal volts received at the output for every volt applied at the input. (To silence any objectors who might claim that even 1 volt at the input of their amplifier would hopelessly overload it, I offered a choice of millivolts, or indeed any appropriate unit.) Nothing was said about the sort of volts-peak, r.m.s. or
instantaneous-but whatever was in mind it must have been assumed that A was constant, not depending on the signal voltage, at least within the working limits of the amplifier. In other words, it was assumed that the amplifier was linear. That being so, it wasn't very clever to use it in a calculation concerning amplifier non-linearity. We did, of course, guard against complete absurdity by stipulating that the signal voltage must be the same in both diagrams in Fig. 2. But if the non-linearity is considerable, so that the distortion is a substantial part of the total output, that safeguard isn't good enough. For, if feedback has any effect on the amount of distortion, the total output will be different and A will almost certainly be different.

So much for the general principle. The belief is undermined. The next thing is to see how it might work out in practice. The correct procedure, of course, would be to embark on a comprehensive and rigorous mathematical analysis that would cover every case (for those who could see the wood for the trees). But you know me too well to expect that.

The " line " in " linearity" is the graph of output against input. There are two sorts of these graphs: one could be plotted by connecting a calibrated a.f. signal generator to the input of the amplifier and varying the signal strength there while measuring the corresponding r.m.s. or peak voltages at the output. The curve might look something like Fig. 3. There would be no point in reversing the connections with the idea of extending the curve into the negative

Fig. 4. In this kind of output/input graph, instantaneous voltages are plotted. (a) is a linear (distortionless) characteristic: (b) and (c) are non-linear curves, representing second and third order distortion respectively.
region, for its shape would necessarily be the same in reverse. The other kind, which is the one we are going to study, is to be seen by substituting the Y plates of a cathode-ray oscilloscope for the output voltmeter, and connecting the X plates (with suitable distortionless amplification) across the input. The positive and negative half-cycles obviously swing the curve in both directions from the origin as their instantaneous values are shown on the screen, and their shapes are not necessarily the same.

A perfectly linear amplifier would yield a perfectly straight "curve," as in Fig. 4(a). In the case of a power amplifier this would merely show that it was being uneconomically under-driven. In a commercial world it is necessary to work up to some distortion, even though it be limited to as little as 0.1%. Most amplifiers, so long as they are not overdriven, tend to show curves of two main shapes (or combinations of both), as in Fig. 4(b) and (c). The first has a square-law term in its output/input equation, which generates a second harmonic of the signal, and second-order intermodulation. The second has a cubic term and generates third-order distortion, which sounds worse.

Now A (being output/input) is represented on these Fig. 4 diagrams by the slope of the curve. In (a) the slope is the same throughout, so A is constant and (assuming, as we usually can, that B is likewise) there need be no question as to exactly what $1-\mathrm{AB}$ means. In (b) and (c), A is varying all the time, so one doesn't know what figure to insert for it when using the formulae. We can say that Fig. 4(b)

Fig. 5. The full line is a graph of the Fig. 4(b) type. The dotted line shows its fundamental part: the full-line variations from this cause second-harmonic distortion, as shown in Fig. 6.
indicates a smaller A at the negative peaks than at the positive, so presumably the negative part of the curve is straightened out less by negative feedback than the positive part, but the effect on the distortion is difficult to assess without a large-scale mathematical operation. Let us see what we can do without that.

Our example is an amplifier having a Fig. 4(b) type characteristic, which appears quantitatively as Fig. 5.

To make sure that the only distortion is secondharmonic, I have plotted it from the equation

$$
\dot{\mathrm{V}}_{\mathrm{o}}=100 \mathrm{~V}_{1}+100 \mathrm{~V}_{1}^{2}
$$

where V_{0} is the instantaneous output voltage and V_{1} the input voltage. This gives the amplifier a gain of 100 as regards the fundamental.

A simple calculation shows that with a peak V_{1} of 0.4 V the $100 \mathrm{~V}_{\mathrm{t}}{ }^{2}$ term is the cause of 20% secondharmonic distortion. We can do it graphically by drawing a straight line joining the tips of the curve, noting how far up the V_{0} axis it comes (16 volts in this case) and lowering the line half that distance. It is then the linear characteristic responsible for the fundamental, shown as a pure sine wave in Fig. 6(a). The actual curve we have plotted is 8 volts lower at zero V_{t} and 8 volts higher at positive and negative peaks; these points can be transferred to Fig. 6(a), and when joined up by the full line show what comes out of the amplifier when $\pm 0.4 \mathrm{~V}$ peak is put in. The difference between this and the fundamental has been plotted below, (b), and is clearly a second harmonic. Both Fig. 5 and Fig. 6 show that its peak value is 8 V , which in relation to the fundamental's 40 V is 20%.

(a)

Fig. 6. (a) the full line shows the output of an amplifier with the characteristic given in Fig. 5. when the input is a pure sine-wave. The dotted line is the fundamental part, corresponding to the dotted line in Fig. 5. The difference between the
two, shown by itself at (b), is a second harmonic.

Readers who hitherto may have been rather hazy about the connection between the output/input curve and the waveforms seen on a linear time base are now, I hope, feeling more confident.

Anyone with the most elementary knowledge of the differential calculus will realize that the easiest way of finding the slope (which is A) at any point on the Fig. 5 curve is to differentiate its equation, thus:

$$
A=\frac{d V_{0}}{d V_{1}}=100+200 V_{1}
$$

So at zero V_{1} it is 100 , which is what one would expect, since an input confined to very small values of V_{I} would yield negligible distortion, and 100 is the slope of the fundamental line. At the positive peak it is $100+80=180$ and at the negative peak $100-80$ or only 20 . So 20% distortion, which isn't so horrible as you might expect, if it is all second-harmonic, is associated with no less than a 9 to 1 variation in amplification over each cycle of signal. We can hardly be surprised, then, if we find that negative feedback doesn't work entirely according to plan.
Perhaps the best way of seeing how it does work is to plot a with-feedback curve to compare with Fig. 5, which can be done by making a table to calculate some points. Remember, the voltage fed back at any point is equal to $-\mathrm{BV}_{0}$, and this added to V_{1} gives V^{\prime}, the with-feedback input required.
To make it easy to compare the two curves, the V_{1}^{\prime} scale of the new one should be the V_{1} scale of the
old, multiplied by as many times as V^{\prime} must be greater than V_{1} to maintain the same output. A convenient figure for this, which is also typical of feedback practice, is $10.1-\mathrm{AB}$ being $10,-\mathrm{AB}$ is 9 and -B is 0.09 . (This is sometimes called 9% feedback.)

V_{1}	$\stackrel{(2)}{\mathbf{V}_{0}}$	$\begin{gathered} (3) \\ 0.09 V_{0} \end{gathered}$	${ }^{(4)} \mathbf{V}_{1}$
0.1	11	0.99	1.09
0.2	24	2.16	2.36
0.3	39	3.51	3.81
0.4	56	5.04	5.44
-0.1	- 9	-0.81	-0.91
-0.2	- 16	-1.44	- 1.64
-0.3	-210	-1.89	-2.19
-0.4	-240	-2.16	-2.56

Column (1) contains a few selected points covering the peak-to-peak swing of V_{1}. Column (2) contains the corresponding output voltages calculated from the equation, which were needed for plotting Fig. 5. Column (3) shows the voltage fed back, equal to $0.09 \mathrm{~V}_{\mathrm{o}}$. Lastly column (4), which is got by adding (3) to (1), shows the input required at XX to maintain the same output (2) as before.

Plotting Fig. 7 from columns (2) and (4), we are at once impressed by the success of negative feedback in straightening out the amplifier curve. It is now hardly distinguishable from a straight line, especially on the positive side.

Becoming a little more critical, we note that we need considerably more than 10 times the former positive peak input; to be exact, 13.6 times. But 10 was calculated on the basis of $A=100$, whereas we have already noted on Fig. 5 that A varies from 100 to 180 during the positive half-cycle, and if we recalculate the average multiplier for these values of A we find it is 13.6. Rather than find fault here, we might thank feedback for raising the positive fundamental peak output from 40 V with 20% distortion
(Continued on page 229)

Fig. 7. This, for comparison with Fig. 5, is the result of reducing the small-signal gain 10 -fold by negative feedback, and correspondingly increasing the overall input $\left(V^{\prime}{ }_{1}\right)$ to yield the same net input $\left(V_{1}\right)$ as before.
to 55 V with about $1 \frac{1}{2} \%$ distortion, and it looks as if it could be increased indefinitely by increasing V^{\prime}.

On the other hand, any satisfaction that might at first be derived from seeing that the input needed for the negative peak has been increased only 6.4 times is damped by the unfortunate accompanying fact that the fundamental negative peak has been reduced from 40 V to about 25 V . And of course a 55 V positive peak is no good with a 25 V negative peak-unless use of the amplifier is to be confined to rather unusual waveforms.

No; if at least our original $\pm 40 \mathrm{~V}$ peak sine-wave output is to be maintained, it will clearly be necessary to bring up the negative input, as we should be able to do, seeing that we were prepared to find at least $\pm 4 \mathrm{~V}$.

To see what we get we shall have to extend our plots in the negative direction. If we do, we find that beyond $\mathrm{V}_{1}=-0.5 \mathrm{~V}$ a complication sets in: increasing V_{I} reduces V_{o}, making the curve bend up. (This could have been foreseen from the equation for A, which becomes negative directly V_{1} becomes more negative than -0.5 V). Now it is true that something like this can occur in some amplifiers, but a more likely explanation of zero \mathbf{A} with a Fig. 4(b) type of curve is that a valve has cut off. It of course stays cut off if V_{1} is made still more negative, so a more realistic procedure would be to continue the curve horizontally to the left:

$-\mathbf{v}_{1}$	$\mathbf{v}_{\mathbf{0}}$	$\mathbf{0 . 0 9 \mathbf { v } _ { \mathbf { o } }}$	$\mathbf{v}_{\mathbf{1}}$
-0.5	-25	-2.25	-2.75
-0.6	-25	-2.25	-2.85
-0.7	-25	-2.25	-2.95

At this rate it is obviously going to take us a long time to reach $\mathrm{V}^{\prime}{ }_{\mathrm{I}}=-4$, but we can see which way the wind is blowing and-although such impatience is often risky with graphs-in this case we are justified in boldly writing " $\mathrm{V}_{\mathrm{J}}=-4.00 ; \mathrm{V}_{\mathrm{O}}=$ $-25 . "$

Continuing beyond our original $\pm 4 \mathrm{~V}$ (comparable with the $\pm 0.4 \mathrm{~V}$ in Fig. 5) is clearly not going to make the picture look any prettier, so in Fig. 8 I have kept within those limits. Now at least we see the truth about negative feedback, and it doesn't look so good. And if anyone is thinking I've fiddled it to look worse by arbitrarily departing from the simple quadratic equation at the negative end, I invite him to stick to the equation. The result will be far more ghastly than Fig. 8.

That is bad enough, for on analysing Fig. 8* I find that the fundamental output is only just over 30 V peak, compared with 40 V in Fig. 5 (a power reduction of 44%), and in exchange for our 20% second harmonic we have received the following mixed bag:

2nd harmonic:	13.2%
3rd	"
4th	7.4%
5th	3.3%
6th	1.24%
7th	0.16%
	0.83%

plus uncounted amounts of higher harmonics, which,

[^8]

Fig. 8. The result of further adjusting the input V^{\prime}, to 10 times V_{1}, positive and negative, is shown here. Audisly, the distortion would be worse than without feedbalk (Fig. 5).
judging from the sharpness of the bend in Fig. 8, and the magnitude of the 7 th harmonic, are likely to be very significant, aurally if not numerically. It is true that the total harmonic distortion, found by taking the square root of the sum of the squares of the above lot, is 15.6%, which compares favourably with the 20% total harmonic distortion without feedback. But if anyone thinks he is thereby getting a bargain, he oughtn't to be allowed out alone in the hi-fi market. He will be an easy prey to the merchants, whose motive in quoting total distortion figures is only too clear to those who have compared actual sound reproduction with the harmonics present. Though such authorities differ as to the precise factors by which percentages of harmonics higher than the second should be multiplied to give some idea of their relative unpleasantness, the most conservative of them advocate (without necessarily admitting that it is adequate) a weighting factor equal to half the harmonic order; and D.E.L. Shorter of the B.B.C. considers the square of this factor is not excessive*. For instance, the 7th harmonic would have a weighting factor of $(7 / 2)^{2}=$ 12.2, raising the above 0.83% to over 10%.

At this point a red herring labelled "Intermodulation" is almost certain to be seen trailing across our path. But I advise that if any benefit is to be derived from the time so self-sacrificingly spent in following me thus far, we must firmly ignore it. No doubt we know that the products of intermodulation, being in general not harmonically related to the tones present in the original sounds, are more conspicuously unpleasant than at least the lower harmonics, which are; but it does not follow that one must insist on intermodulation data and refuse harmonics as worthless substitutes. For, when measured under comparable conditions, harmonic percentages are more or less proportional to intermodulation percentages. And anyway, in this case we are getting the higher harmonics, which are discordant in their own right.

Continuing our uneasy contemplation of Fig. 8, we see that there is nothing for it, if we have regard for the feelings of listeners, but to reduce our input signal until the sharp bend is cleared; say 2.5 V peak.

[^9]The output, which by then is nearly all pure fundamental, is barely 25 V , or less than s of the power we got in Fig. 5, admittedly with lots of second harmonic too. But if we reduce the fundamental output without feedback to the same level, the second harmonic comes down to $12 \frac{1}{2} \%$, which on paper is certainly not hi-fi, but wouldn't offend as many listeners as you might think.

It is now about time to sum up with a few conclusions:
(1) The "common belief" (that negative feedback reduces non-linearity distortion in the same ratio as it reduces amplification) is true in the simple sense only if there is no non-linearity to reduce.
(2) However, provided that the original non-linearity is not so bad that the slope of the output/input curve (which is the amplification) falls seriously below the nominal value at any point within the maximum signal amplitude, the common belief is fair enough.
(3) It follows from (1) and (2) that any idea that one can sling an amplifier together any old how and pull it straight with liberal supplies of negative feedback is unsound-even apart from the practical difficulties of this treatment.
(4) While negative feedback works like a charm on amplifiers with moderate non-linearity, run well within their powers, it doesn't necessarily increase
the amount of power that can be drawn; on the contrary, it may well reduce it.
(5) In any case, once the signal amplitude runs past the nearly-undistorted limits, it abruptly becomes very distorted, not only as regards quantity but even more as regards quality. In other words, even a moderately overloaded set sounds a lot worse with feedback than without.
(6) The fact that hi-fi fans, to whom negative feedback is a sine qua non, also insist (especially in America) on vast numbers of output watts being available, in spite of the surprisingly small average power required even for quite loud reproduction, is thus explained.
(7) The fact that demonstrations of "hi-fi", unless conducted by masters of the art such as Gilbert Briggs, are usually such painful experiences, is also explained. The demonstrator of an X -watt amplifier so often doesn't reckon he is doing his job if the output falls below the maximum rating.

During the whole of this investigation we have assumed that the feedback is precisely negative. That is never true at relatively high frequencies, even with the simple cathode follower, and the picture is then far worse than I have drawn. This is why sharp-cornered waveforms, which contain high-frequency components, may become horribly distorted. Perhaps it will be worth enlarging on the matter next time.

BOOKS RECEIVED

Radio, Television, Industrial Tube, Diode and Transistor Equivalents Manual, by B. B. Babani. A comprehensive equivalents list of over 20,000 devices, giving commercial equivalents, C.V. types, Service-to-civilian equivalents, and U.S.A.-to-British commercial equivalents. A replacements list is given for television picture tubes. Pp. 208. Bernards (Publishers) Ltd., The Grampians, Western Gate, London, W.6. Price 9s 6d.

Reception of Sound and Television Broadcasting, British Standard Code of Practice CP327.201 (1960). Recommendations for good practice in installation of broadcast receiving apparatus. Reference is made to relay services, individual-set installations, communal-aerial systems, provisions for maintenance and training of maintenance personnel. Pp. 52; Figs. 8. Price 12s 6d. The Council for Codes of Practice, British Standards Institution, British Standards House, 2, Park Street, London, W.1.

Radio Stations-Installation, Design and Practice, by G. A. Chappel. Deals fully with all the aspects of highand low-power radio transmitting-station design, installation and servicing. Includes chapters on the electrical and mechanical design of transmission lines and aerial systems. Pp. 248; Figs. 148; plates 31. Pergamon Press, Headington Hill Hall, Oxford. Price 50s.

Electrical Noise: Fundamentals and Physical Mechanism, by D. A. Bell. A complete reference and text-book on the subject of noise in electronic and physical devices. The author approaches present-day knowledge in the light of historical theories and controversies. The Nyquist theory of voltage fluctuations across resistors is dealt with exhaustively, and there is a chapter on v.h.f. valves, travelling-wave tubes, parametic amplifiers and masers; noise in metal firms is also discussed. Information on measurements is included, and each chapter is followed by an extensive list
of references. Pp. 342; Figs. 98. D. Van Nostrand Company, Ltd., 358, Kensington High Street, London, W.14. Price 50s.

Beam and Wave Electronics in Microwave Tubes, by R. G. E. Hutter. A mathematical treatise on the basic principles of the family of microwave tubes. Smallsignal effects only are considered, and as this is a discussion of principles, no design information is given. The author does not attempt a physical description, but confines himself to the mathematics of operation. Such microwave circuitry as is closely associated with the tubes under discussion is described, and the concept of d.c.-to-a.c. energy conversion is discussed. A chapter is devoted to noise phenomena. Pp. 378; Figs. 158. D. Van Nostrand Company, Ltd., 358 Kensington High Street, London, W.14. Price 73 s 6 d .

Hochfrequenz-Messtechnik, by O. Zinke and H. Brunswig. This third revised and enlarged edition is a reference book of measurements at high frequencies. The range of frequency covered is from just above the audio band to the microwave region. Instruments and their operation are described, together with methods of determining many parameters such as frequency, phase, power and impedance. Throughour, reference is made to commercial instruments relevant to the measurement under discussion, and also to the equipment specifications in the companion book, Hochfrequenz-Messgeräte. Pp. 234, Figs. 258 . S. Hirzel Verlag, Stuttgart N., Birkenwaldstrasse 185. Price DM 24,80.

Hochfrequenz-Messgeräte, by O . Zinke and H . Brunswig. Abbreviated specifications of commercial instruments and devices for the measurement and generation of high-frequencies. Complementary to the companion work, Hochfrequenz-Messtechnik. Pp. 60. S. Hirzel Verlag, Stuttgart N., Birkenwaldstrasse 185. Price DM 9,60.

The outhor's station at Lowestoft, Suffolk, showing his Creed teleprinter.

0N the Saturday evening of the week in which the recent Radio Hobbies Exhibition was held, the British Amateur Radio Teleprinter Group held its first dinner, celebrating in doing so its first year of activity.

Amateur radio teleprinting is a very new mode of communication for the British radio amateur, for whilst this mode has been followed in the U.S.A. and Canada for a number of years, its exploitation by radio amateurs in Europe was held up by a number of difficulties. These difficulties included a certain prejudice amongst some amateurs to this method of communication, lack of information on sources of suitable equipment and uncertainty as to the licence conditions regulating this aspect of amateur radio transmission.
The group was formed in the middle of 1959 to investigate these problems and endeavour to get "RTTY," as it is designated in radio circles, introduced into the field of amateur radio activity in this country. Enquiry from the G.P.O. revealed that teleprinting by means of frequency shift keying was, in fact, permitted by the terms of the licence controlling amateur radio transmitting activities in this country. A source of suitable teleprinters was found at a price the amateur enthusiast could afford, viz., around $£ 3$ to $£ 4$! Admittedly these were pretty obsolete by modern commercial standards, but they proved eminently satisfactory for the particular characteristics of amateur radio communication. The group produced and distributed news sheets, information leaflets and data so that almost imperceptibly old prejudices were broken down and knowledge of the system was disseminated throughout the amateur fraternity.

The first amateur radio teleprinting in this country took place towards the end of 1959 between Peter Carnochan's station (G3IAO) in Lowestoft, that of the author, also in Lowestoft, and that of W.M. Brennan (G3CQE) in Norwich. Transmissions were in the 80 -metre band ($850 \mathrm{c} / \mathrm{s}$) using f.s.k. At the 1959 Radio Hobbies Exhibition, a demonstration of amateur radio teleprinting was put on and the

AMATEUR

GROWING INTEREST IN EUROPE

By ARTHUR C. GEE* (G2UK)

Jan Adama ($P A \emptyset F B$) of The Hague, operating his Siemens teleprinter with outohead reperforator.
f.s.k. convertor unit used by the author for these first tests was shown working and it was briefly described and illustrated in a subsequent issue of Wireless World.

This demonstration was seen by Jan Adama, a prominent Dutch amateur (PAØFB), who wrote to the author early in 1960 saying he had assembled radio teleprinting gear and was ready for tests. These were soon successfully carried out with the author's station. In the meantime Mr. Brennan had been making successful contacts with RTTY stations in the U.S.A., Canada, Australia and other distant countries, and we soon learnt that Hans H. Horn, of Flensburg, W. Germany, was equipped for RTTY operation from his station DLIGP.

During 1960 there was a rapid growth of both membership of the Group and activity on the air and at the end of the year about twenty radio amateurs in this country, Holland and Germany were regularly using this mode of transmission. There is much yet to be done in popularizing RTTY amongst the European amateur radio fraternity; in extending its use to other countries; in developing equipment more suited to amateur requirements than the surplus commercial material which is at the moment widely used; and by disseminating technical information to those wishing to use this type of communication. RTTY has, without doubt, come to stay and is for the c.w. man what s.s.b. has become for the 'phone enthusiast.

[^10]
By "FREE GRID"

WIRELESS WORLD has always been noted for its meticulous accuracy, and I recollect being very greatly impressed in 1936, when the 25th birthday number was published, by the fact that the word jubilee was strictly avoided, the obvious ground for such avoidance being that the word can only properly be applied to a fiftieth anniversary, it being ultimately derived, of course, from the Hebrew festival of emancipation held every 50th year, as is described in such detail in the 25 th chapter of Leviticus. This festival was always initiated by a blast from a trumpet made out of a ram's horn (Heb. Yobel).
Incidentally, the correct spelling of the word is "jubile," as the A.V. translations of Leviticus make abundantly clear (Lev. XXV, 9, et seq) and I have often wondered how the extra " e " got stuck on to it. I suppose it is all part of the centuriesold craze for using French feminine past participles, such as "employee," which finally gave us the offensive word "evacuee," which can only be correctly used to describe a child who has received the attentions of a nurse armed with Mr. Higginson's remarkably effective invention.

Coherer to Crystal

However, to get back to our own jubilee, Wireless World was undoubtedly the first journal catering solely for radio interests, but it was by no means the first to publish details of how to rig up a wireless
receiver at home. That honour belongs, I believe, to The Model Engineer, which gave such information over 63 years ago, in January, 1898, as I pointed out in the May, 1951, issue of Wireless World when I also reproduced the circuit diagram.

I certainly cannot claim to have been reading The Model Engineer in 1898 but, curiously enough, I did write my first technical article in one of its sister journals in the early days of the First World War. But I don't think what I wrote-nor yet the 5 s I received for the article-had anything to do with the journal's subsequent decease.

It is a strange coincidence, but in 1911, when Wireless W orld was born, I built my first wireless set from a design in The Boys Own Paper, the idea being to receive the time signals from the Eiffel Tower. On the outbreak of war I had to surrender the set to the police, but I never reclaimed it afterwards. Judging by the primitive apparatus used at Scotland Yard in the early post-war years, as shown in the photograph on this page, I think I can see what the police did with some, at any rate, of my components.

Operation Helen

My other photograph, an instructional class of girl morse learners, was taken in the early part of the First World War when there was such a desperate shortage of manpower at sea that it was decided to put female auxiliaries aboard ship, a start being made in the wireless

". Primitive apparatus used at Scotland Yard in the early post-war years "
room. This enterprise was appropriately enough named "Operation Helen," as it was hoped that the prospect of having beautiful girls in the ship's company would do far more than "launch a thousand ships"; it was hoped that it would also attract men eager to serve in their crews. Had I not been serving in Kitchener's army I should certainly have been an eager recruit.

In the First World War, of course, there was no direction of labour and, indeed, no conscription for the fighting forces until March 2nd, 1916. Many of my older readers in the U.K. will recall the caption of the final pre-conscription recruiting poster, "Will you march too, or wait till March Two."

Do you notice how astonishingly reminiscent of my own features are those of the portly instructress standing on the starboard side of the class. She is, at least, becomingly dressed, which is more than can be said for the girls in her charge, whose dress was considered rather daring in those days, as their ankles were visible, and in the case of one girl, several inches of leg above them. As the old music-hall song of the times said, "Who cares a damn, for Mary's little lamb, now you can see her calves?"

However, with the coming of conscription, "Operation Helen" was abandoned, with the result that sailors were deprived of many home comforts with which the girls might have eased their hard lot in their watch below.

A.D. 1971, 1986, 2011

Another 50 years will have to pass before Wireless World can publish another jubilee number, and that will be the centenary number of April, A.D. 2011. However, it is customary to celebrate 60th and 75th anniversaries of things. I shall be very surprised if by the 60th anniversary in 1971 we do not have coloured television and by the 75th anniversary in 1986 stereoscopic coloured TV.

By 1971 our television sets will probably have a scanning unit so that we can show our coloured slides and also our home cine films on the c.r.t., and by 1986 our home ciné films will be returned to us from the processing station in the form of magnetic tapes holding both sound and vision recordings.
By 1986 every set will, of course, have a built-in multi-channel tape recorder for vision and sound so that while we are watching one programme we can simultaneously bottle one or more of the several alternative

"Prospect of having beautiful girls in the ship's company "
programmes which will be available. Built-in time switches will enable programmes to be bottled in our absence. There is not the slightest reason why these built-in recording facilities should not be available today in the case of our sound receivers.

Gynarchy

Long before our centenary year, the growing menace of gynarchy will have reached its logical conclusion, and all positions now sacred to the male will have been taken over by women. I have tried to imagine what the Wireless World editress of 2011 will probably be like. I think she will be a ravishingly beautiful blonde, but rather brainless, as is only natural since the Wireless World office will be fully " automationized" (" What a word!" as A.P.H. would say) and all articles will be written and sub-edited by electronic devices.

Some of you who are a bit lacking in imagination may wonder what need there will be of an editress, brainless or otherwise, in the days of full automation. Her function will, of course, be the purely psychological one of imbuing the male machine minders with a false sense of euphoria so that they give of their best; even today, some men work themselves to death just to provide dumb blondes with mink coats and Cadillacs, their sole reward being to win their soulless toothpaste smiles of approval. The blondes are not so dumb as some people think.

In the case of Wireless World readers of 2011, the psychological effect of the face of the glamorous editress on the cover, "in glorious Technicolor," will be to get them to accept, without complaint, articles which would otherwise cause them to
send letters of carping criticism to the editorial boudoir. Even hardfaced business-men like advertisers will be induced to buy more space than they intended.

Fettered by Physics

I will now leave the domestic scene of Wireless World's office and venture to glance into the future of the world of electronics, but I am definitely not going to inflict on you any of the unimaginative and rather obvious ideas which most sciencefiction writers present to their readers; I except Poe, Conan Doyle and H. G. Wells. Who can doubt that the interplanetary flights of which they wrote will one day take place? Mr. Kruschev may well be on his way to Mars as you read these words. It is equally obvious that interstellar and even intergalactic flights will eventually take place; not I think by the year 2011 nor even by the year 2011^{2} but quite probably by the year 2011^{2011}.

The reason for their unimaginative stories is that writers of sciencefiction allow their minds to be fettered by physics, or, more accurately, by our contemporary knowledge of physics. The sciction scribes, as I call them, write fantastic storiesdoubtless accurate by contemporary scientific knowledge-about travel to distant worlds while overlooking the possibility of travel to another kind of world which is right under their noses. The world to which I refer is the extra-spatial and extra-temporal one which I discussed fully in the Marcin, 1959, issue of this journal. I am greatly indebted to "Cathode Ray" for my ideas and gladly acknowledge it. As I explained in my original thesis on the subject, it was he who set me think-
ing by his article in the November, 1958, issue. In that article he gave us a very vivid picture of electrons as being "waves of which nobody knows" which it is usual to call ψ waves. As a result of reading this I expressed the view that if we could manage to alter one of the properties of the ψ waves such, for instance, as their λ, we should probably find that these metamorphosed electrons vanished, like H. G. Wells's Time Machine, out of our world of time and space into that extra-spatial and extra-temporal "world" inhabited by ghosts, fairies, poltergeists, and other seemingly shadowy and clammy entities who seem to pass through brick walls, to be able to be in two places simultaneously and, in general, to ignore many if not all the laws of physics.

In actual fact I don't believe they do ignore them; they merely seem to ignore physical laws because our knowledge of physics today is very limited in comparison with what it will be in the year 2011. After all, our present-day achievements in radio communications would have seemed incredible to the physicists of a century ago.
I am reluctant to call this spaceless and timeless place the metaphysical world because I don't think it is "beyond physics" as the name would imply. I will, therefore, call it the psychorronic world which simply means that it is built of metamorphosed electrons or, in other words, psychotrons, a word which I coined in the May, 1960, issue to describe these extra-spatial and ex-tra-temporal electrons or ψ waves which had had their wavelength or other property changed or metamorphosed, and had, therefore, become $\mu \psi$ waves.

Electrovision

I will venture only one prophecy on more ordinary lines. Over a quarter of a century ago in the issue of July 20th, 1934, I described in these columns the automatic camera with selfadjusting stops and shutter speeds as I reminded you last October. This type of camera has become all the rage since last year. I wonder if I can repeat my success of 1934 by suggesting that before 2011, our electronic experts and ophthalmic surgeons will have got together to do something very drastic for people like myself suffering from fa:ling sight.

I have in mind the development of something like the special kind of cathode-ray tube used for transmission but in very miniature form so that it would actually take the place of an eye and convert vision into pulses along the optic nerve, as the natural eye does now. It sounds nonsense. But so would a simple bread-and-butter iob like an appendectomy have sounded if it had been suggested in the days of the Crimean War, or even very much la`er.

reflections
 RANDOM RHDHHONS

By "DIALLIST"

A Wonderful Occasion

AND so Wireless World reaches its jubilee after a wonderful record. I'm sure that congratulations and birthday "many happies" will pour in from all parts of the world and I'm glad to make my own small contribution. May it go on from strength to strength. Myself, I've been one of its readers for over forty years and have been a regular contributor for over 26 years, radiating at random in every issue since that of January 18th, 1935. Before me is a letter from H. S. Pocock dated December 28th, 1934. In it he agrees to give the feature a twelve months' trial, agrees, too, to adopt my suggestion that the title should be "Random Radiations" and that my penname should be "Diallist." It's my proud boast that I've never missed an issue, though some of the copy was written in pretty difficult conditions -during the war, for instance, and in the course of two or three spells in hospital. Writing "Random Radiations" has been sheer pleasure, for it has brought me innumerable letters from all parts of the world.

Looking Back

WHAT amazing changes and developments there have been since Wireless World was ushered into the world. Old hands will remember, as I do, fiddling with crystal and cats whisker to find the most sensitive spot. The triode valve didn't become available to amateurs until after World War I. The early ones were all hand made and for that reason they were expensive. If I remember aright the price of the " R " valve, the only one on the market after the First War, was 27s 6d, though this came down a bit as the demand grew. Then the whole position was altered by the appearance of the Mullard "Ora" valve (Oscillator, Rectifier, Amplifier), which was priced at 15 s , and a little later by the coming of the Cossor "tin hat" valve, which got its name from the shape of its anode, and sold at the same price. There were few power valves in
those early days and I remember that my first 4 -valve set (home made, of course) consisted of four " R " type triodes, the output going to a loudspeaker consisting of a telephone receiver and a horn. What it must have sounded like I can't think, but people were enthusiastic about the quality of its reproduction!

Before the B.B.C.

UNTIL the British Broadcasting Company, afterwards to become the British Broadcasting Corporation, started transmitting there were only two sound broadcasting stations we could listen to in this country. One was The Hague (PCGG), which transmitred for short periods three days a week; the other was the Marconi station, 2MT, at Writtle, Chelmsford, which was on the air for about half an hour on Tuesday evenings. Its presiding genius was P. P. Eckersley, who not only ran the station but also provided much of the programme himself. Then in November 1922 2LO made its welcome appearance with programmes every day.

The Set-building Boom

EVERYBODY who was, or thought he was, in the service area of 2 LO , or the other B.B.C. stations as they came along in quick succession, was determined to have a wireless set. Many receivers were bought ready made but far more were probably home made. We wound our own coils, built our variable condensers (they weren't called capacitors then) and even made up our own a.f. transformers. If you're a Londoner do you remember Mrs. Raymond of Lisle Street? By that time a good few wireless weeklies of the popular kind had come into being and each of them contained every week instructions for building one or more receivers. As ready-made sets became cheaper and more plentiful the home building boom began to wane a little, though tens of thousands of receivers continued to be made by amateur enthusiasts.

Valves

THE triode with a 6 -volt filament gave way to 4 -volt types and later to

Pre-B.B.C. broodcasting station. The transmitter at $2 M T$, Writtle.

2-volt dull emitters. All were battery valves (you had your filament accumulator and your dry h.t.b.) for quite a time until the mains valve with its indirectly heated cathode burst on to an astonished world. All mains sets had transformers and in my humble opinion it's a thousand pities that transformerless valve chains were ever permitted. The power valve came on to the market and a sensation was caused by the appearance of the screen-grid valve and the pentode. Then all sorts of complex valves were developedhexode, triode-hexode and a whole range, some of which are now almost forgotten.

Receiving Sets

RUMMAGING in a drawer a few days before this was written, I came across the supplement to Wireless World of December 9th, 1932. It's entitled "Buyers' Guide to 1933 Receivers and Radiogiams" and lists the products of some eighty firms. It was a little before that that perhaps the most hideous of all receivers were made: it was usual then to mount the loudspeaker above the chassis of the set and this led to the development of cabinets with straight sides and rounded tops. They were, in fact, exactly like tombstones! The earliest sets were all single-valve or two-valve with grid-leak and condenser detectors and reaction. Reaction, misused as it so often was, could cause interference at considerable distances. A frequent item in B.B.C. news bulletins was: "Complaints of interference in the neighbourhood of X-road, Y -borough are being received. Will listeners living in that area please look to their sets."

Television

THE first television broadcasts by the B.B.C. were made on the medium waves and were received on J. L. Baird's 30-line scanning disc televisor. The pictures were tiny, though you viewed them through a lens, and therefore of very limited entertainment value by present-day standards. Bearing in mind the present-day craze for bigger and bigger screens it is interesting to recall that at the las: pre-war radio show several manufacturers introduced sets with small tubes (some as small as 5 in) in order to reduce the prices of sets. Even so there weren't a lot of television receivers in existence when World War II caused the Alexandra Palace to close down its transmissions.

A. F. BULGIN \& CO. LTD., BYE-PASS RD., BARKING, ESSEX

Telephone: RIPpleway 5588 (12 lines)

APRIL MEETINGS

Tickets are required for some meetings; readers are advised, therefore, to

 communicate with the secretary of the society concerned.
LONDON

6th. Brit.I.R.E. - Discussion on "Transistorized relevision receivers" at 6.0 at the London School of Hygiene, Keppel Street, W.C.1.

7th. I.E.E.-Discussion on "The Conversion of biological data into electrical signals" at 6.0 at Savoy Place, W.C. 2 .

10th. I.E.E.-Discussion on "Applications of electrical phenomena at liquid helium temperatures" at 5.30 at Savoy Place, W.C. 2.
11th. I.E.E.-" Precision instruments for coaxial line measurements up to 4Gc/s" by D. Woods at 5.30 at Savoy Place, W.C.2.

12th. Brit.I.R.E. - "Vibration analysis and testing" by D. E. Mullinger at 6.0 at the London School of Hygienc, Keppel Street, W.C.1.

12th. Society of Environmental Engineers.-" Climatic and high-vacuum environmental test chamber" by V. A Austin at 6.0 at Imperial College.

14th. Television Society.-'* Transparent phosphor screens" by Dr. D E. N. King at 7.0 at the Cinematograph Exhibitors' Association, 164 Shaftesbury Avenue, W.C. 2 .

19th. Brit.I.R.E.-"Instrumentation in obstetrics" by Dr. C. N. Smyth at 6.0 at University College Medical School, University Street, W.C.1.

19th. Society of Instrument Tech-nology.-"Electronic telephone exchanges" bv T. H. Flowers at 7.0 at Manson House, 26 Portland Place, W.1.

20th. British Computer Society. "The recording of time series and a programme technique for handling these records on a computer" by Sir Edward Bullard at 6.15 at the Northampton College of Advanced Technology, St. John Street, E.C.1.

20th-21si. Television Society.-Convention on "Television and film techniques" at the I.E.E. Lecture Hall, Savoy Place, W.C. 2.
21st. Institute of Navigation. "Marine radar presentation" by S. R Parsons and Capt. F.J. Wylie at 5.15 at the Royal Geographical Society, 1 Kensington Gore, S.w. 7 .

21st. B.S.R.A.-" Recording vision signals on tape" by Dr. P. E. Axon at 7.15 at the Royal Society of Arts, John Adam Street, W.C.2.

26th. I.E.E.-"Data transmission" by R. H. Franklin and J. Rhodes at 5.30 at Savoy Place, W.C.2.

26th. Brit.I.R.E.-Symposium on "Electronic counting techniques" at 6.0 at the London School of Hygiene, Keppel Street, London, W.C.1.

27th. I.E.E.-Kelvin lecture on "Medical electronics" by Professor R. F. Woolmer at 5.30 at Savoy Place, W.C. 2 .

BIRMINGHAM

12th. Television Society.-"Television in nuclear science" by Dr. P. D. Whitaker at 7.0 in the New Physics Lecture Theatre, the University

24th. I.E.E.-Annual general meeting at 6.0 followed by "A review of progress in ultrasonic inspection techniques" by A. C. Rankin at the James Watt Institute.

BRISTOL

11th. Television Society.-"Deflection techniques for 110° picture tubes" by B. Eastwood at 7.30 in the Colston Room, Hawthorns Hotel, Woodland Road, Clifton

19th. Brit.I.R.E.-" Colour television" by Dr. G. N. Patchett at 7.0 at the School of Management Studies, Unity Street.

CAMBRIDGE

20th. I.E.E.-" The potentialities of artificial earth satellites for radiocommunication" by W. J. Bray at 8.0 at the Cavendish Laboratory.

CHELTENHAM

21st. Brit.I.R.E.-Annual general meeting of the section followed by " The mesa transistor and its h.f. applications" by D. H. Mehrtens at 7.0 at Techrical College.

EDINBURGH

18th. I.E.E.-" Radiocommunicsaion in the power industry" by F. H. Cox and R. E. Martin at 7.0 at the Carlton Hotel.

FARNBOROUGH

18th. I.E.E.-" The future of "electrics' and 'electronics' in aircraft and guided missiles" by Viscount Caldecote at 6.15 at the Technical College.

LEICESTER

17th. 「elevision Society.-"A novel approach to colour television" by A. F. H. Thomson at 7.30 in Room 104, the College of Technology \& Commerce, The Newarke.

LIVERPOOL

13th. Society of Instrument Tech-nology.-"Feedback " by R. S. Medlock at 7.0 at M.A.N.W.E.B. Industrial Development Centre.
19th. Brit.I.R.E.-" The history of radio" by G. R. M. Garratt at 7.0 at the Adelphi Hotel.

MANCHESTER

6th. Brit.I.R.E.-"Plant investigation and control using digital techniques" by K. J. McCarthy at 7.0 at the Reynolds Hall, College of Technology.

10th. Society of Instrument Tech-nology.-" Industrial application of TV" at 6.45 at the Nags Head, Jacksons Row.
26th. I.P.R.E.-" Telecommunications" by British Railways at 7.30 at the Central Hall, Oldham Street.

NEWCASTLE-UPON-TYNE

10th. I.E.E.-Annual general meet ing at 6.15 followed by "Some aspects of the application of electronics to medicine" by Dr. F. T. Farmer at the Rutherford College of Technology, Northumberland Road.

12th. Brit.I.R.E.-Annual general meeting of the section followed by "Colour television" by Dr. G. N. Patchert at 7.0 at the Institute of Mining and Mechanical Engineers, Neville Hall, Westgate Road.

NOTTINGHAM

11th. I.E.E.-"The power drive and control for Jodrell Bank radio telescope' by C. N. Kington, H. A. Prime and H. T Price at 6.30 in the Lecture Theatre, Portland Building, The University.

PORTSMOUTH

5th. I.E.E.-Annual general meeting at 6.30 followed by "The application of electronics to the electricity supply industry" by Dr. J. S. Forrest at the College of Technology.

SCUNTHORPE

19th. I.E.E.-"Silicon power rectifiers" by A. J. Blundell, A. E. Garside R. G. Hibberd and I. Williams at 6.30 at the North Lindsey Technical College.

SOUTHAMPTON

1lth. I.E.E.-" High-speed pulse techniques using transistors" by E. Wolfendale at 6.30 at the University.
19th. Brit.I.R.E.- "The development of an ammonia maser oscillator as a frequency standard" by A. Mitchell at 7.0 in the Lanchester Building, the University.

STONE

17th. I.E.E.-" The potentialities of artificial earth satellites for radiocommunication" by W. J. Bray at 7.0 at Duncan Hall.

A portable battery-operated instramen's maitable for terting PNP, NPN and Point Contact transistort, in the roomded emitter and Poment contict craniontors, Provision is inchoded for in slte menonremente. The instrument in conded for in sifu measuremeate. The instrument in grpplied compide with comprehoasive operating insitcor Dat Lianual which provider tect data for approximately 8000 trancintors.
Briof Specification:
Range of Collector Volesge: 1.5 V to 10.5 V (up to 150 V 1. Firse indieation 2 al supplies)

Base Current: $\quad 0.1 \mathrm{~mA}, 0-40 \mathrm{~mA}$
Collector Curr
Boca:
$0-1 \mathrm{~mA}, 0-40 \mathrm{~mA}$ 0.14

0-25, 0-250 measured ar I Kc/s
Messurement: $1-20,21-40 \mathrm{~dB}$
Construction in genaral conforme with U.K. InterService Spec. KII4.

NEWAD

valye characteristic meter
Mk. IV
This motrument has been doagoed to tes' any dandard ceoviving o: transmitting valve having up to a marimum anode dissipation of 25W. Inter-alec trode ineralation, mode current, mutua condnctance und "gas "current can be mearured, and by mating a prise of testes, complete families of curves mas be plotted. Bectuars and simal diodes are tested andor raitable load conditions. A comprehensive data manas ingolied with the instrument, which operates from $100-1.0$ volts and $200-800$ volis $60-60 \mathrm{c} / \mathrm{s}$ A.C. mains.
Briol Specification:
Range of Anode-Voltage:
Range of Sereen Voltsge
Range of Heater Voltage
Heater Current
Anode Current:
Mutual Conductance
Negative Grid Voltage
Gas 'Current:
$12.6-400$ volts
$12.6-300$ volts
$0.625-117.5$
3 A max.
100 mA max.
$0.1-60 \mathrm{~mA} / \mathrm{V}$ max.
$0-100 \mathrm{~V}$ in 9 ranges
$2 \mu \mathrm{~A}$ firse indication

REPAIR SERVICE

Our fully oquipped Service Dept. deals promptly with reptirs to AVO Instrumenes, or if more convenient thay may be sent to either of the following authorised AVO Service Agents:Automac Ltd.,
Throstle Grove Works.
Gt Egerton Streat,
Farnell Inserumanes Led. Lighe Induserial Estace York Road. Wetherby, Yorks.

Write for fully lliustrated brochures

TELECOMMUNICATIONS AND ELECTRONICS

In its four factorles at Coventry, the Company produces a comprehensive range of telecommunication and electronic equipment from national telephone networks to local office communications. Products include industrial and office computers, guidance systems for rockets, remote supervisory and control equipments, machine tool controls and numerous components including capacitors, power units, relays, uniselectors and digitizers.

, RADIO AND TELEVISICN

The G.E.C. Radio Group produces the famous range of radlo and television receivers and high fldelity sound equipment.

VALVES AND CATHODE RAY TUBES

G.E.C. valves and cathode ray tubes for Industry and communications, manufactured by the M-O Valve Co. Ltd. Include receiving valves (both high figure of merli valves and 'rugged' types) and transmitting valves for broadcasting and radio frequency heating. Micro-wave devices Include magnetrons, klystrons, travelling-wave tubes and backward-wave osclllators.

SEMICONDUCTORS

G.E.C. is one of the leading semiconductor manufacturers in the country. The wide range of transistors, rectiflers and diodes is now belng produced at a rate of some 250,000 per week.

leadership = Electronics leadership

 -the G.E.C. equation for progress and prosperityOne guiding principle links the many works and laboratories of the G.E.C.-comprehensive and continuing basic research. This has made the G.E.C. a familiar and trusted name, and particularly so in the fast growing market for electronic equipment. A brief description of the activities of some of the G.E.C. Groups is given below. Each of these Groups draws on basic research work from the Hirst Research Centre at Wembley and the Applied Electronics Laboratories at Stanmore. Each with its own development programme is preparing new necessities as yet undreamed of for the world of tomorrow.
Opportunities for Graduates: Last year over 100 graduates jolned the Company on completing their university studies. Extensive developments will increase the number of opportunities for able graduates in 1961 for responsible work in research, development, design and manufacture. Send a postcard to The Controller, Education \& Personnel Services, Dept. W.W. The General Electric Co. Ltd., Magnet House, Kingsway, W.C.2.

ELECTRICAL INSTRUMENTS

In addition to more orthodox Instruments, the Company, at Salford, has developed a radio altimeter and a radio compass as navigational alds for alrcraft. It also manufactures quartz crystal units, ferrites, thermostats and magnetic materials for use in radio and electronic components. Latest developments include the flrst commerclally available thermo-electric cooling units.

RESEARCH

The basic research and much of the long term development effort ie carried out at the Hirst Research Centre, Wembley, and the associated Applied Electronles Laboratorles at Stanmore.

THE GENERAL ELECTRIC CO. LTD.

Telecommunications \& Electronics Group,Coventry Radio Group, MagnetHouse, Kingsway, London WC2 M-O. Valve Co. Ltd., Hammersmith, London W6 Semiconductor Division, Haze/ Grove, Stockport. Salford Electrical Instruments Lid., Salford

AVEL TOROIDS

Power Transformers

$50 \mathrm{c} / \mathrm{s}$ to $5000 \mathrm{c} / \mathrm{s}$
up to 20 KVA.

Audio Transformers

up to 300 watts.

Current Transformers

up to 30 VA.
as well as Magnetic Amplifiers,
Converter Transformers, Transductors,
Inductors and Filter Toroids.
We produce toroids ranging in sizes from the smallest which has a minimum finished i.d. of .055 to cores
 having a maximum o.d. of 24 in . and an overall height of 6 in . Wire gauges from 10-48 s.w.g.
AVEL TOROIDS are performance tested to Laboratory standards.

1 Toroidal tranaformers up to 20 KVA are made. By using glass insulated wire and making full use of the good heat dissipation characteristics of the toroid, the operating temperature may be $300-350$ degrees C.

2 One of the high-speed miniature and sub-miniature toroidal winding machines which wind $48 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. wire at 1,200 turns per minute.

Sub-contract winding capacity available.

2

verin ESOD

Easy-to-build kit-sets of

"GLOUCESTER" STEREO CABINET KIT. Specially deslgned to meet the varying needs of different homes. Mk. I houses Record Player, F.M. Tuner, Stereo Amplifier, records, etc. Mk. ti will house a Tape Deck in addition. 46lin. Iong, 30 in . high, 2 lin. deep. "In the white "for finish Opersonal tast

Mk. II 1 17.e.6
"COTSWOLD" HIFFI SPEAKER SYSTEM KIT. Acoustically designed enclosure " in the white " 26 in . $x 23 \mathrm{in}$. $x 15 \mathrm{fin}$. housing a 12 in . bass speaker with $2 i n$. speech coil, elliptical middle ppesker cogather with pressure unit to cover the ull frequency range of $30-20,000 \mathrm{c} / \mathrm{s}$. Complete with speakers, cross-over unit, level control, etc.
19.186
"CHEPSTOW" EQUIPMENT CABINET KIT. Occupies minimum floor space. Will house Record Playar, F.M. Tunar, Stereo, Amplifier and Record Payar, F.M. Tunar, Stereo, Amplifier and
additional power amplifers where needed. additional power amplifers wher needed.
Dim. $35 \times 18 \times 33 \mathrm{in}$. high.

HFFI SINGLE CHANNEL AMPLIFIER KIT Model MA-12. 12 w. output, wide freg. range low distortion.

STEREO CONTROL UNIT KIT. Model USC-I. Push button selection, eccurately matched zanged controls to $\pm 1 \mathrm{~dB}$. Accepts inputs from most tape hesds and any sterec or mono pick-up.
<17.19.6
HI-FI STEREO AMPLIFIER KIT. Model S-88. 16 w . output, 20 mV . basic sensitivity (2 mV . Masilable, 20/- extra). Ganged controls, Stareol Monaura sram., radio and tape recorder inputs Push-button sefection. Two-tone grey metal
cabinet.
6-W. STEREO AMPLIFIER KIT. Model S-33. 3 watts per channal 0.3% distortion 25 w/chnl., 20 dB N.F.B. Inputs for Redio (or Tape) and Gram., Stereo or Monaural, ganged controls. Sensitivity 200 mV .
HHFI SPEAKER SYSTEMKIT. Model SSU-I. Ducted-port bass reflex cabinet "in the white." Twin speakers. With legs Cll/I2/6 fice. 6 STEREO-HEAD BOOSTER KIT. Modal USP-I. Hi-Fi Stereópremplifierifor, low output Hi-Fi P.U.'s. Input 2 mV to 20 mV . Output idjuseable from 20 mV . to $2 \mathrm{v} .40-20,000 \mathrm{c} / \mathrm{s}$. Also suitable as low-noisa R.C.-coupled high-gain monaural amplifier.
©5.19.8
TRANSCRIPTION RECORD PLAYER. Mod. RP-IU. 4-spead A.C. motor. Ronette Stereol Mono pick-up. Complate on plinth. 12.10 .0

TAPE AMPLIFIER UNIT KITS. Modals TA-IM and TA-IS. This Combined Tape Record Replay Amplifier is available in both monophonic and Stereophonic models. Model TA-IM can be modified to the stereo version with modification kit TA-IC.
TA-IM £16.14.0; TA-1S, 222.4.0; TA-IC 16. TAPE DECKS are now available as "packaged deas "with other equipment.

Details on request

SIn. OSCILLOSCOPE KIT. Model O.12 U. Has wide-band amplifiers, exential for TV sarvic ing. F.M. allgnment etc. Vertical irequency response $3 \mathrm{c} / \mathrm{s}$ to over $5 \mathrm{Mc} / \mathrm{s}$, without extra switchins T / B covers $10 \mathrm{c} / \mathrm{s}$ to $500 \mathrm{kc} / \mathrm{s}$ in 5 ranges $£ 4.15 .0$

ELECTRONIC SWITCH KIT. Model S-3U, (Oscilloscope Trace Doubler). Enables a ingle beam oscilloscop to give simultansous traces of two separate and independent sienals. Switchin rates approx. 150, 500, 1,500, 5,000 and $15,000 \mathrm{c} / \mathrm{s}$. Sig. freq. response $0,100 \mathrm{kc} / \mathrm{s} . \pm 1 \mathrm{~dB}$. Separate gain controls and sync. output. Sig. input range $0.1-1.8 \mathrm{v} . \mathrm{rams}$

CAPACITANCE METER KIT. Model CM-IU Direce reading 4Hn. scale. Full-scal ranges $0-100 \mu \mu F, 0-1.000 \mu \mu F, 0-0.01 \mu F$ \& $0-0.1 \mu F$ E14.10.0 DECADE CAPACITOR KIT. Model DC-I. Capacity values $100 \mu \mathrm{~F}$ to $0.111 \mu \mathrm{~F}$ in $100 \mu \mu \mathrm{~F}$ steps.
15.18.6

VALVE VOLTMETER KIT. Modal V-7A. 7 voltage ranges d.c. volts to 1,500 e.c. to 1,500 r.m.s. and 4,000 peak to peak. Resistance 0.1Ω to 1,000 MQ with internal battery. D.C. input impedance II MQ. dB measurement has centre: zero scale. Complete with test prods, lead and standardising battery.
13.0 .0
R.F. PROBE KIT. Model 309-CU. Extends the frequency range of our V-7A to $100 \mathrm{Mc} / \mathrm{s}$. and enables useful volcage indication to be obtained up to $300 \mathrm{Me} / \mathrm{s}$.
c1.5.6
R.F. SIGNAL GENERATOR KIT. Mode! RFIU. Provides excended frequency coverage on six bands from $100 \mathrm{kc} / \mathrm{s} .-100 \mathrm{Mc} / \mathrm{s}$, on funds mentals and up to $200 \mathrm{Mc} / \mathrm{s}$. on calibrated har. monics.
\&1.11.0
GRID-DIP METER KIT. Model GDIU. Functions as oscillator or absorpcion wave meter With plug-in colls for continuous frequency coverage from $1.8 \mathrm{Mc} / \mathrm{s}$. to $250 \mathrm{Mc} / \mathrm{s}$. 29.19 .6 Two Additional Plue-in Coils Model $341=\mathrm{U}$ extend coverage down to $350 \mathrm{kc} / \mathrm{s}$. With dial corralation
curves, $15 / \mathrm{s}$
TRANSISTORISED VERSION
Mode:
XGD.1. Similar to GD-IU. Fully translstorised with a frequency range of 1.75 to $45 \mathrm{Me} / \mathrm{s} .49 .18 .6$
AUDIO WATTMETER KIT. Model AW-IU Up to 25 w . continuous. 50 w . intermittent \$13.18.6

MATCHED HI-FI STEREO KIT We offer as a "packared deal "the followins matched Hi-Fi Stereo Equipment 4-speed Record Player (RP-1U) 1210 10 6 w . Amplifier ($\mathrm{S}-33$) Twin Speaker Systems (SS U -.i.i)

Cost of Unics in io.............. 20110

Atan "all-in" price of C44 9 Pedestal Speaker legs 2 진........... 442100

- Deforred Terms

Available on all orders above clo.

2fin. SERVICE 'SCOPE KIT. Modal OS.I Light, compact portable for service ensineers Dim. $5 \times 8 \times 14$ in. long. We 10 ± 16. El| $19.19,6$

POWER SUPPLY UNIT KIT. Modal MGP-I input $100 / 120$ v. $200 / 250$ v., $40-60 \mathrm{c} / \mathrm{s}$. Output 6.3 V., 2.5A A.C.; 200, 250, 270 V., 120 mA . max. o.c.

MULTIMETER KIT. Model MM-IU. Ranges 0.1 .5 V. to 1,500 V. A.C. and D.C.; $i 50 \mu \mathrm{~A}$ to 15A. d.c.; 0.2Ω to 20 M . 4 in . 50 u A meter.

C 11.8 .6
AUDIO VALVE MILLIVOLTMETER KIT MODEL AV-3U. I mv. to $300 \mathrm{v} . \mathrm{A} . C .10 \mathrm{c} / \mathrm{s}$. to $400 \mathrm{kc} / \mathrm{s}$.
413.18 .6

AUDIO SIGNAL GENERATOR KIT. ModeI AG-9U. $10 \mathrm{c} / \mathrm{s}$. to $100 \mathrm{kc} / \mathrm{s}$., switch selected. Distortion less than 0.1%. 10 v . sine wave output metered in volts and dB^{\prime} s.
<19.3.0

RESISTANCE - CAPACITANCE BRIDGE KIT. Model C-3 U. Maasures capacity 10 pF to $1,000 \mu \mathrm{~F}$. resistance 100Ω to $5 \mathrm{M} \Omega$ and power factor. 5-450 v. test volrages. With saloty switch. 87.19 .6

DUAL-WAVE TRANSISTOR RADIO KIT Model UJR-I. This sensitive headphone set is : fine introduction to elecironics for any younsster. 8.16 .6
-WAVE TRANSISTORISED PORTABLE KIT. Model RSW-I. 7 Transistors and three diodes. For Short and Medium wave-bands ($200-$ $550,90-200,18-50$, and $11-18 \mathrm{~m}$.). In solid leather case fitted with retractable whip aerial. E20.18.6.
TRANSISTOR PORTABLE RADIO KIT. Model UXR-I. Pro-aligned I.F. transformers, printed circuit and $27 \times 4 \mathrm{in}$. high-flux speaker Real hide case.
$08 \mathrm{Mc} / \mathrm{s}$.
HI-FI F.M. TUNER. Tuning range $88-108 \mathrm{Mc} / \mathrm{s}$ For your convenience this is available in two units sold separately as follows: Tuner Unit (FMT-4U) Amplifier (FMA-4U; output $\{3 / 2 /$ inc. P.T. I.F. valves fio/io/6. Tocal El3.12.6
AMATEUR TRANSMITTER KIT. Modal DX-100U. Covars all amateur bands from 160-10 metres. Self contained including Power Supply. Modulator and V.F.O. $\mathbf{E 7 8 . 1 0 . 0}$
"HAM" TRANSMITTER KIT. Model DX-40U. From $80-10 \mathrm{~m}$. Power input 75 w . C.W., 60 w . peak controlled earriar phone.
Output 40 w , to aerial. Provision for V.F.O. C29.10.0
VARIABLE FREQUENCY OSCILLATOR. KIT. Model VF-IU. From $160-10 \mathrm{~m}$. Ideal for our DX-40U and similar transmitters. Price less valves te/l9/6.
£ 10.12 .0
BALUN COIL UNIT KIT. Model BIIU. Will match unbalanced co-axial linas to balanced lines of either 75 or 300Ω impedance $\mathbb{E} .4 .6$

Prices include free delivery in the U.K.

DAYSTROM LTD.
 DEPT. W.W. 4 GLOUCESTER, ENGLAND

A member of the Daystrom Group, Manufacturers of the WORLD'S LARGEST-SELLING ELECTRONIC KIT-SETS

Piease send me FREE CATALOGUE (Yes/No)
Full datails of modal(s)
NAME
(Block Capitals)
ADDRESS

DOUBLE ENDED STAINLESS STEEL VACUUM OVENS

We design and manufacture Ovens to Customers' special requirements. Should you have any problems in this fied our Technica, Department is always willing to help you solve them. Vacuum Ovens with temperatures of up to $600^{\circ} \mathrm{C}$ are also manufactured by us on similar lines but with Sectional Heating and Water-Cooled Ends.

We design, manufacture and supply Vocuum Machinery to major companies in Great Britain and Overseas.

Vocuum Ovens with Glove box and high pressure
unloading chambers. Sofety interlocking of doors. unloading chambers. Sofety interlocking of doors. Automatic high pressure sofety device on
${ }^{6} \cdot \mathrm{CO} . \mathrm{O}^{0}$

Made throughout in polished stainless steel.
Single action door openings.
Rectangular with self spacings to suit.
Double-ended controls.
Electrical interlocking of air inlet and Isolation valve.
Outer cover hermetically sealed.
Temperature Range 0.400 C .
or equivalent F.

Temperature Control: Normal $\pm 7 \frac{1}{2}{ }^{\circ} \mathrm{C}$. Special $\pm 1^{\circ} \mathrm{C}$.
Internal Spacing $7^{\prime \prime} \times 8^{\prime \prime} \times 18^{n}$
(can be altered to special requirements).
Vacuum Range: To $10^{-4} \mathrm{~mm}$.
Respective Vacuum Gauges incorporated.
Automatic air inlet valve on Backing Pump.
Visual Indicators and Fuses on all switches.
Flanged for fitting into Dry Box.

Specialists in the deicic and manufactury of Vacuum Equipment

VACUUM OVENS • DEPOSITING
SPUTTERING • VALVE PUMPING
C.R.T., etc.

Single position Vacuum Oven. Temp. $0-300^{\circ} \mathrm{C}$ Vacuum range 10^{-4} double ended for fitting in glove box.

Automatic Rotary final exhaust machine for C.R.T. complete with oven, air circulation, automatic temperature controls, etc.

A FULL RANGE OF A.C.\& D.C. SOLFNOLDS

PROMPT DELIVERY

Illustrated technical data sent on request :
ELECTRO METHODS LTD., General Products Division, CAXTON WAY, STEVENAGE, HERTS
Telephone: Stevenage 2110-7

TRANSFORMERS

5 V	80 A	... 10
$4 V$	100 A	... $\leqslant 10$
12 V	15 A	... 64
60 V	40 A	... 125
110 V	4 A	... 69
18 V	30 A	... 19
6 V	100 A	... $\leqslant 12$
24 V	30 A	... E12
30 V	25 A	... ¢12
30 V	40 A	... 21
55 V	15 A	... $\leqslant 12$
$5 \vee$	150 A	... 18
110 V	10 A	... E15
40 V	25 A	... 817
5 V	300 A	... $E 20$
$6-12 \mathrm{~V}$	50 A	... $\leqslant 10$
12 V	60 A	... $¢ 12$
12 V	100 A	... $£ 16$
50 V	60 A	... 629
$10-15-25 \mathrm{~V}$	100 A	... 228
10-20-30 V	100 A	... 633
110 V centre tapped	25 A	... 629
$6-12-18-24-30 \mathrm{~V}$	12 A	... Ell

TRANSDUCTORS
 SATURABLE REACTORS

Saturable Reactors for controlling $A C$ loads from . 5 kVA to 300 kVA . Available for all standard AC supply voltages, single-phase and 3 -phase. Standard DC control volts: 12, 24, 36, 110 and 240 V .

All for 240 V Input. Other Supply Voltages as Required. CONTINUOUS RATING. Short Rating Transformers also available.
5 V
2.5 V
4 V
10 V
10 V
10 V
10 V
10 V
10 V
20 V
20 V
5 V
22 V
28 V
40 V
110 V
$5,000 \mathrm{~A}$
$5,000 \mathrm{~A}$
$5,000 \mathrm{~A}$
700 A
$2,000 \mathrm{~A}$
$1,000 \mathrm{~A}$
900 A
500 A
300 A
800 A
$3,000 \mathrm{~A}$
$1,000 \mathrm{~A}$
$1,000 \mathrm{~A}$
$1,000 \mathrm{~A}$
500 A
700 A
$£ 110$
$£ 64$
$£ 94$
$£ 59$
$£ 103$
$£ 66$
$£ 62$
$£ 38$
$£ 28$
$£ 80$
$£ 150$
$£ 39$
$£ 75$
$£ 96$
$£ 85$
$£ 150$

THREE-PHASE

 TRANSFORMERSInput 400/440 V.
$40 \mathrm{~V} \quad 50 \mathrm{~A} 3$-phase $\mathrm{£40}$ $230 \mathrm{~V} \quad 50 \mathrm{~A} 3$-phase $\mathbf{6 7 8}$ $110 \mathrm{~V} \quad 100 \mathrm{~A} 3$-phase 690 $4 V$ 5,000 A 3 -phase 6130 These and other Transformers can be supplied for 3 -phase, 6-phase and 12-phase Rectifiers

VOLTMOBILE

VOLTAGE SELECTOR AUTO-TRANSFORMERS

Range: From 1.6% to 100% of Supply Volts in 64 steps of 1.6%. ON LOAD SWITCHING. 25% over-voltage available as extra.
VOLTMOBILES can be used

	250 V Single-
Output	Phase
30 A.	648
60 A.	670
100 A.	$\mathbf{6 9 9}$

440 V	440 V.
Single-	Three-
Phase	Phase
	$£ 118$
$\mathbf{£ 8 2}$	$£ 143$
$\mathbf{£ 1 1 6}$	$£ 176$

D-C MOBILE RECTIFIER SETS

For 240

$6 V$
$6 V$
$6 V$
$12 V$
$24 V$
$A C$. The larger outputs are available for
Full load DC Volts and Amps are stated.
Prices are without Meters and Regulators.
15
50
100
10
20
30
60
105
210
1,000
12
20
30
60
105
200
750

Buile in to order-Ammeters-Voltmeters-Rheostats-
Stabilising Circuits-Smoothing Circuirs-Variaes. in HEAVY CURRENT EQUIPMENT.

HARMSWORTH, TOWNLEY \& CO. 2 JORDAN StREET, MANCHESTER 15, CENTRAL 5069

CHAPMAN ULTRASONICS LTD.
 ANNOUNCE AN IMPORTANT ADDITION TO THEIR RANGE OF REINFORCEMENT AND P.A. AMPLIFIERS

THE CHAPMAN 30 watt amplifier has TWO microphone inputs and one pick-up input. It is compact and attractively styled in silver and black, controls are grouped for ease of operation on an illuminated perspex panel. The 30 watt fills a real need in the field of Public Address Equipment.
Chapman Public Address and Industrial Power Amplifiers range from 30 watts to 5 kW . in addition to the well-known Domestic FM/AM Radio Tuners, Monaural and Stereo Amplifiers. Radio Tuners for Factory Music Relay installation, Sound Reinforcement equipment for large halls, etc.

P.A. 30 Watt Amplifier Model SR 330

CHAPMAN ULTRASONICS LIMITED

PORTABLE WHEATSTONE BRIDGE

This is an extremely accurate and portable instrument, operating from internal dry battery. Special provision is made so that external batteries and galvanometer can be employed when required. This portable Wheatstone Bridge can be used, without modification, for the accurate location of cable faults by the Murray and Varley Loop Tests. An additional feature is the availability of the adjustable resistance arm for use as a 4-dial decade resistance box.
Available in a bakelite case if preferred, instead of teak as shown in the illustration.

Dimensions: $11 \frac{1}{8} \mathrm{in} . \times 7 \frac{3}{8} \mathrm{in} . \times 6 \frac{3}{8} \mathrm{in}$. Weight $10 \frac{1}{2} \mathrm{lb}$.

DORAN INSTRUMENT CO. LTD.

LSB COMPONENTS LTD. are experts in COIL WINDING AND ENCAPSULATION and manufacturers of highly specialized electronic components to specification. Your enquiry will be dealt with promptly.

LSB COMPONENTS LIMITED
Please write for full details to:
24 UPPER BROOK STREET, MAYFAIR, LONDON, W.1. Telephone: HYDe Park 2291.

Having trouble

Tracking faults?

Some of the other top grade instruments available, FACTORY ASSEMBLED, WIRED \& TESTED.

Deferred terms available on most items. Please sik $^{\text {for details. See the range at our }}$

MODEL AG-9U/F AUDIO SIGNAL GENERATOR

An invaluable instrument for hi-fi audio and many ultra-sonic and 1.F. apmost perfect sine-wave signal, without the necessity of expensive filters.
£26.3.0 complete with $24-$ page Han ibook. Model AG9U (in Kit form) $£ 19.3 .0$

Teats transistors while in circuit. Has its own self-contained power supply providing smoothed DC $0-25$ v. Size $51 \times 3 \times$ $2 \frac{1}{2}$ in. Price $£ 10$. Order or send for full details TODAY.

Capacitance Decade Box DC-1U/F $£ 900$ Model DC-1U (in kit form) Is 18 Reaistance capacitance Bridge C-3U/F £13 26 MODEL C-3U (in kit form) $£ 719$ Audio Valve Millivoltmeter AV-3U/F £19 190 MODEL AV-3U (in kit torm) £ 13186 Audio Wattmeter AW-1U/F $£ 1919$ MODEL AW-1U (in kit form) $£ 13186$ Electronic Switch S-3U/F £15 0 MODEL S-3U (in kit form) 59186

the

D900

a new, compact, dynamic TRANSISTOR TESTER/

POWER SUPPLY
Makes possible dynamic transistor testins in siuu.

- Tests CURRENT GAIN (AC) ALPHA GAIN.
- Tests CURRENT GAIN (under DC conditions) BETA GAIN.
- Measures leakage Currents between Collector, Base and Collector/ Emitter, at any voltage between 0-25 v.

In the Trade?

Direct TV Replacements Ltd. offer you the largest stocks of specialised TV replacements in Gt. Britain. Same day despatch, technical advice, individual attention. Get in touch now!

These large push buttons, which are easy to survey, make its operation a pleasure. They are very easy to control. All functions can also be remote controlled. Transistor operated tape tension adjustment is effected by tape balance.
Convincing is its easy and amazing simple construction out of easy accessible and exchangeable building components.

MAGNETIC TAPE RECORDER FOR STUDIO PURPOSES

zet

TECHNICAL DATA:

Tape Speed
Frequency Response
Signal to Noise Ratio … Sin. and $7 \mathrm{l} \mathrm{in} . / \mathrm{sec}$. 30 cps to $12 \mathrm{kc} / \mathrm{s}$ +1 to -2 db
... $\quad . .660 \mathrm{db}$ minimum
Wow and Flutter, weighted $\ldots . . .$.
... ... 2% maximum
(All quoted values are for $\mid 5 \mathrm{in} / \mathrm{sec}$.)
the equipment being deliverable in full track or stereo construction.
Offer with detailed leaflet on request.

$47 \supseteq \leadsto 2.0$ - SUFLEX capacitors nill be playing their part as they are today-doing whateser they are meant to do . . . and doing it nell.

SUFLEX Polystyrene Capacitors can be made smaller, pF for rF , than any other condenser of comparable performance. Write now for full details and prices to: SUFLEX LTD., 54 UXBRIDGE RD., EALING, W.5. Tel: EALing 7733

THESE CO

-GOOD STRONG SIGNALS
 - CLEAN PICTURES OLIMINATION OF AERIALS

An occasional intermediate amplifier and neat house-tohouse wiring are the only visible evidence that, in this area, for the first time T.V. is being enjoyed at its best, with clean pictures, no interference and no aerial replacement and repair costs.

Built with the future in mind, the installations of to-day are capable of handling a third or fourth channel-or more, colour, "coin-in-the-slot" T.V. or any foreseeable development in television and sound techniques.

EMI COMMUNITY TELEVISION SYSTEM

Full technical particulars together with any planning assistance that may be required can be obtained from

EMIELECTRONICS
LT T D Recording and Relay Division
HAYES - MIDDLESEX •ENGLAND Telephone southall 2468 Ext. 633

UTILISE YOUR CABLES MORE EFFICIENTLY!

By using GEC Data and Control Multiplex Equipment, large numbers of control signals and back indications can be sent simultaneously over a single pair of wires or radio link.

APPROVED FOR USE OVER POST OFFICE LINES

The equipment is already used and acclaimed by many industries inc/uding:

Railways Oll Processing	
Mining	Electrlcity Supply
Aviation Communlcations	

ELECTRONICS FOR INDUSTRY

Please write for further Information to:
THE GENERAL ELECTRIC COMPANY LAMATED Electronics Division. Lower Ford St Coventry. England

OSCILLATORS

OSCILLOSCOPES Oscilloscope TYPE TF 1331 . D.C. 10 I Mc / s

Twin- Y -inputs, with $50 \mathrm{mV} / \mathrm{cm}$ sensitivity. Single-beam version, Type TF 1330. available.
L.F.

Cicilloscope
TIPE TF 1159 15 ens tc 20) to's, $4 \mathrm{ml} / \mathrm{cm}$ sersificity. Higio resolution.

17-inca tibe

Teledision Measuring Oscilloscope
TYPE TF 1277. D.C. $1010 \mathrm{Mc} / \mathrm{s}$. Measures K factor sine-squa:-ed pulses and black-level stat-ility. Includes line-strob faclity.

Standard Signal Generator TYPE TF 144 H . $10 \mathrm{kc} / \mathrm{s}$ to $72 \mathrm{Mc} / \mathrm{s}$. A.M. 1080%.

F.M./A.M. Signal Generator TYPE TF 995A/2M
$1.510220 \mathrm{Mc} / \mathrm{s}$. F.M. up to $75 \mathrm{kc} / \mathrm{s}$ deviation.

$1 / 4 \%$ Universal Bricge TYPE TF 1313. $0.1 \mu \mathrm{H}$ to $110 \mathrm{H}(1 \mu \mu \mathrm{~F}$ to $110 \mu \mathrm{~F}$: at I and $10 \mathrm{ke} / \mathrm{s} 0.00 \mathrm{z} 2$ to 110 Ms 2 at d.c.

Circuit Magnification Meter TYPE TF 1245. Q from 5 to $1.000,1 \mathrm{kc} / \mathrm{s}$ to $300 \mathrm{Mc} / \mathrm{s}$. External oscillators.

BRIDGES

F.M. Deviatior Meter fype TF 928. Carrier: -0 : $\alpha \mathbf{3 0 0} \mathrm{Mc} / \mathrm{s}$. Deviatic 1: $6.400 \mathrm{kc} / \mathrm{s}$. 25 years experience of research and development in the field of electronic measurement.

GENERATORS

U.H.F. Signal Censretor TYPF TF 1060. 450 to $1,250 \mathrm{M}-1 \mathrm{~s}$. Jine a.m. and pulse
rr Jdolicion.

U.H.F. and S.H.F. Sigial Generator

TYP1 TF 1053. 1.600 in 4.000 Mc is. Squarewave a.m. . pulse modulation and $\mathrm{f} . \mathrm{m}$. sweep.

H.F. Spectrum Analyser TYPEOA 1094. 3 to $30 \mathrm{Mc} / \mathrm{s}, \mathrm{A} . \mathrm{M}$. or F.M. Optional I.f. cxtension unit. Marufactured under G.P.O. licence.

Television Transmitter Sideband Analyser TYPE OA 1241.
Provides componite television test signal for measuring overall response of transmitters or video amplitiers.

DESCRIPTIVE LEAFLETS

ON ALL TYPES
OF MARCONI
INSTRUMENTS
ON REQUEST

10-Mc/s Eiectronic Counter TYPE TF 1345/2.
Stability: 3 in 10°.
Range of optional plug-in units

Electronic Counter TYIE TF $1 / 65$ Counts pulses or sinewavesus to $1 \mathrm{Mc} / \mathrm{s}$. Optional Tming Oscillator.

ELECTRONIC COUNTERS

心Lxinelr Chicking the
frtouinct stablity of the f.m./a.s. sheival generatok
TF 995a/5. using marconi
ins rrumpnts idgital frioufncy
whasuringi anid ricording
idulpment

Decoder TYPE TF 392. Plug-in units fer in-lina readout, and for drixing minters or recorders.

THE INTERNATIONAL CHOICE FOR ELECTRONIC MEA.SUREMENT
Please address requests for technical information, using the roupon a. left, to vorir nearest Marconi Instrumemts office:
L.ondon and the South English Electric House. Strand. London. W.C. 2

Vidlands
North
Export Department Longacres. St. Albans. Hertfordshire
I NGINEERS ARE ALWAYS WELCOME TO VISIT OUR FACTORY AT ST. ALBANS, IND OUR SHOWROOMS IN LONDON. LEAMINGTON SPA AND HAFROGATE

Representation in 68 countries

HIVAC

miniature, in-line, digital display tube

* Miniature side viewing tubes for the most compact numerical presentation. Flying lead connections for maximum convenience and reliability.
* Available with numerals from 0 to 9 . Fractions, plus and minus signs and special symbols are also possible.
* All digits appear in the same position, as seen from the front. Numicators accordingly offer the very great advantage of in-line display.
* Hivac Numicators have all the normal advantages of neon indicator lamps-low consumption, low temperature operation, and freedom from risk of sudden failure.

Our specialised experience in the design and manufacture of cold cathode tubes and neon indicators ensures the high quality, consistency and long operating life of Hivac Numicators. They can be operated in a variety of ways: from cold cathode tubes or from mechanical and electromechanical switches.

HIVAC LIMITED

STOMEFIELD WAY • SOUTH RUISLIP • MIDDLESEX - Teiephone: VIKING 1288 A member of the A.T. \& E. Group

These famous

TROPICALISED

 POTENTIOMETERS
EX - STOCK

TYPE 'H'

robust, fully sealed-type approved for RCS.II2A RCC. 122 patterns RVC3 and 4. Stock values from 500 ohms to 2.5 M power rating $1 \frac{1}{2}$ watts, maximum working voltage 750 D.C. Body diameter I-562 inches.

TYPE 'LH'

fully sealed miniature version of Type H. RCSC Type approved to Patterns RVCI and 2.
Stock values from 500 ohms to 3 M , power rating $\frac{1}{2}$ watt, maximum working voltage 750 D.C.
Body diameter 0.969 inches.

for

WIDEST
RANGE

AND

FASTEST SERVICE

SeriterCel ${ }_{\text {nssamanss }}$ silicon power diodes and

rectifier stacks

Rectifier Stacks
The design of SenTerCel Silicon Rectifier Stacks offers many advantages including small size, low weight and higher ambient operating temperatures (up to $100^{\circ} \mathrm{C}$). At present, silicon stacks are supplied with half-wave, bridge or push-pull connections for either single-phase or three-phase inputs. The great variety of possible series and parallel connections between diodes provides an extensive range of voltage and current outputs.

Write for STC silicon rectifier technical literature:

61/12MF

Standard Telephones and Cables Limited

Registered Office: Connaught House, Aldwych, London W.C. 2
RECTIFIER DIVISION: EDINBURGH WAY • HARLOW • ESSEX

STEATITE INSULATIONS LTD

31, GEORGE STREET, LOZELLS, BIRMINGHAM, 19

TEMPERATURE MEASUREMENTS

Bead types F, GT \& M • Disc types K, KB \& KH
TEMPERATURE CONTROL AND COMPENSATION
Bead types F, G \& M • Disc types K, KB \& KH Silistors (positive temperature coefficient)

SCIENTIFIC AND MEDICAL MEASUREMENTS
Types F, G, M, P, U \& Manometer Set
FEEDBACX LOOPS \& TIMINQ DEVICES
Low power types A, B \& R . High power type L

R. F. POWER MEASUREWENTS

Up to $1 \mathrm{Mc} / \mathrm{s}$ type B
Up to $10,000 \mathrm{Mc} / \mathrm{s}$ types $\mathrm{E} \& \mathrm{U}$
DOMESTIC AND ENTERTANMENT APPLICATION8
Types G, KS \& Brimistors
CURRENT SURGE SUPPRESSION AND CIRCUIT PROTECTION
I max $>1.0 \mathrm{~A}$ CZ4, CZ9A, CZ11, CZ12
I max 0.1 to $1.0 \mathrm{~A}, \mathrm{CZ1}, \mathrm{CZ} 2, \mathrm{CZ} 3, \mathrm{CZ} 6, \mathrm{CZ} 8$
$I \max <0.1 \mathrm{~A}$ CZ10

Standard Telephones and Cables Limited
Registered Office: Connaught House, Alowych, London W.C. 2

HIGH SENSITIVITY LOW COST WIDE VERSATILITY

The Advance Advac has all the qualities required in a first class laboratory tool. An extremely sensitive a.c. valve voltmeter, it also functions as a wide range amplifier or as a null detector and indicator. Compact and of robust construction, the Advac is an outstanding product of Advance skill and experience in the world of instrumentation.

EXTREME SEMSITIVITY
Wide voltage ranee WIDE FREQUENGY RAMEE
amplifier ramee
AMPLIFIER GAI:
Amplifier output
accurate down to $100 \mu \mathrm{~V}$
ImV to 300 V F.S.D.
$15 \mathrm{c} / \mathrm{s}$ to $4.5 \mathrm{Mc} / \mathrm{s}$
$10 \mathrm{c} / \mathrm{s}$ to $10 \mathrm{Mc} / \mathrm{s}$ 60 dB in 10 dB steps $1 V$ max
nett price in U.K.

$£ 55$

including very low capacity screened leads and probe
jeaflet No WFIOI available on request.

ensure CONSISTENT magnetic characteristics

WTC

PERMALLOY 'C'
for highest initial permeability, useful for wide-band frequency transformers, current transformers, chokes, relays and magnetic shielding.

PERMALLOY 'B'
has lower initial permeability than Permalloy 'C' but has a higher value of fux density. It is suitable for use where high permeability to an alternating field superimposed upon a steady polarising field is required.

PERMALLOY 'D'
for very high resistivity withouc undue lowering of the maximum flux density. Variation of permeability with irequency is small. Ideal for H.F. applications.

PERMALLOY ' F '
very rectangular hysteresis loop with a rententivity of at least 95° o of its saturation value: high flux density and low coercive force. Ideal for saturable reactors, magnetic amplifiers, digital computers. memory devices, etc

V-PERMENDUR
for high permeability with a very high value of maximum flux density. Finds special application for use as high quality receiver diaphrams, also motor generators and servomechanisms in aircraft where weight and volume are important factors.

Puysical plaptafics ant gemenal magiefic cmanctentsfics

	Permalley '0'	Permalley 'C'	Permallay '0'	Permaltey 'F'	V Permendar
Specille Gravily	6.3	1.1	8.15	8.4	8.2
Electerteal resistivitymetrotms per cm colle	55	t	11	26	26
Initas permeanility ${ }^{\text {m }}$	200010 \% 000	15000 10 40880	1 40 10 3000	408 10 1000	700 18 10010
Mavimum permesbility "畀路	150001440800	50 00 te 150 058	12 Om 1020060	200000 10 000000	3000185000
Mapacisising ferce fer Hina-cerstels	-20 210.48	e. 025 to 0.04	4.2 10.5	0.03100 .10	
Maximam las tensity-tanss	1680	100	13808	14000	24000
Coercive ferce in tersteds fer lan $=5$ men fous	0.15	1.03	0.15	8.05*	2.34
Remaneace in gauss 	4100	1500	3500	13000^{*}	16000 ¢
nysteresis less in arga/cel 	164	40	204	220°	12 sen 1
Itital ress in watt $/ \mathrm{fl}$ for $0_{\text {max }}-5004$ gauss $50 \mathrm{e} / \mathrm{s}$ A. 115 in. sheof	0.11	0.4	0.2	0.3*	\$1
- fur ${ }_{\text {max }}=14$ (60 naiss			- for $\mathrm{Cmax}_{\text {ma }}=20000$ gauss		

Write for Technical Data Sheets:-

Standard Telephones and Cables Limited

FOR THE FULL
APPRECIATION AND
ENJDYMENT OF
YOUR YIVD OF MUSIC...

The complete Quad range of matched units comprises:

QUAD 22 Control Unit QUAD II Amplifier QUAD Electrostatic Loudspeaker QUAD F.M. Tuner

Send a postcard to Dept. W.W. for illustrated leaflet.

(2) (s) for the closest approach to the original sound

... and 200 miles away a telephone rings!

Eight hours ago, an expanse of barren mountainous country made communication impossible. Tonight, 60 telephone channels and teletype span the wilderness.
Transportable MICROSCATTER is a super high frequency radio system for long-range communication. Developed by Canadian Westinghouse, MICROSCATTER beams signals high above the earth sending two-way voice and teletype messages up to 200 miles over land and water . . . without costly relay stations.
The compact MICROSCATTER radio system fits in a standard 30 ft . truck trailer. Now, whenever men and equipment move, MICROSCATTER moves right along with them. It is particularly suited to military and government projects in remote locations. Units designed for self-contained field operations are set down by helicopter.

A Westinghouse communications specialist will be pleased to explain fully the MICROSCATTER operation and relate it to your problem. Contact your nearest Westinghouse office, or write to Canadian Westinghouse Company Limited, Electronics Division, Hamilton, Canada. YOU CAN BE SURE . . IF IT'S WESTINGHOUSE.

MICROSCATTER	APPLICATIONS
COMMERCIAL Fixed Station -120 telephone channels - television and sounc Transpartable - 60 telephone channels - teletype	
FEATURES	
- Frequency-4400-5000 me - Antennas - 10 to 28 fl . diameter	- Power- 2 KW - Range- 100 to 200 miles

this

Ediswan
 valve

is going to cost

 you 1
This valve now has the
 American number
 7922
 issued by E.A.I.

We'd like to hook a finger in your buttonhole and give you the whole story of our improved valve pro-duction-the new machines that we've developed ourselves, the brilliant time and labour saving techniques our bright boys have worked out, and the gratifying response to our drive for increased efficiency. But we'll spare you and simply say that the result of it all is a drop in the prices of a number of our valves. The 13E1 is one of them. Write to us and we'll tell you about the others.

EDISWAN 13E1. A tetrode with an outstanding performance for series or shunt regulation.

$\nabla{ }_{\text {b }}$	1.	∇_{s} (mas)	Pa (max)	Ix (mas)
88.0 V	1.3 A	800V	90W	800 ms
18.0V	$2 \cdot 68$	000	80 W	800 m

EDISWAN INDUSTRIAL VALVES \& CRT's

Associated Electrical Industrles Lid.
Rado \& Electronle Components Divialon, 185 Charing Crose Road, London W.C. 2 . Telephone: ©ERrard 97e7

manufacturers of the famous Stentorian High Fidelity speakers, Radio components and cabinets

> congratulate
> Wireless World
> on its 50 th Anniversary
and send best wishes
for its future

PARMEKO

STANDARD TRAMSISTOR

SUPPLY TRAMSFORMERS

This range has been developed primarily for providing a power supply to transistorised circuits, but can also be used for many other applications where a low voltage output is required.
SECONDARY: (a) Windings of 1 to 24 V . are tapped in approximately 1 volt steps and those of 2 to 48 V . in approximately 2 volt steps. The D.C. current ratings shown are those obtainable from a bridge rectifier with either choke or condenser filter.
SECONDARY (b): An H.T. winding is provided on certain models for stabilised circuits and this is tapped at each 50 V . from 0-250 volts.
All Standard transformers have their primaries wound $10-0$ -$200-220-240 \mathrm{~V}$. 50 c.p.s. supply. An electrostatic shield is fitted between primary and secondary windings on all models.

catalogue No.	SECONDARY (A)			SECONDARY (B)	
	voltage R.M.S.	RATING (AMPS)		voltage R.M.S.	Rating
		R.M.S. OR D.C. CHOKE	D.C. COND.		R.M.S. CURRENT
P-2945	1 to 24V.	1.6A.	1.0A.	-	-
P-2946	2 to 40V.	1.6 A.	1.0A.	-	-
P-2947	1 to 24V.	3-2A.	2.0A.	-	-
P. 2948	1 to 24V.	1.6A.	1.0A.	0-250V. (50V. 5teps)	40 mA
P-2949	2 to 40V.	1.6A.	1.0A.	0-250V. (50V. Steps)	40 mA
P. 2950	1 to 24V.	3-2A.	2.0A.	0-250V. (50V. 5teps)	40 mA
P-2951	2 to 49v.	3.2A.	2.0 A .	0-250V. (50V. Steps)	40 mA
P. 2952	1 so 24V.	s.0A.	3-2A.	0-250V. (50V. Steps)	40 mA
P-2953	2 to 40V.	5.0A.	3-2A.	0-250V. (50V. Seeps)	40 mA

\star DESIGN: Complies with BSS 2214.
\star CONSTRUCTION: Steel encased, compound filled.

* DIMENSIONS: Plan and Fixing to RCL. 215 .
\star HUMIDITY: Category H 2 or better.
* TERMINALS: Patented design insulators, layout to RCL.215.
* MOUNTING: Upright or Inverted.
* FINISH: Grey Hammer, stoved enamel.
\star STANDARDS: Range of Transformers and Chokes avoilable from stock.

A table showing method of connection is supplied with each transformer.

STAMDARD SMOOTHING CHOKES

Catalogue Number	D.C. Current	Inductance	Approx. D.C. Resis. Ohms.	Model Size	Terminal Positions
P-2954	1.6 A	40 mH	0.62	$9000 / 49$	$2-3$
P-2955	1.6 A	$\mathbf{6 0 m H}$	0.90	$9000 / 57$	$9-10$
P-2956	3.2 A	15 mH	0.31	$9000 / 49$	$2-3$
P-2957	$\mathbf{3 . 2 A}$	35 mH	0.39	$9000 / 65$	$9-10$
P-2958	$\mathbf{5 . 0 4}$	9 mH	0.15	$9000 / 57$	$9-10$
P-2959	5.0 A	25 mH	0.16	$9000 / 73$	$9-10$

The Atlantic Series can occommadate tronsformer designs rated up to 650 VA at 50 c.p.s We shall be pleased to quote for your specific requirements.

PHILIPS

 electronic measuring

 electronic measuring}

Sold and serviced by Philips Organizations all over the worid
Sole Distributors in the U.K.: Research \& Control Instruments L.td.,
207 King's Cross Road, London W.C. I
Overseas enquiries please, to the manufacturers,
N.V. Philips, EMA.Department, Eindhoven, the Netherlands.

- The amplifiers of type GM 5639 have a relative phase shift of less than 2° for frequencies up to $1 \mathrm{Mc} / \mathrm{s}$.
- Phase balance can be obtained at any frequency within the bandwidth.
Due to these features curve tracing without any distortion as well as accurate phase measurements can be carried out.

The time base with its sensitive and stable triggering permits of the oscilloscope also being used as a general purpose instrument.

Thus it is suitable for a wide range of applications in industry and research, especially in semiconductor and power-current techniques.

Characteristic Features

Both amplifiers
Bandwidsh : $0.1 \mathrm{Mc} / \mathrm{s}$
Sensitivity : Y-amplifier $100 \mathrm{mV} / \mathrm{cm}$, X-amplifier $200 \mathrm{mV} / \mathrm{cm}$
Attenuation : up to $50 \mathrm{~V} / \mathrm{cm}$ adjustable in 9 calibrated steps (accuracy $\pm 3 \%$) and continuous 1:3
Relative phase shift less than 2^{0} for frequencies up to $1 \mathrm{Mc} / \mathrm{s}$ 。
Time base
Sweep speeds: $2 \mu \mathrm{~s}, \mathrm{~cm}$ - $100 \mathrm{~ms}^{\prime} \mathrm{cm}$ adjustable in 8 calibrated steps (accuracy $\pm 5 \%)$ or continuously up to 600 ms 'cm.
Triggering lacilities: internal or from an external source for pulse repetition frequencies up to $1 \mathrm{Mc} / \mathrm{s}$.
Adjustable triggerstability.

C.R.T.

10 cm flat-faced tube with 2 kV acceleration voltage.
Different graticules for curve tracing and phase measurements are supplied.

instruments: qualify tools for industry and research

PHILIPS

NEW VINKOR SERIES

Covers frequencies from $100 \mathrm{Kc} / \mathrm{s}$ to

A new series of Vinkor adjustable pot cores has now been developed by Mullard for use in the frequency range $100 \mathrm{kc} / \mathrm{s}$ to $2 \mathrm{Mc} / \mathrm{s}$. This series is in addition to the highly successful group already widely used for frequencies between $1 \mathrm{kc} / \mathrm{s}$ and $200 \mathrm{kc} / \mathrm{s}$.
The world's most efficient pot core assembly, the Mullard Vinkor gives a choice of 3 permeabilities and has exceptionally high performance and stability. Write today for full details of the wide range of Vinkors now available.

Mullard VINOR
 ADJUETABLEPOT COREASSEMBLIES

Here is a tube which can be used either as a counter and indicator, or selector and indicator-just as you require. It's the Mullard Z504S-a $4 \mathrm{kc} / \mathrm{s}$ tube of all-glass construction. Modern techniques make economically possible these functions in one envelope. The Z504S brings ycu economies from every angle. It is a remarkably inexpensive tube . . . and achieves some really welcome economies in equipment space. Moreover it is made to close mechanical tolerances and so avoids the need for post-assembly adjustments. If you would like to know more about the new multi-purpose tube, just write to Mullard quoting reference M4104.

Mullard

industrial valve division
MULLARD LIMITED • Mullard House • Torrington Place - London W.C. 1
Telephone: LANgham 6633

This advertisement invites YOU to contact H.P RADIO for EDDYSTONE

-

EDDYSTONE 680/X

A 15 valve communication receiver with many refinements, including crystal filter, variable selectivity "'S" meter, push-pull output and stabilized supply 0 output and stabilized supply to $480 \mathrm{kc} / \mathrm{s}$ and 2.5 to $30 \mathrm{me} / \mathrm{s}$ in 5 $480 \mathrm{kc} / \mathrm{s}$ and $2.58030 \mathrm{mc} / \mathrm{s}$ in 5
switched bands. Electrical per. switched bands. Electrical per-
formance, sensitivity for 50 milliformance, sensitivity for 50 milli-
watts, 15 db signal/noise ratio, 4 watts, 15 do signal/noise
mierovolts on all ranges. microvolt
E140.0.0. ¢140.0.0.

EDDYSTONE 888/A A 12 valve receiver designed for the amateur bands, giving full bandspread. Double superheterodyne with high selectivity and excellent signal to noise characteristics. Crystal calibrator audio fileer, separate gain controls, ascillator trimmer. Frequency $.800-2,000 \mathrm{kc} / \mathrm{s}, 3,500-4,000 \mathrm{kc} / \mathrm{s}$, $7,000-7.300 \mathrm{kc} / \mathrm{s}$. $14,000-14,350$ $\mathrm{kc} / \mathrm{s}, 21,000-21,500 \mathrm{kc} / \mathrm{s}, 28,000-$ $30,000 \mathrm{kc} / \mathrm{s}$. $\$ 110.0 .0$.

EDDYSTONE 880
The Eddystone 880 high stability communications receiver has in professional expressly for use systems. Tuning rangications 00 kystems . Tuning range is from $500 \mathrm{kc} / \mathrm{s}$ to $30.5 \mathrm{mc} / \mathrm{s}$. Please write for technical specification. (380.0.0.

- EDDYSTONE 840/A

Communication receiver at a moderate price. 7 B8A valves in a straightforward superheterodyme circuit. 4 wave bands 30.6 $10.5 \mathrm{mc} / \mathrm{s}, 10.6-3.7 \mathrm{mc} / \mathrm{s}, 3.8 \mathrm{mc} / \mathrm{s}$. $1.4 \mathrm{mc} / \mathrm{s}, 205-620$ metres. Sensitivity better than 10 micro volts. Selectivity 30 db down $10 \mathrm{kc} / \mathrm{s}$ off resonance. AC/DC, Internal speaker. C55.0.0.

EDDYSTONE 870/A A compact, precision built receiver for the home, giving news and entertainment from the whole world. 5 wavebands. ernier device. AC/DC operation buile-in mains filter and loud buile-in mains filter and loud speaker. Two tone metal cabinet.

C33.0.0.

TO: H.P. RADIO SERVICES LTD., 51 COUNTY RD., LIVERPOOL, 4 Pleose send particulors of the EDDYSTONE RADIO RANGE

Name.
Address

fourth dimension-

The fourth dimension, time-invisible and intangible, but in the case of STC components, definable in terms of sustained, faultless performance-is a very definite factor incorporated in their design and manufacture.

Such dependability is very necessary in view of the vital functions that STC components have to perform-in equipment for communications, navigation and remote control; and it is the reason why STC components are frusted implicitly by manufacturers of electronic equipment all over the world.

Capacitors
Crystal Filters
Ferrites
Germanium Diodes
Germanium Photocells
Hermetic Seals
High Stability Resistors
Infra-red Filters
Ionisation Gauges
Magnetic Materials
Quartz Crystals
Selenium Rectifiers
Silicon Rectifiers
Silistors
Suppressors
Thermal Delay Switches
Thermistors
Thermocouples
Transformers
Transistors
Tunnel Diodes
Vacuum Capacitors
Valves
Zener Diodes

Standard Telephones and Cables Limited
Registered Office: Connaught House, Aldwych, London W.C.2.
COMPONENTS GROUP
SIDCUP
KENT

For the past fifty years "The Wireless World" has constantly performed an unfailing and vital service to the Radio Industry of Great Britain.

Within the half century there can have been no really worth-while development or technical achievement by British radio engineers which has not been accurately reviewed in the columns of "The Wireless World".

Bush Radio Limited take the opportunity to express their appreciation of this service and offer their congratulations in this
 Golden Jubilee edition

The original Home Reception 'Televisor' set. 1930

Rank Cintel have a direct link with the very beginning of Television. To emphasize the physical aspects of this connection, portions of the fabric of John L. Baird's original Research Laboratory has been incorporated in the modern premises that have grown, over the years, on this historic site. Here, where Television history was made, Electronic history is still being made. Frontiers have widened, techniques changed but the spirit of leadership is still with RANK CINTEL.

Announcing the

Gth NHERNATONAL INSTRUNENT SHON

The Precision π magnetic recorder/reproducer is an advanced instrumentation tape recorder. fully transiscorized and truly portable.
Interchangeable components and accessories provide maximum versatility.

Type 2305A Level Recorder is designed for the accurate recording of signel levels in the frequency range from $10 \mathrm{c} / \mathrm{s}$ to $200 \mathrm{kc} / \mathrm{s}$ is well as for DC signals. Levels may be recorded as a function of time or of frequency when the recorder is used in conjunction with one of the B \& K Beat Frequency Oscillators or Frequency Analyzers.

The Polarad CSG Electronic
Sweep Generator has five interchangeable heads covering 1.0 to $16.0 \mathrm{kmc} / \mathrm{s}$ wither wide range of sweep rates and continuously variable sweep width.

The Polarad Mitrowave Receiver Model R-BI with RW-T Turing Head is a triple conversion Super. heterodyne Receives, covering the frectuency rangefrom 2 to $75 \mathrm{kmc} / \mathrm{s}$ in one unit.

The 1961 INTERNATIONAL INSTRUMENT SHOW, once again sponsored by B \& K Laboratories Limited, will be larger and more varied than ever. Over 50 manulacturers representing 10 countries will be exhibiting the world's most advanced instrumentation and electronic apparatus.

Illustrated opposite are but a few of the hundreds of exciting exhibits. For further details of these, or complimentary tickets for the show, contact:-

Telephone: GROsvenor 4567

4 Tilney St.,Park Lane, London W.1. June 19th - June 23 rd 1961

A.T.E. congratulates the Wireless World on its Golden Jubilee, an event which coincides with the fiftieth anniversary of the Company's own experiments in radio. These led naturally to it entering the domestic market in the 1920's with the "Claritone" headphones and loudspeakers which were to earn a world-wide reputation for their quality. Investigations in radio telephony, particularly in channelling equipment for micro-wave transmission systems, have been continuous. A.T.E. supplied the world's first single channel v.h.f. harbour radio system to Liverpool Mersey Docks and Harbour Board in 1950 and have since supplied single and multichannel v.h.f. radio systems for telephone subscribers in all parts of the world. A.T.E.'s activities at present are concerned with the applications of electronics in tele-communication with particular reference to telephony, telegraphy, telemetry and computer design.

AUTOMATIC TELEPHONE \& ELECTRIC CO. LTD. Strowger House, Arundel Street, London, England. Strowger Works, Liverpool 7

As one of their oldest regular advertisers* of components, Belling \& l.ee l.td. offer warmest congratulations to the

> "Wireless World" on the occasion of their Golden

Jubilec. We are proud to share with them such a fine traclition in the annals of wireless history, a tradition to which intregrity, quality, and forward looking have been the major
factors which have contributed to the joint success of each.

* The first advertisement appeared on February 18, 1925.

A-MP Termashield ferrules are one-piece units for attaching earth taps to screcned wiring. One operation of the A-MP crimping tool permanently attaches the ferrule to the screen and one or two earth taps. The ferrule is only slightly larger in diameter than the screened lead. Attachment is speedy, electrical characteristics are excellent, and the attachment strong and permanent. As the system is solderless, there is no risk of dry joints and burnt insulation. Snap-on insulating caps, colourcoded, simply slide over the ferrules and are self-locking.

MOST ECONOM

SLIDE
on the ferrule

in the earth taps

NEW MULLARD AVALANCHE TRANSISTOR

Today you can specify a truly dependable avalanzhe junction transistor, for use in very high speed circuits. It is the Mullard ASZ23-a new parpose$m a d e$ transistor that is manufactured by the Mullard alloy diffusion technique to give complete reliability of the avalanche mode. Mullard experience in the development of alloy diffused transistors has made possiole the production of this high avalanche performance $p-n-p$ junction transistor at a realistic price.
Here is a transistor to give the designer tremendous scope. The ASZ23 opens up a new field of nanosecond pulse techniques. A typical application is in the sampling oscilloscope circuit shown alongside.
Supplies of the ASZ23 are immediately available.

ASZ23 ALLOY DIFFUSION p-n-p JUNCTION TRANsISTOR

Absolute Maximum Rating:
Collector currents ic (pk) max
Reverse emitter-base voltage $\mathrm{V}_{\text {eb }}$ max Temperature Ratings
Storage temperature limits Maximum junction temperature ...- \qquad -55 to + Junction temperature rise above ambient $0.6^{\circ} \mathrm{C} / \mathrm{mW}$ information, please write to the Junction temperature rise above case__-... $0.5^{\circ} \mathrm{C} / \mathrm{mW}$ address below:

C If you would like more detailed
Typical Characteristics
at Tiunction $=25^{\circ} \mathrm{C}$
Vcb turnover at $1_{\text {co }}=$ 1 mA, le $=0 \quad-24$
R se time of output pulse V
100 mA $-2.0 \mathrm{~V}$ 1 ns $75^{\circ} \mathrm{C}$ In circuit shown -.

ASZ

60 mA pulse with rise time of 1 nanosecond

A typical method of obtaining a predetermined sampling by means of the ASZ23

Mullard

 uniar
SOUND TAPE RECORDERS

A decade of manufacturing experience

With ten year's tape recorder manufacturing experience Tape Recorders (Electronics) Ltd., makers of Sound Tape Recorders, have a background knowledge which enables them to produce fine, reliable equipment. Ten year's experience lie behind the new Sound Master, a precision instrument engineered to professional standards of performance and reliability. It is a four track, three speed machine with separate recording and replay amplifiers. There are full facilities for mixing, monitoring and multiple superimposition, and 10 watts output, through the acoustically designed reflex loudspeaker system. The Master is, in fact, a complete magnetic recording system offering studio quality performance. Sound Tape Recorders are available in a range of models to suit every pocket. All are handsomely styled, and precision engineered for long, trouble-free life.
 Routing Desk at the B.B.C.'s new Television Centre is a completely new approach to installations of this nature. Many troubles that are normally associated with circuit changing are complately eliminated.

Advantages of this system are many and include:-

- A high degree of flexibility - no metal fatigue.
- Terminations that fit British and American connecters, junction boxes, etc.
- Eliminations of special cable lays, moulded harnesses and problems involved in encapsulation.
- Simplification of connecter wiring and easier conductor changes.
- In situ assembly that requires no special tools.
- Provision for double-screening on R.F. circuits.
* Write for technical details.

AN IMPORTANT NEW DEVELOPMENT the Ariedale

 free-standing speaker assembly

 free-standing speaker assembly}

For many years the Wharfedale Omni-directional 3-speaker Corner System has been recognised as a superbly natural reproducer. It has been demonstrated in the major concert halls of many countries and has frequently stood the difficult test of comparison with live musical performances.
The AIREDALE is the latest version of this famous speaker presented for the first time in a one-piece free-standing assembly suitable for corner or along-thewall location.

The smooth, clean bass is characteristic of the high flux 15in. unit which is now fitted with roll surround.

The 8 in . mid-range and 3in. treble units face upwards for omni-directional treble, and are arranged in a manner which imparts a natural airiness to the reproduction.

Cabinet resonance is avoided by loading the larger panels with ceramic tiles. Some idea of the solid construction is given by the fact that the total weight exceeds $\frac{3}{3} \mathrm{cwt}$.

UNITS:

WIS/RS fitted with heavy cone and impregnated cloth roll surround for minimum distortion. SUPER 8/FS SUPER 3 Half-section three-way separator unit with crossover f́requencies at $400 \mathrm{c} / \mathrm{s}$ and $5,000 \mathrm{c} / \mathrm{s}$.

SIZE: $\quad 39 \times 28 \frac{1}{2} \times 14 \mathrm{in}$.

WEIGHT: $\quad 91 \mathrm{lb}$ complete.
IMPEDANCE: $12 / 15$ ohms only.
MAX. INPUT: 15 watts.
Individual controls for middle and trebie response are located in the rear panel.

PRICE $£ 65-0-0$
Avainhble in whitewood or fully finished with a cusice of walnut, oak or mahogany veneers. 1 icnical model also available at extra cost.
Fully descriptive literature free on requist.

IDLE, BRADFORD, Yorkshir:
Tel : Idle 1235/6.
Grams: Wharfdel, Idle, Bradford.

A tape recorder is only as good as its deck. This is where precision in manufacture and assembly is vital for professional standards of recording and reproduction. In the Brenell Mark 5 deck there's a rare combination of advanced technology and an almost-forgotten kind of craftsmanship.
The Mark 5 deck has a remarkable, new main motor of a type widely regarded as the most efficient to be used in tape recording. The HYSTERESIS SYNCHRONOUS MOTOR, with a balanced outer rotor and a heavy, statically and dynamically balanced flywheel. It brings 'wow and flutter' down to below. 1% at $7 \frac{1}{2}$ ips!
This and the other components providing the specification shown below are assembled with fanatical care. Brenell Mark 5 (and all other equipment) production is an individual task which is repeatedly checked and tested. Nothing less than mechanical and electrical perfection will do.
At 28 gns., you'd be missing a great deal to pay less and there's no need to pay more.
Abridged specification
3 INDEPENDENT MOTORS
4 RECORDING SPEEDS
FAST REWIND in either direction. 1,200f. reel rewound in 45 seconds.

WOW AND FLUTTER	FREQUENCY RANGE	
Below $.05 \%$	15 ips	is ips: $50 / 16.000 \mathrm{cs}$

Below 1% ac 7 ips 7 ips . $60 / 12,000 \mathrm{c/s} \pm 3 \mathrm{db}$

Below 20 a6 ips 11 ips: $60 / 4,000 \mathrm{c} / \mathrm{s} \pm 3 \mathrm{db}$
SELECTIVE FREOUENCY CORRECTION at $15,7!$ and 31 ips
ACCEPTS Btin REELS PAUSE CONTROL, DIGITAL REY COUNER ACCEPTS 8tin. REELS. PAUSE CONTROL, DIGITAL REV. COUNTER, DROVISION FOR EXTRA HEADS.

TAPE RECORDERS:
3 STAR: 58 GNS.
MK.5: 64 GNS.
MK.5 R/P STEREO: 199 . 12 . 0

Full details and the address of your nearest stockist from the Sole Manufacturers
BRENELL ENGINEERING CO. LTD. • la DOUGHTY STREET • LONDON WC1

CONTROL DESK - CABINETWORK BY LOCKWOOD
Central Apparatus Room, British Broadcasting Corporation, Television Centre, London, W. 12 Manufactured in conjunction with the Planning \& Installation Dept., B.B.C.

Wireless World

CONGRATULATIONS
on your
GOLDEN JUBILEE

It has given us pleasure to have been associated with you for nearly 30 years

Lockwood Studio Monitoring Loudspeaker

SOLDERING INSTRUMENTS AND EQUIPMENT

PRODUCTS FOR PRODUCTION

ALL BRITISH MANUFACTURE

ILLUSTRATED

SOLDERING INSTRUMENT, LIST No. 70 WITH COMBINED PROTECTIVE UNIT, LIST No. 700 SHOWING WIPER/ABRASION PAD AND SOLDER REEL.

BRITISH AND FOREIGN PATS. REG. DESIGNS ETC.

APPLY
FULL PARTICULARS

[^11]

The new Plessey scan coil, designed for operation with the full range of 110° and 114° tubes, incorporates several novel features which improve performance and versatility.

- Polypropylene moulding to withstand elevated temperatures in service
- Smaller size to suit shortest tubes
- Frame and line coils available in wide range of inductance values
- Ferrite loaded plastic shift rings remain permanently magnetised and do not absorb power from the frame coils
- Three methods of picture correction avallable.

Arcolectric

 SWITCHES \& SIGNAL LAMPST. 225 : Miniature Slide Switch
D.P. change-over switch
S.L.I66: Very small low cost mains neon indicator
T.280: Sensitive Snap Action Switch Popular switch for tape recorders
T.626: Double pole 3-AMP switch with tags to fit printed circuit boards

.16;

T. 626

Write for Catalogue No. 132

Central avenue, west molesey, surrey. Tel.: MOlesey 3232

Arcolectric
 SWUTCHESMLTD

AUTOMATIC CONTINUITY \& INSULATOR TESTER (A.C.I.T.)

for the FASTEST-EVER

TESTING OF MULTI-CORE CABLES

Example of testing speed 25 pt cable tested:625 insulation tests, 25 leakage to screen, 25 continuity tests-all in 25 seconds.
Insulation faults are shown and faulty circuits indicated by lamps. Cross connected circuit leakages to screen are discovered, also involved circuits indicated.
Continuity tests are carried out with low voltage, insulation tests 500 v. A.C.I.T. stops automatically after discovering any fault or when the test is finished.
Brass type Plessey Mk. IV sockets and plugs are used, also an aluminium version Mk. IV is available if required. A.C.I.T. is built for 25,50 or to order for more circuits. Fully descriptive leaflet on request.

wherever
rugged contactless control equipment is vital you'll need

STATIC SWITCHING SYSTEMS

The Proximity Switch will provide a signal to operate a Basic Logic Unit. whenever a mass of ferrous material comes within 5 mm of the operating face. Having no moving parts. It is an encapsulated wound component suitable for use in conditions of vibration, shock. dust. damp-in fact. in any environment where the epoxy potting compound and the cable gland will not be damaged.

The Contactlesa Changeover Switch, a form of differential transformer. will provide signals to operate Basic Logic Units. changing over when the armature is rocked by about 1.5 degrees i.e. 1 mm movement at one end. Apart from the solid steel armature which pivots on a stainless steel pin in a bronze bush, there are no moving parts: the body of the device being similar to that of the proximity switch.

The Basic Logic Unit provides the normal logic functions i.e. OR, AND. AND / NOT, LATCH etc. The standard inputs signal is 1.5 Volts at 68 ohm although pre-amplifiers can be provided if required. An output of 900 mW into 47 ohms is normal for the basic logic unit. sufficient to drive any Sanders trans. ductor from 1 Watt output to 10 kW output.
The latching units have a "MEMORY" facility enabling them to remain latched during total power failure.

This Static Switching System provides control equipment without the use of electrical contacts which may corrode, weld or wear out and with the minimum moving parts required to provide the initial information to the system. The only electrical components used in the entire system are encapsulated transductors, wirewound resistors, transformers and silicon rectifiers-components used. well within the manufacturers' limits to ensure reliability.
The information fed to the basic logic units can be derived from photo-electric cells, tacho-generators and any device that will provide a few milliamps into a 100 ohm
winding.

This is one of a series of new instruments and components by

SUPERB EQUIPMENT BY

END FOR FREE LEAFL ET
Also available: 3-speed motor. Console to take 2- or speed curntable, pickup, steres amplifier and preamplifier.

A R SUGDEN \& CO(ENGINEERS) LTD.

MARKET STREET, BRIGHOUSE

In addition to the range of Punches and Dies tin. to $3 \frac{3}{4} \mathrm{in}$. dia. available from stock, some of the tools usually required in the Radio and Elecironic Industries have been stardirdised for use with the Hunton Universal Bolster Outfit. Illustrated here are a few which can be supplisd quickl/ or from stock.
in Lonfon ans Home Counties, ask for a practical demonstration in your own works. Write for illustrated brochure W.W.I.

HUNTON LTD.

Phoenix Works,

 114115, Euston Road, London, N.W.IU'notonexh, London
MAIN DISTRIBUTORS FOR LANCASHIRE, YORKSHIRE AND CHESHIRE
JAS. H. VICKERY \& CO. LTD.
21 Bradshaw Street, Manchester,)

[^12]
press tool costs HUNTON

UNIVERSAL BOLSTER OUTFIT

Hewlett-Packard Microwave measuring equipment

Hewlett-Packard, internationally-known electronic test instrument manufacturer, offers a complete line of microwave measuring equipment.
A few of many -hp- microwave measuring instruments are shown here.
-hp- 382 A Precision Attenuators
are direct reading, have one-control tuning and high power handling capacity. Attenuation 0 to 50 db full range, independent of frequency. For all bands, 3.95 to 40.0 KMC.
Price £ 113 to $\begin{gathered} \\ \text { \& } \\ 205\end{gathered}$
-hp- 752 Multi-Hole Couplers,
precision couplers available with coupling factors of 3,10 and 20 db , direc. tivity better than 40 db , coupling variation not over $\pm 0.5 \mathrm{db}$.

Coupling accuracy $\pm 0.4 \mathrm{db}$, except highest ranges. For all bands 2.6 to 40.0 KMC . Price £ 41 to £ 154

-hp- 415 B Standing Wave Indicator for all slotted waveguide and coaxial sections. Reads in SWR or db; operates at any one frequency 315 to 2020 cps . $0.1 \mu \mathrm{~V}$ sensitivity full scale, 60 db attenuator.
Price ま 79

-hp- 532 A Waveguide Frequency Meters, wide band, direct reading, no interpolation or charts. Transmits almost full power at resonance; choke plunger tuning eliminates sliding contact. For H, X, P, K, R bands, 7.05 to 40.0 KMC .
Price £ 61 to £ 113

Many world-famous Hewlett-Packard laboratory instruments are now made in the new Hewlett-Packard GmbH plant at Böblingen, near Stuttgart. Here quality engineering and lastest manufacturing techniques bring you instruments of exceptional performance at moderate price.

Prices delivered U.K. exclusive of duty where payable. Continuous progress in design may affect the above specifications which are therefore subject to change without notice. For information, technical sales and engineering help, or a demonstration please write or call

Hewlett-Packard S.A.

Geneva (Switzerland)
Rue du Vieux-Billard 1, Tel. (022) 264336
Exclusive Distributor for United Kingdom:
LIVINGSTON LABORATORIES LTD.
RETCAR STREET, LONDON, N. 19
Telephone: ARChway 6251
HPSA 2.412

Type AS.7012*, Solent series Audio Output Transformer, has been designed eapecially for the Mullard 5 Valve 10 watt Hich Quality Amplifier, and is capable of the highest quality reproduction. The static frequency response (without feedback) is within 0.5 db . from $20 \sim$ to $25,000 \sim$, and there is appreciable response at $50 \mathrm{kc} / \mathrm{s}$. and above. Primary tappings for feedback are provided at 43% and 20% of the windings, and the secondary windings are suitable for 3.75Ω and 15Ω with identical characteristics on both outputs. A response curve, panel layout and loudspeaker connection chart are included with each transformer. Priced at $49 / 3$, it can be obtained through your local radio dealer, or direct from us, post free.
*This is one of twenty-two Audio Transformers in the Solent and Miniford series described in Gardners new leaflet " S / M " especially prepared for retailers and private users, which includes over a hundred standard Mains Transformers and Chokes. We shall be pleased to post you a copy upon request.

Below is reproduced the response curve of the AS 7012 which is rypical of the whole of the Solent Series.

Gardners

GARDNERS RADIO LTD CHRISTCHURCH, HANTS. Tel. Christchurch 1734

The
Superspecel Solderingolnon heats up from cold in 6 seconds

Designed on an entirely new principle, this lightweight, versatile iron is eminently suitable for soldering operations in the radio, television, electronic and telecommunication industries. For test bench and maintenance work it is by far the most efficient and economical soldering iron ever designed. Activated by lisbt thumb pressure on the switcb ring. When presture is released, current is automatically Ewitched off一thas greatly reducios electricity consumption, wear on copper bit and carbon element. Can be used on 2.5 to 6.3 rolt supply (4 volt transformer normally supplied) or from a car battery. More powerful than conventional 150-watt irons; equally suitable for light wiring work or heavy soldering on chaseis.

* Simple to operate; ideal for precision work.
* Requires minimum main-tenance-at negligible coot; show: loweot operatins cepts over a period.

LIST PRICES		
IRON		
TRANSFORMER	$39 / 6$	
All prices and trade dis- counts subject to revision		

ENTHOVEN SOLDERS LTD.
(Industrial Equipment Division)
Sales Office \mathcal{E} Works :
Upper Ordnance Wharf, Rotherhithe Street.
London, S.E.16. Tel.: BERmondsey 2014.
Head Office :
Dominon Buildinga, South Place, London, E.C.2. Tel.: MONarch 0391

meters made to measure

This multi-range meter, using Sangamo Weston S.157, is one of several similar instruments produced by Anders for Ultra Electronics Limited veithin 14 days. The meters are used in Ground Test Equipment supplied to B.O.A.C. (shown below) for testing the Ultra Engine Throttle Control fitted in Bristol Britannia Aircraft. A typical example of the quick service Anders are giving to many famous firms. Anders are indebted to Ultra Electronics Limited and B.O.A.C. for permission to illustrate this equipment.

special multi-range meter produced for Ultra in 14 days

The Anders Instrument Centre is in a unique position to meet the most urgent, and the most unusual, meter requirements from production, development and research. Most standard meters are available immediately from stock. Non-standard meters are calibrated, tested, and normally ready within 10-14 days. All shapes; sizes from $1 \frac{1}{2 \prime \prime}$ to the largest switchboard meters. All well-known makes and all types including moving coil, moving iron, thermocouples, electrostatic, dynamometers and full range of meter accessories. Anders would like to demonstrate the kind of service they can give you and look forward to your enquiries, by letter or by telephone.

[^13]
NEW from S. G. Brown

HEADPHONES

The "Super K" Headphones are the newest profuct of S. G. Brown Led., and are designed especially for High Fidelity Stereo requirements. They are attractive in appearance, extremely comfortable to wear and incorporate plastic head band and earpieces.

Spans 9 Octaves

These Frequency Response curves were produced under the following conditions:
BEAT FREQUENCY OSCILLATOR Type 1014 producing a signal of 2.5 V . (modulated to $32 \mathrm{c} / \mathrm{s}$ with a swing of $30 \mathrm{c} \cdot \mathrm{s}$) to SUPER K EARPIECE, close coupled to ARTIFICIAL EAR Type 4109 with 6 c.c. coupler, measured signal being amplified by MICROPHONE AMPLIFIER Type 2603 and recorded on a Type 2304 LEVEL RECORDER Recorded Medium shows Response flat $\pm 1 \mathrm{~dB}$ $20 \mathrm{c} / \mathrm{s}-6,000 \mathrm{c} / \mathrm{s} ; 6 \mathrm{~dB}$ reduction to $12,000 \mathrm{c} / \mathrm{s}$. , with continued reduction to 20.000 cis . Nine octaves pianoforte coverage from $24 \mathrm{c} / \mathrm{s}$ to $7,800 \mathrm{c} / \mathrm{s}$.

Hermetic Sealing

STEATITE \& PORCELAIN NICKEL METALLISING

Quality Approved (Joint Service R.C.S.C.)
WILL MEET THE MOST EXACTING REQUIREMENTS

METALLISED BUSHES

Perfect Terminations

-made readily without special precautions by semi-skilled labour, employing simple hand soldering methods, R.F. Heating, Hot Plate, Tunnel Oven or similar mass production methods.

STEATITE \& PORCELAIN PRODUCTS LTD.

Fibreform mouldings are pre-eminent among fibre mouldings and no indifferent moulding must be passed off as a Fibre Form product.
For this reason the Company has adopted the ff hallmark for the convenience that it will afford both the Company and its customers.
Fibreform mouldings may well improve your product and effect worthwhile economies. Please explore the possibilities with our technical representative.

Over 1 million large mouldings produced last year.
Over 250 complex shapes-from components to cabinets.
Complex shapes and large areas no problem.
Coloured and decorative finishes no problem.
High impact resistance-excellent strength/weight ratio.
The cheapest moulding for mass production

FIBREFORM

FIBROUS PLASTICS MOULDINGS
FIBRE FORM LIMITED
Garratt Mills Trewint Street Earlsfield London SW18 Telephone: Wimbledon 2386-7
mIDLAND WORKS
Lower Gornal Near Dudley Worcestershire Telephone: Sedgley 2766-7

[ilim

COMPONENTS

for all

RADIO and ELECTRONIC REQUIREMENTS

ELCOM, WEEDON ROAD INDUSTRIAL ESTATE, NORTHAMPTON.

Telephone 1873/4

RADAR. Complete reliability is taken for granted by the Captain of a vessel fitted with Decca Marine Radar. He has faith in the quality of equipment designed and built by Decca who in turn have faith in the reliability of Tectonic Printed Circuits.

Tectonic are fully equipped to provide a complete service in the manufacture of printed circuits:-Design, Layout, Drawing, Photography, Printing, Tooling, Plating, Machining, Drilling, Punching, etc. Prototypes can be despatched within 24 hours of receipt of master black and white drawings. Many famous manufacturers have proved the reliability of Tectonic Printed Circuits-why not see how Tectonic can help with your problems?

WRITE FOR YOUR FREE COPY OF THE PRINTED CIRCUIT DESIGNERS HANDBOOK.

MODERN

ELECTRONICS. The products of Rank Cintel have long stood as a hallmark of reliability. It follows that all components used must live up to this reputation, hence the use of Tectonic Printed Circuits.

ELECTRONICS
ARE BUILT
ON TECTONIC
PRINTED
CIRCUITS

TECTONIC PRINTED CIRCUITS

TECTONIC INDUSTRIAL PRINTERS LIMITED WOKINGHAM, BERKSHIRE

TELEPHONE: 1150-1

COMPACT HI-FI by armstrong

STEREO 12 Mk. 242 gns.

A new and improved version of the famous Stereo-Twelve. A total of 16 watts output is available from the two 8 watts push-pull amplifiers. VHF, with automatic frequency control, and medium and long bands. Inputs for recording and playback and for stereo radio if required in the future. Booster units are available for low output pick-ups, both mono and stereo.

STEREO 55 (mamaraas 32 gns.
 TUNER-AMPLIFIER CHASSIS

An outstanding new Armstrong chassis combining AM and FM Tuners, a Stereo Control Unit and two High Fidelity 5 watt Amplifiers in one compact unit. In all its functions the Stereo 55 is designed for mono as well as stereo use so that up to 10 watts output is always available. Compare the features and specification of each section with tuners and amplifiers sold separately and then compare the cost.

Full VHF and medium bands. Input: for tape recording and playback Alternative pickup inputs Bouster Unit available for low output pick-ups Input for possible future stereo radio Separate bass and treble controls and dual volume control for case of balancing Free instruction booklet with every model.

Post this coupon or write for descriptrive literature or call at our Holloway Showroom for full demonstration and professional advice on your installation. Open 9-5 including Saturdays.

NAME \qquad W.M.S.

ADDRESS \qquad

TEKTRONIK

OSCILLOSCOPES

Deliveries from Guernsey production have been made for two years - now the first types to qualify for Duty Relief under Commonwealth Preference are:-

545A-Vertical amplifier bandwidth DC to 30M/cs.
Two time base generators:
Time Base A- Calibrated steps $0.1 \mu \mathrm{~S} / \mathrm{cm}$ to $5 \mathrm{~S} / \mathrm{cm}$. Continuously variable $0.1 ; \mathrm{S} / \mathrm{cm}$ to $12 \mathrm{~S} / \mathrm{cm}$; also X5 magnifier.
Time Base B—Calibrated steps $2.25 / \mathrm{cm}$ to $15 / \mathrm{cm}$ (to $0.4 \mu \mathrm{~S} / \mathrm{cm}$ with magnifier).
Versatile Triggering - jitter introduced by delay and pick off circuitry less than one part in 20,000.
Calibrated delay $1 \mu \mathrm{~S}$ to 10 S . Incremental accuracy 0.2%.
E699 (Delivered U.K.)
together with a wide range of Plug-in Units from
853 (Delivered U.K.)
515A-Frequency response D.C. to $15 \mathrm{M} / \mathrm{cs}$.
Vertical sensitivity continuously varlable from $50 \mathrm{mV} / \mathrm{cm}$ to $50 \mathrm{~V} / \mathrm{cm}$. Calibrated sweeps from $0.2, \mathrm{~S} / \mathrm{cm}$ to $2 \mathrm{~S} / \mathrm{cm}(0.04 \mu \mathrm{~S} / \mathrm{cm}$ with $X 5$ Magnifier). Uncalibrated sweeps continuously variable from $0.04: \mathrm{S} / \mathrm{cm}$ to $6 \mathrm{~S} / \mathrm{cm}$. Versatile triggering.
Two signal inputs with 60 dB separation. $\mathrm{E315}$ (Delivered U.K.)

LIVINGSTON LABORATORIES LIMITED

The

 R•F
 BRIDGE

Incorporating built-in crystalcontrolled source and detector, the Hatfield LE300A R.F. Bridge will measure any threeterminal network. Price $£ 158$. Transistor adaptors and low Impedance adaptors available shortly.

For instant

directly calibrated ranges

The wide range of high quality Hatfield Instruments includes:
Stabilised D.C. Power Unit. D.C. Amplifier A.C. Power Supplies. R.F. Variable Attenuators. Coaxial Switches Valve Milli-voltmeter. - Balanced Crystal Modulator.

Write for fully illustrated brochures.
IN8TRUMENT8 LTD NAC LTD. First with Wide Band R.F. Transformers.
Dept. WW, BURRINGTON WAY, PLYMOUTH, DEVON. Telephone: Plymouth 72773, Telegrams: SIGJEN, PLYMOUTH

DEPENDABLE ELECTRONIC CONTROL EQUIPMENT

Large stocks always avallable of the following:P.O. type 3,000 and type 600 relays, iransistor relays, Siemens high speed relays, sealed relays by G.E.C., S.T.C. Siemens - etc. Rotary transformers by Delco, Hoover etc.

BUILT TO SPECIFICATION
Realistic delivery dates for all types of equipment including
\star HEAT CONTROL UNITS
\star POWER SUPPLY UNITS
\star helays to specification
\star PHOTO-ELECTRIC UNITS

* BATCH AND PROCESS COUNTERS
\star ELECTRO-MAGNETIC COUNTERS
\star SECURITY DEVICES
Copoctiy avolloble for ropld ond economic production to your specification. All equipment bulit to A.I.D. and I.E.M.E. stondords.

ENQUIRIES TO

DEPENDABLE RELAY CO. LTD INCORPORATING DEPENDABLE RADIO SUPPLIES 8A, Ainger Road, London NW3. Tel: PRI 8161

CONTRACTORS TO H.M. GOVERNMENT

POPULAR REPLACEMENT SPEAKERS

For the guidance of the trade and public we publish below a list of the most popular ELAC replacement loudspeakers.

We have made this selection from our wide range of speakers as they cover practically all the requirements of the replacement trade.

The new prices are now operative.

POPULAR REPLACEMENT MODELS				
Type	Ref	Flux	Retail Price	Purchase Tax
5 in.	5 G	6500 g	$20 / 6$	$6 / 7$
$6 \frac{1}{2} \mathrm{in}$.	6 G	6500 g	$21 / 6$	$6 / 11$
$7 \times 4 \mathrm{in}$.	47 G	6500 g	$20 / 6$	$6 / 7$
$7 \times 3 \mathrm{in}$.	37 G	6500 g	$20 / 6$	$6 / 7$
$8 \times 3 \mathrm{in}$.	38 G	6500 g	$20 / 6$	$6 / 7$
$8 \times 5 \mathrm{in}$.	58 C	8500 g	$24 / 6$	$7 / 10$
8 in.	8C	7000 g	$25 / 6$	$8 / 2$

All loudspeakers have Standard 3 Ohm impedance. Higher impedances can be supplied at an extra cost of 3/- plus 1/- Purchase Tax.
Please write for leaflets and further details.

ELECTRO ACOUSTIC INDUSTRIES LIMITED
Stamford Works, Broad Lane, Tottenham, N. 15 Tel: TOTtenham 0505

REMINDING ALL USERS OF WIRE
 (FAOM COIL WINDERS TO CABLE MAKERS)

 of the NEW range of improved performance VERY HIGH SPEED - QUICK START TENSIONERS \& DE-REELERS (PATEMTED)
Olarint tigse advantages:

* stationary supply neel meait thaiol is midepempert op welart ob rein
* yuch faster apgeds due to munyon of mertia.
* PATETMED CLUTGH: PERMUT8 PAST gTARTS AMD BIOPS: GIVES A COMSTAMT RETEREIVE PULL;

* mo reel size is too large.
* tenbion quickly adjustable to pine limis.
* Eliminates wire breakng or stretchuma.

 on the Heary Duty. There in aloo a semi-Hoary Duty model.

OVERSEAS AGENCIES OFFERED

SHAWNDEL FLYERS LTD

SHAWNDEL " LIGHT DUTY " (35/S2 SWG)

WIRES $061^{\prime \prime} / .006^{\prime \prime}(1.63 \cdot 1152 \mathrm{~mm})$

Our Sincere Congrafulations to "wireless world" on the CELEBRATION OF THEIR GOLDEN JUBILEE. We cannot boast fifty years' progress a: we are only 15 years of age, but we do boast of our progress. Do you remember our 1950 "Wireless World" advertisement covering a simple pre-set Test Oscillator at £2/19/6? Now we offer a far superior instrument at £3/17/6. "Ten times better with just $18 /$ - increase over a perzod of 10 years." We could not be accused of increasing the cost of living. Thank you, "Wireless World," for showing our products to the world and while we thank you, the public, for buying them, congratulations for choosing a Good Instrument.

MODULATED TEST OSCILLATOR MTO.1

t Provides a modulated signal suitable for I.F. alignment, also trimming and tracking R.F. circuits.
t Frequency is continuously variable from $170-475 \mathrm{kc} / \mathrm{s}$ and $550-1,600 \mathrm{kc} / \mathrm{s}$.

* Suitable for the alignment of transistor receivers.
* Operates from a single 9-volt grid-bias battery (not supplied) which is housed within the unit.
* The case is manufactured from steel and is finished in silver hammer. The front panel is gloss black bearing white lettering. Dimensions are 5 I/I6in. $\times 4$ l/J6in. $\times 3$ in.
\& Supplied with full operating instructions.
PRICE $£ 3 / 17 / 6$
PLEASE SEND S.A.E. WITH ALLL ENQUIRIES
DENCO (CLACTON) LTD.
(DEPT. W.W.)
$357 / 9$ OLD ROAD, CLACTON-ON-SEA, ESSEX

another addition to the

new miniature relay G. 100 rugged, reliable and sensitive

TWO POLE CHANGE-OVER • LOW OPERATING POWER
SMALL SIZE • BALANCED ARMATURE
TWO COMPARTMENT SEALING
For further details please write to:- FORTIPHONE COMPONENTS DIVISION (Dept. R.5.)

For beryllium copper pressings TO THE CLOSEST TOLERANCES
 succeans which can be of great ralue in you
 hundred rears of heat treatment experience, opechalimed plant of herflilum copper presaings in Britain-thanks h and indeed the outatanding kpecfalists in beryltum copper, we work wth extreme precidon in miniature, and ant, minintur" prewswark: in certafo circumatancee, we regularly maintain an accuracy of plum or minum .00025in.
All componente are made to customers owil requirements. It fo sutitieant that meveral mithon Brandauer anita are in daify use in the radio lelevision and aircralt industrien. It thilar inntaltations. record players, switeh gear

elactronic computers and a wde range of other equipment.
 EARLY DELIVERIES OF FOUR SLIDE WORK:

This is a loo helpitul. so are our large etocke of material. They etable us to quote early deliverifes for moet prenaings and compatitive prices for all. Therefore-for time and tolerance, quality and price. choose Brandauer. Furthe

BRANDAUER
 BRANDAUER

Brandaner also mpectalises in precision presulnga manafactured from all ferrona and non-ferrous materiala inctuding the eupro•nickel alloy
C. BRANDAUER \& CO. LTD., 40I NEW JOHN STREET WEST, BIRMINGHAM 19 Telephone: ASTON CROSS 3818

LOUOSPEAKEER

FOB ALI

Pulposes

CEISSION

Acknowledged leaders for
35 years in the design,
development and manufacture of loudspeakers for all purposes
world famous for quality of reproduction, sensitivity in performanse and long life under all climatic conditions.

Zonal Film (Magnetic Coatings) Ltd. The Tower, Hammersmith Broadway, London, W.6.

Telemetry Signals from Sputnik III

This article in the current March issue of ELECTRONIC TECHNOLOGY describes equipment used for transcribing te'emetry signals from the Russian satellite Sputnik III from magnetic tape on to 35 mm . photographic film. The resultant record, samples of which are shown, is in raster form showing successive keying cycles one under another. The telemetry encoding system used in the satellite is also described and the results of the analysis of two transits are included and briefly discussed.

ARTICLES

IN THE APR:L ISSUE IHCLUDE:
A CURRENT REGULATOR AND SWEEP MECHANISM
A simple regulator and sweep mechansm for controlling the output of a d.c. generator is described in this article. The regulator uses a sinere-ended error-signa. ampisfier and no reference battery is required. The sweep mechanism can vary the output current autcmatically over a wide range, and the arrangement. whilh has a stability 1 in 4,000, has been used as on electromagnet current supply .n paramagnetic resonance experiments.
THE ROUND-TRAVIS DISCRIMINATOR
In this artucle the conditions for minimum non-linearity distortion in the Round-Travis discriminator are derived. The application considered is for the frequency-amplutude conversion of a frequency-modulated signal.

POST THIS COUPON TODAY

Hectronic technology

TO ILIFFE ELEGTRICAL PUBLIGATIONS LTD., DORSET HOU3E, STAMFORD STREET, LONDON S.E. 1 ENGLAND

Please enter my name as a subscriber to: ELECTRONic Technology for 12 months commencing with the April 'ssue.
I enclose remittance $£ 3.7 .0 \mathrm{~d}$.
($\mathrm{U} . \mathrm{S.A}$. and CANADA \$9.50) (THRER YRARS \$19.00)

NAME
ADDRESS \qquad
\qquad
\qquad

GENERALLY SPEAKING

Teleng are specialists in designing and planning systems to meet YOUR individual requirements. Whether it is a simple amplified aerial scheme for a few flats or a scheme for large urban area coverage, expandable to thirty carriers of any transmission standard having many thousands of outletsTeleng will provide the answer.

Teleng services include-
SYSTEM DESIGN
AERIAL SITE SURVEYS
PLANNING AND QUOTATION SCHEDULES
CABLING AND EQUIPMENT INSTALLATION
ECONOMIC ADVICE \& CAPITAL EASEMENT SCHEMES

provide for any

foresseable developments

Look to the future with

$$
\begin{aligned}
& \text { AND BE PREPARED } \\
& \text { FOR EVENTUALITIES }
\end{aligned}
$$

Write for further details to
TELENG LIMITED
CHURCH ROAD. HAROLD WOOD, ROMFORD, ESSEX
ingrebourne 42976-7-8

A PROGRAMME

Make the most of your tape recorder and your tape recordings. Whatever the type of programme you most enjoy you'll immediately recognise the consistent, uniform quality that you get from AUDIOTAPE . . . the extra

WORTH RECORDING

crispness at the top and the extra depth of bass-without the loss of the essential middle tones that often prove so elusive. AUDIOTAPE has only one standard of quality-the finest obtainable-backed by more than

IS WORTH THE

ten years' experience in magnetic tape manufacture and more than two decades of practical experience in the art of sound recording.

You cannot buy a better tape than AUDIOTAPE-it speaks for itself.

BEST OF TAPES

Available in 5 different types with a base material and reel footage to suit every requirement. All 5 in and 7in reels of AUDIOTAPE are supplied on the exclusive C-Slot Reel-the fastest-threading rape reel ever developed.

AND THE BEST OF TAPES IS cudiotape

AUDIO DEYICES Inc., New York, M.Y. Concessionaires to the United Kingdom

LEE PRODUCTS (G.B.) LIMITED

"Elpico House", Longford Street, London, N.W.I Telephone: EUSton 5754 (all lines). Telegrams: Leprod, London

The Transcription Unit with Cutochange

Designed specially to meet the demand for a Transcription Record Player with provision for automatic use if desired. Has a fully counter-balanced arm. The heavy turntable incorporates a magnetic shield and sufficient thickness of non-magnetic materials to provide ideal operating conditions for the most sensitive pick-ups.

LABORATORY SERIES AUTO TURNTABLE TYPE A-FOR A PROFESSIONAL PERFORMANCE.

THE GARRARD ENGINEERING AND MANUFACTURING CO LTD SWINDON • WILTSHIRE

| CRAWLEY Crawley 1500 | 3ussEx | EMGLAMO |
| :---: | :---: | :---: |WEYRAD P. 50 TRANSISTOR COILSAND I.F. TRANSFORMERSFOR 2-WAVE PORTABLE WITH PRINTED CIRCUIT AND ROD AERIALP50/IAC M.W. OSCILLATOR COILS. For

I76pF TUN.NG CONDENSER PRICE 5'4d.5'4d.
P50/2CC Ist and 2nd I.F. TRANSFORMER.$470 \mathrm{Kc} / \mathrm{s}$. OPERAT:ON. " Q " $=150$......... PRICE $5^{\prime} 7 \mathrm{~d}$.P50/3CC 3rd I.F. TRANSFORMER. $470 \mathrm{Kc} / \mathrm{s}$ (2 REQUIRED)OPERATION. " Q " = 170 PRICE$6^{\prime} 0 \mathrm{~d}$.
RA2W L.W. and M.W. ROD AERIAL 6in. long. flying-'ead connections. For 208pF TUNING CONDENSER PRICE $12^{\prime} 6 \mathrm{~d}$.
LFTD2 DRIVER TRANjFORMER. Split Sec- ondary Type, semi-shrouded. With 6 con- necting tags PRICEPCAI PRINTED CIRCUIT PANEL, $2 z \times 8$ itin. ready drilled with component positions and references printed
on rear
PRICE 9'6d.
BOOKLET OF DETAILED ASSEMBLY INSTRUCTIONS AND CIRCUIT DIAGRAMS FOR 6-TRANSISTOR Long and med.um wave superhet
PRICE

ALL IN BULK PRODUCTION-TRADE ENQUIRIES INVITED

WEYMOUTH RADIO MFG. CO. LTD., CRESCENT STREET WEYMOUTH, DORSET

In the design and production of thoroughly reliable electrolytic capacitors, Plessey have for years held a commanding lead. To every new demand made by rapid developments in radio, television and electronic equipment Plessey can respond by bringing to bear unrivalled experience, tremendous resources and highly skilled staff. Such is the care taken to obtain impeccable standards of quality and performance, that virtually clinical conditions of manufacture are maintained in the superbly equipped laboratories and workshops. These
 same exacting standards are imposed throughout the comprehensive range of capacitors produced by Plessey.

THE PLESSEY COMPANY LIMITED
Capacitors \& Resistors Division - Kembrey Street - Swindon - Wiltshire - Tel: Swindon 6211
Overseas Sales Organisation
PLESSEY INTERNATIONAL LIMITED • ILFORD • ESSEX • ENOLAND
Telephone: Ilford 3040
Overseas Telegrams: Plessinter Telex Ilford

Bulley゚s ceramics FOR INDUSTRY

High quality material and dimensional precision are attributes of Bullers die-pressed products.
Prompt delivery at competitive prices.

We specialise in the manufacture of-PORCELAIN
for general insulation
REFRACTORIES
for high-temperature insulation
for high-temperature insulation

BULLERS LIMITED

MILTON • STOKE-ON-TRENT• STAFFS
Phone: Stokeon-Trent 54321 (5 lines) - Talegrams it Cables: Bullers, Stoke-on-Trent Iromwork: TIPTON, STAFFS London O/fice: 6 LAURENCEPOUNTNEY HILL, E.C. 4 Phone: Tipton 1691

Phone: MANsion House 9971

RADIO EXPORT

TUBES ONLY

From the first it was our desire and aim to give users of Radio Tubes of all descriptions the finest possible service.

The results have far surpassed our most optimistic expectations, for we go from strength to strength, and today there is hardly any part of the world in which HALTRON receiving and transmitting tubes are not doing a first class job.

This success springs from three important facts:-

1. We have the most comprehensive stock in the world of receiving, special purpose, transmitting tubes and also transistors, totalling over 3,000 types.
2. Most competitive prices, consistent with quality.
3. Prompt shipments, which is the envy of our competitors.

If you are not on our mailing list, please contact us. Your enquiries for special types to CV, JAM, MIL specifications are invited.

OUR ORGANISATION IS AIR REGISTRATION BOARD APPROVED.
PRICE AND STOCK LISTS ON APPLICATION.

miniature

soldering iron

For mains or low voltage
6, 12. 24, 28, 50, 110, 200, 220, 240v.

Sharp, strictly controlled heat for fast and safe soldering of transistors, printed circuits. \qquad
Easily interchangeable bits in 5 sizes slide on and off stainless steel shaft, with element inside for highest efficiency.
Bits are of hardwearing alloy, heavily nickel-plated and split to prevent sticking to shaft.

List prices 25/- (up to 50 v.) 29/6 mains volt. Ask for leaflet and

7-8 IDOL LANE LONDON EC 3
Tel: MANsion House 2716

FULLY TYPE APPROVED

TO A.I.D., A.R.B., \& ADMIRALTY
Gefll the most reliable K 3,000 type RELAY

"PLUG-IN" 3,000 type RELAY with TRANSPARENT DUST COVER and PLUG-IN BASE as used exclusively in BERKELEY POWER STATION

NOW SUPPLIED AS FOLLOWS:-

- 6 change.overs light dutr
- 6 MAKES OR 6 BREAKS HEAVY DUTY

2 CHANGE-OVEAS HEAVY DUTY AND
2 CHANGE-OVERS LIGHT DUTY

- transistorised to operate as low as 3 MICRO-AMPS
- A.c. operation for: 6 v .12 V .50 V .110 V . and 250 V. A.C
- double wound coils
- P.T.f.E. Insulation
- PJERATE ANA DEN
A.D.S.RELAYS LTD

89-97. ST.JOHN STREET, CLERKENWELL,E.C.I Telenhone: CLErkenwall 3393/4/S

SPECIFICATION.

Diameter: 0.594 inches maximum

Thickness: 0.156 inches maximum
Capacitance: 0.5 mid
Tolerance: $-20 \%+50 \%$
Working volioge: 3 volis d.c.

Power factor: Not greater than 5\%, when measured at $1 \mathrm{kc} / \mathrm{s}$, and lese than 0.5 volts Not less then 100,000 ohms, when measured of 3 volts

$\begin{array}{llllllll}R & E & S & I & S & T & O & R\end{array}$
L I M I T E D

In line with the Erie policy of anticipating the component requirements of the future, the Erie Transcap capacitor is now added to our ever-increasing range of components for use with transistors.

Designed specifically as a small, reliable, high capacitance, low voltage, coupling, and by-pass capacitor, the Erie developed Transcap is manufactured entirely at our Great Yarmouth factory.

Style T, shown here in its actual physical size, is but a forerunner of the wide range, in differing values and voltages, which will ultimately emerge.

I, HEDDON STREET, LONDON, W.I Telephone: REGent 6432

factories

Great Yarmouth and Tunbridge Wells, England: Trenton, Ont., Canada: Erie, Pa., Holly Springs, Miss., and Hawthorne, Cal., U.S.A.

TELEVISION AERIAL COMPONENTS

DESIGNED FOR CONSTRUCTING BAND I \& BAND III T.V. AERIALS

ELEMENT DIMENSIONS SUPPLIED FOR ALL CHANNELS

Selecting at random from our new multi-page catologue:

- Band III Folded Dipoles (As illustroted).
- Reflector and director rod holders.
- Masthead Fittings for $\frac{3}{4}^{\prime \prime}, 1^{\prime \prime}$, $1 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$ and 2" Masts.
- Mast Coupling Units for $2^{\prime \prime}$ Masts.
- Insulators, Both Rubber and Plastic
(As illustrated).
- Alloy Tubing for Elements, Crossboom and Masting.

Send I- P.O. for the revised, fully illustrated catalogue to

ENTHOVEN covers the whole range of solders

All these Enthoven solder products, and many more, are fully described in the redesigned Enthoven booklet. Send for your free copy now.

ENTHOVEN SOLDERS LIMITED

Sales Office \&orks:

Upper Ordnance Wharf, Rotherhithe Street, London, S.E.16. BERmondsey 2014
Head Office:
Dominion Buildings, South Place, London, E.C.2. MONarch 0391

1 Superspeed solder in all types and sizes
2 Washers and preforms for every application
3 Lacquer, flux, and thinners for printed circuits
4 Preservative, metal, and Tricene de-oxidant for printed circuits

- Solder ribbon, cored, or solid

If you're faced with any soldering problem, get in touch with Enthoven. Our advice is free, and our wide range of products covers every possible application. Enthoven have 150 years experience of smelting and refining nonferrous metals; you can rely on us for materials of consistently fine quality.

The congested bande call for BANDSPREAD
. . . more BANDSPREAD
\ldots and still more BANDSPREAD EDDYSTONE "888A" COMMUNICATIONS RECEIVER provides the answer!

PRICE $£ 110$

The Amateur Band Operator will find in the superb EDDYSTONE "888A" the complete answer to bandspread problems. This carefully designed equipment was developed and engineered specifically to meet his requirements. Write now for fully detailed brochure, free and post free.

Our H.P. terms are fair and reasonable with only a 6% interest charge for 12 months. The " 8884 " cash price fll 10 , works out at $£ 22$ deposit followed by 12 monthly payments of $\mathbf{6 7 / 1 5 / 6 \text { (or }}$ 18 monthly fayments of E5/6/7). Any opparotus or group of apparatus can be sumilarly accommadated.

Another Webb's service to the amateur
Webb's LOG BOOK
Tor conciesely recording sisnala heard and contacted. 112 pages of high quality paper, semistiff manilla covers, excellent value.
Price 5/3. (6/- per U.K. post).
Price 5/3. (b/ per U.K. post).
. . . from stock at

MAIN EDDYSTONE DISTRIBUTORS IN LONDON

14 SOHO 8TREET, OXFORD STREET, LONDON, W. 1
Telephone: GERrard 2089/7803
Shop Hours 9-5.30 (Thursday 7 p.m.) Soturdgy 9-1 p.m.

KOLECTRIC AUTOMATIC COIL WINDING MACHINES

Capacity-For one or more coils, up to total length of 12 inches and $51^{\prime \prime}$ diameter.

The types AI/LB and AX/LB can be supplied with special revolution counters to stop the machines automatically, in conjunction with a solenoid mechanism on the A.C. motor, when the required number of turns have been wound.

Full details on request.

Why struggle with Mains Voltage Fluctuation?

If you have any problem involving a.c. voltage regulation, the solution is to call in 'Advance'the Constant Voltage Transformer specialists. Investigation of your problem may prove that a standard type 'Volstat' will meet the case; or maybe, a special design is called for. In either event, the wealth of experience gained by 'Advance' over many years in probing every aspect of mains stabilization provides the surest, quickest, and certainly the most economical, solution to your difficult ies.

VOLSTAT
 constant voltage transformers

 ROEBUCK ROAD, HAINAULT. RLFORD, ESSEX. Please send me a copy of your booklet "Voltage Stabilization " by "Advance."
-VOLTAGE STABILIZATION*
This 'Advance' Booklet gives auchoritacive Information on 'Advance" Constant Voltage Transformers, and the service avallable to deal with your particular voltege fuctuation problems. Send for a copy.

POST THIS COUPON TODAY

NAME
POSITION

COMPANY \qquad AODRESS \qquad ITGD84

There is no compromise on essentials in the design and construction of the Axiom 350. Everything necessary to ensure a very high standard of reproduction has been incorporated, and no "features" have been included for "sales value" alone. Consequently the Axiom 350 offers you the best performance value you can obtain for your money - make your own comparisons and find out just how true this is. A very wide frequency range (30-16,000 c / s) is achieved with minimum distortion, and power outputs of up to 20 watts (40 watts U.S.A.) can be handled with ease. The massive magnet assembly fitted to the Axiom 350 provides a total flux of 185,000 Maxwells, ensuring first-class control and high efficiency.

A TWO-WAY SYSTEM with the AXIOM 350

You can at any time use your Axtom 350 as the basis of a two-way loudspeaker system by adding a TREBAX 35XL. This is a hornloaded pressure driven high frequency unit which will extend the response of your system to beyond $20,000 \mathrm{c} / \mathrm{s}-\mathrm{smoothly}$. It is complete with in-built L.C. crossover network and L-pad level control, so wiring takes a matter of minutes only.

GOODMANS INDUSTRIES LIMITED.

Axiom Works, Wembley, Middlesex, England.
Tel: WEMbley 1200. Cables: Goodaxiom, Wembley, England.
Distributors in most countries including:
EIRE: Brownlee Bros., Ltd., 32, Molesworth Street, Dublin.
ITALY: Fratelli Romagnoli, Via Sondrio 3, Milan.

Available to Overseas readers only. Post this coupon for your FREE copy of the ' G ' Range Loudspeaker Manual.
nams.
adDress

[^14]
TRANSFORMERS FOR

New Industrial Projects

that work to specification

First Time

provide a sound and satisfactory economy.
They can be obtained from: R. F. GILSON LTD. who provide a first class service to manufacturers in prototype design and small or medium scale production of transformers and chokes for

Communications

> Electronics
> Instrumentation
> Automation
> Research
> Etc. Etc.

If Transformers are your problem
Let R. F. GILSON LTD.

Ila St. Georges Road, Wimbledon, S.W.I9.

WIM 5695

Radiotelephones by ATE-a vital service for isolated communities

Breaking the cold silence

The outposts of the ever expanding world of today are often to be found in remote, isolated areas. For these communities-lumber camps, trading posts, or even a holiday hotel in a beautiful snow-bound wilderness such as this, modern means of communication are essential. By means of the ATE Type 800 equipment the latest in the ATE single channel VHF rural radio-telephone range-such remotecommunities can now be linked direct to the nearest telephone exchange and provided with full telephone facilities; Type 800 is specially equipped with full signalling and control equipment for this purpose.
Exhaustive testing under actual climatic extremes has fully proved its outstanding practicability and efficiency.

Extended frequency coverage over VHF and UHF bands.

New compact cabinet-type construction with slide-in chassis for easy access and maintenance.

Plug-in test meter facilities.
High or low power versions to suit propagation conditions.

Will work in to any type of telephone exchange with improved outband tone signalling facilities.

Modern design conforming to British Post Office, Canadian Department of Transport and Crown Agents' Specifications.

. . . a radar wave directed through a complex layout often in restricted space, call in 'Waveflex'-a unique advance in waveguide technique. In the 'Waveflex' range of Flexible Waveguides are the answers to a hundred-and-one problems of complicated waveguide plumbing.

The three types of WAVEFLEX Flexible Waveguides-Twistable-flexible in E and H planes, and twistable about the longitudinal axis.
Non-twistable-flexible in E and H planes.
Premoulded Twisted-flexible in E and H planes, with a built-in longitudinal twist. Premoulding relieves the end connections of all twisting stresses, and the angle of twist can be much greater than with ordinary twistable guides.
CW Manufactured under exacting scrutiny and tested to strict Government specifications.
Ideally suited for use in pressurised systems, remain stable when bent or twisted, unaffected by extremes of temperature.
Performance covers a broad band. 'Type approval' has been given by the Royal Radar Establishment and the Admiralty.

Waveflex guides are available in a range of lengths $3^{\prime \prime}$ to $36^{\prime \prime}$ fitted with standard flanges. Special lengths and flanges can be made to order. An additional range of short guides, under $6^{\prime \prime}$, are particularly useful as malalignment units and vibration decouplers.

Write for full technical details to:-
GABRIEL MANUFACTURING CO. LTD.
Newton Road, Torquay, Devon. Telephone: Kingskerswell 3333 a mbmber of the tecalemit grour of compantes

 FLEXIBLE AND TWISTABLE WAVEGUIDES

Radiospares components are delivered absolutely "by return"

brookes Cuystals

IAP?

- Illustrared above are
Type G. 2 Crystal Unit. Frequency $62 \mathrm{kc} / \mathrm{s}$.
Right:
Type G.I Crystal Unit. Frequency $100 \mathrm{ke} / \mathrm{s}$.

DEPENDABLE frequency control

ALL Brookes Crystals are made to exacting standards and close tolerances. They are available with a variety of bases and in a wide range of frequencies. There is a Brookes Crystal to suit your purpose-ler us have your enquiry now.

Brookes Crystals Ltd
Suppliers to Ministry of Supply. Home Office, B.B.C., etc. LASSELL STREET, GREENWICH, S.E. 10

Phone: Greenwich 1828
Groms: Xtals, London, S.E. 10 Cobles: Xtals, London

THFEF MEARS ACO we offered the lirst SERVISCOPE" to Industry with notable success. Last year we Introduced a double beam verslon and agaln accepiance was immediate. Now we extend the range still further with the new $\mathbf{~ 5 . 4 2 ,}$ a high performance version of the original serviscope with many outstanding features.
$\square 4^{\prime \prime}$ spiral P.D.A. C.R. tube operating at 3.7 Kv . Increase gain-maximum sensitivity 10 mV . Unique exten dible light hood.
Pulse bright-up for single stroke working. H.F. synchronisation compatible with Y amplifier performance.
Accurate calibrated input attenuator. Wide range calibrated time base (down to $5 \mathrm{sec} / \mathrm{cm}$. If necessary). X expansion control to 10 dia. D.C. coupled flyback banking. Versatile triggering circult unique to 'Serviscopes'. Illuminated graticule. Weight: 18 lbs.

Basically the same rugged, lightweight, versatile instrument as its well-tried predecessors, the S. 42 has the ability to meet more exacting demands with its high writing speed and additional h!gh gain facility. Evolved originally for computer development and servicing, the S. 42 has special applications wherever pulses have to be measured at low repetition rates, for example, a single shot $1 \mu \mathrm{sec}$. pulse can be seen and photographed. In addition, it has general applications throughout the electronics industry.

* 'Serviscope' is the regtstered trade mark of

TELEQUIPMENT LIMITED 313 Chase Road, Southgate, London, N. 14 . Telephone: Fox Lane 1166

COYNE'S NEW JOB TRAINING BOOKS

Put Money-Making Time Saving Know-how At Your Fingertips!
Answers ALL servicing Problems QUICKLY Makes You Worth More On the Job!

No. 8
Pin-Point
TV troubles

in 10 minutes

Find the exact sound or picture trouble in ANY IV set from 700 possibilities! Lateat edition now has 282 pages of mold TV servicing information; 300 diagrams, chook cherts. 31/6. Postage $1 /$. BPECIAL OFFFB
Circle Book No. 8 on coupon, send only $16 / 2$ after 7 days, and $16 / 8$ in 30 days, making a total of 82/6 including postage.

$$
\text { No. } 9
$$

Pin-Point
Transistor troubles in 12
minutes
Trouble-shoot type of circuit in ALL transistorized equipment! 525 pages; hundreds of illustrations; 120 check charts. 47/8, postage $1 / 6$. Circle Book No. 9 on coupon.

ghown you the way to enaler TV-Radlo repair fimo baving, practical working knowiedge that helpa you get the BIG monegi How io inotall, service and align ALL radio and TV sets. even colour TV. UHF. PM and transietorized
 Try any four books on No Rist tres trial ofier No. 1-EVERYTHING ON TV.RADIO PRINCIPLEg! 300 pages of practical explanations; hundreds of litasNo. 2-RVERYTEMNG ON TV.RADIO-FM BECEIVERg! 403 pages; fully lliutrated, 28%.
No. 3-EVIERYTHING ON TV-RADIO GIROUITBt 336 pages: hundrede of illumitations, circuit diagrams. $20 /=$ No. 4-EVRARYKEING ON ERRYICING INETRUMENTEI How they work, how to use them. 368 gagen; Hlat: No. 5-EVERYTHINO ON TV-TROUBLE-BHOOTINOi Covere all types of mets. 437 pares; illun.. dtagrama. 34/-. No. 6-TV CYCLOPEDIA Quict and conolse answers to TV problema in aphabetical order, meludiag UEF. Colour TV and Tranintors; gitg panew, $47 / 6$. No. 7-TRANEIETOR CIRCUIT HANDBOOK! Practical Beference covering Tranalat Applications: aver 200 Circuit Dagrams: 410 paren sibl 308 pasea, $18 / 6$.
Just mall ooupon for free trial. Attar 7 daya mend only low price or return booke and pay nothing. If you keep more than ooe book send 51 after 7 day and $\$ 1$ each month metll completed (martmum four booki). To ing one hool One hat is 80 days.

To SIM-TECH BOOK COMPANY

Name
Addrem
City.
TosTack here if full price enclowed. We pay pootage.

Send us your enquiries for all types of
QUARTZ CRYSTALS for:
RADIO FREQUENCY CONTROL FILTER PURPOSES ULTRASONIC PURPOSES

METALLIZED TO SUIT REQUIREMENTS ANY SHAPE AND SIZE CUT TO SPECIFICATION

PIEZO LIMITED

28 8t. Abans Rd., Watiord, Herts. Tel: Watford 27808

TRANSFORMERS COILS large or small quantities CHOKES trade enquiries welcomed
 SPECIALISTS IN
 FINE WIRE WINDINGS

MINIATURE TRANSFORMERS, PICK-UP, CLOCK AND INSTRUMENT COILS, ETC. VACUUM IMPREGNATION TO APPROVED' STANDARDS

ELECTRO-WINDS LTD.

CONTRACTORS TO G.P.O.. M.O.S., L.E.B., ETC.
123-5-7 PARCHMORE ROAD, THORNTON HEATH, 8URREY
LIVINGSTONE 2261
EST. 1933

For Safety's Sake use AVO Prodclips
 Patent No. 748811

Safety first every time with these patented springloaded AVO Prodclips.
Cleverly dealgned for use as insulated proda, they are invaluable for reaching and holding test points which are difficult of access.
Suriable for use with AvoMeser, Multiminor and Avo Electronic Test Meter Leads.

Post Free 15/- per pair
AVOCET HOUSE . 92-98 VAUXHALL BRIDEE ROAD, LONDON, 8.W.1.

VCtoria 3404 (12 lines)
A member of the metal industries group of companies

1010 sOLDERING IRONS with built-in MAGNETIC TEMPERATURE CONTROL

Important news for the Electronic Industry. In the past, many schemes have been devaloped for control of the temperature of a soldering iron. The need, however, has been for a dependable system that will control the temperature of the soldering iron tip. The desired result has been obtained in the Weller soldering tool where a thermo-magnetic sensing element has been placed right in the tip. This sensing element is registered in U.S.A. and other countries as " MAGNASTAT " (R).
The unique system for controlling the temperature of the tip is simple. A Magnastat, a permanent magnet, and a spring provide a force system for operation of a switch. The switch controls the electrical circuit to the heating element.

SCREWDRIVER PYRAMID IN SHORT, NORMAL, LONG REACH

PREMIUM QUALITY

Structural parts are stainless steel, expertly fabricated, eminently suitable for continuous line production use.

LIGHT WEIGHT and delicate balance reduces operator fatigue. A 55 watt Weller iron weighs only 3.3 oz . excluding lead. HIGH IMPACT HANDLE stays cool.

PREMIUM PLATED BITS automatically remain at a predetermined temperature. Redressing and lost time at very minimum. NO OVERHEATING.

The Magnastat is the heart of the control. It is a small cylinder of special nickel-iron alloy embedded in the tip. When tip temperature is below the design level, the Magnastat has strong magnetic properties and the permanent magnet moves toward the Magnastat. In so doing, the magnet overcomes the force of the spring, closes the switch, and energizes the heating element. When the tip reaches the desired temperature, the Magnastat loses its magnetic properties and the spring pulls the magnet away from the Magnastat causing the switch to turn off the heating element.
The above cycle is under the command of the tip Magnastat at all times. The unusual thermomagnetic characteristics of the Magnastat control the tip temperature to close limits.

CONE SCREWDRIVER 45° Tip Temperatures: $720^{\circ} \mathbf{6 8 0} 0^{\circ} \mathbf{6 0 0}{ }^{\circ} \mathbf{4 7 0} 0^{\circ} \mathbf{4 1 0}{ }^{\circ} \mathrm{F}$

INTERCHANGEABLE BITS permit a wide range of controlled bit temperatures tailored to your exact soldering needs.
GUARANTEED against defects in workmanship and materials by one of the world's largest makers of quality soldering tools.
For interesting details and prices write to

ELSTONE ELECTRONICS LTD.

hereford house, north court, vicar lane,
Nomifoctured by
LEEDS 2
WELLER ELEKTRO-WERKZEUG= GmbH.
BESIGHEIM. NECKAR. WEST GERMANY
and
WELLER ELECTRIC CORP
EASTON. Pa., U.S.A.

first and foremost

For 50 years "Wireless World" has presented the best in technical journalism. For 35 years the Hacker name has represented the best in radio design. Now their futures are linked by one belief-that quality will always attract a discerning public.

HERALD
7-transistor portable radio 26 guineas tax paid

TALISMAN

8-transistor 4 speed portable radiogramophone 37 guineas tax paid

RAMBLER
5-transistor 4 speed portable record reproducer 25 guineas tax paid

MANY MORE PEOPLE ARE USIHG

C. G. S.
 VITreous emamelled WIREWOUND RESISTORS

RCSC Style	CGS Style	RCSC	Rommer- cial	Range
	VPFI	1.5	2	0.5Ω to $5 \mathrm{~K} \Omega$
RWV4-	VPF4	3	4	0.5Ω to $15 \mathrm{k} \Omega$
RWV4-K	VPF10	4.5	10	1Ω to $68 \mathrm{~K} \Omega$
RWV4-L	VPF14	6	14	1Ω to $100 \mathrm{k} \Omega$

- R.C.S.C. Type Approved.
- 100% test and inspection.
- Continuous batch sampling to R.C.S.III.
- Guaranteed reliability.
- Competitively priced.

Ask for price lists

THE C.G.S. RESISTANCE co.lto
 MAREH LANE, GO\&PORT STREET, LYMIMETON, HANTE. Tel. Lymington 2811
 London Office: 30 Clarendon Rd., Harrow, Middx. Tel. Harrow 4147

Current production includes
GERMANIUM • All glass diodes • HF Transistors

- Power Transistors - Also COPPER OXIDE RECTIFIERS \& MODULATORS
FULL DETAILS AND CATALOGUE FROM SOLE U.K. AGENTS :
NEOFLEX LTD.
123a NEASDEN LANE, LONDON, N.W. 10
Telephone: DOLLIS HILL 7671 \& 7881

SMALLER

and Smaller

and even smaller stilli

NOW AMPHENOL 74 SERIES CONNECTORS
PROVIDE 12 CONTACTS IN A CHASSIS/PaNEL AREA
OF LESS THAN ONE TENTH OF A SQUARE INCH!

The development of Amphenol-Borg Connectors to altogether new concepts of econcmy in space, weight ond size is strikingly illustroted below...

Series	Chassis/Panel Area for 12	Year Introduced
	Contacts	
26	.98 sq. ins.	1951
57	.306	..

the greatest name... the widest range AMPHENOL-BORG LIMITED, AMPHENOL ELECTRONIOS DIVISION

Victoria Road, Burgess Hill, Sussex. Telephone: Burgess Hill 85616.

Trebled in size, the Show now moves to Olympia to display the products of an industry which produces more than one million components every hour of the day.

exhlbits include...

components, valves, tubes, semiconductors, chassis, cases, fittings, wires, cables, assemblies and other associated products for:

Telecommunication equipment
Radio and television receivers
Tape recorders, gramophone reproducers and film equipment
Amplifiers, "hi-fi" equipment
Electronic computers
Radar and navigational aids
Measuring instruments and scientific apparatus
Medical electronic and allied apparatus Process control and automation equipment Civil and military aeronautical purposes Guided missiles and military equipment

RADIO and ELECTRONIC COMPONENT SHOW

 OLYMPIA, LONDON3O MAY - 2 JUNE 1961

10 a.m.-6 p.m. daily except Wed. 3 Ist May, io a.m. -9 p.m.
Admission: $3 / 6 \mathrm{~d}$. or by ticket obtainable from exhibitors,

INDUSTRIAL EXHIBITIONS LTD.
9 ARGYLL STREET, LONDON, W.I

AT LAST, FOR ONLY £1.2.6

including post \& packing A really efficient Fan for use in Electronic Equipment

This is what the Electronics world has been waiting for! At extremely low cost air-stirring and extraction can be easily achieved.
Also in production we have Low-Speed Motors from 8 r.p.m. to 40 r.p.m. Price and further details on application to:
KENURE, HOLT \& CO. LTD. BOYN VALLEY RD., MAIDENHEAD, BERKSHIRE Telephone: Maidenhead 533l-2
WE ALSO HAVE SUB-CONTRACT FACILITIES FOR ELECTRONIC WIRING AND ARE FULLY A.I.D APPROVED

Grampian DP4

Even the mont expensive recorder will only give its beat performance if a good quality, reliable microphose is usoi.
In the DP4, with \& uniform wide frequeacy response from $50 \mathrm{c} / \mathrm{s}$ to $15,000 \mathrm{c} / \mathrm{s}$, Grampian have develoyed an outstandin? moderately priced instrument which $\begin{gathered}\text { Ill } \\ \text { plense } \\ \text { the most } \\ \text { exseting recordim. }\end{gathered}$
The DP4 is equally suitable for Public Addrees, Broadoasting, Call 8jatems, de.

Odtput Levels

DP4/L. low impedance 25 ohms 86 dB below 1 volt/dyne/ $/ \mathrm{m}^{2}$. DP4/K, medium impedance 600 ohms 70 dB below 1 volt/dyne $/ \mathrm{Cm}$ DP4/ت, high impedance 50,000 ohms 52 dB below i volt/dyne $/ \mathrm{Cm}^{2}$.
Retail Price: DP4/L complete with connector and 18 ft . screened lead, 87/11. (Medium or High Impedance models. 21 extra.)
A complete range of stands, swivel bolders, etc., is available also.
A matching Unit (Type G7) can be supplied for adapting the microphone for a Recorder having a different input impedance, or when a long lead is required. Retall Price 88/5/-

Write or telophone for illuctratad hiteractura.

GRAMPIAN REPRODUCERS LTD.

 Hanworth Trading Estate Faltham, Middiesex. FELtham 2657

The Hand Assembled Loudspeaker

Why hand assembled? Because only in this way can the full potentialities of this remarkable loudspeaker be realised in each and every unit produced. The result is a reproducer which can be relied upon to give an outstandingly accurate account of any signal fed to it, within the audible frequency band.
The unique and patented construction of the Axiom 80 is centred upon the use of a double-diaphragm moving assembly, the bass diaphragm being completely free edged, thereby eliminating any possibility of surround resonance. Suspension is by means of two triple sets of paired double acting cantilevers. These provide a strong radial centering action with a very low and linear stiffness in the direction of movement, making
possible a bass resonance of $20 \mathrm{c} / \mathrm{s}$. The response continues smoothly from this frequency to $20,000 \mathrm{c} / \mathrm{s}$.

The Axiom 80 can be used in groups of two or four if higher power handling capacity is required. As a single unit it is intended to provide critically accurate reproduction at medium and low level.

Full information, including cabinet designs, is included in Goodmans High Fidelity Loudspeaker Manual, free on request.

AXIOM 80 Specification. Frequency Range: $20-20,000 \mathrm{c} / \mathrm{s}$. Pozer Handing Capacity: 6 Watts. Fundamental Resonance: $20 \mathrm{c} / \mathrm{s}$. Impedance: 15 ohms at $400 \mathrm{c} / \mathrm{s}$. Flux Densiry: 17,000 gauss an 1 inch diameter pole. Diamever: 91 inches.

GOODMANS INDUSTRIES LIMITED, Axiom Works, Wembley, Middx. Tel: WEMbley 1200 (8 lines). Grams: Goodaxiom, Wembley, England. Distribuzors in most countries. PLEASE SEND HIGH FIDELITY MANUAL

```
Name
Address
G47WW
In every sense the greatest range - in every country the greatest name.
```


FDUR-TRACK HEADS

81 $\frac{1}{2}$ HOURS OF RECORDING ON A 7 INCH REEL OF TAPE

prequency in cycles per sec

Trade Export and Private enquiries invited
P. A. MARRIOTT \& CO. LTD.,

284 A Water Road, ALPERTON, Middx.
Tel.: Wembley 7493

RECORD/PLAYBACK

ERASE

ACTUAL SIZE OF HEAD
HEIGHT I
DEPTH :
WIDTH :

TECHNICAL SPECIFICATIONS

PLEASE NOTE - Heads for the Four-Track Standard are themselves made to record on TWO Tracks, so that with the tape reversed (other way up) they record a total of Four Tracks (see Diagram)

RECORD/PLAYBACK HEADS

SOLDER WITII THE NEW PRIMAX and PRIMAXA

 SUPEI EFFICIENT SPOTLIGHT SOLDERING GUNS

Distributors: S. KEMPNER LTD., LONDON, W. 1 29 PADDINGTON STREET, Tel. HUNter 0755

Uses 150 photographs to show television screen faults and explains how to remedy them

Correcting Television Picture Faults

John Cura and Leonard Stanley

Uses 150 remarkable photographs of actual faults appearing on a television screen to enable a quick diagnosis of trouble. The accompanying text explains what action can be taken to remedy these faults-in simple language for the ordinary viewer, and with details of a more technical nature for the service engineer.
4s net. by post 4s 7d 79pp. 4th edition. from all booksollors.
Published for "Wire'ess World" by ILIFFE Books Led. DORSET HOUSE, STAMFORD ST., LONDON S.E. 1

NEW Griffin - Andec GRID-DIP METER

Fully welded construction ensures absolute contact reliability at minimum voltages

Dependable miniature electric contacts with welded connec-
 tions and electrodes

Murrhardt/Wurttemberg, Western Germany.

Full specification, technical data and samples to the trade on request.

TAPE HEADS LTD.

(formerly Bradmatic Productions Ltd.)
124, ALBERT ROAD, BIRMINGHAM, 21 ENGLAND
HOME AND EXPORT ENQUIRIES INVITED

Sylvania-Thorn make the largest range of helical PDA CRTs in the country -13 different kinds in all. This means that when you require a precision CRT-Sylvania-Thorn has one to meet your precise requirements. All these tubes are made to demanding standards of accuracy, and with the closest regard to the instrument maker's needs. Each is specially designed for wide band width working and high-speed oscillography. Each employs a spiral post deflection accelerator, giving exceptionally high deflection sensitivities. Nowhere else will you find such a choice - or a choice of such fine tubes.

WIAIN TYPES (Tyotcal Operating Conditions)

Face Diameter	$5^{\prime \prime}$	$4^{\prime \prime}$	$4^{\prime \prime}$	$3^{\prime \prime}$				
Typo No.	$2 S 5 C$	SE5A	SE5B	SE5D	SESE	SE4A	SE4B	SE3A
Final anode								
voltage	12	10 kv	10 kv	10 kv	10 kv	8 kv	4 kv	4 kv
\& PDA Ratio	4.8	6.67	6.67	12	12	4	4	4
Screen Area								
cms $X \mathrm{cms}$	8×10	6×10	4×10	4×10	6×10	5×8	5×8	5×6
Y sens. v/cm	15	10	7	3.5	5.5	15	7.5	7.5
X sens. v/cm	33	30	30	14	14	48	25	27

* at $7.5 \mathrm{kv} 5 y 2.50 \mathrm{ve} / \mathrm{m} 5 \times 10 \mathrm{v} / \mathrm{cm}$ Sensibility better than 0.14 v/line width WRITE FOR FULL DETAILS TO SYLVANIA-THORN COLOUR TELEVISION LABORATORIES LTD - GREAT CAMBRIDGEROAD • ENFIELD • MIDDLESEX

THE PEMBRIDGE COLLEGE OF ELECTRONICS
 offers training in RADIO TELEVISION AND ELECTRONICS

ATTENDING COURSE

Full-time One Year Course in Radio and Television. College course in basic principles for prospective servicing engineers.
Next course commences 18th April 1961
This course is recognised by the Radio Trades Examination Board (R.T.E.B.) for the new Servicing Certificate examinations.

HOME-STUDY COURSES
A. Radio and Television Servicing.
(1) Introductory course.
(2) Basic course covering R.T.E.B. Intermediate Radio and Television Servicing Certificate examination.
B. Courses in Radio, Telecommunications and Mathematics up to City and Guilds Telecommunication Technicians' Final Certificate.

For details, write to:
The Principal, Pit
THE PEMBRIDGE COLLEGE OF ELECTRONICS

34a Hereford Road, London. W. 2

Vahactio

TRANSISTORISED CONVERTORS

HIGH EFFICIENCY-over 80%.
Up to 400 watts- 800 watts intermittent.
MANUALLY CONTROLLED FREQUENCY $50 \mathrm{c} / \mathrm{s}-$
$60 \mathrm{c} / \mathrm{s}-400 \mathrm{c} / \mathrm{s}$.
REED TYPE $50 \mathrm{c} / \mathrm{s}$ FREQUENCY METER fitted to some models.
MARINE-AIRCRAFT-MOBILE use.
POLARITY REVERSAL PROTECTION.
PROVISION FOR REMOTE CONTROL. SQUARE WAVE AND SINUSOIDAL.
Standard range available ex-stock for T.V., Fluorescent lighting, OSCILLOSCOPES, etc. FROM $12 \mathrm{~V}, 24 \mathrm{~V}, 32 \mathrm{~V}, 50 \mathrm{~V}$.

VALRADIO LIMITED

DEPT. W.W./C. BROWELLS LANE, FELTHAM, MIDDLESEX.
Telephone: Feltham 4242.

Mechanical Relay Latch

 FOR P.O. TYPE 3000This latching device nables the P.O 3000 type relay to be heid in the closed poil is de-energised and until manually and until

Does not impair the versatility of the contact arrangements, nor affect the normal mounting position.

-

WILL TRIP AND HOLD ON A.C. IMPULSE

> Hustrations
> show 3000 Type Reloy fitted with "Remote"' or "Local ". release latch.

EITHER TYPE CAN BE FITTED TO YOUR EXISTING 3000 TYPE RELAYS IN A MATTER OF MINUTES.

Please send for illustroted leafiet
RELAY' UNISELECTORS KEY SWITCHES TO SPECIFICATION.

Fi: IO AMBHIOLS ENELKETS

 THE LATEST EDITION OF ENGINEERING OPPORTUNITIES

 THE LATEST EDITION OF ENGINEERING OPPORTUNITIES}

Have you sent for your copy? ENGINEERING OPPORTUNITIES is a highly informative 156 -page guide to the best paid engineering posts. It tells you how you can quickly prepare at home for a recognised engineering qualification and outlines a wonderful range of modern Home Study Courses in all branches of Engineering. This unique book also gives full details of the Practical Radio \& Electronics Courses, administered by our Specialist Electronics Training Divisionthe B.I.E.T. School of Electronics, explains the benefits of our Employment Dept. and shows you how to qualify for five years promotion in one year.

We definitely Guarantee

66 NO PASS - NO FEE ${ }^{\prime}$

Whatever your age or experience, you cannot afford to miss reading this famous book. If you are carning less than C25. a week, send for your copy of "ELNGINEERING OPPORTUNITIES" today-FREE

WHICH IS YOUR PET SUBJECT ?

Machanlcal Ens., Electrical Ens.: Civll Ensineertng. Radlo Ensinearing, Radlo Enginearing, Automabile Eng., Aeronautical Eng.
Production Ens. Production Ens., Draughtemanshlp, Tolevision, atc

GET SOME

LETTERS AFTER
YOUR NAME!
A.M.I.Mech.E. A.M.I.C.E.
A.M.I.Prod.E.
A.m.i.Prod.E
A.M.I,...I.
A.F.R.A.B.8.
A.F.R.A.8
B.8.
A.M.Brlt.I.R.E

Cfty \& Gullds
Gen. Cert. of Education Etc., etc.

BRITISH INSTITUTE OF ENGINEERING

TECHNOLOGY (Incorporating E.M.I. Institutes)
(Dept. SE/22), 29 Wright's Lane, London, W. 8

PRACTICAL EQUIPMENT

Bask Practical and Theore tic Courses for beginners in Radio, T.V., Electronics, Etc. A.M.Brit.i.R.E. City \& Guilds adio Amateurs' Exam. R.T.E.B. Certificato P.M.G. Certificate Practical Radio Radio \& Television Servicing Practical Electronics Electronics Engineering Automation

- Dos couron how t

Please send me your FREE 156-page "ENGIMEERIMG OPPORTUNITIES' (Write if you prefer not to cut page) NAME.
ADDRESS.
\qquad

INCLUDING TOOLS!

The specialist Electrowics Division of B.I.B.T (incorporating $E . M$.I. Institutes) NOW offars you a real laboratory training at homs with practical equipment. Ask for derails.
B.I.E.T. SCHOOL OF ELECTRONICS

THE B.I.E.T. IS THE LEADING ORGANISATION OF ITS KIND IN THE WORLD

New address
523, LONDON ROAD, THORNTON HEATH, SURREY

Manufacturers of High Quality Loud Speakers since 1924

Write for details of the most comprehensive range of High Fidelity Loud Speakers for Monaural and Stereophonic systems.

Sales and Demonstration showrooms
JOHN LIONNET \& Co. Ltd., 17, Charing Cross Road, London, W.C. 2. Tel.: TRAlalgar 5575

T.R.GELLS for Marine Radar

A comprehensive
range of T.R. Cells is available covering frequencies from $1,000 \mathrm{Mc} / \mathrm{s}$. to 35,000 Mc / s. Write for further information.

LONDON'S LEADING STOCKISTS OF EQUIPMENT • ACCESSORIES • MATERIALS GOODS SENT TO ALL PARTS OF THE WORLD

STOCKTAKING SALE!

Faneastic reduction in Transformers, chokes, speakers, potentiometers, plugs and sockets and many other electronic components too numerous to list.
Regret callers only.

SPECIAL OFFERS!
 PNEUMATIC LID STAY with pressure adjuster. Heavy duty, Jo/- complete. P. \& P. $1 / 6$.
 "ROLA" $7 \times$ tin. ellipctical speaker. $3-5$ ohms. ONLY i3/6. P. \& P. $1 / 6$.
 "ELAC" 6f inch round speaker 14/6. P. \& P. I/6.
 PARTRIDGE TRANSFORMERS 110 v . primary $250-0-25060 \mathrm{~mA} .6 .3 \mathrm{v} .2 \mathrm{~A} 5 \mathrm{v}$ 2 A. 21/-.
 CHOKE 50H. 25 mA " C " are 7/6. P. \& P. 1/6. (Greasham Transformers Lid.)
 Choke 10 H 250 mA . Potted "C" Core, 25/-.
 Choke 20 H 50 mA . Ported, $15 / \mathrm{c}$.
 Choke 16 H 120 mA . Potted " C ${ }^{\circ}$ Core. 20/-.
 Choke SH 100 mA ., Potted, 5/6. Choke 5 H 300 mA . Ported, 12/6. Rectifier $300 \mathrm{v} .300 \mathrm{~mA} ., 13 / 6$.

JASON CONSTRUCTIONAL KIT8

"EVEREST" PORTABLE RADIO. Super model, 7 transistors with 3 gang tuning and RF stage, efficient speaker and attractive case. Kit £ $15 / 18 / 9$. P. \& P. 3/6.
"MERCURY" Switched FM/BBC/ITV TV cuner of simple design with AFC for cabinet mounting. Price of complete kit with valves less power pack, \& $11 / 14 / 6$. (Power Pack kit E2/14/- extra). P. \& P. 3/6.
AUDIO GENERATOR AG.IO. Capaciry tuned Wien bridge gives good stability from 10 c.p.s. to $100 \mathrm{kc} / \mathrm{s}$. sine/square wave output. Kit fis/i9/-. P. \& P. $3 / 6$.
OSCILLOSCOPE OG.IO. Push-pull san on X and Y plates with an X bandwidth of 10 e.p.s. to $1.5 \mathrm{Mc} / \mathrm{s}$. $\pm 1 \mathrm{~dB}$. Kit $\mathrm{E22/10/-}. \mathrm{P} .\mathrm{\&} \mathrm{P}. \mathrm{3/6}$. ATTENUATOR A.A.IO. Calibrated in $d B$ giving any reading between 1 dB and 110 dB . Uses 1\% resistors. Kit £7/15/-. P. \& P. 3/6. CRYSTAL CALIBRATOR CC.IO. COMplete with crystal oscillator and audio output. 30 that signal generators in the range of 100 $\mathrm{kc} / \mathrm{s} .-200 \mathrm{Mc} / \mathrm{s}$. may be accurately checked. Kit $£ 19 / 19 /=$. P. \& P. $3 / 6$.
W.II WOBBULATOR KIT. Produces a frequency modulated signal for alignment of Sound and Picture channels, $\mathrm{fl} / \mathrm{l} / \mathrm{I} / \mathrm{F}$. P. \& P. 3/6.

PAINTON PLUES AND SOCKETS. your requiremente.

LARGE STOCKISTS OF

COMPONEMTS \& EQUIPMENT

by well-known Manufacturers including :-
-A.B. METAL PRODUCTS - AVO BELLING-LEE BULGIN - COLVERN - DUBILIER - ERIE MORGANITE MULLARD PAINTON T.C.C. WELWYN - WESTINGHOUSE

STEEL METER CASES

$4 \times 4 \times 4$ in. Sloping Front $5 \times 5 \times 8 \mathrm{in}$. Sloping Front \qquad $6 \times 6 \times 12 \mathrm{in}$. Sloping Front \qquad $4 \times 4 \times 2 \mathrm{fin}$. Rectangular $6 \times 4 \times 3$ in. Rectangular \qquad \qquad $8 \times 6 \times 3 \mathrm{in}$. Rectangular \qquad $10 \times 6 \times 2 \mathrm{tin}$. Rectanzular $10 \times 7 \times 7 \mathrm{in}$. Alum. Panel $12 \times 7 \times 7 \mathrm{in}$, with Alum. Panel $14 \times 7 \times 7 \mathrm{in}$. with Alum. Panel $14 \times 9 \times 8$ in. with Alum. Panel \qquad $16 \times 9 \times 8 \mathrm{in}$. with Alum. Panel \qquad $16 \times 11 \times 8$ in. with Alum. Panel $19 \times 8 \times 1$ lin. with Alum Panal $19 \times 11 \times 10 \mathrm{in}$. with Alum. Panel	

116
$4 \times 4 \times 4 \mathrm{in}$. Sloping Front \ldots.
$5 \times 5 \times 81 \mathrm{n}$. Sloping Front
$6 \times 6 \times 12 \mathrm{in}$. Sloping Front 11
$4 \times 4 \times 2$ in. Rectangular
$6 \times 4 \times 3 \mathrm{in}$. Rectangular
$8 \times 6 \times 3 \mathrm{in}$. Rectangular
$10 \times 6 \times 2 \mathrm{tin}$. Rectangular
$10 \times 7 \times 7 \mathrm{in}$. Alum. Panel
$14 \times 7 \times 7 \mathrm{in}$. with Alum. Panel $14 \times 9 \times 8 \mathrm{in}$. with Alum. Panel
$16 \times 9 \times 8 \mathrm{in}$. with Alum. Panel
$19 \times 8 \times 1$ lin. with Alum Panal
ALSO FULL RANGE OF CHASSIS

Chassis and Case List Free on request.

ROTARY WAFER SWITCHES

A.B. Metal and N.S.F. Made to order. Price list free on request.
$\overline{\text { A.C. SOLENDID TYPE SCM }}$
FULL SIZE

full size
 Instantaneous to 2 lbs . Larger sizes available. Also-Transformers to 7kVA 3 phase.

German Radio Television and Phono Exhibition

18 FOREST ROAD, KINGSWOOD, BRISTOL. Phone: 67-4065

Berlin

August 25 to September 3,1961
Exhibition ground at the West-Berlin radio tower
Information:
German Tourist Information Bureau 61 Conduit Street, London W 1

Since 1912

When DUBILIER commenced manufacturing
"Condensers " (now known as CAPACITORS)
tremendous progress has been made in
theory, research, circuit and equipment design,
manufacturing techniques, scientific
and industrial applications. DUBILIER has
always been to the forefront as
"makers of the worlds finest capacitors."

DUBIRTEB

DUBILIER CONDENSER CO. (1925) LTD., DUCON WORKS, VICTORIA ROAD, NORTH ACTON, LONDON, W.S Telephone: ACOrn 2241 (5 lines)

Telegrams: Hivolicon, London, Telex.
Cables: Hivoltcon, London.

Pye at Dounreay

The Pye Instrument Group has supplied all the equipment to the U.K. Atomic Energy Authority for the irradiated fuel element laboratory at Dounreay. In addition to supplying equipment, Pye Ltd. acted as consultants and designers on all matters in that laboratory relating to instrumentation and remote handling. The illustration above shows manipulators working in conjunction with a television camera to handle and measure a sample from the fast reactor.

teaching or learning...

 ments on transistors from basic characteristics to communications and pulse circuitry.
\&26.0.0 plus 7/8 packing and delivery in U.F
An extensive range of Electronic TrainIng Equipment Including TRANSISTOR LECTURE DEMONSTRATION EQUIPMENT is also avallable

DTA BLFCTRONIC TRAINING EQUIPMIFNT

[^15]
$£ 1,000$

This is the sum invested in the purchase of E.T.S. Data Sheets by English Electric Aviation Ltd., since official recognition which is as follows:-
"the ministry of aviation commends the USE OF E.T.S. DATA SHEETS FOR PURPOSES OF equipment design in aid of m.o.a. contracts. "

Your Company may also wish to invest in efficiency if it uses Joint Service Type Approved electronic components.

For full details please apply to
H. W. DAVIES LTD., 1, Newman Road, Bromley, Kent

Telephone: Ravensbourne 8951

special industrial quality

NEWMARKET

TRANSISTORS

the power transistor of the " 60 's"

HIGHER VOLTAGES
HIGHER CURRENTS
HIGHER POWERS
HIGHER GAINS

NKT 400 POWERTRANSISTORS listed below all have cold weld closure for reliability and industry standard TO3 outline

NKT 40124 V High Power D.C. Converter Transistor (6A Voltage Rating 60V, 6A Beta 15-30)

NKT 402 I2V High Power D.C. Converter Transistor (6A Voltage Rating 30V, 6A Beta 30-50)

NKT 403 24V High Gain Power Amplifier Transistor (5A Voltage Rating 60V, IA Beta 50-I50)

NKT 404 12V High Gain Power Amplifier Transistor (5A Voltage Rating 30V, IA Beta 50-150)

DATA SHEETS ARE AVAILABLE DIRECT fROM NEWMARKET TRANSISTORS LIMITED

THE NKT 400 POWER RANGE includes units with these characteristics:

6.0A Current Gains of		$\mathbf{6 0}$
6.0A Voltage Ratings	(Volts)	$\mathbf{6 0}$
Max. Tj Rise above $25^{\circ} \mathrm{C}$	$\left({ }^{\circ} \mathrm{C}\right)$	$\mathbf{6 0}$
Beta 3A/Beta 1 A	$(\%)$	$\mathbf{6 0}$
Leakage Current	$(\mu \mathrm{A})$	$\mathbf{6 0}$
Saturation Voltage	(Volts)	$\mathbf{- 6 0}$
6.0A Base Drive Voltage	$($ Volts $)$	$\mathbf{. 6 0}$
Thermal Derating Factor	$\left(\mathrm{W} /{ }^{\circ} \mathrm{C}\right)$	$\mathbf{- 6 0}$
Frequency Cut-off	$(\mathrm{Mc} / \mathrm{S})$	$\mathbf{. 6 0}$

Please write for full details.
Pye Telecommunications Limited, Newmarket Road, Cambridge Telephone: Teversham 3131 Telegrams: Pyetelecom Cambridge

Wireless World

ELECTRONICS, RADIO, TELEVISION

Managing Editor:

HCGH S. POCOCK, M.I.E.E

Editor:
F. L. DEVEREUX, B.Se

Assistan Editor:
H. W. BARNARD

VOLUME 67 No 4.
PRICE: TWO SHILLINGS

FIFTY-FIRST YEAR
OF PUBLICATION

APRIL 1961

155	Editorial Comment
156	Since the Wireless World Began
185	Low-cost Stereo Amplifier-1 By E. Jeffery
191	International Semiconductor Symposium
192	Letters to the Editor
194	Paris International Sound Festival
196	Elements of Electronic Circuits-24 By 7. M. Peters
198	World of Wireless
200	News from Industry
201	Personalities
203	Fifty Years' Research in Radio Wave Propagation By R. L. Smith-Rose
208	Manufacturers' Products
210	Technical Notebook
211	International Electronic Components Show
213	Response Curves and Tone Quality By M. G. Scroggie
217	Some Thoughts on Inductance By Thomas Roddam
220	Short-wave Conditions
221	Multivibrator Design By R.C.Foss and M. F. Sizmur
225	Negative Feedback and Non-Linearity By " Cathode Ray"
231	Amateur Teleprinting By A. C. Gee
232	Unbiased By "Free Grid"
234	Random Reflections By "Diallist"
236	April Meetings

Iliffe Electrical Publications Ltd. Managing Director: H. S. Pocock, M.I.E.E. Dorset House, Stamford Street, London, S.E. 1

Please address to Editor, Advertisement Manager, or Publisher as appropriate

[^16]

This new manual of transistor circuitry has been prepared by Mullard engineers, as an up-to-date and readable volume which will be of use and interest to technicians, service engineers, junior designers and electronics students.
It has a page size of $8 \frac{1^{1}}{} 1 \times 5 \frac{1}{2}^{17}$ and describes more than 60 circuits-over 30 are made generally available for the first time-including both domestic and industrial applications.

308 PAGES • 241 DIAGRAMS • U.K. PRICE 12s. 6d.

PUBLISHED BY MULLARD LTD.
Get your copy of the Mullard "Reference Manual of Transistor Circults" today from your radio dealer, or order direct from Mullard Ltd. (postage and packing 1s. Od. extra in U.K.).
MULLARD LIMITED • MULLARD HOUSE • TORRINGTON PLACE • LONDON • W.C.1.
Overseas readers should enquire of thelr local Mullard Agents.

"NUC MI W RNMDIM"

HIGH VACUUM VARIABLE CAPACITORS

developed and manufactured in Britain

The range comprises five types for operation in high voltage r.f. circuits which are all tunable over an approximataly linear capacitance range. High vacuum variable capacitors offer outstanding advantages over conventional air dielec ric counterparts:-

* Compactness relative to high capacitance and operating voltage.
* Low self inductance and stray capacitance.
* No electrostatic dust precipitation on plates.
* Easily demountable.

Full information on the present range is available from the address below

Further types will be added to meet furure requirements.

$\begin{aligned} & \text { E.E.V. } \\ & \text { type } \end{aligned}$	Approx linear apacitance tange (pF)	Shaft turns in linear capacitance ange	Max peak r.f. voltage (kV)	Max f. current (A)	$\begin{gathered} \text { Max } \\ \text { length } \\ \text { (in) } \end{gathered}$	$\begin{aligned} & \text { Max } \\ & \text { dia. } \\ & \text { (in) } \end{aligned}$
U30/15 U50/15 U80/15 U200/10	$\begin{gathered} 5-30 \\ 8-50 \\ 16-80 \\ 5.5-206 \\ 5.5-206 \end{gathered}$	$\begin{aligned} & 10.4 \\ & 10.4 \\ & 10.4 \\ & 17 \\ & 17 \end{aligned}$	$\begin{array}{r} 15 \\ 15 \\ 15 \\ 8 \\ 10 \end{array}$	10^{*} 15^{*} $20{ }^{*}$ $20-$ $20-$	6.5 6.5 6.5 9.5 9.5	$\begin{aligned} & 2.13 \\ & 2.75 \\ & 3.30 \\ & 2.49 \\ & 3.50 \end{aligned}$

* Up to $30 \mathrm{Mc} / \mathrm{s} \quad+$ Up to $20 \mathrm{Mc} / \mathrm{s}$

ENGLISH ELECTRIC VALVE CO. $\mathbb{L} T \mathrm{D}$ Chelmsford, England Telephone: Chelmsford 3491 AGents throughout the wori.d

Wireless World

ard the world of wireless

$$
\begin{aligned}
& \text { were foumated by } \\
& \text { MARCONI }
\end{aligned}
$$

WORLD LEADERS IN EVERY BRANCH OF RADIO AND ELECTRONICS

In April 191I, Marconi's Wireless Telegraph Company published the first edition of the "Marconigraph'. In 1913 its name was changed to 'Wireless World' and its publishers to the Marconi Press Agency. which had been founded in 1910 to provide a fast news service by wireless telegraphy. In 1914 the agency's name was changed to Wireless Press Limited and in 1924 the Company's interest in 'Wireless World' was acquired by the present proprietors.

THE MARK IV CAMERA CHAIN

EXPERIENCE COUNTS

Marconi's pioneered the use of the $4!$ inch Image Orthicon Camera using the tube developed by their associates, the English Electric Valve Company. Marconi's have amassed moee 'know-how' on the use of the $4 \frac{1}{2}$ inch Image Orthicon than any other manufacturer.

"BELLING-LEE" NOTES
 No. 27 of a Series
 Power Factor

When a steady e.m.f. is applied to an inductor, a current flows, its steady value being determined by the resistance of the winding, and this current creates a magnetic field surrounding the inductor. If the current varies, the field varies and, as is well known, when a field surrounding a coil varies an e.m.f. is created across its terminals; this is the principle of gencration. This self-generated or induced e.m.f. is in opposition to the applied e.m.f., and its effect is therefore to impede the current producing it. Other things being equal, the magnitude of the induced e.m.f. is dependent upon the rate of change of the field.
If the applied e.m.f. is alternating, the maximum value of the induced e.m.f. occurs every half cycle at the instant when the current changes direction, for although its value is then zero, this is when the rate of change is greatest. The induced e.m.f. is therefore completely out of step (90° out of phase) with the current and, since it is opposing the applied e.m.f., the latter must already be in the opposite phase. This means that the current is lagging behind the applied e.m.f. by an amount depending on the characteristics of the inductor.

Looked at another way, it is obvious that while the current is increasing, the magnetic field is being built up, and as soon as the current starts diminishing, the field begins to collapse. Energy is therefore alternately stored up in the inductor and returned to the circuit, and if there were no losses, the net power consumed would be nil. If this could occur, it would mean that the current and the applied e.m.f. would be completely out of phase, zero current occurring at the instant of maximum voltage, and vice versa, the product (power) being zero. In practice, however, some energy is always dissipated, e.g. the inductor has some resistance and becomes hot, so the current is never completely out of phase with the applied e.m.f.; the power taken, then, is given by the product of the voltage and the in-phase component of the current. It can be demonstrated that the in-phase component of the current is the actual current value multiplied by the cosine of the angle of lag. Thus, if the angle of lag is 90°, the power is nil $\left(\cos 90^{\circ}=0\right)$ and, at the other extreme, if there is no
angle of lag the power taken is the product of voltage and current since $\cos 0^{\circ}=1$ (this is the familiar relationship applying to D.C. circuits, and all circuits which are entirely resistive).

The ratio of power dissipated to the apparent power (the direct product of volts and amps) is known as the "Power Factor," and it can be seen that it is the same thing as the cosine of the angle of phase lag between current and applied e.m.f. Similarly, in the case of a capacitor it can be shown that the current leads an applied e.m.f., and its power factor is given by the cosine of the angle of lead. The power factor of an inductor or a capacitor is therefore an index of its quality, and should ideally be zero.

However, when we consider the goodness of a power converting device, e.g. a motor, fed from an A.C. supply, preferably none of the current passing through it should be wasted. But any out-of-phase component of the current in a circuit contributes nothing to the power output of the device, and is termed "wattless," although it heats up the conductors and the generator, embarrassing the supply authority. From the point of view of circuit efficiency the e.m.f. and current should be in phase, i.e. the power factor should ideally be unity, although values down to 0.8 are generally considered satisfactory. Domestic consumers, who are charged for the power used, are not normally very interested in wattless current, but industrial users who are supplied on a maximum demand tariff are vitally concerned since their maximum demand meters register volt-amps. In all cases where the power factor is less than 0.8 it is desirable to improve matters and, since most circuits which have a poor power factor are mainly inductive, with the current lagging behind the voltage, by connecting a capacitor of appropriate value across them a wattless leading current is taken, which reduces the net wattless current to a reasonable value.

We would like to hear from any readers who have recently experienced rain or precipitation static interfet ing with reception. Please mark letters R.P.S. in the top left corner.

Advertisement of belling \& Lee ltd.
Great Cambridge Road, Enfield, Middx.

"Belling-Lee"
 Flexible

Terminal Blocks

For 30 years or more equipment engineers have been looking for connector blocks like this, which avoid the necessity for bringing internal wiring through the panel or back plate. This is always a difficult job to perform tidily, and one with an element of risk as well, as connections may be severed accidentally in use. These rightangle terminal blocks solve this problem neatly and efficiently and, being resilient, also obviate thz chance of breakages by buffeting and shock.

Here then is the complete answer to all such problems, providing a point of smooth transfer from electronic to electrical wireman. It is available in 12-way, divisible strips, conservatively rated at $2 \mathrm{amp}-$ this rating can safely be exceeded by 100% or more with only a moderate temperature rise-and, like our other flexible terminal blocks, has vibration proof screws.
Why not write for fuller details? This may be just the accessory you are looking for-in any case, it is just as well to have particulars of such a useful component on hand.

> Most "Belling-Lee" products are covered by patents or registered designs or applications.

Telephone: Enileld 5393 - Telegrams: Radiobel, Entelf

Don't be a square. Don't let your styli get square, either. Change them in time. Get with it, with the best styliAcos styli. The greatest and the precisest. Positively the coolest, and the kindest to your discs.

Acos Sapphire and Diamond Styli are available for all current Acos and ACOStereo mono and stereo pick-ups and cartridges, and also for most popular Garrard, Collaro; BSR, Decca, Telefunken, Pye, Philips and other heads. Every Acos stylus is precision made and polished, and individually
tested at 500 times magnification for perfect shape and finish. Yet Acos styli cost no more than others: U.K. Retail priceSapphire from $6 /-$, Diamond reduced to $35 / 8$, incl. P.T. ${ }^{3}$ available from all good Dealers. The Acos Changer Dust Bug slips easily over most changer arms and wipes the record clear of dust, giving up to five times longer stylus life and protecting the disc.

AREDOING THINGS IN STYLI

Plessey

TELECOMMUNICATIONS
 serve the airways

Abstract

Plessey is everywhere, you'll find . . . at Beirut Airport for example - and other major airports throughout the world - where radio teleprinter terminals by Plessey form an instantaneous link between control towers for the exchange of vital air traffic control information.

Plessey Telecommunications equipment is employed on a world-wide basis by Civil Aviation Authorities; similarly, it is used internationally by Meteorological Services.

Behind this achievement are the extensive prototype and quality manufacturing resources of the Telecommunications Division, inspired by the work of a unique research and development organisation. The Company recognises the need to segregate advanced thinking from the hustle and distraction of the factory. Accordingly, in addition to the Group Research Laboratories at Roke Manor and other specialised research centres already existing in the U.K., extremely well equipped laboratories have recently been established at West Leigh for advanced Telecommunications studies. In these establishments, the next generation of telecommunications equipment is already taking shape.

In close support at all times are the complete resources of the Plessey Group of Companies which include unrivalled tool making and machining facilities, a full range of environmental testing and production laboratories, and the

Aspects of design

This is No. 33 in the series of articles dealing with advanced problems in circuit desagn published by The Ediswan Mazda Applications Laboratory. No. 34 will appear next month. We shall be pleased to answer queries arısing from this or other artucles.
Reprints of the first twenty-four articles, in booklet form, are avalable on request.

RF TETRODE

 FOR TELEVISION TUNERSThe use of a tetrode valve in the RF stage of a television tuner offers certain advantages over the more conventional doubletriode cascode arrangement. With the tetrode the number of circuit components required is smaller, the layout is simpler and for valves having comparable mutual conductance the single cathode type valve can be manufactured more economically.
A serious disadvantage of the multi-electrode valve as an RF amplifier for television has been its inferior noise performance compared with a triode. This is due to the presence of an additional noise source in the tetrode arising from the random division of the electron stream passing through the screen grid, the added noise, referred to as partition noise, increasing with screen current. This subject has been dealt with more fully in "Aspects of Design No. 32."

It follows that if the ratio of screen current to anode current can be kept as low as possible the effect of partition noise will be minimised and the noise of a tetrode then becomes low enough for this type of valve to be worthy of consideration as an RF amplifier for television. While it is possible to design tetrode valves in which the screen current is less than 10% of the anode current it must be remembered that the primary purpose of the screen grid is, in fact, to screen the input or control grid from the anode and thus reduce the g_{1-a} capacitance. Therefore although the screen current to anode current ratio can be made extremely low, with a corresponding reduction in tetrode noise, there is a limit to the extent to which this can be taken.

This limit is reached when any further reduction of screen current brought about by opening the winding pitch of the screen grid electrode increases the gi-a capacitance to such an extent that instability may occur in operation.
It has been found that in the case of a high slope tetrode, an acceptable compromise between low partition noise and good screening can be obtained by designing a valve in which the g_{1}-a capacitance does not exceed 0.05 pF , giving a screen to anode current ratio of about 12%. It is then possible to use the tetrode successfully without any form of circuit neutralisation and obtain an acceptable performance. With frame grid techniques, a valve to the above specification can be manufactured with a high slope per milliamp of anode current resulting in a high gain stable RF valve with a noise performance much superior to that of a conventional pentode and nearly equal to that of a double triode cascode amplifier such as the 30 L 15.

The Ediswan Mazda tetrode that has been designed along these lines is the frame grid type 30F27 which is a VHF tetrode having variable-mu characteristics for reducing cross-modulation effects and a nominal mutual conductance of $15 \mathrm{~mA}, \mathrm{~V}$ at an anode current of 13.5 mA and a screen current of 1.7 mA .

CIRCUIT RECOMMENDATIONS FOR THE 30F27

The chassis layout for the 30F27 should follow the normal pattern for a VHF amplifier. It should have a well-fitting screen, going across the valveholder between grid and anode circuits and it is essential that the valveholder has a central earthed spigot.
The 30F27 can be used in a circuit with either grid current bias or cathode self bias, the latter giving the greater degree of anode current stabilisation with a normal spread of valve characteristics. However, stabilisation is satisfactory with grid current bias providing the screen supply is obtained from the lower potential end of the anode decoupling resistor (Fig. 1). This ensures that the screen voltage is controlled largely by the total current instead of being controlled only by the screen current. The high value of screen dropping resistor ($33 \mathrm{k} \Omega$) prevents the screen dissipation being exceeded should the valve be run without anode voltage. This can occur, for example, in a turret tuner when no band-pass segment is engaged. Moreover with grid current bias a further simplification of the circuit is obtained and a greater economy in the use of components can be effected.

The circuit recommended for the 30F27 when using grid current bias is shown in Fig. 1, with decoupling resistors suitable

Associated Electrical Industries Ltd
 Radio and Electronic Components Division

Technical Service Department
155 Charing Cross Road, London. W.C. 2
Tel: GERrard 9797. Grems: Sleswan Westcent London
for a 200 V high tension supply. The following points should be noted:-
i. The screen voltage is dropped to 105 V to give an anode current of 14.0 mA with the relatively low blas voltage obtained from grid current which is of the order of $2 \mu \mathrm{~A}$.
ii. To minamise feedback due to cathode lead inductance the cathode of the 30 F 27 is brought out on three separate pins, 1, 3 and 9 . For this circuit pins 1 and 9 are strapped externally and taken to the grid circuit while pin 3 is taken to chassis.
iii. A low value inductance (about 20 muH) is placed between g_{2} (pin 8) and its decoupling capacitor to provide a smalu amount of regeneration on Band 1II.

ECONOMY IN CIRCUIT COMPONENTS

 WITH THE 30F27Compared to the double-triode cascode circuit the use of the tetrode with cathode bias results in the saving of the following components:
(a) One resistor, previously required as part of the grounded grid potentiometer.
(b) Neutralising capacitor, usually 2 pF ,

When using the tetrode under grid current bias conditions as shown in Fig. 1 there is a further saving, in that the cathode circuit decoupling capacitor (1000 pF) is not required. No cathode resistor is used but this is offset by the need for an additional resistor in the grid circuit.

COMPARATIVE PERFORMANCE

OF THE 30F27, 30 L 1 and 30 L 15
The typical performance to be expected from a relevision tuner using the 30 F 27 and 30 C 15 is given in Table 1 with comparative figures for the 30 Ll and 30 L 15 in place of the 30F27.

TABLE 1

Channel	30 F 27		30 Ll		30 L 15	
	Gain dB	Noise dB	Gain dB	Noise dB	Gain dB	Noise dB
	51	5.0	46	4.0	50	3.3
11	48	7.8	41	8.2	48	6.5

Gain figures are for open-circuit calibration (generator emf)
Tuner mixer valve: 30 C 15
Transfer impedance of IF transformer: 2200 ohms.
The 30F27 will handle a larger input signal without cross modulation than either the 30L1 or 30L15 and it provides an economical, high gain, stable RF amplifier for a tuner, with a noise performance that is found to be acceptable except for the most exacting requirements.

NEW TV TUNER HIGH

SLOPE VHF TETRODE

EDISWAN MAZDA 30F27

The 30 F 27 is a frame grid VHF tetrode having a mutual conductance of $15 \mathrm{~mA} / \mathrm{V}$ at an anode current of 13.5 mA and a screen current of 1.7 mA with variable-mu characteristics to reduce cross-modulation effects at high signal levels.

This tetrode used in the RF stage of a television tuner offers certain advantages over the more conventional double triode cascode arrangement. For instance, the number of circuit components required is smaller, the layout is simpler and for valves having comparable slopes the single cathode type valve can be manufactured more economically.

Normally the noise performance of a tetrode is inferior to that of a triode due to the presence of partition noise arising from the screen current. However the 30 F 27 has been specially designed to provide a low ratio of screen to anode current to minimise the effect of partition noise while still retaining good screening between control grid and anode. When this is used in conjunction with frame-grid techniques a high slope per milliamp of anode current can be obtained resulting in a high gain RF valve with a noise performance much superior to that of a conventional pentode and equal to that of a double triode cascode amplifier such as the 30 Ll .

$$
\begin{array}{lll}
\text { Heater Current (amps) } & I_{b} & 0.3 \\
\text { Heater Voltage (volts) } & V_{h} & 3.7
\end{array}
$$

TENTATIVE RATINGS AND DATA

Maximum Design Centre Ratings

Anode Dissipation (watts) Screen Dissipation (watts) Anode Voltage (volts) .
Screen Voltage (volts) $p_{s}(m=x)$2.5

Screen Voltage (volts) V $V_{1}(\operatorname{mex}) \quad 250$

Cathode Current (mA) $\mathbf{I}_{k}(\mathrm{max}) \quad 18$

* From cathode to higher potential heater pin.

Inter-electrode Capacitances (pF) \dagger

\dagger Measured in fully shielded socket, without can.
Maximum Dimensions (mm)
Overall Length
. 56
Diamerer 49

| TYPICAL | | | |
| :--- | :---: | :---: | :---: | OPERATION

Tentative Characteristic Curves of Ediswan Mazda Valve Type 30F27

Associated Electrical Industries Ltd
Radio and Electronlc Componenta Division Technical Service Department Tel. Gefrard 155 Charing Cross Road, London, W.C.2

Base: B9A (Noval) Mounting Position: Unrestricted

VIEW OF FREE ENO

EDISWAN

MAZDA

EE 30121 for further cetails

Points to: note when: choosing a

 V.L.E SIGNAL
generator

Can you change level and frequency instantaneously? Because of the long time-constants involved, adjustments of level and frequency on almost all V.L.F. Signal Generators take manutes to become effective. This irritating time-wastage has been eliminated on the Airmec V.L.F. Signal Generator Type $257(0.03-30 \mathrm{c} / \mathrm{s})$ by using a unique system for generating the output signals. The basic generator employs a motor-driven capacitor to modulate a high frequency signal which is then rectified and amplified to provide the very low frequency output. Hence frequency changes are made instantaneously by changing the motor speed and level setting is effected instantaneously by altering the RF signal level.

Is barmonic distortion low at all frequencies? Some V.L.F. Signal Generators only quote distortion figures at relatively high frequencies. This is understandable since the RC oscilators distortion normally worsens as the frequency is lowered and measurement of harmonics at very low frequencies is not easy. The purity of the waveform generated by the Generator Type 257 is dependent only on the shape of the modulating capacito vanes, and distortion (less than 2%) is therefore constant at all frequencies.

Is a quadrature output avallable? A quadrature output is now generally regarded as essential and is provided on many of the more expensive signal output) and a Quadrature Output (lagging 90° on the normal output). These two additional signals have a useful level of 15 volis and are invaluable when measurements of phase are required to be made on very low frequency systems.

Is a Variable Phase Output available? In addition to the three outputs mentioned above the V.L.F. Signal Generator Type 257 is unique in providing an output the phase of which can be varied continuously over the range by means of a calibrated control. This facility is obtained by rotating one of the pick-up stators of the modulating capacitor and the phase is therefore independent of both level and frequency.

Can Signals be obtained over a wide voltage range? Step and slide wire attenuators on the 257 enable the output to be set accurately to any voltage between 0.5 millivolts and 50 volts peak. The impedance is normally 10 kohms but a position on the attenuator switch enables the output to be obtained from a Cathode Follower at an impedance of about 150 ohms. The maximum current obtainable is then limited to 7 mA peak.

Is the price reasonable? This is a very important question, and it might be thought that a generator with all the facilities of the 257 would be expensive.

V.L.F. SIGNAL GENERATOR Type No. 257

Keep in touch-with BCC and the latest in communications techniques

BCC's Type 400/100 VHF 15-watt Flxed Station makes other means of communication look a little old fashioned. It's designed for the control of mobile systems, polnt-to-polnt links, ground/air communicatlons and similar uses. Two-way, single or dual frequency slmplex, or duplex operation. Auxiliary units are avallable for extended or remote simplex or duplex operation. A fully-descriptive leaflet is avallable.

Consult our Systems Planning Service for full information and guldance on communications systems planning

BRITISH COMMUNICATIONS CORPORATION LIMITED

A NEW-PRACTICAL WAY of UNDERSTANDING

RADIO ' TELEVISION "ELECTRONICS

Including: Transistors; VHFIFM; Hi-FI equipment; Computors; Servo-mechs; Test Instruments; Photo-electrics; Nucleonics; etc.
FOR ... Your Career . . Your Own Business ... An Absorbing Hobby ...
Radiostructor-an organisation specialising in electronic training systems-offers a new self-instructional method using specially designed equipment on a "do-it-yourself" basis.
You learn by building actual equipment with the big kits of components which we send you. You advance by simple steps, performing a whole series of interesting and instructive experiments - with no en mplicated mathematics! Instructional manuals employ the latest techniques for showing the full story of electronics in a practical and interesting way-in fact, you really have fun whilst learning!

RADIOSTRUUTOR
 LEADS THE WORLD
 IN ELECTRONICS TRAINING

from 57 mins, per rev. to 2,700 revs. per min.

No other motors offer the wide range of speeds, torques and programme switching of the versatile Drayton RQ. Conforming to BSS 170/1939, it is suitable for continuous or intermittent running; reversing; and can also be supplied with or without internal limit and programme switches. Motors giving a shaft rotation of more than one revolution before switching operates, or with multi-position switching, are also available. Write now for your copy of Data Sheet No. 302.

DRAYTON

THE DRAYTON REGULATOR \& INSTRUMENT CO. LTD West Drayton. Middlesex

Phone : West Drayton 4012

Vortexion quality equipment

Will deliver 120 watts continuous signal and over 200 watts peak Audio. It is completely stable with any type of load and may be used to drive motors or other devices to over 120 watts at frequencies from 20,000 down to 30 cps in standard form or other fiequencies to order. The distortion is less than 0.2% and the noise level -95 dB . A floating series parallel output is provided for $100-120 \mathrm{~V}$. or $\mathbf{2 0 0 - 2 5 0} \mathrm{V}$. and this cool running amplifier occupies 12 f inches of standard rack space by 11 inches deep. Weight 60 lb .

30/50 WATT AMPLIFIER

Gives 30 watts continuous signal and 50 watts peak Audio. With voice coil feedback distortion is under 0.1\% and when arranged for tertiary feedback and 100 volt line it is under 0.15%. The hum and noise is better than -85 dB referred to 30 watt.
It is available in our standard steel case with
 Baxendale tone controls and up to 4 mixed inputs, which may be balanced line 30 ohm microphones or equalised P.U.s to choice.

120/200 WATT AMPLIFIER

ELECTRONIC MIXER/AMPLIFIER

This high fidelity 10/15 watt Ultra Linear Amplifier has a built-in mixer and Baxendale tone controls. The standard model has 4 inputs, two for balanced 30 ohm microphones, one for pick-up C.C.I.R. compensated and one for tape or radio input. Alternative or additional inputs are available to special order. A feed direct out from the mixer is standard and output impedances of 4-8-16 ohms or 100 volt line are to choice. All inputs and outputs are at the rear and it has been designed for cool continuous operation either on $19 \times 7 \mathrm{in}$. rack panel form or in standard ventilated steel case.
Size $18 \times 7 \frac{1}{2} \times 9 \frac{1}{2} \mathrm{in}$. deep.
Price of standard model $\mathbf{E 4 9}$.

The 12-way electronic mixer has facilities for mixing 12 balanced line microphones. Each of the 12 lines has its own potted mumetal shielded microphone transformer and input valve, each control is hermetically sealed. Muting switches are normally fitted on each channel and the unit is fed from its own mumetal shielded mains transformer and metal rectifier.

Also 3-way mixers and Peak Programme Meters. 4 -way mixers and 2×5-way stereo mixers with outputs for echo chambers, etc. Details on request.

12-WAY ELECTRONIC MIXER

Full details and prices of the above on request
VORTEXION LIMITED, 257-263 The Broadway, Wimbledon, London, S.W. 19
Telephone: : LIBerty 2814 and $6242-3 \quad$ Telegrame: "Vortexion, Wimble, London." Audio Fair, BOOTH No. 51, DEMONSTRATION ROOM No. 149, Hotel Russell, 6th-9th April.

Immediate delivery of imported HIGH

 STABILITY
CARBON RESISTORS

CLOSE TOLERANCE $\pm 0.5 \%$ VALUES UP TO 10 M COMPETITIVE PRICES

Values are in decade multiples of $10 \Omega, 20 \Omega \& 50 \Omega$ up to $10 \mathrm{M} \Omega$. Temperature coefficient better than 0.025% per degree C up to 100 $\mathrm{K} \Omega$.

Send for detailed technical specification and full price list to:

Evidence in Camera

Of interest not only for its story, this picture has provided (quite unintentionally) striking evidence of the reputation enjoyed by LEAK. It is a typical incident of the use of LEAK equipment by professional audio engineers in broadcasting and recording studios throughout the world, who choose LEAK for quality of performance and reliability. Does your installation measure up to these standards? If it does not, your LEAK Dealer can help you. The prices of LEAK studio quality equipment are made possible only by world-wide sales.

The new LEAK Varislope Stereo pre-amplifler (IIIustrated above) incorporates faclities which make the most comprehensive pre-amplifier presently avallable.

PRICE $£ 25$
We shall be pleased to send you a copy of Thomas Heinitz' review of this "Remarkable new control unit for stereo" reprinted from "Records and Recording."
Whether you are for Monaural or Stereo, LEAK equipment offers you the best of elther. These suggestions may help you.

Monaural
Varislope III Pre-Ampliner Th: 12 Plus Power Amplifinar southdown Cabinet. Total ess 130

Stereo

Point One 8 tereo Pre-Amplifter Stereo 20 Power Amplifier southdown Cabinet Total 87280

Ask your Dealer or write to us for brochures

2-METER TRANSMITTER/RECEIVERS

 (II5-156 Mc/s)Supplied only to Licensed Amateur Transmitters. All have built-in power supply. T/X input 10 watts. Supplied complete with plugs and crystals (in band). Condition is outwardly very good but minor faults likely due to long storage. Any faulty parts or valves replaced.

```
Type (1) 4-Channel 24 v. operated
Type (2) 4-Channel 12 v. operated
Type (3) 10-Channel }24\textrm{v}\mathrm{ . operated
Type (4) 10-Channel 12 v.operated .................................. 6 0
Type (4) 10-Channel 12 v. operated ............. £11 0
    Carriage on any of above 10/-.
        Send for full details.
```


50-MICRO AMP MOVING COIL METERS

Brand new and boxed. Large stocks available.
$3 \times 2 \frac{1}{i n}$. rectangular case, scale numerals shifted by lever, giving positions "Set-Zero": 0-3, 0-30, 0-300. Easily recalibrated and adjustable to centre zero 25-0-25 $\mu \mathrm{A}$. Makes $20,000 \mathrm{opv}$ multimeter. Multirange scales $\mathrm{V}-\Omega-\mathrm{Ma} /$ shunts and multipliers available. Price 19/6. Plus 6d. Postage.

A RANGE OF METER BOXES

Useful for all kinds of testgear: a quality job with fully-formed pressed steel lids, welded construction, grey hammer finish enamel.
Price: $4 \times 5 \frac{1}{2} \mathrm{in}$. Panel in depths of 2,3 or 4 in ., $9 /-$, $9 / 6$ and $10 /-$ respectively, or with $4 \frac{5}{8} \times 7 \frac{1}{8}$ panel, $10 / 9$, $11 / 3$ and $11 / 6$.
Available punched to take above meter $1 / 6$ extra.

TRANSISTORS

Equivalents to OC71, OC72 or OC44. Price 3/- each.

TRANSISTORISED D/C-D/C CONVERTOR KITS

Consist of Toroidal Transformer. Matched transistors mounted on heat sink. Silicon Rectifiers, Electrolytic Condensers, Relay, Safety Diode, and full instructions. Efficiency approx. 85%. All are for 12 volts input.
Type (1) Output 30 watts with tappings at 300,240 and 200 . Price.
c5 150
Type (2) As above but 45 watis. 'Price
Type (3) As above but 75 watts. Price
yype (4) At
Type (4) Output 75 watts with tappings at 600,480 and 400 v . Price.

Type (6) Output 100 wetts with tappings at 600,480
and 400 V. Price. .
Type (7) Output 150 watts with tappings at 600,480

TRANSISTORISED D/C-A/C CONVERTOR KITS

Consist of Toroidal Transformer, matched Transistors mounted on heat sink, Safety Diode, Relay and full instructions. Frequency 400 c . Many devices normally operating at 50 c ., may be operated successfully from units built from these kits, excepting synchronous devices, etc. All are for 12 v . input and 240 v . output.
Type (8) Output up to 45 w . Price
£4 150
Type (9) Output up to 60 w . Price
Type (10) Gutput up to 75 W . Price
Type (12) Output up to 150 w. Price.....................
$£ 6176$

4-METER TRANSMITTER/RECEIVERS ($60-95 \mathrm{M} / \mathrm{cs}$)

Supplied only to Licensed Amateur Transmitters. Single channel crystal controlled TX and R/X. Builtin 12 v . power supply and loudspeaker. R / \mathbf{X} is double superhet. T/X input 4 watts. Size $14 \times 13 \times 7$ in. Supplied complete with M/c mike, crystals (in band), plugs and full technical data. Price: (air tested) $£ 22$. A few available in slightly soiled condition (complete as above) at half price. Send for full Technical Details.

RELAYS						
Maker	Type Number	Type	Coil Res.	Energising	Contact	Price
Magnetic Devices	2400					
le	2400 296	Shorrened 600	${ }_{1}^{10.4 \mathrm{~K} \Omega}$	${ }^{1000} 40$.	${ }_{5}^{5}$ P.C.C.O.	
Ditio	${ }_{105}^{105}$	二	3000	${ }_{24} 2 \mathrm{v}$.	${ }_{2}{ }^{\text {P P.N. }}$ P.	7/16
Ditio U.S.A	300-2	Polarised Octal Rase	${ }_{200}^{300}$ Twin	${ }^{24} 30-60 \mathrm{M} / \mathrm{A}$	1 P.C.C.	$7 / 16$
${ }_{\text {American }}$	A.P.Y.C.C.	U.S.A. Poost Office	\% 350002	${ }_{6}^{2} \mathrm{M} / \mathrm{A}$	1 P.C	216
American	${ }_{6}^{\text {A.p.a.a.C. }}$	Antenna Chane Over	30002	${ }^{12} 224{ }^{2} \mathrm{v}$.	2 P.C.O.	${ }_{3 / 6}$
Vatichan	3000	Standard Britiohe P.o.	500 $+500 \Omega$		2 P.C.O.	316 $7 / 6$
T.M.C.		Carpenter Poilaried.	${ }_{1685 \Omega}^{2000}$ T win		1 P.C.	${ }^{7 / 1}$
т.M.C.	5HM19A	Carpenter Polarised	28Ω Twin		1 P.C.	12/6

ADVANCE CONSTANT VOLTAGE TRANSFORMERS

Input $85-110 \mathrm{v} .50 \mathrm{c}$. Output 350 v . RMS. 83 amps . Inputs or outputs may be paralleled or seriesed. Price $£ 3$.

MAINS TRANSFORMERS

Input 200-250 v. Output 500-0-500 v. at one ampere and 6.3 v. 5 A. Price $£ 3 / 3 /$-. Carriage $10 /$-.

TESTGEAR COMPONENTS (LONDON) LTD

Mall Order to :
15 ARCANY ROAD, SOUTH OCKENDON, ESSEX.
TEL: AMBassador 1958

Solderless Transistor 3

 Ang boy from elgbt yuaro onwards will ealily make bibs pockot aize tranisidor met．No can be made up viruany witherit toot It is neverthelema a workmanlike fob wblab when completed．تlll revelve Lux rembourg and local stations entirily withont aerina in reflex cirruit． Other ferturea include optional medium and long waves and lood apeaker．The parcel containe everyblige neco． arry to complete Pecket of solder－ leat lormimalic Packet of Conde Prembet of Resiotorn： Packet of Tranale： Proper plaskectrin dit tor set casee ntib priner eate and tuner ione． Hearing ald type beadphone． Plug anil eocket with on／or owitch，and fuli Comprehenaive easy to follow Imatruction

Miniature Earphones

 For Tranalkor Cirvalta or Deal Aid Verj ight meght and easy to mear，cord almost andible，good quaily proarclion of muate and voice，compiet wio mitaur plug and OK for rod upot and simbler transithors． aryen and kikgnetle，9\％．Poat and Inиurance $1 /$
Miniature Plug and Socket

as used witb the above can be supplied evparately price $3 / 6$ ．

Smallest Possible 2－gang

With bullt in trimmers，polyotyrens ensed ITze ondy $1 \times 1 \times 7 / 18 \mathrm{in}$ ．，price $17 / 6$ ．Bmalleat and P．P．output traneformera，18j6．Ciro cult diagram free with any of mbove．

Transistor Set Cabinet Yery modern cream cabinet，sixe $3 \frac{1}{2} \times 3 \times 1$ ． macke．Price 7／8．plus 1／6 pooturge and peck ing．

Cine Cameras

NOTE THESE FEATURES

＊400／500 miv．Outpat Pusb－Pall，
＊ 6 Frt Orado \％rpaistorb－Pail
C Latok type Buprhe Cireuit
t Medium sud Long Wave．
＊Internal Porrite acrial lite wouse
t Eich＂Q＂oula
－Labort type printed direuit with Gomporanta piss．
Car marial sttachment

ORDER IN CON

NFIDENCE
tion complate，Jean battery $89 / 19 / 6$ ．Baltery $3 / 6$ plu carr．and innurance $7 / 6$
——This Month＇s Sni
Collaro Studio Tage Deek，\＆upeeds 7$\}$－ $3 t$－ 1 f with twis track qualty 218／10／－plan $5 /$. carriage and ineuraoce

TRANSISTOR POCKET RADIOS

The Moulded Cablinet illuatrated in used for air remulte－proved circuits all of Whlch cover the long do not require serlal or earth－iruly portable．
The Seeret Three．This is an earphone model ideal for hikers．etc．， ues two upecial tran distors in a refiex cir cult and Eermanjum dlode－complete witb ype arrphose $87 / 6$ plu f ．poot and lint．
The Pooket Four．A loudupeaker
leh gatn avdio tace 50 ©
$2 / 6$ poot and the
The Pooket Pive．As above but with extre A．P．stage－feed beck control－ $37 / 6$ plus 2／6 poat and ine． The Puulh Pull 7．As pocket tive but with 2 more transiators in a puih pul Th Somebet 7．As P．P． 7 but is quperhet with prinied circoitry $89 / 19 / 6$ plue $3 / 8$ poet and tos．
end S．A．E．Ior troe boollet of thom Cireuits，Demonetrithon at all branche－ only frat grade transitetori tued－batteriei not included in above price．

TABBY EQUIPMENT COMPLETE
Complole equoment driving，etc．Complete working equipment comprises： 2 Infrn Red Radintors， diuatable binoculars，power pack for 6 of 12 volte．control unita and Inter－

Transistors for R．F．，F．M． T．V．and U．H．F．

Yaxley Switches
Pole 3 Way．
Pole ${ }^{5}$ Way
Pole 12 Way
1 Pole 12 Way．
2 Pole 2 Way．
2 Pole 1 Way．
2 Pole
Pole 12 Way
Pole 6 Way
Pole \＆Way．
Ponitlon Bborting
Pole $\mathbf{3}$
Pole 3
Way．
Pole 2 Way．
2 Pole ${ }^{2}$ Whay．．．

SUB MINIATURE COMPONENTS
 \section*{FOR TRANSISTOR SETS}

－Pusb－pull o．p．t．and driver． $17 / 6$ pair （ 500 milliwatt）， $12 / 6$ pair（ 300 milliwatt）． circuit．23／6．
－Two sane tuning emdencar to rult above I．P．8．and rod serfal，11／6，taat and slow， $9 / 6$ ordinary．
－Printed circilit for above with coratruc
 lize， $7 / 6$
－Smaileat poserble olectrolytica， $1 / 9$ each： 50 midd． 50 mid．， 100 mifd．， 200 mfd mid．
－smalleit it wate resictors， gd each，all
－popnlar valves．
－Minlaturo 0.1 m
malser 0.1 mid．．，1－0．03，．01， 9 d ．
Mialature slide aritch． $9 / 8$
－Tramulimtor holder，1／8 2／6．
－Elsewine Volume controle，2K．5K $10 \mathrm{~K}, 20 \mathrm{~K}$, all $2 / 6$ each．
－Set of 6 transhetors for auperbet in orifina． packeta ruaranteed．Mullard OCA4． OC45，OC45，OC7，matched palr C72， $83 / 10 /-$ the ret．
－Superthet 6 all Arat grade inciudee matched pair 45／
－Ditto，becond but teated，30／－
Oncilliator and 2 I．F．－new American Red Bpota $3 / 8$
whule spota
－Surtace berrier（uuper vilie mpoti 810 ．
－Burface barriers 18 me／a．， $9 / 6$ ．
－Diodea $1 /=$ unb－miniature， $2 / 6$
－3kn，speakere， 3 ohm， $18 / 6$
－ 2 lin ．sppakern， 3 ohm， $19 / 6$.
2lin．Speaker， 35 ohm， $19 / 6$.

ELECTRONIC PRECISION EQUIPMENT，LTD．

post ordors are dealt with Irom Easthourne，so for prompl attontion ploase post your orders to 86 frove Roads
Eastbourne，marked Department 2．Callors may use any one of the Companies befow．

266	London Road， Croydon．	29 Stroud Green Road，
Finsbury Park N．4，	520 High Street North，	
Manor Park，E．12．		

42－4s Windmill Hill Ruislip，Middx． Phone：RUlslip 5780 Half－day，Wednesday

246 Hish St． Harlesden N．W．IO Phone：ElGar 4444. Half－day，Thursday．

CRYSTAL MICROPHONE BM-3

Slim type. Suitable for all crystal imputs.

Complete with Stand and Neck Cord

Post \& Package 3/- extra

SPECIFICATIONS

Frequency Response
Sensitivity
Termination
Electrical Impedance
Stand Screw
Cable
Net weight
Length
Diameter of Head

100-8,000 cps.
-62 db at $\mathrm{I}, 000 \mathrm{cps}$. I $\mathrm{V} / \mu \mathrm{bar}$
l-2 M Ω
$75 \mathrm{~K} \Omega 1,000 \mathrm{cps} .68^{\circ} \mathrm{F}$
5/8in.
5 ft . of single conductor shielded vinyl cable.
7.9 oz . without stand.
7.9in.
1.3 in .

FREQUENCY RESPONSE MODEL BM-3

MODEL BM-3 CRYSTAL MICROPHONE: Proved and tested as the finest value in microphones on the market today. Slim type, with "on-off' switch, used for stand, desk, hand-held or breast. For hand-held or breast, the adaptor may be removed.

Aluminium, diecast casing with black metallic paint finish and the
 front quality chrome plated.

C. MARKS \& CO. (newport, mon.) LTD.

 90, COMMERCIAL STREET, NEWPORT, MON All mail orders and enquiries to above address.Tel.: NEWPORT 64711
also at
25, WYNDHAM ARCADE, CARDIFF

Sinall office types, also 12 up to 72 way; example illustrated 42 way.

AMPERIAL

25,30 or 40 watt output to suit any instal. lation from 1 ohm to 100 volt line. 3 fully mixing separate EF86 pre-amp stages built in, each having low noise, close tolerance, hi stability components. Britain's best for 2 years. Now REDUCED PRICE e.g. 25 w. model List 25 GNS. TAPE SLAVE (Pat. Ap.)
L.ow priced reliable unit for industrial, educational and'or display switching.

STEREO

Home enthusiast searching for right price with top performance can use this with any crystal pick up of the $250 \mathrm{~m} . \mathrm{v}$. class.
Order as $\mathbb{E 7 / 7 / - A d a u r a l ~ s t e r e o . ~}$
P. \& P. 4^{1}.

SIXTY WATTS

With in-built pre-amps and single player or auto change rccord playing equipment: Housed industrially in wooden or 18 s.w.g. steel cases. Immediate delivery.

L/SPEAKERS

5in.-15in., of five makers always in stock.

BRAND NEW VARIABLE VOLTAGE TRANSFORMER. 230 volt A.C. input. Fitced in stee! hammer finish case complete with 0-300 vole M.C. A.C. Meter, fuse and neon indicator light. Output conseancly variable from $0-270$ volt A.C. Type I. 2.2 amp . Price $68 / 10 /-$, carriage $101-$.

BRAND NEW VARIABLE VOLTAGE TRANSFORMER. For 230 volt A.C. input. In cases as above with meter, fuse and indicator light. Output constantly variable from 0-230 vole A.C. Type 15. 15 amp . Price $222 / 10 /$. Carr. $15 /$.

SPECIAL OFFER. TRANSISTORS EX BRAND NEW EQUIPMENT. 2 off C.IOIA Push-Pull pair, Output 400 MW . $(=x \mathrm{OC72}$) and I off X.B103 Driver ($=0$ OC71). Set of 3 15/6, postage paid.

NEW WIRE WOUND RHEOSTAT ON CERAMIC. 58 ohm. 50 watt, complete with instrument knob. Price 8/6. P. \& P. 1/6.
W. W. RHEOSTAT. New. 3.5K or 5K 25 watts. Price 7/6. P. \& P. 1/6.

AUTO TRANSFORMERS. Step up, step down. 110-200-220-240 v. Fully shrouded. New. 300 wate type E2/2/- each. P. \& P. 2/6. 500 watt type 43/3/- each. P. \& P. 3/9. 1,000 watt type $8 / 4 / 4 /$ each. P. \& P. 6/6.
HEAYY DUTY L.T. TRANSFORMER. Very conservativaly rated for continuous duty. New. In manufecturer's cases. Input |10-260 volt multi-tapped, 50 cycles, single phase. Output 28-29-30-31 volts at 21 ampere. Price
e6/15/-, carriage $10 /$..
ENGINE SPEED INDICATOR. On the basis of a special ex-R.A.F. metor which we are able to supply and a few small linking parts which can be purchased anywhere, an inexpensive engine speed indicator can be made up which works on simple pulse counting principles in conjunction with the contact braker on the distributor. Will give direct reading in R.P.M. Full conversion instruetions are supplied by us. Additional standard
parts required easily obeainable for about $15 /$ parts required easily obeainable for about $15 /$-. R.A.F. meter as offered by us 16/6, plus $2 / 6$.

EX R.A.F. AIR POSITION INDICATOR, containing 3 ball and plate infinitely variable resolving gears, miniature spur bevel and worm gear drives, also toggle, push button and rotary switches, repeater motor, 4 mechanical counters, miniature lamp holders and lamps etc. As new. lllustration below. Price 22/6, P. \& P. 3/6

TWELVE PLATE F.W. BRIDGE CONNECTED RECTIFIER mounted on 200/250 volt A.C. input eransformer. Oueput 36/40 vole D.C. at 1.2 amps. New. perfect. Price 16/6. P. \& P. 3/6.
S.T.C. RECTIFIER. 36 plates by 120 mm . Bridge connected. Maximum A.C. indue 60 vole. D.C. output 15 mmp . New, perfect. Price 60/~. P. \& P. 3/6.
S.T.C. BRIDGE RECTIFIER. New, perfect. 8 plates each 115 mm . Maximum A.C. input 36 v. D.C. output 5 ampere, 24 volt. Price 20/-. P. \& P. 2/-.

BRAND NEW FREQUENCY

 METERS manufactured by Nalder \& Thompson Ltd. Calibrated 45 cycles to 55 cycles per second. Gín. dial. Panel mounting type. In original manufacturer's boxes. PRICE [10/15/- ea. Postage $3 / 6$.

20-WAY STRIP coneaining seandard Pose Office telephone Jack 5ockets, overall size 11 x $3 \$ x \$ \mathrm{in}$. New. Price $15 /-$ each. P. \& P. I/6.
IO-WAY STRIP standard Post Office celephone Jack Sockets, spacing allowing Igranic jack Plugs. New. Price 10/.. P. \& P. I/6.

I9-INCH RACK MOUNTING 20-WAY P.O. JACK STRIPS with 40 terminals at rear Price 25/-. P. \& P. 3/6.

I9-INCH RACK MOUNTING 20.WAY P.O. LAMP STRIPS. Price $25 / \%$ P. \& P. $2 / 6$.

LATEST MOST MODERN TYPE OF EX W.D.MINIATURE HEADPHONES. As illustrated. Brand new. low impedance. new. $10 / 6$ plus P. \& Price:
P. $1 / 6$.
 TIME SWITCH. Contacts $2 t$ amp., 230 volt 24 hour phase, $\frac{t}{\text { t }}$ hour divisions, allow setting for beak to be one break to be made overy 24 hours, complete with key. Used but guaranteed perfect. Price 27/6 each. P. 8
P. 2/-.

PYE LEVER OPERATING MICRO SWITCHES. Single pole changeover. Bramd new. 4/- each or 42/- dozen, p. paid.

TANNOY P.A. LOUDSPEAKER. For out̄door use. metal exponential horn with 20 in . square flare. Overall longth 30in. Speech coil 15 ohms. Guaranceed in working order and gnod condition. Price $87 / 10 /$. Carriage $10 /-$.

DESK TELEPHONE HANDSETS

Used but pariect. Complete with two way calling syscem (buzzer), internal battery. All ready for simple two-wire connection. Price
 each handsot.

DIALS ONLY FOR AUTOMATIC TELE.
PHONES. Used but in sood condition. Price 14/6. P. \& P.I/6.

SOLAR OIL. FILLED CON.
DENSER, 240 mfd. for 230 V.A.C. or 600 vole D.C. Overall size i4in. x Yin. $\times 5 \frac{1}{2}$ in. plus feet. Waight 46 lb . Brand new. Guaranceed perfect. Manulacturer's Price $1 / 10$ packing. riage $10 /=$.

100 YARD DRUMS GLASS BRAIDED FLEX 101.010. New. 10/6 per coil. P. \& P. 2/-

18-WAY P.V.C. COVERED $14 / 36$ WIRE, screaned overall, covered with P.V.C. all colour coded, $3 / 6$ per yd.; $\$ 15$ reel of 100 yds . Carriage paid.

LEATHER FLYING HELMETS. Used but in good condition. Complete with Harness, lack Plue and brand new. No. 13466 Earpieces. Price 22/6. P. \& P. $2 /$ -

NEW UNCHARGED UNFILLED 12 VOLT ACCUMULATOR 9 ampere in unspillable plastic cases. Comprises 6×2 v. separate cells connected by cerminal serips. 6 $\times 5 \frac{1}{2} \times 4 \frac{1}{2}$. over cerminals. Price 19/\%, plus P. \& P. 2/9.

PACKARD BELL BRAND NEW RELAYS. 2 pole c.o. 6 volt 80 ohms. $7 / 6$ each. P. \& P. $6 d$ MINIATURE RELAYS 250 ohms. Two makes. For operation on $4.5-9$ volt. Ideal for eransistor circuizs. Weighs iust over 1 oz. Price 12/6 each.

SOLENOID OPE PATED MAG NETIC RELAY. Type SCW/3945, pole changeover 10 A contacts 24 V new 13/6. P. \& P. 1/6.

CARPENTER'S TYPE POLARISED RELAYS. $2 \times$ 9,500 turns at 1,685 ohms. Price $22 / 6$ each. P. \& P. 1/-.

HIGH SPEED RELAY.
Siemens. Two bobbins 1,000 ohms each. New, $10 / 6$ each. P. \& P. I/.

SIEMENS H.S. RELAY. Very latest type, sealed. H96E. 1,700 ohms plus 1,700 ohms, single C.O. contacts. Brand new with fixing clip. in maker's cartons. Price $16 / 6$ each, plus $1 /$ P. \& P.
Siemens sealed similar relay to above, but 2.2 ohms plus 2.2 ohms. Minus clips, $12 / 6$ each. Plus $1 /$ P. \& P .

SUPERIOR BRAND NEW RELAY. 7,000 ohms coil. Will pull in at 750 microamps, and out at 450 microamp. Change-over, platinum contacts. Vacuum sealed, will therefore not be affected by oil, moisture or water and never needs adjusting. Weight $2 \frac{1}{2}$ oz. Price $18 / 6$. P. \& P. I/.

MINIATURE MOVING COIL DIFFERENTIAL RELAY. Two coils 350 ohms each.
 Operating current minimum 140 microamp., nominal
microamp, maximum 8 milliamp. One pole two way, or centre stable. 'Two
way contact current 100 mA at 50 V A.C or D.C. Size It $x \nmid x$ in. Price $22 / 6$ each.
G.E.C. SEALED RELAY. Type M. 1090 . 180 ohms coil, $6 / 12$ vole. $4 \mathrm{C} / \mathrm{O}$. Brand new 18\%. P. \& P. 1/
G.E.C. SEALED RELAY. Type M. 1092. 670 ohms coil. $12 / 24$ volt. 4 C/O. Ex new equipment. Unused. $10 / \mathrm{h}$. P. \& P. $1 /$.
G.P.O. 600 TYPE RELAY. 400 ohms coil 24 volt. $2 \mathrm{C} / \mathrm{O}$ plus 2 M . New 7/6. P. \& P. I/

MINIATURE OPEN TYPE RELAY. 700 ohms coils. 24 volt. 2 C/O. Ex new equipment. Unused. 7/6. P. \& P. I/-

ROTARY RELAY. 12 volt. Heavy duty change-over contacts and one low current for external circuit, plus one break set. Price $7 / 6$. P. \& P. $1 / 6$.

MINIATURE

 UNISELECTOR SWITCH. Two banks of ten plus home contacts one bank continuous of normal. 30 ohm coil for 24 vole operation. Brand new, manufacturer's packing. Price $22 / 6$ each. P. \& P. $2 / 6$. As illus. tratedLA88 D WAVE METER. Latest release of these famous Hetrodye waye meters with directly calibrated illuminated dial, most suitable for amateur transmitters, covers two ranges $1.9-8.0 \mathrm{Mc} / \mathrm{s}$ and $4.0-8.0 \mathrm{Mc} / \mathrm{s}$. Complete with reference crystals for zero settings, ewo valves, 2×6 volt vibrators, MAKER'5 instruction book and matched set of headphones for monitoring. Designed for 6-volt D.C operation, can easily be modified for mains and suitable transformer supplied for $7 / 6$. In spot-on condition as tested by R.E.M.E. In transit case. Price 5 gns. each plus 6/6 carriage.

SOUND POWER TELEPHONE HAND. SETS. Each couple connected by ordinary 2 core lighting flex will secure instant and reliable intercommunication. No batteries required. Price per set of $233 / \mathrm{F}$, plus P.\&P. 3/'.

MOULDED CAB-

 INET suitable for Transistor Set. Dual colour red/black. Size 5 tin. $\times \frac{3}{2} \mathrm{in} . \times 1$ in. Gold metal dial. Price 7/6. P. \& P. $1 / 6$CONSTANT SPEED, PRECISION MADE, BATTERY DRIV. EN D.C. GOVERNED MOTOR (Elliote Bros.). Commutator/brush incorporating loading ballast resiscor 2.470 r.p.m. $\pm 2 \%$ as 12 volt. Loss on 8.5 vole only 4%. Size 1 Min. dia. $\times 2 \mathrm{~m}^{2} \mathrm{in}$. long. Spindle .77in. long $x .15575 i n$. dia. Weighe 4 oz. New. Price $25 /-$, plus $1 /$.
P. \& P.
|deal for portable tape recorders.

NEW IMPORTED EX. TREMELY EFFICIENT MOTOR with eremendous power weight ratio. For 12 volt D.C. but very efficient on 6 vole. Three position switch. Weight 2.1 oz., size Itin. x Itin. dia. Speed 7,000 r.p.m. Self lubricating. 15/-, plus I/. P. \& P.
 MOTORABY
ORA Y T O
O ORGYTON CO., for 230 vole 50 eycles A.C.
TYPE R.Q.R., reversible. 37 r.p.m., ovarall size 5 in. x 4 in. x Stin. Weight 4f lb. Ex brand new equipment. Unused. Price $\mathbf{6 3} / 17 / 6$. P. \& P. 3/-

MAINS POWER SUPPLY UNITS. Potted and sealed transformer and choke by famous maker. Mounted on meral chassis $6 t x$ 7 tin., complete with 5 Zi ., complete with and full smoothing.
Input tapped 220-230-240 volts.
Output: 300 V. D.C. at 100 mA
6.3 V. A.C. at 4.5 mp .
6.3 V. A.C. at 2 mmp .

Rectifier supply 5 V. A.C. at 3 amp. Very conservatively rated. Price $47 / 6$ plus P. \& P. $6 / 6$.

METERS GUARANTEED PERFECT Charging Types
2t amp. D.C. M.I. 2 in . fl. and.
5 amp. D.C. M.I. $2 t$ in. fi. rnd. $7 \$$ amp. D.C. M.I. 3 tin. proj. rnd. $\begin{array}{ll}7 \text { amp. D.C.M.1. } 3 \text { in. proj. rnd. } & 12 / 6\end{array}$ 9 mpl D.C. Hot Wire W.R. 2 tin. fl. rnd. 30 amp . D.C. M.C. $2 \mathrm{in} . \mathrm{rnd}$. 100 mpp . A.C. M.I. 4tin. fl. rnd. Volemeters 20 v. D.C. M.C. 2 in . fi. sq.
30 v. M.I. 3 in. 30 v. M.I. 3in. proj. rnd. 300 v. A.C. M.C. $2 \frac{1}{2}$ in. fl. rad. 300 v. A.C. M.I. 2tin. f. rnd. 400 v. A.C. M.I. $4 \frac{1}{2}$ in. rnd. 90 -180 v. A.C. M.I. $4 \frac{1}{2}$ in. fi. iron Milliammeter
1 mA. M.C. 2 tin. fi. rnd.
200 mA. M.C. 2 in. fin. rnd $12 / 6$

Microamp

50 microamp., scaled $0-100$. M.C. 500 micro. rnd. 00 microamp., M.C. 2in. rnd. F.L. Pastoge on all meters $1 /$ each.

Miniature latest type moving coil 0.5 milliamp meter, It in. diameser, flush fitsing, C complete with fixing clip. Price 17/6. P. \& P. I!-.

CRYSTAL CALIBRATOR No. 10. A
 crystal controlled 4-valve high-grade inserument in the same catezory as the famous B.C. 221. Directly calibrated. does not require cross reference or charts - functions as follows:- (1) A oscillator controlled provides fixed frequency signals of 505 KC and all harmonics of 500 KC to beyond 10 Meg. and up co 30 Mes.
(2) A variable oscillator from 250 KC to 500 $K C$, this enables all intermediate frequencies between $250 \mathrm{Kc} / \mathrm{s}$. and 30 Meg . to be produced and modulated.
Supplied complece with 3 spare valves, all leads and maker's instruction book in carryine heversack. The complete outfit is brand newrepeat NEW. Price 64/19/6. Carr. 3/.

EX P.O. MAGNETIC COUNTER. 3 ohm type for 6 V D.C. operation. 4 figures to 9,999. Price b/6d. P. \& P. IIF-

Postages and carriage shown above are inland only. For oversoas please ask for quotation. We do not issue a catalogue or list.
SLRVICE TRADING CO.

HARVERSON SURPLUS CO. LTD.

This amplofier as illustrated, made by a leading manufaccurer. Mullard valvesECC83. EL84 x EL84, EZ80. Bass Treble and Volume on remote panel. Elegane Knobs. OUR PRICE one month only 44/16/6, plus P. \& P. 3/6.

CONDENSER/RESISTOR PARCEL
50 mixed P.F. Condensors and 50 mixed Resistors. An assorement of useful valves. Resistors. An assortment of useful valves.
All popular sizes-all new-a must for the serviceman and conseructor ONLY 10/P. \& P. I/-.

COSSOR C.R.T. SNIP 108K 10 -inch. New and boxed, 15/-, plus 6/- P. \& P.
75K 10 -inch. New and boxed. $15 /-$, plus $6 /-P$. \& P.

ION TRAP MAGNETS To suit the above, $2 / 9$ each. P. \& P. 3d.

TRANSISTOR RECORD PLAYER CASE
A few only-Transistor record player cases in light grey cloth-complete with
motor board. Size: $12 \times 8 \times 6 \mathrm{in} .18 / 6$ each motor board. Size: $12 \times 8 \times 6 \mathrm{in}$. $18 / 6$ each.
P. \& P. $1 / 9$.
A.M. RADIOGRAM CHASSIS

A chassis of distinction, by a famous maker. Covering Long, Med. \& Short Waves, plus gram position, this chassis (Size $15 \frac{1}{2} \times 7 \times 6 \frac{1}{2} \mathrm{in}$. high) incorporates the latest circuicry, using fully delayed A.V.C., and negative feedback. Controls:Tone, Vol.On/Off, W/Change (L.M.S. \& Gram.), Tuning, Tapped inpur 200-250 v. A.C. only. An attractive brown and zold illuminated dial with matching knobs, make this one of the most handsome, in addition to being one of the best performing chassis yet offered. Complete with valves (ECH8I, EF89, EBC8I, EL84, EZ81), knobs, output transformer, leads | etc. OUR PRICE ONLY |
| :--- |
| plus $4 / 6$ post \& packing. |

CYLDON 12 CHANNEL

 TURRET TUNERSNew purchase offered at scill lower price.
I.F. $33.38 \mathrm{Mc} / \mathrm{s}$. I.F. $33.38 \mathrm{Mc} / \mathrm{s}$. Complete with PCC84 and PCFBO valves and 8 secs of Coils for 5 Band I channels and 8,9,10 Band III. New and unused. Value over E 7 . $32 / 6$
OUR PRICE. Post paid. MIDGETI.F. TRANS. \& COILS A pair of midget $465 \mathrm{kc} / \mathrm{s}$ I.F. transformers plus L.W. and M.W. coils. OUR PRICE 10/-per set. P. \& P. I/9. Set of I.F. eransformers for cransistor superhet, 12/6.

SPEAKER FRET

Super quality heavily woven fret 54 inches wide. Usual price, 50/- per yard. P. \& P. $/$-.

OUR PRICE $12 / 6$ per yard.

GRAM \& TAPE EQUIPMENT BARGAINS

THE WORLD FAMOUS E.M.I. ANGEL TRANSCRIPTION P.U. (Model I7A)

A Pick-up for the connoisseur orizinally priced at $£ 17.10 .0$. The last remaining fow offered at £4.10.0 Plus P. \& P. S/-.

PICK-UP CARTRIDGE BARGAINS
STUDIO P.
ACOS HIGH G.
E.U. POWER POINT

RONETTE
G.C.Z.

17/6
$17 / 6$
$17 / 6$
$12 / 6$
1816
18/6
P. \& P. $/ /=$

RECORD CHANGERS

$\begin{aligned} & \text { RC } 98 \mathrm{Mk} .4 \mathrm{H} . \\ & : \sim \\ & \hline 120 / \mathrm{D} \mathrm{Mk.} \end{aligned}$	4-speed		c16.10. 0
	",	"',	C9. ${ }^{\text {c. }} 0$
RC 120 Mk .4 H		-	c9. 0.0
RC 121 Mk .1			Eli.0.6
RC RC $21 / 40 \mathrm{Mk}$.		".	Clli.0. 6
			\& 1 1.0. 6
RC 54	4 -speed auto.		
RC594			E6.17. 6
Conquest		"',	E6.12. 6
Challenger		"	67.19. 6

Monarch UA8 4-speed autochanger $\mathbf{C 6 . 1 9 . 6}$ TU8 4-speed single player less pick up $\mathbf{K 2}$. 10.0 NOTE: Any of tie above with Stereo Cartridge and Fittings, $16 /$ - extra Carriage and ins. on each of above $\$ /$ - extra

TAPEDECKS

LATEST B.S.R. MONADECK (single speed) 3 in. per sec., simple control, uses 57 gin. plus $\$ / 6$ carriage and insurance (tapes exera)
TRUVOX MARK III TAPE DECK. New and Boxed …........................... 10.6.
plus $6 /-\mathrm{carr}$. and ins. (capes extra).

STEREOPHONIC AMPLIFIER

Complete with 2 Loudspeakers
This is a compact amplifier embodying the latest features and giving a high standard of reproduction, with ample volume. Supplied complete with valves (ECL82, ECL82, EZ80), panel, knobs, etc., and two specially selected 3Ω matched lousdpeakers. We only have a few, and we will never be able to repeat this offer at such a low price! Don't
risk disappointment! Order
n now!

Plus 4/6 P. \& P.

TV TUBE TESTER/REACTIVATOR

- TESTS any tube without removal from REPAIRS cubes discarded for low MEASURES MEASURES A.C. Volts. The Radar Model 202 Tester-Reac tivator is the hensive instrument compre its type on the British
- Measures TRUE Beam Current Visual Indication when reactivating is complete (a Radar exclusive) Tests and Measures ALL cube Voleages including E.H.T. (another exclusive) Measures Resistance up to 100 Megohms - Clears leaks by pressing a button Heater Currene measurement $0-0.5 \mathrm{~A}$ and $0-2.5 \mathrm{~A}$ Linear Scale Adjuses heater current to ensure accurate Emission Test Portable for field or bench service.
BRIEF SPECIFICATION
Tests: Filament Concinuity, Heater Current, IncerElectrode Insulacion, Final Anode Beam Current, Heater Cathode Leakage, 4 -stage Reactivation by New Pulsing Method. Universal sockec firs all cubes. E.N.T. Probe. Measures: $0-25$ Volts A.C., $0-500$ Voles D.C., $0-25 \mathrm{kV}$. 200-250 Voles AC Mains. Size microamps. Weight 14 fb .

LIST PRICE $£ 39$

OUR PRICE £17.17.0 Plus gl. P. \& P.

SLOW MOTION
TUNERS
500-500 Twin gang condensers with geared slow motion drive. $3 / 6$ ea. $36 /$ per doz. P. \& P. 6d.
WIRE WOUND POTS $\begin{array}{ll}\text {-all different values } \\ & 0 / 6\end{array}$

TRANSISTOR BARGAINS

$0 C 71$

0 C 72
OC72 Matched Pair
OC45 Green Spot
OC45 Blue Spor
OC44
SB305 Semi Conductor
$12 /-$
$25 /-$

OAf1 Diode

* Postage on all above 6 d .

THIS MONTH'S BARGAIN: SUPERHET CHASSIS

Complete and ready for your cabinet, 4 valve superhet chassis. Complete with valves, ferrite merial, dial and knobs. Valve line up-UCH8I, UBFB9, UCL83, UYBS. Lons and Medium wave coverage.

PRICE $£ 4$. 19.6

83 HIGH STREET，MERTON，S．W． 19
 CHErrywood 3985／6／7

INTRODUCING HARVERSON＇S MONAURAL AMPLIFIER KIT

In response to numerous requests from delighted purchasers of our＂SUPER STEREO KIT＂we have produced a＂MONAURAL AMPLIFIER＂on similar lines．

A UCL 82 valve pro－ vides a triode amp＇ifying stage，and a pentode output stage（ 3 watts），enabling good amplification and sparkling reproduction to be combined with physical compactness（amplifier size， $7 \times 3 \frac{1}{4} \times 6 \frac{1}{4} \mathrm{in}, \mathrm{high}$ ）．
－Modern circuitry de－ sign，good quality O．P． transformer and speaker （ $5 \mathrm{in} .3 \Omega$ ）keep hum and distortion to a very low level．
 The controls，volume on－off，and tone，are complete with attractive cream and gold knobs．

The amplifier has a built－in fully smoothed power supply，using a good quality mains transformer（A．C．mains only）and metal rectifier．
－All you need is supplied including easy to follow instructions which guarantee good results for the beginner and expert． All components，leads，chassis，valve， knobs，etc．，are first grade items by prominent manufacturers．OUR PRICE （Excluding Speaker） Hlus 4／6 Post and Packing． $5^{\prime \prime}$ loud speaker $14 / 6$ extra．

39／6

HARVERSON＇S SUPER STEREO KIT

The product of a renowned maker，this stereo amplifier is composed of＂ready－buils＂ units，only requiring interconnection．This system has the advantage of being adaptable ECLE82．EZ80 range）are genuine Mulard The－grade components，and valves used make the simple interconnection of nitis ant cump ichenenvemstructions supplied

THE KIT COMPRISES

TWO MIDGET AMPLIFIERS each of 3W output，good rapreduction from both your stereo or monaural records．Both amplifiers complete with well－designed O．F ransformers providing perfect matching 3－7』 speakers，and have remote bass，treble and volume controls．Size $5 \times 2 \frac{1}{} \times 3 \mathrm{in}$ ．high（each amplifier）．
CONTROL UNIT is a flyin？panei With three 2 －gang pots，enabling the each amplifier volume controls o positioned．Supplied with attractiva cream and gold knobs．
SEPARATE POWER PACK with valve rectifier．midget size（ $5 \times 2 \times 3$ ifin． high）．
ISOLATED MAINS TRANFOR－ mounted independently．
VOLTAGE SELECTION PANEL． fitted with the＂valve base＂type of mains i／p selector and a channel out－

ONE SPEAKER，aquality 5 in．speaker． （Note．The 2nd speaker may be pur chased from us for $14 / 6$ extra．）
CREAM DOUBLE PUSH BUT－ TON SWITCH of neat design gives positive on／off switching．
INDICATOR LIGHT．Provides visual indication of equipment operating and is complete with gold－finished escutcheon．

北出納 $59 / 6$

> GUARANTEED VALVES

\star
NEW and BOXED \star PROMPT DESPATCH

Ex Midetg

SELENIUM L.T. METAL RECTIFIERS

Full wave, bridge connected. All new and guaranceed.

12/18 v. 1 amp. 4/3 12/18 v. 2t amp. 6/9 $24 / 36$ v. 1 mp $0 / 6$ $2 / 8$ v. 4 amp. $9 / 9 \quad 24 / 36$ v. 2 amp. $13 / 6$ $2 / 18$ v. 5 amp. $12 / 6 \quad 24 / 36$ v. 6 amp. 22/6 $2 / 18$ v. 6 amp 24/36 $13 / 6 \quad 24 / 36$ v. $10 \mathrm{amp} .45 /=$ 24/36 v. 15 amp....... 47/6
Please add postage.
L.T. TRANSFORMERS. For charging or models. All $200 / 250$ volt primaries. $3.5,9$ or 17 vole 1 amp., $9 / 9 ; 3.5,9$ or 17 vole 2 amps., 14/3; 3.5, 9 or 17 volt 4 amp.., $16 / 6 ; 9$ or 17 volt 6 amp., $2 \% ; 3,4,5,6,8,10,12,15,18,20,24$ or 30 volts 2 amps, i8/6; Ditto bue 4 amp., 30/. Please add postage.

SPARES KITS FOR CR. 100 RECEIVERS Contains 15 valves: 2 -DH63; $2-\times 66$; 2 -KT63; Contains 2 -U50; 7-KTW61. Condenser and resistor 2-U50; 7-K. pots, togleswitch, output transformer, etc. packs, pots, tolsle switch, output
All brand new, $59 / 6$. P/P $3 / 6$.

All naw and unused.

2 pin	2/6 pr.	12 pin 5/6 pr.
4 pin	3/6 pr.	18 pin $7 / 6 \mathrm{pr}$.
6 pin	4/- pr.	24 pin 8/6 pr.
8 pin	4/6 pr.	33 pin ... 10/6 pr.

Please add poseage.

MULTI-RANGE TESTMETER

 Imported, brand new and guaranteed. 1,000 ohm/ vole A.C. [D.C. Voles D.C.: 10, 50, 250 , 500. 1,000. Voles A.C.: $10,50,250$, $500,1,000$.Current D.C. $\int m \mathrm{~mA}$. 100 mA ., 500 mA . Resiscance: 2,000 ohms and 200,000 ohms. Supplied complete with all instructions and test leads.
Price 59/6 each. P/P 2/6.
MARCONI TF. 373 UNIVERSAL IMPEDANCE BRIDGES. Reconditioned to maker's specification. $0-100 \mathrm{H},. 0-100 \mathrm{mfd} ., 0-1$ megohm., $0-100$ Q. each on 5 ranges at $1,000 \mathrm{c} / \mathrm{s}$, $\mathbf{6 5}$ each. MARCONI TF-329 " Q " METERS. Range 0 to 500 Q. Frequency $50 \mathrm{kc} / \mathrm{s}$ to $50 \mathrm{Mc} / \mathrm{s}$. Reconditioned to maker's specification. f65 each.

Supplied fully cested and complete with earpiece, leads and battery pouch. Incorporates 3 sub-miniature valves and sensitive crystal microphone. Only $32 / 6$ each. P/P I/-

VALVE VOLTMETERS No. 2. A laboratory instrument at fraction of cost. Five ranges instrument at a fraction of cost. Five ranges Aperation $200 / 250$ voles A.C. Supplied as new, Operation $200 / 250$ volts A.C. Supplied as naw,
fully tested and complete with internally mounced fully tested and complete with internally mounced H.F. probe. $\leqslant 17 / 10 /=$ each. P/P $10 /$.

BRAND NEW Boxed IOO MICROAMP METERS. Standard 2tin. flush panel mounc2tin. fush panel mounc-
ing. Scale calibrated ing. Scalo calibrated
0 -100 microamps. $42 / 6$ $0-100$ microam
each, P/P $1 / 3$.
each. P/P $1 / 3$.
Also available 3 tin. panel Also available 3tin. panel
mounting $62 / 6$ aach.

COLLARO STUDIO TAPE TRANSCRIPTIONS

Latest 1961 model, 3 speeds 17. $3 \frac{1}{3}$ or 71. fted with 3 digital counter. press button press butcon vision for fering vision for flting head. Supplied brand new and zuaranteed complete with spare 7 in. spool. C12 each. P/P $3 / 6$

A.R. 88D RECEIVERS

Frequency coverage $550 \mathrm{kc} / \mathrm{s}$ to $32 \mathrm{Mc} / \mathrm{s}$ supplied fully reconditioned and in perfect working order. ONLY $\mathbf{z} 35$ each carriaze $30 /$.

7.5 K.V.A. AUTO TRANSFORMERS

115/230 volts. Brand new and boxad. exU.5.A. EIS each. P/P 10/-.

LODK!
 THOUSANDS OF BARGAINS AVAILABLE WHICH WE ARE UNABLE TO ADVERTISE. IT IS WORTH YOUR WHILE TO PAY US A VISIT

HIGH FIDELITY RECORDING TAPES Bargain prices. All new and guaranteed. 3 in . long play 225 ft
Sin . std. play 600 ft . …….......... $6 /-$ sin . long play, 900 it Stion. long play, $1,200 \mathrm{ft}$. 7 in . std. play, $1,200 \mathrm{ft}$. 7in. double play 2,400 it.

PLASTIC SPARE SPOOLS Al new. 2/- ea., saxin. $2 / 3$ ea., $7 \mathrm{in} .2 / 9 \mathrm{ea}$ BRAND NEW PLASTIC SPOOL
CONTAINERS 5 in . $1 / 6$ ea., 5 in. 2/- ea., 7 in. $2 / 3$ ea. Please add postage.

MINE DETECTOR No. 4 A

Will detect ferrous or non-ferrous metals, Complete, as new in transit cases. Supplied fully tested with instructions.
39/6 each, carriage 10/-, batteries $8 /-$ extra.

METER BARGAINS

20 microamp D.C. M/C flush rd. 2 tin, 25 microamp. D.C. M/C proj. rd. 2 fin , 100 microamp D.C. M/C flush rd. 2 tin. 100 microamp D.C. M/C flush rd. 3 in 200 microamp D.C. M/C proj. rd. 2 tin. 300 microamp D.C. M/C flush rd. 2 tin. 1 milliamp D.C. M/C flush rd. 2 tin. I milliamp D.C. M/C flush sq 4 in $2 \frac{1}{2}$. 30/0/30 milliamp D.C. M/C flush
 IS amp. D.C. M/C proj. rd. 2 in. 120 volt D.C. M/C flush rd. 3 tin . 300 vole A.C. M/C rectifier flush rd. $2 \neq 1$ in. 300 volt A.C. M/I flush rd. 2 !in........... i,S00 volts electroseatic proj. rd. 2 fin. Postage extra.

SANGAMO WESTON STANDARD VOLTMETER
Range $0 / 30$ v. D.C. 1000 ohms per volt. Correct to B.S. 89 Pr, limits 6 inch mirror scale, 25 each. 3/6 P. \& P.

SUB-STANDARD I.F, OSCILLATORS 3 rantes covering $45-485 \mathrm{kc} / \mathrm{s}$. Crystal controlled fitted with precision variable attenuators. Brand new, C15 each, 10/-carriage.

Frequency
 to $12 \mathrm{Mc} / \mathrm{s}$, incorporates vaves, ${ }^{212507,} 1=$ $125 Q 7,2-$
$12 A 6$, 125 K 7. Power requirements 12 volt L.T and 225 voles H.T. In first-class condition internally but slightly store soiled externally Price onl, 66/19/6 each. Carriage $10 /$ -

NATIONAL H.R.O. RECEIVERS

Senior model, table mounting. Supplied complate with full set of 9 coils covering $50 \mathrm{kc} / \mathrm{s}$, to $30 \mathrm{me} / \mathrm{s}$. All receivers are fully Carriage tested and aligned. Price 21 gns. available at an extra cost of $59 / 6$ each.

AVO SIGNAL GENERATORS

Frequency coverage $95 \mathrm{ke} / \mathrm{s}$ to $40 \mathrm{mc} / \mathrm{s}$. Ideal for all general radio work. Supplied fully tested and al general radio work. Supplied fully tested and checked $\epsilon 7 / 19 / 6$ each. P.P. 3/6. Operation is from
2 v . and 60 v . batteries but original Avo mains 2 v and 60 v . batteries but original A
units can be supplied at $19 / 6$ esch extra.

PHOTO VOLTAGE AMPLIFIERS
These special units contain a 1 microamp Tinsley galvonometer and a double selenium photo electric cell. Brand new $69 / 19 / 6$ each.
$\mathrm{P} / \mathrm{P} 7 / 6$.

FIELD TELEPHONE TYPE L
Generator bell ringing, 2 line connection. Supplied fully tested, complete with batteries. $59 / 6$ each. P/P 3/-

R. 1155 RECEIVERS

Perfect working condition. Thoroughly

 costed and realigned belore despatch. Standard model B with new.improved seared drive, $29 / 19 / 6$ each. Carriage $7 / 6$. Model or N . These incorporate the trawler band $1,5 / 3 \mathrm{mc} / \mathrm{s}$., $612 / 19 / 6$ each. Carriage $7 / 6$. Combined power pack and audio output stage operating from 200/250 volt A.C., to suit either model 85/- extra.HALLICRAFTER 6 VOLT VIBRATOR POWER SUPPLIES. Housed in grey metal POWER SUPPLIES. Housed in trey metal
case and supplied with all necessary connectors etc. Made for $\$ \times 28,527,536$ receivers. Output 300 volts 170 ma., fully smoothed. Supplied new and volts 170 ma., fully smooth
boxed, $29 / 6$ each. P/P $3 / 6$.

SOUND POWERED TELEPHONE HANDSETS

Make simple intercom system. No batteries required. Just connect togethar with new only 15 \% per new only /B/* por Suitable twin flex 2 dd . per yd .

B.S.R. Monarch UAB 4 speed record changers, 66/12/6 each.
B.S.R. Monarch UAB Stereo 4 speed record changers, E6/12/6.
B.S.R. UA12 Stereo 4 speed record changers, E7/10/- each.
Collaro Junior 4 spd. single players, C3/15/- ea. POST EXTRA.

1,000 WATT MAINS ISOLATION TRANSFORMERS. 230 vole primary, 230 volt secondary, Ex-Admiralty heavy duty cype. New, boxed. 65 each. Carriage $10 /$-.
A.R.8 WAVECHANGE SWITCHES. \& banks, 6 positions, complete with all screens. New, boxed, $17 / 6$ bach. P/P $2 / 6$.

 Post extra.

AN/APR4 SEARCH RECEIVERS

Covers 38 to $1.000 \mathrm{mc} / \mathrm{s}$ with 3 plug in R.F. units, TN16, $38-95 \mathrm{mc} / \mathrm{s}$, TNI7, $74-320 \mathrm{mc} / \mathrm{s}$ and TNIB, $300-1,000 \mathrm{me} / \mathrm{s}$. Operation 115 volts A.C. $50-2,600 \mathrm{cps}$. Reconditioned as new to maker's spec., $\$ 75$ each complete. Carriage $E 1$.

24 AMP. VARIAC TRANSFORMERS. Primary 230 volts. Adjustable secondary from 185 to 250 voles at 24 amps . Can also be used in reverse, voles at 24 amps. Can
c12/10/- each. P/P $10 /$.
POWER UNIT TYPE 234A, Input 200/250 olt. Output 250 volt 150 ma ., fully smoothed and 6.3 vole. 5 amp., 19 inch rack mounting chassis. 59/6 each, carriage 7/6.

MUIRHEAD CELL TESTERS

Brand new. Incorporates a bin. scale 3 amp. D.C. meter and variable rheostat for controlling current. Only $32 / 6$ each. P/P $3 / 6$

SAVE POUNDS! ORDER BY POST IF YOU CANNOT CALL
H.P. TERMS AVAILABLE
on certain goods. Call or write stating your requirements.

DON'T MISS THIS GREAT HALF-PRICE OFFER!

"ELIZABETHAN BANDBOX"

neat, compact and highly transportable Tape Recorder for AC mains $200 / 250 \mathrm{v}$.

Fitted fully self-contained Amplifier and $7 \times 4 \mathrm{in}$. Speaker. Clock type face indicator. Monitoring and l.s. sockets. Two speeds 3 and 11 i.p.s. Fast forward and fast rewind. Record level indicator Facilities for recording from two inputs. Push-button controls. Plays for one hour on one reel of tape. Cartying Case with attractive rexin finish and detachable hinged lid. Size $101 \times 0 \times 6 \mathrm{in}$.

LISTED AT 29 GNS.

CA8kY's PRIGE, including high quality \&15.19.6

Carr. \& Insur. 15/-

ANOTHER WONDERFUL TAPE RECORDER OFFER!

Complete Tape Recorder using Collaro Studio 3 -speed deck, $11,31,71$ i.p.s. Twin track with pause control, rev. counter, latest type electronic recording indicator.
Superimposing switch, volume and tone controls, 7×4 loudspeaker. 4 watts output. Takes 7in. spools. In contemporary design carrying fally, assembled, ready. for use.

COMPLE

TAPEAND SPOOL 29 Ell8.

TAPE DECK \&
 TAPE OFFERS

LIMITED NUMBER ONLY The well-known NOTEK K10 Deck with push-button controls, 3 motors, 3 -speed (11, 3z, 71 i.p.s.), rev counter. Freq. response better than $40-12,000 \mathrm{c} / \mathrm{s}$. at 71 i.p.s. 2-tone grey finish. Listed at 222

LABKY'8 PRICE \&9.19.6
Carr. and Ins. 7/6
uitable case, callers only, 39/6

collaro studio tape trane

 CRIPTOR. 3 motors, 3 speed 11,3 , 71 i.p.s., takes 7in. spools. Push-button controlsLasky's Pries, complete with Tape and Spool $£ 12.19 .6$

COLLARO TAPE TRANBCRIPTOR List f25. Lask's Pries $\$ 16 / 19 / 6$ Carr. \& Ins. 12/6. Tape extra.
TAPE RECORDER PRE-AMPLI FIER. For use with any make o Tape Deck including Collaro Motek, etc. Full recording facilities are provided for 7, 3 and 11 i.p.s. and multi-position switch give automatic equalisation by negativ eedback to each individual speed valves including magic eye leve ndicator. Overal 121×3 in sin. Front panel: $12 \times 3 \frac{10}{}$ L teky's Price 9 Gils.

Post 3/6.
SPECIAL OFFER

OF TAPE

Famous make plastic on latest type plastic spools. Brand new, boxed and guaranteed. $1,200 \mathrm{ft}$. on
7in. spoo!, 20/=
1,800ft. (7in.) ...32/6 1,200ft. (5ifn.) $21 /$ 850ft. (58in) 16/6

8COTCH PLASTIC TAPE ,200ft. on 7in. spool......... 25
M.8.8. LONG PLAY TAPE .800ft. on 7in. spool......... 39/6 $1,200 \mathrm{ft}$. on 5 Hin , spool........ $29 / 6$
850 ft . on 5 in . spool $25 / 6$ 850 ft on 5 in . spool
220 ft on 3 in .

$$
\text { Post: } 1 \text { spool } 1 / 6
$$

LASKY'S RADIO FOR COURTEOUS
 SERVICE \& TECHNICAL ADVICE

RADIO : TELEVISION • HI-FI • ELECTRONICS • RECORDERS
 mICROPHONE BARGAIN8
 BARGAIN8
 high impedance moving coil mike with unique magnetised table base. Response
 LONDON'S LEADING Hi-Fi SPECIALISTS
 Visit either of our addresses for selective
 Demonstrations of the latest Hi-Fi Equipment
 LANKYS RADIO

$30 \cdot 15,000$ c.p.s. Ideal for tape recorders
Lasky's Priee $39 / 6$ Post free. ACOS CRY8TAL STICK MIKE Type M.C.30/1, complete with cable. Listed at $5 / 5 / 5$
Lasky's Frice 39/6
MINIATURE moving coil dynamic microphone, incorporating switch and complete "With pocket cip. Fi .

4-SPD. AUTO-CHANGERS New and

B.S.R. type UA8 \quad e6 196 B.S.R. type UA8 B.S.R. UA12 stereo B.S.R. UA12, stereo

6196

7196 BSLLARO Conquest. $8719 \quad 6$ colereowith monaural pired 105 | stereo,with monaural p.u. | 26 | 19 | 6 |
| :--- | :--- | :--- | :--- |
| As above, stereo | | 87 | 19 | 7196

Post on all above 5
GARRARD
Model 120
Model 121
Model 209
Model 210, stereo
Model 210 w
stereo heads
RC. 88
RC. 88 stereo.

SINGLE PLAYERS
Auto. start and stop. Complete with pick-up and crystal cartridge.
GARRARD 4 SP GARRARD 4SP GARRARD TA Mk. II, STEREO, plug-in head E.M.I. 4 -speed, wired for and fitted Acos stereo tridge ${ }^{6}$ wired for
28 80

COLPARO on all above kt 19
and separate pick-up.
75/and separate pick-up $\quad 79 / 6$ Post free.

PICK-UP CARTRIDGES ACOS HGP. 58 or HGP. 37 turnover, crystal cartridge with L.P. and standard styli. List 39/7.
Lasky's Prict 18/- post free.
AOCS 73-1A STEREO. List 52/6. Latky's Price 29/6 post free.

P.M. SPEAKERS

3 in .4 in .5 in .6 in .8 in .10 in. $\begin{array}{llllll}17 / 6 & 19 / 6 & 10 / 6 & 18 /- & 18 / 6 & 25 /-\end{array}$ ELLIPTICAL
$7 \times 4 \quad 0 \times 6 \quad 10 \times 21 \quad 10 \times 6 \quad 10 \times 7$
12/6 $22 / 6 \quad 25 /-\quad 25 /-25 /-$

SENO FOR LASKY'S

100 PAGE
HI-FI CATALDCUE
comparator
CATALOGUE in photogravure and colour to enable you to choose from hi-fi
cquipment of every Price 3s. 6d.
part post 8 d .
Fully refurded on making your first hi-fi purchase.

NEW AND UNUSED 17" TV CHASSIS

$200-250 \mathrm{v}$. A.C./D.C. Complete with 13 new Brimar valves, latest Fireball turret tuner covering all channels bands i and in (i.f. 33-38 Mc/s.). Ferroxcube line out. put transformer and wide angle 0° scanning coils, ion trap, latest electrostatic ocus. Overall dimensions $8 \times 151 \mathrm{in}$.

Valve line-up:
3 PCF80, 1 PCC84, 3 B6W7, 1 PCL84, PCL82, PY82, PL81, PY83, EY51.
LASKY'S PRICE £18. 19.6
Cart. \& Ins. 7/a.
BRAND NEW BRIMAR 17in. C.R. TUBE, C17SM. 3-amp, heater, electrostatic focus. 12 months' guarantce.
L8T 10 gns. Lasky's Price
/6/19/6. Carr. \& Ins, $12 / 6$. 8PECIAL COMBINED OFFER
CHA88Is \& NEW BRIMAR G.R.T.
2.23.19.6
Carr. \&
Ins. $10 / \beta$.

A fow cabinets available to callers.

HI-FI SPEAKER SYSTEM

sPEGIAL OFFER. Limited quantity only. ELAC Hi-Fi Speaker system comprising 10 in . bass unit (woofer), $8 \times 6 \mathrm{in}$. enclosed middle range unit and 4 in. twecter. LAsKY's PRICE, complete $49 / 6$ Post $3 / 6$. TWO MATCHED BETS FOR STEREO \&5 post paid.

Units available separately.
10in. Bass Unit
8×6 Middle
4in. Tweeter
12/6. Post $1 / 6$.
27/6. Post $2 / 6$.
8×6 Midale

STEREO ADAPTOR
CONVERT8 ANY RADIOGRAM TO GIVE STEREOPHONIC REPRODUCTION 2-valve Amplifier using EF80. and EL84 mctal rectifier (full-wave oridge). Mains voltage $195-250$. $50 / 60$ c.p.s. Ganged volume control and ganged tone control.

CAN ALSO BE USED AS A SINGLE-END AMPLIFIER. LASKY'S PRICE complete with cul service datata and 2 new $59 / 6$ valves. Post \&c Pkg. 3/6. 59/6

AMPLIFIER BARGAIN

EX80 rect., ECC83, feeding two E184 in push-pull. Separate control unit with bass, treble and volume controls. Size of chassis: $4 \frac{1}{6} \times 4 \times 12 \mathrm{in}$. Complete with 4 new Mullard valves.
LABKY's PRICE 85/-

GRAM AMPLIFIER

Uses two valves, ECL82 and E280 and separate mains transformer to minimise hum. lncorporates Elac transformer mounted. Size of printel circuit $4 \times 3 \times 21 \mathrm{in}$. Lasky's Price $59 / 6$

MINIATURE POCKET
TRANSISTOR RADIOS
Large selection of various wellknown makes at money-saving latest Bargain List.

6 v. operation. For all L.P. and standard records. All components standard records. Alable separately.
available AMPLIFIER
300 milliwatts push-pull output, using two OC71 and two OC72 transistors. Fully assembled, 79/6. Knobs $3 / 6$ extra. LOUD8PEAKER
30 ohms, 7×4 in, elliptical, matched to amplifier, $25 / \mathrm{m}$.

3-8PEED TURNTABLE
6 v ., with rubber mat and speed adjustment, complete with t.o., crystal cartridge and two sapphire styli. 79/6.

CARRYING CABE

As illustrated, handsome two-tone finish. 17 in . deep, 14 in . wide, 5 in . high. Well made and finisbed. 40/6. Batteries extra.

EVERYTHING FOR HOME CONSTRUCTOR \& SERVICEMAN

LASKY'S

 MIDGET T.R.F.

CAN BE BUILT

FOR ONLY 99/6
Post \& Plkg. 5/=
Handsome contemporary design case, overall size 8 in, wide, 44 in . deep, 5in. high. 2 latest
double-purpose valves EBF89 and ECL80, contact cooled rectifier. For A.C, mains 200-250 v. Med and long wave, 5in. P.M. speaker. Plastic cabinet in cream, pastel green, pink, blue.
FULL DATA, instructions circuit diagram, shopping list $1 / 6$. All components available separately.

\section*{LASKY'S
 CAIR IRAIDIO
 CAN NOW BE BUILT ABSOLUTELY COMPLETE
 FOR
 £9.19.6 | post |
| :---: |
| $3 / 8$. |
| . |}

+ Small size. Will fit any car $\star 12$ volt operation太 New Hybrid circuit X Transistor output ※ Transistor output丸 New type Brimar valves $\begin{aligned} & \text { No Vibrator, } 12 \text { volt H.T. \& L.T }\end{aligned}$ \star N.C.C. Printed Circuit and Condensers
\star Condensers
\star Tuned R.F. stage
\star Medium and long waves \star Fermeability tuning $\star 7 \mathrm{in} . \times 4 \mathrm{in}$. elliptical speaker. Instruction Booklet giving full details, illustrations, dimensions, circuit diagram and shopping, list, cuit diagram and shopping if you price ${ }^{2}$ order).

TEST METER BARGAINS
 NEW AND UNUSED

AN/20. Famous make pocket size 18 -range multi-test meter neers. 5,000 ohms per volt A.C. and D.C. with accurate linear scales for the lower A.C. range. In black leatherette-covered
 Post $3 / 6$. Leads $3 / 6$ extra.
Pos.
P9/6

The KAPURA MdI. UI. MULTI-RANGE TEBT METER, incorporating 3in. rectangular meter. sensitivity: 1,000 obms per volt A.C. and D.C. Ranges: (A.C. and D.C.) $0-10-50-250-500-1,000 \mathrm{v}$. D.C. current $0 \cdot 100-500 \mathrm{~m} / \mathrm{a}$. $0-1 \mathrm{~m} / \mathrm{a}$. (used at 0-10 D.C. curren

Resistance: 1-2,000 obms (centre 24 ohms). $100-200,000$ ohms (centre 2.4 k.).
size: $5 \mathrm{in} . \times 3 \mathrm{in}, \times 2 \mathrm{j}$ in. Weight: 22 ozs. Fully guaranteed. Leads. LAEY'8 PRICE 50st \& Pkg $5 / 6$
Complete with test leads. 69

C.R. TUBE BARGAINS new and unused

FERRANTI. 12 in . types T12/44 or 9in. type T0/3 4 v . heater

> LABEY'S PRICS Carr, Linur, tive

49/6
 Kap. hower. Brand Dew and unued.

10if. Miral cons, mmone make, tJpe

17in. 90 dogrees C.R. TUBEs Seconds but in perfect working order and guaranteed | and guaranteed. |
| :--- |
| Carr. and 1 nsur. 12/6. |

RE-GUNNED C.R. TUBES GUABANTRED POR 12 MONTHS
 171 m. root
21 tm.
reot.

Abstract

CAR RADIO COIL PACK

(Superhet, I.F. $465 \mathrm{Kc} / \mathrm{s}$)

As used in many famous makes car radios. A permeability tuned Coil Pack covering medium and long wavebands, with tuned R.F. stag and complete with dial and pointer Needs no ganged condenser. It size, $7 \frac{1}{1} \times 5 \times 1$ in. enables it to be used in the smallest of car radios.
LASKY'S PRICE

49/6 With circuit diagram and full data.
$\mathbf{2 0 , 0 0 0}$ VALVE IN STOQK Mullard, Brimar, G.E.C., Marda, Cossor, E.M.1., Philips, Pinnacle, Telefunken, etc. Send for our latest Valve List.

SUB-MIN. REEIBTOR ${ }^{\text {B }}$, th watt, most values available. Each 3td. Per doz. 2/6.
 stability Realitanoen, Rloctrolytich All

AUDIO, suitable for high gain and stages up to 250 milliwatts. Double spot-yellow and green. $5 /$
R.f. suitable for medium and low freq. oscillators, freq. changers and I.F. amplifiers (1.5 to $8 \mathrm{Mc} / \mathrm{s}$.) Double spot-yellow and red Each 7/6 Type T81. Suitable for all audio applications.

Post 8d.
One dozen 35/- po Special prices quoted for large quantities. Enquiries invited.

OC4 15/-; OCAS 151-; OC70 8/6: OC71 8/6; 0.78 15/: (Matahed Par $20 /$ 0073 14/-; OC16 541-
Edimwan mazda tranietora. The vier lateat typaes
XB/102 7/0 XB/103 7/6; XC/101 10/- XA/101 18/6: XA/102 12: 6 .
SPECLAL OFFRR get of 7 Eflewan XB/103, 2 matabed XC/101. Prilo b9/
ceresal diodes. Ganeral Purpose GRX00, ench 10:- Per dos, $9 /$
al other धुpe min
c OOLTOP " POWER TRAN8IBTOR8

vilio . cill
 Butteble Outpot Trandormer for above, oorrect raklo, mellobed to 8 olbme, $9 / 6$
Ditrer Traneformer, 9/8. Pout $1 /$. Our latest 12 -page " BARGAIN Our latest 12 -page " BARGAIN

12-CHANNEL
 RRET TU

Largo selection, many by famous makers such as Cyldon, Braybead Plessey, cossor, etc., all i.F.s for the model required. Examples: $38-88 \mathrm{mc} / \mathrm{s}, 29 / \mathrm{s}, 6-9 \mathrm{mc} / \mathrm{s} ., 816$. $9.14 \mathrm{mc} / \mathrm{s}, 59 / 6,14-25 \mathrm{mc} / \mathrm{s} ., 59 / 6$.

TRANSISTORS

or constructors hi-fi enthusiasts engineers. COMPLETE KIT with full step-by-step instructions, cir-

MINIATURE EARPHONES FOR POCKET
TRANSISTOR RADIOS
High quality and remarkably sensitive, giving clear reproduction of music as well as speech. Complete with transparent ear-inser sock cord, sub-mimiature jack and
Mdi. CR.S. Crystal

Earpiece. Crystal
Mdl. MP, Mimp.

Earpiece, low imp.
SUB-HIN. COMPONENT8
As used in the smallest Japanese pocket transistor radios. Coils, Ganged Condensers, etc., now available from stock at lowest prices. Also in stock, all T.S.L. transistorised Miniature Units.

Send for Lasky's COMPONENTS CATALOGUE OVER 100 PACES COPIOUSLY ILLUSTRATED Price 2/- Post ©d.

Please address MAIL ORDERS and enquiries to EDGWARE ROAD

207 EDGWARE ROAD, LONDON, W. 2

Few yards Praed Stree
PADdington 3271/2

> 42 TOTTENHAM COURT ROAD, W. 1

> Nenest Station: Goodge Street
> Both Addresses OPEN ALL DAY SATURDAY Close
> Thurs. I p.m.

REMEMBER THIS?

NE BAMOILTD18 tOTTENHAM COURT RD., LONDON, W. 1

ALSO AT: 162 HOLLOWAY ROAD, LONDON, N. 7 NORth 6295/6/7
99 CHEAPSIDE, E.C.2. MON 6860

THE "WAVEMASTER" 7-TRANSISTOR LUXURY PORTABLE

400 MILLIWATTS OUTPUT

PRINTED CIRCUIT SUPERHET

A new two
wave band
(L and M)
Superhet
using the
latest minia-
eure valves: (22) EF85
(23) ECL80, and
(2lus concact cooled Rectifier. Incorporates Ferrite Rod Aerial and is of unit construction. Exceptional sensitivity and selectivity. Outseanding throughout. Easily constructed in one evening. Brown or ivory Bakelite cabinet. A.C. mains $200 / 250 \mathrm{v}$. All necessary components at special inclusive price of $\mathbf{E 7 / 1 9 / 6}$ plus $3 / 6 \mathrm{P}$. \& P. Instruction Book with itemised price lise available separately at $1 / 6$ post free. Also avail. able in D
$5 /$ - exta.

To build yourself Medium and Long waves-Push-Pull Superhet A.V.C. Perfect Car Radio reception. Size lOin. x 6tin. x $4 \frac{1}{3}$. at base tapering to 4 in . at top.
Very attractive two-tone grey Vynide covered eabinet with black and gold printed escutcheon plate, cream and gold knobs, handle and cabinet fittings. $*$ Weight-complete with longalife $7 \frac{1}{2}$ volt battery-Alib. t Mazda high-grade transistors throughout. * High-Flux 7in. x 4 in . Elliptical Spaaker. t Slow motion tuning. + Co-axial socket at rear for direct connection to Car Radio Aerial t Improved reception by use of seven-section plated telescopic aerial disappearing into Cabinet when closed, 34 in . above Cabinet when fully extended.
Construction simplified by Bakelite chassis board with the following components already mounted: I.F. Transformers (3). Oscillator Coil, Trimmer Bank, Output Transformer, Intersrage Transformer, Aerial Brackets and Earth Bar. SPECIAL INCLUSIVE PRICE for all required components full assembly instructions-nothing more to buy-is $C 10 / 19 / 6$ plus $3 / 6 \mathrm{P}$. \& P. Alignment service available. Full assembly instructions and individually priced parts list, all of which are available separately, $2 / 6$, post free.
" OUR REPUTATION IS YOUR GUARANTEE '

TO BUILD YOURSELF
 ALL PARTS AVAILABLE SEPARATELY
 STOP PRESS! All components available ex-stock for the "P.W. ROADFARER" TRANSISTORISED AM/ FM RECEIVER, as described in "Practical Wireless," April issue. Send stamp for itemised price list. Usual special inclusive price available.

[^17][^18]
NEWI

"PAGEBOY" 2-TRANSISTOR POCKET PORTABLE
Compleaty portable-NO EXTERNAL AERIAL OR EARTH REQUIRED. This is an amazing little recsiver with built-in aerial and small enough to be held in the
palm of the hand. Medium palm of the hand. Medium
wave reception at wonderful volume. No fiddley tuning! -condenser runed! Supplied with drilled chassis and colour coded components. Easily assembled with the aid of the easy-tofollow assembly instructions provided.
 necessary components, including transistcrs, wiring wire and even solder ONLY $32 / 6$ plus 1/6 . \& P. Battery 3/* extra. Ardente type deaf-aid earpiece complete with cord and pluss extra at 12/6. Parts price list and East Lay-out Plans 2/-post fres. Callers weicome to hear this set demonstrated at any of our
reputation is your guarantee.

SUPERPERSONALPOR-

 TABLE. A wonderful little set you can take anywhere. Ideal for camping, etc. Datachable aerial rod supplied. Covers Medium wave-band $200-500$ metres. Can be band $200-500$ metras. Can be
built in approx. I hour. All built in approx. I hour. All
necessary components availnecessary components aval INCLUSIVE PRICES: 1 -valve version ONLY 35/- plus 2/P. \& P. Super 2-valve version
ONLY \&1/F. Plus $2 /-\mathrm{P}$ \& P . Send for point-to-point wir
 ing diagram and parts price lise $2 /$-post free. Extra for use with the above DLRS balanced armature headphones, $7 / 6$ pair.

FAMILY FOUR

(5)

Our supersensitive T.R.F. Receiver for home construction Covers Long and Medium Wavebands, is housed in very smart plastic table
 cabinet in Brown or
Black. For A.C. m Black. For A.C. mains 200/250 v. Compre. hensive assembly instructions provided, including practical and theoretical diagrams, which are easy to follow and will enable you to complete this receiver which will be the envy of your friends. ALL NECESSARY COM-
PONENTS ONLY 79/6, plus $2 / 6 \mathrm{P} . \& \mathrm{P}$. in struction book available separately if you wish to study before purchase at $1 / 6$ post free.

VISIT OUR FULLY EQUIPPED
 HI-FI SHOWROOM AT TOTTENHAM COURT ROAD FOR
 HI-FIDELITY EQUIPMENT by all leading manufacturers

We stock equipment of Quality by alf leading makers: i.e., Leak, Quad,
Armstrong, Dulci, Ferrograph, Refectograph, Vortexion, Tannoy, Linear,
Wharfedale, Grundig, Goodmans, W.B., Rogers, Garrard, Lence,
B.T.H., Pamphonic, Simon, Brenell, Collaro, Telefunken, Fi-Cord, etc., etc. A full range of high qualicy cabinets to suit all purposes is on show, i.e., RECORD HOUSING." "W.B." "A.D.," etc. Enquire about our interesting part-exchange scheme for personal callers. H.P. Available.

THE "CITIZEN"

Introdueing our new super-Senaitive 6-stage (4 transistor plum diodo) pocket tranatetor reanvor-ior foll folloum Ware reoption-with
Completely metit-aontained extornal berina or earth reguired - Geraina \&ila High Flax P.M. 8joaler.

* Puab-pull output-250 milliwate
* Geunine Ediswas trankistort.
* Socket provided lor rarsomal littorims.
8ocket provided for connection 10 Gar Aorial.
- Volume Control with on of
* Eey emembly on eolonr coded protagred dironit bourd
- Attrative polystyrene esbinet manare $5^{\circ} \times 8^{2} \times 11$, elarom hasde. attraetlve dial
Hear shis amazing litte recoiver workingatructions ment for $1 / 6$ post free.

All requirel

 componente including full tontructions, price of $\begin{aligned} & \text { of } \\ & \text { Plue } 2 / 6 \text { p. p. ONLY 95/- }\end{aligned}$Yes, NINETY FIVE SHILLINGS ONLYI Nothing more to spend.

Aulable crystal deal-add type miniature earpiece fitted with mindature jeck plug at ONLI $7 / 6$ xtra, if reyulred.
ull assembly instructions ment for $1 / 6$ post free.

SUPER I-VALVE SHORT-WAVE

World-wide coverage at most reasonable cost. Covers $40-100$ metres with the coil supplied. Can be extended to cover 10-100 metres. Provision is also made for the addition of two excre valve stages. Employs the famous Acorn-type 954 valve. All necessary components can be supplied complete with full assembly instructions at ONLY 35/- plus 2!-
p. 2 p. Send $2 /$ - for point-to-point wiring diagram and price list.

NEW! "POPULAR FOUR"
 IMPROVED APPEARANCE AND
 PERFORMANCE
 A new three valve plus miniature contact-cooled rectifier, mains T.R.F. Receiver is now available. New De Luxe Cabinet, polished walnut finish, eream trim, attractive horizontal dial (as illustrated). Quality Sin. P.M. speaker. Specially wound high gain aper-sensitive Denco coils. Medium
 and Long Wavebands. Excellent (47) Continencal reception! Overall dimensions: $12 \mathrm{in} . \times 6 \mathrm{in} . \times 5 \mathrm{in}$. A.C. practical and theoretical diagrams supplied Alt results. Easy to follow down to the last nut and bolt, PRICE OF $\operatorname{CS} / 5 / 0$, plus $3 / 6 \mathrm{p}$. \& p. Instruction book available separately $1 / 6$, post free. ALL PARTS AVAILABLE SEPARATELY.

RAMBLER PORTABLE
This wonderful litte Medium and Long wave battery superhet incorporazes IRS, ITA, ISS, 3 V4 miniature valves, Sin. speaker and frame aerial. Housed in smart two-tone Red/Grey cabinet. All required components at the NEW LOW PRICE of C6/19/6, Dlus $2 / 6 \mathrm{p}$. \&. P. or with the latest low consumption " 96 range" valves at the NEW LOW PRICE of E $7 / 7 /$-, plus p. \& p. Uses all-dry batteries AD35 (1/6). BI26 (\%/-). Full deseriptive inseruction book, itemised price list, diagrams, etc., available separately at $1 / 6$ post free.
(2) MAINS UNIT FOR ABOVE. Fits into battery compartment. A.C. $200 / 250 \mathrm{v}$. All required components at ONLY $47 / 6$ plus $1 / 6$ p. \& p. or assembled and rested at $3 / 5 /-$ plus p. \& p. (Also suitable for many other portables.)
PRINTED CIRCUIT CAR RADIO (for Home Construccion). Wo are proud to be able to offer this New type Car Radio employing up-to-the-minute cir-
cuitry, special 12 volt valves and eransistorised output stage. The highest degree of sensitivity is assured by the incorporation of Permaability Tuning and a tuned
 R.F. Stage. Covers Medium and Long Wavebands.
NO VIBRATOR PACK IS REQUIRED. This is a
eceiver thet will fit any car. Comprehensive assembly instructions are provided New Low inclusive Price of Only Cll/i9/6 plus 3/6 p. New Low inclusive Price of Only cill/9/6 plus $3 / 6$ P. \& p. Instruction booklet with itemised price list, full description dimensions, etc. avail-
able separately at $3 / 6$ post free.

THE R.C. 3/4 WATT AMPLIFIER Compare the advantages. Treble bass AND up. A.C. Mains $200 / 250$ v. Valve linewop: UP. A.C. Mains $200 / 250$ V. Valve lineup: back. Buitt on stove mamelled steel chassis measuring only gin $x 4 i n$, x lin. Four enmeasuring oniy sin. x 4in, x lisin. rour enof the complece kit with all necessary practical and complece kis with all necessary practical $2 / 6$ p. \& p. or Instruction Book fully iliustrated for V/ $=$ p. ast fre or Instruction book fully iltustrated for bled, tested and ready for use at $\mathbb{K} / 5 / \mathrm{F}$-, plus p . \& p .

" PRACTICAL WIRELESS " POCKET SUPERHET (46)

 All required Components for the complate Osmor version as described in November issue of "Practical Wireless," now available at speciai bookler. Overall size 5 tin. $\times 3$ in. $\times 1 \frac{1}{2}$ in., 6 transistors, 2 tin. P.M. Speaker All items available separately, send stamp for list.

RADIO JACK (25)

Covers local medium wave stations variably tuned. Compact self concained unit requiring only connection to aerial (no power supplies regd.) for lst class reception when used in conjunction with your tape recorder or high gain amplifier. All necessary parts available at a special inclusive price of only $19 / 6$. p. \& p. $1 / 6$.

AUDIO GENERATOR AGIO. Covers from $10 \mathrm{c} / \mathrm{s}$ to $100 \mathrm{Kc} / \mathrm{s}$ in four ranges. Max. ourput 10 voles. Min. output 100 microvolts. Square wave output with excellent rise time makes this generator very

Contole
now available

 is simple to assemble, extremely sensitive and may be installed in a matter of minutes. Completaly SAFE employing a double wound mains transformer. Attractively finished in Red and Grey (washple) Lionide with cream platic escutcheon. Size only 7 tin . x 3fin. x 6itin. Supplied in kit form complete with mike at
ONLY $72 / 6$ plus $2 / 6$ p. \& B . or arsembled and tested $89 / 6 \mathrm{p}$. F p. 2/6. Suitable mike flox available as 3d. a yard. Instruction book and price list separately 1/- post free.

CLYNE RADIO ELECTRONIC ORGAN
Readers will no doubt be pleased to know that our working model of this amazing organ for homo construction, may te heard and seen at our $\mathrm{H}_{1}+1$ I Showroom in Tottentiam Court Roas, W.I. tur the benefit of constru. tors all components, k - y boards, chokes, ctc., $\begin{aligned} & \text { available ready made. Fuli }\end{aligned}$ available ready made. Fuli available in bcok form at $15 /$ plus $1 / 6$ p. \& p.
We shall be happy 0 We shall be happy to forward a complete price list on receipt of a stamp. Please address all orean enquiries for the attention of Mr. L. Roche.
" Chaspisae, London, E.C.2
TURN OVER FOR MORE CLYNE BARGAINS

* MORE
 RECORD PLAYERS

Full range at usual competitive prices. Interesting H.P. facilities E.M.I. MODEL 985 4SPEED SINGLE RECORD UNIT, Very latest type. Heavy 0 tin. dia. turn$200 / 250 \mathrm{v}$. with tap performance 200/250 v. With rap at 80 . fo operating amplifier vaive mamen if required. Complete with matehBrad pick-up with mouns and rest ONLY $89 / 6$, plus $3 / 6$ P \& P P Pick up available separately, complete with mount and rest $25 /$-, plus $1 / 6$ with m
UST' ARRIVED:
4-SPEED
JUST ARRIVED! 4-SPEED. SION OF ABOVE.
6 volt operation complete with pick-up ©5/9/6, plus P. \& P. $3 / 6$. LATEST GARRARD MODEL 210. Four-speed manual or automatic. 10 in . and 12 in . records of same speed can be mixed in any order, wired for stereo, attractive white colour scheme. Price 10t gns. plus $3 / 6$ P. \& P.
LATEST B.S.R. UA14. 4 -speed. Attractive appearance. Wired for stereo. Fully guaranteed. E7/19/6, plus $3 / 6$ F. A ${ }^{2} \mathrm{P}$.
B.S.R. UA8. Brand new and gusranteed. Few only. Monaural. E6/19/6. Stereo/Monaural, ET/19/6. Both plus $3 / 6$ P. \& P.
ACOS GP/3-2A: Turnover cartridge for Stereo and Monaural 296 . plus 9d. P. \& .
$29 / 6$ plus id. P. \& P.
GOLDRING 580 CARTRIDGE. In MPM2 shall. Few only at special price of 99/6 pose firee

CABY UNIVERSAL
 TEST METERS

These pocket-size multi-range test maters are of excellent quality and cover all the most useful ranges (A.C. Volts, D.C. Volts. resistance and current). Supplied complete with rest prods, instruction book and batteries. Model A. 10 (2,000 ohms per volt)
Model R. 20 (10,000 ohms per volt) E6/10/.. Plus P. \& P. 3/6 on ea. Fully detailed and illustrated icaflet available on request.
CATHODE RAY TUBES. Unrepeatable offer! 17in. MW 43/69 by leading British Manufacturer. Brand new in original cartons. Not rezunned. Full 12 -month guarantee. $57 / 101-$ each only, plus
$101-\mathrm{P} . \& \mathrm{P}$. Send stamp for comtue and Tube Lo ANOTHER PORTABLE CABI. NET] Ex leadine manufacturer's bittery portable attache type case. Attractive two-tone Erey rexine finish. Size closed 13 tin. $\times 9$ in. x 3 in . Complete with fittings and hinde. Including Medium and Long Wave frame aerial which fits in lid. Limited quancity only at burgain price of $19 / 6$ plus 2%. P. \& P. Brand new.
DEAFAID TYPE EARPIECES. Ardente Standard magnetic type complete with lead and plug. Only 12/6, P. \& P. 1/-. SPEAKER Size BEIO x ENCY further small quantity available further smal quantity $39 / 6$ only. plus $2 /-$ P. \& P. coil. $39 / 6$ only. l2in. BAKERS SELHURST LOUDSPEAKER. 15 ohms, 15 watt $30-14,000 \mathrm{cps}$. Brand new, $4410 / \mathrm{F}$ P. \& P. 3/6.
12in. RICHARD ALLAN P.M. LOUDSPEAKER. 3 ohm speech coil. Brand
$2 / 6$ P. \& P.

VIBRATO

VIBRATOR PACKS. Limited quantity of both 6 volt and 12 volt types available. Output 300 volt. $100 \mathrm{~m} / \mathrm{a}$. Fully smoothed. Brand now ex-Govt. surplus. Price 35/ea., plus $2 / 6$ P. \& P. Please specily input voltage required.

CLYNE RADIO BARGAINS

 SUB-MINIATURE SLIDER SWITCH Two-pole two-way ONLY $2 / 6$ EACH. P. \& P. 6d. - Wholesale and manufacturer quantity enqui

- both of the above new items.

TELEPHONE PICK-UP COIL Designed to
phone input of either a tape attached electrostatically shielded rubber suction attachment. The coil on telephone this model is more than adequate for a fully modulated tape recording. Brand new complete with 5ft. shialded cable ONLY $14 /=$ P. \& P. $/ 6$
COLLARO TAPE PRE-AMPLIFIER ANO BIAS OSCILLATOR. Complete with power pack for use with Collaro Mk. IV deck. 4 valve plus EM81 magic eye. $110-240$ v. A.C. Input sensitivity: microphone socket $5 \mathrm{~m} / \mathrm{v}$, auxiliary socket $500 \mathrm{~m} / \mathrm{v}$. Speed equalisation switch gives compensation at all 3 speeds. Full wiring instructions included. List price E21. Limited quantity only at E/S/19/6. P. \& P. 5/-
LATEST COLLARO STUDIO TAPE TRANSCRIPTOR. 3 motors, 3 speeds, $17,3 \frac{1}{2}, 7 \frac{1}{1}$ i.p.s., takes 7 in . spools. Push-button controls, fl2/19/6 plus 5/-P. \& P. Usual H.P. facilities. LATEST B.S.R. "MONARDECK." Single speed Tapa Deck. Takes 5 in. spools- 38 i.p.s. At only $8 / 5 /-$ plus $5 /-P$. \& P.
TAPE RECORDERAMPLIFIER. Suitable for use with either of the above Tape Decks, and most other types. For A,C. mains, 4 watts output. $40-12,000$ CPS at $7 \frac{1}{2}$ i.p.s. $\pm 3 \mathrm{db}$. Facilities for superimpose. Valves: $6 B W$ 6, ECL82, 12 AX7, EM84, and contact cooled metal rectifier. Radiogram input, microphone inpur, monitor facilities (can be used as straight through amplifier), volume control and separate treble and bass controls. Chassis measurement IIf $\times 3 \times 4$ fin. Supplied complete with attractive grey/blue escutcheon plate finished in black and gold. Circuit diasram and connecting instructions included. Price E/I/5/- only, plus $3 / 6 \mathrm{P}$. \& P. If purchased with either of the above decks, both items post free!
ATTRACTIVE TWO-TONE PORTABLE CARRYING CASE. Suitable for above amplifier and Collaro, Studio deck. Limited quantity only at $79 / 6$ plus $3 / 6 \mathrm{P}$. \& P.
MIC 45.1 Acos latest flat pistol-grip crystal microphone. Actractive black and gold finish. OUR PRICE $29 / 6$ plus $\mathrm{I} /-\mathrm{P} . \& \mathrm{P}$. ACOS MIC black and gold finish, OUR PRICE $29 / 6$ plus $1 /-$ P. \& P. ACO
$39-1$. Crystal stick microphone. List price 5 gns. Our price $39 / 6$ plus 39-1. Crystalstick microphone. List price 5 gits. Our price $39 / 6$ plus
$1 / 6$ P. \& P. MIC 40. General-purpose crystal microphone with desk stand. Our price 25/. only plus $1 / 6$ P. \& P. M.C. 24. Imported, stand. Our price $25 /$ - anly plus $1 / 6$ P. \& P. M.C. 24 . Imported, erystal, atractive streamlined polished metal case. incorporates
muting switch. List price $64 /-$. OUR PRICE $42 /-$ only. $1 /-P . \&$.
muting switch. List price 64/-. OUR PRICE 42/- only. 1/-P. \& P.
 amous American Ferrodynamies "BRAND FIVE An enthusiast's "must." Brand new (NOT SUB-STANDARD) High grade Acetate Base, Sin. 600 ft . 16/0. Sin. 900ft. 18/6, 5 1 i in . 1,200ft. 23/6 7in. 1,200ft, 25/-, 7 in . 1,800fs. 35/-. Exera quality Mylar Dupont. Jin. 300ft. 13/-. Sin. 1,200ft, 37/6. 7in. 1,800ft. 44/-. 7in. 2,400ir. 60/-. Each on plasticspool. All Pose free. Trade enquiries invited.
PLASTIC TAPE SPOOLS. Best quality. $3 i n$. $1 / 6, \sin , 2 /-, 5 \frac{1}{1}, 2 / 3$, 7in. 2/6. PLASTIC SPOOL CONTAINERS for spool sizes $\operatorname{Sin}, 1 / 6$, $5 \frac{1}{4}$ in. $2 /-$, 7in. 2/3. Any single item plus 6d. P. \& P. Orders over KI, post free. /-, 7in. 2/3. Any single item plus 6d. P.\& P. Orders over Kl, post íree.
Complete Elementary Course in French, Italian, German or Spanish. Phrase booksupplied. 5" lon play tape, $\mathbf{S S}$ minutes at 3i i.p.z. Price ONLY 29/6 per course, Post Free!

EXTRA SPECIAL OFFER !

A small three-valve PORTABLE RE-
CORD PLAYER AMPLIFIER mounted on baffie $12 \times 7 \mathrm{in}$., with High Flux 6 tin. Loudspeaker. Valve line-up ECC83, EL84. EZ80. Incorporates separate bass and treble controls. Max. ourpur 3 wats. Will match all eypes of hiph impedanc: pick-up. Ready fo use, © $5 / 12 / 6$. P. \& P. 3/6. NEW STYLE CABINET finished in two-tone Leatherette. Will accom. modate above Amplifier and Baffe of Ancillary Equipment. Oyerall size $18 \times 131 \times 8$ tin. Fitted with arryine handle, $83 / 9 / 6$, plus $5 / . P$. \& P.
NOTE. If both irems purchased together they will be supplied at together they wial inclusive price $\varepsilon 8 / 7 / 6$. plus $6 / 8$ P. \& P

TEE COLTOHENT ge ECAALISTS

FRUSTRATED EXPORT. Not reparatable! L., M. and S.W. SUPERHET RECEIVER. ManuActured by McCarthy for export. At present for operation on 6 volts but conversion dezails supplied free.

Valve line-up: 6K8G, 6K7G, 6Q7C, $6 F 6 \mathrm{G}, 6 \times 5 \mathrm{G}$ and 6 vole 4 -pin nonsynchronous vibrator. Bin. P.M. Speaker, 4 watts output, P.U. socket Ext. L.S. socket, etc. Tone control. Fitted in polished wood cabinet, size 21 tin. $\times 10 \frac{1}{2}$. $\times 10 t i n$. These cabinets are slightly soiled owing to storage, but each is guaranteed unused, in serviceable condition, tested prior to despatch. Price $\$ 5 / 1 \% / 6$ only prior co despatch. Price $27 / 6$ for A.C.
plus P. P. $7 / 6$, plus $27 / 6$ only plus P. \& P. $7 / 6$, plus $27 / 6$ for A.C. required. OUTSTANDING BUY!

TRANSISTORS!!!

SURPLUS P.N.P

RED SPOT (Audio/Experimental RED SPOT (Audio/Experimental
Application)

R.F up to $25 \mathrm{Mc} / \mathrm{s}$

R.F. up to $2.5 \mathrm{Mc} / \mathrm{s}$. 5/. ea.
OC169 VHF P.N.p. OCI69 VHF P.N.P. JUNCTION TRANSISTOR. Drift-type, Alpha cut-off frequency $80 \mathrm{Mc} / \mathrm{s}$. $18 / \mathrm{lea}$ Attractive discounts for bulk pur-
chases. The above is a selection only. chases. The above is a selection only. Full range in stock by all leading enquiries. (ALL POST FREE.)

LOUDSPEAKERS. EX. CHASSIS As new guaranteed perfect. by leading manufacturers. 5 in , high flux, $9 / 8$; $6 \frac{\mathrm{in}}{} \mathrm{in}$. $10 / 6$; 8 in . $13 / 6$; also 10 in . with O/P transformer (5,000 ohms), $17 / 6$ All 3 ohm speech coil, also 8 in , avail able, in attractive cloth covered cabinet, ideal for extension speaker, 22/6. Each item plus $1 / 6$ P. \& P. Complete list of new speakers on request No. 38 AFV WALKIE-TALKIE. A wonderful offer. This famous cransreceiver unit, with relay operated SEND/RECEIVE switch covering 7.4 $9 \mathrm{Mc} / \mathrm{s}$ band, range approx. 5 miles. Good condition. ONLY 22!6, plus $2 / 6$ P. \& P. per unit (less accessories) Quantity export inquiries welcomed. AERIAL TUNING UNIT ZA084I This well made ex-W.D. unit contains a host of useful components including: I $m A, 2 \mathrm{in}$. flush round M / C meter, I mA. Westinghouse full-wave meter rectifier. 5 -pole 5 -way heavy-duty silver plated wavechange switch $3 i n$, dia. silver plated rotary tuning indicator, 350 pF tuning condenser with insulated coupler and 3 tin calibrated dial ($0-180$ deg.) etc., etc Contained in strong metal carryin case $9 \mathrm{in} . \times 9 \mathrm{in} . \times 8 \mathrm{in}$. with hinged lid ONLY 27/6, plus 5/. C. \& P
WIRING WIRE. 5 coils 10 yds. each coil, in different colours, contained in cellophane bag. 5/0, plus 9d postage.
SOLDERINC IRON with in illuminating buit-in Spot-iigh ONLY $22 / 6$. P. \& P. I/6.
SOLDER. New boxed I lb. reels, 16 S.W.G. $50 / 50$ at 8,6 only, plus TRANSFORMER SPECIAL. Sup. erior quality half-shrouded drop thro' nains trans Output $350-0-350 \mathrm{v} .60 \mathrm{~mA}$; 6.3 V 3 amps. 5 v. 2 amps. Ex-equipment but 8 paranteed
plus $/-\mathrm{P}, \& \mathrm{P}$.
R.F.26. Variable tuning. Brand now in sealed carton. ONLY $22 / 6$, plus

RCA AR88D RECEIVERS

One of the most renowned American Communications Recelvers ever manufartured. Widely used by all the Armed Scrvices to maintain World-wide Communications and Monitoring Posts under all con ditions. Employs it valves, and has 6 switched ovcrlapping wave bands for complete coverage. Refinements include Mechanical Band Spread with Logging Scale, Automatic or Manual Volume Control, A utomatic or Manus] Nolse Liniter, IBFO with pitch control, RF and AF Gain Controls, Variable HF Tone Control, Variable Selectivity with Crystal Filter, Aerial Trimmer, Cholce of Headphones or Speaker. Has intermal mnins power pack for nominal $115-230$ volts A. C. In Black Crackled Case size 191 in . W. x 11 in . H. x 194in. D. Thoroughly reconditioned, immaculate in appearance, and in perfect working order, (Svers $500 \mathrm{kc} / \mathrm{s}-32 \mathrm{Mc} / \mathrm{s}$, price (add carriage $30 /-$ and $50 /$ deposit on returnable transit case). 245 S.A.E., brings illustrated deceriptive len flet.

UNIVERSAL VOLT-OHMMilliameter

Reads A.C', and D.C. Volts uy to 1,000 in 5 ranges at 1,000 (3 ranges) to 500 mA . licsistance readings to 200 readings to 200 Kohnng in
$\because \quad$ ranges, Hasjc movement $\quad 20 \omega_{\mu} \mathrm{A}$ sensitivits. Easlly read ojen scale.
Dimensions 5 sin. x $31 j_{n}, x$ 2tin. Beautifilly made, and fully guaranteed. Complete with leads, prods and tery. ONLy 59/6

BC 221 FREQUENCY METERS

Similar specification to LM 14 Frequency Meter below, but does not have internal modulation or voltage stabilising circuits. Complete with original calibration book, crystal, valves, and instruction book. Used, but in very good condition. ONLY \&16. Illustrated descriptive leaflet available on request.

DOUBLE BEAM

OSCILLOSCOPE TUBES

Type r-V 1590 equivalent to Cossor 090 as used in necilloscopes by Cossor (3.63 meriew). Hariley and Erakine (1: serics). Listed at E12/10/=, Our price 28/18;6 (carriage 5/6). Brand new in makers' creles.

METERS

F.S.D. SIZE AND TYPE

F.S.D.	SIZE AND TYPE	PRICE	
25 microampe	D.C.	2ifin. Prol.	cliccular

R1155 RECEIVERS

The famous Bomber Command Recever known the worid over to be supreme in its class. Covers 5 wave ranges: $18 .[-7.5 \mathrm{Mc} / \mathrm{s} .7 .5$ $3.03 \mathrm{Mc} / \mathrm{s}$. $1,500-000 \mathrm{kc} / \mathrm{s}$., $500-200 \mathrm{kc} / \mathrm{s}$. $200-75 \mathrm{kc} / \mathrm{s}$. and Is easily and simply adapted for normal mains use, fula detals being supplied. All sets thoroughly tested and in perfcet working order before despatch, Slow on demonstration to callers. Fitted with latest type Super cellent condition ong assembly Have had some use, but are in cxcellent condition. ONLY \&9/19/6.
A.C. MAINS POWER PACK OUTPUT STAGE in black metal case to match receiver, enabling it to be operated immediately, by just plugging in, without any modification. Fitted with 8 in , CEIVER ANeaker $66 / 10 / \%$ DEDUCT 10% IF PURCHASING RE. CEIVER ANI POWER PACK TOGETHER.
Send S.A.E. for illustrated leaflet, or $1 / 3$ for 14 -page booklet which gives technical information, circuits, etc., and is supplied free with each receiwer. Add carriage 10/6 for Receiver, 5/- for I'ower Unit.

Cash with order please, and print name and address clearly

PLEASE ADD POSTAGE OR CARRIAGE COSTS ON ALL ITEMS

HARRIS ELECTRONICS (LONDON) LTD.

Radio Corner, 138 Gray's Inn Road, London, W.C.1. Phone: TERMINUS 7937 Open until I p.m. Saturdays

R.S.C. HI-FI TAPE RECORDER KIT

Bulld a high quality recorder in the 170 class for only 25를․․ OR DEPPOSIT $25 / 7 / 6$ and 12 Can be assembled in + hour
HCORPORATHG THE LATEST COLNARO GTUDIO TAPE TRAMGCRIPTOB,
 7 Uin. LOUDAPEAERE, Real of Beat Cuality TAPR, ipare Tape Ipool, wortAhe Cominet, sise epprox, $16 \times 18 \times$ An. Anished in farsble mad ettractive FEATURES MMCLUDR

 FIRELY RHFCTIV AUTOMATYC ERAsURE.

HI-FI 10 WATT AMPLIFIERS

 RRALD ATW CAFTOAFD MODSL. A REMARKABI, ORPORTUITTI. Carr. 7/6. Pouh-pull outpot. Latent high efliciency Multard valvee Dual meparstoly controlied mputh, for milke and grane Separate basa and treble controls. Fish remettivity. Output for 3 ohm or 15 ohm loudspeaker. Guaranteed, tested and In perfect working onder.
SUPERHET RADIO FEEDER UNIT

 Dealgn of a high quality Redio Tumer Unit (qpecially sultable for mee with any of our Ampilisers). A Triode Heplode Detector detayed A.V.C. Is arranged so that A.V.C. dis. tortion is avoided. The W. Ch. Sw. incorporatea Grampostitlon. Controle are Tuning, W. Ch. and Vol. Outpett Will load moot Amplitiers requirings 500 mV . Input depend tos on Ae location. Only $250 \mathrm{v}, 15 \mathrm{~mA}$. H.T, and L.T. of6.3 v . 1 amp. required from amplitior. gise of anlt approz bulding coet is ges/l8/\%. Point-to-Point wiring diagrama buliding comt is 24/1

W.B. "STENTORIAN" HIEM

IF1012 10 watts, 15 ohm (or 3 ohm) speech

 coil. Where a really good quality speaker at a 4 w price is required, we highly recommend this urut with an amating performance. 84/10/0. Please state whether 3 ohm or 15 ohm required. BABS BITLEX CABIRET. Specially deakned for sbove renoer imia. sise $18 \times 12 \times 10 \mathrm{~m}$, sproasy made, find\&3/18/8.

RE-ENTRANT
LOUDAPEAKERS
Tor thetory of outtoor met Tanno
Farmake hors trpe, blehly eftiolent Handioe, up to 10 watte. 15 ohm, 200 oby and 600 obm matchtng $59 / 6$. R.C.A. ${ }^{20}$ whate rating, ${ }^{20}$, 15 600 ohm matching 6 gns.

ACOS HI-FI Mic 30 hand or Mic 30 hand
Desk type 27/9 (Lutat)
 Limited number.

R.S.C. BATTERY TO MAINS CONVERSION UNITS

 $50 \mathrm{c} / \mathrm{s}$ is avallable. Iultable for all battery portable reodivera nequiring 1.4 v and 90 . Thls includes inteat iow coneumption types. Complete kili with ditgram $89 / 9$ or mesdy for use $48 / 9$.
 2v. 0.4 a. to 1 smp. fully moothed. TEEBEBT COYPLETELY BEPLACLIG BOTE H.T. BATTERTE AMD L.T. \% v. ACCUIULATORS When connected to ACC, mains suppiy $200-260 \mathrm{~V} .8 \mathrm{c}$. F . sulta Complote Elt with diygrame and tnetructions. $49 / 8$ or reedy for neo $59 / 6$ POWER PACE EITB, Only $18 / 11$. Fully Emoothed H.T. ont put of 250 v . 80 ma . and L.T. Fouply of 6.3 V. $1 . \mathrm{B}$ amp. Conginting of Double Wound Mating

POCKET PORTABLE TRANSISTOR

RADIO Destig. Rmploying a Brime R. P. Tranalotorno
 Mitimiture spanker unit. Mandeome Plaselc Cane. Con:
tructional Envelope $1 /$.
Total bulding coot $49 / 9$.

MULTI-METERS

CABY A10 Banic meter, menalisity 155 micro-mmpa
A.C. and D.C. rancea. A $17 / 6$. A.C. and D.C. ranges eA $17 / 6$. CABY 820. Senativity.

VALVES! Pull range at really compethive priceen.

THE SKY FOUR T.R.F. RECEIVER

${ }^{1}$ talde A.C. maine L. and M- wave T.R.P. recefver with emenInclunion in cabinet illuatrated or wal-
nut veneered type 16 employed valvee
6 K 7 . BP61, 6 F 8 6K7. BP61. 6F6
and is specially
andrity and quality are well up to it andard. Pomint-to-Point wiring diagram, thatructicas and parto list 1/8. Thit recelver can be bullit for a maximum of 9 a/ $19 / 8$ including cabinet. Avallabie
in brown or cream bakelite or venoered walnut.

R.S.C. A12 STEREO AMPLIFIER KIT $3+3$ watt (total 6 watt) terio mmplifier prording really Hit-like roprodvetion. Bultable for use whb all and tone controls. Prenet balance control. Outputs for matched 2-3 ohtm apeakers. For $200-250$ v. A.C. malns R.8.C. 8TEREO/TEN HIGH QUNLITY AMPLIFIER KIT
 and treble controle, fivine "cui and " boost." BemCan be ped. as Monaural with ganged volume ganged treble, ganced base, and balance. Outpute for 3 ohm 8 амз. and indruction-to-Point whitug diagramp
 and intructione 111 rutration full wing details and priced parts lite $1 / 9$.

8ELENIUM RECTIFIERS

 MIRAR L45 MINIATURE 4/5 W. qUALITY ATPLTIER. Sultable for use filth any record playing unit and moot controle. For A.C. meipis input of $200-260 \mathrm{v}$. $80 \mathrm{c} . \mathrm{p} . \mathrm{e}$. Output for $2 / 3$ ohm epeaker. Three minlature Mullard valven
 Dann. Giarantoed 12 momika, Onty of $28 /=$ gend B.A.B. for leafiet.
RECOMDIMG HEADS. Batrd Record Piajback and Erase RECOLDIMG HEADS. Batrd Recor.
(housed in one container) $8 / 6$ patr.

 ${ }_{5,9}$

HEAVY DUTY CHARGER KIT

8/12 v. variable charge rate up to 6 amps. Consisting of Mains Trans,
Selenium
Rectifier,
(0 (amp. meter, Rheostat with knob, fuses, fuseholders, panels, plugs, and circuit. Only Bg / s. Post 4/6.

EX. GOVT.

8MOOTHING CHOKES
60 mA 10 h .400 obrus $8 / 11$
80 mA 20 h .900 obme $5 / 11$
100 mA K .100 obme $3 / 11$
$\begin{array}{ll}100 \mathrm{~mA} \\ 109 \mathrm{~mA} \\ 10 & \mathrm{~h} \\ 150 \mathrm{~mA} \\ \mathrm{~m}\end{array} 100$ ohms $6 / 8$
MICRO-AMMETERS
0-8n micro-amp.

Muwh raounting, $29 / 6$

EX. GOVT. MAINS TRANSF ORMERS

7 a. 5 v. 3 az .

Input 200-230

Input $200-250 \mathrm{y}$

100 mA, Potted
A/8 000 watt $0-218-230-225-230-238-210$
80 wata, $0-110 / 120-230 / 250$ v.

A8sEMBLED CHAREER
$6 \mathrm{v}, 1$ a.
$6 / 12$ v. 1 a $\ldots \ldots . .29$
0/12 v. 2 a. 38/9
mains ready for use with Cains and output leads. finished in stoved blue hammer. Carr. \& Pkg. 3/6.

снаваев
TRANARORERER 200-230-250 v. $50 \mathrm{c} / \mathrm{s}$. $0-9-15$
$0-9.15$
0.14 v. 24 a. $0-9-15$
$0-9-15$
v. 24
0.
a 0-8.15 v. 5 a. $12!9$
$15 / 9$
$16 / 9$
$19 / 8$

Battery Chargers and Kits for 200-230-250 v. 50 c/s. A/C. Mains

BATTERY CHAREER KITS

Consisting of Mains Transformer, F.W. Bridge, Mctal Rectifier, well ventilated steel case. Fuses, fuse-holders, grommets, panels 6 v. or 12 v. 1 mmp.

6 v. 2 amps.

$6 v$ or 12 v. 2 amps. 6 v. or 12 v. 2 amps. $6 / 12$ v. 4 anm of v. or 12 v. 4 amps, with variable charge rate selector and ammeter................... E9

CHAREER AMMETERS

0-1.5 amp., 0-3 amp., $0-4$ amp.,

A88EMBLED

ASSEMBLED 6 v . or 12 v .

Fitted Ammeter and variable charge selector. Also selector plug for 6 v . or 12 v . charging Double fused. Well ventilated steel case with blue
hammer finish. for use with $69 / 9$
mains and output leads Or Deposit 5 monthly payments of $13 / 3$.
As above, but tor amp, charging 5 Gns. Carr, 5/-. Or Deposit 16/- and model only is slightly store soiled and is being offered at well below usual price. PRACTICAL WIRELEES BUPER 8IX
D.C. SUPPLE EITS. Bultable for electric tratms. Conatirt of maing trana. 20e.2s0 W. 80 c.p.a.: 12 V. 1 amp, selentum swich. variable mpeed reculator. pertistly drilled atoel case and ctrcuit. Very limited number, $38 / 9$.

Well EX. GOVT, CASEs

Well ventlinted. black craclile finlehod, undrilled cover. glse $14 \times 10 \times 8$ ln. bigh. IDEAL POR
BATTRRY CHARGRR OR 1NGTRUMRNT CAgE. COVER COULD RE URED FOR AMPLI FIER. Only 9/9, plue $2 / 9$ poet.

HEAVY DUTY EX. GOVT.
BELENIUM RECTIFIER8
With large wopare aluminlum coolling fing. 12%
15 map. F. W. (Bridge). Lmited number, $18 / 6$.

POCKET PORTABLE
Transimtor Buperhet Redio. Full conntructional delaite etc. 1/8. All required partalinelinding attractive platic £9/19/6
Y.H.F./F.M. A.m. 4 WAVEBAND RADIO RECEIVER8
Complete in benubiful veneered Walnut Cabinet. Covers Frod new and covered by uaual 12 momith si guarintee $12 \frac{1}{2}$ axs.
 realed wire ende 4 eloverw platioum. $12 / 9$.

R.S.C. A10 ULTRA LINEAR 30 WATT AMPLIFIER

cram, etc.. can be amuitaneously applied for mixing purposen. Ah OUTPUT sockes WITH PLUG Is ILCLUDED FOR SUPPLY OF 200 v. 20 mA , and 6.3 v, 1.6 A. POR A

 $18 / 8$ extra. Wire wound output tranaformer specially designed for Ultra Whear

 at 12,000 e/ca, hum and nolse 70 1v.B. down. Good qualivg relable componente vined

 Lecrenio OpaA

FULL RAMGE OF LHEAR HIGR PTDELTT A PLOFIER ALWAY8 IN BTOCK
 Por $200-250 \mathrm{v}$. $50 \mathrm{c} . \mathrm{p}$. . A.C, mals. Overall aize oaly $111 \times 21 \times 2$ th. Fitted Vol. and Tone Control with matine awitch. Deaigned for use with any kind of aingle player of record chan
ger unlt. Output for $2-3$ ohm apenker. Ouaranteed 12 montha. Oniy 59/6.
R.S.C. A息 4 -5 WATT HIGR GAN APPLIFIE:

A highly eenative s-ralve quality amplifier for the home, shall club, evc. Only 50 millivolta laput is required for full output so that it is aultable for uee with the hatent hish idelity pick-ap heads to addition to all other trpes of pick-upa and practicaly all makes. equaltiation. Hum-level is megtijible being 71 il .B. own. 300 v. 26 mA . and L.T. of 6.3 พ. 1.5 a . le avallable for the aupply of a Radio Peeder Valk or Tape Deck pre-amplther. For A.C. mann input of $200-250 \mathrm{v}_{\mathrm{F}}$ c/s. Output for $2 \cdot 3$ ohm speaker. Chaselo to not ully punched chasesis (with baseplate) with the blue hammer finish and point-to-point wiring diagtame and instructions. Exceptional value at only $24 / 15 /=$ or asmembled ready for une 2g/o extra, plus $3,6 \mathrm{car}$
riage. Or Depoalt $20 /$ and nve monthly payments of $28 /$ - for assembled untt. R.M. BPEAKERS, $2-3$ ohms 2 in. Perilio 21/9. Sin. (Hoolmans $17 / 9$. $7 \times 4 \mathrm{~mm}$. R.A. With high fux magnet $25 / 9.10 \mathrm{~mm}$ R.A. $838.10 \times 6 \mathrm{in}$. Eiliptical Goodmanm 299. 12 in . R.A. $29 / 11$. 121 n . R.A. 3 of 15 ohms, 10 watta, 12,010 then, $50 / 8$.

R.S.G. TRANSFORMERS Pully Guranteed.

 AIMS TRAMFORMER. Primaries 200-250-20 31-1-1250 $4310-0-250$$300-0-300$ $300-0-300$
$350-0.350$ $30-0-350$ v. 100 mA . 6.3 r. 4 a., 5 vi. $\$ \mathrm{a}$ a. OP SEREUDED DROP-TEROUOR TYP
 $50.0-200$ v. $100 \mathrm{~mA} ., 6.3$ v. $2 \mathrm{~A} ., 6.3 \mathrm{v}, 1 \mathrm{a}$ $251-0-250$ v. 100 mA . 6 $300-0-300$ v. 100 mA .6 .3 v. $4 \mathrm{~s}, 5$ v. 3
 $350-0-350$ v. 100 mA .6 6.3 v. 4 a., 8 v. 3 FILAMENT TRAMSFORMRRS

AUTO (Etep Up/BLep Down) TRAIGFORERES $50-80$ watt $110 / 120$ v. $/ 230-25$

Interieaved \& imprasnted

 OUTPUTTRANBPORYERS Midget Battery Pentode1ㅏำ

 Puah-pull 8 watto ELSA to 15 ohros Push-pult $10-12$ watte 6 V 6 to 30 or 15Ω Puah-pull Ulira Linear for Mullaril 810 . Pumh-pull 20 , for 3 or 15 ohms.

HICROPHONE TRAUSFORIERS
120: 1 High quality. clamped. Puah-pull EL44 to 3 or 15 ohms $10-12$.... or 150 Push-pul] $15-18$ watts, mect lonally wound, 618, ,
KT66, etc., for 3 or is ohms. $616, \mathrm{KT} 68$, elc., or 4 or 150 fully ahroucled

HIGH FIDELITY 12-14 WATT AMPLIFIER TYPE A11

EL84, EL84, 5Y3. High Qaalis sectionally wound output trantormer apecially deated or Ultra Linear operation and reliable ammil condensers of current manufacture. IN-佂 reaponge ± 3 D.B. $30-30,000 \mathrm{c} / \mathrm{cs}$. Bix nesative feedlack loops. Ham lerel 60 D.B. down. ONLY 23 millivolia INPUT required for PULL OUTPUT. Sultable for uee with all
 TRING BAEs, GUITARE ste, OUTPUT BOCSET whth plug provides 300 F .30 mA . and
 maina $200-250 \mathrm{v}$. $60 \mathrm{c} / \mathrm{ca}$. Output for 3 and 13 ohro mpenkers. Kit to complete to lat muth Chasia is fulty punched. Full thotructiona and polmt-to-point wiring 8 CMS Carr.
diagrams supplied. (Or factory built $51 /$ ontra.) Hiagrams supplied. (Or factory built $51 /$ - extra.) ONLY 8 GIS. 10 -O1 A or thutrated leiflet detalling ready-to-amemble Cabthets, Speakers, Merophonea elc with cash and credit term

R.S.C. PORTABLE GUITAR AMPLIFIERS

JUNIOR 5 WatT. High Quality Output. Beparate Bess and Treble "cut" and o. boout" controla Bensiltivity 15 mv . High Flux Min. I/speaker. Input Intrument Pick-up. Handmome enp and Mike Inticument Pick-up. Handmorne Etrongly mande attractive and durable polychrome and fitted carry-
88.19.6 Carr. 7/8. Or Deponft 21 and nipe aend s.a for meaf payment 21.
genfor 10 WATTG, High.Fidelity. Puab-Pull. "boont.. controis. Taind Treble cut and high gain toputs so that two instrumentes auch a Gultar and suring Bass can be used at the same time. Two Loudspeskers are incorporated in 12 m . Treble. Cabinet is and $17 \times 4 \mathrm{th}$. ellipticmil for
 $84 / 9$ and 9 monthly payments $84 / 9$. Both modelf for $200-280 \mathrm{v}$. A.C. mana COLLARO CONQUEAT 4-APEED AUTO-CHAFGlkRs. With studlo pick up whith turnover hesd. B.S.R. MONARCR AUTO-CRAMORRS. Ua/ig/8 apeed T/O Pci-up with sapphire stylu 28/19/6, Carr. 4/6. Any of the above supplied whth T/O stereo/mon aural head for 21 extra. HI-Fi T/O cryutal plek-up head, $23 / 18 / 6$. LOUDSPEAKER IM POLISEED WALKUT FIMISHMD CABIMET. Gau* 12,000 ltne goeech col, 3 ohme or 15 ohms. Only $24 / 19 / 6$.
Carr. $5 /-$. TBE ItS: DEPOIT $11 /$ and 9 monthly

paymente of 11\%.

12in. 20 WATT 15,000 line I'apeakere 16 ohms in Cablett finlebed mabove. Bise 18 $18 \times 81 \mathrm{~m}$. $27 / 19 / 6$ or Depoult $17 / 8$ and 9 monthly paymenta of $17 / 9$.

AcOS ETP59 Hi- ${ }^{1 /}$ Cryetal Cartridges. (Tumover typ 8. R.s.R. Pul-FI 19/9. Garrard GC2 19/9. Aco Etereo/monaural $49 / 9$.
ACOS EIGE FIDELITI PICE-UPS. GP\$4 with HGPBO/5 Cartringe. Turnover sapphire otyli, cream finlah. Limhted aunater ai approx. haf price. Only $85 / 9$.
LINEAR TAPE PRE-A PPLIFIER TFpe LP/1. Bwitcher negative feedhack equaligation. Ponitions for Record 1 in., 3 ina., 71 in . and Playback. EM84. Reconding level Indicator. Dealgned primarity as the link between Collaro abmont any Tape Deck. 9 ars. Send B.A.E. for leadet.

PLESSEY DUAL

 CONCENTRIC I2in. P.M. SPEAKERS\qquad hlyh quality 12tanpeaker of orthodox deaign aupport er ready wired fith chot and condensers to act a tweeter. This high fidelity unit fo highly recommended for une with our All or any similar amplifier. Rating it
10 watt. Gauga 12000 In wathe Gause 12.000
Or Drice only $25.19 / 6$, Or Deposit $18 / 9$ and 9
monthly paymente of $18 / 9$.

FOR THE HOME CONSTRUCTOR SPECIAL "COMBINED ORDER" PRICES

(a) The COLLARO "'STUDIO" TAPE DECK and our Mullard Type " C" PRE-AMPLIFIER and Power Unic assembled and tested H.P. Terms: Deposit $\mathbf{S} / 1 / 8 /$. and 12 monchs at $\varepsilon 2 / 3 / 3$.
(b) As above but Type " C " PRE-AMPLIFIER supplied as
complete Kit of Parts T............................
£29.10.0
£26.10.0
Type "C" PRE-AMPLIFIER and Power Unit
£40.0.0 H.P. Deposit $\epsilon 8$ and 12 months $\varepsilon 2 / 18 / 8$.
(d) As above but the Type " C " supplied as complate $£ \mathbf{£ 3 6 . 1 0 . 0}$
(e) The BRENEL Mi, V Deck and the assembled Type 846.0 .0 H.P. Deposit $\mathbf{~} 9 / 4 /$ - and 12 months at $\mathbf{E 3} / 7 / 1 / 6$.
(f) As Abover but the Type "C" supplied as complete $£ 43.0 .0$
(g) The WEARITE $4 A$ DECK with Type ' C ', assembled $\mathbf{E 5 6 . 0 . 0}$ and tessed
H.P. Deposit $£ 11 / 4 /$ - and 12 monethly $E 4 / 2 / 1$.
(Carriage and Insurance on above quotes 10/- extra)
EACH OF ABOVE CAN BE SUPPLIED IN PORTABLE CASE FOR C5/10/extra. THUS FORMING A COMPLETE PORTABLE PRE-AMPLIFIER. SEND FOR DETAILS.
SPECIAL OFFER
OF TAPE 225 ft . on 3 in . Spool
5/9
P.V.C. base on latest type plastic 1,200ft. on 5 Sin. Spool $21 /-$
Spools. New, Boxed and Guar-
anteed.
1,800f. on 7in. Spool $32 / 6$
(o) COMPLETE KIT to build the HFTTR3 Amplifier, $£ 26.0 .0$ together with the COLLARO "STUDIO" DECK \$26.0.0
(b) As above, but HF/TR3 ASSEMBLED and TESTED $\mathbf{£ 2 9 . 1 0 . 0}$
(c) COMPLETE KIT to build the HF/TR3 together with $£ \mathbf{8 6 . 1 0 . 0}$

As above but HFITR3 ASSEMBLED and TESTED H.P. Terms: Deposic $£ 8,12$ months of $£ 2 / 18 / 8$.
(e) COMPLETE KIT to build the HF/TR3 AMPLIFIER with the BRENELL MK. V TAPE DECK
840.0.0

As above but HF/TR3 ASSEMBLED and TESTED
g) THE ASSEMBLED and TESTED HF/TR3 AMPLIFIER
with the WEARITE MODEL 4 DECK, incorporates
Wearite Head Lift
$\mathbf{E 5 5 . 0} 0$
H.P. Terms: Deposit \&11, 12 months of $\mathrm{E} 4 / 0 / \mathrm{B}$.
(Carriage and insurance on each above is $10 /$ extra.)
Attractive PORTABLE CASE is available to accommodate the TRUVOX or COLLARO TAPE, DECKS and we offer it together with ROLA/ CELESTION $10 \times 6 \mathrm{in}$. LOUDSPEAKERand 1.200 ft . SPOOL TAPE-ALL FOR
$\$ 9.0 .0$
(Carriage and insurance ACCESSORY KITS
(a) E.M.I., ineludes 3 reels Leader Tape, Splicer, Jointing Tape $\quad 37 / 6$
(b) SCOTCH BOY, includes 3 reels Leader Tape, Splicer, and $29 / 6$

Joinsing Tape FULLY GUARANTEED TRUVOX and GARRARD
ABLES THESE OUTSTANDING PRICE REDUCTIONS TAPE EQUIPMENT ENABLES THESE OUTSTANDING PRICE REDUCTIONS THE "MODEL HF/G2R " PORTABLE TAPE RECORDER (Orisian Price 288.0 .0)
 incorponates the Lateat anrrazD "HAGAZLIE" TAPE DECE End MATCH1 MULLABLITER TYPE Based on the suecessful specincaly developed to operate the GARGARRARD TAPE MAGAZINE and fith SPOOL OF DOUBLE PLAY TAPE, A rec. provd wing up ock hour 1 momine. playing time. The simplicity of operatiost. incorporates RXT. SPEAKKRR BOCKET.
 WE ALSO OFFRR DECE AD AMPLIMER DOMNEGTED, TESTED, FOR HMYEDIATE OPERATION, 19 kas . H.P. Dep. 34 and 12 months $81 / 9 / 4$. Carriage and Ink. $10 / 0$ ex NCLUDES SPEAKER, Lapo Migarine and Ain. Bpool of Double Play Tape. Comprise

THE "MODEL TK/Mk. IV" PORTABLE TAPE RECORDER Original Price eAB/10/0)
 H.P. Dep. 27/6/- and 12 month $82 / 13: 6$. (Carriage and lnsursace $10 /$ - extra.) INCORPORATES TEE TRUVOZ ME. IV TAPE
 FIER speclocally developed by Truyox Lhi. to correctly operate their Mk. IV Tape Deck.
Thim combination affords frat-clame lape recording taclitiles.
A Twin Traok Two 8poed model operating at :11 and 7in./sec. Incorporates 8APETY BUT. TOM (preventa secidental erasure). Ext. Spanker. TONE And VOLUME CONTROIS. Aleo operiue
 tion from P.U., milke or Redio tuner.
WE ALSO OFTEB TEE DECE And AMPLIFIER A8 FOLLOW8: ME, IV TAPE DECE,

STERN RADIO LTD. Lowook Eecs

FULLY DESCRIPTIVE LEAFLETS ON ALL OF ABOVE ARE AVAILABLE-BUT PLEASE ENCLOSE S.A.E.

STERN'S MULLARD DESIGNS

 OF PARTS
 Designod by MULLARD-presented by STERNS STERNS ztrictly to specification MULLARD "5-10" MAIN AMPLIFIER Powr oirpu of PARTMDAR Mutpu Trataoner. Alematyely we muply Aseen liciv AND TETTED...... £11.10.0

bove incorporatinu partridge output trafbrormer el/b- ext

MULLARD'S 2-VALVE

PRE-AMPLIFIER TONE CONTROL UNIT
Empoying two Ersi valves and dealged to operate Eth the Mullard suppled stretly to M(ThLARD SPECIPICATION and incorporating:
 - Cquanization lor the lateat B.I.A.... characterratice

Seumitive Mlicrophone Channal. Tape Head, (Lu) Prom a Tape Amplifer ne Pro-Amplifiel
COMPLETE MULLARD -10 ABEMBLED AND TB iroviling up to 10 watts high quality reproduction. pecifed cumponents and new Mullaro valves, arn mupplied incuding

 A.tematively we supply A8segbled AND TEsTBD Hirs Purchase (Aseenbled Amp. onls). ABOVE Incorporating PARTRIDGE OI

PRICE REDUCTIONS

a) The COMPLETE KIT OF PARTA to build Stare Pre-Amplisigr Control Jots and the e(b) The ${ }^{\text {a }} \mathrm{g}-10$ " and the q -gtage Pro-Amplingr
both Asembled and Teated
K18.18.0 £15.15. H.P. TERMS: Deposit $83 / 16$ - and 12 month \$18.18.0 (c) The COMPLETE KIT OF PARTS to buidd Dual Channel Pre-Ampliter Control Unit.... 821.10 .0 (d) The Dual Chaunel " 3-3 "Amplifor and the Danal Channal Pree-Amplingr Control Datt both $\quad \mathbf{2 5 5 . 0 . 0}$ H.P. TEHMA: Tested
. TERMs: Deposit 25 and 12 mouthe of 81168
(e) The COMPLETE KIT OF PARTS to bulld one " ${ }^{5}-10$ " Main Amplifer (Parmeko TrankControl Unit ,.......................... £21.10.0
(1) One "E5-10" Amplifer (Parmeko Traus(former) and the Dual Channel Pro-Amplifler
both Assembled and Tested 225.0 .0 Hoth TERMS: Deposit 25 and 12 monthe of 81 16,8. (g) COMPLETE KIT OF PARTS to butld Tw "5-10" Daln Amplifert (incorporeting Channel Pre-Amplitier Control Onit.
(h) Two " 5-10 "Amplitars (Parmeko Optput Tranaformers) and the Dual channal Pre Tented
£36.0.0
 Prices quoted are subject to 玉1/B/- extra for Purtrhige Truns

MULLARD FOUR CHANNEL MIXING UNIT

COMPLETE MULLARD 3-3 A VERY HIGH UL゙ALITY AMPLIFEH DEVEL--WATT AMPLIPTER DRGIGNED IN THE $\underset{\substack{\text { Prlce lor COMPLETE KIT } \\ \text { OF PATS }}}{ } \mathbf{£ 7 . 1 0 . 0}$

 If apectiled componente, valves Aul PARMEKO OUT PUT TRANEPORMER. WE AITo and Extra power to

STEREO " 3-3" MAIN AMPLIFIER

 Mk. II "Fidelity" FM TUNING UNIT An attractively preented C'alit incorporating M"LLARD PREMEABILITY TUNING HEART And Elurrexponding Mullarl valve line for tre constroctor
£10.10.0 assembled.
£14.5.0

"Hi-Fi" LOUDSPEAKERS WEHAVE NTOCT STM GOODMANS-WHARFEDALE-W.B.

Self powered with Cathode
incorporates. Two inputs follower output
for ch YirAl
CHY UP'
 Terms: Depooit as and I2 tronths at 15 .

COMPLETE STEREO AMPLIFIER

SIT OF PARTS \qquad \&8.10.0
or Assenbled
£10.10.0

STEREO DUAL CHANNEL PRE-AMPLIFIER

Thin mo
(deacribet abporales two vaive Freonmpliften erabling ti to be used for both STEREOPHONIC to operate with our range of MULLARI primarly AMPLIFIEKS bat will ateo operate equally well with any make of Ampllierm reguling an fmput
Price : COMPLETE
KIT OF PARTS
\&12.10.0
Alternatively ABPEMBLED 815.0.0
1.1. Terme on senermbled mutt: 23 Deposit and 12 months of $\& 1 / 2$
! ! RECORD PLAYERS! ! Many at REDUCED PRICES!! sond B.A.E. for ILLUBTRATED LEAFLET
THE EMa 4 -speed aingle record player 4 gnS.
 THit Mew collaro chow opped plothotap...er uilt with studlo "o. $£ \mathbf{£ 7 . 1 9 . 6}$

me hew Collaro wovel rij94, apeed slagle Becurl llayer,
TIE E.I.I. 4-mpeed Bingle Becord Player, incorporatisk a high output
 ACT 0 incorporailing the B.s.8. erzeso Piok-up, OAle it shan avainde in anrrard RO200 4 -dpeed Autochanger atted with latest Cryotal The - teat GARBARD TRANsčiption iotos " 301 , The new Garrard Model 4hP High Uuality Single Record Player GARRARD Model TA/int. II single Recorl Player inted with high
$£ 9.18 .9$
£6. 9.6
\&8. 7.6
$£ 10.10 .0$
£9.10.0
£22.7.3
£18.7.6
£8.10.0

HIRE PUBCKABE TERMS ava
HOME CONSTRUCTORS
A RANGE OF "EASY TO AS8EMBLE" PREFABRIGATED CABINETS
 or to accommolate high quality equipment. The acoustically designed Base ketlex
Cabinets containing the very auccesaful "Stentorian" opeakers give really firat clas reproduction and are well recommended, Models are aloo available to sccommodato high-quality Amplifiers. Pre-amplifier, Tuning C'nits. Record Players, etc. All modela
are very caally assembled, in fact only a frewdriver la reiulred. Fully lifuptrated Jeatleta are srailsble, Including complete specifications of the varlous

CTERN PADIO LTD Depr.w. 109 fleter st

 LONDON, E.C. 4Telephone: FLEET STREET $5812 / 3 / 4$

PROOOPSWMalk around Staree and MAIL ORDER SERVICE

52 Tottenham Court Road, London, W. 1 - Open 9-6, including Sats., Thurs. 9-1 \bullet LaNgham 0141

SNIPS FOR
 MOBILERS!

-

Very special offer of compact 3 unit fixed frequency mobile Transmitter/Receiver equipments just out of service from a provincial police force.

- Transmitter 7 in . wide $\times 12 \frac{1}{2} \mathrm{in}$. high $\times 13 \frac{1}{2}$ in. deep.

Xtal oscillator (xtal not supplied) 1 st and 2 nd Tripler, final and modulator stages. 3 Mullard minia ture EF42, QVO4-7 and $3 \times 2 \mathrm{C} 34$ all supplied. Cathodes and grids connected to metering jacks, with slots in si
cach stage

GROUND STATION TRANSMITTER Type 75C, comprising RF Unit, RF Driver, RF Power Amplifier, Modulator, Modulator Power Unit, and Control Unit, all in 6 foot high 19 inch cnclosed rack with full length rear access doors. This was the RAF ground station for operational communication with aircraft in the $100-150 \mathrm{Mc} / \mathrm{s}$ range and it is suggested that substitution of a suitable VFO for the existing RF Unit would provide the basis for an exceptional
rig. Warehouse inspection invited.

Complete $£ 35$, carriage
C4

PRESSURE SENSING INDUCTANCE
Highly sensitive device consisting of a ferrite encapsulated $160 \mathrm{kc} / \mathrm{s}$ coil with a moveable ferrite core attached to the free end of a single-disc aeronoid capsule so that it transmits a change in frequency equivalent to the change in atmospheric pressure with increasing altitude. Coil Q, 43. Capacitance 870 pf. Housed in a f in. square aluminium can on a lightweight $2 \frac{1}{2} \mathrm{in}$. diameter plug-in unit.

New, unused, $25 /$ - post paid.

- Receiver: 5in. wide, 11 in . high 12in. deep twin case.
Upper deck: $2 \times$ EB34 and $4 \times$ EF50 type valves. 6 pin power input two metering sockets.
Main chassis: $2 \times \mathrm{EF} 39,6 \mathrm{~K} 8, \mathrm{~L} 63$, 6 V 6 , and $4 \times$ EF50 type (Xtal not supplied)
3 I F coils in cast boxes
Xtal frequencies $9.1 \mathrm{Mc} / \mathrm{s}$. I F 29
Mc / s. Signal Frequency $79.1 \mathrm{Mc} / \mathrm{s}$.

Power Unit 7in. wide x 12 in. high $\times 13$ in deep.
12 v . dynamotor giving 350 v . DC at $180 \mathrm{~m} / \mathrm{A}$. Londex and $2 \times$ GPO type Relays, etc.

Offered in set s , at the
"Job Lot " price o
£5
Carr, Paid.
the three

WALKIE-TALKIES Type 46
 This is a later type than those previously available. A really serious job of sound design, crystal controlled, 10 mile range, transmitter and receiver covering any one frequency between 4125 and 7100 kes in 25 kcs steps with standard crystal supplied-or any spot frequency between 3600 and 9000 kes with spectal erystal supplied to order. Brand new, complete with headphones, throat mic., whip-antenna, plugs and leads. Size: $12 \times 4 \times 6 \mathrm{fin}$. Weight 8 g 1 b .
 rice, with standard crystal
 with chosen spot frequency
 £3/10/0 £7/15/0
 Batteries required 150,15 and 3 volts. Transistorised 88 sonverter to operate from 6v. or 12 v . D.C.
 ETCH - YOUR - OWN PRINTED CIRCUIT SETS $21 /-\frac{\text { Preet }}{\text { Pach contains over } 60 \text { sq in of laminated board }}$ Each contains over 60 sq . in. of lamenens of printed circuits, plus comprehensive instruction book giving advice and examples on translating theoretical circuits into layouts ready for etching prepared materials-completely safe laboratory control.

TRANSISTOR AMPLIFIER KIT

Printed circuit, 500 milliwatt push-pull output. High impedance input, 3 ohm output. Two OC71 and two OC72. Supplied with all components, condensers, resistors, volume control, transformers and printed circuit board. Input 6-9 v. D.C. Circuit diagram and component layout supplied with each kit. Size of board 28×5 in. $52 / 6$ post paid.

VENNER TIME SWITCHES

Type T.S.2, first grade precision time switches as supplied to G.P.O. Comprises absolutely silent, self starting, 250 volt $50 \mathrm{c} / \mathrm{s}$ synchronous clock mechanism totally enclosed in heavy gauge brass case. Central drive takes detachable dial that revulves to operate sensitive on and off trips for external mains operated circuit. Self contained clock is easily detachable from rear mounting panel (self starting down to 80 v . and keeps running down to 15 v .).
Brand new, in original packings, and with dial and
adjustable stops.
37/6
post paid.

POST PAID TRANSISTOR BARGAINS

Mullard OA.81 Diodes.. 10 for 10/6
OC. I70 27'6; OC. 16 37/6: Goldtop V30/IODP
......................
Also leading make of 3 V transistors.
...... 21/
4 for 10/-

MAINS TRANSFORMERS

$200-250$ volt $50 \mathrm{c} / \mathrm{s}$. post paid

 2. 300 A .300 at 70 mA .6 .3 v , at 2.5 A .5 v . 2. $300-0-300$ at 70 mA .6 .3 v , at 2.5 A .5 v , 3. $350-0-350$ at 120 mA . 6.3 v . at 3.5 A . Sv. at 2A.
$350-0.350$ at 300 mA .6 .3 v at 8 A .5 v . at 2 A . plus 4 v , at 2 A and 6.3 v , at 2 A . 5. Filament only: 6.3 v , at 4 A .

Cold Cathode Trigger Tubes
 A sub-miniature cold cathode valve de-

 veloped by Ericsson primarily for computor work, these GTR.120W tubes have great possibilities in a number of experimental electronic automatic control circuits. They have an Anode-Cathode running voltage of 95 to 140 at 4.5 mA . and at 290 anode volts require a trigger current of only 250 microamps to cause the anode to take over the discharge. Typical ionization time $=90$ microseconds. They will withstand up to 310 v . with zero trigger voltage without self-igniting.Supplied complete with full performance data in original packs of 100 at the Special Price of

TELEVISION OSCILLOSCOPE

Release of a small quantity of the latest version of the well known APN-4 Indicator Unit from the American Loran Airborne radio navigation system. This provides a golden opportunity to make a scrious television servicing and development tool as described in the Wireless World.
This is a nice looking piece of equipment with a really business like inside. Steel, doublewith a really business like inside. Stecl, doubledecked chassis with fully screened 5CP1 tube sistors, separate tag boards and layout diagrams sistors, separate tag boards and layout diagrams technique centred around one type of valve (14 of technique centred around one rype of valve (14 of 6S7 and one 6SI7), and RCA 100 kcs . Crystal. Brand New, with W.W. Circuit $£ 6.10 .0$ for conversion

TRANSMITTER/RECEIVER APN-I

This is the attractive lightweight American Radio Altimeter that superseded the British version. A complete 14 -valve radar set covering $420-460 \mathrm{Mc} / \mathrm{s}$ it is ideal for conversion to radio control of models or 70 cm . work.

tRANSMITTER

A push-pull feed-back oscillator tuneable either side of $445 \mathrm{Mc} / \mathrm{s}$, frequency modulated at $100 \mathrm{c} / \mathrm{s}$ by a particularly robust moving coil transducer. Two 955 high frequency acorn valves. Case size only 355 high frequency acorn valves. Case size only 3I x GIV
RECEIVER
Tuneable to transmitter frequency. Size $3!\times 61 \times$ 2 in . Two 900 acorn valves.
AUDIO AMPLIFIER
Self-contained RC coupled 12SH7, 12SH7 and 12SJ7. Size $3 \times 5 \times 1$ inin. Amplifies the received
signal which is passed to detector circuit giving a D.C. voltage proportional to the difference between the transmitted and received (reflected) signal to operate internal relays which pass appropriate correction signals to autopilot and supply external indicator (5 mA meter).

MAIN CHASSIS

The main chassis carries the 3 sub-units and has a further three 12 SH 7 , one $12 \mathrm{SJ7}$, two 12 H 6 and one VR150 regulator, three 1% wire-wound resistors, one 4 -pole changeover relay, two SPCO relays, three twin-ganged pre-set potentiometers, trimmers, fuses, Ptc.
Power supply is derived from a 27 -volt dynamotor
(charging rate for 24 y 保 (charging rate for 24 v . supply) delivery 285 v . at 75 mA . BRAND NEW, less dynamotor, a very useful buy indeed at only $\mathbf{E 2}$ plus $7 / 6$ carriage.

ANTENNA INDICATOR

Remote indication to within 1° on precision instrument type
flush fitting black crackle indiflush fitting black crackle indicator with 3 in . dial calibrated in 2° steps plus the four cardinals. Simple D.C. wiring (630 volt) from specially wound potentiometer in sealed diecast housing with Jin. drilled spindle transmits accurate signal of horizontal or vertical bearing. Brand new, post free.

35/=

BEAM-ECHO AVANTIC KITS

> S.P.A. 11 combined stereo control unit and power amplifier complete to the last nut and bolt, with specially prepared assembly instructions, full circuitry and wiring diagrams, plus a full copy of the handbook. ONLY A FEW LEFT.- 11 plus $7 / 6$ carriage.

INVERTERS
28 Volt DC to II5v I phase AC
Self-contained motor generator unit with complementary carbon pile voleage regulator, concactor and associated rectifier in separate compartment on same base. Continuously rated for $25 / 28$ volts D.C. input with 360 VA outpuc at 115 volts single phase A.C. at 1,600 cycles with a power factor of 1.0. Fan cooled with end plate for blase or insernal cooling as required. Type 200. Ref. SUB/5083.
In first class condition. $\mathbf{4 . 1 0 . 0}$ carriage $7 / 6$
28 Volt DC to 115 v 3 phase $400 \mathrm{c} / \mathrm{s}$ AC. Type 102 A Output 625 VA . Complete with suppressor, load compensating circuit and coneactors. Brand new. $£ 10$ carriage $10 /-$
$200 / 220$ Volt DC to $200 / 250 \mathrm{v}$ I phase $50 \mathrm{c} / \mathrm{s}$ AC
Output 260 Watts. New, in soundproof eabinet. $\begin{gathered}\text { carriage paid } \\ \text { £9.10.0 }\end{gathered}$
carriage paid
24 Volt DC to 26 v I phase $400 \mathrm{c} / \mathrm{s}$ AC
Output 6 VA. Size 2 tin . dia. $\times 4 \mathrm{in}$. long on 1 l in, high pedestal base Inscrument quality As new. $\mathbf{C l} 10.0$ earriage paid

VARIABLE SPEED HYDRAULIC GEARBOX

This specially made oil-filled casing houses an hydraulic torque conversion unit originally precision made by Westinghouse from high quality materials for the U.S. Government at an acquisition cost exceeding $£ 150$ each. Highly suitable for lathe head drive, workshop variable speed power take-off, ete.
Basically the unit is a back-to-back mounted, oil submerged, variable displacement hydraulic pump (input shaft) feeding a reversible
placement by manual control gives very fine selection of output speed from zero up to 6% below input speed while a changeover valve in the supply lines to the motor provides instantaneous reverse at any speed. Recommended input speed $500-1,000 \mathrm{r} . \mathrm{p} . \mathrm{m}$., maximum power $1 \frac{1}{1} \mathrm{~h} . \mathrm{p}$. Both shafts in. dia. with Woodruff.mey. Tested and fully guaranteed, supplied complete with technical data and performance curves for the remarkable price of $£ 16$ only, carriage paid.

ANTENNA INDICATOR

Remote indication to within 1° on precision instrument type flush fitting black crackle indicator with 3 in. dial calibrated in 2° steps plus the black crackle indicator with ${ }^{3 i n}$. dial calibrated in 2 steps plus the
four cardinals. Simple D.C. wiring ($6-30$ volt) from specially wound iour cardinals. Simple D.C. Wiring ($6-30$ volt) from specially wound
potentiometer in sealed die-cast housing with $\frac{1}{4}$ in. drilled spindle transmits accurate signal of horizontal or vertical bearing. iransmits accurate signal of ho
Brand New, Post Firee, 35/-.
B.C. 221 FREQUENCY METER
$125 \mathrm{kc} / \mathrm{s}$ to $20 \mathrm{Mc} / \mathrm{s}$ WITH CALIBRATION BOOK in first-class working order, $£ 1910 \mathrm{~s}$. carr. 10/-.

POST FREE SNIPS

Double pole knife changeover switch on porcelain base. 2 for Pyrex Aerial Insulators. Four 3 in . OR one 8 in . U.S.A. British co-ax, adaptors. Four for Neons. Ten 115 volt for 12/6; Six 80 volt for G.P.O. electro-mechanical counters. 0-9999 Bulgin Type M microswitches, new Metal Rectifiers:
Selenium 6-12 V. 13A 6/6,21A 516, 4A, 16 v.), 60 mA . $5 / 6$.

CATHODE RAY TUBE

VCR139. (Cossor 23D Equiv.). $2_{1}^{2} \mathrm{in}$. dia. Tube. New in original cartons. 17/6 Post Paid.

200 amp WELDING Relatively small but really heavy duty aircraft quality six-pole shunt-wound generator with generacor with delivering 30 delivering 30 200 volts at to 200 amps. Re quires 8/10 h.p between 600 and 3,300 r.p.m., clockwise or anci-clockwise rotation according to position of changeover links. Are very successfully driven from tractor cake-off pulley or the like. 13 in . long, 7in. dia. Weight 57 lb © 6.15 .0 Carriage paid (U.K. only).

8 WATT HI-FI PUSH PULL AMPLIFIER

$\mathbf{£ 5 . 1 0 . 0}$ plus 5/- Carriage

Separate control panel 6 in. $\times 1 \frac{i n}{}$. Volume/On-Off switch, Bass and Treble Boost controls and Pilot light. Amplifier Chassis 3 in. $\times 8$ in. $\times 4 \mathrm{in}$. 2xECL82 in Push-Pull. Output transformer matched 3 and 15 ohms. $110-220-240 \mathrm{~V}$. A.C. with 6 ft . mains lead.
All units guaranteed ready for installation.

SAMSON'S SURPLUS STORES LTD. LONDON'S GREATEST DEALERS IN RADIO AND ELECTRONIC EQUIPMENT

AMERICAN HIGH VOLTAGE CAPACITORS. 2 mfd. 10,000 volts wkg., E8/10/Carr. 7/6. I mid. 20,000 volts wkg., E7/10/Carr. 7/6. 0.25 mid. 25,000 voles $w k g .$, , $66 / 10 /$. supplied brand new in maker's cartons at Iraction of original price. $16 \mathrm{mfd} .400 \mathrm{v}. . \mathrm{wkg}^{\text {., }}$ 1/6. $10 \mathrm{mfd} .16 \mathrm{mid} .660 \mathrm{v} . \mathrm{wkg}$. A.C., $15 / \mathrm{o}$ in mid, 1.500 v . wkg., $15 / \mathrm{-} .10 \mathrm{mfd} .600 \mathrm{v} . \mathrm{wk}^{2} \mathrm{~g}$. $10 / 6.8 \mathrm{mfd}, 1,500 \mathrm{v}, \mathrm{wkg}, \mathrm{i}$ 12/6. 10 mfd .300 v. wkg. A.C., 1/6. Please add 2/- postage on all cuperitors.
BRITISH TYPES. Nitrogal, 15 mfd .250 v . wkg. A.C., $12 / 6$. Wego $10 \mathrm{mfd}, 1,000 \mathrm{v} . \mathrm{wkg}$. $12 / 6$. T.C.C. 8 mfd. $1,500 \mathrm{v}$. wkg., $10 / 6$. 8 mld 501 v. wk-., $8 / \mathrm{s} .8 \mathrm{mid} 250 \mathrm{v}$, wkg., 5/6. G.E.C E mid. 600 v . wkg.. 6/8. T.C.C. 4 mid. 1.500 v
 mid., 800 v. wkg., $^{4 / 6 .}$ Dubilier 8 mid. 400 v .
wkg., $6 /-. ~$
2
 17/6. 0.25 mid., $5,000 \mathrm{v} . \mathrm{wkg}^{2}, 12 / \mathrm{s}$. A.M. $15 \mathrm{mid} .4,000 \mathrm{v}$. wig., $10 / \mathrm{s}$. T.C.c. 0.1 mid . 5,000 v. wkg., $10 / 6.0 .5$ mid., 2,000 v. wkg //6. 0.5 mid." 500 v. wkg., $2 /=, 0.015,000 \mathrm{v}$ wkg., 2/6. Please add 2/-P.P. on all capacitors.
SPECIAL OFFER A.M, CAPACITORS. Tubular metal case size. Dia. 3 fin., fength 9 in . $30 \mathrm{mfd} .400 \mathrm{v} . \mathrm{wkg} 26 \mathrm{mfd} .500 \mathrm{v} . \mathrm{wkg},$. mid. 500 v. wig., $\mid \mathrm{S} /$ - each. P.P. 2/6.
WESTINGHOUSE HEAVY DUTY L.T. SIJPPLY UNITS
TYPE IIS. A.C. inpuis 200-250 voles. D.C. Output 26 amps. into a 24 volt (nominal) battery. Rating continuous. Max. ambient inuous. Max, ambien Complerely smoothed Complerely smoorhed and stabilised. Buitt in metal casc approx. siz
 With fitted fuses. On
OH switch. Reconditioned as new, 632/10/-ex Off switch. Reconditioned as new. $232 / 10 /-$ ex
warehouse. Original maker's price over $£ 100$. Warehouse. Original maker's price over $£ 100$.
ADMIRALTY HEAVY DUTY A.C. 230 v . 40 AMP. CONTACTORS D.P. Supplied Brand new in maker's cartons, $59 / 6$, carr. 4/-. ADMIRALTY VOLTAGE REGULATORS. 1.000 S $0.59-0.16$ amps. Rotary switch type 32 stud contacts. Brand new, $17 / 6$, carr. $4 /$., EQUIPMENT WIRE, P.V.C. 14/0076, 100 yard diums, 6/6. P.P. $1 / 6$. Henley Rubber Covered Braided with cotton, 40/0076, 50 yd . drums. 51-. P.P. 2/-. $110 / 007650 \mathrm{yd}$ drums, $7 / 6$. P.P. $2 / 6$. $162 / 007650 \mathrm{yd}$. drums, $10 / \mathrm{b}$. P.P. 3\%.

20 S.W.G. 100 yard coils 6/6. P.P. 1/6. Various colours. Transparent 14/36, 100 yard coils 7/6. P.P. 1/6.
TWIN 20 S.W.G. 100 yard coils 13/6. P.P.

Weight 2.1 oz. Motor dimensions 1 Ifin. Iong.

 1 tin . dia. 5 pindle $0,4 \mathrm{in}$. long, $0,77 \mathrm{in}$. dia. Consumption 0.72 watts off load. 7.68 watts on load. 5peed 7,000 r.p.m. 5 witch. Centre off reverse by swisching either side. General specification. These motors have a tremendous power-weight ratio, are extremely efficient. Can be used on 6 voles without great loss in power. Precision buile in polythene housing. self lubricating. With sintered bronze bearings. Easily mounted. Supplied brand new and guaranteed, 15/6. P.P. I/6. Special price for quantities over 50.

No. I. Pri. 240 v. Sec, tapped 4, 6, 11 v. 200 amps. E9/15/-. Carr. 7/6.
No. 2. Pri. $240 \mathrm{v} .5 \mathrm{ec}, 20$ v. $30 \mathrm{amps} ., ~ 66 / 15 /-$ No. 3. Pri. 240 v. Sec. 20 v. $20 \mathrm{amps} ., 64 / 5 /-$ Carr. $5 /$ Pri. 240 v. 5 ec .24 v. 30 amps., $\mathrm{C} 8 / 10 / \mathrm{z}$ No. 4. Pri. 240 v. 5 ec. 24 v. $30 \mathrm{amps} ., 68 / 10 /-$ Carr $7 / 6$.
No. 5. Pri. 200-240 v. Sec. 8.4 v. C.T. 10 amps. 27/6. Carr. 3/6.
No. 6. Pri. 240 v. 5ec. tapped 12 v. 18 v. 10 amps., 52/6. Carr. 4/-.
No. 7. Pri. 240 v . Sec, tapped $6 \mathrm{v} .-12 \mathrm{v}, 20 \mathrm{amps} .$, 69/6. Carr. 4/-

No. 8. Pri. $200-240 \mathrm{v}$. 5 ec , tapped $10 \mathrm{v} .-17 \mathrm{v}$.

 18 v. 10 amps., 57/6. Carr. 4/.No. 9. Pri. $200-240 \mathrm{v}$. Sec. tapped 30 v .32 v. 34 v. 36 v., 5 amps., $57 / 6$. Carr. 4/. No. 10 . P̈ri, $240 \mathrm{v} .5 \mathrm{ec} .6 \mathrm{v} .12 \mathrm{v}, 10$ amps. 47/6. Carr. 4/-. 230 v. 5ec. 24 v. 7 amps. an No. 12. Pri. 200-240v. 5ee. rapped. 48-56-60 v. No. 12. Pri. 200-2
1 amp., 27/6. P.P. 3/6.
1 amp., 27/6. P.P. 3/6.
No. 13. Pri. 200-240 v. $5 \mathrm{ec} .12-20-24 \mathrm{v}$.2 amps No. 13. Pri. 200
$22 / 6 . ~ P . P . ~ 3 / 6 . ~$
No. 14. Pri. 230 v. 6.3 v. 5 amps . and 6.3 v. 1 amp, and 65 v .85 M.A., 15/-. P.P. 3/6.
No. 15. Pri, 200-240 v. 5ec. tapped 3, 5, 12, 20, 30 v. 2 amps., 25/-. P.P. $3 / 6$
No. 16. Pri. 200-240 v. 5ec. tapped 9-15 v. 4 amps., 22/6. P.P. $3 / 6$.
No. 17. Pri. 230 v. 5 ec. 6 v. 5 amp. 12/6. P.P. 2/6. No. 18. Pri. $220-240 \mathrm{v} .5 \mathrm{ec}$. four separate windings, $3 \times 5 \mathrm{v}$. CT $4 \mathrm{amp} ., 4 \mathrm{v}, 4 \mathrm{amps}$, Potted type, 32/6. Carr. 4/-
No. 19. Pri, 200-240 v. 5ec. tapped 3-60-66. 70 v. 1.2 amps., 35/-, Carr. 4/-
No. 20. Pri. $200-250$ v. 5 ec. 26 v., very conservatively rated at 36 amps ., $69 / 10 /$-. Carr. serva
$10 /-$.
SPECIAL OFFER: LATEST A.M. RE LEASE. Isolation Transformers. Pri. tapped $100,200,220,240$ v. 5ec. 225 v. 1.1 Amps Tropically rated. Guaranteed 63/5/-. Carr.
$7 / 6$.

EXCLUSIVE PURCHASE OF A.M. HEAVY DUTY TRANSFORMERS. Tapped to give the following specifications:
Pri. $440-400 \mathrm{v}$. $5 . \mathrm{P}$. Sec. 220 v , or 110 v .600 watts.
Pri. 220 v. 5 ec. $220 v_{\text {v }}$ or 110 v. 600 warts. Pri. 220 v. 5 ec .55 v . 10 amps. All winding. Double wound $65 / 19 / 6$. Carr, $7 / 6$.

SPECIAL OFFER, BRAND NEW

 PARMEKO SEALED TRANSFORMERS. Pri. tapped 200-220-240 v. 5ec. 4 volt C.T. 36 amps. Tropically rated. 25 kV . D.C. insulation. Size $9 \times 8 \times 8$ inches plus 4 inch terminals. Offered at a fraction of maker's price. E9/10/-. Packing and carriage $15 /$.S.T.C. F.W. RECTIFIERS. 5upplied brand new at a fraction of maker's price.
No. 1. Max. A.C. input 200 v. D.C. output 6 amp . $68 / 10 /$. Carr. $7 / 6$.
No. 2. Max. A.C. input 75 v. D.C. output 18 amps., E7/10/:. Carr. 5/-
No. 3. Max. A.C. input 80 amps., E3/5/-. Carr. 5/.
No. 4. Max. A.C. input 45 v. D.C. outpur 8 amps., funnel cooled, 59/6. Carr. 4/.
No. 5. Max. A.C. inpur 18 v. D.C. ourpur 15 amps., 45/-. Carr. 3/6.
No. 6. Max. A.C. input 36 V. D.C. output 36 amps., $\begin{aligned} & \text { E } 8 / 10 / \text {. Carr } 4 / \text {. }\end{aligned}$
No. 7. Max. A.C. inpus 75 v. D.C. outpue 1.5 amps., 18/6. P.P. 1/6.

No. 8. Max. A.C. input 32 v. D.C. outpur 2 amps., $15 /-$. P.P. 2/-.
No. 9. Max. A.C. input 40 v. D.C. outpur 0.75 amps., 10/6. P.P. I/6.

$0.4 \Omega 25 \mathrm{amp}$. geared drive, 17/6. P.P. 3/. $3 \Omega 10 \mathrm{mp}$. slider contral, $15 / \mathrm{-}$. P.P. $3 /-\mathrm{I}$ IS 12 amp . slider control, 10/6. P.P. 2/6. 1.5Ω 35 amp slider control, 12/6. P.P. 2/6. 1,000 0.1 amp . enclosed slider control, $17 / 6$. P.P. $2 / 6$. 70Ω 6-0.5 amp. enclosed slider control, exequipment, $15 /$. P.P. $3 / 6$. 12,000 s 3 mA Double tube geared control, 35/-, P.P. 3/6.

HEAVY DUTY ADJUSTABLE RESISTORS. $2 \Omega 6 \mathrm{mp} ., 7 / 6.1 \Omega 12 \mathrm{mp} ., 6 / 6$. P.P. 2/-.

BERCO RHEOSTATS. 3tin, dia. 25 200 watts. 15/-, P.P. 2/6. 2tin. dia. 2003250 watts 8/6. P,P. 2/-. Ohmite lzin. dia. $350 \Omega 25$ watts, 5/6. $25 \Omega \quad 0.75 \mathrm{amp} ., 5 / 6.10 \Omega 1 \mathrm{amp} ., 6 / 6$. P.P. $1 / 6$.

Manufactured by Crompton Parkinson MI 50 cycles, supplied new and guaranteed, 32/6.

CROMPTON PARKINSON 4tin. A.C. MI AMMETERS. 0-30 amps. flush mounting. 27/6. P.P. 3/6.

FERRANTI A.C. YOLTMETERS.
$0-300 \mathrm{v}$.6 inch dial. Flush mounting. Supplied Brand New at a fraction of maker's price. C4/15/-. 5/-Carr.
A.M. LT SMOOTHING CHOKES. Re. sistance $\frac{1}{2}$ ohm. Ideal for smoothing $12-24 \mathrm{v}$. D.C. 5 amps. Tropically rated. 17/6. Carr. 4/-.

ARON 50 AMP. A.C, CHECK METERS. $200-250 \mathrm{v}$. single phase. Supplied brand new and guaranteed. $37 / 6$. Carr. $3 / 6$.

GUARANTEED SHILLING SLOT METERS. A.C. 200/250 V . 5 amp . E3/15/. 10 amp . $4 / 4 / \mathrm{F}, 20 \mathrm{amp} 65.130 \mathrm{amp} \mathrm{E6}$. All meters set for 2 d , or 3d, per unit. Carriage 7/6.
COLVERN W.W. PRECISION POTEN. TIOMETER. ${ }^{2}$ tin. dia., ${ }^{3}$ Eang $2,000+$ $5.000+5,000$ ohms. 3 gang $200+500+500$ P.P. 2/6. 2 gang $40 \mathrm{k}+40 \mathrm{k}$ ohms. $17 / 6$.

AMERICAN COMPRESSORS. 3 stage type. 32-R.500 24 volt D.C. C.F.M. 0.4 P.5.1. 1,500 . 5upply brand new. Three only $\mathrm{E}_{4} 5$.
PHOENIX 7 INCH INSULATORS, 7/6, P.P. 1/6. 3łin. 1/9, P.P. I/-.

PANTON ATTENUATORS, 3.000Ω in 41 stud contact steps. I5/. P.P. I/6. 500Ω in 15 steps, 10/6. P.P. $1 / 6$.

NON-KINKABLE TWIN CABLE. 23/0076 rubber covered braided with cotton, 25 yard coils 12/6. P.P. 1/6.
H.T. RECTIFIER VOLTAGE DOUBLER. A.C. 180 v. Max. D.C. 336 v. Nom. 270 milliamps. 10/6. P.P. $2 /$-.

double reading, moving coil $0-3$ v. and $0-30$ v. D.C. Centre zero. Offered at a fraction of maker's price, 12/6. P.P. 2/-. 250-0-250 MICROAMMETERS.

Latest design 2 fin . Square, flush. By Ernest Turner Brand new and guaranteed, 42/6. P.P. $2 / 6$. RECTANGULAR 500 MICROAMMETERS. $5 \times$ tins. Flush mounting, scaled $0-250,59 / 6$ P.P. 2/6. $2 t$ inch round flush, $0-2$ v. A.C. SO 10,000 sycles. MC Rectifier type 2,000 ohms per volt, 30/-. P.P. $2 / 6$. $2 \frac{1}{2}$ round flush, centre zero, 5-C-5 mA., 15/-. P.P. 2/6.

WINSTON SEMI-DECADE OSCILLATOR. Fre. $10 \mathrm{C} . \mathrm{S} .70,100 \mathrm{kc} / \mathrm{s}$. in four ranges. Amplitude stability plus or minus 1% as any frequency. A.C. $100-250$ v., c48/10/
DECADE CAPACITOR BOX. Range .001 to 1.11 mid.. zero capacitance 50 pf accuracy $\pm 5 \%$. Max. voltage 750 v. D.C. mounting. Matal case and panal. Size: H. 3in. W. Bin. D. 3 inin. Supplied brand new and guaranteed, C $11 / 11 /$-.
DECADE RESISTORBOX $100 \Omega-111,000 \Omega$, zero resistance 0.006Ω, accuracy $\pm 1 \%$. Max. current 10 's decade 100 mA . 100 's decade 35 mA . 1,000 's decade 10 mA . Mounting. Metal case and panel size: H. 3 in., W. Sin., D. $3 / i$ in. Supplied brand new and guaranteed, $\mathrm{C} 13 / 13 /$. Further information on the above instruments will be sent on application.
R.C.A. 166 YALVES. Brand new and boxed. 3/6 each. P.P. 1/6. Six for 17/6. P.P. 3/6. 4C27 CV92, 10/-. P.P. 2/e. VT25, 7/6. P.P. 2/-. VUI20A 3/6. P.P. I/6. VU/33, 3/6. P.P. 1/6.
HIGH GRADE SLEEVING. 6 mm .100 rd . coils, 10/6. P.P. $2 / 6.2 \mathrm{~mm}$. I gross yds., $5 / \mathrm{c}$. P.P. $2 /$-. 2.5 mm . I gross yds., $6 /$-. P.P. $2 /$ Mixed bundle of sleeving over yard lengths, $1.4 \mathrm{~mm} ., 5 / \%$ P.P. $2 /$.
AIRCRAFT 12-24 V. D.C. ACTUATORS. Size $8 \times 1 \frac{1}{2}$ in. Plunger movement \mid ifin., 35\%. Size $8 /{ }^{\times}{ }^{\text {P.P. } 2 / 6 \text {. }}$.
ADMIRALTY 24 VOLTS 3 A.H. ACCU. MULATORS. Suitable for low wattage light. ing etc. Twelve 2 v . cells, crate and linked. Supplied new with charging instructions, 25/-. Carr. 5/-. Single cells supplied separazely, 2/6. P.P. 1/6.
ADMIRALTY KNIFE SWITCHES, 15 amp., D.P.C.O., Metal shrouded, 7/6. P.P. 2/6.

A.C. $200-240$ v. 20 amp. switch contacts, make and break once every 24 hours. Complete with mounting bracket, and earth strip. Supplied brand new at a fraction of maker's price, 69/6. P.P. 2/6.

VENNER 14 DAY CLOCKWORK TIME SWITCHES. 5 AMP. SWITCH CON. SWITCHES. 5 AMP. SWITCH CONTACTS. One make one break every 24 hours.
Complete with two pin Mounting bracket Complete with two pin
and key, $32 / 6$. P.P. 2/..
OIL FILLED H.D. L.T. TRANSFORMERS. P.R.I. 380/420 y. Single phase. 50 C.Y. Sec. 19 volt 3 kvA. E15 ex warehouse.
AMERICAN LEACH 2-POLE CONTAC. TORS. Res. 235 ohms. $2 \times 2 \times 2$ inches. $7 / 6$. P.P. I/6. Just arrived G.P.O. 3000 type relays twin coil, $1000+1,000$ ohms. I CO 6 M IM before B. 12/6. P.P. I/6.
E.D.C. LTD. ROTARY CONVERTOR. D.C. input, 230 v. A.C. output 230 v. 8.7 amps. Complete with starter switch and fuse box. Reconditioned as new C45. Ex-warehouse. CROMPTON PARKINSON. D.C.oinput, 240 v. A.C. output 230 v. 6.5 amps . Complete with 6 inch $0-300$ yolt meter. Starter switeh and fuse box, E40. Ex-warehouse.
E.D.C. LTD. R./CONVERTORS, D.C. input $200-260$ v. A. . output $200-260$ v. 0.75 amps . Guaranteed, E8/10/-. Carr. 10/.

HEAVY DUTY A.M. H.T. TRANSFORMER. Tapped Pri. 200-250 v. Sec. 163 v. 2 kVA . Double wound, one only. Brand new., \&15. Ex warehouse.

SPECIAL OFFER

> Standard G.P.O. 20-way Jack Plug Strips, Type 320BN. Brand New. 20way Jack Lamp Strips. Ex Equipment. Perfect condition. Large stocks available. Prices according to quantities.

SUNVIC ADJUSTABLE THERMOSTATS. TYPE T.S.1. Suitable for control up to 300 deg. C., 27/6. P.P. 3/6.
TANGENT HEAVY DUTY ALARM BELLS. 6 inch gong. A.C. 200-240 v., 35/. Carr. 4/-. 8-12 v. D.C., 27/6. Carr. 4/.
ADMIRALTY THERMOMETERS. 20-210 deg. F. Built-in metal cylindrical case, length 12 ins., dia. I in. Ideal for the lab. workshop or the home. Brand new at a fraction of maker's price, 7/6. P.P. 1/6.

AMERICAN HEAVY DUTY AUTO TRANSFORMERS. " C " core winding. Completely anclosed in metal container, $7 \frac{1}{2}$ kVA. $115-230$ yo, $\subset 17 / 10 /-$. Ex warehouse. We have London's' largest selection of auto eransformers, $110-240 \mathrm{v}$. available from stock. Let us know your requirements.
SANGAMO SYNCHRONOUS MOTORS A.C. $200-250 \mathrm{v}$. Size 1 la in. dia., 7/6. P.P. I/6. Also attached to gear train unit, containing over 30 gear wheels, $10 /$-. P.P. 2/-. Gear train unit separately, 2/6. P.P. 1/-.

MONTHLY ACCOUNT ORDERS ACCEPTED FROM ALL ELECTRONIC INDUSTRIES, RESEARCH LABORATORIES, COLLEGES, SCHOOLS, ETC.

We now have London's largest and most comprehensive walk-round dept. This enables you to see our enormous stocks of electronic and radio equipment too numerous to advertise. We invite you to browse without any obligation. Open all day Saturday.

WE ARE CONSTANTLY PURCHASING HIGH GRADE ELECTRONIC EQUIP. MENT AND COMPONENTS. MAY WE SUGGEST YOU RING US IF YOU ARE HAVING DIFFICULTIES WITH YOUR SUPPLIES?

G.P.O.

3,000 TYPE.
$5000 \Omega 6$ H.D.C.O., 17/6. 2,C00 4 H.D.C.O. $15 / \% .6 .500 \Omega$ I.C.O. $1 \mathrm{~B}, 12 / 6.500 \Omega 2$ I C.O. 2 B 10/6. 5,0002 I H.D.B., $10 / 6.2,000 \Omega \mathrm{LM}, 8 / \mathrm{B}^{\prime}$
 $22,000 \Omega, 2 \mathrm{M}_{,}, 15 / \mathrm{F} .250 \Omega 4 \mathrm{M} ., 4 \mathrm{~B}, 10 / 6.100 \Omega$ $3 \mathrm{M}_{1,} 8 / 6$. $6,000 \Omega 2 \mathrm{M}$., 2B, $10 / 6.6,000 \Omega$, 4 M 2B., 12/6. $10,000 \Omega$ i C.O., i H.D.B., $15 /=$ 600 TYPE 4,200 $\Omega, 2$ C.O., IM., 9/6. 400Ω I C.O., IM., 7/6. 750Ω, IM., $5 / 6.400$ I IC.O., IM. slugged, 7/6. 150Ω iB., $5 / 6$.
AMERICAN TYPE. $235 \Omega 2$ C.O.. $1 / 6$. $400 \Omega 2$ C.O. sealed, 10/6. 10,000 I C.O., IM., sealed, 10/6. 1/-P.P. on all relays.

AMERICAN LEACH CONTACTORS. 110 v. A.C. 3 pole, 20 amp .230 v . Contacts size $4 \frac{1}{2} 4 \times 3 \mathrm{in}$. Brand new in maker's cartons, $25 /$-i. P.P. 3/6. A.M. Contactors, 12 V. D.C. 2 H.D.C.O., I C.O., I B. Brand new, 10/6. P.P. 2/-.

AMERICAN L.F. CHOKES. Oil filled, 8 henries, 800 mA ., 7,000 v. test. 26 ohms. Brand new, 49/6. Plus 101.010 henries 200 mA . Brand new, 49/6. Plus
135 ohms, $2,000 \mathrm{v}$. Tese., $15 / \mathrm{h}$. P.P. $3 / 6$.

PARMEKO SEALED L.F. CHOKES. 5 henries, 60 mA ., 90 ohms, 7/6. Brand new. P.P. 2/6.

FERRANTI L.F. CHOKE, 8 henries, 75 mA ., 200 mA ., 6/6. P.P. 2/6.

BRAND NEW W.D. TELEPHONE CABLE. Twin D8 one mile drums, C7/10/., Ex warehouse. Twin D3, 500 yd drums, $49 / 6$. Carr. 7/6. Single one wire drums, 85/-. Carr. 7/6. Also $1 / 3$ mile drums, 32/6. Carr. 5/-. yard drums, $8 / 11$. carr cable. P.V.C. $1 / 000$ yard drums, 0 . carr. $4 / 0$ 40,0076 rubber cover
$2 / 6$.

AMERICAN WELLER AIRCRAFT

24 v. 11 a.h. Size $8 \times 8 \times 8$ inches. 62/6. Carriage 10/-

GESTETNER A.C. MOTORS. 220-240 v. $1^{\frac{1}{c}}$ h.p. R.M.P. 2,850. Rating cont., cap. V.art, ${ }^{10}$ h.P. R.M.P. 2,850
steversible.
$57 / 6$.

SPECIAL PURCHASE!!

 NIFE ALKALINE BATTERIES6 VOLT 75 A.H. TYPE LR7 SUITABLE FOR ENGINE STARTING Five 1.2 v . cells crated and connected to give 6. v. Brand new and fully guaranteed. Size of erate $15 \mathrm{i} \mathrm{in} . \times 12 \mathrm{in} . \times 6 \mathrm{in}$. $67 / 10 /=$. Carr. $15 /$.

TELEPHONES. Type operates from 4i battery. A self-contained unit which can be easily held in one hand. Ideal for Aerial Riggers, Building sites, farms, workshops, etc. Size $9 \mathrm{tin} . \times 2$ ifin. $\times 2 \mathrm{tin}$. Supplied brand new, complete with if v. battery. c5/10/-per pair. P.P. $3 / 6$.

* RANGER-3 \star

3-TRANSISTORS 2-DIODES
PERSONAL POCKET RADIO WITH FULL TUNING OF AMATEUR "TOP BAND" AND MEDIUM WAVE (120 to 500 Metrose)
 First grade transistors. - No external zerial or Carth.
Calibrated dial.
Volume control.

* Personal earphone for quality output.
Size $41 \times 3 \times 1 \nless \mathrm{in}$.
NO EXTRAS TO BUY, EVERYTHING SUPPLIED.

All componens
AFTER SALES SERVICE $79 / 6$ p. \& P. $1 / 6$. Now Illustrated Booklet FREE on request.

6-TRANSISTOR RADIO

Size $3 \times 2 \downarrow \times$ In.

- THE WORLD's 8MALLE8T RADIO with Epeaker

 Push-Pull output on 2 in .

Excellent results from local and Continental

VALVES \& TUBES

TRANSMITTING RADIO AND TV VALVES, TUBES AND INDUST RIAL TYPES. NEW FREE LIST ON REQUEST.

> Bulk order enquiries invited for all types.

ALL TRANSISTOR UNITS * BUILT AND READY FOR USE *
LEAFLETS ON REQUEST

- Office or Home 2-way intercom. system. 4 Mullard transistors. 2 5-inch speakers, unique call system. Battery operated. 2 portable rexine cabinets. Buitt and tested 66/19/6. P. P. 2/6.
4 Mullard eransistor 500mw. Amplifier. 9 volt, 3 ohm output. Buile on printed circuit 69/6. P. P. I/6.
- watt 4-Mullard Transistor Amplifier, printed circuit. Ideal for portable record players cape recorders, radio tuners, etc.

79/6. P. P. 1/6.

- Telechone Pick-up Amplifier with induction coil. 4 transistor. Ideal for busy office, no more "holding on." $£ 5 / 10 / \mathrm{e}$. P. P. $2 / 6$.

```
ALL UNITS ARE PRE-TESTED AND
    FULLY GUARANTEED.
```

 OTHER UNITS AVAILABLE.
 TEST METERS westock he well-known
(97/6 and 66/10/-).

Caby Multi-meters. LEAFLET ON REQUEST

THE "GOMTESSA"

- PORTABLE and CAR RADIO

ALL TRANSISTOR PORTABL

 BABY OR INVALID ALARMBattery operated PushPull Circuit with Sin. Speaker output. Low impedance input en ables it to be used over any distance with up to 3 microphones.

- BATTERYOPERATED \star Microphone is plac-- 100\% 8AFE ed within 6 feet of baby: twin flex is taken to Amplifier unit placed in any room required. Completely assembled with Battery and Microphone, ready so use. $\$ 5,10.0$ p. \& P. 2/6.

BATTERY LIFE 3 to 4 months FULLY PORTABLE

REPANCO

* MINI-4 *

POCKET RADIO 4-TRANSISTOR

ALL TRANSISTOR UNITS

\star TO BUILD YOURSELF \star

 SAVE POUNDS7.TRANSISTOR MEDIUM/F.M. MAINS/BAT. TERY. PRINTED CIRCUIT. Ask for details.

- Super-sensitive single or 3 channel 3 -transistor $27 \mathrm{mc} / \mathrm{s}$. model control. New design recaivers. 69/6. P. P. $1 / 6$ (either typa). Suitable relay 24/- or Reed 35!-
\star FULL DETAILS ON REQUEST *
- Super-3 Three Transistor and Diode Earphone Radio.' All components. No extras to buy. Radio. P. \& P. 1/6.
BUILDING PLANS ON:
- Ranger 2. 2-Transistor version of Ranger-3 (see above). Very sen sitive.
No extras to buy. 65/-. P. \& P. 1/6.
* BOOKLET FREE ON REQUEST *
- Pre-buils All-Transistor FM Tuner Unit. Front end (fully turable 2-OC171's) $65 / 6 / 3$. 3-Transistor (3-OCI70's) 1.F. strip, $10.7 \mathrm{Mc} / \mathrm{s}$. pre-aligned. E6/6).
* FULL DETAILS ON REQUEST *

MANY OTHER DO - IT - YOURSELF RADIOS AND UNITS AVAILABLE. DETAILS ON REQUEST.

Crystal Microphones

ACOS 39－1 Stock Microphone with sereaned cable and Stand（List 5 gns．），39／6．P．P．I／6 ACOS 40 Desk Microphone with screene」 cable and buile－in Stand（List 50／－），19／6． P．P．I／6．
ACOS 45 Hand Mierophone with sereened lead，very sensitive 29／6．P．P．1／6．

2 METBE TX／BX
EX 1520， 1986 2－METRE AIRBORNE EQUIP．
MENT．
\star TRANSMITTER（LESS VALVES）
$5^{\prime}=$ P．\＆P． $2 / 6$ ．
＊RECEIVER（LESS VALVES）
$5^{\prime /}=$ P．\＆P． $2 / 6$
＊MODULATOR WITH 5 VALVES
20^{\prime}－P．\＆P． $2 / 6$
＊ $9.72 \mathrm{MC} / \mathrm{S}$ I．F．STRIP
double tuned with valves $25^{\prime}=P \& P .2 / 6$
FULL CIRCUIT DIAGRAMS $1 / 9$ ．POST FREE．
\square

IIENTENS IRADID LTD．

丸 TRANSISTORS
夫 QUARTZ CRYSTALS
© VALVESZ TUBES
＊MINIATURE
STANDARE
COMPONENT
BENTLEY ACOUSTIC
CORPORATION LIMITED 38 CHALCOT ROAD，LONDON，

N．W． 1 The Valve Specialists
Telephone：PRIMROSE 9090 Nearest Underground：Chalk Farm

EXPRESS POSTAL SERVICEI ALL ORDERS DESPATCHED SAME DAY AS RECEIVED．

TELEPHONE AND TELEGRAM ORDERS FOR CASH ON DELIVERY SERVICE ACCEPTED UP TO 3.30 P．M．

	6BE8	6U30	12397 11／6	$305 \quad . .10 / 8$	EAC91 4／6	，	，	PLS＇6 18／－	U50 ．．6／6	1s 18	Trandistore
UB2	6BG60 23／8	8 V 60	1497 87110	307 ‥7／6	RAF42 \％－	BP40 ．．15／	923：10\％－	8	82 ．． 816	UY41 18／11	${ }^{\circ}$
O240T 8／－	6BH6 8／－	8 V 60 T	12 Y 4 10／6	4033L 1／16	R834	EP41．．．${ }^{\text {／－}}$	$023319 / 11$	PLA1 10／6	U76 ．． $81 /$	UY41 7／4	OL13，4， 5.6
15	68J ${ }^{\text {d }}$	6x4． $31-$	19AQ3 10／	5763 ． $18 /$	EBil 8／6	EP42 ． $10 / 6$	Gz34 14：－	PLR8 ．．7／6	U107 ． $16 / 7$	UY85 7／－	
1A7GT 18／－	6BQ7A 1s／－	6x5aT \％－	19H1 10／－	ACBPRN7／	［ CB 81 4／－	AP50（A）71－	RABC9018／8	PL83 ．．$\%$	U191 ． 1 1／7	VMHE 15／－	1 －
1 C 5 ．．18／6	$6 \mathrm{BR7}$ 15／－	6／30L2 10／－	20D1 ．．15／3	ATP4 8／－	EBC33 8／－	EP50（E）5／－	HL4．${ }^{7 / 8}$	184 12／8	U281 1911		0a73 4－
166 －17／6	RBW ${ }^{\text {che }} 8$	786 ．．21／8	20F22 ．． 8616	Az31．． $101-$	EBCA1 8／6	RP54．．S／－	HVR2 20／－	PL820 18／7	U282 滑／7	VP4B 23／3	OA79
1H5OT 10／6	BW7 61－	7B7 ．．8／6	20L1 ．．20／6	Az41 18／11	E8C91 \％－	EF73 ．．10／6	RVR2A 6－	PM 34 M 81／8	U301 2a／8	VP－23 ．．${ }^{\text {d／6 }}$	OAs1
$1 \mathrm{LA} . .3 / 6$	6 BX 6	7 CS ．．8／－	20P1 ．．20／6	B36 ．．15／－	EBP80 \％－	8F80 ．．\％－	KT2 \％${ }^{\text {／}}$	PX4 ．． $10 / 6$	U329 14／	VP41	486
1 LD5 ．．5／－	aCd	708 ．．8／－	20 P 3 ．． $28 / 8$	BLB3 7／6	RBPP3318／11	8P85 ．．6／－	KT33C 10／－	PY31 16／7	U339 16／7	VR105 8	OA91
LLNS	－	D6 ．．10／6	20 P 4 ．．．2／6	CDL3 318	EBF89	EP86 ．．10／6	KT36 89／10	PY33 17／6	U404 ． $8 / 6$	VR150 7／	OAgs
INSGT 10／6	8C126 86	$7 \mathrm{H7}$ ．．8／－	20 PS ．．2a／8	COH35 ${ }^{\text {ate }}$	HBL21 58／		ET41 19／6	PY80．．7／6	U801 89／10	VTS01 5／	OA210
185 ．． 810	6CH6 \％／－	787 ．． 9 ／	25 A 60 10／6	CL33 198	EBL31 ${ }^{\text {2 }}$／8	EP91．．／／8	KT4t 18／6	PY81 8／6	U4020 $11 / 7$	VT61A	11
184 ．．．9／－		$7 \mathrm{Y}^{4}$ ．．7／6	25L8GT10／－	V63 ．．10／6	RE52．． $8 / 6$	RP92．． 16	KT81 1／8	PY88 $71-$	UABCB0 0	VU39．． 81	0 Cl 16
	6 F1 ．． $88 / 6$	8D3 \cdot ． $4 / 6$	25240 9／6	CY1 ．．18／7	ECS4．． $1 /$	8P97 ．． 1818	KT83．．${ }^{7 /-}$	PY83 8／6	UAP42	W76 ．．8／	0 Cl 19
1T4 ．．．${ }^{\text {a／b }}$	6FAO．．${ }^{1 /}$	98W6 15／8	2525 ．．．9／6	CY31．．16／7	EC70 ．．11／6	EP98．． $18 / 8$	KT36 15／－	PZ30 19／11	UB41 18	W77	OC23
1 U ．． $18 / 6$	F13	10C1 ．．18／＝	25780 10／－		RC92．．18／8	RFi83 18／7	KTW61 ${ }^{\text {d }}$	QP21 7－	UBC41 $8 / 8$	W81M	$0 \mathrm{C2}$ ．． $41 /$
1175	6F13 ．．11／6	10C2 ．． $23 / 6$	27NU 10／11	D15 ．．10／6	ECC31 15／－	EF184 18／7	KTW6：7／6	Q P25 14／6	UBC81 11／4	X 41 ． $15 /$	OC28
$2 \times 3 \cdots$／	6P－23 ． 10 10	10F1．．．86／6	28107 ．．7／－	D77 ： 1 －	R0c32 5／6	RK32 8／6	KTW63 \％／6	Q ${ }^{15150 / 18}$	UBP80 $\%$－	$\times 61$ ． 1 1／	0 C 38
3A4 ．． $61-$	6F33 ． $7 / 8$	10F9 ．． $11 / 6$	30 Cl ．．81－	DAF91 \％－	5 coc 33 －	\％L32．．\＄1－	KTEA 8／－	10／8	UBF89	$\times 63 \quad$.	OC4
345 ．．．10／6	（16 ${ }^{\text {a }}$	10P13 18／－	30 FS ．．d－	DAP98 8／6	20C34 $51 / 7$	RL33 ．． 1 ／6	KT283 7／6	R12 ．．$\%$	UBLAL	X65 ．．18／6	0 CH 4
\＄87 ．．12／6	6E60T \％－	10 Pl 4 19／3	$30 \mathrm{FLl} \mathrm{10/-}$	DD41 18／11	E0C35 8／6	EL34 ．．18／－	LA3 ．．－	R18 ． 14	UCC84 14／7	x 66 ． 18	OG85
$3 \mathrm{D6}$ ．．5／－	$6 \mathrm{J5}$ ．．8／－	12AB 8／－	$30 \mathrm{Ld} \cdot .8$／－	DP46 18／－	RCC40 ent	EL38．．83／	MELA $7 / 6$	R19 19／11	UCC85	X761	OC6M
4	8／8	12ACA 15／8	30 LI 13 11／6	F70 16／－	Focsi 6／－	RLAL ．． $9 /$	MU14 \％－	K34 716	UCP80 16／7	$\times 78$ ．．．el	0070 ．．．14／－
sq5aT 9／6	6J76	12AD6 17／8	30 P 12 7／5	DP91 8／6	80c82 6／	RLAL ． $10 / 6$	N37 ．．83／8	8P41．． $8 / 6$	UCE21 ${ }^{\text {P／}}$	$\times 79$ ．．ty	00^{771} ．．14／－
384 ．．7／－	6K76	l2AR6 18／11	30PL1 10／6	DP96 8／6	CC83 7／8	$18 \mathrm{~L} 1{ }^{\text {1 }} 1711$	N78 19／11	BP61 ．．${ }^{\text {8 }}$	UCE 42 － 6	X $\mathrm{D}, 1.5)^{1 / 6}$	0 Cz 2
$3 \mathrm{~V} 4 \ldots 7 / 4$	6E8G 616	12AE6 12／6	35 As $21 / 8$	DF97	84	EL83 1912	N109 3a／3	SU25 ．．28／8	UCH61 9／6	$\times \mathrm{PCOL} 18 /-$	Oc\％${ }^{\text {a }}$ ，． 20
5R4GY 17／8	K25 1911	12ATA 7\％	$35180 T$ 9／6	D83	socss 8／6	RL8 6 \％／4	N308 0／7	T41 $\because 8 /-$	UCLA：11／6	$\text { XPY12 } 9 / 6$	$0075 \text {. } 15 /$
5U4G 6／6	1 ．．．es／8	12AT7 \％－	35 W 4716	DH76	Eccas 18－	8L83 18／11		TDDt 1816	UCLA3 10／8	XPY34 17／8	OC7\％．．151－
BVAC 10／－	6L60 ．．8／－	12aU6 $23 / 8$	3573 10／6	DH77 7\％	ECC88 $18 /$	KL86 ． 17818	${ }^{\text {C80 }}$	TP22 ．．18／－	UP41．．．	$\mathbf{X} \times 1$（ 5 ）$/ 16$	0677 ．81／－
bY3at 616	6170T 7／6	12AU7 $6 / 6$	$35240 T$ 6／－	DK40 21／8	$1 / 6$	EL91 ．5／－	18／11	TP25． 151	UF43 18／3	Y63 ．．7／4	OC78 ．．17 ${ }^{\text {－}}$
23－ 1 1／6	6 LI 18 ．．181－	l2av6 18／8	3EZ5GT 9／－	DK91 6／6	10／6	ELSS $10 / 8$	PCOA $81-$	TY80F 18／8	UP90 10／6	2033	OC781）17／－
B21G．．．	6119 13／3	12AX7 $7 / 6$	43 ． 101 －	DK92	29／8	EM34 9／6	POC85 9／6	U12／14 8	UPr5	2868	OC81 ．．18／－
6480 ． e －	6LD20 18／11	保	，	DK98 8／6	35 $/ 8$	ky 71 －	POC88 18／－	U16 ．101－	UP86 17／11	277 ．．4／6	OC170 85／－
C7．．．1／－	6N7 ．．81－			DL66 17／6	ECR48 \％		PCC89 11／3	U18／20 8／6	UP89		$0 \mathrm{CL171}$ 501－
6AGS ．．5／6	${ }_{6 P 28}^{6 P 25}$ ． 18	3BE7 81／8		DL68 15／－	ECH42 \％－	RM81 ．． 9 ／－	PCP89 81－	U19 ．．28／－	Vl41	MDGET	00200 08203 88
6AK5	6728 88	8．	50LAOT 9／6	D192 71－	ECE61 \％－	RM84 10／6	PCP82 $10 / 6$	－•110	Ul4t 90／6	siLicone	00203 58／－
15	6－7，		53 KU 10／11	DL04 $7 / 6$	ECEIBs 18／11	EN31 871	PCPa6 181－		UlAO 14／6		XA101 \％el－
M6	6R7G 101－	$317 / 11$	$72 . . .418$	DL06 8／6	BCL8O 9 －	EYB1 9－	PCL82 10:-	U25 $17 / 11$	ULSE 8／6	Fimeng	XAlog
6Aqs 7／6	A7GT 8／0	K7GT 5／8	78.	110 10／6	ECLA $10 / 6$	EY63 10／7	PCL83 $10 / 6$				XA103 15／－
6 AT8	C7	K 14／－	80	70 7／6	CLa3 19／8	EY88	PCLA $18 / 8$	1	1880	two in meries	181－
U 10／－	＊8LTAT \％／6	47GT 8／－		30F 20／－	P．98／8			33	RIC 18／		10%
6ave 12	T ${ }^{\text {\％}}$	8a7 ．．8／6		50	EPra 15：－	EZAI		5 ．．．48	UU6 1911	$\begin{aligned} & \text { at amp. } \\ & \text { 10/6 ea. No } \end{aligned}$	x Bl0s 16／－
688 1／8	68g7at \％－	28C7 ．．8／6	BT 8 \％	A76 9／6	BF36	R281	PEN46 7／6	U37 ．．88／6	UU8 ．．2e		XB104 10／－
6BA6 7／6	6U40T 19／6	12357 \％	10／6	BC3n \％－	EP37A 8／＝	1	．33 ． 19	U	UU9	a realutor ！	ccloi 16／
Terras of bundpen－Cash with order of C．O．D．only． Poot／Packlng charges 6d．per iterm．Orders over \＆3．pont troe．C．O．D． $2 / 6$ extra．Any parcel Impared againut damage in trasit for 6d．extr．We are open for personal कhoppert．Mon．－PrI．B．30－5．30．Sate．B．30－1 p．m．				Lateat catalorue of over 1.000 diferent valven，also metal rectithern，volume controle，electrolytic condensers， tranelatom，gerroanium diodes，valve bolders，and Klvac miniature valves，with foll terma of buaineme，price 6d．				All valves boxed，fully guaranteed，and new manu－ theturers＇stock or eoverament ntores earplun． Firus－grade goods only，no meconde or refocta．Pleace enquire for any type not listed．S．A．E．pleam．			

ALIGNMENT ANALYSER TYPE MC12
A.C. MAINB 200/250 volta, Provides:OPRRATION, for PM/TV allgment linear OPRRATION, for PM/TV alignment linemr $400 \mathrm{Kc} / \mathrm{s}-80 \mathrm{Mc} / \mathrm{m}$ CAPACITANCE MEABUREMENT. Two samges provided "-60 pl. and $0-120$ pf. BPECIAL FACI tuned circult IT F resonant frequency of any tuppilly determined. Canh price $88 / 18 / 6$ and P. \& P. and 6 monthly paymenta of $21 / 6$.

CHANNEL TUNER

Will tune to all Band I and Rand III mtations. BRAND NRW by famous manufacturer. Complete with P.C.C I P. 10-19 or 39 . 80 ralven (inn serten) 1.F. 16-19 or 38-38. Also canl be mod) fied as an merial converter (inatrucifoma supplied).

32/6 Plut 3/6 P. \& P.

> HEATER TRANSFORMER

To muit the above, $200 \cdot 250 \mathrm{\nabla}$. 6/= plua $1 / 6 \mathrm{P}$, \& P
B.S.R. MONARCH UA8 with FUL-FI HEAD

Anpeed playe 10 records 12 in . 10 Mm . or 7 in . at 16,33, of the same speed. Han manual play posilion; colunr
 above bapeboand 41 inc, below baseboard 2 in. Fittert
With Pui-Fi turnover cryatal head. $86 / 19 / 6$. Plu9 $5 /$

STEREO HEAD 27/18/6 Plun S. P. \& P.

LINE E.H.T. TRANSFORMER

With huilt-In tine and width control. 14 KV . 8 can coil, 90° deflection, on ferrite yoken. Prume O.P. tranifor
for 14 in ., 17 in . or 21 in . tubes

Complete with circult d	,	$\begin{aligned} & \text { Plus } \\ & \text { //-P. } \end{aligned}$
As Above, but for 625 lines		$4 /-P .$

MAINS TRANSFORMERS

All with tapped primaries $200-250$ volts
$0-160,180,200$ v., $60 \mathrm{ma} ., 6.3 \% .2$ amps., $10 / 6,280-0.280,80 \mathrm{ma}, 6.3 \mathrm{v} .2$ amp., n.

SURFACE BARRIER TRANSISTORS type SB $305,15 \mathrm{Mc} / \mathrm{s}$. $7 / 6$ each. 100\% AUDIO TRANSISTORS 5/- each.
BATTERY RECORD PLAYER AND AMPLIFIER Incorporiting 45 r.p.m. " Starr " motor, " Acon "' crystal plek-up, 3 transintor punh-pull
amplifer complete with transistors. Output soo milliwatts, $49 / 6$ plua 36 P. ${ }^{\text {P }}$.

CYLDON TURRET TELETUNER

F $34 / 38 \mathrm{Mc} / \mathrm{s}$. Brand new complete with biscuit for channels $2,4,8$ \& 9. less valves 10/= plus $2 / 6$ P. \& P. Valves required P.C.C., 84 \& P.C.F. 80.) Pair of knobs to suit above, $3 / 6$.

3-TRANSISTOR POCKET RADIO

 INCORPORATING MINIATURE SPEAKERPlus GERMANIUM DIODE and PRINTED CIRCUIT

Size $3 \frac{1}{4} \times 4 \times \frac{7}{8} \mathrm{in}$.
Incorporating Ferrite Rod Aerial. Two Surface Barrier Transistors and one Audio. Tunable over medium and long waves.

To build
yourself $9^{/ 6} 6$ Plus $1 / 6$ P. \& P.
yoursell parts solo separately Circuit diagram $1 / 6$, free with kit. guoranteod 100%

8 WATT PUSH- AMPLIFIER COMPLETR WITH CRTETAL GKE AKD
 2 hu. Incorporating 6 ralves. H.F. pen.. For use with all makes and typet of plek-up and nulke. Negative feed-back. Two inputn, malke and sram, and controls for same. Separate controls for Baes and Trebse lift. Response filat from 40 cycles to 15 Kem.
$\pm 2 \mathrm{db}$.; db , down to 20 Ke/a. Output
 40 1h. Uuwn, sll hum. Output transformer tappend for is and 15 ohm speech colls. For une with std, or L, P, records, raunlial
£4.19.6

PORTABLE AMPLIFIER

On printed circuit for A.C. Mains $200 / 250 \times$ Size $4 i n \times 3 i n$. with tone and volume control, Valves: ECL82 and EZ80, 39/6. P. \& P. $2 / 6$
RADIO AND T.V. COMPONENTS (ACTON) LTD. 23A, ACTON HIGH STREET, LONDON, W. 3 GOODS NOT DESPATCHED OUTSIOE U.K. ALL ENQUIRIES S.A.E. TERMS OF BUSINESS C.W.O.

CRYSTAL CALIBRATOR No 10 A crystal controlled heterodyne wavemeter covering $500 \mathrm{Kc} / \mathrm{s}$. to $10 \mathrm{Me} / \mathrm{s}$. (Harmonics up to $30 \mathrm{Mc} / \mathrm{s}$.) Requires 300 V . 15 mA . and $12 \mathrm{~V}, 0.3 \mathrm{a}$. D.C., but can be easily modified for 120 V . and 1.4 V . working. 5ize $7 \times 7 \frac{1}{2} \times 4 \mathrm{in}$. Good condition. complete with valves, erystal, inseruction manual and circuit. ONLY 59/6. Post $3 / 6$. This item available complete as above. BRAND NEW and with spare set of valves. E4/10/-, pose $3 / 6$.

CANADIAN CRYSTAL CALIBRA. TOR. Uses double crystal and multivibrator circuit to give "pips "" at 1
Me / s., $100 \mathrm{Kc} / \mathrm{s}$. and $10 \mathrm{Kc} / \mathrm{s}$. Incorporates Me/s., $100 \mathrm{Kc} / \mathrm{s}$. and $10 \mathrm{Kc} / \mathrm{s}$, Incorporates
Modulator. With book. 79/6, post 2/6.

TRANSMITTER TYPE 36. A complete 50 watt TX for phone or CW . Covers
$10-40 \mathrm{Mc} / \mathrm{s}$. ($10-15-20 \mathrm{~m}$.). Crystal or stabilised VFO. Push-puli 807's plate and screen modulate parallei 807's. Tested and ready to plug into $A C$ mains. Complete with 16 valves, handset, operating instructions and circuit. Wooden cabinets may
be somewhar damaced. \&15. Carr. England and Wales $E 2$.

MOVING COIL PHONES. Finest quality Canadian with chamois ear-muffs and leather-covered headband. supremely comfortable. 19/6. Post 1/6. MATCHING TRANSFORMER (for Hi impedance) i.e. for HRO, CRIOO, ete. with standard jack plug. 4/6.

SELENIUM BRIDGE RECTIFIERS. Funnel cooled. A.C. Input 45 v. RM5. D.C., outgut 30 v .10 amps BRAND NEW. Boxed. 45/-. Post $3 / 6$.
"C" CORE TRANSFORMERS. $375-0.375 \mathrm{as} 83 \mathrm{~mA} .6 .3 \mathrm{v}$. at 9 A. 6.3 ma , as 2A. (twice), 6.3 V at 1 A . (twice), 6.3 v . at $1.5 A .6 .3 \mathrm{v}$. at $0.5 A, 5 \mathrm{v}$. 253 AA . 6t x moved from equipment but in perfect condition. 32/6. Carr. 5/6.

ADMIRALTY HT TRANSFORMERS

 two 5 v. 3 amp. rectifier windings. Total rating 278 VA. Upright mig. We. 251b. Made 1953. BRAND NEW.
CO-AXIAL RELAYS. 5imuleaneously switch two separate inputs to alternative outputs. 24 vole D.C. coils (can be hand operated). 5ize (approx.) $5 \times 3 \times 3$ in. 6/6 post 2/.

TRIPLETT METER MOVEMENT

This article consists of a basic 400 microamp meter movement mounted on a Bakelite panel $5 \frac{1}{2} \times 2 \mathrm{f}$. The dial is scaled as a 15 range Testmeter. A circuit and parts list of the original instrument is supplied.
BRAND NEW. Boxed, 35/-, post paid.

AR-88D RECEIVERS

A recent release enables us to offer th se superlative eceivers at most advantageous prices. In addition to those which have been completely overhauled, re-aligned and recalibrated to our usual high standards, there will be some available to personal shoppers who may have their own
facilities for overhaul. Prices will be very reasonable. facilities for overhaul. Prices will be very reasonable.
Customers contemplating mail order purchase can obrain Customers contemplating mail order pu
full datails on request. (5.A.E. please.)

RCA AR-88 SPEAKERS

A high quality 3 ohm unit fitted into heavy gauge black crackled steel cabinet, size $10 \frac{1}{} \times 11 \frac{1}{2} \times 6 i n$. Fitted with rubber feer and 6ft. lead. Ideal for extension speaker. CR 100. etc. In original cartons. DRAND NEW, 45/-. Post $3 / 6$.

R 1475 RECEIVERS

Also known as receiver Type 88 these exceedingly versatile ex R.A.F. If valve receivers cover $2-20 \mathrm{Mc} / \mathrm{s}$ in four bands. Many unusual features such as $600 \mathrm{Kc} / \mathrm{s}$. Xtal reference oscillator, Xtal controlled BFO, voltage stabiliser and variable selectivity are incorporated. The dial is exceptionally large and readable and sensitivity is of the order of I microvolt. In very good condition, complete with power unit (A.C. and 12 v .) and in working order. $£ 12 / 10 /=$, carr. $10 /$.

CANADIAN RECEIVER No. 52

$1.75 .16 \mathrm{Mc} / \mathrm{s}$ (19.170 m .) in three wavebands R.F., Mixer. 5ep. Osc. 2 I.F.'s, Der/A.V.C., Ist Audio, Output. BFO (IO valves), plus a 3 -valve dual Crystal Calibrator. Controis: R.F. Gain, L.F. Gain, Crash Limiter, C.W. Filter, Variable Selectivity, Slow and Fast Tuning and Osc, Vernier Tuning. Man, or A.V.C. BFO piteh cuntrol. Internal 3in, speaker and valve check meter. Power supply required 160 v . H.T., 12 v . T Data and Circuit supolied. A really excellent receiver e8/i9/6, carr. 15/6. Power supply Unit, 59/6, carr. 5/6.

RECEIVERS R-1155B

A first-elass 10 -valva Communications r $75 \mathrm{Kc} / \mathrm{s}$, to $18 \mathrm{Mc} / \mathrm{s}$. ($16.2-4,000 \mathrm{~m}$.) in 5 bands. The large scale and superior dual ratio slow-motion drive make suning easy and the R.F. stage and 2 I.F. stages ensure world-wide reception. All the receivers we sell have been thoroughly overhauled. completely realigned and are in first-class working order. ONLY $£ 9 / 19 / 6$.
A.C. MAINS POWER PACK OUTPUT STAGE. In handsome black crackled steel cabinet to match the R-1155. Fitred wish RCA Bin, speaker. Just PLUG IN and switch on! Only the finest quality components are used and we guarantee OUR power packs for 6 months. ONLY $66 / 10 /$. Deduct 10/-when purchasing receiver and power unit zogether. Send 5.A.E, for further details or 1/3 for 10 -page illuseraced booklet giving tochnical data and circuits ete. (Free with each receiver). Add $10 / 6$ carriage for receiver, 5 /-for power unis.

LOUD-HAILER EQUIPMENT

IDEAL FOR CROWN CONTROL, FACTORIES, FETES, FTC, CONGITRE OF \& gPEAAER UBITR AND CONTROL UITT. COITLETE
 PROI 12 VOLTSD.C. (OR 6 VOLTBA.C. WITA BLGEYLZ
OUTPUT) CONSUMING ONLY \& ATPB. OUTPUT POWHE 8 WATTS.
 BARGAII. E4/19/6, CARRIAGE 25/6.

8 mid .800

 D.C. wkg, at 71 deg. C. CPI52V. 5ize $3 \times 1 \frac{1}{2} \times 5 \mathrm{in}$. high. BRAND NEW. Boxed $8 / 6$ each, post paid.4 mid. 600 v . wkg. CP I $30 \mathrm{~T}, 4 / 6$ each, post paid.
MINIATURE RELAYS (ALL BRAND NEW and BOXED) G.E.C., sealed, wire ends, 670 2M2B H/D M1095
G.E.C., sealed, wire ends, $670 \Omega, 2 \mathrm{H} / \mathrm{D}$ makes, M1099.... $15 / \mathrm{l}$ G.E.C., sealed, wire ends, $5,000 \Omega 2$ c/o., plat., M1052 $17 / 6$ Siemens High 5 peed, IK + IK Ω, I clover

GIANT COMPONENT PARCEL

Contains 100 and 1 watt realators, 50 HI stab resdotors. wire wound resistorn, carbon and W/W pots, 100 capacitors (mica, paper, Sprague, All compunent are unued, OUARANTEED VALUB, 25 - plus 26 poot.

QQV06-40 37/6

PVI. 35 32/6, 2 D 21 7/6, OC3 6/-, PTI5 12/6, CV5I(Y65) 5/. 6 F33 5/-, 2050 W. $7 / 6,5126$ ع $10,5670 \mathrm{5} / \mathrm{F}, \mathrm{FW} 4 / 5007 / 6$ BRAND NEW in individual cartons. Bulk enquiries invited.

CHARLES BRITAIN (Radio) LTD.

11 UPPER SAINT MARTIN'S LANE LONDON, W.C. 2

1EMple Bar 0545
Near Leicester 5q. Station. (Opposite Thorn House) Shop Hours: 9.6 p.m. (9.1 p.m. Thursdays). Open all day Saturday

BC221
prequency meter
$125 \mathrm{kc} / \mathrm{s}$ to $20 \mathrm{me} / \mathrm{s}$

\&16/-/-

This crystal conerolled heterodyne frequency meter is too well known to need further description. Those we offer are further description. books and are carefully tested and suaran teed. Condition is very good.

CALLERS' CORNER

We have a large number of items which: are remnants of lines previously advertised. The quantities remaining are either 100 few to warrant a further advert. or the articles may be slightly incomplete or require some servicing. We aim to dispose of these at give away prices.
Examples:-Multimeters from 50/ A.C. mains power packs from $10 / \mathrm{F}$. Valve testers from 65. Receivers from 50/.
DON'T MISS THIS CHANCE

MARCONI IMPEDANCE BRIDGE. Type TF373. Measures, L, C \& R at ,000 Cycies. Accuracy $\%$ 0. 0.100 H ; $0-100 \mu \mathrm{~F} ; 0-1 \mathrm{M} \Omega$ each in 5 ranges. Power Factor and Q ." Guaranteed 435.

HALLICRAFTER VIBRAPACK. Inpur 6 v . output 300 v . at 170 mA . Designed for 5×28 or 527 . Size $6 \frac{1}{2} \times 7 \times 7$ in. BRAND NEW, BOXED. 29/6. Carr. $3 / 6$.
PHILIPS RADIATION MONITOR. Type I092C A portable self-contained instrument for measuring radio-activity, uses the Mullard MX- 115 Geiger counter ube, and is scaled $0-10$ milli-Rontgens per hour. Supplied complete with carryins Reversap BRAND NEW flyiolCarr, 5%. Other types of radiation monitoring quibment in stock

MARCONI TF987/I NOISE GENERATORS. Range $100 \mathrm{Kc} / \mathrm{s}$, to $200 \mathrm{Mc} / \mathrm{s}$. Determines noise factor of AM and FM receivers. Fully stablised H.T. supply A.C. mains operation. Brand new and
in original boxes. $£ 15$. Carr, $7 / 6$. HEAVY DUTY SLIDER RESISTORS. . $25 \Omega 20$ A., $12 / 6_{1}$ post $3 / 6$. Is 12 A., $8 / 6$ PRECISION RESISTORS. A Megohm. \% I watt wire wound, Ex-U.S.A. BRAND NEW. 10/6 per dozen.

D.C./A.C. CONYERTERS. Input 12 V .

 D.C. Output 230 v. 50 e/s. A.C. ar135 wates. fitted with 0.300 v. A.C. 2 tin . meter and slider resistor for voltage adjustment. In stout wooden carrying case with lid. Perfect working order. 69/19/6. Carr. 10/6.
24 v. Input 230 v. A.C. $50 \mathrm{c} / \mathrm{s}$. 100 wates output. In grey metal case. BRAND NEW. 92/6. Carr. 7/6.

SANGAMO WESTON ANALYSER E772. A useful mulsi-range meter. Thor oughly overhauled and in perfect working order. For full details see previous adverts. c $7 / 10 /$. Carr. $4 / 6$.

MICROAMMETERS

R.C.A. 0.500 microamps. 2 tin, circular flush panel mounting. Dials are engraved $0-15,0-600$ volts. As used in the American version of the No. 19 set. BRAND NEW. Boxed, 15/..
American $0-100$ mieroamps. 2 fin . square flush panel mounting. BRAND NEW. Boxed. $42 / 6$.

MULTIMETERS

,000 $\Omega 2 /$ Vols A.C. and .C. voles 0-10, 50 O.C. current 0.10 0.100 mA . Ohm $0-2,000,0-200 \mathrm{~K}$. Bake lice case size $5 \$ \times 3 \downarrow$ $\times 2$ fin. Fully guaran ceed with rest leads prods and in=

Bulk Buying means LOWEST PRICES DELIVERY EX-STOCK

AERIAL MASTS
 IMPROVED TYPE 5u Mk. 11 36ft HIGH

Kits comprise-six 2tin. dia. Tubular Stee' Sections of 6ft. length, cop-section and base Pickets, Guys and Fictings. YOU ean purchase this normally expensive MAST for a fraction of its cost. Please add CI for (returnable) wooden carrying case. The MAST is particularly suitable to take aerials for Tx., Rx., F.M. and TV (especially COMMERCIAL) and has many other uses. Extra 6 ft . sections can be supplied at $17 / 6$ per section.
£8.10.0 only carr. 15/6.
U.S.A. Type 45ft. TELECOM. AERIAL MAST. (7 sections, 6ft. 8in. x 2\&in., suys, etc.). This entirely complete set in earrying case 121 Gns.
Carr. $17 / 6$. Or 2 sets for G2s. Carr. extra. British Manufocture only. ARMY TYPE 32 FT. MASTS similar to above but 10 lin. serew-sections, suicable for permanent lightweight installation. Kit in canvas bag, c5/15/\%. Carr. $7 / 6$.
Limited Quantity 36ft. TELESCOPE MASTS. Finest quality brass. Non-rusting. Base diameter 2tin. Complete with hand-winding winch for easy, rapid extension; and cable-wire bracing stays. One of the best maste ever produced. Winds down to $9 f$. (M.O.) COMPANY

FOMOLD TELEPHONES

£7-10-0 per pair 9 ger-
The best portable telephone ever made. ORIGI. NAL COST 440 ! Range up to 5 miles. Ideal for FACTORIES, BUILDING SITES, FARMS, OFFICES, 2 perfect case sets complete with bacteries, 1001 t. eable (not to be confused with cheaper quality models).
D3 STRANDED TELEPHONE CABLE.
New Mile Drum 85/. Carr. I7/6.

In Attractive Case

A․: 1 w. 8d. 11 w., 8d, : 2 w. 1/-
 5 watt to meg. 10 watt WIRE-WOUND REAISTOR 10 watt 25 ohms-10,000 ohm

15 watt

2.50 ohmin. 50.000 obme WTRE WOUND POTS. 3 w . Pre met Min, Tli, type Knuried slotted knob.
 30 K . 2o 2 Meg. . $3 / \mathrm{F}$. WIRE-WOUWD POTs, 4 w.. standand sise Pote long
Spindle High chrade. All
values 00 ohms to
 COMTROL 10Ω. $8 / \%$. $0 / P$ TRANEPORMERRS. Haary duty 50 mA . 4/6. Multiratio push-pull 7/6. Minlature 3V4, ete. 4/6. Hygrede
 10 H $120 \mathrm{~mA} \quad 18 / 6$. 10 H 150 miA .14

ALADDIN PORYERS and cores, in. 84. Min. 10 d 0.80 . FORIRRRS 8037 or 8 and Cans TVI of TV2 gLOw SOLOM. Midget Boldering Iron, $220 / 40$ v. 26 w., 24/ MaNs DROPPERS. $3 \times 1 \mathrm{kn}$. Adj. Bliders 3 amp. INE CORD. 3 mp. 60 ohms per look. 2 amp .100 ohm per foot, 2-wny, 84. per foot. 3-wny 74. per foot.

CRYSTAL MIKE INSERT by Acos \$/6 Preciaton enginetred. Slue only f x th

 LOUD TPANE $50: 1$. 38 ea.. 100 . 1 Potled 10,6. 7 in . Rols. $17 / 6$ Bin. x in. Rola,$10 \mathrm{in} . ~$ fin. Rola $27 / 6$
 12in. Baker 15 wt .3 ohm and 15 ohm modele, 90 121 n . Beker fourn suspension 15 w .15 ohm . 86 .

465 ke i.F. TRANSFORMERS $7 / 6$ pair Weymouth I.F. Standard slos 465 re/u. $10 / 6 \mathrm{palr}$.

 BiR. ECADPHONE, Muht, squat oppout, $4 / 8$ tim.
 $\times 1 \mathrm{fin} . \times 1 \neq 1 \mathrm{~m} ., 10 /=, 0005$ Stmand with trimmern
 $100 \mathrm{pf}$. . 150 pl. . 5/6. Bolld dielectric $100,300,500 \mathrm{Pf}$., $8 / 6$ B12A. CRT, 1/8, Eng. and Amer, 4. 5, 6, 7 pin. $1 /-$ 80. B7a with can. 1/6. B12A, 1/3: B9A with can, 1/0, CKEATIC, EP50, B7G, BDA, Oct, $1 /=$ B7G, B9A cans. 1/\% gPEARER FRES. Gold Cloth $17 \mathrm{ln} . \times 25 \mathrm{~m} ., 5 /-; 26 \mathrm{~m} . ~ x$ Brim. 10/-. Tygan 64 in . Wide. $10 /-$ th. 27 in . wide $\$ /=\mathrm{f}$ Browng Green or Red, 8
2 p. 2-way, or 3 p. 2 wrey; crort aphodte
 3p. 4-why or ${ }^{1}$ p. 12 -way, lony mptadle.............. $3 / 6$
 yORE Lis, good quality. 2,6.

1. 2, 4, 5, 8. 25; 50 med 100 mid. 815.

THE HI-GAIN BAND 3 PRE-AMP Cascode circuit using Valve ECC84. 17 db sain. Kit $29 / 6$ less power; or $49 / 6$ with power pack. Plans only 6d.
 Also Band 1 version same prices
 (Pecas Yalve if preferred)

ARDISTRDNG:

AF/208 AM/FM RADIOGRAI CHASSIS PRICE 22 GNS. CARRIAGE FREE

- Fall VHF Rand (87-108 $\mathbf{H c} / \mathrm{s}$).

Medium Band, 187-570 m
88
15dB Nogative Feedback. 7 Valves.
goparato wide range Bass and Treble Controls 2 Compensated Pick-ap Inputs.
Froquency Response $30-22,000$ c.p.s. $\pm 2 \mathrm{~dB}$ Tape Record and Playback Pacilities. Continental Reception of Good Programme Talue.

For 8, 71 and 15 ohm Speakers
MONARCH RECORD PLAYER

BUILD IT YOURSELF using 4-SPEED BSR
monarch autochanger u.a. READY BUILT 3W. AMPLIFIER
handsome portable case HIGH FLUX bin. LOUDSPEAKER FULL INSTRUCTIONS supplied Total Price
Carr. and ins. s/-. $£ 12.10 .0$

RECORD PLAYER BARGAIHS

CYLDON TURRET TELETUNER
1.F. $38 / 28$ mega, somplote with Lramestid valves. 80 Cl 18. Iacludes F. 1 I. Brand now. prleo $45 /-$; oporatins
date and cirouit sopplied. Ideal tor ${ }^{\text {so }}$ P.T, ${ }^{n}$ Olympic.

VOLUNE CONTROLS

Molget aiz

Loni apindie. Gqaraniecol
year. All values.

80 | ohm |
| :---: |
| cable | Coaxial

 FRINGE QUALITY ALBAPACED
coasiah pluas LEAD 笑OCKITR PAMLL SOCKETS $\cdots, 1 /$ OUTLET BOX \because. TWI SCREENED BALANCED FTHETE $1 / 6 ; 1,80$ omm
 With 21 hn eddea $7 \times 4 \mathrm{in}$. $4 / 6: 9 \times 7 \mathrm{in} .5 / 9 ; 11 \times 7 \mathrm{iu}$ 6/8; $18 \times 9 \mathrm{in}, 8 / 6 ; 14 \times 1 \mathrm{Ln}$. $10 / 6: \mathrm{in} \times 14 \mathrm{~m}$. $12 / 6$
and $18 \times 16 \times 3 \mathrm{~m} .16 / 6$.

BLACE CRACELE PAIKT. Air dryling. $8 /-$ thin . .C. COIH. WIL, coloured, single or elranded 8d. yd. TOW HAIII TESTER SCREWDRIVERS, $5 / \div$

AMERICAN MAGMETIC RECORDING TAPE FERRODYMAMIGS "BRAND FIVE
 ${ }^{51 \mathrm{in}} \mathrm{in}$ 1,200 feet .. 886 Double Play
 $37 / 6$
$60 /=$
 $200 / 250 \mathrm{v}$, A.C., 27/6. Jandet S.A.E. RECTIFIERS, RMI, 5/e; RM2, 6/\%; RM3, 8/=; RM4, 16/e RM, RO/: PC31, R7/6: 14AB6, 17/6: 14A100, 21/=. 50 mA . 7/6: 60 mA., $88: 85 \mathrm{~mA}$., 9/6: 200 mA ., $21 / \%$

FBRIT BOD AREIALS. M.w., 8 g: M. \& $18 / 6$.

 Detector tranaformer and heater chokes. CIrcuit and component book. usta four 6AN/ 2/6. Complete it or with New Jason Cabinet FMT2, \&Q extra.

 1/6: 0.5 1/0; 0.1/350 v., 9 d .; $0.1 / 1.000$ v.. 1/8; 1.1 mdf .
 SIty

 1/8. 230 pi., 1/6.
NEW ELECROLYTICs. FAMOUS MAKEs

YOUR Golden OPPORTUNITY FOR BARGAINS

TAPE DECKS

COLLARO STUDIO TAPE TRANSCRIPTOR 3 motors, 3 speeds: 17,3 I, $7 \frac{1}{2}$ i.p.s. take 7in. spool. Push-button controls. PRICE $12 / 12 /$-. Tape extra. Carr. \& ins. 5/6.

COLLARO Mk. IV TAPE

 TRANSCRIPTORFour heads. Twin track operation. Pause control. Tape measuring and calibration device. Two motors. fast re-wind. 7in. tape spool, Finish $3_{z}^{3} \mathrm{in}$., $7 \frac{1}{9} \mathrm{in}$. and 15 in . per sec Finish cream polystyrene cover plate stock, E16/19/6.

LATEST B.S.R.
 "MONARDECK" SINGLE SPEED

3i i.p.s., takes 5 tin. spools. Simple controls, E8/8/-. Tapes extra. Carr \& ins. 5/6.

RECORDING TAPES

Plastic reel 7in. 1,200f. Tape. To quality, 23/- each.

CLAROSTAT WIRE WOUND Potentiometers with single pole switch. Values available: 2.5 Kohm , 25Kohm, 50Kohm, 100Kohm, 2/6 en. PICK-UP CARTRIDGES
Garrard GC2/PA
Acos GP65
B5R TCES stere
ELSTONE OUTPUT TRANS FORMERS. MR/7 Multi-ratio Output Transformer, rating 10 watts, max. primary current each half 60 ma., 14 single-ended ratios, II push-pull. PRICE 23/-.
POTENTIOMETERS. Less switch $500 K o h m s, \quad 100 \mathrm{Kohms}$, $1 / \mathrm{e}$ each. sing pole switch, 5K, 10K, 25K $50 \mathrm{~K}, 100 \mathrm{~K}, 250 \mathrm{~K}, 2 / 6$ each. Claro scat type 58,3 watt wirewound 500 ohms, 100 ohms, 250 ohms 25,000 ohms 50,000 ohms, 716 ohms 25,000 ohms, 50,000 ohms, 7/6 each HENLEY SOLON SOLDERING IRONS. 65 watt, with oval bit 29/- each; 65 watt, with pencil bit 30/8 each; 25 watt, instrumen model, 24/- each.
All spares available from stock.
SPECIAL MAINS
DROPPER RESISTORS
SMDI Philips 209 U
SMD2 Bush DAC81, DAC90
5MD3 Philips $200 \mathrm{U}, 205 \mathrm{U}$ and Stella 5 TIO
SMD4 Philips 290 U and Stella 57100
SMD5 Bush DAC9OA DACIO and DACII, Ekco U76. Ul09
SMD6 Ultra Twin 50
SMD7 Ulera Twin 50
SMD8 Ferguson 983 and 988
SMD9 Ekeo T205, T164 and T174
5MD10 Ferzuson 983T, Philco BTI412 and BTIS5I..
SMDII KB FPI5I
SMDI2 Post-war Double Decea
SMDI3 Marconi TIBDA
5MDI4 Philips I2IU, 2100
5MDI5 Philips 141 U and Stella stiosu
P.W. TRANSISTOR SUPERHET (Printed Circuit Version)

All components available from stock. Complete kit $\mathbb{4} / 15 /$.
Full detailed shopping list, point to point wiring diagram, fully illustrated
Coil Set (Osc, and 3 I.F.T.S.S). $1 / 6$
Driver Transformer.
Output Transformer
Ferrite Rod Aeria
Printed Circuits
OO Gang Condensers....
Volume Control V.C. 1545
Switch
Transistors (set of 6 plus erystal diode GD9)... 70/-
Speaker
Complete Kit of Condensers
Complete S it of Condensers.
Trimmers (2)
All above components are brand new and are fully guaranteed.

RECORD PLAYERS

AUTOMATIC RECORD
CHANGER UNITS
BSR "Monarch" UA8. 4-spees unit with BSR FULFI cartridge, C6/15 BSR "Monarch" UA8. As above but fitted with BSR FULF 5TEREO cartridse ES/19/6 Garrard 210 Automatic Record Changer. 4-speed. Will cake 8 records 10 in . and 12 in . Arm wired for Stereo. Fitted MPM5 Head Moulding with GC8 Monaural cart ridge
\& $10 / 19 / 6$
BSR " Monarch " UA14. 4-speed unit in two-tone grey \quad E7/19/6 Garrard RC120 Mk. 2, 4-speed unit with manual control to enable records to be played singly. Fitted GC2 cartridge

6/6/19/6

SINGLE PLAYERS

GARRARD

Model TA/Mk. II, 4speed single player. Die-cast aluminium pick-up with GC2 cartridge. Automatic stop. $9 t i n$. diameter turneable, C8/10/4.

COLLARO JUNIOR

4-speed turntable and pick-up. Com: plete with crystal cartridge and sapphire styli. Finish cream with maroon turntable mat and speed control. PRICE 75/., or turntable and motor only at 52/5. Pick-up only $27 / 6$.
EMI 985 TURNTABLE UNIT for the Home Constructor. Robust and Reliable. Heavy 8tin. dia. metal turntable. Ivory finish with attrac. tive turntable mat in brown. 5haded pole 200/250 v. motor. Marching pick-up with GP67/2. PRICE 88/6. Post 2/6.

LOUDSPEAKERS
 ALL BRAND NEW

2t square Rola C25 26/10
2fin. square EMI $18 / 6$ 4in. square Elec Tweeter 12/6
Sin. round Plessey with O.P.T. 16/6
6yin. round Celestion 17/6
Bin. round Richard Allen 18/6
IOin. round Elec. 25
12in. round Plessey $29 / 6$ 6in. x tin. Plessey $19 / 6$
7in. $x 4$ in. Plessey
Bin. $\times 4$ in. Celestion and Richard
loin. x бin. Celestion \&
12in. Heavy Duty.............................105/-

CATALOGUE

OUR I96I CATALOGUE

IS NOW AVAILABLE PLEASE SEND $1 /$ IN STAMPS FOR YOUR COPY. TRADE CATA. LOGUE ALSO AVAIL ABLE. PLEASEATTACH YOUR BUSINESS LETTER HEADING.

103 LEEDS TERRACE, WINTOUN STREET,

GEE BROS. (RADIO) LTD.
15 LITTLE NEWPORT STREET, LONDON, W.C.2. GER. 6794/1453
ADJOINING LEICESTER SQ. TUBE STATION-Open 9-6 Weekdays. 9-1 Sat.

SUPER QUALITY
 RECORDING TAPES
 600ft. 5 in . $12 / 6$ 1,200ft. 5 zin. 19/6 1,200ft. 7in. 19/1,800ft. 7in. 29/2,400ft. 7in. 48/Many other types available including "Scotch," "EMI" atc. Send s.a.e. for our huge money saving literature on Tapes and Accessories.
 COLLARO "STUDIO" TAPE TRANSSCRIPTORS. Brand new in original cartons. 3 speeds. 14, 3\&, $7 \frac{1}{2}$ i.p.s. 3 motors, digital counter, etc. Complete with 7 in . tape. instrucsions and fixings. A.C. 200/250 vo operation. SPECIAL PRICE CI2. Carr. paid
 RECORDING WIRE, tlb. spools, $3 \frac{1}{2} \mathrm{n}$. dia. New and unused, $12 / 6$. P. \& P. $1 /=$.
 JONES PLUGS \& SOCKETS 4, 6, 8, 10 and 12 way Available ex-stock. Also PAINTON (miniature Jones). Competitive prices on request.

S.T.C. SELENIUM METAL RECTIFIERS. F/B, FOR BATTERY CHARGERS, ETC. NEW AND FULLY GUARANTEED

 $\begin{array}{lllllll}6 \text { amp. 20/-: } & 24 & v_{0} & 6 & \mathrm{amp} . & 32 / 6 ; \\ \mathrm{amp} & 35 /-: & 24 \mathrm{v} & 10 \mathrm{amp} . & 70 /- \text {. }\end{array}$

R.C.A. AR88-D RECEIVER

 Mint condition. Freq. coverage $540 \mathrm{Kc} / \mathrm{s}$. ,$32 \mathrm{Mc} / \mathrm{s}$. 650 . Carr. 20/. Also L.F."s avail. $32 \mathrm{Mc} / \mathrm{s} . \quad$ E50. Carr. 20/-, Also L.F.'s avail.
able. Freq. coverage $75-550 \mathrm{Kc} / \mathrm{s} . \mathrm{I} .5-30$ able. Freq. coverage
Mc / s. C45. Carr. 20/-.
IOLINE TELEPHONE SWITCH-BOARDS. For the complere conerol of 10 extensions (Tele. "* F" erc.). Complete with jacks, leads and operacor's hand sec. Good condicion. $69 / 19 / 6$. Carr. 10/6.

TELEPHONE SETS (TELE " F '")

Housed in Bakelite cases, complete with buile-in ringing generators and batteries. Ideal between two or more positions up to practically any distance. Tested before despatched. ONLY $70 / \mathrm{m}$. P. \& P. $3 / 6.2$ sent for $66 / 10 / \mathrm{m}$. Carr. paid. TELEPHONE CABLE. Twin one-mile drums (Don 8), 65. Carr. 20\%. Single one-mile drums (Don 3), 50/. Carr. 7/6.

AIRBORNE TRANSMITTER RECEIVER

 TYPE 1986. A mobire 10 -channel crystal controlled V.H.F. Tx/Rx. covering $124.5 / 156 \mathrm{Mc} / \mathrm{s}$. l.F. band width $23 \mathrm{kc} / \mathrm{s}$. Complete (less external attachments) in metal case, with all valves and 24 v . rotary power unit. Used but in first-class condition. ONLY \&8/10/-, Carr. paid. Also, complete with control box and all necessary connecting leads, $\mathbb{1 2}$. Carr. paid.A.C.-D.C. RECTIFIER POWER SUPPLY UNITS

$110 / 230$ v. A.C. 50 cycles inpus, $100 / 110$ v. D.C ourpur, max. $2 \frac{1}{2}$ amp. Brand new and unused. | ourpur, max. |
| :--- |
| \& $4 / 10 /-$. |

230 v. A.C. 50 cycles inpur. $200 / 220$ v. D.C. ourpur at $3 / 4$ amps. approx. Good condition. 200/250 v. pri 110
200/250 v. pri. Il 10 v. sec. at 4 amps. max. Brand new and unused. C8/10/-. Carr. $10 / \mathrm{m}$.
Type 67. $200 / 230$ v. A.C. 50 eycles input, 240-0.240 v. D.C. ousput at $1 \frac{1}{2}$ amps. (Valve rectification.) Fitted with switch fuses, regulator and overload controls. Brand new in maker's original crates. fl0. Carr. 10/.
C.M.G. 25 PHOTO CELLS (OSRAM). Brand new, 12/6. P. \& P. I/=.
HEAVY DUTY REGULATING RESISTOR 0.25 ohm . 200 amps . Wheel control. G4/15/. CONDENSER, oil filled. 240 mfd .230 v. A.C or 600 v. D.C. Made in U.S.A. Size $2 \operatorname{lin} . \times 5 \$ i n, \times x$
9 in. Brand new in original cases, $\varepsilon 7 / 10 /=$. Carr. $5 / \mathrm{F}$.

TRANSFORMERS

MAINS ISOLATING TRANSFORMER (Gresham). Pri. 230/250 v. Secs, 240-0-240 v. 1.5 amps., 5 v. 12.5 amps . Potted. Size 7 in . $7 \mathrm{tin}, \times 104 \mathrm{in}$. Weight 501 b . Ideal for obtaining TWO ISOLATED 240 v . lines at 360 watts each. Perfect condition. 80/.. Carr. 10/\%.
L.T. TRANSFORMERS for Bateery Chargers etc. All Pri. 200/250 v. Tapped 50 cycles. Type 048B. Sec. 24, 30, 36 v. $6 \mathrm{amps} .4 \times 4 \times 4 \mathrm{in}$. 62/9/6. Type 066A. Sec. $18,24,30,36$ v. 8 amps. $4 \times 4 \times 5 \mathrm{in} .63 / 19 / 6$. Trpe 053A. Sec. 12,24 , 30 v. $10 \mathrm{amps} .4 \times 5 \times 5 \mathrm{in} .44 / 4 /$. Carr. $3 / 6$ each AUTO TRANSFORMERS. 0.110, 205 $225,245 \mathrm{v}$. Fully shrouded. Terminal block connectors.
Type 063A. $500 \mathrm{w}, 4 \times 5 \times 5 \mathrm{in}$. $43 / 7 / 6$. Carr. $3 / 6$. Type 064A. $750 \mathrm{w}, 4 \times 6 \times 5 \mathrm{in}$. $63 / 17 / 6$. Carr, $3 / 6$, Type 065A. $1,000 \mathrm{w} .4 \times 7 \times 5 \mathrm{jn}$. $44 / 17 / 6$. Carr. $5 /$. $6 \mathrm{kV} / \mathrm{A} A \cup T O$ TRANSFORMER. $250 / 110 \mathrm{v}$. 50 cycles (fully capped primary and secondary). 50 cycles (fully capped primary and secondary).
Capable of 25% over actual rating. Brand new Capable of 25% over actual ratin
0 KVIA AUTO TRAN SFORMER 230/ $20 \mathrm{kV} / \mathrm{A}$ AUTO TRANSFORMER. 230/115 V. 50-60 eycles, by Jefferies Transformer Co., U.S.A. Perfect condition, 220. Carr. 20/. E.H.T. TRANSFORMER. 8,000-0-8,001 at
400 mA . Primary $230 \mathrm{v} .50 \mathrm{cycles}$.Oil filled 400 mA . Primary 230 v. 50 cycles. Oil filled.
New and in original crazes. E25. Carr. $10 /$.

QUALITY TEST EQUIPMENT

 UNREPEATABLE OFFER OF THE POPULAR TAYLOR VALVE TESTER Model 47A. inpur 200-250 V. A.C. Will rest English and American valves with filamencs from 1.4 v. to 117 v. Perfect condition. Complete with full instruction manual, £12. Carr. 5/Also MODEL 45A available at El 10 . Carr. 5\% WAVEMETER CLASS D. Freq. band 1,900 Kc / s. to 8,000 $\begin{array}{lr}\mathrm{Ke} / \mathrm{s} . & \text { (} 158 \text { - } \\ 37.5 \text { metres) }\end{array}$ in two ranges. 1,900 Kc/s.$4,000 \mathrm{Kc} / \mathrm{s}$. also $4,000 \mathrm{Kc} \mathrm{K}$.$\begin{array}{ll}8,000 & \mathrm{Kc} / \mathrm{s} . . \\ \text { Supply } & 6 \\ \mathrm{v} .\end{array}$ Complete with twin cryscal. spare vibrator headphones
original in seruction manuat and transit case. As new, 65/5/-. BRIDGE MEGGERS. Evershed and Vignoles Series 2 in perfect condition. 250 y. 222. Capr paid. Leather case available at $20 /$ extra. TESII-FII Covering $1018 \mathrm{ME} / \mathrm{s} 33.58 \mathrm{MP}$ TF5 $11-F / \mathrm{M}$. Covering $10-18 \mathrm{Mc} / \mathrm{s} ., 33-58 \mathrm{Mc} / \mathrm{s}$. $150-300 \mathrm{Mc} / \mathrm{s}$. In very good condition. Complete with full rechnical data and instructions. Unrepeatable at only $\mathrm{C} 12 / 10 / \mathrm{m}$. Carr. 20/.
BRAND NEW CRYSTAL CALIBRATOR BRAND NEW CRYSTAL CALIBRATOR No. 10. (Battery powered l. 4 v. valves.)
Complete wish fuli working inseructions circuit diagram, carry ing haversack, connecting lead and spare valves. Frequency range: 1.5 to $10 \mathrm{Mc} / \mathrm{s}$. (nominal) but can accually be used up to $30 \mathrm{Mc} / \mathrm{s}$. Weight 51 b . Size $7 \times 7 \frac{1}{2} \times 4 \mathrm{in}$.
As fully described in "Practical Wireless," Dec issue, pages $691-693$. ONLY G4/17/6. P. \& P. $2 / 6$.
MULLARD BRIDGE. Type GM. $4140 / 1$. MULLARD BRIDGE. TYPe GM. Will rese resiseances from 0.1 ohm 8010 megohms and condensers from 10 pf. to 10 mfd . Good condition and complete with instruction booklet 66/19/6. P. \& P. $2 / 6$.

G.P.O. RACKS

19in. Heavy duty all steel Standard drilling.
5 ft . 6 in . angle uprights. \&3/10/-. Carr. 15/.
6ft. channel uprights. E5. Carr. 15/-.

50-WATT EX-GOVT. AMPLIFIER. Type Ill with 4KT66/s in paralleled push-pull, Standard $200-250$ v. A.C. inpur. Oueput imped. 600 ohms Line. High imp. gram. and mike input. Bass boose conerol firzed. Quality amplifier housed in serong metal case, ready for use. Terrific performance, ©25. Carr. ©I.
12 VOLT D.C. AMPLIFIER (Parmeko, Ardente) As new, 15 wate outpur with 2-EL35's in push-pull Mike and gram. inputs, rapped output erans. former, 69/19/6. Carr. 10/6.
(Suitable hand microphone for above 30/- exera).

HEAVY DUTY ALL STEEL Carr. 10\%.
TANOS (as illus Sept SRue) AdiustablPOD TANDS (as illus., Sept. issue). Adjustable every $6 i n$. to approx. 9ft. 6in. when fully extended (Folds up to only 4ft. 6in. for storage). Suitable or outdoor speakers, public address systems, flood-lighting, etc. OUR PRICE ©3/10/.. Carr. 5/ (Ideal stand for the above loud hailer.)

BAKERS " SELHURST"* SPEAKERS

 SPECIAL ALL BRAND NEW SPECIAL NEW ARRIVAL! "I5in. VIS COUNT AUDITORIUM." 15 ohms at 400 c.p.s. 35 wate. Flux density 18,000 OUR PRICE ©I5."12in. P.M." 15 ohms, 15 watts, $30-14,000$ c.p.s. Our price $\mathrm{E} 4 / 10 / \mathrm{F}$
"AUDITORIUM" 12 in ., 15 ohms, 12 waers 35-16,000 c.p.s. Flux densicy 14,500 . OUR $35-16,000$ c.p.s
PRICE C7/10/
"SUPER Hi-FI 25 " 12 in ., 15 ohms, 25 wates. 25-20,000 c.p.s. Flux density 17.600. OUR PRICE $99 / 91$
Full descriptive specificasion available. S.A.E.
EXPONENTIAL HORNS by famous manu facturer of P.A. systems, 15 watt, $25 i n$. long Iacturer of P.A. systems, is watt, 25in. long,
20 in . square fiare, 15 ohms speech coil. (Tannoy) 20in. square fare, 15 ohms speech coil.
Good condicion. $7 / 10 \%$. Carr. 10%.
GEW P.M. HEAVY Carr. 10/-. NEW P.M. HEAVY DUTY SPEAKERS Complete with O.P. trans., in all stee bluegrey double grilled cabinet. $6 \mathrm{in} .30 /$ Bin. 32/6. Carr. 3/6 ea.

TRUYOXITANNOY

 LOUD-HAILERS With 180 ohm line transformer and condenser. Impedance $7 \frac{1}{\frac{1}{2}}$ ohms, handling capacity 8 watts. fromplete in slope Brand new $27 / 6$. Carr. $4 / 6$.ROTARY CONVERTER. 24 v . D.C. input. 230 V. A.C. output at 250 wares. Complete with searting switch. New and unused. $¢ 15$. Carr. $7 / 6$.
ROTARY CONVERTER. 24 V. D.C. so 230 v. A.C. 50 cycles, 150 watts. Brand new and unused. 68/10/-. Carr. 7/6. Dizto, 100 watts 66/9/6. Carr. 7/6.
ROTARY CONVERTER. Ex-Gove. 12 v D.C. inpue, 230 v. A.C. output 50 cycles at 135 watts. Complete in carrying case with lid. Voltage control sliding resistance, mains switch and $0-300$ v. A.C. flush meter. In good condition. \&10. Carr. 10/. Motor only, withour case, etc. Brand new and unused. $48 / 10 /=$. Carr. 5/-

NEW AND UNUSED ACCUMULATORS

Miniature Lead Acid Accumulators. 12 v. 0.75 A.H Size 4 x 3 Itin.
Wet. approx. $2 l b s$. 22/6.
2 v. 1.5 A.H. Size $4 \times 1 \frac{1}{2} \times \operatorname{lin}$. Wet. approx. thes. ${ }^{2 / 6 .}$
12 v. 100 A.H. (75 actual) $\mathbb{E} 4 / 10 /$. Carr. $8 / 6$.
25
45/. $\begin{aligned} & 12 \text { v. } 25 \text { A.H. (as illus.) } \\ & 7 / 6.2 \\ & 2\end{aligned}$ v. 100 A.H. 75 aceual (ex-Gove.) with carrying handle. Size $6 \frac{1}{2} \times 6 \frac{1}{2} \times 3 \frac{1}{4}$ in., $15 /$ - each. Carr. $3 / 6$.
2 v. 16 A.H., as above. $7 \frac{7}{2} \times 4 \times 2$ in., $5 /-$ each.

BABMASENESES for the Constructor!

TAPE RECORDER

M'tun'seturars" brand new urrent grolaction oteer. Iatent level indicstor. Volume and tome controlo. T.c.C. printod ctreath alresdy wired. Only power pacts and controle
 CM84 \& E E 780 . A renutive qually recorder at spectal Wirod printe ponents, controle and knobs, etc. P. P. \& P

Iargalm reduction for complete kit. Carr. $5 i$ $\begin{array}{r}215 \\ 5 \\ 58 \\ 18 \\ \hline 8 \\ \hline 16 \\ \hline 10\end{array}$

 $\begin{array}{lll}23 & 5 \\ 8 & 6\end{array}$ ' Hiso Mtudio Tape Deck oan be suppiled whth modised circult sa alternative $2510 \quad 0$
RECORD PLAYER BARGAINS Latest 4 -speed models
 and bargato buy at onts and dom tappbite strin. Auto stop and start. A fidelity unth ELaL PLATITA. B.B.R. (TU9) DO/F COLLARO JUN1OR EtIdio P.U. EA/10/-
 litten model. 87/18/6. coLL

BARGAINS playzrard oxit Model 4EF. A18. Carr. s/6. plotela GC8 Head. 10 gan Carr. $4 / 8$. Tranacription Anto Changer Model "A" iunt velensed $\mathrm{E18} / 19 / 6$. Carr. $5 /$.
 AUTO CHANEER RECORD player kit

 oli are it in chesp commercial motela, A recommended buy while atooks lagt: Kendy whed $\mathrm{F}-\mathrm{Falva}$ Amplither, complete whith Fing Migh Dur mpeaker.
Tn 3-tone Cahinet, 18 in . $\times 18 / 18 \mathrm{in} \times$ P. \& P. 2/6 C ilaro Conqueat (180 ₹. model). P. \& P. 3/6
 Burgalo price. $88 / 19 / 6$, Carr. $7 / 6$ stmple asaembly, a acrewdriver only requalred TRAN818TOR B BA—1st Grade Nazda Reduced Prices
MULDARD

 XClol 10/6 $21 /$, $15 /$ Germanima Diode 0A70 2/8; 0A81 3/6
 GPECIAL PRICE PEE EET IRE, 1T4. 185 or 884 or 8V4, 85/DK96, DF96, DAF96. DL94. 85/-

JASON FM TUNER UNITS (87-105 Mcs) Deuleneroapproved litn of parta for theme
qualty and highly popular tuners available STAMDARD MODEL (PMT)-a pre. viouly extensively advertised. com4 apec. valves, 90^{-}
LATEBT MODEL (PMT2)-atractively prosented shelf mounting unit in enclowed
Metal Cablnet wh Built-ta Power 8 npply. Metal Cublnet Fith Built-to Power 8npply. COMPLETE KIT, 87, P .
MODI JTVE
Tonet JTve, gelf-powered 8wltch Tuned B1-B2-BS AM/PMC Unit. ${ }^{5}$ Pr
net athtion, AFC mad AOC circults. Complete Ktt mel. ready-built and VBived Turnet Tuner, 813/19/6. P. \& P. 3/6. 4 пpec. valves, 88/6 extri. LERCUBI 2 almilar to JTV2 lees power pack. Conplate Kit mic. ready-built
turret ualt 10 ens. P. \& P. 2/6. 4 spec. valves $25 /=$.
MEW JASON CONPREHENGIVR FII. HANDBOOF, $9 / 6$ post tree. $4 / \mathrm{hr}$. Aliar and lorvies, 7/6. P. \& P. 3/6.

MAINS TRAMS. AMD QUALITE OUTEUT TRADS, Mid. to our own taterleaved and tmpresmated. Enquitr: jes welcomed for mall production runs, prototypes or individual jobs.

TRANSISTOR PORTABLE
Famous manulacturer'a 6×1 dealmn baned on Mullard and G.R.C. developementa Printed circult. EBVA 1 刦 Erede tranalatorn, XA102, XAl01 (2). OA70 XB103, XClol (2) or equivalepte. Quallty componente onily suppliod to enaure bent reaults at attractive price Set of 6 BVA Tranalatorn and Diode. P. \& P. 6d... 70/-
 Printed Circult, I.F.'a (3), Oac, coll. Driver Trann. and Ferrite rod aerial. P. \& P. 1/6 51/6 Reaintorn, Condensers, Twla Gasg and Volmme control. P. \& P. I/8 37/6 $7 \mathrm{in} . \times 4 \mathrm{in}$. Quality 35 obru mstebing speaker. P. \& P. 1/8 $37 / 6$

Complete Ktt at appecill ofer ONLY (poat free)
Handbook and Circult detalla, poat free
KHORs. Modern Conthnental typen, walnut and ivors
lim. dia. Whth GOLD EING $1 / 6$ ean Dito nith GOLD CRNTRE $1 / 3 \mathrm{ea}$. Ih. dis. Wht GOLD RINGB gi, ea, Dito ith GOLD CENTRE 101. ea

> CRT ETE ISOLATIOA TRAMBPORYERS

COAX 80 ohm CABLE Now only 6d. a yard.

baggath prices-spectal
$20 \mathrm{ydn} . \quad$ Lenaths
20 yds.
40 yde. 40 yds. 8/- P. \& P. $1 / 6$
$7 / 6$ P. \& $2 /$.
$25 /-$ P. \& P. $\% /-$
 Outlet Bloxen, 4 . 6 .

RE-GUNNED TV TUBES

 NEW REDUCED PRICES prioe reduced abain12 months' suarantee!All tubes rebuilt with now heater, cachode and sun as-sembly-and now all tubes are completely rescreened and aluminised at no extra cost. Reconditioned virtually as new.
12 in . 65 in . E5/5/-, l7in. 5/io, etc.
Exchonge Alowonce on old tube- $12^{*} 5 /-14^{\prime \prime} / 17^{*} 7 / 6$.
Corr. and ins. 10/-. Comprehensive stocks-quick delivery.
 ralves, 8 pt to 1,000 ol, 6 d , each Ditto

 T.C.C. 1/9. .001 6kv. 5/6. .001 80 घv. $0 / 6$. RHISTORE-FULL RANGE 10 ohme10 mezohma 20% i w. and it w. 34, iw. 50 (Midyet type modern rating), I w. 8d, 2 m \&L, 10% H1-Blab, \& W., BI., \& w, 7d. 5% ohmis 81-).
PRE-sET W/W POTK. T/V type, 25 ohms50X ohuss $3 /$-. $80 \mathrm{~K}-2$ Meg. (Carbon 3!-) dived tmetal $8 \times 8 \mathrm{in}$., 8/8; $12 \times 8 \mathrm{in}$. $3 /=$; $12 \times 12 \mathrm{in}$. $4 / 6 ; 12 \times 16 \mathrm{in}$., $6 /=; 24 \times 12 \mathrm{in}$. $9 /-; 96 \times 12 \mathrm{in}$. . $18 / 6$, etc., etc.
 LOUDAPEAEERS-P.M. Rolac. $17 / 6 ; 81 \mathrm{ha}$ Goodmuna, 18/6: Fta , Rola, 17/6; 6 in . Elac. $18 / 6 ; 7 \times 4 \mathrm{~m}$. Good. man Elliptical, 18/6; 810. Rola, 20/-; 10in. R. and A., 85/- 10 th. W.B.-HF1012, $95 / \mathrm{m}$ and Crom Over Filler, $97 / 6$.

Eloctrolytics All Types Now stock
TUBULAR CAN TYPES

 Comprehenaive range in atoak.
FOLULE CORTROLS- $5 K-2$ Megohme ALL LONG FPINOLES, MIDGET TYPE lifin. dimm. Guar. 1 yr. LOG or L1N.
Ration lese $8 w ., 3 /-$ D.P. $8 w, 4 / 6$. Twin

7 VALYE AM/FM RADIOGRAM CHASSIS

 Valve Line-up: ECC85,ECH81, EF89. EABC80, ECH8I, EF89, EA
EL84, EM8I, EZ80.
Three Wavehand and s-ritahed Oram poeitions Med. 200 . 600 mp . Lons $1,000-2.000 \mathrm{~m}$., VHFIPM 88-95 Mc/a. Philipe Contlonental Tuning tasert Wh permeebility tuning on
IP and comblned AM/PM If traniformers, $460 \mathrm{Kc} / \mathrm{h}$. tuning. aul colis Latont circuitry tncludting AVC and
Neg. Feedback. Three Reg. Yeedback. Three ath outpot. tandard. Chanis aise 131×81 in very high Illuminated glaee dian $11 \frac{1}{2} \times 31 \mathrm{in}$. Vertical in . Rd Horisontal otation namen. Gold on brown backgroumd. AC. $200 / 250$ v. operstion Mige ege tuning. Complete with 4 Knobe-malnut or ivory to cholce. Indoor FM merlal $3 / 6$ extrs. Oth. Rols (Heary Duty)

 ONLY A FEW ITEMS ARE LISTED FROM OUR COMPREHEN SIVE STOCK. WRITE NOW FOR FULL BARGAIN LISTS, 3d Terms: C.W.O. or C.O.D., post and packing up to $\frac{1}{1} 1 \mathrm{~b} .7 \mathrm{~d}$; 1/b. $1 / 1$; 3/b. 1/6; 5/b. 2/-; 10/b. $2 / 9$.

TRS

 RADIO COMPONENT SPECIALISTS70 BRIGSTOGK RD., THORNTON HEATH, SURREY
Tel.: THO 2188. Hours: 9 a.m.-6 p.m. 1 p.m. Wednesday.

NEW!

FULL-SCALE RANGES:
D.C. VOLTS: $0-6,0-30,0-120,0-600,0-1200$. A.C. VOLTS: $0-6,0-30,0-120,0-600,0-1,200$. D.C. CURRENT: $0-120 \mu \mathrm{~A}, 0-12 \mathrm{M}, 0-300 \mathrm{M}$. RESISTANCE: 0-20K, 0-3 Meg. DECIBELS: -20 to +63 in five scales. CAPACITY: $50 \mu \mu \mathrm{~F}$. to $.01 \mu \mathrm{~F}$. and $.001 \mu \mathrm{~F}$ to 15 mF .
OUTPUT RANGES: $0-6,0-30,0-120$, C-600, 0-1,200.

MODEL EP-IOK. Outperiorms instruments many times its size and price!
10,000 O.P.V. MULTI-TESTER ON BOTH AC \& DC

UNBELIEVABLE BARGAIN!
A revolutionary new Multi-Tester. A complete wired and tested instrument (not a kit) incorporating extra large 3 tin. meter face and unique slide range switch. Can be conveniently carried in the pocket and fectures unusually sensitive 10,000 ohms per volt A.C.-D.C. mecer, 1% precision esistors, and largest mecer ever placed on an instrument this size. Single easy to use range elector switch can be appreciated by the novice and engineer alike. Complete with colour coded test leads and battery. Size: $4 \frac{1}{1} \mathrm{in} . \times 3 \mathrm{in} . \mathrm{x}$ lin. Model EP-IOK. $55 / 19 / 6 \quad$ P. \& P. $3 / 6$.

C-221 HETERODYNE CRYSTAL CON
TROLLED FREQUENCY METERS Freq. range: $125 \mathrm{ke} / \mathrm{s}$ to $20 \mathrm{Mc} / \mathrm{s}$. Calibration: Individual Calibration Books with numerous Crystal Check points.
Accuracy: 0.01% or 25 cycles. Power Supplies: 6 v . and 135 y batteries. Size $14 \mathrm{in} . \times 10 \mathrm{tin} x$ 9 in. Weight 43 lbs
Offered for the first time at 925 CARR the ridiculous price of only 225 PAID

SUB-MINIATURE TRANSFORMERS

Here is outstanding value in transistor transformers consisting of one Driver Transformer and one Outpue Transformer.
pair for miniature cransistor portables,
ete.
Driver Model LT44: Primary: 20k. Secondary Ik. Centre Tapped. Ratio: S: Output Model LT700: Primary: 1.2K Centre Tapped. Output: 3.2 ohms Ratio: 20.1 ONped 9/6 per pair. P. \& P. I/6.

R.C.A. AR-88D RECEIVERS

 current ratio 5 amps. Model B-S is of advanced mechanical design offering long life, rise, high efficiency and linear output voltdial with large white ONLY c9. Carr. 101 steps impedance up to 4,000). Only 15 ;-P. \& P. $2 / 6$Stindard High Resistance Phones, $12 / 6$. P. \& P. $2 / 6$
 IS wives, 500 micro-amp. check and tunin

SPECIFICATION

Range: $540 \mathrm{kc} / \mathrm{s}$ to $32 \mathrm{Mc} / \mathrm{s}$ in 6 bands. Power Supply: $110 / 260$ v. A.C.
Power Output: 2.5 W into 2.5 or 600 ohm line or H.I. Headphones.
Sensitivity: From is to 2 Suv per 500 mW Image Ratio: From 1,000,000 at $60 \mathrm{kc} / \mathrm{s}$ to 200 at $28 \mathrm{Mc} / \mathrm{s}$.
Circuit: Two R.F. stages (6SG7); Oscillator (615): Frequency Changer (6SA7); Three I.F. stages (6517): A.V.C. Derector (6H6): Noise stages (6517); A.V.C. Derector (6H6); Noise Limiter (6-6); Audio Amplifier (6S57); Power Output (6K6); B.F.O. (6-5); Vol ala Regulator (VR-150): Rectifier (SY3): I.F.- 4 SS kc/s. Size

OSCILLOSCOPE MODEL 74

This basic scope represents one of the finest buys we have ever made Contains Brilliance, Focus, base controls. Separate X base controis. Jeparatex parerator modulated at? reas. over $150-255 \mathrm{Mc} / \mathrm{s}$. Complete with 12 valves. VCR 139 A A.C. power pack and A.C. power. P. small eransformer unit with cord and plug which
U.S.A

DYNAMOTORS EICOR (asillus.). Input 12 v ., output 400 v . at 0 mA . Size 7×4 $45 /=$ P. \& P. 3/6. WIRELESS SET No. 19 ncoporates TXIRX cover ing $2-8$ Mc/s. metres), and intercom. amplifier. Comack and tunith These H.S. 30 phones are the smallest used by using soft rubber miniature ear moulds for maximum music and voice reproduction of che fines? quality. Supplied free is a
complete circuit and tect.

TELEPHONE PICK-UP COILS MODEL FC-8 Induc-
tion Pick-up coil enabling conversations to be picked up without tapping of wires or cuits. Simply place telephone on the pick-
up platform and connect lead to the input of any medium zain amplifier or direct to any tape, disc, or wire recorder. Brand new compiete connections - offers virtually unlimited use. ONLY $16 /$. P. \& P. 1/6.
MAINS PORTABLE SOLDERING IRONS Model SP-f. $30-$ Soldering Iron. The latest-smaliestcoolest 30 -watt iron

available. Especially suited for precision wiring Highly stable heat characteristics assure long life and safecy in use. Features a removable handle that may be used to cover the tip and barrel to permit the iron to be carried safely even while hos.
Supplied complete with vinyl bag, lead and plug. ONLY 18/9. P. \& P. 1/3.

SIGNAL GENERATOR SWO-300
 65/. Carr. 10/
 external. Actenuation: To- 40 db . Outpus Facilities for high and low. Power Supply Internal 230 . A.C. Size. $7 \times 10 \times$ Sin. Com plete with test leads and instruction manual ONLY E $14 / 19 / 6$. Carrize $\mathrm{S} / 6$. Fully suarneed
PORTABLE TRANS/RECEIVER No. 18

A self-concained Trans/Receiver for Telephone and C.W. Range approx. 10 ($50-33.3$ metres). Valve line-up: 3 ARP-12, I AR-8. I ATP4. Complete with aerial. H.T. and L.T.meser and all accessorias. Waight 2016. Size $8 \times 10 \times 17 \mathrm{in}$
ONir $80 / \mathrm{F}$. Carr. $10 /$

RELDA BREAKS THE TAPE RECORDER PRICE BARRIER!

 NEW! Model TR-125 Transistorised Portable Tape Recorder.Size only $6 \mathrm{in} . \times 8 \mathrm{fin} . \times 2 \frac{1}{4} \mathrm{in}$. and weighs a mare $2 \frac{1}{2} \mathrm{lbs}$. Fully transistorised complete with mike, earphone, built-in speaker and amplifier. Powered by chree inexpensive batceries. one hour on standard 3 in . reel. (34 minutes each track.) The TR-12S is precision miniature tape recorder which slips easily inco a brief case or handbag. Ueilises advanced transistor circuitry and built-in 2 in . x 3 in . P.M. speaker and amplifier. Engineered for ease of operacion. All consrols are accessible on front panel. The magnificent two-tone plastic and meta case features a carrying handle and snap open cop for fast, easy cape loading Complete with batteries, tape and accessories.

Collers:
87 TOTTENHAM COURT ROAD,
LONDON, W.I.
MUS. 9606

Illearovies mo. Ind

STOCKISTS FOR THE FOLLOWING

THE SUPER SIX TABLE MODEL

The "Super 6" Table Model Transistor Receiver using six Mullard latest sop grade transistors, printed circuit, medium and long wave bands, $500 \mathrm{M} / \mathrm{W}$ push pull output, 7×4 High Flux Speaker, high O ferrite rod aerial, calibrated direct drive, beautifully polished cabinet, gile erimmed, size 18 in . $\times 7 \frac{1}{2} \mathrm{in}$. $\times 5$ inin. Using Longlife power pack battery. All necessary components including easy to follow instructions and theoretical circuit, $69 / 15 /$ complete post and pkg. 4/6. Battery extra. All components sold separately. Send S.A.E. for
details. Circuit and Instructions $2 / 6$.

BUY NOW!!!

Definitely the last of the remaining stocks of the

AVANTIC BEAM-ECHO HI-FI EQUIPMENT

SP2I STEREO PRE-AMP

CONTROL UNIT

A twin channel pre-amp control unit, has 6 inputs for each channel INPUT SENSITIVITY for $250 \mathrm{M} / \mathrm{V}$ or 1.5 V output TUNER 100 and $250 \mathrm{M} / \mathrm{V}$. Tape $100 \mathrm{M} / \mathrm{V}$ flats $250 \mathrm{M} / \mathrm{V}$. PICK-UP 5 and $50 \mathrm{M} / \mathrm{V}$. Frequency response: $40 \mathrm{c} / \mathrm{s}$. to $15 \mathrm{Kc} / \mathrm{s}$. TAPE O UTPUT $50 \mathrm{M} / \mathrm{V}$.. continuously variable bass and treble controls, loudness control and stereo balance control. Power required 6.3 V . at 1.3 amp . A.C. 350 v at $5 \mathrm{M} / \mathrm{A}$ D.C. Will match any hi-f amplifier. Manufacturer's price ©28/10/.. OUR PRICE now (16/19/6 Carr. and packing 10/.

AVANTIC PL6-2I

High quality monaural power amplifier and preamp. compactly housed and suitable for shelf mounting or cabinet. Two EL84 three EF86, one ECC83, one EZ8!. 20 watts peak; speaker impedance, 4,8 or 16 ohms. Sensitivity: $4 \mathrm{M} / \mathrm{V}$ on pickup, $3 \mathrm{M} / \mathrm{V}$ on tape. $100 \mathrm{M} / \mathrm{V}$ on suner, intermod. distortion 1% at 10 W equivalent Sinewave output. Maker's price $228 / 10 /$ -

AVANTIC SPAll Stereo Amplifier A twin channel amplifier and pre-amp., push. pull output. IOW peak each channel, rumble filter speaker impedance 4,8 and 16 ohms, Tape output: $100 \mathrm{M} / \mathrm{V}$. Continuously variable trable and bass, stereo balance control. Input sensitivity: for $7 \mathrm{~W}, 100 \mathrm{M} / \mathrm{V}$ radio; $100 \mathrm{M} / \mathrm{V}$ tape; 650M/V pickup. Manufacturer's price 28 gns. OUR PRICE 19 8ns. Post and packing 10/. STEP II stereo pick up pre-amp. unit E4/14/6.
P. \& P. $2 / 6$.

ANOTHER SPECIAL HI-FISTEREO OFFER Thelfamous SP2I Stereo Pre-Amp. Control Unit specification as above with $2-10$ watts ultra linear power amplifiers, push-pull output, sensitivity $40 \mathrm{M} / \mathrm{V}$ for 10 watts output. Harmonic Dise tortion for 10 watts at 1,000 CPS 1\%. Hum, 750 B at 10 W , output impedances 3,8 and 16 ohms Spare power for tuner 250 V at $35 \mathrm{M} / \mathrm{A}$ and 6.3 V at 2 amps, voltage $200 / 250$ A.C. Valves EFB6, ECC83, 2-EL84, EZ81, the 3 units making a high quality stereo combination. OUR PRICE 639/17/6. Carr. and packing $30 /$ -

THE POPULAR

"VERDIK QUALITY TEN"
10 wate push-pull ultra linear Hi-Fi amplifier with pre-amp. control unit. Amplifier Valves EFB6, pre-amp. control unit. Amplifier Valves EF86, watts, output impedance, 4,8 and 16 ohms, spare supply for tuner, $200 / 250 \mathrm{~V}$, A.C. Pre-Amp, vpare supply for tuner, 200/250V, A.C. Pre-Amp. valve GRAM LP $50 \mathrm{M} / \mathrm{V} 7860 \mathrm{M} / \mathrm{V}$ MIC $10 \mathrm{M} / \mathrm{V}$ output GRAM LP $50 M / V, 7860 \mathrm{M} / \mathrm{V}$, MIC $10 \mathrm{M} / \mathrm{V}$, output socket for recording direct to tape recorder Treble between - 1008 and +1208 at $10 \mathrm{KC} / \mathrm{S}$ BASS between -1008 and +1208 at $20 \mathrm{C} / \mathrm{S}$. Finished in grey, green, stone enamel, controlpanel in gold lettering, fully guarantes. Original price 20 gns . OUR PRICE $\mathbf{6} 14 / 19 / 6$. P. \& P. $7 / 6$.
A FEW ONLY! STEREO REPRODUCER8 3 watts each channel. Using 2-ECL82, I-EZ80, separate balance and tone controls, volume on/off switch, designed for crystal pickup, two tone cabinet $13 \times 11 \times 5 i n$., blue and grey or beige and grey, 2 matching corner speaker cabinets 10 in . wide, 20 in . high, 7 in . deep, with $8 \times 5 \mathrm{in}$. Hi-Flux speakers complete, price fi3/19/6. Carr. and packing $7 / 6$.
 * supplied in famous DECCAMATIC III. t Complete with small cream knobs. Full t range tone and volume controls. Employs it \& ECL82 valve, Metal Rectifier. Size $3 \times 3+\times$ 손 t Blin. Only $59 / 6$ plus $2 / 6$ P. \& P t SPECIAL CELESTION $8^{\circ} \times$ 6in. elliptical t high fux loudspeaker to fit. 25/m plus I / m. \star P. \& P.

A SNIP FOR CONSTRUCTORS Build the Labgear Audio Output meter. Two ranges- 25 milliwatts to 1 watt. I watt to 100 wates. Accuracy 5\%. input impedance 3, 15 and 600 ohms. Printed circuit. All components including 0-IMA moving coil meter and silver hammertone andel case. Kit complete with
instructions $59 / 6$, post and pkg. $1 / 6$.

4-SPEED PORTABLE SINGLE RECORD PLAYER

 Consisting of:The New EMI 9854 -speed single Player
2 valve Printed Circuit Gram. Amplifier Amplic. Portable $£ 110$ Portable Case-finished rexine covered red and white polka
dot................... 15 o All items available separately if required.

The SUPER 60
b-Transistor Battory Receivar $\begin{array}{ll}\text { MAT } \mathrm{BE} \\ \text { BULLT FOR } & \mathbf{E 9 . 1 5 . 0}\end{array}$ Ener-Roady PP 10 Batery Ertira 111 .. star features:-
8TAR FEATURES:-
\star gix lat gride

* 8ix lat Erace Mallard Transietora

K Inturnal Ferrito Rod Aerial.
\$ Fin. x fin. Elljplicel gpenker.
\star Printed Cirouft.
※ 500 mW Push-pull Output,

* Covilimazed Direot Drive Dial Drive - Amembly.

The Receiver is housed in an auractive con Dimomions
Whith gitt, rupported by gill starnive
With gitt, supported by gill Etarults.
The Rectiver will operate for monith on one 9 -volt long-life buttery.
Instruction Book geparately at $8 / 6 \mathrm{p}$.p.

6-TRANSISTOR POCKET SUPERHET

$$
\begin{aligned}
& \text { PP3 Battery extra at } 2 / 6 \text {. }
\end{aligned}
$$

This Receiver uses the most up-to-date printed circuit method and construction is simplicity itself with the aid of the point-to-point instructions supplied, using 6 Transistors and one Diode and internal Ferrite Rod Aerial, with provision for Car Radio Aerial. Full medium and long waveband coverage and when constructed the Receiver is housed in an attractive leatherette Case size $6 \frac{1}{i n} . \times 4 \frac{1}{i n} . \times 11 \mathrm{in}$.

AMERICAN C.B.S. RECORDING TAPE

1.2unift. on 5 Iin. Apmoi

Ninft. on 51 in . Speool II.P.

Plus 1, - per spool P. \&P.

OUTSTANDING BARGAIM OFFER

The Eaport Model UI Multi$\begin{aligned} & \text { moter for only } \\ & \text { (complete with Tent }\end{aligned} 59 / 6$ Leads). P. \& P. 26.

A truly efficient Meter for the enthusiast: senaithyity ()-10-50-250-600-1,000 v. D.C. current $0-100-500 \mathrm{~m} / \mathrm{a}$., ($0-1 \mathrm{~m} / \mathrm{a}$. (at D.C. $10-10 \mathrm{w}$). Ressiatance $1 \cdot 2,000$ ohms (centre 24 ohms). $100-200 \mathrm{~K}$. (centre 2.400 ohman.), slize $5 \mathrm{in}, \mathrm{x} 3 \mathrm{in} . x 21 \mathrm{in}$. Brand now in manufacturers' ariginal hoxes.

DRAMATIC PRICE REDUCTIONS

AVANTIC SPAII Stereophonic Amplifier. Technical details: power output (each channel) 10 watts peak, L.S. impedance, 4,8 and 16 ohms. 6-position input selector, bass, treble, volume on/off controls, steren reverse switch, phase reverse switch, stereo Dimensions $14^{1} \times 81 \times 4 \mathrm{in}$. Original price 28 Gns. P. \& P. 7/6. OUR PRICE 19 Gns.
AVANTIC PL621 20-watt monaural Amplifier, frequency response $10 \mathrm{c} / \mathrm{s}-$ $30 \mathrm{Kc} / \mathrm{s} 1 \mathrm{~dB}$. LS. impedance, 4, 8 or 16
 Original price 29
PRICE 19 Gns.
AVANTIC STEPII. Stereophonic Magnetic Pick-up Amplifier Unit. Price E4/4/-.
SP21. 6 inputs for each channel, bass, treble, volume control, on/off stereo/3D/ reverse stereo switch, stereo phase switch, low pass filter. Power requirements 6.3 v . at 1.3 A., A.C. 350 v, at 5 mA . D.C. dimen-
sions $14 \frac{1}{2} \times 9 \times 4 \mathrm{in}$. Original price $£ 28 / 10 / \mathrm{c}$ sions $14 \frac{1}{2} \times 9 \times 4 i n$. Original
OUR PRICE $£ 16 / 19 / 6$.
All this equipment is Brand New and in manufacturer's original sealed cartons. Full descriptive literature avallable.

A new circuit for the home conntructor requiring a \quad pomil quality medium-powered Amplifier for reproduction of Records or F.M. Rroalluats. Technical Apecifications: separate base and trebic controla. Vialve Itne-up KF9. ELb.4. EZ80. Voltage adiustment for A.C. mains from 2011250 volt. 3 of 15 ohma imperlance. Neprive feemmen Slize $7 \times 5 \times 2 \mathrm{in}$. overall height 5 in . silver-hmmarey finished 1 hargis.

SINGLE PLAYER 8

 P. \& P. $3 / 6$ on above unts.

TRAN8CRIPTION UNIT8
inarrard 301
Giarrand 301
arrand 301 (ntrobe tum. 2281783 gartand $4 \mathrm{HP}^{\text {(}}$ (8tereo)
$\begin{array}{lll}218 & 4 & 8 \\ 218 & 9 & 9\end{array}$

Also 309 Edgware Rd., London, W.2.
Tel.: Paddington 6963

	Sra vidu and	new, indi- ly checked guaranteed	QP25 $\ldots .$. $5 / 3$ QS75/20 \ldots $6 / 9$ QS95/10 \ldots $6 / 9$ QS108/45 \ldots $8 / 9$ QS150/15 .. $6 / 9$	IS5 $\ldots . . .$. $5 / 9$ IT4 $\ldots \ldots .$. $4 /-$ 2A3 $\ldots . .$. $8 /-$ 2A5 $\ldots . .$. $8 /-$ 2A6 $\ldots . .$. $7 /-$	6K8GT $\ldots . . .8 / 3$ 6K8M $\ldots . .8 / 6$ 6L5G $\ldots .$. $6 /-$ 6L6 $\ldots . .$. $9 /$ 6L6G $\ldots .$. $6 / 6$	12SK7 $.4 /-$ 12SL7 $\ldots .$. $7 /-$ 12SN7 $\ldots .$. $8 /-$ 12SR7 $\ldots .$. $6 /-$ 15D2 $\ldots . . .$. $6 /-$	958A \ldots. $5 /$ 1619 $\ldots . .$. $5 /$ 1625 $\ldots . . .$. $6 /-$ 1626 \ldots. $4 / 6$ 1629 $\ldots . . .$. $4 / 6$
AC5PENDD 4/- AL60	EB34 \ldots..... 1/6	GL45010/-	$\begin{aligned} & \text { R3 } \\ & \text { R10 } \\ & \end{aligned}$	$\begin{array}{lll} 2 C 34 & \ldots . . & 2 / 6 \\ 204 A & \ldots & . . \end{array}$	$\begin{array}{lll} \text { 6L34 } & \ldots . . & 1 / 6 \\ \text { 6N7G } & \ldots . . & 5 / 9 \end{array}$	$\begin{array}{lll} \text { I5E } & \ldots \ldots . . & 8 /- \\ 15 R & \ldots & 7 / 6 \end{array}$	$\begin{array}{lll} 6120 \\ 7193 & \ldots & 1 / y \end{array}$
$\begin{array}{lll} \text { AL60 } & \text {. } & \text { 6/- } \\ \text { AP4 } & \ldots . . . & \text { 4/- } \end{array}$	$\begin{array}{lll}\text { EB91 } & \ldots . . & 3 / 9 \\ \text { EBC33 } & \ldots . . & 5 /-\end{array}$	$\begin{array}{lll} G Z 32 & \ldots . . . & 9 /- \\ \text { HL23 } & \ldots . . . & 6 /- \end{array}$	REL2125/-	$2 \times 2 \ldots \ldots . .$	6N7GT 6\%	20A2	$7475 \text {...... } 5 /-$
$\begin{array}{llll} \text { AP4 } & \ldots . . . & \text { 4/- } \\ \text { AR8 } & \ldots . . & \text { 5/- } \end{array}$	$\begin{array}{llll}\text { EBC33 } & \ldots . . & 5 /- \\ \text { EC52 } & \ldots . . & 3 /-\end{array}$	$\begin{array}{llll}\text { HL23 } & \ldots . . . & 6 \\ H L 23 D D & . .8 & 8\end{array}$	$\begin{array}{lll}\text { RK34 } & \cdots . . . & 2 / 6\end{array}$	3A4 5/-	6Q7G 61-	2186 9/-	8013 A25/-
ARDDS ... 2/-	ECC81 5/6	HL4IDD ... 8	RX235 ...10/	$3 B 7$........ 5/-	6R7G 6/-	30 5/-	8020 6/-
ARP3 3/-	ECC82 6/6	HVR212/6	SP2 ${ }_{\text {SP4B }}$	3B24 3/-	6R7GT 8/-	$35 T$........30/-	9001 4/6
ARP4 $\ldots . . .3$ 3/6	ECC83 7-	KRN2A ...19/-	SP4B SP13C $\cdots . .$. 16	3 E 29	6SA7 6/5	35Z4GT ... 7/-	9002 5/6
ARPI2 $2 / 9$	ECC84 7/-	KT2 $\ldots \ldots ~ 4 /-$	SP13C 4/6	0/-	6SC7G 5/6	37	9003 5/6
ARP21.... .5	ECC85 8/-	KT31 \ldots	SP41 2/6	305GT 9/-	65C7GT ... 6/-	38 4/	9004 4/-
ARP24 3/6	ECC91 4/-	KT32 8/-	STV280/40 17-		6SG7	58 61	9006 4/-
ARP34 4/6	ECL80 8/-	KT33c $\ldots . . .419$			$\begin{array}{lll}65 \mathrm{H} \\ 6517 & \cdots . . . & 4 / 6 \\ 6519\end{array}$		Cathode Ray
ARTH2 7/-	EF22 7/3	KT44	SU2150A ... $4 / 9$	5T4 ${ }^{\text {5U4 }}$........ 9/- ${ }^{\text {9/- }}$		$\begin{aligned} & 75 \\ & 76 \end{aligned}$	Tubes:
ATP4 2/9	EF32 5/,	KT63 6/-	TP251/-	5Y3GT 6/-	6SFS ${ }^{\text {6SJ7G }}$....... 8/- $5 / 9$		CV1596
ATP7.... .5	EF36 $\ldots3 / 6$	KT6611/-	TP2515/-	5Y3GT $81 /$	6SJ7G 6SK7	$77 \text {............ 6/- } 7 /-$	(091) ... 55,-
AUI 5/-	EF37A 8/-	$\begin{array}{llll}\text { KTW62 } & \text {... } & 7 / 6\end{array}$	TZ2016/-	5Z3 ${ }^{\text {5Z4G }}$....... $8 / 6$	6SK7		5BPI …..35/-
AU4 5/-	EF39 4/3	KTW63 ... $6 / 6$	$\begin{array}{ccc}\text { TZ20 } & \text {......16/- } \\ \text { U17 } & \text {...... 5/- }\end{array}$		6SL7GT 6SN7GT	80 . $82 . \ldots \ldots \ldots$ 6/3	5CPI42/6
AW3 4/-	EFSO $2 / 6$	MH4 $\ldots . . .3 / 6$	U18		6SN7GT ... 4/6	82 v	5FP7 …...45/4/
AZ31 8/-	EFS4 3/3	MH41 5/-	U27 ……... 8/-		6SQ7	$83 \mathrm{~V}^{84}$.........12	7BP7 40/-
BL63 6/-	EF55 61-	ML4 4/-	US2	$\begin{array}{lll} \text { 6AG5 } & \ldots . . . & 3 / 6 \\ \text { 6AG7 } & \text {...... } 6 /- \end{array}$	$\begin{array}{lrrr}\text { 6SR7 } & \text {..... } \\ \text { 6S57 } & 6 / 6 \\ \text {....... } 6 /-\end{array}$		12DP7 …..601-
BS4A 5/6	EF70 4/-	MS/PEN ... 6/-	UL41 \times....... ${ }^{\text {7/- }}$	6AJ7	$\begin{aligned} & \text { 6557 } \\ & \text { 6UGG } \ldots \\ & \hline \end{aligned} \text { 6/- }$	89 6/- 6	VCR97 ...15/-
BT45 25/-	EF73 6/-	NT37	UL84 $\ldots \ldots . .7 / \overline{6}$	6AK5	6V6GT 6/6	210 LF 3	VCRX258 (with
BT9B40/\%	EF80	(4033A) 10/-	UL85 ….. 7/-	6AK7 …… 8/-	6×4......... 5/-	210 VPT 7 pin $2 / 6$	scanning coil)
BT83 CY31	EF856/10	OD3 …. 5/-	UU9 5/6	6AMS ….... 51-	6X5GT ${ }^{\text {6 }}$..... $6 /-$	705Al7/6	VCRI38 45/-
CY31 $\ldots . .11 / 6$ D41 $\ldots .$. $1 / 3$	EF86 9/-	$\begin{array}{lll}\text { OZ4 } & \text { P.... } & \text { 5/- } \\ \text { PCC84 } & & 7 /-\end{array}$	VP23 … 3/6	6AM6 ….. $6 / 3$	6Y6G 8/-	715B97/6	VCRI38 ...30/YCI39A ..35/-
D77 4/3	EF91 3/6	PCCBS 81-	VP41 5/6	6AT6 5/-	7C7 6/6	717A B/6	
DA3012/6	EF92 4/6	PCF80 7	VR78 4/-	688 5/6	6Z4 5/6	801 8/-	Photo Tubes:
DAF91 6/-	EF95 $7 / 6$	PCF82 8/-	VR99 8/-	6B8G $2 / 6$	7Q7 7/-	80322/6	CMG89/-
DAF96 8/-	EL32 3/9	PCL82.... .816	/30 ... $7 / 6$	6C4 3/6	7V7 5/-	804551-	CMG25 8/-
DD41 4/-	EL33 8/-	PEN25 $4 / 6$	VT4C25/-	6CS ${ }_{\text {6CG }}$	7Y4	805 AMER... 7	
DETS15/-	EL3S $\ldots \ldots88 / 3$	PEN65 $6 / 6$	VU39 6/-	6C8G 5/-	8D2 $2 / 6$	807BR 5	
DF72 7/6	EL42 9	PEN220A... 3/=	VUIII 3/3	6D6 4/6	9D2 3/-	808 8/-	
DF91 3/3	EL81 6	PENDD $13369 / 6$	V $\times 3138$...12/-	6ES 5/-	12 A 6 5/-	81080/-	3A/1481 ...45/-
DF96 8/-	EL84 7/6	PG7/515/-		6F6G 4/-	$12 \mathrm{AH7}$...... 7/-	811A 813 l	3J/I70/E
DL92 6/-	EL8510/-	PL3610/6	Y66	6F8G $\quad6$ 6/6	l2AT7	815	3J192/E C37/10
DL94 6/-	EL91 7/6	PL81 9/-	Z31 6/-	6G6G 3/-	$12 A \times 7$	816 30	723A/B501-
DL\% 8/-	EM80 8/-	PL82 8/	1A3 …..... 3/-	6H6M 2/-	12C8 3/-	826 … 10	725A30/-
DX25 9/-	EN32 7/6	PL83 7/9	IA5GT ... 5/-	6.5 -....... $3 / 6$	12 El . $\ldots . .22 / 6$	829A 30	
EBC21 8/-	ESU209 8/-	P125H 7/6	1CSGT 7/6	6J7 7/6	12H6 2/-	83215/-	$\begin{array}{ll} \text { ACT6 } & . . . \\ \text { ACT17 } & 200 /- \\ \hline 55 /- \end{array}$
EBC91 3/9	EY51 8/-	PX419/-	ID8GT 6/-	6J7G 5/-	12K8M 9/-	832A35/-	ACT17
E1232 5/6	EY86 8/-	PY80 $6 / 9$	$\begin{aligned} & \text { IE7GT } \\ & \text { IG6GT } \end{aligned}12 / 6$	${ }_{6 J 6}^{6 J 5 G} \ldots$	$\begin{array}{llll}12 J 5 G T & \ldots . . & 3 / 6 \\ 125 A 7 & \end{array}$	86	CV691 ...40/-
E132325/-	EY91 3/6	PX25 9/-	IL4 $3 / 6$	6K6GT゙ 3/6	12587 ….. 1256 $1 / 6$	872A35	KR345/-
EIS24 6/6	EZ80 …… 6	PY81 7/-	ILDS 3/6	6K7G 2/3	I2SG7 6/6	930	LS7B 30
EA50 1/6	EZ81 $\ldots \ldots . .6$ 6/9	PY82 8/-	ILN5 4/9	6K7GT 4/9	$12 \mathrm{SH7}$...... 3/-	954 2/=	V $\times 7110$
EAC91 4/6	FW4/500 ... $6 / 6$	QP21 6/-	IR5 6/-	6K8G 5/9	12517 6/-	956 2/-	WL417A ...15/-

AND MANY OTHERS IN STOCK including Cathode Ray Tubes and Special Valves.
All U.K. orders below 10/- P. \& P. 1/-; over 10/-1/6; orders over 63 P. \& P. free. C.O.D. 2/- extra. Overseas Postage extra at cost.

MARCONI SIGNAL GENERATOR. TF 144G. $85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}$. Made up to new standards, $\mathbf{6 7 0}$. Delivered free.
TELEPHONE HANDSET. Standard G.P.O. type new. 12/-. P. \& P. 1/6.
TRANS-RECEIVER No. 22.
TRANS-RECEIVER No. 22. 2 megacycles to $8 \mathrm{Mc} / \mathrm{s}$. Built atmost exactly as Number 19. Set much more economical in battery consumption. Complete in fully working condition with power pack for 12 volts, head-gear and microphone assembly, key. 69/19/6. Carriage 5/-
U.H.F. SIGNAL GENERATOR TYPE TSI4 $3,200-3,370 \mathrm{mc} / \mathrm{s}$., power measuring range $20-$ 200 mW ., R.F. Output power -20 to -100 dbm below 1 mW . Power supply 115 w . A.C. Price 615. Carriage 15/-.
SCR 522 RECEIVERS (BC624), $100-156 \mathrm{Mc} / \mathrm{s} .$, no valves, 7/6. P. \& P. 5/-.
H.T. CHOKES made by Bendix Radio (U.S.A.) 3 henrys .600A D.C. 25 ohms D.C. resistance. 18 volts R. M.S. 60 cycle test, \& $1 / 12 / 6$. P. \& P. $6 /-$. resistance 1500 R.M.S. 60 cycle test 16/6.' P. \& P. 3/6.

MINIATURE RELAYS. Changeover 12-30v. D.C. supply, 5 amps. concacts, 5/-. P. \& P. 2/-. PRE-SET DOUBLE POTENTIOMETERS, $2 \times 3,000$ ohms linear 4 w., 5/-. P. \& P. 1/6. CARBON INSET MICROPHONE, G.P.O. type, 2/6. P. \& P. 1/-.
SPECIALLY BUILT POWER PACK for TCS receivers, 230 volts A.C. mains, including 6X5GT valve. 63!10/-. Carriage 5/-.
VACUUM CONDENSER. $32,000 \mathrm{v} ., 50 \mathrm{pF}$., 12/6. P. \& P. 3/-
SUPPLY UNIT RECTIFIER No. 21. Fully sealed enabling all sers builr for 6 v . (R209 $9{ }_{90} \mathrm{v}$, ete.) to work from A.C. mains. Input 90 v. 260 Vi A.C. (taps at ${ }^{2}$ intervals) output exceltentiy smoothed up to 10 amps with
meter indicating exact output voltage. Measmeter indicating exact output volage. Meas-
urements $12 \times 9 \times 10 \mathrm{in}$. Price fg. Carriage urements 12×9.
and packing 15/-.

BRAND NEW ORIGINAL SPARE PARTS FOR AR88 RECEIVERS.
I.F. TRANSFORMERS, lst, 2nd, 3rd, 4th (for rype D), $12 / 6$ each, or complere see of 6 , $60 /-$ - .ryans formers. Cryscal Load, $12 / 8$ each F. Transformera. Cryscal Load, $2 / 6$ each Dials (for type D), 10/- each. Dials (for type D), 10/- each.
Fogsing dial (for D and LF), 10/- each, Filter Chokes (for D and LF), 22/6 each Output Transformers (for LF), 30/- each. Antenna Trimmers (LF and D),
Fiter Condenser $3 \times 4 \mu$ F, $2 / 10$)-
Condensers, $3 \times .25 \mu \mathrm{~F}$
(D and LF), $2 / 6$ each; $3 \times .01 \mu \mathrm{~F}$ (D , and LF), $2 / 6$ (La and
RF Antenna Inductors (D and LF), $7 / 6$ each. Mains Transformers (LF), $\mathbb{1}$ each.
Small Mica Condensers, various values, /6 each.
Instruction Manual for AR88D, 61.
MARCONI CR- 100 COMMUNICATIONS RECEIVER. $60 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$, with noise limiter. Completely reconditioned, $\mathbf{\text { E25}}$. Carr. 25/-.
LABORATORY PRECISION VARIABLE CONDENSER. Manufactured by General Radio Co., U.S.A. 50-1,500 PF with micromatric drive and calibration chart. Overalt dimensions of case $9 \times 8 \times 7 \mathrm{in}$. Price $\mathbb{1} 15$. Carriage $15 /$-.

P. C. RADIO LTD. 170, GOLDHAWK RD.
 W. 12 SHEpherds Bush 4946

R209 RECEPTION SET. A 10 -valve highgrade Super Heerodyne Receiver with facilities for Receiving R/T (A.M. or F.M.) and C.W. frequency I Mc/s-20 Mc/s. Hermatically sealed. Built on miniacure valves and incorporating irs own vibrator power supply unit driven by 2 6 v . battery (2 -point connector included). The set provides for reception f́rom rod, open-wire or dipole aerial with built-in loudspeaker enr phone output. Overall measurements: Leng.h 12 in ., width 8 in., depth 9 in. Weight 23 lts . in as new, tested and guaranceed conditicn, c23/10/-, inctuding special headphone and supr ly eads. Carriage il
19-SET OWNERS. To increase outpur of your ser six to ten times use RF AMPLIFIER No. 2 with built-in rotary converter for $1 \% . \mathrm{v}$. input. Four 807 valves outpul. Simple connection with transmitter. Fully tested condition, 69/15/- including necessary connectors and inseructions. Carriage and packing $15 /-$. AR 88's. Completely rebuilt with new PVC wiring. Type "D." E75; Type " LF," E70. COMPLETE SET OF STRONG AERIAL RODS (American). Screw-in eype MP.49, 50, $51,52,53$, cotal lengeh 15 ft . 10 ft , top diameter. 0.615 in ., botzom diameter 0.185 in ., rogether with matched aerial base. MP37 with ceramic insulator, ideal for car or roof insulation, 62/10/-. 'Post free.
R 109 RECEIVERS. $1.8 \mathrm{Mc} / \mathrm{s}-8.5 \mathrm{Mc} / \mathrm{s}$ working from 6 v. D.C. Complece with all valves and built-in speaker. In excellent, guaranteed wCS RECEIVERS made by Collins of U.S.A., TCS RECEIVERS made by Collins of U.S.A., in fully guaranteed workint condition. $1.5-$
$12 \mathrm{Mc} / \mathrm{s}$. $\mathrm{Line}-\mathrm{up}: 1257$ (1), $12 S Q 7$ (1), 12 A 6 (2), $12 \mathrm{Mc} / \mathrm{s}$. 3) $12 \mathrm{ne-up:}$: rawer requirements 12 voles L.T., 225 vols H.T., $\mathbf{f 1 1 / 1 0 / - \text { . Carriage } 1 2 / 6 . ~}$ VARIOMETERS for W/S No. 19. Fully tested and working, 12/6. P. \& P. 2/6.

PERSONAL CALLERS WELCOME

Tubes
HIOHEST QUALITY－NEW LOW PRICE8 $\underset{\substack{\text { Canr．} \\ \text { Lan } \\ \text { L2，}}}{ }$ GUARANTEED
most mollasd， EMATRAON COASOR EMTPRON，ETI： PERREATIT TYPES， PROCESSED OUR OWM PAC－ TORY．
 NEW Tosi 19 ｜－
$9 / 10 \mathrm{in}$ ．
12 in ．
14in．
15／17in． $2 l \mathrm{in}$ ．

${ }^{8}$ fronthy	12 Month	NEWTYPES
£1－10－0	83－0－0	
£1－15－0	£3－10－0	¢4－
£2－0－0	84－0－0	
£2－15－0	84－15－0	
£3－15－0	£5－15－0	\＆5－15－0

4－SPEED

RECORD PLAYERS

Latest turntable，together with lightweight Staar－Galaxy dual sapphire crystal turnover pick－up （pick－up only 19／－．）8／10／m．
Carr．3／－model as above $83 / 19 /=$
Carr．
B．S．UA8 Autochanger 28
3．S．UA8 Sterio Head 15

0 | 3．S．R．UA8 Sterio Head $t 619$ |
| :--- |
| B．S．R．UAl A Atochanger |
| 19 |
| 19 |

 100 RESISTORS 6／6 100 CONDENSERS 10／－

I．T．V．CONVERTORS

fitting．Band change ewitch． $39 /$

13 CHANNEL TV＇s
TABLE MODRLS，FAMOUS MAKES． Abolately complete
These aeta are unequalied in value doe to are untested and are not guaranteed to b $1 \mathbf{1 月}^{1}-£ 3.19$ 14＂－£5．19
AL80 12＂ 5 CH．TV＇s 55／－
TRAVBISTozs．Yellow spot 2／9，Green Ypot 2／6，Red apot $3 / 8$ ，White spot $4 / 6$ ，

 4A88 17／＝： 14 A97 $27 /=1+A 100$

PM SPEAKERS | Top mike |
| :---: |
| dainnled |

VALVES

BY RETURN OF POST ODARAMTERD 8 MONTHS NEW LOW PRICES

10\％DISCOUNT | special oprge |
| :---: |
| $\substack{\text { TO PuRc }}$ | of amy SIZ VALYe marked in plak the（ 15% in domana）．Poot： 1 valve bd．；2－11， FREP TRAMHT IMSURADCE．Al valves are new

la7GT 11
1030T 10 licsor 1 1NA
1NGGT 1NBGT
1RS拿雲

tee on poods if retumed unused within it days．

EB91

$8 / 0$	8MAL
$8 /-$	EY80

-	BYALL	$4 / 9$	029
EZ 20			

16	U 8
19	U 2 A
18	U 28

Vital up－to－date facts and figures for the radio
 and electrical industries
 The annual directory of the radio，tele－ vision and domestic electrical industries， including trade addresses，wholesalers＇ directory，legal information，rates of pay in the industry，list of proprietary names and classified buyers＇guide． Features include television section， specifications of current radio and tele－ vision receivers，tape recorders and a section devoted to valve base connections and diagrams．
 15s net by post $16 s$ 6d 478 pages
 from leading booksellers
 Published for
 ＂Wireless \＆Electrical Trader＂
 by ILIFFE Books Ltd．
 Dorset House，
 Stamford Street，London S．E．1．

PULLER ELECTRONICS

TUNING FORKS
Frequency
Accuracy
Temperature Range
Drive required as Resonance
Typical＂o
Typical
Dimensions
These are Rugeed Encapsuled $3 \pm \times 2 i \times 2$ tins．
Precision Audio Seandard or as Fork which may be used as a Signal ac the fork frequency causes che fork so vibrate，so inducing signalal in the pickup coils．The very hish effective＂t coupled with good srability provides an accurate Audio Fre－ coupled with good stability provides an ace
quency Generacor or Precision Signal Fileer．
THE PLESSEY SYNTHESIZER
The Plessey Synchesizer is a cryscal－controlled frequency standard having an accuracy of 1 part in $10 / 6$ hss．Incorporating It is capable of standardizing frequencies over the of 200／250V． so $10 \mathrm{Mc} / \mathrm{s}$ direct and by harmonic extension to $300 \mathrm{Mc} / \mathrm{s}$ ．It is to $10 \mathrm{Mc} / \mathrm{s}$ direct and by harmonic extension to $300 \mathrm{Mc} / \mathrm{s}$ ．It is
also arranged to provide an output of at least 0.1 V ．across 80 ohms load at any kc / s interval from $2 \mathrm{kc} / \mathrm{s}$ to $10 \mathrm{Mc} / \mathrm{s}$ with an accuracy of 1 in $10 / 6$ ths and a similar output over a continuously variable range of $5 \mathrm{kc} / \mathrm{s}$ to 10 Mc／s，with an accuracy of I part in provided ins or minus $10 \mathrm{c} / \mathrm{s}$ ．Mixing and miter arrangements are provided in such a manner that the wavemeter is direct reading and the procedure for obtaining any frequency is reduced to turning switches and tuning filters．The wavemeter consists of VALVE VOLTMETERS

Batantine model 300 ．Frequency range 10 cycles to $150 \mathrm{Kc} / \mathrm{s}$ ． Accuracy 2% below $100 \mathrm{Kc} / \mathrm{s}$ and becter chan 3% above $100 \mathrm{Kc} / \mathrm{s}$ ． By using che oucpur jack the amplifier section of the volemeter may be used separately giving a max．voltage gain variable up to 70 db ．The gain is adjustable by means of the range switch in
steps of 20 db and finer adjustments in gain are provided by the steps of 20db and finer adjustmen
KLYSTRON POWER SUPPLIES
Low voltage types suitable for 2 K 25 ．Also associated bridged T selective amplifiars．Frequency $3 \mathrm{Kc} / \mathrm{s}$ ．

Service Facilities for Most Types of Electronic Equipment
PULLER ELECTRONICS IA，WHITEHALL PARK，LONDON，N． 19 ARChway 1678

BARCALISin ELECTRONIC EQUIPMENT offered by UNIVERSAL ELECTRONICS

For LA
FREQUENCY MEASUREMENTS

R.C.A.	Wavemeter Type
T2149.	Accuracy $.5 \%$.
$2 \mathrm{Mc} / \mathrm{s}$	0 mme/e. New un-
used.	Complete aparea
and	chical manual in

and. Complete sparea tranaft case
$21010 \quad 0$
BENDIX Type Frequency Mators:-
 T8174, $20-250 \mathrm{mec} / \mathrm{s} . .$.
Th178, $80-1000 \mathrm{mc} / \mathrm{s}$. T178, $80-1000 \mathrm{tmc} / \mathrm{c} . .$.
L. Preq. Meters, 1 . LI. Preq

T8180D Freq. Meter, 100
10,000 mels. Write for quotation rerption $850 \cdot 1000$ ab. e45 0
LAVOIE LAB 100.800 mc / a. Accuracy $.001 \%$. Write for MULLARD High speed
Valve Teater with cards. . $265 \quad 0$ MARCONI Audio Oecilla2or 105L. pedance Bridgt Typ ess 0 A55
SIGNAL GENERATOR EQUIPMENT
AIRMEC AM. FII. Ty me/k. FM. $16 \mathrm{kc} / \mathrm{m} .32 \mathrm{me} / \mathrm{m}$. 1 microvalt 0.1 attenustor meter set mod. and set carrier $0-30 \mathrm{kc} / \mathrm{g}$. F.M. de-
vithon. $150-250$ A.c. or 12 vietlon. 150-250 a.c. or AS NEW complete...... AS 0 MARCONI Video Onc. $T y p e 885$ and $885 / 1,25 \mathrm{c} / \mathrm{s}$.
$5 \mathrm{~m} / \mathrm{ca}$.
 $76 \mathrm{c} / \mathrm{s}, 465-900 \mathrm{mc} / \mathrm{h}$.
$760 \mathrm{~m} / \mathrm{s}, 300-600 \mathrm{mc} / \mathrm{s}$. 1449, $85 \mathrm{kc} / \mathrm{s} .-25 \mathrm{mc} / \mathrm{s}$. $3000,16 \mathrm{me} / \mathrm{s}-180 \mathrm{mc} /$ 517, $150-300 \mathrm{mc} / \mathrm{m}$. 018. TV Test Bet.

Tenter Portable Recelver
E.M.I. Type $9 D / 051,30$ ADVANCE Type D1, $10-310 \mathrm{mc} / \mathrm{l} \ldots . . \mathrm{N} \cdot \mathrm{Cl}$ e4s 00
 BOONTON Type \& $300-1000 \mathrm{mc} / \mathrm{m} . . . \cdots . .2200$ HEWLETT PACKARD Type II-1878s Range
$520-1300$ me/s. Accuracy $\pm 1 \%$ Output voltage $1 \mu \mathrm{~V}$ to 100 mV . Impedance 50 ohms. Reconditioned completely; with calibre tion charth and guranteed 812500 Oecilmtor. $30 \mathrm{c} / \mathrm{s}, 20 \mathrm{kc} / \mathrm{s}$. in three bands. Output, B wathe intr
$3010,200,600$ ohms. Metered input 3060 ohms. Metered Input
mad output. Callbrated mand output. Cailbated
atenuator
Type 200A, 35 c/a.-35,000 28500 Type 200A, 35 c/s.-35,000
c/a. 2 watis............ 235 0

OSCILLOSCOPES
 COSSOR Type 830 1085 1049
 ERSKINE Type 18
 DUMONT Type 241
 MULLARD Tope E800 2450

DUMONT

USM-38 Minlature Oacil. soscope 115 s . AC power
 e.pu. $+\frac{\mathrm{mc}}{\mathrm{mc} / \mathrm{u},} \pm 2 \mathrm{db}$ Ireq. reaponse. 1 megohm, 28浣 time base. $1-10,000 \mu \mathrm{~s}$ marker. Calibrated ver* tical amplifier. Trigger
$1.2 \mathrm{fs}, 45 \mathrm{cp}-515 \mathrm{kc} / \mathrm{n}$. RPS. Attenumtor. Cathode
follower. Detector probes.
NEW T8SH: Portahlo Oacillo.
scope. 2 in . Cathofe Ray Tube whth Magnifier. Time Rsse 10.50 .000 e/s free
runnige, and 850 and 250 mise. single-stroke sweep. me/s. internal calibrating pulse input 12 to 1 volt for
In. deflection maximum.
probea ….................
Type 1684D/2 3/in. sereen.
Time beve frequency $2 \mathrm{c} / \mathrm{m}$,
to $150 \mathrm{ke} / \mathrm{c}$, extendable to
$00.2 \mathrm{c} / \mathrm{s}$. Bendiltity .7
$\mathrm{mm} / \mathrm{mav}$. rma modulation
avmilable
ihrough A.C.
coupling. Price 860 . 0
METROPOLITAN VICKERS
crse, $-40{ }^{2 g \mathrm{kn}} \mathrm{kc} / \mathrm{s}$. themen bise. 10 4pe, - $-10 \mathrm{kc} / \mathrm{s}$. thmo base. $\begin{array}{llll}3 \mathrm{llb} . & 25 & \mathrm{c} / \mathrm{a}-150 & \mathrm{kc} / \mathrm{s} . \\ 1.6 \mathrm{c} / \mathrm{cm} . & 3 \mathrm{db} . & 25 & \mathrm{c} / \mathrm{s} .\end{array}$ $1 \mathrm{me/s} ,0.5 \mu \mathrm{~s}$ deliny line.

 Price 84500

MICROWAVE EQUIPMENT

 SBAND
T814. $3200-3370 \mathrm{mc} / \mathrm{s} . . .250$. 00
MARCONI spectrum An.
alyser, TPQ4 $2,900+3,150$ 2100 00
Valves. type 707A, 780A.
WAYNE KERR
8 Band Q Meter. Deaigned
to measure the time con-
" ${ }^{\text {sent, of any }} \mathrm{g}$ band echo
box having a time constant
hetween 1 and 3μ. An
NEW condition.
Frioo and cotalls on request.
780 Klystrons. Magne.
Microwave components
X BAND
SYLVANIA Bpetram
Anather, TYFE Thite for quotation,
Teat sol TEiS AP. 8700 .
9525. 10 mw . pwr. O/put.

37 db . power meter...... e50 00
Test Bet Til13/AP.
PM $385.9,465 \mathrm{mac} / \mathrm{s} .1,200 \mathrm{c} / \mathrm{s}$.
FM quare wave, 0.2-0.5
micro/eec. pulse $10-200$
micro/sec. delays... $8110 \quad 0 \quad 0$

723/AB. CV199. Xtals.
1N23.
K BAND
Trase 81 mal Generthor.
$23,500 \cdot 24.500 \mathrm{mc} / \mathrm{s},-10$
to -80 dbm. power out-
put. +10 to +50 ditme
put. +10 to +50 dbun.
Xtale 1N2s. Write for guotation.

Tuneable Cavity Valves.
NEW. Unused $3 \mathrm{~cm}, \ldots$. E5 0

COMMUNICATION REGEIVER8

RACAL Communicetion Recejver, 1980 for grotation.
Further detaile of the above end comproberive othlorma and Iupploment of Equipment available to kaborelory

For RADIO \& T.V. Servicemen

UHF RECEIVERS

Type AN/APR4. UHF Receiver. Range 40 genultivtiy 3s-60 \mathbf{i} V. This Recelver can be supplied Filh main 1.F. Btage plete of aeparately writo for guotation. plete or aeprarately write
 Det.0pre-amp 3 output stage, 8 rect. 115 v. A.C.
SULLIVAN Variable Air
Condomer. Dual range
38 platels pl. New. Un-
calibrated............... 83

HAM RECEIVERS
R.A.C. ARBsLF.

245 0

EDDYSTONE $6+0 \ldots$.
HAMMARLUND super
HALLICRAFIERS

AUDIO ITEMS

WRIGHT \& WEIRE

Tape Head K.P. Type FR4 21150 COLLARO Erase...... 150 MARRIOT Rec/Play Head e1 00 B.S.R. TCA Xtal
cartridge
${ }_{81}^{81} 150$

AUDID DSCILLATORS

FURZHILL $0.10 \mathrm{kc} / \mathrm{s} .$. .	280		0
MARCONI $0.10 \mathrm{kc} / \mathrm{s} . .$.	215		0
B.S.R. $0.16 \mathrm{kc} / \mathrm{s}$.	288		0
HEATHKIT Q Meter (U.A.A. buill and guaranteed) \qquad	845		0
SMALL CRYSTAL OVEN, $31^{\circ} \times 3^{\circ} \times 21^{\prime \prime}$, 230 v. A.C. and 12 v. type. each		15	0

PLEASE NOTE

All equipment under Laboratory heading is reconditioned to makers' specifications and guaranteed.
Those listed under other headings are guaranteed in good working condition.

Our laboratory can undertake reconditioning of electronic instruments or realignment of receivers to original specimonth Guarantec.

UNIVERSAL ELECTRONICS

22-27 LISLE ST., LEICESTER SQUARE, LONDON, W.C.2.
Tel: GERrard 8410 \& 4447
Shop Hours: 9.30 a.m. to 6.0 p.m. Thursday 9.30 a.m. to 1.0 p.m OPEN ALL DAY SATURDAY

25FT. AERIAL8

Super quality very heavily galwabied reel tubes, no guy ropel needed, four 5ft. 2in. dis, neel tubes fit into ceramic insulated hase, these are then pegged to the eround. Aerial mast in four sections steel zubes 28 in dis., tapering to lin. at cop of mast. Complete aerial with all poles, base and stakes, etc., \&1810/Weight packed 21 cwt .

GRAHAM GEARED MOTORS
115 v. A.C., $1 / 6 \mathrm{th}$ H.P., variable npeed box 0.166 . sise of undt $141 \times 91 \times 8 \mathrm{in}$. 28/10/-. Carr. 10/-
 6ACB, with controls, etc. In n neat metal box $11 \times 6 \times 61 \mathrm{in}$. $50 / \mathrm{Fesch}$. Foet $2 / 6$. ROTAE CONVEPTORS Types 8A, 84 v. D.C. lapat, 118 v. A.C. at 1. sampa, 400 o.p.s. Ephate. Jut the jot for the laboratory or experimonting. $28 / 10 /$ esech. Carr. $7 / 6$ a D.S.A. R-D/APM-4 Recerivers designed for RDP. Valvea 1-68N7. 4-68K7, l.VR10s, 1-5U4G, $1 \cdot 6 \mathrm{BLLF}, 3-6 \mathrm{~B} 4 \mathrm{G}, 2 \cdot 879 / 2,1 \cdot 68 \mathrm{~S} 7$, all OT type- Complete unit Pacth transformera, condenwera, etc. As new. Arat-clas condition. Price 65/- each. MoDTIATOR DYIT
MODULATOR UMIT8. MD 7/ARC5. 2×1625. 12NB, vB150. Modulation trant former, B Relays, etc., $\$ 2 / 6$ each. Poat $3 / 6$.

 conaervatively ruted. (1) 230 v ., input 2×6.3 rolts (TT, at 3 ampr . and 6.3 volte 6.3 volto CT, at 3 atippe. ounput, $17 / 6$ each. (3) 250 volt tnput, 28 volte at 2 ampa and 2 volt at 1 mmp ., $12 / 8$ emch. (4) 230 volto tuput, 3×6.3 volts at 3 ampm . CT $1,6,8$ volta 3 amps, ge/6 esch. (All these transformern aro new and boxed, please thelude poatage $3 / 6$ each.)
CATHODRAE TUBES, CV 1528 (3EG1) 3 tnch fil. A Folta. Anode 1,300 volte Baee eame an 139A, U12, $\$ 5 /$ eanch. Carriage $2 / 6$. CV 1825 . Idenil tube for the amall scope, $35 /$ each. Packing and carriage $2 / 6$. Brand new
AMERICAAN COYPUTERS AK-II-7OA. Bingle parallax. Containg 8 relaya 10 k ., 2 change-over plat. contacts. 8 relays 300 ohmag, 2 change-over ailver contact (a) relaya are emall type), 9×6 V6 emall (TT. $3 \times 6 \times 5$ GT., and 2 68N7. Seven smalt

DOUBLE PARALLAX AN-II-70-9. Blmillar to the above but larger, etc., welght Moron sminer. $818 / 10$-cach. car. 01
MOTOR AgsEitnLz. Bervo unt, C-1 11 A 01020. 28 volta D.C. Auto pllot. Now In cartons, Price $83 / 10 /$ - each. Carriage $7 / 6$. C-1 Auto plot fight gyro unlt. VARIABLE REBIgTORs, 3 ohma $10 \mathrm{mpm}, 18 / 6$ each. Foet $3 /{ }^{\circ}$.
TRANBFORYERS (drop thro' type). 110 and 230 volte pri., 275-0-275 at 125 tals.

ROTARI CONVERTORs. 24 volta D.C., Input 11 anps., 230 volte A.C., output at 80100 Whtta D.C., regriated, volmeter $0-300$. atariter and controis, aico Fuse DEsYin HETER HOVEJENTE. 24 v. D.C., 18,6 each, $1 / 6$ pont.
BACKS O CEAMNEL IRON E4 each, other typen from e2, carr. 7/6.
MCROPHOIRS C.s. Carbon insert. 7/6 each. poat $1 / 6$. G.P.1. breaat not carbon thsert. 7/6, poot $1 / 6$. No. 7 Moving Coll. $18 / 6$ each, poot $1 / 6$.
BC 40 MODULATION TRAMSFORMERs. SO watts, $39 / 6$ each, $3 / 6$ poat. silica gel in 16 oz . barse, 8 for $5 /=$, port $3 / 6$.
PRBCISION RESISTORs, $3 \times 1 \mathrm{mes}$ - on panel, 1% tol. $5 / 6$ each, $1 / \cdot$ pont. $25 \cdot$ way ceble, P.V.C. 11/44G.. $4 / 6$ per yard, plum poat.
APRSA RECEIVER. 1,000 to $6,000 \mathrm{Mc} / \mathrm{s}$. 585 each.
L.Z, PREQ. HETER AND SIGNAL GEN. BC 1277 A, 225 emch.

PRTasuRE GADGEs. Bin. acale mm.h.g., $0.250 .50 /-$ each, post $3 / 6$.
ARRCRAFT GAOGRs. 0.100 temp., $0-2001 \mathrm{lb}$. per eq. th. 0.101 b , , tll th one came. New, boxed, 82 each, poet 2/6.
HELATB, 12 volt D.C., seml-rotary 3 p., DT., heavy duty, $7 / 6$ each, $2 / 6$ pont.
sTARTER HOTORS. 24 volt D.C., approz. so ampa, ROTAX CBsol rotation C/W. can be used as a D.C. Wenerator, charyer, or powertul D.C. motor. Brand new in original wood camen, 26 each, $7 / 6$ carr.

IMSOLATORS, EITERA, AIR-BPACED TRMMERS, SWITCHRg, ETC. Lrom stook. Grantities availabio.

TERMS C.W.O. All goods offered are ex-W.D. S.A.E. for enquiries.

W. MILLS

3-B TRULOCK ROAD, TOTTENHAM, N. 17

THE classified guide to

Britain's plastics industry

> British Plastics

YEAR BOOK 1961

over 8500 changes bring this guide right up to date

Provides the only classified guide to the products of Britain's plastics industry. It includes lists of suppliers of raw materials, products made from plastics, and plant and equipment; processing and fabricating services offered by the industry; a list of proprietary names; Who's Who in Britain's plastics industry; details of associations and federations; technical definitions and data; basic properties of plastics; names and addresses of manufacturers, associations and federations at home and abroad; and details of new companies registered in 1959.

45s net by post 46s 9d 712 pp

from leading booksellers
published for "British Plastics" by ILIFFE Books Lid DORSET HOUSE - STAMFORD ST • LONDON SEI

RADIO CLEARANCE LTD.

[^19]
TRANSISTOR COMPONENTS

sUB MinIATURE ELECTROLYTIC CONDEmeErs

25
25
10
15
15
v.

sUB minature transibtor coms
set of 3 I.F. Tranalormeri $470 \mathrm{Kc} / \mathrm{s}$ plas Oecil A upecifed for Mazda Circuita $22 / \mathrm{A}$ complete. An apecined for Mullard Curcurra $23 / 6$ complete. WTC wecilstor Could for Jacknon or fiemey $\operatorname{ang} 4 / 6$ $7 / 8$ pels.

SJB MTMIATURE CARBON POTB

 16. 5K.. $1 / 6,500 \mathrm{~K}$ prenet $1 /=$ in Transiblor Po - 5K Traniblor Pote $1 / 8$

FULLY MOULDED TRACK POTB (Diameter JIM BHORT PPINDLRB) D/6 each.
 (k, 23k., Bok.. 100k., 201.., beok., ,
SUB y miatore getalligid paper com-
DilligzRe bin. x jim. 100%. Forking Ons Mid., . 0022 Mifd...0n2 Mid.. . 001 Midd., 8 d. each. 02 Btra., 04 Mo. Price ge, eacb.

HI. POLTETYEEME CONDEMSERS

TV PREAET COMTROLS

Knaried knob and 6BA firing holea Diam. Itn 1.51, 24. 1/3 each 258 miremond 1/8., B00k

BWITCHE BOTARY
 1 pole lo way. 1 pole 12 way. 2 pole 2 wigy. exah pole 3 may 2 pole 4 way. 2 pole 8 why. 2 pole 6 wny. 3 pole 3 way POTLETRES CARBON-HI-GRADE Moulded Tracke. Dimm $11 \mathrm{tm}, 21 \mathrm{in}$. apadme $10 \mathrm{~K} . .23 \mathrm{~K}$. Linear oaly. $50 \mathrm{~K} . .100 \mathrm{~K} .250 \mathrm{~K}, 800 \mathrm{~K}$ eritch $4 / 8$.

> TRANBPOREERS

Andio Ontpat Types 5.000Ω to $3 \Omega 3 / 9 \quad 30.000$ @ 2030 4/8. Undversal CRT Boosters with tapped primarles 2 v 6.3 v. 13 v. 25% boost all taph. $10 / 6$. Flameat Trins
lormers, oentre tapped, 6.5 v . 3 ampa. $9 / 6$.

MODERA TV COMPOMEHTS

Fermx I ine 0/P Trapaformers, 16 kV . U25 $10 / 8$ Typen 12/6.) Frame O/P transformers to match 4/6 Scanning Colls to match 10/6. 190° types 18/6.) Pane containing 6 preset pots $5 /-$ moothang Choken: 2 By $250 \mathrm{~mA} .3111-19 \mathrm{Hy} .280 \mathrm{~mA}, 2 / 11.1,3 \mathrm{Hy} .250 \mathrm{~mA}$ G.E.c. (2) Retal Bectiner 250 ャ. $250 \mathrm{~mA} .10 / \mathrm{m}$. 34 Mep

MSCELLANEOO8
Crocodile clipe 4d. Comx. Pluga and Aockets $2 / 2$ per pah

 15 Kr . moulded Conciensers 2/6. WX2s Weatector od,
Tranaigtor Twlo gang condengers $387+166 \mathrm{pF}$. ex. equip. 4/6. Vibrator Hash Chokes $1 /$ 。 Ext. Loudspeaker

We have an extensive range of Waxed Phper Condenser (average price 5d. each). Metallised Maper Condenser (average price 11d, each) and Wirewound reastors $5 / 6 / 7$
watt types (average price J - each).

All Electrolytic Condensers as advertised in May 1960 issue still available.
STAMPED AND ADDRESSED ENVELOPE with any enquiry please. But regret no lists or catalogues-our stocks move too quickly! PLEASE ALLOW FULL POSTAGE AND PACKING CHARGES
TERMS OF BUSINESS: CASH WITH ORDER OR C.O.D. ON ORDERS OVER 10%

10^{-12} Watts - 25 kVA
 DRAKE TRANSFORMERS
 Mains Transformers Chokes

 Inverter Transformers Coils
 DRAKE TRANSFORMERS LTD., BILLERICAY, ESSEX Billericay $\mid / 55$

BENSON'S BETHER BARGAINS

INDICATORB, Type 101 with VCRü30 and 2/EB91, 2/EF91, 2/R10, new cond., 30/- (post 7/-). Type 1 with VCRX263, 2/EF52, 5/6J6, $1 / 8 \mathrm{~V} 6,1 / \mathrm{EY51}, 2 / \mathrm{EBD1}, 3 / \mathrm{EI} 91$, RF EHT Generator and $28 \mathrm{kc} / \mathrm{s}$. xtal, 46/- (Rail 7/6). MOR8E KEY with buzzer, on board, wired for 41 v. battery, 8/8 (p.p. 1/6). TRANBFORMER8. Open, upright, input $200 / 250 \mathrm{v}$. Outputs:- $250-0.250 \mathrm{v}, 150 \mathrm{~mA} ., 5 \mathrm{v} .3 \mathrm{~A}$. and 6.3 v .5 A ., 25/- Input $110 / 230$ v. Outputs:-6 v. 2, A. twice, shrouded, 10/6. Outputs: $510-0-510$ v. 275 mA ., 375-0-375 v. 83 mA ., 5 v. 3 A., 6.3 v. 7 times (17 A.), 46/-. CONDEN8ER8, block, paper, 8 mfd. $250 \mathrm{VW} .4 /=$; $4 \mathrm{mfd} .2 \mathrm{kWV} .7 / 6 ; 600 \mathrm{VW} .3 / 6$. SWITCH fuse splitter, DP 15 A . 15/-. MONITOR 56, trizgered oscilloscope, comprising Indientor 548 and Power Unit 675, 230 v. A.C. input, with cables and circuit. Cathode probe unit extra, 17/6. es/10/-(Rail 15/-). HEADPHONE8, CI.R, 7/8. CR100 Noise Limiter assemblies with valve, 3/6. NEW M.E. METERS, 3tion. round flush, $50 \mu \mathrm{~A}, 70 /-\mathrm{i}$, $200 \mu \mathrm{~A}$ centre zero, 50/-; 1 mA , centre zero, $45 /-\mathrm{i} 1 \mathrm{~mA}$, $55 /-2 \frac{\mathrm{in}}{} 1 \mathrm{~mA}, 22 / \mathrm{B} ; 100 \mathrm{~mA}$. , 8/B; 2in. $300 \mathrm{mA}$. , each $8 / 6$; 2in. M.I. $20 \mathrm{v} . \mathrm{A} . \mathrm{C} ., 18 ; 300 \mathrm{v} . \mathrm{A} . \mathrm{C}$. 2tin., 15/-; 100 v. A.C., 31 in., $45 /-; 150$ v. A.C., M.I., $6 \mathrm{in} .$, in case, 45/- VIBRATOR5, Mallory G634C 12 v. 4 -pin, 7/B; 6 v. 5-pin reversible, 7/6. DRIVE8: slow-motion Admuralty $200: 1$ ratio, scaled $0-1005 / 8$. R1155 8.M. "' N" type, new, 10/6. VIBRAPAK6 6 v . D.C. to 250 v .60 mA., smicothed cased 2e/6; 12 v. input, 25/- (p.p. 3/6). DYNAMOTOR6 (post $3 / 6$). 12 v . to $250 \mathrm{v} .60 \mathrm{~mA} ., 11 / 6,6 \mathrm{v}$. to $250 \mathrm{v} .60 \mathrm{~mA}, 11 / 6$. CHOKES. L.F. 10 H., $200 \mathrm{~mA} ., 8 / 8 ; 100 \mathrm{H}, 80 \mathrm{~mA}$, $8 / 6 ; 9 H, 100 \mathrm{~mA}$. , $5 / 8 ;$ Potted $10 \mathrm{H}, 100 \mathrm{~mA}$. $7 / 6 ; " \mathrm{C} " 10 \mathrm{H}$., 250 mA ., $12 / \mathrm{B} ; 5 \mathrm{H}, 400 \mathrm{~mA} .$, 10/8; 30 H., 50mA., 7/6. R.F.27, good cond., 18/- (p.p. 3/6). HEATER8: Strips, enclosed, 220 v., 100 watts, $3 / 6$; finned, 115 v., $200 \mathrm{w.} ,2 /=$ RELAY8, "Londex," co-axial, small, $12 / 24$ v., 7/6. 8WITCHEs: Wafer, 2 pole, 4 way, 4 bank, 11PW6B, 4 P2W'2B, $1 P-W 3 B, 1 P 11 W 2 B$, 4P2W5B, 3/8 each. Ceramic 2P4W1B, 1P5W3B, 1P11W, 3P3W2B, 3/B, STUD, 1 P24W2B, 1 P8W2B, 3/6; 1P19W2B, $5 / 6 ; 1$ P40W $3 B$ in brass case, 12/6. VALVE8: OOV06/40 (5894), 35/-: OQV04/20 (815), 30/VLS 889 20/-; VLSe81 10) , BENDIX MN26C M/L bands $70 /$ - (carr $10 /$) Rx78 2.4-13 mes, with 100 kcs . Xtal $35 /$ ($\mathrm{mp} .3 / 6$) Bos with \& GPO keyswitches and 12 lampholders, $15 /-($ p.p. $3 / 6$). DOTORs 24 v . with magnetic brake, 12/6; synch. 3,000 r.p.m. $100 \mathrm{v}, 10$ va 50 m ,
 7/E; Octal plugs, 1/8, B7C, plugs, 1/-. AMPLIFIER8, $105 / 215 \mathrm{mc} / \mathrm{s}$. Osc, unit 207a with Kilystron CV67, 524G, 230 v . input, 3 neons, 22/6 (post 3/6). Osc, unit 207a with klystron CV67, 524C and 3 neons, $22 / 6$ (post $5 /-$).
LIST AND ENQUIRIES S.A.E. please. Terms, C.W.O. Pestage extra. Immediate despatch.
Callers and post: W. A. BEN8ON (W.W.), 136 Rathbone Road, Liverpool, 15. SEF 6853.

Callers: 8 UPERADIO (Whitechapel), Lid., 118 Whitechapel, Liverpeel, 1 NOY 1130

EXPORT OKLY

PROMPT dellverios Moblle V.H.F. Radio Telephones. Prequency ranges on five banda
 Matns supply sources. Beconditioned with same as new gumrantee. Prices from e5s per complete station POB U.K. Port, as illustrated.

GRHERALLY AVAILABLE
H, F, Radio Tranmittors 11 to $20 \mathrm{me} / \mathrm{m}, 300$-watta phone output also remote control and Collins 189 (TC8 Series) Radto Telephones $14.12 \mathrm{mc} / \mathrm{a}$. f-channels 25 watte Wireloas sets. Nos. 19, 22, 31, 3R, 62 and B9, sad opares. Aorial masts. Telescopic Bteel 20ft. and 341 100-1.jne-portable.
" and EES. Bwitchboards 10-Line tu Go-line-portable.
V.F. Tolegrephy stems, Speech + Duplex, 3 and 6 channel Duplex Radto Teletype Terminall AN/FGC-1C.
Reetipers. Chargling Sets $6 / 12$ volt 15 amp , new, R12. Matia supply- 115 volts apd/o 230 volis malis.
D.C. Supply 24 -volt 80 amp . new, 285. $200 / 240 \mathrm{~V}$. malne. D.C. 8upply $80-1.3$ volte 0.2 Aroratt Radio Compases. Dlotance Meaguring Equipment, and also 10-Channel V.H.F Rallio Telephones.
R. GILFILLAN \& CO. LTD.

NATIONAL PROYINCIAL BANK CHAMBERS
29 SOUTH STREET, WORTHING, SUSSEX Tel.: Worthing 8719 \& 301 है।

Wilkinsonsㅃ․

miniature relays：

ATTENTION ALL MANUFACTURER\＆！ONE－HOLE FIXING SWITCHES．Single－pole changeover 3 amp．， 250 volts A．C． $1 / 6$ each 12／－doz．， $837 / 10 /=$ per 1,000 ．Ask for quotation for 5,000 or upwards． 100，000 available from stuck now！
SOLENOIDS suitable for remote control，mechanical indicators，etc．

RELAYS P．O．TYPE 3000
Built to your own specification
Keen Prices
Quick Delivery
Contacts up to 8－Changeover

S．T．C．and G．E．C．Scaled

MAGNETIC COUNTERS

Counting to 0999 ．

2－6 v．D．C．， $18 /$ e each，post $1 / 6$ ． $75-230$ v．D．C．， $15 /$－each，post $1 / 6$ ． HIGH SPEED TYPE No． 100 c ． $35 /-$ ，post $1 / 6$ ．
 TERMINAL BLOCK8．シ－way 4／－doz．，or box of 50 for 15／－，3．way 6／－

METERS GUARANTEED

F．8．D．

100 Microamp
50 Microamp
250 Microamp
500 Microamp
1 Milliamp
2 Milliamp
30 Milliamp
100 Milliamp
200 Millianp
1 Ampere
3 Ampere
${ }^{5}$ Ampere
10 Aimpere
20 Voles
30 Volts
40 Volts
500 Microamp
1 Millatinp
10 Milliamp
20 Volts
30 Volts
40 Volts
15 Amps
15 Amps
Amps
$30-0-30 \mathrm{Amps}$ $50-0.50 \mathrm{Amps}$ 25 Amps D．C． 25 Amps D．C 300 Volts A．C．

8 ize 3 in．

Type

 $M C / F R$ MC／F MC／PRMC／FR MC／FR MC／FR MC／FR $\mathrm{MC} / \mathrm{FR}$ $\mathrm{MC} / \mathrm{FR}$ $\mathrm{MC} / \mathrm{FR}$
$\mathrm{MC} / \mathrm{FR}$ MC／FR $\mathrm{MC} / \mathrm{FR}$ $\underset{M C / F R}{M C / F R}$ $\mathrm{MC} / \mathrm{FR}$ MC／FR MC／FR $\mathrm{MC/FR}$ $\mathrm{MC} / \mathrm{FR}$ $\mathrm{MC} / \mathrm{FR}$ $\mathrm{MC} / \mathrm{FR}$ $\mathrm{MC/FR}$ $\mathrm{MC/FS}$
MCIFS MC／FR MC／FS MIFR
MI／FR in．MI／FR 2tin MU／FR

TELEPHONE 8ET TYPE＂A．＂Ringing and speaking both ways on a four－core cable．Carries the voice loudly and clearly over set is come．Wo handsets are supplied as lhustrated and the We can supply 4 －core PVC cable at 10d．per yard or 9 －core a 3d．per yard extra．Price $75 /-$ set，post $3 / 6$ ．
30．per yard extra．Price 78／－set，post $3 / 6$ ．
TELEPHONE SET TYPE＂K．＂The most compact telephone set available as the $4 \frac{\mathrm{in} \text { ．flat battery and buzzer is built－in to the }}{}$ hand instrument．Ringing and speaking both ways on twin wire， instrument is complete with Sft．flex．Easily hangs on the wall． Set of two instruments， $5 / 10 /-$ ，post $3 / 6$ ．
FANs INDU8TRIAL TYPE 230／240 volt A．C．Capacitor Motor， 16 in ．blades， adjustable lousres，filter．Idcal for paint shop．Brand new， 20 ，cge， $25 /$－ AIR BLOWER powered by a $230 v$ ．A．C．motor， 15 in ，fan．Volume of free air at max．r．p．m．is $1,250 \mathrm{cu}$ ，ft．per min．At maximum efficiency $000 \mathrm{cu}, \mathrm{ft}$ ．per min．Brand new 225，carriage 30／－
AUTO CABLE waterproof．Single．14／36．20／－per 100 yds．，post $1 / 6$ PUMP Electrically Driven by a 24 v．D．C．motor．Works efficiently on 12 v Totally enclosed，self lubricating driven through 4 to 1 reduction gearbox delivering $60 \mathrm{~g} . \mathrm{p} . \mathrm{h} . / 30 \mathrm{~b} . / \mathrm{sq}$ ．in．Inlet and outlet unions i BSP 37／6，post $2 / 6$ IONAL EENERATOR TYPE 52A．Input 230 volt 50 cycles，complete with leads，dummy antenna．Brand new in transit case． 6 to $52 \mathrm{Mc} / \mathrm{s}$ ．inclusive in 4 bands with calibration charts．Coarse and fine attenuators．Int．and ext mod．Output 0.5 solt to 100 mv ．impedance 70 and 100Ω ．$\$ 10$ ，carriage $10 /-$ CERAMIC WAFER 8WITCHES
 Flush Round．Brand new in maker＇s box，$\$ 10 / 10 /-$ ，post $3 / 6$ ．
METER RECTIFIER $8250 \mu \mathrm{~A} 1 \mathrm{M} . \mathrm{A}, 5$ M．A．，F．W．bridge， $8 / 6$ ，post（8才． AMMETER．0－3 amp D．C．，by Turner，MC／FR， $6 \mathrm{in} .80 /=$ ，post $2 / \mathrm{B}$ ． MICROAMMETER． 250 F．S．D． $3 \frac{1}{2}$ in．F．R．Sangamo Mod．S37．Scaled for valve voltmeter．Circuit available free， $55 /-$ ，post $1 / 6$ ．
UNI－PIVOT GALVANONETER，by Cambridge Instruments，50－0－50 microamps，dia．4in．Knife pointer，mirror scale．Complete with leather carrying case．Ideal for laboratory use，$\$ 10$ ，carriage $3 /$－ PORTABLE VOLTMETER． 0.160 volts A．C．／D．C．accuracy within 2% ． Bin．mirror scale，knife pointer，in polished case．A precision moving ron instrument at a very low price， $24 / 19 / 6$ ，post $3 / 0$ ．
PORTABLE AMMETER． $0-3$ amp．A．C．／D．C．Bin．scale in case with handle． $35 /=$ ，post $2 / 6$ ．
AVO TEST BRIDGE8．220／240 volt A．C．Measure capacities from 5pf． to 50 mfd ．and resistances from 5 ohms to 50 megohms．Valve volt－ meter range 0.1 to 15 volts and condensers leakage test， $6 / 19 / 8$ ，post $3 /$－ RACKS－PO\＆T OFFICE 8TANDARD，Gft．high with U－channel sides drilled for 181 n ．panels，heavy angle base．
IBYDLOK FU8Es． 15 amp ．with rewirable cartridge fuse．Latest type G15 M．M．Complete with studs，nuts and washers， $3 / 6$ each，post $8 d$. Also available 100 amp．，type M．M．G $90,14 / 6$ ，post $1 /-$ set is complete with Pushes，Buzzers，Battery，Plugs and Sockets．

Postage on meters $1 / 6$

New Taylor pockelosixe 20,000 ohme per volt， 20 megohms， 20 ranges．
A．C． 1 D．C． 210 ．Port
a／b． Complete list of meters R 65／ grallable． Charting Rectifiers Full Wave Brid 12 Volts 1 Amp 18 Who Bridse． 13 Volis Amps $13 / 6$ each 12 Volts 4 Amps ．．．20／ 20 each MAIN8 TRAN\＆FORMER8 to suit above rectifiers． 12 Volts 1 Amp ．．．12／6 each 12 Volts 4 Amps CT10\％ $29 / 6$ each 12 Volts 2 Amps ．．．24／－each CT100 12 Volts 4 Amps ．．．．．．25／－each HEAVY DUTY 8WITCHE8，suitable for switchboards．Carries over 100 amps Consists of 2 S．P．C．O．coupled， $80 /=$ pr，post $3 /-$ ，or separately at $25 /-$ ，post $3 /-$ 8ATCHWELL THERMOSTAT8 adjustable between $70^{\circ}-100^{\circ}$ Fahrenheit． $0-140$ s．A．C．， 20 amps．， 11 in ．stem．Fitted cover． $25 / \%$ ，post $2 / 6$ ． R00M THERMO8TAT．Adjustable between 45 and 75 deg，Fahr．， 250 v． 10 amp．A．C．Ideal for greenhouses，etc．， $35 /=$ ，post $2 / /-$
CATHODE－RAY TUBES．VCR 139A， $2 \frac{1}{2} \mathrm{in}$ ．diain．，30／－，こAP1， 2 in ．diam．，

［．WILKINSON（CROYDON）LTb．
 9 LANSDOWNE RD．CROYDON SURREY Phone：CRO 0339
 Grams：WILCO CROYDON

$\frac{1}{1}$ H．P．CAPACITOR MOTORS
$230 / 240$ volts， 50 cycles 1420 r．p．m．$\frac{1}{2} \mathrm{~m}$,
shaft，resilient mounting．Or with in．shaft on Standard toot mounting．Either type， $25 / 10 /$－，carrtage $10 /$
VACUUM PUMP AND COMPRESSOR．
Edwards type IV，in shaft，complete with flywheel，couplings，oil filter and union \＆ $6 / 10 /=$ ，post $3 / 6$ ．

RESISTOR8 EX STOCK，IN QUANTITY WIRE WOUND，HIGH CABIT GAREON ETO．，BEठT WAKE8，AT LOWEST PRICES．

MOTOR， 1 $11 \times 1 \neq \mathrm{in}$ ．diam．Latest development．Extremely powerful with low consump－ tion．Weighs as little as wo ounces and totally en closed in polythene protective case．Three－position switch；
7，000 r．p．m．，self lubricating and long life sintered bronze bearing，13／8， post 9d．Ask for free length of polythene flexible drive
ROTARY CONVERTERs．Input 12 v．D．C．Output 230 v．A．C． 50 cy .135 watts．The ideal job for T．V．and tape recorders where A．C．mains are not available． $88 / 10 /-$ ，cge． $10 /$－．Also available with 24 v ．D．C．input at same price． ROTARY CONVERTER．Input 24 v．D．C．Output 220 v．A．C． 25 C watts． Pedestal type with D．P．Ironclad switch，BRAND NE W．\＄17／10／－，carr．15／－ BATTERIEs．Portable Lead Acid type， 6 volts 125 ampere hours．In metal case $16 \mathrm{in} . \times 8 \mathrm{in} . \times 11 \mathrm{in}$ ．（Two will make an ideal power supply for our 12 vol Rotary Converters．）Uncharged $56 / 10 /-$ each，carriage $15 /$－． 24 volts 85 amperes． 14 each，carriage $15 /$
NIFE BATTERIE8．Nickel Cadmium． 6 volts 75 amps ．Crated and con－ nected．Brand new $87 / 10 /-$ ，cge．15／－．Special inter－crate connector supplied e with two batteries．
WE8TALITE BATTERY CHAREER8．Made by Westinghouse（type BC14－ 6／40）．Input $200 / 250 \mathrm{v}$ ．A．C．，will charge 6 cells at 40 amps．Course control switch with eight positions and fine control switch with four positions．Built 14 in ． m meter．Fused A．C．and D．C．，grey enamel finish，ditnensions $24 \mathrm{in} . x$ $14 \mathrm{in} . \times 13 \mathrm{in}$ ． 250 each．

BRAND NEW AM/FM (V.H.F.) CHASSIS AT £13.6.8.
(P. \& P. 10/-)

rapped input 200.225 v . and 228.250 v . A.C. ONLY.
Chatin aize $15 \times 6 i \times 51 \mathrm{ir}$. bish. New manufacture. Dial $141 \times 4 \mathrm{in}$, m yold and biack. Plek-up Extenaion apeaker, Ae., E., and Dipole sockete. Pro "plano" puah buttons With all valve M.W. O.P.M. and Gram. Aligned and tented.
Covern $1,000-1,900$ M., $200-500$ M. $88-90$ Mc/s.
Valrea EZ80 rect., RCH81, EF89, EABC80, KL84. ECC85. 8peaker and Cabinet of ft chansis, $47 / 6$.
$10 \times 6 \mathrm{~h}$. ELLIFTICAI, BPEAEER $80 /$ - to purchaere of thie ohaedo.

3-VALVE AMPLIFIER (INGL RECT.) Capable of sivtas 4 matha. Malna and outpers tranaformer. Valven ECC83, ELS4, 1Mz30, 3 Controle, volume, bee and treble. On/OII switch. Fully guarantioed, Cluapals alse of $\times 3 \times 9$ Ith. Trith $7 \times 4 \mathrm{in}$. elliptical epesker or opin rumad (Goodmany); state whet.

13-CHANNEL TUNER I.P. $34-38 \mathrm{Mc} / a$ requires vaves PCFPo and FCCB working order

 14 ydia lmam. P.YC. flexiblo mleeviog 10/- poat pald.
 $.06,1 \mathrm{mF}, .26 .5 \mathrm{mF}$. Total 21 for $4 / 6$ (pont 9d.). Not more than 3 of one type.
AUTOWATIC RECORD GHANGER8
 B.B.R. latest UA14- 87/10'0

GRAMOPHONE AMPLIFIER
whith Sin. 8PRAKER On Fabric. covered Bafte 12 $1 \times 61 \mathrm{ln}$. Malna and Output Tranaformera, EZ440 Volnme Controls On/On awiteh. Plenty of Volume. Fully Quaranteed. ful for Btereo. OMLY 68/-, post 3:

PU8H-PULL AMPLIFIER 24/15/*

$3 /-P$ \& P

Brand new $900-240$ A.C. maina Base treble and vol. controle fiying panel. With valve Re89, ECOCRS and 2-ELSt viving ful 8 w . Chasels $12 \times 31 \times 8$ ing. Whth o.p. trann, for \%-3 ohm speaker.

Guation (P. \& P. S/न). A Quality Tape Recorder. Vilvia E780, ECC83, ECLA2. 19M70 Recond Level Indeck (i) Vol, (2) On/O世 Tone. (8) Rxt. L.8. (4) Monltor. (8) Bedio Input. (6) Mise input Pat (2) OnOt Tone. (8) Ext. L.8. (4) Hontor. (\$) Bedio input. (6) Mik Bent Value at 17 Gmg , (10/- P. \& P.). Low Intereat Terma 9 A down and 5 monthly paymente of 23. Write for descriptive leaftet.

SELF-POWERED Y.H.F. TUNER CHA8sis
covering $88.95 \mathrm{Mc} / \mathrm{a}$, Mullard permasblity Tuner.
 ETpl and a Diodes. Metal Rectiter, Mainm tran Fully wired and teated. Only f77l10/0 (4/- carr) Boom dipole $10 /=$. 300 chm itwin feeder 64.54 .

Delivery by return. C.O.D. 2/- extra. Termas Cach with onder or one-thted down and balance plat $7 / 8$ (up to $\mathbf{4} / 10 /-$) in equal four monthly payments Balance ove 27/10/- add $1 /$ - in an and pay in not more than 6 monthly payments. Bec epecial terma for A.M.-F.M. chmole All new coods uniem etated. Bead 6d. for 20 -pcse catiogue. BATIBPACTION OUARANTRED. Posted orders to Camberley.

[^20]STABILIZE YOUR AC MAINS with the finest equipment, at a fraction of the normal cost:-

FERRANTI 7t-KVA MOVING COIL
AUTOMATIC VOLTAGE REGULATORS
Any stabilized output voltage in the range 200-250 v . can be selected by plug-board tappings. The selected output voltage is automatically maintained constant within $\pm \frac{1}{2} \%$, at all loads 0 to $30 / 37 \frac{1}{\frac{1}{2}}$ amps., when the supply voltage is varying over the range $+8 \%$ to -12%.
Frequency compensated $45-55$ and $54-66 \mathrm{c} / \mathrm{s}$.
Excellent output wave-form.
Can also be used as a variable transformer.
Unused. Complete with spares and instruction book.
P. B. CRAWSHAY

94 Pixmore Way, Letchworth, Herts. 'Phone I85I

COIL WINDING

High quality coil winding carried out for trânsformers, chokes, telephone equipment and relays. Quantity production a speciality.
Vacuum impregnation with solventless varnish to RCS 214 where required.
Contractors to the Admiralty, Air Ministry, Ministry of Supply, G.P.O, and Electricity Boards.
A.I.D. and A.R.B. approved.

FRASER SPELLER TRANSFORMERS LTD.
Sfdenham Road, London, S.E. 26
Telephone: Sydenham 8813/9

MINIATURE ELECTRIC BULBS FROM 1V to 50V

 IN SIZES FROM 4.5 mm to 18 mm DIAMETERAfter nearly 30 years of specialising solely in the production of Miniature Electric Lamps, we have accumulated a store of information that is freely available to the Electronics Industry. You are invited to write or phone us for any information you may require about Miniature or Sub Miniature Filament Lamps for use in existing or new projects.
VITALITY BULBS LTD.
Neville Place, Wood Green, London, N. 22 'Phone: BOWes Park 0013

Briff Technical Data

Operating carrier Irequency 3,000 c.p.s. \pm \$\%
Minimum input signal 50 mV R.M.5.
Inpur. Impedance I Megohm.
Input amplifier bandwidth -3 db at 2,500 and 3,500 c.p.s.

Eflective limiter range $\pm 10 \mathrm{~dB}$.
Meier sealing-" Peak wow " 0 co $\pm 1 \%$ (cenere
"Wow " and " flutcer" O to 1% and 0 to 0.2% R.M.S.

Crossover frequency 20 e.p.s.
"Flutter" meter response-3db at crossover.
" Wow " meter response -3 dB at 200 c.p.s. do at crossover.
C.R.O. output frequency response level down to zero frequency-3dB at 200 c.p.s.
3.000 c.p.s. oscillator outpue level

SV R.M.S. into 0.5 Megohm 100 mV R.M.S. Into 500 ohms.
Accuracy: Meter presencations $\pm 2 \%$ f.s.d.
Power consumption 35 watts.
Mains $100 / 150 \mathrm{v}$. and $200 / 250 \mathrm{v}$.
Single phase 45/60 c.p.s.

Watch that MOW \&

with the Gaumont-Kalee

 FLUTTER METER
Accurato measurement of sound equipment speed deviations

The Flutter Meter measures those components which are commonly described as "Wow" and "Flutter " resulting from speed variations in sound recorders and reproducers. This instrument is equally suitable for use with machines employing perforated film, tape, wire or disc records.
Type 1740 is of entirely new design. More compact, lighter in weight and costing considerably less than earlier Gaumont-Kalee Flutter Meters, but with the same high performance and facilities.

Dimensions: Height $104^{* *} 26.04 \mathrm{~cm}$.
Width $124^{\prime \prime} 31.12 \mathrm{~cm}$. Depth $144^{*} 36.47 \mathrm{~cm}$. Nett Weight: 2916. 13.15 Kilos.
Write for full details to :

Important users of Gaumont-Kalee Flutter Meters include:

B.B.C. Television ond Research, Collaro. Commission Superioreure Technique, Paris. Commornwealth of Austrolic, Melbourne. Compagnia Commerciale di Cinematografia, Milon.
Dept. Posts and Telegroph, Dublin.
Eyption State Broodcasting.
E.M.I. Research Laboratories.

GorrordEngineering ond Monufocturing Co.Ltd. Mognovox Corporotion of U.S.A.
Morconi Wireless.
Ministry of Supply.
Ministry of Tronsport and Civil Aviation (U.K.). Mullord.
N.V. Philips' Glaeilampenfabrieken, Holland and Denmark.
N.Z. Broodcasting System.

Post Office Reseorch Department.
R.C.A. Photophone Ltd.

Southern Instruments Ltd.
Truvax Lid.
Vortexion.
Westrex Co. Ltd.
Wright a Weoire Ltd., and users in India, Poland and Hong Kong.

rank precision industries ltd
Q.B-KALEE DIVIsION (8TUDIO), WOODEER RD., LONDON, W.12, ENGLAND

Tel: 8HEpherds Bush 2050.
Cables: RANKPRESTU, LONDON

the

finest protection of all

and most successfully applied by PREGIOUS METAL DEPOSITORS LTD
HEARSALL LANE, COVENTRY
Telephone: Coventry 73159

NEW-Quality Tools at cut prices. ENGINEER8 12in. ADJUSTABLE SQUARE WITH SPIRIT LEVEL 9/6. Sin. VERNIER CALIPERB WITH DEPTH GAUGE 9/6.
WHIT. OPEN END 8PANNER8, drop forged and plated, set 6. th in, to tin, 13/6. POCKET NEON TESTER, with retractable serewdriver, $5 /$-. 5 in. 8 IDE CUTTER8 5/6. Sin. PLATED ROUND NOSE TAP. ERED PLIER8, 5/6. Tin. FLAT NOSE BOX JOINT TAPERED PLIER8, 8/6. 7 Jin . COMBINATION PLIER8, 6/-
TUB. HACK8AW8 (Eclipse type), 11/9. H.8. TWIST DRILLS. Set of 7 . thin, to fin . 4/-. Full size in wallet, 6/-. Set of 139/6. Set of 17 . tim. - in. in wood case, 15/6.
OUR FAMOUS TRANBFORMERS. Input $200 / 250$ v. Output tapped $3,4,5,6,8$, $9,10,12,15,18,20,24,30$ v., 2 amp., 24/6. 17, 11, 5 v., 8 a.. 27/6. ธ́ а., 24/6. 3.5 v., 9,17 v., 1 a., $13 /=$ P.P.

8TUDIO "O" CARTRIDGES, 16/-12in. 8PEAKER8 WITH Sin. TWEETER8 by leading makers, 75/-. Less than half list price.
NEW 12in. 8PEAKER8, 12 watt (list price £12/12/-). 86/17/6.
WEW CELESTION OVAL 8PEAKER8. 84×51 in. 24 -
RELAY8. Single make contacte, 24 V . $25 \mathrm{amp} . \mathrm{15} /-$
RELAY8. 4,000 ohm, S.M. or S.B., 5/6. Ex. equipment.
LAVOIS LABORATORY MICRO WAVE FREQUENCY METER. $3 C 0.6 \cap 0 \mathrm{Mc} / \mathrm{s}$, 225. B.C. 604 F.M. TRANBMITTER. Push button and manual tuning, $20-28 \mathrm{mc} / \mathrm{s}$. Complete with 80 Freq. Crystals in 100 kc/s. stages. 248 . power supply incorporated and with B.C. 603 Receiver for same, 430.
P.V.C. Recording Tapo. Finest Quality. 850 ft . reels, $19 /-$
Hi-Fi CRYBTAL MICROPHONES in Grey Bakelite case, 15/6.
G.B. ELECTRONIC CRY8TAL BTICK MICROPHONE in polished stoel case, 4in. x bin., complete with lead and plated Bulgin jack plug, 42/6. Weight 5 ozs, F.W. METAL RECTIFIER8. $12 / 6$ volt, 1 a., 7/6; 3 a.. $13 /-; 4$ a., $17 / 6 ; 6$ a., 27/6; 24 8. 2 a., $23 / 6 ; 12$ v. 6 amp., $30 /=$; 12 v. 16 a., 50/-
TOGGLE 8WITCHE8 DPDT 3/6. SP $1 / 9$. MICRO 8WITCHES, pring leaf, Make and Break, 5/6.
MAIN8 TRANBFORMER AND RECTIFIER giving 12 v. 1 a. D.C. Output, 19/6. And with Output 30 v. 2 a., $33 / 6$.
NICKEL NIFE BATTERIE8. 1.2 volt. 2.5 amp . Size $3 \times 2 \times 1 \mathrm{in}$. Practically everlasting. $8 /$ or 3 for $16 /-4$ for $21 /=$ Ex W.D. MOR8E KEY8. 3/6, 6/- and 8/6. 1,000 NEW 8.T.C. FREQ. CRY8TALS. $10,555 \mathrm{kc} / \mathrm{s}$. to $19,872 \mathrm{kc} / \mathrm{s} ., 5 / 6$ each. Plua 6d. postage. Lista available.
PAXOLIN PANELS $12 \times 6 \times$ fin., 3/6. P.P. $4 \mathrm{ft} . \times 3$ in. $\times \$ \mathrm{in} .10 / 6$.
W/W RHEOSTAT8 12 v. 1 a., 2/6; 5 a. 10/6.
12 Y. MINIATURE RELAY8. $1 \frac{1}{1} \times 1 \ddagger \times$ 1 in . Wgt. 1 ozs. S.P.C.O., 8/6. S.P.C.O. and $3 \mathrm{M} .9 / 6$.
12 v. D.C. RELAY8. 2 make $6 /-; 2$ for $11 / 6$. BENCH GEARED HAND-GRINDER. $5 \times$ lin. stone $31 / 6.6 \times 1 \mathrm{in} .35 /-$
BENCH VICE. 2 in. with clamp. 15/6, EX. W.D. 12 v. D.C. Reversible Geared Motors. 21×1 in. Ideal for all model use, 16/6. Wgt. 10 ozs.
Amazing Miniature 6.8 v. D.C. motor. $1 \$ \times 1 \mathrm{tin}$. with built-in reversing switch. Wgt. $3 \mathrm{oz} .15 /-$.
Lists sent on requast. All post paid.
P.0.Box 9 G.P.0. Tunbrid ye Wells, Kent

OUR GIGANTIC STOCKS INCLUDE:
LINE OUTPUT. PRAME OUTPUT. BOUND OUTPUT IINE AND PBAME BLOCLINO OBC. TRANB. AND GCAN COLLS, FOR ANY MAKE OR MODEL TELE. VLAION

SOER OP OUR VALDES

		PCIO3			
Az31	816	PCLS 3	$12 / 6$	W77	81
D77	$8{ }^{\circ}$	Plas	$10 / 6$	EUt	5\%
DH77	6\%	PLAS	1819	6V4	9/0
DE91	1010	PL28	$14 / 6$	6Ys	$10 / 6$
DK92	101-	P181	$8 / 6$	674	10.6
DK9	101-	PLas	7%	6AL5	$8 /$
DL92	$8 / 6$	PL83	7-	6AM	3!-
DL94	9%	PY31	81-	6CD6	276
DL96	$9 / 6$	PY32	$10 / 6$	6 D 2	$3 /$
8B91	3/-	PY80	7.	6_{61}	5/0
EBu33	51-	PY81	61-	6 Fl 12	3/-
EBPRO	916	PY82	6/6	6F13	71.
RCCS1	5/6	P230	10\%	6F14	$9 / 6$
Eacaz	61.	U22	$9 / 6$	6 FIL	$9^{\prime 6}$
B0C84	8/-	U24	20 -	6 Ll	186
BCP80	8\%-	U25	13:-	6 L18	81.
[CH33	9\%	U\%	$12 / 6$	6P15	$8 / 6$
BCH81	81-	U31	$9 / 6$	6 6pis	18.6
RCLS 8	71	U50	816	6 Y 6	$5 / 6$
8 P 39	51-	U52	7%	10F1	6\%
RFs0	410	U191	18/-	10 Cl	101.
EP80	4/6	U281	$12 / 6$	10 Cz	13/.
[P91	810	[292	2010	10P15	810
EP92	5/-	U301	901.	10P14	$8 /$
E183	$8 / 6$	U801	20/6	18.4T7	$5 / 6$
EL88	$14 / 6$	UAP43	810	12AU7	$81 /$
8184	71	UBC4	719	20D1	$8 / 6$
EY81.8.E.	. 616	UCH42	71.	2012	$9 /-$
EY51	819	UP41	86	$20 \mathrm{L1}$	18/6
EY88	$8 / 6$	UP42	$5 / 9$	20P1	1016
E740	$8 / 6$	UL41	$7 / 3$	20P4	171.
ET330	$9 / 6$	UL46	7/3	8780	16\%.
KT38	$12 / 6$	UL44	$11 / 6$	30C\%	713
KT86	15/6	UY41	$6 / 6$	30 Ll	713
Pcccs ${ }^{\text {Pa }}$	13/8	UU8	$14 / 6$ $6 / 6$	$30 \mathrm{P4}$	1819
PCP80	718	8 P 41	$2 / 6$	50 CDA	28/6
PCLS 8	1018	8P81	$2 / 6$	185BT	38/

These are oaly examplee of our valven if you do not soe What yoa require sead atmmped addremed envelope for
For the Fineet, Fateet forvice the the country, conter-

D. \& B. TELEVISION

I3la KINGSTON ROAD SOUTH WIMBLEDON LONDON, S.W.I9

Phone: Cherrywood 8985

DAMAGED METER?

mave it repaired by Glasers Ae inoe overne $1 d$ ls having your damaged Dlectrios. Heas ring Inctruments repaired by Le Giaser \& Co. Idd.

We spaclalite be the remeir of all trpea and Amancieter, Eitmotern, Amonem Mitiramer Tant Maturs, Epotrioal Tharmometars. Deoording Instroments, ata. As ooutrection to various Government Dopartmonts. we are the leoliat
 deleative fostrament by sisistored pooto or write to Doge. W.W.
L. GLABER \& CO. LTD.

06-100, Aldersente Itreet, Loadon, E.C. 1 Tw: Moeareh e8se

SOUTHERN RADIO'S WIRELESS BARGAINS

 Carriage paid U.K. (ex. sea routes).
METERS. $30-0-30$ and $3-0-3$ voles combined ranges with prods, 15/..
ATTACHMENTS for " 38 " TRANSMIT. TER-RECEIVERS Mark 11.
HEADPHONES 15/4 per pair: THROAT MICROPHONES 4/6: JUNCTION 8OXXS 2/6; AERIALS, No. $12 / 9$, No. 2 5/3: WEB8ING $4 /=$ HAVER. SACKS S/6; VALVES. A.R.P. 12 4/6, A.T.P. 4 $3 / 6$; SET OF FIVE VALVES $19 /=$ Postage on each item except valves $1 / 6$ extra.
RECORDING BLANKS. Brand new. Ready for cutting. 13 in . 6\% each or is complete in meral case. 24.
RESISTANCES. 100 assorted useful values. New wire end 12/6. NEW.
CONDENSERS. 100 assorted Mica: Tubular: etc., I5/. NEW.
CONTACTOR TIME SWITCHES. 2 im . pulses per sec., in case, $11 / 6$.
REMOTE CONTACTOR. For use with above, 7/6.
LUFERA HOLE CUTTERS. Adjustable fin. co tin. For Motal, Plastics, etc. $7 / \%_{0}$
MAGNETS. Strong 8 Gar type, $2 \times$ tin., $1 / 6$ each. MORSE TAPPERS. Midget type $2 / 9$; Standard 3/6; Heavy cype on base. 5/6. ALL 8RAND NEW. MORSE PRACTICE SET. TAPPER with BUZZER on base. Complete with battery, $12 / 6$. BRAND NEW.
PACKARD-BELL AMPLIFIERS. Complete BRAND NEW, with valves, relay, etc., etc., $17 / 6$ each,
TRANSMITTER-RECEIVERS. Trpe 18. Mark III. ALL BRAND NEW COMPLETE with 6 valves in carrying case. $4 / 11 / / 6$. Carr. paid.
ATTACHMENTS for "18" TRANSMITTERRECEIVERS Mark IIt.
HEADPHONES $15 / 6$ per pair. HAND MICRO. PHONES 4 a., $12 / 6$. AERIALS 5/9; MORSE KEY 6/6; VALVES: ARPI2 4/6, A.R.8 7/6, A.T.P. 4 3/6; SET OF SIX VALVES 25/-, Poseage on each item except valves $1 / 6$ extra.
R, 109 RECEIVERS. SHORTWAVE 1.8 to 8.5 mc / s. Complete with six valves. Vibrator pack for 6 volts. Buils-in speaker. In metal case. f5. BOMBSIGHT COMPUTERS. Recent purchase, ex-R.A.F. Ideal for experimenters. A wealth of sears, motors, blowers, etc. etc 23/12/6 carriage paid.
QUARTZ CRYSTALS. TYPES F.T.241/F.T. 243. 2 -pin. ifin. space. Frequencies (F.T.243) $5,700 \mathrm{kc} / \mathrm{s}$. to $8,650 \mathrm{kc} / \mathrm{s}$. (F.T.24!) $20 \mathrm{Mc} / \mathrm{s}$. to $38.9 \mathrm{Me} / \mathrm{s}$. (54th and 72 nd harmonics). $4 / 6$ aach.
BRAND NEW. TWELVE ASSORTED CRYSTALS 45/\%. BRAND NEW, HOLDERS FOR BOTH TYPES $1 / 3$. Customers ordering 12 cryscals can be supplied with lists of frequencies for their choice.
CRYSTAL CASES. FT. $241 / 243$ types. 10/6 per dozen.
STAR IDENTIFIERS. TYpe I.A-N. covers both hemispheres. $5 / 6$.
COMMAND RECEIVERS. 8.C. $4543-6 \mathrm{Mc} / \mathrm{s}$. B.C. $4556-9 \mathrm{Mc} / \mathrm{s}$. Complete with 6 valves. New condition. 47/6 each.
DYNAMOTORS FOR ABOVE. 28 volts. 15/..
VISUAL INDICATORS (IOQ/4). Type 3. With 2 meter movements and two neons. New in cover. $12 /$ each. TRANSPARENT MAP CASES. Plastic I4 \times lotin. Ideal for Maps, Display, etc., 5/6.
Post or corr. extra. Full list Radlo Books, etc. 3d.

SOUTHERN RADIO SUPPLY, LTD.

II, LITTLE NEWPORT STREET.
LONDON, W.C. 2.
GERrard 6653

new ILIFFE books

Principles of Transistor Circuits

Introduction to the design of amplifiers, receivers and other circuits

2nd edition

by S. W. Amos, B.Sc. (Hons.), A.M.I.E.E.

This book, by the Editor, Technical Instructions Sections of the BBC, has been completely revised and enlarged. New sections include a description of drift transistors and details of controlled rectifiers; and among the many new and revised figures is one of a complete circuit of transistorised V.H.F. Receiver. The first two chapters, which have been completely rewritten, deal with the basic properties of transistors, but the main emphasis of the book is on circuit design. Among topics discussed are the determination of such quantities as input resistance, stage gain, optimum load, power outpur, values of coupling capacitors and transformer winding inductances.

21s net by post 22s 221 p 125 diagrams

Television

 Receiver ServicingVolume I: Time base circuits 2nd edition

Learning Morse

13th edition
by E. A. W. Spreadbury, M.Brit. I.R.E.
It is probably true to say that three-quarters of the faults in television receivers occur in the time base circuits themse'ves or in other parts of the receiver that are affected by their operations, and certainly it is in the time base circuits that is found circuitry which differs most radically from that in radio receivers. This volume covers this section of the receiver, including the cathode ray tube, as it affects the service engineer, explaining all its complexities in simple, readable language. It describes the numerous varieties of circuits used in past and present receivers and explains how faults can best be traced. This new edition brings Volume 1 completely up to date and is recommended to students taking the Servicing Certificate Examinations of the Radio Trades Examination Board. (The 2nd edition of Vol. 2: Receiver, Aerial and Power Supply, is in preparation.)

25s net by post 26s 5d 362 pp

by H. F. Smith.

A new revised edition of a guide for all wishing to master the international signal code. This booklet contains the code, gives methods of practice and details of an easily constructed transistorised morse practice set. The revised Q code as approved at the Geneva Telecommunication Conference, 1959, is included: this comes into operation during 1961.
1s 6d net by post is 10d 20pp
from leading booksellers

THE LATEST TRANSISTOR

 DO-IT-YOURSELF RADIO KIT6 Mullard transistors, 1 diode, internal ferrite rod aerial, 7×4 high quality speaker, printed circuit, 500 MW, push pull output. MW and LW calibrated direct drive assembly. Highly polished bandsome walnut cabinet. Complete kit $\begin{gathered}\text { P. \& P. //6. 89-15-0 }\end{gathered}$

WE HAVE A

10 mA .
42/6
2/6.

8 WATT AMPLIFIER

This superb 8 watt amplifier made by well-known manufacturer, ready for your $\mathrm{Hi}-\mathrm{Fi}$ cabinet. Spec.: 2 EL84, 12AX 7 and EZ81 push pull output. Separate Bass and Treble controls on panel with extended lead. SPECIAL BARGAIM WHILE STOCKS LAST.

84-15-0

VERDIK TAPE RECORDERS

First class Tape Recorders using the famous Collaro transcription deck. 3 speeds 1 - $3|-7|$ I.P.S. Mic. and Radio inputs. $7 \mathrm{in} . \times 81 \mathrm{in}$. internal speaker. Valve line up ECC83, ECL82, EM84. Wow and Flutter 0.15% total at 7 , in. $/ \mathrm{sec}$. Size, width 15 fin , depth 0 in., beight ${ }^{6} 1 \mathrm{in}$, weight 281 b .
LIMITIED STOCX ONLY.
Model S22 2-Track
32 GNS.
Model S44 4-track
39 GN8.

RECORD CHANGERS
 B.s.R. U.A.s complete with latost " ful-fin cartridge ftereo
 COLLARO CONQUEST 4 speed auto GARRARD RC120 4 spoed auto COLLARO JUNIOR 4 speed sintle Play complate with Arm and P.U. Garrard TA Mk. II. Wired for Stereo plug in head, 4 speed single play. E.m.I. 4 -speed single play.
 P. \& P. 3/6.

COLLARO TAPE DECK

\& motors, 8 speeds 17, 81, 7\}. Push button controls. Complete with reel of tape and spare spool. LI8T PRICE 16 GNS. \&12-19-6 RECORDING TAPE OFFER
FAMOUS MAKE P.V.C. BASE ON PLASTIC SPOOL.
1,800ft. on 7in. spool 32/s. 1,200ft. on 7 in . spool $21 /=$. $1,200 \mathrm{ft}$. on $5 / \mathrm{in}$. spool $22 / 8$. 850 ft . spool 21/-s $1,200 \mathrm{ft}$. on 5 lin . spool 22/6. 850ft.
on 5 in. spool 16/6.
P. \& P. $1 / 6$.

WIRECOMP ELECTRONICS

373 HARROW ROAD, LONDON, W.9. TEL. C CUNNINGHAM 2530 Hours of business: 9 a.m. to 8 p.m. Opon all day Eaturday
opposite Paddington General Hospital. Busos 188 \& 36 pass the door.

AVANTIC AMPLIFIERS

SPA11 stEREO AMPLIFIER AND PREAMPLIFIER
Twin 10 watts output, s-dimensional Monaural reproduction by combining both channels, 3 inputs for each channel. Size 14 lin . wide, tin. high, 8 lin. deep. LI8T PK̂́ICE $220 / 8 / .0$ 19 GNS. CARr. \& ins. 7/a.

ETEREO PRE-AMFLIFIER CONTROL UNIT Twin channel. Dedgned primarily for use with two DL7 85 Power Amplifiers. Six inputs for each channel. LIST PRICE \{2el/10/a £16-19-6 CARR. \& ins. 7/a.

PL8/21 10 WATT8 MONAURAL AMPLIFIER AND COMBINED PRE-AMPLIFIER CONTROL UNIT. 5 taputs. Size 14 in. wide, gin. deep, 10 in. hish.

CARR LIET PRICE 829/0/-
CARR. \& INS. 7/6.
STEP 11 STEREO PIGK-UP PRE-AMPLIFIER Size $71 \times$ 41 $\times 2$ UNIT I․ 84-19-6 CARR. \& INS. 7/8.

Bus. RADIO LIMITED opportunities for engineers

TRANSISTORS • FREQUENCY MODULATION • VHF AND UHF TUNERS REMOTE CONTROL•MINIATURISATION•PRINTED CIRCUIT TECHNIQUES RADIO CIRCUIT DESIGN• PUSH BUTTON TUNERS • STEREOPHONIC REPRODUCTION•TAPE RECORDERS•EXPORT RADIO TROPICALISATION EXPORT TELEVISION• 625 LINE TELEVISION • COLOUR TELEVISION TRANSISTORISED TEST GEAR P PATTERN GENERATORS

RECENT extensions to the Development Laboratories at Chiswick, Kew and Plymouth have created a number of attractive opportunities for keen practical Engineers of high calibre to join the very successful teams of Bush Radio specialists working in the varied fields set out above. Engineers of all grades are required for interesting and stimulating design and development work on Radio, Television, Tape Recorders, Radio Gramophones for the Home and Export markets.
The intricate test gear needed for manufacturing these products is now entering a most interesting phase of design and embraces a wide range of new techniques and materials affording exciting opportunities for the expression of engineering ability and the exercise of technical knowledge, resource and ingenuity.

$$
\text { SENIOR ENGINEERS }(£ 1,250-\kappa 1,750)^{*}
$$

Experience and achievement in practical development work. Ability to lead and accept responsibility for group of engineers if necessary. These positions would appeal to men whose opportunities for advancement are at present restricted but who possess the ability and drive to undertake technical leadership in the future.

DEVELOPMENT ENGINEERS ($£ 1,000-£ 1,250$)*
Must have sound, up-to-date knowledge of radio or television circuit practice. Thorough familiarity with radio measurements and all classes of electronic measuring instruments. At least one year's practical work on circuit or test gear development essential.

TECHNICAL ASSISTANTS ($\mathbf{8 0 0}-\mathbf{\varepsilon 1 , 0 0 0) *}$

Need keen interest in Radio or Television. HNC Standard and practical experience of radio or electronic measurements essential. Test and Service Engineers with good basic knowledge of Radio and Television principles and at least 3 years' practical experience with a variety of receivers would be considered provided they can show aptitude for design work.

- Salaries are not on a fixed scale, but will be the subject of negotiation and will be regularly reviewed. Rapid financial promotion will be possible for applicants capable of supervising a design from start to finish.

SENIOR AND INTERMEDIATE DRAUGHTSMEN ($\mathbf{8 8 0 0} \mathbf{- 1 , 2 0 0)}$

Experience in radio, television or electronic instruments. An interesting range of projects utilising the latest materials and techniques is in progress.

EXPERIENCED MODEL SHOP WORKERS

Model makers, instrument makers and sheet metal workers for work in the Model shops in liaison with the Development Laboratories.

Please write or telephone the Personnel Manager, Bush Radio Limited, Power Road, Chiswick, London W.4. (CHIswick 6491/9) for standard application form. Or, if you prefer, send an informal note to the Chief Engineer, covering your age, experience and qualifications and indicating location preferred (Chiswick, Kew, Plymouth) and initial salary.

EMI

Interesting vacancies have occurred

 in the Calibration Department of the Feltham Laboratories of EMI Electronics Ltd. for the following:
ENGINEER to carry out the maintenance, modification

 and calibration of test gear equipment to A.I.D. standard. Candidates should have at least two years' experience of this work and also hold up to H.N.C. (Electrical Engineering) standard.TECHNICAL ASSISTANT to assist an Engineer in the carrying out of the work detailed above. Experience in the servicing of test gear, either in the Armed Services or industry is essential. An O.N.C. (Electrical Engineering) would be a distinct advantage.
Initial salaries will be determined by qualifications and experience and it is Company practice to review salaries annually on the basis of ability and potential.

Applicants should write, giving full details and quoting Ref. Aa/8/X, to:

Personnel Manager,
EMI ELECTRONICS LTD., HAYES, MIDDX.

UNITED KINGDOM ATOMIC ENERGY AUTHORITY PRODUCTION GROUP

INSTRUMENT MECHANICS

Windscale and Calder Works, and Chapelcross Works require experienced men with knowledge of electronic equipment and/or industrial instrumentation for fault diagnosis, repair and calibration of a wide range of instruments used in nuclear reactors, radiation laboratories and chemical plant. This interesting work involves the maintenance of instruments using pulse techniques, wide band low noise amplifiers, pulse amplitude analysers, counting circuits, television and industrial instruments used for the measurement of pressure, temperature and flow.
Men with Services, Industrial or Commercial background of radar, radio, television, industrial or aircraft instruments are invited to write for further information. Training Courses in Specialised Techniques are provided for successful applicants having suitable Instrumentation background.
Married men living beyond daily travelling distance will be eligible for housing. A lodging allowance is payable whilst waiting for housing. Working conditions and promotion prospects are good.
Applications to:
Works Labour Manager, Windscale and Calder Works, Sellafield, Seascale, Cumberland or
Works Labour Manager, Chapelcross Works, Annan, Dumfriesshire, Scotland.

AEI
 ELECTRONIC APPARATUS DIVISION

now offer interesting and secure employment to:-

ELECTRICAL TESTERS

Men who are suitably qualified are required for work in our expanding Test organisation. This work is interesting and instructive and involves the latest techniques on a wide variety of industrial electronic equipment. The ability to diagnose faults quickly, and experience in the use of specialised test equipment is desirable.
Please apply to:
Personnel Supervisor,
Associated Electrical Industries Lid. New Parks, Leicester

ROYAL NAVAL SCIENTIFIC SERYICE government communications h.q.

 CHELTENHAMPHYBICISTE (Telecommunleational.
MATHETATICLARS.
ELECTRICAL EMOMEERA:
(Blectronicy) Radar.
TTolsenmmunleatlona and Radlo.)
required ace-
OFCRAB
UALs.: Mut bave Int or Ind Clam bona degreos or onuiv. (and 8.8.O.'s have had min.
 horn Britlea sublect of patural borm Brita parnita.

ate) but opportuantite for thoee between 2 I and 3y to compete for eviah. poota.
sALARIEs: $\$$ S.B.O. $81.342-81, R 84$.
Forma trom linintry of Lebour, Twhaical and (1.7.1. quotine A.48/1A.

INTERNATIONAL AERADIO LIMITED

require a SUPERVISOR
This post is a new one entailing the organisation of production and the control of staff constructing aerodrome telecommunications installations designed to customer specification.
Applications will be particularly welcome from ex-RAF personnel with the trade of
GROUND WIRELESS FITTER
and who have held the rank of Sergeant or above.
The post is permanent and pensionable with real prospects of advancement.
Applications to:
The Personnel Officer,
International Aeradio Limited, Hayes Road, SOUTHALL, Middx.

MARCONI INSTRUMENTS

have a vacancy for an

ELECTRONIC ENGINEER

for the Technical Publications Department

He will be required to work on his own initiative in producing technical manuals on an interesting variety of electronic equipment of advanced design. Previous writing experience is not essential. The post is permanent and pensionable and provides opportunity for advancement in this progressive expanding Company.

Please send full details of your experience and qualifications to-
Dept. G.P.S.
English Electric House,
Strand, London, W.C.2,
quoting reference number WW 2976B.

WEST GORTON, MANCHESTER
announce the following
RANGE OF VACANCIES

for most interesting and varied work associated with the accelerating programme of production of

DIGITAL COMPUTERS

(1) TEST EQUIPMENT DESIGN ENGINEERS
(2) STANDARDS LABORATORY ENGINEERS
(3) TEST ASSISTANTS

Desirable qualifications for these categories are:-
For (1) Degree or H.N.C. in Electrical Engineering or Applied Physics.
For (2) the same but with specialised knowledge of modern laboratory instruments.
For (3) Ordinary National Certificate or equivalent.
Applicants possessing lesser qualifications, but sufficient previous experience of a suitable kind will be considered.
Salaries offered will be fully commensurate with qualifications and experience, and would be subject to annual review. The Company operates a Staff Pension Scheme and a Dependants' Insurance Scheme.

Forms of application can be obtained from
T. J. Lunt, Staff Manager, Ferranti Limited, Hollinwood, Lancs.
Please quote reference DDG.

B.O.A.C
 BRITISH OVERSEAS AIRWAYS CORPORATION

Applications are invited from suitably qualified men who are interested in the application of advanced electronic methods in Airline Communications.

Two vacancies exist at London Airport in the Communications Branch, one of which relates to planning and systems engineering in the application of automatic methods in the Corporation's world telegraph network, and the other to like aspects of aeromobile communications and electronic navigation aids.

The essential qualifications are:-
(a) A University Degree in Physics, Electrical Engineering or equivalent.
(b) Sound training in modern communications and information transfer theory.
(c) Some practical experience in the application of semi-conductor devices.

Desirable additional qualifications:-
(a) Knowledge of traffic and engineering problems in large modern telegraph systems, or
(b) Knowledge of techniques used in design and oderation of modern high-speed computors.

> Salary range for these posts:$$
1,237 \text { 10 } 0-£ 1,567 \quad 10 \quad 0 \text { per annum, and }
$$ $£ 1,130 \quad 0 \quad 0-£ 1,367 \quad 10 \quad 0$ per annum.

Applications giving details of experience and qualifications to:-
Recruitment Manager, B.O.A.C.,
London Airport, Hounslow, Middlesex

ELECTRONIC INSTRUMENTATION

Small Electronics Consultant team, with wide knowledge of the applications field and with original ideas can now undertake an extra commission. Please reply Box 3668.

MOSCOW TRADE FAIR

Two Electronic Engineers/Technical Consultants visiting above Fair and with considerable knowledge, contacts and experience of Eastern Europe, are willing in return for sharing remaining expenses to represent firms interested in export. Box 3669.

RADIO TECHNICIANS IN
 CIVIL AVIATION

Man aged 19 or over for interesting work providing and maintaining aeronautical colecommunications and electronic naviga. cional aids at aerodromes and radio stations in the U.K. Fundamental knowledge of radio or radar with some practical experience essential; training provided on special types of equipment. Salary according to age and station, spprox. 6670 at age 25 rising to E795. Prospects approx. Lenat age 25 rising to tys. Prospects of permanent pensionable posts. Good oppor-
tunities for those who obtain O.N.C. in Elec. Eng. or cartain C. and G. Certificates for promotion to posts with maximum salaries of $£ 950$, $£ 1,085\},\{1,335$. Apply to the salaries of
Ministry of Aviation (Est. $5(\mathrm{a}) /$ RT), Ministry of Aviation (Est. S(a)/RT), Berkeley Employment Exchange (quocing Order No. Wostminstor 3552).

PHILIPS ELECTRICAL LTD.

45 Nightingale Lane, 8.W. 12 ENOIMEERS
required for the service and.installation of X-Ray equipment. Candidates with O.N.C. (electrical) or electronics experience would be considered. Also applicants with electronics experience as trainees.

Applications with full details should be addressed to the Personnel Officer, at the above address quoting reference SE2/61.

ENGIMEERS FOR RESEARCH \& DEYELOPMENT III GOVERMMENT SERVICE

Foilowter we ermmplem of vacascies a OTPETILIO OPFICEM ($798-11,283)$ o GRNIOR BCIENTIFIO OPFICEE (1,SH2 (1,654) lovel now arailable:-
 ARETAL BYBTEM等 comemaniontione (eclentlife oulopr.
Hationat PHTiLCAL LABOMarogy, Tedding Won, Mddivenx-mechanical engineer to leed small team on HOVERCRAFT remarch. Prac toal researcb erperienoe and knowledse a arodynamios and hydrodjnamics roquired ADMIRALTY UITDERWATE ETABLISHMENT, Portind, Dornet-mpe in THERMODYNAMIGs with experiano (pre
 POPULSION PROPULSION. Experlence ts thotrumentetion OEAL DADAE FTA THT: Wores-ilste dectrical engtioer for remeh AIS TEAFHO DATA ITNDLINO THOZ Niquiss terolving dies extrection, diftea lectronke computation and dets tranamiesion
 and DRVBLOPIERT ENOINRRRB and mont acheatiae dioctpitnear All poste carry a pearion Good promotion proopecta. Pull particulars
 17 Morth Aefler tervel, Loman, W.L.

PHILJPS ELECTRICAL LIMITED 45 Nigheingale Lane, Batham, S.W. 12

ROTHAMSTED EXPERIMENTAL STATION harpenden, herts LABORATORY TECHIICIAN

required by Chemistry Department for maintenance and construction of nucleonic and other physical laboratory equipment and routine assay of radio-isotopes by conventional counting methods. H.N.C. or equivalent appropriate qualification. Pay on scale $£ 786$ by 7 increments to $£ 1,082$. Superannuation. Apply in writing to the Secretary.

SHORT BROTHERS AND HARLAND LTD.

Aircraft Instrument Fitters and Ground and Air Radio/Radar Fitters

Applications are invited from suitably qualified tradesmen for vacancies at a Flying Unit in North Wales. Canteen and Hostel facilities available.

Apply:
The Aerodrome, Llanbedr, Merioneth, N. Wales.

च erpentiv

have vacancies for young men and women who wish to pursue an interesting and rewarding career in the field of

TECHNICAL AUTHORSHIP

The Company's activities are many and varied and the present vacancies are concerned with the preparation of publications associated with the "BLOODHOUND" Guided Weapon and the "ARGUS" Electronic Computer.
Applications are invited from men and women who either have experience of technical authorship or who wish to enter this field and possess:-
(a) A knowledge of electronics to Degree or H.N.C. standard or wide practical experience with electronic equipment in either the Services or industry, and
(b) the ability to produce clear and concise draft publications from engineers notes.

Successful applicants will be offered a salary fully commensurate with qualifications and/or experience, and with the benefit of a Staff Pension Scheme and a Dependants Insurance Scheme.
The Publications Group is housed in a modern building, pleasantly situated on the Cheshire boundary with easy access to town and rural areas.
Forms of application can be obtained from:-

MEN: T. J. Lunt, Staff Manager,
Ferranti Limited, Hollinwood, Lancs.

WOMEN: Women's Personnel
Officer,
Ferranti Limited,
Wythenshawe,
Manchester, 22.

Please quote reference PC.

ENGLISH ELECTRIC VALVE COMPANY
 LIMITED
 Microwave
 Research and Development

The Company has considerable effort engaged on research and development into very low noise microwave tubes.

Physicists and engineers are/required to assist in this programme and whilst we would prefer graduates with experience in this field of activity we would be pleased to hear from graduates with good honours degrees backed up with industrial experience in light electrical or electronic companies.

Employment would be at the Company's Works in Chelmsford, Essex.

Enquiries should be addressed to:Group Personnel Services, English Electric House, Strand, London, W.C.2. quoting reference WW 1506 K .
 DO-IT-YOURSELF TRAIIINE TECHMIQUE in Ranin \& electannios YOU LEARN while you BUILD...
simple... Practical. Fascinating . .

ANNOUNCING-after yean of ewecemful operation it obber conntifes-the tateat mydem in bome training in electronkes iatrodsced by a new British trelalise organlalfom. AT LAAT一 a dimple way of learaing-by practical meano-the "o how and why" of electronice with the minimam of theory and no matbematice! YOO LEARN WHILST BUILDINO actual equipment with the component and parta which we vend youand you really have tua whilot learaing! And afterwarioyou bave a firt-rate plece of home equipment plua the krowledge of bow it works and how it can be eerriced. THIS NEW AYSTEM bring you an exclitig bew opportuntty at a very moderate cost-and there are NO MATHEMAYICA Pont the reply coapon TODAY for FREE Brochurs. to Bettalin's Lasding Redio Tralalng Organisation.

BUILD YOUR OWN:-

- RADIO EQUIPMENT
- HI-FI INSTALLATION
- TEST EQUIPMENT

AND LEARN AS YOU DO IT
 $\left\{\begin{array}{l}\text { To: RADIOSTRUCTOR (Dept GIO6) } \\ \text { Retding, Berks. } \\ \text { Pleose send Brochure without obligation to } \\ \text { Nome } \\ \text { Address } \\ \text { (812) }\end{array}\right.$
RADIOSTRUCTOR
BRITAIN'S LEADING ELECTRONJC TRAINING ORGANISATION

ADMIRALTY REQUIRES EXPERIENCED MECHANICAL, ELECTRICAL AND ELECTRONIC ENGINEERS

Experienced Senior Production Engineers and Production Engineers required in various Admiralty Establishments, mainly in Bath, Portsmouth, Sheffield and Beith, (Ayrshire) Areas. Duties cover variously Marine, Mechanical and Electrical 'Electronic equipment including Guided Missiles and Radar. In particular, two Senior Production Engineers are required at Sheffield and one at Beith. At Sheffield, one post is in charge of the design of gauges, including electronic equipment for measuring and testing armament stores; the other post is in charge of manufacture of gauges and general factory production, including plant maintenance, etc. The post at Beith is to organise and advise staff engaged in testing and assembly of Guided Missiles, resolving technical problems, and designing special test equipment.
Qualifications. Candidates must be of British bith and have served a recognised apprenticeship or had equivalent training and possess University Degree, A.M.I. Mech. E., A.M.I.E.E. or exempting qualifications. Opportunities occur to gain establishment.
Salary (National Rates) Senior Production Engineers $£ 1,456$ to $£ 1,950$. Production Engineers $£ 936$ to $£ 1,429$.
Applications. Apply stating age, training, experience and qualifications to the Secretary of the Admiralty: C.E.II(88) Empire Hotel, Bath, quoting PE 6119.

TRANSFORMER DESIGN ENGINEER

A further opening for a young man to design transformers for the Electronic and Allied Industries. Some previous experience essential.
The position offers excellent prospects in a firmly established expanding Company.
Write or phone :

The General Manager, READING WINDINGS LIMITED, 169, Basingstoke Road, Reading, Berks.
Telephone: Reading 81634.

ELECTRONIC ENGINEER

A Senior electronic engineer is required for the development of airborne electronic equipment (not communications).

Sound technical qualifications and experience in the use of solid state devices are essential.
This is a key post with very good prospects of advancement in an expanding organlsation, for which a salary in excess of $£ 1,600$ per annum is envisaged.
Please reply, giving full details to Box No. 3603.

REMOTE SUPERVISORY CONTROL

Serck Controls is an expanding organ. isation developing advanced systems of digital electronic equipment which are rapidly finding acceptance in the oil, gas, water and electricity industries both at home and abroad. Further stafi are required to assiat in the development of exciting projects.

DEVELOPMENT ENGINEERS
These should be in the age group 23-35 with a degree or H.N.C. preferably with a knowledge of logical techniques using solid state devices.

CONTRACTS ENGINEERS
These should be technically qualified and in the age group 25-35. Familiarity with instrumentation and/or communications and with an apprec ation of an elecironic approach together with an understanding of systems is essential. A facility for communicating ideas both personally and in writing is necessary. Opportunities for installation and commissioning work overseas may arise from time to time in the future.

TECHNICAL ASSISTANTS
These should be in the age group 20.30 and of O.N.C. (electrical or electronic) standard and should have the potential to become Engineers in the near future.
These appointments will be of interest to those who are prepared to work hard towards the achievement of clearly defined objectives as members of a team. Success will be rewarded both financially and by additional responsibility.
Applications to:
Serck Controls,
Parkfield House,
Dorridge,
Solihull,
Warwickshire.

TECHNICAL AUTHORS

are invited to apply for two interesting appointments to prepare instruction manuals for a wide range of complex radio navigational equipment.
These posts which are permanent, and pensionable will be based at our New Malden research laboratories.
Please write, in confidence, with details of qualifications and experience. to Technical Publications Depart. ment, THE DECCA NAVIGATOR COMPANY LIMITED, 247 Burlington Road, New Malden, Surrey.

TECHNICIAN

Male, aged 20-40 required by

IBM UNITED KINGDOM

 LIMITEDfor their HARROW DEPOT. Candidates with O.N.C. or City and Guilds (Intermediate) will be trained to maintain electronic test apparatus employins pulse techniques. practical experience of radio work desirable.
Applications in writing to: Mr. H. N. Taylor,
IBM United Kingdom Limited. Stanley Road,
quoting ref. GA/WW/300.

EMI

FIELD ENGINEERS

Engineers are required by the Field Services Division of EMI Electronics Ltd. to engage in Trials in the Field of the complex protorype electronic equipments developed by EMI Electronics. Sound practical knowledge of the operation and maintenance of Radar or Communication equipments is necessary. Posts may involve periods away from base and a willingness to live away from home is essential. Starting salaries are based on qualifications and experience and it is Company practice to review salaries annually on the basis of ability and potential.
Candidates should write initially, giving full details of qualifications and experience, and quoting Ref. Pa/8 22, to:-

Personnel Manager,
E MI ELECTRONICS LTD. HAYES, MIDDLESEX.

INTERNATIONAL COMPUTORs \& TABULATORS LTD.
HOLLERITH \& POWER8 8AMAS ACCOUNTING MACHINES ELECTRONIC ENGINEERS
(a) to specialise on Calculators and Computers of all types manufactured by the Company and to be based on Field Engineering Headquarters, Luton, Beds. Successful applicants will be required to travel throughout the United Kingdom and occasionally abroad.
(b) to service Calculators and Computers of all types already installed in Greater London, the Home Counties, and the industrial Midlands.
The following training and experience is sought for both types of vacancies.
(i) Experience in the maintenance and servicing of Electronic Equipment (Pulse Techniques) either in Industry or H, M. Forces and Radar; dustry or H.M. Forces and Radar; in addition the ability to handle bench tools and instruments, with an appreciation of the enect of
electrical circuits or complete electrical cir
(ii) Quallfications ONC (Electrical) or equivalent Studies in Telecommunications. Applicants with experience on Radar in H.M. Forces will also be welcome
These are Salaried Positions which offer:-
(a) A progressive carreer.
(b) Retirement benefits.
(c) Excellent sick pay scheme.
(d) Holiday entitlement extended to three weeks after five years' service. Applicants who have this training and experience and who are aged 21-35 years are invited to write to:
E. J. Reeves, (Principal), Field Engincering Personnel Section 5-11 Holborn Bars, L.ondon, E.C.I.

The new microwave complex in Eastern Canada-now in service-marks another maior achievement by G.E.C. Consisting of 8 terminal and 18 bothway repeater stations, the link includes a path of 49 miles over water where space diversity reception is in use. The radio system operates in the $2000 \mathrm{Mc} / \mathrm{s}$ band and provides a main and standby channel on all routes. In the event of a failure or degradacion of the working radio channel, changeover to standby is automatic. The capacity of each radio link is 300 speech circuits, and the standby channel can be used to carry television signals. Radio and multiplexing equipment for this vital link have been buils by G.E.C., who have also toen responsible for its inscallation and commissioning.

Today at G.E.C. we require:-

LABORATORY ENGINEERS

(qualified and preferably experienced) co carry out development on more advanced transistorised multiplexing equipment using p.e.m. and f.d.m. the U.H.F. and S.H.F. bands.

LABORATORY ASSISTANTS.

These vacancies should prove attraceive so the youngar man or girl with a good G.E.C. at ' O ' level which includes Maths and Physics. Facilities for additional technical training are available.

To help us with the planning and installation of our current equipment which includes the $960.1,800$ channel equipment working in the $6,000 \mathrm{Mc} / \mathrm{s}$ range. includes the $960 \cdot 1,800$ channel equipment work require:-

A SYSTEMS PLANNING ENGINEER INSTALLATION ENGINEERS
 with wide experience. who are free to traval world wide.

If you ore interested in ony o: these vocancies. please apply to:
The Staff Officer,
THE GENERAL ELECTRIC COMPANY LIMITED,
Telephone Works, COVENTRY

EMI

Interesting vacancies have occurred in the inspection department at the Feltham laboratories of EMI Electronics Lid., for the following:-

ENGINEER INSPECTORS to join a team carrying out electronic inspection of complex electronic equipment under development, and to conduct liaison with development teams and workshops. A strong engineering background with experience of similar work is necessary. Candidates should have H.N.C. (Electrical Engineering) or equivalent.
TEST ENGINEERS to carry out functional tests and to report on sub-units and complete systems in the radar and communications fields. Service or industrial experience in radar equipment is necessary, and an O.N.C. qualification would be an advantage.

ELECTRICAL INSPECTORS to carry out testing of sub-units to performance specifications. Some previous experience is essential.

Applications for these pensionable staff positions shou: ${ }^{4}$ be made, quoting Ref. Ia/l/X, to:-

Personnel Manager, EMI ELECTRONICS LTD HAYES, MIDDLESEX

PLYMOUTH AND DEVONPORT

 TECHNICAL COLLEGEPrincipal: E. BAILEY, B.Sc.,
F.R.I.C., A.M.I.Chem.E.

MARINE RADIO OFFICERS' COURSES
The next Radar Maintenance Course will commence on 24th April, 1961.
The next First Class P.M.G. Conversion Course will commence on 10th April, 1961.
Applications should be sent direct to: The Registrar, Plymouth Technical College, Tavistock Road, Plymouth.

MORSE CODE TRAINING Get your Radio Operator's Licence the easy way!
 |IIIIIIIIIII CANDLER has taight MORSE CODE by correspondence for 50 years. On Land, Sen and in the Air and in every Continent, you will find first-class Radio Operators who have learnt their profeasion or excelled as Amateurs the CANDLER WAY. Write for the Candler "Book of Facts, without obligation and see for yourself how fascimatimes the Candler Method of teaching the Morse Code can prove. You may if you soish pay as you learn.

CANDLER SYSTEM CO.
(55W) 52b ABINGDON RD., LONDON, W. 8 Candler System Co., Denver, Colorado. U.'S.A.

Due to a recent expansion in our

- Wiring Department, we have a
- number of vacancies for Com-
- ponents Wiremen for the com-
plete wiring of memory stores
- and systems.
- Excellent working conditions. 5-
day week.
- Please apply to The Personnel
- Officer

The Plessey Company Ltd., Wood Burcote Way, Towcester

SERVICE ENGINEER

required by Northern electronics instrument manufacturer. Interesting work on all types of electronic testing instruments. Staff Pension Scheme and prospects of promotion. Applicants should state experience, qualifications, age and present salary. Box No. 3979 c/o "Wireless World."

[^21]VAGANCIES IN QOVERMMENT SERVICE A number of vacancies, offering good career prospects, exist for:-MALE
CYPHER OPERATOR8 MALE AND TELEPRINTER OPERATORS FEMALE Write, giving details of education, qualifications and experience, to:-

Forsien once
B3, Claronee street, Ćholtemham, Elos.

PROJECT LEADER

AGENCIES OFFERED Technical Representatives offer agencies

 for the following:VIBRATING CONDENSERS (most advanced in the world). Range of AUDIOMETERS and ELEC-TRO-ACOUSTICALINSTRU. MENTS (range somewhat similar to Bruel and Kjaer). Other instruments subject to specific enquiry. Boz 3670.
DIGITAL COMPUTORS

Resulting from continued expansion in the computer field, n number of vacancies have arisen for Graduate Electronic Engineers and for Technicaans ofO.N.C. standard. The additional staff are needed for technical supervision and manntenance of Digital Computer Installation.
Vacancies exist m:
London, Birmingham and Sheffield.
Training will be provided for this interesting work and there are opportunities for rapid promotion to positions of responsibility. Salaries are generous and in proportion to ability. Pension Plan.
Please write to Personnel Manager
THE MATIONAL CASH REGISTER COMPANY, LTD.
206-216 Marylebone Road, London, N.W. 1

SUPERVISOR

An excellent opportunity for a man aged 25-40 who will be required to lead a small team of wirer: and assemblers producing electronic instruments.

Applicants must have undertaken electronic wiring and previous supervisory experience would be an advantage.

Ref. 451/WW.
Please apply to:
B. B. Lynch,

Permonnel Officer,
Solartron Laboratory Instruments Ltd.,
Queens Rd., Thames Ditton, Surrey.

MOULDED FIBRE DIVISION :
A vacancy exists in this new and expanding Division for on
ELECTRONICS ENGINEER
for development work on the manufacture of loud speaker cones. We are looking for a man interested in sound reproduction who is willing to transfer his interests from straightforward electronics to participate in this highly specialized project.

The work will involve the design and test of cones to specification, weight, resonance and acoustic response. The applicant will also be required to handle enquiries and new orders in this field.
A Higher National Certificate in Electronic Engineering or equivalent is desired, together with ability to work in close liaison with Mechanical Engineers and Paper Technologists.
A generous four figure salary will be paid in accordance with qualifications and experience, and there is an excellent Pension Scheme in being, together with Life Assurance benefits.

Applicotions in writing, to Regional Personnel Manager, The Plessey Company Ltd., Kembrey Street, Swindon, Wilts, quoting reference No. MFD/8404/EE.

[^22]
DESIGN/DEVELOPMENT ENGINEER

to work on Image Orthicon television project for X-Ray Image Intensification. Should have development experience on television equipment and graduate qualification although the latter is not essential for applicants with very extensive experience.

Apply: Dept. G.P.S., English Electric House, Strand, London, W.C.2, quoting reference WW 2976C.

MINISTRY OF AVIATION E.I.D.
 ELECTRONIC INSPECTORS

Radio, Radar, Components \& Electrical Ancillaries at Bromley \& Woolwich and eleswhere in London \& the Home Counties.

Varied and interesting work with opportunities for gaining valuable experience and further training. Excellent Promotion Prospects.

Pay 266/- to 281/-. (with prospects of further progression to $306 /-$.) for a 5 -day week. Skilled men apply, stating experience, to :-

ELECTRICAL INSPECTION DIRECTORATE (W.W.) AO/L
Aquila, Golf Road, Bromley, Kent

ODDIE FASTENERS

THE FASTENER WITH ENDLESS APPLICATIONS - SIMPLE - POSITIVE SELF-LOCKING.

MADE IN A VARIETY OF TYPES AND SIZES. SPECIAL FASTENERS TO SUIT CUSTOMERS' REQUIREMENTS. WIDELY USED IN THE RADIO INDUSTRY.

Mustroted brochure ond other information will glodly be sent on request

Oddie, Bradbury \& Cull Ltd., Southampton Tel. 55883 Cables: Fasteners, Southampton

Our preaent range tmeludea:
Fidelis Major AM/FM iuper unit whit pro-amp tone coatrols, etc. \&F etage oo all wiveband Malor amplleser, 445 . 30 , or whe the Fidelis Imparia With pre-app and tone tuper. Price $818 / 5 / \circ$, or Piletie Preaten, smitched VEi tuber, SLP. Fith Pra-ampllicer and woe cootrole, 21 (ajor amplitier. 18.

Pull detalls Whllasty oo requen
4id. for pomtare is appreciatod.
2 AyHURST ROAD
 TELSCOLER CLIHT ELECTROTH TELSCOMB - FEVELOPMENFS sosese.

4 TRACK

 STEREO

 . 4 IPS.

and a genuine

 response from
30-16,000 c/s $\pm 3 \mathrm{~dB}$

It becomes quickly apparent on listening that the performance characteristics claimed for AUDIOGRAPH recorders are demonstrably true. The remarkable thing is that such standards are achieved on quarter track at $3 \frac{3}{2}$ ips. Two stereo instruments (models $9 /$ S4K and KMS/66) are offered, differing principally in styling and speaker arrangement. Mechanically and electronically they offer similar facilities which permit very high standards of recording together with many elegant refinements. These include paired inputs, paired outputs (each tapped at 5 and 15 ohms plus one low level) stereo balance, etc., etc. Model KMS/ 33 includes a second speaker.
AUDIOGRAPH Recorders ore sold by leading stockists. Leoflets on request.

With second spooker in lid $3 \ddagger \mathrm{ips}$. S/impose; pouse, digital counter, etc.

CHITNIS ELECTRONICS LTD. 66 BOLSOVER STREET, LONDON, W.I Tolephone EUSton 4264-5-6

TEST ENGINEER

is required for the Test Department for fault finding and testing electronic instruments to specification.

In Solartron we believe that consideraion for the individual is of prime importance. Our amenities and salaries match this philosophy.

Ref. 488/WW.
Please apply to:
B. B. Lynch, Peisonnel Officer, Solartron Laboratory Instruments Ltd.,
Queens Road, Thames Ditton, Surrey.

VACANCIRS POR RESEARCH AND DEVELOPYKAT CRAFTSMEN I GOVERNMENT SERVICE Experience in one or morr of the followinge-
ELIECTBICAL (1) Malntenance of radio compunica. tion recelvers.
(2) Bub-asembly lay out. Wrise and
vestliog of radio-i Fpe chamis
(3) Fault anding in and malntenance
(4) Maintenance of teleprinter or eypher machives and asoociatod telegraph equipment.
WroHanical Inatrument makers and qeneral machinist With bench otting and machinist with bench outtis and atruction of experimental and proto. type electronic equipment.
BAIC PAT cals. 2d. plus merit pay in the rage of 10% to $100 /$. per welk the range Gill be wouned per wbek. Mert pay ability and the necesasry banic quali. acations. ppoturulee for eve
antual permanent and pen. conditiona; ularle acommodation avaliable.
Apply in writing to: Personnel Omicer. G.c.f.Q. (RDC/3), Bs, Clarance Atreet, Cheltenham, Olow

g.E.
 APPLIED
 ELECTRONICS LABORATORIES THE AIRPORT, PORTSMOUTH

Are engaged in the development of a wide range of electronic and electro-mechanical projects. We have an immediate requirement for

QUALIFIED ENGINEERS

particularly if they have experience in the design and development of transistorised circuitry.

This is a progressive establishment employing young men with advanced ideas.

Increasing commitments necessitate expansion of staff at all levels and promotion prospects are excellent.

Our senior technical staff will be pleased to have informal discussions, at weekends if desired.

Please write in confidence to the Personnel Officer.

UNICAM

 INSTRUMENTS LIMITEDThis Company specialises in the production of high quality optical instruments for use in spectrum analysis and has an international reputation as a leader in this field. At all stages of manufacture the best standards of workmanship are needed.
We have vacancies for men with electronic experience for testing. Radar and Radio Technicians with fault findints experience would be suitable.

If you have the kind of background which you think would fit you for this interesting work in a pleasant University City, please let us have full details of your qualifications and experience.

Wite to:-The Works Manager, Unicam Instruments Limited, Arbury Works, Cambridge, quoting reference E.S.53.

ICI

IMPERIAL CHEMICAL INDUSTRIES LIMITED

A SCIENTIFIC INSTRUMENT MAKER

is requlred for the Instrument Laboratory of Fibres Division Research Department in which a very wide range of instruments tor chemistry and physics is needed. A rood all-round man is required, able to work from sketches or even verbal instructions. He should be able so produce a first-class instrument, the workmanship of which can be ralied on and of which he can be proud.

This work should be of interest to a toolmaker or watchmaker.

[^23]
UNITED KINGDOM ATOMIC ENERGY AUTHORITY dounreay expermental REACTOR ESTABLISHMENT

INSTRUMENT MECHANICS

(Physical and Electronic)

and INSTRUMENT ELECTRICIANS

There are vacancies in the Instrument Department for men with experience in the maintenance of instruments for the measurement of pressure, flow and temperature, electronic instruments, radar and television and for electricians with experience in the maintenance of temperature recorders and electromagnetic relays.

Applications are invited from men with experience of instruments in industry or with appropriate experience in H.M. Forces.

The rate of pay is $£ 1370 \mathrm{~d}$. for a 42 hour five day week and there is a superannuation scheme. Housing will be made available to married men and there is accommodation for single men and married men awaiting housing.

Facilities are available for further education and promotion prospects are good.

Application forms and further information can be obtained from:

> Recruitment Officer, Dounreay E.R.E.,
> Thurso, Caithness, Scotland.

city of Leicebter education committee
 COLLEGE OF
 TECHNOLOGY \& COMMERCE

Senior Laboratory Technician required in the School of Physics. It is desirable that applicants should be in possession of a Pinal City \& Guilds Certificate or Higher National Certificate and have a good knowledge of electronics.

Salary on scale $£ 685$ to $£ 760$ per annum.

Applications in writing should be addressed to the Regiatar at the College.

TELEVISION ENGINEER REQUIRED

By set manufacturer in Dublin to control tuner units production and test. Excellent opportunity staff appointment. Apply:-

WORKS MANAGER, PYE IRELAND LTD., DUNDRUM,

DUBLIN, EIRE.

WEstLAND AIRCRAFT LTD., 8AUNDER8-ROE DIVISION

have racancies for

ENGINEERS

to work on the trials and further development of "Black Knight" at High Down, Isle of Wight, and in Australia.
Applicants, who should have
experience in one of the following:
Control,
Data Reduction,
Ground Electrics,
Ground Measurements,
Guidance,
Instrumentation,
Telemetry,
Trials,
Mechanical Engineering, or in an allied field, together with enthusiasm and initiative, should forward details of their careers to date to:
The Personnel Officer (WW/86), Westland Aircraft Limited, Saunders-Roe Division, East Cowns, I.W.

SOLARTRON
 ELECTRONIC

INSPECTORS - Male and female are required for both our Chessington and Thames Ditt nn locations. Applicants must have had previous experience in line and finsl assernbly inspection. In Solartron, we believe that consideration for the individual is of prime importance. Our salaries and conditions of employment match this philosophy. Ref. 490/WW. Please apply to:
John Delfgou, Assistant Personnal Officer, Solartron Laboratory Instruments Ltd., Queens Road, Thame Ditton, Surrey.

ELECTRONICS ENGINEER

There is a continuous demend for test equipment caused througb the incroasing complomity of modern velves ${ }^{\text {We require an exper }}$ ienced electronics eneineer to dosisn such tast equipmant.
Experionce of pulso circuita and a sound fundamental knowledge of orcillorcopes is essential
Preferably applicants should poneen a degree in electrical engineerina or physics or equivalent qualifications and be within the age range 25 to 40.
Salary will take into account experience, qualifications and age. Send brief resume of experience, qualifications, etc., to:-

Group Personnel Services,
THE ENGLTSH ELECTRIC COMPANY LTD.
English Electric House, Straod, Loadon. W.C. 2 quoling ref. WW 1590D.

ELECTRONIC DEVELOPMENT ENGINEER

required
to lead a small ream engaged in the development of commercial communication equipment. Applicants should have a degree or equivalent qualificanion and some years experience as Project Engineers. Preferred age range; $30 / 35$ years.
NON-CONTRIBUTORY PENSION SCHEME AND LIFE INSURANCE
5 DAY WEEK.
EVENING INTERVIEWS ARRANGED.
Write giving details of education, qualifications and past experiences to:-

PERSONNEL MANAGER MULTITONE ELECTRIC CO. LTD. 12/20 UNDERWOOD STREET, N.I.

YOU can further your career with

CREI ADVANCED

 ELECTRONICS EDUCATIONC.R.E.I. home study courses in Electronics are the culmination of 33 years of working closely with leading private companies and Government agencies in the United States. The result is a modern advanced programme of education comparable in technological content to that offered by technical colleges.
C.R.E.I. (London) as the European Division of The Capitol Radio Engineering Institute of Washington, D.C., are now able to offer these courses to you, with the same individual tuition methods which have made our courses outstanding in the United States.

The demand for C.R.E.I.-trained men is shown by the fact that more than fifty corporations and Government agencies in the U.S.A. have agreements with C.R.E.I. for enrolment of employees under company sponsorship.

> | Spectalised Courses are available in:-m | | | | |
| :---: | :---: | :---: | :---: | :---: |
| Mathematics for Electronic Engineers, Automation, | Radar, | | | |

C.R.E.L. can now offer a complete course in Nuclear Engineering Technology.
(C.R.E.I. courses hive been officially approved in the Untied Kingdom for the purpoee of part refund of feed to members of all three Sarvicen)

If you have had at least two years* practical experience in electronics or the equivalent please write for full particulars and detailed programmes to: Dept W.4.

$$
\begin{array}{r}
\text { C.R.E.I. (LONDON), 132/5, SLOANE STREET, LONDON, S.M.I } \\
\text { Telephone: SLOane } 8277 / 9
\end{array}
$$

TECHNICALLY TRAINED by

IC
 IN RADIO, TELEVISION AND ELECTRONIC ENGINEERING

Opportunities in Radio Engineering and allied professions await the I.C.S. .rained man. IC, Courses opan a now world to the keen student
RADIO AND TELEVISION ENGINEERING:
RADIO AND TV SERVICING:
ELECTRONICS, COMPUTERS \&
DATA PROCESSING, etc.
ICS Courses give very real help to the man setting up his own business or acing a cechnical career in the radio industry.
Examination Courses ior:-British Institution ol Radio Engineers. City \& Guilds TELECOMMUNICATION TECHNICIANS, C. \& G Radio \& TV Servicing (R.T.E.B.) and C. \& G. Radio Amatcurs.

LEARN-AS-YOU-BUILD PRACTICAL RADIO COURSE Build your own 4-valve TRF anc 5-valve superhet radio receiver Signal Generator and High-quality Multimater.
FILL IN AND POST THIS I C S COUPON TODAY It brings the FREE I C $\$$ Prospectus containing iull particulars of ICS courses in Radio, Television and Electronics.

Make Your Ability PAT

UNLIMITED OPPORTUNITIES exist today for " getting on but only for the fully trained man. Let I.C.S. tuition devalop your talents and help you to success.
STUDY IS EASY with I.C.S. suidance. The courses are thorough. Printed manuals, fully illustrated, make study simple and progress sure. YOUR ROAD TO SUCCESS can start from here-today. Complete this coupon and post it 80 us, for full particulars of the course which interests you. MODERATE FEES INCLUDE ALL BOOKS.

ADVER Tisma	HORTICOLTURE	photooraphy
Gen. Advertising, Betall a Dept. Btore, Copywriting	Completa Gardening	Practical Promination
ART	manaosernt	POLIC
Oil a Waier Colour	Buzinem Managemod	Police Egntrance Exam.
	Hotel Managemeat Offer Mamarment	RADIO, T.V. Electu
Arch Heecture	Induatrial Management	Rudio serviring El Eugrs.
Bullder Congtr. © Alled	Perreonnel Manacrment	V. Servicing * Engrg.
Trade:, Quantity ${ }^{\text {d }}$	Work starly. Poremanahip	Redio Consuro. (Wito kus)
OIVIL Emalriearina	LECEAMICAL A Motor	sflumg
rey Kng. 8 Etruct.Engrs	Emaikerima	
Conemete Enginoerlas	Engiomering Maths, Weld'e	Buha Mangmt., Rel. Bellige
	Irupection, W'kshop Pract.	WRITIMO POR PROIT
-omartas.	Retrigeratiod. Motar Mech.	
Emeretury mip. Storekeep	Runnligg and Mainlenado	
and \$ Ty		
DRAOERTSEANSHIP	INTENBIVE COACHINE	tor all principal oxami-
Aschltectural. Mechapical.	nations, incluaing C.I.	, A.C.C.A., I.C.W.A.,
Sither Hechise Drawng	B.I.M., A.M.I.Mech.E.,	rit. R.R.E., I.Q.s., Cily e
Drawink Oftice Practioe Drawna Ome Bing	Guilds of London Insti	R.H.8., dic.
EbCTRONIO Induntrial Electornica Computara at Maintenance	2ry 10 eley	He IC. Mev
parimg		
Arable ${ }^{\text {a }}$ Livertock		22R)
Parm Moobinery Mainh	Intertext Mouse, Par	te Rd., London, 8.W.11
Mritet Gardealug	and FREE book	
pire maingerimo		
I.P.E. Examinations	Name	
Plire Derice Proniotion	Address	
GENERAL EDUCATION Oond Ring. Poreika Lanpa		
a.C.E enblects ent orilinery or advarred level	Occupation	

BRADFORD INSTITUTE OF TECHKOLOGY
 Dopartment of Electrical Engineoring

Applicat fon are tavited for the following porta in thite rapidly expanding derart ment whioh olfers exceptional opportenitiee for teschipg, conmelting and re
 to 11.750 .
LEGTURER IK ELECTRICAL EMGINEERING, Ealary scale 21.370 to 21.550 . Candidato ahould be autably qualifiod to teach to final dearee standard in lectrioal powar and mactios er electronice and telecommunicatlons lodus trial and reaearch experianoe will be a recommendation.
The aucceasful candidates will te encouraged to develop fiduetrial contacta and undertake rosearch for which adequate faclitilea will te avallable.
Previoun industrial and research experievec at a auitable level w ill be taken into Previoun industria and research experieve,
Further particulars and forme of application may be ohthened from the liegiatrar (Deppertment 0), Bradford Latitute of Technolory, Bradford 7.

HRNRY PATTESN
Clerk to tho Oovernor.

LYONS RADIO LTD.

 mheruampa, PRICB ONLY 37/6. Centre zero; $15 \cdot 0.16$ microampan PRICE ONLY 48/6. Projection pattern. 2 in. dia. Uentre zero; $50-0-50$ milliampla. PRICE ONLY 7/6. 2in. dia. $0 / 20$ ampa, complete with sbunt. PRICE ONLY 6/-. Poatage

ONLY $15 \xi_{\text {, pont }} 2 / 6$. 350 v, emoolbed D.C. at $150 \mathrm{~m} / \mathrm{A}$. L.T, 6.3 v. A.C. at 4 a twice. 8 ise: $10 / \mathrm{ha}$, hleh \times
 mains and H.T. with pilot light indicator for each. Everything of top quality. 504 rectifier meladed. Truly remarkable value. PRICE ONLY 59/6, carriage 7/6.
 mtge. type R2 I.M. PRICR $5 / 6$. 4 mid., 1,500 v. whg. at 60 deg. C.. type 131 B Inverted mtg. PRICE; 4/6. 4 mid., 750 v. WiER. at 80 deg. C., type 92. PRICE 4!* All above guaranteed as new and unueed. Poat $1 / 6$ for less than 6. coded, ymthetic outer. outaide dia. approx. In. PBICE ONLY g5/- per and colour 20/- for 50 vris. $12 / 6$ for 25 yde.
3 GOLDHAWK ROAD, 8HEPHERDS BU8H, LONDON, W.12. Telephone: SHEpherds Bush 1729

THE IDEAL

MICROPHONE NECK HALTER Registered Design No. 15656 Approved by Grompion Reproducers Led

- No straps, cords or headbands.
- Positioned or removed instantly.
- Used by commentators, lecturers, demonstrators, receptionists, etc.
- Neat, rigid and comfortable.

TYPE "A" HALTER suitable for the Grampian D.P. 4 Microphone. 27/6 list. Postage 1/6.
" Close up " or standard model available.

We can also supply
THE GRAMPIAN D.P. 4 MICROPHONE
as illustrated 67 II 0
Swivel Adaptor
156
Dealers and wholesalers supplied.

[^24]
SENIOR WIRELESS TELEGRAPHY OPEPATOR

required by the GOVERNMENT of the FALKLAND ISLANDS for service at Government Wireless Station, South Georgia on agreement for one tour of 24-30 months in first instance. Salary £780 a year. Free board and lodging if single or unaccompanied. Messing Allowance £132 a year if married. Bonus of $£ 10$ a month payable on satisfactory completion of service. Free passages.
Candidates must be able to transmit and receive morse at 25 words a minute and should be familiar with H.F. and M.F. transmitters and receivers. Officer will be responsible for running of station and W/T accounting.
Apply to CROWN AGENTS, 4 Millbank, London, S.W.1, for application form and further particulars, stating age, name, brief details of qualifications and experience and quoting reference M2A/51250/WF.

BERVO \& ELECTRONIC 8ALE8 LTD.

HIOH-Fg qQUENCT ALTERAAICR BETS, O/P
 3 ph. Completo with control panel atted with rolt. meter, armmeter and trequency meter motor awitch
gear and atablimer. Manufactured by F.I.C and brand new stock. Other alternatore avallable jor 400 and 2.000 c.p.e. 2-PHABE SERVO HOTCES. rath induction renerator and qpur fear reduction ditve. S1 c.p.a. Amplitere ava川able. FELD-BACK RESOLVERS AND ALPLIFIFRS ior 50 c.p.E. urerath . TRES 11 8YNCHRO COITROL TRANBFCRMERE. Type llmita for tind c.p.e operation. IUUREEAD
 operation EY8TERESIS HOTC R3 Type HM12.11 and HM14/1 for 1158 . 400 c.p.A. 3 ph. opmration.
 OFFRA, Geanin Brimar Trwtworlay Valves. TyTe $6060(=12 \mathrm{AT} 7$) mfrion opla. Tested and evaranteed 6/- (8d. 1,851 - dos. ($21 /$). 6CHB. 716 ((8d.). 70\% doz.

 (3/6). OJ5 $/ /=19 \mathrm{~d} .1$) 36'- don. (3/6). EBSA $1 / 8$ (Pd.) 15/: dox. (3/6). One of each of the abore 12 raliet in all $45 /=13 / \mathrm{hm}$. COMDUNICATOM RECETVERE Type R. 1071.2 to 17.5 Mc/s in $\$$ anges. 9 - valte suparhet. \$ keje of 7.i kc e, band width 100-250 *-

 2.5 or 8 kere band whath. $100-250 \%$. $50 \mathrm{c} . \mathrm{p}$. of 12 v . D.C. oupply. Benaltivity $204 \mu \mathrm{~V}$ A Rupertative ecetwer to exc. cond. $230(35 /-1$. CANADIAN I2 v.. I/P cover. 1.06 to $5 \mathrm{Mc} / \mathrm{s}$. Conmplete Type TZ9. 12 v.. I/P cover. 1.86 to $8 \mathrm{Mc/s}$. Coniphete met of unlts. cond., \&14/10/- (25'-). EONVIC HCT WIRE VAC WWITCH BELAY COMTROLLERS. F102-3 880
 55- ($3 /$). CLECTROSTATIC VOLTMETERS $0-15 \mathrm{kV}$ B, A.I. mounted in onk earrying came Bverett Edgcumbe, brand Dew. $27 / 10$ - 13/61, HaONETL
 110 v. $80 \mathrm{c} . \mathrm{p} . \mathrm{s}$. . With cooling colls, ice box and thermo. etat charged, brand Dew. $\$ 20$ (carr. extra). DRAYTCy TTPE EQ FOTORs, 37 r.p.m. 230 v. A.C. 7/7/ 14t-). EAGBLIFS, SELBYINS, IPOT8, to., and all othes compmenta for electrical comperution and controle.
Piease add carriare in bracketu. Poat ordern to 1. Eopton Perado, Itreatham Eigh Road. London, B.W.1e. Gullers to: 88 Rich Birevt, Orpinction. Eent. Tele
 d.W.0. of menthly approved scoountit

E UREKA

For 21 years we have been asked for "somethung to pierce slots, cur squares and to form louvres." To celebrate our majority we offer the "A.A. Piercing Attichment."

The PIERCING ATTACHMENT is shown above fitted to a Type RXX-13in, bender.
It can be fitted in a few minutes to ANY model. The wider the tool. the greater its rossibilities.
The chevron blades cut absolutely free from burrs or distortion, giving sharp 90° corners.
Adaptable, with another fitting to forming
VENTILATION LOUVRES.

for full details write to :-
 A
 A. A. TOOLS (W)
 197a, WHITEACRE ROAD ABHTON-U-LYNE

OFFER AT GREATLY REDUCED PRICES due to purchase of entire manufacturer's stock AUDIOMASTER STAR EQUIPMENT

Audlomaat
Monsural
trol unit and
power nmpli.
blet. eontrol
bet, control
unit maitahl
for an typets
for all types
of 88 and 78
recordioge.
vity for ples. vity for piek-
upn. Provision for direct connection of tape
 headia equalised
 50 wath nak and a dictortion ralue of 0.08% at no wnthe. Aa reviewed in Auruit
 this Pheaomens Ampliser.

Audiomaster Stereo Tape Amplifier

 This apectal rersion in motended for use whith the contains two recomp channele which are eary in moniton by meane of an exchufive featire, alin. Cathonle Ray Tube. Plar-tiack can the eflected througb a suktabjo pre-amnitier capable of mocepling the algnad direc
from the tince heait.

Origmal price es
(pluy so. nd. marr.)
FULL DESCRIPTIVE IEAFLETS AND TEST PEPORTS AVALLABLE ON REQUEST TRADE AND EXPORT INQUIRIES INVITED 400 EDGWARE ROAD PADDINGTON, W. 2

MODEL 5000

Pot. No. 765782

a uniaue portable instrument

FOR INDUSTRIAL AND SERVICE USE, MAINTENANCE AND A.C. MAINS SUPPLY MEASUREMENT

Measures watts, R.M.S. volts and amps. True KVA, reactive KVA and power factor readily and accurately obtainable An external current transformer is available to increase the current range to 200 amps. Change from amps., volts or warts by meana of single switch without interruption to circuit conditions, Grey moulded case size $8 \frac{1}{3} \times 7 \times 5 \mathrm{in}$. approx. Scale length 5 in . Accuracy to B.S.S. 89 Industrial Grade.

LOW
PRIC

EARLY
DELIVERY

	SELF. CONTAINED RANGES	RANGE OF MEASUREMENT
VOLTS	125,250, 500	25/520 \%.
AMPS.	1,5,10	0.2-10.4 a .
WATTS	-	12.5200 w .

Write for Publication E.M $\quad \mathbf{5 , 0 0 0}$
Electrical Measuremem Dixision, ELLIOTT BROTHER8 (LONTOM) LTD GENTURY WORK8. LOMDON. 8.E.13.

Teseghone: TIDeway 1271
AMEMBER OF THE ELLIOIT-AUTOMATION GROUP

Z. \& 1. RERO SERVICES LTD. Head Office: 14 South Wharf Road, London, W. 2
 Tei. : AMBassador 0151/2
 Cables: ZAERO, LONDON
 A.R.B. Approved Stockists
 RETAIL BRANCH (personal callers only): 85 TOTTENHAM COURT ROAD, W.2. Tel. : LANgham 8403
 Please send all enquiries, correspondence and Mall Orders to Head Offce

AVO ELECTRIC TESTMETERS

 Mann operatod univernal soutrontic tean melen ofartnE the folloring faoilitioe -Curratt: $25 \cdot 100-250^{\prime \prime} \mathrm{A}-1-2.3-10-25-103-250 \mathrm{ma}-1 \mathrm{~A}$ D.a Voltac: $250 \mathrm{mv}-1-2.5-10-25-100-230-1000 \mathrm{~V}$. Reabincoes: $1000-10$ mospolume- $100 t \mathrm{a}$ - 1000 O
Caparaty: $0.5 \mu \mathrm{P}$ and $\mathrm{J}-5 \mathrm{~B} \mu \mathrm{P}$.
A.F. Output powar. $500 \mathrm{~m} \mathbf{W}$ zad 8 Wr full monle talo an PITCP PRicir, fally overhmulod and rasumbed, comploto with

H.T LEAKAGE INDICATORS

A.M. Bef. No. 6o/2124

Portable Fand Opersted K.T. Toetor for reeting beltace
 tn mosohma. Completely rebrillt and fully zuarantiod. Conplote Fith two B.T. lande atted whit arocodilte clipe.

> Picking and oarriage isio.

SPECIAL COMMUNICATIONS RECEIVERS

E-1850: Tange $130-820 \mathrm{mc} / \mathrm{a}$. ; I.F. Trequency $18.5 \mathrm{mo} / \mathrm{ha}$, bandridth 3.6 me/a, and tio kele. Vhoo and ploon output. R.P. coarial tunel shoulh, oryetel minger. CV-52 hocal asclistor tollowod by lour i.F elages Vbdeo Oacllintor. Malns powez eupply onll separale frou the necolver providen all the neconary volt neea
 $\mathrm{P}-58$ froquency range 300 to $650 \mathrm{mc} / \mathrm{s}$ getathivth
 330 A.C. Fully overhwaled and guarmated $\$ 7000$

 svautble at axtis charge
 Ampplitior with the reboclated asdio and ordeo atarem and Amping (118V. AC) power rapply anit IIF. $80 \mathrm{mc} / \mathrm{sm}$; band width 4 mefs. and 6 mola.; I. F. enentivity from ts to shy V. Differcat froquency rantes are obtalsod by meana of interchangeable plage in tuning andts oon-
 $7 t-210$ mols; $300 \cdot 1.000 \mathrm{me} / \mathrm{h}$, and $1000-2,000 \mathrm{mch} / \mathrm{a}$.
Prioes on appiliontion-pleave opecity the rangee required.

HETERODYNE WAVEMETERS

TE-173 Entarotyee Cryntel Controllod Frepeoney Iletors. ragge 90 to $450 \mathrm{Mc} / \mathrm{a}$ Indiridual Calibration Booke with ammerous cryatal check polnta. Accuracy $.005 \%$ eotabetherle 6V aad 135V. PMIOE, fully overbeulod and
Tuastied. z180 00
 with internal modulation. Fully overhanled and muaran.
 rance 20.200 K (e/a. othernea as above. PaICE. fully

 range so $\mathrm{ho} 1,000 \mathrm{Me} / \mathrm{L}$. ohtherwid
 WAVEITTRE, Bange $31015 \mathrm{Mc/a}$ on fumdimmentels.

 eving oheck potnte every 20 and 200 kele Dtreat
 AL8O BC. 221 and LM-14 FREQUENCY METEAS, Prices and detalle on applioation.

NEW TCC AND DUBILIER BLOCK CAPACITORS
$1 \mu \mathrm{~F}$ at $1210 / 800 \mathrm{~V}$. TYpe 8257.

1μ F at $7500 / 3000 \mathrm{~V}$ Dubliar
$2 \mu \mathrm{~F}$ at $800 / 550 \mathrm{~V}$ TCOC Vimocon

SH at 200/ 100 V TCC Vincocoi
$3 \mu \mathrm{~F}$ at $123 \mathrm{M} \cdot \mathrm{RSOV}$ Dubhlier
Phackhar and oarriakr toubo per capacilor.
When double vollatie rating are quoted. the bigher voltege refere to working temperature of $715^{\circ} \mathrm{O}$ and the

MARCONI CR-I50 COMMUNICATION RECEIVER
Frequanoy rance 2 to 60 mola in Ave banda Output tminkoro asd $200 \mathrm{~mW} / 8 \mathrm{O}$. Semitilty from $1 \mu \mathrm{~V}$ at
 olruet with 1.F.'s of 1,800 lache and $16 ;$ tola Bandpaes niter at $100-50 \mathrm{~J}=1.500-5,000-10,000$ e/a $500 \mathrm{ke} / \mathrm{L}$ noive tactor and eaperation of the maine power mepply gutt from the reoelver malke this equlpoment amineody saltable for many laborstory appliontiona.
PRIC1 frulfy overbsculd and ruarsabeed, complote with eeparale antis power mapply ualt. 875. P.P. 25/\%.

AMERICAN BLOCK CAPACITORS

AN/AMT-II RADIO SONDE

TRANSMITTERS
Complete tranmatter deelgnod in tratamall mignals ta the
 to 200 a/a., modurisoa trequetsy dapendiay on the i.0io in s millibars Pelative Humidity is to 90%. Tomperntere - 00 to $+50^{\circ} \mathrm{C}$. Equipmont Incladen bavomotrio arition aud masauring devioe. humidity and tomporatwre mearuring siemente. terial and preseure callbration chart Tranaraiteor Ciroult conelves of Doable Triode 3AS with one hall acting as morlulating onellitator. the olter m ber
PRICE, brasd new
$\begin{array}{rr}10 & 0 \\ 17 & 6\end{array}$
Manual
One manal expplled lree per enoh ix transoathars.
Paoktor and poilage.

METEROLOGICAL RADIO SONDE TRANSMITTERS AN/AMT-4E
Frequancy Raage Appros. I.,000 melh. Tranamite Operation from s baltary 110 V 6.8V and liv Dimen.
 7 ous lew batheries. BF Output is pulas modulated rith an andio froquemen dependent on the ralue or mellorer uned ta the 8875 elrouth.
PRICR, new with clrcult diagran (p.p. 3/6)...... . 16/-

PEN RECORDERS

sTRE GHART FATTERI 8WIrUEBOARD MOUMTIMO.

 Cont eltourculy drvea. 200 ond from o to l .000 kw . When used whe popentlai transformer Ahoo/t10V. and current tranalormer so/s ampa. Chart All Reoorders are muppled complete mith sutheble etrip charta.
Othor apoedo and rangee are also avallable. Plones write for full detetio.

LAE-2 HEWLETT PACKARD
 U.H.F. SIGNAL GENERATORS

 Outpot: 14∇ to 100 mV tato 50 O .
Pulsod ootput: rectagatar eavolope 100% modulated, atornulty or externalts aymohroated. Puly relatio-
 ton and oorrection chars. Power aupplien 115 V 40 . PRICR: fulty overhacted and cramabeed $\$ 13500$ Packing and carriags

4100

- MEASUREMENTS CORPORATION" TYPE A4 "STANDARD" SIGNAL

 GENERATOR

Range: $300 \cdot 1,000 \mathrm{Mc} / \mathrm{L}$. Dtrect Callbration Aceurecy: 0.5%
Outpot Level; $0 . l_{\mu} V \cdot 100 \mathrm{mV}$. sonltanounty variabla. Internal Modulation:-
Pbopwars- 30% Max. at 400 . 1,000 and 2,500 c/a. Pulee-1 to so peoc. whde delay vartable froen 0 to ounco. parro to to $100.600 \mathrm{o} / \mathrm{m}$.
Output Impedenoe- 50 ohma
Perpentage Modinallon Meter.
Porvantage Modurilon Meter. Puly srarantend....................... Prektar, and ourriage. .

CT-A NOISE GENERATOR AND

 RECEIVER NOISE FACTOR METER Portable Matne oposated metrumant providity noles Hanal to the trequency range of $100 \mathrm{ke} / \mathrm{a}$. to 100 mola 250 V operition.

"MICOVAC" TYPE CT-54 VALVE

Portable Battery operated merrement esolosed in a Patarterest $2.4-4.8-24-48-248-480 \mathrm{P}$ AC and DC full rovle. Redetanos: 0.1000 g whe mulkipiler of 1.10. 100. 1.010 and 10.000 .

Dlode probe for high frequenoy operalioe.
Dry Battery opertiton.
Dry Batiery operatloa
PRICR, fully owerhacied and mumantoed. . eas 00
Frokting and carriane si.

EMI TYPE 3794TA HIGH SPEED OSCILLOSCOPE

Thme Bave 1.5 peoc. to 50 milltise. Frikgersed or frearunniug. "Y" Ampliter providen mendititity of 210
 Direot allibrited masta for the menourementi permitting the menormanent to be made down to $.1 \mu \mathrm{sec}$. "I I^{2} blith volkmeter to coajraction with raare willoh will necurner of 3%. Mornted on rubber tied trolley - 1 th power mapply unit hited halow the tain untio

Fuction and oserriage
ARMEC TYPE 723 OSCILLOSCOPE

 thility from 30 to 900 mviom witb a reapone from DC to 5 mola . Aardilmy appliter. Aplomatic brtiliance PRICE, fully overtaraled and Euarmateed. . 6600

Pownr Traneformar. thput 820 V .; output 310.0 .910 V Pomar Trandormer. Ipput 100 to 250 v.i ousput 27500

Clarbar ar Parmako Pover Traadormare.
 Gartner Fower trun. and 6.3V. at 3A 25/-, p.p. 9/6 Inpat $200-250 \mathrm{~V}: 450 \cdot 0 \cdot 450 \mathrm{~V}$ 3.5A.; 6.sV. at 8 A .; 6.3 F . st $10 \mathrm{~A} . ;$ s.0V. at 6 A . The iat three outpula hare teat roltante of 4000 F . to earth, Omexhem Powor Treastorment
4 Impat $110 / 200 / 230 \mathrm{~V}$.; output 6.5 V . et $1 \mathrm{~A} . ; 6.3 \mathrm{~F}$. at 2.5 A

STILL AVAILABLE-LIMITED QUAN. mob-chusin from BCR. 522 t-channel tranmitter-recelvern
 Valrea: 9003 R P ele Cager 12 CB Det/AVC/Audio; 12 JbOT Becood Abdios

DHCo whiboat rulyen
7/6. p.p. $3 / 6$
BC-625 Trapmitter Unit Vaivec Bpocd Ampliser 10 Ermonio Ampliner 14A: 2nd ERymonk Ampuitier ON2; Power Output 852. Output 8 wathe PRTCE.
 N.B. - The chamio ane mupplied compleite and bep. rood coodition bot nether valves mor componenta are gras. unti io supplied with clicute diagram nod deecription

D.C. SOLENOIDS

Type 700-28 Proch. Pull TTpe, $24-28 V_{1} 1$ Amp, bolding

RELAYS

GPGEED TYPE ACL OR ADPANES TYPR a HIOH $5 \mathrm{~mA}+5 \mathrm{~mA}$ HIl OROLeck
 FEED RELAYs. Seajed, Octal bace 1 CO conlact TEM 1400 O Cal
 15 mA . With coil th serice and $2 \times 145 \mathrm{~m}$. Operating curnent

Ars:-

 Coil. Operation current 18 ma.; relengo 8 maA .
POST OFFTCB RELAYs:-(Second hand)
Type $600,600 \mathrm{o}$ Coll, 300 doatacti. Pacting and poatage pd. per reang.

TYPE 3 POWER UNITS

Maline opersted rack mountod fully umookbed reethiter
 voltmeter and milliammeter are provided on the trooi pricer sully guaranteed Factios and cerriage

8 | 10 |
| :--- |
| 15 |

WESTINGHOUSE SELENIUM

 adjurtable trom 80 to 140 V . D.C. by meana of ane and
 10 k m. deep x sitin. blyt p.p. $7 / 6$ 40/

RATCHET MOTORS 12 v.

1 Amp. (Impule Motors) .. 8.75 obme $\ldots \ldots \ldots$...... 3/8 each Packing and postage1/6

SUR-CHASSIS FROM TR-I985 AIRCRAFT CAYSTAL CONTROLLED IO-CHANNEL TRANSMITTER-RECEIVEER

Prasumittar Chanis Type 81.

 (two CV-138) to which a stgnal at half the tinal rocelver treanency is applied. Atter mixting the reaultiong tre. and Ainally ampliner at TT. 15 .F. PRICE lem valves …....................... 28 , p.p. $2 / 9$
 audio atmplifer-t too Aup.133. Leu valven 5i:- p.p. 2/-
Reociver Chasis type 114
 and doubler CV. 134 . tuned BF GVane 136 , trebler. CV. 136 $\mathrm{CV} \cdot 188$. Lea valvea . uned BF alage $\mathrm{CV} \cdot 138$ and M1xer
I.F. Amylidor Chamie. Three ntage IF Ampliner-two CV.140. Bquelch Falve CV. 138 and AVC Ampliner CV.138. Intermediate trequency $9.72 \mathrm{mc} / 2$. Band width
 also available
DYNAMOTOR UNITB from the above vete Input $24 / 28 \mathrm{~V}$. DC Output 250V. HT fully smoother, at up " rohery tranatormer the channel change drive mochan of os mounted. PRICE 17/6. 1.p. of:

AVO CR BRIDGES

Portabe mains operated ervicemanis compozent bridge
 mesobme: Valve volimeter trum 0 to isV RMs. Neon leakage iddicator. Puirer factor measuremente ta per cente
PRICE

2000

BRAND NEW EMISCOPE TV TUBES Type 8-16: Aluminued 10 sin. dis. screen. BV Heater plete with Deflection and Focumaing B7B Betwe. Com escutcheon, 35%. P.P $10 /$

1

 \qquad

WE URGENTLY REQUIRE AND PAY HIGHEST PRICES FOR MODERN TEST EQUIPMENT (e.g.. Signal Generators, Oscillators, Microwave Tase Sets, ete.). COMMUNICATIONS RECEIVERS (essecially U.H.F. and E.F.H. Ranges). AIRCRAFT RADIO COMMUNICATIONS AND RADIO HALICRUFTER EQUIPMENT. SPECIAL VALVES. MAGNETRONS. KLYSTRONS. ETC.
2. \& I. AERO SERVICES LTD.

RETAIL BRANCH: 85 TOTTENHAM COURT ROAD, W.2. Tel : LANgham 8403 Head Office: 14 SOUTH WHARF ROAD, LONDON, W.2. Tel: AMBassador Cl51/2 Please send all correspondence and Mail Order to the Head Office.

TV TUBES
LXACT FLUG-IN REFLACEMENTS
ALL makes and ALL types ($50^{\circ}, 70^{\circ}, 90^{\circ}$, and 110°)
$12^{\prime \prime}-\quad-\quad-£ 4-15-0$
$14^{\prime \prime}-\quad-\quad € 5-9-0$
$15^{\prime \prime}-17^{\prime \prime}-\quad-£ 5-15-0$
$15^{\prime \prime}-17^{\prime \prime}$ - $£ 5-15-9$
COO or CWO. Carriage and ins. $7 / 6$.

 REPLAOLAEITS

LAWSON TUBES

156 PICKERSLEIGHS ROAD MALVERN, WORCS. MAL. 3798

A.E.I.

Associated Electrical Industries, Ltd., Electronic Apparatus Division, Trafford Park, Manchester 17

TESTERS

Urgently required for interesting work on Ground Radar, Servo-Control, and Computer systems. Technical qualifications an advantage. There are excellent opportunities available for suitable applicants.
Why not write in now for application form and conditions, to:-
The Employment Supervisor, A.E.I. (Manchester) Ltd., Trafford Park, Manchester 17

[^25]
M. \& J. PEARSON

Radio, Television a Radar Equipment OFFER THE FOLLOWING
AMAZING BARGAINS

II32A RECEIVERS. Secondhand. A fow to clear, all fully valved, 42 ach. SPECIAL OFFER. GUN SIGHTING TELESCOPES by Canadian Kodak Co. Mas. 7×50. Brand new and boxed. As advertised at $44 / 15 /-$. OUR PRICE E2/15/1.5 mm . SLEEVING BLACK PERIBRAID. 2 gross yards on reel. SPECIAL PRICE $7 / 6$ reel.
EMPIRE INSULATED SLEEVING. Yellow 6 mm . to 25 mm , 3 ft . lengehs. 10 to a box. Min. order 8 boxes. $20 /$ lot.
SPERRY BOMBSIGHT COMPUTERS. Containing a host of gearing, motors, ett. as advertised at $13 / 7 / 6$. OUR PRICE E2/5/. R.F. 24 and 25 UNITS. Loose stored but in nice condition. SPECIAL PRJCE, $9 / 6$ ea. R.F. 26 and 27 UNITS. Loose stored. Good condition but dials damaged, $12 / 6$ each. PANCHROMATIC FILM. $16 \mathrm{~mm} . x$ loft. Fast, perl. 16 rolls per tin. Tins ideal for storing or posting 5 in , recording tapes. 12 tins $10 / 6$.
HAILER SPEAKER DIAPHRAGMS. ViVox. Parmeko, ete. Ref. Nos. W.3506-792-2060 etc. 2/6 each.

> ALL PRICES

INCLUDE POST AND PACKING. SCOTLAND AND ENGLAND

263 GALLOWGATE, GLASGOW, C. 4
Telephone: Bell 0729

Enclosures, Equipment \& Cabinets by 8 TAMFORD

Write for new liat of
anclomine in the coodenclowires in the Goodmane range.

EQUIP1ThiriCah Priee			Fire Puroham	
gmPakers		4	Depont	18 Pymbt.
Asjette	818	1	2815	619
WB EP1012	418	0	18'	$4 / 9$
Oolden 102m.	86	7	$83 / 4$	818
Axion 300	115	0	45/8	11/7
[0TOR				
Gart and 210	1218	8	8018	12/11
Gartail 4HF	18		7410	$18 / 11$
Gartam TA Mk, II		0	3418	$8 / 8$
Garrard 301 8trube	2318	4	9518	8476
Collaro RPP594	9 18	-	4010	1018
cHAgsis				
Ammeroas BE	8312	0	134/5	$34 / 4$
Armatrong Slerso 1ע ML L	448	0	178/5	5719
TUHER4				
Lented FMT/2	2413		$99 / 8$	95/8
Boger Junior	8410	3	98/1	20/1
Armetroms ${ }^{\text {at3 }}$	887	0	$113 / 5$	281
Qual and Pro.mmp	420	0	$8881=$	4\%/8/11
Leak Aterco and				
Pre -umid	51	0	210/5/10	28/12/8
Rogers Junlor and	880	0	85'12:-	21/8'8

Write for vur Fil-Pdelts Equipment hat and illuvtratod Jita of CABINETS

41 in . Wide cis
 th if to hove reoned changer). 21 in betweel anderalde
 atcod with ierrule and anjuvtante ulimae

$$
\text { Cuh Prive } 981 / 15 /=08
$$

Deport $23 / 5 / 8$ 2nd 9 inoothls onyment. of en en/4/8.

Bhowrooms at: 8488 , LOMDO4, 8.e. Telephone: SRO's00s Ghowroom houre Mondar-faturdas 9.30 to b,30. Directionce No. An buight Wroun Liverixoy Street at Directione No. A bine froun Laverixot street atation to the
A. Le STAMFORD LTD. (DRPT. DA)

Wireless World Classified Advertisements

 dieoount detcile evallable on epplicetion. Prosi Day Mev 1001 terer. Tt end

WARNING

Readers are warned that Government surpius components and volves which may be offered for sale through our displayed or classified columns carry no manufacturers' guarantee: Many of these items will have teen designed for special purposes making them unsuitable for civilian use, or may have de:e-ioraved as o result of the conditions under which they hove been stored. We cannot undertake to deal with any complaints regarding ony such tiems pur. chased.

NEW RECEIVER8 AND AMPLIFIER8

 D UAL push-pull 10W AM FM stereo quallty Dux chassis, inc. pre-amp tape and 2 Higbflux speakers, leaflet. Bell Sound Products.Mariborough Yard. Archway, London. N.d9 THE world-famous " Globe King" kit; new parts. chassis, coils and valve together with $\ddot{\text { Easy-Build " charts and insiruct.ans; a }}$ band spread tuning: hundreds of testimonists: HPR RADIO SERVICES, Ltd.. 49-51. County

RECEIVERS AND AMPLIFIER8

IH G2 R Rx's, etc. AR88, CR100, BRT400, 1. Service. Ashiville Old Hall. Ashvite Rd.
London. E.11. Ley. 4986 . TELECOM 9-valve $90-215 \mathrm{mc} / \mathrm{s}$ recelver, built-20-WATT ali transistor moblle amp:ifters R.E.E. TELECOMMUNICATIONS, LTD. Telecomm Woris. Crew'erne. Somerset. Tel. $\begin{array}{r}662 . \\ {[9441}\end{array}$

DYNAMO8, MOTORE, ETC. WANTEO

WANTED alternators. 9-10 KVA ex-W D.
TRANSMITTING EQUIPMENT WANTED URGENTLY wanted. Collins TC.S 12 equip-

NEW TEST EQUIPMENT

HEATHKITS can now be seen in London and D.rect TV Replacements. Litd. Dept W W 27.ret TV Replacements, Ltd. Dept. W W 6666.

TEST EQUIPMENT-SURPLUS AND SECONDHAND
SIGNAL Renerators, oscllloscopes, output meters, wave voltmeters. Irequency meters multi-range meters. etc.o etc.in stock.-R. ${ }^{\text {In }}$ London, E.11. Ley 4986 . Hail. Ashvile 10056

TEST EQUIPMENT WANTED

WANTED second-hand, but in good conW dition Sullivan Bridges Tll15 and Tllo and suitable galvo's: high precision D.C. re istance standards; high speed recorders 1 mV input max. sensitivi'y, 120 inches/sec, e.g

NEW COMPONENTE

INE output transformers and scan coth 25 : used. and 45 . new: zenclacements. from quote: just a tew examples from our extpn-
sive range in stock: add 2,6 for p. \& p; elephone orders sent same day c.o.d. EW L.O.P.T.S for pye V4 V7. VTA VT?

 L.C.P.T.s. Led. 28 , Broctley, Cross, S.E. 4 Ild 5394. and and white spot transistors. $3 / \%$ sliscon - recthers 70 P.IV in amp. 3 3: 400 and 2 diodes for suberhet circuits. $55 \rightarrow$ postag+ and 2 dodes for superhel circuits. 55 -: Dostag Granville St.. Sheffild. 2

COMPONENTS-SURPLUS AND SECONDMAND

SEND lor catalogue No 14-500 illustrater Ditems: 2/6 posi free,-Arthur Sallis Radio
Control. Lid.. 93 (c) North Rd. Brighton

NEW GRAMOPHONE AND SDUND ELUIPMENT
CLAsGOW,-Recorders Dourht. sold changed: camerss. etc, exchanged tom
 TAPE decks and recorders by: Ferrograph. graph, Bradmatic. Amplifers and tucers by: Muac, Leak. Dulct, Chapman Rogers. Gramplan. Al tapes and taccessories. CLOSED circlit televkicn tor sehools and incustry Specialist audio service and sound HIRE purchase farilities available. LAMBDA RECORD Co., Ltd. 95 Liverpool
Rd., Liverpool 23 Tel. Great Crosby 4012. [9014

COR mh h-in equipment, tape decks, speakers, Eift offers with every and receive one of our gift offers with every purchase; cabinets built | to your own deaign.-The Hizh-Fide،ity Centre, |
| :--- |
| 61. West St., Dorking, Surrey, |
| 9460 |

EROLCA AECORDING STUDIOS (ESt or industiv. resa. ch. music and private use. Ferrograph. Brenell. etc: complete recording service: music for industry tape disc.-31. Peei St. Eccles, Mat hester. Eccles 1624. Studio,
Director Thurlow Smith ARM C.M
10122 GRAMOPHONE AND 8OUND EQUIPMENT8URPLUS AND SECONDHAND
Cl-CORD recorder With accessor:es, as new: ReCORDING tape; save up to 30% : send for dind Rd. C, Kingsiey \& Co 132, Tottenham Court SPECLAL ofier of brand new equipment, Golden Eight speaker. Walnut E14 10 . B.J. BONETTA, light oak: £14 10 . QUAD mono control unit. as new; \&10. BLACK leathereite 12 m speaker carrymg case TANNOY dual-concentric monitor, 12in: 15 DULCI VHF self-powered tuner. previous model C12 10 .
ROGERS Junior amplifer and SU2 10 . German E'ac Miracord 200 transcription uto-chanzer, fitted with Elac MST2D to vari able reluctance cartricge-nothing as good in PHILIFS high-fide:ity ribbon microphone finor stand, this is a super job, £30; Walga.n. £4 5 PHILIPS transcript'on t table. non-strobo Atted. With new dianond cartridge: $\& 1710$
H.M.V. tape recorder, new : 42 10 EMiSon, triple tour amplifiers, used: $£ 5$ each mohoginy: \&12 10 . STD ©M tuner 399 . Iis: \&28: 220 . 27 kns . 20 TELEFUNKEN mirrophone M9N, new: £ 19 PAIR Browns earphones, almost new. type A DETAILS: H:gh-Fidelity Centre. 61. West ${ }_{194 f \text {. }}^{\text {De }}$
IF it is American equipment you want I can unobtainable in this country: cabinets buit io your own desifn. Write for full detal's and quotation: High-Fidelity Centre. 61. West $\begin{array}{r}\text { St } \\ \$ 9467\end{array}$ HIGH qualitz microphones for disposinl. S.T Fand C 4033 Card o'd m'crophones. second R.C.A LMI 6203 microphones 1600.250 and 50 ohms) reconditioned 15 each: secondhand Moss Embires. Sound Dedt.. Cranbourn Man slons. Cranbourn st. W C. 2 Crably 10224

PRERECORDED TAPES
PRE-RECORD JJ tapes-Unique 40-nage 71 and $3 v_{\text {a }}$ i.p.s.: send 26 . refundable on first tape record purchased.-Dept TR5. Tele tape Ltd. 33 Edguare Kd., W. 2 Pad. 1942.

TAPE RECORDING. ETC.
A SK your deace tor American Ferrodymamict tape value!
RRADMATIC tane desk 5CS, comple ely works Boverhrulej; $225 .-K i b b l e . ~ 58, ~ T a y l o r ~ R 1 . ~$
Brmincham. i4

FOR
Sale and wanted ADVERTISEMENT FORM TURN TO
PAGE No. 209

EXCLUSIVE OFFERS

Opmatily Theatro Lehts, 6, 12, 100. 230 ₹.	12
Portable Ph. Coteri	28810
Tinsloy AOIDC Reck Potentio	065
Wide Band 10-way	2910
Th-84 Onalloseores	89710
Trpe 88 Eonitors (taticator \& P/i)	8810
Avo Portalid Golerer Countece	2910
4/8504 Falve	8810
2/184	0810
VT-E1 Vabven	4
T-1181 Tramemitter	235
2T-178/ARC-s Tram	855
RT-67/ORC Tran-Rocelvirs	23710
	44710
Sola 2kVa C.V. Trasalormars 280/115	218
	285
E.ILI. Type I Pula Grperaters	24710
	480
Avtrom T. 81 Airerati lymtems Teet	870
Eittorl Card-Typ Valve Tedera	1810
Cutler Hamamer T.P. Aato Btarters. $7.5 \mathrm{~h} . \mathrm{g}$.	2810
Power Suidar Re	8
Power slider Reaintanoes, 00 ohm	1
Power flidor Peximapoes, 1.2 ohme 1	14/-
Etgma 10,000 Ohmm Pu	15/-
Lemah 180 olsiz Relaya \&.P.D.T.	6/-
	18/
Britinh 耳ialeture Relaye 1,700 + 1,700 ohmi B.P.D.T.	8/0
Labortory Maine Fimors, it ampu.	10\%
Twin ebanael Tape Reoordors, 8in. tape, If hours	E175
Dietaphome Twic Belt Automatie Reeorlisr	00
DPG-20 D. F. Meroomi teodver, 7/ 1,500tela.	35
* sor-ais Itine Doteotors	81410
R. 201 Triplo Diveralty Reontrent, 1.6/ 24 itiv.	8185
	1210
6. volt Rot-Convirters whe amoothing. 250 ₹. $80 \mathrm{~m} / \mathrm{c}$.	8115
18 voll Rol-Coavertess with amoolling. $300 \mathrm{r} .200 \mathrm{~m} / \mathrm{a}$.	15
Teloprinter I Potor Reotinurs. 200/280 v. A.e. to 110 v. 0.7 A .	2218
Cxypton Gabinat Epediners, 200/250 $\mathrm{\nabla}$. A.C. ro 50 V. 1 A.	0210
Bondix Power Supaty, 230 v. A.C. to 800 \%. $420 \mathrm{~m} / \mathrm{m}$	8810
EHT Rootidor, 18,000 v \& A. in cublelo	2285
T Reetilier, 3.000 v. \| A in cubicle	205
Eteot-10030 Eleekrometass	455
E.ILI, 8791 Wiavelorm Monitors	4185

40-yage Lit of over 1,000 itoms in atook available -konj om by you.
t Iarthy Pulon Amplitulo Auabver: .

\star 2th. P.O. Angle meetlon Reoks
t Down Pigh Ippod Pexistory

* 76 th. Oin. Uis. Prwood Mast

* Ferrand 7EVA Auto Foltege Benulstors
言 RET Powar Cupis. 1, 000 v. 5 ampa.
 28750 81810 8310 280 850 2350 81210 8350 2e250 0 81800 8100

We have o larre quantity ot " Mita and dooes" me

P. HARRIS

ORGANFORD - DORSET
VIETEOURME 65061

TAPE RECORDINQ. ETC.

R ENDEZVOUS RECORDS ofter comprehed R dye 78,45,53 rape to d.sc recordys fecili. thes.-Lesilet from 19. Bleckfriars st.. ManTAPE to dise servica; standard, EPs, LPs, Toucomprehensive leatet on application to, Tounan Bound Productions, 122, Fernle frid.
Balhem, B.W. 12 . TAPE to dise recording microgroove LP: T from 27/6, 45 гDm EP $20 /-78 \mathrm{rpm} 11 /=$ 48-hour return sarvice; Anest quality: s.a.e. ("Deroy " Bound Eervice). 52. Hest Marsh Lane, Hest Bank. Lancaster. Tel. HB. 2444
$B^{\text {RAND new recording tape, } 7 \text { in reels } 1.8001}$ 3 Long Ple $31 / \cdots, 541 \mathrm{n} 1.2001 \mathrm{~L} / \mathrm{P} \quad 22 / 6$ $\operatorname{Sin} 900 \mathrm{ft} \mathrm{L} / \mathrm{F}$ 17/6; other grades. $7 \operatorname{in} \times 1,300 \mathrm{ft}$ $16 / 6$. $53 / \times 8501 t 13 / 3$, $5 \ln \times 6001 t^{\circ} 12 \%-\dot{j}$ Euper quality, 7 in 19/3. 5/6in 15/3, 51n 13/9: if, de P EMPTY plati.
2/O ench; P. \& F. 9 d . $\mathrm{In} 2 / 105 \frac{5}{3} \ln 2 / 8$. 4in GUARANTEED Eatisiaction.-A. Marshall \& son. Ltd., 18. Cricklewood B'way. London N.W.2. Gladstone 0161/2. 19253

TAPE/DISC/TAPE transfer editins: duplicatI ins if quality and durability matter (especially with L.P.8 from your precious tapes). consult Britain's oldest transfer service; new tape recorders supplied with a iree servico, uD to 2 years guarantee: lates American tape (Columbia. Ferrodmamics) 1,8012 $29{ }^{\circ}{ }^{\circ}$ now spailable.-sond Nows Pro 2745.10. Cliford St., London, W.1. Ref.

2000 valven for duppanal. type vx and cy A NOTHER special velve ofier from Waltons type) of the following valves for only 20%. arriage pa!d 2T7. PDDA. PEN46. VR18. EF91. 6AG5. EF36. EP80, EP50. 6D6, EL33. 6AM6, ${ }^{\text {ETA }}$. EFF39, 6F1, VR22, ${ }^{2034,}$ KO111, 6AL5, 305 .
 ALL these valves are boxed and are new or ex-equipment. to which case they are elec ron-caly tested before despatch.-Waltons Nireless Btores. 15. Church Et., Wolver hampto
prices:
Valve cartons by return at keen prices; A., Boxmakers. 75a. Godwlin Bt., Bradiord, 1
$\mathbf{R}^{\text {ECLAIMED }}$ vaives. all tested and perfect. price, 5 mod plus od postage each: delivery by return: giso surplus new valves. dusrenteed: sia.e. for list.-Lewis. 46. Woodlord Ave.
igitord, Essex.

NEW valves wanted. any quantity. best cash ane. West Bromwleh. Stants. Tel. Wes. 2382
 prices Dald. What have you io olier - Write or call Lowe Bros. Sa, Dilan Place. Euston
Rd. N.W.1. Tel. Euston 1636-7. WANTED, EXCHANQE, ETC.
A PROMPT cash offer for your surplus brand nstruments, eic.-R.B.S.. 155. Sman Arcade. Bradiord. 1 .
WaNTED. alt types of communtentlons reP R. T. \& I. Bervice. Ashvile old Hall. Ashville
Rd. London. E.11. Ley. 4986 . 01631 URGENTLY wanted, manuals of instruction amy Nivy or Air orco rmdio and electrical Army, Novy or Alp pres radio and electrical Gortard 2504.
WANTED, good quallty communication RYS radios. record playors. amplifers. val ves. components, etc. estab. 18, years.-call. send or phone Ger 4638 . Miller's fudio. 380 Newport Court. Lelcester squaro. w.C.2.
DROMYT cash for the purchase of surplus P stocks of tolevisions, tape recorders. radios. ampliners and fomestre eecetrical applanced of evcry caescription. Wubstantial funds ovall.

Bankers: Midland tans and service
BOULTON'G OF BRADPORD.
LOUDSPEAKER, presaure unit. and microphone repairs. D.C.B. cone essembites and deld cous -D. C. Boutton. 134. Thornton Rd.. Bradford, 1. Tel. 22838. 10171
$\mathrm{M}_{\text {ains }}^{\text {tion. }}$ transformors wound to any specince. Morota
MOTor rowinde and completo overhuls: firsh C'asy workmanshtp. fully guaranted. Bidqs. Wrrer Gate Nothingham. Est. 1917 Tel.
[013

DUODE MOVE OUT 31st MARCH

On that date our present home, unlike Duode Units which never die, falls into the hands of the housebreakers and will vanish.

As we write we do not know where we shall be from April Ist onward. So for the moment please write to our permanent monomark address below. Don't send parcels there, only letters.

Of course. Duode National Sound Units, with their unique dual drive. built-in crossover and feed back, also the special Duode " new life" service. will continue.

So, if you wane good sound, write this month to:

DUODE LTD.

BCM/DUODE, LONDON, W.c.1.

LEWIS have the CABINET for YOU

EXTENSIVE RANGE OF CABINETS FROM £4-7-6

THE CONTEMPORARY Price $\mathbf{E} 11.11 .0$

This beoutifully designed Contemporory Cobinet can be supplied in Oak, Walnut or Mahogony veneer and has a wared semi-matt finish.
This cabinet can be fitted with any of the latest Hi-Fi units.

This elegant cabinet is avallable in veneered figured walnut and polished to a high glass in a medium shade. Gold embellishments are an ottractive feature of the desizn. 9in, black legs are normally fitted. A three sliding door system reveals omple storage room and space for equipment.

「two new lewis catalogues:-7
 The Cabinet Catalogue
 The Equipment Comparator Catalogue

(Designed to assist your choice of cobinet and equipment).
Please send me details of your two new cotologies Nome
Address

BLOCK CAPITALS PLEASE
wẅ̈i"

LEWIS radio

100 OHAEE BIDE, SOUTHQATE, N. 16

Telephone: Polmers Green 3733

REPAIR AND BERVICE

W^{2} undertate the manutacture of transpecification: ant wor in quantities fo ans ADBRROKF Transformer Co Led 800 Herrow Rd., London, N.W.10. Tel. Ladbrolte $\Gamma^{R A N S F O R M E R S,-S u p p l t e r s ~ t o ~ B . B . C . ~}$ infle or long teading radio manutacturer xport rewinds to all makes ORREST TRANSFORMERS, Ltd. Shirlet Gollhull. Warwickshire. Telephone Shirley 248
SPEAKER repairs, cones stted, selds and ω clock colls wound, cuarazteed satisfaction, prompt service,-L. S. Repair Eervices, Plucklef Ashford. Ken:
ale
Γ RANSFORMER8 to any specifcation, singles ervice comperce batches. quick and Newmin so Son. 1. Grove Crescent. Gouth Woodford. E. 18

MISCELLANEOUS

METALWORK, all types cabinets. chassis apacity s. etc. O your own specincation
 PHILPOTG's MeTAL WORXS, Ltd., Chapman
Cable Telephone Carrier 7/0.0136in, quad - Edwards, Hith Wycombe; further particular -dwards, Hish wycombe 2s01.

NOTICES

THE ASSOCIATION OF PROPESSIONAL Ind RECORDING STUDIOS. Ltd. To protect engaged in electrical sound recording studios to the General Secretary. R.P.R.B. Figt a 34A. Arterberry Recretary, London. S.W.W. 20. Flat 10173 BUBINESE OPPORTUNITIES
ARGE national company retalling soods both Lines, spectand mail order, reguire additional tity, wekly basis; recail price $2 / 6$ to guan Ful detals, With Mustrations if avallable and/or sampies and lowest cash price to

CAPACITY AVAILABLE

R ADIO components made to order.-Be - Sound Products, Marlborough Yard, N. 19 . 85 COMPETITIVE quotations given for proto-control.-Cenve, Broduccion runs with quallity N.W. Electronic Sub-contractor with 19350 capacity, seeks extra vort electronte and ight electrical and mechanical assembly wort undertaken to customer's specincations.-Box

SITUATIONS VACANT

LOUIS NEWMARK, Ltd.
LEADINO company in the design of auto pilots or helicopters are expanding their facflities at their development Lsboratories at Croydon and have the following vacancies to be flled ENGINEER
ree or H.N.C. and experience in the with de ight electrical engineering electronics exeld of mechanics devices or sems conductors, to ectro on the development. Installation and figh testing of mutomatic Dilots. Smlary commensurete with experlence. Pension scheme.-Apply in writing. siving full particuiars to: Person Works, Puriey Way. Croydon, Surrey. Pretec ROYAL Naval Scientile Service.
GOVERNMENT Communications Headquarters REQUIRE Experimental Omcers and Assistant mxpermental Omcers at Government Communications Headquarters, Cheltenham, Glos Duties widely distributed \ln field of com munications resemen and development. includquency), terminal equipment, eerials and radio range-indins and direction-inding aystems. Propeg t.on studies and experiments carried out Work aleo includes dete processing, programming and engineering, appucations of e.ecirou. in instrumentintion. Cand numerous problems be natural born British subjects and of Britioh parentage. E.O.s min. ege 26 and
normaily under 31. Asst. EO.s gi least 18 and normally under 28. Quals. shou d includ H 8.C. or G.C.E. (with at least 2 ("A") Leve Dubjects or equiv., or H.N.C.; University E.O.: £1,087 to \&1,356; A.E.O.: Z458 (al 18)
 for further educstion. Promot!ons prospects Appointments unestablished, but opportunities exist for establishment. Forms from Ministry (K) 26, King 8t., London, 8.W.1, quoting Ref. TECHNICAL Authors and Speciscation POR electronic and electro-mechanical pro fects. Experience in writing manuel or specl histions essentiai. Technical qualitications de sired. These are permanent positions with semries up to $\& 1,450$. Ail appications \&rested in confidence. Write to Managing Director ENGINEERING of Techn!cal Publications, Ltd,
3. GREYFRIARS Road, Relding, Berks. $\$ 9480$

Cumstrong

HIGH QUALITY RADIOGRAM CHASSIS

JUBILEE Mk. 2 MODEL. 29 GNS.

This is the new and improved version of the well-known Jubilee chassis. An AM/ FM chassis with nine valves and two diodes and including a high fidelity amplifier providing 8 watts push-pull output with a frequency response of $20-30,000$ c.p.s. $\pm 2 \mathrm{~dB}$. Full VHF band $(87-108 \mathrm{~m} / \mathrm{cs})$ with automatic frequency control and medium and long wavebands. Inputs for tape recording and playback and for all types of pick-ups; a booster unit is available for low output pick-ups. Separate wide range bass and treble controls. Adjustable ferrite rod aerial on AM bands and magic eye tuning. Alternative matching for any loudspeakers.

AF208 MODEL. 22 GNS.

An AM/FM chassis providing 5 watts output and covering the full VHF and medium wavebands. Although this is the most economically priced chassis we have ever produced, the hand-built construction, superior finish and high quality components are the same as those used for our more expensive models. Inputs for all types of crystal pick-ups and for tape recording and playback. Separate wide range bass and treble controls and alternative matching for any loudspeakers.

Post this coupon or write for descriptive literature or call at our Holloway showroom for full demonstrarion. Open $9-5$ including Sarurdays.

NAME
ADDRESS
WMC

Warlters Road, London, N. 7 Telephowe: NORth 3213

SOLIDERING EQUIPMENT By LITESDLD
 (REGD. TRADE MARK)
 PRECISION INSTRUMENTS

Comprehensive rangeRobust and Reliabia light weight © Rapid heating is $3 / 8$ in. "PERMABIT" ${ }^{3 / 32}$ or Copper bits . All oltare ranzes $6 / 7 \mathrm{v}$. to 2301250 v. . Prices from 19/6.

ALSO

- plastic cable STRIPPERS
- Miniature SOLDER POTS.
- heat guards.
- LONG LIFE BITS.
..... MIMNIIN The now range of microsoldering instruments. Weights from t-oz. Bit dia. 1/32in.
details?

Brochure ss on request from the sole proprietors and manufacturers with 28 years experience in this field.
LIGHT SOLDERING DEVELOPMENTS LTD. 28 Syde ham Road, Croydot, Surr:y

```
Phone: CROydon 8589
Grams: Litesold, Croydon
```


METERS

All makes of Single and Multi-range instruments repaired and recalibrated

t Prompe Servic

 ※ Allwork guaramteed \star Priority for urgent

A NEW RANGE OF METERS $2 \frac{1}{2}^{\prime \prime}$ TO 5" SCALED TO REQUIREMENTS. DELIVERY • 10-14 DAYS.
E.I.R. INSTRUMENTS LIMITED

329 Killourn Lane, Loncon W.9 Tei. LAD 4168

PART EXCHANGE

WE ARE ALWAYS WILLING TO TAKE YOUR UNWANTED EQUTPMENT FOR CASH OR IN EXCHANGE FOR OTHER GOODS. SEND FOR LISTS OF CABINETS, PLAYER CASES AND RECOMMENDED HI-FI EQUIPMENT.

H. C. HARRIDGE

8 Moor St., Cambr.dge Circus, W. 1 Open Danly Except Thursday.

8ITUATIONS VACANT

SOUTH-EAST ESBEX TECHNICAL COLLEGE.

LONGBRIDGE Rd. Dagenham

REQUIRED in September:
A GRADE * B a assistant for marlne radio offcers course; candidates must hold first Ciass R.M.G Certificates and M.O.T. Certificate an commercial procedure es ential.
SALARY E700×£27/10 to $£ 1.150$ p.a. (incre ments within scaie for approved teechlng research o: industrial experience and national service, and additions above sca:e sa:ary for ipproved training and qualicstions). plus Lomdon al:owance (£38 or £51 p.a.) from the Clerk to the Governors at the Coliege.

CENTRAL London firm requires competen - organiser of postal and equipment sales Age $\operatorname{lmmaterlal}$. refs. wanted. Part-time appli-
cation considered.- Box 2462 .
SMOR RADIO PRODUCTB, Ltd., require Ore, e.entative w.th earry to users of col s and sub-miniature transformers; car essential;
salary, commission and full backing.-Box 3973 ,

TELEVISION sales and service engineer, good (posit.0 ${ }^{1}$ and pros,sects for kee. men; odestablished N.W. London Murphy dea.er; driv ing experience essential; state age and details
of experience.-Box 3975 .
FLECTRICAL test personnel are required by E we l-known audio equlpment designers and en pineers: good all-round knowiedge and previous experlence essentla:-Apply Tanno

TELEVISION engineer required by set manu production and bublu uni production and test, exce:lent opportunity, stafi (Ireland), Ltd. Dundrum, Dublin. Eire, 9499
DERSONAL Assistant required by owner of - London retall radio and electrical bust nood prospects for cajable, conscientious person state age and details of career.-Box 3974 .9484

STUDENT technician. 17-20, wanted in -TUDENT MeJical Research Laboratory, to tram as slectronic instrument meshanic ($£ 260-£ 485$). Write to the Director, Nout, Woodmansterne Rd., Carshalton.
search Unit.
Surrey. Surrey.

19459
omen

-CLECTRONICS entineers: Men or women e.rce to at least O.N.C. or equivalention on w.de range of high accuracy instruments. These are permanent stent positions with pension | fund and cub room facilities.-Eleciron'c |
| :--- |
| i.1struments. Lid.. Rachmond 6434, |
| 0124 | 6434.

SENIOR Techalctan required for E'ectrical 3 Ingineering Dept. for construction and servicing of electronic equlpment. alco gencral laboratory work: commencing sailery according from Eecretary Eniversity Coliege. London. Gower St. W.¢.1, quoting $\mathrm{Et} / 1$. 19462 MINISTRY of Av'ation require Electrical jozts mainly in London but soms in provinces DUTIES Inc:ude planning. evaiuatlon. instaliation and supervision of operation and mainand navigaticnal aids et Alrports and teleommunication cenires 2UALS, $18 t$ or 2nd ciass Hons. depree In Phrs!es idates with Parts I. II and III of AM.1 E.E. or Parts 1 and II of AF.R.Ae B. or equiv., or of nuals ronsiderd
SALARY SCALE. 6690 tat aqe 23) to $£ 1.300$. S.jaht'y lower for poits outside London Promoticn orospects. Further detalls and forms from Minist:y of Labour, Technical and Salentife Regis"pr Kí. 26, King St. London, S W.1.
quoting D $161 / O A$. TUNIOR Designer rauired by electrical component manufacturers in N. W. London: good oerlence in electronics. radio and/or televielicn lndustry wou'd be an advantage: write giving Iu'l cetalls of experlence, age and salary re-
quired to-Box JD4897, AK Advg. 212 A , Shatterbury Ave. London. W.C.2. 10036 TECHNICIAN for electron:c measuring and 1 anc:lary equipment for bułble chamber data ana vsis group. Salary scale $£ 690$ - $£ 815$ o a Addttional payments for qualincations Experienced in punchrd tope data recordine desirab e-Anpivin writnq, civingull detals: to the Aminietrative Ase'stant. Physire Derarp.
ment, The University. Birmingham. 15 . 9479 TNTERNATIONAL AERADIO LE.H.. has - per'od c vacanc'es overeas for Radio Technic'ans, Clty and Gu'lds Intermediato Te'eroms an advantige but not essen is if applicant has cons derabie H.F./V.H.F. low/medlum Dower comms. Equipment: ppplicat'ons ev-service personne of fullv skilled categor'eई weicomed: poits are permanent ant pins'onable: normally accom-
modat on is prov ded with tax free emolumen modat on is prov ded with tax free emolumen equated child allowances: free atr passages and insuranse: fith allowance: generous U.K. leave: apply in writins-Personnal Manager, 40. Park
St. W.1.

CLEAN AND SILENT D.C. oA.C. UP TO 100 WATTS WITH THE FELGATE ELECTRONIC INVERTER MK II

FROM $210 / 250$ VOLTS D.C. NO MOVING PARTS FREQUENCY CONTROL Manufactured by

McCARTHY

RADIO AND ELECTRONICS LIMITED 8TUDLAND HALL, 8TUDLAND 8TREET, LONDON, W.6.

The finest method for cleaning records
Already over $\mathbf{2 0 0 , 0 0 0}$ enthusiastic users

THE " ${ }^{\text {DIISt Jing' }}$ AUTOMATIC GRAMOPHONE RECORO CLEANER

Price reduced to $17 / 6$ (plus $8 / 10$ purchase tax) from your local dealer or
CECIL E. WATTS LTD.
Connulant and Enginect (Snund Recordint and Reprodmetion) Darby House, SUNBURY-on-THAMES, MIDDX.

TELEPRINTERS PERFORATORS REPERFORATORS TAPE READERS

Pen Recorders, Terminals and V.F. Tolegraph multi-channel units; Testing Equipment, Test Frames, Telephone Carriers and Repeaters; Signalling Rectifiers and Relays, Transinrmers Transmit and Receive Filters; Repeating and Retardation Coils: Racks Ruliy Bases. Unisalectors, Remote Control Trans mitsers. British. American and German Equipment.
BATEY \& CO., GAIETY WORKS,
Akeman Street, Tring, Herts
Tel.: TRING 2183 and 2310

Cludix
SOUND

SYSTEMS

NEW
ADDITIONS

Model A30

A high-quality AC Power Amplifier. Output power $30 / 40$ watts, less than 2% distortion. Mixing for two Microphones and Gramophone, Radio, Tape Record inputs, in wddition to master gain control. Treble and bass tone controls. Output level indicator.

Model L205

Line Source Column Loudspeaker, styled in polished oak, giving excellent reproduction for both speech and music. Handling capacity 10 watts. Dimensions 36in. x 10 in . $\times 6$ fin. deep.

Details of full range of Sound Equipment on request.

AUDIX LTD. STANSTED ESSEX

Phone: STANSTED 3132

situations vacant

$\mathrm{E}_{\text {with }}^{\text {LECTRONIC }}$ Lechntclen repuired. ather applictinte experience on te.eprinters or redur fults on this equipment: this is .. on site work for watch a subsistence is paid on ton of the normal rate.-Personnel owcer, Fie.d Aircrat seryices Lid., Wymeswold Aerodrome. Burton-on-the-Wold. Nr. Loughborough, Le.c5.
ELECTRONICS techniclan, experlenced, to E construction and servicing of speciallat sapary scale eis.c 6815 equivatent desirab.e allowances. Starting point according to and experience. Apply in writ:ng, giving fu detalis, to the Admintstrative Asisistant Physics Department, The Oniverstty, Birminf.
ham. 15 .
A.T.C. have a vacancy sor an a licensed A aiscrait radio easineer to be based at the companys wor.shops adsacent to L.A.P.; 42. hout basic wees. pension scheme, overtime, stating expe-lense and sais.Apply in writing Managing Difector, Alr Transport (Charter) Colnbrook, S'oush, Bucks. TEST engineers.-Applications are invited experlence of terting radio commundurtral receivers and transmitters; succerzful appl'cants sill be ofered posittons on the companv's permanent staff: starting sa'ar.es commen surate with qualifications and experience nep.y in writing diving full detalls to person S.W. 18 .

TECHNICAL cmeer required for crelotron en techniques to secuon, 0 gain experience in part in deve:opment: qualifications: H.N.C. or degree in electrical or electrontc engineering or physics: experieace in R.F. power an advan tage: age under 40; salary $8960-\mathrm{E} 1.310 \mathrm{in}$ c.uding London We ghting.-A7ply giving Iull devalls Lo: Ser or csciotron Ensmeer, Radio pital, Ducane Road, London. W.12. [9488 OVERSEAS. Eiectronic technicians are reCquired by an oil exploration com aany with on jolning. Work will include the maintaining and operating of field equipment often under conditions of desert, jungle and swam? The equivalent of an H.N.C.. with practical experience in eieccronics. is essential. rours overseas are of up to two years, followed by int ony time spent in the Forces to Box 2229

A GRADUATE electrical or electronles en. As.netr, aze preferably 25 to 30, is reoulred to colaborate in the development and experlnental use of an electron innear acce.erator. 3 cm microwave spectroscope, and other exper. mental equipment mhich is bein y used to study the chemical and blological effects of micro-
second puises of rad'ation.
sa:ary in acro:d. ence with qua'lifations and experience-Apply in writing to the Director. Research Unit in Zadiobioloev, Mount Vernon Hospltal, North-
wood, M:ddlesex.
F9481 wood, M:ddlesex.
CLECTRONIC Engineer, Interesting. varted rapidly expanding company provides prlendly 3nd informal conations with good ooportunlties for advancement: essenilal qualincations: a thorough understanding of electronic valve circuitry at d.c. and lou prequenc es both experience of tranststors. printed circutts and/ or magnetic amnlifiers an advantage: stave fully career detalle and salary required toTechnical Director Bhandon Scientlfic Ltd.. 6 Cromwell Plece. S.W. 7
[9419]
CRIE RPSISTOR. Ltd., invite applications C for the pcst of technical sales represen of of Eng.and: applicants should preierably has the holders of the Hipher Netional Certificate in E:ectrical Enginee-ing or of some smi.ar quaiffication, and quove all. must be conversant with modern radio and te.evision tech no.ogy rrom the manuracturng ange appl consideration will so be reasonably modern car of recent pradustes provided they have the bartc knowledge of e'ectrontes
THERE Is aso an inside vacancy for a capabie man with stiml ar quaifications and with prebous sales once experience. BOTH appointments are progressive, and sub oct to the company's staff superannuation and WRITTEN aDD'tcetions ertence. anN salary required. to Sales Manazer 1. Heddon St., London. W.1. 19470

ELECTRONIC enalneers.-Elreo Flectronics E Ltd.a have vacancies for electron'c in tion and service laborafory dut'es: work is in connection with industrial nucieonic sye'ers. nucleontc counting equipment and general nucleonic instrumentation: permanent: p"op"esments good theoretiral electrontc beckground. preferably colvoled with eloctron'c faulf-anding experience: Ealary rommensurate with ablittvPlease write. Etatink age, qualifications ard
experience, to Personnel Manager,
K
cop experince, Personnel Manager. E. K. Cof

sensitive all band coverage. 3in. (full size) top grade speaker. Ferrite rod aerial. Pall be polystyren case with speaker grilies in red. Uses 4t volt flash-lamp battery for long life. May be built for $\mathbf{6} / 19 / 6$.
" Worked first go-speaks well for the clarity of your diagrams. Trawler Band particularly sood! 'Home,' 'Luxembourg, and many other stations and all at good volume." -H.B., Penzance. Cornwall. "Super car radio!"-G.S., Liverpool.
" PUSH•PULL FIVE " (5 Ediswan Transistors)

Medium Long Waves and Trawler designed and becter than ever: polyszyrene case with peak
rille in red
Ferrite road aerial. Finger stations. Vol./sen. control. XCIOI's (350 MW) in push-Dull for fine quality outpue 3in.(full size) top grade m/c speaker for improved tone. Uses it volt flash-lamp battery. May be built for $45 / 19 / 6.41$ am more than satisfled. -G.S. Wilmslow. am so delighted with the P.P. ${ }^{\prime}$'s performance that would not hesitate to recommend it to anyone."-N.L.B., Dunstable, Beds

TRANSONA-FOUR"

4 Transistors and 2 Diodes

Medium/Long Waves. Noise-free tuning condenser. Ferrite road aerial. Two R.F stages for super sensitivity. A test receiver Miniarure nearly 30 stations one even

"PUSH-PULL FOUR "

4 Ediewan Transistors and I Diode Two S.W. coils íree Mpon request.Covers Medium and Long Waves. Bias sensiciviryvolume conerol. speaker. XClol's (350 Mw) push-pul! output for fine cone. Pale blue polystyrene case with speaker grilles in red. Uses 43 volt flash-lamp battery May be built for $44 / 19 / 6$.
"EASY THREE " (L. \& M. to 80 m.$)$
 3 Transistors and I diode Sensitive and selective mosc areas. Ferrite rod aerial. Miniacure speaker. May be built for 49/6. Wich "Sonotone" minjeture earpiece 55/-.

Parts list, circuies, etc., 1/3 each.
ALL PARTS SOLD SEPARATELY.
AFTER SALES SERVICE

RADIO EXCHANGE COMPANY

27 HARPUR STREET,
BEDFORD (opposite Co-Op.)
Phone: 2367.
Closed I p.m. Saturdays.

LOMDON CENTRAL mone

MOVIRO COIL BEADPROMES with wach lesther
 banda por callers caly, e5 8-dsy clockwork,
 88/6 lacloding poet and peoking. pHorts, th Batroltte Cue whith function bos. There
 DIE PHOMES. Complete With Hand Set and Dial $0-9$ batalte Cave. E3/12/6.
PROJ. PROJ.CTIOI LA TPI. Pre•focu 100 v. 300 m . Im

 lishting and power. Recondikioned an new, In ironclad casos, 10 amp. $75 /-; 15 \mathrm{amp} ., 85 /-; 20 \mathrm{amp}$. ., Thisprone Dtaus, 0.9 . Sultable for tater-omee and factory mataliation, $17 / 6$.
 10in $27 / 6 ; 8 i n$. $0 / 6 ; 8 \mathrm{in}$. 9/6: 5 in . 11/6. sYicimolious vibinatotis ${ }^{2}$ v. 7 phn. 8
 maine. Fixed tarit to your requirementa. Butkable for bolele, eto. 2001280 v. 10 A. . 84//; 18 A A., D4/-; $20 \mathrm{~A}, 104 /-1$ QUARTRRIV ELECTRIC CREGS KETRRA. RO oosditlonsd an new. $900 / 250$ v. 10 A., $19 / 6 ; 18$ A.
 lonth of cord, 106 vert.
AgOORTD RESISTANCES, 5 HON $=$, $7 / 6$
ASHOATED RESISTANCES. $\$ / 6$ per 100
SOUID-POWERED HAND IIFT. $17 / 6$.
CE1TRE ZRERO METERS, $1-0.1 \mathrm{~m} / \mathrm{A}$, $26 /$
Prodecrion Lar Pis. 110\%. 500 w . 3-pp/beyonet, $10 / 6$.
 All prices include carriage
23 LISLE ST. (GER. 2969) LONDON, W.C. 2
Cloted Thuradey 1 p.m. Open all day Saturday

MTANNOY:N

The leading name in sound affairs
WEST NORWOOD SE27 Tel: Gipsy Hill 1131 (7 lines)

YOU are Invited to apply for a copy of our illustrated brochure and price list which gives full details of our wide range of

QUARTZ CRYSTAL UNITS

which are renowned for their
Accuracy \& Reliability
THE QUARTZ CRYSTAL CO. LTD.
O.c.c. Works Wallington Crescent,

Terephones Now Malden, Surrey
situations vacant
S BNIOR onejoer for desten and dovelopmeat Nof decimetric and metric rovelving ang transH.N.C. and mide experlence desirab. -Applications in writing. Elving full detals, bhould be addressed to The Bocretary, Belling 1 Lee.

 Br P has val vacancy for a computor engineer B at their research centre, gunbury-onTrames. to wort on the maintenance of an should have H.N.C. or coulve.ent technical qualification and at least one year's experience of maintaining eioctronic computers: an inltial training perlod on the Deuce would be given at the counpany's head once in the clty of London; ssiary sccording to age. quallakatons and experience: non-contributory pension fund sotting-in allowance pemoval expenses and luncheon ciub,-Write. glving full detals. | quoting raference CS/2, to Box $6540 \mathrm{c} / \mathrm{OHan}$ - |
| :--- |
| way House, Clark's Place, E.C.2. |
| 19972 | JUNIOR electrical or electronic engineers required for interesting wort on rado frequency screening and interierence suppression 22/35 years must be prepered to wort an alite at Fylingdales Moor. Yorisshire, wand In site these posts may provide openings for recently re.ensed rechnical service perso.hen: quanin.cathons datrabie but not easents. whust expersence in the use of cest gear, adaptability and Intellisence are absolutely necessary; appoint:

ments will be initlaly under an is months contrect. wlth the posibility of permanent employment on completion.-Appitcations in Triting, giving full details, should be addressed OT The Secrelary, Belling de Leeildid. 540,

BITUATIONS WANTED

Enaineer. electronic. solo theld tervice.
AGE 52, 22 years same company, cineme sound. radio tape and audlo design experience, occaslonal tech, author: ex R.N.V.R. Le.-Cdr.; 5 yrs. radar: occasional sales executive byes: new post, supervisory capacity; hes loyalty. integrity; reenness, decision, sood appearance.
[9482

- 5060 . EXPERIENCED radio and TV engtneer, reC. cently with manufacturer, Beets Dost on

TECHNICAL TRAINING

LEARN Radio and Electronics the Nem PraLetical was! Very atest system of experimenting with and bullding radio apparatus"as you learn":-Free brochure from Dept
W.W.10. Radlostructor, 40 . Russell $8 t$., Read lng, Berks.
CITY \& GUILDs (electrical, etc.) on "No -For detalls of modern courses in all branches of electrical engineering, applied electronics. automation. etc. send for our 148-page Hand-book-free and post free.-B.1.E.T. (Dept 388A). 29. Wright's Lane. London. W.8. 10017
FULL-TIME courses for P.M.G. Certincates. C.O.L.I., Telecommunications and Radar Maintenance Certincates.-Information from FIND TV set eroubles in minutes from that servicing, 106 all book houses and radio wholesalers.-If not In stock from secretery I.P.R.E., 20, Fairneld Rd., London. N.8. I0089 FReE from the I.P.R.E.: Spliabus of famous Fions bookliet, TV courses: membership condi: tions booklet, $1 /-:$ sample copy The Prac. Radio Englneer, 2/- post free.-secretary. 20. Pair-
fold Rd., London,
Dis. $W^{\text {IRCLESS}}$. - See the World as a radio omeer pertod low pees scholarahios. tec, available boarding and diny students: stimp for prospee tus.-Wireless College, Colwyn Bay, prols
$\mathbf{R}^{\text {ADIO }}$ and TV servicing, all aspects from
 Seudy at bome under himhly qualined tutors No books to buy.-Write for free prospectus Parkgate Rd. (Dept 442 A)., London. S.w.11

TV and Radio.-A.M.Brit.I R.E., Cley and -NO Fee terms, over 95% successes.-por detals of exaras. and home trulnine courses (includins practical apparatus) in all branches of radio. TV and electronics. Write for 148 . 29. Wrimht's Lane, London. W.s. 10016

HOW and Why " of Radio and Electronlce Way. Postal Instructions based on hosts of experiments and equlpment bulldings carried out at home. New Courses bring enjoyment is well as Enowiedge of thls facinating subject. - wrie brochure from Dept. WW. 12 Rediostructor 10040 A M Mech M Britip 10840 A M.I.Mech.E.E. A.M.Brit.I.R.E.E City of security: . No Pass-No Pee "terms; over 95% in all branches of ensineer'ng. building elece In all branches of encineertng, building elec-

MOREPOPULARTHANEVER! THE RANGE OF COMBINED Valve, COMPONENT \& TOOL BQXES BY

 GEO-PAT SUPPLIERS LTD.

PROVED ADVAITAGES POUED BY OWUITE OF OUR PRODUCT II EPREADIGG TER DENAM
DON'T DELAY-WRITE TODAY
For details of our 5 Models
From $£ 2.5 .0$ to $£ 5.5 .0$ or With Tools $£ 4.17 .0$ to $£ 12$. 12.0 UNBEATABLE VALUES
Benches, Rocks, and other aids also available
GEO-PAT SUPPLIERS LTD. LAMBRIDGE STREET, LARKHALL BATH

Instrumentation ot its best . . .

SIFAM ELECTRICAL IMSTRUMENT CO. LTD.
WOODLAND ROAD. TORQUAY Tel. 63822/3/4

RESISTANCE WIRES

EUREKA-CONSTANTAN

Most Gauges Availablo
NICKEL-CHROME
MANGANIN

COPPER WIRE

ENAMELLED, TINNED. LITZ. COTTON AND SILK COVERED SMALL ORDERS PROMPTLY DESPATCHED
B.A. SCREWS, NUTS, WASHERS
soldering tags, eyelets and rivets,
EBONITE and BAKELITE PANELS.
TUFNOL ROD, PAXOLIN TYPE COIL FORMERS AND TUBES. ALL DIAMETERS SEND STAMP FOR LIST. TRADE SUPPUED

POST RADIO SUPPLIES
33 Bourne Gardens, London, E. 4 Phone: Clissold 4688

RIBBONETTE

A VERSATILE RIBBON MICROPHONE FOR QUALITY RECORDING

With a response substantially flat to $14,000 \mathrm{c} / \mathrm{s}$ and a high level of sensitivity this well－ styled LUSTRAPHONE model is established as one of the finest microphones ever made for tape recording require－ ments．It is available in high， line or low impedance and is supplied mounted on base and swivel complete with cable． Price $57 / 17 / 6$ ．

> You ore invited to send for
> literoture describing other LUSTRAPHONE Ribbon and dynamic microphonas．

LUSTRAPHONE

LIMITED
St．George＇s Works，Regents Park Road， LONDON，N．W．1．Phone ：PRImrose secf．

BOOK\＄．INSTRUCTIONS．ETC． A MERICAN rechnical journals；electronics， Canner＇s Inc．Boston 20，Mass．．D．8．A．Thed． WEBB＇B log－book for recording tignals pproved format，semi－sti：covers，exalien
 Radio．14．Soho Se．London．W．1．
［002

A．D
LOUDSPEAKER ENCLOSURES AND
amplefer console cabinets
A．DAVIES \＆CO．（Cabinet Makers）
 LONDON，N．W．3 GULLIVER 3775 Few minuies walk Beleize Park Underground

The VZ electrical

METERS，we can supply and repair within 7.14 days：to B．S．89：Moving coil，moving iron，electrostatic，thermo－ couple，also mulkirange meters，meg－ eers，pyrometers，etc．

AUDIO EQUIPMENT，we supply and repair：Tape recorders，amplifiers， cuners，etc

Write or phone：
31I EDGWAREROAD，LONDON，W． 2 Phone：PADdington 451，

HARRINGAY SUPPLIES 345 HORNSEY ROAD，N． 19

TELEPRONEs Complete is Atted caen， Complote to atied can somio．，sultable for factories．bullding
athes ofices．etom ${ }_{3}$ ontes，onfletes，etom
 28110% Carr． $8 / \%$

TRANTPORTR 210250 in 275. 4．8（TT．© A．mA 17／6．210／209 tm，
 6．3 CRAA 6．3 CT． 28／6． $220 / 440$ \％．
 41 on all．
Pots 10K．10t WLre， 2.5 K 2 m .25 K wa mad Log．．08／．28M 1 －ouch，poen ed．Trean Pret $2 /-94$ ．fth Frailliopyter TyEn bow
200 ／250 \％，te ， 20 \％． 100 watt out 17i6．poet 2／－。200／250 \％．In． 110 V． 100 wate out 1716，poat 2\％＊．200／2s0 v．to 110 V

 1 mains toput，mocket $18 / \mathrm{O}$ ．poit $3 / 8$ ． 3 －pto output tockela

COMPONENT DI8TRIBUTORS
Guoranteod componentr－
made speciolly for us ：-

$$
1 \% \text { to tuvVe mica capacitops }
$$ $5-1000 \mathrm{pr}$ 8thadard taluet alway to stock $3200-2000 \mathrm{p}$ P $1 / 3$ 1200－20000p

 $10 \mathrm{~K}, 28 \mathrm{~K}, ~ 50 \mathrm{~K}, 100 \mathrm{~K}$（Jmpar），250K， $500 \mathrm{~K}, 1 \mathrm{M}, \mathrm{g}$ （log．） $3 / \mathrm{F}$ ．With ewitch $4 / 6$.
 Btack alze oft x if x 1tha． $14 / 6$ ．
C起LULOAE WADDLAG for resonance damping， 40 ply
S6ta，wide．s yd．Foll $18 / \mathrm{m}$ ，poot $3 /$
Sole distributors for thion area
IMPORTRD OOMPONTIUTM
Madature Bigh Stablly Kemators
5% Prefersed value＂range（ 141 values． 120 to 10 M 0

WIMA＊TROPYDUR＂PAPER CAPACITOR hld．Whape．somall sise．Glased surnec．

mid	tol．	280 V	800 V	mald．	tol．	250 V	500
． 01	50\％	64．	74.	． 15	10\％	1／1	
． 015	20\％	64	71.	出	10\％	1／3	
． 022	20\％	84	90	35	10\％	1／3	
． 083	20\％	8 8．	94.	33	10\％	1／4	
． 047	20\％	10	104	． 47	10\％	1／6	
．088	20\％	104．	111．	． 68	10\％	1／7	
． 1	10\％	1／＝	1／1	1.0	10\％	2／1	

＂SURPLOE＂HIGR ETABILTTY RESIETOR Bent makes．Largeet ectection avallable． 148 miandard values plim many obber
2% fw．71 \quad iw．84．\quad lw． 101
$1 \% \mathrm{iw} 1 / 3$ iw．1／0 iw．1／8
Ordinery Carbon Reaintore iW，84．IW．44，Also
AND，OF COURSE OUR OWN PRODUCT BLANK CHASSIS
Prectaion made us our own worka from commerclal quality half－hard Aluminhm．Two，three or four added． of over 20 diferent forms made up Order EXACT A1zE you require to to YOUB EIZB （Maximum ungth 30 th．depth 4 th．）．
ERAD Poclaly dent whith promptly． or order traisht wray．Wrorklos out colal arem of malarth required and referring to toble below

 Quantity and trade dicounta．Finiehes arranged for Hayge quantien of $(\mathrm{th}$ ，or tin ），over．per bend．
 PAMELS
 576 8／＝．

TBE WELL－ROWH COOPER－SMITH HI－FI AMPLIFIERS

Eech she best in its closs－
yet you con build it yourself！
8TEREO Control Uatt EIT $B 012$

 s．P．I．Hatn Amp．10ik w．$\varepsilon 12$ है ＂Magrom ${ }^{20} 20$ ．Power

 （Bantara 1／6 Magnum 5／a）

Please add postege for oll orders under 2
H．L．SMITH \＆CO．LTD
287／2e EDAWARE ROAD，LONDON．W． 2 Telephone Paddingcon $5891 / 7595$

A.R.R.L. RADIO AMATEURS handbook 1961 32/6

 Postage 1:9World Radio Mandoook, 1961, by Johansen. Postage I/
Mullard Reference Manual of Transietor Circuite. Postage 1/Radio Valve Data, new edition, by Wireless World. Postage 9d...........i R.S.G.B. Radio Amateur Call Book, 1961. Postage 6d...
Radio Tuners, F.M.A.M. and Stereo, by Hartley. Postage 60...
How to get the best out of your Tape Recorder, by Guy. Postag 8d.
Servicing Transistor Radios, by D'Airo. Postage I/....................... Amateur, by A.R.R.L. Portage $1 /$ Elements of Radio Engineering, by Peel, 2nd edition. Postage $1 /=\ldots$. Worked Radio Calculations, by Witts. Postage $1 /$....................... Mullard Valve Maintenance Manual. Postage $1 /$.

UNIVERSAL BOOK CO

 12 LITTLE NEWPORT STREET LONDON, W.C.2. (adjoining Lisle Street)
REBUILT TV TUBES

fully guaranteed 12 MONTHS Complete New Gun fieted in every Tube
 Immediate Delivery Allowance on Old Tube
Carriage and Insurancs 10 - extra NU-GUN TELETUBES LIMITED 3 1ha Mew M, Dnakett B4.. Harringay Loadom, N. 4 Tolephons: \#OUntvew "2Y03

©unamarice TUBES

New low prices
Peak quality
All Mullard
MAZDA
BRIMAR
Carr. \& Ins. 12/6.
Revacuumed
G/tee 6 Mths. CATHODEON etc. 21 inch 550 CRTs rebuilt in our own
Factory.
REBUILT
NEW TYPES
G/tee 13 Mths.
G/tee 12 Mths. $12 / 14$ inch $84 / 10 /=\mathrm{MW} 31 / 74$ MW36/4 $15 / 17$ incb $85 / /=$ AW $36 / 20$ AW $36 / 80$ 21 inch $87 / \%$ ع8/12/6
(Bowl allowance if MW43/69 MW43/80 returned in good AW43/80
condition).
£7/12/6
13 CHANNEL T/Vs. Table and Console Models. Famous makes.
Huge purchase direct from source enables us to offer unequalled value. These are cornplete but untested and are not guaranteed to be in working order.
12 in . \& 10 0 4-8peed Auto Changers 14in. 85100 UA8 B.S.R. 26/15/= 17in. 89100 UAl4 B.S.R. KT/10/ALSO 12in. 5 Chan. T/Vs 50/-.

MARLEY SUPPLIES
 MARLEY BUILDING, OLD BREWERY, CHURCH ROAD. CROYOON, SURREY

TRANSFORMERS
 ALL TYPES

Pot cores to close inductance values a speciality.
PROMPT QUOTATIONS FOR ANY QUANTITY
WHY NOT TRY US FOR THAT TRICKY JOB?
SWEETNAM \& BRADLEY LTD.
BRISTOL ROAD, MALMESBURY, WILTS.
TELEPHONE : MALMESBURY 2334

A. K. \& L. G. SMITH LIMITED

Wholesalers and Distributors of Electrical and Electronic Appliances, Househo'd, Etc.
38, Nunhead Lane, Pockham, London, 8.E. 15

INSTRUMENT REPAIRS

DON'T WAIT. TAKE ADVANTAGE OF OUR QUICK SERVICE COMPETI. tive prices and guaranteed REPAIRS.

We specialise in the repair and convers.on of the following :-
MULTI-RANGE METERS.
AMP-VOLT-WATTMETERS
OLLECTRONIC ANO ALL ALLIED MEASURING EQUIPMENT.
SHC LABORATOKY EQUIPMENT.
LEDON INSTRUMENTS LTD.
96, Deptior High St. London, S.E.8. TIDEWAY 2689

MALVYN ENGINEERING WORKE

Emeinems to the Redio and Electronic Intuetries
Pressings, Machined Components,
Wiring and Mechanical Assemblies, to specification.
simole and Prodwation Quanuinion
7 CURRIE STREET, HERTFORD, HERTS.
Telephone :
Hertford

TRANSFORMERS
 Since 1931 all types. single and 3phs, Ew to 12 KVA . over $1,000,000$ during the war, UL Output Tran:formers.
 SOUND SALES LTD.
 Works \& Laboratories
 ```West Street, Farnham, Surrey``` Farninam 6 ©́46

MINICOIL PRODUCTS

Manufacturers of:-
Miniature Precision Coils to Specification. Chokes. Delay Lines, Pulse Transformers etc. Also Stockists of Ferrite Material, Coil formers, Copper Wire, Insulating tape, etc
2A MAXWELL ROAD PORTBMOUTH
Phene: Portsmouth 33330

WELLINGTON ACOU8TIO LABORATORIES LTD.

PARNHAM
BURREY Telephone: Farnham 8461
WAL GAIN Transistorised Pre-amplifiers. Gives extra gain without hum or distortion. Compact design. Many applications in Audio, Industrial, Com mercial fields. Used for any purpose where it is necessary to amplify minute voleage into useful output. Mono 65 , Stereo or two mono channels, $\mathbf{E 7 / 1 0 / \cdot}$ subject.
WALTRAK pocket audio oscillator, transistorised, 1,000 cps. Circuit checking, laule finding, calibrated I v., .I v., .01 v. E6/10/-, subject.
WAL BULK ERASER. Wipes both tape tracks clean in 30 sec. Used in laboratories, studios, offices. colleges In fact anywhere that tapes have to be "cleaned up " for the next recording session. $67 / 18 / 6$, subject.
WAL D.MAG. Mains operated, pocket sized. Head demagnetiser providing complete degaussing circuit. Also for erasing shore "unwanted" sound passage on tape or striped film.
FULL TECHNICAL LEAFLETS OF ALL OUR PRODUCTS ON REQUEST.

REBUILT T/V TUBES
 $12^{\prime \prime}-14^{\prime \prime} £ 4150$
 $15^{\prime \prime}-17^{\prime \prime}$ E5 50 $21^{\prime \prime} £ 7150$

ALL TUBES GUARANTEED FOR 12 MTHS. IS. ALLOWED ON YOUR OLD BULE. CARRIAGE AND INSURANCE IO-EXTRA.

FRFE DELIVERY LONDON AREA.
VACUUM ELECTRONIC LTD. 35 SACKVILLE ST.: LONDON, W.I. Phone REG. 6404

"AS-NU"
 REGUNHED T.V. TUBES

Supplied from stock, and despatched by British Railways same day. COMPLETE NEW GUNS fitted in every tube and fully guaranteed for TWELVE MONTHS.

	Mullard			Mazda		
12 in .		¢4 10	0		10	0
14 in	6415	0	25	10	0
15 in			66	0	0
16 in	6610	0		-	
17in.		6510	0	65	17	6
21 in .		6810	0	C8	10	0

Other types available. Please contact:

J. P. WRIGHT

103 Carr House Road Doncaster

Sole Distribution Agent
Phone: DON 2636 or 66252

SOUTHERN TECHNICAL SUPPLIES
TRANSFORMERS FOR ALL MULLARD AMPLIFIERS OUTPOT TAAMAFORIRRRS (Eeoondarion Lor 9,75 and 15 ohma)

 T.14. 7 watt otereo amp., $9,000 \mathrm{ohm} .20^{\circ}$, tappligs, $88 / \%$ P/P. 2/-

T.S8. $\quad 6.10$ amp, and tuner, $300-0-300$ v., 120 mA ., $6.8 \mathrm{~V}, 2.5$ A., 6'T, 6.8 v. 2.5 a

5 -10 amp $300 \cdot 0 \cdot 300$ y 100

T.141.	$2 / 9$.

9.

 All tranaformere fully guaranteed, all shrouded folly exoept T140 ind TB. Wrtte for onr fully jllurtrated eatalogue, with all dace.
BPECLAL. OFFLRS T44 and T55. G9/-; T143 and two T142\%. 88/e. P/P. $3 / 6$ on both.
 80UTHERN TECHNICAL8UPPLIE8, 83, 8tation Road, Portsiade, suseex

THE HIGH-FIDELITY MAIL ORDER SPECIALISTS
 GOODS DESPATCHED GY RETURN

Carriage, Packing \& Insurance (U.K.) FREE !!
 CABLIETY TAPE LECORDERA
 ghome, Reoord Horsing, Ferrogreph, Vostozion, Brezell. Wearito, Tanoy, Lom her. Bonette, Mi-sord, the
Hire Purchase Terms available "Comparator" Demonstrations
WORLD WIDE EXPORTERS

* overseas orders sent free of purchase tax t AND SHIPPED PROMPTLY AT MINIMUM COST
C. C. GOODWIN (SALES) LTD.
(Dept. W.17) 7, THE BROADWAY, WOOD GREEN, LONDON, N. 22 Tentiched EOWes Park 0077/8

FOR THE FIRST TIME IN THIS COUNTRY THE WORLD'S FAIRY TALES DRAMATIZED ON TAPE Told by MELANIE SCOTT

Complete Set of 4 Reels containing 16 different stories Price: $29 / 6$ per 5° Reel of Four Stories Postoge: $1 / 6$ per tape

From: H. B. TRADING CO.
60-66 Wardour Street, W. 1

CLASSIFIED ADVERTISEMENTS

 Use this Form for your Sales and WantsTo " Wireless World " Classified Advertisement Dept., Dorset House, Stamford Street, London, S.E.I PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

- RATE: 9/. for TWO LINES. $4 / 6$ every Additional Line. Average six words per line.
- Name and address to be included in charge if used in advertisement.
- Box No. Allow two words plus $1 /$.

NAME
ADDRESS \qquad

- Remirtances payable to "Wireless World" and crossed " Co."
- Press Day, Tuesday, March 28th for May, 1981 issue.

[^26]NUMBER OF INSERTIONS

INDEX TO ADVERTISERS

Please write for full Technizal Specifications so :he Manufacturers

STRATTON \& CO.LTD., BIRMINGHAM, 3I

Here is a tape-recorder which is easy to operate, yet contains refinements normally provided only in costly professional machines. This is the ideal recorder for the high fidelity enthusiast or musician whose requirements demand recordings of library or studio quality. The separate record and playback heads and amplifiers controlled by the Tape/Input switch enables you to compare, instantly, the input signal with the signal on the tape whilst the recording is being made. Thus, you can rapidly determine whether to record at $7 \frac{1}{2}$ or $3 \$$ i.p.s. and monitor the recording through the built-in Goodman's loudspeaker. Editing is simplified by the variable speed, single, fast wind control. $3,600 \mathrm{ft}$. of tape on an 81" reel can be wound in 2 minutes- $1,200 \mathrm{ft}$. in 45 seconds.

Some other outstanding features of the Reflectograph are: slimline duotone record level meter; 2 tone controls, 2 volume controls, 2 inputs, 2 outputs; equalisation for 2 speeds; knobs with calibrated skirts; no belts in the tape drive mechanism; a realistic performance specification.

Send this coupon for free data card.

Please send me free of charge, copy of Bib Data Card containing playing times of various types and lengths of tape and playing times of 48 Classical works. Also comprehensive colour brochure on Reflectograph tape recorders and name and address of my nearest Reflectograph dealer.

NAME
ADDRES:

MULTIMUSIC LTD. Maylands Avenue, Hemel Hempstead, Herts,

[^0]: C Iliffe Electrical Publications Letd. 1961. Permission in writing from the Editor must first be obtained before lefterpress or tllustrations are reproduced from this iournal. Brief abstracts or comments are allowed provided acknowledgment to the lournal is given.

[^1]: *The Canadian government had subsidized the Glace Bay station to the extent of $\$ 80,000$.

[^2]: Leakance, a term meaning shunt conductance, i.e. the reciprocal of the insulation resistance of the line.

[^3]: * President of the International Scientific Radio Union (U.R.S.I.).

[^4]: § See, for example, Wireless World, February 1960, pp. 52-58.

[^5]: " Amplitude Distortion," Wireless Engineer, Feb. 1937. p. 63.
 1 "Tonal-range and Sound Intensity Preferences of Broadcas: Listeners," Proc. I.R.E., Sept. 1945, p. 571.

[^6]: 3 "Frequency Range Preference for Speech and Music," \%. Acous. Soc. Amer., July 1947, p. 549.

[^7]: *My last treatise on this was 15 years ago, and as it is unlikely that many readers present ever saw it or could remember it if they did, a return to the subjest may be nearly due.

[^8]: *By the method described in M. G. Scroggie's "Radio Laboratory Handbook" (now temporarily out of print), 6th edition, Sec. 11.14.

[^9]: *" The Influence of high-order products in non-linear distortion." Electronic Engineering, April 195), p. 152.

[^10]: *Hon. Sec. British Amateur Radio Teleprinter Group

[^11]: RDCOEA PRODUCTS ETD.
 HEAD OFFICE
 GAUDEN ROAD, CLAPHAM HIGH ST., LONDON, S.W. 4

 Telephones:
 MACaulay 4272 a 3101

 Tolegrama :
 "SOLJOINT," LONDON AUSTRA'-IAN OFFICE : 420 ST, KILDA ROAD, MELBOURNE, S.C. 2

[^12]: Telephone: Blackiriars 3221. Telezrams: Vickery Manchester

[^13]: AJDEBS

 ## ELECTRONICS LIMITED

 103 Hampstead Road, London NWr. Tel: EUSton 1639
 Contractors to GPO and Government Departments.
 Ministry of Aviation approved.

[^14]: M. R. SUPPLIES, LTD.
 (Established 1935)

 CAPAGFTOR/MDUCFION HOTOR (B.T.H. and G.E.C.), 1/10th H.P., 2,850 r.p.m., 280/260 v. L.C. Length of body 8 iln . din., 3 Jin. ahaft prof. lin. Foot mounted. wrart agape motore
 8mall GEARED HOTORS. In Addition to our well-known range we can now otem amaller opem trpe 8.P. unith, $200 / 250$ F. A.C., tnal opeed elther 6 or 12 r.p.m. (torque
 ITMATURE COOLIE FAES (200/250 v. A.C.) with open (tpe induction meer
 cooling and coovector beaters, etc.. $28 / 6$ (demateb $2 / /)$. Ideal for projector lamp SYMCHRONOUS ELBCTRIC CLOCE MOTRETMTY 200
 Dia. 2fin, depth behind dial only lin. Very latest modet. With duat corve $89 / 8$
 $8 / 10 \mathrm{im}$ d dal, S/6 est.

 bigb torque model (G.E.Q.) $6 \mathrm{r} . \mathrm{p} . \mathrm{m} .5$
 turntables. $57 / 8$ (den. 1/e). These are malteble for diepisy

 ## turntabl

 RIGH DUTY RECTIFIERS, funnel cooled, D.C. dellvery 36 volta 10 ampa . sull-were.
 Idmited mapoly it only $47 / 6$ ea, (deopatch $3 /-$) Idmited mapply at ouly $47 / 6$ ea. (deopatch $3 /-$).
 thoss on $200 / 250$ v. $50 \mathrm{c} / \mathrm{h}$. Providint up to 3 oe-ole operations per 24 bour at any choosn timose whit disy-omptiting device (use optional). Capecity 20 arapa. Come Also Bmalth'o Relyon Twlactreate model 20 -amp EXTRACTOR FAMs. A very popular line. Weil-made units at tuch lower th normal prioes. 200/2so v. A.d., induction motor, allent ronntis, mo interference. Whh mounting trame and back grille, resedy for eapy tartallation. With 6 in tmonce.

 one $3 / \rho$.
 any price. 200/230 T. A.C./D.C. Fitted Latert redio/T.V. Euppresorars. Compritne motor with tuxtat bracket, foot control and welloh, noedle HEbt with cultak, bett, etc.ish ind (dearnatch $3 /=$)

 for (thoee $200 / 250 \mathrm{\nabla} .50 \mathrm{c} / \mathrm{g}$. Providiog any " on "period bat limited new delivery now avallable "on" at the end of the eet poriod. Made for electrio oookern and antamb, for mang other purposes-tape recorders, tmmertion heaters, etc. Capeotly 28 ampa, attod

 M. R.SUPPLIEs, Lłd., 68 New Oxford Street, London, W.C. 1
 (Telephone: MUSeum 2958)

[^15]: Write for detats to: PHILCO INTERNATIONAL LTD. SOUTH STREET BISEOP'S STORTFORD, HERTS. Tel: Bishop's Stortford 971

[^16]: C Iliffe Electrical Publications Letd. 1961. Permission in writing from the Editor must first be obtained before lefterpress or tllustrations are reproduced from this iournal. Brief abstracts or comments are allowed provided acknowledgment to the lournal is given.

[^17]: Instruction Books which contain full description. easy-to-follow practical Firsce diagrams, theoretical d

[^18]: PLEASE NOTE:-A selection of the above items are described more fully in this advertisement!

[^19]: small, nom-ind retive, inealated, hieb-Ernde capacitor 150 r. Wha. . $15 \mathrm{Mrd} .5 \% 10 \mathrm{~d}, 22 \mathrm{MPd} .10 \% 94.2 \mathrm{Mdd}$

 .022 Mrd., 03 Mid. 10 d ench. 0.047 Mid. 2%. 05 Mid.
 84 sach. 5.000 PF., 6,800 PF.. 91. esch. . 022 Msd. 100. 1,000 ․ Whe., 1,000 pF., 98 6.800 PF.. 104. . 01 ITd. $1,500 \mathrm{v} .1 / \mathrm{e} .12 \mathrm{Mfd} ., 15 \mathrm{M}$ Md.. $1 / 1 \mathrm{I}$ each.

 ## valve holders

 lint. Ootal Pax. 3 In Internat. Octal McMurdo 6d, Med P.T.P.E. Bd. B70 Cer. with. Endde aud valve retalnto spring $1 /=$ B8A Pas. 44 . B8A Amp. 6d. B8A Cer. Bd. BOA Pax, bl boA Cer. 104 BoA Cer. with addle and valve retaining apring $1 /$-. B9A Cer. akirted $1 /$ e. B9A

 variable gang compemerra

 A 7/8.

 DISC CERAMIC COIDENSERS 600 v , Whg
 8.2 pF., 470 PF.. 500 pF.,. 001 Mdd... 002 Mid., 0025 Mid.

[^20]: GLADSTONE RADIO BURREY. Tel. 22791 68 stotes Croft, Bristol, 1. (Commberley cloeed Bat.) 247, New Road, Copner, Portsmouth, Hants.
 (Portmonth and Brletol clooed Wedneoday)

[^21]: A Company, well known and expanding in the electronic field, has established a group of engineers to develop Static Power Conversion devicen, and requires a Project Leader to control and expand this team.
 Electronic engineers are invited to apply for this position, which demands ability to inspire and lead, together with technical competence of a very high order in this field.
 The appointment carries senior staff status, and a salary of about $£ 1,750$ per year is envisaged.
 The prospects of further advancement for the selected applicant are excellent.
 Please reply, giving full details, to Box 3747. high order in this field.

[^22]: MATHPMATICIANS, PHYSICISTS, CHEMISTS, ELECTRONICISTS, ELECTRICAL, MECHANICAL and CIVIL ENGINEERS (Men and Women) required for War Dept. RESEARCH and DEVELOPMENT ESTABLISHMENTS at locations including Byfleet and Chertsey, Surrey; Didcot and Shrivenham, Berks; Christchurch and Farnborough, Hants; Enfield and Feltham, Middlesex; S. E. London; Sevenogks, Kent; Horsham, Sussex; Southend and Shoeburyness, Essex: (a) EXPERIMENTAL OFFICER; (b) ASSISTANT EXPERIMENTAL OFFICER; (c)ASSISTANT (SCIENTIFIC). QUALS.: (a) and (b) G.C.E. "AA level, Pass degree, H.N.C. or equiv: (c) G.C.E. "O" level, or S.2/O.N.C. or equiv. SALARIES: (a) (Min. age 27) £1,087-£1.336. (b) £458\&983. (c) 8333 - $£ 723$. Rates higher in London slightly lower in provinces. Opportunities for part-time further education and to compete for established (pensionable) posts. Forms from Ministry of Labour, Technical and Scientific Register (K), 26, King Street, London, S.W.I, quoting ref. A62/1A.

[^23]: This is a staff appointment and applications should be sent vo: Division Staff Officer.
 IMPERIAL CHEMICAL INDUSTRIES LIMITED.
 Fibres Division. Hookstone Road. Harrogate, Yorkshire, quoting Kef. T.30/A.

[^24]: WRIGHT (Cambridge) LTD WALNUT TREE AVENUE, CAMBRIDGE Teleohone Combr dge 5688 (Makers of "Wright" Automatic Timing Equipment)

[^25]: "BARGAINS WITH PER8ONAL BERVICE"
 In 6 r ingen, loof250 F. A.C. or 12 V. D.C. high quality

 osrr. Alilom. TARCON CR100, 819. with nolae dsr. i/10/. בarconi CR100, 819, with nolae
 M1. II. complete alation with power pack, rarlometer; etc E $7 / 10 /$-, carr, \$1/10/-, TE/RECLIVIR Mo. 9 (Marcoul Cunsdin), complele atition. RC $1.5 \cdot 5$ Mc/o.n
 TX leen 813 valve (can be supplid) the whole with power packe to 12 v . D.C. Au pew abeolnto bargain. \&14/10/- carr. \& $: / 10 /$. EARCONI FOISE GENERAtox Tresy, brin $1 \mathrm{a}=\mathrm{w} .818 / 101-$ csirp. S1. zorARI comverrors, 24 . D.C. 230 v. AC. 128 withe. 2%,

 230 v. A.C. approx. $1^{\text {te }}$ wath by Lanc whire-Crypto In portable ventulater aree with le uta, brand pew the original packing osee, e8/1C/:, carr. 10/. BA FIERY
 oo irne contenle. fully fued. $813 / 10 /$. carr. 81 .
 2 ph .36 V . IS.C. 30 mpa und othor outnithe, thautr en Invite 1. NTP ALAALIVE BATFBRTE3, 12 volt.
 Ditto 6 volt 75 a,h., slorage or ativer brind new and
 0 volt-230 voll 100 mA ., $19 /$ मि, pout $2 / 6$, HRO POWE PACKA, $11^{\prime} / 230$ FiA.C., $81 /$ S, poet 810 POWRR PACS Alo. 15, for R206 and edmuls reoeiveri $110 / 2^{\circ} 0 \mathrm{w}$. A.O. an 112 \%. D.C. \& 8 cirr. $10 /$. FREQUEHOT ADAPTOR, for R:08 and oth ir reoplvere, I ranged हTaLP'. Wo. sini completh with valven 8y3, posi
 25 ourr. 10\%. EYNCRRONLEER CHASSIS (Amerlcan), contsths 29 cersmio octel valve bolders, blower motor. relay, wave change switches, pote, and hoot of cond in.
 bide lesthor ouee, $45 /$. poot $8 /$ explonive charges, in CRAPT BELAAB. Lirge quatity avall sble. nlease Write for det sus. RCA AR $\$ 3$ SPFAKE Y?, 8 ohto in Msck crackle cabinet. BRAVD NE W 37 I , port $3 / \mathrm{h}$ LIEEMAV'S SARETY BELT, A must for all olimbing

 C.W.O. Monthly mecounts aprovorl buainens house tec. S.A.E. en juries. Carriage quoted appliea only Maltuland.
 A. J. TIOTP3ON. "ETLIMG LOD3F." Codicote Btahis. Berth Phone: Codicote 212.

[^26]: Please write in block letters with ball pen or pencil.

