
 FEBRUARY 1981 60 p

 CONSTRUCTOR

 CONSTRUCTOR}

Mivilimir
SELF CONTAINED SELF POWERED BY A PP6 SIZE BATTER\%

WINTER CRICKET

II:HiPNIE

LOW CONSUMPTION UNJ ' RODUCES A DISTINCTIVE TWO-NOTE t INE

50 cmos 10 Projects

DIRECT READER SERVICE

 RADIO \& ELECTRONICS BOOKS18. 50 Projects Using IC CA3130
19. 50 CMOS IC Projects $£ 1.25$
20. A Practical Introduction to Digital IC's
21. Beginners Guide to Building Electronic Projects
22. Essential Theory for the Electronics Hobbyist
23. 52 Projects Using IC741
24. Two Transistor Electronic Projects
25. How to Build Your Own Metal and Treasure Locators
26. Electronic Calculator Users Handbook
27. Practical Repair and Renovation of Colour TVs
28. Handbook of IC Audio Preamplifier and Power Amplifier Construction
29. 50 Circuits Using Germanium, Silicon and Zener Diodes
30. 50 Projects Using Relays, SCR's and TRIACS
31. Fun and Games with your Electronic Calculator
32. 50 (FET) Field Effect Transistor Projects
33. 50 Simple L.E.D. Circuits
34. How to Make Walkie-Talkies
35. IC 555 Projects
36. Projects in Opto-Electronics £1.25
37. Radio Circuits Using IC's £1.35
38. Mobile Discotheque Handbook £1.35
39. Electronic Projects for Beginners £1.35
40. Popular Electronic Projects £1.45
41. IC LM3900 Projects £1.35
42. Electronic Music and Creative Tape Recording £1.25
43. Practical Electronic Calculations and Formulae £2.25
44. Radio Stations Guide £1.45
45. Electronic Security Devices £1.45
46. How to. Build Your Own Solid State Oscilloscope £1.50
47. 50 Circuits Using 7400 Series IC's £1.45
48. Second Book of CMOS IC Projects £1.50
49. Practical Construction of Pre-Amps, Tone Controls, Fitters \& Attenuators £1.45
50. Beginners Guide to Digital Techniques- 95p
51. 28 Tested Transistor Projects £1.25
52. Digital IC Equivalentsand Pin Connections£2.50
53. Linear IC Equivalents and Pin Connections

POSTAGE: 20p PER BOOK. IF MORE THAN 3 BOOKS ORDERED: 10p PER BOOK

To: Data Publications Ltd., 57 Maida Vale, London W9 1SN
Please send me within 21 days .
copy/copies
Book Nos:

I enclose Postal Order/Cheque for f
Name
Address

CONSTRUCTOR

FEBRUARY 1981
Volume 34 No. 6
Published Monthly
First published in 1947
Incorporating The Radio Amateur

Editorial and Advertising Offices 57 MAIDA VALE LONDON W9 1SN

Telephone
01-286 6141
Telegrams
Databux, London
©Data Publications Ltd., 1981. Contents may only be reproduced after obtaining prior permission from the Editor. Short abstracts or references are allowable provided acknowledgement of source is given.

Annual Subscription: $£ 9.50$, Eire and Overseas $£ 10.50$ (U.S.A. and Canada $\$ 25.00$) including postage. Remittances should be made payable to "Data Publications Ltd". Overseas readers, please pay by cheque or International Money Order.

Technical Queries. We regret that we are unable to answer queries other than those arising from articles appearing in this magazine nor can we advise on modifications to equipment described. We regret that queries cannot be answered over the telephone, they must be submitted in writing and accompanied by a stamped addressed envelope for reply.

Correspondence should be addressed to the Editor, Advertising Manager, Subscription Manager or the Publishers as appropriate.

Opinions expressed by contributors are not necessarily those of the Editor or proprietors.

Production - Web Offset.
ZENER DIODE ANALYSER -Suggested Circuit by G. A. French 334
RECENT PUBLICATIONS 337
NEWS AND COMMENT 338
LOW CURRENT PILOT LAMP by F. L. Stephenson 340
ELECTRONIC DOOR BUZZER - Low consumption unit by A. P. Roberts 341
The INStructor - A Practical Introduction to Microprocessors - Part 7 by Ian Sinclair 345
TRADE NOTE - Ultrasonic Transducers 350
IN NEXT MONTH'S ISSUE 351
REVERBERATION UNIT - Self-contained self-powered unit. Reverberation amplitude control by R: A. Penfold 352
SHORT WAVE NEWS - For DX Listeners by Frank A. Baldwin 358
OWIZZEE!! - How to play cricket in comfort by David Arts 360
FAX PROGRESS - Report by Arthur C. Gee 365
FIXING AN F.M. RADIO - In Your Workshop 366
SINGLE I.C. SIGNAL TRACER - Inexpensive design with low component count by M. V. Hastings 372
CIRCULAR HOLE JIG by D. M. Pitkin 376
BOOK REVIEW 377
SEVEN SEGMENT DISPLAYS Electronic Data No. 66 iii

MOTORS

1.5-6VDC Model Motors 22p. Sub. Min. 'Big Inch 115VAC 3 rpm Motors 32p. 6 volt standard cassette motors new £1.20. 8 track 12 V Replacement Motors 55p. Ex. Equip. BSR recoro player motors. C129 C197 type, £1.20

SEMICONDUCTORS

LM340 80p. BY103 10p. 2N5062 100 V 800 mA SCR 18p. B $\times 504$ Opto Isolator 25p. CA3130 95p. CA3020 45p. 741 22p. 741S 35p. 723 35p. NE555 24p. 2N3773 £1.70. NE556 50p. ZN414 75p. BD238 28p. BD438 28p.CB4069 15p. $\mathbf{4}^{\prime \prime}$ IRedLed Displays, c.c. or c.a. 95p. TIL209 Red Leds 10 for 75p. Man3A 3 mm Led Displays 40p. BY223 20 p .

PROJECT BOXES

Sturdy ABS black plastic boxes with brass inserts and lid. $75 \times 56 \times 35 \mathrm{~mm}$ 65 p. $95 \times 71 \times 35 \mathrm{~mm} 75 \mathrm{p}$. $115 \times 95 \times 37 \mathrm{~mm} 85 \mathrm{p}$.

2.5"' Direct Radiating Tweeter, maximum rating 25 volts R.M.S. 100 watts across 8 ohms. Freq. range $3.8 \mathrm{kHz}-28 \mathrm{kHz}, £ 3.65$

TOOL SALE

Small side cutters $5^{\prime \prime}$ in sulated handles £1. Radiopliers, snipe nosed insulated handles £1. Heavy. duty pliers insulated handles $\mathbf{£ 1 . 1 0}$. Draper side cutters spring loaded $£ 1$

HANDY BENCH VICE

1" Jaw opening, £2.95.

Hand drill, double pinion with machine sut gears, 3/18", only $\mathbf{£ 2 . 7 5}$ p plus 50p p\&p.

MORSE KEYS

Beginners practice key £1.05. All metal full adjustable type. $\mathbf{£ 2} .60$

MINIATURE LEVEL METERS

1 Centre Zero $17 \times 17 \mathrm{~mm}$ $75 p$. 2 (scaled $0-10$) $28 \times$ 25 mm 75 p .3 Grundig $40 \times$ $27 \mathrm{~mm} £ 1.25$.

JVC NIVICO STEREO CASSETTE MECHANISM. Music centre type. Rev. counter, remote operation £ 13.50 and $£ 1.00$ p 8 p.

JUMPER TEST LEAD SETS
10 pairs of leads with various coloured croc clips each end (20 clips) 90p per set.

TRANSFORMERS

All 240VAC Primary (postage per transformer is shown after price). MINIATURE RANGE: 6-0$6 \mathrm{~V} 100 \mathrm{~mA}, 9-0-9 \mathrm{~V} 75 \mathrm{~mA}$ and $12-0-12 \mathrm{~V} 50 \mathrm{~mA}$ all 79 p
 $500 \mathrm{~mA} . £ 1.20$ (15 p). 12 V 2 500mA. £1.20 (15p). 12 V 2
amp £2.75 (45p). $25-0-15 \mathrm{~V} 3$ amp Transformer at $£ 2.85$ (54 p). $30-0-30 \mathrm{~V} 1 \mathrm{amp} £ 2.85$ (54p). 20-0-20V 2 amp $£ 3.65$ (54p). 0-12-15-20-24-30V 2 amp $£ 4.75$ (54 p). 20V 2.5 amp $£ 2.45$ (54 p).

TRIACIXENON PULSE TRANSFORMERS

1:1 (gpo style) 30p. 1:1 plus 1 sub. min. pcb mourting type 60 p each.

MICROPHONES

Min. tie pin. Omni, uses deaf aid battery (supplied), £4.95, ECM105 low cost condenser, Omni, 600 ohms, on/off switch, standard jack plug, £2.95. EM507 Condenser, uni, 600 ohms, $30-18 \mathrm{kHz}$., highly ohms,
polished metal body $£ 7.92$. Dolished metal body ex.92. phone dual imp., 600 ohms or $20 \mathrm{~K}, 70-\mathrm{kHz}$, attractive black metal body $£ 7.75$. EM506 dual impedance condenser microphone 600 ohms or 50K, heavy ohms or sok, heavy
chromed copper body, chromed copper body,
E12.95 CASSETTE replacement microphone with 2.5/3.5 plugs $£ 1.35$ GRUNDIG electric inserts with FET pre amp, 3-6VDC operation $£ 1.00$

LIGHT DIMMER

240 VAC 800 watts max. wall mounting, has built in photo cell for automatic swich on when dark $£ 4.50$

RIBBON CABLE

8 way single strand miniature 22 p per metre.

SPECIAL OFFER TAPE HEAD DEMAGNETIZER
 ETIZER

240 VAC with curved probe suitable for reel to reel or cassette machines, £1.95.

STEREO FM/GRAM TUNER AMPLIFIER CHASSIS, VHF and AM, Bass, treble and volume controls, Gram. 8 track inputs, headphone output jack, 3 watts per channel with power supply. £14.95 and £1.20 p\&p

Pocket Multimeter, 1,000 opv sensitivity. Ranges 1 KV ACIDC Volts, 150 ma DC current, resistance 0 2.5K, 0-100K, £4.50

20,000 opv., 1,000 volts ACIDC, DC current to $500 \mathrm{ma}, 5$ ranges, resistance 4 ranges to 6 meg. Mirror scale, carrying handle, £975.

40 kHz Transducers. Recl Sender $\$ 3.50$ pair.

TELEPHONE PICK UP COIL

Sucker type with lead and 3.5 mm plug 62p.

500 V electronic magger, push button operation. 'Ranges:button operation. Range 0-100』 (MW scale $5 \Omega) 0-100 \mathrm{M} \Omega$ Mid scale $5 \mathrm{MH} \Omega) \mathrm{E} 46.75 \mathrm{p}$

Dalo 33PC Etch Resist printed circuit maker pen, with spare tip, 79p.

TERMS:

Cash with order (Official Orders welcomed from colleges etc). 30p postage please unless otherwise shown. VAT inclusive.
S.A.E. for illustrated lists

KRT5001 50k/V range doubler multimeter, $0-1 \mathrm{kv}(125 \mathrm{mv}$ LO range) $0-1 \mathrm{kv} \mathrm{AC} 0-.10 \mathrm{amp}$ DC. $0-20 \mathrm{M} \Omega$ res. (LO ohm 0 $-2 k$ range) $170 \times 124 \times 50 \mathrm{~mm}$ £15.50.

YN360TR MULTIMETER

YN360 M/Meter. 20,000 ohims per volt. IKV AC/DC volts, 250 ma dc current, 4 resistance ranges to 20 meg , also has built in transistor tester with leakage and gain ranges. $\mathbf{E 1 2 . 5 0}$

CRIMPING TOOL

Combination type for crimping red blue and yellow terminations also incorporates a wire stripper (6 gauges) and wire cutter, with insultated handles only $£ 2.30$.

POWER SUPPLIES

SWITCHED TYPE, plugs into 13 amp socket, has 3-4.5-6-7.5 and 9 volt DC out at either 100 or 40 0 mA , switchable E3.45. HC244R STABLISED SUPPLY, 3-6-7.5-9 volts DC out at 400 mA max., with on/off switch, polarity reversing switch and voltage selector switch, fully regulated to supply exact voltage from no load to max. current £4.95.

AMPHENOL

CONNECTORS
(PL259) PLUGS 47p. Chassis sockets 42p. Elbows PL259/ SO239 90p. Double in line male connector (2XPL259) 65p. Plug reducers 13p. PL259 Dummy load, 52 ohms 1 watt with indicator bulb 95p.

BUZZERS

MINIATURE SOLID STATE BUZZERS, $33 \times 17 \times 15 \mathrm{~mm}$ white plastic case, output at three feet 70db (approx), low consumption only 15 mA , voltage operating $4-15 \mathrm{VDC}, 75 \mathrm{p}$ age operating $42-15 V D C$, $75 p$
each. LOUD 12 VDC BUZZER, with. metal case. 50 mm diam. $\times 30 \mathrm{~mm}$ high 63 p . Carters 12 volt Minimite Alarm sirens £7.65p. 12VDC siren, all metal rotary type, high pitched wail, £6.25.

TOOLS

SOLDER SUCKER, plunger type, high suction, teflon nozzle, £4.99 (spare nozzles 69 p each).
All Antex irons still at pre increase prices, order now as new stock will be going up next month.
Antex Model C 15 watt soldering irons, 240VAC $£ 3.95$
Antex Model CX 17 watt soldering irons, 240 VAC $£ 3.95$
Antex Model X25 25 watt soldering irons, 240 VAC $£ 3.95$
ANTEX ST3 iron stands, suits all above models £1.65
Antex heat shunts $12 p$ each.
Servisol Solder Mop 50p each.
Neon Tester Screwdrivers 8" long 59p each.
Miyarna IC test clips 16 pin E 1.95

SWITCHES
Sub miniature toggles: SPST $\{8 \times 5 \times 7 \mathrm{~mm}\} 42 \mathrm{p}$. DPDT $(8 \times 7 \times 7 \mathrm{~mm}) 55 \mathrm{p}$. DPDT centre off $12 \times 11 \times$ 9 mm 77p. PUSH SWITCHES, $16 \mathrm{~mm} \times 6 \mathrm{~mm}$, red top, push to make 14 p each, push to break version (black top) 16p each.

PACE Mobile SWR metre with field strength, PL259 connection, £5.95

RES. SUB BOX

Resistance Substitution Box. Swivelling disc provides close tolerance resistors of 36 values from 5 ohms to 1 meg. 83.95

Signal Generator. Ranges $250 \mathrm{~Hz}-100 \mathrm{MHz}$ in 6 Bands, $100 \mathrm{MHz}-300 \mathrm{MHz}$ (harmonics) internal modulator at 100 Hz . R.F., output Max. 0.1 VRMS. All \&ransistorised unit with calibrating device. $220-240$ VAC operation, £48.95.

TAPE HEADS

Mono cassette £1.75 Stereo cassette 83.90 Standard 8 track stereo E1.95 BSR MN1330 track 50p. BSR SRP90 track 81.95. TD10 lape head assembly - 2 heads both $\frac{1}{4}$ track R/P with built in erse, mounted on bracket £1.20

REPAIRING POCKET TRANSISTOR RADIOS
by I. R. Sinclair
TEST GEAR PROJECTS
by T. Dixon
Price $£ 2.55$

ELECTRONICS - BUILD \& LEARN
Price $£ 4.50$
by R. A. Penfold Price $£ 3.20$
AUDIO AMPLIFIERS FOR THE HOME
CONSTRUCTOR
byI. R. Sinclair
Price $£ 3.00$
BEGINNER'S GUIDE TO INTEGRATED
CIRCUITS
by I. R. Sinclair
BEGINNER'S GUIDE TO RADIO
by G. J. King P
ELECTRONIC PROJECTS IN THE
WORKSHOP
by R. A. Penfold
Price $£ 2.75$
110 ELECTRONIC ALARM PROJECTS
FOR THE HOME CONSTRUCTOR
by R. M. Marston
Price 14.35
UNDERSTANDING MICROPROCESSORS
by Texas Ins Price $£ 4.00$
AMATEUR RADIO OPERATING MANUAL
by R. J. Eckersley Price $£ 4.70$

THE OSCILLOSCOPE IN USE by I. R. Sinclair

Price $£ 3.50$ PROJECTS FOR THE CAR \& GARAGE by G. Bishop SIMPLE CIRCUIT BUILDING by P.C. Graham Price $£ 4.00$
Price $\mathrm{E}_{2} .75$
UNDERSTANDING HI FI SPECIFICATIONS
by John Earl Price £3.40
BEGINNER'S GUIDE TO DIGITAL
ELECTRONICS
by I. R. Sinclair Price $£ 3.50$
ELECTRONICS POCKET BOOK by P. J. McGoldrick

Price $£ 5.00$
PROJECTS IN RADIO \& ELECTRONICS
by I. R. Sinclair Price E2.50 UNDERSTANDING CALCULATOR MATH by Texas Ins.

Price $£ 4.00$ UNDERSTANDING SOLID STATE
ELECTRONICS
by Texas Ins
Price $£ 4.00$
AMATEUR RADIO TECHNIQUES
byP. Hawker Price: $£ 3.70$
COST EFFECTIVE PROJECTS AROUND
THE HOME
by J. Watson
Price 4.50

AUDIO CIRCUITS \& PROJECTS
by G. Bishop
Price $£ 5.35$
PRINTED CIRCUIT ASSEMBLY
by M. J. Hughes
Price: $£ 2.75$
MICROPHONES IN ACTION Price $£ 5.00$
by V. Capel
BEGINNER'S GUIDE TO COLOUR
TELEVISION
by G. J. King
Price $£ 3.50$
HOW TO BUILD ELECTRONIC KITS
by V. Capel Price $£ 2.50$
ELECTRONIC GAME PROJECTS
by F. G. Rayer
Price £2.75
UNDERSTANDING DIGITAL

ELECTRONICS

by Texas Ins.
Price $£ 4.00$
HOW TO BUILD SPEAKER ENCLOSURES
by A. Badmaieff
BEGINNER'S GUIDE TO HAM RADIO
by L. Buckwalter Price $£ 3.50$

19-21 PRAED STREET (Dept RC) LONDON W2 1NP

Telephone: 01-402 9176

Conquer the chip.
Be it a career, hobby or interest, like it or not the Silicon Chip will revolutionise every human activity over the next ten years.
Knowledge of its operation and its use is vital. Knowledge you can attain, through us, in simple, easy to understand stages.
Learn the technology of the future today in your own home.

HAS 5 EG

- Building an oscilloscope. Recognition of components
- Understanding circuit diagrams. - Handling all types Solid State 'Chips'.
- Carry out over 40 experiments on basic circuits and on digital electronics.
- Testing and servicing of Radio, T.V., Hi-Fi and all types of modern
computerised equipment.

MASTER COMPUTERS

LEARN HOW TO REALLY UNDERSTAND COMPUTERS, HOW THEY WORK - THEIR 'LANGUAGE' AND HOW TO DO PROGRAMS.

- Complete Home Study library. - Special educational Mini-

Computer supplied ready for use. Self Test program exercise.

- Servicés of skilled tutor available.

MASTER THE REST

- Radio Amateurs Licence. Logic/Digital techniques.
- Examination courses (City \& Guilds etc.) in electronics.
- Semi-conductor technology.
- Kits for Signal Generators - Digital Meters etc.

MAGENTA ELECTRONICS LTD.

R.E.C. PROJECT KITS

Make us YOUR No. 1 SUPPLIER OF KITS and COMPONENTS for R.E.C. Projects. We supply carefully selected sets of parts to enable you to construct R.E.C. projects. Project kits include ALL THE ELECTRONICS AND HARDWARE NEEDED - we have even included appropriate screws, nuts and I.C. sockets. Each project kit comes complete with its own FREE COMPONENT IDENTIFICATION SHEET. We supply - you construct. PRICES INCLUDE CASES UNLESS OTHERWISE STATED. BATTERIES NOT INCLUDED. IF YOU DO NOT HAVE THE ISSUE OF R.E.C. WHICH CONTAINS THE PROJECT - YOU WILL NEED TO ORDER THE INSTRUCTIONS/REPRINT AS AN EXTRA -45p. each.

LIGHT CHANGE ALARM Dec. 78. £11.84

In daylight detects someone moving around a room-after dark can be triggered by just torchlight. Units output rs from a relay (included)
OYNAMIC MIC PRE AMP Sept. 78 E5.82
Features the ZN424E - with very low distortion and noise.
ULTRA SENSITIVE ULTRASONIC REMOTE CONTROL. Fob 79 £12.45 and DOPPLER SHIFT ADD ON UNIT Mar 79. extra $£ 5.22$
First part covers the construction of a sensitive remote control switch - an ultrasonic transmitter and receiver. The Doppler Shift add on unit detects movement within the vicinity of the transducers, and so has applications as a burglar alarm.
RING OF LEDS PRINT TIMER Jan 80 £ 11.22
Unusual display indicates 8 segments of timing period. A ring of 8 leds light progressively. Switch selectable timing periods of 1,2,3, and 4 minutes. Very smartly housed in a Vero Case.
LOGIC TESTER Jan 80 £5. 89.
Detects overload, logic state and puise voltages in TTL circuits. A piece of veroboard is included - but the layout is left to the constructor. Porteble. Battery operated. Supplied with test leads.
TELEPHONE BELL REPEATER FEb 80 £7. 48.
Includes 2 cases and speakers. Twin fig 8 cable to link units $7 p$ per metre extra. Remote unit warns when the telephone rings. Battery powered.
INFRA RED INTRUDER ALARM. Mar 80 £9.98 less cases.
Invisible infra red beam protects property - when the beam is broken the relay in the receiver is activated. Max. range 3 metres. Kit includes relay. Requires 9 V SUpply. SIIXER Miar. 80 £12.73
Mixes high Impedance dynamic mic and nurse inputs. Based on 4 LF351 ICs. Two dual pots form the controls for mic. and line. Sockets for inputs and outputs.
CONSTANT CURRENT NI-CAD CHARGER. Sept 80, $£ 19.98$
Charges up to 10 cells - suitable for all normal ni-cads. Continuously variable output cuirent. Panel meter indicates the output current. Supplied with leads BASIC SHORT WAVE RADIO June 78 £18.95
3 band trf design covering 1.2 to 24 MHz . Features five front panel controis wavechange, bandset, bandspread, reaction, and aerial attenuator. Built on a pcb. The frequency range covers all the HF broadcast and amateur bands.
3 BAND SHORT WAVE PRESELECTOR Feb 79 £15.98
Uses a dual gate MOSFET. Tunes from 1.6 to 30 MHz in 3 bands. Adjustable of gain control. Provides additional selectivity and sensitivity when used with a receiver.
BEGINNERS MEDIUM WAVE RADIO Aug. 79. £6.98
Provides crystal earplece reception of the M.W. band. Crystal earpiece is supplied.
TOP BAND FERRITE AERIAL UNIT Sept 79 £8.98
An active tuned and amplified 160 metre band ferrite rod aerial unit. Provides directional reception facilities when used with a 160 metre receiver. Reduces interfarence and increases sensitivity.
SINGLE CHIP M.W. RADIO Sept 79 E 11.37
Simple sensitive M.W. receiver with loudspeaker. Uses an LM389 IC for if gain, af gain and power output. Ideal for beginners.
SHORT WAVE AERIAL TUNING UNIT DEC 79 £ 11.98
improves receiver performance over 1.6 MHz to 30 MHz . Provides an increase in signal strength and rejection of strong interfering signals, spurious responses $\stackrel{\text { etc. }}{ }$ Sim
SIMPLE SHORT WAVE SUPERHET. Feb and Mar $80 £ 27.39$
Covers 180 to 20 metres. No alignment problems. Very low battery current. Plug in coils. Uses a dual gate MOSFET as a mixer. Regenerative RIF stage allows reception of a.m., c.w., and s.s.b.
80 METRE AMATEUR BAND RECEIVER JUly 80 £ 19.98
Expressly designed for ssb and cw amateur signals. This simple homdyne design provides world wide reception of amateur transmissions. Housed in a smart Vero case.
PORTABLE SHORT WAVE RADIO Aug 80. £18.94.
Suitable for beginners. Covers 25, 31, 41, and. 49 metre bands. Fitted with telescopic aerial. Use of TBA820M amplifíer IC provides loudspeaker output. Regenerative t.r.f. receiver. Smart ABS case

LATEST KITS: S.A.E. OR 'PHONE FOR PRICES

MAGENTA ELECTRONICS LTD.
 RC3, 98 CALAIS ROAD, BURTON-ON-TRENT, STAFFS., DE13 OUL. 0283-65435. 9-12, 2-5 MON.-FRI. MAIL ORDER ONLY

ADD 35p. P.\&P. TO ALL ORDERS. ALL
PRICES INCLUDE 15% V.A.T. OFFICIAL
PRDES INCLUDE 15% V.A.T. OFFICIAL
ORDERS
WELCOME. ENQUIRIES MUST INCLUDE S.A.E.
OVERSEAS: SEND ORDER WITH 3
OVERSEAS: SEND ORDER WITH 3
WE WILL QUOTE EXACT PRICE BY
AIR MAIL.

80/81 ELECTRONICS CATALOGUE

KITS
ICs

TRANSISTORS

CAPACITORS

Hundreds of illustrations, product data, circuits TDDLS and details of all our kits and educational RESISTDRS
courses. Up to date price list included. Alt courses. Up to date price list included. Alt products are stock lines for fast delivery by
Send $6 \times 10 p$ stamps for your copy.
HARDWARE

ADVENTURES WITH ELEOTRONIOS By Tom

An easy to follow book suitable for all ages, ideal for beginners. No Soldering. Uses an 'S Dec' breadboard. Gives clear instructions with lots of pictures. 16 projects - including three radios, siren, metronome, organ, intercom, timer, etc. Helos you learn about electronic components and how circuits work. Component pack includes an S-Dec and the components for the projects.
Adventures With Electronics. $£ 1.75$.
Component Pack $\mathbf{£} 16.72$ less battery

ADVENTURES WITH
 MICROELECTRONICS

Same style as above book; 11 projects based on integrated circuits - includes: dice, two-tone doorbell, slectronic organ, MW/LW radio, reaction timer, etc. Component pack includes a Bimboard, 1 plug-in breadboard and the components for the projects
Adventures with Microelectronics $£ 2.35$.
Component pack $£ 27.95$ less battery.

The INStructor
 A FULLY CONSTRUCTIONAL PROJECT INCORPORATING AN INS8060 MICROPROCESSOR CHIP
 - A Practical introduction to microprocessor functioning
 Relatively small number of components required instructional

8 part series. Part 1 in Aug. 80 issue. Reprints of previously published part available. 45 p each part.
The Instructor is a low cost assembly which provides a practical introduction to microprocessors and their functions. It is not a computer, but it is a working circult which allows microprocessor working to be followed, one program step at a time. Build the Instructor and you will gain microprocessor experience. The series is based on the INS8060 microprocessor IC, also known as the SC/MP Mk.2. Circuits are built on a
plug in Eurobreadboard. Kit is available with or without the breadboard. iNSTRUCTOR COMPONENT PACK: Including Eurobreadboard E27.85; or INSTRUCTOR COMPONENT
less Eurobreadboard £21.65.

HEADPHONES AND EARPIECES.
The short wave radios require a crystal earpiece or high impedance mono headphones.
MONO HEADPHONES £2.98
High Impedance $2 k$. Sensitive, Lightweight: Adjustable padded earpieces. Fitted
with 3.5 mm jack plug.
CRYSTAL EARPIECE $56 p$.
Fitted with lead and 3.5 mm jack plug. Top quality.
STETHOSCOPE. 69p.
Optional attachment for use with our earpiece.

TOWERS INTERNATIONAL TRANSISTOR SELECTOR $£ 10.35$

ANTEX $\times 25$ SOLDERING IRON. 25 W . DESOLDERING BRAID. 69p. £4.98
SOLDERING IRON STAND. £2.03.
SPARE BITS. Small, standard, large. 65p each.
SOLDER. Handy size. 95 p.
EUROBREADBOARD. $\mathbf{~ 6} .20$
LOW COST LONG NOSE PLIERS. £1.68
LOW COST CUTTERS. £1.69.
SIREN. 12V. £5. 18
P.C.B. ASSEMBLY JIG. £11.98.
P.C.B. ETCHING KIT. £4.98.

MONO HEADPHONES. 2 K Padded. Superior, sensitive. £2.98.
STEREO HEADPHONES. 8 ohm. Padded. £4.35.

HOW TO SOLDER BOOKLET. 12p. HEAT SINK TWEEZERS. 15p.
SOLDER B OBBIN. 30p.
DESOLDER PUMP. £5.98.
CONNECTING WIRE PACK. $5 \times 5 \mathrm{yd}$
coils. 55 p.
VERO SPOT FACE CUTTER. $£ 1.21$. VERO PIN INSERTION TOOL. 0.1" £1.66. $0.15^{\prime \prime}$ £1.67.
RESISTOR COLOUR CODE CALCULATOR. 21p
MULTIMETER TYPE 1. 1,000 o.p.v.
with probes. $2^{\prime \prime} \times 3 \frac{1}{2 \prime}^{\prime \prime} \times 1^{\prime \prime}$. $\mathbf{E 6 . 6 6}$. MULTIMETER TYPE 2. 20,000 o.p.

COMPONE gives you FAST DELIVERY BY FIRST-CLASS POST OF QUALITY specific - HAVE YOU. We give personal service and quality products to all our customers - HAVE YOU TRIED US?

INTO ELECTRONICS CONSTRUCTION

R.E.C. LATEST KITS

Tremelo modulation unit Nov 80 f11.27
CMOS combination switch Nov 80
E7.22. G7.58.
P8. Personal M.W. Radio, Oct 80. £10.36.
£20.90.

PRICES INCLUDE V.A.T.

BI-ANDSANE SALE-81

200 Mixed Dlodes - mainly Germ OAB1-91-1 $\mathrm{N} 34 / 60$ GC61/62 eic. Case DO-7. Coded and uncoded - You to test - value all the wayl O/No. SJ127 $\mathbf{E 1 . 0 0}$ per Pak.
sil. diodes
200 Mixed Diodes - mainly SHICON case DO. 7 OA200/202. General purpose ort and test - Outatending Valua! O / No. S. 128 .
1.00 per Pak.

AUDIO AMPLIFIER

5 watt Audio Amplifier Module.
Special Clearance offer O/No. AL20. £2.50

HEADPHONES
NEW Improved Lightweight Stereo and padded earcups - Moadband Bohms - Frequency $30-18000 \mathrm{HZ} \mathrm{ALL}$ As above bur with coiled 88.00 As above bur with coiled lead and roter
volume controls O / No. 884 t

BC108 FALLOUTS
$\mathbf{5 0}$ NPN BC107/108 SJ124 $£ 1.00$
Manutaturers out of spoc. on volts or
gain or neither - Metal TO18 case-You
test
$\mathbf{5 0}$ PNP BC177/178 SJ1244 $£ 1.00$

DIODES

IN4 148 Type - uncoded Silico
Diodes Case Do. 35 - you to teast.
O/No. SJ 129. £1,00 per Pak.
NPN - like $\begin{aligned} & \text { Silicon Fast Switch } \\ & 2 N 706 / 2 N 2369-Y o u ~ t e s ~\end{aligned}$
O/No. SJ125. 50 for $£ 1.00$
GERM. TRANSISTORS
pecial Iniroductory Offer COMPUTER IC'S
EPROM 2708 at
PROM 2516/2716 D.RAMS 4116 at

SPECIAL OFFER LINEAR IC's NE555 741P NE556 LM380 7272314 pin

5 for $\mathbf{\Sigma 0 . 9 0}$ 5 for $\mathbf{2 0 . 8 0}$
5 for $\mathbf{E 2 . 5 0}$
5 for $E 3.50$
5 for $£ 1.75$

Semiconductors from Around the World

Antex $\times 25$ Iron -25 watt soldering iron OUR SUPER SALE PRICE

Slation. OJNo. 193I. $\mathbf{E} .00$
ST3 Iron Stand- Suitable for above O/No. 1939 . 11.25 oach

POPULAR (CMOS)

 CD4011 E180 for 5 - our price CO4017 CD4081 £1.30 for 5
O/No. SJ1245

PLUGS \& SOCKETS

Set of 4 1-matre Colour colied leads with oplug ends - ideal for audlo
lest use. Outstanding Value O/No. SJ122. £1.00 per Pek
1 mm Plugs and Sockers in Red and

CAPACITORS

SJ11. 150 Capacitors mixed types and values 60 Electrolytics all sorts mi.5
 tors mixed capaci.
$\mathbf{E 0 . 5 0}$ 14. 50 C280 type capacitors mixad SJ15 Polystyrene caps $1160 \mathrm{v} \frac{\mathrm{E1.0}}{500}$ S 216.40 Low volts elactrolitics mixed values up to 10 v

NPN

8D131 TO. 126-NPN untested
ONO. S.184. 25 for E100

SCR'S

GOOD untested for volt -good yeld 400 plus
O/No. SJ130. 10 or $£ 1$.

AERIALS

FM Indoor Tape/Aibbon Aerial OINO. 107. 40p omc HI-FI CAR AERIAL 4-section fully retractable and locking SPECLAL PRICE
O/NO. 109.81 .40 .

BI-PAK'S OPTO BARGAIN!

Valued at over $\mathbf{E 1 0}$ - Normal Retall
We offer you a pack of 25 Opto devices to include LED's large and small in Red, Green, Yellow \& Clear. 7 segment Displays both Common Cathode and Common Anode PLUS bubble type displays - like DL-33. Photo Transistors - similar to OCP71 and Photo Detectors - like MEL19-12. This whole pack of 25 devices will cost you Just fi.00!
And we guarantee vour money back if
you are not complardy satisfied.
Full data etc included
O/No. SJ120.
O/No. SJ120.
IC SOCKET PAKS
SJJ36 148 pin SJ41 622 pin
S.J 371214 pin SJ42 524 pin

SJu0 720 pin
ALL AT ONLY £ 1.00 each
The last of the Germanium PNP OC71-71-75 etc. Mullard Black/Glass O/No. SJ126 50 PCS £1.00 GERM. POWER TRANS.

AD149-OC26-AD140 £0.50 each AD142-OC28-2N3614 £0.65 each

MICRO E

NPN silicon transistors plastic case - perfect and coded. C108 equals BC108 TO- 18 plastic O/No SJ29. 50 off $£ 2.50100$ off $£ 4.00$ 1.000 offe35.00

AUDIO ACCESSORIES

SJ75. FM coax cable - plain copper conduction cellular polythene insulated Impedance 750 hms © 0.10 sheath S.J76. 1 Board contaling 2×5 pin DIN sockets $180^{\circ} 02.2$ pin DiN loudspeaker sockets $£ 0.30$ S.J77. A 5 -pin DIN 180° chassie/normal
socket incl. DPDT switch
$£ 0.20$

DISC CERAMIC CAP

100 Disc Ceramic CAP. Mixed values covering complete range O/No. SJ121. £1.00 SWITCHES
Push-to-make. 6 mm panel O/No. SJ731. 5 for $\mathbf{E 0 . 5 0}$
Push-to-break as above O/No. SJ132. 4 for $£ 0.50$ Silicon Heat Sink Compound
$\mathbf{£ 0 . 2 5}$

3 mL in syringe

LED

2nd Quality Packs
150́7. 10 Assorted colours S122. 10.125RED.
508 125.125 LED CLIPS 1508/2.2.

ED CLIPS 5 for $£ 0.10$
5 for $£ 0.12$

111 A collection of Transistors, Diodes, Rectifiers Bridges, IC's, SCR's Triacs both Logic \& Linear plus Opio's all

Guaranteed Value over $\mathbf{£ 1 0}$ at Normal Retail
Price yours for only $\mathbf{£ 4 . 0 0}$ Data etc in every pak. Order No. S. 2220

SILICON TRANS

SJ25. 100 Silicon NPN transistors a perfect and coded - mixed types with
data and equivalent sheet - no relects S.26. 100 Silicon PNP 22.50 S. 226.100 Silicon PNP transistors all
parfect and coded perfect and coded - mixed types and
cases, data and equivalent sheat $£ 2.50$ cases, dsta and equivalent sheet $\mathrm{E2.50}$ diodes and rectlfiers incl. stud types, all perfect - no rejects. fully coded - deta incl.

TTL'S

S.28. 20 TTL74 series gates - assorted SJ53. Mammoth IC Pak - Approx $\mathbf{1 . 0 0}$ pcs assorted lall-out integrated circuit including logic 74 series - Linear audio and DTL many coded devices but
some unmarked-you to identify $\mathbf{~ 1 . 0 0}$

RESISTORS

SJ1. 200 Resistors mixed values $\mathbf{~} 0.50$ SJ1. 200 Resistors mixed values $\mathbf{~} 0.50$
S.2. 200 Carbon resistors
d.
 mixed values watt miniature resistors S.J4. 60 \& watt resistors mixed values slues 1 watt resistors mixed pol

PRECISION VOM MULTIMETER 20,0000 hms/volte DC,
Complete with test lead and Instructions. OUR o/No. 1323 ci100 Use your Barclay or Acess Cardi

100

1 NPN TRANSISTORS
SJ68. 30 ZTX 300 type transistors NPN pre-formed for P/C Board colour coded Slue-all perfect $\mathrm{E1.00}$ transistors code Green spot parfec transistors code Green spot
SJ71. 25 BC17.7 PNP TO106 case pertect
 SJ72. 4 2N3055 sillcon power NPN

POTENTIOMETERS

173. 15 Assorted Pors	E0,5
SJ54:20 Assorted Stider Pots.	£1.00
S.56. 10 100K Lin Slider Po	0 m
	E0.50
16186. 25 Pre-sets Assonted	£0.50
SJ49. 8 Dual gang carbon pots	g and
lin mixed values.	£1.00
SJ50. 20 Assorted slider	b
chrome/black.	¢1.00

TRIACS

4 4 400V TO-202 non-isolated
SUPER VALUE and GREAT SA VING III Low noise - astoundin value and sound.
O/No. SJ32. 10 for $£ 3.50$

TAG136D $8 A 400 \mathrm{v}$ TO-220 isolated TAG425
Diac D32/8R100 Diac D32/BR100
SCR C106D plastic case

$\mathbf{6 0 . 4 0}$ $\varepsilon 0.60$ $\varepsilon 0.15$

 $£ 0.15$$£ 0.30$

TRANSFORMERS	
MINIATURE MAINS	
No. Secondary	
$2021.6 \mathrm{v} \cdot 0.6 \mathrm{v} 100 \mathrm{~mA}$	¢0.7
2023. 12 v -0.12v 100 mA	¢0.95
2035. 240v Primary 0 - ${ }^{\text {-5 }}$ - $\mathrm{V}_{\text {, }}$	

MISCELLANEOUS

J20. 2 Large croc clips 25A rated-ideal or battery chargers, erc. $\quad \mathbf{E 0 . 3 0}$ screwdriver chrome finish Neon Tester- $\mathbf{£ 0 . 8 5}$ SJ22. Small pocket size Mains Noon Tester screwdriver.
SN23. Siemens 220 AC relay 0.55
SPD contacts 10 amp rating - housed in plastic case $\mathbf{E 1 . 0 0}$ S J 24. Black PVC tape ($\%$) $15 \mathrm{~mm} \times 25 \mathrm{~m}$ strong tape for electrical and household
use.

OODMENTS

16170. 50 metres asst. colours single strand wire
16187 . 30 metres stranded wire mixed colours
16178.5 Main alider switches assorted. SJ76. 1 Board contanlng 2×5-pin. DiN sockets 180 and 2×2-pin. DIN Loudspeaker sockets.

KNOBS
SJ62. 515 mm chrome knobs slandard push fit

NEW! JUST PUBLISHED TOWERS INTERNATIONAL MICROPROCESSOR SELECTOR

ONLY £16.25 POST PAID

If you come into contact with microprocessors (whether as hobbyist, student, circuit engineer, programmer, buyer, teacher, serviceman, or just humble reader) you often find you would like data information on a specific microcircuit element. Specifications apart, you may be even more interested in where you can get the device in question. And perhaps even more important still (particularly with obsolete devices), you may be looking for guidance on a readilyavailable second source or possible substitute.

This microprocessor selector (working on the same basis as the TRANSISTOR, FET, and OPAMP LINEAR-IC selectors already compiled by the author) is designed to provide in one handy reference volume a comprehensive body of readily-accessible, user-slanted essential information across the field of microprocessors.

In the data tabulations will be found set out the essential basic specifications of over 7,000 commercially-available microprocessor 'chips', including not only the microprocessor elements themselves (e.g. MPUs and CPUs) but also the many other LSI 'support' circuits le.g. ROMs, RAMs, PROMs, clocks, UARTs, I/Os) normally used in harness with the microprocessors proper to produce complete microcom-
puters or microcontrollers. For ease of reference, the descriptions and control specifications of the individual circuits are set out in the detailed data tables on separate single lines, arranged in alpha-numeric order by type number.

For the newcomer to the very new field of microprocessors, the selector includes a full introductory note on these devices before the data tables.

Besides this, the tables are supplemented by separate appendices giving additional information on: (a) Microprocessor chip applications (and codings); (b) Microprocessor 'families'; (c) Microprocessor LSI chip manufacturers (and codings); (d) Semiconductor LSI technologies (and codings); (e) Microprocessor chip packages (and codings); (f) Microprocessor trainer and development systems; (g) Microprocessor bibliography; (h) Manufacturers' house codes; (i) Glossary of microprocessor terms; (j) Explanatory notés to tabulations.

This selector is fully international in scope and covers not only microprocessors and related devices from the USA and Continental Europe, but also from the UK and the Far East (Japan).

TOWERS INTERNATIONAL MICROPROCESSOR SELECTOR

Price: $£ 16.25$ inc P\&P
NAME

ADDRESS

IT'S AS EASY AS A,B,C...

A EXP 650 For microprocessor chips. $£ 3.60$
8 EXP 300 The most widely sold breadboard in the UK; for the serious hobbyist. $£ 5.75$
C EXP $600.6^{\prime \prime}$ centre channel makes this the Microprocessor Breadboard, $£ 6.30$
D EXP 4B An extra. 4 bus-bars in one unit. $£ 2.30$
E EXP 325 Built in bus-bars accepts $8,14,16$ and up to 22 pin ICS. £1.60
F EXP 350270 contact points, ideal for working with up to 3×14 pin DIPS. $£ 3.15$
G PB6 Professional breadboard in easily assembled kit form. $£ 9.20$ (Not illustrated.)
H PB 100 Kit form breadboard recommended for students and educational uses. $£ 11.80$ (Not illustrated.)

\& IT'S AS EASY AS 1,2,3 with THE EXPERIMENTOR SYSTEM	
SCRATCHBOARD	1. EXP 300 P C which includes one item. A matchboard predrilled PCB - $\mathbf{E 1 . 3 2}$
	2. ExP 302 which includes hree items. Th
-MATCHBOARD	

TOMORROW'S TOOLS TODAY

CONIINENAA SPPCIAAIIES CORPORAION C.S.C. (UK) Limited, Dept. 1600
 Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AQ. Tel: Saffron Walden (0799) 21682. Telex: 81.7477.
I NAME
adoress
enclose cheque/PO for $£$
or debit my Barclaycard, Access, American Express card
No. Exp. date
or Tel: (0799) 21682 with your card number and vour order will be in the post immediately.

$\begin{aligned} & \text { A EXP } 650 \\ & \text { £5.00 } \end{aligned}$	Onty. Reqd.	$\begin{aligned} & \text { B EXP } 300 \\ & \text { £ } 7.76 \end{aligned}$	Onty, Reqd.
$\begin{gathered} \text { C EXP } 600 \\ \mathbf{8 8 . 3 9} \end{gathered}$	Onty. Read.	$\begin{aligned} & \text { D EXP } 4 \mathrm{~B} \\ & \mathrm{£} 3.50 \end{aligned}$	Qnty. Reqd.
$\begin{aligned} & \text { E EXP } 325 \\ & \text { £2.70 } \end{aligned}$	Onty. Read.	$\begin{gathered} \text { F EXP } 350 \\ £ 4.48 \end{gathered}$	Onty. Reqd.
$\begin{aligned} & \text { G PB6 } \\ & \text { £ } 11.73 \end{aligned}$	Oniy. Reqd.	$\begin{gathered} \text { H PB } 100 \\ £ 14.72 \end{gathered}$	Onty. Reqd.

Experimentor Svstem

$\begin{gathered} 1 \text { EXP } 300 \mathrm{PC} \\ \text { E2.38 } \end{gathered}$	Qnty. Read.	$\begin{gathered} 2 \text { EXP } 302 \\ \text { E2.79 } \end{gathered}$	Onty. Reqd.
$\begin{gathered} 3 \text { EXP } 303 \\ \text { E } 11.04 \end{gathered}$	Qnty. Regd.	$\begin{aligned} & 4 \text { EXP } 304 \\ & \text { E11.85 } \end{aligned}$	Onty. Reqd.
Boxed prices include P \& P and 15\% VAT			FREE catalogue
If no dealer in your area contact CSC direct.			tick box \square

Continental Specialties Corporation (UK) Limited, Dept. 1600 Unit i. Shire Hill Industrial Estate, Saffron Walden. Essex CB11 3AQ.

...ASK OUR DEALERS.

AITKEN BROTHERS,
35 High Bridge, Newcastle Upon Tyne, NE 1 1EW. Tel: 063226729.
ARROW ELECTRONICS LTD.,
Leader House, Coptfold Road, Brentwood, Essex Tel: 0277226470.

RASIC ELECTRONICS LTD.
18 Epsom Road, Guildford, Surrey, GU1 3JN. Tel: 048339984.

BI-PAK SEMICONDUCTORS,
P.O. Box 6, Ware, Herts. Tel: 09203442
F. BROWN \& CO.

45 George IV Bridge, Edinburgh, EH1 1EJ, Scotland.
Tel: 031225 3461. Telex: 922131.
THE CHILDRENS SHOP \& TACKLE BOX 73.75 High Street, Ryde, Isle of Wight. Tel: 098363437.

CUBEGATE LTD.,
301 Edgware Road, London, W2 1BN.
Tel: 017243565.
ETESON ELECTRONICS,
15b Lower Green, Poulton-Le-Fylde, Blackpool, FY6 7JL. Tel: 0253885107.
H. GEE ELECTRONIC SUPPLIES,

94a Mill Road, Cambridge, CB1 2BD. Tel: 0223358019.
LEEDS AMATEUR RADIO. 27 Cookridge Street, Leeds, LS2 3AG. Tel: 0532452657.
MARSHALLS,
108A Stokes Croft, Bristol. Tel: 0272426801

85 West Regent Street, Glasgow, G2, Scotland. Tel: 0413324133.

325 Edgeware Road, London, W2. Tel: 017234242.
40 Cricklewood Broadway, London, NW2 3ET. Tel: 014520161.

RASTRA ELECTRONICS LTD. 275.281 King Street, Hammersmith, London, W6. Tel: 01748 3143. Telex: 24443 RASTRA G

SHUDEHILL SUPPLY COMPANY, 53 Shudehill, Manchester, M4 4AW. Tel: 0618341449.
SPECTRON ELECTRONICS (M/C) LTD., 7 Oldfield Road, Salford, M5 4NE. Tel: 0618344583.
SWANLEY ELECTRONICS,
32 Goldsel Road, Swanley, Kent, BR8 8 EZ. Tel: 0322 64851:

TECHNOMATIC LTD.,
17 Burnley Road, London, NW10 1ED.
Tel: 01452 1500. Telex: 922800.

TOMORROW'S TOOLS TODAY

Also ask your local stockist.
If no dealer in your area, contact CSC direct.

CONINENIAI SPECIAGIES CORPORAIION

C.S.C. (UK) Limited, Dept. 1600 Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AO. Tel: Saffron Waiden (0799) 21682 Telex: 817477

BRIAN J. REED

INTEGRATED CIRCUITS

$326 \quad$ 2, 2, 3, 3, Input Nand 20
542 Servo Amp
702 Cl
709/72709 OP Amp
$7232 v-37 v 150$ ma Regulator
724
744.OP Amp
747.Dual OP Amp
743.Du
9300 C

9300 C
9330 C
936 C
93300C

$946 D C$
9490C
9610 C Dual.4in Ex́t. nand
963DC
1315 P 2
2102 Mernory 1024 static 450 ns
2107B see μ PD 211 AC
$2 / 4 / 7116$ see μ PD416C
21251024×1 Static 125n
21251024×1 Static 125 ns RAM
$21404 \times$ S.P.D.T. for D/A
2708 Eprom
$3351-2 \mathrm{DCO} 40 \times 9$ Bit FFFO 2 MHZ 25 LS 374 Octal D edge Trig F/F 3s
7400
74 HOO
7
$\left.\begin{array}{l}74 \mathrm{LS} 00 \\ 74 \mathrm{~S} 00\end{array}\right\}$ Gates
7401 \} Quad 2 input positive
$74 \mathrm{HO1} \mathrm{\}} \mathrm{Nand}+\mathrm{O} / \mathrm{C}$ out
7402 quad 2 in pos
7404 Hex. Inverter
7404 Hax. Inverter
$54 / 7406 \mathrm{Hex}$. Inv./Buff/Drive
741 S08 Quad 2 in pos. and
$74110\}$ Triple 3 Inpur
74 H 10 Gates
7441 Triple 3 in. Pos. and. 7420 Dual 4 input 74 S20 Positive Nand Gates 74 S22 Dual 4 in . Pos. Nand or 7425
7426 Ouad 2 In 15 v Interface 74284×2 in + Nor Buf/CL. Drive 5430
$\left.{ }_{74 \mathrm{~L} 30}^{7430}\right\}^{8 \mathrm{ln} \text {. Pos. Nand }}$
$54 / 7437$ Quad 2 In. Pos. Nand. Buf
7438
4 H 40 Dual 4 In . Pos. Nand. Buffer 74LSA2 BCD to Decimal Doder 7445 BCD Decimal Decoder 74H50 ${ }^{\text {Expandable Dual } 2}$ 7454 74L54 ${ }^{7} 4$ Wide 2 In. and or Inv. ${ }_{744772}^{547472}$ S And Gated JK Master 74733 Dual JK Master
7473 7473 Slave Flip Flops
7474
$74174\}$ Dual D. Pos. Trigger
${ }_{74 / 7476} 7475$ Dual JK Mas./SL Flip Flop 5480
74822 Bit Binary Full Adder
7483 741 Bit Binary full
744.18836 Add + Fast carr
$54 / 7486$
7493 Binary Cade Counter
7493 Binary Counter 4 Bit
74 S 984 Bit Ser./Par. In Out
4LS98
74107 Dual JK Flip Flop Clear
745112
$74 S 112$
74118
74121 Monostable Multivibrator
54174123 Dual Retrig. Multivibrator
54 S124 dual voit cont. ose.
74141 BCD To Decimal Dec/Drive
74 LS 145
741511 of 8 Data Sel/Múltivibrator
74153 Dual 4 to 1 multiplexer
7415416 Way Distribution
4155
74157 Quad 2 line to 1 Data
74165
74173
74174 Hex D F/F and cleár
74S174 Hex D Flip Flod + clear
$74176 / 8280$ Pre-set 35MHZ Decode 74180
74181 Arith. Logic unit/funt. Gen
74H183 Dual full adder
$\left.74192{ }_{741 \text { S192 }}\right\}^{\text {Synch. Dec. Up/Down }}$
74.193
$£ 1.25$
$£ 1.83$
82.60
85.00
85.00
$£ 1.07$

74196 Pre-set 50 MHZ 74S196/82S90
Decade Count/Latch
74LS221 Dual Monostable M/VIB 74221 dual Mono Multi. Schm. Trig. 74285 binary 4×4 mul
74293
74298
74490
IM56
IM5623 prom 256×460 n 7905-5v Reg. 1 Amp
8284 Binary up down synch. 82S 126256×4 prom
82 S129 Tri state prom 256×4 90930C
9112DC
$93 S 10$
9311

53 Schottky prom 1024×4 30399-256 Bit Shift Register 930399-500 Bit Shift Register

AY5-3507 3 Digit DVM Ay5-8300 Ch/Time Display AY58300 Ch/Time Display BRCM300 Volt Regulator 8 TT822
C500 Calculat or
CA139AG Quad Volt Comparator
CA239G Quad volt comparator
T) CA270CE
(T/CA270CW/AW
CA758 (MC1311)
CA920 TV Horiz. s
CA3001 RF Amp
CA3028A balanced OP, AMP
CA3044
CA3045 Transistor Array (5)
CA3046 Transistor Arráy
CA3060 Variable OP AMP
CA3065
CA3080 Prog. Transconduct. Amp CA3083 CA3083
CA3089
CA3090AO
CA3093
A3094 Proul. Sw. Pwr. OP Anip.
A3123 AM Radio RF/IF Amp
AB146E
CA3146E
CA3183
CA3290 Comparator
CA3401 (LM3900) Qu
CD2500 (LM3900) Quad OP Amp
CD4000.Dual 3 input Nor + Invent
CD4002 Dual 4 Input Nor

CD4004

CD4006 18 Stage Static Shift Reg.
CD4007 Dual Comp. Pair. Invert
CD4008 4 Bit Binary Full Adder CD4010 Hex Buffers
CD4012 Dual 4 Input Nand CD4014 8 Bit Shift Registe
CD4017 Decade Count/Divide
CD4018 Preset Divide N Count
CD4019 Quad 2 Indut Multiplex
CD4020 14 Stage Binary Counter
CD4021 8 Bit Shift Register
CD4022 Divide by 8 Count/Divide CD4023 Triple 3 Input Nand CD4024 7 -Stage Binary Counter CD4025 Triple 3 Input Nor CD4027 Dual JK Flip Flop + RS CD4028/MC14028 BCD/Decimal CD4030 CD4030 Quad Exclusive or

CD4031

CD403
CD4034 Dec. Count. 7 Seg. Output $\quad 72 \mathrm{p}$

CD4034 Static shift register $\mathrm{E}_{1.48 \mathrm{p}}$ | |
| :--- | :--- | CD4036 Word Buff. Store/decade $£ 2.90$ CD4037 triple and/or B1 Phase pairs 72p CD4038 Triple serial adder

CD4041 Quad True/Comp. Buffer 54p
CD4042 Quad clocked D type catch CD4043 Quad Nor R/S Latch
CD4045 4 Bit Par in Rut Latch CD4045 4 Bit Par. in out shift CD4046 Micro Power PH. Lock Loop CD4048 Exp 8 input
CD4049 Hex Inverter Buffers CD4051 Analogue Multi/Demu CD4052 Analogue Multi/Demulti CD4053 Analague Multi/Demulti CD4054 4 LINE LCD driver/count CD4055 BCD 7SEG. Decode/Drive. CD4061 AD 256 word X 1 Bit static

SN15845	50p
SN15846	37p
SN15851	50p
SN15858N	55p
SN15862	$6 p$
SN75107 Interface	£1.15
SN75108	36p
SN75110	46p
SN75125 7 line Rec. Interface	72p
SN75150	.18p
SN75235N	11p
SN75451 interface.	36p
SN75463 dual periph. or driver	$36 p$
SN7600 1	36p
SN76003 5Wt. Amp	$36 p$
SN76013 5WI. Amp	36p
SN76013N 5.Wt. Amplifier	92p
SN76023 5WI. Amp	36p
SN76110P	351 p
SN76115N Stereo Decoder	351p
SN76131	58p
SN76227	59p
SN76228N	¢1.60
.SN76396 (TBA396)	35tp
SN76620 AN F.M.I.F. Amp. +	
	18p
SN76650N $\frac{1}{\text { d }}$ stage videol.F. + A	. 50 p
SN76660N	351p
SN76666N Sound I.F. + Demod	+. Driver
SN158093	50p
SN158097	4p
SN158099	50p
SP4021 $\div 64$ VHF/UHF 50mv II	1 H
	75p
TAA263 Amp	75p
TAA320	35p
TAA550 Volt Reg.	103 p
- TAA700	¢2.30
TAD100 AMRadio	£1.22
TBA120S/CO/SB/B TV Amp	$36 p$
TBA240	E3.90.
T8A3950	E1.50
TBA396 Luminence and chrom,	35p
TBA5500 Synch. Sep. + A.G.C.	£1.25
TBA560C Lum/Chrom. contral	52p
TBA800 Amp 5 Watt Audlo	52p
TBA920 TV Line System.	70 p
TCA2700/SA/AE/OS Vid. Det.	f1
TCA270SO synċh: demodulater	55p
TCA440 A. M. Receiver	£1.25
TCA830S Ex. Equip A.F. Amp.	18p
TCA830S A.F. Amp.	37 p
TCA4401	£1.25
TCEP100	£1
TDA0470 Organ	37p
TDA2610 6watt audio amp	71p
TDA2680 T.V. Signal processo	¢1.83
TDA2690	$71 p$
TID25A 16 diode array	4 p
TL441 Log-antilog amp.	36p
TL/ μ A 720 AM Radio RF/IF Amp	73p
TMS 3409 memory 80 bit shift	
TMS4034 Memory	\&1.10p
$\mu \mathrm{PQ} 411 \mathrm{AC} 200 \mathrm{~ns}$ Dynamic 4096	$\times 1$
ram	£1.30
μ PD416C 16384×1 Dynamic MO	RAM
120 ns	£1.30
XR215	£?
2N414 AM Radio Receiver	79p
ZST131A 5 Input Power NOR	8 p

TRANSFORMERS

Transistor audio 35p 5 mixed for ع1.30p
60 v in, $10100-0 \div 100 \mathrm{v} 20 \mathrm{ma}+3.2-.0-$ $3.2 v$ IA £1.30p

Mains to $50 \mathrm{v} 100 \mathrm{ma}+300 \mathrm{v} 20 \mathrm{ma}+28 \mathrm{v}$ $100 \mathrm{ma}+50 \mathrm{v} 50 \mathrm{ma}+12.5 \mathrm{v} 800 \mathrm{ma}$ 4.75 p
115.240 input to $6.3 v 8 A+6.3 v 8 A+6.3 v$
$8 A+6.3 v 8 A+5 v 6 A+5 v 2 A+460.0$ $8 A+6.3 V 8 A+5 V 6 A+5 v 2 A+460 \cdot 0-46$
100 ma . £ 12 for callers onily, due to weight.

Multi input to $0-7-21 v 1.6 A+0-1-3 v$ 1.6A £4.50p
$\underset{\mathbf{E} 6.30 \mathrm{p}}{\mathrm{A}}-\mathrm{HT}-\mathrm{SC}-\dot{A} .316 \mathrm{v}^{\dot{\circ}} \cdot 50$ watt Multi primary to: 0-350-7Q0v $+6.3 \mathrm{v} 1 \mathrm{~A}+$ $6.3 \vee 3$ A $£ 8$
Mains in to $285 \mathrm{v} 300 \mathrm{ma}+160 \mathrm{v} 200 \mathrm{ma}$ M8-40p.

Self-Binder

 for "Radio \& Electronics

 for "Radio \& Electronics Constructor"

 Constructor"}

The "CORDEX" Patent SelfBinding Case will keep your issues in mint condition. Copies can be inserted or removed with the greatest of ease. Rich maroon finish, gold lettering on spine. Specially constructed Binding Cords are made from Super Linen of great strength, very hard twisted and twice doubled. They are attached to strong RUSTLESS Springs under tension, and the method adopted ensures PERMANENT RESILIENCE of the Cords. Any slack that may develop is immediately compensated for and the Cords will always remain taut and strong. It is impossible to overstretch the springs, as a safety check device is fitted to each.

PRICE $£ 2.25$
P. \& P. 50p
including V.A.T.

For your other magazines

Plain-backed in Maroon or Green (Please state colour choice)

PRICE 225 P. \& P. 50 p

including VAT
Available only from:Data Publications Ltd.
57 Maida Vale London W9 1SN

Design on a EuroBreadBoard - Instal on a EuroSolderBoard First the EuroBreadBoard
Will accept $0.3^{\prime \prime}$ and $0.6^{\prime \prime}$ pitch DIL $1 C^{\prime}$ s, Capacitors, Resistors, LED's, Transistors and components with up to .85 mm dia leads.
500 individual connections PLUS 4 integral Power Bus Strips along all edges for minimum inter-connection lengths.
All rows and columns numbered or lettered for exact location indexing (ideal for educational projects)
Long life, low resistance ($<10 \mathrm{~m}$ ohms) nickel silver contacts
$£ 6.20$ each or $£ 11.70$ for 2
Now the EuroSolderBoard
New 100 mm square, 1.6 mm thick printed circuit board with pretinned tracks identically laid out, numbered and lettered to EuroBreadBoard pattern.
Four 2.5 mm dia fixing holes.
£2.00 for set of three ESB's
And don't forget the EuroSolderSucker
Ideal for tidying up messy solder joints or freeing multi-pin IC's, this 195 mm long, all metal, high suction desoldering tool has replaceable Teflon tip and enables removal of molten solder from all sizes of pcb pads and track. Primed and released by thumb, it costs only $£ 7.25$ including VAT \& PP \square Snip out and post to David George Sales,
Unit 7, Higgs Industrial Estate, 2 Herne Hill Road, London SE24 OAU

David George Sales,

Unit 7, Higgs Ind. Est., 2 Herne Hill Rd., London SE24 0AU. Please send me:-

	1 EuroBreadBoard	$@ £ 6.20$	\bigcirc
or 2 EuroBreadBoards	$@ £ 11.70$	\bigcirc	Please
or 3 EuroSolderBoards	$@ £ 2.00$	\bigcirc	Tick
or 1 EuroSolderSucker	$@ £ 7.25$	\bigcirc	

All prices are applicable from Jan. 1 st 1981 and include VAT \& PP but add 15% for overseas orders.
Name.
Company.
Address.

REC/2
Tel. No
Please make cheques/P.O. payable to David George Sales and allow 10 days for cheque clearance and order processing

AND THERE'S MORE WHERE THIS CAME FROM

It's a long time since one of our adverts was presented in 'list' form - but simply because we do not try to squeeze this lot in every time doesn't mean that it's not available. Our new style price list (now some 40 pages long) includes all this and more, including quantity prices and a brief description. The kits, modules and specialized RF components - such as TOKO coils, filters etc. are covered in the general price list - so send now for a free copy (with an SAE please). Part 4 of the catalogue is due out now (incorporating a revised TRANSISTORS

LINEARICS. NUMERIC LISTINGS

TRAA20S 1.00 KB4413

 $\begin{array}{llll}\text { L200 } & 1.00 & \text { KB4413 } & 1.95\end{array}$$$
\begin{array}{ll}
\text { L200 } & 1.95 \\
\text { U237B } & 1.28 \\
\text { U2478 } & 1.28 \\
\text { U2578 } & 1.28 \\
\text { U2678 } & 1.28 \\
\text { LM301H } & 0.67 \\
\text { LM301N } & 0.30 \\
\text { LM308H } & 0.96 \\
\text { LM308N } & 0.65 \\
\text { LM339N } & 0.66 \\
\text { LM348N } & 1.86 \\
\text { LI351N } & 0.38 \\
\text { LF353N } & 0.76 \\
\text { LM374N } & 3.75 \\
\text { LM380N-14 } & 1.00 \\
\text { LM380N-8 } & 1.00 \\
\text { LM381N } & 1.81 \\
\text { ZN419CE } & 1.95 \\
\text { NE544N } & 1.80 \\
\text { NE555N } & 0.30
\end{array}
$$

$$
\begin{array}{ll}
\text { LF353N } & 0.76 \\
\text { LM374N } & 3.75 \\
\text { LM380N-14 } & 1.00 \\
\text { LM380N-8 } & 1.00 \\
\text { LM381N } & 1.81 \\
\text { ZN419CE } & 1.95 \\
\text { NE544N } & 1.80 \\
\text { NE555N } & 0.30 \\
\text { NES56N } & 0.50
\end{array}
$$

$$
\begin{array}{ll}
\text { LM380N-14 } & 1.00 \\
\text { LM380N-8 } & 1.00 \\
\text { LM381N } & 1.81 \\
\text { ZN419CE } & 1.95 \\
\text { NE544N } & 1.80 \\
\text { NE555N } & 0.30 \\
\text { NE556N } & 0.50 \\
\text { NE560N } & 3.50
\end{array}
$$

$\begin{array}{ll}\text { LM381N } & 1.81 \\ \text { ZN419CE } & 1.95 \\ \text { NE544N } & 1.80 \\ \text { NE555N } & 0.30 \\ \text { NE556N } & 0.50 \\ \text { NE56ON } & 3.50 \\ \text { NE } & \\ \text { N } & 4.05 \\ \text { N } & 4.29 \\ \text { N } & 1.00 \\ \text { N } & \\ & 1.650\end{array}$

EEEH

Analyser

By G. A. French

Many of us fall into the habit of thinking that all zener diodes have voltage-current characteristics similar to that shown in Fig. 1. As soon as a small zener current is allowed to flow, the voltage across the zener diode stays constant at zener level for all higher currents. In practice such is by no means the case, this being particularly true of the lower voltage devices which, in many instances, have to pass a relatively high current before they approach the zener level and, even then, exhibit a marked slope in their characteristics.

This article describes a zener diode analyser which can evaluate the practical performance of a zener diode at five pre-set currents ranging from 0.1 mA to 10 mA . It can accommodate all zener diode voltages up to about 24 volts,

Fig. 1 A perfect zener diode voltage-current characteristic. Many practical diodes fall far short of this ideal
and voltage readings are given by a testmeter which is connected to the circuit only when required. In consequence, an expensive meter movement is not permanently tied to the unit. The analyser can check the performance of a zener diode which is to be employed in a new circuit and indicate the minimum zener current it requires for good voltage stabilising action. It can also be employed to sort out diodes which are salvaged from used equipment, and to find the zener voltage of diodes which have had their markings smudged or otherwise made illegible.

The analyser works on the simple principle of passing a known constant current through the zener diode under test and then measuring the voltage across it with a very high resistance voltmeter.

CIRCUIT OPERATION

The circuit of the analyser is given in Fig.2. IC1 is an LM334Z constant current generator, and its output current flows through the test diode to the chassis rail. The three 9 -volt batteries above the chassis rail give a positive supply to the i.c. of 27 volts. The constant current provided by IC1 is equal, in amps, to 0.0677 divided by the resistance, in ohms, which is connected between its pins 1 and 3 . On position 5 of the range switch S1 the resistance is 6.8Ω, giving a constant current of almost exactly 0.01 amp, or 10 mA . The resistance at positive 4 of the switch is 27Ω, whereupon the constant current calculates as 0.0025 amp, or 2.5 mA . The current at position 3 of the switch is 1 mA , at position 2 it is 0.25 mA and at position 1 it is 0.1 mA .

The voltage across the test diode is applied to the potential divider consisting of R6 and R7, with one-quarter of the voltage appearing across the second resistor. The current drawn by the potential divider is less than $2 \mu \mathrm{~A}$ at a maximum zener voltage of 24 volts, and the low current flowing through it will have little effect on 'the accuracy of indications.

The voltage at the junction of R6 and R7 is passed to the non-inverting input of the operational amplifier, IC2. This has an input impedance of 1 million megohms and, with its output connected to its inverting input, functions as a voltage follower. Meter M1, connected between the output and the chassis rail, is a testmeter switched to a suitable d.c. volts range, and the voltage it indicates is multiplied by 4 to give the zener diode voltage. With some testmeters it may not even be necessary to carry out the multiplication. If, for instance, the testmeter has a $0-2.5$ volt range and a $0-10$ volt range, zener voltages below 10 volts can be measured with the meter switched to the $0-2.5$ volt range, the readings being taken from the $0-10$ volt scale.

The supply for IC2 is provided by BY3, the 9 volt battery immediately above the chassis rail, and by BY4, which is below the chassis rail. An offset null adjustment is given by the pre-set potentiometer VR1. Its slider is returned to the chassis rail and not to the lower negative rail, as is common with most offset nuli potentiometers. Because of the low voltage gain in the op-amp circuit the offset null adjustment is not critical.

On-off.switching is provided by $S 2(a)$ (b) (c). Since this requires 3 poles, it is a rotary switch. S1 is also, of course, a rotary switch. The current drawn by IC2 from BY3 and BY4 is approximately 1.2 mA . Also flowing in BY3, and in BY1 and BY2, is the constant current selected by S1 when a test diode is connected.

Apart from R6 and R7, the fixed resistors may all be $\frac{1}{4}$ watt 5\%: R6 and R7 should preferably be 5% as well, and will then normally be available in $\frac{1}{2}$ watt. VR1 is a 0.1 watt skeleton potentiometer. The four batteries can be any type, and a convenient size would be PP3. The two integrated circuits are available from Maplin Electronic Supplies. The lead-out inset for the LM $334 Z$ in Fig. 2 shows the lead-outs pointing at the reader.

Fig. 2 The circuit of the zener diode analyser. S1 selects five different constant currents which flow through the test diode, the voltage across which is then measured.

CONSTRUCTION

The circuit can be assembled in a plastic or metal case with the two switches, the two test terminals and the two terminals for the external testmeter mounted on the front panel. When the case is metal it should be connected to the chassis supply rail. A chassis connection is not essential and if the case is all-plastic the chassis symbol in Fig. 2 can be ignored. S1 should be provided with a pointer knob and the front panel should be marked up to indicate the constant current it selects. Layout is not at all critical and the only wiring requirement is that all leads should be kept reasonably short. Ensure that pin 7 of IC2 cannot be accidentally connected to a supply potential higher than that provided by BY3.

After construction has been completed the two test terminals are connected together and the testmeter is connected up in the M1 position. VR1 is then adjusted for zero output voltage with the
meter switched to a low d.c. volts range.

In use the testmeter will normally be initially switched to a range whose maximum value is greater than 6 volts. It will then read a little in excess of this voltage when no diode is connected to the test terminals. S1 should be in position 1. If a zener diode is connected to the test terminals wrong way round the output voltage will correspond to about 0.6 volt. When the zener diode is connected correctly the voltage indication will be of zener voltage at 0.1 mA . If necessary, the testmeter may then be switched to a lower volts range. S1 is next advanced, one step at a time, to position 5, whereupon an indication of the minimum current at which the zener characteristic starts to flatten out will be given. With some high voltage diodes the approximate zener voltage will be given at all positions of S1, or at positions 2 to 5 inclusive. Low voltage zener diodes may show a marked change in zener voltage at the different switch settings. TELEVISION

by
J. R. DAVIES

Over 500 pages 300 diagrams

- Principles of 405 line reception
- Principles of 625 line reception
- Nature of the television signal
- Receiver tuner units
- A.F. and video amplifiers
- Deflector coil assemblies
- Automatic gain and contrast control
- Receiver aerials
- The cathode ray tùbe
- Receiver i.f. amplifiers
- Vertical and horizontal timebases
- Synchronising
- Power supply circuits
- Introduction to colour TV

53.95 $\begin{gathered}\text { P. \& } 8 \text { P. } \\ 80 p\end{gathered}$

To:
DATA PUBLICATIONS Ltd.,
57 Maida Vale, London W9
Please supplycopy(ies) of "Understanding Television", Data Book No. 17. 1 enclose cheque/crossed postal order for.

Name \qquad
Ȧddress \qquad

Fig. 3(a) A voltage-current characteristic, obtained with the aid of the analyser circuit, for a 3.9 volt zener diode.
(b) Another curve, given by a zener diode type BZY88C5V1

Fig. 3(a) shows the results obtained with a small 3.9 volt zener diode of unknown type and manufacture when checked with the prototype circuit. The crosses in the graph indicate the actual plotting points obtained by the analyser. A similar graph for a

BZY88C5V1 is given in Fig. 3(b). As can be seen, the first diode needs a zener current of at least 2.5 mA if it is to provide an adequate zener performance, whilst the second diode should pass a zener current of at least 1 mA .

ARE YOU MISSING COPIES?

Because of last summer's printing dispute and, subsequently to it, our then printers ceasing to trade, many readers have been unable to obtain some recent issues. For the time being we are still able to supply such numbers.

REEENT PUBLICATIONS III

EARLY RADIO WAVE DETECTORS. By Vivian J. Phillips, B.Sc.(Eng), Ph.D., A.C.G.I., D.I.C., C.Eng., F.I.E.E., F.I.E.R.E. 238 pages, $215 \times 140 \mathrm{~mm}$. Published by Peter Peregrinus Ltd. Price (UK) $£ 18.00$.

Nearly all of us tend to look upon the crystal and cat's whisker assembly as being probably the first radio signal detector of importance, and some of us may have heard vaguely of the coherer as preceding the crystal in this application. But there were many other types of radio detector in existence before and concurrent with the coherer, and this fascinating book describes them all in detail.

What is probably the most important detector of the pre-crystal era is nevertheless the coherer, and this worked on the principle that if a number of conductors were in loose contact with each other they exhibited a high resistance. When a radio signal was applied to them they "cohered" and offered a low resistance. Unfortunately, they did not "de-cohere" at the cessation of the radio signal and had to be tapped or agitated to return them to the high resistance state. Very many different coherers were developed and the metals could be in the form of filings, rods, balls, or virtually any other shapes which could be devised in those pioneering creative days.

They were also electrolytic detectors which offered the requisite non-linear resistance in the contact between a liquid and a metal electrode. Magnetic detectors were devised, the simplest being a very sensitive galvanometer and one of the more complicated being a rotating device incorporating 3 -phase coils. Thin-film and capillary detectors were related to the coherer but took advantage of phenomena occurring in fluids. One of the more gruesome devices was the "Physiological Detector" in which electrodes were connected to the sciatic nerve of a newly killed frog, causing the frog's leg, to which were coupled a string and pointer, to twitch in response to the radio signal. The useful period of the detector came to an end when rigor mortis set in...

All these detectors and many more are described and illustrated in this book. It makes compulsive reading for anyone who wishes to rediscover the very early, and surprisingly successful, world of radio communication.

AUDIO CIRCUITS AND PROJECTS. By Graham Bishop. 192 pages, $215 \times 125 \mathrm{~mm}$. Published by PAPERMAC (The Macmillan Press Ltd.) Price $£ 4.95$.

This book is the third in the PAPERMAC Electronic Projects series, and it presents nearly 100 tested circuits of amplifier and amplifier-related projects. Constructional details are given where necessary. All projects can be constructed on Veroboard, and ready-made printed circuit boards are available for designs which are better assembled in that way.
The book starts with a short treatise on human hearing, frequency range and the nature of sound, then carries on to microphones, pick-ups and speakers. Next dealt with are the basics of amplifiers. After this the main bulk of the book is devoted to working circuits. Covered first are pre-amplifiers, with attention being paid to filters, tone controls, mixers and electronic tone and attenuator control circuits. Veroboard layouts for many of the circuits are given. These are followed by power amplifier projects ranging from 1 watt to 70 watt designs. Again, Veroboard layouts are provided.

The book next turns to noise and rhythm projects, and these include attack and decay circuits, rhythm generators, envelope shapers, a reverberation unit and a peak overload detector, together once more with Veroboard assemblies. The following disco section describes sound-to-light modulators and a colour organ, and the final constructional pages deal with music circuits such as a stylus organ, organ generator and special effect oscillators. The components required for the projects, and sources of supply, are listed in two of the appendices at the end of the book.

NEWS

AND

10kHz to 100 MHz USB/LSB TRANSCEIVER BUILDING BLOCK

Ambit's 91600 receiver is based on an SL1600 series Plessey application design by James Bryant modified to accept an 8 -pole 10.7 MHz SSB crystal filter to enable the frequency offset of the system to be used with the Ambit DFM7 LCD frequency readout module for 1 kHz resolution in the HF bands.

By using the correct first mixer, the range 10 kHz to 100 MHz may be spanned - although for most users, the standard $1-500 \mathrm{MHz}$ range is quite sufficient. The unit provides approx. 10 mW of SSB in transmit mode, and a complete SSB receiver with 1 W output stage.

An external local oscillator and bandpass filter// preselector is required to cover the frequency band desired - full USB/LSB switching is provided on the board.

Price around $£ 40.00$ (in kit form), the 91600 offers a versatile basis for SSB TX/RX systems for HF to UHF.

Details from Ambit International, 200 North Service Road, Brentwood, Essex CM14 4SG.

HANDY PLANE FOR DO-IT-YOURSELFERS

In addition to their portable electric planes for heavy duty industrial use, SKIL have announced the birth of a handy plane for craftsmen and do-ityourselfers. In designing this tool, SKIL wish to meet the ever growing demand for compact, practical tools with professional qualities, prevailing amongst home users.

Apart from edging and surfacing, the new plane will also do rabetting jobs up to 7 mm depth of cut. Planing jobs usually require a high degree of precision and for that reason the tool has a very high speed of 18,000 r.p.m., which also guarantees a fine, smooth finish of the workpiece. For chamfering jobs, a long V-notch has been designed in the base. A deflector removes chips away from the operator. The
powerful 480 -watt motor is double insulated and radio/tv suppressed according to European safety requirements. The emphasis on handling ease has been consequently extended to easy depth and bevel adjustments and safe blade change.

The tool is equipped with a pair of blades that have HSS cutting edges and that can be resharpened many times. Two adjusting screws, a device for blade adjustment, a wrench and a locking pin to block cutterhead when changing blades, are also included in the standard equipment.

Enquiries to SKIL (Great Britain) Ltd., Fairacres Industrial Estate, Dedworth, Windsor, Berkshire. SL4 1QJ.

NEW THERMAL PRINTER

Bowmar Instrument Ltd., of 43 High Street, Weybridge, Surrey, have announced details of their newly available TP 3150 Thermal Printer.

Featuring: Full alpha-numeric 64 ASCII character set; complete interface electronics; 18 characters per line; over one line per second in parallel data mode for 18 column lines; TTL compatible 7 bit ASCII inputs that accept parallel or bit serial data; low stand-by power; quiet, non-impact thermal printing on white, bond-type paper; internal 32 character FIFO buffer; and left-to-right or right-to-left printing.

The printer is ideal for microprocessor terminal interfacing, test equipment, data recording devices, communications equipment or any alpha-numeric hard copy application where quiet, intermittent printing is required.

The TP 3150 Thermal Printer's control function is implemented using a single chip microprocessor and it accepts 7 -bit data in either synchronous parallel format with handshake signals or in asynchronous bit-serial format at a rate of 110 baud.

. . . COMMENT

PRESTEL FORGES AHEAD

'Prestel', the British system by which people can order goods and services through their home television sets, will shortly be available to over 60% of the population of the United Kingdom. This expansion is ahead of the schedule set by British Telecom (the new name for Post Office Telephones), and means that nearly every major city and town will have the service available, BBC World Service reported.

For Prestel, one's television set - specially designed or adapted is also connected to the telephone. There is a push-button control unit rather like a pocket calculator. On pushing the appropriate button, the silicon chip circuits inside the set dial up a central computer over the 'phone line. This sends back signals to produce diagrams and text information on the screen of the TV set. The information capacity of the system is limited only by the capacity of the central computers.

Material available ranges from free information like transport timetables and catalogues for used cars and 'mail-order' goods, through cheap computer games and sports events to expensive specialist information about, say, trends in the stock market.

For some time now wine merchants have not only had their lists in Prestel, but also have permitted ordering, by tapping out the list numbers of the wine you want, the quantity and the number of your bank credit card. Then, within a day or two, a van turns up at your door with the wine you have ordered. There is no scope for practical jokers in this, because delivery is only to the credit card holder's address, and the system can record the identity of the 'phone line used for ordering.

The latest facility to be offered allows booking of theatre seats. The Royal Shakespeare Company's list of productions can be called up on the screen of your home or hotel TV, and by tapping the appropriate keys on the control unit, details of seats available for particular productions and days can be brought to the screen. You make your selection, give your credit card number - and the seats are booked by the computer.

So why do this, when you can book by 'phone? The answer is simple - it is much more like going to the theatre box-office in person. You can see the choice available set out on the screen in front of you at home or in your hotel bedroom and make a logical informed decision - not so easy when you are told at top speed by a busy box-office clerk on the 'phone, with others ringing in the background. And then when you get to the theatre you might find yourself behind a pillar, or that the seats have been sold twice. With the computer keeping tally, that is impossible.

BECINNER'S BOX OF BITS

One of the snags for constructor beginners is that, unlike the old hand, they do not have a box of bits accumulated over the years. The experienced constructor can, with a bit of luck, find that he already has in his junk box, perhaps, half the components he needs for a new project - not so the beginner.

To overcome this snag for the newcomer Home Radio (Components) Ltd., P.O. Box 92, 215 London Road, Mitcham, Surrey, are now supplying a "Beginner's Constructional Hamper". Altogether the hamper contains 62 items covering 27 different components, from half-a-dozen assorted bulbs to a set of parts to make up a small chassis. Home Radio estimate the retail value of the hamper to be approximately $£ 35$ and yet it can be obtained from them for only $£ 14$, plus V.A.T.

WORLD'S SMALLEST HOME COLOUR VIDEO CAMERA

World's smallest home colour video camera, Hitachl's Model VK-C1000 incorporating a single chip MOS colour image sensor.

Using a MOS (metal oxide semiconductor) colour image sensor, Hitachi have manufactured the VK-C1000 home colour video camera, the smallest in the world. It will be marketed on the Japanese market from April 1981 at a price of around $£ 690$.

The recent improvements in functions and efficiency of home VTR equipment, together with its rising popularity has created a demand for a small lightweight and highly reliable colour video camera. The VK-C1000 has been developed by Hitachi to satisfy this demand, particularly for a video camera for outdoor use.

A single chip MOS image sensor of $2 / 3$ rds inch size has been developed using advanced VLSI (very large scale integrated circuit) technology and is used instead of a pick-up tube, and in addition the camera circuits are largely integrated. With these features, stability, long life, extremely high reliability and good picture are assured.

LOW CURRENT

PILOT LAMP

By
 F. L. Stephenson Battery-saving flashing light

It is often desirable for battery powered equipment to have some form of pilot light to indicate when it is switched on. In the interests of battery economy the light should draw a low current only and a common approach is to have a light which flashes on for a short period at regular intervals. The average current then drawn from the supply is quite low, even when the light is brightly illuminated when it is turned on. The circuit to be described is for a flashing pilot lamp which can be added to equipment having a 9 volt battery supply.

CIRCUIT OPERATION

The circuit of the flashing pilot lamp appears in the accompanying diagram. An obvious choice for the timing device controlling the light is an ICM7555. This draws a very low supply current and can function with high value timing resistors.

The ICM 7555 is employed in a standard astable oscillator configuration with capacitor C 1 charging through R1 and R2, and discharging through R2 on its own. The i.c. output at pin 3 .is high when the capacitor charges and is low when the capacitor discharges. The l.e.d. lights up when the output is low and a current of about 12 mA flows through it, giving bright illumination.

COMPONENTS

Resistors

(All $\frac{1}{4}$ watt 5% unless otherwise stated)
R1 $6.8 \mathrm{M} \Omega 10 \%$
R2 $750 \mathrm{k} \Omega$
R3 100Ω
R4 470Ω (see text)

Capacitors

C1 $1 \mu \mathrm{~F}$ polyester
C2 $100 \mu \mathrm{~F}$ electrolytic, 10 V . Wkg.

Semiconductor

IC1 ICM7555

Light-Emitting Diode

LED1 red 1.e.d.

> The low current pilot lamp circuit. The
> l.e.d. is brightly illuminated for half a second at 5 second intervals.

Since C 1 has the value of $1 \mu \mathrm{~F}$ it is an easy matter to calculate the charge and discharge times. The charge time in seconds is equal to 0.685 times the sum of R1 and R 2 in megohms. This calculates as 5.2 seconds to 2 significant figures. The discharge time is equal to 0.685 times the value of R2, or 0.51 second. So, the l.e.d. is lit for approximately half a second at intervals of 5 seconds.

The current drawn from the 9 volt supply when the 1.e.d. is lit is almost entirely the 12 mA which flows through the l.e.d. The current when the l.e.d. is extinguished is a mere $60 \mu \mathrm{~A}$. The average current drawn from the supply is therefore about one-eleventh of 12 mA , or 1.1 mA . This current can, of course, be reduced by increasing the value of R 4 , at the expense of reduced light intensity in the l.e.d. A value of $2.7 \mathrm{k} \Omega$ in this resistor, for instance, produces an l.e.d. current of approximately 3 mA , whereupon the average current drawn from the supply is a little less than 0.3 mA .

R3 and C2 decouple the ICM 7555 circuit from the 9 volt supply and ensure that l.e.d. current pulses are not passed along the supply rails.

ELECTRONIC DOOR BUZZER

By A. P. Roberts

Low consumption unit produces distinctive two-note tone

This inexpensive door buzzer circuit produces a frequency modulated tone which is quite penetrating and attention-catching. The unit is powered by an internal 9 volt battery which is only connected into circuit when the bell-push is pressed. Even then, the current drawn from it is only 6 mA and so, with normal usage, its life should be very nearly equal to its shelf life.

CERAMIC RESONATOR

The low current consumption is achieved by using a new type of component known as a "ceramic resonator". This is a piezo-electric transducer which produces an audible tone when fed with an electrical signal derived from an oscillator. Efficiency is very high and only a few mA of drive current are required to produce a loud audio tone. As the resonator is a high impedance device, the signal level should be at a fairly high voltage. The transducers are not intended to function as audio sound reproducers since they are

Fig. 1. The output response of the ceramic transducer type PBN-2720

The ceramic transducer is mounted on the front of the case which holds the electronics
not designed to give high quality. They are intended, instead, to be employed in alarm circuits where a flat response over the audio frequency spectrum is not required.

The ceramic resonator used in the present project is a type PBN-27.20, and is available from Ambit International. It has the frequency response shown in Fig. 1. The graph covers the range from 1 kHz to 7 kHz , at which the transducer has greatest efficiency. There is a pronounced peak at about 4.5 to 5 kHz due to the resonant performance of the transducer, but the audible output is quite high over the entire frequency range.

DOOR BUZZER CIRCUIT

The complete door buzzer circuit is given in Fig. 2. This is based on a dual amplifier i.c. type TL082CP, which can be obtained from Watford Electronics, 33/35 Cardiff Road, Watford, Herts.

The two sections of the amplifier are used in identical oscillation configurations. One oscillator produces an audio tone to drive the ceramic transducer whilst the other runs at a much lower frequency and frequency modulates the first. The point of using frequency modulation is that this gives an audible output having more than one frequency, which is much less likely to be masked by domestic sounds. The sound is also more pleasant and less monotonous than a single frequency tone. In the present circuit a square wave modulating signal is employed, giving a "warbling" effect since the output tone is switched continuously between two pitches. The result is not unlike the ringing sound given with a Trimphone.

The lower frequency oscillator employs $\operatorname{IC1}(\mathrm{a})$ and is used in an oscillator circuit which is nowadays becoming quite common. R1, R2 and R3 all have the same value, whilst R4 and C2 control the oscillation frequency. At switch-on, C2 is discharged, whereupon the inverting input is negative of the non-inverting input, and the amplifier output goes positive. This effectively puts R3 in parallel with R1, so that the non-inverting input is at two-thirds of the supply potential. C2 commences to charge via R4 until the voltage across it reaches the same voltage as that at the non-inverting input, whereupon the amplifier output starts to go negative, causing the non-inverting input to go negative as well. There is a regenerative effect which results in the amplifier output going fully negative and causing the non-inverting input to be at one-third of supply potential. C2 now discharges via R4 until the voltage across it reaches the same potential as the non-inverting input. A reverse regenerative effect takes place, resulting in the amplifier output going positive again, the non-inverting input being taken to two-thirds of supply voltage, and the capacitor charging once more through R4. The cycles repeat in

COMPONENTS

Resistors.
(All fixed values $\frac{1}{4}$ watt 5%)
R1 $33 \mathrm{k} \Omega$
R2 $33 \mathrm{k} \Omega$
R3 $33 \mathrm{k} \Omega$
R4 $330 \mathrm{k} \Omega$
R5 $68 \mathrm{k} \Omega$
R6 $33 \mathrm{k} \Omega$
R7 $33 \mathrm{k} \Omega$
R $833 \mathrm{k} \Omega$
R $947 \mathrm{k} \Omega$ pre-set potentiometer,
0.1 watt horizontal

R10 $39 \mathrm{k} \Omega$
R11 $6.8 \mathrm{k} \Omega$
R12 $3.9 \mathrm{k} \Omega$

Capacitors

C1 $4.7 \mu \mathrm{~F}$ electrolytic, 10 V . Wkg.
C2 $0.1 \mu \mathrm{~F}$ polyester type C280
C3 $0.01 \mu \mathrm{~F}$ polyester type C280

Semiconductors

IC1 TL082CP
TR1 BC109

Switch

S1 bell-push

Transducer

X1 ceramic resonator type PBN-2720

Miscellaneous

Small plastic case
Veroboard, 0.1 in. matrix
9 volt battery type PP3
Battery connector
Nuts, bolts, wire, etc.

$\left\{\begin{array}{l}0 \\ 0 \\ 0 \\ \text { Lead-outs } \\ \text { BCIO9 }\end{array}\right.$
Fig. 2. The circuit of the electronic door buzzer. Low frequency oscillator IC1(a) frequency modulates the audio oscillator, IC1(b)

Close-up view of the Veroboard component panel

this manner with C2 alternately charging and discharging. A square wave is produced at the amplifier output.

Amplifier IC1(b) is used in the same type of oscillator circuit, but R9 and C3 have lower values to enable the oscillator to run at an audio frequency. This frequency can be varied by adjusting the resistance inserted into circuit by R9. The output of the lower frequency oscillator is coupled to the inverting input of IC1(b) via R5 and modifies its oscillation frequency according to whether IC1(a) output is positive or negative. The required frequency modulation of the audio oscillator is thus obtained.

OUTPUT STAGE

Since the ceramic transducer requires only a low drive current it can be driven directly from the output of IC1(b). However, the signal amplitude at this output is only about 6 to 7 volts peak-to-peak and a drive voltage higher than this is desirable. The higher voltage is achieved by connecting the output of $\mathrm{IC1}(\mathrm{~b})$ to the transducer and also to the base of the inverting transistor, TR1. The collector of TR1 connects to the remaining terminal of the transducer. The result is that when $\mathrm{IC} 1(\mathrm{~b})$ output is positive the output from TR1 collector is negative, and vice versa, resulting in a peak-to-peak drive voltage for the transducer which is well in excess of battery voltage.
Since the output voltage of $\mathrm{IC1}(\mathrm{~b})$ does not go fully
to negative rail potential when it goes negative, TR1 base is connected by way of the potential divider consisting of R10 and R11. The voltage drop provided by the potential divider ensures that TR1 is switched cleanly on and off, so that the voltage swing at its collector is the maximum possible.

On-off switching is provided by S1, which is of course the bell-push. C1 is a supply bypass capacitor and it is perfectly in order to use a component here which has a higher working voltage than that specified in the Components List.

ASSEMBLY

The unit can be assembled in virtually any small plastic case, since the component panel and the PP3 battery require little space. The ceramic transducer is mounted on the front panel of the case by two small bolts and nuts. The two holes required in the panel can be marked out by using the transducer as a template. A third small hole is needed to enable the two leads from the transducer to pass into the interior of the case. Two small terminals for connection to the bell-push could be positioned on one side of the case. A permanent connection was used with the prototype unit, however, and the 2 -core cable which connects to the bell-push is passed through a hole drilled in the side of the case.
The component panel is a piece of Veroboard of 0.1 in. matrix having 22 holes by 14 copper strips.

Fig. 3. Layout of components and wiring on the Veroboard panel

Details are given in Fig. 3. The board has to be cut from a larger size, after which the two mounting holes are drilled. The five breaks in the copper strips are next made, and then the components and link wires are soldered into place. Finally to be connected are the wires to the transducer, the bell-push and the battery clip. The board is secured inside the case by means of two 6BA bolts and nuts, with spacing washers to keep the board underside clear of the inside surface of the case.

ADJUSTMENT

R9 is adjusted with the bell-push pressed and it provides a wide range of output pitches. If the potentiometer is adjusted backwards and forwards over this range it will be found that there are noticeable peaks in the sound output level at several settings. R9 can be given any setting which coincides with one of these peaks, the one chosen being a matter of personal preference.

The INStructor

Part 7
By Ian Sinclair

A PRACTICAL INTRODUCTION TO MICROPROCESSORS

Jumps and Index Registers.

The program-counter relative displacement is one way of shifting a program momentarily out of its normal sequence, but the program count returns to normal immediately afterwards. A jump is another sort of shift. A jump is not made to pick up a byte of data, it's done to shift to another piece of program. There are four jump instructions on the 8060, and we'll look at all four of them. The most basic sort of jump, JMP, is what is called an unconditional jump.
That means that when the program says JMP, you jump! Fig. 1 shows an example. We use a NOP to start things off, then JMP followed by the displacement 00000011 , which places the prog-

RESET NOP	00001000	Note address
JMP	10010000	Note address
DISP	00000011	Note address
NOP	00001000	Note address
Nomember that the data bits are not important		
this example, only the addresses. The same		
ill be true of all the examples in this Part.)		

Fig. 1.
ram three steps on. Now set the data switches back to NOP again and keep pressing GO. The count continues from 00000111 ; it doesn't return to where it was before the jump, which is an important difference between this type of instruction and the previous lot. To distinguish them, this is called a transfer function whilst the others are called memory reference instructions.

CONDITIONAL JUMPS

The JMP instruction has its uses, particularly if the 8060 is to be used at the end of a program to keep a number displayed, but the conditional jumps are even more useful. A conditional jump takes place only if some test is fulfilled. For example, the Jump-if-Zero instruction (JZ) means that the program will jump only if the byte in the accumulator is zero. Fig. 2 shows examples of this, using a positive number, a negative number and then zero in the accumulator. If you keep an eye on the address l.e.d.'s you'll see that the jump occurs only when the accumulator is at zero.

The two other jumps are used to detect other conditions. The Jump-if-Positive (JP) instruction will cause a jump to take place if the byte in the accumulator has a zero in its D7 position - this means that a jump will also occur for a byte of zeros. The JNZ (Jump-if-Not-Zero) is as the name suggests - the jump will take place if there is any

RESET		
LDI	11000100	Note address at
each step		

Fig. 2
number, positive or negative but not zero, in the accumulator. Each one of these jumps, when we use the binary codes shown in Fig. 3, is programrelative, meaning that the instruction has to be followed by a displacement byte which can be up to +127 or -128 places from the program counter address.

THE INDEX REGISTERS

The method which is used in the INS8060 to change addresses by more than 128 steps is known as indexing, and the INS8060 uses three sixteen-bit registers (in addition to the program counter) to store addresses. These registers are called pointer registers, and the program counter itself is classed as one of these registers, being referred to as PO. The others are then numbered
$\mathrm{P} 1, \mathrm{P} 2$ and P 3 respectively. So that we can specify which pointer register we want to use, these numbers are written in binary form as 00, 01, 10 and 11 and are used in this form in the instructions which make use of pointer registers.
Let's show what happens. Fig. 4 shows a program which loads up pointer P1 with an address. Since the address is two bytes long and the accumulator can handle only one byte at a time, the pointer has to be loaded up in two groups of steps. We start with the number we want to load into the lower byte, in this example 00001010, and load-immediate this into the accumulator. The next instruction is a single byte instruction starting with 001100 . Why "starting with" and why only six bits? The reason is that it can be completed by the two bits which specify which pointer we're using. If we finish it with 01 we shall load the byte into pointer P1, if we finish with 10 we shall load P2, and if the byte ends with 11 then P3 is loaded. This instruction is known in shortened form as XPAL - exchange the accumulator with the low byte of the pointer, and when it's used in a program we have to be careful to specify which pointer register is to be loaded. In this example, we're loading P1, so that the code is 00110001, with the final two bits indicating pointer 1. Note, by the way, that this is an exchange, so that if there has been a number in the pointer register, its lower byte will now be in the accumulator. Since we started by resetting, this should not cause any problems, and in any case can be cleared by loading another number into the accumulator. We do this, using loadimmediate again, setting this byte to 00001111 . This is shifted into the pointer register by using the single-byte instruction XPAH, binary code 00110101 . This instruction exchanges the byte in the accumulator with the higher byte of the pointer and, once again, the last two bits of the code indicate the number of the pointer register. Since we've used the code 01 for the last two bits, we're transferring to pointer 1 as before.

The result of all this is that we have loaded up pointer 1 with two bytes. Now one of these is the AD11 bit and another is the AD1 bit, so that these l.e.d.'s should come on when we make the address change to the address in the pointer register, and we can use the spare I.e.d. to check for the 1's we expect to find in AD10, AD9 and AD8. The address isn't there yet, though - it's still loaded in the pointer and we have no connections to the pointer register. One way to exchange the

The JUMP instructions for jumps relative to the program counter

JMP
10010000
JP
JZ
10010100
10011000
JNZ
10011100

Unconditional jump

Jump if accumulator is positive or zero
Jump if accumulator contains zero
Jump if contents of accumulator are not zero

Fig. 3.

List of instructions which can be indexed to a pointer. In the list, \mathbf{M} is used to indicate the index bit, which will be set (1) for auto-indexing, reset (0) for normal pointer indexing. The $X X$ symbols are used as in Fig. 6 to indciate the pointer number.

LD	11000MXX	Load accumulator from address
ST	11001 MXX	Store contents of accumulator in address
AND	11010 MXX	AND accumulator with address contents
OR	11011 MXX	OR accumulator with contents of address
XOR	11100 MXX	X-OR accumulator with contents of address
DAD	11101 MXX	Decimal add contents of memory to accumulator
ADD	11110 MXX	Binary add contents of memory to accumulator
CAD	1111 MXX	Complement and add contents of memory to accumulator
ILD	101010 XX	Increment memory and load to accumulator
DLD	101110 XX	Decrement memory and load to accumulator

The JUMP and pointer exchange codes have been mentioned previously.

Fig. 8.
on the lower bits. The JUMP instruction uses the code relative to P 2 , and is followed by a displacement of two places. Run through this one, and check the address number before and after the displacement has been loaded into the microprocessor. As you might expect by this time, we can also jump to an address which is lower than the one loaded into the pointer register by using a negative displacement. Try the program again, but this time using a displacement of 11111110 (equal to decimal -2), and check the address before and after the GO switch is pushed.

Two more instructions which can make use of indexed addressing are the increment-and-load (ILD) and decrement-and-load (DLD) instructions. As usual, these consist of a basic six bits, which are completed by two bits which specify the correct pointer register. Remember that these two instructions change the data byte in the memory but not the address in the pointer register. What happens is that the GO action after the displacement byte causes the address lines to jump to an address equal to the pointer address plus the displacement. The data byte in this address is then incremented (+1) or decremented (-1) and loaded into the accumulator. The next time this byte is fetched, it will again be incremented or decremented, according to which instruction has been used. This is a convenient way of keeping a count, and the DLD instruction can, for example, be followed by a JZ, so that some new part of the program can be followed when the count is finished.

All the instructions shown in the table of Fig. 8

RESET LDI 11000100 00000001		
01	00110011	
XPAL(3)	00001000	
NOP	11000111	Note address
LD(3)	00000001	Note address
01	00001000	Note address
NOP	11000111	Note address
LD(3)	00000001	Note address
01	00001000	Note address
NOP		

Fig. 9.
can be used with pointer register indexing, and with yet another trick in store. Try the program in Fig. 9. This loads an easily recognisable address, into pointer P3 this time, and then, after a NOP, uses a load relative to P3, with a displacement of 1. This produces the expected address reading of 00000001, and following this with a NOP gets us
back to the normal address again. The next P3 relative load produces something unusual though, and when we use several more sequences of NOP and LOAD (relative P3), we can see what is happening. Each time the pointer register is used the starting address is incremented by one, so that each fetch from memory is from the address one higher than the one before. This type of system is called auto-indexing, and it's specified by an extra bit in the instruction. On all the instructions in Fig. 8 the basic instruction consists of only five bits. The sixth bit is the auto index -1 if the instruction is to be auto-indexed, 0 if not. The final two bits of the instruction are then used to specify which pointer register is to be used. Each instruction is then followed by a "displacement". When the instruction is used for the first time the displacement does not cause the address to change. The address which is fetched first time around is simply the address which is stored in the pointer register. At the end of this instruction, though, the pointer register has the "displacement" added to it, so that the next fetch from the pointer is to an address higher than before. The usual "displacement" or incre* ment number is 1, but we could use any other number as we pleased. Now what happens if we use a negative number, such as 11111111 (decimal -11 ? Try it out, using the program of Fig. 9. We load up the pointer as usual, NOP and then load, auto-indexed, relative to P3 with a - 1 displacement. What happens at each fetch?

STACK POINTER

This time, the pointer register is decremented by 1 before being fetched and used as an address. There's a very good reason for treating incrementing and decrementing in a different order. Suppose, for example, we want to preserve some constants, the numbers in various registers, while the microprocessorgets on with something different. We can load a number into the accumulator, store it with auto-indexing (using +1 for incrementing) and repeat this set of steps for each number we have to preserve. The result will be that each number is stored in order somewhere in the read/write memory. Now how do we get them back? At the end of the loading operation, the address in the pointer register will be one higher than the address which was used to store the last byte. This is because the address is incremented after the address has been used. If the same system were used when the index is decremented, then the first address fetched back would be empty or, worse still, nonsense, since we haven't written anything in that memory space. The system of decrementing the address before fetching ensures that we can fetch back the bytes in exactly the opposite order from that in which they were stored - first in, last out. This is the action of a "stack", and the register which is used in this way is often called the "stack pointer".
There are still a few secrets left. One is that in any memory - reference instruction lany in the table of Fig.8), the value 10000000 used as a displacement produces rather odd results, whether the instruction is PC relative, indexed or autoindexed. The program of Fig. 10 shows an example. The extension register is loaded with the byte

11111110 (decimal -2), and after a NOP, the load-from-memory instruction is followed by the displacement 10000000 , program relative. This number is decimal-128, but the program doesn't move 128 steps back, but only from 0110 to 0100. What has happened is that the number in the extension register has been used as a displacement relative to P1, which was reset to zero. Unless you've done some programming, it's difficult to appreciate the value of this, but one example may give you a glimmering. Usually, when we have a displacement, we have to specify it in the program, but this lets us use a displacement which isn't programmed! The outstanding example of this is a scanned keyboard.

There are two main ways of using a keyboard to input information to a microprocessor. One is to connect the keyboard to a digital circuit which will convert each key press into its appropriate digital circuit which will convert each key press into its appropriate digital code - that's a hardware solution. This type of method succeeds when each keyboard switch is separate. The other method uses a matrixed keyboard, where the keys are arranged in connected rows and columns. The action of a key is simply to short out one row to one column. With a system like this, converting the key-push into a digital code is not nearly so easy, and a method called "software scanning" is used, which is made much easier by the use of the extension register as we've described. Using the 5×4 matrix of Fig. 11 as an example, a counter is used to convert a few digits of an address into a logic 0, which is applied to one column of keys. If a key in this column is depressed, one data line is taken to logic 0 . Note that only four data lines are affected - in this example the upper lines. This gives a number on the data line which can be loaded into the extension register. The number can then be used as a displacement in a load-from-memory, so reaching a memory address where the correct binary code for the number is stored. The beauty of this system is that the key action doesn't have to generate the correct binary number, simply any binary number, provided no two keys give the same number. If no key on the first column is pressed, the address increments, the lower four data lines are also incremented,

An example of a matrixed keyboard.

Programming: the keyboard program consists of putting out the keyboard addresses in sequence. If, when an address is put out, a zero is detected on the upper data lines, the byte is shifted into the extension register. If the data byte is still 1111 XXXX , then the next address is put out, and so on until all the keyboard lines have been scanned. The program usually provides for "software debounce" -if a byte is returned on the data lines, the same address is scanned again a few milliseconds later to confirm the presence of a key pressed.

Fig. 11.
and the second column is activated. Even if the key which is now pressed is in the same row, the new number on the lower lines ensures that a different byte is loaded into the extension register.

NEXT MONTH

In next month's issue we shall look at the interrupt system, flags and sensing.
(To be concluded)

TRADE NOTE

ULTRASONIC TRANSDUCERS

Impectron Limited, of Foundry Lane, Horsham, W. Sussex, RH13 5PX, are now producing two new low cost matched ultrasonic transducers. These are small, light and highly sensitive, and they offer an excellent performance for applications such as industrial control and intruder detection systems.
The EFR-OCB25K5 and EFR-RCB25K5 are transmitter and receiver respectively, with a nominal centre frequency of 25 kHz . The sensitivity is around -65 dB per volt per microbar with a minimum bandwidth of 3 kHz . Overall dimensions are 1 inch long
(body length being 0.37 inch) by 0.95 inch diameter for both receiver and transmitter. The internal construction of the transducers incorporates a compound vibrator consisting of a ceramic chip and conical aluminium resonator. This assembly provides sensitivity
and wide bandwidth, whilst the choice of body material and production methods ensure a long life in demanding environments.
Delivery is ex-stock, and application notes are available by return from Impectron to help circuit designers.

MARCH 1981 CONSTRUCTOR

IN NEXT MONTH'S ISSUE

ROOM THERMOSTAT UNIT

Uncomplicated robust circuitry

Temperature control from 10 to $30^{\circ} \mathrm{C}$

Switches currents up to 8 amps

HICH QUALITY COMPRESSOR

- Variable compression threshold
- High compression ratio without distortion
-Fast attack, slower decay

MEDIUM \& SHORT WAVE RADIO

\star Medium waves plus 25, 39 and 49 metre bands \star Low cost design

* Special grade ferrite aerial

PLUS MANY OTHER ARTICLES

Reverbera
 Self-contained self-powered unit

 Switching

 Switching reverber

 reverber}

Natural reverberation of sound occurs in any room to some degree, but in rooms of normal domestic proportions and fitted with modern furnishings the reverberation time is usually only a small fraction of a second and is barely noticeable. Reverberation is caused by sounds being reflected around a room before they become attenuated to an inaudible level. Large halls usually have quite lengthy reverberation times, these often being as long as several seconds. When certain types of music are produced this reverberation results in a very rich sound.

There are a number of ways in which artificial reverberation can be added to an electrical audio signal in order to give a "big hall" sound to home produced music and recordings. One of the most simple, inexpensive and popular methods is to use a system based on a spring-line reverberation unit. Such a unit has input and output transducers with one or more springs under low tension between them. An electrical signal applied to the input transducer
produces an acoustical signal at one end of the springs, which then travels relatively slowly down the springs until it reaches the output transducer, whereupon it is re-converted to an electrical signal. The acoustical signal is not entirely absorbed by the output transducer and it is reflected back to the input end of the springs where it undergoes a further reflection. This process is repeated a number of times until the initial signal dies away to an insignificant level, and the effect is analogous with the reverberation of sounds in a large hall. The signal from the output transducer is mixed with the original signal to give the required amount of reverberation.

The reverberation unit described in this article employs a commercially manufactured spring-line unit and the only active component used is an integrated circuit. The unit is powered by a PP6 size 9. volt battery and is intended to operate with an input signal level of between 100 mV and 1 volt r.m.s., although it can still be used effectively with signals somewhat outside these levels.

The completed reverberation unit is housed in an attractive ready-made metal case

tion Unit

Reverberation amplitude control

option for ation only

THE CIRCUIT

The complete circuit of the reverberation unit is given in Fig. 1. In this the integrated circuit is an LM389 which contains a small Class B audio power amplifier, with an output at pin 1, and three separate transistors. These are TR1 to TR3 and the numbers alongside them in the diagram are the i.c. pin numbers. The power amplifier section is used to drive the input transducer in the spring-line unit. This transducer requires a fairly strong signal as losses in the springs are high and a low input signal would produce a poor signal-to-noise ratio as well as an inadequate reverberation effect.

The inverting input of the amplifier, at pin 5, is connected to the negative rail, and the input signal is applied, via C2 and volume control VR1, to the non-inverting input at pin 16 . There is no polarising
voltage for C 2 , but this capacitor still functions satisfactorily as a d.c. blocking component. C4 decouples the supply to an internal pre-amplifier inside the i.c. and prevents possible instability due to feedback along the supply rails. The amplifier output is coupled to the spring-line input transducer through R1 and C5. R1 is included to ensure that the amplifier cannot be driven to a level where current consumption is excessive.

The spring-line output transducer couples through C6 to the base of TR1 which, due to its unbypassed emitter resistor, has a voltage gain of about 12 times. The signal at its collector is passed via C7 and R5 to the base of TR2. Also coupled to this base, via C3, S2 and R6, is the original input signal. R6 has the same value as R5 and they provide a simple mixing circuit in which the original signal and the reverberation are

Fig. 1. The circuit of the reverberation unit. The power amplifier and the three transistors are all contained in a single i.c.

> The spring-line unit is mounted near the rear of the căse. The Veroboard panel lies between the spring-line unit and the front panel components
mixed together. TR2 offers a small amount of gain and a high input impedance for the mixing circuit, and its output couples to the emitter follower, TR3. This last transistor gives the unit a low output impedance.

A wide range of control is provided by VR1 and S 2 . With S 2 closed the amount of added reverberation is varied by VR1. With S 2 open the original signal is switched out and only the reverberation signal is passed to the output of the unit.

S1 is the on-off switch and C1 the main supply bypass capacitor. The quiescent current consumption from the 9 volt battery is typically about 9 to 10 mA , but the consumption rises to about tiwo or three times this level when IC1 is driven hard.

COMPONENTS

The spring-line unit is available from Maplin Electronic Supplies, and is described in their catalogue as a "short spring-line unit". The LM 389 i.c. is also available from this source. The case used for the prototype unit was, again, obtained from Maplin Electronic Supplies. This is an aluminium case, type TP5, having a wood-grain finish on its cover and dimensions of approximately 279 by 159 by 76 mm .

The electrolytic capacitors are all specified as having working voltages of 10 volts. In practice it may be found very difficult to obtain 1μ F capacitors with a working voltage as low as this and it will be perfectly in order to use $1 \mu \mathrm{~F}$ components for C 3 and C 7 which

Rear view, illustrating the wiring to the components on the front panel

COMPONENTS

Resistors

(All fixed values $\frac{1}{4}$ watt 5% unless otherwise stated)
R1 33Ω
R2 1.2M $\Omega 10 \%$
R3 $4.7 \mathrm{k} \Omega$
R4 390Ω
R5 $56 \mathrm{k} \Omega$
R6 $56 \mathrm{k} \Omega$
R7 1.2M $\Omega 10 \%$
R8 $4.7 \mathrm{k} \Omega$
R9 $1.5 \mathrm{k} \Omega$
R10 $2.7 \mathrm{k} \Omega$
VR1 $10 \mathrm{k} \Omega$ potentiometer, \log

Switches

S1 s.p.s.t. rotary toggle
S2 s.p.s.t. toggle

Sockets
SK1 phono socket (see text)
SK2 phono socket (see text)

Semiconductor

IC1 LM389

Capacitors

C1 $220 \mu \mathrm{~F}$ electrolytic; 10 V . Wkg.
$\mathrm{C} 210 \mu \mathrm{~F}$ electrolytic, 10 V . Wkg.
C3 $1 \mu \mathrm{~F}$ electrolytic, 10 V . Wkg.
C4 $10 \mu \mathrm{~F}$ electrolytic, 10 V . Wkg.
C5 $100 \mu \mathrm{~F}$ electrolytic, 10 V . Wkg.
C6 $0.1 \mu \mathrm{~F}$ polyester, type C280
C7 $1 \mu \mathrm{~F}$ electrolytic, 10 V . Wkg.
C8 $10 \mu \mathrm{~F}$ electrolytic, 10 V . Wkg.

Miscellaneous
Spring-line unit (see text)
Metal case (see text)
9 -volt battery type PP6 (see text)
Battery connector
2 control knobs
Veroboard, 0.1 in. matrix
Nuts, bolts, wire, etc
have working voltages as high as 100 volts. Similarly, the $10 \mu \mathrm{~F}$ capacitors can have working voltages up to some 25 volts.

CONSTRUCTION

The photographs show the general layout of the unit. From left to right on the front panel are the output socket, VR1, S1 and S2. The author used phono sockets for input and output, but alternative types can be used if these are more convenient. The
spring-line unit is mounted on the base panel of the case, well towards the rear and with the input and output terminals facing forwards so that they are readily accessible. The unit can be used as a template for marking out the two mounting holes required in the base panel, and it is secured by means of M3 bolts and nuts.
Situated between the spring-line unit and the front panel components is the Veroboard module, the component and copper sides of which are shown in

Fig. 2. Nearly all the small components are assembled on a Veroboard of 0.1in! matrix. Component positioning and layout are shown here

Fig. 3. Connections to the front panel components and to the spring-unit

On the front panel, from left to right, are SK2, SK1, VR1, S1 and S2

Fig. 2. The Veroboard panel has 16 copper strips by 32 holes and has to be cut down from a larger piece. After filing the sawn edges to give a neat finish, the two mounting holes are drilled and the 18 breaks in the strips are made. The components and the 6 link wires are then soldered in place, taking care to ensure that IC1 and the electrolytic capacitors are fitted to the board right way round.

Flexible p.v.c. covered leads identified in Fig. 2 by the letters " A " to " K ", are also soldered to the board. These leads can be longer than will finally be required and they can be cut to the correct length when the free ends are connected later. The board is secured to the base of the case by two M3 nuts and bolts, with spacing washers on the bolts to ensure that the underside of the board is well clear of the metal base panel surface. The board is oriented so that C3 and C 5 are nearer the front panel.

The remaining wiring is illustrated in Fig. 3, where connections to the Veroboard are identified by the letters " A " to " K ", which correspond with the same letters in Fig. 2. As can be seen, C2 is not mounted on the Veroboard and is positioned between SK1 and VR1.

There is plenty of space for the PP6 battery. Indeed, a larger PP9 type could be used, if desired, and this would probably give lower running costs if the reverberation unit is to be frequently employed
over long periods. With the prototype, a piece of foam plastic was glued to the underside of the case lid and this was quite sufficient to hold the battery in place when the lid was screwed on.

USING THE UNIT

The unit is simply connected between the signal source and the amplifier, employing screened leads. As described here, the unit can only be used with mono signals, but it is of course only necessary to construct two units for stereo, with each unit processing one channel. The voltage gain through the unit is roughly unity and it is therefore unlikely that any problems will occur when it is connected into a system.

As already mentioned, VR1 controls the amount of reverberation which is added to the original signal. Care must be taken when adjusting this component. Unless the input signal level is quite small, the power amplifier in IC1 will be driven to the point where the output becomes clipped well before VR1 is turned fully clockwise. Overdriving the power amplifier is undesirable because it gives distortion, reduced battery life and, in any case, an unrealistic amount of reverberation. VR1 must therefore be adjusted carefully and sensibly to give a good effect, and not simply set at maximum.

Mail Order Protection Scheme

The publishers of this magazine have given to the Director General of Fair Trading an undertaking to refund money sent by readers in response to mail order advertisements placed in this magazine by mail order traders who have become the subject of liquidation or bankruptcy proceedings and who fail to supply goods or refund money. These refunds are made voluntarily and are subject to proof that payment was made to the advertiser for goods ordered through an advertisement in this magazine. The arrangement does not apply to any falure to supply goods advertised in a catalogue or direct mail solicitation.

If a mail order trader fails, readers are advised to lodge a claim with the Advertisement Manager of this magazine within 3 months of the appearance of the advertisement.

For the purpose of this scheme mail order advertising is defined as:

> "Direct response advertisements, display or postal bargains where cash has to be sent in advance of goods being delivered."

Classified and catalogue mail order advertising are excluded.

SHOPT WAVE NEWS FOR DX LISTENERS

By Frank A. Baldwin

Times $=G M T$
 Frequencies $=k H z$

- AFGHANISTAN

Kabul on a measured 6231 at 1447, OM announcer, songs and music in the Urdu programme for nearby countries in the Domestic Service 2nd Programme. The Urdu transmission is scheduled from 1330 to 1530 .

- NEW ZEALAND

Wellington on 15485 at 0538, OM and YL with a programme about New Zealand internal affairs in an English transmission for the Pacific area. At 0545 local sporting events and results were featured. (OM = Old Man = Male; YL = Young Lady = female).

- PAKISTAN

Islamabad on 21655 at 1040, YL announcer with local music and song programme in the Urdu service for Europe, scheduled from 0715 to 1100 on this particular channel.

- NORWAY

Oslo on 21730 at 1210, YL with station identification then OM and YL alternate with news items in the English programmed 'Norway this Week' radiated to Europe, the Far East, Pacific, South and South East Asia. This particular programme featured on Sundays only.

- AUSTRALIA

VLH9 Lyndhurst on 9680 at 1245, classical piano music, at 1250 OM announcer then choir and a religious programme, all for local consumption.

Melbourne on 11740 at 0745 , OM with listeners letters in the English programme to Europe entitled 'Mailbag' (although some Pacific and Asian addresses were mentioned) scheduled from 0700 to 0800 on this channel and in parallel on 21680, also logged.

Melbourne on 21570 at 0753, musical box version of 'Waltzing Matilda', the tuning and interval signal. At 0758 OM with details of frequencies and times, 0800 time-check pips then into a newscast of world events. Also logged in parallel on 15115.

- UNITED ARAB EMIRATES

Dubai on 21700 at 0633 , OM's and YL's with a drama in Arabic.

- SOUTH AFRICA

RSA (Radio South Africa) Johannesburg on 21535 at 0640, OM's with a newscast in English in the programme 'Looking into Africa', directed to Europe and West Africa from 0600 to 0700 . All about African internal affairs - quite instructive.

- INDIA

AIR (All India Radio) Delhi on 3255 at 1549 , OM with an English programme all about nuclear power in India. This is the Home Service, scheduled from 1400 to 1600 .
AIR Lucknow on 3205 at 1534, YL with a newscast in English, a moderate signal but with some cochannel QRM (interference). This is the B Programme scheduled here from 1130 to 1740 . The power is 10 kW .
Radio Kashmir on a measured 3277 at 1535, YL with a newscast in English. At 1536, identification as AIR. Good clear signal. Scheduled from 1130 to 1740 , the power being 7.5 kW .
AIR Kurseong on 3355 at 1542 , YL with news comment in English, a good clear signal on a clear channel. The schedule is from 1130 to 1700 and the power is 20 kW .

AIR Delhi on 3365 at 1544 , same programme as above in parallel. The schedule here is from 0025 to 00230 and from 1330 to 1830 . The power is 10 kW .

AIR Gahauti on 3375 at 1545, again the same programme as above but a weak signal although clear of QRM. Gahauti is scheduled from 1145 to 1740 , the power is 10 kW and the programmes are mostly in Assamese but with English newscasts at 1530 and 1730.

NEPAL

Kathmandu (transmitter at Khumaltar) on 3425 at 1550, OM announcer in Nepalese, YL with local songs. The schedule is from 0020 to 0350 (Sundays to 0450), 0720 to 0950 and from 1150 to 1720 . English programmes are radiated from 0220 to 0230 and from 1435 to 1520 . The power is 100 kW .

CHINA

Radio Peking on 6430 at 1207, OM with the Mongolian programme in the Minority Language Service, scheduled from 1200 to 1255 on this channel.
Radio Peking on 11000 at 1135 , local songs and music in the Tibetan programme in the Minority Language Service, scheduled on this channel in Tibetan from 1100 to 1155

Radio Peking on 11375 at 1412 , YL with the programme in Kazakh, scheduled from 1400 to 1455, in the Minority Language Service. Also logged in parallel on 11040.
Radio Peking on 11650 at 1423, YL and OM with the English programme directed to South Asia and scheduled from 1400 to 1500 on this frequency.

Wulumqi, Xinjiang, on 5060 at 0055, Chinese music, YL with songs. A good signal when receiver on USB to escape utility QRM LF of channel. This one radiates both local programmes and those from R . Peking in Mongolian. This logging was made during the 2330 to 0555 schedule (February to September from 2400 or, to be correct, 0000 GMT.). Wulumqi is also on the air from 1100 to 1625.
Nanning, Guangxi, on 4915 at 2138, YL in Chinese - the usual programming but signal somewhat muffled under co-channel heterodyne. This is Guangxi 1 which is on the air from 2105 to 0005 and from 0840 to 1600 relaying the Peking Domestic Service 1.
Kunming, Yunnan, on 2310 at 2319, YL with a talk in dialect. Yunnan 2A features programmes in Minority languages and is on the air from 2200 to 2400 and from 1225 to 1430.
Kunming, Yunnan, on 2460 at 2321, OM and YL alternate in Chinese. This is Yunnan 1, radiating in Chinese from 2150 to 1620 . Can also be heard in parallel on 4760 .

- INDONESIA

RRI (Radio Republik Indonesia) Bukittinggi, on a measured 4828 at 1522, OM in Indonesian, short musical interludes local-style. This one is scheduled from 2300 to 0300 , from 0500 to 0715 and from 0930 to 1600 . The power is 1 kW and is listed on 4827.

RRI Yogyakarta on 5046 at 1536, slow rythmic local music between acts of a drama, much clanging of cymbals. Good signal when tuned on a 1.2 kHz bandwidth. The schedule is from 0100 to 0300 , from 0455 to 0800 and from 0955 to 1700 and the power is 5 kW . Yogyakarta is in Java (Indonesian = Jawa).

RRI Padang on a measured 4002 at 1542 , 'When the Saints go Marching In' in local style! OM announcer, fair signal on a clear channel at this time. The schedule is from 2230 to 0100 and from 1000 to 1600 , closing time variable. The power is 10 kW and Padang is in Sumatra.

RRI Bukittinggi on 3232 at 1546, OM in Indonesian, religious chants at 1552. A poor signal but a clear channel. The schedule is from 1100 to 1600 (Saturdays until 1700); the power is 10 kW and Bukittinggi is in Sumatra.

- MALAYSIA

Kuala Lumpur on 4845 at 1525 , OM and YL with Indian songs and music, a good signal on USB. The schedule here is from 2130 to 0130 and from 0545 to 1530 Monday to Friday; from 2130 to 0330 and from. 0545 to 1530 on Saturdays and from 2130 to 1530 continuous on Sundays. The power is 50 kW .

- SINGAPORE

Radio Singapore on 5052 at 1534, OM with a newscast in English, both local and world events. All programmes are in English and they are timed from 2230 to 1630 , Sundays until 1700 . The power is 20 kW and may also be heard in parallel on 5010. Experience shows however that it is often possible to hear them on one channel whilst the other is silent.

- BURMA

Rangoon on 5040 at 1539 , local style music on records. A fair signal under co-channel hetro. Rangoon is timed from 0930 to 1430 in Burmese and from 1430 to 1600 in English. A piano solo in European style was featured from 1542. The power is 50 kW .

- SRI LANKA

Colombo on 4870 at 1605 , OM and YL in the Sinhala programme in the Home Service 2. The schedule is from 0000 to 0300 and from 1030 to 1730 . The power is 10 kW .

- SOCIETY ISLANDS

Papeete, Tahiti, on 15170 at 0517 , OM with Polynesian songs, OM announcer in Tahitian. This is the Home Service scheduled from 1600 to 0730 and the power is 20 kW . Tahiti is in France Regions 3.

TAIWAN

Taipei on 9610 at 2130 , OM with a newscast of local affairs in the English programme intended for Africa, the Middle East and Europe and scheduled from 2130 to 2230 on this frequency.

PHILIPPINES

Tinang VOA (Voice of America) on 15410 at 1440, YL in Asian dialect, 'Yankee-Doodle' interval signal at 1500 . Signal subject to interference from R. Moscow, co-channel.
Tinang VOA on 9630 at 1350, YL in Khmer to South Asia, scheduled from 1330 to 1400 when into the Burmese programme - at least according to the schedule!
Radio Veritas, Manila, on 11955 at 1517, OM and YL with the programme in Vietnamese to Vietnam, scheduled from 1500 to 1530 .

- LESOTHO

Maseru on 4800 at $1744, O M$ and chorus with African songs and chants, YL announcer. This is the recently installed 50 kW transmitter, a gift from the British Government. The schedule is irregularly from 0400 to 2030

- BRAZIL

Radio Difusora Taubate, Taubate, on 4925 at 0220, YL with songs in Portuguese, OM announcer with announcements and commercials. The schedule is from 0830 to 0300 and the power is just 1 kW .

Radio Tabajara, Joao Pessoa, on a measured 4796.8 at 0104, OM with sports commentary in Portuguese, a fair signal on USB to clear hetro. The schedule is from 0730 through to 0400 and the power is 2 kW . Listed on 4797 but subject to slight variations at times.

Radio Capixaba, Vitoria, on 4935 at 2150 , OM with commentary in Portuguese. The schedule is from 0730 to 0100 (Sundays until 2230 but reported to vary from 2200 to 0200). The power is 1 kW .

- VENEZUELA

La Voz de Carabobo, Valencia, on 4780 at 0110 , OM with an excited commentary on a local sporting event. The schedule of this one is from 1000 to 0400 and the power is 1 kW .

owIZZEE!!

By

David Arts

How to play cricket in comfort

The prototype OWIZZEE! game is housed in a small plastic case with legends on the front panel indicating push-button and I.e.d. functions

OWIZZEE is an electronic game designed to simulate a game of cricket, albeit in a simple manner. The game has provided hours of amusement and can be extremely exciting, especially for the youngsters.
Four integrated circuits are used in the design, these being a 555, two 4017 decade counters and a 4013 type "D" dual flip flop.

CIRCUIT OPERATION

The circuit of the game is shown in Fig. 1. IC1 is the 555 connected as a table multivibrator having a frequency of around 550 Hz . When the "Bat" push-button is depressed the 555 output is applied to the clock input of the decade counter, IC2, the ten outputs of which go high in turn with each clock pulse. When the push-button is released the counter stops with one of its outputs high and the remainder all low. No connections are made to four of the outputs and if the counter stops with any of these high the 7 -segment display is not illuminated and no runs are scored. The remaining six outputs are fed via steering diodes and current limiting resistors to the display to indicate runs scored. Out of the six chances of making a score there are two chances of a single run, two chances of 2 runs, one chance of a 4 and one chance of a 6. This combination was found to be the most realistic after much experiment.
The bowling circuit operates on similar lines to the batting circuit. On depressing the "Bowl" push-button, clock pulses are fed into IC3, whose outputs similarly go high in turn. However, this time use is also made of the carry-out function on pin 12 which goes positive at the end of each decade count. This is used to clock one of the flip-flops in IC4, which is made to operate as a divide-by-two counter by coupling its not-Q output back to its data input. Each carry-out pulse then changes the state of the Q and not-Q outputs on alternate decades, with each output going high and low in turn.
Four of the IC3 outputs are used in conjunction with the Q and not-Q outputs of IC4 to light one of four l.e.d.'s. LED1 will light if IC3 pin 4 is high and IC4 pin 1 is low, LED2 will light if IC3 pin 5 is high and IC4 pin 1 is low. The other two l.e.d.'s will light when IC 4 pin 2 is low. It can be seen that there are 4 chances in 20 of one of the l.e.d.'s lighting up when the "Bat" push-button is depressed and released. Three

COMPONENTS

Resistors

(All $\frac{1}{4}$ watt 5%)
R1 $8.2 \mathrm{k} \Omega$
R2 $56 \mathrm{k} \Omega$
R3-R5 $22 \mathrm{k} \Omega$
R6-R16 680Ω
R17 $22 \mathrm{k} \Omega$
Capacitors
C1 $100 \mu \mathrm{~F}$ electrolytic, 10 V . Wkg.
C2 $0.022 \mu \mathrm{~F}$

Semiconductors

IC1 555
IC2 4017
IC3 4017
IC4 4013
D1-D23 1N4148
Light-Emitting Diodes
LED1 green l.e.d., 0.2 in . dia LED2-4 red l.e.d., 0.2 in . dia
Common cathode 7 -segment display (see text)

Switches
S1 s.p.s.t. miniature toggle PB1-PB3 push-button, push to make

Miscellaneous

Plastic case (see text) 9 volt battery type PP3 Battery connector Printed circuit board Veroboard, 0.1 in. matrix Wire, etc

(b)

Fig. 2.(a). The copper side of the printed circuit board. This is reproduced full size
(b). The component side of the board. First to be fitted is the specially prepared Veroboard item of (c), which has to be correctly aligned in position
of the l.e.d.'s are labelled to indicate a wicket "Bowled", "Caught" or "L.B.W". The fourth l.e.d. indicates a "Wide".
The game is provided with a Reset push-button which, when depressed, connects pins 15 of IC2 and IC3 to the positive rail. This returns both i.c.'s to the zero output condition. Since no connections are made to either of the zero output pins, both displays are thus cancelled.

No connections are made to the unused flip-flop in IC4, and this arrangement functions satifactorily in practice. The current drawn from the 9 volt battery is
about 6 mA with the display and the 1.e.d.'s extinguished. It rises to about 20 mA when the display indicates a score and to approximately 10 mA if one of the four l.e.d.'s is alight.

CONSTRUCTION

The majority of components are assembled on a printed board, the copper side of which is shown full size in Fig. 2 (a). Before any components are mounted, however, it is necessary to fix, on the plain side of the board, the 0.1 in . Veroboard item shown in

(c)

(d)

Fig. 2(c). How the Veroboard item is prepared. The holes are not drilled until after the Veroboard has been secured to the printed circuit board
(d). A side view of the Veroboard and printed circuit board assembly

Fig. 2 (c). Alternate copper strips are removed from the Veroboard, and this process can be carried out quite easily by using a sharp knife and carefully peeling back the copper. The 7 breaks in the copper strips are next made. The board is then glued on the plain side of the printed board, copper strips uppermost, to take up the position shown in Fig. 2 (b). Bostik or a similar adhesive may be used. After the glue has set, the holes illustrated in Fig. (2) (c) are next drilled, these being in the Veroboard areas from which the copper has been removed. If the Veroboard and printed board have been aligned accurately, the holes will pass through
the printed board in the positions shown in Fig. 2 (a). The diodes in the diode matrix can now be carefully soldered in place as illustrated in Fig. 2 (b). Each diode anode connects to the copper print, and each diode cathode connects to a Veroboard copper strip. Also soldered into place are the series resistors R10 to R16. These are soldered to the Veroboard copper strips. Fig. 2 (d) gives a side view of the Veroboard and printed board assembly. Wires from the end of the Veroboard connect to the 7 -segment display.
The remaining components on the printed board can now be soldered in position. The prototype game was housed in a plastic case measuring about 6 by

Fig. 3. The wiring and components on the front panel. The numbers from 1 to 13 correspond with those in Fig. 2(b)
$31 / 8 \mathrm{in}$. and about 2 in . deep. Any small plastic case capable of taking the components and battery can of course be used. The printed board was secured to the base of the case with thin flexible leads coupling it to the front panel components, the leads being long enough to allow the front panel to be removed. The front panel is cut out and wired as shown in Fig. 3. The display was glued in place after having first glued a piece of red Cellophane over the aperture from the rear. The display used was an Archer type 276-062, and this should be available at Tandy dealers. An alternative display is the FND500, which is available

Fig. 4. An alternative display to that used in the prototype is the FND500. This has the pinning shown here
from a number of suppliers. The FND500 has the pin layout shown in Fig. 4.
The panel lettering should be carried out before mounting the panel components. In the prototype, the l.e.d.'s were push fits into the holes in the panel, but panel mounting bushes could be used if desired. Obviously, constructors will have their own ideas on layout and presentation.

THE PLAYING RULES

The author has drawn up a set of playing rules as "standard" but any variation can be played as a matter of personal choice. In the standard game each player has five wickets; this makes the game lively and interesting with players having a reasonably short turn-round time. The game can of course be played on more conventional lines with ten wickets per player, but it can then become rather frustrating for the bowler when for a long time he goes without taking a wicket and sees the cheery face of the batsman piling on the runs.
The bowler starts by depressing the "Bowl" push-button and if he fails to get a wicket the batsman presses the "Bat" button. The score, if any, is noted on a pad, and it is best to keep a running score as the game proceeds. The bowler then tries again and play alternates until the bowler takes a wicket or bowls a wide, in which case he bowls again. In the case of a wide, however, the batsman is credited with one run! When the fifth wicket has fallen the bowler takes his turn to bat and tries to beat the score. The game can be played over two innings, if preferred.

FAX PROGRESS

Report by Arthur C. Gee

Regular Bulletin for Amateur Radio Facsimile Enthusiasts

Facsimile transmission and reception is gradually catching on amongst the more experimentally minded radio amateurs, but progress has been slow since permission was granted recently to use this mode.
One step which may well help to encourage interest, is the establishment by Hans J. Schalk, DJ8BT, of Frankfurt, of a regular FAX Bulletin, transmitted on Saturdays and Sundays on the 80 and 20 metre amateur bands. Hans is reproducing in facsimile form the regular DARC News Bulletin, "DL-Rundspruch", so that those with FAX equipment, or those interested enough in this mode to be contemplating getting suitable equipment, have something to receive regularly, of an amateur radio interest.
The equipment used is a HELL HF 146 FAX Transceiver, which is a relatively modern and transistorised unit. The drum speed however, is a fixed

Hans J. Schalk in his shack.
one of 180 r.p.m., so that, to make it more versatile, Hans built a frequency divider and mixer unit, which now enables him to use all commercial drum speeds, viz.r $60,90,120$,

The equipment used at a FAX demonstration at "HAM RADIO 80" held at Fridrickshafen/Badensee.

180 and 240 r.p.m. For his bulletins, a speed of 120 r.p.m. is used, but other drum speeds will be used if requested. The transmission time for one A4 sized page takes about ten minutes and the "DL-Rundspruch", which usually runs to two pages or so, takes about 25 minutes. A CO and Test Chart transmission is run for ten minutes before the Bulletin transmission.

Transmission schedules are as follows:
Saturdays 1800 hrs GMT on 3605 MHz - F4/800 Hz.
Sundays 1000 hrs GMT on $14105 \mathrm{MHz}-\mathrm{F} 4 / 800 \mathrm{~Hz}$.
As Hans says, now that there is a regular weekly FAX Bulletin this should encourage activity in this mode, as alf FAX machine owners will have a weekly opportunity of testing out their equipment. Maybe this new service will give new life to some "long forgotten and dusty" FAX machines.

FIXING AN F.M. RADIO

Contentedly, Smithy watched his assistant as, leisurely, Dick brought the small f.m.-a.m. radio over to the bench. Yet another highly successful day could be chalked up in the favour of Dick and Smithy, and there were now at least two hours to go before they officially closed up shop for the day. The "Repaired" rack groaned under the weight of sets made serviceable by the indefatigable efforts of our talented pair. For most of the time they had proceeded along their own separate paths but on several occasions Dick had had to call in the aid of Smithy, who had instituted schemes of fault diagnosis and trouble-shooting which led to the successful location of Dick's snags. After this followed the triumphant installation, with impeccable solder joints on the part of Dick, of the replacement part which was needed to bring the set concerned back to its fully functional level. Dick would be the first to state that, whilst he might not be too hot on theory, he wielded a mean soldering iron.

F.M.-A.M. RADIO

Thus it was that the pair elected to work together on the very last set awaiting repair: the little f.m.-a.m. radio which Dick was now placing on the
surface of Smithy's bench. Dick settled himself comfortably on the stool he had brought over from his own bench and operated the volume control of the radio to switch it on. The sound of a punk rock group filled the Workshop. Dick adjusted the tuning control and was able to receive both Radio 2 and Radio 3. He had patently been tuned to Radio 1 when he first turned on the set and the tuning performance of the radio showed that it was switched to a.m., whereupon it was covering the medium wave band with no access to Radio 4. Dick looked at the back of the set, to find a small 2-way slide switch with its positions marked "AM" and "FM". With a.m. selected the receiver was limited to the medium wave band only, but it showed no signs of covering this band other than with a perfectly acceptable efficiency.
"It's okay on a.m., Smithy." he announced. "I'll try it on f.m. now."

He moved the slide switch to the "FM" position, pulled out the telescopic aerial and tuned across the band. The set was silent.
"Well there's our snag," pronounced Smithy. "The set isn't working on f.m. I suppose we'd better do the obvious thing first and check battery voltage."

Dick removed the battery
cover, to reveal four HP7 cells. He was able to get his test prods to the end spring contacts for the cells and the meter on Smithy's bench indicated about 5.75 volts with the set switched on at a low volume setting and with either f.m. or a.m. selected.
"We can," said Smithy cheerfully, "take our time over this. The f.m. section in these sets is usually the first to stop working properly when the battery voltage falls, but it shouldn't go completely dead when the battery voltage is only a little below 6 volts. The fact that the same voltage was given with both a.m. and f.m. selected means that the loading on the battery is probably the same on both bands so that, at least, there isn't excessive battery current drawn when f.m. is selected. Get the back off, Dick, and I'll see if I can find the service sheet."

Some minutes later, Smithy returned to his bench with a service manual, to find Dick carefully examining the receiver printed board for obvious visible faults.
"Everything looks all right," stated Dick.
"Fair enough,' responded Smithy, looking at the receiver circuit diagram. "This set has got two transistor amplifying stages which are common to both the a.m. intermediate

frequency of 470 kHz , and the f.m. i.f. of 10.7 MHz . We're not in any hurry, so let's take things easy and just assume that, since these two stages are okay on a.m., they should also be okay on f.m. Which means that we might as well turn our attention first to the section of the radio which takes in the f.m. front-end and the f.m. first i.f. transistor."

Smithy pointed to the appropriate section of the receiver circuit. (Fig. 1.)
"Dear, oh dear." sighed Dick. "This is another of those circuits where the positive rail is common to chassis and the negative rail is at the top of the diagram. And we've got transistors with those Japanese type numbers, too."
"Look them up in Towers'."
"'Okeydoke," said Dick, as he stood up, reached to the shelf above Smithy's bench and took down the Workshop copy of Towers International Transistor Selector, Up-Date 2. He turned through the pages and then found the transistor types which were employed in the circuit.
"All three transistors are n.p.n. silicon," he said. "TR1 and TR2 are v.h.f. amplifiers and TR3 is a general purpose type."
"Very good," said Smithy, "Well, the i.f. transistor, TR3, is obviously connected as a common emitter amplifier."'

Dick looked at the circuit dubiously.
"If you say so."
"I do say so." Smithy pulled his note-pad towards him and picked up a ball-point pen. "If| redraw the circuit with the positive rail at the top, you can see that it's a very straightforward common emitter stage."

Smithy busied himself with his pen, then showed the circuit he had sketched out to Dick. (Fig. 2.)
"That $0.022 \mu \mathrm{~F}$ emitter bypass capacitor," objected Dick, "doesn't go to the negative rail, it goes to the positive rail."
"So what? Both rails are coupled together by a $0.04 \mu \mathrm{~F}$ capacitor at the arm of the a.m.-f.m. switch, so that the emitter bypass capacitor can be returned to either."
"What about the 56Ω resistor

Fig. 2. TR3 is employed in the common emitter mode, as can be clearly seen if the circuit around it is redrawn with the positive supply rail at the top.
in the base circuit and the 270Ω resistor in the collector circuit?"
"You get these in f.m. i.f. "stages," explained Smithy. "They help to reduce the effects of impulsive interference."

COMMON BASE AMPLIFIER

"Humph," grunted Dick. He turned his attention to the first stage in the front end. "Hey, what about TR1? Don't tell me that that's in a common emitter circuit as well."
"No, it isn't. It's in a common base circuit. Let me show you

IC \& IE
Fig. 3. The basic common base transistor configuration. Input and output signals may be applied to and obtained from the emitter and collector respectively via coupling capacitors. Current is assumed to flow from positive to negative. With an n.p.n. transistor, battery polarities and current directions are reversed.
the basic common base configuration."

Again, Smithy's pen passed quickly over the top sheet of his note-pad. (Fig. 3.)
"This is a common base amplifier," he went on. "I've used a p.n.p. transistor instead of an n.p.n. one because this makes it easier to visualise the currents which flow. The base is connected to a common rail which we can conveniently refer to as 'earth'. Battery BY1 and resistor R1 cause a forward current to flow in the emitter-base junction of the transistor. A collector current flows in resistor R2, which is supplied by battery BY2. As you can see, I've put in two little arrows and called the currents IE and IC."
"What's the relationship between these two currents?"
"They're virtually the same."
"The same?" repeated Dick incredulously. "Come on Smithy, you're having me on!"'
"No, I'm not"," replied Smithy. "Provided R2 is not too high in value, the current which flows in it is almost exactly the same as the current which flows in R1."
"But that can't be true," protested Dick. "You've got two separate circuits here. One circuit is given with BY1 and R1, and the other circuit is given with BY2 and R2. Are you telling me that if R1 has a value which causes 1 mA to flow in it, there will be 1 mA flowing in R2?"'
"I am," said Smithy. "Or at least there will be very nearly 1 mA in R2. If I reduced the value of R1 so that it passed 5 mA , there'd be almost exactly 5 mA in R2 as well. Similarly, if 1 increased R1 so that only 0.2 mA flowed in it, then the current in R2 would also be virtually 0.2 mA ."
"Whatever," queried Dick "the value of R2?"
"Regardless of the value of R2," confirmed Smithy, "provided that it's low enough to allow the collector current to pass."
"Would that 0.2 mA flow, even if R2 had as low a value as, say, 10Ω ?"
"It would flow," Smithy assured him gravely, "if R2 were a short-circuit!"

Dick gazed at Smithy's circuit.
"I don't believe it!"
Smithy glanced at Dick's perplexed face.
"I suppose it does take a little imagination to see the effect," he said. "Let me see if I can show it you in a way you'll understand more easily."
He scratched his head thoughtfully, then picked up his pen as a thought occurred to him.
"Let me re-draw that common base circuit," he said slowly, "so that battery BY1 is above battery BY2."

He drew out a new circuit diagram and then showed it to Dick. (Fig. 4(a).)
"Does that," he asked, "make it clearer?"

Dick scowled down at the re-arrangement of the circuit symbols.
"I'm afraid not, Smithy. All you've done is move the batteries and resistors about a bit. I'm still baffled!"
"All right," said Smithy equably, "I'll now make another change. l'll keep BY1 and BY2 in series to give the same overall supply voltage that we had before. But I won't connect the junction of the two batteries to the transistor base. Instead, l'll feed that base by the steady voltage dropped across a zener diode having the same voltage as BY1. Here's the idea."

Smithy sketched out his new circuit then looked expectantly at his assistant. (Fig. 4(b).)
"That," said Dick frowning,

(a)

(b)

Fig. 4(a). Redrawing the circuit of Fig. 3 with battery BY1 above BY2. (b). Here, the connection between the batteries and the transistor base is removed and a zener diode added. The voltage across the diode is the same as that previously provided by BY1.
"looks very familiar to me." "Think about it."
"Why, of course," exclaimed Dick. "It's the circuit of a constant current generator! The transistor base is held at a fixed potential by the zener diode, and the voltage across the diode, minus about 0.6 volt dropped in the transistor base-emitter junction, appears across R1. Since the voltage across R1 is fixed, the current which flows in it must also be fixed. The collector current is the same as the emitter current and so a constant current is given in R2 regardless of its value."
"Provided," stated Smithy, "that R2 has a value which is not too high to allow the current to flow. You should also have mentioned that the current in R2 is not precisely the same as that in R1, because the current in R1 is the collector current plus the very small base current which allows the collector current to flow. If the
transistor has a high current gain, though, the emitter and collector currents are nearly identical."
"I've got all that," said Dick quickly. "Let's go back to the circuit you drew just before. That's the first one where you put BY1 over BY2. I can see now how this gives the same sort of constant current performance as the circuit with the zener diode. The current which flows in R2 must be the same current, less the much smaller base current, as that which flows in R1. Gosh, it takes a bit of thinking about, though!"
"What you have to remember," said Smithy, "is that, with a common base amplifier stage, the actual supply voltage is given by BY1 and BY2 in series. The current which BY1 supplies is then virtually the same as that which BY2 supplies. We tend to think of bias current as being much smaller than collector current because we're so used to the common emitter circuit. But in the common base circuit the bias current to the emitter, provided by BY1 in our example, is actually a little higher than the collector current."

INPUT TRANSISTOR

"That's really cleared up this common base business for me," said Dick enthusiastically. "Wait a minute, though!"
"What's up now?"
"You said that the first transistor in this f.m. front-end was connected as a common base amplifier. But there's no BY1 and BY2 in the receiver circuit - there are just negative and positive supply rails."
Smithy busied himself once more with his pen. After some moments he showed a further circuit to his assistant. (Fig. 5.)
"Here's that r.f. amplifier transistor," he said. "An input from the aerial goes to its emitter, and an output from the collector goes to the signal frequency tuned circuit. A current is applied to the base via the $100 \mathrm{k} \Omega$ resistor, with the result that virtually the same current flows through the $1.2 \mathrm{k} \Omega$ emitter resistor and the coil in the collector tuned circuit. The important bit here is that the base is bypassed to

ELECTRONIC

TUTOR KITS

Learn electronics the effective way by experiments. Each kit contains an illustrated handbook, which takes you step by step through the fundamentals of electronics, plus all the components needed. No soldering. Safe and instructive for even the young enthusiast. Kit $\mathbf{1 ,} \mathbf{£ 5 . 8 5 .}$. Kit 2 , £5.95. Kit $3, \mathbf{£ 6 . 1 5}$. SAE for leaflets on this and other RXG products.

RXG ELECTRONICS LTD.
15 Walnut Tree Crescent,
Sawbridgeworth, Herts, CM21 9EB.

PEATS for PARTS ELECTRONIC COMPONENTS RADIO \& TELEVISION

For the convenience of Irish enthusiasts we supply:
Radio \& Electronics Constructor Data Books Panel Signs Transfers Also a postal service

Fig. 5. TR1 in the receiver circuit functions as a common base amplifier at r.f. because of the $0.0047 \mu \mathrm{~F} \quad$ capacitor coupling its base to chassis.
chassis via a $0.0047 \mu \mathrm{~F}$ capacitor. This means that so far as r.f. is concerned, that base is as common with chassis as it would be if there was a direct connection. Got it?"
"Blimey, yes. But there's something else I've thought of!"
"Go on."
"If the standing emitter and collector currents are virtually equal, an r.f. current in the base circuit will produce the same r.f. current in the collector circuit. What's the use of a transistor which provides no current gain?"
"The r.f. current gain the transistor provides," said Smithy, "is, as you rightly point out, just about unity. In fact, it's very slightly less than unity. On the other hand, the input impedance at the transistor emitter is low and the output impedance at the collector is very high. So, whilst the transistor may not offer any current gain it can, given the right components in the emitter and collector circuits, provide a considerable degree of voltage gain. As you can see, the collector of the transistor goes straight into the whole signal frequency tuned circuit. It doesn't go into a tap in the coil as would normally occur with a common emitter amplifier. There's another thing, too. When a transistor is connected in common base it maintains its amplification up to frequencies which are very
much higher than would be given when it is in common emitter. That's why common base transistors are so frequently found in the r.f. amplifier and mixer-oscillator stages of f.m. receiver front-ends."

Dick turned his attention to the receiver service manual.
"That mixer-oscillator transistor has to be in common base, too," he said. "Its base is bypassed to chassis by another $0.0047 \mu \mathrm{~F}$ capacitor."
"That's right," confirmed Smithy. "Now, another feature of transistors in the common base configuration is that, voltage-wise, the emitter and collector are in phase. If the emitter is taken negative of the base, the effect on collector current is the same as if, with a common emitter transistor, the base is taken positive of the emitter. In other words, taking the emitter of a common base transistor negative causes the collector to go negative, too. In the same way, taking the emitter positive causes the collector to go positive as well. So far as the mixer-oscillator transistor is concerned this means that a simple capacitive coupling from the collector back to the emitter is all that is required to make it oscillate. If you look at the service manual circuit again you'll see that the mixer-oscillator collector connects through the primary of the first 10.7 MHz i.f. transformer to the top end of the oscillator tuned circuit. And the top end of that tuned circuit couples back to the emitter through a 5 pF capacitor."
"Well," grinned Dick, "you couldn't have things much simpler than that. There's a 1 N60 diode across the i.f. transformer primary. What's that for?"
"It's another component to reduce the effects of impulsive interference," replied Smithy. "The 1 N 60 is a germanium diode which is primarily intended as a video detector. In this circuit it turns on and damps the i.f. tuned circuit if there are any interference signal spikes. It also prevents excessively high signal levels getting into the i.f. amplifier."
"There's another 1N60 diode across the oscillator tuned circuit."
"That one does much the same sort of thing. It limits oscillator frequency amplitude to about the same level over the tuning , range. Any more questions?"
"Nope."
"Good," pronounced Smithy. "Let's get down to some servicing then."
"You said earlier," commented Dick, "that the common i.f. amplifier stages should be all right."
"I only said that we'd start of by assuming they're all right. It's quite possible that the snag is in that common amplifier. But, as we're taking it easy, let's keep on playing hunches. If we continue with the assumption that it's the f.m. front-end which is at fault then a few unhurried voltage checks won't do any harm at all. Let's first check that the f.m.-a.m. switch is doing its job properly and is allowing power to get to the front-end. Perhaps you could keep an eye on the needle of my testmeter while I see what voltages are available."

Smithy turned to the printed circuit layout diagram in the service manual, and noted that his trusty analogue testmeter was switched to $0-10$ volts d.c., as it had been when Dick used it to measure the battery voltage. He turned on the receiver, ensured that it was switched to f.m. and rested his positive test prod on the first i.f. transformer can to obtain a positive supply connection. After some scrutiny he applied the negative prod to the negative supply for the first transistor in the front-end. (Fig. 6(a).)
"Any reading?"
"Are you checking the supply rail voltage?"
"I am."
"Well," said Dick, "you're getting a reading of about 5 volts. Shouldn"t it be the same as the battery voltage we measured earlier?!"
"It will be lower that that," said Smithy. "There are several series decoupling resistors in the negative rail between the negative battery terminal and the point I'm checking now. I'll check the emitter of the first transistor next. Now, where is that on the board? Ah, here it is!"

(b)

Fig. 6(a). Smithy first checked to ensure that a supply voltage was being passed to the f.m. front-end.
(b). He next measured the voltage at TR1 emitter. (c). Finally, he applied his testmeter across the $100 k \Omega$ base resistor, with rather surprising results.

(c)

Smithy applied his test prod to the transistor emitter. (Fig. 6(b).)
"The meter's giving pretty well the same reading," stated Dick. "Just about 5 volts."
Smithy raised an eyebrow.
"Is it now?" he remarked. "Don't tell me that I'm already on to something. I'll check the base of that first transistor next. Here we go!" (Fig. 6(c).)

Smithy placed the test prod end against the transistor base. There was a noticeable crackle from the receiver loudspeaker which then, to Dick's utter amazement, proceeded to give a distorted musical output.
"Blimey, Smithy, what did you do there?"

But Smithy was not yet ready to explain the phenomenon.
"See if you can tune in that station properly."

As Smithy kept the test prods in place, Dick adjusted the receiver tuning. This soon allowed the received signal to be heard clearly. Smithy removed his negative test prod and the music ceased. He re-applied the prod and the music once more became audible.
"Come on, Smithy! What the heck is happening there?"
"I've bridged the $100 \mathrm{k} \Omega$ base resistor for the first transistor with the resistance of my
testmeter," said Smithy cheerfully. "My testmeter's got a resistance of 20,00 ohms per volt and so l'm putting $200 \mathrm{k} \Omega$ across what is bound to be an open-circuit $100 \mathrm{k} \Omega$ resistor. The meter resistance is enough to turn the transistor on, although it won't be passing the full current it ought to. The long testmeter leads won't upset matters, incidentally, because they're bypassed by the - $0.0047 \mu \mathrm{~F}$ capacitor between the base and chassis. So it looks as though all we need to do is to fit a new $100 \mathrm{k} \Omega$ resistor in this set."

TAKING IT EASY

Contentedly, Smithy watched his assistantas, leisurely, Dick proceeded to remove the faulty open-circuit $100 \mathrm{k} \Omega$ resistor from the receiver printed board. The chalking up in their favour on this highly successful day had been further augmented by this final felicitous adventure in fault finding. Dick soldered in a replacement resistor, and they listened to the radio as it now gave a faultless performance on its f.m. range. Unhurriedly, Dick refitted the printed board in the cabinet, screwed on the back, gave the set a last check to make certain that all was well and carried it over to the "Repaired" rack.

BY THE G3HSC RHYTHM METHOD!
These courses which have been sold for over 25 years, have been proven many times to be-the fastest method of learning Morse. You start right away by learning the sounds of the various letters, numbers, etc., as you will in fact use them. Not a series of dots and dashes which later you will have to translate into letters and words. Using scientifically prepared 3 speed records you automatically learn to recognise the code, RHYTHM without translating. You can't help it. It's as easy as learning a tune. 18 WPM in 4 weeks guaranteed.
The Complete Course consists of three records as well as instruction books.
Complete Course £5.50 U.K. p/p 75p. (Overseas postage sufficient for 750 grm). Details only s.a.e.
THE G3HSC MORSE CENTRE
S. Bennett, (Box 8), 45 Green Lane, Purley, Surrey.

Name
Address

THE
 MODERN BOOK CO.

Largest selection of English \& American radio and technical books in the country.

19-21 PRAED STREET LONDON W2 1NP

Tel: 01-402 9176

Please mention
Radio \& Electronics Constructor
when replying to advertisements

SINGLE I.C.
 SIGNAL TRACER
 By
 M. V. Hastings
 Inexpensive design with low component count
 Traces a.f. and modulated r.f. signals
 Two gain levels

This simple test instrument is suitable for tracing both audio frequency and amplitude modulated radio frequency signals, and is therefore suitable for fault-finding on audio and a.m. radio equipment. The unit is inexpensive since it incorporates only a single integrated circuit and a few passive components. The circuit is powered by a 9 volt battery and the output is applied to a crystal earphone. Two levels of voltage gain are available, one being 20 dB (10 times) and the other $60 \mathrm{~dB}(1,000$ times $)$. The tracer can in consequence detect very low level signals but need not be overloaded by higher level signals.

CIRCUIT OPERATION

Fig. 1 shows the circuit and, as will be apparent to many readers, the tracer is basically an operational amplifier used in the inverting mode. The LF351 has a very high resistance Jfet input and, in consequence, has a low noise level. This last factor is very important because weak signals must not be masked by noise generated in the amplifier.

To avoid the need for dual supply rails, the equal value resistors R3 and R4 bias the non-inverting input of the LF351 to a mid-supply voltage. There is 100% negative feedback at d.c. via R5 which causes the quiescent output voltage to be at the same level as the non-inverting input. This enables the output to
have what is virtually the maximum possible voltage output swing before clipping and serious distortion occur.

Fig. 1. The circuit of the signal tracer. This is switched on when the earphone plug is inserted into socket JK1.

The signal tracer is housed in a small plastic case which can be held in the hand. The probe tip at the end is then applied to the test points in the equipment being checked.

Assuming a relatively low impedance at the point to which the signal tracer connects, the voltage gain is equal to the value of the feedback resistor divided by the value of the resistor in series with the inverting input. When S1 is in the "Low" position these two resistor values are $10 \mathrm{~m} \Omega$ (R5) and $1 \mathrm{M} \Omega$ (R1) respectively and the voltage gain is therefore 10 times. Setting S1 to the "High" position connects the $10 \mathrm{k} \Omega$ resistor R 2 across R 1 , so that the series input resistance is effectively $10 \mathrm{k} \Omega$ and the voltage gain is 1,000 times.
D.C. blocking is provided at the input by C2. No d.c. blocking is required at the output because a crystal earphone imposes no significant d.c. loading. It is quite in order, also, for the crystal earphone to have the amplifier quiescent output voltage across it. On-off switching is given at the output jack socket, where a contact connects the negative battery terminal to the amplifier when the crystal earphone is plugged in. Removing the earphone plug causes the amplifier to be switched off again. The circuit has a current consumption of approximately 2 mA only.

CONSTRUCTION

A white plastic case measuring about 114 by 76 by 38 mm is used to house the prototype signal generator, and this is a case type PB1, available from Maplin Electronic Supplies. A small case of about this size is desirable because it can then be held in the hand and used as a probe.

The layout employed can be seen in the photographs. A long 4BA or M4 bolt is mounted at one end of the case and is used as the probe tip. If desired, its end can be filed to a point. A solder tag is fitted under the bolt head inside the case to allow connection to be made to the bolt. A plain washer should be fitted outside the case under the securing nut. A small hole about 2 mm in diameter is drilled at

COMPONENTS

Resistors

(All $\frac{1}{4}$ watt 5% unless otherwise stated)
R1 $1 \mathrm{M} \Omega$
R2 $10 \mathrm{k} \Omega$
R3 $15 \mathrm{k} \Omega$
R4 $15 \mathrm{k} \Omega$
R5 10M $\Omega 10 \%$

Capacitors

C1 $0.1 \mu \mathrm{~F}$ polyester type C280
C2 $0.1 \mu \mathrm{~F}$ polyester type C280

Integrated Circuit

IC1 LF351

Switch

S1 s.p.s.t. sub-miniature toggle

Socket

JK1 3.5 mm jack socket, modified (see text)

Miscellaneous

Small plastic case (see text)
9 volt battery type PP3
Battery connector
Crystal earphone with 3.5 mm jack plug
Veroboard, 0.1 in matrix
Earth test clip (see text)
Nuts, bolts, wire, etc.

> The Vereboard assembly. This accommodates the single i.c. used in the tracer together with a small number of resistors and capacitors.
the same end of the plastic case, and this will eventually take the lead which connects to the earth clip. This can be a crocodile clip or any other convenient form of test clip. Switch S1 and socket JK1 are mounted on one side of the case, with the switch closer to the probe tip.
JK1 is an ordinary 3.5 mm jack socket of open construction, normally having a contact which breaks when a plug is inserted. The socket is modified so that the contact makes with insertion of the plug. The unmodified socket has a contact set consisting of two pieces of metal, one fixed and the other springy so that it moves away from the fixed piece when the plug is inserted. The fixed piece is carefully bent downwards under the springy section so that the two are not normally in contact and only come together when the plug is fitted. The modified socket should have the appearance illustrated in Fi'g. 2. Make quite sure that the two parts of the contact set are not touching when the plug is not in the socket, as the unit will be permanently switched on if this should be allowed to happen.

COMPONENT PANEL

Most of the circuitry is assembled on a piece of 0.1 in Veroboard having 13 holes by 13 copper strips: Fig. 3 gives details.

The board has first to be cut out from a larger piece, after which the two mounting holes are drilled. These can be clearance size for 6BA or M3 bolts. The 4
breaks in the copper strips are next made, using the special Vero tool or a small drill bit held in the hand. The components and link wires are next soldered in place, these being followed by the leads which connect to the components external to the board. The external wiring is finally completed, after which the Veroboard panel is mounted inside the case by two 6BA or M3 bolts with nuts. It takes up the position shown in the photograph of the case interior. Spacing washers should be fitted over the bolts to keep the panel underside clear of the inside surface of the case. The flexible lead which connect to the earth test clip can be about 18in long. A blob of glue can be used to secure it at the Veroboard hole at which it connects in order to reduce strain on the copper strip at the soldered joint. There is plenty of space for the PP3 battery. If a piece of sponge plastic is placed over the battery it will be held in position when the case lid is screwed on.

USING THE UNIT

There must, of course, be a signal fed into the input of the equipment being tested when the signal tracer is in use. This signal can be provided by a signal generator, but the normal signal source of the equipment is just as good. The earthing clip of the tracer is connected to the chassis of the equipment being checked and the probe tip is then applied to various points, starting at the input and working towards the output.

Fig. 2. Socket JK1 after modification. The fixed contact is carefully bent so that its end is below the springy contact instead of above it. The contacts should touch each other only when a jack plug is inserted.

Fig. 3. Layout and wiring on the Veroboard panel. Also shown are the connections external to the panel.

The Veroboard is mounted inside the case near the probe tip. Note its orientation and positioning.

In this view the gain switch S1 is uppermost, with the jack socket below it.

Note that if the equipment is mains operated, the signal tracer may only be used when the equipment chassis is fully isolated from the mains supply by a double-wound mains power transformer. The tracer must not be used with equipment having a direct connection between chassis and mains because of the risk of a dangerous shock.

The person employing the signal tracer uses his own initiative in selecting test points. In general, the first test is made at the base of the input transistor, the second at its collector, the third at the base of the following transistor, and so on. If, say, there is a satisfactory signal at the base of a transistor and the signal is absent or is seriously distorted at its collector, then the fault obviously lies in the transistor or its associated circuitry. The transistor itself may be faulty or the collector load could, for example, have gone open or short-circuit. The primary function of a signal tracer is to find the area in which a fault lies. Component checks and/or voltage tests are then used to finally pin-point the fault.

A nother use for the signal tracer is to check emitter bypass capacitors in circuits where a transistor emitter has a bias resistor connecting to chassis. If a significant signal level is present across the bypass capacitor this indicates that the bypass capacitor is not functioning correctly.

When tracing very low signal levels, as in the early i.f. stages of an a.m. radio receiver or the microphone input of a tape recorder, it will almost certainly be necessary to set S1 to the "High" position to obtain adequate sensitivity. However, for most tests the tracer will be overloaded unless S1 is switched to "Low". It is a good plan to use the signal tracer on serviceable equipment to obtain an idea of the signal level performance given at different stages.

On the face of it the unit is not suitable for r.f. signal tracing as there is no demodulation circuitry at the input. It is found in practice, however, that demodulation occurs within IC1, whereupon the unit is perfectly suitable for signal tracing in the i.f. stages of a.m. receivers.

Circular Hole Jig
 by

Home-made jig cuts out large clean holes

Quite often an electronics project demands that fairly large circular holes need to be cut in a plastic panel to provide speaker apertures or to take meters or similar items. Faced with this problem recently, I discovered that a conventional hole saw produced sizes too small or too large for the particular item to be mounted.

WOODEN JIG

The problem was solved quite simply by making up the jig shown in the diagram. The main section is a short length of scrap timber measuring about 6 in . long, $1 \frac{1}{2} \frac{1}{2}$. wide and $\frac{1}{2}$ in. thick. Also required are a 1 in . woodscrew, a $1 \frac{1}{2}$ in. metal bolt of $3 / 16$ in. diameter, two $3 / 16$ in. plain metal washers, a protective washer cut

The home-made jig uses readily available parts and can be used to cut clean circular holes in plastic panels.
out from an old carpet and a wing nut which fits on the $1 \frac{1}{2}$ in. bolt.
The end of the 1 in . woodscrew is filed to a squared point, and this point will cut cleanly through the plastic. Mark a centre line on the piece of wood and prick it about 1 in . from one end to receive the woodscrew. From this point mark out with a pair of dividers the required radius. Quite a number of radii can be accommodated on the single piece of wood to suit varying components by staggering the holes to be drilled.

When the marking out is complete, drill a threading hole for the woodscrew and an $3 / 2$ in. hole at the radius point to be used. Fit the woodscrew, allowing the point to project through the timber a little more than the thickness of the plastic to be cut, and the jig is then ready for use.

To cut the circular hole in the plastic, locate and drill a $3 / 16 \mathrm{in}$. hole at its centre. Fit a plain washer over the $1 \frac{1}{2}$ in. bolt and pass it through this hole from the underside. On the top of the plastic fit the protective washer, the wooden jig, a second plain washer and the wing nut. Tighten the wing nut with moderate pressure and turn the jig in a clockwise direction. The pointed woodscrew end will then cut through the plastic. Extra thick plastic can be tackled by reversing the jig and cutting from each side. Turning the jig in a clockwise direction maintains pressure on the cutting point.

RECIPROCAL WORKING

We regret that two obvious errors appeared in the article "Reciprocal Working", published in the December issue. The final term in the key sequence
on page 210 should, of course, be 0.047 . Also, the frequency in the last calculation on page 211 should be 2.36 Hz .

BOOK REVIEW

RADIO CONTROL FOR BEGINNERS. By F. G. Rayer, T.Eng. (C.E.I.), Assoc.I.E.R.E. 96 pages, $180 \times 105 \mathrm{~mm}$. Published by Bernard Babani (Publishing) Ltd. Price £1.75.

The purpose of this book is to provide an introduction to radio control of models for beginners in this popular hobby. It commences by discussing the principles of radio control in various systems, including single and multi-channel, and then deals with licence conditions. Next to be described is a typical transmitter, with constructional notes, and a tone modulator. A mini transmitter is next dealt with as also is the question of transmitter aerials.

The book next proceeds to receiver aerials and takes in a super-regenerative receiver and a superhet receiver, again with constructional information. After this, relays and actuators are covered, together with other mechanical details and transistor switching of controlled devices. The book concludes with a consideration of the controlled model, which may be aircraft, boat or car.
"We used a mini-computer dateline service"

*

Wilmslow Audio

THE firm for speakers!
SEND 50p FOR THE WORLDS BEST CATALOGUE OF SPEAKERS, DRIVE UNITS KITS, CROSSOVERS ETC. AND DISCOUNT PRICE LIST

WILKINS - CASTLE CELESTION
CHARTWELL COLES - DALESFORD
DECCA - EAGLE ELAC EMI - FANE
GAUSS GOODMANS HARBETH
N JORDAN
ER McKENZIE O MISSION
MONITOR AUDIO - MOTOROLA
PEERLESS - RADFORD - RAM
ROGERS - RICHARD ALLAN - SEAS
SHACKMAN STAG TANNOY
SHACKMAN STAG TANNOY-
FEDALE

WILMSLOW AUDIO dept rec

35/39 CHURCH STREET, WILMSLOW CHESHIRE SK9 1AS.
Tel: 0625-529599 for Mail Order \& Export of Drive Units, Kits, etc.
Tel: 0625-526213 (Swift of Wilmslow) for Hi-fi and complete speakers
 SPECIAL OFFERS
BRAND NEW METAL SLIDER POTENTIOMETERS
60 mm TRACK $1+100+$ Mains Rocker BZY96 ZENERS
500 ohm Lin. Mono 35p 28p switch with (21W)-6vZ 50K Log. Stereo $40 \mathrm{p} \quad 30 \mathrm{p}$ Neon 10 A . 1. 20peach 100 K Lin. Stereo $40 \mathrm{p} \quad 30 \mathrm{p} \quad$ D.P.S.T. Other values available in 45 mm track - send for list Send your orders to
DEPT. DP11, MARCO TRADING, THE OLD SCHOOL EDSTASTON, Nr. WEM, SHROPSHIRE SY4 5RJ Tel: Whixall (094872) 464/465
Please add 30 p postage and packing to each order and add 15% VAT to your total
order. Export add NO VAT but add postage. Air/Sea at cost order. Export add NO VAT but add postage. Air/Sea at cos

SMALL ADVERTISEMENTS

Use this form for your small advertisement To: The Advertisement Manager, Data Publications Ltd., 57 Maida Vale, London W9 1SN

Please insert the following advertisement in the
issue of RADIO \& ELECTRONICS CONSTRUCTOR

15 words at $12 p$ equals $£ 1.80$

ALL WORDING IN BLOCK LETTERS

PLEASE

I enclose remittance
being payment at $12 p$ a world. MINIMUM $£ 2.00$ Box Number, if required, $30 p$ extra.

NAME
ADDRESS

> Copy to be received four weeks prior to publication.
> Published on the 3 rd of every month, forward dated.

SMALL ADVERTISEMENTS

Rate: 12p per word. Minimum charge £2.00
Box No. 30p extra
Advertisements must be prepaid and all copy must be received by the 4 th of the month for insertion in the following month's issue. The Publishers cannot be held liable in any way for printing errors or omissions, nor can they accept responsibility for the bona fides of Advertisers. Where advertisements offer any equipment of a transmitting nature, readers are reminded that a licence is normally required. Replies to Box Numbers should be addressed to: Box No. -, Radio and Electronics Constructor, 57 Maida Vale, London, W9 1SN.

LEARN ELECTRONICS FAST. New, unique, brilliantly simple Tutronik system. Selected by BBC TV. No-soldering, 30-kwikbuild electronics projects. Learn fast to identify components, read circuit diagrams, break the colour code and connect circuits that really work. Kit complete with simple-to-follow instructions, circuit plans, components and Tutronic connection system in compact presentation wallet. Only $£ 12.95$ plus 75 p p. \& p. UK ($£ 2.75$ p. \& p. elsewhere). Available only from Dept. RE, Technocentre Ltd., 140 Norton Road, Stockton-on-Tees, TS20 2BG.

CONNECTING WIRE, single strand, PVC covered. Ideal for electronics experiments and Proto-Board work. 10 colours. 50 yds. $£ 1.50$. 100 yds. £2.50. J.D. Electronics, 69 Well Heads, Thornton. Bradford. W. Yorks.
ANY SINGLE SERVICE SHEET $£ 1$ plus S.A.E Thousands of different service/repair manuals/sheets in stock. Repair data your named TV $£ 6$ (with circuits $£ 8$). S.A.E newsletter, price lists, quotations. (0698-883334). Ausrec, 76 Churches, Larkhall, Lanarkshire.
INTERESTED IN RTTY? You should find the "RTTY Journal" of interest. Published in California, U.S.A., it gives a wide outlook on the current RTTY scene; RTTY-DX; DXCC Honour Roll; VHF RTTY news; and up to date technical articles are included. Specimen copies 35p from: The Subscription Manager, RTTY Journal, 21 Romany Road, Oulton Broad, Lowestoft, Suffolk; NR32 3PJ.
BOOKS FOR SALE: Experiments with Operational Amplifiers, by George B. Clayton. £3.75. Digital I.C. Equivalents \& Pin Connections, by Adrian Michaels, £1.20. Experimenting with Electronic Music by Brown \& Olsen. £1.20. Electric Model Car Racing by Laidlaw-Dickson. 60 p Electronics Unravelled by Kyle, £1. 106 Easy Eelectronics Projects - Beyond the Transistor, by Rufus p. Turner. £1.20. Auto Electronics Simplified, by Tab Books, £1.20. Practical Solid-State DC Power Supplies, by T. D. Towers. £1.00. Box No. G394.
(continued on page 381)

> Semi-Conductors • I.C.s • Optodevices \bullet Rs and Cs in great variety - Pots - Switches • Knobs Accessories •Tools • Materials • Connectors

Road, Englefield Green, Egham, Surrey
TW20 OHB. Phone: 33603 (London 87) STD 0784. Telox 264475
NORTHERN BRANCH (Personal shoppers Only): 680 Burnage Lane, Burnage Manchester M19 1NA. Phone (061) 4324945

A CAREER IN RADIO

Start training today and make sure you are qualified to take advantage of the many opportunities open to the trained person. ICS can further your technical knowledge and provide the specialist training so essential to success.
ICS, the world's most experienced home study college, has helped thousands of ambitious men to move up into higher paid jobs - they can do the same for you.

Fill in the coupon below and find out howl
There is a wide range of courses to choose from, including:

CITY \& GUILDS CERTIFICATES
Telecommunications Technicians' Radio TV Electronics Technicians Electrical Installations Technicians' Electrical Installation Work
Radlo Amateurs
MPT Radio Communications Cert EXAMINATION STUDENTS GUARANTEED COACHING UNTIL SUCCESSFUL

TECHNICAL TRAINING

ICS offer a wide choice of non-exam courses designed to equip you for a better job in your particular branch of electronics, Including:
Electronic Engineering \& Maintenance Computer Engineering/Programming Radio, TV \& Audio Engineering \& Servicing
Electrical Engineering Installations \& Contracting

COLOUR TV SERVICING

Technicians trained in TV Servicing are in constant demand. Learn all the techniques you need to service Colour and Mono TV sets through new home study course approved by leading manufacturer.

POST THIS COUPON OR TELEPHONE FOR FREE PROSPECTUS

I am interested in
Name
Age
Address

Occupation

Accredited
Accrodited
Momber of
Momber of
nternational Correspondence Schools Dept 2780, Intertext Hondence Schoois SW8 4UJ or phone 01-622 9911 (anytime)

8WATT IRON 		$\begin{array}{\|c\|c\|c\|c\|c\|c\|} \\ 28^{\circ} \end{array}$
SPARE BITS		
STANDS	4449	$80^{\text {P }}$
SOLDER: SEVBIT 20	70	12^{p}
	40	8^{\square}
LOWMELT [0	80°	2^{\square}
IC. DESOLDEEMNGB	127	$\underline{2^{\text {P }}}$
BIT SIZES: No.18(1.5m		$(3 \mathrm{~mm})$
Local Deate	rom Manut	
$\left(\begin{array}{lll} 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}\right.$		
Lıміт		
86-88 UNION ST. PL	OUTH	$\mathrm{LI} 3 \mathrm{HG}$

BUILD YOUR OWN

P.A., GROUP \& DISCO SPEAKERS by R. F. C. Stephens

Save money with this practical guide. Plans for 17 different designs, Line source, I.B., Horn and Reflex types, for $8^{\prime \prime}-18^{\prime \prime}$ drive units. $£ 3.95$ post free ($\$ 8$ overseas).
THE INFRA-BASS LOUDSPEAKER by G. Holliman
(full constructional details for versions using $15^{\prime \prime}, 12^{\prime \prime}$ and $10^{\prime \prime}$ (drive units). $£ 2.95$ post free ($\$ 6$ overseas).
THE DALESFORD SPEAKER BOOK by R. F. C. Stephens
This books is a must for the keen home constructor. Latest technology DIY designs. Plans for I.B., and Reffex designs for $10-100$ watts. Also unusual centre-bass system. $£ 2.20$ post free (\$5 overseas).

VAN KAREN PUBLISHING 5 Swan Street, Wilmslow, Cheshire-

PRINTED CIRCUIT BOARDS FOR "RADIO \& ELECTRONICS CONSTRUCTOR" PROJECTS.
OCT. 20dB amp. Part 1 68p plus 25p P\&P
NOV. 20dB amp. Part 2 62p plus 25p P\&P
NOV. Basic Med. Wave radio 69p plus 25p P\&P
DEC. Volume Expander $£ 2.25$ plus 25p P\&P All boards ready for use, roller tinned and drilled, glassfibre.
Trade enquiries welcome. Highly competitive prices. Write now for quote To:

BRB PRINTED CIRCUITS (REC) 109, Potter Street, Worksop, Notts. $\mathbf{S 8 0} 2 \mathrm{HL}$.

타밀
DATA PROCESSINE

UNDERSTAND DATA PROCESSING

NEW FOURTH EDITION

DATA PROCESSING, by Oliver \& Chapman, is now in its Fourth Edition

200 pages $98^{3 \prime \prime} \times 63^{\prime \prime \prime}$
PRICE $£ 2.95$
P.\&P. 48p

PUBLISHED BY D.P. PUBLICATIONS

The primary aim of this outstanding manual is to provide a simplified approach to the understanding of data processing - (previous knowledge of the subject is not necessary).

The 40 chapters and appendices cover the following topics: Introduction to Data Processing; Organisation and Method; Conventional Methods; Introduction to EDP and Computers; Hardware; Computer Files; Data Collection and Control; Programming and Software; flowcharts and Decision Tables; Systems Analyṣis; Applications; Management of EDP, etc.

A Manual for Business and Accountancy Students

Available from:
DATA PUBLICATIONS LTD., 57 MAIDA VALE, LONDON W9 1SN.

SMALL ADVERTISEMENTS
 (Continued from page 379)

BURGLAR ALARM EQUIPMENT. Top quality brand new free catalogue and price list. Sigma Security Systems, 13 St. John's Street, Oulton, Leeds, Yorks. LS26 8 JT.
FOR SALE: A number of "D \& S " three pin, fused, mains plugs and fuses. S.A.E. for details. Box No. G396.

JOIN THE INTERNATIONAL S.W. LEAGUE. Free services to members including Q.S.L. Bureau, Amateur and Broadcast Translation, Technical and Identification Dept. - both Broadcast and Fixed Stations; DX Certificates, contests and activities for the SWL and transmitting members. Monthly magazine, Monitor, containing articles of general interest to Broadcast and Amateur SWLs, Transmitter Section and League affairs, etc. League supplies such as badges, headed notepaper and envelopes, QSL cards, etc., are available at reasonable cost. Send for League particulars. Membership including monthly magazines, etc., $£ 6.00$ per annum. (U:K. and British Commonwealth), overseas $\$ 12.00$. Secretary ISWL, 1 Grove Road, Lydney, Glos., GL15 5JE.
U.K. AIRCRAFT frequencies list $£ 1$. U.K. marine frequencies list $£ 1$. Including HF VHF. P.L.H. Electronics, 20 Vallis Road, Frome, Somerset.
INTERESTED IN OSCAR? Then join AMSAT-UK. Newsletters, OSCAR NEWS Journal, prediction charts, etc. Details of membership from: Ron Broadbent, G3AAJ, 94 Herongate Road, Wanstead Park, London, E12 5EQ.

2 WATT General Purpose I.C. Amplifier Module with volume and tone controls. Needs $9 \mathrm{~V}-18 \mathrm{~V}$ p.s.u. or battery. $£ 4.00$. R.H. Electronics. 119 Fraser Road, Sheffield, S8 0JH.
FOR SALE: Damaged repairable cassette recorder and 10 cassettes. £15.00. J. Fulton, Derrynaseer, Dromore, Co. Tyrone, N. Ireland.
FOR SALE: Photographic enlarging equipment: Vivitar enlarger. Model E. 36 with 50 mm f. 3.5 and 75 mm f. 3.5 lenses. Kodak safety light. Kodak contrast filter set. 11 in. $x 14$ in. printing frame with copying facilities. Measuring flask. Three trays, three tweezers. Three plastic bottles. Clips. Printing paper. Antistatic brush for cleaning negatives. Kodak Photoguide Booklet. Man's protective apron. $£ 75$ o.n.o. Pair of Goodman's speakers 8 ohms, 15 watts, $£ 50$ o.n.o. R. L. Gee, 3 Longfellow Drive, Hutton, Essex, CM13 2QQ.

RADIO \& ELECTRONICS CONSTRUCTOR

 1969-1975, P.W./P.E. 1964-1970. 50p each. S.A.E. for refund if sold. C. Redwood, 45a Lulworth Avenue, Poole, Dorset, BH15 4DH.

Learn how to become a radio amateur in contact with the whole world. We give skilled preparation for the G.P.O. licence.
No previous knowledge required. Brochure without obligation to British National Radio \& Electronic School 4 Cleveland Road, Jersey, Channel Islands.

Nam

Address

REC/2/815
BLOCK CAPS PLEASE

THE SPECTACULAR

 1981 GREENWELDComponent Catalogue Bigger and better than averll!

60p discount vouchers
First Class reply paid envelope

- Free Bargain List
- Priority Order Form
- Vat inclusive prices
- Quantity prices for bulk buyers SEND $75 p$ FOR YOUR COPY NOWI!

CALC CHPS GOpll
New full spec. supplied with data. Type MK50321 - full function inc. memory. Only 60p.

DISPLAYS

8 and 9 digit 7-segment bubble type for above chips - most have minor faults dud segment etc. Mixture of 2 or 3 different types with data. 5 for $\mathbf{8 1 . 0 0}$

NICADS
Ex-equip size C approx. E1 each; 10 for $\mathbf{\$ 8 . 0 0}$

1N4006 DIODES
Special purchase of 1 A rects, Russian made: Packed in boxes of 300, $\mathbf{8 8 . 5 0}$ per box; 4 boxes $£ 30.00$; 10 boxes 875.00

DISC CERAMICS
0.22 uF 12 V 9 mm dia. Ideal for decoupling. 100 for $£ 2.75 ; 1000 £ 20.00$ 0.05 uF 12 V 15 mm dia. $100 \mathrm{E1.50}$; 1000 £ 12.00
Pack of disc ceramics, assorted values and voltages - 200 for $£ 1.00$ TRANSFORMERS
Mains primary, 50V 20A sec. $\mathbf{£ 2 0 . 0 0}$ Mains pri. 110 V 15 A sec $£ 30.00 ; 20 \mathrm{~A}$ $£ 40.00$
FSRA60 relay. $2 \times 10 \mathrm{~A}$ contact, 1 M , 1 B . Coil is 250 R , and rated 60 V ac. but works on 12-24V DC. Solid Encapsulation with screw terminals makes it ideal for car use. $\mathbf{£ 1 . 2 0}$

SLIDER POT SCOOPIII
Made by Piher, type PL40CP Silly prices for superb goods!! PL40CP - $69 \times 16 \times 9 \mathrm{~mm}, 40 \mathrm{~mm}$ slide length. 220R, 2 k 2 or 10 k lin only. Prices (any mix): 1-24 20p; 2599 17p; 100+ $14 p$.

TTL, LINEAR, OPTO
All new full spec - Fairchild/SGS TTL: 540054015402540354045405 5410542154305450545154535460 - All 12pes. 5470547254745475 54765480548654905410754121 54122 - All 20p ea. 548254126 -40p aa. Others ($74 \mathrm{~S}, \mathrm{H}$) on B/L 12 (SAE please)
LINEAR: 9665 or $9666,7 \times 50 \mathrm{~V}$ Darlingtons in 16 DIL 60p; 75452 or 4 dual periph driver 70p; XK1444 7 CMOS P-channel buffers, 15 V 16 DIL 24p.
OPTO: Isolators, FCD831 60p; TIL115/118 60p; FPE100/106 Infra red LED $\mathbb{2} 2.50$; FND847 7 seg $0.8^{\prime \prime}$ CA £2.00; FND850 CC £2.00 (Data on request for linear \& opto devices)

TRANSISTOR PACK K516

Take advantage of this unbelievable offerll Small signal NPN/PNP transistors in plastic package at an incredibly low, low pricell Almost all are marked with type number almost all are full spec devices, some have bent leads. Over 30 different types have been found by us, including BC184/212/238/307/ 328: BF196/7: ZTX107/8/9/342/ 450/550 etc. Only available as a mixed pack at-E3/100; £7/250; 225 / 1000.

REGULATED PSU PANEL
Exclusive Greenweld design, fully variable 0-28V \& $20 \mathrm{~mA}-2 \mathrm{~A}$. Board contains all components excep pots and transformer. Only $£ 7.75$ Suitable transformer and pots $\mathbf{8 6 . 0 0}$ Send SAE for fuller details.

BUY THIS BEST SELLER

T.V. FAULT FINDING

MONOCHROME 405/625 LINES

REVISED \& ENLARGED

Edited by J. R. Davies
132 pages
PRICE $£ 1.20$
Over 100 illustrations, including 60 photographs of a television screen after the appropriate faults have been deliberately introduced.

Comprehensive Fault Finding Guide cross-referenced to methods of fault rectification described at greater length in the text.

Price $\mathbf{£ 1 . 2 0}$ from your bookseller.

or post this Coupon together with remitance for $£ 1.47$
 (to include postage) to

DATA PUBLICATIONS LTD. 57 Maida Vale, London, W9 1SN

Please send me the 5th revised edition of TV Fault Finding. Data Book No. 5
lenclose cheque/crossed postal order for
NAME
ADDRESS

SMALL ADVERTISEMENTS
 (Continued from page 381)

WANTED: FAX equipment, manuals, service sheets, etc. G2UK, 21 Romany Road, Oulton Broad, Lowestoft, Suffolk. NR32 3PJ.
BURGLAR ALARM COMPONENTS. PVC coated steel bell box $£ 8.74$. 6 in. masterbell $£ 13.53$. 106 dB sounder $£ 11.53$. Latching personal attack button $£ 2.95$. Surface contact $£ 1.28$. Flush contact $£ 1.28$. Large pressure pad £2.85. Stair tread pad $£ 2.00$. 20 m range infra red beam $£ 46$. Mains/battery alarm control module $£ 17.20$ or send for our free component catalogue and price list. All prices inclusive. Sigma Security Systems, 13 St. Johns Street, Oulton, Leeds, W. Yorks. LS26 8JT.
THE RADIO AMATEUR INVALID \& BLIND CLUB is a well established Society providing facilities for the physically handicapped to enjoy the hobby of Amateur Radio. Please become a supporter of this worthy cause. Details from the Hon. Secretary, Mrs. F. E. Woolley, 9 Rannoch Court, Adelaide Road, Surbitọn, Surrey, KT6 4TE.

ZX80 PEOPLE. Free leaflet explains how to overcome load problems, $\frac{1}{2}$-price memories, etc., supplied with four games on cassette. Send $£ 3$ or s.a.e. for details. Bobker, 29 Chadderton Drive, Unsworth, Bury, Lancs.
POSTAL ADVERTISING? This is the Holborn Service. Mailing lists, addressing, enclosing, wrapping, facsimile letters, automatic typing, copy service, campaign planning, design and artwork, printing and stationery. Please ask for price list. - The Holborn Direct Mail Company, Capacity House, 2-6 Rothsay Street, Tower Bridge Road, London, S.E.1. Telephone: 01-407 6444.
bOOK CLEARANCE. Bound volumes Radio \& Electronics Constructor Nos. 27, 28 and 29, £3.00 each. Cost Effective Projects Around. th- Tome by John Watson, $£ 1.50$. Talk-Back Tv: Two-Way Cable Television, by Richard Veith, $£ 1.00$. Acoustic Techniques for Home \& Studio, by F. Alton Everest, 75p. Beginners Guide to Building Electronic Projects, by R. A. Penfold, 60p. Solid State Short Wave Receivers for Beginners, by R. A. Penfold, 60p. 50 Simple LED Circuits, by R. N. Soar, 50p. RadioElectronics Hobby Projects, Foulsham-Tab, $£ 1.00$. The Inventor of the Valve - Biography of Fleming, by J. MacGregor-Morris, £1.00. Understanding and Using Modern Electronic Servicing Test Equipment, by Charles M. Gilmore, £1.30. Using Electronic Testers for Car Tune $-U p$ by Albert Warringer, 75 p. All prices include postage. Box No. G399.
25 MIXED I.C.'S $£ 1.50 .100$ mixed transistors $£ 3.50$. Valves. Early radios. Electronic bargains. Interesting lists 15 p. Sole Electronics, REC, 37 Stanley Street, Ormskirk, Lancs, L39 2DH.
(Continued on page 383)

SMALL ADVERTISEMENTS
 (Continued from page 382)

12 UNUSED RECHARGEABLE Gel type Lead Acid Batteries. 12 V 1.5 A.H. $£ 4$ each. R. Garas, 147 Seaforth Avenue, New Malden, Surrey.

USE OPTICAL FIBRES TO CARRY LIGHT. Tough, wire-like strands that are excellent for communications, lighting, electrical isolation, etc. Introductory pack totals sixteen feet of four assorted types, plus twenty page illustrated guide: Send $£ 3.55$ inclusive to Quantum Jump Ltd., 53 Marlborough Road, Tuebrook, Liverpool L13 8EA.

PERSONAL

JANE SCOTT FOR GENUINE FRIENDS. Introductions to opposite sex with sincerity and thoughtfulness. Details free. Stamp to: Jane Scott, 3/Con North St. Quadrant, Brighton, Sussex, BN1 3GJ.

BROADLANDS RESIDENTIAL CLUB for elderly people. Are you recently retired and looking for a home? We have a delightful top floor room overlooking Oulton Broad, facing south. Write to: The Warden, Broadlands Residential Club, Borrow Road, Oulton Broad, Lowestoft, Suffolk.

SPONSORS required for exciting scientific project Norwich Astronomical Society are building a $30^{\prime \prime}$ telescope to be housed in a $20^{\prime \prime}$ dome of novel design. All labour being given by volunteers. Already supported by Industry and Commerce in Norfolk. Recreational. Educational. You can be involved. Write to: NAS Secretary, 195 White Woman Larie, Old Catton, Norwich, Norfolk.

IF YOU HAVE ENJOYED A HOLIDAY on the Norfolk Broads, why not help to preserve these beautiful waterways. Join the Broads Society and play your part in determining Broadlands future. Further details from: - The Hon. Membership Secretary, The Broads Society, "Icknield," Hilly Plantation, Thorpe St. Andrew, Norwich, NOR 85S.

SITUATION VACANT

WANTED: Representatives to sell Electronic Components to shops and industries on good commission basis. Please send full details of experience to: Sunmit Electronics. 96 Peel Road, Wembley, Middlesex. Telephone: 01-904-6792.

RADIO \& ELECTRONICS Project Kits

LATEST KITS:

Coil Coupled S.W. Converter Nov 80	$£ 24.65$
Portable Short Wave Radio Aug 80	$£ 16.00$
"K" Tone Generator Dec 80	$\mathbf{£ 1 1 . 0 0}$

Opto-Coupled Volume Expander Dec 80
£17.25
Add-on Clipping Monitor Dec $80 \quad £ 8.00$
(Postage 60p)

CATALOGUE 1981

Our brand new, fully illustrated catalogue is now available. A very wide range of components and accessories is detailed, including: resistors, i.c.s, transistors, aerial's, cases, connecting leads, transformers, coils etc etc. For your copy send a cheque or postal order for 50 p (post paid).

T \& J ELECTRONIC COMPONENTS

98, Burrow Road, Chigwell, Essex. IG7 4HB.
Mail order only. No minimum order. VAT inclusive.

We stock one of the largest selections of second hand microscopes and optical magnifiers, on and off stands. Please phone for details.

DIRECT SUPPLY SERVICE TO READERS TOWERS INTERNATIONAL TRANSISTOR SELECTOR
 (NEW REVISED EDITION)

 TOWERS INTERNATIONAL

 TOWERS INTERNATIONAL FET SELECTOR

 FET SELECTOR}

This is dead!

Would this replace it?

If it takes you longer than 1 minute to find out all about these transistors then you need a copy of TOWER'S INTERNATIONAL TRANSISTOR SELECTOR. It's one of the most useful working books you will be offered this year. And probably the cheapest!
In it, you will find a really international selection of 13,000 transistor types - British, Continental European, American and Japanese. And we think that they will solve 90% of your transistor enquiries.
Current and widely used obsolete types were carefully selected and arranged in Numero-Alphabetical order by an author who was uniquely qualified to do the job. With his compendium, all you need to know is the type number and you can learn all about a transistor's specification; who made it and where to contact them; or what to use to replace it.

Price $\mathbf{£ 1 0 - 7 0}$ inc P\&P

If you deal with field effect transistors, or fet's - whether as a student, a hobbyist, a circuit engineer, a buyer, a teacher or a serviceman - you often want data on a specific fet of which you know only the type number.
Specifications apart, you may be even more interested in where you can get the device in question. And perhaps more important still (particularly with obsolete devices), you may want guidance on a readily available possible substitute.

This fet compendium, a comprehensive tabulation of basic specification, offers information on:

1. Ratings
2. Characteristics
3. Case details
4. Terminal identifications
5. Applications use
6. Manufacturers
7. Substitution equivalents (both European and American)

The many fet's covered in this compendium are most of the more common current and widely-used obsolete types.
It is international in scope and covers fet's not only from the USA and Continental Europe, but also from the United Kingdom and the Far East (Japan).

Price $£ 4-60$ inc $P \& P$
(Please allow 21 .days for delivery)

Tower's
International Transistor Selector
by T. D. Towers MBE, MA, BSc, C Eng, MIERE £10-70
inc. post and packing

To:-DATA PUBLICATIONS LTD. 57 MAIDA VALE LONDON W9 1SN

Please send me
copy/copies to the address shown below

NAME

Tower's
International
FET
Selector
by T. D. TOWERS MBE, MA, BSc, C Eng, MIERE £4-60 inc. post and packing

To:-DATA PUBLICATIONS LTD. 57 MAIDA VALE LONDON WG ISN

Please send me copy/copies to the address shown below

NAME
ADDRESS
(Block capitals)

「的

으

1907
Two alternative presentations for 6 and 9 appear in（c）．Both have added＂tails＂，the number 6 tail being given by segment A and the number 9 tail by segment D ．Further provided in the display may be a decimal point segment．Plus and minus signs，colons，etc．，can also be included．
Light－emitting diode displays，in which each segment is an l．e．d．， are either common cathode or common anode types．With the first type the segment cathodes are made common and connect to one （or more）of the display terminals．The display is then driven as in （d），with a current limiting resistor in series with each anode．A common anode display is connected as in（e），with current limiting resistors in series with the seven segment cathodes．The decorder－driver i．c．may be either t．t．l．or CMOS（with which the current limiting resistors are sometimes omitted）．
Liquid crystal displays are also very widely encountered，and are typified by requiring extremely low drive currents．This makes their use attractive in digital watches and other battery driven items．
 one catalogue you must not be without. Over 300 pages, it's a comprehensive guide to electronic components with thousands of photographs and illustrations and page after page of invaluable data. We stock just about every useful component you can think of. In fact, well over 5000 different lines, many of them hard to get from anywhere else. Hundreds and hundreds of fascinating new lines, more data, more pictures and Post this coupon now for your copy of our 1981 catalogue price $£ 1$.
a new layout to help you find things more quickly.

Please send me a copy of your 320 page catalogue. I enclose £1 (Plus 25 p p\&p). If I am not completely satisfied I may return the catalogue to you and have my money refunded. If you live outside the UK send £1.68 or 12 International Reply Coupons.
1 enclose $£ 1.25$
Maplin Electronic Suppiies Ltd.
All mail to: P.O. Box 3. Rayleigh, Essex SS6 8LR.
Telephone: Southend (0702) 554155. Sales (0702) 552911.
Shops:
159-161 King Street, Hammersmith, London W6. Telephone: 10117480926. 284 London Road, Westcliff-on-Sea, Essex. Telephone: Southend (0702) 554000. Both shops closed Mondays.

