For all aspects of practical amateur radio $1 / 0 / 0$

TELEVISION BY

SATELITE

DATA FILE: 7.SEGMENT DISPLATS

JOYSTICK:

DEVICE TO BUILD

AIRBORNE TV: HISTORIC EXPERIMENTS

R WITHERS COMMUNICATIONS

	YAESU FT290R FR:SE "HB9CV E29* VARTA NI-CADS * CHARGER * LISTEN ON INPUT WHILE STOCKS $\perp A S T$	SPECIAL '8 VARTA C SIZE NI-CADS 1200MaH ONLY $\Sigma 17.50$		YAESU saVE OVER ع401	FT708R FREE * hegcy (ve) MM-CADS "CAEE E100 *CHAROJR 10 OMLY*POsT INc LAST FINE AT THES PRICE
RWC NEW 1985 RANGE OF LINEAR AMPS FOR UHF \& VHF SEND SAE FOR FULL INFO	10 MTR MOD KTT FOR DNT 40FM AND LCL2740 INC 2x-TALS RWC 1x-TALFILTER BEST 2CAPACITORS SELLER \quad E12.9		' Rovco RS 2000 Ext 179 \& $380-520 \mathrm{MHz}$ THES PRICE *70 mamories *AC-DC SUPPLY *AUTO SEARCH *LOCK PRAORTTY		Professional 4 channel 27MHz hand heldsinc case \& batteries. Superb
	G5RV MULTIBAND ANT C^{\prime} - 30 MHZ	STOP PRESS . . . STOP RWC MOD KIT FOR LC 77367 BE AVAILABLE FROM THE BE AVAILABLE FROMIO WI AND BEYOND 30 MHz . IN UNIT HAS BUILT IN 10 MET ONLYEIGHT WIRES TO SO WITH READJUSTMENTS ON PROVISIONALIY $£ 22.50$ FO FULL INSTRUCTIONS.	S. . . STOP PRESS . . . S (IE MOST CB RIGS) WILL DECEMBER 1984. IT WILL 40 CHANNEL STEPS. THE PEATER OFFSET AND HAS NTO THE EXISTING RADIO RX, RF AND TX RF PRICE LT AND TESTED PCB AND	HITACHI 9" SECONDHAND MONITORS. SEVERALTYPES TOCHOOSEFROM ONLY £45 ea.	Mtrs. Fantastic value only E34.95
	AKD WAVE METER. A MUST FOR ALL VHF STATIONS e24.95 inc p	TUFN THAT BEAM KOPEK ROTATORS 50KG LOADING FULL 1 YEAR WARRANTY ACCURATE TO 1° ع37	RWC'S HB9CV 2 Mtrs £6.99. 70Cms 55.99 post \& pck E1.00.	ETC. EG 25W 2 MTRE WRITE FOR FULL LIST, FROM $\mathbf{5 3 5 . 0 0}$	BARGAIN ONE ONLY COMPUTOR ROTATOR CT1000 ½ PRICE $£ 299$
8MNTPPLE 144-148MHZ 7.2081 QUALITY CONSTRUCTION LOW VSWR SAVE £fs 29.98	DC GROUND $1 / 2$ WAVE MOBILE			STOP PRESS LOW PASS TVI FILTER BY TĖLCO LIST 839.95 12 ONLY £12.50 MADE IN USA	
			STVER PLATED 'N' TVPE TWO WAY 2KW CO-AX SWITCH LESS THAN 1dB LOSS 14 ONLY ع13.60		CctV Lens 39MM JAP 'C' TYPE FIXING TOKINA QUALITY WERE ع30 FEW ONLY E7.80
		very heavy CHROME PLATE MORSE KEY BLOCK SUIT HK705 ETC. WITH FREE $1 / 4^{\prime \prime}$ JACK + LEAD $\mathbf{£ 6 . 9 5}$	$3.5 \mathrm{~mm}+1 / 4^{\prime \prime}$ JACK8 MONO ATEREO SUPER - ~QUALITY LIGHTWEIGHT DESIGN E3.96 WIC PAP	KENWOOD TRIO NOISE CANCELLING	heavy duty MAGNETIC MOUNT S0239 MOUNT 3M COAX + PL259 sPECHL PRICE E8.95

[^0] time of going to press, E\&OE. TERMS: No COD. Barclaycard and Access accepted. Post free over £50, under $£ 50$ add $£ 2$ post and handling, unless stated. Please send SAE with all enquiries and for latest secondhand list.

Editor

Jim Chalmers
Aseloturit Eillor
Duncan Leslie Adverlisoment Manager Anne Brady
Publicher
Peter Williams
Concral Manager
Alan Golbourn

Published by

Radio \& Electronics World Magazines
Sovereign House
Brentwood
Essex CM14 4SE
England
Tel: (0277) 219876

ISen

0262-2572
Printed
In Great Britain
Nowntrado salee
Seymour Press Ltd
334 Brixton Road London SW97AG Tel:01-733 4444
Subecriptions Tel: 01-0843157

Membarkilp approved pending firsf audit
Copyricht 1985
A \& dio Electronics World Magexines

Saftoly in the shack

Some of the constructional projects featured refer to additions or modiffeations to equipment; please note that auch alterations may prevent the ftem from being used in its intended role e_{r} and also that the guarantee may be imvalldated.
When building any constructional project, bear in mind that sometimes high volteges are involvad. Avoid even the slightest risk - satety in the shack please, at all times.

Whitst overy owe to rukon when acoopitig, thy for unertistactory trensections We willi however. thoroughly invetigute any com. piointa
nocesearily those of the publiehers.
Every care the tuke publithers to that the comtenty of this migesing are eocurata, wa
anume no tireni or omlecions.

Cover Photographs

Top - First sight of new mobile aerial from ARM
Bottom - The new Motorola single chip microcomputer (p9)

SPECIAL FEATURES

16 Airborme TV

Ray Herbert describes some fascinating experiments involving TV transmission from an aircraft in flight

18 Direct Broadcast by Satellite

The systems of TV reception via satellite are outlined by D Stewart

23 Touch-sensitive Joystick

Zapping Klingons is made quicker and easier with this project from Peter Rouse

28 The Horseshoe Nall Syndrome
Brian Dale questions the policies of major manufacturers with regard to chip production

34 Long Waves Live on!

Nigel Cawthorne details the problems of design for long wave broadcasting

48 Low-pass Filter

Clean up your signals! Duncan Walters builds a relatively cheap high power project

53 Russian Satellites: Part Two

An explanation is given of the complete receive section

REGULARS

4 Product Nows

13 News Desk
31 Amateur Radio World
39 Data File
60 Latest Literature
61 Short Wave News
63 DX-TV Reception Reports

Comfort and /oy - pege 23

The plof thickens - pace 8

Featured on these pages are details of the latest products in communications, electronics and computers. Manufacturers, distributors and dealers are invited to supply information on new products for inclusion in Product News.

Readers, don't forget to mention Radio \& Electronics World when making enquiries

RIIY PROGRAM

Newly produced by Pearsons Computing is the G1FTU RTTY program for the 48 K Spectrum.
This software allows the computer to transmit and receive RTTY with no interface or terminal unit.
The user simply connects the EAR and MIC sockets on the Spectrum to the external speaker and audio input of the transceiver.

The program features split screen operation with full type-ahead during receive and transmit, and the user has his (or her) own personalised CQ memory and eight other memories of up to 255 characters each, which may be saved on cassette.

Other features include baud rate variable between 45
and 110 baud, variable transmit tones, on-screen tuning indicator, unshift-on-space, and the capability to receive reversed 'mark' and 'space' tones.
The program also provides the user with a unique 'clarifier' facility for tuning accurately to FM RTTY tones.
Prospective buyers of the program can be assured that it will run correctly on all issues of the 48 K Spectrum, including those fitted with microdrives, printer, joystick interfaces etc, so that you don't have to dismantle the system in order to use the program, as with some of the software on the market today.
The program costs $£ 10$ inclusive, and orders from licensed amateurs should be accompanied by a callsign for

the CQ memory. Nonamateurs will be allocated a 'dummy' callsign.

Pearsons Computing,

42 Chesterfield Road,
Barlborough,
Chesterfield,
Derbyshire.
Tel: (0246) 810652.

LOGIC ANALYSER
Thurlby Electronics have launched what they claim to be the world's first low-cost, high-performance logic analyser.

With a basic price of only £395 Thurlby believe that the LA-160 will greatly expand the market for logic analysers, since it can be allocated on a one per engineer basis, as
with multimeters and oscilloscopes.

Designed and built in Britain, the LA-160 has 16 data channels (expandable to 32) and a 2000 word acquisition memory. The built-in state domain display shows the data in any of five formats: binary, octal, decimal, hex or mixed. A full sixteen channel timing domain display is also

available by connecting to any conventional oscilloscope. The maximum clock rate is 10 MHz for the LA-160A or 20 MHz for the LA-160B.
Comprehensive trigger facilities include 20-bit trigger width, the ability to set the trigger word in any display format, selectable trigger hold-off, and a trigger arm input with selectable delay. Data can be captured synchronously or asynchronously using either the clock of the circuit under test or the internal clock, which has sixteen selectable frequencies from 1 KHz to 10 MHz or 20 MHz .
The LA-160 is microprocessor controlled via an interactive keyboard with all the set-up information being stored in permanent memory. A non-volatile reference memory is also included. This can be loaded from the acquisition memory or the keyboard and allows reference data to be stored for comparison purposes.
Extensive software facilities include word search, block memory compare, word by word memory compare, and stop on equality or nonequality acquisition modes. A built-in RS232 interface
enables the contents of the acquisition memory to be dumped to a computer.
The LA-160 weighs less than 1.8 Kg (41b) and is compact enough to fit into a tool kit or briefcase. As such it has a unique advantage over other logic analysers in portable applications.

Thurlby Electronics Ltd,

New Road,
St lves,
Cambs PE17 4BG.
Tel: (0480) 63570.

MORSE TUTOR

PNP Communications have announced the release of a Morse tutor program for the Amstrad CPC 464 computer.
The program, which is available on cassette, takes a structured approach to the problem of gaining proficiency in the sending and receiving of Morse code.
Five modes of operation are possible:
(1) Structured tutor.
(2) Specify letters to be practiced.
(3) Select random words from internal library.
(4) Type in text to be coded.
(5) Load text from data cassette.

Over two hundred words are available in the standard internal library and they have been chosen to cover a wide range of letter combinations. Further words or text can be loaded into the program from a previously prepared data cassette. This feature is useful in setting up a dummy-run of the Morse test.

A separate program is supplied on the tutor cassette for the preparation of data tapes.

The speed range is from 4 to 24 words per minute and has been timed using the standard 'Paris' test word.
Figures are included as a separate section in the structured tutor and can be intermixed with letters in the 'text' modes. Punctuation characters may also be mixed with text and figures in the 'text' mode.

The program is available at a price of $£ 6.90$ including VAT and post and packing.

PNP Communications,
62 Lawes Avenue,
Newhaven,
East Sussex BN9 9SB.
Tel: (0273) 514465.

MULTIMODE TRANSVERTER.
The MMT144/28-R is a new transverter from Microwave Modules designed to allow users of HF transceivers to achieve a first-class transceive facility on the 144 MHz band.

The rugged receive section uses a GaAsFET in a noisematched configuration feeding a high level double balanced mixer. In combination with the JFET amplifier for IF gain, this gives a good signal to noise ratio, with excellent

934MHZ TRANSCEIVER

Communications specialists Commtel UK have introduced a new high quality Japanese 934 MHz Personal Transceiver. Offering improved reception quality and range, 934 MHz is set to revolutionise CB.
The Commtel 934 has a number of features which immediately identify the unit as a good transceiver for the serious CB enthusiast. The fully illuminated control panel is designed for easy, safe operation with a green LED display for channel numbers, and audio sound is provided by high and low sound speakers.
Advanced circuitry provides reverse polarity protection, and the built-in back-up power supply ensures the memory can store information for up to 1 week after the unit is disconnected from a power source.
The Commtel 934 has a multi-function high sensitivity microphone with PTT button up and down facilities. Installation and removal couldn't be simpler with the
immunity to overload and cross modulation.
There are two separate low noise oscillators, selection of which is made using a quad op-amp circuit. Simplex, repeater and reverse repeater operation are provided. Design of the unit is such that the high level injection is extremely pure and free from harmonics.
The transmit section incorporates an ALC circuit in order to produce a totally clean signal from the trans-
unit's easy-to-use slider Commtel UK, Talgold Ltd, mounts. Fengate,
The Commtel 934 has a Nr Third Drove, recommended retail price of Peterborough.
£460.

verter. The 28 MHz input, of $1 / 4-300 \mathrm{~mW}$, is amplified after the RF Vox, ALC control and input level control circuits to an output power of 25 watts.
Indication is given on the front panel of power on,
transmit, and relative output power.

Microwave Modules Ltd, Brookfield Drive, Aintree, Liverpool L9 7AN. Tel: (051)523 4011.

ELECTROLYIIC CAPACITORE

A new range of general purpose electrolytic capacitors is available from Iskra.
These high surge resistant devices are suitable for use in radio and TV receivers, tape recorders and acoustic equipment as well as for measuring, control and regulation equipment. They can also be used as bandpass and smoothing filters and for timing applications.
The smallest model is the long cathode radial type EEA2011 which is available in
sizes from 12 to 35 mm long x 5.8 to 14 mm diameter, and capacitance values from 0.22 to $2200 \mu \mathrm{~F}$. The slightly larger 15 to 25 mm long $\times 6.5$ to 12 mm diameter axial type EEA2071 model has a lead at each end and offers capacitance values from 1 to $1000 \mu \mathrm{~F}$, with voltage rating up to 350 V .
The axial type EEA2141 is 14 to 21 mm diameter x 30 to 50 mm long, with a lead at each end, and offers capacitance values from 10 to $10000 \mu \mathrm{~F}$, with voltage ratings to 450 V .
The EEB0071 and EEB0141
are bipolar devices, and are available with capacitance values of 4.7 to $68 \mu \mathrm{~F}$ and 2.2 to $47 \mu \mathrm{~F}$ respectively at 28 V ac to 45 V ac.
Iskra can also supply large electrolytics with values from 33 microfarads to 150,000 mic-

rofarads in voltage ratings from 6.3 volts to 450 volts. Multi-value capacitors are also available in these ranges.
Electrolytics for higher grade requirements (IEC Class 1) are also available.
Literature describing the new range is available on request from Iskra.

Iskra Ltd,
Redlands,
Coulsdon,
Surrey CR3 2HT.
Tel: (01) 6687141.

Cirkit.Makingit per

Cirkit's got the kits you need to make your copy loud and clear.

In all there are over 100 kits to . choose from. Selected and designed to offer the best possible standards at the best possible price.

Delivery is fast and reliable.
We keep in touch with the manufacturers and we know what's going on. So as soon as new products are available, Cirkit has them.

Cirkit means a bigger catalogue. A better company to deal with.

And a wide range of kits and products that's growing all the time.

At Cirkit, we're tuned in to your needs.
Just send for our catalogue or visit one of our three outlets at:

200 North Service Road, Brentwood,
Essex. CM14 4SG;
53 Burrfields Road,Portsmouth,
Hampshire. PO35EB;
Park Lane, Broxbourne,
Hertfordshire. EN10 7NQ.

Please add 15\% VAT to all advertised prices and 60p post and packing. Minimum order value $\mathcal{\Sigma} 5$ please. We reserve the right to vary prices in accordance with market fluctuation.

10 MHz DFM

A DFM capable of operating at frequencies up to 10 MHz . The kit can be configured in six different measurement modes including: frequency, period, elapsed time and unit counter. Applications can be extended using the CIRKIT prescaler and preamp.
SPECIFICATION:Input signal: 2.0V (min) TTL. Frequency range: 0 to 10 MHz . Period measurement: 0.5 to 10 secs. Time measurements: up to 10 secs. Output: BCD multiplexed. Display: 8 digit 12 mm LED.Supply: $6-9 \mathrm{VDC}$ at 100 mA (nom).
$41-01500 \quad 54.10$

DFM PRE-AMPLIFIER

The rise time of some low frequency signals, even apparent square waves, is often too slow to give a constant readout from a DFM . The use of a pre-amp ensures that these signals are input to the DFM at the correct level and with the correct shape. This simple addition greatly increases the effectiveness of a DFM at low frequencies.
SPECIFICATION: Frequency range: 1 Hz .5 MHz . Sensitivity: $1 \mathrm{~Hz}-3 \mathrm{MHz}: 20 \mathrm{mV}, 3 \mathrm{MHz}-5 \mathrm{MHz}: 40 \mathrm{mV}$. Max input voltage: 100 V (220V instantaneous). Power supply: 5 V 8 mA . Input signal: Any. Output signal:TTL square wave.

41-01502 5.13

DFM PRESCALER

This prescaler is intended for use with the Cirkit 10 MHz DFM , although it is compatible with other frequency counters. The function of the prescaler is to divide the incoming frequency by ten and to shape it into a waveform suitable for the digital input requirements of the DFM. This enables the frequency range of the DFM to be extended up to 50 MHz .
SPECIFICATION: Supply voltage: 5VDC. Nominal current: 25 mA . Frequency range: $10 \mathrm{kHz}-50 \mathrm{MHz}$. Input sensitivity: 20 mV (typical). Output:5V TTL level. Dimensions: $80 \mathrm{~mm} \times 50 \mathrm{~mm}$. $41-01501 \quad 8.55$

To: Cirkit Holdings PLC, Park Lane, Broxbourne, Hertfordshire. EN10 7NQ. I enclose 85 p. Please send me your latest catalogue and $3 \times £ 1$ discount vouchers! If you have any enquiries please telephone us on Hoddesdon (0992) 444111.

Name
Address

2m POWER AMP

A carefully designed $20 \mathrm{~W}, 144 \mathrm{MHz}$ linear power amplifier, to boost the output of hand-held and transportable transceivers such as the TR2400 IC2E,FT208,FT290 etc. With 10dB gain to give a 20 W output from a 2 W input. Automatic changeover relay - switched from RF sense circuit. High power - output relay, robust construction with die-cast box, plus RX pre-amp.
SPECIFICATION: Bandwidth -3dB: 144-146MHz. Power gain: min 10dB. Output power; 1 W input: $10 \mathrm{~W}, 2 \mathrm{~W}$ input: 20 W . Supply voltage: $10-16 \mathrm{~V}$. Supply current (at 12 V): $<3 \mathrm{amps}-20 \mathrm{~W}$ output. Input/Output impedance:50』. Size (excluding sockets): $122 \times 96 \times 44 \mathrm{~mm}$. Pre-amp section spec as 2 m Pre Amp Kit.

41-01404 32.87

2m CONVERTER

Low noise 2 m to 10 m converter. This design uses low noise dual gate MOSFETs in the RF and mixer stages which, together with a TOKO pre-aligned helical filter and pre-wound coil, give a high specification and repeatable performance.

A reliable 116 MHz overtone oscillator circuit is followed by a double tuned stage which gives a very clean output, this reduces spurii to a minimum. As the circuit is basically linear any mode - AM, FM or SSB - can be converted. The complete circuit is built onto a double-sided PCB.

SPECIFICATION: Noise figure: Less than 2dB. Gain: Min 22dB. 3dB Bandwidth: 144-146MHz. IF Output: $28-30 \mathrm{MHz}$. Input/Output impedance: 50Ω. Supply voltage: $10-16 \mathrm{~V}$. Supply current (at 12 V): 28 mA . Size: $97 \times 57 \times 22 \mathrm{~mm}$.

41-01306 17.35

2m PRE-AMP
Very compact low-noise MOSFET 2 m pre-amp. The overall PCB is sufficiently small to be installed inside receivers or transceivers.
SPECIFICATION: Noise figure: Better than 1.5 dB . Gain: 18 dB Min. Input/Output impedance: 50Ω. Size: $34 \times 13 \times 10 \mathrm{~mm}$.
KIT INCLUDES: Double-sided PCB - All resistors All capacitors - MOSFET - Coils and cans.

fectly loud and clear:

70 cm CONVERTER

70 cm to 144 MHz low profile converter employing high level Schottky diode double balance mixer, pre-aligned helical filter and low noise transistors The complete design gives a low noise figure and uses pre-aligned filters and pre-wound coils to give repeatable performance with minimum alignment. SPECIFICATION: Bandwidth: $430-440 \mathrm{MHz}$. RF Gain: 8 dB min. Noise figure: $<2.5 \mathrm{~dB}$. IF output: 144 146 MHz . Supply voltage: 10 V . Supply current
30 mA . Size: $97 \times 57 \times 15 \mathrm{~mm}$
41-01405 21.50

70cm 10W Power Amp

70 cm 10W POWER AMPLIFIER

The current generation of UHF handheld synthesised transceivers have almost all the facilities found in mobile/base transceivers, the only major limitation being their output power. For handheld operation 1 watt or so is adequate, but for mobile to mobile and for use wth higher power repeaters, the addition power provided by the CIRKIT amplifier increases the range considerably. This is especially noticeable, as is to be expected, at the limits of the service area.

The Cirkit 70 cm Power Amp will boost the output power of hand held transceivers up to 12 W . Automatic relay switching between TX and RX, is provided via the RF sense circuitry. The finished unit is mounted in a tough pre-drilled die-cast box, which provides sufficient heatsinking while providing a rugged low profile housing.
SPECIFICATION: Power gain(2WI/P): 7.2dB. Output power (13.8 V) 2 W input: $10 \mathrm{~W}(\mathrm{~min})$. Saturated power output: 14 W . Supply voltage: $10-16 \mathrm{~V}(13.8 \mathrm{~V}$ nom). Input/Output impedance:50R. Bandwidth: $430-440 \mathrm{MHz}$. Supply current: 2 amps at $12 W$. Dimensions: $119 \times 94 \times 34 \mathrm{~mm}$.

41-01505 33.82

70 cm PRE-AMPLIFIER

This high performance pre-amp offers increased receiver sensitivity and a corresponding extension of the useful communication range. The completed unit is sufficiently compact to be built into virtually any existing receiver and does not require the use of any test gear when setting up.
SPECIFICATION: 3 dB bandwidth: $425-445 \mathrm{MHz}$. Noise figure $<2 \mathrm{~dB}$. Gain: $13 \mathrm{~dB}(\mathrm{~min})$. 1 dB compression: $-3 \mathrm{dBm}(0.5 \mathrm{~mW})$. Saturated output: $-2 \mathrm{dBm}(0.7 \mathrm{~mW})$. Supply voltage: $8-12 \mathrm{~V}$ (12 V nom). Input/Output impedance: 50 R. Dimensions $50 \times 10 \mathrm{x}$ 17 mm .
$41-01506 \quad 4.78$

NOW AVAILABLE exclusively from CIRKIT, TAU high quality ATU kits and accessories.

Full HF coverage, tunes from 1.5 MHz continuously to 29.350 MHz . Based on the reknowned SPC transmatch configuration, TAU innovated this composite module design with large air-spaced capacitors rated at 5 kV , tested to 7 kV Roller inductor infinitely variable. Solid precision radio engineering. Heavy weight long life construction. Will tune any transmitter/aerial combination to optimum. A lifetime investment and should never need replacing. Power handling capabilities from a few milliwatts to above 3000 watts PEP. Undoubtediy the finest ATU module available today.
STU 5 K ATU Kit
$41-50500 \quad 130.00$
CABINET - custom-made for STU 5KATU
$41-50510 \quad 62.50$
DIGITAL TURNS COUNTER
Multi-turn, vernier scale with digital indication, for use with roller coaster, with or without cabinet. Turns counter

41-50520 27.94
BALUNS
To complete the ATU, we have the following Baluns:

Location PEP Ratio Stock No Price | Outdoor | OBI41 | 1 kW | 41 | $41-50141$ | 27.35 |
| :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{llllll}\text { Outdoor } & \text { OB111 } & 1 \mathrm{~kW} & 1.1 & 41-50111 & 27.55 \\ \text { Indoor } & \text { IB241 } & 200 \mathrm{~W} & 4: 1 & 41-51241 & 17.25\end{array}$ $\begin{array}{lllll}\text { Indoor } & \text { IB141 } & \mathrm{lkW} & 4: 1 & 41-51141\end{array}$

ROLLER COASTER

To complement existing equipment, covers 1$30 \mathrm{MHz}, 28 \mathrm{uH}$ inductance, tapered pitch for 10 and 15 meters.
Roller Coaster
41 -50540 46.00

AKC AERIAL KIT
Unique clip-on spacer system for open wire feeders. Patented design manufactured from an uitra-violet resistant poly-propylene the spacer can be configured to give a $75,300,400$ or 600 ohm system. Kit contains 20 spacers, 1 Tee piece and 2 Ceramic insulators.

AKC Aerial Kit
41-50530 $\quad 12.70$

CIRKIT ELECTRONICS TOOL KIT Contains: 15 W Soldering Iron, 2 spare bits, heat shunt, solder, pliers, cutters, and screwdriver. $41-00007 \quad 15.56$

Selected Lines

PB2720 80dB Piezo Buzzer 43-27201 0.55 $10 \mathrm{M} 15 \mathrm{~A} \quad 10.7 \mathrm{MHz}$ Filter $\quad 20-10152 \quad 2.10$ FC177 LCDFreq.Meter 39-17700 20.00 CM161 Min LCD Clock $8 \times 0.3^{\prime \prime}$ IC socket $14 \times 0.3^{\prime \prime}$ IC socket $16 \times 0.3^{\prime \prime}$ IC socket CX120P COAX relay (PCB) CX520D COAX relay (Ntype) CX540D COAXRelay (BNC) HC6010 10M Ω DMM HC7030 0.1\% Acc DMM Meteor 100 MHz DFM Meteor 600 MHz DFM $56-00600 \quad 121.00$ | Meteor | 1000 MHz DFM | $56-01000$ | 165.00 |
| :--- | :--- | ---: | ---: |
| CS240 | Antex 17 W Iron | $54-22300$ | 5.20 | $\begin{array}{llll}\text { TCP3 Weller temp cont iron } \quad 54-20007 & 17.63\end{array}$ PU3D Weller 24V PSU for TCP3 54-20026

Books

The Radio Amateurs: Q \& A Reference Manual Oscilloscopes: How to use them, how they work The World's Radio Broadcasting Stations The ZX Spectrum Electronics Pocket Book Practical Design
of Digital Circuits Projects in Amateur Radio Active Filter Cookbook
Beginners Guide to
Amateur Radio CMOS Cookbook
Design of Active Filters Design of Op-Amp Circuits Design of Phase-Locked Loop Circuits Design of VMOS Circuits EffectivelyUsing the Oscilloscope
Foundations for Microstrip Circuit Design Handbook of Electronic Tables Formulas TTLCookbook
TV Antennas and Signal Distribution Systems

02-02157 5.95 02-21300 $\quad 4.35$

02-11564 7.00 $02.00100 \quad 5.95$ 02-21309 7.50

02-11831 10.45 02-21304 $\quad 3.80$ $02.21168 \quad 12.70$

02-11262 4.50 02-21398 11.85 02-21539 10.15 92-21537 9.30

02-21545 9.30 02-21686 10.15

02-21794 $\quad 9.30$
02-79447 21.00 02-21532 11.00 02-10358 11.00

02-21584 10.15

GRAPHICS PLOTIER
Linear Graphics Limited are launching a unique British developed plotter for personal computers.

Known as the Plotmaster,
this flat-bed machine employs new linear motors and exclusive optical feedback technology to achieve an outstanding repeat and distance accuracy of less
than 0.2 mm over the whole plotting area.
Extremely compact at only $30.2 \times 38.1 \times 10.3 \mathrm{~cm}$, the Plotmaster has an effective plotting area of $19 \times 27.2 \mathrm{~cm}$ and will accept either paper or overhead transparency film up to B4 size. It is a twopen machine with an easychange facility that accepts virtually all types of popular pens, including roller ball, Rotring and felt tip, as well as pencils and crayons.
Pen speeds of 2.5, 7 and $15 \mathrm{~cm} / \mathrm{sec}$ are available, and operating keys at the side of the plotter provide manual control of pen movements including north, south, east, west, pen up/down and line/local.
Both Centronics and RS232C interfaces are available, allowing the Plotmaster to be used with almost any computer; baud rates of 110, 150, 300, 1200, 2400 and 4800 are available. Both interfaces can reside in the machine at the same time.
Special software, called 'Interceptor', can be provided for BBC computers (models A and B) and Apple II/Ile machines. This software was
developed concurrently with the plotter by Linear Graphics.
Interceptor is a powerful routine that intercepts graphics commands for plotting and drawing from BASIC and routes them to the screen or plotter - as required by the user. Thus, graphics programs already written for BBC or Apple computers can be run with the Plotmaster.
The plotter can also be used as a digitiser, and digitising support software is available.
Operationally, the Plotmaster is very reliable and extremely quiet. There are only four moving parts and, due to the use of direct-drive linear motors, gears, pulleys and belts are not involved.
The plotter is competitively priced at $£ 489$ and the range of optional accessories includes six-colour pen packs, dust cover, carrying case, digitising sight and interface cables.

Linear Graphics Ltd, 28 Purdeys Way,
Purdey Industrial Estate, Rochford
Essex SS4 1NE.
Tel: (0702) 541664/5.

FPROM ERASER

Now available is an addition to the popular EPROM eraser family from Ground Control, the Uvipac (TS). Designed especially for the home microcomputer enthusiast, the Uvipac (TS) is also useful in the development lab when quick erasure of just a couple of EPROMs is required.

A special type of discharge tube is used to help achieve the very compact dimensions of the Uvipac (TS), which is housed in a $90 \times 80 \times 40 \mathrm{~mm}$ plastic case. The 230 or 110 volt ($\pm 5 \%$) mains powered unit enables up to 3 EPROMs of any size or 1 CPU with onboard EPROM to be erased in about 15 minutes.
The EPROMs are simply loaded into the conductive foam pad supplied and inserted into the unit. After the door has been closed the unit is switched on, an optical fibre indicator showing positively that the unit is in operation. When the fixed 15 minutes period has elapsed the sounder will beep; the

unit is then switched off and the EPROMs removed.
The eraser can be supplied with the timer only (the Uvipac (T)) or with no timer at all (the Uvipac).
Spare tubes and conductive foam pads are available if required

PRECISION INDUCTORS

Oxley has introduced a new range of high stability, high Q precision inductors, the QLC series.
A development of the company's QL high stability

Prices start from around £20 for the Uvipac.

Ground Control,
Alfreda Avenue,

Hullbridge,

Hockley,
Essex SS5 6LT.
Tel: (0702) 230324.

metal-on-glass inductors,

 QLC series components are fabricated from a high purity alumina former onto which is fused a thick, high conductivity silver alloy metalisation The terminations are silver-plated copper and are bonded using high melting point $\left(300^{\circ} \mathrm{C}\right)$ solder to eliminate reflow of termination joints when soldering with standard 60/40 solder, and to allow ease of assembly when using wave-soldering techniques. A shoulder on the terminations allows accurate stand-off spacing from a PCB.
These inductors are used as reference standards for instrumentation, to reform clock pulses for high-speed digital communication systems, precision LC oscillators and many other tank circuit applications.
Inductance values available range from 0.045 to 1.830 microhenries with a standard tolerance of $\pm 5 \%$. Operating temperature range is $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ and temperature coefficient of inductance is $\pm 20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

Oxley Developments Co Ltd, Priory Park,
Ulverston,
Cumbria LA12 9QG.
Tel: (0229) 52621.

Now available from Rapid Recall are three Microsystem Designer kits, produced by Intel to allow serious evaluation to be carried out on a CPU and its associated peripheral devices.

The kits are related to Intel's principle CPUs (iAPX 186, iAPX 188 and iAPX 286) and each kit is contained in a smart black $380 \times 280 \times 100 \mathrm{~mm}$ plastic briefcase.

Each kit includes a twovolume Microsystem Components Handbook and the appropriate CPU plus a selection of peripheral devices.

Typically, the 186 kit includes the iAPX 186, DRAM controller, text co-processor, video interface controller, graphics controller, LAN co-processor and the Winchester disc controller.
Prices of the kits from Rapid are: IAPX $186-£ 117.10$, iAPX 188 - £117.10, and IAPX 286 £207.50.

Rapid Recall Ltd,
Rapid House,
Denmark Street,
High Wycombe,
Bucks HP11 2ER.
Tel: (0494) 26271.

PORTABLE PRINTER

Recently made available for immediate delivery by Rapid Terminals is an enhanced version of Digital's popular plain paper printer, the portable LA12 DECwriter Correspondent.

This latest version of the 150 character per second dot matrix machine now features full bold printing capabilities in addition to its many other attributes.

Each character is printed within a 9×9 matrix with true descenders, and spacings can be varied between 5 and 16.5 characters per inch - the latter enabling 132 characters to be printed on 8.5 inch wide paper. Line spacing is possible between 2 and 12 lines per inch.

The LA12 has a friction feed platen which accommodates
any paper up to 8.5 inches wide, including paper rolls fanfold computer printout paper and pre-printed forms up to 14 inches long. A tractor feed option is available for use with fanfold paper, if required.

For international use, the LA12 incorporates a universal power supply and character sets for ten languages. The full 128 ASCII character set can be printed using the LA12's QWERTY standard keyboard. Also, the keyboard can be changed to numeric data entry mode using a single keystroke (an indicator shows if the numeric code is selected).

In addition to the usual EIA standard RS232C, RS423 and CCITT-V28 serial interfaces, the LA12 also incorporates an acoustic coupler, approved to

SINGLE CHIP MICRO

Motorola Microprocessor Products Division has introduced the MC68HC11A8FN microcomputer, the most highly integrated single chip MCU yet to be produced in HCMOS technology.
Providing sophisticated onchip peripheral functions as well as low power consumption, high noise immunity, and high speed operation, the MC68HC11A8 offers the most cost effective system level solution available to date. It is fully upward object-coded compatible with the M6801 family and provides an improved instruction set that includes two programmable power saving operating modes, STOP and WAIT, as well as many new 16-bit instructions.
The fully static design of the MC68HC11A8 allows operation at frequencies down to dc, further reducing its power consumption. it is designed to run at a 2 MHz bus speed across a -40 to $+125^{\circ} \mathrm{C}$ temperature range to deliver powerful software control capacity in the harshest environments.
On-chip memory systems include an 8 K byte ROM, 512 bytes of electrically erasable
programmable ROM (EEPROM), and 256 bytes of static RAM. The inclusion of EEPROM will allow field and factory calibrations to be stored on the chip.

Sophisticated on-chip peripheral functions feature an eight-channel, 8-bit ana-logue-to-digital converter, an enhanced set of serial ports, timer functions, and parallel ports with full hardware capacity.
The MC68HC11A8 also provides an 8 -bit pulse accumulator circuit, as well as a computer operating properly (COP) watchdog system. Since all possible opcodes or opcode sequences are not utilised, an illegal opcode detection circuit is included in this MCU.
The central processing unit (CPU) of the MC68HC11A8 is basically an extension of the MC6801 CPU. In addition to being able to execute all MC6800 and MC6801 instructions, the MC68HC11A8 uses a four-page opcode map to allow execution of 91 new opcodes.

Motorola Inc,

Microprocessor Products

Division,
3501 Ed Bluestein Blvd, Austin, Texas.

work on British Telecom modems, allowing it to be connected to a host computer over standard telephone lines when being used at remote locations.
The LA12 measures only $46.5 \times 14.4 \times 39.4 \mathrm{~cm}$ and weighs 9.1 Kg . Two models (LA12-C and LA12-D) are available, both having the EIA serial I/O
port operating at 50 to 9600 baud. The Model C also includes the acoustic coupler, allowing customers to select which communications facilities best suit them.

Rapid Terminals,

Rapid House,
Denmark Street,
High Wycombe.

PRODUCTNEWS

- PANAVISE RANGE

The versatile Panavise range of bench-top tools and equipment has been enhanced by several recent additions, and Greenwood Electronics, the sole UK distributor, claims that it now caters for virtually any application.
The original 301 Panavise assembly comprises the 300 base which can be attached by screws to a bench-top, and the 303 vice head which slots into a universal-type joint on the base and can be twisted and tilted to any desired position before being locked in that position by hand tightening a knob.
An alternative vacuum base version (model 380) can be secured to any smooth nonporous surface.
New developments include the Model 324 electronic work centre, which has a Model 371 solder and soldering iron holder mounted on the base. An adjustable PCB rack (315) completes this unit.

Other items that can be used on all base units include the Model 337 fixture head for production fixturing, and the 336 up/down converter base to give additional dimensions of height and tilt. The Model 376 with very wide-opening jaws and the Model 366 with general purpose jaws fit all base units and offer great versatility in clamping the work piece.

Greenwood Electronics Ltd, Portman Road, Reading, Berks RG3 1NE.

CB CONVERSION

R Withers Communications will shortly be marketing a modification kit which will convert any current FM CB transceiver which uses the Sanyo LC137 IC to the amateur ten metre band.

The kit uses six chips and five wires, and will retail at approximately £23.
RWC have also released details of their 1985 range of Raycom VHF/UHF power amplifiers designed to match handheld or portable two metre or 70 cm transceivers.
All units feature Mitsubishi or Toshiba RF power modules, and have RF relay changeover, switchable SSB/FM hangtime, and status indication using LEDs.
Input is factory adjustable from 100 mW to 5 W : the units are set up for an input of $1 / 3 \mathrm{~W}$, but other levels can be set to order.
At present the range available covers eight models with prices from £39.50, and all the amplifiers carry a twelve month guarantee.

R Withers Communications, 584 Hagley Road West, Oldbury,
Warley,
West Midlands B68 OBS.
Tel: (021) 421 8201/2.

FREOUENCY COUNTERS \quad मIGH PEFFORMANCE LOW COST

The brand new Meteor series of 8 -digit Frequency" Counters offer the lowest cost professional performance available anywhere.
\star Measuring typically $2 \mathrm{~Hz}-1.2 \mathrm{GHz} \quad \star$ Low Pass Filter
\star Sensitivity $<50 \mathrm{mV}$ at $1 \mathrm{GHz} \quad \star$ Battery or Mains
\star Setability 0.5ppm \quad Factory Calibrated

* High Accuracy
* 1-Year Guarantee
- 3 Gate Times
* $0.5^{\prime \prime}$ easy to read LED Display

PRICES (Inc. adaptor/charger, P \& P and VAT)
NOW AVAILABLE

METEOR 100	$(100 \mathrm{MHz})$	$£ 112.12$
METEOR 600	$(600 \mathrm{MHz})$	$£ 142.02$
METEOR 1000	$(1 \mathrm{GHz})$	$£ 192.62$

PDZ Designed and
Designed and
Manufactured in
Britain

WITH
T.C.X.O. OPTION

Hlustrated colour brochure with technical specification and prices available on request.
BI BLACK STAR LTD, 4 Stephenson Road, St.lves,
Huntingdon, Cambs. PE17 4WJ, England.
Tel: (0480) 62440 Telex: 32339

(0) Hitachi Oscilloscopes

the highest quality
 from 2299 the most competitive prices

Hitachi Oscilloscopes provide the quality and performance that you'd expect from such a famous name, with a newly-extended range that represents the best value for money available anywhere.
V-212 20 MHz Dual Trace V-209 20 MHz Mini-Portable (illustrated) V-509 50 MHz Mini-Portable V-222 20 MHz Dual Trace V-203F 20 MHz Sweep Delay V-353F 35 MHz Sweep Delay V-422 40 MHz Dual Trace V-650F $\quad 60 \mathrm{MHz}$ Dual Timebase V-1050F $\quad 100 \mathrm{MHz}$ Quad Trace V-1100 $\quad 100 \mathrm{MHz}$ DMM/counter V-134 10MHz Tube Storage VC- $6015 \quad 10 \mathrm{MHz}$ Digital Storage VC-6041 40 MHz Digital Storage
Prices start at $£ 299$ plus vat (model illustrated) including a 2 year warranty. We hold the complete range in stock for immediate delivery.
For colour brochure giving specifications and prices ring (0480) 63570 Thuriby-Reltech, 46 High Street, Solihull, W. Midlands, B91 3TB

ELMASET INSTRUMENT CASE
No front or rear panels． $300 \times 133 \times 217 \mathrm{~mm}$ deep £10．00 en（ 21.30 ）

REGULATORS

TIP141，142， $147 \mathrm{\Sigma} 1$ ea，TIP112， $125,42 B$
TIP35B \＆1．30 TIP35C
2N3055 Motorola 50p
2N3055 Ex eqpt tested
Plastic 3055 or 2955 equiv 50 p

DISPLAYS

Futaba 4 digit clock，fluorescent display FLT－02－8 also 5－LT 16 ．．． $\mathbf{\Sigma 1 . 5 0}$ Futaba 8 digit calculator．fluorescent display 9CT－ 01－3L．
81.50

LCD Clock display 0．7＇＂digits．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 83.00
Large Clock display ${ }^{\prime \prime}$ digits ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 83.00 7 seg 0.3 ＂display comm cathode ．．．．．．．．．．．．．．．．．．．2／£1．00
MISCELLANEOUS
5．25＂FLOPPY DISCS DS DD BOX．．．．．．．．．．．．．．．．．．．．．．10／ع15 MAINS ROCKER SWITCHES 6A SPST．．．．．．．．．．．．．．．．．．．．．．．．．5／£1
$4700 \mu \mathrm{~F} 63 \mathrm{~V}$ ITT 10A RIPPLE
1．25＂Panel Fuseholders 5／．．．．．． 1.00 STAINLESS STEEL HINGES 14．5＂BY 1＂OPEN E1．00 each．

\section*{QUARTZ HALOGEN LAMPS

A1／21624v 150w HALOGEN LAMPS

A1／21624v 150w HALOGEN LAMPS

WOUND POT CORES
With adjuster unused
RM7 LA4245
3／81．00

MAINS TRANSIENT SUPPRESSORS $245 v \ldots 3 / \varepsilon 1.00$ TOK KEY SWITCH 2 POLE 3 KEYS－ideal for car／home alarms £3£100＋．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$£ 2.00$ 12v 1．2w small wire ended lamps fit AUDINW TR7 12 v 1.2 w small wire ended lamps fit AUDINW TR7
VOLVO SAAB．．．10／£1．00 14v 0．75w MES lamps．
$1 / \Sigma 1.00$
$8 / \& 1.00$
Heat shrink sleeving pack
PTFE sleeving pack asstd colours
250 mixed res diodes，zeners
Mixed electrolytic caps ．．
ITT CASS RECORD／PLAY AMP＋cct ． Stereo cassette deck
Stereo cass R／P head
Mono head E1，Erase head
Thermal cut－outs $50,77,85,120^{\circ} \mathrm{C}$
Thermal fuse $121^{\circ} \mathrm{C} 240 \mathrm{v} 15 \mathrm{~A}$ ．
Vero pins fit $0.1^{\prime \prime}$ Vero．．．
Double sided PCB pins ．．．
Double sided PCB pins ．．．．．．．．．．．．．
TO220 Micas＋bushes 10／50p ．．．
TO3 Micas＋bushes RELAYS 240 v AC coil ． 81.00
81.00

E1． 1.00

$00 / \Sigma 2.00$ changeover $£ 13$ pole c／ $\Sigma 2.00$ | ． 25.00 |
| :--- |
| 5.00 | ． 2.50 $+50 p$ ea70p 5／81．00 200／ 1.00 200／21．00 PCB mounting 2 pole Fig． 8 mains cassette leads． KYNAR wire wrapping wire 20 ree．．．．．．．．．．．．．．．． $3 / \$ 1.00$ PTFE min．screened cable． TOKIN MAINS RFI FILTER 250v 15A TDK MAINS RFI FILTER 115 v 15 A ． IECCHASSIS PLUG／RFI FILTER 10A．

Epoxy potting compound 500g．． Min．rotary sw．4p c／o 1／8＂＇shaft Thorn 9000 TV audio o／p stage 10 m 7 CERAMIC FILTER 50p ．．． 6m or 9m CERAMIC FITLER 50p 240 V AC FAN $4.6^{\prime \prime}$ SQUARE NEW． $240 / 115 v$ AC FAN $4.6^{\prime \prime}$ SQ．NEW ．．． KLIPPON terminal block EKS $12 / 4$
12－way 20A term block．．．．
BELLING－LEE 12－way block L1469
POTENTIOMETERS short spindle
2k5 10k 2m5 Lin．．
og long spindle ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
40 KHZ ULTRASONIC TRANSDUCERS EX－EDPT NO DATA．．．PAIR／\＆1．00 NO DATA ．．． PAIR／ 1.00 24／ 21.00 T03 TRANSISTOR COVERS．．．．．．．．．．．．．．．．．．．．．．．．．．10／81．00 TRANSISTOR MOUNTING PADS T05／T018 £3／1K DIL REED RELAY 2 POLE N／O CONTACTS ．．．．．．．．．．．．$£ 1.00$

RECTIFIERS

25A 400 v bridge $£ 2.50$
10／218．00

SCRs

MCR72－6 400v £1 BTX95 800V 15A
ع1． 50
BTX95 800v 15A
35A 800v stud．．
70 A 500 v large stud
MCR106 equiv．4A 400v 40p ea
2N5061 800mA 60V T092
ea ．．．．．．．．．．．．．
TICV106D ．8A 400v T092 3／E1
1．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
$\Sigma 1.50$
82.00

MEU21 Prog．unijunction ．．．．． $100 / \& 20.00$

TRIACS diacs 25p

TXAL225 8A 400V 10 mA gate 2／£1．00 TXAL228 8A 400v isol．tab．．． \qquad $100 / 235.00$ 25A 400v ex eqpt．tested．． ．．$£ 1.50$
CONNECTORS（EX EOPT，price per pair）
＇D＇ 9 －way $£ 1$ ； 15 －way $£ 1.25$ ； 25 －way．．．．．．．．．．．．．．．．．．．$£ 2.00$
37－way £2； 50 －way $£ 3.50$ ；covers 50 p ea
81.00

NEW 25－way PCB SKT
D9 PCB PLUG 90 deg ．．$£ 1.00$
0．1＂double sided edge connector， 32 －way ideal
$0.1 "$ double sided edge connector，32－way ideal
ZX81／SPECTRUM ZX81／SPECTRUM

E1．50
£1．50
$0.1^{\prime \prime}$ d／sided pcb plug $24+25$－way．
81.50

2 pole sub min．connectors ideal radio control RS
$466 / 472 / 488 / 3435$ pairs ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 2.00

IDC CONNECTORS

25－WAY＇D＇PLG／SKT 37 ＇D＇PLUG ea．
E2．00
26－WAY SOCKET（BBC PRINTER）．
34－WAY SOCKET（BBC DISC DRIVE） 40－WAY SOCKET $\Sigma 1.00$ －WAY SOCKET
IDC CARD EDGE CONNECTORS D／S EX－EAPT
34－WAY（FITS DISC DRIVE PCB）．．．．．．．．．．．．．．．．．．．．．． $\mathbf{2 3 . 0 0}$ 40－WAY（FITS CENTRONICS 739 PCB）．．．．．．．．．．．．．$£ 3.00$

DC RIB：30N CABLE

60way．．
．． $22 / \mathrm{m}$

MIRE MOUND RESISTORS

W21 or sim2．5W10OFONE VALUE FOR ．．．．．．．．．．．．£1．00
1R0 2R0 2R7 3R9 5R0 10R 12R 15R 18R 20R 27R 33R 36R 1R0 2R0 2R7 3R9 5RO 10R 12R 15R 18R 20R 27R 33R 36R
47R 120R 180R 200R 330R 390R 470R 560R 680R 820R 910R 1K 1K15 1K2 1K3 1K5 1K8 2K4 2K7 3K3 10K

W22 or $\operatorname{sim} 6$ watt 7 OF ONE VALUE for ．．．．．．．．．．．．£1．00 R22 1R5 9R1 10R 12R 20R 33R 51R 56R 62R 120R 180 R22 1R5 9R1 10R 12R 20R 33R 51R 56R 62R 12
270R 390R 560 R 620R 1K 1K2 $2 \mathrm{~K} 2 \mathrm{~K} 3 \mathrm{~K} ~$

W23 or sim 9 watt 6 OF ONE VALUE for ．．．．．．．．．．．．．$£ 1.00$ R22 1R0 3R0 6R8 56R 62R 100R 220R 270R 390R 680R 1 K 1 K 810 K
W24／sim． 12 watt 4 OF ONE VALUE for ．．．．．．．．．．．．．$£ 1.00$ R50 2R0 10R 18R 47R 68R 75R 82R 150R 180R 200R 270R 400R 620R 820R 1 K

PHOTO DEVICES

Slotted opto－switch OPCOA OPB815．．．．．．．．．．．．．．．．$£ 1.30$
2N5777 50p ．．． $100 / 826.00$

TIL81 T018 Photo transistor ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．£1．00
TIL38 Infra red LED 2／50p．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 160.00
OPI2252 Opto isolator ．．．．．．．．．．．．50p
Photo diode 50p．
MEL12（Photo darlington base o／c）
RPY58A LDR 50p ORP12 LDR
LEDs RED 3 mm or $5 \mathrm{~mm} 12 / \mathrm{c1}$
．．．．．．．．85p
GREEN or YELLOW 3 or $5 \mathrm{~mm} 10 / \mathrm{s} 1$ ．．．．．．．．．．．．．．．． $100 / \mathbf{8 6} .50$
FLASHING RED 5mm 50p ．．．．．．．．．．．．．．．．．．．．．．．．．．．．100／ $\mathbf{1 0} 30.00$

DIODES

10R 20R 100R $200 \mathrm{R} 500 \mathrm{R} .$.
2K 5 K 22 K 50 K 100K 200 K
$40 p$

IC SOCKETS

8 －pin 12／£1；14－pin 10／£1．00；18／20－pin 7／£1；100／£12； $1 \mathrm{k} / £ 80$ ；22／28－pin 25p；24－pin 25p；100／£20； $1 \mathrm{k} / £ 100 ;$ 40－pin 30p；16－pin 12／乏1；100／\＆6
TRIMMER CAPACITORS small
GREY1．5－6．4pF GREEN 2－22pF ．．．．．．．．．．．．．．．．．．．．． 5 for 50p GREY larger type 2－25pF．．． 5 for 50 p
SOLID STATE RELAYS NEW 10A 250v AC
Zero voltage switching
Control voltage 8－28v DC ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．52．50

POLYESTER／POLYCARB CAPS
$10 \mathrm{n} / 15 \mathrm{n} / 22 \mathrm{n} / 33 / 47 \mathrm{n} / 68 \mathrm{n} 10 \mathrm{~mm}$ rad ．．．．．．．．．．．．．100／£3．00 100N 250V radial 10 mm 100／£3 ．．．．．．．．．．．．．．．．．．．．．．．1000／£25．00 1u 250 vC C280 $5 / \mathrm{E} 1 . .$.
$1 \mathrm{u} 5 \mathrm{P} / \mathrm{carb} 15 \mathrm{~mm}$ rad．．．．．．．．．
100／\＆5．00（£1）
2 u 2 160v rad $22 \mathrm{~mm}$.
100／E10．00（£1．50）
470 n 250 v AC X rated rad ．．．．．．．
33 n 250 v AC X rated rad 15 m
． $4 / \AA 1.00$
33 n 250 v AC X rated rad 15 mm ．
$10 / \Sigma 1.00$
$100 / \Sigma 6.00$
100n 600V SPRAGUE axial 10／乏．
100／玉6．00

BEAD THERMISTORS
 GLASS BEAD NTCRes＠20＇c
 250R 1K2 50K 220K 1M4
 $80 p$
 R53 THERMISTOR ．．
 52.00

BEAD TANTALUM CAPS

6 u 25 V 47 u 3 V 68 u 6 V 12／£1．
$100 / £ 6.00$

SMALL AXIAL CERAMIC CAPS 50V

15p 18p 22p 27p 33p 47p 68p 82p 470p 1n 10n（25V）
100／ 23.00
MONOLOTHIC CERAMIC CAPS
$100 \mathrm{~N} 50 \mathrm{v} 100 / \mathrm{E} 510 \mathrm{~N} 50 \mathrm{~V}$
$100 / 23.00$
470N 50v 100／\＆7 1uF 50V $100 / \Sigma 8.00$

STEPPER MOTOR 4 PHASE 2 9v WINDINGS

£3．50 ．．10／ $\mathbf{8 0} 0.00$

KEYTRONICS
332 LEY STREET，ILFORD，ESSEX Shop open Mon－Sat 10am－2pm TELEPHONE：01－553 1863

MIN ORDER £2．50 OFFICIAL ORDERS WELCOME

EI STOCR DIMGRATHDCRGULX OVER 100,000 TIEMS INCLUDING: intel D8085AH-2 £25.00 D8271 £65.00
D8202 D8257-5 8255 D3002
2732 EPROM SPECIAL fully guaranteed

HOT LINE DATA BASE

THE ORIGINAL FREE OF CHARGE dial up data base ON LINE NOW - 300 baud, full duplex CCITT tones, 8 bit
word, no parity
$01-6791888$

STILL IN STOCK

FP1 500 Heavy Duty 25 cps daisy whee RS232 interface, bi directional printers, Brand New at E499.00

2732 EPROM SPECIAL fuliy guaranteed
450 ns £3.75, 350ns $£ 4.00$, 300 ns £4.50

COOLTGR MAFB

Mont cintiontid im $92 \times 92 \times 25 \mathrm{~mm}$

 DUHLER 69.11 .22 .8 .16 VDC micro
miniature reversibe miniature reversible tan Uses a brushless servo motor for extremely high sir flow,
almost silent running ando guaranteed 10,000
hr life. Measures hr life. Meesures only $62 \times 62 \times 22 \mathrm{~mm}$
Current cost $£ 32.00$ OUR PNICE ONLY Current cost $£ 32.00$. OUR PAICE ONLY E12.05 comploto with data. MUFFIN-CENTAUR standard 4"× $4^{\prime \prime \prime} \times 1.25^{\prime \prime}$ E6.25 or 110 v at $£ 4.95$ or BRAND NEW 240 v at $£ 10.50$. 1000 's of other fans Ex Stock

DUAL 5" DISK DRIVES

 COMPATIBLE Single sided drives ina compact, atitractively styed gitey ABS
structured case wint interna swithed
 coit dives and an inteligentz Z8o controler removed elevin ampee space and current

GE TERMIPRINTER

Amasseve purrhase ot these dass tiop

 Low Price agaiss then or ongal osiol

 horizonal tab sernas. siandaration adusaine bualues. quive opeation with manual. Guaranteed working $£ / \$ 3000$
untested ERS.00 optional floor stand $£ 12.50$ untested egs.00, optional floor stand £ 12.50

DATA MODEMS

Join the communications revolution with our
range of EX TELECOM data modems. Made to most stringent spec and designed
for 24 hrs per day. Units are made CCITT tone spec and working skt Units are sold in a tested may be required for connection to PO lines MODEM 20-1 Compact unit tor use with
MICRONET, PRESTEL OI TELECOM GOLD Mic 2 wire uirect connect 75 baud transm socket Guaranteed working with data E49.9s receive 1200 baud ransmit $\mathrm{E} / 3000$ TRANSDATA 307 A 300 baud acoustic coupler RS232 i/o $£ 95.00$ brand new C $£ 4.5$ NEW DSL2123 Multi Standard modem selectable V21 300-300 bos, V23 75-1200, V23 $1200-75$ ulf duple duplex modes. Fult auto answer via modem or modes Switchabie CCITY or BELL 103 S 202. Housed in ABS case size only $2.5^{3} \times 8$
$\times 9^{\prime \prime}$ E286.00+VAT
For further data or details on other EX STOCK
modems contect sales office.
modems contact salas office.
Carrizge on all modems $£ 10.00+$ VAT. real snip.
pplications quide.

SPECIAL 300 BAUD MODEM OFFER
 nother GIGANTIC purchase of these EX BRITISH TELECOM, BRAND

 NEW or little used 2 data modems allows US to make the FINAL REDUCTION, and for YOU to join the exciting world of datacommunications at an UNHEARD OF PRICE OF ONLY E29.95. Made to the highest POST OFFICE APPROVED spec at a cost of hundreds of pounds each, the 2B has all the standard requirements for data base, business or hobby communications. All this and more!!

$$
\begin{aligned}
& 300 \text { baud full duplex } \\
& \text { Full remote control } \\
& \text { Standard RS232 serial interiace }
\end{aligned}
$$ CCITT HOW ONLYE Standard AS232 serial interiace

SUPER PRINTER SCOOP BRAND CENTRONICS 739-2

 $\begin{array}{ll}\text { only } \\ \text { and } \\ \text { al } & \text { - }\end{array}$

 columns, single sheet sprocket or roll paper handiling plus

 full manual elc. Limited quantity - Hurry while stocks last
 Options. Interface cable (specity) for BBC, ORIC, DRAGON or CENTRONICS 36 way

 Supplied with full data \rightarrow NOW ONLY $\geq 29.95<240 \mathrm{~B}$ Mains in test switching Modular constructionDirect isolated connection

8" 19M8 WINCHESTER DISK DRIVE

Made in the UK by a subsidiary of the world's largest disk drive manufacturer. MASSIVE 19 mb of storage to your computer system. Superbly constructed on a heavy die cast chassis the DRE 3100 utilises 3×8 " plattens in a dust cavity. All drive functions are controlled by microprocessor electronics sing an INTEL 8035 cpu and TL Support logic. Datata to the outside world is a two comprehensive 8 bit TL level bi directional data busses with full statu porting for ease of interfacing. Many features such as Av. seek time 35 ms , 12 bytes per sector. $+24,-24$ and $+5 \vee$ DC supply, plug in card system, and ompact size of approx. $19 \mathrm{~cm} \mathrm{H} \times 21 \mathrm{~cm} W$ and 42 cm D etc, etc, make this item

ONLY £225.00 Carriage 10.00 PROFESSIONAL KEY8OARD OFFER
An advantageous purchase of brand new surplus allows a great OWERTY, full trave ALPHAMERIC 7204/60 full ASC II 60 key, upper. lower + control key, parallel TTL DEC LA34 Uncoded keyboard with 67 quality GO1D standard X Y matrix. Complete with 3 LED indicators \& I/o cable - ideal micro

66\% D/SCOUNT

Due to our massive bulk purchasing programme which enables us to tring you the best possible

COMPUTER 'CAB'

cabinet with integral switched
mode PSU, Mains fittering, and twin fan cooling Originally made for the famous DEC PDP8 computer ystem costing thousands of pounds. Made to run 24 hours per day the PSU is fully screened and will deliver a nassive $+5 v$ DC at $17 \mathrm{amps},+15 \mathrm{vDC}$ at 1 amp and -1 DC at 5 amps. The complete unit is fully enclosed with EDs mounted on Alifront panel, rear cable entries, etc etc. Units are in good but used condition - supplied for 240 v operation complete with full circuit and tech. man. Give your system that professional finish for only 49.95 + Carr Dim $19^{\prime \prime}$ wide $16^{\prime \prime}$ deep $10.5^{\prime \prime}$ high. Useable area 16"W $10.5^{\prime h} \mathrm{~h} 11.5^{\circ}$ "d. ANS etc. Internal dim.

VIDEO MONITORS

 EQUIPMENT video monitors defy of EX competition! All are for 240 v working withstandard composite video input. Units are standard composite tor uo to 80 col use on BBC micro. Even where MINOR screen unaffected. 1000's SOLO TO DATE

9" HITACHI and 95
12 " KGM 320-321, high bandwidth input, will display up to 132 columns $\times 25$ ines. Housed in attractive f/W only $£ 32.95$ GREEN screen $\mathbf{~ 3 9 . 9 5}$ 24" KGM large screen black \& white
monitor fully enclosed in light alloy case ONLY $£ 55.00^{\circ}$
14"' BRAND NEW Novex COLOUR type NC1414-CL as RGB IT and composite video input, matching colours Fully guaranteed OWCYE 99.00

SEMICONDUCTOR 'GRAB BAGS'

Mixed include transistors, digntal, linear. I.C.'s tr

 incodes bridge recs, elc etc All devices facturer's markings, fully guaranteed $50+\$ 2.95100+\pi 5.15$.THL 74 Series A gigantic purchase of an "across the board" range of 74 TL s
ic's enables us to offer $100+$ mixed "mostly TTL" grab bags at a price which two or three chips in the bag would nnormally
cost to buy Fully guaranteed all C' spec $100+\varepsilon 6.90200+\varepsilon 12.30300+\varepsilon 19.50$

DEC CORNER

BA1 1-MB 3.5"Box, PSU, LTC DH11-AD $16 \times$ RS232 DMA DH11-AD

 intenace $\quad \mathbf{£ 1 0 0 . 0 0}$ OLV11-J $4 \times$ EIA interface \quad £310.00 $\begin{array}{ll}\text { DUP11 Sych. Serial data i/o } & £ 650.00 \\ \text { DZ11-B } 8 \text { line RS232 mux board } \\ \mathbf{\varepsilon 6 5 0 . 0 0}\end{array}$ LA36 Decwriter EIA or 20 ma loop $\mathbf{\varepsilon 2 7 0 . 0 0}$ LA36 Decwriter EIA or 20 ma loop £270.00 and buffer option $£ 130.00$ LAX34.AL LA34 tractor feed $\quad \mathbf{8 5 . 0 0}$ MS11-JP Unibus 32 kb Ram $\mathbf{~} 880.00$ $\begin{array}{ll}\text { MS11.LB Unibus } 128 \mathrm{~kb} \text { Ram } & \text { £450.00 } \\ \text { MS11-LD Unibus } 256 \mathrm{~kb} \text { Ram } & \mathbf{8 5 0 . 0 0}\end{array}$ MSC4804 Qbus (Equiv MSV 11 PDP11/05 Cpu, Ram, i/o, etc. PDP11/40 Cpu, 124 kMMU RT11 ver. 3 B documentationRK05-J 2.5 Mb disk drives KLBJA PDP 8 disk dio
MI8E POP 8 Bootstrap option VT50 VDU and Keyboard £499.00 £450.00 £70.00
£ 850.00 $£ 70.00$
$£ 650.00$ £650.00
$£ 175.00$ $£ 175.00$
$£ 75.00$ £175.00
1000's of EX STOCK spares for DEC PDP8, PDP8A, PDP11 systems
eripherals. Cail for details. All types of

NK PRICES PLUS VAT

DEFLAT
 Etectrouth

Aliprices quotedare for U.K Mainland, paid cash with order in Pounds Stirling PL UŞVAT. Minimum order valuêE2. ©Q, Minimum Credit
 We reserve" the right to change prices and specifications without notice. Trade, Qulk and Export enquiries wetcome. 32. Biggin Way, Upper Norwood, London SE17 3XF Telephone 01-679 4414 Telex 27924

Cellular radio

Europe's largest electronics group. Philips, announced recently that it was linking with Racal to distribute the new Vodafone cellular telephones through its UK subsidiary Pye Telecom.
The announcement was made in Stockholm at the plant of Ericsson Radio Systems, who will be providing the electronic switching equipment for the Vodafone network.

Ericsson's AXE 10 digital switch is already in widespread use throughout the world. As well as having been at the centre of the Nordic Mobile Telephone System (NMT) for the past two years, it is used in American systems in Buffalo, Chicago and Detroit, and in the network now nearing completion in Saudi Arabia. Ericsson also recently announced an agreement with the Canadian company NovAtel Communications to supply systems for Montreal and Toronto.
The new mobile telephone service is due to start in this country early in 1985, following trials in London during December 1984. Within 18 months of commencing operation, the network should cover 80% of the population. (The system is described in R\&EW November '84).
In addition to mobile telephones for use in vehicles, equipment available during 1985 will include a transportable Vodafone for use in vehicles, on boats and in caravans, and a portable unit for carrying in a briefcase or handbag.

Electronics growth

The European electronics market is set to expand by around 7.5 per cent in real terms in 1985 compared with 1984, according to a new report from Benn Electronics Publications Ltd.

In 1985 the total West European electronics market for equipment and components will reach US $\$ 96$ billion, (one US billion $=$ one thousand

million) at constant 1983 values, compared with $\$ 89.3$ billion in 1984, and is forecast to reach $\$ 114$ billion in constant terms by 1988, an annual average growth rate during the period 1985-88 of 5.75 per cent in real terms.
The twelfth edition of the Yearbook of West European Electronics Data 1985 cites a slow-down in West European economic growth beyond 1985 as the reason for the relatively low growth rates 1985-88, as Europe follows the USA into an economic downturn (on present consensus forecasts) in 1986.
The fastest growing sector will be electronic data processing (EDP), which includes computers, personal computers, word processing systems and computer peripherals.

The second largest European equipment market, for telecommunications equipment, will reach some $\$ 15.3$ billion by 1988, assuming growth in the order of 6 per cent per annum over the period 1985-88.

The overall component market, including active, passive and audio components, is also projected to expand at 6 per cent per annum 1985-88. Within the component sector, integrated circuits and other microcircuits are expected to maintain a growth rate of little more than 9.5 per cent per annum in real terms for the 1985-88 period. The IC market (including hybrids) is pro-
jected to grow by almost 15.5 per cent in 1985 compared with 1984.

Other major sectors covered in the Benn European electronics yearbook include electronic office equipment control and instrumentation, communications and military equipment, medical and industrial electronic equipment, and consumer electronic equipment.
In national terms, the most surprising feature is the rise of the United Kingdom market to vie with that of West Germany in size as the largest electronics market in Europe by 1988.
However, there are strong indications that British manufacturers may not benefit from this UK market growth to the same extent as importers. An analysis of data from the new twelfth edition and previous editions of the electronics yearbook series shows that imports of electronics equipment and components have grown at a much faster rate than output in the UK over the five year period 197983, and reveals an alarming increase in the UK trade deficit in electronics goods compared with other European countries.
Alarmingly, the UK trade deficit in the electronics sector increased from $\$ 1$ billion in 1979 representing 25 per cent of the total European electronics trade deficit, to $\$ 4.1$ billion in 1983 (the latest available complete year) rep-
resenting over 45 per cent of the total European trade deficit in electronics.
Additional data detailed in the twelfth edition of the yearbook include the output of vehicles and domestic appliances in Europe, forecasts of leading economic indicators such as gross domestic product, inflation, industrial output, balance of payments, unemployment to 1985 for each European country, exchange rates against the US dollar, a four language glossary and a complete explanation of the interpretation and classification of the statistics and a guide to the electronic product headings.
The twelfth edition of the Yearbook of W'est European Electronics Data 1985 is US $\$ 425$ per copy and is available from Benn Electronics Publication Ltd, PO Box 28, Luton LU2 OBD, UK. Tel: (0582) 417438.

Low power alarms

The Department of Trade and Industry announced on 24 May that it was to review its policy on low power radio controlled intruder alarms and security alarms.
The DTI's existing policy on alarms is that they should be crystal controlled to operate in a 25 KHz channel centred on a spot frequency. This has the advantage of minimising the amount of spectrum occupied and also gives some protection to other low powered telemetry users in the band.
Proposals had been made that this policy should be altered and that wideband low power alarms should be licensed to operate within the low power telemetry and tele control band at 173.200173.350 MHz . Comments were invited from any interested parties.
The DTI wished to take account of the views of all those interested and particularly all users of the band before reaching decisions.
A large number of comments were received from a range of manufacturers and users. The overwhelming majority of those who
responded felt that wideband operation was not desirable and that furthermore, on the grounds of spectrum efficiency and control of interference, a good case could be made for a narrower bandwidth of 12.5 KHz in the 173 MHz band.
The DTI has accepted that view and work is in hand to produce new draft specifications for all low power telemetry and tele control devices. Manufacturing interests will be consulted on the production of these specifications and on the timing of their introduction, through the department's usual consultation machinery.

The consultations will also cover the possibility of reducing the channel spacing at 458 MHz from 25 KHz to 12.5 KHz , in view of the
responses to the consultation on the 173 MHz band. Meanwhile no change is being made to existing licensing arrangements.

The DTI has separately announced proposals to cease the licensing of a wide range of low power devices (including telemetry and tele control) in the 173 MHz band. Until views on these proposals have been considered the department will continue to license low power telemetry devices.

It should be noted that those using the band will continue to do so on a noninterference and non-protection basis (ie that no interference shall be caused to other authorised radio services and that no protection from interference is given from other services).

A bat In a cage?

No bird is held captive in this 'container' (see picture). What looks like a bird cage is in fact the screen grid of a 100 KW vapour-condensationcooled tetrode for medium and short wave radio transmitters.
The photo was taken at Siemens' electronic tubes plant in Berlin, and shows the delicate pattern of a graphite grid made from a cylindrical hollow body using a laser as a precision cutting tool.
The features are remarkably smooth and true to size when compared with sandblasted grids. Also known as pyrographite, the material has excellent dimensional stability. In operation, the grid is loaded with as much as 24W per square cm, with temperatures just below 2000K.

Radar callbration problems

A radio-controlled model helicopter has helped research engineers at the Communications Division of Thorn EMI Electronics, at Wells, to solve a radar calibration problem.

The $1 / 3$ scale helicopter was used to support a trihedral corner reflector in free space at a constant height and range over an RSRE experimental I-band radar at the Royal Navy Frazer gunnery range at Portsmouth Hants.

The corner reflector appeared to the radar as a ten square metre target. Accurate calibration depended on maintaining the reflector for four minutes at a height of 80 m and at a range of 1 Km .

This helicopter-borne reflector provided an extremely effective low-cost solution to the problem of radar 'multi-path' or spurious reflections from the ground or from water lying on the range, which had previously made calibration impossible. Another method using a sphere suspended from a kite also has disadvantages.

The model helicopter, which was constructed by Martin Sims, a research engineer at Wells, is regularly exhibited by its owner at shows in the south of England. He has acquired considerable skill in the accurate

flight positioning required for the radar trials.

Speech recognifion project

Computers that recognise the human voice are to be developed in a $£ 2$ million research project headed by British Telecom's research laboratories at Martlesham Heath, near Ipswich.
The study, which will run for three years, will be undertaken in collaboration with Logica and Cambridge University.
It is being funded by the Alvey Directorate.

The aim of the project is to simplify the use of computers by non-technical people, particularly for tasks such as searching databases. Speech has long been recognised as
the most natural and convenient means of communicating with computers, but at present computers can only understand simple one-word commands. Voice recognition at the man-machine interface (MMI) would enable users to give spoken commands.
To be useful to non-specialists computers must also be capable of conducting sensible conversations to clarify users' requirements and explain what they are doing.

Research in intelligent knowledge-based systems (IKBS) has shown how this level of intelligence might be built into the computer. The project team will be integrating an IKBS with Logica's 'Logos' automatic speech

European Space Agency

When Halley's Comet pays its next visit in 1986, for the first time since 1910, it will be examined at fairly close quarters (in astronomical terms) by the Giotto scientific satellite.

Giotto will take 9 months to reach the vicinity of the comet, travelling at 70 Km per second.
During its flight it will maintain its stability by spinning at 15 rpm .

One of the engineering problems facing the Societe Europeene de Propulsion (SEP) is the control of the onboard antenna through which the satellite will communicate its findings with the earth station, and through which instructions will be directed from earth to keep it on course.
recogniser, and will be running several phases of user trials of a database inquiry service.

British Telecom Research Laboratories (BTRL) scientists will be providing expertise in the use of IKBS for dialogue control.

They will collaborate closely with Dr S J Young of Cambridge University in the design of the dialogue control system.

Logica will study and develop advanced techniques for automatic continuous speech recognition suitable for use in a conversational system. KBS methods will again be invoked to improve the method's capability to understand the speaker.

SkybrideeMail order \& shop:
441 PRINCES ROAD,
DARTFORD, KENT DA1 1RB Telephone: (0322) 91454
ORDERING INFORMATION: P/P 50 on orders less than $£ 20$ in value otherwise post free All components full spec $\&$ guaranteed. Discounts available on orders over 550 -

		22/16	$\overline{O M} .$						
wire wrap il....6p Rod/white/black	in stock-Phone for details.	22/25 $22 / 35$$\cdots \cdots{ }^{10}$				20rmm panel	sinks available -		TRANS. FORMERS
solid1/. 6		22/63	26.584 M … 20.2000	BNC free skt. 110 p BNC str. adapt.	2-type C ang. skt	holder45p		Round 12" 100 W (1073p	$6.0-6 \mathrm{~V}, 100 \mathrm{ma}$
11 colours 40	CAPACITORS	$47 / 10 \cdots 100$	26.64 M 2000	140p	D-type it ang. plug	hoider59p		Round 12" ${ }^{\prime \prime}$	6.0.6
${ }_{\text {Hook-up }}^{11}$ cotours7/3. ${ }^{\text {a }}$	${ }^{\text {Plate ceramic }}$	47/16 ${ }_{47 / 25} \ldots \ldots .11{ }^{19}$	26.694M . ${ }_{26}$	BNC T adapt. 3000	9 W pou	20 mm chassis	Minigture	150 W .. A336p	250 mA
	1.8isf - 22nF ..8p	${ }_{47 / 25}^{47 / 25} \cdots \cdots{ }^{135}$	26.74M . . 79.2000	VHF plug 5	D-type i ang. plug	holder	6V or 12V $\quad . \quad 90 \mathrm{p}$	Round	$9.0-9 \mathrm{~V}$,
${ }_{4}{ }^{\text {Hesolours duty . . } 32150}$	10pF 10p	$47 / 35$ $47 / 63$	${ }_{26}^{26.89 M}$....2000	PL25A . ${ }^{\text {a }}$ - 500	15 W poa	$1 x^{\prime \prime}$ " chassis	Ultrasonic . . s00p	750W . 15,7185	100 mA . . . 167p
Exiraflex	47pF15p	$100 / 10$..... 110	26.995 M . 2000	Large reducer 20 p	25 W - W ang. ptug	holder Line holder.... 11p	transducers	Round 15.8735	${ }^{9} 50.9 \mathrm{~m}$.
ed/black	100pF 15	100/16 13p	27.045M . . . 2000	PL258 ri.8ng. 90 p	Covers $9 \quad 120 \mathrm{p}$	Fuse clips....3p	Elliptical 5"x3*	Round 18"	12-0-12 V.
40 z reet	${ }_{\text {4700pF }}$	100/25 15	27.095M . . . 2000	VHF round skt. 500	Covers 15... 120p		198.	200W $£ 108$	50 mA
SWG16	2200pF … $11 p$	${ }_{100 / 63}$	$27.195 \mathrm{M} \cdots 200$	Vhfsquare skt sop	Covers $25 . .1300$	200ma. 500 ma .	Elliptical $6^{\prime \prime} \times 4^{\prime \prime}$		12.0 .12
G18	.01的 F $5 p$	220/16 $\ldots . . .150 .15$	27.245 M . . 2000	Straight adapt. 60	Latches 9 Latches 15	1A, 1.5A, 2A, 3A,	ER10		10-0.12
SWG20 56		$220 / 25$. 200 p	27.255 M 2000	VHF T adapt. 160p	Latches $25 . . .3000$	5A90	314p	31/2"..... 637p	250 mA , 188p
SWG24.	p	220/35 $200 / 63$	CONNECTORS	Female T 100	Power plug	20mm antisurge	Elliptical 7 " $\times 5$ "	$2^{2 \prime *} \times 6^{\prime \prime} \times$ horn 9388	${ }^{\text {0-12/0-1 }}$
En copper per 202	47, F . 15p	270/16320	Croce clips.... 10p	XLA lino plug 180p	2.1 mm . . 15 p	2a 12 p		${ }_{2}$ " $\times 5$ " horn 785	500 mA , 369p
roel SWG14 . .70p	Polystyrene	$470 / 25 \cdots 37 \mathrm{p}$	Terminal post. 40 p	XLR chassis	${ }_{2} \mathbf{P}$ Power plug 150	$11 / 4{ }^{\text {a }}$ fuses 100 mA .	${ }_{5 W}$ Efplic	3\%",	${ }_{12-0.12}$ V. $1 A^{3} 3500$
SWG16...... 80 p	22pF 13p	470/35 . . . 31p	imm plug.....20p	skt.330p		150 mA . 250 ma .		4"×10" \ldots 1435p	$15-0.15 \mathrm{~V}, 1 \mathrm{~A} 333 \mathrm{p}$
SWG20....... ${ }_{\text {SOP }}^{0}$	${ }^{47 \mathrm{pF}}$	$470 / 63$..... 48 p	1 mm socket ${ }^{\text {15p }}$	XLR line skt . . 230p	IEC chassis	${ }^{500 \mathrm{~mA}}{ }^{\text {a }}$	8W	Crossovers	$20.0-20 \mathrm{~V}$
SWG22 900	${ }^{600 p}$	${ }_{1000 / 16}^{10.16 .24 p}$	2 mm plug.00 ${ }^{\text {apm }}$	XLR chassis 180 p	plug ${ }^{\text {che }}$	15Á	Elliptic	2 way 15W 188p	1.5 A . 538 p
SWG24 1060	1500pF …	$1000 / 25$..... $41 p$	3 mm plug 20 p	DNA piugs		1"' fuses 2A, 3A,		${ }_{3}{ }_{3}$ way way 250 W W 6939	1A-12-15-20-24-30 V6.
SWGZ6	220pF $\ldots \ldots . \quad 8$	1000/35 46p	3 mmm socket . . 15 p	2 pin 10p	Bulgin P429 . 500	5A. 13A . . . 15p	Miniature	3 way 40W 338p	6-0-6 V, 2A 400 p
SWG30. 110 p .	${ }^{3300 p}$	1000/63 7 . ${ }^{\text {P }}$	4 mmm plug . ${ }^{\text {a }}$ (15p	${ }_{3}{ }^{\text {din plugs }} 15$	Bulgin P646 1659	RESISTORS	11/2.......90p	3 way 60W 502 p	9.0-9 V, 2A . 476 p
SWG33 110p,	560 pF ap	2200116	Phono plug10p	Oin plugs	Bulgin P430 . 1250	E24	Miniature	3 way 100 W 1346 p	$12.0-12 \mathrm{~V} .2 \mathrm{~A} 538 \mathrm{p}$
SWG34 115p,	680	$2200125 \cdots$	Ptrono line skt.20p	4 pin 3 рp	Bulgin P649 . 135	.4W 1\%	13/4		
SWG36..... 1250,	10030F	2200/35 74	Jack plug	DIN plugs	${ }^{\text {Buggin P650 }} 110 \mathrm{p}$	E247p			0-12-15-20-24-30 ${ }^{\text {d }}$
(1500pF $\mathrm{c}_{\text {p }}$	3300/2574p	2.5 mm 15 p	5 pin A			Miniature	SWITCHES	
Figure 8 per metre	${ }^{22000 \%}$	3300/35 5929	3.5 mm 15p	$\begin{aligned} & \text { DN } \\ & 240^{\circ} \end{aligned}$	Bulgin P551 . 300p	E12 WW in - 1230 P	21/4........900	SPST . . . 47	$20.0-20 \mathrm{~V}, 24.745$
71.25....13p	4700pF ${ }^{\text {p }}$	${ }_{4700116} \cdots \cdots .350$	Jack ski		Bulgin PS552.0100p	3W ww	Miniature 21/" 8 BR	Toggle Std	30.0.30 V, 24.933 p
Coloured ribbon	5600 pF . .a. 10 p	${ }_{4700125}$	2.5 mm15p	360°.	Bulgin SA2403	2R2 200	Sop	DPPT $\quad 62 \mathrm{p}$	$12.012 \mathrm{~V}, 3 \mathrm{~A} 721 \mathrm{D}$
per foot ${ }^{10}$	6800 pF10p	Non polarised	Jack skt	DIN plug 6 pin 40p		7W ww 30p	GAR	in	$6.06 \mathrm{~V}, 4 \mathrm{~A} \cdots 538 \mathrm{P}$
10 way 2008		${ }_{1}^{1 \mu \mathrm{~F}}$, 25p	Jack ski line ${ }^{3.5 m m}$	DiN plug 7 pin 200	Bulgin SA2190 50p	10W $\mathrm{Wm} \mathrm{Wm} \quad 350$	Round 5" 4 W 174p	68p	9-0.9 V 4A 687p
34 way …… 80p		${ }_{3}^{2.245}$. 250	2.5 mm …...30p	DiN plug 8 pin	Bulgin SA1862 50p	Ww Pots.	Round $5^{\prime \prime}$	Spbr	$12-0.12 \mathrm{~V}, 4 \mathrm{~A} 845$
Mains per metre 2	.14F.	${ }_{4.7 \mu \mathrm{~F}}$	Jack skt line	DIN skts 3 pin 200	Butgin SA2111	3W High		Toggle Min	
core Oval 3A. . 200	Potyester	6.8,F 50.5	$3.5 \mathrm{~mm} \ldots \ldots . .250$	DIN skts 4 pin. 15 p	200p	quality $0^{275 p}$	1587p	$83 p$	12-0-12 V ,
3 core Round 3A	. $014 \mathcal{F}_{1} \ldots \ldots \ldots . . .8$	${ }_{204 \mathrm{~F}}^{10, \ldots . .}$.2sp	$\begin{aligned} & \text { Jack plug 1/2: } \\ & \text { mono } \\ & \text { 20 } \end{aligned}$					DPDT85p	BA 1615p
35p			Jack plug *"		Bulgin SA2020	5 ¢ 10	Roun		Toroids: 30Va
Round 64 ... 500 p	.023F........8p	${ }_{474 \mathrm{~F}}^{33 \mathrm{~F}}$.... 400	stereo 30p	5 pin 8200				DPDT c/off 117p	6V950p
	0474F		Jack skt $1 /$	DIN skis 6 pin 200	gin SA2367	SE	Round $51 / 2 " 15 \mathrm{~W}$	oggle Min	$30 \mathrm{VA} \mathrm{9V} \quad 950 \mathrm{p}$
		Thousands of	mono .1. $2 .$. . 255	DIN skts 7 pin. 20 p		DUCTORS			30 V
1 mm TGE	14F.........9p	other capacitors in	Ja	DiN	-	So	Round 6" 60 W	c/ofle Min 4PD	30VA 15 V . 950 p
1.5 mm TGE . 45 p	.15,F $\ldots \ldots \ldots$. 15	stock i.e.	Jack ski line	$2{ }^{2}$ PIN	other con-	mi	1632 p	Push to make	50 Va 6 V 1150p
2.5 mm TEE . ${ }^{\text {cop }}$	${ }^{22 \mu \mathrm{~F}} \quad 1 \begin{aligned} & \text { 2 }\end{aligned}$	Silvered Mica, \%\%	mono 25p	5 pin ski . 30p	nectors. adapters	Please send large	Round	Push to break 200	50VA 9V. 1150p
6 mm TGE . . 1509		Polystyrene, Poly- carbonate. Mylar.	Jack skt line 30 p	D-type plug		S.A.E. for details.	7W ${ }^{\text {P/ }}$	Key sw spst ${ }^{\text {25spor }}$	50VA 12V
Screened Singie	$684 F \cdot \cdots260$	Tantalum, Trim-	sterso 30p	9 W.........80p		Transistor mounts			50VA 18 V (150p
round 17 p	${ }^{26 p}$	mer, Variable etc.	COAX plug ...15p	15 W -rype plug 150p	LED Std green 13p	T066 $10.10{ }^{10}$	10w 123p	Rolary 3P 4W, 620	80 VA 22 V 1200p
Twin round . . 200 p	csp	etc.	COAX skt surf 30p	D-type plug	LED Std yellow 15p	DIL sockets 8 pin	Round $\mathrm{B}^{\prime \prime}$	Rotary 4P 3W .62p	80VA 30 V 12000
Figure 8 min . 200	Electrolytic	CRYSTALS	COAX skt flush 250	25 W .	LED Min red. 10p		20w .	Sude min	120 Va 30 V . 13000
Figure B std ... 30 p	¢F/V 1/63 8 m	100k400p	COAX line skt 40	D-type skt	LED Min green 18p	14 pin 11 p	Round 8 "	DPOT . . 22p	160VA 35V 1500p
${ }_{\text {S }}{ }^{\text {Coresel......70p }}$	2.2/509	1 M000p	COAX coupter .450	9 W . ${ }^{\text {W }}$	LED Min	16 pin 12p	60W 1346p	Sude std	300VA 35V. 20000
Spisal wrap	$4.7 / 63$. 9\%		CAR aerial	0 -type	YeD clio sid 3p	18 pin $\cdot \cdots . .18 p^{18}$	Round		500VA 35V. 260500
	$10 / 25$ ….......8p	3.2768 M … poon	¢M aerial oug 200	$15 \mathrm{~W} .1{ }^{\text {a }}$. ${ }^{\text {2000 }}$	LED clio min . 30	20 pin 17 p		DIP 6 W . 1280	
$1 / 2.346 p$	10/35 100		BNC plug 100 p	25 W 450 p	Large range of p	24 pin ….... 21 p	20W1113p	DIP 8W156p	
ca	13	4.4336190 M . 3200	BNC round	D-type rt ang. skt	net lamphodders.	28 pin24p	Round 10	DIP 10W 184p	ges shown
bie markers. sloe-	8 p	6.144 M … 130 p	sk1 100p	9 Wppa	de luxe LEDs, eic.	40 pin	30 W .	Microswith . 83 p	

AIRBORNETV

t is not often that the first detailed account of a piece of television history appears 46 years after the event. There are various reasons why the successful series of transmissions by Baird Television Limited from an aircraft in flight have remained in obscurity. For one thing, this military project was highly confidential and only a few employees were aware of the activities, and then the war years prevented any publicity. During that period the personnel involved dispersed.
The author, who was present as a member of the Baird team throughout the series of flights, has been able to locate many of the original documents and photographs, which together with his own recollections form the basis of this article.
These historic television transmissions were not in any way isolated demonstrations to establish a first, but the result of several years development work.

Purpose

In 1937 the Baird company received a contract from the French Air Ministry to design and install a television system capable of transmitting high definition pictures (400 line) of the ground from an aircraft in flight. The main purpose of the project was to explore the use of television techniques for aerial recon-

EXPERIMENTAL BAIRD TELEVISION TRANSMISSIONS FROM AIRCRAFT IN 1939 by RAY HERBERT

naissance. The full potential of the system, particularly the possibility of using infra-red devices, could not be exploited due to the abrupt termination of the work after the outbreak of World War II.

After initial test flights from Hendon

Airport eariy in 1939 to establish transmission coverage, pictures of the countryside around West London were radiated regularly during July of that year, sometimes twice daily. In August the aircraft returned to its base at Villacoublay near Paris and further transmissions were made while flying over northern France.
Results were most satisfactory. At a height of 4000 ft those on the ground could discern quite easily white markings on tennis courts, ripples on the water of reservoirs, and even names on buildings.

A Marcel Bloch 200 twin engine night bomber (No ED83) with a flying speed of 150 mph was used to carry the equipment. The crew of five consisted of a French pilot and mechanic and three Baird engineers.

The system

Television cameras at that time were relatively crude and incapable of providing the required definition, especially in poor light. For this reason it was decided to use the Baird intermediate film process in order that the superior optical capabilities of a 16 mm camera could be utilised.
This arrangement had already been in use for transmissions from the studio, and involved developing and fixing the film in 16 seconds, then passing it 'wet' through a cathode ray tube scanner for a conversion into television signals. The adaptation of this bulky equipment for use in an aircraft posed many problems in connection with size, weight, power suplies, change of air pressure and vibration.
This system had the unique advantage that at the termination of a 30 minute
flight, 45000 individual pictures of the ground were available on film for detailed analysis.

Alrcrofit equipment

A camera fitted with two fixed focus lenses on a revolving turret scanned the ground through a hole in the fuselage floor. Pan and tilt through 30° could be accomplished, and the number of pictures a second was variable between 20 and 30.

The exposed film was processed immediately in sealed developing and fixing tanks maintained at $28^{\circ} \mathrm{C}$, emerging $16-20$ seconds later and then passing still wet to the scanning unit. This consisted of a vertically mounted, high intensity, 78 mm tube in association with an optical system and a photoelectric multiplier. Messages and sketches written on transparent material could be placed in a holder immediately beneath the scanning tube and transmitted in the same way as the film.
An auxiliary rack adjacent to the camera position contained temperature control equipment for the processing tanks, and HF and LF timebases. The camera operator viewed the transmitted picture on a monitor screen situated in a rack which contained the modulation amplifier and pulse generator.
The vision transmitter, located in the forward gunner's position, was quite
conventional, consisting of a master oscillator, frequency doubler, drive amplifier and push-pull final stage incorporating two Raytheon RK47s. This produced a power of 200 watts at 51 MHz fed to a quarter-wave retractable antenna.
As a means of saving weight most of the equipment operated from a 200 volt 500 Hz supply obtained from a rotary converter operating from the main aircraft batteries. A wind driven generator with a variable pitch propeller provided the 1200 volt supply for the transmitter power stages.
The weight of the entire installation amounted to 363 Kg .

Recelving/recording station

A specially constructed Renault motor van with a sprung floor contained equipment for receiving and recording the pictures transmitted from the aircraft. Power was supplied by a petrol driven generator towed behind.
Two vision receivers were used (one spare), each having three RF stages, a diode detector and video amplifier. A small monitor tube could be used for setting up, the main picture being displayed on a 510 mm tube, the largest then available. Due to its length, about 1 metre, it was vertically mounted and viewed via a surface-silvered mirror inclined at 45°, a technique used quite
extensively for home receivers at that time.
The video recording equipment enabled pictures of particular interest to be stored on 35 mm film. By pressing a key the operator could choose between recording a single frame or one frame in three as a continuous series.
The arrangement employed was virtually the reversal of that used in the bomber, the same high intensity tube producing an image on the film emulsion. After exposure the film passed to a storage cassette which could then be transferred to the processing unit for developing, fixing, washing and drying.
It is known that similar projects were in progress during 1939, but due to the secret nature of the work very little information has emerged. The Baird company were probably first in getting pictures from air to ground, and were certainly the first to put out regular transmissions capable of being recorded.
After the outbreak of war the bomber moved from Villacoublay to Orleans and later Toulouse. Its ultimate fate is unknown but almost certainly it fell into the hands of the Germans.
Acknowledgements are due to BB Austin, who was in charge of the Baird design team from 1937-1940, for his help and assistance in the preparation of this article.

BROADCASTING BY

by D Stewart

At present most of the Western World's satellite communication is carried by INTELSAT (International Telecommunications Satellite). If a sporting event or presidential election requires coverage, a television company will book a television channel through a telecommunications company which will then carry the signal over land by cable or microwave.
In recent years EUTELSAT (European Telecommunications Satellite) has been launched to serve the European Community, but the purpose of these satellites is primarily telecommunications and there is no direct link with the television viewer. However, in the next few years it is proposed to launch a number of satellites for various countries with the sole purpose of beaming television.
Direct Broadcasting by Satellite (DBS) for Europe was agreed in 1977 by the World Administrative Radio Conference (WARC) which allocated five channels to each country. Although the primary aim is to beam television entertainment from satellites directly to aerials on rooftops or in back gardens, other services like data access are possible.
Originally the signal power chosen was such that a good signal would be picked up by a 1 metre dish, and the signal from a neighbouring country would be of such poor quality that a viewer would not bother to watch it. However, in the years since 1977 receiver technology has improved so much that it is now possible to pick up a good signal from a neighbouring country.
Some of the problems with broadcasting from one country to another are the language barrier, and differing advertising and transmission standards. We
have our own advertising standards in the UK, in Germany TV advertising is restricted, and so on with the other countries.

Transmission standards

Differing transmission standards will present a stumbling block to multinational DBS since France will use SECAM and Germany will use PAL, which are their terrestrial standards. The UK will use C-MAC, which was chosen by the European Broadcasting Union (EBU) for DBS. MAC stands for Multiplex Analogue Component and the transmission rate will be $20.25 \mathrm{Mbit} / \mathrm{S}$. The reason for choosing this rate is that it is one and a half times the sampling rate of the luminance signal in the studic.
C-MAC will be able to carry eight stereo sound channels in addition to vision. The format is 203 bits per TV line and will carry services like data, sound and access. This packet format is made up as follows: the first bit is a run-in bit, the next seven are line and frame sync, leaving 195 bits out of 203 bits. Those 195 bits give a data rate of $3 \mathrm{Mbit} / \mathrm{S}(195 \times 625$ lines $\times 25$ pictures $/ \mathrm{sec}$) and $3 \mathrm{Mbit} / \mathrm{S}$ is capable of transmitting quite a lot of information.
Incidentally, the system is engineered so that sound fails at a signal to noise ratio that is lower than that for vision, ie sound can be carried long after the noise has corrupted the vision and made it unusable.
C-MAC will use a modulation method known as 2-4PSK (Phase Shift Keying). This is a special case of 4PSK, which requires 2 bits to describe it (Figure 1). For 2-4PSK only one bit is required (Figure 2), and this suits the modulators and demodulators which are either of the

differential type or coherent type. The run-in bit mentioned above is required by the differential modulator.

DBS for Europe

Of the 5 channels per country mentioned earlier, it will be possible to operate only 3 channels simultaneously because of power restrictions on the satellite. On later versions of satellites it will be possible to operate all 5 channels simultaneously.
The table shows the approximate date for launching satellites for the various European countries and the name of each DBS operation.
Television by satellite from the UK to Europe already exists. The European Communications Satellite 1 (ECS1) was launched in June 1983 and two transponders allocated to the UK. A transponder is a receiver, frequency changer and transmitter: satellites receive signals at 14 GHz and transmit at 11 GHz , or receive at 6 GHz and transmit at 4 GHz . ECS1 operates at $14 / 11 \mathrm{GHz}$.
One of the transponders carries a music programme for Music Box (ThornEMI). The other channel carries a programme called Skychannel for Satellite Television plc, and reaches an audience of half a million in Norway, Finland, Switzerland, Britain and Malta via community antenna television (CATV) systems. So in a way direct broadcasting by satellite already exists, except that such broadcasts are to groups of homes (about 50) rather than to individual homes.
On the 4th of August 1984, the European rocket Ariane put up two satellites: Telecom 1 and ECS 2. The first will have videoconferencing facilities and the second will have two transponders for Eurovision programmes.
A US firm, Coronet, has appeared on the European scene with a cut price offer. It is expected to charge something like one third of the $£ 6.5$ million per year that France is asking for its channels. At present Coronet is trying to raise 10 million dollars and is negotiating with Thorn-EMI, Fagersta (Sweden) and French and German institutions.

Brtish DBS

Marconi Space and Defence, British Aerospace and British Telecom have formed a company called UNISAT (United Satellites Ltd). It is planned to use two satellites to cover most of Europe and the eastern seaboard of the USA and Canada.
Solar panels will supply 2.3 KW to the six transponders of each satellite. The power stage uses travelling wave tubes (TWTs) which will be heated during the

European DBS		
Country	DBS name	Approx date
UK	Unisat	1987
W Germany	TV-Sat	1985
France	TDF 1	1985
Italy	Olympus 1	1986
Switzerland	Tel-Sat	$?$
Sweden-Finland- Norway Luxembourg	Telex-X	1986
Ireland	Lux-Sat	$?$

night and whenever the sun is eclipsed. In this respect they are different from previous generations of satellites.

Figure 3 shows one kind of TWT, the helix type, which uses a spiral wire whose length is usually ten times the length of the tube, and the speed of propagation of the signal depends on the pitch of the spiral. A solenoid surrounding the glass tube produces a longitudinal field which guides the electrons along the axis of the tube. Reflections at the output would cause oscillation, and a film of graphite near the middle of the tube would provide sufficient attenuation to any backward travelling wave.

The big advantage of TWTs over other devices is the large gain together with large bandwidth, typically 40 dB over 500 MHz at 4 GHz .

In 1982 the BBC was allocated two channels and in 1984 the IBA was also allocated two, but whereas the BBC was being charged 270 million dollars for a 7 year lease, the IBA was free to choose a cheaper, foreign satellite.

Since then, neither the BBC nor the IBA felt there was a demand for competitive services and have pooled their resources. The BBC will advance
50% of the funds and the IBA 25 to 30%. The remainder of this $£ 400 \mathrm{~m}$ project will be advanced by a third party. Some of the companies that have applied to be in the third party are Thorn-EMI, Granada TV Rentals, the Virgin Group and others, among them RTE, the Irish broadcasting company.

RTE together with another 26 companies has already expressed interest in starting an Irish DBS to cover most of the UK in addition to Ireland.

DES In the USA

United Satellite Communications was the first to offer a DBS service in America and they expect to reach ten million homes. Apart from $\$ 300$ for an aerial and decoding equipment, they charge $\$ 40$ for five round the clock programmes. Cable companies are always in competition and in the USA there are 30 million homes linked to community antennae. They pay $\$ 25$ per month for 54 channels.
The Orion Satellite Corporation has applied to the Federal authorities for permission to put up two KU-band satellites for beaming television to Europe. Banks in London and New York will finance this $\$ 230 \mathrm{~m}$ project.

Fig 3 The helix type of travelling wave tube

A typical satellite receiving dish (picture courtesy of Salora (UK) Ltd)

Hughes Aircraft, the satellite manufacturer, has also applied to the Federal Communications Commission (FCC) to participate in DBS.
The DBS idea was pioneered by Communications Satellite Corporation, and its subsidiary Satellite Television Corp is building satellites.

However, all is not rosy on the DBS front with two large companies, CBS Inc and Western Union Corp, pulling out. RCA Communications has also asked the FCC if it can reduce its commitment.

Conclusions

The DBS idea had an enthusiastic start but later on participants realised the cost of the operation. It needs to be funded from somewhere; one source is advertising, another is viewer rentals, but it remains to be seen how much television entertainment the ordinary citizen will accept, and quantity may be at the expense of quality. Another source of funds can be the government, because nations quite simply fear being left behind in technological facilities.
The initial rush to get off the ground has been slowed down, as we saw, to the extent where the BBC and IBA have joined forces, and apart from the UK no other European country seems to have a spare satellite in orbit (or even on the ground).
The DBS idea is an excellent one for large land masses like the USA or remote areas like Western Australia, particularly since DBS is capable of more than just entertainment (data access is also available).
But DBS beyond a nation's boundaries has the difficulties we explored earlier: language barriers, advertising standards and technical standards. Besides these, another problem that has not been resolved is the question of cable companies versus DBS companies. Are these in competition or are they complementary? Unless countries resolve issues like this, the future of DBS will remain confused.

OSCAR on the $430-440 \mathrm{MHz}$ IC- 471 and Rx on the 2 m . IC- 271 .
By making simple modifications, you can track the VFO's of the Rx and Tx either normally or reverse. This is unique to these ICOM rigs and therefore very useful for OSCAR 10 communications. Digital A.F.C. can also be provided for UOSAT etc. This will give automatic tracking of the receiver with digital readout of the doppler shift.

The easy modifications needed to give you this unique communications opportunity are published in the December '84 issue of OSCAR NEWS. Back issues of OSCAR NEWS can be obtained from AMSAT (UK), LONDON, E12 5EQ.

BUT, ON THE OTHER HAND...
 IC-02E (1.04E,(70cm).

The new direct entry microprocessor controlled IC-02E is a 2 meter handheld jam packed with excellent features. Some of these features include: scanning, 10 memories, duplex offset storage in memory and odd offsets also stored in memory. Internal Lithium battery backup and repeater tone are of course included. Keyboard entry is made through the 16 button pad allowing easy access to frequencies, duplex, memories, memory scan and priority. The IC-02E has an LCD readout indicating frequency, memory channel, signal strength, transmitter output and scanning functions. New HS-10 Headset, with earphone and boom microphone, which operates with either of the following:- HS 10-SB Switch box with pre-amplifier giving biased toggle on, off and continuous transmit. HS 10-SA Voice operated switch box, with pre-amplifier, mic gain, vox gain and delay. The IC-2E and 4E continue to be available.

CCOM PRICESARE DOWN TO EARIH.

 (Please contaci us or your local Icom dealer for current prices)
C-751

The IC-751 could be called the flagship of the ICOM range as it features 32 memory channels, full HF receive capability. digital speech synthesizer, computer control and power-supply options. The 751 is fully compatible with ICOM auto units such as the AT-500 and IC-2KL. The IC-751 now has a remote push-button frequency selector pad

Standard features include: a speech processor, switchable choice of J-FET pre-amp or 20 dB pin diode attenuator and two VFO's, marker, 4 variable tuning rates, pass band tuning, notch, variable noise blanker, monitor switch, direct feed mixer in the front end, full break-in on CW and AMTOR compatibility.

The first IF is 70.045 MHz . Any XIT and RIT adjustment is shown on the display. The transmitter features high reliability 2SC2904 transistors in a low IMD (-32dB@100W) full 100\% duty cycle. For more detailed information on this excellent set, please get in touch with us.

IC-290D/290E

290D is the state of the art 2 meter mobile, it has 5 memories and VFO's to store your favourite repeaters and a priority channel to check your most important frequency automatically. Programmable offsets are included for odd repeater splits, tuning is 5 KHz or 1 KHz .

The squelch on SSB silently scans for signals, while 2 VFO's with equalising capability mark your signal frequency with the touch of a button. Other features include: RIT, 1 KHz or 100 Hz tuning/CW sidetone, AGC slow or fast in SSB and CW,Noise blanker to suppress pulse type noises on SSB/CW.

You can scan the whole band between VFO's/scan memories and VFO's. Adjustable scan rate 144 to 146 MHz , remote tuning with optional IC-HM1 microphone. Digital frequency display, Hi/Low power switch. Optional Nicad battery system allows retention of memory.

> IC-290D reduced to $£ 469$ and the IC-290E to £399. Also 70 cm version IC-490E, $£ 529$. Take advantage of this money saving offer.

Special Offer as from 15th January '84

Agent: Gordon G3LEQ, or telephone Knutsford (0565) 4040. Please telephone first, anytime between 0900-2200 hrs. Gordon also sells Yaesu products.

You can get what you want just by picking up the telephone. Our mail-order dept. offers you: free, same-day despatch whenever possible, instant credit, interest-free H.P., telephone Barclaycard and Access facility and a 24 hour answering service.

Please note that we now have a new retail branch at 95, Mortimer Street, Herne Bay, Kent. tel: f9464. Give it a visit, BCNU.

TOUCH-SENSITIVE JOYSTICK

This joystick contains no moving parts, and features 8 -direction control with automatic self-centering. It is more robust and cheaper to construct than a conventional device, and yet with practice is faster than most when it comes to zapping Klingons.
The heart of the system is an IC that costs only a few pence, and a single PCB is used for both the circuitry and touch pads. Although the circuit shown is designed specificaliy for the Dragon 32 and 64 computers, the principle of operation can be applied to virtually any computer. In fact, the circuitry can be adapted for almost any form of touch switch that may be required and is far more reliable than many previously published circuits.

Joyless sticks

With the exception of some up-market, up-price joysticks, many conventional types do seem to have many shortcomings, which can include sloppy movement, weakness at the hands of over enthusiastic young starship commanders, erratic performance due to dirt on potentiometer tracks, and stiffness and lack of movement on self-centering types. My own frustrations came to a head when I discovered that the expensive, futuristically styled 'Zapblaster Sooperstick'that I had spent a fortune on contained two of the cheapest and nastiest looking potentiometers I had ever seen, and a 'fire' switch that I doubt any manufacturer would ever admit to making.
It was at this point that I pondered on the absurdity of the whole situation. Inside my computer lurked some of the most sophisticated electronic circuitry available on the consumer market, and

yet here I was trying to control it with a little stick attached to two bits of bronze that were rubbing up and down a bit of carbon. After wiping the tears from my eyes and stifling the laughter, I pondered on how to find a more sophisticated substitute, and it hardly needed a genius to realise that the answer lay in touch sensitive switching.

Touching thoughts

There are several ways of achieving touch switching. The first, often seen on such equipment as modern hi-fi units, is in fact not true touch switching, but consists of two or more conventional switch contacts mounted behind a membrane. Owners of equipment such

Flg 1 Joystick connections for Dragon 32/64
as the Sinclair ZX-81 computer will be familiar with this type of switch, as it is used on the machine's keyboard. Although it can be effectively used in some applications, it presents difficulty for a home construction project, if only because of the very precise engineering that would be necessary.
The second and probably most common type of touch switch usually relies on the human finger conducting a small amount of current onto the input of a CMOS gate circuit (the principle of operation is demonstrated when you touch the live input of an amplifier: the ever-present mains field is coupled via the body into the amplification chain and hum is heard through the loudspeaker). The extremely high impedance of CMOS circuits make them ideal for this kind of operation, but the drawback comes in removing the 50 Hz ripple and a lot of other electrical noise. The usual practice is to use capacitors for filtering, and then squaring circuits to clean up any remaining spikes.

Snags

The snag is not only that a lot of circuitry is needed, but also that when contact is removed the filter capacitors take quite a while to discharge the minute currents involved. This hang time may only be a fraction of a second but, where a computer game is concerned, that could be the difference between rescuing the damsel in distress or getting crushed to death by one of King Kong's barrels.
I mention all this because the circuit about to be described does not suffer any noticeable hang time and only one IC

TOUCH-SENSITIVE JOYSTICK

is used to switch four lines. This makes the circuit suitable for almost any touch switch requirement

Joystick principles

Before discussing the actual finished circuit, it is a good idea to look briefly at how a computer interprets the output of a joystick. Figure 1 shows the system used on the Dragon computers and is typical of the principle often employed. The two potentiometers are mounted at right angles to each other and manoeuvered by the joystick through a gimbal. Each potentiometer is connected to the 5 V supply at one end of the track and chassis ground at the other, and so operates as a potential divider with 2.5 V at the wiper when it is centred.
On some computers, the Dragon included, sophisticated machine code programs can be used to measure even small voltage changes as the wiper is moved one way or the other. However, almost without exception, most arcade games rely solely on sensing three voltage states only; 2.5 V for centre, above 2.5 V (logic high) and below 2.5 V (logic low). The latter are used to sense left/right or up/down depending on the configuration the particular computer uses. By sensing the output from both potentiometers, the computer can easily determine appropriate diagonal movements as well.

Figure 2 shows a push-switch equivalent of the potentiometer arrangement,

with the 47 K resistors forming the $1: 1$ divider when no switch is pressed. Pushing a switch sends the control voltage high or low through the appropriate 2 K 2 resistor. It should be noted that the 2K2 value chosen is merely a token value to ensure that there is enough of a swing high or low without a short circuit occurring if two switches are pushed simultaneously.
This latter arrangement is a hard-wire equivalent of the electronic circuit that has been adopted for the touch control.

The circuit diagram

The working ctrcult

The circuit is centred around a quad bilateral gate type CD4066. This consists of four solid-state, single-pole, singlethrow switches, each with its own control line. Taking the control 'high' closes the switch whilst taking control 'low' opens it. The device was never really intended for this kind of application and control pins are not as sensitive as those on many conventional CMOS gates. However, even a minute current conducted by a finger or thumb between the supply line and control will trigger the switch, and so this comparative lack of sensitivity is used to advantage. It means a positive, physical touch must be made across two closely spaced contacts.
The touch plates are arranged in such a way that the thumb or finger normally rests on the centre $+V$ pad, but when moved in the required direction simultaneously touches the chosen control pad (or pads for diagonal movement). When a control pad is not touched, the control gate is held low through the

COMPONENTS LIST

Resistors (all $1 / 4 \mathrm{~W}$)

R1, 2, 11, 12	47 K
R3, 4,9,10	10M
R5, $6,7,8$	2 K 2
Capacitors	
C1	
Somiconductors	
IC1	
Miscellaneous	
Bimbox 2002	
5-core cable	
SP push-switch	
5-pin, 270 degrees DIN plug	
PCB	
etc	

10Mohm resistor. Resistors 1,2,11, and 12 form the potential dividers, whilst resistors $5,6,7,8$ prevent accidental shorting of supply to ground.
Looking at the finished circuit, it should be easy to see how it relates to Figure 2. Touch switching has not been used for the fire button, not just because it would involve an extra IC, but also because in practice it does not work very well. It was included on two prototypes but later abandoned because it never quite felt right, and family and friends commented that it was awkward having to hold your trigger finger away from the contact when not firing.

Construction

The PCB performs two functions: it forms the touch panel-cum-lid on one side, and circuit mounting on the other.

The method of mounting the components may seem a little odd to some constructors, but will be familiar to anyone who has built RF power amplifiers. The components are not mounted through the board, but are instead soldered directly onto their pads.

Five connections must be made through the board from the PCB tracks on the underside to the touch panels on top. In order that large solder blobs and
wire ends should not obstruct movement across the panels, these connections should be made with very fine wire (a single strand from some coax braid is ideal) and the minimum of solder.
The lid of the case is discarded and holes are drilled for the cable and fire switch. The latter is best offset slightly, to favour either left or right hand use as shown in the photographs. The switch is then connected to its two pads on the

Lower PCB layout

component side of the PCB, the connecting cable soldered in, and then the DIN plug fitted.
Note that all these connections only apply to Dragon computers, although tips on using the joystick with other makes are provided at the end of the article.

Touch and go

The ideal way to use the joystick is single-handed with movement controlled by the thumb. At first it will seem a little strange, but cast your mind back to when you first took on the Space Invaders and the awful scores you used to get. With practice it can outshoot most conventional joysticks and is ideal for the less active . . the slight movement of a finger and thumb are all that is required for total control.
One interesting aspect of the device is that once the technique has been fully mastered, you don't even need to hold it in front of you. Because the thumb is only moving in relation to the hand it is just as easy to use the unit with your arm dangling down the side of your easy chair, or even behind your back.
The only thing you will need to watch is that the surface of the touch panels should be kept reasonably clean. Buttery

little fingers can create surface leakage that will keep your warp drives hanging a sharp right forever and a day.

Other computers

As has already been mentioned, many computer joysticks work on the same principle as the Dragon's. However, we regret that it is impossible for us to provide specific details of how to connect any particular make to the circuit presented here. The principles involved are very simple and it should not
be difficult to modify the circuit to suit other machines.
The basic switching principles involved can also be applied to computers such as those in the Atari range which use a sequence of on/off switches rather than voltage division through potentiometers.
If the manufacturer has not supplied connection data in the computer's handbook, it should not be too difficult to open up an existing joystick and trace the connections with a multimeter.

WOOD \& DOUGLAS

> HAPPY NEW YEAR to all our customers!
> Why not start 1985 on a new band? We can now offer the following packages for 24 cms FMTV.

1. Receive Package (VIDIF Kit - 125ODC50 Boxed) $£ 105.00$ (VIDIF Ass - 125ODC50 Boxed)... $£ 120.00$
2. Receive Package (VIDIF Kit - TVMOD1 Kit - 1250DC50 Boxed)...£110.00 (VIDIF Ass - TVMOD1 Ass - 125ODC50 Boxed). . $£ 126.00$

3. Transmit Package	Kit (UFMO1 - 70LIN3/LT - 70FM10 WDV400/1200 Boxed). \qquad £130.00
	Ass (As above) 155.00

The above prices are inclusive of VAT but exclusive of $£ 1.50$ postage. Please allow maximum of 28 days delivery for boxed items. No additional discount available for the purchase of more than one package. Please contact our sales staff for further information.

$\star \star \star$

The demand for boxes connectors etc to make a professional finish on our pre-amp/linear combinations has encouraged our release of the following hardware packs:-
Typical Contents: Dlecast Box, Heatsink, Switches,
LED's, Cable etc

For further details on these Hardware packages please contact our sales staff on the telephone number below. Prices are inclusive of VAT but exclusive of $£ 1.50$ carriage.

While every endeavour is being made to hold prices on our products, due to the fluctuating dollar/pound exchange rate we cannot guarantee to hold some component prices. In particular RF Power components such as 'SD' part numbers will be affected. Please check current prices with our sales staff before ordering replacement parts.

Further details on our product range will gladly be forwarded on receipt of large size SAE Technical help is available by 'phone during normal office hours. Kits are usually available by return of post but please allow 28 days for unforseen delays. Please add 75 pence to your total order for postage and handling. Credit card orders are gladly accepted, please give us a call.

ANYONE CAN SELL A KTT . . . REPUTATION SELLS OURS

UNT 13, YOUNGS INDUSTRIAL ESTATE ALDERMASTON, READING RG7 4PQ Tel: 07356 71444. Tx: 848702

HOW DO YOU GET TOP PRICES FOR YOUR SECONDHAND GEAR?

$\star \star \star \star \star \star \star \star \star t \star t \star \star$ ANSWER CONTACT G3RCQ's USED EQUIPMENT CENTRE $\star \star \star$

"AUCTION"

******** AUCTION YOUR SURPLUS GEAR FROM THE COMFORT OF YOUR OWN IRESIDEI HOW' LETS SAY YOU HAVE A YAESU FT290 FOR SALE AND YOU VALUE IT AT 200 YOU SEND ME 10\% (£20) FOR INCLUSION INTO THE AUCTION, YOUR RESERVE PRICE OF £20 WILL NOT BE QUOTED SO YOU MAY EVEN GET BIDS OVER AND ABOVE WHAT YOU EXPECT. WHATEVER THE SELLING PRIGE THERE IS NO FURTHER PAYMENT. THE FIRST AGREED PRIGE IS ALL YOU PAY THE 10\% ON, FOR THIS FEE I WILL ADVERTISE YOUR EQUIPMENT IN LST-APO (THOSE OF YOU WHO HAVE SOLD GEAR THROUGH THE IST WILL KNOW HOW SUCCESSFUL IT IS).

MATOMAL ADVERTISMG FREE

 OTENTIAL PURCHASERS WILL BE INVITED TO LISTS OF ALL ITEMS TO BE AUCTIONED OFFORE A SPECIFIED DATE (AUCTIONS WILI SUBMIT THEIR BIDS BY POST TO ME FORWARDED TO YOU THE SELLER. IT IS THEN UP TO YOU TO CONTACT THE BIDDER OF YOUR CHOICE AND CONDUCT THE SALE.

MOERUENOP코

 DOESNOT SELLI WILL RETURN YOUR 10%

LST-AAMG

********** TO INCLUDE YOUR ADVERT ONTO THE LIST BUT NOT INTO THE AUCTION, SEND 2 FOR A MAXIMUM OF 40 WORDS. ADVERTS WILL REMAIN ON THE LIS FOR 2 MONTHS.

HSTANT CASH!

************ IF YOU CANNOT WAIT AND YOU MUST HAVE CASH TODAY THEN I WILL BUY YOUR GEAR, PLEASE PHONE OR WRITE I PAY THE Hest Prices

BUY \& TRY

** $\star \star \star \star \star \star \star \star$ IF YOU BUY A RIG FROM ME YOU HAVE ONE MONTH TO CHANGE YOURMIND! IF DURING THE FIRST MONTH OF PURCHASE YOU DECIDE YOU HAVE MADE A MISTAKE OR YOU SIMPLY CANNOT GET ON WITH THE RIG I WILL ALLOW YOU WANT CASH BACK WITHOUT ANOTHER RIG I WILL GIVE YOU 80% OF YOUR PURCHASE PRICE
A FAIR DEAL IS MY POLLCY
 STRAIGHTDEALA FULL NO QUIBBLE GUARANTEE, COUPLED WITH FREE ADVICE COVERING 25 YEARS OF AMATEUR RADIO.
SEND SAE TODAY FOR CURRENT LIST TO USED EQUIPMENT CENTRE, G3RCQ ELECTRONICS 65 CECIL AVENUE, HORNCHURCH, ESSEX.
TELEPHONEHORNCHURCH (040 24) 55733 PLEASE LEAVE A MESSAGE ON THE ANSWER PHONE 73's de DAVE \& CORAL G3RCQ \& G4RCQ.

G3RCD'S JANUARY AUCTBON

FOR 8ALE

TAESU FT10 9130

DIAWA ELECTRONIC KEYER AND BENCHER PADDLE
STANDARD C146
YAESU FC902
YAESU FT209
YAESU FT1012D MK3 CW FILTER
YAESU FV101 EXTERNAL V
YAESU SP901 SPEAKER
SMC 25AMP POWER SUPPLY
YEAESU FRT7700 ANTENNA TUNER
MICRO WAVE MODULES 100 WATT 2M LINEAR
KW103 SWR \& POWER METER
VALVE VOLTMETER (GOULD)
YEASU FT720RU
MATCHING ANTENNA TUNER FOR TEN-TEG RANGE 200WATTS
TVMONITOR FOR PYELYNX
COM 720 A
ATUROLLER COASTER
DATONG RF SPEECH PROCESSOR
LAR ANTENNA SWITCH 1 IN3 OUT
IF YOU ARE INTERESTED IN PURCHASING ANY OF THE ABOVE, PLEASE SEND YOUR BIDS TO:-

G3RCQ AUCTIONS, 65 CECIL AVENUE,

 HORNCHURCH, ESSEX RM11 2NABIDS WILL BE ACCEPTED UPTO 10 DAYS FROM PUBLICATION DATE. EQUIPMENT MAY BE SOLD BY PRIVATE TREATY BEFORE THE AUCTION CLOSES.

HORSESHOE NAIL SYNDROME

Last June, the maiden launch of the space shuttle 'Discovery'was delayed following the failure of an on-board IBM computer. Investigation of the fault revealed that a corrosion problem within the 'core driver' had caused the failure.
At the same time, a Pentagon spokesman revealed that it had been discovered that a large number of integrated circuits manufactured by the Taiwan factory of Texas Instruments had not received their full quota of checks before being incorporated into equipment.

Suspect

Whilst the lack of adequate inspection does not mean that the integrated circuits are necessarily faulty, these must nevertheless be considered 'suspect' and subjected to further testing before reliance can be placed upon them. Such inspection may well, at first sight, appear possible within normal maintenance schedules but for two facts: firstly, it is almost impossible to check every aspect of performance of a highly complex IC such as a microprocessor or a 64K RAM within its normal working environment, and secondly, the magnitude of the problem. It is estimated that for IBM defence products alone, 15 million circuits of nearly five thousand different types are suspect.
Doubtless, with the assistance of United States industry and the efficiency of their military maintenance organisation, this problem will have been solved long before you read this article, but the fact that such a circumstance could arise
caused me to start thinking of my home equipment, both homebuilt and commercial, most of which contains a fair proportion of integrated circuits.
The development of the integrated circuit has been a boon to manufacturer and customer alike, for it has made possible economic incorporation of highly complex circuits in moderatelypriced equipment. Coupled with this, the vast requirements of the military and commercial markets has made possible a phenomenal rate of development in which equipment is virtually obsolescent by the time it reaches the retailer's shelves, and each succeeding technology is outdated within four to five years.

Nowhere is this more evident than in the production of integrated circuits. Taking RAMs alone, only a few years ago 1 K capacity was normal and 4 K the exception. Today 64 K RAMs are readily available and 128 K and 256 K units are in the late stages of development, if not already in production.

On a recent TV programme, an eminent University Professor in the field of computing forecast that within fifty years the capacity of a single RAM will be sufficient to contain the whole of the world's annual written output. Similar strides are being made in the development of almost all other types of integrated circuit.
With such development rates, it is obvious that long production runs of any one type of IC would be impossible. To investigate this further I telephoned a number of the major IC manufacturers. The replies I received astounded me.

In essence they were that, with a few notable exceptions such as the Plessey SL series and TTL, only one production run of any IC is made - and this is terminated as soon as the demand reduces. This period could be anything from one to, at the most, six years.
Normally, about a year before production is terminated, major customers such as manufacturers and large maintenance organisations are informed, and advised to order ALL TIME spares.
Once a production line has closed it is almost impossible to reopen, for in reequipping for the next technological development, much of the previously used equipment will be outdated and necessarily discarded.
If a more modern version of an IC is considered, it would have to use the more modern technology and, in consequence, would exhibit different characteristics to its predecessor. Under such circumstances it is unlikely that it would be a 'plug-in' replacement, and circuit redesign would be necessary.

Bath tub

The serviceability of any equipment follows a 'bath tub' curve. When the equipment is new, there is a settling-in period during which unfamiliarity with the equipment and minor design faults cause the fault rate to be quite high, but this rapidly diminishes and the equipment soon settles down for a relatively trouble-free service life.
After a few years, however, faults of age appear. Perhaps, for example, a capacitor leaks, ceasing to block a
voltage, which in turn blows an IC, etc. Such minor faults are usually readily detected, but rectification costs time and money. Unfortunately, due to lack of demand during the service life, production of the required IC has probably ceased.
Contrary to popular belief, in the commercial field operators look for a service life of ten to fifteen years, for any less would cause the accountants to question the viability of the use of such equipment. Compare this with the duration of production of the ICs used and it will be seen that for the majority of the equipment life, the maintenance engineer will be relying on the diminishing stocks of spares remaining on his, and the wholesalers', shelves. As these stocks fall so prices will rise, with a consequent reflection on maintenance costs.

No replacement

Even more serious is the situation where no replacement IC is obtainable, and the equipment operator is faced with either a redesign of the equipment board by himself or the manufacturer's 'Post Design Services' department, or with the replacement of equipment which, but for the lack of an IC which originally probably cost less than a pound, would otherwise have given several more years service.
Responsible commercial equipment manufacturers consider this a major problem and, in consequence, now tend to carry far greater stocks of replacement ICs than would have been considered necessary a few years ago.
Within the domestic market, the introduction of integrated circuits has
lowered the production costs of domestic radio and hi-fi equipment to the point that once outside the initial guarantee period, for all but the most expensive items, the owner is quite happy to be told that the equipment is 'uneconomic to repair' and thus purchase a replacement.
In extension of this, I have been informed by a reliable source that one manufacturer of home electronic organs, whose price range extends from a few hundred to several thousand pounds, in order to further a policy of planned obsolescence destroys all spare parts five years after each model ceases production.
Unfortunately, the amateur radio market seems to fall between these extremes. Although the equipment is expensive, it is marketed with the same enthusiasm as in the ordinary domestic market, with each major manufacturer introducing several new models each year.
Base station equipment, either HF or VHF, today costs two to four times as much as a domestic TV receiver. In consequence, I would suggest that, despite many pieces having a somewhat robust life-style, being taken on holidays and being bounced up rough mountain tracks to field-day sites, this price difference should also reflect a proportionate difference in life.

Unserviceable

For many amateurs, especially those who take up the hobby in retirement, the acquisition of an 'all-singing, all-dancing' rig is a 'once-in-a-lifetime' purchase. The possibility that it may be rendered unserviceable and valueless after a few years for want of a single IC

The 'bathtub' serviceability curve. A high initial fault rate at A rapidly subsides due to familiarity with the equipment. From B to C few faults arise and there is little demand for spares. After C faults of age manifest and it is a commercial decision at which point the equipment is replaced.
which is no longer available must present a considerable worry.
I am sure that the many highly reputable equipment dealers throughout the country will invariably do their best to assist in such circumstances, but they too have to live, and it would be totally uneconomic for them to provide PDS services for any but the most popular equipment.

Not Interested

In contrast, and I would be delighted to be proved wrong, I cannot imagine that the major manufacturers of the Orient would be remotely interested in providing PDS for equipment which has ceased production and is, from their point of view, 'outdated'.
What, therefore, is the answer to this dilemma? I regret that I cannot find one.
To a commercial equipment operator 1 would suggest building up a massive stock of spare ICs and semiconductors when they are cheap and plentiful, for they will economically extend the life of equipment and, when no longer required, will doubtless fetch a good price on the market.

To the amateur, however, this technique is not possible for it is unlikely that he (or she) will have more than one set of equipment of each type. Reliance must therefore be placed on the dealers.

The dealers are also in a cleft stick for, although they will invariably do their best, economics will inevitably dictate their spares holdings.
All is not perhaps as black as this article may indicate, for modern equipment is extremely reliable and the chances are that the majority will give a long trouble-free life. The research for this article was made with commercial operators who frequently run their equipment 24 hours per day, year in year out. In consequence their equipment will suffer accordingly.

Caveat emptor

Nevertheless, the IC supply problem exists and I feel that prospective purchasers should be aware of the situation before investing their savings in equipment.

> For the best analysis of today's world of technology, the problems it overcomes and those which it presents, get R \& EW every month

\star * N-CAD BARGAINS $\star \star$

 Rechargeable Nickel-cadmium batteries in stock. Exgquipment but very litte used concition DEAC 10000 Kk
 Aso available - PCB's from which thase Qatteries have been removed containing
Transtormer, Diode retifierer, smoothing
capacter

OPTICAL ISOLATORS

SPERRY UNIVAC M4COO Opio-Iscialor unuts providing 2KV of nsulaton between Moderss and Terminals. 25 way ' D ' connec ors (RS232C

- 需 (m BECKMAN TURNS
to 15 minature type (22 min diam! Counting nsiructions Only E2.50 earn

TELEVISION SERVICE KIT*
We have managed to oblain a slock of Labgear TV Service equipment aflording vast savings on new price. Alltems are
sold int fuil working condition and guaranteed. LABGEAR COLOURMA TCH CM600APG UHF TV Pied generators. Grey scale, variable level cross hatch \& dot patterns. £35. inc
LABGEAR COLOURMATCH CM6010RG Gated Rainbow colour pattern generators Cross-Hatch/dot \&
gated rainbow $(\mathrm{RGB}$) colour bar panterns. $£ 65$ inc UNAOHM EO684 PAL COlour-bar \& pattern gen. £275+ KORTING 82512 PAL/NTSC Colour \&patterngen $\mathrm{E} 275+$

Mail Ordercustomersplease addá2.50postage ea item

HEWLETT-PACKARD 141A Storage Oscilloscope. All these units are sold HEWLETT-PACKARD 1707A dual trace 75M Hz E750 in full operational TEKTRONIX 454 A dual trace 150 MHz sweep delay $£ 950$
TEKTRONIX 453 dual trace 50 MHz sweep delay $£ 600$ condition and TELEQUIPMENT S 61 - see display below All prices are SUIPMENT D67 dual trace 25 Minz sweep delay 2350 Subiect to TELEQUIPMENT D75 dual trace 50 MHz sweep delay $£ 450$ additional TELEQUIPMENT D63 c/w dual-trace \& differential units $£ 375$ VAT \& carria $\rightarrow t$ TEST EQUIPMENT $\rightarrow \boldsymbol{t}$ Sonymertionix 333 SCOPE inst prica. AEGIVOLT ZKVA CVT's Sine weve ZONV, AC $£ 100$. MARCONI TF868 LCR Bridge MARCONI TF2604 Electronic Multi-Meter MARCONI TF893A Audio Power Meters c85 MAHz. 10 w fsd f 350 .
MARCONI TF2701 in-Situ Universal Com
ponent Bridge £250.
ROHDE \& SCHWARZ 'SDR' AM Signal Generator $0,3-1 \mathrm{GH}$
TEKTRONIX 2901 Time-mark Generator
AOHDE \& SCHWARZ Polyscoo SWOBll BRUEL \& KJAER Heterodyne Voltmeter $05-240 \mathrm{MHz}$ AIRMEC Display Oscilloscope 279. 4-trace, $14 \times 10^{\circ}$ CRT £ 195 RIKADENKI 3-channel Chart Recorder, Model B-34 TELEQUIPMENT S6 1 SCOPES
A Dulk purchase of these quatiry
Oscilloscopes enables us 10 otle Sem for sale for just f 10 .
Speificaiton as lollows.

 External $X \& 2$-mod inp
nc val $\&$ nc handbook
Zeroxac

\star SWEEPERS \dagger

 KMIGHT KG-687 3-220MHz. E15 \qquad ested in our workshop and recond equipment shown has been carefully hirst-class operational condition and most items carry a three months' guarantee. For our mail order customers we have a money-back scheme.

+ COMPUTER PERIPHERALS 1.6MB 8' FLOPPY DISC DRNES New Stock

After our recent sell-out of the DRE7100 FDDs, we are pleased to offer another bargain package as tollows: BRAND NEW American 'MF E Corp model M-700 DOUBLE-SIDED 8 Disc Drives. BM compatability. External power requirements are $\pm 5 \mathrm{~V}$ at 1.2 A and +24 V at 1.1A. Full spares/ back-up available U.K. (Elcomatic's). Current list s over £315.

NOW LOWEST PRICE EVER f160 - INCLUDING

8" SHUGART type SA800

Floppy disk drives. We are pleased to say that we have these in stock now after our sellout a few months ago. Used but excellent condition single-sided drives to 800 KB . Few only at the same price fo0 inc VAT \& carriage \& Zerox of user handbook Also to those too late for our last stock of 9MByte Winchesters - we now have som ave some coming in ca. £125, please call

- SWITCHING POWER SUPPLIES The following DC power supplies are avaliable now grom stock in imited quantities. All fully tested and

 ALL PRICESNOW INCLUDE VAT CARRIAGE + §2EACH 650

- CENTRIFUGAL BLOWERS

TORIN Type U62B1. 230 V Cap Start (suppled). for large rack cooing or enclosure extraction apolications. Overall dimensions $20 \times 12 \mathrm{cms}$, outlet 6×4 cms. BRAND NFW Surplus stock E15 each inc.
VAT, pp 1.50 . ALSO SEE LEFT HAND COLUMN

RFPAIR THIAT OLD BLACK \& WHITE TV with the aid of the best seller "IV FAULT FINDING"

 including 60 photographs of a television screen after the appropriate faults have been deliberately introduced.

Comprehensive Fault Finding
Guide cross-referenced to methods of fault rectification described at greater length in the text.

8th Fdition
Edited by J R Davies 132 pages
(more than 200,000 copies sold)
Price ONLY \& $\mathbf{1 . 5 0}$ (inc p\&p)
Available only from:
DATA PUBLICATIONS
48 Yeading Avenue, Rayners Lane, Harrow, Middx HAs 9RT

TAU SYSTEMS LTD EAST Gillubranos SKELMERSDALE WNA 98
EMGLAMD Phone: 0ees 24082
INTRODUCING the REAL ATU
FULL COVERAGE, TUNES 1.5 CONTINUOUS TO 29.350 Mcs

Special Features

Renowned "SPC" Transmatch circuir TAU innovative composite design*
Large spaced Capacitors rated $5 k$ V. testec
Rolier Coaster Inducto infintery variable
Bakun buitit in. $1 \mathrm{Kw}, 4$ to 1 imped ance ratio
Transminiter switht, thro ATU or direct to antemna Five position amenna switch to 5 mpatloutputs Twin Meter automatic readout of SWR \& Powor Unsurpassable transmission strengit and ciamt Hearmweight, long -ife construction
Supert ulitr-compact cabinet design with tirh feet 13 Superatative finish and looks - compatible with all rigs 14 Wil tune any Transmitter/Aerial combination io optirnur
5 Littime Investment - will nover noed replacin NEW
model SPC 3000

UNDOUBTEOLY THE FINEST ATU AVALLABLE

RTTY and CW TRANSCENE with NO TERMINAL UNIT

This fantastic program interfaces direct with your rig, slashing the cost of previous systems interface, including PCB and User Port connector, for only $\mathbb{E} 20.00$. Ready-made interfaces available. For CBM64, BBC-B, and VIC20 (+ at least 8k). CW-only version for SPECTRUM ह10.
and low oupert proyennt for CBme4, vic20, Bec-s, BPECTRUM
LOCATOR QTH or Maidenhead locator or lat/long. Distance, headings, contest points, converts between locator and lat/long. Tape £6.
Loce00K Date, band, mode, call and remarks. Superfast callsign search. Easy, fast updating of files. Screen/printer output. VICzo needs at least 8k expansion. Tape £6.
moner Turon Britain's best. Learn fast in easy stages from absolute beginner to over 40 wpm Join the hundreds who have succeeded with this program. Tape and full learning guide £6. For

居
rat mathe All the practice and testing you need. Tape and comprehensive reference shee

All programs are very easy to use and come with full instructions.
Prices include pap 1st Class by return. Add $£ 1$ per tape if outside UK or Ireland.
technical software (REW)
Fron, Upper Llandwrog, Caemarfon, Gwynedd LL54 7RF Tel. 0286881886

AMATEUR RADIO

 WORLD
Compiled by Arthur C Gee G2UK

As we have said before in these notes, by far the best way of getting into amateur radio is via short wave listening. You'll get to know the characteristics of the radio frequencies, and you may even get sufficiently hooked to want to be able to read the Morse code signals you hear. If that happens, when you do progress to becoming a radio amateur, you'll have mastered what many folk find is the most difficult part of getting a full transmitting licence.

Many SW broadcast stations also have most interesting and instructive amateur radio programmes, from which a lot can be learned which is helpful in extending your knowledge of amateur radio matters.

SBC

One of these stations is Swiss Radio International. As I write this, the postman has just delivered the latest programme sheet for this station and I see that their short wave programme is entitled 'Swiss Shortwave Merry-Go-Round'. It is radiated in their transmissions on the second and fourth Saturdays of each month on numerous frequencies. Reception in Europe and adjacent areas can be heard on $3.985,6.165$ and 9.535 MHz between 0600 and 2245GMT.
There are transmissions in English every day at $0900,1100,1315,1530,1815$, 2145, 0145, 0430 and first thing in the morning at 0700GMT. Each transmission lasts 30 minutes. Full details can be obtained by writing for the programme guide to: The Swiss Broadcasting Corporation, CH-3000 Berne, 15 Switzerland.

Those older readers who remember the days of the early bright emitter valves will be interested in some experiments recently carried out by the European Space Agency, in which tests were made to see if the emission of metal from hot filaments in vacuum devices could be prevented when these devices were run in zero gravity conditions.

In the early vacuum radio valves the glass envelope, which was quite clear when the valve was new, soon became covered with a metallic deposit, and the heated filament ultimately disintegrated.
The space shuttle launched on 5 October last carried a European Space Agency 'Get Away Special' payload, known as HALEX for Halogen Lamp Experiment. Halogen lamps are used as heat sources for the optical radiation furnaces now under development for material science research in space. Their main advantage is the low power consumption in comparison with conventional heating elements in furnaces.

However, there is still some uncertainty as to whether the performance of Halogen lamps will remain constant during extended periods in the microgravity environment of space.
Halogen lamps are most effective heat sources mainly because they are long lasting and very stable at high temperatures. This is due to the so-called 'Halogen cycle', a chemical process which prevents evaporated tungsten from the filament from depositing on the lamp casing and blackening it.
During the cycle, the molecules of Halogen gas in the bulb react chemically

with the evaporated tungsten and draw it back to the filament, where the reverse chemical reaction occurs and the tungsten re-deposits.
In the microgravity environment of space, however, there is no gravityinduced convection, which is the main power behind the Halogen cycle; there is only diffusion. The HALEX experiment is intended to determine to what extent the absence of convection reduces the effects of the Halogen cycle.

UOSAT OSCAR-9 bithday mission

UoSAT-9 was launched by NASA at 1127GMT on 6 October 1981 from the Vandenberg Air Force Base in California, into a 554 Km sun-synchronous polar earth orbit, on a Delta 2130 launch vehicle.
A resumé of its activities was issued from the University of Surrey to mark this anniversary. A great deal has happened since that launch day, both on the spacecraft and on the ground. UO-9 took a little while to 'tame' - the difficult command links caused the commissioning phase to stretch out longer than anticipated, and gave rise to the wellremembered months of 'steady tone' while the University of Surrey and the SRI fought to regain use of the spacecraft.

Those five months were put to good use upgrading the ground station, and following the successful recovery of the spacecraft great strides were made with the activation of the on-board experiments, and particularly navigation and attitude control. The complex and difficult de-spin and attitude manoeuvres culminated in temporary gravity-gradient stabilisation. However, the magnetometer cables on the boom became tangled during deployment and the boom had to be retracted. The spacecraft was then spin stabilised and the remaining experiments activated.

A weekly schedule of daily experiments has been executed for the last two years, including a weekly news bulletin service; CCD image data; radiation experiment data; and computer generated telemetry, Digitalker and wholeorbit telemetry surveys. The bulletin service has been especially successful for keeping the user community in close contact with spacecraft operations, as well as providing information on future mission proposals and more general space news.

The spacecraft has not exhibited any measurable degradation since the failure of the secondary computer memory devices in the summer of 1982, and the rate of decay of the orbit has been much less pronounced than was anticipated, giving rise to an extended orbital lifetime of perhaps another two years.

Meteorologlcal spacecraff news

A good publication for those with an interest in weather satellites has become established over the past year. 'The Journal of the Environmental Satellite Amateur Users Group' is published by R J Alvarez WO4MRJ, and details are available from: 2512 Arch Street, Tampa, Florida 33607, USA.
The journal appears quarterly. The last issue had 22 pages and included station construction details, WX satellite status reports, meteorological studies, data receiving tips, a Soviet WX satellite report and UoSAT status reports.

Lleence schedule

Following discussions between the RSGB and the DTI, a new schedule to the amateur radio transmitting licence has been formulated. It has been produced in a single format to cover both Class A and Class B licences.

Class A licensees can transmit on any amateur band, but must have passed the Morse code test. Class B licences permit transmission on the 2 metre band and above, without knowledge of the Morse code.
The schedule has been clarified and indicates the frequencies, the maximum power and the class of transmission authorised.

Sunspots

From time to time, statements are made about how to look for sunspots though there are not many to be seen these days. Such a comment was made in a recent amateur radio feature in one of the SW broadcasts such as that referred to in the first paragraphs of this article.
It cannot be said too often that no way does one look directly at the sun through dark glass, optical filters, metal films on glass and certainly not through a telescope or binoculars, with or without a solar filter. Even the latter have been known to fracture due to heat from the sun's rays being concentrated on them. If this happens, you stand a very good chance of damaging your eyes sufficiently to cause blindness, and reports continue to appear in the press of this happening.

The only way to observe sunspots is to make use of a solar screen on a telescope, which is usually available as an accessory. The telescope need not be a very large one - the writer uses a $21 / 2$ inch diameter instrument, and this has proved very suitable for regular routine sunspot recording.

Band Plan changes

Some expansion of the 3.5, 21 and 28 MHz phone bands has recently been authorised by the FCC in the United States. Phone privileges for US radio amateurs are now as follows:
Extra Class: 3.750-4.000, 21.200-21.450 and $28.300-29.700 \mathrm{MHz}$.
Advanced Class: 3.775-4.000, 21.22521.450 and $28.300-29.700 \mathrm{MHz}$.

General Class: 3.850-4.000, 21.300-21.450 and $28.300-29.700 \mathrm{MHz}$.
At the recent IARU Region 1 conference it was agreed that the section of the 3.5 MHz band 'reserved' for DX working should be extended to cover 3775 to 3800 KHz . If respected, this will give those interested in working DX on 80 metres a better chance of doing so.
As a rough guide, the most favourable time for working DX on this band is from (say) two hours after sunset to two hours before sunrise.

Radio \& Electronics World
 PCB's

May '84	Signal Generato
	Frequency meter.. £4
	S meter display ... £0.99
	S meter control .. £1.99
July '84	VLF converter .. £1.60
	Teleprinter Interface ... 1.45
Sept '84	5ch Scanner main.. $£ .92$
	5ch Scanner display....................................£1.40
Nov '84	Base mic... £1.50

KITS and other PCB's also available SAE for full list.
Edwardschild Ltd. (0277) 216433 Visis 28 Shenfield Cres, Shenfield, Essex CM15 8BN

「NEWSAGENT ORDER FORM I

Please order a copy of Radio \& Electronics World for me | | every month
NAME.
ADDRESS
..
Newstrade distributors: Seymour, 334 Brix.. 7AG. Tel 01-733 4444

GENERAL COVERAGE

 RECEIVER KIT FCR 130This is a complete kit which allows you to build and learn as you go. Suitable for anyone who has an interest in radio and can manage a soldering iron. It really is within the scope of most beginners. You don't have to be a 'semi-professional amateur' to understand how it works as we supply very comprehensive and complete instructions, written in plain language. Well spaced components so its OK for fat fingers! The receiver tunes, in 3 bands from 1 to 30 Mhz . Solid aluminium tuning and control knobs and base panel. Black anodised front panel. Nice to build... nice to look at . . . nice to own

Model FCR 130 Receiver kit

* 30:1 Geared analogue tuning
* 3 Band switch with spare position
* Tape record socket
* Signal Meter
* Internal speaker + On/Off sw.
\star A.F. Gain and Tone Control
* AM, CW, SSB

COMMUTECH (Devon) LTD

Chapel Street, Holsworthy,

C. M. HOWES Communications FUN TO BUILD KITS BY MAIL ORDER

Make a useful addition to your station, and at the same time enjoy the satisfaction of building your own equipment, with a kit from C M Howes Communications. Our kits use good quality parts, a glass-fibre printed circuit board, and come with good, clear instructions and all board mounted components. The instructions are written with the first time builder in mind. You do not have to be an 'old hand' at construction to build a worthwhile, interesting project. Enhance your station for a modest outlay!

APS AUTOMATTC SPEECN PROCESSOR

The AP3 can add a really useful boost to your transmitted signal. The extra 'punch' added to your modulation by the AP3 heips to cut through the noise and QRM, so enabling you to make contacts that are not possible without it. The AP3 was described in an article in the September 33 edition of 'Ham Radio Today' by Dave G4KQH, and since then we have sold over a thousand units. The AP3 works from a 9 to 14V DC supply and automatically turns itself on and off from your microphones' normal PTT switch output. You simply select the amount of clipping you require (4 steps of approx 6 dB), and speak into the mic. The AP3 automatically compensates for changes in speech levels, so you can stifl work the DX even if you whisper! Ideal for multi-operator contests! The unit can be used with high or low impedance mics, and can even work with the ICOM rigs having a mic preamp - if you make a couple of minor component changes - we can supply details, and the bits, when you order. Simple to build, and only one adjustment to make to set the output level, the AP3 has been a first time build for many operators. Could your station make a bigger impact on the bands?

IP3 Le E18.90, facembled PCB module E21.40

CTX80 LOW POWIER CW TRANSAITTER FOR BOM

The CTX80 has a variable output power level, up to about 5W RF from a nominal 13.5 V DC supply. It has built in key-click suppression and a 5 element low-pass output filter, so you can put out a clean signal. The CTXBO is crystal controlled (one crystal is provided), but provision is made for an external VFO as well as two ad be available by the time this ad appears in print. Send an SAE for details. The Cxbo proving
 plug the antenna in! Build yourself a QRP using it with

CMP OMITTY DESKMOBHE MCROPHOME

The CM2 is good quality microphone kit that consists of an electret condenser microphone capsule and a small electronics module that incorporates a Plessey 'VOGAD' chip to give automatic control of modulation levels. The unit produces a nice clear audio signal for your transmitter, no matter whether you talk loudly or quietly, near or further away from the mic, the modulation level is maintained correctly for you. ldeal for a desk microphone or for use in the car as a 'hands free' unit. The CM2 can be remotely keyed by a foot or gear-stick switch if required. The unit will work on an 8 to 14 V DC supply, drawing only about 30 mA from a 9 V battery, and then only in transmit mode. The electronics turn off automatically when switching back to receive no separate on/off switch is required.

139 HIGHVIEW VIGO, MEOPHAM KENT DA13 OUT FAIRSEAT (0732) 823129

Defr DIRECT CONVERSHON COMmUMCATIONS RECEVER

The HOWES DCRx is a low cost, easy to build, amateur band receiver. It has been designed with the newcomer to the hobby in mind. Single band versions are available to cover 160,80 or $20 / 30$ meter bands. The receiver runs off a nominal 12 V DC supply and will deliver up to a watt into a 'speaker or headphones. The kit comes complete with ready-wound coils and requires very little alignment. Read the review of this ki by G3RJV in the May 84 issue of 'Shortwave Magazine'. The DcRx is used by many QRP (low power) operators as well as Short Wave Listeners. Don't be put off by the low price, this receiver works well and is capable of world-wide reception. Modes SSB and CW. À case and two tuning capacitors are the only major parts to add to finish your receiver. We have suitable tuning capacitors for all but the 160 M version, at $£ 1.50$ each while stocks last
DCREXKH £1480. Aseambed PCB module ع19.90. PLEASE STATE WHICH BAND YOU REQUIRE.

ST2 CW SIDETOWEPPRACTICE OSCMLATOR

The ST2 provides a nice sounding sinewave note of approx 800 Hz at up to 1 W . It can work from your key, or by RF sensing. In use by many Morse classes, and suitable for the CTX80. Read about it in the recent edition of 'Amateur Radio'.
ST2 KI E7.30. Aceembled PCB modtlo $£ 10.80$
XM1 CRYSTAL FREQVENCY MAPKER
A really useful piece of test equipment to have in the shack, besides helping to keep you 'legal' EIGHT marker outputs useable from LF to UHF. On-board voltage regulato for 8 to 24 V DC use. This is the mk2 version which has a 10 MHz crystal and 'ident facility. Read about the mk1 version in the June 84 edition of 'Amateur Radio' unde the heading 'Build the XM1'. An accurate, stable signal source is a must for any station.

EM1 EIECTRET MCROPHONE CAPSUE
Not really a kit as such, the EM1 is the microphone capsule included in the CM2 kit. We sell it separately so that you can use it with our AP3 to build a sophisticated, speech processed desk mic. Useful for many other projects too. EM1 capsule and instructions processed desk mic. Use

LOHT-WECHT HEADPHONES

We stock these for use with our DcRx and ST2 kits, but they can be used with almost any receiver. These 'phones are similar to the ones sold with personal stereo players, but our version comes wired with a $3.5 \mathrm{~mm} 1 / 4$ jack plug or Radio equipment. We can also supply with 14 inch mono jack, or a stereo one to specia) order. These

If you would like further information on any of our products, simply drop us a line enclosing an SAE, we have an information sheet on each kit. Pleese add $60 p$ pip to your total order value

73 from Daw CikOH Technical Maneger

TRANSISTORS

$-12 p$

 BC147/8/9 - $10 p$ BC157/8/9 - 10 p -547/8/9 - 8p BC557/8/9 - 8p C557/8/9-8p $\begin{array}{ll}\text { BC182L } & -10 p \\ \text { BC183 } & -10 p\end{array}$BC184L
BC212,212
$-10 p$
BFY 5
$-20 p$

SUBMINIATURE TANTALUM ELECTROLYTICS. (MFDS/VOLTS) $0.1 / 35,0.22 / 35,0.47 / 35,1.0 / 35,3.3 / 16.4 .7 / 16$
16p

2.2/35,4.7/25,10/6-15P.4.7/35,6.8/16 $.16 p$
$.30 p$
ELECTROLYTIC CAPACITORS. (Mfds/Volts)
$1 / 25,1 / 50,2.2 / 25,2.2 / 50,4.7 / 25,4.7 / 50,10 / 16,10 / 25,10 / 50$
22/16, 22/25. 22/50, 47/16, 47/25, 47/50, 33/10-6p. 100/16, 100/25 100/50-12p. 100/100-14p. 220/16-8p. 220/25, 220/50. 470/16, 470/25-11p. 470/35-12p. 470/40-15p. 1000/16 $1000 / 35-22 p .1000 / 40-35$ p. 2200/10-8p. 2200/25.

$$
\text { Carbon Film resistors } 1 / 4 \mathrm{~W} 5 \% \text { E24 series } 0.51 \text { R to } 10 \mathrm{MO}
$$

\qquad

$$
100 \text { off per value - } 75 \text { p, even hundreds per value totalling } 1000
$$

$$
\begin{aligned}
& 100 \text { off per value - } 75 \text { p, even hundreds per value totalling } 1000 \\
& \text { Metal Film resist.......... }
\end{aligned}
$$ Mixed metal/carbon film resistors $1 / 2 W$ E12 series 1RO to 10 MO Miniature polyester capacitors $\mathbf{2 5 0 V}$ working for vertical mounting $01,015,022,033,047,0684$ p. 015 p. 015, 0226 p. 0.3380 .47 Mylar (polyester) capacitors 100 V working E 12 series vertical mounting 1000p to 8200 p - 3p. 01 to $068 \mathrm{mfd}-4$ p. 0.15 p. $0.12 \& 0.15$

Subminiature ceramic plate capacitors 100 V wkg vertical mounting. E12 series $2 \% 1.8$ pf to 47 pf - 3p. 2\% 56 pf to 330 pf - 4p. 10\% 390p - 4700p 4 p

Polystyrene capacitors 634 working E12 series long axial wires 10 pf to $820 \mathrm{pf}-3 \mathrm{p} .1000 \mathrm{pf}$ to $10,000 \mathrm{pf}$ - $4 \mathrm{p} .12,000 \mathrm{pf}$ $.5 p$

DIODES (piliv/ampe)

75/25mA 1N4148 2p. 800/1A 1N4006 6p. 400/3A 1N5404 14p. 115/15mA OA91 100/1A 1N 4002 4p. 1000/1A 1N4007 7p. 60/1.5A S1M1 5p. 100/1A bridge 400/1A 1N4004 5p. 1250/1A BY127 10p. 30/45mA OA90 6p. 30/15A OA4 Zener diodes E24 series $3 V 3$ to $33 V 400 \mathrm{~mW}$ - 8 p . 1 watt L.E.D's $3 \& 5 \mathrm{~mm}$ Red 10p. Green, Yellow 14p. Grommets $3 \mathrm{~mm}-2 \mathrm{p}, 5 \mathrm{~mm}$ 20 mm fuses 100 mA to 5 A Q/blow $5 p$. A/surge $8 p$. Holders p.c. Or chassis HIgh speed p.c. 6 S 6 , HAPP Nicad rechargeable cells 5150 pair Universal charger unit Glass reed witches with singe pole make contacts - 80 . Magnets All prices are inclusive of VAT. Postage 20p (free over £5). Lists Free

THE C. R. SUPPLY CO 127 Chesterfield Rd, Sheffield S8 ORN

Return posting

Master Elechronics-Microprocessors -Now! The ProcticalWay!

Electronics - Microprocessors - Computer Technology is the career and hobby of the future. We can train you at home in a simple, practical and interesting way.

- Recognise and handle all current electronic components and 'chips'.

Carry out full programme of experimental work on electronic computer circuits including modern digital technology.

- Build an oscilloscope and master circuit diagram.

Testing and servicing radio - T.V. - hi-fi and all types of electronic/computer/industrial equipment.

NewJob? New Career? New Fobloy?

FREEE! COLOUR BROCHURE
OR TELEPHONE US 033451515

NAME
1 am interested in
CACC

ADDRESS
 ELECTRONICS MICROPROCESSORS radio amateur licence CITY \& GUILDS EXAMS

Brtish Ilational Radio\&Electronics School Reading.Berks. RGI 1BR

NIGEL CAWTHORNE G3TXF

n the European and North African region, the long wave broadcast band is in the frequency range $150-285 \mathrm{KHz}$. By international agreement, the 135 KHz of bandwidth available is split into 15 channels each 9 KHz wide.
In the UK, the most well-known long wave broadcast station is the BBC's station on 200 KHz . The main 200 KHz transmitter is sited at Droitwich, but there are also two other less well-known transmitters in the UK on the same frequency. Both are in Scotland. The 50 KW transmitters at Burghead on the Moray Firth and at Westerglen in Stirling operate in synchronism with the Droitwich transmissions. The 200 KHz channel (or the '1500 metres long wave') carries the BBC's Radio Four programme.
The BBC's main 200 KHz transmitters at Droitwich operate with a power of 400 KW into an 180 m high antenna. The transmitters currently in operation have been in service for many years and are about to be replaced by a pair of new Marconi 250KW transmitters, which will feed 500 KW into the antenna.

Happy bithday

Droitwich recently celebrated its fiftieth birthday. The station first went on the air on 6 September 1934, and the original Marconi transmitter was rated at 150 KW . Its 400 KW successor was also a Marconi transmitter. The new ($2 \times 250 \mathrm{KW}$)
transmitters currently being installed are therefore only the third set of transmitters to be installed at Droitwich for the 200 KHz service in fifty years.

Antennce

Long wave broadcasting presents the broadcast engineer with several unique problems, many of which centre around the constraints caused by the antenna.
At a frequency of 200 KHz , the corresponding wavelength is 1500 metres. A 'simple' half-wave dipole would need to be 750 metres in length, with 375 metres of wire in each arm! Even to be just a quarter-wave above ground, such a

The Droitwich antennae \& (left) the new Marconi transmitters
dipole would have to be on masts at least 375 metres high. Such a 'simple' dipole would need masts at least as high as the Eiffel Tower to be effective!

In practice, long wave broadcasters usually use single element antennae which are a combination of vertically and horizontally polarised components. Figure 1 shows in outline the present arrangement at Droitwich, as well as the outline of the larger antenna that will soon be used to replace it.
The present antenna consists of a ' T ' supported between two 180 m masts. The top section of the ' T ' is currently 90 m long, and the 180 m vertical section joins it in the centre. The size of the top section of the antenna is to be increased to 172 m .

Even though such antennae are very large physically they are electrically very 'short'. It is because they are electrically so short that they present a challenge both to the transmitter designer who has to design a transmitter to match into the antenna, and to the antenna designer who has to maximise the efficiency of the antenna system.

Bandwidth

The electrical shortness of the antennae and the relative bandwidth of the modulation at these low frequencies are major design constraints for long wave broadcast transmitters. Added to these constraints, there is also the requirement for high transmitter power levels. The table lists the long wave broadcast stations currently operating in Europe and North Africa. All the stations are

EBU channel	Frequency KHz	Station	Power KM
1	$\begin{aligned} & 155 \\ & 155 \\ & 155 \end{aligned}$	Donebach, W Germany Tromso, Norway Brasov, Rumania	$\begin{array}{r} 500 \\ 50 \\ 1,200 \end{array}$
2	164	Allouis, France	2,000
3	$\begin{aligned} & 173 \\ & 173 \end{aligned}$	Kalinigrad, USSR Nador, Morocco	$\begin{aligned} & 1,000 \\ & 1,200 \end{aligned}$
*	178	Oranienburg, DDR	750
4	182	Ankara, Turkey	1,200
*	185	Saarlouis, W Germany	2,000
5	$\begin{aligned} & 191 \\ & 191 \end{aligned}$	Caltanissetta, Italy Motala, Sweden	$\begin{array}{r} 50 \\ 300 \end{array}$
6	200 200 200 200	Warsaw, Poland Droitwich, BBC, UK Etimesgut, Turkey Leningrad, USSR	$\begin{aligned} & 200 \\ & 400 \\ & 200 \\ & 150 \end{aligned}$
7	209 209 209 209	Munich, W Germany Azilal, Morocco Kiev, USSR Reykjavik, Iceland	$\begin{aligned} & 500 \\ & 800 \\ & 500 \\ & 500 \end{aligned}$
8	$\begin{array}{r} 218 \\ 218 \end{array}$	Monte Carlo Oslo, Norway	$\begin{array}{r} 1,400 \\ 200 \end{array}$
9	227	Warsaw, Poland	2,000
10	$\begin{aligned} & 236 \\ & 236 \end{aligned}$	Luxembourg Leningrad, USSR	$\begin{aligned} & 2,000 \\ & 2,000 \end{aligned}$
11	245	Kalundborg, Denmark	150
12	$\begin{array}{r} 254 \\ 254 \end{array}$	Lahti, Finland Tipaza, Algeria	$\begin{aligned} & 1,500 \\ & 1,500 \end{aligned}$
13	$\begin{aligned} & 263 \\ & 263 \end{aligned}$	Burg, DDR Moscow, USSR	$\begin{array}{r} 200 \\ 2,000 \end{array}$
14	272	Czechoslovakia	1,500
15	281	Minsk, USSR	500

\star : not conforming with 9 KHz channel spacing
S: synchronised with other transmitters in the same country
using high transmitter powers.
To appreciate the bandwidth problem of long wave broadcasting, it is useful to make a direct comparison with amateur band transmissions.
A typical amateur installation might

Fig 2 A comparison of 200 KHz LW and 40 m bands
have a half-wave dipole for 40 m , which is about 66 ft long. The 40 m amateur band is 100 KHz wide (ie $7.0-7.1 \mathrm{MHz}$). A full-size 40 m dipole cut for 7050 KHz will work satisfactorily at both ends of the band. The SWR might start to get a little high at each end of the band, but the dipole will be usable. The bandwidth cover (100 KHz) represents about 1.4 per cent of the centre frequency ($100 / 7050 \times 100 \%$).

Compare this with the situation in the long wave broadcast band!
Assume that the carrier frequency of the long wave broadcaster is 200 KHz . For an AM transmission, the sidebands on either side of the transmitter will spread out about 4 KHz . The total bandwidth required will therefore be about 8 KHz . This is $4 \% ~(~ 8 / 200 \times 100 \%)$ of the centre carrier bandwidth.
Taking this back to the 40 m amateur band analogy, the equivalent bandwidth requirement (for the modulation alone) would be from 6900 KHz to 7200 KHz ! (see Figure 2).

Flg 3 The Droitwich antenna (left) scaled down to the 40 m band

The bandwidth constraints of operat ing in the long wave broadcast band are such that the modulation bandwidth around the carrier due to the sidebands alone presents a matching problem to both the transmitter designer and the antenna designer.

High-a anfennae

Because the antennae used for long wave broadcasting are electrically so 'short', they are narrow in bandwidth. To appreciate how short they are, it again might be useful to return to our 40 m amateur band analogy.

If we reduce the dimensions of the existing BBC antenna at Droitwich (180m vertical section with 90 m horizontal top section, in a ' T ' format) in proportion to frequency from 200 KHz to 7050 KHz , we end up with a ' T ' antenna as shown in Figure 3. The vertical section would be only 5 m high and the top section about 2.5 m wide.

This is a somewhat smaller antenna than you would normally expect to be using on 40 m !

In the same way that you would expect such an antenna to have a high ' Q ' on 40 m , its equivalent at 200 KHz also has a high ' Q '.

By scaling both the modulation sidebands and the antenna dimensions from the $1500 \mathrm{~m}(200 \mathrm{KHz})$ BBC long wave installation to a typical 40 metre amateur band installation, it is possible to appreciate some of the problems facing the long wave broadcast system designer.

The modernisation of the BBC's Droitwich installation includes both replacing the existing transmitters with new pur-pose-designed Marconi transmitters and increasing the size of the antenna topsection.

An interesting complication of this project is the fact that one of the masts supporting the LW antenna is itself a vertical radiator for the BBC's 150 KW transmitter on 693 KHz , which carries Radio Two programming at Droitwich.
It is quite likely that the interaction between the LW antenna and the MW vertical radiator will require some slight retuning of the vertical radiator's match-
ing system after the LW top-section has been changed over.
On many long wave channels there is more than one station operating; careful planning ensures that mutual interference problems are kept to a minimum.
The present allocation of frequencies and powers in both the long wave and medium wave broadcast bands stems from the Regional Administrative Conference held in Geneva in 1975 and which started to come into effect in 1978.

Geneva Conference

The preamble to the agreement drawn up at Geneva by over 150 countries started along the lines:
'With the object of facilitating relations, mutual understanding and cooperation in the field of LF/MF broadcasting, with a view to improving the use of the frequency bands allocated to the broadcasting service in order to ensure satisfactory reception of the broadcasting service for all countries, recognising that all countries large and small have equal rights and that the needs of all countries and in particular the needs of the developing countries shall be fulfilled as far as possible in the implementation of this Agreement. . .'
The Geneva Plan was dealing in the main with the problems of a medium wave band which had previously been discussed at the Copenhagen Conference held in 1948 in the shadows of WW2. The allocation of frequencies at the Copenhagen Conference had not been done on a neutral nor particularly fair basis. The Geneva Conference sought to redress this imbalance as well as tidy up what had in the meantime become very crowded broadcast bands.

The long wave broadcast channels with their requirement for high powers and large antenna systems were not so sought after as the medium wave channels. In comparison the medium wave, which runs from 525 KHz to 1605 KHz , contains 120 channels (each 9 KHz wide), whereas the long wave has only 15 channels.

High-powered LW stations are separated geographically, and during the
daytime only the nearer station on a particular channel will be audible, but in the evening and at night, as longdistance propagation increases on the long waves, stations further afield can be heard. By using the 'nulling' effect of a broadcast receiver's ferrite rod aerial, one LW broadcast station can often be nulled out to receive another on the same channel.

For example, the high-powered Algerian LW station at Tipaza on the Mediterranean coast can regularly be heard during the evening in the UK on 254 KHz , provided that the Finnish station on the same frequency can be successfully nulled out. The Tipaza station can be recognised by the Arabic or French language programming, as well as Arabic style music.

Under the Geneva Plan many new LW transmitter locations and powers were agreed. However, many of the allocations which were then agreed have not yet been implemented.

As an example, there is an allocation for a 1000 KW LW broadcast station at El Golea in the centre of Algeria, to operate on a frequency of 200 KHz . Similarly Tunis has an allocation for 1200 KW at 281 KHz . Funds may not always be readily available for the construction of such major broadcast stations.

As funds do become available within the various broadcasting organisations, these and other long wave allocations may eventually be taken up. However, the capital investment required to install a high-powered long wave broadcast station is large. High-powered transmitters and large antennae cost huge sums to purchase and install. The masts and transmitters may require a lot of civil engineering work to erect transmitter buildings and to put in mast foundations.

As well as the capital costs of such installations, there are the running costs to be considered too.
The running costs are also high because of the large amounts of energy required to run powerful long wave transmitters. Even modern high-efficiency long wave transmitters such as the pair of Marconi 250KW units going into Droitwich, with system efficiencies of around 70%, still require over 700 KW of electricity to run them.
Broadcasting authorities may well have priorities for their funds other than the installation of long wave broadcast stations. It is therefore possible that some of the LW 'allocations' made at Geneva may never actually be taken up, even though they were hard fought for at the time of negotiating the plan!

References

1 '10th International Broadcasting Convention' IEE Conference Publication No 240.

2 EBU Technical Review No 206, August 1984.

\section*{Edited by G L Benbow G3HB}

$\underbrace{\text { O }}_{\substack{\text { How to Pass the } \\ \text { Radio Amateurs } \\ \text { Examination }}}$
$\underbrace{\text { O }}_{\substack{\text { How to Pass the } \\ \text { Radio Amateurs } \\ \text { Examination }}}$
$\underbrace{\text { O }}_{\substack{\text { How to Pass the } \\ \text { Radio Amateurs } \\ \text { Examination }}}$

Examimation

This newly published book is a guide to would-be amateurs intending to sit the Radio Amateur' Examination. It is intended to compliment the Radio Amateurs' Examination Manual, giving facts about the examination and how to cope with multiple-choice type questions. There is a comprehensive series of est papers, included in the book. All the questions have been devised by members of the education Committee of the RSGB and are set in a similar styie to those encountered in the RAE. Chapter titles: What is a multiple-choice examination?; Tackling the multiple-choice RAE; Mathematics for the RAE; Preparing for the RAE Sample multiple-choice examination papers. 91 pages, paperback 246 by 184 mm price 83.42

Locator Map of Europe
The new international (Maidenhead) locator system comes into use on January 1 1985. This new map published by the RSGB shows locator squares for Europe at a glance, with an inset
world-wide locator map showing the main locator squares for the rest of the world. The instructions for its use are printed in 17 European languages including English. Size 625 by
900 mm
There is also a desk version of the map printed on card
Other REAE Publicatione
Amateur Radio Amar Radio (19th edn)
mateur Radio AWards (2nd edn)...
HF Antennas for All Locations
Microwave Newsletter Technical Collection
Morse Code for Radio Amateurs.
Radio Communication Handbook (paperback
Teleprinter Handbook (2nd edn)
elevision Interference
VHF/UHF Manual (4th edn)
Meteor Scatter Data ...
Logbooks
Amateur Radio Logbook
Mobile Logbook
Receiving Station Logbook
Great Circle DXMap
. 8.01

World Prefix Map in full colour (wail)
Ontive Filter Cookb
All About Cubical Quad (Sams)........
mateur Single Sideband (Ham Radio)
Antenna Anthology (ARRL
ARRL Antenna Book (Hardback for p/b price while stocks last)
ARRL Electronics Data Book.
Beam Antenna Handbook (RPI)......
Better Short Wave Reception (RPI)
MOS Cookbook (Sams) Tubes (Varian)
Complete Shortwave Listener's Handbook (Tab)
FM and Repeaters for the Radio Amateur (ARRL
G-QRF Club Circuit Handbook............
Hints and Kinks for the Radio Amateur (ARRL
How to Troubleshoot and Repair A R Equipmen
C Op-amp Cookbook (Sams).
iternational VHF FM Guid
Newcomer's Guide to Simplex and Repeaters on 2M
adallite Experimenters Handbook (AR
Satellite Tracking Software for the
ecriconductor Data Book (Nownes)
Shortwave Propagation Handbook (Cowan)
Solid State Design for the Radio Amateur (ARRL)
Television for Amateurs (BATC)
UHF-Compendium Parts 182
Understanding Amateur Radio (ARRL
HF Propagation Handbook (Nampa)
Weekend Projects for the Radio Amateur (ARRL)
World Radio TV Handbook 1984

RSGB Publications
Lambola House, Cranborne Road,
Potters Bar, Herts EN6 3JW
Telephone: (0707) 59015

NEW THIS MONTH

manctin Pua

Made by Rendar, integrated chassis mounted olug with mains filter rated 2A. Like RS 238-514. Only E3.00

$$
\begin{aligned}
& \text { 7.80 Lipe } \\
& \text { MAN8910 0.8" red seven segment LED's common }
\end{aligned}
$$ anode. Et.ess, 10 for E10

Tonve

Computer controlled Robot built around the gearbox described below. Complete kit of parts inc PCB, program listings for BBC (other micros soon) $£ 44.8520 \mathrm{~W}$ ribbon cable (min 3 m illustrated leaflet

motome cianex

These units are as used in a computerised tank and offer the experimenter in robotics the pportunity to buy the electro-mechanical The unit has $2 \times 3 \mathrm{~V}$ motors, linked by a magnetic clutch, thus enabling turning of the vehicle, and gearbox contained within the black ABS housing, reducing the final drive speed to approx 50 rpm . Data is supplied with the unit showing various aptions on driving the motors. wo new types of wheels can be supplied he now sold out). Type A hes 7 spokes with a round black tyre and is 100 mm dia. Type B is a solid heavy duty weel 107 mm dia with a flat rigid tyre 17 mm wide.
PRICES.
$\begin{array}{ll}\text { Gearbox with data sheets: } & \text { ce. } \\ \text { Wheel Type A: } & \text { co. } \\ & \end{array}$ Wheel Type B
co. 00 e日

Thase digital multimeter cases are moulded in high impact black plastic and are offered at an igtremely attractive price to clear stocks.
0.2010-110×80×20mm, this too has cut-outs or range switches and terminals with a smart aluminium fascia marked with ranges etc. Batter accessible by removeable cover on back 78p

100-Same size as above, but this was for use as a digital thermometer, so theres oniy a ingle 9 mm e hole in the front panel 78

2017 PSU Panal $320 \times 190 \mathrm{~mm}$ with MJ802 (30A 100 V 200 W) on large heatsink. 7 smaller heatsinks Also 555, 3×4; 7812, 7905; 7 M Mass, caps, multiway plugs and sockets etc. Ex-equip working order. Only 88.50

- Boan

Fibreglass DIP board $158 \times 165 \mathrm{~mm}$ double sided with 58 W $0.1^{\prime \prime}$ edge connector gold plated. Vero. 28.80.

20 WAY RECON CADE
Twisted and flat computer grade for lower or IDC connectors. Only $70 \mathrm{p} / 21^{\prime \prime}$ or K 25 per 100 ft reel.

1984/5 CATALOGUE

84 page A4 size - Bigger Brighter, Better more components than ever before! With each copy there's discount vouchers. Bargain List.
Whol esale Discount List. Bulk Buyers List. Order Form and Reply Paid Envelope.
All for just ci.con
Winter Supplement due out November - Send large SAE for your free copy.

CAD CMABOM PAN

$77 \times 114 \mathrm{~mm}$ PCB with one massive Varta Deac 57 $\times 50 \mathrm{~mm} \oslash$ rated 7.2 V 1000 mAH and another mailer Deac $32 \times 35 \mathrm{~mm}$ © rated 3.6 V 600 mA . The price of these Ni-Cad stacks new is over 20 . Also on the panel is a mains input charger
transformer with two separate secondaries wired via bride rectifiers, smoothing capacitors and a relay to the output tags. The pane weighs

GREENWELD - The Pack Peoplel

K524 OPTO PACK - a variety of single point and seven segment LEDS (incl. dual types) of various multi digit gas discharge displays, photo transistors, infra red emitters and receivers. 25 assorted £3.95 $100 £ 14.95250 £ 35$
K528 ELECTROLYTIC PACK - All ready cropped or PCB mounting, this pack offers excetlent value for money Good range of values and
voltages from $0.47 \mu \mathrm{~F}$ to 1000μ, bv to 100 V . 100 $3.9525088 .951000 \mathrm{E32}$

K531 PRECISION RESISTOR PACK - High quality, close tolerance R's with an extremely aried selection of values mostly $1 / 4$ and $1 / \mathrm{w}$ olerances from 0.1% to 2%-ideal for meters.

K539 RELAYS - wide selection of styles voltages and contacts

K525 PRESET PACK - Big. Big variaty of types and sizes - submin, min and std, MP, slider, multiturn and cermets are all included. Wide range of values from 20 c
$£ 6.75250 £ 12951000 £ 48$

PCI MOUNTMa m-ADB

Much sought after 4.8 V 150 mA batts with PCB for paralieling. 99p ea; $10+85 p ; 25+700 ; 100+$

mene ortics

Scoop purchase of single and twin cable. For use overall 2.25 mm dia. Single $50 \mathrm{p} / \mathrm{m}$; 20 m coil $£ 6.30$. Twin 90p/m; 20 m coil $£ 11.00$

matume miays

Availab mounting. DPCO size $20 \times 15 \times 15 \mathrm{~mm}$

1w Anpurn

2914 Audio amp panel $95 \times 65 \mathrm{~mm}$ with TBA820 chip. Gives 1 output with 9 v supply. Switch and vol control. Just connect batt and speaker. Full
details supplied. Only $£ 1.5010$ for $£ 12 ; 25$ for $£ 25$; 100 for $£ 75$.

2915 Stereo version of above $115 \times 65 \mathrm{~mm}$ teaturing $2 \times$ TBAB20M and dual voi control. $£ 3.50$
10 for $£ 30 ; 25$ for $£ 65 ; 100 £ 200$

an Tuna pana

Z916 For use with mono amp above. Neat pane
m-CAD CHAROE
Ever-Ready model CH4, this charger will take up o 4 AA, c or D cells plus 2 PP3 if required Smart

STEROOAMP PAMA

2908 Panel $147 \times 38 \mathrm{~mm}$ with $2 \times$ TDA $10045 W$ audio amp IC's not soldered in! so they can
easily be removed. Also $1000 / 16$. $1000 / 10 \times 2$. 470/16 elecs, ceramic discs. R's also choke (All easily removed) Only E3.00 (IC's cost EA^{4} ea) Circuit Supplied.

bat melt alamat

Originally for sale at $\mathrm{E8} .95$, these well mede units $70 \times 50 \times 25 \mathrm{~mm}$ provide both audible and visual available ready built with circuit, etc. Availrabie ready built, with circuit and
instructions for just cises. Also available as a together with instrumponents. box, wire, etc,

GREENWELD

Min Access order value $£ 5$ No min CWO value. Official orders from shcools etc. weicome - min invoice charge $£ 10$.

Our shop has enormous stocks of
amponents and is from 9-5.30 MonSat. Come and see us!!

443K Millbrook Road
Southampton SOl OHX
Tel: (0703) 772501/783740
Al prices inclucto Vat; just add 6pp PM

Tn the last two editions of Data File we have given a basic introduction to the general subject of opto-electronics, and have taken detailed looks at LED principles and at practical LED 'flasher', 'chaser', and U237-based 'bar-graph' display circuits.
In the present edition of 'The File' we continue the 'display' theme by taking a detailed look at practical LM3914-series LED 'dot-' and 'bar-graph' display circuits, and conclude by taking a brief look at a variety of types of 7 -segment display system.

LM3914-series basics

The LM3914 family of dot-/bar-graph driver ICs are manufactured by National Semiconductors. They are fairly complex but highly versatile devices, housed in 18-pin DIL packages and each capable of directly driving up to 10 LEDs in either the 'dot' or the 'bar' mode.
The family comprises three devices, these being the LM3914, the LM3915, and the LM3916. These ICs use the same basic internal circuitry (see Figure 1), but differ in the style of 'scaling' of the LEDdriving output circuitry, as shown in Figure 2.
Thus the LM3914 is a linearly-scaled unit, specifically intended for use in LED 'voltmeter' applications in which the number of illuminated LEDs gives a direct indication of the value of input volts.
The LM3915, on the other hand, has a log-scaled output designed to span 0 to -27 dB in ten -3 dB steps, and is specifically designed for use in 'power meter' applications etc. Finally, the LM3916 has a semi-log scale, and is specifically designed for use in 'VU meter' applications.
All three devices of the LM3914 family use the same basic internal circuitry, and Figure 1 shows the specific internal circuit of the linear-scaled LM3914, together with the connections for making it act as a simple 10 -LED 0 to 1.2 V meter.
The IC contains ten voltage comparators, each with its non-inverting terminal taken to a specific tap on a 'floating' precision multi-stage potential divider, and with all inverting terminals wired in parallel and taken to input pin 5 via a unity-gain buffer amplifier.
The output of each comparator is externally available, and can sink up to 30 mA ; the sink currents are internally limited, and can be externally pre-set via a single resistor (R1).
The IC also contains a 'floating' 1.2 volts reference source between pins 7 and 8 . In Figure 1 the reference is shown externally connected to the internal (pins 4 and 6) potential divider. Note that pins 8 and 4 are shown grounded, so in this case the bottom of the divider is at zero volts and the top is at 1.2 volts.

In addition the IC contains a logic

More opto-electronics from Ray Marston

Flg 1 internal circuit of the LM3914
network that can be externally set to give either a 'dot' or a 'bar' display from the outputs of the ten comparators. Operation of the IC is as follows:
Assume that the IC logic is set for bar mode operation, and that the 1.2 volt reference is applied across the internal 10 -stage divider as shown. Thus 0.12 V is applied to the inverting or reference input of the lower comparator, 0.24 V to the next, 0.36 V to the next, and so on. If a slowly rising input voltage is now applied to pin 5 of the IC, the following sequence of actions takes place:
When the input voltage is zero, the outputs of all ten comparators are disabled and all LEDs are off. When the input voltage reaches the 0.12 V reference value of the first comparator, its
output conducts and turns LED1 on. When the input reaches the 0.24 V reference value of the second comparator, its output also conducts and turns on LED2, so at this stage LEDs 1 and 2 are both on.
As the input voltage is further increased, progressively more and more comparators and LEDs are turned on until eventually, when the input rises to 1.2 volts, the last comparator and LED10 turn on. At this point all ten LEDs are illuminated.
A similar kind of action is obtained when the LM3914 logic is set for dot mode operation, except that only one LED is on at any given time. At zero volts no LEDs are on, and at above 1.2 volts only LED10 is on.

$\begin{aligned} & \text { LED } \\ & \text { No } \end{aligned}$	Typical threshold-point value, at 10 V fsd					
	LM3914	LM3915		LM3916		
	V	V	dB	V	dB	VU
1	1.00	. 447	-27	. 708	-23	-20
2	2.00	. 631	-24	2.239	-13	-10
3	3.00	. 891	-21	3.162	-10	-7
4	4.00	1.259	-18	3.981	-8	-5
5	5.00	1.778	-15	5.012	-6	-3
6	6.00	2.512	-12	6.310	-4	-1
7	7.00	3.548	-9	7.079	-3	0
8	8.00	5.012	-6	7.943	-2	+1
9	9.00	7.079	-3	8.913	-1	+2
10	10.00	10.00	0	10.00	0	+3

Fig 5 Alternative variable rangt

FIg 2 Threshold-point values of the LM3914/15/16 ICs

Some finer detalls

In Figure 1, R1 is shown connected between pins 7 and 8 (the output of the 1.2 V reference), and determines the 'on' currents of the LEDs. The 'on' current of each LED is roughly ten times the output current of the 1.2 V source, which can supply up to 3 mA and thus enables LED currents of up to 30 mA to be set via R1.
If, for example, a total resistance of 1K2 (equal to the paralleled values of R1 and the 10K of the IC's internal potential divider) is placed across pins 7 and 8 , the 1.2V source will pass 1 mA and each LED will pass 10 mA in the 'on' mode.
Note from the above that the IC can pass total currents up to 300 mA when used in the bar mode with all ten LEDs on. The IC has a maximum power rating of only 660 mW , so there is a danger of exceeding this rating when the $I C$ is used in the bar mode.
In practice, the IC can be powered from dc supplies in the range 3 to 25 volts, and the LEDs can use the same supply as the IC or can be independently powered; this latter option can be used to keep the power dissipation of the IC at minimal level.
The internal 10-stage potential divider of the IC is floating, with both ends externally available for maximum versatility, and can be powered from either the internal reference or from an external source or sources.
If, for example, the top of the chain is connected to a 10 volt source, the IC will function as a $0-10 \mathrm{~V}$ meter if the low end of the chain is grounded, or as a 'restricted-range' $5-10 \mathrm{~V}$ meter if the low end of the chain is connected to a 5 volt source.

Constralnt

The only constraint on using the divider is that its voltage must not be greater than 2 volts less than the IC's supply voltage (which is limited to 25 V maximum). The input (pin 5) to the IC is fully protected against overload voltages up to plus or minus 35 V .

The IC's internal voltage reference produces a nominal output of 1.28 V (limits are 1.2 V to 1.32 V), but can be

Fig 3 1.2V-1000 fsd dot mode voltmeter

externally 'programmed' to produce effective reference values up to 12 volts (we'll show how later).
The IC can be made to give a dot mode display by wiring pin 9 to pin 11, or a bar display by wiring pin 9 to positive-supply pin 3.

Finally, it should be noted that the major difference between the three members of the LM3914 family of ICs lies in the values of resistance used in the internal 10 -stage potential divider.
In the LM3914, all resistors in the chain have equal values, and thus produce a linear display of ten equal steps. In the

LM3915 the resistors are logarithmically weighted, and thus produce a log display that spans 30 dB in ten 3 dB steps. In the LM3916, the resistors are weighted in a semi-log fashion and produce a display that is specifically suited to VU meter applications.

Let's now move on and look at some practical applications of this series of devices, paying particular attention to the linear LM3914 IC.

Dot mode voltmefers

Figures 3 to 7 show various ways of using the LM3914 IC to make 10-LED dot

: dot mode voltmeter

F.g. Expanded scale dot mode voltmeter

Fig 7 Expanded scale dot mode car voltmeter

FIg 8 Bar display meter with separate LED supply
mode voltmeters. Note in all of these circuits that pin 9 is wired to pin 11 to give dot mode operation, and that a $10 \mu \mathrm{~F}$ capacitor is wired directly between pins 2 and 3 to enhance circuit stability.

Figure 3 shows the connections for making a variable-range $(1.2 \mathrm{~V}$ to 1000 V fsd) voltmeter. The low ends of the internal reference and divider are grounded and their top ends are joined together, so the meter has a basic fullscale sensitivity of 1.2 V , but variable ranging is provided by the Rx -R1 potential divider at the input of the circuit.
Thus, when Rx is zero the fsd is 1.2 V ,
but when $R x$ is 90 K the fsd is 12 volts. Resistor R2 is wired across the internal reference and sets the 'on' currents of the LEDs at about 10 mA .

Figure 4 shows how to make a fixedrange $0-10 \mathrm{~V}$ meter, using an external 10 volt Zener (connected to the top of the internal divider) to provide a reference voltage. The supply voltage to this circuit must be at least two volts greater than the Zener reference voltage.

Figure 5 shows how the internal reference of the IC can be made to effectively provide a variable voltage, enabling the meter fsd value to be set
anywhere in the range 1.2 V to 10 V .
In this case the 1 mA current (determined by R1) of the floating 1.2 V internal reference flows to ground via RV1, and the resulting RV1 voltage raises the reference pins (7 and 8) above zero. If, for example, RV1 is set to 2K4, pin 8 will be at 2.4 V and pin 7 at 3.6 V . RV1 thus enables the pin 7 voltage (connected to the top of the internal divider) to be varied from 1.2 volts to about 10 volts, and thus sets the fsd value of the meter within these values.

Figure 6 shows the connections for making an expanded-scale meter which, for example, reads voltages in the range 10 to 15 volts. RV2 sets the LED current at about 12 mA , but also enables a reference value in the range $0-1.2 \mathrm{~V}$ to be set on the low (pin 4) end of the internal divider.

Thus if RV2 is set to apply 0.8 V to pin 4, the basic meter will read voltages in the range 0.8 to 1.2 volts only. By fitting potential divider Rx-RV1 to the input of the circuit, this range can be 'amplified' to (say) $10-15 \mathrm{~V}$, or whatever range is desired.
Finally, Figure 7 shows an expandedscale dot mode voltmeter that is specifically designed to indicate the value of a car's battery (12 volts nominal).
In this case R2-RV1 are effectively set to give a basic range of 2.4 to 3.6 volts, but the input to the circuit is derived from the positive supply rail via the R1-RV1 potential divider, and the indicated volts reading thus corresponds to a pre-set multiple of the basic range value.
As shown in the diagram, red and green LEDs can be used in the display, arranged so that green LEDs illuminate when the voltage is in the 'safe' range of 12 to 14 volts.
To calibrate the above circuit, first set the supply to 15 volts and adjust RV1 so that LED10 just turns on. Reduce the supply to 10 volts and adjust RV2 so that LED1 just turns on. Re-check the settings of RV1 and RV2. The calibration is then complete and the unit can be installed in the car by taking the ' 0 ' volt lead to the chassis and the ' +12 V ' lead to the car's battery via the ignition switch.

Bar mode voltmeters

The dot mode circuits of Figures 3 to 7 can be made to give bar mode operation simply by connecting pin 9 to pin 3 , rather than to pin 11. When using the bar mode, however, it must be remembered that the IC's power rating must not be exceeded by allowing excessive output-terminal voltages to be developed when all ten LEDs are on.
LEDs 'drop' roughly 2 volts when they are conducting, so one way around this problem is to power the LEDs from their own low voltage (3 to 5 V) supply as shown in Figure 8.
An alternative solution is to power the IC and the LEDs from the same supply, but to wire a current-limiting resistor in

Fig 9 Bar display meter with common supply

Fgg 10 Bar display with minimal consumption

Fig 12 Dot mode 20-LED voltmeter

Fig 13 Bar mode 20-LED voltmeter

Fig 11 Modification for unregulated supplies
series with each LED as shown in Figure 9 , so that the IC's output terminals saturate when the LEDs are on.

Figure 10 shows another way of obtaining a bar display without excessive power dissipation. Here the LEDs are all wired in series, but with each one connected to an individual output of the IC, and the IC is wired for dot mode operation.

Thus when LED5 (for example) is driven on it draws its current via LEDs 1 to 4 , so all five LEDs are on. In this case, however, the total LED current is equal to that of a single LED, so power dissipation is quite low.
The LED supply to this circuit must be greater than the sum of all LED voltage drops when all LEDs are on, but must be within the voltage limits of the IC; a regulated 24 V supply is thus needed.

Figure 11 shows a modification of the above circuit which enables it to be
powered from an unregulated supply within the 12 to 18 volt range. In this case the LEDs are split into two chains, and the transistors are used to switch the lower (LEDs 1 to 5) chain on when the upper chain is active; the maximum total LED current is equal to twice the current of a single LED.

20-LED volimeters

Figure 12 shows how two LM3914s can be interconnected to make a 20-LED dot mode voltmeter. Here the input terminals of the two ICs are wired in parallel, but IC1 is configured so that it reads 0 to 1.2 volts, and IC2 is configured so that it reads 1.2 to 2.4 volts.
In the latter case, the low end of the IC2 potential divider is coupled to the 1.2 V reference of IC1, and the top end of the divider is taken to the top of the 1.2 V reference of IC2, which is raised 1.2 V above that of IC1.

The Figure 12 circuit is wired for dot mode operation. Note in this case that pin 9 of IC1 is wired to pin 1 of IC2, and pin 9 of IC2 is wired to pin 11 of IC2. Also note that a 22 K resistor is wired in parallel with LED9 of IC1.
Figure 13 shows the connections for making a 20-LED bar mode voltmeter. The connections are similar to those of Figure 12, except that pin 9 is taken to pin 3 of each IC, and a 470R current-limiting resistor is wired in series with each LED to reduce the power dissipation of the ICs.
To conclude this look at LM3914 circuits, Figure 14 shows a simple frequency-to-voltage converter circuit that can be used to convert either of the Figure 12 or 13 circuits into 20-LED tachometers or rpm meters. This converter should be interposed between the vehicle's contact-breaker points and the input pin of the 'voltmeter' circuit.

Flg 14 Car tacho conversion circuit

Fig 10 Simple VU meter

Fig 17 Precision VU meter with low current drain

Fig 15 Simple audio power meter

In Figure 14, the C 2 value of 22 nF is the optimum value for a full-scale range of 10000 rpm on a 4 -cylinder 4 -stroke engine. For substantially lower full-scale rpm values, the value of C 2 may have to be increased. The value may have to be reduced on vehicles with 6 or more cylinders.

LM3915/LM3916 circults

The LM3915 'log' and LM3916 'semi-log' ICs operate in the same basic way as the LM3914, and can in fact be directly substituted in most of the circuits shown in Figures 3 to 13.
However, in most practical applications these ICs are used to give a 'meter' indication of the value of an ac input signal, and the simplest way of achieving such a display is to connect the ac signal directly to the pin 5 input terminal of the IC. The IC responds only to the positive half of such input signals, and the
number of illuminated LEDs is thus proportional to the instantaneous peak value of the input signal.

In such circuits, the IC should be operated in the dot mode and set to give about 30 mA of LED drive current. Figure 15 shows a practical example of such a circuit.
The Figure 15 circuit is that of a simple LM3915-based audio power meter. Pin 9 is left open-circuit to ensure dot mode operation, and R1 has a value of 390R to give an LED current of about 30 mA . The meter gives audio power indication over the range 200 mW to 100 W .
A more sophisticated way of using these ICs to show the value of an ac input signal is to use a half-wave converter to change the ac signal into dc, which is then fed to the input of the IC. Figures 16 and 17 show practical LM3916-based 'VU meter' circuits of this type.

In Figure 16 the input signal is
converted to dc via the simple D1-R1-R2C1 network.
Note in this case that rectifier D2 is used to compensate for the forward voltage drop of D1. Also note that this particular circuit operates in the bar mode, and uses separate supplies for the IC and the LED display.

Precision

Finally, to complete this look at the LM3914 range of devices, Figure 17 shows how the LM3916 can be used as a precision VU meter by using a precision half-wave rectifier (IC1) to give ac/dc conversion.
Note in this circuit that the LEDs are wired in series and IC2 is wired in the dot mode, to give a low-consumption bar display of the type shown in Figure 10. To set up the circuit, simply adjust RV1 to set 10 V on pin 7: RV2 can then be used as a 'brightness' control.

7-segment dlsplays

A very common requirement in modern electronic circuitry is that of displaying alpha-numeric characters. Digital watches, pocket calculators, and digital multimeters and frequency meters are all examples of devices that make use of such displays.
The best known type of alpha-numeric display is the so-called ' 7 -segment' display, which comprises seven independently accessible photo-electric 'segments' (such as LEDs or liquid crystals) arranged in the form shown in Figure 18.
The segments are conventionally notated from ' a ' to ' g ' in the manner shown in the diagram, and it is possible to make them display any numeral from ' 0 ' to ' 9 ' or any alphabetic character from ' A ' to ' F ' (in a mixture of upper and lower case letters) by activating these segments in various combinations, as shown in the 'truth table' of Figure 19.
Practical 7 -segment display devices must be provided with at least eight external connection terminals. Seven of these terminals give access to the individual photo-electric elements, and the eighth terminal provides the essential 'common' connection to all elements.
If the display is of the LED type, the seven individual LEDs may be arranged in the form shown in Figure 20, in which all LED anodes are connected to the 'common' terminal, or they may be arranged as in Figure 21, in which all LED cathodes are connected to the 'common' terminal.
In the former case the device is known as a 'common-anode 7 -segment display'; in the latter case the device is known as a 'common-cathode 7 -segment display'.

7-segment display/ditvers

In most practical applications, 7 -segment displays are used to give a visual indication of the output states of digital ICs such as decade counters and latches etc.
These outputs are usually in a 4-bit BCD (binary coded decimal) form, and are thus not suitable for directly driving a 7 -segment display. Consequently, special ICs are available to convert the BCD signal into a form suitable for driving these displays.
These ICs are generally known as ' BCD to 7 -segment decoder/drivers', and are connected between the BCD signals and the display in the basic manner shown in Figure 22.
The table of Figure 23 shows the relationship between the BCD signals and the displayed 7 -segment numerals.
In practice, BCD to 7 -segment decoder/driver ICs are usually available in a dedicated form that is suitable for driving only a special class of display unit, eg common anode LED, common cathode LED, or liquid-crystal display (LCD). Figures 24 to 26 show the methods

Fig 18 Standard 7 -segment display

Flg 20 'Common anode' display

Fig 22 Connections for a decoder/driver IC

Flg 24 Driving a common anode display

SEGMENTS $(V=O N$)							displar	SEGMENTS $(V=O N)$							DISPLAY
4	b		\square_{1}		1	9		1	b	-	-	-	t	1	
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		0	\checkmark	8						
	\checkmark	\checkmark					1	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	9
\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	2	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	R
\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	3			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	6
	\checkmark	\checkmark			\checkmark	\checkmark	4	\checkmark			\checkmark	\checkmark	\checkmark		$[$
v		\checkmark	\checkmark		v	\checkmark	5		\checkmark	\checkmark	\checkmark	\checkmark		v	d
\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	5	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	E
\checkmark	\checkmark	v					7	\checkmark				\checkmark	\checkmark	\checkmark	F

Fig 19 Truth table for 7-segment display

Flg 21 'Common cathode' display

bco signal				oisplay	BCosional				oisplay
0	c	8	\wedge		-	c	-	\wedge	
0	0	0	0	0	0	1	0	1	5
0	0	0	,	1	0	1	1	0	5
0	0	1	-	2	0	1	1	1	7
0	0	'	1	3	1	0	0	0	8
0	1	0	0	4	1	0	0	1	9

Fig 23 Truth table for decoder/driver

Fig 25 Driving a common cathode display

Fig 26 Driving a liquid crystal display
of interconnecting each of these IC and display types.
Note in the case of the LED circuits (Figures 24 and 25) that if the IC outputs are unprotected (as in the case of most TTL ICs), a current-limiting resistor must be wired in series with each display segment. Most CMOS ICs have internally current-limited outputs, and do not require the use of these external resistors.
Finally, note in the case of the Figure 26

LCD-driving circuit that the 'common' or 'backplane' (BP) terminal of the display must be driven with a symmetrical square wave signal, derived from the 'phase' output terminal of the IC.

In next month's edition of 'Data File' we'll show some practical BCD to 7-segment decoder/driver ICs, and take a look at multiplexing techniques. We'll also look at a range of light-sensitive circuits such as switches and oscillators etc.

PHONE
 0474813225
 3 LINES
 ΔP．M．COMPONENTS LTD dept rew selectron house，wrotham road MEOPHAM GREEN，MEOPHAM，KENT DA13 OQY
 telex 966371

INTEGRATED CIRCUITS

SEMICONDUCTORS

部認

$A C 127$
$A C 128$
$A C 1281$
$A C 111$
$A C 141$
$A C 1126$
AC141K
AC142K
AC176
MUUYU
AC188
AC188K
AD142
AD143
AD149
AD161

教

 80\％

为 的

80\％ 																																

LOW-PASS
 FILTER

TThe radiation of unwanted harmonics contained within the output spectra from amateur radio transmitters is undesirable in the extreme; the problems range from the potential hazard of interference to other services, to the important fact that it constitutes an offence under the terms of the amateur licence.
Very thoughtful design with circuits, layouts and on-board filtering as well as stringent test limits are employed in modern manufacturing techniques associated with radio transmitting equipment. However thorough these precautions are, in practice total elimination of these frequencies is impossible; but such steps that are taken are necessary to ensure that the final radiated signals contain only the minimum levels of unwanted frequencies, keeping them well below the levels of the output so as to be insignificant for all practical purposes.
Where home construction is used, however, unless exceptional care is taken over such areas the levels of unwanted frequencies finding their way through to the output may be of much higher orders than desired. This is especially true if great attention has not been paid to such likely areas as supply rail de-couplings, correct termination of impedance-dependent devices, interstage bandpass filtering and couplings, output filtering in oscillators and mixers, phase locked loop frequency synthesisers, and any other suspect circuitry which is apt to generate more than the desired frequencies.
Output filtering should be fitted as standard, especially if the design of the power amplifier is of the wideband type featured in modern circuit design manuals. Any stages dealing with medium to high levels of signal should be operated well within the limits of the devices employed. Such circuits as buffer amplifiers, high level mixers, drivers and power amplifiers should be operated well within the specifications of the devices used and not pushed beyond working limits or overdriven; minimum drive levels consistent with required output, to keep such devices within their operating limits, greatly reduce the probability of the generation of harmonics and spurii.

Still present

Having said all this, unwanted signals may still be present at high enough levels to cause problems since they are being radiated from the antenna system, whether the gear is commercial or homebrew, well designed or not. Incorrect resonance of part or all of the antenna system can generate harmonics

Construct this low-cost high power unit designed and built by Duncan Walters G4DFV

or other odd frequencies, or exaggerate a normally lower level signal to such an extent that it becomes troublesome. In these cases normal procedures of finding a cure can prove fruitless, so alternative approaches have to be sought.

Getting back to the production of harmonics within the equipment, many non-linear elements such as semiconductor junctions can, under certain conditions, generate unwanted harmonics. One area where they are subjected to the right kind of excitation is as diodes in the circuit of the SWR meter, a common enough measuring instrument in amateur stations.
Using an ATU (antenna tuning unit) in conjunction with antenna systems does afford some frequency-selectivity and reduction in unwanted radiation, but if the output is coupled directly to the antenna, any SWR meter-generated harmonics will be radiated.

Output filtering

Various methods are available by which the attenuation of undesirable radiations is acheived by inserting a filter of one form or another between the transmitter output and the antenna system, or between the SWR meter and the antenna system. If the latter method is adopted, it has the merit that it will attenuate any signals generated by the diodes in the SWR meter as well as any emanating from the transmitter.
An ideal type of filter to use would be one which allowed only the frequency required to be radiated through, and which attenuated all others. This would be perfect but for one problem: if it was decided to alter the output frequency of the transmitter at any time, then at once it would become necessary to change the filter in order to allow the new frequency to pass. This would prove an awkward and tiresome task each time a new frequency was selected.

Filters using this general idea are utilised, but are usually tailored to exhibit wider bandwidths, each type being entirely stylised for a particular application. These types of filters are known as bandpass filters, for, as the name implies, they pass only their designated band of frequencies whilst attenuating all others.

Low-pass filters

The use of bandpass filters has much to commend it, and they are fine in situations where transmitters are destined to be operated on one band only. If multi-band operation is desired, the awkward situation arises where it becomes necessary to change filters with each change of band.

To overcome this annoying problem, and to fill the gap between having a filter as previously described or not having one at all, a type designed to pass all the transmitter frequencies but attenuate all higher frequencies would be a more realistic approach. It would attenuate those unwanted radiations whose frequencies fell within the most domestically monitored bands, namely the VHF radio broadcast band (88 to 108 MHz) and the UHF television band (470 to 854 MHz), as well as the VHF and UHF amateur bands and all other frequencies in this part of the spectrum. This type is known as the low-pass filter.

If the HF amateur station is capable of being operated on all bands from 160 to 10 metres, then it would be useful to have a filter to attenuate all frequencies above 30 MHz . Filters of this type are available commercially, and vary greatly in performance, power handling capacity and price. Some of the cheaper commercial models available are designed for quite low power, such as the CB low-pass filter models. These are alright if QRP is the main hobby.

The more robust, higher power handling models are usually much more expensive, however. So the prospective filter purchaser is faced with two alternatives; a) to obtain a cheap model and run the risk of damage to the transmitter if it breaks down through its inability to withstand the power level being used, or b) to fork out some tens of pounds on a more suitable but far more expensive type.

Home-brew

The only other possibility is to homebrew a filter. The thought of trying to obtain the hard to come by values of high voltage working capacitors required for a design capable of enduring full power input might deter some people. However, with a straightforward, nononsense, practical filter design and sufficient details for construction, an effective working filter can be produced which is capable of performance and power handling comparable to expen-

Fig 1a Circuit diagram

Fig 1 b Attenuation/frequency graph
sive models, but at a mere fraction of the cost, and with no worries about the high voltage capacitance.

The filter

A matching impedance of 50 ohms has been chosen as it appears to be possibly one of the most commonly used in transceiver designs in recent years.
To overcome the difficulty in obtaining the necessary high voltage capacitors required in the design of a low-pass filter which is to withstand not just the normal levels of power during minimum reflected VSWR situations, but also the likelihood of excessive voltages in instances of mismatch, this design puts the normally undesirable capacitance effects of double-sided printed circuit board to good use. All four capacitors in the filter circuit are made using this technique.

Printed circuit board is usually available in quite useful 'offcut' sizes suitable for the home constructor, which are sold fairly cheaply on the component stalls at radio rallies, but of course it can be obtained from dealers. It comes in a variety of thicknesses and board materials, the two commonest being glass fibre reinforced polyester resin and synthetic resin bonded paper (SRBP).
Glass fibre board is used in this design due to its superior mechanical strength and better electrical insulation properties. The only critical factors involved are the thickness of the material and the surface area of the capacitor plates. The thickness of the boara used for the capacitor plate panel in the prototype filter was 1.5 mm , inclusive of the two copper foils. This had a capacitance of approximately 3.72 pF per square cm (24pF per square inch).

LOW-PASSFILTER

Fig 2 Details of capacitor plate panel

Capactiors

With reference to Figure 2, it can be seen that four plates are required on one side only of a piece of the double-sided board measuring 317 by 77 mm . The reverse side is left untouched. This forms the 'earthy' side of the fourcapacitor common plate.
After the blank board has been cut to the size specified, mark out the border areas carefully, ensuring correct dimensions. Double check the dimensions, then using a sharp scribing instrument score the lines deeper into the copper surface. Note that all the borders need to be 4 mm wide.
Now the copper foil must be removed from the borders to isolate the capacitor plates. Using a very sharp utility knife (a 'Stanley' knife is ideal) with a straight blade, carefully cut along the previously scored lines several times until a tell-tale white powdery substance begins to show through the cuts. This is the surface of the glass fibre 'dielectric' being scored by the knife blade, and signifies that the copper has been breached. Special attention should be paid in the corners of the borders where the lines meet. Ensure that the copper is well cut through at these points.
Using the point of the blade, carefully lift up one corner of the foil and slowly peel back. Once a small strip has been lifted pull slowly with the finger and thumb until it has all been peeled away. If the foil tears at any time simply reinsert the blade underneath and start again.
Once all the borders have been removed in this way, the board should be well cleaned on both sides using a mixture of scouring powder and water until the copper is polished clean. The board should then be thoroughly dried and set aside.
The case of the prototype filter was made using four pieces of single-sided circuit board, but only because the material was to hand. There is no reason why the case and the four internal screens could not be fabricated from tinplate. Aluminium is not recommended as it is necessary to be able to solder to the case material without difficulty. Figure 3 a gives the details of the component parts for the case and screens.

Tinning

Once all the parts have been made they must undergo a similar cleaning operation to the capacitor panel, using water and scouring powder once more followed by thorough drying.
A medium to high power soldering iron is required for the next part of the procedure. One of 25 watts or more should be suitable, a chisel shaped bit being preferable to a pointed pencil shaped bit.
Each section of the case, the four screens and the capacitor panel must

All dimensions in mm

Fig 4 Inductor winding details
now be tinned to give a 5 mm wide border around the perimeter of each piece. Both sides of the double-sided capacitor panel must be treated in this way. The areas where the screens will later be joined to the capacitor panel top surface and the side panels must also be tinned accordingly.
The technique of joining up the sections is easily explained. Using the capacitor panel as the bottom of the case, the side panels and the end panels are fitted around it. The screens are then slotted into the case in their appointed places.
Wherever a copper surface meets another at right angles, a soldered 'fillet' joint must be made.

Although it sounds easy, one or two snags can be overcome by assembling the case in the proper order. The best way to construct the case is itemised below:
(a) Join one side panel to the capacitor panel so that both copper foils on the
capacitor panel are joined to the side panel (Figure 3b). Ensure that they join at right angles.
(b) Repeat the procedure with the other side panel.
(c) Join the two end plates to the ends of the capacitor panel in a similar way.
(d) Close up the corner seams and solder.
(e) Slide the two outermost screens into position and solder all three areas on both sides (the two remaining screens will be fitted later).
The two SO-239 sockets can now be fitted into the holes in the end plates.

Coll construction

Full details of the inductors L1 to L4 are given in Figure 4, so it is only necessary to mention here that the critical points are to ensure correct size wire, number of turns, length and diameter of the coils. Any diversion from the dimensions given will result in variation from the desired performance.

Final construction

After all four inductors have been produced and checked for correct size etc, they can be assembled into the filter as explained below:
(a) Select L2 (the centre inductor) and the two remaining screen sections. Four of the fish-spine beads and two short lengths of sleeving are also required. Fix one of the screens into position and solder. Slide two fishspine beads onto each of the leads of L2 and then slide the two pieces of sleeving over the beads. Feed one end of L2 through the central hole in the recently fitted screen. Slide the other screen into position, locating the free end of L2 through the hole in the centre, and solder the screen into place. L2 should be held in position by the two screens.
(b) Taking L1 or L3 (it does not matter which), slide two fish-spine beads over the longest lead. Slide a piece of sleeving over the beads. Insert the coil lead through the central hole in one of the outermost screens, ensuring the beads and sleeving stay located in the hole, and locate the end of this lead into the open-ended central tag of the SO-239 socket. Solder the lead into the socket at this point. Leave the other end loose for the time being. Repeat the procedure with the other inductor, L1 or L3.
(c) Take either L4 or L5, and position it so that the largest ' U ' bent lead is facing downwards. Locate this coil in one of the end compartments of the case above its corresponding capacitor plate, C4 or C3. Position the coil so that the lower lead touches the capacitor plate and solder them together. The other lead should touch the lead running horizontally to the SO-239 socket. Solder and join these leads at this point. Repeat the procedure with the other coil.
(d) Taking two pieces of the 16 swg tinned copper wire, solder these to the C1 and C2 capacitor plates a short distance away from the innermost screens (as shown in Figure 5). Cut the leads long enough to join up with the leads from L2. At these points join all three wires at both sides.
(e) Remove any loose pieces of wire, and ensure that the fish-spine beads and sleeving are still in place in all the holes of the screens. Check all soldered joints are sound and not 'dry'. Construction is now complete.

A suitable lid can be fabricated from tinplate. An 8 mm lip should be formed around the edges to hold it in place on top of the filter (see Figure 6 for details).

Conclusion

After checking through the filter with a multimeter (set to a high ohms range) for any short circuits or leakage between

Fig 5 Inside view of the completed filter

Flg 6 Details of a suitable lid

COMPONENTS LIST

Inductors

L1, L3 7 turns, winding length $27 \mathrm{~mm}, 12.5 \mathrm{~mm}$ dia with leads 67 mm and 25 mm , 16swg tinned copper wire.
L4, L5 6 turns, winding length $20 \mathrm{~mm}, 12.5 \mathrm{~mm}$ dia with leads 17 mm and 11 mm , 16 swg tinned copper wire (leads to be formed as in Figure 4).
L2 8 turns, winding length $27 \mathrm{~mm}, 12.5 \mathrm{~mm}$ dia with leads 22 mm and 25 mm , 16swg tinned copper wire.

Capacitors

C1, C2 172 pF formed by a capacitor plate $76 \mathrm{~mm} \times 61 \mathrm{~mm}$ on capacitor panel. C3, C4 56 pF formed by a capacitor plate $25 \mathrm{~mm} \times 61 \mathrm{~mm}$ on capacitor panel.

Capacitor plate material - one piece of double-sided glass fibre copper laminate board of $317 \mathrm{~mm} \times 77 \mathrm{~mm}$. Critical overall thickness must be $1.5 \mathrm{~mm} \pm 0.05 \mathrm{~mm}$.

Miscellaneous

Skt 1, 2 SO-239 type sockets, chassis mounting 4-hole fixing.
8 off 6BA $\times 1 / 2$ in cheese-head screws plus washers and nuts.
8 off ceramic 'fish-spine' beads or other similar insulated feedthrough material (fish-spine beads are used for supporting high power wirewound resistor off the surface of PC boards). Holes in centre of beads must be large enough for the 16swg wire.
4 off pieces of sleeving, approximately 10 mm long, to slide-fit over the fishspine beads.

Sufficient single-sided glass fibre copper laminate board for the two side panels and two end plates, thickness not critical. Sufficient double-sided material for the 4 internal screens, thickness not critical (alternatively, tinplate can be utilised for these panels, plates and screens). Suitable size tinplate for lid.
the centre conductor of one socket and ground, check the filter from the other socket in the same manner. If no reading is obtained during either test, then all is OK.
Switching to a lower range, check between the two centre conductors of the socket. This should show a virtual short, which is the correct reading.

All that needs to be done now is to connect the filter into a 50 ohms impedance line between the SWR meter and antenna or between the SWR meter and ATU, and provided it has been built correctly it should function. If the fishspine beads tend to be too loose and move along the leads, a small blob of solder will keep them in place.

A guide to the reception and decoding of VHF signals from the USSR's navigation satellites: PART TWO: The complete receive system explained

4. RECEIVE CHAIN HARDWARE

4.1 Radio-frequency to baseband

As described in the introduction, present satellite navigation systems transmit at both 150 and 400 MHz , although the Soviet satellites only modulate the lower-frequency carrier.
The receive chain was specifically designed to handle transmissions at or around 150 MHz , providing decoded outputs and the capability to carry out measurements on receive signal characteristics.
The reader is referred to Figure 2 for a block diagram of the VHF receiving equipment, with input at 150 MHz and approximate level -95dBm, and output at baseband consisting of the three tones

by P Daly, D Bell, M Leybourne
Department of Electrical and Electronic Engineering University of Leeds and PA Pitts University Television Service University of Leeds
at maximum level 0.7 V .
The front-end uses two dual-gate MosFETs (type 3SK88), the first acting as a low-noise moderate-gain pre-amplifier and the second as the first mixer stage with output at 10.7 MHz .

Filtering at radio frequency is accomplished immediately prior to the first mixer stage, using a triple-chamber helical filter originally designed for the amateur band at 144 MHz but modified to a new centre frequency of 150 MHz .

The first local oscillator is crystalcontrolled and followed by two tripling stages before mixing. Since the intermediate frequency (IF) is 10.7 MHz , the crystal frequency is close to 15.5 MHz .
Owing to the fact that the Cosmos

Flg 2 Block diagram of Cosmos satellite signal receiver system
navigation satellites transmit at several VHF frequencies around 150 MHz , provision has to be made in the receiver either for multi-channel operation by means of dedicated crystals at each nominal frequency, or for automatic frequency control (AFC) covering the entire band of transmission frequencies.
Although AFC is available, the degree of control at one frequency is only sufficient to cover the maximum Doppler frequency swing of around 6 KHz .
Coverage of the entire range of frequencies, which is 120 KHz , can be achieved with single crystal control if the frequency can be pulled down by means of an external series inductor. This form of control, of course, is manual and must be set immediately prior to reception.
Another alternative is to limit reception to the satellites with identification numbers 11-14, which all transmit at the same nominal frequency of 150 MHz .
The first IF signal at centre frequency of 10.7 MHz is filtered through a ceramic bandpass filter of bandwidth 15 KHz .
A second mixing stage, also crystalcontrolled, follows with output at 455 KHz , limited to 12 KHz bandwidth by means of a ceramic filter.
Finally the second amplification stage is followed by AM detection.
Three outputs are provided:
(1) an AFC output to the voltagecontrolled first oscillator;
(2) an audio frequency output for further amplification and loudspeaker monitoring;
(3) a levelled output for further signal processing in the synchronisa-

Fig 3a Block diagram of synchronisation/decoder unit
tion/decoder unit.
The overall performance of the receiver produces a noise figure of around 1.5 dB .

4.2 Synchronisation/decoder unit

The essential function of the synchronisation/decoder unit is to condition the input signal so as to provide an isolated synchronisation tone every second, and a data line with differentially decoded binary information.
The following brief description of the circuit implementation to produce the necessary outputs refers to Figures 3(a), (b) and (c).

These show, respectively, a block diagram (a) and circuit diagram (b) of the signal conditioner, and a typical waveform display (c) at critical points in the receive chain - numbered 1-5.
The input from the receiver or tape recorder consists of one of three tones at 3,5 or 7 KHz within a signal bandwidth of 15 KHz .
With reference to Figure 3 , the signal is fed to a limiter formed by IC1, whose role is to compensate for signal level fluctuations.
The output level, which at this stage is only 600 mV , is increased using an amplifier (IC2) whose voltage gain is variable between 5.5 and 15.5 .
The signal path splits at this stage, one path leading to the synchronisation decoder and the other to the data decoder.

4.2.1 Synchronisation unit

The signal from the amplifier leads to a bandpass filter (IC3,4) centred at 7 KHz so as to remove the data tones, allowing the sync pulses to appear at the input of a levelling amplifier (IC5) whose role is to re-invert the signal at a fixed output reference level.
A squaring operation follows (IC6), with a diode-resistor combination unit designed to prevent false triggering on noise impulses.

The HEX inverter (IC7a) produces a sharply-defined triggering edge in the 7 KHz waveform, from which any remaining fast spikes have been removed in the low-pass input RC filter.

At this stage the squarewave at 7 KHz is used to trigger a monostable timing device (IC8a) and to provide the clock input to a D-type flip-flop (IC9a).

If the triggering pulses at the B input to the monostable arrive at a rate faster than its reset time, the monostable will remain permanently on, with the result that the output Q will also remain high. Since the input frequency is 7 KHz and the monostable will reset after an interval corresponding to a period at 6 KHz , this condition is met.

In addition to the high output from the monostable, both the D and clock lines on the D-type flip-flop also remain high.
On the removal of the tone at 7 KHz the monostable resets to zero, thus setting the CLR line and Q output of the flip-flop to zero. This output will remain off until
the arrival of an input to the monostable at a frequency exceeding 6 KHz .
In consequence, an output pulse is produced (sync 2) at TTL levels lasting as long as the 7 KHz input pulse.
The sync latch (IC10a,b) provides an inverted sync output (sync 1) and, in conjunction with a clamped version of the input, a drive to an LED for visual indication of synchronisation.
The second sync output (waveform 1, Figure 3) is also used to provide a data inhibit to the data decoder as long as the sync pulse lasts.

4.2.2 Data decoding

Returning to the point where the signal path divides, the data line is fed via a diode limiter to a HEX inverter (IC7b) which clamps the signal to TTL levels.
A second inverter (IC7c) is followed by the data decoder circuit formed by a monostable (IC8b) and D-type flip-flop (IC9b), which function exactly as in the sync unit except that the monostable timing is set to 4 KHz rather than 6 KHz .
The reason for this change is, of course, to differentiate between the two data tones at 3 and 5 KHz . The output of this circuit will, as a result, consist of a '1' when the input frequency is above 4 KHz and a ' 0 ' when below 4 KHz .

For a typical data sequence as shown in Figure 3(c), the output of the monostable (waveform 2) is 'on' or 'off' depending on the presence of pulses at 5 or 3 KHz .

Fig 3c Typical waveforms at critical points

A GREAT MAGAZINE FOR ALL ASPECTS OF PRACTICAL AMATEUR RADIO

SUBSCRIBER BENEFITS

 Take out a POST FREE (UK) Sub while offer lasts
ALSO

- All the latest news in communications and electronics technology
- Reception reports Shortwave, DX-TV, ATV
- The latest news in the Amateur Radio World
- Computer hardware and software features
- Delivery to your door by publication date each month

On sale NOW at your newsagent and at equipment dealers

To: Subscription Department • Radio \& Electronics World • 513 London Road • Thornton Heath • Surrey •CR4 6AR. Tel: 01-684 3157	PLEASE SUPPLY: (ttck box) for 12 iseuce, all rates inchuct P \& P Inland Word-surtace Europo-At Worldalir					
NAME	$\begin{aligned} & \text { PAYME } \\ & \text { ENCLO } \end{aligned}$	ENT	ε		Radio \& Elect payment by tn credit card.	ronica World Over ternational Money Order, or
ADDRESS	CREDIT CARD PAYMENT $\square \square \leq \square$					
						\square

RUSSIAN SATELLITES

Shows one receiver in closeup. The BNC connector at top right is the antenna input.

The modifications to the original receiver are as
follows:-
Dc from the 12 V regulator is routed via the central wire, through a switch and on to the decoupled end of the choke. The triple chamber helical filter has been dismantled and one and a halfturns removed from the free end of each helix. This is not as difficult as it sounds and offers an ideal opportunity to see just how the adjustment screws work. After re-assembly tune the filter to 150 MHz using a progressively weaker signal.

It will be found that the input and output helixes have a more marked resonant peak than the centre one.

This particular receiver has an additional regulator (5 V) for a LCD frequency counter that plugs into the DIN socket, near the slide switch. The counter reads crystal frequency which when multiplied by nine and added to the first IF (of 10.7MHz) gives signal frequency.

The original Ambit receiver had provision for six crystals, four of which can be seen near the wire to the left, which is 'patched' to the appropriate crystal. The two at the bottom have series connected varicap diodes for AFC operation. The crystal at the top has a series inductor between it and earth which can 'tune' the whole 'CICADA' band, ie 149.910 MHz to 150.030 MHz .

The data inhibit line from the sync decoder (mentioned in the previous section) prevents data decoding by blocking (NAND gates 10a,b) both input to and output from the decoder.
In the absence of the sync pulse, the data output is allowed to proceed to a signal edge-detector circuit formed by the dual monostable circuit (IC11a,b).
The pulse width of both monostables is set to the duration of a single data bit $(20 \mathrm{mS})$. The monostables are set to detect positive and negative edges (one for each).
It is important to note that the first data bit following the termination of the sync pulse is forced to be a ' 1 ' owing to the action of the cleardown (CD) input to the
monostables. Since the coding is differential, it is important to fix the first bit so that the differences between this bit and following bits can successfully reproduce the data stream.
The two monostable outputs are shown in Figure 3(c) as waveforms 3 and 4, and the effect of initial bit setting and edge detection is clear.
The final stage in this data detection unit results in the two monostable outputs being wire OR'ed together and fed to the computer interface only when the data inhibit is removed. The data is inverted (IC7f) to provide the TTL data input to the computer (see waveform 5 in the figure).
To enable the reader to more easily
comprehend the data logging process, the data sampling pulse sequence is also shown in the figure.
Essentially, the detection of the leading edge of the sync pulse is followed by sampling at the centre of the sync/data pulses. In other words, sync pulse detection is followed by a waiting interval of 10 mS and then by 49 samples at 20 mS intervals.
The final 10 mS in the word is used as a delay before receiving the next word.

NEXT MONTH: The computer operations are outlined, with a note on orbit prediction

Shows the other receivernotice the loop around the final multiplier for an external frequency counter. The adjacent BNC connector carries buffered 10.7 MHz output for alternative demodulation.

This receiver has 5 crystal positions and one VFO input. Notice the 6 position selector switch and associated wiring.

Shows the control panel where the operator can select either AFC or manual tune for any crystal position. Note the reminder sellotaped to the settop of the 'CICADA' group transmit frequencies.

I hope these pictures will help you visualise the reception side of the hardware. It was my intention to include some of the 'decoder' and PET computer but my colleague has borrowed them. Of particular interest is an off-screen picture that demonstrates the fallibility of the Russian navigation system - it shows satellite ID7's output (received late April 1984) displaying the same positional co-ordinates it has been transmitting since June 1983; it should be updated each Wednesday. Clearly it has gone wrong, like a record struck in a groove and they are unable to switch it off!

LATEST LITERATURE

Clubs, manufacturers, publishers and agents are invited to send details of new books; catalogues, data sheets, etc for inclusion on this page

STEP-BY-STEP KEYBOARDING ON THE
 PERSONAL COMPUTER

By Steven Radlauer.
This recently published book is intended to give a solid grounding in keyboarding techniques on a computer, with the aim of increasing a user's speed and efficiency with his machine.
Instruction in typing skills and computer operations is followed by exercises to strengthen the newly acquired ability. The subjects covered include word processing techniques, preparation of business correspondence, editing and proof-reading a text etc. There is also a special 'word processing workbook' section.
As well as purely keyboard skills, the book contains an introduction to the words and symbols of BASIC.

Barron's, London, £5.95

AN INTRODUCTION TO 280 MACHINE CODE

By R A \& J W Penfold.
The Z80 (or the faster Z80A) microprocessor forms the heart of many home computers currently available, including the ZX81, the Spectrum, and the new Amstrad CPC464 and Tatung Einstein. Direct programming of this chip, rather than programming with a high level language, allows much faster running of operations.
This increased running speed is the only advantage of machine code programming, however, and for many applications is not worth the extra effort involved, since such programs are harder and take longer to write.
Where machine code programming is deemed necessary a book such as this is invaluable (indeed, vital).
The book begins with an introduction to microprocessors, and assumes no previous knowledge of these

devices or of machine code. Assembly language is covered briefly, clearing up the confusion between this and machine code, and compiled languages (as against interpreted languages such as BASIC) are mentioned.
There is a chapter containing example programs, which includes machine-specific listings for some popular home computers (including the ZX81 and Spectrum), and the final chapter is a brief outline of input/output commands for controlling peripheral devices.
This 136 page book provides a clear and easily understood introduction to $Z 80$ machine code, and as such should prove useful to anyone who has a need for the increased speed available when programming this microprocessor directly.

Bernard Babani (Publishing) Ltd, £2.25

> HOW TO PASS THE
> RADIO AMATEURS' EXAM
> Edited by George Benbow G3HB.
> This large paperback is the first edition of an RSGB handbook aimed at the would-be amateur.

The major part of the book is taken up with nine sample multiple-choice examination papers, grouped together in chapter 5 . The previous four chapters give brief outlines and instructions for passing the exam.
The first chapter describes the actual format of the exam, since many people are unfamiliar with the multiplechoice style. This chapter also describes the marking procedure, and compares its suitability with the earlier written exam.
The second chapter deals with the proper approach to a multiple-choice exam with regard to both learning beforehand and actually answering the questions, and gives some very good (and not often seen) advice.
The third chapter covers mathematics for the exam, and considering its brevity covers this subject reasonably well. This book is not, of course, intended as the sole reference text for passing the exam!
Chapter four gives details of where to find RAE courses, and outlines the exam requirements.
This is basically just a book of practice papers with a few important guidelines added
(the first four chapters cover only fourteen pages). It is also unsurprising that all the books in the list of recommended reading are RSGB publications!

RSGB Publications, £3.42

MICRO INTERFACING
 CIRCUITS - BOOK 2

By R A Penfold.
Micro Interfacing Circuits Book 1 covered getting signals into and out of a microcomputer. This follow-up volume concerns 'real-time interfacing, and treats the subject from a more practical than theoretical viewpoint.
The book is divided into three chapters, which cover audio interfacing, light and temperature, and power control circuits.
The subjects covered include speech synthesis, D/A converters, and audio switching in the first chapter; LED displays, counter and sensor circuits (including a light pen), and temperature sensing and switching in the second chapter; and unipolar, bipolar and pulsed controllers in the third chapter.
All chapters include practical circuits, with a full description of each, and IC pin-out diagrams are also included. The book is not aimed at beginners, but for many of the circuits an expert knowledge of electronics is not required.
This is very obviously a practical book, for whilst each circuit is described in depth, the coverage of background theory is noticeably sketchy. A more complete description might be appreciated by some, but this said the book certainly succeeds in its intention of providing the knowledgeable enthusiast with some practical applications.

Bernard Babani (Publishing)

 Ltd, £2.25
SHORT WAVE NEWS FOR DX LISTENERS

By Frank A Baldwin

All times in GMT, bold figures indicate the frequency in KHz

Nlow that the season for reception here in the UK of signals from some of the Indonesian stations is in full swing, some information about these will be of interest to many readers of these columns. Although I have written about this subject in past issues, receipt of a letter from a reader requesting such information now prompts me to bring this matter to the fore.
The broadcasting system in Indonesia is a complex one, and the total number of stations is impossible to estimate. Apart from the inevitable pirate transmitters, there are four types of station in operation, these being: (1) Radio Republik Indonesia (RRI), (2) Radio Pemerintah Daerah Tingat Dua (RPDTD), (3) Forces Radio stations, and (4) private stations (amateurs).
The stations that interest most of us here in the UK are those in the government owned network of Radio Republik Indonesia (RRI), it being symptomatic of Indonesian and other DXing that the nearer one is located to the country the more types one will succeed in logging. In general RRI transmitters are more often reported in the SWL press of the UK and northern Europe than the remainder of Indonesianbased stations.
RRI Jakarta with the Programa Nasional is the main station of the network, its main function being to provide programmes of national interest and feeding material to the networks of both local and regional transmitters. A fact that can greatly assist UK DXers in identifying these stations is that they must directly relay newscasts from Jakarta, and therefore all Indonesian transmitters included in the network feature these at 2300, 0000, 0500, $0600,0700,1200,1300$ and 1500.

The latter time is that which concerns us in the UK, as this is the transmission most likely to come through to us here in northern Europe.
The various networks are as follows:
Nusantara 1 (Network satu) caters for Sumatra, the main transmitter being at Medan. The network structure comprises stations based at Banda Aceh, Bengkulu, Bukittinggi, Jambi, Padang, Pangkalpinang, Palembang, Pekanbaru, Sibolga, Tanjung Karang and Tanjung Pinang.
Nusantara 2 (Network dua) with a coverage of Bali, Java and Lombok-Sumbawa has a main station at Yogyakarta feeding those based at Bandung, Bogor, Denpassar, Jember, Kupang, Madium, Malang, Mataram, Semerang, Singaraja, Surabaya, Surakarta and at Sumenep.
Nusantara 3 (Network tiga) has its main station at Banjarmasin and covers Kalimantan (Borneo) from transmitters at Palankaraya, Polianak and at Samarinda.
Nusantara 4 (Network empat) radiates to Sulawesi (Celebes) and Timor from its master station at Ujung Pandang to the remainder at Dili, Gorontalo, Kendari, Menado and at Palu.
Nusantara 5 (Network lima) covers Irian Jaya (West Irian) and Maluku (Moluccas) with the major station at Jayapura being linked with those sited at Ambon, Biak, Fak-Fak, Manokwari, Merauke, Nabire, Serui, Sorong and Ternate.

Radio Pemerintah Daerah Tingat Dua (RPDT2) stations are those of the various regional governments, each with its own capital and province or special district. Generally speaking these stations are difficult to log here in the UK, but for the information of those interested, and to make this guide as complete as possible, these capitals with their attendant special districts and provinces are listed here.

Capital at Ambon, Propinsi Maluku (Province Moluccas); Banda Aceh, Daerah Istimewa (Special District) Aceh in Sumatra; Bandung, Propinsi Jawa (Java) Barat; Banjarmasin, Propinsi Kalimantan (Borneo) Selatan; Bengkulu, Propinsi Bengkulu in Java; Denpassar, Propinsi Bali; Jakarta, Daerah KhususJakarta Raya in Java; Jambi, Propinsi Jambi in Sumatra; Jayapura, Propinsi Irian Jaya; Kupang, Propinsi Nusa Tenggara Timur (Timor); Mataram, Propinsi Nusa Tenggarah Barat in Lumbok-Sumbawa; Medan, Propinsi Sumatera Utara in Sumatra; Menado, Propinsi Sulawesi (Celebes)

Utara; Padang, Propinsi Sumatera Barat; Palangkaraya, Propinsi Kalimantan Tengah in Borneo.
Forces Radio stations are low powered and only very occasionally heard outside the South East Asian area, although I did once log Angatan Udara some years ago when it was transmitting around the 11 MHz mark.
Private stations are licensed by the government and are situated in main towns and cities.
Rarely heard outside of the country, they are commercial enterprises and as such are said to largely feature western pop music.

Make yourself comfortable,

 switch on the receiver, adjust the dial or the digits to the frequencies at the times listed here and you may log some of the following.
Benin

Cotonou on 4870 at 0510, fast rhythmic music in the typical local style, YL with songs in vernacular. This was a transmission in the Home Service which features programmes in French and local vernaculars. The schedule is from 0400 (Saturday from 0545, Sunday from 0600) to 0800 (Saturday until 1100, Sunday until 2300) and from 1300 to 2300. There is an English newscast from 2000 to 2015 and the power is 30 KW .

Botswana

Radio Botswana, Gaborone on 4848 at 0352, interval signal which consists of the sound of cows lowing and the tinkling of cow bells. At 0359 a choral rendition of the national anthem, OM with the station identification in Setswana, announcements followed by the hymn 'O God Our Help in Ages Past'.

Burundl
 La Voix de la Revolution,

Bujumbura on 3300 at 1935 OM with a talk in vernacular, heard with some difficulty under some near co-channel utility QRM. Well, at least the time is more reasonable for most readers!
This is the Home Service 1, which uses French and vernaculars from 0300 to 0700 (Sunday until 1000) and from 1600 to 2100 , this latter part of the schedule including an English session from 1645 to 1700. The power is 25 KW but the frequency can vary up to 3306 on occasions.

Ghana

GBC Accra on 3366 at 0534, YL with announcements in English then a choir with some hymns. This was a programme of GBC2 which is entirely in English from 0500 to 0900 and from 1600 to 2305 with a power of 10 KW .

Llberia

LBS Monrovia on 3255 at 0528, OM with a programme review in English which apparently included some relays of the BBC in London. The Liberia Broadcasting System operates on this channel from 0458 (Sunday from 0558) to 0700 and from 1830 to 2400 with a power of 25 KW .

Malawl

MBC (Malawi Broadcasting Corporation) Blantyre on 3380 at 0605, OM and YL with a newscast, presumably in Chichewa.
This one is scheduled on the air from 0255 to 0530 (from April to September until 1110) and from 1745 (from April to September from 1300) until 2210.

An International Service in English and Chichewa is timed from 1600 to 1800 . The power is 100 KW .

Namibla

SWABC (South West Africa Broadcasting Corporation) Windhoek on 3270 at 0209, a programme of dance music records which included the ever popular 'La Cucaracha'.
This programme was also logged in parallel on 3295, this being the All Night Service.
The schedule is from 1615 to 2200 and from 0358 to 0515 in local vernaculars on 3270. The All Night Service is timed from 2200 to 0358 , the power being 100 KW .

Niger

ORTN (Office de Radiodiffusion Television du Niger) Niamey on 3260 at 0530, the national anthem, a few bars of music rendered on a local style flute then OM with the station identification in French followed by recitations from the Holy Quran.
Niamey is on the air from 0530 to 0700 (Sunday until 0900) and from 1700 (Saturday and Sunday from 1630) to 2200 (Saturday until 2300). This was a transmission in the Home Service 1, the power being 4 KW .

Nigería

FRCN (Federal Radio Corporation of Nigeria) Lagos on 3326 at 2117, OMs with a discussion in a vernacular in the Channel 1 service, this being timed on the air from 0430 to 1000 and from 1700 to 2310 with a power of 50 KW and in parallel in 4990.

South Africa

SABC Johannesburg on 3320 at 0348, YL and OM with a discussion about sport in South Africa. This English language schedule is on the
air from 0300 to 0426, but according to the published schedule is seasonal from May to September inclusive (although this logging proves that to be incorrect).

SABC on this frequency also operates in Portuguese from 1900 through to 1056 with a power of 250 KW .

swazlland

TWR (Trans-World Radio) Mpangela on 3240 at 0325, OM with announcements, OM with a song in vernacular then some organ music. This vernacular service operates from 0300 to 0345 daily with a transmitter power of 25 KW .

Brazil

THE AMERICAS

Radio Globo, Rio de Janeiro on 11805 at 2006, OM with a most excited commentary on a local futebol (football) match which included a goal. If you have never heard an LA commentator frenziedly announcing a goal then you have a treat in store - the loudly shouted word 'goal' is extended for at least thirty seconds and ends in a cacophony of gabbled words describing the momentous event!

Ecuador

Radio Iris, Esmeraldas on 3380 at 0335, YL with a song in Spanish, OM with some promos, all mixed with the sound of African drums from the co-channel Blantyre transmitter in Malawi. Radio Iris operates from 1000 through to 0400 (Sunday until 0200) with a power of 10 KW The frequency however is likely to vary to 3381 at times.
Radio Zaracay, Santo Domingo on 3395 at 0331, OM with some announcements in Spanish then some local folk music. The schedule is from 1000 to 1400 and from 2000 to 0500 (Sunday until 0400). The power is 25 KW .

HCJB Quito on 17790 at 1958, OM presenting an English programme directed to Europe from 1900 to 2000. Station identification and time check at 2000.

Netheriands Antilles

Bonaire on 17605 at 2003, OM with a song then OM with announcements during a Dutch transmission intended
for Central and North West Africa and Europe, timed from 1930 to 2025.

Pers

Radio Los Andes, Huamachuco on 5030 at 0411, OM with announcements in Spanish, OM with a ballad then more announcements including some local addresses. R Los Andes is on the air from 0900 to 0400 but operates a 24 hour schedule on Sunday. The power is 5 KW .

Afghanistan

Radio Afghanistan on 4740 at 1521, YL with announcements then OM with songs complete with local style music. This is the Home Service 1 in Pushto/Dari and is on the air from 0125 to 0200 and from 0330 to 1930.

China

CPBS Beijing on 3360 at 1742, OM with announcements and then some Chinese classical music. This is the Taiwan Service in Chinese and Hakka which is transmitted from 2050 to 0102, from 0815 to 1045 and from 1200 to 1802.

India

AIR (All India Radio) Gauhati on 3235 at 1531, YL with a newscast in English. The schedule is from 1230 to 1700 with the news in English at 1530 . The power is 10 KW .

AIR Kurseong on 3355 at 1556, YL with a talk in English about Indian financial affairs. This Indian regional station is scheduled from 1130 to 1740 with a power of 20 KW .

EUROPE

Finland

Helsinki on 15265 at 0935, YL with an interesting talk all about the current musical scene in Finland and this during an English transmission for Australia, Europe and the Far East timed from 0900 to 1030 on Sunday only.

Greece

Athens on 11645 at 1937, YL with a newscast during the French programme for Europe scheduled from 1930 to 1940 (news only).

Netheriands

Hilversum on 9895 at 0552,

OM and YL with an English transmission for the Caribbean and North America timed from 0530 to 0625. It was all about Dutch radio dramas and how the sound effects are produced.

Portugal

Lisbon on 11740 at 2040, OM with news of local events during an English presentation to Europe, timed from 2030 to 2100 daily.

SOUTH EAST ASIA
 Indonesio
 RRI (Radio Republik

 Indonesia) Bengkulu on 3265 at $1534, \mathrm{OM}$ with a talk in Indonesian. Bengkulu in Sumatra is on the air from 2230 to 0200, from 0500 to 0800 and from 0930 to 1600 with a power of 10 KW .RRI Padang on 4003 at 1544, OM with songs in Indonesian with a backing of some loca pipe music. Padang, also in Sumatra, operates from 2300 to 0100 and from 0945 to 1615 with a power of 10 KW .

Singapore

BBC relay, Kranji on 3915 at 1552 with a World Service programme in English all about church music and choirs. The World Service in English on this channel is timed from 1500 to 1745 and the power is 100 KW .

CLANDESTINE

Voice of the Liberation of Iran on 15554 at 1728 , YL with a harangue in Persian with many mentions of Khomeyni. The schedule is from 1630 to 1830 and may also be heard on the parallel frequency of 9027.

NOW LOG THIS

Radio Norte, Montero, Bolivia on a measured 4938.5 at 0015, OM with the station identification then OM with a talk in Spanish with several mentions of Bolivia. R Norte is on the air from 1000 to 1230 , from 1600 to 1730 and from 2200 to 0230 with a power of 1.5 KW .

NOW HEAR THIS

Radio Tropical, Montero on 4935 at 0020, OM with a talk in Spanish, OM with a folk song. This Peruvian is scheduled from 1000 to 0400 with a power of 1 KW .

RECEPTION

REPORTS

Compiled by Keith Hamer and Garry Smith

An upsurge in Sporadic-E activity produced intense openings on many days during October. Some of the openings were lengthy and signal strengths were as high as those experienced during the main summer season. A few unusual signals were noted too.
Very strong tropospheric reception from France reached many parts of southern and central England between October 12th and 15th. Weaker trops from Eire and West Germany were also in evidence at times. A watch was kept on the lower Band I channels (E2 and R1) just in case any F2 activity occurred during the month, but nothing was seen.

Sporadic-E activity

The key dates when Sporadic-E (SpE) activity of any significance occurred were October 14th, 15th, 17 th, 22nd and 24 th. Fortunately the 14 th fell on a Sunday, thus allowing many enthusiasts to note reception from the south-east.
Here in Derby the opening was in progress upon switch-on at 1342GMT and signals from Italy (RAI) on channels IA and IB were resolved. The IA reception was accompanied by heavy patterning in fact most of Band I was affected. A check with an audio monitor revealed that the band was crowded with Italian private radio links.
What was at first thought to have been an OIRT FM band opening from Eastern Europe between 64 MHz and 72 MHz also turned out to be Italian radio links. In fact, they embraced the 49 MHz to 70 MHz spectrum. The ubiquitous 49 MHz cordless telephones were very much in evidence with foreign dialling tones and Italian babble!

FuBK test card radiated by VIRI in Iran

An opening lasted for much of the day on the 22nd. CST (Czechoslovakia) were noted during the morning with Spanish (TVE) channel E2, E3 and E4 signals dominating the band in the afternoon. The TVE-2 outlet on channel E2 is still in operation despite rumours about it facing the axe! The second network was noted radiating colour bars, whilst the first chain transmitted programmes.

October trops

Reports of tropospheric reception from the 12 th to the 15 th indicate that the Canal Plus service from France appeared at high levels on at least three Band III channels, with the best quality signals arriving on the 15th. There is still some confusion over the channel numbering system to be adopted in this band, although it is widely understood that the French channel slightly HF of E5 is known as Ch5.
This particular outlet (received over a wide area of southern and eastern England) has been noted radiating Canal Plus previews. On the 15th pictures were very strong and we were able to assess the effects of scrambling techniques used by TDF for some of the programmes. The idea is to persuade potential viewers into purchasing a decoding unit in order to help finance the new service.

The transmissions noted here in Derby exhibited line displacement, and consequently everything had a fine ragged edge. Whilst it wasn't impossible to watch the programmes, it wasn't exactly an enjoyable experience!

One of the other outlets undergoing tests was located on channel 7 (between E7 and E8). At present a variety of unusual test patterns are radiated. A circular type was noted during the opening, but later in the evening it was replaced by a blockboard pattern.

A colour bar pattern with text was seen on Ch10 (approximately E11). It's been on the air for about a year and has been noted during other openings.

DX log for the month

The following reception log details transmissions noted by the authors in Derby during October:
1/10/84: CST on channel R1 with their 'RS-KH' test card. It was later seen on R2; TVE E2 during the later afternoon with the colour GTE test card.

5/10/84: CST R2 on the 'RS-KH' test pattern.
6/10/84: Switzerland (SRG-1) E2 from the Bantiger transmitter near Bern carrying the '+PTT SRG1' FuBK test card. 7/10/84: ORF (Austria) on E2a with the 'ORF FS1' PM5544 test pattern.
8/10/84: TVE E2, E4 with 'tve' GTE test card; TVP (Poland) R1 with their PM5544 test card, which has a darker background; CST R1 on EZO test card; ARD (West Germany) E2 and E4 with 'ARD/ZDF' identification caption; weak trops from NOS-1 on E4 (from Lopik in the Netherlands) radiating the PM5544; TDF (France) on channel F5 with Canal Plus programmes.
10/10/84: CST R1 on 'RS-KH' test pattern; unidentified signals on channel R1. 11/10/84: DR (Denmark) E3 on PM5544; TVP R1 on test card; CST R1 with the EZO test card and FuBK pattern prior to station opening with 'CST 01' identification caption; ORF E2a showing their monochrome Telefunken TO5 test card. 13/10/84: Tropospherics during the morning consisting of TDF on E39 (from Dunkirk) with 'CENEX-BCH' PM5544 minus the central vertical bar; NOS-1 E4 with 'PTT-NED1' PM5544; BRT (Flemish language network in Belgium) on E10 from Wavre with 'BRT TV1' PM5544; trops during the early evening included ARD on channels E9 and E11 (from Westdeutsches Fernsehen) with a round or two of boxing.
14/10/84: Unidentified religious service on channels E3 and E4; RAI (Italy) on IA and $I B$ with programmes during the early afternoon. Many Italian private stations were heard between 49 and 70 MHz ; RTE-2 (Eire) on channels G and I with programmes; RTE-1 were seen radiating progs on channel H; small SpE opening at 2025 GMT on R1 with unidentified signals.
15/10/84: TVE-1 on E2 and E4 with the test card and progs; TVE-2 E2 on test card; CST R1 on EZO test pattern; Switzerland E2 with the FuBK test card carrying ' + PTT SRG1' identification; trops including NOS-1 on E4, BRT E10, RTBF (French language service in Belgium) on E11 from Anlier, ARD on E9 from Langenberg, TDF on F5 with Canal Plus previews and the 'RESEAU4' PM5544 test card. TDF were also noted radiating a colour bar pattern with a text display.
17/10/84: TVE E3 and E4 on 'tve tve1' GTE test card via SpE ; late afternoon opening on R1 with announcer and unidentified slow fade-out; OIRT FM band activity noted.
18/10/84: CSTR1 using the 'CST01' FuBK test card.
22/10/84: ARD E4 (NDR - Norddeutscher Rundfunk) with an electronic test card received via meteor shower (MS) at 0840GMT; CST R1 on EZO test card; TVE E2, E3 and E4 with the GTE pattern. During the early evening TVE-1 radiated a bullfight, while on TVE-2 colour bars
were noted on channel E2. All reception via Sporadic-E.
23/10/84: CST R1; TVP R1 on PM5544 test card.
24/10/8: CST R1 and R2; TVE E2 and E3 using GTE test card. TVE also on E3 with a bar pattern and 'AITANA 3' identification; TVP R1 and R2 on test card.
26/10/8: TVE on channel E3 radiating the GTE colour test card.
28/10/84: ORF on E2a with their 'ORF FS1' PM5544 test card.

Reception reports

Our recent article entitled 'Sporadic-E Propagation' (RaEW, August '84) generated some interest, and Mike Wilkinson of Workington in Cumbria decided to take the plunge and join the ranks of TV DXers. Armed with a Grundig 6400 colour receiver (featuring multi-band and remote control facilities) purchased from his 'local' branch of Dixons some 50 miles away, his DX receiving station was established on October 5th. A loft mounted 2 -element (dipole and reflector) Band I aerial was installed.

The opening on the 14th gave him Italy on channel IA with a news programme showing the Pope. The following day Mike was rewarded with the Spanish 'tve' test card on channels E2 and E3 from 1349GMT. A late evening opening between 2100 and 2200GMT produced Icelandic reception on E3. The 'RUV ISLAND' PM5544 test card was being radiated. On E2 a football match was seen but there were no clues as to its origin.
Excellent conditions were present on the 22nd when a film from the 'Carry On' series was noted on channel E3 between 1130 and 1145. Over on E2 a film starring Peter Ustinov was occasionally resolved in colour. A 'ZDF' station identification was noted in the right-hand corner which confirmed reception from West Germany.
It is interesting to note that during the morning period West Germany's 1st network (ARD) combines with the 2nd network (ZDF), hence the 'ZDF' identification appearing in Band I.
Mike has also experienced meteor shower activity. At 1150 on channel IA the Italian test card with 'RAl 1' identification flashed up for all of two seconds. During

PM5544 electronic test card used by Oman TV Photo courtesy of J Stoodley
the same activity Switzerland was logged on the FuBK test card with the inscription '+PTT SRG1'.
Bob Brooks of South Wirral has been busy with early morning DX again. His catches during the first few days of October included Switzerland E2, Sweden E2, Czechoslovakia R1 and R2 and Austria on channel E2a.
It is interesting to note that Bob's reception consists mainly of test cards, so if anyone is struggling with identifying TV stations we suggest DXing a little earlier in the day! The best times for test card reception seem to be before 0830 and around lunchtime, since most services devote the morning transmission period to schools television.
Andrew Webster (Billinge near Wigan) did well on the 22nd when there was an all-day opening. The Czechoslovakian EZO-type test card (see R\&EW April 1983) was present on R1 for most of the morning. In the afternoon it was the turn of Spain to make an appearance.
Andrew reports that whilst watching an opening from Yugoslavia on E3 the programme was suddenly interrupted and replaced by the FUBK test card with 'JRT ZGRB 1' identification. This seemed very unusual since this particular test pattern is normally only seen on E4 from the Zagreb studios.
All was revealed however when the test card was replaced by the PM5544 carrying the inscription 'RTV LJUBLJANA'. Apparently there had been a break in the programme, which had indeed originated from Zagreb but was being received by Andrew from the Ljubljana network. Consequently the FuBK test card was radiated until the engineers in Ljubljana realised that there had been a fault and switched in their own Philips test card.

Zimbabwe?

Tony Cater (Wigan) sent reception details covering September which arrived a little too late for the last column. Of importance was a possible sighting of the Zimbabwe PM5534 test card from the south-east at the beginning of the month on channel E2.

Harold Brodribb (St Leonards-on-Sea) noted clear reception of RTBF Belgium radiating the PM5544 test card with

Identification caption broadcast by Oman TV Photo courtesy of J Stoodiey
'LEGLISE CANAL 11' at the top. On channel E8 a West German station was noted carrying forthcoming programme schedules and an ARD1 logo. Later in the day between 1630 and 1800 Radio Telefís Eireann (RTE) was resolved. RTE-1 was present on channel D with a news programme, while on channel G RTE-2 were screening an item on an invasion of Ireland.
Good quality French Band III signals were resolved by Harold. There was also an E4 signal which was subject to rapid fading. It is thought to have come from the Lopik transmitter in the Netherlands. Harold studies the weather charts during tropospheric openings and regularly checks the barometer. As pressure dropped after the 15th, so did the amount of $D X$ - in fact it vanished!
Harold lives in an exposed location so he uses indoor aerials for TV DXing. A Plustron multiband receiver and an elderly Bush TV125 dual-standard set are in operation. The latter set has been modified to accept an output from an external varicap tuner. The dual-standard characteristics of the vision detector circuit mean that positive or negative video can easily be selected.

Nord Center Television

In St Neots (Cambs) John Bray saw a caption consisting of the letters 'NCT' on a grey background during an opening to Italy on October 14th. This was identified as originating from the private Italian station of 'Nord Center Television' operating from Udine in the north-east.
This particular station has been lacking somewhat this year, whereas at other times it has been fairly common. Its operating frequency seems to change from season to season. It has been noted on channels IA and E3 as well as on a frequency somewhere between the two!
John uses the Luxor SX9 series colour receiver for DX-TV. One problem which he has now overcome is the auto switchoff facility. The receiver is designed to switch itself off approximately 5 minutes after the station has closed down, ie in the absence of a signal. As far as the DXer is concerned this is a problem because the set cannot be left running on a vacant channel for more than 5 minutes.

Clock caption transmitted in Abu Dhabi
Photo courtesy of J Stoodley

John contacted Luxor for assistance. To defeat the timed switch-off facility the output from pin 9 of the TDA2594 on the sync module is removed. This is easily done by disconnecting RST6(1K0) on the module. The circuit is shown in Figure 1. A switch has been added to select the defeat mode when required.
Please note that when modifications of this type are undertaken it must be stressed that the manufacturer's guarantee may be invalidated. It should also be ensured that modifications such as the fitting of external switches, etc are not carried out on receivers which have a 'live' or so-called 'half-mains' potential chassis. Fatal accidents occur only once!
John points out that versions of the SX9 with a remote control handset already have the defeat facility when 'channel 19 ' is selected.

Mysteries solved

In a recent column we mentioned that Clive Athowe and Ray Davies (both of East Anglia) had seen the Belgian 'BRT TV1' PM5544 on channel E39. Gösta van der Linden (Rotterdam, Netherlands) has solved the mystery. The transmitter Clive and Ray noted is located in West Germany at Bensberg to the east of Cologne. It radiates Belgian programmes for the Belgian armed forces on channel E39 with an ERP of 600W.
Gösta also suggests that the mystery Norwegian test card with 'BJERKREIM' identification received on channel E35 could be a new outlet, although this isn't shown in the NRK 1984 listings. An alternative explanation is that the Ølmedal channel E35 800W relay now takes its feed from Bjerkreim rather than Stord.
Another mystery which has cropped up once or twice during recent trop openings is reception of 'Noorder Koggen' on channel E34. Gösta has advised that this is a pirate TV transmitter operating at Midwoud in the province of NoordHolland in the Netherlands.

Flg 1 The relevant part of the sync module circuit diagram

Our thanks to Gösta for helping to clear up these mysteries.

New French channels

We recently received a letter from Alan Duchatel of the French DX club called 'AFATELD' (Association Française d'Amateurs de Télévision à Longue Distance). Channel and frequency allocation details were included for the Canal Plus service. These are as follows:

Band I

Ch2 $49.25 \mathrm{MHz}(\mathrm{s}) 55.75 \mathrm{MHz}(\mathrm{v})$ Ch3 $54.00 \mathrm{MHz}(\mathrm{s}) 60.50 \mathrm{MHz}(\mathrm{v})$ Ch4 57.25MHz(s) $63.75 \mathrm{MHz}(\mathrm{v})$

Band III

Ch5 176 MHz (v) $182.50 \mathrm{MHz}(\mathrm{s})$
Ch6 184MHz(v) $190.50 \mathrm{MHz}(\mathrm{s})$ Ch7 192MHz(v) $198.50 \mathrm{MHz}(\mathrm{s})$ Ch8 $200 \mathrm{MHz}(\mathrm{v}) 206.50 \mathrm{MHz}(\mathrm{s})$ Ch9 208MHz(v) $214.50 \mathrm{MHz}(\mathrm{s})$ Ch10 216 MHz (v) 222.50 MHz (s)
Alan is the editor of the DX-TV section
of the AFATELD magazine, which is published in French.
Further details are available from his home at: Place de Mons, Cénac 33360 Latresne, France.

Service Information

Tunisla: A new transmitter has opened on UHF at Bou Kornine. It radiates programmes on channel 26 with an ERP of 44 KW .

Albania: According to reports from France, the Albanian TV service (RTS) has been seen on channel E4 as well as channels IC and R4 during the 1984 Sporadic-E season.

Denmark: Danmarks Radio (DR) now radiates the PM5544 test card with a digital clock insert (ie the PM5534).
Jorden: The PM5544 test card transmitted by JTV on channel E3 occasionally includes the transmitter identification 'SUWAILEH'.
Service information this month was kindly supplied by Gösta van der Linden (Netherlands).

News programme from Sender Freies Berlin (SFB-3), West Germany

Colour test pattern used by AFTS in Berlin.

Presented by Andy Emmerson G8PTH

Iprevious months | have enthused over the Sony HVS-2000P, which as you will remember is a sophisticated camera switcher and effects generator. At the current close out price of $£ 29.95$ it must be the bargain of the year for videots. I bought one recently and the more I use it the more I find I like about it.

Ninety-two transistors

The P on the end of the type number indicates PAL; there are NTSC and SECAM versions as well, though we don't see them in this country.
Knowing the complexity of producing a SECAM colour signal I'd love to know how they do it, and to this end I did try to order the service manual for the HVS2000S. Unfortunately I was sent the PAL version book, but even this is a useful document and at around $£ 3$ or $£ 4$ it is worth ordering from Sony's spare parts place at Bath Road, Slough. From it you will learn for instance that the unit contains 92 transistors and 13 integrated circuits, the latter being mainly simple CMOS logic types.
The book also contains all the theory of the mixer's operation and, as is Sony's fashion, is well written and illustrated. In fact if the other home video manufacturers issued service manuals like Sony's we would all be grateful. If you have any intention to modify or repair your unit in
future you would be well advised to get hold of a copy.
Of course, to use the unit itself you don't have to have Sony cameras or even a colour camera, though in the latter case you will lose the colourising facility.
I have never bothered with colour cameras on ATV myself, mainly because I cannot afford them! But I maintain that a good monochrome camera gives far clearer pictures (many good surveillance designs have 400 or 500 lines picture definition) and anyway colour is a bit naughty on 70 cm . Which is not to say don't put out colour bars now and again, but...
The first change I made to my unit was to fabricate a couple of adaptors for the two video input sockets. You could of course drill the case for BNC connectors, but I chose not to risk drilling in the wrong place, so I made a couple of adaptor cables.
You will need two Hirose (pronounced hiroshi apparently) K-type plugs and two BNC line sockets. The K-types can be bought loose in better video stores (and Hi-Fi Care Retail Ltd in London's Tottenham Court Road) for $£ 4.95$. You can also order them by mail from Comprehensive Video of Raynes Park and, I believe, from Sony.
The centre conductor of the coaxial cable goes to pin 1 and the screen to pin

This month's exotic pictures recieved by John Cowie GM6KJD

2; obviously any old grot bootlace co-ax will do, the more flexible the better. Having made these adaptor cables you can now connect any video source via BNC piugs.

Although the colouriser gives you a choice of colours it does not offer white, which I think is best for captions. No problem, though: just turn the rotary control between two click stops.

If you want to experiment with video feedback try looping the monitor output (set to input) back into the monochrome camera input. Try various settings of the key level control.

Effects

Another great effect is to display the primary signal on a monitor and point your monochrome camera at the screen. By adjusting the key level and colourising the resultant mono camera signal you can get vivid swirling effects and multiple images which will really take your breath away.

The key level will enable you to control the degree of feedback, and it helps if you tilt the b/w camera: in other words do not hold it horizontal but inclined at 45 degrees to the horizontal. You can now make animated captions even from a still card ... I could fill up a whole article on this technique!

Remember that your two cameras must be synchronous, ie genlocked.
You can achieve this in several ways. If you like, both cameras can be synchronised to a central SPG (the most professional way). Alternatively one (the master, colour source) can be free running (either camera or VCR) and then only the slave, monochrome camera need be genlockable. You can use Sony's own (expensive and often virtually unobtainable) HVM-100 or another camera which locks up to composite video (ie the main source taken out of the monitor socket and looped through a picture monitor).

Another handy bonus with the HVS2000 is that it acts as a proc-amp (processing amplifier). Not everybody has normalised 1.0 volt signals - many cameras and test generators put out 1.4 V , or you may have an old homebrew crosshatch generator which can barely reach 0.8 V . This often causes problems 'downstream', such as the transmitter needs readjustment each time you change vision source, or a callsign generator won't lock up unless it sees exactly 0.3 V of sync. Anyway this Sony unit sorts all this out and produces a clean 1.0V output. And now we'd better change the subject.

Repeater news

TV repeater news now. Word is that Glenfield Video (GB3GV) is to move to somewhere high up like Bardon Hill or Markfield - I wonder if they'll change the callsign to match!

Seriously, this will be really good news if it comes off, as the repeater is in a bit of a dip and has a job to cover all of Leicester. This is also thought to be a function of the Alford Slot antenna, which seems to produce a parallel beam which suits some people but goes straight over the heads of others (or straight into buildings and hills instead of rising over them). As a result only well sited stations can get into GB3GV at present.
The proposed sites, on the other hand, are nice and high, overlooking Charnwood Forest and much of the East Midlands (Markfield is the site of GB3CF, LES and LEX). Timescale is not yet determined, and may be quite a few months while the repeater is 'souped up' a bit. All we need now is a change to FM operation and we'll all be happy!
Another repeater which may be on the move is GB3VR, currently close to Worthing. The idea is to shift it up to Race Hill, Brighton (where they hold the Sussex Mobile Rally each year, and known to be a superb site). A dual Alford Slot system will beam coastwise in each direction and also across to France. The Sussex mob regularly work France on TV, so perhaps Brighton will be France's first TV repeater too!

I hear that the London TV repeater is more than just a notion. Some of the lads at ITN are involved and the site selected is Kent House, the London Weekend TV tower on the South Bank (also site of GB3LW).
There are the professional users of the location to be considered (it is a 2 GHz remote link pick-up point), but at least the paperwork has been applied for.

Goop on a reel

How do you seal up your connectors when you install an outside aerial? Bitter experience tells me that whatever you think is satisfactory is not, so it is worth taking a lot of care over this little task.
The first point to note is that N -types
are the only sort of connector which can be considered waterproof, and even then you need to tape them up to avoid corrosion.
BNC and UHF patterns, even if tightly wrapped in tape, cannot be considered satisfactory. Somehow or other dampness seems to condense inside the connectors, and this is of course deadly to transmitters if it leads to a dead short (pretty obvious), or worse, a high VSWR which you don't notice for a while.
I have always used self-amalgamating tape from Radiospares; this gives a good workmanlike seal, but it is a pig's job to undo after it has set. If you are on the roof or up a mast in a gale, trying to snip away at this rubbery mess is a real pain.
A product which has been available for a few years in the United States is a mouldable rubber 'putty', which you press round the connector and cable end. It is alleged not to harden, crack or deteriorate, and you can peel it away easily later. It does not harm connectors or coaxial cable, and it has had quite good reviews in '73'magazine. By chance I noted that my local Tandy store now carries it, and I pass this on to you in case you want to try it out. The part number is 278-1645 and the price is $£ 2.29$ for 60 x 0.5 in of this goop.

COMMUNICATION RECEIVER

uniden MODEL CR-2021
A compact communications receiver with full professional specifications and facilities.
\square Full Frequency coverage of 150 KHz to 29.999 MHz and 78 to 108 mHz .
\square Maximum sensitivity on AM/SSB/CW, also FM, with Narow/Wide filter.
\square Memory for any $6 \mathrm{AM} / \mathrm{SSB}$ and 6 FM frequencies, plus automatic scanning between any two frequencies.
\square Keyboard entry of frequency shown on LCD display.
\square External sockets for aerial, earth, headphones, and loudspeaker.
\square Operation from internal batteries, 12VDC, or 240 VDC.
\square Only £189.75 inc VAT and P\&P.

> LECMAR ELECTONICS Vectis Yard, Cowes, Isles of Wight Tel (0983) 293996
> Dealer Enquiries Invited. Barclaycard. Access

SOUTH WEST AERIALS

The WALTHAM 416 is a VHF/UHF $6^{\prime \prime}$ screen mono TV for System B/G operation (5.5 MHz sound) and is ideal for serious TV/DXing, or Continental travel and domestic use. Operation is via mains power or an external 12 volt source (all plugs and leads supplied). This receiver has a modern moulded cabinet and carrying handle, the controls are in a conveniently recessed but easily accessible position on the top of the television.
The 416 features extremely good sensitivity and sharp selectivity with its 4 individually tuned IF stages. All bands (VHF and UHF) feature continuous varicap tuning for ease of operation. Tuning controls and a clear scale readout are situated at the front of the receiver. ALL Band 1 \& 3 TV/DX channels are covered, together with all UHF channels 21-68. Aerial input is via a 75 ohm coaxial socket, in addition a strong ten section whip antenna ($40^{\prime \prime}$ extended) is provided at the rear. Two internal speakers for maximum sound quality are another feature of the 416. The WALTHAM 416 is a modern and reliable export receiver made for the W. German market. South West Aerials are the sole UK distributor for this model.
WALTHAM $4166^{\prime \prime}$ screen VHF/UHF mono TV (5.5 MHz sound) inclusive of VAT $\mathbf{£ 6 9 . 9 5}$ plus $£ 3.75$ carriage and insurance (adjustment to 6 MHz sound is available at an additional cost of $£ 2.50$). Delivery $3-5$ days.
Send 60p for our NEW extensive 1985 CATALOGUE detailing Aerials (DXing and domestic), Amplifiers, Filters, Rotators etc. Customer consultancy available to solve difficult reception problems, TV/FM DXing our speciality (include SAE with all enquiries please). ACCESS \& VISA mail and telephone orders welcome.

SOUTH WEST AERIALS (PW)
11, Kent Road, Parkstone,
Poole, Dorset BH12 2EH. Tel: 0202738232.

THE PERFECT COMPLEMENT TO RADIO \& ELECTRONICS WORLD

MORE NEWS,

MORE FEATURES,

With regular features like:
\star DX DIARY ${ }_{\text {Don }}$ Field $G 3 x \pi$ with all the news of rare DX, contests and DXpeditions

\star ON THE BEAM Glen Ross G8MWR with all the news and comment from bands above 50 MHz

t C3OSS TESTS Angus McKenzie -

 the fairest, most comprehensive reviews available anywhere* BACK TO BASICS bill

Mantovani with a recipe for an RAE pass

MORE FUN, MORE STYLE

Make sure of your copy by placing a regular order at your newsagents or by taking out a post free, inflation proof subscription, with early delivery to your door each month

AMATEUR RADIO SUBSCRIPTION ORDER FORM	
To: Subscription Department \bullet Amateur Radio -	
513 London Road © Thornton Heath -	
NAME	
ADDRESS	CREDIT CARD PAMMENT VEM $\square \square \square$
... Postcode...	

POST A PART ELECTRONICS 6 CHAPMAN COURT, CHARFLETS ROAD (REW) CANVEY ISLAND, ESSEX SS8 OPQ
 Telephone 0268690868 Telox 99305 ROSSER G

TRADE COUNTER NOW OPEN
ORDERS DESPATCHED SAME DAY
ADD 60p P\&P, THEN 15\% VAT.
ADD POSTAGE FOR OVERSEAS ORDERS.
ORDERS WITH AEROSOLS, PLEASE ADD 25p PER CAN.

SERUICE AIOS
Sikone Grease
Ambersil MSA Silicone Grease
Ambersil Freazer
Ambersil Amberiube

| Ambersil | Antr-Static Screen Cleaner | 702 |
| :--- | :--- | :--- | | Ambersil Amberclens Foaming Cleaner 1302 | 1.26 | |
| :--- | :--- | :--- |
| Ambersil Circuit Lacquer | 1402 | 2.15 |

THICK FILM RESISTOR UNITS

3500 Thor $/ 5$ Pin Conestionit vide
4000 Thorn 4 Pin Connection)
${ }_{713} 731$ Pye 16 Pin Connectio

20 mm FUSES

50MA
50 MA
315 MA
20 mm
10 for $70 \mathrm{p} \quad 250 \mathrm{MA}$ 315 MA AS 10 for 50 p 750 MA 500 M
1 A

500 MA	10 for 50 p	7 A
1 A	10 for 500	10
2.5 A	10 for 1.00	20
3.15 A	10 for 1.00	50

Thorn Mains TX 3000/3500
Thorn Mains TX 8000/8500
Thorn S.O.P T $8000 / 8500$
Thorn S.O.P.T $8000 / 8500$
Thorn Scan TX 3000/3500
Thorn EHT TX $3000 / 3500$
Thorn LOPT 9600
Thorn LOPT 1615
Thorn LOPT 1615
Thorn LOPT $1590 / 9$
Thorn LOPT $1590 / 91$
Thorn LOPT $1690 / 91$
Thorn LOPT
Thorn LOPT 8000
Thorn LDPT 8500
Thorn LOPT TX9
Pye LOPT 713
Pye LOPT 725
Pye LOPT 725
Pye LOPT 731
Pyy LOPT ${ }^{731}$
Philips LOPT 99
Phillps LOPT G9
Diode Split LOPT AT2076/35
Saryo LOPT AM-WM-21
Sanyo LOPT AM-WM-4
Sanyo LOPT AM
Philips LOPT GB
Sanyo LOPT (CW21) 42751-44700
IT LOPT CVC3O
Π LOPT CVC45
Baird 8750
Baird 8752
Ben
Korting AZ9100
Korting B92-170
Korting AZ2101
Korting A72103
Korting ZTR1001
Siemens V1155
Siemens V1823
Siemens V1823
ZanussI BS2222
Zanussi BS2223
Salora $\mathrm{FROO57}$
Salora
FROO29

300
300
150
100
1

10 for $65 p$
10 for $65 p$
10 for $50 p$
10 for $50 p$
10 for $50 p$
10 for $50 p$

300 Mixed Resistors 300 Mixed Capacitors 150 Mixed Electrolytics 100 W/W Resistors
20 Mixed Conv Pots 40 Mixed Pots 20 Mixed Sliders
40 Mixed Presets 20 Mixed VDR \& Thermistors 20 Mixed Ferrite Cores
100 Mixed Ceramic Discs 20 Mixed Valve Bases

1.50
1.50
2.00
1.00
1.00
1.50
1.00
$60 p$
1.00
$50 p$
1.00
1.00

Spark Gaps
10-16 pin Quil IC Socket 10-16 pin Quil to Dil IC Socket 100 Mixed Diodes

50 Mixed Mica Washers

 10-16 pin Did to Dil IC Sopacito50 Electrolytics \& 50 Capacitors 50 Electrolytics \& 50 Capac
50 Mixed Poly Capacitors
30 Mixed Neons \& Bulbs

0	$\begin{aligned} & \mathrm{BF} 167 \\ & \mathrm{BF} 173 \end{aligned}$	$\begin{array}{r} 24 \\ 29 \\ \hline \end{array}$	$\begin{aligned} & \text { BFRED } \\ & \text { BRRBI } \end{aligned}$	28
8	BF179	32	BFR87	25
8	BF180	33	BPR90	1.7
22	BF181	30	Bff91	2.0
11	BF184	30	BFT42	30
49	BF185	30	BFT43	30
30	BF194	16	BFX38	
46	BF196	16	BFY50	30
59	BF196	16	BFY5!)
36	BF197	15	BFY52	
38	BF198	19	BRC116	1.50
1.70	BF199	15	BRC1693	1.43
50	BF223	18	BU105	1.00
98	BF224	19	BU126	1.10
74	BF238	20	BU207	1.05
78	BF240	9	BU208	1.15
99	BF241	21	BU208A	1.15
48	BF255	10	BU326A	1.30
52	BF256S	20	BU407	1.70
50	BF257	28	BU408	2.76
50	BF259	28	BU500	2.30
60	BF271	25	BU526	2.46
55	BF274	11	BU807	2.9
65	BF337	29	C1129	
59	8F338	34	C11728	
85	BF355	40	E5386	
81	BF362	50	E9003	
68	BF391	21	E9005	2
71	BF394	16	ME0404	
83	BF422	47	ME0412	
120	BF423	53	ME6002	10
1.20	BF450	43	MJ250 ${ }^{\text {¢ }}$	2.3
1.35	BF453	53	M 33001	2.2
95	BF458	37	MJE182	4
95	BF459	40	MJE340	50
93	BF461	59	MJE520	50
1.09	BP56B	35	MJE2955	1.40
99	BF96	15	MJE3055	1.50
20	Bf694	16	NKT24iW	
20	B757	62	NKT241G	
25	BFR52	31	NKT241Y	

28 NKT
29 NKT
25 OT1
174
 1 KT 763
$\mathrm{~K} T 112$
T 121

On these pages we present details of Interesting contacts from clubs and

 individuals. We would be happy to receive any similar Items from readers
AMTOR/RTTY for the blind

Phillip Stanley G6TLI and some of his associates have been busy with some interesting experiments in London recently:
Over the past few weeks, myself and two other radio amateurs (G4VWW - Steve, G6YYZ - Terry) have decided to pursue a project in which a whole new world can be opened up for blind operators in the use of RTTY/AMTOR.
The reason for this idea was mainly due to our friend Steve (G4VWW-IK3CSU) who visits us once or twice a year from Italy.
During his visits he has taken tremendous interest in the use of RTTY/AMTOR, but there was only one problem: he could not operate the system unless there was either myself or my brother in attendance.
At long last we have managed to overcome this, so we decided to let other operators in the same position as Steve share the benefits of our work.
The idea was to look at speech synthesis, which basically works on the same lines as a printer (but without the paper!) and also is compatible with most computers, ie uses an RS232C serial or Centronics parallel interface.
There are quite a number of units available, but after some careful consideration we decided to go for one which was designed and made by Braid Systems Ltd which perfectly suited our requirements, its various options available being sent by a series of control codes (ie letter or word mode, high or low pitch settings, volume and speed).
There were one or two problems to be overcome, since the speech synthesiser from Braid Systems had only an RS232C serial port. My particular
computer,
although having provision for both, only sends data to a printer via the Centronics port. Consequently it would not allow us to run AMTOR at the same time, because the AMTOR modem also had only RS232C.

Rather than wait for the optional Centronics port to be fitted, which meant that we would have to wait another few weeks, we decided to overcome this problem by connecting the AMTOR unit and the Braid synthesiser together.
This was done by using the RS232C input to our computer from the AMTOR unit in parallel with the data output of the AMTOR to the synthesiser.
All control codes to the AMTOR unit and the synthesiser are sent by the computer from the RS232C data-out port. This meant putting the AMTOR unit into transmit mode and then sending the various control codes to give us the functions available (pitch, words or letters). The data was then confirmed via echo back to the synthesiser.
I must add that it does depend on the particular computer being used. The computer that we are using is the Tono 9000E communications terminal.
Some computers have different provisions. The Apple 2, for instance, can use TTL levels to drive the AMTOR unit and RS232C to send the data to the Braid synthesiser. The same also goes for the Commodore 64. Obviously it does vary from one computer to another.

Incidentally, the Braid synthesiser works on 150 to 9600 baud, which is programmable by changing the DIL switches located on the back panel. At any speed less than that required the unit states that there is a 'frame in error'.

After a series of CQ calls on 80 metres, our first contact was made with G3RSP Alan, located in Harlow, Essex.
We had said to him 'we are trying out a new printer, so would you be kind enough to send carriage return/line feed after approximately 30 characters'. This allowed the unit to come back with the data sent more quickly (the synthesiser responds to sending data after each carriage return sent).
This he kindly did, and he was intrigued as to what the printer was, so we explained to him what we were up to.
Alan then said he would very much like to hear it. This was certainly no problem because he was within easy reach of London, so we decided to work crossband betwen 80 m and 70 cm . He then sent a series of text, ie 'The quick brown fox. . .' etc, and this was re-transmitted as he was typing. He stated that he was quite surprised at the clarity of the synthesiser, and wished us success in perfecting our experiments.
A few days later, after making sure that all the connections were OK and everything was in perfect working order, Steve decided to make a few contacts on his own while we were out at work. When I came home he said he had been having 'a whale of a time' and had made contacts on 20 m into Spain, Italy and Austria.
So now we have decided to write and let you know the outcome of our very successful experiments.
We are now making ourselves available to whoéver wishes to see a demonstration either here at my station or within easy reach of London.
I must add that we are only doing this as a hobby, and also to help those operators in the same situation as our very good friend Steve to have a further outlet into a different aspect of amateur radio. We know that there are a number of operators who would dearly love to work AMTOR/RTTY without having to have somebody else in attendance to read the VDU or printout.
We have some literature arriving shortly with regard to
the Braid synthesiser for those that are interested. All they need is the computer (and obviously the choice is very wide).

I would also like to say thanks to all those people who helped us in the setting up of this experiment: G8PUU - Bob (BBC), G6YYZ - Terry, Braid Systems Ltd, G3RSP Alan (for the initial experiment) and especially to G4VWW/IK3VSU Steve for giving us something to do in the first place!

Exhlbition blues

We recently heard from a very unhappy reader who travelled to London from Wales for the 'Your Computer' Christmas Fair at Olympia, listed in December's Dates for your Diary, only to find that it had been cancelled.
It is some time since we were notified of this event by the organisers, and it is unfortunate that they did not inform us of its cancellation. However, even if they had done so deadlines are such that this might well have been too late for publication before the scheduled date.
We therefore feel it incumbent upon us to advise readers to check with the organisers that such events have not been postponed or cancelled, since the cost of a telephone call can save a great deal of disappointment.
Our sympathy lies with any readers who have suffered similarly. Let us hope that reporting this incident helps prevent more such instances in the future.

Class B Morse

Mr John Butcher MP, Parliamentary Under Secretary of State for Industry, announced on 7 December that as a result of discussions between the Department of Trade and Industry and the Radio Society of Great Britain, holders of the Amateur Radio Licence (B) who wish to use Morse code in their radio contacts may do so for an experimental period of one year.

The experiment will start on 1 April 1985 and last until 31 March 1986. Any Class B licensees interested in participating in the experiment
should request a letter of variation to their licence to permit them to transmit Morse code from their station address.
Requests should be sent to: The Secretary, Radio Society of Great Britain, Alma House, Cranborne Road, Potters Bar, Herts EN6 3JW. Applicants should enclose two first class stamps to cover costs and postage.
There is no selection process. All applicants who hold a current amateur radio licence (B) will receive a letter of variation and a copy of a leaflet called 'Guidelines for Class B Licensees using Morse'.
It is hoped that the experiment will encourage Class B licensees to practise the sending and receiving of Morse in preparation for the amateur Morse test, as well as helping them to see its advantages as a mode of transmission.

'Professional amateurs'

An interesting proposal has come in from Martyn Thompson G1KIA concerning mobile operation:
'I personally spend a good deal of my time on the road, and encounter a large number of amateurs who are, like myself, HGV drivers or otherwise employed in service or sales related fields.
'The idea of forming some kind of association was not, I must admit, wholiy my own. It started some weeks ago when in QSO with a small group of mainly HGV drivers through the Motherwell repeater GB3CS. Another station suggested that we form our own club for 'Truckers', not a term I relish, but it started the seed of an idea.
'A few weeks later when in QSO through the Barnsley repeater GB3NA, again with a group of mostly HGV drivers, the idea of a giant repeater for HGVs was joked about. I promptly passed on the idea of our own association.
'The idea was received with an enthusiasm I did not expect, the only change to the original idea being the inclusion of 'all' professional drivers, ie anyone who spends his, or her, working hours at the wheel.
'The outcome of this dis-
cussion is this letter, in order to feel the ground as it were. Although it is not intended to be too formal in structure any ideas etc from any amateurs interested in such an association would be most welcome.
'Initially write c/o
PO Box 122,
Earls Barton,

Northampton,

NN6 ODE.

(Please enclose sae)

'Lastly I would like to thank some of the stations involved in the various discussions on this subject over the air: G6VYC John, G1EPP Peter, G1EAN Alf, G4XQV Terry, G6LLM Keith, GM1FHF Archie, with apologies to any I forgot.'

For your Information...

There are some interesting talks on the projected programme for the Radio Society of Harrow. These include a 'History of Outside Broadcast TV' on 18 January, given by Bill Sutton G3FWI, and 'Use and abuse of VHF' on 1 February, given by Angus McKenzie G3OSS.
As many readers will be aware, Angus McKenzie writes for our sister publication Amateur Radio.
The Radio Society of Harrow meets every Friday evening at: The Harrow Arts Centre, High Road, Harrow Weald (opposite 'The Alma' public house), with talk-in on GB3HR (RB14).
Details can be obtained from Dave G8XBZ.

Feline fun

We recently received the October edition of CATS Whispers, the newsletter of the Coulsdon Amateur Transmitting Society, which contains an amusing fox's-eye view of a 2 m Fox Hunt. They seem to have a sense of humour in Coulsdon: as well as a good cartoon inside, the cover bears a drawing of a rather interesting cat, à la Tom \& Jerry (but why pirate costume?). We were also amused to note that the club callsign is G4FUR.
Anyone who wants to join the fun can find club meetings at St Swithin's Church Hall, Gravelands Road, Purley, Surrey, on the second Monday and last Thursday of the month at 8pm.

NOTES FROM THE PAST

Some interesting comments from the 1950's. . .

My favourite set for use on the amateur bands was built in 1939 and is still used more or less daily. It holds its own with contemporary communications receivers despite its age, and the only attention it has received since it was first finished was when it was rejuvenated by changing to more modern type valves.

Oddly enough, it still has the original electrolytics - the good old wet type, and they have never leaked! I checked them recently and they seem to be well up to lots of good service yet.
The coil assembly for this receiver, five switched wavebands up to 650 metres consisting of 20 separate formers, took me nearly three months of my spare moments to get to my complete satisfaction. I have often thought since how much quicker (and more compact) it would have been if I had only decided to make those otherwise unobtainable coil boxes. It would also have obviated a tangle of switching and the inevitable losses in the HF bands.
When I first built it the still new and wonderful 6K8 was all the rage, but I finally decided on a separate oscillator. This arrangement is to be preferred, but I should hardly dare use one in a design for readers. They don't seem to like the idea of 'wasting' that extra 0.3 amp heater current when they can see nothing for it.

Occasionally visitors raise their eye brows at it, and I apologetically murmur something about improved performance on ten. They just sniff and tell me they use a converter. I don't need to, and most 10 metre converters use a separate oscillator anyway.

In the wee small hours

According to no less an authority than the Minister of Fuel and Power, four million people switched on lights and radio in the wee small hours of the morning to listen to a broadcast of a prize-fight.
The cynical can ponder on the silly mass hysteria which seems so easily worked up by a few headlines in the sensational press, and on the emptyheadedness of those who take no part in serious hobbies.
It is not, however, for the benefit of either of these classes of readers that I mention it. It is for those who might wish to cut it out and keep for a future defence when the XYL casts doubt on their sanity on the occasions when they stay up late o^{\prime} nights because the prospect of working (or logging) a new country seems promising.

NEXT ISSUE

Radio\& Electronics

COMPUTING - TRACKING

Brian Kendal and Jeff Howell present a program to calculate inductance and capacitance values for tuned circuits

ELECTRONIC LOCK

Stay secure with this cheap and versatile project from A P Dean

DATA FILE

Continuing the opto-electronics theme, Ray Marston covers decoder/driver ICs and multiplexing techniques as well as some light sensitive circuits

CB CONVERSIONS

Bill Sparks and Colin Horrabin with a project based on their novel technique outlined last November.

RUSSIAN SATELLITES

The third part of this series describes the computing of the received data

PLUS all the usual features!
New products News Reception reports ... DON'T MISS the March issue - on sale 14th February

To be sure of your copy of Radio \& Electronics World, complete the newsagents order form in this issue or take out a subscription

Simply complete the order form at the end of these ads, feel free to use an extra sheet of paper if there is not enough space on the order form. We will extra sheet of paper if there is not

FOR SALE

- FT1012D mic fan FM 9 Bands FC902 ATU FTV901R 2m Fitted only $£ 610$, no offers, prefer not to split. G4UYI Bob Tel: (0946) 810205 after 5pm. - Daiwa Search 9 used as base with power pack. Fitted with eleven crystals $£ 25$. Weale, 1 Candy Croft, Great Bookham, Surrey KT23 4BZ. Tel: Bookham 56741.
- Yaesu FT707 three months old, never used for Tx only Rx. This is a real bargain $£ 400$ OVNO. Jen SX1000 synth cost over $£ 350$ new want $£ 85$. Tel: (0283) 33526 after 6pm.
- Memopak 16K for ZX81 £7. CD1014/2 DB scope sweep needs slight attention good condition £20. Amtron field strength meter $24-32 \mathrm{MHz} £ 10$. Hella universal 12 V hazard warning lights conversion £10. Tel: Hythe (Kent) 68854.
- DX100U CW/AM TX $160-10 \mathrm{~m}$ self contained 100W output $£ 65$. Superstar 360 FM AM, FM, LSB, USB, CW. Ideal for conversion to ten metres, with info, 885 . Ten metre portable Icom 1050 with nicads and flexi-aerial £35. Send SAE for clear out list. McCarthy, 31 Philip Road, Ipswich, Suffolk IP2 8BQ. Tel: (0473) 215047.
- Clearing out, large quantity of semiconductors, diodes, transistors for sale, bags $50 £ 5.00 \mathrm{P} \& \mathrm{P} 50 \mathrm{p}$. Six 2 N 5942 VHF power $£ 5.00$ each, three 2N5070 VHF power transistors $£ 3.00$ each, one PF1 Rx UHF £4.00 P \& P 80p, small quantity of IC linear digital etcbags $20 £ 4.00$ each. All components are unused. One box 49 xtals assorted freq's types used $£ 10.00$. C Cooper. Tel: (0705) 386254.
- Yaesu FT902DM transceiver plus matching transverter FTV902, as new condition, £685. Tel: (31) 54264 Great Bookham, Surrey.
- Sony CRF320 dual conversion receiver, first class condition with service manual and instructions USB/LSB/CW/AM/SW/FM/LW/MW, built in timer, recorder and lots more features cost $£ 850$ will accept $£ 395$ ono. Could meet half way to and from QTH. Freq read out SW $1.6-30 \mathrm{MHz}$ also will consider P/X on HF equipment or VHF scanner SX400, AR2001, Tel: (Evening) Bournemouth 824890.
- Power amps for 2 metre transmitters. 16W PA strip $2 \mathrm{~N} 6080+2 \mathrm{~N} 6082$, 23dB gain, 52% efficient, 13.8Vdc at 2.25A \&10. 16W PA module diecast case + full heatsink $2 \mathrm{~N} 6080+2 \mathrm{~N} 5590$, 15.5 dB gain 64% efficient, 13.8 Vdc at $1.8 \mathrm{~A}, £ 11$. Please add $£ 1.50$ postage for each unit. Tel: (0473) 54405 (evening) or write 103 Foxhall Road, Ipswich, G8KDL (Steve). - Datong Morse Tutor, £35. R1155A unmodified, some details, needs PSU £20. Tel: (01) 994836. - Oscilloscopes, signal generators and other electronic equipment for sale. Telequipment S51E SB scope £30, D43 DB, £70, Solartron CD 1400 DB, £100, plusnsome spare plug-inf for CD1400 (details on applicatcon). Tektronix 180A time mark generator (to 50 MHz), £40, Tektronix 107 suarewave generator (1 MHz) £20, advance AF signal generators $\mathrm{H} 1 £ 30, \mathrm{~J} 2, £ 35, \mathrm{SG} 67$ (to 1 MHz) $£ 15$, Heathkit AWIV audio wattmeter, £20. David Russell, 9 South Beach Road, Ardrossan, Ayrshire KA22 8AX. Tel: (0294) 64144.
- Radio and television servicing books from 1968 - 1977, 9 books for sale, £30. Burgess, 49 Theodore Rd, Scunthorpe DN 15 8HB.
- Realistic PRO2008 VHF-UHF scanner. 68$88 \mathrm{MHz}, \quad 144-174 \mathrm{MHz}$ and $410-512 \mathrm{MHz}$ coverage. Receive everything from your local 70 cms or 2 m repeater to British Telecom's mobile telephone service. Memory back-up, channel lock-out and scan delay are just some of the features of this electronic eavesdropper. As new - no mods. Cost $£ 115$ new, yours for only $£ 65$ or offer. Creed 54 Teleprinter-complete with: Internal paper tape puncher, 6S/6 paper tape reader, J-Bell alarm, numerous rolls of printer paper and paper tape
plus new spare ink ribbon. Alt in good working order and operational on 45 or 50 Baud. Sale due to completion of computer based RTTY system, $£ 25$ or offer. Will swap for FRG7 or other HF Rx with cash adjustment. Prefer buyer collects but can deliver in Northern area within reason. S Jenkinson G6HBZ, QTHr or Tel: Keighley (0535) 52511 Ext 315 during working hours.
E Eddystone 740, 840C, 888A, Hammerlund military rack receiver, needs PSU Hallicrafters SX62 receiver, various other receivers, some needing work. Heathkit DX 100 CW/SSB transmitter. Many 1930s broadcast receivers in wood, bakelite. Please write or telephone: John Baker, 13 Burrard Road, London NW6 1AB. Tel: (01) 7940823.
- Lots of old service sheets and manuals for amateur radio, vintage wireless, test equipment, audio, TV, video etc. Copies available, LSAE with 'wants' and l'it try and help. Maurice Small, 8 Cherry Tree Road, Chinnor, Oxon OX9 4QY. - 48K Spectrum, 2 months old, leads, manuals, PSU, plus $£ 70$ worth of software, and Currah Speech Unit 590 . Collectors item R1155B immaculate, unmodified, handbook for all models, PSU/test unit with pre-amp and speaker built in £65, OVNO. Ferranti valve interstage transformer, Air Ministry variable voltage PSU $1-15 \mathrm{~V}$ approx, requires meter, in TU5B case, offers invited. Buyers collect or carriage extra. Borthwick, 92 Linglie Road, Selkirk, Borders Region, Scotland. - Jumbo Ham International 26.06527855 £125. Astatic Silver Eagle £75. Astatic Tear Drop $£ 10$. Astatic Mobile King £10. Realistic TR 1001 FM hand set, rechargeable nicad charger, hand mike, flexible antenna, carry case, £65. Sigma $4 £ 30$. Yaesu FT707 FC707 FV707DM headphones mobile mount, base mic MD1B8 YM35 G Whip ext speaker £650. 60ft telescopic tower £275. Tel: Ingrebourne (04023) 45470 or Basildon (0268) 284550.
- Heath S / H audio signal generator $10 \mathrm{~Hz} / 100 \mathrm{KHz}$ £14. Wolsey VHF/UHF professional high gain distributor aerial amplifier with two aux -40 dB monitor sockets $£ 25$. Manor supplies colour cross hatch test generator $£ 25$. Zx Spectrum 32K RAM pack by Cheetah as new only $£ 15$ cost $£ 40$. Vega Radio World Reception as new MW/LW/6SW £10. Wein stereo FM-MW tuner amp with 8 track player as new $£ 15$ only. Mr Mabrouk, 21 Redington House, Rodney Street, London N1 9QQ. Tel: (01) 2265676 day, (01) 2784806 evening.
- Colt 320 DX multi-mode $£ 25$. Ham International multi-mode two £25. Harry Moss audioline $£ 15$. RA17 Racal Rx $£ 150$. Sharp MZ80A $£ 200$. Lynx 96K new $£ 100$. DNT 40FM on 10 metres with USA repeater shift £30. ICOM 1050 part modded to 10 metres £25. Mike G4UPD (QTHr) 82 Seaforth Road, Leeds LS9. Tel: (0532) 491366.
- Books and mags. Radio, TV electronics and broadcasting, about 90 books from 1794 to present day prices from 75 p to $£ 95$. Write for list. Steve (G8KDL), 103 Foxhall Road, Ipswich (SAE please). - FT7B HF mobile Tx 120 W input $80-10 \mathrm{~m}$, YC7B extension frequency display $£ 350$ ono. HF $3-30 \mathrm{MHz}$ 12 V solid-state linear amplifier $0.5-10 \mathrm{~W}$ input 200 W . $1100 \mathrm{~W} / 50 \mathrm{~W}$ output $£ 120$ ono. 10 m FM Tx Grandstand Gemini Factory converted with $150 \mathrm{~W} / 60 \mathrm{~W}$ linear $£ 50$ ono. 10 m 3 ele Yagi $£ 20$ ono. Astronomical telescope 60 mm objective lens. With tripod and accessories $£ 80$ ono. Creed 75B teleprinter adjusted for 45.5 baud amateur use $£ 25$ ono. Wanted: FT101ZD FM $432 / 144 \mathrm{MHz}$ transverter. Consider part exchange for any of above items. Tel: Gerard, Rossendale (0706) 218694 after 5pm.
- AVO model 8 MKII £50. Newnes Radio TV servicing books vols 1 to 5, 1955-56, 1961-62, 1962-$63,1964-65,1965-66,1966-67,1967-68,1968-69,1969-$ 70, offers. DATA X'sistor book, 1974, offers. K Muir,

26 Admirals Walk, Littlehampton, West Sussex BN17 6RH. Tel: L'Ton 723067.

- TR9000 10 W multimode, as new, full working order, little used, original packing, mobile mount, £270. G6GVV Tel: Hatfield Broad Oak (027970) 427. - Trio TS510 working £85. Racal RA17, RA66, RA63, MA168, all okay, good condition £220. Handbooks, leads ext. Audio terminal unit Redifon $£ 15$. Creed $7 B$ free. CU89 terminal unit $£ 15$. Will exchange all above for modern Racal Rx WHY lots of old valves 150 for £15. Tel: Leeds 677101.
- Multimode II AM FM, SSB, 120 channels with lead, mic, manual in box $£ 70$. Please write to: Mr M Richards, c/o 'Les Yard' Aughton, Collingbourne, Kingston, Nr Marlborough, Wilts.
■ Eddystone 940 . High quality general coverage communications receiver. 480 KHz to 30 MHz in 5 bands. Controls: RF gain, IF gain, BFO, crystal phasing, AF gain, AGC, noise limiter, selectivity (three band-widths). Excellent mechanical construction and very high quality analogue dial read out. Physically is in perfect condition and recently re-aligned. Only $£ 100$. Brand new spare valves $£ 6$ Tel: Steve GBKDL on (0473) 54405 (evening) or write 103 Foxhall Road, Ipswich IP3 8JZ.
- Ultra Cub 2 metre handheld transceiver, five channels. Xtals for R7, S20, S22, S23. 0.5W RF output $0.8 \mu \mathrm{~V}$ sensitivity. Uses 12 V Nicads. Full circuits and data available. Four free Nicads included. Only $£ 45$. Tel: Steve G8KDL (0473) 54405 evenings or write 103 Foxhall Road, Ipswich IP3 $8 . J 2$.
Monitors. Green Screen. 23 MHz . Made by Motorola. Separate video signal input, horizontal sync input. Vertical sync input. 12 inch screen. One with case, one for spares. Circuit diagram $£ 50$ the two. Tel: Keith (0543) 376366 (West Mid's)
\square Standard 89002 mtr TCVR FM 10W Five memories. Scanning Mic repeater shift. Exchange for FRG7700 or FT200 WHY. Keith G40CH (0543) 376366 (West Mids).
- AVO valve tester model CT160 with leads, manual. Perfect working order $£ 30$ inc post. First cheque secures, others returned. Valve data manuals 7 different volumes covering many thousands of types $£ 1.50$ each or $£ 10$ complete set. Some manuals on old wireless sets, receivers. SAE with 'wants' and I'Il try and help. Lots of surplus ICs SAE list, Mr Maurice Small, 8 Cherry Tree Road, Chinnor, Oxon OX9 4QY
- Eproms Ex projects 2516, 2716, 2732, 2764, all erased and tested. Tel: (0843) 33398 after 6pm.
- Sharps MZ80A computer mint condition, bargain at the price, no offers, £295. MM4001 RTTY interface and RCA printer. Never used for transmitting. Mint condition $£ 180$ or nearest offer. These items will not be sold before appearing in Amateur Radio. Buyer collects or extra for post and package etc Tel: Johnny Gainsborough (0427) 5266 anytime.
- Claude Lyons ac auto voltage stabiliser, BTR-5 240 V model, 5 amp , used once only, offers or swap WHY Phone Truro 75858 between 6-7pm.
- Yaesu FT102 C/W narrow SSB filter, mic, SP102, manuals etc, in original boxes, immaculate condx, £550. Racal RA17 Rx 0.5 to $30 \mathrm{MHz} \mathrm{C} / \mathrm{W}$ manual, recently overhauled $£ 140$. Heathkit 2KW transmatch C/W balun \& manual. $£ 70$. SSM Europa 10 m to 2 m transverter £25. Including spare PA's. Computer modem suits BBC £20. Wilson WE800 144 to 148 MHz synthesised FM $10 \mathrm{~W} / 1 \mathrm{~W}$ mobile/portable C/W manuals etc, $£ 120$. Can deliver within 100 miles. Butterfield G4AAQ, Pontefract. Tel: (0977) 791071.
- Realistic TRC2001 40 Chan FM rig, almost new, unused £25 ONO. Colley, 13 Ferry Road, Wawne, Hull HU7 5XU. Tel: 822276.
- Tandy TRS80 pocket computer with interface
and printer and connectors for cassette, complete manuals, eight tapes. For games, finance, electronics. Has single line LCD display, bargain £40 Colley, 13 Ferry Road, Wawne, Hull HU7 5XU. Tel: 822276.
- Panasonic 3100 general coverage $R x$ with $F M$ broadcast bands, SSB, CW, RTTY, 2 filters modified for use with MW Ioop as well as usual external ant. 1 year old in first class condition, list price $£ 219$ sell for $£ 115$ ono plus postage. Mr R W Hall, 23 Whitehouse Court, Ushaw Moor, Durham, DH7 7 NH .
Microwave Modules 70 cm to 10 m receive down converter and 2 m to 70 cm Tripler. Both old models, £14 each incl UK postage. 'Everyday Electronics' November 1972 to July 1977, £20 the lot incl. UK postage. Will separate at $75 p$ each. 'Practical Electronics' August 1970 to July 1982, few missing £40 the lot, or $75 p$ each incl UK postage. SAE with all enquiries. Colin Redwood G6MXL, 45A Lulworth Avenue, Hamworth, Poole, Dorset BH15 4DH

WANTED

- Reasonable price paid for N -model Pye Bantam or SR9 on 144-146 2 metre, can collect or pay carriage. Tel: Pete anytime on (0602) 326618. - Can anyone please help? Wanted urgently: wiring circuit diagram for Siemen's 200016 mm projector. Not amplifier circuit. Would copy if drawing could be loaned etc. Would appreciate information on place of manufacture if known in Germany, or British agent. Mr J P Hupfield, 47 Leeward Road, West Worthing, Sussex. Tel: (0903) 66329.
- Wireless set No 11 and transmitter T1083, £50. Each offered in restorable condition. Warner, 45 Eastry Close, Ashford, Kent TN23 2RS. Tel: (0233) 36185.
- Urgently required, $2-30 \mathrm{MHz} 100 \mathrm{H}$ element for Bird thruline type 43 wattmetre. Good price paid or
would exchange 100 MHz to 250 MHz towatt element. W G Cooper, (G4PIY) 'Totara", Birch Slatt, West End, Woking, Surrey GU249NR. Tel: Brookwood 2251 (evenings).
E Manual for Eddystone receiver Model 940 coverage 0-30. Tel: Rainham (Essex) 02348. - Scope probes for CX1441 and modern S/S colour TV test equip, EHT meter, Normende EG3872 generator with handbook. Tel: Hythe (Kent) 68854
- Has anyone a copy of the users manual for the Trio R600 that I can have to buy, loan or copy? Reasonable expenses met. Pye, 98 Hall Place, 7 Edgware Road, London W21NG: Tel: 017233847. - FDK multi VFO11. Contact G1JYF Tollgate, Callington, Cornwall. Tel: Liskeard 83291.
- Ham multimode il circuit diagram will pay reasonable price. Also any mods available. Please tel: Martin (890) 4829.
E Dead VHF/UHF amateur rigs. Cash. Please write with details. A Jefford, 78 Churchill Road, Exmouth, Devon EX8 4DT.
nacal SSB adaptor, RA63 or RA98. See also my for sale ad. Tel: Milton Keynes (0908) 314095. - Service manual with circuit diagram for Telequipment D52AR. Schofield, 26 Birkenshaw Lane, Birkenshaw, Bradford BD11 2HA.
- Yaesu FT101B or KW2000 A or B, any condition, preferably working order, or any similar HF rig. Reasonable offers please write to: John Cavanagh, 190 Liverpool Road, Huyton, Liverpool, Merseyside L36 1RJ.
- PGMs for RTTY and other that can fit on MC-10 (Tandy) or Alice (France) with 20K RAM. Any letter about the MC-10 will be very welcome, and 1 will exchange PGM if desired. Thank you and super 73. CUL. Guy Houie, 61 Jean de Lafond, Bouchervile, Quebec, Canada, J4B 2B6. Tel: (514) 6559905.
- Info: researcher compiling data-base on communications receivers wants to buy/borrow/copy
handbooks or data sheets on all commercial, exmilitary, and amateur HF receivers of any age. Contact Steve G8KDL, Tel: (0473) 54405 evenings or write 103 Foxhall Road, Ipswich.
- Service information and circuit details of Telequipment. Scope type D31. Greenfield, 20 Church Meadow, Lilleshall, Shropshire, TF109HD. Tel: (0952) 604302.
- Circuits for Minimate car radio. VEF transistor Russian and BCC CT53 sig gen. Valve audio gen, good cond etc. Also info on Vortexion CBL recorder. Alan Judge, 106 Bicknor Road, Maidstone ME159PD. Tel: (0622) 50709.
E Engineer into HF solid-state linear design required to help me further my ideas on 500W PEP + mobile unit, fee or expenses to be agreed, any interested parties please write in first instance to G4ZOW, 3 Ryecroft Close, Hemel Hempstead, Herts.
- Still looking for 6 pin connectors for WS10, singles, doubles, any length, any condition. Also Pye aerial plugs and sockets for above. Somebody must have some, please help, your price paid. Also handbook or photo copy for KW160 Top Band Tx. Tel: Pete G4IQZ (0235) 34037 evenings, daytime (0235) 45047 Oxon.
- Control head and patch lead for hi band Vanguard 6 CH wanted. Also 16 mm films, mag or optical sound. G8BSK, 290 Priory Road, St Denys, Southampton, SO2 1LS.
- Any service sheets or manuals for Amerex mono TV model ACT 22 m , 3 m Wallensak 4766 stereo cassette deck, ITT Star radio telephone 'Starphone' type M5. Will pay costs. Many other wants. Write SAE for list. Mr Maurice Smail, 8 Cherry Tree Road, Chinnor, Oxon OX9 4QY.
- FRG7700 wanted in exchange for Standard 8900 $144-146 \mathrm{MHz}$ EM Tx-Rx 10 W 5mem with scanning mic plus $7 / 8$ whip and gutter mount. Keith G 40 CH (0543) 376366 (West Mids).

FREE CLASSIFIED AD ORDER FORM

Send to: Radio \& Electronics World Classified Ads Sovereign House •rentwood Essex CM14 4SE
Classification: (tick appropriate box) If you want to insert ads under more than one classification use separate sheets for second and subsequent ads
For Sale
Wanted
USE BLOCK CAPITALS (One word per box)
To avoid mistakes please write clearly and punctuate your ad

	\square	-	\square	-	-		
Remajememm	lane						

USE SEPARATE SHEET FOR MORE WORDS
Ensure that you have included your name and address, and/or telephone number
CONDITIONS: Your ad will be published in the first available issue. We will not accept trade advertisements. We reserve the right to exclude any advertisement.

RE0285

Radios
 For all aspects of proctical amateur rodio |hOTd

CHESHIRE

NOIIS

Glenbond (Videotel) Ltd

25, Stamford Stroet,Attrincham,Cheshire, WA14 1EX Tel: 0619413057

Telex: 666387
Standard 2 m and 70 cm - Jaybeam - Ant Antennae Antiference - Weltz - Sinclair computer spares Colin G112D Gavin G1 12L
Your radio sold on commission basis

KENT

Thanet
Electronics
CD ICOM
95 Mortimer St, Herne Bay Tel: 02273-69464
Open: Mon, Tues, Wed 9-5
Thurs 9-1, Fri, Sat 9-5.30
Alt mail order \& service enquiries to head office, 143 Reculver Rd, Tel: 02273-63859

R.A.S.(NOTTINGHAM)

3 FARNDON GREEN; WOLLATON PARK NOTTINGHAM: TEL: 0602280267 YAESU: FDK. ICOM. TOMA HALBAR: WELZ: ANTENNAS \& OWN GWS H.F

COUNTY GUIDES

FROM ONLY £13.16 PER MONTH
Take advantage of this simple, economical and rewarding method of advertising by filling in the form below.

MORSE TUTOR

£4.00 on cassette. £8.50 on microdrive for Sinclaire Spectrum. Also available for the $Q L$ at £8.50. 4 to 19 words per minute, variable spacing, variable groups of random letters, numbers or mixed; Random sentences, own message, single characters and variable pitch. Feedback on screen, printer, or speech (Currah Microspeech 48 K only) and repeat facility, 16 K and 48 K versions on one cassette 48K only on microdrive.

WD SOFTWARE
Hilitop, St. Mary, Jersey, C.Islands
Telephone (0534) 81392

AMTOR for the DRAGON 3264

Now you can run AMTOR directly on the DRAGON without expensive external hardware.

Program + Timer/interface module to add to your own TU.. £55. 25 RECEIVE ONLY version £36.25 MF2 SWL Terminal unit. $170 / 425 / 850 \mathrm{~Hz}$. Switched shift. + Morse capabitity.

For full details send $2 \times 17 p$ stamps ACCESS \& VISA accepted
Please add VAT at the current rate to all prices

PNP COMMUNICATIONS (REW) 62 Lawes Avenue, Newhaven

East Sussex BN9 9SB. Tel: (0273) 514465

XXX ADULT VIDEO CLUB

For the genuine adult films. Available only from ourselves. Ring

0924-471811 (24hrs)

For the intimate details or write ADULT VIDEO CLUB
P.O. Box 12, Batley, W. Yorks.

LIVERPOOL

PROGRESSIVE RADIO

 ELIECTMONLCS spiECLALISTE47 Whitechapel Liverpool 0512365489 89 Dale St Liverpool 0512360154 93 Dale St Liverpool 0512360982 Open Tues-Sat 9.30-5.30 FOR ALL YOUR ELECTRONIC NEEDS.

LONDON

Complete full-size sets, any published service sheets $£ 2.50+$ large SAE - except CTV's/Music Centres from $\mathfrak{C 3} .50$ + large SAE lists, unique technical publications, for large SAE. Comprehensive TV or Radio courses now only $£ 9.50$ each TISREN
76 Church Street, LarkhaH, Lanarkshire ML9 HE Phone: 0898883334

RTTY SOFTWARE

CBM64, VIC20, ATOM, DRAGON 32/64 TANDY COLOR COMPUTER Advanced machine code programs with split-screen type ahead operation, any baud rate, saveable memories etc. AMTOR
Superb full-feature system for Dragon 32/64 \& Tandy at one third the cost of current alternatives.

MORSE DECODER \& SEMDER
MORSE TUTOR: BASICODE KTT
Availabie for Dragon 32/64. Large SAE for software/ hardware details

Grosvenor Software (REW)
22 Groevenor Road, Seaford, Suseex Tel: (0323) 893378

```
G W MORSE KEYS
4 Owen Close, Rhyl, Clwyd
Wales LL18 2Lo
THE OW MORSE KEY
A loy to use and to look at, this key is made from solid brass Mounting the mounted on a slate base, here in GW land (not JA) use \(£ 34.50 \mathrm{pp} £ 2.00\) ea
Clear \(1 / 2^{\prime \prime}\) high led readout repeat alarm clock, battery powered \(\{2\) AA pencelis). No A/F problems known Complete with batteries G950 pp \(\varepsilon 0.50\) ea.
The full range of
delivery or collection NE*******************************
NEW BASE STMTON ANTENMA FROM NEW NEW BASE STATION ANTENM
GEW MHIP PRODUCTS
NEW AVAILBEE SOON
```



``` or fuss call puite
key or any of your radio equipment. 1100 only NO POST \& PACKING CMARGE FOR ORDERS OVER E50.00
```

Amtron Electronic Kits and instrument cabinets. Over 70 kits in our range plus special offer on obsolete kits. Send SAE for catalogue.

Amtron UK Lid

7 Hughenden Road, Hastings East Sussex TN34 3 TG

\star SERVICE MANUALS \star
 or Aul Amateur Radio, Vintage Wireless, Audio. Television Video, Test Equipment etc. etc
 plus FFive catalogue.
 MAURITRON TECHNICAL SERVICES
 Dept REW, 8 Cherrytree Rd, Chinnor, Oxon, OX9 4QY

> Leam to make your own Printed Circuit Boards EXPERIMENTER'S PRINTED CIRCUIT KIT Laminate Boards, Chemicals, Instruction Book, also, Plans \& Circuits for 50 Interesting Projects you can build with own parts and transistors $\sum 2.50 \mathrm{p}$ p 50 p .
> Protect your premises with an efficient BURGULAR ALARM, PHOTOELECTRIC KIT $£ 5.50 \mathrm{p} \& \mathrm{p} 50 \mathrm{p}$. INVISIBLE BEAM OPTICAL KIT $£ 4.50$ p\&p 50 p. Send SAE for details of all Kits \& Circuits and FREE 5 transistors \& 5 diodes EXPERMETTAL EECTRONICS 335, Bettersea Ph Rd London SW11. Tet: 017202883

RADIO \& RTTY BOOKS
CONFIDENTIAL FREQUENCIES LIST New 6th Eddition CONFIDENTIAL FREQUENCIES LIST New 6th Eddition
listing thousands of Aero. CW coastal etc. Stations worldwide $£ 11-90+80 \mathrm{p}$ p\&p.
WORLD PRESS SERVICES FREQUENCIES NOWS RTTY Servies listing by frequencies, GmT \& Country plus more $6.20+60 \mathrm{p}$ p p .
CLANDESTINE CONFIDENTIAL New guide to rebe shortwave stations $£ 6.20+60 \mathrm{p}$ p\& p GUIDE TO RTTY FREQUENCIES 4500 stations listed Worldwide 88.85 + $60 \mathrm{p} p \& p$
RTTY TODAY beginners guide to RTTY decoding on home computers. etc. $£ 6.20+60 \mathrm{p} p \& \mathrm{p}$

2 or more books p\&p free
INTERPRODUCT LIMITED
Dept RE3, Stanley, Perth PH4 400 Tel: $073882-575$

NEXT ISSUE ON SALE 14 FEBRUARY

TECHNICAL INFO SERVICES (REW)
76 Church St - Larkhall - Lanarks
FULL SIZE SERVICE SHEETS
Any radio, audio $£ 2.50+$ I.s.a.e.
CTVs/MusC $£ 3.50+$ i.s.a.e. complete
Worlds largest collection
service manuals 30 's - date from £4.50-£35 each.
Comprehensive TV Repair Course Complete Radio Service \& Repair Course
ONLY £9.50 EACH
Repair data/circuits almost
any named TV/Video for $£ 10.50$
Sae bring \bar{s} any quotation FREE 50p mag, inc. service sheet! Pricelists unique elect. publications

FOR FAST QUOTES RING 0698883334

Abstract

Used Equipment Centre Buying or solling? Contact the Used Equipment Centre for the best deal. 25 years of amateur radio experience. friendly advice, full no quibble guarantee on all equipment. Heard about our exchange plan, buy \& try? Why not contact me, David Cole G3RCQ Hornchurch 55733, evenings/weekends or send SAE for full details \& current list of equipment G3RCQ 65, Cecil Avenue, Hornchurch, Essex Urgent daytime enquiries 01-594-3495.

MORSE READING PROGS

Work on clean signals, without hardware interface ZX81 1k UNEXPANDED MEMORY Translated code, with word and line spaces for easy reading. Automatic scroll action, $\mathbf{~} 7.00$ linel. SPECTRUM 16-48k. Scroll action with 10 page scrolling memory,
instantly accessible page by page cs.00 inc. All types variable speeds Feed signal direct into EAR socket.

Poshurat Defa Studion, es Phehurat Part, Weet Moors

Electronics For all aspects of practical amoteur ractio World

This method of advertising is available in multiples of a single column centimetres (minimum 2 cms). Copy can be changed every month.

RATES

per single column centimetre:
1 insertion £9.65, 3 - £9.15, 6 - £8.65, 12-£7.75.

$\ddagger 7.50$
he TNF2 range have a very low insertion loss and very high ejection over the band for which they are supplied. They are single known frequency or frequency band. Model RBFI-70cms Notch Filter (inner only) Model BB1 Braid Breake c5. 32
Also avalable, 3 High Pass models and a "Radar Blip" fiter for CRs. Please send A4 or C4 stamped addressed envelope for filters data sheet and price list
All items are manutactured by AKD in UK and carry a two year guarantee plus 14 day money back promise (no reason required)
sualy despatched wihin two days from receipt (Prop.) J.W. ARMSTRONG
also avallable frow most leaoing AMATEUR RAOIO OEALERS

RADIO \& ELECTRONICS WORLD SMALL AD ORDER FORM

TOF Radio \& Electronics World - Sovereign House Brentwood •ssex CM14 4SE • England (0277) 219876

FOR A PERIOD OF 1 issue....... $\square 3$ issues....... $\square 6$ issues...... $\square 12$ issues........ \square COPY enclosed........ \square to follow....... \square
PAYMENT ENCLOSED: Cnequas should be made payabie to Radio CHARGE TO MY ACCOUNT
COMPANY
ADDRESS
SIGNATURE TELEPHONE

C \mathbf{P} I
\square \& Electronics Worid. Overseas payments by international Money Order

TO

PLEASE RESERVE..............centimetres by...............columns
PLEASE RESERVE..............centimetres by

ADVERTISERS INDEX

BI-Pak 38
Blackstar 10
British National Radio School 33
Cirkit 6, 7
Commutech (Devon) Ltd
Commutech (Devon) Ltd 32 32
PM Components 46, 47
Data Publications 30
David L Coles 27
Display Electronics 12
East Cornwall Components 45
Edwardschild 32
Grandata 26
Greenweld Electronics Ltd 37
Greenwood Electronics 15
Hightech Antennas Inside back cover C M Howes 33
Keytronics 11 Wood \& Douglas 27
R Withers Inside Front Cover

Tau Systems... 30
Technical Software 30
Thanet Electronics 20, 21
Lecmar Electronics67Microwave Modules.....Outside Back Cover
Post a Part 69
RSGB 37
Ralfe Electronics 30
Reltech Instruments 10
Sendz Components 22
Skybridge 15
South West Aerials 67
C R Supply Co 30
Thanet Electronics 20, 21

display ad rates

depth mmi x widith mm
61×90
128×90 or 61×186
128×186 or 263×90
263×186
263×394

COLOUR AD RATES

| 297×210 | $1 / 2$ page |
| :--- | :--- | :--- |
| 1 page | |

Spephic

D $50 \rightarrow 0$	*Dates affected by public holidays		
lissue colour $\frac{1}{\text { a mone proof ad }}$	mono no prool and amall ad	mono artwork	on ende thure
Mar 85 ... 17 Jan 85	23Jan 85.	25Jan 85	.. 14 Feb 85.
	. 20 Feb 85	. 22 Feb 85.	.. 11 Mar 85.
May $85{ }^{-\ldots . ~} 7$ Mar 85.	. 13 Mar 85.	. 15 Mar 85.	.. 11 Apr 85.
	.17 Apr 85.	.19 Apr 85.	.. 9 May 85.

CONDITIONS \& NFORMATION

zeries rates
Series rates also apply when larger or additiona space to that initially booked is taken An ad of at least the minimum space must appear in consecutive issues to qualify for series rates. Previous copy will automatically be repeated if no further copy is received.
A hold ad is acceptable for maintaining your series rate contract. This will automatically be inserted if no further cooy is recelved.
Display Ad and Small Ad series rate contracts are not interchangeable. series rate

If series rate contract is cancelled the advertise
If series rate contract is cancelled, the advertiser
will be liable to pay the unearned series discount already taken.
cory
Except for County Guides copy may be changed
monthly.
No additional charges for typesetting or illustrations (except for colour separations)
For illustrations iust send photograph or artwork.
Colour Ad rates do not include the cost of

Printed - web-offset.

AYMENT

All single insertion ads are accepted on a pre-
payment basis only, unless an account is held. subject to satisfactory credit references Accounts are strictly net and must be settled by publication date.

OR FURTHER MFORMATION CONTACT

Overseas payments by Internstional Monay Order Comr.

COwDIION:

10\% discount if advertising in both Radio Electronics World and Amateur Radio. A voucher copy will be sent to Display and Colour advertisers Ads accepted subject to our standard conditions.

A New Approach to HF Antennae Design

Compare these performance figures of Hightech Antennae's MBFr80 with the best 3 element antennae available today.

Typlcal Spec, for 3 element Trl Band Beam
No. of Elements - 3
25dBd
6dBdmin.
1.5:1

1 kW (100% duty cycle)
50 hm
4.2 m
8.2 m

75 mph
16.3 kg
$80 \mathrm{mph}=47 \mathrm{~kg}$

Hightech Antennae's
 Spec for MBFr80

2 Parasitic + \mid Absorber Element
43dBd
Better than 4.5dBd
1.1:1

2kW (100\% duty cycle) 5kW peak 50 ohm

4 m
4.6m

100 mph
8 kg
$100 \mathrm{mph}=23 \mathrm{~kg}$

The front to back ratio advantage from Hightech Antennae's MBFr80 is 18 dBd better than other antennae available today. Remember this is a 3 S-unit noise reduction in unwanted directions over and above other antennae.
$6 \mathrm{dBd}=1$ S-unit
Massive front to back ratlo. This is more important than forward gain on today's crowded amateur bands.
Flat VSW/R across all HF bands.
No need for the purchase of ATU's for those with solld state PA's. No need for the purchase of baluns.
A complete break with the coil and capacitator trap arrangement with, of course, its associated losses, restricted bandwidth etc. Expandability: Extra parasitic element (director)

Extra absorber element for even greater front to back ratio.
With the conversion kits available, a 3 element, 3 band beam with an enormous front to back ratio will become the standard for others to follow.

\mathbf{H}	\mathbf{I}	\mathbf{G}	\mathbf{H}	\mathbf{T}	\mathbf{E}	\mathbf{C}
\mathbf{H}						

NMCROURVE MODULES LTVO

2MEREMULTIMODE TRANSVERTER MITT14428-R

FEATURES

$\star 25$ watts Tx output

* GaAsFET RF stage
\star Transmit ALC circuit
* 13.8 V DC operated
* Repeater shift (normal, simplex, reverse)
* High level DBM mixer
* LED Bargraph Power Meter
\star RF Vox-Adjustable delay \& PTT override

SPECIFICATION

Ceneral

Input freq range Output freq range Repeater shift
DC requirements
: $28-30 \mathrm{MHz}$
: $144-146 \mathrm{MHz}$
: Simplex, normal, reverse
: 13.8 V DC \& 6 Amps

Transmit Section

Output power
Input level range
ALC range
Modes of operation
Spurious outputs

Receive Section

Gain	$: 20 \mathrm{~dB}+/-1 \mathrm{~dB}$
N.F.	$: 2 \mathrm{~dB}$ or better
3rd order intercept	$:+19 \mathrm{dBm}$ (output)

: 25 watts $+/-1 \mathrm{~dB}$
: $1 / 4 \mathrm{~mW}$ to 300 mW
: 20dB
: SSB, FM, CW, AM, FSK
: -65 dB or better

DESCRIPTION

This new transverter has been designed to allow users of existing HF band transceivers to establish a first-class transceive facility on the 144MHz band.
The MMT144/28-R incorporates many new and exciting features which combine to make this product simply superb.

Recelve Section

An NEC GaAsFET is employed in a noise-matched configuration feeding a high level double balanced mixer via a band pass filter. IF gain is achieved by a JFET post amplifier. This combination produces a good signal to noise ratio, excellent immunity to overload and cross modulation, resulting in a rugged receive system having a third order output intercept point of +19 dBm .
Two separate low-noise oscillators, operating at 116.00 and 115.40 MHz are included, running from a regulated 8.2 volt supply. Selection of the wanted oscillator is achieved by a quad op-amp circuit, controlled by the front panel mounted 'MODE' switch. This provides simplex, repeater and reverse repeater operation. The output of each oscillator feeds a JFET buffer amplifier via the quartz crystal which acts as a filtering element to reduce amplitude noise and reciprocal mixing products. The resultant high level injection is extremely pure and free from harmonics.

Tranamit section

The incoming 28 MHz signal, in the range $1 / 4$ to 300 mW , is initially fed to the RF VOX circuit, ALC control circuit and the input level control. This signal is then fed into a pair of MOSFETs in a balanced mixer configuration, together with the local oscillator injection, to produce the wanted signal in the range $144-146 \mathrm{MHz}$.
This signal is then amplified by several linear stages up to the specified output power of 25 watts. A visual indication of relative output power is provided by a front panel mounted LED bargraph display.
A rear panel mounted level control allows the user to adjust the
sensitivity of the transverter to suit the transceiver in use, and a front panel mounted RF VOX delay control allows adjustment to suit SSB/FM modes.
The ALC circuit has a 20 dB dynamic range and has been incorporated to ensure that a particularly clean signal is produced by the transverter. This is an important useful feature which will virtually eliminate compressed signals and the resultant problems caused to local stations.

PRICE: £215 inc VAT ($p+p$ £3.50)

HOURS:

MICROWAVE MODULES LTD
Brookfield Drive, Aintree, Liverpool L9 7AN, England.
Telephone: 051-523 4011.
Telex: 628608 MICRO G.

[^0]: All offers subject to availability on a first come first served basis. Prices subject to change without notice, all correct at

