

AMTRONTCS (TONBRIDGE) G4 SYZ
 THE AMATEUR RADIO SPECIALISTS IN KENT

9am-5.30pm Tues. Sat 6pm. Fri Closed Monday

APPOINTED DEALER FOR YAESU FDK AZDEN ICOM KDK. JAYBEAM BNOS WELZ ADONIS DRAE FOR TOP (ATU). TONO DATONG. MET. TELECOM APPROVED PHONES RSGB ROOKS. AMTRON UK KITS.

NEW FDK 750 xx 2m Muli 20 watts. 2UFO. CW Semi Break in side tone monitor. Auto scanning opinal 430 MHz expander £299.00

FDK 7725×2 metre FM 25 watts. Transceiver. 2 vsos optional for 30 MHz expander £199.00

JAYBEAM ANTENNAS full range always in stock including domestic TV \& FM (Logbooks).

SEND LARGE SAE for full lists \& free its Amateur Radio Car sticker * Dec 31 Securicor $£ 7.0024$ hour service.

FOR TOP Amateur Television south of Englands main agent. Full range including the new 24 cm ATU TRANSMITER

SINCLAIR ZX 81 SPECTRUM 16k £95 All spectrum keyboards $£ 45-48 \mathrm{k}$ upgrades. Morse tutor G4RWT $£ 4.50$

ALSO IN CAR STEREOS TELECOM PHONES. ANSWERING SYSTEMS. AMTRON UK KITS

A VERY MERRY CHRISTMAS FROM PETER G4 TLB TO ALL MY CUSTOMERS IN 1983 AND A PROSPEROUS NEW YEAR TO ALL AMATEURS IN 84.

YAESU 480R 2 m Mulimode 30W SSB 10w FM 2UFO. Scanning Tone burst on MC.

Also 780R 70cms version

[^0]
CONTENTS

DESIGNS

26 Poor Man's Spectrum Analyser - Part 2 looks at testing and alignment
39 Communications Building Blocks - Front ends Part 2
61 A 4001/4011 Tester - One Night's Work
63 Continuity Tester - Also One Night's Work
FEATURES
22 Inside the Sinclair Flat TV - An in-depth probe
32 A Circuit Designer's Guide to Batteries - Structure and application
44 Data File on Op-Amps - Part 1 gives an overview
50 Metal Detectors in Warfare - Their variousapplications aired
57 LM1821S Video IF PLL Synchronous Detector - Data Brief
63 Tantalum capacitors - A structural view
69 SL6270 Gain Controlled Audio Amplifier - Data Brief
73 Notes from the Past - Global communication takes its first tentative step
84 An RS232C Interface for your Dragon 32 - Philosophy and operation
REVIEWS
75 ALDEN Weather Chart Recorder Kit
80 Digithurst MicroSight I - Part of Our Expansion Bus series$\frac{2}{5}$ News
8 Product News
19 Letters to the Editor
89 Amateur Radio World
92 ATV on the Air
96 Short Wave News
98 DX-TV Reception Reports
101 Next Month in R\&EW
Editor

JEAN GILMOUR

Advertisement Sales

$\begin{aligned} & \mathrm{C}_{2} \end{aligned}$	

Subscriptions \qquad 01-6843157

Accounts \qquad CLARE BRINKMAN
\qquadPETER WILLLAMSGeneral Manager
\qquad ALAN GOLBOURN

ON SALE: Second Friday of the month preceding cover date
NEXT ISSUE: Cover date January 1984 on sale 9 December 1983

PUBLISHED BY: Radio \& Electronics World Magazines, Sovereign House, Brentwood, Essex CM14 4SE, England (0277) 219876 PRINTED: In England
ISSN: 0262-2572
NEWS TRADE SALES BY: Seymour Press Ltd, 334 Brixton Road, London SW9 7AG Tel: 01.7334444

New Publishers

Welcome to the new improved Radio \& Electronics World.

We are pleased to announce that we have bought Radio \& Electronics World from its previous owners, Broadercasting Ltd.

Our policy is to produce the most innovative, absorbing and best selling magazine embracing the fields of communications, electronics and computers and the interaction of these areas.

Our aim is to continually improve the magazine and provide you the reader, with what you want. We will be pleased to receive your comments which will be invaluable in helping us to plan future issues.

Free supplement

The second and third parts of the Amateurs Handbook, forming a comprehensive compilation of data for everyone using the airwaves, will be included completely free of charge, with the January and February issues of Radio \& Electronics World.

Publication date change

For production reasons we have altered the publication date of Radio \& Electronics World to the 2nd Friday of the month - so the January issue will be on sale from 9 th December.

Don't miss the next issue
Do not risk being disappointed by not being able to obtain your copy. Place a regular order at your newsagent or take advantage of our post-free subscription offer.

Whilst every care is taken when accepting advertisements we cannot accept responsibility for unsatisfactory transactions. We will, however, thoroughly investigate any complaints.
The views expressed by contributors are not necessarily those of the publishers.
Every care is also taken to ensure that the contents of Radio \& Electronics Worid are accurate, we assume no responsibility for any effect from errors or omissions.

Audk Bureau of Circulations membership applied for (C) Copyright 1983

Radio \& Electronics World Magazines

WATERS \& STANTON ELECTRONICS
 TRIO - YAESU • ICOM • FDK - AZDEN - WELZ - JAYBEAM - MCROWAVE MODULES - DATONG - ETC

WE GUARANTEE LOWEST PRICE IN UK! MULTI-750XK 2M ALL MODE TRANSCEIVER

The new MULTI-750XX All-Mode transceiver from FDK incorporates all the latest circuit technology and features demanded by radio amateurs throughout the world.
A unique feature is the option of extending its coverage to $\mathbf{4 3 0 \mathrm { MHz }}$ expander unit, EXP-430X, thus providing a 2 band VHF/UHF system. Features include:

- More than 20 watts of output power
- Bright Blue Flourescent Display
- Full scanning function through micophone
- Double VFO System

Low power switch (1W) for local contacts

- CW semi break/in circuit with sidetone

LARGEST AMATEUR RADIO RETAILER IN THE SOUTH EAST

HORNCHURCH BRANCH:
HOCKLEY BRANCH:-
HEAD OFPICE

12 NORTH STREET, HORNCHURCH ESSEX. TEL: 04024 - 44765 Openwa hours 9.30-5.30 EC WED 1 pm
18-20 MM ROAD, HOCKLEY, ESSEX TEL: 0702206835 OPENHG HOURS $9-5.30$ EC WED 1 pm

Highways of The Future

British Telecom has notched up yet another world first in the field of optical fibre communications, this time with the first commercial single-mode optical fibre $140 \mathrm{Mbit} / \mathrm{sec}$ link. The cable in question runs between Luton and Milton Keynes, a distance of some 17 miles, and the losses are so low that the data signal does not need to be boosted by any of the intermediate regenerators that have to be installed every 4-6 miles along multimode cables. This represents yet another step towards a system that should (in the long run, at least) bring significant savings in capital and operating costs. Each $140 \mathrm{Mbit} / \mathrm{sec}$ system, by the way, could carry nearly 2000 simultaneous phone calls or two colour TV pictures.

These and other similarly influential developments were the subject of a recent IEEIE national lecture given by MrCA May, Director of Research at British Telecom. Modern technology has not only provided us with optical fibres with all the advantages of size, weight and cost over coax for handling the same number of telephone calls - and communication via pulses of light: it has also given us the opportunity for 'digitalisation' of our communication services. 'Digitalisation' may be a bit of a horrible word but transmission of information in digital rather than analogue form has two very important advantages. The first is negligible distortion and so legibility is readily maintained: the second is compatibility with computerised systems. The latter opens up a whole new world for communications and already the telephone network is beginning to be used for the transmission of computer data, electronic mail, facsimile and visual images.

The drive behind all these developments is towards a totally integrated service network offering the customer maximum choice over transmitter, receiver and form for the information exchange. Much of the technology for this is incorporated in the hardware and software of modern telephone exchanges, with the principal problems being ones of finding methods of handling both analogue and digital signals and of finding appropriate switching algorithms. Mr May pointed out that there was some useful research on the latter to be done, probably in some university computer science department. The software is obviously the more flexible component here and so the new concepts of the future will probably be incorporated via this medium.
Another major area of recent progress is satellite-based communications. Their disadvantage is that the route via a satellite takes around 0.25 sec , but this is easily outweighed by their power (in terms of the number of communications channels that can be supported and the fact that it takes a maximum of two satellite hops to get anywhere round the world) and the flexibility offered through satellites essentially being a broadcast medium. The latter has the advantage that a suitable receiver can be set up almost anywhere, the only problem being pointing it in the right direction to 'see' the geostationary satellite. Indeed the common 3 m dishes can be used mounted on a trailer. However, its broadcast nature does cause problems of security though these can readily be overcome with the use of encryption techniques.
One aspect of all this development that is not yet clear is whether the pattern of the exchange network will change. (We are already seeing a reduction in the number of exchanges with the present 400 or so analogue exchanges due to give way to about 60 digital ones by 1988.) One possible leader in any such change is cellular radio, although how influential this will be could depend on its overall success. This particular network could well find itself in trouble through running out of available spectrum.

An event to remember

Members of the
Farnborough and District Radio Society made intensive use of the airwaves from 14th October until the 22nd, working the bands both CW and SSB in the hope of making contact with radio amateurs all over the world. The reason for all this activity was a scheme to commemorate the 75th anniversary of Colonel SF Cody's first sustained powered flight in Britain on 16th October 1908 over Laffans Plain, an area now accustomed to the rather more sophisticated machines that feature biennially at Farnborough Air Shows. And the arrangements made included the use of a special callsign-GB2CDY - and a
special QSL card, pictured here.

The station operated from the local Railway Enthusiasts Club, where the radio society meet and the site for an Open Day on the 15th attended by the local mayor and Colonel Cody's grandson. The event also featured displays set up by some of the sponsors of the commemoration, three amateur radio stations and an amateur TV station, as well as a number of individual displays.

The flight 75 years ago, by the way, came to a somewhat undignified end when the left wing struck the ground as Colonel Cody banked to avoid a clump of trees. The flying machine-though,
fortunately, not Colonel Cody - was substantially damaged.

A story of a sponsorship

Back in 1982, which you may remember was Information Technology Year, BP Oil announced that it was issuing another in its sequence of Challenges to Youth. This time the problem was to design and construct a robot to perform a simple but realistic task - 'sniffing out' a small cube, picking it up and returning to base.

The Buildarobot Competition attracted more than 400 enquiries from schools, of which just 21 were chosen as finalists, after convincing the judges that they had the ideas and the enthusiasm to grasp and extend the science of robotics. And one of these was the Royal Latin School, Buckingham, whose team is pictured here. They unfortunately didn't win

anything in the Final - held on 24th October at the Army's

WOOD \& DOUGLAS

BUILDING SOMETHING THIS AUTUMN? WE CAN PROBABLY HELP!

Check below for some of our current kits and modules to fill those winter evenings. Our new package offers make generous savings for the keen constructor white the new 70PAS GaAs FET pre-amp makes a simple evening job to whet your appetite. Check through the list and should you need further guidance ring our seles staff or send a large SAE for the latest list.

Mow Package Oftere

1. 500 mW TV Transmit
2. 500 mW TV Transceive
3. 10W TV Transmit
4. 70 cms 500 mW FM
5. 70 cms 500 mW FM Transcelve
6. Linear/Pre-amp 10W
7. Linear/Pre-amp 25W
8. 70 cms Synthesised 10W Transceive 10. 2M Synthesised 10W Transceive

70 cmse Equipment Transceiver Kits and Accessories FM Transmitter (0.5 W) FM Receiver
Transmitter 6 Channal adaptor Receiver 8 Channel Adaptor Synthesisor (2PCB s) Synthesiser Mansmit Amp Synthesiser Modulato PIN RF Switch Converter (2 M or 10 M if)

TV Producte
Receiver Converter (Ch 36) Pattern Generato
TV Modulator
Ch 36 Modulator
3W Transmitter (Boxed)
3W Transcelver (Boxed)
Power Amplifiers (FiWCW) Use 50 mW to 500 mW
500 mW to 3 W
500 mW to 3 W
300 mW to 10 W
10 W to 40 W
Combined Power Amp/Pre-Amp

Lnears

$3 W$ to 10 W (Compatible ATV1/2)
Pre-Amplifiers
Bipolar Miniature (13d8)
MOSFET Miniature (14 dB)
RF Switched (30W)
GaAs FET (16d8)

24 Equipmerk

Trascelver Kits and Accestorlee FM Transmitter (1.5W)
FM Receiver
Synthesiser (2 PCB's) Synthesiser Multi/Amp (1.5W O/P) Band pass Filter PIN RF Switch

Power Amplifera/Lineare

1.5 W to 10W (FM) (No changeover) 1.5 W to 10W (FM) (Auto-changeover) 1.5W to 10W (SSB/FM) (Auto-changeover) 1.5W to 25W (SSB FM) (A Ato-changeover)

Pre-Amplifiers

Low Noise, Miniature
Low Noise, Improved Performance
Low Noise, RF Switched
Coneral Accomeries
Toneburst
Piptone
Kaytone
Relayed Kaytone
Regulator
Solid State Supply Switch
Microphone Pre-Amplifier
Reflectometer
TVI Filter (Boxed
8M Eculoment
Converter (2 M i.f.)

70FMOST4 + TVM1 + BPF433) As 1 above plus TVUP2) + PSI 433) (As 1 above plus 70FM10 + BDX35) (As 2 above plus 70FM10 + BDX35) (70 'T4 + 70'R5 + SSR1) (As 5 above plus 70 FM10)
(144PA4/S +144 (IN $10 B$) (144PA4/S + 144L(IN25B) $(\mathrm{R} 5+\mathrm{SY}+\mathrm{AX}+\mathrm{MOD}+\mathrm{SSR}+70 \mathrm{FM} 10$ (R5 + SY + SY2T + SSR +70 FM 10)
cod

Aneembled

Code	Aneomblac	K
70FMOST4	38.10	24.95
70FMO5R5	68.15	48.25
70MCO6T	19.85	11.95
70MCO6R	27.15	19.95
70SY25B	84.95	60.25
A-X3U-06F	27.60	17.40
MOD1	8.10	4.75
BPF433	6.10	3.25
PSI433	7.10	5.95
70R×2/2	27.10	20.10
TVUP2	26.95	19.60
TVPG1	39.93	32.53
TVM1	8.10	5.30
TVMOD1	10.15	6.95
ATV-1	87.00	-
ATV-2	199.00	-
70FM1	14.65	8.85
70FM3	19.65	13.25
70 FM 10	3070	22.10
70FM3/10	19.75	14.20
70FM40	58.75	45.20
70PA/FM10	48.70	34.65
70LIN3/LT	25.75	18.60
70LIN3/10E	39.10	28.95
70 PA2	7.90	5.95
70 PA 3	8.25	6.80
70PA2/S	21.10	14.75
70PA5	19.40	12.65

144FM2T	36.40	22.25
144FM2R	64.35	45.76
144SY25B	78.25	59.95
ST2T	26.85	19.40
BFP144	6.10	3.25
PSI144	9.10	7.75

144FM10A	18.95	13.95

33.35

144LIN10B 144 LIN25B
144 LIN25C 35.60
40.25

8.10	6.95
10.95	7.95
14.40	

144PA3 44PA4/S 18.95
6.20

TB2
PT3
PTK3
PTK4R
REG1
SSR1
MPA2
SWR1
SWR1
CWF1
HPF1

6XR2
20.00 .蹋

> Unit 13, Youngs Industrial Estate Aldermaston, Reading RG7 4PQ Telex 848702 Tel: 073565324

School of Electronic Engineering, Arborfield, Berkshire-indeed, they were one of a number of teams whose robots did not fulfil the task on the day. What was special about them was that R\&EW, together with Ambit International, had given them support following an initial request for help with components. The story of their design, which involved a robot controlled by a BBC Micro responding to signals from dual scanning light sensors made from bicycle lamps, will be told in the near future in R\&EW.
The winner of the competition was Hinchingbrooke School, Huntingdon, whosteered their robot by pulse width modulated (PWM) signals fed to the kind of servo you would find on a radio controlled model aircraft or car: it took just 4.7 sec for this robot to complete the task. Their prize of $£ 500$ and the Buildarobot trophy was presented by Kenneth Baker, who emphasised in his address the value of new technology in creating the wealth of the future and expressed his delight at the interest and inventiveness shown by all the finalists.

In the eye of the beholder

According to Alex Durrant, quality control manager at Protronic 24, some purchasers of customdesigned PCBs place more emphasis on the appearance of the board than on its inherent quality. This opinion accompanied the announcement that Protronic 24, an independent designer and producer of PCBs, had been granted BSI approval, a step that called for the building of a suitable secure area to serve as a bonded materials store and in-depth documentation of procedure: good customer references, it seems, were not enough.
But it's not the BSI that Mr Durrant feels strongly about; his concern is based on instances when buyers have sought to reject jobs as defective because certain contacts had not been gold plated when there was, in fact, no need for them to be
so. At the same time, he has been made aware of other PCBmanufacturers that have produced boards high on appearance but low on functionality with plating through the hole well below the required thickness, for example.
Protronic 24 has long used sophisticated process controls and test procedures, and so its products should always come up to standard and may often be better than those of its competitors. However, Mr Durrant may well have a valid point about the way a typical customer views the product he is intending to pay good money for.

The latest fashion accessory at Harvey Nichols an Apricot microcomputer. Today's shoppers at certain stores within the Debenham's empire can-given suitable financial resources-buy one of these ACT machines from the shop-within-a-shop there known as Greens Business Systems. The sales campaign is designed with the executive in mind and is said to reflect the current state of affairs whereby
'Microcomputers are no longer the preserve of a commercial elite: they've hit the High Street. 'Training sessions will be held in-store through which most users should pick up the basics of microcomputing in a couple of hours. The branches of Debenhams in question are, by the way, Oxford, Guildford, Harlow, Staines, Romford and Southampton.

Company News

The American Company of Dielectric Communications, a recognised leader in the field of RF technology, has picked out Chapman Electronics (TCE) of Epping, Essex, as a key element in its present drive to improve product availability and associated back-up services in Europe. TCE already handles a number of Dielectric's lines which extend from the proven to the novel, e.g. diplexers. It now incorporates in its range the coaxial switches and patch panels that facilitate fast RF switching with maximum isolation and low VSWR.

Axiom Electronics is attempting to give the lie to the opinion that 'ROMs have unacceptably long lead times'. In conjunction with Motorola, it has established a service whereby a 64 K ROM could be taken to prototype level ($150-$ 200 pieces) in six weeks and to the 10,000-piece production level just eight weeks after approval. Axiom sees the products of this service as representing a competitive alternative to EPROMs.

Ferranti Computer Systems has signed an agreement with Advance Technology (UK) whereby it produces the new Advance 86 microcomputer - which, it is no surprise to learn, is designed around a Ferranti ULA. The agreement covers PCB assembly, board testing, general assembly, burn in and full functional testing. Ferranti's testing facilities are said to be among the most advanced in Europe.

Racal Electronics has recently come to an agreement with Thorn Ericsson Telecommunications whereby the latter develops the system that will form the basis of the cellular radio service Racal is hoping to get into operation in 1985. Equipment for telephone exchanges, signal processing, radio channel handling and base stations 'meet' the UK Total Access Communications System (TACS) specification is to be supplied by Thorn Ericsson in a deal involving as much as $£ 100$ million before the end of the decade.

RFI Shielding, believed to be Britain's only manufacturer of shielded windows, is to start offering custom designed (and manufactured) units in addition to its standard range. These will encompass the customer's requirements with regard to choice of materials as well as his electrical, environmental and otherphysical specifications. Applications for RF shielded windows include instrument panels, computers, communications equipment and sensitive measuring devices.

Oric Products - father of the Oric 1, a familiar sight in your local Lasky's or Dixon's - had an eventful month in October. On the 5 th, it was acquired by Edenspring Investments in a move to have sufficient financial backing to accelerate its programme of R \& D aimed at developing 'a number of new products to expand Oric's product base, not solely in the computer field'. Then its main assembly plant, Kenure Plastics at Feltham, suffered a major fire on the 13th -but production was able to start the following day in a new factory, making everyone confident that they would fulfil all the October orders by the end of that month. A few days later, Oric announced that Oric \dagger 's were to be sold in all branches of the Comet and Rumbelow chains.

Dawne Instruments and Electronics has achieved its first major distributorship in becoming North-East Stockist/Distributor for GEC Measurements. The firm already handles a wide range of laboratory equipment (including Apple microcomputers) which it backs up with data, appropriate guarantees and the assembly of prototypes. It has now taken on GEC's range of multimeters and portable test equipment.

PRODUCT

Featured on these pages are details of the latest products in communications, electronics and computers. Manufacturers, distributors and dealers are invited to supply information
on new products for inclusion in Product News
Readers, don't forget to mention Radio \& Electronics World when making enquiries

ELECIRONICS RESINS

Ciba-Geigy has announced a new range of epoxy resins that have been specially formulated for the electronics industry. The Araldite 1300 range comprises 16 formulations, developed individually with the intention of providing a product to suit almost every application. As a result, the resins are either hot or cold setting and include filled and

unfilled systems, resins that offer a considerable degree of flame retardancy, flexible resins and low viscosity impregnation systems.
Many of the formulations with in the range are supplied in preweighed quantities to ease mixing, while two systems are available in 0.5 kg sachets designed for use in less extensive applications. A wallchart detailing the complete Araldite 1300 range in terms of processing information and physical properties is also available fromCiba-Geigy.

Plastics Division, Ciba-Geigy, Duxford, Cambridge. CBZ 4QA

EXIENDED FREQUNCY GENERATION

Hewlett-Packard has announced that its HP 8683D and 8684D cavity-tuned signal generators now include an internal doubler system that extends the available frequency bands and provides doubled FM deviation.

The internal pulse generator within these models (and their forerunners, the 8683B and 8684B) generates pulses at $10 \mathrm{~Hz}-1 \mathrm{MHz}$, with pulse widths of $100 \mathrm{nsec}-100 \mathrm{msec}$ and pulse delays of $50 \mathrm{nsec}-100 \mathrm{msec}$. These signals can readily be amplitude modulated at depths of up to 70% and rates of up to 10 kHz . The new models offer DC-10MHz modulation and +10 MHz deviation, making them suitable for satellite-video applications. They also feature high performance pulse modulation in both the main and the doubled bands for use in radar and EW applications which require rise/fall times shorter than 10 nsec and an on/off ratio of more than 80 dB .

16-BIT MONOITHIC DAC

The DAC701 and DAC703 are both versions of what is believed to be the first 16 -bit monolithic digital-toanalogue converter that also incorporates a precision Zener voltage reference and a low-noise fast-settling output op-amp. Both of these devices accept binary-coded TTL and LS TTL input signals and employ current switching in providing a monotonic (to 14 bits) output over the specified temperature range of either $0-70^{\circ} \mathrm{C}$ or -25 to $+85^{\circ} \mathrm{C}$: the difference is in their output voltage range which is $0-10 \mathrm{~V}$ for the DAC701 and -10 to +10 V for the DAC703.

Burr-Brownhas designed the new converters to be pin compatible with the industry standard DAC70, 71 and 72 families, so that they can be used to upgrade existing systems. Applications are envisaged in a wide range of mini/microcomputer-based industrial control systems and other instrumentation, including that operated by the Military as the devices pass the leak requirements of the appropriate standard. Other advantages include a maximum linearity error of 0.003%, a settling time of

PRODUGT NEWS

$8 \mu \mathrm{sec}$ following a fullscale input change and drifts of no more than 18 ppm of $\mathrm{FSR} /{ }^{\circ} \mathrm{C}$.

Burr-Brown International Ltd, Cassiobury House, 11-19 Station Road, Watford, Herts. WD11EA.

ULIRATHIN TRANSFORMIR
The OB range of transformers supplied by Avel-Lindberg includes one said to be the thinnest transformer yet. The 0.8VA model shown here is less than 10.5 mm thick and so can fit even the smallest card frames.
The facilities offered by these transformers include dual primaries for 240 or $120 \mathrm{~V}_{\text {AC }} 50 / 60 \mathrm{~Hz}$ mains operation, together with twin centre-tapped secondaries that give
$10 \mathrm{~V}(80 \mathrm{~mA})-48 \mathrm{~V}(17 \mathrm{~mA})$ in series and $5-24 \mathrm{~V}$ in parallel. The windings are on separate bobbins to give maximum isolation and low interwinding capacitance. The normal method of fixing them

to a PCB is to direct solder the connecting pins, but they can also be screwed to the board if extra mechanical strength is required. The advantage of having transformers of this level of power rating (the other members of the range have ratings of $2-14 \mathrm{VA}$) is that they offer the option of extra power capacity actually on the board, for example, as a modification to an existing design.

The transformers are prooftested at 5 kVac and $120^{\circ} \mathrm{C}$, and they conform to IEC 65, BS415 and VDE 0550 regulations.

Avel-Lindberg Ltd, South Ockendon, Essex. RM155TD

SOLID STATE

 'TAPE RECORDER'Johne \& Reilhofer's Universal series of PCM data acquisition equipmenthas
gained a new member-a high capacity semicoriductor storage memorysystem known as the 32 KS 13 . In common with other members of the series, each module within this system receives up to eight analogue signals, samples them and uses this data to represent each sample by a 12 -bit word, the individual data streams being multiplexed on a time division basis.
Normally the resulting PCM serial bit stream is then transmitted to a 4-track tape recorder where it is recorded on one track. The solid state system mimics this through having four modules, each handling eight channels and each storing up to 2^{18} (~ 256,000) measurement válues. This data can subsequently be accessedvia a RS232driven memory controller and output either via a RS232 port or to a computer by using the DMA handshake.

The 32KS13 should not be seen as just part of the Universal series; it is also electrically compatible with

New boxed pre-aligned and tested. Complete with ferrite rod aerial, 6 way function switch, drive drum, cord drive, knobs, sample calibration scale and circuit diagram.

3 stage FM tuning, phase lock loop decoder, L.E.D. stereo indicator, FM sensitivity 2 uV .

> Wavebands $\mathrm{FM} 88-108 \mathrm{MHz}$, LW 160280 KHz , MW 5251650 KHz .
> Output approximately 200 mV . Input 12 V DC.

Price only $£ 6.90$ including VAT plus $£ 1.50 \mathrm{P}$ \& P

PRODUCT NaWS

Johne \& Reilhofer's other PCM data acquisition systems. Its main role will be where the moving parts of a tape recorder are at risk, for example where there is much vibration or high dust levels. Its other advantage is its zero start-up time, which is particularly beneficial where transients are of interest.

Johne \& Reilhofer (UK) Ltd, Oddstones House,
Thompsons Close, Harpenden, Herts. AL54ES

GRAPHICS TABLIT

Terminal Display Systems (TDS) has announced the first series of graphics tablets to be both made and marketed by the firm. The top of the range tablet shown herethe HR48-is intended for professional use by such people as cartographers, seismologists and engineering designers.
Of more interest to readers of R\&EW should be the 'baby' of the series, the TDS12, which is said to be compact, easy to use, lightweight, portable and - most of alllow cost'. This device offers a highly accurate and linear method of inputting x, y coordinates from graphic data, the operating principle involved being that of phasesensitive electromagnetic induction with both the cursor and the stylus containing an energised coil. The tablet's active area is square with a side of $12^{\prime \prime}$ enabling it to take A4 documents eitherlandscape or portrait. Thus a grid representing a standard form can be used to facilitate data
entry into your microcomputer.

TDS has put all the experience it has acquired in the past as a distributor for Applied Systems, Megatech, Ramtek and Gould among others (a role that it still performs) into the design of these tablets. The micro that drives the tablet is programmed to provide the interface to any popular microcomputer, making the system very easy to incorporate into an established system.

Terminal Display Systems Ltd, Philips Road, Whitebirk Estate, Blackburn, Lancs, BB1 5TH

LOGICAL CHOICE

DATA I/O has recently published a 32-page booklet covering all aspects of programmable logic including comparisons with fixed function LSI/MSI and

custom logic. Programmable Logic-A Basic Guide for the Designeralso takes the reader through a specific

TRANSTEL DOT MATRIX PRINTER. Compact. Serial Interface. 230 Volts. 888 mech.
$\mathbf{g}^{\prime \prime}$ MONITOR. CASED. Non Standard. With Into. Ero MOCh MITOR CASED. Non Standard. With Into E18 anch
COSSOR OSCILLOSCOPE CDU150. Dual Trace COSSOR OSCILLOSCOPE CDU150. Dual Trace
$35 M H Z$ Delay Sweep E190 ewch
SOLARTRON OScIIOSCOPE CD1400 Dua SOLARTRON OSCILLOSCOPE CD1400. Dual Beam $15 M H Z$ C90 onch
TELEQUIPMENT OSCILLOSCOPE S43 Single TELEQUIPMENT OSCILLOSCOPE SN
Beam $25 M H Z$ Ees each TELEQUIPMENT OSCILLOSCOPE S54 Single Beam 10 MHZ Solid State cos eech ADVANCE SIGNAL GENERATOR type 62 150KHZ-220MHZ CW/Mod 830 each Manual e25 eech AVO TRANSISTOR TESTER type TT 169 with loads. As new. $\mathbf{z o}$ men

GEARED MOTOR117/234 V 50HZ Input. 4" dia $\times 5$ $1 / 4$ "deep. $1 / 4^{\text {" }}$ shaft. NEW. £5 ea. P\&P $£ 4$ 40 VOLT AC MOTOR (Turntable style) 42 8 mm . Shaft $43 \times 4 \mathrm{~mm}$ dia. $£ 1.50$ estyse OTOR 12 V DC input 3
Now. 3.50 each P\&P $\sum_{3} 310 \times 4 / 2$ deep. $1 / 4$ shaft SYNCMRONOUS MOTOR 2 Phase 9 volt AC. 375 used as DC STEPPING MOTOR \& STEPS PER REV. E1 each
stepping motors available. please ENQUIRE

GEARED MOTOR 120 V 50 Hz . 4 Watt 1 rpm . 2 "dia x ORIN SNAll TYPE BLOWER 230 V 22 Wath Overall size $5 x+1 / 2{ }^{2}$. 4 each P\&P $£ 2$ CENTAUR FANS 4 年 2.115 V New. $\$ 4.5$

RANSFORMERs - All Brand New. All 240 volts

input.

Sec 12V 100MA -50p each. each. Sec $6 \mathrm{~V} 1.66 \mathrm{~A}-1.50$
AANSFORMER $-220-240 \mathrm{~V}$ input. Sec $0-12 \mathrm{~V}$ \& $0-12 \mathrm{~V}$ \& $0-24 \mathrm{~V} 1$ Amp (2 windings) E 2 each

TORODIAL TRANSFORMER $0-115-230 \mathrm{~V}$ Input. Sec. $13.5-0-13.5 \mathrm{~V}$ 8VA. 1.50 each. 10 off $£ 12$
ORODIAL TRANSFORMER $0-120-240 \mathrm{~V}$ Input. Sec $0-12 \mathrm{~V} ; 0-12 \mathrm{~V} ; 0-12 \mathrm{~V}$ 10VA per winding Encapsulated. £4
RAPID DISCHARGE CAPACITOR 8 mfd $4 K V$ K5 each P\&P E 2
HT CAPACITORS 200pt; 500pf; 1000pt BKV 20 p each 10 off $£ 1.80$
ILLUMINATED ROCKER SWITCH. 2 Pole 250 V 8 Amp Orange - 50 p each. 10 ofl £ 4
SLOTTED OPPO SWITCH with data - 50 p each. 10 of $£ 4$
SPECTRAL RELIANCE TEN TURN POT. 100 ohm; 500 ohm Brand New. 75 p each. 10 off E 6
SLIDER POTENTIOMETER. Twin Gang. $200 \mathrm{~K}: 2 \mathrm{M}-35 \mathrm{p}$ each. 10 off E 3
Single gang 10K. 25 p each. 10 off E_{2}
BELLING LEE CHASSIS MOUNTING FUSE HOLDER for $11^{1 / 4 "}$ fuse - $15 p$ each 10 off $£ 1$
IEC MAINS LEAD - 2 metre length Heavy duty -60 p each. 10 off $£ 5$.
4 CORE CURLY WIRE extending to 2 metres -20 p each. 10 off $£ 1.80$
MICROPHONE/EARPIECE INSERTS. Brand New - 75 p e each. 10 of I 6
TOKIN NOISE FILTER VG215FU. 250VAC $15 A 50 / 60 \mathrm{HZ}$. With fixing bracket New - $£ 2$ each

VU METER Scaled O-5 Syze $11 / 2 \times 7 / 80-50 \mathrm{p}$ each. 10 off £4
ITT LOUD SPEAKER 2 $1 / 4^{\prime \prime}$ dia. 50 ohm 0.2 Watt. New - 75 p each. 10 ott $£ 6.50$.
PCB KEYBOARD PAD. 19 Push Contacts. O-9: A-F plus 3 optional £1. 50 each 10 off $£ 12$
EYBOARD PAD. 12 Alma Reed Switches. Push to make $0-9 ;$ "; \& Blank. Size $3 \times 22^{1 / 2 \times 2 " n i g h ~} 4$ each. 5 off
15. P8P 3.

EHT Cable. Overall dia 5 mm . - 10 p per metre. 100 metre drum $£ 7.50$ P\&P £ 4.
ERT Cable. Overall dia $5 m m$. - 10 p per metre. 100 metre drum $£ 7.50$
Multi Colour RIBBON CABLE 10 way- 50 p per metre; 10 metres $£ 4$
14 way - 75 per metre; 10 metres 26,100 metres $\mathbb{1} 40$
Dual in Line 6 pin OPTO COUPLER 25p ea. 10 off 2 . IC SOCKET 16 pin 8 p ea. 100 off $\mathrm{\Sigma} 6$. EROM Texas 2564 c3 gach.
primy On Order of Coode e3. Minmum Pap E1.BO. VAT at 15% must be edded to TOTAL OP GOODS a pacriama.
 for all your modelling needs

With the Precision Petite range of miniature tools, modelling is made that much more interesting and satisfying. Every operation is catered for in a range of attachments and accessories;

DRILLING - SANDING - POLISHING GLASS ENGRAVING - TURNING SAWING - JIG-SAW WORK etc.

There are Drill Stands to hold the drill steady for fine work, a Lathe for miniature turning and a Circular Saw with self contained power, PLUS all the accessories you'll ever need. Find out about this remarkable range of miniature tools NOW.
Please send SAE for full details of complete range of drills and accessories.

T.N. SOUND TUNER Wwaid
 In the cut-throat worid of consumer electronics, one of the

 questions designers apparently ponder over is "Will anyone notice if we save money by chopping this out?" In the domestic TV set, one of the first casualties seems to be the sound quality. Small speakers and no tone controls are common and all this is really quite sad, as the TV compan ies do their best to transmit the highest quality sound. Given this background a compact and independent TV tuner that connects direct to your $\mathrm{Hi} . \mathrm{Fi}$ is a must for quality reproduction. The unit is mains operated.This TV SOUND TUNER offers full UHF coverage with 5 pre-selected tuning controls. It can also be used in conjunction with your video recorder. Dimensions: $11 \frac{134}{\prime \prime \prime} \times 8 \frac{1}{2}{ }^{\prime \prime} \times 3 \frac{1}{4} 4^{\prime \prime}$.

PRACTICAL ELECTRONICS STEREO CASSETTE RECORDER

の回0

UETVIUTR

- NOISE REDUCTION SYSTEM. AUTO STOP. TAPE COUNTER. SWITCHABLE E.O. •INDEPENDENT FLUTTER $0 . \%$ - RECORDIPLAYBACK I.C. WITH ELEC TRONIC SWITCHING. FULLYVARIABLE RECORDING BIAS FOR ACCURATE MATCHING OF ALL TAPES

Kıt includes tape transport mechanism, ready punched and back printed quality cırcuit board and all electronic parts emiconductors, resistors capacitors, har You only supply solder and hook-up wire.

Featured in April issue P
Reprint 50p. Free with kit Self assembly smulated wood
sleeve $£ 4.50+£ 150$ p\&p

SPECIAL OFFER!
E31.00 plus $£ 2.75$ p\&p Complete with case.

STEREO CARTRIDGES

PHILIPS
Magnetic cartridge with diamond stylus Model No. GP-397 III. Output 2 mV . Separation 22 dB . Styius 0.6 mm diameter. £3.95 each plus 60p P\&P

GARRARD
Sonotone Garrard Ceramic cartridge 75 mV . With turnover Sapphire

SPEAKER

 KIT 2 WAY$8^{\prime \prime}$ bass/mid range and 3\% iweeter. Complete with screw wire, crossover components and cabinet. Cabinet comes hat pre mitred D.I Y form Finish chipboard covered wood simulate. stze $14 \frac{1 / 2}{} \times 1 / 4^{\prime \prime}$ £ 12.50 plus $£ 1.75$ p\&p.

All mail to:

21A HIGH STREET, ACTON W3 6NG. Note: Goods despatched to U.K. postal addresses only All items subject to avalability. Prices correct at 30/9/83 and subject to change without notice. Please allow 14 working days from receipt of order for despatch. RTVC Limited reserve the right to up.

MONO MIXER AMP
ideal for Church
halls \& Clubhouses.
$\mathbf{~} 45.00+£ 2.00 \mathrm{p}$ \&p.
50 WATT Six individually mixed inpues for two pick ups (Cer. or mag.), two moving cotl microphones and two
auxiliary for tape tuner, organs, eic. Eight slider controls auxiliary for tape tuner, organs, etc. Eight slider control
six for level and iwo for master bass and treble, four six for level and two for master bass and treble, four
extra treble controls for mic. and aux. inputs. Size: $131 /{ }^{\prime \prime} \times 61 / 0^{\prime \prime} \times 33 / 4$ " app. Power output 50 watts R.M.S. (cont) for use with 4 to 8 ohm speakers. Attractive black
vinyl case with matching fascia and knobs. Ready to use.

Matching AKG Microphone to suit (with speech and music
filter). Complete with lead. ONLY $£ 9.95$ plus $75 p$ p\&p.

VHF STEREO TUNER KIT

 This easy to build 3 band stereo AM/FM tuner kit is designe For ease of construction and alignment it incorporates three For ease of construction and alignment
FEATURES: VHF, MW, LW Bands, interstation muting and AFC on VHF Tuning meter Two back printed PCB's. Read made chassis and scale. Aerial: AM - ferrite rod. FM - 75 or 300 ohms. Stabalised power supply with ' C ' core mains trans former. All components supplied are to strict P.E. specification, Front scale size $101 / 3^{\prime \prime} \times 21 / 2^{\prime \prime}$ approx. Complete with diagram and instructions.

H-FI TWEETER BARGAIN

GOODMANS TWEETERS 8 ohm soft dome radiator tweet. er (3% "sq.) for use in up to 40 W
systems; with 2 element crossover £3.95 each ($p \& p £ 1$) or £6.95 pair ($p \& p £ 1$ 50)

AUDAX 8" SPEAKER

HIGH QUALITY 40 WATTS RMS BASS/MIDRANGE

125W HIGH POWER AMP MODULES
 $£ 10.50$ £14.25

$$
+\mathrm{E} 1.15 p \& p+\mathrm{E} 1.15 p \& p
$$

The power amp kit is a module for high power applications disco units, guitar amplifiers. public address systems and even high power domestic systems. The unit is protected aganst short circuiting of the load and is safe in an open ci cuit condition. A large sated corghere rese The PC board is back printed, erched and ready to drill for ease of construction and the aluminium chassis is preformed and ready to use
Suppled with all parts, circuit diagrams and insiructions.
ACCESSORY: Stereo/mono mains power supply kit with transformer. $£ 10.50$ plus $£ 2.00$ p \&p.

SPECIFICATIONS
Max. output power (RMS): 125 W
Operating voltage (DC) 50.80 max
Lreads: 4-16 ohms
requency response measured @ 100 watts $25 \mathrm{~Hz}-20 \mathrm{KHz}$ Sensitivity for 100 watts: 400 mV @ 47 K Dimensions: 205×90 and $190 \times 36 \mathrm{~mm}$

STEREO CASSETTE DECK

Stereo cassette tape dec

 ransport with electioniManufacturer's surplus brand new and operationa sold without warranty
f11.95 plus $£ 2.50$ p\&p

Just requires mans transformer and input/outpu control to complete.

Supplied with full connectio details

AUDAX 40W FERRO-FLUID HI-FI TWEETER

$22 \mathrm{kHz} .60 \mathrm{~mm} \quad £ 5.50$
square. $8 \mathrm{ohm} \quad+60 \mathrm{p} \& \mathrm{p}$

EXTISSUE•NEXTISSUE•NEXTISSUE•NEXI

RF Sniffer to build picks out the functional ones from a collection of dubious Zener diodes

> Weather fax receiver described Review of plotters in our Expansion Bus series

LCD capacitance meter for you to build
Results of the Zilog Competition (see September issue)
Results of the August Caption Competition Using your Tiny BASIC Development System to tell you the time

PLUS all the usual features!
News • Products • Reception Reports ...
DON'T MISS the January issue on sale December 9th with part 2 of the AMATEURS HANDBOOK
To be sure of your copy of Radio \& Electronics World complete the newsagents order form on page 91 or take out a subscription by using the form on page 77

These articles are scheduled for the January issue, but they are all subject to confirmation

DEWSBUITY ELECTRONAS G4CLX

 \section*{UHF $\begin{aligned} & \text { ALL-MODE } \\ & \text { TRANSCEIVER }\end{aligned} \square=\square \square \square$ TRIO

 $\begin{aligned} & \text { ALL-MODE } \\ & \text { TRANSCEIVER }\end{aligned} \square=\square \square \square$ TRIO}

The TR 9500 is a lightweight compact 70 cm FM/USB/LSB/CW transceiver with advanced and convenient functons and many accessories at an affordable price.
The transceiver is designed for FM, SSB, and CW modes, utilizing a microcomputer which permits frequency selection in $100 \mathrm{~Hz}, 1 \mathrm{kHz}$, and 5 kHz , 25 kHz steps by means of two digital VFOs. The microcomputer also permits memory, scanning, searching, and other features

SP 120
$£ 395$ + carriage $£ 5.00$

A.E.A ISOPOLE TM 2 M AND 70 cm VERTICAL ANTENNAS
These antennas simply put your signal where you want it - on the horizon Most other VHF verticals radiate at 10.15 above the horicontal but the Isopoles unque (aestheticaliy pleasmg) decoupling cones stop any feeder radiation and ensure a proper O radration pattern. All users report dramatic inmpiovement over previous simiar sized ait previous simiar sized anterhas they have used. One of the hottest selling antennas in the U.S.A.
Isopole $144 \quad$ £36.00 (f2 50 P\&P \& Insurance) isopole $440 \ldots £ 59.00$ (E2 50 P\&P \& linsurance)

Access/Barclaycard accepted. Licenced credit broker
Dewsbury Electronics offer a full range of Trio Equipment always in stock.
We are also stockists of DAIWA - WELTZ - DAVTREND - TASCO TELEREADERS - MICROWAVE MODULES

Dewsbury Electronics, 176 Lower High Street, Stourbridge, West Midlands Telephone: Stourbridge (0384) 390063. After Hours:

FOR SALE

100 watt 70 cm linear microwave modules 177 ml $432 / 100$ cost $£ 229$ one hour's use only $£ 190$ o.n.0. George G6VS 4 Partridge Avenue, Thornton Cleveleys, Blackpool, FY5 2HJ. Tel: 0253 823541

- Heathkit SB101, PSU, Speaker Digital freq read-out. All manuals and cables $£ 200$ o.n.o. Creed envoy data printer 110 baud, serial ASC11 £50. Two LF/HF signal generators, AVO, TAYLOR $£ 10$ each. Tel: 023724564 evenings.
- Pye PF2 SU8 fitted including two batteries £45 MM 144/28 converter £20 o.n.o. Simple homebrew HF receiver including approx. 15 denco coils, radiomobile 8 track LW/MW radio, three channel sound light controller, stereo pre-amp TUAC SVA01. Offers or swap VHF UHF ATV gear or WHY. Tom Crosbie G6PZZ, 18 Holmer Lane, Holmer Lake, Telford, TF3 1QJ. Tel: 0952597506.
- Mizuho MX2. Two metre SSB hand-held complete with speaker mic. Offers or W.H.Y. (circa £85). (G8BXO) John Stacey, 3 West Park, South Molton, Devon, EX36 4HJ. Tel: 076953382.
- CBM 2032 computer printer dot-matrix perfect condx. First offer over £250. Taken copy of print sent on receipt of S.A.S.E. complete with IEEE cable, full H/BK and box paper also for $£ 400$ o.n.o. Sharp PG1500 computer, case,printer 8KRAM P.S.U. case. Two H/BKS pristine condx. Will swop or W.H.Y. the perfect portable computer. Ron Broadbent, 94 Herongate Road, London, E12 5EQ. Tel:(day) 01-987-5864.
- Trio TR2200G NI-Cads charger Mic. Case all Xtals £70. Want Datong Woodpecker Blanker. Trowell, "Hamlyn", Saxon Avenue, Minster, Sheerness, Kent. ME12 2RP. Tel: (0795) 873100.
- Microwave modules MMA144V preamp with RF switching for two metres FM or SSB. Uses 3SK88 device. Good condition. Bargain $£ 10$ o.n.o. Contact Chris G8PKM (not QTHR). Tel: Chelmsford (0245) 323323 after 5.30 or weekends.
Datong PC1 50 KHZ to 30 MHZ receive converter uses 2 mtr transceiver to listen to all HF bands $£ 90$ o.n.o. R.S.Blyth, 36 Mickleburgh Hill, Herne Bay, Kent, CT6 6DT. Tel: H/Bay 63799.
- Trio VF0120 for TS120 and TS130 transceivers only $£ 50$ o.n.o. Also Jaybeam 12XY with harness for 70 cms at £38. DPCO 12 v relays with 130 R or 280 R coils only 75 p each. Limited number of 74LS series I.C.'s 20 's at $10 \mathrm{p}, 27$'s at 10 p , 47 's at $30 \mathrm{p}, 373$'s at 45 p , 161's at 30p. 193's at 30p, 92's at 24p, 374's at 65p, and 08 's at 10p each. All carriage at cost or buyer collects. G. Caselton, 19 Cowden Road, Orpington, Kent, BR6 OTP. Tel: 068929230.
- TONO 9000E £520 GEC High band TX/RX £20. Brookes MBR6 RTTY TU £40. ORIC electron BBC programs morse tutor $£ 4.50$. Locator $£ 4.50$ BBC RTTY £5. FT-290R with NICADS HELICAL £200. MML 144/30 LS $\mathrm{E}_{5} 5$. T. Tugwell, 11 The Dell, Stevenage, Herts. Tel: 0438354689.
- C432 70 CMS hand- held case. Handbook. Ext.mic. RBO RB11 RB13 SU8 SU20 no mods £85 o.n.o. G4AWY not QTHR. R.A. Mekka, 57 St. Johns Road, Caversham, Reading, RG4 OAL. Tel: (0734) 482559.
- YAESU FT 902 DM FM filter mint condition £625 Tel: 0272 873691, Clevedon, Avon.
AR88D fine condition, some spare valves, $£ 40$ o.n.o. Tel: Reading 65013.
- FX-1 wave meter. As new, never used £30. Tel: 0903753102
- Marconi Marina Atlanta Receiver. Full 10 bands to 28 MEGS. Excellent condition. £75. Palm 440 channel $2 m$ tr. hand-held with charger. $£ 80$. Leonard Davies GW4 HAW 46 Maes Glas, Rhos-onSea, Clwyd, North Wales, LL28 4AZ. Tel: 049240920. - Yaesu FRG770M little used £200. Wanted manual or circuit for telequipment S 51 scope. Can copy if required. Howden G6JUP QTHR. Tel: 0977 662706.
- Creed 7BRP teleprinter, immac. condition £15. Creed 656 tape reader as new $£ 15$, Pye base station transmitter £5, Homebrew 2M transceiver, valved, works off $12 \mathrm{~V} £ 7$, ICOM 1050 converted to 10M but deaf £25, 25W PA for ICOM 1050 £15. Tel: 061773 8824.
- YAESU FL101 TX, 100\% OK, with new spare pair PA valves. £100. Tel: Roy G3LBT 026822822 Ext. 3252 business hours or 0268412177 evenings.
- Plessey ICs Motorola RF power devices. RCA linear ICs etc. etc. S.A.E. list. All new guaranteed devices. G3VFP 17 Laleham Green, Bramhall, Stockport, SK7 3LJ. FT707 inc. narrow CW filter, immac. condition $£ 400$. No offers. Address as above.
- FRG 7 Radio receiver, brand new in box 150 HZ to 30 MZ with full guarantee. A. Slark, $43 / 45$ Thicketford Road, Bolton, Lancs. Tel: Bolton 26684. - Codar T28 RX cheap. Also power supply and accessories for base and mobile operation. Delivery by arrangemnt inclusive. Also wanted Codar AT5 TX cheap. For sale small portable tape recorder $£ 5$ plus carriage. Two small scope tubes AOR Z03 and CDU $3-F P 7 £ 5$ each plus carriage. Mr. D.F. Thompson, Four Winds, 131 St. Johns Road, Exmouth, Devon, EX8 4EW. Tel: 265059
- Optiscan SBE-12SM 12/240v AM/FM scanning receiver. Daiwa search 9 12U(CAR) FM manual tune. $£ 10$ Switched xtal Marine bands. I.M. Tasker, Colsterworth Road, Stainby, Nr. Grantham, Lincs. Tel: 078081315.
- Yaesu FT290R as new 8 months old boxed complete with case and Bremi 3 amp P/S. No mods £210. Buyer to collect. H.F. Barker G4BXY, 372 Gosbrook Road, Caversham, Reading, Berks, RG4 8EG.

ZX81 plus 16K RAM pack, also seven games tapes including flight simulation, 3D Defender, Fantasy games and scramble $£ 50$ o.n.o.Tel: Wisbech (0945) 61946

- IC22A F.M. 2MTR Trans. 1 watt/10 watt Simplex S18, S19, S20, S21, S22, Repeater, R1, R3, R4, R5, R6, R7 fitted. Space for 12 more channels complete with mic and mobile fixing bracket, excellent working order £95. R Stevenson, 39 Croftway, Selby, North Yorkshire YO8 9DD. Selby 706057.
- Creed 7E Teleprinter and spares and 656 Tape reader. Will sell or swap for an unmodified ZX81 with its PSU and 16 K ram. Given up RTTY. Space is required. Must be got rid of. Please contact for arrangement to collect, Ian Ruddock G8NCZ, 46 High Road, Stapleford, Hertford, Herts. SG143NW, Telephone Ware 871486 Saturdays only.
- Bearcat 220 AM/FM VHF/UHF Scanner. Faulty band - switching circuit. Full service and owners manuals, mobile bracket, original packing, $£ 90$. No offers. Please write to S. Langlois/GJ40DX, Merchant Navy College, Greenhithe, Kent, DA9 9NY. Can deliver within 40 miles of Dartford.

Professionally alligned Wood and Douglas 70 cm T.V. tx, 10 w P.A. and Microwave Modules UpConverter $£ 90$, RO390 Printer, $20 \mathrm{~mA}, \mathrm{RS} 232$ and Apple II interfaces $£ 70$, Feranti UDU 80×25 character green screen, manual, spares £50, muiltirail computer PSU $£ 15,32 \mathrm{~K}$ Nascon 22 K of EPROM lots of software $£ 250$, all o.n.o. Phone Philip, Guildford 573871.

- Trio 78005 and 25 watt as new, boxed with manual and mobile mount. Dave G4NDJ QTHR, telephone Skelmersdale 21814 £200 ono.
- FT480 2 m Multimode 9 months old, used only as base station £300. Phone Bradford-on-Avon (02216) 3600.
- Drae Morse Tutor, mains operated current model, little used as new £30, Whitstable 274947. - Collins S Line 3253 Transmitter 75S3 receiver, good condition and working order with PSU. Revalved, well worth seeing $£ 625$, Worcester 421908.
- FDK multi Palm 11 for sale xtaled S20, S21, S22, 15, R4, R5, complete with $1 / 4$ wave aerial charger. Tone burst fitted, good condition, price $£ 75$ or ono. Contact Dave Drizen G8UUO, 40 Gilbert Way, Braintree, Essex.
- Binatone Video Game £25 ono, Merlin electronic game $£ 10$, power supply for both $£ 3$, all in good condition still guaranteed, will sell or swap for a Spectrum or ZX81 or a Rotator to turn a HQ1 eg HR40, 9502, 9523 or even a Morse Tutor. Please contact Mr. A. Buckton, 17 Drake Close, Marske/Sea, Redcar, Teeside, TS11 7JG, telephone (0642) 471331.
- Eddystone High Stability Professional Solid State general coverage Receiver model EC958 10 kzL to 30 mhz in mint condition, handbook and history $£ 500$. Datong FL3 Audio Filter £99. FT102 5 months old as new, handbook, £650. A P Davis G41ZG, 88 Goring Road, Goring-by-Sea, Worthing,

Sussex, BN12 4AB, telephone Worthing 41109.

- Yaseu FRG7 receiver with handbook and battery power supply module, excellent condition, §135. Alec J. Mitchell (G4ICE), II Poplar Lane, Cannock, Staffs, WS11 1NQ. Tel: 054352836
- R\&EW Airband receiver. Assembled and wired all voltages correct, needs BPF 274 transistor and alignment, no case, £45. Sony 2001 as new with wave book £120, perfect condition. Radiotelephone Pye Vanguard Cat. AM25B/V/6 12 volt, used as airfield fixed base VHF R/T £25. JT Grant, Bank House, Reepham, Norfolk NR10 4JJ, Tel: 0603870852.
- Cushcraft TR1 band vertical with data sheet (unused) $£ 30$ ono. Tel: Larkhall 883982.20-15-10.
N1500 Video Head and Electronics for spares or repair, all working o.k. Will exchange for audio cassette recorder, small oscilloscope, ultrasonic transducers, W.H.Y. or $£ 15$ ono each, Ring 0742 311191 after 4.30 pm .
- Racal 801R frequency conner including service manual, offers? phone Royston 71160.
- Nascom IMP Printer 80 chars. second RS232 input with full documentation in good order. 01399 4177 after 7 pm . £100 ono
- Marconi SIG GEN TF2006 10-500 megs £350 spare one £90, Marconi SIG GEN TF2604 £50, Marconi watt meter CT44 £6, Marconi SIG GEN TF 1066 fixed output $£ 75$, advance SIG GEN SG62B £20 Scope Ex-min CT $436 £ 60$, spare £20, KT88s GEC £5, T/former 1K,0,1KV 235ma £10, Scope advance OS15A £30. Scope, Service Scope, S51A £40, AR88D tuning gang and switch $£ 6$, Sanyo receiver RP 8880G, 9 bands crystal marker, double conversion [85, OSC tubes Hewlett Packard 6IN 5083 - 0353 £15, GEC 1074 H two gun $£ 5, \mathrm{ACR} 10$ with screen and base £4, Mullard DG7/6 Screen and base $£ 6$, Marconi valve V/meter TF 2604 £ 75. Mr P Baylis, 42 King Edward Ave, Dartford, Kent DA1 2HY, Tel: Dartford 72913.
ICF 2001 general coverage receiver, as new. Reason for sale - going back on air so need rig. Offers around £95. Ring Pip G8NOP on Great Cubley 506 evenings. Also Creed 7ERP Teleprinter £5 or free with above receiver.

Nascom Two, 48K RAM, KIB, PSU, bare holmes colour PCB, all documentation. A few games, cassette player, £200 ono, Eastleigh 617214 Hants. - Workshop clear out. Several B/W TVs, some work or could be used for spare parts or components including tubes and valves, reasonable offer would not be refused. Would suit young enthusiast. Van is adviseable for collection. Phone after 7 pm 070278178 Southend-on-Sea area.

- RS232 interfaces for Epson and Seikusha Printers. Unused. £25 each. UK101 computer and software $£ 60$. 16 K RAM boards $£ 20$ each. Honeywel qwerty keyboard, unused, £25. Dr P D Coker, 23 Darwin Close, Orpington, Kent, Tel: 068958510. Ex-BT Modem. Full Duplex or half Duplex up to 1200 B/S Assyncronous, full working order and reprint of data diagrams P.C.B. layouts etc. $£ 50$ ono. B. G. Oldford, 4 Field Close, Malinslee, Telford, Shropshire, TF4 2EH. Tel: Telford 507312. - William Stuart Speech system new and unused, cost over £100, want £80. Includes all documentation and interface leads. Speech Synthesiser and speech recognition 'Big Ears'. John Taylor, 47 Spur Road, Orpington, Kent, BR6 0QT, tel: Orp. (0689) 35353.
- Mizuho MX-2 144mhz SSB hand held transceiver, NI-CAD battery £60. VHF VMOS power FET 20w £8. Coichester 572685.
- Trio 3R $500 \mathrm{~S} £ 60$ also old valves, D. Hardy, 12 Fyfield Road, Walthamstow, London, E14 3RG.
- Hams and SWL's are you interested in frame loop antennas, sae for details, write F G Rylands, 39 Parkside Avenue, Millbrook, Southampton SO1 9AF
- Hatfieid R.F. Bridge LE300A $£ 20$, Hustler mobile aerial 5 resonators Q.D. mount $£ 40,3 W P 1$ tube $£ 3$, DG7-5 tube unused £10, Lumb, 14 Linton Gardens, Bury St.Edmunds, Suffolk. Tel: (0284) 4318.
- Clear-out sale. As new Scopex dual-beam 10 mhz 'scope, $£ 125$, various S -100 boards: 12 -slot motherboard, and 8v@15A PSU £35, ADS 6809 CPU (2 monitor eproms) $£ 60$, Z80A CPU (3 monitor Eproms inc CP/M B105) $£ 80,64 \mathrm{~K}$ dram with many options $£ 50,4$ channel SI/O 1 CH populated $£ 30$,
floppy disk controller for 8 in Shugart $£ 60,2 \times$ prototyping cards, 1 with RTC and Z 8 -pin prom SKt. I.T.T. 2020 (Apple look-alike) £300 cased, $2 \times$ Apple disk drives $£ 125$ each, green phosphor 20 mhz monitor $£ 60,2 \times$ ASCII keyboards $£ 25$ each, 80 column card $£ 25$, floppy disk card $£ 25$, language card $£ 30, ~ Z 80 / \mathrm{CPM}$ card $£ 35$. Full original documentation supplied. $50+$ disks of software available KIM-1 system £50, FT207R £80, al so lots of PPSUs, meters, junk box components, odds and ends, books and mags. A Thring, 142 Kennel Lane, Great Burstead, Billericay, Essex, CM11 2SU, tel: 027-74-52325 (eve).
- DTXV Converter: receives VHF bands 1,2,3 on UHF TV. Plugs into aerial socket.£28.00. Phone 0702-8858
- 13 ft 6 ins Ski boat inboard eng. exchange for any general coverage transceiver. Mr James Cushen, 42 Wallace Road, Bodmin Cornwall. PL31 2EX Tel: Bodmin 4681
- RA17 as new £150 AR88mint £!00 HRO Restored 9 coils £90 Codar $£ 25$ 6MEG 2 beam Scope $£ 75$ Heathkit Scope $£ 25$ old Cosser 2 beam Scope $£ 40$ Taylor valve voltmeter $£ 25$ Marconi valve voltmeter $£ 35$ Airmec same $£ 35$ dozens old domestic radios o'hauled. Ring anytime. Tons of spares, values etc. Ashley James, The Mount, High Street, Chalford, Stroud, Glos. GL6 8US. Tel: 0453882164
- IBM 3982 'golfball printer with parallel port interface. Requires software to run off ASCII-Z80 program supplied. Complete with IBM manuals and a few spare and several typeheads. Has mechanical fault that requires attention. (runs, but letters not aligned properly.) £50 to knowledgeable enthuiast, carriage extra (probably $£ 15$. Porthlowan 890688. (Cornwall)
- Datong UC1 up converter $£ 70$. UK101 6502 based computer, 8 k memory, wemon centromics printer interface, fan, cased, £80. Prefer buyer collects UK101. Tel: Witney (0993) 4890 evenings
- ICOM IC202S E115. FDK multi 700 EX £125. 10 GHz FM transceiver with dish X-coupler wavemeter E 70 . All ono. Ring 0453833411
Eddystone receiver 840A very good condition with manual £60. Trio 2200G FM Nicads Charger carrying case $£ 70$. Buyer collects. Collectors item 1928 edition Practical Television by Larner forward by John Baid offers G2HKU Trowell 'Hamlyn' Saxon Ave, Minster, Sheerness, Kent. Phone (0795) 873100
- Radio and television servicing books 1974 to 19828 volumes mint condition unused cost $£ 172.50$ sell £112 inc postage to you Thandar SC110 Scope new in box with re-chargeables and switchables probe $\mathrm{X} 1-\mathrm{X} 10$ cost over $£ 200$ £140 inc post. Telephone monitor built \& tested £8. Digital multimeter $£ 30$ Tel: Durham 719400 evenings/weekends
- Loads of new components for TV Radio etc clearing out due to retirement too much stuff to list send sae 9×6 for free catalogue of all my equipment \& spares. 6 Rydal Close, Sacriston, Durham DH7 6DG
- TRS800 level one computer 4 k with monitor and tape recorder. All itmes boxed £150 ono Dave Lucas, G6HLQ 62 St Austell Avenue, Macclesfield, Cheshire. SG10 3NN
- VDU keyboard interface unit, with proffesional quality keyboard, R5232, 64 Char/line, 16 lines, $£ 25$. Heathkit H14 line printer, RS232, excellent condition, with manuals, £130. Phone 01-751 2262 after 6pm
- Heathkit model 10-12U laboratory oscilloscope complete with data and construction details etc. Bargain at $£ 35$. Telephone Sheffield (0742) 664453 - Xerox Hy-type daisy wheel printer. Full connection details for this very proffesional unit. £95 Tel: 0272717424
- Ferrograph series 5 reel to reel tape rcorder faulty $£ 25$, collect. J-beam six element quad 2 -mtr aerial $£ 10$, collect. 40 chnl 29 MHz txceiver 4 W with mic as new $£ 20$, postage $£ 2$. Smith, No 1 Barton Drive, Paignton, Devon.
- Exchange Radio Shack for S×200-N and R1000. Shack list FT290R, Nicads, $144 / 432 \mathrm{~mm}$ UHF transceiver $2 m$ SmeP/A FM/SSB 25W lin SP400 Welz, Daiwa CN620N, Ae switches many cables HB9CU AE DA1WA search 9 RX + UFO, 8A PSU all fits into cabinet, value $£ 760+$ bargian of the year.

Ring Sick of Amateur Radio. John 047-385 526 anytime.
-32k Dynamic ram card, nearly new cond. £25 ono. Industrial F8 system CPU CARD ROM card and V.DU card in frame $£ 25$ ono. Wanted Texas 'Speak and Spell', damaged unit considered. Chris S Warwick, 118 Sise Field Road, Kings Norton, Birminham. B38 9JA

- Intel 8086 developement system offers WHY several S100 boards including microplois FD controllers wanted 49 Hz satellite equipment and micopolis disk drive. Also wanted schematics for spring B+W 310 portable TV - Bridge, 175 Crofton Rd, Orpington, Kent. BR6 0JX
- Sony MX-610 mixer 6 in to 2 , mic, line or phono. Turn UK meters, head phone output etc, $£ 50$ or exchange for compressor/limiter. MJ Gamley, 4 Walnut Grove, Trowbridge, Wilts. BA14 0HR
- Vernier slow motion drive type D ref 10A/8510 brand new neon power indicator complete set radio communication mags. 1982 variable condenser 1 toggle switch DX. Foreign listings callbook Guy wires brand new Japanese BM3 desk nic, £30 cot absolute bargain pack will sell mic, separate at £15 phone G3XWV 0564822280 evenings
- 1 KW out 432 mKZ Linear amplifiers for SSB and CW and ATV contact Geoff Brown Lemnos, Longueville Rd, St Helier, Jersey CI

WANTED

- Manual for Tektronix 502A Dual Beam Oscilloscope.Mr Richard Coull, 113 Westmorland Ave, Luton, Beds, LU3 2PT. Tel: (0582) 581256 - Non Working Transmitters, Receivers or W.H.Y D.H. de Souza Kirby, 17, Laleham Green, Bramhall, Stockport, SK7 3LJ. Tel: 0614392377.
- Eddystone 770U VHF/UHF or AR2001 Receivers. Microwave Modules ATV and 136 MHZ Receive Converters. Will collect reasonable distance. Phone Middlesborough (0642) 318451 after 6.pm. - Light to medium duty aerial rotator for VHF Beam. Tel: Wisbech (0945)61946
- Radio gear offers in exchange for American Super 8 Cine and Projector. Both zoom. Richard Stacey, 3, Westpark, South Molton, Devon, EX36 4HJ Tel: 076953382
- Exchange Kleinshmidt Tele-Printer, Perfora-tor-Transmitter for any TV gear, Test gear, W.H.Y. Phone Mac (G6 PPW) on Mansfield (0623) 640626. - C B Rig wanted working or not. Please give complete details and price. After 6.pm if phoning, can collect if local. R. Moores, 117 Horton Road, Brighton, BN1 7EG Tel: (0273) 503869
- Linear Amp 2 Meter 50-100w Microwave Modules or similar. Also heavy duty Rotator with control box. Phone Dave (Eve only) Cardross (Scotland) 841452
Up to twenty pounds for a vertical high frequency Aerial. Mr G Nash, 530 Archer Road, Stevenage. Tel: Stevenage 62554
- Circuit Diagram for PSU for 19 set or pin out for DC input lead to 19 set supply unit No 2 (Dynamo Vibrator.) Circuit Diagrams for add ons to Texas T199/4A Computer I E R5232, RTTY, RAM, D.O.S. boards. Also exchange ideas etc with other radio amateur users of T199/4A. M. Austin G6UKP. 15,Bursley Way, Bradwell, Newcastle-U-Lyme, ST5 8JQ Tel: Stoke on Trent 639406
Members wanted no experience req! Top band and VHF direction finding club. Write Hon. Sec. Dartford D.F. Club, 49 School Lane, Horton Kirby, Dartford, Kent, DA4 9DQ. Subs £3 yr.
- Wanted any information on Mods or Conversions to Murphy B40D receiver. M.F.Turvey, 106 Foxwell Street, Worcester, WR5 2ET.
- Stanford Le Hope and District Amateur Radio Club Welcome new members. Monday nights 2000 at Parish rooms, St Joseph's School, Stanford. Come along and join a friendly club. John Allan (GALTH) 13, Vincent Close, Corringham, Essex, SS17 7QL Tel: Stanford Le Hope 674301 - Wanted Clandestine 'Spy-Set'Radios, A.P.4. A Mk II, 3Mk III, B.P.3. etc Compact or unusual, military surplus Receivers Transmitters. Also, early Amateur Radio Equipment, Short-Wave Receivers up to late thirties. Anything early with values in it considered. W.H.Y. Please Tel: John 014506449.
- Surplus Data Manuals especially Motorola RF Semiconductor Manual. D.Bieber (G4Air QTHR) Sandale Lodge, Rosslyn Lane, Cuddington, Northwich, Cheshire. CW8 2JZ. Tel: 0606882949
Wanted any info on servicing $\mathbf{Z X 8 1}$ any reas. expense paid. Wanted Service Sheet for Berry 510 CTV. 1973 Hire Loan? to R. Norean, 67, Wilson Road, Boscombe, Bournemouth, Dorset. 0202 303798.
- Wanted complete E.H.T Unit for Marconi Oscilloscope Model TF1331. Any reasonable price plus carriage. W. Mawson, 8, Elsdon Drive, Forest Hall, Newcastle upon Tyne, NE12 9RH Tel: Newcastle 662082
- Wanted Handbook, Circuit, Diagram, Mods for Belcom Liner Two SSB Transcur copies, loan, purchase, anything considered. Contact John G6UGU 12 Ingram Crescent, Dunscroft, Doncaster. Tel: 0302841530
Wanted by desperate enthusiast, a Valve Amplifier using Power Triodes like, PX25, V503, PA40 etc. Also any HIVAC miniature valves for my collection? To Mr N Covington, 25 Ridge Road, Letchworth, Herts SG6 1PW
THE VALVE SET CLUB. I intend to start a club with a monthly news sheet, with information, for sale, wanted, swap etc. If you would like to contribute or just be a member, please write to me so as I can colate a list of interested people. This hobby (Valve) is growing very fast!. To: Mr N Covington, 25, Ridge Road, Letchworth, Herts, SG6 1PW
Radio Valves wanted, must be unused. ECC40, EL41, X78, N78, NR44, NR47, CV1040, 6B4G, P27/500, PP5/400, AC/HL, AC2/HL, PX25, PX4, V503, ELL80, ACO44, 12AH8, EL34, UY41, MH4, or what have you? to Mr Covington, 25, Ridge Road, Letchworth, Herts, SG6 1PW. Tel: (04626) 79681
Wanted FR50B or FRG 7 in good condition. Niall Reilly, 6 Windsor Avenue, Portadown. Phone Portsmouth 333412.
Wanted: Heath RA1 RX. KW E-ZEE Match. Joystick antenna. Write Marris, 35 Kingswood House, Farnham Road, Slough, Berks.
Datong Woodpecker Blanker. HF Vertical new condition only. G2HKU Trowell Hamlyn Saxon Ave, Minster Sheerness, Kent. Phone (0795) 873100.
Eimac SK606 Chimney to complete project. Ediswan B8F base and chimney, UHF type screen bypass capacitor at about 1000PF to start next linear or WHY? QRO VHF UHF bits also 2C39's for 23 cm . If you can help phone Alastair G4RUL on (0323) Eastbourne 53618 eves and Sundays only please or QTHR as G6EWL
- Good quality compressor limiter, stereo if possible also any other signal processing equipment. M J Gamley, 4 Walnut Grove, Trowbridge, Wilts. BA14 OHR
Wanted either Trio TS120V, TS520 or Racal RA17 with SSB adaptor, as applicable, mike PSU and hand book req'd to: LCPL Booker, 54 Lodge Hill Lane, Rochester, Kent. ME3 8NR
4CX250B sockets, type SK620A, SK600, SK610, etc must be new condition. Write CJ4ICD, SMC, Belmont Rd, St Helier, Jersey, Cl

FREE SMALL ADS

We are pleased to be able to offer readers this free Small ad Service to enable you to sell unwanted equipment or advertise for your 'wants'.
Simply complete the order form enclosed, although we will accept ads not on our order form. Feel free to use an extra sheet of paper if there is not enough space on the order form. Send to: Radlo \& Electronics World, Free Ads, Sovereign House, Brentwood, Essex CM14 4SE.

DEADLINE

We will endeavour to include all ads received by 16 November 1983 in the January issue. Ads received after this date will be included in the next available issue.

CONDITIONS

We will not accept trade advertisements. We reserve the right to exclude any ad.

APPOINTMENIS

RADIO/RELAY TECHNICIANS

over $£ 22,700$ tax free
for 2 years in Saudi Arabia
Locheed need experienced technicians to join their training teams working with the Royal Saudi Air Force.

Minimum C\&G (or forces equivalent) +7 years experience in:
Ground Radio
HF (SSB), VHF/UHF \& SHF, Multiplexers Radio Relay
Microwave, Troposcatter \& Multiplexers

Top benfits include free accommodation, food, flights etc.
Contact Jim Macfarlane, IAL, Aeradio House, Hayes Road Southall, Middx UB2 5NJ
Tel: 01-574 5000. Please quote ref L210

ASSISTANT EDITOR

We are looking for an Assistant Editor for Radio $\&$ Electronics World, the communications, electronics and computers magazine.

Ideally we want an amateur radio enthusiast, educated to degree standard or eqivalent, and preferably with publishing experience. The successful applicant will also have a knowledge of electronics.

You will enjoy the benefits of a young go-ahead company including a good salary, flexitime, profit sharing, pension scheme and free life insurance.

Please write to Kevin Bond, Radio \& Electronics World, Sovereign House, Brentwood, Essex CM14 4SE

Medical Physics Technician c£20,700 pa tax free Saudia Arabia

The National Guard King Khasid Hospital in Jeddah is a new hospital which is managed by International Hospitals Group (IHG) in liasion with the British Government and supported by IAL.
We are looking for a Biomedical Engineer with 10 years experience including six years spent in the maintenance of medical equipment or in the design, construction and testing biomedical equipment in a university or manufacturing environment.
A tax free salary of SR108,000 will be paid in Saudi Riyals (the conversion to sterling has been effected at the rate of SR5.2=£1).
Excellent benefits and facilities are provided.
For more details telephone:
JOHN CALLOW on 01-574 5432 or write to him at IAL, Aeradio House, Hayes Road, Southall, Middx UB2 5NJ.

Please quote Ref M158

SONY BROADCAST LTD FIELD SERVICE ENGINEER Broadcast TV Industry

An excellent opportunity has arisen within the service department of Sony Broadcast, one of the world's leaders in professional broacast television equipment. The successful candidate will be engaged in the service and repair of our extensive range of equipment. This will involve travel throughout our marketing territory which covers, Europe, Africa and the Middle East. Training on our range of products will be given where necessary. Applicants should have several years engineering experience gained in the broadcast television industry and knowledge of VTR'S and video cameras is essential.

This position carries an excellent remuneration package which includes company car and relocation expenses if appropriate. If you are interested please contact

David Parry

Assistant Personnel Officer Sony Broadcast Ltd, City Wall House Basing View, Basingstoke, Hants Tel: 025655011

SYSTEMS PROJECT ENGINEER

To be responsible for the manufacture and commissioning of complex static and mobile television systems. Candidates for this challenging and responsible position should have direct experience of sound and television principles gained in operational television or its' allied manufacturing industry.

SENIOR ENGINEER - QUALITY ASSURANCE

To join a department for the evaluation of product performance. Key activities will include conducting customer acceptance tests, the provision of engineering support to our inspectorate and an involvement in the establishment and maintenance of ATE. There will be a significant involvement with customers and the ability to effectively maintain this interface is essential. We offer attractive salaries and first class conditions of employment. If you are interested please contact:

David Parry
Assistant Personnel Officer Sony Broadcast Ltd, City Wall House Basing View, Basingstoke, Hants Tel: 025655011

TECHNICAL SALES

Position available as Area Sales Engineer/Manager, to be responsible for the marketing of a top flight range of Automatic Test Equipment and Systems.

Relevant sales experience is obviously preferred but is subordinate to background, interest, enthusiasm and career development potential.

Please write to:
Mr Harrison Grange Electronics Ltd Stone Lane Industrial Estate Wimborne, Dorset BH21 1HD

NOTICE TO ADVERTISERS!

> Please make copy as legible as possible, preferably typewritten, in order to minimise printing errors.

POWER MOS-FET AMPLIFIER PROJECTS:

Super specification; .002\% THD, -110dB signal/noise, $10-50 \mathrm{KHz}$ bandwidth, absolute reliability, etc. Components, PCB, Hitachi Mos-Fets, instructions to build; 120 watt model; £13.50. 240 watt; £19.50. 400 watt; £27.50. SGS MICROCHIP AMPLIFIERS; Power IC, PCB, Data sheet. 2 watt; $£ 2.50$. 20 watt; $£ 4.50 .30$ watt; $£ 5.50$. TANASHIN AUTO-REVERSE CASSETTE MECHANISMS; with reed switch sensing, sendust alloy stereo head; £15.99. 19" RACK CABINETS; 2 U height, 14 " deep, $£ 15.99+£ 3$ carriage. ULTRASONIC DOPPLER ALARM KITS; with provision to switch mains'single PCB unit; $£ 17.50$.

Send stamp for details. Add $£ 1.50 \mathrm{p} / \mathrm{p}+\mathbf{1 5 \%}$ VAT to total. Access accepted. Mail orders to: Audiotechnology, 8 Parsons Close, Church Crookham, Aldershot, Hants GU13 OHL. Telephone: Fleet (02514) 22303.

24 COLUMN PRINTER ONLY £69 EACH (INCLUSIVE)

Standard 4-inch 3 U mounting; inverted 4 Double sized print; single $9 v$ AC or 5V DC power supply; standard centronics Interface or Serial data; extends only 40 mm behind panel.

for further details contact:

> BENWICK ELECTRONICS
> 9 Doddington Road, Benwick Nr March, Cambs PE15 OUX Telephone: Benwick (035477) 471

WRONG TIME?

MSF CLOCK is ALWAYS CORRECT - never gains or loses, SELF SETTING at switch-on, 8 digits show date, hours, minutes and seconds, auto GMT/BST and leap year, parallel BCD (including Weekday) output for computer, receives Rugby 60 KHz atomic time signals, built-in antenna, 1000 Km range, RIGHT TIME, £72.70
VLF? EXPLORE $10-150 \mathrm{KHz}$, Receiver $£ 21.20$
ANTENNA FAULT? Check FAST with an Antenna Noise Bridge, MEASURE resonance $1-160 \mathrm{MHz}$ and radiation resistance 2-1000 ohms, Get answers - more DX, £19.60
DISCOUNT $\mathbf{\Sigma} 2$ when you order 2 kits - ask for full list Each fun-to-build kit includes all parts, printed circuit, case, instructions, by-return postage etc, money back assurance.

SEND AWAY NOW

CAMBRIDGE KITS
45 (A2) Old School Lane, Milton, Cambridge

FREE SMALL AD ORDER FORM

Send to: Radio \& Electronics World Small Ads • Sovereign House • Brentwood • Essex CM14 4SE

Classification:

For Sale ... $\square \quad$ Wanted... \square
USE BLOCK CAPTIALS (One word per box)

							-

USE SEPARATE SHEET FOR MORE WORDS

Name Address

Postcode
Telephone
CONDITIONS: Your ad will be published in the first abailable issue. We will not accept trade advertisements. We reserve the right to exlude any advertisement.

RE1283

ALTA MULTTCHARGER E7.95. GOULD NI-CAD's 'C TYPE' 1.2 Ah $£ 2.25$ ea. "Fast Charge Vented AA SWITCHES MOM-MNKE PUSH 30p ea 10 ea. YARIOUS NEW SW £2.60. $10 \times$ YARIOUS NEW KNOBS E1.60. 10 x VARIOUS NEW POTS E2.40. CASSETTES VIOEO VHS BASF E120 E5.50 ea E180 £6.50 ea. CASSETTES AUDIO TDK-AO C60 £1.10 ea Coof 30 C120 f2 25 ea M1007 DIOD 7p ea. TIS 43 32p ea. 7BOS REGS $39 p$ a. RED UEDS £1 for 10 .
All above prices include VAT, please add 60 p towards p\&p if order less than $£ 3.00$
We hope to open a component shop in the next few weeks in the South Birmingham area, please
watch press for details.

AUTRONICS LIMITED
23 Regency Gardens, Yardley Wood
Birmingham B14 4JS. Tel: 0214744638

HANIS

CALBRESCO LTD
258 Fratton Road Portsmouth Open 10.30am-6pm 6 days
COMMUNICATIONS EQUIPMENT COMPONENTS, BOOKS, ACCESSORIES

IINCS

J R W COMMUNICATIONS
15 New Street, Lough, Lincolnshire Tel: 0507606973
Open Mon-Sat 9am-6pm
Authorised Tandy Dealers.
ICOM, Marine, PMR Dealer. Also YAESU supplied Telephone \& communications equipment.

LONDON

THE

CENTRE
10 MERTON PARK PARADE KINGSTON ROAD SW19

Tel: 01-543 5150
Open: 6 days 9am-6pm (late night Weds until 8pm)

PERTH

AXDON

32 Atholl Street, Perth
Tel: 0738-23753
Open: 6 days
ICOM, YEASU. J-BEAM, SUN, BANTEX, TONO, RSGB Books, Maps \& Log Books. Full range of components. Mail order avalable -- send for price list, quoting Radio \& Electronics World.

Radion Electionics

This method of advertising is available in multiples of a single column centimetre (minimum 2 cms). Copy can be changed every month.

RATES

per single column centimetre: 1 insertion £9.65, 3 - £9.15, 6 - £8.65, 12 - £7.75.

B \& T ELECTRONICS
 Super packs all $£ 5.00 \mathrm{p} \& \mathrm{p} 90 \mathrm{p}$

T1 80 assorted fuses $15-20 \mathrm{~mm} \& 11 / 4 \mathrm{in}$
*P2 100 transitor diodes mixed full spec
$8 p 350$ Leds green
8p 40 Leds orange
8ps 5000 realetors varlous
sp6 200 wire wound resistors
8 87 1 kilo Nuts, Bolts, Washers $\&$ tags
spe 1 kilo, vero and similar plated pins various *p 10 green Leds Displays common cathode -P10 100 Germanium diodes
eP112 Xenon - strobe lamps
8P12 100 mixed Electrolitic copasitors
8p13 10 small DC Brush Motors $6-12$ volts
814100 mixed pre-sets various
-P15 30 mixed potentiometers
\$16 30 precision precepts

13 Tanner Hill, Deptford, London SE8
Tel: 01-692 1441
Retall a Trade (official order iccepted)

QSL CARDS. Printed on white or coloured gloss cards. SAE to:

Nutley Press

11 Barons Way, Woodhatch, Reigate,
Tel: Redhill (0737) 71023

Pick Your Own Bargain

Component packs. Over 100 Special offers. Silly prices. Free List. Write now.

Dept REW1, Fullors Supplies
22 Verder Grove, Heronridge Nottingham NG5 9BH

RESISTOR PACKS
 FOR ALL PROJECTS

$1 / 4$ watt carbon film resistors $5 \% 1$ ohm to 10M E24 series. Packs of 10 each value (1690 resistors) 212.50. Your choice of quantities/values 100 for E1.00. VAT and Post Free.

CORDON HALLETT 20 Bull Lane, Maiden Newton Dorchester, Dorset DT2 OBA

OSCILOPSCOPE WANTED

Modern solid state dual trace, and Wobbulator, for television I.F. Adjustment

Send details to.
8 FISHER
29 Cumen squar cieagow Scotiend 041 290

SCARBOROUGH

Derwent Radio for communications receivers, New, Secondhand. Good trade-in. Thousands of components, books, magazines

Columbus Ravine, Scarborough

Tel: 072365996

AMATEUR ANTENNA

Silver $70-70 \mathrm{cms} 16 \mathrm{dbd}$ Gain Beam $£ 31.95$ Tiger LY69 dbd 2 Metre Beam £12.95. Tiger LY811 dbd 2 Metre Beam £19.50. Tiger LY10 14 dbd 2 Metre Beam £32.95. Two year guarantee on above.
ZL12 Mk2 13 dbd Gain Beam Antenna £32.95. ZL8 Mk2 dbd Gain 5'-7"' Long Boom £19.95. Al above have stainless steel Parasitic Elements. Norcone 512 Wide Band Discone Antenna $£ 25.95$.

Securicor delivery (extra) $£ 4.50$.
Send cheque or money order today, made payable to: ANT PRODUCTS or write enclosing SAE for details.

Ant Products

All Saints Industrial Estate, Baghill Lane Pontefract, West Yorkshire

Tel: 0977700949

Dummy Anti-Thef

survelliance cameras £39.00.
Flashing red 'function' light for total realism and theft deterrence. Easy fixing
Phone your order on:
(0274) 871000 or write to: 'Churchill Cavendilsh Lid', Blentiolm Ridings, W Yorks

HEWLETT PACKARD

$608 E$ VHF Signal Generator, $10-440 \mathrm{MHz}$. Excellent working order $£ 295$

PHONE 027663128

VIC20
 Hints on using wedge programs to perform background processing, adding extra basic commands etc.

 With example programs. Cassette $£ 4.95$. Disk $£ 5.95$. MORLEY ELECTRONICS1 Morley Place, Shiremoor, Tyne a Wear NE27 009

STUDYING FOR YOUR RADHO AMATEUR LCENCE?

You Need These Books Questions \& Answers' c2.78 P\&.F 'Amateur Radio' \&10.00 P\& \& For Details SAE Please From
PETER BUBB os UWJ (Tultion) 88 Gremscres, Beth BA1 4NR

Complete, full-size sets, any published service sheets $£ 2$ + large SAE - except CTV's/Music Centres from $£ 3+$ large SAE.
Manuals from 1930 to latest. Quotations, free 50p Manuals from 1930 to latest. Quotations, free $50 p$
magazine, price lists, unique technical magazine, price lists,
publications, for large SAE.
Repair data/circs almost any named TV/CVR, $£ 8.50$ by return.

TISREW

78 Church Street, Larkhall, Lanarkshire ML9 1HE Phone: D898 883334

Zilog $\mathbf{2 8 0 0 0}$

Development module. Believed unused. Cost $\mathbf{C 1 3 5 0}$ Plus VAT

Accept offers around half-price Phone: 01-794 7024

Vintage Radio's - over 200 always in stock. Open every day. SAE list. RADIO VINTAGE
250 Seabrook Road, Seabrook, Hythe, Kent CT21 5RO
Phone anytime (0303) 30693

SPECIAL OFFER
 Microprocessor iC s Z800 $£ 4.95,5 \mathrm{MHz} 8086 £ 22.95$. 15ONS 41256 256K DRAM $£ 119.95$
 MORLEY PRELECTRONICS 1 Morley Place, Shiremoor, Tyne \& Wear NE27 00S

There's no doubt that more and more operators enjoy the benefits of transmitting on location. .
The Mitsubishi Portable Generators are compact, easy to move, have an auto voltage regulator, $110 / 240$ volt AC or 12 volt DC (8.3 amps) output, speed control, frequency meter, circuit breaker and recoil starter.
Mr. Reeves of Waterlooville, Hampshire (Call Sign G8VOI) is one of our many satisfied users. His order to us included the following comment:
66 Thank you very much for the information supplied today on Mitsubishi Generators by your representative at the Sussex Mobile Radio Rally at Brighton.
Having considered the specifications of these compared to both Honda and Yamaha types, this is by far the best for my needs in operating portable radio equipment.

Please supply: $1 \times$ off Mitsubishi Portable Generator 1.5kVA. 99

LIMITED OFFER ONLY
1.5kJ Model @ 2375 + VAT
2.0 KVA Model ©
... So if you want reliable mobile transmitting take a close look at the 1.5 and 2.0kVA Mitsubishi Portable Generators and fill in the coupon now.

ambit

INTERNATIONAL

A topical selection from the current ambit parts and equipment catalogue - 148 pages plus 3 £ 1 discount vouchers! Send 80p for your copy now! \star mix quantity prices apply for callers to our sales counters

NiCad battery bonanza time
 0.5Ah

C
4.0Ah

D
0.11Ah

PP3

1.9	$80 p$	$£ 2.35$	$£ 3.05$	$£ 3.70$
$10-49$	$74 p$	$£ 1.99$	$£ 2.65$	$£ 3.50$

Stockcode 01-12004 01-12024 01-12044 01-84054

CH4/RX4
£7.49

01-02204

CH4/50
£4.95
01-00409

The ideal Christmas Gift!
200 North Service Road, Brentwood, Essex CM14 4SG Tel: (0277) 230909

REMEMBER to add 15% VAT \& 60 p postage to all orders - THANKS!

CALL AT OUR SALES COUNTERS AT
SOLENT COMPONENT SUPPLIES,
53 Burfields Road, Portsmouth, Hants BROXLEA ELECTRONICS, Park Lane, Broxbourne, Herts.
\& at Brentwood, of course!

28 BASIC in Control

Arcom's 40-series board level products have been designed to make life easy for the engineer. We don't just sell CPU cards either; Arcom's complementary range of interface products can help you solve any system development or control problem.

The 40 -series CPU cards are based on Zilog's advanced Z8 family - whose on-chip BASIC makes applications quick and easy to implement. In many cases, you can go from problem formulation to a firmware (EPROM) solution in just thirty minutes! Prices? from $£ 85$ to $£ 152$. The //O boards cost from just $£ 81$ - and can even be used with our high-performance $\mathbf{Z 8 0 0 0}$ development system.
Professionally designed and robustly constructed, Arcom have the range to do the job - reliably. Write or'phone for details now.

ADVERTISING RATES \& INFORMATION

WHENBN ANHEX TRESTA At last-a digital soldering unit for $£ 67.50$ THE NEW ANTEX TCSL-D gives you total control over production soldering temperatures

Again Antex research and development pays off - with this new high-value highperformance unit. It's simple design incorporates an LED display and a unique ULA integrated circuit, specially designed and produced for Antex by Ferranti. Tight temperature control can be maintained by setting the station - then removing the knob, preventing any further alteration.

For laboratory, for workshop, for production-line - TCSU-D is the station.

Let it figure in your soldering specifications.

- Temperature range - ambient to $495^{\circ} \mathrm{C}$.
- Working temperature reached in under lminute
- Detachable sponge-tray - no drips or spillage.
- Includes the world-famous Antex iron.
- Bit temperature maintained to $\pm 5^{\circ} \mathrm{C}$
- Conforms to BS 3456 and CEE 11.
- Zero crossing switching.

Look into the future of soldering technology - send for the TCSU.D fact-pack now.

ANTEX (Electronics) Ltd.,

TRIMMING CAPACITORS

Dau manufacture the broadest range of single turn foil dielectric trimming capacitors in the world! Dielectrics Available: Polyamid, Polycarbonate, polypropylane and PTFE

Capacitance Range:
Min C max from 3.5 pf up to 500 pf depending on series.
Size:
5 mm up to 16 mm diameter.
Mounting
Configurations:
Vertical and
Horizontal with
single or double
adjustment.

Distributor
Ambit International
200 North Service Road, Brentwood, Essex CM14 4SG Tel: (0277) 230909 Telex: 995194 AMBIT G

Dau Components Ltd, 70-74 Barnham Rd, West Sussex Tel: (0243) 553031 Telex: 86843

C M HOWES COMMUNICATIONS

139 Highview, Vigo Village Moopham, Kent DA13 OUT
Falrsent (0732) 823129

EASY TO BUILD KITS BY MAIL ORDER IS YOUR WINTER PROJECT HERE?

AP3 AUTOMATGC SPPECH PROCRSSOR This $k \mid t$ is a real winner, we have sold hundreds of these since the constructional article in Septembers' Ham Radio Today. Ian, G600Z used his AP3 to help him come top of the fixed stations in the Practical Wireless QRP Contest - a real winner indeed! The AP3 Automatic Speech Processor uses a combination of compression and clipping to give a really punchy signal that cuts through the QRM to give you contacts that may not be possible without it.

- Automatically compensates for changes in speech level
*Automatic on/off switching from your PTT switch
Four switch selectable clipping levels in approx 6dB steps.
Will run from a 9 volt battery, or your rigs 12 volt supply
Prices: AP3 kit £14.80, Assembled PCB £19.80.
XM1 CRYSTAL CALPAMTOR - a really useful piece of test equipment, as well as helping to meet those licence requirements. O/Ps: $1 \mathrm{MHHz}, 100 \mathrm{KHz}, 25 \mathrm{KHz}$ \& 10 KHz . Features include an n-board voltage regulator (i/p 8 to 24 VDC) and a pulsed ident facility to identify markers on crowded bands. Usable from Top Band to 70 cm . Kit £15.60, assembled PCB £18.60

OCfIE DIRECT CONVEREFON COMMUNICATIONS RECENER, single band versions for 20,30 $\& 80$ meters, modes SSB and CW. We have sold many of these to both beginners and owners of expensive Japannese rigs. They really are amazing! All coils are ready wound. Kit £13.05, ssembled PCB £18.00

ST2 CW SWE-TONEPPRACTICE OSCHUATOR. This unit gives a nice sounding sinewave note and will work from your key, or the output of your TX by RF sensing. Output power approx 1
watt at 800 Hz . Kit $\mathbf{E 6} .20$ Assembled PC8 $\mathbf{c 8 . 0 0}$.

NEWI Livear AMPLPiERs for 2 meters. 15 W version for use with up to 1.5 W rigs, 30 W version for use with up to 4 W rigs. Just the job for your FT290, IC202 etc. Kits $£ 18.00$ and $\mathbf{2 2} .90$, assembled PCB E22.80 and E26.90. A PTT or RF operated TX/RX change over module for use whith theee linears is available: CO1 kil $\mathbf{£ 8 . 0 0}$, assembled PCB, $\mathrm{ci1.90}$ - Yes, there is
provision for adding a pre-amp. provision for adding a pre-amp.

All the above are PCB modules and include all board mounted components, a drilled, and tinned fibre-glass PCB with the component locations screen printed on it, and full, detailed instructions. Our instructions are more comprehensive than those used by most of our fellow kit manufacturers.
Please add 60p P\&P to your total order value. SAE for more details on any item. Goods are normally in stock and delivery within 7 days, but we sometimes run out of one item or another no matter how hard we try!

73 de Dave G4KQH Technical Manager

SUPERB 70CIMS BAND AERLAL

\ddagger High Gain - 16db
Low VSWR - better
than 1.2 at 432 MHz
\ddagger Wide Bandwidth greater than 10 MHz \ddagger Low Weight - 1.1 kg
(wind loading 0.080 sq.metre)
\ddagger British Made throughout
2 years guarantee

Ther LY8 E12.eg

he economical and portable beam elements boom length 63.5 weight 0.7 kilo wind

Tiger LY8 E19.50

For the operator who wants both high performance and compact size
elements boom length $105^{"}$ weight 09 kilo wind connector 50239 rigid bracing Complete with lamps and plug shroud

Iger LYto £32.05

For the discerning $D X$ man who wants only
elements boom length 185 weight 1.5 kilo wind oad area 13 sq.ft gain 14dbd beamwidth 30° Clamps and plug shroud.

All Saints Industrial Estate
Baghill Lane, Pontefract, Wost Yorks.
Telophone Pontefract (0977) 700949
Amateur, Marine, C.B., Aircraft
and Commercial Aerials supplied

PRODUCT NEWS

design example. This illustrates how appropriate Boolean equations are generated, how the fuse tables are prepared, actual device programming and testing to ensure that the result meets the original design specification.

The booklet is available free of charge from Microsystem Services.

Microsystem Services, PO
Box 37 , Lincoln Road, Cressex Industrial Estate, High Wycombe, Bucks. HP12 $3 \times J$

NOVEL

HANDHELD MULTMMEIER

Fluke recently launched a new range of low-cost handheld multimeters which is said to break new ground by having both an analogue and a digital display. The manufacturers believe that this 70 Series should therefore capture a large share of the analogue market, whilst maintaining their place in the digital part of the

market.
The range consists of three fully autoranging models incorporating proprietary CMOS ICs, the only control being an eight-position function switch. The analogue display is a fastmoving 32-segment LCD bargraph and its digital equivalent a $31 / 2$-digit LCD display but with 3200 counts and therefore $41 / 2$-digit resolution for readings up to 3200. Other advantages
include an estimated 2000hours battery life and 0.7\%/0.5\%/0.3\% accuracy (depending on the model). The deluxe model also features Touch-Hold which enables the user to concentrate on the test probes rather than continuously watching the display. The Model 77 bleeps when it detects a stable reading and then holds that until a new stable reading is detected or the user changes test points.

All models measure DC voltages to $750 \mathrm{~V}, \mathrm{AC}$ voltages to 1 kV , current to 10 A and resistance to $32 \mathrm{M} \Omega$.

Fluke (GB)Ltd, Colonial Way, Watford, Herts. WD2 4TT

FELD STRENGIH METER

Sadelta's TC40, available from House of Instruments, is designed to measure the performance of aerials in their current location. Its readings will therefore suggest the best position in which to install the aerial.

The signals from the aerial are fed to the TC40's 75Ω coaxial-type input connector, whereupon the meter indicates the RMS voltage and dB's/microvolt on one of seven scales covering $100 \mu \mathrm{~V}$ fullscale to 100 mV fullscale (lowest reading $20 \mu \mathrm{~V}$). Coarse and fine tuning controls enable Band ITV ($45-88 \mathrm{MHz}$), Band II FM ($87-108 \mathrm{MHz}$), Band III TV (163-230 MHz) and Bands IV and V TV(470862 MHz) to be fully covered. In addition, there are facilities for audio monitoring of AM and FM, and for

LINSLEY.HOOD 300 SERIES AMPLIFIERS

Tungrifier Complete KiV.... Amplifiter Roppotit5183 .00
.+.598 .00

SOLENOID CONTROLLED HI FIDIGTTAL

 CASSETTE MECHANISM

Front loading deck with full solenoid control of all functions Front loading deck with full solenoid contro
including optional read in fast wind modes. 12 volt operation.
Firted 3-digit memory counter and Hall ic Motion Sensor. Fitted 3-digit memory counter and Hall ic Motion Sensor,
Standard erase and stereo R/P Heads. Cheapest price everfor ali Standarderase and stereo R/P Meads. Cheapest price everfor all
these features. Only ع38.90 plus VAT. Full technical these features. Only
specification included.

LINSLEYHOOD 100 WATT POWER

 AMPLIFIEROur complete kit for this brilliant new design is the same size as our Linsley-Hood Casserte Recorded 2 Kit inctudes all parts tor two power amplifiers with large heatsink area. huge power
supply and speaker protection circuit. Total cost of all parts is ci14.es but our special introductory price for all parts bought together is only e105.50.

THIS MONTH'S SPECIAL OFFERS

DOLBY 'B' NOISE REDUCTION IC LM1011 Marvellous opportunity for home experimenters,
build your own noise reduction system. Supplied build your own noise reduction system. Supplied Abeolute knock out price only $\mathbf{5 3} .50$ for two inc. VAT and poet

COMPLETE STEREO CASSETTE DECK Brand new high quality top-loading Cassette Deck connection data and circuit diagram. Automatic chrome/ferric switching. Only needs ov DC supply

COMPLETE STEREO TUNER MODULE Three band LW/MW/FM Stereo Tuner fully assembled on PCB $165 \times 85 \mathrm{~mm}$. Supplied with Ferrite rod aerial tuning meter and stereo LED. Only needs 12 v DC supply. FM sensitivity. 25 uV . Price only $\mathbf{~} 7.99$ inc. VAT and poet.

ALPS FF317U FM FRONT END
Beautiful, precision made High Quality variable capacitor tuned FM Front End with Dual-gate MosFet $3: 1$ reduction gear.
3.1 reduction gear
Covers full FM range of
87 to 109 MHz . Supply needed is 12 v at only 30 mA Max. Inputs are provided for AGC and AFC signals These have recently been on special offer from another supplier at £4 plus VAT. OUR
PRICE IS ONLY $£ 3.99$ INCLUDING VAT AND POSTAGE! Circuit if required 35p.

HIGH QUALTTY REPLACEMENT CASSETTE HEADS

Do your tapes lack treble? A worn head could be the problem. Fitting one of our replacement heads could restore performance TC1 Test Cassette helps you set the azimuth spot-on. We are the actual Importers which means you get the benefit of lower prices for prime parts. Compare us with ollar heads, all are suitable for
following is a list of our most popular use on Dolby machines and are ex-stock.
HC20 Pormalloy Storeo Head. This is the standard head fitted as orginal equipment on mostdecks............................25 performance head with metal capability 20 Hesic sonduat Alloy Super haed. The best head we can find -onger life than Permalloy, higher output than Ferrite, tantastic Hrequency pesponse.
Hos 51 -Treck Hend specification record and playback head....................... 87.40 Please consult our list for technical data on these and other Spacial Purpose Meads.

HART TRIPLE-PURPOSE TEST
 CASSETTE TC1

One inexpensive test cassette enables you to set up VU level, head azimuth and tape speed. Invaluable when fitting new heads, Only $£ 3.80$ plus VAT and 50 p postage.
Tape Hedd Do-mignitteer. Handy size mains operated unit prevents build up of residual head magnetisation causing nolse Full details of the enture range of HART products is contained in our illustrated lists
Ask for your FREE copy NOW.
Enquiries for lists are also welcome from overseas but please let us have three IRCs to cover the cost of surface post or 5 IRCs for In a hurry? A telephone order with credit card number placed before 30 m will be despatched THAT DAY!
mland
$\begin{array}{ll}\text { Mlamd } \\ \text { Orders up to } £ 10-50 p & \text { OVERsegeas }\end{array}$
Orders $£ 10$ to $£ 49-£ 1$
PLEASE ADD VAT TO ALL PRICES

Please Note: New Phone Number: (0691) 652894 Personal callers are always very welcome but please note that we are closed all day Saturday

Postage at cost plus $£ 2$
documentation and handing
documentation and handling

T

FRIDAY November 25th SATURDAY November 26th SUNDAY November 27th

10am-6pm
10am-6pm
10am-4pm

THE PREMIER SHOW FOR THE ELECTRONICS ENTHUSIAST! Cunard International Exhibition Centre, Cunard Hotel, Hammersmith, London W6

Improved Venue

We have transferred BREADBOARD to the Cunard Hotel, offering improved facilities to the visitor, including car parking and ease of access by rail, tube and car, all in a modern attractive setting.

Planned Features include

- Lectures: covering aspects of electronics and computing.
- Electronics/Computing Advice Centre.
- Demonstration: electronic organs/synthesisers.
- Holography presentation.
- Practical demonstration: 'How to produce printed circuit boards'.
- Computer Corner -'Try before you buy'.
- Amateur Radio Action Centre.
- Computer controlled model railway competition.
- Pick of the projects - Demonstration of the best from ELECTRONICS TODAY INTERNATIONAL, HOBBY ELECTRONICS and ELECTRONICS DIGEST.
- Giant TV screen video games.
- Robotic display.

The Breadboard Exhibition is sponsored by Electronics Today International, Hobby Electronics, Electronics Digest and Digital and Micro Electronics

Breadboard'83 ASP Exhibitions 145 Charing Cross Road London WC2H OEE

PRODUCT NEWS

continuity and short-circuit testing.
The TC40 is both compact and lightweight which, together with its internal power supply of two 4.5 V batteries and its carrying case, makes it fully portable.

House of Instruments, Clifton Chambers, 62 High Street, Saffron Walden, Essex. CB10 1EE

EMERGENCY-STOP BUITON

Quiller Components has added a new push-button switch that could be used as an emergency-stop button to the range of Breter control switches it stocks. The new switch - the M206SR-has a 35 mm diameter mushroom head, either a thermoplastic or a metal body and a 'turn to release' action. The use of snap-on contact blocks gives it flexibility in circuit arrangement, while the contact block can also be wired separately from the operator if so required. The contacts are of high

conductivity silver alloy to give resistance to wear.
The switch conforms to all major European and International standards and regulations, and is suitable for use in the control of industrial equipment.

Quiller Components Ltd, 85 Stanley Road, Bournemouth, Dorset. BH14SD.

DIN

RAIL-MOUNTED TERMINALS
The Entrelec Series 500 range of DIN rail-mounted terminals illustrated here is a recent addition to the Verospeed catalogue. There are five sizes of standard terminals within the range, with nominal current ratings between 35 and 138A, as well as 'fused', 'space-saver' and 'interruptable' types of terminal.
All the terminals fit DIN 1, 2,

3 and Cenelec rails and are manufactured from a material known as super polymide that gives them a non-brittle and flexible construction over the temperature range $-55^{\circ} \mathrm{C}$ to $+130^{\circ} \mathrm{C}$. The Series 5000 also features locked-in parts, individual terminal locking and a unique kind of preformed jumper bar.

Verospeed, Stansted Road, Boyatt Wood, Eastleigh, Hants. SO54ZY

73 FROM AMERICA!

IN YOUR HOME, EVERY MONTH, FOR LESS THAN £17!

Now, 73: Amateur Radio's Technical Journal is available to the readers of Radio \& Electronics World at a special introductory rate of under $£ 17$.
That's right. 73 magazine, a leader in the ham radio and electronics field for over 23 years, is coming to the United Kingdom.
73 is packed with construction projects. From antennas to transmitters to test equipment, 73 gives you 146 pages of easy-tobuild designs for your building pleasure.

73 is state-of-the-art. Get the latest US news on new products, ham satellites, microcomputer applications, and digital communications.

73 is international. From Poland to Papua New Guinea, our 31 foreign correspondents report to 73 readers in more than 85 countries!

Order your subscription to 73 now and take advantage of our special introductory offer.

OK! I want a subscription to 73: Amateur Radio's Technical Journal.
\square Please send me 12 issues of 73 for US $\$ 25$ (that's less than $£ 17$ a year!!, surface delivery.
$\square 1$ have enclosed a check or money order. US funds drawn on US bank.
\square Please bill me.

Name
Address \qquad Post Code

Country

73: Amateur Radio's Technical Journal PO Box 931, Farmingdale, NY 11737, USA.
73DRRE

LB ELECTRONGS

FRUSTRAT : CHTHT ORDER BRAND NEW \& BOX 1D. CN FXe0 PRINTERS £350.00 + VAT (carriage £12 tnt)

SPECIAL OFFERS

DISC DRIVE BONANZA

TEAC FD-55F ½ Height DSD 80 track
40 track selectable at our new low price
$£ 199$ + VAT
PAPST 3"' Box Fan 220 volts 50 hz require 1uf capacitor
$27.95 \mathrm{p} / \mathrm{p} \mathrm{E} 1.00$
As above but 12" 22 mhz band width........................... £88.70 + VAT
AsC11 coded qwerty Keyboard, manufactured by Alphanumeric (Woking UK). Model 60K brand new plus data $£ 19.95$

25 WAY'D' Types, plugs £1.85, sockets £1.85 (solder tail) p\& 30 p . Telephone for bulk prices.
Brand New Vero Card racks 3u 24 slot $£ 12.00$ (callers only).
Twin 5" Cabinets with power supply $\mathbf{8 4 0 . 0 0}+$ VAT (providing a disc drive is purchased from us, if drives purchased elsewhere $\mathbf{5 5 0 . 0 0}+$ VAT).
9" Green Phosphor Monitors Brand New and Cased Composite Video Input 18 mhz band width $\mathbf{5 8 0}+$ VAT each (carriage cost) Textool 24 dil Zif Skt (used) $£ 3.95$ p\&p 30p
Brand Now 13" Colour monitor fully cased. Full warranty $540 \times$ 236 pixel. RGB TTL Input plus apple. Input $\mathbf{2 2 0}$ + VAT (carriage at cost).
BNC Lead Bonanza coax lead with BNC plus at one end, 2 metres plus $£ 1.00$ p\&p 30p and 10 metres plus $£ 2.50$ p\&p 75p.

B.8.R. Single Player Record Decks. 240 volt A/C 2 speed (No cartridge) $£ 14.75$ BeR. Automatic Record Decks. 240 volt A/C 3 speed (No cartridge)
$E 16.75$
10 Whtt Stereo Amplifier Chassis with vol on/off, balance, treble
\& bass controls, knobs \& fascia. (Req. 15 volt supply) $\mathbf{\Sigma 7 . 0 0}$
Dterec Cassette TapeDecks with built in pre amps, level indicators, auto stops \& mics, 11 " $\times 6$ ". Black with silver trim. Req.
68.12 V supply
£17.50
FMA Tuners. A complete AM/FM tuner chassis covering L/W, M W \& VHF stereo. (Brand new \& boxed) $£ 9.95$
Power Supply Kit for all the units above. (15V at 1 amp ; 12V at 5A; 6 V at $250 \mathrm{M} / \mathrm{A}$)
£6.00
All prices inc. VAT, Post \& Packing
Orders by return of post
Cheque, P/O,or Access

ISHERWOODS ELECTRONICS
 Hozier St, Blackburn, Lancs. England Tel: (0254) 57616

Modem Kit Only £39.95

\star CCITT' standard $\star 300$ baud full duplex
\star Direct connection - greatly reduces data loss
associated with acoustic couplers
\star Powered from phone lines therefore
no power supply required

* Opto coupled data in and data out for intrinsically safe operation Build it yourself for $\mathbf{8 3 9 . 9 8}$ including VAT and postage (note - case not included)

Racom Itd, Dept J
81 Cholmeley Road, Reading
Berks RG1 3IY
Tel: 073467027

AUTUMN SALE! DIGITAL MULTIMETER KITS

These $3 \frac{1}{2}$ digit handheld DMM's are fully complete with all components (except PP3 battery) and test leads. We are using up all stocks of the DP2010K prior to launch of a new range of meters in the Autumn. The Kits will be sold on a 'first come first served' basis, and are fully guaranteed. A troubleshooting and calibration service will be maintained. This is a onceonly opportunity to make a DMM at an incredibly low price. Supplied with a comprehensive description of operation and full constructional data.

TYPICAL SPECIFICATION					
Function	PSD	Accuracy	Function	FSD	Accuracy
Volts	2 V		Current	2 mA	$2 \% \pm 5$ digit
(d.c.)	20 V	1.5%	(a.c.)	20 mA	$2 \% \pm 5$ digit
	200 V	± 1 digit		200 mA	$4 \% \pm 5$ digit
	500 V		2000 mA	$12 \% \pm 5$ digit	
Current	2 mA	$1 \% \pm 1$ digit	Resistance	2 k	$1 \% \pm 1$ digit
(d.c.)	20 mA	$1 \% \pm 1$ digit		20 k	$1 \% \pm 1$ digit
	200 mA	$3 \% \pm 1$ digit		200 k	$1 \% \pm 1$ digit
	200 mA	$10 \% \pm 1$ digit		2000 k	$1 \% \pm 1$ digit
Volts	2 V		Diode	2 V	$1 \% \pm 1$ digit
(a.c.)	20 V	2%	Test		
	200 V	± 5 digit			
	500 V				

[^1]
LETTERS to the EDITOR

Do you have an opionion to air? Do you know the answer to something which puzzles, or a tip that might help,
fellow enthusiasts? Have you something to add to a feature or review?
Your letters are invaluable in helping us to develop the magazine for you
Write to Letters to the Editor, Radio \& Eectronics World, Sovereign House, Brentwood, Essex,
CM14 4SE. £2 will be paid for each letter published

Improvements

Refering to the letter in R\&EW (September '83) from Mr Dudley of Guildford and the Editor's reply, here are some improvements made to the Cybernet 134 board in my 'Oscar' rig.

Oscillator Buffer: Two versions of the following circuit (Figure 1) were made up on pieces of veroboard and inserted in the oscillator outputs to both the 1st and 2nd mixers, to provide a buffer against the effects of oscillator blocking.

It was found that as the input to the 1st mixer is a balanced type, the circuit used here gave best results at a quiescent current of about 4.5 mA . Using this value for direct injection into the base of the second mixer proved too much, so the current was dropped to about 1.8 mA : hence the two sets of resistor values. Positive voltage is taken from the ON/OFF switch, and R3 is used to drop the excess voltage, decoupled by C1.
Both circuits were soldered to convenient RF/IF coil cans using the earth tracks. This method not only provides an earth return but also mechanical stability.
Links J13 and J15 are removed and the holes used for the buffer's input/output connections.

Two Pole Crystal Filter: Matching the 10MO8AA 10.695 MHz crystal filter turned out to be a matter of assumption. It was assumed that the input/output impe

dance of the ceramic filter was 300R, and that the output of T9 and the input to Q10 were matched to this impedance. The following resistive potential divider circuit (Figure 2) was used to match the 1 k 8 impedance of the crystal filter.
The circuit can be made up on a small piece of veroboard and the same mounting method used as for the oscillator buffer. Connections can be made using the holes left by the removal of the ceramic filter, or using the holes left by removing link J14. A link between the first and third holes of the original filter position would then have to be made.

Not having the appropriate equipment to take quantitive measurements, all RF/IF colls were peaked for maximum Smeter reading, and a listening test carried out.There appeared to be no degradation in audio quality, and instead of loosing the signal completely to

Satellite prediction

Following on from the recent articles in R\&EW about polar orbiting satellites, I thought readers who own a 16 K ZX81 personal computer might be interested in the orbit-prediction program presented herewith.
The program, when fed with reference orbit data of a polar satellite, will give accurate predictions for about one month ahead with orbit number, date, time and longitude west at which the satellite crosses the Equator. The writer of this program ran it for more than a year and was well satisfied with it's accuracy and troublefree performance.
Some explanations about the logic employed should prove helpful to those readers wishing to try the program, particularly if they envisage making changes to it later to fit specific needs. These follow:
Lines 40-230 feed the computer with reference orbit parameters. These parameters usually can be found in Radio Amateur magazines such as QST (for the OSCAR satellites in particular) or can be requested from the National Oceanic and Atmospheric Administration in the US in the case of the NOAA 7 and 8 weather fax satellites.
Lines 290-320 arrange the way the expected data will be displayed and printed.
Lines 340-570 instruct the computer how to calculate the exact orbit number, date, time and longitude west at which the satellite crosses the Equator.

Depending on the particular location of the user, he should add the time the satellite will need to reach his location after crossing the Equator (the satellite speed is approximately 3.5° per minute).

At the writer's location, for instance, (Thessaloniki, Northern Greece), it will take five minutes for the satellite to travel the distance between the Equator and the southern edge of the Mediterranean Sea, which is when the satellite signal can first be heard. This is valid for the ascending node in the evening, when the satellite moves from south to north.

The program provides information on a selected group of orbits every day. This limitation is essential if one wants to save time and printer paper. With the parameters given to this program (line 530), the predicted orbits cover the area from the Caspian Sea to Gibraltar and from the Mediterranean coasts of Africa to the North Sea. Of course, these parameters can be changed to fit requirements of other areas of the world.
The subroutines in lines $3000-3800$ arrange for the changing number of days in each month (including February), while lines 4000-5100 round off the long decimals of times and longitudes.
Argyris Adamidis, Thessaloniki

Sample of the printed data

The way forward

In the Editorial in the October ' 83 issue of R\&EW, we challenged our readers to come up with suggestions as to how they would create wealth and employment, using new technology as a catalyst. John de Rivaz of Truro took up our challenge, and we present his ideas here.

The problems of today are due to insufficient creation of wealth, a situation accentuated through the way the profits of manufacturing, construction and other such wealth-creating industries are consistently reduced through vast sums of money being paid to people who create no wealth at all, for example, chartered accountants. Members of these professions are on a kind of chain-letter rip-off: they write laws that other members of this elite get paid $£ 100$ per hour or so to interpret to lesser mortals. For instance, the solicitors' and estate agents' bills associated with moving house are comparable with the cost of a colour TV with a VCR to go with it. And it is impossible for manufacturing industry - or the general public - to avoid paying out for these services, directly or indirectly, which pushes up the price of manufactured goods; and so it continues.
Inflating the currency is no solution as this only pushes the debt into the future. Moreover, these problems cannot be solved through more governmental control: as Hitler demonstrated, extreme forms of control only bring disaster. Indeed, various Acts of Parliament have themselves added considerably to the overheads to be borne by industry.
A possible way that new technology could ease matters is through being
more substantially incorporated into the production of essentia/ consumer goods, instead of just those designed for entertainment such as televisions, video cassette recorders, hi-fi and computers. As the prices of the latter group have been steadily falling over the past few years, surely the technology employed here can be incorporated in the manufacturing procedures of such equipment as washing machines, the quality of which has not increased in line with their cost!
Unfortunately, this would probably just put pressure on those self-same manufacturing industries that are already suffering from the bureaucracy problems mentioned above.
Perhaps a better solution is to ask that the new technology be used to make machines that self-employed people could use to make these essential consumer goods. In that case, not only would the production costs themselves be so much cheaper but so would the overheads. There would be nothing to pay either in time or money, in travelling to work nor would there be great cost in distribution or advertising as each person's market would be close to home.
Moreover, such an arrangement would do a lot for the self-esteem and general satisfaction of each worker, their time would be their own and there would be no bosses or trade unions to order them about. In addition, the automatic nature of the processes used would give these people plenty of spare time. How much better their lot than that of the present factory worker! To cap it all, this scheme should provide increased employment at reduced costs.
A present example of this basic idea is given by the home computer with its owner earning money by writing and selling programs. Unfortunately, these generally - at least, so far - have had purely an entertainment value.

In essence, what is suggested is that, instead of designing another entertainment product to replace the VCR once that market has been saturated, the same technology be used to design a wealthcreating product. Considering that VCRs find their way into homes other than those of the very rich, surely the latter product could similarly find its way into such homes and start creating wealth for us all.

MICRO MANIA

Your editorial in R\&EW in October has prompted me to produce the following verse on the subject of Technology.

As I travel life's great computer buss, I ask myself what's all this fuss? My watch plays tunes and entertains, The fridge and cooker rack their brains, The washing machine beats me at chess, While washing out my new string vest.

My car tells me the tyres are thin, It phones the garage to book me in, I cannot go to work this way, It thinks that it will snow today.

My summer holiday in Corfu Is booked and cancelled by VDU, The Great God IT is in control: That's what we are told when on the dole. The bills arrive and don't get paid,
The bank's computer is badly made.
At work my terminal greets me with a grin,
'You're late again, please log in'.
The day's work is neatly planned, I must learn to type with either hand. The jobs around us disappear,
The people cry out in doubt and fear: 'How can we fight what we cannot see' 'Will a micro replace me?'
E Jordan, Wickiord, Essex

ATTENTION 10 METRE OPERATORS!

NEW - especially for the 10 Metre users who have converted CB rigs
 The AKD 10 Metre Linear Amplifier

$\star 25$ Watts FM out for 4 Watts in
$\star 50 \mathrm{Watts}$ PEP on SSB
\star About 10 Watts out for $1 / 2$ Watt in (13.8 V)
\star Automatic RF sensing
\star Relay switching employed
\star Requires nominal 12 volts @ 5 amps (15 volts maximum)

* In-line fused

Ł 2 year guarantee (including ouput device)
£25.50

* British made

Incl VAT, p\&p

10 Metre RF Switched, In-Line Pre-Amp.

* 3SK45 Dual Gate Fet, 15 dB gain
* Fail safe, will handle 10 watts through power
t 2 year guarantee
$\star \star \star \star t$
£14.50
Incl VAT, p\&p
Also available, the AKD range of RF INTERFERENCE FILTERS - high performance, sleek appearence.
Used by British Telecom, Granada, ITT, Thorn-EMI and other prominent companies.

Model/Type	Specification	Manufacturers retail price Incl VAT, p\&p	Model/Type	Specification	```Manufacturers retail price Incl VAT, p&p```
TNF2* TUNED NOTCH FILTER (Notch on Inner \& on Braid) *Suffix with centre frequency of interference. e.g. TNF $2 / 27.5 \mathrm{MHz}$	Rejection - Inner>35dB Outer $>30 \mathrm{~dB}$ Band width 2MHz Insertion loss $<0.5 \mathrm{~dB}$ Standard bands to which centred: Amateur 2,4,10, 15\& 20 metres $\mathrm{CB}(27.5 \mathrm{MHz})$ Other frequencies to order, up to 300 MHz	£7.50	HPFS HIGHPASS FILTER (SPECIAL) Including Braid Break Transformer Mainly for commercial use	Rejection - Inner $>60 \mathrm{~dB}$ (1 (30 MHz \& below Outer $>25 \mathrm{~dB}$ (ii 30 MHz \& below Insertion loss (ii UHF $<2.5 \mathrm{~dB}$	£6.73
Except that, in the case of Amateur Radio interference, just the Amateur Bandmay be specified e.g. TNF2/2 Metres			$\begin{gathered} \text { BB1 } \\ \text { BRAID BREAKER } \end{gathered}$	Braid rejection $>25 \mathrm{~dB}$ (s) 30 MHz \& below Insertion loss $<2 \mathrm{~dB}$	£6.32
HPF1 HIGH PASS FILTER BRAID BREAKER General Purpose	Rejection Inner $>60 \mathrm{~dB}$ (i3 30 MHz \& below Outer $>15 \mathrm{~dB}$ (ii 30 MHz \& below Insertion loss $<2 \mathrm{~dB}$ Useable to 200 MHz Limited use to 400 MHz	£6.32	RBF1 RADAR FILTER (VCR interference filter) also suitable as: UHF NOTCH FILTER Use channel number or frequency, or	Rejection Inner (only) approx 20 dB (a 591.25 MHz (CH.36) Notch range: $430-800 \mathrm{MHz}$ Notchset to channel 36 .	£6.32
HPF2 HIGH PASS FILTER Without Braid Break	Rejection - Inner $>50 \mathrm{~dB}$ below 30 MHz Insertion loss (ii 88 MHz \& above $<2 \mathrm{~dB}$	£6.44	as a suffix e.g. RBF $1 / 70 \mathrm{cms}$ (for Amateur 70 cms band) RBF1/CH38	others to order	

Direct from the Manufacture - or from your local Amateur Radio dealer.
Trade enquiries welcome

* AKD * ARMSTRONG KIRKWOOD DEVELOPMENTS
62 Marcourt Road, Stokenchurch, High Wycombe, Bucks, HP1430U

INSIDE THE SINCLAIR FLAT TV

Rod Greenaway presents an inside view of the flat screen pocket TV project

In a hotbed of innovation and dynamic new technology such as exists at Sinclair Research, the rule about information is 'Need to Know'. In other words, the various participants in the project tend only to know what is pertinent to their specific participation in the design. At least, that was the excuse given when the questioning got too intense at the press launch.

There obviously must be some managers who possess a general overview, or the radiated output from the line hold circuit could serve to obliterate the RF input to the tuner among other such minor disasters. The net result of the development (estimates range between 5 and 6 years and between 4 and 5 million pounds) is the most magnificent piece of all-British consumer technology since Sinclair's last effort with the Spectrum. The man is a veritable one-man national face-saver, working against some pretty daunting odds in terms of our national attitude towards people who want to spend money developing high technology products.

The innovative technology of the set itself breaks down (forgive me) into two major features: the tube and the chip. There is, as you can see from Photo 1, little else to it other than a couple of TQKO 10P coils (these people really know what they are doing), and a disturbingly large number of presets which I am advised are actually 'not a problem' in production. The interior view presented in the photograph is dominated by the flat tube, so we'll start our technical appreciation there.

Down the tubes

The problem when designing a tube with a side entry electron beam is really quite simple and does not involve rewriting the laws of physics. You just
need to bend the beam a bit harder, that's all. The tubes in use in the prototypes on show are remarkably similar to those first leaked to the press and appearing in features as long ago as summer 1981.

The actual receiver itself isn't much like that proposed on the cover of RadioElectronics back in 1981 (Photo 2). This 'kite' was quite widely flown with a projected price of $\$ 100$ (check), but including VHF FM radio (definite pass) and VHF TV (pass so far). The tube is one of the most 'sensitive' areas of the design, being subject to many patents and much secrecy. Nevertheless, it's fairly obvious how the basic principle works with two sets of electrostatic deflection plates in the gun assembly to provide the horizontal and vertical
scanning, and a third set between the phosphor screen and the front face (a transparent tin oxide coating on the latter acts as the focusing electrode) see Figure 1. This third set provides focusing by preventing the angle of incidence of the electron beam spreading into an ellipse at the edges of the tube.
The information supplied by Sinclair states that 'If uncorrected, folding the electron optics would distort the raster scan to produce a keystone-shaped frame, in which the vertical edges are curved and the horizontal edges form the side of a trapezium. Both electronic and optical techniques are used to correct for this distortion'
When is a $2^{\prime \prime}$ TV screen not a $2^{\prime \prime}$ TV

Photo 1

screen? It would seem that the answer is slightly vexed in that the Sinclair set uses an optical magnification/correction process prior to that dimension being measured. This aspect is potentially as tricky as the 'when is RAM not RAM' argument that has caught up with many of the personal computer makers.
The aspect ratio of the tube phosphor area shown in the internal photograph (Photo 1) is nothing like that of a conventional TV tube. In fact, it's only about two thirds the height, and the correction is applied using a Fresnel screen built into the faceplate. The reason for using this approach is to simplify the problems of distortion and power consumption arising from scanning an electron beam too far off the gun axis. No specific side effects (pardon the pun) are apparent to the viewer, and most viewers will never actually notice the effect.
The trapezium distortion is corrected electronically via the waveform used to scan the vertical plates - more of which anon when we come to look into the IC.
Constructing the tube is one of the

hoto 2 The Microvision 2700, Sinclair's earlier kite in the world of flat TV
project's major technical problems/ achievements since it involves a vacuum-formed backplate with a flat front plate on which the electrode connections are screen printed (much as in an LCD). The art of spreading the phosphor evenly across the display area, coupled with trimming the glass and frit sealing the electron gun and deflection assemblies, is one that has taken a lot of time and money to perfect - and it must be said that it is yet to be proven to the satisfaction of us cynics that the yield rate is acceptable.
Is it idle to speculate that a good many of these specific problems are likely to have been encountered by fluorescent display makers such as Futaba and Itron? If so, just how long will it take them to perform a passable emulation of the present technology? Let's hope Sir Clive has employed a sound patent agent.
The NRDC has stumped up around $£ 1$ million of the stake money for the tube project, which has been used to install a manufacturing facility at Timex's Dundee factory. This would appear to mean business, and it is to be hoped that other applications of the tube and its technology will emerge: not the least of which is likely to be instrument displays. Who said 'oscilloscope'?

Chips from Chadderton

They make chips in Oldham that are nothing to do with mushy peas. Whilst the Ferranti custom device process is not the most sophisticated in terms of the capability of CAD for interactive design and emulation, the flat TV project was not deflected from pursuing this line of development. The suitability of the CDI (collector diffusion integration) process to an application that mixed high frequency linear and TV logic with scanning functions seems unequalled especially in view of the low power involved. And, by thunder, it's British.
Peering out from the gloom beneath the tube in the photo, you may be able to make out the presence of the FerrantilC. Reference to the block diagram (Figure 2) supplied with the launch information reveals what goes on therein. This receiver is one of the first examples of genuinely single-device TV sets. A Motorola development we mentioned in R\&EW some months ago does nearly as much (at the expense of greater power consumption) but it certainly doesn't provide automatic sound IF selection, nor the field correction DAC that provides the necessary tweak to the scanning waveforms to accommodate the tube requirements.

Listed amongst the IC's special features are 'integrated sound selectivity, video innovations to eliminate image problems in the UHF channel, and an advanced synthesised scan generator to control the complex waveforms needed

Phofo 3 Internal view of the Microvision 2700

QUALITY CRYSTALS - AT COMPETITIVE PRICES. POPULAR FREQUENCIES IN STOCK

2 METRE STOCK CRYSTALS. Price $\mathbf{\Sigma 1 . 9 8}$ for one crystal. $\mathbf{~} 1.74$ crystal when two or more purchased

	Mcen 30 pF TX	HCeN $30 \mathrm{p} / \mathrm{TX}$	$\begin{aligned} & \text { Mc2en } \\ & \text { 30pF and } \\ & \text { 40pF TX } \end{aligned}$	$\begin{aligned} & \text { HC2sy } \\ & \text { 20pp and } \\ & 30 \mathrm{pF} R X \end{aligned}$	$\begin{aligned} & \text { HC2sN } \\ & \text { 28pF mind } \\ & \text { 20pf TX } \end{aligned}$	$\begin{aligned} & \text { HCes } \\ & 25 N \\ & \text { sR } R x \end{aligned}$
RO	40277	8.0555	120833	14.9888	18.1250	44.9666
R1	4.0284	8.0569	12.0854	14.9916	18.1281	44.9750
R2	40291	80583	120875	14.9944	18.1312	449833
R3	4.0298	80597	120895	14.9972	18.1343	44.9916
R4	40305	8.0611	120916	15.0000	181375	45.0000
R5	4.0319	80638	120958	150055	18.1437	45.0166
R7	4.0326	8.0652	12.0979	150083	18.1468	45.0250
S8	-	-	12.1000	14.9444	181500	448333°
S9			121020	14.9472	18.1531	44.8416°
S10	-	-	121041	14.9500	18.1562	44.8500*
S11	40354	8.0708	12.1062	14.9572	18.1593	4.8583
S12	-	-	121083	14.9555	181625	44.8666*
S13	-	-	12.1104	14.9583	181656	44.8750°
S14	-	-	12.1145	14.9638	181718	44.8916°
S15	-	-	121145	14.9638	181718	44.8916°
S16	-	-	12.1167	14.9667	181750	44.9000
S17	-		12.1187	14.9694	181781	44-9083*
S18	-	-	121208	14.9722	18.1812	44.9166^{*}
S19	-	-	12.1229	149750	18.1843	44.9250*
S20	4.0416	80833	12.1250	14.9777	18.1875	44.9333
S21	4.0423	80847	121270	149805	18.1906	44.9416
S22	4.0430	80861	12.1291	14.9833	18.1937	44.9500
S23	40437	8.0875	121312	14.9861	18.1968	449583

The above list includes crystals for the folowing equipment R0 to R7 and $S 8$ to $S 23$ for following Belcom FS1007, FDK TM56. Multi 11 Quartz 16 and Multi 7. Icom IC2F, 21. 22A and 215. Trio Kenwood 2200. 7200, Uniden 2030 and Yaesu FT2FB, FT2 auto, FT224, FT223 and FT202.

4 METRE CRY\$TALS for 7026 MHz in HC6/U at $£ 2.28$ TX 878250 MHZ RX 67466 or 29.78 MHz in stock.
70 cm CRYSTALS instock. Pye Pocketfone PF1, PF2, PF70 and wood and Douglas E8.00 a pair or TX E2.50 each. SU8 (433.8) RBO. RB2. RB4. RB6, RB10, RB11, RB13. RB14 and RB15 COWVEATISR CRYSTALS in HC18/U at E2.88 in stock 23.000, 38.666, 42000. 70.000.96.000. 101.000 101.5000, 105666 and 116.000 MHz .

TONE BURST AND J.F. CRYSTALS in HC18/U at E2.25 in stock 7.168 MHz for 1750 Hz and 10245 MHz for 107 MHz I.F.'s

FRECUENCY STANDARDS in stock $£ 2.75 \mathrm{HC} 6200 \mathrm{kHz}, 455 \mathrm{kHz}, 100 \mathrm{kHz}, 3500 \mathrm{kHz}, 5000 \mathrm{MHz}$ and $10.000 \mathrm{MHz}, \mathrm{HC} 181000 \mathrm{kHz}, 7000 \mathrm{MHz}, 10700 \mathrm{MHz}, 48.000 \mathrm{MHz}$ and 100000 MHz .

PuartSLab
MARKETING LTD
PO. Bo: 19

MADE TO ORDER CRYSTALS

Fundamentals Frequency range 6 to 30 kHz 6 to 30 kHz
30 to 80 kHz 10 80kHz 815.00 80 to 159kHz $\mathbf{1 0 . 0 0}$ $\begin{array}{rr}160 \text { to } 999 \mathrm{kHz} & £ 7.00\end{array}$ $\begin{array}{rr}1 \text { to } 1.5 \mathrm{MHz} & £ .10 .75\end{array}$ 1.5 to $2.5 \mathrm{MHz} \quad £ 5.00$ 2.5 to 4.0 MHz 4 to 21 MHz 21 to 25 MHz 25 to 30 MHz

Overtomes

Frequency rance

3rd OVT $\quad 21.00$ to 6500 MH 5th OVT $\quad 60.00$ to 110.00 MHz 5 th OVT $\quad 110.00125 .00 \mathrm{MHz}$ 5th, 7th \& $\quad 125.00$ to 150.00 MHz 9th OVT $\quad 15000$ to 250.00 MHz

£4.55 | $\boxed{5} .10$ |
| :---: |
| 7.00 | $\Sigma 7.00$ 88.00

$\mathbf{~} 9.50$ $£ 9.50$

Unless otherwise requested fundamentals will be supplied for 30pf lead capacitance and overtones for series resonant operation. HOLDERS:- PLEASE SPECIFY WHEN ORDERING - else HC25 U supplied for XTLS above $3 \mathrm{MHz} \mathrm{HC13/U6-200kHz} \mathrm{HC6/U} \mathrm{\&} \mathrm{HC33/U}$ $170 \mathrm{kHz}-170 \mathrm{MHz} \mathrm{HC} 18$ U \& HC25/U 2.250 MHz
DISCOUNTS The above prices are for small quantities, price on application for $10+$ units to same frequency spec or bulk purchases of mixed frequencies. We supply FREE xtals for use in UK repeaters
COMMERCLAL CRYSTALS available on fast delivery and at competitive prices. please send for list stating interest.
EMERGENCY SERVICE for XTALS 1 to 125 MHz . The surcharges apply to each crystal not each order and are subject to VAT. Days refer to working days.

4 days $+£ 12,6$ days $+£ 7,8$ days $+£ 5,13$ days $+£ 3$
CRYSTALS SOCKETS HC6 \& HC25 £0.20 each. Minimum order charge $£ 1.50$.
TERMS Cash with order post Inc to UK Ireland cheques \& PO's to OSL Ltd Bank drafts in pounds sterling

A stamped addressed envelope with ALL enquiries please
PRICES ARE EX VAT. PLEASE ADD 15\%
Telephone: 01-690 4889 24Hr Ansafone: Erith (03224) 30830 Telex: 8813271 GECOMS - G (Attention QUARTSLAB) Cables: QUARTSLAB, London

WHAT IS N.B.S.?
In 1976 the US National Bureau of Standards published a report under the authorship of PeterP Viezbicke detailing some mine man-years of work under. taken in the oplimisation of Yagidesign

Investigation look place on the N.BS antenna fanges at Sterling. Virginia and Table Mountatn Colorado into the interreleationship between director and reflector lengths spacing and diameters as well as the effect of the metal supporing boom in order to achieve maximum possible forward gain

MET yagis have been designed and engineered within the sirict specifications of the NBS report

Enquiries from Overseas dealers welcome

METALFAYRE 12 kingsdown Road
St Margarets-at-Cliffe. DOVER CT15 6AZ

to scan the flat CRT. It runs a check 50 times per second to ensure picture hold'. All coupling, decoupling and phase shift networks are integrated on the chip.
The really nifty aspect of the IC is its ability to select the local sound IF standard by looking at the line rate. This piece of innovation was being explored long ago in the days when the Sinclair HQ was still the Mill in St Ives and it's nice to see a practical application emerge that works so effectively. The technique is deceptively simple, since with 625 -line transmissions the sound IF is either 5.5 MHz or 6 MHz , so mixing the intercarrier FM signal with 5.75 MHz (derived from the line oscillator - see Figure 2) always gives a difference frequency of 250 kHz . Neat stuff.
When the set discovers 525 lines are being received then the sound VCO is switched to 4.75 MHz as $4.75-4.5=250 \mathrm{kHz}$ again. No clue was given by the literature (or personnel) supplied as to the technique used on the 250 kHz IF, but this is likely to be reminiscent of the pulse counting techniques exploited in the erstwhile Sinclair Micro FM receiver.
The Ferranti wonderchip, then, may have gone over the top and spoilt itself through attempting to provide a viable sound output stage on top of everything else. If you thought the sound output from the original Microvision was rather mean, then have a listen to this one. The 'loud' speaker (pictured towards the right edge of the PCB on axis with the
tube centre) is not adequate. Old cynics like me who have had experience of multifarious ICs that do everything, including class $A B$ output and putting the cat out, wonder if the current fluctuations on volume peaks have caused the same impossible on-chip power supply decoupling problems that have sunk many a lesser project. Watch these pages for a Sinclair TV combined NiCad battery pack, charger and sound booster project!

The Noise Abatement Society should endorse this product as it is unlikely to upset the tranquillity of the average Sunday afternoon on Brighton's promenade.

Synthesised scanning

The major technical problem in trying to present an orthogonal picture on the flat tube was in generating scan waveforms that compensated for the differing path lengths travelled by the electron beam. It could be done by analogue techniques, but only in a way that required vast setting-up complexities and additional circuitry and power.
The Ferranti ZN401E device uses a high frequency VCO that is locked to a multiple of the received line sync pulses to provide both standard 'recognition' and a single master clock source for the entire set. The VCO centre frequency is set by a single external resistor and is counted down to the field rate. On-chip logic determines reception of a 625 - or

525-line picture, setting the count number and VCO accordingly. Noise immunity of the field and line lock is aided by additional on-chip processing.

DACs (digital to analogue converters) derive line scan, field sweeps and correction signals from the countdown system. It must be assumed (hoped?) that the tubes are sufficiently repeatable that these waveforms do not require tweaking on test.

Tuning

The tuner lives in the small screened box to the left of the Ferranti IC. It uses printed line techniques, varicap control and surface mounted components for compactness. It is not generously dimensioned in the UHF-only version, so heaven knows how tight the VHF/UHF model will be. The UHF model uses the relatively high IF frequency of 230 MHz (it's a good job CB never went so high as far as this project is concerned).

Quite why the IF is 'up there' is not obvious from the words supplied by Sinclair, but perhaps we can speculate that the rule of 'the higher the frequency, the easier it is to produce compact LC filters, came into play and, in this case, the trade off between Q and signal image still leaves a performance worthy of comparison with the usual alternative of 39 MHz . It may also have something to do with the possibility of up-converting the lower VHF bands. Sinclair wouldn't let on.
To tune 45 MHz to 900 MHz in the combined VHF/UHF version is good fun indeed. Sir Clive's own words were that it would be using a single range tuner, in which case up-conversion to 1 GHz and a SAW device would appear to be on the cards. Maybe there's some very innovative thinking going on in Cambridge at this moment.

The set uses a four-stage AGC controlled amplifier at 230 MHz , and implies from the literature supplied that this is actually in the Ferranti IC. Video detection uses a 'novel low level envelope detector' with no sign of any tuned circuit in sight. Hmmm. Shades of the coil-less radio devices described in October's R\&EW.
It will be interesting to see if Ferranti is persuaded to put any of this experience to work in other radio and communications circuitry. It's about time it followed up the ZN414.

\star BRAND NEW SURPLUS
\star Green 24×80 U/L case display
\star Detached keyboard with numeric \& function pads
\star Dual double density (total 1.2 mbyte) floppy disc drives
\star 8085A processor with 64kbytes MOS
\star All system components by well known manufacturers \star CPM available

- PCC2000 (os illustrated) with dual floppy disc drives, RS232 interface, CENTRONICS paralle printer interface, QUME/NEC interface
- NEC SPINWRITER for PCC2000. 55 c.p.s. bidirectional correspondence quality printer
- CENTRONICS Model 702 matrix printer for PCC2000. 120 c.p.s. bidirectional (in good ex-democondition)
- PERTEC Model 340010 megabyte (5 MB removable cartridge) for PCC2000, including

POOR MAN'S SPECTRUM ANALYSER - Part 2

The second part of this feature, based on an article written by Frank Perkins in Wayne Green's '73' magazine, describes the testing and alignment of this spectrum

analyser and illustrates its performance

Abstract

TESTING AND ALIGNMENT The minimum test equipment needed to align and test the HF spectrum analyser includes a high-impedance volt ohmmeter, a 350 MHz frequency counter, and a 5 MHz bandwidth, single-channel, DC-coupled oscilloscope with a triggered sweep. A grid-dip oscillator is also useful. You should make up several twofoot RG-58 cables with BNC connectors. These will be used during testing. For best results, testing and alignment should be done in the order listed below.

Power supply testing

Check the resistance between primary and secondary of the wallplug transformer before use. It should show an open circuit. Check the secondary AC voltage. It should be 12 VAC to 15 VAC with no load. Hook the 12VAC to the power supply and check the $12 \mathrm{VDC}, 24 \mathrm{VDC}$, and -6 VDC outputs. They should be within 0.5 V .

Sweep generator testing

Connect the power supply to the sweep generator and turn the power supply on. Check pin 2 of the 555 IC with your oscilloscope. You should find a $10-12 \mathrm{~Hz}$ ramp waveform. The bottom of the waveform should be at 4 V and the top of the waveform at 8 V . The front of the ramp (log slope) should appear straight. You should find a similar ramp at the X axis output connector. This ramp will be between -0.6 V and 3.4 V .
Check pin 8 of the TLO 84 C op-amp. You should find a pulse train with a $10-12 \mathrm{~Hz}$ repetition rate. The pulse train should be high (20 V) about 20% of the time and low $(-3 V)$ about 80% of the time.

Turn the frequency-span pot fully clockwise (no ramp) and set the centrefrequency pot mid-range. You should find $6-12 \mathrm{VDC}$ on pin 7 of the TLO84C opamp (VCO-tuning voltage). Vary the setting of the centre-frequency pot. The VCO-tuning voltage should vary from -3 V to 21 V . Set the centre-frequency pot for a 10 V output. Turn the frequencyspan pot counter-clockwise until you have a ramp waveform from 2 V to 20 V (readjust the centre-frequency pot as needed). This completes preliminary sweep generator testing.
If your sweep generator fails to act as above, re-check component values and circuit hook-up for problems. Refer to the section on the theory of operation (November issue of R\&EW) for additional hints.

VCO testing

Connect the VCO-tuning voltage from the sweep generator to the VCO. Ground the RG-58 shield at the VCO enclosure. Connect 12 V DC from the power supply to the VCO power input. Disconnect one side of the oscillator coil for a moment. Power up and check the MRF901 (KV1210) collector voltage. It should be about 6-8VDC. If it is too high, reduce the value of the 100 k bias resistor: if it is too low, increase the value of the bias resistor. You can't use a pot here! Once the collector voltage is verified, power down and reconnect the coil.

Power up and connect your counter to the VCO RF test jack. Turn the fre-quency-span pot fully clockwise (no ramp) and adjust the centre-frequency pot for a 3 V output. Your counter should
read about 90 MHz . Adjust the VCO coil spacing to get the VCO in the 89.590.5 MHz range. Check the DC output from the RF detector of the VCO amplifier output for a $0.8-1.3 \mathrm{VDC}$ level. Adjust the spacing between the VCO coil and the amplifier pick-up loop, if necessary, to obtain the proper detector output.
Set the centre-frequency pot for a 150 MHz oscillator output. You should have a tuning voltage of about 18 VDC . Check the RF detector output voltage again to be sure it's still between 0.8 and 1.3 VDC . Monitoring the DC voltage from the RF detector with your scope, tune the centre-frequency pot back and forth between 3 V and 18 V . The detector output voltage may vary a little but smoothly; it certainly should not 'jump'. An abrupt voltage change indicates a parasitic oscillation. If this should occur, work on your oscillator layout (aiming for very short leads in particular) to get rid of it.

A tuning voltage of less than 1 V may cause the oscillator output to be erratic in frequency and amplitude. This is not a problem. Once the VCO oscillator and amplifier are operating properly, install the VCO enclosure top.

Pre-amplifier and Log Amplifier Testing

Connect 12Voc to the pre-amplifier and log amplifier circuits and power up. Turn the frequency-span pot fully clockwise (ramp off) and adjust the centre-frequency pot for 90 MHz at the VCO RF test jack. Disconnect the frequency counter. Hook the attenuator box to the VCO RF test jack with a two-foot RG-58 cable. Hook the output of the attenuator

VCO layout

Pre-amplifier layout
to the input of the pre-amplifier with another two-foot cable.
Set the bias pot on the log amplifier about mid-range. Monitor the DC output of the RF detector on the log amplifier buffer. Tune the buffer transformer slug for peak output. Use the attenuator to set the detector output to 0.2 VDC . Now adjust the bias pot of the log amplifier for peak output. Adjust the attenuator for a justdetectable output at the log amplifier buffer. If all seems well with the preamplifier, install the top on its enclosure. Prepare the top for the log amplifier section. Drill $1 / 8$-inch-diameter holes in the top over each IF transformer location and over the bias pot. (Use drafting vellum as a template.)
Hook the oscilloscope to the video output of the log amplifier. Adjust the slugs in each log amplifier stage for peak video output. The tuning of each stage should be smooth, and the tuning of the bias pot should also be smooth. If the video output from the log amplifier jumps suddenly whilst tuning, you may have self-oscillation in the log amplifier. If this happens, work on your layout. Ferrite beads, extra bypass capacitors, and small copper shim stock shields can be used to eliminate the problem.
If you live near a commercial FM station, it may interfere with your tuning efforts. Tape the shield top on the log amplifier during initial tuning to help reduce this problem. As soon as it appears that the log amplifier is working, solder on the top. Once the top is soldered on, it will totally eliminate the interference.

BANDPASS FILTER TUNING

Set the VCO to 90 MHz . Hook the attenuator between the VCO RF test jack and the bandpass filter input. Hook the bandpass filter output to the preamplifier and log amplifier. Monitor the video output of the log amplifier on your oscilloscope. With the tops off the bandpass sections, you should get some signal. If not, temporarily bridge the input and output sections with a 1 pF capacitor tack-soldered at the input and output tap points. Tune the input and output stages for peak response; then remove the 1 pF capacitor. Now peak the two middle stages. You probably will get an overcoupled response (doublehump). Just centre the tuning between the humps.

Now install the shield tops, one at a time. Tune all bandpass stages after

Specifications for HF Spectrum Analyzer

Frequency range	0 to 60 MHz
3-dB bandwidth	220 kHz
30-dB bandwidth	$1,100 \mathrm{kHz}$
3:30-dB shape factor	$1: 5$
Dynamic range	60 dB
Spurious responses	60 dB below full-scale
Noise floor	65 dB below full-scale
Full-scale input	$-8 \mathrm{dBm} \pm 2 \mathrm{dBm}$
Y-axis output	0 to 2.5 volts
X-axis output	-0.5 to +3.5 volts
Y-axis calibration	$10 \mathrm{~dB} /$ division
X-axis calibration	$6 \mathrm{MHz} /$ division (approximate)
0 to 8 MHz	$4 \mathrm{MHz} \pm 0.75 \mathrm{MHz} /$ division
8 to 24 MHz	$8 \mathrm{MHz} \pm 1 \mathrm{MHz} /$ division
24 to 60 MHz	$6 \mathrm{MHz} \pm 1 \mathrm{MHz} /$ division

0 to 60 MHz
220 kHz
$1,100 \mathrm{kHz}$
$1: 5$
60 dB
60 dB below full-scale
65 dB below full-scale
$-8 \mathrm{dBm} \pm 2 \mathrm{dBm}$
0 to 2.5 volts
-0.5 to +3.5 volts
$10 \mathrm{~dB} /$ division
$6 \mathrm{MHz} /$ division (approximate)
$4 \mathrm{MHz} \pm 0.75 \mathrm{MHz} /$ division
$8 \mathrm{MHz} \pm 1 \mathrm{MHz} /$ division
$6 \mathrm{MHz} \pm 1 \mathrm{MHz} /$ division
each top is installed. Tuning will become verysharp, especially if you are using airvariable tuning capacitors instead of piston trimmers. When the last top is installed, carefully peak all stages.

Set up your oscilloscope for $X-Y$ operation, using the X-axis output of the sweep generator for the oscilloscope horizontal input and the log amplifier video output for the vertical input. Gradually turn the frequency-span control counter-clockwise until you get a sweep display of the filter bandpass. Make fine adjustments for a smooth bandpass shape. Stagger-tune the two middle bandpass filter sections just a bit to sharpen the nose of the filter. Be sure to put in enough attenuation to keep the video output from the log amplifier under 2 V during the bandpass filter tuning procedure.

If it seems that you have an overcoupled response in your filter, narrow the aperture between the two middle bandpass filter sections. If the filter tunes sharply but exhibits high loss, then widen the aperture between the two middle sections.

FINAL SET-UP

Install all circuitry on your chassis and complete all wiring and coaxial cable hook-up. Set the analyser upside down in
front of your scope. Connect your oscilloscope to the analyser X - and Y axis outputs. Set up the oscilloscope again for $X-Y$ operation. Turn the analyser on (no signal). Turn the fre-quency-span pot fully clockwise (no ramp). Using your frequency counter, adjust the VCO for 90 MHz operation with the centre-frequency pot. You should see two horizontal lines about 2 V apart. Rotate the frequency-span pot counterclockwise a little. You should see the bandpass-filter response again. This is due to mixer leak-through and is normal.
Set the retrace line (lower straight line) under the bandpass response curve at the bottom of the CRT screen. Widen the trace with the oscilloscope controls to reach across the screen. Turn the frequency-span pot fully clockwise again. Set the VCO frequency to 120 MHz . Now turn the span pot counter-clockwise until the zero-frequency half-spike appears on the left side of the screen. There should also be some grass above the retrace line along the bottom on the screen. The analyser should now be scanning $0-60 \mathrm{MHz}$.
Feed a small 30 MHz signal from a griddip oscillator (use a pick-up loop as shown in Photo 1) or a low-power-signal generator through the attenuator to the analyser. You should now see the 30 MHz

Above: Log amplifier layout

Bigger Ears

 Than Dumbo!- the SLNA 145sb preamplifier for the FT290.

£27.40 + 1.20 p\&p inc. vat

There are usually two reasons for the less than adequate sensitivity of current 144 MHz transceivers. Firstly, the receiver designer's brief includes a dynamic range specification which leads him to balance large signal handling with sensitivity. With devices currently available at prices the transceiver manufacturer is prepared to pay, the balance comes-out to around 4 dB noise figure and 70 dB intermodulation-free dynamic range in ssb bandwidths.
The second point is that, also to save money, designers shy away from the use of electromechanical relays for antenna change-over switching and tend to use various forms of diode switch. These inevitably introduce greater insertion losses than suitable relays, approaching 4 dB in some circumstances. Thus it's not unusual for the overall noise figure of a transceiver to reach 8 dB .
At 144 MHz sky-noise limits the maximum usable sensitivity of a receiver used for terrestrial communications to about 2 dB noise-figure. (This about the same as $0.05 \mu \mathrm{~V}$ for $10 \mathrm{~dB} \mathrm{~s}+\mathrm{n} / \mathrm{n}$ in ssb bandwidths). Lower noise figures are easily obtainable with modern devices, but they won't let you hear any more! However there is a distinct advantage in using a very low-noise preamp to improve the sensitivity of a transceiver - if it has been designed properly.
Overall (or system) noise-figure depends not only upon the noise figure of the preamplifier, but also on its gain and the noise figure of the subsequent stage (the transceiver, in this case). By adjusting the gain of the preamplifier it is possible to set the system noise-figure to any wanted value greater than that of the intrinsic noise figure of the preamplifier.
Why bother to adjust the gain? Because any preamplifier will degrade the strong-signal performance of the receiving system. The name of the game is to use as little gain as possible ahead of the receiver; just enough low-noise gain to set the overall sensitivity to a level where external noise is the limiting factor is all that is required. Use any more and the dynamic performance of the receiver will suffer unduly. A very low noise preamplifier will minimise the gain needed ahead of the transceiver and hence the degradation of the dynamics.
The SLNA 145sb is a preamplifier which has been designed using the principles summarised above specifically for incorporation in the FT290. It will also complement other 144 MHz transceivers for which no complete front-end modification is available. Ask us about FDK 700's and 750's for example.
A low-loss nitrogen-filled relay provides a same alternative to diode switching. This is followed by a BF981 in an input noise-matched, output conjugately matched configuration for a very low noise-figure and optimum dynamic performance. Following the output matching a variable attenuator provides gain control without compromising the dynamic performance, which would be the case if the normal amateur practice of providing gain control by varying the bias on G_{2} of the BF 981 was followed.
After the attenuator, a properly designed Butterworth bandpass filter provides substantial rejection of out-ofband signals.
The preamplifier is constructed and tested to very high standards. A plated-through-hole epoxy fibreglass pcb is employed and bushed mountings are provided for mounting in the FT 290R. A cable kit utilising high quality ptfe dielectric cables is also provided.
signal spike about mid-screen. You may also see the 2 nd harmonic of the 30 MHz signal on the right edge of the screen. Adjust the attenuator so that the 30 MHz signal is about the same height as the zero-frequency half-spike. If things have gone well so far, you are getting a signal through the low-pass filter and mixer, so you can now install their enclosure tops.

Set the frequency-span control so that the 30 MHz signal spike is about two scope divisions wide. Now fine-tune the bandpass filter again and re-peak the log amplifier. Switch the 10 dB attenuator section in and out whilst adjusting the vertical gain of the oscilloscope so that the signal height changes one CRT division. Now switch a 20 dB section in and out. The signal height should change by two CRT divisions. Re-adjust the frequency span control for a $0-60 \mathrm{MHz}$ analyser tuning range.
Increase the signal strength until the first small spike pops out of the grass between the 0 and 30 MHz signals. This is slightly above the overload point of the analyser. The 30 MHz signal spike should be near the top of the CRT screen (8th vertical division). Full-scale inputs should be the next (7th) CRT division down. Touch up the oscilloscope controls if necessary. The zero-frequency half-spike will be about six divisions tall. Switch all attenuation out and reduce the signal generator output so that the 30 MHz test signal is seven divisions tall. Check the vertical calibration of the analyser over the attenuator's 59dB range.
Using your signal generator and frequency counter, make notes on the horizontal calibration of your analyser. This is done by centring a signal from your signal generator on each CRT horizontal division (vertical line) and recording its frequency. Your analyser is now ready for use. But first, test the Lpad carefully!

Hook up your L-pad to your transmitting equipment. Be sure everything is grounded properly. The author suggests mounting the L-pad and attenuator on an aluminium plate which is in turn wallmounted. Ground the plate! Do not connect the attenuator to the L-pad yet. Connect your transmitter to an SWR meter, the SWR meter to the L-pad and the L-pad to your dummy load. The L-pad should introduce little, if any, SWR. Starting with low power (100W or less), apply power for 30 sec . Power down your transmitter completely and quickly inspect the inside of your L-pad. The 'fuse' should be OK and nothing should be hot. Continue testing to full station power.

If everything has gone well, then power down your transmitter completely and connect the attenuator to the L-pad. Switch in all attenuation and connect the attenuator to the spectrum analyser. Remember that the analyser and the oscilloscope cases should be solidly grounded. Starting again with low power, apply power and adjust the attenuator for a full-scale spectrum analyser display. How does your spectrum look? Always switch in full attenuation before increasing power. Remember, do not go over

1 kW continuous output (2 kW p-p). Do not attempt to use the spectrum analyser system where your SWR is greater than 2:1. Be sure you are using an L-sampler with a high enough power rating!

COMPONENT SOURCES AND SUBSTITUTIONS

It often is lamented that home-brewing projects is difficult these days because of poor component availability. The author started seriously experimenting with electronics 20 years ago in the good old days of component availability. The difference between now and then is that we have about a thousand times more components to experiment with!
It's simply a matter of motivation and tenacity. You can get any component that you need. True, the local TV component place doesn't carry everything, but they may be able to order it for you
Best of all, look at the ads in this magazine. There are many mail-order distributors which market primarily to the experimenter.
The high frequency spectrum analyser should be fairly tolerant of component substitutions except in the VCO circuit and the L-pad. For example, the 'hotter' 3 KK88 could substitute for the 40673 if you crank its gain down a bit with the log amplifier bias pot. You could use MRF901s in place of the 2N5179s (don't try to go the other way!). Any decent electrolytics of the proper capacitance and voltage rating could be used in the power supply and sweep generator circuits. Electrolytics could also be used in place of the tantalum capacitors at a pinch. Try to get close-tolerance parts in this case.

Below left: 0-60 MHz spectrum
taken from a long wire antenna
Below right; The same but with an adjacent computer turned on

USEFUL ACCESSORIES

You could duplicate the two-stage wideband pre-amplifier circuit for use as an accessory ahead of the attenuator. This will allow you to view the $0-60 \mathrm{MHz}$ radio spectrum on a long-wire antenna and quickly judge the band conditions up to 6 m . VCO frequency tuning is somewhat non-linear, which is typical of simple wideband oscillators.
A 6 MHz crystal oscillator driving a
TTL Schmitt trigger makes a useful calibrator. The output of the TTL gate contains every harmonic up to 60 MHz . Lightly couple the TTL gate to the spectrum analyser input with an insulated wire antenna placed near the analyser input connector. A momentaryon pushbutton can be used to activate the calibrator.

ANALYSER APPLICATIONS

We have talked about using the HF spectrum analyser to monitor transmitting equipment. This was the primary application the author had in mind when he designed the analyser. It is especially useful to hams who are home-brewing their own HF transmitters or linears. It is also useful for checking low-pass filter performance and band conditions. Doubtless you will find other applications.

The analyser has a 50Ω input impedance and is DC-coupled. Be sure to add a blocking capacitor ahead of the attenuator if you are going to look at a RF signal that is riding on a DC level. Stay away from high-voltage DC circuits.
The bandpass of this analyser is too wide for looking at SSB modulation linearity. However, this can be judged

TELESCOPIC MASTS

Pneumatically operated telescopic masts. 25 Standard models. ranging from 5 metres to 30 metres.
R.A.S.

Radio Amateur Supplies Tel: 0602280267

Visit your Local Emporium
 Large Selection of New/Used Equipment on Show

AGENTS FOR: ACCESSORIES: F.D.K. Welz Range

ARDEN
ICBM
YAESU
SOMMERKAMP FORTOP ATV

AERIALS: Mona, Halbar, New Diamond Range of Mobile Whips
PLUS OWN
"Special" Q.R.P. GW5 HF 5 Band Beams
farmer
JUST GIVE US A RING
3 Farndon Green, Wollaton Park, Off Ring Road between A52 (Derby Rd) \& A609 (Ilkeston Rd)

RECHARGEABLE BATTERIES

PRIVATE AND TRADE ENQUIRIES WELCOME
Full range available to replace 1.5 volt dry cells and 9 volt PP type batteries, SAE for lists and prices. £1.45 for booklet. 'Nickel Cadmium Powder

* TRADE PRICES FOR SCHOOLS \& COLLEGES \star

SANDWELL PLANT LTD 656 CHESTER ROAD, ERDINGTON, BIRMINGHAM B23 STE
 Tel: 021-3739487

RF COMPONENTS IN WEST LONDON

Antex Irons, Expo Drills, Vero Board and Boxes CMOS, TTL and Linear and Communication IC Fixed and Variable Caps Connectors, Diodes Varicaps, Switches, Relays Meters.

Stockist for R + E W Kits, Ceramk Filters, Crystal Filters, Helical Filters, Mechanical Filters, Inductors, Coil, Ferrites. Dust Iron Toroid Pots.

THE STREET HEYBRIDGE - MALDON
ESSEX CM 7NB ENGLAND
Tel. MALDON (0621) 56480
Telex No. 995855

Bonex Ltd
102 Chúrchfield Road, Acton W360H Open: 10-6 Mon-Sat; Closed Wed Tel: 01-992 7748
adequately from a two-tone pattern on a normal oscilloscope.

FROM HERE

This project demonstrates that a useful spectrum analyser can easily be built from relatively common and inexpensive components. Avid experimenters should treat this design as a starting-off point and be ready with the matching tracking generator - or possibly a version engineered onto PCBs using commercial helical filters so that this admittedly advanced project can be made more accessible to the less experienced constructor. Meanwhile, let's get those transmitter spectra cleaned up!

If you've enjoyed this feature and would like to get to the source, then remember that you can subscribe to ' 73 ' by sending a $\$ 40$ bankdraft to: ' 73 ' Magazine, PO Box 931, Farmingdale, NY 11737, USA. Ed

References

1. Wes Hayward and Doug DeMaw Solid state design for the Radio Amateur (ARRL Publications)
2. Hewlett-Packard Electronic Instruments and Systems (Hewlett-Packard, Palo Alto, California) 1981
3. Wayne Ryder 'High Performance Spectrum Analyser' Ham Radio June 1977
4. Clyde F Coombs Printed Circuits Handbook 2nd Edition (McGraw-Hill)

The Tekronix 492 spectrum analyser

Received signal

NTLO4 POWER SUPPLY
 curtent limithnoor current toldoack mode 3 aigil displays tor voltage ocuprent with 0 it FSD accuracy automatic
dissipation control ine stability 001% for ± 10 mains
 NTLO5 POWER SUPPLY
0.50 V .0 .3 A - voltage selting with iot pot giving oiv esotution - fully protected tioating output automatic changeover from constant voltage to constant current mode 3 digit displays for voltage 8 current can be used for
external measurement range -9.9 V to 999 g . 0 IV resolution 0 to 5 A 0.01 A resolution. meter accuracy 001 FSD automatic dissipation control ine stability 001 iol 10 I 100 mains voltage change eload regulation 0018 for 1008 load change ripple 1 my typ. current stability with current lunction indicalors
XR2206 FUNCTION GENERATOR
trequency range 10 Hz to 220 Hz - linear setring over 8 anges waveforms. sine triangle, square sawtooth 8 distorion of the sine wave <1\% at 1 KHz © output AC for all waveforms adustabie. 0.10 mV .0 .100 mV 0. 0.1 V impedance approx. 5 onms oulpul SYNC square or negative pulse TTL
DT155 DIGITAL THERMOMETER
aiternate reading of 2 measuring points e temperature range
-55 C to +100 C resolution $0.9 \mathrm{C} \bullet 3$ digtt 18 mm red LED display - automatic changeover of the probes at 10 sec display automatic changeover of the probes at 10 sec
interval with LED indication esensor probes can be located at a distance of up 10100 m from the instrument amans supply for permanent operation 0 brushed anodised alum
enclosure $136 \times 47115 \mathrm{~mm}(W \times \mathrm{H} \times \mathrm{D}) \bullet$ cnoice of 3 sensor
M 135
$\begin{array}{llllll}\text { LM } 135 & -55 \mathrm{C} \text { to }+100 \mathrm{C} & \text { § } 10 & \text { Kit } £ 8 \\ \text { LM } 235 & -40 \mathrm{C} \text { to }+100 \mathrm{C} & \mathrm{E} \\ 8 & \text { Kit } £ 6\end{array}$
DT600 DIGITAL THERMOMETER
oreciston thermometer witn one Pri00 platinum ilimm probe to 8S 1904 grade 11 covering 70 C to +600 C in 2 ranges
$70 \mathrm{C} 10+199.9 \mathrm{C}$ resolution oi $\mathrm{C} .70 \mathrm{C} 10+600 \mathrm{C}$. esolution 1 C - ineariser circuit guarantees accuracy of response time $105 \sec 1099 \%$ in moving water memory switch - 3 wire probe connection allows measurement over extension cable up to 25 m . probe with handgrip. 1.5 m spiral cable \& 5pole DIN sockel battery 9V PP3 ior approx 30n
 parte A compranionalve anammoly manualt

WOG2206 SWEEP GENERATOR

- makes easy work of esteblishing and displaying on the oscilloscope frequency responses of equalisers, active filters, crossover networks audio amplifiors, atc.
- excelient function generator: frequency range 0.2 Hz to 200 KHz
- profestional eppearance at low cost
pounds and enjoy assombling kit version

 1000
1
£115 Kit $\mathbf{E 7 0}$
Prices are subject to 15% VAT \quad VAT (p \& p E2.50)

FREL LTD.
electronic design \& marketing P.O.BOX 10 LUDLOW SHROPSHIRE SY8 $10 B$ TELEPHONE 05845620

A Circuit Designer's Guide to Batteries

> The following advice on the choice and application of batteries is based on information supplied by Duracell - in particular on a recently published guide that gives full details of the various battery systems available from the company. However, the performance of a battery is to a great extent a consequence of electrochemistry, making this advice
> generally applicable

The first commercially available battery employed the zinc/carbon system in which the zinc container is the anode and the electrolyte is an acidic solution of ammonium chloride and zinc chloride, infused into a core of manganese dioxide and carbon black (the cathode) see Figure 1. However, this system was soon found to have a number of disadvantages. For instance, because the container takes part in the reaction as the anode, the highly acidic electrolyte can corrode its way out of the casing and so can readily damage electrical circuits. Moreover, World War II demonstrated that these batteries were unable to cope with either tropical conditions or extreme cold, in the latter case proving incapable of producing any significant current. It was this set of circumstances that in fact led Duracell to develop the battery system that has since evolved into its well-known range of alkaline batteries with the familiar coppercoloured tops.

Modern bottery types

The alkaline system mentioned above (and shown in Figure 2) takes its name from the electrolyte, which is a highly conductive aqueous solution of potassium hydroxide. The electrodes are of highly pure manganese dioxide and granulated zinc. This combination gives a 'superior, yet economic, battery capable of operating efficiently at high as well as low rates and over a wide range of duty cycles'. For a start, the discharge curve is considerably flatter than that for the zinc/carbon system - in other words, an alkaline battery produces a more stable output voltage-wise. Moreover the case does not take part in the electrochemical reaction and so there is little or no risk of leakage, an important consideration in these days of delicate ICs. This also permits the energy density that can be stored to be higher than would otherwise be the case: hence the Duracell claim that its batteries last up to six times as long as conventional

Fig 1 Zinc/carbon cell

zinc/carbon cells - which, being electrically and mechanically similar, they increasingly replace.

Lithium, being a highly reactive metal, makes one half of a number of potential electrochemical couples, two of which have become quite well developed within the Duracell range (see Figure 3). These are lithium/sulphur dioxide ($\mathrm{Li} / \mathrm{SO}_{2}$) and lithium/manganese dioxide ($\mathrm{Li} / \mathrm{MnO}_{2}$) cells, both of which have a nominal voltage of 3.0 V permitting one lithium cell to replace two conventional 1.5 V cells. The former is based on a tithium anode in close contact with liquid sulphur dioxide as the cathode, the electrolyte being acetonitrile to which lithium bromide has been added to increase the conductivity. This combination makes for a very powerful battery, capable of efficient operation down to very low temperatures $\left(-50^{\circ} \mathrm{C}\right)$, a property that leads to their wide usage in military applications. The $\mathrm{Li} / \mathrm{MnO}_{2}$ system combines a lithium anode with a manganese dioxide cathode in lithium perchlorate as the electrolyte. The latter is dissolved in an organic solvent, making the cell totally non-aqueous to preclude the potentially catastrophic evolution of hydrogen gas. $\mathrm{Li} / \mathrm{MnO}_{2}$ cells are particularly suited to applications that require low quiescent currents and short pulses of up to a few hundred milliamps on demand. Other advantages of this system include a long shelf-life (in excess of six years) and an ability to function at temperatures as low as $-20^{\circ} \mathrm{C}$.

A third lithium system that has been considered incorporates a lithium anode, a lead/lead iodide/lead sulphide cathode and an electrolyte that is a dry mixture of lithium iodide, activated alumina and lithium hydroxide. It relies for its operation on ionic conduction in the solid state, making it a very unusual electrochemical system indeed. The current supplied would be only a few microamps at room temperature but it would increase with temperature, making this type of battery highly suitable for memory protection applications. However, its future is uncertain at present.

Further systems

Another system supported by Duracell is based on a zinc/mercuric oxide couple in an alkaline electrolyte (Figure 4). The principal properties of this 'mercury' system are stable voltage, high energy density and a reasonably long storage life, making it 'the first choice' in applications where voltage stability and/or space is at a premium. At present these cells are most commonly found in hearing aids.

While the monovalent silver oxide batteries to be found in digital watches and certain photographic applications are another Duracell product, a recent development is that of the zinc/air system (Figure 5) which uses atmospheric oxygen at one of the electrodes. The concept is simple, drawing on the basic electrochemical reaction of the cathode liberating oxygen and the anode becoming oxidised as the means of

Fig 3 Construction of a lithium cell

Fig 4 Mercury button cell

Fig 5 Zinc/air cell
Fig 6 Construction of a NiCad cell
transferring charge between electrodes.Thus to use atmospheric oxygen just as though it has been liberated by the cathode should give the cathode almost infinite life. The voltage characteristic of the zinc/air system remains stable between 1.2 and 1.3 V during most of the discharge and this system too is
being used for hearing aids (where it is directly interchangeable with mercury cells) and other such specialised applications. However, it is still subject to development as there are several factors that can interfere with its functioning - for example, impurities in the air.

COMTECH ELECTRONICS

The movement of oxygen discussed above has been essentially the crucial factor in ruling out recharging for all the above-mentioned battery systems. Unfortunately the anode cannot be simply restored to its metallic state because it swells up in becoming oxidised. Moreover, anode particles may break up or shift about, with the result that the original structure is largely destroyed. The only system to date to circumvent this difficulty whilst at the same time being compact enough to be competitive with small primary cells is the nickel/cadmium rechargeable. Here both the anode material (cadmium) and the cathode material (nickel oxide) are contained in porous plates that prevent the anode structure from being seriously distorted as the cadmium is oxidised (Figure 6). The cathode structure is similarly maintained and so it is safe to recharge the cell. However, their cost, along with that of the recharging unit, and the frequency with which they need to be recharged have so far limited NiCads to a relatively small share of the consumer market.

Putting batteries into circuits

A number of 'golden rules' are stressed by Duracell, their aim being to aid any circuit designer in establishing a design that operates with a satisfactory power source, in terms of both performance and cost. These are:

1) Always select the battery or cell type before finalising either the circuit parameters or the mechanical design. In an extreme case, it might not be possible to find any battery - however expensive that meets your requirements.
2) Select the circuit parameters so that the equipment operates within the desired specification over as much as possible of the available voltage range of the chosen battery as indicated by diagrams such as those shown in Figures 7 and 8. In other words, reconcile the requirements of the equipment with the battery's ability to deliver current: any mismatch can cost a lot in lost energy particularly in the case of those battery systems that deliver their energy over a considerable voltage range.
3) Design the equipment to be able to accept the battery's open-circuit voltage which may exceed the nominal voltage by as much as 15%.
4) Always aim to use standard rather than special batteries; not only are the former less expensive but they are also much more widely distributed, offering the promise of cost-efficient service for many years.
5) Aim for the lowest system voltage compatible with the power requirement at the lowest specified temperature, particularly where cells are connected in series; this is generally regarded as good practice.
6) Where cells are connected in parallel, ensure that the current passed by any
cell stays within the range stipulated on its data sheet.
7) Never mix cells of different brands, types or ages as this will almost certainly lead to the weakest cell being at some stage driven in reverse with consequent gassing, leakage or even rupture.

Practicalities

Of course, not all of these aims are particularly easy to implement. For example, while data sheets can generally indicate well enough the acceptability of a proposed load at $20^{\circ} \mathrm{C}$, the detailed rate capability is a complex function of temperature, duty cycle and previous storage history and so it is rarely, if ever, fully documented. However, special tests that give a good indication of performance at low temperatures, say, can be performed and data
relating to performance at specific temperatures either side of normal ambient conditions can generally be provided by the manufacturer. There is further guidance on this in the Duracell guide.
Even taking all that into consideration is not enough, for one must also remember that the reliability of any battery decreases as the number of cells increases (as there is a greater risk of the weakest cell being driven in reverse) and that, when connecting $\mathrm{Li} / \mathrm{SO}_{2}$ cells in parallel, series diodes must be added to each parallel path. (In fact the latter action generally increases the reliability of cells under parallel connection.) Another point to consider is the use of lithium cells with their nominal output of 3 V in place of conventional 1.5 V cells where space and/or weight is at a premium.

Fig 7 Typical voltage characteristics on medium load of some Durcell batteries

Fig 8 Typical energy densities for a number of battery systems

Ultimately, the best source of advice is a specialist battery manufacturer and indeed Duracell offers a free battery consultancy service. The company might even be able to oblige with a customdesigned battery, exactly right for the purpose.

The battery housing

The other major area of advice is concerned with the battery compartment. Not only should this keep the cells clear of any metallic battery jacket but it should also be able to accommodate cells individually, allowing for all sizes

Characteristics of Duracell Batteries					
Typo		Vohas	Evinge	ORompen	Stind
	1.56 V	1.5 V	$0.8 \mathrm{~V}^{1}$	$-300+700$	
Mercury	${ }_{1.355-1.155 V}^{1.5 V}$	${ }^{1.3-1.4 .4}$	${ }^{0.9 v}$	$-3010+70^{\circ} \mathrm{C}$	S99y retention atter
Monovalent	-	1.5 V	${ }^{1.2 V}$	-	Cosere ater Year at
Lithiumf	${ }^{3 v}$	28-2.9V2	$2{ }^{3}$	$-5010+70^{\circ} \mathrm{C}$	10 years
Lithium $\begin{aligned} & \text { managese dioxide }\end{aligned}$	${ }^{3.3 v}$	${ }^{3}$	$\sim^{-1.4 V}$	$-20 \mathrm{to}+50^{\circ} \mathrm{C}$	
Zincalir	1.9 v	1.2-1.3v	0.9v	-	

1
2
2
3
3
${ }^{3} 1.5 \mathrm{~V}$ in high rate applications: must not be allowed to go below 0 V

Alkaline Manganese

- No defined upper limit but it is suggested that no more than 2A is drawn on intermittent load at room temperature.
- These batteries are unaffected by high pressure, high vacuum or high relative humidity but they shouldn't be used for more than short periods above $45^{\circ} \mathrm{C}$.
- Available in all common (ie international) sizes.
- Storage at temperatures above $20^{\circ} \mathrm{C}$ will lead to progressive deterioration in both capacity and high rate capability

Mercury

- The difference between the two forms of cell is only important a) during the first $5-0 \%$ of the discharge and b) when maximum voltage stability is required.
- Energy can be taken from these batteries at up to the 20 hr rate at $20^{\circ} \mathrm{C}$ without significant loss of efficiency.
- These batteries are unaffected by high pressure, high vacuum or high relative humidity.
$\mathrm{Ll} / \mathrm{SO}_{2}$
- Open circuit voltage modified in time through formation of a passivation layer of lithium dithionite on the anode but this is rapidly stripped on discharge.
- Operation above $70^{\circ} \mathrm{C}$ risks accidental venting.
- Tolerant of high vacuum but high pressure can inhibit the safety vent.
- Can supply up to 30A intermittently but the energy should not be dissipated at more than the 8 hr rate over longer periods.
NB: The transportation of those batteries containing more than 0.5 g of lithium are subject to international regulations.
$\mathrm{LI} / \mathrm{MnO}_{2}$
- Maximum load that can be taken is a function of the particular cell type.
- The voltage characteristic is substantially flat.

These cells all contain less than 0.5 g of lithium and so are not subject to restrictions over their transportation.

Duracell's 86-page guide for designers of electrical circuits and equipment is available free of charge from Duracell UK (Technical Division), Duracell House, Gatwick Road, Crawley, West Sussex RH10 2PA (Tel: Crawley [0293] 517527), which is also the address to write to for further information.
up to the maximum size each cell could be, appropriate contact springs taking up the difference between this and the actual dimensions.
The springs themselves should in turn conform to certain standards. For example, the pressure they apply should be just enough to mark the cell and, still more importantly, they should be made of a compatible material i.e. one that won't encourage galvanic corrosion following a cycle of temperature and humidity that leads to condensation. The materials recommended include austenitic 18/8 stainless steel, steel with an $8 \mu \mathrm{~m}$ thick layer of nickel-plating, and inconel: copper alloys are definitely not recommended. By the way, the white deposit that can develop on the contacts does not affect the performance of the cell itself but it will, of course, increase the circuit resistance: however, it can readily be removed with a dry cloth.
Other points to note regarding these contacts are: that the contact should be single-point for low currents but multi-ple-point for larger ones; that screw terminals are unacceptably restrictive and so should not be used; and that there should be no conductive path between the battery jacket and the equipment. Duracell also recommends the use of polarised battery contacts and that the compartment be designed to make it impossible to insert the batteries the wrong way round. This is particularly important where more than one $\mathrm{Li} / \mathrm{MnO}_{2}$ cell is being used either in series or parallel as one of these driven in reverse could explode!
Apparently, an increasing number of applications are side-stepping the insertion problem by making use of Duracell's new Flat-Pak. This is essentially a number of high performance alkaline cells welded together and sealed into a flat cassette only 9 mm thick. This cassette is so designed that it cannot be inserted incorrectly: moreover it reduces the size, complexity and cost of the battery compartment as only two contacts are needed instead of multiple springs, etc. In addition, users should note that it is Duracell policy only to supply $\mathrm{Li} / \mathrm{SO}_{2}$ cells in packaged form complete with fuses and protective diodes.

And finally.....

Questions of storage, recharging and disposal come up as a matter of course when handling batteries. Duracell recommends storage at $10-25^{\circ} \mathrm{C}$ and where the relative humidity is less than 65% : other conditions are certain to encourage a quicker deterioration in battery performance. With regard to recharging, most of the cells considered here are not designed for this: any attempt to recharge them will induce an inbalance in the cell which could lead to gassing and ultimately to an explosion. Duracell, naturally, does not accept responsibility for injury or damage resulting from this or other abuse - and it is highly unlikely that any other manufacturer would.
Last, but not least, don't dispose of them in the fire!

लimpill Build your own system and gave moldis!

DIGITAL ULTRASONIC DETECTOR

VHF ANTENNA SWITCH

A 3-way antenna switch for VHF \& UHF frequencies

Insulation loss at $2 \mathrm{M}<0 \cdot 3 \mathrm{~dB}$ VSWR at $\left\{\begin{array}{l}2 M<1: 1 \cdot 2 \\ 70 \mathrm{~cm}<1: 1 \cdot 6\end{array}\right.$
Power rating: 250 watts
£15.40
inc VAT

Available from the manufacturers, DAVTREND LTD, or DRAE stockists throughout the country.

VHF Wavemeter	¢27.50
4 Amp 13.8 V PSU	$£ 30.75+£ 1.50$ carr.
$6 \mathrm{Amp} \mathrm{13.8V} \mathrm{PSU}$	$£ 49.00+£ 2.50$ carr.
$12 . \mathrm{Amp} 13.8 \mathrm{~V}$ PSU	$£ 74.00+£ 2.50$ carr.
24 Amp 13.8V PSU	$£ 105.00+£ 3.50$ carr.
Morse Tutor	$£ 49.00+$ £1.00 carr.
24 Amp 16.5V Transformer	$£ 25.00+£ 2.50$ carr.
12 Amp 17.0V Transformer	¢15.00 ¢ ¢2.00 carr.
24 V to 12 V 6 Amp Converter POA	
24 V to 12V 10 Amp Converter POA	
3 way Antenna Switch	$\mathfrak{£ 1 5 . 4 0}+\mathfrak{£ 0 . 5 0}$ carr.

ALL PRICES INCLUDE VAT

Delivery normatly from stock but please allow up to 28 days for delivery

ELECTRONICS MAKE-A-CAP

Yes, as promised our Kit form variable capacitor kits, are nearly ready. You send SAE tell me the spacing required and value, we will tell you the cost, and all you do is put it altogether. The kit comes complete with Rotor's, stators, end plates, spindle and spacing bushes. The idea being that those hard to get values and high prices will make this product yet another sliced bread beater. For example a 200PF split stator capable of 500 watts. Will cost approx only £18. This gives you a saving of about $£ 25$ to $£ 30$. We will be ready in five weeks. Also don't forget the G40GP feeder spreaders for the only way to feed the Aerial, open wire fed. Aerial matching units to order. Thermo couple meters, our Aerial rigging service etc etc. Please send SAE for more info.

> G40GP ELECTRONICS UNIT 4, GLADDEN PLACE WEST GILLIBRANDS SKELMERS-DALE, LANCS

Works \& Sales

Phone: 0695-26345 or 27948

Before making an attempt within this series at quantifying mixer and frontend performance, we offer some practical insight - and a choice of different active mixer configurations for experimenters and building block users.

As already discussed in this series, the section of the receiver most likely to make or break the design when judged in terms of conventional standards of performance is the first mixer. Dynamic range is the thing - and whereas valves provided a comparatively easy route to wide dynamic range, semiconductor systems do not.
The requirement is simple. If a receiver has a 'free range' sensitivity of one microvolt for 12dB SINAD, then it should be able to handle a strong signal in the passband of the RF stage that is 90 dB 'up' on one microvolt - approximately 30 mV - without cross modulation, intermodulation or other manifestations of nonlinearity in the RF amplifiers or the mixer.
Now there's nothing mystical or magical about dynamic range. Despite the problems it creates, it is a simple concept to grasp: Figure 1 illustrates the basic reasoning. But the solutions are not so simple in semiconductor technologies where the maximum rail voltages are between ten and thirty times less than those used with valves. And there are other considerations, the major one being the old chestnut about the influence of impedance levels on power levels with respect to available voltage swing. Read on.

Low Z

In terms of power, one microvolt into 50 ohms translates into $4.47 \mu \mathrm{~V}$ into 1000 ohms. (Power = [volts.volts]/resistance.) A bipolar transistor junction rejoices in a voltage difference between base and collector of some 300 mV . A 100 mV input signal presented to the base of a transistor RF amplifier will cause it to overload quite hopelessly. However, the input impedance is very low, and a signal of 100 mV at 1000 ohms will drop significantly as a result of the impedance presented by the transistor base.

A transformer is used in tuned RF amplifier stages to match both the input from the antenna, and the output to the ensuing active circuitry. Figure 2 illustrates this. One side effect of this method

Fig 1 a) Demonstration of why the dynamic range of an amplifying stage is limited by the available voltage swing at the output. b) Receiver dynamic range. NB for in band signals, the maximum input level can be considerably greater due to AGC effects.

Fig 2: Typical input stage transformation
Fig 3: Cybernet balanced mixer stage
of matching is the way in which the impedances of an amplifier alter across its tuning range: it's not possible to design a variable capacitance tuned circuit to have constant input/output impedance over a broad tuning range.
Virtually regardless of the rail voltages available, a given configuration of bipolar transistor amplifier (or mixer) will tend to produce similar dynamic ranges (assuming the bias currents are adjusted to remain the same). The situation is not helped by operating the stage at low collector currents, since the relatively high collector impedance will increase the collector voltage swing for a given power level. Thus a higher collector current is generally synonymous with improved dynamic range.
One popular method of extracting more performance from bipolar mixer stages is to use the 'balanced' configuration. This approach relies on a similar principle to that used in class B audio power amplification: each transistor can devote its entire 'dynamic range' to only half of the waveform. The (singly) balanced mixer used in a number of CB sets within the Cybernet range (Figure 3) seems particularly commendable, judging by the result of various equipment reviews, yet it's relatively simple and unexotic.

Mlxing it with FETs

Ever since the FET and MOSFET were introduced into radio design, they have tended to displace bipolar alternatives in areas where high level signal performance is required. There was a large element of fashion involved in the early days of FETs, and quite a few designs sporting FETs simply plugged them in where the bipolar devices once lived. A FET is basically a high impedance device like a valve - but unlike a valve it doesn't enjoy a lot of headroom in the anode voltage. It nevertheless provides an excellent transformation between high input impedances and the relatively lower impedance of the drain, and is more forgiving of biasing. By the same token, a single ended FET amplifier with a tuned input is prone to instability as a result of the input and the output 'seeing' each other 'in phase'.
 stage - but it does provide better performance in service as a mixer, and it is a great deal more forgiving of inaccurate design and matching. An FET mixer with the signal applied to the gate and the oscillator supplied via the source is a popular solution, although the oscillator feed to the source must be well buffered, since strong RF input signals are not at all isolated from the source. One or two designs have been known to collapse completely when the oscillator has been effectively turned off in this way.
The singly balanced FET mixer has been thoroughly explored in a number of Japanese designs. All yield an IMD performance in the region $85-95 \mathrm{~dB}$ with respect to the minimum discernible signal (MDS), with anything from 5 to 20 dB of gain. One of the more interesting manifestations occurs in the Sony ICF2001 where the HF input stage (Figure 4) also embodies an 'active' antenna pre-amplifier in the shape of Q52 and Q50. The legendary propensity to overload exhibited by the ICF2001 is not prompted by this aspect of the circuit
but the very wide first IF and the less than razor sharp selectivity afforded by the input tuned stages formed across L6 through L10.
The signal in the ICF2001 is fed to gates of the balanced mixer stage via a source follower buffer stage. Local oscillator injection is onto the source via Q21 and T3, whose properties are regrettably not defined in the parts list. It seems reasonable to make an initial guess of a centre tapped $1: 1$ broadband transformer wound on a small dual aperture ferrite core.

The tuned drain circuit is conventional enough (centre tapped, don't forget), and you can forget Q18, Q23 and their associated components, since these are used in the FM/AM switching. One slightly curious aspect of the design is the size of the source resistors: at $4 k 7$ and a voltage drop of 300 mV , the current flowing is $(0.3 / 4 \mathrm{k} 7)=65 \mu \mathrm{~A}$ - which is barely using the FET at all. In applications where the cautious use of supply current isn't a problem, it seems likely that dropping their value to 470 ohms
would improve the performance. The basic consideration in these matters is that the power levels biasing and operating the active circuitry should not be swamped by the power derived from the signal.

A similar style of stage occurs at the front end of the highly regarded NRD515 (Figure 5). Here the source resistors are effectively 1 kO 0 , and the local oscillator is fed from a local buffer stage (TR7), whose output level is controlled by the AGC loop fed from C180 round to TR6.

The ubiquitous Ulrich Rhode has been known to favour the passive FET mixer of Figure 6, which can provide an intercept of +40 dBm when correctly matched. If you choose this approach, you'll be in the excellent company of the Racal RA6790. The catch is the requirement for a 23 dBm drive signal, along with two of the most obscure FET types yet seen in these pages. No, a $2 N 3819$ won't do!

The input to the ICF2001 is resistively terminated: another look at a similar configuration (from Yaesu) with a tuned input (in this case a second conversion stage) is provided by Figure 7a. The R1000 does a similar thing with dual gate MOSFETs (Figure 7b), taking advantage of the control gate to inject the local oscillator and add to the effectiveness of the AGC control. Purists, however, don't hold with that sort of thing, since AGC on the mixer will cause the dynamic characteristics to be modified, thus altering the matching between the mixer and the filter stage. It's a pedantic point that shouldn't really concern any enthusiast prepared to try out some of the designs suggested herein.

Mixing it with Plessey

The Plessey SL6440 is widely used as a 'convenience' product because it provides good dynamic range with relatively low oscillator drive levels. The device is based on the classic among double balanced mixers - the MC1496 (Figure 8). A similar transistor tree configuration occurs in a large number of radio ICs, doing service as mixers and product detectors (SL1640, ULN2242, TDA1083, KB4412/3 etc).
The Plessey implementation uses this same basic transistor tree arrangement,

Fig 6 Passive FET mixer

Fig 4 HF input stage of the Sony ICF2001 - an interesting manifestation of the singly balanced FET mixer

TR3 3 SK45-B
TR4 25×19 TM-BL

Fig 5 Front end of the NRD515

Fig 7 a) Yaesu mixer configuration, and b) Equivalent circuit from the R1000, this time using dual gate MOSFETs
a)

NEW ITEMS FROM OUR BARGAIN LIST

Screwits enable wires to be quickly joined and insulated in one simple operation without screwdriver or pliers. Ideal
for hooking up experimental circuits but quite safe to use inside metal or plastic boxes for joining mains wiring. Sample pack, 5 large, 5 small
\qquad
Clockwork timer - basically a 2 hr timer, very easily adaptable to 11 hr or $/ 1 /$ hr. Approx $2^{\prime \prime}$ diameter. 2 screw
mounting $1 / /^{\prime \prime}$ spindle

BC to 2 Twin Adaptors for operating Christmas tree lights etc from a lamp holder ghts

Mutimeter Stand - a neat plastic adjustable holder, ideal for pocket sized multimeter calculator etc. Makes it so
much easier to read and at the same time protecting the
instrument from being damaged
£0.69
rectifiers, condensors, and wiring dic case transformer Fixing staples - always usefiring diagram
Fixing staples - always useful to have a few of these around
the house. Consist of hardened pin on plastic piece shaped to take cable. Various sizes to suit wires from speaker
wires, t ring mari cable 100 assorted
Trigger Mats - a simple and sure wav of setting off a
burglar alarm. Place this under the carpet at windows burglar alarm. Place this under the carpet at windows or
doorways, directly it is walked on it will switch on the alarm. Ideal for use with our burglar alarm panel. Size
$24^{\prime \prime} \times 18^{\prime \prime}$ $24^{\prime \prime} \times 18^{\prime \prime}$
2 tone grey case with circular white scale and dial. Setting temperature from 030 c 13 amp 250 v contacts
Thermo Couple Prod - when used with a suitable milli-
volt meter this could be used to find the centre tempera
tures of say, meat or liquids
3 CHANNEL SOUND TO LIGHT KIT

Complete kit of parts for a three channel sound to light unit wish but it is plenty rugged enough for disco work. The unit is housed in an atractive two tone metal case and has controls for each channel, and a master on/off. The audio input and output are by $/^{" s o c k e t s ~ a n d ~ t h r e e ~ p a n e l ~ m o u n t i n g ~ f u s e ~ h o l d e r s ~ p r o v i d e ~}$
thyristor protection. A four pin plug and socket facilitate ease of connecting lamps. Special price is $£ 14.95$ in kit form or $£ 25.00$ assembled and tested.

12 voit MOTOR BY SMITHS

Made for use in cars, etc. These ard
wound and they become more
powerful as load increases. Size
powerful as load increases. Size
$31 / 2^{\prime \prime}$ long by $3^{\prime \prime}$ dia. They have
a good lengt
Price $£ 3.45$.

Ditto, but double ended $£ 4.25$.
Ditto, but permanent magnet $£ 3.75$,
EXTRA POWERFUL 12v MOTOR
Probably develops up to $1 / 4 \mathrm{~h} . \mathrm{p}$. so it could be used to powe
go-kart or to drive a compressor, etc. $£ 7.95+£ 1.50$ post.
THERMOSTAT ASSORTMENT
10 different thermostats. 7 bi metal types and 3 liquid types There are the current stats which will open the switch to protec devices against overload, short circuits, etc., or when fitted say in front of the element of a blow heater, the heat would trip eratures, others adiustable over a range of temperatures which could include $\mathrm{O}-100^{\circ} \mathrm{C}$. There is also a thermostatic pod which can be immersed, an oven stat, a calibrated boiler stat, finally an ice stat which, fitted to our waterproof heater element, up in the loft could protect your pipes from freezing. Separately, these thermostats could cost around $£ 15.00$ - however, you can have

MINI MONO AMP
Fitted volume control and a hole for a
trol should you require it. The amplifi has three transistors and we estim
ate the output to be 3 W rms. ate the oupput to be $3 W$ rms.
More technical dara will he More technical data will be included with the amp. Brand new.
perfect condition, offered at

- bARGAIN OF THE YEAR -

The AMSTRAD Stereo Tuner.

This ready assembled unit is the ideal tuner for a music centre or an amplifier, it can also be quickly made into a
personal stereo radio - easy to carry about and which will give vou superb reception.
Other uses are as a "get you to sleep radio" you could even take it with you to use in the lounge when the rest of the family want to view programmes in which you are not interested. You can listen to some music instead
Some of the features are: long wave band $115-270 \mathrm{KHZ}$ medium wave band $525-1650 \mathrm{KHz}$ FM Fand $87-$
108 MHz , mono stereo \& AFC switchable, 108 MHz , mono, stereo \& AFC switchable, tuning meter to give you spot on stereo tuming, optional LED wave band
indicator, fully assembled and fully aligned. Full wiring indicator, fully assembled and fully aligned. Full wiring
up data showing you how to connect to amplifier or head up data showing you how to connect to amplifier or head
phones and details of suitable $F M$ aerial (note ferrite rod serisl is included for medium and long wave bands. Al made up on very compact board.
Offered at a fraction of its cost: only $\mathbf{£ 6 . 0 0}$

REVERSIBLE MOTOR WITH CONTROL GEAR
 powerful motor, almost impossible to stop. Ideal for operating adequately counter-balanced. We offer the motor complete with control gear as follows
$\begin{array}{ll}1 \text { Framco motor with gear box } & 1 \text { push to start switch } \\ 1 \text { manual reversing \& on/off switch } & 2 \text { limit stop switches }\end{array}$ $£ 19.50$ plus postage $£ 2.50 \quad 1$ circuit diag. of connection FOR SOMEONE SPECIAL
Why not make vour greeting card play a tune? It could play
'Happy Bur thday', "Merry Christmas', 'Wedding March', etc, or 'Home Sweet Home', etc. Wafer thin 3 part assemblies, for or making cards musical. Mint microchip speaker and battery with
switch that operates as the card is opened. Please state tune when switch that operates as the carc is opened.
ordering. Complete, ready to work E .25 .
REEL TOREEL TAPE DECKS
Ex-Language Teaching Schooi. Second, but we understand these are in good order: any not so would be exchanged. The deck is
standard BSR with normal record, replay facilities and an addistandard BSR with normal record, replay facilities and an additional feature is tape rev counter. Nicely finished in teak ty

MAINS CLOCK SWITCH

Bold, easy to read clock with coupling to operate 25a switch. Made for cookers but if you throw away the switch section you
can have a very neat and accurate clock at a fraction of today's can have a very neat and accurate clock at a fraction of today
cost. We are overstocked with these and are making a special cost. We are overstocked with these and are making a special
offer price of 10 for $£ 6.50+£ 2$ post. Or 100 for $£ 50$ carriage paid. 6v POWER SUPPLY UNIT
Mains operated fully smoothed 6v 200 ma output. Enclosed neat plastic case only $£ 1.15$ each, but we are offering these at such a silly price because they are intended to plug into shaver sockets but it is a simple matter to remove the pins and solder
on a flex lead. The $6 v$ output termination is a 3.5 jack plug thus making it suitable for many cassettes and radios.
A PRESTEL UNIT, brand new

WATERPROOF HEATING WIRE 100 ohms per yard, this is a heatin element wound on a fibre glass coil and
then covered with pvc. Dozens of uses then covered with pvc. Dozens of uses
around water pipes, under grow boxes, around water pipes, under grow boxes,
gloves and socks. Price: 23p per metre. TIME SWITCH BARGAIN Large clear mains frequency controlled clock.
which will always show you the correct time + start and stop switches with dials.
plete with knobs FOR ONLY $£ 2.50$.

ROPE LIGHT
4 sets of coloured lamps in translucent plastic tube arranged io give the appearance of a running or travelling light. With variable
speed control box, ideal for disco or shop window display speed control box, ideal for disco or shop window display
Complete, made up, ready to plug into mains $£ 36.00+£ 2$ pos

50 THINGS YOU CAN MAKE

Things you can make include Multi range meter, Low
ohms tester, A.C. amps meter. Alarm clock, Soldering ohms tester. A.C. amps meter. Alarm clock, Soldering
iron minder. Two wav tetephone, Memory jogger, Live iron minder. Two way telephone, Metc., and vou will
line tester, Continuitv checker, etc. etce an our
have hundreds of parts for future projects. Our 10 Kg parcel contains not less than 1,000 items. Danel meters.
$\mathbf{5}^{\prime \prime}-\mathbf{£ 5 . 7 5}$, Post $£ 1.25$ $6^{\prime \prime}-\mathbf{£ 6 . 9 5}$, Post $£ 1.25$ Plannair extractor
$£ 6.50$. Post $£ 1.25$ $\times{ }^{\times 6} \times \mathbf{F}$ Muffin 115 v . E4.50. Post 750.
$\times 4^{\prime \prime}$ Muffin 230 V .
$\times 4^{\prime \prime}$ Muftin 230 N .
E5.75. Post 75 p .
All the above ex-computer those below are unused.
$4^{\prime \prime} \times 4^{\prime \prime} £ 8.50$. Post $75 p$ 9" American made Tangential Blower 10×3

air outlet, dual speed
f460. Post $£ 1.50$
TANGENTIAL BLOW HEATER
by British Solartron, as
2 Kw approx $9^{\prime \prime}$ wide £5. 95
 (vour choice) $£ 6.95 \mathrm{com}$. pleve with 'cold' 'half' and
'full' heat switch, safety cut out and connection dis

2.5 Kw KIT Still availiable: $\varepsilon 4.95+\varepsilon 1.50$ post.

BLEEP TONE These work off $12 v$ and have an unusual and pleasant bleep 69 peach.

CONNECTING WIRE PACK 48 lengths of connecting wire, each 1 metre long and differently colour coded, a must for

GPO PLUG \& SOCKET ideal for connecting extension telephone, Prestel and similar equipment. Socket fits onto RED LEDS 10 for 69 p. 100 for $£ 5.75 .1000$ for $£ 52$. IN LINE SIMMERSTAT ideal heat controller for soldering
iron and many other hand-held appliances. $£ 2.30 .10$ for $£ 17.25$.

VENNER TIME SWITCH Mains operated with 20 amp switch, one On and one off per 24 hirs. repeats daily
automatically correcting for the lengthen. ing or shortening day. An expensive time switch but you can have it for only $£ 2.95$. These are without case but we can supply a plas tic case - $£ 1.75$. Also avallable is adaptor kit to convert this into a nermal the added advantage of up to 12 on/offs per 24 hrs . This makes an

IONISER KIT

Reiresh Your home, office, shop, work room, etc. with a
negative ION generator. Makes you feel better and work harder - a complete mains operated kit, case included. £ 11.95 plus $£ 2.00$ post.

OTHER POPULAR PROJECTS

Short Wave Set - covers all the short wave bands using
plug-in coils. Kit complete
R C Bridge Kit . $\quad \mathbf{E 9 . 9 5}$
3 Channel Sound to Light - with fully prepared metal case, £14.95 Ditto - made up E14.95
E 25.00 Big Ear, listen through walls . . $\quad \mathbf{£ 9 . 5 0}$ Robot controller - receiver/transmitter $\mathbf{£ 9 . 5 0}$ Ignition kit - helps starting, saves petrol, improves . . $£ 13.95$
performance
Sitent sentinel Ultra Sonic Transmitter and receiver
timers, thermal trips, relays, switches, motors, dritls, taps and dies, tools, thermostats, coils, condensers, resistors, neons, earphone/microphones, nicad charger, power uni YOURS FOR ONLY $£ 11.50$ plus $£ 3.00$ post.

MINI-MULTI TESTER Deluxe pocket size precision mov ing coil instrument, Jewelled bearings - 2000 o.p.v. mirrored
11 instant range measures: $\quad D C$ volts $10,50,250,1000$. AC volts $10,50,250,1000$.
DC amps $0-100 \mathrm{~mA}$.

Continuity and resistance 0.1 meg ohms
in two ranges Complete with test prods In two ranges Complete with test prods
and instruction book showing how to and instruction book showing how to noelievable value at only $£ 6.75+60 p$ FREE Amps range kit to enable vou to read DC current from 0
10 amps, itrectly on the 0.10 scale. It's free if you purchase quickly, but if you already own
Mini-Tester and would like one,
send $£ 2.50$. send $£ 2.50$.

J. BULL (Electrical) Lid.

(Dept. R), 3436 AMERICA LANE,
Erablithod
30 YEARS MAIL ORDER TERMS: Cash, P.O. or cheque with order. Orders und
$£ 12$ add 60 p service charge. Monthly account or ders accepted from schools and public cumpanies. Access \& B/card orders accepted day o night, Haywards Heath (0449) 454563 . Bulk ordars. phone for quote.

Car Light 'left on' alarm
Secret switch - fools friends and enemies alike 3-30v Variable Power Supply 2 Short \& Medium wave Crystal Radio $3 v$ to $16 v$ Mains Power Supply Kit Light Chaser
Mullard Untlex HiFi stereo amplifier with speakers
Radio sterhoscope - fault finding aid Mug stop - emits piercing squark Drilt control kit
Drilt control kit - made up
Interrupted beam kid
Transmitter surveillance kit
Radio Mike
Seat Belt reminde
Car Starter Charger Kit
Soll heater for plants and seeds
Insulation Tester -electronic megger
Battery shaver or fluorescent from $12 v$
Matchbox Radio - receives Medium Wave Mixer Pre-amp - disco speciat with case Aerial Rotator - mains operated
Aerial direction indicato
40 watt amp - hifi $20 \mathrm{hz}-20 \mathrm{kHz}$
Microvolt multiplier -
ordinary multitester
Pure Sine Wave Generator
Linear Power output meter
Power supply for one or two 115 watt amp
Stereo Bass Booster, most items

Flg 8 a) Schematic representation and b) Typical modulator circuit for the MC14196

Flg 9 High performance SL6440-based mixer circuit
optimised through the use of large multiple-emitter transistors and careful selection of emitter resistance values. In the application circuit shown in Figure 9, the SL6440 returns a performance that represents probably the best available to the home experimenter without an array of sophisticated test equipment to tweak and optimise discrete alternatives.
Sensitivity is -113 dBm for $15 \mathrm{~dB} \mathrm{~S}+\mathrm{N} / \mathrm{N}$ in a 3 kHz bandwith; the third order IMD ratio with two signals of -4 dBm is a high 70 dB ; only $30 \mu \mathrm{~W}$ of LO required; and a gain of 10 dB is available - countered by the only drawback of this approach, a noise factor of 11 dB . However, Plessey and Peter Chadwick argue with considerable justification that, with in the HF spectrum, such a noise figure is not the factor limiting the overall performance.

In Conclusion

Mixer designs provides a lot of scope for experimentation. A number of communications buildings blocks may be derived from the types described herein, and next month we'll be catching up with some PCB designs and performance results for the active antenna system discussed last month, along with those for a couple of the mixers described in this instalment.

Flg 10a: $P C B$ for the SL6440-based mixer circuit shown in Figure 9. Bottom plane foil pattern

Fig 10b: $P C B$ top plane

ov

Fig 11: Component Overlay

Ray Marston presents the first of a four-part
 in-depth survey of op-amp principles and applications. This month he concentrates on basic principles and configurations

A conventional operational amplifier (op-amp) can be simply described as a high-gain direct-coupled voltage amplifier 'block' that has a single output terminal but has both inverting and noninverting input terminals, enabling the device to function as either an inverting, non-inverting or differential amplifier. Op-amps are very versatile devices: when coupled to suitable feedback networks they can be used to make precision AC and DC amplifiers and filters, oscillators, level switches and comparators, to name but a few.
Three basic types of operational amplifier are currently available. The most important of these is the conventional 'voltage-in voltage-out' op-amp (typified by the 741 and the 3140), and in this and the next three editions of 'Data File' we'll take an in-depth look at the operating principles and practical applications of this type of device. The other two are the current-differencing or Norton op-amp, and the operational transconductance amplifier or OTA; we've already taken in-depth looks at both of these types of device in earlier editions of 'DataFile' (April-June 1983).

Op-amp basics

In its simplest form, a conventional opamp consists of a differential amplifier (bipolar or FET) followed by offset compensation and output stages, as shown in Figure 1; all of these elements are integrated on a single chip and

Fig 1 Simplified op-amp equivalent circuit
housed in an IC package. The differential amplifier has inverting and non-inverting input terminals and has a high-impedance (constant-current) tail to give a high input impedance and a high degree

Fig 2 a) Basic symbol and b) Supply connections for an op-amp

Fig 3 Methods of using an op-amp as a high gain, open-loop, linear amplifier. a) Inverting DC amplifier; b) Non-inverting DC amplifier, and c) Differential $D C$ amplifier

Fig 4 a) Circuit and b) Transfer characteristics of a simple differential voltage comparator
of common-mode signal rejection. It also has a high-impedance collector (or drain) load, to give a large signal-voltage gain (typically about 100dB).

The output of the differential amplifier is fed to the circuit's output stage via an offset compensation network, which causes the op-amp output to centre on 0 V when both input terminals are tied to OV . The output stage takes the form of a complementary emitter follower and gives a low-impedance output.
Op-amps are represented by the
standard symbol shown in Figure 2a, and they are normally powered from split supplies, as shown in Figure 2b. This arrangement provides $+v e,-v e$ and common (0 V) supply rails, enabling the op-amp's outputs to swing either side of zero and to be set at $O V$ when the differential input voltage is zero.

Basic configurations

We have seen that the op-amp is a highgain direct-coupled voltage amplifier with a high input impedance and a low

Fig A Typical frequency response curve for the 741 op-amp

Fig 8 Effect of slew-rate limiting on the output of an op-amp fed with a square-wave input
output impedance. In practice, the output signal voltage of an op-amp is proportional to the differential signal voltage between its two input terminals, and is given by

$$
e_{\text {out }}=A_{0}\left(e_{1}-e_{2}\right)
$$

where A_{o} is the open-loop voltage gain of the op-amp (typically 100000), e_{1} is the signal voltage at the non-inverting input terminal, and e_{2} is the signal voltage at the inverting input terminal.
Thus an op-amp can be used as a highgain inverting amplifier by grounding the non-inverting terminal and feeding the input signal to the inverting terminal (see Figure 3a). Alternatively it can be used as a non-inverting amplifier by continued on page 46

OP-AMP PARAMETERS

An ideal op-amp would have infinite values of input impedance, gain and bandwidth, as well as zero output impedance and the ability to execute perfect tracking between input and output. Practical op-amps fall short of all these ideals. Consequently, various performance parameters are detailed in op-amp data sheets that indicate the 'goodness' of a particular device. The most important of these parameters are detailed below.

A_{0} (Open-loop voltage gain):

This is the low-frequency voltage gain that appears between the input and ouput terminals of the op-amp, and may be expressed in direct terms or in terms of dB. Typical figures are 100000 or 100 dB .

$Z_{\text {In }}$ (Input impedance):

This is the resistive impedance looking directly into the input terminals of the op-amp when used open-loop. Typical values are 1 Mohm for op-amps with bipolar input stages and a million megohms for FET-input op-amps.

\boldsymbol{Z}_{0} (Output impedance):

This is the resistive output impedance of the basic op-amp when used open-loop. Values of a few hundred ohms are typical of most op-amps.

h (Input bias current):

The input terminals of all op-amps sink or source finite currents when biased for linear operation. The magnitude of this current is denoted by $/ \mathrm{l}$, and it is typically a fraction of a microamp in bipolar op-amps or a few picoamps in FET types.

$\mathbf{V s}_{\mathbf{s}}$ (Supply voltage range):

Op-amps are usually operated with split (+ve and -ve) supply rails, and these have both maximum and minimum limits. If voltages are too high the op-amp may be damaged, but if they are too low the op-amp will not function correctly. Typical limits are $\pm 3 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$.
$V_{i(\max)}$ (Input voltage range): Most op-amps will only operate correctly if their input terminal voltages are below the supply line values. $V_{i(\text { max })}$ is typically one or two volts less than $V_{\text {s. }}$.

\boldsymbol{V}_{10} (Differential input offset voltage):

In an ideal op-amp, perfect tracking would exist between the input and output terminals and the output would register zero with both inputs grounded. In practice, slight imbalances within the op-amp cause the device to act under these conditions as though a small offset or bias voltage exists on its inputs. Typically, this 'differential input offset voltage' has a value of only a few mV , but when this voltage is amplified by the gain of the circuit in which the op-amp is used, it may be sufficient to drive the op-amp output well away from the 'zero' value. Because of this, most op-amps have some facility for externally nulling out the effects of this offset voltage.

CMRR (Common mode rejection ratio):

An op-amp produces an output proportional to the difference between the signals on its two input terminals. Ideally, it should give zero output if identical signals are applied to both inputs simultaneously, i.e. in common mode. In practice, such signals do not entirely cancel out within the op-amp and so there is a small output signal. The ability of an op-amp to reject common mode signals is usually expressed in terms of its 'common mode rejection ratio', i.e. the ratio of the op-amp's gain with differential signals to the gain with common mode signals. CMRR values of 90 dB are typical of most op-amps.

$\boldsymbol{f}_{\boldsymbol{T}}$ (Transition frequency):

An op-amp typically gives a low-frequency voltage gain of about 100dB and, in the interest of stability, its open-loop frequency response is internally tailored so that the gain falls off as the frequency rises. That frequency at which it falls to unity is known as its transition frequency and it is denoted by f_{T}. The response usually falls off at a rate of 6 dB per octave or 20 dB per decade. Figure A shows a typical response curve for a type 741 op -amp, which has an f_{T} of 1 MHz and a low frequency gain of 106 dB .

It should be noted that when the op-amp is used in a closed-loop amplifier circuit, the bandwidth of the circuit depends on the closed-loop gain. Thus, in Figure A, if the amplifier is used to give a gain of 60 dB its bandwidth is only 1 kHz , but if it is used to give a gain of 20 dB its bandwidth is 100 kHz . The \AA_{T} value can thus be used to represent a gain-bandwidth product.

Siew Rate:

As well as being subject to normal bandwidth limitations, op-amps are also subject to a phenomenon known as slew rate limiting which has the effect of limiting the maximum rate of change of voltage at the output of the device. Figure B shows the effect that slew rate limiting can have on the output of an op-amp that is fed with a square-wave input. Slew rate is normally specified in terms of volts per microsecond, and values in the range $1-10 \mathrm{~V} / \mu \mathrm{s}$ are usual with most popular types of op-amp. One effect of slew rate limiting is to make a greater bandwidth available to small output signals than is available to large output signals.

b)

c)

Fig 5 Closed-loop linear amplifier circuits. a) Inverting DC amplifier; b) Non-inverting DC amplifier; and c) Voltage follower
reversing the two input connections (Figure 3b), or as a differential amplifier by feeding the two input signals to the op-amp (Figure 3c). In the latter case, note that if identical signals are fed to both input terminals the op-amp should, ideally, give zero signal output.

The voltage gains of the above circuits depend on the open-loop voltage gains of the individual op-amps that are used, and are thus subject to wide variations. Consequently, op-amps are rarely used in open-loop mode as linear amplifiers.
One special application of the 'openloop' op-amp is as a differential voltage comparator, one version of which is shown in Figure 4a. Here, a fixed reference voltage is applied to the inverting terminal and a variable test or sample voltage is fed to the noninverting terminal. Because of the very high open-loop voltage gain of the opamp, the output is driven to positive saturation (close to the +ve rail value) when the sample voltage is more than a few hundred microvolts above the reference voltage, and to negative saturation (close to the -ve supply rail value) when the sample is more than a few hundred microvolts below the reference value.

Figure $4 b$ shows the voltage transfer characteristics of the above circuit. Note that it is the magnitude of the input differential voltage that determines the magnitude of the output voltage, and that the absolute values of input voltage are of little importance. Thus, if a 2 V reference is used and a differential voltage of only $200 \mu \mathrm{~V}$ is needed to swing the output from a negative to a positive saturation level, this change can be caused by a shift of only 0.01% on the 2 V signal applied to the sample input. The
circuit thus functions as a precision voltage comparator or balance detector.

Closed-loop amplifiers

The most useful way of using an opamp as a linear amplifier is to connect it in the closed-loop mode, with negative feedback applied from the output to the input, as portrayed in the circuits of Figure 5. This technique enables the overall gain of each circuit to be precisely controlled by the values of the external feedback components, almost irrespective of the op-amp characteristics (provided that the open-loop gain A_{o} is large relative to the closed-loop gain A).

Figure 5a shows how to wire the opamp as a fixed-gain inverting DC amplifier. Here, the gain (A) of the circuit is dictated by the values of R1 and R2 and equals R_{2} / R_{1}, while the input impedance of the circuit equals R_{4}. Thus the circuit can readily be designed to give any desired values of gain and input impedance.

It should be noted, however, that although R1 and R2 control the gain of the complete circuit, they have no effect on the parameters of the actual op-amp. Thus the inverting terminal still has a very high input impedance and negligible signal current flows into the terminal. Consequently, virtually all of the R1 signal current also flows in R2, and signal currents i_{1} and i_{2} can be regarded as being equal, as indicated in the diagram. Also note that R2 has an apparent value of R_{2} / A when looked at from the inverting terminal, making the R1-R2 junction a low-impedance 'virtual ground' point.

Figure 5b shows how to connect the op-amp as a fixed-gain non-inverting
amplifier. In this case the voltage gain equals $\left(R_{1}+R_{2}\right) / R_{2}$ and the input impedance is approximately $\left(A_{0} / A\right) Z_{i n}$, where $Z_{\text {in }}$ is the open-loop input impedance of the op-amp. The above circuit can be made to function as a precision voltage follower by connecting it as a unity-gain non-inverting amplifier. This is shown in Figure 5c, where the op-amp operates with 100\% negative feedback. In this case the input and output signal voltages are identical but the input impedance of the circuit is very high, being approximately $A_{o} Z_{\text {in }}$

The basic op-amp circuits of Figure 5 are those for DC amplifiers, but they can readily be adapted for AC use.

Practical op-amps

Op-amps also have many applications other than as simple linear amplifiers. They can be made to function as precision phase splitters, as adders or subtractors, as active filters or selective amplifiers, as precision half-wave or fullwave rectifiers, or as oscillators or multivibrators, for example.

Practical op-amps are available in a variety of IC technologies (bipolar, MOSFET, JFET, etc), and in a variety of types of packaging (plastic DIL, metalcan TO5, etc). Some of these packages house two or four op-amps, all sharing common supply line connections. Table 1 lists the parameters, while Figure 6 gives the corresponding outline details of eight popular 'single' op-amp types, all of which use 8-pin DIL (DIP) packaging.

Among the bipolar types, the 741 is a general purpose op-amp featuring internal frequency compensation and overload protection on inputs and output, while the NE531 is a high-performance

Fig 6 Parameter and outline details of eight popular 'single' op-amp types

(a)

MODELSRB2

is the definitive and long awaited answer to the Russian Woodpecker. Others claim to solve the problem of the distinctive RAT A - TAT TAT of the Russian radar system. DATONG are the first to succeed with a fully automatic blanker.
With the introduction of model SRB2 the Woodpecker is dead. Completely automatic in operation, SRB2 locks onto the Woodpecker within a second or so of its appearance and blanks it out completely. SRB2 adjusts automatically and continuously to changing pulse widths and phase changes that defeat the manual biankers. SRB2 can even deal with more than one Woodpecker at a time. User selectable between 10 and 16 hz repetition rates, SRB2 connects in series with loudspeaker and antenna leads, and is equally effective on SSB, AM and CW. A power supply of 10 to 16 volts @ 150 ma is required.
Price: $£ \mathbf{7 5 . 0 0}+\mathbf{V A T}(£ 86.25$ Total $)$

DATONG ELECTRONICS LIMITED

MODEL ANF
 The value for money, stand aione automatic notch filter that doubles as a CW

 filter. Model ANF is small in size but neat in looks and big in performance. Simply connect model ANF in series with the louds peaker lead of your receiver and from then on heterodynes, whistles and other steady tones that often make listening on the crowded amateur and short wave bands hard work will vanish automatically, as model ANF notches them out.A bargraph LED display shows you the frequency of the offending interference. At the push of a button model ANF becomes a good CW filter eliminating all but the signal you want to hear. Manual or automtaic operation in notch and peak modes, plus automatic frequency controt, makes model ANF extremely versatile and easy to use.
A power supply of 10 to 16 volts DC @ 100 ma is required. Model ANF is supplied with connecting leads, and is identical in size to model SRB 2
Price: $\boldsymbol{£ 5 9 . 0 0}$ + VAT ($£ 67.85$ Total)

ORDER FORM

Your Name \qquad Call Sign . Tel
Address \qquad
\qquad
City ..

Please send me the following Model Qty. Unit Price Unir Total
\qquad

Total:
Prices include Post.
Packing and VAT (U.K.)
lenclose CHEQUE/POSTAL ORDER No.
\qquad
Please debit my VISA ACCESS accoume.
Card No
All orders sent by return, I st class parcel post. Any delay will be notified to you imme diately.

Fig 7 Typical offset nulling system

Fig 8 Inverting $A C$ amplifier

Fig 9 Non-inverting AC amplifier
type which can handle a very high slew rate. In the latter case, an external compensation capacitor (of, say, 100pF), wired between pins 6 and 8 , is needed for stability, but this could be reduced to a very low value (say 1.8 pF) if a very wide bandwidth at high gain is desired.
The CA3130 and CA3140 MOSFETinput type op-amps can operate from either single or dual power supplies, can sense inputs down to the negative supply rail value, have very high input impedances (1.5 Tohms, i.e. $1.5 \times 10^{6} \mathrm{Mohms}$) and have outputs that can be strobed. The CA3130 has a CMOS output stage, and an external compensation capacitor (typically 47pF) between pins 1 and 8 permits adjustment of bandwidth characteristics. The CA3140 has a bipolar output stage and is internally compensated.
The LF351, 411, 441 and 13741 are JFET type op-amps with very high input impedances. The LF351 and 411 are high performance types, while the LF441 and 13741 are general purpose devices that can be used as direct replacements for the very popular 741. Note that the LF441 quiescent current consumption is less than one tenth of that of the 741.

Fig 10 Differential amplifier or analogue subtractor

Fig 11 Inverting analogue adder or audio mixer

Fig 12 High-pass second-order active filter

Offset nulling

All of the above op-amps are provided with an offset nulling facility to enable the output to be set precisely to zero when the input is zero. In most cases, offset nulling is achieved by wiring a 10 k pot between pins 1 and 5 and connecting the pot slider to the negative supply rail (pin 4) either directly (as shown in Figure 7 or via a 4k7 'range limiting' resistor. In the case of the CA3130, a 100k offset nulling pot must be used.

Appilcations roundup

Operational amplifiers are very versatile devices, and can be used for a wide variety of linear and switching roles. Figures 8-22 show a small selection of the basic 'applications' circuits that can be used. In most of these diagrams, the supply line connections have been omitted for the sake of clarity. We shall be looking at these circuits in greater detail in the next three editions of the 'Data File', but for now just a flavour of how they operate.

Figures 8 and 9 show how op-amps can be used to make fixed-gain inverting and non-inverting AC amplifiers, respectively. In both cases, the gain and the

Fig 13 Low-pass second-order active filter

Fig 14 Supply-line splitter

Fig 15 Adjustable voltage reference

Fig 16 Adjustable voltage power supply
input impedance of the circuit can be precisely controlled by suitable component value selection.
Figure 10 shows how to make a differential or difference amplifier with a gain equal to R_{2} / R_{1}; if R1 and R2 have equal values, the circuit acts as an analogue subtractor.

Figure 11 shows the circuit of an inverting 'adder' or audio mixer; if R1 and R2 have equal values, the inverted output is equal to the sum of the input voitages.

Op-amps can be made to act as precision active filters by wiring suitable filters into their feedback networks. Figures 12 and 13 show the basic connections for making second-order high-pass and low-pass filters, respectively; these circuits give roll-offs of $12 \mathrm{~dB} /$ octave. We'll look at more sophisticated versions of these circuits next month.

Figures 14-16 show some useful applications of the basic voltage

Flg 17 Bridge-balance detector/switch

Fig 20 Wien Bridge sine-wave generator
follower or unity-gain non-inverting DC amplifier. The first of these circuits acts as a supply-line splitter and is useful for generating split supplies from singleended ones, while the second acts as a semi-precision variable voltage reference. The last member of this group shows how the output current drive can be boosted so that the circuit acts as a variable voltage power supply.
Figure 17 shows the basic circuit of a bridge-balance detector, in which the output swings high when the inverting

Fig 18 Precision half-wave rectifier

Fig 21 Free-running multivibrator

Fig 19 Precision half-wave AC/DC converter

Fig 22 Sine-/square-wave function generator
pin voltage is above that of the noninverting pin, and vice versa. This circuit can be made to function as a precision opto- or thermo-switch by replacing one of the bridge resistors with an LDR or thermistor.
Figures 18 and 19 show how to make precision half-wave rectifiers and AC/DC converters. These are very useful instrumentation circuits.
Finally in this edition of the 'Data File', Figures 20-22 show some useful waveform generator circuits. The first of these
designs uses a Wien Bridge network to generate a good sine wave, amplitude stabilisation being obtained via a lowcurrent lamp, while Figure 21 is a very useful square-wave generator circuit in which the frequency can be controlled via any one of the passive component values. The frequency of the last function generator circuit (Figure 22) can also be controlled via any one of its passive component values, but this particular design generates both square and triangular waveforms.

Parameter	Bipolar op-amps		MOSFET op-amps		JFET op-amps			
	741	NE531	CA3130E	CA3140E	LF351	LF411	LF441	LF13741
Supply voltage range	$\begin{gathered} \pm 3 \mathrm{~V} \\ \mathrm{to} \\ \pm 18 \mathrm{~V} \end{gathered}$	$\begin{gathered} \pm 5 \mathrm{~V} \\ \text { to } \\ \pm 22 \mathrm{~V} \end{gathered}$	$\begin{gathered} \pm 2.5 \mathrm{~V} \text { to } \pm 8 \mathrm{~V} \\ 5 \mathrm{~V} \text { to } 16 \mathrm{~V} \end{gathered}$	$\begin{gathered} \pm 2 \mathrm{~V} \text { to } \pm 18 \mathrm{~V} \\ \text { or } \\ 4 \mathrm{~V} \text { to } 36 \mathrm{~V} \end{gathered}$	$\pm 5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$			
Supply current	1.7 mA	5.5 mA	1.8 mA	3.6 mA	$800 \mu \mathrm{~A}$	1.8 mA	$150 \mu \mathrm{~A}$	2 mA
Input offset voltage	1 mV	2 mV	8 mV	5 mV	5 mV	0.8 mV	1 mV	5 mV
Input bias current	200nA	400 nA	5 pA	10pA	50pA	50pA	10pA	50pA
Input resistence	$1 \mathrm{M} \Omega$	$20 \mathrm{M} \Omega$	$1.5 \mathrm{~T} \Omega$	$1.5 \mathrm{~T} \Omega$	$1 \mathrm{~T} \Omega$	$1 \mathrm{~T} \Omega$	$1 \mathrm{~T} \Omega$	$0.5 \mathrm{~T} \Omega$
Voltage gain, A_{0}	106 dB	96 dB	110 dB	100 dB	88 dB	106dB	100dB	100 dB
CMRR	90dB	100dB	90 dB	90 dB	100dB	100 dB	95 dB	90 dB
$f_{\text {T }}$	1 MHz	1 MHz	15 MHz	4.5 MHz	4 MHz	4 MHz	1 MHz	1 MHz
Slew rate	$0.5 \mathrm{~V} / \mu \mathrm{s}$	$35 \mathrm{~V} / \mu \mathrm{s}$	$10 \mathrm{~V} / \mu \mathrm{s}$	9V/ $/ \mathrm{S}$	$13 \mathrm{~V} / \mu \mathrm{s}$	$15 \mathrm{~V} / \mu \mathrm{s}$	$1 \mathrm{~V} / \mu \mathrm{s}$	$0.5 \mathrm{~V} / \mu \mathrm{s}$
8-pin DIL outline (referred to Figure 6)	b	a	c	c	b	b	b	b

METAL DETECTORS IN WARFARE

Richard Turner describes the various military applications to which metal detectors have been put over the last 100 years

On 15th May 1879, Professor David Edward Hughes demonstrated his latest discovery to the Royal Society in London, and in closing his address he invited inventors to exploit his 'Induction Balance' to the full in physics, medicine and metal detection. As was described earlier in R\&EW (April '82), the attempted assassination of America's 20th President, James Garfield, in July 1881 led Alexander Graham Bell to build an instrument for locating bullets and other metal objects within the human body, based on the induction balance principle (see Figure 1) - though he called on a different phenomenon in developing his second medical metal-detecting device, the Telephonic Probe.
The use of the induction balance for military purposes was apparent just as quickly, with a British Patent being

Fig 1: The basic circuit of Alexander Graham Bell's 1881 induction balance metal detector

granted in December 1881 for a 'Submarine and shipwreck finder. This was soon followed by a 'Metal shell and land mine locator' and an 'Automatic sea mine using the Hughes induction balance as sentinel'. In 1885 the Royal Army Medical Corps developed their own metal detector - quite distinct from those of Alexander Graham Bell - specifically for locating bullets and shrapnel in wounded servicemen.
These very much set the pattern for the way metal detection has contributed to military strategy. However it is interesting to look more closely at the applications themselves and at the way metal detection is achieved in each case.

Finding bombs

One of the prime movers (as far as the UK was concerned) in the development of ways of locating bombs was the intensive bombing of our cities in the spring of 1940 . There was an urgent need for devices that could seek out the many bombs that failed to explode - some having faulty mechanisms, others incorporating delay fuses. The alternative was perpetual fear of imminent explosions.
Locating bombs beneath city streets is complicated by the nature of the subsurface: pipes and sewers can readily deflect any bomb off its course. A good example is the bomb which fell on 11th September 1940 in St Pauls Churchyard in London. It penetrated to a depth of eight feet from the point of impact before changing its course, only to be found later at a depth of $271 / 2$ feet lodged in the foundations of the Cathedra!!
Naturally Winston Churchill gave high priority to the development of bomb and mine locators, and by August 1940 no fewer than nine laboratories had assigned their top scientists and engineers to the task. The locator adopted for the task was that designed by Mr A Butterworth and developed at ERA Laboratories by a team led by Mr LH Daniel.
The ERA bomb locator was basically a differential magnetometer, an appropriate choice since bombs contain very large amounts of ferromagnetic material. Briefly it consisted of a Maxwell impedance-measuring bridge with two adjacent arms both in the detector unit but separated in the vertical plane by about three feet. These arms incorporated mu-metal wires as the sensors because their inductance and resistance varies with the magnetic field along the axis of the wire.

The equipment consisted of a search unit, mounted on a pole and connected by a cable to the case containing the electronics, and two borehole probes. The former was only used to confirm the presence and the general location of the bomb, its precise position being established by the borehole probes. The latter procedure involved at least three holes being dug and measurements being plotted on a chart that gave the location, depth and size of the bomb to the nearest inch. This enabled a shaft to be dug directly over the bomb, facilitating defusing and subsequent disposal.

Above ERA Bomb Locator. The mu-metal elements are shown as variable R-L elements

Above No 7 deep seeking mine locator

Below Vehicle-mounted transmitreceive mine detector, dating back to World War II

The prototype was capable of detecting a 1000 kg bomb at a depth of 20 feet and it was brought into service in March 1941, its manufacture being assigned to British-Thomson-Houston.

Finding mines

Deep seeking land mine detectors were also developed by ERA, in particular the No 7 locator designed by ERA's then Director, Dr Stanley Whitehead, and Mr Benjamin Rosenblum. (The No 1 locator had been developed in 1938 by the Signals Experimental Establishment, while those most widely used at the time - numbers 3 and 4 - were designed by Mr Stanley Spencer West of CinemaTelevision Ltd).

The operating principle of this device was as follows:

A heavy duty current was established by a petrol-driven generator, tuned to 500 Hz (audio) by a capacitor and injected into the ground by means of a two-turn $150 \times 300-$ yard induction loop. Several operators would then use balanced coil search units to seek out deeply-buried land mines.

This method produced very rapid and positive results, and it was mainly used in clearing mines from beaches and marshy areas where the mines often sank out of the range of conventional detectors.

If anti-personnel or AC-sensitive mines were suspected, a 'probe injection' method would be used first, whereby probes would be inserted into the ground and the search team would take cover before the main current was switched on. Any AC-sensitive devices in sufficiently close proximity to the probes would explode, and the search coils could then be used in the normal way to pick out the remaining mines because they do not themselves transmit any AC fields.

Tank- and other vehicle-mounted mine detectors are typically based on the transmit/receive (T/R) technology that came with the advent of 'Wireless'. Here the search coils are mounted on a boom and electrostatically screened to prevent the generation of false signals by vegetation or minerals within the ground. The presence of a mine is either indicated on a meter or turned into an audio signal heard through headphones. An automatic braking system is often an adjunct to these detectors.

The current 'mainstay' of the British and NATO forces is the No 4C mine detector manufactured in England by United Scientific Instruments. This operates on the principles established by Professor Hughes and has two modes of operation - normal mode and 'pave' mode for use where there is significant contamination by ferrous metals. This device is capable of operating over a very wide temperature range and has proved itself on active service throughout the world.

Over the years, many electronic innovations have made their appearance on mine detectors, some of the more important ones being temperature and frequency compensation, non-inductive search coils and phase angle discrimination.

Photo 2: The No 4C mine detector. This operates on the induction balance principle and has a 28.5 cm search head and solid state electronics.

Airborne and marine applications

Detecting enemy submarines through their metal content has always been well exploited by the Royal Navy, the induction balance being the first method to be used here. However, the advent of the transmit/receive technique gave a much greater range. The transmitters were mounted on one ship or aircraft while the receivers were on other ships or aircraft. As a result, several miles of sea could be scanned at any one time.

The induction coil principle has also been used for detecting submarines, a good example of this being the construction of the world's largest ever metal detector - an induction coil laid across the Straits of Gibraltar. Its purpose was to spot German U-boats which would otherwise avoid detection through turning off their engines and floating out of the Mediterranean Sea into the Atlantic Ocean with the aid of the tide. Similar devices - but on a smaller scale - made a significant contribution to the defence of Singapore.

Nowadays both ships and aircraft are
equipped with magnetometers for the purpose of spotting submarines as this system's high level of sensitivity enables, for example, just one aircraft to cover several cubic miles of sea.
An interesting application of metal detection technology is for the ignition of anti-aircraft shells, the philosophy being that an explosion near to an aircraft is better than a complete miss. A near explosion will often result in a piece of shrapnel lodging in a vital part such as a fuel tank or some control, thus doing as much damage as a direct hit. The 'Aerial mine' (or 'Proximity fuse', as it is now known) was developed in the early days of World War II. This is based on the transmit/receive technique and the powerfor the electronics is supplied by a wind generator. This means that the shell has to be fully airborne before it has sufficient velocity to generate the necessary current and so premature explosion triggered off by objects on the ground can be avoided.
But perhaps the least known application of a metal detector is its use as a sensor to explode a sea mine. The general idea is to lay the mine in enemy territory with the sensitivity preset to a level at which small unimportant ships do not trigger it, giving the enemy a false sense of security, while a cruiser or a battleship certainly would.

Conciusion

As it can be seen from this brief survey, metal detection has contributed a great deal to warfare technology both in the past - and the present. The recent events in the South Atlantic have proved once again that mine warfare is a very lethal weapon. The indiscriminate mining of huge areas of the Falklands by the Argentinians has once again focussed attention on mine detecting devices. Due to the nature of the terrain and the type of mines used, their clearance is a very dangerous and slow process.
But technology has met the challenge in the form of the British made 156 PMD mine detector from the USI Group of companies. Using T/R technology, this detector emits an RF field in the 300500 MHz band; it is thus able to detect plastic and metal mines in any terrain at any temperature between -32 and $+52^{\circ}$. Lithium batteries provide the power for the 16 -bit microprocessor-controlled electronics that generate and receive signals via aerials contained in the search head. In the null condition, one click is emitted per 2.5 seconds, indicating correct operational setting, while on detection the pulse rate varies from 3 to 150 clicks per second depending on the proximity and size of mine.

Photo 1 shows this detector being used in the crawler mode employed by commandos sussing out enemy defences. It can be equally used in the conventional walk and sweep mode by extending the handle to 1.2 m and clipping the electronics box to the operator's belt. The latest reports from Falkland Islands indicate that the 156 PMD is making a great contribution towards the return of life to normal in those islands.

TMMEGTAD ELGCTAONIGGLT

 FRG7 OUNMERS SAREGONG -And you can join them by using our custom designed DFC70 digital frequency counter. The DFC70 is specifically designed for the FRG7 and gives rock steady read out on all bands with 100 Hz resolution. Signal frequency is computed and displayed unambiguously on a state of art LCD display specially made for us in Japan. It is not necessary to drill any holes and only one wire has to be connected to a well marked test point in the receiver
DFC70 Kit £19.95 Built and tested module £24.95
Will also work with the Lowe SRX30 and Drake SSR/1.

With our new FM7 adaptor module, you will be able to receive sideways modulation (F.M. as it is otherwise known). Our superb state of art F.M. detector uses the very latest 3359 chip from Motorola, and has a built in I.F filter and a variable squelch control for noise free monitoring. Although specially designed with the FRG7 in mind, it will happily work with other receivers or transceivers with a 455 kHz I.F amplifier The FM7 will add a whole new dimension to your listening activities You will of course be able to follow legal C.B. contacts but you will also hear the exciting D X. being worked by amateurs on 10 metre F.M. Used in conjunction with our DFC7 counter, you can accurately tune to a in confunction with our channel and so be sure that you will not miss specific C.B. or am
whatever goes on
Whatever goes
Kit Price $£ 9.95$ Tested Module $£ 14.95$ P\&P £1. 00 (VAT inc.)
Kit Price $£ 9.95$ Tested Module £14.95 P\&P £1.00 (VAT inc.)
For F.M. reception on receivers with any I.F. up to 50 mHz ., the FM 42 is For F.M. reception on receivers with any I.F. up to 50 mHz .. the FM 42 is
the answer to all your problems. Please state frequency required when ordering. Kit Price $£ 14.00$ Tested Module $£ 19.00$ P\&P $£ 1.00$ (VAT inc.)

TINOTHY EDMARDS MIKZ 144 M HZ PRE-AMP MEAR IT LHKE YOU NEVER MEARD IT BEFORE

We are proud to announce that the well known R.F. consultant Timothy Edwards has given us the exclusive marketing rights to his new 2 metre preamp. Timothy Edwards R.F. designs are used by British Telecom amongst others and so you can be sure that this pre-amp will perform to perfection. It emplovs the incomparable BF981 which has a better noise figure at 2 M than the often used 35 S 88 . Spec. Size (1 iny) $34 \mathrm{~mm} \times 9 \mathrm{~mm} \times 15 \mathrm{~mm}$ (same as Mk1) Noise figure 1.0 db Gain 26 db Kit Price £ 4.95 (inc. VAT \& P\&P).

Not $35 K 88$ but BF981 Better 2 M noise figure -0.6 db $£ 1.40$ (inc.) ZTX 501 Gen. purpose P.N.P. 0.5 A.
 BARGAINS 20 for $£ 1.25$ (inc.)

NEW LCD COUNTERS

At last a new range of 5 digit LCD counters that will cover up to 200 MHz and give 1 KHz resolution to 39 MHz . Ideal for most short wave receivers using common IFs. Similar to the FC177 but cheaper! Supply voltage $5-15 \mathrm{~V}$ dc. Will operate on 26 different IF offsets. If this counter range won't do what you want probably nothing will.

DFC40 $0-4 \mathrm{MHz} £ 14.95$ built DFC41 $0-32 \mathrm{MHz} £ 18.50$ kit DFC42 $0-200 \mathrm{MHz} £ 21.95 \mathrm{kit}$

LNA144. Our ace RF designer Timothy Edwards has done it again! In line 144 MHz RF switched pre amp which needs no modification to any rig. Just put it in the co-ax feed, supply 12 V and your deaf rx will have ear ache Uses the BF981 with a total of 4 tuned circuits for the best out of band rejection. The relays are 500 hm gas filled with earthed metal cans and are good to over 800 MHz This was originally designed for 'British Telecom Satellite Division' hence the provision for gold 14 GHz SMC connector, 1 dB noise figure and 18 dB gatn is guaranteed to improve all standard rigs on $144-146 \mathrm{MHz}$. Will fit in standard diecast box (not supplied). Try one in the car under a wing mounted aerial and be surprised. LNA144 kit £14.95. Bullt and tested module £24 95

TONE BURST. Probably the smallest crystal controlled unit available. 1750 Hz $\pm 0.1 \mathrm{~Hz}$. Supply $5-15 \mathrm{~V}$. Will fit in the tiniest of rigs or even microphones.

TBI Kit $£ 6.50$
TOP BAND CONVERTOR. Listen to the other local nets and DX on 160 m with any 2 m SSB receiver. Does not need a large aerial and will comfortably out perform most commercial receivers
UC160 Kit £9.95 UC160 built and tested $£ 16.50$

ULTIMATE 2M MOBILE AERIAL. For those of you who don't want the world to know. Fully automatic professional quality electrically retractable aerial. Can be used manually or will erect when the rig or car radio is switched on. Full duplex design allowing LW-MW and stereo FM to be used simultaneously with 2 m . Half wave electrically loaded for superb performance on $144-146 \mathrm{MHz}$. Maximum : nput power 30 W . This unique design can be used with our LNA144 for outstanding results. DUP2M £29.95.

STOCK CLEARANCE

FM STEREO TUNERS.
LW-MW and stereo FM as Practical Wireless offer. Last few only $£ 4.95$

All prices include postage and VAT. Send 35 p for individual data on any of the above. Mail order only. Please allow up to 28 days for delivery.
TIMESTEP ELECTRONICS LTD, EGREMONT ST, GLEMSFORD, SUDBURY, SUFFOLK

MEDCNB: ye nh nanames. metivenlimen mouncon palloces. COMFROM WMNE

Something mew occenticl COT45 HFransceiver E159.

The IC-745...a new all band HF transceiver with SSB, AM receive only, CW, RTTY. FM option, and $100 \mathrm{KHz}-30 \mathrm{MHz}$ general coverage receiver And...the IC-745 has a combination of features found on no other transceiver at such an incredibly low price. See the IC-745 at our shop and showroom at Herne Bay or contact your local authorised ICOM dealer for more information.
ICOTO, HIF Recelversy.i99.

The R-70 covers all modes (when the FM option is included), and uses 2 CPU-driven VFO's for split frequency working, and has 3 IF frequencies: $70 \mathrm{MHz}, 9 \mathrm{MHz}$ and 455 KHz , and a dynamic range of 100 dB . It has a built-in mains supply

NEWI CO21, 2569. VHIF

 Mulfinode iasestion
improvements to the IC-251 and brought it up to date.
Power can be adjusted up to 25 W on all modes SSB, CW and FM. Squeich works on all modes and a listën-input facility has been added for Repeater work. RIT shift is shown on the display 10 Hz tuning facility.
Options include a switchable front end pre-amp Speech synthesizer announcing displayed frequency 22 Channel memory extension - with scan facilities. Internal chopper PSU, SM5 desk mic Why not call us for further details?

NSWHC110, 1296 MHIRFM

 519.

Thinking of 1296? Then lean IC-120 could be the arswer.
Now you can have the sophistication of today s technology on this up and coming band-all built into a unit the same size as the IC-25E. very compact.

C(51, 2969. Hf Transceiver

Think about the IC-740.
One of the most popular amateur bands transceivers, make a few improvements such as adding 36 memory channels. doing away with mechanical bandswitching ardd then add full HF receive capabillity $(0.1-30 \mathrm{MHz})$ which is even an improvement on the famous R70 and you get a pretty good idea of what the IC-751 is like. It is fully compatible with Icom Auto units such as the AT-500 and IC-2KL and a further option for computer control can be added. There is also a digital speech synthesizer option which will be ideal for blind operators For power supplies you have the option of the IC-PS740 (which fits inside) or the PS-15/PS20 range for external use.

DIIYMMIEPASCI

Shortwave listeners and amateurs are able to take more interest in other modes of transmission than speech with the latest range of decoders and senders available. As well as amateur transmissions, there is an abundance, of news and other interesting broadcasts which can be read using these space-age devices.

Some models in our range are the Tono 550, 9000E and the Telereader CWR-670. CWR-685E and CWR-610E. There is now available a professional version of the Tono 9000E, the PRO-1, which has a built-in scrambler. The Telereader CWR-670 is also available with a builf-in VDU which can include a 40 column printer

As U.K. importers of the renowned TONO and TELEREADER products, we can offer you a wide range, from a simple morse and RTTY reader which can be plugged into your TV., to a complete send and receive system with memories and buils-in displays, or outputs for high-definition VDU.

As well as stocking the complete ICOM range of equipment suitable for European use, we also sell Yaesu, Jaybeam, Datong. Welz, G-Whip, Western, TAL, Bearcat. Versatower and RSGB publications from our shop and showroom at the address below.

TC2901, VHT, 2433. mulfinodemobte

The recently introduced IC-290H has proved so popular that we have decided to concentrate on this (25W) model 2 m multimode With its bright green display. 5 memories. scan facilities on either memories or the whole band. tone-call button on the microphone and instant listen input for repeaters. this little box really is a beauty The 70 cm version, the $1 \mathrm{C}-490 \mathrm{E}$ has similar features (although the output is only 10 W in this case).

Co, Di E, E199.

Nearly everybody has an IC2E the most popular amateur transceiver in the world - there is also the 70 cm version which is every bit as good and takes the same accessories.

1025]/255,5329/6369. Vifinmonties

The FM mobile choice has to be the Icom IC-25E. It is so small yet boasts a powerful 25 Watt voice and a sensitive receiver. The new 25 H now available has a green display and 45 Watts output. There are five easily programmable memories, and facilities for changing the repeater shift from the default value of 600 kHz .

Arent
 Please telephone first, anytime between 0900-2200 hrs.
 Gordon Adams G3LEQ Tel: Knutsford (0565) 4040
 AM mikes stomin lromede Yu.
 Interem-free credth avathabe
 sexalior or pout maporth tixe,
 truedry mearmate.

MOBILE ANTENNAE AND ACCESSORIES

Boot lip Mount $\mathbf{\Sigma 3 . 9 5}$ inc.

VHF 5/8th Wave antenna. $140+180 \mathrm{Mhz} 3 \mathrm{db}$ gain ع12.50 inc.

UHF 5/8th Wave over $5 / 8$ th Wave mobile collinear frequency $420+480$ Mhz 3db gain. £ 13.50 inc.

Standard Mount
(SO239/PL259) £1.70 inc.
At your emporium or:-
PEMBROKE WORKS, RAMSGATE ROAD, SANDWICH, KENT CT13 8NW Telephone: 0304614598

WORLD RADIO TV HANDBOOK 1984

Delivered by first class letter post as soon as published. Please ask to be put on our mailing list.

POINTSEA RESEARCH 25 Westgate, North Berwick, East Lothian Tel: (0620) 2144

If publication is delayed we shall send you regular reports.

NEED TO KNOW MORE ? ? ? ? ? ?

The SX100 Professional MICRO-EAR TRANSMITTER, supplied ready for use, measures $4 \times 3 \times 2 \mathrm{cmsl}$ Picks up most minute sounds up to 25 ft . away. Simply listen in on any ordinary VHF radio tuned to Sx100 signal up to 500 mts . Totally self-contained and not Uo be rooms. offices, shops etc: Supplied complete with battery, frequency adjuster and self adhesive pads for fixing Send CWO. Cheques/PO
catalogue of this and oth or $+£ 2.00$ COD. Despatched by return. 12x9 SAE for complete
ABRAXUS DESICNS Electronic Equipment
92 Bristol Street, Birmingham B5 7AH
Telephone 021-622 6338

BURNS

OUR NEW PORTABLE
OFF-AIR FREQUENCY STANDARD SD-12 LOCKS TO A BBC TRANSMITTER CLOSELY CONTROLLED TO 200KHZ (DROITWICH, BURGHEAD, WESTERGLEN)

The BBC expect to change this Transmitter Frequency to 198 KHz . Conversion of SD-12 will be simple - necessary circuitry already built-in and replacement crystals supplied with original purchase. Output at 10 MHz and 1 MHz accuracy 0.1 Hz in 10 MHz
Suitable for calibration purposes (eg using internal battery) or continuous drive (with separate mains PSU) C as a source of distribution within a labroatory-work shop.
Used by British Telecommunications and other authorities.
We still supply matching crystal calibrators CC-11 and Absorption wavemeters TC-101 as previously advertised.
Contact us at our new address:-

BURNS ELECTRONICS

170a, Oval Rd, Croydon, Surrey CRO 6BN
Telephone 01-680 1585

R\&:W Data Brief

LM1821S
 Video IF PLL synchronous detector

Despite recent rationalisation of its linear IC range (which has resulted in the loss of, amongst others, the LM373/374 families), National Semiconductor still has a storehouse full of interesting linear devices. The magnitude of the National Linear Data Book bears witness to this fact: it's easily the biggest book on the R\&EW databook shelf.
The LM1821S featured here is one of National's cornucopia of TV circuits. It wasn't easy to actually lay hands on the device from a National distributor, but since they sent us a press release implying they would welcome promotion, we trust that readers wishing to explore some of the promise of this circuit will not have too much trouble persuading their National distributor to cough up the goods.
The device is a combination video IF, with a PLL synchronous detector, an automatic fine tune circuit, a video output for sound extraction and a main video output with white spot noise inversion. The most interesting point on the data sheet is the fact that operation to 70 MHz is cited as a feature. Satellite TV IFs are thus within its grasp - as well as applications in up-conversion communications receivers.
You can see from the simplicity of the external circuitry built around the block diagram (Figure 1) that National has paid

Figure 1: Block diagram

DC Electrical Characteristics (Reference Test Circuit, all SW position 1 unless noted)

Parameter	Conditions	Min	Typ	Max	Units
Supply Current, I8+110		35	55	75	mA
0 Carrier Adjust Voltage, V11	SW 1 Position 2	7.9	8.5	9.0	V
0 Carrier Output Voltage, V9	SW 1 Position 2	6.8	8.5	10.2	V
0 Carrier Bias Difference, V11-V9	SW 1 Position 2		0	± 1.3	V
0 Carrier Output Voltage, V10	Adjust V11 for V9 $=7.0 \mathrm{~V}$	6.0	6.3	6.5	V
AFT Output Reference, V12		2.5	3.0	3.5	V

AC Electrical Characteristics (SW 2 position 2, $\mathrm{V}_{\mathbb{I N}}=100 \mathrm{mV}$ rms, see Set-Up Procedure)

Parameter	Conditions	Min	Typ	Max	Units
Detector Gain, V10		2.3	3.6	4.4	V
Output Capability, V10	$V_{\text {iN }}=500 \mathrm{mVrms}$		1	2	v
AFT Maximum Output, V12	SW 4 Position 2, $\mathrm{f}_{\text {IN }}=44.5 \mathrm{MHz}$	9	10		V
AFT Minimum Output, V12	SW 4 Position 2, $\mathrm{f}_{\text {IN }}=45.5 \mathrm{MHz}$		0.4	1	V
APT Pull-In Range	Difference Between Upper and Lower Lock Frequencies	1	3		MHz
Noise Inversion Defeat Voltage	SW 3 Position 2, Adjust V5 for Beat Frequency at Pin 10, Measure Difference in (-) Peaks		0.3	± 0.6	V

heed to the TV manufacturers' desire to minimise component count. The adjustments required are also a bare minimum, and it seems reasonable to expect that the PLL system will help in ensuring long-term stability and easy detector alignment.

The power supply requirement at 12 V is fairly high at 55 mA - a consequence of the high frequency of operation - so this device is not for battery-powered portable applications.

The AC parameter specification of this device is distinctly vague by National Semiconductor's usual standards, but a brief dabble with samples reveals that this device has potential at frequencies in the 10.7 MHz range as well as at TV IF frequencies. Used in shortwave applications, the effects of synchronous demodulation on signals suffering from selective fading are usually worthwhile. The output at pin 5 is a representation of the FM on the signal. A little more time might reveal the effects of the noise inversion process on received noise.
The first two readers to send letters promising faithfully to have a good dabble with these useful devices, and to report their findings for other R\&EW readers, get the spare samples we have in the office. First come, first served and no other correspondence can be entered into without an SAE.

Fig 2: Test circuit

Absolute Maximum Ratings

Power Supply Voltage
Power Supply Current
Input Signal Voltage
Device Dissipation
Thermal Resistance, θ_{JA}
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)
15 V
100 mA
1 V ms
1.5 W
$55^{\circ} \mathrm{C} W$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$265^{\circ} \mathrm{C}$

Fig 3: Connection diagram
Fig 4: Physical dimensions

How can you own a top class HiFi amplifier, of comparable standard to Naims, Meridians, Quads etc., for an outlay of less than £250? - Simple! Build it yourself - with a Crimson kit.

It is not necessary to spend a small fortune to obtain true Hifi performance. Crimson Kits offer all the features and sound quality of the most esoteric amplifiers available and their ease of assembly ensures that they work first time and continue to do so. Not only do Crimson Kits offer outstanding value, but they also have the flexibility to adapt to any users needs. All the P.C.B.'s are ready assembled and tested (they are not "potted" as we believe disposable modules are rather extravagant!) therefore constructing a kit is pleasurable in itself and, once built, will give years of untroubled service. So, whether you use a simple record player or a compact disc, you can be sure to get the most from your system. E.T.I: said, in their review of the CK1010/1100: "I can say no more than that for $£ 250$ it is a bargain and one that will become the reference point for kit amplifiers from now on." Need we say more?

PRICES
CK1010 - STEREO PRE-AMPLIFIER (moving magnet, tape, tuner input) takes power from any CK power amp or separate p.s.u. type P.S.K.
P.S.K. STEREO POWER-AMPLIFIER 40 watts R.M.S./Chanel
$£ 92.00$
CK1040 - STEREO POWER-AMPLIFIER 40 watts R.M.S./Chanel
£121.00
CK1080 - STEREO POWER-AMPLIFIER 80 watts R.M.S./Chanel
$£ 134.00$
CK1900-STEREO POWER-AMPLIFIER 100 watts R.M.S./Chanel
CK1100 - STEREO POWER-AMPLIFIER 100 watts R.M.S./Chanel
MC2K - Moving coil add on kit for CK1010
MC2K - Moving coil add on kit for CK1010
P.S.K. power supply for CK1010 (if not used with a CK power amp)
CRIMSON also supply power amp, pre amfi and electronic crossover modules, power supplies and hardware - too much to list here - but on receipt of an S.A.E. We will be happy to supply full details.
TO ORDER Send C.W.O. or quote your access card no (phone orders accepted) Crimson Products are also available from Bradley Marshall Ltd, 325 Edgeware Road. London.

-g CRIMSON ELEKTRIK STOKE
 MANUFACTURERS OF PROFESSIONAL. DOMESTIC \& INDUSTRIAL AMPLIFICATION

PHOENIX WORKS, 500 KING STREET, LONGTON, STOKE-ON-TRENT, STAFFORDSHIRE. ST2 IEZ 0782330520

PROGRESSIVE RADIO

93 Dale Street, Liverpool L2 2JD
All Prices include VAT. Orders sent by return. SAE for current catalogue. Please add 50p Post \& Packing

vega russian radios

MODEL 206:
6 Short \&
Long \&
Medium
wavebands,
battery
operated
$£ 17.95$
MODEL 210:
5 Short,
Medium,
Long \&
VHF Bands,
Battery or
mains operated

s operated \qquad

SCANNING RECEIVER

Handheld 10 channel with crystals \& nicards, available in either marine or 2 mtr £59.95

CB EQUIPMENT

Midiand 2001 Mobile	£35.95
Midland 3001 Mobile	$\underline{42.95}$
'Ready Rescue' 40 Ch	¢34.95
Binatone 'Breaker Ph	C44.95

Handheld 2 Watt, 3 Chann. $\mathbf{\Sigma 2 6 . 9 5}$

'SPECIAL OFFER'
 BSR P208 belt drive deck on attractive plinth fitted with ADC magnetic cartridge $\mathbf{\Sigma 3 8 . 9 5}$

ROTATING	
FLASHING	
BEAM	
UNITS	
12vdc	
Magnetic Base,	
Amber.........E11.95	
12vdc High Power,	
Suction Pad,	
Amber....................£10.95
2 Hoval Screw fixing, red, blue, green, yellow. \qquad	
PHILLIPS	
COMBO	
UNIT PA	
40 Watt	
amplifier \&	
Touch	
sensitive	
logic cassette deck................... $£ 130.00$	
NICAD BATTERIES	
'AA' $£ 0.85$	'D'1.2 AH.... £2.25
SUB 'C'....... £1.65	'D' 4.0 AH.... £3.45
'C'1.2 AH.... $\mathbf{E 1 . 9 5}$	PP39 Volt... $£ 4.25$
C' 2.0 AH.... £2.50	
RECH. SEALED LEAD ACID CELLS	
2 volt, 2.5AH....2.35p	5.0AH 3.45p
BUTTON STACKS	
4.8 volt, .25AH. £3.75	.6AH£7.50
RECH SEALED LEAD A	CID CELLS
6 volt, 2.6AH £5.35
12 volt, 2.6 AH $\mathbf{\Sigma 9 . 0 0}$	00 4.5AH .. £12.95

PORTABLE MAINS DISTRIBUTION NOW WITH EARTH LEAKAGE

FOR INSTANT MAINS DISTRIBUTION IN
OFFICES, LABORATORIES, WORKSHOPS AND FOR MAXIMUM SAFETY

BEL 5SW

13A/6SW Sloping

PEL 1

PRICES ON REQUEST -
PLEASE WRITE OR TELEPHONE. DELIVERY EX-STOCK

T13A/5

FACTORY NO. 8, 5-7 LONG STREET LONDON E2 8HJ. Tel: 01.7392343

NEW BRAD BPEAKERM PASs FRTER Put in TV ant. lead to cure TVI both ways E6. 50 Ex stock
MEW RIF NOHE BRDOE Adjustable $0.1,000$ ohms, $3^{\prime \prime} \times 1^{1 / 2 "} \times 2^{\prime \prime}$ only SO239s, $1-170 \mathrm{MHz}$ Neat accurate \& economical 229.50 Ex Btock
PLEASE NOTE that all our Dual Gate MOSFET $2 m$ pre-amp and Power/Pre-amps have always used the BF981
8.E.M. TRAMBMATCH

The most VERSATILE Ant. Matching system. Will match from $15-5000$ Ohms BALANCED or UNBALANCED at up to 1 kW . Link coupled balun means of connection to the equipment which can cure TV1 both ways. SO239 and 4 mm connectors for co-ax built for c24 extre. (See below for details of EZITUNE). All Ex-elock. We sell many more with EZITUNE fitted.
3 WAY AMTENM swITCH 1 Kw SO239s. Good to 2 metres 818.00 Ex stock. Or 4th poshtion to earth output $£ 17.50$ Ex stock
8.E.M. 2 METRE TRANRMATCH. $5^{1 / 2} \times 2^{\prime \prime}, 3^{\prime \prime}$ deep. SO239s. E24.s0 Ex stock
8.E.M. EZTUNE (With new look) Because no simllar unit is made, it's usefulness is not appreciated until you have used one. We could not Improve its performance, so we've improved its appearance. Clean up the bands by tuning up without transmitting. improved its appearance. Clean up the bands by tuning up without transmiting.
Connects in aerial lead, produces $S 9+(1-170 \mathrm{MHz})$ noise in recelver. Adjust ATU or Connects in aerial lead, produces $59+(1-170 \mathrm{MHz})$ no 50 Ohms into your transceiver Fully protected you can transmit through it save your PA and stop QRM. SO239s. Fully protected, you can transmit through it save
E29.60 Ex stock Pcb to fit any ATU E24 Ex stock
SENTMEL 24 LWEAR POWERPRE-AMPUFIJRS
Now features either POWER AMP alone or PRE-AMP alone or both POWER AND PRE-AMP or STRAIGHT THROU when OFF. Plus a gain control on the PRE-AMP from 0 to 20 dB . N.F. around 1 dB with a neutralised strip line DUAL GATE MOSFET (BF981). Ultra LINREAR for all modes and RF or PTT switched. 13.8 nominal supply So239 sockets.

UNION MILL, ISLE OF MAN Tel: MAROWN (0624) 851277

Three Models:

1. SENTINEL 3s Twelve times power gain. 3W IN 36W OUT, 4 amps. Max drive $5 W 6{ }^{\prime \prime} \times 2^{1 / 4 "}$ front panel, $4^{1} / 2^{\prime \prime}$ deep ess Ex stock
2. sentines 80 Five times power gain. 10 W IN 50W OUT. Max drive 16 W 6 amps. Same size as the Sentinel 35. $\mathbf{8 7 9 . 5 0}$ Ex stock
3. Sanmel 100 Ten times power gain. 10 W IN 100 W OUT. Max drive 16 W Size: $61 / 2^{\prime \prime} \times 4^{\prime \prime}$ front panel, $3^{1 / 2 "}$ deep. 12 amps 415 Ex stock
POWIR suppliss for our linears 6 amp e34. 12 amp E49
sEMTMEL AUTO 2 METBEE or 4 METRE PREE-AMPLTHER
1 dB NF and 20 dB gain, (gain control adjusts down to unity) 400 W PEP power rating

PAs Same specification as the Auto including 240V PSU ع33.00*

PA3 1 cublc Inch pcb to fit inside your equipment $\mathbf{8 1 0 . 0 0}$ Ex stock 70 cm versions of all these (except PA5) \&4.00 extra. All Ex stock
8.E.m. ALOIO mLTminter (A very good filter at a very good price). To improve ANY receiver on ANY mode. The most versatile filter avallable. Gives 'passband' tuning, 'variable selectitivity' and one or two notches. Switched Hi-Pass, Lo-pass, peak or notch Selecitlvity from 2.5 Hz to 20 Hz . Turnable from 2.5 KHz to 250 Hz . PLUS another otch quilable In any of the four switch positions which covers 10 KHz to 100 Hz .12 V supply. sizes: $6^{\prime \prime} \times 2^{1 / 22^{\prime \prime}}$ front panel, $3^{1 / 2^{\prime \prime}}$ deep, all for only es7.00 Ex stock
semtmel auto hr widersand PRE-AMPLFIER $2-40 \mathrm{MHz}, 15 \mathrm{~d} 8$ grain. Straight

SEATMEI STAMOARD HF PRE-AMPLFIJR NO RF switching $\mathbf{8 1 2 . 8 2 *}$ Ex stock
8.E.m. LAmBiC KEYER No better keyer anywhere. the ultimate auto keyer using the CURTIS custom LSICMOS chip. Tune and sidetone Switching 34.60 Ex etock. Twin paddie touch kay $\mathbf{1 1 2 . 5 0}$ Ex stock
8.E.m. VBA 80 metre RECEVER Already a great success. If you want an 80 metre $(3.5-3 \mathrm{MHz})$ Rx. Only $2^{1 / 2 " x} \times 6^{\prime \prime} \times 3^{\prime \prime} .12$ volt operation 1 W.o/p. This is for you $\varepsilon 46$
FREQ. CONVEATEFS from 10 KHz to 2 metres in stock
12 MONTHS COMPLTTE GUARAMTEE MCLUDMN AL TRANSASTORs
Prices include VAT and delivery. CWO or phone your credit card number for same day service.

- Means Belling Lee stockists, add $£ 1.90$ for SO239s or $8 N C$ sockets. Ring or write for more Information. Place orders on request information on our Ansaphone at cheap rate times.

Goods normally by return

ONE NIGHTS WORK

A 4001/4011 tester developed by Stephen Ibbs that can be built and tested all in one evening.

Few people can get far in electronics without encountering the 4001 quad NOR gate and the 4011 quad NAND gate ICs. They are housed in 14 pin dual in line (DIL) packages and are used in a great many projects. Having been given a batch of untested and unmarked devices I needed a circuit that would give a simple go/no-go check, and separate the different devices. The result is given below.

How it works

This tester is based on a warbling alarm circuit.
Two gates are connected together as a square wave oscillator, while the output
gates another square wave oscillator whose output is in the audio spectrum.... i.e. we can hear it. As all four gates are used, it should be obvious if one gate is 'duff'; it either won't work at all or it produces a non-warbling note when SW2 is pressed.(NB: It may produce a note when the supply is turned on. This should be ignored as it is the note produced when SW2 is closed that is important.)

Because the 4001 and the 4011 are opposite in their logic outputs, if a 4001 is inserted, SW2 when pressed will stop the warble, but if a 4011 is inserted, SW2 will start the warble. Thus the two devices can be easily differentiated. SW1 is included so that the supply can (as it
should) be disconnected when a device is being plugged in.

Construction

Either veroboard or a PCB can be used, and a PCB design is given in Figures 2 and 3. First mount the resistors, capacitors, and PCB socket. It might be wise to use a wire-wrap socket which stands proud of the PCB so that the unit can be housed in a shallow handheld case with the socket protruding through the front panel. Connect the switch(es), transducers and a battery, and then insert a good sample of both a 4011 and 4001 to check that the unit is functioning. So little current is taken in normal use that a PP3 battery should last several months.

FREOUENCY COUNTERS

HIGH PERFORMANGE
high Reliability
LOW COST
The brand new Meteor series of 8-digit Frequency Counters offer the lowest cost professional performance available anywhere

* Measuring typically $2 \mathrm{~Hz} \quad 1.2 \mathrm{GHz}$ * Low Pass Filter
* Sensitivity $<50 \mathrm{mV}$ at $1 \mathrm{GHz} \quad$ Battery or Mains
* Setability 0.5 ppm
* Factory Calibrated
* High Accuracy
* 1-Year Guarantee
* 3 Gate Times $\quad 0.5^{\prime \prime}$ easy to read L.E.D. Display

PRICES (Inc. adaptor/charger, P \& P and VAT)
METEOR 100
$(100 \mathrm{MHz}) £ 104.07$
METEOR $60 \mathrm{C} \quad(600 \mathrm{MHz}) \quad £ 133.97$
METEOR 1000
$(1 \mathrm{GHz}$)
£ 184.57
Illustrated colour brochure

N 2 Designed and

Manufactured in Britain.
园

Hitachi Oscilloscopes

 performance, reliability, valueNew from Hitachi are three low-cost bench scopes with bigger screens and extra features in a new slimline ultra-lightweight format. The range now extends to 13 models:-

4 dual trace single timebase models 20 MHz to 10 MHz 2 dual trace sweep delay models 20 MHz and 35 MHz 2 dual timebase multi-trace models 601 MHz and 100 NHz 2 miniature field portable models. 20 MHz and 501 MHz 3 storage models, one tube storage. two digital storage
Prices start at $£ 295$ plus vat (model illustrated) including 2 prober and a 2 -year warranty. We hold the range in stock for immediate delivery For colour brochure giving specitications and prices ring (0480) 63570 . Reltech Instruments, to High Street, Solihull, W. Midlands. B91 3 TB

PCP/ELECTRONIC ASSEMBLY

* Circuit design \& development
* Prototyping
* Pre-production Consultancy
* Full Production Capability
* Component Sourcing \& Stocking
* Complete Test Facilities

STAGECRAFT (ELECTRONICS) LTD

3 Churchfield Road, Acton Central, W3 6BH Tel: 01-993 1852/3660

MULTI-PURPOSE STORAGE BINS

Set of 10 high quality storage bins which can be wall mounted or stacked in almost any configuration. Each bin measures approx 109 mm wide by 53 mm high $\times 100 \mathrm{~mm}$ and is of high impact co-polymer plastic construction. Supplied with 2 wall mounting bars. Ideal for storing components or hardware in workshops, garage, home etc.
*EXCELLENT VALUE at only $£ 4.95$ per set (p\&p $£ 1.50$)
SPECIAL OFFER - RECHARGEABLE BATTERIES
Manufactured by Saft or Gould - limited stocks available
*HP7 (AA) pencells 0.5Ahr
-HP7 (AA) pencells 0.5Ahr, tagged

- HP7 (AA) pencells 0.5Ah, vented, quick charge $150 \mathrm{~mA} 3-5 \mathrm{hrs}$
-HP11 ("C' size) 1.2Ahr
*HP11 ('C' size) 2.0Ahr
*HP11 ('C' size) 2.0Ahr tagged
*HP2 ('D' size) 1.2 Ahr
*HP2 ("D size) 4.0Ahr
*HP2 ('D size) 4.0Ahr tagged
*SUB 'C' 1.2Ahr
... $£ 0.85$ ea
-UNIVERSAL NI-CAD CHARGER, will charge all of the standard consumer Ni-Cad batteries, ie AA, C, D, PP3 ... 55.50

Please add 10\% for post and packing
All goods fully guaranteed. Despatch by return of post. Prices apply UK only. Trade enquiries welcome

All orders to
MEON ELECTRONICS
PO Box 34, Luton, Beds LU1 1 LS
Tel: Luton 28606

TANTALUM CAPACITORS

David Francis takes an in-depth look at these compact - yet powerful - devices

Although it had been known for many years that tantalum was a highly suitable material for the manufacture of capacitors, it wasn't until the end of the 1950's that processing techniques and production methods were sufficiently refined to allow the large scale manufacture of reliable units.
The first production tantalum capacitor was based on knowledge gleaned from the manufacture of aluminium capacitors and so, naturally, resembled that type of component. Since then the tantalum foil capacitor has evolved and developed its own constructional techniques, as is evidenced by the gelled and solid tantalum slug units available today. Equally obvious is the fact that each style of capacitor has its own relevant attributes and drawbacks, and it is the intention of this article to enumerate some of the major differences between the models.

Gelled tantalum capacitors

The construction of a typical component of this type is shown in Figure 1. The anode is formed by mixing tantalum powder with an organic binder and pressing the mixture into a pellet. It is then sintered in a vacuum oven, which boils off all the organic products and leaves a pellet of high porosity and mechanical strength. After electrochemical treatment, anode leads are attached to the pellets, which are then sealed into cases filled with electrolyte. At this stage it should be noted that the most common form of electrolyte is a gelled form of sulphuric acid. Should one of these capacitors be ruptured, it is important that care be taken in handling the remains.
The gelled tantalum capacitor gives the highest concentration of capacitance per unit volume of all the available varieties and also gives the lowest leakage ratings. Both of these properties are demonstrated in Table 1 which compares the three basic types of construction.
Regrettably it is not possible to make a non-polar version of a tantalum capacitor since, if reverse potential is applied, it causes destructive breakdown that ruins the component beyond redemption. It will, however, withstand very short intermittent reverse polarities, but

Fig 1 Structure of the gelled type of tantalum capacitor
it is not recommended that this factor should be relied on for obvious reasons.

On the advantageous side, these capacitors have extremely low self inductance and are capable of handling high ripple voltages - two factors which make them the ideal choice for use in the output filter of switch-mode power supplies. To verify this aptitude, tests were conducted whereby a number of capacitors were subjected to a 37 VDC
potential with a 15.5 VRMS ripple content. This was run for 2000 hours at a temperature of $85^{\circ} \mathrm{C}$. As can be seen from Table 2, this only resulted in a small decrease in both the capacitance and the dissipation factor of each of the units under test.
Although these gelled capacitors are renowned for their longevity, they do eventually fail. However the mode of doing so is not immediately obvious

Table 1: Basic properties of tantalum capacitors

	Foil	Gelled	Solid
Maximum voltage	300	125	125
CV product	Flexible	Inflexible	Inflexible
Max temperature	$125^{\circ} \mathrm{C}$	$175^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$
Volume efficiency	Least	Highest	Next
DC leakage current	Next	Lowest	Highest
Reverse Voc permissible	3V max	0	5% of rated VDC
Parametric change	Highest	Next	Least
Mode of failure	Degradation	Degradation	Hi Z degradation
		Low Z catastrophic	
Reliability	Least	Next	Highest

Fig 2 Typical temperature dependence of the characteristics of a 6 V plain-foil capacitor
since it involved a gradual degradation in performance brought about by evaporation of the electrolyte through the end seal of the capacitor. Early models (and to some extent many of the cheaper models available today) suffered from a secondary mode of failure brought about by the migration of silver from the cathode; the result was a short circuit
between cathode and anode. Fortunately most manufacturers use newer processing methods which have, to a very large extent, removed this problem. Despite this, many governments (including our own) have banned the use of silver-cased gelled tantalum capacitors in critical applications. The direct alternative is to use tantalum cased

Table 2: Results of long term testing of gelled tantalum capacitors

Rating	Unit number	Initial			2000 hours		
		Capacitance (μ F)	Dissipation factor (\%)	Leakage current ${ }^{1}$	Capacitance (μ F)	Dissipation factor (\%)	Leakage current ${ }^{1}$
$20 \mu \mathrm{~F}, 60 \mathrm{~V}$	1	21.3	1.90	$0.1 \mu \mathrm{~A}$	21.0	1.60	0.14 A
	2	20.8	1.45	0.14 A	20.4	1.20	0.14 A
	2	21.0	1.42	$0.1 \mu \mathrm{~A}$	20.5	1.28	0.14 A
	4	21.5	1.60	$0.1 \mu \mathrm{~A}$	21.2	1.50	$0.1 \mu \mathrm{~A}$
	5	21.2	1.36	$0.8 \mu \mathrm{~A}$	20.9	1.12	0.14 A
	6	21.3	1.36	$0.1 \mu \mathrm{~A}$	21.0	1.12	0.14 A

All measurements at 120 Hz .
'Leakage current was measured after five minutes at rated direct voltage at room temperature.

Fig 3 Bead style of tantalum capacitor
models which are very much more expensive.

Foil tantalums

This type of capacitor consists of two thin tantalum foil electrodes with tantalum wire leads spot welded to them. Since the capacitance is proportional to the surface area, the foils are usually etched to increase that area. The anode foil is then oxidised by voltage polarisation and both foils are assembled, along with a porous spacer material, and rolled into a cylindrical form with an axial wire on each end. The rolled section is now impregnated with an electrolyte and then sealed into a suitable container.
One of the major advantages of this type of capacitor is that the capacitance value and the impedance are relatively unaffected by temperature variations (see Figure 2). On the other hand the equivalent series resistance increases 3-8 times as the temperature drops below zero. However this factor is not critical in most applications. Environmentally, the type of construction is well able to withstand extreme shock and vibration, as well as being able to operate at altitudes up to 100,000 feet.

The foil construction is also ideal when it comes to manufacturing non-polar capacitors. The normal polar type is capable of taking 3 V in the reverse direction but, after adding an oxide coating to the cathode foil, the capacitor may certainly be treated as a non-polar type.
Despite these advantages, the foil type is not the most popular type of tantalum capacitor since it tends to be relatively expensive.

Solid tantalums

The solid tantalum is the lowest cost and the most popular of the three types. it is also the most flexible in terms of variations in form available, with (for example) the bead style (Figure 3), the chip style and, of course, the metal cased type (Figure 4). Since the construction of all types is basically the same and since the bead style constitutes 80% (by quantity) of all sales, we shall consider here just how this style is made.
The first stage in the process of manufacture is the formation of a pellet of compressed tantalum powder around

Table 3: Back-to-back operation of solid tantalum capacitors under various test conditions

Teat	Rating	Before test				After test Capacitance Dissipation		Leakage current (u)	
		Capacitance (μ F)	Disisipation factor (\%)	Leakage current (μ A)				Leakag	B ${ }_{\text {and }}(\mu)$
Rated DC voltage applied	$7.5 \mu \mathrm{~F}-20 \mathrm{~V}_{\mathrm{NP}}$	High 7.53	3.1	3.0	2.5	7.60	3.4	5.0	4.5
continuously in one direction		Low 6.89	2.2	0.5	0.1	6.84	2.6	0.5	0.1
for 1000 hours at $+85^{\circ} \mathrm{C}$		Av 7.18	2.7	1.0	0.8	7.20	3.0	1.5	1.0
Rated DC voltage, polarity	$7.5 \mu \mathrm{~F}-20 \mathrm{~V}_{\mathrm{NP}}$	High 7.56	3.0	5.0	2.5	7.75	3.5	4.0	4.0
reversed every 168 hours.		Low 6.88	2.3	0.5	0.5	6.82	2.9	0.5	0.1
Test duration 1000 hours at $+85^{\circ} \mathrm{C}$		Av. 7.25	2.8	1.5	1.0	7.30	3.2	1.3	1.3
AC voltage of 6Vrms.	$30.0 \mu \mathrm{~F}-6 \mathrm{NNP}$	High 35.2	7.5	2.0	3.0	33.4	8.4	1.8	2.0
60 Hz applied continously		Low 30.9	5.0	0.5	0.5	29.8	6.4	0.5	0.5
for 1000 hours at $+85^{\circ} \mathrm{C}$		Av. 33.3	6.3	1.5	1.6	31.7	7.3	1.2	1.0
AC voltage of $10 V_{\text {rms }}$.	$7.5 \mu \mathrm{~F}-20 \mathrm{~V}_{N P}$	High 7.68	4.4	2.0	3.0	7.65	5.5	2.6	3.0
400 Hz applied continously		Low 7.03	3.7	0.1	0.5	7.05	3.1	0.1	0.1
for 1000 hours at $+85^{\circ} \mathrm{C}$		Av. 7.30	4.1	0.9	0.9	7.33	4.3	0.7	0.9

Capacitance and dissipation factor measured at 120 Hz
${ }^{1}$ Leakage current in microamperes on both polarities.

albeit a rather slow one. Thus if a nonpolar capacitor is required, it is acceptable to connect two of these capacitors back to back (connecting the negative leads together and using the positive leads as the connections for the composite capacitor). Table 3 shows the results of using such a configuration under various user conditions. As can be seen little or no effect is apparent.

Postscript

The past few years has seen significant increases in the prices of materials, which have forced component manufacturers to find ways of cutting costs. In the field of tantalum capacitors, powders with high CV values have been developed which have helped to make the capacitors smaller, electronic products lighter and tantalum as popular in this role as it was before the first price rises. The new devices not only lead to high component packing densities and lower costs, but they are also compatible with LSI technology and automatic insertion. Thus there has been a great upturn in demand for tantalum capacitors in line with recent growth in video cassette recorders, portable stereo, optical cameras and the like.

Futuba 4 digit clock fluorescent display FLT 02-81 display
9-CT-01-3L £1.50
Clock display 0.7 digits
Large LCD 4 digit display "" digits $\mathbf{£ 3 . 0 0}$

MISC
OH LAMPS
A1/21624V 150 W
22.25

WOUND POT CORES
with adjuster, unused
RM7 LA 4245
..................................... 3 for $\mathbf{\Sigma 1 . 0 0}$
Reed inserts 10/£1 .00 100/£5.00
Quality co-ax plugs. each 40p TO5, TO18 mounting pads 1000/ £5.00 12 V wire ended lamps
1.2W small FIT AUDITR7VOLVO 10/E1.00 Kok Key Switch 2 pole 3 keys, ideal fo alarms 1.50

PTFE Sleeving pack/asstd colours $\mathbf{£ 1 . 0 0}$
........................50p
ig. 8 Mains Cassette leads for 3 for....... $£ 1.00$
Stereo Cassette Deck top loading
£5.00(81.00)
…...............22.50
Mono Head E1.00
Erase Head ...50p
Voro Ceramic iter............ $\mathbf{\Sigma} .50$ 100/玉20.00
Double sided PCB Pins
Thermal Fuse $121^{\circ} \mathrm{C} 240 \mathrm{~V}$ 15A sim. RS 413-563
£1.00
H36 -
TRW RF Power Transistor
Min. Toggle Sw 1 pc/o
50p
2 pc/o...50p
RS466/472/488/3845 pairs
DIL. Switch 5 pole
$\Sigma 9.00$
$21 / 2$ "sq $\times 2^{\text {" }}$ deep, quiet $\mathbf{8 9 . 0 0}$
3 pole Relay Changeover $\mathbf{\Sigma 1 . 0 0}$ (Both 240V AC Coils)

DCCOTIt Switch,smal
Tokin Mains RF1 Filter 250V 15A .. $\mathbf{\$ 3 . 0 0}$ (65p) KYNAR wrapping wire 2 oz reel£1.00 M3Hex Spacers 32mmiong 100/ع150 Thorn 9000 TV audio O/P stage....... 2 for $£ 1.00$ Oscilloscope Probe kit switched $\times 1 \times 10 . \mathbf{\Sigma 6 . 5 0}$
Epoxy potting compound two part $500 \mathrm{~g} \mathbf{\varepsilon 2 . 0 0}$

4 pole c/o min, Rotary Switch $1 / 8^{\prime \prime}$ shaft 400 mW Zeners 2V7, 3V, 3Vg, 4 V 3 6V, 5V6, 6V2, 6V8, 8V2, 9V1 1 W/W3 Zeners $10 \mathrm{~V}, 11 \mathrm{~V}$, $13 \mathrm{~V}, 15 \mathrm{~V}$, $18 \mathrm{~V}, 27 \mathrm{~V}, 43 \mathrm{~V}, 56 \mathrm{~V}, 75 \mathrm{~V}, 100 \mathrm{~V}$ AT5058 equiv. 2N5058
NPN 300 V 150 mA 30 mH
12/£1.00 100/85.00
V 15 A 250 MHz
T05 case...........................each 50p 100/£20.00 10/E1.50100/\&12.00
$47 \mu 3 \mathrm{~V}$
$10 \mu 6 \mathrm{~V} 3$
$68 \mu 6 \mathrm{~V}$
2/£1.00 100/£8.00
(1.00 100/E8.00 27p, 33p, 47p, 68p, 82p, 470p, 1n, 10n, (25v) $10 / 50 \mathrm{p}$ 100/\&3.00 5mm Radial Ceramics

2p2, 3p, 3p9, 4p7, 5p6 10/50p 100/£3.00 TIP 48...60p TIP 42B 50p

TIP35B. $60 p$

TIP 125 pnp darl...65p
BA157 1A 400V Fast recovery diodes 10/50p 100/E3.00
CA 3086 NPN 5 transistor array 14 d.i.I.
3 for $£ 1.00100 / £ 20.00$

DIODES

N4151 sim 1001E125

1 S 3740 Ge 100/E2.00

TRANSFORMERS

60 V 5 A
. $57.00(E 1.50)$
150 VA Toroi
Charger/50c/s Invertor
Transformer.
28.00(E1.00)
$12-0-12 \mathrm{~V} 100 \mathrm{~mA}$
81.25

4MM SOCKETS

black, blue, yellow, white 100/£4.00 .. 250 for $£ 1.00$ Mixed electrolytics Klippon Terminal Block EKS 12/4 12 way 20 amp..35p 12 way terminal block belling/lee.

L146930p 100/E20.00 Potentiometers - short spindle 2 k 5 10k 2 m 5 50n Disc 10V........................100/E1.00 1000/E5.00

CONNEGTORS

triacs

TO2204 A 400 V ..80p

T28008A400V

RECTIFIERS

120 V 35 A Stud 40p
BY 1271 A 1200 V .. 10 for $\mathbf{\Sigma 1 . 0 0}$
BY 2543 A 800 V 8 for $\mathbf{£ 1 . 0 0}$
BY 2553 A 1300 Vofor $\mathbf{6 1} 00$
1 A800 V Bridge 30p
.5A 100 V Bridge 30p
A 100 V Bridge 50p
5 A 200 V Brigge $E 1.25$

25 A 200 V Bridge25 A 400 V Bridge .. 2.50
NICADS
AA 90p, 10 for 88.00
'C' $2 \mathrm{~A} / \mathrm{H}$. $\varepsilon 1.80$
D'4A/H25.00RR' (Sub 'C') pack of 5
\qquad
All vented - suitable for fast charging.12 V 1.2 A/H Nicad pack ideal for videorecorders ..88.00
POLYE
10 nAX100/E2.50
15 n RAD 10 mm 100/E2.00
22 n RAD 10 mm 100/E2.50
μ PAD
100/E5.00
μ P/CARB 15 mm RAD100/E15.00$2 \mu 2400$ V P/CARB AX00/E15.00104/E1.00470 nF 250 V AC X-rated RAD
\qquad 4/E1.00

BEAD THERMISTORS

Glass Bead NTC Res @ 200c60p 250R 1k2, 4k5, $50 \mathrm{k}, 220 \mathrm{k}, 1 \mathrm{~m} 4$

OP. AMPS

CA 741 TO5 Metal 20p
LM31830 v/ $\mu \mathrm{S}$ 50p

PHOTO DEVICES

2N5777 (Photo Darlington) 50p
TIL 81 (TO18 Photo Transistor) 60p5p
OPI 2252 Opto Isolator OPI 2252 Opto 25p
MEL 12 (Photo Darlington base o/c) 50p
RPY 58 LDR 50p
TO18 LDR 50p
L.EDs red $3 \mathrm{~mm} / 5 \mathrm{~mm}$ 12 for $\$ 1.00$
GN, YW3 + 5 mm 10 for $\varepsilon 1.00$Flashing 5 mm red
50p
Bicolourred/gn 5 mm or rect 50p

MULTI-TURN PRESETS

10R, 20R, 100R, 200R, 500R
$2 \mathrm{k}, 5 \mathrm{k}, 22 \mathrm{k}, 50 \mathrm{k}, 100 \mathrm{k}, 200 \mathrm{k}$

TBA 331 Equiv CA 3046 35p
SN 72558 Equiv 1458 -Dual 7418 pin30p
IC Skts 8 pin 12 for $\mathbf{£ 1 . 0 0}$
$14+16$ pin 10 for $\mathbf{E 1 . 0 0}$
$18+20$ pin $\mathbf{\Sigma 1 . 0 0}$$22+24$ + 28 pin25p40 pin30p

Trimmer Capacitors, small
grey $1.5 \rightarrow 6.4 \mathrm{pF}$ green $3 \rightarrow 28 \mathrm{pF}$ \qquad yellow $2 \rightarrow 16$ pF Solid State Switch ex eqpt 10 A 250 V AC
control8 $\rightarrow 28 \mathrm{VDC}$................................... £2.00
 VARIAC $0 \rightarrow 130 \mathrm{~V} 6 A$ uncased

E5 (81.50$)$

A GREAT NEW MAGAZINE FOR RAILWAY MODELLERS

 OVER 100 PAGES - 8 IN FULL COLOUR Plans - Off the shelf product conversions • Kit building • Scratch building - techniques and ideas - Structures and buildings construction with detailed plans - Prototype photo features - Scenery and layout construction - Electrics \& electronics control, power supply and working accessories - Readers questions and answers • Book reviews • Beginners page - Coming events Club round-up

SUBSCRIBER BENEFITS Take out a POST FREE (UK) Sub while offer lasts

- Delivery to your door by publication date each month
- Inflation proof - price guaranteed for 12 months

? On sale NOW at your newsagent and at model shops

PRACTICAL MODEL RAILWAYS SUBSCRIPTION ORDER FORM

To: Subscription Department . Practical Model Railways 513 London Road Thornton Heath Surrey CR4 6AR. Tel: 01-684 3157

NAME
ADDRESS

CREDIT CARD PAYMENT payment by Inder Rallways. Overseas credit card.

Signature

SCARAB SYSTEMS
 39 Stafford St, Gillingham, Kent ME7 5EN (0634-570441)
 AMATEUR RADIO PROGRAMS RTTY
 ZX. 81
 E13.45
 225.10
 $\Sigma 30.00$
 SPECTRUM
 Cassette \& PCB
 Complete package Assembled \& Tested
 E15.00
 E29.55
 E35.00

New for 48K Spectrum type ahead buffer POA
BBC-B £9.20 VIC-20
PET
MPTU-1 RTTY/AMTOR terminal unit for use with all
ersion with

Version
$\varepsilon 9.00$ computer based systems.
$\Sigma 69.70$

Morse Tutor programs all at $\mathbf{8 5 . 0 0}$ each for:-BBC-B \star DRAGON 32* TRS-80 \star SPECTRUM \star

MORE BBC PROGRAMS

CW.QSO. Complete Rx/Tx program $\mathbf{£ 7 . 5 0}$
MULTIFILE. A versatile filing system........... 10.25
TELLTEX. 21 -page VIDEO MAGAZINE........ 15.00
All prices include VAT \& postage. Please allow 14 days delivery. Write for further details of these and other programs.
WANTED Amateur Radio, Technical \& Business software for all

AVCOMM LIMITED

25 Northload Street, Glastonbury, Somerset BA6 9HB Tel: 045833145
Shop Open: 9.30am-5.30pm - MON-SAT
BF981 Low noise MOSFET, 85p. 3SK97 UHF GASFET, £3. HP 5082.2800 Schottky diodes, 60p. HP 5082.2396 Schottky diode mixers, $£ 2.50$, 1 N 4148 Diodes, 3 p each, $20 \mathrm{p} / 10$. $£ 1 / 100$. BA182 Pin diodes, 35p. 7805 \& 7812 Regulators, 45p. 7905 \& 7912 Regulators, 75p. 741, 748, LM358 \& MC1458CP op amps, 20p. SN74LS374N, SN74123PC, 30p, SN75492AN, 40 p . TC5504AP-2 4096×1 Bit CMOS RAM, 85p. AY-3-9400 Tone Generator IC, $£ 1.125 u F 350 \mathrm{~V}$ pcb mntg electrolytics, 50 p or $£ 4 / 10$. 60 uF 450 V Electrolytics, 50 p or $£ 4 / 10$. New pcb with Siemens DL1416 intelligent Alphaneumeric displays, $£ 1$. VARTA 4.8 V 170 mA pcb MNt9 nicads, $£ 1.50$. Miniature ELECTRET mic inserts, 1.5 V type, 8 mm dia, 35 p 1000 pf \& 2000 pf 500 V bolt in feedthroughs, 35 p . Miniature toggle switches: DPDT, 50p. SPDT, 45p. All 2A 250V AC type.
Postage 40p on orders up to $£ 10$, over post free. Prices exclude VAT @ 15%. Our latest lists contain many bargains too numerous to advertise to obtain a copy please send a large SAE. Alt goods sent by return

(Prices include VAT)

STOCKISTS

AVON: LF Hanney, 77 Lower Road, Bath
BERKS: Lovering Bros, 76 King's Road, Reading
BRISTOL: Annley Electro, 190 Bedminster Down Road, Bristol DEVON: S\&R Brewster, Union Street, Plymouth ESSEX: R Jones Electronics, Rectory Road, Grays GLASGOW: Marshalls Electronics, 86 West Regent Street HANTS Gaines Electronics Comps, West Street, Fareham HERTS: Hemmings Electronics, 15 Brand Street, Hitchin IRELAND: Baxol Tele Exports, Ballinaclash, Co. Wicklow LIVERPOOL: Progressive Radio, 93 Dale Street
NORTHANTS: The Electronics Shop, 10 Crown Street, Kettering WILTS: Camlab Electronics, 27 Faringdon Road, Swindon

VELLEMAN UK...

P.O. Box 30, St. Leonards-on-Sea, East Sussex TN37 7NL, England. Telephone: (0424) 753246

(

SL6270
 Gain controlled audio amplifier

Amongst the various RF IC's available from Plessey are hidden some useful IC's that function at audio frequencies. One such IC is the SL6270, available in an 8 -pin DIL package (CDP) or in an 8 -pin metal can (CCM).
The SL6270 is a gain controlled audio amplifier that incorporates a voice operated gain adjusting device (VOGAD). It is designed to accept lowlevel audio input and to provide an essentially constant output over a 60 dB range of input signal. Numerous uses include transmitter audio, tape recorders, receiver audio etc.

Device details

Figure 1 illustrates the internal circuit of the SL6270. The input will accept either single-ended or differential signals via pins 4 and 5 . When used singleended, the other input should be decoupled to ground: moreover, the signal should ideally be AC-coupled.

Up to approximately 1 mV , input signals are amplified with little or no AGC action. Above 1 mV the output will remain essentially constant at 90 mV Rms over a 50 dB increase in input. If required, the dynamic range and sensitivity of the input may be reduced by connecting a resistor between pins 7 and 8. A 1k resistor will reduce both parameters by approximately 20 dB . However the choice of a value below 680Ω is not recommended.

Fig 3 Explanation of frequency response

[^2]Lower frequency response $=680 \mathrm{R} / 2 \mu 2=300 \mathrm{~Hz}$

Fig 2 Application circuit (see over)

Characteristic	Min	Value			
Typ	Max	Units	Conditions		
Supply voltage	4.5	6	10	V	
Supply current		5	10	mA	
Voltage gain	40	52		dB	72μ VRMs pin 4
Output level	55	90	140	mVRMS	4 mVRMS pin 4
THD		2	5	$\%$	90 mVRMS pin 4
Ambient temp	-30	+20	+85	${ }^{\circ} \mathrm{C}$	

Fig $4 P C B$ foil pattern for a general purpose audio applications circuit using the SL6270

Fig 5 Component overlay

The design of the SL6270 is such that both the low and the high frequency response is decided by two capacitors. The LF -3dB point is, in fact, determined by all three of the input, output and coupling capacitors. But for most communications purposes, the coupling capacitor between pins 2 and 7 is treated separately and it is usually chosen to be $2.2 \mu \mathrm{~F}$ as this gives the -3 dB point at 300 Hz : the input and output are chosen to ensure a response to frequencies of 100 Hz or less. Typically, the open-loop upper frequency response extends to several MHz , and the capacitor between pins 7 and 8 gives the required response. A $4 n 7$ will give a typical HF point of 3 kHz .
The attack and decay times are tailored to individual requirements through a suitable selection of the capacitor and resistor connected to pin 1. The 'attack time' - i.e. the time taken for the output to return to within 10% of original level following a 20dB increase in input - will be approximately 20 ms when the values recommended are used ($47 \mu \mathrm{~F}$ and $1 \mathrm{M} \Omega$). It is principally determined by the value of C used and can be treated as $0.4 \mathrm{~ms} / \mu \mathrm{F}$. The decay time is determined by the discharge rate of the capacitor via the parallel resistor. $1 \mathrm{M} \Omega$ gives a rate of approximately $20 \mathrm{~dB} /$ second.

Application for the SL6270

To give the reader some idea of the ways in which the SL6270 can be used, we present here the PCB foil pattern (Figure 4) and the associated component overlay (Figure 5) for a general purpose audio applications circuit, which would be incorporated where constant output levels are required from widely fluctuating input levels.

This circuit has been designed with communications particularly in mind. It has a tailored frequency response of (nominally) $300 \mathrm{~Hz}-3 \mathrm{kHz}$, and it should prove easy to insert between the volume control of the receiver and the existing audio amplifier/output stage.

ambit ${ }_{\text {miteranaroval }}$ New Regional Sales Counters!

At 53 Burrfields Road, Portsmouth opened September 9th 1983, and at Park Lane, Broxbourne, Herts - opening 24th October

BROXBOURNE

Readily accessible from North London, Ambit's Broxbourne sales counter is based in the Broxlea Electronics building just a few yards from Broxbourne High Street. The M10/M25/M11 motorways provide ready access from many parts of the country - and there's parking outside the door.

Telephone David Scott on (0992) 441631 to check availability etc.

BRENTWOOD

The "home" site sales counter has recently been refitted and relocated within the Ambit HQ building to provide scope for expansion of retail display area. Call to buy or browse - but please remember that if you're calling to collect an order from either the mail order or industrial marketing divisions, this may only be done by prior arrangement. Parking facilities right outside - as usual!

PORTSMOUTH

The Southern England Ambit Sales Counter operates under the auspices of Solent Component Supplies to provide the South Coast with a wide selection of Ambit components, kits, modules etc., supplemented by tools, components and equipment from the Solent Component Supplies catalogue. Access from the local motorway network is simple - and there's parking outside.

This En BENTME
 LONDON'S NEWEST AND BRIGHTEST EMPORIUM

... AND NOW IN THE MIDLANDS TOO !

NOW THAT WE HAVE TWO BRANCHES, WE ARE TWICE AS KEEN TO NOW THAT WE PART EXCHANGE YOUR SECONDHAND EQUIPMENT WORKING OR FAULTY. TRY US LAST WHEN YOU'RE SHOPPING AROUND WE ALSO OPERATE A SALE OR RETURN SERVICE AT 10% COMMISSION.

YAESU - TRIO - ICOM - DATONG - MICROWAVE MODULES
FDK - DRAE - JAYBEAM - BNOS - ADONIS MICS - WELZ STANDARD - MUTEK - HANSEN - DAIWA

FOR THE D.I.Y. ANTENNA ERECTOR!
WE HAVE A FULL RANGE OF POLES, LASHING KITS, WALL BRACKETS, ROTATORS, CO-AX, BALUNS, ETC.

PERSOMALISED SERYICE

GOT A GENERAL COVERAGE RECENER? TIRED OF TUNING AROUND? HOW ABOUT A CONFIDENE RECENER? TIRED OF TUNING AROUND? PAPERBACK BOOK THAT LISTS FREQUENCIES FOR THIS IS A THIC

WE TRY HARDER!
ALINCO $2 \mathrm{~m} . \& 70 \mathrm{cms}$. R.F. AMPS.

BEST VALUE AROUNDI

‘NOTES FROM THE PAST ${ }^{\text {² }}$

Twenty-seven years ago, people were starting to probe some novel ways of communicating round the world. While some were trying to receive the BBC in the States, others were speculating about the facilities offered by satellites

A number of British TV receivers have been shipped over to America where it is hoped to receive something of our BBC transmissions. The attempt is being made by the National Broadcasting Company, who are installing the receivers at their Riverhead Station, Long Island, hoping to relay any images received (duly filmed) in the 'Wide, Wide World' programme. By the time this appears in print the hoped for 'peak period' will have passed and perhaps something of the results will have appeared in the daily press. In any case we shall know something of the conditions, if they prove to be abnormal, by the interference affecting our own domestic receivers!
Attempts to pick up BBC signals in America were unsuccessfully made in 1953, at the time of the Coronation, but some years earlier, during a period of high sun-spot activity, successful reception of BBC signals was reported. At that time, of course, no attempt was made to re-broadcast them. What a spot for ITA to achieve this in reverse. A huge audience sitting agog waiting to see one of America's star programmes - and a couple of adverts slipped in!

Ustener watch

Several readers, especially Mr Alex P Buchanan of Carrick Park, Ayr, have written about next year's launching of artificial satellites - particularly of the electronic equipment and of organised amateur reception of the radio signals they will send back to earth. While suggestions have from time to time been put forward that the services of amateur observers may be of value, as far as I can make out no practical steps have yet been taken to enrol their help. As the work is under the direction of the US Naval Research Laboratory it is doubtful that the initiative in seeking such help
will come from the official side. Nor are the Russians likely to ask for cooperation. Indeed, they are revealing no details of their project at all.
However, for visual observation, the Smithsonian Institution in Washington have arranged for (and are still organising) a world-wide chain of knowledgeable amateur observers to man posts to track the sphere, so as to make sure (if it gets lost) that we shall know something of what happened to it. As I mentioned when the project was first announced, it should be visible in the reflected light of the sun to watchers armed with quite ordinary binoculars, and under favourable conditions even with the naked eye.
As I see it, it is rather doubtful whether amateur radio observation would be of much value with our present unreliable maps. Errors of several miles occur in the charted positions of many of the smaller islands and even in the distances of continents from each other. Accurate measurement, for radio purposes is far beyond the scope of amateur equipment. Even the loss of signals, should the satellite wander off into outer space, could hardly be accurately plotted or timed without elaborate equipment. There is, however, one aspect scheduled for official investigation, in which a corps of widely spaced amateur listeners might be able to help. That is the problem of propagation for VHF working and the effects of the ionosphere in reflecting and refracting radio signals, with the view of making wide-coverage TV an early possibility.

First shot

I am not normally a pessimist but I have wondered just how many satellites will have to be launched before one can be made to circle in the planned orbit. The lay mind seems to take it for granted that it is already as good as done, quite
overlooking the amount of experimental work history teaches us is required for such ventures. And this is a stupendous step involving many unknown factors. Remember the early German V2 rockets? - only one in the first twenty or so worked and even after the war, development was brought only to a 60% successful launching stage. It is doubtful whether we can yet claim to be through the growing-pains stage, and we glibly talk of a three-stage tandem rocket reaching the right altitude and finally kicking the satellite off to an 18000 mph start. If its velocity is too slow it will sink back into an increasingly heavier atmosphere and burn up, perhaps even before completing one circuit. If it travels too fast it will fly off into space. The world's leading rocket engineers are confident that one day we shall get a satellite in the right orbit, but they won't quote how many firings they think may be needed before it is achieved.
Nor is there any agreement among scientists on how long it will stay up. Some think a few hours (it will circle the Earth from west to east every 90 minutes). Some venture to suggest perhaps for months. Either guess might be right. The satellite will approach within 200 miles of the Earth and wing out to 1400 miles at each revolution, moving about 1500 miles west at each circuit, and our present knowledge of atmospheric density at these heights is so slender that either conjecture might well prove right.
Remember, that even as a first effort, the engineers are building twelve satellites (not just one) and hope to get one into the planned orbit, if only for a short spell. When that has been achieved perhaps we shall be in a better position to evaluate just how a corps of skilled amateur radio enthusiasts might usefully be of service.

DAWNE
 INSTRUMENTS BY POST SPECIAL OFFER SEE BELOW

METEX 3000 DMM £36.93

DRO,

* Single rotary switch for function and range selection
* Direct readout, easy to use, small and light
* High accuracy and good reliability
* All ranges protected
* High surge voltage protection. (3KY max)
* Complete with $9 V$ battery, test leads, operating manual, spare fuse and carrying case

INPUT IMPEDANCE 10M ohms
DSPMAY 3.5 digit LCD, $0.5^{\prime \prime}$ high
MEASURING RANGE DC Volt: $0.1 \mathrm{mV}-1000 \mathrm{~V} \pm 0.5 \%$
AC Volt: $0.1 \mathrm{mV}-700 \mathrm{~V} \pm 0.8 \%$
AND BASIC ACCURACY DC Current: $0.1 \mu \mathrm{~A}-10 \mathrm{~A} \pm 0.8 \%$
AC Current: $0.1 \mu \mathrm{~A}-10 \mathrm{~A} \pm 1.0 \%$
Resistance: 0.1 ohm - 20 M ohms $\pm 0.8 \%$
OPERATING TEMPERATURE 0° to $50^{\circ} \mathrm{C}$
LOW BATIERY INDICATION 'LOBAT' or 'BAT' at left of display
OVERRANGE INDICATION Highest digit of ' 1 ' is displayed POWER SOURCE 9 Volt battery
SIZE $88 \times 162 \times 36 \mathrm{~mm}$

GLOBEL 5000 PORTABLE UNVERSAL COUNTER-TIMER £284.05

* Measures Frequency, Period and Pulse Width
* Full signal conditioning - attenuation, slope selection, AC or DC coupling, variable trigger level
* Unique automatic reset logic
* Self diagnostic internal test mode
* Battery operated

Now, all of the important features and performance capabilities of a benchtop counter-timer combined with the convenience of a fully portable, battery-operated hand-held instrument. Global's new 5000 Counter-Timer is the first instrument of its type. Designed to deliver extreme accuracy and exceptional reliability, the 5000 measures a mere $7.6 \times 3.75 \times 1.7^{\prime \prime}$ and weighs in at $140 z$.

TRIO CS1022 20MHz OSC £428.95

* lliuminted inner-face graticule 150 mm rectangular CRT (6 kV)
\star Maximum sensitivity $1 \mathrm{mV} /$ div ($\mathrm{DC} \sim 10 \mathrm{MHz}$)
\star Maximum sweep speed 20ns/div (x 10 MAG)
\star Maximum accuracy $\pm 3 \%$ (voltage and time axis, $0 \sim 40^{\circ} \mathrm{C}$) guaranteed
\star New video sync circuit requires no troublesome trigger setup
$\star 8$-division dynamic range
\star Vertical signal output (CH1 output)

THURLBY PL 310 BENCH POWER SUPPLY UNIT £142.60

Thurlby PL Series

* Simultaneous digital metering of voltage and current
*True constant voltage or constant current operation
* Twin $33 / 4$ digit meters with $12.5 \mathrm{~mm}\left(1 / 2^{\prime \prime}\right)$ LED displays
* 0.1% accuracy; 0.01 volts and 0.001 amps resolution
*Very high stability, resolution and setting accuracy
* DC output switch, automatic mode indication
* Precise current limit control and monitor system
*Wide range of models, single, dual or triple outputs
* Designed to rigorous quality and safety standards
* Highly competitive pricing
* Remote sense facility for high current precision
* Current meter damping switch for fluctuating currents
* True parallel and series-tracking modes on Duals
* Adjustable overvoltge crowbar on 5 volt outputs

The Alden Weather Chart Recorder

A kit for the home constructor - given an introductory review here by Arthur C Gee

One of the difficulties facing those interested in receiving weather maps (whether from HF radio stations or satellites), FAX and similar radio transmitted graphics, is the non-availability of suitable mechanical recording equipment. Some real enthusiasts have succeeded in building their own FAX machines, and some useful descriptions of such efforts have appeared in electronics journals in the past. But these are few and far between; moreover, one really needs workshop facilities to make a good job of such a project. For the most part enthusiasts have had to make do with obsolete or surplus professional machines, which are usually expensive and require a lot of work done on them before they can handle the characteristics of weather maps and FAX pictures
for which they were not originally designed.

At last a low cost facsimile recorder has become available, which is specifically intended for the radio amateur, SWL and weather buff. ALDEN Electronics of Westborough. Massachusetts, USA, has recently brought out an excellent Weather Chart Recorder in kit form, thus permitting the price to be kept at an affordable level for the type of customer they have in mind. It is a single speed, single IOC recorder, running on 115 Vac . The firm specialises in equipment for professional marine use, for example its Marinefax Recorders, but this Kit Recorder is specifically for the radio amateur/home constructor/etc market.
Coupled into a stable HF general
coverage ($100 \mathrm{kHz}-30 \mathrm{MHz}$) SSB radio receiver, it will print professional weather charts at home, at the sailing or flying club or wherever. It would be ideal for use in schools or technical colleges as part of a science or meteorological project. Indeed, it is proving very popular in the States for just such applications.
Facsimile Weather Chart transmissions are broadcast worldwide and are available free of charge to anyone having the equipment to receive them. Moreover, all weather charts use international symbols, so one can easily interpret charts whether they are transmitted from sites in the USA, Canada, Japan, Russia or from other countries throughout the world.

Constructional comments

The ALDEN Weather Chart Recorder Kit is easily assembled, the time for doing so being about five hours, | reckon. An excellent Assembly Manual is provided. Complete illustrated step-by-step instructions are given for assembling, checkout and operation, while preassembled and tested circuit boards and mechanical assemblies are provided for
the more difficult sub-assemblies. An attractive moulded case gives a professional appearance to the completed unit. The solid-state circuitry and a simple electro-mechanical design should ensure long, trouble-free operation.

Electrically sensitive paper in disposable cassettes, $11^{\prime \prime}$ wide, is used, so no tricky threading procedures or processing will be required. Another welcome feature is that the printing process is quiet and free from smoke, fumes or smell. The overall size of the unit is approximately $17^{\prime \prime} \times 10^{\prime \prime} \times 4$ " and the. weight is 10 lbs.
A very nice feature of the recorder is its auto start and stop facility. The unit can be left in an operational state until a transmisson starts, whereupon the machine automatically starts up because the transmission itself provides all the necessary start and stop signals as well as framing pulses that automatically frame the picture.
ALDEN produces a number of books dealing with weather forecasting and weather chart interpretation, one of the best being 'A Mariner's Guide to Radiofacsimile Weather Charts' by Dr J M Bishop. Another - 'Worldwide Marine Radiofacsimile' - gives a complete list of stations along with details of their Weather Chart transmissons, frequencies, broadcast times, etc.

The kit is available through ALDEN International SA, 117 North Main Street, Brockton, MA 02403-0860 at \$1100.

Weather Chart Recorder Kit Model 9321

\left.| Recording rate: | 120spm (scans per minute) |
| :--- | :--- |
| Index of Cooperation: | |
| 10C 576 CCIR; 169 lines per inch | |$\right]$

FIFTY 'THRIFTY FIFTY' PACKS ALL PACKS 50p - BUY 10 GET ONE OF YOUR CHOICE FREE

TF1 10, Assorted Phono Plugs
TF2 4, Ex Equipment Mike Inserts (600Ω Approx)
TF3 5. 2-22 pF Mullard Miniature trimmers
TF4 8. TO3 Mounting Kits
TF5 10, TO220 Mounting Kits
TF6 12, TO126 Mounting Kits
TF7 10, BC 148 (BC 108)
TF8 10, BC 149 (BC 109)
TF9 20, Miniture Reed Switch
TF10 12, Sub. Min. Reed Switch
TF11 5. Min Magnets
TF12 6, Sub Min Slide Swirch SPCO
TF13 6, Min Slide Switch 2PCO
TF14 4, 3 Position Slide Switch
TF14 4, 3 Position Slide Switch
TF15 3, Mini Push to make switch (Red Knob)
TF16 2. Mini Push to Break switch (Black Knob)
TF17 6. Mini Croc. Clips (3 Red, 3 Black)
TF17 6. Mini Croc. Clips (3 Red, 3 Black)
TF18 4, Larger Croc. Clips (2 Red. 2 Black)
TF19 2, 3.5mm Stereo Plugs
TF19 2, 3.5 mm Stereo Plugs
TF20 2, 3.5mm Stereo Chassis Sockets
TF21 2, 3,5mm Stereo Flying Socke
TF22 4, Din Speaker Plugs. 2 Pin
TF23 4, Din Speaker Flying socket
TF24 4, Binding Posts with 4 mm Sockets
TF25 10. Mini Wire ended bulbs (6 volt)

VCR PORTABLE NICAD BATTERY

PACKS

Thorn/JVC VA214 12 volt 1.8 ah
E20 each 3 for £50.00 Hitachi. VTBP60E 12 volt 1.2 ah £20 ech...

ALL BRAND NEW AND BOXED

We also have some second hand Thom/JVC VA214 packs which contain $10 \times$ ' c ' size Nicads, these are sold untested with a view that any faulty cells can be replaced by the customer. £ 10 each 3 for £25.00

ALL ORDERS OVER £10 GET FREE MINI TOOL KIT COMPRISING:
TF26 3, Mini 10.7 MHz Ceramic filters (3 Pin)
TF27 2, Mini 6 MHz Ceramic filters (3 Pin)
TF28 4, BY 2551200 V. 3A Diodes
TF29 6, IC Sockets 8 Pin
TF30 6. IC Sockets 14 Pin
TF30 6. IC Sockets 14 Pin
TF31 5. IC Sockets 16 Pin
TF31 5. IC Sockets 16 Pin
TF32 3, IC Sockets 18 Pin
TF33 3, ic Sockets 22 Pin
TF34 3. IC Sockets 24 Pin
TF35 3, IC Sockets 28 Pin
TF36 2, IC Sockets 40 Pin
TF37 6. Dil Headers 14 Pin (Capless)
TF38 3. Bridge Recs. 2A. 600 V
TF39 1. OCP 71 Photo Transistor
TF40 2, $1000 \mu \mathrm{~F} 40 \mathrm{~V}$ Axial
TF41 1, $2,200 \mu \mathrm{~F} 63 \mathrm{~V}$ Can
TF42 Mini Cassette Motor $1 / 1 / 2-6 \mathrm{~V}$ with Regulator TF43 25. Led Clips 3 mm
TF44 10 PP3 Snaps on Leads
TF45 12, Leds Red 5 mm Grade 2
TF46 10, Asstd Tantalum Caps
TF46 10, Asstd Tantalum Cap
TF47 10, Asstd Transistors
TF47 10, Asstd Transistors
TF48 10. Asstd Rectifiers \& Diodes
TF48 10. Asstd Rectifiers \& Diodes
TF50 10. 3 watt. 0.22Ω Wirewounds

Miniature toggle switches 3A. 250V,

SP 60p each 5 for £2.50	3.5 mm Stereo Plug. Good Quality. SPECIAL OFFER
SPCO 70p each 3 for £2.00	'GENTE' Fire Sirens 25-50 Volt.................89.95
2PCO 80p each 4 for £3.00	$6 \times 2 \mathrm{PCO}$ cancelling switch bank
$6,800 \mu$ F 70 Veach £1.00	£1 each ... 3 for £2.50
UHF Modulator, video in UHF ch. 36 out.	new and marked£3.95
Complete with 9ft coaxial lead and plug.	'Green par' 50Ω BNC Socket square flange
£3.00 each.	60 p 2 for $£ 1$ Bead Thermisters $3 \mathrm{~K} \Omega @ 0^{\circ} \mathrm{C}$,
TIL 32 and TIL 78 Infra Red pair $\mathbf{8 1 . 0 0}$	100Ω @ 100\% ${ }^{\circ}$, Ideal for making
per clad Pc board offcuts 4.95	Thermometers etc $£ 1.50$ p
(sq in approx) per Kgm	21/4", Loud Speaker 75Ω...........................60p

Universal handle, Tape Measure and Mini Stip joint pliers. All housed in attractive case

GEMINI ELECTRONIC COMPONENTS

[^3]
A GREAT MAGAZINE FOR COMMUNICATIONS, ELECTRONICS

 \& COMPUTERS

On sale NOW at your newsagent and at equipment dealers

 RADIO \& ELECTRONICS WORLD SUBSCRIPTION ORDER FORM\qquad World - 513 London Road - Thornton Heath ${ }^{\circ}$ Surrey •CR4 6AR. Tel: 01-684 3157

NAME ...
ADDRESS
\qquad

Product reviews
Communications \& electronics news Reception reports - shortwave, DX, ATV ... Construction projects - what to build for your rig, your computer \& your enjoyment ... New technology ...Educational articles . . . Coming events Readers letters . . . Technical \& practical questions answered With special supplements in the December, January \& February issues - The Radio \& Electronics World Amateurs Handbook - A comprehensive collection of data for everyone using the airwaves.

SUBSCRIBER BENEFITS

 Take out a POST FREE (UK) Sub while offer lasts- Delivery to your door by publication date each month
- Inflation proof - price guaranteed for 12 months

COMDUHF TARH:OUSH Baichatis BOA cand

TED 'ALADDENS' CAVE OF COMPUTER AND ELECTRONIC EQUPMENT

HARD DISK DRIVES
Fully refurbished DIABLO/DRE series 3
DEC RKO5, NOVA, TEXAS compatible.
Front load. Free stand or rack mount Esso.00 $\begin{array}{ll}\text { Exchangeable type (via lid removal) } & \begin{array}{ll}\text { E295.00 } \\ \text { me3029 PSU unit for } 2 & \text { drives }\end{array} \\ \text { E125.00 }\end{array}$
DIABLO/DRE 44-4000A/B $5+5$ ex stock from Es95.00
CALCOMP PLOTTERS

9363 colour digital incremental, 37" drum, paralle interface and accessories interface and accessories 7184 colour digital 8×5 FEET flatbed $\&$ controll

HOT LINE DATA BASE

DISIMT

THE ORIGINAL. FREE OF CHARGE dial up data base

 ON LINE NOW - 300 and one oft bargains.01-6791888

COMPUTER 'CAB'

cabinet with integral switched

Originally a for fan cooling.
Originally made for the famous DEC PDP8 computer
system costing thousands of pounds. Made to run 24 Massive $+5 v \mathrm{DC}$ at $17 \mathrm{amps}, 15 \mathrm{vDC}$ at 1 amp and -1 removable top lid, filtering, trip switch, 'Power' and 'Run' LEDs mounted on Ali front panel, rear cable entries, etc et. Units are in good but used condition - supplied for Give your system that professional finish for onl $\varepsilon 49.95$ + Carr. Dim. $19^{\prime \prime}$ wide $16^{\prime \prime}$ deep 10.5" high.

COOLTHG FANS Keep your hot parts COOL and RELIABLE
with our range of BRAND NEW professional ETRI $99 \times U O I$ Dim. $92 \times 92 \times 25 \mathrm{~mm}$.
Miniature 240 v equipment GOinger quard £9.95. very quiet running 240 BUHLER 69.11.22. 8-16 \vee DC micro servo motor for extremely high air fow almost sitent running and guaranteed 10,000 hr life. Measures only $62 \times 62 \times 22 \mathrm{~mm}$.
Current cost $£ 32.00$ OUR PRICE ONLY E12.95 complete with data. MUFFIN-CENTAUR standard $4^{\prime \prime} \times 4^{\prime \prime} \times 1.25$ fan supplied tested EX EQUIPMENT 240 v at
$£ 6.25$ or 110 v at $£ 4.95$ or BRAND NEW 240 v at $£ 10.50 .1000$'s of other fans Ex Stock

scoop!

 $+1++7$
BRAND NEW CASED WORD PROCESSOR KEYBOAROS

 port enabling simple modification to your own custom decoding logic via an EPROM etc. Many other features for the most exacting user include: numeric single 5 s suply control pad, ten clear top function keys, LEDSAVE E250 SU CENTRONICS 739-2 The Do Everything Printer a price that will NEVER be 4 type fonts with high definition \& proportional spacing for word processor applications, 80-132 columns, single sheet, roll or sprocket paper handling plus
much more. Availatle only from DISPLAY ELECTRONICS much more. Avalable only from DISPL
at a ridiculaus price of only $£ 199.00$ Options: carriage \& insurance $£ 10.00$

TMTETYPE ASBB3I I/O TBRMMNALS
Fully fledged industry standard ASRB33 dat terminal. Many features including ASC 11 keyboard and printer for data I/O auto data detect circuitry. RS232 serial interface. 110 off line data preparation and ridiculously cheap and reliable data storage. Supplied in good condition and in working order Options: Floor stand $\mathbf{£ 1 2 . 5 0}+$ VAT $125.00+$ KSR33 with 20 ma loop interface $\mathbf{C 1 2 5 . 0 0}+$

SOETIY 2

The amazing SOFTY2. The complete "toolkit"

 for the open heart software surgeon. CopiesDisplays, Emulates ROM, RAM and EPROMS of the 2516,2532 variety. Manyotherfeature include keyboard, UHF modulator. Cassette units costing 7 times the price! Only
£169.00 pp £1.95 Data sheet on reques

DATA MODEMS

range of EX TELECOM data modems. Made to most stringent spec and designed to operate for 24 hrs per day. Units are made to the a 25 way 'D' skt. Units are sold in a tested and working condition with data Permission MODEM B up to 300 baud full duplex. ANSWER or CALL modes. Data i/o via standard RS232 25 way
D' socket. Just 2 wire connection to comms line. Ideal networks etc Complete with data MODEM 20-1
MODEM 20-1 Compact unit for use with
MICRONET, PRESTEL or TELECOM GOLD 1200 baud receive. Data i/o via RS232 'D' Socket. Guaranteed working with data $\& 49.95$
MODEM $20-2$ same as $20-1$ but 75 baud receive 1200 baud transmit $£ 130.00$ baud MODEM $20-3$ Made for data rates up to 1200 half duplex mode over 2 wires. 4 wire cir MODEM $13 A$ compact, async, same size as
telephone base. Up to 300 baud, full duplex over 2 wires, but call mode only $£ 75.00$
DATA PUMP MODEM compal DATA PUMP MODEM compact unit up to
1200 baud full duplex over 4 wires or half 200 baud full duplex over 4 wires or half
duplex over 2 wires. BELL specification with duplex over 2 wires. BELL specification with
data i/o via RS232 25 way D socket, remote with data $£ 65.00$ carr $£ 4.50$. For more information or details of other types

QUALITY INTERFACE CABLES \& CONNECTORS

22/2A D25S to 3 ft 22 way $\mathbf{\Sigma 2 . 9 0}$
25/08 25 way 25 P 9 tt 22 way EE. 50

$2 C D 25$
$3 C D 25$
$4 B D 15$

SUPER DEAL? NO - SUPER STEAL!:

The FABULOUS 25CPS TEC Starwriter
Daisy wheel printer at a fraction of its original cost.
 command compatability and ful control via CPM Wordstar etc
printing, switchable 10 or 12 pitch, full width 381 mm paper handling with upto iternal buffer standard iction feed rollers for single sheet or continuous pape Supplied absolutly BRAND NEW with 90 day quarantee and FREE daisy wheel and dust cover. Order NOW or contact sates office for more information.

$$
\begin{aligned}
& \text { Optional extras: RS232 data cable £10.00. Tech manual £7.50. Tractor fee } \\
& \mathrm{E} 140.00 \text {. Spare daisy wheel £3.00. Carriage \& Ins. (UK Mainland) £10.00. }
\end{aligned}
$$

66\% DISCOUNT
 ELECTRONIC COMPONEN EQUIPMENT

Due to our massive bulk purchasing programme which enables us to bring you the best possible bargains, we have thousands of I.C.'s, Transistors, Relays, Cap's, P.C.B.'s, Sub-assemblies one item to include in our ads. we are packing all these items into the "BARGAIN PARCEL OF A
IFET/ME". Thousands of components at giveaway prices! Guaranteed to be worth at least 2.5 kIs $\mathbf{E} .25+$ pp f 1.25
$10 \mathrm{kls} £ 10.25+p p £ 2.25$
$5 \mathrm{kls} £ 5.90+£ 1.80$ $20 \mathrm{kls} £ 17.50+£ 4.75$

ALL PRICES PLUS VAT

DRE 7100
 100

$8^{\prime \prime}$ Disk Drives New $£ 225$ + VAT

VIDEO MONTTORS

12" CASED. Made by the British KGM

display sta display station, unit is totally housed in a attractive brushed aluminium case with ON
OFF, BRIGHTNESS and CONTRAST controls mounted to one side. Much attention was given to construction and reliability of this unit with features such a supply all components mounted on two fibre glass PCB boards linearity etc The monito 75 ohm composite video signal via SO239 socket on rear panel. Bandwidth of the unit is estimated around 20 Mhz and will display
most high def graphics and 132×24 lines. Units are secondhand and may have scre burns. However where burns exist they are Although ung when monitor is switched off tested prior ouranteed all monitors are pprox. $14^{\prime \prime}$ high $\times 14^{\prime \prime}$ wide by $11^{\prime \prime}$ deep operation. OWUY $\mathbf{8 4 5 . 0 0}$ PUSE9.50 GARR.
24" CASED. Again made by the KGM Cd

2'4" CASED. Again made by the KGM C with a similar spec as the $12^{\prime \prime}$ monito Originally used for large screen data
display. Very compact unit in lightweigh silicon electronics and composite video input make an ideal unit for schools, clubs,

OWYY E55.00 PLUS E9.50 CARR 6 IMS.

SEMICONDUCTOR 'GRAB BAGS'
Mixed Semis amazing value content inelude transistors, digital, linear, I.C.'s triac diodes, bridge recs., etc. etc. All devices
guaranteed brand new full spec. with man facturer's markings, fully guaranteed $50+E 2.95100+E 5.15$.
$50+E 2.95100+E 5.15$.
TLL 74 Series A gigantic purchase of an "across the board" range of 74 TTL series s enables us to offer $100+$ mixed
ostly TTL" grab bags at a price which or three chips in the bag would nnormally
cost to buy. Fully guaranteed all I.C.'s full cost to buy. Fully guaranteed all I.C.'s full
spec. $100+£ 6.90200+E 12.30 \quad 300+E 19.50$

DEC CORNER

MOSTEK CRT 80E Brand new dual

 eurocard, 280 based VT 100 PLUSemulator with graphics etc
$\mathbf{8} 99.00$ BALL-MB 3.5"'Box, LTC, PSU $\quad \mathbf{~} 3 \mathbf{5 . 0 0}$ RK05.J 2.5 Mb disk drives PDP1105 Cpu, Ram, i/O.
DILOG DO100 RKO5 LSI $4 \times$ RKO controller $\quad \mathbf{E 4 5 0 . 0 0}$ LAXX-NW LA180 RS232 serial interface $\begin{array}{lr}\text { LAX34-AL LA34 tractorfeed } & \mathbf{E 1 3 0 . 0 0} \\ \text { LA5.00 }\end{array}$ LA34 Keyboard assembly H317B interface acer for DEC PDP8 PDP11 PDP15 + peripherals call for details ALL lypes of Computer equipment and spares wanted
for prompt CASH PAYMENT

Self-Binder
 FOR Electronics World

The 'CORDEX'' Patent Self-Binding Case will keep your issues in mint condition. Copies can be inserted or removed with the greatest of ease. Royal Blue finish, gold lettering on spine

The specially constructed Binding Cords are made from Super Linen of great strength, very hard twisted and twice doubled. They are attached to strong RUSTLESS springs under tension, and the method adopted ensures PERMANENT RESILIENCE of the Cords. Any slack that may develop is immediately compensated for and the Cords will always remain taut and strong. It is impossible to overstretch the springs, as a safety check device is fitted to each.

Price in UK £3.90

 including p\&p and VAT Overseas readers please add 30p
Available only from:

Radio \& Electronics World Binders Sovereign House Brentwood Essex CM14 4SE

Use your BBC Model B as an image analyser with :-
MicroSight I

Available on BBC, Apple, Commodore, Research Machine, Sirius, etc, Includes Camera cables, interface, software and documentation.
$£ 495.00+$ VAT
MicroScale.

Image processing software to calculate area and perimeter of objects within a specified window also to dimension features. Disk and printer dumps of binary and grey scale data.
$£ 295.00$ + VAT
MicroEye Vision Interface.

256×256 pixel resolution with 255 grey levels per pixel comes complete with software and documentation. Can be used for video tape digitising Satallite picture analysis etc. Available for BBC, Apple, Commodore, Research Machine, Sirius etc.
$£ 295.00$ + VAT

Digithurst Ltd.
Leaden Hill. Onwell, Royston,
Herts. SG8 5QH
Tel: (0223) 208926

EXPANSION Bus

In the second of our continuing series about personal computer add-ons, Roland Perry examines the Digithurst range of image analysis equipment

Most personal computers available these days have a bash at so-called 'pixel' graphics. These pixels are dots on the screen smaller than a whole character cell. Indeed their size will normally be that of the dots used to make up alphanumeric characters displayed on the screen, and this dimension thus corresponds to the maximum resolution provided. Depending on the sophistication of the particular machine it may be possible to display grey levels (that is, to control the brightness of each dot more specifically than just on and off) or colours.
Drawing pictures in graphics mode is normally limited to constructing them by putting together lines, blocks, parts of circles and any other available building blocks. However, the equipment that Digithurst offer allows the user to enter pictures directly from a TV camera and once in the computer the image can be processed in a number of ways. For example, measurements of particular areas may be made with the aid of an optional software package.
The review model provided fitted straight into the back of our favourite personal computer (BBC model B: what else?) and within seconds we were seeing pictures of the Editor's pen-tidy on the screen. The grey levels for such pictures are treated on the BBC compu-
ter by sacrificing resolution and turning on between one and four pixels arranged in a square. The more that are turned on, the brighter the 'dot' appears. We found this scheme worked very well even when viewed on a high resolution monitor, the individual pixels apparently merging to produce grey levels. The same principle is used when printing black-and-white photographs (half-tones).
The standard black-and-white version - the MicroSight 1 - may optionally be upgraded to colour (for another $£ 100$) via a colour vision system known as MicroSight Colour. This combination showed us a very convincing picture of an apple (the fruit rather than the computer!) and a section from one of R\&EW's front covers.

The system

The system is basically in three parts. The first is a smail black-and-white camera producing CCTV signals. Digithurst are reluctant to supply the system without a camera, even if you have one already. Understandably they are wary of the inevitable support problems. The camera plugs into a box of electronics called a MicroEye. Inside the MicroEye lies the scanning logic and the analogue-to-digital converter. It does not have any memory, and is certainly not a cheap frame-store. The philosophy of
the whole MicroSight system is that the memory to store the picture is inside the micro. The MicroEye is accessed via a parallel port on the host microcomputer.
The MicroEye interface runs essentially continuously, digitising all the incoming video signals. On receipt of a master reset signal, the unit begins to digitise the set of video image signals within this first frame that corresponds to the far left-hand side of the chosen image area, producing a column of pixels. When the interface starts to receive the second frame from the camera the timing circuitry steps one pixel horizontally along each line and digitises a column of pixels from that position. This process (illustrated more fully in Figure 1) continues until the whole image has been digitised. To capture the whole image takes 256 frames, or a little over five seconds.
The third and key part of the set-up is the software which runs in the microcomputer. The standard MicroSight 1 software handles all the data transfer from the MicroEye and converts the images into dots on the screen. Disk storage and retrieval of images is taken care of by BASIC programs, whereas the processing is performed by six machine code routines. The number of pixels and grey levels available will vary depending on the actual machine used. The options
for the currently supported machines are shown in the accompanying table.
An optional extra package called MicroScale, available with certain systems, permits further, more sophisticated, image analysis. This allows the display to be created from a 'window' in the captured TV image, and edgeenhancement to be performed within that area. Other facilities include measurement of boundaries, areas and distances on the image. These measurements are aided by an on-screen cursor which is manipulated via keystrokes at the user's micro. In addition, there is an MSDOS version of MicroSight which enables images to be filtered and to be merged within memory.

Overall

The MicroSight system is compatible with any microcomputer with an 8 -bit parallel port and appropriate graphics, and it comes with two comprehensive manuals which give all the details of both the hardware and the software. Digithurst are very helpful and appear willing to support users attempting to apply the equipment to new applications and even to other micros.
Digithurst outline a number of applications for MicroSight from text recognition to robot vision systems. Its use for computer demonstrations, advertising and graphic design is obvious, but there are many additional applications as a piece of laboratory equipment, particularly where measurements are to be made on irregular areas. Medical studies, microscopy and satellite image processing come to mind.

After 0.5sec: 25 columns of pixels have now been created from the image and have been transferred to RAM as 25 columns of data. If a pulse was now sent from the computer along the master reset line the unit would start to digitise a new image from the top left hand corner again. This technique can be useful when a rapid frame grab rate is required; in this case, a 256×25 pixel image would have been captured.

After 5sec: If a full 256×256 pixel frame is required, then the master reset is not activated until the full frame has been read.

After 20msec: The first column of pixels have been created from the incoming video, and the unit is now waiting for the next line pulse before digitising the next column of pixels. The computer will also be waiting for the EOL pulse before reading in more data.

After 64μ : The first pixel has been digitised and has been transferred to the microcomputer's RAM and placed at the top of the first data column.

Table 1: MicroSight 1 systems

D

 24 Beckenshaw Gardens, Woodmansterne

 24 Beckenshaw Gardens, Woodmansterne Banstead, Surrey SM7 3NB. Tel: 0737354474

CALCULATORS

Systema Ladypack LC2D Calculator - Raymar LD2 Slim Quartz Digital Watch
. 8.52
Senior School Pack with LC33 Calculator with 30 Scientific functions and 2 Compass sets £10.14
Compass sets
ع10.14

COMPUTER GAMES

Chess Game ..
2 Level
2 Level LCD Bridge Game ...35.33
Space Rescue \& Alarm Clock ..97
Spider Game \& Alarm .. £10.97
De-Luxe LCD Games \& spare batteries Astro Destroyer \& Alarm

ع12.40
Sea Rescue \& Alarm .. £11.19
Sub Attack with Clock ..ع9.66
Pandemonium Game ...95
Pencil Wiring Kit ... £25.53
Testafon 301 Kit ..
all prices incl VAT
Elektor Kits avallable
IC's
EPROM 2716 Programmed ..66
EPROM 2716 Un-programmed
$\varepsilon 3.34$

LEGAL CB AND ACCESSORIES

Wagner Base .. £137.93
Wagner Mobil ..
Compact 40 .. $\mathbf{£ 3 0 . 2 9}$
Aerials- Mobile: Mach 11 .. 59 AV241T ...£19.00
Base: G-Force ...11.00 Wot Pole .. $£ 9.50$
Chieza Meters: PAN 420... $£ 10.00$
Altai SWR 1-A ...57
Power Supply 3-5A ..ع14.21
Thunderpole II.
$\mathbf{£ 2 5 . 0 0}$

Other Elektor Kits stocked, write or phone to check availability

 NB: Power supplies \& Cases not normally supplied with kits. All above prices include VAT, Postage and Packing.> (70p for reprint of Elektor Projects) 35p for 82021 Circult Modifications only Allow 28 days for delivery.
> Hours of Business Mon-Fri 9.30 to 5.30 Payment with order, cheque/P0 only to DR \& JG Taylor No2 Business A/C

8I POLAR \& FET POWER AMPLIFIERS

HEAVY DUTY POWER AMPLIFIERS

STANDARD MODULES

CRIMSON AMPLIFICATION: First Choice of the Professionals!

Whatever your application, Crimson Modular Amplification provides a simple, efficient, and reliable solution. As many engineers in production, development and research will testify, when you need a particular amplifier you need to deal with a company who can answer your queries and supply a working unit quickly. - CRIMSON will do exactly that!
We supply a standard range of power amplifier modules (both Bipolar and Mosfet) which can be incorporated in most systems from recording studios to home hi-fi or for more difficult loads such as induction loop transmitters, vibrators, servos and line transformers. For really complex applications, our technical department can usually supply a dedicated module on request.
All modules are guaranteed for two years and offer outstanding performance and value. If you would like more details please return the coupon with a s.a.e.

B		MAX.OP	SUPPLY	VOLTAOE		PRICE ANC.
1	TYPE	POWER	TYPE	Mux	TMD TYP.	VA.t. A POST
P	CE 608	$60 \mathrm{~W} / 8 \Omega$	± 35	± 40	<.01\%	[21.80
0	CE 1004	$100 \mathrm{~W} / 4 \Omega$	± 35	± 40	< . 018%	228.00
L	CE 1008	$120 \mathrm{~W} / 8 \Omega$	± 45	± 50	< . 01%	528.00
A	CE 1704	200W/4 Ω	± 45	± 63	< . 015%	235.50
R	CE 1708	180W/89	± 60	± 63	$<.01 \%$	235.50
	CE 3004	320W/4 ${ }^{\text {/ }}$	± 60	± 63	< $.02 \%$	ع49.50
0	FE 908	90W/8,	± 45	± 60	< . 01%	£30.00
8	FE 1704	170W/4,	± 45	± 60	$<.025 \%$	839.00

[^4]To order send c.w.o. or quote Access/Mastercharge card no. All modules are available from Bradiey Marthall Lid., 325 Edgware Road, London. Export: Please wrthe for a proforme.

ONE NIGHTS WORK

A continuity tester designed by Stephen lbbs that is quick and simple to build, as well as extremely useful.

This is the first thing I ever built, way back in 1979, and its usefulness has been proved time and time again. It checks fuses, lightbulbs, broken leads, as well as possible PCB track breaks etc. The original was mounted in an old transistor radio case, and a couple of nails with leads attached were - and are still used as the probes. Eyebrows may rise when the circuit (Figure 1) is examined, but transistors and an audio transformer were used because they are so cheap and most readers should be able to get hold of an old transistor radio. The latter is often a valuable source of components; indeed all of the items for this tester, except the preset and transistors, were 'rescued' from one. The miniature transformer in such a radio is almost invariably red and to be found right next to the radio's speaker leads.

How it works

The transistors are used as switches, and the easiest analogy for the way they operate is that of three interconnected cog wheels, whereby if A goes anticlockwise, B goes clockwise, and C goes anticlockwise (Figure 2). Similarly, if transistor TR1 is turned on, as a result of the emitter being connected to ground through the probes, the base of TR2 will go to OV, turning it off. This makes its collector (and the base of TR3) go virtually to the potential of the positive rail, thus turning on the oscillator constructed around TR3 and the transformer. RV1 adjusts the point at which TR1 turns on, the technique being to choose that setting at which the alarm just sounds when the probes are shorted. With the probes not connected, TR1
turns off and so TR2 turns on, turning off TR3 and the oscillator.

Construction

This tester may be built either on veroboard or a PCB, a design for the latter being given in Figures 3 and 4. None of the components are critical, so you could experiment with nearby values if the ones suggested are not available. Any npn general purpose transistor will work, but check the 'pin out'. I in fact used unmarked BC109 types in the original, having bought 150 untested ones for 30 p... Ah! those were the days.
Check for solder joins or dry joints, and if all is well, switch on, adjust RV1 as mentioned above, and mount the unit in a suitable enclosure... verobox, cigarette packet, tobacco tin...

AN RS232C INTERFACE FOR YOUR DRAGON 32

> David Thomlinson of Cotswold Computers gives details of the interface that has been developed jointly by his firm and CP Engineering

The Dragon 32 has been described as 'The Affordable Sensible Computer'. Indeed, for its price, it is a remarkably complete micro: it does not require additional expansion boxes for the use or control of such devices as printers, joysticks or disk drives. Why then go to the trouble of designing and marketing an RS232C interface for the Dragon? To what uses can such an interface be put?
At Cotswold Computers, we believe that one of the next major developments for the home personal computer user will be in the area of communication. This will mainly be over telephone networks and will probably have as its object either accessing public databases such as REWTEL, placing orders for equipment or simply calling up other friendly
micros. Such communication needs a modem and modems need RS232C interfaces. And in that lies the reason for our joint venture with C P Engineering on an RS232C interface and a following modem.

To date we have supplied RS232C interfaces to both multinational and national companies, universities, private individuals and even the Police Force. The variety of uses to which their Dragons can now be put includes:

1) As a direct terminal to a large computer system
2) As a word processor, transmitting through a data modem to a larger computer system.
3) As a serial printer

A pmode 4 high resolution graphics screen picture from a Dragon 32 printed by an EPSON MX 80 III using the high resolution dump routine supplied by Cotswold Computers. An assembly language program exchanged this screen from one Dragon 32 to another (via the RS232C interface at 9600 baud) in less than six seconds.
4) As a terminal connected to a speech synthesis unit
5) As a terminal connected to a liquid scintillation spectrometer
6) To control a teletype
7) To control a graph plotter

In addition the interface is being used to connect one Dragon with another.
So just what is an RS232C interface and how does it process data? To understand this we must first examine the way data is conventionally encoded.

A few basics

As you probably know, bits - or binary digits, each a 1 or a 0-are combined into groups of eight called bytes when they are used to represent characters. The alphabet, all the Arabic numerals plus the various punctuation marks require a total of 72 characters. The bit code commonly used for this is that known as ASCII or the American Code for Information Exchange. When transmitting text via an RS232C link, it is usual to represent the letters and symbols by the ASCII code. And since the Dragon 32 has the required ASC \$ instruction, it is a simple matter to communicate text between the Dragon 32 and any other ASCII compatible computer or peripheral.
To display the ASCII code on your Dragon, load and run the following program:

```
10 FOR!=1 TO 255
20 TIMER = 0
30 POKE 1500, I
40 IF TIMER <25 THEN GO TO 40
5 0 ~ N E X T ~ I ~ I
```

In addition to this character set, ASCII also includes a number of control codes; for example, CHR\$(10) sent to most printers will produce a line feed. A
complete listing of the ASCII codes is shown in Table 1.

Having thus briefly discussed the codes for representing letters and numbers, we now turn to how they are transmitted.

The RS232C standard

RS232C is a common bit serial data transmission standard. Data is communicated as a sequence of bits on a single transmission line, preceded by a start bit and followed by a stop bit (or bits). The bit rate (and so similarly the baud rate) must be the same for both the transmitter and the receiver to allow the receiver to synchronise.
To understand how the interface operates, it is best to look at this in conjunction with a specific example. The waveform shown in Figure 1 is that resulting from the transmisson of a single 8 -bit data word (in fact, decimal 74 in 8-bit format). The line is in a 'marking' state corresponding to logical zero (below -3 V) until the data word is transmitted. A start bit of logic one (greater than +3 V) signals the presence of a data word and is used by the receiver to synchronise its testing of the following eight time periods which together represent the 8 -bit data word being transmitted.
A number of transmission formats are in use which include the addition of an extra stop bit and/or the addition of (or alternatively, the use of d_{7} as) a parity bit. The parity bit attempts to detect the occurrence of data corruption by ensuring that all data words sent contain an even number of logic ones (EVEN parity) or, alternatively, an odd number of logic ones (ODD parity). If a data word is received with incorrect parity, it may be assumed to have been corrupted in the transmission process. Obviously, 8-bit data (which can be thought of as taking any value from 0 to 255) may be transmitted except when the most significant bit is used as a parity bit when only 7 -bit words ($0-127$) are allowed.
A further two lines are provided in addition to the data transmission line. These lines provide a means of exchanging information on the condition of the devices that are communicating, such as 'printer busy' or 'ready'. The accepted nomenclature for these control lines comprises 'Request to send' (RTS) for the line set by the transmitter and 'Clear to send' (CTS) for the line set by the receiver.
The time taken to transfer a single data word is set by the baud rate but the rate of data transfer can be significantly slower if the peripheral controls the transfer rate via the CTS line.

The CP RS232C interface

Our interface is designed for operation under program control and is arranged to appear to the user as two locations in memory. Since the only BASIC instructions which allow memory operations are PEEK and POKE, these are the instructions used to communicate with the interface. When programming in assembly language, however, all instructions which involve memory can be used. One

Table 1: The meaning of the ASCII code words

0 Null
2 Start of text
4 End of transmission
6 Acknowledge
8 Backspace
10 Line feed
12 Form feed
14 Shift out
16 Data link escape
18 Device control 2
20 Device control 4
22 Synchronous idle
24 Cancel
26 Substitute
28 File separator
30 Record separator 32 Space

33	!	34	"	35	ε	36	\$	37	\%
38	\&	39		40	(41)	42	*
43	+	44	1	45	-	46		47	1
48	0	49	1	50	2	51	3	52	4
53	5	54	6	55	7	56	8	57	9
58	:	59	;	60	<	61	$=$	62	>
63	?	64	@	65	A	66	B	67	C
68	D	69	E	70	F	71	G	72	H
73	1	74	J	75	K	76	L	77	M
78	N	79	\bigcirc	80	P	81	Q	82	R
83	S	84	T	85	U	86	V	87	W
88	X	89	Y	90	Z	91	[92	1
93]	94		95	-	96		97	a
98	b	99	c	100	d	101	e	102	f
103	g	104	h	105	i	106	j	107	k
108	I	109	m	110	n	111	-	112	p
113	q	114	r	115	s	116	t	117	u
118	v	119	w	120	x	121	y	122	Z
123	\{	124		125	\}	126	\sim		

1 Start of heading
3 End of text
5 Enquiry
7 Alarm/Bell
9 Horizontal tabulation
11 Vertical tabulation
13 Carriage return
15 Shift in
17 Device control 1
19 Device control 3
21 Negative acknowledge
23 End of transmission block
25 End of medium
27 Escape
29 Group separator
31 Unit separator
127 Delete

[^5][^6][^7]

FIg 1 RS232C transmission waveform
of the memory locations (DATA : ADDRESS - 65370) is used to transmit and receive data while the other (CONTROL/STATUS : ADDRESS-65354) is used to send control words to and receive status words from the interface.
The exact form of the communication made using the interface will depend to some extent on the device involved but will in general consist of a sequence of steps as described below:

TRANSMISSION

1) The required format is ascertained and the corresponding control word POKED to 65354. The code will set the RTS line as required.
2) The status word may optionally be PEEKED from 65354 to ensure that the receiver is ready.
3) Data transmission is begun by POK-

ING the first word to 65370. The status word is then PEEKED from 65354 until it indicates that the interface is ready for the next data word. The next data word is then POKED to 65370 and the status word again checked. This process is then repeated until the data transmission is complete.

RECEPTION

1) The control word for the required format is POKED to 65354.
2) The status word may optionally be PEEKED until the transmitter indicates that it is ready.
3) The control word may optionally be POKED to instruct the transmitter to begin data transfer.
4) The status word is PEEKED from 65354 until the interface indicates that it has received a data word.

CONTROL AND STATUS WORDS

Baud rate: Bits 0, 1 of the control word
Normal mode provides the baud rate indicated by the switch table

| $\begin{array}{c}\text { Bit pattern } \\ \text { Bit 1 }\end{array}$ | | Bit 0 |
| :---: | :---: | :---: | :---: | \(\left.\begin{array}{c}Decimal

contribution\end{array}\right]\)| Resulting |
| :---: |
| baud modes |

Format: Bits 2-4 of the control word

		Bit pattern Bit 4		Bit 3	Bit 2	Decimal contribution			Bits	Parity	Stop
0	0	0	0	7	even	2					
0	0	1	4	7	odd	2					
0	1	0	8	7	even	1					
0	1	1	12	7	odd	1					
1	0	0	16	8	no	2					
1	0	1	20	8	no	1					
1	1	0	24	8	even	1					
1	1	1	28	8	odd	1					

Line control:Bits 5, 6 of the control word
These bits give control over the logic level of the 'Request to send' output line from the interface. The bit patterns which result in RTS=high cause the peripheral to sense a 'Request to send' from the interface.

Bit pattern Bit 6		Bit 5	Decimal contribution
0	0	0	Function
0	1	32	RTS $=$ high
1	0	64	RTS $=$ high
1	1	96	RTS $=$ low $=$ high
			plus
			TRANSMIT DATA $=$ high

For example:

Suppose the following communication format is required $-8 \mathrm{bits} /$ No parity/2 stop bits/RTS low at a transmission rate of 1200 baud: what is the control word? Using the normal mode (decimal contribution = 1), the 8 bit/No parity/2 stop bits format (decimal contribution $=16$) and RTS low (decimal contribution $=64$) makes the control word $1+16+64=81$ giving the program line:

1 POKE 65354,81

A table of baud rate switch positions gives the switch pattern 'off', 'on', 'off', 'off' for 1200 baud. With that switch pattern set and 81 POKED to 65354, the interface will operate with the required format until a new value of the control word is POKED.

Make-up of status word

Bit number	Decimal equivalent	Function of bit
0	1	
1	2	Data word received
2	4	Data word transmitted
3	8	Data-Carrier-Detect
4	16	Clear to send
5	32	Framing error
6	64	Receiver overrun
Parity error		

5) A control word may optionally be POKED to 65354 to inhibit the transmitter while the data word is stored.
6) The first data word is PEEKED from 65370 and stored or processed as required. The process is repeated from ' 4 ' until all the data has been received.

There are a couple of additional points to note about communication via this interface. Firstly, it should be noted that, although the address of both control and status words is 65354, they are separate registers. Secondly, the required baud rate should be set via the switches on the interface before the Dragon is switched on. The make-up of the control and status words is described in the box on this page.

The more technically minded reader may be interested to know that the interface uses a memory mapped 6850 ACIA with the baud rate generated by a crystal-controlled 4702, whilst half of a 1488 together with half of a 1489 provide the 232C driver/receiver. The-ve supply for the 1488 is generated from the Dragon $32+12 \mathrm{~V}$ line. All the relevant lines from the 6850 are brought out to the interface edge connector to facilitate their connection to the modem.
The interface may (by making appropriate modifications to the board) provide RS232C on one interface cable and TTL levels on another. Moreover, the interface status word can provide a means of sensing the CTS and DCD TTL compatible inputs to the interface and the control word may be used to set RTS which is also TTL compatible. Thus the interface may be used to perform limited sense and control functions.

Interface output connections

A standard 'D' type subminiature connector is used to connect signal lines to and from the interface. Pins 1 to 7 are used for RS232C connections and are arranged conventionally. The other pins

Table 2: Pin-out for the interface connector

Pin	Description
2	Transmit data
3	Receive data
4	Request to send RS232C
5	Clear to send
7	Ground
8	RxData
9	$\overline{\text { DCD }}$
10	CTS
11	TxData ACIA
12	RTS
13	+ + FV
17	CTS ,
18	RxData'
19	Baud clock output -- TTL
24	+12V
25	-9V --Lowcurrent

All pins not mentioned are not connected
however are used for connection to the CP modem. Under no circumstances should connections be made to the interface connector pins other than Nos1-7. This requirement restricts the use of 25 -way ribbon or other connectors. The user is advised to refer to the range of standard cables available from the manufacturer. The full pin-out is shown in Table 2.
Input, by the way, is via the cartridge slot on the Dragon.

In conclusion

The CP RS232C interface has been designed to allow your Dragon 32 to transmit to, and receive data from, any RS232C compatible device. The interface features all the common formats and bit rates under program and switched control respectively. In addition the bit rate may be multiplied by 16 or divided by 4 under program control.
It is supplied by Cotswold Computers in a sturdy case complete with a recess to allow access to the baud selector switches from the outside. The company can also supply software support in the form of a tape of the programs documented in the interface manual and a range of specialist software (and interface cabling). Parts are guaranteed for twelve months and the retail price for the interface is $£ 49.50$. Trade distribution enquiries are welcomed.

A program to communicate the graphics screen
The following program listings allow the transfer of graphics from one Dragon to another: The transmitting Dragon generates a random graphics pattern which is then transferred to the receiving Dragon. Both interfaces must be set to the same baud rate, a high rate reducing the transmission time.

Program to be entered into transmitting Dragon

10 TIMER=0
20 PMODE4:SCREEN1,1::PCLS1
$30 \mathrm{X}=\mathrm{RND}(255)$: $\mathrm{Y}=\mathrm{RND}$ (192)
40 LINE-(X,Y),PRESET,B
50 IF TIMER<300 GOTO30
60 POKE65354,3
70 POKE65354,17
80 A=B AND PEEK(63354)
90 IFA $=0$ GOTO 80
100 FORI $=1536$ TO7679
110 A=2ANDPEEK (65354)
120 IFA=0 GOTO 110
140 POKE65370,PEEK(I) 150 NEXTI

Program to be entered into receiving Dragon

10 POKE65495,0 20 PMODE4:SCREEN1,1:PCLS1
30 POKE65354,3
40 POKE65354,81
$50 \mathrm{~A}=\mathrm{PEEK}(65354)$ AND 8
60 IF A=O GOTO 50
70 POKE65354,17
$80 \mathrm{FORI}=1536$ TO7679
$90 \mathrm{~A}=1$ ANDPEEK (65354)
100 IF A $=0$ GOTO90
110 POKEI,PEEK(65370)
120 NEXTI
130 POKE65494,0

Stop Press: The CP RS232C Interface has just seen a couple of further enlargements. These have given it the capability for data handling at 19200 baud and full compatibility with the Tandy Colour Computer.

COTSWOLD COMPUTERS

YOU CAN BEAT THE CHRISTMAS RUSH, BUT CAN YOU BEAT THESE PRICES?

COMMODORE

Vic 20 Starter Pack (Inc
Cassette Unit + Programs).. $£ 142.00$
Commodore 64 £199.00
Single D/D................................ £225.00
8k Ram.. £28.95
16k Ram...................................... £39.95
Hi-Res Cart £33.25
M/Code Monitor £33.25
Joystick.. £7.50

ATARI

400.
401. £142.00

Disc Drive £285.00

225 Cassette Unit
28-95 Interface Unit ……........ £132.00
39-95 BBC
33-25 Model B \qquad £399.00
33-25 Dust Cover/Colour
7-50 Matching and Acorn Approved)...£3.50

SHARP

MZ 700 64k \qquad £229.00
Colour Comp
Cassette Unit............................. £38.95
Colour Graphic Printer£125.95

SINCLAIR	
48K	£122.00
16K	... £92.00
Printer	£38.95
Power supp	.. £7.50

48K
£122.00
Pr £38.95

COTSWOLD COMPUTERS
6 MIDDLE ROW, CHIPPING NORTON OXFORDSHIRE. Tel: 060841232 or 737472

AUTHORISED DEALERS FOR ALL EQUIPMENT WE SELL

AMATEUR RADIO WORLD

Compiled by Arthur C Gee, G2UK

Those readers of this magazine, who, whilst not being radio amateurs, find this page of sufficient interest to read in its entirety, may like to know more about Amateur Radio. They may have had their interest sufficiently stimulated to make them feel they would like to extend their knowledge of electronics into becoming radio amateurs.

If so, they will be interested in a brochure recently produced by the Radio Society of Great Britain. It is entitled Amateur Radio - An Introduction. It gives a very good synopsis of amateur radio as a hobby and will enlighten the reader on much about this activity which it is not possible to convey in a short feature like this article.
If you would like further information about amateur radio and the Radio Society of Great Britain contact:

David Evans, G3OUF, General Manager and Secretary, Radio Society of Great Britain, Alma House, Cranborne Road, Potters Bar, Hertfordshire, EN6 3JW.

10 m FM Activity

Mention has been made in this feature on several occasions recently of the desirability of keeping as much activity going on the 10 m amateur band as possible during the next few years, when the solar cycle will be such as to make any but local contacts unlikely. If this is not done and the band appears empty, others will soon move into it! No prizes for guessing who! FM activity on the band by radio amateurs is on the increase however, and it is to be hoped this mode will gain favour for local QSO's. There is some nice ex-CB gear around which can be bought for very reasonable prices and is easily modified for 10 m FM amateur band use. So how about getting a 10 m FM net going in your area? The preferred frequency for FM
seems to be from 29.440 to 29.700 MHz , with 29.600 MHz being the calling frequency.

Worldwide 14MHz Beacon Network

A worldwide beacon network has been set up as a contribution to this World Communications Year, using eight beacons on 14100 kHz transmitting in sequence. They each transmit for one minute every ten minutes, commencing on the hour, and there is a two-minute break at the 8 -minute point in each 10 minute period. The location and sequence of the beacons is as follows:

1) 4 U1UN/B at United Nations, New York. 2) W6WX/B at Stanford University, California.
2) $\mathrm{KH60/B}$ at Honolulu Community College, Hawaii.
3) JA1IGY, Tokyo.
4) $4 \times 6 \mathrm{TU} / \mathrm{B}$, Israel.
5) OH 2 B at Espoo, Finland.
6) СТЗB, Madeira.
7) ZS6DN/B, Transvaal.

Each beacon transmits in morse code throughout its minute of the sequence, sending 'QST' followed by its callsign and four long dashes of nine seconds each, concluding with a repeat of its callsign. The power levels of the dashes decrease from 100 to 0.1 W

For further information regarding operation and listener reports write to: Al Lotze, W6RQ, 46 Cragmont, San Francisco, CA 94116, USA.
This beacon net is working well and is an excellent indicator of propagation conditions on 14 MHz . It is quite fascinating to follow the sequence throughout the day and observe how conditions change.

The Satellites

OSCAR 10 appears to be getting into its stride quite nicely. Lots of folk are having lots of fun with it. However the
same problem is arising as has happened with previous OSCARs; those with big aerials and high power are spoiling things for everyone else. The sort of power some people are using simply blocks the satellite, so that the majority of would-be users, operating at more reasonable power levels, cannot get in at all following the attenuation which comes into action when the satellite is subjected to too much power. To counter this, as much publicity as possible is being given to the problem and Mondays have been designated as 'QRP' days, as was done for earlier satellites.
Mode 'L'- 23 cm up, 70 cm down - was turned on on Wednesday 21st September. The responder response was considerably below what was expected, signals being well below those from the 70 cm beacon. At the time of writing, the problem seems to be with a sticking relay. Mode L will also be on at various unspecified times, in addition to Wednesdays.
The next Space Shuttle trip should have a radio amateur aboard, as has already been publicised pretty widely. He is Dr Owen Garriott, W5LFL, who is an electrical engineer as well as an Advanced Class radio amateur. If all had gone to plan, the Space Shuttle 'Columbia' would have carried the European Spacelab into orbit at the end of October. Its scheduled flight path would have taken it over most of the more heavily populated areas of the world. The intention was (and still is) that the Shuttle would orbit at an altitude of 155 miles and at a speed of 17,000 miles per hour. This would give line-of-sight communication for up to eight minutes over most of the flight path. Normal QSO's cannot be engaged in under these conditions; instead - to enable as many folk as possible to 'get a look in' - W5LFL is to transmit on a number of prearranged frequencies and listen for
replies on a number of other frequencies. Earth amateur stations participating in this exercise would simply give their callsigns, which would be acknowledged by W5LFL.
The list of frequencies to be used is fairly complex, varying with the particular area of the world under consideration. Those interested in participating once the Shuttle is in orbit are advised to consult the specialist literature, or listen into the AMSAT-UK nets on 3780 kHz on Sunday mornings at 1015 hrs local time, for details of these 2 m transmissions.

UOSAT is now working to a definite daily schedule, with different activities being arranged for each day; for instance the CCD camera is on on Wednesdays. Details and orbit times can be obtained by phoning the Satellite Control Centre at the University of Surrey's recorded message facility on Guildford 61202.
There is a possibility that another amateur radio satellite may be launched next year. A launch opportunity has become available through an existing satellite having 'gone sick'! A replacement for it is to be launched prematurely and there will be spare space - and weight - on the launch vehicle being used for this. So if anyone can get another amateur radio/experimental satellite built by then, we may get a replacement for OSCAR 8 in the not too distant future.

Dr Owen Garriott, W5LFL, at the console of Skylab in a photograph taken in 1973. He is shown controlling a battery of telescopes pointed at the Sun. Notice that, while he appears to be sitting, zero-gravity means that he doesn't need a chair.
When the Space Shuttle next goes up, taking the European Spacelab with it, Dr Garriott will again be aboard - and able to communicate with radio amateurs around the world on a number of prearranged frequencies.

EVIRTM
 neskoxdor
 TKW+TEN-TEC

 Introducing a New Concept in HFcommunications

 Introducing a New Concept in HFcommunications
 A NEW SERIES WITH NEW FEATURES. NEW PERFORMANCE, AND ALL 9 HF BANDS.

 CONTINUING THE SUCCESS OF A GREAT RANGE OF TRANSCEIVERS BACKED BY KW SERVICEThe 'CORSAIR' (Top of any class) Covers $10-160 \mathrm{Met}$ including the new WARC bands. 200 watts DC input. Now also available, KW + TEN - TEC 227 228 and 229 ATU's. Please ask for details

> Come to KW for all your other amateur radio requirements KW service and guarantee - KW maintains the tradition of service the company is renowned for. Output-transistors unconditionally guaranteed for 12 months. The KW + TEN-TEC units offered above are introduced as a prelude to fully UK assembled equipment.
> - (A full range of accessories is available for KW + TEN \cdot TEC equipment) Other KW units available
KW 107 Supermatch KW trap dipole
KW traps KW Balun KW antenna switch

Carbon Film resistors $1 / 4$ W 5\％E24 series 0．51R to 10 MO （except 7M5）．．．．．．．．．．．．．．1p 100 off per value -75 p，even hundreds pervalue totalling 1000
．．$£ 7.00$ Metal Film resistors $1 / 4 \mathrm{~W}$ 1OR to 1 MO 5\％E12 series－ $2 p, 1 \%$ E24 series ．．．．．．．．．．3p Mixed metal／carbon film resistors $1 / 2 W$ E12 series 1RO to 10MO ．．．．．．．．．．．．．．．．．．．．．．．11／2p Miniature polyester capacitors 250 V working for vertical mounting 01，015，022，033，047， 0684 p． 01 5p．015， 0226 p． $0.33 \& 0.47$

Mylar（polyeeter）cepecitors 100 V working E12 series vertical mouning 1000p to 8200 p－3p． 01 to 068 mfd－4p． 0.15 p． $0.12 \& 0.15$ ．． 6

Subminiature ceramic plate capachors 100 V wig vertical mounting．E12 series
$2 \% 1.8$ pf to 47 pf -3 p． $2 \% 56$ pf to 330 pf -4 p． $10 \% 390$ p－4700p ．．．．．．．．．．．．．．．．．．．．．．．． 4 p
Polystyrone cepacitors 63 V working E12 series long axial wres 10 pf to 820 pf － 3 p ． 1000 pf to 10,000 pf－4p． $12,000 \mathrm{pf}$. $.5 p$

DIODES（p．i．v＿amps）

75／25mA 1 N4148 2p．800／1A 1N4006 6p．400／3A 1N5404 14p．115／15mA OA91 ．．．．．．．．． $6 p$ 100／1A 1N4002 4p．1000／1A 1N4007 7p．60／1．5A S1M1 5p．100／1A bridge ．．．．． 25p 400／1A 1 N4004 5p．1250／1A BY127 10p．30／45mA OA90 6p．30／15A OA47 ．．．8p Zener diodes E24 series 3 V 3 to 33 V 400 mW － 8 p ． 1 watt . $.8 p$
$.12 p$
$.2 p$ L．E．D＇s 3 \＆ 5 mm Red 10p．Green，Yellow 14p．Grommets $3 \mathrm{~mm}-11 / 2 \mathrm{p}, 5 \mathrm{~mm}2 p$ 20 mm fuses 100 mA to 5 A Q／blow 5 p．A／surge $8 p$ ．Holders p．c．or chassis ．．．．．．．．．．． 5 p High speed p．c．drills $0.8,1.0,1.3,1.5,2.0 \mathrm{~m}-22 \mathrm{p}$ ．Machines 12 V d．c．．．．．．．．．．．．．．．．． 86.00 HELPING HANDS 6 ball joints and 2 croc clips to hold awkward jobs ．．．．．．．．．．．£4．50 AA／HP7 Nicad rechargeable cells £1．50 pair．Universal charger unit ．．．．．．．．．．．．．£6．00 Glass reed switches with single pole make contacts－8p．Magnets ．．．．．．．．．．．．．．．．12p Ranges of aluminium $\&$ tantalum electrolytic caps at competitive prices．All prices are inclusive of VAT．Postage 15p（free over $£ 5$ ）．Lists Free

THE C．R．SUPPLY CO
127 Chesterfield Rd， Sheffield S8 ORN
Return posting

Ex－Gov 27 ft telescopic aerial close to 5 ft ．Good condition， complete with all base \＆fittings $\mathbf{8 4 5}$ ．P\＆P paid．Callers welcome $£ 25$.

Pye Pocketfone Nightcall for PF1／TX／RX．New boxed ع17．00．

Whip aerial Ex－Gov 4ft collapsible £1．00．
Aluminium masts $4 \mathrm{ft} \times 2 \mathrm{in}$ dia poles．Height 50 ft ，push in， complete in bags．Ex－Gov stakes，ropes，base．Good condition £45．00．Callers £35．00．

Crystals HC6U Ex Equip $5.000 \mathrm{mc} / \mathrm{s}, 7.000 \mathrm{mc} / \mathrm{s}, 8.000 \mathrm{mc} / \mathrm{s}$ ， $9.000 \mathrm{mc} / \mathrm{s}$ ．Also Glass Crystal $100 \mathrm{Kc} / \mathrm{s}$ ，to fit B7G base．All at $\boldsymbol{\varepsilon 2} \mathrm{p} \& \mathrm{p}$ paid．

Telephones－Type 706 good condition $£ 5$ p\＆p paid．
Small 230 V fans， 4 in $\times 21 / 2$ in $2,500 \mathrm{rpm} \mathbf{£ 4 . 5 0} \mathrm{p} \& \mathrm{p}$ paid．
Pye Pocketfone PF1，battery charger， 12 way with meter E10 p\＆p paid．

We have also for sale the following items which are too numerous to advertise．Callers only，valves，transformers， tuning units，receivers，bases，wave－guide，scopes，plugs， sockets，power units，capacitors，aerials，headsets，cable， signal generators，BC221．

Opening times：
Monday－Friday 8．30am－5．00pm，Saturday 8．30am－12am
Please allow 14 days for delivery

A．H．THACKER \＆SONS LTD HIGH STREET，CHESLYN HAY NEAR WALSALL，STAFFS

P．F．RALFE ELECTRONICS 10 CHAPEL STREET，LONDON NW1．TEL： 01.7238753

＊MARCONI SIGNAL GコNコRATORS
 TF2002N（illustrated） 10 kHz 72 MHz AM／FM E750

TF2002 As above but AM only E460
MARCOWI TF10e日B．AM／FM Generator． $10-470 \mathrm{MHz} 0.2 \mathrm{UV}$－200mV output．FM Deviation up to $=$
100 kHz
MARCOW TFeesans．AM／FM Generator．Narrow deviation model 995 covering $1.5-220 \mathrm{MHz}$
c4s0 c480
TF201
TF2015． $10-520 \mathrm{MHz}$ ．AM／FM．TF144M．AM $10 \mathrm{kHz}-72 \mathrm{MHz}$ عass
MARCOWM TF 10 efers．AM／FM Signal generator covering in three ranges $68-108,118-185$ and
$450-470 \mathrm{MHz}$ ．FM fixed deviations of $3 / 5 \& 10 \mathrm{kHz}$ ．AM fixed 30% e22s

＊COMPUTIER PERIPMERALS
 8＂PLOPPY DISK DRIMES

DRE（Data Recording Equipment）Model 7100 Single－sided floppy disk drives in stock now at vastly reduced prices．Supplied BRAND NEW in manufacturers sealed cartons CAPACITV 0．8MBBytes．Mard／Soft sectoring ANSI／ECMA Standards compatible．Measures $41 / 2 \times 81 / 2 \times 14$ Weight 13lbs．PRICE $£ 150$－VAT．Securicor despatch if required－E10 VAT

＊ $8^{\prime \prime}$ WINCHESTER DRIVES＊

United Peripherals type 3100 Minidisc Drives CAPACITY over 19 MBBytes Power supply
requirements 5 V ．DC at $4 \mathrm{~A}-24 \mathrm{~V}$ DC at 3 A ．Measures $17 \times 8 \times 7$ Limited quantity only available in requirements $5 \mathrm{~V} . \mathrm{DC}$ at $4 \mathrm{~A}-24 \mathrm{~V}$ ．DC at 3 A ．Measures $17 \times 8 \times 7$ ．LImited quantity only available in
BRAND NEW condition． $\mathbf{2 5 0}$ each－VAT．Carriage details as above BRAND NEW condition． 250 each－VAT．Carriage detalls as above

＊＇DOLBY＇NOISE WコCHITNG FILTERS＊

Cat No 98A．Noise weighting filters for CCIR／APM signal－to－noise ratio measurements．As new units．© 40 each（ - E1 p\＆p）

＊MILHVOLT MEASUREMENT，ANALOCUE＊

MRCow TF2600．Twelve ranges 1 mV － 300 V FSD．Wide－band to 10 MHz ．
MRCOH1 TF2e03．Frequency range $50 \mathrm{kHz}-1.5 \mathrm{GHz}$ ．High Sensitivity from 300 uV MRCONI TF2BO4．Electronic Mult－meter．AC／DC 300 mV ．Full scale to 300 V （ 1 kV DC） Resistance ranged．AC Frequency range $20 \mathrm{~Hz}-1500 \mathrm{MHz}$
$\star \star$ CONSTANT YOLTAGE TRANSFORMERS $\star \star$
ADVANCE VOLsTAT：Type Model MT 140A．Mains input $190-260 \mathrm{~V}$ AC．Output 230 V AC is 150 W ． Price each 220 －VAT－E carriage

4000－SERIES HARD DISK DRIVES

Data Recording Equipment 4000 －Series exchangeable 18 M －type 5440 disks Units avallable ex－stock and BRAND NEW．Please call us for our lowest ever quotation．
PLSABE MOTE：All the pre－owned equipment shown has been carefully tested in our workshop and reconditioned where necessary it is sold in first－class operational condition and moss
items carry a inree months guarantee For our mail order customers we have a money－back scheme．Repairs and servicing too all equipment at very reasonable rates．PLEASE ADD 15\％ VAT TO ALL PRICES

＊ROTRON INSTRUMENT COOLNG FANS

Supplied in fully tested excellent condition，as follows
mail quat
small quantity $115 \mathrm{~V} 41 / 2$ size．brand new E5．Postage each－ 50 p please

Rodlo \＆Electronics Wortd－
The monithly communications， electronics \＆
computers magazine
Don＇t take a chance on being able to get your copy

AVOID DISAPPOINTMENT

Place a regular order with your newsagent

Should you have any difflcuttles obtaining a copy，phone（0277） 219876 or witte to Circulation Deportment，Rodio a Electronics World，
Sovereign House， Brentwood，Essex CM14 4SE

NEWSAGENT ORDER FORM

Presented by Andy Emmerson, G8PTH

We're back to activity reports again this month, justifying the 'on the air' title. So if you want to find out what's been going on in the 70 cm band, higher up, or possibly in the world of slow-scan, sit back and enjoy.

70 centimetres

Seventy centimetres is where we start and it seems like we had some pretty good trops (tropospheric conditions) this summer. John G8UWS in Folkestone, Kent, had a field day with some Belgians on 14th July, working Harry ON1AHT, Gerd ON1AGC, Jean-Paul ON6PD and Jean-Marie ON7ZR. RX only were ON7CI in central Brussels and Georges F6GOZ.

The name of Roger Bunney is well known in DX-TV circles, but Roger is into ATV as well. He uses a domestic UHF TV aerial at 58 ft AGL, with plenty of lownoise pre-amplification and a modified Teleng bandpass filter (to cut out Group A broadcast QRM) to a Fortop converter. Good DX has been F6AGY (Blois, 325 miles) with P3 pix on 16th January and F1EDM (Bordeaux St Clair, 25km from Le Havre) P5 on the same day. Roger hopes to be transmitting from his Romsey location with a Fortop unit later this year. Activity in the Southampton area is high, thanks to a transmitter the Southampton club loans out. Roger also mentioned a scout demo station some time ago which operated for half the contest day of 18th June with no callsign and no 144.750 talkback. Demos are no excuse for inconsiderate operation; as it was, it largely wiped out Roger's chances.
Norrie Macdonald GM4BVU and three friends enjoyed the Leicester BATC exhibition, taking back a record of it on video to transmit later to less fortunates in central Scotland who could not make the trip. 1900 hrs GMT on Monday is the local activity period up there; stations to find include GM6AOR (George, Longridge), GM6JUV (Bill, Motherwell), GM6UFJ (Andy, East Kilbride) and of course Norrie in Hamilton. Norrie
recently went portable 2000ft above Peebles and succeeded in working 40 miles to George GM3RVK in Kennaway, Fife with P5 pix. Norrie adds a final note: an appeal for tape swaps got a better response from USATV Society members than from UK ATVers!
Jack G8ZWM in Crawley has become G4TVC! TV Crawley, I suppose - I wonder how much he had to bribe someone for that! (Ted G6CTV is another ATVer who managed to get a 'TV' call.) Anyway, Jack writes that activity in his neck of the Sussex woods is almost nightly with Andy G6LMU, Bob G6LVN, John G4SFP, Mick G6IPP and Mick G6COQ. Also Doug and Dave G3HYV and G4PFX in Horley, and an operator known as 'Pirate Pete' (BATC member and twice failed RAE!).
The Home Counties ATV Group (G6HCT) went /P for its July meeting to a spot known as Old Redding near Harrow Weald. Pix were exchanged with several locals, also with Mike G8LES/P in Petersfield, Hants, which sounds like a good haul to me.

24 centimetres

Moving up the spectrum to 24 cm , or the growth band as we call it, we have more news from Jack G4TVC. He has built an experimental 24 cm TX and has had some duplex QSOs. It is due for a rebuild now as soon as time can be found. Still in Sussex, the Worthing repeater mob put on a 24 cm demo for the Brighton rally this year. John G6MPE provided a signal for reception at the Racecourse site from his home not far away. John has also had success working France: F1EDM was worked as a two-way with just 2W on 1255 MHz . On 17th August John worked Georges F3LP in Le Havre, while Martin G8KOE had a two-way and Roy G6AIW saw them all P5. G6MPE and G8KOE are on the air almost every night with sound and colour vision over a 6km path on 1255. Pix are better than on 70!

John uses a 24 cm Tonna, while Martin has a similar homebrew device with one

extra element. John's transmitter is to a KOE design, using a RadCom microwave drive source (FM modulated) which passes the signal to a varactor and an interdigital filter built to the VHF Handbook design (in CQ-TV 120). The filters were made by Roy, who also made some for the GB3WX repeater: these are silver plated and perform well. Martin's TX is the Wood and Douglas FM oscillator (latest design): this too performs well. Output is to a MHW-710 'blue brick' and varactor tripler, producing 2 or 3W on 1255. Both stations employ the CQTV122 design RX. Roy speaks for all the Worthing area stations when he says 'I am really chuffed with 1255 . I think more people ought to have a go. RX can be critical but you get good results with just a few watts'.

Gary G4CRJ called in at the Woburn rally to tell us about 24 cm activity in the London area. Apart from the stations mentioned last time, there are Mike G8LES in Thames Ditton (TX/RX) and Gary with 550ft ASL in High Wycombe (currently RX only). He sees Mike P2 with no pre-amp, the path being 15 km . Gary is planning a transmitter, possibly a power oscillator and a phase-locked loop at 24 cm . Although it is not an exceptional problem, radar interference from Heathrow is quite strong at two spots in the band, white spots appearing on the screen even with no aerial!

By the way, if you want a copy of the latest printout of 24 cm stations on the air, just drop me a line - and an SAE - care of the editor.

Three centimetres

We haven't covered 10 GHz before but Gary G4CRJ has been out trying portable operation on this band. On 13th August he took his gear to Blunsdon near Swindon in Wiltshire. Grade 3 pictures were received over a 14 km path from G4CRG/P who was also out portable - at Barbury Castle 268 m above sea level on the top of the Marlborough Downs.

The link was established for an hour (with some fading occasioned by passing cars), while Gary tried to find a way of making a video recorder work from a flat battery. Poking 12 V from the car battery into the VCR camera socket had no effect, so in desperation Gary put jumper leads from the car battery across the VCR's NiCad! It worked and Gary came away with visual proof of the contact as well as being able to show G4CRG how the pictures had come across.

Gary's transmitter was G4CRG's design of varactor-tuned 15 mW Gunn oscillator feeding a 10 -inch dish aerial. The receiver was a G4CRJ design using a hybrid-tee mixer down to 500 MHz , then a TV tuner down to 38 MHz IF and a quadrature detector. An 18-inch dish aerial was used at the G4CRJ/P end. This equipment was built five years ago and apart from displays at exhibitions has never made a 'real' contact. Success, at last

Slow-scan

Not much SSTV news this time - just Jack G4TVC (he gets three mentions this time!). He explains that all the morse

How GM3ULP comes into Norrie's shack
bashing was to get his SSTV gear on HF. Hectic activity has resulted in contacts with VK3DUJ and VK6ES in Australia; he cannot find any SSTVers in New Zealand. He adds that suitable filters for SSTV are Kodak Wratten Nos 25, 47B and 58. These
are $£ 3.43$ each from Allphotos Ltd, Tarring Road, Worthing, Sussex.
Finally a note on our photos. If you're curious about how the other guy sets out his shack, the picture of Norrie Macdonald's place will be of interest; looks
like a loft conversion to me. Norrie is in Hamilton (see the namecheck in the 70 cm section above) and the other pic displays how GM3ULP comes in there.

Oscar and ATV

To close, I must mention I have heard the first report of QRM between ATV and Oscar operators on 70 cm . (No names but the Oscar SSB 'killed' the TV; not what you might have expected...) Despite what some space operators say about ATV's band occupancy or 70 cm , just consider the following:

- With the 70 cm band being whittled down by PMR, MOLD and SYLEDIS (and in Belgium, by direct confiscation), we amateurs need justification for ten whole MHz at 70 cm . Wideband modes like ATV are just such a justification.
- ATV is still an experimental mode and on those grounds cannot be swept under the carpet.
- All amateur radio modes have an equal right to the bands, and ATV has been established on 70 cm since the 1950s. No single mode has the right to take precedence.

Let's all work together to achieve peaceful coexistence between all modes and sort things out ourselves. The last thing we need is intervention by the official authorities, which is what has happened in Germany.

Rank Pullin Airport Weapon Detector Type 3 Walkthrough Cabinet. Complete and good working order. e150 plus VAT.
Marconi HF Spectrum Analyser Type OA1094A/S complete with Frequency Convertor Type TM644B and mounted on trolley, $0-30 \mathrm{MHz} \mathbf{~ ع 9 0}$ plus VAT.
Systron Donner Spectrum Analyser Model 805200 Hz 1.6 MHz POA .

Marconi AM Signal Generator Type TF 801D/8S 10-485 $\mathrm{MHz}, 295$ plus VAT.
Tekronix Oscilloscrope Type RM45A Rack Mount mainframes, 850 plus VAT.
Tektronix Oscilloscrope Type 551 Mainframes with Power Unit, 875 plus VAT.
Tektronix Oscillascope Type 555 Mainframes with Power Unit, $\mathbf{\varepsilon} 85$ plus VAT
Tektronix Sampling Oscilloscope Type 661, fitted with 4 S1 plug-in, 8120 plus VAT.
Tektronix Plug-in Units Type B, G, H, K, L. E25 each plus Avo
Avo Transistor Tester Type 2 with Battery and Mains Power Units. $\mathbf{8 3 0}$ plus Vat.
Solartron Oscilloscope Type CD 1642
Solartron Oscilloscope Type CD 1014.3
Telequipment Oscitloscope Type D 61.
Solartron RC Oscillator Type CD $100410 \mathrm{~Hz}-\mathrm{MHz}$. $\mathbf{2} 25$ plus VAT.
Advance Oscilloscope Type OS 2100 DC -30 MHz E185 plus VAT.
Radiosonde RS 21 Meteorological Balloon Transmitter with Water Activated Battery ES each plus VAT.
Pye Industrial pH Monitor Model 539 complete with Technical Manus 830 płus VAT.
Marconi AM/FM Signal Generator Type TF 995A/5, $\mathbf{2 5 0}$ plus VAT.
Charles Austin Two-Stage Air Pump Type F65 DER, complete with pressure regulator, 240 vac, chassis mounted with hoses, etc, brand new and boxed, 845 plus Es pp plus VAT.
Tekronix Square Wave Generator Type 107 e28 plus $\mathbf{\varepsilon s}$ PD plus VAT.
Rohde \& Schwarz AF
phus E15 Pp plus VAT. plus 815 pp plus VAT.

Pye Europa MF5FM High Band Sets, ideal for 2 M. 5 wat output 6 Ch , complete but less mike and cradle with circuit diagrams, 8E0 each plus VAT.
Pye Reporter MF6 AM High Band Sets, single Ch. complete but less speaker with circuit diagrams, 860 plus VAT.
Pye Motafone MF5AM Mid band 6 Ch , good condition with circuit diagram, $\mathbf{£ 1 5}$ plus VAT.
Pye Westminster W15AMD MID Band Single Ch, complete but less speaker, mike and crdie, $\mathbf{\Sigma} 45$ plus VAT.
Pye Westminster W15AMD Low and High Band Sets, compelte but less speaker, mike and cradie, £50 plus VAT.
Pye Westminster W30AM Low Band Sets, boot mounted 30 W output complete but less speaker, mike and leads. 28 plus VAT
Pye Olympic M201 AM High Band, complete but less mike, speaker and cradle. With circuit diagrams 840 plus mike, speaker and cradle. With circuit diagrams £40 plus
VAT.
Pye Cambridge AM10D Low Band, few only £15 plus
VAT. Cambridge AM100 Low Band, few only 818 plus
Pye Cambridge AM10B High Band, fow only $£ 10$ plus Рyé.
Pye Base Station F27 Low Band, $\mathbf{8} 40$ plus VAT.
Pye Base Station F30 High Band, $\mathbf{\Sigma 1 8 0}$ plus VAT.
Pye Base Station F401 High Band $\mathbf{\varepsilon 2 2 0}$ plus VAT.
Pye Base Station F9U UHF, Remote $£ 90$ plus Vit.
Pye RTC Controller units for remotely controlling VHF and UHF fixed station radio telephones over land lines. E 10 plus VAT.
Pye Base Station Tx Type T406 100 W Low Band FM. £150 plus VAT.
Pye Base Station Tx Type T100 100W FM 'G' Band $38.6-50 \mathrm{MHz}$, ideal for 6 M . New condition $£ 100$ plus VAT.
Pye Pocketfone Type PF5, UHF 'T' Band, complete with battery, good condition, \&45 plus VAT.
Pye Pocketfone PF5 Battery Charger Type BC16A, 225 plus Vat.
Pye Pocketfone PF1 UHF Receiver, $440-470 \mathrm{MHz}$, single channel, int speaker and aerial. Supplied complete with rechargeable battery and service manual $\varepsilon \boldsymbol{c}$ each plus N1 PP plus VAT. e2 each, PF1 tx Batteries, 3 3, used plus Vat.

PLEASE NOTE: All sets are sold less crystals uniess otherwise stated. Carriage on RT equipment-Mobiles E2 each. Base stations £15 each. Red Star available at cost.

SEMICONDUCTORS \& VALUES pp 50p per orde

PLEASE ADD VAT. 1 N4148 10 for $25 p$, 7414 for \&1, 5554 for $£ 1, Z 80$-P10 £1.85, Z80-CTC £1.85, BC108 4 for $50 p$, BC109 4 for $50 \mathrm{p}, \mathrm{BC113} 4$ for 50p, BC148 4 for 50 p , BC149 4 for 50 p .
QQV03 - 10 ex-equip E1.20, QQZ03 - 10 new £2.50, QQV03 - 20a ex-equip E5, QQV06 - 40a £18, QQZ06 -硅 10
VIDICON SCAN SOILS 1" Transistor type but no details, complete with vidicon base. $\mathbf{8 3 . 5 0}$ eesh plus 50p pp plus VAT
Mains isolating transformer, 500VA 240 V input, 240 V CT output, noused in metal box. 815 each plus 86 pp plus VAT.
Mains isolating transformer, 240 V tapped input, 240 V 3 amp, plus 12V 0.5 amp output, $\mathbf{5} 20$ each plus 86 pp plus VAT.
Garrard Car Cassette Player Mechanisms, 12 V motor, stereo head, brand new, ع2.50 each plus s0p pp plus VAT.
Cigar Lighter Plug with lead, 81 each pp plus VAT.
!C Test Clips. 28 way and 40 way, gold plated, 22 each plus 30p pp plus VAT.
60 amp Alternator and Generator Noise Filters for use in vehicles, $\mathbf{\Sigma 1}$ emch plus 50 p pp plus VAT.
Computer Grade Electrolytic Capacitors, screw terminals, $25000 \mathrm{mfd}, 33$ volt, brand new, $£ 1$ each plus 50p pp plus VAT.
Mains Transformers 220
plusf Cop pp plus VaT. PASF Chromdioxid Video Cass each plus 50p pp plus VAT.
Mullard Vari-Cap Tuners Type ELC20003, UHF only, removed from brand new TV sets. £3.50 plus 5p pp plus VAT.
2N3055 Transtators, Brund Now, 4 for $£ 1$ plus 20p pp plus VAT.
Berylium Block Mounts for CCS1 valves. Brand new and Boxed, 810 esch plus $\mathbf{3 0 p}$ pp plua VAT.

FLOPPY DISC INTERFACE
 incl. 1.2 Operating System £95 \& £20 installation
 BBC FLOPPY DISC DRIVES

Single Drive $514^{\prime \prime} 100 \mathrm{~K} £ 230+£ 6$ carr.
Double Drive $514_{4}{ }^{\prime \prime} 800 \mathrm{~K} £ 699+£ 8$ carr.

BBC COMPATIBLE 51/4" DISC DRIVES

These drives are supplied in BBC matching colour cases and with necessary cables.
SINGLE DRIVES: 100 K £150; 200K $£ 215400 \mathrm{~K} £ 265$
SINGLE DRIVES: with PSU' 100 K £185; 200K £260*; 400K $£ 330$
DUAL DRIVES: with PSU $2 \times 100 \mathrm{~K} £ 355 ; 2 \times 200 \mathrm{~K} £ 475$ *: $2 \times 400 \mathrm{~K} 595$
These drives are provided with a switch to change between 40 and 80 tracks.
DRIVE CABLES: SINGLE £8, DUAL £12.
DISC MANUAL \& FORMATTING DISKETTE $£ 12.50$

Phone or send for our BBC Jeatide

CASSETTE RECORDER

8ANYO Date Recorder DR101
A superior quality data recorder with dedicated computer output and monitoring facility on both record and play
$839.50+£ 1.50$ earr.
SLIMLINE Cassette Recorder complate with counter and remote control $\mathbf{9 2 4 . 5 0}+\mathbf{£ 1 . 5 0 \text { carr. }}$
Computer Grade Cassettes
$\mathbf{5 0 . 5 0}$ each. $\mathbf{E} 4.50$ for $10+\mathbf{E 1}$ carr
Cassette lead $\mathbf{E 3 . 5 0}$.

MONITORS

MICROVITEC 1431 14in Colour Monitor $£ 215+£ 8$ carr MICROVITEC 203120 in Colour Monitor £319+£8 carr KAGA 12 in RGB Monitor $£ 255+£ 8$ carr Lead for KAGA/SANYO RGB £10 SANYO HI RES GREEN MONITOR £99+£6 carr SANYO HI RES RGB MONITOR £ $445+£ 8$ carr.

BBC BOOKS (no Vat; pap ef1)

Basic on BBC 55.95 30 House Basic $£ 5.95$ Programming the BBC Micro $£ 6.50$ BBC Micro An Expert Guide £6.95 Assy Lang Prog. for BBC $£ 8.95$ 6502 Machine Codes for Beginners $£ 6.95$

NEC PC 8023 BE - N $120 \mathrm{CPS}, 80$ cols Logic Seeking, Bidirectional
directional
Forward and Reverse Line Feed.
Proportional Spacing,
Auto Underline,
Hi-Res and Block
Graphics, Greek Char.
Set.
Only $£ 320+£ 8$ carr.

PRINTERS SEIKOSHA
GP 100A E175
GP 250X $\mathbf{E} \mathbf{2 1 0}$
GP 700A £425
Silver Reed EX44 Daisy Wheel with Serial Interface E365, with PARALLEL
Interface £385 Carriage/Printer £8
Parallel Printer lead for BBC/Atom to most printers £13.50 Variety of interfaces, ribbons in stock. 2,000 fan fold sheets $91 / 2^{\prime \prime} \times 11^{\prime \prime} £ 13.50+£ 3 p \& p$.

BBC EPROM PROGRAMMER

A fully self-contained Eprom Programmer with its own power suppiy, able to program 2516, 2716/32/32A/64/128 single rail Eproms

- Personality selection is simplified by a single rotary switch.
- Programming voltage selector switch is provided with a safe position.
- Warning indicator to show programming in prograss.
* Programmer can read, blank check, program and verify at any address/

Simple menu driven sothw

- Simple menu driven software supplied on cassette (transferable to disc).

Programmer complete with cables
prose

[^8]NEW COMPRENENSNE CATALOGUE AVNLABLE PLERSE SEND FOR PRICE LIST

\qquad
 Hoods
10 C 25 -way plug 385p. Socket 460 p TEXTOOL ZIF $\begin{array}{ll}\text { SOCKETS } & \text { 24-pin } 65.75 \\ 28 \text {-pin } 68.00 & 40 \text {-pin } 69.75\end{array}$ DIL SWITCHES 4. way 70p
6-way 50 p
10 -way 140p

CONNECTOR SYSTEMS

AMPHENOL CONNECTORS

36 -way plug Centronics Parallel Solder $\mathbf{6 5 . 2 5}$ IDC £4.95 36-way socket Centronics Parallel
Solder $\mathbf{E 5 . 5 0}$
IDC $£ 5.20$ 24-way plug IEEE Solder $£ 5$

24-way socket IEEE Solder $£ 5$

EURO
 RS 232 JUMPERS
 CONNECTORS

(25-way D)

ㅇN A1617

PRODUCTION EPROM PROGRAMMER Type P8000
It will blank check, copy and verify up to 8 Eproms at a time. Eprom types 2716 to 27128 can be selected by a single rotary switch.
$\mathbf{6} 695$ + $\mathbf{4} 6$ carriage.

EDGE CONNECTORS		
	0.1"	$0.156^{\prime \prime}$
2×18-way		140 p
2×22 way	190p	240p
2×23-way	175p	-
2×25-way	2250	220p
2×28-way	$190 p$	-
1×43-way	2000	-
2×43-way	3059	
1×77-way	600 p	
5100 Conn		6000

* SPECIAL OFFER

2532	$\mathbf{£ 3 . 5 0}$
2732	$\mathbf{£ 3 . 5 0}$
$2764-25$	$\mathbf{£ 5}$
27188.3	$\mathbf{£ 4 . 5 0}$
$4164-2$	$\mathbf{£ 3 . 5 0}$
$6116 \mathrm{P}-3$	

UV ERASERS

UViB up to 6 Eproms $£ 47.50$ UVIT with Timer £60 UV140 up to 14 Eproms E 61.50
(Carrf2/ with Timer $£ 78$
(Carr £2/eraser)
All erasers are fitted with mains switches and safety in terlocks.

'WIRELESS WORLD' PROJECTS

Semiconductors inc. Cs., Transistors, Displays, Connectors and Sockets for most projects are stocked by us

BOOKS

(NoVAT p\&p £1)

CRT Controller H/Book.

 Programming the Z80.... Z80 Microcomp Handbook Programming the 6502 6502 Assy. Lang ...$\mathbf{6 8 . 5 0}$
$\mathbf{£ 1 1 . 5 0}$
0
0
0

SHORT WAVE NEWS FOR DX LISTENERS

by Frank A Baldwin
All times in GMT, bold figures indicate the frequency in kHz

Keeping to the promise made in the last issue of this journal, we deal now with some of the Latin American stations that may be logged on one of the difficult bands -the 90 m Tropical Band (3200-3400) which is difficult in that commercial QRM (man-made interference) abounds and one therefore needs to be equipped with a highly selective receiver and, preferably, an outdoor longwire aerial system. On this occasion loffer a selection of the more easy-to-receive transmitters.

Belize: Belmopan operates on 3285 and identifies as 'Radio Belize'. It opens at 1100 (Sundays from 1200) and closes at 0510, the power is 1 kW , and the programme languages are English and Spanish. Probably the best times for UK listeners to log this one would be during the English language sessions which are scheduled from 0030 to 0510. Newscasts in this period are at 0100,0200 and 0300 , the latter being a relay of the BBC World Service. The full announcement in English is 'This is Radio Belize, Voice of the new Central American Nation of Belize in the Heart of the Caribbean Basin'. If you do manage to log this one and wish to QSL, the address for reports is Radio Belize, PO Box 89, Belize City, Belize, Central America.

Brazil: Two stations located in Brazil are most often reported as operating on this band, one being Lins Ŗadio Clube which operates on 3225 from 0730 to 0400 with a power of 1 kW . The callsign is $2 Y G 859$ and the address is CP 310 , 16400 Lins, Sao Paulo, Brazil. The second easy-to-receive Brazilian is Radio Ribeirao Preto operating on 3205 from 0800 to 0400 with a power of 1 kW . The address is listed under ZYG861 as CP814, 14100 Ribeirao Preto, Sao Paulo, Brazil.

The best time for UK listeners to log either of these Brazilians would be from around 0100 to their closing times. Have l logged them? Yes, many times over the past few years.

Ecuador: HCYD4 Radio Iris in Esmeraldas Province can often be heard on 3380 at which point on the dial it is scheduled from 1000 (Sundays from 1100) to 0400 with a power of 10 kW . The port of Esmeraldas, on the river of the same name, is noted for exports of bananas, tobacco, rubber and cacao (cocoa to you and me). Having set the scene, the address for reports is Casilla 8, Esmeraldas,
Ecuador or Casilla 1018 Quito.
Another one to log is the 12.5 kW transmitter of Radio Zaracay, Santo Domingo de los Colorados on 3395 from where it produces programmes for tocal consumption from 1000 to 1400 and from 2000 to 0500. The address is Casilla 31, Santo Domingo delos Colorados, Ecuador. Have I heard them? Yes, indeed most DXers have.

Guatemala: Probably the easiest of the Guatemalans for UK-based listeners is undoubtedly Radio Chortis Jocotan on 3380 with its schedule from 2100 to 0300 with a power of 1 kW . Quite often logged when conditions on the band are good, the address for reports is Centro Social Jocotan, Chiquimula, Guatemala and this is one of the few in this country that does reply with a QSL - if you are lucky!
Another Guatemalan is Radio Cultural on $\mathbf{3 3 0 0}$ with a 5 kW signal which is on the air from 1100 to 1500 and from 2245 to 0430. The address is Apartado 601, Guatemala but the station is owned by Central American Mission, Box 28005, Dallas, Texas 75228, USA.
For Guatemala listen from 0130 onwards. Have I? Yes.

In the next issue, a change of scene as we will be dealing with some of the relatively easy-to-receive stations site in Indonesia and operating on the 60 m band (4750-5060) simply for the reason that it is now the 'season' for European DXers to log these transmitters. We shall return to 90 m band Latin Americans at a later date.

AROUND THF DIAL
In which are listed some of the transmissions recently logged and thought to be of interest both to the short wave listener and the DXera mix for the attention of both types of reader and sorted this month by computer!

AFRICA

This continent, is not so 'dark' as it once was; there are many stations in Africa that can be heard by UK listeners roving over the 60 m band.

Benin

Radio Parakou on 5025 at 0429, orchestral music African style, YL's with a song in vernacular, OM with station identification at 0431. Schedule 0400 to 0900 and from 1700 to 2300 . The power is 20 kW .

Cameroon

R Bertoua on 4750 at 1948, YL with a local pop song complete with African musical backing. Operating with a 20 kW transmitter, this one is on the air from 0430 to 0800 and from 1600 to 2208. There is an English programme from Monday to Friday from 1800 to 1840 and on Sunday from 0615 to 0645.

Central African Republic

Bangui on 5037 (listed 5035) at 2022, OM and YL with a discussion in vernacular. Bangui operates from 0430 to

0700 and from 1630 to 2300 in French and the local language Sango. Not an easy one to log owing to the surrounding QRM. The power is 100 kW .

Guinea

Conakry on 4910 at 0413, OM with a news review in French. No sign of Lusaka on the same channel. The schedule is from 1230 through to 0730 and the power is 18 kW .

Kenya

Nairobi on 4934 at 1900, African drums, YL with a song in Swahili. This is the North Eastern and Coastal Service which is timed on this channel from 0250 to 0630 and from 1420 to 2010 with a power of 20 kW .

Nigeria

Kaduna on 4770 at 1947, OM announcer with a programme of local pops on records. Kaduna is on the air from 0400 to 2400 according to the listing but I have recently heard them closing at 0100. The power is 50 kW .

South Africa

Johannesburg on 4880 at 2016, when radiating a programme of classical orchestral music with announcements in Afrikaans. This is the Home Service in Afrikaans and is scheduled here from 0348 (Saturday from 0427, Sunday from 0457) to 0550 and from 1520 to 2120 (Saturday until 2200) with a power of 100 kW .

Senegal

Dakar on 4890 at 2019, OM with a news review in French. This is the National Service (Chaine Nationale) which operates from 0600 to 0900 , from 1155 to 1600 and from 1715 to 0100.

(LATIN) AMERICA

Plenty of stations to choose from in this part of the world.

Brazil

Radio Dragao do Mar, Fortaleza on 4925 at 2349, OM with an exciting sports commentary-in Portuguese of course. Listen for this one anytime between the opening of the evening session at 2130 and the closing time of 0300 .
The power is 5 kW but wait for the identification-R
Difusora Taubate-as another Brazilian is also on channel but with a 1 kW signal.
Radio Globo on 11805 at 0038, OM with announcements in Portuguese, OM with a sorrowful ballad. With a 10kW transmitter in Rio de Janeiro, this one is timed from 0800 to 0330, the latter time being variable.
Radio Bandeirantes, Sao Paulo on 11925 at 0042, OM with a futebol (football) commentary-a review of past matches. R Bandeirantes is on the air from 0800 to 0400 and has a power of 10 kW .

Colombia

Emisora Nuevo Mundo, Bogota on 4755 at 0447, YL with a ballad in Spanish, OM with station identification at 0450. Often heard around this time, it has a 24 -hour schedule and a power of 1 kW .
Radio Super, Medellin on 4875 at 0456, OM with station identification which was followed by a trumpet fanfare. This one also has a 24 -hour schedule and has a power of 2 kW . A regular 'visitor' to my shack!

Cuba

Havana on 4765 at 0224, OM with a talk in Russian which was a relay of the Moscow 'Mayak' (Lighthouse) domestic programme, presumably for the benefit of the Russian merchant marine etc, based in the general area. Bad news for DXers as this powerful transmitter effectively blocks other more interesting LA stations.

Dominican Republic

Radio Clarin, Santo Domingo on 11700 , OM with station identification and announcements in Spanish, then into a programme of local pops. Radio Clarin is on the air from 1100 to 0500 with a power of 50 kW .

Ecuador

Radio Luzy Vida, Loja on 4851 at 0435, OM with a love song in Spanish and a guitar backing. The schedule is from 1045 to 0430 with a 2 kW signal. Oviously running late or extended schedule on this occasion.

Honduras

La Voz Evangelica, Tegucigalpa on 4820 at 0449, YL's with a religious pop-type song with guitar backing, OM with announcements in Spanish. LV Evangelica has an English programme from 0300 to 0500 according to the list but deviated on this occasion for some reason or included a Spanish announcement on the tape.

Peru

Radio Andina, Huancayo on 4996 at 0442, guitar music in local style, OM with noticias. This one operates from 1000 to a variable closing time of 0500 with a 1 kW signal. Take care, however, as this channel is now also occupied by a new station on the air based in Ecuador and logged here at 0212, identifying as 'Radio Bahai' at 0215.
Radio Eco, Iquitos on 5112 at 0356 , OM with a long talk (or so it seemed) in Spanish.
Rather difficult to log, this one operates from 1000 to 0500 and has a power of 1 kW .

Venezuala

Radio Tachira, San
Cristobal on 4830 at 0231, OM with a programme of local pops. Scheduled from 1000 to 0500 at 10 kW . An easy one to log.

ASIA

The world's largest continent with a correspondingly large number of stations.

Afghanistan

Kabul on 4740 at 1843, OM announcer and music in the local style. This is the Home Service 1 which is timed from 0125 to 0330 and from 1230 to 1930.

China

Xizang PBS on 4735 at 2334, OM with the programme in Uigher. The best time to hear this one is during the scheduled 2230 to 0200 transmission. Also on 4750 at

2330, OM with a talk in
Chinese during the 2230 to 0200 part of the schedule. Xizang was formerly Lhasa in Tibet.

India

AIR (All India Radio) Delhi on 9665 at 2001, OM with a newscast in English during the English transmission for the UK and West Europe, timed from 1845 to 2230 on this channel. Also on 11755 at 2015, OM with a newscast in the English programme for North and West Africa,
scheduled from 1945 to 2230.
AIR Delhi also on 17387 at
0958, interval signal and YL with station identification in English at the start of the English transmission directed to North East Asia and Australasia, scheduled from 1000 to 1100.

Japan

Tokyo on 21610 at 0800, OM with station identification and frequencies at the start of the English programme for Europe, followed by a newscast of both worid and Japanese events. The English transmission is timed for Europe from 0800 to 0830. Also logged in parallel on 17870.

Kuwalt

Radio Kuwait on 11675 at 2049, a programme of UKmade pop records during the English transmission to the Arabian Gulf, North Africa, South Africa, Europe and North America and timed from 1800 to 2100. Also on 11990 at 0802, local style music and songs in the Domestic/External Service which is on this frequency from 0600 to 2105.

Pakistan

Karachi on 17660 at 0813, YL with announcements in Urdu during a World Service transmission to the UK scheduled from 0715 to 1100 (news in English from 1005 to 1010).

Saudi Arabla

Riyad on 9870 at 1904, OM with songs in Arabic in a Domestic Service programme, this service being timed on this channel from 1700 to 2130.

South Korea

Seoul on 15575 at 1857, YL
with a talk about internal affairs in the English programme for Europe, scheduled from 1845 to 1945.

EUROPE

The easiest of all to receive and mostly of interest to those just starting in the hobby.

Bulgaria

Sofia on 17825 at 1843, YL with station identification and a talk about trade, all during the English transmission for Africa, timed from 1830 to 1930.

Finland

Helsinki on 15430 at 1850, OM with a talk about local theatres during an English programme for Europe,
scheduled from 1830 to 1855.

Hungary

Budapest on 6110 at 2004, OM with a newscast in the English programme for Europe, on this channel from 2000 to 2030.

CLANDESTINE
 Just for a change, try the following:
 'LaVoz del CID' on 5106 at 0446, OM with a ballad in Spanish, OM with station identification at 0447. CID stands for Cuba

 Independiente Democratica, and the programmes are antiCastro.'La Voz de Sandino' on 6220 at 0405 , OM with station identification and then OM with a tirade in Spanish, all about El Salvador and Nicaragua.
'Radio 15th September' ('Radio Quince de Septiembre'), OM harangue about Nicaragua in Spanish. This one is anti-Nicaraguan, and thought to be located in Honduras.

NOW HIAR THIEE
'Radio Los Andes', Tarija, Bolivia on 4775 at 0203, OM with ballad in Spanish, OM with announcements; 'Radio Tezulutlan', Coban, Guatemala on 4835 at 0152, OM with talk in Spanish about Guatemala; 'Radio Pampas', Tayacaja, Peru on 4854 at 0224, OM with pop song in Spanish, promos; 'Radio Madre de Dios', Puerto Maldonado, Peru on 4951 at 0123, YL with songs in Spanish, OM with announcements and local promos.

Sporadic-E activity dropped dramatically and unexpectedly during early August; however this wasn't the end of DX reception. Anticyclonic conditions produced excellent tropospheric DX in Band III and on UHF from the 8th onwards and at the end of the month several rare transmitters were received in parts of the UK.

Band III MS (Meteor Shower) activity due to the Perseids around the 10th proved to be disappointing, but on the 30th the 100 kW outlet at Pardubice on the Czechoslovakian channel R6 was noted here in Derby, showing the familiar EZO electronic test card.

Reception reports

Mike Allmark (Leeds) managed to log almost every transmitter in Europe, judging by his reception report. The highlights are as follows:

1/8/83: Several Eastern-bloc countries on channels R1 and R2; NRK (Norway) on E2 with the 'STEIGEN' PM5534 pattern; ORF (Austria) with the test card on E2a. All reception via Sporadic-E (SpE).
2/8/83: SR-1 (Sweden), NRK and DR (Denmark) all on channel E4 via SpE. 3/8/83: TVP (Poland) on R1 and R2 relays; DDR: F (East Germany) E4; Spain (RTVE); RAI (Italy) via SpE on channel IB.
8/8/83: Excellent strength UHF trops from Northern Germany (mainly ZDF, i.e. Zweites Deutsches Fernsehen) on channels E23, 30, 31, 32, 33, 34, 35 and 39; NDR (Norddeutscher Rundfunk) 3rd network on E40 42 and 43; NDR 1st Network on E50 53 and 56. The DR channel E10 Vestjylland transmitter was also received.
10/8/83: DR on E5, 7 and 10; NRK from Halden on E11; NDR on E7 and 10 plus many NDR and WDR West German UHF outlets.
19/8/83: DR on E7, 10; WDR on E11; ZDF on E21, 22, 24, 30, 34, 37 and 39 plus NDR-1 on E40.
25/8/83 and 26/8/83: Similar to the 19th but with BRT (Belgium) on E10, NOS (Netherlands) on UHF and several TDF (France) UHF stations.
28/8/83: NOS on E6; NDR on E5, 7, 9, and 10; DR on E5, 7, 10; BRT on E10; SR on E9; NRK on E6 from Bjerkreim; SR-2 on E30; several ZDF and NDR outlets on UHF .
29/8/83: Band III stations similar to the 28th but also SFB (Sender Freies Berlin) on E7 and DDR:F on E5; SR-2 on E30; ZDF on E34, 35 and 39; NDR-1 on E53 and 56; NDR-3 on E43. NOS-1 and NDR-1 were also noted on channel E4.
30/8/83: DDR:F on E6; DR on E6, 7; SR on E5 and 10; HR-1 (Hessischer Rundfunk in West Germany) on E7; NDR-1 on E10; RTL
(Radio-Tele-Luxembourg) on E7; SR-1 on E43.
31/8/83: Tropospheric conditions declined but ducting brought in SR on channel E31, DR on E10, NOS in Band III and UHF plus a few ZDF and NDR signals on UHF. RTE-1 (Radio Telefis Eireann) on channel H was noted with very strong video.

Fig 1 Finnish second network FuBK test card (Photograph courtesy of Petri Poeppoenen, Finland)

Mike comments that the 1983 DX season has been a 'short, sharp affair' with several exotics being in evidence although Band III SpE activity has been lacking. Towards the end of July (21st), Mike noted a prolonged opening to Jordan (JTV) on channel E3. JTV initially radiated frequency gratings from 0800 BST going on to the PM5544 test card which he resolved in colour. Tropospheric ducting was also present and he saw TSI-Switzerland (Italian-language network) on E34 from the La Dolle transmitter, SWF (Südwestfunk, West Germany) on E10 from Donnersberg, BR (Bayerischer Rundfunk based in Munich) on E10 from Wendelstein, BR-1 on E10 (Würzburg), SDR (Süddeutscher Rundfunk) from Heidelberg on E7 and Stuttgart on E11 plus ZDF on E40 (Raichberg) and E35 (Rottweil).

Kevin Jackson (Leeds) similarly did well with reception. His August SpE successes included ORF (Austria) on E3 from the 100 kW transmitter at Birkfeld and several instances of strong and prolonged reception of the TVRRumania channel R2 outlet at Bucuresti. Tropospheric ducting on the 29th at 1102 GMT produced the Norwegian PM5534 pattern on E9 displaying the 'VEGA' transmitter identification. This is situated on an island just off the Norwegian coast some 80 to 100 km south of the Arctic Circle. The transmitter power is 30 kW and the reception path is about 1500 km .
Equipped with a Wolsey Colour King

UHF array and a Labgear CM7060 amplifier, Derek Fenton (Mickleover, Derbyshire) has received several continental television signals recently. These include Belgium on E28 from Wavre and the E52 Riviere outlet radiating the 'Profondeville' PM5544, West Germany with the 'WDR 1' FuBK test card plus several IBA regions. His clear takeoff to the west enables daily reception of HTV Wales on Channel E49 in colour from Moel-y-Parc.
Simon Hamer (New Radnor, Powys) has sent a very descriptive reception report detailing signals from TVE-Spain, RTP-Portugal, JRT-Yugoslavia, RAI, ORF, ARD (West Germany) with the news programme 'Tagesschau', TSS-USSR, DR-Denmark, Czechoslovakia and MTV1 Hungary. One of his unidentified signals was one featuring Arabic writing on 4th August at 1900 BST from an E3 transmitter. This could well have been JTV-Jordan although one must not jump to conclusions every time Arabic script is received - it could well have originated from a West European country.
Armed with a Russian-made 'Vega' CCIR portable, Roger Bunney (Romsey) noted excellent SpE reception at his cliff-top holiday location on the Isle of Wight. Belgian E8 and E10 plus French UHF signals were present all the time 'a good DX-TV location' comments Roger. Once back on the mainland he noted a strange Russian clock caption with the time exactly the same as in the UK!

Fig 2 Identification caption radiated by the first network of Yleisradio, Finland

Service Information

United Kingdom: The BBC and IBA have advised officially that the ultimate closedown of the VHF 405-line service will be on 6th January 1985 despite rumours that January 1984 would be the date.
West Germany: A new 500 kW outlet on channel E56 has been opened at Hamburg.
Yugoslavia: The authorities have installed relay stations in the north of the country at Lakos and Lendava for the redistribution of programmes from the state-owned Hungarian service Magyar Televizio (MTV).
Sweden: A new regional television service was inaugurated last Spring, covering the Smaland area of southern Sweden. The studios are located at Växjö and the regional news programme is called 'Smalandnytt'. It is broadcast each weekday between 1815 and 1830 BST via the following TV-2 transmitters: Nässjö(1000kW, E22), Västernik (1000kW, E26),

Fig 3 Clock caption received via Sporadic-E propagation from RAI-Italy. Note the typical SpE ghosting effect

Jönköping (15kW, E28), Emmaboda (1000kW, E31), Vislanda (1000kW, E32) and Finnveden (1MW, E48).
Spain: A new regional test card has been seen on E4 during the month. We hope to have further details shortly.
Information this month courtesy of Roger Bunney (Romsey), Goesta van der Linden (The Netherlands), Alexander

Wiese (West Germany) and Clive Athowe (Norwich).

Euro-TV List

Roger Philips (Cobham, Surrey) has pointed out a few omissions from the Euro Broadcast TV Services' list which we included in the August edition of $R \& E W$. The UK Channel 4 was missing
as was TV Koper Capodistria under the Yugoslavian section. The latter service beams a programme in the Italian language to Northern Italy, which is ultimately relayed via private stations However, an earlier test card used by JRT carried the identification 'RTV LJUBLJANA' at the top and 'STUDIO KOPER CAPODISTRIA' at the bottom implying that it is part of the RTVLjubljana network. We would be pleased to hear from other readers with any comments on this subject.

In his letter, Roger suggests that Bands I and III should be reserved for a re-engineered UK service (for example, local TV) rather than being simply handed over for PMR etc. He points out that the interference problems created within Europe will be devastating for Continental television services during periods of enhanced propagation, if current whims and ambitions go ahead. Home Office take note!

German DX Club

This club's magazine, called 'Teleaudiovision', should prove of great interest to DX-TV enthusiasts with a good technical knowledge of German. All subjects associated with TV and VHF radio are covered in the magazine which is published bi-monthly. Full details can be obtained from the editor, Alexander Wiese, by sending an IRC to TAV, Postfach 801965, D-8000 München 80 , West Germany. A brief summary in English is sent with each edition.

EVENTS: MOBILE RALLIES

15th November
29th November 30th November

1st December

6th December 6th December 7th December

7-8th December
10th December
11th December

12th December 13th December
14th January
5th February

18th March

1st April 28-29th April

The Workings of BBC Radio News Advanced Manufacturing Technology CAD Modelling

Holography and Holographic
Measurements
Electronic Aids for the Disabled
IEE Wiring Regulations (15th edn)
World Communications -
Tomorrow's Trade Routes
Technology in the 1990s RSGB AGM
Leeds \& DARS 3rd Annual
Christmas Rally
Electrical aspects of the APT Sale of surplus equipment
RSGB Presidential Installation Bury Radio Society Ham Feast

4th Annual Components Fair

White Rose ARS Rally RSGB National Amateur Radio Exhibition

Biggin Hill
Carlton House Terrace, London Southampton

SEEBOARD HQ, Hove

GranviHe College, Sheffield SEB Offices, Reading
Royal Lancaster Hotel, London

Carlton House Terrace, London
IEE, Savoy Place, London
Civic Centre, Pudsey

IEE, Savoy Place, London
Biggin Hill
Cardiff Castle, Cardiff
The Mosses Centre,
Cecil Street, Bury
Carleton Community Centre Pontefract

University of Leeds
National Exhibition Centre,
Birmingham

Ian Mitchell G4NSD
Royal Society, 01-839 5561
Computational Mechanics
Centre, 0421293223
IEEIE, 01-836 3357

IEEIE, 01-836 3357
IEEIE, 01-836 3357
British Computer Society, 01-637 0471

Royal Society, 01-839 5561
RSGB, Potters Bar 59015
G6CJI

IEEIE, 01-836 3357
an Mitchell G4NSD
RSGB, Potters Bar 59015
MHS Bridge G3VC

A Mason G4TGU
N Whittingham G4ISC
AN Bramley G4NDU
RSGB, Potters Bar 59015

[^0]: Instant credit at competitive rate. Ask for details when you call or Write for a quote. Trading in your old rig. Always S/H Equipment for sale 3 months warranty.

[^1]: LASCAR ELECTRONICS LIMITED
 Module House, Whiteparish, Salisbury, Wilts. Tel. 07948-567

[^2]: Voltage gain $=10 \mathrm{k} \Omega / 680 \mathrm{R}$
 Upper frequency response $=10 \mathrm{k} / 4 \mathrm{n} 7=3 \mathrm{kHz}$

[^3]: DEPT K. 48, Deptford Broadway, London SE8. Please quote order Code where shown. SEND CHEQUE* OR PO Add 60p P\&P and 15\% VAT. *Schools etc: Send official order. SEND LARGE SAE for list we are alweys latereeted in buying quantiliee of Electronic components and equipment.

[^4]: All prices include V.A.T., Post and Packing (quantity discounts available).

[^5]: \qquad

[^6]:

[^7]:

[^8]: SMARTMOUTH
 The 'infinite vocabulery' self-contained speech synthesiser unit. Uses only 5 10 bytee per word - no ROMs required - simply plugs into the user port. (Has Aux. Audio output sht.). Supplied with Demo/Development programs and simple software instructions, £37 + £2 p. \& p.

