RRadio\& LBCTRONICS WORLD

75p

18W Power Amplifier
Meteosat ZX81 Expansion Board ICロM's IC25

VHF பp-Converter Wide Band RF Transformers

AUGUST 1982
Contents
volume 1 No. 11

Projects
18W Power Booster

- ICE Upgrade 11

GaAs FET Preamp
DC Preamp II
Wind Speed \& Direction Indicator
2X81 Expansion Board
$-23 \mathrm{~cm} 34$

- Rounding Things Up 38
- weather Watcher 47
- More bits for the ZX81 67

Multiband Up Converter

- A versatile design 75

Features

Comment
Data Brlef : LH1605

- Survey News - Beefy PSU

5 - Beefy PSU 15

WIdeband RF Transformers
Circult Blocks
Letters
2X81 Display Flle Explained
Meteosat
Low Cost GaAs FETS
Data Brlef : KB4436
Data Flle
The Last Word

15

- The mystery removed 17
- In circuit tester 22
- Our postbag 24
- Understanding Sinclair 28
- Geostationary Weather Satellite 42
- What you need to know 63
- Noise cancelled 73
- DC Motors controlled 80
- Avoid AV 96

Reviews
GSC 2001

- Functional generator 30

Icom IC290

- A thinking man's $C B$ rig? 52
- An Icom take over? 55

Icom IC25

- The logical introduction 6

News
New Products
Computing News

- The market place
- Sneaky Clive 26
- Battle of the formats 40
- In house news 71

News Background
Short Wave News
DX TV

- Follow the frequencies 86
- Distant vision 88

Information

Next month's R\&EW

- Please remember, R\&EW Sept.

27

Subscriptions

- R\&EW the easy way 23
R\&EW Book Service
Project Packs
Advertisers' Index
- Read all about it 90
- Parts for Projects 58 - Who's where 96

See Page $\mathbf{6 2}$ for details of our $£ 1,000$ competition.

Cover Photo: Tim Sheldon Box no. 303 Breniwood Props: Boating Scene, Laindon, Essex

TRIED,TESTED AND TRUSTED

The main problem that the amateur of today has to deal with is deciding just which rig out of the many excellent products available he is going to choose. Technology is advancing at such a rapid rate and getting so sophisticated that many cannot hope to keep up Some go too lar!

Perhaps one way of dealing with the problem is to look at just what each model offers in its basic form without having to lay out even more hard earned cash on extras". The IC-720A scores very highly when looked at in this light. How many of its competitors have two VFOs as standard or a memory which can be recalled, even when on a different band to the one in use, and result in instant retuning AND
BANDCHANGING of the transceiver? How many include a really excellent general coverage receiver covering all the way from 100 kHz to 30 MHz (with provision to transmit there also if you have the correct licence)? How many need no funing or loading whatsoever and take great care of your PA. should you have a rotten antenna. by cutting the power back to the safe level? How many have an automatic RIT which cancels itself when the main tuning dial is moved? How many will run full power out for long periods without getting hot enough to boil an egg? How many have band data output to automatically change bands on a solid state linear AND an automatic antenna tuner unit when you are able to add these to your station?

Well you will have to do quite a bit of hunting through the pages of this magazine to find anything to approach the IC-720A. It may be just a little more expensive than some of the others - but when you remember just how good it is, and of course the excellent reputation for keeping their secondhand value you will see why your choice will have to be an IC-720A!

IC-PS15 Mains PSU 299

ICOM

Nearly everybody has an IC2E - the most popular amateur transceiver in the world - now there is the 70 cm version which is every bit as good and takes the same accessories. Check the features.

Fully synthesized - Covering 144 - 145.995 in 4005 KHz steps. (430-439.999 4E)
Power output - 1.5 W with the 9 v . rechargeable battery pack as supplied - but lower or higher output available with the optional 6 v or 12 v packs. Rapid slide-on changing facility
BNC antenna output socket - 50 ohms for connecting to another antenna or use the Rubber Duck supplied (flexible $1 / 4 \lambda$ whip - 4E) Send/battery indicator - Lights during transmit but when battery power falls below $6 v$ it does not light, indicating the need for a recharge. Frequency selection - by thumbwheel switches, indicating the frequency. 5 KHz switch - adds 5 KHz to the indicated frequency Duplex simplex Switch - gives simplex or plus 600 KHz or minus 600 KHz transmit (1.6 MHz and listen input on 4 E)
Hi-Low switch - reduces power output from 1.5 W to 150 mW reducing battery drain
External microphone jack - if you do not wish to use the built-in electret condenser mic an optional microphone speaker with PTT control can be used. Useful for pocket operation.
External speaker jack - for speaker or earphone. This little beauty is supplied ready to go complete with nicad battery pack. charger. rubber duck.

The IC4E is going to revolutionise 70 CM!

Free carriage on direct sales - call us.
Remember we also stock Yaesu, Jaybeam, Datong, Welz, G-Whip, Western, TAL, Bearcat, RSGB Publications.

Please note: Access/Barclaycard owners - goods must be sent to address registered with credit card company

IOW RF ouput on SSB, CW and FM Standard and non-standard repeater shifts. 5 memories and priority channel. Memory scan and band scan, controlled at front panel or microphone. Two VFO's LED S-meter 25 KHz and 1 KHz on $\mathrm{FM}-1 \mathrm{KHz}$ and 100 KHz tuning steps on SSB. Instant listen input for repeaters.

IC-730 The best for mobile or econormy base station £586.inc.

ICOM's answer to your HF mobile problems - the IC-730. This new $80 \mathrm{~m}-10 \mathrm{~m}, 8$ band transceiver offers 100W output on SSB, AM and CW. Outstanding receiver performance is achieved by an up-conversion system using a high IF of 39 MHz offering excellent image and IF interference rejection, high sensitivity and above all, wide dynamic range. Built in Pass Band Shift allows you to continuously adjust the centre frequency of the IF pass band virtually eliminating close channel interference. Dual VFO's with 10 Hz and 1 KHz steps allows effortless tuning and what's more a memory is provided for one channel per band. Further convenience circuits are provided such as Noise Blanker, Vox, CW Monitor, APC and SWR Detector to name a few. A built in Speech Processor boosts talk power on transmit and a switchable RF Pre-Amp is a boon on todays crowded bands. Full metering WWV reception and connections for transverter and linear control almost completes the IC-730's impressive facilities.

ICOM produce a perfect trio in the UHF base station range, ranging from 6 Meters through 2 Meters to 70 cms . Unfortunately you are not able to benefit from the 6 m product in this country, but you CAN own the IC-251E for your 2 Meter station and the 451 E for 70 cms .

Both are really well designed and engineered multi-mode transceivers capable of being operated from either the mains or a 12 volt supply. Both contair such exciting features as scan facilities, automatic selection of the correct repeater shift for the band concerned, full normal and reverse repeater operation, tuning rate selection according to the mode in use. VOX on SSB continuous power adjustment capability on FM and 3 memory channels. Of course they are both fitted with a crystal controlled tone burst and have twin VFO's as have most of ICOM's fully synthesized transceivers.

The famous IC-240 has been improved, given a face lift and renamed the IC-24G. Many thousands of 240's are in use, and its popularity is due in part to simplicity of operation, high receiver sensitivity and superb audio on TX and RX. The new IC-24G has these and other features. Full 80 channels (at 25 kHz spacing) are available and readout is by channel number - selected by easy to operate press button thumbwheel switches. This readout can clearly be seen in the brightest of sunlight. Duplex and reverse duplex is provided along with a $121 / 2 \mathrm{KHz}$ upshift, should the new channel spacing be necessary.

Amazingly small, yet very sensitive. Two VFO's, five memories, priority channel, full duplex and reverse. LED S-meter, 25 KHz or 5 KHz step tuning. Same multi-scanning functions as the 290 from mic or front panel. All in all the best 2M FM mobile ICOM have ever made.

The MT-240X Multi-band trap dipole antenna ($80 \mathrm{~m}-10 \mathrm{~m}$) is a superbly constructed antenna with its own Balun incorporated in the centre insulator with an SO239 connector. Separate elements of multi-stranded heavy duty copper wire are used for 80-40-15 and 20-10 Metres. Really one up on its competitors. £49.50 inc. VAT

The TONO range of communication computers take a lot of beating when it comes to trying to read RTTY and CW in the noise Others don't always quite make it!

Check the many facilities offered before you buy - especially look at the 9000E which also throws in a Word Processor. Previous ads have told you quite a lot about these products - but why not call us for further information and a brochure?

Also in stock: RO to R7 and S8 to S23for following: Belcom FS 1007, FDK TM56, Multi 11 Quartz 16 and Muhi 7 Icom IC 2F 21 22A and 215, Trio Kenwood 2200, 7200. Uniden 2000 and Yaesu FT, 2FB, FT 2 Auto, FT 224, FT 223 and FT 202
Also 4 MHz
Also 4 MHz , 1 RRO, 44 MHz ors in in 4 METRE CRYSTALS for 70.26 MHz in HC6UU of $\mathbf{C 2 2 5}$. TX 8.78250 MHz . RX 6.7466 or 29.78 MHz in stock

70 cm CRYSTALS in stock 8.0222 and 120333 in HC6 £1.86. Pye Pocketione PF 1, PF 2 ,
 AB4, RB6, RB 10. RB11. RB13. RB14 and RB 15.
CONVERTER CRYSTALS IN HC 18U at £286. In stock 38.666, 42.000, 70.000, 96.000, 101.000 . 101.500, 105.666 and 116000 MHz .
26. 000 HC 6 E 200

TONE BURST AND I.F. CRYSTALS in HC 18 JU ot f 225 in stock. 7.168 MHz for 1750 kHz and 10.245 MHz for 10.7 MHz IF's.
FREQUENCY STANDARDS in stock $£ 275 . \mathrm{HC} 6200 \mathrm{kHz}, 455 \mathrm{kHz}, 1000 \mathrm{kHz}, 5.000 \mathrm{MHz}$ 8nd 10.000 MHz . HC $13100 \mathrm{~Hz}, \mathrm{HC} 181000 \mathrm{KHz}, 7.000 \mathrm{MHz}, 10.700 \mathrm{MHz}, 48.000 \mathrm{MHz}$ and 100.00 MHz .

MADE TO ORDER CRYSTALS SINGLE UNIT PRICING

Unless otherwise requested fundamentals will be supplied with 30pF load capacity and overtones for series resonance operation.
HOLDERS - Please specify when ordering - $1010200 \mathrm{kHz} \mathrm{HC13} \mathrm{U} .170 \mathrm{kHz}$ to 170 MHz HC6 or HC 33 U .4 to 225 MHz . HC 18 and HC25.
Where holders are not specified crystais above 4 MHz will be supplied in HC 25 U
DELIVERY Column A 3 to 4 weeks. Column B 6 to 8 weeks
DISCOUNTS. 5\% mixed frequency discount for 5 or more crystals at B delivery. Price on application for 10 or more crystals to same frequency specification. Special rates for bultr purchase schemes including FREE supply of crystals used in UK repeaters
The above prices apply to small quantities of crystals for amateur use. We would be pleased to quote for larger quantities or crystals for professional use.
EMERGENCY SERVICE SURCHARGES (to be added to A delivery prices). 4 working days $£ 126$ working days $£ 7$. 8 working days $£ 5$. 13 working days $£ 3$. Surcharges apply to each crystal not each order and are subject to VAT
CRYSTAL SOCKETS HCEU and HC25U 20p. MINIMUM ORDER CHARGE $£ 1.50$.
TERMS. Cash with order, cheques and postal orders payable to OSL Lid. All prices include postage to UK and lrish addresses. Please note Southern Irish cheques and postal orders are no longer acceptable. Please send bank dratt in pounds Sterling.

PRICES ARE EX VAT. PLEASE ADD 15\%

MARKETING LTD. P.O. BOX 19, ERITH, KENT, DA8 1LH
Telephone: 01-650 4889 (9-5) 24 hr . Ansafone: Erith (03224) 30830 Telex: 8813271 GECOMS G (Attention QUARTSLAB).

154 for further details

WELCOME

Editorial Offices

117a High Street, Brentwood, Essex CM14 4SG
Editorial (0277) 213819
Monoging Editor
Williom Poel
Assistant Editor
Gary Evans
Communications Editor
Graham Leighton
Computing Editor
Jonathan C Burchell
Projects Editor
Roger Ray
Project Developments
Jake Oliver
Editorial Secretary
Kim Mitchell
Production (0277) 213819
Production Editor
Jack Burrows
Art/Production Manager
Patrick Haylock
Art Editor
Sally Bennell
Layout
Helen White
Mortin Sheehan

Advertising 01.5317621

Advertisement Manager Bob Kennedy Hillcroft House, 16 The Avenue, Highams Park, London E4 9LD
Subscription 01.8684854
Subscription Manager
Owen Rundle
45 Yeading Avenue, Rayners Lane, Harrow, Middx HA2 9RL
Printers
LSG Printers, Lincoln
Photosetting by
Delafleld Reprogrophic Service
200 North Service Road,
Brentwood, Essex CMI4 4SG
Distribufors 01-2748611
SM Distribution Ltd
Overseas Agents 071-144988
Holland Electronics
Postbus 377, 2300 A J LEIDEN

INFORMATION

Classified: 01.868 4854

Back Issues: $£ 1$ each inclusive of postage from Subscription Dept, or send reply paid card with cheque ar PO.
Technical Enquiries: SAE to editorial office. Telephone enquiries $2.00 \cdot 5.30 \mathrm{pm}$ THURSDAYS ONLY (0277) 213819.
Broadercasting Limited 1982. All reasonable precautions are taken by R\&EW to ensure that the information given to our reoders is reliable. However we cannot guarantee it and we cannot accept legal responsibility for it. Information and prices are correct at time of press.
Reproduction of contents is possible with permission from the Editor, however short abstracts or references are allowable providing the source is given.

Publishers Broadercasting Limited

Comment

This issue sees the instigation of several new processes in production - specifically the instant 'on-line' editing of the content via our multiuser computer and digital photosetting installation. (See the News Background page for more details). It's part of our move towards the 'all electronic' magazine, in conjunction with the REWTEL system, and whilst we know there are some of our readers who don't appreciate computing as much as some of the other topics we cover, we hope that we are continuing to demonstrate a practical implementation of the art, rather than gratuitous 'fiddling about'.

Now we appear to be well locked into a 'our facilities are bigger than your facilities' war with competitive magazines, we await the reactions of these beleaugered institutions with bated breath.

DON'T FORGET TO WRITE

The initiation of REWTEL's broadly based news service means that we need to remind all of you to ensure that your company press/ public relations department send in copies of all press information to R\&EW for incorporation in the system. Also, authors wishing to submit manuscripts will soon be able to do so on standard 8 ' single side, single density floppy disks under 'Wordstar'. It's all happening here. We await the day when PR and news information also arrives on floppy - although we will be far more impressed if the sender uses the REWTEL input facility when its ready.

BLACK BOX REQUISITIONS

We have just heard a tale of the MoD requisitioning all the HF transceivers that one importer could lay his hands on, no doubt for that fracas in the South Atlantic. What an interesting comment on the strategic ability of this country to produce such equipment, when the nation's armed forces are obliged to get hold of Japanese amateur transceivers. And what a wonderful accolade for the manufacturers of the equipment.

We aren't a moment too late in updating our readers on the techniques and modern technology available with our series on HF SSB.

READERS SURVEYED

A limited number of copies of this month's magazine contain a Reader Survey card in place of the usual book order form/reader enquiry card. We've been going for almost a year now and, while the response frames accompanying many articles give us feedback about any one issue of R\&EW, we thought it about time that we got an idea of how we fitted into the general scheme of things.

If your issue contains a survey card please fill it in carefully and return it to us as soon as possible, it will not take all that long to do and the postage is paid so it won't cost you anything.

We have to admit that a degree in Origami might come in handy when it comes to folding the completed form but a hint is to fold both ends to the middle then fold in half again and seal with some tape.
For those of you that complete the task there is a chance to win a R\&EW chronograph (worth £14.95) these will be sent to five of those who have completed survey cards.

NEW PRODUCTS

Zip Grip

A new type of zero-insertionpressure grid socket designed for hand-test and burn-in applications on different-sized or multiple devices is now available from Verospeed. Known as the Grid Zip socket, it contains 294 countersunk points on 0.1 -inch centres, each of which can be drilled to accept a component lead. Socket pins are then inserted under the appropriate points, and a simple cam mechan-

ism is used for component retention.
The Grid Zip allows several devices to be mounted at the same time for burn-in purposes, and because only the appropriate sockets are exposed the chances of operator error are minimised. The socket can be mounted on a printed-circuit board or hard-wired into a test circuit.

Circle No. 1

New Neon

Recently introduced by BOSS Industrial Mouldings Lid is a new all-polycarbonate miniature indicator which, by virtue of the high insulation material from which it is moulded, is ideally suited to both consumer and industrial applications.

Designed to accept any of over 35 different styles and ratings of filament or neon bulbs, this new M series indicator is fitted with 150 mm long PVC stranded lead-out wires and incorporates the ballast resistor for the neon version within the leadout assembly.

Although currently only available with a $6.86 \mathrm{~mm}\left(.27^{\prime \prime}\right)$ dia., 5.4 mm (.21') high integral lens, two additional styles will be introduced shortly all of which can be ordered in a choice of 12 transparent or opaque colours.

Retained in a 6.4 mm (. $25^{\prime \prime}$) dia. hole by nut and lock washer, panel thicknesses of up to $9 \mathrm{~mm}\left(.35^{\prime \prime}\right)$ can be accommodated.

Circle No. 2

Small wonder

Thandar Electronics announce the launch of a new $2^{\prime \prime}$ mains battery portable oscilloscope, designated the SClIOA. It has a bandwidth of 10 MHz and a sensitivity of 10 mV per divisions thus offering the performance of a standard bench model yet remaining truly portable.

Housed in the new-style Thandar case with a thickness of only 50 mm and a weight of 925 gms it will suit the requirement of most engineers, technicians and service personnel. The SCl10A is priced at $£ 149.00+$ VAT.

Circle No. 3

Dotting the I's

Roxburgh Printers now offer a range of impact dot matrix printer mechanisms based on their standard DP822 and DP824 21 and 40 column units. These are now available with friction or sprocket feed and with standard or a highly accurate graphics printing head. The 21 column versions require a 12 Vdc supply but the 40 column printers are available in 12 or 24 V versions.
Simplicity of design with a minimum of moving parts contribute to the DP822 and DP824 range's low cost. Alphanumeric
characters or high resolution graphics are printed on standard 2^{*} or $4^{\prime \prime}$ wide normal paper costing much less than thermal or electrosensitive papers. The mechanisms can also print on labels or 2 ply carbonless paper.

For details on driving the mechanisms are supplied, though a range of serial or parallel interfaces are also available. Full information is included in a comprehensive booklet

Circle No. 4

Top Flight Deck

Hitachi have launched new microcomputer controlled cassette deck, model DE 66, which has been designed to incorporate the very latest technological developments. It has a double Dolby noise reduction system - Dolby C and Dolby B. The Dolby C system provides 20 dB of noise reduction at 1 kHz and achieves superior linearity
in the high frequency range. Noise is suppressed to negligible levels with subjective uniformity across the audible bandwidth so it's even 'cleaner' and quieter than Dolby B type noise reduction. The greatly expanded dynamic range it offers not only permits lower and more easily established recording levels but it's to a point where the limiting noise level is no longer that of the

tape but of the source programme material itself. Dolby B and C switching is by means of a button on the front panel.

The DE 66 also features a close gap R \& P head which combines two separate gap widths for both recording and playback in a single housing. They are critically aligned to optimum micron tolerances and placed extremely close together for accurate head to tape contact, yet no signal loss or leakage occurs.

An elapsed time electronic digital tape counter is a feature of the DE 66 and plays a vital role in that it's used to govern a variety of autorewind and memory features, available on this model.

Using the auto rewind switch in the play position, the tape will automatically rewind at the end of the tape and start playback over again - up to 16 times automatically. In the stop position, the tape will rewind automatically and stop. the memory rewind feature on the DE

66 uses a microcomputer which memorizes the position of the tape when the play button is pressed and will rewind to that point, replaying if required.
Another important benefit of the DE 66 is acceptance of metal tapes which gives a greater dynamic range, better signal to noise ratio and improved frequency response. In addition normal, CrO 2 and FeCr tapes can also be used.

The DE 66 enables the user to get top quality professional type results and the record mute function is just another of the many refinements of this model. Using this feature, 4 seconds of black space can be placed between selections on a tape.
Other features include timer record/play capability, 4 position tape selector, remote control and MPX filter.
The recommended retail price of the DE 66 is $£ 229$ inc. VAT.

Circle No. 5

DOPPLER DIRECTION FINDER
Model DF is a direction finding attachment for use with existing narrow band FM receivers and wanscavers.
Two units, the display unit and the soecial antenna combiner conver your NBFM ransceiver Dlus four omnidirectional antennas into a padio direction finder. A built-in r.f. activated antenna relay diverts the transceiver s ourput to the normal
antenna during pransmit or when the DF attachment is switched anter
ant
ont

Features

- Works with any existing narrow-band FM recelver of transcetver. No moditications are needed. The only antenna jacks.
- Gives a claar directional readout on a circular array of sixteen bright green LEDs.
- Display holds lest reading when signat drops out
- Very easy to use and install.
- Only a single coaxial cable needed between display unit and antenna combiner
- Professional quality at remarkably low cost. Display unit uses two PTH circuit boards. Gasket sasled combinep unit houses two conventional double-sided PCBs.

Applications

Model DF-costs between ten and s hundred times less than conventional RDF systems, and therefore opens up new applicetion areas for both professional and hobby usere. Possible applications include:- VHF amateur radio, Chizen's Band radio, alrerst spotting, tracking gliders and light aircraft, locating lost model aircraft, private mobile radic svstems. tracking and locating tracking and loc anveraters locating operators, locating '1agged' amimals in the
wild, helping to identie wid, helping to identify
or trace unknown trans. missions, law enforcement.

MODEL DFA2 COMBINEA UNIT
A complete sylem needs the display unit and the antenna combiner plus four antennas mouniad at
spaced apart by 0.05 to 0.3 wavelengths.

For fixed station use four dipoles are sultable while four use Dependinounted quarter wave whips are idesi for mobicill operare from 20 to the chorc 200 MHz
Surable magmount quarter wave whips are available from Darong for VHF use
BASIC DF SYSTEM (Model DF display unin wilh Model DFA) combiner
(125.00. VATIC 143.80) DF SYSTEM as above bul with moble version of combine Model DFA2 (as DFA) but fitted with magmount and a metre
131.00 - VATIE 150.701 COMPLETE MOBILE DF SY STEM IModel DF display unit Model DFA 2 combiner, and four Model MAI quarter wavelength
magmount antennas cui for 145 MHzl $\mathbf{C 1 7 3 . 5 0}$. VAT IC199.50)

PREAMPLIFIER • MODEL RFA
Eliminatea seperate tuned preamplifiere for each bend Model RFA improves the sensitivity of any receiver or transceiver working in the fange from st to 200 MHz . It connects in series wit the antenna end built-in r.f. activated relay switches the preamplifier out of circuit during transmit or whan the power is off faeturas:

- Extra wide bandwidth saves the cost of separate naprow band preamps.
- Handles strong signais without overlosd thanks to special low-noise negative feedback rechnique. Intercept point better than $\$ 20 \mathrm{dbm}$
- Low noise figure
- Carefully chosen gain level minimiser receiver overlosd and cross modulation.
- R.F. activated bypass rolay allows easy use with transceivert.
- Rugged diecast aluminlum case with SO239 connectors and PTH prinied circuit board

Applications

Application areas include:- weak signal reception of all amateu and satellite bands from 5 MHz up to 200 MHz , long distanc reception of VHF FM Broadcasts and VHF TV Signals, CB transcelvers, private mobile VHF radio transceivers, reception of marine and aeronautical bande, VHF scanner receivers. compensoting for signal loss in long antenna feeders.
The wide bandwidth of Model RFA makes it ideal for use with broadband antennas and scanner receivers. Broedband Preamplifier, Model AFA: \quad £25.E0 + VAT (£29.32)

'Codecall" is ideal wherever there is a need to monitor a well used radio channel for one particular call over long periods "Codecall" gives the same convenience as delephona bell, in that the recelver remains torally tient while montoring it therefore causes no distuption to other activituse. In fact the user can totally disregard the radio until a loud bieen from "Codecall" warns that the desired signal has been recelved The loud intermitrent bieep then continues. uniess cancelied for over ten minutes atier the call is recerved
"Codecal" ensures that the communicationa channel ramains at fulleticiency at all rimes. Without "Codecall" the desired call often blends into the general chatter ond is missed by the listen radio's nursancelevel
features

- Each "Codecall" urve acts as a call generetor and a call recpiver.
- No electrical connection is needed at the transmitter simply hold "Codecall" nert to the microphone.
- At the receiver simply olug "Codecall" into the enternal speaker jack.
- Over four thousand different codes virfually eliminate the chance of false alarms.
- Internal 9 volt baitery has long life since no cuprent is used while monitoring a squelched channel.
- Works over any vore link, whether FM. AM, or SSB
- Codes salected by dithep inree 16-way switches (Model \$) or by altering melve internal wire links (Model L)
- Compaci: only $4 \times 2.4 \times 1.05$ inches

Two Versions
Model S (as illustrated) has three 96 way rotary switchas on the front panel giving a totel of 4096 combinations mmediately available. Model L has no switches, Instead the code is eet by attoring iweive wirs linksinwice the case
Both models can be used in the seme system. The switched version (Model S) is ideel where frocuent code changes are cades are nop likely to be thered often, or for unsilled users whe might accidentally sel the wrong code.
Note: when used by UK Radio Amateurs all transmissions must be identified as required by the licence conditions.
"Codecell" Model LiUnk progremmed):
"Codeceil" Model Siswlech programmed): 524.00 + VAT (C27.80)
£28.50 + VATIE29. 32

ALL DATONG PAOOUCTS ARE
DESIGNED AND BULT WN THE U.K.

PRICES All prices inciude dalvervi in U.K. basic prices in E Qre shown with VAT inciuluve prices in brockets.

FL1
FL2
PC1
ASP
VLF
D70
D75
RFC/M
AD270

59.00 (67.85) AD370

AD270 + MPU
$\begin{aligned} 78.00(89.70) & A D 270+\text { MPU } \\ 05.00(120.75) & \text { AD370 + MPU }\end{aligned}$ 69.00 (79.35) MPU 22.00 (25.30) DC144/28 43.00149 .45) DC144/28 49.00 (56.35) Module 23.00126 .45) Keyboard Morse
33.00 (37.95)

Sender
$45.00(51.75)$ RFA
37.00142 .551 Codecall
49.00 (56.35) (Linked)
$6.0016 .90)$ Codecall
31.00 (35.65) (Switched)
25.00 (28.75) DF System Complete Mobile DF
$112.201129 .001 \begin{gathered}\text { System } \\ \text { See text for details. }\end{gathered}$

Data sheets on any products available free on request - write to Dept R.C.
DATENE ELECTPONICS LIMITED
Spence Mills, Mill Lane, Bramley, Leeds LS13 3HE, England. Tel: (0532) 552461

NEW PRODUCTS

Quality CB

Martello sound's multi-purpose mobile, hand portable, or base station rig can be powered either by $9 \times$ AA size dry or rechargeable batteries, which fit in the integral battery compartment, or from a standard 12 V vehicle battery or power supply.
A non-polarised chassis makes for trouble-free installation in both positive and negative earth vehicles, and the 40 channel PLL synthesised FM transceiver fully complies with MPT 130. Controls consist of on/off volume, squelch, LED
channel selector, battery check, battery saver, and anti cross modulation control. An 'S' meter and high S.W.R. indicator are also provided. the rear chassis contains, power plug, external speaker jack, aerial selector and socket and a high and low power switch.

Standard equipment includes lightweight dynamic microphone, locking mobile mounting bracket, flexible aerial, stainless steel mobile aerial complete with lead and plug, DC power lead and a carrying strap. Circle No. 6

TTL PAL

House of Instruments announce the availability of the RGB- 11 from Sadelta, aimed at the growing market for both Commercial and Hobby VDU's including Video Games and CCTV. The RGB-11 is a small hand-held Pattern Generator, offering an R/F output and in addition, Red, Green and Blue TTL or lower level signals compatible with VDU or Video Games requirements.

Ideal for the production, installation and service of Monitors and Video Displays, both Mono and Colour, the RGB-11 has 8 basic
patterns available which are: Colour Bars - Red, Blue, Green and White Rasters - Grey Scale - Cross Hatch and Vertical Lines. The internal rechargeable battery gives approximately 4 hours use from an overnight charge or can be used continuously via a mains adaptor.
The unit comes complete with rechargeable battery, connecting cable, adaptor/recharge and carrying case. It measure s a mere $131 \times 81 \times 23 \mathrm{~mm}$, weighs 220 g inc. battery, is fully guaranteed for 12 months and costs $£ 120$ (exc. VAT).

Circle No. 7

NICADS:UK'S LOWEST PRICES

Ambit's new style catalogue continues to lead the market with low prices, new items, info, $3 £ 1$ discount vouchers. In a recent supplier survey, we were one of only two suppliers listed in all categories!
There's a few examples of some super low prices.

$78 \times \times 1$ A	37 p
BC237/8/9	$8 p$
$35 K 51$	54 p
10 MHz Xtals	$£ 2$

8 Pole 10.7 MHz xtal filters
£14.50
2 GHz coax
relay 150 W
£10.95
All the "usual" stuff at rock bottom prices + Toko coils, crystal and ceramic filters, micro. metals toroids, Fairite ferrites, Alps switches, OKI LSI, Piezo sounders, RF, IF Modules + Kits

Price on the page

CAPACITY	TYPE	1.9	$10-49$
500 mAh	AA	80	74
2200 mAh	C	2.35	1.99
1200 mAh	D	2.14	2.06
4000 mAh	D	3.05	2.85
110 mAh	PP3	3.70	3.50

18W POWER

BOOSTER

Put new life into your ICE system with this remote mounting Amplifier.

Design by J. Oliver.

AS THE STANDARDS of performance offered by Domestic HI-FI systems increase, the consumer is becoming loath to accept anything but the best even in portable equipment. The standard of reproduction offered by In-CarEntertainment (ICE) systems was, until a few years ago, of dubious quality. Recently, however, manufacturers have started to produce equipment capable of very high quality reproduction for in car use.

Not only has the performance of the 'Electronics' been improved but also the specifications of the car's speakers. Today, instead of low quality 'cocoa tin' speakers, the ICE brigade are offering two and even three-way speakers that can reproduce very high levels of sound across the full frequency range.

The power amplifier stages of many cassettes/radios are, as often as not, not man enough to drive such speakers, and while the signal is of good quality, some form of 'power boost' is needed to take advantage of the current generation of speakers.
The R\&EW power booster will provide 18W of high Quality stereo sound and will provide a means of revitalising many ICE systems.

BOOTSTRAP

The power booster is designed for remote mounting in the vehicle's boot. It is built in a die cast box to provide protection from any adverse environmental conditions excuse the jargon - and incorporates a circuit that automatically switches the amplifier on when a signal is applied to its input.

CONSTRUCTION

Construction of the power booster is straightforward, there being no critical components. Pay carefull attention to the overlay of Fig. 4, in particular the orientation of polarity sensitive components.

The installation of the booster will vary from vehicle to vehicle but under the real parcel shelf is generally a good place as this keeps speaker leads short.

The booster should be connected to a fused line in the vehicles 'Aux' circuit. Be careful to connect the supply the right way round, incorrect connections will result in a blown fuse.

Applying a signal to the amplifier will automaticaly apply power, illuminating the LED, and if all is well you will be blessed with 18 W of clean power.

Power Amp IC	Connection
HA1339	Input (Pin 5)
TDA1010	Input (Pin 6/8)
LM380	Output
TDA2002	Output

Table 1 connection information for some commonly encountered power amp ICs.

Figure 1. The power booster is turned on by a DC voltage superimposed on its audio input signal. The feed to the 'Booster' should elther be taken from the existing amp's output - before DC blocking capacitor, or for better quality sound from the power Amp's input pin. See table 1 for connection details for some popular power amp ics.

18W POWER BOOSTER

Figure 2. Circuit diagram

COMPONENTS LIST

Resistors (all $1 / 4 \mathrm{~W} 5 \%$)
R1,2,3,6,7,8 47k
R4,5,9,10 2R2
R11 680R

Capacitors

C1,13 $\quad 1 \mu 0 \quad 16 \mathrm{~V}$ electrolytic
C2,5,6,14,17,18 $100 \mu 6 \mathrm{~V} 3$ electrolytic
C4,16 $\quad 1 \mu 0$ monolithic
C3,15 $\quad 47 \mu 6 \mathrm{~V} 3$ electrolytic
C7,10,19,22 $\quad 100 \mu$ 10V electrolytic
C8,9,20,21
C11,23
C12
C24 100n polyester $4700 \mu 16 \mathrm{~V}$ electrolytic $100 \mu 16 \mathrm{~V}$ electrolytic $1 \mu 0 \quad 16 \mathrm{~V}$ electrolytic

Semiconductors

IC1,2 HA1388
Q1.2 BC239
D1,2,3 1N4001
LED 1 Red LED

Miscellaneous

12 V Relay
Speakers, PCB, Case, Sockets, etc.

CIRCUIT DESCRIPTION

The power booster consists of two power amplifier ICs, their associated components and A circuit that automatically applies power to the amplifier in the presense of an input signal.

The left-hand input signal is fed via C 1 to the potential divider R2/R3. The potential divider is included to match the amplifier's sensitivity to that of the signal source it is to be used with. If necessary the sensitivity can be increased (reduce R2 in value) or decreased (increase R2).

The signal is coupled to IC1, left-hand power amp, via C4.

The HA1388 is an IC specifically designed for automotive use and features Automatic Safe area Operation (A SO),

AUTOMATIC ON/OFF CIRCUIT

A portion of the audio signal together with the superimposed DC voltage from each of the inputs is fed(Via either R1 or R6) to the Darlington pair Q1, Q2.

The DC content of the signal these transistor will turn on, energising RLA apply power, from the vehicle's battery, to the amplifier.

Removing the signal will, after a short delay due to the charge stored on C24, cause Q1 and Q2 to turn off, removing power from the circuit.

Thermal Shut Down (TSD) as well as comprehensive surge protection circuitry it has a relatively high external component count but does achieve unconditionally stable operation in a car's electrically hostile environment

The capacitors C5 and C6 provide an AC signal path from the inverting terminals of the two internal 'bridge' amplifiers to ground while blocking DC. C2 provides ripple rejection, C3 determines the ASO while C7 and C10 are bootstrap capacitors. C8, C9, R4 and R5 form a zobel network that ensures stability at all frequencies.
Capacitor C11 decouples the amplifier's supply.
The operation of the right-hand channel's amplifier is identical.

D2 is included to prevent the back EMF, generated as the field in RLA's coil collapses, causing damage to Q1 on Q2.

D3 is included as a 'brute force' protection against incorrect connection of the supply - connecting the supply in reverse will 'blow' the vehicle's fuse.

Figure 3. PCB foil pattern

Figure 4. The power booster's overlay

REPAIR THAT OLD BLACK AND WHITE TV
with the aid of the best seller
"TV FAULT FINDING"

(more than 200,000 copies soid)

5th Edition
Edited by J R Davies
132 pages

Over 100 illustrations, including 60 photographs of a television screen after the appropriate faults have been deliberately introduced.

Comprehensive Fault Finding Guide cross-referenced to methods of fault rectification, described at greater length in the text.

Price ONLY $£ 1.50$ (inc P\&P)

Make remittance payable to:
RADIO \& ELECTRONICS WORLD
DATA PUBLICATIONS
45 Yaading Avenue,
Rayners Lane,
Harrow, Middlesex HA2 9RL

COMPUTER AND 4-COLOUR PRINTER

Then Computer approaches the Personal Computer in ability. Add the revolut your briefcase!
and a cassette recorder and you have a complete, battery powered, Business Computer Sy

SHAR CE-150 4-colour Graphic Printer $\mathbf{£ 1 3 0 . 3 9}+$ VAT:
Total £149.95

SHARP PC-1500
'Basic' Pocket Computer
£147.78 + VAT;
Total £169.95

Price includes SECURICOR 24 HOUR DELIVERY*.
Same day despatch, subject to availability.

BUSINESS APPLICATIONS

Quick and accurate data processing in daily business. Estimates, records and charts of sales, salaries, invoicing and all other data crucial to efficient business operations can be easily programmed, calculated and summoned.

ENGINEERING APPLICATIONS

Technical calculations in fields such as mathematics, statistics, measurements and mechanics are done superbly and easily. The calculator more than meets the requirements of engineers and scientists.

MANAGEMENT APPLICATIONS
Balance sheets, so crucial to management analysis, and profit calculations by break-even point analysis are instantly yours with the PC-1500. By using the integral clock, calendar and alarm functions, this computer can also be used as a schedule reminder.

BASIC LANGUAGE

The most simple computer language is used for programming ease. Additional BASIC terms provide variables including two-dimensional arrays, variable strings and many other advanced features. LARGE MEMORY
16 K bytes of ROM and 3.5 K bytes of RAM, with 2.6 K bytes in the user area. Adding the optional CE-151, 4 K byte memofy module, expands the RAM to 7.5 K bytes. An 8 K byte memory module will be available soon. The PC-1500 is battery powered and program and data memories are fully protected, even when switched off. MINI-GRAPHIC DISPLAY
The 7×156 dot matrix allows almost any display, including game symbols. Line width is 26 characters and/or numbers. HIGH SPEED DATA PROCESSING
The C-MOS 8 -bit CPU enables swift data processing. Complicated technical or business calculations require far less time.
OWERTY TYPEWRITER KEYBOARD
The first in a pocket computer. Lower case letters are available. With the optional CE-150 colour graphic printer, the PC-1500 can serve as a small personal typewriter. Word Processor software will be available soon.
SIX SOFTWARE KEYS
These can serve as reservable keys, or as definable keys to define programs.
CE-150 4-COLOUR GRAPHIC PRINTER/CASSETTE INTERFACE Automatic program, data and calculation printing. It prints virtually any drawing in either red, black, green, or blue. Characters are printed in nine different sizes and in lines ranging from 4 to 36 digits in length. You can control the printer completely and direct the printing either up, down, left, or right. As a cassette interface it will connect up to two cassette recorders, one for data and program storage, the other for their recall. The CE- 150 has a built-in rechargeable battery and is supplied with a mains adaptor, type EA-150.
AVAILABLE SOON

- RS-232C interface. - Software board to serve as input keys in graphics, or pictures, previously drawn on a template. "ROM (MASK ROM) module also applicable. - A wide range of business software. DIMENSIONS
PC-1500: $195 \mathrm{~W} \times 25.5 \mathrm{H} \times 86 \mathrm{~mm}\left(7-11 / 16 \times 1 \times 3-3 / 8^{\prime \prime}\right)$ Wi 375 g (0.831b) CE. $150: 330 \mathrm{~W} \times 50 \mathrm{H} \times 115 \mathrm{Dmm}$ ($13 \times 2 \times 4$ inches). Wt 900 g (1.981bs). Full 12 MONTHS guarantee, with EQUIPMENT LOAN SERVICE during downtime.
- SAME DAY DESPATCH of orders - Systems by SECURICOR 24 hour service, (to attended premises only) or by first class registered post. AT NO EXTRA COST'
SEND FOR FULL DETAILS to TEMPUS, the Portable Computer Specialists.

HOBBY APPLICATIONS

Many popular computer games can be played, including Blackjack, utilising the random number function. Use the clock and alarm for speed games. The Computer Graphics will draw virtually any pattern.

LH1605 SWITCHING RECULATOR

The LH1605 is a hybrid switching regulator with high output current capability. It incorporates a temperature-compensated voltage reference, a duty cycle modulator with the oscillator frequency programmable, error amplifier, high current-high voltage output switch, and a power diode. The LH 160 S can supply up to 5A of output current over a wide range of regulated output voltages.

Remote Sensing Connection

If the load is removed from the board, both the OUT SENSE and GND SENSE terminals should be connected via 'sense' leads to the OUT and GND terminals of the load. this minimizes the effect of voltage drop due to line resistance to assure full output voltage across the load.
The sensing lines should be shielded cables with the shield grounded at the regulator end to avoid noise pickup. The cable need not be heavy gauge wire as little current flows through it.
One caution should be exercised when the application has long leads. Voltage drop in the high current leads reduces the differential voltage between the input and output. To insure regulation, the minimum 5 V input-to-output differential must be preserved.

Input Voltage Requirements

The board is designed to accept any DC voltage, requlated or unregulated, within the range of 10 to 25 volts. Almost any high output regulated DC power supply with the capability of over 3 A output can be used. Beware that the high current switching can cause disturbance in the power supply, and be sure that the supply voltage does not drop below 10 volts. Some DC supplies will have difficulty in maintaining regulation; but as long as the board sees a minimum of 5 volt differential between its input and output, the switching regulator will perform normally.
Since the conversion efficiency of the switching regulator stays relatively constant within the normal input voltage range, and the ripple rejection is better than 60 dB , selection of the transformer and filter is far less critical than that required for linear regulators. Power line variations have little effect on conversion efficiency, therefore thermal characteristics are much more predictable.

Figure 1: Circuit Diagram.
Although the LH1605 can operate within an output range of +15 V to +30 V , the output filter circuit for a switching regulator requires a design tailored to a specific set of operating conditions in order to optimize the inductor core size without risk of core saturation. If the output voltage or current is operated beyond the normal range, the inductor must be changed in order to preserve the expected performance.
The board is designed for +5 V output at 3 A continuous current up to $+70^{\circ} \mathrm{C}$ ambient temperature without the need for derating. The output voltage may be adjusted over a range of about $+/-12 \%$ by adjusting potentiometer R1 on the PCB.
Since the total resistance of resistors R1 and R2 determines the output voltage, the regulator can be programmed to operate at other voltage levels by replacing the fixed resistor R2

As mentioned above, when an output parameter of the regulator is changed, be sure the inductor design is suitable in the new operating conditions.

Output Protection.

Although the LH1605 has no output protection against short circuits, external current limiting has been incorporated in the R\&EW board. The limit threshold is set at approximately 4.5A. Take care not to operate the regulator near the limit for a sustained period of time as the power

Block Diagram

Figure 2: Board Connections for 'Normal Mode' Operation.

THE EVALUATION CIRCUIT'S SPECIFICATIONS

Input Voltage Range
Maximum Input Current $V_{I N}=10 \mathrm{~V}$, Io $=3 \mathrm{~A}$
Maximum Short-Circuit Input Current
Maximum input Current $V_{I N}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=3 \mathrm{~A}$
Maximum Short. Circuit Input Current
Output Voltage $T_{A}=25^{\circ} \mathrm{C}$
Output Voltage Adjustment Range
Output Current Range
Output Current Limit TA $=25^{\circ} \mathrm{C}$
Operating Frequency
Line Regulation
Load Regulation
Output Ripple $\mathrm{V}_{1 \mathrm{~N}}=10 \mathrm{~V}, 10=3 \mathrm{~A}$
Efficiency $V_{I N}=15 \mathrm{~V}, \mathrm{IO}=3 \mathrm{~A}$
Operating Temperature (no derating)
$10 V$ to $+25 V$
2.9 A
4.0 A
$+5.0 \mathrm{~V}$
4.38 V to 5.62 V (typ.)
1A to 3A
4.5A (typ.)
50 kHz
10 mV
30 mV
$50 \mathrm{mV} \mathrm{V}_{\mathrm{p}-\mathrm{p}}$
72% (1yp.)
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
ABSOLUTE MAXIMUM RATINGS

$V_{\text {IN }}$	Input Voltage	35 V Max.
lout	Output Current	6 A
T_{J}	Operating Temperature	$150^{\circ} \mathrm{C}$
P_{0}	Internal Power Dissipation	20W
$\mathrm{T}_{\text {A }}$	Operating Temperature Range LH1605C LH1605	$\begin{array}{r} -25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{array}$
$T_{\text {StG }}$	Storage Temperature Range	$-65^{\circ} \mathrm{C} 10+150^{\circ} \mathrm{C}$
$V_{\text {f }}\left(V_{8-7}\right)$	Steering Diode Reverse Voltage	60 V
Io (I_{7-8})	Steering Diode Forward Current	6 A

Figure 3: PCB Foil Pattern. Only one side shown, PCB available from R\& EW Project Pack Service - See page 58.

Figure 6: Step-down Switching Regulator Block Diagram.

Figure 7: Waveforms associated with a step-down switching regulator design.
dissipation may cause the junction temperature to rise beyond a safe level. This is especially critical at high ambient termperatures.
The current limiting circuit consists of Q1, Q2, R4 and R5. Resistor R5 senses the output current. When the voltage across $\mathbf{R} 5$ reaches 0.6 V , transistor Q1 begins to turn ON and drives transistor Q2 ON. Q2 collector tends to pull the reference voltage at pin 2 low, reducing the switching duty-cycle such that the total current is limited to the maximum set by the threshold.

Note that this current limit sensing technique is accurate only to within about $+30 \%$ over the $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ ambient temperature range. Since the threshold temperature coefficient is approximately $-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$, the higher the ambient temperature, the lower the current limit threshold.

THEORY OF OPERATION

The switching regulator in the Evaluation Board is based on the step-down series-pass design. The block diagram is shown in Fig. 6 The switch S turns ON and OFF at a fixed frequency, but the duration of the ON time is variable as a function
of the load. When the switch S is closed, diode D is reverse biased, and current flows though the inductor L to the load and charges the capacitor C.

When switch S turns OFF, the inductor voltage rises in an attempt to sustain the current flow until the steering diode is forward biased. Once the diode turns on, the inductor voltage at the input side is clamped to a diode voltage below ground. The inductor current is allowed to flow around the loop formed by the diode, inductor, and capacitor/load. the energy stored in the inductor is then transferred to the capacitor and the load.
The error amplifier constantly compares the output voltage against the reference voltage Vref. The difference is amplified and is used to modulate the duty cycle (switch ON-time). The duty cycle increases as the error increases, and vice versa. As the output voltage rises to Vref, the duty cycle settles to a constant pulse width at equilibrium. At this point the net energy transferred across the switch just equals that consumed by the load. Output is regulated to a voltage Vref.

If the load increases, the output voltage tends to drop. The increased error signal is amplified and affects the pulse width modulator to increase the duty cycle, forcing the output voltage back to Vref at equilibrium. The same mechanism operates in reverse for the case where the load is decreased. Therefore, load regulation is maintained.

Similarly, if the input voltage increases, the inductor voltage also increases during switch ON. time, causing the inductor current to rise. Correspondingly, the output voltage tends to rise. Once again, the negative feedback works to reduce the duty cycle until the output voltage equals Vref. Line regulation is maintained. At the new equilibrium, the net energy transferred remains the same. Therefore, the total power consumption is relatively independent of input voltage change.

Figure 7 illustrates the waveform characteristics of this type of step-down switching regulator.

RF TRANSFORMERS

In this article, the first of an occasional series, Michael Graham looks at Monofilar types.

WIDEBAND RF TRANSFORMERS are finding increasing use in a variety of communications systems. Schottky diode mixers, combiners and, in particular, the 'broadband amplifier' have all contributed to the increasing applications for such wideband transformers.

SUCK IT AND SEE

The essence of most design techiniques involves a lot of trial and error, an approach that seems to be the one most commonly encountered amongst RF engineers. As often as not an engineer will select a core that looks as if it 'might do', winds the transformer and installs it in the circuit. If its performance is unsatisfactory a tedious process of adding or removing turns ensues with perhaps changes in wire gauge or core size. Eventually something which will do the job results but rarely will this be a truly optimum design.

IN A TWIST

The most common approach to the implementation of a wideband transformer is the twisted line transformer, wound on a high permeability ferrite core. Beware of confusing ferrite with dust iron when it comes to toriods for while dust iron is ideal for EMI suppression and for resonant applications by virtue of its inherent airgap effect, the broadband transformer relies on a high permeability material to achieve the tight overall magnetic circuit required for optimum coupling at low frequencies. At high frequencies the transmission line effect of the tightly twisted conductors predominates while the effect of the cores permeability decreases.

If the prospect of trying to estimate the impedance of twisted pairs of 32 SWG may leave you a shade less than enthusiastic however, then the wideband autotransformer may be a good place to start.

ONE WIRE WONDERS

Although apparently not widely recognised, it is not always necessary to employ multilayer windings in autotransformers. In low power applications, the core is often small enough to ensure adequate interturn winding 'intimacy' and a monofilar design can give excellent results. We'll look at some practical aspects of such designs later but first a look at some of the important parameters of RF transformers is in order.

SPECMANSHIP

One important measure of an RF transformers performance is its bandwidth, often graphically presented as a plot of the transformer's transmission loss vs frequency. Fig. I shows a possible plot for a broadband transformer, the bandwidth being F2-F1.

As with any bandwidth figure, the two frequencies between which the bandwidth is quoted are rather arbitrarily determined, and any meaningful specification must be accompanied by the corresponding transmission loss limitation.

The other important quality of a transformer that must also be specified are its reflection characteristics. This specification defines the quality of the transformer's impedance transformation over the frequency range of interest.
Figure 2. shows a model of a transformer in terms of its 'lumped' constants.

Figure 1: Typical transformer transmission loss vs. frequency.

Figure 2: Transformer lumped element equivalent circuit.

Figure 3: Ideal 1:4 autotransformer.

Figure 4: Simplified equivalent circuit of practical 1:4 autotransformer.

Figure 5: Smith Chart presentations.
From this it can be seen that the transformer's low frequency performance will be determined by Lp and, to a lesser extent, by Rp. High frequency performance will be determined by the Ll and Cd as, with increasing frequency the reactance of Ll will increase while that of Cd will fall.

Over the majority of the transformer's bandwidth, its insertion loss will be due to Rp and Rc with Rp being the dominating factor.

COMPLEX NUMBERS

The parasitic elements of Fig. 2 do more than merely cause losses, as they willalso affect the value of the impedance reflected from the secondary to the primary.

Figure 3 show an ideal 1:4 autotransformer and, with its secondary terminated with a 200 R load, the impedance measured at the primary terminals will be 50R.

Figure 4 shows the same 1:4 transformer but has the parasitic elements of Fig. 2 lumped into a single network. With the 200R secondary load, the impedance seen at the primary will now no longer be a resistive 50 R , but a complex impedance. the scaling factor of the transformer is no longer 4 , but some complex factor $a+j b$. The object of the transformer designer is to get ' a ' as close to 4 as possible and b as close to zero.

Figure 7: Swept transmission loss test set-up.

Figure 6: "Back-to-back" transmission loss test set-up.

NOTHING'S PERFECT

A practical transformer thus exhibits an insertion loss and variation in the impedance scaling factor. In order to specify the performance of a transformer some means of measuring the variations of these 'qualities' with frequency is needed.

Any analysis of complex impedances would not be complete without the ubiquitous Smith Chart and an autotransformer's reflection characteristics could be specified by measuring the complex impedance at various frequencies and plotting the results as in Fig. 5 (pass the network analyser).

A more practical approach would be to assess the transformer's reflection profile from VSWR measurements at various frequencies. A practical autotransformer may have a VSWR of, say 1.5. This would define a locus of points on the Smith Chart as shown in Fig 5. The exact point on the VSWR circle that represents the complex impedance cannot be determined however, as this would require details of the phase angle of the voltage with respect to current. Back to the network analyser.

From transmission line theory we know that the voltage reflection coefficient Q is given as

$$
\rho=\frac{Z_{r}-Z_{O}}{Z_{r}+Z_{O}}
$$

Where $Z r=$ The autotransformer's input impedance $Z o=$ Reference impedance
As $Z r$ is a complex quantity, ρ is likewise complex. $Z o$ is assumed to be real.

The magnitude is given by

$$
|p|=\frac{r-1}{r+1}
$$

Figure 9: Parallel impedance per turn Vs frequency for Fair-Rite 65 material.

Figure 10: Parallel reactance per turn Vs frequency for Fair-Rite 65 material.

Figure 11: Parallel resistance per turn Vs frequency for Fair-Rite 65 material.

Where there's VSWR, there's return loss and this is given by

$$
\text { return loss }(d B)=20 \log _{10} \frac{1}{|\rho|}
$$

Although measurements of VSWR, the voltage reflection coefficient and return loss do not provide any phase information, they do provide a convenient way of specifying reflection characteristics, and they can be measured with the sort of test equipment that is more accessible to engineers and enthusiasts.

MEASURING UP.

The most convenient way of measuring transmission quality is to place two identical autotransformers in a back-to-back configuration as shown in Fig. 6 the equipment required is a signal generator and a 50R power meter. First the generator is connected directly to the power meter to determine the zero loss reference level P1.

The back-to-back transformers are then interposed between the generator and power meter and a second power level, P_{2}, is noted. The insertion loss for each autotransformer is given by

$$
\text { Insertion Loss }=\frac{P_{2}-P_{1}}{2}
$$

The back-to-back method may not be very 'pure' in theory, but in practice the results obtained with this technique show good agreement with other, more direct, means of insertion loss measurement.
Figure 7 shows a practical set-up for swept transmission loss measurements and providing all lead lengths are kept to a minimum, excellent results over a wide range of frequencies can be obtained.

TIME TO REFLECT

Reflection measurements are made by using a set-up similar to that shown in Fig. 8. As discussed earlier, these are based on VSWR measurments and the one unusual component shown in Fig. 8 is the VSWR autotester, a device that produces a DC output voltage proportional to Q (shades of the $\mathbf{R \& E W}$ 'Autobridge' published last month). The logging amplifier is included to display the return loss in dB as a function of frequency.

THEORY INTO PRACTICE

The type of core best suited to monofilar autotransformer designs is a two-hole ferrite balun core.

Nominal Z Ratio "Primary" Turns "Secondary" Turns

$1-1.5$	4	5
$1-2$	5	7
$1-3$	4	7
$1-4$	4	8
$1-5$	4	9
$1-6.25$	4	10
$1-7.5$	4	11
$1-9$	12	
$1-16$	4	16

Note: "Primary" refers to number of turns from tap to ground. "Secondary" refers to number of turns on entire winding.

Figure 13: Transmission loss and VSWR.

Figure 14: Transmission loss comparison.

Figure 15: VSWR comparison.

In such designs, to obtain different impedance transformation ratios it is only necessary to select a turns ratio according to the formula:

$$
Z_{t}=\left[\frac{N_{s}}{N_{s}}\right]^{2}
$$

MATERIAL MATTERS

Referring back to Fig. 2 we note that the important factors when selecting a particular material on which to wind an autotransformer
are not the traditional initial permeability and loss factor figures as these are the result of measurements on a core expressed as though it were a resistor and inductor in series. The type of information required concerns the behaviour of the core when treated as a resistor and inductor in series.

The figure often referred to as the material cutoff frequency is also of little concern in wideband autotransformers. This figure is the point at which series permeability has dropped a signficant amount from its low frequency value. For wideband transformers the important quantity is the parallel inductive reactance (LP) which is, to a good approximation, the series permeability multiplied by frequency. Thus although permeability becomes less with increasing frequency, Lp either increases or remains constant and the material still forms a useful wideband transformer.

To select a material it is thus necessary to have information on the parallel components of the magnetic parameters such as parallel inductive reactance, Lp and parallel resistance, Rp , as a function of frequency. Figs. 9 to 11 show such curves for Fairrite 65 material (Neosid F16, Philips 4C6).

THE SHAPE OF THINGS

It has been mentioned that the most suitable core for a monofilar autotransformer is the two hole balun core (Fig. 12). It would be useful to have a measure of any particular core's value as a wideband transformer. Such a number can be generated and is known as the core's Form factor. The lower this number, the wider the frequency range of the finished transformer.

The form factor is defined as

$$
\text { FORM FACTOR }=\frac{1 \mathrm{w} 1 e}{\mathrm{Ae}}
$$

$l w=$ length of one turn of wire
le $=$ effective magnetic path length
Ae $=$ effective magnetic area

CLOSING TIME

A graph of a typical monofilar autotransformer's performance is shown in Fig. 13 while Figs. 14 and 15 compare the performance of three different forms of construction. It can be seen that the monofilar autotransformer offers superior performance to those employing standard toroids and multifilar windings.

The above has hopefully shown, that with the right information to hand, the design of an autotransformer need not owe anything to guess work. A systematic approach to the design should enable an optimum transformer design to be realised in a fraction of the time needed for a 'suck it and see exercise'. It's also a lot easier on the nerves.

Figure 16
Parallel impedance per turn for a Balun Core in three materials.
-R\&EW

Your Reactions

Circle No.
Circle No.
Immediately Interesting 68 Not Interested in this Topic 70
Possible Application 69 Bad Feature/Space Waster 71

for bread-boarding and test equipment

Tomorrows tools for todays problems

GLOBAL SPECIALTIES CORPORATION

G.S.C. (UK) Limited, Dept. 35BB Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AQ.
Telephone: Saffron Walden (0799) 21682 Telex: 817477

Transistor/Diode Checker

- design by J. C. Barker.

THIS IN-CIRCUIT transistor/diode checker, to use modern parlance is very 'user friendly' and ergonomically designed. The facilities include:-
1)Automatic turn-on in use, and indication that it is working correctly.
2)Checks pn junctions without the necessity of constantly reversing the test leads or looking away from the circuit board to a meter reading.
3)Turns off when not in use.

Referring to Fig. 1; when not in use, ICld output is low and neither ICla nor IClc oscillates. Q1 is turned off, and no current is supplied to the four electronic switches. In this mode the unit consumes negligible current.

When in use, points $A \& B$ are bridged by a finger, and ICld's output goes high, which enables ICla to oscillate slowly. Q1 is now turned on which supplies power to the four switches. ICla and IC1b supply antiphase slow clock pulses to the switches, which turn on either S1\&S2 or S3\&S4 alternatively, thus constantly reversing the supply polarity to the test probes.

With nothing connected to the probes IC1c is enabled, which oscillates, sounding the piezo buzzer, indicating all is well. When the probes are short circuited the tone stops. If a pn junction is connected across the probes a pulsed tone is now heard, indicating a good component.
Construction of the unit is not critical and can be made up on PCB or vero board. The only point to note is the make up of
one of the test probes.
Referring to Fig. 2, two insulated lengths of fine wire are laced to one of the test probe leads, and connected to points A\&B in the main diagram. When the tester is in use, the two exposed wires are touched with a finger which turns the unit on.
-R\&EW

Figure 2: Details of Probe Construction.

COULD OSCLIOSCOPSS SFA AHCMFRGRNDAID

ThenewGould OS300 Dual Trace 20MHz'Scope
 A tough, professional instrument you can trust - at a price you can

 afford! * Max. sensitivity $2 \mathrm{mV} / \mathrm{cm}$. * Stepped and continuously variableattenuator and timebase controls. \star D.C. coupled triggering and "active" T.V. sync separator. * 'Add' and 'Invert' for differential measurements. $\star X-Y$ facility. Built to do more - safely, reliably and for longer.Ask for our 8-page data sheet for full details and applications

Electronics \& Electrical Products
Gould Instruments Division
Roebuck Road. Hainault. Ilford. Essex IG6 3UE Telephone: 01-500 1000. Telex: 263785 information.

RAE: The HO answers...

Dear Sir,
We were interested to see your proposals for changes in the arrangements for licensing amateur radio operators. As to the RAE run by the City and Guilds Institute, the nature of the examination itself is, of course, a matter for the Institute. Under the International Radio Regulations we are required to satisfy ourselves as to the technical qualifications of any person operating an amateur radio station.

We require applicants for an amateur radio licence to pass the RAE as this clearly establishes an easily identifiable and acceptable standard for all applicants. Once this criterion has been satisfied, it is not clear what purpose would be served by making the examination more arduous. One possible consequence of doing so would be to increase the amount of unlicenced operation. Certainly we have no evidence to suggest that the standard presently required by the Institute was anything else than to ensure that successful candidates are suitable persons to pursue a course of self-training in radio communication while operating within the terms of their licences. It is also a requirement of the International Radio Regulations that any person operating an amateur station should have proved that he is capable of sending correctly by hand and receiving correctly by ear texts in Morse code. Administrations may waive this requirement in the case of stations which make use exclusively of frequencies above 30 MHz . Where bands are shared and more generally in the HF bands where signals can reach great distances, it is essential that an amateur interfering with another station should be able to read signals from that station so that he can know he is causing interference and can take remedial action. Despite the advent of equipment which is capable of sending and receiving Morse automatically, we do not consider that a compelling case has so far been advanced which suggests that by abandoning the Morse test we would not be risking serious difficulties. For this reason we do not at present propose to abandon the Morse test.

The fees for amateur licences were last increased in January 1981 to meet rising costs and to avoid a loss to public funds. Licensees are examined each year and adjustments are made as necessary to cover the cost of administering the licensing system. The period for which amateur licences are valid is a point which we are considering as part of the current review of the licensing structure being carried out by the Department.

P N McDonald

Home Office
Dear Sir,
On the subject of Morse for the Radio Amateur, might I suggest you add to your kit the possibility of a form of incentive licensing for the UK based on more power and more bands to more highly 'qualified' amateurs. The abilities required for technical examinations and for morse operation are clearly so different that two alternative, parallel paths to qualifications could be offered.

As a base point, nobody should be allowed on the air without sufficient technical knowledge to avoid causing a nuisance to other operators or causing TVI etc. From this stage, 'points' could be earned by passing technical exams or morse tests, or of course, both. More 'points' would earn more bands and/or more power allowance.

Any new scheme must follow on from the present arrangements, and this one will. Class A licensees will continue as at present, although conceivably an increase in power could be allowed for achieving 'points' in an advanced test. In practice, this would legalize the very high power run by some stations already rather than increase the power used on the bands; after all. who buys 1 kW linears and cuts them back to 400W PEP.
Class B licensees should have the option to continue as now, or operate at low power on HF phone. CW should be allowed after passing a 5 wpm test 'Comprehensive Only' as in the US i.e. a standard good enough to ensure basically sound procedures, but easy enough for all (i.e. even mel). The points system would then apply up to the highest of about, say, 4 levels of competency, measured by technical knowledge or CW speed. This would enable the technically competent to attain the maximum benefits from the permit of amateur radio, but would not deny the value of CW.

It is deplorable that, while the standard required in the technical examination has declined in recent years, the CW requirement has maintained the relatively high level of 12 wpm . Other countries have either no test, or a basic 5 wpm test, often receiving only and requiring comprehension of the message but not a verbatim transcript.

Incentive licensing would dramatically improve the technical standard of the 'average' amateur and would ensure that the hobby remains an interesting mixture of possibilities for both the technical and the operators.
PHS
Northents

Never mind the width.....

Dear Sir,
I must admit l've never seen or read ar electronics journal as good as yours ever before. It is by far the best electronics journal available on the bookshelves today. I have, however, one criticism to make. If you refer back to your March issue, on page seven it says, and I quote;
'Those extra pages are not provided simply on a 'one issue only' basis, but are intended to be a permanent feature of ALL future editions of the magazine.'

I was rather disappointd when, last week, I bought the May issue of R\&EW and found that it had got thinner. 'What's this?', I thought, when I picked it up. 'It can't be R\&EW can it?' Well you can imagine my surprise when I found out that you had gone back to your original 96 pages. I had to count each page, just to make sure I was not an Aprit fool.

Well that's enough about the bad points of your nearly perfect magazine. Two of the features I particularly enjoy reading are the Data Brief and Circuit Blocks. These are very helpful when I am trying to design my own circuits, for a change.

While looking through your past editions I noticed that you have not covered much test equipment in your constructional projects. May I suggest a few. How about a digital multimeter, or maybe an oscilloscope. Anyway t'd just like to congratulate you on a fantastic magazine, despite its size, and wish you the best for the future.
KB
Nuneaton

R\&EW:

Well, we're very sorry about the drop in pages, but we have had a few problems with production schedules that have affectively put us back an issue in terms of lead-time. Nevertheless, we hope that we have maintained the number of editorial pages at an acceptable level,' and will be reintroducing the fatter issue size in time for the autumn 'season'. Readers are beginning to help a great deal by submitting features that meet with requirements of style and content, and we look forward to receiving many more.

Dear Sir.
Having taken your magazine since it first started, and been pleased with the contents, I have had nc real complaints... until now.

Although it is not the sole reason I buy the magazine, I always turn to SW News from Frank A Baldwin, being a Short Wave listener, and always find some useful information. However, the format has been changed this month (May 1982) to try to provide a more balanced view of all radio activities.

Firstly, I don't like the idea of the SW News and tips being shortened, as very few tips means it is hardly performing its function.

Secondly, if a more balanced view of the radio spectrum is aimed at, devote more space so a proper job may be done of it. Little bits and bobs are of no use to anybody and I certainly do not find a column on what CB fanatics decide to call themselves in the slightest bit interesting. I realise space is at a premium, in a magazine but 1.5 pages is not enough to do justice to such a wide subject as you are attempting.

I hope the column is not how it will continue in future issues but just a temporary thing, and will return to plain old short wave news.

One more thing, I note several letters asking for features for future issues. How about another to add to the list, inside 'Frank Baldwins Shack'. I would be very interested to know what equipment he uses, and some general background as to how he goes about DXing, etc. SS
Market Harborough
Dear Sir,
Having read your review of the SMC OSCAR 1 CB rig, I am taking up your invitation to write to you 'if I know better'.

The main board, PTBM134AOX, is used in at least two other rigs to my certain knowledge, namely the YORK JC8863 (SULKIN) and the BINATONE 5-STAR. These two rigs, along wih the SMC, appear to be very similar, with minor differences concerned with the front panel arrangement. I note that the OSCAR rig differs from the other two rigs in having a 5 -pin DIN microphone plug/socket, normatly considered to be inferior by the CB cognoscenti, as the plug is likely to part company with the rig at awkward moments.

I, too, was surprised by the Delta-tune circuit arrangement when | first studied the circuit diagram, but haven't noticed any undue problems attributable to this implementation. JM
Wokingham

R\&EW:

Thanks to all those who responded to this feature. We have learned of some 25 'look alike' rigs based around the Cybernet chassis, and conclude there must be a few more still. This neatly highlights the oft stated fact that there are basically 5 chassis in the entire CB industryl

£169inc. VAT (P\&P E2.50)

MML144/100-LS
MTV435
144MHz 100 WATT LINEAR \& RX PREAMP
(appearance as 30 Watt model) 100 WATTS OUT FOR 1 OR 3 WATTS INPUT ON 144 MHz . features

- 100 WATTS RF OUTPUT SUITABLE FOR 1 WATT
- OR 3 WATT TRANSCEIVERS - STRAIGHT THROUGH MOOE WHEN TURNED OFF - ULTRA LOW NOISE REGEIVE PREAMP (3SK8B) - EOUIPPED WITH RFVOX

This new tro stase 140 MH z soliditiate linear smpliter hus oren introduced as a result of the lasee number on fiow power with suer transce vers this unlt will provide an output of 100 walts
Several front panel mounted switches controlling the Sowerch ront panel mounted switches controling the
iwithing circuitry Alow the unit to be loft in circuit al
 promp cam ooth De independenty switched in ond out of
eircule in thin woy mexumum versathity and flexiblity is eircuit in thin woy maxumum versathity ond
araildobe to the user al the lifek of o swiret.
USE THIS NEW AMPLIFIER WITH YOUR FTZ9OR, CS8, TR2 300 atc. AND MAVE MOBILE OR BASE
STATION PERFORMANCE
£145inc. VAT (P\&P £3)

435 MHz TELEVISION TRANSMITTER

FEATURES:

- 20 WATTS PSP OUTPUT POWER
- BUILT IN WAVEFORM TEST GENERATOR - TWO VIDEO INPUTS TEST OEREATHER - TWO ChANNEL USING PLUG-IN CRYSTAIS This high pefformance $A T V$ transmiter consing of two channel exciter, video modulator and siwo trage 20 watt linear amplifier. The unit will accept both col and monocthrome signals, and a syne oulse clamo is in. corporated to ensure maximum outpur. An internar, pin
diode aerial c/o switch allows connection in diode aerial c/o switch allows connection of the aerial to
a suitable receive converter when in the receive inode. (MMC435/600- £27.90). Full transmit/fecerive switchin is included together with an internal waveform test generator which will assist the user in adjussing the gain
and black level convols.

E149inc. VAT (P\&P £3) ALL MICROWAVE MODULES PRODUCTS ARE FULLY GUARANTEED FOR 12 MONTHS (including PA Transistors)
SPACE PERMITS ONLY A BRIEF DESCRIPTION OF THESE NEW PRODUCTS HOWEVER A FULL DATA SHEET IS AVAILABLE FREE ON REQUEST. OTHER NEW PRODUCTS INCLUDE
MMS2 - ADVANCED MORSE TRAINER

MML28/100-S - 10 METRE 100 WATT LINEAR/RX PREAMP

- £155.00 inc VAT (p\&p £2.50)

MMK 1691/137-5 - 1691 MHz WEATHER SATELLITE CONVERTER

OUR ENTIAE RANGE OF PROOUC TS WILL BE EXHIBITED ANO ON SAL AT MOST OF THE 1932 MOBILE RALLIES BY OUR SALES TEAM

HOURS:
MONDAY FRIDAY
9-12.30; 9 - 5.00

G4JDT HARVEY
 EAST LONDON HAM STORE
 G8NKV DAVE
 H. LEXTON LIMITED

RADIO \& ELECTRONIC ENGINEERS
ENGINEERS ALWAYS AVAILABLE ON THE PREMISES

D200S $2 \mathrm{mtr} 400+$ FM 1kW PEP
D200 2mtr 300 + FM 600W PEP
D200C 2mtr 125W FM 190W PEP

GASFET MASTHEAD PREAMPS

DRESSLER AMPLIFIERS

EXCLUSIVE TO US

£500.00
£600.00
£495.00
£295.00
These High Power 240 V linears using $06 / 40$ or 4 CX 250 or $4 \mathrm{C} \times 350$ EIMAC tubes not using grounded grid system fully protected, no thermal damage to PA final possible

VV700GAAS VV200GAAS VV2000GAAS VV interface $0.7-0.9 \mathrm{~dB}$ S-Ns 0.2 dB insertion loss 3 3K97 GAASFET

Also Available: ICOM YAESU TRIO/KENWOOD STANDARD DATONG MICROWAVE MUDULES JAYBEAM CUSHCRAFT
ALL ACCESSORIES AVAILABLE - PLUGS SKTS CO-AX 2MTR COLINEAR $\mathbf{8 3 1 . 5 0 , 7 0 C M ~ C O L I N E A R ~} \mathbf{5 3 1 . 5 0}$
Access

THE GIANTS OF the Japanese electronic industry are starting to enter the micro computer battle field with a vengeance. We've seen the Sharp and Casio machines over here, the States have additional representives of (far)eastern promise including a Hitachi machine and the recently released Sony SMC- 70.

SONY'S STORY

The SMC-70 is a business orientated machine and, although the model is too new to have been assesed by any impartial parties, there seems no reason to doubt Sony's claim that the machine has been designed to the high engineering standards associated with other Sony products. Expertise from all wings of the Sony empire has been applied to the computer, in particular the video interface capability of the SMC-70 seems to owe much to Sony's long experience with TV systems.

The system has been designed to make effective use of industrial video disc systems and, if our interpretation of the Press Release is correct, will allow computer generated displays and video frames to be superimposed on the same screen - a unique and powerful feature that would enable impressive graphic displays to be produced.

The SMC-70 incorporates its own $12^{\prime \prime}$ monitor, either black and white or a colour system using a Trinitron tube.

The machine is Z 80 based and Sony have licensed the CP / M operating system ensuring that there will be no lack of software for the machine.

A number of plug-in units based on a design that Sony claim eliminates the problems of inserting exposed circuitboards into a computer, problems that ZX81 owners know all about. Plug-in modules include a 16 bit processor, RS-232 interface, IEEE card, battery back up unit any additional memory to complement the basic models 64 K .
The computer incorporates Sony's 3.5° micro floppy drive, recently licensed by Hewlett Packard for use in some of its computer equipment - a good recomendation indeed. The machine is small in size, 366 mm wide x 90 mm high x 444 mm , and light at 10.5 pounds.

The SMC-70 firmware includes a Rom diagnostic routine that checks the machines functions after power up. The system can also be instructed to 'fetch' its first instruction after switch on from either the ROM, the disc or an external ROM pack.

This month Gary Evans has news of Sony's entry to the micromarket place and of a gathering of the Commodore Clan.

The system thus doubles as a powerful business computer, an area in which it faces much competition, and as a powerful aid to the production of video software, in which role it has the field to itself.

The basic system includes the computer, the built in SMC - 7012 dual micro floppy disk unit, the SMI-7020 dot matrix printer and the CPD-120 Hi-resolution monitor Price is to be about $\$ 3,800$.

The colour system replaces the CPD-120 black and white monitor with the Trinitron KX-1211 colour TV and will cost $\$ 4,300$.

The systems are due to become generally available during September, as yet there is no news of a date for their arrival in this country.

FRANTIC FAIR

The Commodore Computing Fair is an event that has grown in size with each year that it has been staged. This year the event virtually took over the Cunard Hotel, Hammersmith at the beginning of June.
The formula of the show has remained the same, the formula being to gather all the diverse dealers and software houses dealing in things Commodore under one roof and flinging the doors open to the public. Its a recipe that works and some 15000 were expected at this year's show.
There were many new products at the show, pride of place going to the new machines from Commodore themselves (previewed in July's R\&EW). We don't have space to go into the various products but can't resist mentioning one item from the Commodore Applications catalogue.
A software package named'Supercow conjures up a vivid mental image - perhaps a simulation of a Joan Collins film role.

It is however, rather disappointingly, a management and record-keeping program for Dairy Farmers. Takes the fun out of life doesn't it.

PANIC STATIONS

The Commodore computer gathering also saw a minor outbreak of panic when it seemed that the VIC series' arch rival, the Sinclair Spectrum, had weaved its way into the show. We don't know whether the hand of Clive Sinclair was behind things, although the whole thing has that certain style. Any road up, according to an indiscreetly overheard conversation over the security contingent's radios, it appeared that one stand had done a deal with Sinclair - just what the deal was is a mystery - but it would have meant a Sinclair Spectrum at the show. The Commodore heavies were quick to move in and amid talk of closing stands down (wonder what sort of contract the exhibitors had to sign?). The Spectrum threat was removed.

That was not the only fly in the ointment however, the issue of Your Computer magazine on sale during the show featured a flexi- disc with ZX81 software in a prominent position on its front cover.
Shades of paranoia apparent in some Commodore people - whatever happened to the spirit of competition.
-R\&EW

Your Reactions.	Circle No.
Immediately Interesting	78
Possible application	79
Not interested in this topic	80
Bad feature/space waster	81

COMING NEXT MONTH IN R\&EW Projects, databriefs, reviews, features, news, COMment - it's all in the SEPTEMBER ISSUE OF R\&EW.

AIRBAND RECEIVER

A SYNTHESIZED 720

 CHANNEL DESIGN The VHF airband occupies frequencies from 118 MHz to 136 MHz with 25 kHz spacing. Transmission is AM with double sideband and carrier - very old fashioned but almost impossible to change now that it's enshrined as an international standard.Our 11 IC design features four PCBs, one carries the RF front end, the synthesizer and frequency selector logic occupy another two and the IF and audio stages the fourth board.

4/6/10m PREAMPS

Tuned preamplifiers designed to complement the multiband up-converter published in this issue.
Small in size they exhibit a useful performance making them useful in systems where extra gain and selectivity is required.

R\&EW - First with the news

DX-TV SETTING STARTED

Since Keith Hamer and Garry Smith began their regular DXTV column we've had numerous enquiries from readers who wish to know more about the equipment needed for long distance TV reception.
All is explained next month when DX.TV receiving systems are examined in detail-from the aerial to the IF frequency conversion unit that provides an output suitable for a standard UK TV set.

MINI-DRILL CONTROLLER

The first of two practical implementations of the SMVF motor controller that Ray Marston introduces in this month's data file.
The design provides fullyvariable speed control with self adjusting speed regulation making previously published designs based on 'variable DC voltage' or 'fixed frame pulse-width' principles look rather 'old-hat'. CONTENT MAY VARY TO SOME EXTENT.

UNDERSTANDING THE ZX81 DISPLAY FILE

Allen Pardoe explains the ZX81's display file with the aid of some example programs.

The display file of the ZX81 is the part of the memory that contains the necessary information to tell the computer what to print on the TV screen. As the ZX81 goes about the business of computing, it keeps going to the display file, picking up information, and sending messages to the television; when and how it does this is governed by the hardware of the ZX81 (Fig. I).
An unusual feature of the ZX81 display file is that it can move about in the memory map of the computer; it is not in a fixed memory area, starting at a particular address. The computer needs to know where this display file starts, and so it stores the address of the first part of the display file in an area of memory known as 'system variables'. The information on this part of the memory is to be found on pages 177 to 179 of the Sinclair handbook, and is outlined in Fig. 2. The particular address we are interested in is called D-FILE and is stored in two addresses in the systems variables, 16396 and 16397 . To find the address in memory where the display file begins, the calculation:- peek $16396+256^{*}$ peek 16397 is carried out. This gives the memory address where the display file starts in memory. The area of memory immediately before this stores the Basic programme you are using - so if you add more to the programme, then the address of the start of the display file must move up the memory to allow the programme into its proper area - (Fig. 3)

THE TWO TYPES OF DISPLAY FILE

The ZX81 has two types of display file, depending on the amount of memory available. In both cases the first address (D- FILE) contains the number 118 .

1 IF THE MEMORY IS LESS THAN 3.25K

In this case the display file for an empty screen usually consists of only 25 bytes, each the code of NEWLINE (118); if the computer prints anything onto the screen (and so puts into the display file information on what is printed), then each line expands to hold the information, but is still terminated by the number 118 to tell the computer a newline is needed. The display file then gets bigger, depending on how much is to be printed on the screen.

IF THE MEMORY IS GREATER THAN 3.25K

The computer sets up a full sized display file, which consists of 24 lines, each of 32 spaces with a 33 rd character in each line which

00000000000000000000000000000000118

Figure 4(a): An empty line stored in the
888888888888888888888888888888888118

Figure $\mathbf{4 (b)}$: A line of graphics as stored in the Display File.

Figure 2(a): The organisation of memory.

Figure 2(b): The position of the Display File within the 2×81 's memory.

Figure 3(a): A small programme

Figure 3(b): Adding to a user programme causes the Display File to move up the memory map.
tells the computer to go to a newline. If we again look at an empty screen, there are for each line 32 empty spaces (all 0) with a 33 rd number for newline (118). If the computer starts to print anything onto the screen, then it must store that information in the display file, and so stores the correct codes for what is to be printed in the file. A typical empty line as stored in the display file is shown in Fig. 4a.together with a row showing a line of graphic symbols in Fig. $4 b$

A bit of arithmetic will show that the display file in this second situation, with the memory greater than 3.25 K , is $24 * 33=792$ addresses, and so 792 bytes of memory are usually reserved for this purpose.

USING THE DISPLAY FILE

It is a simple matter to find out the position in memory of the start of the display file. Type in:-
PRINT PEEK $16396+256 *$ PEEK 16397
followed by NEWLINE
The result printed in the top left hand corner of the screen is the start address of the display file - with no Basic programme in the computer this should be 16509. You can show that the display file is mainly empty spaces (code 0) with a clear screen by typing in:PRINT PEEK 16510 (or any number up to $16509+792=17301$) followed by NEWLINE

In most cases the result is 0 , showing an empty space in that position of the display file. However, you can also put a number into an address in the display file, and so get the computer to print a character on the screen instead of an empty space. With an empty screen, type in:-
POKE 16510,128
followed by NEWLINE
In this case a black square will appear in the top lefthand corner of the screen. This is the same result that is produced by the instructions:-
PRINT " \square " (with an empty screen)
or PRINT AT 0,0; " ${ }^{\circ}$ "
or PRINT AT 0,$0 ;$ CHR $\$ 128$
in each case followed by NEWLINE
In all these cases the net result is the same, and is obtained by the number 128 being put into the first address of the display file.

This idea can be expanded to print anything at all onto the screen, by putting the correct numbers into the correct positions in the display file. One way of thinking of this is shown in Fig. 5. Consider the display file as a set of 792 boxes, arranged 24 boxes high by 33 boxes across. The last box in each horizontal row is closed off for your purposes (it contains the number 118), and if you try to put a number other than 118 into it, the computer gets confused and all sorts of funny things may happen.
To put the numbers into the boxes you can use various processes. This is shown by the four programmes that follow; they vary from short Basic programmes that operate slowly, through a longer Basic programme that operates much more quickly, to the fast operation of a machine code programme.

Programme	No. of Lines	Length	Time Taken
1	24	494	9
2	21	476	$41 / 2$
3	58	1137	2
4	2	203	Very Quick

Figure 5: The organisation of the $\mathrm{Z} \times 81$'s display.

Programmes 1 and 2 are straightforward Basic ones; programme 3 simulates the processes operated by the machine code programme 4 - but by using BASIC to poke the numbers into the display file.

To load in the machine code, a loader programme is supplied. Type in:-
5 REM followed by 150 zeros
then press NEWLINE
Type in the loader programme when this is done, then press RUN and NEWLINE. The prompt (= inverse L) appears at the bottom of the screen. Type in each number in turn, followed by NEWLINE, and the computer prints up the address and the number entered. When the last number has been entered, type in a number greater than 255 at the next prompt to stop loading. LISTing should give the programm shown. Delete the loading programme by typing in number 10 to 80 in steps of ten, each time followed by NEWLINE. If you want to check the programme, a suitable programme is also supplied. Finally add:-
20 RAND USR 16514
followed by NEWLINE

The programme can now be run.
The machine code programme loads the number 128 into each 'box' of the display file where it is needed. Try changing the pattern by giving the instruction: POKE 16533, x
where \mathbf{x} is a number from 1 to 255 followed by NEWLINE
The character set on pages 181 to 187 of the manual should help you to decide what to expect.

The programme uses lines 16514 to 16546 to put the number in the 'box' of the display file. Lines 16547 and 16548 say how many boxes are used, and lines 16549 on are organised as pairs of numbers that give the box number (1 to 792) to be added to D-FILE.

The advantage of the machine code programme, apart from its short length and speed, is thsat the message or display can be moved quickly about the screen, with just a few changes in the machine code programme - but that's another story!
GOOD READING: Sinclair manual pages 171-174; 177-179; 181-187

- R \& EW

LOADER PROGRAME

PROGRAHME 4

ALTHOUGH A SEEMINGLY mundane piece of equipment, a function generator is something that every bench, if not home, should have. The GSC 2001 offers an acceptable performance and provides the usual range of waveforms, sine, square and triange, a DC offset facility and variable outputs at maximum levels of 5 V and 50 mV into a 600 R load as well as a TTL compatible output.

OVERVIEW

The front panel layout is functional and although the unit has a distinctly 'plastic' feel about it, the construction looked sturdy enough to endure a rigorous life at the mercy of the heavy handed.

The selection of frequency is by means of five interlocking pushbutton switches while waveform selection is via a further three interlocked switches. Push on, push off switches at either end of the bank are responsible for power on/off and the selection of the DC offset facility. A calibrated knob, the scale being printed on the knob's perspex skit, provides a satisfactory method of quick and accurate selection of a precise frequency within the decade selected by the switch bank.

A dual concentric control provides control of both amplitude and of the DC offset. The amplitude control is not calibrated and setting up an accurate output voltage level would have to be accomplished with the aid of a 'scope. This lack of any decent output attenuator is a common failing in signal generators of the 2001's class and an extra amount of 'engineering' in this area, with a scale and perhaps a clickstop pot would go a long way to improving the 2001's appeal.

The hi-lo output levels are available at separate, Banana, type sockets as is the TTL output. A provision of a switch to select the two output levels would have obviated the need to swap wires around when making measurements although in practice this should not be that inconvenient. BNC output sockets would also have imparted a more professional look to the 2001.

Figure 1: Basic 8038 circuit The 2001 design supplies The necessary output buffering And input conditianing circuitry

2001 FUNCTION GENERATOR

A sweepable function generator with a 1 Hz to 100 kHz range. Michael Graham assesses the model.

CIRCUIT DESCRIPTION

The 2001 adopts the modern approach to function generator design being based on the Intersil 8038 waveform generator IC. This does most of the donkey work with the rest of the circuitry concerning itself with input/ output buffering and with the provision of the power supply rails.
The frequency vernier forms a potential divider across the $\pm 12 \mathrm{~V}$ rails and has its high and low points set by two preset pots. Its output is buffered by a unity gain inverting op-amp stage. This output is then summed with the sweep input by a second op-amp and fed to the voltage control pin of the 8038.
The output of the 8038 is buffered by a two transistor amplifier stage before being passed to the amplitude pot. Some 'squaring up' of the square wave output is provided, this output also being taken, via a level shifting transistor, to four paralleled TTL NAND gates (7400).
The main amplifier follows standard $\mathrm{Hi}-\mathrm{Fi}$ practice comprising a differential amplifier driving a complementary push-pull output pair overall gain of this stage is 11 .
The power supply provides unregulated $\pm 17 \mathrm{~V}$ rails for the output stage, the +12 V rail is set by a three terminal regulator while the -12 V rail is derived from an inverting op-amp stage that has the +12 V line as its input.
The +5 V logic line is produced by a potential divider across the +12 V line feeding an op-amp and transistor.

The remaining two sockets are responsible for accepting the sweep input voltage.

A CASE IN POINT

The rear panel of the instrument is blank with the exception of the IEC mains input socket. The provision of such a socket is a far better approach than, what one might call, a dedicated mains lead.

One criticism of the case is that the ventilation holes on the top and bottom do not

SPECIFICATIONS

Frequency Range:

1 Hz to 100 kHz in 5 decade ranges, pushbutton selectable; calibrated $\pm 5 \%$ of setting at $10 \mathrm{~Hz}, 100 \mathrm{~Hz}, 1 \mathrm{kHz}$, 10 kHz .

Less than 2% THD. Linearity better than 1% Rise and fall times under 100 nsec (600R, 20p) for $\pm 2 \%$ time symmetry Rise and fall times under 25 nsec . 100:1 max., 10:1 linear range; 0 to $\pm 10 \mathrm{~V}$. Sweep input impedance 30k.
0.1-10 Vp -p into 600 R 1. 100 mV open circuit, $5-50 \mathrm{mV}$ into 600R; 40dB amplitude control $\pm 0.5 \mathrm{~dB}$ flat.
drives 10 TTL loads. switch selectable: $\pm 5 \mathrm{~V}$ into an open circuit; max offset ($A C+D C$ before clipping) $\pm 10 \mathrm{~V}$ at Hi output and $\pm 1 \mathrm{~V}$ at Lo into open circuit, $\pm 5 \mathrm{~V}$ at Hi and $\pm 5 \mathrm{~V}$ at Lo into 600R load.

GSC 2001 FUNCTION GENERATOR

Some photographs of the 2001 in action.
calibration procedures associated with the circuit and provides a full circuit diagram.

The manual also devotes several pages to the various uses to which the generator can be put. A particulary useful section this with tables showing the relationship between dBm , volts and power, speaker powers ($8 R$ and $4 R$) with associated output voltage (RMS), a guide to 'square-wave testing' amplifiers and of the RIAA frequency vs . gain characterisitc - a handy reference section all in all.

ON THE BENCH

In use the 2001 performed adequately and to spec. in all areas. The accompanying photographs show its performance and confirm the acceptable standard of the model.

The 2001 is a well built, functional unit that should provide reasonable performance. In its price range it stands up well and, except for the few minor points mentioned above, it was an excellent unit. At these price levels, the 2001 is around $£ 100$,
its very much swings and roundabouts and while the failings of the 2001 may be absent from its competitors the 2001's strenghts will be other generator's weaknesses.
-R\&EW
| Your Reactions..........
Circle No.

| \| Immediately Interesting | 36 |
| :--- | :--- | :--- |
| Possible applictation | 37 |
| Not interested in this topic | 38 |
| Bad feature/space waster | 39 |

Figure 2 Internal schematic of the 8038, the IC that generates the basic waveforms of the 2001.

Scopex Instruments now offer you an unrivalled choice of oscilloscopes at under $£ 300$. The straightforward and successful 14D10 with a sensitivity of $2 \mathrm{mV} / \mathrm{cm}$ at 10 MHz on both channels at $£ 240$ + VAT. The new 14D15 15 MHz dual trace $5 \mathrm{mV} / \mathrm{cm}$ with active IV sync separator at $£ 250$ + VAT and the sophisticated 14D10V 10 MHz dual trace $2 \mathrm{mV} / \mathrm{cm}$ active N sync. separator and line selector at $£ 290$ + VAT. All these above prices include two probes, mains plug and carriage U.K. mainland. $10 \mathrm{~cm} \times 8 \mathrm{~cm}$ display, add and invert facility, probe compensation, pushbutton $x-y$ and trace rotate are all standard features of this 14D range.

You the customer decide the extras you need to fulfil your specific requirement.
An Independent British Company
Credit Cards and Orders
 Herts SG6 1HZ Tel: (04626) 72771. contact our Sales department at:
\qquad

A GaAs FET PRE-AMPLIFIER FOR 1.3GHz

Note:
The NE72089 Ga As fet is available from Castle Microwave Ltd.,
2, Clarence Road, Windsor SL4 5AD Tel: (07535) 56891.

A low noise GaAs fet

 amplifier built on a fibre glass PCB.THIS PRE-AMPLIFIER DESIGN makes use of a GaAs mesfet the NE720 manufactured by NEC. This device costs under $£ 20$ and therefore brings into reach of the Amateur the possibility of constructing very low noise microwave amplifiers. GaAs fets are very sensitive to supply transients especially the gate which is only 1 micron thick in the case of the NE720. So to reduce the chance of expensive failure the design of a 'safe' bias supply is included in the article.

NOISE FIGURE

From the 'Typical Noise Figure' graph (Fig. 1) it can be seen that the optimum noise figure at 1.3 GHz is 0.8 dB for the NE72089. The noise parameters for the NE21889 (Fig2) which appears to be a selected version of the NE72089 were used to determine the required source impedance. The required equivalent parallel source impedance at 1.3 GHz is about 340 R $(314+j 136) R$, using interpolation between the figures given for 1.0 and 1.5 GHz . (Microwave noise and impedance matching will be the subject of a future article).

The noise figure of the prototype 1.3 GHz pre-amplifier was measured using an Ailtech automatic noise measuring system (thanks John). The figure measured was 1.35 dB which did not take account of extra losses in the cables used. This is about

Figure 1a: Typical gain vs. frequency for the NE72089 at $V_{D S}=4 V$ and $I_{D S}=30 \mathrm{~mA}$.

Figure 1b: Typical noise figure and associated gain vs. frequency for the NE72089at $V_{D S}=3 V$ and $\mathrm{IDS}=10 \mathrm{~mA}$.

Total noise factor

$$
\text { Ftot }=F 1+\frac{F 2-1}{G 1}+\frac{F 3-1}{G 1 \times G 2}+\ldots \ldots .
$$

Where \mathbf{F} is the noise factor expressed numerically and G is the gain expressed numercially (Not dB's).
Noise figure of the RF amplifier used in [5] is $2.5 \mathrm{~dB}(1.78)$. As there is no image rejection after this amplifier image noise worsens this by 3 dB to 5.5 dB (3.56), Gain is 9 dB (8).
Mixer loss $=-8.5 \mathrm{~dB}(0.14)$
Mixer noise $=11.5 \mathrm{~dB}$ (14.2)
Assuming an IF noise figure of 2 dB (1.6) Noise figure of the 23 cm converter system without pre-amplifier is as follows:

$$
\begin{aligned}
& 3.56+\frac{14.2-1}{8}+\frac{1.6-1}{8 \times 0.14} \\
& 3.56+1.65+0.54=5.75
\end{aligned}
$$

System noise figure $=7.6 \mathrm{~dB}$
Noise figure calculations for the GaAs fet pre-amplifier, image filter and converter are as follows.

Noise figure of pre-amp $1.35 \mathrm{~dB}(1.36)$
Gain of pre-amp $\quad 14.0 \mathrm{~dB}$ (25.1)
Loss through filter
$2 \mathrm{~dB}(0.63)$
$1.36+\frac{3.56-1}{25.1 \times 0.63}+\frac{14.2-1}{15.8 \times 8}+\frac{1.6-1}{15.8 \times 8 \times 0.14}$
$1.36+0.16+0.104+0.034=1.658$
System noise figure 2.2 dB .

Figure 2.
0.5 dB worse than that claimed on the manufacturers data sheet, the difference is likely to be due to losses in the input circuit caused by using standard fibre glass pcb.

A scaled up version of the layout will be built on PTFE board and measured as soon as time permits.

At this stage it is worth looking at the system noise figure which would result from using this pre-amplifier in front of a typical 23 cm converter. As an example the figures are used from the R\&EW 23 cm converter (Ref. 5). The noise figures quoted for this converter was a measurement of double sideband noise. Taking due account of image noise the system calculations are as follows:

NOISE PARAMETERS FOR NE21889 (NE72089) VDS 3V ID 10MA

FREQ (GHz)	NF opt	GA opt	To opt	ψ deg.
1.0	0.4	16.0	0.69	33
1.5	0.4	16.9	0.82	46
2.0	0.5	14.9	0.44	56
2.5	0.7	13.7	0.46	57
3.0	0.48	14.3	0.59	73
3.5	0.7	14.4	0.62	86
4.0	1.14	13.3	0.67	104
4.5	1.49	12.6	0.63	119
5.0	1.4	11.9	0.47	126
5.5	1.4	11.4	0.55	139
6.0	1.5	11.1	0.52	147
6.5	1.7	10.9	0.43	159
7.0	1.7	10.7	0.44	173
7.5	1.9	10.5	0.50	-172

A number of conclusions can be drawn from these noise figure calculations.

1 Noise figure of the pre-amplifier and its gain to mask subsequent noise contributions, is the predominant figure in the calculations.

2 Image filtering is required between preamplifier and mixer.

3 The noise figure of the IF amplifier following a mixer with conversion loss should be as low as possible.

4 Feeder loss in front of the preamplifier adds directly to its noise figure and therefore overall system noise figure.

Ga As Fet Preamplifier with Power Supply (inset).

CIRCUIT DESCRIPTION

23CM GaAs FET PREAMPLIFIER

Circuit element for the RF pre-amplifier are formed as strip lines on the printed circuit board. Inductor L1 is a shortened quarter wave line resonated by a tuning screw (C1) to 1.3 GHz . the input is tapped onto the line near the grounded end via a short length of 50R track. The position of the tap for the gate is determined by the required source impedance of Q1 for minimum noise figure.
L2 on L4 are quarter-wave 100R lines acting as bias chokes, 22 being shortened to cancel some of the gate input capacity. L3 and L5 are 20R quarter-wave lines which act as short circuits at 1.3 GHz as well as appearing as capacitors to higher frequences. The output of Q1 is unmatched so 50R track connects the drain to the output connector. Bias voltage (V_{GS}) is supplied through R1 and a ferrite bead choke to L3, R3 is included to keep the gate tied to ground when the supplies are disconnected for protection. Drain supply (V_{DS}) is applied in a similar manner to the gate bias, through resistor $\mathbf{R 2}$.

GaAs FET POWER SUPPLY

IC1a forms an integrator with its feedback capacitor Cl . When the $+/-15$ volt supply is turned on ICla ramps on allowing Vds and -Vgs also to ramp on. VR1 controls the drain supply voltage (Vds). IC16 and Q1 form a constant voltage regulator, allowing Vds to be adjusted between 2.8 and 3.2 volts. Constant drain current is maintained by comparator ICa. VR2 allows the drain current to be adjusted between 8 and 20 mA , by supplying the required negative bias to the gate (-VgS). The circuitry around IC2b is identical to that around IC2a, it allows the drain current to be set independently for a second device by VR3. Supply voltage is however referenced to the drain voltage on the first device (Vds 1).
Zener diode D1 forms a negative supply referenced to the voltage at the emitter of Q1, while D2 and D3 act as protection devices limiting gate voltage to a maximum negative voltage of -3.1 volts.

Figure 4: Pre-amplifier Circuit Diagram.

Figure 3: Power Supply Circuit Diagram.

Figure 5: Power Supply PCB Foil Pattern.

Figure 6: Power Supply Component Overlay.

Figure 7: Pre-amplifier PCB Foil Pattern.

Figure 8: Pre-amplifier Component Overlay.

CONSTRUCTION

The power supply board is constructed as shown in the overlay (Fig 6) on single sided PCB. When built, it is a good idea to test the operation of the board by using it to bias a cheap ordinary FET. Operation is such that this sort of dynamic test is required to properly check the operation of the bias supply. VR1 is used to set the drain supply, nominally 3VO. VR2 adjusts the drain current for device 1 by varying gate bias, with a conventional fet the range will be somewhat restricted, but should be of the right order $(10-20 \mathrm{~mA})$. Repeat the test with the fet in the position of the second device and check that VR3 varies its drain current.

The pre-amplifier is built on 1.6 mm thick double-sided glass fibre pcb. Etch the top of the board as shown in Fig7leaving the underside unetched as a continuous earth plane. The holes are drilled using a 1.1 mm drill, the two positions marked o are thro' board links made with 1 mm diameter wire and soldered top and bottom. Chip capacitors C2 and C3 are now positioned and soldered using the minimum amount of heat to make an effective joint. Resistor R3 is soldered in position between L3 and the earth plane. Construction of the board is now complete with the exception of the GaAs fet Q1.

Precautions need to be taken to avoid static damage to the GaAs fet. The NE72089 appears to be fairly robust as GaAs fets go, although its better to be safe than sorry.Firstly,prepare a work surface consisting of a sheet of aluminium or copper clad pcb. Make sure the assembler is at the same potential as the work surface by wrapping a length of bare wire around the assembler's wrist and connecting it to the work surface. Place the fet's protective package on the work surface and shake out the device. Form the source leads so that they will fit through the two holes in the board, taking care not to touch the gate (lead with 45° cut). Insert the GaAs fet into the circuit board with the gate towards the input. With the device firmly against the board bend the source leads flat against the back of the board. Use either a battery soldering iron or a mains one unplugged but earthed to the work surface. Solder the source leads first and then the drain followed by the gate. the completed board can now be fitted into the die cast box. At the input and output connectors use copper foil to make a good earth connection between the ground plane and the connector earth. Capacitor Cl is formed by drilling and tapping a 2BA or similar size screw in the lid of the box so that it is positioned above the input line L1 at the point marked by a dotted circle on the overlay.

The amplifier is now ready for testing, connect up the bias supply and switch on. Monitor the drain current and adjust the bias supply for a drain current of 10 mA . If all is well peak the tuning screw Cl for
maximum gain. If noise measuring facilities are available the drain current (ID) can be adjusted to produce a minimum noise figure.

INSTALLATION

To make use of the low noise figure provided by the pre- amplifier, image filtering should be provided after the pre- amplifier if not already integral in the converter used. Suitable filters are described in references 3 and 4 which give insertion losses close to 1 dB . Printed circuit filters on fibre glass board are too broad and lossy to be suitable for this application. For reasons already mentioned low loss cable should be used between aerial and input together with low loss connectors such as SMA or TNC. Batteries can be used as an alternative to the bias supply described. A battery holder intended for 4 dry cells can provide the required positive and negative supply, the centre tap being earthed. In this case the bias should be taken through a 47 K potentiometer to allow adjustment of drain current.

For optimum results with the R\&EW 23 cm converter (Ref. 4), capacitors with thick leads should be used for $\mathrm{C} 1,2,4,5,7$ and 10 in that converter. If available chip capacitors can be used to give around a 1 dB increase in gain. The optimum value for R 4 when used on a 10 volt

COMPONENTS LIST

PRE-AMP
Resistors (\%/4 W\%)

R1	100R
R2	$10 R$
R3	100 K

Capacitors
C1
C 2
C3
Semiconductors
Q1
Miscellaneous
FX1115 ferrite bead (2)
PC8
Die-cast box
Connectors

GaAs FET POWER SUPPLY
Resistors (\%W5\%)

R1	10k
R2	2 k 2
R3,4,7,8,12,13	100 k
R5	5 k 6
R6,11	330 R
R9,14	3 kg
R10,15	3 k 3
VR1,2,3	500 R preset
Capacitors	
C1	4 u 7 16V electrolytic
C2,3	10n ceramic
Semiconductors	
Q1	BC337
IC1,2	UA747
D1,2,3	6 V 8 zener
Miscellaneous	
PCB	

References

1. NE218, NE720 Transistor Data;

Nippon Electric Co. Ltd. 1981
2. AN80901, AN80902 Application

Notes; Nippon Electric Co. Ltd. 1980
3. Suckling C., Microwaves, Radio

Communication; June/July 1980.
4. Volhardt , Narrowband Filters for the $24 \mathrm{~cm}, 13 \mathrm{~cm}$ and 9 cm Bands; VHF Communications 1/78.
5. Ray R., $23 \mathrm{~cm} / 2 \mathrm{~m} / 10 \mathrm{~m}$ Converter;

R\&EW March 1982.
supply is 220 R , any sign of instability in the RF amplifier can be cured by decoupling R1(680R) with a 100 n monolithic capacitor. One final warning about handling GaAs fets, do not try measuring between leads with a multimeter the voltage spike introduced can be destructive!

R\&EW

Your Reactions.......	Circle No.
Incellent - will make one	32
I	
Interesting- might make one	33
I	34
Seen Better	35
Comments	

PARTS LIST
Resistors (all 0.25W 5\%)

R1, R101	470R
R2, R102	100k
R3, R103	$270 R$
R4, R104	$2 k 2$
R5, R105	$12 k$
R6, R106	$270 k$

R7, $8,9,18,19,20$,
21, 29,30,107, 108,
109 1k
R10,11,16,23, 24,
$25,26,27,110,111$
116 47k
R12,13,31,112,113 27k
R14,22,114 680R
R15115 3k3
R17 8k2
R28 220R
VR1 5k Preset
VR2,3,4,5 100k linear
Capacitors
C1, 101
1u 35 V
C2,102 100p ceramic
C3,26,27,103 100u 16V
C4,104 3n3 Mylar
C5,105 1n Mylar
C6,106 10u 35V
C7,8,9,13,14,18,
$20,25,107,108,109$,
$113,114,118,120 \quad 10 \mathrm{u} 16 \mathrm{~V}$
C10,11,12,110,
111,112 68p ceramic
C15,115 47p ceramic
C16,116 150p ceramic
C1728,29,117
C19,119
C21,121
C22,122
C23,24,30,38,
42,43,44,45
C31,
C32,33,34,35,36
37
C39
C40
C41

Semiconductors

D1
D2,3
D4,10
D5,6,7,8,9,11
IC1
IC2
IC3
IC4
IC5
Bridge Rect w005
IN4001
IN4148
5 mm Red LED
NE542
TK10321
KB4438
LM1035 [
LM317K

Switches

SW1, 2,3,4
SW5 , 6

2 pMO
$2 p$ Latching

Miscellaneous

5×5 pin DIN PC mount, fuse 100 mA and holder; mains transformer; P 0617

187 for further details

KONTAKT

The European name of Aerosol Excellence. Special cleaners for all electrical contacts and switches.

Kontakt 60

Dissolves oxides and sulphides. removes dirt, oil, resin and traces of metal abrasion. Protects against erosion. Ensures perfect contacts.

Kontakt 61

Special cleaning, Iubricating and anti-corrosion fluid for NEW (non oxydised) and specially sensitive contacts. An excellent lubricant for all electrical and electro mechanical systems.

Spray Wash WL
A rapid cleaner for reliable washing and degreasing of electrical equipment and components. For removal of dirt, grease, oil, soldering residues and other impuritles.

ALSO AVAILABLE:

A COMPLETE RANGE OF INDUSTRIAL AEROSOL SPRAYS
SK10 Soldering Lacquer, K75 Cold Spray, K70 Plastic Spray, K88 Oil Spray. K701 Vaseline Spray, K90 Video Spray, K33 Graphite Spray, K100 Antistatic Spray K101 Fluid Spray and, of course, Positiv 20 positive photo resist for printed circuits.

Details from:

Special Products Dlstributors Ltd.

Peter Luke, our video man, has been looking into Big Screen, Stereo Video this month. He also has the latest on the 'clash of the formats'.

IN AN EXTRAORDINARY volte face that is likely to put the market penetration of the Video 2000 system simply years behind, ITT have decided to market VHS format machines under their brand name. Until recently only V2000 machines bore the ITT logo, the company having reached a marketing agreement with Philips some time ago.

According to an ITT spokesperson after 'initial teething troubles' the company were 'pleased with the Video 2000's performance' but that 'in order to offer to customer a wider choice' VHS machines were to be added to their range. Philips were said to 'understand' ITT's position.

It is doubtful whether the men of Eindhoven are as polite about the ITT move in private.

The Video 2000 format has indeed had its share of technical bugs during its early days and has not 'taken off' quite as fast as the Philips/Grundig boys might have hoped but there can be no doubt that Philips will cling to the system until death do they part. Remember Philips and the DNL vs. Dolby saga. Philips invented the compact cassette and developed the DNL noise reduction system. Along came Ray Dolby with, in everyone but Philips' eyes, a far superior system. Soon all 'Hi-Fi' cassette recorders, bar Philips, had Dolby. A 'head-in-the-sand' attitude was maintained by Philips for many years until grudgingly they paid Ray his royalty and added Dolby to their recorders, in addition to DNL of course.

In view of this sort of behaviour from Philips in the past it seems certain they'll stick to V2000 and will not look too kindly on any defectors in the camp.

The ITT (once Philips or Hitachi depending on format) range now comprises a basic VHS machine ($£ 500$), a feature laden VHS model ($£ 670$) with the V2000 model weighing in at an intermediate

(£540).

The budget machine is designated the Telerecorder (quaint isn't it?) 3913 and for its price offers a fair sprinkling of features. Search, still frame and audio dub are offered the main concession to the low price being the absence of remote control although a wired unit is available as an optional extra. The timer too is rather limited, being of a one event, 10 day specification.
The 'all singing' VHS machine has just about everything that is anything. The front loading machine, in addition to all the 'trick' video functions comes complete with stereo sound and Dolby.
The timer has an eight event, 14 day capability and the machine, Telerecorder 3943, has a IR remote controlunit supplied as standard.

The timer has an eight event, 14 day capability and the machine, Telerecorder 3943, has a IR remote control unit supplied as standard.
The V2000 format machine is designated VR580 (whatever happened to Telerecorder?) and offers the eight hour
flip-over cassette of the Philips format. Dynamic Track Following gives good performance with no noise bars evident on 'trick' video speeds. The timer is a five event, 15 day design - quite adequate for most needs.

Another new model for ITT is the Telerecorder TRP 3833. This forms the basis of a portable VHS system, a teletuner TT3833 completing a home set up for offair recording while accesories like the colourscope 3084 camera, PB 3833 battery pack and CTC 3833 carry cart provide a 'movie making' system.
$£ 600$ will get you the recorder and tuner, the camera costs about $£ 550$.
A good range of video products from ITT who are now in the unique position of flying their corporate flag on two different, although we can no longer say competing, systems.
Is there any truth in the rumour that an ITT 7 Beta recorder is on the cards?

hearing double

The Hitachi/ITT stereo recorder is soon to be joined by another VHS stereo machine,

Block diagram of a typical stereo TV receiver using the dual carrier approach adopted in Germany.
the Panasonic NV-7800.
We are told that a number of duplicating houses have been using Panasonic industrial copying machines for some time and that this software has just been waiting for the hardware, in the shape of the NV-7800, to turn up. Re-organise the HiFi to place one speaker either side of the TV and this development should go some way to making sit-in cinema more of an occasion. We hope to have more to say about the NV-7800 soon for it is an interesting machine not only in its stereo capability but in its use of Dolby B and C noise reduction and a special tape transport system that offers variable slow motion from $1 / 4$ to $1 / 30$ of normal speed.

The only depressing note is that price is yet to be fixed but it will almost certainly hover around the $£ 700$ mark.

GERMANY CALLING

The launch of stereo video recorders is bound to stimulate interest in stereo televisions and the prospects for stereo transmissions from the BBC and IBA.

Already we have seen a couple of Pseudo stereo TVs (from Grundig and Tanberg) these sets incorporating comb filters to process off-air sound signals to give an impression of width. In Germany - from where the above sets hail - stereo TV is a reality. As the PAL system adopted in this country was developed by the Germans, as look at their system may give us a taste of things to come.

The system adopted in Germany uses a dual carrier with the two sound channels being frequency modulated onto carriers 5.5 MHz above vision (the German 'mono' standard) and 5.742 MHz above vision (the second channel).

The dual carrier approach was adopted rather than a pulse-code- modulation system on grounds of cost while multiplex techniques (as VHF stereo radio) were rejected as one of the uses for stereo TV is seen as dual language transmission clearly not possible with a multiplex method.

The diagram (Fig 1) shows the basic outline of a TV set with stereo capability and it can be seen that, in addition to the conventional sound channel, an additional intercarrier demodulator is required. Operation of the demodulators is controlled by a demodulated pilot signal that is amplitude modulated onto the second channel.

Editorial budgets have not permitted a trip to Germany to assess the system in operation and one wonders whether program makers working to tight TV production schedules will be able to make much creative use of stereo in anything other than 'music' shows.

If anybody out there has seen (heard) the German stereo system in operation perhap's you'd write and let us know about it.

PROJECTION BOX

Its been a busy month for ITT, for not only háve they added VHS machines to their

ITT's Cinevision 200 projection TV system give excellent picture quality.
video recorder range but they've also launched a projection TV system.

The Cinevision 200 consists of a projector box and a $124 \times 166 \mathrm{~cm}$ silvered parabolic screen. The projector uses the Kloss Video Corporation's Novabeam projection tube, a tube which incorporates the mirror objective and cathode ray tube in a single sealed unit - thus avoiding deterioration in picture quality due to dust collection and mechanical movement.

The chassis is based on a standard ITT

The screen display shown in the accompanying photograph does not do the system justice, the results obtained at the launch being excellent. The picture produced was bright and sharp without any deterioration in quality towards the edges.

The system will sell for about $£ 3,500$ which may seem expensive when compared to some of the $£ 1,000$ projection systems around at present. Most of these lower cost projectors however consist of a standard TV chassis with over run CRT and a lens. The performance they offer is rather 'mickey-mouse' in general and certainly not in the league of the ITT machine.

R\&EW

Your Reactions.........	Circle No.
Immediately Interesting	60
Possible application	61
Not interested in this topic	62
Bad feature/space waster	63

A GEOSTATIONARY WEATHER SATELLITE

Geostationary weather satellites open up a new field to the Radio Amateur. Terry Weatherley describes the Meteosat Spacecraft and its associated ground system before going on to describe his own receiving station.

METEOSAT IS THE EUROPEAN contribution to a system of five geostationary satellites positioned over the equator at intervals of about $70^{\circ} \mathrm{B}$. The system is, in turn, a contribution to the Global Atmospheric Research Programme and to the World Weather Watch of the World Meteorological Organisation.

The successful launch of Ariane on the 19th June, 1981 placed in orbit the European Space Agency's Meteorological Satellite METEOSAT 2. This was a relacement satellite for Meteosat 1 launched on 23rd November, 1977.

Meteosat's station is the point $0^{\circ} .0^{4}$ above the Gulf of Guinea. The ground station used for data acquisition, telemetry and tracking, is situated 50 km south-east of Darmstadt in the Federal Republic of Germany. This is linked to the control centre and ground computer system by land line. Both centres are located in Darmstadt itself. The main receiving dish is 15 m in diameter and can be steered either manually or under program control, but normally it is self steering since it is able to lock onto and track spacecraft telemetry signals.

At present the ground computer is a SIEMENS R 30 with 512 K core and two 66 M discs. It is intended to change the main computer system and software should be complete by mid ' 82 . Until that time a full dissemination service is not available.

The principal payload of the satellite is the multispectral radiometer, which provides both visible and infra red images of the earth's disc as seen from geostationary orbit. The imaging instrument is a Ritchey-Chretien reflecting telescope to which is attached a system of mirrors that reflect the radiation onto the appropriate detectors. Rotation of the satellite is such that the spin axis is nominally north south, while the telescope is stepped vertically from south to north and rotated through an angle of 1.25×10^{-4}.
There are two identical adjacent visible light channels in the 0.4 to 1.1 um spectral band. A thermal infra red channel ($10.5-12.5 \mathrm{um}$) and a water vapour channel (5.7-7.1um).

Each infra red image is composed of 2500 lines and 2500 pixels giving a spatial resolution of 5 km . The resolution in the visible cilannels is twice this if both channels are operated.

Communications between the spacecraft and the ground are in three frequency bands:- S band, used to transmit the raw image to the ground, to relay processed data to users, and for ranging and housekeeping transmissions; UHF, used to receive data transmitted by the remote data collection platforms; VHF, used for telemetry telecommand and ranging during the launch phase, as well as S band back-up. The frequency used by Meteosat 2 for the transmission of raw data is 1686.833 MHz .

While in orbit the attitude of the spacecraft is controlled by four earth sensors. Two sensors scan the earth's disc and provide pulses at the earth/space, space/earth transitions. Two sun-slit sensors give one pulse on each revolution of the satellite. Two on board accelerometers give information on the satellite nutation. This data is transmitted to the ground with each image data line and thus

DISH ANTENNA
gives constant information about spacecraft attitude. The same data is used internally to activate the image sampling during each earth scan and for directing the spacecraft antennas.

The satellite is powered by silicon cells on the main body of the spacecraft. The maximum power available from the solar cells is 280 watts dropping to about 200 watts after three years of life. The main voltage bus is regulated around 28 volts and the excess power is used to charge 16 series nicads with a capacity of 70 A hours. This back-up power is available to the satellite during periods when the sun is eclipsed by the earth. There are two eclipse seasons from 1st March to 15 th April and 1st September to 15th October. The eclipse can last for up to two hours from approx. 2300 hours to 0100 UT.

There is a period of data loss when the sun, spacecraft and Darmstadt are in direct line. These are 3rd March at 12 h 04 m and again on the 9th October.
The raw data received at Darmstadt is in line by line format in the original order as sampled by the sensors. Each line is thus comprised of 256032 -bit words each of which contains visible, infra red and possibly water vapour data, corresponding to the sampling period of the radiometer. Because sensors are located in positions in the focal plane of the instrument the data values from the three channels do not correspond to one earth location.

Figure 1: Area covered by D Format.

Figure 3: Block Diagram of a Meteosat receiving station.
The data is computer processed, enhanced checked and corrected for distortion to produce a high resolution image prior to being retransmitted for dissemination by the spacecraft to user stations.

The transmissions being considered in this article are the WEFAX transmissions, which are compatible with the transmissions from the polar orbiting weather satellites. Each picture consists of 800 lines transmitted at a rate of 4 lines per second, pulse standard stop and start signals. The total time to transmit one picture is 3 minutes 43 seconds.

Pictures are transmitted according to a prearranged timetable and the area covered by the picture determined by a code letter. Figs. 1 and 2 show the areas covered by the C and D formats. It is usual for the visible light pictures to be on a C format while infra red and water vapour pictures are a D format. Once every 3 hours during daytime however, a set of visible light pictures on D format covering the whole hemisphere are transmitted. These are coded C-D. the schedule is such that user stations can expect to receive $\mathrm{C} 1, \mathrm{C} 2$ and C 3 pictures half-hourly throughout the day. The present schedule also transmits whole earth pictures (CTPT) at 9am (see photo) 12 noon and 3 pm .

A test card, grey scale and admin. messages are also transmitted regularly. Experimental pictures are sent from time to time and Meteosat 1 retransmitted pictures from the GOES satellites showing North and South America. Darmstadt will also respond to user requests.
Having discussed the spaœecraft and the associated ground system the author's receiving station is described in detail together with some of the results obtained. A block diagram of the receiving setup is shown in Fig 3.

Figure 2: Area covered by C Format.

METEOEAT

METEOEAT

METEOSHT :

The signal from the satellite is received using a 1.2 metre parabolic dish and it's associated tubular radiator. This probably represents the smallest practical dish size. Inside the tubular radiator is a monopole cut for the operating frequencies 1691 MHz and 1694.5 MHz .

The dish is based on the design published in VHF Communications (reference 1). The dish is fabricated from twelve segments with a round disc forming the centre. The segments are cut from 1 mm aluminium and are drilled so that the parabolic shape results when the segments are rivetted together. The instructions in the reference are quite clear and the dish was fabricated without problem. Dimensions are also given to allow the tubular radiator to be made. An article in 73 magazine (reference 2) suggested that a catering size coffee or bean can could be used and these give satisfactory results.

The focal length of the dish is 50 cms , giving an F / D ratio of 0.42 . the 10 dB beamwidth being 130°. At this long focus the curvature is so low that the deviation from the ideal parabola has little adverse effect.

Unlike most amateur antennas, height is not necessary, all that is required is for the antenna to have a clear view of the sky to the south. The dish is mounted on an A frame on the ground

Photo 1: The ESA Test Card sent at intervals throughout the day.
outside the author's shack. A solid dish has considerable wind resistance and in practice it is wise to dismantle it in windy weather.

High quality coax is needed to feed the signal from the dish to the converter, UR67 will do so long as the run is short. The first converter converts the $1691 / 1694.5$ signal to an IF of 137.5 MHz . This IF is chosen since it falls within the $136-138 \mathrm{MHz}$ satellite band. Most stations are already equipped to receive on this band so the converter simply goes in from existing equipment. Homebrewing a converter at this frequency is possible, but Microwave Modules produce an excellent unit which has the following characteristics:-
Input frequencies 1691 MHz \& 1694.5 MHz switched
Noise figure 4.8 dB maximum
Gain 25 dB
The gain is such that no preamp is necessary between the dish and the converter to obtain usable pictures. It is this unit which brings such a project in the price range of the amateur, and this might be the opportunity to thank Mr. Richard Porter of Microwave Modules for his continuing interest and encouragement.

The output from the converter is at 137.5 MHz and this is preamplified through two further Microwave Modules' units, the 144 MHz pre-amp which has been peaked at 137.5 MHz and the 137

Photo 2: Depressions south-east of South Africa.

MHz to 29 MHz converter, before being fed to the receiver. The last two units were of the existing set-up for the polar orbiting satellites.

The receiver is a Racal RA17 and although this is an excellent, albeit bulky, stable, receiver it is not ideal for the purpose, since it does not have an FM discriminator. There is an output from the IF at 100 kHz and an external unit was built, but it did not give as good a result as was obtained by slope detecting the FM on the widest position of the IF control (8 kHz). There is an odd bonus with slope detecting, different positions on the 'slope' give a degree of contrast control.

The audio from the receiver is fed into the Muirhead D900 S/1 fax unit. While the picture writing unit is quite compact and gives a picture about nine inches square, there are two nineteen inch rack mounted units associated with it. This model was built to receive pictures from early weather satellites which transmitted them at 240 lines per minute. Later satellites changed the line rate first to 48 lines per min. and then to the rate in use today, 120 lines per min., making the machine obsolete. The index of co-operation (IOC) of the D900 is 264.

The standards adopted for WEFAX transmissions are very similar to those of the D900, being 240 lines per min., and an IOC of 267 , so the once obsolete D900 can be used successfully.

Some signal processing is carried out within the unit and a picture is drawn on electro-sensitive paper. The advantage of this method is that results are available in real time, without further processing, and the paper is relatively cheap. The disadvantage, as is clear from the photos, is a certain loss of contrast. With careful tuning etc., however, acceptable results can be obtained.

The photographs show what can be achieved with the system described.

Photo 1 shows the ESA test card which is sent at intervals during the day. It is a good test of system resolution and grey scale (or in this case, lack of it). The lines displayed down the right hand

Photo 3: The UK, free of cloud cover for a change.

Photo 4: The River Amazon shows up quite well in this picture of north-east South America.

Photo 5: The first infra-red picture of the whole globe.

Photo 6: The whole earth built up from nine separate pictures.

edge are the line sync pulses. The dotted line at the top is the start pulse, the black bar the sync pulse and the dashes show where the picture edge has been slipped to the correct position.

Photo 2 shows a couple of impressive depressions south-east of South Africa. This is a visible light picture taken on 31st July, 1981. Space, of course, appears black.

Photo 3 shows the UK, fairly free of cloud cover. This is an enlargement from a 'CO2' picture taken during August, 1981.

Photo 4 shows the north eastern portion of South America. The River Amazon shows up quite well for some of it's length.

Photo 5 is included because it is the first infra red image of the whole globe transmitted via Meteosat 2. In this picture space appears white (cold); this caused momentary concern since all previous pictures received to that point were whole earth in visible light.

Photo 6 shows a whole earth view built up from nine separate pictures transmitted on the 31 st July, at various times during the day. A set of nine pictures, giving whole earth coverage, are transmitted over a three hour period. The original is 27 inches in diameter and looks well on the shack wall.

Information regarding the Meteosat System is freely available from:-

MDMD/ESOC,

Robert-Bosch-Strasse 5,
6100 Darmstadt,
West Germany.
The geostationary weather satellites open up a new field to the radio amateur but one quite in keeping with the 'self- training' aspect of the hobby. The techniques and frequencies used encourage experiment. The pictures themselves are always interesting and sometimes quite beautiful. Why not try it? \square R \& EW

ADDITIONAL SOURCES OF INFORMATION

European Space Agency:-
Introduction to the Meteosat System
Meteosat Wefax transmissions
ESA Journal - various issues

REFERENCES

1) VHF Communications - Vol 11 Autumn $3 / 1979$
2) 73 Magazine 'Be a weather Genius' - November 1978

Your Reactions

R----------
SPEED WIND SPEED
AND DIRECTION
INDICATOR Remote display of wind speed $(\mathbf{0}-30 \mathrm{~m} / \mathrm{S})$ and direction (eight point resolution) with an accuracy of $+/-2.5 \%$ is offered by this unit.

THE ABILITY TO MONITOR wind speed and direction is useful, if not essential, in many different situations. Sporting activities, everything from sailing to athletics meetings, can benefit from such information and in addition many schools and colleges, as well as individuals, take an interest in monitoring the weather. The wind speed and direction indicator, together with a $\mathrm{min} / \mathrm{max}$ thermometer and rainfall gauge, will provide a 'weather station' that will allow basic meteorological data to be accumulated.

The R\&EW wind monitor provides an effective eight point resolution of wind direction on four front panel LEDS, the intermediate compass points (NE, NW etc.,) being indicated when two adjacent LEDs, are illuminated.

Wind speed is indicated on a meter featuring a log scale. Thus the most commonly encountered wind speeds, in the range $0-10 \mathrm{~m} / \mathrm{S}$, occupy half the meter's scale, the higher speeds ($10-30 \mathrm{~m} / \mathrm{s}$) being compressed to occupy the other half.

The unit is designed to be powered from a number of sources - four AA cells, a 12 V car battery or from a $5 / 8 \mathrm{~V}$ AC source. These different power supplies are catered for by minor modifications to the main PCB.

The two remote sensors have been
designed to provide rugged units capable of standing up to the rigors of outdoor life and should provide years of trouble free service. Both sensors consist of a plastic cylinder and 'vane' together with a reed switch assembly constructed from two circular PCBs.
Both sensors are based on a rotating magnet assembly, mounted on a central shaft, and a reed switch 'cage'. The speed indicator features one reed magnet while the direction vane incorporates four reeds as well as a diode matrix.
Before final assembly of the sensors, reed switch operation can be confirmed by rotating the magnets and listening for the 'click' as the reeds operate. In the case of the direction sensor one of the four reeds should be closed at all times, and as the shaft is rotated to an intermediate compass point (NE say) two reeds should be closed. Some adjustment of the magnet's positions may be necessary to achieve this.
The design offers an overall accuracy of $+/-2.5 \%$ and is easy to calibrate, this being a matter of adjusting a preset to give a full scale reading on the meter while a 50 Hz AC signal is applied to speed sensor input.

BUILDING IT UP

The electronics of the wind indicator is straightforward to construct and, if the overlay is carefully followed, should present no problems.

The majority of components are fitted in the 'traditional' fashion to the topside of the PCB, the exception being the LEDs. These are mounted to the underside of the
board with a space of 3 mm between their lower face and the PCB.

Mechanical assembly of the sensors is a similarly straightforward operation covered fully in the construction notes supplied with the kit of parts.

PUTTING THE WIND UP

When assembly of the unit is complete, operation of the direction indicator can be simply confirmed by a temporary connection of the sensor whereupon one, or possibly two, LEDs should light and rotation of the vane should produce a rotating LED display in the same sense.

To calibrate the speed indication circuit A low voltage (5 V) AC source should be connected to points E and H of the PCB. The variable resistor should then be adjusted to give an FSD reading on the meter.

IN USE

The two sensors should be mounted on a flat surface at least 50 cm apart and, obviously, in a position where they are not sheltered by any buildings, trees etc.

The cables should be secured by means of cable clips and taken to the main unit at which time final confirmation of correct operation can be made.

The signals from the sensors, after processing by the unit's electronics, are in a form that should be suitable for feeding to a computer system. This would allow automatic logging of data and would extend the scope of this project. We'll leave such experiments up to the imagination of the reader.

CIRCUIT DESCRIPTION

The circuit consists of two separate sections concerned with processing the information from the remote sensors into a form suitable for display on a meter (windspeed) or LEDs (wind direction)

WINDSPEED

In essence the wind speed indicator circuitry is a D / A convertor that forms the 'digital' on-off pulses from the reed switch in the sensor into an analogue voltage suitable for driving the meter.

Figure 2 shows that the heart of the circuit is a monostable multivibrator.

The switch represents the sensor's reed which 'closes' for a short period, twice during each rotation of the anemometer's head.

Momentarily closing this switch causes T2 to turn off - it is normally held on by the resistor in its base lead. As T2 turns off its collector voltage rises. This voltage in turn switches T1 on thus causing TI's collector voltage to fall. The falling voltage at T1's collector is coupled to T2 via a capacitor and maintains T2 in its off state.

The circuit will remain in this condition T2 off, Tl on for a period of time determined by the value of the capacitor coupling T1 and T2 and by that of the resistor in T2's base circuit. After this time the transistors will return to their stable state (T1 off, T2 on).

The constant duration pulses appearing at T1's collector are integrated by the circuit of Fig. 3. The variable resistor provides a means of calibrating the circuit while D2 and D3 prevent
damage to the meter's movement in the event of an excessive voltage being applied to the circuit.

In the final circuit of Fig. 1, T2 and T3 form the multivibrator but instead of the sensor switch being connected directly to the monostable a buffer stage around T1 is included. As this is an inverting stage, the sensor switch is now connected between Tl's base and the positive rail.

The components in Tl's base provide a degree of filtering for the 'digital' signal and also serve to condition the sine wave SOHz calibration sign al.

Although of a fairly 'basic' nature the circuit is capable of producing results with an accuracy of $+/-2.5 \%$.

WIND DIRECTION

The direction indicator circuitry achieves an effective eight point resolution via a three wire link by means of a diode matrix and an on board oscillator.

Figure 4 shows the fundamental circuit of the diode matrix. An AC voltage (square wave) forms the supply to the circuit in which, for simplicity, just two of the four sensor switches are shown. Assume that SS1 corresponds to North and SS2 to East and that the vane is pointing North.

SSI will be closed and on positive half cycles DI and LED 1 will conduct, illuminating the 'North' LED. LED 2 will be reverse-biased and will thus be unlit. On negative half cycles, DI is reverse-biased and both LEDs will be unlit.

In a NE position SS1 and SS2 will be closed, in this case LED 1 will light up as before on positive half cycles while during negative cycles D2 will pass current illuminating the forwardbiased LED 2.

In the East position of the vane only SS2 will be closed passing current to the LEDs only during negative cycles when only LED 2 will light, LED 1 being reverse-biased.

The full four LED circuit is shown in Fig. 1 and a similar analysis of this circuit will confirm the eight point resolution capability of the circuit.

Figure 5. shows the circuit of the square wave generator and reveals an astable multivibrator driving two, complementary 'push-pull' output stages driven by 'opposite phase' outputs of the astable.

In the final circuit of Fig. 1 the oscillator is formed by T4 and T5 while T6 and T7, T8 and T9 form the output stages. D4-D7 form the diode matrix that is remotely mounted in the sensor head.

POWER SUPPLY

The circuit may be powered from a number of different sources. Dry cells giving a 6 V supply can be directly connected to the rails while diode D1 will rectify and Cl smooth the output of a 5/8V transformer allowing AC operation.

The circuit may also be powered from a 12 V car battery in which case a 6 V 8 zener should be included in the power line.

Current consumption is approximately 20 mA .

PARTS LIST

Resistors

R1,2,3,4,10,13	5 k 6
R6	150R
R7,8,11,12	47k
R9,14,16	1k0
R15	100R

Potentiometer
R5 500R the Windspeed and Direction Indicator's PCB.

Detail of the direction sensor. Four reed magnets form a 'cage' and are activated by magnets on a central shaft

With
Selcall
only $£ 148.50$ including V.A.T.

You need exclusive communication instant clear air calling - and receiving

Shogun has it
A slim, efficient Japanese CB transceiver with Selcall unit to match Legal 27 MHz FM.
The silent Shogun springs to life when the one you want is calling. Comes with full money back guarantee.

Shogun with Selcall $£ 148.50$ each
Shogun without Selcall $£ 99$ each
(Prices include postage packaging and V.A.T. Antenna not supplied.)
Write now for the first CB with Selcall
Featuring
Channel selector with LED read-out. R.F. Gain. Squelch control. Volume Control. Delta tune. PA or $C B$ switch and noise blanker facility.
Microphone and fixing bracket. 10 decibel attenuator switch. Selective calling unit with 2560 calling codes over 40 channels. A seven second audio signal and a constant visual flashing device. Call button. Normal/Selcall switch.
Shogun Quality Wins!

ICOM'S IC290:

WE HAVE BEEN GETTING some flak for our preoccupation with 2 m equipment at R\&EW; it just happens that there has been a lot of interesting gear introduced in the past year for this band due to its enormous popularity, amounting to the use of the band as the 'thinking Man's' CB
It is also worth noting that several rigs introduced in the first instance as 2 m equipment, have appeared later with 70 cm coverage - and one or two with 6 m facilities, but we wouldn't know about that - would we? So, here we go again, and let's hope we can all learn a little from the undeniably excellence of this circuit design. As it happens, the IC290 also happens to find yet another way to mute the MC3357, and provide mute facilities for SSB into the bargain.

R\&EW looks into another Icom transceiver and concludes that there are few better sets around

THE HIGHLIGHTS.....

We have come to expect the receivers in Icom equipment to perform virtually to the limits of the physical science. And once again, we haven't been disappointed. There won't be too much action for the R\&EW 2 m preamplifier in this set. All the usual functions are present: FM, SSB and CW, 100 Hz synthesiser steps, scanning etc. The facilities are pretty much similar to the

FT290, although the available output power is rather higher at 10 W .

The RF output stage employs a power module rather than a discrete transistor strip. We are generally fairly nervous of such things, although it must be said that we havn't managed to do anything untoward to our review set. We must confess a degree of jealousy where such things are concerned, since we haven't been able to locate a source of supply that is prepared
to:
a) Give a sample or two, and
b) approach the cost of the discrete alternative.
No doubt Icom have more clout in the right quarters!
The use of squelch on SSB is an unusual but by no means pointless facility. Perhaps more sets are destined to appear with this facility now that the IC290 has set the trend.

Figure 1: Block Diagram of the IC290.

AROUND THE CIRCUIT

The block diagram on page 43 of the manual is of more use as a key to the main circuit diagram than an 'at a glance' guide to the operation of the IC290. However, Icom have been good enough to provide a rather more straightforward version which we use here. (Fig 1.)

The most memorable aspect of the circuit is the receiver input, and the transmitter mixer section (Fig.2). The receiver and transmitter share a common buffer input device (Q5) that provides source injection for the receiver mix er, and balanced source injection for the transmit mixer (Q1,Q2).

The receiver input goes directly to a 2 chamber helical filter before any form of RF amplification takes place. The set manages to achieve a blocking performance akin to that demanded in PMR applications as a result of the copious pre-mixer filtering stages. It should certainly never suffer from blocking in a vehicular installation, although there's no accounting for those amateurs wishing to use stacked 14 element parabeams within a stone's throw of another VHF transmitter.

The main receiver processing circuitry displays a disturbing number of ICs that we have not previously encountered - and it seems fair to assume that black boxes are now filtering through using a much higher level of integration than we have hitherto encountered.

Figure 2: A closer look at the receiver input and transmitter circuitry

Figure 3: The IC290's makes use of a number of custom ICs.

Any readers with access to data sheets such as the $\mu \mathrm{PC} 1037 \mathrm{H}$ or $\mu \mathrm{PC} 577 \mathrm{H}$ are cordially invited to send us copies. (However, we have recently been introduced to the last word in semiconductor information books from an American source. $£ 50$ may seem like a lot to cough up for a linear IC data reference manual - but a brief glance reveals that the publishers really have included absolutely everything that is not strictly a 'house' or custom type. We digress....)
The IC290 noise blanker uses a short time constant AGC preamp (IC4) after the first 'roofing' filter, and a diode RF switch (D24 to D27) fed from a transistor driven by a monostable. A simple enough circuit, but usually effective. The SSB squelch circuit is derived from carrier level, by sensing the voltage on the source of the final SSB IF amplifier stage (Q17). Presumably this takes into account the condition of the agc line (which is controlling current through the device via gate 2). It's not immediately obvious why Icom use this apparently roundabout technique when the basic AGC voltage is also available - perhaps it has something to do with thermal considerations?
The signal appearing at pin 7 of IC8 then serves the dual function of ' S ' meter on SSB or CW, and mute control voltage via IC8B. Q30 is switched on to to enable the mute function by shutting the attenuator path in IC11A. The FM squelch operates via IC11 - a dual voltage controlled attenuator - to set
the level presented to the noise amplifier back in the MC3357 (IC1) before D46 and D47 rectify it to switch on Q30 (muted condition) - IC11B is then left free to pass the audio to the TDA2002 output stage, depending on the setting of the volume control at the same control input to the attenuator. Q30 also controls the 'busy' light in the system. It's certainly different.
The CFW455E filter in the FM IF is nominally 15 kHz wide - and there may be some users who would prefer something a little narrower if the 5 kHz FM resolution is to be used for anything other than 25 kHz spacings. The absence of a 12.5 kHz channelling option is also unfortunate, judging by the increasing amount of interchannel activity on 2 m . Swapping the filter for an 8 or 10 kHz version would show a good deal of faith in the restraint of 2 m deviation controls, but at least the narrower channelling would have some meaning.
In case you were wondering, IC3 performs the function of SSB modulator and demodulator. Diodes $22,23,24,25 \& 5$ direct the DSB signal through the crystal filter on transmit. Q4 buffers the transmit signals (at the IF of 10.75 MHz), and the main mixing up to the output frequency occurs on the RF board detailed in Fig. 2.
The FM path is conventional, with IC1 being used as a limiter/ amplifier and low oass filter, with additional low pass filtering courtesy of QI. The FM modulation is applied via varicap

D3 to the 'IF' oscillator formed around Q3. In SSB mode, the audio signal is pulled off from the emitter of Q1 to be fed to IC3 via Q9.

ALL IN ALL..

The IC290 circuit illustrates that main bugbear of the multimode rig designer very neatly namely getting all the necessary bits stuffed in tight enough, and keeping track of the switching required to perform the 'housekeeping' tasks around the transceiver.
There are still some functions that are not as integrated as they might be - the SSB IF and the AGC for example, but the IC290 marks a distinct progression in black box integration for Icom. A brief glance at the nature of the construction, the complexity of the wiring and the quality of the overall presentation leaves little room for any European mianufacturer to get in on the action.

THE PLL

The complexity of the PLL and its associated scanning functions are not likely to be of much use to the average plaguerist. The 100 Hz steps are derived via voltage synthesis techniques (like the other circuits we have examined) driving a VXO (Fig.4) that controls a 'side chain' in the main VCO loop that runs at the RF output frequency minus the IF of 10.75 MHz . The remains of the PLL dives into an array of logic and an obscure oriental custom MPU. Our appreciation grinds to a halt with the μ PD650. Any offers?

....AND THE NOT SO HIGHLIGHTS

We had thought that Trio had learned the lesson of LED displays with their memorably awful TR9000 display. Icom appear to need some more convincing, and it seems likely that the IC290 will provide it. The LED display is not good news.

The loss of memory suffered when the power is removed is extraordinarily frustrating, especially if used in any form of base station application. Look on the bright side, there are no memory batteries to replace.

USER COMMENTS

The set performed well for all those who tried it, but the display brightness got a universal thumbs down. It looks a bit too much like a fancy $C B$ set (what 2 m rig doesn't?) for most users to have enough nerve to leave it fitted inside a car overnight, and when parked in a public place.

Overall operation was straightforward
enough, and not as confusing as some rigs we have seen. The main competition comes from the FT290 and the TR9000, with the FT290 getting the vote for versatility (despite the various shortcomings we discovered during our earlier review). The additional power of the IC290 is handy in a vehicular application, but many 2 m users are getting restless with just 10 W , although it is the ideal power to drive some of the fruitier linears.

The frequency shift that occurs when changing mode is billed as a feature, but the 'old hands' of 2 m found this rather annoying. Others found it useful, so it must be considered a matter of personal taste the sort of thing the prospective purchaser can identify when comparing the various rigs on the market in this 'slot'. The selection of 25 kHz channelling fails to reset the displayed frequency to the nearest 25 kHz channel as a 'default', if the set had previously been tuned in using the 1 kHz option; which seems rather less a matter of
taste than an omission in the program.
The basic accessories provided with the IC290 include a vehicle mount kit, (with quick release feature), and a simple plug action power connector.

Documentation is good, although even Icom are finding it hard to keep up with the complexities of some of the features they attempt to describe. There's enough information supplied for anyone with the nerve to set up in competition (if they can get hold of the custom bits), but it seems very unlikely that anyone but the bravest of owners would attempt to ursurp Thanet Electronics' service department when things go wrong.

It's very nice thank you, but we're trying to give them up.

R\&EW

Your Reactions.........	Circle No.
Immediately Interesting	48
Possible application	49
Not interested in this topic	50
Bad feature/space waster	51

Icom's IC25:

Short and sweet

THE IC25 really deserves more space than we have available here - so maybe we will return to it in a subsequent issue. Lack of space, and groans about too much 2 m mania has compromised our usual practice of delving into the manufacturer's circuitry in detail, which is a pity, since with things like schottky diode ring mixers and not an MC3357 or its ilk in sight, you will appreciate that this little box of tricks is a horse of a different colour.
The synthesiser circuit bears a close resemblance to the IC290 that appears elsewhere in this issue - but our airy assumption that the receiver of the ' 25 would be the same - was rudely dashed. The front of the receiver employs a four chamber helical resonator, which - along with the diode mixer - is used in conjunction with diode switching for RF selectivity of receive, and cleaning up the transmitter before power amplification occurs.

The receiver uses a 16.9 MHz first IF, which combined with the RF selectivity of the set and the 4 pole crystal filter, provides superb image rejection to complement the excellent IMD and blocking of the set. In fact, the basic receiver spec is probably the best we have yet encountered in equipment of this class and price. Even freezing to $-25^{\circ} \mathrm{C}$ and cooking to $+50^{\circ} \mathrm{C}$ didn't adversely affect the performance once the IC25 overcame the initial fright and returned to room temperature - so it should be quite happy sitting in the average car all year round.

A SALUTORY LESSON?

On the possibly dangerous assumption that anything with double balanced diode mixer represents the latest of the genre, it is interesting to see that the final IF amplifier stages comprise a very unglamorous combination of bipolar limiting amplifier
stages, followed by variation on the ratio detector employing a ceramic element and diode arrangement (Fig.1). The use of the small CFU455 series ceramic filter possibly accounts for the less brilliant adjacent channel rejection (when compared to the rest of the spec), however, the move away from quadrature detection reflects the trend back towards ratio detection in broadcast FM car radios, due to the smoother fading effects without the raucous interruptions from blasts of noise. Noise muting is performed by a 'classic' tuned noise amplifier that even uses an inductor as part of the tuning element. We said it was different.

A USER'S TALE

First impressions of this exceptionally compact and feaiure filled 2 m rig are good. The renowned sensitivity of ICOM receivers is at last matched by enough power to get to those users of 'deaf' low power transceivers, that have hitherto been the bane of users of things like IC2Es. Its mouth is as big as it's ears - to coin a phrase. (Remember, you read it in R\&EW first!)

The frequency display is too dim, most knobs too fiddley, and the repeater tone access technique via button a nuisance. However, as a long term IC22 user, these criticisms are much like those of AR88 fans moving onto FRG7700s. The only really serious point concerns the impossible dimness of the display when used in direct daylight. Maybe the smog in Tokyo is denser than we thought....
The adoption of either 5 kHz or 25 kHz steps attracts the usual snipe from the 12.5 kHz channel fans, although I would concede that maybe 10 kHz would be a more daring progression anyway!
Nevertheless, for a straight 2 mFM user, the IC25 would seem to take a lot of beating.

R\&EW

Figure 1: The final IF stages of the IC25 employ a combination of bipolar limiting amplifiers and a ratio detector using a ceramic element and diode arrangement.

CAMBRIDGE LEARNING SELF-INSTRUCTION COURSES

A PRACTICAL DIGITAL ELECTRONIC KIT FOR记 LESS THAN $£ 20$

SUITABLE FOR BEGINNERS

NO SOLDERING!

Learn the wonders of digital electronics and see how quickly you are deslgning your own circuits. The kit contains:
seven LS TTL integrated circuits breadboard, LEDs, and all the DIL switches, resistors, capacitors, and ofher components to build interesting digital circuits; plus a very clear and thoroughly tested instruction manual (also available separately). All this comes in a pocket size plastic wallet for only $£ 19-90 p$ inc VAT and $p \& p$. This course is for true beginners:
needs no soldering iron.
asks plenty of questions, but never leaves you stuck and helpless.
teaches you about fault-finding, improvisation, and subsystem checking.
the only extra you need is a $4!V$ baltery (Ever Ready 1289, or similar), or a stabilised 5 V power supply. Using the same breadboard you may construct literally millions of different circuits.
This course teaches boolean logic. gating. R-S and J-K flipflops, shift registers, ripple counters, and half-adders. Look out for our supplementary kits which will demonstrate advanced arithmetic circuits, opto-electronics, 7-segment displays etc.
It is supported by our theory course
DIGITAL COMPUTER LOGIC AND ELECTRONICS £8.56 £6.00 for beginners, and our latest, more advanced text, DIGITAL COMPUTER DESIGN
£7.00
Please send for full detalls (see coupon below).
GUARANTEE No risk te visu. If vou are not completelv sallsfied. vour monev will he refurded upon return of the item in good condition within 26 davs of receipt.
CAMBRIDGE LEARNING LIMITED, UNIT 157 RIVEPMILL §ITF., FREEPOST. ST IVES. CAMBS. PEIT $\angle B R$, FNGLAND. TELEPHONE: $S T$ IVES $10 \angle 80167 \angle L 6$. VAT Ne 313026022 All prices include worldwide postage dairmall is exira please ask for prepayment invoicel. Giro A / c No 2789159. Please allow 28 days for delivery in UK

Please send me

> SUPERKIT(S) @ £19.90

......Free details of your other self-insiruction courses.

I enclose a cheque/PO payable to Cambridge Learning Lid for $\{. . . .$. ... ("delete where applicable)
Please charge my:
*Access / American Express / Barclaycard / Diners Club Eurocard / Visa / Mastercharge / Trustcard Expiry Date............. Credit Card No
Signature. .Telephone orders from card holders accepted on 048067446Overseas customers (including Eire) should send a bank draftin sterling drawn on a London bank, or quote credit cardnumber.Address1
Adoress.
Cambridge Learning Limited, UnitlS7Rivermill Site. FREEPOST,St Ives, Huntingdon, Cambs, PE17 $4 B R$. England. (Registered

WOOD \& DOUGLAS

A new range of products are available from us to cover the increased interest in video transmission

TVUP2 TV UPCONVERTER is a wo r.f. stage receive converter with a crystal controlled local oscillator. The PCB accepts signal at 70 cms and outputs them at channel 36 on a standard TV set. The TV output is filtered and there is a 'de-sense' input to allow monitoring of local signals without compression. Overall gain is 25 dB minimum, noise figure better than 2.5 dB .

Kit - £19.60

Assembled - £26.95

TVM 1 TV MODULATOR converts any 70 cms transmit strip into a series modulated DSB video transmitter. The PCB accepts composite video signals and incorporates a sync pulse clamp and black level adjustment. With an external pass transistor the board will source up to 2 Amps current drive.

Kit - £ 5.30
Assembled - £ 8.10
ATV-1 VIDEO TRANSMITTER a boxed finished video transmitter giving $3 W$ p.s.p. The unit is housed in a vinyl-topped enclosure enclosure measuring $8^{\prime \prime} \times 5^{\prime \prime} \times 2^{\prime \prime}$. Video input is via two
indepently switched BNC Inputs, each having a front panel mounted level control. There is a receiver output via a pin diode aerial switch for connection to an UpConverter such as the TVUP2. ; The rear panel also has a monitor output for waveform inspection on an oscilloscope. The unit has internal preset controls for black level and sync stretching circuitry. The unit is unique in that it is double mode. There is a NBFM modulator included to allow station indentification at 70 cms simply by plugging. a microphone into the front panel socket. The whole unit runs from a 14 V maximum PSU and will give good reliable service in either mode. A one year guarantee is offereo on parts and labour.

Boxed ready to go at $\mathbf{£ 8 7 . 0 0}$
ATV-2 Video Transceiver the natural propression from the
ATV-1 . The highly successful ATV-1 and TVUP2 circuitry have been combined to give a complete video station. All you require is a standard TV set and a camera. What could possibly be easier?

Boxed ready to go at $£ 119.00$
incidentally, as both these units have NBFM facllities you will not be left highand dry with a white elephant should video be removed from 70 cms Simply plug in a new crystal and you can work your local FM repeater.

70LIN10/3 B is a 3 W to 10 W linear designed as a video booster for the ATV-1/2 to give 10W minimum output from our very popular video transmitters. The board is straight through with no power supply connected or when in recelve mode. It has automatic r.f. sensed changeover when transmission takes place. The unit is of course usable for NB FM operation with the new handheld transcelvers such as the IC4.E.

Kit-£28.95

Assembled - £39.10

Just a few examples of our ever increasing range. An SAE will bring you the latest detaits and prices. Technical enquiries can be answered between 7.9pm on either 073565324 or 025624611 . Kits when stock are return of post otherwise allow 28 days.. Assembled /boxed items, allow 20/40 days. Prices include VAT at the current rate. Please include $70 p$ postage and handling on total order except boxed items which should be $£ 1.00$ for recorded delivery.
we apologise for the inconvenience but we will be closed for annual holiday between 3 rd to 17 th july.
All prices include VAT at the current rate. Please add 70 p 10 your total order for post and handling. Kits contwin alhpcb components but no external hardware. Crystals are not supplied for transceivers but are for converters. synthesisers etc. Kits when stock are 2-3 days otherwise up to 28 days depending on component availability. Assembled modules $20-40$ days depending on stock. Non-amateup frequencies can be supplied for assembled modules but we reserve the right to charge up to 20% excess to cover handing costs. All postal enquiries require an SAE please; a large one it full lists are required! Non technical enquiries onty can be taken $10 a \mathrm{~m}-4 \mathrm{pm}$ on 073565324 . For technical information please call 073565324
or 025624611 between $7 \mathrm{pm}-9 \mathrm{pm}$. as we are part-time.

Kits are availabie from the following agents:
Ammieur Radio Exchange, Northfield Road, EALING. 01.5795319 J. Birkett, 25 The Strait, LINCOLN. 052220767.

Darwen Electronics. 13 Thornclitfe Drive, OARWEN, Lancs. 0254771497 United Trading AB, Box 16024, 20025 MALMO. SWEDEN O40 948955.
9 HILLCREST, TADLEY
BASINGSTOKE, HANTS RG26 6JB

An Intelligent 'Scope with 100 MHz Performance.

THE INTELLIGENT OSCILLOSCOPE is a concept that is only now becoming a reality; oscilloscope manufacturers having been rather slow to respond to the benefits gained by incorporating microprocessors within equipment. The inherent analogue nature of traditional 'scopes coupled with a lack of 'lateral thought' may have contributed to this delay, but with modern 'scopes owing as much to logic gates as to op-amps, things are changing.

The OS5 100 from Gould Instruments is a micro based 'scope offering a bandwidth of 100 MHz . The benefits of using the MPU, a 6809 in this case, show in many aspects of the machine's performance, the most apparent being the provision of an onscreen display of system parameters.
The front panel reveals that many of the traditional scope controls - timbase range, channel sensitivity, trigger source and coupling etc. - have been retained but that a 14 key numeric pad has been added to the scope's complement of controls.

MEASURING BY NUMBERS

The OS-5100 may be used as a convential 'scope, the instrument offering Y sensitivity to $2 \mathrm{mV} / \mathrm{cm}$, timebase range (to $5 \mathrm{nS} / \mathrm{cm}$) and a variety of trigger sources and couplings. The screen provides an alphanumeric display of the setting of all these controls.

The automatic measurements that the OS5100 provides are controlled by the numeric keypad which has a shift function associated with it, rather like a calculator.

The measurements are defined by using one or more of four on- screen cursors each being selected by a push button below the numeric keypad and positioned by a single, rotary, shift control. Once the cursors are positioned on the trace, selection of the calculation mode gives results such as time interval, rise time etc., on-screen.

For measurements such as rise time, the cursors need only bracket the portion of the trace that is of interest, the MPU will
automatically calculate the 10% and 90% points and perform the calculation.

The OS5100 has two blocks of memory - each $1 \mathrm{Kx8}$ - and these, in conjunction with a fast A / D convertor using sequential sampling techniques, allow repetitive waveforms, up to the full 100 MHz bandwith of the 'scope, to be captured.

Single transient waveforms at, or slower than $100 \mathrm{uS} / \mathrm{cm}$ can also be captured.

The cursor and calculation modes can be used both with realtime and stored waveforms or a mixture of both. Thus in a T \& M environment it is possible to display a production sample's performañce and compare it with that of stored 'reference' data.
The extensive trigger facilities of the OS5100 offer such functions as delay-bytime and delay-by-event and, by using an optional logic analyser word recognition pod it is possible to trigger on specific words.

ON THE BUS

The digital nature of much of the OS5100's circuitry means that interfacing the machine to external equipment is possible. The 'scope is provided with an IEEE port and-an optional IEEE card will allow the device to be operated as a listener or talker: These facilities mean that further computer analysis of stored data may be undertaken.
The OS5100 is also provided with a dedicated XY plotter output.
The degree of intelligence exhibited by the OS5100, particulary the measurement facilities offered by it, will mean a considerable saving in many areas of $R \& D$ and T\&M. Competition between logic analysers and the new breed of intelligent scopes will continue to grow over the next few years with the 'scope remaining the hardware engineer's tool while the logic analyser finds more application in software development. The 'scope with the range of facilities it offers will probably remain the preferred tool and designs such as the OS5100 are bound to find many applications in all areas of electronic engineering. R\&EW

```
TRIGGER MODE: DELAY SYSTEM MENU SELECT 30 FOR NEXT PGGE. 20 DISPLAY THIS PAGE SELECTION "A" START DELAYED FROM "A"TRIGGER, TO:
```

```
21 TME=T
```

21 TME=T
22 Nth"B"TRIGGER EUENT
22 Nth"B"TRIGGER EUENT
"A" STARTS
23 EUERY Nth "A"TRIG %N
24 EUERY NxiOns (CLOCK)

```


A typical dual trace display with associated alphanumeric measurement information.

\section*{WIND SPEED AND DIRECTION MONITOR \\ Complete kit including PCB all components, front panel, sensor assemblies and cable. \\ Stock No. \\ Price (Inc.VAT) 40-03000 £49.95 \\ }

\section*{MULTIBAND UP CONVERTER}

PCB, components for the 10 m oscillator, components for mixer, case and sockets.

Stock No. Price (Inc. VAT)
40-28001
\(£ 14.90\)
oscillator section, components for \(4 \mathrm{~m}, 6 \mathrm{~m}\), or CB band each:
Stock No.
Price (Inc. VAT)
40-28002 \(£ 5.82\)

Complete kit with all four oscillator sections.
Stock No.
Price (Inc. VAT)
40-28003
£30.91

\section*{18W POWER BOOSTER}

Complete kit of parts; PCB. all components, ICs, relay, sockets, di-cast box and aluminium heatsink, (both undrilled).
Stock No. 40-13881


Kit as above but less di-cast box and heat sink.
Stock No.
Price (Inc. VAT)
40-13882
£15.00

\section*{ZX81 EXPANSION BOARD}

Kit including PCB and all components with the exception of memory ICs.
Stock No.
40-10081
Price (Inc. VAT)

6116-3 memories and DIL socket at a special price for this project.
Stock No.
Price (Inc. VAT)
Z6-56116
\(£ 5.00\)

ALL PRICES INCLUDE VAT @ 15\%
PLEASE ALLOW 21 DAYS FOR DELIVERY.
POSTAGE AND PACKING 50p per order.
200, North Service Road, Brentwood, Essex CM14 4SG
R\&EWPROJECTPACKS


\title{
S.E.M \\ UNION MILLS, ISLE OF MAN \\ Tel: MAROWN (0624) 851277
}

Our equipment is in use in over 100 countries.
SENTINEL AUTO 2 METRE OT 4 METRE PRE AMPLIFIER
Uses a neurralised strip tine Dual Gate MOSFET giving around 1dB N.F. and 20 dB gain (gain control adjusts down to unity) and straight through when OFF. 400 W P.E.P through power rating. Use on any mode. 12 V 25 mA . Sizes: \(1 \%^{\prime \prime} \times 2 \%^{\prime \prime} \times 4\) ᄃ28.00 Ex stock
PA5 Same specification as the Auto including 240 V P.S.U f \(33000^{*}\) SENTINEL STANDARD 2 METRE or 4 METRE PRE-AMPLIFIER
Same specification as the Auto (above) less R.F. switch. \(\mathbf{f 1 5 . 0 0 ^ { \circ }}\) Ex stock.
PA3 Same specification as the Sentinel Auto above. 1 cubic inch p.c.b. to fit inside your equipment. © 10.00 Er stock.
70 cm versions of all these fexcept PA5) £4.00 extra. All ex stock.
NEW SENTINEL 2 METRE LINEAR POWER AMPLIFIER/PRE-AMP These units now feature either POWER AMP alone or PRE.AMP alone or BOTH or STRAIGHT THROUGH. Plus a gain control on the pre-amp from 0 to +20 dB . Noise figure is around 1 dB using a neutralised dual gate mosfet.
The power amplfiers use the latest infinite S.W.R. protected transis tors with AIR LINE circuits to give highest power gains. Ultra LINEAR for all modes and R.F. or P.T.T. swithed. 13.8 V nominal supply. SO239 sockets
Three Models:
SENTINEL 35 Twelve times power gain. 3WIN 36 W OUT. 4 amps. Max. drive \(5 W .6^{*} \times 2 \%{ }^{*}\) front panel, \(4 \%^{*}\) deep \(£ 6250\) Ex stock.
2 SENTINEL 50 Five times power gain. IOW IN 50W OUT. Max. drive 16 W 6 amps. Same size as the Sentinel \(35 . £ 74.50\) Ex stock
3. SENTINEL 100 Ten times power gain. IOW IN IOOW OUT. Max. drive 16 W Size: \(6 \%^{\prime \prime} \times 4^{\text {" }}\) front panel, \(312^{\prime \prime}\) deep. 12 amps . \(£ 100\) Ex atock.
All evidable less pro-amp for \(£ 8.00\) less.
S.E.M. TRANZMATCH

The most VERSATILE Ant. Matching system. Will match from 15.5000 Ohms BALANCED or UNBALANCED at up to 1 kW . Link coupled balun means no connection to the equipment which can cure TV1 both ways. SO 239 and 4 mm connectors for co an or wire feed. 160.10 metres TRANZMATCH © 69.60 . 80.10 metres \(\mathbb{C} 6260\) EZITUNE built in for \(£ 19.50\) extra. (See below for details of EZITUNE). All ex stoch 3 WAY ANTENNA SWITCH 1 Kw SO2396 \& 15.00 Ex slock.
S.E.M. 2 METRE TRANZMATCH
\(5 y^{\prime \prime} \times 2^{\prime \prime}\) front panel, \(3^{*}\) deep. SO239s [25.30 Ex atock

S.E.M EZITUNE

Clean up the bands by funing up without transmitting
Connects in aerial lead, produces \(\mathrm{S} 9+(1-170 \mathrm{MHz})\) noise in receiver. Adjust A.T.U or aerial for minimum noise. Youhave now put an exact 500hms into your transceiver Fully protected, you can transmit through it, save your P.A. and stop QRM. E25.00. Ex stock.
S.E.M. AUDIO MULTIFILTER

To improve ANY receiver on ANY mode. The most versatile fither available. Gives "passband" tuning, "variable selectivity" and one or two notches. Switched Hi-pass Lo-pass, peak or notch. Selectivity from 25 KHz to \(\mathbf{2 0 H z}\). Tunable from 2.5 KHz 10250 Hz . PL.US another notch aveilable in any of the four switch positions which covers 10 KHz 10100 Hz . 12 V supply. Sizes: \(6^{*} \times 2 \frac{1}{2}{ }^{\prime \prime}\) front panel, \(31 / 2^{"}\) deep, all for onty〔57.00 Ex stock.
SENTINEL AUYO H.F. WIDEBAND PRE-AMPLIFIER \(2-40 \mathrm{MHz}, 15 \mathrm{~dB}\) gain. Straight through when OFF. \(912 \mathrm{~V} .2 \%^{*} \times 1 \%^{\prime \prime} \times 3^{\prime}\). 200 W through power. \(£ 19.55^{\circ} \mathrm{E}\) stock

SENTINEL STANDARD H.F. PAE.AMPLIFIER
Same specification as above preamp but with no R.F. switching. \(\left\{1262^{\circ}\right.\) Er stock. S.E.M. IAMBIC KEYER

The ultimate auto kever using the CURTIS custom LSICMOS chip. Tune and sidetone Switching. £34.50 Ex stock. Twin paddle touch key. £ 1250 Em stock
FREQUENCY CONVERTERS. SENTINEL D.G. MOSFET 2 or 4 metre converters N.F. 3dB. Gain 30dB, 1 F.S. 2-4, \(46,28-30 \mathrm{MHz} 912 \mathrm{~V}\). E24.73 Ex stock.
SENTINEL ' X ' 2 METRE CON. Same as above plus mains power supply \(£ 28.80 \mathrm{E}\) sock
SENTINEL UF. \(10 \mathrm{KHz} \cdot 2 \mathrm{MHz}\) IN. 28.30 MHz OUT. C20.80 En stock
SENTINEL TOP BAND \(1.823 \mathrm{MHz} \mathbb{I N} .1414 .5 \mathrm{MHz}\) OUT. £20.80Ex stoch 12 MONTHS COMPLETE GUARANTEE INCLUDING ALL TRANSISTOAS.
Prices include VAT and delivery. C.W.O. or phone your credit card number for same day service.
- Means Belling Lee sockets. add \(£ 1.90\) for SO2395 or 8NC sockets. Aing or write for more information. Place orders or request information on our Ansaphone at cheap rate times.

211 for further details


206 for further details

\section*{Hituchi Oscilloscopes performance, reliability, exceptional value and immediate delivery!}


Hitachi Oscilloscopes provide the quality and performance that you'd expect from such a famous name, in a range that represents the best value for money available anywhere
V. \(152 \quad 15 \mathrm{MHz}\) Dual Trace
V. 202 20MHz Dual Trace
(illustrated)
V-302 30MHz Dual Trace
V. \(650 \quad 60 \mathrm{MHz}\) Dual Trace. Dual Timebase V. 1050 100MHz Quad Trace, Dual Timebase Available soon:
- 209 20MHz Dual Trace, Battery Portable

Prices start from around \(£ 230\) and we hold the range in stock for immediate delivery

For colour brochures giving detailed specifications and prices, ring 0480 63570.

Reltech Instruments 46 High St.. Solihull. W. Midlands. B91 3TB

\section*{G4JDT HARVEY \\ EAST LONDON HAM STORE \\ H. LEXTON LIMITED \\ 191 FRANCIS ROAD LEVTON E. 10 TEL 01-558 0854 TELEX 8953609 LEXTON G}

171
DRESSLE

\(\begin{aligned} & \text { D70 A.T.V } \\ & \text { D70c } 70 \mathrm{~cm}\end{aligned}\) D200C 125 W FM 190W PEP

D200:300 FM 600W PEP
E500
\(£ 295\)

D200S 400 + FM 1 kW PEP

These are high power 240 V linears using \(4 \mathrm{C} \times 150\) or \(4 \mathrm{C} \times 250\) or \(4 \mathrm{C} \times 350\) Eimac Tubes NOT using the grounded Grid system.
Fully protected, no thermal damage to PA finals possible.

GASFET MASTHEAD PREAMPS

\section*{EXCLUSIVE TO US}
£495 £600

\section*{VV700GAAS}

VV2GAAS vV200GAAS
£79.00
\(\mathfrak{F} 79.00\)
Powered by the linear or with separate interface
\(0.7-0.9 \mathrm{~dB}\) signal to noise
0.2 dB insertion loss

3SK97 GASFET Available separately \(£ 4.50\)



ALL ACCESSORIES AVAILABLE - PLUGS SKTS CO-AX 2MTR COLINEAR £31.50, 70CM COLINEAR £31.50
PRICES INCLUDE VAT AT THE PRESENT RATE OF 15\%
OPEN MÖN-FRIDAY 9:00-5.30. SATURDAY 10:00-3:00. INSTANT HP FACILITY AVAILABLE
EASY ACCESS M2-M11-M1 NORTH CIRCULAR ROAD EASY PARKING

\section*{VISA}

\title{
SUPERKIT
}

\title{
Cambridge Learning's introduction to digital electronics is evaluated by Gary Evans.
}

MENTION THE WORD 'LOGIC' nowadays, and most peoples' minds will think of a computer or, at the very least, a microprocessor. Such systems or devices are, however, merely a collection of logic gates configured in a specific pattern. The Cambridge Superkit aims to impart an understanding of these gates, the fundamental building blocks of all digital circuitry. Anyone working religiously through the course should gain enough knowledge, and confidence, to design a variety of practical digital circuits.
Cambridge Learning have been producing Self-Instruction courses for a number of years now, and their experience in this field shows in the well produced handbook. Supplementing the book is a collection of 'hardware' that enables the reader to 'breadboard' each logic block as it is introduced in the text.

\section*{POINTS TO NOTE}

The handbook begins with a few notes about the course and what can be gained from its completion. It's interesting to note that one of the course's aims is to teach improvisation, a skill that seems sadly lacking in many of today's engineers.

The next section of the book gives some advice on the practical aspects of building the various circuits to be described in later chapters. Component identification is covered, with the section on IC orientation - often a source of confusion - being par-
ticularly thorough. The resistor colour code is reproduced and there is even some advice on the easiest way to strip wire that suggests that teeth can be used 'as a last resort' - I'm not sure how well that would go down with the British Dental Association.

\section*{O\&A}

At the end of this, and every, section there is a question and answer session in which the reader's appreciation of what has gone before is ascertained. The answers given in the back of the manual are clear and concise and should serve to clear up any point that has caused confusion.

With Chapter Two the work starts, the first task being to assemble a DIL switch, buffer IC and four LEDs which will provide the input and output indication for the later circuits. It is suggested that different coloured wire is used for the various connections depending on their function black and red for power rails (nice to see these making a return, rather than blue and brown) with blue being used for 'logic' interconnections. Wiring layouts are shown both as point-to-point line drawings and as a list of connection points.

Before connecting power to the circuit Cambridge warn that the orientation of the IC should be checked on penalty of 'a nasty burning smell'.

The next chapter runs through truth tables for AND and OR gates, or rather leaves the reader to complete the tables having investigated a gate's behaviour in prac-
tice. It may seem very simple stuff, but at least one university's first year undergraduate course devotes a couple of hours to this very area as part of its Introduction To Logic programme.

One helpful touch is that a separate sheet of IC pin-outs is provided, thus avoiding having to flip from page to page in the manual when working on a layout.

\section*{MORGAN'S MOMENT}

Chapter two finishes with an introduction to de Morgan's theorem showing its use in analysing the behaviour of various combinations of gates and in optimising a circuit.

Chapter three continues the basic ground work with the introduction of the most common types of gate, the NAND and NOR. The concept of hysteresis is explained and a circuit designed around a Schmitt inverter reinforces the idea and shows it 'in action'.

R-S flipflops, J-K flipflops and their application in counter circuits and shift registers is covered in the following chapter culminating in an exercise that asks the reader to design a full adder. Concepts such as switch bounce and how to overcome it, up/down counting, twisted ring counters etc. are taken in along the way.
This section of the handbook ends with a look at the various logic families in use today with a brief look at their characteristics.


\section*{NEVER SAY DIE}

Perhaps we should reinforce the fact that this is a self- teaching book and as each new
concept is introduced, the reader is asked to try it in practice to understand it, and is questioned to confirm that the important points have been grasped. The diligent
reader should finish with a sound grounding in the principles of digital electronics.

The final section of the handbook contains a couple of 'fun circuits' including the inevitable digital dice as well as a number of pages devoted to the fundamental principles of electricity (what is current?; what is resistance?) and some basic semiconductor physics. A glossary of general, as well as specifically logic, terms is also included.

A kit that is well produced and, while it is aimed below the level of the average R\&EW reader, should be of value to the complete beginner as well as to those au fait with analogue circuits but have not yet discovered what makes a digital circuit tick. It might also pay students intending to start courses in electronics to work through the course in their spare summer hours to give them a head start when they come to the digital element of their course.

\section*{■R\&EW}
\begin{tabular}{|lc|}
\hline Your Reactions.......... & Circle No. \\
Immediately Interesting & 74 \\
Possible application & 75 \\
Not interested in this topic & 76 \\
Bad feature/space waster & 77 \\
\hline
\end{tabular}

FOUR FIRST PRIZES OF \(\mathbf{£ 2 5 0}\) IN R\&EW's £1000 COMPETITION DESIGN A SOPHISTICATED WIND
MONITOR BASED ON OUR HARDWARE

The wind monitor project featured in this issue is based on some very soundly engineered hardware.

The electronics of the system provides a basic display, but we're the first to admit that something more adventurous is possible. Think about it - a 934 MHz low power data link version? What about formatting the data for transmission down a single data line? Connecting a number of systems together to map (and computer model) wind patterns around high buildings?
Just a few ideas to which you no doubt can add.
The winners of the competition will be the readers submitting the most original and technically innovative designs based on the wind monitor hardware.

There are two age groups, 18 and under and the over 18s. A first prize of £250 will be awarded to the winner of each group.

A further \(£ 250\) will be awarded to the
best overseas entry.
In addition, a \(£ 250\) prize will be awarded to the best 28 based design this prize may be won in addition to any of the other first prizes.

Send your entries to: WIND MONITOR COMPETITION
R\&EW, 117a, High Street, Brentwood, ESSEX CM14 4SG

\section*{RULES}
1. Closing date is September 30th UK, November 30th Overseas: all entries postmarked later than these dates will be discounted.
2. Employees of R\&EW and their agents are not eligible for entry.
3. The panel of judges will consist of representatives of R\&EW and Zilog UK, their decision will be considered final and no correspondence concerning the competition will be entered into.
4. The judges reserve the right to withdraw prizes in any of the categories if, in their opinion, the standard of entry does not reach an acceptable standard.

\title{
LOW COST GaAs FETS
}

LOW COST GASFETS or more correctly GaAs mesfets intended for use in UHF TV tuners are now enabling the Amateur to construct low noise amplifiers in the VHFUHF region.

Until recently GaAs fets were only familiar to the Microwave engineer, now there use is becoming more common at lower frequencies.
Figure 1 shows the construction of a dual gate Mesfet. The Mesfet (metal semiconductor field effect transistor) consists of two metal gates separated from the bulk of the semiconductor (GaAs gullium arsenide, in this case) by a Schottky barrier layer.

Electrons in GaAs have six times the mobility of those in silicon, and reach their maximum velocity with lower electric fields. As a direct result of this, GaAs fets produce the same gain as a similar silicon device at twice the frequency. The higher mobility also means lower resistivity which results in lower noise figures.

Unfortunately the production of pure GaAs substrates together with a more complex mesa structure makes GaAs fets relatively expensive. Low cost GaAs fets for use below 1 GHz have become available due to relaxed tolerances and volume production for the consumer market.

Low cost (under £5) dual gate Mesfets available include the 3SK97 and 3SK98 from Matshushita and the 3SK112 from Toshiba, undoubtedly others will become available as more manufacturers begin to use them in TV tuners.

Comparing the 3 SK112 GaAs mesfet to


Figure 1: Construction of a Ga As dual gate MESFET.



\section*{Dressler VV2000 GaAs Amplifier}
the popular 3SK88 dual gate mosfet, the \(3 \mathrm{SK} 112(\mathrm{NF}=1.9 \mathrm{~dB}\) at 800 MHz ) yields a noise figure of approximately half that of the 3 Sk88 \((\mathrm{NF}=3.8 \mathrm{~dB}\) at 900 MHz\()\) at the top end of band V , while producing a slightly higher gain.

Thus these low cost GaAs fets are ideal for use in 144 and 432 MHz receivers requiring low noise front ends. At higher frequencies better divices are required which are more expensive, although here prices are rapidly falling. For 1.3 GHz and above suitable reasonable cost (under \(£ 20\) ) GaAs fets are the NE72089 from NEC the MGF-1400 from Mitsubishi and the ALF1003 from Alpha.
Figure 3 shows the typical DC characterisics of a low cost GaAs mesfet (3SK112). The IDSS \(\left(\mathrm{Vg}_{1}=0\right)\) of these fets are fairly high, and for normal operation a negative bias on gate 1 is required. For the 3SK112 highest gain and lowest noise figure occur at a drain current of 10 mA (Fig. 4) which corresponds to a bias voltage on gate 1 of -1.7 volts \((\mathrm{Vg} 2 \mathrm{~s}\) \(=0 \mathrm{~V}\) ). Generally in microwave amplifiers it is necessary to have the source leads directly grounded for maximum gain and stability. In the UHF region the source can be effectively decoupled and a source resistor included to provide the required biasing (170R in the above example). If this is done gate 2 should be at the same DC

Figure 2: Equivalent circuit of a typical dual gate MESFET (3SK112).

Figure 4: Gain and noise figure against drain current for the 3SK112.


Figure 3: Typical DC characteristics of Ga As Fet.



Figure 5: Circuit Diagram of the Masthead Version of the Dressler Pre-Amplifier.


Figure 6
potential as the source for normal use. Gate 2 can be used to provide gain control as with a conventional dual gate mosfet by taking in negative with respect to the source.

One of the first to make use of these low cost GaAs mesfet in Amateur applications is the West German company Dressler. The circuit of a masthead pre-amplifier for 144 MHz based on the 3SK97 is shown in Figure 5.

Taking in a look at the Dressler VV2 GAAS, it has a claimed gain and noise figure of \(15-18 \mathrm{~dB}\) and \(0.7-1 \mathrm{~dB}\) respectively. Our measurements reveiled a gain of 16 dB with a noise figure of 1.27 dB . Although the noise figure of the sample tested was outside their claimed specification it still


Figure 7


Figure 8
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline CHARACTERISTIC & SYMBOL & CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline Gate 1 Leakage Current & \({ }^{\mathrm{G} 1}{ }^{\text {SS }}\) & \(V_{\text {DS }}=0 ; V_{G 1} S=-6 \mathrm{~V} ; \mathrm{V}_{\mathrm{G} 2} \mathrm{~S}=0\) & - & - & 20 & A \\
\hline Gate 2 Leakage Current & \({ }^{\mathrm{G} 2} \mathrm{SS}\) & \(V_{\text {DS }}=0 ; V_{G 1} S=0 ; V_{G 2} S=-6 \mathrm{~V}\) & - & - & 20 & A \\
\hline Drain-Source Voltage & \(V(B R) D S X\) & \(\mathrm{V}_{\mathrm{G} 1} \mathrm{~S}=-6 \mathrm{~V} ; \mathrm{V}_{\mathrm{G} 2} \mathrm{~S}=-6 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=100 \mathrm{~A}\) & 10 & - & - & \(V\) \\
\hline Drain Current & \({ }^{1}\) DSS & \(V_{D S}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{G1}} \mathrm{~S}=0 ; \mathrm{V}_{\mathrm{G} 2} \mathrm{~S}=0\) & 20 & - & 45 & mA \\
\hline Gate 1 Source Cutoff Voltage & \(\mathrm{V}_{\mathrm{G} 1} \mathrm{~S}\) (Off) & \(\mathrm{V}_{\mathrm{DS}}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{G} 2} \mathrm{~S}=0 ; \mathrm{I}_{\mathrm{D}}=100 \mathrm{~A}\) & - & -2.5 & - & V \\
\hline Gate 2 Source Cutoff Voltage & \({ }^{V_{G 2}} \mathrm{~S}\) (Off) & \(\mathrm{V}_{\mathrm{DS}}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{G} 1} \mathrm{~S}=0 ; \mathrm{I}_{\mathrm{D}}=100 \mathrm{~A}\) & - & -2.5 & - & V \\
\hline Forward Transfer Admittance & Yfs & \(\mathrm{V}_{\mathrm{DS}}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{G} 2} \mathrm{~S}=0 ; \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA} ; f=1 \mathrm{kHz}\) & - & 17 & - & ms \\
\hline Input Capacitance & \(\mathrm{C}_{\text {iss }}\) & \(V_{D S}=5 \mathrm{~V} ; V_{G 2} \mathrm{~S}=0\) & - & 1.2 & - & pF \\
\hline Reverse Transfer Admittance & \(\mathrm{C}_{\text {rss }}\) & \({ }^{\text {D }}\) ( \(=10 \mathrm{~mA} ; f=1 \mathrm{MHz}\) & - & 0.02 & - & pF \\
\hline Power Gain & \(\mathrm{C}_{\mathrm{ps}}\) & \(\mathrm{V}_{\mathrm{DS}}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{G} 2} \mathrm{~S}=0\) & - & 18 & - & dB \\
\hline Noise Figure & NF & \({ }^{\text {D }}\) D \(=10 \mathrm{~mA} ; f=800 \mathrm{MHz}\) & - & 1.9 & - & dB \\
\hline
\end{tabular}

3SK112 Electrical Characteristics
represents a good figure for a switched preamplifier. Plots of the pre-amplifiers response and match are shown in figure \(6-8\) the reduced gain peak of figure 7 being due to digitising errors in the plotting.

Commercially available GaAs fet preamplifiers available for 432 MHz are the Dressler VV700 GAAS claiming 0.9-1dB NF and the GLNA 432u from Mutek with option of either a 0.8 or 0.65 dBNF version.

In a forthcoming edition of R\&EW we will be including a constructional project for a \(144 / 432 \mathrm{MHz}\) pre-amplifier based on the 3SK112.

\section*{TEST EOUIPMENT}

HP 8505 Network Analyser TEK 7L12 Spectrum Analyser Ailtech 75 Precision Automatic N.F. Indicator.
-R\&EW


\section*{JULY'82 EVENTS:MOBILE RALLYS}

July 11th Worcester \& DARC
Annual Mobile Rally

July 18th Pembroke \& DARC
'Bucket \& Spade Party'
July 18th Sussex Mobile Rally
July 25th Anglian Mobile Rally
June 25th Scarborough ARS Mobile Rally

High School, Ombersley Road, Droitwich

The Regency Hall, Saundersfoot
Brighton Raceground

Stanway School, Colchester, Essex

Spa Ocean Room, Scarborough

Tony Blissett, G8NSL, 26 Cherry Orchard, Holt Heath, Worcester, Tel Worcester 620507.

GW3XJQ Tel 09945267
G Miles, G3VB3, 65 Montgomery Rd, Hove, Sussex. Tel Brighton 778546

G3YAJ. Tel 0206-393938

Further information from G4JAQ, QTHR, Tel 0723862638

NB. Would Rally organisers please send details of forthcoming events to the Editor - and please also include a list of exhibitors.


\section*{HOLD VERY TICHT PLEASE - DING, DING !}

\section*{It's conductors I'm on about; of the 'semi' variety.} And, perversely enough, the presence of the word 'con' in semiconductor strikes me as being singularly appropriate in these straitened times.
First, let me introduce you to the only man more egocentric than William Poel, W.J. Sanders, Chairman of Advanced Micro Devices (AMD) who declared, amid the discordant jangling of his multi-layered gold bracelets, that 'the recession is over for AMD' way back at the beginning of May.

\section*{Intel is hiring.}

And Signetics is flogging more than it has been channelling out of its doors for the first time since the Spring of 1980. Not that's not all bad.
Underlining those good folks' optimism is a recent analysis from Dataquest forecasting hefty semi growth between 1983 and 1986.
If you haven't turned the page yet looking for more stimulating stuff, bear with me a paragraph or two longer and you'll start to share my fascination with the way of the world.
Because the beautifully named Pasquale Pistorio (no jokes please), head of SGS-ATS, is worried skinny - well he could lose the weight - about the absence of any sign of success between European governments in creating a joint policy toward the semiconductor industry at a time when the United States and Japan are beating the living daylights out of this key market.
And now for the giggles: the semiconductor market overall fell by no less than \(26 \%\) in 1981. The forecast of \(4 \%\) increase for 1982 from Dataquest will leave it still way behind its former position and even the 'forecast' increase in 1983 of anything up to \(20 \%\) will still mean that this most sexy of industries will not have moved an inch in the last three years at a time when inflation has meant it has been earning less and less as well!
The results have been writ large on the pages of the popular electronics press.
And, to remind you, Fairchild were absorbed by Schlumberger and have hardly been heard of since; Mostek were lost in a conglomerate, corporate maw; AMI are now part of Gould; and so on.
Now to pricing.

For years the semiconductor boys have been their own worst enemies in that they believed never a piece of business should be allowed to pass them by if they could hack away at their prices and hang onto it somehow.
Accordingly, they make very good money when the market is going rancid for components - and, like National Semiconductor, lose a packet when it ain't.
And by National Semiconductor I mean the world's third biggest integrated circuit maker!
If we exclude the Japs - to whom I now turn.
It must be apparent to everyone - and especially gifted enthusiasts like yourself - that the lovely people who brought us Pearl harbour are gulping down the Hi-tech section of the big game.
Parameter by parameter, 100 by 100 K , they are mulching the memory market and leaving the Americans to concentrate on the semicustom and mass production areas of opportunity.
(Hence, by the way, AMD's romantic feelings of optimism and AMI's success in luring Gould to their side.)
But, when it comes to the ' 74 series, the basic building blocks of any old hunk of equipment, and those good ol' discretes, nobody ain't making no money.
And you watch how the slant eyes will come along and take a hefty swipe at the market sector before too many suns have risen.
The result will be renewed and anguished appeals for protection.
'Keep them all out!' will be the plea.
But the most fatuous feature of the way economies function is that in Japan, whom you would imagine must be doing a truly wonderful job by all that you've read above, it costs \(£ 18\) to get a haircut in Tokyo.
And you should see the housing, smell the fumes and suffer the decibels of suburban streets.
At the end of the day it's very hard to say just who is really winning overall.
That's all for this month: I'm going back to my soldering iron now.
Bestest
Evan Steadman

\title{
ZX80/81 EXPANSION BOARD
}

\title{
A expansion system that offers more than just additional memory.
}

CONSIDERING THAT MANY people who own 2X80/81's have probably only spent around \(£ 50\) for the computer, the prices asked for some memory and expansion boards seems rather prohibitive.
Thus, the design criteria for the expansion board was primarily maximum expansion for minimum expense, a requirement that until recently tended to be either too expensive or rather complex.
As can be seen from the board's specification, this expansion system offers far more than just additional memory.

\section*{CONSTRUCTION.}

The low component count of the design, plus the use of a double sided PCB, make construction of the expansion board very easy.
First, insert all the pins linking the tracks on the upper and underside of the PCB. Solder the ribbon cable to the connector and then to the relative pads on the board. All the IC sockets can now be inserted followed by all the other discreet components.
Do not insert the ICs yet except IC \(1 \& 2\).

\section*{TESTING}

The board should be plugged into the edge connector on the ZX80/1 and the computer switched on. Assuming that there are no
short circuits on the board the usual inverse L should appear on the TV screen.

Check that the +5 V supply is present on the correct pins of the IC sockets as shown in the circuit diagram. If all is well switch off and insert the other ICs. Remember to avoid touching the legs of MOS ICs.

To do this, run the following program:-

\section*{10 POKE 30723,128 \\ 20 POKE 30722,10}

Leds 2 and 4 should now be lit and Leds 1 and 3 be unlit.
Now enter the following line and check that Led's 2 and 4 extinguish and Leds 1 and 3 light.

POKE 30722,5
Now switch off and connect pins 2 to 9 inclusive to pin 1 via a 10 k resistor. Switch back on and enter the following program:-

10 POKE 30723,144
20 PRINT PEEK 30720
This should return an answer of 255 . i.e., Port \(A=11111111\) (Decimal \(255, F F\) HEX).
By repeating the above procedure, but
with different combinations of 1 s and O on this and other ports will give corresponding results.

To test the D/A converter, firstly confirm that link \(\mathbf{A}\) is made and then type in the following program:-

10 POKE 30723,128
20 POKE 30721,255
Now messure the voltage on pin 10. This should be \(2 \mathrm{~V} 4-\mathrm{OV} 2\)

Now type in:-
POKE 30721,0

The voltage should change to \(\mathrm{OV} 4+\mathrm{OV} 2\)

To check that the RAM expansion is working enter the following program:-

PRINT PEEK 16388256 PEEK 16389
This should return the answer 29696 if all six 6116's are in place and your ZX80/81 has 1 k internal RAM.
As this figure is the location of the first non-existant byte in the RAM area, it can

\section*{ZX80/81 EXPANSION BOARD}

MEMORY MAP
ADDRESS
table 1
\begin{tabular}{rll}
\(16384-18431\) & 1st \(2 k\) & RAM (IC1) \\
\(18432: 20479\) & 2nd & (IC2) \\
\(20480-22527\) & 3rd & (IC3) \\
\(22528-24575\) & 4th & (IC4) \\
\(24576: 26623\) & 5th & (IC5) \\
\(26624-28671\) & 6th & (IC6) \\
\(28672-30719\) & Internal RAM
\end{tabular}
(only used if all
six 6116's are in place)
30720 up
8255
(IC7)
\begin{tabular}{llll}
30720 & 8255 & Port A & \\
30721 & 8255 & Port B & \\
30722 & 8255 & Port C & \\
30723 & 8255 & Control & Register
\end{tabular}
be used as a useful diagnostic aid in the event of a fault condition.
For example, suppose the above program returned the answer 20500, it can be seen from the memory map above that this lies in IC3 and the fault probably lies in this area. Obviously, the first check is to plug another IC into this socket and try again after checking for dry joints etc.

\section*{CONCLUSION}

This board will convert the ZX80/1 into a useful machine for communicating to the outside world. More or less anything can be tied on to the ports, remembering that port C can drive transistor bases directly. You will soon be controlling your son's train set or even your own nuclear power station.
\begin{tabular}{|lllll|}
\hline \begin{tabular}{c} 
Control \\
Word
\end{tabular} & Port A & Port B & \begin{tabular}{l} 
Port C \\
upper
\end{tabular} & \begin{tabular}{l} 
Port C \\
lower
\end{tabular} \\
\hline 128 & out & out & out & out \\
129 & out & out & out & in \\
130 & out & in & out & out \\
131 & out & in & out & in \\
136 & out & out & in & out \\
137 & out & out & in & in \\
138 & out & in & in & out \\
139 & out & in & in & in \\
144 & in & out & out & out \\
145 & in & out & out & in \\
146 & in & in & out & out \\
147 & in & in & out & in \\
152 & in & out & in & out \\
153 & in & out & in & in \\
154 & in & in & in & out \\
155 & in & in & in & in \\
\hline
\end{tabular}

Table 1 System memory map

Figure 1 The Expansion PCB's overlay


Table 28225 Control register commands


\section*{MODE O OPERATION}
the table opposite lists the control word to be POKE'd into the 8255 control register at location 30723 in order to acheive different Port configurations.
If information is required on how to configure the Ports in Modes 2 and 3 (handshake and interrupt) the 8255 Data Sheet should be consulted.

\section*{CIRCUIT DESCRIPTION}

The various 'Blocks' of the expansion board will be discussed separately, starting with the memory.

\section*{STATIC VERSUS DYNAMIC}

As will be seen from the circuit diagram static RAM has been used. This may seem an expensive luxury when dynamic RAM ICs i.e., 4116 are now very cheap.

However, static RAMs have very distinct advantages. Firstly, modern CMOS memories consume very little power, typically 200 mW . This is a far cry from the days of central heating by 2114 s , thus enabling the mains adaptor for the ZX80/1 to be used.
Secondly, static RAMs only require one PSU rail, thus simplifying the DC side of the design.
Thirdly, as most modern static RAMs are 'byte wide' i.e., they are constructed in an 8 bit format ( \(1 \mathrm{~K} \times 8\) etc), RAM can be added chip by chip. Thus, if only 2 K is required only one IC needs to be inserted.
Finally, no dynamic refresh is required. For the benefit of readers who are not familiar with this term, a short description follows. Those who wish to can skip the next paragraph.
In a dynamic RAM the storage elements do not hold their information indefinitely, - it can be considered to behave like a leaky capacitor.

Thus, to store information inefinitely, some method is needed to refresh the storage cell before the charge has leaked away. The principle used is to read the memory location while the data is still there and then to write it back in again. This is done at a high enough frequency so as not to interfere with the operation of the computer. However, it does mean extra hardware which in turn means extra expense.

\section*{I/O PORTS.}

The chip that is used in the expansion is the Intel 8255. The zilog Z80PIO was considered, but it was felt that as the Intel chip has more I/O lines and is cheaper, it offered a better choice. The 10 ports are memory mapped to the \(\mathrm{ZX} 80 / 81\). Thus a simple program such as:-

10 POKE (LOCATION), STATUS WORD 15 POKE (LOCATION), DATA.
will cause the data on line 15 to be output to the specified port. Line 10 is necessary in order to tell the 8255 how to configure the ports. A table of the status words is included at the end of the article.

The above program will cause the data to be output immediately, in Intel language this is 'Mode zero'
Suppose however that the peripheral connected to the port was not ready to accept the data that was output. We need some way to tell the peripheral that the port has information for it. Luckily the 8255 does exactly this if a port is configured in 'Mode 1'. When data is written to the port in this mode then the 'data available' pin on the 8255 will go high. This tells the peripheral that the port has information for it. Conversely, if the port is expecting information from the peripheral, then the data will not be acepted until the 'data strobe' pin for that port is taken high. This process is called 'handshaking'.

It should also be noted that Port \(C\) on the 8255
is capable of driving a transistor stage directly thus eliminating the need for a buffer.

\section*{D/A CONVERTER.}

The Ferranti ZN425 was chosen to perform this function. There are other cheaper ICs but unlike the Ferranti IC they cannot be formatted as an A/D converter. This is because the ZN425 has an integral 8 bit binary counter in its structure, thus enabling a counter type \(A / D\) to be constructed with minimum external components.

To control the D/A converter which is located on port B it is only necessary to output a number to the port. An analogue voltage corresponding to this output can then be obtained off pin 14 of the ZN425. A simple Op-Amp buffer can be included off the board to convert this voltage to any level required.

\section*{A/D CONVERTER}

A simple counter type \(A / D\) converter can be constructed using a minimum amount of external logic as illustrated below. Links have been incorporated on pins 2,3 and 4 of the ZN425 to allow simple selection of this function if required.

On the negative edge of the CONVERT COMMAND pulse, the counter is set to zero and the STATUS output to logical 1. On the positive edge, the counter starts to count up from zero. The analogue output ramps until it equals the analogue voltage applied to the other input of the comparator. At this point, any further clock pulses are inhibited and STATUS goes low to indicate that the output data is valid.

The conversion time depends upon the value of the analogue input, and for full scale reading is given by the clock frequency divided into the number of counts.

For example if F clock \(=256 \mathrm{kHz}\)
Conversion (for F.S.R) \(=\frac{28 \text { seconds }}{256000}\)
\(=1\) millisecond .

\section*{ZX80/81 EXPANSION BOARD}


PCB foils of top and bottom track of \(2 \times 81\) expansion board.
\begin{tabular}{ll} 
PARTS LIST & \\
RESISTORS & \\
R1 & 100 k \\
& \\
CAPACITORS & \\
C1 & 100 u 10 V tantalum bead \\
C2,3 & 10 u 10 V tantalum bead \\
C4 & 22 n ceramic \\
C5,6 & 100 n ceramic
\end{tabular}
\begin{tabular}{ll}
\multicolumn{2}{l}{ SEMICONDUCTORS } \\
IC1-6 & 6116 \\
IC7 & 8255 \\
IC8 & ZN425E \\
IC9 & 4049 \\
IC10 & 74 LS138 \\
IC11 & 7805 \\
MISCELLANEOUS \\
PCB,Connectors,Sockets,Etc.
\end{tabular}

\section*{ACKNOWLEDGEMENTS}

Ferranti Semiconductors Ltd Intel Inc.
\begin{tabular}{lll} 
& R\& EW \\
Your Reactions...... & Circle No. \\
Excellent - will make one & 143 \\
Interesting - might make one & 144 \\
Seen Better & 145 \\
Comments & 146 \\
&
\end{tabular}


DON‘T OVERLOOK the various forms of assistance available from the Department of industry to assist the development of worthy products in the field of high technology products. The various awards are specifically aimed at the electronics business, and come either in the form of an outright grant, or up to \(50 \%\), whichis recoverable by a levy on sales.

Contrary to popular belief, these schemes are administered by reasonable and understanding persons, who are eager to be able to assist British companies in pursuit of technological goals that might otherwise be abandoned or compromised through lack of funds. The schemes are not constrained by area - indeed, there are many other grants and incentives available to those of you operating in regions designated as development areas of one sort or another. The capital grants available for plant and machinery are quite spectacular in many instances, although these are not described in this particular feature. A booklet from the DoI entitled 'Incentives for Industry" contains the relevant information.

Although the dreaded MAP (Microprocessor Applications Project) is one that most people have heard of, there is another more versatile scheme entitled the PPDS (Product and Process Development Scheme). The PPDS is designed to assist in the development of any new product or process to the point of manufacture. The project size should be between \(£ 25,000\) and \(£ 2\) million - although smaller projects are considered in the context of smaller firms. Indeed, as we found out, the
terms of reference of the costing are such that it is frighteningly easy to cost out a project at \(£ 25,000\) when you start to roll in all the peripheral expenses that you might normally amortise in the running of the business when considering such a development.
The Dol provides a very useful and comprehensive cash forecasting sheet that acts an effective discipline to ensure that the proposer understands exactly what he is letting himself in for. It must scare quite a few potential applicants to see just how rapidly any form of R\&D operation can run away with the funds.

\section*{FUNDINC SCHEMES}

The PPDS provides up to \(25 \%\) of the project cost in a straight grant. There are surprisingly few strings attached, and the only qualification is that the proposer should be technically and managerially capable of completing the project. A bit like the R\&EW sponsorship scheme. The project should be seen to be commercially viable (another aspect of the analysis form), and the final point is a curious one, in that the project would otherwise not be undertaken at all, or within a reasonabletimescale, without government support.

The apparent implication of this is that companies are encouraged to fly kites - with the penalty that if you have already started on a project before you find out about the grant, then you are not eligible for support, in spite of the fact that your project may easily have been worthy if put forward before work had commenced. In other
words the scheme is encouragement, not reward.

The MISP (Microelectronics Industry Support Programme) scheme is specifically aimed at the microelectronics business, and operates on basically similar parameters. A further aspect is a grant of up to \(25 \%\) of the cost of production plant, equipment and buildings, with all sorts of additional facilities to help in establishing production units if you are prepared to site yourself in one of the special development areas.

The MAP scheme is perhaps primarily renowned for the \(£ 3000\) grant facility (max) for consultancy work carried out by approved consultants in connection with feasibility studies and the like. However, the same \(25 \%\) grant, \(50 \%\) shared cost scheme is available under the very broad direction that 'the scheme is open to all sectors of UK manufacturing industry. Firms receiving assistance under the MAP scheme are not eligible for other forms of assistance under government scehems - except regional development grants.

So if your firm is developing a microprocessor controlled, microprocessor controller - and you are prepared to move to one of the many special development areas, you may find that launching a product is a good deal cheaper than you imagined. But even if you are engaged in a more mundane end of the electronics business, write to the DoI (IT Division, Dean Bradley House, 52 Horseferry Road, London SW1P 2AG) and ask for the details of their various schemes.

\section*{NEWS BACKGROUND}

\section*{ANOTHER FIRST FOR R\&EW?}

One of the more constructive aspects of being newcomers to the business of publishing, is the fact that we had very few fixed ideas on how to go about the whole business. One of the first frustrations we faced was the delay between writing a feature, and seeing it appear in print.

Well, we have just taken a fairly bold step, and installed a digital phototypesetter in the shape of the Compugraphic 8400 MCS. Along with the hardware, we installed the necessary software in the shape of 'Titch' Delafield' - without whom none of this would be possible.
The 8400 produces typeset text around ten times faster than the previous system, together with the facility for up to 16 alternative typefaces 'on line'. But this isn't the main reason we have adopted the system (admittedly, it means that the lab staff can produce their words within 6 hours of the press starting to roll, instead of the present 24 hours). The 8400 comes with an optional asynchronous communications interface (ACI), which is probably the most significant development
in typesetting since Caxton since it enables any RS232 terminal device to communicate and load typesetting directly into the composing system.

\section*{NEW TECHNOLOGY}

Virtually any wordprocessor and any computer can be used to supply text for direct typesetting. This means that text is only keyed-in once, and that proof checking can be carried out using lowcost listing paper output, not costly photoset text. The ACI option includes the facility to translate character groups in typesetting formatting instructions - so the material can come straight in, where it is queued on disk and automatically paginated. All Titch has to do is to 'compose' - which is the process that looks up the character sizes for the various different typestyles, and fits the text into neat columns.

The much-vaunted R\&EW computer is gradually coming together, and at least the word processing software is working reliably. Virtually all of the text in this issue will have been set using this process. There have been a few teething troubles, and a few frustrating hours spent establishing
some of the bugs not yet fully documented - but the facility is now running smoothly, and our next dramatic step is to use telephone line modems to provide access to instant low cost typesetting to anyone with an RS232 ASCII terminal system.

There's a little way to go yet before we can provide the facilty via REWTEL, but it's not far away. We will also be able to 'download' pages from REWTEL for typesetting. Meantime, however, Titch will be pleased to offer this magnificent facility to anyone requiring typesetting - and if you can send the text under Wordstar on a standard 8 inch floppy, then the cost will probably be less than \(25 \%\) of what you would normally pay, and that has to make a lot of sense.

The facility is ideal for catalogue and pricelist work as well, since all record maintenance and updating can be carried out on a 'normal' computer or word processor, which is where most such material resides these days anyway. The days of illegibly duplicated bits of paper may well be numbered, and the service that Titch can offer is obviously well practised in the problems of the electronics business.

(R18 IS NOW OMITTED)
Figure 1.

\subsection*{10.7 MHz SSB GENERATOR}

The output section of the module is now as shown in Fig. 1 and not as shown in the circuit diagram.

The change can be easily implemented on the existing PCB.

\section*{AUTOBRIDGE}

Overlay shown in Fig. 5 of the article shows components mounted on 'board' side of PCB. In fact, the components should be mounted on the foil side of the PCB as described in the text.


\section*{RATEW Data Brief}

KB4436: Noise Cancel System
This device is designed for use in FM radios and tuners to suppress pulse type noise.
It is most effective in suppression of the noise generated in a car's ignition circuit and in various types of electrical equipment.
It is possible to achieve superior results in FM stereo receivers when incorporated in a system with a PLL MPX IC.

\section*{FEATURES}

High noise cancel ratio.
Internal 19 kHz switch.
Noise AGC circuit.
Low distortion.
Wide dynamic range.

Electronic characteristics
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{ITEM} & \multirow[t]{2}{*}{NOTATION} & \multicolumn{3}{|l|}{SPECIFICATION} & \multirow[t]{2}{*}{UNIT} & \multirow[t]{2}{*}{CONDITION} \\
\hline & & MIN & TYP & MAX & & \\
\hline Current & \({ }^{1} \mathrm{CC}\) & & & 28 mA & mA & W/no signal \\
\hline \multicolumn{7}{|l|}{Consumption} \\
\hline Voltage Gain & \(\mathrm{G}_{V}\) & -1.0 & & 1.0 & dB & at 1 kHz \\
\hline Maximum Output & \(V_{\text {outmax }}\) & 1.5 & & & Vrms & at 1 kHz
\[
K F=1.0 \%
\] \\
\hline Input Impedance & \(z_{\text {in }}\) & & 30 & & k \(\Omega\) & at 1 kHz \\
\hline Distortion & THD & & & 0.1 & \% & \[
\begin{aligned}
& \text { at } 1 \mathrm{kHz} \\
& V_{\text {out }}=500 \mathrm{mVrms}
\end{aligned}
\] \\
\hline Gate Time & \(\mathbf{T}_{S}\) & & 25 & & \(\mu \mathrm{s}\) & \begin{tabular}{l}
Pulse voltage; 100 mV \\
Pulse width: \(1 \mu \mathrm{~s}\) \\
Rep. freq. 1 kHz
\end{tabular} \\
\hline Noise Input Sensitivity & \(V_{N}\) & 40 & & & mV & \begin{tabular}{l}
Pulse width: \(1 \mu \mathrm{~s}\) \\
Rep. freq. 1 kHz
\end{tabular} \\
\hline 19 kHz Switch on output & \(\sqrt{7}\) on & & & 0.2 & V & \(V 8=\) open \\
\hline 19 kHz Switch off output & \(V 7\) off & 11.5 & & & V & \(V 8=2.2 \mathrm{~V}\) \\
\hline
\end{tabular}



РСВ Foil.


PCB Overlay.


SEE PROJECT PACKS FOR PRICE

\title{
MULTIBAND UP-CONVERTER
}

\title{
Used with a 2 m transceiver, this converter provides coverage of 10,6 and 4 m bands plus CB and band I TV. Design by Graham Leighton.
}

THIS CONVERTER WILL ALLOW the reception of any four 4 MHz ( 2 MHz with a \(144-146 \mathrm{MHz}\) IF) bands in the range 26 to 75 MHz using a two meter receiver/ tranceiver as the IF. This range includes the 10,6 and 4 m amateur bands, citizens band, European and American public service bands and band 1 television. These can make interesting listening and provide useful propagation data. Table 1 gives details of some of the services present in this part of the radio spectrum.

\section*{SYSTEM DESICN}

There is about 8 dB conversion loss in the converter which, given a sensitive two meter receiver, provides adequate performance for most purposes. Despite the simplicity of the input filter, it is effective in reducing the level of IF breakthrough and other spurii to an acceptable level. The inclusion of a tuned preamplifier, such as that described in reference 2 , increases the sensitivity and the immunity to out of band signals considerably. Most two meter receivers, however, suffer from severe intermodulation and adjacent channel interference if the preamplifier is included in a system for receiving citizens band. This should not be a problem above 28 MHz where the band occupancy and signal strengths are generally lower.

The frequency range of the original design was 26 to 60 MHz . It was thought that the harmonic relationship of the local oscillator, input and IF frequencies would be the cause of spurious responses if this range was increased. In fact, despite the compromise of a 75 MHz input filter cut off and the 120 MHz LPF for the local oscillator, the performance remained acceptable. It is advisable, to use a tuned preamplifier above 50 MHz to improve the selectivity and to reduce the oscillator radiation.
\begin{tabular}{|ll|}
\hline Table 1 & \\
\hline Frequency (MHz) & Use \\
\(30-50\) & Public Service (USA) \\
\(33.42-33.98\) & Fire Depts (USA) \\
\(46.06-46.50\) & \\
\(37.02-37.44\) & \\
39.02 .39 .98 & Police Depts (USA) \\
\(42.02-42.94\) & \\
\(45-08-46.04\) & Gm Amateur band \\
\(50-54\) & Band 1 TV \\
\(45.75+\) & Public Service (UK) \\
\(70.025-70.500\) & OIRT FM Broadcasting \\
68.88 & (E Europe) \\
\(66-73\) & \\
& \\
\hline
\end{tabular}
1. The above list contains details of only some of the services operational between 30 and 75 MHz .
2. The reception of some services listed is subject to speclal licencing in some countries.
3. There are a number of beacons in the 6 m and 4 m bands. A full list is avallable from the Radio Society of Great Britain.

The converter may be used with one to four oscillators without circuit changes. These oscillators are DC switched and may be remotely controlled (within reason).

\section*{CONSTRUCTION}

Thread some wire through the holes (marked X ) around the mixer and solder top and bottom. Assemble the components on the PCB. Where an earth connection is required (with the exception of the mixer) it is easier and more reliable if the component leads are soldered to the top of the PCB only. The uncommited pads on the under side of the PCB are only present to assist in the location of the components.
Wind the transformer T1 as follows:1) Take three 6 inch lengths of 0.25 mm enamelled wire, twist them together (about 8 t.p.i.).
2) Wind two turns of the twisted wire onto a Fair-Rite 28-43002402 core.
3)Separate the ends; identify each winding using a multimeter.
4)Connect the start of one winding to the finish of another. This forms the primary (two windings in series). The remaining winding is the secondary.
Fit the transformer to the PCB ensuring that the primary is connected to Q2. Solder some pieces of tinned copper wire to form tags for the input, output, power and oscillator switch connections. Fit the mixer. The 'MCL SBL-1' legend should line up with that printed on the overlay. Check the PCB for dry joints, incorrect components and solder bridges. Assemble the PCB into the case, connect the power leads, bnc sockets and switching control (if required). If a switch is to be mounted remotely, the leads should be screened to prevent 144 MHz pick up.

\section*{TESTING}

Warning: The mixer is easily damaged if DC or a high RF level is applied to the LO port (IF output). Take care not to press the ptt when using a transceiver as an IF.

Set the cores of \(\mathrm{L} 4,5,6\) and 7 to about 2 mm above the top of the formers - make sure they are all set to the same level. Set the core of L3 level with the top of the former.

Connect the unit to a 10 V power supply, preferably with current limit set to 50 mA . The current drawn should be about 11 mA . Switch on an oscillator by earthing the appropriate switching line. The supply current should rise to about 15 mA .


Figure 1: 75 MHz filter terminated with 50 ohms , component values as stated on the circuit diagram.


Figure 2: 60 MHz filter terminated with 50 ohms, component values:L4, 5, 6, 7, 6½t; C14, 18 56p; C15, 16, 17 110p.



Figure 3: Converter Block Diagram.

Monitor the voltage on Q2 emmiter and adjust the oscillator core until there is a slight reduction. This is typically 1V045 to 1V038 and corresponds to the oscillator starting. This reduction is just observable on a multimeter, alternatively a diode probe may be used to monitor the RF level on the secondary of T1. A frequency counter may also be connected to this point to set the exact frequency of the oscillator.

Connect a 2 m receiver to the output and an antenna to the input. If a frequency counter is not available, the exact frequency of each crystal may be trimmed by adjusting the oscillator coil whilst monitoring a known frequency standard such as a beacon etc.
Repeat the above procedure for each oscillator.


Figure 4: Circuit Diagram.

\section*{CIRCUIT DESCRIPTION}

The four identical oscillators are similar to those used in reference 3. The resonant circuit comprising \(\mathrm{L} 1, \mathrm{Cl}\) and C 3 is set to the approximate frequency of the overtone crystal. This, together with L2, ensures operation on the correct overtone of the crystal. Table 2 contains details of the coils required to cover the various oscillator frequencies.

The oscillator output appears across R6 which is a collector load common to all the oscillators. This is fed to the wideband amplifier, Q2. The output of this stage is matched to SOR by T1. \(\mathrm{L} 3, \mathrm{Cl} 2\) and C 13 form a 120 MH 2 low pass filter which reduces the harmonic content of the local oscillator (LO). If the upper limit of the LO is 110 MHz or so, the cut off frequency of this filter may be reduced by setting the core of L3 to about 3 mm below the top of the former.

The filter output is connected to the LO port of the SBL-1 mixer. The RF input to the mixer is fed via a four pole constant-K low pass filter (some filter design information is contained in Appendix \(A\) and reference 1). The response of the filter is shown in Fig 2. An elaborate low pass filter design using several \(M\) derived sections was investigated but this proved difficult to implement. The rejection of the LPF together with the mixer isolation results in the IF breakthrough being minimal. IF breakthrough is more likely to occur through insufficient screening of the receiver and/or interconnecting leads. The rejection of 144 MHz from the power supply input is also important - ferrite beads can help here.


Close-up view of T 1 .

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ TABLE 2 } \\
\hline OSCILLATOR COIL DETAILS (LI) \\
\hline \multicolumn{2}{|c|}{ Crystal Frequency } \\
(MHz) & Coil \\
74.88 & 5.6 t (Green) \\
\(88-103\) & 4.5 t (Yellow) \\
\(103-118\) & 3.5 t (Orange) \\
\hline
\end{tabular}

\section*{RESULTS}

Using an FT290 and an IC290 as the IF a sensitivity (on FM) of between \(0.5 \mu \mathrm{~V}\) and \(1 \mu \mathrm{~V}\) was obtained across the range of the
converter. In use, it was found that a tuned preamp, such as that to be described next month, together with this converter provides an excellent receive system for the frequencies covered. The sensitivity is increased to about \(0.2 \mu \mathrm{~V}\) for 12 dB sinad on an FM signal.

The scanning facilities of the 2 m transceiver make the monitoring of these bands very simple and convenient.
Many East European broadcast stations in the 66.73 MHz band are audible during the summer months and their presence gives early warning of sporadic \(-E\) conditions on band 2 and 144 MHz .


\section*{PARTS LIST}

OSCILLATOR (Up to 4 required)
Resistors (all \(0.25 \mathrm{~W} 10 \%\) )
\begin{tabular}{|c|c|c|c|}
\hline R1 & 2k7 & & 27R \\
\hline R2 & 12k & R5 & 1k \\
\hline R3 & 8k2 & & \\
\hline \multicolumn{4}{|l|}{Capacitors} \\
\hline \multicolumn{2}{|l|}{C1,2} & & 18p \\
\hline \multicolumn{2}{|l|}{C3 \({ }^{\text {c }}\)} & & 47p Min ceramic \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{C4}} & & 1 ln 0.1" spacing \\
\hline & & & 5p6 ) \\
\hline \multicolumn{4}{|l|}{Inductors} \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { L1 } \\
& \text { L2 }
\end{aligned}
\]} & & & TOKO S18 (see Table 2) \\
\hline & & & TOKO 7RB 1u0 \\
\hline \multicolumn{4}{|l|}{Semiconductor} \\
\hline Q1 & & & BF241/BF273/4 \\
\hline \multicolumn{2}{|l|}{Miscellaneou} & & \\
\hline \multicolumn{2}{|l|}{Crystal} & & As required le.g. 74,94, \(116,118 \mathrm{MHz}\) for \(4 \mathrm{~m}, 6 \mathrm{~m}\), 10 m and CB respectively \\
\hline
\end{tabular}

BUFFER AMPLIFIER/MIXER/FILTER
Resistors (all \(0.25 \mathrm{~W} 10 \%\) )
\begin{tabular}{|c|c|}
\hline R6,10,11 100R & R8 6k8 \\
\hline R7 470R & R9 1k5 \\
\hline \multicolumn{2}{|l|}{Capacitors} \\
\hline C6,7,8,9,10,11 & 1n0) \\
\hline C12,13 & 27p Min ceramic \\
\hline C14,18 & 39p \\
\hline C15,16,17 & 82p \\
\hline C19 & 100 n monolithic ceramic \\
\hline C20 & 47p min ceramic \\
\hline \multicolumn{2}{|l|}{Semiconductor} \\
\hline Q2 & BF241/BF274/3 \\
\hline \multicolumn{2}{|l|}{Inductors} \\
\hline L3 & TOKO S18 4.5t \\
\hline L4, 5, 6, 7 & TOKO S185.5t \\
\hline \multicolumn{2}{|l|}{Miscellaneous} \\
\hline T1 & 0.25 mm enamel wire on Fair-Rite \(28-43002402\) core \\
\hline PCB & Double sided GL. 07 \\
\hline Case & 21-06102 \\
\hline Sockets & \(2 \times\) BNC single hole fixing \\
\hline
\end{tabular}


Figure 6: PCB Foil Pattern - Component side.

(8) - earth connections

ZB2VHF on 50.035 MHz has been heard on many occasions (during May) as have some band 1 TV sound and vision signals from Scandanavia.

■R\&EW

\section*{REFERENCES}
1. F.R.Connor; 'Networks' Pub. Arnold.
2. \(4,6,10 \mathrm{~m}\) Preamplifiers to be published in R\&EW Sept. 1982.
3. Leighton G. R. 70 cm to 2 m and TV Converter R\&EW Jan. 1982.
\begin{tabular}{|lll|}
\hline Your Reactions...... & Circle No. \\
Excellent - will make one & 15 \\
Interesting - might make one & 16 & 17 \\
Seen Better & 18 & 18 \\
Comments & & \\
& & \\
\hline
\end{tabular}

Figure 7: Component overlay.


\title{
Ray Marston introduces a unique new circuit 'building block' that can provide very sophisticated power control of low-voltage DC loads such as lamps, heaters, blower motors and model locomotives, etc.
}

THE AUTHOR HAS, for some years, been experimenting with precision DC motor control circuitry and has, in the course of this work, evolved what is believed to be a brand new type of circuit element. In essence, this new circuit converts a DC input voltage signal into a switched-mode output signal of almost identical mean DC value, and maintains that value independent of wide variations in load characteristics. It enables high-power DC loads to be precisely and variably controlled, with negligible power losses, via low-power local or remote input voltages.
When used to drive DC electric motors, the new circuit continuously monitors the motor's speed via its 'dynamo effect' generated voltages, and automatically adjusts the power feed to maintain the speed at a constant level, irrespective of load variations. This new circuit has no official name so we will, for the sake of simplicity refer to it here as the SMVF (Switched-Mode Voltage Follower) circuit.

The SMVF circuit has lots of practical applications. It can be used to efficiently control the brilliance of lamps, or to give highprecision feedback sensing speed control of servomotors, minidrills, and model locomotives, etc.

\section*{THE BASIC SMVF CIRCUIT}

Figure 1 shows the basic SMVF circuit, and Fig 2 shows its two generated waveforms, together with their special terminology and formulae. The circuit is powered from a single- ended supply and uses a 3140 op-amp as its active element. Unique and important features of the op-amp in this application are that its input and output signals can both swing all the way down to 0V. In Fig 1, a non-inverting power-booster is interposed between the output of the op-amp and the output of the circuit, to boost the available output current to a useful level.

The op-amp is used as a voltage comparator, with a reference or control voltage applied to its non-inverting terminal from RV1, and a feedback voltage applied to the inverting terminal via R4-C1. When the non-inverting terminal voltage is above that of the inverting terminal, the output of the circuit switches high (to


Figure 1: The Switched-Mode Voltage Follower (SMVF) circult.


Figure 2: Measured performance of the SMVF circuit of Fig 1, at three values of input voltage, with light and heavy resistive loads, illustrating the good tracking and regulation characteristics of the design.
+20 V ), and when the non-inverting terminal voltage is below that of the inverting terminal the output switches low (to 0 V if a resistive load is used). The circuit operates as follows.

Suppose that a voltage \(\mathrm{Vi}_{\mathrm{n}}\) (in the range 1 to 12 V ) is set on the slider of RV1, that the C1 (inverting terminal) voltage is initially below this value, and that the circuit's output has just switched high. Resistors R2-R3 act as a potential divider between the output +20 V and the RV1 slider potential, and apply a voltage slightly greater then \(\mathrm{Vi}_{\mathrm{n}}\) (the upper threshold voltage) to the non-inverting terminal of the op-amp. Simultaneously, Cl starts to charge towards the 20 V 'aiming volts' via R4 until, eventually, it reaches the upper threshold value and the ouput of the op-amp comparator starts to switch low.

Because of the 'hysteresis' feedback action of R2-R3, a regenerative switching action is initiated at this point and the output of the circuit switches abruptly low. R2-R3 then pull the noninverting terminal voltage to some value below that set on RV1 slider (to the 'lower threshold' value). Simultaneously, C1 starts to discharge towards the 'zero volts' aiming value via R4 until, eventually, it reaches the lower threshold value, at which point the output of the op-amp comparator starts to switch high again, initiating another regenerative switching action in which the output abruptly reverts to the high ' +20 V ' state again. The whole process then repeats ad-infinitum.

Thus the circuit acts as an oscillator and generates a rectangular or pulsed (switched-mode) output waveform, and maintains the mean values of the op-amp inverting and non- inverting terminal voltages at identical values. Because the 'hysteresis' voltage
generated by R2-R3 is fairly low, however, the mean voltage on the non-inverting terminal is almost the same as that on RV1 slider. Note, however, that R4-C1 integrates the switched-mode output waveform of the circuit, so that the mean value of the output waveform is identical to that on the non-inverting terminal of the op-amp and almost identical to that on RV1 slider. The circuit thus lives up to its title of a 'Switched-Mode Voltage Follower'.

\section*{TRACKING AND RECULATION}

Table 1 shows the measured performance of the Fig 1 SMVF circuit, at three values of input voltage and with light and heavy resistive loads. It illustrates the very good tracking and regulating characteristics of the design. When the output is lightly loaded it has a peak value of 20 V , giving a hysteresis value of 200 mV , and when the output is heavily loaded it is assumed to have a peak value of only 15 V , giving a hysteresis value of 150 mV .

Note that the tracking of the circuit is very good, with the mean output voltage differing from the input by no.more than 170 mV , and that the regulation is excellent, with a \(25 \%\) drop in peak output voltage (caused by heavy loading) resulting in negligible drop in mean output voltage. Also note that the mark period of the circuit increases only moderately as the input voltage is increased, but that the space period (and hence the frame period) decreases by very large amounts under the same condition. The SMVF circuit can thus be regarded as a variable-frame type of pulse generator.

\section*{DC MOTOR CONTROL}

The basic SMVF circuit gives excellent self-regulating speed-control of DC electric motors; far better, in fact, than that obtainable from either variable DC-voltage or pulse-width control systems, the two best known alternative types of power control system. To understand why, we must digress slightly and look at the basic principles of motor control and at the two alternative control systems.

DC electric motors of the types used in car fans, mini-drills and model locomotives, etc., are configured in the same way as a dynamo. Consequently, when running, they generate a dynamo voltage that opposes the externally applied voltage. Fig 3 shows the effect that this Generated Dynamo Voltage (GDV) has on a DC voltage control system when a 12 V motor is powered from a 6 V source.
When lightly loaded the motor runs at medium speed and produces a GDV of 5 V , which opposes the externally applied 6 V and gives an Effective Applied Voltage (EAV) of 1V, so the motor consumes a fairly low running current (equal to EAV divided by the motor resistance).

When motor loading is increased, speed and GDV decrease, causing EAV and running current to increase, thereby tending to return the motor speed back to its original value. In Fig 3, for example, the motor drive power (proportional to the square of EAV) is sixteen times greater than in Fig 3a. DC voltage control systems are thus inherently 'feedback speed- sensing' and provide DC motors with excellent speed regulation characteristics. Unfortunately, however, their speed control characteristics are very bad at low- and starting-speeds.

An alternative way of controlling motor speed is to feed it with variable pulses of power. Most pulse-control systems feed fixed-peak-amplitude, fixed-frame, variable-width pulses to the motor. They give good starting- and speed-control characteristics, but at the expense of regulation. Fig 4 illustrates the reason for the poor regulation, assuming that the pulse has a peak amplitude of 12 V and a frame width of 7 mS .

Figure \(4 a\) shows that, to give the same GDV of 5V, mean EAV of 1 V and Mean Terminal Voltage (MTV) of 6 V as in Fig 3a, the width of the Fig \(4 a\) pulse must be 1 mS . Consequently, when the motor is loaded so that its GDV falls to 4 V (Fig 4b), this same pulse width gives an EAV of only 1 V 14 and a MTV of only 5 V 14. When the loading is increased so that GDV falls to 2 V , the MTV falls to a 3 V 43 , and the applied power is only twice as great as in the unloaded case. Conventional fixed-frame pulse-width control
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline V IN & UPPER THRESHOLD & LOWER THRESHOLO & MARK SLOPE & \[
\begin{aligned}
& \text { SPACE } \\
& \text { SLOPE }
\end{aligned}
\] & \begin{tabular}{l}
MARK \\
PERIOD
\end{tabular} & SPACE PERIOD & vout (MEAN) \\
\hline \multicolumn{8}{|c|}{PERFORMANCE WITH OUTPUT LIGHTLY LOAOED (VPK \(=20 \mathrm{~V}\) )} \\
\hline 10.0 V & 10.1 V & 9.9 v & 10.1 V & 10.1v & 12.9 ms & 12 mms & 10.0 V \\
\hline 5.0 V & 5.15 V & 4.95 V & 15.05 V & 515 V & 864 ms & 25.24 ms & 5.10 V \\
\hline 1.0 V & 1.19 V & 0.99 V & 19.1 V & 1.19V & 524 ms & 109 ms & 1.17V \\
\hline \multicolumn{8}{|c|}{PERFORMANCE WITH OUTPUT HEAVILY LOADED (VPK \(=15 \mathrm{~V}\) )} \\
\hline 10.0 V & 10.05 V & 9.9 V & 5.1 V & 10.05 V & 19.1 ms & 9.70 ms & 9.95 V \\
\hline 5.0 V & 5.10 V & 4.95 V & 10.05 V & 5.1 V & 9.70 ms & 19.12 mS & 5.05 v \\
\hline 1.0 V & 1.14 V & 0.99V & 14.1 V & 1.14V & 6.92 ms & 85.5 ms & 1.12 V \\
\hline
\end{tabular}

Table 2: Waveform shapes, terminology and formulae of the Fig 1 circuit when driving a resistive load.
systems thus have limited 'feedback speed-sensing' characteristics and give poor speed regulation, with the MTV falling as the motor loading increases.

The action of the SMVF circuit, on the other hand, is such that it is fully 'feedback speed-sensing' and maintans a constant mean output voltage irrespective of loading variations, as shown in Fig 5. It provides regulation that is as good as that of a DC-voltage control system, but with speed control that is greatly superior to that of a conventional pulse-control system.
In Fig 5a, to give the same GDV, EAV and MTV as the Fig \(4 a\) circuit, the widths of the mark pulse and frame are again 1 mS and 7 mS respectively. As the motor loading increases, however, the frame width reduces to maintain the MTV at a constant 6 V . The SMVF circuit thus gives the same excellent speed regulation as a DC-voltage system. This regulation is automatic because, during the space part of each operating frame, the aiming voltage of Cl (Fig \(l\) ) is equal to the motor's GDV, rather than 0 V .


Figure 3: A voltage-controlled DC motor has excellent regulation, because its speed-dependent 'Generated Dynamo Voltage' (GDV) decreases as the load increases and thus causes the Effective Applied voltage (EAV) to Increase. Its low-speed control is, however, very poor.


Figure 4: A conventional 'fixed-frame' pulse-controlled DC motor has good low-speed control, but poor regulation.


Figure 5: A SMVF-controlled Dc motor has excellent regulation (equal to that of a DC-controlled system) and superb speed control (far better than that of a fixed-frame system).

The low speed control of the SMVF circuit is greatly superior to that of a conventional fixed frame pulse-control system. This is because, at starting, the motor's applied pulse width must be greater than a certain minimum value, or the motor will not turn, but at medium to high speeds the frame width must be below a certain level to ensure smooth running. Suppose that the minimum useful pulse width is 10 mS , and that at medium speed the maximum useful frame width is 100 mS .
In a fixed-frame system, this means that the MTV of the circuit can be usefully varied over only a \(10: 1\) range, giving (since speed is proportional to the square of MTV) a \(100: 1\) speed-control range.

In the SMVF system, however, the frame width is variable, and may be 1 second at low speed but 100 mS at medium speed, in which case the MTV can usefully be varied over a 100:1 range, giving a \(10,000: 1\) speed-control range.

\section*{PRACTICAL CIRCUITS}

So far, we've dealt in depth with the theory of the Switched-Mode Voltage Follower circuit and seen that it gives superb DC motor speed control and excellent 'feedback sensing' speed regulation. Later we'll introduce an 'amplified feedback' system that provides even better speed regulation. In the meantime, however, let's look at some of the practical aspects of the basic SMVF circuit, dealing with matters such as component selection, power boosting and overload-protection techniques, and a few practical circuits.

\section*{COMPONENT SELECTION}

The pulse widths of the Fig 1 SMVF circuit are determined (apart from the input voltage) by the values of feedback components R4-C1 and hysteresis components R2-R3. Widths can be increased by increasing the values of \(\mathrm{R} 4, \mathrm{Cl}\) or R 3 , or by reducing the value of R2. Note, however, that R2 and R3 also influence the 'tracking error' between input and output, the error increasing as the hysteresis voltage increases (the R2-R3 ratios reduce). Thus, if (in Fig 1) R 3 is reduced to 10 k , hysteresis falls to 20 mV and the tracking error with an input of 1 V falls to about 20 mV , but the Cl (or R4) value must be raised by a factor of ten to restore the pulse width.


Figure 6: SMVF circult with power boosting via a Darlington emitter foilower.


Figure 7: SMVF circuit with high-efficiency power-boosting via a pair of common emitter amplifiers.

The R3 value should ideally be large relative to the RV1 impedeance, otherwise RV1 will effect the pulse width and hysteresis as its value is varied. If R2 is very large (greater than 1 M 0 ) it should be shunted by a 10 p capacitor, to give sharp opamp switching.

When driving DC motors, the minimum low-speed pulse width must be adjusted to suit the motor characteristics, and adjustment is best effected by replacing R4 with a fixed and a variable resistor in series.

\section*{BOOSTING THE POWER}

In Fig 1, a power booster is shown interposed between the op-amp output and the final output of the unit, to boost the available output current to a useful level. Since the SMVF circuit has a switchedmode output, this booster does not need to have linear characteristics, its only essential requirements are that it should give zero overall phase inversion and should provide the required out put current without excessive voltage loss. Figs 6 to 8 show the basic circuits of three useful power boosters, in use with SMVF circuits. Note that if these boosters are used to drive DC motors or other inductive loads, diodes D1 and D2 (with mean ratings of at least \(30 \%\) of the peak motor current) must be wired to the circuits as shown, to protect the output transistors from the switch-off back-EMF's of the motors, which otherwise may be as great as 100 V .

In Fig 6, the booster takes the form of a Darlington emitter follower. A disadvantage of this circuit is that a substantial amount of voltage (and thus power) is 'lost' across out put transistor Q2 when the op-amp output is high (in the mark period). This loss is about 3 V off-load, rising to several volts under heavy loading. The circuit thus needs a fairly high supply voltage (at least 20 V for 12 V peak output) and good heat sinking of Q2.

Figure 7 shows an alternative type of booster, which provides very high efficiency, with minimal power loss across the output transistors. The op-amp output is inverted by the Q1- Q2 Darlington common emitter amplifier, the output of which provides base drive to pnp common emitter output transistor Q3, giving zero overall phase inversion between the op-amp output and the load voltage. The voltage 'loss' of the output is equal to the saturation voltage of Q3. If Q3 base current is equal to at least one tenth of the peak load current, this loss may be as low as 100 mV off-load and 500 mV at maximum load.

The only disadvantage of the Fig 7 circuit is that Q3's basecurrent limiting resistor, R6, must pass a fairly high current and have a substantial power rating. The circuit's minimum supply voltage value is determined by the op-amp's requirements and by the output voltage requirement. with a 15 V supply, the Fig 7 circuit can provide a maximum mean output of 12 V and a peak output of 14 V 5 .
Figure 8 shows an alternative but slightly less efficient version of the fig 7 configuration. In this case a Darlington pair are used as the output stage, and a single common emitter amplifier is used as the driver. The advantage of this circuit is that R6 has to pass only a fairly low current and can have a low power rating. The


FIgure 8: SMVF circuit wh slightly less efficient power-boosting via a pair of common emitter amplifiers.


Figure 9: The negative back-EMF of a motor prevents the SMVF circuit from turning fully off when its input is reduced to zero.
disadvantage is that the saturation loss of Q3 is greater than in Fig 7, being about 0 V 5 off-load and 1 V 1 at maximum load. With a 15 V supply, the peak output is thus limited to 13 V 9 at full load.

\section*{OFFSET BIASING}

A point to note about the basic SMVF circuit is that, when driving a motor or other inductive load, it does not turn fully off when the input is reduced to zero. To obtain switch off, the voltage on the op-amps's non-inverting terminal must fall permanently below Cl 's lower space value, which is slightly negative under 'zero input voltage' motor driving conditions. Fig 9 shows that this negative space voltage occurs because, at the end of each mark pulse, the motor produces a negative switch off' back-EMF that, even when clamped by an output diode, has a peak negative value of 600 mV which, when integrated by C1-R4 (Fig 1) gives a mean negative value of several millivolts.
To obtain complete switch-off from the SMVF circuit, therefore, some form of 'offset biasing' must be applied to the design. Any one of three techniques can be used, as shown in Figs 10 to 12.

In Fig 10, of fset biasing is applied to the internal circuitry of the op-amp via pin 1 . The biasing resistor value must be in the


Figure 10: Offset biasing via pin 1 of the op-amp.


Figure 11: Offset biasing via an op-amp buffer.


Figure 12: Offset biasing via potential divider.
range 18 k to 470 k (typically 100 k ), its value being selected to suit the individual op-amp.

In fig 11 , offset biasing is obtained by wiring a 3140 voltage follower between the output of the circuit and the input of R4-Cl. The op-amp output can not fall below a few millivolts positive, so (as far as \(\mathrm{R} 4-\mathrm{Cl}\) are concerned) it effectively eliminates the negative back-EMF of the motor; R5 protects the op-amp input from excessive voltages.

Finally, Fig 12 shows a particularly useful offset biasing technique, in which biasing is applied to the Cl-R4 'integrator' via potential divider R7-R6, ensuring that the Cl voltage never falls to zero. R5-R6 form a 2:1 potential divider across the output of the circuit and feed Cl-R4, so it is this point (rather than the output) that is directly regulated by this circuit; since the output voltage is double that on R5-R6 junction, however, the output is indirectly regulated by this design. Note that the maximum input (RV1) voltage is 6 V , giving a maximum final regulated output of 12 V .

Note in Fig 12 that hysteresis components R2-R3 are fed from the op-amp's output, rather than from R5-R6 junction. Consequently, the peak voltage feeding R2 is double that on the R5-R6 junction, so this design gives better pulse-width linearity than the basic Fig 1 circuit, and can be given almost any desired degree of offset via R7.

\section*{SMVF CIRCUITS}

Figures 13 and 14 show practical SMVF circuits that use techniques already described. These circuits are designed to provide fully variable power to 'fixed' loads such as lamps and mini-drills etc. Note, however, that they are not provided with short-circuit protection and are thus not suitable for driving loads such as model locomotives, etc. in which output shorts are likely to occur.

The Fig 13 circuit is designed for use in cars and is battery powered at 12 V . It can supply maximum output currents of about 5 amps. Power boosting is achieved via a pnp output transistor and a Darlington driver, to give minimal power losses in the output stage. The output stage base drive is 250 mA , giving an output saturation 'loss' of only 500 mV at 3 amps load, under which


Figure 13: Migh-efficiency battery-powered SMVF circuit, for use in cars.


Figure 14: High-efficiency mains-powered version of the SMVF circuit.
condition 34.5 watts are developed in the load and 1.5 watts are lost across Q2. Capacitor C3 is wired across Q1 base to enhance circuit stability.

The circuit uses potential-divider offset biasing (via R9 and R11), with a \(2: 1\) divider (R10-R11) across the output and with the maximum input limited to 6 V 2 by ZD1. The maximum mean output is thus limited to 12 V 4 . At 12.6 battery volts, this is beyond the circuit's control range when RV1 is set to maximum, so the op-amp output locks high and turns Q2 fully on, giving maximum power drive to the load. If the battery voltage is close to 15 V (under full charge), the output limits to 12 V 4 .

Pre-set RV2 is wired in series with R4, enabling the circuit's pulse widths to be pre-set to suit specific applications. When driving resistive loads such as lamps, RV2 can be pre-set to zero. When driving DC motors, RV2 should be set so that the motor turns with slight 'judder' at minimum speed.

Figure 14 shows a mains-powered version of the SMVF circuit. It can power DC motors with stall currents of up to 3 amps ; under the latter condition, the output impedance of the 30VA mains transformer causes its output to fall to about 12 V giving about 30 watts of dissipation in the motor.

This circuit is similar to that of Fig 13, except that it uses a Darlington output stage with a single driver. This configuration results in a Q3 voltage loss of about 1V1 at 3 amps load, but eliminates the need to give R7 a high power rating. The supply line has a value of about 20 V off-load, and if the Fig 13


Figure 15: 3 amp output-current limiter.
configuration were used here, R7 would need a power rating of 10 watts.
The supply to the op-amp is ripple-reduced by D1-C2, and the DC supply to the entire circuit is derived from a centre-tapped mains transformer and full-wave rectifier, rather than a singleended transformer and bridge rectifier, since the latter option would result in an additional supply-volts drop of about 600 mV .

\section*{OVERLOAD PROTECTION}

The Fig 13 and 14 circuits are intended for use in fixed-load applications, and are provided with no form of overload or shortcircuit protection. Such protection can be given by the various 'addon' circuits shown in Figs 15 to 18.

Figure 15 shows a one form of load-current limiter. The load current flows through monitor resistor R1, developing a currentproportional voltage. When this monitor voltage exceeds the baseemitter voltage (about 600 mV ) of \(\mathrm{Q} 4, \mathrm{Q} 4\) is biased on and starts to 'rob' base-drive current from the Darlington output stage. the Darlington stage and Q4 form a negative feedback loop, causing the output current to self-limit at a value determined by R1 (about 3 amps when R1 value is 0.22 ohms ). With a 12 V supply and 3 amp current limit, Q3 dissipates about 35 watts under short-circuit conditions, and must be suitably heat sinked.

Figure 16 shows a useful modification of the above circuit, in which two transistors (Q4 and Q5) turn on under the 'overload' condition. Q4 limits the output current as already described, and Q5 activates a LED (or, better still, an audible alarm), to give a warning of the overload condition. R4 and R5 (in series with Q4 and Q5 bases) ensure that both transistors receive equal base-current drive.

At 'starting' speeds, the peak current of a pulse-driven DC motor is equal to its stall current, so a minor defect of the Fig. 16 circuit is that Q4 and Q5 both pulse on at 'start' if the R1 value is such that it causes limiting at or below the stall current value of the motor. This defect is overcome in the circuit of Fig 17.
Here, the current is limited by either Q4 or Q5 turning on, but Q4 turns on at a peak current of about 9 amps (via potential divider R4-R5), while QS turns on at a mean current of 3 amps (via the R6-C1 integrator and R7). If a short occurs at the output, Q4 instantly limits the current to 9 amps peak, and a few tens of milliseconds later Q5 turns on and reduces the current to 3 amps . Optional transistor Q6 can be used to activate a LED, indicating the SHORT/OVERLOAD condition.

Finally, Fig 18 shows an even more sophisticated circuit, in which the peak value is limited to 3 amps (or whatever value is desired) via R1 and Q4, but the mean output current falls to only 3 mA or so under short-circuit conditions, thus eliminating the need for heavy heat-sinking of Q3. The circuit operates as follows.


Figure 16: 3 amp output-current limiter with LED Indicator.


Figure 17: Circuit limits current to 3 amps MEAN but can supply brief transients of 9 Amps. LED indicator is optional.


Figure 18: The load current of this clrcuit limits to 3 Amps peak under normal driving conditions, but fails to about 3 mA when a short occurs.

Both Q4 and Q5 turn on when an overload occurs. Q4 limits the peak output current to about 3 amps , as already described, but the output of Q5 pulls R6 high and triggers CMOS monostable multivibrator ICI, which applies a 500 mS positive pulse to the bases of Q6 and Q7 via limiting resistors R9 and R10. As Q6 turns on it 'robs' Q1 of all base drive, causing the Darlington output stage (Q2-Q3) to turn fully off, and as Q7 turns on it activates the 'shortcircuit' LED. At the end of the 500 mS period, Q6 and Q7 turn off and the Darlington stage is re- enabled. If a short or overload still exists, however, the monostable fires again and turns the Darlington off for another 500 mS . Suppose, then, that the 'delays' of the circuit are such that they cause an effective 5uS delay before the monostable activates. In this case, in each 'overload' cycle, the output is 3 amps for 5 uS and zero for 500 mS , giving a MEAN output current of 3 mA .

Note that the Fig 15 to 18 circuits are all shown in use with a Darlington output stage, in which the Darlington's base drive current is only a few tens of mA . These circuits can all be adapted for use with single-transistor output stages, but in this case they may have to cope with base-drive currents of a few hundred milliamps. Also note in all cases that the presence of R1 causes a slight reduction in the maximum full-load output voltage that is available from the circuits.

More SMVF circuits next month.
R\&EW

\footnotetext{
Your Reactions Circle No. Circle No, Immediately Interesting 52 Not Interested in this Topic 54 Possible Application 53 Bad Feature/Space Waster 55
}

\title{
SHORT WAVE NEWS FOR DX LISTENERS
}

All times in GMT, bold figures indicate the frequency in \(\mathbf{k H z}\).

Just for a change I thought I would commence this month with details of some of the rather meagre results obtained whilst listening on some of the amateur bands. Rather meagre by virtue of other calls on my available spare time and the fact that what time there is for operations within the shack has to be shared with broadcast band observations and CB activities, all of which add up to quite a few hours each month.

\section*{1800-2000 kHz}

Top Band has always been a favourite band for me, probably because it was the very first short wave range over which my homebrew 1 -valve breadboard special managed to operate way back in the early thirties, nostalgia therefore plays a part it would seem.
Four sessions on the band at differing periods of the month produced some Dx as the following results will show, all heard on the dots and dashes mode.
From West Germany there was DL9HAZ and DL9SAL/A; from Spain signals were heard from EA3JJ; from actoss the Channel in France both F6AUS and F6BKP put in good signals whilst HB9CM in Switzerland also made it with a whacking signal. Across the North Sea from Norway LAIEKO was heard working several \(G\) (England) stations.

Signals from Czechoslovakia abound on Top Band CW mode, to mention only a few of those logged there was OKIAQO/P ( \(\mathrm{P}=\) portable operation), OKIDDF, OK1KZD, OK3CWQ, OL3BAP, OL4BDY, OLSAZN, OL6BEK. From the Netherlands (Holland) PAOLVB was the sole representative as far as I was concerned whilst from Sweden the logbook shows en-
tries for reception of SM1IAI, SM2I0G, SM4AXY and SM5BLH. the Soviet Union showed up in the guise of UA3LDT and also RAIWCP and RBSGFM. Lastly we have Yugoslavia entered into the logbook as YU2HDE

\section*{7000-7100}

This band proved to be a dead loss despite several attempts to brighten up the picture by adding to the \(\log\) some of the Dx that is available on the band when conditions are reasonable. In fact, as far as I was concerned, the band was downright unreasonable!
However, despite the European and East European QRM the log does show three lonely entries, these being K4BI, VE1AI and lastly WIBU. Well - at least I tried!

\section*{21000-21450}

Twenty-one provided some interesting calls during the period under review and of these are selected the following - which means the remainder are not worth mentioning.

From Uruguay we have CX4GL and CX6CW; from Haiti (that's the voodoo Republic) there was HH2VP whilst from Djibouti the sole representative was J20Z. Brazil furnished signals from PYICBW and PY4LH; the Indian subcontinent being logged via signals from VU2FBT. Bermuda in the West Indies came through with a transmission from VP9DR, South Africa with those from ZSSUG, ZS6BUX. Lastly, from Cyprus there was 5B4JK. All of which just about rounds up the Amateur Band adventures for this month, 14 MHz band being given a miss just for once.

\section*{AROUND THE DIAL}

In this section of the monthly rendering an attempt is made to inform readers of some of the transmissions that can be heard on the short wave ranges. Whenever possible the published loggings include the various transmissions in English so that station identifications can be made by beginners and old timers alike.

All of the details published here are correct at the time of writing but there is an inevitable time-lag between that and the receipt of the magazine - which is another reason why you should take out a regular subscription if you haven't already done so - you'll get the news quicker.

\section*{TURKEY}

Ankara on 15220 at \(1520, \mathrm{OM}\) with the Turkish programme for Turks abroad, timed from 0700 to 1700 on this channel. Also logged in parallel on 11955.

\section*{ALBANIA}

Tirana on 7065 at 2046, YL with comments on current world affairs in the English transmission for Europe, scheduled from 2030 to 2100. Also heard in parallel on 1395, for those interested in the lower frequencies.

\section*{VATICAN}

Vatican City on 11700 at 2050, YL with a news coverage in the English Service to Central and South Africa, scheduled from 2045 to 2100 on this channel and also logged in parallel on 9625 .

\section*{CREECE}

Athens on 9655 at 1920, YL with station identification followed by a newscast of local events in the English programme for Europe. this is timed from 1920 to 1930 and consists of a newscast only.

\section*{SPAIN}

Madrid on 11840 at 2004, was radiating a programme about Spanish legal procedure and the trial of the military faction that attempted to usurp Parliament. This was followed by a press review and a weather forecast for Spain. All in the English transmission for Europe and scheduled from 2000 to 2100

\section*{ROMANIA}

Bucharest on 9690 at 1957, YL with the English programme for Europe, currently scheduled from 1930 to 2030. All about agriculture and the country life.

\section*{POLAND}

Warsaw on 7125 at 2000, YL with station
identification at the commencement of the English programme for Africa, scheduled from 2000 to 2030 on this channel.

\section*{ZAIRE}
'La Voix du Zaire', Kinshasha on 15350 at 1955, OM with announcements in vernacular followed by a programme of typical African instrumental music and songs.

\section*{CZECHOSLOVAKIA}

Prague on 11855 at 0830, OM with announcements in the English programme for Africa, the Far East,

South Asia and the Pacific, scheduled from 0830 to 0900 (Saturday and Sunday to 0930).

Prague on 11990 at 1805, OM with a talk about environmental pollution in Czechoslovakia in the English programme for African consumption, scheduled from 1730 to 1825 .

\section*{BULGARIA}

Sofia on 15160 at 0632, OM and YL with announcements, frequencies and programme times in the German programme for Europe, scheduled from 0630 to 0700 .

Sofia on 15310 at 2052, when a programme all about African current affairs was being radiated in the English service to Africa, timed from 2030 to 2130 .

\section*{FINLAND}

Helsinki on 15265 at 0837, classical music by Finnish composers in the English transmission to Europe, the Far East and the Pacific, scheduled from 0800 to 0925 Sundays only.

\section*{AUSTRIA}

Vienna on 15165 at 0856 , OM with station identification at the end of the English programme for Europe, the Middle East, South East Asia, the Far East and Australasia, scheduled from 0830 to 0900 .

\section*{DENMARK}

Copenhagen on 15165 at 0858 , interval signal, OM with station identification in English repeated several times. full station indentification at 0900 in English then into a Danish programme for Southern Europe and West Africa, scheduled from 0900 to 0955 . QRM (interference) from Radio Peking on the same frequency but Copenhagen dominant.

\section*{ITALY}

Rome on 15330 at 0928, OM with station identification and announcements at the end of the Italian programme for Australia, the National Anthem, birdsong tuning signal and off. This programme is timed from 0830 to 0930 .

\section*{SOUTH AFRICA}

SABC Johannesburg on 3250 at 1913, OM announcer and a programme of pop musc. This is Radio Five, a mainly pop music station which operates on this channel from 0300 to 0545 and from 1520 to 2200. From 2200, to 0300 the All Night Service is in operation on this frequency. Both English and Afrikaans are used in the announcements. The power is 100 kW .

\section*{TOGO}

Lama-Kara on 3222 at 1915, OM with a talk in French, this being heard with some difficulty due to the surrounding interference. LamaKara is in operation from 0530 to 0830 and from 1630 to 2230 , the power being 10 kW .

\section*{SOMALIA}

Radio Mogadishu on 6790 at 1755, YL with a song, presumably in Somali, together with local orchestral music. This is a new one, details of transmission times being unknown at the time of writing.

\section*{MADAGASCAR}

Radio Nederlands Relay with a programme of African affairs on 15220 at 2035, in the English transmission for Central and West Africa, scheduled from 2030 to 2120 .

\section*{EGYPT}

Cairo on 17670 at \(1843, \mathrm{OM}\) and YL announcers alternate with an Arabic music programme in the Domestic Service, which can be heard on this channel from 1300 to 1900.

\section*{JAPAN}

Tokyo on 15195 at 0812 , OM with a newscast in English in the English and Japanese General Service, in operation on this frequency from 0800 to 0930. A Japanese programme commenced at 0815.

\section*{CHINA}

Radio Peking on 995 at 1831, YL with a newscast in the Italian transmission to Somalia, scheduled from 1830 to 1900 . Radio Peking on 11575 at 1835, YL with the French programme for Africa and Europe, on the air from 1830 to 1900.

Radio Peking on 11685 at 1800 , 'East is Red' on chimes, YL and OM with the Hausa programme for West Africa, scheduled from 1830 to 1900 .

Radio Peking on 15165 at 0900 , 'East is Red' tuning signal on chimes, OM with station identification in Chinese at the commencement of the Standard Chinese programme to South East Asia, scheduled from 0900 to 1000 . QRM (interference) from Copenhagen on the same channel.

\section*{AUSTRALIA}

Melbourne on 15115 at 0817, OM with a programme for Dxers and SWL's in the English programme for Europe and the Pacific, scheduled from 0630 to 1030 on this particular channel.

Melbourne on 15240 at \(0620, \mathrm{OM}\) with details of Sunspot activity in the same programme as that above, obviously all on tape.

\section*{NORTH KOREA}

Pyongyang on a measured 6576 at 2000, YL with station identification and a newscast followed by a talk on Korean affairs in the English transmission for Europe, scheduled from 2000 to 2150 . Also logged in parallel on 9360 and 11660 , the best channel however for listeners here in the UK being 6576.

NETHERLANDS ANTILLES
Bonaire on 21685 at 2032, OM with news of African affairs in the English programme directed to Central and West Africa and timed from 2030 to 2120 , this being a relay of Radio Nederlands in Hilversum.

\section*{CANADA}

Montreal on 15325 at 1953, Glen Hauser - a much respected Dxer with a programme specifically for Dxers and short wave listeners in an English programme for Europe, scheduled from 1900 to 2000 on Saturday and Sunday only on this channel.
Montreal on 17875 at 2010, YL with news of domestic affairs in the English transmission for Europe and Africa which can be heard on this frequency daily from 2000 to 2030.

\section*{INDIA}

AIR (All India Radio) Delhi on 11620 at 1846 , YL with station identification at the commencement of the programme in English directed to the UK, North and West Africa and West Europe, scheduled from 1945 to 2045.

\section*{ECUADOR}

Radio Popular, Cuenca, on a measured 4801.5 at 0407, OM's in chorus with a pop song in Spanish. the schedule is from 1000 to 0700 and the power is 2 kW . Cuenca is the capital of Azuay province and is rated as the third city of Ecuador, being set in the fertile basin of the Andes. The town is noted for the production of Panama hats!

\section*{COLOMBIA}

Radio Super, Medellin, on 4875 at \(0416, \mathrm{OM}\) with a political harangue in Spanish, all about Colombian affairs and complete with chants and applause from an enthusiastic audience - he was obviously preaching to the converted! Radio Super operates around the clock and has a power of 2 kW . Medillin is the capital of Antioquita province and is the second city of the republic.

\section*{PERU}

Radio Atlantida, Iquitos, on 4790 at \(0404, \mathrm{OM}\) with an excited account of a local sporting event. This one is on the air from 1000 through to 0500 and has a power of 1 kW but the frequency is liable to vary slightly from that shown on occasions. The town of Iquitos is set on the banks of the Amazon in the North Eastern part of Peru.
La Voz de la Selva, also in 1quitos, on 4825 at 0500 , just caught this one when it was signing off with orchestral version of the National Anthem after the station identification in Spanish. The schedule is from 1000 to 0500 and the power is 1 kW .



COMPARE THESE FEATURES
* SPECIALLY DESIGNED FOR EUROPEAN MARKET MICROPROCESSOR CONTROLLED 32,000 CHANNELS AM \& FM ALL BANDS
WIDER COVERAGE: \(26.58,58-88,108 \cdot 180,380-514 \mathrm{MHz}\); includes \(10 \mathrm{~m}, 4 \mathrm{~m}, 2 \mathrm{~m} \& 70 \mathrm{~cm}\) Amateur bands.
\(5 \mathrm{kHz} \& 12 \frac{1}{2} \mathrm{k} \mathrm{Hz}\) FREQUENCY INCREMENTS
16 MEMORY CHANNELS WITH DIRECT ACCESS 2 SPEED SCAN/SCAN DELAY CONTROL 2 SPEED SEARCH UP AND DOWN SEARCH BETWEEN PRESET LIMITS UP AND DOWN 3 SQUELCH MODES inc. CARRIER \& AUDIO RELAY OUTPUT FOR Aux. CONTROL INTERNAL SPEAKER
EXTERNAL SPEAKER \& TAPE OUTPUTS
LARGE GREEN DIGITRON DISPLAY BRIGHT/DIM AM-PM CLOCK DISPLAY
12V DC, 230V AC OPERATION
12 MONTH WARRANTY FACTORY-BACKED SPARES \& 'KNOW-HOW' AND THE ALL-IMPORTANT PRE. DELIVERY CHECK BY GAREX THE
MAIN SERVICE \& SALES AGENTS £264.50 inc VAT Delivered
*NEW* *NEVCONE * NEW*

A new top quality 16 -element, all British made, VHF/UHF broadband fixed station aerial from Revco.
Ideally suited to SX200 and other VHF/UHF Receivers. PRICE \(£ 24.95\) inc
SR-9 monitor: 2 m FM with 144.146 MHz full coverage VFO \(+11 \times\) tal controlled channels; ideal for fixed, /M,/P use. 12 V DC operation \(£ 47.50\) Marine Band SR-9, \(156-162 \mathrm{MHz}_{\text {, same spec. and price. }}\)
CRYSTALS FOR NIR-56, SR-9, SR-11, HF-12, TM-56B All \(2 m\) channels from O(145.00) io \(33(145.825)\). Also 144.80, 144.825, 144.85 Ray net at \(£ 2.46(+20\) p post per order). Over 40 popular marine channels at \(£ 2.85(+20\) p post \()\).
RESISTOR KITS a top-selling line for many years. E12 series, 5\% carbon film, \(10 \Omega\) to \(1 \mathrm{M}, 61\) values, general purpose rating \(1 / 2 \mathrm{~W}\) or \(1 / 2 \mathrm{~W}\) istate which)
Starter pack 5 each value ( 305 pieces)
Standard pack 10 each value ( 610 pieces)
Mixed pack, 5 each \(1 / W W+1 / 2 W(610\) pieces \()\)
Giant pack, 25 each value ( 1525 pieces)
E 3.10
£ 5.55
\& 5.55

NICAD RECHARGEABLES physically as dry cell: AA(U7) £1.30;
C(U11) £3.35; PP3 £5.55. Any \(5+\) : less \(10 \%\), any \(10+\) :less \(20 \%\). CRYSTAL FILTER \(10.7 \mathrm{MHz}, 12 \frac{1}{2} \mathrm{kHz}\) spacing, ITT \(901 \mathrm{C} \mathbf{£ 6 . 9 0}\) CO-AXIAL CONNECTORS \& ADAPTORS SAE full list.
PL259 UHF plug with reducer 75p; SO239 UHF socket, panel mid. 60p; Inline coupler ( \(2 \times\) sockets) \(£ 1.00\); Inline coupler ( \(2 \times\) plugs) \(£ 1.00\). Any \(5+\) connectors: less \(10 \%\)
HT TRANSFORMER multi.tap mains pri.: 5 secs: \(35 \mathrm{~V} 200 \mathrm{~mA}, 115 \mathrm{~V}\) \(150 \mathrm{~mA}, 50 \mathrm{~V} 500 \mathrm{~mA}, 150 \mathrm{~V} 300 \mathrm{mi}, 220 \mathrm{~V} 300 \mathrm{~mA} £ 5.50\)
PYE CAMBRIDGE SPARES (our speciality, SAE full list) Ex, equip. fully guaranteed. Rx RF board \(68.88 \mathrm{MHz} £ 5.95\). 10.7 MHz IF \(£ 3.65\). 2nd mixer 10.7 MHz to \(455 \mathrm{kHz} £ 3.00,455 \mathrm{kHz}\) block filter \(121 / 2 \mathrm{kHz}\) \(£ 9.40\), ditto \(25 \mathrm{kHz} £ 3.00 .455 \mathrm{kHz}\) AM IF \(£ 3.65\). Audio bd. \(£ 1.95\), and many more. Vanguard \& Westminster spares also.
GAREX FM DETECTOR and squelch conversion for Pye R/T equipmen Ready assembled, full instructions. Tailor-made, easy-flt design, replaces existing squelch board, with minimum of modifications. For AM Cambridge £5.95; for Vanguard AM25B (Valve RX) E5.75; for Transistor Vanguard AM25T £6.60
MAIN DISTRIBUTOR OF REVCO AERIALS \& SPECIAL PRODUCTS
(trade enquiries welcome)
PRICES INCLUOE UK P\&P and \(15 \%\) VAT
GAREX ELECTRONICS
7 NORVIC ROAD, MARSWORTH, TRING, HERTS HP23 4LS Phone 0296 668684. Callers by appointment only.


\title{
Reception Reports
}

\author{
Compiled by Keith Hamer and Garry Smith.
}

WITH THE SPORADIC-E SEASON due to commence at any moment (it should be in full swing by the time this is read), the month of July is a good time for longdistance television enthusiasts to check their receiving equipment to ensure that the receivers are in good working order. Attention should also be given to the aerial installation, in particular to corroded connections. The inside of the aerial connector box should be dry. If water has penetrated, seepage into the end of the coaxial cable may have also occurred and replacement is recommended. This problem can be prevented by greasing the end of the cable.

During the Easter break, one of the two aerial masts used by the author was completely overhauled which involved derusting the ageing lattice work. The 4-element Yagi Band I aerial was completely rebuilt and a larger boom used. A dipole cut to 84 MHz was fitted ahead of the second Bank I director (cut to 70 MHz ) which conveniently formed a reflector for the dipole allowing a degree of wideband Bank II (TV) coverage for the reception of Eastern European television channels.

Following the installation of a Jaybeam ABM 11 wideband 11- element Bank III array, it was found that regular reception could be obtained from Eire (RTE) on channel IH ( 207.25 MHz vision) and Belgium (BRT) on channel E10 (210.25 MHz vision). The ABM 11 array is quite popular amongst DX-TV enthusiasts.

For UHF reception, a Wolsey Colour King aerial, covering the whole of the UHF spectrum, has ousted an ageing Jaybeam multi- element array. Initial tests revealed a marked improvement in results. Time will tell whether the rather wide acceptance angle of a single Colour King will prove a problem with co-channel transmissions during a busy tropospheric opening.
April often brings one or two surprises in the way of signals. Sporadic-E (Sp.E) activity tends to be on the increase, usually with several small openings before the main \(\mathrm{Sp} . \mathrm{E}\) Season. On the 1st, at 1804 BST, a frequency-grating pattern was noted on channel E2 ( 48.25 MHz ) with the aerial to the south. It is thought that this pattern originated from Ghana or Nigeria but there is speculation that it could have come from the Kisumu transmitter located in Kenya. This pattern, or at least a very similar one,
was noted many times during F2-layer activity of recent years. On several occasions, the pattern was interrupted for no apparent reason as if there was a fault at the transmitter. At other times, programmes would be received on E2 from the south/south-east with intermittent breaks in transmissions to be replaced by the frequency-grating pattern. One of our correspondents in South Africa has reported that there does indeed appear to be a fault at the Kisumu outlet. During the reception noted on April 1st, there was cochannel reception from te ZTV-Zimbabwe transmitter at Gwelo.

\section*{FROM DARKEST AFRICA}

At lunch time on the 5th, a Philips PM5544 electronically generated test card was noted on channel E2 from Zimbabwe. The test card had the identification ' ZBC ' at the top and 'TV' in the lower black rectangle. A digital clock was incorporated in the central black bar. This reception was propagated via improved F2/TE (TransEquatorial) activity.

There was a short Sp.E opening on the 23 rd which included weak reception on
channel R1 ( 49.75 MHz ) at 0800 BST with programmes possibly originating from the USSR. Stronger signals were noted at lunch time with the PM5544 test card from Sweden on channels E2 and E3 (55.25 MHz ) carrying the usual identification 'TV 1 SVERIGE'. Signals were also logged from Denmark on E3 with the PM5544 and the identification 'DR DANMARK'. This was followed by reception from Finland, also on channel E3, with the electronic FuBK test card carrying the identification 'YLE TV 1'. This was followed by reception from Finland, also on channel E3, with the electronic FuBK test card carrying the identification 'YLE TV 1' rather than the more usual 'YLE HLKI'.

The 30 th was quite a good day for \(\mathrm{Sp} . \mathrm{E}\) with a football match (Spain v. Venezuela) on channel E3 in colour from RTVE-Spain. Regional news programmes were seen from RTVE later in the day on E3 and E4 (62.25 MHz ). Following the news programme on E4, RTVE transmitted the colour test card with the identification 'TVE 1' at the bottom. Reception from RTP-Portugal was noted with an end of transmission caption reading 'Fin Da Emmissao'.

Apart from Sp .E reception during April there were many short duration signals via meteor showers (MS) including the electronic test card from East Germany (DDR:F) on channel E4 and the RTVE regional test card on E3 from the Gamoniteiro transmitter. On the 26th at 1701 BST, a PM5544 test card appeared briefly on channel E4 and it is suspected that this was RUV-Iceland. On the 27th there was possible reception via MS on E4 from JRT-Yugoslavia with their FuBK test card.


An electronic test card from Spain showing transmitter identification.

The only notable reception via enhanced tropospheric conditions during the month was from NOS-Netherlands on channels E6 ( 182.25 MHz ), E29 and E32 (both in the UHF band) plus colour reception on channel E24 from the West German television service, NRD-3.

\section*{RECEPTION REPORTS}

Hugh Cocks has written from Robertsbridge (East Sussex) with details of experimental satellite reception. Hugh has received very strong signals from the first network of TSS (USSR) via the Gorizont satellite positioned over the Atlantic.
Cyril Willis (Little Downham, Cambs) has managed to receive several intercsting signals during the month. On the 13 th he received GBC. Ghana on channel E2. On the 18th, signals from the USSR were noted on channel R1 followed later in the day by reception on E2 from the Gwelo outlet in Zimbabwe. The propagation mode was F2/TE. Enhanced tropospheric conditions resulted in the appearance of several West German stations (ARD/ZDF) plus reception from Denmark on channels E7 (189.25 MHz ) and E11 ( 217.25 MHz ). On the 30th, Cyril was very fortunate to receive the Canary Islands (RTVE/TVE) on test card from the channel E3 outlet. Signals from Spain on E2 and E3 and from Portugal (RTP) on the same channels were also noted.
From Victoria in Australia, Robert Copeman has sent details of his DX.TV reception during April. On the 4th he logged signals from Lanchow (China) on channel C1 ( 49.75 MHz vision) and programmes from the USSR on R1.

The USSR signals were from the Vladivostok transmitter. Both countries were received via F2 propagation. Whilst on holiday in Adelaide during the Easter period, Robert noted consistent reception from ABS 2, ADS 7, NWS 9 and SAS 10. Back home in Melbourne during good tropospheric conditions, Robert received many stations including BTV 6 and ABRV 3 in Ballarat (Victoria), GLV 8 and ABLV 4 (Traralgon) ABRV 5A (Colac, Victoria) ABNT 3 and TNT 9 (both stations located at Launceston in Tasmania) and SES 8 on Mount Gambier in South Australia.

In the Netherlands, Gosta van der Linden (Rotterdam) has been busy with tropospheric reception including the NDR (West Germany) transmitters at Verden, Kiel, Flensburg and Niebuell. Weak signals from several BBC transmitters were also seen. Gosta uses a special four-standard TV sound converter (FM only) and he is able to switch between the following systems:- 4.5 MHz (US Forces transmitters in West Germany); 5.5 MHz Western Europe/Gerber system; 6.0 MHz UK and British Forces Broadcasting Service (BFBS); 6.5 MHz Eastern Europe/OIRT countries. The converter originates from West Germany and costs about DM42-. One of Gosta's DX colleagues, Ryn Muntjewerff, has found an aerial manufacturer constructing 7 -element channel E2, E3 or E4 arrays. These are extremely large VHF Band aerials by any standards. A 22 -element wide band Bank 111 aerial is also available. We hope to receive further details about Dutch DX-TV equipment in the near future. Meanwhile, we would be very pleased to hear from DX enthusiasts around the world with details of reception and equipment used.

"THE DYNOFONIC, OSCILCATING DOUBLE THRUSTERS MALFUNCTIONED. -A GOOD KICK'LL FIX IT! "
\(\square \mathbf{R \& E W}\)



\section*{*BOOKS OF THE MONTH *}

\section*{THE CHEAP VIDEO COOKBOOK}

By Don Lancaster
1978; 256 pages; \(145 \times 230 \mathrm{~mm}\); Paperback
f6.25
In the words of Don Lancaster "This book is dedicated to the yea but'". It is a fascinating journey through the design ideas behind cheap video. The reader is shown how to make simple low cost alphanumeric and graphic video display systems based on the KIM-1 microprocessor system. Although a 6502 micro is assumed throughout the book, hints on other micros are given. The aim of the book is to give the reader the ability to display the contents o his microprocessor memory on a CRT screen for minimal cost. The claim made is for twenty dollars upwards, depending on options, but not very much upwards!

The introductory chapter outlines the basic principles involved in this unique approach to alphanumeric and graphic display. There is the 'scan program' which decides which row of characters is wanted, and then provides them. The 'scan microinstruction' forces the micro address lines to count at 1 MHz until all the characters in the line have been displayed. This causes the display memory to output the required symbol code by way of the 'upstream tap'. The upstream tap routes the character code to the interface hardware for dot matrix conversion and it is the output as serial video.

Chapter two starts off the practical side with a consideration of the software needed to perform this magic. The 'scan
microinstruction is covered here, along with graphics, alphanumerics, colour, black and white, scrolling, editors, 'double stuffing' and 'memory repacking'. Methods are considered for giving up to 80 characters per line on an ordinary ' not very much modified' television set.

The third chapter describes the hardware involved in interfacing your micro's memory to a television screen. The 'upstream tap' is introduced here, along with the scan microinstruction proms, character generation, and conversion to video.

A commercial example, the 'TVT 65/8' is covered in chapter four. All the details are there for those who want to use them. Again, it is aimed at KIM owners. Flow charts, parts lists, circuits, board layouts, step by step construction notes etc. are all in abundance.

The final part describes how to run other programs in the micro at the same time as using it to produce a continuous display on the screen. The speed penalty involved in doing two jobs at once is not as great as might first be imagined. A 16 by 80 alphanumeric display. still leaves \(50 \%\) of the processing power available to the user. This technique is called 'transparency'.
The rules are simple:
1) Do as few modifications to anything as possible
2) Use standard components, e.g. a KIM-1 and an ordinary television
3) Keep the hardware simple, and use proms to reduce overheads
4) Try to use what is alrady a vailable to do as much as possible

A 6502 micro is assumed. Changing to a 6800 should present few extra problems, although most other micros will require more major modifications. The principles jutlined here can also be used togenerategraphics up to 256 by 256 dots.

The book is a fascinating study of cheap graphics. I must confess to being one of the 'Yeabut'. This doesn't stop me from recommending this book to anybody playing with computer graphics. I'm now waiting to get my hands on a copy of 'Son of Cheap Video'. There is a lot of useful information in this book, even if you don't use it in the way Don Lancaster intended. It is intended as an extension of the 'TV Typewriter Cookbook'. KM


East. In addition, there are a number of pages of very useful notes on the use of the test cards in various countries. For example, it is noted that in South Africa the PM5544 Electronic Test card is shown, is used for all VHF and UHF stations with various forms of identification depending upon which centre the particular station is linked to, then follows a list.

The book should also appeal to those concerned with television graphic work and operators of amateur television stations. JB

\section*{RADIO BOOKS}
amateur antenna tests amd MEASUREMENT by HD Hooton
BEGINNERS HANOBDOK OF AMATEUR RADIO
ByCLaster
CB RADIO CONSTRUCTIDN PROJECTS by Len Buckwatter \(\{2.75\)

FERROMAGNETIC CORE DESIGN
by MF Doug DeMaw f16.45
MICROWAVE DEVICES AND CIRCUITS
by Prof SLiao
C25.50
QUESTIDNS ANO ANSWERS ABOUT CB OPERATIONS
by LGSands
TV ANTENNAS AND SIGNAL
DISTRIBUTION SYSTEMS
by M J Salvati

GENERAL BOOKS
abCs OF INTEGRATED CIRCUITS by R P Turner

\section*{GUIDE TO WORLD.WIDE TELEVISION TEST CARDS}

By Keith Hamer and Gary Smith 1981; 52 pages; \(150 \times 210 \mathrm{~mm}\); Paperback
£2.85
Regular readersof this magazine will be familiar with the excellent series of articles on TV.DX contributed by Keith Hamer and Gary Smith each month. This book has been written by the same authors and recently went into a second edition.

In their Introduction the authors briefly comment on the rapidity of the technological advances since a simple Test Card ' \(A\) ' was used by BBC engineers, for internal purposes only, just before World War 2.

The main part of the book consists of the reproduction of no fewer than 240 test cards; identification slides and block captions have been included. The principal purpose is to provide TV DX-ers, all over the world, with the means of signal identification.

The standard electronic test patterns are first given and then the test cards for Africa, North America, South America, Americas the Carribean, Australasia, Europe (132 test cards), Asia and the Far East and finally the Middle

ACTIVE FILTER COOK800K
by Don Lancaster
ANALOG IIO DESIGN AQUISITION:
CONVERSION: RECOVERY
by P H Garrett
BASIC ELECTAICITYIELECTRONICS Vol 3
Understanding Electronic Circuits 2od Edition
by Training \& Retraining Inc
BEGINNER'S HANDBOOK OF IC PROJECTS
by DLHeiserman
\(\{9.70\)
BUILDING AND INSTALLING
ELECTRONIC INTRUSION ALARMS
by JECunningham
f4.55
CMOS COOKBOOK
by Don Lancaster
DESIGN OF OP.AMP CIRCUITS
with experiments
byHMBerlin
DESIGN OF PHASE-LOCKED LOOP CIRCUITS -
with experiments
byHMBerlin
DESIGN DF VMOS CIRCUITS • with experiments
by RTStone
EFFECTIVELY USiNG THE OSCILLOSCOPE
by R G Middleton



Bigger and Better for 1982
the colourful Wilmslow Audio brochure - the definitive loudspeaker catalogue!

Everything for the speaker constructor - kits, drive units, components for HiFi and PA.
50 DIY HiFi speaker designs including the exciting new dB Total Concept speaker kits, the Kef Constructor range, Wharfedale Speakercraft, etc.
Flatpack cabinet kits for Kef. Wharfedale and many others.
* Lowest prices - Largest stocks *
* Expert staff - Sound advice *
* Choose your DIY HiFi Speakers in the comfort of our * two listening lounges
(Customer operated demonstration facilities)
* Ample parking *

Send 51.50 for catalogue
\(\therefore\) - دque. M.O or stamps - or phone with yourcredit card number) - Access - Visa - American Express accepted a ise MIF. Markets Buaget Card.


0625529599

35/39 Church Street, Wilmslow, Cheshire SK9 1AS
Nox

162 for further details

\section*{MARCO TRADING}

Over 10 million resistors in stock!!
\(1 / 4\) W 5\% Carbon Film - \(5 / 2\) million \(1 / 2 W 5 \%\) Carbon Film - 5 miltion ull range of values \(1 / 4 W-E 3\) per \(1.000 \quad 1 / 2 W-E 3.50\) per 1.000
OEVELOPMENT PACKS: These tamour resistor packs are now avallable in two sizes: Carbon litm \(5 \%\) resistors. every value individually packed in a clearly labelled bag. 10 of every value in the E24 range between the values stated:
Wati Pack: 10 ohm to \(/\) Meg ( 610 resisiors) \(\begin{array}{ll}\text { Watt Pack } 10 \text { omm to } 1 \mathrm{Meg} \text { (610 resistors) } & \mathbf{6 5 . 0 0} \text { per pack } \\ \text { Watt Pack: } 10 \text { ohm to } 2 \mathrm{M} 2650 \text { resistors) } & \mathbf{E 6 . 0 0} \text { per peck }\end{array}\)
MULTIMETER SPECIAL Aussian type U4324 (Adverised elsewhere in this magazine for over \(£ 15.00\) each recently). \begin{tabular}{l} 
a.c. Voltage: \(0.6,1,2,3,12,30,60,120.600,1200\). \\
ac. Voltage 3.615 \\
\hline
\end{tabular} d.c. miensity m/a: 0.06. 06.6 60, 600, 3000. a.c. intensity m/a 0.3.3,30, 300,3000. a.c. resistance: \(0.2,5.50 .500 .5000, \mathrm{k} \mathrm{hm}\)
g.e level d 10 to 12

FANTASTIC SPECIAL PRICE
£12.00 including P.P and VAT
TRANSFORMERS
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & \\
\hline 240 & 4.5-0-4.5v & \(400 \mathrm{~m} / \mathrm{s}\) & 50p & 45p & 35 \\
\hline 240 v & 6-0-6v & 100m/a & 58 & 52p & 43p \\
\hline 240 v & 6-0-6v & \(500 \mathrm{~m} / \mathrm{a}\) & 65p & 80p & 48p \\
\hline 240 V & \(9-0.9 \mathrm{v}\) & \(200 \mathrm{~m} / 0\) & 75p & 70p & 58p \\
\hline
\end{tabular}

Manulacturers note: We can supply FROM STOCK. 1000
EUROPEAN
ADAPTORS


The ee very high quality British made two pin European adaptors dre ideal for driving Aadios, cassette recorders. NV games

rranstormers \& adaptors.
Callers welcome Mon-Fri 9-5.
We've moved to larger premisesl
This adven is onity a tracrion of our range. send 250 for our latesi caulogue. Please add \(350 \mathrm{P} / \mathrm{P}\) Mers. (Free over C500). Add \(15 \%\) VAT to lotal. S
MARCO TRADING Dept. RW8, The Mältings, High Street, WEM, Shropshire
\(\qquad\)

\title{
6 inputs... 6 colours... words too
}

You'll never need overprinted or special chart paper again.
- Disposable six pen dotting head records in six different colours on \(4^{\prime \prime}(100 \mathrm{~mm})\) chart prints time, day number, chart speed, scales and other data in plain language.
- Up to three different linearising signal conditioners (each assignable to any of the six inputs) for all known T/C's. RTD's, d/p cells and other
 non-linear signals

Model 306 Multipoint
- Printing of two alarm set points appears as regularlyspaced pairs of colour-keyed dots.
Southdownview Road
Tel: Worthing
Worthing, Sussex
(0903) 205222

\section*{SWITCHED MODE POWER SUPPLIES INTERFERENCE PROBLEMS?}
* Storage inductor
* EMI filters


\section*{MICROMETALS DUST IRON CORES}

The perfect solution, from the experienced manufacturer. Micrometals also manufacture the biggest range of cores for resonant applications - contact Ambit for more details

> Ambit International
> 200 North Service Road Brentwood
> Essex CM14 4SG
> telephone (0277) 230909 telex 995194 AMBIT G

\section*{North West}
Communications (Liverpool)
FAST BECOMING THE LARGEST SUPPLIERS OF EQUIPMENT IN THE NORTH
\begin{tabular}{cc} 
MSA & \begin{tabular}{c} 
G8XKS \\
TONY \\
TOARES \\
SPARESE \\
SERVICE
\end{tabular}
\end{tabular} \begin{tabular}{c} 
G8TBK \\
GARY \\
MAL ORDER
\end{tabular}
For all your amateur radio requirements - plugs, sockets, components etc. - all on mail order just a 'phone call away.

\section*{Introducing the New REFTEC 934 MHz MOBILE TRANSCEIVER}
20 channels
8 Watts maximum to MPT 1321
We are now taking orders for the above which has just been released and is on display at the address shown.
Ideal for local communications up to 20 miles - Price \(£ 226\) inc. VAT.
Aerials also available -
\(1 / 4\) wave mobile
£11.70 inc. VAT
Mobile co-linear \(£ 20.70\) inc. VAT
Base station co-linear \(£ 32.00\) inc. VAT
117 OXFORD ROAD, WATERLOO, LIVERPOOL L22 7RE 051-920 7483
MIZUMO
CDE \(\square\) RSGB PUBUCATIONS

264 for further details

\section*{MASTHF FTHFOHRONTCS NOW! The PRAGHICAT way! \\ }
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of Radio, T.V., Hi-Fi and microprocessor/computer equipment.

\section*{Newdob?NewCareer?NewHobby? Getinto Electronics Now!}


\title{
- A ELECTRONIC SERVICES \\ 2 ALEXANDER DRIVE, MESWALL, WIRRAL, MERSEYSIDE, L61 GXT. \\ Telophone: 031-342 4443. Telox: 67371. Cables: CRYSTAL BIRKENHEAD.
}

Prices exclude VAT - U.K. customers please add 15\% VAT Commercial and Professional Crystals New Faster Service
We are now supplying crystals to most commercial and MIL specifications in the range 1 MHz to 60 MHz , ordered in small quantities, with \(2 \frac{1}{2}\) weeks AT NO EXTRA CHARGE We also have an even faster EXPRESS SERVICE for that very urgent order. We can also supply crystals for commercial applications e.g. Microprocessor, TV etc., at very thernatively telephone or telex our Sales Engineer Mr, Norclifte who is normally avallab ahernatively telephone or telex our Sales Engineer Mir. Norclifte who is normally available in the office for technical enquiries between 4.30 and \(6.30 \mathrm{p} . \mathrm{m}\)

Crystass Manufactured to Order to Amatour Specification
HC13M
 10 to \(19.99 \mathrm{Mz} \mathrm{HC} \mathrm{13U...}. \int 31.00 \quad 26\) to 21 MHz (fund) HC6工 20 to \(29.99 \mathrm{~Hz} \mathrm{HC}_{2} 3 \mathrm{M}\) … \(\mathrm{f} 2308 \quad 3.4\) to 399 MHz (fund) HC18\& 25 M 30 to \(59.9 \mathrm{GHzHz} \mathrm{HC13} \mathrm{U} . . . \quad\) C21.73 4105.99 MHz (fund) HC18 825 U . 60 to \(79.99 \mathrm{HzHC} 13 / \mathrm{U} . . . . \quad\) © 15.696 to 21 MHz (fund) HC6, \(18625 / \mathrm{U}\).
 100 to 149.9. Hz HC13U..... \&11.32 25 to 28MHz (tund) HC6, 18625 U .
 400 to 499.9 kHz HCEU ........ \(£ 7.00\) 10510 125MHz (50/T) HC188 250
 800 to 999.9 KHz HCEU ...... \(11.01 \quad 15010179 \mathrm{MHz}\) (9O/T) HC 18825 N
 TOLERANCES. Up 10800 kHz - Total valerance \(=100 \mathrm{ppm} 0^{\circ} \mathrm{C}\) to +10 TOLERANCES: Up to \(800 \mathrm{~Hz}-\) Total rolerance \(= \pm 100 \mathrm{ppm} 0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\). Over 800 HHz - Adj. \(10 \mathrm{l} .= \pm 20 \mathrm{ppm}\), Temp. tol. \(= \pm 300 \mathrm{pm} \cdot 10^{\circ} \mathrm{C} 10+60^{\circ} \mathrm{C}\). Uniess overtones to series resonence.
DELIVERY: \(I \mathrm{MHz}\) to 150 MHz - \(4 / 6\) weeks, other trequencies \(-6 / 8\) weeks. Pnces shown are for "one off" to our standard amateur specifications, closer tolerances are available. Please send us details of your requirements.

4 METRE 2 METRE AND 70 CENTIMETRE STOCK CRYSTALS
We stock crystais for 70.26 MHz on 4 m . On \(2 \pi\) we stock R0thru R8 and S 18 thru S24. For nom we heve RBO thru RB 15 plus SU8, SU 18 G SU20. For full details of the above stock crystals plus details of our Converter, Marker and Ahemative IF crystals, crystal soctets and our AEriAl. RANGE see pege 36 June R\&EW Magazine or send SAE to the above address

231 for further details

\section*{An entire range of low-cost high: performance instruments \\ sabtronics \\ Making Performance Affordable}
2010 A 3 k-Digit L.E.D. Bench DMM
2015A \(3 \mathrm{~V}_{2}\)-Digit L.C.D. Bench DMM
2020 3 3 -Digit LE. D. Bench DMM
2033 with Microcomputer interface
2035 3h-Dight L.C.D. Hand DMM
2037 A 3k-Digit LC. D Hand DMM
LP. 10 10MMZ Loglc Probe
\(5020 \mathrm{~A} 1 \mathrm{~Hz}-200 \mathrm{KHz}\) Function Generator 8110 A 100 MHz -Digit Frequency Meter \(8610 \mathrm{~A} \quad 600 \mathrm{MHz}\) B-Drgit Frequency Meter 8610 B 60 MHz 9-Digit Frequency Meter 8000日 1 GHz 9 -Digit Frequency Meter 870010 MHz Universal Frequency Counter/Timer
PSC-85 600 MHz Prescaler
00055 MHz Single Trace Oscilioscope - Also avellable in kit form.

Test our low priced test equipment. It measures up to the best. Compare our specs and our prices - no-one can beat our price/performance ratio.

Full colour illustrated brochure and price list from: BLACK STAR LTD.
9a Crown Street, St. Ives, Cambs. PE17 4EB
Tel: (0480) 62440. Telex 32339


\title{
CLASSIFIED ADS
}

BARGAIN OFFER
ANNUAL BOUND VOLUMES
RADIO \& ELECTRONICS CONSTRUCTOR


Each of these handsome bound volumes contain more than 150 practical articles in their 700 800 pages of text, published in 12 monthly issues of R\&EC.

12 monthly issues to August 1978 (Vol. 31), 1979 (Vol. 32), 1980 (Vol. 33).
* Volume 33 contains lan Sinclair's Databus Series How Microprocessors Work Selection \& Bussing, CPU Registers; Addressing Memory The Accumulator; Inputs \& Outputs; Interrupts; Status Register; Signed Binary Arithmetic; Computing Languages.
ONLY \(£ 4.95\) each inclusive of post and packing.

Subjects cover - Amplifiers, Amplifier Ancillaries, Calculators, Electronics, 'In Your Workshop', Receivers, Receiver Ancillaries, Television, Test Equipment etc. etc.

12 monthly issues to July 1974 (Vol. 27), 1975 (Vol. 28), 1976 (Vol. 29), 1977 (Vol. 30).
ONLY \(£ 3.95\) each inclusive of post and packing.

Please send remittance payable to 'RADIO \& ELECTRONICS WORLD' stating volumes required to:-

\author{
DATA PUBLICATIONS 45, Yeading Avenue, RAYNERS LANE, HARROW Middlesex HA2 9RL
}

CASIO FX-50IP programmable calculator complete with FA-I cassette adaptor. £50. Telephone: 0203-28885.

DAIWA SR9 2 mtr. RX. Also fitted RO, S10 xtals. 5 months old. £35. o.n.o. Phone: 0935-823475.
B.C.N.U. AT THE SUSSEX MOBILE

RALLY. 10.30 a.m. to 5.00 p.m. on Sunday 18th July 1982. Brighton Race Ground, Racehill, Brighton. It's the winner for radio amateurs. Free car parking and many attractions for the whole family. Usual trade stands. All under cover.

\section*{DIGITAL WATCH REPLACEMENT}

PARTS. Batteries, displays, backlights, etc. Also reports, publications, charts. S.A.E. for full list. Profords, Copners Drive, Holmer Green, Bucks., HP15 65GF.

\section*{PRINTED CIRCUIT BOARDS \&} LABELLING. Designer and manufacturer to freelance and industrial users. Try me for:- Conventional single and double sided PCB production (non PTH). Hand produced artworks \& photography. Quickly made prototypes. Self adhesive labels and signs in flexible vinyl. Screen process printing. - G.N. Slee, 78 Derry Grove, Thurnscoe, Rotherham, South Yorkshire, S63 OTP. Phone: (0709) 895265
I.B.M. GOLF-BALL TYPEWRITER with solenoids for computer interface. £90, or offer? Telephone Hemel Hempstead 53732, evenings.
PACKER COMMUNICATIONS WAVEMETER (2M), TYPE WUl with WH2 head. \(£ 15.00\). Box No. REW25. TELEFORD COMMUNICATIONS G8AEV 2M CONVERTER \(28-30 \mathrm{MHz}\), 12 V d.c. £10.00 Box No. REW26.

\section*{TEST EQUIPMENT FOR THE RADIO} AMATEUR by H.L. Gibson. RSGB publication, \(£ 1.00\) plus postage. "Radio Communications Handbook', 5th Ed. Vols. 1 and 2. \(£ 5.00\) each plus postage Box No. REW27.

RTTY/CW DECODER. Easy to build with 8-character alphanumeric LED display (expandable), or with latched ASC11 output and strobe for computer interface -requires same connections and software as parallel encoded keyboard. 45 and 50 baud RTTY, 5 to 30 w.p.m. morse. Kit price (excluding case) \(£ 64.50\) with display, \(£ 39.75\) as interface. Parts available separately construction data \(£ 3.95\) + s.a.e. MacRitchie (Micros), 100 Drakies Avenue, Inverness, IV2 3SD.

WORLD RADIO \& TV HANDBOOK. Listing broadcast times/frequencies. Nearly 600 pages, \(£ 10.99\). BROADCASTS TO EUROPE, quarterly list, \(£ 1.30\) ( \(£ 4.50\) yearly). Access/Visa welcome. Pointsea, 25 Westgate, North Berwick, East Lothian, EH39 4AG.

FOR SALE. Oscarbox by G3WPO. Excellent condition. £150 o.n.o. Box No. REW23.

FOR SALE. "Experimental Microwaves" by A.W. Cross. MI publications. \(£ 7.00\) Box No. REW 24.

\section*{DIAL-SEARCH HANDY FREQUENCY} CHECKLIST (Europe \& U.K., medium and long wave) with unique map for bearings. Popular with DXers and home users everywhere. \(£ 1\) post paid or 6 IRC. Wilcox, 9 Thurrock Close, Eastbourne, East Sussex, BN20 9NF.
ARE YOU INTERESTED in the technical aspects of amateur radio? Are you a home brewer of equipment or customiser? Do you wish to participate in a club furthering those aims? YES!! Well join our increasing ranks. We offer discounted kits, components, etc., etc., and a bi-monthly journal with up to sixteen circuits and ideas to build. Join RATEC as an associate member for \(£ 3.50\) p.a. For further details send s.a.e. to: RATEC, 17 Laleham Green, Bramhall, Stockport, SK73LJ.
BI-KITS STEREO AMPLIFIER CHASSIS, cabinet, and two 7 inch speaker kits to match £20 ONO. Box No. REW 15.
TR2300. 2m FM transportable with case and 10 W booster amp., 'rubber duck'.. £I70 ONO. Phone (0277) 822720. G3XDG.
T\&J ELECTRONIC COMPONENTS. Quality components, competitive prices. Send 45 p cheque or postal order for illustrated catalogue, 98 Burrow Road, Chigwell, Essex IG7 4BH.
PRE-PACKED, screws, nuts, washers, solder tags, studding. Send for price list. A1 Sales PO Box 402, London SW6 6LU.

WORLDS BIGGEST INFORMATION SERVICE. By return post service/workshop manuals, huge stocks TV/VCR/ audio/foreigh \& U.K. -examples over 300 different C.T.V./over 2000 Sony alone. Any single service sheet \(£ 1\) and s.a.e. Repair data named T.V. \(£ 6.50\) (with circuits \(£ 8.50\) ). S.A.E. brings free - 50 p magazine/price lists/bargain offers/ unique T.V. publications/ quotations -TISREW, 76 Church Street, Larkhall (0698-883334), Lanarkshire ML9 1HE.

PYE WESTMINSTER W15AM dash mount, complete withcradle, mic and d.c. leads. As new, working on 70.26 MHz . Comes with mag base and \(1 / 4\) wave whip. £80 o.n.o. Tel: 0245-351673
ZX-EPROM PROGRAMMER £27.75 (A), 25 V supply for (A) \(£ 7.75\). (B) Eprom read card \(£ 8.25\), Eprom programmed with breakout, life \& tool kit \(£ 8.25\) simple to use, connect to \(\mathrm{ZX} 80 / 81\). P\&P. on A \& B £1.00 (UK). Orme, 2 Barripper Road, Camborne, Cornwall, TR14 7QN. S.A.E. for more details.

TV DX VHF TO UHF CONVERTER. Receive VHF DX signals on UHF television. S.A.E. Data, lists. H. Cocks, Cripps Corner, Robertsbridge, Sussex TN32 5R7. Telephone 058-083-317.

FOR SALE Grundig Satellit 1400. One year old. 6 SW bands, LW MW, EM. Owner buying communications receiver. £120. Ring 01-636 8748 after 7 p.m.
CB SPARES - CHEAP. TA7205P-I/C: 159p \(5 \times 759\) p. 2SC2092 FM-AM-SSB RFPA. Replaces most PA types \(1 \times 149\) p, 10 x 1359p. Add 50p post. SAE lists. Free CB Fault-Finder. R. Withers.
Communications, 245 Stourbridge Road, Halesowen, West Midlands, B63 3QU. Phone: 021-550-9324 or 021-471-1764. Mail Order only.
HB9CV Mk IV 2 mtr. 2E beam ant. New Design. New low price. Over 1500 sold so far. Only \(£ 6.99\) plus P\&P. R. Withers Communications, 245 Stourbridge Road, Halesowen, West Midlands, B63 3QU. SAE for more details or Telephone 021-550-9324.

CATALOGUE NO. 18. Many thousands of surplus mechanical and electronic bargains. 30 pages of interesting reading price 30p. J.A. Crew, Spinney Land, Aspley Guise, Milton Keynes.

INTERESTED IN OSCAR? Then join AMSAT-UK. Newsletters, OSCAR NEWS Journal, prediction charts etc. Details of membership from: Ron Broadbent, G3AAJ, 94 Herongate Road, Wanstead Park, London E12 5EQ.

PCB'S AND ELECTRONIC EQUIPMENT designed and built to your spec. All enquiries to:-
27 Cawthorn Avenue, Harrogate,
Yorkshire, HG2 7QA.
TRANSMITTER WANTED. \(85-95 \mathrm{MHz}\) F.M. for music broadcasts. Crystal controlled. 12-24 volt supply. Cast waiting. Bob, P.O. Box 13, Redditch, Worcs., B98 8NS.

SWAN 350 transceiver \(80-10 \mathrm{M}\) 350W PEP with handbook and a.c. PSU. \(£ 150\). Phone: (0742) 302210.G3ZDG.

ACORN ATOM 24K Mem + wordpack + many progs, bits. £260 Altair 8" drive cased inc. psu + controller cards. Offers £250. Straight 40 CB \(£ 30 \mathrm{~S}\). Walters, 74 Green Lane, Edgware, Middlesex, HA8 7RA. Phone: 01-958-8924 evenings.

SCOPEX 14D10 Brand new with cover and leads. \(£ 160\) o.n.o. Telephone Parkstone (Dorset) 749845.

FRG7 Fine tune and FM fitted, \(£ 160\). SSB CW portable SM-2M \(£ 75\). Power supply nicad charger PS1200 £25 o.n.o. D. Thompson, 52 Miller Drive, Fareham, Hants. Fareham 232799.

\section*{AIRCRAFT COMMUNICATIONS}

HANDBOOK including Spot MF, HF, VHF, UHF, Frequencies, airports, air traffic control centres, weather reports, broadcast times, beacons, long range stations, callsigns, maps, etc. 384 pages £7.50, post \& packing \(£ 1\).
PHL Electronics, 97, Broadway, Frome, Somerset BA11 3HD


\section*{- ••••••• \\ SMALL ADVERTISEMENTS}

Advertisements must be prepaid and all copy must be received by the 4 th of the month for insertion in the following month's issue.
The Publishers cannot be held liable in any way for printing errors or omissions, nor can they accept responsiblility for the bona fides of Advertisers.
Where advertisements offer any equipment of a transmitting nature, readers are reminded that a licence is normally required. Replies to Box Numbers should be addressed to: Box No..., Radio \& Electronics World, 45 Yeading Avenue, Rayners Lane, Harrow, Middlesex.

\section*{CLASSIFIED ADVERTISEMENT ORDER FORM - PLEASE COMPLETE BELOW}


A look at some of the more obscure moment's from Gary Evans' month, in which the not- so-'merciful Evans' demonstrates why so few PR agencies are willing to submit themselves to trial by R\&EW

THIS WAS THE MONTH of the AV presentation this was. Two particularly dreadful examples of this art noveau were encountered, one a high on presentation, low on content, slide show; the other a 'low on both counts' video effort.

The slide show accompanied the launch of an intelligent 'scope, one car only hope that the intelligence of the instrument was above the level of that the audience at which the endeavour had been aimed. In fact the less said about the whole thing the better.

The gathering as a whole did however feature one other point worthy of note, and that was the presence of fellow journalists from the EEC - that's European Electronic Correspondents in this case. The interesting thing was, that whether due to the traditional British reserve, or to the fact that the British contingent had been stunned by the aforementioned slide show, all the questions - with one particularly lame exception - came from the French and Germans. (And what gems did GE contribute, then??-WP)

\section*{THE VIDEO VENUE}

The video production reared itself at a 'press call' and breakfast on the opening day of the Commodore Computer Show. Perhaps appreciation of the item was not heightened by the fact that it was shown on a small TV situated at some distance from the audience, challenging even those with \(20 / 20\) vision to pick out any detail. In addition, it probably did not help that it was barely 10 AM in the morning. (But that's the best time to get the attention of the press, the pubs aren't open...)

The pictures, accepting that they were a distant blur, did not seem all that bad, but the commentary was a wonderful example of 'over the top' Americanese.

Things got underway with a history of Commodore and, much to our surprise, we learned that each new Commodore Computer had evolved from a previous model. So much better than doing things the other way round, as then we'd have probably been faced with a room full of ECC81 s.

The man on the tape went on to tell us that the new range was not another link in this evolutionary chain (with all this talk of evolution it became clear why David Bellamy had been invited to the 'Do') but a Quantum Leap from previous models. There is no
truth in the rumour that the VIC 20 was the first Commodore machine to Quantum Leap, and that initial supply problems were caused by no one knowing to where they had leapt.

Returning to the present Quantum Leap and the reason for so describing the new machine's performance. That reason? Why the fact that the latest range of models is based on - wait for it - an MPU.

Having got the technical details out of the way, the ergonomics (although that word was not used) of the computers got the onceover. The screen had been designed for ease of use - nice touch that - indeed the 'sculptured' keyboard had been designed for ease of use as well. While on the subject of the keyboard, this item attracted the description of 'nearly foolproof' - can't help wondering how far down the IQ scale people would have to be in order to 'beat' the keyboard.

Things were now moving on apace as we were informed of the hi- fi quality SID sound effects chip only to be subjected to some fearful electro-music almost drowned out by 50 Hz hum. Not to worry we learnt afterwards that SID was not playing on the tape. We felt like asking why play the music in the first place then but didn't for fear that the answer was obvious.

The smiles on the faces of the gathered technical press were evident to the end, the 'show' rounding off by betting us that we were wondering about the price. We weren't, the Press Kit had already told us.

\section*{GAME FOR A LAUCH}

Well we've had our fun, and really it's all down to 'horses for courses'. The tape would not have been out of place running in the background of a department store, but that's not how it was announced. It was introduced as a look at a new range of machines before a gathering of technical writers and as such it was hopelessly out of place!

\section*{Advertisers' Index}

Ambit International
Blackstar - Sabtronics \(\quad 93\)
BNR\&ES
Bulgin Electronics
Cambridge Learning 79

Darom Supplies
Datong Electronics
EDA Sparkrite
Enfield Electronics
Farnell Instruments
Garex Electronics
Gould Instruments
GSC UK Ltd
H Lexton Ltd
Marco Trading
Micro Metals Inc
Microwave Modules
Northwest Communications (Liverpool)
PM Electronic Services
Quartslab Marketing
Reltech
Scopex Instruments
SEM
South Midlands Communications Limited
Special Products Distributors Limited
Sunrise Products - Shogun
Sussex Mobile Rally
Tempus
Thanet Electronics
Wilmslow Audio
Wood and Douglas


The IBA's Electronic Test Pattern, ETP1, will over the next few years replace Test Card F.


The test pattern provides all the basic features necessary for receiver alignment, and it can be used for overall assessment of picture quality as for example, when installing a TV aerial.
Features of the IBA test pattern include:
1 crosshatch pattern - for convergence check. This may best be seen with the colour control turned down to give a monochrome picture.
So far as poossible, the white grid should be free from colour fringing. In practice, most receivers tend to give some slight fringing. particularly near the edges of the picture.
2 EBU colour bars ( \(75 \%\) amplitude, \(100 \%\) saturation).
3 grey scale \(-\mathbf{0} \%, \mathbf{2 0 \%}, \mathbf{4 0} \%, \mathbf{6 0 \%}, \mathbf{8 0 \%}\), \(\mathbf{1 0 0 \%}\), amplitude. The difference in luminance signal voltage between adjacent rectangles should be approximately constant. 4 multiburst - for bandwidth/resolution check. Six sets of sine-wave gratings corresponding to the following frequencies \((\mathrm{MHz})\) :
625-line UHF \(\quad 1.5 \quad 2.5 \quad 3.5 \quad 4.04 .5 \quad 5.25\)
405 -line VHF \(\quad 1.011 .6 \quad 2.25 \quad 2.6 \quad 2.93 .4\)
It is normal for a colour receiver to exhibit a bluish-yellow pattern (known as crosscolour') on the 4.5 MHz grating; and also, to a lesser extent, on the 4.0 MHz and 5.25 MHz gratings. Because of a special filter incorporated in colour receivers, which prevents the colour sub-carrier from appearing on the screen, the 4.5 MHz hars are likely to be indistinct. Also, they are likely to be indistinet on most 415 -line monochrome receivers.
5150 kHz squarewaves - for transient response check. Just above the colour bar there is a train of 150 kHz squarewaves ( \(0 \%\) and \(75 \%\) amplitude). This is to facilitate a check on any ringing, over-shoot or preshoot. Ideally, there should be sharp transitions between the black and white rectangles, without 'smudging'. The transmitted transitions are as fast as the UK 625 -line standard permits.
6 black rectangle within white rectangle - for low frequency response check. Low frequency response can be assessed by the appearance of the black rectangle within the white rectangle near the top of the pattern. Poor low frequency response shows as
streaking at the right-hand edges of these rectangles, and from the border castellations.
7 white needle pulse - for reflections check. Any reflections of the television signal, from hills or large buildings, can result in displaced ghost images. The effects of short-term reflections are revealed by secondary images of the white needle pulse within the black rectangle.
\(\mathbf{8}\) yellow-red-yellow rectangles - for chrominance/luminance delay check. The redness of the rectangle near the top of the pattern should fit snugly between the yellow rectangles,
9 line synchronization castellations - the left, right and bottom borders are formed loy a pattern of alternate rectangles in black and colours with high luminance value and with a white rectangle in each corner. On monochrome receivers these rectangles appear either as black or as various lighter tones ranging from grey to white. The righthand side border serves as a test signal for checking the line synchronization of receivers - faulty line synchronization shows as horizontal displacement of those parts of the picture on the same lines as the lighter toned rectangles on this side. These castellations, being yellow and white, provide a check on sync separator performance in the presence and absence (in 625 -line transmissions) of the colour sub-cartier. The spacing of the left-hand and right-hand castellations has been staggered to identify the side from which any disturbances arise.
10 colour receiver reference oscillator castellations. The coloured border castellations can be used in checking for correct decoding; top: cyan, bottom: green, left-hand side: red and blue. right-hand side: yellow.
11 picture centering castellations. The width of each horder castellation along the sides of the pieture is the same as that of one of the grey rectangles within the crosshatch grid. Similarly, the height of the castellations along the top and bottom is equivalent to the height of the grey rectangles within the crosshatch grid. The picture size on receivers would normally be set for some slight overscan at the edges, but castellations should be clearly visible along all four sides of the picture.
The average picture voltage level has been set (nominally) at \(50 \%\) of the white level voltage.

\section*{Morcan TEST COMPONENTS on this new oscilloscope!}
- Tesit solid state devices in, or out of, circuit
- Fast location of shorted, open and leaky componenits
- Test diodes, transisistors, LEDs, electrolytics, FETs, MOS and CMOS etc. PLUS ...
- Full function, dual trace, 12 MHz oscilloscope
- Fine sweep and gain controls
- Differential measurement mode-essential for effective servicing of disc drives and tape recorders

\section*{finnal}


A really versatile 'scope for the test, service or development engineer.```

