JANUARY 1982

DRatiog W ${ }^{\text {ORU }}$

Receivers FRG7700/R1000 Power Meter
Spectrum Analyser

Frequency
Synthesis
Data File Data Brief

The widest selection of portable oscilloscopes in the business.

You also have different priorities when choosing a portable oscilloscope. Some people want laboratory versatility in the field whilst others require basic performance at the most economic price. Others are more concerned about weight. Because everyone's needs are different. Tektronix has a range of 21 portable oscilloscopes - both realtime and storage models. It is the widest selection of portables in the business.

If your priority is high performance, we have the Tektronix 400 series with bandwidth ranging from 50 to 350 MHz . Optional DMM and delta time read-out are available for most models and some have storage capabilities to 100 MHz single shot.

If you need a battery-powered model that fits into a briefcase or toolbox, our 200 series will be best. The bandwidths go up to 5

MHz and they weigh less than 1.7 kg .

In fact, in the Portables-series one can choose a portable oscilloscope of any bandwidth, low weight, storage or nonstorage.

All Tektronix portables are backed by service support in more than 50 different countries. To find out which of the Tektronix range best suits your priorities, return the coupon today.

Regional Tel. Numbers: Harpenden 63141, Maidenhead: 73211, Manchester: 428 0799, Livingston: 32766, Dublin: 850874

Please send me your portable 'scope brochure

Name

Position
Company

Address

Telephone

Publicity Dept.
REW
Tektronix UK Limited, PO Box 69 , Coldharbour Lane, Harpenden, Herts AL5 4UP.
Tel: Harpenden 63141

Tektronix

COMMITTED TO EXCELLENCE

Published by Broadercasting Ltd., 117a High Street, Brentwood, Essex. R\&EW is published monthly, on the first Thursday of each month.

Publisher

 William Poel Editor Ray MarstonTechnical editor Stephen C. Taylor Practical features editor Roger Ray
Production editor Jack Burrows
Art/Production Manager Patrick Haylock Art Editor Sally Bennett Editorial Secretary Kim Mitchell
Computing Consultant Jonathan C. Burchell RF Consultant Timothy Edwards Editorial Offices
117a High Street Brentwood Essex CM14 4SC
telephone (0277) 213819 Advertising Manager Barry Hewson
Hillcroft House 16 The Avenue Highams Park London E4 9LD telephone 01-531-7621 Subscription Manager Owen Rundle 4S Yeading Ave, Rayners Lane Harrow, Mlddx HA2 9RL telephone 01-868-4854 Publlshed by
Broadercasting Limited Dlstributed by
SM Distribution Ltd
16/18 Trinity Gardens London SW9 8DX telephone 01-274-8611 Printed by LSG Printers Lincoln Photosetiling by
Delafield Reprographic Service 481 Ongar Road Brentwood Essex

Subscriptions
Rates for 12 months UK $£ 9.50$ Overseas £10.50

Volume 1. No. 4.
Projects

31/2 Digit DMM	9	Not the ICL7106!
DFCM500 8-Digit DFM	30	Screwing the lid down
70cm-2m/TV Converter	60	Sound and Vision
TV Masthead Amplifier	73	More signal, less noise

Reviews

RF Power Meter Duo 38 R\&S Naus 4 Vs Telewave $44 A$
Spectrum Analyser: TR4122B 48 The best value ever?
The Blg Match: FRG7700 vs R1000 76 Post-delivery problems
Books 86 Chips and 'scopes

New Products	4	Decoders to VMOS
News	18	Electric aeroplane?
Satellite News	82	Life and death
Short-Wave News	84	Baldwin in Africa?

Features

Editorial 3 An on-going scene
 Data Brief: LC7137 21 Synthesiser chip
 Data File 225 waveform generation
 Using Uarts 34 Jonathan Burchell.....
 Using the RS232 57 explains
 Helical Filter Design 67 Frightening formulae
 PPL Frequency Synthesis 70 A synthetic lan Campbell

Information

Next Month's R\&EW	37	Hello, '82
Special Offer	46	This month's bargain
R\&EW Kit-Packs	51	Projects, made easy
R\&EW Book Service	87	For adults only
Advertiser's Index	96	Where to find them

BACK ISSUES: Don't forget, back issues of R\&EW can be obtained from our subscription department at 95p each, Inc postage. Use the reply paid card/order form or send a cheque/PO.

FOOTNOTES:

1. The front cover of the December edition announced NEW ANALOGUE SWITCH ICS which (due to a last-minute hiccup) did not in fact appear in that issue We apologise to any readers who may have been inconvenienced.
2. We are rather disappointed with the number of entries received for the Transistor Design Competition and the 'Caption' contest (October issue) and for the November DMM Competition. Consequently, we are shifting the closing dates for all these events to December 21st, '81. The final results will be announced in the March '82 issue.
3. Due to pressures on space, a number of intended features have been dropped from the present issue (see also the Editorial page). We apologise to any readers who may be disappointed. To alleviate any future 'pressures' we shall, as from the March ' 82 issue, be increasing the number of pages in R\&EW.
(C) Broadercasting Ltd. 1982 Contents may only be reproduced after obtaining permission from the Editor. Short abstracts or references are allowable provided the source is given.

G4JDT HARVEY
 EAST LONDON HAM STORE

191 FRANCIS ROAD LEYTON E. 10 TEL 01-558 0854 TELEX 8953609 LEXTON G

RADIO \& ELECTRONIC ENGINEERS

ENGINEERS ALWAYS AVAILABLE ON THE PREMISES

EXCLUSIVE TO US IN THE UK. 1kW input 600W ssb 350FM 2MTR LINEAR!!

BUILT-IN POWER SUPPLY, ELECTRONIC WARM UP. VARIABLE INPUT ATTENUATOR. ADAPTS EXCITERS FROM 2W-25W. RADIAL BLOWER. LED's FOR READY. TX, OVERLOAD. PTT \& RF VOX with VARIABLE DELAY CHOICE OF EIMAC TUBES. $4 \times 150 A$ OR $4 C \times 250 B$ OR $4 C \times 250 R$ ELECTRONIC PLATE CURRENT FUSE - NO THERMAL DAMAGE OF P.A. TUBE POSSIBLE. SIZE: H. 88 mm. W. 318 mm . D. 375 mm . FROM E460.00. D $70 \mathrm{C} \quad 70 \mathrm{cms} .10 \mathrm{~W}$ in -200 W out $£ 489$ All these linears have adjustable inputs and outputs and they are all fully D 200 S 2 mtr . 1 kW p.e.p. ssb. (600W FM) $£ 599$ protected. D 200 mtr 500 W p.e.p. ssb. (350W FM) 5499 D 200 C 2 mtr . 1300 W p.e.p. ssb. (150W FM)
£ $\mathbf{4} 00$ protected. ALSO AVAILABLE:- 18 db Gasfe: masthead preamplifier which suits the output of these linears and which is also powered by them via the antenna co-ax

OUR CASH DISCOUNT TERMS ARE SECOND TO NONE

YAESU/SOMMERKAMP
FT1 Latest HF £1295 FT9020M YAESU P.O.A FT9020M SOKO £935 Full Specification Model
FT1012DFM P.O.A.
FT1012DAM P.O.A.
FT2772D SOKO
FULL SPEC. A.M.
$£ 671$
FT2772D FM
FULL SPEC. SOKO $£ 753$
FT707 100W £569
FC707 ATU £85
FP707 PSU IN SPEAKER
£125
FTU707DM VFO £203
FT707+FP707+FC707
ALLIN PRICE $£ 720$ FT767DX SOKO P.O.A.

All accessories available for Yaesu/Sommerkamf
YAESU/SOMMERKAMP PORTABLES/MOBILES
FT 480R MULTIMODE VHF FT 290R PORTABLE
FT 208R PORTABLE VHF FT 708 PORTABLE UHF +ACCESSORIES

JAYBEAM ANTENNAS $8 \mathrm{Y} 2 \mathrm{M} \mathrm{8E} \mathrm{Yagi} \quad £ 14.50$ $10 Y 2 \mathrm{M} 10 \mathrm{E}$ Yagi E 31.00 PBM 10/2M 10E Parabean £36.80 $5 \mathrm{XY} / 2 \mathrm{M} \times 5 \mathrm{E}$ Yagi $£ 22.75$ $8 \times Y / 2 \mathrm{M} \times 8 \mathrm{E}$ Yagi $\quad \mathrm{E} 8.40$ \& MANY OTHERS!!
TRIO/KENWOOD TS830S HF Transceiver $£ 680.00$ TS 130S HF Transceiver $£ 530.00$ TR8400 UHF Mobile $£ 320.00$ TR9500 UHF Multimode $£ 445.00$ TR 7800 VHF mobile $£ 268.00$ TR7850 HP FM $2 \mathrm{~m} \quad £ 310.00$ TR7730 2m FM $£ 245.00$ TR9000 £370.00 Many Trio/Kenwood accessories available

MICROWAVE MODULES

MMA 144 V 2 m preamp MMA 144 V 2 m preamp MML $144 / 40$ £ 77.00 MML 144/100S new WMT preamp MMT 432/144 2-70 MMT 28/144 MMT 28/144 10 m transv chion RTTY with keyboard £299.00)

STANDARD

C8800 2 mtr mobile C 780070 cm mobile C78 70 cm portable C58 2mtr portable CMB8 mobile mount C58/C78
CPB58 2mtr 25 W linear CPB78 70 cm 10 W linear CLC8 carry case C58/78 C12/230 Charger ADONIS MICS IN STOCK
202S Flexible neck with 202S Flexible neck with control box

CUSHCRAFT AMATEUR ANTENNA

 HF. A3 20/15/10 3 ele beam 8bD $£ 165.00$ATV3 20. 15 . 10
 ATV5 10.15.20.40.80
Trapped vertical £83.69 214B 14 ele boomer
$15 \cdot 2 \mathrm{db}$

ARX 2 Ringo Ranger 6dB vertical $£ 27.86$ CS 100 Speaker $\begin{aligned} & £ 27.86 \\ & £ 12.50\end{aligned}$ A144.44 ele Yagi $£ 18.25$ A 144.77 ele Yagi $£ 22.82$ A144.1111 ele Yagi £28.94 ARX2B Ringo Mk 11 £32.29

$$
£ 55.77
$$

MkI to Ringo MkII £14.18 FULL RANGE IN STOCK sae catalogue $144+10 T+Y$ Yagi $\}$ OSCAR 144-20T-Yagi $\}$
For vertical and horizontal Oscar specials

ROTATORS ETC

DIAWA

 DR7600X DR7600R KENPRO KR250 KR400RC KR400RC CHANNEL MASTER CN620 1-8 150 MHz Pwr/swrCN2002 2.5kW PEP auto CN2002
ATU ATU
AR40
9502B
CARRIAGE FREE!
SWAN/CUBIC
102B×235W+PS5
£800.00
103BXWARC 235W PS6 Power Supply 150 MX Digital 15002 Linear ST2A ATU ST3A ATU £145.00 $£ 561.00$ $\$ 406.00$ TBA

TBA £80.00

RECEIVERS ALL ON SPECIAL OFFER-P.O.A R1000 Kenwood FRG7700 Yaesu FRG7700 Memory IC2001L Sony SEARCH II 2 metre ALL POA ARE ON SPECIAL OFFER. PHONE HOT LINE
$=01.5561415 *$

Also in stock - D.N.T. range of CB Transceivers. Specialist in-car fitting service if required.

We offer FM Conversion to your ICOM IC720 or 720A and YAESU FT707 - please phone for details. STOP PRESSI NOW ALSO FOR FT107 \& 901

Concepts

R\&EW is published BY electronics people, FOR electronics people. We've set out to produce the kind of magazine that we, as practical electronics engineers/enthusiasts, have always wanted to see. That is, a magazine that is jammed solid with absolutely top-rate features, news, projects and product reviews, with not a single page wasted.

From the 'Features' point of view this means that, unlike many other magazines, we will not be wasting page space on material with titles like 'Famous People', 'How to Solder', 'Beginner's guide to Electronics', etc., or on similar 'book-type' material.

From the 'Projects' point of view it means that we intend publishing projects purely on merit, rather than tr meet an arbitrary project quota. In other words, we are NOT in the business of publishing novice-designed metronomes, reaction timers or LED flashers, etc., just so that we can boast that we have ' X ' number of projects in an issue. We ARE in the business of publishing professionally engineered projects that are highly innovative, or have great technical merit, or which satisfy a known and significant demand amongst our readers.

Of course, all of this sounds very fine and noble, but is far easier said than done. Consider the 'projects' angle, for example....

An On-going Scene

We at R\&EW are keen to produce professionally designed projects that can easily be built by most of our readers and which actually LOOK professional when they've been built. We like all of our projects to be fully engineered and made available to our readers in complete kit form.

In some projects, 'engineering' simply means that we design a special PCB, using our in-house computer-aided design facility. In other instances, it may mean that we invest large amounts of money (up to several thousand pounds) in producing special injection-moulded cabinets, ironmongery and miscellaneous hardware, etc., to ensure that the final project is fully supported.

Providing this 'engineering' service, places a large burden on R\&EW's financial and physical resources. To help ease this burden and give our readers an even better service, we've recently started to arrange tie-ups with well known electronics engineering/design companies, with a view to pooling our research and manufacturing resources.

The immediate effects of our present tie-ups is that our own five-man $£ 70000$ development laboratory is now backed up by additional research facilities to the value of $£ 200000$, and our mechanical engineering facilities have been expanded by an order of magnitude. As a direct result we will, within the next couple of months, be publishing the UK's first FULL SPEC 40 -channel DIY CB rig and Europe's most sophisticated low-cost microprocessor development system, with a host of other goodies to follow.

In the present issue you can see the first fruits of our tie-up with Sabtronics, the instrumentation specialists, in
the form of the $31 / 2$ digit LCD DMM project. This particular unit is taken directly from Sabtronics' existing test gear range and was designed and engineered by that company. Some of our future test gear projects will actually be designed by R\&EW but engineered and supported by Sabtronics.

The unusual editorial approach to the rather complex Sabtronics project is worth a brief note. We feel that most readers will find the circuit and description of the project interesting but only a few hundred readers will actually want to build the DMM. Consequently, we've omitted the usual copious (and space consuming) 'construction' notes from the article, but have ensured that they are adequately supplied with the complete project kit. Those readers who do not want to buy the kit can build the project directly from the circuit diagram given in the article.

Space - Space

You can gather from the last paragraph that we're trying very hard to save magazine space wherever we can, so that we can cram in as many extra features as possible. We've even reduced the print size on some more of the 'News' pages. Even so, space in this issue is not sufficient to present all the things that we would like, and we've very reluctantly had to drop the 'Amateur Radio' and 'In Your Workshop' features in favour of alternative material. 'Workshop' fans need not despair, however, as Dick and Smithy will (we hope) be re-appearing in a new magazine some time in ' 82 . We'll keep you informed.

NEW PRODUCTS

voltage regulator with 150mA output, low dropout voltage and low quiescent current, from National Semiconductor

National Semiconductor Corp, the industry leader in the design, manufacture and sale of voltage regulators and linear integrated circuits, has added the LM2931 to its LM2930 family of low input/ output differential voltage regulators. The LM2930 and LM2931 are the first voltage regulators to feature an output current of 150 mA with an extremely low input/output differential voltage of less than 0.4 V . This low dropout voltage is the result of a PNP instead of an NPN pass transistor.

The LM2931 is available in two versions: a 5 V version, and an adjustable version for output voltages from 3 V to 24 V . The adjustable version is the first voltage regulator to provide a digital on/off switch capability.
The LM293I features a low quiescent current (IQ) of only 400 microamps with load currents not less than 10 mA . As a result, it is ideal for "memory-keep-alive" and battery back-up applications as well as other low power processor systems. It is also useful in portable instrumentation and toys and games, where low currents are needed in standby mode, and higher currents are required during normal system operation.
The lower quiescent current of the LM2931 (400 microamps versus 60 to 8 mA for other regulators) results in longer battery life in portable equipment applications. The useful life of the battery is extended still further since the LM2931-5 can be powered by batteries discharged down to 5.4 V . Other 5 V NPN regulators have always needed at least 7 V to operate.
Available from National Semiconductor, Bedford.

121 for further details

Switch mode power supplies, from Delpak

A new range of switching regulator power supplies is now available. Designated Series 30, the new range will initially be imported from the Japanese manufacturers Inaba.

However, it is intended eventually to manufacture the range, under licence, in the UK.

- Using a customised integrated circuit the Series 30 will have versions with single, double, triple and four-way outputs. Output capacity range from 30 watts to 150 watts.

The units feature built-in overvoltage and over-current protection, in-rush current suppression and remote sensing and control.
Available from Delpak
(Electronics) Ltd, Luton.
122 for further details

New 'true RMS' digital multimeter from Bach. Simpson (UK) Limited.

Bach-Simpson (UK) Limited of Wadebridge, Cornwall, Manufacturer of panel meters, multimeters and test instruments, have introduced a new digital multimeter that reads true RMS on AC voltage and AC current and has a high frequency response up to 50 kHz .
The Model 461-2R also features twenty six AC/DC current, voltage and resistance ranges with overload protection up to 250 V - a facility that is useful for service

Digital multimeter offers very high accuracy, from Thurlby

The new Thurlby 1503 HA is a low cost multimeter offering a very high level of accuracy and resolution. Developed from the standard 1503, the new instrument has an improved specification particularly on DC voltage, and is intended for applications where highest possible accuracy is of major importance.
A DC voltage accuracy of $+/-(0.03 \%$ reading $+0.005 \%$ scale) is combined with a 4.75 digital scale length to improve overall accuracy by reducing resolution error.

Thirty-two ranges are provided covering the normal functions of AC and DC voltage, AC and DC current, and resistance, plus
application. AC voltage measurement capability is up to 750 V and basic accuracy is to 0.1%.

Other technical features include: High voltage transient protection ($6 \mathrm{kV}, 100 \mathrm{uS}$); Extended AC voltage frequency response up to 50 kHz ; Nickel cadmium rechargeable batteries supplied with AC charger/adapter. Standard design features include:-

1) Large, bright 3.5 digit LED display.
2) Safety designed to meet UL-1244 requirements.
3) Double fusing system.

Stereo measuring decoder SMD-203, from Rood

Following the introduction of the SC-200 series digital stereogenerators with their striking performance (guaranteed 60 dB channel separation, 0.01% (typical) harmonic distortion and a 95 dB (typical) signal-to-noise ratio) and urgent need was felt for a stereo-decoder able to measure the performance of the SC-200 series stereo-generators.

FCC encoded stereo multiplex signals are very sensitive to distortion in transmission systems. Even minor changes in amplitude
accurate diode test and frequency measurement functions. Maximum sensitivity is 0 microvolts, 10 milliohms, or 1 nanoamp, and current can be measured up to 25 amps short term, or 10 amps continuously.
The 1503 HA can operate from either disposable batteries or AC line, and a rechargeable battery option is available. It is designed and built in the UK and the price is £ 165 plus VAT.

The standard version with a basic accuracy of 0.05% is also available at $£ 149$.

Available from Thurlby Electronics Ltd, Huntingdon, Cambs.

129 for further details
4) Wide range of accessories available.
5) Portable, compact, only $2 \times 5.63 \times 4.6^{\prime \prime}$; weight only 1.5 lb with nickel cadmuim batteries.
6) A full 8 hour day's operation on a single charge. May be AC line operated while batteries are being charged.
Further information on the new $461-2 R$ is available on request from Bach-Simpson (UK) Limited, Trenant Estate, Wadebridge, Cornwall.

123 for further details
or phase characteristics will cause the channel separation to deteriorate. The specifications of the measuring equipment have to be of such quality that errors of the unit itself do not affect the results of the measurements. Because of its very low distortion and the high channel separation, even the smallet deteriorations in channel separation can be measured.

The new SMD-203 can be used for measuring stereo-generators, but also for measuring FM stereo transmitters and testing FM stereo relay receivers.

Available from C.N. Rood BV, The Netherlands

124 for further details

NEW PRODUCTS

New 20MHz dual trace oscilloscope from TRIO

CS1820 is an elegant solution to the problems of high speed waveform observations at a low cost. Featuring a high resolution display, usable to all four corners of its 140 mm rectangular, post accelerator type 16 kV CRT. A graduated inner face eliminates parallax errors and provides sharp bright pictures of high frequency and fast rising signals.

Trigger delay, for 'delayed sweep display', the key to observing complex waveforms, first used in the current and very successful CS 1830 is again employed in the CS 1820 to allow
observation and analysis of any delayed section of a waveform. In addition, with B sweep not locked into the delayed sweep function any combination of A and B sweep may be selected. This system is extremely efficient in the detailed examination of high speed digital or video signals.
Fully guaranteed for 2 years, including pick up and return, the CS 1820 weighs 8.6 kg and measures $260 \times 190 \times 375 \mathrm{~mm}$. Price $£ 420$ (excluding P \& D and VAT). $100 \mathrm{MHz} \mathrm{X1}, \mathrm{X10} \mathrm{switch-}$ able probes are available with the oscilloscope at a special price of £7.00 each.

125 for further details

Portable noise level meter for broadcast circults, from W \& G Instruments
Program circuit noise meter type 4503 is a lightweight compact noise level meter designed to meet the latest European requirements for standardising the measurement of audio-frequency noise on sound programme circuils. It can be switched to measure quasi-peak noise in either a weighted or
unweighted mode in accordance with CCIR recommendation 468-2. Level measuring range extends from +10 dBm to -80 dBm with a level accuracy of 0.1 dB , and an unweighted frequency response flat to $\pm 0.5 \mathrm{~dB}$ from 32 Hz to 16 kHz .

Available from
W \& G Instruments Lid,
Greenford, Middx.
127 for further details

TC102 function generator, from Sinclair

The TG102 function generator is the latest product complementing the Thandar range of test instiuments. It is mains operated and has a frequency range of 0.2 Hz to 2 MHz producing sine, square and triangle waveforms plus DC from a variable amplitude 50 ohms output. TTL output is also provided. External sweep facility is available enabling greater than 1000:1 frequency change within a selected range.
The TG102 is housed in the proven Thandar case which combines ruggedness and portability

The TG102 is designed and manufactured in England complete with mains lead and 1 year warranty and costs $£ 145$ plus VAT

Available from Sinclair Electronics Lid, Huntingdon, Cambs. 126 for further details

NEC MPU/Memory handbook

VSI now have stocks of a 700 page NEC handbook covering memories, MPUs, microcomputers and peripherals -including the new board products. 135 for further details

Babani book catalogue

The 1982 catalogue of Babani books is available FOC from the nublishers. This 32 page bookle lists books of a substantially "practical" theme covering topics ranging from transistor equivalents to DX TV, and computing.

B Babani (publishing) I.td.
The Grampians.
Shepherds Bush Road.
l.ondon W6 7NF.

- •••••••••

Dual-trace 20 MHz oscilloscope from Gould

Gould Instruments has introduced a new dual-trace 20 MHz general-purpose oscilloscope, the OS3000, which incorporates many facilities normally included in more expensive higher bandwidth oscilloscopes.

It features a bright $8 \times 10 \mathrm{~cm}$ rectangular display with a choice of a standard or long-persistence phosphors. The standard phosphor is a P43 (GY) type which has a characteristic similar to the normally used P31 (GH) phosphor but offers improved efficiency at a 2 kV accelerating potential. The -3 dB bandwidth is from dc to 20 MHz , and the sensitivity can be adjusted continously via calibrated

Ferranti VMOS Data Book

A 270 page data book covering a broad range of planar (i.e. no V or U grooves) power MOSFETs is available from Ferranti. The book contains a substantial cross reference of 'similar types', and lists the eharacteristics of each device. £2 each, post paid.

Ferranti Electronics, Fields New Road, Chadderton, Oldham OL9 8NP
controls from $2 \mathrm{mV} / \mathrm{cm}$ to $25 \mathrm{~V} / \mathrm{cm}$ to enable the screen to be scaled directly to different types of input parameters. The two input channels are identical in performance, with an accuracy of $\pm 3 \%$.
Several different display modes are available. Apart from the normal single and dual-trace modes, add and invert modes are included to aid baseline compensation and differential voltage measurements, and X-Y facilities are available for frequency and phase-shift measurement, using Lissajou figures. Enhancement of the display can be carried out using the Z -modulation input to obtain event markers, and this facility can also be used to remove flyback signals from X-Y traces. The timebase offers 18 speed settings, of $0.5 \mathrm{uS} / \mathrm{cm}$ to $0.2 \mathrm{sec} / \mathrm{cm}$ at an accuracy of $\pm \mathbf{3 \%}$, and an additional X10 pushbutton gives a maximum speed of $50 \mathrm{nS} / \mathrm{cm}$. A variable sweep control also gives continously variable settings between $50 \mathrm{nS} / \mathrm{cm}$ and $0.5 \mathrm{sec} / \mathrm{cm}$.

The OS300 is housed in a rugged case measuring $140 \times 305 \times 460 \mathrm{~mm}$ and weighing 5.8 kg and is supplied with a fully adjustable handle. It has been designed on a modular basis for ease of maintenance, and is constructed using the latest automated production techniques at the Gould plant at Hainault, Essex. Cost is $£ 295.00$

128 for further details

NEW PRODUCTS

Higher current bench supply

New from Thurlby is a 15 volt 4 maintained at high currents, and a amp version of the PL series of voltage and current levels to be set laboratory bench power supplies. up before connecting the supply to Designated the PL154, the new the load. supply operates in constant voltage A new feature is 'switchable or constant current modes from a current limit delay ${ }^{\text { }}$ which makes few milliamps up to 4 amps peak currents up to 7 amps continuous.
available to circuits with

Twin digital meters give a highly fluctuating loads.
accurate display of voltage and The PL154 is available from current levels to a resolution of Thurlby Electronics Ltd. and their 10 mV and 1 mA respectively. distributors. Price in the UK is Remote sense terminals are pro- $£ 139.00$ plus VAT.
vided to allow the precision to be 130 for further details

New dual deck telephone

 answering machine.A new quality low cost dual deck telephone answering machine code named ELGEM is now being manufactured by Hants based L.G.M. Electronics for Offices, Surgeries Factories and Homes etc. Using two international standard double-sided mini cassettes this machine has the facility for one cassette to be used for announcements whilst the other is used for recorded messages so abbreviating the need for constant announcement recording. Announcements are recorded through the built-in microphone and are played back through the loudspeaker.

This easy-to-use machine has indicator lamps to show 'power on', 'machine in use', 'callers message recorded' and 'tape run out'. Measuring only $63 / 4^{\prime \prime} \times 121 / 4^{\prime \prime}$ $\times 23 / 4^{\prime \prime}$ and weighing $51 / 4 \mathrm{lbs}$ it fits comfortably under the telephone. British designed and built, it is fully certified by the Post Office. It is provided with a standard Post Office plug and the mains lead is terminated with a 13 Amp plug. Included is a comprehensive 12 months Guarantee. The cost is $£ 137.50$ including VAT and Postage in the UK and Eire.

131 for further details

New low cost logic probe from Sabtronics.

Sabtronics announce the new LP-1 10 MHz Logic Probe for trouble-shooting logic circuits. The LP-1 has LED display for logic 0 and 1 with switch selectable thresholds to suit TTL or CMOS/ MOS circuitry.

The probe also has the useful ability to either detect and hold pulses or 'glitches', or to stretch them. Power for the LP-1 can usually be taken from the Vcc line of the unit under test - connection is by mini crocodile clips, which are included.

Full interpretation instructions are printed on the reverse of the body of the LP-1, which costs $£ 24.95$ (+ VAT).

133 for further details

TV Pattern generator IC from Ferrantl

A comprehensive television pattern generator on a single IC has been developed by Ferranti Electronics and is now available from production. (Next months R\&EW contains a feature based around this device).
Designated ZN234, the IC produces all the necessary test patterns for colour TV convergence alignment testing. It has a very high degree of accuracy and reliability, requiring only a 2.5 MHz crystal and the minimum of external components to provide a complete system ideally suited for the TV engineer or keen enthusiast.
ZN234, which is contained in a single 16 -pin DIL package, provides all the waveforms necessary to produce crosshatch,

RFI suppression filters, from Eardley Electronics

A range of RFI power line suppression filters are available in various configurations of X-Y delta filters and LC types with current ratings from 0.5A to 40A.

Approved to VDE and ASEV
for applications such as instrumentation, medical electronics
dot and greyscale test patterns. There are separate outputs for these three functions, as well as separate vertical and horizontal line outputs and the mixed sync and mixed video blanking timing signals necessary for picture production. The IC is fully compatible with both European 625-line (CCIR) and American 525 -line (EIA) operation. A 5 volt supply is required, and the outputs when mixed to give a composite video can be fed directly onto the video stages of the receiver or, via a modulator/oscillator through the TV aerial socket.
Full details of ZN234, including an Applications Note, are available from Ferranti Electronics, Fields New Road, Chadderton, Oldham, Lancashire, OL9 8NP.

132 for further details
houschold appliances, business: machines, power tools and power: supplies etc. for protection from: RFI and to reduce power line: pollution.
Available from Eardley: Electronics Lid, Kensington,: London. 134 for further details

SOFTWARE BACKUP

FOR THESE CASIO WORLD BEATERS

World's Most Powerful BASIC Pocket Computer
FX-702P
RRP
£134.95
ONLY £119.95

SEAD: $\mathrm{FQ}: F X-792 \mathrm{~F}$.

Plus free MicROL Professional Programming Pack* (RRP [9.95).

Flattens the Sharp PC1211

Alpha/numeric dot matrix scrolling LCD. Variable input from 1680 steps, 26 memories, to 80 steps, 226 memories, all retained when switched off. Up to 10 programs. Subroutines; 10 levels. FOR: NEXT looping; 8 levels. Debugging and Editing. 55 built-in functions, including Regression and Correlation, all usable in programs. Program/Data storage on cassette via optional FA-2 adaptor (E19.95). Auto Power Off. $17 \times 165 \times 82 \mathrm{~mm}$. 176 g

World's Fastest Programmable?

FX. 602 P

- LCD alpha/numeric (dot matrix) scrolling display
- Variable input from 32 program steps with 88 memories, to 512 steps with 22 memories
- Memory and program retention when switched off
- Up to 10 pairs unconditional jumps (GOTO).
- Conditional jumps and count jumps. Indirect addressing. Manual jump.
- Up to 9 subroutines, up to 9 levels
- 50 scientific functions, all usable in programs. - PAM (Algebraic) with 33 brackets at 11 levels. - Program and data.storage on cassette tape using optional FA-2 remote control adaptor, e19.95.
- Compatible with the FX-501P and FX-502P. - $9.6 \times 71 \times 141.2 \mathrm{~mm}, 100 \mathrm{~g}$.

ONLY £74.95
(RRP £84.95)
Plus FREE MiCROL Professional Programming Pack* (RRP £9.95)

FP. 10 MINI PRINTER For FX-702P, FX-602P, FX-502P, FX-501P, Available soon. Price and delivery on application

CASIO FX-702P SOFTWARE

Produced by MiCROL exclusively for Tempus 10\% discount on software, if you purchase your hardware from us.

MICROL 702 USER SUPPORT

Professional Programming Pack. Get the best from your FX-720P with: PROFESSIONAL PROGRAMMING - pracrical 702 programming from the ground up plus 702 REFERENCE MANUAL - definitive guide to every 702 program command - INVALUABLE! MiCROL 702 PPP. Price $£ 9.95$

MICROL PROCOS for PROFESSIONAL USERS

Now you can create powerful, reliable programs in just minutes, even if you have never programmed a computer beforel
MICROL PROCOS is an advanced integrated operating system that cuts programming time by $80-90 \%$ in most applications areas, saving many hours of valuable time. PROCOS A and PROCOS 8 are supplied together on a ready-to-run cassette, with a fully detailed User Manual offering features to suit every application. PROCOS A is ideal for complex multi-variable calculations, while PROCOS B provides many of the features of a 'Visicalc' type modelling system - answers 'what if' questions and analyses trends. Both systems feature easy-to-use commands and support FP-10 print options. Brochure on request.

Available late November

MICROL PROCOS (A + B) Price $£ \mathbf{2 4 . 9 5}$ MiCROL 702 Basic: Plus. Add the power of up to 20 new commands to your programsl Custom-made to ease advanced programming - features include: String - number conversions; single-shot, await, timed KEY with user-controlled return values; programmable RAN // generator; DATA-PACKING - up to 2000 single digit, single name variables; INTEGRATED DISPLAY COMMANDS - display data and tesi with extra-low memory overheads. Modular design uses minimum memory; easy to customise. Full-detail User Manual plus Program List for direct entry Available December, 1981.

MiCROL 702 B:P. Price $\mathbb{1} 4.95$
SHORT FORM CATALOGUE of latest calculators, keyboards and watches available on request. $14 p$ stamp appreciated
*Only on request, at time of ordering. RRP of 702P/602P versions, $£ 9.95$.
Price includes VAT, P\&P. Delivery normally by return of post. Orders received by Dec 18th should be delivered in time for Christmas
Send cheques, PO, or 'phone your Access or B'card number to:
TEMPUS
Dept REW1/FREEPOST
164-167 East Road, Cambridge
CB1 1DB Tel: 0223312866

Keithley 129 DMM

Keithley quality: professional performance. At a price no enthusiast can afford to miss!
That's the new 129 from Keithley Instruments - one of the leading names in DMM's. Specification includes O full
10 amp range - only one calibration adjustment required per year 25 ranges: 5 functions: ac/dc VI and Ohms - 20.000 hour M.T.B.F. O Resolution $100 \mu \mathrm{~V}$. $1 \mu \mathrm{~A}$. 0.1 ! ! 0.8\% dc accuracy

The 129 is now available on mail order bringing it to the widest possible market. At the lowest possible price

$$
\begin{aligned}
& \text { A superb leather case and } \\
& \text { stand. value over ten pounds } \\
& \text { Only with this offer }
\end{aligned}
$$

Easy to order: Fill in and post the coupon enchosing cheque/credit card details

Keithley Instruments Ltd
1 Boulton Road Reading Berkshire R(iz INT

Name:
Address:

$$
\begin{aligned}
& \text { Please send me_Keithley 129(s) at } £ 80.50 \text { each } \\
& \text { (Inc. VAT \& Postage) } \\
& \square \text { I enclose a cheque for } \\
& \text { Please debit my credit card account no. }
\end{aligned}
$$

Allow 21 days for delivery. 10 day trial - money refunded if not delighted.

104 for further details.

DEVELOPMENT ENGINEERS Who else but the leaders in mobile radio can best put your thoughts into words?

Who else but Pye Telecom of Cambridge will back your experience to the tune of $£ 15$ million over the next five years, giving your ideas much more of a certainty of seeing the light of day. Who else but Pye Telecom can confound the doom and despair mongerers by firmly stating that we are one of the most profitable and consistently expanding companies in a very buoyant international market.

We are part of the Philips group, and are market leaders in mobile radio systems and since we intend to remain so, we would like to speak to the Development Engineers who will be responsible for the future development of these products. You perhaps?

As you will know, our products are of a sophisticated, high-level design and incorporate the latest electronics technology. Today, mobile radio systems are high precision instruments capable of any number of functions and used in a variety of applications, such as security,
 defence, ground-to-air and traffic flow. As a member of a project team, you may be involved in the development of, say, low capacity radio links or special fixed, mobile and portable systems. You will follow a project through from inception to field trials and you'll take the credit for its success. If you like the sound of what you read and hold a degree, or equivalent, in electronics, together with a "proven track record' of related experience, then we would like to meet you, with a view to inviting you to join our successful team of skilled engineers.

Salaries are competitive, relocation assistance is very generous, housing is reasonably-priced and our new 65 -acre site boasts not only wellequipped laboratories but a very comprehensive sports complex.

For full details of how you can best put your thoughts into words, write to Liz Gray, Personnel Officer, Pye Telecom, St Andrews Road, Cambridge CB4 1DW, or call Cambridge (0223) 61222.

Pye Telecommunications Limited

St. Andrews Road, Cambridge CB4 1DW.

3½ DIGIT LCD DMM.

PROJECT

A fully-engineered 'professional spec' bench/portable digital multimeter for the advanced constructor, this unit has normal overload protection and a 'display freeze' facility. The unit is available in full kit form, backed up by a warranty. Project description by W.S. Poel.

THIS PROJECT IS THE FIRST to result from R\&EW's 'on-going' design/ engineering collaboration with Sabtronics Incorporated (see this month's Editorial). Full credits for this particular design go to Sabtronics, who market the instrument under the code number 2015 A . the 2015 A is a professional-specification instrument, with a total of 31 ranges covering six functions (AC/DC volts and current, plus ohms and 'diode test'). Measurement ranges span 100 uV to 1 kV peak on both voltage ranges, 0.1 uA to 10 A both current ranges, and OR 1 to 10 M on the resistance range. Basic accuracy varies from 0.1% on DC volts to 0.5% on AC current.

The 2015 A is battery powered (via four ' C ' cells) and incorporates a lowbattery (Lo Bat) warning indicator; mains power can be accepted via an external AC adaptor accessory. An unusual feature of the instrument is a Touch and Hold

SPECIFICATIONS

$\left(@ 23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$
DC Volts

Range	Resolution	Accuracy of reading	Overvoltage protection
$\pm 200 \mathrm{mV}$	$100 \mu \mathrm{~V}$		
$\pm 2 \mathrm{~V}$	1 mV	$\pm(0.1 \%+1$ t.s.d. $)$	1200 V dc or peak ac
$\pm 20 \mathrm{~V}$	10 mV		
$\pm 200 \mathrm{~V}$	100 mV	$\pm(0.2 \%+1$ t.s.d. $)$	
$\pm 1000 \mathrm{~V}$	1 V	$\pm(0.2 \%+2$ 2.t.s.d. $)$	

INPUT IMPEDANCE
ROLLOVER ERROR
RESPONSE TIME
NMRR
$10 \mathrm{M} \Omega$, all ranges
± 2 1.s.d. max.
0.5 sec .
$>60 \mathrm{db}$ at 50 and 60 Hz
$>120 \mathrm{db}$ at 50 and 60 Hz .
AC VOLTS (Sine wave)

Range	Accuracy of reading*	Frequency Response	Overvoltage Protection
200 mV	$\pm(0.5 \%+1$ l.s.d. $)$	40 Hz to 40 kHz	250 V dc or peak ac
2V			
20 V			1200 V dc or peak ac
200 V	$\pm(0.7 \%+2$ I.s.d. $)$	40 Hz to 2 kHz	
1000 V	$\pm(1.0 \%+5$ I.s.d. $)$	40 Hz to 400 Hz	

AESOLUTION

IMPEDANCE CMRR CMRR
RESPONSE TIME
$10 \mathrm{M} \Omega$ in parallel with 100 pF , all ranges
25\% of full range selected
$>60 \mathrm{~dB}$ at 50 and 60 Hz .
5 sec . max. to within 5 digits

DC CURRENT

Range	Resolution	Accuracy	Burden Voltage
$\pm 200 \mu \mathrm{~A}$	$0.1 \mu \mathrm{~A}$	$\pm(0.1 \%+1$ I.s.d. $)$	1 mV per $\mu \mathrm{A}$
$\pm 2 \mathrm{~mA}$	$1 \mu \mathrm{~A}$		1 V per mA
$\pm 20 \mathrm{~mA}$	$10 \mu \mathrm{~A}$	$\pm(0.3 \%+3$ I.s.d. $)$	10 mV per mA
$\pm 200 \mathrm{~mA}$	$100 \mu \mathrm{~A}$		10 mV per mA
$\pm 2 \mathrm{~A}$	1 mA	$\pm(1 \%+6 \mathrm{l}$.s.d. $)$	100 mV per Amp
$\pm 10 \mathrm{~A}$	10 mA		100 mV per Amp

OVERLOAD PROTECTION:
200μ A to 200 mA ranges -250 mA
at 250 V dc or ac peak
2 A and 10A ranges - 12A max. (unfused)

AC CURRENT (Sine wave)

Range	Accuracy @ $50 / 60 \mathrm{~Hz}$	Frequency Response
$200 \mu \mathrm{~A}$		
2 mA	$\pm(0.5 \%+1 \mathrm{l.s.d)}$.	40 Hz to 1 kHz
20 mA		
200 mA	$(1.5 \%+2 \mathrm{I}$. s.d. $)$	
2 A		
10 A		

overload protection

Figure 1: Block diagram of the basic DMM circuitry, together with pin assignments of the MC14433 A/D converter.

RESISTANCE

Range	$\begin{aligned} & \mathrm{Hi} / \\ & \text { Lo } \end{aligned}$	Resolution	Accuracy of reading	Measuring Current	Overload Protection
200 a	Lo	0.18	$\pm(0.1 \%+1$ l.s.d. $)$	\% mA	$\begin{aligned} & 250 \mathrm{~V}, \\ & 1 / 4 \mathrm{~A} \text { fuse } \end{aligned}$
$2 \mathrm{k} \Omega$	Hi	1Ω			
$20 \mathrm{k} \Omega$	Lo	$10 n$		$10 \mu \mathrm{~A}$	250 V de or peak ac
$200 \mathrm{k} \Omega$	Hi	100 ถ			
2 Mn	Lo	$1 \mathrm{k} \Omega$	$(0.2 \%+2$ l.s.d. $)$	100 nA	500 V dc or peak ac
20 Mn	Hi	$10 \mathrm{k} \Omega$			

OPEN CIRCUIT VOLTAGE: 12 V max (leads open)
FULL SCALE VOLTAGE (1999 reading): Lo Ω : 199.9 mV
Hi $\Omega: 1.999 \mathrm{~V}$
RESPONSE TIME: $200 \Omega, 2 \mathrm{k} \Omega$, ranqes $\cdot 0.5 \mathrm{sec}$
$20 \mathrm{k} \Omega, 200 \mathrm{k} \Omega$, ranges $\cdot 2.5 \mathrm{sec}$
$2 \mathrm{M} \Omega, 20 \mathrm{Mn}$, ranges -5 sec

DIODE TEST

Range	Test Current	Switches Engaged (IN)
$2 \mathrm{k} \Omega$	1 mA	$\Omega, 200, \times 10$
$200 \mathrm{k} \Omega$	$10 \mu \mathrm{~A}$	$\Omega, 20 \mathrm{k}, \times 10$
20 Mn	100 nA	$\Omega, 2 \mathrm{M}, \times 10$

ENVIRONMENTAL:
OPERATING TEMPERATURE: $0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
STORAGE TEMPERATURE: $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (without batteries)
RELATIVE HUMIDITY: O to 80\%
TEMPERATURE COEFF: $0.02 \% /{ }^{\circ} \mathrm{C}$

GENERAL:

READING RATE: 3 times $/ \mathrm{sec}$
POWER REQUIREMENT: 4.4106 .5 V dc @ 120 mA nominal, or optiona Sabtronics Model AC-115 or AC-230 Battery Eliminator/Charger.
DISPLAY 3.1/2 dlgit (1999 max. reading) 7 -segment LED 9.2 mm character SIZE: $7.62 \mathrm{~cm} \times 20.32 \mathrm{~cm} \times 16.38 \mathrm{~cm}$ (excluding protruding parts) WEIGHT: 0.68 kg . (without batteries)
facility (available via a special ready-built accessory probe, not included in the price of the basic kit) which enables the user to temporarily store or 'freeze' readings when he is probing into delicate parts of circuitry.

Construction.

This DMM is emphatically NOT a beginner or novices project (see photo's), nor is it suitable for construction on home made PCBs. Consequently, we are not describing PCB layouts/drawings in this particular feature.

In view of the expense of the project, we are only going to recommend the use of complete Sabtronics kits, which carry a limited warranty: This warranty does not extend to non-recommended forms of construction. R\&EW have managed to
negotiate a worthwhile kit-price saving for readers.

For the benefits of those readers who INSIST on building the project direct from the circuit diagram, using their own forms of construction, we have persuaded Sabtronics to separately supply the plastic cases (complete with battery compartment) and a blank front panel.

The Sabtronics kits come complete with a set of notes that concisely but adequately cover all pertinent details of construction and setting up of the DMM. A major defect of the notes is that they give no circuit description or analysis to assist those constructors who have an interest in such matters. R\&EW have set out to repair this defect, by presenting a set of 'Circuit Description' notes in the present article.

Circuit Description: The DMM

The Block Diagram (Figure 1)

Contrary to popular belief, the world of $31 / 2$ digit LCD DMMs does not revolve entirely around the seemingly ubiquitous ICL7106 DMM IC, and our particular instrument provides a useful illustration of some valid techniques that have been overshadowed in the 'one-chip' approach.

Figure l illustrates the 'block' approach to the design of the bench DMM. The main A/D converter device (MC14433) is also depicted in block form and you will see one of the major features of this approach is that the DVM IC presents data in multiplexed BCD format, rather than direct LCD drive.

This allows the data to be transferred quite readily to an MPU input, and also

Figure 2: Circuit diagram of the main board of the 2015A DMM.

3½ DIGIT LCD DMM.

Figure 3: Circuit diagram of the display board of the 2015A DMM.
allows the display system to be 'bussed' so that one display unit can be fed from a variety of data inputs. It is also possible to use either LED or LC displays, the choice being determined by the display interface. These features are not fully implemented in the basic DMM, but they exist for those of you wishing to exploit them further. (The manufacturer's data for the MC14433 is comprehensive and contains several applications circuits that provide a good background to the design and theory of the system. A copy of the data can be obtained for 35 p from R\&EW Readers Services.)

In a straight fight between the ICL7106 and this approach, the major diadvantage here is the need for a differential power supply source - and the only solution in a battery instrument is to use a thirsty DC/DC converter. But the MC14433 fights back with a useful ' $\times 10$ ' multiplier facility, whereby the basic A/D can be switched between 1.999 V and 199.9 mV FSD, thereby doubling the number of ranges available for a given switch array. For a detailed description of the A/D function, see the separate 'boxed' circuit description.

The Circuit (Figure 2)

The major features determining the precision of any DMM are the accuracy of the reference voltages, and the accuracy of the attenuator network. CMOS A/D converter ICs all have a very high input
impedance that provide minimal loading to the input circuits. High value, close tolerance resistors are not the easiest of animals to locate, and Messrs. Caddock Inc seem to have the DMM input attenuator market to themselves. In this design, the intermediate steps in the network are not required since the $\times 10$ facility takes care of unnecessary range switching.

Voltage References.

The voltage references are provided by MCl 403 ICs, precision band-gap voltage reference sources with a temperature coefficient of $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. With a 2.000 V reference at pin 2 of the A/D (derived from IC 3), the device operates by determining the ratio of the input voltage to the reference voltage -where a ratio of ' $1: 1$ ' implies the maximum count of 1.999 V . Thus a 200 mV reference at the same point relates to a maximum 'in range' input of 199.9 mV . Since the accuracy of the reading depends on the accuracy of the reference, considerable care is taken to ensure that the reference voltage is correctly established.

IC2 drives a true RMS AC detector which provides reliable results to 10 kHz . Cl is used to trim the frequency compensation of the network, and it should be borne in mind that any high impedance measurements at frequencies above a few kHz tend to become misleading as a result of lead capacitance and
other 'stray' effects.
The ohms range uses the input attenuator array to establish an accurate reference for the circuit around IC2 to perform a ratiometric comparison with the unknown resistance. The ratio of the known/unknown resistance is the same as the ratio of the voltages across these two resistors - so once the instrument has been calibrated to provide a 'known' voltage across the reference resistance, it follows that the voltage across the unknown may be measured as an accurate representation of the resistance value -directly in ohms.

Display Considerations (Figure 3)

The decimal point switching is derived from the input switching circuitry, and overrange indication is supplied via pin 15 of the A/D, which goes low when overdriven - thereby blanking the display with Q 1.

Many readers will be rather rusty on the basics of LCD driving, since so many LSI systems perform all the necessary thinking for the designer. Not so here, you get good old-fashioned multiplexed $B C D$, and whilst it is quite possible to take a cowardly way out and use a combined decoder/driver/display module such as the WR\&E DM 180 or similar, the 'designer's' solution is to use 4000 series CMOS. And in any case, the DM 180 does not provide the 'lo bat' indicator in the display format - 'but don't forget it, in case you want to use the solution in a slaved 'remote' display application.

Figure 5: Equivalent circuit diagrams of the analogue section.

Figure 4: Integrator waveforms at Pin 6.

CIRCUIT DESCRIPTION: THE A/D CONVERTER

The MC14433 CMOS integrated circuit, together with a minimum number of external components, forms a modified dual ramp A/D converter. The device contains the customary CMOS digital logic providing counters, latches, and multiplexing circuitry as well as the CMOS analog circuitry providing operational amplifiers and comparators required to implement a complete single chip A/D. Autozero, high input impedances, and autopolarity are features of this system. Using CMOS technology, an A/D with a wide range of power supply voltage and low power consumption is now available with the MC14433.

Ouring each conversion, the offset voltages of the internal amplifiers and comparators are compensated for by the
system's autozero operation. Also each conversion 'ratiometrically' measures the unknown input voltage. In other words, the output reading is the ratio of the unknown voltage to the reference voltage with a ratio of 1 equal to the maximum count 1999. The entire conversion cycle requires slightly more than 16000 clock periods and may be divided into six different segments. The waveforms showing the conversion cycle with a positive input and a negative input are shown in Fig 4. The six segments of these waveforms are described below.
Segment 1 - The offset capacitor (C_{0}). which compensates for the input offset voltages of the buffer and integrator amplifiers, is charged during this period. Also, the integrator capacitor is shorted. This segment requires 4000 clock periods.

Segment 2 - The integrator output decreases to the comparator threshold voltage. At this time a number of counts equivalent to the input offset voltage of the
comparator is stored in the offset latches for later use in the autozero process. The time for this segment is variable, and less than 800 clock periods.

Segment 3 - This segment of the conversion cycle is the same as Segment 1.
Segment 4 - Segment 4 is an upgoing ramp cycle with the unknown input voltage $\left(V_{x}\right)$ as the input to the integrator. Fig 5 shows the equivalent configuration of the analog section of the MC14433. The actual configuration of the analog section is dependent upon the polarity of the input voltage during the previous conversion cycle.

Segment 5 - This segment is a down-going ramp period with the reference voltage as the input to the integrator. Segment 5 of the conversion cycle has a time equal to the number of counts stored in the offset storage latches during Segment 2. As a result, the system zeros automatically.

Segment 6 - This is an extension of Segment 5. The time period for this portion is 4000 clock periods. The results of the A/D conversion cycle are determined in this portion of the conversion cycle.

The backplane signals for the LCD are taken from the multiplexed outputs of the A/D device. The 600 Hz strobe signal at D 4 digit driver output is divided by 10 in IC 1 to provide a 60 Hz backplane signal. The truth table for the special functions contained in the D 1 'frame' (shown in Table One) is separated and decoded in IC 6 and IC 7.

Coded Condition of MSD	03	02	01	00	BCD to 7 Segment Decoding	
+0	1	1	1	0	Blank	
-0	1	0	1	0	Blank	
+0 UR	1	1	1	1	Blank	
-O UR	1	0	1	1	Blank	
+1	0	1	0	0	$4 \rightarrow 1$	Hook up
- 1	0	0	0	0	$0 \rightarrow 1$	only seg b
+1 OR	0	1	1	1	$7 \rightarrow 1$	and c to
-1 OR	0	0	1	1	$3 \rightarrow 1$)	MSD

Table 1: Truth Table
The very useful display freeze function is achieved by clamping the display update pin of IC 5 to ground. This simply holds the data in the output latches, instead of enabling new data to be loaded when the 'end of conversion' (EOC) signal appears at pin 14.

The rest of the circuit concerns the internal/external power switching and regulation. The way in which the circuit accommodates the battery eliminator-cum-charger is an ingenious concept
where R 1 is used as a Vbe multiplier to establish the reference voltage at the 'ground' terminal of IC 1 . Whatever voltage occurs at the collector of Q 2 is added to the 5 V of the basic regulator, resulting in a nominal output of $5 \vee 7$ across the battery terminals with the power 'on' (6 V 1 off load). The charging current is set to 100 mA , as a result of the 680 mV potential developed across R 19 ($\mathrm{V}=100 \mathrm{~mA} \times 6 \mathrm{R} 8$) acting to stabilize the collector voltage of Q 2 by turning Q 2 on when its V be is exceeded if excess charging current is being drawn. $-\mathbf{R \&}$ EW

R\&EW KIT PRICES:
DMM Project Pack $£ 73+$ VAT
Touch and Hold Probe $£ 13$ + VAT

Your Reactions......	Circle No.
Immediately Applicable	136
Useful \& Informative	137
Not Applicable	138
Comments	139

RRadio \&
 LECTRONICS $W^{\text {ORL }} \mathbf{D}$

ANNUAL SUBSCRIPTIONS
United Kingdom $£ 9.50$
Overseas $£ 10.50$

Orders to our Subscription Manager, Owen Rundle at 45, Yeading Avenue, Rayners Lane,
Harrow,
Middlesex.

Sinclair ZX81 Personal Comi the heart of a system that grows with you.

1980 saw a genuine breakthrough the Sinclair ZX80, world's first complete personal computer for under £100. Not surprisingly, over 50,000 were sold.

In March 1981, the Sinclair lead increased dramatically. For just £69.95 the Sinclair ZX81 offers even more advanced facilities at an even lower price. Initially, even we were surprised by the demand - over 50,000 in the first 3 months!

Today, the Sinclair ZX81 is the heart of a computer system. You can add 16-times more memory with the ZX RAM pack. The ZX Printer offers an unbeatable combination of performance and price. And the $Z X$ Software library is growing every day.

Lower price: higher capability

With the $\mathbf{Z X 8 1}$, it's still very simple to teach yourself computing, but the ZX81 packs even greater working capability than the ZX80.

It uses the same micro-processor. but incorporates a new, more powerful 8 K BASIC ROM - the 'trained intelligence' of the computer. This chip works in decimals, handles logs and trig, allows you to plot graphs, and builds up animated displays

And the ZX81 incorporates other operation refinements - the facility to load and save named programs on cassette, for example, and to

Every 2×81 comes with a comprehensive specially- wnitten manual - a complete course in BASIC programming. Irom first principles to complex programs.

Higher specification, lower price how's it done?
Quite simply, by design. The 2×80 reduced the chips in a working computer from 40 or so, to 21. The ZX81 reduces the 21 to 4 !

The secret lies in a totally new master chip. Designed by Sinclair and custom-built in Britain, this unique chip replaces 18 chips from the ZX80!
New, improved specification - Z80A micro-processor - new faster version of the famous Z80 chip, widely recognised as the best evermade.

- Unique 'one-touch' key word entry: the ZX81 eliminates a great deal of tiresome typing. Key words (RUN, LIST, PRINT, etc.) have their own single-key entry.
- Unique syntax-check and report codes identify programming errors immediately.
- Full range of mathematical and scientific functions accurate to eight decimal places.
- Graph-drawing and animateddisplay facilities.
- Multi-dimensional string and numerical arrays.
- Up to 26 FOR/NEXT loops.
- Randomise function - useful for games as well as serious applications. - Cassette LOAD and SAVE with named programs.
- 1K-byte RAM expandable to 16 K bytes with Sinclair RAM pack. - Able to drive the new Sinclair printer
- Advanced 4-chip design: microprocessor, ROM, RAM, plus master chip - unique, custom-built chip replacing 18 ZX80 chips.

Built: £69.95

Kit or built -it's up to you! You'll be surprised how easy the ZX81 kit is to build: just four chips to assemble (plus, of course the other discrete components) - a few hours' work with a fine-tipped soldering iron. And you may already have a suitable mains adaptor -600 mA at 9 V DC nominal unregulated (supplied with built version)

Kit and built versions come complete with all leads to connect to your TV (colour or black and white) and cassette recorder.

 the ZX81 (and ZX80 with 8K BASIC ROM), the printer offers full alphanumerics and highly sophisticated graphics

A special feature is COPY, which prints out exactly what is on the whole TV screen without the need for further intructions.

At last you can have a hard copy of your program listings - particularly
useful when writing or editing programs.

And of course you can print out your results for permanent records or sending to a friend

Printing speed is 50 characters per second, with 32 characters per line and 9 lines per vertical inch.

The ZX Printer connects to the rear of your computer - using a stackable connector so you can plug in a RAM pack as well. A roll of paper (65 ft long $\times 4$ in wide) is supplied, along with full instructions.

How to order your ZX81

BY PHONE - Access, Barclaycard or Trustcard holders can call
01-200 0200 for personal attention 24 hours a day, every day.
BY FREEPOST - use the no-stampneeded coupon below. You can pay
by cheque, postal order, Access, Barclaycard or Trustcard.
EITHER WAY - please allow up to 28 days for delivery. And there's a 14-day money-back option. We want you to be satisfied beyond doubt and we have no doubt that you will be

To: Sinclair Research Lid, FREEPOST 7, Cambridge, CB2 1YY.
Oty
Item

ZX8I
 6 Kings Parade, Cambridge, Cambs., CB2 1SN. Tel: (0276) 66104 \& 21282.

16K-byte RAM pack for massive add-on memory.

Designed as a complete module to fit your Sinclair ZX80 or ZX81, the RAM pack simply plugs into the existing expansion port at the rear of the computer to multiply your data/program storage by 16 !

Use it for long and complex programs or as a personal database Yet it costs as little as half the price of competitive additional memory.

With the RAM pack, you can also run some of the more sophisticated ZX Software - the Business \& Household management systems for example.

There was only ane TRIGGER

 as good as the SCOPE 14D-10 and Roy Rogers had it stuffed

唖 An Independent British Company 粈

A dual trace 10 MHz high sensitivity oscilloscope
incorporating all the latest high technology
developments to bring you all these
outstanding features as standard.

- $10 \mathrm{~cm} \times 8 \mathrm{~cm}$ display.
- 2 mV sensitivity on both channels.
- Add and invert facility
- Probe compensation.
- Push button X-Y.
- Trace locate.
- $10 \mathrm{MHZ}(-3 \mathrm{~dB})$ over full display.
- Complete with probes.

At a price of $£ 240.00+$ VAT.
Ensures British leadership in the low cost high performance oscilloscope market.

by two way FREEPOST

MICROWAVE MODULES	
MMT 432/28S	¢ 149.00
MMR 432 144 R	¢ 184.00
MMT 28144	¢ 199.00
MMT 144/38	C99.00
MMC 28136	C27.90
MMC 28/156	¢27.90
MMC 28/144	¢27.90
MMC 144/any IF	27.90
MMC 14428LO	£29.90
MMC 70any IF	¢ 27.90
MMC 432/28S	¢ 34.90
MMC 432/144S	£ 34.90
MMC 1298/any IF	£32.20
MMC 050 500	¢69.00
MMA 28 preamp	£ 14.95
MMA 144V preamp	£ 34.90
MMV 129628	¢3220
MML 144/100linamp	¢142.60
MML 432/100linamp	¢228.85
MML 144/25linamp	¢59,00
MML 432/50linamp	¢119.00
MM 2000	£169.00
MMS1	¢115.00

YAESU CONVERTERS 7700 Series

Model A	$£ 63.00$
Model B	$£ 69.00$
ModelC	$£ 65.00$
Model D	$£ 68.00$

ROTATORS	
Skyking SU 4000	
Hirschmann 250	$£ 92.00$
Emoto EO2CXX	$£ 35.00$
KR 4Q0RC	$£ 139.75$
AR 4d	$£ 90.85$
KR 9602A	$£ 59.00$
Rotor Boaring	$£ 50.00$
All items VAT and carriage paid.	

Antenna Traps -

WZAU BALUN

STANDARD

C8800 2 m TCvr

MORSE KEYS	
HK 707 Straght Up/Down keyer	£11.4
BK 100 Semi-eutomatic mechanical bug	$£ 17.88$
MK 702 Up/Down keyer on marble	
base	$¢ 22.43$
MK 702 Manipulator	$¢ 22.43$
MK 704 Squeaze paddle	¢14.38
MK $706 \begin{aligned} & \text { Squeeze paddie on marble } \\ & \text { base }\end{aligned}$	¢. 22.43
EKM 1A Morse code practice oscillator	c8.63
MK 1024 Automatic memory keyer	¢135.13
EK 150 Semi/Automatic keyer	¢74.75

LINEAR AMPLIFIERS

 $2 \mathrm{M} 10-80 \mathrm{P} \quad 144 \mathrm{MHz} 10 \mathrm{~W}$ input/80W 2M25-150P output with 9dB preamp 144 MHz 25 W input/150W output with 9 dB preamp 144 MHz 10 W input/ 150 W output with 9 dB preamp 144MHz 3W input/150W output with 9d8 preamp£ 138.00

2M10-150P

2M3-150P
£ 184.00
f209.88
¢209.88

G. WHIP Mobile Antennas

Tribander 10-20 Side L.F. Coil $40 / 80 / 160$ MTS L. F. Whip Telescopic Multimobile 10-20 Auto M/Mobile Coil $40 / 80 / 160$ M/Mobile Whip Telescopic Flexiwhip 10M Mast F/Whip Coils 40/80/160 Base Standard Base Meavy Duty Extenarod

UNADILLAIREYCO

Precision moulded coil forms stain-less- hardware. Aluminium tube irridit finish-Coated aluminium wire. Fully waterproofed.
Avpileble $7 / 14 / 21 \mathrm{MHz}$
¢ 1299
$3.5 / 30 \mathrm{MHz} 2.5 \mathrm{Kw}$ with Lightning Arrestor - Suitable Vees, Yagis,
Doublets, quads, orc. £1299
$¢ 252.00$
c7800 70crns Tevr
£275.00
TRONIX PSU
Britiah made, 6 amp coristant,
7 amp surge, fully regulated
and protected. $£ 27.90$

ICOm IC T30 All bends 1080 m including 30 m . 17 m and 12 m .100 wf out and 40 w AM. Twin VFO, dipitel rosdout, 3 speed tunning down to 10 Hz . Diel lock, RIIT, N.B. and Swhchebie Pramp. See list for H.P.

SWRIRF POWER METERS

SWR $253.5 / 170 \mathrm{MHz}$
$£ 12.94$
LEADER LPM 885 -HF $1 \mathrm{Kw} \quad \mathrm{E58.00}$ HANSON $35 / 150 \mathrm{MHz} 200 \mathrm{w} 57875$ REECE UHF 74 144/432 E16.28 HANSON FS 500 H
$1.8 / 60 \mathrm{MHZ} 2 \mathrm{KW}$
OSKAR SWR 200 3.30 MHz 2 Kw

AMCOMM SERVICES

194 NORTHOLT ROAD, SOUTH HARROW, MIDDX.
Telephone: 01-864 1166, 01-422 9585
Opposite South Harrow Tube Station on Piccadilly Line
Showroom Opening Hours
Tuesday to Saturday 9-5.30 Sunday by Appointment

[^0]

STILL HELPING WHERE IT HURTS

Here's a list below to make buying easier for you Work it out your self - You'll see - It really is easyl "And Guaranteed for two years"

	List		12 Pay-
Product	Price	Deposit	ments
Yaesu FT 1	£1,295	f. 600	¢57.91
Yeesu FT 9020M	¢885	¢ 399	¢ 40.55
Yaesu FRG 7700\%	¢ 329	¢ 139	$£ 16.89$
Yausu FRG 7700\%M	¢ 409	¢ 180	£ 19.01
Yaesu FT 1012D/FM	¢665	£300	¢ 30.41
Yaesu FT 1012D/AM	¢650	¢275	£31.29
Yeesu FT 1012/FM	[590	£250	£28.27
Yaesu FT 1012/AM	¢575	¢ 225	¢29.16
Yeussuty 2100	¢425	¢ 185	¢ 20.08
Yaesu FT 480\%	C379	£ 185	E18. 18
Yaesu FT 707	¢569	$£ 230$	¢ 28.27
Yaesu FT 290	C 249	¢ 120	¢ 10.82
Standard C78	¢ 219	£ 99	¢10.04
Standard C58	C247	£ 107	£ 11.69
Icom 730	¢ 574	£ 250	£27.00
Icom 7204	¢883	¢400	¢ 40.26
Icom 290	¢ 366	£166	£16.67

If you dont like easy payments call us anyway for price

Choose your AMTECH here	
Amtech 100 Mobile Match	¢16.95
Amtech 200Random Wire ATU 10.160 m 200 w pep	£29.95
Amtech 300Random and Coax Fed ATU 300w pep	¢43.95
Amtech CW 250 - The most outstanding CW filter available	$\int 24.90$
Amtech Channelguard - A plug in device to eliminate those unwanted stations	
unwanted stations Decoder Sender	$\begin{array}{r} \text { £15.25 } \\ \text { £ } 7.25 \end{array}$
Amtech FM7: FM Demodulator for FRG 7	C11.90

ANTENNAS

Wide range in stock including JAYBEAM - HYGAIN - GOTHAM - TELECON HOKUSHIN Etc.
Bantex 618 mobile whip complete antenna [8.99 Bantex $1 / 4 \mathrm{w}$ mobile whip complete antenna

The All Electric Aeroplane

Contrary to what most people believe, aircraft control systems use mainly mechanical and pneumatic control linkages. That is, all except a British Aerospace modified Jaguar, which claims to be the worlds first aircraft to fly solely with an all digital quadruplex 'fly-by-wire' control system made to production standards. Marconi Avionics supply the electronic technology to control servos made by Boulton Paul Ltd. of
Wolverhampton.
This system replaces all mechanical linkages in the control system -autostabilisers, control rods and all control surface manipulation is now handled electronically by four high speed computers. These are linked to two further actuator drive and monitor computers, leading to a duo-triplex 'failure absorption' actuator.

The signals not only respond to direct pilot commands, but are also initiated automatically to correct uncommanded aircraft motion - whilst maintaining performance within the safe parameters of the airframe. All this now means that a basically unstable aircraft can be flown without excessive pilot fatigue.
A basically unstable aircraft may seem paradoxical, but the ugly equipmentladen fighters of the next decade can now compromise the principles of sound aerodynamics in their efforts to stow even bigger and better electronic warfare systems. The multiple control systems enable up to two failures in either the electrical or hydraulic systems, without a serious effect on system performance.

Pigs in Space

Nothing to do with Kermit \& Co. Amateur satellite enthusiasts can get themselves a "Ham in Space" sweatshirt from AMSAT Box 27, Washington DC 20044 for around US\$20. (the US

Pinstripes for Buzby

Telecom is planning to launch an electronic mail service based on the system developed and operated in the USA by Dialcom Inc. The services will be marketed from a computer bureau in the London area using Prime 750 computers in an extension of the Prestel concept.
The user sends 'correspondence' via a terminal to another user on the network, and the recipients terminal then stacks incoming 'mail' in order of arrival, taking into account priority signals. The same communications may be sent simultaneously to several destinations.

How long is a piece of fibre optic cable

201 km - or twice the distance from the end to the middle -according to a recent release from Telecom on the subject of their proposed new London to Birmingham optical link. Billing this as the longest in the world, BT chairman Sir George Jefferson promised "at least 100.000 km of fibre during the 1980s to create a network embracing all of Britain's major cities".

The link to Brum contains eight 125 micrometer fibres, with an initial two pairs offering 480 simultaneous phone conversions each. This could give a whole new dimension to the expression "crossed line'.

Networking Viewdata

The Wembley Viewdata ' 81 conference saw the conclusion of several agreements for the network of European viewdata systems so that Prestel users in the UK, for example, can access the German PPT's Bildshirmtext service - and vice versa.
This is a further feature of a facility known as 'aatreway', which is being mit viewdata users to 1on-viewdata systems.

Sun and Wind power TV

The IBA has just commissioned the first ecology conscious TV transmitter station at Bossiney in Cornwall for the benefit of the 300 local residents.
The occasion also marks developments in local 'community' relays for the small rural communities who to date have been saved from the dubious delights of the ITV's offerings. In case the locals prayers are answered by calm, cloudy or foggy weather - 1000 Ah of lead acid accumulators are provided to keep the station's 150 watt power demand satiated when the 780 W solar array or 150 W wind generator are idle.

Radio Lincolnshire goes QRO

A new BBC Radio Lincolnshire transmitter on 1368 kHz was operational from October 1 st to extend coverage to virtually the entire county. The site of the 2 kW transmitter is just outside Lincoln city, and if you happen to live in Swan Pool, then 1368 kHz tuned traps can be made easily with around 200 uH and 200 pF variables.

A Thorny Point

In our Philips DMM competition on Page 71 of the November issue of R\&EW, we inadvertently made reference to 'an AVO' - failing to take account of the fact that although this term has passed into common usage when referring to amp/volt/ ohmmeters within the electronics trade, the trade mark of AVO is the property of AVO Ltd., who are anxious to discourage this type of usage.

In view of the fact that the AVO range now extends far beyond the classic 'AVO Mk8' most commonly associated with the name, we are pleased to be able to draw the attention of our readers to the current range of AVO instrumentation - which although technologically is a far cry from the simple ruggedness of the AVO Mk8, maintains the same image of sturdy reliability.

highest quality
 from 9220 host competitive prices

Oscilloscopes combine the very highest levels of ance and specification with quality that is unmatched he industry.
nprehensive range starts with the very low cost 15 MHz ce $\mathrm{V}-152$, and extends to the superb 100 MHz quad1050 with a specification that is amazing for its price.
'scopes carry a two-year warranty, are supplied complete נbes, and we hold them in stock for immediate delivery.
colour brochures giving detailed technical specifications zes, ring 048063570

I Instruments 46 High Street, Solihull, W.Midlands. B91 3TB.

ANICROUURVE MNODULES LTO

In this Issue of Radio \& Electronics World we are briefly describing our entire range of top quality British-made products, so that our regular customers and the many newcomers to amateur radio can see for themselves our extensive range we have to offer.
Microwave Modules, formed in 1969, is a wholly independent British company manufacturing quality products to professional standards solely for the amateur market, and it is this dedication together with strong customer loyalty that has enabled us to go from strength to strength in expanding and diversifying our product range.
Please note the addition of four new products which will be in full production by the time this advert appears in print. Full data is available on each of these products upon request.
We would like to take this opportunity of wishing all of our customers, both old and new, all the very best for the festive season and the New Year.

* NEW PRODUC

MMS2
This advanced Morse Trainer contains all the facilities of the MMS1 speech synthesised Morse Tutor together with the additional feature of providing talkback of morse keyed into the unit by the pupil.

PRICE: $\mathbf{£ 1 5 5}$ inc VAT (P\&P £2)

THE ENTIRE RANGE

* NEW PRODUCT MML1296/10

1296 MHz 10 Watt solid state linear power amplifier. Suitable for use with our MMT1296/144 transverter INTRODUCTORY PRICE: £199 in VAT (P\&P £2.00)

TRANSVERTERS

MMT28/144:
MMTJ0/28:
MMT70/144:
MMT144/28:
MMT432/28-S: 10 m up to 70 cm with satellite shift
MMT432/144.R: 2 m up to 70 cm with repeater shift MMT1296/144: 2 m up to 23 cm

Price Inc VAT	Pos. Rate
¢99	B
$¢ 115$	B
¢115	B
f99	
¢149	B
E184	B
E184	B

Price	Post
inc VAT	Rate
£19.95	A
$£ 27.90$	A
$£ 27.90$	A
$£ 27.90$	A
$£ 29.90$	A
$£ 27.90$	A
$£ 29.90$	A
$£ 34.90$	A
$£ 34.90$	A
$£ 27.90$	A
$£ 32.20$	A
$£ 59.80$	A

* NEW PRODUCTS

 MMC27/MWThis 27 MHz MOSFET Converter will allow reception of the CB allocation on any medium wave car radio. PRICE: $£ 19.95$ inc VAT (P\&P £0.80)

FULL DATA ON EACH OF THE ABOVE PRODUCTS

IS AVAILABLE UPON REQUEST

* NEW PRODUCT MM1000

ASCII to MORSE CONVERTER

With 50 character memory and keyboard input buffer SPEED RANGE: $12-30 \mathrm{wpm}$ in 2 wpm increments PRICE inc VAT: $£ 59$ (P\&P £0.80) OR WITH KEYBOARD £89 (P\&P £2.75)

VARIOUS

MMD050/500: $\quad 500 \mathrm{MHz}$ frequency counter
MMD600P: MMDP1: MMDP1: MMF144:
MMF432:
MMV1296:
MMV1296:
MMS384:
MMS384:
MMR15/10:
$600 \mathrm{MHz}+10$ prescaler Frequency counter probe Frequency counter
2 m bandpass filter 2 m bandpass filter
70 cm bandpass filter 70 cm bandpass filter 70 cm to 23 cm varactor tripler
384 MHz frequency 384 MHz frequency source 15 dB 10 watt attenuator

POSTAGE

The above prices include VAT but not postage. Please add postage to the above at the following rates:

UNITS 'A' $=\mathbf{£ 0 . 8 0} \quad$ UNITS $^{\circ} \mathrm{C}^{\prime}=£ 2.75$
UNITS ' $B^{\prime}=£ 2.00 \quad$ UNITS 'D' $=£ 3.50$

ALL MICROWAVE MODULES PRODUCTS ARE FULLY GUARANTEED FOR 12 MONTHS (INCLUDING PA TRANSISTORS)

FAST ERECTING

 CARK Here is the expertise you can depend on -When you choose a mast from the comprehensive Clark range you are assured of a high standard of Engineering and operational reliability.

Why compromise?
Extended heights 4 metres- 30 metres, capable of lifting headload 1 kg 200 kgs.
Sectional or telescopic air operated for field or vehicle mounting. Write or phone us for details today.

Clark Q.T.4M/HP mast shown on tripod, extended to 4 metres and tripod folded for transit. Available in heights up to 12 metres.
This mast is ideal for raising light-

PO33 3PA, England.
Telephone : Ryde (0983) 6369I, Telex: 86686.

MICROCOMPUTER COMPONENTS
LOWEST PRICES - FASTEST DELIVERY

Device WEWORIES 2114L-200ns		Oevice	Prica	Device	Price:	Device	Price		
	Price	EF6862	8.91	4076	0.68	74LS95	0.44		
	$1+1.28$	Ef6871-A1T	18.70	4077	0.22	74LS109	0.25		
	$25+1.19$	EF6880	1.07	4078	0.24	74 LS112	0.25		
2114L-300ns	$1+1.28$	EF6887	0.80	4081	0.14	74LS113	0.25		
	$25+1.19$	EF68488	9.11	4082	0.19	74LS114	0.25		
$\begin{aligned} & 2708450 \mathrm{~ns} \\ & 2716450 \mathrm{~ns} \end{aligned}$	1.99	EF6875	4.18	4085	0.83	74LS122	0.39		
	1+2.49	8502 Famul		4086	0.89	74LS123	0.55		
	$25+2.37$			4093	0.39	74LS124	1.00		
2716 350ns	8.85	SYP6502	4.95	4502	0.89	74LS125	0.28		
2532 450ns	$1+5.50$	SYP6520	3.15	4507	0.39	74LS126	0.28		
	$25+5.31$	SYP6522	4.95	4508	1.90	74 LS132	0.45		
2732 450ns	$1+4.80$	SYP6532	7.95	4510	0.80	74LS136	0.28		
	$25+4.08$			4511	0.48	74 LS138	0.34		
4116 150ns	1+1.15	8080 family		4512	0.80	74 LS139	0.37		
	$25+1.06$	8085A	5.50	4514	1.49	74LS145	0.75		
4116200 ns	$1+0.80$	8212	1.70	4515	1.49	74LS 148	0.80		
	$25+0.72$	8216	1.70	4516	0.75	74 LS151	0.34		
6116200 ns	10.95	8224	2.45	4518	0.40	74LS153	0.35		
	3.90	8228	3.95	4519	0.28	74LS155	0.30		
4118200 ns 8264200 ns 5516 200ns	12.00	8251	3.95	4520	0.69	74 LS156	0.38		
5516 200ns	22.88	$\begin{aligned} & 8253 \\ & 8255 \end{aligned}$	7.95	4521	1.49	74LSt57	0.34		
	CRT CONTROUERS AND GRAPNIC DISPLAY PROCESSORS		8255	3.95	4522	1.20	74LS158	0.38	
			4526		0.70	74LS160	0.39		
			CMOS $4000 \cdot \mathrm{~B}$ S SERIES	4527	0.89	74 LS161	0.39		
${ }_{\text {PROCESSORS }}$		4000		0.12	4528	0.70	74LS162	0.39	
EF9365	5.94 62.90	4001	0.13	4532	0.89	74 LS163	0.39		
EF9366	62.90	4002	0.13	4541	1.39	74LS164	0.47		
	8290	40064007	0.60	4543	0.99	74LS165	0.99		
BUFFERS			0.17	4553	2.90	74LS166	0.84		
				4008	0.55	4555	0.49	74 LS173	0.70
81 LS96 $\quad 0.90$		4009	0.28	4556	0.54	74 LS174	0.54		
$81 L 597$	0.90	4010		4585	0.98	74LS175	0.54		
81LS98	0.90	4011	0.14			74LS181	1.30		
$81 / 598$8726A	1.50		0.17	LOW POWER SCHOTTM		74LS190	0.55		
	1.50	4013	0.33	TIL ICs-74LS SERIES		74LS191	0.55		
8 895	1.50	4014	0.58	741500	0.11	74 LS192	0.69		
8997A	1.50	4015	0.58	741S01	0.11	741S193	0.59		
8798	1.50	4016	0.28	741502741503	0.12	74LS194	0.390.39		
		$\begin{aligned} & 4017 \\ & 4018 \end{aligned}$	0.45		0.12	74LS195			
DATA CONVERTERS			0.58	74LS04	0.13	74LS197	0.85		
		$\begin{gathered} \text { SPECIALOFFERS } \\ \text { MEMORIES } \end{gathered}$				74LS221			
ZN426E-8	3.00					7415221 7415240	0.80 0.88		
ZNAL27E.8	6.28					7425240 7415241	0.88 0.88		
ZN428E-8	4.78					74LS242	0.79		
ZN429E-8 ZN432C•10	2.10 28.09	2114 L 200 ns2708450 ns2716450 ns25322730 ns2732450 ns	$\begin{aligned} & 0.99 \\ & 1.48 \\ & 2.10 \\ & 3.99 \\ & 3.20 \end{aligned}$	4116150 ns 0.75		7415243	0.79		
ZN433C. 10	28.09 22.59			4116200	200 ns 0.87	74 LS244	0.79		
ZN440	56.63			611620	8.50	74LS245	0.88		
				551620 4118	11,85	7415247 7415288	1.34		
miscellaneous				- OFFER VALID FROM DEC 1 st-JAN 1 st SUBJECT TO AVAILABILITY				74LS249	0.88
$\begin{array}{ll}\text { AY-3-1015 } & 3.90 \\ \text { AY-5-1013 } & 3.45\end{array}$								74LS251	0.39
								74LS253	0.38
AY-5-2376MC1488	6.95					74LS257	0.44		
	0.64	4019	0.29	74LS05	0.13	74LS258	0.38		
MC1489	0.84	4020	0.58	74LS08	0.13	74LS259	0.38		
MC14411	6.94	4021	0.60	741509	0.13	7415261	1.90		
MC14412	7.99	4022	0.62	74LS10	0.13	741S266	0.23		
RO-3.2513L	7.70	4023	0.17	74LS11	0.14	74LS273	0.80		
R0-3-2513U	7.70	4024	0.38	74LS12	0.15	74LS279	0.34		
2 N 450 E	7.61	4025	0.16	74LS13	0.22	74LS283	0.44		
7805	0.50	4026	0.99	74LS14	0.44	74LS290	0.58		
7812	0.50	4027	0.30	74LS15	0.13	7415293	0.45		
7905	0.55	4028	0.55	74LS20	0.12	74LS365	0.34		
7912	0.55	4031	1.65	74LS21	0.14	74LS366	0.34		
2ILOG 280 FAMMIY		4033	1.60	741522	0.14	74LS367	0.34		
		4034	1.55	74LS26	0.18	74LS368	0.34		
280 CPU	4.00	4035	0.72	74.527	0.14	7415373	0.74		
2804 CPU	4.82	4040	0.57	74 LS28	0.19	74LS374	0.74		
280 CTC	400	4041	0.69	74LS30	0.12	74LS375	0.47		
280A CIC	4.00	4042	0.54	74LS32	0.14	7415377	0.89		
280 DART	7.18	4043	0.59	741533	0.18	74 LS378	0.60		
Z80A DART	7.18	4044	0.64	74LS37	0.16	74 LS379	0.64		
280 DMA	11.52	4045	1.85	74LS38	0.18	74LS386	0.28		
Z80A DMA	9.99	4046	0.68	74LS40	0.13	74LS390	0.59		
280 P10	3.78	4047	0.68	74LS42	0.34	74 LS393	0.59		
2804 P10	3.78	4048	0.54	74LS47	0.38				
280 SIO 0	13.95	4049	0.30	74LS48	0.60	LOw PRofi			
280A S10-0	13.95	4050	0.30	74LS49	0.59	SOCRETS			
280 S10-1	13.95	4051	0.59	74LS51	0.14	Nurnter of P			
2600 S S10-1	13.05	4052	0.68	74LS54	0.15	8	0.07		
$280 \mathrm{SiO}-2$	13.95	4053	0.59	74LS55	0.15	14	0.08		
Z80A S10-2	13.85	4054	1.20	74LS73	0.20	16	0.09		
		4055	1.20	74LS74	0.17	18	0.15		
EFCIS 6800 FAMILY		4060	0.89	74LS75	0.28	20	0.17		
EF6800	3.70	4063	0.95	74LS76	0.20	22	0.21		
EF6802	5.11	4066	0.34	74LS78	0.24	24	0.23		
EF6803	11.80	4068	0.17	741583	0.50	28	0.25		
EF6809	11.85	4069	0.17	74LS85	0.70	40	0.29		
EF6810	1.35	4070	0.19	74LS86	0.17				
EF6821	1.74	4071	0.19	74LS90	0.30	Crystals			
EF6840	4.20	4072	0.19	74LS91	0.80	1 Mh 2	3.00		
EF6845	9.50	4073	0.19	74LS92	0.35	1.8432 Mnz	2.50		
EF6850	1.70	4075	0.17	74LS93	0.34	4 Mnz	1.65		

OFFICIAL
CREDIT CARD ORDERS
QUANTITY
ORDERS WELCOME WELCOME DISCOUNTS AVAILABLE VAT (15\%). ALL ORDERS DESPATCHED ON DAY OF RECEIPT WITH FULL REFUND FOR OUT OF STOCK ITEMS IF REQUESTED.

24-hour Telephone Credit Card Orders
MIDWICH COMPUTERCO. LTD.
HEWITT MOUSE, NORTHGATE STREET,
BURY ST. EDMUNDS, SUFFOLK IP33 1 HO
TELEPHONE: (0284) 701321 TELEX: 817670

CB synthesisers for the UK channels. This Databrief should coincide with the availability of the Sanyo LC7137 UK CB specification PLL device in the UK. As you can see, it is a great deal more straightforward than any solution that can be devised using other techniques, and will thus form the local oscillator section of the R\&EW CB transceiver system that will be described starting next month.

The LC7137 is a single crystal PLL system, programmed via a standard 6 bit BCD switch. The receive local oscillator is generated directly with a 10.695 MHz offset (oscillator 'low'). The transmit frequency is generated at half the output frequency, since the maximum input frequency of the programmable divider is 20 MHz .

It is also easier to achieve linear FM by starting at half the output frequency - as in FM radio control systems. The existing LC7131 PLL device for the USA 40 channel specifications uses exactly the same external circuitry and pinout as the LC7137 - but despite this compatibility, it is NOT a straight swap. There is a difference in reference frequencies, and the 7131 family mix the VCO with 10.24 to achieve the TX output frequencies.

The device features (Fig l) an on-board crystal oscillator, phase detector, programmable counter, reference divider, out-of-lock indication and an instant channel $9 / 19$ call feature.

Frequencies
Data in our possession does not give full details of the actual frequencies derived and employed in the LC7137, so we have had to extrapolate the solution from details of the output frequency and the programmable divider numbers.

In view of the odd frequencies required for the UK 27 MHz specification, the results cannot be obtained directly as with the exact 10 kHz spacing of other standards. To accommodate the 1.25 kHz 'offset' of the UK plan and yet maintain a relatively easy incremental ' N ' number in the programmable divider (which is maximum of 4 decades), the device has to use a 5.000226 kHz reference frequency, derived by dividing by 2048 in the normal way, but with a 10.24046285 MHz crystal. In practise, a standard 10.240 MHz crystal can be pulled this far by a trimmer.

The receive frequencies are generated as oscillator low, with a 10.695 MHz offset; taking channel 1 as an example, ' N ' +3381 , so Flo +16.90576 MHz , corresponding to an RF frequency of 27.60076 MHz . Not exactly 27.60125 , but 490 Hz lower. ON transmit, the ' N ' is 2760 , leading to 27.601249 MHz . Much closer, and well within the specification tolerance.

The results at the channel 40 are 27.99078 and 27.99126 - again well within tolerance of the UK specification on transmit, and well within the IF passband on receiver - especially when the fact that the second IF conversion from 10.695 to 455 kHz is also offset by $462 \mathrm{~Hz}(10.695-10.240462)$, thus making up the apparent receiver error at the second conversion.

In this way, the LC7137 has manoeuvred very cleverly around the pitfalls of the UK specification, which many pundits had forseen as a big problem. The programmable dividers are just 4 decades in the FCC system, (27.125 MHz etc.), but 5 decades for the UK (27.60125 MHz). As you can see the LC7137 has retained the 4 decade solution, and confounded those ill-informed observers who claimed the UK specification would lead to £300 sets!
Bells and Whistles.
Apart from the basic function of providing the
necessary frequencies for transmitting, and receiving with a low cost 455 kHz ceramic 1 F filter - all from a simple BCD switch - the LC7131 includes.

Priority channel 9 and channel 19 switching
Miscode (MC) lockout, to prevent transmission out of band

Unlock detector
Under miscode conditions, the emergency channel 9 is selected by default in case the equipment has been damaged as a result of an accident etc., when its use is particularly vital.

LC7136 PROGRAM DATA vs. DIVISOR RATIO									
PROQRAM CODE									
FRECUUNCY	CH No.	D1	D2	D3	04	08	86	ค \times (T/A-1)	TX(T/R $=0$)
27.60125	1	1	0	0	0	0	0	3381 3383	
27.81126	2	0	1	0	0	0	0	3383 3385	2761
27.82126	3	1	1	0	0	0	0	3385	2762
27.63125	4	0	0	1	0	0	0	3387	2763
27.64125	5	1	0	1	0	0	0	3389	2764
27.85125	8	0	1	1	0	0	0	3391	2765
27.68125	7	1	1	1	0	0	0	3393	2766
27.67125	8	0	0	0	1	0	0	3395	2767
27.68125	9	1	0	0	1	0	0	3397	2768
27.69125	10	0	0	0	0	1	0	3399	2769
27.70125	11	1	0	0	0	1	0	3401	2770
27.71125	12	0	1	0	0	1	0	3403	2771
27.72125	13	1	1	0	0	1	0	3405	2772
27.73125	14	0	0	1	0	1	0	3407	2773
27.74125	15	1	0	1	0	1	0	3409	2774
27.75125	16	0	1	1	0	1	0	3411	2775
27.76125	17	1	1	1	0	1	0	3413	2776
27.77125	18	0	0	0	1	1	0	3415	2777
27.78125	19	1	0	0	1	1	0	3417	2778
27.79125	20	0	0	0	0	0	1	3419	2779
27.80125	21	1	0	0	0	0	1	3429	2780
27.81125	22	0	1	0	0	0	1	3423	2781
27.82125	23	1	1	0	0	0	1	3425	2782
27.83125	24	0	0	1	0	0	1	3427	2783
27.84125	25	1	0	1	0	0	1	3429	2784
27.85125	26	0	1	1	0	0	1	3431	2785
27.86125	27	1	1	1	0	0	1	3433	2786
27.87125	28	0	0	0	1	0	1	3435	2787
27.88125	29	1	0	0	1	0	1	3437	2788
27.89125	30	0	0	0	0	1	1	3439	2789
27.90125	31	1	0	0	0	1	1	3441	2790
27.91125	32	0	1	0	0	1	1	3443	2791
27.92125	33	1	1	0	0	1	1	3445	2792
27.93125	34	0	0	1	0	1	1	3447	2793
27.94125	35	1	0	1	0	1	1	3449	2794
27.95125	36	0	1	1	0	1	1	3451	2795
27.96125	37	1	1	1	0	1	1	3453	2796
27,97125	38	0	0	0	1	1	1	3455	2797
27.98125	39	1	0	0	1	1	1	3457	2798
27.99125	40	0	0	0	0	0	0	3459	2799
1: logical high lavel 0 : logical low level									
1									
1: logical high leval 0 : logical low level									

Application Circuit

PCB Foil (Top) and overlay (below)

BHPAK BARCAINS

'IRRESISTARLE
RESISTOR BARGAINS' fiello ofso Description
sillo 400 Mued All Type Resistors ह1 sxil 400 Preformed b. hi watt Carion $\mathrm{SO12} 200 \quad 4 \mathrm{x}$ war Carbon Ressistors ${ }_{5 \times 14}^{200}$ Wis mall carbon Resistors ${ }_{3}^{4}$ matt Resistors 22 ohm 2 m 2 Mued
1 and 2 matr Resustors 22
$5115 \quad 100$ onm-2m2 Mreed Paks SX12.15 conlain a innpe ot Cardon Fim Ressistors Pounds on these resistor palks and have a fulliange io cone pour profects.

- Quantites apolion mate. count by weight

TRIACS - PLASTIC
4 MMP - 400 - T0202 - PAG 1366.

20 - TAG 225
Everyday Electronics
reach in'si Al

SH20

 Souble ou price 85: Sma

SXM 1054 SCR $300643,5003,100 v 2$
 su5 prace 1054
$200 \mathrm{v}, 2 \mathrm{a} 400 \mathrm{All}$ coced frand new (a) Ble oway at

BARGAINS
542220 small 125 Red LiLOs
 Sx4b 30 asson ted Rene Clid wollages. 250 mw . coded . Nem.
5×17 ABlach instrument Mnobs-minged Fitsice 291 Stamara 20 mm . 20 mm . 20 Brach/Criome. etc. ssag Biach/Chome, elc. sise 12 Neons and firins - wricus thpes roltace and mairs - Danel mounting
and colcurs - some panel

CAPABLE

 CAPACITOR PAKE"| Padmo | (6) | Dexcription P | Price |
| :---: | :---: | :---: | :---: |
| 5x16 | 250 | Capactiors Mixed Irpes | [1 |
| 5×17 | 200 | Celamic Capacitors Miniature Mined | 1 |
| SM18 | 100 | Miseo Ceramics IDf 56pl | [1 |
| 5×19 | 100 | Mined Ceramics 6801. 0.5 m t | [1 |
| 5×20 | 100 | Assorted Polvesler/Pohstryene Capacitors | [1] |
| 5×21 | 60 | Mined C280 type capacitors metal loul | $[1$ |
| 5×22 | 100 | Electioimics, all sorts | [1 |
| 5×23 | 50 | Quality Electionaices 50.1000 mf | 11 |
| 5224 | 20 | Inntalum Beads. mised | [1 |

Quantities appioamate count by werght

AUDIO PLUGS, SOCKETS

 AND ACCESSORIES25 preces ol Audio Plugs. Sockets and Conn Soeakers. Phonc. Jach. Stereo and Mono, etc. etc. Valued at well ower [3 normal. Oider No. Sx 25 . Oui Price $[1.50$ Dei pata Guaranteed to save you money.
Su26 3 Prs of 6 ain 240° DIN Plugs and Chassus Sug Sockets
$5 u 37$ I Rught Angle Stereo Jach Plug 6.3 mm pius matching metal chassus mounting socket. sizs 4 Phono plugs and 2 dual ohono connections

Sx 31 I a 35 mm Plug to Phano Socket adaptor
300
300
300
$20 p$
200
200

SEMICONDUCTORS FROM AROUND THE WORLD

A Collection ol Transistors. Diodes. Rectiflers. Bridges SCR's Iracs IC's both Logic and Linear plus Optos all of which are curtent everyday usable devices

Guaranteed Value over t10 at Normal Retali Price

BI-PAK'S OPTO BARGAIN OF THE YEARI
Values at oves $£ 10$ - Nomal Retall-we otter rou a pach of 25 Opto devices to nclude LEO's Large and Small in Reo. Green Yellow and
Cleas 7 Serment Displaps both Common Cathoce and Common Anod
PLUS bubble yode displays-like DL-33 Pholo Tansistors-simiar to OCP71 Photo Detectors-like Mel11-12 This mhole dack ol 25
25

AND we puarantee pour money bach it pru are nol
Order Mo. SX8 7.

 132 I : Slandard lack Plug to Phono Sochet

 $\times 33$ adaptorSx33 In Pogrle Switch SPST Minature. 125w 10 A 5x34 IxTopgie Swith SPOP Manature. 125* 104 SX3S In Rocher Switen SPDT Minature 240v 5a 336 la Right Angle Mono lack Plug
13120 peces 1.284 mm plugs and socket
(Banana). Wziching colours and site.
sxso 10 assorted Switches loze Sine. Rocien
Push button
Sx77 25 mixed cable chips and ties round prommets plustic leet. Always sought by the project 50 p bulder 50 p

ع1FREE ${ }_{\text {PAK }}$

Gel a 51 FREE PACK. Orders over $[10$ encluding VAI Choose [1 Pach free (or 2 a 50 o) add 1 to pour order and Guve even more moner
The ofter only apolies to this advertisement

COLO

atisiaction or your money bach has always been BI.PAK's GUARANIEE and it still is All these Sale items are in stockitin quantity and we will despatch the same day as your order is received.

IC SOCKETS

The lowest price ever. The male you buy the cheaper they
Pin 10 off 50 off 100 oft 750 $\quad 53.00 \quad \mathrm{c5}$ 80D $\quad \mathbf{3 . 2 5} \quad \mathbf{5 5 . 5 0}$

VOLTAGE REGULATORS

T0220 $\begin{array}{llll}\text { Positive } 4 & \text { Negative }+ & \text { (please } \\ 7805-50 p & 7905-550\end{array}$ $\begin{array}{ll}7805-50 & 7905-55 p \\ 7812-50 p & 7912-55 p\end{array}$ $\begin{array}{lll}7815-50 p & 7915-55 p & \text { roitage } \\ 7824-50 p & 7924-550 & \text { required) }\end{array}$ Other types LM340K - 5 wolt -18 wolt -24 wolt 103-40p. UA723-14 pin DIL - 40 p
5×52
68 tach Heatsink will ht 10.3 and 10.220. Ready drilled. Half price value.
5253 I Power Innned Heatsink This heatsinh gives the greatest possibie healidissipation the smallest space owing to its unique staggered fin design, pre drilled.
10.3 Sure 45 mm squaren 20 mm high. 40 D
$5 \times 54 \quad 10.66$ suze. $35 \mathrm{~mm} \times 30 \mathrm{mma}=12 \mathrm{~mm}$. 35 p 5×55 I Heat Efficiency Power Finneo Meatsink. 90 mm a 80 mm a 35 mm High. Oruled to

5 watt (RMS) Audio Amp High Quality audio a molifier Module. Ideal for us record piapers, tape recordets, stereo amps and cassette players. etc. full data and oach-up diagrams with each module.
Specitication

- Power Out out 5 watts RMS Loac Impedance 8.16 ohms - Frequency response 50 Hz to $25 \mathrm{MHz}-30 \mathrm{do}$ -
 sor ohms surestortion less man. 5 \% distortion less than. 5

ع2.25

- Foe could not turita ane

MORE BARGAINEI

sus) 60 metres wire single and stranded. Mised
$5 x_{58} 25$ Assort
59. Series 74017 Gates 7400

10 Assorted flip flops and MSI
SxGO 2
5461 Potentiometers Suder
5 K 5 R Rotaly. Ouat etc
5452 Rotaty. Oual. etc
SK7) 10 piceo Suiterns 3 micto Switches - gias troe

STILL MOREI SLIDER POTEMTIOMETEAS

 $5 \times 65 \times 222 \mathrm{Log} 510$
 so bClumbilsor gan. Youtest. sx72 A mized bundle ol Conper ciad bonble sided A blass ano pader in
Pantashic Dalgain.

BI-PAK'E COMPLETELY NEW CATALOGUE

Completely re-designeo. Fultrot the npe of components you require. plus some very interesting ones you will soon be using and of course. the largest range of semiconductors for the Amateur and Profersional pou could hope to find. There are no wasted pages of useless information so ohten included in Calaloques published nowadays Just solid lacts i.e. pace. description and individual features of what we have azaitable. But remember. Bi. Patis policy has alwars been to sell quality components at competitive prices and Twal WE STLL 00 .
BI.PAK'S COMPLETELY MEW CATALOGUE is now ayalable to you You will be amared now much you can save when you shop for Etectronic Components with a BrPall Catalogue. Have one by you atl the time-it pars to buy Br. PAh

To recerve your copy send $\mathbf{7 5 p} \boldsymbol{p}$ plus 25 p p\&

S138 100 Silicon NPN Transistors-all perfect Coded mured types with data and equt. sheet. No rejects Real value. \quad [2.50 5x39 100 Silicon PNP Transistors-all perfect. Coded mixed types with data and equt sheet No relects. Fantastic value. [2.50

2 n3055 The best known Power Pransistors in the World - 2N305S NPN 115 w. Our BI-PAK Special Offer Price $10 \mathrm{ml} \quad 50 \mathrm{mi} \quad 100 \mathrm{olt}$

S0312 COMPLIMENTARY PNP POWER TRANSISTORS: 10 2N305S. Equintent M12955-80312-103 SPECLIA PRICE 60.70 areh
10 H1 56.50

In this second edition of 'Data File',
 Ray Marston shows how to use transistors, op-amps and 555 timers to make a variety of square wave or 'clock' generator circuits.

THE ‘SQUARE WAVE' GENERATOR IS one of the most basic circuit blocks used in modern electronics. It can be used for 'flashing' LED indicators, for generating audio tones, or for 'clocking' logic or counter/divider circuitry, etc. The generators themselves may produce either symmetrical or non-symmetrical waveforms, and may be of either the free running or the 'gated' type.

Square wave generator circuits are quite easy to design and may be based on a wide range of semiconductor technologies, including the humble bipolar transistor, the op-amp, the 555 timer chip, or on CMOS logic elements, etc. In this month's edition of 'Data File' we'll confine our discussion to designs based on the transistor, the op-amp and the 555.

Next month, we'll continue the subject by showing 22 different CMOS based square wave generator circuits.

TRANSISTOR ASTABLE CIRCUITS

One of the easiest and cheapest ways of generating repetitive square and rectangular waveforms is to use the basic twotransistor astable multivibrator circuit shown in Fig 1. A major advantage of this rather old-fashioned transistor circuit is that it can quite happily operate from supply voltages as low as 1.5 volts or, with a slight modification, from supply voltages up to several tens of volts.

The Fig l circuit acts essentially as a self-oscillating regenerative switch, in which the on and off periods of the circuit are controlled by the C1-R1 and C2-R2 time constants. If these time constants are equal (C 1 equals C 2 and R 1 equals R 2), the circuit acts as a square wave generator and operates at a frequency of approximately $1 /(1.4 \mathrm{C} 1 \mathrm{R} 1)$. Thus, the frequency can be decreased by raising the values of $\mathrm{C} 1-\mathrm{C} 2$ or $\mathrm{R} 1-\mathrm{R} 2$, or vice versa. The frequency can be made variable by using twin gang variable resistors (in series with 10k limiting resistors) in place of R1 and R2.

Figure 2: This version of the $1 \mathbf{k H z}$ astable has frequency correction applied via D1 and D2 and can be used with any supply voltage up to the breakdown limits of the transistors.

Figure 3: This version of the 1 kHz astable has waveform correction applied via D1 and D2 and produces excellent square waves.

Outputs can be taken from either collector of the Fig I circuit, and the two outputs are in antiphase. The operating frequency of the circuit is substantially independent of supply rail values in the range 1.5 to 9 volts. The upper supply voltage limit is set by the fact that, as the transistors switch regeneratively at the end of each half cycle, the base emitter junction of one transistor is reverse biased by an amount roughly equal to the supply voltage. Consequently, if the supply voltage exceeds the reverse base emitter breakdown voltage of the transistor (typically about 9 volts), the timing operation of the circuit will be upset. This snag can be overcome by using the circuit modification shown in Fig 2.

Here, a 1 N4148 diode is wired in series with the base input terminal of each transistor and effectively raises the reverse base emitter breakdown voltage of each transistor to about 80 volts. The maximum supply voltage of the circuit is then limited only by the collector emitter breakdown characteristics of the transistors, and may be several tens of volts. In practice, the 'protected' circuit of Fig 2 gives a frequency variation of only 2% when the supply voltage is varied from 6 V to 18 V .

The leading edges of the output waveforms of the Fig 1 and 2

Figure 5a: Basic variable M/S ratio astable, operating at about 1100 Hz .
circuits are slightly rounded. The lower the values of R1 and R2 become relative to collector resistors R3 and R4, the worse this rounding becomes. Conversely, the larger the values of R1 and R2 relative to R3 and R4, the better the waveshape will be. The maximum permissible values of R1 and R2 are equal to the products of transistor current gain (say 90) and the R3 (or R4) values (1 k 8 in this case), so the maximum possible values of R1 and R2 are 162 k in the Fig I and 2 circuits.

The rounding of the leading edges of the basic astable circuit occurs because the collector voltage of each transistor is prevented from rising immediately to the positive rail voltage as the transistor turns off, because of loading by its cross-coupled timing capacitor. This deficiency can be overcome, and excellent square waves obtained, by effectively disconnecting the capacitor from the collector of its transistor as it turns off, as in the 1 kHz generator of Fig 3. Here, D1 and D2 are used to disconnect the timing capacitors at the moment of regenerative switching. The main time constants of the circuit are again determined by C1-R1 and C2-R2. The effective collector loads of Q1 and Q2 are equal to the parallel resistances of R3-R4 and R5-R6 respectively.

Figure 4: This $\mathbf{1 k H z}$ astable has a sure start facility.

Figure 5b: This improved version of the variable M/S ratio astable has waveform correction and the sure start facility.

Figure 6: Basic op-amp relaxation oscillator circuit.

Figure 7a: Simple 500 Hz to 5 kHz square wave generator, and Figure 7b: an improved version of the circuit.

Figure 8: Four-decade $(2 \mathrm{~Hz}$ to 20 kHz$)$ square wave generator. The preset pots enable the circuit to use a single calibrated frequency scale.

Figure 9: Variable frequency, variable mark/space ratio 'square wave' generator.

Operation of the basic astable multivibrator relies on slight imbalances of the transistor characteristics, so that one transistor turns on slightly faster than the other when power is first applied. If the voltage to the circuit is applied by slowly increasing it from zero volts, both transistors may turn on simultaneously, in which case oscillation will not occur. This snag can be overcome by using the sure start circuit of Fig 4, in which the timing resistors are connected to the transistor collectors in such a way that only one transistor can ever be turned on at a given moment.

The transistor astable circuits that we have looked at so far are designed to give a symmetrical output waveform, with a $1: 1$ mark/space ratio. A non-symmetrical waveform can be obtained by simply making one set of astable time constant components larger than the other. Fig $5 a$ shows the connections for making a fixed frequency (about 1100 Hz) variable mark/space ratio waveform generator, in which the ratio can be fully varied over the range $1: 10$ to $10: 1$.

The leading edges of the output waveforms of the above circuit may be objectionably rounded for some applications when the mark/space control is set to its extreme positions. Also, the circuit may be difficult to start if the supply voltage is applied to the circuit slowly. Both of these snags can be overcome by using the connections of Fig $5 b$, in which the circuit is fitted with sure start and waveform correction diodes.

OP-AMP SOUARE WAVE GENERATORS

Good square waves can be generated by using a fast op-amp, such as the LF351, in the basic relaxation oscillator configuration shown in Fig 6. This circuit requires the use of dual power supplies and, because of the slew-rate limitations of op-amps, it's output waveform rise and fall times are not as good as those obtained from transistor, 555 , or CMOS astables. The op-amp circuit has, however, some distinct advantages over these alternative types of 'square wave' generator.

Specifically, it has excellent frequency stability and waveform symmetry, and it's operating frequency can be varied over a wide range by altering any one of it's four passive component values.

The basic operation of the Fig 6 circuit is fairly easy to follow. In operation, the output of the op-amp alternately switches between the +ve or -ve 'reference' voltage to the non-inverting terminal of the op-amp, this reference voltage being a fixed fraction or ratio (determined by the $\mathrm{R} 2-\mathrm{R} 3$ ratios) of the supply voltage. Suppose initially that Cl is discharged and the op-amp output has just switched $+v e$. In this case Cl will charge positively via R1 until it's voltage reaches the + ve reference value on the non-inverting terminal of the op-amp, at which point
the op-amp output voltage (and thus the reference voltage) will start to fall and thus initiate a regenerative switching action in which the output switches abruptly to the negative rail voltage.

Cl will then start to charge in a negative direction via R1 until it's voltage reaches the new (negative) reference value on the non-inverting terminal, at which point the op-amp output will again switch regeneratively high and initiate a new action in which the whole sequence repeats itself

The action of the op-amp circuit is such that a symmetrical square wave is developed at the output of the op-amp, and a nonlinear triangle waveform is developed across Cl . Each waveform swings symmetrically about the zero-volts line. Note that the operating frequency is virtually independent of the supply rail voltages, but can be varied by altering the R 1 or Cl values, or by altering the $\mathrm{R} 2-\mathrm{R} 3$ ratios.

Figure $7 a$ shows the practical circuit of a simple 500 Hz to 5 kHz op-amp square wave generator, in which the frequency variation is obtained by altering the attenuation ratio of the R2-RV1-R3 potential divider, and Fig $7 b$ shows how the circuit can be improved by using RPS1 to preset the frequency range of the RV1 frequency control to a precise minimum value, and by using RV2 as an output amplitude control.

Figure 8 shows how the above circuit can be modified to make a general purpose square wave generator that covers the range 2 Hz to 20 kHz in four switched decade ranges. Note that preset controls RPS1 to RPS4 are used to precisely set the minimum frequencies of the $2 \mathrm{~Hz}-20 \mathrm{~Hz}, 20 \mathrm{~Hz}-200 \mathrm{~Hz}, 200 \mathrm{~Hz}-2 \mathrm{kHz}$, and $2 \mathrm{kHz}-20 \mathrm{kHz}$ ranges respectively, without calling for the use of precision components.

Finally, Fig 9 shows how the basic relaxation oscillator circuit can be modified so that it provides both a variable frequency and a variable mark/space ratio output. The M/S ratio is variable via RV1, and the circuit action is such that Cl alternately charges positively via R1-D1 and the left-hand side of RV1 and charges negatively via R1-D2 and the right-hand side of RV1. The M/S ratio is variable over the range $11: 1$ to $1: 11$, and the frequency is variable over the approximate range 650 Hz to 6.5 kHz via RV 2 . Varying the M/S ratio setting causes only slight interaction with the frequency control.

Note that the Fig 6 to 9 circuits can be used with virtually any types of op-amps, but that the maximum usable frequency and the quality of the output rise and fall times depends on the slew rate of the op-amp that is used. The LF351, for example, gives a

Figure 10a: Basic circuit of 1 kHz ' 555 ' astable, with timing formulae.

Figure 10b: Approximate relationship between C1, R2 and frequency of the 555 astable when R2 is large relative to R1.

Figure 11: This variable frequency square wave generator covers the range 1.4 kHz to 15kHz via RV1.

Figure 12: This 2-LED flasher operates at just under 1 Hz . One LED turns on as the other turns off, and vice versa.

Figure 13: Astable with mark and space periods independently variable over the approximate range 15 uS to 1.5 mS .

Figure 14: Astable with dury cycle variable from 1\% to 99% via RV1. Frequency is almost constant at 1.2 kHz .

Figure 15: Electronically gated astable with gate signal applied to the pin 4 RESET terminal of the IC.

Figure 16: Electronically gated astable, with the gate signal applied to C1 via Q1.
performance that is about ten times better than the 741 in these respects. Also note that although we've shown the circuits as being powered from 9 volt split supplies, they can in fact be powered from any split supplies in the range 5 to 18 V .

555 ASTABLE CIRCUITS

The IC known as the ' 555 timer' makes an excellent square wave generator when used in the astable mode. The device is readily available, inexpensive, and is housed in an 8 pin d.i.t. plastic package. It can be powered by any supply in the range 4.5 to 15 volts, has a low impedance output that can source (supply) or sink (absorb) load currents up to 200 mA and, when used in the astable mode, generates output square waves with typical rise and fall times of about 100 nS . The 555 astable has excellent frequency stability, can span the frequency range from near-zero to about 100 kHz , and it's frequency and M/S ratio can be accurately controlled with two external resistors and one capacitor.

Figure 10a shows the practical circuit of a basic 1 kHz ' 555 ' astable, together with the formulae that define the timing of the circuit. The circuit operation is such that Cl first charges exponentially via the series R1-R2 combination until eventually it's voltage rises to $2 / 3$ rds of the supply voltage, at which point a regenerative switching action takes place and Cl starts to discharge exponentially via R2 until eventually it's voltage falls to $1 / 3$ rd of the supply voltage, at which point a second regenerative switching action takes place and Cl starts to re-charge towards $2 / 3$ rds of the supply voltage via R1-R2, and the whole sequence repeats. C2 is used in this circuit (and those that follow) to decouple the internal circuitry of the 555 chip from the effects of supply line transients.

Note that the operating frequency of the above circuit is virtually independent of the supply voltage value, and that both the mark/space ratio and the frequency are determined by the R1-R2-Cl values. Also note that if R2 is large relative to R1, the operating frequency is determined mainly by the R2 and CI values and that an almost symmetrical output waveform is generated. The graph of Fig lob shows the approximate relationship between frequency and the C1-R2 values under the above condition. In practice, the R1 and R2 values can be varied from about 1 k 0 to 10M.

The basic Fig 10a circuit can be modified in a number of ways. Fig II, for example, shows how it can be made into a variable frequency square wave generator by replacing R2 with a fixed and a variable resistor in series. With the component values shown,
the frequency can be varied over the approximate range 1.4 kHz to 15 kHz via RV1.

Figure 12 shows how the circuit can be used as a 2-LED 'flasher' unit, in which one LED turns off as the other turns on, and vice versa. The circuit operates at a frequency of just under 1 Hz .

Figure 13 shows how the circuit can be modified so that it's mark and space periods are independently variable over the approximate range 15 uS to 1.5 mS . Here, timing capacitor Cl alternately charges via R1-RV1-D1 and discharges via RV2-R2D2.

Figure 14 shows how the circuit can be modified so that it acts as a fixed frequency 'square wave' generator with a mark/space ratio or duty cycle that is fully variable from 1% to 99% via RV1. Here, C1 alternately charges via R1 and the top half of RV1 and D1, and discharges via D2-R2 and the lower half of RV1. Note that the sum of these two timing periods is virtually constant, so the operating frequency is almost independent of the setting of RV1.

The 555 astable circuit can be gated on and off (enabled or disabled) either by applying a gate signal to pin 4 , or by disabling or enabling the main timing capacitor via a transistor switch.

Figure 15 shows how the circuit can be gated via the pin 4 (reset) terminal. The characteristic of this terminal is such that, if the terminal is biased above a nominal 0.7 volts, the astable is enabled, but if it is biased below 0.7 volts by a current greater than 100 uA (by taking pin 4 to ground via a resistance less than 7 k 0 , for example) the astable is disabled and it's output is grounded. Thus, in the Fig 15 circuit the astable can be turned on by applying a high or logic 1 signal to pin 4 , or off by applying a zero or logic 0 signal to pin 4 .

Finally, to complete this month's look at square wave generator circuits, Fig 16 shows how the 555 astable can be gated on and off via a transistor wired across main timing capacitor C1. Here, with zero gate drive applied, Q1 is cut off and the astable is free to operate in the normal way, but when a high gate signal is applied Q1 is driven on and discharges C1, thus disabling the astable. Note that the output of this circuit is driven high when the astable is disabled in this way. $\mathbf{R} \& \mathbf{E W}$

In this concluding part of the series, A.L. Bailey describes the testing, final construction and calibration of our 8 Digit Frequency/Capacitance Meter project.

TESTING

Before dashing off and wiring all the pcb's into the case, it is strongly recommended that the following tests and checks are carried out to ascertain that the major functions are operating satisfactorily. It is easier to locate any faults with the pcb's on the bench when accessability is not a problem.

Double check each pcb for wrongly inserted components, reversed IC's, solder bridges etc. It is too late to do this after the power is applied.

First check the power supply. Connect mains power (carefully) to the input of the transformer, making sure that the earth lead is firmly soldered to the pcb underside before switching on. Rest the pcb on some insulating material while the tests are in progress to avoid accidents. Check with a multimeter that the output voltage is $+5 \mathrm{v} \pm 0.2 \mathrm{v}$. The off-load voltage at C34 + ve terminal should be around 20 v .
Connect the multimeter on its 100 mA current range between the charger output and earth. A reading of $45 \mathrm{~mA} \pm 5 \mathrm{~mA}$ should result. If too far out, the value of R58 can be changed to get nearer to 45 mA . Do not continue with the tests unless the power supply is O.K.

.... the display

Plug the display pcb into the driver board. Referring to Figure 17, connect the +5 v pin to the psu +5 v output and solder an earth link between the underside of the 2 pcbs. Connect point B to point G. Connect one end of a wire to point A. Apply power and touch the other end of the free wire to points C, D, E, F and G, one after the other. The display should show $.000000, .00000, .0000, .000$ and .00 respectively, with the GATE led flashing at 1 second intervals. Change the wire from point B to G to B to F and connect the other wire to point F also. The GATE
led should now flash at 10 second intervals, with .000 on the display. Reconnect point B to point G.

If any segments or digits of the display fail to illuminate, look for breaks in the pcb tracks or pins not soldered etc.

Connect a lead to the +5 v supply and touch the other end to point Q , then R when the dc and ac led's should each light.

Now place the preamp/capacity measuring pcb alongside the driver pcb and connect an earth link to the underside of the 2 pcb's. Link point $\mathrm{H}-\mathrm{K}$ on each together, point S to T, and $+5 v$ to each of the 2 connection pins marked $+5 v$ and $+5 v$ VHF. Link point M to $+5 v$ and points L, N \& P to earth. Set VR's 1, 2, 3 and TC1 to mid travel.

.... the pre-amps

The preamplifiers can now be checked out. First the AF amplifier, by applying a signal within its range (to 1 MHz approx) to point W . A reading directly in kHz should be obtained with the SIGNAL led illuminated, once sufficient signal is available to drive the counter. If no reading results, check that the voltage at the collector of TR10 changes when the signal is applied. If not, the fault is in the amplifier, otherwise in the control logic IC4 \& 5 .

Rewire point L to +5 V and points M, N \& P to earth (to select the control logic for the HF amplifier input). A signal applied to point X, in the range 1 to 50 MHz should read on the display, although the decimal point will be incorrect for MHz at present. Again, if no reading results, check the voltage at the collector of TR6, and pin 2 of IC3 for changes with signal.

Rewire point N to +5 v and point L, M \& P to earth. Check the VHF input by applying a signal to point Y. Again, the decimal point will be incorrect but the reading should otherwise be correct. Pin 11/IC1 and pin 2/IC2 should vary with
signal. If you want to achieve the highest possible frequency response from the counter, it is possible to remove the socket into which IC1 is plugged, and wire the IC directly into the pcb. This point has been left to this stage in case of a fault in IC1, as it could not be changed by the supplier if soldered, and it is a fairly expensive chip!

It only remains to check out the capacity measuring circuit. Reconnect P to $+5 v$, and point $L, M \& N$ to earth. Connect point V to +5 v . Apply power and a reading should be obtained on the display which is the residual circuit capacity. Check that by varying VR3 this reading can be set to zero. Connect a capacitor (preferably polystyrene or silver mica around $500-1000 \mathrm{pF}$ in value) between the Cx terminal and earth. The reading obtained should by adjustment of VR1 be capable of being set to the capacitor value. If no reading is obtained, short the Cx terminal to earth when a reading of around 1003.000 should result. If there is no reading the 1 MHz oscillator (IC6/7) may not be functioning - this can be checked by connecting point H to pin 13 of IC8 when the same reading should result. If it does, the fault is in the circuit associated with IC9/10. An oscilloscope is really required to check this out, although judicious use of a multimeter will narrow the possibilities. Move the link currently connected to point V over to point U and connect a capacitor of value between $100-500 \mathrm{uF}$ from Cx to earth. This should be read but the value will depend on the capacitor tolerance and the setting of RV2, but should be in the right region.

If all this has checked out O.K. then the boards may be disconnected from all the links, and the case construction started.

CONSTRUCTION

The prototype was designed to fit into a Centurian instrument case type DX4 and the following assumes that this case will be used. It has the advantage of only requiring the front panel to be painted and lettered as the remainder is already finished in black vinyl. The kit suppliers can also supply the front panel already drilled, punched and screened with the

DFCM 500 PROJECT

various legends if required. There is no reason why another type of case cannot be used if preferred, the only point to note is that the mains transformer should be kept as far away from the capacity measuring circuit as possible, as it can affect the readings due to pick up of mains hum.

.... the case

Figures 18 and 19, give the drilling plan for the base, rear and front panels. When all the holes and cut-outs are complete, the front panel can either be left unpainted and polished up before lettering and spraying with clear varnish, or primed and sprayed with car aerosol paint. The author used matt black paint and 'Joy' chromate primer for the prototype, and after applying the legends with Letraset, finished with a coat of Dupli-colour 'leveller' which is only a solvent, but fixes the legends in place without destroying the matt black finish.
Start the final construction by assembling the base panel, 2 lower angle strips and rear and side panels with their 4 fixing screws. Fix the mains socket into place on the rear panel. Referring to Figure 17, attach a 4 inch length of 2 core mains cable to the mains switch (on the tagged connector side) to the 2 terminals nearest the front of the switch, and a 12 inch length of the same cable to the other 2 terminals on the switch, again on the tag side. Clip off the 4 pins of these terminals on the other side of the switch. Connect the other end of the short lead to the two input connections to the transformer on the psu pcb, taking the cable through the holes with the insulation level with the pcb upper surface.

The psu pcb may now be bolted into place with a $1 / 4$ inch metal spacer between each hole and the lower panel, using 6BA us, bolts and lockwasher. A solder tag should be placed under the nut at the top right hand corner of the pcb.
Connect this tag to the upper tag on the mains connector. Bolt the mains switch into place with the leads on the underside, a .5 inch spacer between the back of the front panel and the front of the switch bracket, in each bolt position. Connect the other end of the long mains lead to the mains socket lower tags.

Insert the remaining 8 fixing bolts and nuts for the other two pcb's on the lower panel. Each consists of a .5 inch 6BA bolt inserted from the underside of the panel, then a lockwasher and 6BA full nut tightened down onto the lockwasher.

Before fixing the display/driver pcb into position, a piece of polarised red filter material should be glued into place behind the front panel for the displays - size $13 \times 30 \mathrm{~mm}$. This is supplied with the kits. Now drop the display/driver pcb onto its mounting bolts and carefully locate into place holding the front panel slightly forward so that the LED's will go through the front panel in the holes provided. If, on straightening the panel up, the LED's project too far out from the panel, they should be resoldered slightly further back. Fix the pcb into position with a lockwasher and nut on each bolt.

Now mount the preamplifier/capacity measuring pcb into position, with IC1 at the front of the board attaching a solder tag to the front right hand corner of the pcb before fixing down. Mount the two

BNC sockets on the front panel. Attach a short lead from the right hand BNC socket centre tag to the VHF input (point Y). Strip the insulation off each end of a 4 inch length of UR95 or similar miniature coaxial cable for .5 inch and separate the outer conductor into a pigtail and tin it. Strip $1 / 8$ th inch of insulation off the end of the centre conductor at each end, and solder one end to the left hand BNC centre conductor tag, and the braid to the earth tag on the socket.

Mount the two push clips in the two right hand holes on the front panel, and connect the right hand one direct to the earth tag on the preamplifier board and the left hand one to the Cx connection pin.

.... interwiring

Colour code the wires so that you know which is which, connect 3 inch lengths of wire to points U, V and +5 v VHF connection pins, leaving the other ends free. Also strip another 4 inch length of coaxial cable, attaching the centre conductor of one end to point X , and the braid to the pin in front of Y. The switch unit may now be bolted into position (tag connectors uppermost) using .5 inch spacers between the front of the switch bracket and the front panel.
The remainder of the wiring can now be completed. Follow Figure 17 very carefully, the best way being to mark each connection as you finish it with a red pen either on Figure 17, or a photocopy. Solder the various interswitch connections first, then complete those to the other modules. The three pigtails from the coaxial leads should be soldered together

BACK PANEL (viewed from coated side)

FRONT PANEL (front view)

9 HOLES ' A ' 3 mm dia.
8 HOLES 'B' 8mm dia.
2 HOLES ' C ' 6 mm dia.
2 HOLES 'O' 9mm dla

Figure 18: Constructional details of the front and rear panels.

Figure 19: Constructional details of the bottom panel (viewed from the non-coated side).
behind the switch unit and insulated with tape or sleeving. The two sets of leads from the battery connectors must be soldered so that the 2 battery holders are in series, not parallel. Do not forget to solder D14 across the appropriate tags on SW7 - this diode is not shown on the circuit diagram but is an additional safeguard to prevent the battery discharging back into the charging circuit under certain switch combinations.

When connected, the two battery packs mount in the rear right hand corner of the chassis, as shown in the photographs and are secured to the bottom chassis plate with double sided adhesive tape.
The final piece of work is to make sure that there is no danger from touching the various points carrying mains voltages by insulating the top of the mains switch, and the tags on the mains connector. This can be done with insulating tape, or a rubber boot if available.
When all the wiring is complete, apply mains voltage from a properly terminated connector to the rear panel socket, and switch on. Check that the various inputs all function correctly, and that the decimal points are in the correct places. Depressing the $\times 10$ button should increase the gate time to 10 seconds from 1 second, and move the decimal point 1 place to the left for each range except capacitance which should be unaffected by either the $x 10$ or $1 / 1000 u F$ buttons. Any deviation will be due to wiring errors.

Depression of the mains and battery buttons should leave the display blank and both AC and DC LED's illuminated. As a final check remove FS2 from its holder and use a milliameter to make sure that the charging current is still 45 mA or so when in this charge mode.

Selection of battery mode should work
O.K. but the batteries are likely to have little charge and the display may fade out after a short while. The instrument should be left in full charge mode for at least 14-20 hours to get the batteries up to full charge. When used under portable conditions, the operating time available will vary greatly depending on the range and number of digits illuminated at any time, but can be expected to lie between I and $2 / 3$ hours. Greatest consumption is on the VHF range due to ICl . This runs very hot to the touch, which is normal for ECL.

CALIBRATION

To set up the 10 MHz crystal correctly requires the use of a radio tuned to 200 kHz long wave. If the radio is held close to ICII, a very strong 1 kHz heterodyne will be heard. Underneath this will be an underlying slow beat which can be nulled out with TC1, when the crystal will be on frequency. This may require several attempts to trim spot on.

Alternatively, another frequency counter could be used against which this could be calibrated, but this is almost certain to introduce errors.

The capacitance circuit can be calibrated by using a known close tolerance silver mica capacitor (100 pF or near) and using VR1 to get the correct reading, after setting the display to zero with RV3. These settings interact to some extent so will need to be repeated. The 100 uF range is more of a problem, as close tolerance capacitors of any appreciable value are virtually impossible to obtain. The best way is to measure a value just under luF on the 1 uF range, then to set up the 1000 uF range to read the same figure without removing the capacitor. Do no readjust the zero setting on the $1 u F$
range. Bear in mind that there is no overrange indication on capacity, and that the display will indicate the frequency of the 1 MHz oscillator once values of greater than 1 or 1000 uF are measured.

USING THE DFCM 500

The frequency measuring section of the DFCM 500 can be used to measure the frequency of virtually any oscillator providing sufficient drive is available for the instrument to operate correctly. One point to note is that if the VHF amplifier signal input is marginal, the display will tend to read twice the actual frequency but this should be obvious as the nominal frequency will usually be known.
Although the various amplifiers have isolated inputs, it is advisable to connect another capacitor of a voltage suitable for the circuit under test, especially if this is carrying high voltage, in series with the input. Connection to the circuit under test can be direct, or via a coupling loop of a few turns of wire if this is more suitable, say for inductors in oscillators. Transmitter output frequencies can usually be measured by plugging a small whip antenna into the appropriate input socket and placing the instrument nearby, with no direct connection to the transmitter under test. For very low power hand transmitter, a few turns of insulated wire wrapped around its antenna may be necessary for a reliable reading of the frequency, R\&EW

Using UARTs Part 2

Jonathan C Burchell describes the function of the UART, plus a universal 8 bit input/output port that is usable with any personal computer with serial input/output capability.

THE UART ITSELF

There are two main classes of UART; those designed as Logic subsystems for truly 'Stand-alone' operation, and those designed to interface directly to a microprocessor. This month we take a look at the second class, which primarily finds uses in interfaces designed to be placed remotely from the computer, and to talk to a UART of the first sort within the computer.

The UART derives it's timing from the baud rate clock, which is 16 times the desired bit rate. The two halves of a UART (receiver/transmitter) operate totally independently of each other, and it is convenient to study them that way, as follows:

THE RECEIVER LOGIC

Figure 1 shows a block diagram of the receiver logic of an AY-5-1012 UART. This device is typical of its class and is in fact pin for pin compatible with the following devices: AY-5-1013, TR1602, TR1604, TR 1863 and IM6402, the only difference being the manufacturer, whether or not the device is 5 V only, (some members of this family need -12 volts to be supplied to pin 2) and the maximum operating speed of the device.

The receiver logic continually samples the SERIAL INPUT line, looking for a mark-to-space transition signalling the beginning of the first start bit. Once a transition has been detected, the receiver logic samples the line at every $8+16 \mathrm{~N}$ clock periods. If the first sample is a mark, the receiver rejects the possibility of having detected a valid start bit and returns to the hunting mode. Assuming the first sample is still a space, the receiver enters the data entry mode and samples the line \mathbf{M} times, where M is $5,6,7$, or 8 writing the state of the receiver line into the next position in the receiver shift register each time. The input line is sampled for one clock period in the nominal centre of a bit period (see Fig 2): This technique is called window sampling and accounts for the great tolerance of speed variation and noise immunity of the UART receiver.

The receiver next checks the parity of the M data bits and compares this with the parity sense selected on Pin 39. If pin 35 NO-PARITY is enabled (high) no further action is taken and the parity error line (Pin 13) is held low, otherwise any difference from the computed and selected parity is latched into the parity error line.

The receiver next checks that the input line is still marking (e.g. a valid stop bit has been transmitted) and if it is not sets the framing error bit.

One clock cycle after the stop bit has been sampled, the receiver logic transfers the contents of the shift register to the holding register and thus to the receiver data register pins. The logic then sets the DATA AVAILABLE flag to indicate that a character has been received and is available at the output pins. If the DATA AVAILABLE flip/flop has not been cleared by the RESET DATA AVAILABLE line having been strobed low during the last character period, the logic sets the OVERRUN flip/flop to indicate that the last character in the register (which has not been read by the external logic) has just been overwritten:

THE TRANSMITTER LOGIC (Fig 3)

When in the idle state the TRANSMITTER OUTPUT line Pin 25 is held high. A high to low transition on the DATA STROBE line loads the transmitter holding register with the data on the transmitter input pins. As soon as the previous character has been transmitted the logic loads the transmitter shift register with the holding register contents, and brings TRANSMITTER BUFFER EMPTY high, to indicate that a new character may be loaded into the transmitter buffer.

After the SERIAL OUTPUT has been brought low for 16 clock periods (the start bit) the contents of the transmitter shift register are presented to the output line M times. Each 'bit' time remains at 16 clock periods. The transmitter logic next calculates

Figure 1: Block diagram of the receiver logic fo the AY-5-1012 UART.

Figure 2: Waveforms demonstrating the receiver's window sampling technique.

figure 3: Block diagram of the UART transmitter.

110	High on I/P or O/P	Name	Pin No	Name	High	P or O/P	$1 / 0$
1		Vcc	0140	TC	16x		1
I	-12 V connection	Vgg	0239	PS	ODD	VEN	1
1	Ground connection	Gnd	$03 \quad 38$	WS1	Word		1
1	Rd1-RD8 Tristated	DE	0437	WS2	Word		1
0	MSB Rec. DATA out	RD8	0536	NSB	Two	bits	1
0	Bit 7	RD7	0635	NP	No-p		1
0	Bit 6	RD6	$07 \quad 34$	CS	Load	ol reg	1
0	Bit 5	RD5	0833	DB8	Bit 8	MSB	1
0	Bit 4	RD4	0932	DB7	Bit 7		1
0	Bit 3	RD3	$10 \quad 31$	D86	Bit 6		1
0	Bit 2	RD2	1130	D85	Bit 5		1
0	LSB Rec DATA out	RD1	$12 \quad 29$	D84	Bit 4		1
0	Parity error	PE	$13 \quad 28$	D83	Bit 3		1
0	Framing error	FE	$14 \quad 27$	DB2	Bit 2		1
0	Overrun error	OE	1526	D81	Tran	data LSB	1
I	Status Tristated	SWE	1625	SO	Low	space	0
I	16x baud rate	RC	$17 \quad 24$	EOC	Low	character TX	0
1	Low resets DA	DAR	1823	DS	Low	TR	1
0	New character	DA	1922	TBE	Hold	ister empty	0
,	Marking	SI	$20 \quad 21$	MR	Clear		1
Table 1	WS 1	WS2		Word length			
	LOW	LOW		5 Bits		Figure 4:	
	HIGH	LOW		6 Bits		Pin analysis of	
	LOW	HIGH		7 Bits		Pin analysis	
	HIGH	LOW		8 B		the UART functions.	

\square

Figure 5b: The transmitter and receiver timing waveforms.

Figure 8: Bit-rate generator with 8 simultaneous frequencies (this diagram was omitted from last month's UART feature).
the parity according to the mode selected by the parity select input and, if NO-PARITY is not enabled, appends the parity bit to the last data bit. The stop bit, or bits are then appended to the last data or parity bit. The EOC flag (Pin 24) is held low all the time a character is being transmitted.

Both the transmitter and receiver are double buffered. During reception a second character can thus be being received before the first has been read, and during transmission a second character may be loaded into the holding register before the first has been transmitted. Fig 4 provides a pin by pin analysis of the UART functions.

PUTTING IT ALL TOGETHER

Figure 5 shows a universal 8 bit input/output port which may be used to communicate with any personal computer with serial I/O capability. Each time a character is received, the DATA AVAILABLE flag triggers the monostable, which provides both positive and negative going strobes to the outside world as well as correctly resetting the DATA AVAILABLE flip/flop.

The receiver outputs can be used as a general purpose 8 bit output port, or to connect a Centronics parallel printer to a serial port (See November R\&EW): This technique works best with a buffered, fairly fast printer, and a slow RS232 line, as no handshaking from printer to computer is provided for.

The transmitter is loaded each time DATA STROBE is brought low. If the maximum character rate can exceed 1.5 times the RS232 transmission rate, the external logic should be designed to check that the transmitter BUFFER EMPTY line is in the valid state before strobing DATA STROBE.

The transmitter input may, of course, be connected to virtually anything, including a standard parallel ASCII keyboard. The keyboard strobe will often connect direct to DATA STROBE.

Next month, in the final part of this series, we will look at the software aspect of the last class of UART's, namely those used to directly interface with a microprocessor.
Footnote: Last month's Fig 8 was not included with the text. It is reproduced below.

R\&EW

Next Month's R\&EW presents PROJECT INNOVATIONS in

COMPUTING: Z-8 DEVELOPMENT SYSTEM

Europe's most advanced low-cost microprocessor development system, the 2-8 PDS. Designed and developed in R\&EW's laboratory, this unique unit is programmable in Tiny Basic via almost any commercial/personal computer/terminal with a serial 1/0 capability. The 2-8 Programmable Development System features 8 K -bytes of on-board RAM, 4K-bytes of EPROM, and a total of 16 input/output ports.

Specifically designed to facilitate the rapid development of 'dedicated' machine / process control systems and using a high level programming language, the 2-8 PDS can be used to give total microprocessor control of radios, test gear, domestic heating/ lighting/security systems and industrial control/robotics systems. An absolute MUST project for all amateur and professional 'micro' engineers.

RADIO: 40-CHANNEL CB RIG

The UK's first FULL SPEC DIY 40 -channel CB rig. Designed and fully kitted by R\&EW, this unique project features fully synthesised tuning (with expansion to include channel scanning), 40-channel 'station' indication, 4 watts output power, etc., etc.

Fully engineered to R\& EW's exacting standards, the rig is battery powered at 12 volts and suitable for either portable, mobile or 'shack' use.

TV: 'SINGLE CHIP' TV PATTERN GENERATOR

A state-of-the-art piece of test gear giving dot, cross hatch and gey scale, etc., outputs. Complete with built-in sound/vision modulator, this low-cost project gives a truly sophisticated performance.
PLUS a TV antenna-selector and lots, lots more.
including,

REVIEWS OF:-

RADIO: Our now-famous reviews continue with the final part of the BIG MATCH between the FRG7700 and R1000 receivers. and

FEATURES

TEST GEAR: In-depth looks at Marconi's fully synthesised TF2019 signal generator, and at the Thurlby $43 / 4$ digit test meter.
plus the usual features,
including
DATA FILE (with 22 CMOS circuits), DATA BRIEF, and part 2 of FREOUENCY SYNTHESIS.

A POWER METER DUET

Abstract

Roger Ray reflects on two directional RF Power Meters, the Rohde \& Schwarz Naus 4 and the Telewave 44A.

Directional

POWER METERS ARE general. inserted between transmitter and aerial, and used to measure both power output from the transmitter and the match of the aerial. Transmitted power is that indicated in the FORWARD direction, while REVERSE power gives a measurement of the match of aerial or load. The degree of match or mis-match is usually quoted as a Voltage Standing Wave Radio (VSWR), and is calculated from the two powers measured.

Professional directional power meters are used to give both accurate power and VSWR measurements. Frequency range, direct power calibration, and accuracy set these instruments apart from the cheaper, commonly available SWR bridges. The Naus 4 and the 44A definitely fall into the professional category. These instruments use one or more directional couplers to sample the power in the line being measured. Forward and reverse powers in the directional coupler(s) are converted into DC voltages by rectifier diodes. The voltages are displayed separately on two meters in the case of the Naus 4 and on one switched meter in the 44A. All of the meters are calibrated in Watts and display average power.

Both of the power meters reviewed have an upper frequency limit of 1000 MHz . The lower limit on the Naus 4 is 25 MHz , while the 44 A extends this down to 20 MHz . The drawback though with the Telewave 44 A is that all measurements below 50 MHz are subject to a calibration factor (see accompanying chart). This is something that could easily be missed by someone unfamiliar with the instrument. An example of this is that if a 27 MHz CB transmitter is measured without taking into account the calibration factor, the measurement would be 20-25\% low.

Ex World War II

The Telewave 44A is ruggedly constructed with a die-cast alloy case, heavy rubber meter protection and leather carrying strap. The meter itself would not look amiss in a piece of WWII surplus equipment. In the instrument reviewed the meter was set about 5 degrees out of square, which did not add to its asthetics. In practice though the meter is functional, and the five scales (one for each range)

Above: The Telewave 44A power meter.
Below: The Rohde and Schwarz Maus 4 power meter.

well spread out. Behind the scale is a good 20 uA taut-band movement, which is short-circuited for protective damping when the front panel FWD/REV switch is in the OFF position. Forward power is of course only forward power when the power meter is connected the right way round, and there is no marking on the
case to indicate which way round is correct. In fairness, this is only a minor point, as the input is conventional being on the left-hand side. The overall appearance of the 44 A is of a service instrument, that should well take the wear and tear of the service environment.

Laboratory Use

The R\&S Naus 4 is housed in a pressed steel box, with an aluminium carrying handle. It differs from the 44A and indeed other power meters, in that the measuring head is remote from the main body of the instrument. The head is connected by means of a permanently wired flexible cable. This means that the measuring head can be used in awkward places, while the meters are left in the best place for them to be read. For convenience the measuring head can be clipped onto the back of the instrument, although this obscures the VSWR nomograph, and leaves the interconnecting cable dangling.

The whole unit is very heavy (about 9 lbs) and this together with its rectangular construction implies laboratory rather than service use. The two separate meters for forward and reverse power, make aerial adjustments easier. The range on each meter is separately adjustable to allow very accurate measurements to be made.

Summary

The R\&S Naus 4 definitely gives the impression of an accurate, well made power meter. The linear meter scales are easily read to an accuracy of the needle width. This power meter is battery operated, and the continuous operation battery life is almost a year.

In the laboratory it proved to be as accurate as anything we had to measure it with. The only minus point is its weight and size from a service point of view.

The Telewave 44A is robust and easy to use. As with the Naus 4 it gives correct upward indication on AM modulation -something that other instruments fall down on. The accuracy cannot be favourably compared with the Rhode \& Schwartz unit, and the calibration factor below 50 MHz is decidedly tedious. Still at the price...

Footnote

The Naus 4 is available from Rohde \& Schwarz UK Ltd, and the Telewave 44A from Racal-Dana Instruments Ltd.

Your Reactions.......	Circle No.
Immediately Applicable	188
Useful \& Informative	189
Not Applicable	190
Comments	191

Your one-stop shopping centre for complete equipment from 'Trio' and 'Philips', accessories from 'Jaybeam' and 'Microwave Modules', components, kits and the 'Video Genie' Microcomputer system.

Now available from Catronics - REAL Value-for-Money in Microcomputers video genie system

Advanced features are.

1. Buit-in TV interface, the user"s TV set may be used as the display terminal, thus saving money
2. Main Control Unit contains the CPU plus,
(i) 51 key rypewriter keyboard, with 10 key rollover.
(ii) High quality cassette recorder, enables recording and playback of programs, data and the use of pre-recorded tapes.
3. Buit-in audio cassette interface for connecting another cassette recorder to serve as cheap and compact storage for large amounts of data on tapes.
4. 16k user RAM included, expandable to 48k.
5. Fully TRS 80 level II software compatible so a huge range of software is already available
6. Full 12 k Microsoft BASIC in ROM.
7. Full expansion capability to Discs and Printer, a small system with big possibilities.
8. Seli-contained, all in one attractive case.
9. The system uses the powerful 280 processor.

Our Special Price only $£ 344,00$ inc. VAT.

Full range of supporting programs and accessories available, including Amateur Radio packages

New RTTY Terminal Unit

IProgram for Computers

Fabulous new program now available to send and receive RTTY. Complete with Receive Terminal Unit and Transmit AFSK on PCB assy. Suitable for Video Genie and TRS80 computers: CT600 price $£ 121.90$.

Why not pay us a personal visit? CATRONICS are 300 years from Wallngton Railway Station (London Bridge or Victoria). Frequent buses trom Croydon and Sutton. Three large car parks within 100 yards. Mire purchase fecilities avellable on equipment. Credt Cards accapted. Mail orders are normally deatt with on day of receipt. All our prices INCLUDE VAT.

UNEENOEUROURO WLPICH HANSEN
 VHF \& UHF PREA MPLIFIERS: A new range from Ulrich Hansen of West Germany

A range of high quality in-line preamplifiers for 2 metres or 70 cms , featuring ultra-low noise figures and state-of-the-an destgn. The range includes R.F. switching capability trom 60 watts P.E.P to 500 watts P.E.P and choice of silicon low noise devices or the latest gallium arsenide MESFETs for the best possible noise figure indoor or mast mounted options are also included. Full details tree on request. These units represent a cost-effective way of improving your DX receiving capability

DATDNG ELECTRONICS LINITED
 Spence Mills, Mill Lane, Bramley, Leeds LS13 3HE, England. Tel: (0532) 552461

 resistance approximately $10 \mathrm{~m} \Omega$). Separators between the terminals guarantee leakage path and voltage spacings in accordance with VDE. VDE 0110/11,72, § 5, insulation group C at 250 V AC/300V DC. Cable entries: 5 (in ZA 12) or 6 (in ZA 16) PVC cable entry sleeves

2 prestamped cable entries in the base. Cover: Closed, without holes, with a recess $0,6 \mathrm{~mm}$ deep for an adhesive label, two mounting screws for attaching the plug-in upper part to the base. Intermediate plate for covering the equipment space and for retaining the

 FizPD:

MAIL ORDER
THE EASY WAY - THE BREDHURST WAY TO ORDER ANY OF THE ITEMS LISTED BELOW SIMPLY WRITE ENCLOSING A CHEQUE OR PHONE AND QUOTE YOUR CREDIT CARD NO. - WE DO THE REST!

PORTABLE MAINS DISTRIBUTION NOW WITH EARTH LEAKAGE

4 Portable unit with earth leakage
Type PEL 3
$£ 59+£ 2$ pp

+ VAT

Type WEL2 $£ 48$
$+p p £ 2+$ VAT

Δ
Bench unit with earth leakage Type BEL5SW
$£ 55$ + pp £2 + VAT
$47^{\prime \prime} \times 19^{\prime \prime}$ rack mounting with earth leakage Type REL 7
$\mathbf{£ 6 9 + p p £ 2 + V A T ~}$

A 4 feet LG. 30 amp totalload Instant Trunking System for Wall or Bench Mounting
TR6 -6 sockets switched $£ \mathbf{£} 9.70$ or TR9 -9 sockets switched $\mathbf{£ 3 5 . 2 0 + P P £ 2 . 2 5 + \text { VAT }}$

Type 13A/6SW

10 mA earth leakage UNIT
$£ 68.00$

+ £2 pp \& VAT

- All units are in metal boxes complete with 6 ft cable and 13 amp fused plug, ready for use. Only MK sockets and plugs are used. Trade counter open 9-5 Mon.-Fri.

OLSON

Electronics Ltod.
FACTORY NO. 8, 5-7 LONG STREET LONDON E2 8HJ Tel: 01-739 2343

Critionel

ACOUSTIC \& VIBRATION

BRUEL \& KJAER

2113 Audio Frequency Spectrometer
2203 Sound Level Meter
2305 Level Recorder
4230 Sound Level Calibrator
4424 Noise Dosemeter
BRIDGES \& V and I STANDARD
GENERAL RESISTANCE
DAS56 DC V and I Calit $1 \mu \mathrm{~V}-10 \mathrm{~V} 30 \mathrm{~mA} \quad 600$
HEWLETT PACKARD
4261A Digiral Automatic LCR Bridge
4342 OLC Meter $22 \mathrm{KHz}-70 \mathrm{MHz}$
975
MARCONI
TF868A Universal LCR Bridge
WAYNE KERR
8521 LCR Bridge
COMMS \& CABLE TEST
EQUIPMENT
CHASE
35A Fierd Strength Meter $20-850 \mathrm{MHz}$
HEWLETT PACKARD
3556 A psophomerer $20 \mathrm{~Hz}-20 \mathrm{KHz}$
TEKTRONIX
1502 TDR Cable Tester CRT + Recorder
COMPUTER EQUIPMENT
CENTRONICS
702 matrix printer
TEKTRONIX
4610-1 Hard copy printer for 4010 series
omputer disploy terminals

COUNTERS \& TIMERS

FLUKE

1910A-1 125 MHz 7 dight Cntr. AC/Batt 1912520 MHz 7 Digit Counter
1912401 As 1912A but inc. re-charging
batteries
1920A520 MHz 9 Digit Counter inc. Brst
mode
920A 141250 MHz otherwise as 1920A
HEWLETT PACKARD
5300A 6 Digin Display Unit - P/in read
5305 B 1300 MHz Counter for 5300
RACAL
$9024600 \mathrm{MHz} 7 \%$ digit Counter
90251 GHz 8 digit Counte
9905200 MHz 8 digit Counter Timer
SYSTRON DONNER
60533 GHz 9 digit Counter BCD O/P
51038 Strip Printer for 6053/6054
DIGITAL TESTING EQUIPMENT

HEWLETT PACKARD

5011T Logic troubleshooting kir
1600 S Logic Analyser 32 ch 20 MHz

TEKTRONIX

TOO1F Logic Analyser 16ch 50 MHz P/in
832 Datacomm Tesi V24/RS232// loop

THIS MONTH'S
 SPECIAL OFFERS

FLUKE 8921 A

Dighol and anologue true RMS AC voltmeter arid powe meter. Frequency ronge $10 \mathrm{~Hz}-20 \mathrm{MHz}$
Reodoun - $31 / 2$ digh LED disploy and
anologue merer for peok ond null
adjustments.
Ronges -2 m
Ranges - 2 mV FSD 10700 V FSD plus 88 m ranges reoding power delvered to 12
standord inout impedancos trom 508 standard input Imperdances from 50Ω I
1200Ω. Also relaftive d8 mode for fiotness/dimerence meosurements
Will meosure AC power/volts in presence of OC oftsel - Automatic or monual ronging. $\Sigma 825$
M.L. ENGINEERING - NANO AMMETER / MICRO VOLTMETER
DC Anologue Meter with centre zero scole 12 Current Ranges from 100 nA to ${ }^{12}$ Cumen FSD.
12 Volloge Ronges from $100 \mu \mathrm{~V}$ to 30 V FSD. Con be used in conventionol mode or os a sensitive null moter.
These instruments are new.

ONE YEAR GUARANTEE gOMACI US FOR A CASH Quote on YOUR UNOER UILILEO TEST EOUPMENT

MAINS TEST EQUIPMENT

COLE
Ti007 Voll/Frea/Spike Monitor Rec O/P DATALAB
DL019 Mains Interface for DL905
DRANETZ
GAY
GAY Vits Av/Spike/Time/Printer

MISCELLANEOUS

AVO
RM215 AC/DC Breakdown/Leakage Tester 475
COMARK
16018 LS Therman $10 \mathrm{ch} 87+1000^{\circ} \mathrm{C}$ type K $\quad 50$
N.B. Thermocouoles not included

DATALAB
OL901 Digital Transient Recorder
HEWLETT PACKARD
X382A Rotary Vane Attenustor WG16
MULTIMETRICS
AFt20 Dual H/Pass L/Pass active
filter $20 \mathrm{~Hz}-2 \mathrm{MHz}$
RESEARCH INSTRUMENTS
Micro manipulator - 4 Probes moveable in
all planes. Adjustable test table - Watson
Burnet optics. Complete system mounted
in perspex enclosure
TEKTRONIX
521 PAL Vectorscope
528 TV Waveform Monitor
575 Semiconduetor Curve Tracer

NETWORK ANALYSERS

PHASEMETERS

DRANETZ
$305 \mathrm{~B} / 3001$ Phasemeter $2 \mathrm{~Hz}-700 \mathrm{KHz}$
HEWLETT PACKARD
8405A Vector Voltmeter 1-1000 MHz
8414A Polar Display for 8410 N.W.A.
OSCILLOSCOPES \&
ACCESSORIES
GOULD ADVANCE
OS 3300850 MHz 1 mV 2 Trace 2T base
HEWLETT PACKARD
1804A 50 MHz 20 mV 4 Trace Plug-in
1825A Dual Timebase Plug-in
1805 A 100 MHz 5 mV 2 Trace Plug-in
PHILIPS
M3211 15 MHz 2 mV 2 Trace TV irie
PM321225 MHz 2 mV 2 Trace TV Irig
PM3244 50 MHz 5 mV 4 Trace 2 T dase
PM3260 120 MHz 5 mV 2 Trace 2T base
PM3262 100 MHz 5 mV 2 Trace 2T base
TEKTRONIX
465100 MHz 5 mV 2 Trace 2 T base
465 B 100 MHz 5 mV 2 Trace 2 TB, inc Probes
475200 MHz 2 mV 2 Trace 2 T base
485350 MHz 5 mV 2 Trace 2 T base
$661 / 4$ S3/5T1A 1 GHz Sampling scope
7 A12 105 MHz 5 mV 2 Trace Plug -in
$7 A 1875 \mathrm{MHz}_{5} 5 \mathrm{mV} 2$ Trace Plug-in
7 A 19500 MHz 10 mV 1 Trace Plug-in
7 A 221 MHz 10 u D Differential Plug-in
7 A 24350 MHz 5 mV 2 Trace Plug-in
$7 A 26200 \mathrm{MHz}_{2} 5 \mathrm{mV} 2$ Trace Plug in
7853A 2 Timebase Plug-in 100 MHz Trig
7880 Single Timebase 400 MHz Trig
7885 Timebase with delay 400 MHz Trig 7603100 MHz CRT r/out 3 slot M/Frame T704A 200 MHz CRT //out 4 slot M/Frame P6013A $\times 100012 \mathrm{KV}$ Probe
TELEQUIPMENT
D63/VI/V1 15 MHz 2 Trace 1 mV
D83/V4/S2A 50 MHz 1 mV 2 Trace 2 T
$\mathrm{Sig}_{\mathrm{g}}$ CRT

VUDATA

PS935/975 35 MHz 5 mV 2 Trace - unit has
bulh-in 3\% digit DMM + 3\% dig, enter $\quad 675$
OSCILLOSCOPES (STORAGE)
HEWLETT PACKARD
$1703 \mathrm{~A} 35 \mathrm{MHz} 10 \mathrm{mV} 2 \mathrm{Tr} 2 \mathrm{~TB} 1000 \mathrm{DV} / \mathrm{ms} 1400$ TEKTRONIX

2200
2000
750
425

603 Bistable Storage Monitor XYZ amps T912 $10 \mathrm{MHz} 2 \mathrm{mV} 2 \mathrm{Tr} 1 \mathrm{~TB} 250 \mathrm{~cm} / \mathrm{ms}$

| 7834 | |
| :--- | :--- | :--- |
| 000 MMz \& Slot M/Frame $2500 \mathrm{~cm} / \mathrm{\mu s}$ | 8990 | POWER MEASUREMENT

HEWLETT PACKARD
8481A Type N Cosx sensor for 435A

MARCONI

TF2512 DC - 500 MHz Powermeter
TF893A $10 \mathrm{~Hz}-20 \mathrm{KHz}$ Powermete
POWER SUPPLIES etc
ADVANCE
IV5S Inverter 24 V DC 10240 V AC 500 W FARNELL
FFSL 5V-20A PSU module
L308 $0-30 \mathrm{~V}$ variable 1A Metered
FLUKE
415 B 0-3.1 KV variable 30 mA Metered
HEWLETT PACKARD
696 A 0.36 V variable 10 A metered
PHILIPS
PE1646 0-75V variable 6A MeteredV +
ADVANCE
ADVANCE
PG57 $10 \mathrm{~Hz}-50 \mathrm{MHz} 10 \mathrm{~V} 508$ Vari RT 6 ns
EH RESEARCH
$13210 \mathrm{~Hz}-3.5 \mathrm{MHz} 50 \mathrm{~V} 50$ I2 RT 10 ns 2 puise MARCONI
TF $20250.2 \mathrm{~Hz}-25 \mathrm{MHz} 10 \mathrm{~V} 508 \mathrm{RT} 7 \mathrm{~ns} 2$

BRUNO WOELKE
ME102B Wow and Flutter meter
BRYANS SOUTHERN
BS316 Chart 10"' 6 Pen 16 speed
HEWLETT PACKARD
$7015 A$ XY 1 pen A4 size
7046A XY 2 Den A3 size
PHILIPS
PM8041 XY 1 pen A4 size
PM8251 Chart $10^{\prime \prime} 1$ pen 12 speed
SE LABS
9946 ch galvo preamp + DC bridge supply
6008 UV chart $8^{\prime \prime} 25$ ch 16 speed
$6150 / 51$ UV recorder 12 ch -inc 6 ch amps

SMITHS

RE541 Chart 8 .' I pen 8 speed
RE501/4701 Cht 4" + XY 1 ch 10 spd
AC Batt
SOLARTRON
3240 Modular Data Logger system
SIGNAL ANALYSIS

EQUIPMENT

MARCONI

TF2300A Mod Meter 1 MHz-1 GHz AM/FM 450 TF2330 Wave A nalvser $20 \mathrm{~Hz}-50 \mathrm{KHz} \quad 900$
Note: see also Specirum Anarysers
SIGNALFUNCTION/ + SWEEP GENERATORS
ADVANCE
SG630 Generator $4-230 \mathrm{MHz}$ AM/FM
GENERAL RADIO
1362 Generator $220-920 \mathrm{MHz}$
HEWLETT PACKARD
8640 B Generator $500 \mathrm{KHz}-512 \mathrm{MHz}$
6188 Generator $3.8-7.5 \mathrm{GHz}$
612 Generator $450-1230 \mathrm{MHz}$
614 Generator $0.8-2.1 \mathrm{GHz}$

MARCONI

TF144M/4S Generator $10 \mathrm{KHz}-72 \mathrm{MHz}$ AM TF801D Generator $10 \mathrm{MHz}-470 \mathrm{MHz}$ AM TF955/2 Generator $0.2-220 \mathrm{MHz}$ AM/FM TF1066B/1 Generator $10-470 \mathrm{MHz}$ AM/FM
TF2012 Generator $400-520 \mathrm{MHz}$ FM
TF2015 Generator $10-520 \mathrm{MHZ}$ AM/FM
PHILIPS
PM5127 Function $0.1 \mathrm{~Hz}-1 \mathrm{MHz}$ Sin
Sq Tri Rmp
PM5129 Function $1 \mathrm{mHz}-1 \mathrm{MHz} \mathrm{Sin} / \mathrm{Sq} /$
Tri/Ramp/Pulse + Sweed + Burst
TEXSCAN
9900 Sweeper 10.300 MHz 6/h CRT disp
750

HEWLETT PACKARD
141T/8552B/8555A Complete .01-18 GH $3580 \mathrm{~A} 5 \mathrm{~Hz}-50 \mathrm{KHz}$ with digi store disp 8445 A Pre-selector 0.01 .18 GHz 85588 0.1-1500 MMz Plug-in for 180 series MARCONI
TF2370 $30 \mathrm{~Hz} \cdot 110 \mathrm{MHz}$ Digi-store display built-in counter and tracking gen
VOLT/MULTI-METER
(ANALOGUE)

Prome

MK4 AC/DC/ $-\mathrm{VI}+\Omega$
BOONTON
92C AC/RF $10 \mathrm{KHz}-1.2 \mathrm{GHz} / 3 \mathrm{mV}$ - 3 V
HEWLETT PACKARD
$400 \mathrm{E} 10 \mathrm{~Hz}-10 \mathrm{MHz} 1 \mathrm{mV} \cdot 300 \mathrm{~V}$ DC $0 / \mathrm{P}$
$400 \mathrm{H} 10 \mathrm{~Hz}-4 \mathrm{MHz} 1 \mathrm{mV}-300 \mathrm{~V}$
$427 \mathrm{AC} / \mathrm{DC} / \mathrm{V} / \Omega$
3400 TRMS $10 \mathrm{~Hz}-10 \mathrm{MHz} 1 \mathrm{mV} .300 \mathrm{~V}$
3400 TRMS $10 \mathrm{~Hz}-10 \mathrm{MHz} 1 \mathrm{mV} \cdot 300 \mathrm{~V}$
DC-O/P
MARCONI
TF2603 $50 \mathrm{KHz}-1.5 \mathrm{GHz} 300 \mathrm{HV}-3 \mathrm{~V}$
TF2604 $20 \mathrm{~Hz}-1.5 \mathrm{GHz} 300 \mathrm{mV}-300 \mathrm{~V}$ PHILIPS
PM2454B io $\mathrm{Hz}-12 \mathrm{MHz} 1 \mathrm{mV}-300 \mathrm{~V}$ DC O/P RACAL
9301 RMS 10 KHz - $1.5 \mathrm{GHz} 100 \mu \mathrm{~V}$-300 V VIBRON/E.I.L
33B-2 1mV-IV Eiectrometer 200
VOLT/MULTHMETER (DIGITAL)
BOONTON
92AD 1999FSD $10 \mathrm{KHz}-1.2 \mathrm{GHz} 10 \mu \mathrm{~V}$ res 525
FLUKE
8010A 2000 FSD TRMS AC/OC/VIת 8010A01 As 8010A + re-charging batteries 140
159 8020 A 2000 FSD Handheid
AC/DC/V1 Ω + cond.
802242000 FSD Handheld AC/DC/VIR 8030A-1 2000 FSD AC/DC/VIIBatt + AC 8050A 20000 FSD AC/DC/VIR dB TRMS 8800 A 200000 FSD AC/DC/V』
GOULD
DMM7 1999 FSD AC/DC/V/I/ת
HEWLETT PACKARD
3490A 100000FSD AC/DC/V/R
SOLARTRON
A200 19999 FSD DC only $1 \mu \mathrm{~V}-1 \mathrm{KV}$
A203 19999FSD AC/DC/V/ת

NEWS *

WE ARE NOW OISTRIBUTORS FOR THE Crotech range OF LOW COST HIGH
PERFORMANCE
OSCILLOSCOPES.
The range of six differant models includes single and dual trace models with bandwidths of 10,15 and $30 \mathrm{MHz}_{2}$ There are iwo battery powered scopes in the range, with optional mains powered bettery sliminator/charger.
Three models have built-in component resters which give on-screen indication of correct component function.

- WRITE OR PHONE FOR OUR CAOTECH BROCHURE WHICH PARCES OF THE COMPLETE RAMCE

EXAMPLES
Modal 3030 Singlo traca 15 MHz 5 mV sensitivity with bultion component terter
Madel 3337 Dubltuace 30 MHz 5 mV
sunsitivity with rignet delay
PLUS 4 OTHER MODEL
THESE INSTRUMENTS ARE BRAMD MEW ANO ARE AVAILABLE FROM STOCK

Carston Electronics Ltd 01-267 5311
 Shirley House, 27 Camden Road, London NW I 9NR. Telex: 23920.

Full details and specification of equipment listed, avallable. Because of long copy dates this list is not comprehensive - ring for Inventory update or tell us your SPECIFIC NEEDS. Hours Monday to Friday 9.00 am- 5.30 pm (4.30 pm Fridays). Prices exclude delivery and VAT. We take Access or Barclaycard.

$$
25
$$

thandar's COMPLETE PORTABLE TEST BENCH

LCD HAND HELD MULTIMETERS

TM354 3½ Digit

- DC Volts : 1 mV to 1000 V AC Volts: iV to

500 V AC rms - DC current: $1 \mu A$ to 2 A . Resistance : 1Ω to $2 \mathrm{M} \Omega$ - Diode Check Basic accuracy: $\pm(0.75 \%$ of reading +1 digit) Battery

TM 352 31/2 Digit

- DC Votts: $100 \mu \vee$ to 1000 V - AC Volts: IV to 1000 V - DC current: 100 nA to 10 A - Resistance : 1Ω to

LCD BENCH MULTIMETERS

TM351 31/2 Digit

- DC and AC Volts: $100 \mu \mathrm{~V} 101000 \mathrm{~V} 1750 \mathrm{~V}$ AC Pms) - DC and AC current: 100nA to 10A (20A for 10 secsl Resistance: $100 \mathrm{~m} \Omega$ to 20 Mn Diod check Basic accuracy: $\pm 40.1 \%$ of reading +1

TM353 31/2 Digit

- OC and AC Volts: $100 \mu \mathrm{~V}$ to 1000 V 1750 V AC ins) © DC and AC current: 100nA to 2 A . ccuracy $+10.25 \%$ of reading +1 digit) Basic life: : Typically >3000 hours $-£ 75+$ VAT Ilinc. batrs).

LED MULTIMETERS
DM235 3½ Digit
21 ranges: 0.5\% basic accuracy.

DM350 3½ Digit
34 ranges; 0.1% basic accuracy;

TG105 5MHz Pulse Generator - Period: 200 nsec to 200 ms (5 MHz 105 Hz) Pulse width: 100 nsec 10 output Sync. output Operating modes: run. external trigger, external gate, manual 1 -shot or gate - Complernent and square wave - $£ 85+$ VAT

PULSE \& FUNCTION GENERATORS TG 100100 kHz TG 102 2MHz Function Generators - Functions : Sine, Square, Triangle and DC from variable 600 n (TG100) or 50 (TG102) output © Output
range:
mV-10V peak-peak 0 DC range : mV - 10 V peak-peak od External sweep $: \geq 1000$: 1 linear range $£ 79+V A T \bullet E 145+V A T$

TF200 8-Digit LCD

- Frequency Pange: 10 Hz -200 MHz tio 600 MHz with TP600) Sensitivity : $10 \mathrm{~Hz}-20 \mathrm{~Hz}, 100 \mathrm{MHz}-200 \mathrm{MHz}$ Timebase accuracy: better than 0.3 ppm - Battery life : Typically 200 hours E 145 + VAT (inc. barts).

FREQUENCY METERS

TF040 8-Digit LCD - Frequency Range: $10 \mathrm{~Hz}-40 \mathrm{MHz}$ (to 400 MHz with TP600) Sensitivity: 40 mV Timebose accuracy better than 0.5 ppm Battery life : Typically 80 hours - $£ 110+$ VAT (inc. batrs).

TP600 600MHz Prescaler

- Frequency Range: 40 MHz to 600 M

500 mV peak• peak - $£ 37.50$ + VAT

PFM200A 8-Digit LED Hand Held Meter - Frequency Range: 20 Hz 200 MHz (to 600 MHz with TP600) - Sensivity : Typically 10 mV - Timebase accuracy betrer than 2 ppm
Typically 10 hours - Batrery life
$£ 58.69+$ Trpica
VAT

SC110 Single Trace Low Power 2' Oscilloscope This tuly portable oscilloscope, the only British product to won a Gold Medal at the 1980 Brno Trade Fair, boasts the following specification: Bandwith $O C$ to 10 MHz - Sensivity: $10 \mathrm{mV} /$ div to $0.1 \mu \mathrm{secs} / \mathrm{div}$ to $0.5 \mathrm{secs} / \mathrm{div}$ - Power $0.1 \mu \mathrm{secs} / \mathrm{div}$ to $0.5 \mathrm{secs} / \mathrm{div}$ Power
Requirements : 4 to 10 V DC from 4 C ' cells or $A C$ adaptor Size and weight: cells or AC adaptor
$255 \times 150 \times 40 \mathrm{~mm} ; 800 \mathrm{gms}$ excl.
batteries $\quad £ 139+$ VAT

40 日昰
 ELECTRONIC LIMITED

ELECTRONIC TEST \& MEASUREMENT LONDON ROAD. ST. IVES.
HUNTINGDON. CAMBS. PE 17 4HJ
Tel: St. Ives (0480) 64646 Telex 32250

[^1]

SUBSCRIPTIONS TO R\&EW

For the person who has everything but a regular supply of the best reading in electronics. Give them, friends and colleague - 3 or more subs purchased and paid for at one time entitle you to the preferential rate of $£ 8.25$ each. Regular 'one-off' price currently $£ 9.50$, but this must go up sooner or later....

JUST POSSIBLY IN TIME FOR CHRISTMAS... 4 channel 35 MHz FM radio control system complete with 4 servos, receiver and transmitter Only $£ 59.00$ inc complete. Phone us to check availability, as our limited quantity is likely to be well oversubscribed.
all orders to:

More functions and features than there are grains of sand in an hour glass. For sports fans, joggers, photographers etc.
£14.95 each.

REEW Offers,

WR\&E GIFT VOUCHERS......

THE INSTANT PRESENT PROBLEM SOLVER

More fun and value than book tokens, these 200,North Service Road, £10.00 vouchers for purchases made from our companion catalogue "The World of Radio \& Electronics". They are not redeemable for cash, or in conjunction with other discount vouchers.
$£ 10.00$ vouchers $£ 9.00$ each.

PENWATCHES

An elegant ballpoint with a quartz controlled day/date second watch built in. The ballpoint section can be refilled with standard Parker refills. Offered at a new low price of $£ 9.00$ inc. Stainless steel or lacquered versions are available. We will endeavour to keep to your preference, but cannot guarantee to finish.

FULL CAPACITY

 NiCAD/CHARGER PACKAGE DEALThe most universal electronic power source of all! Just about everyone is likely to have a good home for one of these in torches, toys, radios etc. \qquad

FW400 Charger +4 AA cells FW610 Charger +4 C cells FW610 Charger +4 D cells FW4001 Charger + PP3
£ 9.50 inc . $£ 30.00$ inc. $£ 35.00$ inc.
£ 8.00 inc.

CHRISTMAS GIFT IDEAS...

Chassis Female D3F
E2.04

4, 5, 6 \& 7 pin versions and large selection audio adaptors available. Jack Plugs \& Sockets, Tiny Telephone Jackfields and Patchcords in stock.

(T0) NEUTRIK XLR CONNECTORS

Line Female NC3-FC.
Line Male NC3-MC.
Latchless Chassis NC3-FZ
PCB Chassis Female NC3-FDH
£1.34 Chassis Female NC3-FP
£1.15 Chassis Male NC3-MP.
$£ 0.67$ Latchless Chassis Male £1.12 PCB Chassis Male NC3-MDH
£6.87
$£ 0.59$
£0.95

4 \& 5 pin, Black versions and large selection Audio adaptors available

XLR LNE MAIN SERIES

XLR LNE 11C	¢3.87	XLR LNE 12C	$£ 3.76$
XLR LNE 32	¢2.89	XLR LNE 31	£4.14

BELCLERE AUDIO TRANSFORMERS

EN6422 Ratio $1+1: 2+2$ freq. $40 \mathrm{~Hz}-35 \mathrm{KHz}$ PRI $150 / 600 \Omega \mathrm{sec} .600 / 2.4 \mathrm{KHz}$. EN6423 Ratio $1+1: 6.45+6.45$ freq $40 \mathrm{~Hz}-25 \mathrm{KHz}$ PRI $150 / 600 \Omega \operatorname{Sec} 6.25 \mathrm{~K} / 25 \mathrm{Kz}$
$£ 3.64$ SKT-723 MuMetal Screening Can 39 dB reduction 50 Hz ext. field

EDAC MULTIPIN CONNECTORS (Varelco Equiv)

$20,38,56,90 \& 120$ pin versions, metal covers, crimp, solder, wire wrap.

Ey Eectro:Voice microphone \& Speakers

BELDEN MULTICORE \& MIC. CABLE, METALWORK, CABLE GLANDS, TOOLS Trade enquiries welcome, quantity discounts available. All prices subject to VAT. Call write or phone. Minimum order £10. plus VAT plus $£ 1.50$ postage. Access, Amex, Barclaycard.

KELSEY ACOUSTICS LTD.
28 POWIS TERRACE, LONDON W11 1JH 01.727 1046/0780

A CAREER IN RADIO

Start training rodey and make sure you are qualified to take advantage of the many opportunities open to the trained person. ICS can further your technical knowledge and provide the specialist training so essential to success.
ICS, the world's most experienced home study college, has helped thousands of ambitious men to move up into higher paid jobs - they can do the same for you.

Fill in the coupon below and find out how!
There is a wide range of courses to choose from, including:

CITY \& GUILDS CERTIFICATES
Telecommunications Technicians' Radio TV Electronics Technicisns' Electrical Installations Technicians Electrical Installation Work Radio Amateurs
MPT Radio Communications Cert EXAMINATION STUDENTS GUARANTEED COACHING UNTIL SUCCESSFUL

TECHNICAL TRAINING

ICS offer a wide cholce of non-exam courses designed to equip you for s better job in your particular branch of electronics, including:
Electronic Engineering \& Maintenance Computer Engineering/Programming
Radio, TV \& Audio Engineering
Electrical Engin
Electrical Engineering Installations \& Contracting

Tectrinicians trained in TV Servicing are In conela
echniques youned in Servicing are In constant demand. Learn all the rechniques you need to service Colour and Mono TV sets through now home study course approved by leading manufacturer.

POST THIS COUPON OR TELEPHONE FOR FREE PROSPECTUS

I am interested in
Name
Age
Address
Occupation
Dept. 2780

IES
Accredited
by CACC
To
international Correspondence Schools Dept 278K, Intertert House, LONDON ABCC of Dept 278K, Intertert House, LONDON
SWB 4UJ or phone 01-622 9911 (envime)

300 for further details

NORTHERN COMMUNICATIONS

FDK
azden cushcraft yaesu fok standard jaybeam LUNAR ASP SWAN-CUBIC G.WHIP MM CDE SEM
AND NOW FOR
SOMETHING REALLY NEW!

2 metre or

 márine- 12v DC $15 \times 19 \times 5 \mathrm{cms}$ mobile bracket + int. speaker

A VHF monitor receiver with VFO plus 12 optional scanning channels for

Crystals for scanner E 46.00 inc. VAT.
Carriage free.
£2.25each.

SX200N

 SUPER SCANNER Latest Model Plug-in modules for easy servicing. Increased AF output for better reception. Improved image rejection to cut out unwanted signals. Increased selectivity to cut out adjacent channels. £264 incl VAT carriage $£ 2.50$ plus many more interesting features.
ROTATOR BARGAINS

In addition to being noted as a leading supptier of Antennas, masts and fixings we are able to supply more than 20 different styles of antema Rotators, by leading manufacturers.
from our extensive range we have selected just two, for special attention, this month.
RO- 250 The successor to the Stolle 2050, now available RO- 20 The successor to the Stolle 2050, now available
from Hirschmann. A 'through' style rotator, ideal for VHF beams or azi/elevation and polarlsation applications.
25 kg load with easy 3 core type cable control system. RO. 250 complete with control box, inc VAT and delivery

S1. 1000 0piona
divering by 10 kg ., inc VAT and delivery
NEW SU4000 by Skying. A medium/heawy duty 200 kg load rotator, in Melamine NEW SU 4000 by Skying. A medium/heaw duty 200 kg losd rotator, in Melamine core control Designed to be Durable, Quiet and Weather Proof. Supplied complete with in unitl SU 4000 complete with control box, inc vat and delivery
$£ 80.00$

WIDEBAND ANTENNA

The new "NORCONE DISC 512" is a wideband, unity gain antenna, specially developed for coverage of 66 MHz to 512 MHz . An ideal partner for the BEARCAT SX200N and other scanning monitor receivers. It may also be used for transmission. Full coverage of $70,144,432 \mathrm{MHz}$ Amateur bands, Aircraft, Marine and Public Services. $£ 25.95$

SPECIAL OFFER

S $\times 200 \mathrm{~N}$ SPECIAL OFFER. Latest model $5 \times 200 \mathrm{~N}$ Scanning Receiver + Norcone 512 inc. Vat and delivery
£285.00

ZL-12 COMPACT YAGI

13 db gain, compact 2 metre Yagi. $106^{\prime \prime}$ boom, lightweight rugged design. Hundreds of this award-winning antenna already in use. Send for details.
£28.75 р.р. £1.75

ZL-8 SUPER COMPACT YAGI

9db gain, super compact 2 metre Yagi. 60° boom, lightweight rugged design. Ideal for limited spaces and portable operations. Send for details.
£17.95 p.p. ¢ 1.75

Box 2, 299-303 CLAREMOUNT ROAD, HALIFAX HX3 6AW, West Yorkshire VISIT OUR SHOWROOM - Tues. - Sat. inc. 9.45 a.m. - 5.30 p.m. Tel: (0422) 40792 and 24 hour answering service

TAKEDA RIKEN TR4122B

William Poel lusts after a superb value-for-money spectrum analyser from a not-so-well known Japanese manufacturer

The Other One

MOST COMMUNICATIONS ENGINEERS will by now be familiar with the test equipment offerings of Anritsu, but not so many perhaps will be familiar with the 'other' Japanese analyser manufacturer, Takeda Riken. As a result of a brief note in one of the News pages from our first issue, the UK representatives - Chase Electronics of Teddington - have made themselves known to us. We had hoped to get our hands on the TR4172 multifunction spectrum analyser which covers 50 Hz to 1800 MHz as a combined frequency/network analyser with 100 dB dynamic range.

However, it will take a few months for one of these tempting machines to be let out of Japan, so we are delighted to be able to start our acquaintance with the Takeda range with the TR4122B, which at around $£ 7500$ must be easily the best value in its sector of the market.

The 'other' competition in this class of instrument has historically come from the US's big two - Tektronix and Hewlett Packard - who have quite plainly been finding life getting harder for them as a
result of Anritsu and Takeda. Offerings from R\&S, Ailtech, Polarad, Systron Donner and others do not seem to have been keeping pace with instruments emerging from Japan - but we invite comments from any manufacturer who would like to have their equipment considered in these pages.

First impressions

The first thing any reviewer does, is to draw mental comparisons with 'known ' reference points. In our case, these are a Tektronix 7 L 12 and HP 141 T system and the 4122 B leaves both these 'classics' in the starting stalls. There are one or two small points (more later), but on the whole, the TR 4122 B is fitted with 'extras' that most other analysers class as costly options.

The main 'extra' is the built-in tracking generator. Any analyser without a tracking generator for swept filter response analysis measurements is rather like a car without reverse gear - and for easy quantitative operation, there is a digital frequency counter that works in conjunction with a

The Takeda Riken TR4122B
spot marker.
The basic specifications (set out in table 1) compare more than favourably with anything in its class. The 80 dB dynamic range (with the 100 kHz IF filter) is 10 dB more than competitive offerings, making for useful IMD measurements in receiver front ends - Boltzman's constant and bandwidth/noise considerations do their usual bit to hamper measurement range in wider bandwidths - see Fig 1. The tailing off at the LF end is due to the fact that the IF bandwidth approaches the minimum frequency being viewed - i.e. you can't see a 500 kHz signal in a 1 MHz bandwidth, since the filter response goes through the zero point of the display anyway!

With the built-in tracking generator, a 90 dB range is guaranteed for filter analysis - a very useful feature indeed, and one we were able to use to verify some filter specifications we were previously obliged to the manufacturers' word for -or to try to measure by the tortuous technique of joining up different pictures to obtain the equivalent display range. The typical range appeared to delve as far as 95 dB in a 0.5 kHz bandwidth, which is more than just marginally better than Anritsu M 62 at around 80 dB .

Portability

The versatility of the instrument is enhanced enormously by the availability of a rechargeable battery pack option - in TR 1927 (PHOTO). Apart from mobile radio installations checks 'in situ', this enables remote field strength measurements to be made, and a scale calibrated in dBuV is available for this application. X, Y and Z outputs are available on the back panel (PHOTO), and you might like to remember that since the ' X ' output is basically the signal amplitude, and audio amplifier plugged in here will give a usable audio signal when the analyser is tuned into AM signals and set on 'zero scan' mode. FM can likewise be slope demodulated by tuning the signal to the side of the IF filter. The TR 4122 B provides a front panel 3.5 m jack for this purpose.

A crude 'AGC' is provided by the log amplifier, although when correctly tuned in, the linear ' Y ' axis display mode provides excellent audio. This feature is particularly useful in field strength tests on broadcast equipment, since the station being viewed can be double checked by listening

The choice of 10.7 MHz as the final IF is a useful idea, since there are any number of IF modules that can be 'hung' on the IF output available on the back

The TR1927 rechargeable battery pack

Rear view of the TR4122B. Note the X, Y and Z output sockets.
panel to turn the TR 4122 into a complete communications receiver spanning 100 kHz to 150 MHz . (Zero span mode).

Counter Intelligence

The use of the frequency counter is not simply for establishing the centre frequency on view - but like the display on the Marconi TF 2370, the TR 4122 has a manually tuned bright spot (the digital store on the TF 2370 uses a complete line). The clever part of the scheme is that the tracking generator can be configured as a tuned amplifier (see PHOTO), centred on the 'spot' marker, whereby the counter reads the incoming signal directly against it's own timebase reference, without any of the errors of the analyser's own oscillators.

This feature enables easy measurement of sub-carrier frequencies in radio spectra - such as the 19 kHz on a stereo multiplex transmission, when a standard frequency counter would be incapable of reading anything other than the main carrier.

And now the 'bad' news

If you think our reviews tend to be a shade too sycophantic, maybe it's because we only choose to review basically good stuff. The TR 4122 has a couple of failings - no phase locking is one, and the wretched ' N ' sockets is another. I suspect that most TR $4122 s$ spend most of their life with ' N ' to 'BNC' adapters screwed in. Set against the rest of the features, these are not serious.

The user of a spectrum analyser has to establish many parameters before use can commence, and there is nothing like an 'on screen' display of the various attenuator, span, timebase and level settings to make life easier. The next generation of analysers will make far greater use of digital storage, whereupon digital displays become a great deal easier. If a ZX81 can write on your TV for less than $£ 70$ - then spectrum analysers can establish the test parameters 'on screen' without adding enormously to the cost.

Close-up of the tracking generator/frequency counter section of the front panel.

Figure 1: Performance graphs of the TR4122B.

-TR-4122B SPECTRUM ANALYZER SPECIFICATIONS

SPECTRUM ANALYZER SECTION

Scanning Specifications

Scan time $:$	$0.2 \mathrm{~ms} / \mathrm{div} \sim 10 \mathrm{~s} / \mathrm{div}, 1-2-5$ steps and
	auto (Automatically controlled by DIS-

General Specifications

CRT	: Display area $10 \mathrm{~cm} \times 8 \mathrm{~cm}$ (10div. $\times 10$ div.) P7 phosphor
Data input/output	DC voltage ($+5 \mathrm{~V},-15 \mathrm{~V},+15 \mathrm{~V}$), lamp output ($+6 \mathrm{~V} \sim-6 \mathrm{~V}$), Blanking output (blanking at Lo), YIG drive output voltage, IF gain control signal, it gain setting output, input ATT. setting output, external counter control signal
X-axis output	: Approx. $\pm 5 \mathrm{~V}$, output impedance approx. $1 \mathrm{k} \Omega$
Y-axis output	: Approx. $0 \sim 5 \mathrm{~V}$, output impedance approx. 10k Ω
Z-axis output	: Approx. $0 \sim+15 \mathrm{~V}$, (Blanking at Lo)
Scan display	LED twinkle
Warning display	LED twinkle
Operating temperature: $0^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$	
Power requirement	AC100V (120. 200. 220V) $\pm 10 \%$, $50 / 60 \mathrm{~Hz}$, approx. 100 VA DC operation possible, using accessory -TR-1927battery pack
Dimensions	: Approx. 300(W) $\times 200$ (H) $\times 500$ (D) mm
Weight	: Approx. 18kg (basic)

TRACKING GENERATOR SECTION
Frequency range $: 400 \mathrm{kHz} \sim 1500 \mathrm{MHz}$
Output level
$\vdots 0 \mathrm{dBm} \sim-50 \mathrm{dBm}, 10 \mathrm{~dB}$ steps
Output level accuracy: $\pm 1 \mathrm{~dB}$
Output S/N ratio : 30 dB
Output Connector : N type
Output impedance : 50Ω
Frequency response : $\pm 1 \mathrm{~dB}$
Stability : Conforms to Spectrum Analyzer stability T.G. modes : TUNED AMP, NORMAL

FREQUENCY COUNTER SECTION
Frequency range : $400 \mathrm{kHz} \sim 1500 \mathrm{MHz}$
Resolution : $1 \mathrm{kHz}, 100 \mathrm{~Hz}$
Display
Time base stability
Decimal 8 digits, LED display
Aging rate 5×10^{7} month

OPTION

$\mathrm{dB} \mu$ display and 75Ω input impedance are optional. Please inquire when ordering.

ACCESSORIES

-TR-1612 75 -50Ω conversion adaptor -TR-1604
-TR-1619 Earphone for sound monitor A/B Memory
-TR-1625 RF coupler (DC $\sim 1000 \mathrm{MHz}$) -TR-1604P
-TR-1626 RF coupler (DC ~ $\sim 00 \mathrm{MHz}$) A/B Peak, (A-B),
-TR-1635 Carrying case
Chart Recorder O/P
-TR-1652 Camera mount
-TR-1711 Log periodical antenna
-TR-1722 Half wave dipole antenna
-TR-1927 Battery pack (built-in Ni-Cd battery)
Available by external power supply ($+10 \sim+15 \mathrm{~V}$)

Conclusions

With equipment like this available to Japanese development engineers, it's hardly surprising that they rule the roost on RF design. For $£ 7500$, you get a package worth well over $£ 10000$ from most other manufacturers in this field. The TR 4122 makes design and verification of all aspects of communications broadcast engineering so much simpler than any alternative test equipment array available.

If you work with RF development/test and you don't have access to something like the TR 4122, then you are at a
tremendous disadvantage. There is no getting around the fact that the spectrum analyser is as essential to the professional RF designer as an oscilloscope is for general electronics. What a terrible indictment of the state of the UK electronics industry that we do not have a manufacturer of an instrument even vaguely near this specification within our shores.

Some R\&EW readers may complain that spectrum analysers are outside the grasp of all but the most fortunate enthusiasts (other than those with access
to such things at 'work') - but this does not change the facts. We hope that the R\&EW lab can be regarded as the readers' own facility - since if R\&EW use an analyser in the development of a feature, then you won't need one to get the project going. \quad R\&EW

R\&EWPROJECTPACKSR\&EWPROJECTPACKSR\&EWPRO

Automatic Modulation Meter As described in the November\& December issues of R\&EW. Scans from $20-175 \mathrm{MHz}$ giving deviation reading of NBFM signals. Kit of all electronic components sorry, no case.
Stock no. 40-20175
Price: $£ 32.44+$ VAT
Masthead TV Amplifier
Ingeniously designed UHF TV pre-amp Masthead pre-amp with power feed up the centre core of the co-ax from base PSU. Complete kit of parts including two cases mains transformer etc.
Stock No. Price (+ VAT) 40-06000 £9.10
 WORLD

UHF - VHF Converter
Dual purpose converter. For 70 cms band to 2 m band, and 70 cms band to UHF TV band. Complete kit of parts including Xtals as listed below.

Stock No. Xtal freq.
40.00170 96.0000+96.6667
$40-00270 \quad 96.0000+96.3333$

Thurlby 1503 high resolution LCD multimeter more accuracy, sensitivity and versatility. E149 +VAT

- 43/4 digits ($\pm 32,768$ counts)
- $10 \mu \mathrm{~V}, 10 \mathrm{~m} \Omega, 1 \mathrm{nA}$ resolution
- 7 functions including Frequency
- 0.05\% basic dcV accuracy
- Current measurement to 25 amps
- Mains/Battery, fully field portable
- Full range of accessories available

- Oustanding price/performance ratio

[^2]

The MV1 computer kit uses the ublquitous Nascom 1 Pcb and the 280 CPU . Interfaces are included for television. printer and cassette 2 K memory, Gemini power suppty (drives up to 3 extra boards). Cherty full ASCII keyboard and Quantum Graphics are also included. Available with either an ASCII version of the Nas-Sys 3 monitor, or a liny BASIC. MV1 is expandable to Gemini

80-BUS specification.
 N Microvalue Microvalue price $505_{+ \text {VAI }}$ MicroValue's
 SAVE 'Nascom Special'

We've put logether a microcomputer kit containing the Nascom 2, Nas-Sys 3. Graphics ROM, Bits \& P.C.'s programmers aid, Gemini 3 APSU, 16 K RAM Board and mini motherboard. The result is a powerful micro using market proven boards and components.

The 48K RAM System is offered at a rock bottom price with the Quantum Micros Hi Res Graphics which gives resolution down to a single dot and high res. plotting. Characters are user deflnable and the pixel characters actually join. Five free games packages are included too!
RRP £ $\mathbf{6 4 5}$ + VAT MicroValue price $\underset{\text { tVAT }}{\mathbf{5} 45}$

£30
worth of accessories FREE with every Epson Pinter

MicroValue price

Epson MX80T ع359 + Var
Epson MX80F1 1 ع399 + Vat
Epson MX80F12 8465 + VAT
Epson MX100 £575 + VAT

Buy one of the above Epsons from|Microvalue and we'll give you al Pack of Fanfold paper, Spare 'Ribbon Cartridge, InterfacinglDocument and Connecting Cord for Multiboard or Nascom. The accessories are worth $£ 30$ butyou can have them absolutely FREE.
cheapest UK! r
 Nascom IMP + Graphics Only £199+ vai
Microvalue has slashed the price of the 80cps, 80 column IMP dot matrix printer. And added Imprint's high res. graphics and double width character option. IMP has

RRP $£ 355$ + VAT
bi-directional printing and Microvalue price
friction/tractorfeed.
\&199 + var

NASBUS Compatible DOUBLE DENSITY Disk System Available Ex Stock

With hundreds In daily use the Gemini Disk system is now the standard for Nascom and Gemini Multiboard systems Single or twin drive conflgurations are available. giving 350 K storage per drive. The CP/M 2.2 package supplied supports on-screen editing with elther the normai Nascom or Gemini IVC screens, parallel or serial priniers, and auto single-double density selection. An optional alternative to CP/M is available for Nascom owners wishing to support existing software. Called POLYDOS 2 it includes an editor and assembler and extends the Nascom BASIC to include disk commands
Single drive system (G809, G815/1) $£ 465$ + VAT

Double drive system (G809, G815/2)
$\varepsilon 690$ + VAT
CP/M2.2 package
(G513)
$£ 100$ + Vat
Polydos 2
£90 + Vat

MV2-Twin Z80A
Controlled Development Computer
The fully built and tested MV2 microcomputer is controlled by two Z80A microprocessors. Interfaces include RS232, cassette, 2×8 bit parallel ports, and graphics including programmable graphics. It provides 80×25 screen format and includes $64 K$ RAM, Integral PSU and full ASCII keyboard.

Software written to run under the RP/MROM based monitor can be transferred to disk to run under CP/M at a later date. This rugged computer is ideal for educational and industrial environments and is supplied with the advanced COMAL structured BASIC.

SAME 576.50

MicroValue ,

MV3-Low Cost Business System

A complete, fully built, double disk based CP/M version of MV2 system. Supplied with VDU and keyboard. Full CP/M software library vailable.
The MV3 is a highly reliable system of modulator internal construction backed by the full MicroValue warranty.
£1550
VAT
MicroValue price
£595 wax \square NASPEN Nas-Sys 3RRP $£ 30$. VAI Mlcrovalue price $£ 20$. VAT NasDis D-Bug (EPROM) \quad RRP 25 . VAI MicroValue price $£ 20$ * VAI NasDis D-Bug (TAPE) VRP Microvalueprice $£ 20$, VAT Sits \& PCs Prog Ald

80×25 Video for Nascom

Nascom owners can now have a proles sional 80×25 video disploy by using the Gemini G812 Intelligent Video Card with onboard 2804. This card does not occupy system memory space and provides over 50 user controllable functions including prog.
character set, fully compatible with Geminl G805 and $G 815 / 809$ Disk $\$ y s t e m s$. Buil and tested \&140 + Val

*MicroValue Warranty

All products, except kits, sold by MicroValue dealers are supplied with 12 months' warranty and will be replaced or repaired by any deale (even if you didn't buy it from him) in the group in the event of faulty manufacture.

YOURLOCAL MICROVALUE DEALER
All me products on these two pages are ovaliable while stocks iasi from (Mal order enquines should terlephone for delivery dates and post and pocking costs.) Access and Barclovcore welcome

BITS \& PC'S
4 Westgate, Wetherby, W.Yorks. Tel:(0937) 63774.

ELECTROVALUE LTD

700 Burnage Lane, Burnage,
Manchester M19 1NA.
Tel:(061)4314866.
28 St Judes, Englefleld Green, Egham, Surrey TW20 0H8.
Tel:(0784) 33603. TIX:264475.
SKYTRONICS,
2 North Road, The Park,
Noftingham.
Tol: (0602) 45053/45215

TARGET ELECTRONICS

16 CherryLane, Bristol BS1 3NG. Tel:(0272) 421196.
INTERFACE COMPONENTS LTD. Oakfield Corner,Sycamore Road, Amersham, Bucks
Tel:(02403)22307.Tlx:837788.
HENRY'S RADIO
404 Edgware Road, London W2.
Tel:(01)4026822.
IIx:262284 (quote ref:1400).
LEEDS COMPUTER CENTRE,
60/62 Balcony Unit,
Mertion Centre, Leeds.
Tel: (0532) 458877

출 COMPU		SE	mowowe fin mon	
		\%	\% \%ix mix	以um

TELETYPE ASR33
 1/O TERMINALS

Frome195 * CAR Fully fledged industry standard ASR33 data ierand printer for data $1 / 0$. auto data detect circuitry RS232 serial Interface. 110 baud. 8 bit paper tape punch and reader for off line data preparation and ridiculously cheap and reliable data storage. Supplied in good condition and in working orde
Options: Floor stand $\mathrm{f} 12.50+$ VAT

DIABLO S30 DISK DRIVES

 Another shipment allows us to offer you (formatted) hard disk drive. Two types are available both fully refurbished and electronically identical, the only difference is the convenience of changing the disk is thepacks.
S30 front loader, peck change via front door $\mathbf{£ 5 5 0}+\mathrm{vet}$
door $\mathrm{f} 550+$ vit
S 30 fixed, pack change via removal of top cover E 295 + ve
+8 - $15 v$ PSU for 2 drives $£ 125+$ vat
SPECIAL OFFER new, 12 sector packs
$\mathrm{f} 20+$ vat carriage $\&$ insurance on drives £ 15.00 + vat fully DEC RK05, NOVA TEXAS compatable further info on

NATONAL MA1012LED CLOCK MODULE * 12 HOUR

\star ALARM

$\star 50 / 60 \mathrm{HZ}$
The same module as used in most ALARM/CLOCK electronics are mounted on a PCB measuring only $3^{\prime \prime} \times 1 d^{\prime \prime}$ and by addition of a few switches and $5 / 16$ volts $A C$ you have a multi function alarm clock at a fraction of cost. Other features include snooze timer, am pm, alarm set, power fait indicator, flashing seconds cursor, modulated alarm output etc. Supplied brand new with full data only $£ 5.25$
MAINSFILTERS

Professional type mains fikters as used by "Main Frame Marulacturers" ideal for curing those unnerving hang ups and data ghtches. fit one now and cure your problems? Suppression Devices SD5 A105 amp $£ 6.95$

MUFFIN FANS

Koep your squipmant Cool ond Aeliable with our test do ox-equipmant

\& LECTRONIC COMPONENTS \& E OUIPMENT

65%

DISCOUNT Due to our massive bulk purchasing programme
which enables us to bring you the best possitbe which enables us to bring you the best possible bargains, we have thousands of I.C.'s. Transistors
Relays. Cap's.. P.C. B.'s, Sub-assemblies, Switches etc. etc. surplus to our requirements. Because we don't have suflicient stocks of any one item to include in our ads., we are packing all these items into the "BARGAIN PARCEL OF A LIFETIME" Thousands of components at giveaway prices ${ }^{1}$ Guaranteed to be worth at least 3 fimes whai you pay plus we always include something from our ads. 2.5ks $£ 4.75+p p £ 1.25 \quad 5$ kts $£ 6.75+$ pp $£ 1.80$ 10aks $\mathbf{£ 1 1 . 7 5}$ + pp $£ \mathbf{Z} .25$ 20ws $\mathbf{E 1 9 . 9 9}+\mathrm{pp} \mathrm{E} 4.75$

ICL TERMIPRINTER
 300 BAUD TERMINALS

Experimy $+5 v+12 v-12 v+24$

REDUCED TO CLEAR NOW ONLY
£80

+CAR

+VAT
Made under licence from the world famous GE CO. The ICL Termiprinter is a small attractive unit with space availablel Brief spec as follows; RS232
serial interface, switehable baud rates 110 300 serial interface. switchable baud rates 110,150, 300. (130 cps). upper and lower case correspond-
ence type face standard paper almost silent run. ence type face. standard paper, almost silent run-
ning, form feed, electronic tab seltings, suited for ning, form feed, electronic lab seltings, suited for $\begin{aligned} & \text { word processor applications plus many more } \\ & \text { features. } \\ & \text { Supplied complate, in as seen }\end{aligned}$ Supplied complete, in as seen
condition, no guarantee.

Abstract

Once again we are very pleased to otfer ths supert Powet Supoly Umi and hope to satrsty most of our prevous Qustomers wo we dispar .

 demand last, wey wer adrentised. These umits may ns have well enclosed chassis measuring $160 \mathrm{~mm}: 120 \mathrm{~mm} \times 350 \mathrm{~mm}$ corraining all steon electroncs to give the following toth egulated and short circuit proot artants of$\begin{array}{ll}+5 v @ 2 \text { amps } D C & +12 v @ 800 \mathrm{ma} \mathrm{DC} \\ -12 v @ 800 \mathrm{maOC} & +24 v @ 350 \mathrm{ma}\end{array}$
 which may be senesed to give a host of other optages Al outputs are brought out to the front panel wia minialure jack. sockets and are also dupplcated at the lear on sthon thrimg leads. Unts accept sand and 240y mains input They an ex GPO and may have minor scratches on the front panets hey are sold unvested but in good memal conditon $£ 16.50$ each $+£ 2.50 \mathrm{p}+\mathrm{p}$ complere witu circuit and componemt hist Transtomerer guarnteed HURRY

THE PRINTER SCOOP OF THE YEAR
THE LOGABAX Z8O MICROPROCESSOR CONTROLLED LX180L MATRIX PRINTER

A massive bulk purchase enables us to offer you this
supert professional printer at a fraction of its recent superb professional printer at a fraction of its recent
cost of over $£ \mathbf{2 0 0 0}$. Unlising the very latest in microprocessor technology, it teatures a host o facilities with all electronics on one plug in P.C.B. Jusi study the specification and you will instanty realise
meets all the requirements of the most exacting meets all the requirements

ANDARD FUNCTIONS FFUll ASCH character set Atand

HAGM speep DATA MODEMS

A supert prece of migneennay made by St lats ty to to a "no cost spard spec for the GPO. the Madem I2 is a synctronous Modem for use on 0ATEL 2412 senices ar OTher data lints Mary teatures include switchable V26 madution. 2400 baud the dudiex $600 / 1200$ standor. afo arower 4 mre or 2 wre operation Selt lest Livi status notcation CMOS eachnology, modular construcion oniginal cost over $£ 700$ each Beteved brand new suppod complete with PSU er $£ 185.00+£ 9.50$ cariage + Vat -Permission may be noquad for enmectoon to PO ines

PERTEC

PERTEC TAPE DRIVES
7 track $6840-75-25$ 7 track $6840-75-25$ £175.00 + (track $6840-9.25 \quad$ £295.00 VAT

Phone for more details ink ribbon $\$$ RS232N24 serial interface -7 ktal controlled baud rates up
109600 * i94 characters per line . Parallel interface Handshakes on serial and parallel
 construction All software in 2708 epronts easily reconfigured for custom fonts etc. All this and more, not refurbished but BRAND NEW At Only £525 Also available identical to above LESS Electronics Card $\mathbb{Q} 50+$ VAT OPTIONAL EXTRAS + LOw simultaneous dual forms $£ 85.00$. Logabax mainte nance. P.OA.

$8^{\prime \prime}$ FLOPPY DISK DRIVES

Yet agnin we've managed to secure a
lerge ailoment of tomorrows technology
at pricen es yet unheard ofll And as with most of our purchaser cen pass these
7200 ens $^{\prime \prime}$ tict to youll The DR 7100 as
$72008^{\circ \prime}$ tloppy disk drives have many
inbuile festures to provida litarally any
BUS configuration with fult dally ehain
ungel sided 7100 give upto 0.8 MB of

deta and 154 tracks on the 7200 double sided drive give a masive 1.6 or ANSI stenciardi, only 240 v AC, +24 of +5 v dc power requirements and our unberievable prices make these drives anto.
Supplied BRANO NEW and boxed complete with user manuel:
7100 eingle sided $£ 225,00+8.60$ ins. \& cerr. + vet.
7200 doubie dided $£ 295.00+8.50$ ine. \& cerr. + vot
LAMBDA - DEC CO mard cosall:
LAMBDA

DEC TU60 TWIN CASSETTE ORIVE

$8-$
LMC C5V
5 V 10 AMP
PSU, 240 V
NEW £45 + VAT POP 11 RS MINII/O MEMORY, CPU ETC LSHII 32 KBYTE MOS MEMORYCAROS $£ 295+$ VAT RKO5 MEMOREX OISK PACKS
(12 sector) $20.00+$ VAT
LSII 102 PROCESSOR CARD $\quad £ 275.00+$ VAT

* All types of OEC equipment purchased for cash *
LSII 102 PROCESSOR CARD $\quad £ 275.00+$ VAT
* All types of OEC squipment purchased for cash *
All types of OEC squipment purchased for cash *

Oept. R.E.W., 64-66 Melfont Rd., Thornton Heath,
MAIL ORDER Croydon, Surrey. Tel: 01-689 7702 op 01-689 6800 INFORMATION Unless otherwise stared all prices inclusive of V.A.T. Cash with order. Minimu packing not indicated please add 60 p per order. Bona Fida account orders minumum $£ 20.00$. Export and wade enquiries welcome Orders despatched

SOFTY 1 \& 2 EPROM BLOWER
system invaluable tool for designers,
hobbyists, etc. Enables open heart surgery on 2716,2708 etc. hobbysts. etc. Enables open heart surgery on 2716,2708 etc,
Blows. copres. reads EPROMS or emulates EPROM/ROM/RAM in stlu whist displaying contents on domestic TV receiver. Many
 Softy 2 for 2716/2732 E169 +VAT GIV Y DEO
MONAEO

Ex-equipment $9^{\prime \prime}$ Motorola Video Monitors 75Ω composite input. tested but unguaranted $\mathbf{£ 3 9 . 9 9}+\mathbf{E 7 . 5 0}$ carriage

SEMICONDUCTOR GRAB BAGS

\qquad Til 74 Series

KEYBOARDS

"ycy IDEAL TANGERINE OHIO ETC.

Straight from the U.S.A made by the word lamous R.C.A Co.. the VP600 Series of cased freestanding keyboards meet all requiiements of the most exacting user, right down to the price!
Utilising the latest in switch technology. Guaranteed in excess of 5 million operations. The keyboard has a host of other features including full ASCII 128 character set user definable keys, upper/lower case, rollover protection. single 5 V rail. keyboard impervious to liquids and dust. ITL or CMOS outputs, even an on-board tone generator for keypress feedback. and a I year tull RC.A backed guarantee.
VP60n 7 bit fully coded ourput with delayed
strobe, elc.
VP611 Same as VP601 with numeric pad.
VP606 Serial. RS232. 20MA and TTL output. with selectable Baud Rates. Plug and cable for VP601. VP611 $£ 2.25$ Plug for VP606. VP616 $\quad \mathbf{~ 2 . 1 0}$

ORDER NOW OR SEND FOR OETAILS.
$5 v$ D.C. POWER SUPPLIES
3 amp PS SU. we have managed to secure a large quan spec. 240 or 110 vA . C input. Outpurs of 5 v @ 3.4 amps. $7.2 v @ 3$ amps and $6.5 v @ 1$ amp. The $5 v$ and
$72 v$ outputs are fully regulated and adjustable with variable current limiting on the 5v supply. Unit I he $72 v$ output is ideat for feeding "on board" regu. lators or a further 3 amp LM323K regulator to give an Suppliec complete with circuit at only $£ 10.95+£ 1.75 \mathrm{pp}$.
Believed working but untested. unguaranteed.

Using the RS232 ADA Board

Jon Burchell describes uses for the RS232 ADA board, ranging from programmable power supplies to robotics.

In case you missed last months article, the RS232 ADA is a complete stand-alone analog-to-digital and digital-to-analog convertr, using an on-board serial RS232 generator to provide almost universal interfacing capability. The unit is capable of recelving 8 -bit digital words and converting them to a voltage in the range $0-2.55 \mathrm{~V}$, (e.g. with a resolution of 10 millivolts). Alternatively, in response to a 'convert command' from the computer, the unit will digitize an analog voltage and transmit this to the computer as an eight bit word. The unit is capable of working at up to 19200 baud or around 1500 samples a second.

Having dealt with the constructional and theoretical aspects of the ADA unit last month, we will now take a look at a few practical applications of the ADA board. Full circuit construction details are not provided as the examples are meant for experimentation and to provoke further ideas.

Figure 1: Input scaling methods.

WAVE-FORM SAMPLING

The analog converter will sample inputs in the $0-2.55$ voltage range without additional circuitry. The maximum sample rate is not fast enough to accurately represent a signal of more than 500 Hz . Fortunately, most transducers do not produce data at anything like this rate.

If the input signal is outside of the converter's range, input scaling will need to be employed. Fig 1 illustrates two simple methods of achieving both a reduction and an increase in input signal.

As the converter is uni-polar in operation, it will not sample a negative waveform. Thus, a sine wave fed to the converter looks (after it has been converted) as though it has been subject to half wave rectification. In order to sample the whole of a waveform with negative going peaks, it must be level shifted, so that at no time is the input voltage below zero. Fig 2 illustrates two methods of doing this.

(b) A more sophisticated approach.

Figure 2

The simple shifter of Fig $2 a$ will only work for AC signals from a fairly low impedance generator. The more sophisticated circuit of Fig $2 b$ will work correctly with AC or DC signals: The first op-amp forms a voltage adder circuit, and shifts the input signal up in level by the voltage set on the wiper of VR 1. The second op-amp is connected as a unity-gain voltage follower with inversion, to correct for the inversion of the first op-amp.

If you do not mind your signal becoming inverted, omit the second op-amp (you can restore the correct phase of the signal in software by subtracting the converter value from 255). Alternatively, if you require gain to be applied to the input signal, the values around the second op-amp can be altered to provide this.

The ADA card may be used to sample and generate very slow wave-forms. The programmes of Fig 3 were used to sample a 1 Hz sine wave and to generate a 0.02 Hz sine wave.

When generating a waveform, it is advantageous to employ a simple low-pass RC filter at the output of the D-to-A converter. This helps to remove the high frequency components present in the waveform.

A PROGRAMMABLE PSU

The unit may be used to construct a PSU whose output is programmable from the computer. In addition, the A-to-D converter may be used to provide current or voltage feedback. The parameters of the power supply are thus under software control. Simply by changing the programme, you can alter it from constant voltage to constant current, with either over-voltage or over-current limiting. A sophisticated power supply such as this would find uses in production testing, controlled electrolysis and heating situations, plus all sorts of parameter-measuring applications.

Using the RS232 ADA Board

Figure 3

Figure 4 details just such a power supply, having a $0-25.5 \mathrm{~V}$ output, adjustable in 100 mV steps. The voltage output from the D-to-A converter is multiplied 10 times by the op-amp and used to control a series pass regulator. Current feed-back is provided by multiplying the voltage drop across a 0.1 ohm resistor and scaling this back to a 0-2.55 signal range. Voltage feedback is provided by the output potential divider arrangement shown.

MOTOR SPEED AND POSITION CONTROL

The programmable PSU of Fig 4 may be used to make a motor speed controller with programmable RPM, with feedback to maintain the RPM at the preset value. The PSU with current feedback is connected to a small permanent magnet DC motor. Remember to include an inductive suppression diode across the motor.

The speed of a motor is approximately proportional to the current it draws: The software will adjust the PSU volts to maintain the speed constant. Software could be written to give the motor any desired torque/speed characteristic, and to deal with the special cases of starting up and slowing down.

The mechanics of a radio-control servo can be adapted to provide a position control mechanism as shown in Fig 5. The theoretical accuracy of this system is better than 1.5 degrees. The electronics for the position controller are construction from an op-amp and a L149 bridge output device, which gives a current capability of 5 amps .

By biasing the inverting input to 1.2 V the output is made bidirectional. An input of zero from the D-to-A converter causes the op-amp output to swing to -10 V . An input of 1.2 V will cause the op-amp output to be zero, and for an input of 2.55 V the op-amp output will be +10 V . Finer control of the position of the motor is achieved simply by applying less volts to the motor. (e.g. using values closer to 1.26 V). Once again the complete

Figure 4: Programmable 0-25V 1 Amp PSU.

Figure 6: Simple computer controlled light-seeking robot.
characteristics of the servo are under software control, allowing almost infinite variations of the loop characteristics. Feed-back of the servo arm's position provided by an integral $5 k$ pot within the servo mechanism. Small servo mechanisms can be obtained from a number of suppliers advertising in the Radio Control press, or from your local hobby shop.

SIMPLE ROBOT

The circuit of Fig 5 may be adapted to produce a simple lightseeking robot. (See Fig 6). Although this robot would not be capable of translational movement, only rotational, it must offer the cheapest introduction into this field ever suggested. Once constructed and the controlling algorithms written, the finished unit could be incorporated as part of a scanning eye mechanism in a larger robot.

- R\&EW

Figure 5: Simple computer controlled positioning mechanism.

Just 50 p will bring you the latest Wilmslow Audio 80 page catalogue packed with pictures and specifications of HiFi and PA Speaker Drive Units, Speaker Kits, Cabinet Kits

1000 items for the constructor.

CROSSOVER NETWORKS AND COMPONENTS. GRILLES, GRILL FABRICS AND FOAM. PA, GROUP DISCO CABINETS - PLUS MICROPHONES AMPLIFIERS - MIXERS - COMBOS - EFFECTS SPEAKER STANDS AND BRACKETS - IN-CAR SPEAKERS AND BOOSTERS ETC. ETC.

* Lowest prices - Largest stocks *
* Expert staff - Sound advice *
* Choose your DIY HiFi Speakers in the comfort *
oi our listening lounge.
(Customer operated demonstration facilities)

$$
\star \text { Ample parking } \star
$$

* Access Visa American Express accepted *
오
0625529599

35/39 Church Street, Wilmlsow, Cheshire SK9 1AS

Lightning service on telephoned creait card orders!

70 CM TO 2 M \& TV CONVERTER.

Two for the price of one: a sophisticated full coverage

70 cms to 2 m converter, plus a channel - 52 TV output for receiving and viewing.

Sound and vision.

THIS DUAL PURPOSE converter is designed to provide very good communications performance - plus a sensitive, stable and convenient amateur TV receive facility in conjunction with any UHF TV set. The block diagram is set out in Fig 1 .

For communications operation, an output in the 2 m band allows the use of any popular 2 m rig as a tunable IF. (Don't press the PTT, please!). The TV output - around channel 52 -permits the use of an unmodified UHF TV set. A single local oscillator and a broadband double balanced mixer provide IFs of 144 MHz and 720 MHZ .

Table 1 gives details of the crystals which may be used, together with their various applications. For TV use, use the 97.33 or 98 MHz crystal to alleviate the major problems caused by the harmonic relationship of 144/288/ 432 MHz . A 'junk box' crystal may well work for TV use, since the absolute frequency value is unimportant (TV sets do not, as a rule, come calibrated in MHz). The two crystals should be within 4 MHz of each other, although if slightly inferior oscillator spurii are acceptable this figure may be increased.

If one of your local TV transmissions occurs on Ch 52 , the second crystal can be selected to shift the IF frequency and avoid breakthrough - use of the optional input helical filter will also assist -although the filter losses will instantly

Design by Graham Leighton.

compromise your noise figure by the degree of insertion loss ($3-4 \mathrm{~dB}$) - so something like the 70 cms preamp elsewhere in this issue is a virtual must for serious DX work. The bandwidth required for TV must also be borne in mind, or definition may be lost if the RF bandwidth is too narrow.

Budgeting for performance.

RF designers have at last overcome their passion for gain at the expense of all else, and today's designs are consequently mindful of the importance of correct gain

SPECIFICATION

COMMUNICATIONS
Freq. Coverage 8 MHz in the band 430 440 MHz with a $144-148$ MHz IF. 4 MHz in the band $430-440 \mathrm{MHz}$ with a 144 146 MHz IF.
$\begin{array}{ll}\text { RF Gain } & 8 \mathrm{~dB} \text { with single filter } \\ & 6 \mathrm{~dB} \text { with two filters. }\end{array}$
$\begin{array}{ll}\text { RF Gain } & 8 \mathrm{~dB} \text { with single filter } \\ & 6 \mathrm{~dB} \text { with two filters. }\end{array}$
Noise Figure $\quad 2.5 \mathrm{~dB}$ (single filter model) (approx) 5dB (two filter model)
AMATEUR TELEVISION
Freq. Coverage $\quad 434.440 \mathrm{MHz}$
IF Frequency $\quad 726.732 \mathrm{MHz}$
RF Gain
5dB (single filter model)
GENERAL
Supply Voltage 10 V stabilised.
Supply Current 30 mA approx
R\&EW KIT PRICE $£ 23.50$ + VAT
distribution or 'budgeting'. This converter has been designed with just enough gain to overcome filter and mixer losses to give the optimum balance between large signal handling and sensitivity. The network of 70 cms repeaters is growing so rapidly that there is a good chance that most users will have at least one 'blockbusting' signal in their locality, and 30 dB of gain 'up front' will not endear 70 cms to a modern highly sensitive 2 m receiver.

The mixer losses increase marginally when used in TV applications (the higher frequency), and although the SBLI is described as a $1-500 \mathrm{MHz}$ mixer, no material difference could be detected between an SBLI and the 1000 MHz part, the SBLI-X. Save your money. Most modern TV sets enjoy a fairly outrageously high noise figure of $6-11 \mathrm{~dB}$ (by modern communications standards), so a further preamplifier between the converter output and the TV set may be beneficial - although the inadequate strong signal handling performance of most TV sets is likely to be a limiting factor.

Construction.

The printed circuit board is an integral aspect of the circuit design. No attempt at alternative constructional techniques

Figure 1: Block diagram of the converter system.

Figure 2: Full circuit diagram of the converter.

Figure 3: Winding details of L7 and L8.
should be attempted unless you are quite confident of your skills. A plated through hole PCB is a delightful luxury, but by no means vital on this small scale - soldering component legs top and bottom of the earth plane will suffice - but get it right first time, since extraction can be painful.

All leads must be kept as short as

CIRCUIT DESCRIPTION (FIG 2).

The input stage is a low noise UHF PNP transistor, the BFT95 (AEG, inter alia). One of the main advantages of a PNP device at UHF is the simple way in which the collector load is returned directly to ground (via the filter). Low inductance decoupling of the emitter is essential and by virtue of this capacitance from emitter to ground, a degree of low frequency roll off can be established.

The optional input filter has already been mentioned. Where it is not used, the space on the board may be populated with a simple high pass filter to alleviate the unwanted attentions of 27 MHz . The filter tap points are at 50 ohm impedance, and thus suitable for direct connection to the mixer. Ideally, such mixers should be terminated with a resistive load to maintain best intercept performance, but this is not likely to compromise this unit since the mixer is primarily employed for its wide band characteristics.

The local oscillator chain provides a choice of two crystals to cover the entire 70 cms band within the scope of a 2 m receiver's coverage. 5th overtone crystals are not generally the friendliest of quartz devices,
and frequently tend to disappear on some obscure parasitic resonance unless carefully cajoled onto the right frequency. The resonant circuit established by L 1/C 1/C 3 must therefore be reasonably reliably 'presettable', so TOKO S 18 molded coils are used to avoid ambiguity. L 2 is placed in parallel with the crystal to enforce overtone operation.

Note that switching is performed at DC. Switching crystals is distinctly bad news and should be avoided. The system employed here enables remote operation if required.

The mulitplier chain uses a ZTX327 in the 'final', driving a bandpass coupled fitter which produces a clean (see spectrum analyser photol LO drive to the mixer. The mixer requires a high level (+7 dB) injection, and the ZTX327 or ZTX3866 are necessary to achieve the required gain and power. In view of the broadband nature of the mixer, it is important that the LO should be kept free from excessive spurii, or various unexpected mixing processes will occur.

Careful decoupling is arranged throughout, and the whoe unit is built into a screened box with capacitive feedthrough terminations.

70 CM TO 2 M \& TV CONVERTER.

Bandpass response of converter (fitted with one filter). Centre frequency $435 \mathrm{MHz}, 10 \mathrm{MHz}$ $10 \mathrm{MHz} /$ division horizontal; $10 \mathrm{~dB} /$ division vertical.

Bandpass response of converter (fitted with both helical filters). Centre frequency 430 MHz , $10 \mathrm{MHz} /$ division horizontal; $10 \mathrm{~dB} /$ division vertical

Analyser photo' showing the excellent output purity of the local oscillator; all spurious is greater than $\mathbf{4 6} \mathbf{d B}$ down on the wanted signal, Centre frequency is 490 MHz , horizontal = $100 \mathrm{MHz} /$ div, vertical $=10 \mathrm{~dB} / \mathrm{div}$.

Details of L5.

Communications RF Input Freq.	IF output (MHz)	IF output (MHz)	Crystal Frequency
$432-434$	$144-146$		
$432-438$	$144-148$	$722-728$	96.0000
$434-436$	$144-146$	$724-730$	96.6667
$436-438$	$144-146$	726.732	97.3333
$436-440$	$144-148$		
$438-440$	144.146	$728-734$	98.0000

PCB Foil Pattern - Top .

PCB Component Overlay.

PCB Foil Pattern - Bottom.

PCB Component Overlay.

COMPONENTS LIST.

RESISTORS ($1 / \mathrm{W}$ W, 5\%)			
R1.6 2k7	SEMICONDUCTORS.		
R2,9 12k	Q1,2,3 BF274		
R3,10 8k2	Q4,2,3	ZTX327/ZTX3866 BFT95	
R4.11 27R	$\begin{aligned} & \text { Q4 } \\ & \text { Q5 } \end{aligned}$		
R5,12 1k0			
R7 680R	INDUCTORS.		
R8,15,20 100R			
R13 6k8	L1,3	$41 / 2$ turn coil 1uH	
R14 1k5	L2,4		
R16,17 180R	L5	$41 / 2 \mathrm{t}$ tapped at $11 / 4 \mathrm{t}$.	
R18 2k2	L6	Ferrite bead on lead of R16(FB2)	
R19 10k			
	L7,8	2 t 20 swg t.c wire spaced 1 mm .	
CAPACITORS IMiniature ceramic, spacing).	$0.1{ }^{\prime \prime}$	5 mm inside dia, tapped at $1 / 2 \mathrm{t}$ (photo).	
C1,2,6,7 18p	L9,10	Printed on PCB.	
C3,13,31 47p	HELICAL	LTERS.	
C4,5,9,11	F1	LTERS.	
23,24,25	F1	(Toko 252 MN 1132 A F2	
$\begin{array}{ll}\text { 26,27,29 } & 1 \mathrm{l} 0 \\ \text { C82 }\end{array}$	(optional)		
C10,18,19			
20,21,28, 560		Toko 252MN 1111 A	
30.33 560p		Toko 252MN 1111A	
$\begin{array}{ll}\text { C12 } & \text { 10p } \\ \text { C14 } & 100 p\end{array}$			
C14 100p	MISCELL	NEOUS.	
C17 100	SK1,2	4-hole-fixing BNC socket	
C15,16 $\quad 1-6 \mathrm{p} 0$ minature ceramic	Box	SCB3 (REEW)	
variable,	X1,2	Crystals (see text).	
C22 100n monolithic ceramic.	Mixer	SBL-1	
C34,35,36 1n0 feedthru.	PCB	Double-sided fibreglass	

possible. Check through the photographs and diagrams herein to establish the correct constructional procedure. Note that components with an earth connection (barring mixer and filters) have one lead formed at right angles to the end soldered to the earth plane (topside). This is easier than soldering to both the earth plane and the pad on the track side of the PCB.

The layout has been designed to accommodate either BF274 devices or 'centre base' types (2N918 etc.). Take care to use the correct holes for $\mathrm{Q} 1,2,3$. The tripler stage, Q 4, may be a ZTX/2N3866, in which case R 17 is 68 R - but comparative tests indicate that the ZTX327 is a shade better suited in view of the supply voltage (10 V).

Assembly points.

1. Thread some tinned copper wire (resistor lead trimmings will do) through the earth holes around the mixer. and solder top and bottom. Make certain that this does not raise the miver more than a mm or so from the face of the PCB.
2. Solder all the resistors to the PCB and don't forget the ferrite bead (L 6) over the hot end of R 16 .
3. Fit F 2 (and F 1 if required). Solder the pins to the track side, and the can to the topside as well.
4. Solder L 5 to the PCB - care must be taken to attach the tap at 1.25 turns from the Q 3 collector end. This is best achieved by soldering a piece of 22 SWG to the PCB and forming it so that it just touches L 5 at the correct point. Briefly (or the coil former will melt) tin the tap point on L 5 with a fine tipped iron, and then the tap soldering process should be completed quickly.
5. Wind L 7 and L 8 (2 turns on a 5 mm diameter drill bit), and form the leads as shown if Fig 3. Solder to the PCB. Fit the taps, at $1 / 2$ a turn, to L 7 and L 8 as described for L 5 .
6. Fit C 15 and C 16 as shown in Fig 4. This will keep the tuning screw at ground potential, making

Figure 4: Mounting details for C15 and C16.

Figure 6: Method of setting up the system for optimum performance.
adjustment far easier.
7. Fit the remaining capacitors.
8. Fit the remaining components, taking care to observe the mixer orientation and the transistor pinouts.
9. Solder about 2 cm of wire to the external input/output points indicated on the PCB.

Finally.

1. Drill the box (WR\&E 21-06052) as shown in Fig 5. and fix the feedthrough capacitors and sockets into place.
2. Place the PCB in the box and solder the lugs to the earth plane - take care not to overheat the whole thing. Solder the PCB to the earth plane close to the RF terminations.
3. Complete the external connections to the feedthroughs and the sockets.

Testing.

1. Perform the usual visual checks for solder bridges and incorrect insertions.
2. Adjust the cores of L 1 and $L 3$ to about 2 mm below the top of the formers. The core of $L 5$ should be level with the top of the former and C 15, C 16 to mid position (slot in line with the pins).
3. Connect a 10 V power supply (preferably one with current limiting at 100 mA), and check that the current consumed is not excessive. It should be around 18 mA with neither crystal oscillator connected.
4. Connect a test meter between Q 3 emitter and earth. An initial voltage of about 1 V should be observed. Earth the centre of C 35 to turn on Q 1
5. Connect a test meter to Q 4 emitter. Adjust L 1 until a reading is obtained and adjust L 5 for maximum reading for Q 2 after
earthing C 36 centre. Switch between Q 1 and Q 2 whilst adjusting $L 5$ to ensure an even level on both frequencies.
6. Using either an RF millivoltmeter of diode probe (Fig 6), adjust C 15 and C 16 for maximum RF voltage at the output tap on L 8. With the oscillator chain correctly aligned, the current consumption will have risen to approx. 28 mA

If additional test equipment is available (i.e. spectrum analysers), further adjustment of such things as F1 and F 2 may be undertaken.

Notes.

Since the oscillators are DC switched, the switch may be mounted as remotely as you like (within reason). The 10 V supply can be derived from an LM317 or similar (see Data File 1 - December R\&EW).

If there is sufficient interest, we will follow up with a complete PSU, case and switching system.

Results.

Using the converter in conjunction with an FT290 (mic removed to avoid accidental transmission), the converter out performs most commercial counterparts - with the added convenience of $432-440 \mathrm{MHz}$ coverage. The FT290 was modified for $144-148 \mathrm{MHz}$ operation - a simple job of programming links.

When used for ATV, the improvement over the usual modified TV tuner (ELCl043/05 with modified BFR91 input) was significant. Using a chequer board pattern source, the pattern was resolvable down to an input of 7 uV .

TRIO OSCILLOSCOPES
Range of mains operated Scopes with 5 displays triggered sweep (UK c/p $£ 3.50$
DUAL TRACE
CSI562A $10 \mathrm{MHZ}: 10 \mathrm{MV}: 1$ microsec $\quad £ 267.95$ CSI560A II 15 MHZ. $10 \mathrm{mV}: 05$ micro \sec £341.55
CSI566A 20 MH2 5 mV . 05 micio sec CS1577A 35 MHZ: 2mV: 0.1 micro sec £363.40 cSI830 mk II 30MHZ. 2mv. 02 micro sec C626.7 fitted delay line) CSI575 5 MHZ. 1 mV .0 .5 micro sec Mullı display Audio £312.80 CS $182020 \mathrm{MHZ}, 2-5 \mathrm{mV} 1$ micro delay sweep $£ 483.00$ SINGLE TRACE CSI559A 10 MHZ .10 mV i micro sec 5 display Triggered sweep (UK c/0 £3.50 \qquad $£ 251.85$ C01303D 5 MHZ . 10 mV . Iow sweep for observation below 1 HZ and up 10450 MHZ 2.75 mm display IUK c/D £2.00) Optional orobes - all models X1 $£ 7.95 \times 10 £ 9.45 \times 1-\times 10 £ 10.50 \times 100 £ 16.95$

MULTIMETERS

(UK c/D 65 p or $£ 1.00$ for iwo) CHOOSE FROM UK's LARGEST RAMGE KRT101 0 range pocket $1 \mathrm{~K} / \mathrm{Volt}$ KRTI 0012 range pocket $1 \mathrm{~K} /$ Voli NH55 10 range pocket $2 \mathrm{~K} /$ Voli
ATI 12 range pockel Deluxe $2 \mathrm{~K} / \mathrm{Voh}$ ST5 11 range pocket $4 \mathrm{~K} / \mathrm{V}$ olt STS 11 range pocket $4 \mathrm{k} /$ Volt
MH55 22 range pocket 20 K . Volt Yw360TR 19 range plus Hfe Test $20 \mathrm{~K} / \mathrm{Volt}$ St303Th 21 range plus Hte Test $20 \mathrm{~K} / \mathrm{V}$ oll
£4.50
4.50
5.50 KRT5001 16 range - range double $50 \mathrm{~K} / \mathrm{Volt}$ £6. 75 8.75 $£ 15.95$ ETC5000 As KRT500t plus colour scales $50 \mathrm{k} / \mathrm{Vol}$ 708118 range - tange double TOA DC $50 \mathrm{~K} / \mathrm{Volt} \mathrm{£} 20.95$ TMK500 23 range. Plus 12A DC Plus Cont Buzzer

AT20521 range Deluxe t0A DC 50K/Volt £25.75 C7080 26 range large scale 10A DC 5KV AC/DC 20K/Volt £27.50 AT210 23 range Deluxe 12A AC/DC $100 \mathrm{~K} / \mathrm{Volt} \quad £ 31.00$ 360 T 233 range Large scale 10A AC/DC He Test 50 Meg onm 1KVAC/DC $100 \mathrm{~K} / \mathrm{Vois}$

CLAMP-ON-METERS INSULATION TESTERS

Multirange clamps all with resistance range carry case \& leads Also digital and $D C$ clamp in slock (UK C/D 75 D) ST300 300A 600 V 9 ranges $\quad £ 25.95$ ST310 300A Gnov 9 ranges $£ 29.95$ K2602 150A. 600V AC 7 Ianges $£ 35.95$ -K2606 $300 \mathrm{~A}, 600 \mathrm{~V}$. AC 8 ranges $£ 44.00$ K2803 300A 600 V AC 9 ranges $£ 53.95$ | K2803 |
| :--- |
| K 2903900 A .750 V AC 9 ranges $£ 77.50$ | K2903

K 21031000 A .750 V . AC 9 ranges $£ 95.00$ - Optonal temperature probe $£ 13.80$ electronic insulation testehs Battery oper ated complete with carry case IUK c/p £1.00)
YF500L $500 \mathrm{~V} / 100 \mathrm{Meg}$ Plus $0-100 \mathrm{ohm}$
$\mathrm{K} 3103600 \mathrm{~V} / 100 \mathrm{Meg}$ Plus 0.26 K 55.00 K 3106500 V \& 1000 V . 100082000 M .00 £ 104.00 K4101 Earth resistance tester $£ 136.50$ M500 Hand cranked insulation tester
$500 \mathrm{~V} / 100 \mathrm{Meg}$
$£ 67.50$

THANDAR - SINCLAIR

Reliable low cost portable instruments, bench inodels all $25.5 \times 15 \times 5 \mathrm{~cm}$ Generators mains operated rest battery (supplied) UK c/D Hand models 65 p, bench $£ 1.15$)
DIGITAL MULTIMETERS (3/2digil ICD)
TM 354 Hand held. DC $2 \mathrm{~A} .2 \mathrm{~m} \mathrm{ohm}, 1 \mathrm{mV}-1000 \mathrm{~V}$ DC. 500 v AC
TM352 Hand held. DC 10A. Hie test. Cuntrnuity rest \quad £57.44
TM353 Bench. 2A AC/DC. 1000 V AC/DC 20 M ohm
E557.44
Typical 025° "New low price
TM351 Bench. 10A AC/DC 1000V AC/DC 20M ohm f86. 25 Typical 0 :
£113.85
FREQUENCY COUNTERS IB Digit|
PFM200A Hand held LED 200 MHZ . 10 mV (600 MHZ with TP600)
TP600)
TF 040 Bench LCD $40 \mathrm{MHZ} .40 \mathrm{mV}(400 \mathrm{MHZ}$ with TP6001 £ 126.50 IF200 Bench LCD 200 MHZ . $10-30 \mathrm{mV}$ (600 MHZ with ITP600) TP600 $600 \mathrm{MHZ} * 10$ Piescaler 10 mV £43.13 GENERATORS IAll bench models) mains operated TG100 Function $1 \mathrm{HZ} \cdot 100 \mathrm{KHZ}$ Sine/SO/Trangle/TTL $£ 90.85$ TG102 Function $0.2 \mathrm{HZ} \cdot 2 \mathrm{MHZ}$ Sine/SO/Triangle/T 1 L £ 166.75 TG105 Pulse $5 \mathrm{MHZ}-5 \mathrm{HZ}$ (200 nS - 200 mS) various outputs $£ 97.75$ OSCILLOSCOPE (Bench model low power portable) 10 MHZ 2 trace 10 mV 0.1 microsec All facilities. Model SC 110
$£ 159.85$ Rechargable battery pack $£ 8.63$. AC adaptor/charger $£ 5.69$ OPTIONALITEMS
Carry case (bench only) $£ 6.84$ AC Adaptors Islate model) $£ 5.69$

CROTECH OSCILLOSCOPES

Range of Portable Scopes mans and battery operated Plus special features IUK c/o $£ 3.001$
3030 Single trace 15 MHZ .5 mV 0.5 micro secs Hius Duill in component tester. 95 mm tube
3131 Dual trace 15 MHZ . 1 ıg to 35 MHZ .5 mV .0 .5 micro se 130 mm tube. plus component tester
3034 Battery-mains dual trace 15 MHZ . trig to 20 MHZ buit in Nicads. 5 mv . 0.5 micro secs
(Eliminator charger optional2 $28 . / 5$)

Also Available 3033 . single trace 3034 3035. 130 mm 3030 3337. dual 30 MHZ . 130 mm
(Optional Probes all models - see Trıo above)

LOGIC PROBE
 DIRECT READ HV PROBE
 OSCILLOSCOPE PROBE KITS

(UK c/p 45 p Leader LDP07650 MHZ 10MEG ohm. 10 n Sec with carry case

IUK c/p 500 per 1103) Available BNC plug or Banana
$\times 1 £ 7.95 \times 10 £ 9.45$
X 1 -X10 $£ 10.50$
Also X100 (BNC only) £16.95

TRIO GENERATORS

AUDIO AND RF MAINS OPERATED PORTABLE EQUIP MENT (UK C/D £1.10)
SG402 6 range RF SG402 6 range RF $100 \mathrm{KHZ}-30 \mathrm{MHZ}=1.5$. INT/EXT MOD 100 mVo /p Varrable
 AG202A Matching 4 range Audio 20 HZ $200 \mathrm{KH2}$ Sine Square Distortion $05-1$ Variable ofp to 10 V HZ - 1 MHZ Sine/Square 050 AG203 5 band 10 HZ - 1 MHZ Sine/Square 050 B deviation Distortion Max 01^{1} Switched Alternator 8
 55 MHZ Generators (200 SPC with 100 MHZ counter)

PROFESSIONAL MULTIMETERS

IUK C/D $£ 1.50$) All featuring AC/DC Volts/Current \& Ohms ranges.
M1500 43 range 20K / Voit AC $/ D C$ 10A \quad C53.50 M1200 30 range $100 \mathrm{~K} /$ Voll AC/DC $15 \mathrm{~A} 200 \mathrm{Meg} \underset{\mathrm{Mmm}}{\mathrm{£} 67.50}$ K140026 range large scale 20K/Volt 10A AC/OC 2i Meg ohin 5kV AC/DC
£79.95 20039 range 10 Meg ohm input $25 \mathrm{HZ}-1 \mathrm{MHZ} \mathbf{~} 95.00$ OPTIONS Cases M $1500 \& 1200 £ 16.50$ - $1400 £ 19.00$ Temperature Probe for K $1400 £ 13.80$

AUDOELECTRONICS Cumeed

301 EDGWARE ROAD. LONDON. W2 1BN, ENGLAND. TELEPHONE 01-724 3564 ALSO AT HENRYS RADIO, 404/406 EDGWARE ROAD, LONDON WZ

OPEN SIX DAYS A WEEK • CALL IN AND SEE FOR YOURSELF
Order by Post with CHEQUES/ACCESS/VISA or Telephone your order

CATALOGUEO

Send large SAE
$(20 \mathrm{p}$ UK)
Schools, Companies
etc. free on request

Available at your
 newsagent or direct for wip pep

INVEST 60p AND MAKE E2.40 net profit

Buy Ambit's new concise component catalogue and get 玉l vouchers. Use them for a $£ 1$ discount per $£ 10$ spent. But even without this, you will still find WR\&E offers the low prices, fast service and technical support facility second to none. Here are some examples from the current issue:

1.C. SOCKETS		DISCRETES	
A range of high quality, low cost, low profile DIL sockets ideally suited for both the OEM and hobbyist. All types feature double sided phospher bronze contacts, tin-plated for low contact resistance.		BC237	8p
		BC238	8 p
		2TX238	9p
		BC239	8 p
		8C307	8 p
		BC308	8 p
$8 \times 0.3^{\prime \prime} 12 \mathrm{p} \quad 22 \times 0$	$22 \times 0.3^{\prime \prime} 20 p$	BC309	8 p
$14 \times 0.3{ }^{\prime \prime} 13 \mathrm{p} \quad 22 \times 0$.	$22 \times 0.4^{\prime \prime} 20 p$	BC413	10p
$16 \times 0.3^{\prime \prime} 13 \mathrm{p} \quad 24 \times 0$.	$24 \times 0.6^{\prime \prime} 22 p$	BC414	11p
$18 \times 0.3^{\prime \prime} 18 p \quad 28 \times 0$	$28 \times 0.6^{\prime \prime} 25 p$	BC415	10p
$20 \times 0.3^{\prime \prime} 19 \mathrm{p} \quad 40 \times 0$	$40 \times 0.6^{\prime \prime} 35 p$	BC416	11p
$20 \times 0.4^{\prime \prime} 19 p \quad 42 \times 0$	$42 \times 0.6^{\prime \prime} 38 p$	BC546	12p
VOLTAGE REGULATORS		XTALS	
		1 MHz	3.00
$78 \times \times 1$ A TO. 220 pos	pos 0.58	3.2768 MHz	2.00
$79 \times \times 1$ A TO. 220 neg	neg 0.60	4 MHz	1.70
78G 1 A TO-220 adj pos	dj pos 1.10	4.194MHz	1.70
78 G 1 A TO.3 adj pos	pos 3.95	4.43 MHz	1.25
78H5A TO-3 5v pos	os 4.25	5 MHz	2.00
78H5A TO-3 12v pos	pos 5.45	6.5536 MHz	2.00
78HG5A TO-3 adj pos	pos 7.45	7 MHz	200
79HG5A TO. 3 adj neg	neg 7.45	8 MHz	2.00
LM317.5A adj pos	-1.30	9 MHz	2.00
LM337.5A adj neg	1.75	10 MHz	2.00
78S401.5A adj pos sw reg	sw reg 1.20	11 MHz	2.00

CMOS		4077	0.18	4705	4.24	7447N	0.62	74153 N		74366 N	0.85	74.5109 N	0.25						
4000	0.13	4078	0.18	4706	4.50	7448 N	0.56	74154 N	0.55	74367 N	0.85	74LS112N	0.25	$74.5248 N$	1.35	74			
4001	0.13	4081	0.18	4720	4.00	7450	0.14	74155 N	0.55	74368 N	0.85	74SL113N	0.25	74 LS 251 N	0.46	74C00	0.20	Processor	
4002	0.13	4082	0.18	4723	0.95	7451 N	0.14	74156 N	0.55	74390 N	1.85	74LS 114 N	0.25	74LS253N	0.46	74 CO	0.20	8080 ser	
4007	0.15	4093	0.41	4724	0.95	7453N	0.14	74157 N	0.55	74393 N	1.85	74LS122N	0.40	74.5257 N	0.55	$74 \mathrm{CO4}$	0.20	8060 AFC/2	3.11
4008	0.70	4099	0.93	4725	2.24	7454 N	0.14	74159 N	1.90	74490 N	1.85	74LS123N	0.55	74LS258N	0.39	$74 \mathrm{C08}$	0.20	8212	1.70
4008AE	0.80	4175	0.90	40014	0.54	7460 N	0.14	74160 N	0.55			74LS 124N	1.80		0.39	74C10		8214	3.50
4009	0.30	4502	0.79	40085	0.99	7470 N	0.28	74161 N	0.55	74LSN		74LS125N	0.29	74LS260N	0.70	74 Cl 4	0.25	8216	1.41
4010	0.30	4503	0.48	40098	0.54	7472N	0.27	74162 N	0.55	74LS00N	0.11	74LS 126 N	0.29	74LS266N	0.24	74 C 20	0.20	9224	1.85
4011AE	0.24	4506	0.63	40106	0.69	7473 N	0.28	74163 N	0.55	74 LS 01 N	0.11	74LS 132N	0.45	74LS273N	0.90	74C30	0.20	8251	4.26
4011	0.15	4507	0.38	40160	0.68	7474 N	0.28	74164 N	0.55	$74 \mathrm{LSO2N}$	0.12	74LS133N	0.30	74 LS 275 N	0.90	74C32	0.20	8255	3.97
4013	0.32	4508	1.95	40161	0.69	7475 N	0.35	74165 N	0.55	74.503 N	0.12	74LS 136 N	0.25	74 LS 279 N	0.35	74 C 42	0.80		
4015	0.64	4510	0.66	40162	0.69	7476 N	0.30	74166 N	0.70	$74 \mathrm{LSO4N}$	0.14	74LS 138 N	0.34	74 LS 280 N	2.05	74 C 48	1.03		
4016	0.30	4511	0.66	40163	0.69	7480 N	0.26	74167 N	1.25	74LSOSN	0.14	74LS139N	0.36	74LS283N	0.44	$74 C 73$	0.50	6800/6809	
4017	0.45	4512	0.70	40174	0.69	7481 N	0.20	74170 N	1.25	74 LSOON	0.14	74LS 145 N	1.20	74 LS 290 N	0.58	74C74	0.50	6800 P	3.75
4019	0.38	4514	1.45	40175	0.69	7482 N	0.75	74173 N	1.10	74LS09N	0.14	74 LS 151 N	0.35	74 LS 293 N	1.30	74 C 76	0.48	68400	4.25
4020	0.58	4515	1.45	40192	0.75	7485 N	0.75	74174 N	0.75	74LS 10 N	0.13	74LSIS3N	0.35	74 LS 295 N	1.50	$74 \mathrm{C83}$	0.98	68800	4.75
4021	0.68	4516	0.75	40193	0.75	7486N	0.24	74175 N	0.75	74.511 N	0.14	74LS S154N	0.99	74 LS 298 N	1.50	74 C 85	0.98	6802	5.55
4022	0.64	4518	0.40	40194	0.69	7489 N	1.05	74176 N	0.75	74 LS 12 N	0.15	74 LS 155 N	0.38	74 LS 365 N	0.35	74C86	0.26	6809	15.00
4023	0.15	4520	0.75	40195	0.69	7490N	0.30	74177 N	0.75	74LS13N	0.28	$74 \mathrm{LS156N}$	0.38	74 LS 366 N	0.35	74C89	2.68	6810	1.75
4024	0.45	4521	1.60			7491N	0.55	74178 N	0.90	74 LS 14 N	0.46	74 LS 157 N	0.33	74.5367 N	0.35	74C90	0.80	68410	1.85
4025	0.15	4522	0.89	TTL	N	7492N	0.35	74179N	1.35	$74.515 N$	0.14	$74 \mathrm{LS158N}$	0.33	74.5368 N	0.35	7.4C93	0.80	68810	2.04
4026	1.05	4527	0.89	7400 N	0.10	7493N	0.35	74180 N	0.75	74 LS 20 N	0.13	74 LS 160 N	0.40	$74 \mathrm{LS373N}$	0.78	74C95	0.94	6820	1.95
4027	0.50	4528	0.78	7401 N	0.10	7494 N	0.70	74181N	1.22	74.521 N	0.15	74LS161N	0.40	74 LS374N	0.78	74C107	0.48	6821	1.75
4028	0.50	4529	0.89	7402N	0.20	7495 N	0.60	74182 N	0.70	74 LS 22 N	0.15	74LS 162 N	0.40	74.5375 N	1.15	74C151	1.52	68921	2.10
4029	0.75	4531	0.85	7403 N	0.11	7496N	0.45	74184 N	1.20	74LS26N	0.18	74 LS 163 N	0.40	$74.5377 N$	1.99	74C154	2.26	68821	2.34
4030	0.35	4532	1.20	7404N	0.12	7497N	1.40	74185 N	1.20	74LS27N	0.14	74LS 164N	0.46	$74.5378 N$	1.40	74 C 157	1.52	6840	4.25
4035	0.75	4534	5.30	7405 N	0.12	74100	1.10	74188 N	3.00	74LS28N	0.19	74LS 165N	1.20	74 LS 379 N	2.15	74C160	0.80	684.40	4.55
4040	0.68	4536	3.00	7406 N	0.22	74104	0.62	74190 N	0.55	74LS30N	0.13	74LS 166 N	0.80	74LS384N	2.50	74 C 161	0.80	68B40	4.75
4042	0.58	4538	0.97	7407N	0.22	74105	0.62	74191N	0.55	74LS32N	0.14	74LS S168N	0.85	74.5385 N	4.20	74C162	0.80	5850	1.75
4043	0.65	4539	0.89	7408 N	0.15	74107	0.26	74192N	0.55	74LS33N	0.16	74LS Sign	0.85	74 LS 386 N	0.29	74C163	0.80	68850	2.17
4043AE	0.93	4543	1.05	7409 N	0.15	74109 N	0.35	74193 N	0.55	74LS37N	0.15	$74 \mathrm{LS} \mathrm{S170N}$	1.40	74.5390 N	0.68	74 C 164	0.80	6852	2.47
4044	0.64	4549	3.50	7410 N	0.12	74110 N	0.54	74194 N	0.55	74LS38N	0.16	74LS 173N	0.70	74LS393N	0.61	74C165	0.84	68452	2.75
4046	0.69	4553	3.20	7411 N	0.18	74111 N	0.68	74195 N	0.55	74 LS 40 N	0.13	74LS174N	0.55	74.5395 N	2.10	74 C 173	0.72	68852	2.95
4047	0.69	4554	1.30	7412N	0.19	74112 N	1.70	74196 N	0.55	74LS42N	0.33	74LS 175N	0.55	74.5396 N	1.99	74C174	0.72	68488	5.25
4049	0.30	4555	0.48	7413 N	0.27	74116 N	1.98	74197 N	0.55	74LS47N	0.39	74LS181N	1.20	$74.5398 N$	2.75	74C175	0.72		
4050	0.30	4556	0.53	7414 N	0.51	74118 N	0.85	74198 N	0.85	74LS48N	0.65	74LS 183N	1.75	74LS399N	2.30	74C192	0.80		
4051	0.65	4557	2.30	7416 N	0.27	74119 N	1.20	74199 N	1.00	74LS49N	0.59	74LS189N	1.28	74 LS 445 N	1.40	74C193	0.80	280 seri	
4052	0.65	4558	0.89	7417 N	0.27	74120 N	0.95	74221 N	1.00	74LS51N	0.14	74LS 190 N	0.56	74 LS 447 N	1.95	74C195	0.80	280A	4.99
4053	0.65	4559	3.80	7420 N	0.13	74121 N	0.34	74246 N	1.50	74LS54N	0.15	74LS 191N	0.56	$74 \mathrm{LS490N}$	1.10	74C200	4.52	Z80AORT	7.50
4054	1.30	4560	1.75	7421 N	0.28	74122 N	0.34	74247 N	1.51	74LS55N	0.15	74LS192N	0.56	$74 \mathrm{LS668N}$	1.05	74C221	1.06	280APIO	4.10
4055	1.30	4561	2.18	7423 N	0.22	74123 N	0.40	74248 N	1.89	74 LS 73 N	0.21	74LS193N	0.59	74LS669N	1.05	74C901	0.38	280ASIO/1	14.00
4056	1.30	4562	0.89	7425 N	0.22	74125 N	0.40	74249 N	0.11	74LS74N	0.18	74LS194N	0.39	74.5670 N	1.70	74C902	0.38	z80ASIO/2	14.00
4059	5.75	4566	3.80	7426N	0.22	74126 N	0.40	74251N	1.05	74LS75N	0.28	74LS 195N	0.39			74C903	0.38	280ASIO/9	14.00
4060	0.88	4568	1.45	7427 N	0.22	74128 N	0.65	74265 N	0.66	74LS76N	0.19	74LS196N	0.55	RAM		$74 \mathrm{C904}$	0.38	z80CTC	4.00
4063	1.15	4569	1.50	7430 N	0.13	74132 N	0.50	74273 N	2.67	74LS 78N	0.24	74LS197N	0.65	2102	1.70	74C905	5.64	280ACTC	4.50
4066	0.34	4572	1.95	7432 N	0.23	74136 N	0.65	74278 N	2.49	74LS83N	0.50	7415200 N	3.45	2112	3.40	$74 \mathrm{C906}$	0.38	28001	65.00
4067	4.30	4580	3.25	7437 N	0.22	74141 N	0.45	74279 N	0.89	74LS85N	0.70	74LS202N	3.45	2114/2	1.49	74C907	0.38		
4068	0.18	4581	1.50	7438 N	0.22	74142 N	1.85	74283 N	1.30	74LS86N	0.18	$74.5221 N$	0.60	4027	5.78	74.908	0.84		
40c9aE	0.18	4582	9.65	7440 N	0.14	74143 N	2.50	74284 N	3.50	74LS90N	0.32	74 LS 240 N	0.99	$4116 / 2$	1.59	74C909	1.52	PROM	
4070	0.18	4583	0.80	7441 N	0.54	74144N	2.50	$74285 N$	3.50	74LS91N	0.70	74LS241N	0.99	4116/3	1.49	$74 \mathrm{C910}$	3.62	2708	2.00
4071	0.18	4584	0.45	7442 N	0.42	74145N	0.75	74290 N	1.00	74LS92N	0.34	74LS242N	1.65	4864P	12.50	$74 \mathrm{C914}$	0.86	2716	3.55
4072	0.18	4585	0.45	7443 N	0.62	74147N	1.50	74293N	1.05	74LS93N	0.34	74LS243N	1.55	6116P. 3	12.50	$74 \mathrm{C918}$	0.98	2532	8.50
4073	0.18	4702	4.50	7444 N	0.62	74148N	1.09	74297N	2.36	74LS95N	0.44	74LS244N	0.83	$6116 P-4$	11.25	$74 C 925$	4.32	2732	8.50
4075	0.18	4703	4.48	$7445 N$	0.62	74150 N	0.79	74298 N	1.85	74LS96N	1.20	74LS245N	1.50	8264	12.50	74C926	4.32		
4076	0.60	4704	4.24	7446 N	0.62	74151N	0.55	74365 N	0.85	74LS 107 N	0.25	74.5247 N	1.35			$74 C 927$	4.32		

Helical filters to simplify VHF / UHF receiver design

Peter Williams

As demonstrated in Timothy Edwards' VHF and UHF converter designs, the helical filter is the VHF/UHF RF designers' friend where consistency, performance and High Q are required above 100 MHz .

Off the shelf

Since the Japanese coil and filter manufacturer TOKO added helical filters to their ranges of 'stock types', it has been a lot easier for VHF/UHF designers to get to grips with block selectivity, in much the same way as crystal and ceramic filters have taken a lot of the chore out of IF design.

If today's design engineer is to be able to get to grips with the multidisciplinary aspects of radio design, then any time saved grinding through the tedium of LC selectivity design followed by the inevitable 'wet fingered' breadboard engineering, must be a good thing.

However, it is important that the helical filter should be appreciated from a theoretical as well as practical standpoint, so that the limitations and constraints placed upon the filter manufacturer may be better understood. Problems and 'strange' results from practical tests can also be more readily identified and cured if you know what you are looking for.

An introduction

It is just about possible to design a helical resonator from around 10 MHz , although more elegant and compact
helical resonator that is trimmed with a capacitor as an LC tuned circuit - the temptation should be avoided, or the unwary will easily be led astray. When you consider the size of a helical resonator for 145 MHz , placed alongside a 145 MHz LC tuned circuit, the difference in size is dramatic (Photo one).

Since the Q of the whole assembly will be drastically affected by that of the trimmer capacitor, the preferred trimming technique is to employ the helix to ground capacitance at the 'hot end' (Figure 1) under controlled conditions. The capacitance is kept to a minimum so as to avoid disturbing the Q of the resonator, and it follows that the possibility of small changes leading to large shifts in resonance due to thermal or vibrational considerations, must be considered in the overall design. The solution adopted by TOKO is to use a fine thread on a grounded brass slug that can be used to trim the 'case' distance from the hot end of the helix. Contact between the slug and the case is maintained by a spring washer.

The other considerations usually applicable to high Q inductor design still apply -namely the bigger the helix diameter, the larger the wire gauge and silver plating will help the cause.

The analysis for the helical resonator is another battle ground for the sort of large sums that are calculated to send the average maths lecturer into paroxysms of ecstacy, but leave us lesser mortals rather cold. Ref 1 and 2 contain the elegant mathematical considerations, alt hough as with most things in the art of radio, an approximation exists which results in a practical conclusion that is well within the bounds of 'experimental' error in the practical domain. Practical RF Communications Data (Ref 3) to the rescue again. (Figure 2 - design NOMOGRAM)

Figure one : Typical helical filter construction

The unloaded Q of this resonator is found from:

$$
\begin{equation*}
\mathrm{Qu}=50 \mathrm{D} \sqrt{\mathrm{fo}} \tag{1}
\end{equation*}
$$

where
D is the diameter of the 'cavity' in inches fo is the resonant frequency in MHz
The number of coil turns. N may be found from:
$\mathrm{N}=1900 / \mathrm{foD}$
and the mean distance between the turns is given by:
$\gamma=\left(\right.$ foD $\left.^{2} / 2300\right)$ inches
if (according to Figure 2 Resonator and cavity dimensions) B is approx $=$ ($b+D / 2$) and y is less than $d / 2$.

The Helical Filter

TOKO THW LHF 2 pole filter

After the resonator comes the filter array, and since the ratio of the resonator $\mathrm{Q}(\mathrm{Qr})$ and the filter $\mathrm{Q}(\mathrm{Qf})$ are directly related to the insertion loss (IL), the approximation

Insertion Loss (IL) =

$$
\frac{4.343 Q_{f}}{Q_{r}} \cdot \sum_{K=1}^{N} X k
$$

where N is the order of the filter
Qr is the resonator Q
Qf is the filter Q
Xk is the normalized lowpass element value for the filter type emploved.
(See the tables)
So taking the example of a filter centred at 460 MHz , with a 3 dB bandwidth of $10 \mathrm{MHz}, 50 \mathrm{~dB}$ bandwidth of better than 90 MHz , with an insertion loss of 1.0 dB ,

$$
\mathrm{Qr}=\frac{(4.343) \mathrm{Qf}}{\mathrm{IL}} \cdot \Sigma_{\mathrm{K}=1}^{3 \mathrm{Xk}}
$$

where a 3rd order Butterworth characteristic has been chosen to suit the required spec.
from tables for Butterworth filter: $\mathrm{X} 1=1, \mathrm{X} 2=2, \mathrm{X} 3=1$
so
$\mathrm{Qr}=\frac{(4.343)\left(460 \times 10^{6}\right)}{(1.0)\left(10 \times 10^{6}\right)} \cdot 4=800$

Figure 2: Design nomograph for helical resonators

Coupling the helical elements to form the filters is determined according to (see Figure 3):

$$
A_{i j}=d(1.075) 10^{\frac{1}{1.91} \log 10}\left(\frac{B_{3} 3 \mathrm{~dB}}{(0.071)(\mathrm{fo})\left(\mathrm{X}_{\mathrm{i}} \mathbf{X}_{\mathrm{j}}\right)}\right)
$$

where A is the coupling height between resonators one and two, in inches, with a shield thickness of $1 / 32^{\prime \prime}$. In practice, there is a large degree of cut and try in any prototype work involving helical filters, so some means of adjusting coupling is a good idea. (Figure 4)

Tapping in

The impedance match can be provided by selecting the right place to tap in, according to:

Tap Point (TP) $=\mathrm{N} \Theta$
Tap Point $(T P)=\frac{N \Theta}{90}$
where:
N is the total turns on the resonator
$\Theta=\operatorname{Arcsin} \frac{\mathrm{Rb} \mathrm{Rtap}^{2}}{2 \mathrm{Z}\}}$
$\mathrm{R}_{\text {tap }}=50 \Omega$
$\mathrm{Rb}_{\mathrm{b}}=\frac{\pi \mathrm{Z}_{\mathrm{O}}}{4} \cdot\left(\frac{1}{\mathrm{Qd}}-\frac{1}{\mathrm{Qr}}\right)$
$Z_{0}=\frac{8.51 \times 10^{10}}{f_{0} D}$
D is found from the nomogram
$\mathrm{Qd}=\frac{\mathrm{f}_{\mathrm{O}} \mathrm{X}_{1}}{2 \mathrm{BW} 3 \mathrm{~dB}}$
$\mathrm{Q}_{\mathrm{r}}=800$ (already established from IL)
A 50 ohm tap will be found to be about 0.2 turns above ground - and this is of course difficult to locate. In many
cases, trying to find a good 50 ohm match can lead to other problems (usually increased insertion loss), so there is a tendency to try and settle for a 'convenience' impedance achieved by a tap at least one turn in - say around 470 ohms in the case of the TOKO CBT/CBW series of VHF filters. N is the total number of turns on the resonator.

Other techniques

In view of the difficulty of tapping a helical resonator, one alternative solution is to continue the helix onto the surface of the PCB on which the resonator is mounted, so that the tap can then be made via the PC track tapping.

The stock solutions

TOKO helical resonators/filters are available in two basic ranges - from 130 to 170 MHz in the 2 chamber CBT and CBW series. The UHF series includes the miniature 7 HW style of 2 chamber filters, and the much larger format HRQ 4 chamber) and HRW (2 chamber) types.

All these types may be trimmed by about 7% of the nominal centre frequency, but much beyond these limits, the characteristics can begin to change fairly substantially.

The CBT/CBW and 7HW types can be dismantled to provide the necessary parts for rewinding to your own specification if required, but the large format UHF series uses a technique whereby the helix is molded into a rigid low loss plastic 'former' that is not easily taken to pieces. You can still have a fiddle with the coupling apertures by adjusting the screen positions, but not much else.

References

1. Zverev, A.I. - Handbook of tiller synthesis: Wilcy, New York, 1967.
2. Humphreys. DeVerl S. - The Analysis. Design, and Synthesis of Electrical Filters. Prentice Hall. 1970.
3. DeMaw M.F. - Practical RF Communications Data: Howard Sams \& Co.. Indianapolis, 1978.

R\&EW

| Your Reactions......... | Circle No. |
| :--- | :--- | :--- |
| Immediately Applicable | 160 |
| Useful \& Informative | 161 |
| Not Applicable | 162 |
| Comments | 163 |
| Con | |

TABLE 1: Butterworth Normalized Element Values											TABLE 5: Chebyshev 0.5dB Ripple Normalized Element Values										
Order	x_{1}	x_{2}	x_{3}	x_{4}	${ }_{5}$	x_{6}	$x 7$	x_{8}	X_{9}	x_{10}	Order	x_{1}	x_{2}	x_{3}	X_{4}	x_{5}	x_{6}	x_{7}	x_{8}	x_{9}	x_{10}
	1.4142	1.4142										0.8341	22185								
3	1.0000	20000	1.0000									1.8637	1.2804	1.8637							
4	0.7654	1.8478	1.8478	0.7854								0.9202	2.5865	1.3036	1.8259						
	0.6180	1.6180	2.0000	1.6180	0.6180							1.8069	1.3025	2.6915	1.3025	1.8069					
6	0.5178	1.4142	1.9319	1.9319	1.4142	0.5176						0.9053	25775	1.3675	2.7134	1.2990	1.7962				
7	0.4450	1.2470	1.8019	2.0000	1.8019	1.2470	0.4450					1.7896	1.2961	2.717	1.3848	2.7177	1.2961	1.7896			
8	0.3902	1.1111	1.6629	1.9616	1.9616	1.6629	1.1111	0.3902				0.8998	2.5671	1.3697	27585	1.3903	2.7176	1.2938	1.7853		
9	0.3473	1.0000	1.5321	1.8794	2.0000	1.8794	1.5321	1.0000	0.3473			1.7823	1.2921	2.7163	1,3922	2.1734	1.3921	2.7163	1.2921	1.7823	
10	0.3129	0.9080	1.4142	1.7820	1.9754	1.9754	1.7820	1.4142	0.9080	0.3129		0.8972	25611	1.3683	27632	1.4009	2.7796	1.3927	2.7148	1.2908	1.7801
TABLE 2: Chebyshev 0.01 dB Ripple Normalised Element Values											TABLE 6: Chebyshev 1.0dB Ripple Normalized Elemen: Values										
Order	x_{1}	\times_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	x_{9}	X_{10}	Order	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	X_{8}	X_{9}	x_{10}
2	1.3472	1.4830									2	0.8341	2.2185								
3	1.1811	1.8214	1.1811								3	22157	1.0884	2.2157							
4	0.9500	1.9382	1.7608	1.0457							4	0.8310	29813	1.1208	2.2104						
5	0.9766	1.6849	2.0367	1.6849	0.9766						5	2.2072	1.1280	3.1025	1.1280	2.2072					
6	0.8514	1.7960	1.8411	2.0266	1.6312	0.9372					6	0.8291	3.0056	1,1788	3.1353	1.1300	2.2052				
7	0.9127	1.5947	2.0021	1.8704	20021	1.5947	0.9127				7	2.2039	1.1306	3.1470	1.1937	3.1470	1,1306	2.2039			
8	0.8145	1.7275	1.7984	2.0579	1.8695	1.9796	1.5694	0.8966				0.8283	3.0077	1.1849	3.1903	1.1994	3.1518	1.1308	2.2031		
9	0.8854	1.5513	1.9615	1.8618	2.0717	1.8616	1.9615	1.5513	0.8854			2.2025	1.1308	3.1540	1.2020	3.2077	1.2020	3.1540	1.1308	2.2025	
10	0.7970	1.6930	1.7690	20395	1.8827	2.0724	1.8529	1.9472	1.5380	0.8773		0.8279	3.0076	1.1862	3.2006	1.2091	3.2159	1.2033	3.1550	1.1307	2.2020
TABLE 3: Chebyshev 0.1dB Ripple Normatized Element Values											TABLE 7: Gaussian Magnitude Normalized Element Values										
Order	x_{1}	x_{2}	x_{3}	X_{4}	x_{5}	x_{6}	x_{7}	${ }^{88}$	x_{9}	X_{10}	Oroer	x_{1}	x_{2}	x_{3}	x_{4}	X_{5}	x_{6}	x_{7}	X_{8}	x_{9}	x_{10}
2	1.2087	1.6383									2	2.1850	0.4738								
3	1.4329	1.5937	1.4329								3	2.2262	0.8167	0.2624							
4	0.9924	2.1476	1.5845	1.3451								22450	0.9321	0.5302	0.1712						
5	1.3013	1.5559	22411	1.5559	1.3013						5	2.2533	0.9782	0.6485	0.3896	0.1312					
6	0.9419	2.0798	1.6581	2.2473	1.5344	1.2767					6	2.2568	0.9982	0.7050	0.5004	0.3045	0.1026				
7	1.2815	1.5196	2.2393	1.6804	22393	1.5196	1.2615				7	2.2583	1.0073	0.7333	0.5606	0.4055	0.2473	0.0833			
8	0.9234	20455	1.6453	2.2826	1.6843	22300	1.5091	1.2516			8	2.2590	1.0116	0.7479	0.5942	0.4658	0.3388	0.2065	0.0695		
9	1.2447	1.5017	22220	1.6829	2.2957	1.6829	2.2220	1.5017	1.2447		9	2.2593	1.0137	0.7556	0.6134	0.5025	0.3973	0.2892	0.1761	0.0591	
10	0.9147	20279	1.6348	22777	1.6962	2.2991	1.6805	2.2155	1,4962	1.2397		2.2594	1.0147	0.7597	0.6244	0.5250	0.4353	0.3451	0.2509	0.1525	0.0512
TABLE 4: Chebyshev 0.3 dB Ripple Normalized Element Values											TABLE 8: Maximally Flat Group-Delay Normalized Element Values										
Ordor	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	X_{9}	x_{10}	Order	X_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	x_{9}	x_{10}
2	1.0710	1.8171									2	21478	0.5755								
3	1.6854	1.3985	1.6854									2.2034	0.9705	0.3374							
4	0.9601	2.3969	1.4127	1.6290							4	2.2404	1.0815	0.6725	0.2334						
5	1.6010	1.4039	2.4956	1.4039	1.6010						5	2.2582	1.1110	0.8040	0.5072	0.1743					
6	0.9343	2.3676	1.4802	2.5116	1.3954	1.5853					6	22645	1.1125	0.8538	0.6392	0.4002	0.1365				
7	1.5756	1.3891	2.5116	1,4991	25116	1.3891	1.5756				7	22659	1.1052	0.8690	0.7020	0.5249	0.3259	0.1106			
8	0.9248	2.3493	1.4784	2.5523	1.5042	2.5084	1,3846	1.5692			B	22656	1.0956	0.8695	0.7303	0.5936	0.4409	0.2719	0.0919		
9	1.5648	1.3813	2.5049	1.5053	2.5662	1.5053	2.5049	1.3813	1.5648		9	22549	1.0863	0.8639	0.7407	0.6306	0.5108	0.3770	0.2313	0.0780	
10	0.9204	2.3395	1.4745	2.5537	1.5154	2.5713	1.5050	2.5018	1,3788	1.5617	10	22641	1.0781	0.8561	0.7420	0.6493	0.5528	0.4454	0.3270	0.1998	0.0672

PLL FREQUENCY SYNTHESIS

Phase Locked Loop (PLL) circuits can be used to synthesize hundreds of 'spot' frequencies, all with crystal accuracy. Ian Campbell explains how in this new series.

PHASE LOCKED LOOP (PLL) BASICS

A PHASE LOCKED LOOP (PLL) circuit can be defined as a system that automatically locks the frequency and phase of a variable oscillator ($f 0$) to the MEAN frequency and phase of a reference signal (fr). Fig I shows the block diagram of the basic system, which consists of a phase detector, a loop filter, an amplifier and a voltage controlled oscillator or VCO.

The operating principle of the circuit is fairly simple. The phase detector receives the $f 0$ and fr signals, compares the phase and frequency of fo with that of fr, and generates a corresponding variable output error voltage. This error voltage is then filtered and amplified and fed to the input of the VCO in such a way that any frequency or phase differences between $f r$ and fo are progressively reduced until they fall to zero, at which point he loop is said to be 'locked'.

The low pass loop filter is an essential part of the system. It is used to convert the output of the phase detector into a smooth DC control voltage. Inevitably, it has a finite time constant, so 'locking' is not instantaneous, and folocks to the MEAN value of $f r$, rather than to it's instantaneous value. This is useful if a clean output frequency is wanted from a noisy input signal.

In practice, if the free-running frequency of the VCO is too much at variance with $f r$, the PLL will not be capable of locking the two signals. The frequency range over which the VCO can achieve locking is known as it's 'capture range'.

BASIC PLL FREQUENCY SYNTHESIS

In the basic PLL circuits of Fig 1, the output signal frequency simply locks to that of the input signal, and no frequency multiplication occurs. A far more useful circuit is shown in Fig 2. Here, a programmable divide-by- N counter is simply inserted in the feedback loop between the VCO and the phase comparator. Consequently, instead of the phase detector locking to the output frequency of the VCO, it locks to the output of the divide-by-N counter. Thus, at lock, the VCO frequency ($f o$) is ' N ' times $f \mathrm{fr}$. The circuit acts as a programmable frequency multiplier.

Figure 3 shows how the above circuit can be converted into a true frequency synthesiser. Here, a 1 MHz crystal oscillator and a - 100 counter are used to generate a stable reference frequency of 10 kHz , and the programmable counter is variable from - 1000 to 1200 in two hundred discrete steps. Consequently, the output frequency of the PLL is variable from 10 MHz to 12 MHz in two hundred 10 kHz steps, with crystal accuracy in all cases.

Figure 3: Basic Form of a PLL Frequency Synthesiser.

Figure 4: Application of MC1648 as a VCO and Buffer.
Note from Fig 3 that the step magnitude of the synthesiser is equal to $f r$, and the frequency span range is determined by the range of the programmable counter and the frequency limitations of the VCO.

Now let's take a detailed look at some of the circuits which are actually used in PLL synthesisers.

THE VCO

In high frequency synthesisers, the VCO usually takes the form of a varicap-controlled oscillator plus a buffer stage. A particularly useful 'dedicated' IC that can be used in this application is the Motorola MC1648, a high frequency oscillator-plus-buffer chip that can be used in FM tuner and CB transceiver synthesiser applications, etc. Fig 4 shows a typical applications circuit of the device.

Figure 5: A Reference Oscillator/Divider in One Chip.

THE REFERENCE OSCILLATOR

In frequency synthesis, the reference frequency determines the step magnitude or channel spacing of the system, and usually has a value of only a few kHz . Consequently, to give the required frequency stability, the reference oscillator almost invariably consists of a crystal oscillator and a multi-stage divider network.

A one-chip reference oscillator can be built using the CMOS 4060 IC, which contains an in-built oscillator and a 14 -stage binary counter. Stages 4 to 14 of the counter are externally accessible, and Fig 5 shows how the device can be used to generate a 10 kHz reference frequency by using a 2.56 MHz crystal and taking the output from the 8th binary counter stage.

THE PHASE DETECTOR

Most modern phase detectors are digital devices and produce an output that takes the form of a series of variable duty cycle pulses, with the duty cycle controlled by the difference between the fo and fr signals. Detectors may be simple single-ended devices such as an EX-OR gate or a D-type flip-flop, or a complex multi-output multi-element network such as the circuit shown in Fig 6, which is the basic detector used in the Plessey NJ8812.

The Plessey circuit has outputs which are capable of responding when $f r$ and $f o$ are in any phase relationship, i.e. whether $f r$ is leading, trailing or in phase with fo: The Lock Detector output can be used to activate a visual alarm (LED) or disable the transmitter section of a transceiver, etc., when the PLL is not locked.

In practical PLL applications, two of the outputs of the NJ8812 detector have to be combined via a charge pump and filter circit (see Fig 7) in order to provide an error control voltage that is suitable for driving the VCO.

THE DIVIDE-BY-N COUNTER

Multi-stage presettable divide-by-N counters can be configured in either of two basic ways. One method is to cascade a number of resettable decade counter/decoders so that they repeatedly count up to a pre-set number (selected via thumb wheel switches) and then reset to zero again. The alternative method is to similarly cascade a number of presettable count down dividers, so that they repeatedly preload a fixed number (selected via switches) and then count down to zero, at which point they re-load again.

The easiest way to make a presettable divide-by-N counter is to use a dedicated chip such as the 0320 . Fig 8 shows how to wire this device so that it can divide by any number in the range 3 to 999 , depending on the setting of the three BCD switches.

Figure 6: A Modern Phase Frequency Detector as used in the Plessey NJ8811.

Figure 7: Charge pump and filter.

Figure 8: A single I.C. programmable counter with a-3 to - 999 capability.

THE LOOP FILTER

The loop filter is a prime element in the PLL system. It is required to convert the output of the phase detector into a smooth DC voltage. It's time constant must be short enough to give rapid locking without excessive overshoot, but must not be so short that the VCO 'jitters' in response to stable reference signals.

PLL FREQUENCY SYNTHESIS

Figure 9 shows the basic circuit of a simple loop filter for use with a single-ended detector. The R1/R2 ratio determines the damping of the loop, and the R1-C1 values determine the roll-off frequency. A high R1/R2 ratio causes under-damping of the loop, with lots of consequent overshoot, as shown in Fig 10a. A low R1/R2 ratio causes under-damping (Fig 10b), with consequent VCO jitter. With an optimum R1/R2 ratio (Fig 10c), the VCO quickly stabilises to the correct frequency, with negligible overshoot and no jitter.

GETTING IT ALL TOGETHER

At this point the reader may suspect that the modern PLL frequency synthesiser is a not-too-complicated device. If so, your suspicions may be confirmed by looking at Fig 11, which shows the block diagram of a 3-chip Plessey transceiver synthesiser that spans 26.895 MHz to 27.525 MHz on transmit and 10.695 MHz lower on receive.

Here, in the SP8921, a 1.25 kHz reference frequency is derived from a 10.24 MHz crystal and fed to one side of the phase detector, the other signal being derived from the SP1648 VCO via the SP8922 programmable divider. The output of the detector feeds to the VCO via an on-chip charge pump and via the loop filter shown in the diagram.

In the SP8921 counter, the VCO signal (nominally 27 MHz) is first prescaled by 4 , so that a $6-7 \mathrm{MHz}$ signal is fed to the -M counter, which is programmable via a 6 digit binary number starting with a 2 , to give 10 kHz channel spacing ($8 \times 1.25 \mathrm{kHz}$): The R/T1 terminal and the R/T2 terminal of the SP8921 are used to program extra divisions into the counting system, to provide for transmit and receive of fsets.

Note that the SP8921 contains a - P counter, which is clocked by the M counter and determines the 'load' point of channel information.

Figure 12: Plessey CB synthesiser - circuit diagram.

Figure 9: A simple loop filter

Figure 10: Effects of loop filter on VCO Control voltage.

Figure 11: Plessey CB synthesiser - Block diagram.

The overall counting action of the circuit is fairly complex. Let's call the total division of the VCO ' N '. When a -4 pulse occurs at the M input, if the R/T terminal of the SP8922 is high, 91 is loaded into the M counter which, since it normally divides by 128, will count from 91 to $128(37+1)$ for one cycle. If $R / T 1$ is low the M counter divides by $128+1$ for one cycle. The M counter then reverts to dividing by 128 . The N pulse also zeroes the P counter which is programmed to count to 26 with $\mathrm{R} / \mathrm{T} 2$ high and 42 with R/T2 low. Each cycle of the M counter produces a clock output which increments the P counter by 1 .

When the P counter has reached 26 (or 42) in it's count, the REC output goes high for one cycle of the M counter. At the end of that cycle, M will have counter 128×25 or 128×41, plus one cycle of 38 or 129 and a clock pulse loads the channel-selecting number into the M counter, which then counts the number +1 . An N pulse then occurs and a new sequence starts. $\square \mathbf{R \& E W}$ Next month: Dual modulus prescaling.

MASTHEAD TV AMPLIFIER.

Boost TV reception with this neat and rather cunning little wide-band pre-amplifier project. Design by Roger Ray.

IN WEAK SIGNAL AREAS a preamplifier placed between the aerial and the TV set can greatly improve picture quality. The ideal position for the preamp is at the aerial; failing this, a good improvement in picture quality can still be obtained if the pre-amp is simply placed next to the TV set and wired in series with the co-axial downlead.

The R\&EW TV pre-amplifier project can be placed in any position between the aerial and the TV set and provides an overall gain of 17 dB across the $470-860 \mathrm{MHz}$ range (band IV and V). It has a measured noise figure of less than 3 dB . The really 'cunning' feature of the project is that it is powered (from a special mains-powered 12 volt supply unit) via the central core of the existing co-ax cable, which thus functions as both a supply and a signal path.

Our pre-amp project can be used to simply improve picture quality in areas of weak reception, or to boost all signals and aid the reception of foreign TV signals (DXTV). It can even be used as a preamplifier for the 70 cm and 23 cm amateur bands. The unit has a high-pass filter built into its input stage, greatly reducing the possibility of interference from CB and from Amateur and Private Mobile Radio sources.

The Completed Unit.

CONSTRUCTION: The PreAmp

The project comprises two separate modules, one being the actual preamplifier unit, and the other the power supply (PSU). Start off by constructing the pre-amp, which is built on a small (2.55 ins $\times 1.2$ ins) double-sided PCB, which is then fitted into a small metal box. The top side of the PCB is etched as
shown in Fig 2, the bottom being left as an earth plane.

To start the construction, first drill the PCB as shown in Fig 2, then use a large drill to remove copper from the earth plane around the centre pin of each of the two co-axial connectors. Now solder the two co-axial sockets into place on the PCB as shown in Fig 3.

Figure 1a: The TV pre-amp circuit diagram.

MASTHEAD TV AMPLIFIER.

Figure 1b: The PSU circuit diagram.

Now proceed with the assembly of the remaining components on the PCB. Coils L. 2 and L 3 can be wound on a $1 / 8$ th inch drill or similar. Each transistor is fitted by bending it's emitter lead down close to the body of the device and pushing the lead through the PCB hole so that the base and collector leads can be soldered to the pads on the upper side of the board; the emitter (centre) lead is then soldered to the copper earth plane. The remaining components should be assembled to the board, keeping their leads as short as possible. Ferrite beads should be threaded onto the leads of the two 100 R resistors, as shown in Fig 3.

Note that base resistors R 1 and R 3 have nominal values of 100 k and will produce collector currents in the range 3

PARTS LIST.	SEMICONDUCTORS	
RESISTORS (1/4 W, 5\%)	Q1,2 BFT 95	
R1,3 100 k (see text)	DI, 2 IN4001	
R2,4 100 R	INDUCTORS	
R5 180 R	L2 $31,26 s w g, 1 / 8$ th in dia	
CAPACITORS	L3,4 10t, $26 \mathrm{swg}, 1 / 8 \mathrm{th}$ in dia	
CI,2.5 4p7 ceramic	T1 Mains, 9.5-0.9.5V, 3VA	
C3 10p ceramic	MISCELLANEOUS	
C4,6 270p disc ceramic	Ferrite bead, FXI115	(2 off)
C8 470u 16 V electrolytic	TV co-ax socket	(4 off)
C9 100n polyester	PCB's	(2 off)
C10 470p ceramic	Boxes, SCB2 case (Ambit)	(2 off)

to 10 mA in each transistor. In most applications this variation range makes little difference to the performance of the amplifier. If absolute optimum perform-
ance is required, however, the values of R 1 and R 3 can be selected, R 1 being chosen for a Q 1 collector current of 3 to 5 mA , and R 3 for a Q 2 collector current

Figure 2: Pre-amp PC8 foil pattern (top side). The lower side of this double-sided board is unetched and used as an earth plane.

Figure 3: Pre-amp overlay
Note that components are assembled on the top track side.

Figure 4: PSU PC8 foil pattern.

Figure 5: PSU overlay
The components are assembled on the track side.
of 5 to 10 mA : These values give the best compromise between UHF gain and noise performance.

CONSTRUCTION: The PSU

The PSU is assembled on the single-sided PCB shown in Fig 4. Components are mounted on the track side of the board, as shown in Fig 5, and the assembled board is then pushed into the connecting pins of the transformer and soldered into place.

Figure 6: Basic installation set-up.

CIRCUIT DESCRIPTION

The circuit theory of the project is pretty simple. The aerial signal is first passed through a high-pass filter comprising C 1-C 2-L 1 (note that LI is part of the PCB), which rolls off the frequency response below 200 MHz and gives lots of rejection 10 unwanted signals: Altenuation is 30 dB at 145 MHz and 70 dB at 27 MHz . The input impedance of the unit is matched to the 75 ohms of the co-ax line via L 2 and C 3.

The output of the high-pass filter is next amplified by Q 1 and Q 2, a cascaded pair of wide-band common emitter amplifiers which give an overall gain of 17 dB , with a relatively flat response from $470-860 \mathrm{MHz}$, and with a measured noise figure of less than $3 \mathrm{~dB} . \mathrm{R}_{4}$ and it's ferrite bead combine with C 7 to give an output impedance of 75 ohms , forming a correct match with the co-ax line.

Measured input output matches of the unit are better than $2: 1$ VSWR. This means that reflections are not caused on the co-ax cable (a poor match can cause errors when receiving Teletext transmissions).

The PSU is fairly conventional, giving a NEGATIVE 10 to 12 volt DC output. Chokes L 3 and L 4 provide DC connections via the co-ax down feed, while looking like open circuits to the UHF feeder signals. Capacitor C 10 acts as a DC blocker between the PSU and the TV set.

The transformer and co-ax sockets are then mounted using suitable fixing screws. Capacitor C 11 is soldered between the two co-ax sockets, and choke L 4 is soldered between the pre-amp socket and the PCB.

The mains earth connection is made to a solder tag on one of the transformer fixing screws, while neutral is connected directly to the transformer tag marked ' N ' on the PCB. Mains live is connected through the fuse to the transformer tag marked 'L' on the board. All mains connections should be carefully insulated with tape to prevent accidents.

INSTALLATION.

The pre-amp unit can be installed in any dry location between the TV set and the aerial. The closer the pre-amp is to the aerial, the better the results will be.

The PSU can be located anywhere between pre-amp and TV set: Fig 6 shows the basic set-up.
-R\&EW

Your Reactions.........	Circle No.	
Immediately Applicable	140	
Useful \& Informative	141	
Not Applicable	142	
Comments	143	
I		

Sowter Transformers

With 40 years' experience in the design and manufacture of several hundred thousand tranformers we can supply

AUDIO FREQUENCY TRANSFORMERS OF EVERY TYPE

YOU NAMEIT!
WE MAKEIT!
OUR RANGE INCLUDES:

Telex: 987703 SOWTER

Microphone transformers (all types). Microphone Splitter/Combiner transformers, Input and Output transformers, Direct Injection transformers for Guitars, Multi-Secondary output transformers, Bridging transformers, Line transformers, Line transformers to G.P.O. Isolating Test Specification, Tapped impedance matching transformers, Gramophone Pickup transformers, Audio Mixing Desk transformers (all types), Miniature transformers, Microminiature transformers for PCB mounting, Experimental transformers, Ultra low frequency transformers, Ultra linear and other transformers for Transistor and Valve Amplifiers up to 500 watts, Inductive Loop transformers, Smoothing Chokes, Filter, Inductors, Amplifier to 100 volt line transformers (from a few watts up to 1,000 watts), 100 volt line transformers to speakers, Speaker matching
transformers (all powers). Column Loudspeaker transformers up to 300 watts or more.
We can design for RECORDING QUALITY, STUDIO QUALITY. HI-FI QUALITY OR P.A. QUALITY, QUR PRICES ARE HIGHLY COMPETITIVE AND WE SUPPLY LARGE OR SMALL QUANTITIES AND EVEN SINGLE TRANSFORMERS. Many standard types are in stock and normal despatch times are short and sensible. OUR CLIENTS COVER A LARGE NUMBER OF BROAD. CASTING AUTHORITIES. MIXING DESK MANUFACTURERS, RECORDING STUDIOS, HI-FI ENTHUSIASTS. BAND GROUPS AND PUBLIC ADDRESS FIRMS. Export is a speciality and we have overseas clients in the COMMONWEALTH, EEC, USA, MIDDLE EAST, etc. Send for our questionnaire which, when completed, enables us to post quotations by return.

E. A. Sowter Ltd.
 Manufacturers and Designers

E. A. SOWTER LTD. (Established 1941), Reg. No. England 303990

The Boat Yard, Cullingham Road, Ipswich IP1 2EG, Suffolk, P.O. Box 36, Ipswich IP1 2EL, England
Phone: 047352794 \& 0473219390

THE BIG MATCH : ROUND 2

FRG7700 VERSUS R1000

Continuing R\&EW's analysis of the leading communications techniques, this month we take a closer look at intermod behaviour, and delve into the method of frequency generation.

Out of the Woodwork

Just as the first section of this review was being completed, a strange thing happened. Completely coincidentally, we received a copy of a Press Release from Trevor Brook of the broadcast studio equipment specialists, Surrey Electronics.

The subject was an FRG7700 that Surrey Electronics have prepared specially for the broadcast monitoring market, incorporating a balanced line audio output, several safety mods - and a series of modifications to gain distribution of the main receiver to place more gain behind the selectivity, and thus improve the front end overload performance. In fact, a whole series of detail changes that were running through out minds as we delved deeper into the circuit. So we were intrigued to be able to compare the results and see just how much better the Surrey Electronics version was 'on the air'.

Onward and Inward

The set from Surrey Electronics contained a note explaining that it had been a victim of some Cranleigh flooding, and that the VFO was prone to drift as a result. The set supplied was in fact the Surrey Electronics 'prototype' and not an example of something generally for sale.

So we were surprised to find it in any sort of working condition at all presumably it had been given a dipping in one of the proprietory cleaning solutions, which also happen to be good at drying things out. The VFO box is a sealed unit
which would not have been quite so effectively flushed.

Well, we switched it on and the DFM read 39.54 MHz - which long experience with OKI readout LSI led us to conclude that the frequency display wasn't getting a sniff of a Hertz, since the 'no input' condition of these frequency displays is ' 0 ' minus the IF (in this case, 455 kHz). The display thus rolls over the top $(40.000 \mathrm{MHz})$, since negative frequencies don't exist.

Off came the lids. This FRG7700 was complete with memory and being naturally suspicious of the copious numbers of wires and connectors disappearing into the memory pod on the back of the set, this was taken off to see what happened. Nothing.

With memory option duly refitted, the board itself was given a gentle prod. Someone clouted the receiver and crackles of life emerged for an instant; all was not lost - yet. 'Things' were prodded with the trained finger until the offending intermittent joint revealed itself without the need for a tedious and frighteningly longwinded methodical voltage check. Q43, the main supply regulator to the PLL unit appeared to be loose.

Out came all the plugs on the PLL board and some ten screws later the fault was clearly visible (see Photo I) - one of the legs of Q43 was indeed the victim of an absolutely classic dry joint. It seems possible that some of the residual silt from the flooding had worked its way around the leg and eventually - together with

Fig. 1: The NBFM demodulator.
some of the corrosion that must inevitably result from such an experience - it chose the day we switched it on, to make itself felt.

By this stage, we were feeling sufficiently brave to go the whole hog and fix the 2.545 to 3.545 MHz VFO for Trevor Brook 'while we were at it'. So out came the VFO assembly and out came the PCB, tuning capacitor etc. As you can see from Photo 2, there was good evidence of the silt in the box, so the board was given a thorough cleaning in the R\&EW Arklone processor, although the tuning capacitor was treated more cautiously to a bath is meths, since the stickier residues that are sometimes left as a result of Arkone wouldn't do much for the stator action.

In fact, the VFO coil and trimmer capacitor were both removed and given a careful cleaning and the trimmer was replaced with another of the same value and temperature coefficient (since it must be assumed that Yaesu designed the unit with a carefully balanced TC). This was because the ceramic trimmer capacitor seemed to be about the only part in the circuit that might have suffered some permanent impediment from the effects of a good dousing. The other components were pretty well sealed from the effects of such things.

By now, the VFO was in many pieces and there was some conjecture how the thing would go back together. If Trevor Brook had walked in at the point at which the VFO was in as many pieces as you can see in the Photo 3, he would probably have passed out in fright.

Well, we did get it back together again, and we didn't even end up with any homeless screws. With the minimum of persuasion, it all worked.

Land of Hope and Glory

The sense of achievement was considerable. Despite any inclination to curse Yaesu for their QC, the fact that we virtually took the entire FRG7700 apart and put it back together gave some small hope that the Japs don't have it all their own way yet. But it did confirm that the FRG7700 is a mighty lot of transceiver for your money, and I cannot imagine anyone outside the Far East being able to compete with that sort of 'intensive' hardware.

Further oblique satisfaction was gained when the mute in the NBFM demodulator (Fig. I) on our original FRG7700 refused to open. A brief check revealed that demodulation was occurring, but the mute was stuck. A couple of happy hours were spent checking the works out until some

THE BIG MATCH : ROUND 2

THE BIG MATCH : ROUND 2

anomalous voltage reading isolated the problem around QO4. Well, C20 had gone short circuit, but a fault of that kind in a ceramic capacitor seemed so remote that it was discounted until virtually everything else had been changed around it. This exercise served to highlight the desireability of test voltages on circuit diagrams. Everything else in the FRG7700 handbook is beautifully presented.

R\&EW and Yaesu did not appear to be getting on too well. When we told the supplier of the original FRG7700, his only remark was that we were lucky there were only two faults (remember the dry antenna socket joint shown in 'round one'?). So we gave an 'official' Yaesu importer a call, which resulted in a complete set of FRG7700 equipment and accessories on the doorstep the next day.

On with the Tests - IMD

The method used to measure the intermodulation products is shown in Fig 2. This is a standard test configuration, where the outputs of two generators are combined in a hybrid coupler and fed to the input of the receiver under test. The test determines the input level at which the RF stages cease to be linear and act as mixers themselves, resulting in many unwanted mixing products when tuning through a section of the HF spectrum
where strong signals are used, whereas the HF bands contain many thousands of signals. Many of the broadcast signals can be in the 'tens-of-millivolt' range, and these pose quite a threat to a front-end where selectivity is basically only broadband, without the effects of a 'preselector' RF tuned circuit.

The technique is to apply two signals 10 kHz apart, say 28.500 MHz (fl) and $28.510 \mathrm{MHz}(f 2)$ and then look for the mixing products at 28.520 MHz (f3) and 28.490 MHz (f4).

One of the signals is used to determine a lower level reference, say the set is tuned to 28.500 MHz , and the 28.500 MHz (f1) signal is wound back to around $2 \mathrm{uV}(1 \mathrm{uV}$ after the hybrid coupler is taken into account). Then the generators are wound up together until the output due to the mixing product ($2 \mathrm{ff} 1-\mathrm{f} 2$, or $2 \mathrm{f} 2-\mathrm{f} 1$) is the same level as for the desired frequency reference at f 1 .

Both the FRG7700 and R1000 gave an input range of 73 dB - which is about 6 mV or -40 dBm at the antenna socket. We used two rather old Marconi signal generators to perform the test. Firstly, because they have reliable output attenuators, secondly because being valve oscillators with direct mechanical tuning, the oscillator noise level is very low, and thirdly they don't suffer from IMD

Fig. 4b: FRG7700 PLL unit block diagram.
themselves when used for such tests. We have a couple of modern transistorized 'mixing' type generators that have too many spurious products and noises to be of any use in this test.

However, we got the impression that the far more nebulous problem of reciprocal mixing was at least as serious by this input level. This is basically where the noise sidebands of the local oscillator are mixed into the IF amplifier by a strong signal outside the desired RF range. A deeper analysis of the joys of reciprocal mixing will have to wait for another issue, however.

It's about now that the uninitiated get bogged down, so in a nutshell, the results are good - but not particularly outstanding by the standards of professional HF communications. The Surrey Electronics version gave the same basic IM results, but the modified set was better equipped to handle signal levels above this, with the onset of blocking and noise from reciprocal mixing being at around -20 dBm . For the standard sets, this occurred around -35 dBm - but as mentioned, it's a fairly nebulous factor to quantify.

The conclusion after all the tests so far is that the R1000 and FRG7700 are remarkably similar animals. The comparison of ' S ' meter behaviour only confirms the futility of this device on most receivers:

Input levels at $\mathbf{2 8 M H z / 1 0 M H z}$			
	R1000	FRG7700	
S9	$5 \mathrm{SV} / 5 \mathrm{uV}$	$53 \mathrm{uV} / 34 \mathrm{uV}$	
S9 + 40dB	$500 \mathrm{uV} / 500 \mathrm{uV}$	$2 \mathrm{mV} / 2 \mathrm{mV}$	

The R1000's $0-40 \mathrm{~dB}$ attenuator worked very well, and it is a better means of cutting down signal level that using the control gate of the MOSFET RF stage as in the case of the FRG7700. Cutting the current through the MOSFET will certainly attenuate the gain, but it will also cause the IMD potential to increase at the very time you don't want any. The local/distant switch on the back panel serves its purpose, but isn't quite as convenient and it is easy to forget it's there.

Both sets take into account the different nature of the antenna at lower frequencies and provide high impedance 'broadcast antenna' inputs. The R1000 recognizes that this antenna is likely to be a high impedance of 1 k 0 , and adjusts the attenuator values accordingly to maintain a reasonable match. The R1000 also offers a 1 kO impedance $S W$ antenna input, with a step down transformer to match the 50 ohms of the regular PL259 input so that the SW section of the attenuator can handle it more readily. A 1 k 0 impedance attenuator would present severe screening problems at the further reaches of HF.

Getting on Down

The FRG7700 input isn't quite so particular, and the very lowest frequency filter in the set appears to be simply an LPF - with no HPF section to restrict the lower limits of the RF stage. The values of the coupling capacitors seems to determine the LF limits, and MSF was quite a strong signal on 60 kHz , although the intermod from the broadcast stations was rather severe. If you want to take the R 1000 down to 40 kHz approx., then the LPF values have to be changed. Using the circuit published last month:

L1, L2 and L3 (in the top right-hand corner of the octave filter array) are replaced by $1.8 \mathrm{mH}, 820 \mathrm{uH}$ and 1.8 mH respectively. C7 and C8 are replaced by $4 n 7$ capacitors.

In view of the similarity of results, it is interesting to see that the R1000 and FRG7700 use different octave filter networks - the R1000 uses a 'pi' high pass section, followed by a 'pi' low pass section and the FRG7700 uses a double constant-k pi section.

Looping the Loop

The PLL units of both sets are outlined in Figs. 3 and 4. The mixing frequencies are not quite the same - the FRG uses a lower frequency VFO for interpolation of the 1 MHz steps set by the 'bandswitch', and this VFO is used directly to control a 44.055 to 45.055 MHz VCO. The output of this VCO is then mixed down with the final LO frequency to provide an output that is an exact integer between 4 and 33 MHz , e.g.:
LO equals 49.155 MHz (for an RF
frequency of 1.1 MHz)
VFO equals 3.445 MHz
VCO equals $44.155 \mathrm{MHz}(47.6 \mathrm{MHz}$ -3.445 MHz) thus LO minus VCO equals 5 MHz exactly - and will remain 5 MHz for the range LO equals 49.055 to 51.055 .
Thus the programmable divider is fed exact MHz at all times.

The R1000 uses a single loop approach, where the VFO is directly mixed from 5.645 to 42.155 , then mixed with 49.155 (from the final LO), resulting in 7 MHz , which is fed directly to the programmable divider without prescaling. It seems the FRG7700 uses a programmable divider that will not operate at the 'direct speed' - and it may also be constrained on the frequency of the VFO by considerations applicable to the 12 channel memory option.

Thanks for the Memory

The memory of the FRG7700 (Fig. 5) is quite mind boggling. Without specific details of its operations, we have delved in and concluded that it operates by logging the data from the band select switch to determine antenna filter condition, the number of MHz selected and then it counts the VFO frequency to the nearest kHz . The data is then loaded so that it can be recalled to the programmable counters to provide a programmable divider to control yet a third PLL that reproduces the VFO frequency. The antenna

switching and 1 MHz data is simply recalled as 'data' and overrides the 'manual' control when the memory is recalled.

There must be an easier way, but this system appears to work remarkably well on the FRG7700. It bears the marks of having been conceived as a bit of an afterthought (the memory sits on the back panel in a 'pod'), and it seems hard to believe that such an intricate system could have evolved if conceived from day one of the design. It is notoriously difficult to fully digitally synthesize an HF receiver in 1 kHz steps using a single loop VCO - all nigh impossible in view of the jitter, noise \& settling time compromises called for, but the FRG7700 does seem to go a shade over the top. Perhaps the advent of devices such as the Motorola MC145151 will make this aspect rather more straight forward when we come to consider the R\&EW HF receiver.

Inter round summary

Well, we're still not finished yet. One more round should see a conclusion, and it looks like the FRG7700 is winning on sheer volume of circuitry and feature. The R1000 is still possibly the choice for the listener who is not concerned with the FRG7700's options. It is very difficult to actually pinpoint any real difference in the signal handling behaviour, but the R 1000 has a better first filter stopband, and that must tell somewhere.

Don't miss next month's thrilling conclusion - which - amongst other matters - includes a look at the FRG7700's optional trimmings in the shape of VHF converter and antenna tuner. $\square \mathbf{R} \& \mathbf{E W}$

Your Reactions.........	Circle No.
Immediately Applicable	164
Usefut \& Informative	165
Not Applicable	166
Comments	167
In	

Satellite News

Almost daily, satellites are being born, are falling ill, or are dying. We bring you the latest news..

At the time of writing, it seems highly probable that the amateur radio satellite Oscar 7 has reached the end of its life. It ceased to function correctly about the second week in June last, but it was hoped that it might pick up and become useable again. It was thought that the fault was possibly associated with the satellite going into 'eclipse', that is it went into the period when it was mainly in the earth's shadow and its solar panels were thus not functioning. However, we are well out of that period now, and so far no reliable reports of its reactivation are to hand.

AMSAT Satellite Report, in its July 13th issue, suggested that the problem was that the NiCad cell which failed 'open' in 1978, has, because of the thermal stresses associated with the eclipse period, now come 'back on-line'. However, in the interim period. since 1978 one or more of the remaining nine cells has failed shorted. This resulted in the solar cells looking into a relatively low impedance, the potential at the active hardware components, then being too low to make them function. Should the cell which failed in 1978 go 'open' again, the satellite might regain some activity. Their issue for July 27th enlarged on this conjecture. They point out that it is most unusual for NiCad cells to fail in the 'open mode'. Most NiCads fail, when they finally do pack up, by shorting. As a result of this unusual failure of the 1978 cell, the whole battery went out of circuit. Oscar 7 from then on only functioned when the solar panels were in sunlight, it having lost its capability of storing energy. On those occasions when in early summer it would come close to the eclipse zones, during the past three years, its function would often be disrupted. This year the eclipse shadow was darker and longer than in any prior season because of the slow precession of 0.7 's orbit. Consequently Oscar 7 experienced the sharpest drop in temperature it had so far had - perhaps as much as 10 degrees Centigrade. The only hope now is that when it comes out of eclipse, a similar rise in temperature may occur and effect the battery structure again - hopefully in the right direction but so far this has not happened.

New Geo-Sync Satellite on Station

From the same issue of AMSAT Satellite Report, we learn that India has become the fifth country to put a communications satellite into a geo-synchronous orbit. Their "Apple" experimental satellite was put into orbit by the European Space Agency Ariane L03 on June 19th last.

Apple ran into initial difficulties, when it was found its controllers were unable to extend one of its two solar panels. Despite attempts to deploy the second array, such as spinning the spacecraft, the faulty mechanism could not be corrected. It is not thought however, that this will seriously affect the performance of the satellite. It is now situated over the Equator at 102 degrees East, roughly above the island of Sumatra. Apple was designed and developed entirely by Indian scientists who are delighted with their efforts.

Possible Japanese OSCAR 8 Type Satellite

News is to hand that JAMSAT - The Japanese Amateur Radio Satellite Organization - is considering the feasibility of building and launching an amateur radio satellite similar to 0.8 , which would be ready to take the place of 0.8 on its demise. It would be in a similar orbit and have similar facilities. This is indeed good news, as Oscar 8 is a popular satellite and in spite of the attractions of the Phase 3 AMSAT series of satellites, a less sophisticated satellite such as 0.8 , has a lot in its favour. Since the failure of Oscar 7, 0.8 has become even more
heavily used than heretofore, and in fact, at times, 'QRM' has almost become a problem! News was also recently released to the effect that Japan has launched its first meteorological satellite from its own launching site, so JAMSAT may well be able to carry out their plans.

Meteosat-2 On Station

Following the successful launch of Ariane L03, the European Space Agency's second meteorological satellite, Meteosat2, was successfully injected into geostationary orbit on Saturday 20th June last. The Apple satellite was placed into geostationary orbit on Sunday 21st June. The apogee boost motor was fired successfully with command issued from the Indian Space Research Organization's Apple Control Centre at Shar in India at 22 hrs 43 mins 16 secs GMT, whilst it was above Africa at 2 degrees East.

Meteosat-2 was put into a high circular orbit by the European made 'MAGE' apogee boost motor. This operation, which took place 15 hours and 40 minutes after lift-off while the satellite was above South America, was followed by a series of altitude manoeuvres designed to give the satellite the correct spin axis and to bring its spin-rate up from the
initial $10 \mathrm{rev} / \mathrm{min}$ to its final figure of 100 $\mathrm{rev} / \mathrm{min}$. Following that operation, the satellite drifted eastwards towards its intended position at 0 degrees longitude and it reached this position during the early hours of the morning of 21 st July. A seven minute burn of the thrusters stopped the satellite's drift, and it is now on station in a geo-synchronous orbit.

The first images, in the two visible channels, from Meteosat-2 were recorded at the European Space Operations Centre at Darmstadt in Germany on 28th July and the first image in the infra-red channel was recorded at 0730hrs GMT on 30th July. The images received are all of excellent quality.

The first European Meteorological satellite, Meteosat-1, launched on 23rd November 1977, was fully operational for two years. During that time, it provided permanent monitoring of weather conditions over Europe, Africa and some parts of South America. This satellite is still gathering measurements from a number of data-collecting platforms located on land and sea and carried by aircraft. It made an especially valuable contribution to the Global Atmospheric Research Programme (GARP) in 1978.

Your Reactions.........	Circle No.
Immediately Applicable	156
Useful \& Informative	157
Not Applicable	158
Comments	159
Inan	

> Z-8 Tiny BASIC Computer 2716/32 Eprom Blower UART Applications Board.

SHORT WAVE NEWS FOR DX LISTENERS ${ }^{\text {Ramak } \times \text {. Batarin }}$

All times in GMT, bold figures indicate the frequency in kHz .

SHORT WAVE NEWS FOR DX LISTENERS

By the time this article appears in print many of you will be searching the lower frequency bands for those elusive - for that is what they are - signals that emanate from the spice islands of Indonesia and the local regional stations in the rice lands of China, not to mention Malaysia, India, Burma, Thailand, Kampuchea and Laos. This latter country is probably one of the most difficult of all to receive here in the U.K. If you wish to join the 'Quest for Laos' then make a note of the details that follow.

Laos.

Vientiane, the capital, is on 7142 with the Foreign Service from 2230 to 0130, 0400 to 0630 and from 1100 to 1430 . The power is 10 kW and the frequency can vary around that shown, sometimes reported on 7145. English programmes are from 0100 to 0130,0600 to 0630 and from 1330 to 1400. Also operates a Domestic Service on 6130 from 2230 to 0200,0400 to 0700 and from 0900 to 1600 with a power of 10 kW .

Regional transmitters are - Houa Phan on 4658 but reported on 4652.8 with the Domestic Service in Laotian and vernaculars from 2300 to 0100, 0330 to 0530 and from 1000 to 1155,1255 to 1425 . The power is unknown.
Luang Prabang on 6996 as listed but reported as being on 6998 with programmes in both Laotian and Lao Soung from 2300 to 0200 , 0400 to 0600 and from 1000 to 1400 with a power of 1 kW .
Pakse on 6602 as listed but reported as being on 6615 and 6617 with the Domestic Service in Laotion and Lao Soung from 2300 to 0200,0400 to 0600 and 1000 to 1400, power unknown.
More information on Laos next month.

Around the Dial.

In which are presented some items from the log for the interest of both the short wave listener and the Dxer. All details are correct at the time of writing.

Finland.

Helsinki on 15265 at 1938, OM (Old Man = male announcer) and YL (Young Lady $=$ female announcer) with the programme in English intended for European and African consumption and scheduled from 1930 to 2000. At the time shown, there was a programme about local political affairs and by local I mean Finland.

Albania.

Tirana on 7075 on 1941, Yi with a newcast in English in the transmission directed to Africa during the scheduled period 1930 to 2000. The address for reports is Radiotelevisione Shiqptar, Rruga Ismail Qemali, Tirana.

Romania.

Bucharest on 9690 at 1945, OM with the English programme for Europe, all about 18th and 19th century authors in Romania - and very interesting at that! The English programme is scheduled from 1930 to 2030 and if a report is sent to the following address they will reply with their QSL card. Radio Bucharest, P.O. Box 1-111, Bucharest.

Bulgaria.

Sofia on 15110 at 1950 , OM with the English programme for Europe, scheduled from 1930 to 2000 on this channel. On this occasion it was all about internal sporting events - no large transfer fees were mentioned! If you wish to commence your QSL card collecting activities with one from Bulgaria, the address is Bulgarian Radio, 4 Bd.Dragan Tsankov, Sofia.

Spain.

Madrid on 9765 at 2003, OM with a programme in English to Europe, scheduled from 2000 to 2100, After the newcast at the time listed there were items about Gibraltar and the on-going dispute over sovereignty. Write to them at this address -Radio Exterior de Espana,
P.O. Box 150.039, Madrid 24.

Italy.

Rome on 9710 at 1949, YL with a programme in English directed to the U.K. and scheduled daily from 1935 to 1955 on this channel. It was once axiomatic that all roads led to Rome, if you tune to this frequency you will have arrived in the Eternal City.

Yugoslavia.

Belgrade on 9620 at 2000 , YL with station identification followed by OM with a newscast of both external and internal affairs as seen from their point of view. All in the English programme intended for Europe, the Middle East and Africa and scheduled on the frequency from 2000 to 2030 daily. If you are interested in obtaining their QSL card, send your reports to Chief Editor of External Broadcasting. 2 Hildendarskaa, Beograd.

Czechoslavakia.

Prague on 7345 on 2008, YL with a programme in English for Europe, scheduled from 2000 to 2030 on this channel. It was all about a local film festival, the arrangements, the personalities and the films.

Syria.

Baghdad on 21585 at 1944, OM with station identification in Arabic as "Sowt al Surija al Arabia" (Voice of Arab Syria) followed by a male chorus with a martial song. I well remember my first evening in Baghdad, sitting outside a cafe watching a chameleon on a wallclimbing tree busily catching settled flies on his long sticky tongue. Fascinated as I was by this, to me, unaccustomed sight, I was amazed to find that the locals took not the slightest notice of this wildlife drama going on within a few inches of their heads.

Familiarity breeds even more familiarity I suppose!

Morocco.

Rabat on 15335 at 1928, OM with religious chants in the Arabic Domestic Service, scheduled on this frequency from 1000 through to 0100 daily.

Iran.

Tehran on 9022 at 1907. OM with the news in the Turkish programme for Europe, scheduled from 1830 to 1930 on this frequency. The English programme is timed from 1930 to 2030 after which there is a programme in Persiam radiated under the "Familiar Voice"" (Seday-e Ashna) announcement to Europe, North Africa and North America, scheduled from 2030 to 0230. Tehran is another old stamping ground of mine, 1 lived there for some months many years ago and well remember the wide tree lined streets, the (then) new and imposing Palace of Justice and the even more magnificent railway station with the statue of the Reza Shah Pahlevi out in front. The rail journey from Tehran to Bandar Sharhpur, if I recall aright, on the Persian Gulf was really something, mostly a single track snaking through mountains and around steep gorges through some of the most magnificent scenery in the world. The bends in the rails were such that, at times I should think the guard could almost shake hands with the driver! The golden dome of Qum and the gardens of Isfahan were also something worth seeing. if ever you go to Persia...

Egypt.

Cairo on 9805 at 1910 , YL with a news commentary in the German programme for Europe, scheduled from 1900 to 2000. The programme in English is timed from 2115 to 2245 and directed to Europe, as is the German programme. The land of the Pharoahs had the dubious pleasure of my company for some years -I'll regale you with that saga some other time! Reports to P.O. Box 1186, Cairo.

United Arab Emirates.

Dubai on 17775 at 0656, local style music with songs in Arabic. This is a relay of the Arabic Domestic Service radiated on this channel from 0425 to 1100 with an English programmed 'slot' from 1015 to 1055. Time pips at 0700 and OM with station identification in Arabic followed by a newscast. All this is intended for the Gulf Area, Europe, North Africa, North America and South East Asia. The address is P.O. Box 1695, Dubai. Another English programme from RCTV (Radio \& Colour TV) Dubai is timed from 1630 to 1700 on 17710, 21625 and on 21655.
Israel.
Jerusalem on 17630 at 1533, OM with announcements after a programme of songs and music in a relay of the Domestic Service Network B in Hebrew for listeners abroad and scheduled from 0400 through to 2210 on this channel.

U.S.S.R.

Radio Moscow on 7330 at 1925. YL with an English programme directed to the U.K. and Eire, scheduled from 1900 to 2000. On this occasion it was all about women authors within the Soviet Union. This programme is also scheduled on 7440, 9490, 9685 , 11820 and on 15535 but on the evening in question 1 could'nt find any trace of the 7440 transmission.

Switzerland.

Berne on 15430 at 0630 . OM with station identification followed by a newscast in the Italian part of a relay of the Domestic Service in that language and also German and French. All for Europe and Africa and timed from 0600 to 0645.

Sweden.

Stockholm on 15390 at 0625 , OM with announcements in Swedish in a relay of the Domestic Service to Africa and Europe and scheduled from 0330 to 0830 on this frequency.

Madagascar.

Radio Nederlands Relay on 15220 at 1912, OM with the English programme directed to Africa, scheduled from 1830 to 1920. On this occasion it was all about listener's letters and questions together with the answers.

Writing of Radio Nederland reminds me that I recently received a letter from Jonathan Marks of the English Section informing me that a range of material of interest both to the Dxer and SWL is availble free of charge. The address is Radio Nederland Wereldomroep, P.O. Box 222, 1200 JG Hilversum, Holland. The published material includes the following - Latin Americal Dxing; much useful information including a comprehensive English/Spanish/ Portuguese reporting section, each section being numbered for easy translation. Radio Booklist; containing many titles of specific interest to the Dxer SWL, some of them published privately by other enthusiasts. Addresses and prices -some of them quoted in IRC's (International Reply Coupons) are included. Receiver Shopping List; this 12 -page guide has been produced in response to requests from listeners for information with respect to various communication receivers available on the markets today. It does not claim to be complete but it does provide a good general guide to those considering purchasing a receiver in the near future. This is Dxing; contains introductory advice to the beginner SWL and Dxer alike. Very Low Frequencies; all about these, the Long Wave Club and the Datong VLF Converter. Give Your Antenna some Air; a pamphlet explaining which type of aerial is best for your locality.

All the above are free and are in English. For additional information on Dxing and SWLing there is a Dx programme on Thursdays. For Entertainment there is the well known "Happy Station" programmes on Sundays. When writing, ask for their latest schedule,

Dial Search.

Whilst writing about publications I should also include Dial Search. This is a comprehensive and up-todate check list and instruction guide of interest to those who explore the Long, Medium and VHF ranges for British and European station. The booklet gives a clear listing of the radio stations that can be heard on a normal domestic radio, without special aerials. A unique feature is the inclusion of a map on the centre-spread which gives the exact positions of all thestations listed, using fixed bearings. Full instructions on how to use the map are included. Dial Search costs 80 p plus $20 \mathrm{p} p \& \mathrm{p}$ and is available direct from G. Wilcox, 9 Thurrock Close, Eastbourne, East Sussex, BN20 9NF.

Singapore.

Radio Singapore on 5052 at 1547, YL announcer in English with a programme of records of U.S.A. and U.K. pop music. The Singapore Broadcasting Corporation schedules this station from 2230 to 1630 in English (Sundays until 1700). The
power is 20 kW and the address is Department of Broadcasting, Caldecott Hill, Thomson Road Singapore 1129.

Indonesla.

Jakarta on 11790 at 1450 , YL announcer, YL with a ballad in the English programme directed to South East Asia and the Pacific, being timed from 1400 to 1500. There is a newscast in English from 1400 to 1415 . This is the Foreign Service, the address being Voice of Indonesia, P.O. Box 157, Jakarta.

North Korea.

Pyongyang on a measured 11352 at 2008, YL with songs, orchestral music local-style in a transmission of the Domestic Service, scheduled on this channel from 2000 through to 1800 .

China.

Radio Peking on 6665 at 2011, OM and YL alternate with announcements in the Domestic Service 1 , scheduled here from 2000 to 1735.

Colombia.

Radio Cinco, Villavicencio, on 5040 at 0500 , OM with station identification, announcements and a programme of local-style pops on records. the schedule of this one is on an around-the-clock basis and the power is 3 kW . The address for reports is Apartado Aeareo, 2284, Villavicencio, Meta, Colombia.

Radio Super, Medillin, on 4875 at 0506, OM with a newscast in Spanish mainly composed of local events according to all the Colombian place-names announced. A full station identification at 0515 then into a programme of local pops. Radio Super has a 24 -hour schedule and a power of 2 kW .

Brazil.

Radio Tabajara, Joao Pessoa, on a measured 4797.4 at 0125, with a sports commentary in Portuguese. The schedule is from 0730 to 0400 and the power is 1 kW . The address of Radio Tabajara da Paraiba, to give it the full title, is Rua Jaoa Machado 938, 58000 Joao Pessoa, Paraiba. I hope you manage to get the QSLI

Radio Cultural do Para, Belem, on 5045 at 0155 , local-style music, OM with a ballad in Poruguese. The schedule is from 0700 to 0300 and the power is 10 kW .
Radio Clube Paranaense, Curitba, on 6045 at 0158, OM announcer with a programme of recorded local pops - all in typical style. This one operates around the clock and has a power of 7.5 kW .

Afghanistan.

Kabul on 4740 at 0217 , local-style orchestral music, OM with songs in the Home Service 1 programme schedule from 0125 to 0330 and from 1230 to 1930. The power is unknown, this transmitter may be located within the borders of the U.S.S.R.

Your Reactions.........	Circte No.
Immediataly Applicable	148
Usetul 8i Informative	149
Not Applicsble	150
Comments	151

there are transformers and...

OEM - let Drake Transformers advise you on a component specification and design to solve that special problem. Preproduction prototypes and development undertaken as necessary.

Well known over a quarter century for personal service and high-quality products, Drake specialise in the design and manufacture of transformers and other wound components for large and small quantity production.

Expertise and service put DRAKE TRANSFORMERS in a class of their own.

DRAKE TRANSFORMERS LIMITED

South Green Works Kennel Lane Billericay Essex CMII 2SP
Telephone: Billericay (02774)51155 Telex: 99426 (prefix Drake)

BOOK REVIEW-rqew. воок Service

OSCILLOSCOPES

By Stan Prentiss
1981; 161 pages; $150 \times 225 \mathrm{~mm}$;
Paperback
£8. 20
This book shows in great details what and oscilloscope does and why. All manner of applications are included ranging from basic service procedures to highly complex design and evaluation studies.

LINEAR INTEGRATED CIRCUITS

By S D Prensky \& A H Seidman 1981; 354 pages; $155 \times 240 \mathrm{~mm}$; Hardback

£14.95

Finally, a practical reference on linearintegrated circuits written in an easy-toread style for the technician, the engineer, and the student.

PET BASIC: TRAINING YOUR PET COMPUTER

By R Zamora et al
1981; 310 pages; $150 \times 225 \mathrm{~mm}$,
Paperback
\section*{$£ 9.70$}

If you are a newcomer to the PET, you will discover that this book is perfect for you. The material in each chapter is written for people who are learning to use the PET
There are plenty of examples, do-ityourself exercises, and fun-filled explorations. You are encouraged to experiment with your machine and try out the many features and capabilities.

PET GAMES AND RECREATIONS

By M Oglesby et al 1981; 246 pages; $150 \times 225 \mathrm{~mm}$; Paperback

£9.70

A variety of challenging and entertaining diversions for you and your computer. The games are arranged in levels of difficulty so that there is something for everyone - adults and children, beginners and computer veterans.

AN END USERS GUIDE TO DATA BASE

By J Martin

1981; 144 pages; $175 \times 230 \mathrm{~mm}$; Hardback
£16.45
This book was written with no technical words except where they are unavoidable and clearly explained.

SCANNER MONITORING SERVICING GUIDE

By R G Middleton
1975; 96 pages; $210 \times 280 \mathrm{~mm}$; Paperback £4.55
This servicing guide starts at the beginning and proceeds step by step through the complete scanner-monitor system, with particular emphasis on specialised circuit action and troubleshooting.

GENERAL BOOKS

ABCs OF FETS

by R P Turner

ABCs OF INTEGRATED CIRCUITS
by R P Turner

ACTIVE FILTER COOKBOOK by Don Lancaster

ANALOG IIO DESIGN AQUISITION:

CONVERSION: RECOVERY

by P H Garrett

£16.45

BEGINNER'S HANDBOOK OF IC PROJECTS
by D L Heiserman
$£ 9.70$

BUILDING AND INSTALLING

electronic intrusion alarms
by J E Cunningham
CMOS COOKBOOK
by Don Lancaster
$£ 9.05$
DESIGN OF OP.AMP CIRCUITS .
with experiments
by H M Berlin
f7. 65
DESIGN OF PHASE-LOCKED LOOP CIRCUITS .
with experiments
by H M Berlin
DESIGN OF VMOS CIRCUITS • with experiments by R T Stone
DIGITAL LOGIC DESIGN AND APPLICATIONS
by L B McCurdy et al

EFFECTIVELY USING THE OSCILLOSCOPE

by R G Middleton

£6.95
how TO BUILD A FLYing SAUCER
by T B Pawlicki
£4.45
HOW TO BUILD YOUR OWN STEREO
SPEAKER
by Christopher Robin

INTEGRATED CIRCUIT PRDJECTS by R P Turner	£4.55	HOW TO DBUG YOUR PERSONAL CO by J Huffman	PUTER f5. 95
LOGIC AND MEMORY EXPERIMENTS USING TTL BOOK 1 by D G Larsen \& P R Rony	¢8.35	how to program and interface THE 6800 by A C Staugaard Jnr	£11.15
LOGIC AND MEMORY EXPERIMENTS USING TTL BOOK 2 by D G Larsen \& PRRony	¢9.05	how TO TROUBLESHOOT AND REPAIR MICROCOMPUTERS by John D Lenk	¢5.95
99 PRACTICAL ELECTRONIC PROJECTS (2nd Edition) by Herbert Friedman	£4.15	INTRODUCTION TO MICRO. COMPUTERS FOR THE HAM SHACK by Harry L Helms	¢4.15
ONE EVENING ELECTRONIC PROJECTS by Calvin R Graf	¢4.55	MICROCOMPUTER INTERFACING WITH THE 8255 PPI CHIP by P F Goldsbrough	£6.95
OP AMP HANDBOOK by F W Hughes	¢16.45	MICROPROCESSOR SOFTWARE. PROGRAM CONCEPTS AND	
OPERATIONAL AMPLIFIER CHARACTERISTICS ANO		TECHNIQUES by G A Streitmatter	f14.20
APPLICATIONS by R G Irvine	¢18.70	MINICOMPUTER IN ON.LINE SYSTEMS by M Healey et al	£17.20
PRACTICAL LOW.COST IC PROJECTS (2nd Edition)		MOSTLY BASIC: APPLE II by H Berenbon	£7.65
by Herbert Friedman	¢4.15	MOSTLY BASIC: PET	¢9.05
by J E Cunningham	¢5.25	MOSTLY BASIC: TRS. 80	
SON OF CHEAP VIDEO		by H Berenbon	¢9.05
by Don Lancaster SCRS \& RELATED Thyristor devices by C Laster	¢9.05	PET BASIC: TRAINING YOUR PET COMPUTER by R Zamora et al	$¢ 9.70$
TTL COOKBOOK by D Lancaster	¢8.35	PET PERSONAL COMPUTER FOR BE by S Dunn	$\begin{aligned} & \text { NERS } \\ & \text { ¢ } 4.95 \end{aligned}$
THE 555 TIMER APPLICATIONS SOURCEBOOK . WITH EXPERIMENTS by H M Berlin	£5.25	PRACTICAL HARDWARE DETAILS OF 2.80, 8080. 8085 \& 6800 MICROCOMPUTER SYSTEMS by JW Coffron	¢16.45
PROJECTS by Tom Fox	£6.25	PRACTICAL TROUBLESHOOTING TECHNIQUES FOR MICROPROCESSOR SYSTEMS	
COMPUTER BOOKS		W Coffron	$f 14.95$
	-**	A PRIMER ON PASCAL by R Conway et al	$£ 9.70$
THE ADA PROGRAMMING LANGUAGE by J C Pyle	¢8.95	PROGRAMMING AND INTERFACING THE 6502 - WITH EXPERIMENTS by Marvin L De Jong	£11.15
THE ARCHITECTURE OF CONCURRENT PROGRAMS	9.4	THE S100 AND OTHER MICRO BUSES by EC Poe \& J C Goodwin	¢6.95
BASIC BUSINESS SOFTWARE by E G Brooner	¢8.35	SOFTWARE MAINTENANCE GUIDEBOOK by R L Glass \& R A Noiseux	f16.45
CALCULATOR CLOUT PROGRAMMING METHODS FOR YOUR PROGRAMMABLE by MD Weir	£6.70	STRUCTURED COBOL, A PRAGMATIC APPROACH by R T Grauer \& M A Crawford	£13.45
CIRCUIT DESIGN PROGRAMS FOR THE TRS 80	f10.15	SYSTEMS PROGRAMMER'S PROBLEM SOLVER by W S Mosteller	¢14.20
COMPUTER GRAPHICS PRIMER by M Waite	£10.45	THE 8080 A BUGBOOK by Peter R Rony	£9.05
COMPUTER LANGUAGE REFERENCE GUIDE		TRS. 80 ASSEMBLY LANGUAGE by H S Howe	¢7.45
by Harry L Helms	$¢ 5.55$	TRS. 80 INTERFACING BOOK 1	
CPIM PRIMER by S Murtha \& M Waite	£10.45	by Jonathan A Titus, Christopher \& David G Larsen	Titus 67.65
CRASH COURSE IN MICROCOMPUTERS		TRS-80 INTERFACING BOOK 2 As for Book 1	£8.35
by Louis E Frenzel	£13.95	VIDEOICOMPUTERS, HOW TO	
DIGITAL CIRCUITS AND MICROCOMPUT by D E Johnson et al	$\begin{aligned} & \text { IERS } \\ & \text { £ } 9.50 \end{aligned}$	SELECT, MIX AND OPERATE PERSONAL COMPUTERS \& HOME VIDEO SYSTEMS	
EXPERIMENTS IN ARTIFICIAL intelligence by J Krutch	¢6. 25	by C J Sippl \& F Dahl 2.80 MICROCOMPUTER DESIGN PROJECTS	£5.95
gUIDEBDOK TO SMALL COMPUTERS by W Barden Jnr.	£4.85	by W Barden Jnr 6502 SOFTWARE DESIGN by Leo Scanlon	£9.75 ¢9.05

LOGIC AND MEMORY EXPERIMENTS
by D G Larsen \& PRRony £8.35
LOGIC AND MEMORY EXPERIMENTS
USING TTL BOOK 2

99 PRACTICAL ELECTRONIC
PROJECTS (2nd Edition)
by Herbert Friedman
ONE EVENING ELECTRONIC
by Calvin R Graf
OP AMP HANDBOOK
by F W Hughes
OPERATIONAL AMPLIFIER
APPLICATIONS
by R G Irvine
by Herbert Friedman
SECURITY ELECTRONICS (2nd Edition)
by J E Cunningham

SCRS \& RELATED THYRISTOR DEVICES
by C Laster
TTL COOKBOOK
by D Lancaster
by H M Berlin
£6.25
Computer Books

THE ADA PROGRAMMING
LANGUAGE
by J C Pyle

BASIC BUSINESS SOFTWARE
by E G Brooner
calculator clout -
YOUR PROGRAMMABLE
by M D Weir
£10.45
COMPUTER LANGUAGE REFERENCE
by Harry L Helms
£5.55
by S Murtha \& M Waite
COURSE IN
by Louis E Frenzel $£ 13.95$

by D E Johnson et al

INTELLIGENCE

GUIDEBOOK TO SMALL
COMPUTERS
by W Barden Jnr.

HDW TO DBUG YOUR PERSONAL COMPUTER
by J Huffman
6809 MICRDCOMPUTER
PROGRAMMING AND INTERFACING

- with experiments
by A C Staugaard
£10.45

RADIO BOOKS

AMATEUR ANTENNA TESTS AND
MEASUREMENT
by H D Hooton
CB RADID CONSTRUCTION
PROJECTS
by Len Buckwalter
MICROWAVE DEVICES AND CIRCUITS
by Prof S Liao
[24.70
MICROWAVE THEORY AND
APPLICATIONS
by S F Adam £17.95
PRACTICAL RF COMMUNICATIONS DATA FOR ENGINEERS AND TECHNICIANS
by M F Doug DeMaw £6.95
QUESTIONS AND ANSWERS ABOUT
CB OPERATIONS
by L G Sands £2.65

TV ANTENNAS AND SIGNAL
DISTRIBUTION SYSTEMS
by M J Salvati
£7.65

NEW TITLES

APPLE BASIC FOR BUSINESS FOR APPLE II by A J Parker et al
£11.20
DIGITAL CONTROL USING MICROPROCESSORS
by P Katz
£16.95
FERROMAGNETIC CORE DESIGN
by M F Doug DeMaw
£16.45
HEXADECIMAL CHRONICLES
by D Lancaster
〔12.55
LOGIC DESIGN OF COMPUTERS
by M P Chinitz
£11.15
MICROCOMPUTER DICTIONARY
by C J Sippl
f11.15
SMALL BUSINESS COMPUTER SYSTEMS
by PJ Best
£ 8.40
TELEMATIC SOCIETY: A CHALLENGE FOR TOMORROW
by J Martin
$£ 9.70$
USING THE UNIX SYSTEM
by R Gauthier
f14.20
For all book orders see order card (reply paid order card inserted).

SERVICE TRADNG CO
 FT3 NEON FLASH TUBE

 WHY PAY MORE?
 METERS (New) - 90 mm DIAMETER A.C. Amp., Type $62 T 2.0 .1 \mathrm{~A}$ D.C. Amp, Type 65C5. 0.2 A 5 A. 0.10 0.50 A .100 A $\mathrm{O} . \mathrm{C}$ Vont 15 V 30V

 HEAVY DUTY SOLENOIO, mi by

 240 V AC SOLENOID
 Approx, AOLD DUll 1046 rating Size 80.33 .26 mm . Price $\mathbb{C 1} .75$ 12V D.C. SOLENOID

 D8p Totà 'nail vat E 1.501 aGgTi $2 a v O C 70$ onm Coil Solencia Push or Pull ad MINIATURE SOLENOID FLUID VALVE
 VARIABLE VOLTAGE TRANSFORMERS
 INPUT 230/240V a.c. 50/60 OUTPUT 0-260V

 $1 \mathrm{KVA}(5 \mathrm{mp}$ MAX) $2 \mathrm{KVA}(0) \operatorname{mp}$ MAX)
 $3 \mathrm{KVA}(15$ amp MAX) $5 \mathrm{KVA}(25$ amp MAX)
 $10 \mathrm{KVA}(50$ amp MAX)

 3-PHASE VARIABLE VOLTAGE
 TRANSFORMERS

 LT TRANSFORMERS
 SNIPS OF THE MONTH
 220240 V Pimary 0.24 V . Secondary, 4 Amp . Fully Amp contacts. Magneticaly shienced. ${ }^{1}$ pitch
 HY-LIGHT STROBE KIT MKIV
 P $£ 200$ If 48.31 ncl. VAT).
 Surn

$240 V$ A.C. SOLONOID VALVE
Designed for Air/Gas at 0.7. Water 0.5 psl Inlet/outlet $3 / 8^{\circ}$. Forged brass body. Manu
Dewraswiten Asco. Price: $£ 5.50$ plus P\&P. Dewraswitch Asco. Price:
($\mathbf{~ 7 7 . 1 0}$ inc VAT) $\mathrm{n} . \mathrm{m} . \mathrm{s}$.

SOLID STATE EHT UNIT

ingut 230 V ac Fully solated oulput 10 mm soark. Appron.
15 Kk Built in 10 sec Timed Easily modified for 20 sec 30 sec to a continuous operation
Designed for boilet ignition Dozens of uses in the field of

A.E.G. CONTACTOR

 ARROW-HART MAINS CONTRACTOR
No 130 A 30 . Coll 250 V or 500 V . A.C. Contacts 3 make 50 amp

SMITH BLOWER

 135.165 mm Flange mounting Price: 84.7 FS . P \& P. E1.00

MICRO SWITCHES

Sub Min Honerwell Lever mis inpe $3115 m 906 \mathrm{H}$.
10

 Shor Lever type 16 amp rating (Crouzet) 10 to

 low resuslance confacts 10 for $\mathbf{6 3 . 0 0}$ P. \& P 500 . IE4.02 incl
VATI. Imin. order 101
A.C. Wkg. TUBULAR CAPACITORS.

XENON FLASHGUN TUBES

Range available from stock. S.A.E. for details. ULTRA VIOLET BLACK LIGHT

FLUORESCENT TUBES

(For use in stan D pin fittingst.
12 Iin .8 Wati 2.20 (3.75 incl. VAT).

 1565.50 \& \& $p 55$ (E6.96 incl. VAT)
 £2.00 (E18.40 incl. VAT).
BLACK LIGHT
 Blach Lyint U.V. Wheer from fin to dh from stock. Footecmo e.e.e. or coralis.
EPROM ERASUREI
Why waste money? Bull your own EPROM Unlt. Complete Kit of parts less case to Include 1 , 8 watt 2537 Angst Tube, Ballast Unit, oalr of bl-pin leadst Neon CIrcult. LESS CASE, Price: $£ 13.60+75 p$
 dangerous to the eyss. Undr MUST Do fitted in sultable

Supenior Oualify Precisuon Made
 NEW POWER RHEOSTATS
 winding heawy dury brush assombly, cont
 tinuouslvirte 10/25/50/100/250/500/1

 3.5 H WAMT ${ }^{1 / 50}$ P $70125 / 50 / 100 / 250 / 50$ brass, sider.
RELAYS

$230 / 240 \mathrm{~V}$ A.C. ${ }^{3}$ e/o. ${ }^{11}$ pin base. Seated 5 amp contect

 Marcury wartad contact relay mig oy Clare. Type HGSM 1003 . 1824 V OC 1 CO E2.00 P \& P. 300 (C2.85 inc. VAT). 3 EAY SPECIAL OFFE P. 12.30 inc . VAT

GEARED MOTORS

71 rom KLAXON motors appron. 251 b inch.
28 rom WYNSCALE motors tpprow. 201 in in 71 rpm WYNSCALE motor approx. 1010 lnc

 22 R.P.M. 110 A.C. 50 nz . 1001 b incl. reversible will operate on 230 A.C. Speed remains at 42 A.P.M. but torque ceduces Dy 50%
Price \&16.50 P. \& P. E2.50 (E21.28 incl. VAI). 100 rpm .110 V . e.c. $115 \mathrm{lb} \ln .50 \mathrm{~Hz} 2.5$ amp. single phase split capacitor.
Immense power. In line geartor. Length
Totally enclosed. In 250 mm Dia. 135 mm . 5 Dindle dia

 200 option. Price $\mathbf{6 8 . 0 0}$ P \& P $\{1.50$ ($\mathbf{~} 10.93$ incl. VAT)
 Price: $\mathbf{5} .00$ P \& P E 1.50 (EE. 62 incl. VAT). N.M.S 1 MAPMOON. $230 / 240 V$ a.c. Synchronous geared Moror. mi
my MAYOON.
$2 \mathrm{rpm} 230 \%$

230V a.c. FAN ASSEMBLY lade 6 inin. of 4 blade Jin. aluminuum tan Price $£ 4.50$

24V. D.C. GEARED MOTOR
 ciston gearing itc. Atc. Ex-aquipmont Loncon Transport Tiche

SUB-MINIATURE PRECISION BUILT

24V D.C. REVERSIBLE MOTOR

 Parvalux thpe So 12L. 24 O.C. Shunt wound Motor, sither 133rpm 651 ins in Gearbox ratio 30.1 Curent 6.8 amp. Aaring con-
innous Will operate on reduced power and speed at 9 V . C or or tinuous Will operate on reduced power and speed at 9V D.C or
less. Size Dia. 16 mm . Width 150 mm . Shath dia. 16 mm . Price
 oolb in ralling. Ptice as above. N.M.S. 100 W Rheorerr 1 ohm speed control ovailable E e.s0 P. \& P 750 (Ex. 80 incl. VAT)

REDUCTION DRIVE GEARBOX

atio 72:1. Input spinde in . Ourpur soinde $2,3 \mathrm{in}$, long Overall size approk 120 . 98 \& 68 mm . All metal construct

ROTARY CARBON VANE VACUUM \& COMPRESSOR. Direct coupled to $1 / 3 \mathrm{n} . \mathrm{p}, 110 / 115 \mathrm{~V}$ C. Motot 4.2 amp 1380 rpm. Morot manut. pr A.E.l. or G.E.

WATER PUMP

Mif. by S.P.A. Astuis of fiahy. 220/240v A C. 50 hz .2800 R.P.M aporox. 40 gais ger min al 1010 s hada. (Non sell priming). Price E16.50 P. \& P. $(2.50$ ($\mathbf{2 1} 1.85$ incl. VAT). N.M.S.

Vesder. Aoor Pre-set Couniof. Tyou MGit836 ${ }^{3}$ Mi etting Chanyonvat Micrnswith to intorm erternal circuriny on

SANGAMO WESTON TIME SWITCH ype 5251200250 V . a.c. 2 on 2 of every 24 houri. 20 amp

TIME SWITCH VENNER TYPE
ERO Time switch 200 N 250 V a.c. 30 amp contact
2 on 2 i off every 24 hrs at any manually pre-se lime. 36 hour Spring Reserve and day omitting Hon. Price f10.00 P. \& P. E 1.50 IE 13.23 R. \&
A.E.G.

80ap. 2 -on/off Spring Reserve Timeswitch Price £14.00 P.\&.P £1.50 (£17.83 inc. VAT)

All Mail Orders Callers Ample Parking Space
Showroom open Mon-Fri

57 BRIDGMAN ROAD. CHISWICK, LONDON W4 5BB $01-9951560$
ACCOUNT CUSTOMERS MIN. ORDER £ 10.00

DANAVOX
 ARE ALWAYS COMING UP WITH SOUND IDEAS.

The Danavox policy has always been one of constant improvement.

Our refinement, development and research has enabled us to offer an advanced range of components and accessories for dictation machines, tape recorders, tele-communications, hearing aids and electro-acoustic equipment.

All our products are built with care and precision.

And all carry the Danavox guarantee.

For more information about any Danavox product, contact John Carter.

1 Cheyne Walk, Northampton. NN1 5PT Tel: (0604) 36351 Telex 312395

HowWayne Kerr took the European lead in automatic test equipment

At prices between $£ 9,000$ and $£ 17,000$, the Wayne Kerr A8000 bench-top system offers a full range of ATE facilities previously only available at 3 or 4 times the cost.

And without any need for special rooms, delicate handling, or expensive 'high priest' operators.

Already in use in many famous electronic establishments, the A8000 system is beautifully designed, easy to use, easily expanded and supported by an excellent range of software.

Versatility

The A8000 offers a range of testing methods unrivalled by any other ATE system.

Continuity testing
In-circuit testing.
Functional testing; analogue, digital and hybrid; go/no-go and diagnostic .

System testing.
Repair/service testing.
No other system offers as many different methods, all of which can be mixed and combined as required, to provide appropriate testing, at each stage of the production chain, giving maximum cost savings by the earliest possible rectification of faults.

Flexibility
The A8000 is totally modular, allowing you to choose the ideal configuration for your test requirement. There is no built-in redundancy, you purchase only what you. need. This makes it highly responsive to changing test situations.

Reader Enquiry No. A circle 116
Reader Enquiry No, B circle 117

Adaptability

All that is required to configure the system is to put in the correct test jig, which is simple, quick and inexpensive. To test a different item, simply change the jig. Conversely, one jig can accommodate many different test items.

Expandability

The system you buy today must be suitable for testing tomorrow's products. With the A8000 modular system, upgrading is simple and easy, at minimal cost.

Ease of Use

The A8000 is designed to fit into your present organisation, and its easy operation is compatible with all grades of existing personnel.

Ease of Programming
You don't have to be an expert to generate test programs for the A8000. All test functions are expressed in a question and answer form. The programs are then stored on EPROM or mini floppy diskettes - the choice is yours.

VDU, displaying typical digital diagnostic program.

The Full Range of ATE Functions

Wayne Kerr's novel system architecture coupled with the state of the art design philosophies, results in high quality testing benefits in all areas of use, for example:Continuity Testing
Self-learning of shorts and opens for bare or populated pcb's.

In-Circuit Testing
Fully automatic guarding of true in-situ component measurements.

> Functional Testing

Analogue, digital or mixed (hybrid) pcb's with a comprehensive selection of test capabilities, permitting screening tests or diagnostic testing down to component level.

With the advanced software features of symbolic and algorithmic digital programming, digital program generation is simpler and faster.

NEW!

Automatic Digital Diagnostics
A revolutionary new approach. De-skill the complex job of isolating digital faults with Wayne Kerr's advanced guided probe. The system intelligently guides the operator to find the faulty component in the shortest possible time, taking into account feedback loops. The diagnostic information and the internal 'image' is captured using self-learning techniques thus avoiding the possibility of any 'image' faults, a common problem on other systems.

Special Information for your
 Managing Director

No company lavishes its hard-carned cash un an ATE system without a goud deal of thought.

Waynce Kerr has prepared an information pack giving all the financial and management arguments for bench-rop ATE.

Send for a copy. or usc enguin No. A

Further Information

For full technical data on the Wayne Kerr A8000 system, use enquiry No. B or contact us direct.
Wayne Kerr, Durban Road, Bognor Regis, West Sussex PO22 9RL.
Telephone (0243) 825811 Telex 86120.
Wayne Kerr

120 for further details

Conquer the chip!
 The silicon 'Chip', the microprocessor, and the whole field of modern

 electronics will revolutionise every human activity over the next decade If you are looking for a new job or career, promotion, your own business or simply want to keep abreast of modern developments - you will need to master the subject. It can be done simply and efficiently, in a practical way: No previous knowledge is needed. Write to us now without the sightest obligation. We have been successfully taining people in electronics at home, for over 40 years!
 BY SEEING AND DOING

- Bulding an oscilloscope - Recogntion of components
- Undersanding circuit diagams - Handling all types Solid Siate 'Chips - Understanding carcuit cuagram. - Testing and servicing of Radio. T. V. Hi-Fi and all types of modern - Testing and servicing of R

MASTER MICROPROCESSORS

LEARN HOW TO REALLY UNDERSTAND MICROPROCESSORS, HOW THEY WORK AND THEIR APPLICATION TO COMPUTER TECHNOLOGY. - Complete Home Study Library - Programming

- Special Educational Microprocessor Equipment supplied
- Services of skilled tutor available throughout course

MASTER THE REST

- Radio Amateurs Licence Logic/Digital techniques
- Examination courses (City \& Guilds etc.j in electronic
- Semi-conductor technology
- Training Kits (Signal Generators, Digital Meters etc.)

37 for further details

ANY MRKE~UP OR COPY QUERIES

COMTACT BRRRY HEWSOI

01~531 7621

SABTRONICS KITS
NEW LOW PRICES

$\begin{aligned} & \text { BENCH DMM: } \\ & 2015 \text { A } \end{aligned}$	$\begin{aligned} & \text { ASSM. } \\ & \text { £83.00 } \end{aligned}$	$\begin{gathered} \text { KIT } \\ £ 73.00 \end{gathered}$
HANDHELD DMM: 2035A	£62.00	£49.00

2037A £67.00 £56.00

FREQUENCY METERS: 600 MHz
8 Digit
£82.00
£68.00
$€ 99.00 \quad £ 84.00$
1000 MHz £155.00
9 Digit (Assm. only)
TOUCH AND HOLD PROBE THP20
£13.00
P\& P £1.00

TEST
 INSTRUMENTS

SAFGAN SCOPES

10 MHz
15 MHz
20 MHz
*DUAL TRACE

* $5 \mathrm{mV} /$ Div sensitivity
*XY Facility
*Z modulation
*Calibration output
* Portable, lightweight

DT 410
£169.00
DT 415
£175.00
DT 420
£188.00
X1-ref-X10 probe

$$
P \text { \& P } £ 2.00
$$

Add 15\% VAT on all Prices All prices correct at 1-12-81 E\&OE

Open Mon-Fri 9.00 a.m. - 5.30 p.m. Catalogue FREE

DAROM SUPPLIES

4 Sandy Lane, Stockton Heath,
Warrington, Cheshire WA4 2AY Telephone: (0925) 64764

You can always count onus.

 ideal for audio. VHF and UHF applications and are available with a complete line of accessories and input cables.

For a larger ($0.43^{\prime \prime}$) display, greater accuracy or TTL compatibility, our portable eight-digit MAX-100 is the natural choice. With a range of 5 Hz to 100 MHz , it's perfect for audio, video, microprocessor and RF applications, in lab, production line or field. Especially when you consider its $\pm 4 \mathrm{ppm}$ accuracy, versatility and complete line of accessories at a low $£ 77.55^{*}$ price

For more demanding challenges in process control, audio applications and low frequency counting, our remarkable Model 5001 Universal Counter-Timer, priced at only $£ 185^{*}$, offers a range of DC through 10 MHz . Measuring frequency (selectable gate times $0.01,0.1,1.0,10 \mathrm{sec})$, frequency ratio, period, multiple
period average, time interval, time interval average and event count - on a bright, $0.43^{\prime \prime}$ eight-digit LED display. All, with full input signal conditioning on two input channels, and variable display sampling rate.

For the ultimate in high-precision, our Model 6001 is your best value. It covers a range of 5 Hz to 650 MHz with a unique NBS-traceable 10 MHz TCXO with 0.5 ppm accuracy. And boasts selectable gate times, switchable low-pass filter, external timebase input, buffered timebase output and a bright $0.43^{\prime \prime}$ eight-digit LED display. Priced at just $£ 195^{*}$, its performance is unequalled by counters at twice the price!
When you consider that all our counters are guaranteed to meet or surpass published specifications, isn't it time you had a Global Specialttes counter on your bench?

- Price excluding P \& P and 15\% VAT
global specialties corporation

G.S.C. (UK) Limited, Dept. REW1, Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AQ. Telephone: Saffron Walden (0799) 21682. Telex: 817477.
G.S.C.(UK) Lid., Dept. REW1, Unit 1, Shire Mill Industrial Est., Saffron Walden, Essex CB11 3AO
\qquad
For FREE catalogue tick box number and your order will be in the post immediately.

CLASSIFIED ADS

A REALLY PROFESSIONAL LOOK TO YOUR EQUIPMENT
 with
 STRIP-FIX
 PLASTIC PANEL SIGNS

* SET 3. Wording. White
* SET 4 . Wording - Black

Over 1,000 words and symbols, covering more than 300 terms. Actual size of words = RADIO

* SET 5 - DIALS

One large and two medium scales large Horizontal Tuning scale, Frequencies, 12 Control Panels. sets contain six sheets ONLY £1.65 PER SET, inclusive of post, packing and VAT.

Please send remittance payable to 'RADIO \& ELECTRONICS WORLD' and state sets required to:

> DATA PUBLICATIONS, 45 Yeading Avenue Rayners Lane, Harrow, Middlesex HA2 9RL

ZX81 Sinclair built. As new condition. $£ 50$. Tel: Hornchurch 48434 after 6.00 pm .

SONY ICF-2001 RECEIVER and Power Unit. One month old. Perfect. £135 inclusive. 0742-369116 (Sheffield)
SITUATION WANTED. Employment required by reliable, intelligent gentleman. (22). Recent H.N.D. in electrical and electronic engineering and industrial training. Driving licence. Seeks post in electronics field, any area.
Telephone 0433-30548 or write for C.V. to Box No. REW20.

AUTOMATIC MORSE DECODER.

Low cost easy build 9 V circuit. Accepts audio input or practice key. Gives continuous readout on 12 character alphanumeric display. Send $£ 3.95$ plus large SAE for fully detailed 17-page construction manual. Parts and pcb available, N. MacRitchie (Micros),
100 Dradies Avenue, Inverness IV2 3SD.
1920's ONWARD VALVES. Wireless lists 25 p. 100 mixed diodes $£ 1.1000$'s modern components lists 25 p. Sole Electronics, REW,37 Stanley Street, Ormskirk, Lancs., L39 2DH.

WANTED. High voltage has discharge tubes, i.e. Tesla tubes, 'Maltese Cross', tube, small discharge tubes, neon's etc., to work from induction coil for demonstration purposes. Details to Box No. G404.

TR2300. 2m FM transportable, with case and 10 W ' booster amp., 'rubber duck'.... $£ 170$ ONO. Phone (0277) 822720. G3XDG.

T \& J ELECTRONIC COMPONENTS. Quality components, competitive prices. Send 45 p cheque or postal order for illustrated catalogue, 98 Burrow Road, Chigwell, Essex IG74HB.

4 DIGIT LCDs. with pin terminations, std Hamlin/LXD types. Gd no junk, £3 each, 10/£22. Box REW7.
CHESS RABBITS BECOME LIONS. with the latest model chess computers. Ideal for parents purchasing their child's first computer, for the business mankeeps the mind alert during long travel, waiting periods. Matches 95% of all players. Send for details to :- DCK Computers, Town Lane, Denton, Thameside M34 2DJ.
MULLARD BGY22 MOBILE RADIO AMPLIFIER MODULES. New, 2.5 W out. 50 mW in. $£ 5$ each. 106 Park Hill Moseley, Birmingham Bl3 8DS. 021-449-8796.
PRACT. HIFI TRANSMISSION LINE SPEAKERS. Superb value $£ 100$ ONO. Box REW8.

FOR SALE: 2 meter converter, Telford Communications, G8AEV. $£ 12$. 29.5 MHz pre-amplifier, Telford Communications £10. Box No. REW14.
CASIOTONE MT- 30 Built-in amplifier and loudspeaker. 22 instruments over 3 octaves. Only $£ 70$. Telephone Brentwood (0277) 218925.

CAPITAL needed for profitable electronics project details.
Box No. REW19

CB RADIO CONVERSIONS. Add extra channel to most modern CB radios using a resistor, a switch and our comprehensive data on PLL chips. E.g. sharp $40 \mathrm{CH}+$ $1 \mathrm{k} /$ res. equals 64 CH . Also crystal substitution information and much more Send $£ 1$. for details. Mark your reply for the attention of J. McMahon, Selectronics Inc., P O Box 5, Ennix, Co Clare, Ireland. Selectronics technical services to the home, hobby and industry.

BI-KITS STEREO AMPLIFIER CHASSIS, cabinet, and two 7 inch speaker kits to match. $£ 20$ ONO.
Box No. REW15.
MASTER OSCILLATOR, M1-19467-A. $£ 10.00$ plus carriage. Box No. REW 16 .
FOR SALE: Unmarked zener diodes BZY88 type and $2 W$ type. 50 for $£ 1$. Fulton, Derrynaseer, Dromore, Co Tyrone, N. Ireland.
MICRO TRANSMITTERS. Highly sensitive. Range up to 1 mile. Tunable $60-150 \mathrm{MHz}$. Receive on VHF/FM radio. supplied, assembled and working with sensitive microphone and data. $£ 4.75$ + 25p P.\&P. To: P D Electronics, 11 Bluebell Close, Orpington,
Kent BR6 8HS.
GOLD PLATING UNIT. Mega Plau 25 accepts 12" D.S. Boards. Complete with 250 ml gold solution and accessories. Unused. £110, o.n.o. Box No. REW17.
WANTED: Handbook for eagle communications receiver Model RX-80. Phillips, 18 Chestnut Avenue, Hedon Yorkshire. Tel 0482-899167.
FOR SALE: Hand held 4 -game television game £19.50. J Fulton, Derrynaseer Dromore, Co. Tyrone, N Ireland.
VALVE RADIOS. Several post-war radios, spare parts and valves for sale. Can deliver to Western areas of England. Box No. REW18.
CONSTRUCTORS: Bargain packs, 100 mixed resistors for $£ 1,1000$ for $£ 7.50$. Post Free. JKS Electronics, 2 Poundfield Road, Debden, Loughton, Essex.

YOUR EPROMS LOADED WITH

YOUR HEX PROGRAMME. e.g.

27/2516 £8.50, 25/2732 £18, correction erasing, quantity copying, SAE, Details R A Wilkinson. 3 Wedgewood Drive, Roundhay, Leeds 8.
FREE CATALOGUE. Everything for microcomputer users. Telephone Croydon Computer Centre, 29A Brigstock Road, Thornton Heath, Surrey, 01-689-1280.
REALISTIC DX300 Communications Receiver. 10 kHz to 20 MHz , digital frequency readout. Quartz synthesized. "Mint". Boxed. £120.00.
Lye, 038482-7801.

CLASSIFIED ADS

JOIN THE INTERNATIONAL SW LEAGUE. Free services to members including QSL Bureau, Amateur and Broadcast Translation, Technical and Identification Dept. - both Broadcast and Fixed Station, DX Certificates, contests and activities for the SWL and transmitting members. Monthly magazine Monitor containing articles of general interest to Broadcast and Amateur SWLs, Transmitter Section and League affairs, etc. League supplies such as badges, headed notepaper and envelopes, QSL cards, etc. are available at reasonable cost. Send for league particulars. Membership including monthly magazine etc., $£ 9.00$ per annum UK overseas rates on request, Secretary, Grove Road Lydney, Glos Gl15 5JE.
FOR SALE: Collection of approx. 250 old radio valves, all in original boxes. Telephone: Harwich 52402.

POWER TRANSFORMER \&

RECTIFIER BARGAINS. $\mathbf{3 0}-150 \mathrm{amps}$, various voltages. List: R. Neville, Green Lane, Ellisfield, Nr. Basingstoke, Hants.
QSLs letterheads, general offset up to A3 size. A/W, camera facilities - SAE details to Box REW9.

THE RADIO AMATEUR INVALID \&

 BLIND CLUB. is a well established Society providing facilities for the physically handicapped to enjoy the hobby of Amateur Radio. Please become a supporter of this worthy cause. Details from the Hon. Secretary, Mrs F E Woolley, 9 Rannoch Court, Adelaide Road, surbiton, Surrey KT6 4TE.VALVE USER? Large selection of used valves for sale many rarities. 50 p P/O for lists. Box RE10.
FRG7. for sale as new plus joystick. ATU £150. ONO. 33 Luscombe Close, Caversham, Reading RD4 OLJ.

NATIONAL PANASONIC STEREO

CASSETTE DECK, auto stop, Model RS260 USD. With Howland West Audio Stereo headphones, C1S-550. $£ 50.00$ ONO. Box No. REW 11.

PUSH BUTTON GPO TELEPHONES

 saves you time and improves your image and efficiency. $£ 35+£ 2$ P\&P. Returnable if not satisfied. P D Electronics, 11 Bluebell Close, Orpington, Kent BR6 8HS.
COMMUNICATIONS RECEIVER.

Kenwood/Trio QR666. 6 wavebands, AM/CW/SSB, amateur and commercial bands. Excellent condition £65. Telephone 01-690-7416.

OFFERS FOR TAPLIN TWIN MODEL

DIESEL ENGINE, 10 cc , with silencer, fuel tank and prop. shaft coupling for 4 BA thread. Suit model R/C boat around 48 in . LOA. Box no REW12.
INTERESTED IN RTTY? You should find the RTTY Journal of interest, Published in California, USA, it gives a wide outlook on the current RTTY scene. RTTY-DX; DXCC Honour Roll: VHF RTTY news; and up to date technical articles are included. Specimen copies 35 p from : The Subcription Manager, RTTY Journal, 21 Romany Road Oulton Broad, Lowestoft, Suffolk NR32 3PJ.
VLF CONVERTER. $10-500 \mathrm{kHz}$. Palomar Engineers. $£ 45$ ONO. Box NO. REW13.

PRE-PACKED screws, nuts, washers, solder tage, studding. Send for price list. A.1. Sales (RE) PO Box 402, London SW6 6LU.
WANTED: Radio \& Electronics Constructor, Volumes 1 to 8 1947-1955 bound or unbound. To give away: various separate copies 1955, 1956, 1958, 1959, 1960, 1961, 1967, 1968, 1973 \& 1976. All letters answered. Marcel Volery, Poste Restante, CH-8953, Dietikon/2, Switzerland.
RF TRANSISTORS. 2SC2092 equivalent $2 \mathrm{SCl} 1307 / 2029 / 1678,6 \mathrm{~W}$ O/P at 27 MHz , only $£ 1.25$ each inc. P\&P \& VAT. $10 \times$ £11.50, 100x £102.50. 2SC945 40p. All RF types available DC-1GHz. SAE with enquiries. R Withers Communications (RE), 245 Stourbridge Road, Halesowen, B63 3QU. Telephone 021-550-9324. Mail order only.

SMALL ADVERTISEMENTS

Advertisements must be prepaid and all copy must be received by the 4 th of the month for insertion in the following month's issue.
The Publishers cannot be held liable in any way for printing errors or omissions, nor can they accept responsibility for the bona fides of Advertisers.
Where advertisements offer any equipment of a transmitting nature, readers are reminded that a licence is normally required. Replies to Box Numbers should be addressed to: Box No..., Radio \& Electronics World, 45 Yeading Avenue, Rayners Lane, Harrow, Middlesex

CLASSIFIED ADVERTISEMENT ORDER FORM - PLEASE COMPLETE BELOW

LIST OF ADVERTISERS	
Acorn	Inside back cover
AEL	92
Amateur Electronics	$54 / 55$
Ambit	66
Amcomm	17
Audio Electronics	65
Bi-Pak	24
BNRES	92
Bredhurst Electronics	42
Carston Electronics	44
Catronics	39
Clark Masts	20
Danavox	89
Darom Supplies	92
Datong Electronics	40
Display Electronics	56
Drake Transformers	85
FREPAR	41
GSC	93
ICS	47
Keithley Instruments	7
Kelsey Acoustics	47
Levell Electronics	23
H. Lexton	2
Microvalue	$52 / 53$
Microwave Modules	19
Midwich Computers	20
Northern Communications	47
Olson Electronics	43
PYE	8
Reltech Instruments	18
Scopex	16
Service Trading	88
Sinclair	$14 / 15$
E.A. Sowter	75
Tektronics	$1 n s i d e ~ f r o n t ~ c o v e r ~$
Tempus	7
Thandar	45
Thurlby Electronics	51
Wayne Kerr	$90 / 91$
White Mice	83
Wilmslow Audio	59

Issue
October
Project
Material
Price

2 mt Converter D/S Fibre Glass
£3.80 27 MHz Deviation

Meter	Fibre Glass	$£ 2.60$
LS100	Fibre Glass	$£ 2.85$

November

UHF Converter PA105

D/S Fibre Glass
£3.80 £2.85
December
DFCM 01
DFCM 02
DFCM 03
DFCM 04
Logic Probe
2mt Power Amp D/S Fibre Glass
£3.95
January
UHF - 2 mt .
Converter D/S Fibre Glass
TV Pre -Amp D/S Fibre Glass
TV Pre - Amp PSU Fibre Glass
£3.85
£2.25
£1.85
prodectroards

The Atom is a machine to be used. Every day, day after day. It's a full function machine-check the specification against others. It's rugged, easy to operate built to last and features a full-size typewriter keyboard.
Just look at some of the features! - More hardware support than any other microcomputer - Superfast BASIC-can be updated to BBC BASIC if required - High resolution and comprehensive graphics ideal for games programmers and players* ${ }^{*}$ Integral printer connection* - Software available for games, education, maths, graphs, business, word processing, etc - Other languages: Pascal, FORTH, LISP - I/O port for control of external devices - Built-in loudspeaker Cassette interface - Full service/repair facility Users club - Expanded version only

Optional Extras

- Network facility with Econel
- Disk \ominus PAL UHF colour encoder - Add-on cards include 32 K memory, analogue to digital, viewdata VDU, disk controller, daisywheel printer, plus many, many more! - Power supply

FREE MANUAL

The Atom's highly acclaimed manual comes free with every Atom and leaves nothing out. In just a while you'll be completely at ease with your new machine! Within hours you'll be writing your own programs.

ATOM SOFTWARE is designed and produced by Åcomsoft, a
 manufacturer to get the very best from its own product. Current software includes word processing, maths packs over 30 games, database, Forth and business packages

Write to Acormsoft, 4a Market Hill, Cambridge for full details and prices.

YOU AND YOUR CHILDREN

More and more schools are buying Atoms.
More and more children will leam on an Atom.
You can give them that extra familiarity with on Atom in the home.

4a Market Hill. CAMBRIDGE CB2 3NJ
When you order your Atoin we will include - \square tull detcils of all software packs and the optional hard ware.
To: Acom Computer Limited, 4A Market Hill Cambridge CB23NJ.
I enclose a cheque/postal order for \mathcal{E}
Please debit my A Accěss/
Barclaycard No
Signature
Name (please print).
Address
Telephone Number
Registered No. 1403810 VATNo. 215400220

AMBIT HEALTH WARNING

Smoking the 'World of Radio \& Electronics' Components Catalogue will seriously impair your ability to get the best prices for the broadest range of components.

* Price-on-the-page * Substantial quantity discounts

ON SALE AT YOUR NEWSAGENT NOW-WINTER EDITION PRICE 60p

[^0]: All items over $£ 100$ available on easy terms at List Price

[^1]: Thandar Electronics Ltd reserve the right to alter prices and specifications on their equipment without prior notice. ALL THANDAR PRODUCTS CARRY A FULL 1 YEAR WARRANTY

[^2]: Full data and distributor list from Thurlby Electronics Lid.
 Coach Mews, St. Ives, Cambs. PE17 4BN Telephone: 048063570

