PRACTICAL

ELECTRONICS
 AUGUST 1974
 25p

OPEN THE DOOR TO LOW COST SCIENTIFIC EXPERIMENTS ...

FOR UNDERWATER PHOTOGRAPHY

SUB-RQUA CIIUUR TEMPERAUREE INOCCATOR

CONSTRUCTIONAL PROJECTS

HIGH IMPEDANCE VOLTMETER by T. P. Manning \& R. Hider
Scientific measurements made possible with this simple but effective instrument 678
P.E. POWER SLAVES by B. Reeson Concluding constructional information for the Power Slave family 699
P.E. RONDO QUADRAPHONIC SOUND SYSTEM-9 by R. A. Cole
Completion of the F.M. Stereo Tuner construction 706
SUB-AQUA COLOUR TEMPERATURE INDICATOR by O. N. Bishop
Indicates which filter to use to obtain perfect colour photographs either above or below water 716
GENERAL FEATURES
FIRST STEPS IN CIRCUIT DESIGN-5 by A. P. Stephenson
Circuits with high input impedance 684
INGENUITY UNLIMITED
D.C./D.C. Converter-Heatsink 691
ELECTRONICS IN SEISMIC EXPLORATION by M. J. Hughes692
NEWS AND COMMENT
EDITORIAL-The Constructor's Lot 677
NEWS BRIEFS
Information Retrieval-Calling China-Traffic Control-Next Decade 687
SPACEWATCH Frank W. Hyde
Technology Satellite-Domestic Satellite 688
STRICTLY INSTRUMENTAL by K. Lenton-Smith
Keyboard instruments 696
INDUSTRY NOTEBOOK by Nexus
What's happening inside industry 704
IEA EXHIBITION REPORT
A look at the latest trends from industry 710
ESP ETC. by B. H. Baily
Random timer results and news from overseas 713
PATENTS REVIEW
Motor Control-Light Operated Clock-False Start Detection 715
READOUT
A selection of readers' letters 722

Our September issue will be published on Friday, August 9, 1974

[^0]

New Revolutionary Supertester 680R

680R Muls-iester	Accessories	
(1)	Transistor tester	11.00
	Electroni	1800
	Temperature probe	11.05
	Gauss meter	11.55
	Signalinjector	5.95
	Phase Sequence	5.95
	EHT Probe Shunts $25 / 50 / 100 \mathrm{~A}$	5.95 4.50

a SELECTION OF INTERESTING ITEMS

C 3025 Compace transistor tester 6.95 p 4 p $15 p$
Q 4002 Photoelectric $5 y$ stem
E13
Q1310 Stereo mas cart preamp
Easiphone Di201 celephoneamp Di203 Teieamp. with PU coil LLI Door Intercomm. and chime 9. Twin spring unit for

16" Twin pring unit Reverbs
US50 Ulerasonic Swiech Trans/R
US50 Ulerasonic Swiech Trans/Rec 61275
C 30411.250 mHz
4.0 p 1 P 250

C 30435 CH 1.300 mHz
d Convertor VHF 105 Aircraft Band
B2005 4 Ch mic. mixer
$4.500^{45.75}$ B2005 4 Ch. mic. mixer
$4.20 p-15 p$ B2004 2 ch Stereo miner

PK3Kit \quad	6.75

EXCLUSIVE: SPECIAL OFFERS

MW/LWCAR RADIO PORTABLE CASSETTE and fixings $66.50 \mathrm{c} / \mathrm{p} 30 \mathrm{p}$ or carryaround. $\mathbf{4} 7.25 \mathrm{c} / \mathrm{p}$ B TRACK CAR STEREO 20p. HANIMAX BCBOB (-Earsh) winh speakers in POCKET CALCULATOR
Pods and fixings C12.50 WITH o/ KEY Q2\%.95, Pods and fixings Ci2.50 WITH \%/G KEY. 29.95 .
c/p 40 . Poriable Bast/Cass HANIMAX gCeilM ME-
 Cdaptor for all casserte and

QBCM850""."key + memory radio $6 / 7.19 \mathrm{~V}$ ourput $\operatorname{C33} 95$ "OMAINS UNIT	(3tate width) © 1 es each	C3.25 EXTRA.
Rotel Siereophones AH630	HANIMAX HIOI STEREO	68. 0 . RH700 610.25 . RH430 COMPACT RECORD C4.14. Rotel RA3IO IS + 15 PLAYER 2 P Warts.

 W 500 Battery/Mains Cass- Plus fre
erte Recorder ©I2.75.

BUILD THIS RADIO
Portable MW/LW radio kit
using Mullard RF/F module using Multard RF//F module. Features MW-bandspread or exera
selectivity. Slow motion runing. Fibre tlass PVC cabinet
ourput. All parts 6798 batery
 22p), carr etc 32p

FIBRE OPTICS
001 diam. Mono Filament 45.50 per 100 metre reel 0.13 diam. 64 Fibres Sheashed $(1.00$ per metr
SPRAYS 15 mm diam. Mare's Tal Spray (10.50)

SPECIAL PURCHASES

 UHF TV TUNERS CHANNELS 21 TO © Brand new transistorised geared tuners for 625 Line ReceIf output. 190 . Post 20 p.

EASY TO BUILD KITS BY AMTRONEVERYTHING SUPPLIED

Model No 300 Seceiver 345 Stransmitier 65 simple eransist 115 esester Amplifi 12012 watt amplifier 125 Stereo conirol 130 Mono control 605 Power supply 610 Por 115 powisply 5.31 615 Power supply 230 AM/FM aerial 240 Auplopackin 275 Micht preamplifi 5705

Model No.
760 Acoustic switch
780 Meral Detector 700 Metal Detector Melentron only
10.91 790 Capacitive Burglar
835 alarm 7.2 835 Guicar preamp. 840 Delay car alarm 4.99 975 CAP Discharge ${ }^{6.29}$ ignition (for car engine (13.09 80 Scope Calibrator 255 Level Indicator ${ }^{2.65}$ $525120.160 \mathrm{mHz} V \mathrm{HF}^{6.98}$ 715 photo cell swish 11.31 15 Photo cell swisch 795 Electronic con860 Photo timer 15.51 235 Acoustic Alarm 465 Quartz Xriver 8.61 465 Quartz XTAL 20 Signal lniector 2.90
90 VOX $\begin{array}{ll}90 \text { VOX } & 15.50 \\ 432\end{array}$ 70 Buffer Batcery 8.30 Charger 885 Capacitive Con. 6.25 850 Eleceronic Keyer 820 Electronic Digital
Clock
58.50

ALL KITS OFFERED 5UBJECT TO STOCK Prices correct
Prices correct at time of preparation. Subject to change
without notice.

BUILD THIS TUNER ML3
MWNLW Radio Tuner to use with any amplifier. Features Mullard RF/IF module Ferrite aerial, built in battery. Excellent results.
22^{-}. All parts $\mathbf{6 5 \cdot 2 5}$, carr. ISp.

MULLARD FM
 MODULES

LPIIB6 TU
Module
LPII85
LPI 185 IF Module
complete with data
Price 4.00 pair
FM TUNER
MODULE
FM 5231 12v FM Tuner
SD4912 Stereo 67.95 Decoder \quad C7.95
SF62H 6v Stereo FM Tuner 14.95

TBA800 5 WATTI.C. Suitable alternative to SL 403 D . $5 / 30$ volt
operated. $8 / 16$ ohm operated. 8/16 ohm 5
wace output. With circuits and data Kit with printed circuit panel 62.70 All kits available from stock.
SINCLAIR SPECIAL
OFFER
Stereo 60 Pre-amplifier -ror use with most
Exclusive offer C6-75

STROBETUEE
2FT4A suitablefor De 73 Pract. Electronics.
5 T 2 (D32) DIAC 3.50 CRSI/40 SCR 45p ZFT4

| |
| :--- | :--- | Po ElIMINATOR KPIT

Complete module kit
$9 * 100 \mathrm{~mA}$ output Cl .95 p \& p 25p

All types offarad ubject to availability.
Prices correct at time of press E OE.
10% VAT TO BEADDEDTOALLORDERS,
UK post, etc. I5p per order unless stated.
 materials of Daper changes,
existing. all prices indraw existing cataprices in the
apply. Call Drices. A A or phone no longer
be avaitablew catalor latest

U.K.'s

LARGEST RANGE OF TRANSISTORS \& DEVICES

JUST A SELECTION

- TBAB00 5W IC \&1.50 •301SF7SEG
- Sinclair ICI26WIC Indicator \&1.70 - ZN4I4IC Radio $\mathbf{4 2 . 0 0}$ TIL 209 LED 24p each Transducers $\mathbf{6 5 . 9 0} \mathrm{pr}$.
sheet.
OVER I,500 DIFFERENT SEMICONDUCTOR DEYICES IN STOCK
Free stock list-latest edition (Rel. 36) on request Includes radio valves, I.C.'s, rectifiers, triacs, discounts for quantity small or large

GARRARD BATTERY TAPE DECK
GARRARD 2 speed 9 volt tape decks. Fitted record play and oscillator/erase heads. Wind and rewind controls. Takes up to $4^{\prime \prime}$ plete with head circuits. $\$ 9.50$ carr. 30 p .

TOP OUALITY

 SLIDER COMTROLS60 mm stroke high quality controls com. erc. I 5 p any quantity).

Sincles Log and Lin $5 \mathrm{~K}, 10 \mathrm{~K}, 22 \mathrm{~K}, 50 \mathrm{~K}$, $100 \mathrm{~K}, 250 \mathrm{~K}, 500 \mathrm{~K}$, Meg. 45p each
Ganged Log and Lin 250K, 65p each.
(Quantity discount available) Complete with knobs.

MARRIOT TAPE HEADS

4 TRACK MONO
2 TRACK STEREO
"1 18 " Med, Impedance
(2.50
Migh Impedance
18"Med. Impedance
$36^{\prime \prime}$ Med. Impedance 65.00
R730/E732 track mono Record/Erase low imp. $75 p$ pair.
Erase Heads for " 17 ""
"18" and " 36 " 11.00 '18" and "36" 41.00
63 " 2 track mono High Imp. track mono 81.75
" 43 :" Erase Head for
(Post, etc. 15p any
SINCLAIR MINIATURE AMPLIFIERS \& TUNER/DECODER
AMPLIFIERS (carr., etc. 20p)
$4-300,0.3 w 9$ volt $1.75 \quad$ SACl4, $7+7$ watt 104, I watt 9 volt $3.10 \quad$ Stereo with watt 304,3 watt 9 volt 3.95 controls 11.850 watt 12 volt $4.10 \quad$ SACI $15+15 \mathrm{w}$ SI2, watt 12 volt $4.10 \quad$ SACI $3,15+15 w$
E1208, 5 w 12 rolt $5.10 \quad$ Stereo with
 El206, 30 w 45 volt 9.95 E1210,21 $+2 \frac{1}{2}$. 25 RE500. 5 watt ic SP40-5 2Z40/ Stereo 80/PZ5 25.00 $5 P 40.62240 /$ Stereo 80/PZ6 27.75 mains operated

Amplifier with
controls
B.
0

Stereo B0/P ZB 10.45

POWER

SUPPLIES FOR

EVERY PURPOSE

(All cased unless stated chassis)

$470 \mathrm{C} 6 / 7 \frac{1}{2} / 9$ volt 300 MA (includes Multi-Adaptor for Tape Recorders, etc.) 2.25 post 20p Car Lighter Voltage Adaptors 300 mA (State
 $\begin{array}{ll}\text { SC202 } & 3 / 6 / 7+/ 9 \text { volt } 400 \mathrm{~mA} \\ \mathrm{HC} 244 \mathrm{R} \mathrm{Stabilised} \text { version } & \mathbf{4 . 2 5} \mathrm{carr} .30 \mathrm{p} \\ \mathrm{PSO} & \mathbf{5 . 5 0} \mathrm{carr} .30 \mathrm{p}\end{array}$ $\begin{array}{ll}\text { HC244R Stabilised version } & \mathbf{5 . 5 0} \mathrm{carr} .30 \mathrm{p} \\ \text { PS00 } 9 \text { volt } 500 \mathrm{~mA} & \mathbf{3 . 2 0} \text { past } 20 \mathrm{p}\end{array}$ $\begin{array}{ll}\text { PSOO } 24 \text { volt } 500 \mathrm{~mA} \\ \text { Pll } & \text { volt } 500 \mathrm{~mA} \text { (chassis) }\end{array} \quad \mathbf{2 . 2 0}$ post 20 p Pis $26 / 28$ volt 1 amp (chassis) $\quad \mathbf{2 . 9 0}$ post 20 p $\begin{array}{ll}\text { P1080 } 12 \mathrm{~V} \text { I amp (chassis) } & \mathbf{4 . 7 0} \text { post } 20 \mathrm{p}\end{array}$ Plo81 45 V 0.9 amp (chassis) $\quad 7.80$ post 20p P12 $4 \frac{1}{4}-12$ volt $0.4-1 \mathrm{amp} \quad 7.15$ post 30 p $\begin{array}{ll}\text { SEIO1A } 3 / 6 / 9 / 12 \text { volt I amp (Stab.) } & 1375 \text { post } 25 p \\ \text { RPI } 646 / 7 \frac{1}{2} / 9 / 12 \text { I amp (Stab.) } & 13.45 \text { post } 30 \mathrm{p}\end{array}$

RADIO
LIMITED
404-406 Electronic Components and Equipment 01-402 8381
309 PA-Disco-Lighting High Pow
Home and Cor Entertainment Centres London and bronches now open.
Home ond Cor Entertainmest Centres London ond bro
120 Shafesbury Avenue, Londor WI. 1.4379692
144 Burnt Oak Brodway, Burnt Oak, Edewar ol
190 Brat Oak Brodway, Burnt Oak, Edgware 01-952 7402
195.194 Station Road, Harrow, Middotese
 $354-356$ EdEware Road. London W201-402 $5854 / 7736$

M-FI TAPE LINK
 Sw's. Pote. Panel Lamp-Mono. E12.7t; Stereo, c2p.41. PSU. \&3. M. Main Circuh PCe
 Stereo 00p

BOLOGICAL AMPLIFIER (PE Jan /Fob. 73). P/A Set-S/c's. i.c's, Rs. Cs. Pots. PCB. [3.46. Output StagesS/c's. Rs. Ce, Pots, Rotary Swis and PCBe for Alphaphons. Cardlo. Freq-Meter. Vis-Foed, E4.s. Audio Amps: PC7. E5-20; EA1000, $3 \cdot 30$.

 65p.

AUDIO MILLIVOLTMETEA (PE Fob. 74). S/cis. Res. C\& Pote, Swis PCBe, f4.95.

MICROPHONE MIXEA

(PE Apr. 69). S/c's. Re. C4, Pots. PCB (also holds pota), (4-12. Whit Stocka Lame

WATT AMPLIFIEA

(PW Nov/Dec. 72) Pre-amp-S/c's. Rs. Ce Pots. Sw-Mono. \&2. 50; Stereo. Ef.03. PCB ($3+1 \mathrm{ln} \times 7$ itin) (Stereo) also holds rotary or altder pots, and Sw. E1-6. Misin AmpS/c's. Re. Ca, Pot Mono. Es-14, Stereo. ca. 36, PCB (2 iln $\times 3 \mathrm{in}$) (Mono). 72p, PSU. cs. 00 .

SOUND SYNTHESISER

(PE Feb. 73/Feb. 74)
RHYTHM GENERATOR
(PE Mar./June 74) SOUND BENDER
(PE May 74)
Details of all these in List

REVERBERATION UNIT (PW Now/Dec. 72) S/c's. Re. Cs. Thormer 11+(n). 21 -40.

LOUDHANEA AND SITEN
(PW Dec. 72) Pre-amp and Siren Generato
 E2.20. Whlle' Stocks Lamt. Moin Amp Module
PC5. rit.25.

> MI8CELLANEOU8 PCB (While 8rock Lat

LOGICAL RADIO CONTROL (PE Dec. 71/Jan. 72) PCEe '2A', '2日', 50p aach
MODEL SERVO CONTROL (PE Feb./Mar. 72) PCBa "B", Fall-safe. 33p ench
DIGICAL PSU PCB (PE Aug. 72), 50p. OSCILLOSCOPE P/A PCB (PE AUg. 72), 33p.
GEMINI STEREO TUNER PCB (PE API. 72). E1.50. TRIFFID PCB (PE FED. 73). s0p.
(The above PCBe are as pubilshed)
GALLEACORD (PE Jul. 72) Main Control PC

PHONOSONICS PCB's AND KITS

PHOTOPAINT PROCESE
 CONTHOL

(PE Jan./Fob. 72). For Colour and 8 \& Wfinds exposure. controls timing, stablilises mains voltage. S/cie, SCA, LOA, Rs, Cs, Pote. Rolay. Koyawitch. T/finr, E7.st. PCB $(3+i n \times 5 i \ln)$ aleo holde pots. Sw, relay. t1. 60.

$$
\begin{aligned}
& \text { RONOO } \\
& \text { (PE Sept. 73F Feb. 74) Detalle in Liet. }
\end{aligned}
$$

PROVECT 04

(PW Oct. 73/Jan. 74). Multisymem Quid raphonic Decoder. S/c's. V/c.s. Ris, Ce. Pots. Makeawlitchat. [13.74. PSU, \&3.17. Set of PCBs. $\mathbf{2 2 \cdot 6 0}$.

Phasino Unt

(PE Sept. 73). S/c's. Ri, Ce. Pots, PCB

AURORA
(PE Apr.JAug. 71). Multichannel Sound Controlled Llght, S/c's (Exel. SCRa). Re, Ce. Pots. Cores-Pre-amp. Sync Ganerator and 4 Chans.. f10.97; 4 extra chana.. ci. 35. Rag.
 (4fin \times Sin) for Sync. Gen. PSU. 8 cores. B SCRs. E1-25.

AURORA AUXILIARY CONTHOL UAWT
2 Varlabie Frequency Strobe Genertiors and 4 Varlable Ampltude Frequency Generatora.

SEMICONDUCTOR TEETER (PE Oct. 73). S/c's. Rs. CA. Pots.
mwitches. Sub-asembly PCB, E5.30.
\qquad

(PE May 72). S/c.e. Re. C. Pot. Ralay. Dual PCB (2in $\times 5+\mathrm{in}$), c4.40. Transducers exeluded.

VIERA OBNIC

(PW Sept. 70). Incl. Mic P/A. 2-Guiter P/A. Trem and Tone Controla. Master Volume.
 ulso holds cote. $\mathbf{~ 1} \cdot 92$. Power Supply, es.is. While stocks last.

TAPE MOISE UMITE急 (PE Fob, 72). S/c's. Re. Ce, Pot, Sw. PCB $(1 \ln \times 3 \ln) .52-30$. Reg. PSU and PCB
$(1 \ln \times 2+\ln), 53.40$.

VEABATILE LIGHT EFFECTE
Single Channel Sound Controlied Light wht built-in variable trobe. (PE Jun. 72). S/cis. Ra. Ca. Pota. T/fmrs, Keyowitch and switch, ti.\%.SCAs excluded.
While slocks lant.
VOHCE OPERATED FADER
(PE Dec. 73). S/e'\%. Rit. Ce. Pot. PCB ($1+\ln \times 3$ in), $\mathbf{i z} \cdot 55$.

WIND AND RAN EFFECTS
(PE Oct. 73). S/c's (Incl. special nolse dlode). Re. Ce. Pots, it.es.

PHONOSONICS, DEPT. PE28, 28 KENTISH ROAD, BELYEDERE, KENT DA17 5BW MAIL ORDER ONLY

NOW AVAILABLE IN THE U.K! CHINAGL|A

PROFESSIONAL QUALITY TEST EQUIPMENT FROM ONE OF ITALY'S LEADING MAKERS

One example from the big range of sophisticated instruments

CORTINA MINOR

33 RANGE POCKET MULTIMETER

- SENSITIVITY $20,000 \Omega$ VOLT (D.C.), $4,000 \Omega /$ VOLT (A.C.).

ROBUST DIODE PROTECTED PRECISION MOVEMENT.

- 33 RANGESD.C. VOLTS $0-100 \mathrm{mV}, 1.5 \mathrm{~V}, 5 \mathrm{~V}, 15 \mathrm{~V}, 50 \mathrm{~V}, 150 \mathrm{~V}$ $500 \mathrm{~V}, 1,500 \mathrm{~V}$. D.C. CURRENT O-50 $4 \mathrm{~A}, 5 \mathrm{~mA}, 50 \mathrm{~mA}, 500 \mathrm{~mA}$ 2.5A. A.C. VOLTS, $0.7 .5 \mathrm{~V}, 25 \mathrm{~V}, 75 \mathrm{~V}, 250 \mathrm{~V}, 750 \mathrm{~V}, 1,500 \mathrm{~V}$ - 10 . RANGES $10 \mathrm{k} \Omega$, IOMO F.S.D. CAPACITANCE RANGES 100μ Fif F.S.D.
- ACCURACY-RESISTANCE, D.C. VOLTAGE AND

CURRENT, 2.5\%. A.C. VOITAGE AND CURRENT 3.5 AND

- RESISTANCE RANGES POWERED BY INTERNAL

COMPACT SIZE: $150 \times 85 \times 40 \mathrm{~mm} .350 \mathrm{gr}$.

- Clearly calibrated dial with anti-parallax
- MROFESSIONAL QUALITY COMPONENTS EMPLOYED

FULLY GUARANTEED FOR 12 MONTHS.

- AFTER SALES SERVICE AND SPARES FACILITIES.
- SUPPLIED WITH ADDITIONAL SHOOCKPROOF PLASTICS

LEADS AND INSTRUCTION BOOKLET.
SPECIAL 30 kV PROBE FOR D.C. MEASUREMENT AVAIL.

- SPECIAL 3OKV PROBE FOR D.C.

METER PRICE 13.75 (p \& p 80p) PROBE $£ 8.00$ inclusive of V.A.T.
for further information on the "Cortina MInor" or other instruments from the exciting Chinaglia range write or telephone :-

CHINAGLIA
 (U.K.) LIMITED

19 Mulberry Walk, London S.W.3.
trade enquiries welcomed
Telephone 01-352 1897

```
SOLARTRON
Precision Laboratory Oscillo
cope type CD 643. D.C.-15
MHz. 5" Flat face qub
    &45 each
```

NEW WIDE RANGE WOBBULATOR 5 MHz to 150 MHz up to 15 MHz sweep width. Only 3 controls, preset RF level, sweep width and frequency. Ideal for 10.7 or TV be used with any general purpose be used with any general purpose cope. Full instructions supplied minures of receiving. All this for ONLY 65.75 p . P. \& P. 25p. (Not cased, not calibrated.)

20 Hz to 200 kHz WB. SINE and SQUARE GENERA. TOR. Four ranges. Independent amplitude controls, thermistor stabilised. Ready to use, \& supply (Not cased, not calibrated.) GRATICULES. $12 \mathrm{~cm} \times 14 \mathrm{~cm}$ high quality plastic 15p each. P. \& P. 5p. 12^{*} Long Persistence Crt, full spec Price €7.50 to include V.A.T. \& carr II WORTH OF "UFS". Six brand new capacirors all berween 5 V and 100 V . Total capacitanc not less than $7,000 \mathrm{mF}$. P. \& P. 45p
Large quantity of good quality TRADE - so we offer 3 lb of ELECTRONIC GOODIES
for 41.50 post paid
ROTARY SWITCH PACK. Six brand new switches (I ceramic off, 4 pol 2 way, etc.), 50p . \& P. 20p
COMPONENT PACK consisting of 5 pots, various, brand new; 250 resistorst and $\frac{1}{2}$ watt, many high
stabs, etc. Fine value at 50 p P. \& P. 27 p .
P.C.B. PACKS S \& D. Quantity 2sqft -notiny pieces. 50p plus P. \& P. 20p FIBRE GLASS as above 4 plus P. \& P. 20 p.

5 CRYSTALS 70 to 90 kHz . Our choice, 25 p . P. \& P. 15p.
SANGO 50 microamp meters. 21 diameter. Ex-new radiation equip. E1. 25 each. P. \& P. 17p.
CAPACITOR PACK-SO Brand new components only $50 \mathrm{p} . \mathrm{P}$. \& P . 20p.
POTS- 10 different values. Brand new-50p. P. \& P. 20 p
TRIMMER PACK. 2 Twin 50
200pF ceramic 2 Twin $10 / 60 \mathrm{pF}$ 200pF ceramic 2 I win $10 / 60$ p $5 / 20 \mathrm{pF}$ on each; 3 air spaced preset $30 / 100 \mathrm{pF}$ on ceramic base. ALL BRAND NEW, 25p the los. P. \& P. IOp.

Replacernent TUBES for Cossor 1035 Mk . I. 2 and 2 A and Cossor 1049 Mk. 1, 2 and 3. Used - guaranteed. ${ }^{6} 3$ each. P. \& P. 37p.
LIGHT EMITTING DIODES (Red) from Hewlett-Packard. Brand New 38p each. Holder ip each. iformation 5p.
PHOTOCELL equ. OCP7I. 13p each.
Mullard OCP70, 10p each.
CRYSTALS. Brand New. 4.43 MHz 11.25 each, P. \& P. 10p.

MODERN TELEPHONES type 706. Two-tone grey, $\mathbf{4} 375$ each Two-tone green, $\mathbf{4 3} 75$ each. Black 63.75 each. P. \& P. 25p each IDEALEXTENSION Telephones with standard GPO type dial, bell and lead coding. 41.75 each. P. \& P. 25p.

DELIVERED TO YOUR
DOOR I cwt of Electronic Rubbish. FOR ONLY 3 . 50 .

ENGINEERS

Do you want promotion, a better job higher pay? "New Opportunities" shows you how to get them through a low-cost B.I.E.T. home atudy course. There are no books to buy and you can pay-as-you-

The B.I.E.T. guide to success should be read by every ambitious engineer Send for this helpful 76 page FREE book now. No obllgation and nobody will cal ever did.

ID I.L. P. (Electronics)Lto

SHEER SIMPLICITY!

MONO ELECTRICAL CIRCUIT DIAGRAM WITH INTERCONNECTIONS FOR STEREO SHOWN

The HY5 a complete mono hybrld preamplifier. ideally suited for both mono and stereo applications. Internally
the device consigts of two high qually amplifiers-the first contains frequency equalisation and gain correction. while the second caters for tone control and balance.

TECHNICAL SPECIFICATION
Inputa: Magnetic Pick-up 3 mV RIAA: Coramic Pick-up 30 mV , Microphone 10 mV . Tuner 100 mV . Auxillsry $3-100 \mathrm{mV}$: Inputimpedance $47 \mathrm{k} \Omega$ at 1 kHz , Outpute: Tape 100 mV ; Main output Odb (0.775 V RMS) Actlve Tone Controle: Treble $\pm 120 \mathrm{~b}$ at 10 kHz Bass $\pm 120 \mathrm{~b}$ at 100 Hz . Distorion billty: 40 db on most sensitive input Supply Voltage binty: 40 V
$\pm 16-25 \mathrm{~V}$
PRICE 14.50

The HY50 is a complete solid state hybrid Hi-F emplifie incorporating its own high conductivity heatsink hor are provided. input output. power lines and earth.

TECHNICAL SPECIFICATION
Output Power: 25 W RMS into $8 \mathrm{k} \Omega$ Load Impedance $4-16 \mathrm{k} \Omega$. Inpul Sensitivity odb (0.775 V RMS). Inpul Impeannce: 47 R . Distorion: Less than $0 . \%$ ar 25 W typically 0.05%. Signal/Nolse Rallo: Better than 75 db . Fioquency Responas: $10 \mathrm{~Hz}-50 \mathrm{kHz}=3 \mathrm{ab}$. Supply Voltege
\qquad

TWO YEARS' GUARANTEE ON ALL OUR PRODUCTS

PRINTED CIRCUIT BOARD TRANSFER SYSTEMS

$\bullet \bullet \circ \cdot \circ \cdot \circ$ 0000%,

Acid resistant transfers for direct application to P.C. Board. This is a new approach to printed circuit board manufacture, giving a professional finish with all details that an electronics engineer would require. including all drilling positions automatically marked.
Ideal for single unit boards or small quantities. All at a very low costfor example an average $6^{\prime \prime} \times 4^{\prime \prime}$ layout would cost less than 30 p , and the time taken under one hour, including etching to complete.
The system is simple, briefly it consists of 10 sheets of self adhesive acid resistant eransfers made in required shapes-i.e. edge connectors. lines, pads, dual in line I.C.'s, 8-10-12. T.O.5 Cans, $3-4$ lead transistors etc., etc., which only require pressing into the required positions on the printed circuit board before etching

The printed circuit eransfer system is a senuine offer to the public and industry. A full money back guarantee is sent with each order erade prices on application.

List of Price
Complete system including post and VAT £2.00 Individual sheets ... 22p
Sample sheet
Copper laminate (boards) size $6^{\prime \prime} \times 4 \frac{1}{2}{ }^{\prime \prime} 6$ sheets............. 50p (with six months guarantee)
Printed circuit board PCB transfer systems patent applied for
E. R. NICHOLLS, 46 LOWFIELD ROAD, STOCKPORT, CHESHIRE

ERIOWASOMIC Electronics

Dept 2
56. Fortis Green Road, London. N1O 3HN telephone: 01-883 3705

VAF INCIUSIVE PRICRS

MAPLIN ELECTRONIC SUPPLIES

ORGAN BUILDERS

Keyboerda: High quaity adjustable type Soping front 49 -note C to C, 514 .
Flat front 48 note F to E. £14. 35 Contact blocks GB-2 (2 make contacts). 16p. Palladit-m earth bar per octave le ngth. 20p.
Stop tabs rocker type not engraved (white. Stop tabs rocker lype not engraved (white.
red, grey or black) with DPDT switch. 49p.

BASIC ORGAN CIRCUIT

Leafle: MES 51 shows a complete circuit for a basic fully polyphonic organ. Send only ${ }^{15}$ p for leaflet and start building now! REMEMBER-when you have buift this organ you will basis of a large sophisticated instrument with all the facilities you want. V'atch our ads for details.

REVERBERATION UNIT

Enhances the sound of any electronte muacal inatrument. Ready buith spring line driver module suitable for une with almost any spring line, $\mathbf{2 5} .34$.
Two types of spring line available:
Short line. $53 \cdot 05$.
S. A.E. please for details. Leaflet MES 24

CAPACITORS

8ub-miniature

LINEARS

CA 3046 Tranaistor array
LH0042C. TO99 (TO5). FET i/p Op Amp
LM 301A. 8-pin DIL. Op Amp
MC1303L. 14-pin. Stereo Preamplifier
MC1310P, 14-pin DIL. FM Stereo Decoder (no coils needed) MFC6040 Electronic altenustor
MFC8010. 8-pin case. IW Audio Power Amp
MFC9020. 10-lead case, 2 W Audio Power Amp
NES5SV. 8-pin DIL. Precision Timer
NES61B, 16 pin DJL. Phase Locked Loop
SG 1495 D .14 -pin DIL. Four Quadrant Analogue Multiplie SG3402N Amplifier/Multiplier
$\mu \mathrm{A} 723 \mathrm{C}$, TO99 (TO5), 2 to 37 V Voltage Regulator
$\mu A 723 \mathrm{C}$. 14 -pin DIL. 2 to 37V Voltage Regulator
MA741C, 8 -pin DIL, Op Amp
MA747C. 14 -pin DIL. Dual Op Amp
μ A748C. 8 -pin DIL. Op Amp
ZN414, TOS, TRF Redio
Full dala, pin connexions. tic. on nearly all typer above in ou
catalogue. Price 25 p

SWITCHES

Rotary with adjustable stop \mid pole 2 to 12 way; 2 pole 2 to 6 way 3 pole 2 to 4 way; 4 pole 2 or 3 way. each 32 p . Mains rotary DPST 250 V 2A 20 p .

non-locking High quality "sub-miniature"

Toggle 250 V 1.5 A wita $\mathrm{ON} / \mathrm{OF}$
plat.

MES anounce the very lateat development in organ aircuitry. TME DMO2
1s Matter Frequenctee on ONE tiny circult board. LOOK AT THESE AMAZING ADVANTAGES t 13 irequencles from $\mathrm{C8}$ to CS . t Each frequency digitally derived from a 8INGLE b.f. master oscillator. H Inltial tualag for the WHOLE ORGAN: ONE DRIFTS! + External control alows Inetant tune-up to other municlens. \quad Outpute will directly drive most types of dividers inctuding the sAJ1io. \rightarrow And each output can also be used as a direct tone source. A Varisble DEPTH AND RATE tremulant optional extra. \star Gold-plated plug in edge connerion. \star Complete dire glase board (including tremulant if required) ONLY 3-7in. $\times 4.5 \mathrm{in}$. Very low power consumption.
t EXTREMELY ECONOMICAL | t S.a.e. plesse PRICE. t Ready built, tested for full technical and fully guaranteed.
DMO2T (with tremulant) ONLY 614.95.

Trade enquifies DMO2 (without tremulant) $\mathbf{1 2 2 5}$. welcome.
8AJ110 7 -stage frequency divider in one 14 pin DIL package. Sine or square wave input allows operation from almont any type of mater oncillator includlag the
DMO2 (when 97 Dotes are available). Square wave DMO2 (when 97 Dotes are svailable). Square wave
outpute niay be modifed to anw-tooth by the addition of \& tew components. \$AJ110: 22.03 each OR specis price for pack of 12 : $\mathbf{1} 5.00$. B.a.e. please for data sbeet.
*SAME

P.E. SOUND SYNTHESISER

If this project seems expensive YOU HAVENT SEEN OUR PRICES:
We are stocking all the parts for this excitins project, from the special I.C.'s right down to the nuts, bolts and spacers for mounting the Veroboard
Send S.A.E. now for our detailed price lists

E.T.I. SYNTHESISER

We stock all the paris for the "Electronics Today International" synthesiser including all the P.C.B.'s required and all the
metalwork including a drilled and printed front panel for a truly professional finish
Some of the circuits in this brilliant design are entirely original Independent authoritative opinions agree the E.T. I. International Synthesiser is technically superior to practically all synthesisers S.A.E. please

PLUGS AND SOCEETS

WE KNOW YOU NEED IT !
 18 STACERD with dozens of tempin neu lines. BRIMWING OVE
wilh clear iltustration
and derailed dat
WERE WAITING TO WERE WAITING TO
RU'SH YOU A COPY. Youll be IMPRESSED
with our POST FREE ordering system. EXCITED
by our BIG VALC'E discount vounchers. STAGGERED hy our UNBEATABLE sped
of service. Take the fizs,
sep lowards sep lowards real service
Now Send ONLY 25p
for our beautifully produced catalogue.
and leave the rest to us!

OMNIUM GATHERUM

PP3, 6. etc. battery clip dual min. 9p. PP1. 9. etc., battery clip separate per pair $6 p$.
Pair crocodile clips, I red. 1 black insulated Pair crocodile clips, I red, 1 black ins
sleeve $10 p$.
Solder Multicore 22 s.w.g. 10 metres 20 p Solder Multicore $22 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. 10 metres 20p
Silicone grease in special dispenser 20ml 4.3. Silicone grease in special dispen
Terminal Block 12 way 5 A 14 p .
Probe clips spring loaded per pair wop. Panel fuse holders 20 mm 20 p ; 1 tin 3 Sp .
Tranadormers
LT 700 min
LT700 min output transformer Pri $1.2 \mathrm{k} \Omega$
Sab main. Maine Tronnformer
6-0-6V 100mA 95p. $12-0-12 \mathrm{~V} 50 \mathrm{~mA} 95 \mathrm{p}$
Size: Both approx. $30 \times 27 \times 29 \mathrm{~mm}$
Min. Majn Transformer
Size: $46 \times 31 \times 38 \mathrm{~mm}$
$0-12 \mathrm{~V} 250 \mathrm{~mA}$. $0-12 \mathrm{M} 250 \mathrm{~mA} \leqslant 1 \cdot 36$.
Meina Trangiormer MT3AT PTi. ${ }^{2}: 00-21$.
Mains Trandormer MT206AT
Pri $200-220-240 \mathrm{~V}$ Sec $0-15-20 \mathrm{~V}$ IA -1K-20V1A 2
Hook-up whre, 7 strand 0.2 mm . PVC covered tinned copper wire for light general connexions up to 1.4A. if colours: black, blue brown. green grey, orange. pink, red. violet. White. of 11 (1 of each colour) 10 m . coils $\mathbf{~} \mathbf{2} \cdot \mathbf{0 5}$. Single core screened 8 p per metre Twin individually screened $10 \dagger p$ per metre. High quallty single screened $\operatorname{son} 100 \mathrm{pF}$ per
metre. ideal for high rade metre, ideal for high grade sudio connexions
IStp per metre.
Malns 3-core sub-miniature
covered 19 strand 0.1 mm - black PVC covered 19 strand 0.1 mm per conductor. $7!7$
per metre.

POTENTIOMETERS

RESISTORS

Carbon Film tw $6 \% 1 \Omega$ to 1M; 10\% 1-2M to 10M E12 Carbon Fitm fW $5 \% 1 \Omega$ to $10 \Omega ; 10 \%$ 1-2M to 10M E12 Carbon Fim tw $5 \% 11 \Omega$ to 910 E Carbon Fim 1W $8 \% 10 \Omega$ to 10M Metal OIIde W W 2% in Ω to 1 M Wirewound $2 \mathrm{fW} 10 \% ~ 0.220 h \mathrm{~F}_{\mathrm{m}}$ to 0.47 ohm Wirewound 2!W 5% lobm to 2700 hma
E24 values 10, 12, 15, 18. 22, 27, 33, 39, 47, 68, 68, 82 and decades 24 values 11, 13, 16, 20, 24, $30,36,43,51,62,75,91$ and deceadea

> VAT

Post and Packing FREE in U.K.
(15p handiling charge on ordere under E1.)
Orders and enquiries for catalozues to MAPLIN ELECTRONIC SUPPLIES, P.O. Box 3, Rayleigh Essex. Tel, Southend-on-Sea 070244101

learn how to become a radio-amateur in contact with the whole world. We give skilled preparation for the G.P.O. licence

Ifree!
Brochure, without obligation to:
brtish matonal radio \& electronics school P.O. BOX 156, JERSEY

NAME

ADDRESS

 741: 8pin 29p, to99 \& 14pin 27p $74833 p 709$ 2lp ${ }_{\text {full }}$ 2469 710 35p 723 59p. 555 timer 79 p ZN414 rx. £1-10 ${ }_{\text {Zuilt }}$ 703 rf if 28 P mc 1310 \& led $£ 2.76 \mathrm{mc} 1339 \mathrm{fl} \cdot 20$ TAD 100 \& if £2 1AMP + REGULATOR 7805,5 (\&7-20)V. also $12 \&$ I5V £ 1.49 AUDIO AMPS : mfc4o o o 50p; 1\&2W £ $119 ; 3 W £ 1 \cdot 29 ; 6 \mathrm{~W} .$.
 749269 P 7412149 P . \& allothers incat. Why low low prices. NEW 16pin counter/driver $90 / 47$ \& 2.25 DALO p.b.PEN 69 p DIL SOCKETS: Profesional/gold P. Pins hi or lo Profile 8,14,16 Pin13p
2 203055 33 p .four El. BC107, BC108, BC 109 all 7pea IN914 3p ZENERS BZY88 8p. 1A RECTS 50v $3 \frac{1}{8} \mathrm{P}$ 400v 5p. BRIDGE 20p FETS: 2 N 3819 19p 2N3823E 20p 4416 E 25P BC 182/3/4 10p
BC212/3/4 11p BCY70 13p BD131/2 35p ea. BFY5 V2/315pTIS43 25p 2N2926 Oy 7p 2N3053 15p 2N3702/3/4/5/6/7/8/9/10/11 all 9p ea 2N3904/6 14 p HEATSINKS $5 \mathrm{f} / \mathrm{TO} 518 \mathrm{~F} /$ TO18 5 p . TO3:4YL 29 p TV3 14 p CAPACITORS 25 V10,50, TOOuf 5p. DISCS 4p. PRESETS 5p.CARBON POTS IIP.Switch 11 P.Dual 55 P ULTRASONIC TRANSDUCERS \& 2 EL
IRTIDVS FLUORESCENT LIGHTS,8W. 13*12VOLT £2.59 G\|EDさ■DTBES P.O. BOX 29,BRACKNELL,BERKS.

SUPPLIERS OF SEMI-CONDUCTORS TO THE WORLD

 CornerCOMPLETE TELEPHONES NORMAL HOUSEHOLD Only $£ 1.05_{p}$ Rispecic TELEPHONE DIALS

Standard Post Officice type. Guaranteed i

Only $271 / 2$ p POST \& PACKING 16 ip

Tested and Guaranteed Paks

5

응

Untested Paks

- 50 Germanium Transistors 5 PNP, AF and RF

B66 $150 \begin{gathered}\text { Germanium Diodes } \\ \text { Min. glass type }\end{gathered} \quad$ 55p
'B83 $200 \begin{aligned} & \text { Transistors, manufacturers' } \\ & \text { rejects, } A F \text {. } R F \text {, sil. and }\end{aligned}$ 55p

B86 100 Sil. Diodes sub. min.
55p

H34 $15 \begin{gathered}\text { Power Transistors, PNP. } \\ \text { Germ. NPN Silicon TO-3 }\end{gathered} \quad$ 55p
H67 $10 \begin{aligned} & \text { 3819N Channei FET's plastic 55p } \\ & \text { case type. }\end{aligned}$

Make a rev counter

for your car
The "TACHO BLOCK". This encapsulated block will zurn an rev. counter for any car wit
normal
co gnition system

Ex EPOPushButton Intercam idepphones

Exactly as internal telephone systems still it, changes have not yet taken over. Available in 5 . 10 or 15 ways. Complete with circuits and instructions. Necessary 24 pair cable 22p per yard. Price of each instrument is independent
62.75
10.381p

Cable can be sent by Parcel Post. Posc and Packing per 50 yds. : $711 p$.
Extension Telephones 71 ip each, p.p. 27 ip. EI.37! for 2, p.p. 55p. These phones are extensions and do not contain bells.

Electronic Transistor

 Ignition £6.60Ready built and tested unit $\mathbf{£ 9} 90$ inci. Y.A.T.
Now in kit form, we offer this "up-to-theminute" electronic ignition system. Simple to make, fullinstructions supplied with these outstanding features. Transistor and conventional switchability, burglar proof lock-up and automatic alarm, negative and positive

New X Hatch

ur new vastly improved Mark Two Cross Hatch Generator is now available. Essential for alignment of colour guns on all colour TVreceivers. Featuring plug-in ICs and
a more sensitive sync. pick-up circuit. The a more sensitive sync. pick-up circuit. The engineer's toolbox-and only measures 3 in x engineer's toolbox-and only measures x in. We have already received large orderfrom a major TV Rental company.

(includes V.A.T. \& P. P, but no batteries)

Over 1,000,000 Transistors
in stock
We hold a very large range of fully marked,
cested and guaranteed transistors, power
transistors, diodes and rectifiers at very
keen prices. Please send for free catalogue.
Our very popela r 4plransistors
TYPE "A', PNP Silicon Alloy, TO-5 can.
TYPE "'B', TYPE ''E'' PNP Germanium AF or RF.
TYPE "F"NPN Silicon plastic encapsulation.
range. "H" PNP silicon,

 High Speed
 Magnetic
 Counter
 4 digit (non

Plastic Power Transistors
NOW IN TWO RANGES

These are 40 W and 90 W silicon Plastic Power Transistors of the very latest design
available in NPN or PNP at the most shatter available in NPN or PNP at the most shatter
ingly low prices of all time. We have been selling these successfully in quantity to all parts of the wortd and we are proud to offer them under our Tested and Guaranteed Range I VCEMin. IS HFE Min. 15 $\begin{array}{cccc}40 \text { watt } & 1-12 & 13-25 & 26-50 \\ 90 \text { watt } & 26 \mathrm{p} & 20 p & 18 \mathrm{p}\end{array}$
 $\begin{array}{cccc}40 \text { watt } & 1-12 & 13-25 & 26-50 \\ 90 \text { watt } & 33 p & 31 p & 29 p\end{array}$ 90. watt 38 36 ${ }^{361 p}$ 33p 3 amps. Ilp extra per pair. Please state NPN or PNP on order.

LM380 A UDIO I.C. as featured in Practical Wreless December iswe. Complete-with application data, ET'IO.
INTEGRATED CIRCUITS. We stock a large range of I.C.s at very competitive prices (from Ilpeach). These are all listed in our METRICATION CHARTS now
This lantastically CHARTS now available. culator carries thousands of conversion calreferences between metric and British (and voliA.) measurements of length, area Polner Size, 15, Wall Chart 18p Chart, 18p.

LOW COST DUAL IN LINE I.C.
SOCKETS
$\left.\begin{array}{l}14 \text { pin rype at } 16 \not p \text { each } \\ 16 \text { pin type at } 180 \text { each }\end{array}\right\} \begin{aligned} & \text { Now new low } \\ & \text { profile type }\end{aligned}$

BOOKS

We have a large selection of Reference and Technical Books in srock, details are in our hatest catalogue,
the coupon below
N.B.-Books are void of V.A.T.

Our famous P1 Pak

is still leading in value Full of Short Lead Semiconductors and Electronic Components, approx. 170. We fuarantee at mast med Transistors PNP and NPN, and a host of Diodes and Rectifiers mounted on Prplied to Transistors
Piease ask for Pak P. 1. only $5 \boldsymbol{5}$

1 NAM
ADDRESS

ALL PRICES INCLUDE 10% V.A.T. MINIMUM ORDER SSp. CASH WITH ORDER PLEASE Add IIP post and packing
per order. OVERSEAS ADD EXTRA FOR per order. OVERSEAS ADD EXTRA FOR
POSTAGE. BUY THESE GOODS WITH ACCESS

TRANSFORMERS

SAFETY MAINS ISOLATING TRANSFORMERS Prim. 120/240V. Sec $120 / 240$ V Centre Tapped and Sereened ALSO AVAILABLE WITH $\| 15 / 120 \mathrm{~V}$ SEC. WINDING $\begin{array}{lll}\text { Ref. } \\ \text { No. } \\ 07 & \text { (W } \\ 07 \\ 149 & \\ 150 & 1 \\ 151 & 200 \\ 152 & 250 \\ 153 & 350 \\ 154 & 5 \\ 155 & 750 \\ 156 & 1000 \\ 158 & 200 \\ \text { Ref. } & V \\ \text { No. } & \text { (W } \\ 113 & \\ 64 & \\ 6 & \\ 66 & 1 \\ 67 & 50 \\ 84 & 10 \\ 93 & 150 \\ 95 & 20 \\ 73 & 30\end{array}$ (Watts) Weight

CASED AUTO TRANSFORMEAS

LOW VOLTAGE SERIES (ISOLATED)
PRIMARY $200-250$ VOLTS 12 ANDIOR 24 VOLT RANGE
Ref. Amps. Weight Size cm. Secondary Windings $P \& P$
 213
71 -

S:TXOS
 Money saving high
 performance audio equipment DIRECT FROM OUR OWN FACTORY

GUARANTEED TESTED HIGH PERFORMANCE
MODULES-now better value than ever
SA35

7 transistors, 7 diodes
SA50 E5.65 $\underset{\substack{\text { Carriage } \\ \text { free }}}{\substack{\text { 2 }}}$
50W RMS 25-65V
SAIOO $£ 10.90$
100 W RMS 45-70V
11 transistors, 6 diodes 11 transistors, 6 diodes I20 watt module complete with built in supply-extra heavy duty $£ 19.75{ }_{\text {copr }}^{\text {carr }}$

THE SA100 MODULE

POWER SUPPLIES

UNSTABILISED

STABILISED

PS45	Suiss 2 SA 35	£3.50	Carrize
MT45	Transformer for above	E3.50	${ }_{\substack{\text { carrizege } \\ 308}}$
PS70		¢4.90	
MT70	Transto	¢4.90	Carri

N.B. PS70 is not suitable for the SA50

Mk II STEREO DISCO MIXER $£ 19.75$ Carr, 30p This well tried unit mixes two decks, handles any ceramic cartridge, and features mic over-ride plus
separate full range bass and treble conerols on both meparate and deck inputs. Ample headphone power is available for P.F.L. May be used for mono and is mains operated. Fitted with sturdy screening case. volume, bass, treble, h/phone select, vol, Mains. Size
 $17 \frac{1}{2} i n \times 3 i n \times 4 i n$ deep.

DISCO MODULE $88.00{ }^{\text {Carr }}$ 20.

Thousands sold of this extremely popular mono version. A micinput may be fitted using the VA30 (see below). Low consumption from a 9 V battery Features the same high standards of reproduction as the Stereo version Controls: H/phone master vol. Size 12 fin $\times 3$ in $\times 2 i n d e e p$.

3-CHANNEL SOUND-LITE $\mathbf{£ 2 2 . 5 0}{ }_{c}^{\text {carr. }}$

Only SAXON can supply such incredible value for money. This unit features 3 kW power handing, full-wave controf, bass, middle, ereble AND master controls. Twin loudspeaker jacks for "through" connections. It may be used free standing or will panel mount next to either of the above. Also features unique CUT-BACK circuitry for extra wide rangeresponse. Size $12 \mathrm{in} \times 3 \mathrm{in} \times 2 \frac{1}{2}$ in deep. Professional standards at a price you can afford!
SINGLE CHANNEL Recently reduced in price Add VAT 10% to all orders YERSION $\mathbf{£ 7 . 5 0}$ due to increasing sales, Carr. free operation
MULTI-PURPOSE MIXERS

M4HL
 M6HL

Featuring multiples of our VA 30 module, the M4 HL and M6HL fulfil the requirements of all clubs, groups. etc. Where a high quality mixer is required. Each channel has one high and one low impedance input, plus volume, treble and bass controls. Input The M4HL has four channels, and one ourput, and the M6HL six channels (12 inputs) and a master control and two outputs. Either unit may be used free-standing or panel mounted. These mixers will feed all types of amplifier. Recommended for their versatility and high performance, and excellent value for money.
VA30 CHANNEL $\mathbf{1 3 . 5 0}$ Carr
This is the basic channel module in the above mixers and may also be used for extrainputs on either the mono or stereo mixers. Fitted with volume, bass and treble controls, requires just a jack and supply
$(9-100 \mathrm{~V}$) (9-100V)

SAXON CSE 100 COMPLETE AMPLIFIER £34.90 Carr, free	100W of speech and music-Two separately controlled inputs. Wide range bass and treble controls. Sturdy and attractive $v y$ nide case. Twin outpurs. Ideal for groups, discos, etc. Fully tested and guaranteed. £29.50	sockets. Sturdy case, and an attractiv excellent value for money. Hundreds discos, clubs, erc. 50 W version identical in appearance.	Four individually controlled FET input stages plus wide range bass and treble controls. 120 W of speech and music output from twin loudspeaker ve facia make this in use by groups.	SAXON 100 COMPLETE AMPLIFIER £53.00 Carr.free SAXON 50 £37.50 Carr.free
CALLERS 327-333 SHOP HO 24.HOUR	MAIL ORDER: ENTERTAINMENTS ITEHORSE ROAD - CROYD (Please quote magazine when ordering) 9 a.m. 5 p.m. - LUNCH 12.301 .30 p.m. VER SERVICE TEL. 01-684 6385		SEND $10 p$ FOR OUR MANUAL which giv the above products. terms of business on receipt ol 50p C.O.D Piease include S.A. D . w VAT at 10% must orders including carriage charges.	NEW 26-PAGE full details of C.W.O. or C.O.D. charic. tb all cacuiries. be added to all postage, and

AUDIO ACCESSORY SHOP

REXINE COVERED SPEAKER CABINETS
Sultable for P.A or OISCO uate: approx. $18 \times 18 \times 8 \mathrm{in}$
takes 12 in speaker unit. Size

SPEAKER CLOTH

Available in Black or Green: approx. width 54|n.

Type H-202. Features: Monoistereo switch. Volume controls on each channel
Type H-202. Features: Mono/atereo switch. Volume controls
Freq. response: $20-20,000 \mathrm{~Hz}$. Impedance: $4-160 \mathrm{hms}$. $\mathbf{y}-50$

Bin HI-FI SPEAKER
Dual cone plastlcised roll surround. Large ceramic magnet. 50 $10,000 \mathrm{c} / \mathrm{s}$. Bass resonance $55 \mathrm{c} / \mathrm{s}$. 8 ohm impedance. $8 i n .10$ watt
t3.75 each. Post 250 .

E.M.I. $13 \frac{1}{2} \times 8 \ln$. SPEAKER SALE!

With twin tweeters and crossover, speskers: Goodmans, Fane, Celeston, ete.

FULL RANGE OF EAGLE AND TTC PRODUCTS AVAILABLE AT DISCOUNT PRICES.

SECONDHAND BARGAIN BASEMENT NOW OPEN: HIGH QUALITY HI-FI AND AUDIO EQUIPMENT.

Ersin Multicore Solder contains 5 cores of non-corrosive flux, instantly cleaning heavily oxidised surfaces. No extra flux is required

IDEAL FOR HOME CONSTRUCTORS

Size 1 cartons in 40/60, 60/40

[^1]

Jermyn now offer a stereo decoder module that simply and easily converts your existing mono tuner for stereo reception. Multiplex output equipped tuners simply have the module plugged in, older types need the de-emphasis capacitor disconnected.

The unit will do justice to the most expensive equipment and has the following specification.
Channel separation: Typically 40dB
Distortion: Typically 0.3% at 560 mV RMS
Composite input signal
Stereo switching: Automatic with lighted indicator
Power supply: $10-16$ volts.
Assembled and fully tested with a no-strings 12 month guarantee the module costs an astonishing £6.90. Excluding VAT. (Also available as a Kit at £4.90.) Beat that!
To Jormyn Industries Please rush mel $\overline{\mathrm{Jkit}} \overline{\mathrm{s})}$, made up Stereo decoders. 168 Vestry Road
Sevenoaks, Kent sabclarcara Name Address

The Iargest selection

 BRAND NEW FULLY GUARANTEED DEVICES

LINEAR INTEGRATED

 circuits

Type \%o.		0	$100+$
72702	${ }^{50}{ }^{\text {p }}$	488	45D
72704	35p	33 D	30p
22710	45p	43p	40.
Ta74	40p	${ }^{38}$	${ }^{35} \mathrm{p}$
-2741C	45 p	43p	40.
72741 P	38 p	36p	34D
72748P	38p	38 D	34 D
NL201C	50p	45p	40 p
sliole	50p	45D	40D
SL702C	50p	46D	40 D
TAAlbis	80 p	70p	${ }^{60}$ D
TAA293	£1.00	95 p	90p
tatjüna	£1.85	£1.80	£1.70
${ }^{2} 47036$	28p	28p	24,
нА7096	33 D	33D	30 D
MA711	45p	43p	40 D
7N414	\$1.20		

INDICATOR TUBES

Dfк Side Viewing "NIXIE,
GRllif Side Viewing "NIXIE
Typr Price
AD101
a
AD101
A116\%

Price
50

> Price p
68
88 D 115

Tupr	Pricep	Type	Price p	Type	Pria
BD115	88	BF17*	39	C441	
CD1 16	88	BF17i	39	C44!	
D121	66	13F178	33	C.444	
3D123	72	BF179	33	C450	
H1124	76	BF180	83	Mation	
BD131	55	BF181	38	MATl01	
SD132	88	BF182	44	Mati20	
CD133	72	HF183	44	Matlel	
SD136	44	$\mathrm{BF}^{\mathrm{F}} 184$	28	MJE295	
BD136	44	BF186	38	MJE305	
3 D137	50	BF187	30	MJE344	
BD138	55	8F188	44	MPF102	
BD139	61	BF194	18	MPF104	
DD140	86	BF195	18	MPF105	
BD156	88	BF196	16	OCi9	
BD176	86	BF197	18	0 C 20	
BD176	88	BF200	50	$0 \mathrm{C2} 2$	
BD17\%	72	BF222	21.06	OC23	
BD178	78	BF257	80	0 C 24	
S179	77	BF258	86	$\mathrm{OC} 25^{5}$	
SD180	77	BF259	94	OC26	
BD185	72	BF262	61	OC28	
D186	72	BF263	81	OC29	
BD187	77	BF270	88	OC35	
BD188	77	BF271	88	0 C 36	
B189	88	BF272	88	0 C 41	
D190	88	Br273	98	$0 \mathrm{C4} 2$	
B195	94	Br274	38	OC44	
BD 196	84	BFW10	80	0 C 45	
D197	99	BFX29	80	OC70	
D148	98	BFX84	24	0 C 71	
B199	21.05	BFX85	88	0 C 72	
D200	21.05	BFX86	84	0 C 74	
D205	88	BFX 8^{4}	27	OC75	
D206	88	BEX88	24	0 C 76	
D207	21.08	BFY00	28	0 C 77	
D208	E1.05	BFY01	28	$0 \mathrm{C81}$	
D Y20	81-10	BFY52	28	0C8] ${ }^{\text {D }}$	
BF115	27	BFY53	18	0 C 82	
F117	50	BPX 25	84	OC82D	
F118	77	BSX 19	17	0 C 83	
F119	77	BEX20	17	0 Cl 39	
F121	50	B8Y 25	17	0 Cl 140	
F123	65	B8Y 26	17	OC169	
F125	50	BSY 27	17	0 C 170	
F12 7	88	Bey 28	17	0 C 171	
F152	81	B8Y29	17	0 C 200	
F153	50	BSY 38	20	OC201	
F154	50	B8Y39	20	OC202	
F155	77	B8Y40	31	0 C 203	
F156	38	B8Y41	31	OC204	
F157	81	B8Y95	14	OC205	
F158	81	B9Y95A	14	OC309	
F159	68	Bul0s	42-20	OCP71	
F160	44	Cl11E	${ }^{56}$	ORP60	
F152	44	C400	33	ORPG1	
FI63	41	C407	28	P20	
F164	44	C424	88		
F165	14	C 425	55	P21	
F167	24	C426	39	P346A	
F173	24	C	22	P397	

Type
ST140
ST141
 Type
2N 1307
N 1308
${ }_{3} p^{2}$

2 2 2

$2 \mathrm{~N}+14$ 21-
(G301

N2926(R) Type
2 N 3906
 DIODES AND RECTIPIKRS
$\begin{array}{ll}\text { AA119 } & 0.09 \\ \text { AA120 } & 0.09 \\ \text { AA129 } & 0.09 \\ \text { AAY } 30 & 0.10 \\ \text { AAZ13 } & 0.11 \\ \text { BA100 } & 0.11 \\ \text { BA116 } & 0.23 \\ \text { BA126 } & 0.84 \\ \text { BA148 } & 0.18 \\ \text { BA154 } & 0.13 \\ \text { BA155 } & 0.16 \\ \text { RA156 } & 0.16 \\ \text { BY100 } & 0.17 \\ \text { BY101 } & 0.13 \\ \text { BY105 } & 0.19\end{array}$

BY114	0.13	BYZ18	0.89
BY126	0.16	HYZ19	0.81
BY127	0.17	Ca6	
BY128	$0-17$	(OA91 Eq.)	
HY:30	0.18		.06
BYi33	0.23	CG651-	
HYI64	0.55	(0A70-0A79)	
$13 Y \mathrm{X} 3$	0		0.07
	0.48	Ona	0.81
BYZ10	0.39	OA58L	0.88
[3YZ1]	0.33	OA10	0.89
BYZ12	0-33	0 A47	0.08
BYZ13	0.28	OA70	0.08
BYZ16	0.44	OA79	0.08
BYZ17	0.39	OA81	$0 \cdot 08$

DTL 930 SERIES

	Price		
Type	1	25	$100+$
BP930	15 D	14p	13p
BP93:	16D	15p	14p
BP933	18p	15 p	14p
BP935	16 D	15p	140
BP936	180	15p	14p
BP944	18D	16p	149
BP945	30 p	28D	25 p
BP946	150	14p	180
BP948	30 p	28p	25D
BP95]	700	65 p	60.p
BP962	159	14p	130
BP9093	45	43p	40p
BP9094	450	43 p	400
BP9097	450	43p	40p
BP9099	450	43D	40p
Devices may be mixed to qualify			
for quantity price. Larger quantity			
prices on application. (DTL 930			
Series on			

VOLTAGE REGULATORS
TOA Plastic 1.5 Ampa
TA7A05. 5 V (Equiv. $10 \mathrm{MVR} \overline{\mathrm{J} V}$) VA7812.12V(Equix. to MVR12V)
R.T.L, LOGIC I.C's

Price onch
UL900 38p 36p 28p
UL914 38p 36p 29p
ULQ23 56p 51p 40p

DOAL-N-LIME ROCEETS 14 \& 16 Lead gockets for use with DUAL.IN-LINE PROFESSIONAL AEW LOW COST PROP. TYPE No. $1.24: 25.99100 \mathrm{up}$ $\begin{array}{lllll}\text { TSO14 } & 14 \text { pintype } & 38 \mathrm{p} & 30 \mathrm{p} & 27 \mathrm{p} \\ \text { T8016 } & 16 \text { pintype } & 38 \mathrm{p} & 35 \mathrm{p} & 32 \mathrm{p}\end{array}$ $\begin{array}{lllll}\text { Tgo16 } & \text { 16 pintype } & 38 p & 35 p & \text { 32p } \\ \text { BPA!4 } & \text { 14 pintype } & \text { 18p } & \text { 14p } & \text { 18p }\end{array}$
 BPB16 $\underset{\substack{\text { (low cost) }}}{16 \text { pintrpe }} \quad 17 \mathrm{p} \quad$ 15p \quad 18p

74 Series T.T.L. I.C's

BY-PAE ETILL LOWEST IN PRICE. FULL SPECIFICATIOK GI-PAE STILL LOWEAT IN PRICE. FULL SPECDFIC
GUARANTEED. ALL FAMOUS MANDFACTUEERS
Ty
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
lpe

7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7416
7417
7420
7422
7423
7425
7426
7427
7428
7430
7432
7433
7437
7438
7440
7441
7442
7443
7444
7445
7446
7447
7448
7450

$\underset{\sim}{\circ}$	

－the lowest prices！

 Pak No． Direct replacement fur
TIS +3 rand $B \mathrm{FN}$ 3000
almo eletan

UT4 UNIJUHC TRAMSISTORS
 TED SEMICOMDUCTORS

R alao electrically equiva． lent to 2 N 264 AH 0.30 QUALITY
Paz No．
\qquad
Hbate spot K．F．tranqiat OC77 type transistorsMatched transistors OC44／45／ki／s
OC75 transistors．AC128 transistors pnp high gain

\qquad
GENERAL PORPOSE
NPN SILICON SWITCE－
tC126 transistors prp
tC126 transistors prpOCs 1 type transistorsING TRANB．TO－18
27／28／95A．All usable
OCritype transistorsQAC127／128
pup／npn
flib type
Q13 3 AF117 type transistors
Price
fp
0
circuits．ALBO AVAIL．
ABLE in PNP 8 Bm, to
2 N 2906 ， 13 CY 70 ．When
ordering 1 Cl 70 ．When
TRARSISTOR Suitable reptacement for
B8X21，C407， 2 N 1893
$\begin{array}{lll}1 & 205 & 100+ \\ 0.10 & 0.17 & 0.16\end{array}$
811．trans．8uitable for
P．E．Organ．Metal TO－18 P．E．Organ．Metal TO－18
Figut．ZTX 300 日刀 each．Bigt．ZTX 300
Any Quantity．
GP100 TOS MERMANIDM
Cbo $=80 \mathrm{~V}$ ．Vceo＝ 50 V
30 W ．hfe $=30-170$ ．Replaces the majority oGermanium power tranaistors in the OC．ADand NKTrange． $100+$
GP800 TO3 METAL CASE SILICONI．C．$=100 \mathrm{~V}$ ．Yeco $=60 \mathrm{~V}$I．C．$=15 \mathrm{amps}, \quad$ Ptot $=$
115 w he $=20$ ． $1001 \mathrm{~T}=$1 MHz ．Buitable replaceMHz ．Suitable replace
ment
forBDY11 or BDY20．$\begin{array}{crr}1 & 25 & 100+ \\ 0.55 & 0.58 & 0.61\end{array}$
NEW Eth EDITION 250 pages
ELECTRONIC
COMPOHENTS
ADVERTISEMENTS
PRACTICAL WIRELESS
EVERYDAY
ELECTRONICS AND
radio constructor
SILICON PEOTO TRAN
BISTOR．TO－18 LRE
SISTOR．TO－18 Lens end
NPN Sminto BPX25 and
P21．BRANDNEW．Ful
data araala

O

Pry $1-2425-99100 \mathrm{p}$
Price each 44 p 40 p 88 p

30 mi		
40 PIV （Min．）	100	0.55

R2400 TO3 NPN

SILICON HIGH
VOLTAGE
Vebo $=250 \mathrm{~V}$ Veeo＝
$100 \mathrm{~S}^{2} \quad \mathrm{C}=6$ amps
$\mathrm{Ptot}=30 \mathrm{~W} \cdot \mathrm{hfe}=\mathrm{typ} .20$ $\mathrm{T}=5 \mathrm{MHz}$ ．

0.85	0.50	1004
$\mathbf{A D} / 6 / / 162$		

M／P COMP GERM TKANG OLR LOW： PER PAIR

LOOK

 FOR OUR AUDIO ANDQ16 ：GET880 low moise Germanium
npr $2 \times$ ST． $141 \& 3 \times 8 T .140$ ADT＇S $2 \times$ MAT $100 \& 2 \times \mathrm{MA}$
I20． $2 \times$ MAT $101 \& 1 \times \mathrm{MA}^{\prime}$
Q19 3 MADT
Q20 4 OC44 Germanium transistors A．F．
Q22 20 NKT transiators A．F゙．R．F．eoled
Q23 10 OAg02 Silicon diodes sub－min．
25 OA81 diodes
Q26 8 OA90 Germantun fliorles sub－min Q26 OA90 Germantum fiorles sub－min $\begin{array}{llll} & \text { IS } 425 \mathrm{R} & & 0.55 \\ \text { Q29 Silicon power rectifiers BYZ13 } & 0.55\end{array}$
Q29 4 Slicon transistors 2×2 Nfigh．2 ．
Q30 isilicon switch transistors 2Ni06
0.55
0.55
0.55
0.55
 500 MHz （cote P397）
ilicon pnp TOS． $2 \times 2 \mathrm{~N}_{2} 2904$ \＆ Silicon pup TO
$1 \times 2 \mathrm{~N} 2905$
Q36 7 2N3646 TO－18 plastic 300 MHz non 0.55 Q37 3 2N 30.53 npn Silicon transistors $\quad 0.55$

ELECTROMIC SLIDE－RULE

The MK Slide Rule，designed to simplify Elec tronic calculations features the following scales： Conversion of Firequency and Wavelength．
Calculation of C and fo of Tuned Circuite． Calculation of L，C and fo of Tuned Circuite．
Reactance and Belf Inductance．Area of Circles． Reactance and Belf Inductance．Area of Circles
Volume of Cylinders．Resistance of Conductors． Weight of Conductors．Decibel Calculations． Angle Functions．Natural Logs and＂e＂F＇unctions． Multiplication and Dirinion．Bquaring，Cubing and Square Roota．Conversion of $k I$ and $H p$ ． ast．Size instructions．

FULL	RANGE OF
ZENER DIODES	
VOLTAG	E RANOE
2－38V．	400 m 4 V （DO－7
Case）12p	ea．liw（Top．
Hat） 18 p	ea．10W（80－10
8tud） 8	ea．

KING OF THE PAKS Unequalled Value and Quality

INTEGRATED CIRCUIT PAKS
Manufacturers＂＂Fall Outs＂which include Functional and Part－Functional Units． are ideal for learning about I．C．＇a and experimental work
Pak No．Contents Price UICOO $=12 \times 7400 \quad 0.55$ $\mathrm{UICOI}=12 \times 7401 \quad 0.55$ UIC02 $=12 \times 7402 \quad 0.55$ $\begin{array}{ll}\mathrm{UIC03}=12 \times 7403 & 0.55 \\ \mathrm{UIC04}=12 \times 7404 & 0.55\end{array}$ $\begin{array}{lll}\text { VICO4 }=19 \times 7404 & 0.55 \\ \text { VIC05 }=12 \times 7405 & 0.55\end{array}$ $\begin{array}{ll}\text { UICOS }=12 \times 7405 & 0.55 \\ \text { UIC06 }=3 \times 7406 & 0.55\end{array}$ $\begin{array}{ll}\mathrm{UIC0}=8 \times 8 \times 7407 & 0.56 \\ 0.55\end{array}$ $\begin{array}{ll}\mathrm{UIC07}=8 \times 7407 & 0.55 \\ \mathrm{UIC10}=12 \times 7410 & 0.55\end{array}$ UIC20 $=12 \times 7420 \quad 0.55$ $\mathrm{UIC30}=12 \times 7430 \quad 0.55$ UIC40 $=12 \times 7440 \quad 0.56$ 1TIC41－5 $\times 7441 \quad 0.65$ UIC42 $=5 \times 7442 \quad 0.55$ $\begin{array}{ll}\text { UIC43 }=5 \times 7443 & 0.55 \\ \text { UIC44 }=5 \times 7444 & 0.55\end{array}$ $\begin{array}{ll}\text { UIC44 }=5 \times 7444 & 0.55 \\ \text { UIC45 }=5 \times 7445 & 0.55\end{array}$ Paks cannot be split，but

PaE Mo．Content Price $\begin{array}{ll}\text { UlC4h }=5 \times 7448 & 0.58 \\ \text { U14 }=5 \times 7448 & 0.85\end{array}$ U1C48 $=5 \times 7448$ U1C5 $=12 \times 7450$ $\begin{aligned} & \text { UIC5 } \\ & \text { UIC5 }\end{aligned}=12 \times 74.51$ | $\mathrm{UICa} 3=12 \times 7.53$ | 0.55 |
| :--- | :--- | $\begin{array}{ll}\mathrm{UIC5} 4=12 \times 7453 & 0.85 \\ \mathbf{U I C 5}=12 \times 7450\end{array}$ $\begin{array}{ll}\text { UIC } 60=12 \times 7454 & 0.65 \\ \text { U10 } & =12.50\end{array}$ $\mathrm{UlC70}=8 \times 7470$ $\mathrm{UIC72}=8 \times 7472$ $\mathrm{UlC73}=8 \times 7473$ UIC74 $=8 \times 7474$ UIC7 $6=8 \times 7476$ $\mathrm{UIC8} 0=5 \times 7480$ $\mathrm{UIC81}=5 \times 7481$

$\mathrm{UIC82}=5 \times 7482$ UIC83 $=5 \times 7483$

PakNo Contents Price
all prices include v．a．t BIP 18／20 TOS MPY PLASTIC SILICON Vebo $=100 \mathrm{~V}$
sow．hee 50 W ．he $=$ typ． $1,10 \mathrm{fT}=3 \mathrm{MEz}$ ampa．Pto $+$
NEW LOW PRICED TESTED S．C．R．＇S

SIL．RECTS．TESTED

	300 m ．	7 5 0 n	14	1－5．	3A	10A	30 A	
	D07	8016	Plast	8016	301	010	048	
30	0.05	0.06	0.05	0.08	0.15	0.21	0.80	
100	0.05	0.07	0.06	0.10	$0 \cdot 17$	0.28	0.75	
$\because 00$	0.08	$0 \cdot 10$	0.07	0.12	0.22	0.25	1.00	
400	0.08	0.15	0.08	0.15	0.30	0.88	1.85	
600	0.08	0.17	0.10	0.18	0－38	0.48	1.90	
800	0.12	0.19	0.11	0.80	0.28	0.55	2.10	
1000	0.14	0.30	0.12	0.85	0.48	0.85	2． 50	
1200		0.38		0.80	0.88	0.7	8.00	
DIACS				TRIACS				
$\begin{aligned} & \text { FOR USE WITH } \\ & \text { TRIACS. } \\ & \text { BRIO0(D32) } 41 \mathrm{peach} \end{aligned}$				v BOM			$\begin{aligned} & \text { 10A } \\ & \text { TO. } 48 \end{aligned}$	
				TO-6	$10-66$			
					rom	p	4p	
10 amp POTTED					100 V	38	85	88
BRIDGE RECTIFIER				200 V	55	68	98	
100PIV．99p each				$400 \mathrm{~V}^{\circ}$	77	88	1.81	

All prices include V．A．T．Giro No． 388 － 7006

2143055
115 WATT SIL POWER MPN 55p EAOE BIP 19／80 Matched Pair 0.66

[^2]
SUPER PAKS $\begin{gathered}\text { NEW BI－PAK UNTESTED } \\ \text { SEMICONDUCTORS }\end{gathered}$
 SUPER PAKS NEW BI－PAK UNTESTED

satiblaction GUARANTEED in Every Pak，or money back

Pak No

U 4 40 Germanmm Transistors like OCBI．ACI28

06 up to 1000 50 \＄il．Planar Diotes 1）0．7（ B lase 2.50 ma like 0a200／202 0.55 U $9 \quad 30$ Mixed Vollages．I Watt Zener Diodes \qquad U11 25 PNP Sil．Planar Trans，Tō－jike oNilis2，2N2904 $\quad 0.56$

114 150 Mixed Silicon and（iermanima Diecles

U19 25 Silicon NPN Trangistors like BC 108

U23 30 MADT＇Blike MHz Series PNP Transistora

| U24 | 20 Germaninm 1 Amp Rectiflers GJM Seties up to 300 PIV | 0.55 |
| :--- | :--- | :--- | :--- | :--- |
| U25 | 25 | 300 MHz |

U26 30 Fast switehing Silicon Diodes like IN914 Micro－Min－ 0.85
U27 12 NPN Germanium $\overline{\mathrm{AF}}$ Transibtors TO 1 Tike $\mathrm{ACl}_{27} \quad 0.50$

$\begin{array}{llll}\text { U32 } & 2 \overline{3} \text { Zener Diodes } 400 \mathrm{~mW} \text { DO－7 case } 3-18 \text { volts mixer } & 0.55 \\ \text { U33 } & 5 \text { Plastic Case } 1\end{array}$
1134 30 Sillion PNP Alloy Trans．TO－5 BCY $2628302 / 4 \quad 0.55$

U37 30 Silicon Alloy Transistors $80-2$ PNP OC200， $28322 \quad 0.0 .55$

U39 30 RF．Germ．PNP Tranaintors 2 2N1303／5 TO－5－$\quad 0.55$

U42 10 VHF Germanium PNP Transistors TO－I NKTG67，AF117 0.65
U43 25 Sil Trans．Plastic T0．18 A．F．HClish114 ． 0.55
U44 20 Sil．Trans．Plastic TO－A BClio／NPN 9A BCR．TO6t up to 600 PIV

5

[^3][^4] 56 ． 5

\qquad 1．10

A0 B BLDAE RECTS 00 RM8 35p each DUAL TRANSIETOR

Size $16 \mathrm{~mm} \times$

SPEAKERS

Baker Group 253.8 or 15 ohm Baker Group 35 . 0 or 15 hm Baker Grup 12 m dicon
Bener Mejor $12 i n$ dicone
aker Major lin dicone
Baker Superb
Baker Auditorium 12
Celestion MH1000, or 15 ohm
Celestion PST8 for Unilex Celestion G12M 8 or 15 ohm Celestion G12H 8 or 15 ohm Celestion G15C 8 or 15 ohm Celestion G18C 8 or 15 ohm Coral $6+$ in dicone roll surr. 8 ohm
CMI 13 in $\times 8$ in 3.8 or 15 ohm
EM1 13 in $\times \sin 150$ or 3 a or
EMI 13 in $\times \operatorname{Bin} 450$ Utw 3.8 or 75 ohm
EMI 13 in $\times \operatorname{Bin}$ type 3508 or 15 ohm
EMI 13 in $\times 8$ in 20 W bess
MI 6 In 93850 - or 8 ohm
EMI Sin 98132CP 8 ohm
M1 8×5 d/cone, roll surr. 10W
EM1 2iin tweeter 97492AT
Eagle DT 3330 F tweeter
Eagle HT 15 horn tweeter
Eagle CT5 cone tweeter
Eagle CT10 tweeter 8 or 16 ohm
Eagle MHT 10 horn tweeter
Eagle Crossover CN23. CN28. CN216
Eagle FR4
Eagle FR65
Eagle FA8
Elac $9 \times 559 \mathrm{RM} 10915 \mathrm{ohm}$ 59RM1148 ohm
Elac 6fin 6RM171 dic roll sur
Elac iln tweeter TW4
Elac 10in d/cone 10RM239 8 ohm
Elac $\operatorname{Bin} 8$ CS 1753 ohm
Fane Pop 15W 12in
Fane Pop 25/2 25W 12in
Fane Pop 40W 10 in
Fane Pod 50W 121 in
Fane Poo 55 goW 12 in
Fane PoD 100 W 18 in
Fane Crescendo 12A 100W 12 in
Fane Crescendo 12B basa
Fane Crescendo 18in 150W
Fane 801T Bin d/c roll surf
Fane 807 T Bin dic roll surr
Fane 80et 8 in d/c
Fane 701 twin rlboon horn
Fane 910 horn
Gcodmans BP 8 or 15 ohm

WILMSLOW AUDIO

THE Firm for speakers!

Ket T27
Keit T15
Ket B110
Ket B200
Kef 8139
Ket DN8
Kef DN12
Ket DN12 2 if 75 ohm
Linear 30/40
Linear 40/80
Llneer 80/100

Goodmans 10P 8 or 15 ohm codmans 12P 8 or 15 ohm Goodmans 12P-D 8 or 15 ohm Goodmans 12P-G 8 or 15 ohm
Goodmans Audiomax 12AX 100W
Goodmans Audiomax 15 AX
Goodmans 19P or 15 om
Goodmans Midax 750 ohm
Goodmana Midax 75
Goodmans Audiom 10012 in
Goodmans Axiom 401 121n
Goodmans Twinaxiom 8
Goodmans Twinaxiom 10

STC4001G auper tweeter
Aichard Allan CGBT 8in dic fisur
Wharfodale Super 10RSIDD
21 in 54 ohm .70 mm 80 ohm .70 mm 8 ohm
$7 \mathrm{in} \times 4$ in 3 or 8 ohm
10in $x \sin 3$ or 150 h

SPEAKER KITS

Baker Major Module	each 510.75
Fane Mode One	each 19.90
Goodmans DIN 20	each 58.75
Halme XLK25	pale 518.17
Helme XLK30	pair 514.95
Helme XLK50	palr 537.18
Kefkit 2	each $\{23.50$
Kefkit 3	each 534.00
Rlchard Allan Twinkit	each 28.25
Richard Allan Triple 8	each 513.00
Richard Allan Triple	each £18.50
Richard Allan Super Triple	each E21.50
Wharfedale Linton 2 kit	pair $£ 19.25$
Whariedale Glendale 3 kit	pair 834.50
Wharfedale Dovedale 3 klt	pair $\mathbf{5 5 2} 50$

PA/DISCO AMPLIFIERS

Beker Major 100 weant $^{\text {(Catr. and ins. Eit }}$
548.75
130.08

Linear 100 watt tave
E4. 85
211.95
$\mathbf{8} 5.25$

£14.50
C 39.65 § 42.00
810.00 19.50
33.00 33.00
515.00 15.00
56.60 56.60
511.50 11.50
15.95 C. 50
E. .25 C. 25
4.75 55.75
58.75
 $£ 7.50$
$\Gamma 17.75$
81.92 81.92
54.12 84.12
52.75 2.15
6.19 56.19
96.35
59.80
50 9.80
0.65 0.50
1.38 1. 38 1.92

100 watt olave

FREE with speaker orders over $\mathbf{£ 7}$

Mi-Fi Loudspeaker Enclos ures" book
All units guranteed new and perfect. Prompt despatch Carriage and packing: apeakers 3op each. speaker kits 75p sach (I 1.50 pair), tweeters and crossovers 20 p .

Send stamp for free booklet 'Choosing a Speaker
ALL PRICES QUOTED INCLUDE VAT
WILMSLOW AUDIO (Dept. PE)
Loudspeakers: Swan Works, Bank Square, Wilmslow, Cheshire, SK9 1HF Discount Radio. PA, Hi-Fi: 10 Swan Street, Wilmslow

				The best buy!	
	Agfe Low Nolse Cassettes At LESS THAN HALF PRICEI				
	AGFA HIGHDYNAMIC SUPER		$\begin{aligned} & \text { sop } \\ & \hline \end{aligned}$		(tay
	AGFA STEREO.CHROM CHROMIUM DIOXIDE				(ex

Cut-price prorecorded cassettes-send stamp for list

PARTRIDGE MAIRS IBOLATION TRATEFORMER Pri: $150-250 \mathrm{~V}, 5 \mathrm{~V}$ steps, $\mathrm{Bec}: 240 \mathrm{~V}$, 13 amps. 816, carr, pack. £2. 20 .
GARDEER'S POTTED TRANBFORMER, PrI. 200250 V . Bec. $18 \mathrm{~V} 500 \mathrm{~m} / \mathrm{a}, 50 \mathrm{~V} 150 \mathrm{~m} / \mathrm{s}, 6 \mathrm{~V} 250 \mathrm{~m} / \mathrm{a}$ output. 21, p.p. 26p
RIPLEY MAINS TRANBPORMER, Pri: 110V-240V gec: $12.6 \mathrm{~V}: 0: 12.5 \mathrm{~V} 750 \mathrm{~m} / \mathrm{A}$ 7V:0:7V 1A, 81 , p.p. 25 p.

MAINS TRANBFORMER, Pri: $100-250 \mathrm{~V}, \mathrm{gec}$ $\begin{array}{lllll}22: 0: 22 & 200 \mathrm{~m} / \mathrm{A} & 22: 0: 22 & 100 \mathrm{~m} / \mathrm{A} & 0: 24 \mathrm{~V} \\ 80 \mathrm{p}, \mathrm{p} . \mathrm{D} .20 \mathrm{~m} / \mathrm{A}\end{array}$ 0p, p.p. 20 p
MAIMS TRANSFORMER, Prl: $100-240 \mathrm{~V}$ a.c $38 \cdot 5-0.36 \cdot 5 \mathrm{~V}, 27 \mathrm{~m} / \mathrm{A}, \mathbf{0}-21 \cdot 5,280 \mathrm{~m} / \mathrm{A}, 80 \mathrm{p}, \mathrm{p} . \mathrm{p} .20 \mathrm{p}$ TRAFSISTOR OULPUT TRANBFORMER, Rat! $8: 1,120 \mathrm{mH}$. Centre tap 2 watts. output, 20 p, D.p. 8p.

WODEN MATMS TRANBFORMER, Auto wound
Pri: $200-250 \mathrm{~V}$. Sec: $105-136 \mathrm{~V}$. 3kVA, 15 Pri: $200-250 \mathrm{~V}$. Sec: $105-136 \mathrm{~V}$. 3 kVA , 115 Carr. $21 \cdot 50$
EADDON MADS TRANBFORMER, Pri: 230 V gec: $20 \mathrm{~V} 1 \mathrm{mmp}, 21 \cdot 60$, p.p. 27 p .
MIM. MAIN8 TRANBFORMERS. Type 608/1. Sec
 GMOOTHING CEOKE, $11 \mathrm{MH}, 1 \frac{1}{2} \mathrm{in} \times 1$ in $\times 1 \neq \mathrm{in}$ 20p, p.p. 8p.
FIMRED ALUMINIUM HEATBINE, $4 t i n \times 6 i n \times$ $1 \mathrm{in}, 2 \times 2 \mathrm{~N} 3055,81$, p.p. 13 p .
GOODMANS 8in SPEAKERS 30 21.50, p.p. 28 p LOODSPEAKER $2 \downarrow$ In Dia., $400,300 \mathrm{~m} /$ watta, 80 p p.p. 5 p

FINRED ALUMINIUM HEATELKK, 9in \times Bin \times $1+\ln$. In C.: $4 \times 2 \mathrm{~N} 3055$, 82 , p.p. 29 p .
GARRARD MAG. TAPE DECES: 1 ii.p.8., 50 V , solenold operated brakes, etc. Mains voltage motors 27.60 each, p.p. 50p.
10 RERD 8 WITCEES operated by push buttone and magnets, 50 p, p.p. 25 p.
COMPONENT PANEL, 6 日Cr's ($300 \mathrm{~V}, 1 \cdot 6 \mathrm{~A}$) 6 cond. 12 reaistors, 6 dlodes, 46 p , p.p. 8p
COMPONENT PANEL, 1 scr: $100 \mathrm{~V}, 15 \mathrm{amp}, 1$ diode 1 cap., $500 \mathrm{mfl} 50 \mathrm{~V} .60 \mathrm{p}, \mathrm{p} . \mathrm{p} .7 \mathrm{p}$.
VEEDER ROOT ELECTRICAL IMPULSE OOURTER FON-RESETTABLE, A.C. 200-250V, el-10, p.p. 13 p. GEO MAIVS CIRCUIT BREAKERB, 2 amp or 5 amp, 21 each, p.p. 14 p.
LEVER ACTION P.O. 1000 TYPE BWITCHES
Lock 4-pole changeover, 16 p. p.p. 4p. Ex equip. Lock 2 -pole changeover, 10 p, p.p. 4 p . Fir equlp MULLARD \& MALLORY SOREW TERMINAL CAPAOITORS $4,500 \mu \mathrm{~F}$ 64V, $7,100 \mu \mathrm{~F} 40 \mathrm{~V}, 60 \mathrm{D}$ each. $20,00030 \mathrm{~V}, 25,00025 \mathrm{~V}, 35,00015 \mathrm{~V}, 30 \mathrm{p}$ each, p.p. 21 p. $10,000 \mu+40 \mathrm{~V}$ d.c. at $78 p_{0}$ p.p. 12 p . $3,000 \mu+50 \mathrm{~V}$ d.c. price 48 D, p.p. 7 p. $2,000 \mu+25$ d.c. 9 t 4 bp , p.p. 8 p .

MOLLARD FULLWAVE RECTIFIERS
$6-48 \mathrm{~V}, 15 \mathrm{amp}, 76 \mathrm{p}, \mathrm{p} . \mathrm{p} .10 \mathrm{p}$
BRLLING LER l.5 amp in-line rubber covered Interference suppressor, 26p, p.p. 8p.
RUBBER 8 PIH δ AMP KON-REVERSIBLE OABLE OONFEOTORB, 20 p , p.p. 5p.
80LENOIDS 12 VOLT PULL ACTION
$2 \mathrm{in} \times 1 \ln \times 1 \mathrm{in}, 40 \mathrm{p}, \mathrm{p} . \mathrm{p} .8 \mathrm{p}$.
BOLEHOIDS $12-24 \mathrm{~V}$ d.c. pull action $14 \mathrm{n} \times 1 \mathrm{ln} \times$ $1+\mathrm{in}, 40 \mathrm{p}$, p.p. 5 p .
BOLAKOIDS 240 V a.c. pull action $21 \ln \times \operatorname{lin} \times$ Itin, 60p, p.p.9p.
sOLRNODDS. Manf. by Bentons. 240V a.c. Pull action $24 \mathrm{in} \times 1 \mathrm{in} \times 1 \mathrm{in}, 76 \mathrm{p}, \mathrm{p} . \mathrm{p} .9 \mathrm{p}$.
OMEON MER MIDGET POWER RELAY, 12V d.c Double pole changeover. New, 70p, p.p. 5p
BTO VARLEY, mindature relaye $700 \mathrm{\Omega}, 17.5-37 \mathrm{~V}$ perspex cover, 4 pole ohangeover, $40 \mathrm{p}, \mathrm{p} . \mathrm{p} . \mathrm{Bp}$.
POTTRE BROMPIRLD 12V d.c. coll 3 pole c/o contacts rated 7 amp., 81, p.p. 10p
1.T.T. LOW PROFILE RELAYS. 4 pole c/over 5000 12-18V, 76p. p.p. 5p
MALHS EELAYB, $200-250 \mathrm{~V}$ a.c. 2 makes. Heavy duty contacts, 80 p, p.p. 7p.
EEYSWTTOET RRLAY, 12V d.c. Coll 3 B.P.C.O. 90%, p.p. 5 p.

TELEGOOPIO AREIALS
Chromed 7in closed, 28 ln oriended, 6 section ball jolnted base, 28p, p.p. Sp new.
PRIRTED CIRODIT BOARD/19 ACY 18' 10 OA200
Dlodes: 1 reed relay: 1 AZ 229 zener ass, capactior Desistors. Power supply $22 \mathrm{~V}, 250 \mathrm{~m} / \mathrm{A}$ d.c. 240 V a.c., 11, p.p. 25p. Ex. equip.

TAPE POSITION INDICATOR
Re-Bettable 3 dlgite, 80p, p.p. ©p.
All orders add 10\% V.A.T.

FIELD ELECTRIC LIMITED

3 Shenley Road
Borehamwood, Herts.
Tel. 01-953 6009

VARIABLE VOLTAGE TRANSFORMERS

L.T. TRANSFORMERS

PRECISION CENTRIFUGAL BLOWER Mig. Airflow Developments Ltd. mooth running, $230 / 240 \mathrm{~V}$ only) 0 al 15 cm 14 cm (case $\delta \times 6 \mathrm{~cm}$. $16 \cdot 50$. Post 50 p .
230/240 VOLT A.C. EXTRACTOR FAN KIT
Comprising of impeller, continuously ings as illustrated price fi. 75 and fix25p. (Total inel. VAT and Post $\mathbf{6 2} 20$).

MINIATURE UNISELECTOR SWITCHES

2 Bank, 12 position, 24 vole $0 . C$ cillary contacts. NEW Writh anC2.50. Post 20p. As above but 63.50. Post 20°

All Mail Orders-Callers-Ample Parking CHISWICK, LONDON W4 5BB Phone 01-995 1560

STROBE! STROBE! STROBE

Build Strobe Unit, using the latest type Xenon
white light flash tube. Solid state timing and triggering circuit. $230 / 250 \mathrm{~V}$ a.c. operation. EXPERIMENTERS' ECONOMY KIT Speed adjustable I to 30 flash per sec. All and instructions 66.30 . Post 30p.
INDUSTRIAL KIT
deally suitable for schools, laboratories, etc Approx. t output of Hy-Lyght. Price $£ 12.00$ Post 50p
HY-LYGHT STROBE MKIII
For use in large rooms, halls and utitises a silica tube, printed circuit. Speed adjustable 0-20 f.p.s Litht ousput ereater than
Joule) strobes. 612 . Posi 50 p

THE 'SUPER" HY-LYGHT K/T Approx. four times the
proven Hy-Lyiht strobe.

- Variable speed from 1.13 flash per sec.
- Reactor control circuit producing an intense ROBUST, FULLY VENTILATED METAL CASE. For Hy-Lyght Kit including reflector $\mathbf{E} \mathbf{5 . 7 5}$ Post 25p.

Hy-Lyght case including reflector ©8. Post
in
T-inch POLISHED REFLECTOR
deally suited for above Strobe kits. Price 55p
Post 15p.

PROGRAMME TIMERS

$230 / 240 \mathrm{~V}$

 swimated deal for 1

6 cam model 22.50 post 30 p
12 cam model 44.00 posi 35
6 cam model. 3 r.p.m. $63 \cdot 25$ post 30p.

GENERAL ELECTRIC POWER-GLASTRIACS 10 amp. Glass passivated plastic triac. Latest device rom U.S.A. Long term reliability. Type SC:460 500 PIV. ©1.30. Post Sp. (Inclusive of data and applica tion sheet.) Suitable Oiac 180 .
LED READOUTS
character. it pin Dione-third high
RED or GREEN. Price \&I. 65. Poss IOD
All prices are subject to
10\% VAT: (10p in the E)
To all orders add IO\% VAT to totat value of goods including carriage/

packaging
 SERVICE
 TRADING CO

Superior Quality Precision Made NEW POWER RHEOSTATS New ceramic construction, vitreous
enamel embedded winding, heavy duty brush assembly, continuously
25. WATT $10 / 25 / 50 / 100 / 250 / 300,500 / 1 \mathrm{k} / \mathrm{ohm}$ £/.15. Post $10 \mathrm{p} .1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{k} / 1 \cdot 5 \mathrm{k} / \mathrm{l}$
50 WATT
 3.5k 5k ohm E2.35. Post 15p.

Black Silver, Skirted knob calibrated in Nos. 1.9. Itin. dia brass bush. Ideal for above Rheostats, 22p each

RELAYS
 SIEMENS, PLESSEY, Etc

Col.(1) Col. (2) Working d.c. voles
Col. 3 Contracts Col. (4) Price
$\mathrm{HO}=$ $\mathrm{HO}=$
Heary duty -Incl. Base All prices

52
58
150
185
308
700
700
700
700
2,500
2,500
2.400
5,800
9,000
$15 k$

4-6	6M
5-9	6 clo
4-9	$2 \mathrm{c} / 0$
8-12	6 M
$9-14$	$4 \mathrm{c} / \mathrm{o}$
16-24	4M2B
16-24	4 clo
6-12	1 slo HO
20-30	6 clo
31-43	$2 \mathrm{c} / 0 \mathrm{HD}$
36-45	6 M
30-48	4 clo
24-26	2 c 10
40-70	2 clo
85-110	6 M

$60 p$
$70 p^{\circ}$
$60 p^{\circ}$
$75 p^{\circ}$
$60 p^{\circ}$
$60 p^{\circ}$
$70 p^{\circ}$
$50 p^{\circ}$
$60 p^{\circ}$
$60 p^{\circ}$
$60 p$
$60 p^{\circ}$
$60 p^{\circ}$
$60 p^{\circ}$

6 VOLTD.C. 1 make contacts 35p. Post Sp.
6 VOLTD.C. 2 make contaces 75p. Post 5p.

- 0 - D.

12 c/O 5 amp contacts. 70 ohm coil. 75 p . Post 5p
12 VOLT D.C. RELAY
3 clo 5 amp contacts. 120 ohm coil. 75p. Pose 5p
ITT LOW PROFILE RELAY
500 ohm coil, $12-24$ volts $0 . C$
c/0. Price B5p. Post $5 p$ each.

CLARE-ELLIOTT TYPE RP764| G8
Minizture relay. 675 ontr coil. 24 Volt O.C. 2 c.o
70 pose paid. 100 V

Post 10p
24 VOLT A.C. Mfe by ITT. 2 h.d $s 0$ concaces.
55p. Post Sp.
240 VOLT A.C. RELAY. Mis by ITT. 240 V A.C 10 amph.d. $c o$ coneaces. Oceal plus in base. Price $220: 240$ VOLT A.C. RELAY
\&1.25. Post 100
HEAVYDUTYAC.SEALED RELAYS
HoV. 2 \& 0.20 amp contacts. © 25 . Post 10p
DRY REED RELAYS
Mig. by ERG. 12 volt d.c. encinpsulated
Single clo 65p. post paid. Two c/o 5p, pose paid
STC 280 onm coil6/12V 60p post paid. Other types available, state your requiremene. "HONEYWELL"' PUSH BUTTON. PANEL MOUNTING MICRO SWITCH ASSEMBLY Each bank comprisesa
10 amps $240 \vee$. C. Bla
Fixine hole in. ONE bank 10 in
TWO bank 40p. THREE Sank
50 p . Quote for quansicy
HIGH VISIBILITY PANEL MOUNTING
LEDs. 0.25 inct mouncing. 0.16 inch lens. Trpical parameters $2 V .20 \mathrm{Mamps}$ all cype. 5 upplied complete with snapin mountings and data. Red 4 for \mathbb{C}, Green
3 for \mathbb{L}. Yellow 3 for \&i. Post 5 p. (in order) (ill).

VERY SPECIAL OFFER

 MINIATURE ROLLER MICRO SWITCH. 5 amp c a contaces. Mis BONNELLA. NEW Price 10f1-50. Post IOp (Min order 10)
\qquad

INSULATION TESTERS NEW!

 Test to l.E.E Spec Ruged metalconstruction. surtable for bench or field work. Constant speed cluich
Size L.gin. W. Ain, H. 6 in, weight 616 $3.000 \mathrm{Y}, 1.000$ mesohms, ©34. Post 60 p s00V. 500 mesohms. \&28. Post
24 YOLT DC SOLENOIDS
UNIT containing t heavy duey solenoid approm 251 t pull linch eravel. Two : Appror. libpull, inch iravel 6 approw 4oz pull inch travel One 24 volt d.c. ABSOLUTE BARGAIN.

9 LITTLE NEWPORT STREET LONDON WC2H 7J」
 Phone $01-4370576$

PESCORPIOMk ignition systamkif new trom ELECRO SPARES

* 6 OR 12 VOLT

* + VE AND - VE GROUND

Here's the new improved version of the original PE Scorpio Electronic Ignition System - with a big plus over all the other kits - the PE Scorpio Kit is designed for both positlve and negative ground automotive electrical systems. Not just + ve ground. Nor just - ve ground. But both! So if you change cars, you can be almost certain that you can change over your PE Scorplo Mk. 2 as well
Containing all the components you need, this Electro Spares PE Scorplo Mk. 2 Kit is simply built. using our easy to follow instructions. Each component is a branded unit by a reputable manufacturer and carries the manufacturer's guarantee. Ready drilled for fast assembly. Quickly fitted to any car.
When your PE Scorplo Mk. 2 is installed, you instantly benefit from all these PE Scorplo Mk. 2 advantages:
\star Easier starting from cold \star Firing even with wet or oiled-up plugs \star Smoother running at high speed \star Fuel saving \star More power fram your engine \star Longer spark plug life \star No more contact-breaker burn.
Electro Spares prices:
Deluxe Kit only $\mathbb{E 1 1 . 5 0}$ inc. VAT and p \& p. Ready Made Unit £14.75 inc. VAT and p \& p. State 6 V or 12 V system.
Send SAE now for details and free list.

FM VARICAP STEREO TUNER

As featured in the May 1973 issue of 'Practical Electronics". Superb Hi-Fi tuner Kit now available from Electro Spares. Including cabinet and all components - pre-set Mullard modules for R.F. and I. F. circuits. Motorola I.C. Phase Lock Loop Decoder for perfect stereo reception. No alignment needed. Guaranteed first time results - or send it back, and we'll return it in perfect order (for a nominal handling charge). Electro Spares price only $\mathbf{£} \mathbf{2 8 . 5 0}$ inc. VAT and $\mathbf{p} \mathbf{8} \mathbf{p}$.

'GEMINI' STEREO AMPLIFIER

A superb unit with a guaranteed output of 30 watts RMS per channel into 8 ohms . Full power THD is a mere 0.02%, and frequency response is -3 dB from 20 Hz to 100 kHz into 8 or 15 ohms. Electro Spares have already sold 100 s and 100 s of these Kits. Get yours now I Depending on your choice of certain components, the price can vary from $\mathbf{f} 50$ to $£ 60$ inc. VAT and p \& p.
\star All components as specified by original authors, and sold separately if you wish.

* Fulf constructional data book with specification graphs, fault finding guides, etc. 55p plus 4p postage.
\star Price List only. Please send S.A.E. (preferably 9×4 minimum) for full details.

ALL PRICES INCLUDE V.A.T.

SPEAKER BARGAIMS	4
EMI $13 \mathrm{in} \times 8 \mathrm{in} 3,8$ or 15 obm	
Plain	2.06
With Co-Axial Tweeter	2.20
Twin Tweeter	3.70
Type 350, 8 obm, 20W	7.50
$6 \mathrm{fin}, 8$ ohm, 10 W	2.40
$8 \mathrm{in}, 8 \mathrm{obm}, 10 \mathrm{~W}$	3.76
12in, $80 \mathrm{ohm}, 20 \mathrm{~W}$	5.70
$8 \mathrm{in} \times 5 \mathrm{in}$, C/Mag. 5 W	1.86
$8 \mathrm{in} \times 5 \mathrm{in}$, Dual cone 8 ohm. 10W	2.45
ELAC 8 in 8 ohm Dual cone	2.25
TWEETER AND CROssover	
EMI 3ifn, 3 or 8 ohm C/Mag.	1.00
Cone Tweeter 8 or 15 ohm , 10 W	2.40
Cone Tweeter 8 ohm, 3 W	1.45
Horn Tweeter 8 ohm, 20w	6.40
KTY FORM CABIEETS, TEA	
VEFEER, $12 \mathrm{in} \times 12 \mathrm{in} \times 6 \mathrm{in}$	
8 in \times 5in or 8 in and 3 tin	
cutout	2-46

17 in $\times 10 \mathrm{in} \times 9$ in with 8 in or

MICROPHONES

CM70 Planet stick metal.
DM160 Dynamic omni-dir, ball
UD130 $50 \mathrm{~K} / 600 \mathrm{ohm}$, uni-dir, boll metal
ANTEX CN240 16 W
SK1 Kit (15 Fatt Iron. 2
cartzidger
ACOB GP91/28C or GP91/38C
Stereo comp
GP93/1 Stereo oryatal
GP95/1 8 tereo cryatal
GP96/1
GP101
GP104
gONOTONE 9THAC Btereo
ceramic, diam.
ELAC 10in 8 ohm Dual cone GOODMANS 6? in 8 ohm Dual
cone
FANE, 7 in $\times 4 \mathrm{in}, 3$ or 8 ohm CELESTION 8 in , 15 okm
ADASTRA $10 \mathrm{ln}, 8$ or 15 obm ,
BAKER GROUP 25 19in 8 or $15 \mathrm{ohm}, 25 \mathrm{~W}$
gin, 8 ohm, C/Mag.
$21 \mathrm{ln}, 8 \mathrm{obm}$ or 64 obm
3.50
2.15
1.00
1.85

1.85

3.45
7.50
0.30
P. \& P. $\left.\quad \begin{array}{l}0.60 \\ 0.15\end{array}\right]$

Dome Tweeter 8 ohm, 30 W 5. Crosoovers CN23 (3 ohm), CN2 (8 ohm), CN216 (16 ohm) P

13 in $\times 8$ in cutout 13 in \times 18in $\times 11$ in $\times 9$ in with 13 8 In cutout for EMI 350P. \& P. eacb $\begin{aligned} & 4.25 \\ & 0.45\end{aligned}$	

BSR SC5M 8tereo ceramie

send 85 p for COLPLETE CATALOGUE, retundable apon firt order ALL OUE MERCHANDIEE IS FULLY GUARANTEED Subject to manufacturers' increase and avilikbility
Riverstale Electronics
Mail Order Department PE/ 8
P.O. Box 470, Manchester M60 4BU

ELEGTROMALIE
 Dresent this month's selection of GUARANTEED-TO-SPECIFICATION COMPONENTS

EVERYTHING BRAND NEW \star ATTRACTIVE DISCOUNTS
 TRANSISTORS
 and semi-conductors of many types from simple diodes to ICs photo-sensitive devices, threshold
 EV CATALOGUE 7

MINITRON DIGITAL INDICATORS
30154 F Seven sezment filament, compatible with standard logic modules. $0-9$ and decimal point; $9 m m$ characters in 16 lead DI, $\mathbf{1 1 . 2 0 \text { . Now available }}$

3015 G showing + or - and I' and dec. pt, \&1-20.

CAPACITORS

DALY ELECTROLYTIC
$1.000 \mathrm{mF} / 25 \mathrm{~V}, 28 \mathrm{p} ; 5,000 \mathrm{mF} / 25 \mathrm{~V}, 62 \mathrm{p} ; 1,000 \mathrm{mF}$ $50 \mathrm{~V}, 41 \mathrm{p}: 2,000 \mathrm{mF} / 50 \mathrm{~V}, 57 \mathrm{p} ; 5,000 \mathrm{mF} / 50 \mathrm{~V}$, 11.1 It . $50,00 \mathrm{mF} / \mathrm{I} 00 \mathrm{~V}, 42.91 ; 2,200 \mathrm{mF} / 100 \mathrm{~V}$, f 1.56 .

POLYESTER TYPE C280
Rodiol leods for P.C.B. mounting. Working voltoge $24010 . c$
$0.01,0.015,0.022,0.033,0.047,3 p$ each; 0.060 , $0.1,0.15,4 p$ each; $0.22,3_{p} ; 0.33,7 p ; 0.47$, Bp ; 0.6 , 11p; 1.0, 14p; 1.5, 21p; 2.2,24p.

SILVERED MICA
Working voltaze 500 V d.c
V alues in $\mathrm{PF}-2.2$ to 820 in 32 srases, 6 p each: 1,000, 1,500, 7p each, 1,800, 8p, 2,200, 10p 6,800, 20 p ; B, $200,10,000,25$, each. 15p each

TANTALUM BEAD

$0.1,0.22,0.47,10 \mathrm{mF} / 35 \mathrm{~V}, 14 \mathrm{p}$ each. $2.2 / 16 \mathrm{~V}$ $2.2 / 35 \mathrm{~V}, 4.7 / 16 \mathrm{~V}, 10 / 6 \cdot 3 \mathrm{~V}, 14 \mathrm{p}$ each. $477 / 35 \mathrm{~V}, 10 / 16 \mathrm{~V}$ $22 / 6 \cdot 3 \mathrm{~V}, 18 \mathrm{p}$ each. $10 / 25 \mathrm{~V}, 22 / 16 \mathrm{~V}, 47 / 6 \mathrm{VV}, 100 / 3 \mathrm{~V}$, 20p each

POLYCAREONATE TYPE B 32540
Working Voltage 250 V
Values in mF: $0.0047,0.0068,0.0082,0.01,0.012$ $0.015,3 p$ each. $0.018,0.022,0.027,0.033,0.039$
$0.047,0.056,0.068,0.082,0.1,4 p$ each.

CERAMIC PLATE
In 26 values from 22 pF to $6,800 \mathrm{pF}, 2 \mathrm{p}$ each

POTENTIOMETERS

ROTARY, CARBON TRACK
Double wipers for good contoct and lang working life. P20 5INGLE linear 100 ohms so 4.7Mn. 14p each
 JP20 DUAL GANG linear $4.7 \mathrm{k} \Omega$ to 2.2 Mn , 48p jp20 DUAL GANG log, 4.7 kn :0 2.2Mn. 48p each DP20 DUAL GANG log/anzilos lok, $22 \mathrm{~K}, 47 \mathrm{~K}$, iMg only, 48p each.
JP20 DUAL GANG anzilos lok only 48p.
2A DP mains switch with any of above 14 p extra. Decades of 10,22 and 47 only available in ranges

SLIDER

Linear or log. $47 \mathrm{k} \cap$ to 1 Mn in all popular values 30p each.
Escutcheon plates, black, white or light grey, 10p
each.
Control knobs blk/whe/red/yel/grn/blue/dk. grey/t srey, 7 peach

JACKS AND PLUGS

Sockets
circuit, unswitched, S1/\$5
2-circuit/2 break contaces, SI/BB
-circuit, unswitched (not GPO), 53/55s
-circuic with 3 break contacts, S3/BBB
chrome nut and black/whitelred circuit $\begin{gathered}\text { grey unswitched, } 55 / S S \text { black/white/red }\end{gathered}$ freen with 2 break contacts, $\$ 5 / \mathrm{BB}$
miature, $3.5 \mathrm{~mm}, 2$-circuis (black). 2 br . cont.
$\$ 6 \mathrm{~B}$ S6/BB

2nd Printing
 (Green and yellow cover)

112 pages, thousands of items, illustrations, diatrams, much useful technical information. The 2nd printing of this catalogue has been updated as much as possible on prices. It costs only 25 p post free and includes a refund voucher for 25 p for spending when ordering goods list value $\mathbf{C S}$ or more

Plues

2 circ. screened, top entry, P. 1
2 circ. sereened, side entry, SEPI
Line socket, mono, 231
24p

Line socket, stereo, 24
3-circuik, unscreened, blgrey/wh, P. 4
2-circuit, unscreened, b/whi/red/bl/grn/grey,
3-circuit, screened, top entry, P3
3-circuit, sereened, side entry, SEPJ
Miniature, $3 \cdot 5 \mathrm{~mm}$, 2 -cir., screened, PS Miniature,
colours, P6
INSULATED SCREW TERMINALS
In moulded polypropy brass. With insulating set, washers tal plate on $15 \mathrm{~A} / 250 \mathrm{~V}$ in blk/brwnired/yelisita and nuzs. Type TP, i, 14p each.
RESISTORS

Code	Wott	Ohms	1 to 9	102099	100 110
C	1/3	4.7-470K	1.3	note belo	
C	1/2	4.7-10M	1.3	1.1	$0 \cdot 9$ nete
C	3/4	4-7-10M	1.5	1.2	0.97 nett
C	1	4.7-10M	3.2	2.5	1.92 nett
MO	1/2	10-1 M	4	3.3	2.3 nete
WW	1	0.22-3.9	9	-	d
WW	3	$1-10 \mathrm{~K}$	7	7	6
WW	7	I-10K	\bigcirc	9	8

Coder

$C=$ carbon film, high stability, low noise
$\mathrm{MO}=$ metal oxide, ElectrosilTR' K , uleralow noise
WW = wire wound, Plessey.
Values: AllEI2 except $C+W, C i W$ and $M O \neq W$.
E12: $10,12,15,18,22,27,33,39,47566 B, B 2$
E12: $10,12,15,18,22,27,33,39,47,56,68,82$
and their decades.
E24: as E12 plus II, 13, 16, 20, 24, 30, 36, 43, SI
62, 75, 91 and their decades.
Tolerances: 5% except WWI 10%
± 0.050 below 10 n and MO i W 2%
Prices are in pence atch for quantities of the same ohmic value and power rating. NOT mixed values, (Ignore fractions of one penny on total value of resistor order.) Pricesfor 10 up in unite of 100 only.
BAXANDALL SPEAKER KIT
As designed by P.J. Baxandall and described originally in "'Wireless World." Simple roassemble faneastically sood resules and a greater money saver, Carries 10 watrs RMS. 15 ohms impedance Size 18 in $\times 12$ in $\times 10 \mathrm{in}$. Complete kit, includin Theck-fiat cabinet. x ine
charge 70 p part cost of carr product oblizes us to Equaliser Assembly: 62.30
Loudspeaker Unit 59RMIO9, E2.45
Cabinet Kit (to Baxandall desién), ©10.45
Cross-over choke for additional woofer to above.

FREE POSTAGE (U.K.)

ELECTROLYTICS

Axial uF	$\frac{\text { Lead }}{3 \mathrm{~V}}$	6.3 V	10 V	16 V	25 V	40 V	63 V	100V
0.47		-	-	-			IIp	1p
10	-	-	-	-		110		P
$2 \cdot 2$					11p		b	Pp
4.7	-	-	-	$11 p$		免	9	9
10	-	-		-	4p	9	8	ep
22	-	-	\% ${ }^{\text {p }}$		9p	8 p	8 p	10p
47	${ }^{8}$	-	9 p	8 p	8	8 p	10p	13p
100	9p	8	8	8 8p	90	10p	12p	19p
220	${ }^{10}$	8	$9 p$	10p	10p	$11 p$	17p	2)p
470	9p	10p	10p	11p	13p	17p	24p	45p
1,000	$11 p$	13p	130	17p	20p	25p	410	P
2.200	15p	18 p	23p	26p	370	$41 p$	-	-
4.700	26p	30p	300	44p	S80	-	-	-
10,000	42p	46p	-				-	

ZENER DIODES full range E24 values: 400 mW 2.7V 20 36V, 14p each: IW: 6.8 V ro 82V, 21p each: 1.5W: $4-7 V$ to $75 V$, 67 p each. Clip
15 W rating to 3 wates (type 266 F) 5p.

VEROBOARD

Copper clad 0.1 in. matrix- 2.5×3.75 ins. 27 p . 3.75×3.75
Copper clad 0.15 in . marrix -2.5×3.75 ins., 20 p . 3.75×3.75 ins., $30 p .25 \times 5$ ins., $30 p .3 .75 \times$ 5 ins., 36 p.
Vero spot face cutzer (any matrix) 48p, 0.040 pins (for 0.1 matrix) per $100,35 \mathrm{p}$. 0.052 pins (for 0.15 matrix) per 100,35 p.

KNOBS

In a great variety of modern types, for t in. shaft, per pack of two (Catalogue 7. page 62)

CONNECTORS

DIN from 2-way to 7 -way plugs and sockers; phono types, mains connectors, etc. (Catalogue 7, pag* 88).

This is EV Service

DISCOUNTS

Available on all items except those shown with NETT PRICES. 10% on order
PACKING AND POSTAGE FREE
in U.K. for pre-paid mail orders. For orders $\mathbb{C 2}$ and under, there is an additional handline charee of

GUARANTEE OF QUALITY

All goods are sold on the understanding that they conform 80 manulacturers' specifications and satisfaction is suaranteed as such-no reject "seconds" or sub-standard merchandise is offered for sale.
PRICES OUOTED DO NOT INCLUDE VAT for which 10% must be added to tozal nete value of order. Every effors is made to ensure correctness of information and prices as time of going to press. Prices are subiect to alteration without notice S.A.E. with writen enquiries please

GIRO ACCOUNT No. 38/671/4002
APPOINTED DISTRIBUTORS FOR SIEMENS FINE QUALITY PRODUCTS

electrovalue lid
 All postal communications, mall orders, etc., to Head Office at Eghom address, Dept. PE8.

28 ST. JUDES ROAD, ENGLEFIELD GREEN, EGHAM, SURREY TW20 OHB
Telephone: Egham 3603 Telex 264475 Shop hours-9-5. 30 doily. Saturdays 9 -1 p.m Northern Branch : 680 BURNAGE LANE, BURNAGE, MANCHESTER MI9 INA

Shop hours-Doily 9.1 and 2.5.30 p.m. Soturdoys 9-1 p.m U.S.A. CUSTOMERS are invited to contect ELECTROVALUE AMERICA, P.O. Box 27, Swarthmore PA 19081

100k electronics really mastered

no previous knowledge no unnecessary theory no "maths"

RAPY

BUILD, SEE AND LEARN step by step, we take you through all the fundamentals of electronics and show how easily the subject can be mastered. Write for the free brochure now which explains our system.

1/ BUILD AN OSCILLOSCOPE

You learn how to build an oscilloscope which remains your property. With it, you will become familiar with all the components used in electronics.

2/ READ, DRAW AND UNDERSTAND CIRCUIT DIAGRAMS

as used currently in the various fields of electronics.

3/ CARRY OUT OVER 40 EXPERIMENTS ON BASIC ELECTRONIC CIRCUITS \& SEE HOW THEY WORK, including:

This new style course will enable anyone to realiy understand electronics by a modern. practical and visual method-no maths, and a minimum of theory-no previous knowledge required. It will also enable anyone to understand how to test, service and maintain all types of electronic equipment, radio and TV receivers, etc

To BRITISH NATIONAL RADIO \& ELECTRONICS SCHOOL, P.O. BOX I56, JERSEY. Please send your free brochure, without obligation, to: we do not employ representatives

THE CONSTRUCTOR'S LOT

ALETTER published last month must have stirred some memories. It also provokes this question : must technical progress necessarily mean an erosion of pleasure and satisfaction for the ordinary electronics constructor? For example, can a contemporary lightweight assembly on a small piece of s.r.b.p. match a robust chassis-mounted unit typical of the valve era in terms of pride in accomplishment engendered in the builder?

Nostalgia for the past is not to be derided, but it must not blind us to the very real practical advantages of modern techniques. Pride in achievement is not to be equated merely with size and mechanical complexity. A special craftmanship is required to produce a first class miniature assembly; and generally more dexterity and patience is demanded than when working on a larger scale model. The constructional business is unmistakenly different today-but it still offers its challenges and its rewards.

The fear of our correspondent H. T. Kitchen (Readout July) that in the next decade construction may be degraded to an operation of merely joining together modules has some basis, it is true. Yet there is a brighter compensatory side to the picture, we feel sure. To begin with, l.s.i. and circuit modules are in the main designed to meet the requirements of mass produced equipments. The private constructor is hardly likely to want to enter in competition in all such cases, but he can take advantage of the existence of particular components of the kind referred to and make use of them in less orthodox ways in circuits or systems of his own or some other's devising. In other words the private designer and constructor is better equipped to explore pastures new. And this has always been one of the reasons for amateur activity anyway. So really the only fears that one can envisage concerning the future are based upon the assumption that individual enterprise in initiating new designs and new appplications will cease to be as prolific as in the past. A couple of moments reflection will surely convince any doubting Thomas that such a proposition goes entirely against human experience.

Without doubt the physical aspect of construction will continue to change, with an appreciable reduction in the amount of traditional workshop practices like "metal bashing" called upon. But this easing of the mechanical effort is likely to be adequately balanced by the greater possibilities arising from expanding areas of application.

To speculate about the future of electronics in general is of course always tempting and maybe some of our readers would like to do some crystal ball gazing on their own account. Our correspondent expressed fears-". . . on the constructor's lot in say ten years time." Well, ten years from now brings us to that ominous date created by George Orwell. Nineteen eighty-four will also be of some (but happier, we hope) significance to this magazine, since come October of that year Practical Electronics will have completed its sec ond decade.

Readers' own predictions concerning likely or possible developments in electronics and their effect upon the constructional field during the course of the next ten years are invited. Please refer to page 687 for details.
F.E.B.

Editor

F. E. BENNETT

Editorial
R. D. RAILTON Assistant Editor D. BARRINGTON Production Editor G. GODBOLD Technical Editor S. R. LEWIS B.Sc.

Art Dept.

J. D. POUNTNEY Art Ed/tor
J. A. HADLEY
R. J. GOODMAN
K. A. WOODRUFF

Advertisement Manager
D. W. B. TILLEARD

Phone: 01-634 4202
P. J. MEW

Phone: 01-634 4210
C. R. BROWN, Classified

Phone: 01-634 4301
Editorial \& Advertising Offices:
Fleetway House, Farringdon St.,
London EC4A 4AD
Phone: Editor/al 01-634 4452
Advertisements 01-634 4202

An instrument for biophysical and other sophisticated scientific measurements

AN INSTRUMENT capable of measuring the output from a circuit or a device without having any effect on the circuit or device is, of course, the scientist's dream, particularly when that instrument is also sufficiently sensitive to detect variations in state of some of the transducers around today.

Typical examples of difficult-to-measure areas include thermocouples, photoelectric cells, thermistors, pH electrodes, ionisation chambers, physiological and biological investigation, and of course quite a lot of current electronic circuitry. The problem in basis is that in most cases the signal to be measured comes from a very high impedance source and/or the source is not capable of delivering sufficient current to drive an ordinary indicator such as a moving coil meter.

A number of solutions have been proposed in the past to allow measurements to be made under these circumstances including the use of very sensitive galvanometers for thermocouples and the development of the so-called electrometer valve circuitry for the high impedance sources.

Both are expensive solutions and in the case of the latter, in fact a noisy (electrically) and fairly unstable instrument is produced unless a great deal of attention and money is paid to special circuit design. Instruments have in fact been made very successfully, the EIL pH meter to mention the most famous, but low costs and, in fact true flexibility were not their hall mark.

MODERN TECHNOLOGY

The advent of solid-state technology has done much to redress the situation. The first step being the appearance of the f.e.t. (field effect transistor)
with its ability to provide a circuit with very high input impedance not unlike a valve.

The second really useful item is the operational amplifier which cuts out a mass of discrete components and complex circuit design for the engineer and leaves him free to worry about the system.

The most useful device in the present context is the f.e.t.-input operational amplifier, of which several are available on the market now.

APPLICATION AREAS

Taking the availability of such devices as read, it becomes possible to consider just where they might be useful and obviously some form of replacement for the old electrometer voltmeter is feasible.

Such an instrument would be capable of indicating the condition of thermocouples, thermistors, light cells, perhaps even pH electrodes and ionisation chambers or photomultipliers. It would be possible to use such an instrument in the experiments where cell resistances, human body potentials and those in plants are measured. In fact a wide range of electronic and scientific measurements become possible without a great deal of expense.

Perhaps more important, the use of operational amplifiers facilitates the provision of an output dependent on the signal being examined but at a far higher level and power, which can be then used for chart recording, indication at remote points or even for control purposes.

Thus in the case of the plant cell measurements, a feedback potential dependent on the cell potential could be provided quite easily.

[^5]
Input Impedance Up to 10^{14} ohm, see text.

Accuracy

Dependent on the selection of range multiplier resistors. These should be 1% or better if possible. For best case they should be balanced on a high quality bridge used in conjunction with a d.v.m. or similarly checked out.

Ranges

Dependent on choice, see text.

Output

1V into' 100 ohm with $100 \mu \mathrm{~A}$ meter installed. Total $10 \cdot 1 \mathrm{~mA}$.

Frequency Response

1 kHz on lowest range rising to 1 MHz on the 1 V range.

Power Requirement
60 mW . 8.5 mA per battery.

Noise

With 10^{9} ohm source measured as $50 \mu \mathrm{~V}$ peak-to-peak referred to input, d.c. to $\mathbf{1 k H z}$.

Input Voltage Swing
Dependent on ranges chosen. IV on prototype but can bet supply voltage. In fact the input i.c. can withstand 30V max. at inputs but of course this could adversely affect the meter or anything attached to the output.

Drift

The drift figures for the input i.c.s are in the $\mu \mathrm{V}$ perdeg C region and in practice no drift was experienced in operation with the prototype at all. With the differential circuits and their increased sensitivity temperature drift should be expected.

A BASIC INSTRUMENT

A design of instrument which will satisfy most of the requirements for a high impedance input voltmeter can be made up from two main basic components. These are a f.e.t-input operational amplifier used as a voltage follower, that is as a unity-gain device the output of which follows the input exactly. and a second operational amplifier to provide the necessary gain when examining small signals.

The unity gain arrangement of the f.e.t. input device allows one to extract maximum benefit from the high input impedance of the f.e.t--input stages and in the present instance the device selected is quoted as having an input impedance in the 1011 to 10^{14} ohm region. In the prototype the authors used the R.S. MOPA which in fact is similar to the 741 operational amplifier with f.e.t. input stages. An electrically identical device is available under the

Fig. 1. The circuit diagram of a simple high-impedance voltmeter offering a performance equal to much more expensive instruments

designation NE536T from Signetics (S.D.S. Components).

The output from the input amplifier is fed to the second i.c., in this case the 709 or 741 operational amplificr, which can now amplify the signal as required to give the desired sensitivity and can, at the same time provide a "back-off" feature where the zero of the instrument can be moved, in a voltage sense, within set limits to offset input voltages, measure particular levels with a greater sensitivity and so on.

In addition, of course, the 709 is capable of providing a fairly hefty output which means that within sensible limits the instrument can drive almost any indicator and still have sufficient spare output to drive a chart recorder if this is needed.

The basic circuit of such a system is shown in Fig. 1.

ICl is the f.e.t.-input device which acts as a noninverting amplifier with a gain of 1 because of the feedback link from output pin 6 to inverting input pin 2.

SENSITIVITY

IC2 provides all the amplification necessary for most purposes and, as can be seen, the gain of this stage is set by selection of the feedback resistor R3 using S5. It should perhaps be added that the capacitor Cl and the capacitor and resistor combination C2 and R9 are frequency-determining components which are specific to the 709 i.c. used. If a 741 device were used these would not be necessary but can be left on the circuit.

The output of ICl is fed to the inverting input of IC2 and switch $\$ 3$ serves to again invert the output of IC2 so that the meter acts in unison with the input. This switch can be used to reverse the meter connection so as to effectively reverse the input polarity if needed. R10 is a series resistor chosen to suit the meter ME2 so as to set the f.s.d. at 1V and this latter level is chosen in the prototype because there are chart recorders with this as a standard range.

Of course, other values may be used but it is advisable to ensure that the selected value does not approach too closely to the supply rail voltage, in the present instance 4.7 V . In fact ME2 is a $100 \mu \mathrm{~A}$ moving coil meter in the prototype.

The effective zero point of the meter may be adjusted by means of VR2 which is a ten-turn Helipot used to give sufficient resolution to this function. Whilst this device is expensive it will none-
the-less be found very useful in practice. As can be seen, this "Back-off" function can be switched out using S 2 .

Back-off is limited to 1.5 V with the arrangement shown but experiment will show that the value may be altered if desired. However, again care should be taken not to approach right up to rail potential which can produce non-linearity. In addition, whilst a ten-turn potentiometer is used here to give good resolution, particularly at low input potentials, VR2 can be replaced by a normal potentiometer if the resolution is not needed.

VR1, the "set zero" potentiometer, is a standard component and both potentiometers are brought out to the front panel.
The indicator ME1 is in fact a so-called "roller indicator" which both indicates the ON state of the instrument and gives some idea of the condition of the batteries.

POWER SUPPLY

In this latter area it can be seen that two PP9 units are used to give a + and a - supply. Resistors R5 and R11, in conjunction with Zener diodes D1 and D2 serve to regulate the supply to 4.7 V on each rail. This has proved ample in the prototype and in fact in tests carried out with a 10 mA load on the output as well as the meter ME2 indicating, the instrument has been run for several hours without any ill effect.

The main reason for selecting a lower power rail potential is to extend battery life and ensure in the meantime that rail potentials do not suffer since any unbalance in these can "throw" the meter completely.

The "set zero" shorting switch S1 is of the changeover type which is a must as ICl input must be shorted to ground when zero is being checked to remove any input voltage. At the same time, it may well be that to short the circuit an object under examination might damage it, as is the case with plant cells for example.

It is suggested that battery operation of this equipment be accepted as normal. The drain is not high and the problems involving mains-borne interference and other items associated with anchoring a very high impedance device to main supply lines are almost impossible to avoid. In addition this is particularly the case if cost is important.

In any event, the present arrangement is both simpler, makes for portability and there is always the added point that many of the measurements which this type of instrument can effect need either a screened environment into which mains supply must not be passed or, more important can involve application of electrodes to person or animal or plant, with consequent risk of dangerous shock if mains supply is used.

CONSTRUCTION

As can be seen from the illustrations (Fig. 2 is the p.c.b. master and Fig. 3 the component layout), construction of the basic printed circuit board follows normal procedure with the exception that, for convenience of mounting ranging resistors, two edge

connectors are used to interconnect the board and the various switches and other controls. The case chosen for the prototype is in fact somewhat larger than is really required and could be replaced with a smaller box. Equally, some of the components could be omitted if required.

For example there is no real need for the indicator MEI to also be a battery state indicator, a simple lamp would suffice or, indeed the device could be omitted altogether.

There is no particular mystery to the layout of the front panel. It was selected to show each control in a "functional" manner so as to be clear to students and others not familiar with this type of device.

One point which does require some care is the assembly of the input operational amplifiers on to the p.c.b. It should be remembered that these are f.e.t.-input devices and thus have somewhat sensitive inputs, not only to the signals you wish to amplify but to such problems as static electricity.

Whilst the devices are protected it is still much less expensive in the long run to, for example, disconnect the soldering iron from the mains when working on the board during or after having mounted ICl.

FEEDBACK SELECTION

The operational amplifier in the second stage is used to provide amplification of the input signal level to give a $0-1 \mathrm{~V}$ output for the required level of input. The gain of this stage is equal to the feedback resistor value divided by the input resistor value.

In the present case the input resistance is R 6 , with a value of $1 \mathrm{k}!$!. Thus if the lowest (most sensitive) range is to be 0 to 50 mV , the range resistor R 3 needs to have a ratio relationship with the input resistor of 1 V divided by 50 mV which is 20 . As R6 is $1 \mathrm{k} \Omega 2 \mathrm{R} 3$ must be $20 \mathrm{k} \Omega$.

Thus we need $R 3$ values of $20 \mathrm{k} \Omega, 10 \mathrm{k} \Omega 2 \mathrm{k} \Omega 2$ and $1 \mathrm{k} \Omega 2$, for ranges of $50 \mathrm{mV}, 10 \mathrm{mV}, 500 \mathrm{mV}$ and 1 V f.s.d.

The reader is of course free to set up his own range values to suit his meter or other factors.

INPUT IMPEDANCE

Whilst the specification figures for the FET MOPA mention $10^{14 \Omega}$ input impedance and $10^{11 s}$) to $10^{14} \Omega$) for the NE 536T, these values are only properly obtainable if some very stringent precautions are taken with the construction of the input circuitry. In the first place most printed circuit board just could not match the sorts of figures mentioned, particularly the s.r.b.p. variety which is somewhat hygroscopic and thus leaky when considering the sorts of impedance being discussed here.

In all probability the input impedance of the instrument described will end up around $1 \mathrm{kM} \Omega 2$ if good glass board material is used. For most purposes this is quite sufficient but if higher figures are needed then construction becomes critical.

The input conductors of the operational amplifier ICl would have to be attached to terminal posts in the tops of p.t.f.e. pillars and the input leads would have to be taken directly to the pillars from the input terminals.

In addition, normal terminals mounted in the body of a metal case would be out of the question. The terminals would need to be mounted in something like a sheet of acrylic (Perspex) which would give each terminal about 25 mm clearance from the metalwork and each other.

The limiting factor for the input impedance under these circumstances becomes perhaps the humidity of the atmosphere around and inside the meter or perhaps the presence of any dirt or damp on the underside of the i.c. itself.

One other factor of importance. If it is required to achieve the highest possible input impedance then both the input amplifier, standoff pillars, acrylic sheet and terminals should be washed in pure alcohol or some other similar solvent to remove any traces of dirt or grease and even moisture trapped on the surface of the devices. After such a washing the parts should be handled as little as possible since each fingerprint contains all the contaminants needed to reduce the impedance by quite a large amount.

DIFFERENTIAL INPUT

The basic instrument described here is adequate for most applications but there are occasions where a differential input can be of assistance. It is not too difficult to adapt the basic circuit as is shown in Fig. 4 by the addition of a further input amplifier.

Fig. 4. Modification of the system of Fig. 1 to cope with differential measurements

Fig. 5. A differential system with high sensitivity as suggested in a scientific paper in Analytical Biochemistry

PLANT CELL MEASUREMENTS

Fig. 6. Plant cell potential being measured using the basic high impedance meter

The only difference of any moment is that the upper of the two input amplifiers is set to zero using a skeleton potentiometer which is pre-set. The lower amplifier set-zero potentiometer is used on the front panel as in the basic circuit.

The output operational amplifier, the 709 or 741 , is used in differential mode.

A modified form of differential instrument was the subject of a paper published in Analytical Biochemistry 13, 556-563 (1971) where the authors showed that it was possible to measure pH changes as low as 0.001 pH using a high impedance voltmeter configuration as in Fig. 5.

Here the gain has to be adjusted to suit the scale of the recorder being used at the output and, of course, the instrument has to be kept in a very stable temperature environment if the claimed accuracy is to be achieved. Currently the authors are working on a version of this concept.

APPLICATIONS

The instrument described in detail is currently in use carrying out examination of the effects of electrical stimulation and of various materials being passed through plant cells. The general circuit is shown in Fig. 6 where it can be seen that the meter measures the output from the plant cell continuously and records the result on a pen recorder.

The plant cell is fed with various fluids which are continuously pumped through. Two micro-electrodes pierce the cell walls and the meter is connected across them.

The "High" side of the neter/cell interface is connected to a switch and a set of calibration resistors which are in turn connected to a stimulator which provides stimulus pulses as and when required.

The scientist needs to know how the cell reacts and what changes occur dependent on fluid and electrical stimulation. Using the arrangement shown he can monitor the cell continuously and can also calculate the value of the cell impedance. In most cases this is equivalent to an RC parallel circuit and the impedance varies with the type of cell. Measurements have provided results from 2Mss up to 100 Ms ?

In some experiments the stimulator can be replaced with a d.c. source and then the output of the meter used to control the rate of flow of the supply fluid.

MONITORING

Other obvious applications include the monitoring of thermocouples, particularly where fairly long leads are involved since the resistance of the latter, in conjunction with any indicator which required current to drive it, would sadly effect the accuracy of the system.

Monitoring the inputs to other high impedance devices such as f.e.t.s is possible with this instrument, as are many physiological experiments involving the resistance of the human body or the ability of muscles to produce potentials detectable at the skin surface. In this context this particular form of equipment offers itself for consideration in experiments involving the provision of a feedback signal which could be used for exdmple to control other stimuli such as lights or sounds as well as for recording purposes.

THE MAIN theme of this month's article is methods of achieving high input impedance in amplifiers.
The Darlington amplifier is a simple but costly way of producing the desired result whilst the much more subtle "bootstrapping" technique gives exce!lens results with the acidition of only a capacitor and resistor to the basic emitter follower.

After this we take a quick. Icok at negative feedback techniques. We have seen atn example of nega-
tive feedback in the emitter follower, but it is usual to apply negative feedback over a stage or a series of stages in order to increase stability, reduce distortion and nose, and inerease impedance.

We end this description of small signal amplifiers with a look at a well-designed amplifier designed by the Mullard team whinch makes use of the principles covered so far.

5.1. DESIGNLNG FOR VERY HIGH INPUT RESISTANGE

Some signal sources (crystal microphones, photodiodes, etc.) only deliver very tiny currents because of their wery high source resistance. An attempt to amplify such signals will only be successful if the input resistance of the amplifier is also very high.

Although emitter followers have this property, the possibility of achieving $R_{\text {IN }}$ of the raegohm order is still difficult.

A simple answer is the Darlington pair, the basic circuit of which is shown in Fig. 5.1.

Remembering a previous equation for a single stage emitter follower $r_{\text {in }}=h_{\mathrm{f}}\left(r_{\epsilon}+R_{\mathrm{E}}\right)$ and assuming r_{e} is negligible in relation to $\boldsymbol{R}_{\mathbf{E}}$, w $*$ may simplify this to $r_{\mathrm{in}}=h_{\text {se }} R_{\mathrm{E}}$.

However, this circuit uses tro stages of amplification so that the formula becomes $r_{1 n}=\left(h_{f_{1}} \times h_{\mathrm{f}_{2}}\right) R_{\mathrm{E}}$ where $h_{s_{1}}$ and $h_{f_{2}}$ are the respective gains for the two transistors.

Fig. 5.1 Two Iransistors connected as a Darlington pair. The dotted resistor is not strictly part of the Darlington, its use is explained in the text

Assuming they are both the same, the equation becomes $r_{\text {in }}=h^{1}{ }^{1} R_{\text {E }}$.
For example, if R_{E} is $5 \mathrm{k} \Omega$ and h_{re} is $100, r_{1 \mathrm{ln}}$ becomes about $50 \mathrm{M} \Omega$ which is so high in relation to the shunting of R1 and R2 that it can be ignored in the calculation of $R_{\text {In }}$.

It is easy to see therefore that the $R_{\text {IN }}$ of the stage is almost entirely determined by R1, R2 values.

The $R_{E_{1}}$ resistor is to complete the divider chain for the base of TR2 and also to pump a little more collector current into TR1. Without it, the base current of TR2 would be the collector current of TR1 which would reduce its $h_{\text {te }}$ too much. A possible set of components is shown in Fig. 5.2. This circuit gives an $R_{\text {IN }}$ of nearly $0.7 \mathrm{M} \Omega$ (R1 and R2 in parallel).

Fig. 5.2 Typical component values for a high Input impedance, Darlington pair amplifier

5.2. INPUT BOOTSTRAPPING

There is a novel method of increasing the input resistance of an emitter follower stage known as "bootstrapping". The purpose is to increase R_{IN} by effectively removing the bias resistors from the signal path. Two extra components are needed as shown in Fig. 5.3.

BOOTSTRAPPING ACTION

Resistor R3 is made small enough not to interfere with the d.c. bias. Note that the signal voltage $V_{\text {IN }}$ is at one end of $\mathbf{R} 3$ and the output voltage (via C1) is at the other end.

Now $V_{\text {OUT }}$ is in phase with $V_{\text {DN }}$ and has almost the same amplitude (voltage gain $=1$).

Thus, it follows that
Both ends of R 3 are at the same potential and no signal current can pass through.

This means that the signal can carry out its proper function of changing the base current without wasting half of its energy flowing down R1, R2.

Bootstrapping thus effectively removes R1 and R2 from the stage input resistance formula.

Thus $R_{\mathrm{IN}}=r_{\mathrm{in}}$, and r_{in} can be made very high.

CHOICE OF R3

The choice of R3 is not critical providing the base current does not produce any appreciable voltage drop (much less than 0.6 V is the usual criterion).

Capacitor Cl should have a reactance (X_{c}) less than R3 at the lowest expected frequency. This ensures that the high input resistance is maintained at all signal frequencies.

Fig. 5.3 shows typical component values for a circuit baving an input resistance of approximately 18M 2 .

Fig. 5.3. By the addition of capacitor C1 and resistior R3 to the basic emitter follower circuit, one obtains the very hilgh input impedance "bootstrap" contiguration. The circult shown here gives an input impedance approaching $18 \mathrm{M} \Omega$

5.3. GOUPLING LOSSES

Suppose we have one amplifier stage which, on its own, gives a gain (A) of 100 and we feed the output into another stage having a gain $A=50$. A miserable disappointment is in store for those hoping the overall gain would be 5,000 .

The output resistance of stage 1 and the input resistance of stage 2 form a voltage divider which causes a "coupling loss" between the stages.

OVERALL GAIN

To calculate the overall gain between signal e.m.f. and final output it is customary to treat coupling losses as "gains".

For example, if we tose half the signal at some point due to coupling loss, we can say the "gain" of the coupling is 0.5 .

Fig. 5.4. A multistage amplifier may be envisaged as a series of blocks each having a "gain" G. The total gain is then cbtained by multiplying the individual gains.

In this way we can work methodically through a multistage amplifier as if it consisted of isolated blocks, and by multiplying all the individual gains we can find the total gain.

EXAMPLE

To illustrate the procedure, consider the circuit shown in Fig. 5.4. In this example there are five "gains" in all. G1. G3, and G5 are fractional gains (losses) and G2 and $\mathbf{G 4} 4$ ate actual stage gains.

Let $\mathrm{GI}=0 \cdot 2, \mathrm{G} 2=100, \mathrm{G} 3=0 \cdot 1, \mathrm{G} 4=100$, $G 5=0.5$.

Then the total gain $=0.2 \times 100 \times 0.1 \times 100$ $\times 0.5=100$.
It is advisable to use this method of analysis in all multistage amplifiers.

5.4. MINIMISING COUPLING LOSSES

To illustrate the sericusness of the problem consider the following system.

A pick-up has an out out e.m.f. of 5 mV . a source impedance of $5 \mathrm{k}!!$ and is feeding an amplifier having a gain A of 100 . The $R_{1 \text { : }}$ of the amplifier is $10 k!!$ and $R_{\text {out }}$ is $2 \mathrm{k}!?$. The final load on the amplifier is $5 \mathrm{k}!$!

Now the coupling loss between the pick-up and amplifier is

$$
G!=\frac{10 k!!}{10 k!1+5 k!2}=0.67
$$

The gain of the amplifier gives

$$
\mathbf{G} 2=100
$$

The coupling loss between the amplifier output and final load is

$$
\mathrm{G} 3=\frac{\leq k!!}{5 k!2+2 k!!}=0.71
$$

The total gain is $\mathbf{G} 1 \times \mathbf{G} 2 \times \mathbf{G} 3=0.67 \times 100$ $\times 0.71 \bumpeq 48$.
Thus a gain of supposedly 100 has been reduced to a mere 48 .

RULES ON COUPLING

Some rules and tips on coupling designs are clearly worth memorising.

1. Keep output resistances low and input resistance high.
2. The R_{sN} tends to rise if I_{c} is lowered.

The $R_{\text {act }}$ ends to fall if I_{c} is increased.
Thus we have a confict of requirements-to satisfy the requirement of $\boldsymbol{R}_{\text {IN }}$ or $\boldsymbol{R}_{\text {out }}$.

Mathematical aralysis indicates that

Total losses will be ninimel if the input and output coupling losses are arranged to be equal.

There is of course an easy way out-just put an emitter follower between every stage. This is a little extremist however and could be rather costly if adopted as a general princifle.

5.5. NEGATIVE FEEDBACK

DEFINITION

Negative feedback is the feeding of part, or the whole. of the voltage or current from some later stage of an amplifier back to an earlier stage. The phasing of the voltage must tend to redice the gain.

CLASSIFICATION

Series voltage feedback-the voltage fed back is in series with the input. This increases $\boldsymbol{R}_{1 N}$.

Parallel voltage feedback - voltage fed back is in parallel with the input. This redaces $R_{\text {IN }}$.

EQUATIONS

If A is gain before feedback. A is gain with feedback and $\beta=$ fraction of output which is fed biack then

$$
A^{\prime}=\frac{A}{1+\beta A}
$$

If $\beta .4$ is large, the equation rechuces to

$$
A=1 / B
$$

This indicates a remarkable property-the gain of the amplifier can be made independent of the components inside it, including the transistors themselves!

In addition to this obvious advantage, negative feedback will recuce distortion and internally generated noise, and change inpar and output resistances in the same ratio as the gain is reduced.

In view of this, it is good design practice to produce a gain higner than required and reduce it by negative feedback to the desired value.

NEWS BRIEFS

New Information Retrieval System

During the course of the past five years many attempts, particularly by the large American multi-national companies, have been made to produce an efficient microfilm information retrieval system to reduce the ever demanding space requirements of documentation
Many mechanical systems have been evolved, with extreme limitations on speed, accessibility and reliability. Now. a British company, Selectro-Micro Ltd. (part of the Westminster Holding Group) has developed a fully automatic, electronically-controlled information storage and retrieval system with print-out known as Selectacopy.

This will provide, for the first time, an electronic facility for keeping over one million documents in one small room (as opposed to over 40 times the office and storage space required, and the staff costs involved) and making each document immediately available in just a few seconds.

Galling China

$B^{\text {Ritain's telephone service with the People's }}$ Republic of China, which until recently had been available for only three hours a day, became full-time with a switch over to satellite communications.

This facility is made possible by the opening in China of a satellite Earth station using the Intelsat-IV communications satellite positioned 22,300 miles above the Indian Ocean

Telephone calls from Britain to China are now beamed from the Post Office satellite Earth station at Goonhilly Downs. Cornwall and received by China's new Earth station, near Peking.

Keep Moving

TRAFFIC signals in Nottingham will soon be controlled by a Ferranti data transmission and com puter system as part of an integrated traffic scheme for the city centre. A dual Argus 700 E system, valued at more than $£ 250,000$, ordered by Nottingham Corpor ation will be connected via data links to 128 out stations.

The scheme is part of Nottingham's plans to avoid costly large scale road building and widening by con centrating on optimising traffic flow over a wide city area and making more efficient use of existing roads.

What does the future hold in store for electronics in general, and for electronics constructors in particular?
Your views and predictions concerning likely developments in the next $\mathbf{0 0}$ years are invited.

A selection of readers' contributions to this debate will be published in our November and December issues to mark the completion of this magazine's first 40 years of publication.

Contributions (not exceeding 300 words and entitled "The Next Decade") should be addressed to The Editor, Practical Electronics, Fleetway House, Farringdon Street, London, E.C. 4 and posted in time to reach our offices by August 24, 1974.

A payment of $£ 5$ will be made for each letter published. Selection will be based upon originallty of thought, technical credlbility and general presentation.

BYFRANXW. HYDE

APPLICATIONS TECHNOLOGY SATELLITE

In August, after trials are completed, the U.S. applications technology satellite will go into service. This satellite, the first of its kind, may well have far reaching effects on the shaping of future societies. Versatile and having the facilities for the transfer of command, the one and a half ton vehicle is the largest communications satellite built so far.

The facilities provide for education transmissions in the form of lessons where the students can be taught to read and write under direct supervision. The remote and developing areas, where illiteracy is still a major problem, can be covered by this one satellite. Many other uses will be made in the field of agriculture, medical service, hygiene, family planning and food preparation.

Another important application is the use of community television sets in places like India and Africa and will provide a service for the improvement of the people. In a "Spacewatch" report on the development of India's space projects mention was made of the cheap aerial systems to enable the signals of this powerful satellite to be received.

Under a contract with the American Government, India will not only have the use of the satellite facilities but it will be under their direct control. To bring this about, the satellite will be moved to a position near Africa and north of the equator. The only connection with operation that America will have during the year of loan, will be the loan of the satellite.

To bring all this about the satellite will first be put into a geostationary orbit near South America. From there the whole of the United States will be covered by the transmissions. Many uses are planned during the satellite's first run.

Medical contact with remote areas like Alaska will enable physicians to see patients direct on television screens and instruction will be given to medical assistants on the spot, as to treatments. A network will be available so that conference diagnosis can take place with a number of specialist hospitals.

Seminars will be set up by television links so that teachers in remote areas can continue their own training in advanced techniques of education. The complete facilities of instructor and student, with visual aids, are as would be available in the lecture room. Two-way voice communication will be used in a number of original experiments.

The satellite, which is 27 feet high and 30 feet in diameter, has solar panels which will provide 200 kilowatts of power. The power available is some 30 times more than any previous system. It is for this reason that extensive and continuous cover of these vast areas can be made, using the cheap receiving systems at the community centres. The transmitting aerial on the satellite is so shaped and steered that the whole of the area to which it is directed can be covered effectively.

After its period at the station in the 22,300 mile orbit above South America, the motors will be activated and the satellite will move to
the new station near Africa where it can serve India. This is expected to take place in mid-May 1975. During its stay there one of the experiments will be to observe the arrival of the monsoon in various parts of India. This will help in making predictions for the future, and setting the correct period for cropping the rice and timely replanting before the beginning of the monsoon.

After its sojourn in the area of India the satellite will once more return to its first orbit where it is expected to serve the United States for several years more. This is dependent on the life of the solar cells. Thus, this venture may pave the way to a world system making the facilities available to the whole world. Not the least of the benefits is the possible and more efficient control of aircraft in flight, and world wide network of medical facilities.

DOMESTIC SATELLITE

The recent launch of the domestic satellite, somewhat similar to that set in orbit for Canada, is in a synchronous orbit such that, with the shaped aerial, signals will be received over 48 states. The satellite is named Westar and is the first of a series to be launched by the Western Union Telegraph Company.

The weight of Westar is about $1,250 \mathrm{lbs}$. This is the first commercial satellite to be put in orbit and represents the change from national funding to private enterprise. Thus, another milestone in space history is set up.

ALL OUR PRICES INCLUDE

BSR HI-FI AUTOCHANGER STEREO AND MONO
Maye 12", 14" of $\mathbf{T}^{\prime \prime}$ records. Auto or Manual. A Nith qually unit beeked by purantioe. A.C. zerasov Abe 14t $\times 11$ tin.
 Above moter board 34in. below motor board $2 \% / \mathrm{m}$. whth STEREO and MONO XTAL E6:75 Fout 45p.

PORTABLE PLAYER CABINET

Modern detign. Elack rexine covered
SHwer fromt gritie. Chrome thtinge.
motor board cut tof above BSR deck £4-50 Post 45p.
COMPACT PORTABLE STEREO HI-FI
Two full alze loudspeakere $132 \times 10 \times 31 / \mathrm{In}$. Player unlt ctips to loudapeskera making it axtromely compact, overall alze only $134 \times 10 \times 1 / \mathrm{ln}$. , 3 watie per channel,
plays all records 33 r.p.m., 45 r.p.m. Separate volume and

WEYRAD P50 - TRANSISTOR COILS RA2W Forrite Aerial $85 p \mid$ Driver Trone. LFDT4 65p

 Weyred Booktet …..10p VOLUNE CONTROLS 80 Ohm Cosx $5 p$ yd. 5 K. ohms to 2 Meg LOG or
LIN. L/8 15 P . D.P. 25p. AERAXIAL-AIR $\$ \mathrm{PPACEO}$
 Edep 5K.8.p. Tranaletor 25 p . FRINOE LOW LOS8
Ideal 825 and colour 10 py
8 in . or $10 \times 6 \mathrm{in}$. ELAC HI-FI SPEAKER Duat cone plasticised roll sur-
round. Large ceramic magnet.
$50-16,000$ c/s. Bess fesonance. $50-16,000 \mathrm{c} / \mathrm{s}$. Base resonance 55 c/s. ${ }^{8}$ ohm im
£3. 75 Pont 25p
E.M.I. $13 \frac{1}{2} \times 8$ In.

SPEAKER SALE!
Why cromin tweetore.
$\begin{aligned} & \text { And crosecover. } 10 \\ & \text { wath. State } 3 \text { or } 8 \text { or } 2\end{aligned}, 50$
With flared tweeter cone and ceremic magnet. to watt.
Bess rea. 46- $-10 \mathrm{c} / \mathrm{s}$.
Plux 10,000 gaus.
然㰪 3 or 1 or 15 ohm . Poat 25 p Bookshelf Cablinet Touk ninath
13in $\times \sin$ Bess Woofer, 20 watte, 15 ohms, $\mathbf{~} 5 \cdot 50$
SET OF 3 MOTORS FOR
COLLARO STUDIO
115 VOLT TAPE DECK
ع2-50 Post 50p

 ALUARHNUM PANELS 18 s.w.g. $6 \times 4 \mathrm{nn} 12 \mathrm{p} ; 8 \times \sin 19 \mathrm{p}$;
 8.APB PAXOLINPANEL $10 \times 120 \mathrm{p} .16 \times 10 \mathrm{in} 60 \mathrm{p}$

ANOTHER R.C.S. BARGAIN!
ELAC $9 \times 5 \mathrm{in}$ HLFI SPEAKER TYPE 59RN This famous unh now avaliable, 10 watts, 8 ohm prtco £3-30 Posi
$25 p$

R.C.S. STABILISED POWER PACK KITS

 Ah parts and instructions with Zener Diode, Printed Circult, npul zeo/ru9V a.c. Output voltagen svellable f of 1 of 12 or RCS POWER PACK KIT
12 VOLT, 750 mA . Complete whth
printed eircutt board and asembly
intructons.
2 VOLT 300 mA KIT, $\mathbf{2 2}$-75. \& VOLT 1 AMP KIT, 52.95
R.C.S. GENERAL PURPOSE TRANSISTOR

PRE-AMPLIFIER BRITISH MADE Idopal for mike, Tapo, P.U., Gunar, atc. Can be uned with semary ${ }^{2}-12 \mathrm{O}$ or ..

ELECTRO MAGNETIC

PENDULUM MECHANISM 1.5V d.c. operation over 300 houra continuous on $\mathrm{SP2}$
battery, fully adjuetable swing and apeed. Ideal difaplays battery, fully adjustable swing and speed. Ideal dilaplays, temching electro megnothem or for metronome, strobe, otc.

95p ${ }^{\text {poup }}$
BRITISH FM/VHF TUNING HEART
is to 10t M/C8 Britioh made. 2 Trenalatore ready aligned requires 10.7 M/CS I.F. Complete with funing gang,
Connections auppled but some technics esential. OUP oricef3.95 MAINS TRANSFORMERS ALl POST
Eagle MT12 12-0-12V 50 mA
$250-0-25080 \mathrm{~mA}, 6.3 \mathrm{~V} 3.5 \mathrm{~A} .6 .3 \mathrm{~V} 1 \mathrm{~A}$ or 5 VV 2 A $350-0-350$ a0 mA, $5 \cdot 3 \mathrm{~V} 3.5 \mathrm{~A}, 5 \cdot 3 \mathrm{~V} 1 \mathrm{~A}$ or 5 V 2 A $300-0-300 \mathrm{~V} 120 \mathrm{~mA}, 6 \cdot 3 \mathrm{~V}$ 4A C.T.; $6 \cdot 3 \mathrm{~V} 2 \mathrm{AA} \ldots \ldots \mathrm{l}$
MINIATURE $200 \mathrm{~V} 20 \mathrm{~mA}, 6 \cdot 3 \mathrm{~V} 1 \mathrm{~A} 2 \mathrm{k} \times 2!\times 21 \mathrm{n}$ MINIATURE 200V $20 \mathrm{~mA}, 6.3 \mathrm{~V} 1 \mathrm{~A} 2 \frac{1}{2} \times 2 \mathrm{I} \times 2 \mathrm{n}$ HEATER TRANS. 6.3V 1.5A
 GENERAL PURPOSE LOW VOLTAGE. T Ppped outputs
 2 mp
3 amp
5 mmp . $5 \mathrm{mmp} .6,8,10,12,16,18,20,24,30,36,40,45,60 \mathrm{E9} \cdot 75$

 $12 \mathrm{~V} ~$
400 mA
$40 \mathrm{~V} / \mathrm{mp}^{2}$.
AUTO TRANBFORMERS. 115 V to 230 V or 230 V to 115 V 150W £3.00; 500W £8.25; 750W E10; 1000W 115
 BATTERY CHARGERS. Ready bult whth leade and cllpe

FULL WAVE BRIDGE CHARGER RECTIFIERS
6 of 12 V outputa, $1 \frac{1}{1} \mathrm{amp} 40 \mathrm{p} ; 2 \mathrm{amp} 55 \mathrm{p} ; 4 \mathrm{amp} 85 \mathrm{p}$
MAINS ISOLATING TRANSFORMER Primary 0-110-240V. Secondary 0-240V. 3A. 720W.
inaulated ferminah. Varnteh tmpregnated. Fully encioged Inaulated terminale. Varniah mpregnated. Fully enclosed
 IDEAL FOR COLOUR TY OR GARDEN TOOLS

	NEW ELECTROLYTIC CONDENSERS				
2/350V	.14p	250/25V		$50+50 / 300 \mathrm{~V}$.50p
$4 / 350 \mathrm{~V}$.14p	500/25V	20p	60 + 100/350V	85p
1/450V	18p	1000/25V	35p	$32+32 / 250 \mathrm{~V}$	20p
18/450V	27p	1000/50V	47p	$32+32 / 450 \mathrm{~V}$	400
32/500V	50p	$1+8 / 450 \mathrm{~V}$	22p	350 + 50/325V	55p
25/25V	10p	1 $+15 / 450 \mathrm{~V}$	25p	$100+50+50 / 350 \mathrm{~V}$.55p
$50 / 50 \mathrm{~V}$.10p	$18+16 / 450 \mathrm{~V}$.40p	$32+32+32 / 350 \mathrm{~V}$	$5 p$
100/25V	. $10 p$	$32+32 / 350 \mathrm{~V}$			

LOW VOLTAGE ELECTAOLYTICS.
$1,2,4,5,1,18,25,30,50,100,240 \mathrm{mF} 15 \mathrm{~V}$ 10p. 500 mF 12 V '15p; $25 \mathrm{~V} 24 \mathrm{p} ; 50 \mathrm{~V} 3 \mathrm{p}$.
$1000 \mathrm{mF} 12 \mathrm{~V} 17 \mathrm{p} ; 2 \mathrm{VV} 3 \mathrm{p} ; 50 \mathrm{~V} 47 \mathrm{p} ; 100 \mathrm{~V} 70 \mathrm{p}$.
2000 mF 8V $25 \mathrm{p} ; 25 \mathrm{~V} 44 ;$ 50V 57p.
2500mF $50 \mathrm{~V} 5 \mathrm{p} ; 3000 \mathrm{mF} 25 \mathrm{~V}$ 47p; 50V 45p.
5000 mF 8V 25p; 12V 42p; 25V 75p; 35V 35p; 50V 95p.
CERAWIC, 1pF to 0.01 mF , 4 p . Sllver wica 2 to 5000 pF , 4p. PAPER $350 \mathrm{~V}-0.1 \mathrm{4p}, 0.513 \mathrm{p}$; 1 mF 150 V 150 ; 2 mF 150 V 15 p. Seov-0. 601 to 0-05 $4 p ; 0.15 p ; 0.258 p ; 0.4725 \mathrm{p}$.
SILVER MICA. Close lolernice 1\%. 2.2-500pF Ep; se0 2,200pF 18p; 2,700-5,300 pF 20p; 8000pF-0.01, mid 30p ench. TWHN OANO, "0-0" 204pF + 17pF, 65 p ; 500pF atanderd 45p.

 RESIBTORS. $+\mathrm{w}, \mathrm{iw}, 1 \mathrm{w}, 20 \% 10 ; 2 \mathrm{w}, 5 \mathrm{p}$. 10 n to 10 m HIGH STABILITY. IW 2% ' 1 ohne to it meg., 10p. Ditto 5\%. Preferred values 14 ohme to $10 \mathrm{meg} ., 4 p$. WIRE-WOUNO REASTORS 5 watt, 10 watt, 15 wett, to ohma
to 100 K 10 p ench.
TAPE OSCILLATOR COIL Valve type 35 p .
V.A.T.

NEW MODEL 'BAKER LOUDSPEAKER", 12IN 50 WATT. AROUP SAM12: BOR 15 OHM HIGH POWER. $£ 16$
BAKER MAJOR12"£9•90
$30-14,500 \mathrm{c} / \mathrm{s}, \mathrm{P}$ Pin. Post free cone, woofer end tweeter cone together with BAKEA coramic magnot tineembiy hoving mux density of 145,000 Morwelts. Bess resonance $40 \mathrm{c} / \mathrm{s}$. Rated 20W NOTE: 3 or 1 or 15 ohme mus be stated.

Module klt, 30-17,000 c/s whth twelter, croseover
Inetructione. $\mathrm{E12.51}$ Pleaese state 3 or $\frac{1}{}$ or 15 ohma . Post trae

DAKER "Blo-8OUND" SPEAKERS Poat frae		
		$151 n .82$ sow or 15 ohm
TEAK VENEERED HI-FI SPEAKER		
For 121n or 101n dis. speuker 20×13		
For 13×8 in or sin speaker		
For $\mathrm{x} \times 5 \mathrm{In}$ speaker		

GOODMANS $6 \frac{1}{2} \mathrm{ln}$. HIFI WOOFER
ohm. 10W. Large ceramic magne
peclal Cambrlc cone surround.
Frequency response
deal P.A. Columns.
sultable Ceblnot $12 \times 0 \times$ etc

ELAC CONE TWEETER

The moving coll ditaphragm gives a good radiation patiern to the higher frequencies radiation patiern to the higher frequencies
and a smooth axtenaton of total response trom $1,000 \mathrm{c} / \mathrm{e}$ to $14,000 \mathrm{c} / \mathrm{s}$. Size $34 \times$ $3 \mathrm{y} \times 2 \mathrm{n}$ deap. Aating 10 W , 3 ohm . Crownoverf.25 f 1.90 Poat 2 mp .

SPEAKEA COVERING MATERIALS. SampleE Large S.A.E. Horn Tweeters $2.16 \mathrm{kc} / \mathrm{s}$. 10 W ह ohm or 15 ohm £2.25 De Luxe Morn Tweeters 2-18ke/s, 15W, \&3-50.
CROSSOVERS, TWO-WAY $3,000 \mathrm{cls} 3$ or B or 15 ohm 51.25 OUDSPEAKERS P.M. 3 OHMS. $7 \times 4 \mathrm{in}$., $\mathrm{E} 1 \cdot 25 ; 6 \mathbf{4} \mathbf{n}$., \& 1.50
 3PECIAL OFFERI 80 ohm, $2 \mathrm{itn}, 24 \mathrm{tn}$; $35 \mathrm{ohm}, 2 \mathrm{in}$, 3 in $25 \mathrm{ohm}, 2 \mathrm{jin}$ dia., 3 In dia., $5 \tan$ dia
15 ohm, jin dia, $6 \times 4 \mathrm{n}, 7 \times 4 \mathrm{~m}, 6 \times 5 \mathrm{in}$

In dind ALLAN TWIN CONE LOUDSPEAKERS
2In diameter 6 W £2.95. 3/8/15 ohme piesese 9 ;
YALVE OUTPUT TAANS. 40p; MIKE TRANS. $50: 1$ 40p.
Mike trans. mu metel 100:1 £1-25.
Loudepsaker Volume Control 15 ohme 10W whit one Inch ong threaded bush for wood panel mounting. tin spindte. 5p each, Pout 15p
MAJOR 100 WATT
ALL PURPOSE
GROUP
AMPLIFIER
All purpose tranalatorieed.
Inpute apeech and music. 4 way
nising. Output $1 / 15$ jhm. e.c. Malne
Separate troble and base controla.
§49 cm.
PROFESSIONAL VALVE MODEL, 100 W , callere only, sele.

BARGAIN 4 CHANNEL TRANSISTOR MONO MIXER add musicat hiahilite and sound errects to recordinge. Whimix Microphone, records, tape end tuner $\mathbf{~ 4 . 5 0}$ Why separate controle into single output. iv. TWO CAANMEL STEREO VERSION £5.95
 BARGAIN 3 WATT AMPLIFIER. Tranaistor $\mathbf{5 4} 50$ and baes controls. Is voit d.c.

COAXIAL PLUG 10p. PANEL SOCKETS 10p. LINE 18p
UUTLET BOXES, SURFACE 25p. FLUSH 60p. TWIN A5
BALANCED TWIN RIBBON FEEDER 300 ohma. Tp yd
JACK SOCKET Sid. open-circult 14p, crosed clrcult 23p;
Chrome Lead-Socket 45p. Phono Pluge 5p. Phono Socket 5p. JaCK PLUGS Sid. Cwrome 20p: 3.5 mm Chrome 12 p . DiN 3 pin 14p: 5 -pin 15 pi DIN PLUCS 3 -pin 18p: 5 -pin 25 ${ }^{3}$-pln 14p; 5-pin 15p. DIN PLUGS ${ }^{3-p I n} 18 \mathrm{p}$; 5 -pln 25p.

REVERSIBLE 4 POLE MOTOR

 E.M.I. GRAM. MOTOR.

120 V or 240 V o.c. \mathbf{L}
2,400 r.p.m. 2 poie 70mA. $31202 t \times 2 \frac{1}{2} \times 2 t \ln$. Poat 25p.

SPECIAL OFFER

104 ohm 20w Theostat 2 inn diam. Ceramic Former
33i WHITEHORSE ROAD, CROYDON
Open 9-8. Wed. 9-1, Sat. 2-5 (Closed for lunch 1.15-2.30)
Buses 50, 68, 159. Rall Selhurst. Tel. 01-884 1685

The first thing you need, to enable you to get your components quickly, easily, economically, is a copy of the 240 page Home Radio Components Catalogue.
Apart from listing the vast range of lines we stock, it contains details of our popular Credit Account Service and many other items of useful information. For example, as there are several ways of ordering, several ways of paying and several ways of delivery, the pros and cons of all methods ape clearly set out in the catalogue.

That is, assuming you are on the telephone.

If you're not, the distance is between you and your nearest post box.

Heme Radlo (Componentig), Led. Wepe No srow, tomeon
Dept. PE, $244-240$ London Road, Mitcham, CR4 3HD.

> Send off the coupon today with cheque or Postal Order for 77p. It's your first step to solving your component buying problems.

A selection of readers' suggested circuits. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.
This is YOUR page and any idea published will be awarded payment according to its merits.
-C/DC CONVERTER

Fig. 1. Circuit diagram for a d.c./d.c. converter

THE diagram of Fig. 1 is a d.c./d.c. converter designed initially to provide 12 V d.c. for a car radio from a 6 V supply. In fact it can operate as is to provide the 12 V from any input ranging from 4 to $8 \cdot 5 \mathrm{~V}$.

Since the voltage of a nominally 6 V car system can rise to 8.5 V the transformer was constructed to suit the maximum voltage. It was wound on an old output transformer core, using 45 turns 22 s.w.g. for the primary, 130 turns 22 s.w.g. for the secondary, and 25 turns 28 s.w.g. for the feedback windings.

Diode D1, which provides rectification of the output, and D2, which protects TR1 base against excess reverse bias may be any silicon type with a current rating greater than 500 mA . D3 is a 12 V Zener diode.

If no oscillation is obtained the connections to the feedback windings should be reversed. Also,
since the output waveform is unsymmetrical it may be necessary to reverse the output windings to obtain maximum power. The quiescent current of the unit is around 125 mA .

The regulation circuit is effective since, when the breakdown voltage of D3 is reached, TR2 conducts, making the base of TR1 positive with respect to its emitter and therefore turning the inverter off. When the voltage across D3 falls to below its breakdown voltage oscillation starts again and the output is thus accurately maintained.

The circuit is easily adapted to provide for other input and output voltages by winding the transformer accordingly, at five turns per volt, and choosing an appropriate Zener diode; neither the exact number of turns nor the gauge of wire used are critical.
G. Blackwell,

Stretford, Manchester.

THIRD HAND HEATSINK

WHEN building a radio recently, I reached a situation in which an octopus would have been hard-pressed to keep hold of components, soldering iron, solder, PCB, etc., and I needed yet another hand to hold my pliers on the transistor lead as a heatsink.

To overcome this problem I turned my mind to alternative self gripping heatsinks and being a medical student I hit on the idea of using Spencer Wells forceps. These are ideal for the job being long and able to reach inaccessible places, self locking to grip the wire or wires (usually grips an artery) and they have a thermal capacity high enough to act as an efficient heatsink. The ability to grip more than one lead at once makes soldering of multilead components much faster.

The forceps are about 5 inches long and cost approximately 55 p from medical or scientific instrument dealers.

Mr. W. R. Saywell,
Oxford.

PRACTICAL ELECTRONICS

 INDEXAn index for volume 9 (January 1973 to December 1973) is now available price IIp inclusive of postage.

BINDERS

Easi-binders with a special pocket for storing blueprints and data sheets, etc., are available price $£ 1.34$ p including VAT and postage. State required volume, e.g., Vol. 1, 2, 6.
Orders for Binders and Indexes should be addressed to the Post Sales Department, IPC Magazines Ltd., Carlton House, 66 Gt. Queen Street, London, W.C.2.

THE times when a potential Texas millionaire could hammer a bean stick into his back garden and hit a gusher have, as we all know to our cost, long since gone. All the same, world economy is so tied to elusive "black gold" that life, without the potential energies of oil and natural gas, would be unthinkable-at least for the next few decades.
The energy shortage, increased industrial expansion, extended use of plastics and chemicals and exhorbitant prices from some exporting countries have put more emphasis on the backroom boys of the oil business-the explorers.
This article deals with the ultimate method for locating potential oil sources-Reflection Seismology -and it shows the role electronics plays in keeping our cars running, gas stoves burning and polythene bags packing!

EVOLUTION OF OIL

Oil is usually found in areas of the world that are described, by the geologist, as sedimentary basins. These are areas that once, many millions of years ago, were covered by sea. As time went by the seas dried and left thick layers of sand and silt which contained an abundance of dead organic marine life. At the same time the sand was covered by salt from the sea and as millions of years went by further deposits were laid down on top of the salt-brought there by wind, rivers, floods, or even more recent seas.

Our experience shows that the most prolific geological period when these dead sea creatures were deposited was the Tertiary Era (approximately 70 million years ago) although there were significant

[^6]deposits during the Cretaceous period (150 million years ago) and as far back as Permian times (over 300 million years ago); and even before Carboniferous times, in the Ordovician period 500 million years ago.

During these millions of elapsed years the dead marine organisms were subjected to terriffic pressures and temperatures, along with the sands and silts, from the shear weight of subsequent deposits. The thickness of deposits since the start of the Tertiary period alone conservatively exceed 8,000 feet in many parts of the world. These pressures and temperatures slowly compressed the sands together to form a solid, but porous rock-sandstone-and the organic matter trapped within this porous rock slowly changed in physical and chemical structure to form liquid hydrocarbons-crude oil and gas.

EARTH MOVEMENTS

As time went by the earth's crust was subjected to all sorts of deformations, as it still is today. Protracted earth movements gradually folded these "source" rocks into convolutions; more dramatic earthquakes might have sheared through rock beds giving rise to vertical displacements we know as faults and in some instances the two might have occurred together. Where we are lucky the earth might have moved to form a structure like an underground hill, we call a dome. The gas, oil and water trapped in the sandstone would percolate upwards through the pores in the rock to the top of the dome where they would meet the layer of salt-also solidified into rock.
The salt is impervious to liquids and gases and might prevent the minerals from further movement. Thus the thin layer of oil over a large region might migrate towards the top of a dome and be trapped there under pressure from the gas above and the water below. Similar processes could occur in the

Fig. 1. Simple schematic of seismic ray paths
case of faulting or other unconformities in the laminer structures of rocks. Any structure that encourages this migration of oil into a large reservoir area is called a trap. The sediments in which oil and gas are found today are known as "reservoir" rocks.
Seismic exploration enables mapping of the substructure of the earth in precise detail and from its results the location of these traps. Provided the geological history of the area is correct and a trap structure found there just might be oil if it were drilled for. The chance of drilling into a reservoir of commercial value is still, however, ten-to-one against. A single "wild cat" oil well might well cost the best part of a million pounds so great confidence in the accuracy of a seismic survey is essential
acoustic signal is generated at the surface of the earth and this passes through the ground, downwards, as a spreading compressional wavefront (Fig. 1). As the wave passes through interfaces between rocks having dissimilar density, or velocity of propagation, a small proportion of the downward going energy is reflected (usually one or two per cent) the rest passes through to the next interface and so on.

Considerable wastage of energy occurs due to frictional losses, poor reflection coefficients, and downward reflections from horizons when a wave is on its way back to the surface. When a reflected signal does reach the surface it might, very well, have travelled over four miles.

GEOPHONES

To stand any chance, at all, of receiving a useful reflection signal there must be a lot of energy at the source. On land an explosive source is used-anything between 20 and 100 lb of dynamite. This is placed at the bottom of drilled and tamped holes to try and deflect the energy downwards. In the simple case signals are received back at the surface with a geophone. This is a high sensitivity, low frequency response (down to about 8 Hz) moving coil micro-phone-but there is a difference.

The coil of the geophone has a certain amount of inertia and it is the magnet, forming part of the case, that moves up and down around the coil, when the surface of the earth moves, that generates the electrical signal. The output signal from such a geophone can range from over 500 mV for a reflection near the surface to less than $0.5 \mu \mathrm{~V}$ for a signal coming from a deep horizon.

SEISMIC REFLECTIONS

The seismic reflection method is based on the same principles as ASDIC except the distances involved, through solids or water, are very much greater. An

In practice there is an infinite number of ray paths, from a source, that can give rise to reflections from a given horizon so reflections can be obtained from different points along our sets of horizons if we use geophone receiving stations set apart on the earth's surface. Typically 24 or 48 such stations are used separated by about 200 feet. Thus the horizontal range of a shot might be as great as $1 \frac{1}{2}-2$ miles.

NOISE PROBLEMS

Most electronics engineers will appreciate the problems of handling signals as low as half a microvolt at the best of times, but add to this the problem that the signal might have to be carried down $1 \frac{1}{2}$ miles of wire back to the recording amplifiers. Hum pick up (from underground and overhead cables) is a problem in populated areas; this is reduced by special hum cancelling bridges at the amplifier input and we ensure our amplifier input and geophone output impedances are low.

Low impedances help (to some extent) prevent induction of signals from static sources-nearby electric storms (very prevelant in tropical jungles) or high voltage caused by moving sand particles (in the desert).

Even that is not all; frequently, while working in foul swampy conditions, simple electrical leakage to ground can sometimes arise unless the cables' insulation qualities are constantly monitored.

Fig. 2. A 24 trace record. The left hand trace is from a geophone station close to the shot. The right hand one is furthest away

Apart from the geophone responding to seismic reflections there is the problem of other noise sources -which can generate signals hundreds of times greater than those required. These can be man made noises-trains, trucks, people walking. They might come from the earth itself-underground rivers, microseisms, tree roots transmitting wind noise into the ground; rain, of course, is an eternal problem! Even animals do not help-a friendly elephant can devastate a seismic recording; it has even been known for a lion to chew a geophone to pieces and an unthinking grasshopper can obliterate a reflection from 3,000 feet by deciding to jump on to the geophone at the wrong moment.

To try to overcome some of these noises there might be in use as many as 60 geophones connected in a coherent series/parallel configuration at each geophone station. Hopefully they will all respond in unison to the desired signal giving an enhancement to its strength and incoherent signals should not reinforce each other!

Fortunately the range of frequencies the earth will propagate is fairly limited-in the range of 10 100 Hz so electronic filtering helps remove some of the artifacts. Hum cancelling bridges-as opposed to filters-are obviously essential as 50 Hz lies almost at the peak of the seismic spectrum.

AMPLIFYING THE SIGNAL

Typically, there are up to 48 geophone stations connected back to a recording centre which is ideally mounted in the back of a truck, but in the jungle all equipment might have to be portable for man handling in which case the amplifiers and recorders would be set up on the ground. In either instance accumulator power sources are used.

In the early stages of the amplifier the 48 channels are handled independently; they each enter a preamplifier with a pre-set gain. At that point the amplitude range considered is from 500 mV down to $0.5 \mu \mathrm{~V}$, a dynamic range of 120 dB (voltage ratio). The essential features to record are (a) the instant the shot went off and (b) the instances, in time, reflections arrive at the geophone station in question. The first is easily achieved but to \log the latter it is necesary to record all acoustic signals in true hi-fi without clipping and distortion.

While it is possible to handle a 120 dB dynamic range electronically (provided one has a low system noise) it is impossible to use conventional paper or tape recording to log such a signal unless considerable a.g.c. is used. A conventional a.m. tape recorder has a range of about 40 dB while f.m. recording techniques offer up to 52 dB normally which can be extended to 58 dB by using special noise cancelling techniques.

Normal a.g.c. is unsuitable in this application because, depending on its rate of attack and release, it is bound to distort the wave shape-this would not be too bad if it was possible to record the actual gain of the amplifier (presumably by recording the a.g.c. level) as well as the signal. There would, at least, be a chance of recombining them later if so desired but this would require many recording tracks.

However, if one adopts the philosophy of recording both signal and system gain one must bear in mind that ultimately processing of data by computer can overcome the problem of recording in digital form from the word go.

DIGITAL RECORDING

The signal from one of the pre-amplifier channels is fed to a binary gain amplifier. This is an amplifier with electronically switchable gain; there may be 15 selectable gains operating in 6 dB (factors of two) steps. The output is electronically monitored and if it appears to be going out of the top of a pre-determined amplitude window the gain is stepped down by 6 dB ; alternatively if the output falls, the gain is stepped up by 6dB. There being 15 possibilities we end up with a gain range of 90 dB but at the same time the gain is precisely defined at every instance and can be described by a 4 bit binary number, for example:

Binary Code	Gain	Voltage Ratio
0000	$=0 \mathrm{~dB}$ gain	Unity
0001	$=+6 \mathrm{~dB} "$,	$X 2$
0010	$=+12 \mathrm{~dB}$	X 4
0011	$=+18 \mathrm{~dB} "$	X 8
etc		
1111	$=+90 \mathrm{~dB}$,	$\mathrm{X} 32,768$

The selected binary code defining the gain would be recorded alongside the amplitude. Firstly the residual amplitude has to be converted to digital format for recording. This is done by an A-D converter/multiplexer which samples the amplitude of each of the 48 channels in turn-going right round all of them in either 1 or 2 mS -converts them to a 15 bit digital number and then records them on tape in sequential form together with their respective gain codes.

Most field recording systems have a read after write head on the digital recorder which allows instant check of signal quality and system accuracy by converting back to analogue for a compressed playback on paper together with parity checks.

The raw tapes are then sent to a Data Processing Centre where they are de-multiplexed and the data is analysed by computer to assess velocities of propagation, to remove the hyperbolic curvature from adjacent traces for a given shot, to assess the occurance of multiple reflections by a process of auto correlation of the whole signal against itself, to add coherent signals together to enhance signal to noise ratio and to ascertain the predominant frequencies.

Usually the spectrum shows frequencies predominating at around 50 Hz and average velocities of propagation are about $10,000 \mathrm{ft}$ per second. This gives a seismic wavelength of about 200 feet; this is the limiting resolution unless high frequency response can be enhanced.

H.F. ENHANCEMENT

Techniques are available which-by judicious use -enhance the higher frequencies by re-injecting signals we predict the earth may have filtered out and at the same time we can apply filtering to any part of the spectrum that will enhance features we wish to see. The final seismic cross section is really a composite of all the geophone signal traces butting against each other, the coherent line up of reflection depicting the structures.

Although no claim is made for identifying materials by the seismic method techniques are under development whereby excessively high or low velocity beds can be identified by analysing their reflection coefficient from the amplitude of signals received.

MARINE SURVEYS

Now that offshore drilling and oil transportation problems have been solved a lot of attention has turned to exploiting potential marine oil reserves; we, in the UK, are only too familiar with the potential wealth beneath the North Sea. As far as the seismic explorer is concerned, he now has extra problems to contend with in marine surveys. To start with he may have to operate in deep or shallow water, in surf and over coral reefs or sand bars. Different vessels have to be used to contend with the various conditions.

Most deep sea surveys are conducted from modified trawlers-capable of towing $1 \frac{1}{2}$ miles of bouyant cable. The cable contains pressure sensitive hydrophones at set positions along its length.

The cable has automatic hydrofoils mounted on it at various intervals and when towed along at the operating speed of 6 knots this causes the cable to dive and take up a stable depth of around 35 feetdeep enough to avoid surface and boat noise but not so deep that the piezo electric or variable reluctance hydrophones response is swamped by hydrostatic pressure.

The straightness of the cable is important and this is monitored by receiving radar reflections from a passive reflector towed at the cable's trailing end.

NAVIGATION TECHNIQUES

As on land positional accuracy is most important - it may ultimately be necessary to position a drilling rig within a few feet of the right spot-so specialised navigation techniques have had to be developed. Where possible high resolution hyperbolic positioning is used; the navigator works out where he is with respect to phases of signals radiated from shore based transmitters. Although of limited range the 2 MHz signals give exceedingly precise fixes to within a few feet. This technique is not practicable for mid-ocean surveys due to its comparatively short range.

A spin off from space technology is the use of navigational satellites as a technique for getting a fix anywhere in the world. By picking up the signal transmitted by a satellite, measuring its doppler shift and knowing its orbital parameters we are able to obtain a fix on ourselves to within tens of feet. The computations are vast and this is carried out by computer on board ship.

Although accurate these fixes can only be obtained while a satellite is in transit-this might be every 20 minutes or every 2 hours depending on position on the world's surface. Between satellite fixes the position is logged by dead reckoning-this could be done using an intertial platform and monitoring tidal currents and wind velocity or, as is more common, doppler sonar is used to give heading details relative to the sea bed. This assumes that the depth of the sea does not exceed 600 feet-the limit for current doppler sonar equipment.

RELATIVE SHOT FREQUENCY

One big bonus from marine exploration is that once under way a survey can be conducted very quickly and more or less automatically. On a land survey it might only be possible to get 30 shots recorded in a day's work whereas at sea we are able to use fast cycling air guns as' a source and operate with a shot every 15 to 20 seconds while progressing at 6 knots.

Strictly

by K. Lenton-Smith

OWNERS and constructors of electronic musical instruments generally fall into two categoriesthose whose primary interest is in electronics and those who are principally musical. People who combine musical talent with a good knowledge of circuitry are less common, so that most have to tackle one of the aspects of electronic music from scratch.

MUSICAL SIDE

The musical side is perhaps the more difficult as, with good constructional details, anyone with sufficient energy, time and spare cash should be able to construct a successful instrument. Keyboard instruments are in the main polyphonic these days, calling for fluent reading and good basic knowledge of chord formation. Sight-reading three staves simultaneously can be recommended as an excellent way of exercising the brain! Perhaps this is why many constructors never learn to play and the task of building an instrument may well have left them feeling exhausted. But anyone with the determination to build owes it to himself to master playing technique.

TUNING

Directly an instrument is considered finished, a musical friend will be asked round to try it out and offer an opinion. Amplified acoustic instruments are no real problem: guitarists seem to find no particular difficulty in handling six strings, and can make simple tuning adjustments to accord with anything-even a NAAFI piano!

Keyboard instruments are quite another matter, where any tuning inaccuracy is emphasised by sustained chords. Electric pianos and organs usually require twelve precise tunings at least, and a free phase instrument might require a hundred or so. Adjustments usually involve taking the back off the instrument, so that it is imperative that tone sources are stable and that accurate tuning methods are used initially.

STABILITY

Long term stability of frequency generators demands the use of stabilised power supplies as a number of oscillators are sensitive to voltage changes (ignoring, of course, the v.c.o. itself). Because polyphonic instruments are major constructional projects, it is as well to soak test oscillators before going into production. The proposed keying system ought to have the same treatment, as the final result will largely depend on both departments of the instrument.

Whether building to a published plan or from one's own design, exhaustive testing is a wise precaution. For example, testing the tone sources of a recently published design with a digital frequency meter, it was found that a two volt supply deviation resulted in a rise in frequency of half a semitone. Even with a stabilised supply, this circuit would be suspect.

Each semitone is divided into 100 cents for tuning purposes and, since a trained musician will hear errors of less than 10 cents, careful choice of circuitry is essential.

OSCILLATORS

Well designed Hartley or Colpitts oscillators are extremely stable, with supply variations having little if any effect on frequency. Semiconductors used in these sources hardly affect the result as the tank circuit itself dictates frequency. Open coils should be avoided because of the danger of interaction: using screening cans will help but pot cores are better still in that they have no external magnetic fields. Although these cores are relatively expensive, only twelve will be required for many instruments.

R/C oscillators are more susceptible to changes in ambient temperature and supply voltage, even with sophisticated circuitry and high quality components. Divider stages are normally R / C circuits and, as they faithfully divide by two, their stability depends on the master oscillator.

PITCH STANDARD

The international pitch standard is $\mathrm{A}-440 \mathrm{~Hz}$, and the proposed oscillator could be soak tested against this standard. The BBC propagates this frequency at various times, the most convenient source being the BBC2 test card period. Each morning, the 440 Hz signal is transmitted at half hour intervals between music. Tuned with this signal the A oscillator could be checked for any drift by leaving it running until the following day's test signal.

The BBC's standard frequency is an excellent starting point for tuning a completed instrument. A piano may be available, as a tuning reference; if the two are to be played together, all well and good. But, as the piano may not be at standard pitch, there could be problems. A pitch pipe is sold for tuning purposes, but wind pressure varies its pitchso BBC2 is to be preferred.

BEATING

Sound A above middle C (which should be 440 Hz) with the BBC2 pitch standard. In all probability, a distinct beat will be heard-the frequency difference between the two signals.

Tune the oscillator until any trace of beat disappears and, when satisfied the two are precisely in tune, turn off the television. This oscillator is now the standard for the instrument and is in no circumstances altered from this point. The remaining notes in the chromatic scale are tuned in fifths to zero beat and then flattened by a given number of beats per minute. First, play E below with the A just tuned, and adjust for zero beat: now flatten E until 90 beats per minute are counted. The rest of the scale is tuned as follows:-
B above E together, flattened by

	67 b.p.m.
F \# below B	100
C\#below F \#	76
G\# above C\#	57
D \# below G \#	85
A \# above D \#	64
Fbelow A \#	95
C below F	71
G above C	53
D below G	
The next interval-A	80
above to	

With a little patience, this method of tuning should preclude criticism from a musical friend. This solution will only be temporary, however, unless the tone sources are stable in themselves.

CONTIL

in easy-to-work blue and white PVC/steel Assemble in the ower half: complete before springing the cover into place -4 Pozidrives, two to hinge it two to fasten it. Carries fou P.C. boards horizontally. o two vertically, four required tor each case (for 1 vertica board, two each case).
 cresens. Chamals or PC boarde can be supported on "p" clips for internal plliart. Excellont es encapsulation boxes M2 $65 \mathrm{~mm} \times 100 \mathrm{~mm} \times 50 \mathrm{~mm} 2$ 2 $^{\prime \prime} \times 34^{\prime \prime} \times 2^{\prime \prime} \times$

51p $45 p$
$\begin{array}{ll}\text { 51p } & 45 p \\ 67 p & 58 p\end{array}$ $\mathrm{M} 3100 \mathrm{~mm} \times 130 \mathrm{~mm} \times 50 \mathrm{~mm} 3 \mathrm{~m}^{\prime \prime} \times 5^{\prime \prime} \times 2^{\prime \prime}$

Also avaitable Prices inciude P. \& P, and VAT, Lese for quantitlas. Also avaitable

rices correct to
Prices col
31 May

WEST HYOE DEVELOPMENTS LTD.. Ryefield Cres. Northwood Hills. Northwood. Middx HA6 INN Tel. Northwood 24941/26732

(Onicnow?

HEATHKIT offer you this colourful guide to electronic kits-FREE!
All our kits are designed to be built by you, whether beginner or professional. Even soldering experience is unnecessary as every kit contains a construction manual to lead you step by step through the assembly, testing and operation of your Heathkit
Our extensive range includes Metal Detectors, Black and White TV, Intercoms, Burglar Alarm, Automotive. Amateur and Shortwave equipment, Portable Radios, Instruments and a complete range of Stereo $\mathrm{Hi}-\mathrm{Fi}$. All available on extended credit terms with our Monthly Budget Plan.
Post the coupon now for your free copy of the Heathkit Catalogue.

SHOWROOMS

London: 233 Tottenham Court Road
Gloucester: Cole Ave. Roundabout. Bristol Rd
(Open office hours and Saturday mornings)

Ha P Please send me a FREE Heathkit Catalogue and detals of your Monttly Budget Plans

NAME \qquad
ADDRESS \qquad
\qquad

[^7]
"SHARP 12"

THE ARISTOCRAT OF PORTABLE TELEVISIONS

* FROM THE INTERNATIONALLY FAMOUS SHARP AUDIO \& ELECTRONICS CORPORATION
* INSTANTLY TUNABLE IN ALL U.K. AREAS
* MAINS OR $12 V$ BATTERY
* ALL SOLID STATE CIRCUITRY FOR RELIABILITY AND INSTANT WARM-UP
* REMOVABLE SUN SHIELD
\star IMPECCABLY STYLED CASE IN OFF-WHITE HIGH IMPACT ACRYLIC WITH FOLDAWAY HANDLE
* COMPLETE WITH MAINS LEAD, PERSONAL EAR PHONE AND UHF AERIAL
* GUARANTEED FOR I YEAR
* RECOMMENDED RETAIL PRICE $£ 75.95$ (Exclusive of V.A.T.)

BASF FASSETTES (TYPE LH IN SNAP-PACK)
 C30 C60 C90
 PRICE EACH
 $47 p$
 $55 p$
 76p
 Cl 20
 £1•13

PHIER $\frac{1}{4} \& \frac{1}{2}$ WATT CARBON FILM RESISTORS
E12 $\frac{1}{4}$ watt $10 \Omega-1 M$
$\frac{1}{2}$ watt $10 \Omega-10 \mathrm{M}$
\star MINIMUM ORDER 100 RESISTORS

* MINIMUM PER

VALVE 25

TERMS (TRADE AND BULK ENQUIRIES WELCOME)

* PRICES DO NOT INCLUDE V.A.T.
* PAYMENT WITH ORDER ONLY
\star TOTAL PAYMENT $=$ COST OF GOODS $+\mathrm{P} / \mathrm{P}+10 \%$ V.A.T.

POSTAGE AND PACKING TELEVISION-£I CASSETTE RECORDER-75p CASSETTES/RESISTORS—25p

JUST as a basic circuit configuration is given for \int the family of Power Slaves, similarly we can use a basic constructional method based on the $100+100 \mathrm{~W}$ prototype amplifier. This means that although the printed circuit board layouts and component placements will be common to all four amplifiers, a scaling down of the chassis piece part figures given should be made for the relevant lower powered amplifiers since lower rated components such as transformers and large electrolytics will correspondingly occupy less space.

100 + 100W CHASSIS

The method of construction of the 100 W chassis is fairly straight forward and comprises only four basic parts plus two side panels.
The heatsink forms the entire rear face of the chassis box and also serves to stiffen the final assembly. Base plate and sub-chassis are constructed ideally from 12 or 14 s.w.g. aluminium for rigidity, although 16 s.w.g. would be easier to work for those without access to sheet metal folding equipment. The side panels may be of lighter material such as 18 s.w.g. plastic coated aluminium, sold commercially as "Bondene" and "Lamiplate."

Fig. 3 shows the main chassis parts with drilling details but it should be emphasised that the base plate and top cover may have to be extended to accommodate differing makes of large capacitor or transformer. These items should be purchased first before chassis dimensions are fixed.

The base plate is attached to the heatsink by means of five $4 \times 10 \mathrm{~mm}$ boits. Similarly the subchassis is attached to both the base plate and heatsink, a smear of thermal jointing compound being used at all three joints, so that a large composite heatsink is formed.

Due to the wide range of transformers which may be used in this design, no details are given for the cut-out in the vertical face of the sub-chassis. Thus this cut-out, and the transformer mounting holes, must be positioned to suit the particular transformer to be used.

The top cover carries the amplifier printed circuit boards, and hinges up for ease of servicing. To avoid lengthy wire-runs which might give rise to instability and hum pick-up, the input and output sockets are carried on the front face of this panel.

The heatsink used is supplied with a tongue along one side and a slot on the other, such that larger assemblies may be built up by stacking them side by side. The tongue must be carefully filed off, taking care not to score the surface which will carry the power transistors. For the sake of neatness, a strip of $10 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. aluminium $3 \frac{1}{2} \mathrm{~mm}$ wide can then be Araldited into the slot on the opposite side and filed down flush.

PE

EY REB. REEEON

Fig. 1. Printed circuit master for amplifier boards

Fig. 2. Printed circuit master for p.s.u. stabiliser

CHASSIS CONSTRUCTION and COMPONE

Fig. 3. Chassis piece parts for the $100+100 \mathrm{~W}$ amplifier.
For the lower power versions the dimensions should be sensibly scaled down

IT BOARDS

Fig. 4. Component layout for amplifier p.c.b.s

Fig. 5. Component layout for stabiliser board

Fig. 6. Drilling template detail for power transistors

HOLE DRILLING

All holes in the heatsink, tapped 4 mm , should be drilled No. 30 ($\frac{1}{8} \mathrm{in}$) to a depth of 12 mm and tapped. Any constructors not familiar with the difficulties of tapping holes in aluminium would be wise to use self-tapping screws of a similar diameter, as a broken tap in a blind hole is difficult to remove to say the very least.

The only exceptions are the holes which take the bolts forming the hinge pieces for the top cover. These should be tapped 3 mm to a depth of 10 mm and the top cover mounted with the aid of two bolts onto which TO3 insulating washers have been placed to provide a nylon "bearing".

The mounting holes for the power transistors are best marked out on a template, made of scrap steel or aluminium as in Fig. 6. This template can then be drilled and checked against a TO3 case transistor before it is clamped to the side of the heat sink and drilled through. The same template can then be used for the other side.

AMPLIFIER BOARD ASSEMBLY

The majority of main amplifier components are carried on a printed oircuit board. Two of these are required and can be etched using the master of Fig. 1. An overlay for component positioning is provided in Fig. 4. The X at the corner of each figure should coincide for correct orientation.

When assembling semiconductors particular care should be taken that leads are correctly positioned as many versions of $\mathrm{BC} 182,184,212$ and 214 transistors are produced.

Components should be mounted flush to the p.c.b. with the exception of the transistors which should be spaced off 5 to 10 mm .

Resistors R17 and R18 consist of appropriate lengths of 26 s.w.g. Constantan wire soldered directly to the circuit board. Cutting lengths and the approximate height it should clear the p.c.b. for differing powers are given below:

Power	Resistance	Length	Height
20 W	0.11Ω	37 mm	11 mm
40 W	0.08Ω	27 mm	6 mm
65 W	0.07Ω	24 mm	4.5 mm
100 W	0.06Ω	21 mm	3 mm

ADDITIONAL DIODES

The addition of the two diodes mentioned at the end of last month's article now changes the Com-
ponents List for all versions of main amplifier as follows:-

$$
\begin{aligned}
& \text { D1—D5 } 1 \text { 1N914 } \\
& \text { D6—D7 } \\
& \text { D85401 } \\
& \text { D8 }
\end{aligned}
$$

OUTPUT FUSE

The purpose of the output fuse FS1 is to give protection against short circuit loads and gross overloads, as opposed to the overloads of a few dB likely

to be met when working at full power. Thus the fuse should limit operation to the safe operating area of the output transistors, and should blow at peak current in less than two seconds. A value of 1 A is generally suitable, but values above 2A are not recommended. This fuse should, of course, be of the normal, quick-acting type.
Where a very low output impedance is essential, FS1 may be replaced by a wire link, but greater care will be needed in use. Full protection can be restored by fusing the two power rails to each channel separately, hence a stereo amplifier would require a further four fuses. These could be mounted on either side of the front panel.

A small heatsink may be fitted to TR7 and TR10 if sustained high power operation is anticipated, as, for example, in some musical instrument applications. This may be of 18 s.w.g. aluminium approximately 15 mm by 25 mm fixed to the tab of each transistor by means of a 3 mm or 6B.A. bolt. Care should be taken that this does not contact any other parts of the amplifier, as the heat sink tab is not isolated.

POWER SUPPLY

The prototype 100 W amplifier has a "monitoring" type of supply. If stereo use is intended there is ample room for mounting a p.c.b., including the stabiliser electronics. An etching diagram and component layout for this are shown in Figs. 2 and 5. Like the amplifier board these are full size.

R7 is made up from 26 s.w.g. Constantan wire, the tapping values of which were given last month. Links to points B and C should be made with 22 s.w.g. copper wire wrapped around a couple of times.
As Constantan does not solder easily, the wire should be scraped where connections are intended.

With the power supply components assembled, initial wiring can be carried out between mains input connector, mains switch and fuse and transformer. When the mains wiring is complete, the capacitors may be fixed in place and the connections from them to bridge and transformer secondary made. At this point mains should be connected, and positive and negative rails measured.
The amplifier power transistors, and that for the stabilised p.s.u., if used, should next be mounted, using thermal jointing compound on both sides of the mica insulators. Silicone grease should not be used here, as it has only a fraction of the thermal conductivity of proprietary compounds, and so allows a substantial temperature difference to develop between the device and its heat sink.

The p.s.u. circuit board is mounted in place on the horizontal section of the sub-chassis by means of 3 mm bolts and short spacers or nuts. Wiring to this board is straightforward, but leads should be kept fairly short and should be of $24 / 0 \cdot 2 \mathrm{~mm}$ copper wire or similar, as should all the wiring so far detailed. Resistors R10 and R11 are mounted on the tags of C4 and C5, and at this time, no part of the power supply circuit should be earthed, except for the electrostatic screen in the transformer.

P.S.U. CHECK-OUT

The power supply should now be connected to the mains and turned on, with VR1 set fully anti-clockwise. VRI may now be adjusted to give twice the nominal rail voltage between $\mathrm{V}+$ and $\mathrm{V}-$.

$100+100 \mathrm{~W}$ amplifier main board assembly
Bear in mind that the output capacitors on the power supply can have time constants as long as 30 seconds, so that adjustment must proceed slowly in stages.

When rail voltage has been set. the voltage drop across TR5 should be approximately 10 to 12 volts. and the voltages across C4 and C5 should be equal and within 5 per cent of nominal.

SETTING UP

The only amplifier setting up required is the adjustment of VR1 to give the desired quiescent current in the current amplifier. In general this figure should lie between 10 and 50 mA . For high fidelity 30 to 40 mA is recommended.

It is a wise precaution, before first turning on power, to wire a 240 V 60 W bulb is series with positive and negative supply leads to limit current in the event of a wiring fault. If all appears well, with the output at zero volts, and VRI adjusted, a signal may be applied before the bulbs are removed. When connection is made directly to the positive and negative rails, a slight adjustment of VRI will be necessary'.

SERVO APPLICATION

If C2 is replaced by a shorting link, the amplifier may be used for servo applications, the input being taken directly to the base of TRI, bypassing CI. Here the gain of the amplifier may be adjusted by R2. Alternatively R10, R2 and C2 may be omitted and the base of TR2 fed from a servo putentiometer.

In this application the common-mode input voltage should be kept within $\pm 5 \mathrm{~V}$ of the 0 V line and a resistor of $200 \mathrm{k} \Omega$ should be included in the feedback line to the base of TR2 to maintain a low offset voltage.

END OF THE IEA?

The last ever IEA (Instruments, Electronics, Automation) show to be held at Olympia, London, opened with a whimper and finished, literally, with a bang. I exaggerate slightly because there was another day to go when one of the exhibits on demonstration exploded with a sharp crack. A pure accident (no casualties) although a few people of the meaner sort imagined it was just another of Tom Jermyn's publicity stunts. In fact it wasn't. There was no need. Jermyn Industries stand had already set a standard for elegance and comfort combined with utility which was hardly improved by a gaping hole in the roof!

As far as business was concerned the first day of the show was a disaster with very few visitors. But attendance swelled during subsequent days and by the close there were plenty of smiling exhibitors.

It's quite amazing how quickly things become '"old hat'. For example any company with the slightest connection with space technology used to have pictures or models of lunar modules, space rockets blasting off, communications satellites or, nearer to earth, Concorde. All these image-building themes have now been relegated to the dustbin as if they had never existed. Today's in-thing is offshore oil rigs and all the go-ahead publicity managers saw to it that their own companies were well identified with oil exploration and exploitation. Well, that's where the money is today, and money is what business is about.

Talking point of the show was how it will make out in 1976 when it is moved to the new National Exhibition Centre at Birmingham. Clearly a brand new exhibition site matching the best that Europe
can offer in comfort and convenience must be better than dreary old Olympia, but at the risk of offending readers in the Midlands I have to record that Birminaham hasn't quite the glitter of London. Few British exhibitors are attracted by the prospect of Birmingham so how will the foreigners feel? Will attendance by both exhibitors and customers be so low that IEA will die a natural death?
Mv own guess is that come hell or high water the Birmingham show will go on in 1976 if only because the following show, in 1978, will be the first of a threeyear cycle together with Interkama (Germany) and Mesucora (France), each country having a major truly international show only once every three vears. So in 1978. there will be nowhere else to go. It's Birmingham or nothing, and that could breathe new life into the show. But there is no law forcing people to Birmingham and is exhibitors and customers alike stay away then it really is curtains for Britain as a top electronics show case.

TV SLUMP

The January-April returns from the British Radio Equipment Manufacturers' Association confirmed the expected slump in TV deliveries compared with the 1973 boom. Domestically produced colour sets dropped to 600,000 , ten per cent down on the corresponding period last year. Monochromes dropped to 208,000, a savage 44 per cent reduction.
This is bad news for component manufacturers but not disastrous. LCR Components, for example, is heavily geared to supplying tens of millions of polystyrene capacitors to the TV manufacturers. Kurt Balz, managing director of LCR's six factories, tells me he is still aoing ahead with plans to double output, the surplus being all for export. Last year LCR found itself turning down large export orders because of home demand.

OUR IMAGE OVERSEAS

At least LCR Components told overseas buyers they couldn't deliver. The damage comes when Britain takes the orders and falls behind on delivery, an unforgivable sin for which, in foreign eyes, there is no excuse-not even shortage of raw materials, strikes or three-day weeks.

Our sins in this respect were highlighted by Sammy Zilkha, the master mind behind Alphameric Keyboards and his sales director, Jim Denton, when they returned from a coast-to-coast sales trip in the United States and Canada. Overseas buyers, they say, have become evermore sceptical of
delivery promises or that our prices will be held within reasonable levels on repeat orders. always a consideration when trying to get a major sub-assembly such as a solid-state keyboard designed into a new piece of equipment.

It isn't only on account of delivery and price-stability that our overseas image is suffering. Who wants to trade with a country whose government and trade unions jointly operate a selective policy of supply based on an emotional attitude to the customer country's internal politics?

Hats off, then. to Marconi on the delivery front for supplying their latest Mark VIII colour TV camera in eight days to meet an emeraency requirement from French indebendent TV Company COFCI for coverage of the Presidential election. And let us aive all supoort to the Radio and Electronic Component Manufacturers' Federation proposal to mount a publicity campaign to counter what is described as "derogatory and misleadina reports which have appeared in overseas journals"

JAPS LOSE OUT

In the 20 years from 1950 to 1970 the Japanese growth in electronics has been truly phenomenal. In 1950, production was 40 million dollars (about $£ 16$ million). By 1970 it had risen to 8,800 million dollars. Japan's export performance over the same period has been even more remarkable, rising from 3 million dollars in 1950 to 2,275 million dollars in 1970. These figures were quoted by Mullard managing director Jack Akerman at a recent London conference.

The golden days seem to be over. Labour costs now are more than 30 per cent up on last vear, petrochemical products are 40 per cent, other raw materials are up 20 per cent. On top of all this there is growing resistance in many countries to Japanese imports in favour of protecting their own industries. In fact overall costs are now so high at home that major Japanese companies are establishing manufacturing units in high labour cost areas like France and the United States as well as Britain.

Forecasts are that cut-backs in consumer electronics production will be more than matched by increases in industrial electronics to give an overall result about the same as last year or perhaps a very small growth. But quite clearly the days of fantastic expansion are over and what hits the Japanese even harder is that to keep a competitive pricing policy. profits may be eroded by as much as 25 per cent.

* HOME ENTERTAINMENT
t. EDUCATION VISUAL AID
* LEGTURING
\star REMOTE MONITORING
* SURVEILLANEE

A private monochrome television service can be yours when you construct aur closed circuth television camera, If can be comnected to a remote TV monitor via a single coaxial limk or to a standard domastic TV receiver via the aerfal sockel. It is compatilite with 625 line TY stantaris and provides quality pietures comparable with thase provided by much more expensive cameras.

DONT MISS THE OPENING PART OF THIS IMPORTANT SERIES

VERSATILE GAS DETECTORS

The latest solid state gas/vapour sensor incorporated in three forms of gas detector. Monitors presence of North Sea Gas, Butane, etc. Full details for building the following equipments:
(1) Mains operated unit for domestic and industrial installations.
(2) Battery powered hand-held instrument for leak detection.
(3) 12 V or 24 V version for installation in boats and caravans.

STABILISED BENCH POWER SUPPLY

Bench power supply providing digital voltage selection with current limiting protection

PGACTICAL

SEPTEMBER ISSUE ON SALE AUGUST 9, 1974

As described in the last part of the Rondo series. dealing with the stereo decoder and the initiation of the f.m. tuner. the tuner and decoder circuits are mounted on separate boards. Apart from providing smatler boards which can be more easily located in what is now clearly becoming a fairly crowded assembly, this does allow for flexibility of system since some constructors may desire to use their own particular tuner or decoder.

In the Rondo f.m. tuner the Larsholt head used, together with associated circuitry, give a performance which will match most other equipments and in fact even using only a rudimentary simple dipole aerial it has proved possible in North London to pult in a number of Continentat stations at good signal strengths apart from all the normal U.K. broadcasts which of course come in with ample strength.

Before describing the tuner board it should be mentioned in the above context that success or failure with stereo f.m. can, in many geographical locations, be dictated by the sensible use of a good aterial system so it is as well to bear this in mind before starting construction.

F.M. TUNER BOARD

The printed circuit master negative is shown in Fig. 9.1, and the component layout in Fig. 9.2. The negative is full scale and illustrates the compactness of design which can be adopted with the Larsholt head even though the latter is a discrete component unit.

Preparation of the board follows normal p.c.b. methods though when drilling the i.c. holes do not forget that it is best to use holders here rather than mount direct on the board.
The p.c.b. is mounted in the bottom of the Rondo trough chassis in the space in front of the power supply section. It is held away from the trough bottom by stand-offs and 4 or 6 B.A. screws. Wiring to the board is loomed where necessary and, of course, signal leads are screened.
Care should be taken when locating the board to ensure that there is no risk of shorting of track or conductors on any other part of the circuitry. switches and so on when the fascia is finally reassembled. The packing density of the Rondo system can create this danger in some circumstances.

TUNING DIAL

Assembly of the tuning dial on the left-hand side of the fascia is straightforward and follows normal
procedure. The various parts, pulley wheels, large drive pulley, cord and pointer are available from a number of suppliers. Fig. 9.3 shows an exploded view of the arrangement used in the prototype.
The mechanical arrangement is self-explanatory, follows normal convention, and can be modified to suit individual requirements as they arise. Wherever possible fairly simple methods of construction have been used. Thus the tuning scale (of which more later) and tuning meter, are both held in position in the prototype using double-sided adhesive tape.
This is possible since both are light in weight and the system would not normally in any case be subject to great stresses and strains. Of course the reader is free to use any method of construction he feels is warranted but the present state-of-the-art adhesives are far stronger than is generally known.

In the Rondo, use has been made of the very latest in fascia illumination. In fact it is believed that the luminescent panel tuning scale used here. which is based on electroluminescence for its operation. is the first domestic environment application of this particular phenomena.

Fig. 9.4 is a diagrammatic section through the tuning scale which shows up the active parts of the panel. In basis the device is a capacitor with a phosphor material positioned between the electrodes. When electricall energy, in the present case 240 V a.c. mains, is applied to the plates of the "capacitor" the phosphor material glows. Dependent on the frequency and voltage density applied the glow is brighter or dimmer.

As can be seen, a heavy glass sheet forms the main support member at the rear. On to this a copper electrode is evaporated to form one plate of the capacitor. A high dielectric material in a resin base is applied to the copper and the phosphor material is applied to this. The phosphor is itself carried in a resin base.

Finally, a transparent copper electrode, only a matter of microns thick, applied to a top glass sheet, forms a layer between the upper sheet and the phosphor layer.

Power to operate the device is applied to the two copper layers and consumption is in the region of ImA per square inch.
The front glass sheet can now be suitably printed with any scale, figures or other information as required. In the present case a scale was prepared and silk-screened on in heavy black so that the scale and calibration numerals show up as illuminated figures.

Fig. 9.1. Printed circuit master for the f.m. tuner using the Larsholt head

Fig. 9.2. Component layout for the tuner board. The L1B option is discussed in Part 8

These electroluminescent devices, if fed at 400 Hz , will give enough light to read by. The maximum frequency applicable is 2 kHz and any increase above this or above 250 V r.m.s. can considerably reduce device life.

SETTING UP

The tuner is wired up as shown and, after checking out the wiring the unit may be switched on. Selecting

MATERIALS . . .

Tuning dial-Electroluminescent panel $42 \times 171 \mathrm{~mm}$ (Sanders Roe Developments Ltd.).

Cord drive assembly, cursor, drive spindle, cord drive pulley wheels (4).

Drive support plate, 20 S.W.G. mild steel $262 \times$ 120 mm to be cut and bent to suit, together with $25 \times 20 \mathrm{~mm}$ and $25 \times 52 \mathrm{~mm}$ scraps for potentiometer bracket and extension piece if required. If main plate extended then latter not required.

Self-tapping screws, 4 and 6B.A. screws, nuts and washers, and spacers to suit.
the appropriate f.m. button on the pre-amplifier and with the volume controls set to a moderate level a rushing sound should be heard.

The detector coil in the Larsholt head is peaked for maximum audio output. The level of muting is adjusted by selecting a weak signal for reception and turning the mute control VR4 until the station just starts to fade. In this way interstation noise will be reduced.

Any further reduction in interstation noise will of course reduce the level of the weaker station.
The stereo decoder is set up by tuning to a station known to be broadcasting stereo and then adjusting the pre-set VR5 until the LED stereo beacon lights up. As described in Part 8, a signal generator may be used for this function if desired.

TRACKING

Operation of the runing circuit depends, since it uses Varicap tuning, on the setting of the Varicap control potentiometer VR1 in Fig. 8.2.

The end frequency at the low end of the tuned scale is set by adjustment of VR3 whilst the tracking to match the graduated scale of the tuning dial is set by adjustment of VR2. The latter sets the potential across the potentiometer VR1.

Adjustment for correct tracking can be carried out using a signal generator of known accuracy or, probably more simply, by tuning to known stations and suitably adjusting till their reception and the correct frequency agree on the tuning dial. For readers assistance a copy of the scale used in the prototype is shown in Fig. 9.5. The tuning potentiometer VR1 is a 100 k ! linear device and the scale should be found to agree with the tuning without too much difficulty.

If required. VR3, and for that matter VR2, can be replaced with fixed value resistors once their values have been ascertained.

Whilst calibration has been going on the tuning meter will. hopefully, have been swinging up and down and it will be seen that this is a "maximum reading for tune" indicator.
If required, the tuner alignment. using the scale shown here in Fig. 9.5, can be achieved using a voltmeter rather than relying on the existence of broadcast stations. The procedure is as follows.
The main tuning potentiometer VR1 is set to mid-scale and the pointer is adjusted to align with the 100 MHz calibration. After readjusting the pointer, using the tuning knob, to 88 MHz measure the voltage between the wiper of VRI and 0 V . This should be done using a fairly high impedance meter preferably above 20 k ! per volt so as to avoid loading of the circuit.

Now adjust VR3 till the reading is 2.4 V . Tune to 104 MHz and adjust VR2 till a reading of 12.4 V is obtained.

The procedure should be repeated to optimise the readings and the following will give some idea of the level of readings obtained along the scale. $88 \mathrm{MHz}, 2 \cdot 4 \mathrm{~V}: 90 \mathrm{MHz}, 2 \cdot 7 \mathrm{~V}: 92 \mathrm{MHz}, 3.2 \mathrm{~V}, 94 \mathrm{MHz}$, $4.0 \mathrm{~V}: 96 \mathrm{MHz}, 5.0 \mathrm{~V}: 98 \mathrm{M} \mathrm{Hz}, 6.5 \mathrm{~V}: 100 \mathrm{MHz}, 8.0 \mathrm{~V}$: $102 \mathrm{MHz}, 10 \cdot 2 \mathrm{~V}$ and 104 MHz is 12 V .

This completes the Rondo series. We hope to publish details of further circuit modifications and additions as these become available

Just a few years ago the IEA Exhibition, held at Olympia, was heralded on each occasion as an ever-growing shop-window in which the World could look at British products. This year has seen its last occurrence at Olympia as, in future it is to be held at the new National Exhibition Centre near Birmingham from 1976.

It is perhaps an indication of the attitude with which these large events are currently viewed by many manufacturers that the 1974 show was graced by roughly half as many exhibitors as at the previous event. Whilst this is in a way a shame these massive circuses always add interest to the annual round, it should allow quite a saving to the industry exchequer when one remembers just how much is spent on massive events of this type.

The largest IEA held in 1970 probably cost the industry upwards of $£ 18 \mathrm{~m}$ including all attributable and fringe costings. To cover this the industry needs to earn at least three times the amount in turnover and clearly many of the larger manufacturers have been asking themselves if there is not a more efficient way of advertising their existence other than at this sort of cost.

Equally, it has been long admitted that centres such as Olympia and Earls Court are far from the ideal viewed in the light of other exhibition centres in Europe. Hence the choice of the new Birmingham centre which is to be a purposebuilt location within easy reach of rail, road and flight links to the rest of the country and, more important, the rest of Europe.

Usually it is possible to point to a dozen or so items which catch the imagination for their novelty, sparkle or wit. But this year the feeling was very much one of soldiering on in spite of it all, against a background of hope that the components supply situation-lifeblood of the industry-would not worsen.

HEAT PIPES

Even though the show was not exactly full of sparkling new devices and equipments, there were still a few items worth noting. Many of the ideas which have come to the fore in the last few years are now being applied commercially with great effect such as is the case with
heat pipes. Jermyn Manufacturing of Sevenoaks, Kent, were displaying a variety of these with capacities up to 5 kW and lengths up to 10 ft .

In fact they also demonstrated a hot air engine being cooled by heat pipes and it would seem that this particular invention has a future in areas across the board of industry. This perhaps illustrates the way in which one art can provide a solution to problems in other arts.

SOLID STATE

Predictably devices were not too much to the fore as the IEA is basically an equipment show but there were still some very interesting semiconductors around if one cared to look in the corners.

NEW CLOCK CHIP

Constructors who find the present state of the art in clock integrated circuits rather off-putting what with the need for two supply voltages, the physical size of the package (up to 40 pins) not to mention the cost, will no doubt welcome the introduction of a new, much simplified i.c. from General Instrument Microelectronics.

Designated the AY-5-1224 Clock Circuit, this new device features

One of the new long-life Heimann U-shaped flash tubes available from AEG-Telefunken. These devices are available in various standardised forms with ratings of 4 and 8 W suited for use in flash and stroboscopic applications.

only a four digit readout as opposed to the usual six digits on the currently available chips and only a single 15 V supply rail.
A single supply rail greatly simplifies the design of the power supply section of a clock which means that the whole circuit can be contained in a common 16-pin dual in line package.

The device was shown on the Semiconductor Specialists stand where it was demonstrated that the i.c. could drive a Monsanto MAN82 seven segment display directly.

Further details can be obtained from General Instrument Microelectronics, 57-61 Mortimer Street, London, WIN 7TD

COLOURED LEDs

Light emitting diodes seem to be finding their way into more and more projects in PE but as yet the only widely available types have been red. Though the technology for producing other colours has been known for several years, it is only now that they are becoming a commercially viable proposition.

Firms such as Motorola, HewlettPackard and Monsanto all had l.e.d.s in various colours on their stands. The new colours available are amber, yellow and green.

At the present time the prices of the colours are about twice that of red l.e.d.s but no doubt they will soon come down.

The new colours are not restricted to discrete l.e.d.s but are also appearing in alpha-numeric displays.

In this field it seems that the price harrier has already been broken for Monsanto are able to supply 0.3 in

Just to give some idea of the complexity and compressibility obtainable nowadays here is the latest Ampex core memory from the 1600 series which consists of a doublesided circuit board and a plug-in stack. These particular memories are available in capacities from $16.384 k$-word to $32 \cdot 768 \mathrm{k}$-word.
green, yellow or red seven segment displays all for the identical price of $£ 2.50$ (one off). For those who are interested these displays are designated MAN51, MAN81 and MAN71 respectively, and further details can be obtained from Semiconductor Specialists. Premier House. Fairfield Road. Yiewsley. West Drayton, Middlesex

MOS LSI CIRCUITS

The new development in MOS that is destined to make quite an impact on the digital i.c. market is the production of n-channel circuits. This new technique makes it possible to take full advantage of the low cost and high density of MOS whilst retaining full compatibility with TTL circuitry now so cheaply available.

We have already seen the MOS circuit whose inputs and outputs were fully compatible with TTL in that they needed no interfacing, but they have still required a V_{ss} and a V_{gg} supply, usually +5 V and -12 V respectively, making it necessary to provide another supply line other than the +5 V for TTL.

The n-channel devices only require +5 V .
The new technique has also effected a reduction in price in MOS. A good example of the technique is the Intersil IM7552CPE which is a 1024 bit random access memory which uses n-channel silicon gate enhancement mode technology.

Power consumption is only $0.2 \mu \mathrm{~W}$ per bit and access time is $1 \mu \mathrm{~S}$. The price is a mere $£ 13.47$ making a cost of less than $1 \frac{1}{2} p$ per bit.

These tiny devices are snapaction thermal switches ideal for use in cramped locations and capable of fast switching-making them useful in overheat detection and similar applications-and they are available from Jermyn Manufacturing.

WAVEFORM GENERATOR

Another interesting i.c. from Intersil, but this time using bipolar technology, is the 1M8038CCPD.

Basically this is a voltage controlled oscillator but unlike most other similar devices it is capable of producing not only square and sawtooth outputs, but also sinewave. This makes it a really useful device for all sorts of sound effects systems and at a price of only $£ 2.85$ it should be within the range of most amateurs' pockets.

Further information on both the above mentioned Intersil i.c.s is available from Celdis. 37/39 Loverock Road, Reading, Berkshire.

EDUCATION

Whilst most educational establishments now run some form of course in the measurement and control fields there is still a great deal of room for the development of equipment capable of demonstrating the various functions used. Feedback Instruments are specialists in this field and were showing a range of new devices.

Their electronic circuit constructor ECC 186 is a hand-case sized unit with a lift-up lid on which a circuit may be constructed using connectors and components housed in compartments formed in the other case part. The unit carries a power supply, indicating analogue meter in a multimeter circuit. and sufficient interconnections to make up many electronic circuits.

From the same source were a number of training aids in such areas as transducers. A kit TK 294 contains means for investigating variation of resistance with tem-

Exemplorary of the trend in multiple cable testing equipment is the VD 36 unit shown here testing a cableform in backwiring. This instrument is capable of coping with up to 100 conductors and is available from Siemens U.K.

perature, strain or motion, variation of capacitance with motion, proximity and level, and variation of self- and mutual-inductance with motion.

Feedback Instruments, of Park Road, Crowborough, Sussex, also manufacture a wide range of test instrumentation suited to the educational and test markets but perhaps most interesting is their Cygnet telewriter, a desk-top equipment which can transmit and receive handwritten messages over telephone lines. Ideal for use in banks, factories and offices, this equipment offers various advantages, not the least of which is removal of ambiguity and the provision of a written copy of any message.

The use of patchboards, breadboard training aids as they used to be called, is a popular one in educational circles, as evidenced by the new products available from Limrose Electronics of 8-10 Kingsway, Altrincham. Cheshire, who showed a couple of integrated circuit patchboards. One, the PB100 system, is designed to cope with up to 40 -pin di.l. packages and is suited to creating logic, analogue and hybrid circuitry of quite considerable complexity. For example a single patch-panel can accommodate up to 44 difil packages.

The basic unit includes power supplies, patching facilities and switched channels, and is able to accept any one of a number of patchboards which can be made up to meet the needs of the course.

A low-cost version, the Compukit 2, is designed for use with up to 16-pin d.i.l. packages or, indeed, discrete devices. Again, it includes power supplies and patching facilities but has only the one patchboard unit permanently wired in.

TEST

Of course, at the IEA a great deal of attention is paid to test and measurement, with a growing interest these days in the automation of test wherever possible. Many machines now exist to test actual equipments and these tend to follow fairly standard patterns but the area which has received least attention is the testing of cableforms or looms. These invariably present difficulty and usually require someone to spend laborious hours doing direct point-to-point tests of each conductor.

TJG Electronics. of 15 The Green, Poulshot, Devizes, Wiltshire, have developed a low cost automatic wiring tester which can be assembled in modular form to deal with various sizes of loom. It can test a wiring system with up to 2.600 connections and checks for continuity of each wire and that individual wires are not shorted together. The tests can be counted and faults can be made to arrest nperation and give an indication. \boldsymbol{x}

RSI
VALVE MAIL ORDER CO I6a WELLFIELD ROAD，LONDON SWIG 2 bs SPECIAL EXPRESS MAIL ORDER SERVICE ten

CRESCENT RADIO LTD 11－15 \＆ 17 MAYES ROAD，LONDON N22 6TL （also） 13 SOUTH MALL，EDMONTON，N． 9
 MAIL ORDER DEPT
 1 MAYES ROAD，LONDON N22 6 TL Phone 8883206 \＆（EDM．） 8031685

ADD LUXURY TO YOUR CAR WITH A MOTOR DRIVEN CAR

 Spec．：J SectionExteniled Length 100 cm Length under Fender 40 cm
Cable Length 120 cn
\qquad Cable Lemgth 120 cm
complete with fixing

－CRESCENT BEATBRITE＂ SINGLE CHANNEL
MOINDTO LIGHT UN1T This fantastic approx． $\left.4^{-} \times 3^{2} \times 2\right)^{\prime \prime}$ when
connected to the output of oound source from 1 to 100 watts producen a paychedelic ligh
display of up to 1000 watts display of up to 1000 watts． Complete with a rensitive level
control the unit is fused and can． A Bargain at $\mathrm{c} 7-50$ plus

10 p ．

feasional disc Jockey or to give
the private party ant electric atmonphere．a projerted ksleido－ cope of colour．
speclincation－Projector： 100 W ． convection cooled，at 30 tt the projected image＝ 16 ft ；Motor：
1 rev per 2 min．Liquil wheel： In diameter multicolour．
The Motor is Atted？ Projector and can only be purchesed an a single unit．The very popular standard model at may be purchased separately．A bargain－Prolector with Motor ready for Intant use， $215 ; 6 \mathrm{in} \mathrm{Li}$ ．

TRI－VOLT BATTERY ELIMINATOR
Edables you to work
your
Transistor Radio，Amplifier or he a．c．maine through this compact Eliminator．Just by moving a require． $6,7 \%$ or 9 volt．This meane all your trantistor power meane all your trantiator power
pack applleations can be handled by this one unit．Approx．size 24 ip $\times 24 i n \times 3$ tin．Our Price
22.75 plus 10 p ．\＆P．Hame model suitably wired for the
Philipa Casette 23 plua $10 \mathrm{p} \mathbf{P}$ ．\＆P

Tin x in LOUDSPEAKER

 A top qualityspeaker ideal where
small size is impore small size is import
ant．Manufactured by E．M．I．for a well
known hj－fi set maker．size： 7 inx 4 in ．Impedance： 8 ohm：．Flut：
38,000 ．Max．Free range： 90 Hz to 2kHz，Power handling：5W Unbeatiable．Price：21－60．Free
postage on this item．

CRESCENT CATALOGUE
It you conatruct you should on one．Slend 20 p inc．carriage

UK大is	Trankistor Tester
1＇K92	Telephone Amy
1k1\％	H1．Fi Ainp－8w
1＇K130	Mond Controll nit
OK140	Amp－1．jW
CK16\％	RIAA Equaliserd Stereo Amp
UK19．	Mint－Amp－ow
でK2	Signal Injector
C゙K230	AM－FM Aer．Amp
UK2ず	Mike Pre Amp
Uk300	4 Channel Raclio Control T．X．
LK310	Rallio Control Receiver
tkJs	Mw Radio Recelver
UKJ20	AM Tuner
UK－10	4 Channel A．F Mixer
UK゙うい	Photoelectric Cell 8 witch
UK835	（initar Pre－Amp
VK8\％	Cap．Discharge Ignition
UK915	K．F．Amp 12\％－170MHz
UK935	Whle Baml Amp 20Hz to 1

28.26 CK 235 Enablea von to volt ear supply Anyplifier or（casatte．etc．from the tran Radio， apply．Poaitive or negative earth．Approx． supplies $6, \overline{\text { If }}$ or 9 volts and in tranaistor regulated．
A real money aaving device for $£ 2.50$ top P ．
＂C． 300 ＂DISCO CONTROL PACK A control Unit which wheln cunnected to twindecka
makes a disco of professiona！quality．We supply a makert front panel which incorporates controls， suitch and inputsockets．
construction incor porating mixing，pre－arnp and headphone listening ampliffer．The power pack ＊laputs include Mic．，Tape／Cassette and Twin Deck．＊Controh include Mic．，Tape．Each Deck．
Mono， $114 . \quad$ Stereo， 817 plus 20 p carr．

3 KILOWATTS PSYCHEDELIC

Three Channel：Hass－Middte－Treble． Earh chanael bas its own senaitivity unit to the loudapeaker terminale of an amplifier．and connect three 250 V up to 1000 W lamp to the output terminaia of the unit，and you produce a fascinating
sound－light display．（All guaranteed） \＆ 18.50 plus 38 p P．：

LOW VOLTAGE

AMPLIFIER

5 transistor amplifier complete with volume control，is suitable Will give about $1 \mathbf{W}$ at 8 ohm output．
With high IMP input this ampli－ tier will work as a record amplifer．

200／250V MAIH8 BELAT Heavy duty contacts． $2,500 \Omega$
coil．All newand unused D．PDT majns relays $60 \mathrm{p}+\mathrm{Y}$ ． T Carr special quantity price： $\mathbf{4} 40$ per 100 relays．

MINI LOUDSPEAKERS 2 in 80 ohm， $50 p ; 2 t \ln 40 \mathrm{ohm}$
50 p ．Please include 0 p P ．\＆ P ．on sop．Ple

VAT

Pease include 10% VAT on goods plus carriage

TIMER RESULTS AND COMMENTS

Recently I promised some preliminary readings taken using the "Random Timer'' described in the June issue. At the time it was mentioned that these were expected to be interesting, as there were indications of odd happenings. I was right!

Readers will remember the suggested method of taking timings involved starting a stop-watch on a timing click, then hurriedly noting the time of the next click, resetting the watch and logging the reading during the next interval. This was the method I used initially, having first established that the timer was behaving fairly randomly. Oddly enough, during checking, when readings varied between about 3 and 20 seconds, I noticed bunches of identical timings, three 5's, three 7's and a run of $16,14,14,15,15$. Was this coincidence, and if so, why should it happen to me?

3 3 3
During the tests I concentrated on slowing the timer over 10 firings, and got a total of 71 seconds, when added together. Next, concentrating on speeding the timer counts the results totalled 47 . These seemed reasonable so il continued with the following results. Slow period totalled 95 , fast 74 ; slow 81 , fast 66 ; S 77, F 51 ; S 95, F 74; and finally S 81, F 66: each figure being tatal for 10 timer operations.
A quick glance at these figures shows a difference of about 20 seconds between fast and slow. If we assume that my thoughts had any influence they seem to be equal for fast and slow periods, this means 10 seconds per period might be presumed to be a fair assessment of the "swing of influence". Now, and here's the big snag, this works out at only half a second per reading, assuming each worked in the proper direction. Alas, with the best will in the world, a person timing himself, operating the stop-watch himself, could make an error of half a second per reading, and if he is looking for a certain result, it could easily be the case that the subconscious would delay resetting on slow timings and be a little livelier on the fast periods. This, together with errors in reading the watch with biased eyes, could explain the apparent willingness of the timer to respond to thought!

It was only at this stage that it occurred to me to use a better system of taking readings, obvious though it may have appeared to readers. From this time on I timed events for a fixed period each time and where an event did not coincide with the end of a period the position of the watch hand was noted
prior to the end of a minute and the next firing time noted after the end of the period, so allowing a fraction of a timer count to be assessed.

Before making further readings, I had a visit from a friend, $\mathbf{M r}$ Benson Herbert of the Paralab, Downton, Wilts, and he asked to check its randomness after I had showed him one or two successful results. I noticed his logged readings were a list of six counts per minute which continued for some time. I apologised and said the timer was obviously going berserk (or had gone) and that 1 would fix it before doing a series of trials at his laboratory.

It's a strange fact, you only have my word, but when Mr Herbert left the timer behaved normally from that time to this. When I say normally perhaps I should say "paranormally", the constant timings had completely gone and we were back to normal paranormality once more. I admit to one interference with the timer: I did adjust the preset setting since, but as explained in the timer description this sets only the longest timing duration, unless adjustment is overdone, which it was not. Mr Herbert assures me that he made no conscious effort to influence the timer during his visit.-Strange indeed!

OVERSEAS NEWS

Brazil . . . The design and construction of an "Electromagnetic Space Tensioner" has just been completed by Prof. H. G. Andrade, Director of Research Dept., of the Brazilian Institute for Psychobiophysical Research. It took five years to complete the machine.

The machine operates on a theory based on compressing empty space by magnetic forces, such that the tension so created would propagate into hyperspace, causing a secondary reaction in space as we, know it, simulating a "biomagnetic" field. The biomagnetic field is presumed to surround and permeate living organisms.

Experiments using bacteria indicate increase in reproductive rates of some 12 per cent at maximum field strength. One wonders if this is the result of the elaborate system or simply the effect of any magnetic field, as reports from experimenters in plant biology indicate that certain levels of magnetic field above that of the earth's natural field, can increase plant growth. It is claimed that fields up to 2,000 gauss are used in experiments.

USA . . . According to one report, when chicks are placed close to a random timing device the timings tend to speed up. Fertilised eggs are reported to have a similar effect.
U.S.S.R. . . . Information transfer between living cells. Two colonies of cells were placed in adjacent compartments, separated by a quartz glass divider. One colony. was deliberately killed by poisoning or by virus infection and each time the other colony was affected by the same sickness as the first colony.
Over 5,000 experiments were performed and it was found that if the divider was of ordinary glass, no transfer of "infection" occurred. Apparently, cells emit light in minute measures, and in sickness the light seems to be modulated into pulses. Transmission through quartz glass suggests that the radiation may be in the ultra violet spectrum and carries photo-communication information.

Madam Kulagina, Russia's answer to Uri Geller, has been demonstrating remarkable talents in psycho kinesis (P.K.).

Having seen films of her feats which included the spinning of a compass needle with a simple pass of her hand over or around it. Hidden magnets was the first reaction until she turned the compass casing and moved it in a zig-zag with the needle only just moving as a result of disturbing its pivot. All objects to be moved were placed on a transparent box-like table of glass or clear plastic.
面 西

G

In April 1973: Benson Herbert of Paralab investigated and witnessed many such experiments and results seem to rule out electrostatic or electromagnetic effects, at least, so far as d.c. fields are concerned, as special equipment was used to detect these and other sideeffects. But an interesting point to note is that Kulagina was able to create burn-marks on people's arms by a simple touch of the finger. It leaves one wondering if she is capable of producing radiofrequency radiation in concentrated form, which the apparatus present at the time would not be expected to respond to.

Another feat of this lady was to split the bubble of a spirit-level.

For a long time now a large number of customers have asked us to produce cabinets in kit form, and above we show examples of cabinet styles and these are now available either fully built or in kit form ready for you to produce a professional finish in a very short time!
Kits are available in all specifications and all the kits contain everything you need as follows:-

1) 4 sides with handle cutouts, front edges rounded, 1 back with jack socket hole, and1 baffleboard with speaker cutout
2) P.V.C. cut to size for frame and back, plus false front and back timbers, white front piping and speaker cloth
3) Recessed handles with fixing screws, jack socket, all fixing screws, corner plates, glue, and full instructions !

PRICE \& TYPE LIST			
Type	Size	Pricé manufactured	Kit price
$2 \times 12^{\prime \prime}$ (illustrated above)	$36^{\prime \prime} \times 18^{\prime \prime} \times 13^{\prime \prime} \times \frac{3}{4}$	£19.50	f12.50
$4 \times 12^{\prime \prime}$ (illustrated above)	$31^{\prime \prime} \times 31^{\prime \prime} \times 13^{\prime \prime} \times \frac{}{} \times \frac{3}{4}$	¢ 24.50	£17.50
$4 \times 12^{\prime \prime}$ P.A. Column	$48^{\prime \prime} \times 27^{\prime \prime} \times 13^{\prime \prime} \times \times \frac{3}{3}$	£30.00	£21.50
$1 \times 18^{\prime \prime}$	$31^{\prime \prime} \times 31^{\prime \prime} \times 13^{\prime \prime} \times \frac{3}{4}$	£24.50	£17.50
$1 \times 15^{\prime \prime}$ with two top horn cutouts	$36^{\prime \prime} \times 20^{\prime \prime} \times 13^{\prime \prime} \times \frac{3}{4}$	£21.00	f 13.50
Mini Disco (state deck cutout BSR, GARRARD etc.)	$33^{\prime \prime} \times 20^{\prime \prime} \times 8^{\prime \prime} \times \frac{1}{2}$	£20.00	£13.00
Maxi Disco (illustrated) (state deck cutout BSR, GARRARD etc.)	$42^{\prime \prime} \times 20^{\prime \prime} \times 10^{\prime \prime} \times \frac{1}{2}$	f 25.00	f18.50

Please ask for quotation on any other type or size of cabinet you may require.

* 100 w RMS slave amp for Disco
* 100 w RMS continuous sine wave output
* Short and open circuit protection
* Built to highest industrial spec.
* Price $\mathbf{f} 37.00$ complete

* Stereo studio disco mixer
* Full PFL and Monitor facilities
* As used by John Peel, Mark Wesley, Paul Burnett, DLT, Dave Christian, Tony Prince
* Price $£ 120.00$

* Concorde mono M400 mixer
* Full PFL and Monitor facilities
* Mike overide
* Magnetic inputs
* Broadcasting quality £85.00

ALL OUR PRICES INCLUDE VAT AND UK DELIVERY

ERC 100 watt power amplifier

* Electrolytic capacitors and second generation ICs
* Fully protected against short or open circuit
* Less than 0.1% distortion at all powers
* Rise time 4 muS - stabilityUnconditional Price f66.50

Disco imp projector 150 watt tungsten unbeatable price 519.75 Includes liquid wheel and postage Normally £24-£27.50

PRIENTE

which releases a trigger to allow a tooth wheel to rotate through one tooth angle to regulate a clock mechanism, driven in the conventional manner by a spring or weight.

Thus, the theory is that the minute movements of the target plate caused by the impingement of light pulses will result in accurate control of the mechanical member.

Even discounting physical theory doubts it seems highly unlikely that any target plate could be so delicately mounted as to move under the impact of light alone. But the idea behind the invention is sound for other applications.

A perforated target plate could be made which will respond to other stimuli (as, for instance, a Crookes windmitl or radiometer responds to radiated heat) or could be coupled to a diaphragm sensitive to sound signals, or air disturbances. The latter application might well be relevant to audio visual displays or a solenoid (or solid state equivalent) triggering light or sound generators for alarm purposes.

FALSE START DETECTIOK

BP 1330569

According to BP 1330569 from Michael Weidacher, of Munich, previous attempts at electronically detecting false starts in athletic events have been unsatisfactory.

Some devices have worked on the principle that the first thing a runner does on hearing the starting pistol is to take his feet off the starting blocks. In reality the exact opposite is the case; the runner exerts a force back on to the starting blocks. Make and break contacts have been operated by this force but a switch travel of only 2 mm can produce a switching lag of $1 / 1000$ th of a second, which is a distance of 10 cm in sprint athletics.

The invention seeks to overcome these problems and has two main aspects in which an inertia switch and starting block design, with false start lamp, is suggested. The arrangement also incorporates a pistol cocking catch to prevent firing of the pistol in the event of false starts.

Fig. 1

Snorkelling and scuba-diving have increased in popularity in recent years and, following this trend, the camera makers have produced a new range of underwater cameras. Many of these are relatively cheap and simple to operate, so the underwater photographer is by no means the rare fish that he was. But waterproofing the camera is not the only problem of sub-aqua photography.

Water absorbs some of the light passing through it, especially if it contains suspended material, and usually it absorbs more light from the red end of the spectrum. So, the deeper we go, the bluer the ambient light becomes. This blue cast spoils many underwater colour shots.

Unfortunately the human eye automatically compensates for variations in the colour temperature of ambient light, but colour film does not. The photographer is commonly unaware of the colour castuntil he views the processed slides, prints or movies!

The colour temperature of the ambient light varies with depth, suspended matter and other factors, and even at the same site may change from day to day. So the sub-aqua photographer needs some way of telling if the light is suited to the colour film he is using and, if not, what colour correcting filter he should use.

DESIGN FEATURES

The colour temperature indicator described here was designed especially for underwater use, though there is nothing to prevent its use for normal dry-land photography. Its main design features are:

1. Small size-achieved by compact layout and by avoiding the use of a milliammeter (which also makes it cheaper to build).
2. Low power consumption-power is provided by a small 9 volt radio battery (PP6).
3. No external controls-it is very awkward to provide waterproof seals for switches and the spindles of potentiometers, so this circuit was designed for use while completely sealed in a watertight container. For use at shallow depths it could be enclosed in a sealed glass preserving jar, or a Perspex box, but this gives the diver just one more item to handle under water.

It is preferable to put the indicator inside the camera housing, as described below. This is why its small size is so important.

CIRCUIT DESCRIPTION

As shown in Fig. 1, the circuit employs two photo-conductive cells PCC1, PCC2, connected in series between the positive (+9 V) and negative $(0 \mathrm{~V})$ rails. These are balanced (as described later) so that under all intensities of illumination their resistances are equal. The potential at point A thus remains at approximately 4.5 V .

One photocell has a red gelatine filter covering it, the other has a blue filter. If the ambient light is of low colour temperature (relatively too much red light and too little blue), PCC1 will receive relatively more light than PCC2.

The resistance of PCC1 will fall and that of PCC2 will rise. This will cause the potential at point A to increase. So although the potential at A is not affected by changes in the intensity of illumination, it is affected by changes in the colour temperature.

Similarly, when colour temperature is high (too much blue, too little red) the potential at A will fall.

REFERENCE POTENTIAL

To detect the changes of potential at A we set up a reference potential at B, using the potentiometer VR1. This is set so that the potential at B is 4.5 V .

The operational amplifier ICl is connected as a differential amplifier. Its output relative to the 4.5 V line, (wiper of VR2) depends on the differential between its two inputs, the potentials of points A and B.

The integrated circuit amplifies potential swings, so that a small change of potential at A produces a large swing in the potential of the amplifier output. This large swing is used to operate the indicator lamps, D1, D2, which are light-emitting diodes.

If the output rises towards the 9 V line a potential difference of up to 9 volts develops across R8 and D2 which glows brightly. The potential across D1 is correspondingly reduced and the lamp is almost extinguished.

Thus lack of balance due to low colour temperature causes the TOO RED lamp (D2) to be brightly lit. Conversely, as the output of the amplifier falls towards $0 \mathrm{~V}, \mathrm{D} 2$ no longer conducts and is extinguished, while the increasing potential difference between the output and the positive rail causes D1 to glow brightly-indicating tOO BLUE.
In operation VRI is adjusted so that when the cells are illuminated by light of the correct colour temperature for the film being used, both lamps glow equally brightly. Then a departure from correct colour temperature will cause one lamp to glow more brightly than the other-indicating either тоо RED or TOO BLUE.

POWER CONSUMPTION

The use of light-emitting diodes helps to keep the device small and ensures low power consumption. The indicator uses about 30 mA , rising to 70 mA in full sunshine. The battery may be drained after an hour or so of use, and its output voltage will fall.

This does not affect the operation of the circuit, since the important potentials (at A , and at the wiper of VR1) are all obtained by potential-dividing

Photograph of the colour temperature indicator mounted inside the waterproof housing
between the positive and negative lines. They maintain their relative values independently of the actual voltage of the supply.

Even with a flat battery, delivering only 7 volts, the circuit still works perfectly, though the light output from the lamp begins to weaken at this stage.

CONSTRUCTION

Cut a rectangle of $0 \cdot 1$ in matrix Veroboard, measuring 21 holes long and 9 strips wide. Bore

Fig. 1. Complete circuit diagram of the Sub-aqua Colour Temperature Indicator
mounting holes if these are required. The photograph shows that the author's model was mounted on a bracket made of aluminium which fits into the accessory shoe of the camera. This happened to be a convenient way of securing the circuit board where the cells could receive ambient light through the transparent front half of the housing.

With other camera housings, other means of attaching the circuit board may be devised. Construction follows the normal sequence of cutting away parts of the copper strips (Fig. 2) soldering on the resistors, and then the larger components. When working on such a small scale, with components crowded together, it is essential to prevent odd blobs of solder causing unintended shorts.

The metal ends of the photocells project beyond the body of the cell, so a small piece of card, folded and stuck to the circuit board, is used to separate the two cells to prevent short circuits.

LAMP MOUNTING

Some thought should be given to the mounting of the lamps, and this depends on the nature of the housing. If there is a viewfinder port it might be possible to mount the lamps to one side of this, so that they could be seen when using the viewfinder.

The lamps are very small and would easily fit in some kinds of housing. Leads would then be soldered to the circuit board, running to the lamps.

This scheme was not possible with the author's housing, and it was decided that with the housing pointing upward to receive light from above, it would be easy to view the lamps through the side of the transparent front half of the housing (even though this has a slightly frosted surface).

Accordingly the lamps were positioned so as to face out from the axis of the housing. They were at one end of the i.c., and in bright light they are shaded by a piece of rubber tubing, about one inch long pushed over both lamps. For permanency this could be stuck lengthways along the top of the i.c. To enable the lamps to be put in contact, the rim of each l.e.d. was gently filed away on one side.

Twin wires run from the Veropins to the battery. The battery can be fitted in any convenient space in the housing, and secured if necessary to prevent it fouling the camera mechanism. Since the indicator is to be operating continuously there is no point in providing the switch Sl in the sub-aqua version. However, if this is being constructed on a larger scale as a terrestrial version (see photograph of the prototype), a push-button is ideal, and the PP6 will last for months.

The prototype was built to test the circuit design, and afterwards housed in a spare plastic food container. The circuit board was bolted just below the translucent white plastic lid.

The cells are just beneath the circular area covered with 70% Letratone, placed there partly user

Resistors

R1	68Ω to 120Ω (see text)
R2, R3	$2.7 \mathrm{k} \Omega$ (2 off)
R4, R5	470Ω (2 off)
R6	$10 \mathrm{k} \Omega$
R7, R8	220Ω (2 off)
All $\frac{1}{3} W$ or $\frac{1}{3} W \pm 5 \%$ sub-miniature	

Potentiometers

VR1 $1 \mathrm{k} \Omega$ linear sub-miniature skeleton preset (or potentiometer, see text)

Semiconductors

IC1 741C 8-pin DIL
D1, D2 Light emitting diode TIL209 (2 off)
PCC1, PCC2 B9900 photocells (2 off)

Miscellaneous

S1 On/off switch (optional see text)
0.1 in matrix Veroboard, 21×9 holes

Veropins
Photographic gelatine colour filters-tricolour red and blue

Photograph of the prototype

 unit fitted with a small aluminium bracket for attachment to the camera accessory socket
to shade the cells and partly to indicate the location of the cells so that colour filters could be accurately placed over the cells when required.

The l.e.d.s were mounted on a piece of tag strip bolted to the rear wall of the box, and a light-proof plastic tube was placed across the box, making a sort of tunnel opening at the front of the box. This gave very effective shade, making it easy to see the lamps even in the brightest sunlight.

The control knob operates VR1, determining the potential of point B, with which the potential of point A is to be compared. There is no space for a potentiometer and knob in the sub-aqua version, its place being taken by the preset potentiometer.

SETTING UP THE CIRCUIT

Before colour filters are placed over the photocells, these must be balanced so they respond identically to variations in light intensity. This can be done when the connections to the positive and negative rails have been soldered, but the other connections are still loose.
Connect the battery to the circuit, and connect the negative probe of a test-meter to the negative terminal of the battery. Twist the lower (loose) leads of the photocells together and connect this joint to the positive probe of the meter. This should read 4.5 volts when the photocells are illuminated by indoor daylight or low power artificial light (e.g. 1 ft from a 100 W lamp).

If the meter reads other than 4.5 volts try putting a finger over one or other of the photocells and see what happens to the voltage. By this means it is easy to find out which of the photocells has too low a resistance. Part of this cell is blacked out by painting black ink on it, until the meter reads 4.5 volts.
In fact it is not necessary in this circuit to adjust exactly to 4.5 volts-somewhere between 4 and 5 volts is near enough, though the nearer the better.
Next take the circuit outdoors, still connected to the battery and voltmeter-place it in bright midday sunshine. There will probably be a change of meter reading. In bright light the resistance of both photocells falls markedly and probably not equally, so the voltage changes. One of the photocells now has too low a resistance, and this needs increasing by wiring a resistor (R1) in series with that photocell.
In Fig. 1 the resistor is in series with PCC2 (as in the model in the photograph) but it may be necessary to wire R1 in series with PCC1 instead. The exact value for R 1 must be found by experiment.

Try various resistors of low value in series with PCCl (or PCC2). The correct value is found when the circuit is carried from bright sunlight to deep shade (indoors) and the voltage changes by less than about 0.1 volts. The resistor may then be soldered in place.

PHOTOCELL FILTERS

The photocells may then be covered with coloured gelatine-using one, two, or three layers, depending on the depth of colour of the material available. Cadmium sulphide cells are especially sensitive to red light, so the red filter should be strongly red. The sharper the cut-off of the filters, the more sensitive will the indicator be to changes of colour temperature.

To calibrate the indicator, take it outdoors on a sunny day, between 10 a.m. and 2 p.m. and place it in direct sunlight. Adjust VR1 until the lamps both glow equally brightly. Now take the indicator in the shade and point it towards a bright blue sky-the too blue lamp should be bright and the other lamp dim. Take it indoors and expose it to artificial light (filament lamps - not fluorescent lamps)-the too red lamp should be bright now and the too blue lamp dim.

By balancing the lamps in direct sunlight the indicator has been set for daylight colour film. Since the colour temperature of sunlight is modified by the presence of clouds in the sky it is worthwhile repeating this calibration on several occasions to find the mean setting for daylight. This can then be marked with a dot of paint on the preset. If you intend only to use daylight film (which is likely for sub-aqua work) calibration is now complete, and there is no further need to alter the preset. The indicator will always tell you if the light is correct for colour film (lamps equal) or too red or too blue. In sub-aqua photography the latter is more likely.

UNDERWATER WORK

Colour correcting filters are available for compensating for incorrect colour temperature. For underwater work a set of pinkish filters of various strengths are useful for filtering out some of the excess blue light. To find out which filter to use, hold it over both cells of the indicator. If the lamps now glow equally, this filter is the correct one to
continued on page 723

Nowonly EL 4.951
 4 Vusswe en12:50]
 An advanced 4-function calculator in kit form
 Features of the Sinclair Cambriage

The Cambridge kit is the world's largestselling calculator kit.
It's not surprising - no other calculator matches the Sinclair Cambridge in functional value for money; and buying in kit form, you make a substantial saving.
Now, simplified manufacture and continuing demand mean we can reduce even the kit price by a handsome $£ 12 \cdot 50$. For under $£ 15$ you get the power to handle complex calculations in a compact, reliable package - plus the interest and entertainment of building it yourself!

Truly pocket-sized

 With all its calculating capability, the Cambridge still measures just $4 \frac{1}{3}^{\prime \prime} \times 2^{\prime \prime} \times \frac{11^{\prime \prime}}{16}$. That means you can carry the Cambridge wherever you go without inconvenience - it fits in your pocket with barely a bulge. It runs on ordinary U16-type batteries which give weeks of normal use before replacement.
Easy to assemble

All parts are supplied - all you need provide is a soldering iron and a pair of cutters. Complete step-by-step instructions are provided, and our service department will back you throughout if you've any queries or problems.

Total cost ? Just $\mathbf{£ 1 4 . 9 5 !}$

The Sinclair Cambridge kit is supplied to you direct from the manufacturer. Ready assembled, it costs $£ 21 \cdot 95$ - so you're saving $£ 7$! Of course we'll be happy to supply you with one readyassembled if you prefer-it's still far and away the best calculator value on the market.
*Uniquely handy package.
$4 \frac{1}{3}{ }^{\prime \prime} \times 2^{\prime \prime} \times \frac{11^{\prime \prime}}{16}$, weight $3 \frac{1}{2}$ oz.
*Standard keyboard. All you
need for complex calculations.

* Clear-last-entry feature.
*Fully-floating decimal point. *Algebraic logic.
*Four operators $(+,-, x, \div)$, with constant on all four.
* Constant acts as last entry in a calculation.
* Constant and algebraic logic combine to act as a limited memory, allowing complex calculations on a calculator costing less than f 15 .
*Calculates to 8 significant digits. * Clear, bright 8-digit display.
* Operates for weeks on four U16-type batteries

A complete kit!

The kit comes to you packaged in a heavy-duty polystyrene container, It contains all you need to assemble your Sinclair Cambridge. Assembly time is about 3 hours.
Contents:

1. Coil.
2. Large-scale integrated circuit.
3. Interface chip.
4. Thick-film resistor pack.
5. Case mouldings, with buttons, window and light-up display in position.
6. Printed circuit board
7. Keyboard panel.
8. Electronic components pack (diodes, resistors, capacitors, transistor).
9. Battery clips and on/off switch.
10. Soft wallet.

This valuable book-free!
If you just use your Sinclair Cambridge for routine arithmetic - for shopping, conversions, percentages, accounting, tallying, and so on - then you'il get more than your money's worth.

But if you want to get even more out of it, you can go one step further and learn how to unlock the full potential of this piece of electronic technology.

How ? It's all explained in this unique booklet, written by a leading calculator design consultant. In its fact-packed 32 pages it explains, step by step, how you can use the Sinclair Cambridge to carry out complex calculations.

Sinclair Radionics Ltd, London Road, St lves, Huntingdonshire Reg. no: 699483 England VAT Reg.no:213 817088

Why only Sinclair can make you this offer

The reason's simple : only Sinclair - Europe's largest electronic calculator manufacturer - have the necessary combination of skills and scale.
Sinclair Radionics are the makers of the Executive - the smallest electronic calculator in the world. In spite of being one of the more expensive of the small calculators, it was a runaway best-seller. The experience gained on the Executive has enabled us to design and produce the Cambridge at this remarkably low price. But that in itself wouldn't be enough. Sinclair also have a very long experience of producing and marketing electronic kits. You may have used one, and you've almost certainly heard of them - the Sinclair Project 80 stereo modules.
It seemed only logical to combine the knowledge of do-it-yourself kits with the knowledge of small calculator technology.
And you benefit!
Take advantage of this money-back, no-risks offer today
The Sinclair Cambridge is fully guaranteed. Return your kit within 10 days, and we'll refund your money without question. All parts are tested and checked before despatch-and we guarantee a correctly-assembled calculator for one year.
Simply fill in the preferential order form below and slip it in the post today.
Price in kit form: $£ 13 \cdot 59+£ 1 \cdot \mathbf{3 6}$ VAT. (Total : $£ 14 \cdot 95$)

Rididaut A SELECTION FROM OUR POSTBAG

Congratulations

Sir,-I would like to congratulate you on an extremely readable and very good magazine. In particular I liked the series "First Steps in Circuit Design."

1 have followed many such series, but this is the first one that has really helped in getting down to actually building one's own circuits. I thank all concerned for publishing such a superb magazine.

Mr. E. Barton, Craigellachie, Banffshire.

above the supply potential, and discharges into TRA, with time constant $\mathrm{RC} \times \mathrm{C} 2$. The current flowing from TRA collector is almost equal

Diode pump

Sir.-May 1 comment on Mr. Jones' "M.P.G. Meter" in your June issue, as 1 designed a meter on a related principle some time ago.

A meter of this type cannot respond accurately to, say, the increase in fuel consumption during sudden acceleration: it shows consumption correctly only after conditions have been steady for several seconds. Thus its main use is in comparing consumption during steady travel at various speeds or in different gears.

Before the meter can settle after a change in conditions, the pump must operate and C3 discharge, C3 charge again to the new peak value, the voltage on C4 follow this and the meter needle move. This will take around 5 seconds.
The meter scale is non-linear because of the behaviour of the diode pump C2, C3, D2, D3. For each operation of RLA. the voltage on C3 increases by

$$
\left(V_{s}-V_{3}\right) \mathrm{C} 2 /(\mathrm{C} 2+\mathrm{C} 3)
$$

where V_{s} is the supply voltage
and V_{3} the output voltage on C3 before the operation. Linearity is only obtained if V_{3} always remains small compared with V_{s}.

The diode-transistor pump shown below is hardly more complex, but remains linear until V_{3} rises to within IV of V_{s}. In this circuit, when RLA1 closes, C2 charges via the diode. When RLA1 opens, the right-hand plate of C 2 rises to

Mr. Bradfield's transistor diode pump circuit
to the emitter current, irrespective of V_{3}, so the increase in output voltage is $V_{\mathrm{s}} \mathrm{C} 2 / \mathrm{C} 3$ and operation is linear.

In the original circuit TR1/C4 is described as an emitter follower, but the circuit can only follow an increase in voltage above that already on C4, Fig. 2 shows the circuit functioning as a peak-value rectifier, which I would expect to be used. This operation is hampered by an excessive charging time constant $\mathrm{R} 4 \times \mathrm{C} 4=2 \cdot 2 \mathrm{sec}$. Reducing R4 to 100Ω improves this time constant while limiting peak collector currents to a safe value.
With linear operation obtained, the maximum voltage on C3 could be increased, but above 6 V , reverse breakdown of TR1 emitter-base junction would upset operation when C3 discharges but C4 remains charged.

C. D. Bradfield
Kingston upon Hull

I find the points raised by Mr. Bradfield's letter very interesting.
With regard to the problem of linearity, it would seem to me that it is important to know whether one is doing 10 or $15 \mathrm{~m} . \mathrm{p} . \mathrm{g}$. and relatively unimportant to know whether one is doing 75 or 80 m.p.g. This may not be so with a very small engined car, but the diode pump which produces this
non linear scale has, in my opinion, the advantage of increasing accuracy at the high consumption end of the scale.

Readers may wish to try Mr. Bradfield's modification, but to judge from the last paragraph, it would seem that some careful designing is necessary.

The response time may be a little slower than Mr. Bradfield would like, but with less than 20 components in the circuit, I am myself. surprised that the Meter works as well as it does. It is not so many years since another magazine published a m.p.g. meter with over 50 transistors and a scale for each gear.

The response time of the m.p.g. meter depends on three factors. Firstly, the time between pump strokes-this will be the absolute minimum response time and with this type of pump is from 0.3 sec . upwards, the average being perhaps $1.5 s e c s$. The other two factors are the charge and discharge times for C4. I agree that the charge time for C 4 can be decreased by reducing R4, but in order to supply the increased current would it not be necessary to transistorise the stabilised power supply?

The discharge time of C4 depends on the resistance of ME1/ VR1; more complexity would be needed to reduce this and could only result in the wild fluctuations C4 was put there to prevent. It is clearly explained in the text that C 4 is something of a compromise and readers can reduce its value or that of R4 to obtain a response which suits them best.
TR1/C4 is not described as an emitter follower-the purposes of TR1 and C4 form two distinct Daraaraphs.
I hope that this satisfactorily clarifies the matter.-SJ

Telebell improvement

Sir,-I have read with interest the article "Telebell" in your June 1974 issue, a device for providing remote telephone bells wherever required without physical connection to the Post Office system.

It occurred to me that some signal other than a bell might be of greater use, either for the benefit of the deaf or in circumstances where an audible signal would be undesirable and 1 accordingly fitted a low voltage lamp in place of the bell. Obviously, this switches on and stays on until the supply is disconnected, due to the action of the CSR1. but this is no great disadvantage and works well.

A further thought then occurred and I replaced the bell/lamp by a 6 V direct-current relay which has heavy-duty contacts. capable of handling several amperes, see Fig. 1. By making use of the various contacts as shown, I have produced a
device which has the advantage of working from a battery on negligible current in the stand-by condition, but which switches itself to mains operation when activated and disconnects the battery supply
through the thyristor CSR1. Moreover, the relay is capable of handling enough current to switch on a load of several hundred watts or, if greater capacity switching is required, of operating a further heavy-duty contactor.
The possibilities for use are endless; a toot on the horn as one drives up to the garage doors, with a suitably placed microphone, can activate lamps in the garage, the porch, switch on the fire and the TV, etc, etc.
Reverting to the original intention of the telephone bell providing the necessary activation, one might ring one's empty home while on a journey and bring about the same results as a security measure, though I am uncertain of the views of the local Telephone Manager on this use of the public equipment-it might constitute illegal use of his electricity! A deterrent from this cort of use, apart from any possible legal infringement, is that some other person may ring up during one's absence and bring about the same resuit at the wrong time of day!
C. H. Simmons, Wallingford.

SUB-AQUA COLOUR

TEMPERATURE INDICATOR

continued from page 719
use under the prevailing lighting conditions. This procedure requires that you have.filters which can be fitted over the lens port of the camera housing while under water, so it is possible to change filters while diving. Alternatively one can fit a filter to the camera before sealing it in its housing and place an identical filter over the photocells; the indicator will then show whether or not correct colour rendering will be obtained with this filter in use.

TERRESTRIAL CALIBRATION

For terrestrial use the indicator can also be calibrated for use in artificial light. Most "type A"

Photograph of a suggested box so that the colour temperature indicator can be used on dry land
colour films are balanced for the light from a photoflood lamp, so to calibrate the indicator, expose it to a photoflood and adjust VR1 until the l.e.d.s are balanced. Mark the position with a spot of paint.

If by any chance the lamps will not balance, even when the VR1 is at one end of its track, this is because the balance-point lies beyond the end of the track-somewhere along R2 or R3. With the values given, this should not happen, but if it does then R2 or R3 may be replaced with a resistor of greater or lesser value. Alternatively a $2 \cdot 2 \mathrm{k} \Omega 2$ preset could be used in place of VR1, though this would make it harder to adjust to exactly the correct balance point.

PRECAUTIONS

When the circuit has been adjusted and tested it is worth while to cover the underside of the board with a strip of self-adhesive tape. This will prevent the possibility of short-circuits through the metal parts of the camera and also protect the camera from scratching by the sharp cut ends of the component wires.

One final word of warning-the indicator is very sensitive to all coloured light reaching it-not just that from the intended source of illumination. When calibrating, turn off any lamps other than the one against which the indicator is being tested.
A fluorescent strip-light in the same room will throw calibration badly out. When the prototype was being calibrated some very inconsistent results were obtained, until it was realized that behind one of the lamps was a large blue window-curtain. So when calibrating, and when using the instrument, watch out for strongly coloured surfaces nearby; keep test sources away from walls and curtains-and don't wear a bright red shirt!

SUPERSOUND 13 HI-FI MONO

 AMPLIFIERA aperb aolid state audio amplifer. Brand new com ponents throughout. 5 silicon transistors plus 2 power output transistora in puab-pull. Full wave rectification Output approx. 13 watts r.mis. into 8 ohm. Frequency
response $12 \mathrm{~Hz}-30 \mathrm{KHz}+3 \mathrm{~d}$. Fully integred amplifier atage with separate Volume, Besa boost and Treble cut controls. Buitable for $8-15$ ohm speakera Input for ceramic or crystal cartridge. Senaitivity appron. 40 mV for full output. Bupplied ready built and teated, with knobs, escutcheon panel, input and output

DE LUXE STEREO AMPLIFIER A.C. mains 200-240V. Using heavy duty fully isolated mains transformer with fuil wave rectification giving up: $2 \times$ ECL86 Triode Pentodes, I \times EZ 880 an rectifer Two dual potentiometers are provided for bass and treble control, giving bass and treble boost and cut. A dual volume control is used. Balance of the left and right hand channels can be adjusted by meana of a separate Balance" control htted at the rear of the chaseis. Input sengitivity is approximstely $300 \mathrm{~m} / \mathrm{v}$ for full peak output of 4 watts per channel (8 watts mono), into 3 ohm speakers. Full negative feedback in a carefully calculated circuit, dintortion his rolume levels to be used with negligible $11^{\circ} \times \times 4^{\circ} \mathrm{d}$ Opersll heighte uilt \& teated to a high atandard P a $P 0 \mathrm{p}$ to a high standard

LOUDSPEAKER BARGAINS

$5 \mathrm{in} 3 \mathrm{ohm} \$ 1.25, \mathrm{P}$. \& P. 15p. $7 \mathrm{in} \times 4 \mathrm{in} 3 \mathrm{ohm} 81.40$, P. \&P. 20p. $10 \mathrm{in} \times 6 \mathrm{in} 3$ or 15 ohm $83 \cdot 10$, P. \& P. 30 p . E.M.I. 8 in $\times 5$ in 3 ohm with high flux magnet, e1.70, P. \& P. 20 p . E.M.1. 13 in $\times 8$ 8in with high fux ceramic Magnet with parasitic tweeter 3,8 or 15 ohm, $83-50$, P. A
P. 30 p. E.M.I. 13 in $\times 8$ in 3 or 8 or 15 ohin with . 30 . E.M.1. 13 in $\times 8$ in 3 or 8 or 15 ohm with two 30p.
EMI CERAMIC MAGNET HEAYY DUTY TWEETER Approx. 3 in. Av. 3 or 8 or 15 ohms, 41.25, P. \& P. 20 D BRAND NEW. 12 in 15 W H/D speakers, 3,8 or 15 ohin (state which). Current production by well-known British maker. Now with Hiflux ceramic ferrobar

PRICES INCLUDE VAT

SPECIAL OFFER!

HI-FI LOUDSPEAKER SYSTEMS

Beautifung made teak faish enclomure with mont

 ttractive Tygan-Yybair front. Size I6in bigh \times lofin wide y Gin deep. Fitted with E.M.I. Ceramic Magnet $13 i n \times 8 i s$ baga unit, two H.F. tweeter unith and crossover. Max. power babilling . Available 3,8 of 15 ohm impedance.Our Price $19 \cdot 25$ carr. 75 CABINETAVAIL, SEPARATELY 44 -96. Carr. 65p. peaker with parasitic tweeter E7-15. Carr 75

3-VALVE AUDIO AMPLIFIER HA34 MK II

Designed for Hi-Fi reproduction of records. A.C. Mains operation. Ready built on plated heavy gauge metal chassia, size 7 "'w $\times 4^{-d} \times 4 \neq \mathrm{h}$. Incorporates ECC83 EL84, EZ80 valves. Heavy duty, double wound maing transiormer and output transformer matched for 3 ohm improved wide range tone controla giving bass and treble lift and cut. Negative feedback line. Output it watta Front panel can be detached and leads extended for remote mounting of controls. Complete with knobs, valves, etc., wired and tented for only $46 . \quad$ P. \& P. 45 p .
HSL "POUR" AMPLIFIER EIT. Similar in appearance to HA34 above but employs entirely different and P. \& P. 45 p .

SPECIAL BARGAIN OFFER!

 Limiled number of B8R Cl23 Auto Changer De Luxe with lightweight tubular arm and atereo cartridgeBrand new. ORLY 88.00 plus P, $\&$ P. 60 .

SPECIAL OFFER!

Lnmited houger of beand kew rlac 19n TWIR COME LOUDSPEAEERS. With large ceramic magnet and plazticieed cone surround. 8 ohm impedance. *8.70, P. \& P. 35 p .

HARVERSONIC SUPER SOUND 10 + 10 STEREO AMPLIFIER KIT

HEW FURTEER IMPROVED MODKL WITH HIGHER OUTPUT AND INCORPORATING HIGH QUALITY READY DRILLED
PRINTED CIRCUIT BOARD WITH PRINTED CIRCUIT BOARD WITE MARKED FOR EASIER CONSTAUCTION

A really Arst-clas Hi-Fi stereo Amplifer Kit. Use 4 transistora including Sllicon Transistora in the fra Ave stages on each channel resulting in even lower note with Bass Triproved sensitivity. Integrated pre-amp we with . reble and two Volume Controls, Suitable ior to modily to uit magnetie cartridges. (Very simple included to mait matie cartridge-instructiona ohma. Compact design for any speakers from o to 16 drilled metal design, all parts supplied incladip printed circuit board ago qually read drilled aluminium front panei with matclang knohe wire, oider nuts, bolts-no extras to buy. Simple step uy sted nstructions enable any constructor to build an amplifer to be proud of. Brief specification: Power output 14W r.m.s. per channel into 3 ohms. Frequency reaponse $\pm 3 \mathrm{~d}$. $12-30,000 \mathrm{~Hz}$. Sensitivity better than 80 mV into 1 Mn Full power bandwidth $\pm 3 d B 12-15,000 \mathrm{~Hz}$. Base troont approx. to $\pm 12 d \mathrm{~A}$. I'reble cut approx. to -16 dB Negati 10 imp 0 vila menta 3 .
$\times 2 I^{\prime}$ high.
Fully detal
ree withed r-page conatruction manual and parta lisa PRICES ABYLLE 18 p plus liarge S.A.E
(Marnetic inperit. onents 33 P. \& P. 25p.
FOWER PACK KIT, 83.60 P . P . 36
CABINET, $\quad 88.60$ P. \& P 35p (Pout Frre if an units purchaned at anme time). Fullater tes.10 Pervice. Aiso available ready built and teated, -10. Phe abo
Note: The above amplifter is suliable for faeding iwo decks, etc.) and will then provide nixing and fadine facilities for medium potvered $H i-$ Fi Discolheque use, ale.

BATTERY OPERATED MEGA CIRCUIT TESTER Made by Evershed and Vignoles, Ltd. Measures from $0 \cdot 1 \mathrm{ohm}$ to 200,000 ohms in 2 ewitched ranges. Used, Leather carrying case and ity plandard battery Only : P. P. \& P. 40p.

Open $9.30-5.30$ Monday to Friday. 9.30-5 Saturday
Closed Wednesday
A few minutes from South Wimbledon Tube Stotion

HARVERSON SURPLUS CO. LTD.
(Dept. P.E.) 170 HIGH ST., MERTON, LONDON, S.W. 19 Tel. $01-5403985$ SEND STAMPED ADDRESSED ENVELOPE WITH ALL ENQUIRIES
(Please write clearly)
PLEABE MOTI: P. © P. CBARGES QOOTED APPIY TO UG EMLES. P. A P OR OVERSEAS ORDERS chargmd extra

NEW

SCORPIO

Mk. 2

Following the phenomenally successful Scorp:o Capacitor-Discharge Electronic Ignition system introduced in 1972 and proved by many thousands of satisfied motorists, we are happy to announce availability of all parts for the PE SCORPIO Mk. 2-

* Now with added R.F.I. suppression
* Fully machined and painted die-cast case with AMP termination connector block.
* Custom wound transformer.
* NOW AVAILABLE IN 6V. and 12 V
* Suitable for all types of Cars, Boats, Go-Karts, etc.
* Promotes easier starting-even under sub-zero conditions.
*Improves acceleration, gives better high speed performance and * quicker engine warm up.
* Eliminates excessive contact breaker burning and pitting.
* PROMOTES FUEL ECONOMY

Construction of the unit can easily be completed in an eveninginstallation should takeabout half an hour. A complete complement of components is supplied with each kit together with ready drilled, roller tinned professional quality fibreglass printed circuit board -Uses original plugs, points, and coil.-No special parts or extras required.

(Case size $7 \frac{1}{2}$ in $4 \frac{1}{2}$ in 2 in)

* All components available separately.-S.A.E. with enquiries.
* Construction manual available separately 25p.

Cost $£ 12.95$ incl. carr., ins. and VAT. (Carriage at cost outside U.K -Export enquiries welcome.)
CONVERSION KIT FROM Mk. I to Mk. 2. FOR CONSTRUCTORS ALREADY POSSESSING Mk. I KITS.-Miniature P.C. assembly $\mathbf{£} \cdot 10 \mathrm{incl}$. Carr., Ins, and VAT with full conversion instructions.

DABAR ELECTRONIC PRODUCTS 98 LICHFIELD STREET
 WALSALL, Staffs WSI IUZ

NWWW PRACTICAL PAPERBACKS
 FREN FOULSHAM-TAB

COLOUR TV REPAIR, DY Martin Clifford BASIC AUDIO SYSTEMS, by Norman H. Crowhurst EVERYMAN'S GUIDE TO CAR maintenance, by George Zwick
MATV SYSTEMS HAND BOOK, by Allen Pawlowski . MOBILE RADIO HANDBOOK, by Leo G. Sands
RAPID RADIO REPAIR, by
G. Warren Heath

UNDERSTANDING
USING THE VOM AND EVM, by John Cunningham HANDBOOK OF ELEC TRONIC TABLES, by Martin Clifford
HOW TO USE YOUR VOM AND VTVM AND OSCILLO. SCOPE, by Martin Clifford... INTRODUCTION MEDICAL ELECTRONICS, by Burton R. Klein
\$1.70

MODERN RADIO REPAIR TECHNIQUE, by Art Margolis $£ 1 \cdot 70$ PRACTICAL COLOUR TV SERVICE TECHNIQUES, by Robert L. Goodman
£1.95
TV TROUBLESHOOTERS HANDBOOK, by Editors of Electronic Technician/Dealer £1.75 ACOUSTIC TECHNIQUES FOR HOME AND STUDIO, by F. Alton Everest §1.50

199 COLOUR TV TROUBLES \& SOLUTIONS, by R. L. Goodman

IC PROJECTS FOR AMATEUR AND EXPERIMENTER, by Wayne Green... $\$ 1.45$

JAPANESE COLOUR TV SERVICE MANUAL, by Hitachi. stc.
$£ 1.90$
RADIO ELECTRONICS HOBBY PROJECTS, by Editors of Radio-Electronics $\$ 1.45$

SONAX electronics FANTASTIC KIT OFFER

 PE RONDO

 PE RONDO

 complete quadraphonic

 complete quadraphonic

There's never been an offer like it! Construct this 80 watt RMS Quadraphonic System with 4 matched high performance speakers. All finishes including polishing of cabinets and brushing and anodising of metal work are already completed. You can achieve the finest production finish and the styling will do justice to any room setting.
PLEASE SEND ME $-\overline{\text { PLEASE TICK BOX }}$
CBS SQ* MATRIX DECODER $\quad \mathbf{E 8 \cdot 0 0} \square$ RONDO CASE
*TM CBS Complete kit. Post Free.
Inc. CBS Licence Fee + VAT 80p PREAMPLIFIER BOARD Complete kit. Post Free. VAT 33p MASTER VOL./TONE/BALANCE
BOARD
Post Free. + VAT 93p
POWER AMP BOARD AND
HEATSINK (Stereo Pair)
£8.25
Complete kit. Per Board.
Post Free. + VAT 82p
POWER SUPPLY BOARD $\quad \mathbf{E 5 \cdot 5 0 \square}$
COMPLETE Post Free. + VAT 55p
MAIN SMOOTHING CAPACITORS $£ 1 \cdot 65$
(Two reqd.) Post Free. + VAT 16 p per pair
MAINS TRANSFORMER +VAT 68p $£ 6.87 \square$
Post Free. + VAT 68p
CHASSIS-PUNCHED AND
DRILLED WITH SCRENS
Post Free. זVAT 35p Post Free. + VAT 79p
$\boldsymbol{f} \cdot 92 \square$ COMPLETE SET OF 4 EDGE- $\quad \boldsymbol{f l} \cdot 44 \square$
HARDWARE PACK Free. + VAT 19p
 BOARDS AND FANNING STRIP
£3.85 \square Plug and socket and 24 way edge-
connector Post Free. + VAT 35p
$\mathbf{6 5 . 9 5} \square$ TUNER SECTION FASCIA AND
WINDOW Post Free. + VAT 38p $£ 3 \cdot 85 \square$
$\mathbf{£ 7 \cdot 6 4} \square$ KNOBS AND I TUNING KNOB $\quad \mathbb{C} \mid \cdot 25 \square$
BEACON POSC Free. + VAT 59p
STEREO DECODER READY BUILT AND TESTED Post Free. + Vat 76p ALSO-Suitable record playing equipment GOLDRING GIOI/2 TURNTABLE $£ 23 \cdot 90$ AND CENTRE BRIDGE AND GOLDRING GIOI/2 TURNTABLE $£ 23 \cdot 90 \square$ SIDE TRIMS Post Free. + VAT 33p NEW RONDO ADDITION
$\mathbf{£ 7 . 9 0} \square \begin{aligned} & \text { F.M. TUNER KIT I } \mu V \text { Sensitivity } \\ & \text { High Performance } \\ & \text { Post Free. }+ \text { VAT } £ 1.75\end{aligned}$
 Post Free. + VAT 14p
4 PILLARS AND 2 END CAPS
$\$ 3 \cdot 30 \square$ TUNING DIAL ASSEMBLY $£ 10.42$ Complete with Meter and Calibrated Electro-luminescent
SPEAKER KITS All components parts for "Rondo" loudspeaker assemblies
are available, including special precision machined wrapround cabinets for very easy
construction and perfect professional finish-as shown in fig. 7.9 of January 1974 issue.
Dial Post Free. + VAT $£ 1.04$
COMPLETE SPEAKER KIT WITH A DRIVE UNITS,
CROSSOVER WADDING, ETC. INCLUDING CABINETS Price Per Pair $£ 34.50$

$$
\text { Post } £ 1 . \quad+\text { VAT } £ 3.55
$$

SPECIAL OFFER - SAVE E7
 4 Speaker kits (as required for Rondo) $\quad £ 62.00$
 $$
\text { Post } £ 2 \text {. VAT } £ 6.40
$$

BASS DRIVE UNITS (2 per cabinet) Post Free. + VAT 42p	E4.25 EACH
$\text { TWEETERS (2 per cabinet) } \begin{aligned} & \text { Post Free. }+ \text { VAT 12p } \end{aligned}$	E1-20
```CROSSOVER KIT (I per cabinet)```	$\begin{array}{r} £ 2.75 \\ \text { EACH } \end{array}$

DETAILS OF ANCILLARY KITS

Comprising 16 loudspeaker drive units, FOUR 5 element crossover networks including 12 prewound coils, four fully machined and polished wrap-round cabinets, four routered front and four routered back panels. 72 feet of coded coloured wire, four recess panels containing din and 4 mm sockets, 24 lengths of $2^{\prime \prime}$ thick special acoustic wadding and latest acoustically transparent Declon fronts to complete the finish.

We apologize to our customers for any inconvenience caused by delay in delivery. This is due to tremendous demand for our products and we are endeavouring to clear back-log with all possible speed.

## BLOCK CAPITALS PLEASE

MONEY ENCLOSED \&.
.CHEQUE/P.O./MONEY ORDER
NAME
ADDRESS
POST TO:
SONAX ELECTRONICS, Spencer House, Brettenham Rd., Edmonton, London, N. 18

$\ddagger$GIRO NO. 331 7056
C.W.O. only. P. \& P, 10 p on orders below $\mathbf{E S}$ scount : $\mathfrak{c} 10-10 \%$, f $20-15^{\circ}$., (except net items) Export Order enquiries welloome (VAT free) Offlcial Orders accepted from Educational \& Government Departments ALL PRICES INCLUDE VAT

SPECIAL RESISTOR KITS (Prices include Post and Packine)
IOEI2 IW KIT: 10 of each EI2 value, 22 ohms-IM, a rotal of 570 (CARBON FILM $5 \%$ ). $\mathbf{~} 3.65$ net $5 E 12$ W KIT: 0 of each EI2 value, 22 ohms-IM, a total of 570 (CARBON FILM $5 \%$ ), 63.85 net
 $20 E 12$ W KIT: 20 of each EI2 value, 22 ohms- 2 M 2 , a total of 1220 (CARBON FILM 5\%). $\mathbf{Z} 8.45$ net $15 E 12$ IW KIT: 15 of each EI2 value, 10 ohms-IM, a total of 915 (METAL FILM $5 \%$ ), $\mathbf{f 1 3} 35$ net IOEI2 2 W KIT: 10 of each EI2 value, 10 ohms-IM, a zotal of 610 (METAL FILM $5 \%$ ), f 17.15 net

MULLARD POLYESTER CAPACITORS C2BO SERIES
250 V P.C. Mounting: $0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 3$ ip. $0.068 \mu \mathrm{~F}$
 MULLARD POLYESTER CAPACITORS C296 SERIES
$400 \mathrm{~V}: 0.001 \mu \mathrm{~F}, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 21 \mathrm{p} .0 .0047 \mu \mathrm{~F}, 3 \mathrm{p}, 0.0068 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}$ $0.015 \mu \mathrm{~F}, 0.22 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 31 \mathrm{p}, 0.047 \mu \mathrm{~F}, 0.06 \mathrm{~B} \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 41 \mathrm{p} .0 .15 \mu \mathrm{~F}, 64 \mathrm{p}, 0.22 \mu \mathrm{~F}$ $81 p, 0.33 \mu \mathrm{~F}, 12 p, 0.47 \mu \mathrm{~F}, 14 p$
$160 V: 0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.02 \mu \mathrm{~F}, 3 \mathrm{p} .0 .047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 31 \mathrm{p} .0 .1 \mu \mathrm{~F}, 41 \mathrm{p} .0 .15 \mu \mathrm{~F}, 5 \mathrm{p}$. $0.22 \mu$ F. 51 P . $0.33 \mu \mathrm{~F}, 61 \mathrm{P}$. $0.47 \mu \mathrm{~F}$. 81 p . $0.68 \mu \mathrm{~F}$. 12 p . I $\mu \mathrm{F}$, 14 p .
MINIATURE CERAMIC PLATE CAPACITORS
50 V : (pF) $22,27,33,39,47,56,68,82,100,120,150,180,220,270,330,390,470$, $560,680,820,1 K, 1 K 5,2 K 2,3 K 3,4 K 7.6 K B,(\mu F) 0.01,0.015,0.02,0.033,0.047$, POLYSTYRENE CAPACITORS $160 \mathrm{~V} 5 \%$.
(pF) $10,15,22,33,47,68,100,150,220,330,470,680,1000,1500,2200,3300$,

RESISTORS

$w$.	Type	Ranze	1.99	100-499	500.999	$1000+$	Sixe mm
\%	CF	22-1M	1	0.75	0.60	0.55	$2.4 \times 7.5$
$\pm$	CF	22-2M2	1	0.75	0.60	0.55	$3.9 \times 10.5$
$\frac{1}{4}$	CF	22-1M	1	0.75	0.60	0.55	$5.5 \times 16$
$t$	MF	$10.2 \mathrm{M7}$	2	1.54	$1 \cdot 32$	$1 \cdot 1$	$3 \times 7$
$\frac{1}{2}$	MF	10-2M2	2	1.43	$1 \cdot 21$	0.99	$4.2 \times 10.8$
1	MF	10.19 M	3	1.98	1.81	1.65	$6.6 \times 18$
$2$	MF	10-10M	4.5	3.52	3.08	2.75	$8 \times 17.5$

For Value mixing prices, please refer to our catalogue (price in pence each).
VALUES AVAILABLE-EI2 Series only. Net prices above 100 .
RES SKELETON POTENTIOMETERS MINIATURE 0.25W vertical or horizontal 6p each SUB-MIN. O.05W Vertical. 100 O to $220 \mathrm{~K} \Omega 5 \mathrm{peach}$

Wavechange Switches 1 P 4 W ; IP 12 W ; 2P 2W: 2P. 4W: 2P, 6W; $3 P, 3 W$; 4P, $2 W$; 3P

## B. H. COMPONENT FACTORS LTD.

(P.E.) 61 CHEDDINGTON ROAD, PITSTONE,

NR. LEIGHTON
Tel.: Cheddingzon 668446 (Std. Code 0296)
PLEASE WRITE FOR FREE CATALOGUE

Miniature Mullard Electronics			VEROBOARD O.1 0.15				POTENTIOMETERS				
1.0رF 63 V	61p	$68 \mu \mathrm{~F}$ l 6 V 6IP	$\begin{aligned} & 2 \frac{1}{2} \times 5 \\ & 2 \frac{1}{3} \times 3 \end{aligned}$	$28 p$		$\begin{aligned} & 28 p \\ & 19 p \end{aligned}$	Carbon Track 5K a to 2M Switch 26 p.		log or lin. Single, $16 \frac{1}{2} p$. Dual Gang 46p. Log Single with Pors. IOK, $100 \mathrm{~K}, 500 \mathrm{~K} .30 \mathrm{~mm}, 34 \mathrm{p} .45 \mathrm{~mm}, 47 \mathrm{p} .60 \mathrm{~mm}, 55 \mathrm{p}$.		
1. $5 \mu \mathrm{~F}$ '63V	$61 p$	$68 \mu \mathrm{~F}$ 63V 12p	$31 \times 5$		32 p	33p	DIODES				
$2 \cdot 2 \mu \mathrm{~F}$ 63V	$81 p$	$100 \mu \mathrm{~F}$ lov 6 ¢	$3 \pm \times 32$		28p	28p					ORS. Tubular Large Cans
3. $3 \mu \mathrm{FF} 63 \mathrm{~V}$	61 p	$100 \mu \mathrm{~F} 25 \mathrm{~V} 61 \mathrm{p}$	$2 \frac{1}{5}$		7p	7p	IN4001 $61 p$	${ }_{3}{ }^{\text {Pin }}$	( $\mu$ F/V) : $1 / 25,2 / 25,4 / 2$	4.7/10,	25, 8/25, 10/10, 10/50, 16/25,
$\begin{aligned} & 40 \mu \mathrm{~F} 40 \mathrm{~V} \\ & 47 \mu \mathrm{~F} 63 \mathrm{~V} \end{aligned}$	$61 p$ $61 p$	$100 \mu \mathrm{~F} 63 \mathrm{~V} 14 \mathrm{p}$	2 $2 \frac{1}{2} ; 5$	(Plain)	-	14p	IN4002 7 Ip	$5 \mathrm{Pin} 180^{\circ} \mathrm{l}$	22/63, 25/25, 25/50	25, 50/25,	00/10, 100/25. 8 +p. 50/50, 8p.
6.8رF 63 V	61 p	$150 \mu \mathrm{~F} 63 \mathrm{~V}$ 15p	$5 \times 3 \frac{1}{2}$	Plain)	-	22p	400491p	Std. Jack 14ip	500/50, 18p. $1000 / 10$	5p. $1000 / 2$	.
8.0 0 F F 40 V	$6: p$	$220 \mu \mathrm{~F}$ 6-4V6 ${ }^{\frac{1}{2} \mathrm{p}}$	Insertio	tool	59p	59p	IN4005 i2p	2.5 mm Jack 11 p	20p. $1000 / 100.90 \mathrm{p} .20$	00/25, 30	2000/100, 95p. 2500/25, 38p.
$10 \mu \mathrm{~F} 16 \mathrm{~V}$	$61 p$	$220 \mu \mathrm{~F}$ loV 61 p	Track		44p	44p	IN4006 14p	ono 5ip	2500/50. 62p. 3000/50.	80 p .500	25, 66p. 5000/50, £1.10.
$10 \mu \mathrm{~F} 25 \mathrm{~V}$	610	$220 \mu \mathrm{~F} 16 \mathrm{~V} 8 \mathrm{p}$	Pins,		10p	10p	IN914 7p		$\text { HIVOLT: } 4 / 450 \text { i4p }$	8/350.	$19 \mathrm{p} .8 / 450,20 \mathrm{p}, 16 / 350,22 \mathrm{p} .$
$10 \mu \mathrm{~F}$ $15 \mu \mathrm{~V}$ 15 V 16 V	68	$\begin{array}{ll}220 \mu \mathrm{~F} & 63 \mathrm{~V} 21 \mathrm{p} \\ 330 \mu \mathrm{~F} & 16 \mathrm{~V} 12 \mathrm{p}\end{array}$					IN916 7p BA100 100	DIN 2 Pin 10 p		$.50 / 250$	20p. 100/500, 88p.
$15 \mu \mathrm{~F} 63 \mathrm{~V}$	$61 p$ $6 / p$	$\begin{array}{ll}330 \mu \mathrm{~F} & 16 \mathrm{~V} \text { 12p } \\ 330 \mu \mathrm{~F} & 63 \mathrm{~V} 25 \mathrm{p}\end{array}$	TRAN	ISTO	RS		BA100 $10 \rho$ OAS 420	3 Pin 10 p	METALLISED PAP	R CA	CITORS
$16 \mu \mathrm{~F} 40 \mathrm{~V}$	$61 p$	$470 \mu \mathrm{~F} 6.4 \mathrm{~V} 9 \mathrm{p}$	AC126	161p	BC212L	12p	OA47 9p	5 Pin $180^{\circ} \quad 12 p$ Std. Jack 14ip	$250 V: 0.05 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 6$ $500 \mathrm{~V}: 0.025,0.0560$	0.25, 6p	$0.5 \mu \mathrm{~F}, 71 \mathrm{p}, 1 \mu \mathrm{~F}, 9$
$22 \mu \mathrm{~F} 25 \mathrm{~V}$	$6{ }^{6} \mathrm{p}$	$470 \mu \mathrm{~F} 40 \mathrm{~V} 20 \mathrm{p}$	$A C 128$	22p	$\mathrm{BC213L}$	$12 p$	OABI llp	$2.5 \mathrm{~mm} \mathrm{~J}_{\text {ack }} \text { if }$	500V: 0.025.0.05,6p. 0   1000V: 0.01, 11 p .0 .02		
$22 \mu \mathrm{~F} 63 \mathrm{~V}$	$61 p$	$680 \mu \mathrm{~F} \quad 16 \mathrm{~V} 15 \mathrm{p}$	BC107	$11 p$	BC214L	17p	OA200 8p	2.5 mm Jack    Phono 1 p   $5 \neq \mathrm{p}$	$\begin{aligned} & 1000 \mathrm{~V}: 0.01, \text { IIp. } 0.02 \\ & \text { 18n. } \end{aligned}$	$\text { 2. } 13 \text { p. } 0$	$047,0.1,15 p, 0.22,23 p, 0.47$,
$32 \mu \mathrm{~F} 10 \mathrm{~V}$	$6 \dagger p$	$680 \mu \mathrm{~F}$ 40V 25p	BCl08	$12 p$	OC44	$18 p$					
$33 \mu \mathrm{~F} 16 \mathrm{~V}$	$6 \ddagger p$	$1000 \mu \mathrm{~F} 16 \mathrm{~V}$ 20p	BCIO9	$13 p$	0 O 71	13 p	Integrated	Screened W	Me	$61 p$	New kit. SEI2
$33 \mu \mathrm{~F}$ 40V	$61 p$	$1000 \mu \mathrm{~F} 25 \mathrm{~V} 25 \mathrm{p}$	BC148	$12 p$	$0 \mathrm{C81}$	$16 p$	Circuits	Twin Screen	Wire, Metre		film 5\%.
$32 \mu \mathrm{~F} 63 \mathrm{~V}$	6 P ${ }^{\text {P }}$	$1500 \mu \mathrm{~F} 6.4$ 15p	BCI49	12 p	$\mathrm{OCl}^{0}$	${ }^{23} \mathrm{p}$	HA709C	50p Stereo Scree	ed Wire, Metre		Ultra low noise new resistors.
	${ }_{6}{ }^{1} \mathrm{p}$	$1500 \mu \mathrm{~F} 16 \mathrm{~V} 25 \mathrm{p}$	BCIB2L	12 p	TIS43	33p	HA741C	55p Connecting	Vire, All colours, Metre	21p	With full colour coding.
$47 \mu \mathrm{~F}$ $47 \mu \mathrm{~F}$ 63 V	$61 p$	2200رF F LoV 25p	BC183L	120	2N2926	$11 p$	${ }_{14} 1.423 \mathrm{C}$	${ }_{35} 1$ Neon Bulb, 9	$\checkmark$ Wire Ended	for 24p	ch El2 value, $10 \Omega$-IM,
$47 \mu \mathrm{~F} 63 \mathrm{~V}$	$61 p$	3300\%F6.4 26p	BCI84L	$13 p$	2 N 3702	$11 p$	HL914	$35 p$ Panel Neon, 2	40 V, Red, Amber. Clear	161p	total 305.

## Base Moblle 1W, Staoillsed Mult Channel 2 Meter band Transmitter for amateur band

A complete 2 meter band transmitter with $144-146 \mathrm{mHz}$ frequency transmission Suitable for home installation or as a quality portable transmifter completely self contained. Supplied ready to use and constructed on double-sided printed board using high quality components Unit and power supply housed in strong case with metal fascie Straightiorward frontal controls. Hand-held dynamic microohone with stand Internal 12 V power supply Connection for external battery eliminator Overall size 6 in * $4 \mathrm{in} \times 2 \mathrm{in}$ app. Output 1 W min Aerial 19 in whip GPO approved Base Mobile supplied ready to use
£39-50

as Base Mobire
re 4 in 1 in
$£ 29 \cdot 50$

KIT. iW with all components and full assemblyinstrucions
£22

Rado Recolver covering $F M$ AR PB $M W$ and 144-146 mHz Suitable for above iransmitters
£20.50

Reg P \& P 45p all tems
Full guarantee all items
Mail Order all tems
MULHALL ELECTRONICS
Ardglass, Co. Down, U.K. BT30 7SF
Tel. 039684461
(For use in UK an amateur transmitting licence is required)


All above prices include $10 \%$ V.A.T. Please add 10 p for P. \& P. on orders under 65. LARGE S.A.E. for List No. 8. Special prices for quantity quoted on request.
M. DZIUBAS

I58 Bradshawgate - Bolton • Lancs. BL2 IBA

NEW TUAC POWER MODULES. Now In their third successful year offering more power and quality than ever before.

$\star 125$ Watts RMS continuous sine wave output
$\star 4$ RCA 150 Watt 15 Amp output transistors * Special layer wound driver transformer * Short, open, and thermal overload protection
Illustrated £17-25

## TL30

$£ 9.50$

* 30 Watts RMS sine wave
* Full thermal overload protection
* Short and open circuit proof
* Rugged transformer driver



Illustrated
£13.50

* 100 Watts RMS sine wave
* 2 RCA 15 Amp output transistors
$\star$ Rugged transiormer driver
* Full thermal overload protection
* Compact size: $5 \times 5 \times 3 \mathrm{in}$.

TL60

* 60 Watts RMS
sine wave
* RCA 115 Watt output transistors
* Only six connections to make
* Same size as TL100

Specification on all 4 power modules:
All output power ratings $\pm 0.5 \mathrm{~dB}$ Output impedance $8-15$ Ohms. THD at full power $1 \%$ typically $0.5 \%$
input sensitivity 60 mV into $10 \mathrm{k} \Omega$. Frequency response $25 \mathrm{~Hz}-25 \mathrm{kHz} \pm 2 \mathrm{~dB}$. Hum and noise better than -70dB
Power supplles vacuum Impregnated Transtormers with supply board incorporating pre-amp supply:
PS $125 \pm 50$ volts for one TP100
PS $100 \pm 45$ volts for one TL100
PS $60 \div 40$ volts for one TL60
PS $30 \pm 50$ volts for one TL30
PSU 2 for supplying Disco Mixer

## £11.75 <br> 10.75 $\$ 9.50$ <br> 59.50

NEW FROM TUAC : : !

100W $2 \times 12$ Disco Group cabs, fitted 250 W RMS super heavy duty speakers $£ 66 \cdot 00$ (carr. £1.00)
100W $4 \times 8$ P.A. Cols, fitted 475 W heavy duty speakers. $\mathbf{£ 7 5} \cdot \mathbf{0 0}$ palr (carr. $£ 2 \cdot 00$ )

Rotary FlashIng Beacons
$\star 240 \mathrm{~V}$ mains operation
$\star$ Choice 5 colours, red, amber, blue, green and clear
$\star$ Light source is from standard SBC filament bulb
$\star$ Flash rate 140 per minute. Only £22.00

ALL PRICES INCLUDE V.A.T. AND POSTAGE AND PACKING
access a barclay cards accepted, just send us your number. h.p. arranged through paybonds.


TUAC DISCOTHEQUE MIXER WITH AUTO FADE
Designed for the discerning $D J$ of professional standard
£27-00 Offering a vast variety of functions
Controis: Mic Voi Tone Over-ride depth, Auto Manual Sw Tape Vol L \& R Deck Faders Deck Volume Treb and Bass. H Phon Vol Selector Master Vol on off sw Max output IV RMS Specification as VA06

PANEL SIZE $18 \times 4 \frac{1}{2}$ DEPTH 3

TUAC HIGH POWER AMPLIFICATION—built to high standards, and built to last


50 WATT RMS SINE WAVE
ALL PURPOSE AMPLIFIER
Suitable for Disco. PA Guitar 4 inputs. 2 volume controls Master volume treble midale and bass controls Rugged circuit
rugged leathercloth covered case short and rugged leatherclorn coveren casentrol specification as VAOO pre-amp FULLY FUSED


50	844.00
WATT	240
WATT	288.00
SLAVE	249.50

## TUAC MAIN DEALERS

BRISTOL DISCO CENTRE, 86 Stokes Croft, Bristol 1. Tel. Bristol 41666.
CALBARRIE AUDIO, 38 Cromwell Road, Luton, Beds. Tel. Luton 411733.
SOCODI, 9 The Frlars, Canterbury, Kent. Tel. Canterbury 60948.
W.E.C. LIGHTING LTD., 35 Northam Road, Southampton, Hants. Tel. Southampton 28102.

## CALLERS ONLY PLEASE

MANUFACTURERS OF ELECTRONIC AND AMPLIFICATION EQUIPMENT
SPECIALISTS IN QUALITY TRANSISTOR EQUIPMENT
OPEN 6 DAYS A WEEK. 9.30 a.m. - 6.00 p.m.

TRANSISTOR UNIVERSAL AMPLIFICATION COMPANY LTD. (DEPT. E) 163 MITCHAM ROAD LONDON SW17 SPG 01-672 3137/9080

## 

## PUSH BUTTON CAR RADIOKIT



NOW BUILD YOUR OWN PUSH BUTTON CAR RADIO
Easy to assemble construction kit comprising fully completed and tested printed circuit board on which no soldering is required. All connections are simple push fit type making for easy assembly.
Fine tuning push button mechanism is fully built and tested to mate with printed circuit board.
Technical specification:
(1) Output 4 watts R.M.S. output. For 12 volt operation on negative or positive earth.
(2) Integrated circuit output stage, pre-built three stage IF Module.

TheTourist II

Controls volume manual tuning and five push buttons for station selection, illuminated tuning scale covering full, medium and long wave bands. Size chassis 7" wide, 2" high and $4 \frac{5}{16}$ " deep approx Car Radio Kit $\mathbf{£ 7 . 7 0 + 5 5 p}$ post. \& pack. Speaker including baffle and fixing strip
f1. $65+23$ p postage \& packing
Car Aerial Recommended - fully retractable and locking £1.35 post paid


## QUALITY SOUND* FOR LESSTHAN£19.00

Stereo 21 easy to assemble audio system kit, - no soldering required. Includes:-
BSR 3 speed deck, automatic, manual facilities together with ceramic cartridge.
Two speakers with cabinets.
Amplifier module. Ready built with control panel, speaker leads and full, easy to follow assembly instructions.

For the technically minded:-
Specifications:
Input sensitivity 600 mV : Aux. input sensitivity 120 mV : Power output 2.7 watts per channel: Output impedance $8-15$ ohms. Stereo headphone socket with automatic speaker cutout. Provision for auxiliary inputs - radio, tape, etc., and outputs for taping discs. Overall Dimensions. Speakers approx.
$15 \frac{1}{2}^{\prime \prime} \times 8^{\prime \prime} \times 4^{\prime \prime}$. Complete deck and cover in closed position approx. $15 \frac{1}{\frac{1}{2}^{\prime \prime}} \times 12^{\prime \prime} \times 6^{\prime \prime}$. Complete only $\mathbf{£ 1 8 . 9 5}$ Entras if required. $\mathbf{£ 1 . 3 7}+\mathbf{£ 1 . 6 0 p} \mathrm{p} \mathrm{p}$ Optional Diamond Stylif1.37
Specially selected pair of stereo headphones with individuat level controls and padded earpieces to give optimum performance, $\mathbf{£ 3 . 8 5}$.
 AMPLIFIER

## Reliant Mk IV Mono Amplifier, ideal for the

 small disco or house parties. Outputs 20 watts R.M.S into 8 ohms (sutable for 15 ohms)Inputs * 4 Electrically Mixed Inputs *3 Individua| Mixing controls. *Separate bass and treble controls common to all 4 inputs *Mixer employing F.E.T. (Field Effect Transistors). *Solid State Circuitry. *Atractive Styling. input sensitivities
-Input-1.) Crystal mic. guitar or moving coil mic, 2, and 10 mV . (selector switch for desired sensitivity--inputs-2), 3), 4. Medium outpu1 equipment-ceramic cartridge, tuner, tape recorder, organs etc. - all 250 mV sensitivity. AC Mains 240V. operation. Size approx. $12 \frac{1}{2}$ ins $\times 6$ ins $\times 3 \frac{1}{2}$ ins $\mathbf{f 1 5 . 0 0}+60$ p. post \& pack


45 WATT R.M.S. MONO DISCOTHEQUE AMPLIFIER
Ideal for Disco Work. Output Power: 45 watts R.M.S. Frequency Response 3 dB points 30 Hz and 18 KHz . Total Distortion: less than $2 \%$ at rated output. Signal to noise ratio: better than 60 dB . Bass Control Range: 13 dB at 60 Hz . Treble Control Range: 12 dB at 10KHz. Inputs: 4 inputs at 5 mV into 470 K . Each pair of inputs controlled by separate volume control. 2 inputs at 200 mV into 470K. Size: $19 \frac{1}{4} \times 10 \frac{1}{2} \times 8$ ins. approx. Amplifier $\mathbf{f} 27.50+\mathbf{f 1} .50 \mathrm{p} .8 \mathrm{p}$ Special Offer: Disco 50 plus two 15" E.M.I. speakers type 14A/780 (as illustrated on opposite page). Complete $\mathbf{£ 5 7 . 0 0}+\mathbf{£ 4 . 0 0} \mathbf{p \& p}$.


## f51．00

40 Watt Amplifier．
Viscount III－R102 now 20 watts per channel． System I includes．
Viscount III amplifier－volume，bass，treble and balance controls，plus switches for mono／ stereo on／off function and bass and treble filters．Plus headphone socket． Specification
20 watts per channel into 8 ohms． Total distortion＠10W＠1kHz 0．1\％．P．U．I（for ceramic cartridges） 150 mV into $3 \mathrm{Meg} . P . U .2$ （for magnetic cartridges） $4 \mathrm{mV} @ 1 \mathrm{kHz}$ into 47 K ． equalised withnn 1dB R．I．A．A．Radio 150 mV into 220K．（Senstitivities given at full power）． Tape out facilities：headphone socket，power out 250 mW per channel．Tone controls and filter characteristics．Bass：＋12dB 10－17dB＠ 60 Hz ．Bass filter： 6 dB per octave cut．Treble control：treble－－12dB to－12dB＠ 15 kHz ．
Treble filter： 12 dB per octave．Signal to roise ratio：（all controls at max．）－58dB． Crosstalk better than 35 dB on all inputs Overioad characteristics better than 26 dB on all inputs．Size approx． $13 \frac{3}{4} \times 9^{\prime \prime} \times 3 \frac{3{ }^{\prime \prime}}{}$ ． Garrard SP25 deck，with magnetic cartridge． de luxe plinth and hinged cover．
Two Duo Type II matched speakers－ Enclosure size approx． $17 \frac{1_{2}^{\prime \prime}}{}{ }^{\prime \prime} 10 \frac{3}{2 "}^{\prime \prime} \times 6^{\prime \prime}$ in simulated teak．Drive unit $13^{\prime \prime} \times 8^{\prime \prime}$ with parasitic tweeter 10 watts handling Complete Svstem £51．00

### 669.00

System II
Viscount III amplifier（As System I）
Garrard SP． 25 （As System I）
Two Duo Type IIIA matched speakers－
Enclosure size approx． $31^{\prime \prime} \times 13^{\prime \prime} \times 11 \frac{1^{\prime \prime}}{}$ ．
Finished in teak veneer．Drive units approx．
131＂＂， $8 \frac{1}{4}{ }^{\prime \prime}$ with $3 \frac{1}{4}{ }^{\prime \prime}$ HF speaker．Max．power 20 watts， 8 ohms．Freq．range 20 Hz to 20 kHz ．

## Complete System f69．00

## PRICES ：SYSTEM 1

Viscount III R 102 amplifier $£ 24 \cdot 20+£ 1 p$ \＆$p$ 2 Ouo Type II speakers $\quad £ 14.00+£ 2 \cdot 20 p$ \＆p Garrard SP25 with
MAG．cartridge de fuxe plinth and hinged cover
$\mathrm{f} 21.00+\mathrm{f} 1.75 \mathrm{p} 6 \mathrm{p}$.
total $£ 59.20$
Available complate for only $£ 51.00+£ 3.50 \mathrm{p} .8 \mathrm{p}$ ．
PRICES：SYSTEM 2
Viscount R102 amplifier $\quad\{24.20 \cdot \mathrm{f} 1.00 \mathrm{p} . \& \mathrm{p}$ ． 2 Ouo Type IIIA speakers $\quad £ 39.00 \quad £ 4.00 \mathrm{p} . \& \mathrm{p}$ ． Garrard SP25 with
MAG cartridge de luxe plinth $\quad £ 21.00 \quad \mathrm{f} 1.75 \mathrm{p} .6 \mathrm{p}$ ． and hinged cover
total $\mathbb{1 8 4}$ ．20

## EMI SPEAKERS AT FANTASTIC REDUCTIONS

## THE ULTIMATE COMPLETE SPEAKER SYSTEM EMI LE 315 List Price $£ 86.00$



A professional standard five way speaker system with enclosure giving top quality performance
Enclosure Dimensions
approx．（ 3 ft － 2 ft ． 1 ft ．）．
Drive Units
Hand built－ $15^{*}$ diameter bass with 3 voice coll，－two $5^{\prime \prime}$＂diameter Mid Range units，－two 3⿺辶⿱亠乂口灬＂HF units，plus matching crossover panel with two variable
potentiometers for mid and high frequency adjustment．
Power Handling
Continuous rating 35 W rms．，Peak powe！ rating 70 W ．
Frequency Response
$20 \mathrm{~Hz} 20,000 \mathrm{~Hz}$ ．Imp． 8 ohms．
Our price $£ 45 \cdot 00+£ 3 \cdot 50 \mathrm{p} . \& \mathrm{p}$ ．

$15^{\prime \prime}$ 14A／780 BASS UNIT
Bass unit on a rigid diecast chassis． Superior cone material handles up to 50 watts RMS．and is treated to give a smooth frequency response．Resonance 30 Hz ．flux density 360,000 Maxwells．Impedance at 1 kHz is 8 ohms． 3 ＂voice coil．
Aecommended retail price $\mathbf{£} 40 \cdot 80$ ．


Five matched speakers and crossover unit for handling up 1045 watts，frequency response from 20 to $20,000 \mathrm{~Hz}$ ．
Huge 19＂＊ $14^{\prime \prime}$（approx．）high efficiency Bass－Speaker with 16,500 －gauss magnet bult on a heavy diecast frame．
The four 10.000 gauss tweeters．each $3 \frac{1}{4}$＂ dia approx．．are fed by the crossover which critically adjusts signal for maximum fidelity．Impedance at 1 kHz is 8 ohms Bass coil 2＂，others $0.5^{\prime \prime}$ ．Recommended list price f44：00．OUR PRICE f19．50

Brunel<br>Technical College Bristol<br>Ashley Down, Bristol BS7 9BU

## Faculty of Communications

## Radio and Electronic Officers

Interested in seeing the world and earning a good salary at the same time? There are excellent career prospects as a Marine Radio Officer and in the Civil Service. Full-time Courses in Radiocommunications, Radar and Marine Electronics start in September and January of each year.

## Civil Aviation

Full-time Courses start in September of each year for prospective Licensed Aircraft Maintenance Engineers in either the Radio Category or in Airframes and Engines. The Courses are fully approved by the CAA and include practical work on College Aeroplanes.

## Course Entry Requirements

Prospective entrants should have obtained CSE or GCE Ordinary level passes in Mathematics, English and a Science subject, or have appropriate experience. All applicants will be interviewed before acceptance.

For further details of the above and of Courses for experienced Marine and Aeronautical personnel please contact: Mr. F. E. Barltrop, Head of Department of Marine and Aero Electronics, Brunel Technical College, Ashley Down, Bristol BS79BU. Tel. (0272) 41241

## 10 WATTS PER CHANNEL RMS STEREO AMPLIFIER

at less than $0.1 \%$ distortion. Max. RMS output in excess of 15 watts per channel.

* 4-16 ohm Load
* 40 dB NFB
* $15-50 \mathrm{kHz}(-1 \mathrm{~dB})$
* 150 mV inpur



Completely assembled PCB using top grade components (plus backplate/heatsink) including balance volume and tone controls plus mono-stereo switch. Operates f́rom 22-24V d.c. Board also includes a single 2 -stage mic. or guitar pickup preamp. ( $2 \times \mathrm{BCl} \mathrm{B}^{2}$ ). Instructions are included for a simple mod. to adapt this for stereo operation giving 150 mV at 1 M ohm sensitivity. Full circuit supplied

FANTASTIC AND UNREPEATABLE BARGAIN. 69.90 plus 60p P. \& P., inc. VAT. Power supply components to operate from the mains available, add $£ 2.90$ inc. VAT.

# EDRICK ELECTRONICS LTD. <br> (DEPT. P6) <br> 164 HIGH STREET, BARNET, HERTS. 

## PARKERS SHEET

## GLUM?

## SICK OF WAITING FOR COMPONENTS

Try our express service (normally return of post)
Prices very competitive - for example:$1 / 2 \mathrm{~W} 5 \%$ carbon film resistors -1 p . 1/2W 2\% metal oxide - 31/2p.

BC 107/8/9	- 10p	2N 3704	13p.
BC 177	- 17p.	2N 3707	13p.
2N 1302/3	- 16p.	1N 4001/2-	6 p .
2N 3055	- 53p.	1N 4003/4 -	7 p.
2N 3702	- 13p.	1N 4148	5 p.
2N 3703	- 14p.	1N 5401	16p.

## SINCLAIR CAMBRIDGE CALCULATOR Ready to use-only $\mathbf{£ 2 6}$. 50 PRICES EXCLUDE VAT. 10P P. \& P.

## Forward 15p. for our illustrated catalogue to:-

 DART ELECTRO SERVICES, 24 South Town, Dartmouth, Devon. Competitive prices and descriptions of hundreds of components, accessories etc.

No. 1. Capacity 18 gauge mild steel $\times 36 \mathrm{in}$. wide ... G2 carr. free No. 2. Capacity 18 gauge mild steel $\times 24$ in. wide...$\quad$ fls carr. free No. 3. Capacity 16 gauge mild steel $x 18 \mathrm{in}$. wide $\ldots . . \quad$ is carr. free Also new bench models. Capacities 36 in . $\times 18$ gauge $440.24 \mathrm{in} . \times 16$ gauge 33 . Carriage free. Add $10 \%$ VAT to total price of machine.
End folding attachments for radio chassis. Tray and Box making. Steel Angle 36 in . model, 40 p per. ft. Other models 30p. The two smaller models will form flanges. As supplied to Government Departments, Universities, Hospitels.

One rear's guarantee. Money refunded if not satisfied. Send for details.
A. B. PARXER, Folding Machine Worts, Uppef George St., Medmondwike, Yorks. Telephone 403997

## CONTACTLESS ELECTRONIC IGNITION BY MOBELEC



$p 8_{p} p$
$26 p$
We break the price barrier with this trouble-free inductive discharge contactless ignition which replaces contact points by a solid-state trigger-head giving

25p cold energy spark for excelien smooth tick-over. Designed for 4 or 6 cylinder neg. earth cars at a price you can afford. Easy to fit, clear illustrated instructions, free fitting kit. State model, make and year Other Mobsiec capacitive discharge E series models available. Mobelec E series for high performance engines. 4 and 6 cylinder NEG. AND POS. EARTH, $5.22 \cdot 82.8$ cyl., $£ 24 \cdot 75$. Post free
SILHILL PRODUCTS Dipt. PE/5, 226 mary Stroot Birmingham E12 9RJ. Tel. 021-440 3800


## SILVANIA

MAGNETIC SWITCH
Now complete with reference magnet
A magnetically activated awitch, vacuum sealed in alass envelope. Stiver contacts, normally closed. Rited 3 mpp it 120 V , thamp at 240 v Size: (approx.) $1:{ }^{\prime \prime}$ long $x$ f" dia ideal for burgler iinems, secuplty systems etc.. and wherever non-mechanlcul switching is required. 10 for $\mathrm{EP} \cdot 10$; P \& \& P 15 p .50 for CE ; 100 for $\mathrm{E15} .50$ FREE P. \& P over 10

## AMPEX 7.5V.D.C. MOTOR



An ultra precision tape motor designed for use in the AG20 portable recorder. Torqu: $450 \mathrm{GM} / \mathrm{CM}$. Stall toad at 500 ma Draws 60 ma on run 600 rpm / $\frac{1}{2}$ speed adjustmention. $\times 1^{\prime \prime}$ spindle suppression. "dia $\times$ "spindie motor
cost $£ 16.50$. OUR PRICE $£ 3.30$. P. \& P. 25 p Quantitios availabio. Mu-metal enclosure avalisble 75p oach FREEP \& $P$

ALL PRICES INCLUDE V.A.T. Whilst we welcome official orders from established companies and Educational Depart ments, it is no longer practical to invoice goods under £5. Therefore, please remit cash with orders below this amount

# SPPHMNIII MkII Electronic Ignition... Betteron all points 



The SPARKRITE MK. 2 is a full capacitive discharge electronic system. Specifically designed to retain the points assembly - with all the advantages and none of the disadvantages. No misfire because contact breaker bounce is eliminated electronically by a pulse suppression circuit which prevents the unit firing if the points bounce open at high rpm. Contact breaker burn i eliminated by reducing the current to about $1 / 50$ th
norm, thus avoiding arcing. But you can still revert to normal ignition if need be. In seconds. If points go (verv unlikely) you can get replacements anywhere. All these advantages.

- Fitted in 15 minutes. Up to $20 \%$ better fuel consumption. Instant all weather starting. Cleane plugs - they last 5 times longer without attention. - Faster acceleration. Faster top speeds. - Coil and battery last longer. Efficient fue hurning with less air pollution.
The kit comprises everything needed
Ready drilled scratch and rust resistant case, metalwork, cables, coil connectors, printed circuit board, top quality 5 vear guaranteed transformer and components, full instructions to make positive or negative earth system, and 6 page installation instruction leaflet. WE SAY IT IS THE BEST SYSTEM AT ANY PRICE!


Because you keep your points!
 PRICES
D.I Y Kit onty E 11.62 inct. VAT and P \& P (Both to fit all cars with coil/distributor ignition up to 8 cylinders)
We can supply units for any petrol-engined vehicle fooat, motorcycle etc) with coil/contact breaker ignition. Details on request. Call in and see us for a demonstration

ELECTRONICS DESIGN ASSOCIATES (Dept PE 8) 82 Bath Street Walsall WS1 3DE Phone 33652 Please supply:
Sparkrite Mk. 2 D.I.Y. Kit(s) at $£ 11.62$ each incl. VAT and $P$ \& $P$ (Will make pos. or neg. earth). $\square$ Sparkrite Ready Built Neg. Earth Unitis) at $£ 14.85$ each incl. VAT and $P$ \& $P$ Sparkrite Ready Built Positive Earth Unit(s) at $£ 14.85$ each incl. VAT and $P$ \& $P$



enclose cheque/P.O. for $£$ end SAE for brochure.

## FERRIC CHLORIDE

Anhydrous to Mil-spec in 11b sealed packs. 1 lb 55 p (20p). 316 £1-32 (30p) 1010 53 . 85 (600)

## VERSATILE POWERUNIT

Contains mains transformer. 2A thermal cut-out and bridge rect. Will give tors Brand new. Only B3p (20p). Also avallable in a toy garage with press switch lamp. eic (Used for Hot Wheels ) Only $\mathbb{1} .65$ (30p)

AMPLIFIER UNIT
In fully screened case 5 in $\times 5 \mathrm{in} \times 31$ in
2 GET T16 on heat sink 2 eners 2 GET 116 on heat sink. 2 zeners. 3 pot cores. C s.tap ( 30 p ) with circult

3W CASED AMPLIFIER
Polished wooden cabinet 14 in $\times 13$ in ${ }_{4} \times$ gin, containing a sensitive ( $20 \mu \mathrm{~V}$ ) 4 valve amplitier with tone and volume controls. Gives 3 watts output to the dard tape deck Supplied in good working condition with circuit Standard mains operation, $53 \cdot 50$ (E1) Sutable cassette $51-10$ (30p). Spare head 33p. Tape (ex-computer) 75 p (20p) Amplifler chassis only complete and tested (2 $\times$ ECC83 EL84
EZ80) $\rightarrow$ speaker 52.50 (40p) EZ80) $\rightarrow$ speakey $£ 2.50$ (40p)

71D BARGAIN PARCELS
Hundreds of new components resistors capacitors. pots. switches. + PC boards with transisiors and diodes. a lso crystals and loeds of odds and ends Amazing value
$\mathrm{I} .82(40 \mathrm{p})$

## DEKATRON UNITS

Contain 2 CV2271 dekatrons, 2 4-digh electro-magnetic resettable counters. 2 sealed relays, $2 \times$ ECCB1 As C's

## COMPUTER PANELS

31b asstd E1. 10 (30p); 71 b E2. 20 ( 40 p ) 56 lb £12 (E2) 12 high quality panels
with IC s power transistors trimpots With 5 ; power transistors, trimpots
etc $\mathbf{~ 2}-20$ (30p). 100 [13 (E1) Pane with $72 \mathrm{k} \Omega$ timpots 33 p (10p) Pack containing 5014 pIn DIL IC's. Inc. 7400 04. 10, 20, 30, 7474, etc also MC fypes c2 20 (200)

## COMPONENT PACKS

500 asstd resistors $\mathbb{1} 1 \cdot 10$ (20p): 2.500 £4 (50p): 10,000 £ 13 ( $\mathrm{\Sigma} 1) ; 100000$ § $88+$ carr 150 poly ceramic. mica caps b6p

## NEW COMPONENTS

400 V 5A SCR 66p; 200V 44p; OC71 9p 14 for $\mathrm{c} 1 \cdot 10 ;$ OC810 8p; 10C $55 \cdot 50 ; 741 \mathrm{C}$ TO99 35p: 2N3055 36p: 723C 77p (Data Book 10 p ). 710 C 33p: CA3026 88p SC40D Triac E1: 3A 10C V Fec 16p disc, too for $£ 1 \cdot 65: 80+80+20$ f 350 V
 10p, 10 for 83 ( 430 p). $8 \mu \mathrm{~F} 2.500 \mathrm{~V}$ \& $2 \cdot 20$ 33 p (8p) 2-pin DiN plug 10p, 5-pin $180^{\circ}$ 11p, 3.5 mm plug $\mathrm{Ap}_{\mathrm{p}}$, phono 5 p 7 -pin DiN plug 11p, 6 -pin DiN plug 11p. speaker cable 5 p/metre 4 -core indi. vidually screened 20p metre

## TRANSFORMERS

Mains Prl, $16-0-16 \mathrm{~V}$ 1iA. Sec with 9 V tap. $\mathrm{E1} .55(30 \mathrm{p})$ Meine Pri. 360 V at 375 mA .250 V at $75 \mathrm{~mA} .6 \mathrm{3V}$ at 1 A


Scopes in stock for callers. fing for detalis S. A E. List. All prices include Vat

## GREENWELD ELECTRONICS (PE5)

51 Shirley Park Road, Southampton
New wholesale/retail shop and mall order department. Other retall shops at 38 Lower Addiscombe Road Croydon (Tel. 01-688 2950) and 21 Deptford Broadway. SE8 (Te1. 01.692 2009)

## VARICAP TUNER <br> LP1185/86 <br> £10-25/pair <br> MC131OP Decoder I/C .. .. £3.15 <br> LP1400 Decoder Module <br> £5.15 <br> MFC4060 Regulator I/C £0.78 <br> P.C. BOARDS MC131OP or LP1400 <br> £1-87 <br> (state which decoder) <br> READY BUILT BOARDS £24.25 (l/C) or <br> $\mathbf{£ 2 5} \mathbf{2 5}$ (LP1400) <br> Prices include V.A.T. P. \& P. 25p. <br> B. \& B. ELECTRONICS <br> 64 MANNERS ROAD, BALDERTON, NEWARK, NOTT8. <br> Tel.: NEWARK 6895 (Anytime)






 OUR PRICE £8.00 P8, $\mathbf{0} 30 \mathrm{p}$
U435 MULTIMETER
20,000 pv. Overload 20,000opv. Overl
protected. Range
$75 \mathrm{~m} / 2.5 / 10 / 25$
1
25
00 N $0.5 / 2.5 \mathrm{AC} /$ Resist.
ance: $0.3 / 3 / 30 / 200 \mathrm{~m}$ chms. Size: $205 \times 110 \times 84 \mathrm{~mm}$, Sup. plied complete with leads, crocodile clips and steel carrving case.
OUR PRICE $£ 8.75 \quad$ P\& P 30p U4312 MULTIMETER

DC. 0/1.5/6/15/
$60 / 150 / 600 \mathrm{~m}$
1.5/6A AC. 0/ $200 / 3 \mathrm{k} / 30 \mathrm{k}$ ohms. DC accuracy $1 \%$. AC $1.5 \%$. Knife edge
pointer. mirror scale. Complete with sturdy metal carrying case, leads and sturdy metal
mstructions.
OUR PRICE $\mathbf{9} 9.75 \quad$ P\&P50p


Practical Electronics August 1974
QUR PRICE E10.50 P\&P 30p
$100,0000 \mathrm{pv.6}$. ${ }^{\prime \prime}$
scale. Buzzer scale. Buzzer
short circuit check.
Sensitivity 100.000 Sensitivity 100.000
OpN DC Sk $/ \mathrm{AC}$
DC Voits: $0.5 / 2.5$ / Op Voits: $0.5 / 2.5 /$
10/50/250/1000V $\mathrm{AC} .3 / 10 / 50 / 250 /$
$500 / 1000 \mathrm{~V}$ DC.
current $10 / 100 \mathrm{uA} / 10$
10/100/500mA/2.5/10A. Resistence: 10/100/500mA/2.5/10A. Ressistencs:
$1 \mathrm{k} / 10 \mathrm{k} / 100 \mathrm{k} / 10 \mathrm{Meg} / 100$ Meg ohms. Decibels: -10 to +49 dB . Plastic case
with carrying handle. Size: $190 \times 172$ with carrying handie. Size: $90 \times 172$
$\times 99 \mathrm{~mm}$.
OUR PRICE $£ 19.95 \quad$ Pg, 30p 370WTR MULTIMETER


HIOKI 750X VOLT-OHM
 $50 \mathrm{acy} \pm 3 \% \mathrm{DC}, \pm 4 \% \mathrm{AC}$. Sensiturisy: 50,000 opv DĆ. 5,000 opv AC. 4 inch
meter. Buil in protection. Size. $57 \times$ OUR PRICE £11.95 P\&P 40p


KAMODEN TT35
TRANSISTOR TESTER

## High quality instrument to <br>  <br> instrument to test revent <br> test reverse leak current and OC current current. Ampli. tication factor of NPN PNP lication actor of NPN, PNP, diodes. Transistors, SCR's. etc. $4^{\prime \prime}$ "square sce ciear scale meter clear scale met Operates from internal batte <br> instructions. beads <br> OUR PRICE 117



Decibels -20 to
+62 dB
+62dB. Battery operated. Size: $180 \times$
$140 \times 80 \mathrm{~mm}$. Supplied complete with test leads etc.
OUR PRICE £17.50 P \& P40p TMK 100K LAB TESTER

MODEL AF. 105 VOM
 Resistance: 0.08
$0.6 / 2 / 6 / 20 / 60 / 200 \mathrm{k}$ onms $/ 2$ Mohms. Battery operated. Supplied complete
with prober, leasd and gtoel carrying
 OUR PRICE $£ 10.50 \quad$ P\&P 30p S100TR MULTIMETER
 $-2.01-0.2 \mathrm{MFD}$
Transistor tester measures Alphs, Bete and ICO. Complote OUR PRICE £19.95 P\&P 25p KAMDDEN HMG500 insulation resistance tester
 Complate with
deluxe carrying OUR PRICE f19.95 P\&P 30p CI5 PULSE OSCILLOSCOPE For display of pulsed
and periodic wove and periodic wive
torms in electronic
circuits VERT. AMP.
AM Bandwidth: 10 MHz
Sensitivity at 100 kHz Sensitivity al $0.1-25$; HOR. AMP Bandwidti: 500 kHz . 100 kHz
Sensitivity ay 1.00 kz
VRMS/mm: $0.3-25$
Preset triggared sweep
 $\mathrm{kH} \mathrm{H}_{\mathrm{o}}$ in nime rangen. Calibrator pipa.
$220 \times 360 \times 430 \mathrm{~mm}$. $115-230 \mathrm{~V}$ AC. OUR PRICE £39.00 Carr. paid


SWh METER Model SWR3
Hamaty SWR meter for
tremen. oor anterns mign
trenam. or antonns silign
mont, with built -in fietd 5 stronth meter. Accuracy EX, mmpetence $52^{\prime}$ Indic-
etor 100UA OC. Full stor $100 \mathrm{~A} O \mathrm{C}$. Full anternact Size $145 \times 50 \times$ 60mm. OUR PRICE $£ 4.25$

AT201 Oecade ATTENUATOR Frequancy range 0 -
200kHz, Atternetor $0-111 \mathrm{~dB}, 0.1 \mathrm{~dB}$
stepe. Impedence 600 ohms. Input $50 \times 55 \mathrm{~mm}$ OUR PRICE E12.50 P\&P 50p

TRANSISTORISED L.C.B. A.C bR/8 MEASURING BRIDGE
 bridge offering excellent range and cont. Resistanc cort. Resistance:
6 ranges: 0.1 ohm-11.1 megohm $\pm 1 \%$ Inductance: 6 ranges: 1 microhenry-111
henrie: $\pm 2 \%$ Capacity: 6 ranges: $10 \mathrm{pf}-1110 \mathrm{mfd} \pm 2 \%$ Turns Ratio: 6 ranges: $1: 1 / 1000 \cdot 1: 11100 \pm i \%$ Bridge Voltage at $1,000 \mathrm{cps}$. Opera.
ted from 9 -volt battery. 100 micro. amp meter indication. Size 717 $\times$ $5^{*} \times \mathbf{2 0}^{\circ}$ OUR PRICE $£ 25.00 \mathrm{~PB}$ P 30p

TE16A TRANSISTORISE O SIGNAL GENERATOR 5 rongesi 400 m
to 30 MHz . An
inaxpensive an instrument for Opprates Ong 9 V
battery. Wida battery. Wide
emyy to remd
cen
modulation.
Size: $149 \times 149 \times 92 \mathrm{~mm}$. Complete OUR PRICE E8.97 P\&P 30p

MODEL TE20 RF SIGNAL GENERATOR
Six bends. 120kHz-
$260 \mathrm{WHz}^{2}$. Dual output
$\overrightarrow{15}^{2}$ Accuracy $\pm 2 \%$. Audio
output to 日V. Power requirements:
$105-125 \mathrm{~V}, 220-240 \mathrm{~V}$ AC. Size: 193 $105-125 \mathrm{~V}, 220-240 \mathrm{~V}$ AC. Size: 193
$\times 285 \times 150 \mathrm{~mm}$. Complere with test OUR PRICE £17.50 PAP 50p

TE-20D RF SIGNAL GENERATDR Accurate wide ran uignat generator
covering $120 \mathrm{kHz}-500$ covering $120 \mathrm{kHz}-50$
MHz on 6 bands. Directly callibrated. Varrable R.F.
for anator audio output, Xtal wocket for alibration. $220 / 240 \mathrm{~V}$
Size $140 \mathrm{~mm} \times 215 \mathrm{~mm} \times 170 \mathrm{~mm}$
OUR PRICE $£ 17.50$ PEP50p



SUPPLY UNIT
 OUR PRICE £19.95 P\&P50p
POWER RHEOSTATS
High quality coramic
construction. Windings embedded in vitreous mamel.
Heavy Heavy duty brush
wiper. Continuous rating. Wide rince availmbat ax-stock. Sing hole tixing. X" diamater stats.
Bulk quantitien availabie. 25 WATT 10/25/60/100/500/1000/ 25C: ohms. £1.15 P\&P 10p 50 WATT 10/50/100/250/500/
1500/5000 ohms.
£1.62 P\&P 10p
100 WATT $1 / 5 / 10 / 25 / 50 / 250 / 500 /$ 2500 ohms. 200 Otms $\mathbf{£ 2 . 3 4 ~ P R P 1 5 p}$
YAMABISHI VARIABLE VOLTAGE TRANSFORMERS Exceflent quality at low cosit. Input:
$230 \mathrm{~V} 50 / 60 \mathrm{~Hz}$. Output $0-260 \mathrm{~V}$. MODEL S280 BENCH MOUNTING


Carefully machined top grade steel.
Contains $1 / 2{ }^{\prime \prime}, 5 / 8^{\prime \prime}, 3 / 4^{\prime \prime}{ }^{\prime \prime}$ and and accessories.
OUR PRICE E3.00 P\&P 40p
square GENERATOR Ranga 19220.000 Hz Sine Wave $19-100.000 \mathrm{~Hz}$ square Wive. Output Sine or Square wove 10v. P. to
Sise $180 \times 90 \times 90 \mathrm{~mm}$. Operation OUR PRICE £19.95 P\&P 60p
OUR PRICE 11.97 P\&P 30p
DHO2S STEREO HEADPHONES Wondarful value
and excellent
pefformad

$$
\begin{aligned}
& \text { pe } \\
& \text { co } \\
& \text { b }
\end{aligned}
$$ combinance Adju combined. Adjus

able heed | Impedence 8 o |
| :--- |
| $20-12000 \mathrm{H}$ | $20-12.000 \mathrm{~Hz}$.

Complete with
loadd and plug.
OUR PRICE E2.25 PRP 30p

TE1035 Stereo HEADPHONES

$$
15
$$

ab rubber earcups. Adjust.
able headband.
imped impedence. Frequency
responsa 25 $25 \mathrm{~Hz}-18 \mathrm{kHz}$. responsa $25 \mathrm{~Hz}-18 \mathrm{kHz}$.
Complete with cable
and stereo jack plug. and stereo iack plug.
OUR PRICE $£ 2.60$


## Microphone



Hededphone impedence 16 ohms. Mic
rophone impedence OUR PRICE Ence 200 ohms.


## SPECIAL

BARGAIN!
FARGAIN!
3406 HI.FI
SPEAKERS
Hight quality 2 way speaker systems.
25 Watts. $4-8$ ohms. $40 \mathrm{~Hz}-18 \mathrm{kHz}$.
Size: $560 \times 340 \times 255 \mathrm{~mm}$. appron.
Wood grain finush with black fronts.
OUR PRICE E26.95 PR PRP fi


DUR PRICE £12.95 P\&P 50p

## FM TUNER CHASSIS


discriminator. Oparates on 9 V battery. Covers $88-$
108MHz. Ready built, ready for 108 MHz . Ready built, ready for use.
Fantastic value for monsy. OUR PRICE 88.95
Stereo Multiplex Adrotoris 95 extra

## Model A1018 <br>  double tuned

 diseriminator.For use with nost amplifiers, Covers
$88-108$ Mitz. Powered by $9 V$ battery. OUR PRICE E13.50 P\&P 30p Stereo multiplex edapter $£ 5.95$ oxtrs.

SINCLAIR "SCIENTIFIC" CALCULATOR 8 digit display. Four functions plus
logarithms to logarithms to base 10. antilog. sine, cosine.
tangent, arcsine. tangent, arcSine
arcCosine ond arcTangent. Complete with instructions. case and batteries
£ 49.00 OUR PRICE E44.50
P \& P $\mathbf{2 5 P}$ plus VAT.
SINCLAIR SYSTEM 2000 STEREO AMPLIFIER ANO TUNER


AMPLIFIER
Amplifier output 8 watts per channel RMS. Distortion less than
$006 \%$. Silicon transistors. Two pick-up plus radio and tape inputs, tape output and scratch filter Exceltent Value.
OUR PRICE $\mathbf{f} 28.50$ P \& $p 60 p$


## FM TUNER

Excellent selectivity and sensitivity. Twin dual-varicap tuning.
4 pole ceramic filter. 19 transistor 4 pole ceramic filter. 19 transistor
stereo demodulator giving 40 dB separation. Distortiono $2 \%$ output. OUR PRICE £28.50 P\& P60p.

SINCLAIR Project 80 Modules Z40 Power Amp
Stereo Bo Pre-Amp
Active Fillar Unit
Project B05.....
PZ5 Pown
PR
P25 Power Supply

SINCLAIR Project 80 Packages

$2 \times 240$
POST \& PACKING 35 peach.

## AUDIOTRONIC AHA101 Stereo Headphone Amplifier All siticon, transistor <br> transistor mapitiar opar ates from mag. netic, ceramic <br> or tuner <br> inputs with twin stereo headphone outputs and separate volume controls for each channed, Operates from INPUTS: 5 mV and 100 mV . OUR PRICE 88.50



HIGH QUALITY CONSTRUCTION KITS WE AAE APPOINFED
STOCKISTE STOCKIST8 AT
ALL BRANCHES

All kits are complets with comprehensive esiay to follow instru
Port and Pucking 15p perkit.
AF 20 Mono mimplifier.......
AF 30 Mono preamplifier
AF35 Emitter mplifier.-
AF 305 Intercom. Empinifier...
AF5 Automatic light control. $\begin{array}{ll}\text { AT25 Window wiper robot.... } & £ 5: 58 \\ \text { AT30 Photo cell switch unit... } & 5.70\end{array}$ AT50 400 W triac light AT56 2,200W triac light
AT601 ch speed control...... 56.90 AT60 1 chaned lipht contral. 67.80
GP304 channel light control.. $£ 14.55$ GP304 Circuit board.......
GP310 Stereo priomplifier
for use with $2 \times$ AF 310 .
for use with $2 \times$ Af
Gp312 Circuit bosrd...
GU330 Tremolo unit..
HF61 Diode detector.
HF65 FM trantitit
HF75 FM

 LF380 ousdruphonic dovice.. M160 Multi-vitrator....
M191 VU Meter........................
M192 Streo balance meter... NT10 Stabilised power el......iy E8.45

 Amateur Electronics by Josty-Kit,
the profemional book for the emateur the proteszional book for the ammateur
-covers the sublect from basic principols to advanced rectronic tachnia-
Ues. Complete with cirtuit bourd for OUR PRICE £3.30 (No VAT
P\&P 25p plus VAT.
AE1 100 mW output stape........ $\mathrm{E1.60}$

1021 Stereo Listening Station For belancing
and gin seliction

gain controls. speskers on-off slide switch, ster co hasdphone socker.
OUR PRICE E2.25 PEPP 1Ep

AUDIOTRONIC
LOW NOISE CASSETTES

TYPE	5	10	
C60	$£ 1.57$	$£ 3.00$	$£ 7.08$
C90	$£ 2.24$	$£ 4.25$	$£ 10.00$
C120	$£ 2.73$	$£ 5.17$	$£ 12.24$
AUOIO TRONIC			

CrO2 CASSETTES
$\begin{array}{lccc}\text { TYPE } & 5 & 10 & 25 \\ \text { CR60 } & 53.92 & £ 7.72 & \mathbf{8 1 9 . 1 2} \\ \text { CR90 } & \boxed{55.32} & £ 10.46 & \mathbf{E 2 5 . 2 2}\end{array}$ 8 TRACK CARTRIDGES $\begin{array}{lccc}\text { TYPE } & \text { Each } & 5 & 10 \\ \text { 40M } & 850 & £ 4.00 & £ 7.50 \\ 80 \mathrm{M} & £ 1.15 & £ 5.40 & £ 10.26\end{array}$ P\&P Casuttws 3 , Cartridpes 59 each
OVER 10 of wither POSTFRE!

complets mixing
$\times 127 \times 76 \mathrm{~mm}$.
$\times 10$
 4 mV 50k; Phono Coramic 100 mV V OUR PRICE

## EA41 REVERBERATION

 AMPLIFIER Self contained,transistorised, transistorised,
bstrery operated. Simply plug in microphond, quitar ett. and output to
Your amplifier. Volum controf and
dep th of reverberation contron depth of reverberation control, Besu.
walnut cabinet. $184 \times 77 \times 108 \mathrm{~mm}$. OUR PRICE E7.50 PAP 30 p

## SEW CLEAR PLASTIC PANEL METERS

USED EXTENSIVELY BY INDUSTRY, GOVERNMENT DEPARTMENTS, EDUCATIONAL AUTHORITIES ETC. Over 200 ranges in stock -other ranges to order. Quantity discounts available. Send for fully illustrated brochure.

CLEAR PLASTIC MDOEL S0640 Size: $85 \times 64 \mathrm{~mm}$			
50 wa ..	1380		
100uA ..	1375		
2004 A .	f370		
$\begin{array}{ll}5004 \\ 50-0-50 \sim A & \cdots \\ \end{array}$	1365 6375		
100-0.100uA ..	f3 70		
1 mA	E3.65		
5 mA .-	f3,65		
10 mA .	53.65		
50 mA ...	13.85 6365	10 V DC 20 VC	
$\begin{array}{lll}100 \mathrm{~mA} & . . \\ 500 \mathrm{~mA} & .\end{array}$	13.65 63.65	$20 V$   50 DC   0	¢   ¢ 365   65
$1 A D C$..	+3.85	300 V DC	¢ 365 $\pm 375$
$5 A D C$..	C3 65	15 V AC	1375 8375
10ADC ..	f3 65	300 V AC	6375 6390
$5 \vee \mathrm{DC}$..		VU Meter	
CLEAR PLASTIC MODEL SW100 Size: $100 \times 80 \mathrm{~mm}$			
50 u A .. .. .. 5460			
50.0-50u A .. [450			
1 mA .. .. .. 6430			
5A DC .. .. 1430			
50 V DC .. .. $\$ 430$ 300V AC .. .. 4445			
EOGWISE MDOEL PE70   Size: $90 \times 34 \mathrm{~mm}$			
VU Meter .. .. 44.30			
MODEL E0107 EOUCATIONAL METER   Size: $100 \times 90 \times 150 \mathrm{~mm}$ including terminals			
A range of high quality moving coil instruments ideal for school experiments and other bench applications. $3^{\prime \prime}$ mirror scals. The meter movement is assily accessible to demonstrate internal working.			
50-0-50uA ${ }^{\text {a }}$-. $\quad 1790$			
$1 \mathrm{~mA} \mathrm{.}. \mathrm{} .1760{ }^{\text {c }}$			
CLEAR PLASTIC MODEL MR B5P Size: $120 \times 110 \mathrm{~mm}$			
200uA ** ** 65.25			
50-0.504 A -. $\quad 65.40$			
$\begin{array}{lll}100-0.100 u \\ \text { A.. } & 5535 \\ 500-0.500 u\end{array}$			
1 mA .. .. .. 6520			
$1.0-1 \mathrm{~mA}$.. .. 6520			
10mA ... ... ... $\quad 15520$			
50 mA .. ... .. 6520			
100 mA ..			
500 mA .. .. 5520 15VAC .. .. 5530			
15A DC .. .. 5520 VUMeter.. .. 5555			
30ADC .. .. 5540 1AAC . 6520			
50 V OC150 V DC..	$\underline{56.20}$	20A AC -	* $f 520$
	55.20	30A AC ..	- 1520



## SIze: $42 \times 42 \mathrm{~mm}$



481 OXFORD ST.	01.4938641
10 TOTTENHAM CF. RD.	01-637 2232
27 TOTTENHAM CI. RD.	$01-6363715$
33 TOTIENHAM CI. RD.	$01-6362605$
42 95 TOTTENHAM CI. AD.	01-6360845
87 TOTTENHAM CI. RD.	01.5803739
2578 TOTTENHAM CT. RD.	01.5800670
3 LISLEST. WC2	01.4378 Biv4
34 LISLE ST. WCZ	01-4379155
118 EDGWARERD. W2	01.7239789
193 EDGWARERD. W2	04.7236211
207 EDGWARE RD. W2	$01-7233271$
311 EDGWARE RD. W2	01.2620387
346 EDGWARE RD. W2	$01-7234453$
382 EDGWARE RD. W2	01.7234194
109 FLEET ST. EC4	0f-3535812
152/3 FLEET ST. ECA	01.3532833
ESSEX	
86 SOUTH ST. ROMFORD	70-20218
KENT	
53/57 CAMDEN RD., TUNER	$\begin{aligned} & \text { DGE WELLS } \\ & 0892-23242 \end{aligned}$

## LEICESTERSHIRE

45 MARKET PLACE, LEICESTER $0533-537678$

SURREY	
1046 WHITGIFT CENTRE, CNOYDON	
	$01-6813027$
27 EDEN ST. KINGSTON	01-5467845
32 HILL ST. RICHMOND	01.9481441
WARMCMSHIE	
116 Corporation St., B	INGHAM

## ALL BRANCHES OPEN FROM 9am to 6pm MON. TO SAT



CHEQUES TO THE VALUE OF $£ 30$ ACCEPTED FROM PERSONAL SHOPPERS WITH BANKERS CARD. IN OTHER CASES ANO PLEASE ALLOW TIME FOR CLEARANCE. BANKERS DRAFTS ACCEPTED.

All prices correct at ALL PRICES
EXCLUDE VAT


NEW from A．S．P．
Also available ！watt（a $70^{\circ} \mathrm{C}$ Carbon
Film Resistors Ele．Range： 10 Q to $2.1 \mathrm{~m} \cap 5 \%$ tol．above $470 \mathrm{k} \Omega 10 \%$ tol Price 97 p per 100

CASED AUTO TRANSFORMERS 240 Volt Mains to 115 Volte，suart stee cased undts costed in tough resin，fitted ype socket up to 500 VA above 500 V Cable entry
VA（Watte）
200 ．，
500
500
1000
2000
nion
uncoated，no fure
22.62
Price
25.56
$\mathbf{~} 8.50$
$\mathbf{8 1 5 . 9 2}$
$\mathbf{2 8 0 . 7 0}$
22.62


## MAINS KEYNECTOR

 The wale，quick，connect nectir fur elech
appliances， 13 Amp appliances，fused，will of appliartes quick！athl safely 11 in for teatify
ting．wimbon
doxplays，ete．Warning limbt，interloeked to Trade Price：$£ 2.95$ ．Powt

## electronic mains timer

A rela lamit mal Ventilators．sitairwast Cloakromm Likht ing，ete Giver up 10 is so minns Helay before suitchink
off．Deliay： 30 mithe
 adjuntallo．Man Lam qoova or 1 tha walt
inclulled．
Trisle Price e5．80．1＇nat ：20p

## TRANSFORMERS

## SAFETY ISOLATING

Prim．120／840V．   Tap with screen．				
VA	Ref．		Price	Pust
（watts）	No．	Салеत	Open	c
60	149		88.74	0.38
100	150		$4 \cdot 16$	0.52
200	151	18．48	$7 \cdot 48$	0.52
250	152	12.05	9－87	$0 \cdot 65$
350	153	14.00	11.44	0.80
500	154	15.80	13.20	1.00
1000	156	30.70	27.48	1.20
2000	168	80.85	55.44	
3000	159	78.58	78.48	
12 ： 24 Volts Prim．200－2407．				
Ampe		Type	Price	Post
12 V	24 V	No．	1	$\stackrel{1}{6}$
0.3	0.15	242	1－34	0.22
0.5	0.25	111	1．34	$0 \cdot 22$
1	0.5	213	1.69	$0 \cdot 2$
2	1	71	2.08	0.22
4	2	18	2.75	0.38
6	3	70	3.58	0.42
4	4	108	3.98	0.52
10	；	72	4.67	0.52
12	6	116	$5 \cdot 67$	0.52
16	8	17	6．84	0.52
20	10	115	10.28	$\rightarrow 69$
30	15	187	18.75	0.97
40	20	232	18.28	1.00
60	30	225	22.52	$1 \cdot 10$

## 30 Volts

Ptim．200－240V．Sec．12，15，20，24．30V． $\begin{array}{cccc}\text { Amps } & \text { Type } & \text { Price } & \text { Post } \\ 0.5 & 112 & \text { \＆1．58 } & t 0.22\end{array}$

## 50 Volts

Prim．200－240V． Sec．10，25，33，40，50V

Amps	Type	Price	Prat
0.5	102	$\mathbf{2 2 . 1 1}$	$\mathbf{0 . 3 0}$
1	103	3.08	0.38
2	104	4.29	0.42
3	105	5.77	0.52
4	106	7.48	0.52
6	107	11.00	0.67
4	118	14.18	0.97
10	119	17.60	0.97

60 Volts
Prim．200－240V．

Sec．24，30，40，48， 60 V ．			
Ampg	Type	Price	Post
0.5	124	82.10	¢0．38
1	126	$2 \cdot 97$	0.38
2	127	5.77	0.42
3	125	2.15	0.5
4	123	9.36	$0 \cdot 6$
5	40	11.55	0.67
6	120	18.57	0.82
8	121	18.00	1.0
10	122	18.40	1.0
12	189	21．88	1.1

## MINIATURE AND EQUIPMENT

Volts		Milliamps		$\begin{gathered} \text { Type } \\ \text { No. } \end{gathered}$	Price	Podt $\pm$
Sec． 1	Sec． 2	Sec．	Sec． 2			
3－0－3		200		238	1－28	0.10
0－6	0－6	500	500	234	1.80	$0 \cdot 10$
0－6	0－5	1000	1000	212	1.68	0.22
9－0－9	－	100	－	13	1 －23	$0 \cdot 10$
0－9	0－9	330	330	235	1.48	$0 \cdot 10$
0－8－9	0－8－9	500	500	207	2．28	$0 \cdot 2$
0－8－9	0－8－9	1000	1000	208	3.03	0.30
15－0－15		40		240	1.23	$0 \cdot 10$
0－15	0－16	200	200	236	1.30	0． 10
20－0－20	－	30	－	241	1.23	$0 \cdot 10$
0－20	0－20	150	150	237	1.80	$0 \cdot 10$
0－15－20	0－15－20	500	500	205	2.97	0.38
0－20	0－20	300	300	214	$1 \cdot 78$	0－22
0－20		3500	（No sereen）	1116	3．00	0.40
20－12－0－12－20	－150	700		221	1－65	0.30
0－15－20	0－15－20	1000	1000	204	3.80	0.38
0－15－27	0－15－27	500	500	203	3.08	$0 \cdot 38$
0－16－27	0－15－27	1000	1000	204	$3-24$	0.38

PLASTIC CASED SILICON BRIDGE RECTIFIERS
One Amp Two Amp Four Amp six Amp
 $\begin{array}{llll}200 \text { P．I．V．} 28 \mathrm{p} & 200 \text { P．I．V．} 45 p & 400 \text { P．I．V．} 65 p & 200 \text { P．I．V．} 800 \\ 600 \text { P．I．V．} 30 p & 400 \text { P．I．V．} 50 p & 600 \text { P．I．V．} 75 p & 400 \text { P．I．V．} 90 p\end{array}$

ADD 10p P．\＆P．PER ORDER
BYRE HOUSE ．SIMMONDS ROAD ．WINCHEAP CANTERBURY ．KENT ．Canterbury（0227） 52436

## YATES ELECTRONICS （FLITWICK）LTB． <br> OEPTMPE，ELSTOW STORAGE DEPOT KEMPSTON HARDWICK，BEDFORD

C．W．O．PLEASE．POST AND PACKING PLEASE ADD 100 TO ORDERS UNDER $f 2$ Catalogue which contains data sheets for most of the componenss listed will be sent free on request 10p stamp appreciated．
CALLERS WELCOME Mon．－Sat． 9 a．m．－5 p．m． PLEASE ADD $10 \%$ VAT

RESISTORS
W．Whra high stability carbon film－very low noise－capless construccion
iW Mullard CR25 carbon film－very small body size $7.5 \times 2.5 \mathrm{~mm}$ ELECTROSIL TR5

Power watts	Tolerance	Range	Values available	$1-99$	$100+$
＋	5\％	$4.7 \Omega-2.2 \mathrm{Mn}$	E24	1．3p	$1.1 p$
$\frac{1}{2}$	10\％	$33 \mathrm{Mn}-10 \mathrm{Mn}$	E12	1.3 p	$1.1 p$
$\frac{1}{2}$	2\％	$10 n-1 M n$	E24	$3.5 p$	3p
＋	10\％		E12	1．3p	$1.1 p$
4	5\％	$4.7 \Omega-1 M \Omega$	E12	13 p	$1.1 p$
4	10\％	$1 \mathrm{n}-10 \mathrm{n}$	El2	8 p	7 p

## DEVELOPMENT PACK

0.5 watt $5 \%$ iskra resistors 5 off each value 4.7 』 to 1 Mn
E12 pack 325 resistors $£ 2.40$ ．E24 pack 650 resistors $£ 4.70$ ．

## POTENTIOMETERS



## SKELETON PRESET POTENTIOMETERS

Linear： $100,250,500 \Omega$ and decades to $5 M \Omega$ ．Horizontal or vertical P．C．mounting （0．1 matrix）

SMOKE AND COMBUSTIBLE GAS DETECTOR－GDI
The GDI is the world＇s first semiconductor that can convert a concentration of gas or smoke into an electrical signal．The sensor decreases its electrical resistance monoxide，methane，propane，alcohol．North Sea gas，as well as carbon－dust containing alr or smoke．This decrease is usually large enough to be utilized without amplification．Full details and circuits are supplied with each detector． Detector GDI，$£ 2$. Kit of parts for mains operated detector including GDI but excluding case， 65.60 ．Suitable case，$\& 1.50$ ．Kit of parts for 12 or 24 V battery Note：The battery operaced kits incorporate our patented circuit to minimise battery drain－typically 90 mA for 24 V ．

## PRINTED BOARD MARKER

Draw the planned circuit onto a copper laminate board with the P C．pen allow 97 dry，the immerse the board in the etchant．On removal the circuit remains t high relief．

M ULLARD POLYESTER CAPACITORS C296 SERIES
$000 \mathrm{~V}: 0.001 \mu \mathrm{~F} .0 .0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 0.0047 \mu \mathrm{~F}, 3 \mathrm{p}, 0.0668 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}$ $0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 31 \mathrm{p} .0 .047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 5 \mathrm{p} .0 .15 \mu \mathrm{~F}, 6 \mathrm{p}, 0.22 \mu \mathrm{~F}$, 3 p． $0.33 \mu \mathrm{~F}, 11 \mathrm{p} .0 .47 \mu \mathrm{~F}, 13 \mathrm{p}$ ． $60 \mathrm{~V}: 0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 3 \mathrm{p}, 0.1 \mu \mathrm{~F}, 3 \frac{1}{3} \mathrm{p}, 0.15 \mu \mathrm{~F}$,
4 ip． $0.22 \mu \mathrm{~F}, 5 \mathrm{p} .0 .33 \mu \mathrm{~F}, 6 \mathrm{p}, 0.47 \mu \mathrm{~F}, 7 \frac{1}{2} \mathrm{p} .0 .68 \mu \mathrm{~F}, 11 \mathrm{p} .1 .0 \mu \mathrm{~F}, 13 \mathrm{p}$. ip． $0.22 \mu \mathrm{~F}, 5 \mathrm{p} .0 .33 \mu \mathrm{~F}, 6 \mathrm{p} . \quad 0.47 \mu \mathrm{~F}, 7 \frac{1}{1} \mathrm{p} .0 .68 \mu \mathrm{~F}$ ，IIp．I． $0 \mu \mathrm{~F}$ ，I3p． MULLARD POLYESTER CAPACITORS C280 SERIES


 p． $004 \mu \mathrm{~F}, 0.05 \mu \mathrm{~F} .0 .068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 4 \mathrm{p}$ ． $\mathrm{T}_{\text {each }}$

ELECTROLYTIC CAPACITORS—MULLARD OI5／6／7
$(\mu \mathrm{F} / \mathrm{V}) / / 63,1.5 / 63,2.2 / 63,3 \cdot 3 / 63,4.7 / 63,6 \cdot 8 / 40,6 \cdot 8 / 63,10 / 25,10 / 63.15 / 16,15 / 40$ $\begin{array}{lll}5 / 63,22 / 10,22 / 25,22 / 63,33 / 6 \cdot 3,33 / 16,33 / 40,47 / 4,47 / 10,47 / 25,47 / 40,68 / 6 \cdot 3 \\ 68 / 16,100 / 4,100 / 10,100 / 25,150 / 6 \cdot 3,150 / 16,220 / 4,220 / 6 \cdot 3 & 220 / 16 & 330 / 4\end{array}$ $47 / 63,100 / 40,150 / 25,220 / 25,150 / 6 \cdot 3,150 / 16,220 / 4,220 / 6 \cdot 3,220 / 16,330 / 4,6 \mathrm{p}$ ． $1,000 / 4,10$ p． $470 / 10,680 / 6.3,11$ p． $100 / 63,150 / 63,220 / 63,1,000 / 10.12$ p． $470 / 25$ $680 / 16,1,500 / 6 \cdot 3,13$ p． $470 / 40,680 / 25,1,000 / 16,1,500 / 10,2,200 / 6 \cdot 3$ ，18p． $330 / 63$ $680 / 40,1,000 / 25,1,500 / 16,2,200 / 10,3,300 / 6 \cdot 3,4,700 / 4,21$ p．

SOLIDTANTALUM BEAD CAPACITORS			12 p	
$0.1 \mu \mathrm{~F}$	35 V	$2.2 \mu \mathrm{~F}$	35 V	$22 \mu \mathrm{~F}$
$0.22 \mu \mathrm{~V}$	35 V	$4.7 \mu \mathrm{~F}$	35 V	$33 \mu \mathrm{~F}$
0.10 V				
$0.47 \mu \mathrm{~F}$	35 V	$6.8 \mu \mathrm{~F}$	25 V	$47 \mu \mathrm{~F}$
$1.0 \mu \mathrm{~F}$	35 V	$10 \mu \mathrm{~F}$	25 V	$100 \mu \mathrm{~F}$
		3 V		

VEROBOARD
ーーーー

YEROBOARD		
	0.1	0.15
$2+\times 3 z$	$24 p$	$20 p$

24p 20p
$\begin{array}{ll}28 p & 28 p \\ 28 p & 28 p \\ 28 & 28 p\end{array}$
$\begin{array}{ll}32 p & 32 p \\ \text { 85p } & 67 p\end{array}$
$85 p$
$120 p$
AACK PLUGS AND SOCKETS
$\begin{array}{lll}\text { Standard sereened } & 28 p & 2.5 \mathrm{~mm} \text { insulated } \\ \text { Standard insulated } & 18 \mathrm{p} & 3.5 \mathrm{~mm} \text { insulated }\end{array}$ Standardinsulated $18 \mathrm{p} \quad 3.5 \mathrm{~mm}$ insulated $\quad 12 \mathrm{p}$Stereo screened $\quad 40 \mathrm{p} \quad 3.5 \mathrm{~mm}$ screened 18 p$\begin{array}{llll}\text { Standard socker } & 20 \mathrm{p} & 2.5 \mathrm{~mm} \text { socker } & 10 \mathrm{p} \\ \text { Stereo socker } & 30 \mathrm{p} & 3.5 \mathrm{~mm} \text { socker }\end{array}$Stereo socket $30 \mathrm{p} \quad 3.5 \mathrm{~mm}$ socker lipD．I．N．PLUGS AND SOCKETS2 pin， 3 pin， 5 pin $180^{\circ}, 5$ pin $240^{\circ}, 6$ pin， 7 pinPlug 12p．Socket 8p．4 way screened cable， 25 p／metre
6 way screened cable 30 p／mere
$2 \frac{1}{2} \times 5$（plain） Pin insertion Spot face cutte

# Marshall＇s <br> <br> Everything you need is in our <br> <br> Everything you need is in our New Catalogue New Catalogue <br> <br> available now price 20 pence <br> <br> available now price 20 pence <br> （ 100 pages of prices and data） <br> Call in and see us 9－5．30 Mon－Fri <br> 9－5．00 Sat <br> A．Marshall \＆Son（London）Limited <br> 42 Cricklewood Broadway London NW2 3HD，Telephone 01－452 0161 <br> \＆65 Bath Street Glasgow G2 2BX Telephone 041－3324133 <br> Trade and export enquiries welcome 

## Popular Semiconductors

$2 N 456$	0.80	$2 N 3705$	0.18	AD 150	0.88	BC308A	0.12	BFY19	0.85




 $2 N 493$
$2 N 690$ $2 N 698$
$2 N 697$


2N706A	0.18	$2 N 3771$	8.840	AF125
2N				

2 2N7 $2 N 7$
$2 N 9$

2 N

2 N 91
2 N 92
2 N 1

## 2 N

## 2 N


2N $1307 \quad 0.22$ 2N 4036
${ }_{2}^{2 N} 1$

## 2 N 2 N

## 祘云

2 N
2 N
2 N
2 N

2 N
2 N
2 N

## むส

## 2 <br> \section*{2 N}

## ${ }_{2}^{2 N}$

## 2 N 2 N 2 N

## 2N

## 

## 2 N

## 2 N 2 N 2

 |  |  |  |
| :--- | :--- | :--- | :--- |
| $N 2904$ | 0.40 | 40406 |

 \begin{tabular}{ll|l}
2N2905 \& 0.48 \& 40408 <br>
2N2905A \& 0.50 \& 40409

 

2N2 $2905 A$ \& 0.80 \& 40409 <br>
2N2906 \& 0.81 \& 40410

 

$2 N 2906$ \& 0.81 \& 40410 <br>
$2 N$ \& $2906 A$ \& 0.87 \& 40411

 

$2 N 2906 A$ \& 0.87 \& 40411 <br>
2N2907 \& 0.40 \& 40414
\end{tabular}

 \begin{tabular}{l|l|l}
$2 N 2907 A$ \& 0.55 \& 40430 <br>
$2 N 2924$ \& 0.14 \& 40583

 

$2 N 2925$ \& 0.17 \& 40601

 

2N2926 \& \& 40602 <br>
\hline

 

Green 0.18 \& 40603 <br>
Yellow 0.11 \& 40604

 Yellow 0．11 40604 

\hline Orange \& <br>
0.11 \& 40636 <br>
40669

 

\& 0 N 3053 \& 0.11 <br>
20.25 \& 40673 <br>
2N 3054 \& $\mathbf{0 . 8 0}$ \& $\mathrm{AC107}$
\end{tabular}

 \begin{tabular}{ll|l}
2N 2390 \& 0.26 \& AC117

 

$2 N 3391$ \& 0.28 \& AC126

 

$2 N 3391 A 0.29$ \& AC127
\end{tabular}

 2N3393 | 0.18 | AC151V | 0.25 | BC238 | 0.09 | BF255 | 0.17 | BL623 | 0.69 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |




 \begin{tabular}{ll|ll|ll|l|lll}
$2 N 3441$ \& 0.97 \& AC176 \& 0.23 \& BC257 \& 0.09 \& BFS81 \& 0.27 \& TAD 100 \& 1.50

 

$2 N 3442$ \& 1.25 \& AC176K \& 0.38 \& BC258 \& 0.060 \& BFS98 \& 0.80 \& Filter \& 0.70
\end{tabular}

 \begin{tabular}{ll|ll|ll|l|l|}
2N3415 \& 0.21 \& AC188K \& 0.84 \& BC261 \& 0.20 \& BFX 30 \& 0.86 <br>
2NBA 3416 \& 0.84 \& ACY18 \& 0.24 \& BC262 \& 0.18 \& BFX44 \& 0.88 <br>
2 \& R．26

 

2N 3416 \& 0.34 \& ACY 18 \& 0.24 \& BC262 \& 0.18 \& BFX44 \& 0.88 \& <br>
2N 3417 \& 0.24 \& ACY 19 \& 0.27 \& BC263 \& 0.23 \& BFX63 \& 2.48 \& TBA800 <br>
1.60
\end{tabular}

2N 3638A	0.16	ACY21	0.28	BC301	0.84	BFX84	0.84	TIL209
2N3639	0.27	ACY28	0.80	BC302	0.29	BFX85	0.80	TIP29A
2N								





## Kellner Construction Kits

Wesre the sole distributors in U．K．
 Eith Tone Control and Pre－Amp ．．．$\$ 18.80$ E830 30 watt Mono Hi－Fi Power Amplifier ．．． $\begin{gathered}\text { s9－90 } \\ \text { 810－68 }\end{gathered}$ E860 50 watt Mono HI－Fi Power Amplifier EV3 Distortion Compensated Pre－Anplifer．．．
AV7 Aerial Amplifer．LW，SW，MW，VHF．T／V Channel．
 Licence is required $\begin{aligned} & \text { MUE7 Short Wave and VHF Receiver Kit．Compan }\end{aligned}$ U 18 Emtron－Dice
EW18 Electronic Dice Kit
EW20 Electronic Dice with Sensor Button
EW800 Strobe Light Kit， $120 \mathrm{~W} / \mathrm{s}$
L01000 Psychedelic Light Control，aingle channel
LO350 Paychedelic Light Control，three channel
NT15 Power Supply－4 to $30 \mathrm{~V}, 1.5 \mathrm{~W}$
NTB5 Professlonal stabilized＇Power Supply，
D800 800W LIght Dimmer Speed Control
WT7 Aircraft Communications Tuner $110-130 \mathrm{mHz}$ ．Bullt and aligned
Built and aligned 0 for 2 meter $[144 \mathrm{mHz}-146 \mathrm{mHz}]$ ． All pricea plus $10 \%$ VAT and piou $16 p$ poat and paokies． All kita with eagy to follow instructiona and covered by a tall guarantee．
Bridge Rectiflers
Metal－Professional 8．


## AB Potentiometers－carbon

Rotary type 45 ：Hingles（Log and linear） 16 p ．Single swider typ 58 ．Bingles（Log and linear）800．Doubles （Log end linear） 80 p ．
Presets：0．］watt 6p， 0.2 watt 6p， 0.3 watt 7ip．Please

## Diodes and Rectifiers

	50	100	200	400	${ }^{600}$		
－	${ }_{18 p}^{88}$	17p	20p	${ }_{2 R D}$	${ }_{25 p}$	${ }_{87 \mathrm{P}}^{158}$	${ }^{200}$
		359   980		${ }_{48.15}^{48}$	${ }_{\text {ce }}^{50.68}$		
35	84p	${ }^{92}$	21.18	29.15	22．62	28.65	24.80
Cathode Stud Only							
Bap							
1N914	7	BA142	7p	BYZ10	${ }^{3}$	oa	3p
	7 P	${ }^{\text {BA144 }}$	17	${ }_{\text {BYZ12 }}^{\text {BYZ }}$	${ }^{32 \mathrm{D}}$	OA855	\％
A198	${ }^{1}$	${ }^{\text {BA1 }}$	178	OA9	10 p		硣
1100	${ }^{155}$	BY100	15	OA10		oas	D
102	${ }^{255}$	BY126	158	OA47	$7{ }^{2}$	OA200	
A110	250	BY127					${ }^{10 p}$
balls	7 D	BY140		OA73	10D		

## Integrated Circuits－

 TTL REDUCTIONS \＆




 \begin{tabular}{ll|ll|ll|ll}
SN7404 \& 0.84 \& SN7445 \& 1.69 \& SN7491 \& 1.10 \& SN74162 \& 1.58 <br>
SN

 

SN7404 \& SN7405 \& 0.24 \& gN7446 \& 8.00 \& SN 7492 \& 0.75 \& SN74164 \& 8.01 <br>
SN
\end{tabular}






 | SN7411 | 0.20 | SN7454 |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| SN 7412 | 0.28 | SN 7460 | 0.16 | SN74118 | 1.00 | SN 74181 | S．18 |

 | SN 7416 | 0.45 | 8N7472 | 0.38 | SN74121 | 0.67 | SN 74191 | 1.96 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | SN7417 00.80 SN7420 0.16 SN $^{\text {SN }}$

 | SN7425 | 0.87 | SN7476 | 0.46 | SN74145 | 1.44 | SN74197 1．68 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| SN7427 | 0.46 | SN7480 | 0.75 | SN74150 | 1.44 | SN74198 8.16 |



More miles per gallon？
Try our proven Scorpio ignition kit Mk．II
Try our proven Scorpio ignition
Price $£ 12 \cdot 50$ inc．V．A．T．\＆P．$\quad$ P．

# Project 80 

## a brilliant new concept in modular hifi

## Sinclair Project 80



## technically the world's most advanced

Project 80 gives you choice from a range of 9 different modules for combining in a variety of ways to suit your requirements. The Stereo 80 is a versatile pre-amp control unit designed to meet all domestic hi-fi requirements including tape monitoring, high sensitivity magnetic cartridge input, and of course, individual slide controls on each channel for precise output matching. By separating the F.M. tuner and stereo decoder, useful economies can be effected where stereo radio reception is not needed. Two power amplifiers - Z. 40 ( 18 watts RMS continuous into 4 ohms using 35 V ) and $Z .60$ ( 25 watts RMS continuous into 8 ohms using 50V) are available with choice of 3 different power supply units. The PZ. 8 with its virtually indestructible circuitry is particularly recommended. For the final word in system building, the Active Filter Unit puts the finishing touch of quality to what are easily the world's most technically advanced hi-fi modules Any further units likely to be added to Project 80 range will be compatible with those already avalable.

## Guarantee

If. within 3 months of purchasing any product direct from us you are dissalistifed whth it your money will be refunded on production of recerpt of payment Many Sinc appointed stockists also offer this guarantee Should any defect arisen normat us: wh will servicelt without charge


Sinclalt Radionics Lid London Rd Si Ives Huntingdon PE 174 HJ Telephonn St Ives (0480) 64646

Stereo 80 Control Unit size-260 $50 \cdot 20 \mathrm{~mm}$ ( $10 \frac{1}{2} \cdot 2 \cdot 2 \cdot \frac{2 \pi}{2} \mathrm{~ns}$ ) Finish - Black with white indicators and transparent sliders Inputs - Magnetic pick up 3 mV RIAA corrected Ceramic pick up 350 mV Radio 100 mV . Tape 30 mV Signal/norse ratio - 60 db Frequency range - 20 Hz to 15 KHz . $1 \mathrm{~dB}, 10 \mathrm{~Hz}$ to $25 \mathrm{KHz}+3 \mathrm{~dB}$ Power requirements - 20 to 35 volts Outputs 100 mV . AB monitoring for tape Controls - Pre'ss button tape radio and P
 Tuning range Duat varicap - 875 to 108 MHz Detector - 1 C balanced conncidence One C equal to 26 transistors Distortion - $02 \%$ at 1 KHz to: $30 \%$ modulation 4 pole ceramic filter in IF section Aerial impedance - $75 \Omega$ or $240-300 \Omega$ Sensitivity - 5 microvolts for $30 \mathrm{cB} \mathrm{S} / \mathrm{N}$ ratıo Output -300 mV for $30 \%$ modulation Power requirements - 25 10 35 volts $\quad$ ( 111.95

Project 80 Stereo Decoder size - 47.50. 20 mm (1 $\frac{7}{6} \cdot 2$. fins) One 19 transistor I.C. Channel separation greater than 30dB Power requirements - 25 V Output 150 mV per channel $\begin{gathered}\text { R add } 740 \text { VAT, f } 7.45\end{gathered}$
Active Filter Unit Separate controls on each channel Size $108 \cdot 50 \cdot 20 \mathrm{~mm}\left(4 \frac{1}{2} \cdot 2\right.$. 3ins) Voltage gain - minus 02 dB Frequency response - 40 Hz to 22 KHz controls minimum Distortion - at $1 \mathrm{KHz}-003 \%$ using 30 V supply H.F. cut off (scratch) -22 KHz to 55 KHz 12 dB loct slope L.F cut off (rumble) -28 dB at $20 \mathrm{~Hz} 9 \mathrm{~dB} / 0 \mathrm{ct}$ slope R RP (add 69 p VAT) E 9.5
Z. 40 Power Amplifier size - $55 \quad 80 \quad 20 \mathrm{~mm}\left(2 \frac{1}{5} \cdot 3 \frac{1}{8} \cdot \frac{3}{2} \operatorname{lns}\right)$ y tansistors Input sensitivity -100 mV Output 18 watts RMS continuous into $4 \Omega(35 \mathrm{~V})$ Frequency response 30 Hz 100 kHz . 3dB S/N ratio - 64 dB Distortion - at 10 watts into 80 less than $01 \%$ Power requirements 12 to

Z. 60 Power Amplifier size $55 \quad 98 \quad 15 \mathrm{~mm}\left(2 \frac{1}{2} \quad 3 \frac{3}{4} \cdot \frac{3}{4} 1 \mathrm{~ns}\right) 12$ transisiors Input sensitivity 100250 mV Output - 25 walts RMS continuous into $8 \Omega$ ( 50 V ) Distortion - ivD'cally $003 \%$ Frequency response - 15 Hz 10 more than $200 \mathrm{KHz} 3 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ ratio - better than 70 dB Bult in protection

Power Supply Units pz 8 Stabilised te entrant curtent limiting makes damage from overload or even direct shorting impossible Normal working voltage (adjustable) 50 R R R P $\mathrm{f} 798 \cdot 79 \mathrm{p}$ V A T Without mains ranstormer PZ. $6 \quad 35 \mathrm{~V}$ stabilised RRP £798.79p VAT PZ 530 V un stabilised R R P E4.98 49 p V AT

To Sinclair Radionics Ltd, St. Ives Huntingdon PE17 4HJ
Please send post pard
for which linclose Crish'Cheque fut $\qquad$ inclursing $\vee A i$

Nan! nclurding $V A$
Nantit Addiss $\qquad$

# Practical Electronics Classiiied Advertisements 

RATES: 9p per word (minimum 12 words). Box No. 20p extra. Semi-Display $£ 7$ per single column inch. Advertisements must be prepald and addressed to Classified Advertisement Manager, "Practical Electronics" IPC MAGAZINES LTD., Fleetway House, Farringdon Street, London EC4H 4AD

## 8ERVICE 8HEETS

SERVICE 8HEET8, Radio, TV, etc. 8,000 models. Catalogue 20p. S.A.E. enquiries. TELRAy, 11 Maudland Bank, Preston.

SERVICE SHEETS for televisions, radios, transistors, record players, tape recorders, etc. from $5 \%$ with free fault-finding guide. Over 10,000 models available. S.A.E. enquiries Catalogue $20 p$ and S.A.E. HAMILTON RADIO, 47 Bohemia Road, St. Leonards, Sussex. Telephone Hastings 429066.

## WANTED

TOP PRICES PAID
NEW VALVES AND TRANSISTORS
Popular T.V. and Radio types

## KENSINGTON SUPPLIES (B)

367 Kensington Street Bradford 8, Yorks.

WANTED. Radio and TV Servicing books from 1964 onwards. 22 per copy, paid by return of post. BELL'S TELEVISION SERVICES, 190 Kings Road, Harrogate, Yorkshire. Teleplone $04235588 \overline{5}$.

## FOR 8ALE

TV LLAE OUT-PUT TRAMSFORMERS<br>Tidman Mail Order Ltd., 236 Sandycombe Road, Richmond, Surray TW9 2Ea $01-9483702$

SEEN MY CAT 15,000 items. Mechanical and Electrical Gear, and materials. S.A.E. K. R. WHISTON, Dept. PE, New Mills, Stockport.
catalogue no. 18, Electronic and Mechanical Components and manufacturers' surplus. Credit vouchers value 50 p . Price 23p, including post. ARTHUR SALLIS RADIO CONTHOL LTD., 28 Gardner Street, Brighton, Sussex.

LIGHT8HOW PROJECTOR8 from only \&17, effect wheels from only 84. Many lightshow bargains at ROGER SQUIRE'S (Disco Centre), 176 Junction Road, London, N. 19. Tel. 01-272 7474

SUPERB INBTRUMENT CA8E8 by Bazelli, manufactured from heary duty 1 VVC faced steel, choice of 70 types, send for free list. BAZELLI INSTRUMENT CASES, Dept. 23, St. Wilfrids, Foundry Lane, Halton, LAZ 6LT, Nr. Lancaster.

VALYEs, VALYE AND MORE VALYEs. Large stocks, many types, 1030 to 1974. S.A.E. for quotation. List 10p. COX RADIO, The Parade, East Wittering, Sussex.

PRACTICAL ELECTRONIC8, December 1968 to February 1973 inclusive. Excellent condition. Offers. LIVINGSTON, 943 Broadgate, Beeston, Notts.

PRACTICAL ELECTRONICE. Most issues from 1966 to 1970 available. Apply: FRANK MORTON, 65 Malmsey House, Vauxhall Street, London, SE11 5Ll.

PART-BUILT P.E. Sound, Synthesiser. Details-B. LONG, "Riviere", Tewkesbury Road, Cheltenham, Glos.

LOGIC TEST PROBES: indicates logic levels single pulses, pulse trains. Excellent value, e7 inclusive. CRUDWELL ELECTRONICS, 7 The Dawneys, Crudwell, Nr. Malmesbury, Wiltshire.

## PROFESSIONAL 8ERVICE8

PATENTS AND TRADE MARK8. KINGS 1MTENT AGENCY LIMITED (Est. 1886), B. 'T. King, Director, M.I.Mech.E., Registered 1'atent Agent, 146a Queen Victoria Street, London, EC4V jat. Booklet on request. Tel, 01-2486161. Telex 883805.

## SITUATIONS VACANT

## Just one technician's opinion of his future with us.

David joined Marconi Communication Systems Ltd. in 1968 and has been in the Repair and Calibration Section for 12 months. He is currently studying for his City $\&$ Guilds Telecommunication Technician certificate on a day release basis. His work is varied and interesting and consists of checking and maintaining the performance of complex electronic test equipment used to test and develop the Company's products.
If you have some experience of modern circuitry and fault finding. why not find out more about a job alongside David? If you have C \& G or ONC so much the better. There are also opportunities for people with experience in computers for our Automatic Test Department. We can offer good salaries and all the career opportunities that exist in a large Company together with generous removal expenses where necessary. The positions are based in Chelmsford, so why not clip the coupon and send it now to Gordon Short, Technical Recruitment Officer, Marconi Communication Systems Ltd.. New Street, Chelmsford, Essex. Telephone Chelmsford 53221 Ext. 592.

".../ consider that the ever increasing knowledge that lam acquiring is the basis of an interesting and rewarding career".

David Orves Age 22
Calibration Technician


# Electronic Technician 

Within our Group Engineering Department at St． Albans we have an increasing design and develop－ ment work load，due to the continuing modernisa－ tion of existing factory facilities together with a programme of expansion of our production capacity throughout the United Kingdom．
The post requires a man who can interpret the engineer＇s requirements to construct and test electronic inspection and control equipment．This may be in the form of bottle inspection machines or control panels for furnaces．A knowledge of good wiring practice for both electric and electronic currents is required．
The successful applicant will from time to time assist in installing equipment at Group factories throughout the U．K．The post will suit an electrical tradesman who has obtained ONC or similar qualifications in electronics．It would also be helpful to have working knowledge of small bore pipework
The appointment will involve some travel to our factory sites within the British Isles．The post offers excellent conditions，interesting work and opportunities for promotion within the Group．

Please apply in the first instance to ：－
Mr．A．Raine Howe，
Design and Development Engineer，
Research \＆Development Centre， Valley Road Industrial Estate， Porters Wood，St．Albans，Herts．

## MEN！ §70 p．w． can be yours

Jobs galcre！ 144,000 new computer personne needed by 1977．With our revolutionary，direct－from－ America，course，you train as a Computer Operator in only 4 weeks！ Pay prospects？$£ 3,500+$ p．a．
After training，our exclusive ap－ After training，our exclusive ap－
pointments bureau－one of the pointments bureau－one of the world＇s laders of its kind－intro－
duces you FREE to world－wide duces you FREE to world－wide
opporturyities．Write or＇phone opporturyities．Write or＇

## London Computer Operators Training Centre T60，Oxford House <br> 9－15 Oxford Street，W． 1 <br> Telephone 01－734 2874

## IMPERIAL COLLEGE ELECTRONICS TECHNICIAN

（grade 5）required for electronics workshop to work on the maintenance of electrical and electronic equipment．Digital ex－ and electronic equipment．Digital ex－ perience preferred with qualfications to at
least ONC standard． $9 \mathrm{a} . \mathrm{m}$ ．to $5.30 \mathrm{p.m}$ ． 5 － least ONC standard． 9 a．m．to 5.30 p．m． 5 －
day week．Four weeks＇holiday plus generous leave at Christmas and Easker．This is a contract appointment with good prospects continuation．Starting salary on sale $£ 2,182$ to $£ 2,557$ including London weighting．
Please apply to：
Mr．T．W．Dickinson
Physics Department
Imperial College，London，S．W． 7
Or ring 01－58951II，Extemsion 2336

## LADDERS

LADDER8．＂Special Offer＂unvarnished triples．9ft Tin closed－23ft lin extended． \＆18－90 delivered．HOME SHLES LADIDER CENTRE（PEE2），Haldane（North），Hales－ fleld（1），Telford，Shropshire．Tel． 0952 neld（1）

## EDUCATIONAL

## C AND G EXAM

Make oure You accomed with an ICS home atudy courte for C and O Electrical Installation Work and Teoh－ nicient．RedioTV／Electronics Techniclans．Tole－ comme Techncliene and Aadlo Amateure

## COLOUR TV SERVICING

Make the moet of the current boom＇Leern the fechniqued of eervicing Coiour and mono TV eete beading menufacturare．

## TECHNICAL TRAINING

Home etudy course In Electronle and Electricel Englneerlng，Maintenance，Radio．TV．Audio． colt－bulta redto the ing enf
Got the qualificatlons you need to woome．Fres detalie from：
Imernatlonal Correspondence Schoole， Dept．Toas，Intertext Houes，London Bl 4UJ．Or phone di－22 ati

## RECEIVERS AND COMPONENTS

## R．T．SERVICES <br> （MAIL ORDER ONLY） <br> 77 Hayfield Rd．，Salford 6，Lancs． <br> Yeroboard $4 \times 4 \frac{4}{4} 0.1$ Matrix， 4 for fl ． $12 \times 340.15$ Matrix，75p each． <br> Memory Array Panels．Full of Ferrite Rings．$f 1 \cdot 10$ inc．$P, P$ ． <br> FM Tuner with R．F．Stage and A．G．C．， 3 transistors，neg．earth， $2 \frac{1}{2} \times 2 \times 1 \frac{1}{2}$ in with circuit，\＆1－37，inc．P．P． <br> Crouzet Geared Motors， 30 or 60 r．p．m． New，fl－54 inc．P．P． <br> UHF TV Tuners．Transistorised，€1．65 inc．P．P． <br> Panels with I．C＇s on 7⿺𠃊⿳亠丷厂彡 order 10 I．C＇s． <br> Transformers． $7.5 \mathrm{~V}+7.5 \mathrm{~V} \frac{1}{4} \mathrm{~A}$ ， 88 p inc．P．P． Transformers． $12-0.12 \mathrm{~V}, 100 \mathrm{~mA}, 90 \mathrm{p}$ inc．P．P． $9-0-9 \mathrm{~V}$ ， $100 \mathrm{~mA}, 90 \mathrm{p}$ inc．P．P． $29 \mathrm{~V} 50 \mathrm{~mA}, 70 \mathrm{p}$ inc．P．P． Brand new Boxed Rola Celestion Re－ entrant SpeakersSD 25 with 100 V line trans－ former fitted $15 \Omega$ without transformer $€ 14$ inc．P．P． <br> Transformer．$\quad 45-0-45 \mathrm{~V}$ ，approx． 2 amp ， E2．50 inc．P．P． <br> P．C．Board．S／S， $5 \frac{1}{2} \times 5 \frac{1}{2}$ in， 10 for $70 p$ inc．P．P． Panel with 2 SN7490， 2 SN7441 counting circuit with end connector， $\mathbf{E 2} \mathbf{2 0}$ inc．P．P． Transistorised Timer．Variable delay， 110 Transistorised Timer．Variable delay， 110 or 250 V A．C．input．With instructions． or 250 V A．C．input．With instructions． Brand new， 62 inc．P．P．Size $3^{\prime \prime} \times 2^{\prime \prime} \times 2^{\prime \prime}$ ． Power Unit Components Transformer． 18 volt 1 amp F／W bridge rectifier， 21250 mfd capacitors，all new $\mathbf{E l} \cdot 25$ per kit．P．P． Electrolytic Capacitors， $4,000 \mathrm{MF}, 50 \mathrm{VW}$ ， $4 \frac{1}{2} \times 1 \frac{1}{4}^{\prime \prime} 75 p$ ．inc．P．P．

$$
\begin{aligned}
& \text { UNIT IN SAAAT ALI CASE } 11 \times 11 \times 4 \mathrm{n} \text {., contains }
\end{aligned}
$$

ponont．$(60 \rho)$ ，M．C．Megtis 3 meorted $\leq 3 \ln$ ．
10 on panel（e），i1－11，c．p．COPpen CLAD PAK．
E1．3．，e．p．： $11 \mathrm{t} \times$ gin．， 3 tor 11 ，c．p．： $15 \times$ gn．， 3 or
4 eillcon dlodes 650 V ItA plue revietora，eip．c．p．

> eseorted ermica caps. Sip; p11. 100 mesortiod polystyrene cenp, 75p; P13, 10 wlre ended neons. P22; 100 aesorted capacitort. Stp, poti 12p any number of Paks. Send 10p stempe for list of Velupake, computer panele, otc. Refund on purchees.RA A肂ORTED COMPONENTB, E1.75, c.p.
> 2LE FIASTB COMPMTEM PAMELS, $\mathbf{2 1} \cdot 75$, C.P
> H.E sECONDS COMPUTER PANELE, \&1.8.c.p.
> 2 Barniletd Crescent, sale, Cheshlre M31 4NL
> Postage In brackete
> Mall order only

RADIO \＆TELEVISION AERIAL BOOSTER\＆ \＆2．85，five television valves 45p．50p bargain transistor packs，bargain $\notin 1$ resistor and cap－ acitor packs，UHF－VHF televisions 87.50. Carr．$£ 1 \cdot 50$ ．S．A．E．for 3 leaflets．VELCO ELECTRONICS；Bridge St．，Ramsbottom， Bury，Lancs．

PRECISION POLYCARBOHATE GPACGTTORS
ALL EIGE BTADILTY－EXTRETELY LOW LEAEAGE

440 V AC $( \pm 10 \%)$		63V Range			
$0.1 \mu \mathrm{~F}$（ $11^{\prime \prime} \times 1^{\prime \prime}$ ）	60			$\pm$	。
$0.22 \mu \mathrm{~F}$（15－x ${ }^{-1}$ ）	59.	$0.47 \mu \mathrm{~F}$	56	480	
$0-25 \mu \mathrm{~F}$（1－×1－）	88	$1.0 \mu \mathrm{~F}$	86	80 p	
$0.47 \mu \mathrm{~F}\left(11^{\prime \prime} \times 1{ }^{\circ} \mathrm{C}\right.$	71）	$2 \cdot 2 \mu \mathrm{~F}$	80	65	
$0-5 \mu \mathrm{~F}$（11－$\times \mathrm{f}^{\prime \prime}$ ）	75p	$4.7 \mu \mathrm{~F}$	81.80	51.05	868
$0 \cdot 68 \mu \mathrm{~F}\left(2^{2} \times 5^{2}\right)$	800	$6 \cdot 8 \mu \mathrm{~F}$	81.64	11.0	11.09
$1.0 \mu \mathrm{~F} \quad\left(2^{*} \times 8^{*}\right)$	919	$10-0 \mu \mathrm{~F}$	88.00	11.60	21．40
$2 \cdot 0 \mu \mathrm{~F}$（ $2^{*} \times 1^{\prime \prime}$ ）	11－8	$15.0 \mu \mathrm{~F}$	18．78	88.15	11．90

TAFTALDM DEAD CAFACFORA－Value available： $0.1,0.22,0.47,1 \cdot 0,2 \cdot 2,4 \cdot 7,6.8 \mu \mathrm{~F}$ at $15 \mathrm{~V} / 25 \mathrm{~V}$ or 35 V $33-0 \mu \mathrm{~F}$ at 6 V or $10 \mathrm{~V} ; 47.0 \mu \mathrm{~F}$ 解 3 V or $6 \mathrm{~V} ; 100.0 \mu \mathrm{Fat} 3 \mathrm{~V}$ ． ALL at 10 p each． 10 for $95 \mathrm{p}, 60$ for t 4 ．

 \begin{tabular}{ll|l|ll}
BC107／8／0 \& BP \& BC184／184L \& $18 p$ \& BFY <br>
BC11 \& $18 p$ \& BC212／212L \& 14 \& BFY <br>
BC1

 

BC114 \& $12 p$ \& BC212／212L \& 18 \& BFY <br>
BC1478／8 \& 10 F \& BC647／588A \& 18p \& AF178

 

BC153／7／8 18f \& BF194 \& 18p \& OC71
\end{tabular} BC182／182L 11 POPULAE DIODE－1N9146， 8 for 45p， 18 for 90p

 81；IN4148 $6 p$ ， 6 for $87 \mathrm{p}, 12$ for $4 \mathrm{P} p$ ；IN4001 5 p ；IN4002 8p IN4003 81p；IN 4004 7p；IN400S 71p；IN 4006 8p； IN 4007 If
LOW PRICE ZENRE DIODR -400 mW Tol．$\pm 5 \%$ at 5 mA ．Valuea svailable： $3 \mathrm{~V},{ }^{3.6 \mathrm{~V}} .4 .7 \mathrm{~V}, 5.1 \mathrm{~V}, 5.6 \mathrm{~V}$ ， $13.6 \mathrm{~V}, 15 \mathrm{~V}, 10 \mathrm{~V}, 18 \mathrm{~V}, 20 \mathrm{~V}, 22 \mathrm{~V}, 24 \mathrm{~V}, 27 \mathrm{~V}, 30 \mathrm{~V}$ 70 each 6 tor sig 14 tor 840 ．APECIAL OFF＇ER： 100 78 each， 6 for
Zeners for
钆－
REFITTORS－High atability，low nolee carbon flim $5 \%$ IW at $40^{\circ} \mathrm{C}$ ，iW at $70^{\circ} \mathrm{C}$ ．E 12 serles only－from 2.20 to $2 \cdot 2 \mathrm{Mn}$ ．ALL at 1 ld each，Bp for 10 of any one value， 70 for 100 of any one value．SPECIAL PACK： 10 of each value 2.20 to 2.2 Ma （ 730 residoto） 36 ．
Enlicon PLAETIC RECTLFIER－ 1.5 amp，brand new wire ended D027： 100 P．I．V． 7 P（ 4 for 28 p ）； 400 P．I．V． 8 tor
BRIDG：ACOTIFIPRS－2\} amp: $200 \mathrm{~V} 40 \mathrm{~F} ; 350 \mathrm{~V} 45 \mathrm{p}$
UOBMILATURE VERTCAL PREIETA－0．1W only： ALL at speach： $500,1000,2200,4700,6800$ ，1k0
 100kn，1M0．
PLEAEE ADD 10p POST AND PACKING ON ALL ORDERS BELOW \＆5，ALL EXPORT ORDERE ADD COST OF BEA／AIRMAIL
Gen PLEAgE ADD $10 \%$ V．A．T．TO ORDERS
Send 8．A．E．for liata of additional ex－stock items．
Wholesale price lists avallable to bona fide companles

## MARCOTRADING

## Dopt．E．8．8，The Maltingi，Itetion Road． Won，Bhropihire

Tel．：Nantwlch（Cheshife）63291（8TD 0270） （Proprs．：Minicost Trading Itd．）

## I5 WATT AUDIO AMP I．C．＇s

The BHA0002， 42.45 each． 44 pair with heat sink bracket and circuit information WO4． 1 A .400 V bridge recs． BCIO7．108， 109

ALL FULL SPEC，DEVICES
JACK PLUGS $t^{\prime \prime}$ mono
12p OR SOCKET $1^{\prime \prime}$ stereo
3.5 mm
3 \＆ 5 PIN DIN $180^{\circ}$ plugs 3 － 5 PIN DIN $180^{\circ}$ sockets PHONO PLUGS
DOUBLE
V．A．T．inclusive．$\quad 15 \mathrm{p}$ P．\＆P．under $£ 2$ ．
C．T．S．， 20 Chatham Street Ramsgate，Kent CTII 7PP


5 N－CHANNEL FETs．Type 3819E（2N3819） for $\$ 1$（inc．VAT）．Full spec．transistors com－ plete with circuit details for building volt－ meter，timer，ohmmeter，etc．For complete list of FETs and other transistors available send 10p P．O．REDHAWK SALES LTD．， 45 Station Road，Gerrards Cross，Bucks．Mail Order Only：

TURN YOUR SURPLU8 capacitors，transistors， etc．，into cash．Contact COLES－HARDING \＆CO．，P．O．Box 5，Frome，Somerset． Immediate cash settlement．

BRAND NEW COMPONENTS by return． Electrolytics $16 \mathrm{~V}, 25 \mathrm{~V}, 50 \mathrm{~V}-0 \cdot 4 \mathrm{i}, 1,2 \cdot 2,4 \cdot \bar{i}$ 10Mt，4p，29， $17,412(50 V, 8 p): 100,510$ （ $50 \mathrm{~V}, 7 \mathrm{y}$ ）；220， 8 p （ $50 \mathrm{~V}, \mathrm{O}_{\mathrm{p}}$ ）．Nubminiature bead－type tantalums $0.1 / 35 \mathrm{~F}, 0 \cdot 2 \cdot 2 / 35 \mathrm{~V}, 0.4 \overline{1} /$ $35 \mathrm{~V}, 1 / 35 \mathrm{~V}, 2 \cdot 2 / 35 \mathrm{~V}, 4 \cdot 7 / 35 \mathrm{~V}, 10 / 16 \mathrm{~V}, 2.2 / 10 \mathrm{~V}$, $47 / 6 \mathrm{~V}, 100 / 3 \mathrm{~V}, \mathrm{sp}$ ．Mylar Film $100 \mathrm{~V}, 0.001$ ， $0.002,0.005,0.01,0.02,215 ; 0.04,0.05,35$. polystryrene 6：3 E12 series $10 \mathrm{pt},-1000 \mathrm{p}$ F， 2p； $1,200 \mathrm{pF},-10,000 \mathrm{pF}$ ．，3p．Miniature High－
 $1 \mathrm{~W}, 10 \Omega-2 \cdot 2 \mathrm{M} \Omega$ and $1 \mathrm{~W}, 27 \Omega-10 \mathrm{M} \Omega$ all 1 P each．Postage 8p．The C．R．SUPPIV CO． 127 Chesterficld Rd．，Sheffield，ss 0RX

HEW AND QUARAMTEED AC 127，AC $12 x$ ， AC 188 ， 11 each inclusive VAT．C．N．O． plus 1 ＇．\＆P．10p to S．R．INTERNATIONAL， 25 Clovelly Avenue，London，＊w 96 DT ．

ALL I．C＇s．，SEMICONDUCTORE，Components and Hardware at discount prices，post free，for constructional projects．Kits assembled and repaired．S．A．F．enquiries for prompt quota－ tion．POWFL， 25 Bowes Road，Walton， Surrey．

## BOOK8 AND PUBLIGATION8

ELEOTRONIC ENGIMEERS AND TEOHMI－ OlANE．You are worth more than a measly $£ 40$ or $£ 50$ a week．Much more，and you do not need to be highly qualified to get it．In the last year I earned $£ 3,600$ for a total of six months work．The other six months I had off．There＇s no selling involved，just general electronic and electrical engineering．I＇ve written a book telling how I started and how you too could be doing the same as I am．It＇s 46 p including $P$ ．and $P$ ．Not a very high price to pay when you consider it could be the turning point in your career．Send to D．G． JAMES， 13 Mill Lane，Acle，Norwich，NOR 60 Z ．

## miscellaneous

## fibre optic suppliers

NEW LENSES OPTIKIT LS 5 convex lenses for photoelectric dovices，deteccor beams，tachometers，sensors，of each $45 / 50 \mathrm{~mm}$ ， 22.20. ． miniature（ 2 mm ）red LED；MLED500 TO－92 PC mounting red LED；MLED92 TO－92 infra－ red emitter： 2 N5777 high sensitivity silicon photo－darlington amplifer．Responge Time 200
OCP5 ， $25 V$
MRDISO phototransistor．Fast response $3 \mu \mathrm{~S}, 40 \mathrm{~V}$ maxilicon MV54 MLEDS00
MLED92
2N5777
MRDIS0

ULTRASONIC GP TRANSDUCEIGE14． remote control 40kHz Tx／Rx pair c3．8s．
CInCULAR POLARIS告NS for flare reduc－ tion anhance contrast ratio from LED display， nixies，scope．HRCP red，HACP24 amber， $50 \mathrm{~mm} 66 \mathrm{p} ; 75 \mathrm{~mm} \times 75 \mathrm{~mm}$ © $1.21 ; 150 \mathrm{~mm} \times$ 150 mm 44.40 ．
CROFON 161064 strand plastic light conduit， bundle dis． 1.8 mm, O．D． 3.3 mm ．Im 11.32 ； 5 m ES．50i 10 m El0．45i 25 m 22． easy lighe circuitry，displays，ffects．Dismeter 0.5 mm FP20； $1.0 \mathrm{~mm}-F P 40 ; 1.5 \mathrm{~mm}-F P 60$ ．

 OPTIKIT 103：Experimenter Pack，${ }^{2}$ motres
Crofon $1610+5 \mathrm{~m}$ each FP20，FP40，FP60－ 4．84．
MARE＇S TAILS：Decorative effects．7，000 fibres in 18 mm O．D．ferrule．Professionally finished． 22 in dismater in use．Add lamp， stand，cover to make Fibre Optic Lamp．Eye catching in boardroom，hall or foyer
Nill prices include p，$p$, VAT and d
All prices include p．\＆P．VAT and data．Send
FIBRE OPTIC SUPPLIERS（Dept．PE）．
P．O．Box 702，London WIO 652

PSYCHEDELICATESSEN
is the only way to describe the paradine of FREAKY gear now available from Boffin． LOOK！

Kits
NO LICENCE EXAM．Transmitter／
Receivar
Variable－rate，BRIGHT－FLASH．Pockes
Mini－Strobe
4.4 Mini－Strobe

Ready－Made Modules
Maxi－Yole SPARK GENERATOR（ 1 inch
spark）， 15,000 Volts．
Experimental Mini Dreamelab－
SENSITIVE non－anatomical electronic
STETHOSCOPE
Electronic＇VOICE．THROWER＇
GHOST－HUNTING AID
PEOPLE DETECTOR
EXperimental WATER－FONE
Experimental WATER－FONE
PSYCHEDELIC MEDITATION AID
Bird－Watchers＇REMOTE MONITOR Psycholosical CROSSEYED EARS Psycholosical CROSSE
Super SOUND．CATCHER C2．20 $\begin{array}{ll}\text { Super SOUND．CATCHER } & \mathbf{~} 4.40 \\ & \mathbf{2} 20\end{array}$ （All prices include VAT，packing \＆postage） Send remittance to：
EOPFIN PROJECTS
4 Cunilffa Road，Stonelaigh Ewell．Surrey
（Mail order U．K．only）
Or for mors details，send $20_{p}$ for lists，plus free design project sheet

## MORE RANGES FOR LESS MONEY！

AC／DC Multimeter type U4324
A－DC $0.08-3 A-6$ Rangea
A－AC 0．3－3A－5 Rangea．
$V-0 C 0.6-1200 \mathrm{~V}-9$ Ranges
V －AC 3－900 V －a Rangee． Froquency in the range of 45 to
20 kHz Resletance： 800 ohm 20 kMz Rasletance： 800 ohm to
5 Mohm－ 5 ranges．Declbal：-10 5 Mohmes ranges．Declbol：-10
to +12 dB ．Accuracy：$\pm 2.5 \%$ DC
$+4 \%$ AC．Dimenetone： $187 \times 80$ $\times 83 \mathrm{~mm}$ ．Only 88.00

SUPERTESTER 680 R ICE
 a lot of accestories Plus measuraments of $500 \mathrm{~A}-\mathrm{AC}$ 100
-50 C
to $\mathrm{NC}-200 \mathrm{C}$－Maparatic fields up to 15 KGnuse－
Phase indicator－EHT 25 kV Electronlc Volt Onm－meter Tranaistor Diode Tester．etc
 300 grams 20kOhmiV Accuracy
$10 \%$ DC．Ask for free catalogue
accessories Extra

ALPHANUMERIC NIXIE TUBES B7971 The Alphanumeric
NXIE tube has the abillty to disptay all the letters of the alphabet．
numerals 0 thrus numerals 0 thru 9
and
special and special charac
single From the stand－
aingle point of both read－ ability and elac－ trical characteris．
 tics．the Alph． numerie NIXIE Tube provides many unique benefits including $\star$ Ail d o operation $\star$ Unitorm．Continuous
line characters of equal height $\star$ Memory with simple line characters of equat height Memory with simple
solid stete drive cirsuits $\&$ headability in high amblent light ．． 200 footlamberts brightness＊Long life with no loss of brightness＊Character height $2+\mathrm{in}$
Price only $99 p$＇each plus $16 p$ P．ip．
Add $10 \%$ VAT to sill items－35p PaP
ELECTRONIC BROKERS LTD
49－53 Pancras Foad．London NWI 208 Tel $837 \quad 781$

Build the Mullard C．C．T．V．Camera
Kits are now available with compre－
hensive construction manual（also available separately at $76 \frac{1}{2} \mathrm{p}$ ）
SEND 5＂ $7^{\prime \prime}$ S．A．E．FOR DETAILS TO： CROFTON ELECTRONICS 15／17 Cambridge Road，Kingston－ on－Thames，Surrey

ENAMELLED COPPER WIRE

S.W.G.	lib Reel	If Reel
10-14	$\leqslant 1.90$	\$1.05
15-19	42.00	$\leqslant 1.10$
20-24	42.05	¢1.15
25-29	62.10	¢1.20
30-34	12.20	E1.28
35-40	62.35	¢1.35

IND USTRIAL SUPPLIES
02 Parrawood Rd., Withington, Manchester 20 Telephone 061-224 3553

## SINTEL <br>  <br> 45 <br> To <br>    Croes Alarm/Catondar clock ic it $18.50+$ VAT $=\mathbf{~} 11.15$ No P.A. P. Charge-deta eupplied with device Sond 20p. stamps if you like, for full date and ou irculte on all of above. or at 4 ptamp for our product ilit. 10 SINTEL, SS ASTON STAEET, OXFORD

HARDWARE SUPPLIE8-Sheet aluminium individual sizes or standard packs, drilled to spec. Screws, nuts, washers, etc., Fascia panels in aluminium individual requirements. Printed circuit boards, one-off or small runs. Printed circuit drafting tapes, etc., $7 p$ for list Printed circuit draiting tapes, etc., ${ }^{\text {PR }}$ for list. RAMAR CONSTRUCTOR SERVICES, 28
Shelbourne
Road,
Stratford-on-Avon Shelbourne
Warwks., CV37
QJP.

LOW COBT I.C. MOUNTINA. Lengths of 100 I.C. pin sockets, $0^{0}$ (P. \& P. 5p). Quantity rates. S.A.E. for details and sample. L.E.D. (MLED500), 20 p each (post paid). P.K.(. ELECTRONICS, "Oak Lodge", Tansley, Derbyshire.

CLEARINQ LABORATORY, Bcopes, V.T.V.M's, V.O.M's, H.S. recorders, transcription turntables, electronic testmeters, calibration units, P.S.U.'s, pulse generators, D.C. nullpotentiometers, bridges, spectrum analysers, voltage regulators, aig-gens, MC relays, components, ctc. Lower Beeding 236.

METER REPAIRS. Ammeters, voltmeters, multi-range meters, etc. Send to: METER REPAIRS, 39 Chesholm Road, London, N16 0DS.

3LOW APEED MOTORs required (about 1 r.p.m.) any quantity consldered. Phone Mr. SMITH, any quantity
$061-6333527$.

ZM414, 61. All in price. New unused. IgLAN D DEVICES, P.O. Box 11, Margate, Kent, CT9 1QX.

PRINTED CIRCUIT MANUFACTURERS offer any P.E. Project Print ready drilled, One Price 65p. C.W.O. Any P.C. work undertaken. For estimate by return post, send basic circuit, print design or print master. State quantity required. Print design, art work, photography undertaken. Orders, estimates, write or phone: W.K.F. ELECTRONICS, Dept. P.C., Welbeck Street, Whitwell, Nr. Worksop, Notts., 880 4TW, Tel, Whitwell (Derbys.) 6958.

## PUBLISHER'S

 ANNOUNCEMENTDue to production difficulties existing at the time this issue went to press, we strongly advise readers to check with advertisers the prices shown, and availability of goods, before purchasing




## SWANLEY IC TOMORROW $\quad$ I1.80 (40p)

 The world's most powertul IC amplifier. Similiar to IC12 but rated at 10 W r.m. s power. Supplied with data
## DE LUXE KIT FOR THE IC12

Includes all parts for the printed circult and volume. bass and treble controls needed to complete the mono vertion. ©1-60 (27p). Stereo model with balance control. $£ 3.00$ (48p).
IC12 POWER KIT
Supplies 28V 0.5A, $22 \cdot 67$ (50p) LOUDSPEAKERS FOR THE IC12 5 in 8 ohm, $\mathbf{E 1} \cdot 10$ (27p). $5 \mathrm{in} \times 8 \mathrm{in} 8$ ohm. $\mathbf{~} 1.55$ (37p). PREAMP KITS FOR THE IC12
Type 1 for magnetic plckups, mics and tuners. Mono model. I1-35 (25p). Stareo model, $52 \cdot 40$ (36p). Type 2 for ceramic or crystal pickups Mono. SSp (18p). Stereo. E1-30 (25p)
SEND S.A.E. FOR FREE LEAFLET ON KITS

EATTERY ELIMINATOR BARGAIN
The moat veraatile battery ellminator ever offered
 type. (2.25 (40p); DOUBl
$6 \mathrm{~V}+6 \mathrm{~V} .52 \cdot 50(45 \mathrm{p})$ $6 \mathrm{~V}+6 \mathrm{~V} .52 \cdot 50(45 \mathrm{p})$
$9 \mathrm{~V}+92 \cdot 50(45 \mathrm{p})$

S-DECS AND T-DECS
$\begin{array}{ll}S-D E C & \text { c1-94 (31p) } \\ \text { T-DEC } & \text { c3.63 (47p) }\end{array}$ u-DEC A \&3.92 (51p)
 IC carriers 16 dll-plain,
81p (15p), with socket, $51-77$ 81p (15p). With sockei. 7 .
(25p). 10 TO5-plain. 7 p (25p). 10 TO5-plain. 14p

(24p)


## SWANLEY ELECTRONICS

P.O. Box 68, Swanley, Kent BRa 8 TO Piesse add the sum shown in brackets after the price to cover the cost of posi and VAT Otficial credit orders from schools. etc. welcome. No VAT charged on overseas orders

## BUILD A CHORDING PROFESSIONAL SYNTHESISER



The Synthesiser shown above is the Dewtron "Apollo' A.1. which we sell ready-built to professionals. Believe it or not, it uses the SAME precision modules as we sell to you, the Constructor, to build any kind you like. The revolutionary Modumatrix system of routing makes old-fashioned patching a thing of the past. VCO-2 voltage-controlled oscillator module has accurate built-in log-law for chording and other professional effects. 3 and 4 octave keyboards and contacts. VCO-2 STABLE, PRECISION V/C OSCILLATOR gives SINE, TRIANGULAR AND SQUAREWAVE outputs, 1 volt/ octave voltage control. £24 each or $£ 27$ each 2 or more matched. SHE-1 SAMPLE, HOLD AND ENVELOPE MODULE gives variable attack, sustain, touch sensitive playing when used with VCO-2 signals, £17. OFT-1 chording module £9. Modules (except VCO-1) guaranteed iwo years.
using

## PROFESSIONAL MODULES

Latest additions include pitch-TO-yoltage and SEQUENCER MODULES! AND MANY OTHERS.
CASH SAVINGS
by buying modules and parts in bulk!
All modules are available separately
Ring Modulator RM2, £8. Voltage-controlled Oscillator VC01, £10.50, giving sawtooth and squarewave outputs. Envelope shapers, ES1, selftriggered or ES2 keyboard-triggered, either type £13. White noise type WN1, £7. Voltage-controlled amplifier VCA1, £10. Voltage-controlled selective amplifier (filter for waa-waa, etc.) SA1, £13. Voltage-controlled Phase PH1, £17. Automatic Announcement Fader module for fading of music by microphone announcement, AF1, £10. etc., etc. ALL MODULES ARE BUILT, TESTED AND SEALED FOR LONG LIFE. Simply connect coloured wire connections as per easy instructions, build cabinet and wire in controls and patchboard connections! Joystick controls £5.50. REVERB Module and spring unit £15. V.A.T. $10 \%$ extra. V.A.T. paid orders over $£ 75$.

With over 10 years' unblemished reputation in these pages, Dewtron continues to lead in new technical developments in electronic sound effects! Ask any of our customers. See our products in the music stores, too. Suppliers of special equipment to leading groups. Our modules are used in professional equipment by other manufacturers and in our own built synthesisers, e.g. "Gipsy'" G.l. Send 15 p for full catalogue of our fimous musical effects.

## OSMABET LTD

We make tranaformer amonget other things.
AUTO TRANSFORMERS, 110/200/220/240V 30 W . $£ 1.70 ; 50 \mathrm{~W}, ~ £ 2.40 ; 75 \mathrm{~W}, ~ £ 2.85$; $100 \mathrm{~W}, ~ 88.80$ $600 \mathrm{~W}, \mathrm{fl0} 80$; $750 \mathrm{~W}, \mathrm{£14} \cdot 25$; $1000 \mathrm{~W}, £ 18 \cdot 00$, etc LOW VOLTAGE TRANGFORMERS
Prim. 200/240V a.c. $6 \cdot 3 \mathrm{~V} 1 \cdot 5 \mathrm{~A}$, $51 \cdot 20$; 3A. 81.50 ; $6 \mathrm{~A}, 22 \cdot 55 ; 12 \mathrm{~V} 1 \cdot 5 \mathrm{~A}, 21 \cdot 50 ; 3 \mathrm{~A}, 22-55 ; 6 \mathrm{ACT}, 28.40$ : 18 V 1.6 A CT, 22.55 ; 24 V 1.5A CT, $£ 2.55$; 3A CT 88.45; $6 \mathrm{~A}, 24.80 ; 8 \mathrm{~A}, £ 7.85 ; 12 \mathrm{~A}, 210.85 ; 40 \mathrm{~V} 3 \mathrm{~A}$ CT, $24 \cdot 50$, $6 \mathrm{~A} \mathrm{CT}, \mathrm{f} 18 \cdot 50 ; 25 \mathrm{~V} 2 \mathrm{~A}+25 \mathrm{~V} 2 \mathrm{~A}$, LT TRA 12 4A 12 V 4A. $£ 4.90$.
LITANSFORMERS TAPPED SEC. Prim. 200/840V $0-10-12-14-16-18 \mathrm{~V}$ 2A, £2.60; 4A, e8.75; $0-12-15-20-24-30 \mathrm{~V} \quad 2 \mathrm{~A}, \quad 53.40 ; \quad 4 \mathrm{~A}, \quad 24.60$; $0-5-20-30-40-60 \mathrm{~V} 1 \mathrm{~A}, \quad £ 3 \cdot 40 ;{ }^{2 \mathrm{~A}}$, 24.50 ; 0-40-50-60-80-90-100-110V 1A, £4.80.
MIDGET RECTIFIER TRANSFORMERS: $12-0-12 \mathrm{~V}$ For FWV rect. 200/240V a.c. 9-0-9V 0.3A; 12-0-12V $0.25 \mathrm{~A}: 20-0-20 \mathrm{~V}$
$0.35 \mathrm{~A}+9 \mathrm{~V} 0.35 \mathrm{~A}: 12 \mathrm{~V} 0.25 \mathrm{~A}+12 \mathrm{~V} 0.25 \mathrm{~A}$ or $20 \mathrm{~V} 0.15 \mathrm{~A}+12 \mathrm{~V} 0.15 \mathrm{~A}$ at 81.65 each; $9-0-9 \mathrm{~V} 1 \mathrm{~A}$, 81.35: 12-0-12V 1 A or $20-0-20 \mathrm{~V} 0 \cdot 75 \mathrm{~A} \mathrm{E1} \cdot 50$ each. MAINS TRANSFORMERS
Prim. 200/240V a.c. TX6 нес., $425-0-425500 \mathrm{Ma}$, 6.3 V CT $6 \mathrm{~A}, 6.3 \mathrm{~V}$ CT $9 \mathrm{~A}, 0-56.3 \mathrm{~V} 3 \mathrm{~A}, ~ 216 \cdot 50$; TX1425-0-425v $250 \mathrm{Ma}, 6 \cdot 3 \mathrm{~V}$ CT $4 \mathrm{~A}, 6.3 \mathrm{y}^{\circ} \mathrm{CT} 4 \mathrm{~A}$, $0-5 \sim 6.3 \mathrm{~V}$ 3A, 89.75 ; MT3 Prim. 0-1 $10-240 \mathrm{~V}$ sec. $250 \mathrm{~V} 100 \mathrm{Ma}, 6.3 \mathrm{~V} 2 \mathrm{~A}, \mathrm{E} / \mathrm{B}, \mathbf{2} 2.70$
O/P TRANSFORMERS FOR POWER AMPLIFLER P.P. sec, tapped $3-8-150 \mathrm{hms}, \mathrm{A}-\mathrm{A} 8.6 \mathrm{~K} \Omega 30 \mathrm{~W}$, etc. 70 ; A 15.75 ; tapped Mult $\mathrm{O} / \mathrm{P}$ 10W W 3.
G.E.C. MANUAL OF POWER AMPLIFIERS

Covering valve anpliflerg of 3eW to 400W 85p LOUDSPEAKERS FOR AMPLIFIERS BAKER 25 W , $87.60 ; 35 \mathrm{~W}$, $£ 8.40$; HI-FI M8jor Module 20 W w/tweeter Xover, $811 \cdot 80$; Bakerspeaker lista; FANE 50W, $810.60 ; 60 \mathrm{~W}$, 818.50 ; HI-FI apeakers, EMI bars $13 \times 8$ in 3 or $15 \Omega, 22 \cdot 00 ; 5 \ln 8$ a $81 \cdot 15 ; 7 \times \operatorname{tin} 15 \Omega, 21 \cdot 60 ; 8 \times 5 \operatorname{in} 3,8,15,25$ or $80 \Omega$ 1.76 each.

OUDAPEAKERS
$2 \operatorname{tin} 8,16$ or $75 \Omega$, 2 in 8 or $25 \Omega$, 3 in $3,8,25$ or $35 \Omega, 3 \frac{1}{2}$ in 8, 15 or 80 Q g0p each; 5 in 3, 8 or $25 \Omega$, $6 \times 3$ in 3 or $8 \Omega, £ 1.05 ; 7 \times 4 \operatorname{in} 3$ or $15 \Omega, 6 \neq \ln 3 \Omega$, $21.25 ; 10 \times 6 \mathrm{in} 3 \Omega, £ 1.50$
8PEAKER MATCEING TRANSFORMERS 12W 3 to 8 or $15 \Omega$ up or down $£ 1-30$.
"INSTANT" BULK TAPE/CASSETTE ERASER Instant erasure, any diameter tape spoola, cassettes. demagnetises tape heads. $200 / 240 \mathrm{~V}$ a.c. $88 \cdot 25$. SYNCERONOUS GEARED MOTORS, $230 / 240 \mathrm{~V}$. Brand ne
$75 p$ each.

Carrizge and VAT on all orders
B.A.E. ENQUIRIES-LISTS, MAIL ORDER ONLY 46 Kenilworth Road, Edgware, Middx. HA8 BYG Tel. 01-958 9814

## RADIO AMATEUR'S HANDBOOK 1974

by THE A.R.R.L.
Price $\mathbf{E 2 . 9 5}$

TEST EQUIPMENT FOR THERADIO AMATEUR by H.L. Gibson. Price $\mathbb{E 2}$. IIO INTEGRATED CIRCUIT PROJECTS FOR THE HOME CON. STRUCTOR by R. M. Marston. Price 61.30.
$H O W$

HOW TO FIX TRANSISTOR RADIOS AND PRINTED CIRCUITS by Leonard C. Lane. Price $£ 1-70$. RAPID SERVICING OF TRANSISTOR RAPID SERVICINGOF GUPMENT by Gordon J. King. Price EQUIPMENT by Gordon J. King. Price TELEVISION ENGINEERS' POCKET BOOK by P. J. McGoldrick. Price E2.65. HOW TO USE INTEGRATED CIR. CUIT LOGIC ELEMENTS by Jack $W$. Streater. Price $£ 1.40$
WORLD RADIO AND T.V. HAND. BOOK 1974 by J. M. Frost. Price $\mathbf{3} \mathbf{3} \mathbf{2 0}$. THE MAZDA BOOK OF PAL THE MAZDA BOOK OF PAL RECEIVE
Price 14.
Price $\mathrm{EA}^{2}$.
ELECTRO
GUIDE ONIC ORGAN SERVICING

* ALL PRICES INCLUDE POSTAGE *


## THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST
of British and American Technical Books
19-2I PRAED STREET LONDON W2 INP

Phone 01.7234185
Closed Saturday I p.m
 Certificate course includes a learn while you build

## 3 transistor radio kit.

Everything you need to know about Radio $\boldsymbol{\&}$ Electronics maintenance and repairs for a spare time income and a career for a better future.


HIGHER PAY A BETTERJOB

## SECURITY

## find out how in just 2 minutes

That's how long it will take you to fill in the coupon. Mail it to B.I.E.T. and we'll send you full details and a free book. B.I.E.T. has successfully trained thousands of men at home - equipped them for higher pay and better, more interesting jobs. We can do as much for YOU. A low-cost B.I.E.T. home study course gets results fast - makes learning easier and something to look forward to. There are no books to buy and you can pay-as-you-learn.
Why not do the thing that reall- interests yon? Without lesing a day's pay, yout could quietly turn rourself mon something of an expert. Complete the coupon for write if you prefer not to cut the page). Noonligation and nobody will call on you . . . but it could be the best thing you ever did.

## Others have done it, so can you

"Sesterday I reweived a better from the latitution informing that me application fow A-socrate Memberhip had beco approwed. I can homently bay that the ha been the beet value for money I have exer obtained.- it view erhoed by two colleagues who recently commenced the conme". Student 13.1.B., Yorks,

"An traning with li.I.l.T. quikk ehanged me earnime capacite and, in the nest fow year. mu faringe incrater! fompold". -Student (С.1², Buルー

## FIND OUT FOR YOURSELF

These letters - and there are many more on file at . Ndermaston Court - speak of the rewards that come to the man who has given himself the specialised know-how employers seek. There's no surer way of getting ahead or of opening up new opportunities for yourself. It will cost you a stamp to find cut how we can help yout. Write to B.I.E.T. Dept. BPE:01. Aldermaston Court, Reading RG74PF.

## MECHANICAL <br> Society of Engineers <br> A.M.S.E. M Institute of Encineers \& <br> Technicians <br> CITY \& GUILDS <br> Gen. Mech. Eng. <br> Weiding <br> Welding <br> Gen. Diesel Eng. Sheet Metal Wo <br> Eng.Inspection Eng. Metallurgy ELECTRICAL \& ELECIRONIC Society of <br> Fingineers- <br> CITY \& GULLDS Gen. Electrical <br> Engineering <br> Electrical <br> Installations <br> Coctrical <br> Electronics <br> Electronic Eng. <br> Practical Radio \& Electronjes <br> (wath kit) <br> MANAGEMENT <br> PRODUCTION <br> \& Management Acctnts. <br> Computer Works M'ment. Work study <br> Eng. <br> Planning <br> Storekeeping <br> Management <br> Skulls Quality Control <br> A.B.T. Clerk of <br> Construction <br> SurveyorsInsti- <br> tute-L.C.S.I. <br> CITY \& GUllids General Building (ail branches! andranches Heating \& Vent Heating \& ven Inst. Clerk of Works SiteSurveying Health Engineering Road Load ConstrucQuantities. Estimates Hydraulies Structural Eng <br> GENERAL <br> Agricultural Eng. <br> Councli of Eng Institutions Institutions Plastics <br> Supplementary courses for Nat Courses for <br> G.C.E. <br> - choose from 58 '0' \& 'A' level subjects. <br> couching for many exams.including <br> POST TODAY FOR A BETTER TOMORROW

To B.I.E.T., Dept. RPEOI.
QN
Aldermaston Court, Reading RG7 4PF
BPEOI.
NAME
Block Capitals Please
ADDRESS

OTHER SUBJECTS BUY NOW AT BARGAIN PRICES Hi Fi and Transistors - Up to date Brochures an request

## You pay less

 Yal with Henry'sLow Prices

## Now built and

 used by thousand of satisfied cus FEATURES slim design, overall size in 6.IC's, 10 transistors, stabilisers Gardeners fow field transformer. Fibr Glass PC Panel, complete chassis work Now available built and tested as well as in kit form.HIGH QUALITY \& STABILITY ARE TEX S ENGINEERS FOR PERFVELOPED RELIABILITY AND EASE OF CONSTRE, BY FACILITIES. On loff switch indicator headphon.


BUILD THE treble bass volume and bala controls scratch and rumble filters, mono/stereo switch, input selector.
Mag. P.U., Radio Tuner, Aux. Can be altered for Mic, Tape, Tape-head, etc
Constructional details Ref. No. 21. 30p
EREE Teak cabinel with comp

KIT   PRICE
buill and   tested

EARN YOURSELF EASY MONEY, WITH
PORTABLE
DISCO


EQUPPMENT
DISCO MINI: A complete portable disc fitted mixer/preamp, 2 decks all facilities As above but with Slider Controls SDLSt 100 :
SDLS100: 100 watt mixer/amplifier with R50: 50 wats
R100 100 matixer/amplifier
DISCO AMP: 100 watt mixer/amplifier
40040 watt mixer amp
80080 watt mixer rmp
DISCO MIXER/PREAMPLIFIERS (O P for up to 6-100 watt amplifiers): SDLII (slider controls)
DISCOVOX (slider controls) : The com plete disco preamp.
DJ 100: 100 watt power amplifier for above DJ30L Mk II 3 channel 3 kW sound to light DJ DISCLITE. As $30 \mathrm{~L} / 11+$ Variable speed flashes
riable speed
Carlsbro Reverteration Unit Disco anti-feedback microphone
Colt 150 watt liquid wheel projecto 50 watt QI liquid wheel projector Soare Effects assette wheel projector Spare Effects and Liquid cassettes, large range of patterns
in liquid wheels $\mathbf{6 5 . 0 0}$ Various C.asseries
Mini spot bank fitted 3 lamps
Auto Trilite (mini with flashers) ... $\mathbb{C 1 7 . 0 0}$ MIXERS/MICS/SPEAKERS/LIGHTING 698.50
618.50
649.50 $\mathbf{4 9 . 5 0}$
669.00 69.50
67.50 $\mathbf{£} 7 \mathbf{5} .00$
37. 50
645.00
649.50
658.50
672.00
672.00
649.50 641.25
645.50

## EXCLUSIVE DECCA KELLY SPEAKERS

12 watt speaker Tweeter
 systems. 8in Bass/Midrobe
and Melinex Domed HF radiator plus crossover $\mathbb{C} 12.50$ per pair of systems (carr/packg. 40p) or built into veneered cabiners, size $18 \times 12 \times 6 \frac{1}{2}$. € 19.50 pair (carr. E )

HI-FI TAPE EQUIPMENT U.K.'s largest range with discounts and

callers. Latest srock lists on request (Rer. No. 17).
Phone 01-402 4736 for Barclay/Access Card, Direct orders and latest prices.

## TRANSISTORS

SEMICONDUCTORS
U.K.'s largest range for every application, Small quantity discounts. enquiries invited. Latest stock list (Ref. No. 36). Including valves on request.

## ELECTRONICS SUPPLIES

Specialists in electronics for more than 30 years. Trade and industry supplies - every type of component

## SINCLAIR PROJECT 80

## 

Stereo Preamplifier Audio Filter Unit 24015 watt Amplifier PZ5 Mod. for I or 2 Z40 PZ6 Mod. ( 5 Tab) 1 or 2 Z 40 . ( Tab) 1 or PZQ Mod. (S Tab) I or 2 TRANSFORMER FOR NEZ8 FMTUNER NEWFREO DECOR All items post pid
611.95 66.95
65.45 65.45
66.95 $\mathbf{6 6 . 9 5}$
$\mathbf{6 4 . 9 8}$ 67.98 87.98 63.95 63.95
611.95
67.45

All prices carr. paid (UK) (VAT EXTRA) Barclaycard/Access call, write or phone your order 1-723 6963-casy terms for callers.

## BUILD THE NEW

 henelec stereo
## FM TUNER

A completely new high stability stereo FM tuner.
eatures variable capacity diode tuning, stabiliser power supply, IC Decoder, high gain low noise. IF stages. LED indicators. Tuning meter, AFC.
casy to construct and use Mains operated. Slim modern design with fibre glass PC, teak cabinet. build or ready built Overall size: 8 in buith
$x 6 l i n$. Produced to give high performance with a realistic price. (Parts list and constructional details
 aresole distributors UK and Europe
Kit Price
£21.00 ( + VAT)
or buill and tesled
£24.95 ( + VAT)

LIVING SOUNO LOW NOISETOP OUALITYCASSETTES MADE BY EMI TAPES LTD. TO IATERNATIONAL STANDARDSESPECIALLYFOR HENRY'S. ALLPOSTPAID LESS THAN REC. PRICES, COMPLETE WITH LIBRARY
 Quantity and trade enquiries invited. French, 5 panish, Italıan. El. $\mathbf{3 6}$ per course. $\mathbf{E 5}$ ior any 4

## LOW COST HI-FI SPEAKERS

## SPECIAL OFFERS

EMI 13 in $\times 8$ in-full range speakers (post 20 p each or 30 p pair) wart 8 ohms win Cone wart, $22 \cdot 20$ each or 44 pair: 45010 ohms c/o Tweeter, $£ 5 \cdot 25$ each or $£ 7.40$ per pair: 35020 watr c/o Tweeters 8 or 15 ohms, $£ 7.80$ each.

* Polished wood cabinet E4.80, post 35p

8 ohms full range (pose 20p)
FR. 4 4in 5 watt, $\mathbf{6 4} 75$; FR65 $6 \frac{1}{2}$ in 10 watt, $\mathbf{f 6 . 3 0}$ FR8 $\sin 15$ watt. 88.50 : FR23 $9 \times 6$ in is watt

BASS ANDMIDRANGE-8 ohms (post 20p)

67.20; B20081n 15 watt, $\mathbf{6 8} \cdot 50$; B139/2 13 in $\times 8$ in

30 watt LF, $\subset 13-75$


TWEETERS AND CROSSOVERS (post 20p) K2006 10 watt 8 or 15 ohms, $\mathbf{6 2}$. 10 : FHT6 $\$ 5$ watt 8 ohms, $63 \cdot 35 ;$ K201 I 30 watt 8 ohms. $\mathbf{6 4} \cdot 80$; T27 KEF; $\mathbf{£ 5} \mathbf{5 0}$; Axent 10030 watt 8 ohms

SPEAKERKITS (carr. etc. 35 p )
$20-28$ in 30 watt, 624.50 pair; 20-3 8 in 40 watt, $£ 35.95$ pair, LINTON 2 DALE 3


## BUILD YOURSELF A POCKET CALCULATOR

A complete kit, packaged in a polystyrene con-
 tainer and taking about 3 hours to assemblethat's the Sinclair Cambridge pocket calculator from Henry's. Some of the many features include interface chip. thick-film resistor pack, printed Size: $4 \frac{1}{3}$ in long $\times 2$ in wide $\times 1$ in deep. Size: $4 \frac{1}{2}$ in long $\times 2$ in wide $\times \frac{11}{1 / 2}$ in deep. Free of charge with the kit for the more advanced echnologist is a 32 -page booklet explaining how
SPECIAL OFFER
Price $£ 13.60$ ( + VAT)

 Also asembled
leady lo use $\mathbf{£ 1 9 . 9 5 ( + \text { VAT) } ) ~}$


EDGWARE ROAD, LONDON W2


[^0]:    © IPC Magazines Limited 1974. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press. Publisher's Subscription Rate including postage for one year, Inland £3.25, Overseas $£ 3.50$. International Giro facilities Account No. 5122007. Please state reason for payment, "message to payee".

[^1]:    Prices shown are recommended retail, excluding VAT
    From Electrical and Hardware Shops. If unobtainable. send $10 p$ p\&p direct to Bib Hi-Fi Accessories Limited, Hemel Hempstead. Herts HP2 7EP

[^2]:    A．T．

[^3]:    

[^4]:    

[^5]:    *The University of East Anglia

[^6]:    *Selsmograph Service (England) Ltd.

[^7]:    HEATH
    HEATH (GLOS.) LTD. OEPT: PE/8/74
    Bristol Road
    Gloucester GL2-6EE

