A RADIO RECEIVER COMPETITION.

No. 199. Vol. IX.
...
and Wireless Review
Scientific Adviser: SIR Oliter lodae, F.R.S., D.Sc.

MA D.E. 3
DULL EMITTER
For economical working.
Equally suitable as a Detector or L.F. or H.F. Amplifier. Current Consumption, 0.06 amps. For use with a 4 -Volt accumulator or 3 dry cells.

PRICE $16 / 6 \mathrm{EACH}$

Write for Valve Publication No. 443A.

Every Part an Exclusive Feature

The sound conduit is provided with a rubber bush at each end to ensure freedom from objactionable resonance. That at the wide end is threaded to receive the trumpet.

Contour of the sound conduit gives a duct of considerable length without unduly increasing the overall dimensions, and the sweeping curve allows an unobstructed path for the sound waves.

The conduit is hinged to the weighted electro-plated base, giving stability and freedom of movement, in order that the horn may be tilted to suit the acoustics of any apartment.

Radiolux Style Type R.S.I.O. £7.7.0

Bell - mouth trumpet of polished oak or mahogany, furnished with threaded metal termination, which screws into a rubber bush in the sourd conduit. Complete insulation from the sound conduit is thereby effected.

Improved Loud Speaker Unit completely "insulated" from the sound conduit.

Name plate with Type and Serial numbers thereon by which The House of Graham unconditionally guarantees complete satisfaction to any purchaser.

These are some of the points which make the AMPLION

The terildis Standard Vireless Loud Speaker

Obtainable from AMPLION STOCKISTS, Radio dealers or Stores.
Demonstrations gladly given during business hours at the AMPLION Showrooms:-25-26, Savile Row, London, W.1. 10, Whitworth Street West, Manchester. 79.82, High Street, Clapham, S.W.4. 101, St. Vincent Street, Glasgow.

Bestwá

GUIDES FOR WIRELESS CONSTRUCTORS

The Two Latest Numbers Now on Sale Everywhere

This Year's CRYSTAL SETS

This new addition to the popular "Best Way " series of Guides for the Wircless Constructor contains the latest and most authentic information on the best Crystal Sets of the Year. A special feature of the book is the clear constructional photographs illustrating the assembling of each set. All of the circuits described have been carefully fested, so that amateur constructors can be certain of good results. The sets described are as follows : A One-Control All-Range Set; Building a "D" Coil Receiver; The Universal Crystal Set; A Quick-Change 2 LO-5 XX Receiver; A Main Stations Ultra and The Half-Crown Crystal Set.

Three Famous VALVE SETS

This book describes and illustrates in photographic detail three absolutely reliable circuits. All have been most carefully tested under normal broadcasting conditions and will give the utmost satisfaction. The sets concerned are "A Trinadyne Two-Valver;" " The 'Chitos' One-Valve Set," and "The Onc-Valve Unidyne Receiver ${ }_{3}$," and the directions given in this book make the assembling of each set exceedingly straightforward and casy to follow.

Price
 6D.

 At all Nerosagents and Bookstalls.> ALWAYS ABOVE SUSPICION DUBILIER CONDENSERS

THE MANSBRIDGE

 CONDENSER.This condenser is just what you want across your H.T. terminals to stop crackling due to the H.T. battery. Made only by the Mansbridge Condenser Co., Ltd., and sold and guaranteed by Dubilier.
Capacities from 0.01 mfd . to 2.0 mfd . Prices from $2 / 6$ to $5 /$.

THE VANICON CONDENSER.

This is the standard quality condenser for general purposes. Positive connection to moving plates is secured by a phosphor-bronze strip -a very special and important feature.
Sold complete with vernier.
0.00025 mfd . $17 / 6$ 0.0005 mfd . $22 / 6$ 0.001 mfd . $27 / 6$

Specify Dubilier,

PLAYER'S wealth of experiefice in all that pertains to the maturing of tobacco enables them to place their cigarettes on the market as they reach prime condition, while the extraordinary demand forbids staleness. The maturing and blending is so skilfully done that the natural fragrance of the Tobacco remains unimpaired.

an old fiddle

Srandard

FORMERLY Western Electric

WE are offering a complete Standard 5 -valve Receiving Set complete with Loud Speaker for $\mathrm{f}_{2} 2$-17-0. This set will meet the most critical demands and gives excellent loudspeaker results from both home and foreign stations. Units may be purchased separately if desired.
Write for our booklet No. W546 for details of Standard Valves, Receiving Sets, Amplifiers, Loud Speakers, and Igranic accessories.

Standara Telephomes and Cables Limured

Wes'ern E'ectric
CONNAUGHT HOUSE, ALDWYCH, LONDON, W.C. 2. CENTRAL 7345 (10 lines).

Works :-HENDON, NORTH WOOLWICH and NEW SOUTHGATE.

[^0] Cardif, Southampton, Liverpool and Dublin.

Complete for $£ 27-77-0$

Of Duty well performed . . .

THe monk in his cell-the worker at the bench. Between these two a great gulf, yet by one common bond they are united. The bond of Duty. No monk ever possessed more enthusiasm for his tasks in life than those loyal workers-men and women alike-engaged in the business of making Cossor Valves. Without their co-operation-so cheerfully and willingly given-the nation-wide reputation for long service and dependability enjoyed by Cossor Valves must inevitably suffer.
Whether you buy your Wuncell Dull Emitter
in Eastbourne or Edinburgh, in Canterbury or Carlisle, its unique standard of performance will be worthily and creditably maintained.
Long life-exquisite purity of tone-unequalled sensitiveness-supreme economy of operation-all these features are ensured in the Wuncell by reason of its patented design and construction. Only the arched filament in combination with a hood-shaped Grid and Anode-by utilising almost the whole of the electron stream-can achieve such magnificent and unparalleled results.

For 2-volt Accumulators.

V.s. For Detector and L.F, use Consumption: 3 amp.	14/-
W.2. (With red top) For H.F. use	14%
Consumption : 3 amp.	
W 3. The Loud Spenker Valve	18/6

Cossor

For 2, 4 or 6 Volts. W.R.I. Similar to W.I but with srecial resistance which can be short-circuited W.R.2, Similar to W. 2 but with resistance as above

16/-

 16/
Popular'Wireless

RADIO NOTES AND NEWS.

Hotel Wireless-New Rome Station-World's Worst Place for Wireless-A Radio Preacher-European Broadcasting Conference-Short Wave Jottings--The Rugby Talks.

French Radio Compass Stations.

THE French Government has decided to erect a chain of wireless-compass stations round the coast for the bencfit of ships approaching the French ports. The scheme as now planned provides for twenty direction-finding stations.
During fog or mist a ship can call up two or three of the stations, which are to be linked by landline, and each of them will be able to tell from which direction the ship's signals are coming. By comparing results the exact position of the ship can be determined, and for a small charge this information can be wirelessed to the blinded vessel.

Hotel Wireless.

IHEAR that in the main south block of the Hotel Cecil all the private sitting. rooms are being equipped for the reception of wireless programmes. The other rooms in the hotel will be fifted in the same way as soon as possible, so that guests will be eble to plug in to wireless as easily as they now switch on the lights.

Technical Queries.

SOME important modifications of the rules regarding technical queries sent in by readers, are announced this week on page 178. In future, diagrams of crystal sets and ome-valve sets will be drawn up for a nominal charge of sixpence per diagram. In addition to the diagrams specially drawn up in this way, there is a range of twenty different valve circuits, published in Blue Print form, each of which is obtainable from the Query Department at $6 d$. per blue print.

Revised Charges.

DIAGRAMS of two- and threc-valve sets (and of one- or two-valves - andcrystal) can be specially drawn up for 1s. per diagram. One shilling and sixpence will be charged for multi-valve circuits of four or more valves, except in the case of super-heterodyne diagrams, which can only be supplied at 2s. 6d. per diagram.
It is hoped by graduating the charges in this way, according to the time involved, that delays will be obviated and all queries answered within a week. The full rules relating to readers' queries will be found
listeners was also rounded up, fines in these cases varying from 10 s . to 20 s .

A nineteen-year-old engineer in the employ of A. C. Cossor, Ltd., was found not guilty of stealing 117 wireless receiving valves, and was discharged.

5 X X Struck by Lightninj.

D^{A}AVENTRY's breakdown at the beginning of the month was caused by lightning, according to the B.B.C.'s official explanation. It is rather early in the year for lightning troubles, but in this case the station was working again inside ten minutes.

Left to right. (Standing), Miss Fay Compton, Gladys Cooper, Gwen Frangcon-Davies, Lady Wyndham, to right. (Standing), Miss Fay Compton, Gladys Cooper, Gwen Frangeon-Davies, Lady Wynd
Judith Cross. (Sitting), Sir Gerald da Maurier, Lestie Eenson, Henry Ainley and Claude Hulbert.

South Africa and the Pirates.
A C.OMPRE.
HENSIVE Bill, dealing with all phases of wireless, has recently been before the Union House of Assembly, at Cape Town. A feature of the Bill is the heavy penalties for radio law breakers. Ob . structing wirelesss messages and the despatch of false radio communication are each punishable by a fine of $£ 50$ and three months' imprisonment, either with or without hard labour! Graduated broadcasting fees are provided for, according to the zone in which the receiver is situated.
under the heading "Radiotorial" on page 176.

Wireless in the Courts.
PLEADING that he did not know that a receiving licence was required for a crystal set: a Nunhead listener was fined a total of one pound at the Lambeth Police Court recently. A batch of Sheffield

New Rome Station.

 HE power used at the Rome station has recently been doubled, and programmes are now sent out upon 12 instead of 6 kilowatts. This explains the improved reception which several readers have reported within the last few(Continued on next page.)

NOTES AND NEWS.

(Continued from previous page.)

weeks. I hear that the old transmitter will shortly be re-erected in another Italian city, probably Naples.

World's Worst Place for Wireless.

PROBABLY the worst placo in the world for local interference and " mush" is Schenectady, New York State. Here the General Electric Co. have their experimental wireless plant, which includes no less than nine different radio transmitters, all working upon different wave-lengths. Sometimes seven of the stations are on the air at once, and as one or two of them are super-power stations employing up to 50 kilowatts, listeners in Sehenectady have an exciting time if they try to cut out the locals.

British Empire's " Beam " System.
HE British Empirc will soon he "beaminy," for the Imperial Wireless Chain is at last nearing the stage of practical resuits. For years and years obstacles have arisen to prevent this country keeping in touch with our kin overseas by means of radio, but at last the stations are nearing completion. Sir William Thomson, Post-niaster-General, said recently in the House of Commons that the contractors for Bodmin and Bridgwater stations hoped to complete them early next month. These two are for the Canadian and South African services, and in August, Grimsby and Skeg. ness will be ready to talk to India and Australia.

A Radio Preacher.

MRS. A. S. McPHERSON-the young American widow who recently visited London, en route to the Holy Landis claimed to be the most eloquent broadcast preacher in the world. She is the founder of a great religious movement in the United States, - where she broadeasts daily from the Angelus Temple, in Los Angeles. It is claimed that since she spoke "on the air," two thousand listeners have been converted.

Sir Harry Lauder.

WHY is it some people take to the microphone like a duck to water, whilst others sound uncomfortable all the time they are talking to it? Look at Sir Harry Lauder, for instance, as an example of perfect microphone personality. Left in the studio for an hour, he commences by boldly telling the " mike" that what it wants is imagination, and he leughed and chiuckled so irresistibly at it that whole chiunks of his delightful personality came over the ether to listeners.
Sir Harry is a born broadcaster, for it takes the efforts of a real artiste to sound so effortless.

Moving-Train Reception. E of the best long-distance reception feats during the winter has fallen to the lot of an official upon a moving train. It is the policy of the Canadian National Railways to equip their passenger trains with wireless to keep in touch with the great North American cities, but in this instance a train passing through JrcobsOitario picked up broadeasting from Lima, in Peru.

Picking Up Peru

IT transpired later that at the time all bforadeasting stations in the U.S.A. and. Canadi were elosed down, on account of the International Radio Tests. The reception was therefore carefully checked, and it was found that for nearly half -arr hout the moving train in Canada was undoubtedly picking up signals from O X A, the Lima, Peru, station.

French Parliament on the Air?

THERE is a proposal on foot to broadcast the French parliamentary debates. The question was put hy a deputy to the Minister for Commerce, Posts and Telegraphs; as to whether it would not bedrsirable to let the public hear the debates via ractio. The official reply was noncommittal, of cqurse, but it indicatorl that in high places there would be no objection at all if the scheme seemed practicable and in accordance with public wishes.

European Broadcasting Conference.

EUROPEAN Conference on Broadcasting, to which all existing or projected radio authorities have been invited, is to be held at Geneva on March 25 th. The various hodies will mect at the

Palais des Nations, and proposals for wavelength changes, limitation of stations, and other important aspects of international broadeasting, will be examined. It is anticipated that the conference will last for several days.

Amateur Makes Broadeasting Station.

APOWERFUL broadcasting station is being made by a London amateur to enable a British missionary in Iceland to preach to his "parishioners." The station is to be established at Akureiri, Iceland, and it is hoped to relay British and American programmes when conditions are favourable. Its wave-length will be about 200 metres, and it is hcing constructed by Mr. F. L. Hogg, of Bishop's Road, Highgate, who is himself the son of a missionary.

Radio Conference at Bournemouth.

BOURNEMOUTH and District Radio and Electrical Society is promoting a Conference of Radio Societies, to be held in that town on 26th or 28th of April. A visit to 6 BM is planned, and an attractive programme concluding with a popular address is being drawn up. Those interested should communicate with the hon.. sec., Mr. H. J. Bliss, 140, Old Christcburch Road, Bournemouth.

Short-wave Jottings.

MR. E. J. SLMMONDS (2 O D) tells me that there has been very little doing on the ether-this week-in fact, not enough to " jot" about!

In the circumstances, the Editor is omitting "Short-Wave Jottinge," by 20 D , this week, -but this popular feature will appear in "P.W." nest week, as usual

The Broadeasting Report.

THE Government's Broadeasting. Committee , has duly presented its report, and truth to tell its árrival was something of an anti-climax... It seemas to have been just about what everybody had expected, the least pleasing feature to most of us being that no reduction-in-licence fee was recommended. Everyone, on the otler hand, was pleased with the proposal to exempt blinded listeners from any fees, and all clearly recognise that the chief interest is to get the right men as Commissioners.

On the whole, it seems a great pity that Government control is inevitable; but most of us will be lazily glad that the familiar initials, B.B.C., still hold good for the British Broadeasting Commission!

The Rugby Talks.

R^{0}UGBY'S results with telephony to New York have been exceptionally good lately. Several readers over. heard the British and American newspaper reporters gossiping across the Atlantic a Sunday or two ago. In most cases the two stations were picked up on the intermediate amplifiers of super-het. receivers, Rugby being about twice as loud as New York. The first report of this kind was from a "P.W." reader living in Hillsleigh Road, London, W.8, who states that every word could be heard when the amplifier was oscillating.

Unidyne in South Africa.

THE 1926 Unidyne is making, a great name for itself in South Africa. Already one enthusiast has succeeded in picking up Bournemouth's carrier wave upon the one-valve set, distance approximately 6,000 miles !

In a letter just received, Mr. Raymond Coombes, the Editor of "Radio" (South Africa's leading wireless journal), informs me that another reader living about 100 miles north of Delagoa-Bay is able to pick up the Cape Town programmes on the onevalve Unidyne. All the reports agree that the absence of the unnecessary H.T. battery means better and clearer reception.

Presentation by Radio.

SIR HENRY THORNTON, lately General Manager of the Great Eastern Railway, and now President of the Canadian National Railways, has juist presented the first medal ever officially awarded by wireless. The recipient was Mrs. Polybank, living in the village of O'Brien, Quebec, and the medal was the Canadian Humane Society's Bronze Medal for Life-saving.

As Sir Henry's words of presentation came from Ottawa by wireless, and issued from the loud speaker, an official of the railway company handed the medal to the heroine. Thousands of listeners in Canada shared the thrill of the first medal ever presented by radio.
A.RIEL

By B. HONRI.
(B.B.C. Research Staff.)

The many thousands of "P.W." readers who appreciated Mr. Bonri's article, "Cutting Out Noise," will find even more to interest them in this exclusive contribution.
the L.F. coupling condensers or to raise the tone by means of the tone circuit given in Fig. 1.
The ideal loud speaker is ono which is equally sensitive to all audible frequencies. Consequently, when a good loud speaker is connected to a poor L.F. amplifier, the results are usually thin and high-pitched. The loud speaker is usually blamed for the distortion, whereas it is actually accurately reproducing the distortion of the L.F. a mplifier.

The Two Extremes.

But how are we to reproduce the extreme high notes of the piccolo and the pedal notes of the organ with equal accuracy ? It is all a question of impedance in our L.F. circuits. Firstly, we must have a good amplifier, in which the impedances of the transformer primaries aro at least equal to the im. pedances of the preceding valves, or a resistance-coupled amplifier with high insulation coupling condensers of not less than 01 mfd capacity.

Secondly, the output impedance of the amplifier should suit the impedance of the
"YES, sir," said a wireless salesman to remarkable for its purity of tone." "But," I protested, " what do you mean by purity of tone?". He explained to me that the "clearness" of reception on the set was
receiver was quite good on one or two of the speakers, but when he tried one of the new hornless types on it, the results were poor. "This new loud speaker -...'s have just put out

 is a washout," he said.That was all. Because the loud speaker did not sound as well as the older types on his particular set, he condemnedit.

Let us be fair to our loud speakers by giving them a fair trial. A resistancecoupled a mplifier is not the be-all and end-all of quality if our loud speaker has a resonance at 130 cycles. The
much above the average. Whether he referred to the absence of "blasting " on the set or the way it reproduced the musical scale, I do not know.
Thereupon he began to demonstrate the set, connecting in turn a number of loud spcakers which he had in the shop. The
designers had possibly intended that resonance to be there, expecting the loud speaker to be worked off an L.F. amplifier having cheap transformers. Such a loud speaker on a well-designed resistance-coupled amplifier would give " wuffy" tone. The remedy in this case would be to lessen the value of

loud speaker. In the case of most of the $2,000 \mathrm{ohm}$ resistance loud speakers, the impedance is about 10,000 and $12,000 \mathrm{ohms}$, and the output valve should have an impedance of about 6,000 to 10,000 ohms. Choke coupling the output valve to the loud speaker, as in Fig. 1, improves matters still more, but it is important that the choke should have an inductance of at least 50 henrys with a low D.C. resistance.

L.R. Loud Speakers.

The makers of one of the new types of 650 ohm resistance hornless loud speakers recommend an output impedance of 2,000 ohms. It is therefore necessary to use an output transformer stepping down from, say, $6,000 \mathrm{ohms}$ to $2,000 \mathrm{chms}$, or else to use a very low impedance valve in the last stage. The former method is the more economical, and in the case of the "Kone " loud speaker, the makers sell suitable output transformers which may be fitted in the loud speaker base, the terminals 1 and 2 being connected to the loud speaker.

This is, of course, not required when the loud speaker is worked off a "Kone" amplifier. When strong signals are expected the very best output connection would be that of Fig. 1 B. In this arrange-
(Continued on next paje.)

THOSE PEDAL NOTES.

(Continued from precious page.)
ment, the D.C. current of the valve does not go through the primary winding of the transformer.

A bad loud speaker often sounds quite pleasant on a bad set. It is, of course, a roundabout-swings situation, in which the L. F. amplifier deals ont strong high notes while the lond speaker is moro sensitive to the fairly low notes. The result is pleasant but not accurate, for it lacks the very low notes and the very high ones too. The curve A in Fig. 2 gives some idea of what is

C variable from about $\cdot 002$ to 04. Variation in the value of the resistance, $R_{\text {, }}$, flattens the " chunk " taken out of the curve of the amplifier by the acceptor. (See Fig. 4.)
Grid Bias.
When considering the value of the grid negative to be put on the first L.F. valves of a resistance amplifier, it is important to consider the dynamic characteristic of the valve. Referring to Fig , 5, it will be seen that the effect of putting 100,000 ohms resistance in the plate circuit of a D.E. 5 B. or D.F.A. 4 alters the characteristic curve considerably, and under actual working conditions the curve B must be read.

The reason

for this flattening of the curve is that as the grid becomen more positive the anode current increases, and there is more voltage drop across the resistance. The curres - show that the valve should have 2 volts negative grid bias with the resistance in circuit and $1 \frac{1}{2}$ volts negative without the resistance, exactly the reverse of what would be expected. In actual practico, the presence of tho anode resistance may be neglected when estimating the correct grid bias, in spite of the flattening out of the characteristic curve.

Choke Coupling.

In conclusion, the writer strongly adrises those who dabble in circuits to construct a good-quality amplifier which may be "hitched"" on to happening. If the same !oud speaker is worked off a good L. F. amplifier, the curve B would be expected; so that a known good set shows up a bad loud speaker in its true colours.

Further Precautions.

There are still some further precautions (s) be taken by those who are endeavouring to obtain equal loud-speaker audibility for all notes. Firstly, it is an advantage to connect an H.F. choke in the first amplifier circuit (L3 in Fig. 3). This prevents any H.F. currents getting on to the first amplifier hid. It is, of course, unnecessary if transformer coupling is used. It is possible to climinate any very prominent loud-speaker resonance by means of an acceptor circuit across the first anode resistance (see Fig. 4). This circuit should be tuned to accept the particular note or band of notes which is undesirably loud, and must be adjusted by experiment. A useful band of frequencies may be covered by making the value of the coil L, $\frac{1}{4}$ henry, and (by means of combinations of fixed condensers) the condenser

FROM the ama. teur's point of view, listening to broadcast programmes as a source of entertainment and the pursuit of long. distance reception are entirely different, so much so that ardent experimenters are apt to regard the former with disdain.

However, the possession of a good loud speaker, used in conjunction with a receiver and amplifier reasonably free from distortion, can be a source of much pleasure to one's friends, especially during winter evenings; but the success of "radio parties" depends

The complete instrument built into a cabinet.
largely upon the loud speaker, which may well be the best obtainable. The cost of such an instrument, however, is a very considerable proportion of the total outlay on the receiving system, and may even equal the cost of the latter when home constructed.
Now, for the benefit of those who quite rightly pride themselves upon having con-

structed the bulk of their apparatus, I propose to outline the construction of a cabinet loud speaker which compares very favourably in operation with the best commercial types, and one that is capable of handling a large input, yet sufficiently sensitive to give good volume with a moderate input power.

Comparisons.

Tested against smaller types of commercial lond speakers, the superiority of the home-made instrument was very apparent, there being an entire absence of shallowness of tone, while the cost of this instrument is but a few shillings. Many experimenters will, perhaps, find the necessary component parts in their junk boxes, and the construction can be undertaken by anyone possessing the usual tools and a little mechanical skill.

The various parts are held together by a wooden f:amework.

We will first consider the electro-magnetic system, which is the most important part of the loud speaker, and upon the construction of this depends the efficiency of the instrument. The exact dimensions of the original loud speaker are given here as a guide, but a certain degree of latitude is possible without prejudice to the final result.

The Laminated Pole Pieces.

The first requirement is a horse-shoe magnet, which should be small and fairly strong, the one used by me having been obtained from an ex W.D. moving coil ammeter, and measures $3 \frac{1}{2} \mathrm{in}$. long, $2 \frac{1}{8} \mathrm{in}$. wide across the poles, the section of the magnet bar being $\frac{1}{2} \mathrm{in}$. by $\frac{7}{8} \mathrm{in}$. Magnets of approximately these dimensions may be obtained very cheaply from disposal dealers, but the magnet must be furnished with a hole through each pole, so that pole pieces may be bolted on, and preferably with a hole at the bend.

Laminated pole pieces are constructed from soft iron sheeting, which is easy to work, a suitable material being ferrotype sheets, which may be purchased for a few pence from any dealer in photographic sundries. From this sheet are cut twenty pieces, measuring $\frac{1}{2} \mathrm{in}$. by 2 in ., the enamel being burnt off in a fire or gas flame. When cold, the carbonised residue is rubbed off, but each picce is left unpolished, as the

layer of oxide tends to reduce eddy currents in the pole pieces, such eddy currents being detrimental to a high efficiency. If the holes in the magnet poles arc $\frac{1}{\frac{1}{4}} \mathrm{in}$. in diameter,

a 2 B.A. clearance hole should be drilled through the laminations, as indicated in Fig. 1 , the twenty pieces being made up into two bundles of ten each, and roughly bound up with wire. Drilling is facilitated if each
strong and useful boits. The projecting portions of each bundle are now roughly bound up with wire, to prevent the laminations springing apart, and then bent into the position indicated in Fig. 2 with pliers.
As the sheeting is very soft, this is quite an easy operation. The bound pole pieces are then removed from the magnet, and the bolts put on them and tightened up to hold all the laminations in place for the next operation, which consist of trimming and filing down square the top end of each pole piece. Both these must be of equal height, and truly square when reassembled on the magnet.

Winding the Magnets.

The pole pieces are next prepared for winding by fitting stiff cardboard or fibre cheeks $\frac{1}{16}$ in. thick, measuring $\frac{1}{3}$ in. by 1 in ., two to each pole, the slot in the centre being cut of such a size that the cheeks fit tightly on the prole-piece ends. Thus equipped, the pole pieces are dipped in hot paraffin wax, and two layers of thin waxed paper wound in the space between the winding cheeks over the laminations.

For a low-resistance loud speaker to bs used in conjunction with a step-down transformer, wind on each pile piece, in the same direction, one thousand turns of No. 40 enamelled wire, and for n highresistance winding put on as many turns as possible of No. 4.7 enamelled, the greater the number of turns, within limits, the higher the efficiency. The completed windings may be bound over with oiled silk or electrician's tape. The insulation resistance of windings to laminations should be high.

The pole pieces are now assembled on the magnet, the beginuing ends of the two windings being soldered together, while the two free ends are connected to the input terminals. A method of suspending the magnet beneath the diaphragm is indicated in Fig. 3, a bracket bolted to the bend of the magnet holding the latter to a bar of wood, and a stout brass stirrup, fastened to the poles
bundle is clamped in a vice against a piece of wood.
When the holes are drilled, the binding wire is removed, and a bundle bolted to each pole of the magnet by means of a 2 B.A. nut and bolt, and large 2 B.A. terminals cut down to the shank make
of the magnet, is suspended over a compression spring on a 2 B.A. rod fixed to the bar.

Assembling the Parts.

Screwing the nut on this rod, up or down, raises or lowers the pole pieces with reference to the wooden bar, and, as this is fixed rigidly beneath the diaphragm, the distance between the latter and the pole pieces may be finely adjusted. Further details of the elec-tro-magnetic systemare given in Figs. 2, 3, and4.

The diaphragn, of thin stalloy $3 \frac{1}{2} \mathrm{in}$. in diamet 3 , should be secured over the trumpet orifice in a solid wooden board, by means of two ebonite rings or rabher washers. Where these are unobtainable, two

A "close-up" of the electro-magnetic system in the base.

circles of waxed cardboard will serve quite well. The bar carrying the magnct is securely bolted to the same board, and it is essential to obtain solid construction of this portion of the loud speaker to prevent vibration. See Fig. 3. Finally, the magnet system may be closed in by a wooden or cardboard box fitted to the baseboard.
The sound conduit, or horn, may be constructed or purchased, choosing for preference a non-metallic type of solid construction. The one used in the instrument shown in the photograph was built up of waxed cardboard, each section being riveted together with brass paper fasteners and the whole finally coated liberally with paraffin wax. Such a horn is practically nonresonant at any particular frequency and gives a full and pleasing tone. The dimensions found to give the best results are indicated in Fig. 5, the flare being secured to asquare of three-ply wood, in the centre of which is a hole one foot in diameter.
(Continued on prage 180)

The Set designed and constructed by the "P.W." Technical Staff.

$0^{\prime \prime}$WING to the recent advances in the price of rubber, constructors are finding the outlay required to purchase the ebonite panels for their sets an everincreasing burden. Ebonite- good ebonite, that is-has never been really cleap, and
resistance-capacity coupling for the L.F. amplifiers, of which there are three. Next in importance the insulation of the vacious stages was considerect, and at the same time it was rlecided to do away with ebonite and its accompanying costs as far as possible.

This was found to be possible if wood were used for the panel, but here it was found that the external appearance of the set was likely to suffer unless some method was found by which the wool could be treated in order to give it the appearance of ebonite.
It was at this juncture of the proceedings that a short article contributed be Mr. T. P. Middleton, and published in "P.W." No. 191 under the head. ing of "Imitation Ebonite," was receiverl, and now that it lias gone up in price by about 50 per cent the panel of any but the smallest receiver is a large item on the list of expenditure.
But why should ebonite be so very necessary for the construction of wireless receivers? True it is convenient to work, and it gives a finished appearance to a set, but it is not at all inidispensable. This has been proved in the experimente carried out by the technical staff of Popular W'ireless, and it is now fully realised that a reaily efficient set can be made with the use of only about sixpenn! inor th of ebonite-apart from that used in coil holders, etc.

An Efficient Circuit.

The receiver under discussion in this article, it is admitterl. is not one that makes use of multi-stage high-frequency amplification, where the use of ebonite might be thought to be necessary-it can be dispensed with even in that case if care is taken-but it is a set that is one of general appeal and can hardly be surpassed for loud-speaker work from the local station or 5 XX .
Designed from the point of view of efficiency first, the set utilises the anodebend method of valve rectification, and
upon experiment it was found that the problem of appearance was solved, and the set was put under construction.

The wood chosen for the panel was of threc-ply, measuring 8 in. by 18 in ., and it was trented in exactly the manner described loy Mr. Middleton, with the result that a "pancl" resembling ebonite wa: obtained at the cost of about 9 d . instead of 10 s . to 12s.-a very important saring.

In order to make sure that insulation clid not suffer all H.F. and H.T. leads were kept away from the wood so that this merely made contact with points at earth potential-such as the condenser spindle. rheostats, etc. Two strips of ebonite hold the terminals at the rear of the receiverthese strips being the only cbonite in use, except that used in the valve helders and coil holder.

Preparing the Panel.

For the benefit of those who did not see "P.W." No. 191, and who are unable to obtain a copy, the method of treating the wooden panel is repeated here, and if care is taken the finished article will be almost indistinguishable from ebonite. Both sides of the panel can be clone if desired, but in the set photographed the reverse was left untreated, so that the contrast might be more marked.

The tools and materials required are few, viz. : some plaster of Paris, some shellac rarnish, a bottle of Radium jet black stain, a cabinet scraper, and some glasspaper (No. 00.) The plaster of Paris should be finc and free from grit such as that sold for dental use by Messus. T. C. Lindsey \& Co., of Leal hev Lane, E.C., but ordinary plaster will so if it is carefully sifted through fine muslin.

The Radium jet black stain is sold in leather shops as a leather stain, and is apparently aniline black dissolved in some aniline derivatice. The scraper can be bought for a few pence at any tool shop; as, of course, can be procured the 00 glasspaper.

The side of the panel is made smooth by using the glasspaper, and if necessary the scraper. Some plaster is then mixed with water to a thick paste, and is rubbed all oves the surface back and forth, and especially across the grain. Use it liberally, and don't attempt to get it smooth; and allow to dry. When dry and hard, scrape off the superfluous plaster and rub down with the
glasspaper, and it will be found that the (Continued on next page.)

This photograph shows the set ready for test, with valves, coils and grid bias battery in nosition. From right to left the valres are: B.4, D.F.A.4, C.T. $25 B$., C.T.25.

pores of the wood have been so filled up that the surface is quite even. If the wood is very rough another application may be given, but this should not be necessary.

A rag is then taken and moistened with the black stain, and the whole surface well covered with the stain till it appears an even black. When dry, it is varnished with shellac varnish diluted with about an equal part of the black stain. It is then allowed to dry, and is rubbed down to remove the gloss and make it even, and is -finally polished with a rag moistened with a drop or two of linseed oil mixed with a little black stain. The process is not long or tedious, and results in a very handsome finish.
The drilling of the panel can be carried out in the usual way if care is taken and the components mounted as usual. From now onwards the building of the receiver is quite straightforward, and does not differ from the construction of a set where ebonite is used for the panel.
The basehoard is of o.ply wood, and measures 8 in . by 18 in ., and upon it are

D.F.A. 4 for first L.F. stage, and two Cleartron power valves for the last two stages. All these valves need $5-6$ volts for the filament roltage, taking about 25 amp . each.. The H.T. battery used shonld bo capable of providing a pressure of 120 volts.
The coil holder used for the two plug-in coils must be capable of accurate adjustment, because the reaction has a marked effect upon the volume of reception. A Lotus two-way holder with long handle was used on the set photographed, and this gave every satisfaction.
The actual construction is not difficult, and provided the diagrams reproduced herewith are carefully followed no trouble or "snags" should be encountered. Care must be taken that valve holders, etc.; are so placed on the baseboard that the swing of the reaction coil is not impeded.

Constructional Details.

All connections that cannot be made to terminals or nuts should be soldered, care being taken that no dry joints are made.

Two ebonite strips are required for mounting the terminals, and are fixed at the back of the baseboard. One has two terminals (aerial and earth), and is $2 \frac{1}{2} \mathrm{in}$. by 1 in . by $\frac{1}{4} \mathrm{in}$., and the other, which measures 7 in . by 1 in . by $\frac{1}{4} \mathrm{in}$., is fixed at the other end of the baseboard, and contains six terminals, L.T. + , L.T. - , H.T. - , H.T. +1 , H.T. +2 , and H.T. +3 .

The photographs and wiring diagram show the lay-out of the anode resistances, grid condensers, etc., the former being provided with ebonite mounting so that they can be screwed down on to the wooden baseboard. The grid leaks are supported on the connecting wires (these being soldered to the grid leak clips) at one end, and from the valve grid terminals at the other. Care should be taken to solder the leak clips with the leaks removed, or otherwise the heat may affect the resistance element and cause the leak to become noisy or faulty in operation.

The connections to the jacks are made according to the diagram and point-to-point description, the tags being numbered from the tops of the jacks.
(Continued on next page.)
mounted all the components with the exception of the tuning condenser, rheostats, telephone jacks and I.T. switch. Only two rheostats are provided, one to control the first valve and the other to control the remaining three. The last L.F. valve is automatically cut out of circuit when the 'phones or loud speaker are taken out of the second jack and plugged into the first one.

Pure Reception Obtained.

The circuit, as remarked before, is one recommended for pure reception from the local station and 5 XX , and plug-in coils provide means for changing the wave-length ranges and reaction. The output from the detector valve is carried through three stages of resistance-capacity couplerl amplification, each containing wire-wound resistances of extremely robust manufacture. Anti-microphonic valve holders are used, and it is advisable to employ power valves throughout.
Under test the set gave excellent results, and full loud-speaker volume without a trace of distortion. Though about 15 volts is usually a sufficient anode pressure for an "anode-bend" detector, this set worked well up to about 40 volts on the first valve. The valves used were B. 4 for detector;

The method of mounting the various components is clearly seen from this illustration of the "Resistapure" loud-speaker set. All the components on the panel have one side at earth potential.

The rheostats used were those of Cosmos manufacture of the dual type-for bright or dull emitters-and as the second rheostat controls three valves the moving arm will be found to be on the " bright" section all the time.

Suitable Valves.

It must be remembered that the success of the set depends upon the components, so that those specified should be used wherever possible, or if others are substituted

POINT-TC-POINT CONNECTIONS. Aerial terminal to fixed plates of - 0005 variable condensers, plug of fixed coil holder and grid socket of 1st valve holder. Earth terminal to socket of fixed coil holder, moving plates of 0005 variable condenser and one side of key switch, which is also joined to one side of the two rheostats. Other side of key switch to L.T. negative, H.T. negative and grid bias positive. Other side of ist rheostat to one flament socket of 1st valve holder. Other side of 2nd rheostat to one filament socket of the 2nd and 3rd valve holders and to contact 1 of 2nd jack. Contact 2 of 2nd jack to one fllament socket of 4th valve holder. All other fllament sockets are connected together and to L.T. positive. Plate socket of ist valve holder to socket of moving coil holder, plug of which is connected to one side of 1st anode resistance and 06 fixed condenser. Other side of anode resistance to H.T. + terminal No. 1. Other side of 06 fixed condenser to grid socket of and valve holder and one side of 1st grid leak. Plate socket of and valve holder to one side of 2 nd anode resistance and - 06 fixed condenser. Other side of fixed condenser to grid socket of 3rd valve holder, and one side of 2nd grid leak. Other side of 1st and 2 nd grid leaks are connected together and to the 1st negative grid bias battery tapping. Plate socket of 3rd valve holder to contact 3 of 1st jack. Contact 4 is connected to one side of 3 rd anode resistance and $\cdot 06$ fixed condenser. Contact 5 of 1st jack is anode resistances and to H.T. positive terminal No. 2. Other side of 3rd 06 fxed condenser to grid socket of 4th valve holder and to one side of 4th grid leak, the other side of which goes to the second negative grid bias battery tapping. 1 Plate socket of 4th valve holder to contaet 3 of 2nd jack, contact 5 of which is joined to H.T. positive terminal No. 3.

these should be of good manufacture. The valves mentioned were found to give excellent results, and if other makes are used care should be taken that the types employed correspond in characteristics to those mentioned earlier in the article. A high impedance ralve could be substituted for the B. 4 if desired, but the other three valvesthe amplifiers-should have impedances corrosponding to those of the valves mentioned in each case, especially in that of the

first amplifier and in that of the last. The first should have an impedance of about $27,000-30,000$ ohms, the next valve can have a lower impedance, and the last valve either the same or still lower impedance.
The impedances of the three amplifying valves used in the test of the receiver were as follows: lst stage, 27,000, 2nd stage 20,000 (CT 25 B). last stage 10,000 (CT 25). If desired, an H.F. amplifier could be added to the Resistapure receiver to enable more distant stations to be received, but it would necessitate a specially designed amplifier and separate tuning control.

Easy to Handle.

For the local station either a 35 or 50 turn aerial coil should be O.K. with a reaction of 50 or 75 turns. For $5 \mathbb{X} \mathbf{X}$ a $150-200$ aerial and 100 reaction should be sufficient.

The set will not operate successfully on a frame aerial, though it can be used with reduced signal strength on an indoor aerial if a good earth is a vailable.
The handling is extremely simple, a variable condenser and reaction control providing the only two controls. The grid bias battery is left set once the correct bias is found, while once the best H.T. voltages for the various valves have been ascertained these also need no adjustment. The switch on the right of the panel provides a definite filament break, so that the receiver can be left ready for action and a movement of the switch will either turn it on or off.

Three H.T. + terminals are provided, and these should be connected to tappings on a 120 volt H.T. battery of large size cells. On test. $15-40$ volts were used for the detector anode voltage, 120 for the next two valves, and about $100-110$ for the last valve.

Conducted by our Staff Consultant, J. H. T. ROBERTS, D.Sc., F.Inst.P.

0^{F}F all the different components or parts of a wircless receiving set that offer scope for improvement, probably none offers more scope than the aerial. Great attention has been given to other parts of the system, but the aerial has been singularly neglected. It is true that there are very efficient outdoor aerials and that excellent results are sometimes obtained, in special circumstances, with indoor aerials and even with frame aerials. There have also been special forms of both outdoor and indoor aerials brought upon the market during the past year or two, and these, to my knowledge, have often proved very convenient in installation, and have, in general, come up to the claims made for them by their inventors or manufacturers.
But the fact remains that with the average receiving set not employing any H.F. amplification a good outdoor aerial is, if not essential, at any rate very desirable. An indoor aerial, or even a poor outdoor acrial, means a very great handicap from the start.

An Uncertain Factor.

Now, probably the installation of the aerial is the main inconvenience in the setting up of a wireless receiver, and certainly it is the most uncertain factor in estimating the cost. If anyone asks you how much it will cost for a set which will receive such-and-such distance, you can, without very much trouble, give him a fairly accurate estimate of the cost of the set, and when you know his requirements in the accessories, such as loud speaker, batteries, and so on, you can more or less decide the total outlay, But the aerial is a different matter. That depends upon where he lives, the nature of the surroundings, whether he has room for a good outdoor acrial, whether he prefers an indoor aerial, and so on.

What is Wanted.

Surely, then, it is time someone invented an aerial, of about the size and portability of the frame aerial, which will nevertheless have the same pick-up sensitivity as a good outdoor aerial.

If this could be achieved it would give a tremendous impetus to the industry. For the bugbear of the aerial installation, with its expense and trouble, would be overcome at once. Moreover, the featurc of complete portability would be one which would attract an immense number of people.
I am well aware that, according to the usual calculations and theories, it cannot be done. And although perhaps some of my readers might expect me to side with the theorists, that is to do me an injustice, for I believe in learning by experience, and experience has shown us that so many things have been done, especially in wireless, which scemed, according to theory, to
be impossible that it is best to keep an open mind. In the meantinie, here is an excellent field for the inventor-a sinall portable aerial of the size of a frame aerial, which shall have the same pick-up sensitivity as a good outdoor aerial.

Whilst on this subject I should say that I occasionally receive inquiries as to the relative efficiency of earths and counterpoises. It is difficult to answer this question quite definitely, as a good deal depends upon the nature of the counterpoise or the earth. Speaking generally, however, a good earth
may actually move when current is switched on; this is exemplified by the slight humming that is generally heard from a small-power transformer connected to the alternating-current mains. This humming is due to the vibratory motion of the iron laminations and partly also to the vibration of the wire in the coils. Of course, it goes without saying that the windings should be so constructed and treated that any appreciable motion is prevented. In transformers which are to be in use for very long periods(such as the step-down transformer of a trickle-charger) particular care must be paid to this point.
The so-called burn-out of an L.F. transformer is frequently, in point of fact, a mechanical break due to the too sudden application of current-shifting wanderplugs about with the L.T. current on will often account for it.
The proper thing to do when you wish to switeh the H.T. current on or off (and changing the wander-plugs is the same thing) is first of all to switch off the filaments, and then to switch them on again when the change has been made. Owing to the fact that the filament takes a second

A section of the Austratian amateur station, A2CM, which is controlled by Mr. Macl urcan.
is better than a counterpoise, and it is, of course, much simpler and cheaper to construct. For the greatest efficiency, the counterpoise should lie beneath the aerial (that is, if the aerial runs north from the down-lead, the counterpoise should not run south from the down-lead), and the counterpoise should, if possible, contain more wires than the acrial, and should be somewhat longer and should cover a greater area. Counterpoise aerials are useful for certain special purposes-which I have not the space to go into here--but for general broadcast reception purposes a good earth is to be preferred.

Safeguarding L.F. Transformer WindIngs.

A point in connection with the use and care of L.F. transformers that often is not sufficiently borne in mind by amateurs is the fact that a break in the windings can be caused by a sudden rush of current through the instrument. It should be remembered that the turns of the windings
or two to light up, or to "go out," the sudden rush of current through the transformer windings is avoided by the expedient mentioned above.

Method of H.T. Adjustment.

I have a letter from a reader of these Notes describing what he evidently believes to be a novel device for regulating a soft valve.
The valve in question was used as detector in a three-valve set-H.F., Det, and L.F.-and, owing to the fact that exact regulation of H.T. voltage was not obtainable with the battery he was using, he introduced a non-inductive resistance, with a maximum value of 100 ohms, in the H.T. feed to the plate of the detector valve.

By adjusting the value of this resistance, critical adjustment of the H.T. voltage on the detector was obtained, and tho best operating condition secured.

This method often proves useful where the battery used is not tapped.

THE Armstrong Super-Regenerative Circuit (which, by the way, is quite distinct from the Armstrong SuperHeterodyne) has always held a fascination for amateurs, on account of the almost incredible results that have been obtained with it. It should be pointed out, however, that it is a circuit which requires very skilful handling, and the amateur without much experience of valre receivers will probably be disappointed with the results he obtains from a home-made super set. On the other hand, ample scope for experi-

ment is presented, and, provided with a knowledge of the elementary theory, the experimenter will find the circuit well worth trying out.
In order to obtain a clear idea of the principle involred in the Armstrong Super, it is essential that we should understand what takes place when reaction is introduced into a valve circuit. Let us consider, then, the operation of a single-valve set in which a reaction coil is coupled to the grid, or aerial coil, as shown in Fig. 1, and assume that the set is rcceiving signals from a-spark station. The signals consist of groups of wares, each of which dies away to zero in, let us say, a hundred cycles.

Effect of Reaction.

As soon as the reaction coil is coupled to that in the aerial circuit, energy is added to the incoming signals, with the result that the macenitude of the wave is increased, as is also the number of waves in each group, which may now be increased to two hundred. As the coupling is further tightened, so will the length of the wave-trains increase, until at length each train contains so many wares-perihaps a thousand-that the last

By C. E. FIELD, B.Sc.

The Armstrong Super-Regenerative Circuit.
wave of one group is overlapping the first of the next group. Just before this occurs very loud signals are obtained, and it is at that point that an ordinary valve set should be operated to gire the loudest results.
When the trains begin to overlap, however, a "plop" is heard in the headphones, and signals become distorted. The important fact to note is this. The tail-end of one group of waves adds to the beginning of the next group, which is thereby stil further lencthened, and still further adds to the next one following, and so on. Hence the waves build up into a uniform stream after a few trains have been received.

Continuous Oscillations.

Now let us suppose that the reaction coupling is tightened still further. If a sufficient degree of reaction is introduced, when the first wave of a group falls on to the ralve grid so much energy is handed back from the plate circuit that the next wave is not merely only a little smaller than its predecessor, as in the cases just considered, but it is actually ligger, the nest one being bigger still, and so on. In other words, if a single impulse is given to the valve grid, a continuous stream of waves will at once build up in the plate circuit to a value which is onls limited by the carrying capacity of the valve.
In the ordinary way this is a hopeless state of affairs, but there is a very important point to be noted about this

voltage (e.g. by means of a potentiometer; to the grid. If, therefore, we could apply a rapidly alternating voltage to the grid of our escillatiag valve, we would alternately interrupt and stimulate the oscillation, and so bring about the effect we have just ween discussing.
The most convenient way of producing a rapidly alternating voltage is by means of an oscillating ralve. In Fig. 2 are shown the connections for a single-valve oscillator, the coil L_{2} in the plate circuit transferring energy back into the erid circuit $\mathcal{L}_{1} \mathbf{C}$, and thus setting up continuous oscillations.
Action of the Quenching Coils.
These are the oscillations which are to be employed fur interrupting those in the valye shown in Ftg. 1. for interrupting those in the valve shown in Flit. 1. frequeucy for these interruptions. If we choose a frequcucy for these interruptions. If we choose a very low frequeney the oscilations wiil have time to build up to a high value before they are cut short, and so houd siguals will result. On the other hand, if the frequency is too low, \& whistle will be heard in the telephones, which will not onls be unpleasant, but Which will give rise to distortion. The best value, therefore, is one just above the audible limit, 10,000 cyces per second being a suitable frequency, For this pirpose the coils L_{1}, L_{2} should be of the hones Assuming that we have the two valves shown in ondition, upon which depends the operation of all super-regenerative receivers.

At any instant after the reception of the first impulse, the magnitude of the wave is proportional to the magnitude of this initial impulse. For example, after an interval of one thousandth of a second, the magnitude of the waves produced by the initial impulse of one volt will be twice as great as it would be if the initial impulse had been only half a volt.
Suppose, then, that we conld suddenly stop the increasing wave-train just before its flnal steady value was attained, and allow it to start building up over again. We would get a series of wave-trins in which the oscillations incrensed in value (instead of dylog away as in ordinary eircuits), and the energy from each train would be proportional to that of the incomines signals. That is to say: we shoald obtain a reproduction of the received signals, amplifled to an enormous extent. This is what is carried out in the Armstrong Super-Regenerative Circuits,
Amateurs who have experimented with ordinary valve circuits will know that a valve nay be prevented from oscillating by the application of a positive

Figs. 1 and 2 oscillating, all that remains to be done is to connect the two together In such a way that the oscillating grid circuit in Fig. 2 superimposes oscilla. tions on the grid in Fig. 1. The bottom end of the coil L_{1}. therefore, is connected to the grid of the valve in Fig. 1 instead of directly to the filament The same batteries are employed for both valves, and the result is the two-valie Armstrong Super show in Fig. 3. It will be noticed tlat the first ralve is the detector, but the other one night equally well haye been made to serve the purpoze.

It is, of course, possible to use three valves-one oscillating. one detecting, and one interrupting. A more usual arrangenent, however, consists in making one. valve perform all the three functions. In this ease the grid circuit must contain, in addition to thic usual tuning coil, a 1,200 -turn coil shunted by a condenser of large capacity, and the plate circuit must contain a similarly shluted 1,500 -turn coil in addition to the usual reaction coil, the two large coils, $\mathrm{L}_{1}, \mathrm{I}_{2}$ being variably coupled, as shown in Fig. 4. Tho

valve is thus caused to oscillate at high frequency the oscillations being interrupted by the action of he long-wave coils.
The Armstrong Super Circuit should not be used on an outdoor aerlal, not only because it will cause powerful radiations and interfere with reception in the neighbourhood, but also because the radiating properties of an open aerial damp the oscillations in the first valve, better results being obtained, thereore, with a small loop or frame aerial.
I'he circult is most efficient on very short wave. lengths, but remarkable results can be obtained over the wave-length band covered by broadcastiag.

0^{B}all the more commonly employed crystals which are used in perikon detectors in combination with zincite, bornite is probably the one which has found the least favour with the amateur crystal user, firstly on account of the fact that it is not always easy to procure specimens of this mineral in a perfectly sensitive condition, and secondly because bornite, owing to its oxidisable nature, very often falls off in sensitivity after it has been in use for some time.
There are, however, some purposes for which bornite is extremely adaptable. For instance, workers in the realms of double-rectification erystal circuits will find a contact of zincite and bornite to give better results than any other crystal combination, some peculiarity in the properties of this particular contact enhancing the dual-rectification function of the circuit.

Not Very Stable.

For ordinary rectification, bornite is generally used with a crystal of zincite or synthetic zincite, although the mineral may very often be satisfactorily employed in contact with silicon, iron pyrites; molybdenite, ferro-silicon, and a number of other and rarer minerals.
Bornite, when used as a rectifier in conjunction with zincite, is rather more sensitive than a tellurium-zincite contact; but against this there is to be reckoned the fact that a bornite-zincite crystal com-- bination is not always a very stable one. It needs to be adjusted with a considerable amount of care in order to derive the best results from it.
A bornite-zincite combination has a critical- contact pressure. It is sensitive, also, to the disturbing influences of atmospherics ; and, finally, the sensitivity of a bornite crystal often diminishes owing to the oxidation or tarnishing of its surface under the influence of atmospheric moisture.

A Change of Colour.

This latter property of bornite may be readily observed by the amateur. When a bornite crystal is freshly cut or broken, it generally possesses a bronze-brown or coppery-red colour. However, after exposure to the air the freshly-cut surfaces of the crystal soon take upon themselves a bluish-black colour, due to certain chemical changes which have taken place in the surface layers of the crystal.
A bornite-zincite combination often may be made to afford better results when it has a small local potential of about -
volt placed across it. This arrangement, of course, calls for the employment in the circuit of a single dry cell aud a potentiometer.
Bornite is a hard mineral, but, at the same time, it is fairly brittle. Therefore care should be taken not to fracture the crystal when fixing it in the cup of the detector by means of clamping screws.

Its Chemical Composition.

The mineral should not be subjected to a high temperature, owing to the ease with which it oxidises. Wood's metal should, therefore, always be used when a metallic cement is required for the purpose of fixing the crystal in its cup.
In composition, bornite is a sulphide of copper and iron. Chemically speaking, it is a "double sulphide," its composition being represented by the formula $2 \mathrm{Cu}_{2} \mathrm{~S} \cdot \mathrm{Cu}_{2}$ $\mathrm{S}_{2} \cdot 2 \mathrm{FCS}$. The nineral also goes. under the ${ }^{2}$

Typical specimens of Bornite crystal.
"names of "variegated copper ore"- and " erubescite."
Most of the bornite ore is derived from the shores of Lake Superior, in Michigan, although small quantities of the mineral have been found in Cornwall and among the copper deposits in Derbyshire.
Many forms of "copper glance" are very much akin to bornite in composition, but they are not radio-sensitive. Copper glance, however, is a very abundant ore, and it is the one from which most of the copper used in the electrical industry is obtained.
The impurities which are sometimes to be found in the commercially marketed radio-sensitive crystals of bornite are chiefly silica and copper oxide. Veins of silica are not infrequently found in the body of a bornite crystal, running from side to side of $i t$.

Of course, under these circumstances, the crystal is found to be insensitive, for the internal layer of silica acts as an insulator and prevents any of the current
from passing through the crystal, even although it may have been efficiently rectified at the surface contact.

A Synthetic Substitute.

Bornite crystals which have become insensitive owing to oxidation effects can, in the majority of cases, be re-sensitised by dipping them in molten sulphur, and by subsequently dissolving off the layer of sulphur by immersing them in a bath of carbon disulphide. However, this treatment is troublesome and messy, and therefore it will not appeal to any but the most enthusiastic. crystal users, especially as more permanently sensitive rectifying minerals are so easily obtainable.
Bornite, being a metallic sulphide, is soluble in mineral acids, but the treatment of the oxidised surface of a bornite crystal with acids will not restore the lost sensitivity of the mineral.
A synthetic substitute for bornite can be made by treating a copper alloy, such as copper bronze, with molten sulphur. A small fragment or rod of this material is dipped in a bath of molten sulphur and afterwards heated gently in order to remove the supertluous sulphur.
The resulting product will be found to rectify quite satisfactorily when used in contact with gincite. Its contact pressure will be far less critical, but, at the same time, its distance sensitivity will be inferior to that of a natural bornite crystal.

USEFUL DATA.

Composition.-Double sulphide of copper and iron, $2 \mathrm{Cu}_{2} \mathrm{~S}^{2} \mathrm{Cu}_{2} \mathrm{~S}_{2} \cdot 2 \mathrm{FeS}$.
Appearance.-Coppery-brown when freshly cut; iridescent bluish-black after standing.
Characteristics.-Hard, but fairly brittle. Radio-sensitivity good, but sensitivity not always retained owing to the oxidisable nature of the crystal surface.
Best Contact to Use.-ZZincite.
Source of Mineral.-U.S.A.; also, in small quantities, Cornwall and Derbyshire.
Current Price (in sensitive condition). -10d. per ounce.

TF you are beginning, or starting afresh, do not establish "bright emitters." They do not pay. They will soon be things of the past. "Dull emitters" mean greater capital outlay-though not much-but the working costs are much reduced. Figure it out. I have two magnificent D.E.'s which have served me well for eighteen months. N.B.-I charge my accumulator (6 v .80 amp .) once every two months. "A word to the wise," etc. Less trouble ; much less expense..

Every wireless set needs a soft-haired brush to do its dusting. Dust is the deadly enemy of radio apparatus. Every commercial Marconi ship equipment includes a dusting brush. Every junior Marconi operator has to wield it or the senior wants to know why. Experientia docet. Very wellif the brush will not "get there," what's the matter with a common or garden bicyclepump? Six puffs may save a programme.
L. C.

Every listener who has tried the new LEWCOS Coil is talking about the difference it makes. Some say that this coil in the blue box is as different from ordinary coils as "Glazite" is from the old connecting wire. The LEWCOS Coil embodies high electrical efficiency with great mechanical strength. It gives extremely fine tuning and, having an exceptionally low high - frequency resistance, increases signal strength. Try the LEWCOS Coil for your-self-it makes all the difference! Your radio dealer stocks or can obtain this new coil.

HEWCOS Inductance Coil

The LONDON ELECTRIC WIRE COMPANY \& SMITHS, LTD. Mamufucturers of Glazite Comecting Wine.

Playhouse Yard, Golden Lane, London, E.C. 1

1T is worth while having a Loud Speaker receiver that is always ready for use. A Receiver the ladies can use while you are altering your big set,
one that will, under normal conditions, bring in your local station on a lond speaker, over a minimum distance of 25 miles, or Daventry at 100 miles.
The reproduction from these receivers is exceptionally pure, they are easy to handle, and very economical to run. Ideal instruments for use in the home, one switch, one dial, and one knob-and look at the price.
Complete avith loud speaker and ail accessories as shozn in the illustration, £13:18:6 Receiver on? $£ 8: 2: 6$
Publication No. 120, fully describes and illustrates the full range of A.J.S. Receivers. It costs nothing to you!

HIRE

 PURCHASEMessiss. H. Taylor \& Co., Lid., 4953, Suissex Place, Soulh Kensington, S.W. 7 (near South Kensington Station) are prepared to airange for the sale of A.J.S. Receivers and Lont Speakers on casy payments.

Messrs. Fellows Magncto Co., Led.
Dear Sirs, -
Having taken advantage of your offer in "Radio Times." I purchased two Louden Dall Emitters.
Previously my accumulator (4 vole 60 amp.) needed
charging every 14 days at a cost of 9 d a charge.
Now I am.pleased to say it only needs charging every
6 weeks. amounting to 1 id per week.
Duriag that period I have bcen working my Loud
Speaker for 276 hours. Soeaker for 276 hours.

Loudens every time jar
saithfully.
(J. H. B., Wednesbury):

IS it not time that you had Loudens in your set? They are British throughout-capital, labour, materials-made in London.
Their performance is equal to that of any other general purpose valve on the market; both Bright and Dull Emitters are extremely economical in current; and, finally, they are most reasonable in priceowing to the fact that we sell them direct to you by post-the only way in which you can obtain them.

Louden Bright Emitters are made in two types. The Fy or Plain Louden for Detecting and L. F Amplification and the F2 or Blue Louden for H.F. Amplification. Louden
Emitters are made either for 4 -volt or for 6 -volt accumulators so that if you are at present using bright emitters you can fit Loudens without any alterations either to set or to battery. Both $4-v$, and $6-v$. Loudens are made in Two Types, the FERI for Detecting and L.F. Amplification and the I'ER2 for H.F. Amplification. Kindly be careful to state which type is
required when ordering and to enclose postage as follows:Single valves 4 d . Two or three valves 6d. Four, five or six valves 9 d .
Send for our 40-page lllustrated Catalogue Free.
THE FELLOWS MAGNETO Co., Ltd., Cumberland Avenue, Willesden, N.W,10.
LONDON.
20, Store Street,
Tottenham Ct. Rd.
Museum 9200,

Branches:

$\begin{array}{lc}\text { CARDIFF. } & \text { NOTTINGHAM. } \\ \text { Dominions Arcade, } & \text { 30, Bridlesmith } \\ \text { Queen Street. } & \text { Gate. }\end{array}$ ottenham Ct. R
Museum 9200,

BRIGHT EMITTERS 4.5 to 5 V.

DULL EMITTERS.
<

Filansent Amps. $0^{\prime} \mathrm{s}_{1}$ Anode Voits 40 to 80 .

DULL EMITTERS. 6 v

Filament Amps. 0.1 Anode Volts 40 to 80.

HEY sound very much like atmospherics, though. Only they seem too persistent to be that. Have you any bright suggestions?"
"Any condensers across your H.T. ter. minals?"
"No!-rather an unnecessary refinement, isn't it?"
"Ah, no! You see, every H.T. battery has minor or major spasms when it's in use. Partial polarisation, you know, or a sudden exposure of a larger area of carbon, and things of that sort. That's what's causing this crackling row. You want to put a Mansbridge Condenser across your H.T. Terminals to smooth out the jetks. You'll find that. it will make all the difference!"
"So that's it, is it? What condenser did you say?"
"A Mansbridge. Manufactured by the Mansbridge Condenser Co., Ltd., and guaranteed and sold by Dubilier-THE Condenser people, you know!"
Look for the characteristic lettering"Mansbridge Condenser" on the case ! $0.01 \mu F$ to $2.0 \mu F, 2 / 6$ to $5 /-$
 2 L 0 from the annual dinner of the Electrical Development Association on March 19th will contain some important new announcements cancerning the progress of the Government's electricity schemes.

The B.B.C. has decided upon a special spring series of light orchestral programmes which will commence on April 11th, with Sir Landon Ronald as conductor. This is good news for listeners, many of whom feel that the B.B.C. could provide more programmes of this kind In the past there has been too much emphasis on the special classical and symphony programmes. The great volume of reputable light music outside these categories has been somewhat neglected.

Future Broadcasts.

A surprise programme is being arranged for London and Daventry on April 13th. I have heard enough about this programme to induce me to enter it in my diary ; but it would be wrong to spoil the mystery, so verb. sap.

April 14th is to be Brighton's day on the wireless. The Royal Marine Band will be relayed S.B. from Brighton on that evening, and there will also be features and talks about Brighton. This should do something to remove Brighton's sense of grievance that Bournemouth gets more than its due share of broadcast publicity because of the presence there of a main station. It would be a good plan for the B.B.C. to visit all the British seaside resorts in turn during the coming spring and summer scasons. British holiday resorts have not been getting the patronage they deserve. After the war this was partly their own fault in that their prices were exorbitant. But this has now been rectified, and, although they cannot hope to strike a parity with the French resorts charging at the favourable rates of exchange, they do give good value. The B.B.C. can get good programme material at nearly all British resorts, and it is only right and proper that the resorts should have their " boosts" attendant upon the broadcasting of their entertainments.

The Chenil Galleries are now the favourite venue for special musical programmes that require more echo resonance than can be provided by any of the studios at Savoy Hill. An "extra special" operatic programme will be given from there on April 16th, when it is hoped to secure the services of Riccardo Stracchiari for the occasion.

Mastering the Microphone.

Sir Harry Lauder's second broadcast has been roted even more successful than his first effort before Christmas. The great comedian has devoted a lot of thought to his new medium. and there is no doubt that he has mastered the secrets of the microphone in a manner quite unexcelled by any other artiste so far. I hear that the B.B.C. is so impressed by the performance that new instructions for artistes have been prepared on the Lauder model.

The progressive interpretative classical recitals given early in the London programmes appear to be well received. There

is now to be a rariation of this feature. Beginning on April 12th. there will be a regular ten minutes' poetry reading once a week. The idea is a good one, but I hope that the B.B.C. announcers do the reading. In this connection experiments in the past have usually been carried out by poets or outside critics. There is no doubt a certain degree of general interest in the actual personalities of the poets, but hardly any of them " get across the ether." It is much better for the readings to be done by a trained microphone voice that is also quite capable of adequate poetic interpretation.

Radio Drama Seareity.

I hear the B.B.C. is somewhat exercised about the scarcity of good broadcast drama. The chief difficulty of course is that eminent playwrights cannot be adequately rewarded for broadcast drama. There is little chance of frequent repetition, and there is not enongh money arailable to pay anything like the fees that could begin to compare with stage fees for successful work.
On the whole, I think the B.B.C. would be well advised to create a staff of dramatic adapters-skilled writers familiar with the medium, who would devote all their time to adapting existing material for broadcasting. No doubt there will ultimately grow up a school of distinctive radio dramatists, but for the present the best practical policy would be to take a leaf from the book of experience of the film-play. It would still be true to say of the film that it remains in its pioneering stage, and the vast majority of its successes represent adapted works. The field of literature abounds in material suitable for radio drama, but it needs "digging" and discrimina ting treatment. I would hazard the guess that in two years' time the B.B.C. will have a staff of at least six expert dramatic adapters.

The Committee's Report.

Readers of this page will have found little novelty in the report of the Broadeasting Committee. It has been extremely interesting to follow the tortuous course of these proposals during the past six months. What matters now is the drafting of the Statute which will be the permanent constitution. I have not had much success in my efforts to ascertain the private views of the B.B.C. chiefs, but if I read their minds aright they are a little disturbed about the possible
interpretation in the Statute of the functions of the Commissioners.

An Important Factor.

Something was said in the report about the Commissioners devoting energy, zeal, and time to their work in order that programmes would not come to be regarded as matters of mere routine. Nobody wants programmes to become matters of routine, or to lose their present excellent qualities of originality, enterprise, and novelty. But I have a sneaking feeling that these qualities will not be stimulated or encouraged by the constant intervention of an entirely fresh Board of Commissioners. This is a serious affair for listeners, who should watch its development in Parliament most carefully.
The point is that the correct function of the Commissioners should be to determine broad questions of policr. Once they transform themselves into a programme board, the results are bound to be disastrous. We shall have the logical application of excellent theories, a tendener mutually exclusire of good entertainment in the popular sense. Education and highbrowism will become rampant, and there will be no wholesome deterrent.
This will nerer do, and I am sure the committee did not mean it; but the fact remains that there is ambiguity in the wording of the report on the subject. Freedom of action for the executive, flexibility, and responsiveness to public demand have been outstanding characteristies of the B.B.C., and have been largely responsible for its phenomenal success.

Satisfying Public Demand.

These must be retained at all costs, even at the risk of dispensing with some of the otherwise excellent theory and dignity of a logical constitution. There is one basic consideration that transcends all others in the practical sense.
So far there has been no reference to personalities in the discussion of the future constitntion. The really important factor is the personal one, and it is that Mr. J. C. W. Reith, the present managing director, should be asked to continue with a free hand as at present as the real executipe head of the permanent service. Mr. Reith is known to have made great personal sacrifices to star on with broadcasting.

Within recent months he has tarned down offers of jobs in big business which held out monetary attractions many times as great as he could ever possibly have in broadcasting. But he has held to his post, and there is no doubt whatever that the future of the service depends chiefly on his remaining in unfettered control. In leaving Mr. Reith a free hand the present board of directors displayed their sound common sense and their correct appreciation of genius.

A
COPY of the report of the British Broadcasting Committee has now been published. It is an interesting little document of twenty-two pages and is published by H.M. Stationery Qffice at a price of 6 d . nett. Readers can obtain a copy by writing to Adastral House, Kingsway, W.C. 2. Here is a brief summary of its recommendations:

1. That the Broadcasting Service should be conducted by a Public Corporation, acting as a trustee, and that the Corporation should be known as the British Broodeasting Commission. It is recommended that it should not consist of more than seven or less than five Commissioners, all nominated by the Crown. The first Commission is to hold office for five years. In the opinion of the Committee the Commissioners should be persons of judgment and experience, with business acumen and experience in affairs. The Commissioners should have the power to appoint Executive Commissioners, with a seat on the Board. The Commissioners should be adequately remunerated.
2. The Commissioners should appoint, in co-operation with proper societies, as many advisory committees as are necessary to carry on broadcasting in all its phases.
3. The entire property and undertaking of the B.B.C. as a going concern should be vested in the Commission on the list January, 1927.
4. That the P.M.G. should remain the licensing authority and be responsible for collecting the licence fees.

Little to Qulbble at.

The Committee interpolates here a recommendation that the detection and prosecution of those who conceal their equipment may be vigorously pursued.

The fee of ten shillings for the licence should remain the same, but that all expenditure incurred by the P.M.G. in the execution of his work should be accounted as a first charge in the licence revenue, and after paying the Commissioners an income thoroughly adequate to enable them to ensure a full and efficient maintenance and development of the service, any surplus should be retained by the P.M.G. (Those . last few words are, to our mind, the one thoroughly objectionable recommendation in the report; but we will refer to that later.)
5. The Commissioners of the new Broadcasting Company should be entitled to all the ordinary rights as regards the use of copyright material, whether in use or otherwise, and that it is unnecessary to invest them with any special privilegee orpreference.
6. That the claims of those listeners who desire a large proportion of educational matter, though relatively few in Iondon, should be met, and to raise the standard of style and performance in every phase of broadcasting, particularly in music, and, further, that a moderate amount of controversial matter should be broadcast, provided the material is of high quality and distributed with scrupulous fairness, and that the discretion of the Commissioners in the choice of material should be upheld.
7. That licences should be granted to blind persons free of charge, and that the Commissioners should present an annual report to Parliament.

The above brief paragraphs will give our readers an indication of the main and general recommendations of the Broadcasting Committee of Inquiry.

CURRENT TOPICS.

By THE EDITOR.

The Report of the Broadcasting Committee-the Chief Recom-mendations-Surplus Licence Money-Changing the Staff at Savoy Hill.

On page 6 of the report the Committee elaborate the recommendation as follows:
"We attach the greatest importance to maintaining continuity between the old authority and the new; arrangements must be completed in goorl time, as it would be most unfortunate were there to be any dislocation of the service, or any withdrawal, even temporarily, of the programmes to which listeners have become attached and for which they have paid. The injury caused by any such intervuption might be lasting."

Lady Asquith and Oxford adjusts the 'phones for a bospital patient.
licence fee, not one penny of which will go to the B.B.C., but every penny of which will go into the Surplus Radio Fund. This is not good enough, and before this clause is adopted some organised effort should be made on behalf of listeners to voice a protest on behalf of the hundreds and thousands of listeners in this country who feel, and quite rightly, that when they pay ten shillings for a wireless licence that ten shillings should be (at least, in the main and with the exception of a small proportion, which rightly should go to the P.M.G. for out-of-pocket expenses in collecting licence fees, etc.) for the maintenance and improvement of British broadcasting.

The Question of Staff.

The recommendation that the new B.B.C. should take over the existing staff of the old B.B.C. is one that will meet with universal approval. We do not pretend to be omniscient in the matter of broadcasting; but we think that readers will agree that we, are in close touch, and perhaps in closer toush than our readers, with the personnel of the B.B.C., and we have had opportunities of observing during the last three years (and, in fact, ever since the inception of the B.B.C.) the most constant enthusiasm among the members who constitute the staff of the B.B.C. Headed by Mr. J. C. W. Reith, they have, at times, under most galling criticism and most discauraging happenings, carried on with a fervour and with a sincerity which is deserving of the very highest praise. There is no red tape and Civil Service routine among the individual members of the B.B.C. There may be red tape and there may be routine among the B.B.C. as a whole, but a little reflection will show that that is inevitable with such an organisation, which has a multitude of multifarious duties to perform; but taken individually, both on the engineering side, on the business side, and on the programme side, it will be very difficult indeed for any new broadcasting authority in this country to gather
missioners should be under an obligation to take over the existing staff of the B.B.C.
On the whole there is very little to quibble about in the Committee's report, with the exception of the recommendation that surplus licence money should go into the pockets of the Exchequer. Listeners are probably feeling just what motorists are feeling in connection with the Road Fund raid.

Surplus Money.

We have it on Mr. Reith's authority and if there is anyone in this country who knows what he is talking about in connection with the broadcasting service, it is Mr. Reith-that the B.B.C. can do with an infinite amount of revenue, and if we think about it carefully we shall realise that broadcasting in its present stage is fully entitled to every penny it can legitimately earn.

If the Government adopt the Committee's recommendation that certain surplus moneys go to the Exchequer, it simply means that listeners, at some figure over the million mark, will be paying their ten-sbilling
together such a baind of devoted, intelligent and thoroughly resourceful workers. If the B.B.C. in its new form play any monkey tricks with the responsible and experienced members of the B.B.C. as it is to-day, with the result that the listening public is dissatisfied with the programmes or technique of broadcasting in the future, the responsibility and onus will lie at the door of those who may yet think that they can eliminate certain staff members of the B.B.C. and replace them by other people.

But that is an unlikely contingency, and it is hardly possible that the Government will appoint an authority which will so blindly flout the recommendations of the Committee.
There is very little more to say about the Committee's report. It is eoncise and very much to the point, and, in fact, gives that comfortable feeling to the reader that it has been drawn up by men who have attacked the problem chiefly from the commonsense point of view.

all merely by operat: ing two five-point switches ; no additional loading coils whatever are required. Fig. 1 shows the theoretical circuit, and it will be agreed that it is decidedly unconventional. The four coils are shown radiating from a common centre. This centre point and the four free ends of the coils. are taken to the two switches. Each of the five inductance coil terminations is represented on both switches, although it is very important indeed to note that the order of the connections is varied.

The aerial and carth and detector circuit connections are taken to the centre points or moving contacts of the switches. Thus it will be seen that the coil combinations are obtained by selecting first

THIS little receiver, suitable for reception of both 5 XX and the main and relay stations, introduces a very novel method of tuning. Four coils of carefully chosen values are employed, and the method of switching is such that they can be used singly or in a greatly varying number of combinations. Any one of the coils can be used singly, or any coil can be used in series with any other coil. Further, any coil can be used in parallel with any other coil. Again, single coils can be employed in series with other pairs paralleled.

How Tuning is Accomplished.

Therefore total inductance values can be selected which will be suitable for any one of a range of wave-lengths from 200 or so metres up to some 1.800 or so. And
one coil termination on the one switch, and then another, or others, on the other switch. To bring coils in parallel the switch arm

must be made to rest on two studs at once, thus shorting two terminations. Now it will be clear why the order of switch connections is varied. As a matter of fact the wiring was carefully planned with a view to allowing as many parallel arrangements as possible, for it is these which supply tho graduated internediate values neccssary for fine tuning. It is possible to short aerial to earth by placing the switches in certain positions.

Winding the Coils.

Rearrangements of particular combinations are possible, allowing the aerial or earth to bo taken off at different ends. Not that such will cause great increases in signal strength, but the possessor of a "P.W." "Star" crystal set has the satisfaction of knowing that he can rearrange his inductance values or circuit connections simply by rotating switches, and thus obtain optimum efficiency with little or no trouble. The point worth particular notice is that although two combinations may be discovered which give almost identical wavelength tuning, one may include paralleled inductance and provido lower H.F. rcsistance, which would mean slightly louder signals. But we will have more to say about the handling of the receiver after we have described its construction.

The construction is not difficult. Constructors who are rather taken aback by the apparently intricate circuit need not fear that the wiring is difficult. Everything is quite straightforward, and providing the connections are made in accordance with the wiring diagram and point-to-point check list, nothing can go wrong.

A list of materials and components required is appended. Most of the parts must be made or assembled by the constructor himself. The coils are the first consideration. For these, five spider coil foriners of ordinary size are required. They should have eleven slots and centres of $1 \frac{1}{4}$ in. diameter. The 21 and 34 turn coils should be wound with 26 S.W.G. and the 65 and 150 with 28 S.W.G. (D.C.C. in both cases). Note the numbers; these are
(Continuel on next page.)

THE P.W. "STAR" CRYSTAL SET.
(Continued from previous page.)
very important. The formers can be cut down after the coils are wound if desired, although it doesn't matter if they are not.

Now the 150 coil is really two coils, each of 75 turns, clamped together. These coils must be wound in opposite directions : one
clockwise and one anti-clockwise, and in this way they must be mounted with their two outside ends joined together and the centre ends left for external circuit con: nections.

Work can then commence on the panel. A panel dril. ling diagram is given, although a slight variation can be made if it is de. sired to employ a different type of crystal detector to that one specified. The drilling of the holes for the switch studs must be carried out very care. fully indeed, for misalignment may cause faulty action of the switch. A compass or dividers can be used to centre accurately. while fairly deep centre punch "starters" should be made be. fore drilling. See "For the Constructor" No. 8, under "Radiotorial" heading, for useful tips concerning ebonite working.

Before mounting terminals, detector or coils, the switch arms and studs should be fixed. The four end stops should be left until the switches are working smoothly. Remember, $i t$-is necessary to get the studs smoothed down by means of file and sand-

paper until the moving contacts ride smoothly and make contact simultaneously with any two adjacent studs. When this condition is obtained satisfactorily, the stops can be mounted.

The Combinations Available.

The 21-turn coil is held in position bencath the panel by bending back one of its sections, or at least $\frac{1}{2}$ in. of it, piercing a hole through this and holding it with the aerial terminal, which thus serves a double purpose. Similarly the 34 coil is held by one of the 'phone terminals. Brass strips, about 23 in $\mathrm{x} \frac{1}{2}$ in., are required for fixing the other coils. Two such strips should be cut and holes drilled at their ends. Brackets are then formed by bending these strips, as shown in the photos, nuts and screws holding the coils in the centres to the brackets, and the brackets to the panel. One of these coils is, of course, really two coils clamped tightly together.

The crystal detector and remaining terminals can then be mounted. The wiring should be carried out with Glazite, and must be strictly in accordance with the wiring diagram. Connections to the switch arms should be made with short flexible leads, enough length being provided to allow for "play."

After this the set is finished except for panel transfers, and nothing remains for us but to say a few more words about the tuning. We will not deal with this in detail, as we feel most constructors will enjoy the experience of experimenting with the various combinations. Anyway, any one coil may be used singly by placing either the left-hand switch on No. 5, or the right-hand switch on No. 10, and the remaining switch on any one of the other four studs-i.e. $1,2,3$, 4 , or $6,7,8,9$. Optimum signals may rèsult right away, but if not there are dozens of other arrangements available. To place
(Continued on page 163.)

any one coil in series with any other one, bring one switch to any number except 5 or 10 , and the other on some other number. Refer to diagram for orders of switching. A paralleled pair is obtained by placing one switch on 5 or 10 and the other on two studs simultaneously, the lange being available by alternately varying the functions of the switches. Serics-parallel combinations are made by taking any stud on either switch, except 5 or 10 , and shorting

 forming in effect one large coil.
on paper, but actually it is a very simple procedure. Haphazardly twiddling the rwitches without any system whatever invariably brings in the local station and 5 XX with excellent strength. But it is very fascinating to work out the order of variations. It should be remembered that the effect of placing two coils in parallel is to obtain the equal to a coil slightly smaller than the smaller coil. For instance, a coil of 21 turns in parallel with one of 34 turns gives the inductance of a coil of 15 or 16 turns. When coils are in series the effect is of a coil cqual in size to both coils added together, thus the 65 in series with the 150 equals a coil of about 215 turns, and so on.

But as we mentioned before, constructors need not worry too much about this if they are not interested. Signals will come in easily enough without studying
two studs on the other switch and alternating as before. Finally, placing switches to 5 and 10 shorts aerial to earth.

It looks all very involved and complicated
 the operation of the recciver closely, and strength and purity will be all that can be desired of an efficient crystal set.
The adaptability of the receiver is its main feature it must be remembered. It is the sort of ses that will operate well on varying kinds of aerial. It will provide signals louder than most crystal sets in many cases, but we do not claim that it is a " loud-speaker crystal set." Excellent ranges of reception have been accomplished although here again we consider it polite to bo reserved in our claims.

In that 5 XX is obtainable without additional switching or loading the set should be considered an attractive proposition.
We will not be surprised if many readers obtain exceplional results, in fact, we will go so far as to say we anticipate that this will eventuate.

Letters from reader: discassing interesting and topical wireless events or recording unusual experiegces are always welcomed, but it must be clearly understood that the publication of such does in no way indicate that we associate ourselves with the views expressed by our correspondents, and we cannol accept any responsibility for infermation given.-Editor.

MORE PRAISE FOR "CHITOS."

The Editor, Popular Wirelegs.
Dear Sir,-I should like to add another one to the list of your readers who have thanked you for your Chitos 2."
Although some little perseverance is required to tune it. I think the result is well worth the trouble, as I have been able to log the following stations:
Kied, Brussels, Bremen, Hanover, Madrid, Manchester, Bournemouth, Dublin, Hamburg, Neweastle, Mitnster, Breslau, Glasgow, Kome, Stocklolm (?), Radio-Berne, Belfast, Radio-Toulouse, Stuttgart, Leipzig, P.T.T. Frankfurt, Birmingham, Munich Aberdeen, Berlin (505), Croydon, Hilversum, Konigs-, wusterhausen, Daventry, and Radio-Paris.
It might interest some of your readers to know that I have put on a wave-trap which enables me to cut out 2 LO and tune in Manchester, Bournemouth, ete.

My acrial is 50 ft . twin, 22 ft . high.

Thanking you ouce more.
Yours faithfully,
NORMAN E. D. GODEMARE.
00, Weodbine Grove
Penge, S.E.

MORE " UNIDYNE" RESULTS.

The Editor, Popular Wireless
Dear Sir, -Having read from tisne to time of oncvalve "Unidyne" resulte, ithought my own might valve "Unidyne" results, 1 thought my own might
prove interesting. I find that by putting a 0.003 prove interesting. I find that by putting a condenser across the 'plones a great increase fixed condenser across the phe
I volume and range results.
I have logged all B.B.C. stations with the exception of Edinburgh, Eull, and Pl ymouth, and the following of Edinburgh, Euil, and Padionth, and the Houmbing Munich, Stuttgart, Bernc, Brussels, Rome, San Munch, Stuttgart, Bernc, Brussels, Rome, san Sebastian, Munster, and several others whose callsigns I have not been able to muderstand, Most of these came in at excellent phone strength, particularly Dubli
cbastian
My only trouble is hand capacity effecta, but I hope to eliminate this eventually. This is my first attempt at making a valve set.

Yours faithtully
JOhn J. Camter.
Lubenham, Market Harborio' Leicestershire.

THE R-VALVE TRINADYNE,

The Editor, Popular Wirfless.
Dear Sir,-As in ardent reader of poptlar WineIESS, I wish to thank you for publishing sucly a fine set as deseribed in your paper on December "19th, 1925, namely "A Two-valve Trinadyne Recelver.", İ have been watcling to see ti any constructor would report on this circuit, and not seciug any I thought, whilst listening to mine, that I must write and let you know what a splendid sct this is. Being only quite a novice at wircless I built this receiver exactly as described. I cannot say I have received any foreigu stations as I am quite satisfled with 2 L O. Results being both loud and clear, and the set silent in working. A friend of mine, an owner of a five-valve set, says it is the finest he has heard. So the best of luc and congratulations to "P.W." and all its staff.
54, Mayfield Avenue,

West Ealing, W. 13 .

TRANSATLANTIC TELEPHONY TESTS.

The Editor popular wireless.
Dear Sir,-Re "Rugby's Chat with Amcrica" in a recent "P.W.." I sliould like to hear readers results. At 2 p.in. one day I plugged in the nearest coils available-e.g., 1,250 in the acrial, and 1,500 in anode of 4 -valve siraight $1-Y-2$.
H.F. valve, D.E.6B, 30 volts on plato; Det. valve, D.E.S, 72 volts on plate; 1st L.F. valvo, D.E.5, 102 volts on plate, G.B. $4 \frac{1}{2}$ voits; 2nd L.F. value D.E.5A, 108 volts on plate, G.B. 21 volts: loud speaker, C.A.V. standard.
Rugby was soon picked up, but it was quite obvious that coils were not correct, but they were the nearest at hand.

Results: New York with above coils was almost as strong as Rugby, and it is a peculiar fact that when New York gave the name of the speaker it was clear at once, whercas Rugby was noticed to ask for the name again as they had not got it clear. One other point noted was, that of the speakers from Now York, it would seem that those who speak from the throat are heard much more distinctly than those who secn to speak irom the lips.

Yours faithfully,
C. Bonxe
207. Shortlands Road, Sittingbonrne, Kent:

W ${ }^{11}$
IDESPREAD interest has begn created in the United States by the announcement there of a contest for the design of an efficient short-wave receiver, and the prizes to be distributed among the successful entrants total $\$ 500$ (over a hundred pounds). The contest, which is being sponsored by "Radio Broadcast Magazine" and the National Carbon Company (manufacturers of Eveready batteries) under a co-operative plan, was originally scheduled to close on March lst, 1926 . Various suggestions which have been acted upon, have caused the closing date to be advanced to April lst, by which date all competitors in the United States must have submitted a complote descriptive manuscript, etc., of the receiver they wish to enter.
The writer, by special arrangement with the officials of the contest, has been successful in having a special plan agreed upon whereby those in Europe interested in contesting, providing they are Popular Wireless readers, are granted special privileges as regards the closing date. This plan is as follows: Popular Wireless readers' sets will be considered providing they are shipped from Europa on or before April lst. Intending competitors are required to fill up the accompanying coupon and send it to the headquarters of the contest immediately, so that it will reach the offices of "Radio Broadcast Mayazine" by April 1st. The coupon is merely an intimation that the signatory will submit for consideration a short-wave receiver of the required specifications on or before April lst-that is, to leave Europe on or before April 1st.

Salient Features.

Steps will be taken at the American end to smooth out any possible difficulty with the Customs when the receivers arrive at New York, and no delay is anticipated in this respect. It is felt by the judges that by making the competition one of international aspect, its value will be considerably enhanced, and competition will naturally be much more keen than if it was merely a national affair.
"One of the interesting things which the contest has brought forward is the fact that up to this time there has been little or no novelty in the design and construction of short-wave receivers," says Edgar H. Felix, who is one of the judges. "The conventional types have given satisfactory results and, consequently, prior to this contest, the stimulation to designing better receivers has been lacking.
"According to present indications, among the contenders for the prize money will be super-heterodynes, regenerative neutrodynes, and even the much-neglected superregenerative receiver. Certainly something worth while should be brought forward. In practice, however (this applies to America), leinartz receivers are being used almost to the exclusion of other typres. Attention is called to the basis of points upon which the prize is to be awarded. Contestants should observe that a paramount requirement is that the receiver shall be adapted by its clesign and construction to practical amateur rellying. The only circuit limitation imposed is that radiution be reduced to a minimum. Othêrwise, any type of receiver which will function with the utmost sensitiveness, stability and reliability is eligille for consideration.
"Hence, study the receiver which you

submit from the standpoint of every factor contributing to the schedule of points. If it is weak in any particular respect, give the matter careful study. With these high frequencies, a slight change in the position of a coil, the substitution of a capacity or resistance of a different value, or, in fact, any minor adjustment may make a marked difference in performance."

D.X. Telephony Reception.

Interest in short-wave reception seems to have advanced exceedingly rapidly in England and other European countries during the last year or so, and the judges in the competition fully expect to have a hard job in deciding whether to award the first prize to a European or an American made set. A year or so ago, perhaps, the European would not have been considered as a serious competitor, but now the reverse is the case. Short-wave DX feats are just as common in England, for example, as they are in the States-probably more so. Such notable feats as those of Mr. Gerald Marcuse and Mr. Simmonds, to mention only two offhiand, are envied by quite a few "hams" in America. The writer has had the pleasure of listening to Mr. Marcuse talking to a Newfoundland amateur on 'phone: In this instance, I listened to Mr. Marcuse's cheery voice, probably seeming to the listener twice as cheery as it really was (if that were possible), for it was a voice from " Blighty," from a point located on Long Island about twenty-five miles out of New York City. Audibility was about R2-fluctuating.

How Marks Are Awarded.

To get back to the issue in hand, though. As mentioned above, all sets entered in the short-ware competition must be shipped from Europe to bear a postmark of not later than April Ist. This should give intending competitors about ten days from the time this announcement appears to get the sets they wish to enter into shape. All sets submitted will, of course, be returned prepaid. The writer will be responsible for this. The necessity for careful packing cannot be over-emphasised. Remember, your sets will have to travel nearly three thousand miles over, perhaps, the roughest of seas. Another point. Note that one of the stipulations is that all receivers must be constructed with standard parts. In this instance, the writer would suggest that valve holders capable of taking American valves should be used. I have seen such valve holders, of the low-loss type, advertised in Popular Wirelifss. The actual receptacles for the valve legs are mounted
on the end of short springs, if I' remember correctly, and are therefore adaptable to any four-prong valves. The basis of points in the contest is as follows:
Workmanship 15
Simplicity of handling 20

Ease of calibration

Freedom from hand capacity
Independence of tuning and re: generation
Low cost
Use of standard or easily constructed parts
Performance
Overall amplification of signals
Use in relaying
Ability to use break-in
Ability to cover all amateur bands Appearance
Method of avoiding radiation

Total

Much comment has resulted from the insistence on the non- radiating feature. Certainly, the sponsors are awarc that there are differences between continuous-wave reception and broadcast reception. The enjoyment of a broadcast entertainment can be completely ruined by" a nearby radiating receiver, but continuous-wave reception is not necessarily impossible within range of a radiating receiver. Contimous-wave reception is not the only thing to consider, however. Short waves are also used for rebroadeasting purposes in America, and for supplying programmes to broadcasting stations from remote points. A few hundred radiating receivers on slort wave-lengths, used for rebroadcasting purposes, would be sufficient to make these short-wave radio telephone links practically inoperative,

THE CONTEST.

Obsecr. -The object of this contest is to aid in the development of improved short-wave receiving apparatus, so that the possiblitities of higher frequencies may be more effectively studied.
Prizes.-First prize, $\$ 250$; Second prize, 8150 Third prize, $\$ 100$. Only one prize to a contestant ELigiblitr. - Anyone interested in short-wave reception is eligible t_{0} compete, though no prizes will De given to manufacturers making short-wave recelvers or parts therefor.
CosDrioxs- Each contestant miust submit a complete receiver, which receiver should be adapted to the entire short-wave band from 8.566 to $1,999 \mathrm{ke}$. althougli this may be accomplished by interchangeable colls.
Arrangements have been made whereby the winning recelver, whether European, American. or Australian, etc., will be fully described in Popular Wireless. The decision to choose popular WireLESS to co-operate in announcing this contest was arrived at as a result of the whole-hearted and enthitsiastic support that this magazine has given to matters pertaining to short-wave advancement. 1 is felt that the excellent short-wate articles which appear in these pages from time to time are doing more than anything else in European countries to encourage the cmbryonic short-wave enthusiast. The borrowed slogan, "Eventually, Why Not Now?" seems especiallr beftsting the policy of the magazine. Now, then. Popular Winezess readers, look to your laurels !

It is not necessary to submit a construdional article with the set. A covering letter giving a fery details of its circuits, capabilities, etc., and the full name and address of the competitor is all that is required. ThE S.W. COMTEST COUPON the Radio Broadenst Eveready short-wave contest. I will submit ny set before April 1st, on the understanding tlat it will be returned. I am a POPL Lar Wtreless reader.

Name

AdDress

[^1]
The True Straight Line Frequency Variable Condenser

is the

 IGRANICPACENTA high-grade variable condenser with low-loss characteristics, a true straight line frequency curve and negligible minimum capacity, Fixed and moving plates are of brass, riveted together and
 soldered, ensuring permanent alignment and sound electrical connection. Rigid channel-shaped framework in continuous electrical connection with moving plates prevents hand-capacity effects.
Only two small pieces of highest quality insulating material are used, so arranged that the absorption losses are negligible.
Dust-proof bearings result in smooth, silky movement. Positive stops at minimum and maximum are contained within the bearing. Single or threehole fixing is provided for. Two condensers can be mounted to form a dual with single dial control.
PRICES: 00035 mfd - $14 / 6$ - 0005 mfd - $\mathbf{1 8 / 6}$ All repufable dealers sfock thein. Write for List P $\mathbf{0 0}$.

149. Queeu Victoria Street, LONDON.

Absorbs ρ shock-protects the valves

Valve sockets and springs are locked together by a mechanical process, making a definite and permanent connce tion. Bakelitc mouldings, nickel silver springs and phosphor bronze value socket Nickel plate

You know it's good because of the name 'LOTUS'
Don't have your valves spoiled by shock. The Lotus Valve Holder has been specially designed to counteract the microphonic elements that are so injurious to the delicate valve filaments.
The unique and original springs of the Lotus Valve Holder absorb any shock and eliminate all microphonic noises. Protect YOUR valves by fitting the Lutus Holder.

VALVE HOLDER
From ail Retiable Radio Deaters GARNETT, WHITELEY \& Co. Ltd., Broadgreen Road, Liverpool. Makers of the famous LOTUS Coil Holder.

Gfigures to Remembeì

The Sweep

He w̌ent about with his long-handled brushes crying "Sweep, Sweep!" and he made all the difference to your fire. SIX SIXTY VALVES make all the difference to your set; they hold a potential store of volume at your bidding, while they ensure perfect quality of tone. The secret of this wonderful difference is to be found in the extensive research and perfect workmanship expended on each particular valve.
Not only has this research been the means of ensuring a wonderful purity of tone and increased power, but due to our success in considerably reducing filament temperatures, the life of 660 Valves has been immeasurably increased. Every valve of our new range is specially designed to carry out its particular job; they are all stamped with the Six Sixty mark of PERFECTION OF QUAEITY.
If you want a general purpose valve you have the S.S.I. This valve can be used in any position in a set, either as Detector, H.F. Amplifier or L.F. Amplifier-a useful valve as a spare. Although a bright valve, its current consumption is only 66 amps, a figure which compares very favourably with the average Bright emitter to-day.

For Dull Emitters you have the rest of the Six Sixty range to choose from. The S.S. 4 is a power amplifier designed to operate the largest types of Loud Speakers, giving remarkably pure reproduction

BETTER BY SIX TIMES SIXTY

and nowReal Economy！

How long do your accumulators last？Would you like to get t wice or thrice the life out of them ？By using the new all British Lustrolux Valves－－you can have a 2 －valve set using 12 amps ．only，or a 3 －valve set consuming ${ }^{4} 6 \mathrm{amps}$ for loud－speaker results．The Lustrolux Eico－ nomical Combination consists of 2 volt 06 amp．H．F．and L．F．with 2 volt 34 amps P．V．，and is the most economical set of talves for any circuit．
If your accumulator is 4 or 6 volt then parallel it up and get the full benefit of each charge．You should have no voltage loss on resistances or rheostats and the quality of your reception will be purer and clearer．

The H．F．is noted for its selectivity and long range，and the L．F．for its volume of clear and distortionless reproduction．
Lustrolux Valves are the product of deep and keen research．Highly efficient organi－ sation and scientific methods of manufacture enable us to market these ralves at the low prices shown．

The Better British Valve
Send for Catalogue＂A．＂
Agents wanted everyivhere．
Showcards and literature free for the asking．

LUSTROLUX LTD．Wrest Macolingtent

The Topical Illustrated Sports Weekly

ALL SPORTS is the paper for all who love sport for sport＇s sake or for those who specialise in Boxing，Football，Tennis，Racing，Hockey， etc．

Readers of ALL SPORTS always have the very latest inside information on every movement in the realm of sport，for the articles are always up－to－date and written by the biggest authorities．
Those who like sporting fiction will find an instalment every week of a dramatic story by a well－known writer．Buy a copy of this fine paper TO－DAY．Ask for－

Build the＂Resistapure＂

described in this issue．

F you decide to build the excellent＂Resistapure＂ Loud Speaker set described in this issue，it is not necessary to get the parts from several shops or manufacturers．You can get them all from us ready to mount on the panel－and if required the panel can also be supplied ready drilled and engraved．Take advantage of this service to－day．

List of Parts

Peto－Scott S．L．F．Condenser， 0005 mifd ．
2－way coll Holder（roller pat́tern with long handie）
Peto－Scott 30 ohms Rheostats
Benjamin Anti－microphonic Valve Höders

 60,000 respectively
Igranic Key Switch
Hellesen 9 y ．Tapped
Battery
Terminal strips，drllled and engrave
T．C．C．Fixed Cóndensers， 06 mfd．
Dubilier 5 meg．Grid Leaks
122 ft lengths Square Tinned Copper Wire，Flex，screws，et
1 Pllot Panel， 18 x 8 x ${ }^{\text {la }}$＂drilled and engrared \qquad
 Parts for＂Star＂Crystal Set 2 Rotary Switches（ $11^{\prime}{ }^{\prime}$ radius）$\ldots \ldots . .20$
 Hasket Cotls（ready wound） 0
5
4
4
4
6
8

31 POST

－FREE
A coply of the
5c．page Pilot
Manual will
veho send zad．
in stamps to
cover postage
Send also for
Send also for
new 48－page
new 48 －page
Catalogue of Components．
PILOT

$$
\square
$$

4 Mransfer etc．
… ．．．．．．．

PETO－SCOTT CO．LTTD
Head Office，Mail Order and Showroom ．
$77, C I T Y$ RD．LONDON．E．C．I． Branches－62，High Hoiborn，London．W．C．1 Wa：．
thamstow：230，Wood Etreet．Plymouth： 1 ，Bank of England Place．Liverpool：4．Manchester Street． at the same time as the
panel a－Mar． coni Royalty of $12 / 6 \mathrm{per}$ valve－holder must be re． mitted wit
order．

SERVICE ENSURES SATISFACTION

P．S． 4865.

Price
bear inspection and stand constant use．They are 3／－ guaranteed to give efficient performance for a period of three years． BRETWOOD Ltd．12－18，London Mews，Maple St．，London，W． 1

Complete Amplifier 38^{\prime}

Good News for Crystal Set Users：
The Latest Wireless Aehievement．

LOUD－SPEAKER RESULTS from CRYSTAL RECEPTION on average strength． NO | Valves |
| :---: |
| A．c． |
| H．Butatoricts | The

MAGNETIC MICROPHONE BAR AMPLIFIER
（Prov．Patent 8574／25．）
A Boon to Deaf Persons．

IS YOUR AERIAL SAFE?
 By A MASTER MARINER.

HAVE been so repeatedly asked by my radio friends, both amateur and professional, "Please show me how to splice this!" that I have decided to write a short article on the subject. The simple knots and splices described here have been tested on shipboard from time immemorial, end readers may be sure, that if these directions are followed, the result will be a

knot or splice that will last as long as the rope, and one that will nerer slip, and let you -and the aerial-down.

Most rope is made up of three strands, usually right-handed, therefore I will confine my remarks to that particular kind.

How To Splice.

About the most useful splice for staying masts, and for insulators and spreaders, is the eye-splice. Push the rope through

the insulator, or round the thimble, as the case may be, and unlay the end for about three inches, placing the end you have unlayed across the standing part, at the distance you require as in Fig. 1.

Choose the middle strand, and tuck it under the strand in the standing part that it is nearest to, and tack against the lay, that is to the left, and pull tight. Do the same with the left-hand strand, being careful to avoid getting under the same strand as the first one. The right-hand strand calls for the same procedure, thus completing the first low of tucks. To check

the accuracy of your woik, no two strands shculd come out in the same place.

For the second row, tuck each strand over the one next to it, and under the following one: in other words, over one and under one, always against tho lay of the rope. Do this with all three strands, and again verify your work as before. Two rows of tucks are ample, so cut of the loose ends, and the job is finished.

It often happens that a glyy carries away, and it is required to join the ends togethel again. The short-splice is the one to use in this case, and is very simple. First, cut off about six inches on either side of the break to get rid of the weak parts. Open out the strands on each end for about three inches, and clutch the two sets of strands together, just as you interlace the fingers of one hand with the fingers of the otlier (Fig. 2.) Then start to tuck, taking each strand over the one next to it, and under the following one. Work one side of the joint first, before starting on the other side (Fig. 3). Two tucks each side are sufficient, then cut off the loose ends.

If your mast is tapered, a simple method of fixing the top ends is by means of a cut splice. Take the two lengths of rope you have for the side guys, and lay the ends parallel to each other (Fig. 4). Measure your mast where the guys are to fit, and make a splice that size by simply splicing the strands of each end into the standing part, in exactly the same way as making the eye splice. The result should look like Fig. 5, and it can be slipped over the top of the mast, when it will fall into the required position.

Some Useful Knots.

If your halliards have carried away, and you wish to make a splice that will travel through the pulley at the top of the mast, the long splice will meet your requirements.

First, cut away about six inches from either side of the broken portion to get rid of the weak part. Unlay each end for about six inches, and clutch them together as described for the shor't splice. Then select any one strand and commence to unlay it back along its own part, filling up the gap by laying in the strand from the opposite side that is nearest to it. Do the same with the remaining strands till you only have two left. Knot these two together with a single overhand knot, and tuck each strand once through the standing part. Tuck the other loose ends the same way (Fig. 6), and cut off short.

If you are in a hurry and haven't time to splice your rope, use a good knot. The bowline can take the place of the eyesplice, and is made like this. Take a fairly long end of rope and make a loop, holding same in your left hand (Fig. 7). Take the end in your right hand and pass it up through the loop, round the back of the standing part, and down through the loop again.

I think the most simple of all knots is two half-hitches (Fig. 8). Pass the end of the rope round the thing you want to secure, and

bring it up and over the standing part and through its own loop from the back; repeat the process and the knot is complete.

To have a lot of fag-ends of rope fraying away is most untidy and not economical, so here is a method of curing it. Open out,

the ends for about four inches, then bend the middle strand over towards you. Cross the left-hand strand in front of it, then push the right-hand one through the little loop formed by the midule strand. Pull all strands well tight, then tuck each strand under one and over one strand in the standing part, just the same as in previous splicing, against the lay. Two tucks are sufficient, then cut off short (Fig. 9).

Compensating
EFFICIENCY is very necessary this foor reception, whether this be of local or distant stations. Witis a small unsereened acrial much excellent reception can be obtained with a good circuit.
A good eircuit, however. is as much alependent upou rellable compoments of efficient design as upon its arrangement being suitubly sensitive and controllable.

a poor aerial

Giren an eflicient circuit-build it with the best that money can buy with the case of variable can bily condensers insist pariable tuning N.P.L. measure the losses of the J.P.L. measure the losses of the J.B. 0005 mid . to be 02 ohms at fact which designates \mathbf{J} : V ariable Coudensers to be without pcer. OBTAIN FROM YOUR DEALER

CAXTON 4-VALVE CABINET

Made for Editor of Wireless Magazine for Set "As good as money can buy" described in issue February, 1925.

Cash with Order. Fumed Oak
£1 50
or Real Mahogany polished
£1 140
With delachable recess fitted Base Board to mouni 21 in. by 7 in. panel to slide out of Cabinet frent. Extra $10 /-$ with two beaded front doors totally enclosing fitted panel. Cabinet overall lengith $22 \frac{1}{2}$ ins. Width $8 \frac{1}{2}$ ins. Height 9 ins. Polished with the new enamel that gives a glass hard surface that cannot be soiled or scratched. SENT FREE.-Catalogue of standard Wireless Cabinets in varicus sizes and woods. Special Cabinets made to customer's orders, PACKED AND DELIVERED FREE IN U.K.
CAXTON WOOD TURNERY CO., Marliet Harborough

Eve:y time you take up the 'phones, if you have a Neutron Permanent Detector, you receive the fullest possible volume of Broadcast, without any tiresome manipuhation of catswhisker. No "searching" for senstive spots; no BREAK in the programme.
Every Neutron Permanent Detector is tested on actual broadcast, at 130 miles from Daventry. The crystals consist of arsinite in contact with telluride of silver, prepared under the direction of Professor Vautin-and every Detector is fully guaranteed.

NEUTROT
 Permanent Detector
 Patent No. 4543 s .

Sold by Rrdio Dealers everymineve.

Neutron Magnum Permanient Detector. Massive and handsome in appearancefine finish, ebonite, 5/6
and nickel.

Neutron Standard Permanent Detector.
Fits standard Clips. 4/6

In case of difficulty, sent post free for price, on request to Neutron Ltd., Sentinel House, Southampton Row, London, W.C.1.

Nentron Pantector Permanent Detector, for panel mounting. Fixed on panel by a
single hole

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Transmiss'n G.M.T. O.M. T. \(^{\text {OL }}\) \& Station and Call Sign \& \[
\begin{gathered}
\text { Wave- } \\
\text { length in } \\
\text { metres }
\end{gathered}
\] \& \[
\begin{gathered}
\text { Frequency } \\
\text { vilo- } \\
\text { cycles }
\end{gathered}
\] \& Days of the Week \& Nature of Transmission \& \& Station and Call Sign \& \[
\begin{gathered}
\text { Wave- } \\
\text { length in } \\
\text { metres }
\end{gathered}
\] \& \begin{tabular}{|c}
Trequency \\
kilio- \\
cycles
\end{tabular} \& Days of the Week \& Nature of Transmission \\
\hline .10 14.30 \& Voxha \& 50585 \& 549 \& \& \& 17.45 19.15 \& Mo \& \& 207 \& \& \\
\hline 14.15 14.45 \& Hanburg* \& 392 \& \({ }^{764.3}\) \& Su \& Es \& \({ }_{18}^{18.00} 18.180\) \& Radio: \& 301.5 \& 985 \& Dail \& \\
\hline 14.30 15.25 \& Voxhaus (Beriiu) \& 5058576 \& 594 : 50.1 \& Sainy \& concer or Children. \& 18.0019 .00 \& Hamburs* \& 339.5 \& 764 \& Sunday \& Concert. \\
\hline 14.3015 \& Frankfurt-on-Main \& 470 \& \& Weekdays.. \& Children \& \({ }^{18.000} 19.0000\) \& - Stuttgiat \& \({ }_{515}^{446}\) \& 612
582

520 \& Weekidays \& n.,Dance, Newss, Talk

\hline 14.4515 .30 \& Munich \& 340
485 \& 818 \& Weekdays.: \because \& Concert. \& 18.0018 .30 \& Stuttgar \& 446 \& ${ }_{67} 1$ \& Noid \& Con.,Dance, ${ }^{\text {a }}$ (w, Tak

\hline 14.4516 \& Reval \& 350 \& 6.0 \& \& Testing r \& $18.00{ }^{20.00}$ \& \& 1006 \& $\begin{array}{r}300 \\ 1000 \\ \hline\end{array}$ \& \& oncert

\hline 15.00 \& Frankfurt-on-Maio \& 470 \& ${ }_{6}^{638}$ \& Sundiay \& Children \& 18.0020 \& Brann \& 730 \& 410 \& \& ", or Dfnce.

\hline 15.0017 .30 \& R \& ${ }_{301.5}^{44}$ \& 005 \& Daily \& Con.,Chat.,'Chil. (Wed.) \& 18.0020 \& Madria (1 \& 392 \& 763 \& Mon., Th \&

\hline 15.0016 \& P.T.T." (Ecole Supérieure) \& 458 \& 655 \& Saturday .. \& Concert. \& \& Barcelona (E A J 1) \& 324 \& 9206 \& \&

\hline ${ }^{15.00} 16$. \& Marseilles \& 459
350 \& ${ }_{858.6}^{626.3}$ \& . \& \& ${ }_{18.10}^{18.10} 18$ \& Vienna"(0 T W W\%). \& 400
400 \& 750 \& Weekdays (see \& esting

\hline 15.0016 \& Toulouse \& 280 \& 1071 \& " \& Relaying F.P.T.T. \& 18.15 ${ }^{22}$ \& \& \%30 \& 668 \& Daily \& , Nemes, Concert, etc.

\hline 15.0016 .30 \& Bordeau \& 410 \& \& ek̈day ëenings oniy \& \& 18.15 18.40 \& \& 483
382 \& 648
785 \& Daily \& rt,

\hline . 00 \& P.TT ${ }^{\text {P }}$ - \& 458 \& 655 \& \& Lectu \& 18.1519 .10 \& Eiffel 7 \& 2650 \& 113.1 \& \& \%s.

\hline 15.0017 \& Stuttgart \& 44 \& 672 \& Dail \& Con \& 18.3019 \& Barcelo \& 324 \& 926 \& Sunday \&

\hline . 0015 \& Eiffel Towe \& \& \& Weekdays.. \& \& 18.3019 \& Munste \& \& \& Dati \& Lecture, Concert. ${ }_{\text {Govic }}$

\hline 00 \& Berlin \& 5 \& ${ }^{594}$ \& Sunday \& Concert. \& 18.5019 .00 \& Burcelona \& 324 \& 920 \& Weekdays \& 相

\hline 15.0015 .15 \& Lyng \& 2400 \& 125 \& \& News \& 18.5 \& Eiffel To \& 2050 \& 113 \& \&

\hline 15.10 11.30 \& Vienn \& \& \& Weekdays \& \& \& Seville (Riva) (E A \& 3000 \& 1000
783 \& Daily \& rt.

\hline 16.30 \& Graz \& 399 \& \& Tues., Wed., Fri. \& Relays. \& 19.00 \& Ryvan \& 1160 \& 259 \& Wednegday, Thursday \& Orch., Conc. Newsis

\hline 1516 \& Ha \& 392. \& 4. \& Sunday \& Oper \& \& \& 1350 \& $$
\begin{aligned}
& 785 \\
& 222.1
\end{aligned}
$$ \& Wail \&

\hline ${ }_{15.30} 15.17 .15$ \& Bremea \& ${ }_{410}^{27}$ \& 10732 \& siturdar \& Rencert. \& $19.00{ }_{21.45}$ \& Stuttgar \& 440 \& \& \& Concert, News, Talk.

\hline 15.30|19.1 \& Madrid (E A J 4) \& 340 \& \& Tues., Wed., Fri., Sit. \& News, Lect,.,or Concert. \& \& Barcelona (EAJ J 1) \& $\begin{array}{r}324 \\ 880 \\ \hline\end{array}$ \& $$
\begin{aligned}
& 926 \\
& 353
\end{aligned}
$$ \& Sunday \& ®.

\hline 15.30 16.30 \& Berlin \& 5058.5 \& 594:521 \& Dail' \& Concert. \& 19.0021 .10 \& Berlin \& $503 \mathrm{de5} 56$ \& 594:521 \& \&

\hline .30 17. \& \& 5 \& 594 : \& Sunday \& \& $19.00{ }^{2} 2.00$ \& Hambur \& \& \& Sundry \&

\hline 15.30
15 \& Leipzip . \& \& 663.2 \& Wednesday \& Children's \& 19.00 \& Copenhage \& ${ }_{340}$ \& ${ }_{882} 8$ \& Thuirsday, \%riday, sat \& Lecture, Con., News,

\hline 16.00 \& Eberre \& ${ }_{280}^{240}$ \& 1249
1071 \& Saturday ${ }^{\text {Sunday }}$: \& Concert. \& $19.00{ }^{2} 2.15$ \& Cadiz \& 360 \& 832.8 \& Weekdays \& lusic, Dance.

\hline 16.0017 \& Zuri \& 515 \& \& Dal \& Orche \& 19.0019 .10 \& Radi \& 460 \& \& Daily \&

\hline ${ }_{16.00}^{16.00} 17$ \& Dress \& 416 \& ${ }_{721}^{1020}$ \& ${ }_{\text {Then }}^{\text {Thatur }}$ \& Con \& ${ }_{19.10}^{19.05} 22.40$ \& - Cartag \& ${ }_{463}$ \& ${ }_{648}^{895}$ \& Sünday \& Concert

\hline .00 17.30 \& \& 416 \& 721 \& Wedn \& Dance \& 19.10 irreg. \& Hilvers \& 1050 \& 285 \& Weelida \& Police News,ete, Conc.

\hline .00 17.00 \& Eberfel \& 240 \& 1249 \& Saturd \& The Dn \& \& Mar \& \& \& Sunc \&

\hline 16.0018 .0 \& Madrid (\& ${ }_{392}$ \& ${ }_{764.3} 7$ \& Sunday ${ }^{\text {sing., }}$ \& Talk and Concert \& 19.15 \& Radio-Geneva \& 760 \& 394 \& Sund \& R

\hline .30 16.45 \& Radio \& 1750 \& 171.3 \& Daily \& News; \& 19.15 20.15 \& \& 760 \& 394 \& We \&

\hline 30 20.00 \& \& \& \& \& | $\begin{aligned} & \text { ildren, News, Con, } \\ & \text { lyving relaying } \end{aligned}$ |
| :--- |
| enthagen P Play. | \& \[

$$
\begin{array}{l|l|l|l}
19.20 .30 \\
19.30 & 20.00 \\
\hline
\end{array}
$$

\] \& Dortminnd \& \[

$$
\begin{aligned}
& 283 \\
& 452
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
1000 \\
663.7
\end{gathered}
$$
\] \& Saturday

Almost daily \&

\hline 45 \& Eiffel Tower \& \& ${ }_{1713}$ \& \& Conee \& \& \& \& 1249 \& \&

\hline . 45 od \& ${ }_{\text {Taupa }}$ (Ralin \& 1800¢ 120 \& 166.6,1250 \& Daily \& Testing \& \& Frankiurt-on-Main ${ }^{*}$ \& \& \& \&

\hline .00 \& Warsaw \& 380 \& 789 \& \& Concert. \& 19.3020 .00 \& sanne \& 850 \& 353 \& Weel \&

\hline . 00 \& Radio \& 262 \& 1100.8 \& Sat., Tues., Thur \& \& 19.3018 .45 \& Radio-A \& ${ }_{418}$ \& \& \&

\hline 17.0018. \& Frank \& ${ }_{470}$ \& 1052.
638 \& M \& Lecture Tall \& 19.3021 .30 \& Berlin* \& 5058576 \& 594:521 \& Dai \& Concërt, News.

\hline .00 1 \& Rome. 1 \& 425 \& 708 \& \& Childr \& 19.3020 .30 \& Frankfurt-on-Main* \& 470 \& \& \&

\hline . 00 \& Stockholm (wi \& 427 \& \& \& Conct \& ${ }_{10,30}^{19.30} 19.30$ \& ,Koenigswusterhauseı ${ }^{\text {a }}$ \& 1300 \& 231 \& \&

\hline 23.00 \& Gother \& 288 \& 1041.6 \& \& Chil. \& 19.3019 \& \& \& \& Daily \& Esperanto Course.

\hline \& \& \& \& \& \& \& ${ }_{\text {Radio- Berne }}^{\text {Rifel Tower (F }}$ L ${ }^{\text {a }}$ \& \& 109.4 \& \&

\hline 023.0 \& Malmos \& 270 \& 1111 \& \& Absi \& ${ }^{19.40} 5$ \& Hilv \& 11 \& 285 \& S \& 'kd'ys.:News, Conc.

\hline \& \& \& \& \& Lect. \& 20.0020 .15 \& Ra \& 262 \& 110 \& \& Iecture.

\hline 18.4 \& Helsing \& 522 \& 574.7 \& Mon., Thurs, Sat., Tu \& Conc \& 30.0021 \& Lieiexa \& 205 \& 1919.6 \& Mon., Wed., \&

\hline .05 \& \& \& \& Sunday \& \& \& soro \& \& 125 \& \&

\hline 15 \& Zuric \& 815 \& \& \& \& \& \& \& \& \&

\hline \& B \& ${ }_{730} 815$ \& 368
410.9 \& Daily \& \& 20.0022 .30 \& Copenhagen* .. -. \& 340 \& 882 \& \& 2

\hline \& P.T \& 458 \& 055 \& Saturda \& Iecti \& \& \& \& \& \& Lecture; Concert.

\hline 3018 \& Stuttgart \& 446 \& ${ }_{87} 67$ \& Sunday \& Radio \& \& Sevile (EAJ ${ }^{\text {Radio-Lyon }}$ \& \& \& \& News.

\hline 0 \& Rome (1 R Ö) \& ${ }_{425}^{46}$ \& ${ }_{708}$ \& \& Dance. \& 20.1520 .45 \& P.T.T \& 458 \& 66.5 \& Saturda \&

\hline 3018 \& Rome (1R0) \& 425 \& 706 \& Weekdays \& Oreh \& 20.15 \& Radio-Belgique \& 202 \& 888 \& Weekdays ${ }^{\text {- }}$ \& Music, Lecture, News,

\hline 17.30 20.15 \& Bat \& 317 \& 946 \& Tues. \& Conce \& \& \& \& \& \&

\hline ${ }_{17.30} 17.4$ \& San \& 441 \& 880 \& \& \& 20.15 \& Radio \& 1750 \& 171.3 \& Sunday \& Wews Bulietin, Cl adio

\hline 17.3018 .3 \& \& \& \& Tues, Wed.; Fri. - \& \& \& \& \& 171 \& \&

\hline 7.45 18.00 \& R \& ${ }_{505}{ }^{1760}$ \& 594:521. \& ${ }_{\text {Sunday }}^{\text {Weekdays }}$.. $\quad . .$. \& Bourse, News. \& 20.40 \& \& \& \& icontinued \& on page 178.$)$

\hline
\end{tabular}

The "No-trouble"Ebonite

You never find Clayton Ebonite chipping or cracking when you are drilling it-it's just like boring cheese. It never comes to you warped nor streaky in appearance. Clayton is a real ebonite, finished with either matt or polished surface, and has been tested with surprisingly successful results by Professor Low.

If you want to be sure that your set will be the best possible and have any dificulty in obtaining Ctaytonthe ebonite that is ebonite-send us a p.c. for the name of your nearest stoskist. It is worth the while.
Ask always for CLAYTON - the no -trouble Ebonite.

CLAYTON RUBBER CO. LTD.

Depi. E.6,
Frogress Works, Cinft Street, Clayton, MANCHESTER

स.

For panel mounting, No. T.C.ior. Perfect insulation, only best
English porcelain used. Brass Fittings. Price

9 each.
ATHOL ENGINEERING CO.,. Seymour Road, Crumpsall, Manchester.

Traders and manufacturers are invited to submit wireless sets and component parts to the "P.W." Technical Dept. for test. All tests are carried out with strict impartiality in the
"P.W." Test Room under the supervision of the Technical Editor, and the general reader is asked to note that this weekly article is also intended to provide a reliable and unbiased guide as to what to buy and what to avoid.-EDITOR.

M
ESSRRS. CLEARTRON RADIO LTD., of 1, Charing Cross, London, recently sent us a range of Cleartron valves for test. The following types were includer : C.T.25, fil. volts 5 , fil. amps. $\cdot 25$, impedance 10,000 ohms ; C.T.25B, fil. volts 5 , fil amps. .25, impedance 20,000 ohms; C.T.08, fil. volts 3, fil. amps. 08, impedance 18,000 ohms; C.T.15, fil. volts 1.8 , fil. amps. 15 , impedance 18,000 ohms.
The whole range is stated to be suitable for general purposes work, the C.T.25B being specified for resistance-coupled amplifiers in addition.

We first of all took a number of C.T.15's (1.8 volts) and tried them in a super het. (9 ralves, H.F., det., oscillator, three intermediates, 2nd det., 2 L.F.). In all positions the little Cleartions gave very good results. It was, of course, a gruelling test for
unspecialised valves, and, all things being equal, a similar performance we have seldom seen. In straight detector positions with 60 volts or so H.T., excellent results were obtained. They functioned splendidly in H.F. stages with somewhat lower anode voltages and equally well in first L.F. positions with about 90 volts H.T. In a second L.F. transformer-coupled stage with $7 \frac{1}{5}$ volts grid bias and 108 volts H.T., a C.T. 15 operated with the "punch" and freedom from wave distortion of a smallpower valve.
The C.T.08's worked well with dry cells, and gave very similar results to those provided by the C.T.15's, which was only to be expected in view of the fact that their characteristics are almost identical.
The 25 's are perhaps the leaders of the Cleartron range ; at least, that is our opinion.

They are robust, energetic, and speak for themsclves in no uncertain tones. The C.T' 25 is a power valve which acts efficiently in all other positions. It is by no means unique in this respect, but, nevertheless, such adaptability is none the less commendable. Few valves have the impedance and emission values of the C.T.25, and, while its characteristics render it theoretically more suitable for det. and subsequent positions, we were surprised to discover that it "H.F.'d". well. The C.T.25B proved to be a very good super-het. valve, operating very well indeed in the intermediates. It showed a most commendable aptitude for H.F. work, and in the detector stage of a straight circuit it gives every satisfaction. Cleartron valves can certainly be recommended to the attention of our readers, who, at the price of 12 s .6 d . each for

That this letter was safely de ivered and with but littis delay instances the fame of the Igranic people.
(Continued on prage 174.)

THE H.T.C: *GMPIRE" $7 / / 6$
 POSTAGE 3d.

(9) NONTHS GUARANTEE and money back if dissatisfied. Guaranteed Distortionless Standard Ratios 4-1.

WHY BUY A FOREIGNER?

If your dealer cannot supply send direct to the manufacturers.

dThis transformer makes an efficient Choke when P.O. and S.I. are short circuited between the cerminals. P.I. and S.O. are then connections of a choke of 2,000 ohms resistance.

THE H:T.C. ELECTRICAL CO., LTD., 2, Boundaries Road, BALHAM, S.W. 12. Telcplione: BATTERSEA 374.

BROADCAST SATISFACTIOK

Not until you bave soldered your set with FLUXITE will you discover the secret of faultless reception. For FLUXITE soldered joints always provide perfect contact, they never come undone.

Soldering the FLUXITE way is so'simple-
a minute's practice and you are an expert.
Ask your Irommonger or Hardware Dealer to show you the neat litt!'e FLUXITE sologerinc It is perfectly simple to use, and will last for years in constant use. It contains a special "small space" Soldering Iron with non-heating metal handle, a pocket Blow-lamp, FLUXITE, solder, etc., and full in. structions. Price 7/6. Write to us should you be unable to obtain it FLUXITE SIMPLIFIES SOLDERING
All Hardware and Jronmongery Stores sell FLUXITE in tins, price 8d., $1 / 4$, \& 2/8.

Buy a Tin Tonday.

FLUXITE TTD (Dept 324), WNOTHER USE FOR FIUXITE, Lane Works, Rotherhithe, S.E.16: - ASK FOOR LEAFLET on improxed methods.

APPARATUS TESTED.
 (Continued from page 172.

the C.T. 15 and C.T.08, and 15 s . each for the C.T. 25 and C.T.25B, should discover in them an attractive proposition.

The advertisement concerning the Ormond Jall-Bearing Friction control condenser, which appeared on page 25 of our Feb. 27th issue, contained an unfortunate error. The ratio quoted was $15-1$. and this should hare read "Ideal Ratio 55-1."

Messes. Radio Instruments, Leal., have produced an L.F. transformer of exceptionally novel design. In shape it does not greatly differ from standard types, but it is provided with six terminals instead of the usual four. The additional two represent tappings, ono from the primary and one from the secondary winding. By means of these it is possible to obtain seven different ratios varying from $1-1$ to $9-1$, and a number of primary impedances is made available which covers the astonishingly wide range of from 7,000 to 60,000 ohms.

Thus the transformer is adaptable to practically any L.F. purpose, and in L.F. amplifier circuits its connections can be varied until optimum efficiency is obtained. At last it is possible, in fact, for the amateur to experiment with impedance while a set is in operation, noting by results the increase in amplification and purity when the correct combination is discovered.

The new RI. "Multi-Ratio," as it is
called, is shrouded, and the casing is coloured a bright blue, thereby making the instrument very distinctive, although it must not be imagined that it is garish.

According to the makers the primary is wound with approximately 50% more turns than the standard model, while the number of turns on the secondary has been increased, but not in the same proportron. The famous sectionalise winding, which is responsible for the low self-capacity of the R.I. transformer, has been retained.
The six terminals are plainly marked Po, Pl, Pe, $\mathbb{0}, \mathbf{S} 1, \mathbb{S} 2$. Connections to P 0 and P 2 . and S 0 and S 2 bring the total number of turns on both sides into service. P1 and S 1 represent tapping points.
We have not tested this new R.I. component thoroughly yet, but it is being included ina "P.W." re. ceiver shortly to be described, and full particulars concerning results obtained will then be given. We

An artistic showeard issued by the makers of The . Ashton Perfect Aerial Spreaders.
have no doubt but that it will prove quite satisfactory in operation, for the principles involved are eminently sound, while R.I. products invariably conform to a very high standard both mechanically and electrically.

We append a table prepared by Messrs. Radio Instruments, Ltd., in which details of the ratio combinations possible with the new transformer are given. Its "elasticity," it will be agreed, is extraordinary in view of the fact that only two extra terminals are introduced. The price is attractive, too, being only 2 s . 6 d . higher than the standard model that is 27 s . Gd.

APPROXIMATE IMPEDANCE OF POWER VALVES 3,000-14,000
APPROXIMATE IMPEDANCE OF GENERAL, PURPOSE VALVES, 30,000-60,000

Make no mistake with Your RadIO COMPONENTS

 The BEST will always be found CHEAPEST.Our Ebonite is of the highest possible grade and is used by all the leading experimentalists, having stood the test of time. Ordinary finish, $4 / 6$ per lb. Sandblasted matt surface, $5 /=$ per 1 lb . Any size cut while you wait.

We have a full range of all makes of High Tension Accumulators now in stock.

High Class solid Mahogany and Oak American Type Cabinets with sliding base boards from $10 /-$ each.

A full range of the best components from the world's markets always in stock:

Send 6d. for the World's Finest Radio Catalogue (Callers Free), second edition ready shortly; or call and see our great Shop Window Display. (Mention this paper.)
WILL DAY, LTD., 19, Lisle St., Leicester Sq., London, W.C. 2 Telephone: Regent 4577. Telegrams: "Titles, Westrand, London."

Shake it as you will

The "Permatector" has been bull to fit instantly any model "Brotenie Wireless" Receiver, bul brackets, screes, and nuts are provided in each box to allow it to be fitted to any other crystal set in a very few minutes.
The out cr case is The outer case is turned out of solid brass rod, and heavily nickel-plated-the finished product being a handsome addition to any receiver. And lastly, it
is sold at the moderate price of is sold at the moderate price of 3/- complete.
If your Dealer is out of stock, send direct.
-you cannot lose the loudest spot.

This new product of the Brownie Wireless Co. -the "Permatector"--gives extraórdinarily voluminous reproduction. That's one point in its favour, but more important still, it is exceptionally stable-a fact you can easily prove yourself. Set it to give the loudest signals, then shake the receiver vigorously. Reception is entirely unaffected. The secret lies in the unique spring construction and the use of two rectifying minerals discovered in the course of many experiments. Every crystal is especially selected and tested, and is unconditionally guaranteed to give perfect results.

Far trouble-frec crystal reception, use

THE "PERMATECTOR" -the ever -set crystal detector.
 Built by the makers of the famous "Brownie?

THE BROWNIE WIRELESS CO. (of Great Britain), LTD.
(Incorporating the J.W.B. Wireless Co.),
310a-312a, EUSTON RD., LONDON, N.W.1. Phone: Muscum 3747.

The two Biggest Bargains in Radio

The Red Seal Loudspeakers illustrated are the biggest bargains obtainable in Rad:o to-day. Each is the equal in tone, volume and appearance of loudspeakers at twice the price. Handsomely lacquered in a lovely antique Mahogany Brown that will harmonise with any style or period of furnishing, Red Seal Loudspeakers are decorative assets to any Wireless Receiver. Essentinlly two-valve instruments, and therefore sensitive to a degree, they are not easily overloaded, and each will stand up to four or five valve volume without distortion.

Thed weal Loudspeakers 7 Mos. 10 and 7

Test One on Your Set.

Reo \ddagger Eal Radio Company
Agents
wanted.
61, Borough Road, LONDON, S.E. 1
Dealers write
for terms.

The Circuit that/ has brought hundreds of testimonials!

THE Ormsby Long-Range Selective Circuit has brought hundreds of glowing testimonials which endorse the claims we make for it. We claim that this Circuit will cut out your local station, and bring in others five hundred miles away at Loud-speaker strength.

READ WHAT OTHERS SAY!

I cannol speak tos highly of the efficiency of your $4-V$ Valve long distance Receiver. What plases it in a class by Receiver. What plases it in a class by itself is not merely its extreme selectivity and puwer, but alsz., the remarkable ourity of reproduction.
Aimneus which support the aerial of chimneus which support the aerial of
$5 / T, J$ can cut out this Station and lune in others."
"I have, so far, received 60 Slations, B.B.C. and European, and all can be
sot al Loud-speaker sirength on 4 got al Loud-speaker sirength on 4
Valves, 1 can gel Radio Paris any colvins, without interference from Daventry.

I have just enjoyed service at Berlin as a start-of to-day, and am greatly delighted at the clearness of recention. Do not bo compelled to listen to your local station. The Ormsby Long-Range Selective Circuit will enable you to cut it out and tune in many
loreign ones. The Circuit includes two simple wiring charts, Valve loreign ones. The Circuit includes two simple wiring charts, Valve
and Basebosrd. Template and tull instructions. State if three or
four Valves required.
M. ORMSBY \& CO.,

28, Page Street, Westminster, London Telephone: Victsria 1987.

To get pure EBONITE, ask for

BECOL
 mecistered trade mabk

It is made from finest rubber and sulphur and is guaranteed free ?rom surface leakage.

QUALITY EBONITE

It proves its quality in every test. Ms polish will also please you-ask to see it.

RODS, TUBES, SHEETS, PANELS, MOULDINGS Ask' your dealer for " BECOL the british ebonite co., Ltd., hanwell, longon, w. 7

"POPULAR WIRELESS" Advertisement Rates

WHOLE PAGE £40 QUARTER PAGE \&10 HALF PAGE. . £20 EIGHTH PAGE £5
Narrow Column Advts. (3 cols. to page) per inch 30/Minimum Space accepted

- half inch 15/m

NO SERIES DISCOUNTS,
ADVERTISEMENT COPY SUBJECT
TO EDITORIAL APPROVAL
COPY AND BLOCKS MUST BE IN HAND 11 DAYS BEFORE DATE
OF ISSUE TO ENSURE PROOFS. A 42 Communications respecting
JOHN H. LILE, LTD. ., 4, Ludgaíe Circus, London, E.S.4. 'Phone: City 7261

All Editorial Communications to be addressed to The Editor, POPULAR WIRELESS, The Fleetway House, Farringdon Street, London, E.C.4.

NORMAN EDWAR Editor:
DS. M.I F.R.G.S.

Technical Editor

a. V. DOWDINQ, Grad.I.E.E. K. D. ROGERS.
P.R. BIRD.

Scientific Adviser
Sir OLIVER LODQE, F.R.S.
Staff Consultants :
Dr. J. H. T. ROBERTS, F.Inst.P. J. F. CORRICAN, M.Sc., A.I.C.; C.E.FIEĹD,B.Sc.

- Foreign Correspondents FRAM MELANO, Paris; Dr. ALFRED GRADENWITZ, Berlin 'íR. W. CORBETJ, Néw York PEETERS, MARTIN

The Editor ecill be pleased to consider articles and photboraplis dealing imith all subjects appertaining to for for mamescripts and photos. Lrery care, woll be taken stamp̃ed and addressed envelope must be sent anith stamped (mind addressed entelope mist be sent amith the- ardacle. Al contrivutions to be adaressed to Londor ECC 4 All inouiries concerning aderetising London, E.C.4. Alrimuiries concerming adecetising John H. Lile, Litd., 4, Ludgatc Circus, London, E.C.4.

The Editor desires to direct the attention of his readers to the fact that, as mutch of the information giten in the columms of this paper is of a technical gicen in the columns of this paper is of a lechnical the pecialities described mai te the subject of pecialities described may be the subject of Letter Patent, and the amateur and the trader.moula to voct
adrised to obtain permission of the patentees to use the patents before doing 80.

PATENT ADFICE FOR READERS.
The Editor will be very plessed to recommend readers of POPULAR WIRELESS rho hare any scireless intention to patent, or who desire adrice on patent patent guestions if scint to the Editar, cill be formarded our oum patent adrisprs arhere seers facility and our. own patent ade tsers, where every facility and help-will be afforded to readers.

TECHNICAL QUERIES.
 Letters should be addressed to
 Technical Query Dept.
 "Popular Wireless," The Fleetway House,

 Earringion streeLondon, E.C. 4
They should be written on one side of the paper only, and MUST be accomoanied by a staniped addressed envelope.

Queries should be assed in the form of the numbered questions: (1), (2), (3), etc., but may.be accompanied by a short letter giving any necessary additional particulars as briefly as possible.

For every question asked a fee of 6d, should be enclosed. A copy of the numbered questions should be kept, so that the replies may be given under the numbers. (it is not possible to reproduce the question in the answer.)

IMPORTANT.-II a panel lay-out or list of point-to-point connections is restired, an additional fee of $1 /$ must be enclosed. For wiring diagrams see page $1 \% 8$.

Wiring diagrams of commercial apparatus. such as sets of any particular manufacture, etc., cannot be supplied. (Such particulars can only be obtained from the makers.)

Readers may submit their own diagrams, etc., for correction or for eriticism. The fee is $1 /-$ per diagram, and these should be large, and as clear as possible.

No questions can be answered by 'phone.
Remittances should be in the form of Postal Orders.

Questions and Answers

SWITCHING AN H.F. VALVE.

A. A. F. (Atherstone, Warwickshire)How can I insert a switch in my two-valve set to cuit oūt the H.F. valve when not required? What type of switch should be employed?
A single pole double-throw switch can be utiliscd for this. The connectious are as follors. Brak the conncetlon between grld condenscr and plate of H.F. valye and connect this side of grid condenser to the valye of the switch. Connect plate of H.F. valve to one side of switch and aerlal to the remnining awitch contact. This switch makes no provision for cutting off the L.'T. supply, but most rhcostats have an "off position," making this unnecessary. (The leads to the reaction coil must be reversed when the H.F. valve is switched over.)
(Continued on page 178.)

by just atlaching adaptor to electric light lamp-holder !
BY THE MERE TURNING OF AN INDICATOR:-
A TRULY VARIABLE H.T. SUPPLY is obtained, giving a smooth, continuous variation of voltages between 0 and 100 , so that the exact tractional wal age which best suits the detector or high frequency valves, is easily and smoothly obtainable ; a vast improvement on the dry battery, where the variation depends upon a series of "jerky jumps 'i of 3 to 6 volts.
TONE AND VOLUME are regulated and controlled.
DISTANT STATIONS, the reception of which depends largely on the correct voltage applied to the detector valve, are tuned in with much additional ease, clarity and purity of tonc.
OSCILLATION POINT is controlled at will.
Three additional voltage tappings of 60,120 and 200 are also provided for the low-frequency amplifiers. These voltages may be used either in conjunction with, or independent of, the variable voltage.
PR:CE complete with adaptor and 6 yards of flex, $56: 17: 6$ SATISFACTION or CASH RETURNED.
 Trade Enquiries nuited.
E. K. COLE $\begin{gathered}\text { (Dept. A). SOS, London Road, } \\ \text { WESTCLIFF-ON-SEA. }\end{gathered}$

PRRIOM PANELS
 AND CONDENSERS
 1st ASK THE TECHNICAL EXPERTS 2nd ASK YOUR DEALER
 but if jou experience difficnlty in securing supplies write direct to us giving dealer's name
 PARAGON RUBBER MANUFACTURING C_{0}, Ltd. SCULCOATES, HULL.

Invaluable to

 EVERY Amateur
and Constructor.

The "POPULAR WIRELESS"

BLUE PRINTS of TESTED Circuits.

Every wireless amateur and every wireless constructor will find these "POPULAR WIRELESS" Blue Prints absolutely reliable. They have been most accurately drawn, and every circuit has been tested under normal broadcasting conditions by the technical staff of "Popular Wireless." It will be seen Irom the complete list given below that the series covers a very wide field. The veriest tyro will find each print most straightforward to follow and the receivers most casy to construct.
P.W, BLUE PRINT

Nambe

1. DETECTOR VALVE WITH REACTION.
2. UNIDYNE DETECIOR VALVE WITH REACTION.
3. 1-VALVE L.F. AMPLIFIER.
4. CRYSTAL DETECTOR WITH L.F.AMPLIFIER.
5. H.F. (Tuned Anode) AND CRYSTAL, WITH REACTION.
6. H.F. AND CRYSTAL. (Transformer Coupled, Without Reaction).
7. 1-VALVE REFLEX WITH CRYSTAL DETECTOR (Tuned Anode).
8. 1-VALVE REFLEX AND CRYSTAL DETECTOR (Employing H.F. Transformer, without Reaction).
9. H.F. AND DETECTOR (Tuned Anode Coupling, with Reaction on Anode).
10. H.F. AND DETECTOR. (Transfornier Coupled, with Reaction).
11. DETECTOR AND L.F. (With Switch to Cut Out L.F. Valve).
12. DETECTOR AND L.F. UNIDYNE (With Sivitch to Cut Out L.F. Valve).
13. 2-VALVE REFLEX. (Employing Valve Detector).
14. 2-VALVE L.F. AMPLIFIER (Transformer coupled with Switch to Cut Out Last Valve).
15. 2-VALVE L.F. AMPLIFIER (Transformer-Resistance Coupled with Switch for Cutting Out Last Valve).
16. H.F. (Tuned Anode), CRYSTAL DETECTOR AND L.F. (with Switch for Last Valve).
17. CRYSTAL DETECTOR WITH TWO L.F. AMPLIFIERS (with Switehing).
18. 1-VALVE REFLEX AND CRYSTAL DETECTOR, with 1-VALVE L.F. AMPLIFIER, Controlled by Switch.
19. H.F. DETECTOR AND.L.F. (with Switch to Cut Out the Last Valve.)
20. DETECTOR AND 2 L.F. AMPLIFIERS (with Switches for 1, 2 or 3 Valves).

ALL "POPULAR WIRELESS" BLUE PRINTS - 6d. EACH

[^2]Do away with that irritating, time wasting fading away of volume caused by the falling of your moving block!
Fit a Lotus Cicared Vernier. Coil-Holler and get really accurate tuning. Has an easy Vernier movement which reluces the speed by eight times, and stays where it's put-exactly!
Fit in any position, with any weight of coilyou'll be satisfied with' the results.

Bakelite mouldings for the side plates, coil blocks and knobs; heavy Nickel Plating for the metal parts.

Froir ull reliable Ifrulio Denlers Garnett, Whiteley \& Co., Ltd., Lotus Works, Broadgreen Road, Liverpool.
Malicrs of the Neeq Lotus buovancy value holder

Only 7'- Each and Guaranteed for Twelve Months

So carefully are Bowyer-Lowe.H.F. Transformers matched and tested at our works that you may buy any two at random and use them with perfect confidence for two stages of H.F. Amplification.
So well are these Transformers made that every one you buy is guaranteed up to the hilt for twelve months after purchase. If it fails it will be exchanged without charge. In spite of their superiority these Transformers cost less than most. Ranges are made covering all wave-lergths from 150 to 2,000 metres and up, as well as a special Neutrodyne Unit. All are sold at uniform price of 7 !-
Ask for them by name and sce that you
 get them.

Bowyer-Lowe Matched H.F. TRANSFORMERS.

Good dealers stock them, or you may order direct from The Bow yer-Lowe Co. Lid., Letchworth.

HEADPHONES REPAIRED－ Re－wound \＆re－magnetised 5／－per pair．Loud Speakers repaired $5 /-$ ．Transtormers re－wound $5 /$ each．All work
guaranteed and tested before delivery． Write for Tratide Prices． MASON \＆CO．，44，East Road，City Road，

H\＆H Patent Tubular Gal－ vanized Steel Telescope WIRELESS MAST

$35 \mathrm{ft} . \mathrm{HiaH}$.
Complete with base plate，
ground pegs，stay wires，strain－ ground pegs，stay wires，strain
ing screws，pulley and cleat．

Price $53: 2: 6$ Carriage
25 ft．Rigid Masts，20／－
HILDICK \＆HILDICK，Pleck Rd．，Walsall．
H．T．Accumulators－ ${ }_{3 \text { Actual } 1 \text { Amp．hoir }}^{60}$ Voths $37 / 6$

MONEY RETURNED IF NJT SATISFLED．
Oblainable only from：
ACCUMULATORS ELITE
31，Waterhouso Street，MALIFAX． Trade Supplied Telephone： 13

RADIOTORIAL

 QUESTIONS \＆ANSWERS．（Continued from page 176．）

FADING

Fadeaway＂（Solihull，Birmingham）．－ Why do the signals fade away very often？ Sonetimes when I am receiving woll the sounds slowly die away，and at other times they will fade away fairly quickly but come back again．Is this all due to wlont is known as fading？And，if so，what causes it ？
There is a scientific phenomenon known as＂fading＂ which affects long－distance signals，but all＂fading． away＂effects are not due to this canse．An effect like fading is often produced by a rin－lown battery． This is particularly the case when a large dry battery is used for lighting dull－emitter valves．When the battery is nearly exhausted it will sometimes become irregular in its action．the voltage falling away almost entirely and then picking up spasmodically ncarly to its fuli value．
It is possible for a fading effect to be produced by the intermittent energising of a near－by aerial．Some－ body living not very far away may own a valve set， and may have his Hrst H．F．valive on the point of oscillating，so that when he adjusts any of his tuning
（Contimued an next page．）

IMPORTANT NOTICE．

REVISION OF CHARGES FOR

 TECHNICAL QUERIES．The following important reductions and alterations have been made in the charges for diagrams，specially drawn up by the Query Department，and come into force immediately

> diagram.
> Charge.
> Crystal Sets
> One-Talve Sets
> One-Valve and Crystal (Reflex) Two-Valve and Crystal (Reflex) Two-Velve Sets
> Three-Valve Sets
> Three-Valve and Crystal Refles. $\begin{aligned} & \text { rour-Valve Sets } \\ & \text { Multi-Valve Sets }\end{aligned}$
> Multi-Valve Sets (straight circuit)
> SUPER-HETERODYNE DIAGRAMS, all of which, irrespective of number
> of Valves used, are
> ? $\hat{0}$
> Apart from diagrams specially drawn up, "P.W." issues a series of twenty Sixpenny Biue Prints, which are obtainfull list of the circuits covered appears $\begin{aligned} & \text { full list of the circuits covered appear } \\ & \text { fortnightly in POPULAR WIRELESS. }\end{aligned}$

THE＂POPULAR WIRELESS＂CONTINENTAL BROADCASTING TIME－TABIE（conlinued from page 170）．

$\begin{aligned} & \text { Transn } \\ & \text { Starts } \\ & \hline ⿴ 囗 十 力 \end{aligned}$	$\begin{aligned} & \text { miss'n } \\ & \begin{array}{l} \text { Ends } \\ \text { w. M. } \end{array} \end{aligned}$	Station and Call Sign	$\begin{gathered} \text { Wave- } \\ \text { length in } \\ \text { metres } \end{gathered}$	Frequency kilo－ cycles	Days of the Week	Nature of Trans－ mission
20.15	21.15	Radio－Geneva	760	394	Weekdays	Conc．，Lance．，New
20.15	21.00	Dresden	294	1020	Wed．（almost daily）－	Talk and News
$\begin{aligned} & 20.30 \\ & 20.30 \end{aligned}$		P．T．T．＊${ }^{\text {Dortmund }}$ ．	458	655	Wednesday	
20.30	22.00	Munster \quad.	410	731	Saturday $\quad .$.	Oper
20.30	22.00	Eberfeldt	240	1249	，$\quad .$.	Relaying Dortmund
20.30	21.00	Frankfurt－on－Main	470	638	Weekdays．．．	News，Talk，Eport．
20.30	21.00	Radio－Paris	1750	171.3	Saturday	
20.30	21．00	Eiffel－Tower（T L）	2740	109.4	Suuday	
20.30	20.45	Radio－Toulouse	1418180		．．．．．．．	Sports，News．
20.30	21.30	Radio－Lyon	280	1071	Daily	Orchestra．
0.30	21.30	Radio－Relgique	262	1106.8	Sunday	
20.30	22.00	Seraing－Radio	195	1538	Mon．，Thurs，Sat．	
$\begin{aligned} & 20.30 \\ & 20.30 \end{aligned}$	20．40	Rome（1R0）	425	706	Weekilitys．．	Weather．News．
90.30	20.45	Radio－Toulou	4418180	680\＆	Weekdays...	Press．
20，30	24.00	Madrid（E A J 4）	340	1660	n．Thurs．	
20.40	22.30	Rome（1 10 ）	425	706	Daily	Oper
20.45	22.00	P．T．T＊	458	655	＂．．．．	Talk
20.45	22.30	Radio－Paris	1750	171.3		Danc
20.45	22.30	Radio－Toulouse	$\begin{aligned} & 441 \& \\ & 180 \end{aligned}$	$680 \&$ 1606.0	＂，．．．．．．	onc
20.50	22.00	Koenigsberg	463	648	Sunday	News，Concert．
21.00	24.00	Madrid（ $\mathrm{E}^{\text {A }}$ 6）	392	705		Concer
21.00	22.00	Radio－Berne	301.5	995	Saturday	Dance．
21.00	23.30	P．T．T．＊	458	655	Daily	Concert and Tests．
21.00	21.05	Rome（1 R 0）	425	706	＂，．．．．．．	Time Sign
21.00	21.00	Salamarea（E A J 22 ）	355	845		Conce
21.00	22.00	Frankfurt－on－Main＊	470	638		Theatre or Concert
21.00	23.00	Sokolniceli（ Mascow）	1010	297	Tues，Thurs，Fri．	News，Lect．or Con－
$\stackrel{21.00}{21.00}$	23．10	Barcelona（E A J 1） Radio Catalina（E A	325 460	823 654	Weekdass．	Concert．fcert．
21.00	21.30	Breslan＊	416	721		New＇s，Sport．
21.00	21.15	Seville（E A J 5）	357	840.3		
21.00	23．00	Petil－Parisjén＊	$\begin{array}{r}3.57 \\ 358 \\ \hline\end{array}$	840.3 865.9	t．，Sun．，Tu，Thurs．	News，Talk，Cuncert．
21.30	22.15	Eberieldt	240	1249	Weekdays．．．．．	
21.30	22.30	Rome（ 1 R O）	425	706	Daily	Dance
21.30	$\underline{22.10}$	Dortmund	283	1060	Sunday ．	
21.30	23.00	Berlin	5054576	504：591	Daily	
21.30	23.00	Koenigawusterhausen	1300	231		Relaying Lerlin
21.40	21.6	Lengby（ 0 X L ）	2300	125	Werekdays	Veather．
22.00	24.00	Milan	320	937	Daily	Con
22.00	23.30	Cassel ${ }^{*}$ ．${ }^{\text {and }}$	8	1091	days．	
22.00	23.30		478	639		Relaying CasseL
$\begin{aligned} & 22.00 \\ & 22.00 \end{aligned}$	24.10	Rilban（Viceaya）（F．A．J．11） Radio－Cima（EA A 19）	418 402	${ }_{745}^{717}$	Daily Weekdays	News，Conceit． Sweecl，Music．
22.00	23.00	Hambure＊	395	759	Sunday	Dan
22.00	2.00	Madrid（E A J J）	373	804	Mon．，Wed．，Fri．．．	Concert．
22.00	21.00	Madrid（E A J 6）	392	764	Thesdays and Fridays	
23.00 23	23．25	Norddeich（K A V）	1800	166.6	Weekdays．．．．	cather，New3．
23.00	24.00	Vienna（0 T T W）．	4100	750		Dance．
24.010	01.00	Seville（ E A J 5）	357	840.3	Sunday	Concert．

NOTES．－Relay stations are mentioned under initial entry of main station．An asterisk（ ${ }^{*}$ ）marks main station with relays working．The following stations may be necasionally heard testing：Reval， 350 m ．（ 855 j ．. ．）

 （ 428.3 kc ．）：Asturias（E A J 12 ）， 345 m ．（ 872 k 2.$)$ ．Skieen， 201 mm （（ 1499 kc ．）Notoden ；Barcelona（E A J 19），
300 m ．（ 1000 kc ．）Prosected Statiovs．Bratislava， 409 m. （ 733 kc ．）：Innsbrick（Feb．，1926）：
Trondjheim；Tromsol ：Stavanqer；Christiansund；Rosenbrugel；Salzburg；Klagenfurt；Ceuta（Spabist）
Doroceo）；Varsovie；Cravow；Hammeren， 1900 m ，（ 157.8 kc ．）；Seville E A J 21；Jyvaskyla，Malaca．
Grenoble temporarily closed．Dion replaces on－evening transmissron：

RADIOTORIAL QUESTIONS AND ANSWERS．

（Continued from previous page．）
condensers the aerial may be energised．Sometimes interference received in this way will produce a drop in simual strength and clarity of tone without any bowling or whistling beling audible．

When very weak signals are being recrived，more ments of the aerial may be sufficient to cause fading A slack acrial ruming in close proximity to a wall o the branches of a tree may be blown sufftciently by each gust of wind to produce an appreciable weaken－ ．ing of signals．
There are other causes which produce a similar effect，but the forcgoing are those most likely to be found in everyday condittions．

WIRELESS AND THE LANDLORD

Aerlal Law＂（Iondon）．－I have re ceived a communication from a solicitor representing my landlord demanding the immediate removal of my aerial．Can you advise me as to the position I am in ？These are the facts：The aerial has been attached to the roof for the last three years，with the verbal permission of the landlord，and the other day I happened to go on the roof to renew the string supporting the aerial，and the landlord has apparently objected to this， hence the solicitor＇s letter．The solicitor describes it as the unwarrantable trespass committed by me in going upon the roof and fixing a wire．I do not doubt that the landlord will now deny giving permission for thic aerial to be fixed in the first place，but the faet remains．Finally，the letter adds that pro－ ceedings will be commenced to conipel removal etc．

If you are the sole occupict of the premises we should feel disposed to disregard the threat of pro－ ceedings．To speak of treapass on the part of a tenant who goes on the roof of the premises he occupies is absurd．Strictly speaking，the landlord may object to the fixing of ani aerial without his consent，but if the temant offers to pay any increase in insurance premiums which may be demamied in consequence
of the affixing of the acrial it is difficut to sec what of the affixing of the aerial it is diffeult to se
reasonable objection the landlord could raise．

SOLDERING NICKEL TERMINALS．

Constructor＂，（S．W．3）．－Why is it that when I emplay nickel plated terminals for my set that I find that on testing the set the number of bad joints are more frequent than when using brass terminals ？

This is due to the fact that when the ferminals are beling plated a small film of grease or dirt has been present ou she base of the terminat，and has pre verted the film of nickel from adhering properly When the teiminal is heated the solder anheres to the nickel Him and breaks this，but this film itself is not making good contact with the termin

B．A．			WHITWORTH．		
ze．	For	$\left\lvert\, \begin{gathered} \text { For } \\ \text { Clear'nce } \end{gathered}\right.$	$\begin{array}{\|c\|} \hline \text { Size } \\ \text { in. } \end{array}$	For	$\begin{aligned} & \text { For } \\ & \text { Clearnce } \end{aligned}$
1）	11	6		${ }^{3} 4$	52
1	17	10	${ }_{3}^{3}$	$\frac{5}{64}$	41
2	25	12	$\frac{1}{s}$	${ }^{3}$ 3 2	30
			$\frac{5}{3.2}$	$\frac{1}{8}$	$4 \mathrm{~m} / \mathrm{m}$
3	29	20	－88	$\frac{9}{64}$	12
1	33	27	$\frac{7}{32}$	${ }_{81} 11$	2
3	39	30	$\frac{1}{4}$	$\frac{9}{16}$	$6 \frac{1}{2} \mathrm{~m} / \mathrm{m}$
	43	34	$\frac{3}{16}$	4	$8 \mathrm{~m} / \mathrm{m}$
	43	34	咅	$\frac{19}{4}$	$10 \mathrm{~m} / \mathrm{m}$
	47	39		8.	$11 \frac{1}{2} \mathrm{~m} / \mathrm{m}$
	50	44	$\frac{1}{2}$	媇	誛

Money back guarantee that each and all Panels are free from surface leakage, Megger lest Infinity. Callers, cut any size, \& quote by post, or Phone Clerl: cnwell 7853. Sample \& Prices, post free to the Trade. CROXSONIA CO., 10, South St., MOORGATE, E.C.

CAN YOU?

Obtain better ralne? Why waste the and risk
spoiling components? I whit bulld any fet as described in this or other jonrnal for cost of com. ponents only, Class workguaranted. BROOKRRS.
G8,Cornbury Zoad, Rotherhithe, Iondon, S. Li

AMATEURS!

Buy YOUR wireless components and sundries at KEENEST PRICES. American and Continental equipment also stocked. List Post Free.
[larston radio service (Mail Order Dept.), 4-5, Honey Lane Market, Cheapside, London, E.C. 2

THE 'PHONE REPAIR SERVICE

'Phones Rewound and Rematinetized ... $4 / 6$
Loud Speakers and Transformers Rewound
The R.R.P. Co., 46, 8t. Mary's Road, Leyton, E, 10

TiEE BROWN ' A ' are the best for use with the P.W. Paper Disphragm, Loudspeaker, Frames, etc. S: Papp for L.ist. GOODMANS, 68, Farringdon Streot, E.O. 4

PAY AS YOU LISTEN !!

Loud Speaker Sets of Fine Quality are supplicd on terms to suit
all lookets. /- $\mathbf{t 0}$ 10/all pockets.

- to 10 RADIAX LTO.
pariciciars.
House.
HEADPHONES $\mathbf{3} / 9$ Only.
 ohms resistance, 7 feet cords. Every pair is brand new, and tested before despateh. These are to bo
cleared at the exceptional prife of $3 / 9$ per palr, coared aid. Slis is in offer-whleh can per per be repeated after present stock is cleared. so w.
NOW and make sure of getting solir pair. C. WILDE, Wircless Dealer,

WILLESBOROUGH, ASHFORD, KENT
PAMESRepaifedQuick
Let our. valre making plant repair your brokna
or burme Let our. walre making plant repair your hrokra
or burms umt valved emplemily \& prompty (aiont
makes). Guaranted

SCRAP YOUR H.T. BATTERY
and buy H.T. Supply Unit complete with Flex and adapter to plug in ordinary lamp holder. Running cost rd. per week. Money back guarantecd. mplete with full instructions $30 /$ postage 1

CONTINENTAL SUPPLIES 497. Old Ford Road, London, NOTE:-To worh off D.C. Currest only:

FOREIGN RADIO NEWS.

From Our Own Correspondents.

International Radio.
THE use of radio is dailv extending in every department of life, and particularly of international affairs. The fall of the French calinet, which took place on Saturday morning at 6.45 a.m., was wrirelessed to Berlin and immediately relayed to the express train on which the German delegation was trarelling to Geneva to attend the meeting of the League of Nations.

Dr. Stresemann. the German minister of Foreign Affairs, on receiving the message within forty minutes of the fateful figures being read out in the French Chamber. was able, without interrupting his railmay journey: to have a long talk with the Press at tache of the French Embassy in Germany. who was on the same train, and explore with him the possibilities of the French politieal situation. After which he was able to hold a conference with his colleagues on the effect which the fall of M. Briand was likely to have on proceedings at Geneva.
Wireless Torpedoes.
Secret experiments are being carried out in Franco of an invention by which it is clamed that the flight of air torpedoes can be controlled ocer distances of from 30 to (iu miles.
Technical experts from the military, naval and air departments were present at these tests, the result of whieli is being kept secret. From a usnally reliable source, however, it is gathered that the tests were not completely successful. The principle of wircless control over bodies hurt ling through the air was established, but in practice imperfections weve revealed which it is hoped may soon be remedied.

Finland Reorganises Its Radio System
The Finnish radio broadeasting system has now been reorganised on a sound basis. The main Helsincfors-station uses 318 metres on Tuesdays, Thursdays and Sundays for the broadeasting of concerts, and these are relayed in the various districts by the three provincial stations: Iywaskyla (561 metres). Cleaborg (233 metres) and Tamafors (360 metres).

The second Helsingfors station, using 500 watts only, broadeasts on the same daya, half an heur later, at 6.30 p.m.. Cientral European time, the programme lasting usually till midnight. The warc-length is 522 metres.
Finnish radio enthusiasts in addition to the home progtammes, frequently listen to the Russian and Swedish station, so that they are well provided for and radio is winining new adherents daily

GENUINE: EBONHTE

HOW TO MAKE A LOUD SPEAKER.
 (Continued from page 148.)

In Fig. 3 is shown a distinctive feature of the original instrument which improves reproduction in a manner hard to describe exactly. This is the side tube, a short length of tube, 1 in . in diameter, fixed over an orifice in the base of the horn. Volume is not reduced by any discernible degrec by the presence of this free orifice, but reproduction is more natural, for, whereas orchestral items sound flat and "congested" without it, the inclusion of this device seems to relieve the "congestion," and reproduction approximates more closely to true binaural hearing.
The framework of the cabinet may be built according to the constructor's own ideas, and designs and dimensiots will also depend upon the size of the horn. But here, also, all construction should be sound and solid to prevent unwanted vibration. If desired, the horn may be mounted upside down with the magnet system on top, when the adjusting screw becomes more accessible; but, in any case, this needs no further attention when once adjusted for best results.

REPAIRS
 Headphones and Loud Speakers rewound ic any resistance and remagnetised electrical instruments and wire winding is you suarantee. A customer writes: ".-Thanks reconditioned the manner in which it was VARLEY astounding." Magney
 Magnet Co. licpurs Hent Woolwich. Woolwich, S.E.1世, $\sqrt{A B T}$ - \quad

 1.Valre Amplitier, 20/., both 33 Falves, $4 / 6$ each; suart Meadphonest $8 / 6$ newnew 4-volt Accumuluator, celluloid case

REPAIRS | SETS |
| :---: |
| TRANSFRMONES |
| PHERS | LL WORK GUARANTEED LOWEST RATES 24HOUR EERVIOE AIL WORK GUARANTEED LOWEST RATES 24HODRRERVIOE APOCKET KNIFE FOR EVERY WIRELESS CONSTRUCTOR.

arlver, file, insulation seraper and one useful blade. Made ariver. ine Sneffeld by a firm renowned for the $3 / 3$ post
for milty of tts Cutlery, Satisfaction guaranteed.
quatiter quality of tis Cutlery, Satisfactlonguaranteed. $3 / 3$ prest
Prom H. OSBORN, 27, High St., DAVENTRY.
C.CROIX Mresemsforme

FBRUNTEMN TraznsRommems, $5-1$ \& $3-1$, latest shrouded model $8 / 6$ ea. post $6 d$ RERDEO MEXCEO Ma里Yes. latest typc, $3-4$ v. 06 amp. $8 / 9$ each, post 6 d ERFIDEO MIECERO/ Pownero CONTINGNTAL genuime.
7. OId Ford Road, LONDON,

There/

A Filament that can be tied

 in knots after 1000 hours lifeFILAMENT that remains ductile so that it can be tied in a knot after 1000 hours life is an achievement that assures
VASTLY INCREASED VALVE LIFE
This wonderful filament is the key feature of Mullard P.M. Valves. In Mullard P.M. Valves the filaments are so economical that no glow is visible during operation, and they require
ONLY ONETENTH AMPERE
In addition the reception they give is free from all microphonic noises. If you use a 4 -volt accumulator or 3 dry cells
ASK FOR THE P.M. 3
A general purpose valve for every circuit
The finest loudspeaker valve ever produced
GET THEM FROM YOUR RADIO DEALER]

Mullard THE •MASTER - VALVE

Building up volume without a trace of distortion

Lissen Amplifying Devices build up whispers into voluminous sound, yet never do they sacrifice tone purity for the sake of volume. Add a 2-valve Amplifier built from Lissen parts to your receiver and it's just as though the player had changed his instrument for one that was much larger-much more powerful. But volume is the only thing you add - harshness and distortion have no place in a Lissen Amplifier.

For the first L.F. stage use the Lissen T. 1 Transformer, Price 21/. Then follow this with a Lissen L.F. Choke, Price $10 / \%$, or if you prefer it, use Lissen Chokes throughout. When building a Choke Coupled Amplifier it is always advisable to use a variable grid leak having a wide range of variation. Use the Lissen Variable Grid Leak-you can obtain any resistance between
 $\frac{1}{4}$ and 12 megohms, smoothly, gradually and noiselessly. One hole fixing, of course. Price 2/6.

The capacity of the Lissen Fixed Condenser recommended for choke coupled stages is .01 mfd ., Price 2/4:- It-is also worth while to fit Lissen Fixed Condensers in every stage of your receiver. Accurate to within 5% of their marked capacities they will not vary and will not leak.
NOTE THE NEW PRICES : $.0001-.001 \quad 1 / 3 \quad .002-.006 \quad 2 \%$ (mica dielectric). With each . 0002 and .0003 there is included free a pair of clips to take a grid leak.

LISSEN

THERE IS NO 'WEAKEST LINK' IN THE LISSEN CHAIN

 Lissen Limited, 8-16, Friars Lane, Richmond, SurreyPhone: Richimond 2385 (4 lines),

'Grams: "Lissenium, Phone, London.

[^3]
[^0]: Branches:-Birmingham, Leeds, Manchester, Newcastle, Glasgow.

[^1]: To Keith Hennes,
 Dircetor, Radio Broadeast Laboratories Garden City, Iong Island, New York, U.s.A.

[^2]: All orders for these Blue Prints should be sent direct to the "Popular Wireless "Queries Department, Fleetway House, Farringdon Strcet, E.C.4. enclosing a stamped addressed envelope and a postal order for 6d. for each Blue Print Ordercd.

[^3]:

 Alistralia and New Zcaland: Messrs, Gordon \& Gotch, Lita, fand for Canada:-The Impzrial Nows Co. (Canada), Lta. Saiturday, March 2oth, 1020,

