

Europe's first magazine for personal computers for home and business use

Pilot flies across the Atantic Something bit me Small buriness ense dudy

minOTAUR-new computer game

TRS-80-THE BIGGEST NAME IN LITTLE COMPUTERS Complete and Ready to Go NOW!

The TRS. 80 computer system is 100% wired, and tested for 240 VAC so you can put it to work immediately! It's ideal for finances, education, accounting, laboratory-even games at home. Below are four complete TRS-80 systems incorporating different combinations of RAM (4 K and 16 K) and ROM (Level-1 and Level-11 BASIC). Choose the one that's right for you. Expansion is easy due to TRS-80's modular design. All TRS-80 systems below include a $12^{\prime \prime}$ video monitor, Realistic CTR-41 battery/AC cassette recorder, power supply, 232 -page user's manual, and a 2 -game cassette.

Level-1 BASIC system
4 K ROM, 4K RAM
Cat.No. 26-1001,26-1201, 14-841

Level-1 with 16K RAM

4 K ROM, 16K RAM
Cat. No. 26-1003, 26-1201, 14-841

Level-11 BASIC system
12K ROM, 4K RAM
Cat. No. 26-1004, 26-1201, 14-841

Level-11 with 16K RAM
12K ROM, 16K RAM

You can see the TRS-80 at these Tandy Stores and Dealerships

BASINGSTOKE

22 London Street, Basingstake. Tel: 52795
Bilston Road, Wednesbury. Tel: (021) 5566429
528 The Bridge, Bull Ring Shopping Centre, Birmingham. Tel: (021) 6433876
57-58 Dale End, Birmıngham. Tel; (021) 2364744
5 Nelson Square, Boiton. Tel: 386538
134 Commercial Road, Bournemouth. Tel: 293606 70 London Road, Brıghton. Tel: 693446
5 Badminton Road, Downend, Bristol. Tel: 561917
6.8St. John Street, Bromsgrove. Tel: 71800 12 High Street, Cambridge. Tel: 68155
Kwik Save Centre, Sealand Road, Chester. Tel: 375794 4 Hales Street, Coventry. Tel: 22894
15.16 Priestgate, Darlington. Tel: 58676

33 Victoria Street, Derby. Tel: 371066
32.34 Kingsgate, Waterdale Centre, Doncaster. Tel: 21992

Audio Visual, 340 Argyle Street, Glasgow. Tel: (041) 221895
47 Kings Square, Clarence Street, Gloucester. Tel: 31323
72 Merrion Centre, Leeds. Tel: 42520

LIVERPOOL
LONDON AREA

168St. John's Centre, Market Way. L'pool. Tel: (051) 7080161 The Coloninades, Porchester Road, Queensway, Bayswater, W.2. Tel: (01) 2215317

7 Embassy Court, Welling. Tel: (01) 3035483
124-126 The Broadway, Wimbledon, S.W.19. Tel: (01) 5426389 6 New Broadway, S.W.5. Tel: (01) 5791320
21 Sentinel Square, Hendon, N.W.4. Tel: (01) 2027331
157 Dunstable Road, Luton. Tel: 36159
4.8 The Mall Shopping Centre, Hyde. Tel: (061) 3680268
$13 \cdot 15$ The Mall Shopping Centre, Sale. Tel: (061) 9730371
The Arndale Centre, Stretford. Tel: (061) 8658214
NEWCASTLE-UPON- 23 Newgate Centre, Newgate, Newcastle. Tel: 21478
TYNE
NORTHAMPTON
NOTTINGHAM
SUTTON
SWANSEA
WITNEY
$\begin{array}{lll}\text { WITNEY } & \text { Witney Audıo, } 29 \text { Corn Street, Witney. Tel: } 2414 \\ \text { WOLVERHAMPTON } & 1 \text { Market Street, Wolverhampton. Tel: } 21148\end{array}$
Or contact Computer Sales Department, Tandy Corporation, Bilston Road, Wednesbury, West Midlands. WS10 7JN. Tel: (021) 5566101

UK 50p
US $\$ 2.00$

Vol 1, No 6
October 1978
Europe's first magazine for personal computers for home and business use

CONTENTS

PUBLISHER'S LETTER 8
EDITORIAL NOTE 8
PCW BOOK REVIEW Michael James 8
LETTERS 10
TIDBITS
Products ... services ... news 12
THE MICRO IS A MANY SPLENDORED
THING Leslie Solomon
Aladdin's lamp brought up to date 15
SOMETHING BIT ME Chris Howland
A reader's personal experience 17
PILOT FLIES ACROSS THE ATLANTIC John Coll
Pilot, finely tuned to handle text 19
SMALL BEGINNINGS Derick Daines
Computing in the primary school 22
SUBMARINE CHASE A.J. Harding
"Run silent, run deep" 24
MINOTAUR John D. Lee and Timothy D. Lee The fiery breath of the Bull of Minos 28
TOUCHDOWN N. Rushton
Landing on a pocket-sizéd moon 32
EXHIBITION CATALOGUE 33
ASSEMBLY CODE PROGRAMMING FOR THE BEGINNER Stephen Collins 41
BINARY FINERY Neil Harrison
Return visit to The Elegant Minmon of PCW Issue one 44
PCW SMALL BUSINESS CASE STUDY Boris Sedacca
If you have a small business, read this. If you haven't read it all the same. 48
PCW OPEN PAGE Mike Lord
The Amateur Computer Club ... MUSE news 52
PET PREENING
Tasty morsels to keep your Pet purring 54
gETTING IT TOGETHER Mike Banahan
Continuing "your own assembler" 55
BUZZWORDS Peter Reynolds
The buzzing of the B'zz 60
TIME TABLING FOR SCHOOLS Charles SweetenWhat to do to avoid having two teachers in the sameclassroom at the same time teaching two differentsubjects, and with no pupils around.62

Consultants.
John Coll, Mike Dennis, Neil Harrison, Charles Sweeten, Patrick Sutton, Michael James, R.W. Davy, David Hebditch, Sheridan Williams.
Art: Sauveur Laurent Sant, Kathryn Hamme Secretarial:
Vanessa Blackburn Kiddle
Layout Consultants:
D. Norris, T. Gabos
PCW Photography: Yoshi Imamura, Peter McGee
Typesetting \& Artwork: Gilfillan
Cover painting: Sant

Editorial and Advertising Office:

62A Westbourne Grove, London W2
Phone: 01-229 5599 (Publisher)
01-727 8758 (Editorial and Advertising)

Publisher:

A. Zgorelec

Editor:
Meyer N. Solomon
Editorial Assistant:
Roger C. Wilkins
Policy Advisor:
Peter Crofton-Sleigh, FRAS

CONTRIBUTORS:

We welcome interesting articles written simply and clearly. You need not be a specialist to write for us. MS should not be more than 3000 words long, lines double spaced, with wide margins. Line drawings and photographs wherever possible. Enclose a stamped selfaddressed envelope if you would like your article returned.

Manufacturers, suppliers and dealers are welcome to contribute technical articles, and send product information, but we are pledged to an independent viewpoint and will publish evaluations and reasoned criticism or praise, space permitting. Naturally there will be right of reply. Views expressed in articles are not necessarily those of Personal Computer World.

We may make arrangements to offer our readers products at special prices, for a limited period, in line with the policy outlined above.

Published monthly by Intra Press, 62A Westbourne Grove, London W2, Phone: 01-2295599. Contents fully protected by copyright. All rights reserved. Subscription rates: Britain £8 for 12 issues. Prices include postage. USA - $\$ 10$ for six issues, $\$ 20$ for 12 issues. Continent and eisewhere: $£ 9.80$ for twelve issues. Prices include postage. England. Distribution to specialist shops by Intra Press.

BUT HOTIDUTENS DIUTIT
 Come and see for yourself at

the EUIItwow

Stockists of the largest range of micro computers in the U.K.

Take the opportunity to experiment with and get to know any of the vast range of micro computers always in stock at The Byte Shop.
Whether you want a micro computer for your home, your business, for industry, for education - or if you'd just like to find out which model you get on with best you'll find a visit to The Byte Shop a new and invaluable experience.
Call in at The Byte Shop any time from Monday to Saturday. It's right by Gants Hill tube station.
The Byte Shop 426/428 Cranbrook Rd., Gants Hill, Ilford, Essex. Telex 897311 Telephone 01-554 2177

THE EXPANDABLE GENERAL-PURPOSE MICROCOMPUTER

RESEARCH MACHINES 380Z

COMPUTER SYSTEMS

A professional microcomputer system with excellent support for scientific and educational users.

3802 systems come complete with:

- Z80A Processor
- RAM Memory
- 3K ROM Operating System
- VDU Interface
- Cassette Interface
- Parallel Input/Output
- Keyboard
- Room for Expansion
- Documentation

Only an inexpensive cassette recorder and a television are needed to make the system fully operational. No teletype or VDU terminal are required.
The standard 3802 system is expandable to include:

- Additional Memory
- Printers
- Serial Interfaces
- Parallel Interface with Real Time Clock
- Floppy Disc Systems
- Analogue Interface

The RESEARCH MACHINES $380 Z$ is a professional general-purpose microcomputer. It has found broad application in Scientific Research and Education with a large number of systems in use in the field. The system is supported by an excellent range of software including Text Editor, Basics and Assemblers.

RESEARCH MACHINES 3802 System with 16K Bytes of RAM

£965.00

RESEARCH MACHINES 380Z System with 32K Bytes of RAM
£1158.00

 \mathbf{F}
 Room P.W. 29
 313 Kingston Road, Ilford,
 Essex, IGI 1PJ, England
 01.5531001
 ENTERPRISES

From the representatives in Europe . . . for America's leading Micro-compuiter magazines and books, for the hobbyist, educationist and professional alike, we bring you a little light browsing!

Reading maketh a full man Francis Bacon (1561-1626)

	Price	Price
From Creative Computing Press	uk	Ovarsaas
Best of Creative Computing Volume 1	E6.95	1% Different
Best of Creative Computing Volume 2	E6.95	
101 BASIC Games (Revised \& Repronted Feb. 781	55.50	
The Colossal Computer Cartoon Book	$E 3.95$	
Computer-Rage (A new Board Garne)	E6.95	
Artist and Computer	¢3.95	
From Evervone Else		
Magazine Storage boxes tholds 12 minimuml	¢1.25	
Sybex: Introduction to Personal and Business Computing	£4.95	
Sybex Microprocessors Irom Chips to Systems by R.Zacs	67.95	
Sybex Microprocessors Interfacing Techniques by RiZacs	E7.95	
Dilithium Home Computers Volume 1 Hardware	¢6.50	
Dilithum Home Computers Volume 2' Software	55.95	
Getting involved with your Own Compurer	¢4.75	
TV Typewriter Cookbook bv Don Lancaster	c7. 50	
ITL Cookbook	¢7.50	
CMOS Cookbook	£7.95	
IC Timer Cookbook	¢7.50	
IC OP-AMP Cookbook	¢9.50	
RTL Cookbook	£4.25	
2-80 Microprocessor Handbook	E7.50	
Computer Programs that work (In BASIC)	¢2.55	
From Basic Software Library (Irom Scientific Research Instrumenis)		
Vol 1 Business and Personal Booking Programs	¢17.50	
Vol 2 Maths and Engineering Programs	£17.50	
Vol 3 Advanced Business Programs	£26.95	
Vol 4 General Purpose Programs	¢7.95	
Vol 5 Experimenters Programs (General Puipose)	E7.95	
Vol 6 General Ledger Program	$£ 32.50$	
Vol 7 Professionar Programs	£26.95	
Magazines: Back Issues		
Personal Compuring	£1.75	
Interlace Age	¢2.25	
Or. Dobbs Journal	¢1.75	
Computer Music Journal	£2.50	
Peoples Computers	E1.75	
- BYTE	£2.25	
Creative Computing	¢1.75	
Calculators \& Computers	£1.75	
HOM	¢1.75	
Kilobaud	¢2.25	
73	£2.25	
6502 Journal	£1.75	
MAGAZINES: Subscriptions		
Personal Computing (Twelve issues Yearly)	¢16.00	¢17.00
Interface Age (Twelve Issues Yearly)	£20.00	¢20.50
Dr. Dobbs Journal (Ten Issues Yearly)	£13.00	¢13.50
Compurer Music Journal (Four Issues Yearlv)	E8.50	¢9.00
Peoples Computers (Six Issues Yearly)	¢8.00	¢8.50
Kilobaud (Twelve Issues Yeariv)	£20.00	£21.00
-BYTE (Twelve Issues Yearly) via USA	$£ 15.00$	
BYTE (12 issues yearly) via U.K.	E21.00	
Creative Computing (Six lssues Yearly)	c8.50	$£ 9.00$
Creative Computing (Twelve issues vearly)	¢16.00	£1.7.00
Calculators \& Computers (Seven Issues Yearly)	£10.00	£10.50
73 \Twelve Issues Yearly)	£20.00	£21.00
6502 Journal (Six issues Yearly)	¢9.00	E3.50

HOW TO ORDER

Piease note our prices include postage and packing, but not insurance, if wanted add $12 p$ for every $£ 10$. of books ordered. Make cheques, PO's etc. payable to:-

L.P. Enterprises.

CREDIT CARDS accepled
BARCLAYCARD VISA / ACCESS
DINERS CLUB / AME RICAN I XPRESS
Phone: 01-553 1001 for Credit Card
orders (24-hr service)

Send to address above
Indicate Payment Method:

All Orders must be Prepaid Total Enclosed \mathbf{E}

My cheque, P.O., I.M.O. is enclosed in Sterling on U.K. Bank
Charge to Barclaycard/Visa/Access/Diners/American Express
Credit Card No
Expiry Date
Name.
Address
POSTCODE
Signature .

Publisher's Letter

Dear Reader,
I went to the Personal Computing and Small Business Computer Show held in Philadelphia this August, and received a warm reception from the Show's director, John H Dilks III. Our magazine went down very well with the Americans.

This, the sixth and Show issue of PCW, is a milestone for personal computing in Europe. We are able now to say with confidence that PCW is read by people who command respect in their professions: Businessmen, academics, researchers, engineers, doctors, lawyers, accountants, computer specialists, journalists . . . and the corollary is that there is a strong base in Europe for personal computing.

Editorial

Thou shalt not lose face

That seems to be the first commandment in publishing. Which explains, I suppose, why a "good" editor is worth his weight in the words needed to explain away modify or suppress criticism.

I have in front of me a long letter from a reader. In it he comments on the first few issues of PCW. He doesn't make a polite genuflection before expressing his forthright opinions on articles and authors. He's taken us at our word and challenges us to publish the letter.

Now should we take the risk and publish? Should we say to Mr. A. J. Aylward, "Good letter, but it's over long?" This in spite of its racy style and flashes of humour? Should we quietly forget our commitment to be sensitive to readers' opinions, especially when these opinions are critical?

The title I have in mind for the letter: "Donner und blitzen!"

Micro Elephant?

The British Government is financing Inmos to do for Britain's micro industry what Silicon Valley is doing for the U.S. Though this baby elephant hasn't been delivered yet, swarms of painters are dipping their brushes in white paint.

My paint brush is poised, but l've halted in mid-stroke. After all, even elephants grow to different sizes. In two to three years - roughly the time Inmos will be ready to trumpet its hardware - worldwide demand will be so tremendous, and applications will be so varied, that any halfway decent product will find a niche in the market. The really encouraging thing is that the track record of the people involved with Inmos ensures that its products will be far more than halfway decent. But I still haven't put down my paint brush.

LOOK!

Extra RAM for your PET

* New LOW prices:-

16Kbytes £328

* Simple internal plug-in board

24 Kbytes $£ 388$

* Full manual with BASIC test

32 Kbytes $£ 438$

* 6 month guarantee
* Available NOW (Prices exclude VAT)

IJJ Design Ltd.
37 London Road, Marlborough, Wilts
SN8 2AA

PCW Book

 110000 Review

SOME COMMON BASIC PROGRAMS

L. Poole, M. Borchers, 1977 ; 193 pages,
(Adam Osborne \& Associates $81 / 2 \times 11, £ 5.95$)
BASIC is an easy language to use. Why then should anyone buy a book full of listings of "common" applications programs written in BASIC? The answer is simple. Even the best programmer cannot expect to understand all the theory necessary to solve problems in mathematics/economics/statistics etc. "Some Common BASIC Programs" supplies easy answers in each of these fields and many more.

The large range of programs, 77 in all, makes it impossible to list them all here. Roughly speaking the programs are grouped into sections:- Commercial le.g. Term of a Loan, Earned Interest Table), Mathematics (e.g. Parts of a Triangle, Coordinate Plot, Matrix Inversion), Statistics (e.g. Mann-Whitney U, Chi-Squared, Multiple Linear Regression), General (e.g. Recipe Cost, Day of the Week, Anglo to Metric),

Each program is well commented and an example of how to use it is included. Modification for particular applications not covered should be easy. One reservation is the number of possible errors. In the few programs that I have used to date there have been one or two errors (e.g. in Anglo to Metric and Multiple Regression). These have proved easy to fix once spotted, but indicate that the book should be used with care. However at 7.72 p per program this collection should be ideal for anyone using BASIC.

Michael James

NOTE TO POTENTIAL CONTRIBUTORS

If you are sending listings for reproduction they must be absolutely clear. This can be achieved by the use of a carbon ribbon in the Printer.

ATTENTION PET OWNERS!

Phone or write NOW for the most exciting catalogue of PET games around. (FREE)

THE LONE KNIGHT ($£ 5.00$) - The most intriguing and difficult chess-orientated puzzle ever.
ACEY-DUCEY (£6.00) - A must for anyone with a gambling streak! "Real" cards display.
ONE ARM PET (f6.00) - The most sophisticated Bandit ever. Hold! Shoot for Gold or Silver!! Terrific graphics.
HANGMAN (£4.00) - A pleasure (ouch!) to be executed by PET. Over 300 "in memory" Words and definitions. Very smart display.
CHINESE FAN TAN ($£ 6.00$) - "Crap" game for 2 to 8 players. Ideal for parties. Totally addictive!

AND MANY MORE . . .

Send PO, IMO, Cheques made payable to MINI MICRO 47 Queens Road, LONDON, N11 2QP

ACCESS MASTERCHARGE EUROCARD welcome.
Just send or phone card number (01-889 76159 a.m. to 7 p.m.). Orders and enquiries accepted Worldwide.

ANNOUNCING THE W/GBOS

JOIN THE MICRO REVOLUTION

£399 for a Z80 based microcomputer, built and tested

Designed for educational establishments, personal computing and small business users

* Includes 1 K monitor Eprom, 47 key solid state keyboard, video. TV, cassette and teletypewriter interfaces,serial i/o, 2 parallel i/o ports, 2 K bytes RAM, power supplies and instrument housing.
* Connect to domestic TV or video monitor to complete the system
* 48×16 character video matrix
* 47 key contactless ASC11 keyboard
* Hard copy on teletypewriter
* 2 TTL compatible parallel i/o ports
* RS232 serial i/o port

Load and dump programmes on unmodified cassette recorder

* Up to 16 K byte mixed RAM and Eprom in table top housing
* Expandable up to 64 K bytes
- Security locked power switch
* British designed and built
* Available in kit form for $£ 360$
* Credit terms available

PETulant?

I read John Coll's review of the Pet 2001 in issue 2 with interest but with increasing dismay the further I progressed. He starts by saying "Let me give you my overall impressions of the Pet 2001" etc., and proceeds to do so but based on this admission) only one day's use. This would be fine if followed up with an in depth evaluation such as accorded to Tandy's TRS-80. However John Coll's treatment of the Pet far from being objective appeared to be more a series of digs at CBM itself, apparent in his opening paragraph and especially so in the article conclusion.

To my mind, far from being objective Mr. Coll raised serious doubts, not with the machine itself, but about the ethics of the company producing it.

I have no axe to grind but I am very interested in purchasing a microcomputer and I am especially interested in obtaining unbiased information on the Pet 2001. Mr. Coll has unfortunately left me with the feeling that all was not well with CBM's Pet and possibly his relationship with CBM itself.

That the Pet has disadvantages I agree. It also has a lot of very advantageous features as well, and despite its "individual" features a large software market has already opened up in various parts of the country with what seems to be an endless supply of programme material available at a reasonable cost.

In closing I would like to point out that CBM have available at present a printer at $£ 459.00$ inc. VAT and a second cassette at $£ 59.40$. This information appears in their Official Price List (April 1978). Also of interest is that 6500 KIM Programming \& Hardware Manuals are also available at $£ 5$ each.

Please let us have an owner's report or an in depth review of the Pet which I'm sure will be popular, and keep up the high standards of your magazine (to which I subscribe) remembering that what is written in PCW is going to influence a vast number of absolute novices to computing.

G. D. Compton,

Somerset.

John Coll replies: I agree with the writer. The simple fact is that CBM would not provide the facilities to enable an in-depth review. I regret this as much as he does.

FLOORED!

I have just read the article 'Computing for Everybody' by Magnus Magnusson in the August issue of PCW. If any of your readers are intending to follow one of Mr. Magnusson's ideas by hooking their computer into ours I should ask them if they could try and keep the wiring as tidy as possible and use the false flooring provided

Pete Harris,

Computer Services,

The Financial Times.

THE DOCTOR AND COMPUTING

Like your contributor Robert Johnson, I believe there is enormous scope for the use of microprocessors in General Practice.

I was surprised by his estimate of the small amount of tape required to \log a year's work, but with reasonably wide categories for symptoms, signs, past history etc., it should be possible. It would be difficult, however, to record all symptoms systematically, considering the number of symptoms presented with, for example, a common cold.

There is one omission in the article which I believe is the greatest bar to the full use of the data for early recognition of side effects -- the problem of confidentiality. It is axiomatic that any information a doctor receives in the course of a consultation may not be communicated to any other person without the consent of the patient. It is equally axiomatic that the central computer used to detect side effects must be able to link up the prescription of a drug at one time with the appearance of a new symptom at another, and therefore that each patient should be uniquely identifiable. The prospect of meticulously recorded medical information on the whole population being available to a government department is not a happy one. Would you sign away your right to confidentiality?

On the other hand, I am in no doubt about the value of datahandling devices in general practice, particularly now that micros make it possible for GP's to do their own data-handling, without relying on time-sharing and its attendant security risks.

Finally, 1 should be most interested to correspond with any. one else who is interested in this field - as a newcomer I need all the help I can get!
Dr. Michael Hendry,
Kenilworth,
East Road,
Cupar, Fife.

IN DEFENCE OF THE EUROPA-BUS.
Some time ago it was proposed that a new bus standard be introduced, in order to keep pace with recent developments in the Microprocessor field since the early days of the 8080 and its associated S100 bus system. The proposed E78 Europabus has advantages over many other systems in that it uses standard indirect connectors which, although expensive, are readily available, and in that the system is flexible and is readily adapted to several microprocessor types and configurations. Clearly it cannot cater for all eventualities, multiprocessor systems have been mentioned as difficult to adapt, but neither can any of the other established systems, S100, MUBUS et al.

As a member of the Southampton University ACC, SIG.99. design team I have been mostly concerned with the development of the bus for the 9900 . Other groups elsewhere are working with other processors. We have decided that we will use the basic 64/64 configuration, with minor modifications, for the majority of signals. Other signals, the CRU bus and the 15 Interrupt lines, plus a few miscellaneous signals, will use a second connector. Regarding the number of pins. I do not know of any 96 way connectors. The 64/96 connector differs in having a greater spacing between the rows compared with the $64 / 64$. (See Vero Catalogue for details).

If you do not wish to utilize the full double Eurocard system for certain peripheral boards, I would suggest using single cards. This is easily accomplished using, for example, the Vero KM4C series of cases. Of course there is a problem with the number of pins but certain peripheral boards could be non-standard. One other solution is to include extra wires or connectors in addition to the standard connector. Why not include a 24 way ribbon cable to interface, say to a floppy? Why not connect the board to a 'module' assembly, with standard connection at the rear, and V24 or RS232 type connector at the front?

Most of the problems can be, or have been, solved. Some microprocessor types have almost been finalised for use with the bus, in particular the 9900. The standard is almost here. Why not use it?
P. D. Maddison,

Hon. Pres. SUACC
Pres. SACC.
Sou thampton University

"NEIGHBOURHOOD CONSULTANCY'"

Obviously David Francis (P.C.W., August, 1978) gets lots of fun out of "Neighbourhood Consultancy", and he certainly gives some good advice on methods. However, it really isn't as simple as that; a few caveats need to be entered. He suggests you should ''get into some basic Operational Research and Systems Analvsis". I'll start with Operational Research, since that is my profession.

First, Operational Research is not just techniques (linear programming, stock control etc.). At the University of Aston Management Centre we have an Operational Research and Systems Analysis Subject Group which devotes a uniquely high proportion of its Courses in Operational Research and Systems to methods as opposed to techniques.

Second, Operational Research is not computing either. Some industrial Operational Research groups have their own computing expert in the group, and he is often the "odd man out". "Don't ask me about Operational Research" he'll say, "I'm a computer man!"

Thirdly, the textbooks on Operational Research and Systems are full of techniques, but aren't terribly helpful about methods. R. C. Tomlinson, referring to methodology in his Inaugural Address as President of the Operational Research Society in 1974 said "1 personally do not find the existing textbooks adequate". My current research at Aston is intended to help fill some of these gaps.

Fourth, it is certainly possible to learn the methods associated with Operational Research, Systems Analysis and other consulting type work. It is next to impossible to learn by reading alone. The best ways of learning this sort of thing are still a topic of lively debate in, for example, the Operational Research Society.

My fifth and final caveat is about people - whether the skills of the thome computer man will match those required of a consultant.

David Broad (Managing Director of Comart) has made a charming analysis of his customers into five types:-

1. Home Brew Computerist. 2. Home Computerist. 3. MicroEntrepreneur or Small Businessman. 4. Educationalist. 5, Government and Research Scientist.

It think this covers the people David Francis is addressing.
If you are the consulting sort (i.e. in business, the professions, Operational Research, or Systems Analysis, etc.), and need a micro as a tool, you will probably have got one already (type
" 3 " above). If you are in it for the fun (types " 1 " and " 2 " above), it is less likely that you will have the consulting skills or interests. Your computer, whatever its size, is a tool. Your micro won't make you a consultant, any more than a saw makes you a carpenter. The danger is of disappointing your client as well as yourself, and possible giving a bad name to the micro fraternity.

In the light of my own consulting work with micros (in conjunction with Bernard Tate of Beta Systems), and my research (at Aston), I would suggest that one needs to keep ones eyes (and mind) far more open than most people usually do.

In this age of technology, science, logic and reason, one is driven to see and think about things in a rather rigid way.

Indeed, this sort of thinking (technique rather than method oriented) is necessary to the home brew computerist.

Consultancy demands the opposite - seeing things through other people's eyes (as well as your own) and thinking of them in several different ways.

Yes, there are opportunites to grab, but we must grab them with eyes wide open.
R. N. Woolley, B.A., M.Sc.

11 Kerry Close,
Brierley Hill,
West Midlands DY5 3YW

A READER'S PLEA

I realise that, with the increasing circulation of your magazine, you will soon have to start rationing the space devoted to readers' letters, but I hope that you may consider my comments to be of interest, especially since I am perhaps rather untypical in background, being a recent 'convert' to computing who took a job at a leading systems house as an export consultant about a year ago, and then moved gradually into increasingly technical areas (a reversal of the usual career progression, I suppose!) I have been involved with hard-ware, soft-ware, and commercial aspects in roughly equal proporations, and do not, fortunately, encounter anything but the latest technology, having never even seen a punched card or an ICL 19001

So much for background - my real reason for writing to you is that my experiences while trying to acquire a useable personal computer system might be of wider interest, might save some readers the same frustrating 'learning curve' and, best of all, might provoke some entrepreneur into coming up with solutions. (I am sure my employers could, but I cannot afford their fees!)

I have in fact come to the conclusion that there is no useable personal system on the U.K. market for less than $£ 2500$, and yet that there is no reason why this should be so, since my definition of 'useable' is pretty modest (no line printers or 100 Mb discs I) being based on the following requirements:-
Hard copy output - unobtainable for less than about $£ 700$, and even then you can only choose between an upper-case only dotmatrix contraption suitable only for invoices and listings or a Golf-ball conversion which no-one will want to service.
Video output - at least $£ 500$ for a green-and-black display that cannot even take an A4 page (for that you would need $£ 1500$) is hardly sensible. I have heard, and more or less understand, the arguments against a domestic TV on the grounds of bandwidth etc., yet I have found that, in practice, a display on a modern colour TV (with one of those black grids to improve subjective definition) is more readable than the blobby green squiggles which the 'commercial' alternatives provide.
Colour is not just a frivolous extra, it provides another infor-mation-carrying channel which can compensate for any shortcomings in characters-per-line, and also seems to encourage people to present data more imaginatively and graphically.

Yet there are hardly any colour TV interfaces on the U.K. market, despite the fact that any-one contemplating a serious personal system will certainly be able to afford a colour TV lat $£ 200$ they seem like peanuts compared to some of the prices mentioned earlier.)
Viewdata and Teletext. Even more extraordinary, indeed almost scandalous, is the fact that no one else seems to pay any attention to the need to make a reputable system at least compatible with these - whatever their shortcomings (on graphics, for example) they provide an unlimited supply of data for manipulation by the personal system, and there is no reason why the video display should not have other options (high-definition graphics etc.) available as well.

Personally, I do not intend to spend anything on an actual micro-computer until the above situation has improved (perhaps when the big companies start churning out viewdata units with external DMA) but, when I do, I would start worrying about the following:
Storage. The falling price of RAM chips is the only good news. But anyone who has outgrown cassette storage (i.e. anyone who has owned their system for more than a weekll and who thinks that a $£ 500$ mini-floppy will solve their problems has a nasty shock coming to them - floppies are so unreliable that you will need two units anyway, and spend much of your time copying.

I do not know when this under-publicised problem will be solved, or how. Perhaps by bubble memories, or even the video cassette or disc (up to 100 Mb serial or 100 Mb random access for that $£ 500$) but in the short term I feel tempted to go for an EPROM programmer (and eraser) for the really vital soft-ware.

Interpreters. People seem to chase every last MHz of processor speed, only to slow their programs down by a factor of between 20 and 50 by using a 'Basic-in-ROM' instead of a compiler - but there are signs that this may improve.
Random number generator. This may not seem a key item, but you will have guessed from my emphasis on colour graphics and speed that I am interested in games, simulations, and computer art rather than 'DP'. It would seem to be so easy to implement a hard-ware random number source (for less than a tenner, I would think) that I cannot understand why people are still forced to use slow and often very non-random soft-ware routines (some of which are even 'sold' as debugging aids because they repeat the same sequence every time they are initialised!!
Real-time clock. Another little bit of hard-ware that would be so easy to offer as standard, and so much more useful than say, being able to connect 256 teletypes to your microl

Finally, there are a couple of commercial aspects which should be considered by anyone who actually wants to use their system as opposed to endlessly assembling, testing, modifying and repairing it.
Kits. I may be prejudiced, but I feel that anyone who supplies a product in kit form only is merely evading the responsibilities he would have if he sold it as a complete product (guarantees, Sale of Goods Act, Trade Descriptions Act, etc.) In any case, kits never seen to be particularly cost-effective even if they work perfectly ever after - if they are any good they will soon start being mass-produced at prices below the original kit price (viz. TV games, calculators, etc.)
User base. The sad thing is that I will probably end up buying a second-rate system simply because a lot of other people already have it, just so that I can obtain soft-ware at the right price.

You will notice that there are a number of things I have omitted, the little matter of the processor being one! But, until someone starts coming up either with solutions to the above problems, or with price reductions so massive that they become tolerable, arguments about processor architecture, bus structure, etc., must remain of academic interest for anyone who is seriously contemplating investing their own money.

By the way, many thanks to Guy Kewney for his much needed debunking of some of the policies of U.K. suppliers (massive mark-ups over U.S. prices, but without the extra support or expertise that would justify them.)
C. A. G. Cary, M.A.

9 Eltislev Avenue,

Cambridge

Cambs.
PCW Readers - please - space is our headache. We can't publish too many long letters, however interesting - PCW.

ROBOT - MAN

As a real newcomer to the world of computers, I have been reading PCW since its first issue. At the present moment I still feel as if I have picked up a magazine written in Sanskrit or some other obscure language but gradually I am learning to translate it into English.

I came to psychology via biology, and it is my interest in the biological sciences that really prompt me to write. In the August 78 PCW, W. V. Ringer gave us a stimulating article called "It's the thought that counts". However I think he went a little further than most biologists would be prepared to go at this stage in his exposition of the significance of DNA. He gave the impression that he thought instincts were somehow programmed into the DNA.

He was right in his description of DNA as a double helix, one from each parent but even that is an oversimplification of the facts. It is the order of the bases (nucleic acids) which determines the message it carries. Each group of three bases specify a particular amino acid after they have been transcribed into another kind of nucleic acid helix called (for short) RNA. They also specify 'stop' and 'start' signals. These amino acids are zipped together by the elimination of water by a tiny component of the living cell called a ribosome to make proteins. The proteins fold up into a shape determined by the forces which exist between the side atoms of the amino acids; for example Hydrogen atoms link up with Oxygen or Nitrogen, Sulphur atoms with Sulphur atoms. The shape of the protein determines what job it does; support, information transmission, etc. Besides proteins, cells contain and produce and use other complex materials like lipids and polysaccharides.

The proteins which are produced as a result of the translated and transcribed DNA, themselves can carry messages to other cells, but at what point 'Instinct' enters this chain of message carrying is difficult to see.

However, I am not quibbling over his basic thesis which is that man is the product of three factors: Genetic inheritance, environmental influence and soul. Though I doubt, come to think of it, if the theologians would go along with his definition of soul, but that is another letter.
Cyril D. Blount,
Teasdale House,
Easingwold,
York YO6 3PN

Tid Bits

 PRODUCTS
Data about Data

The relevance of data dictionaries and details of available systems are covered in a new book just published by The National Computing Centre. It is Data Dictionary Systems by J. D. Lomax.

The first section of this new book is devoted to explaining the purpose of data dictionaries, together with the implications and the practical issues involved, including implementation and running. It sets the scene for those investigating the subject, so that they can assess their requirement for DDS software. The book considers the question of whether to write one's own system or to buy a packaged product and proposes and examines a standard questionnaire for evaluating packages.

The second section, consists of eight available systems described in detail. The same procedure is used for each package and this is based on the standard questionnaire in the previous section.
Data Dictionary Systems by J. D. Lomax
ISBN 0850121914 price £12.00 128 pages Available from technical bookshops or J. M. Dent \& Sons (Distribution) Ltd., Dunhams Lane, Letchworth, Herts. (Cash + postage of $£ 1.00$ with order).
For further information
G. E. Hall or N. Candeland,

NCC Publications,
Telephone: 061-2286333

The ECS Ecstasy machine, incorporating a Texas Instruments TI-58 programmable calculator with a 'Custom CROM' program module.

Custom-designed calculator module is key to new bookmakers' machine
A Texas Instruments TI-58 programmable calculator fitted with a special custom-designed program module forms the heart of a new machine designed to provide instant answers to the most complex betting problems experienced by bookmakers. The machine, known as ECSTASY, is being marketed by Efficient Computing Systems (ECS) of Douglas, Isle of Man, and is expected to become standard equipment in many betting shops.

The key to the betting-shop application is a device known as a 'Custom CROM' (Constant Read-Only Memory) - a small module containing a package of specially developed betting-shop programs which plugs into the back of the calculator. Dr. Les Waller, who is a consultant to ECS, and who has been involved for about ten years on the development of programs to ease bookmaking calculations, specified the CROM in such a way that the most complex variations of bets - doubles, trebles, block bets, each-way bets and 'anything-to-come' bets for a large number of selections - can be handled in a single operation, with a printout produced straight away on a built-in printer.

The ECS machine is the only one of its type currently available, and its success is due to the fact that Dr. Waller, a computer scientist by training, has been able to devise special
algorithms to minimise the number of steps required for complicated betting calculations.

ECS is currently engaged in discussions with leading bookmakers on the use of the ECSTASY machine, and large orders are expected in the near future.
Further information:
John Gibbons, Texas Instruments Limited,
Telephone: Bedford (0234) 67466; or Dr. Les Waller, Middlesbrough (0642) 85399; or Peter Bush, Bush Steadman \& Partners Limited, 4 Gold Street, Saffron Walden, Essex CB 10 1EJ. Saffron Walden (0799) 23101/27240.

MEMEC OFFER:
16K Dynamic Ram. Z6116 Zilog's 16K Dynamic Ram.
The $26116,16 \mathrm{~K}$ dynamic RAM organised as 16,384 word $\times 1$ bit and packaged to industry standard in 16 pin D.I.L. is currently available with 250 and 200 nsecond access times.

The device is manufactured using ZILOG's double-poly ion implant silicon gate technology and features orr chip latches for address and data in and a common I/O capability using "early write".

All inputs are protected against static charge.
For full details and prices contact:
MEMEC (Memory \& Electronic Components) LTD.
Thame Park Industrial Estate,
Thame, Oxon.
Telephone: Thame (084 421) 3416
Telex: 837508

Rapid Recall have 4 K RAMs in Stock
In spite of recent comments about the shortage of 4 K RAMs, Rapid Recall announce that they have substantial stock levels of a number of Intel 4K RAMs.

Harry Case, Rapid Recall's Managing Director, said 'We have always claimed to carry the largest stocks of Intel products in the UK, but it is not until devices are in short supply that the extent of our stock levels becomes evident. Obviously we could not continue to supply these items in the face of an extended shortage, but our stock levels are sufficient to buffer the inevitable ups and downs that occur in the supply of semiconductor devices."
Further information:
John Weatherhead
Rapid Recall Ltd.
9 Betterton Street,
London WC2H 9BS
Telephone: 01-3796741

MINI MICRO is a new firm and it will start its retailing activities in mid-September, initially by mail order, dealing exclusively with games.

Games programs will be, for the most part, generated inhouse, but private contributions will of course be welcome.

Its first catalogue will be exclusive to CBM PET, but it will be presenting catalogues for a wide range of machines.

The greatest care will be taken in the debugging of programs, of course, as well as in the visual field, with displays designed especially to make games as attractive as possible.
Further information:
Mini Micro,
47 Queens Road,
London N11 2QP
Telephone: 01-8897615

COMART, specialists in S100 Microcomputer systems, now have available their Autumn 1978 Catalogue. Products in the catalogue for the first time include the Cromemco System Three, Single Card Computer and the SOL 20/16 Terminal Computer System. Prices of all Dynabyte memory modules have been reduced. The 16 k byte dynamic memory card is now priced at $£ 275$ compared with the pre 1st August price of $£ 310$.

Catalogues are now available from Comart Limited, P.O. Box 2, St. Neots, Cambridgeshire PE19 4NY

The HORIZON - 1 computer is made by North Star Computers of Berkeley, California. The Company also takes credit for the famous North Star Basic. The complete HORIZON -1 has a 16 K RAM board, one minifloppy disk drive, 4 MHz Z80A processor serial input/output port, and Extended Basic. The list is by no means exhaustive, and the upgraded HORIZON -2 offers two minifloppy drives. There is great software support, notably the North Star Software Exchange Newsletter.
Full details from the U.K. distributor:
Interam,
59 Moreton Street,
Victoria, London.
Telephone: 01-834 0261/2733

Horizon Documentation

Horizon-2 pictured with Elbit DS 1920 , Model 30 V.D.U.

GROWING EXPORT ORDERS FOR BRITISH MICRO-

 COMPUTERNascom Microcomputers launched its NASCOM - 1 microcomputer at the end of last year in face of intense competition from Japan and the USA. Since then the NASCOM -1 has become the country's fastest selling microcomputer, with orders approaching $£ \mathbf{2 m}$. Three-quarters of the business has come from the rest of Europe and Scandinavia, particularly Germany, Holland, Sweden and Belgium.
NASCOM Seminar. Venue: Dragonara Hotel, Bristol.
Date: Saturday October 14 Time: 9.50 to 5.30.
Admission: $£ 4.50$ including VAT
Featuring: Five lectures, demos, open forum.
For further information:
Kerr Borland at Nascom Microcomputers
Telephone: (02405) 75151

Ocean Electronics seeing the need for a Low Cost floppy and controller have come up with a single card solution for PET users, 6500 family users 6800 and 8080 users. The difference is in the onboard PIA and Software supplied. The controller controls a single Floppy from Shugart, other floppies can be utilised, the Shugart SA 400 mini is used, also supplied is the software to
control the PIA and Drive for your MPU family. Also full data on the 6500 (PET'S "Brain") and all the ICs in the 6500 family. Controller is expected to sell at $£ 120$ and SA400 at $£ 225$.
Write for details to:
Paul Wynter, Ocean Electronics,
Georgian House, 5 Bartholomews, The Lanes,
Brighton, Sussex BN 1 1HG
Telephone: 0273-21952
Telex: 877159 RR Hove G.

New Product: New Ballistic *9 wire Dot Matrix Print Head.
Peripheral Hardware announce a print head that employs an entirely new operating principle and which is manufactured to a very high engineering standard by Lear Siegler in America. Instead of solenoids with moving cores attached to the matrix wires, the Lear Siegler head from Peripheral Hardware uses simple electro-magnets to activate small hammers that ballistically propel the print wires. Since electromagnets use only a small fraction of the power that solenoids require, far less heat is generated. The head is therefore ideally suited for long, heavy-duty work cycles.

Since the wires are independent of the coils, the driving ends are arranged in a small, centrally located circle. This minimizes wire flexing and greatly simplifies guidance. As a result, the life expectancy of the print wires is substantially increased. This simplified guidance also eliminates tube clogging with inks, dust and paper fibres.

The Ballistic head is available in a 9 high wire configuration. The matrix can be utilized for printing both upper and lower case English character printing, plus underlining, symbols and special graphics. Foreign alphabets such as German, Arabic and Katakana are also possible.

* Trade mark of Lear Siegler Contact:
Keith Searle
Peripheral Hardware Limited
Link House
Pool Close
West Molesey, Surrey KT8 OHW
Telephone: 01-9414806

The new Lear Siegler print head.

SOFTWARE ARCHITECTS ANNOUNCE SALEM/1
A GENERAL PURPOSE EMULATOR FOR SERIES/ 1
Software Architects Limited are currently developing an ICL 7020 emulator as part of a major IBM Series/1 application for London Transport Executive.

The initial implementation of the emulator SALEM/1, due for handover in September 1978, will emulate a 7020 paper tape or card reader for the purpose of bulk data transfer to an ICL 1900 mainframe from a disk or diskette file on the Series/1. It will handle George 3 line disciplines by the emulation of teletype control commands.

The second phase of implementation will support bulk data from the 1900 to the Series/1 emulating a paper tape punch or line printer. It will also enable a 1900 mainframe operating under George 2 or Manual Executive to communicate with Series/1.

The range of peripherals will be extended to include the total range of 7020 and Series/1 devices. Any configuration of Series/1 and 7020 may then be specified. The handover date for this version will closely follow that of Phase 1.

SAL have already been contacted by numerous potential users of SALEM/1, both in the UK and Europe, as well as creating some interest amongst US software houses.
For more information, contact:
Jeff Goldsmith,
Software Architects Limited,
34-35 Dean Street,
London W1V 5AP
Telephone: 01-7349402

Another new computer dealer:
Microdigital Ltd., of 25 Brunswick Street, Liverpool. Managing Director is Bruce Everiss, who is determined to be not only the first but also the most outstanding computer entrepreneur in Liverpool.

The range is wide: computers from the basic MK-14 to the Apple. Sof tware will be "extensive" and will come from in-house as well as the elegant offerings of American software house GRT. Games programs will be on offer, as well as the musical micro doorbell CHROMACHIME. Literature on sale includes books and magazines.
Contact:
Bruce Everiss,
Telephone: 0512360707.

RESEARCH MACHINES $380 Z$ - UPDATE INFORMATION

There have been several changes in the Research Machines $380 Z$ since the PCW review of it in the June (No. 2) issue.

The operating system has been extended so that the following are standard on all 380 Z and 280 Z systems. Normal cassette I/O is now at 1200 baud, but the option of 300 baud (standard CUTS) is retained. The screen output, unless selected otherwise, is scrolled one page at a time, the next page being called by typing any key. Continuous scrolling and scrolling one line at a time are also possible and alf the different modes can be selected under program control.

Printer and Serial Interface driving routines are now also included in the operating system, and direct connection may be made to parallel interface printers such as the PR40 or Centronics 700 range. Research Machines are themselves distributing the Centronics 779 and 701 and the Trend 800. Two low cost Serial Interfaces are offered for interfacing the $380 Z$ to RS232/V24 or 20mA current loop teletypes or printers. These interfaces are bidirectional and a software routine is available allowing input from a paper tape reader. Another serial interface was designed for use in applications which require simultaneous input and output, for example when operating the $380 Z$ as a terminal linked to an acoustic coupler.

Several specific criticisms or suggestions in the PCW review have been acted on: the fast cassette I/O rate is assumed as the normal rate, when the page is full in page mode the cursor blinks on and off, and loading can now be interrupted by a single key stroke at all times. The housing is completely new; a strong and attractive instrument case is used. There is the same room for system expansion and the case will fit into a standard $19^{\prime \prime}$ rack.

Further features have been added to the BASIC Interpreters. A version is available which includes the ability to read and write data files on cassette. It utilises the RML cassette file system and can be used with one or two cassette recorders. The RML Interactive Text Editor and the RML Absolute Assembler have been released. The Text Editor is character oriented and may be used in immediate mode; its uses include source program or data preparation. The $\mathbf{Z 8 0}$ assembler uses Zilog mnemonics and produces object code in either the industry standard 'Intel' format or the RML binary format. It contains its own text editor which uses a subset of the commands available in RML's full Text Editor. Research Machines Ltd.,
PO Box 75.
Oxford
THE BYTE SHOP of $426 / 428$ Cranbrook Road, Gants Hill, IIford, Essex (01-554 2177) is a vigorous newcomer to the retail computer market. It offers an enviable range of hardware and software, details of which are given in an excellent catalogue, available on request from the address above. The Director, Bill Cannings, has very obviously studied the needs of potential clients carefully and this is reflected in the BYTE SHOP's offer of unbiased advice, hands-on experience for customers, no sales pressure, software, repairs, and post-buying support. The Shop is run by the able and energetic Vince Coen.

NEW PRODUCT

A Miniature Hybrid Data Acquisition System from Burr-Brown Burr-Brown have just introduced a complete data acquisition system with eight differential inputs (16 single ended) and 12-bit resolution within the confines of a tiny package measuring only $55 \times 43 \times 5.6 \mathrm{~mm}(2.2 \times 1.7 \times 0.22$ ins $)$.

The unit comprises a 16 -way input multiplexer with channel selection latches; sample and hold circuitry; a 12-bit analogue-todigital converter complete with voltage reference, clock and timer; and three-state output buffer stage.

The unit is also available with an integral high-grade instrumentation amplifier. The inputs and outputs of the various sections of the unit are brought out to package pins, providing the designer with a great deal of flexibility in the way that the unit is configured. (Diagram below)

Contact:

Roger Isaacson,
Burr-Brown International Ltd.,
17 Exchange Road,
Watford, Herts WD1 7EB
Telephone: (0923) 33837

THE MICRO IS A MANY SPLENDOURED THING

LESLIE SOLOMON, Technical Director, Popular Electronics

It has now been $31 / 2$ years since the introduction of the first personal computer kit. Since that time, we have seen something like 300-400 computer stores, half a dozen computer magazines, and several hundred computer clubs spring up in the U.S.A. At this moment in time, it does appear that there is almost no end in sight. Many other countries are also getting involved in the computer craze, at a steadily increasing rate.

Many computer types are being accosted by local radio stations, newspapers, and TV stations, all asking pretty much the same question... "what can you do with a computer?". This longish letter is a partial reply to that question.

Of course, the first reply would be an intricate discussion of "number crunching" or text manipulation - the sort of things that most non-computer people consider the domain of the high-speed digital computer. Years of exposure to movie and TV programs have taught the general public that digital computers are massive collections of lights (usually flashing in mysterious patterns $\}$, large metal cabinets filled with complex outer-space type of things, huge noisy tape machines spinning madly, and large and noisy printers that clatter out all kinds of strange messages. Most messages are confined to either ruling the world, or solving almost impossible problems. Even today, people still see these large machines attended by mysterious figures dressed in white smocks, who seem to spend their time churning out mountains of data whose main aim is to confound the public with wrong bills!

However, with the home or personal computer, another world has opened up. The introduction of microprocessors and solid-state RAM and ROM have resulted in innocuous computers that do not look the least deadly. In fact, most look like gentle beasts, despite the fact that a personal computer of today is more powerful than the large beasties of only a decade ago. Consider the fact that a typical hobby computer is probably just as powerful as the IBM 360-Mod S, the business and scientific workhorse of yesterday.

Besides an electronic evolution, personal computers are also evolving new industry (we call them "cottage industries") where electronic and software people can now get involved for both love and profit. Many advanced hobbyists (entrepreneurial types) are moving into smallbusiness systems where a single computer, a disc system, and a couple of terminals are all that are needed to service a number of shops with payroll, inventory, and business tax forms. These hobbyists either worked for a hardware or software company and have now elected to "do their own thing" on their own computers. These operations are springing up all over the US.

Probably the biggest use for personal computers (which really means private computers) is in various forms of "games". The general public has long been aware of the arcade games that range from ping-pong to "shoot 'em up" games involving planes, ships, subs, flying saucers, etc. Much money has been poured into
slots since their introduction. This, of course, has led to the introduction of home video games that do almost the same thing.

Since most of these games are dedicated (can do only one thing), many computer enthusiasts have programmed their own computers to play more complex, interactive games on their systems. Some of these games, especially the well thought out ones, can be quite a challenge to the human operator. We already have games in one human group (a club or university) play a complex game against another human group - sort of one computer playing against another. These battles of software and strategy have been known to last several months without a clear winner.

Recently, chess programs have become the rage. Many of these programs can play almost at the grandmaster level, thus confounding most chess players who hate being beaten by a small piece of silicon and some programmer someplace. At the moment, there are a number of chess programs going on, where one machine and its program are "playing" another machine and its program. Chess clubs are being formed, and already, some chess programs are beginning to become famous in computer circles.

Having a computer play chess is nice, but many of us have not forgotten the children, and many programs exist that play interactively with a child. The results of this can be seen at almost every computer fair. The largest group sitting at consoles is invariably young - and playing computer games. That is where our future lies; with our children.

Since color (as in color TV) can be digitally derived, and computers can be programmed to create graphics, another dimension has been added to the personal computer. Not only games, but many programs for children have been developed to take advantage of color. Most color systems today use the conventional raster-scan technique, although some stroke systems are coming along. There are presently, quite a number of high-resolution graphic add ons available at computer stores, some with color capability. Some of these can accept an input from a conventional B/W TV camera and digitally produce some excellent color. Light pens are coming into use, so there we have the paintbrush. All we need now are the artists.

Probably the most interesting uses for the home computer are in an area that I call "non-computer" uses of the computer. In these uses, we must consider the computer as a "magic box" that accepts an input, does things to that input, then produces the desired output (usually on a CRT monitor). This concept is like using a TV set, you do not have to know how the TV set works in order to use it. Simply turn it on, select a channel, and the magic box follows your orders. The same applies to a car - just turn the ignition key to get it started, find a gear you like, and go. Everything is magic. And, that's the way it happens with a computer, You enter the program, hit the start switch, and things happen (hopefully correct).

The first non-computer use is one of speech input. Popular Electronics, back in May of 1977, introduced the Speechlab, an analog-to-digital converter that can accept an audible input, convert it to a six-bit digital word, then store that word in memory. The next time that word was spoken to the computer, the audio input was once again digitized, and the memory searched for a similar "template". Once found, the program caused the computer to do what it was supposed to do when it heard that word. In some uses, this approach is used to store words in an inventory control, where the user has a microphone around the neck, and simply talks the inventory into the computer.

Once we had a way to talk to the computer, we had to find some way to use the data. In December of 1977, Popular Electronics introduced the AC Controller - in which a digital computer could communicate over existing ac power lines within a house or factory. This allows a computer to control many functions without having to re-wire the complex. Now, if you have the right program, a computer can control dozens of electrical appliances via the ac lines. Since the computer could "talk" to the power sockets, the sockets could also "talk" to the computer. This means that a single computer in the basement could be accessed by terminals on other floors without running any wires. The possibilities of this approach are open ended.

Obviously, the next thing was to combine these two elements. Now we could speak to our computer and have it perform certain actions - some quite remote from the computer. My own machine turns on the lab lights when I enter the room and talk to it, turns on various peripherals, and even controls the TV and radio. It does get a little science-fictiony at times - but it is fun.

We have also been successful in interfacing (and programming) a D/A converter (equipped with audio filters), so that the computer could "speak" after a fashion. A little robotlike, but still understandable speech. Since the D/A conversion is phoneme oriented, the computer could say anything that we could digitally encode, and not be tied down to a few basic words.

Now, what can we do with this exotic setup? Well, besides having fun, we are quite serious about using this system to help physically and vocally handicapped people communicate and interact with the world.

Since Speechlab accepts an audio input that does not have to be in any recognized language, why not teach it to accept the various repeatable sounds that many handicapped people can generate? And, in fact, that is what we have done. These sounds (must be repeatable as this is the 'language' of the handicapped person) are translated by the computer either into English text that can be displayed on a CRT monitor or, using the controller, turn things on and off (open doors, windows, turn on lights, etc.). We have been reasonably successful in doing this. At present, there are a couple of institutions experimenting with this unique approach that could only have come with the introduction of the personal computer.

One simple byproduct of this experiment is the use of
a computer terminal and modem that allows deaf people to communicate over conventional telephone lines.

At the moment, there are several computer hobby groups that are quite deeply involved in the use of computers to assist the physically handicapped.

Then there is the area of music. Not the usual synthesizer type of music that is becoming quite common, but a new form in which a person can sit down at a computer terminal and without any knowledge of the computer (there is that 'magic box' again), and even with a limited knowledge of music, can create some fascinating sounds. A special high-level language, called appropriately enough "Music" is self explanatory when it turns up on the CRT monitor. You can score existing melodies, or create your own sounds. All musical requirements are met.

On the video display, it is easy to specify the note (frequency), duration, key, and all the other musical parameters. A simple coding scheme is used. The computer generates its own tones from its internal square waves and all you need (besides the computer) is an audio amplifier and speaker. You can use conventional electronic organ filtering to create various sounds. Now, for the first time, music students, teachers, etc., can have an electronic string quartet at their bidding, day or night, to play their tunes. The advantage of the digital approach over conventional analog tape recording, is that in the computer program, you can make any changes you desire - such as pitch, note duration, speed, etc., as easy as touching a few kéys. Several schools are using this approach to give their music students practical experience in writing and scoring music.

The latest non-computer use is in controlling various types of robots. These range from strange little boxes on wheels (like R2D2 in Star Wars) through complex things that look quite dangerous to approach. Most of these "robots" main claim to fame is that they move around and avoid obstacles. Not very exciting. With the introduction of CMOS logic (the 1802 processor for example) it now becomes feasible to build quite a sophisticated robot controller; so on to higher peaks......

A couple of friends and myself are busy at work with our own concept of a robot. This machine is designed to perform useful tasks - such as pushing a vacuum cleaner around the house, or a lawnmower around the yard without chopping down trees and bushes. We took a look at the various wheeled and tracked things running around and decided that the designs left a lot to be desired. Most of these creeper-crawlers stumbled over stones, shorted out when traversing wet areas, and tended to fall down when they met steep little ridges or large cracks. Our approach leans toward the "spider" in which six long legs (three on a side) are made to move the electronic package (which hangs at the legs-junction like a spider body). So far, the radio-controlled model works fine. It looks like a strange thing from another planet, but it is our baby!

Instead of controlling the robot through its built-in computer, we are going to use the internal computer to perform 'housekeeping' - that is, monitor the battery, make sure that the machine is always level, and control the memory. We intend to use a host computer having both large memory, and a disc system to actually do the "thinking" for the robot, then transmit the data to the robot via an ultra-violet optical link. In this way, we are going to treat the robot as a highspeed (about 9600 baud) terminal. The robot will have a pair of "antenna" like a grasshopper, except at the end of one antenna is an IR receiver, and the other containing the companion IR transmitter.

We have tested a small battery-powered BW TV camera with a small rf device, so that we can "see" where the robot is at all times. Now, if we put a vocal interface onthe robot, and a Speechlab......

something BTI Me

Chris Howland's Personal Experience

"But what can it do?" Colin asked.
'What do you mean 'what can it do?' " I replied gruffly as I eased the keyboard out of its tightly packed box. "It's a computer - it can do anything!"
"If you ask me," Colin said with a wry smile, "you've gone and bought yourself a white elephant. What do you want a computer for if you don't know what it can do?"'

I had an awful feeling that he was right but wasn't going to let him know it.
"Would you mind leaving me alone until l've got this thing connected," I said angrily. "Go and pour yourself a drink or something - or just go," I added, "I'm not particularly fussy at the moment!"

He went and joined my wife on the veranda and I heard laughter coming through my study window laughter at my expense, obviously.

You see, I have a problem which has been bugging me for years and it has finally come to a head.

It must have started at school. As a pupil, all my systems were reasonably "go" except for maths and that's. where I drew a complete blank. I had absolutely no head for figures; and even to this day, I count on my fingers.

I discovered the abacus in Bangkok and we became immediate friends. It wasn't long before I started looking around for things to add up or subtract and I soon realised that an imperfect mind can be greatly complemented by a machine however primitive. This, I think, was the beginning of my mania.

I bought an adding machine - but one which could multiply and divide as well. It weighed a ton and cost me a fortune in canvas bags because the handles kept on ripping off! We had great fun together, this machine and I, and we went everywhere together. When there was nothing to calculate, I took to adding up telephone numbers and as for division, this was a wow! My favourite was to ask it to divide 0.01 by 7.123 ! Once I had entered the numbers and pressed the "go" button, all hell would be let loose. The whirring and clanking of metal levers would go on for anything up to a minute as the poor thing wrestled with its useless problem. Then
would come a decisive triple "crunch" and a little slip of paper would shoot out bearing what I assumed to be the right answer. I really punished that poor thing - punished it in the same way as I was punished at school.

It was about this same time that I first clapped eyes on a transistorised adding machine with a huge LED display. It was out of this world - but so was the price, so that little love affair came to an end before it started.

Then people began sending rockets to the moon and everything started getting smaller. I snapped up my first pocket calculator (it needed quite a big pocket!) in Spain of all places and when the digital wrist-watch appeared, I immediately made another investment. I still wear this space-age antique to this day even though it gains 20 seconds a month and cannot cope with Leap Years.

The whole thing began to gather momentum a couple of years ago when I acquired a fascinating little time computer with four programmable alarms. Then came a calculator with a memory and afterwards another one with a print-out. These were later augmented by a strange little device which is very flat and squeaks every time you press a key. At first I thought that there was something wrong with it but I was assured that it's meant to be that way so I now occasionally calculate to music. This one has the added attraction of sending the dog up the wall.

The crunch came at the end of last year. A friend of mine living in Brussels sent me a pamphlet about Radio Shack's TRS-80. The rest you already know.

Using a certain amount of leverage (I'm quite well known on TV over here and this can be useful at times) I managed to get myself what is probably one of the first TRS-80's in Germany and was just unpacking it when Colin came in.

There are four main parts: the keyboard which also contains all the wizardry, a mains unit, a video and a cassette recorder. There is also a fantastic - and I repeat - fantastic book of instructions which takes you step by step through this apparently logical jungle. If I can understand it, anyone can and I'm not kidding!

Colin came in again. 'How are things going,

Einstein?" he asked. I ignored him and concentrated upon my equipment which was definitely not functioning properly.
"What's the matter?" Colin asked.
"I've got everything turned on but the video won't light up" I replied.

Colin took a closer look. "Try plugging it in," he said and lit up a cigarette.

That was lesson number one. If you're going to muck around with computers you must learn to have eyes in the back of your head. As far as the TRS-80 is concerned, each interface has it's own power supply so I found the cable, hooked up the video and the screen began to glow. I then switched on the computer and my heart jumped as the magic word "READY" appeared on the screen.
"Ready for what?" enquired Colin.
"Let me look through the book first," I pleaded and began turning the pages. "Ah!" | said triumphantly, "it can print my name!"
"Then let's see it," said Colin.
Very slowly I started to type my name and marvelled as the letters appeared on the screen. As I said earlier, I've worked on TV all my life but never like this. But I must have done something wrong because Colin suddenly said: "Since when is your name What?"

I looked and he was right; the word "WHAT?" was now in the top left-hand corner with "READY" underneath it.

I can't quite remember what happened after that. I know that Colin left rather suddenly and my wife went to bed without saying goodnight.

Something changed that evening. I discovered a completely new world with a brand new language with exotic words like CLOAD, GOSUB, CSAVE, IF-THEN and

RND(N)! And it wasn't long before I began waking up at night murmuring "FOR X=1T05000:N.X:CLS" and other little 20th Century endearments. But it was the 12 hour clock which nearly undid me. I spent hours working out the programme on a train but when I ran it in the computer the TRS-80 arrogantly asked "HOW?'". I nearly threw the whole damned shoot out of the window - power pack and all!

But I'm bitten - in fact, l've got bytes all over me. Now I know what a computer can do and my only problem is to learn how to instruct it. Talk about the blind leading the blind. But I won't stop - I can't in fact. Never in my life have I been forced to be so exact; never before did I realise that just one silly little glass of wine can blow the whole works. If you want to give up drinking, start computing! Nevertheless, I sometimes feel Ionely because nobody wants to hear about my binary escapades.

Looking back, however, I realise that I'm not the only nut in the world. I had a friend who, like me, loved gadgets. One day he turned up and proudly showed me his latest acquisition. It was a solid gold watch which must have set him back at least $£ 3,000$! It had everything on it - the phases of the moon, the date and another little device which enabled you to determine the height of a building. It was quite simple. All you had to do was to drop a stone and immediately stop the watch. When the stone hit the ground, you stopped the watch again and read off the height of the building on the dial.

My friend took me to Cologne's' newest bridge over the Rhine (this was back in 1954) and stood there with his stone and his fancy watch.
"Now we'll check how high this bridge really is," he said seriously.

He then dropped the watch and stopped the stone!
I wonder what Colin would have said about that.

$$
\begin{aligned}
& \text { Matgox } \\
& \text { FRFRELTON }
\end{aligned}
$$

1. $\mathrm{ALT}-256^{* *} 2 \mathrm{E}$
2. ALT-2480E
3. MTX-816
4. MTX-1632
5. $M T X-A 1 / M T X-B 1$

256×256 S 100 graphics card	$£ 284.00$
24 lines of 80 characters S100	$£ 213.00$
Big characters 8 rows	
16 characters per line	$£ 128.00$

Very clear characters 32 characters 16 lines (SL version can be synchronised to TV picture)
£162.00
Keyboard scanners and LED driver Single chips direct connection to any CPU bus
£28.00

I never cease to be amazed at the frequency of new and exciting developments in the micro-computer field. Last week a friend brought over a new language, sat me down in front of my computer and told me to play with it. Well, this has happened often enough before and it usually takes about 2 or 3 minutes to 'crash' the 'uncrashable' system so 1 approached it with the usual determination!
'What is your name?", the computer asked me. Well I wasn't feeling too responsive so I replied, on the keyboard, "GO TO HELL". I must admit that I was just a little taken aback when my previously well trained computer replied "Ah yes, the abode of your ancestors, perhaps some other time." As you will see by some of the output.printed later on the computer was well able to keep up with my comments.

So this is PILOT which stands for Programmed Inquiry, Learnings Or Teachings. It is a languge developed in the States for Computer Aided Instruction or CAI as some people like to call it. BASIC is a language geared to handling numbers in an interactive way. PILOT is geared to handling text in a similar easy interactive way. In PILOT you can write a program which will talk to the user and accept replies and then branch off in various directions depending on the reply. In the same way that you can handle text in BASIC, so you can handle arithmetic in PILOT, but if the bulk of your interaction with the user is in words then PILOT is the language to use.

For example it is very easy (in PILOT) for the computer to recognise any of the following as the correct reply to the question "What is 15% of 20 " Answer - 3 or three or Three or THREE or I think it's probably 3 or 3.0000 . The real beauty is that the machine can very easily be made to give a sensible response to "I don't know" or even to minor mis-spellings like "THRE".

So lets have a look at some of the commands available in PiLOT. All commands have to start as the first letter on a line and all commands end with a colon. The basic commands are:

$\mathrm{R}:$	remark
$\mathrm{T}:$	type text
$:$	type text continuation
$\mathrm{A}:$	accept answer
$\mathrm{M}:$	match answer
$\mathrm{J}:$	jump
$\mathrm{U}:$	use subroutine
$\mathrm{E}:$	end (subroutine or program)
$\mathrm{C}:$	compute a value or edit a string
XI:	execute indirect
$\mathrm{FI}:$	file input
$\mathrm{FO}:$	file output
$\mathrm{D}:$	dimension

Certain "modifiers" and "conditioners" can be added to the basic commands as the following section of program will illustrate.

$\mathrm{T}:$	What is your name
$\mathrm{A}:$	
$M:$	john
$T Y:$	John is a very common name
TN:	I am glad it's not John

In the above example the "conditioners" Y and N are added to the T (type) command so that whether the line is typed or not will depend on the result of the last M (match) command. Notice that the accept command need have no variables associated with it. If there is a variable then that variable will be assigned the value that the user gives. For example:

A:

\$A \$

would cause the answer from the user to be put into the string $A \$$. One particularly nice feature is the way the language deals with the following:

T: What is 3 times 4
A: \#A
The user's answer is scanned for a number and if one is found than A is assigned the number. So a reply like "I think it's 12 " will be quite acceptable. If no number is supplied by the user then a, testable, error condition is set - but the program continues.

Now that we have met some of the commands the best way of sinowing you how PILOT works will be to examine a short program:

PR:	LSG
D:	A\$(20)
T:	What is your name
*INPUT A:	\$ 4 \$
T(LEN $(\mathrm{A} \$=0)$:	Surely you have SOME name. What is it?
JC:	@A
M :	i\&call!call\&me!name2is
TY:	Sorry, but could you just type your name
JY:	@A
M:	mr.!mrs!ms!sir!dr
TY:	We have no need for such formality. What do your friends
JY:	@A
M:	$\begin{aligned} & 1!2!3!4!5!6!7!8!9!0!!\$(!)!+!+! \\ & !:!<!>!?!/! \end{aligned}$
MN :	nut!ball!sh *t!hell!dam!s*x! m.cklscr*ml
MN:	jesu!god
JN(LEN $(\mathrm{A} \$)<15)$:	GOTNAM
T:	I can't call you that! Come on, what is your name?
J:	@A
$R:$	So now we have got a name

$\mathrm{C}:$	A\$C
$\mathrm{T}:$	Well $\$ A \$$ what subject do you
$\mathrm{A}:$	want to do today?
$\mathrm{MJ:}$	math!arith !alglgeom!calcltrig!
$\mathrm{J}:$	MATHS
$\mathrm{MJ}:$	geog
$\mathrm{J}:$	GEOG
$\mathrm{M} J:$	frenchlspan!ital!germa!
$\mathrm{J}:$	MODLAN

The ""*" in the first column indicated that START is a label. "PR." stands for Problem Instruction and is used to mark the start of a section of a program. One can associate a number of options with the PR command as follows:

U	converts all input to upper case converts all input to lower case
L	removes all spaces, multiple spaces are always reduced to single spaces
S	permits the user to use GOTOs during a program run clears the present label table permitting reuse of old
W	labels permits the user to use the escape command within the program
E	

The " L " and " S " options make it very easy to match input since all items in the match list can be in lower case and spaces will not confuse the matchings.

The "T(LEN(A \$)=0)" command will cause the line to be printed only if the user has failed to enter anything before pressing RETURN, and the next line "JC: @A" will jump to the previous Accept statement only if the last testable condition ($\operatorname{LEN}(A \$)=0$) is true. Next an attempt is made to match the user input with mr. mrs. etc. and then with numbers and various other phrases. You may have to get some help in understanding these of course!

Just below the label "*GOTNAM" is the command C: $A \$ C$ which means turn the first letter of $A \$$ into a capital letter - if possible. It is so easy in PILOT.

This is not meant to be a full PILOT manual so 1 haven't dealt with the special match characters, the jump statements, the modifiers (which for example suppress a carriage return/line feed). However I had better mention the mathematical functions that are supported in case you are left with the impression that it can't do any maths. The functions available include operations on full floating point variables and arrays and on strings. In addition to the simple mathematical functions such as add and subtract ABS FIX INT SGN RND SIN COS ATN SQR EXP LOG LN STR FLO ASC CHR LEN and INS are supported.

It is interesting that in the version that I have been using all the arithmetic is done by a National Semiconductor calculator chip - which is why it is a bit slow. It is fine for simple calculations but no good for a hundred square roots between Type statements. However when the fast AM 9511 Arithmetic Processing Unit is used the speed will be very acceptable even for quite complex arithmetic

So what does one need to run PILOT? Well in single user mode on a SWTPC M6800 system one needs just the software and the calculator board. To work multiuser PILOT (and it does work!) one also needs the Multiuser board. So that is the M6800 system.

PILOT is not available in the U.K. for any other system at the moment but could be very easily. Software has been written for both 8080 and $Z 80$ machines as well as a number of mini-computers such as DEC machines. My colleague Philip Couzens is in the process of obtaining material from the States and will be glad to pass information on to those who are interested. He can be contacted at

[^0]The sample output that follows illustrates the extreme flexibility that the user has in using a well constructed PILOT program. I think PILOT will have a major impact on computer assisted learning in the U.K. as well as providing an excellent vehicle for interactive games. Of course it is very young and there is not the wealth of material that there is for BASIC - but how often do you use someone else's BASIC program, not very often I expect. PILOT will flourish all the better if it is well supported over here as it is in the States, for example People's Computers publish at least on PILOT program each issue. I hope we see the same sort of developments over here. Try it - you will enjoy it.
Bibliography:
a) PILOT "People's Computer Company" Vol 5 No 3
b) PILOT "Creative Computing" Vol 3 No 3
c) 8080 PILOT "Dr. Dobb's Journal" Vol 2 Nos 4 and 5 a complete source listing of PILOT for the 8080
d) Tiny PILOT "Kilobaud" March/April 1978 flow charts for a version of PILOT
e) Common PILOT manual, South West Technical Products full manual for an M6800 PILOT

```
FILE=SAMPLE
Pick a number between 1 and 5
    In this program you are going to see how the
    computer can be used to teach, reaching programs
    consist of long and complex comlinations of simple
    handle easily, but many of which only languages
    designed tor teaching handle easily. For example
    all languages easily handle what i"m doing now,
    typing text. Not all languages handle the following
    few lines with the same ease,
Please type in your full name using all uppercase.
letters:
NOw we can be on a first name basis; John.
            Probably the most important feature of a
        computer language for 'teaching is its ability to
        recognize a variety of student responses. The (%)
        using it in part because of its powerful answer
        processing capabilities. Push RETVFN when you're
    ready to see them in action.
Thanks John, I needed that to clear my screen.
        A. Numerical Answer Processing
            Sometimes we want the student to give an
    exact numerical answer. We'll try one like that.
    How many years is it between presidential
    elections in the United States?
T
    That's right; it is always 4 years between
    presidential iections.
    4; and any decent computer with the single digit
    that. To give COMmoN PILOT a chance to show offfa
    bit, this time imbed the digit in a sentence. lik
    "Presidential elections are held every 4 years."
    How many years is it between presidentsal
    elections in the united states?
ELECTIONS ARE HELD EVERY EOUR YEARS
    a bother
4
right: it is always 4 years between
    presidential elections. and I'll clear the screen,
            Many times we don't need an exact
    numerical answer, just one that is close enough. To
    illustrate I'1l accept any answer to the next 
            what is the apuroximate road distance between
    Chycago and Now Orleans?
1200
$1400
            er than that; guess again.
That.
            s within 10&. Hit RETURN,
                                    B. Textual Answer Processing
```

 Not all questions can be answered with numbers, and \(I\) don't
 want to be restricted to multiple cholce questions. Therefore
 I'm going to have to recognize words too. Sometimes I want a
 setting the table for a meal the knife should be placed on
 setting the table for a meal the knife should be placed on
 the of the plate.
of course.
Other times I'm willang to be a bit
flexible about the spelling of words. That is, I
must be able to make the computer recognize a
in most computer languages but easy in Comunon program
in most computer languages but easy in comunon pilot.
is olympia. Give me the name of the capitol of Washington.
but misspelil it
OLYMPIA
Sorry, that won't do here; it's spelled
correctly. You can do worse than that! Try again.
ULIMPYA
That I would recognize as meaning olympia
Do you want to try again?
Do you want to

To illustrate, the caplitol of the state of washington
is Olympia. Give me the name of the capitol of Washington, but misspell it.
OOF EARNS COURT
That was too atrocious for recognition.
Do you
YES
To illustrate, the capitol of the state of washington is Olympia. Give me the name of the capitol of Washington, bu- misspell it.
OLIMPIA would recognize as meaning olymipia.
Do you want to try again?
No
NO I also must be able to recognize
alternative answers, so that the student need not
use a particular restricted vocabulary. To illustrate here,
let's find out how our tastes in music agree.
What kind of music do you like?
PUNK John, we don't agree on that one.
Do you want to try another one?
What kind of music do you like?
$\frac{\text { Classical }}{\text { Excellent taste, in my eyes. }}$
Excellent taste, in my eyes.
Do you want to try another one?
What kind of music do you like?
OPERA
Do you want to try another one?
YES What kind of music do you like?
$\frac{\text { RHUBARB MUSIC }}{\text { You ve succee }}$
ou've succeeded in stumping me by including one that i'sn't on my list
you want to try another one?
No Fine John, please hat RETURN
Now what I'm going to do is allow you to
sample a number of short sections of instructional progzans. There will be ${ }^{3}$ each at the elementary and to repeat most examples at the end of the example. realize that you may not be interested in doing all of them, so before I lose you, I'll give you the
commercial. If you want to learn more about common pilot commercial. If you want to

Micropi
2445 N. Nugen
98262
You can press the RETURN after you've written that down.
MICROPI READY
UNIT=1
FILE= HORMUZ
THIS SAMPLE PILOT PROGRAM DOES NOT MAKE PULL USE OF The COMPUTATIONAL FEATURES OF MICROPI PILOT BUT IT DOES
DEMONSTRATE HOW A CAI PROGRAM CAN TAKE ON A PERSONALITY DEMONSTRATE HOW A CAI PROGRAM CAN TAKE ON A PERSONALITY EVEN TO THE POINT OF RESPONDING TO BACK-TALK, THE USER I POTENTIAL FOR VERY CONVERSATIONAL CAI. please push return to begin.

May Allah in his all-knowing wisdom bring happiness upon your many days. I, a most unworthy soul, am à scribe. a solver problems. a composer of words and letters.

NEITHER
Young one, it may have been your fate to be neatered so early in life, but once you were either male or female YES
$\frac{\text { YES }}{\text { My }}$
My sympathies, young person, for 1 can readily understand the problem facing you. One can decidedly no
this: outward appearances these days. My suggestion is this: I have noticed the generous occurance of segregated resting and washing rooms in this area. Type A, Labelled: Men, Gents, Male, Hombre, or Messieur
Type B, Labelled: Women, Ladies, Female, Senora, or Mesdames
If to date you have been anclined to use Type A you If to date you have been anclined to use Type A you can in all safety say you are male, and, if using Typ then say you are female.
$\frac{\text { LES }}{\text { Youn }}$
Young one, sex aberrations do not enter into the question of whether you are tale or female. Either ask
for help, or, if that does not work (to quote the learned gritish programmer) "bye".

FEMALE

A thousand curses upon my miserable soul, that I should fail to recognize so fair a desert flower. Come let us move to the shade of this date palm, where the light is easier on my weary eyes. . That's ragh
sit there by my feet

Now, O Small Wind of the Night, by what name are you known in your father's tent?

SUSAN

 Susan, did you say? Now I remember (forgive anold man his slow memory.) You axe the one who is to become my apprentice. Tell me, what do you know of problem solving?
\qquad You underestimate, surely
Have you ever heard of the merchants of Baghdad and the brigands of Hormuz?

NO I DONT THLNK SO
Well, it appears that
In the days of your father's father's father, a group merchants, (each merchant with his camel and his three slaves), was attacked in this very oasis by a group of Isfaghan brigands. In the confusion, a small number of slaves tled into the desert, each on a camel. The brigands made off with two camels and six slaves for each rigand, and the merchants were left with one slave every two merch
Now, to return

```
Do not mutter! It is no shame; though the story is
    common, many have not heard it. It seems that
    In the days of your father's father's father, a group
    of merchants, (each merchant with his camel and his thr
    slaves), was attacked in this very oasis by a group of
    on a camel. number of
    brigands made off with two camels and six slaves for each
    brigand, and the merchants were left with one slave for
    every two merchants and of course no camels at all.
    Now. Susan, the problem is to determine the 
    this (Allah curse my tongue for calling it such) adventure
    Do you think you can solve this problem by yourself?
I DOUBT IT
    Then, with my inadequate knowledge and the grace of
    our forefathers, I will try to bring light upon the dark
    fenesses of your being, and teach you the art (truly a
    fine art) of problem solving. Let us first look upon the
    formation of the events leading up to the skirmish.
= DONT KNOW
            You do not see my meaning. I fear. We have here
    the merchant group, encamped by an oasis well, and we
    have there a group of brigands, lurking in the night dunes.
    THERE ME Tw groups?
I THINK THERE ARE THO
and how many groups do we have after the skirmash?
3}\mathrm{ Excellent, my friend!
    So, this yives us before the battle, two groups:
        brigands merchants
                camels
    and after the battle three groups:
        bryands merchants slaves
        camels
    Now, suppose we were to say the brigands are b in
    num
    do we start with, if we assume the merchants have the
LOTS camels invloved?
#MO. If there are m merchants, each with a camel, how many 
No. Each merchant had only one camel, so how many came.s
are there, we don't know the ACTUAL number.
M
    And how many slaves did the merchants have?
```


Computing in the Primary

School

Derrick R. Daines, Deputy Head of Carsic Primary School, Sutton-in-Ashfield.

My class of 9,10 and 11 -year-olds were widly excited as they lined up for their first-ever personal contact with a computer.
"'t'm going to ask it what team it supports!" one boy said, while a little girl asked, "If I ask it how tall I am, will it tell me?" Then there was the fat girl who declared roundly, "I'm going to tell it to bring me sausage and beans!"

Fear was also evident on several faces and some hanging-back. There was the little boy who - although fascinated - always ensured that someone else was between him and the terminal, and who for weeks had to be encouraged, "It's alright - if you get it wrong, there's isn't a hand that will come out and grab you by the throat, you know."

The reactions both amused and dismayed me. If these were indicators of the impressions that children have of computers, then we all - and particularly the writers of fiction for the mass media - have much to answer for, and the sooner we start correcting it, the better. It is no wonder that most people regard the computer with awe and reverence. One has only to say that some data or other has been 'computerised' for it to be accepted without question. In authority, the computer ranks higher than God.

An illustration of this - both amusing and pathetic was when I used my computer for our school Gala Day. I had programmed it to select at random three sentences from thirty six, presenting it as a 'Computerised Horoscope.' It was intended for amusement, but a large number of people went away fervently believing in what they had read on the monitor. It is about time that the computer was debunked. The owner of a microcomputer is the person to do it and particularly if he or she is a teacher too.

A few short weeks after their introduction to the machine, an Inspector was in my classroom assessing my work and the childrens'. understanding. He asked, 'if I ask the computer to do a sum for me, could it do it?" and quick as a flash, a 10 -vear-old boy shot back, "Is it programmed?" - an answer that well justified the time
spent. That boy knew more about computers than the large number of adults who condemned us as 'lazy' because we had a computer in our classroom.

Don't get me wrong - 1 am not ' k nocking' the computer at all. On the contrary, I am a computer nut and put myself into debt to buy the parts and build my computer, which is an SWTPC 6800 with 12 k of memory. No, I too have my flights of soaring imagination, drool over bits and pieces, and write programs of no earthly use just for the fun of it, but I do say that we must remove the mystique attached to computers.

In these days when Local Education Authorities are agonising over whether or not to supply a few Secondary Schools and Colleges of Further Education, let me come right out and say that all schools ought to have one -or two - or three. Nor do I.expect Infant Schools, for reasons which will become apparent later.

One of the problems of mystique - and of getting LEA'S to supply calculators (let alone computers) is that the very first people to 'latch on' to the possibilities of computers were the mathematicians and then very quickly there sprang up a new discipline - computer studies. The situation now is that more time is spent in school studying the computer than is using the computer as a tool for the benefit of pupils or school! - a situation that surely puts the cart before the horse and adds yet more to the mystique. Worse, it alienates those whom it could best benefit.

Happily, the microprocessor and the micro-computer bid fair to alter all that and it must be shouted from the housetops that - far from being just the tool of mathematicians or the plaything of Computer Studies they can be of inestimable benefit to all aspects of school life.

An illustration. The most tedious part of my job (I speak personally) is testing the reading ability of children. At the very least, it must be done twice a year and for maximum efficiency ought to be done monthly. We use Schonell Reading Chart and if you have ever listened to a child slowly stumbling through Janet and John or Ladybird you will have some small idea of how boring I find it. The class must be kept quiet (something to be marked later!) while I try to concentrate and keep score of how many words the child reads correctly. Then his/her raw score is taken in conjunction with sex to get a Reading Age, which in turn is compared with birth date. Try as I might, my eyes inevitably and inexorably start closing. .

What a job for the computer! All that is required is a multiple-choice answer: "Which word rhymes with BEAST? Type 1,2,3, or 4." The hours and hours of my time it would save!

The sports department: | attended a gymnastics competition recently in which over 200 children took part, each one being given a mark for floor exercise, nother for vault, both counting towards the individual trophies and also for the team trophies (best six in each team, each class.) Apart from the judges, 6 runners were involved, taking marks to a team of 6 recorders and an announcer - myself. At the end of the compeition a long hiatus ensued while the recorders battled with calculators and bits of paper to produce the first six in each class and the best teams. Apart from totally eliminating this delay - and the possibility of human error - the computer would have coped with the continuous stream of enquiries such as, "Please sir, how many marks did I get for my exercise?" and "Who's winning up to now?' Not only that, but it would have released the 6 recorders for other duties, and let everyone get home earlier.

The school secretary would surely benefit from a line to a computer. In large schools - and more especially those on split sites - it is not merely difficult to find a
particular person, it is virtually impossible. With a complete timetable as data base and a real-time interface, the problem is solved. Instantly. Or consider those fantastic questions of administration that constantly crop up - "how many red-haired children have we got that ride bikes?" Impossible question? Couldn't happen? It does! All the time (That one, for example, came from the police.) Such problems are relatively simple to solve if the school is small, but nowadays schools of well over 1000 pupils are not at all uncommon, and a computer is rapidly becoming an urgent necessity. If our customers were adults instead of child pupils, we surely would have had computers years ago. Considered as a business, the inefficiency of our. schools is staggering.

English, Sport, Secretary - totally divorced from Maths and Computer Studies. Any others? Yes - there is very little of school life that would not benefit given the chance; recording marks and calculating averages is only the very first step.

- Hiding a teaching point in a game is a technique as old as the hills. I taught my 10 -year-olds vectors by playing Startrek; also overcoming the fear of the machine. I taught coding by the use of ASCII. I taught music theory by getting the computer to sing. I taught spelling by playing Hangman. I taught principles of acceleration and gravity by playing Lunar Lander. I taught arithmetic tables with a random-number selector. Why go on? The range of teaching points that can be got over in this way are virtually limitless, bounded only by the imagination of the teacher. (Any subject can be fitted into the format of the multiplechoice question, as the Open University has shown.)

Language development is perhaps a surprising spinoff, but thi Dienes' Logic Blocks have shown the way and I use them extensively. For the benefit of the uninitiated, Professor Dienes' blocks come in sets that differ from each other in various ways - colour, shape. size or thickness - each block being different from every other block in one or more particular. Thus we may have a large red thick triangle, a small thin yellow circle and so on. In the Infant School and early Juniors, work is verbalised and a wide variety of sorting games are played; but as the child gets older Venn diagrams are introduced. All the time language is being used and developed. Perhaps coincidentally, the words (and the accompanying logical thought) that are most in use are very familiar to computer users - AND, OR NOT - and are vital stepping stones in the child's development. Even at ages nine and ten, for example, AND and OR can be confused.

The same logic blocks are used for sorting on branched charts - all the reds along this branch, all the yellow on this - subdividing until each piece finds its' own place. In this way the child learns to recognise similarities and dissimilarities, a technique which is at the very root of the scientific method.

Pathways with branching gates are the next step, the gates being labelled as to their function, and the child is encouraged to make a careful note of the effect of changing the functions. It is tolerably obvious that this work leads easily and naturally to flowcharts and also to what at a more sophisticated level is called Critical Path Analysis.

Flowcharts, with their two-choice decision boxes, shake hands with other ideas introduced at about nine, the most popular of which is the binary card slection box: Children are enormously intrigued by it and, since it involves physical activity of a sort, will play with it for hours. It does not require much mental effort to see the connection between the binary slection box and regular binary coding and, given the parameters, any of my ten-year-olds will produce binary coding of - say - bicycles, women's fashions, watches or any of the goods in a mail-
order catalouge. This is no mean feat, as any computer buff who has attempted coding such material will testify.

Binary arithmetic proper can safely be introduced at eight or nine, initially by means of lights directly wired to switches. The need for a code is soon recognised however, when the children attempt to send brief messages to each other and I steer them off Morse onto the regular ASCII code. This presents very few difficulties and the children are delighted if the computer is programmed very simply to turn their ASClI code into a line of text.

When it is realized that the use of Imperial weights and measures involves arithmetic in a number of different bases, it should come as no surprise to learn that children of 10 can waltz their way through hexadecimal. What will be surprising to many is that they are then ready to try their hand at writing their first programs.

First attempts arise naturally from flowcharts. These have been of the usual introductory type - making a cup of tea, getting a book from the library and so on and the notion of a stored program has been introduced by reference to the Jacquard loom, etc. We make a brief foray into the use of a matchbox computer and are then ready for the real thing.

Difficulties? Yes, of course there are difficulties, one of which is that all children insist on pressing the key far too firmly! I wince sometimes to see the keyboard flex, although a plastic reinforcing bar has done much to alleviate this. Then there is the agonising slowness involved in finding their way around the standard layout of the keyboard. I make no concessions about this. Since it is the layout that they will have to use later in life, they might as well start right away, although it would have been easy for me to rewire the keys in alphabetical order. However, I have been delighted at the speed with which they have become accustomed to it.

The greatest difficulty might have been foreseen but wasn't. It is that children simply have no idea what they want the machine to do - what to write a program about. So, 1 impose one. Something very simple of course, like getting the computer to print out the first 10 or 12 elements of the 12 times table. So it is that during their last term in the junior school children of 11 years old have the thrill of seeing the computer print out their very own program. Frankly, I don't know if they are more thrilled than I am, but their faces tell a lot. I know this- they have a flying start on their way to the understanding and manipulation of the modern world; both boys and girls.

I have touched on logic once or twice. Now the world is not too hot on the use of logic right now, as the merest glance at any newspaper will show. The computer however has this over-riding characteristic, that it is completely logical and if your program has any illogicality contained in it, it will inevitably show up. This involves an enormous discipline for the programmer. It might be thought that such a discipline will have a natural and automatic carry-over into everyday life, but studies have shown that this is not necessarily true unless and until the correlation is pointed out. By the very nature of the teaching method outlined briefly in this article, there is ample opportunity for the teacher to point out the correlation at every step - by the use of everyday examples, etc.

It all goes to support my firm belief that after the fun and games are over, after the children have left my care and gone into the larger world of the Secondary School and beyond, some of the logic - some of the careful approach to problems - will have rubbed off onto them and will affect, even if in only a small way, their own approach to the problems of life, hopefully making them that little bit happier. Can anyone ask more?

This article describes a computer game written in Tandy Level 1 Basic for the TRS $\mathbf{8 0}$ microcomputer. As this dialect of BASIC is a very simple one, the programme may easily be re-written in any version of the language. As listed, it requires about 2.8 K bytes plus an undefined (Level 1 does not require dimensions) amount of memory for an array. The optional REM statements are not included in this assessment, nor are any instructions for play which may be desired at the start of the game. However, these may be added because, for reasons of readability, no Level 1 shorthand or multiple statements are used and their incorporation would yield enough space for REM statements and instructions. Readers with a wider version of BASIC will be able to re-write in substantially less space. For instance as Level 1 does not include a square root provision this chore requires seven lines of code (5500 to 6100) rather than the simple statement $\mathrm{D}=\mathrm{SQR}(\mathrm{U})$, available in most dialects. Consequently, any microcomputer with 4 K of RAM, BASIC and a video display will be able to run the game.

No particular skill in programming or originality of conception is claimed. Similar games may already have been written and the author has no great interest in the finer nuances of programming. It is rather good fun to play and it works!

THE GAME

The player is the Captain of a destrover patrolling an area in which there is an enemy submarine. The area is displayed on the screen. It is divided into 3300 blocks which are designated by the numbers 0 to 110 horizontally and 0 to 30 vertically. He drops depth, charges by entering coordinates, such as 55,15 , which would be the centre block of the area. After each depth charge is dropped the computer tells him the bearing of the submarine from the point of the drop. For instance " 10

North West" would mean that the submarine is 10 blocks up and to the left from the drop point. The submarine however is moving, so the bearing indicated will be from the point of the last drop. In calculating the next drop therefore, the player must make allowance for the submarine's motion. A bearing of "10 North" would mean that at the time of the drop the submarine was up 10 blocks but a new entry merely calling out that new block would not sink the submarine due to its motion in the meantime. At the start of the game the player is asked to enter a degree of skill at which he wishes to play, being an integer 1, 2 or 3 . An entry of " 1 " Novice - will cause the submarine to move at a slow speed of one block at a time, " 2 " - Moderate - at a speed of two blocks per entry and ' 3 ' 3 ' - Expert - at three blocks speed. A near miss will cause the submarine to be disabled and henceforth remain stationary - a sitting duck! The number of blocks proximity to the submarine, which causes disablement, is also controlled by the degree of skill entered. A " 1 " skill level means that a depth charge within three blocks horizontally and vertically will disable the enemy; " 2 " two blocks and " 3 " one block. A direct hit of course, sinks the submarine and the player has won. Every depth charge position is displayed on the screen, and remains there, but the submarine's position of course, is not.

As mentioned, the submarine is moving whilst depth charges are being dropped. If the submarine reaches the border of the area without being hit or disabled, an "escape", it is immediately returned to the area but whilst out it was able to take on more fuel, of which it is short. If the submarine escapes five times then it has taken on board sufficient fuel to escape the area completely and the player has lost. Whether the player wins or loses he may, at the end of the game, enter a " 2 "
(" 1 " calls up a new game), in which case the screen is cleared, a new print of the area is displayed and all of the submarine's positions during the game are shown. The number of escapes is continuously displayed, as is the fact of a disablement when and if that event occurs, and the player's last coordinates entry.

The Captain is a lucky man for he has unlimited depth charges at his disposal; but see the comments later regarding the construction of the array in which the submarine's various positions are stored during the game.

The submarine's position is random at the start of the game and thereafter its four possible directions of movement are also randomly chosen. The exception to this rule is when the submarine reaches a border, whereupon it is forced back into the area. There is no provision for making the submarine seek the nearest border. This can be incorporated but it was found that such a feature tends to make the game too easy, as the player after a couple of depth charges becomes aware of the direction of trayel of the submarine.

As will have been observed, there are more block numbers in the horizontal plane than there are in the vertical. Hence, the horizontal block size is smaller than is the vertical. In other words the block is a tiny rectangle, rather than a square. Although on the TRS-80 this happens to be the most convenient system, it is suggested that the system be maintained on other microcomputers where it may not be so convenient, as, firstly, more screen space can be used for the area (assuming a rectangular screen!) and secondly it makes the assessment of the submarine's position more difficult. This is because the distance in the bearing information is obtained by calculating the length of the hypotenuse of the right angled triangle formed by the difference in the positions of the depth charge drop and of the submarine in the horizontal and vertical directions. If, for instance, the submarine is at the position 68,12 and the depth charge is dropped at 55,15 then the bearing distance is calculated as the square root of $13^{2}+3^{2}$ - thanks to Pythagoras!

However, the horizontal and vertical distance measurement units are not equal in length due to the rectangular shape of the block, so the result of the equation is stated in neither unit but somewhere in between. If this point is considered a little further, it will be seen that as the depth charge position in one plane gets closer to the same plane of the submarine's position, so the values of the two measurement units get more equal to each other until, when the planes are the same, the distance is given in the same value units as those of the submarine. In other words, when the bearing is exactly on a major compass point then the units of distance are the same; a bearing of " 10 South" means that the submarine was 10 vertical units below the drop position. Similarly " 20 West" would indicate that the submarine was 20 horizontal units to the left. " 20 South West" however would give no clue as to whether smaller horizontal units or larger vertical units are the more prevalent and additional probing would have to be done. A difficult concept without the game in front of you but the result of this system is that the more you play, the better you become; and if it is to hold a player's interest, this is an important factor of any game.

It is possible, but unlikely, for the game to start with the submarine making an escape. This can be prevented in the programme but if it does happen it gives the player the advantage of getting an important clue as to the submarine's position immediately, so it was felt that on balance it equalled out and the possibility was left in.

THE PROGRAMME

It may be of assistance to users who either have to rewrite or to those who would like to add more features, if we briefly examine the programme.

In line 40 the array variable $\mathrm{A}(0)$ is used because the

TRS-80 only has 26 normal variables and they are all used. 180 to 230 set up the variable E to govern the number of spaces which constitute a near miss and are necessary as this variable is in reverse order to the skill variable S. This proximity variable may of course be changed if desired. There is no line 240.250 to 490 display the area on the screen. The rather odd way of printing the horizontal " 0 ", line 430 , is necessary because of the particular graphics set up of the TRS-80. On other machines it may not be required and 450 can be written to loop from 0 rather than 10.500 to 530 detect a submarine out of area position and set flags P and Q accordingly, for later use. 540 and 550 are necessary as X and Y (the submarine's position) can go negative and would show an error at one time or another in the game. If during the time that the programme is being examined, the user wishes to have the submarine's position displayed, a new line can be entered : 555 PRINT AT 30, $X ; Y$ but this should be erased before the game is played - unless you want to cheat! 560 to 590 store the X, Y positions in an array A for display at the end of the game.

With the TRS-80 it is not necessary to define the size of an array but with some machines a DIM statement will be needed. The length of the array effectively determines the number of depth charges which can be dropped in a game. With the TRS-80, which, as it has only one array, uses for it all memory space left over after programme entry, there will be enough array space for about 100 depth charges. As this is more than ample, no provision is made for ending the game after a certain number of drops have been made. If this is desired variable W, which counts the depth charges, can be tested and an appropriate PRINT statement made when a given number of depth charges have been dropped. 620 to 640 are merely cosmetic and erase the last entered coordinates. 740 determines whether the player's entry is a direct hit. 750 to 810 decide whether there is a near miss and if affirmative S is zeroed and a statement printed that the submarine is disabled. If either the \mathbf{P} or \mathbf{Q} flags were earlier set then 830 and 840 by-pass the randomising routine for the submarine's next move, increments Z the escape counter, and forces the submarine back into the area in lines 990 to 1300 or 1400 to 1800 . If neither P nor Q were set, 850 to 980 select a random move. 1900 is more of a REM than an instruction as it can never be implemented, it just indicates the end of the main programme. 2000 to 3400 is self explanatory. Again 3000 and 3400 are really REMS. Subroutine 5000 calculates the bearing information. 6400 and 6500 are a bit odd but effectively clear the $A \$$ and $B \$$ registers on the TRS-80. 7000 to 7200 are necessary to clear the bearing display area. If omitted, part of a previous compass point can be left on the screen and give a misleading display when the next compass point consists of only a single word. 9000 to 9600 display a fresh area and then display all of the game positions of the submárine. Incidentally, 490 sends control back to 9300 , not to 9200 as might be expected, so as to decrement the superfluous array increment caused by the winning shot.

Finally, as the array is displayed in a last in first out manner, it is not strictly necessary to clear the array at the beginning of the programme, so it is not listed. The author however is a bit peculiar this way and prefers the array registers zeroed before entry. If anyone is of the same mind then the following code will do the trick and add a little delay between games, which is pleasing.

12 FOR C $=1$ TO 50
$13 \quad \mathrm{~A}(\mathrm{C})=0$
14 NEXT C
or for the TRS-80

$$
15 \text { F.C=1TO50:A(C)=0:N.C }
$$

This loop of course, assumes a maximum of 50 depth charges and this may be changed as desired.

```
REM * SUBMARINE CHASE GAME *
z=\emptyset
W=\varnothing
A(0) =2
X=RND (110)
    Y = RND (30)
    CLS
    PRINT
PRINT "ENTER 1 TO 3 REPRESENTING YOUR DEGREE OF SKILL AS FOLLOWS:"
PRINT
PRINT TAB (9); "1 = NOVICE : 2 = MODERATE : 3 = EXPERT"
INPUT S
    F (S>=1)* ( S<<=3) THEN 18\varnothing
PRINT "THE NUMBER YOU ENTERED WAS NOT 1, 2 OR 3.TRY AGAIN."
FOR C = 1 % 
OORC = 1 to 1\varnothingø\varnothing
GOTO 7\varnothing
ON S GOTO 190, 21%, 23%
E=3
GOTO 25\varnothing
E=2
GOTO 25\varnothing
CLS
F=61
FOR C = ¢ TO 3ø STEP %
PRINT AT F,
F=F+128
NEXT C
A=115
FOR C=\emptyset TO
SET (A,B)
BEXT C
NEXT C
A=\varnothing
FOR C=\varnothing to 11
SET (A,B)
A =A + 
PRINT AT 768,"\emptyset"
F=771
FORC = 10 TO H% STEP 10
PRINT AT F,C
F=F+5
NEXT C
IF R>1 THEN 93Ø\varnothing
REM * SUBMARINE OUT OF AREA ? * * + IS LOGIC OR *
P}=
IF ( }\textrm{X}<=\varnothing)+(Y<=\varnothing)\mathrm{ THEN P = 1
Q=\emptyset
F (X> = 11\varnothing)+(Y>=3\varnothing) THEN Q = 
X=ABS(X)
A(R)=X
A(A(D))=
R=R+2
A(0)=A(0)+2
PRINT AT 1\varnothingø9, "ESCAPES ="; Z;
PRINT AT 832, "ENTER DEPTH CHARGE COORDINATES ( }\varnothing\mathrm{ TO 11ø, to 30)."
FOR C = 4 TO 16 STEP 2
RESET (C,42)
NEXT C
INPUT H,V
w=w+
PRINT AT 905,"YOUR LAST ENTRY =";H;", ";V
REM --* IS LOGIC AND -
IF (H<111) * (V < 31) GOTO 730
PRINT AT 832, "THE COORDINATES ENTERED ARE OUT OF AREA."
FOR C = \varnothing to 2\varnothing\emptyset\emptyset
NEXI C
NEXT C
GOTO 610
RET (H,V)
IF (H=X)* (V = Y) THEN 2\varnothingø\varnothing
REM * DECIDE IF NEAR MISS *
IF S = \emptyset THEN 81\varnothing
L=X+E
M=X-E
M}=\=Y+
O=Y-E
If ((H>=M)* (H<=L))*((V>=O)* (V < =N)) THEN S = \varnothing
IF }\textrm{S}=\varnothing\mathrm{ THEN PRINT AT 936, "SUBMARINE DISABLED!"
GOSUB 5\varnothingø\varnothing
```

```
IF P = 1 THEN 990
IF Q = 1 THEN 140%
```

REM * COMPUTE SUB'S NEXT MOVE *
$T=$ RND (4)
ON T GOTO 876, $966,936,960$
$x=x+s$
$y=y+s$
$Y=Y+S$
GOTO 5øø
GOTO 5ø
$X=X+5$
$X=X+5$
$Y=Y-S$
$\hat{y}=\hat{Y}-s$
GOTO 5DD
$X=X-S$
$X=X-S$
$Y=Y+S$
$X=Y+S$
GOTO 5 $\varnothing \varnothing$
$\mathrm{X}=\mathrm{X}-\mathrm{S}$
$\mathrm{X}=\mathrm{X}-\mathrm{S}$
$\mathrm{Y}=\mathrm{Y}-\mathrm{S}$
GOTO 5ø
REM * Z IS ESCAPE COUNTER *
$z=z+1$
IF $z>4$ THEN $31 \varnothing 6$
REM * ADD I TO STOP ANY IN/OUT LOOP *
$x=x+1$
$y=y+1$
$Y=Y+1$
Y
GOTO $87 \varnothing$
$z=z+1$
IF $Z>4$ THEN आ $\varnothing \varnothing$
$X=X-1$
$Y=Y-1$
$Y=Y-1$
GOTO 960
GOTO
END
END
CLS
PRINT AT 464, "CONGRATULATIONS! YOU SUNK IT !"
PRINT AT 464, "CON
PRINT AT 593, "YOU DROPPED";W;"DEPTH CHARGES."
PRINT
PRINT
PRINT
PRINT
PRINT
INPUT "ENTER 1 FOR A NEW GAME OR 2 TO SEE THE SUBMARINE'S COURSE";C
IF C $=2$ THEN $90 d^{\prime}$
GOTO 10
END
CLS
PRINT AT 464, "SORRY YOU LOST - HE GOT AWAYI"
GOTO 22øø
END
REM * CALCULATE beARING *
REM $=H-X$
$1=A B S \quad(1)$
$1=A B S(1)$
$J=V-Y$
$J=V-Y$
$J=A B S(J)$
$J=(1 * 1)+(J * J)$
$U=$ ABS (J)
$U=(1 * 1)+$
$D=U / 2$
$D=U / 2$
$G=\varnothing$
$G=\emptyset$
$K=(U / D-D) / 2$
IF $(K=\phi)+(K=G)$ THEN G2ø \varnothing
IF $=(K=\varnothing)+$
$D=D+K$
$D=0$
$G=K$
$G=K$
GOTO $57 \varnothing \varnothing$
$D=D+5$
$D=D+.5$
$D=$ INT (D)
$\mathrm{A} S=$
$\mathrm{BS}=$
IF $H>X$ THEN AS = WEST
IF $\mathrm{H}>\times$ THEN AS $=$ WEST
IF $\mathrm{H}<\mathrm{X}$ THEN AS $=$ EAST
IF $H<X$ THEN AS = EAST
F $V>Y$ THEN $B \$=$ NORTH
IF $V<Y$ THEN BS $=$ SOUTH
IF $V<Y$ THEN BS = SOUTH
FOR C = 73 TO 93
RESET (C, 46)
RESET ($C, 46$)
NEXT C
NEXT C
PRINT AT 960, "THE SUBMARINE'S LAST BEARING WAS";D;BS;" ";AS;
PRINT
RETURN
REM * DISPLAY SUBMARINE'S COURSE *
REM
GOTO 26才
SET ($\mathrm{A}(\mathrm{R}), \mathrm{A}(\mathrm{A}(\varnothing)))$
SET $(A(R), A$
$R=R-2$
$R=R-2$
$A(\phi)=A(\phi)-2$
$A(\varnothing)=A(\varnothing)-2$
IF $R<1$ THEN $97 \varnothing \varnothing$
GOTO
IF $R<1$ THE
GOTO 92ø
PRINT AT 896, "PRESS I FOR A NEW GAME."
PRINT AT 89
INPUT A
GOTO 10
END

Hop on a Nasbus to 32K of memory now

The Nascom - 1 is designed with expansion in mind. This is made possible by using the best products available. The Z80 microprocessor incorporated in the basic system is so powerful it can support 64 K bytes of memory and 256 ports. To utilize this capability, we have designed the buffered 77 - way Nasbus.
With this arrangement, the way is clear for considerable expansion, starting with our new memory expansion board. It has 16 memory sockets and two EPROM sockets: Therefore, you can fill it with 4 K dynamic RAM up to a maximum 8 K or with 16 K dynamic RAM up to a maximum of 32 K . A 2 K Tiny BASIC in EPROM has been developed for the board.
To go with the board, we have produced a very flexible I.O board with three PIOs each giving two, 8bit ports, plus a UART for serial interface.
As you start building up your Nascom system you will need a convenient means of storing boards. Our new, custom-designed, Vero frame

UK National Distributors

Camera Centre,

Barrow-in-Furness, Cumbria
Crystal Electronics,
Torquay, Devon
Electrovalue,
Egham \& Manchester
Eley Electronics,
Glenfield, Leicester
Henry's Radio,
London W2

Please send me

tickets to your seminar at $£ 4.50$ each and
further details on Nascom-1 expansion products/Nascom-1 Kit/Int. Nascom Microcomputer Club,*
*delete as applicable

Nascom Microcomputers
92 Broad Street, Chesham, Bucks. Tel: (02405) 75151
will allow for a Nascom - 1 to link through a buffer board to a 77 -way Motherboard. There is then the option of eight or more expansion boards. To power this capability there is a new 8.5 amp power supply especially designed for the frame.
No other systern offers so much at such a low cost. And it all starts with the basic Nascom 1 kit which for just $£ 197.50$ offers an intelligently usable system with video and cassette interface, a full alpha-numer ic keyboard and a mighty CPU chip. So if you want the best - make it a Nascom system.

Nascom-1 Kit still only £197.50 +VAT

Lock Distribution, Oldham, Lancs Lynx Electronics, Chesham, Bucks
Microdigital, Liverpool L2

Teleplay,

New Barnet, Herts

Stop press...

Microcomputer Seminar
Nascom Microcomputer's highly successful seminar is coming to Bristol. The programme will be similar to London and Manchester, both of which were sold out. The day includes five lectures, demonstrations and an open forum. Venue is the Dragonara Hotel, Bristol, Saturday, October 14th, 09.50 to 17.30.

Admission: $£ 4.50$ (inc. VAT). Lunch will be available at $£ 4.00$ (inc. VAT) per head if there is sufficient demand.

Name
Address

Tel. No

Cut out coupon and post to Nascom Microcomputers. Cheques and PO's should be made payable to Nascom Microcomputers.

minOTAUR A NEW COMPUTER GAME IN BASIC

John D. Lee and Timothy D. Lee

In ancient Greek mythology, the minotaur was the son of The Queen of Crete, and was compelled by the King to live in a labyrinth of caves because he was so ugly. The King decreed that every five years six maidens and six warriors from conquered Athens should be sent into the labyrinth. Since they never returned, it was rumoured that they were eaten - or worse! In fact they became hopelessly lost, and tired, and fell easy prey to the blood thirsty and carnivorous minotaur. The unlucky victims were selected by drawing lots, and when the intelligent son of the King of Athens was picked he devised a cunning plan. As he entered the labyrinth he unwound a ball of string, which enabled him to find his way out later. He finally caught up with the minotaur, slayed the beast, and lived to tell the story.

Initial placing of the men and minotaur on the board
For the purposes of the game, the labyrinth has been replaced by a board of variable size. The size of the board S is chosen by the user for each run, but must be at least 7×7 to obtain a sensible game and must not exceed 15 (the limiting size of the array $\mathrm{B}(15,15)$). Initially S men are placed in random positions on the board, and the minotaur is placed in a random position towards the middle of the board. The positions of the men and the minotaur on the board are then printed showing men as an asterisk and the minotaur as M.

How the minotaur moves

Next the minotaur moves. The normal move is one square in an orthogonal direction (up, down left or right) into an empty square. If, however, the minotaur can move diagonally by one square into a square occupied by a man, then it will always do so in preference to the normal move, and the unfortunate person is devoured.

Moving your men

Next you are invited to move two of your men in an attempt to surround the minotaur (see winning and losing). To move your man you type in his initial Cartesian coordinates, and then the coordinates of the square to which he is moving. Several checks are performed on the input coordinates to ensure that they are integers in the range 1 to S, that a man occupies the initial location, that the final location does not already contain a man, and that the Pythagorean distance between the two squares is not greater than 3 . If by misfortune you move a man to a square occupied by the minotaur, the man is eaten instantly and a warning message is printed. Having successfully moved one man, the computer invites you to move a second man (or of course the same man for a second move).

Printing the board

The board is then printed out showing the current positions of any remaining men. The position of the minotaur is not printed because it is so dark inside the cave that he cannot be seen!

Winning and losing

The cycle minotaur's move, your two moves, print the board is repeated. To win the game, the minotaur must be left so that it cannot move. This implies that it is
surrounded orthogonally by four men if in the middle of the board, or three men if at the edge of the board, or by two men if in a corner. Remember that if the minotaur is completely surrounded orthogonally it still may be able to move diagonally to eat a man. Obviously it is easier to capture the minotaur at the edge of the board, which is why the minotaur always starts towards the middle.

Unless the minotaur is captured within a given number of moves (calculated taking account of the board size as $\operatorname{INT}(S * S / 4)$) you have lost the game. Alternatively you will lose if through incompetence all your men are eaten! If you admit defeat, you may type 0,0 when asked to type coordinates. The board is then printed showing the current positions of men and minatour. The board is also printed when the game is won or lost. You are then asked if you would like another game.

Some program refinements and explanations

To help you survive the ravages of this hungry monster, you are invited to place an extra man on the board every fifth move, corresponding to an extra batch of victims every fifth year.

The minotaur's movements and eating habits are apparently unpredictable. The normal moves are stored in the M array as four pairs of numbers describing the displacements right, up, left and down (1,$0 ; 0,1 ;-1,0$; $0,-1)$. This list is actually stored twice, and the starting point in the list is determined by a random number. The squares to which the minotaur may move may be this means be searched in any one of the following four orders, R,U,L,D; U,L,D,R; L,D,R,U or D,R,U,L. Provided a man cannot be eaten, the first available empty square is chosen - and if no such square exists the minotaur is surrounded and the player has won. The eating moves are stored in the E array and are chosen in a similar random manner.

The random number sequence is initialised by asking for a time check. On some machines a random starting point in the random sequence is automatically chosen, whilst on other machines statements RANDOMIZE or RND (-1) may have the same effect. The time check ensures a different starting board on any machine, but may be omitted if unnecessary.

All the arrays and string used are declared in the first statement. The strings are declared assuming that one location contains one character. Whilst this will work on any machine which can handie strings, it may be wasteful, and on some machines the string declaration may be omitted.

The BASIC matrix functions MAT ZER, MAT READ and MAT = are used. If matrix functions are not available, these can easily be replaced by simple coding. Apart from this, the program is written in the most elementary sub-set of BASIC, and should be easy to implement on virtually all computers which provide BASIC.

A listing of the source program, together with part of a sample run are provided.
RANDOMLY PI．ACE MINATQUR

SINT（S－ X ＋1）；TAB（4）；
OR $Y=1$ TC S
$E(Y,(S-X+1))=1 \operatorname{THEN} 74 \emptyset$
$B(Y,(S-\dot{X}+1))=10$ THEN 720
RINT＂．＂${ }^{\text {a }}$（
OTC 760
RINT PS；
OTO 760
RINT＂${ }^{\text {¢ }}$ ；
ET $M=M+1$
XT Y
RINT
ExT X
OR Il $=1$ TC S
P \＄$=$＂M＂AND $\mathrm{I}>2$ THEN 1590
（ ${ }^{\text {a }}$（＊＊PLACE MAN IF 5TH，J6TH ETC．MCVE

(X, Y)＜ 1 THEN 930 ＂WA
88 Y

$$
\begin{aligned}
& \text { - } \\
& \text { TO } 980 \\
& \text { INT YUM-YUM - THE MINATCUR HAS JUST HAL A GOOD MEAL! } \\
& \text { M }{ }^{*} \text { * }
\end{aligned}
$$

\qquad E～
OR $J=K$ ST
K TO K＋ 6 STEP 2
$-\mathrm{E}(\mathrm{J})$ THEN 1140
E（J）$=\mathrm{S}(\mathrm{J}+1)$ THEN 1140
$(((\tau+C) 3+Z W) \quad((c) 3+\tau N$

1）
sin 雲
＂I甘ヨW aכOפ \forall J甘H LSOC S甘H YOOL
い向
$M(16), E(16), F(16), C \$(16), P \$(3), R \$(1 a)$
＂MINATCUK＂ ＂MINATCUK
$"========"$

> TYPE SIZE IN RANGE 7 － $15^{\prime \prime}$ ．
7）＊（S－15）＞0 THEN 50
RETYPE AN INTEGER BETWEEN 7 AND 15＂
50

WCULD YCU LIKE INSTRUCTIONS ？＂；
TYPE YES OR NC AND PRESS RETURN．＂
＂NC＂THEN 350
＂YES＂THEN 190
REFLY \quad＂；OS：＂ 136
THE MINATCUR IS AN ANIMAL，INVISIRLE AFTER THE FIRST TURN＂
WHICH MUST BE CAPTUREC BY YOU WITHIN＂；INT（S＊ $\mathrm{S} / 4)$ ；＂DAYS．＂
TC CAPTURE THE MINATOUR YOU MUST LEAVE IT SC THAT IT CAN＂ NCT MCVE NCRMALLY THE MINATOUR WILL MCVE CRTHOGONALLY＂
（IE． 1 SCUARE UP，DCWN，LEFT OR RIGHT）INTC AN EMPTY SPACE＂ ＂HCWEVER THE MINATCUR WILL MCVE［IACCNALLY INTC A SCUARE＂
＂OCCUPIEL BY ONE OF YOUR MEN AND BY SO COING EAT YOUR MAN！＂ CCMMAND AND CN YOUR MOVE YOU CAN MOVE TWO OF THEM UP TC＂ ＂THREE SCUARES EACH EVERY FIFTH MCVE A NEW MAN WILI JCIN＂
＂YOUR FORCES ANE YOU WILL BE ASKED WHERE ON THE BOARD YOU＂ ＂HCULD LIKE TC PCEITICN THIE MAN．＂
＂AT ANY TIME YOU MAY CUIT BY TYPING $\subset, \emptyset "$
> ＂IIME CHECK－HOW MANY MINUTES RAST THE HCUR＂
T
$=1$ TO T T
$=$ RNE（ 0 ） ＂GCCL hunting and gCod luck（ yCu may need it ！）＂ T ${ }^{T}$ T
REA

云

PET 2001

 TR 80 Level 2 APPLE IIsoftware

 Available Now Avattes

YUM -YUM - THE MINATCUR HAS JUST HAD A GOOD MEAL
WHICH MAN WOULD YOU LIKE TO MOVE (X, Y) ?
TC WHERE (X, Y) ?
Please reply to:-
Mr. D. C. JAMES,
EDINSMITH COMPUTER SERVICES Ltd., 11, Stoke Hill,
Stoke Bishop,
BRISTOL, BS 9 1JL.

$$
\begin{aligned}
& \text { WHICH MAN WoULD YOU LIKE TO MOVE (} X, Y \text {) ? } \\
& \text { TO WHERE }(X, Y) \text { ? }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WHICh MAN WCULD YOU LIKE TO MCVE (X,Y) ? } \\
& \text { TC WHERE }(X, Y) \text { ? }
\end{aligned}
$$

TOUCHDOW

'LUNAR LANDING GAME FOR CASIO PROGRAMMABLE CALCULATORS'.

N. Rushton

This version of the ever popular Lunar Landing game has been written to run on any of the following calculators made by Casio: FX201P, FX202P, PRO FX1. It occupies 125 programme steps and uses 8 of the calculator's 10 memories.

The object of the game is to land an imaginary spacecraft upon the lunar surface at a safe touchdown velocity. The programme commences with the spacecraft at altitude A, and heading towards the lunar surface with a velocity V. It is also accelerating under the lunar gravity. The calculator requests an amount of fuel to be burnt - the effect of this 'burn' is to deaccelerate the spacecraft as it descends. If the burn entered is an acceptable amount - the programme imposes a maximum limit and checks that there is fuel left to burn - then new values of A and V are calculated: and these are displayed along with the amount of fuel remaining (F). Then a new burn is requested. In addition, the status of A, V and F may be checked at any time by use of the MJ command.

When the spacecraft reaches zero altitude i.e. touchdown, the programme checks that this occurred at an acceptable velocity. This velocity is 3 metres sec. or less, else a crash landing has occurred. This is indicated by the display of 'E' (i.e. an overload has occurred and the registers of the calculator have locked). A successful landing is indicated by a row of 1 's appearing in the display. If the spacecraft runs out of fuel before landing then this is indicated by the programme entering an infinite loop and the display of a '-' sign.

Enter the programme (a full listing and a flowchart are provided below). Before running, switch to Manual and enter the following data:
In memory 0; Altitude A . . . suggested value 2500 metres. In memory 1; Velocity V... suggested value 500 metres sec. In memory 2; Fuel F... suggested value 600 units.
In memory 8; Maximum burn allowed... suggested value 75 units.
In memory 9; Successful landing code - 1111111111
Switch to Comp mode and run the programme.

Summary of running programme:

Enter burn when requested in memory 3. If the amount entered is greater than the maximum allowed, then a revised value is requested. Negative amounts should not be burned (it's cheating!). New values for A, V and F are given in memories 0,1 and 2 respectively. These may be checked at any time by use of MJ key. If V is given as negative, then that indicates the spacecraft is going upwards and you would have been useless in Apollo.

The objective is to land at 3 metres sec. or less.
'1111111111' . . . Successful landing.
'E' . . . Crash landing.

LUNAR LANDING GAME.

ST\#1: ENT 3:
IF $3=8: 2: 2: 1$:
ST \# 2: $2=2-3$:
IF $2=\mathrm{KO}: 2: 3: 3$
ST\#3: $4=3-K 2-1$:
$6=1-4 \div K 2$:
$0=0-6$:
$1=4+/-$:
IF $0=K 0: 4: 4: 5$:
ST\#4: IF $1=K 3: 7: 7: 6$:
ST \#5: MJ ANS 0:1:2:
GOTO 1 :
ST \#6: $9=9 \mathrm{e}^{\mathrm{x}}$:
ST\#7: ANS 9:

GENERAL INFORMATION

Opening hours:

10.00-19.00 Thursday 21 September
10.00-19.00 Friday 22 September
10.00-17.00 Saturday 23 September

West Centre Hotel:

The Hotel is situated in Lillie Road, London SW6. The closest London Transport Underground Station is West Brampton (5 minutes walk), and buses, 30, 74 and 74 b pass the Hotel.

Admission to the Show:

Admission is by prepaid ticket ($£ 1$) or by programme at the door ($£ 1$). Free to conference pass holders.

Feature area:

A special feature area has been set aside and will be of particular interest to the visitor. It will display the efforts of the contenders in the Personal Computer World homebrew competition, with prizes of $£ 200$ each for the best application in four different categories. And the Personal Computer World micro-chess championships. Model railway enthusiasts can see a computer controlled layout developed by CAP Software. Leslie Solomon, Editor of Popular Electronics in the United States and regarded as the 'father' of home computing across the Atlantic will be there with his new voicecontrolled Sol computer (which includes a chess programme that came end in the world championship). He will also be demonstrating, for the first time in Europe, a new graphics breakthrough.

Refreshments and catering:

The West Centre Hotel is well provided with bars and restaurants. A special bar for visitors and exhibitors is situated in the foyer of the exhibition and is open daily from 12 noon.

The Centre Bar on the Hotel ground floor is easily accessible from the exhibition and is open from 11 am.
The Coffee Shop on the first floor is open throughout the day and offers coffee, snacks and quick, modestly priced meals.

The Carvery Restaurant offers a wide selection of joints and has the Baron Carver menu of three courses for $£ 4.25+$ VAT.

Telephones:

Six pay telephone booths are situated in the exhibition foyer.

Cloakrooms and lavatories:
These facilities are situated in the exhibition foyer.

Sales from stands:

Visitors are advised that for security reasons they must obtain a receipt for any purchase made from stands which will be demanded by the security officer at the gate.

EXHIBITORS

Company Stand
Attaché 42
Amateur Computer Club 14
Belvedere Computer Services (Scarborough) Ltd 15
BHAIB Electronics 27
The Byte Shop Ltd $19-24$
Bywood Electronics Ltd $37+38$
CCS Microhire 49
Collins Consultants 36
Comart Ltd $2+3$
The Computer Bookshop 4
Computer Workshop (South West Tech) $28+29$
Crofton Electronics Ltd 1
Cytek (UK) Ltd 12
Data Ltd 41
Keen Computers 16
LP Enterprises $8+9$
Limrose Microprocessors Division 30
Microdata Gmbh 46
Micronics Ltd $10+11$
Nascom Microcomputers Ltd $34+35$
Newbear Computing Store 13
Pelco (Electronics) Ltd 39
Personal Computers Ltd 18
Research Machines Ltd 7
Sintrom Microshop 25
Sirton 40
Star Devices Ltd 17
Strumech Engineering Ltd 54
Tandberg UK Ltd 47
Tandy Corporation (Branch UK) 6
Technalogics 12

7 Dordells, Basildon, Essex.

R. W. Warren Tel: 01-8773252 ext. 289 (w) 01 -979 4193 (h)

The Amateur Computer Club was formed in 1973 when personal computing was in its infancy. From a few initial members, it has grown to a membership well exceeding 1000 and continues to expand rapidly. Like most organisations. catering for a special hobby pursuit, it is largely co-ordinated by a newsletter and local centre groups throughout the country. Samples of recent newsletters are available from the stand. We are showing two homemade computers. One of these is the 77-68, a club sponsored design which has been successfully built by many members.

ATTACHÉ

STAND 42
Moncoland Ltd., Beeches Farm, Crowborough Hill, Crowborough,
East Sussex
Roger R. Barnes
Tel: 08926-4665
Moncoland announces the first all-purpose microcomputer designs for the hobbyist, educational/professional and small business user called the 'Attache'. The system will be available from November 1 in leading retail stores throughout the UK but those interested in purchasing an advance system at a discount can come to the Show. Delivery will take about 6 weeks on average. The system is supported by the latest software including MITS BASIC release S.O. as well as a full range of small business accounting packages at reasonable cost. In addition, the system supports via its $\mathrm{S}-100$ compatability a large range of peripherals at reasonable prices.

BELVEDERE COMPUTER SERVICES

 (SCARBOROUGH) LTD.STAND 15 9 Belvedere Place, Scarborough, Yorks Tel: 0723:63638

Belvedere Computer Services Ltd., Main distributors for 'Imsai' micro computer products, from hobbylst to distributed data processing terminals for the largest of companies. Hardware and software support, we will be displaying a range of software, stock control, invoicing, sales ledger, word processing, profit and loss accounts, purchase analysis, budgetory control and others. There are over 15000 Imsai computers installed worldwide Come, look, talk to us on Stand 15. Ask for Mark Proudfoot.

BHAIB ELECTRONICS
STAND 27
PO Box 216 ,
76100 Norrtalje
Sweden
Bo Hellstrom
Tel: 017618025
A Scandinavian low-priced computer kit using the powerful RCA COSMAC CPU 1802. The system offers a complete package for use with standard TV set, cassette recorder, loudspeakers and single 5 volt power supply. It includes a 64 character keyboard, cassette with TV games and basic programme and comprehensive documentation also covering the subject of writing programmes in machine language, basic and in a special language for easy TV game design. On card 12 k of RAM externally extendable to 32 k audio output, cassette interface and two video interfaces, one for photographic display and one for text programme with 16 lines of 64 characters.

CCS MICROHIRE
STAND 49
Freepost,
Letchworth,
Herts. SG6 4 YA
CCS Microhire will be explaining the merits of hiring a microcomputer to get hands-on experience before you buy. The company will also be showing how you can use a program to learn about programming in BASIC. CCS offers hiring arrangements for micros from one day to as long as you like at a starting price from $£ 2$ per day with the option of a deliver and collect service. What is probably one of the biggest ranges of microcomputers available from a single source in the UK includes middle-of-range machines such as APPLE II, COMMODORE PET, NASCOM 1 , MICROS MSI 6800, RESEARCH MACHINES 380Z, SOL - 20 . SWTC 6800. TANDY TRS - 80 and extends upwards to include ALTAIR and down to single board machines such as KIM 1 which will be available for research purposes.

Main distributors for MMSAI products, reliable low cost, Micro Computers, cassette or multi-floppy disk based systems. Ideal for all business, industrial, medical and educational use. Simple and quick to learn programming with BASIC, FORTRAN, and ASSEMBLER languages.
IMSAI 8080 computer - 10,000 sold in 18 months - the world's fastest and most successful selling machine. Flexibility that every. one can afford.

IMSAI latest product, the VDP80 with 32 K or 64 K memory, 1 million alphabetic characters of disk memory and loaded with lots of super features.

Designed for you with thought.
Join the successful people - buy IMSAI.
Powerful programmes are available - designed so that you can tailor them to your needs without programming skill.

Profit/Loss accounts, Balance Sheet, Sales Ledger, Stock Control, Invoicing, Purchase Ledger, Budgetary Controls, Postal Lists, Production Control, and Word Processing.
All products are competitively priced for the finest budget. For details call or write:
Mark Proudfoot
0723-63638 or 67027
We are looking for suitable local and area distributors. Join our successful team supported by successful products.
IMSAI
The standard of excellence in Micro Computors.
P.s. All parts are guaranteed for 6 months, we have a repair service to back up our products.

INTRODUGHIN

THE CROFTON

Micro Learning Modules with 'FREE' Basic Interpreter

This exciting system has been developed to fulfil the very varied requirements of the purchaser. Whether you wish to learn machine programming, computer logic, basic concepts, programme development or control an industrial process, this package will meet your requirements.

The System Comprises - Mother board with plug in cards and is fully expandable.

On board facilities are also available to burn in your own Read Only Memory.

FOR FULL DETAILS SEND FOR OUR DATA SHEET LSI

OTHER CROFTON PRODUCTS INCLUDE:

Computers for the small business.	Software.	CCTV Cameras.
Computer peripheral equipment.	Computer books.	CCTV Monitors.
Computer boards for the hobbyist.	Electronic Secretary.	Video Switchers.
Educational Computer Kits.	VHF/UHF Modulators.	Character Generator.

Data sheets are available covering the above equipment.

Crofton also provide a specialist Printed Circuit Board service for either prototypes or production boards. Full details will be supplied on request.

CROFTON ELECTRONICS LIMITED

35 GROSVENOR ROAD, TWICIKENHAM, MIDDLESEX, TW1 4AD

let apple soften Dou up!

(with software packages available from Keen Computers Ltd.)

The new disk units now make Apple II a powerful business machine. Our "off the shelf" software packages get you started straight away.

Use Apple's unique colour graphics to display sales trends, costing breakdowns, market prices etc. Spend more time in promoting your business. JOIN THE APPLE CORPS!

Apple disk (116 Floppy), controller and DOS - £395.00

SOFTWARE

keen computers Itel. (the apple experts)

COLLINS CONSULTANTS

STAND 36
Rotherglen, Gerrards Cross Road, Stoke Poges, Buckinghamshire

A. J. Collins

Tel: FULMER 2572/2465
The Stand will feature 3 configurations of system based on the APPLE II equipment.
Small system comprising 16 K machine, TV Display and cassette recorder.
Application: Advertising Display.
Medium System comprising: 32 K machine, TV Display, Diskettes and Daisy Wheel printer.
Application: Kitchen Planning and Word Processing.
Large System comprising: 48K machine, TV Display, Diskettes and fast printer.
Application: Business Applications.
The emphasis will be on the systems use of a versatile, cost effec tive equipment. Personnel will be available on the STAND to dis cuss individual applications, equipment requirements and resources needed for development.

COMART

STAND $2+3$
Tel: 0480215005
J. R. Lamb

Comart are exhibiting their range of S100 Microcomputer Systems, sub-systems modules and sof tware.
Computers on display include the System Three, Z2D and Z2 Cromemco range, Processor Technology's SOL together with memory, analog/digital interface cards and North Star Diskette system.
The choice of software for Comart's microcomputers is one of the most extensive in the industry: Assembler, Macro Assembler, Basic, Fortran and Cobol languages are all available.

COMPUTER BOOKSHOPS LIMITED

STAND 4
Temple House, 43/48 New Street, Birmingham B2 4LH Margaret Maclean

Tel: 021-6434577
Computer Bookshops Limited is a Trade and Mail Order distribution company, handling books, manuals, software and training programs for the industry, business user, education and the hobbyist.
The company deploys its expertise to enable customers to obtain the most effective use from their micro processors and comput-
ers. On the stand you will be able to see at a glance those books which are relevant to the hardware you are using and the stage of experience and interest you have reached

COMPUTER WORKSHOP

STAND 28 +29
(South West Tech), 38 Dover Street, London W1 John Burnet

Tel: 01-491 7507
Computer Workshop is exhibiting its range of computer equipment of both small and large systems. At $£ 4650$ there is a CPU, one million characters of disc storage, VDU and a 60 cps printer with 132 column width. It has a disc operating system and sophisticated Basic. The operating system has facilities such as print job queueing and spooling while the computer is used for other purposes.
At the smaller end of the scale, is a CPU with 4 K bytes of memory for $£ 330$. Additional memory is available at $£ 70$ per 4 K ; serial and zarallel interfaces at $£ 37$ each; the VDU for $£ 445$; and a 40 column printer for $£ 250$.
Software such as a text editor and text processor, said to be as powerful as those found on larger mainframes is available from £25.
Most Corsputer Workshop equipment is manufactured in England bv Southwest Technical Products.

CROFTON ELECTRONICS

STAND 1
35 Grosvenor Road, Twickenham, Middlesex D. E. Pattinson

Tel: 01-891 1923
Being exhibited for the first time - An all BRITISH DESIGNED MOTOROLA 6800 MICRO SYSTEM for the small business and educational user. Including dual mini floppies, Keyboard and VDU. Other standard equipment from the Crofton range includes: Television Monitors suitable for display of both TV pictures and alpha numeric information, UHF Modulators allowing Domestic TV to be used as VDU. ASCII Free standing Keyboards - Mini Floppy Drives, Educational Computer boards, Character Generators, Computer Books. Hard Copy Printers and a whole lot of know how on interfacing the various peripheral devices to a micro computer system.

Goods are normally shipped within 24 hours subject to availability Barclay card \& Access VAT at 8% for Hardware Components. 30 p postage and packing unless otherwise stated.
Cheques to be made out to 'The Newbear Computing Store'

Send for an up-to-date catalogue 10 :
The Newbear Computing Store
7 Bone Lane, Newbury.

Callers weicome Monday to Saturday 9.00a.m.-5.30p.m. The Newbear Computing Store is a division of Newbury Laboratories Ltd.

Hardware Components Section

CYTEK (UK) Ltd

STAND 12
17 Exchange Hall, Corn Exchange Building, Manchester M4 3EY C. N. Menhinick Tel: 061-8327604
Cytek (UK) Ltd is a Manchester based software and systems house, and is an authorised Pet computer dealer. Technalogics specialises in teletext and home computing. Collaboration has resulted in the first Pet compatible teletext decoder.
Cytek is showing new Pet software:- payroll, word processing, percentage costing, standard statistics and electronic cad. A teletype KSR43 matrix printer is also shown with the Pet.
Technalogics is launching its 6800 microprocessor based teletext decoder which doubles as a powerful and expandable home computer.
Also shown: dedicated decoder, battery portable colour TV pattern generator. In-house teletext system for information distribution available to order.

DATAC LTD

STAND 41
Tudor Road, Altrincham, Cheshire WA14 5TN
Michael J. Robinson
Tel: 061 - 941 2361/2
Datac Limited will be showing a wide range of low-cost digital matrix printers, both in fully-packaged and D.I.Y. form.
These cover the 16 to 80 column market and include full paraltel (BCD), bit-parallel, character-serial (ASCII), and full serial (RS232C/V24 or 20 mA loop) data input interfaces. Also on show will be a range of low-cost Mini-Disk Drives and accessories. A low-cost formatter board for the MDD will be available soon. A range of small printer "kits" will be available for visitors to purchase on the stand and take away, thus saving carriage costs.

KEEN COMPUTERS LTD

STAND 16
58 Castle Boulevard, Nottingham NG7 1FN
Dr. Tim Keen
Tel: 49588
Keen Computers Ltd., specialise in the marketing of the Apple II computer and the production of software to specific needs. Financial, technical and statistical applications can be met by "off the shelf" packages. With many years programming experience on small machines, the Apple II was chosen because it is probably the best microprocessor based computer in this particular field; its large memory and versatile disk system means that it is ideal as a business machine. Keen sell a full range of peripherals and printers and have gained respect from many computer companies, of ten being called on for advice on machines other than Apple.
L.P. ENTERPRISES

STAND $8+9$
313 Kingston Road,
IIford,
Essex IG1 1PJ
V. Coen

Tel: 01-5531001
L.P. Enterprises imports and distributes books and magazines from a large number of American publishers. It is displaying and selling a complete current range of books and magazines, including magazine subscriptions. There are books geared specifically for business applications with some appropriate software, as well as some systems software; e.g. CP/M. There are books for the novice as well as for the person who already knows how to handle microcomputers, but wishes to make a fuller use of them. The magazines cover the spectrum of hardware, software, applications and development. The literature ranges between informative reference material to lighthearted observations of man and machine, plus all the intervening stages.

LIMROSE MICROPROCESSOR DIVISION STAND 30

241-243 Manchester Road,
Northwich.
Cheshire, CW9 7NE
Dr. R. S. Raizada
Tel: 0606-41696/7
Limrose will be displaying the MICROTUTOR 8080, the LMC 6800-2 Microcomputer and accessories at their stand. Also on display will be CREED 735 -Bit Code Teleprinter machine interfaced to the MICROTUTOR 8080. This item is of particular interest to personal computer users as it enables them to obtain a hard copy from a very inexpensive printer.
A low-cost Visual Display Unit, VDU 7000, will also be exhibited, together with Limrose othér computer educational products.

NEWBEAR COMPUTING STORE
STAND 13
Bone Lane, Newbury, Berks. RG14 5SH
T. W. Moore

Tel: 063546898
This organisation supports Microcomputing in general and stocks a wide range of items to achieve this aim:- The systems section support S-100 bus microcomputers with Cromemco Z-2 and all

SIRTON PRODUCTS
 We specialise in the S. 100 Bus System with 8080 or 2.80 CPU'S.

MAINFRAME

Desk Top, with power supply, motherboard \& fan etc.
$£ 187.00$
SIRTON Mainframe - due December
SIRTON V.D.U. Self Contained Unit
16 lines 64 characters, 1K RAM case,
power supply and UHF modulator,
with Reverse Video and Flash etc.
$£ 97.50$

KEYBOARD KITS

53 key - Tri-mode ASCII output (without case) $£ 47.00$
53 key - Tri-mode ASCII output in black/white SIRTON case
$£ 59.00$
SIRTON tough-type ASCII output, with case $£ 38.50$
SIRTON tough-type ASCII output, with additional features
$£ 50.00$

BOARD KITS

8K RAM Board low power 450 n Sec . (21 L02-1) £94.50
8K RAM Board low power 250 n Sec . (21L02-1)
£119.50
8080 CPU Board with Vector Interrupt Circuit $£ 72.50$
8080 CPU Board with jump-on-reset
Z80 CPU Board $2 \mathrm{MHz}, 2708$ Monitor, power-on-jump
Z 80 CPU Board $4 \mathrm{MHz}, 2708$ Monitor, power-on-jump
Z 80 Bare Board
2708 EPROM (16 K) for 2708 or 2716 EPROMS $£ 47.00$
2708 EPROM (16 K) with 8 EPROMS (2708's) £92.50
2708 EPROM Board with programmer (8K)
£95.50
£94.50
$£ 99.50$
£ 31.00
£118.50

8K EPROM/1K RAM, with RAM
Cassette Interface (with Monitor) - built
£75.50
Serial/Parallel 1/O Board, 2 Serial/1
Parallel 'Kansas City' Interface
Video Interface, 16 lines, 32 or 64 characters per line
$£ 98.50$
Motherboard (13 slot with active terminations) $£ 48.50$
HARDWARE
S. 100 edge connectors gold plated solder tail
$£ 5.45$
Transformer Pri 110/240 V; sec. 8 V @
10 Amp \& 25 V CT @ 2 Amp
Bridge Rectifier with integral bracket rating
18 Amp
£12.75

S. 100 Proto-type board

£3.95
INTEGRATED CIRCUITS
8080A CPU Chip 2μ Sec
£6.95
21 L02 RAM 1 Kx 1 Bit Low Power 450 n Sec $£ 1.20$
21 L02 RAM 1 Kx 1 Bit Low Power 250 n Sec $£ 1.40$
2708 EPROM 1 K×8 Bit 450 n Sec
$£ 7.50$
8212 I/O PORT 8 Bit
£3.10
2513 Character Generator, Upper Case (5 volt) $\quad £ 5.25$
Z.80 Monitor
£14.00
Apply for prices of ready-built and tested items. Please add WRITE OR PHONE FOR LATEST CATALOGUE. 8% VAT.

SIRTON PRODUCTS

13 Warwick Road, Coulsdon, Surrey CR3 2EF.
Tel: 01-660 5617
Post \& Packing
Keyboards:
Kransformer: $£ 1.00$ each
Transformer: $£ 1.00$ each
Kits:
Hardware/IC's:
$\begin{array}{ll}\text { Kits: } & \text { 80p per kit } \\ \text { Hardware/IC's: } & \text { 30p per order }\end{array}$

Sole U.K. Distributor for M.S.I. and S.S.B.

STRUMECH ENGINEERING LTD.

Portland House, Coppice Side
Brownhills, Walsall, Staffs:
Phone: BRO 4321
the Comart products, together with Newbury Laboratories VDU's and DRI printers. For the '6800' our latest offspring "PANDA" has just arrived!! The Sof tware and literature section has a unique range of 6800 and 280 based software together with probably the largest range of computing books in the country. The Hardware components section has launched the Synertek VIM-1 as well as packaging its own kits as "Bearbags" which have now reached 15 in number. Many of these support the popular 77-68 6800 based hobbyist system. A considerable range of components specifically for microcomputer constructors is also available. These items are available by mail order or from our shops at Manchester and Newbury.

PELCO (ELECTRONICS) LTD

STAND 39
Enterprise House, 83/85 Western Road, Hove, Sussex G. Dale-Smith

Tel: (0273) 722155
Pelco (Electronics) Limited are the exclusive distributors and representatives of Rockwell International microelectronic devices in the UK.
AIM 65 is the main feature on the stand. Developed by Rockwell as a personal computer and microprocessor teaching aid, AIM 65 is an enhanced version of KIM-1 using the same 6502 microprocessor but with 20 column printer, 20 character display and 54 key keyboard.

PERSONAL COMPUTERS LTD

STAND 18
18/19 Fish Street Hill, London EC3R 6BY
M. J. Sterland

Tel: 01-623 1434
The UK distributor for Apple Computers Inc.
The company will be showing its Apple II computer which is a very powerful 6502 microprocessor using Basic programming language with high-and-low resolution colour graphics facilities. The machine at the very beginning of its product life with spare input/output ports, ROM and RAM areas. Several cards to enhance the machine are already available.
The system is easy to use, reliable, simple to maintain and very well documented.
Applications for which the machine is being used include timesharing and markets like education, engineering, scientific research, banking and to OEM computer companies.

RESEARCH MACHINES LTD

STAND 7
209 Cowley Road, Oxford
Mr. M. O'Regan
Tel: 086549793
The Research Machines 3802 exhibited, designed and manufactured in Oxford, is a general purpose microcomputer developed for professional users. The flexibility of the system and the range of software available has been of particular interest to those in Scientific Research and Education with a large number of systems in use in the field. Some of the peripherals offered for the 3802 are shown on the stand, and there are leaflets available covering different applications for the system.

SINTROM MICROSHOP

STAND 25
Based in Arkwright Road, Reading, The Sintrom Microshop welcomes callers to view a selection of microcomputers and peripherals on demonstration. Company policy is to hold stock of all products wherever possible.
A wide range of users are catered for, from the hobbyist through Scientific and Educational users to the business man requiring an inventory and stock control system. By carrying a carefully selected range of processors, floppy disks, kits, software and books, the Sintrom Microshop caters for all requirements.

SIRTON PRODUCTS

STAND 40
13 Warwick Road, Coulsdon, Surrey CR3 2EF
Mrs. M. Moon
Tel: 01-6605617
We have on display an ASCII coded touch type keyboard and case. Both 280 and 8080 CPU board kits for the S. 100 Bus are featured together with supporting RAM, I/O and Mother boards. Just released will be a VDU interface kit complete with case etc., featuring 16 lines of 64 characters, reverse video, flashing characters, screen scroll and screen roll.
Mainframes will be available for S .100 system boards.

STAR DEVICES LIMITED

STAND 17
11 Winston Way.
Thatcham, Berks.
P. D. Stubley

Tel: Thatcham 68020
A British designed and built low cost QWERTY keyboard will be on display. The Standard unit offering the following features:7 bit parallel ASCII encoded output - Positive or negative strobe edges - Modified 2 key rollover $+N$ key lockout - Audio tactile feedback - Cased - Automatic scan facility - LED's to show
coding of selected character - Gold plated $0.1^{\prime \prime}$ pitch edge connector - Requires 5 Volts at onlv 200 mA .
Optional extras are:- RS232 - Baud rate generator - internal generation of ± 12 Volts - Parity odd or even - 20 mA current loop - On board 5 Volt regulator - Active low outputs - Open collector outputs active high or low.

STRUMECH ENGINEERING LIMITED

STAND 54 Portland House, Coppice Side, Brownhills, Walsall, West Midlands R. N. Hinton

Tel: B'hills 4321 Ext. 16
S.E.E.D. will be exhibiting many disc products for use with the M.S.I. 6800 processor along with printers and terminals including the new ACT-1 Kevboard. M.S.I. Processors are now available in two forms, a stand alone desk top system or for commercial applications rack mounted in a desk which can be customised to include our HD-8 10 megabyte disc drive. For other M.S.I. users a large range of hardware support in the form of RAM, EPROM, PROM/RAM, EXTENDER, WIRE WRAP boards and 2 prom programmers are also supplied to enhance your existing system. S.E.E.D. are sole U.K. distributors for M.S.I.

TANDBERG U.K.

STAND 47

Mr. Cowing

Tandberg EC10 educational computer designed by Tandbergs Radiofabrikk of Norway has been introduced to meet the grow. ing need for stand alone computer systems in Scandinavian schools.
The basic unit comprises a robust housing (VDU) with interchangeable boards. The CPU is an Intel 8080 microprocessor with configuration of boards to suit. Full size Diskette drive is built in. The screen measures $25 \times 80 \mathrm{~cm}$ and the keyboard is the ECMA type. The power supply is the compensating type with overall protection and the language is extended BASIC. User Ram 35K. EC10 is complete with external sockets, V24 and 20 m/amp current loop, printer and time sharing sockets and card reader.
Baud rate is from 110-19,200

TANDY CORPORATION

STAND 6

(Branch U.K.) Bilston Road, Wednesbury, West Midlands
WS 10 7JN
R. King

Tel: 021-5566101
Designed and manufactured by Tandy Corporation, the TRS 80 microcomputer based on the $\mathbf{Z 8 0}$, is available in several combinations ranging from a 4 K level 1 Basic up to 48 K level 2 Basic. Storage facilities are avallable to 350 K 'on line'. Peripherals available include an expansion interface, a line printer and a mini disc system (4 drive). Prices range from $£ 499$ to $£ 4077$ (inclusive of VAT). Basic systems comprising of 4 K level one at $£ 499$ includes the CPU $12^{\prime \prime}$ video display cassette interface power supply and user manual. The units are available through any one of Tandy Corporation's 170 retail outlets in the UK. Further information is available from Tandy Corporation (Computer Division).

ASSEMBLY CODE PROGRAMMING

 FOR THE BEGINNERStephen Collins

Before I start explaining how, in my view, a beginner should go about writing assembly code programs, I would like to briefly explain why assembly code programming is sometimes necessary.

If you have not had any experience in writing assembly code programs, you may think, having learnt a high level of language such as BASIC or FORTRAN, that any problem can be solved using these languages and that low level languages are not really necessary. However, you must realise that computers do not directly understand BASIC, or any other high level language, but only the machine code for which they are designed. Therefore, high level languages have to be either interpreted by an interpreter, or translated into machine code by a compiler. All computers with the ability to accept and run programs written in a high level language have either a compiler or an interpreter residing in their main storage.

Because computers can only understand machine code programs, both compilers and interpreters have to be written in machine code; usually by a team of experienced programmers. However, machine code programming is very difficult and tedious, even for experienced programmers, and a compiler can take several man-years to write.

In order to eliminate the problem of writing programs directly in machine code (which involves a lot of decimal to binary conversions), assembly code programming was developed. Each machine code instruction is represented by an easily remembered mnemonic, such as ADD, SUB, JMP, etc.; and the program is written using these mnemonics. Also, to avoid calculating offsets for jump instructions, symbolic labels are used so that the destination of jumps can easily be found.

Once the assembly code program is completed it is translated into machine code by a small program, usually written in machine code, called an assembler. The machine code version of the program can then be executed by the computer. The task of writing large machine code programs, such as compilers and interpreters, is made much easier by the use of assembly code programs which avoid many of the problems associated with their machine coded counterparts.

Having explained the purpose of assembly code programming, I should now explain how I began writing programs in assembly code. Part of my A-Level Com-puter-Science exam consisted of presenting an account of practical work on a programming project. I decided to write an interactive CESIL interpreter, in BASIC, so that lower sixth students could get some experience in interactive programming without having to learn a complicated language at the start of their course.

Having completed the program on a PDP 11/45 time-
sharing system, I slightly modified the program for use on the college computer, an M6800 microprocessor, using a 12 K BASIC interpreter. However, when I ran the program it was so slow that it would have been quicker to work out the problem by hand, instead of writing a program. It took about twenty seconds to check each CESIL line for syntax. In a simple CESIL program to print out the numbers from one to ten there was a lapse of approximately forty seconds between each number output.

In the hope of speeding up the program, I accepted the challenge of rewriting the complete program in assembly code, assembling it with the Co-resident Editor and Assembler available on the microprocessor.

So how should you go about writing assembly code programs for the first time? The first thing to do is to thoroughly familiarise yourself with the language to be used. Although this may seem obvious, it is more complex than just knowing the instruction set. You should know exactly what each instruction does, including which flags and registers are set by the outcome of each instruction. You should also know how conditional jumps are tested for, and how offsets are arranged. In addition to this, you should know how any internal registers, such as accumulators, index registers, stack pointers, program counters, etc., are arranged. This involves a knowledge of whether they are eight or sixteen bit registers, and whether numbers are stored in pure binary, binary coded decimal or in any other way.

Another important point that should be mentioned here is that any software supplied with the system should be studied. Many computer firms supply a large amount of software which is very useful when writing
assembly code programs. Therefore, if you first study this software, many routines, for example input and output routines, can simply be copied instead of rewriting them for each program.

However, you must ensure that you fully understand how the routines work. When using one of the routines of the monitor program on the college microprocessor, I did not realise that an accumulator was modified. Consequently, I could not discover the whereabouts of an error which had occurred while using, this routine.

In brief then, you should thoroughly understand the language, have a rough idea of how the computer works and be familiar with any useful software before starting to program.

Once you are familiar with the language you can think about writing your first assembly code program. Ihitially, you should write a few short programs lof about ten to twenty instructions) to see exactly how the language works and to make clear anything not understood while reading the manuals. This also helps you to discover any important errors which you need to guard against when writing larger programs.

This was one of the mistakes that 1 made when 1 first started programming in assembly code. I started by writing the CESIL interpreter, which is a very difficult and complicated program for a beginner. Of course, when the program was finally completed I was faced with the task of debugging it. Having spent about five weeks dry-running flowcharts and debugging the program, all to no avail, I found the error, a very simple one, allowing me to continue and correct the remaining errors. Had I written a few shorter programs before tackling the interpreter, I am sure that this would not have occurred, since I would certainly have encountered the problem then, and known to guard against it when writing larger programs.

Having gained a little experience, you can start on a larger project. One word of warning here! DO NOT try to translate a program written in a high level language directly into a low level one. I tried this when writing the first version of CESIL. I had already written a program in BASIC and 1 thought it a good idea to translate it into assembly code. However, half of the routines turned out to be slightly modified BASIC interpreter routines, and consequently the first version was twice as long as it needed to be, and therefore very inefficient.

The first thing to do before writing a complete low level language program is to draw a flowchart. Many programmers look down on flowcharts as something producing more work and rarely use them. I, for one, very rarely draw flowcharts when programming in a high level language because I find that I can work out the flowchart in my head and then write the program from that. However, I soon found that this was not possible when writing programs in a low level language, since it is much more complicated. After several failures when writing the first routine of CESIL, I discovered that it was much easier to draw a flowchart first, and then to write the program from this.

But don't be put off by the thought that flowcharts take up a lot of time and use up reams of paper. I soon developed a shorthand method of flowcharting which, although only comprehensible to myself, took very little time to write and occupied little space on paper.

Having completed the flowcharts you can finally start writing the program in its initial form of separate subroutines. This was another method I discovered to facilitate debugging. I found that it was easier to write each subroutine separately, and debug it, rather than writing the complete program in one fell swoop and then trying to debug the lot. Of course, subroutines are not much use on their own and very rarely do anything when isolated from the main program. Consequently, I had to
write small driver programs for each program in order to test them. Although this involves more work, it is far easier, in the long run, to complete the program this way; the amount of coding that has to be debugged is much smaller so the errors can be found more rapidly.

I found that this was the case when trying to debug the arithmetic routines for CESIL. I had written a smal! driver program to test the actual addition, subtraction, multiplication and division routines and I knew that they worked correctly. However, when I wrote a small CESIL program to subtract two numbers an incorrect result was produced. Knowing that the subtraction routine was not in error, I concluded that the error was either in the decimal to binary conversion routine, or in the binary to decimal one, and I soon corrected it.

One important point to remember when writing each routine separately is to realise that subroutinies usually change various registers if these are used for temporary storage. Therefore, you must ensure that any registers used for this purpose are restored to their original state before an exit is made from the routine. If this is not done, incorrect data will be fed into other routines.

Finally, once all the separate routines have been written, dry-run and fully debugged, they can all be joined together, along with the main program, which can then be tested as a whole. Of course, a few more errors will still have to be corrected, but it should be very easy to finish the program.

So, having finished the program and thoroughly tested it, a finial listing should be obtained. The program must then be fully documented, together with listings, flowcharts and other relevant information that is needed for another person to be able to operate, understand and perhaps modify the program, without having to spend a great deal of time running through it.

Although I cannot give examples of all the points mentioned above, I will give an account of how I developed one of the routines for CESIL.

The problem was to write a routine to decode commands and to load the index register with the address to which control should be transferred for each instruction.

The basic algorithm is to compare the first character of the string to be decoded with the first character of each string in the lookup table, in turn, until a match is made. Then the second, third and remaining characters are compared until either a record separator is read from the lookup table, signifying that a complete string has been recognised, or a mismatch is found. If this is the case the next string in the lookup table is examined and the process repeated.

Assume that, on entering the routine, the stack pointer points to the beginning of the string to be decoded and the index register to the start of the lookup table.

The flowchart shown is the one used when I wrote the routine for CESIL, although I have rewritten it in a normal style since you will probably not understand my shorthand method and will want to develop your own ways for flowcharting.
(PCW Stack pointer? Index register? Program Counter? Consultant Patrick Sutton will unravel some of these mysteries in a forthcoming issue. PCW)

Once the flowchart was completed and fully debugged I wrote the actual program.

A listing of the program is shown below. The driver program has not been included in the listing because it only consists of a single loop to input the string to be decoded and is not necessary to understand the routine.

Before I finish, I would like to make it clear that the method I have described above for going about writing your first assembly code programs is certainly not the best method. I have only had a single year's experience in writing this type of program, using a small microprocessor, and so I have only scraped the surface of a very large topic. However, I have already encountered and successfully overcome a number of major problems that beginners are sure to encounter themselves. I hope that the tips in this article will help and encourage other programmers who have just started, or are thinking of starting, programming in assembly code.

TV MONITOR KITS

VISIONKITS

gives you professional TV equipment in kit form for all data display and picture applications, providing far superior results to converted TV receivers.

Top quality monitors exactly as produced by one of today's leading manufacturers. All parts plus comprehensive assembly instructions supplied, along wacturers. All parts plus comprenenition notes, $9^{\prime \prime}$ or $12^{\prime \prime}$ tube plus chassis kits are available with a with full application notes, 9 or 12 tube plus chassis kits
separate printed circuit module kit to fit other size of tube.

SPECIFICATION:

Video - Composite $1 \mathrm{~V} \pm 6 \mathrm{~dB}$ Input impedance 10 K ohms
Power -+12 volts stabilised Current 1 amp
System - 625 lines 50 fields and 525 lines 60 fields
Video response to 10 MHz
Operating temperature $-0-50^{\circ} \mathrm{C}$
PRICE: (Including VAT and inland postage and packing) $9^{\prime \prime}$ tube and chassis kit
$12^{\prime \prime}$ tube and chassis kit £45.00
P.C. module kit 555.00

Ready-built $9^{\prime \prime}$ monitor £150.00

Ready-built 12" monitor
Mains power supply for $12^{\prime \prime}$ monitor (built)
f40.00

Please allow 21 days for delivery
Send s.a.e. for copy of application notes only Mail order only.

C=commodore

PET
 personal computers

for home and business use

software available: payroll, stock control, ledger, invoicing, mailing lists games.

\author{

* * * * \% * *
}

See the PET and our range of programmable calculators at

Royal London House, 196 Deansgate
Manchester M3 3WE. 061-228 3507

Extensions to the Minmon

Neil Harrison

The MINMON is a 256 byte monitor program for $Z 80$ based micros which was published in PCW Vol 1 No 1. It was written to provide the minimum facilities needed for machine code programming and to fit into a cheap 1702A EPROM. In view of the tumbling price of larger EPROMS such as the 2708 the 256 byte limit is far less important and and expanded form of the monitor can be considered. The MINMON provides two commands; the 'E' command to examine and alter memory locations and the ' G ' or 'goto' command to start program execution at a particular address. The extensions to the monitor detailed in this article add four new commands, three for program storage and retrieval on tape and one to examine and alter 280 I/O ports. In all, this adds a further 306 bytes to the length of the origina! program and the listing in Figure 1 has been assembled to start at 100 Hex, immediately after the MINMON.

Tape I/O
The tape storage routines use a data format which is almost universal in the world of 8080 s and 280 s, the Intel format. Bytes of data are stored in hexadecimal as two ASCII characters and grouped together in blocks complete with a load address and a check byte. Figure 1 shows the structure of one block of data (a typical dump would consist of a number of such blocks). The check byte is formed by adding all the bytes in the block (except the ' s ') and negating the result. This means that when the block is read in the sum of all the bytes including the check byte will be zero if no errors have occurred.

A special block is used to indicate that the 'end of file' has been reached. In this block, shown in Figure 2, the data byte count is zero, and the address bytes contain an optional execution address for the program.

The contents of memory are stored on tape using the Dump command:-

$>D x x x x$ yyyy (carriage return)

User input is underlined; $x x x x$ is the start address and yyyy the end address in hexadecimal of the memory area to be dumped. Nothing is written to tape until a Carriage Return is typed to allow time to start a tape punch or cassette recorder. When the dump is complete control returns to the monitor ready for a new command.

When the complete program' is stored on tape an 'end of file' block should be written using the ' Z ' command:-

$Z x x x x$ (carriage return)

where $x x x x$ is the optional program execution address in hexadecimal. If this is omitted zeros are written into the address bytes of the block.

Programs are loaded into memory from tape by simply typing the letter ' L ' immediately after the tape reader or cassette player has been started. When the pro-

:10010000FE4C2033C16100CRI2C02163A20F957CNC

$16(1 \mathrm{OH})$ data bytes Check byt
File type
Address of first data byte of block
-Data byte count, $10 \mathrm{H}=16$ decimal
-Header character, ':' indicates start of block
Figure 1 Typical data block

Figure 2 End of File block
gram has been successfully loaded the execution address is printed on the console in hexadecimal and control returns to the monitor. If an error is found an asterisk "*"" is printed on the console and the load terminated. If this occurs it is only necessary to try loading again from the beginning of the block and not from the beginning of the whole program since previous blocks have already loaded correctly.

Playing with Ports

The fourth command in the MINMON extensions gives access to the Z80 I/O ports in much the same way that the Examine command does for memory:-

```
>Pxx
xx dd \(n n\)
```

' $x x^{\prime}$ defines one of the 256 Z 80 ports in hexadecimal, ' d ' the data input from the port and ' n n' the user's reply which will be one of the following:-

1) Two valid hexadecimal characters will be used as data to be output to port ' $x x^{\prime}$.
2) A 'space' character will print the next port number and data input from the port.
3) A minus character, '- ' will print the previous port and input data.
4) Any other character will restart the monitor.

Example:-
$>\mathrm{PO} 4$
04 DE (space)
0503 FF
0672 (space)
078 E -
0672 (carriage return)

Adding the extensions to MINMON

Once the extra code shown in Listing 1 is written into memory above MINMON only two bytes of the original program need changing to make the new commands available. The instruction at address 004B (see original MINMON listing PCW Vol 1 No 1 page 27), changes from:-

$$
\begin{array}{ll}
\text { 004B C2 OB 00 } & \text { JP NZ, BEGIN } \\
\text { O04B C2 00 01 } & \text { JP NZ, LOADER }
\end{array}
$$

to:-

1/O Routines

The tape character $/ / O$ routines PCHAR and RI in Listing 1, are included as examples and will almost certainly need changing to suit individual systems. Both routines alter only the accumulator and flags.

PCHAR outputs the data in the accumulator to the tape output device. It is written for a device which uses port 7 for data output and bit 7 of port 6 as a 'ready' bit.

RI gets data from the tape input device into the accumulator. Port 7 is used for data input and bit 1 of port 6 indicates 'data available'.

MINMON routines used by the Extensions
These extensions to the MINMON use a number of routines and addresses in the original monitor code. For those who wish to use all or part of the routines in Listing 1 without the MINMON here is a list of the subroutines and addresses and what they do.

Name	Address	Function
BEGIN	000B H	Entry to the MINMON command processor.
ERROR	005A H	Prints an asterisk '*' on the console and returns to the command processor.
CRLF	0061 H	Prints a new line (carriage return, line feed) on the console.
SPACE	006 CH	Prints a 'space' on the console.
GXN	0074 H	Gets a hexadecimal character from the keyboard and returns it in the 4 least significant bits of A. If the character is not valid hexadecimal then returns
GXB	008A H	Gets 2 hexadecimal characters from the keyboard and returns them as a byte in A. If a non hexadecimal character is found the carry flag is set and the character returned in A.
GXW	009C H	Gets 4 hexadecimal characters from the keyboard and returns a 16 bit number in the HL register pair. If a non hexadecimal character is found the carry flag is set and the character returned in A.
TXB	$00 \mathrm{B4} \mathrm{H}$	Prints the contents of A as two hexadecimal characters on the console.
TXW	OOCD H	Prints the contents of HL as 4 hexadecimal characters on the console.
CHROUT	00E8 H	Outputs an ASCII character from A to the console.
CHRIN	00F5 H	Gets an ASCII character from the keyboard to A.

Further expansion

Why stop at six commands? More can always be added simply by changing the address in the Jump instruction at location 0202 H to the start of the next lot of extensions rather than BEGIN. The last command in your new routines should jump back to BEGIN when you've finished.

[^1]

830．8．85885
응

The System
The note on the wall contains a list of instructions on how to switch on and run the computer. This is for the benefit of Brian Crank's children, should they wish to play games in his absence.

Boris Sedacca

The Company: Brian Crank Associates
The Business: Technical public relations
The Background: Brian Crank Associates was formed three years ago. Growth has since been steady and the bulk of the company's turnover comes from about half a dozen large accounts.

The System:

Altair 8800B microcomputer with 40K RAM
Special interfaces (see diagram)
Twin North Star mini-floppy disc drives
Teletype 43
Qume 40 Daisywheel printer 40 cps and controller
Television and Polymorphic VTI board for video output

Cassette drive

A similar configuration at current market prices will cost
in the region of $£ 7,000$ (Compelec Electronics are sole

UK agents for MITS Altair). Brian Crank assembled the machine himself from a kit and added peripherals as the system developed. The audio cassette machine might appear somewhat superfluous and, indeed, this is now rarely used. However, it was invaluable in the early stages because in the beginning, it was the only bulk storage device in the system.

The Altair is something of a legend, it is the forefunner of personal computing. It is manufactured in the USA by a company called MITS which has now been taken over by another company called Pertec, a manufacturer of magnetic storage peripherals. This takeover has been beneficial because the Altair can now be interfaced to 10 MB hard disc drive, (not in DMA mode however) which makes it particularly attractive to a business user whose storage requirements need

Sample Bar Chart
upgrading to a larger capacity.
Since it inception in 1974 many developments have taken place. Perhaps the most significant is the creation of a separate company called Microsoft Inc, set up to market and further develop the Altair BASIC. Microsoft Inc BASIC interpreter software is becoming increasingly popular on microcomputers, particularly those based on the Intel 8080 microprocessor.

An alternative is however available from a company called North Star which is preferred by some users because it supports hardware floating point, and because of some differences in features offered by North Star BASIC.

Perhaps more significant from the hobbyist's point of view is the creation of the S 100 bus which is something of an industry standard nowadays and used extensively by microcomputer manufacturers, even those who make use of microprocessors other than the Intel 8080.

Brian Crank left the RAF some 11 years ago to begin a career with "Wireless World" as an electronics engineer. He later joined the editorial staff and wrote various technical articles describing equipment of his own design. Among his articles published was the design for a very limited digital computer for educational purposes made up of discrete components labout 400 transistors!). He then became deputy editor of "Wireless World".
"I feel that one important design project in which I involved myself in those days is what I then called the 'Logic Display Aid', which I believe to be the forerunner of today's logic analysers offered by companies such as Hewlett-Packard", says Brian. "Hewlett-Packard's equipment has more bells and whistles, of course, but my design featured all the basic principles. It would display the Karnaugh Map, Truth Table or Venn diagram, on a convential oscilloscope, of any combinational logic circuit. It was described in a series of articles in 'Wireless World' during 1969."

So Brian was not green as far as electronics was concerned. However, he had no previous experience of programming at all when he first bought his computer. Learning the commands was easy enough, but the production of really efficient programs was another matter, and the first programs which he wrote were more exploratory than functional in nature.

Today, eighteen months later, the picture is quite different. The configuration is quite impressive and Brian has managed to apply sound management principles to what was originally no more than a few boxes of components and diagrams.
"The machine's operation is quite simple, really. I have modified North Star DOS (the disc operating system) so that BASIC is loaded automatically and comes up running as soon as 'RUN' is selected. A file directory is printed automatically.
"I use the teletype's keyboard in simplex mode, thereby isolating its printer. I then have the choice of three output peripherals: the teletype printer which produces print of matrix characters; the QUME Daisywheel printer which operates much faster with highquality print ${ }_{\text {s }}$ or, if hard-copy (paper) output is not required, the information may be displayed on the television screen. These peripherals are accessed by simple commands."

Brian Crank's software (using North Star BASIC) comprises four main applications suites: financial transactions; word processing; price lists; and analysis of reader reply cards.

One minifloppy diskette contains one year's financial transactions. "When I first developed the software for the financial applications, I had to update files with separate runs of the various programs comprising the suite. This was a tedious job at times so 1 decided to apply database management techniques in order to achieve file independence and integration. I got hold of a book called 'Principles of Data Base Management' by James Martin and this helped me no end. It is an excellent book and I thoroughly recommend it to anyone who wants to develop his own database management system."

Once the database program has been loaded into memory from the diskette the following options are displayed on the screen:

1) Enter details of new invoice
2) An invoice is paid
3) Enter new expenditure
4) Call editor
5) Change program

If option 1) is selected, details of a new invoice are entered interactively with requests for information appearing on the screen and data verified at each stage. More specifically, the first request is for an invoice number; this begins with an alphabetical character which identifies the client, then a number for the invoice itself, and at the end of the number, an alphabetical character again which gives the income category to which the payment will be posted.

The rest of the details are entered in the same way and if any thing is entered incorrectly the program will automatically go into editing mode for amendments to be made to the record number, the invoice details, date of purchase or for a search through the records by month or customer.

When payment is made against an invoice, the cashbook is automatically updated together with the customer's account in the ledger; a feature of the database software.

When a new client is entered, this is done by entering a new invoice number. The system does not recognise the new number and interactively asks for details. From this, a new chain is created for future file searches. "Customers are now changed on-line. Previously I had to change the program itself when I wanted to enter a new customer, but I overcame this by introducing a program module to deal with this."

At the end of the accounting period, typically on a monthly basis, reports may be produced by calling up the following menu onto the screen:

1) Amend the database (calls the database management program)
2) Print cashbook - expenditure
3) Print cashbook - income
4) Print client statements
5) Call the anlysis program
6) Print list of suppliers

A report of the expenditure by suppliers of which there are about 75 each identified by number is selected by keying in 2). This will display in chronological order each item of expenditure as it is incurred during that month, according to the following headings; supplier, VAT, Total and analysis. Analysis refers to type of expenditure such as freight and delivery, postage, travel expenses, stationery, telephone, photography, etc.

Income is listed by client with details, of invoice number, VAT, and invoice totals. Clients statements contain similar details plus date of invoice and age (days outstanding).

The analysis program collects figures from the database on a monthly basis. Categories which can be analysed include billings, income, expenditure, monthly cash flow, accumulated monthly cash flow, profitability, billing analysis and expenditure analysis. From this, one may elect to have the financial figures displayed numerically and graphically, or graphically only, by means of bar charts.

The word processing suite is used for occasions when invitations are sent out for events, exhibitions, press conferences, etc. Variables such as date, name of venue and address are entered, together with the time of the start of the event, the date the letter is to be sent, the name of the client and, finally, details of what the client will announce.
"Names and addresses of the people to whom invitations are to be sent are held on a disc file. The system automatically generates letters of invitation on standard letter headed paper, evelope labels for posting, and a list of invitees from which I may then follow up with an invitation. I also use the system for the printing of address labels for press releases and for captions to accompany photographs. For this latter activity, costs are automatically calculated and stored on disc. At the end of each month the file is passed to another program which automatically generates the invoices."

The computer and the Daisywheel printer form an excellent combination for handling price lists. In Brian's system, software has been written to handle product price lists. Such details as device type, description and price are sorted on disc in a base currency. The details of each form one disc record and there can be any number of records since the software will accommodate lists which occupy several discs. The editing section of the program allows new lines to be inserted, others to be deleted, and line to be altered at will.

Price lists can be printed out on the Daisywheel printer in any currency as long as the conversion factor between the base currency on disc and the desired currency is known. Price list pagination is automatic and page numbers and headings are printed. 'Page length can
be changed at will to suit any stationery format. If carbon ribbon is used in the Qume, the output is so good that it can be used as camera-ready copy for bulk off-set litho printing or photo-copying.

The main advantage claimed by Brian for this system is the elimination of tedious proof-reading. Once the price list data has been entered and checked, it is only necessary to proof-read any changes that are subsequently made. Brian believes it is in this sort of application that the small computer is a real asset.

The suite for reader replies divides products into groupings. The number of cards received is input to the system, and for each product category the number of editorial mentions is counted. The average number of enquiries per mention is then calculated and compared with the actual enquiries per magazine, and on this basis the system allocates points and produces a scoreboard.
"Then, of course, I also have à number of games, including most of the usuals: 'Lunar Lander', 'Hunt the Wumpus', 'Market', 'In Out' (a word game for children), 'Stars', 'Weight Watching', 'Bio-rythm', 'Star Trek', 'Mastermind', and the 'Game of Life', all of which my daughters play from time to time. The 'Star Trek' program is quite interesting in that it is written in Palo Alto Tiny BASIC - an excellent small interpreter.
"A Heuristics Speech Lab has recently been added to the system, but the possibilities offered by this have not yet been investigated.
"I feel that the value of the microcomputer to the smaller business is incalculable and I would offer the following advice to the directors of small companies who cannot, as yet, write programs. The best way to learn is by experience. Take the plunge and buy a system. I did and have not regretted it."

B-BLIG SUPER SMART NEW MONITOR FOR NASCOM OWNERS

Features include:- FULLY COMPATIBLE with existing monitor/hardware: TAPE I/O 4 TIMES FASTER with extensive error checking (see cassettes below); INTELLIGENT COPY command for programme relocation; ARITHMETIC function for calculation of hex addresses and offsets; HEX KEYBOARD facility - throw away your ASCII tables; SUPER SHIFT allows all displayable characters to be entered directly from the standard keyboard; FLAG DISPLAY prints out all the flags that are set C, Z, etc; EXTENDED REGISTER DISPLAY shows the I,IX,IY etc registers as well; USEFUL SUBROUTINES include:- ASCII to packed BCD and vice-versa - CURSOR MOVEMENT - TABLE SEARCH - VARIABLE INTERRUPTABLE DELAY - RANDOM NUMBER GENERATOR - CHARACTER STRING OUTPUT - AUTO RUN facility allows a tape to be loaded (at high speed) and then execute automatically.
"B,BUG" is supplied in 2×2708 EPROMS which plug into your existing sockets. NO HARDWARE MODIFICATIONS are necessary. "B.BUG" is currently ex-stock but it is anticipated that nearly every Nascom owner in their right mind will want one, orders will be handled in STRICT ROTATION.
B. BUIG
in 2×2708 's is only $£ 24.50$ including documentation.
C10 DATA CASSETTES only 38 pence each (Nascom, PET, TRS-80 etc.)
Please add $30 p p+p$ for orders under $£ 10$. Prices include VAT.
VIEWFAX LTD. KING EDWARD BUILDING, CORPORATION STREET, BIRMINGHAM B4 6SE.

PCW OPEN PAGE The Amateur Computer Club
 View
 Mike Lord

Among the more established ACC local groups, the North West Group now has well over 100 members and is still expanding rapidly. Having recently held their first AGM and adopted a formal constitution, they are now considering holding meetings every fortnight, instead of monthly, and are thinking of moving from their present meeting place at the National Computing Centre. For further details contact Ken Horton, 50 Lymefield Drive, Worsley, Manchester M28 4WA.

Bob Cottis, prime mover behind the Thames Valley Group, is moving to the land of the North West Group, so enthusiasts in the Reading/Maidenhead area are now invited to get in touch with Dave Howland, 4 Kent Lodge, Courtlands, Shoppenhanger Rd., Maidenhead tel: Maidenhead 36976 for the latest details of this group's activities.

It seems that until now Bradford Bit Bashers haven't been getting together. To remedy this Barry Waite of 315 Toller Lane, Bradford 9, tel: 498750 , has offered to act as catalyst for a new group in that area.

Phil Wheeler G8LSC would like to meet other computer hackers in the Brom/ey/Orpington area. No definite plans at the moment, but he hopes to get a few different micro systems together in one place to talk about and play with them. His address is 1 Irene Road, Orpington, Kent, tel: Orpington 23800.

The Coventry Group continues to flourish, with TRS80, 77-68 and MK14 machines being featured at a recent meeting. They are hoping to be able to hold their meetings at the Coventry (Lanchester) Polytechnic - anyone wanting to go along should ring John or Roy Diamond on Coventry 454061 to confirm arrangements.

The Southampton ACC is a new group, but has strong links with the well established Southampton University ACC. Potential members are invited to contact P. D. Maddison, 13 Westridge Road, Portswood, tel: (0703) 558557.

The Scottish Amateur Computer Club meets on the first Wednesday of each month in the Glencairn Hotel, Royal Circus, Edinburgh. They also publish an excellent newsletter and are planning to establish a 'colonial' branch in Glasgow. For more details contact Stewart Stevenson, Lindisfarne, New Well Wynd, Linlithgow, tel: Linlithgow 2657.

The Harrow Group is now well under wav, having set up a schedule of regular meetings and workshops, under the guidance of Alan Secker, 209 Albury Drive, Pinner, Middx HA5 3RH, tel: 01-4280844.

It looks like there is a need for another group in the Sittingbourne area of Kent; J. M. Baron of 27 Wises Lane, Borden Sittingbourne, tel: Sittingbourne 70160 will be acting as contact man for gregarious computer hobbyists in that area.

Finally, the ACC itself is organising a series of meetings in the London area, based on presentations from the suppliers of systems such as TRS 80 , Apple, PET, 9900. By the time you read this the programme will have been settled and details will have been published in the ACC Newsletter. If you're not a member of the ACC (and why not ?) send an SAE, or ring, Mike Lord at 7 Dordells, Basildon, Essex, tel: (0268) 411125.

PCW Readers: This is the Open Page, so invitations such as the one following are open. Take good advantage of them!

NORTH LONDON HOBBY COMPUTER CLUB

On Wednesday October 5th 1978, at 6.30 p.m. we are holding the inaugural meeting of the above club. This will be held in Room 4 in the Old Building at Hollowav Road, just opposite Holloway Road underground station on the Piccadilly Line. I would be pleased if you could mention this fact somewhere in your magazine so that as many interested people as there are might come.

The Department and the Polytechnic have made available many resources for this venture. Within the Department there are two PETS (with a third coming), four SWTPC 6800 computer systems, with floppy discs, printers and VDUs and some KIM and Motorola microcomputer systems. Most of these will be available for use, as will some PETs and SWTPC systems in other departments.

As we envisage the club at the moment, fittle "homebrew" activities are anticipated before Christmas, with any meetings centering around talks by manufacturers and discussions on programming, etc. However, from the new year we anticipate three sets of activities running concurrently, or sequentially lit all depends on how many people turn up!). These are short courses on programming, Basic and machine level; a homebrew section using the facilities of the department - up to 35 people can solder and test at the same time - and introductory talks and discussions for those anticipating their own systems.

As you can see, we are preparing a varied programme that should be of interest to a wide variety of people. Obviously, students from the Poly will be coming along, but we want to emphasise that this is a club open to all interested. The Poly will be providing some backup, especially with expert staff and other facilities. This is all part of the Community Development Programme that has recently been instituted.

I hope that you will be able to help us get this off the ground. Those organising it are members of the Amateur Computer Club, as well as lecturers in digital electronics.

Robin Bradbeer (Acting Club Secretary) Senior Lecturer, Dept. of Electronics \& Communication Polytechnic of North London

MUSE NEWS

The Summer Course was held at Westhill College, Birmingham from July 14 th to 16 th and was attended by 75 people, which was the most that the College could manage at this time. Courses ranged from beginners BASIC to machine code for the M6800 and the 3802 , and packages on disk systems, and a good time was had by all.

There were demonstrations by current users of the PET, the 3802, the TRS 80 , the SWTPC, and the Apple.

There were three main issues that emerged during the course. The first was that there was no clear leader in all respects amongst the current micro-computers, and that most of them had something to recommend them. The second was that Computer Assisted Learning (CAL) was becoming increasingly important to practising teachers and that graphics was a part of this. The third was the increasing concern that money was about to be spent on education, and that it would be wasted due to the fact that practising teachers were by and large not involved in the decisions about how to spend it. These issues were discussed in the working groups that took up six sessions and in the one general session.

At the AGM the Committee was re-elected with the excep-
tion of Graham Batty who wished to retire. Bob Trigger was elected Treasurer in his place.

The subscription has been raised to $£ 5$ per annum, due to the high cost of the MUSE letter.

The most recent MUSE letter has been published and consists of 96 pages of software, reports, articles, and hardware. It is available from the Secretary at the cost price of $£ 1$.

The next meeting will be at Trent College on 3rd November on the subject of A-level projects. Write to Michael Ling, Trent College, Long Eaton, Nottingham for details.

For details of how to join MUSE write to the Secretary Charles Sweeten, 18 South Road, Oundle, Peterborough. Membership is aimed at institutions with an interest in Secondary education, but many others have joined and are welcome. Membership is not limited to those who have their own computer.

BUSINESS systems for as little as $£ 3037$. Tailor made software commissioned. SWTP products for personal and educational use also. Books and magazines àvailable. Barclaycard accepted. VERWOOD SYSTEMS - Telephone Rugby 87629 for catalogue.

PROGRAMMING IN BASIC BY QUALIFIED LECTURER. A COURSE OF 4 EVENINGS FOR £25. FOR DETAILS WRITE INCLUDING AN SAE TO S. WILLIAMS. 114, BEECH ROAD, ST. ALBANS, HERTS.

Star Trek

Now available on cassette a version of startrek utilising the graphic capabilities of the Commodore PET. Destroy the klingon invasion force before they destroy Enterprise. Complete operating instructions $£ 4.50$).

Send cheque, postal orders payable to M. Green, 57 Ross Road, South Norwood, London SE 25 6SB.

PAYROLL AND VAT FOR YOUR COMMODORE PET.

Just two of the programs available for your PET: PAYROLL calculates P.A.Y.E. and displays or prints payslips. VAT calculates your VAT returns and formats results as the form. PAYROLL - £20. VAT - £17.50. SAE for list: COMPUTAWARE, 479 WELLINGBOROUGH RD., NORTHAMPTON. 714821.

The low cost of microcomputer is now putting computer power within the reach of the small business.

MCS specialise in the programming installa. tion and sale of microcomputer systems.

We are North London Agents for the renowned Apple II computer

Let MCS show you how a microcomputer can save you time and money in your business

For a complete system or just a demonstration contact us right now, or meet us on stand 18 at the PCW show

Microsolve Computer Services Limited 252 Hale Lane, Edgware, Middlesex HA8 8NT Telephone: 01-958 4347

IDES MIEROEOMPUTER SYSIEM

The IDES processor is a realistically priced development system for National's SC/MP when used alone. It may be expanded to become a powerful process controller or your own 'personal computer'. IDES PROCESSOR:-

- 7 segment displays for every register (32 digits)
- Run program in single or slow step
- HARDWARE breakpoint registers allows bugtraps on program, data or ROM!
- MOVE or COPY blocks in memory
- PROGRAM from RAM to 2708 or 2758 EPROM*
- LOAD and STORE to tape CASSETTE*

KIT $£ 99.50$ + VAT

** TV interface, 64 chars. by 16 lines $£ 120$ KIT

* Cassette storage interface $£ 75$ KIT
* EPROM programmer interface $£ 45$ KIT
* Process control oriented BASIC £95 KIT
* Also RAM, ROM boards etc.

For details send large SAE to:-

MUTEK

QUARRY HILL, BOX, WILTS. TEL (022 121) 3289

Gordon Bell

Technical Director, MSL

DET PREE®InG

A NEW ART FORM?

Readers fortunate enough to own or have acces to a Commodore PET machine may like to try the very small program shown below.

> 10 POKE $32768+$ INT 1999 * RND (21), INT•(255 * RND (3) 20 GOTO 10

The program may not be very sophisticated or of imme diate practical value but it does produce a rather interesting pattern on the VDU screen and shows some of the original capabilities of the PET machine.
For those who do not appreciate the working of the program a short description follows.

The POKE statement takes the form POKE X, Y where the decimal value of Y is stored as an ASCII character at the decimal address X. In the program, therefore, a random character is generated with a value between 0 to 255. This character is then stored in amemory location calculated as $32768+$ a random number in the range 0 to 999. This range of a thousand memory locations is that used in the PET for the VDU display so characters deposited in this area will appear on the screen. A simple unconditional loop ensures continuous operation of the program. For maximum effect it is best to clear the screen before typing the RUN command.

Having now outlined the principle of operation, it will be interesting to see what variations on this approach can be devised by Personal Computer World readers.

"Belk my sales ledger was up in 20 minutes."

What is important is whether the system works for you and how long it takes to get you on the air.

We are distributors of the full range of臽apple products and other peripherals with software back-up.

Collins Consultants
For information or demonstration ring Collins Consultants, Tel: (02816) 2572 or Templeman Software, Tel: (0789) 66237

224 ARTICLES

Kilobaud has more artucles than any other mucrocomputer magazine During 1977. Io instance, there were 224 anticles
in Kilobaud- 880 pages of alicles-that's like a very targe encyctopedia ol micros of anticles -that's like a very tatge more artictes in 8978.

FOR THE BEGINNER

sides of microud covers both the technical and programming sides of microcomputers, each article is written with the understand microcomputers.
THE BEST PROGRAMS
Only Kilobaud oflers programmers both the publication of their programs in the magazine plus a large royally for the program it it's issued on cassettes. Is it any wondet all of the really good
programs are being published in Kitobavd? You'll find the best programs are being published in Kilobaud? You'll find the best in games, diagnostics, teaching. muste, business. elc., programs
in Kilobaud. Were very heavy on programs.

HOBBY OR BUSINESS?

Both bustinessmen and nobbyist want the same thing: to unde
stand microcomputers. stand microcomputers... and this is the purpose of Kilobaut
KB also nas anticles aimed at ine bustnessman to nelp tim know what is avallable and what it will do.

THE PUBLISHER

Kilobaud is published by the same people who put out 73 Magazine
MONTHLY COLUMNS
Keep up with the latest developments and readers' programs through the letters column ... Kim column.... one on the TAS $80 \ldots$ a column on BASIC ...etc. The editorials will keep you up to date on money-making ideas, the progress of the industry and more. The New Products column is particularly usetul. incluan
the fesults of tests of the latest equitoment In the Kilobaud micro computer latoratory-the most compiete in the industry.

SUBSCRIBE TO KILOBAUD

You can get kllobaud fast. Copies are Hown to Europe immediately
upon publication and malled directly from the United Kingdom,
your cooles are current. Send subscription orders for United
Kingdom and Europe, $\propto 20$ steriling per yeat. to.
L.P. Enterpises/313 Kingston RoadfiltordiEssex IG1 1PJJEnglant Barclay Card, VISA. Diner's Club and American Express, Access Card honored

The previous articles have taken a quite broad look at assembly language: this article becomes specific about one particular assembler later on but, before that, let's 'stand back' and have a think.
Why use assembly language at all? That isn't as daft a question as it might sound. There's little doubt, I agree, that for small programs written by an experienced machine code programmer, it can be efficient. Efficient, that is, if you need the resulting program to be as small as possible, or as fast (at run-time) as possible. How often though, are speed or size really the limiting constraints on a program? In the commercial world programmer time is often the most expensive part of producing and running programs - that's why high level languages like COBOL are so popular. They produce results - so what if the code they produce is massive or slow. In home computing a similar situation can be found. The people with BASIC implemented are the ones who are producing working programs, because writing in assembly language is such a slow process.

In some circles it's even believed that good compilers can produce MORE efficient rode than assembly language programmers. Admittedly, it only applies to very large programs where mere humans tend to get into the 'can't see the wood for the trees' syndrome. However there are some very clever compilers about and it may not be long before, at least commercially speaking, the assembly language programmer becomes about as useful as an alchemist in a oil refinery. The place of assembly. language is gradually being taken over by compiled languages such as BCPL, which give the flexibility of assembly language coupled with the advantages of builtin input output routines and the power of a high-level language. Incidentally, if anyone has implemented BCPL on the Z-80, l'd be very interested to get hold of it.

For the time to come though, assembly language will play an important part in the field of home computing. Compilers are big, clever ones very big, and few home computer fanatics will be able to afford the memory to run them in. Does your system support 250k of COBOL
compiler? I thought not. For vou, and the likes of me who just enjoy playing with machine code, here it comes.

INTRODUCTION TO A Z-80 ASSEMBLER.

A little history may help to explain, if not excuse; the state of this program. It's in what enthusiastic salesmen tend to term 'an experimental state, Sir'. Which is to say, though not necessarily right, it isn't proved wrong either. It has actually managed to assemble itself without any glaring errors, but the whole exercise of writing it was geared more tọ producing something that worked a bit than something definitely right. This was because the assembler was developed on a system which was shortly to become unavailable, and it was more important that it could assemble itself than assemble everything. My reasoning was that if it could assemble itself, then it could assemble a corrected version of itself when bugs were found. In the event, shortage of time meant that it couldn't even be proved to assemble itself correctly (cries of 'shame'), but it does try bravely. Checked against the alphabetic list of opcodes given in the Zilog programming manual (a nasty job typing them up, too), all looks O.K. So it will probably only be the error detection that has any major faults.

The assembler deals with many of the opcodes separately which means that mods to one section of the program should not have a dire effect on other parts; except of course when the mods are made to the shared routines.

Of these shared routines undoubtedly the most unpleasant is the mathematical evaluation section which needs to be re-written. It works enough for the selfassembly process but stops at that point.
The assembler was written as at attempt to copy, on the $Z-80$, a cross assembler already existing and running on a PDP-11. The cross- assembler was written by John McFerran of Bradford Universsity to whom most of the credit for the syritax should go. I would like to express my appreciation for his co-operation and help, and also
that of Doctor Peter Comerford, without which this task could not have been attempted. It wasn't possible to incorporate all of John's ideas into this assembler; a pity, because anything which shakes the writers of assemblers out of their apathy would be welcomed.

SYNTAX.

The following notes on the syntax should be read whilst examining the relevant parts of the assembler. They are meant to explain, not define the syntax.

1. STATEMENTS

Statements consist of the OPCODE followed by operands where valid. A statement is terminated by semicolon; or carriage return. The load opcode is the only exception, it consists of destination, leftarrow,source. Some opcodes take an indefinite number of operands, e.g. PUSH AF ,BC,DE,HL

2. ASSEMBLER DIRECTIVES

There are a number of directives, mainly used for the reservation of storage, either as 8 -bit quantities (words), or 16-bit ones (addresses).
.WORD and .ADDR take arguments which are evaluated and assembled as consecutive words in store allowing tables of constants to be produced.
.BLKW and .BLKA take one argument and reserve that many locations - if no argument is specified, a value of 1 is assumed. The locations so reserved have no specific value written into them.
.ASCII and .ASCIZ operate like .WORD, but allow strings of characters as parameters. The strings are bounded by quote marks ". To include quote marks in the string, double quotes must be used " ". ASCIZ inserts a null word at the end of the block, .ASCII does not. .END tells the assembler that it has read all of the input text. It takes one argument, the program start address, which is used by the loader. More about that later.

3. IDENTIFIERS

Identifiers may consist of up to 6 characters in length, starting with an alphabetic one. Labels terminate with colon: variables with an equals sign $=$. The value associated with a variable may be changed at any time, the value associated with a label is the address at which it was declared, and cannot be changed.

4. EXPRESSIONS

The arithmetic capability of this assembler is not what it might be. It should have been able to deal with addition subtraction, multiplication and division. Well at least it adds and subtracts! A special expression is used when the value of a character is wanted. SEMICO='; will assign the ASCII value of the character after the ' mark to the variable SEMICO. The assembler has now been modified from the original octal-only to accept any base, due to popular demand. The astute amongst you (i.e. other than the very dim) will notice the use of the SETRAD pseudo-op at the head of the assembler listing, and the fact that the numbers in the source code are still octal. SETRAD was included for the sake of those who become bored by working in the same number system for any length of time; it allows them to change the current radix to anything between 2 and 16 (decimal). Beware of expecting SETRAD 10 to have any effect at all. The 10 will be evaluated in whatever the current radix is and do absolutely nothing. To make sure that a number is taken in the desired radix use the other form of radix control which is (radix)uparrow(number), e.g. $10 \uparrow 22$ will give the value 22 base 10 (decimal). The number preceding the uparrow is ALWA YS evaluated as a decimal quantity no matter what you've been up to with SETRADS.

5. INDEXING

Unlike the standard syntax of (IX+OFFSET), this assembler uses OFFSET (IX).
6. CONTRACTIONS

To clear or test the accumulator, the opcodes CLA and TSTA are included. They correspond to XOR A and OR A.
7. NUMBERS AND ADDRESSES

Where confusion might arise, numbers must be preceded by a \# mark, otherwise the assembler assumes an address is meant. A $\leftarrow 7$; loads A with the number $7, A \leftarrow-7$; loads A from address 7.

8. COMMENT

Comment is now preceded by backslash \backslash. All text following the backslash, up to and including the next backslash or end
of line is ignored. Space or tab followed by comment is treated as space.

As it stands this is a three pass assembler, because the development system only had a teletype for output: the binary and listing passes are separate. The teletype reader must be controllable by the processor. Blocks of 64 characters at a time are read - this is deliberately to allow for easy conversion to block - structured input devices such as cassette: it means the code already exists to handle the blocks.

The binary output is in the following format:
1
0
0
number of bytes in block
high order start address
ONE BLOCK
low order start address
THE CHECKSUM IS NOT
PART OF THE BLOCK
bytes
of code
checksum - negated 8 -bit addition of all bytes in block.

THE ASSEMBLER

Here it is in all its glory. As an added bonus it comes in the form of a listing produced by yet another experimental assembler, which gives the first 9 bytes of code generated by a line. It isn't. possible to provide the assembler's listing of itself but a sample of its' output is given to show that it really does work.

If anyone is keen enough to want an object copy of the assembler it could probably be arranged. Indeed if anyone will lend me an 8k Z-80 system I'll happily set the whole beast animated and working.
(PCW Pages 1 to 6 are published this issue; other sections follows in future issues PCW).

From an established base in scientific, educational and personal computers using SWTPC 6800 and SIOO 8080 equipment, Sintrom announces a range of small systems for the business user. Easy availability of Micropolis-compatible applications software plus CP/M, COBOL, APL, FORTRAN and BASIC allows a speedy implementation of the total system.
-Ledger Payrollelnventory Word Processing High Resolution Graphics Industrial Control

Single Disk	143 K	$£ 453$
	Dual Disk	630 K
1159		

Dual Disk 630K £1159 Include PSU, SIOO controller, Basic/MDOS.
$\begin{array}{lll}\text { Add-on } & \mathbf{1 4 3 K} & £ 399 \\ \text { Add-on } & 630 \mathrm{~K} & £ 859\end{array}$

ADM 3A VDU	$£ 620$
Centronics μ Printer	$£ 350-£ 400$
Centronics 701	$£ 1400$

Host S100 computer with 32 K and $1 / 0$ card
From $£ 1200$
Plus integral dual Disk
From $£ 2200$

Office Hours:	Write for
Monday - Saturday	free catalogue
Access/Barclaycard Prices exclude VAT/CARR	

Sintrom Microshop

Arkwright Road,
Reading, Berks. RG2 OLS.
Tel: Reading (0734) 84322

Backplane - Effectively synonymous with motherboard though the slot connectors it holds for additional circuit or memory cards may'be fixed to a chassis rather than a circuit board.
Back-up. A term with several connotations in a computer context; in each it is roughly synonymous with "reserve". Computer records can very easily be destroyed, and it is therefore common to keep important data in duplicate (or "back-up"). Similarly, computer manufacturers often arrange that every piece of apparatus used by a customer is matched (or "backedup") by comparable apparatus (possibly that of another customer) which could, in emergency, take over the work load while repairs were effected. Such arrangements are particularly important when a new design of computer is on trial.
Backing Store. A computer store of larger capacity than the working store or memory but of slower access. Floppy discs and magnetic tape cassettes are popular media for backing storage in personal computers.
Bank (e.g. data bank) - A large supply held available for ad hoc use as the demand arises.
Base. (1) The base of a numbering system can be considered as the quantity one greater than can be represented by any digit in that system. Thus the base of the familiar decimal system, using the digits 0 to 9 , is 10 and the binary system, whose digits are limited to 0 and 1, has the base of 2 . Octal has base 8 and hexadecimal has base 16.
(2) One of the elements in a transistor, the others usually being collector and emitter.
Base Address. An address identification from which modified or relative addresses are subsequently calculated.
BASIC - Beginners' All-purpose Symbolic Instruction Code. A high-level programming language widely used with small computers. The original version was designed at Dartmouth College (USA) but many enhanced or extended versions have been introduced by manufacturers of particular machines. For further description see PCW Volume 1, Number 2, page 20.
Batch Working - In commercial computing, where large quantities of data have to be processed, this is a common method of organising the work. Data is collected over a convenient period, for example, a day, and then the whole group (or batch) is put on to the computer, with or without first being sorted into some logical order. The opposite of on-line or interactive working.
Baud. A measure of the capacity of a telegraph line or other signal channel to carry information; synonymous with bits per second. Physical characteristics of the conductor limit the speed at which data car be transmitted without suffering corruption. Named after Baudot, a pioneer in telegraphy. A transmission speed of 300 baud is approximately equivalent to 30 characters per second.
B.C.D. Binary Coded Decimal (abbreviation). A system of express decimal quantities in which each digit of the decimal number is translated into a binary equivalent, instead of taking the binary equivalent of the number as a whole. Thus the number 23 could be represented in B.C.D. as 00100011 , whereas in binary notation 23 is 10111 . See also excess- 3 code.
BCS. British Computer Society (abbreviation).
Benchmark. A set of test problems designed to be worked upon by a computer so that the time taken can be used for comparing
the performance of a number of different computers. See, for example, PCW Volume 1, Number 1, pages $57 / 8$.
Billion. A large number; in English usage 10 ${ }^{12}$, that is 1000000000000 , but in America 10 , or 1000000000 . Because of this ambiguity "billion" is a word best avoided in computer practice.
Binary. A system of counting in a scale of two instead of the more familiar decimal scale of 10 . Thus the decimal values 0,1 , $2,3,4,5,6$ etc. are expressed in binary form as $0,1,10,11$. $100,101,110$ etc. The main reason why binary notation is universally adopted in digital computer design is that the electronic circuits upon which computers are based are particularly efficient when functioning in the bi-stable state; that is, a record, be it a magnetic pulse, a hole punched in paper or a current passing along a wire, is either present or not present. It is much easier to achieve a reliable record which can only be in one of two states than one which can be in any of ten conditions. A secondary reason for adopting the binary mode is that the logical decisions used in programs can easily follow the 'ves/no' indication shown by two-state circuitry. (PCW Volume 1, Number 3, page 16).
Binary Point. The binary equivalent of the decimal point. In binary, the point distinguishes between units on the left and halves on the right. Thus 101.1 binary equals 5.5 decimal; and 10.01 equals 2.25 .

Binary Search. A technique for locating an item by successively halving the area under search. The method is applicable when items are in order but not necessarily in a complete sequence. For example, consider a search for one of 640 customers identified by four-figure account numbers listed in ascending order. The mid-item would be looked at first. Suppose it held too large an account number. The next inspection would be the 160 th item and that might be followed by the 240th, the 280th, the 260th, the 270th, the 265th, the 263 rd; until finally the required account number is found in the 264 th item. Synonymous with dichotomising search.
Biquinary Code. A four-digit code, based on the binary symbols 0 and 1 , in which 0 in the first position represents 0 , and 1 in that position represents 5 . The remaining three positions denote the usual binary values from 0 to 4. A feature of biquinary notation is that each of the values 0 to 9 is represented by four binary digits.
Biquinary/Binary/Decimal Equivalents

Decimal	Biquinary	Binary
0	0000	0
1	0001	1
2	0010	10
3	0011	11
4	0100	100
5	1000	101
6	1001	110
7	1010	111
8	1011	1000
9	1100	1001

Bistable. Capable of assuming either of two stable states. Thus a bistable switch (the normal household electric light switch is an example) may be either on or not on. Similarly, a spot on a magnetic storage device may be either magnetised or not magnetised.

This is the physical principle upon which all digital computers are currently based.
Bit. Contraction of "binary digit". Each component of a binary number (that is, each 0 and each 1) is known as a bit, so 1001 is a 4-bit number.
Bit-Adder - Same as half-adder, a circuit for limited addition of binary numbers. See PCW Volume 1, Number 1, page 33.
Black Box. An approach to computing which accepts predictable results without seeking to understand how they are achieved.
Block. A set of associated computer words or characters handled as a unit, usually for transfer between central processor and some peripheral device. For example, the information required to print one complete line on a printer (which might be 80 or 132 characters) could well be transferred to the printer as a block.
Block Length. The number of characters in a block.
Block Marker. An indicator at the beginning or end of a block (usually in the form of a magnetic pulse).
Blocking. (1) Combining two or more records into a block.
(2) Preventing the passage, e.g. of direct current in an alternating current circuit, by a device (in this case a capacitor) which opposes that current only.
Board. A sheet of electrically insulating material on which electronic components are mounted, e.g. mother-board, memory board.
Boolean Algebra (or Arithmetic). A system of mathematical logic named after George Boole, (1815-64), who devised a series of theorems based on operators such as AND, OR, NOT and IF

THEN, as opposed to the more common "plus," "minus" and "equals". Boolean arithmetic is inherent in the logic under which a computer will follow different instructions according to the result of a comparison of data.
Bootstrap. A short key program which instructs a computer to feed in more detailed instructions from some convenient input device, such as a magnetic tape, so that the whole configuration is brought to the desired state of readiness.
Bound. A computer configuration is said to be tape bound if its overall speed of operation is determined or limited by the speed of operation of the tape peripherals. It is processor bound if the processor is not capable of working as fast as its high-speed peripheral devices.

Branch. An optional sequence of program instructions following a conditional jump instruction.
Breadboard. A temporary, experimental circuit assembly Boards are available with large numbers of sockets in which components may be inserted and interconnected by jumper leads.
Break. The name of a key and of the non-printing ASCII character it generates which normally aborts any program running when it is pressed. Some software allows a conditional jump to follow a break signal given at any time during the running of part of a program.
Breakpoint. A point at which a computer program may be interrupted by a special instruction for checking purposes. This facility is much used in program testing and debugging. The break instruction may be given by a monitor or trace routine or by manual operation of a switch.

B-Register. An optional name for the electronic register, more commonly termed an index or modifier register, used to modify addresses.
Bubble Memory. A very compact solid-state medium for data storage in which bits are represented by small magnetic domains or bubbles (typically 3 microns in diameter but possibly much smaller) on a garnet chip. A square inch garnet can store three million bits. The best-known initial application is in lightweight intelligent printing terminals by Texas Instruments.
Buffer. Subsidiary storage normally associated with input or output devices and the channels to which they may be connected. Its purpose is to provide a flexible link between devices working at different speeds or to hold data available for modification until the originator is satisfied that it should be transmitted to the processor. The buffer for a printer will typically hold one line of data, the buffer for a magnetic tape cassette may hold one block and the buffer for a VDU will typically hold at least one page or screen full of display.
Bug. A mistake or malfunction, (1) in the design of a routine or in the coding of a program, or (2) in the operation of a computer. Bus. A set of electrical connections in a computer which connect to many components (e.g. elements of memory or some display device). Coded signals passing along a bus find their appropriate destination by electronic switching. Synonymous with highway.
Byte. An 8-bit sequence of binary code normally manipulated as an entity in an 8 -bit computer system.

The world's bestiselling personal computer

*New powerful basic and new graphics on Rom. $\mathbf{£ 7 5}$ card.
*Talk to Apple with voice recognition, speaker trained, 32 word vocabulary. $£ 165$ card.
*Colour Graphics. High resolution 280h x 192v, 6 colours, easy-to-use. Low resolution $40 \mathrm{~h} \times 48 \mathrm{v}, 16$ colours, very powerful.
*Apple's disks. Powerful DOS. 116K bytes capacity, multiple drives, fast àccess. $£ 395$.
*Use Apple as a computer terminal 110 or 300 BAUD. Full or half duplex or use with a Dec-writer. $£ 95$ card.
*Use any 8 bit parallel printer with Apple 11. Print up to 3,700 lines per minute. 255 character lines, upper and lower case. $£ 100$ card.
Dersonal Computers Limited
DISTRIBUTOR
18-19 Fish Street Hill, London E.C.3.
Tel. 01-623 1434
New address from August 21 st
194-200 Bishopsgate, London E.C.2.
Mol MINE OF INFORMATION LTD Mol1 Francis Avenue, St Albans, Herts AL3 6BLTel. 072752801
MICROCOMPUTER BOOKS!
RODNAY ZAKS of SYBEX INC.
C201 From Chips to Systems 67.50
C207 Interfacing Techniques 7.50
ADAM OSBORNE \& ASSOCIATESIntroduction to Microcomputers
Vol. Zero The Beginner's Book 5.90
Vol. One Basic Concepts * 5.90
Vol. Two Some Real Products 10.90

* MoI corrections list free with each copy
Assembler Language Programming6.50
80804/8085 6.50
SCELBI SOFTWARE GOURMET SERIES
6800 Guide and Cookbook 7.90
8080 Guide and Cookbook 7.90
Best of CREATIVE COMPUTING
Volume One 6.90
Volume Two 6.90
101 BASIC Computer Games 5.40
More soon! Get on to our mailing list now:For delivery outside UK add £1 per order (anyquantity). Pay by Access, cheque or PO.Prices include postage and fast service.

TII/METKIBILING FOR SCHODIS
 Charles Sweeten

The difficulty of writing a timetable can be summed up by saying that it is only when you have written 95 per cent of the timetable that you discover that it is impossible to write the other 5 per cent.

This happens as a result of either of two situations. The first arises when the initial scheduling is wrong in terms of the teacher allocation or the subject allocation. For example Mr A may be down for 42 periods in a 40 period week. Or class 3D may have only 36 periods in the 40 period week. It sounds stupid, but it is remarkably easy to do. The second situation arises when incompatible groups of teachers interact so as to go beyond the boundary of the teaching week. For example if Mr A and Mr B are teaching together in 3 blocks of 5 periods, and if Mr B and Miss C are teaching together in 3 blocks of 5 periods, and if Miss C and $\mathrm{Mr} A$ are teaching together in 3 blocks of 5 periods, then it is clear that none of this teaching can take place simultaneously and it will require 45 periods to accomodate it, in spite of the fact that each teacher is only teaching 30 periods.

The latter situation arises very frequently in a timetable, and this "interference" between blocks becomes very complicated when a sizeable school is involved. Would that all the "interference" patterns were as simple as the one above. I shall describe a method of examining this "interference" by means of a simple program that I have used for two years, first on a NOVA $2 / 10$ minicomputer and then on a SWTPC 6800.

People differ in their use of terminology, so here is a list of what I mean by certain words:

Jargon

CURRICULUM
FORM

BLOCK

SET

OVERLAP

INTERFERENCE blocks occur at the same time. between blocks: the teachers teaching in one block are not available to teach in another block which occurs at the same time. Also the implications of shared sets etc.
the number of spare periods available taught.
a number of pepils of roughly the same age and with the same curriculum. Sometimes called a year group.
a number of subjects or sets which are timetabled at the same time as each other. Other subjects outside the block are not timetabled within the block.
e.g. FORM 4 A

E H Sc Sc M	A A A	
Sc Sc E H	M	E PEPE
H A A E M	ScPEPE	

H A A E M ScPEPE
There are two blocks: one for Maths, one for P.E.
a group of pupils, usually from the same form, who are taught a part of the curriculum together.
the number of periods in a week that
 to a teacher within a structure such as a block.

SYMBOLS USED

A	Art
B	Biology
C	Chemistry
D	Divinity
E	English
EC	Economics/Political
	Science
EL	Electronics
EN	Engineering
F	French
G	Geography
GER	German
GK	Greek
H	History

IT	Italian
L	Latin
M	Maths
MM	Further Maths
MUS	Music
P	Physics
PHI	Philosophy
PSY	Psychology
S	Spanish
SC	Science
TD	Technical Drawing
WS	Workshops
PE	Physical
	Education

HARDWARE REQUIREMENTS

System with room for BASIC $+4 K$ user space.
VDU (preferably fast).
Printing output (*teletype is adequate). Disk.
("Teletype is a TM of Teletype Corp.)

SOFTWARE REQUIREMENTS

BASIC with string arithmetic and sequential disk data files. String matrices would speed the process up. EDITOR with macro commands or a powerful target/ occurence structure.

In the description that follows I will refer to the SWTPC version of disk BASIC, which is painfully slow on string handling, but at the time of writing the only other BASIC around with these features is the APPLE II BASIC and that only got here on Monday, so I haven't had time to use it yet. (Note to TSC: please hurry up with your version of disk BASIC - if it is as nice as your other software then it is beautiful and 1 need it last week). I shall also be refering to TSC EDITOR, which takes some beating, and to the powerful TSC FLEX disk operating system.

PURPOSE OF PROGRAM

To assist the timetabler in the construction of the timetable.

To foresee points of difficulty and list teachers involved.

To identify awkward blocks and awkward teacher allocations.

To put into place the structure of the complete timetable by reducing the timetable to larger building blocks.

INFORMATION REQUIRED

Returns from Heads of Faculty or Department stating or confirming the teaching and curriculum required. These returns should list the teachers available and the agreed
allocations for each. They should list the available teachers against the list of groups and the total allocated should be shown to agree with the available allocations.

An example is shown in figure 1 of an allocation sheet from one department in my school.

Figure 1

METHOD

The first job is to transfer the information from the department allocation sheets onto disk files. These are organised by blocks. Each file will contain a list of the teachers teaching in one particular block, listed against the set that they are teaching and with the number of periods that they are teaching. Each file will be named after the block that it represents, and there will be a first entry in the file that gives the number of periods that the block covers. The files are created using EDITOR and it is easiest to put in the set labels at an early stage on their own to facilitate checking the required curriculum. At a later stage you go through each file, appending the teacher allocated, as the department returns come in. The file names must start with a letter and in my school I have used C6 for the 2nd year 6 th, L6 for the 1st year 6th, F5 for the 5th year, and etc.

I have shown a selection of the block files that I used this year in figure 2. The files have to be organised in a way that the BASIC program can read, which is the reason for commas rather than tabulation.

It is now necessary to run the program. This will compare the entries in each block with the entries in every other block and calculate the interference. In order to deal with special cases, it will print every case of

Figure 2
interference. Lines 40 and 50 contain the names of the files of block information that are going to be examined. The names of the files are kept to 3 characters so that this can be done automatically. The method of reading each line from the file separately is very inefficient, but with this BASIC it is still quicker than reading the whole file and disentangling the resulting long string. Yes, I know I should have written a machine level subroutine, but this problem did not arise on the NOVA, and by the time I got down to using the SWTPC system there was no time left to improve the program.

VARIABLES USED

A\$	contains list of file names for block 1
B\$	contains list of file names for block 2
F $\$$	file name of block 1
G $\$$	file name of block 2
A	counter for going through A\$
B	counter for going through B $\$$
L1	number of periods in block 1
L2	number of periods in block 2
S\$	set name in block 1
T\$	set name in block 2
M $\$$	teacher name in block 1
N\$	teacher name in block 2
P	period allocation for teacher in block 1
Q	period allocation for teacher in block 2

The first run of the program will produce lists of interferences as given in the first two columns of figure 3. I have not given the full listing for my school, but have selected some of the interferences which led to special problems. In the print out, the first line means that
teacher JS is teaching set M1 in the 2nd year 6th block A for 4 periods and set M4 in the 1st year 6 th block A for 4 periods. Since the 2 nd year 6 th block is 8 periods long, and the 1st year 6th block is 9 periods long, the maximum overlap is
$9+8-4-4=9$ periods.

Figure 3

Further down we see that MJLP, who teaches GER in both blocks, appears to cause the greatest restriction.

6th GER	${ }^{* * * *}-\overparen{* * * * * *}$
L6th GER	

It would be perfectly simple to do this job by hand, but the process is tedious, and it is all too easy to miss just one interference. This is enough to make the final 5 per cent of the timetable impossible. Also, without some print out to look at, it is extremely difficult to see the more complicated interferences. Let us look at some of these now.

WORKED EXAMPLE

I will now apply these to the examples of interference that I have given in figure 3.

In C6A against L6A we see an example of Case 1 where JS teaches two sets in C6A and the maximum overlap is reduced to 5 periods. This gives us a list of teachers whose float would be reduced to zero if this overlap was used: JS, RGW, MAB, HJM, NWO, IFT, JFH, JAB, JFB.

It should be obvious that the smaller the float of a teacher is, the harder it is to fit in that teachers' timetable. So our object is to arrange the blocks in an overlapping pattern that maximises the float of the teachers in the school.

In C6A against F5A we see an example of Case 2 where MJLP and JSW share the GER set in C6A, and teach parallel sets in F5A, and the maximum overlap is reduced to 2. The Biology is also critical and the list of critical teachers is MJLP, JSW, JAB, JFB. The latter is an example of Case 3.

In C6A against L6A and C6A against F5A we see an example of Case 5 that would be particularly hard to spot without the interference printout. If C6A overlaps

F5A by 1 period, which seems entirely reasonable, then C6A can only overlap F5A by 5 periods as far as the German is concerned.

It can be seen that cases of multiple interference can be extremely complicated. Consider again C6A against L6A and look more closely at the Biology.

$$
\begin{aligned}
& \text { Put NWO }=1, \text { JFH }=2, \text { JAB }=3, J F B=4 \text {, IFT }=5 \\
& \qquad \begin{array}{rllllllllllllll}
\text { C6A } & \text { B1 } & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & - & & & & \\
\text { B2 } & 3 & 3 & 3 & 3 & 4 & 4 & 4 & 4 & - & & & \\
\text { B3 } & 5 & 5 & 5 & 5 & 1 & 1 & 1 & 1 & - & & & \\
\text { L6A } & \text { B1 } & & & & & 5 & 5 & 5 & 5 & 1 & 1 & 1 & 1 \\
\text { B2 } & & & & & . & . & & & 4 & 4 & 4 & 4 \\
\text { B3 } & & & & & 3 & 3 & 3 & 3 & 5 & 5 & 5 & 5
\end{array}
\end{aligned}
$$

But JFH has to go where the dots are. Thus the maximum overlap is really only 1.

For a case of multiple overlaps, consider PMH in combination with JMM

COMPLETING THE TABLE

I now come to the next stage, which is to enter the maximum overlaps in a table. The method I use is to tabulate the C6 against the L6, as these are my most difficult forms. In each square I list the teachers who are critical to that overlap. In my case all the periods of C6 and L6 must overlap, and I enter a cross where an overlap occurs. The totals of the columns and the rows
must add up to the correct totals for that block. This is a process that I have always found easiest to do by hand, as | can then try to keep track of the multiple interferences, and try to ensure that the float of any one teacher remains as much as possible. I have written programs to do the job in the past, but they have only proved successful where there has been no interference. Figure 4 shows the table with the interferences entered, and figure 5 shows it after completion.

	$\begin{gathered} \mathrm{C} 6 \mathrm{~A} \\ 9 \end{gathered}$	$\begin{gathered} C 6 E \\ 9 \end{gathered}$		$\begin{gathered} \mathrm{C} 6 \mathrm{C} \\ 8 \end{gathered}$		$\begin{gathered} \mathrm{C} 6 \\ 3 \end{gathered}$		C6		$\begin{gathered} C 6 L \\ 2 \end{gathered}$	$\begin{gathered} \mathrm{C} 6 \mathrm{~W} \\ 3 \end{gathered}$
$\begin{gathered} \text { L6A } \\ 7 \end{gathered}$	$\begin{aligned} & \text { NWO } \\ & \text { JFH } \\ & \text { JAB } \\ & \text { JFB } \\ & \text { IFT } \end{aligned}$	5	MAB DLE	4	DLE JST MAB		$\begin{aligned} & \text { RGF } \\ & \text { MBC } \end{aligned}$				
$\begin{gathered} \text { L6B } \\ 7 \end{gathered}$			JWF WJuw MTT	1	ct	1	Jos	1	wjow		$\begin{array}{ll} 0 & \begin{array}{l} \mathrm{CT} \\ \mathrm{PEB} \end{array} \end{array}$
L'6C	$\begin{array}{\|ll} 4 & \text { JS } \\ & \text { JCBS } \\ & \text { JM } \\ & \text { RGW } \\ & \text { JST } \end{array}$		$\begin{aligned} & \text { NAB } \\ & \text { RBO } \end{aligned}$		$\begin{aligned} & \text { GH } \\ & \text { ASN } \end{aligned}$					1 PMH	
$\begin{array}{\|c\|} \hline 6 E \\ 3 \end{array}$	1 RGW		$\begin{aligned} & \text { NAB } \\ & \text { MDA } \\ & \text { JDS } \\ & \text { NGS } \end{aligned}$				$\begin{aligned} & \text { NAB } \\ & \text { MDA } \\ & \text { JDS } \\ & \text { NGS } \\ & \text { RJF } \\ & \text { MBC } \\ & \text { RGF } \end{aligned}$				0 RGW
$\begin{gathered} \mathrm{L} 6 \mathrm{~F} \\ 3 \end{gathered}$	3 JMm	1	AGR Rwv		EG8			0	EGB		0 JAC
$\begin{gathered} \text { L6G } \\ 4 \end{gathered}$	2 Nwo	5			RWV JNB				$\begin{aligned} & \text { JNB } \\ & \text { JAS } \\ & \text { RRA } \\ & \text { JAB } \end{aligned}$		1 NWO
$\begin{gathered} \mathrm{L} 6 \mathrm{M} \\ 2 \end{gathered}$		2	JAC								0 JAC
$\begin{gathered} \text { L6S } \\ 3 \end{gathered}$		2	JAC	1	Ct						0 JAC

Figure 4

	$\begin{aligned} & \text { C6A } \\ & 9 \end{aligned}$	$\begin{aligned} & \text { C6B } \\ & 9 \end{aligned}$	$\begin{aligned} & \text { C6C } \\ & 8 \end{aligned}$	$\begin{aligned} & \text { C6E } \\ & 3 \end{aligned}$	$\begin{gathered} \text { C6F } \\ 2 \end{gathered}$	$\begin{aligned} & \text { C6L } \\ & 2 \end{aligned}$	$\begin{aligned} & \text { C6W } \\ & 3 \end{aligned}$
$\frac{\operatorname{L6A}}{7}$	1	$\begin{aligned} & 5 \\ & x x x \end{aligned}$	$\frac{4}{x x x}$	2			X
$\begin{gathered} 468 \\ 7 \end{gathered}$	$\begin{aligned} & 6 \\ & x \times x x \end{aligned}$	$\begin{aligned} & 2 \\ & x \end{aligned}$	$\begin{aligned} & \hline 1 \\ & x \end{aligned}$	1	1	x	0
$\mathrm{L} 6 \mathrm{C}$	$\frac{4}{x x}$	$\begin{aligned} & 2 \\ & x \end{aligned}$	1	X	X	1	XX
$\begin{gathered} \mathrm{L} 6 \mathrm{E} \\ 3 \end{gathered}$	1	1	XX	0	x		0
$\begin{gathered} \mathrm{L} 6 \mathrm{~F} \\ 3 \end{gathered}$	$\begin{aligned} & 3 \\ & \times \end{aligned}$	1	0	X	0	x	0
$\underset{4}{\mathrm{~L} 6 \mathrm{G}}$	2	$\frac{5}{x x x}$	1	x	1		1
$\begin{gathered} \text { L6M } \\ 2 \end{gathered}$		2	XX				0
$\begin{array}{\|c} \mathrm{L} 6 \mathrm{~S} \\ 3 \end{array}$	x x	$\begin{aligned} & 2 \\ & x \end{aligned}$	1				0

Figure 5

The next stage is to take account of the other forms and this is difficult in a 2 dimensional table. What I do is complete tables as in figure 6 and place these against the original table, as in figure 7. In order to do this I change the program as follows:

```
40 A8 = "L6AL6BL6CL6EL6FL6GL6ML6S"
50 BS = "F5AF5BF5CF4AF4BF4MF3MF3B"
60 FOR A=1 TO 22 STEP }
100 FOR B=1 TO 22 STEP 3
```

And then RUN again.

Figure 6

Figure 7

I then try to enter the possible overlaps for forms 5, 4 and 3 (which is where our main junior blocks occur), onto the crosses in the main table. This frequently necessitates some adjustment in the position of the crosses. The final table appears as in figure 8.

	C6A	C6B	c6C	C6E	C6F	C6L	c6w
L6A		$x x x$ AAA	$\begin{aligned} & x \times x \\ & \text { BBB } \end{aligned}$				$\left\lvert\, \begin{aligned} & X \\ & B \end{aligned}\right.$
L6B	$\begin{aligned} & x \times x x \\ & B \end{aligned}$	$\begin{aligned} & \text { X } \\ & A \\ & A \\ & \hline \end{aligned}$	$\begin{aligned} & x \\ & A \\ & A \\ & M \\ & B \end{aligned}$			$\begin{array}{\|l\|l} \hline X \\ A \\ M \\ B \\ \hline \end{array}$	
L6C	$\begin{array}{\|l} \hline x x \\ c \\ m \\ \hline \end{array}$	$\begin{array}{\|l} \hline X \\ A \\ M \\ \hline \end{array}$		$\begin{aligned} & x \\ & C \\ & M \\ & M \end{aligned}$	x		$\begin{aligned} & \mathrm{xx} \\ & \mathrm{~A} \end{aligned}$
L6E			$\begin{aligned} & x X \\ & A A \end{aligned}$		x_{A}^{x}		
L6F	$\begin{array}{\|l\|} \hline x \\ \text { C } \\ \hline B \\ \hline \end{array}$			$\begin{aligned} & x \\ & c \end{aligned}$		x	
L6G		$\begin{aligned} & x X X \\ & M M \\ & A B B \\ & \hline \end{aligned}$		x			
L6M			$\begin{aligned} & \mathrm{XX} \\ & \mathrm{~A} \\ & \mathrm{M} \\ & \hline \end{aligned}$				
L6S	$\begin{aligned} & \mathrm{XX} \\ & \mathrm{BB} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{~A} \\ & \mathrm{M} \end{aligned}$					

Figure 8
Once this has been done, I have merely to shuffle the 36 periods, with their overlaps fully specified, so as to get a reasonable balance to the week. I can then be sure that when I fill in the details into the blocks, everything will fit with no difficulty.

Well I didn't believe that either as I struggled with the entries this year. Then I found that I had put someone down for 4 periods instead of 7 and my interference table was up the spout. I had to start again, which is the time table's nightmare. But having got the data right second time around, it took only 7 working days to complete a 2000 entry timetable, including the computer work. I'm not claiming any records, but that was certainly quick going compared with my efforts of two years ago and back, which were of the order of 25 working days.

Now I am aware that some schools design their timetables in 20 minutes on the back of an envelope. This is done by dividing the teaching into the same number of faculties as there are year groups and then allocating equal time to each faculty. For this purpose they ignore the 6 th form which is often rather small. It is then easy to draw up a timetable such as figure 9 and require the faculties to allocate the teaching themselves in such a way that it will fit. Every timetabler should ask himself whether such a method could possibly work in his school, for it would save many hours and ulcers.

2nd yr 6th	B1	B2	B3	B4	B5	
1st yr 6th	B1	B2	B3	B4	B5	
5 th	F1	F2	F3	F4	F5	
4 th	F2	F3	F4	F5	Fl	
3 rd	F3	F4	F5	F1	F2	
2nd	F4	F5	F1	F2	F3	
Ist	F5	Fl	F2	F3	E4	
periods	8	8	8	8	8	$=40$

For those less fortunate who have to do the job by hand, I am suggesting that we make available to each other as many helpful programs as possible now that the micro computer is appearing in many schools. M.U.S.E. will publish and distribute material either by publishing the listings or by publishing a short description, and providing names and addresses of authors. Naturally it is useful if authors can provide notes on how to use their masterpieces.

For those interested in finding out about the current systems for writing timetables on large machines with large expensive programs (program $£ 7000$ plus $£ 250$ per run was one example), here is a list of addresses:
L.A.M.S.A.C. 3 Buckingham Gate, London SW1E 6JH
(they have conducted an evaluation of the NORDATA, the O.S.A., and the S.P.L. systems on behalf of L.E.A.'s)
R.I.P.A. Hamilton House, Mabledon Place, London WC1H
(they market the version of the NOR-DATA system which was developed for U.K. schools by S.T.A.G.) Oxford Systems Associates Ltd. Balliol College, Oxford
(they market the O.S.A. system)
N.C.C. Ltd. Prudential Buildings, Colmore Row, Birmingham
(they market the S.P.L. system)

Figure 9

NASCOM 1 Z80 MICROCOMPUTER KIT

Includes interface for:
TV or Monitor - cassette, dump - Teletype - spare, PIO,
Expansion RAM-
BOARD up to 32 K .
Price $£ 197.50$ + VAT © 8%
Access \& Barclaycard welcome. Telephone Orders Accepted Callers Welcome.
Write for details or send order to:
STRATHAND, 44 St. Andrews Square.,
Glasgow, G1 5PL. Tel: 041-552 6731/2

PET Software

Some of the sixty-plus titles in our current catalogue:-

Stock Portfolio, Sales Analysis, Tax 78/79 Stock Control, Assembler/Editor, Line Renumber, Memory Diagnostic, Peek \& Poke, File Handling, PET Basic Tutorial, Backgammon, Super Startrek,
Plus many more, priced from $£ 3$.
Credit Cards accepted.
If you are a PET owner and would like to receive regular copies of our monthly catalogue, send an S.A.E. to:

Petsoft

PO Box 9, Newbury, Berks. RG13 1PB
Tel. 0635-201131 01-352 1100 Telex 8951672

MOTOBOLA G8OO COMPUTERS

Single Board 6800.17 command Mikbug compat monitor, 1 K crystal controlled VDU. CUTS, Buffered, \checkmark regs, room for expansion.
£185.00

Mod. 2 SBC. Similar to above but with good quality QWERTY keyboard.
£205.00

NEW. MINI 6800. Purpose designed for home computing. Has VDU, CUTS, RAM, IK MONITOR, OWERTY KEYBOARD

$$
\text { £145.00. £145.00. } £ 145.00 .
$$

VDU Kit. VDU section of above computers available separately.
£60.00.

All prices are plus VAT and Post. Please send SAE for leaflets. Mail order only.

HEWART MICROELECTRONICS.
95, Blakelow Road, Macclesfield, Cheshire.

electronics tolday mot ANSAMA

Jointly and proudly present the:

TRITON ONE-BOARD COMPUTER

Jointly sponsored by Transam and ETI Magazine, the Triton Computer will be available as a kit (costing about $£ 300$) from Transam while ful constructional and software details will be published issue, on sale October 6 th . by Mike Hughes and is The Triton is designed by Mike Hughes and is genuinely believed to be a big step orward ingle the field of home computing. It is It features a very powerful 2 K integer TINY machine code programming. Used with a standard TV and cassette recorder it forms a powerfui computing system, especially for domestic and educational applications. A unique. VDU function, together with ${ }^{64}$ graphics characters provide triton with excellent graphics handing capacity as well as full cursor control.
Other features include: BASIC command look-up table extension; named tape fle search; memory mapped VDU and full textual prompts throughout the software.
hold up to everything is on one board which will co-operated with Transam Components to have a kit available from square one.
ETI is taking a major step forward by giving all constructional details in one month there'll be no article!

The ever Increasing activity In the personal computing field has led to the situation where ETI magazine can no longer devote enough space to It In the magazine as well as keeping up with the world of electronics in general.
From next month therefore ETI will be carrying a new regular, 24 will be over and above the regular sIzAY', within ETI itself. inis will be at least 140 pages.
COMPUTING TODAY WIII be devoted to personal computing and the first issue will contain part one of a serles on BASIC programTriton a report on the US East Coast computer show, a revlew of the NASCOM 1 , a CUTS encoder prolect plus news and Softspot, our software section.

TRANSAM COMPONENTS LTD. 12 CHAPEL STREET

LONDON NW1

TEL: 4028137
NEXT TO EOGWARE ROAD TUBE STATION MET. LINE
-TRITON COMPUTER' IS THE TRADE MARK OF TAANSAM COMPONENTS LTD

* TRANSAM Components Limited is your new personal computing specialist in London.
*TRANSAM opens mid-September in Chapel Street.
* TRANSAM has a full range of Micros and support, plus software.
*TRANSAM brings you 'Memory Bank', a full memory service.
* Catalogue now available. Send 30p and SAE.

The SOL Terminal Computer System

The NORTH STAR Micro Disk System

The Z2-D Computer System

Comart's range of S100 microcomputer systems features the SOL Terminal Computer System and the Cromenco Z2, Z2-D and System Three Computer Systems.

S100 sub-systems and modules include 16 k and 32 k byte memory, PROM programme and erasers, analogue and digital interfaces, serial interfaces and the Micro Disk System with its optional hardware floating point arith. metic board.

Software, too is not forgotten!

Assembler, BASIC and Extended BASIC are available for all our systems.

In addition FOCAL is a feature of the SOL and Macro Assembler, and Fortran IV options on Z2-D and System Three.

Contact us direct or contact your nearest Comart Dealer.
Computabits Ltd., 41 Vincent Street, Yeovil, Somerset. Tel: (0935) 26522
Computer Workshop (Manchester) Ltd., 29 Hanging Ditch, Manchester. Tel: 971-832 2269
NewBear Computing Store, 7 Bone Lane, Newbury, Berks. Tel: (0635) 46898
R.I.I.C. Business Systems Ltd., 110 Leagrave Road, Luton, Beds. Tel: (0582) 605535, Ext. 235.

The Byte Shop, 426/428 Cranbrook Road, Ilford, Essex. Tel: 01-554 2177
Xitan Systems, 31 Elphinstone Road, Highcliffe, Dorset. Tel: (4252) 77126
Comart Limited, PO Box 2, St. Neots, Cambs. PE19 4NY. Tel: 0480215005

Look To The North Star HORIZON Computer.

HORIZON - a complete, high performance microprocessor system with integrated floppy disk memory. HORIZON is attractive, professionally engineered, and ideal for business, educational and personal applications.
To begin programming in extended BASIC, merely add a CRT, teletype or other hard-copy terminal. HORIZON-1 includes a Z80A processor, 16K RAM, minifloppy disk and 12 -slot S-100 motherboard with serial terminal interface - all standard equipment.

WHAT ABOUT PERFORMANCE?

The Z80A processor operates at 4 MHz - double the power of the 8080 . The RAM memory board lets the Z80A execute at full speed. HORIZON can load or save a 10 K byte disk program in less than 2 seconds. Each diskette can store 90 K bytes.

AND SOFTWARE, TOO

HORIZON includes the North Star Disk Operating System and full extended BASIC on diskette ready at power-on. This BASIC, now in widespread use, has virtually everything desired in a BASIC, including sequential and random disk files, formatted output, a powerful line editor, strings, machine language CALL and more. Optional software (under CP/M) includes - CBASIC compiler/interpreter BASIC, Microsoft Disk Extended BASIC, MAC Macro Assembler, Microsoft COBOL-80 and FORTRAN-80, and more.

EXPAND YOUR HORIZON

Also available - Hardware floating point board (FPB); additional 8 K and 16 K memory boards. Add a second disk drive and you have HORIZON-2. Economical serial and parallel I/O ports may be installed on the motherboard. Many widely available S-100 bus peripheral boards can be added to HORIZON.

QUALITY AT THE RIGHT PRICE

HORIZON Z80A processor board, RAM, FPB and MICRO DISK SYSTEM can be bought separately for either Z80 or $8080 \mathrm{~S}-100$ bus systems.

HORIZON-1: $£ 1,275$ assembled and tested.
HORIZON-2: $£ 1,550$ assembled and tested.
8K, 250ns static RAM: $£ 145 ; 16 \mathrm{~K}, 250$ ns static RAM: $£ 295 ;$ FPB: $£ 215$; Z80A board: $£ 185$; 2nd serial I/O: $£ 45$; parallel I/O: $£ 45$. All prices are for assembled and tested units. Prices are exclusive of V.A.T. and carriage, and are subject to change.

For full details contact:
INTERAM Computer Systems Ltd. 59 Moreton Street
Victoria, London SW1V 2NY
Telephone: 01-834 0261/2733

We're getting bitgger to give you a hetter sarvice

> We've opened a Sales and Customer Service Centre in London. And our new factory is fully operational. Southwest Technical Products provide a range of superb computer systems with technical backing second to none.

Systems

To suit all types of user - OEM, process control, data handling, small business systems, and all accounting functions.

Software

Low cost packages for word processing, selective mailing, progress control and invoicing. Our Software Development Unit available to prepare programmes to customer specification.

Training
Inexpensive courses (at Dover Street):
BASIC - programming for the businessman; microcomputers in EDUCATION; WORD PROCESSING made easy; SOFTWARE DEVELOPMENT-make your microprocessor work.

Maintenance
Comprehensive national service by Computer Field Maintenance Ltd.

Sales Office: 38 Dover Street, London W1.
Tel: 01-491 7507 Telex: 268913.
Factory: 12 Tresham Road, Orton Southgate, Peterborough.
Tel: 0733-234433 Telex: 32600.

the symbol of reliability

[^0]: The U.K. PILOT User's Group
 Oundle School,
 Oundle,
 Peterborough
 England.

[^1]:

 :1001700013E1FESAC2EEO1CD7COUSOVULCEO11320

 :0502300020FADEOJC704
 $: 0000000000$

