Pexpoyal
 EXHIBITIONISM SMALL COMPUTERS FOR SMALL JUNE 1979 ORGANISATIONS

Europe's first magazine for personal computers for home and business use

If you buy the wrong personal computer, you cenf re-program your bunk acountid

Buying a personal computer is not an easy task.
So many people selling them neglect the little things that enable you to get the most from your computer, such as documentation, spares, add-ons and maintenance. We believe that these 'details' are essential. We are the only British company to put all our time and energy into the personal computer market and are in the best position to advise you on your initial purchase and keep you fully informed about all the new developments relevant to your computer. Personal Computers Limited - the name of the game.

Say 'hello' to a graphics Apple II

A business Apple II

Exclusive to Personal Computers Ltd. German Apple II. Available shortly.

The Great Big 'Bazaar' for the hobbyist, amateur, and small buyer.

There's never been an event like this before.

First, the very scale of the exhibition is huge. Virtually all the companies you're used to hearing about (and buying from) will be there. Companies like Fluke and Gould showing off their low cost multimeters; smaller but important manufacturers like Lektrokit and Chromasonics; and even the R.S.G.B. who will have a station'on the air' throughout the 'Bazaar.'

Then there are the suppliers of low-cost components and equipment. Plus almost all the journals in the business. Plus, oh, so many more interesting people catering for your needs (including computer kits! .

And you get in FREE if you send an s.a.e. (see alongside)

Our Symbol We think it tells you just what the Bazaar is all about.

The Seminars.
If you would like to hear just what the experts have to tell you, a season ticket for three whole days can be yours for only $£ 1.50$.

Sendan s.a.e. and we'llgive you all the information (just use the coupon).

Our home for three days - Alexandra Polace, where it all began. (Our seminars are sited alongside the organ-for those who know this unique

hall.)
 ISEMINAR TICKETS
 £1.50.

I'd like to sit in at your seminars. (And like a free ticket to the exhibition.) Send me full details, please, and I enclose a large-ish s.a.e.

```
Name: ....................................
```

 Address:
 Address:

Post to: 'The Bazaar,' 34/36 High Street, Saffron Walden, Essex.

When?

Between Thursday to Saturday 28th-30th June.
You'll be in very good company; some ten thousand enthusiasts and over a hundred stands displaying all that you want to see.

You'll come?

Eyes down for the appropriate coupon.

ADMISSION FREE

(or 50 p on the door).
I'd like to see The Bazoar' FREE 1 enclose a lorge-ish s.a.e. and will receive by return a ticket and full information.

Name:

\qquad

Post to: 'The Bazaar,' 34-36 High Street,Saffron Walden, Essex. If you'd rather just pay 50 p, go to Wood Green Tube Station and take a bus (every 3 minutes) to Alexandra Palace. We're open $10 \mathrm{am}-6$ pm daily, Thursday to Saturday, 28th-30th June.

CABLE ADDRESS: ICUSD
Telex \#697-827 ICUSD SDG
HOURS: 9 A.M.-6P.M. MON, thru SUN.
INTEGRATED CIRCUITS UNLIMITED
7889 Clairemont Mesa Blvd. - San Diego, California 92111 U.S.A.

No MINIMUM

COMMERCIAL AND MANUFACTURING ACCOUNTS INVITED ALL PRICES IN U.S. DOLLARS. PLEASE ADD POSTAGE TO COVER METHOD OF SHIPPING. ORDERS OVER $\$ 100$ (U.S.) WILL BE SHIPPED AIR NO CHARGE.

PAYMENT SUBMITTED WITH ORDER SHOULD BE IN U.S. DOLLARS.
ALL IC'S PRIME/GUARANTEED ALL ORDERS SHIPPED SAME DAY RECEIVED. CREDIT CARDS ACCEPTED:
Phone (714) 278-4394 BarclayCard / Access / American Express / BankAmericard / Visa / MasterCharge
otal Order Deduct $\$ 35-\$ 99$ \$100. \$300 \$301-\$100010\%

UK 50p
US 82.00

Vol. 2 No. 2
 June 1979

Europe's first magazine for personal computers for home and business use

CONTENTS

ISSN: 01420232

THE FACES BEHIND THE PLACES
The go business is the micro business 17

EXHIBITIONISM
Show business . 19

THE MULTILINGUAL MACHINE G.J. Marshall
Different computer languages: the micro has the gift of tongues21
POLYTECHNICAL PROCESSING Phitip Lawton becoming a polymath33The Midwest Scientific Instruments (MSI) 680035Mervyn J. AxsonPart Two of an article useful for anybody with asmall computer43
Editorial and Advertising Office:62A Westbourne Grove, London W2$01-7278758$ (Editorial)01.7278758 (Editorial)Publisher:A ZgorelecEditor:Meyer N. SolomonEditorial Assistant:David Bannister
Peter Crofton-Sleigh, FRAS
CONTRIBUTORS:

We welcome interesting articles written simply and clearly. You need not be a specialist to write for us. MS should not be more than 3000 words long, lines double spaced, with wide margins. Line drawings and photographs wherever possible. Enclose a stamped selfaddressed envelope if you would like your article returned.

Manufacturers, suppliers and dealers are welcome to contribute technical articles, and send product information, but we are pledged to an independent viewpoint and will publish evaluations and reasoned criticism or praise, space permitting. Naturally there will be right of reply. Views expressed in articles are not necessarily those of Personal Computer World.

We may make arrangements to offer our readers products at special prices, for a limited period, in line withthe policy outlined above.

[^0] offer mainframe quality at micro prices:

SALES ACCOUNTING

provides all the facilities for maintenance of Sales Ledger, preparation of a list of outstanding balances and printing of statements.

Cassette based system $£ 225+$ VAT Disk version $£ 350+$ VAT

PURCHASE ACCOUNTING

handles Purchase Ledger, preparation of a list of outstanding balances, printing of remittance advices. Cassette based system $\mathbf{£ 2 2 5 + V A T}$ Disk version $£ \mathbf{3 5 0}+$ VAT

Written by ACT's own software team, each package handles 200 accounts and 800 transactions in memory at once giving true real time operation on a 32 KPET and printer (typical transactions in memory at onice giving true real time operation on a 32 KPET and printer (typical
cost $f 1,350+V A T$). Alternatively the disk-based version may be used with the addition of a dual mini floppy drive (price $\mathbf{~} 740+\mathrm{VAT}$).

Other PETACT BUSINESS SYSTEMS

include: Invoicing, Payroll, Stock Control, Nominal Ledger, and Management Information

 Programming Aids to help you make the most of your PET and some super Games to play with it. Here are just a few examples:

TRY THESE PROGRAMS AT YOUR NEAREST PET DEALER Prices include VAT

Addressbook $\mathbb{E} 6$ 6502 Assembler/Editor $£ 25$ Backgammon f 8 Bridge Challenger $£ 10$ Bridge Challenge Data File Handler $f 12$ Discounted Cashflow 18 Estate Agents Pack $f 25$ Graphics Package f 12

Hotel Finder $£ 5$
Linear Programming $\mathbf{f 8}$ Line Renumber 18 Mailing List $£ 15$ Micro Chess 114 Music $£ 10$
Music 10
Percentage Costing $£ 49.50$
Pet Basic Tutorial 112

Program Merger 18 Sales Analysis $£ 10$ Statistics $f 7$
Super Startrek 18
Tax 18
Tax 18 Pack E 1750
VAT Pack $£ 17.50$
Word Processor $£ 25$
76 Common Basic Programs $£ 15$
coupon or ring us today. We also accept credit card orders over the telephone
Recommended by Commodore

PetsaftSpecialists in personal computer programs,
5.6 Vicarage Road, Edgbaston, Birmingham B15 3ES. Tel: 021.4545348 Telex: 339396.
Petsofi A member of the PCP Computer Group.
PEI is the trode mark ol Commodore.

ter

\qquad

Editorial

This really should be headed "appeal". I am receiving a flood of articles, a lot of them publishable, but many handwritten. It goes against the grain to reject an article because it is not neatly typewritten or does not have a printed listing; but, really, some submissions are a typesetter's nightmare. If you do have to write, please use block letters. Don't let what I've just said discourage you from submitting articles. Only, remember the poor typesetter at our end.

SUBSCRIPTIONS

When PCW started publication, we had a special six-issue offer. When these subscriptions expired, we sent out reminders.
The renewal rate was 70\%!
PCW reader loyalty is becoming a byword in publishing. If you're having difficulty in obtaining PCW at your newsagent, take our subscription. You can find the details at the foot of P.S.

Half the worried people you meet today are not preoccupied with pollution, perversion or persecution. It's worse than that - they've lost a copy or two of PCW and don't know where to find replacements.
So kecp your copics of PCW in a beautiful bright blue binder. $£ 2.95$ worth of smart security. Binders are now available. Orders already received get priority.
Payment by cheque or postal order $£ 2.95$, (includes $p+p$) made out to Intra Press. Please allow 28 days for delivery. "Binders", PCW, 62A Westbourne Grove, London W2.

Publisher's Letter

Dear Reader,

I am glad to announce that Computer Trader, our new publication, has had a good reception. It deals mainly with "trade" news, of the kind found in PCW's Tidbits, and is packed with information such as the full details of the MAPCON Scheme, and a monthly updated list of exhibitions. As such, it is increasingly in demand from those who have to or want to keep tuned to the micro business. If you're interested in seeing a sample copy. simply write in and ask for one.

STOP PRESS! $£ 1,500$ CASH - FIRST PRIZE

SPONSORSHIP INVITED FOR 2nd \& 3rd PRIZES

Because we've got the biggest and widest range of microcomputers, there's more for you to bite on af a Byte shop.

So you're not only sure of finding exactly what you want: you can take the opportunity to experiment before you buy.

And because we're backed by the huge financial resources of a major
investment group, we'll be here fomorrow as we are today. All over the UK. So whether you want a micro-computer for your home, your business, for industry, for education - or if you'd just like to find out which model you get on best with - you'll find a

Bronches of:
LONDON (WEST END): 48 Tottenham Courf Road fel (01) 6360647

NOINTCHAM: 920 Upper

 Parlloment Street fel (0602) 40576
MANCHESTER: 7-8 Com Exchange Bullding, Fennel Street -

 fel (061) 8340200
Reader's ingenuity

I am writing to you in reply to your request for letters from micro-computer owners, since I own a Pet 2001-8.

I would like to offer the following information: I have not seen it mentioned anywhere previously.

It is widely known that if you require lower case letters on the Pet, you cannot have graphics characters simultaneously. This is not strictly true since you only lose the graphics characters which are accessed by:
[Shift, "any letter of the alphabet"]
Characters which do not have a lower case equivalent, e.g. numbers, punctuation marks, rețain their shifted graphics character. In addition, four new graphics characters can be obtained whilst in the lower-case mode. These are:
shift colon, which gives a "tick" character i.e.
shift \uparrow, which gives a 4×4 check pattern
shift) [close bracket], which gives a diagonally striped pattern, and finally
shift \leftarrow, which gives a similar pattern sloping the other way.
I would like to compliment you on the high standards set by your magazine, which despite the recent appearance of other rival magazines, I still regard as the best.

If I could make a few suggestions for future articles, I would like to see an article (or series of articles) on Assembly programming for absolute beginners, explaining how to put together an Assembly language program. Also some articles on ideas for games, not necessarily listings of games programs, but suggestions for games, for readers to write themselves; how about reviews on the American magazines, which can be obtained from some mail order firms, or reviews of easily obtainable software for the most popular machines.

Finally, being an optimist (I expect Commodore to release a printer for the Pet in my lifetime); I hope to write a Word Processor for the Pet.
Paul Hallam,
Wadham College, Oxford OX1 3PN,

Basically good

Your correspondent Mr. Greg Trice (Letters, April) condemns as cretinous the widely accepted BASIC language. Whilst this was never intended to compete with more sophisticated programming schemes it maintains its popularity because of the ease with which it may be implemented on small and simple computer systems.

If Mr. Trice were to own a very small computer, which is what a large proportion of PCW's readers aspire to, I should be very interested to know whether he would choose to program in BASIC or machine-code.
Mark Morgan Lloyd
Lenton Hall, University Park, Nottingham NG7 2RB.

Defender of the here and now

Sometimes, I•m really annoyed by your correspondents who make such condescending remarks about the $\mathrm{Z80}$; trivial programs; and of course, machine-code programming.

Mr. Randal wants some amazing system I can't afford, but isn't going to do the work; he would help, of course. Does he have a machine at all? He's not saying.

Mr. Trice doesn't approve of "frivolous" applications, such as might cause enjoyment for the owner of the system. No, he wants computers to be for the drudgery of repetitive calculations. For a modest outlay he could have a Sinclair Programmable. II was near to saying TI57, but that would have caused howls from their user group, and rightly sol)

Those of us who did what you suggested, and made 1978 the year we bought a computer, know that no program is ever really trivial; we also know that games programs (chess, for instance) are far more complex than stuff like accounting systems, or even trig. routines.

I use a Nascom. It's a good machine, and when the expansion arrives it will be even better. I haven't used Basic, but I know the useful pages of the $\mathbf{Z 8 0}$ programming manual by heart. As a computer, the Z 80 is pretty nifty, especially in its ease of use for decimal calculations. Floating point multiplication on numbers of up to 46 digits was easy to write (more digits if you want them, but I thought one line of screen per argument would do) in machine code. Conversely, a Star Wars Death Star trench simulation in under 1 K is quite tricky. Which, we should ask, is the more worthwhile program?

Chris Blackmore,

31 Herne Rise, Ilminster, Somerset, TA 19 OHH.
PCW Intel, Zilog, Motorola and other companies deserve our thanks for being in the forefront of the microprocessor revolution. And they are bringing out more advanced products PCW

Logging it in
I agree with Mr. Rodwell (Letters, Jan) that the substitution of 2.3 for LOG(10) in my coding to align decimal points will give faster execution. I should have put in my documentation that I usually calculate this once LET $A=\operatorname{LOG}(10)$ and then use A in place of LOG(10) in the coding.

However, I hope no-one attempts to use Mr. Rodwell's coding alone, unless they are absolutely certain that zero will NEVER be printed, as attempts to evaluate LOG(10) should cause argument errors. To sum up, the published coding:

100 IF ABS (N) < THEN 130
110 PRINT TAB (T-INT (LOG (ABS (N))/LOG(10)); N
120 GO TO 140
130 PRINT TAB T; N
may be modified by:
a) replace $\operatorname{LOG}(10)$ by 2.3 in line 110 or;
b) add 90 LET $A=\operatorname{LOG}(10)$ and replace $\operatorname{LOG}(10)$ by A in line 110
Note: The calculation in line 90 need only occur once in the entire program or;
c) if positive numbers only will occur, ABS may be omitted from line 110 or;
d) if numbers in the range $-1<N<1$ NEVER occur, line 110 can be used alone - without $A B S$ if numbers are always positive.
Sydney A Leleux,
South East Derbyshire College, Field Road, Ilkeston, DE7 5RS

Radiant Rubbish

I tried to program my T157 with the program on page 57 of the March issue "Turning the Tables" but all that happened was flashing rubbish.

I followed the steps carefully and found an error towards the end of the keying sequence, where you have printed $12 ;+;$; INT; STOI; INV SPR, I inserted ą '1' between $+8=$ and the program runs perfectly.

I hope this may help others who had problems with this.
J.T. Rowley,

76 Kidderminster Road, Brunsgrove, Worcs.
A rich hunting ground for articles.
May I, as a newcomer to the world of computing, say how much I am enjoying this new (hobby at the moment) interest.

I look forward to each issue of your magazine, although many items are still above my head, or of no interest due to their specialization.

My main reason for writing to you is to give you an idea of some of the types of articles I, as a beginner, would like to see in your magazine. After discussions with other friends who are also new to the field, it seems that we are in general agreement about the difficulty of finding certain tectiniques clarified.

Whereas some beginner articles such as you publish are good, they tend to be brief and limited, very suitable for the 'earliest beginner'. Then there is a gap, with the next stage seeming to cover much more complex programs or hardware ideas.

I know that it is probably true that you can only publish what is submitted to you, but perhaps if there is evidence of what is needed, you could ask some of your 'regulars' to provide manuscripts.

To this end, perhaps you could include a 'survey' in a future issue to see how your readers divide.

To give you an idea of the sort of problems that have puzzled me (or still are), and which could be subjects for articles:-
Software

1) A brief resume or summary of what each step is doing where this is not obvious - certainly nót needed on a 100% basis could be restricted to short programs or those for minimum (beginners) systems.
2) A series explaining how monitor software works -1 have NASBUG T2 listing for my NASCOM but I cannot at present make full use of the subroutines avaiable as I am unable to see the 'wood for the treess'.
3) I am at present trying to write simple 'Games' software for my NASCOM. I have not yet found out (probably tied up with 2, above) how to interact with a running program, in order to, shall we say, 'wipe out' targets on screen. An article or series, on methods of changing displays, programs, etc in execution, would probably be of considerable interest.
4) Where programs listings are given using routines, commands or functions that are not common, could the authors be asked, where practicable, to give alternative commands, so that the program may be 'translated' to less powerful versions of the language.
5) General articles on 'Basic' are usually rather limited in their treatment of some of the more specialised commands. It would be nice to see a series where a particular command
(function etc.) is given a more extensive treatment. This is obviously unnecessary with elementary commands etc, but I have in mind items such as:
Arrays, Matrices, Print and all its variations, Use of Strings, Complex loops; when to use INPUT, DATA statements - etc.

Hardware

Fairly well done but perhaps a few articles on logic design, Memories, Registers, Flip Flops, Multiplexers, I/O's etc. would help overcome some of the problems associated with the understanding of it all.

I hope the foregoing will be taken in the spirit in which it is offered. I wish your magazine all success in the future

C. Bowden.

Tregwyn, Stithlans, Truro, Cornwall.

Fuzz Buzz?

Re: Buzzwords, Feb 1979. Peter Reynold's attempt to reduce confusion over references to thousands of bits and bytes, although highlighting a serious problem area, has in fact made matters worse. The suggested abbreviation of 4 k 8 for ' 4,000 bytes each of 8 bits' is regrettable since 4 k 8 also has the standard connotation of 4,8001

Writers at present crave for abbreviations and readers have to compile a dynamic glossary of abbreviations. Perhaps in this instance just writing bits or bytes would suffice, leaving a mandate on the writer to explain himself if his bytes are not 8 bits. Because of differing word lengths, in general, quoting of store size in words leads to confustion, often because the number may be interpreted as bytes, or because the input device (ie reader) has not been programmed with the word length:

How about this for those who must abbreviate:-

$$
\begin{array}{ll}
k=1000 & b-\text { bits } \\
K=1024 & B-\text { bytes (of } 8 \text { bits by default) }
\end{array}
$$

Martin W. Baker

17 Cockshot Road, Reigate, Surrey RH2 7HD

Micro Musings

I- must thank Mr. Roberts for his analysis of my Mk 14 experiment (PCW April 79). The O'F2F instruction is marked 'speed' in D. Johnson-Davies' program, and otherwise unexplained in the early version of the training manual, hence my (stated) difficuilty in tracing the exact route of an empirical result.

I have written some more advanced poems for the Mk 14 , and utilize in these another mysterious instruction shift, which generates equally interesting results. If these are published I would welcome Mr. Roberts' analytical extrapolation. It might even be the first time a poet enlists a critic to help him (the poet) to understand the complete meaning of the poeml Eric Finlay.
c/o Chelsea School of Art, Manresa Road, Chelsea, London SW3
The Young Dimension
I am 14 and became interested in computers through a club at school, where, instead of having a machine of our own, we use some at Imperial College, part of a big computer network. After school, we hand-punch our programs to be taken to the centre and run. We don't use BASIC, because if you can take the extra trouble to learn it; FORTRAN has more functions and is not interactive.

Imperial College has a number of interesting subroutines, one being 00XX3D. (A good name for 3D noughts and crosses). They use the same method explained in Bill Davy's article on the game in the September 78 issue, leach vacant cell is allocated points, dependent. on the number of noughts or crosses in the winning lines going through that cell), and although I think the idea is ingenious, the system of actually allocating the points is not so good. Instead of going through all 76 lines each time another move is made, why not just examine the lines going through the new entry? There are 13 possible directions of such lines, and it is quite easy to write a program to look at all directions and discard any which don't exist or contain less than four cells.
i have written another program to do all this, but haven't sent it because there's a snag - it's in FORTRAN. I don't know enough BASIC to be able to translate it, and there's plenty of food for thought for anyone interested in programming the game.
L.J. Barker,

26, Boniface Road, Ickenham, Uxbridge, Middlesex.

Bill Davy comments

Yes. This is a valid improvement of the given algorithm. However, it raises a number of interesting points. Firstly, in assembly language the program is so fast and short that speed improvements are scarcely necessary. Secondly, it is hoped that the program structure as presented is sufficiently clear that modifications and improvements (such as the one suggested) can be made easily. Finally, effort spent finding a better algorithm (eg tree search with alpha-beta pruning) would be more rewarding than improving the crude algorithm given in the article (which amounts to 1 ply and evaluation).
PCW Bill Davy wrote to the editor: "Are they all this bright nowadays?" PCW

A program naught can cross
In reply to the correspondence about the 3D Noughts and Crosses program published in the December ' 78 edition: I would like to add my ideas for the arrays $N \emptyset$ and $N 1$.

$N 1$		$N \varnothing$	
C	V	C	V
ϕ	ϕ	ϕ	ϕ
1	0	1	0
2	1	2	3
3	49	3	16

The original values were "aggressive" but were easily foxed. So the new values were defensive blocking every attempt at a line by the human, then eventually, $3 x$'s will be unnoticed and even if there is another point which would block 3 rows with 3 o's (3×16), it will make the move to make $4 \times$'s. (49)

I wrote this program in machine-code for a MIKBUG compatible M6800 system which has only 1 k of store (plus about 20 bytes remaining from the stack), luckily all the variables, constants and data are always less than 255 (and integers) so 1 byte suffices. After about 10 or 20 games I have not been able to beat it, the best results being a draw (after about $1 / 2$ hour).

I then altered the program so that it reversed the o's and x 's after each move and jumped over the input routine, thus the machine took on itself! The result being a draw after 11 seconds (this must be much faster than a similar BASIC program).

I would be glad to hear from anyone who manages to beat a machine.with the values given. If anyone is interested in having a copy of the two programs send 50 p arid a SAE to my address. B. Grainger

219 Kingsbury Road, Erdingtọn, Birmingham, B24 8RD.

TRUMPET, VOLUNTARY
Responding to TIDBITS information or an advertisement?

Say you saw it in PCW
Blow your own trumpet.
Mention your magazine.

EQUINOX 300

A powerful multi-user
multi-tasking
multi-language
16-bit microcomputer time-sharing system

supporting

* BASIC
* LISP
* PASCAL
* Floppy discs
* Hard discs
including a powerful Text Formatter,
Assembly Language Development System and disc-based Sort utilities.

Priced from under $£ 5,000$

Write or phone for further information
EQUINOX COMPUTER SYSTEMS LTT 16 Anning Street,
New Inn Yard
London E.C.2.
(Tel: 01-739 2387/8/9)

PET 2001/8 Initro- [omputer

WHY BUY A MICRO COMPUTER FROM US? BECAUSE:

1) Established Company trading since 1971
2) Electronic servicing is our speciality
3) We have in house programmers/systems analysts
4) We have our own service engineers
5) We will demonstrate the PET at your premises
6) We can customise the PET to your requirements
7) We can arrange finance
8) We offer, after the three month warranty. an annual service contract from $£ 69.50$
9) You benefit from our experience of having sold over 150 Micro Computers to industrial, educational and business, personal users.

Abstract

VISIT OUR SHOWROOM AT: 34, Chertsey Road, Woking, Surrey. We supply the full range of C.B.M. PET Microcomputers. We also supply: Dual Floppy Disks £820.00 24K Memory Boards All types of Printers £ 320.00 from $£ 450.00$ All types of Printer Interfaces Electronic balance Interfaces Programs from C.B.M., Petsoft, Gemsoft. We also offer a full consultancy and programming service. We are developing a number of our own business packages for all applications. Books on Basic, Programming, Interfacing etc. Full range of KIM's available. Tandy \& ITT 2020 available. Maintenance. Hire purchase facilities as well as ACCESS and BARCLAYCARD available.

FACTORY: TELEPHONE WOKING 69032/68497/20727
SHOP: TELEPHONE WOKING 23637

Hail to the Chieftain !

Chieftan 1 $£ 1897$

Two 5.25" minifloppies
Two serial I/O ports 32k static ram 2Mhz 6800 CPU 550 bus Expandable to 64 k \& 2 Mb floppy Fully tested and burned in Random file DOS, Basic \& Monitor
Chieftain 1.5 As above with two double sided £2157 minifloppies
Chieftain 2 As above with two 8" drives £2554
Chieftain 3 As above with two double sided $8^{\prime \prime}$ £2846 drives
All Chieftains are housed in stylish leather grained cabinets with built in fan $\&$ regulated power supply.
Also available $S 50$ system boards ... A/D, K.C. Cassette, Video, Printer drive, S10, P10, PROM Programmer, etc.
Software . . . Many languages are supported in several operating systems. Peripherals . . . Soroc 120 terminals, Anadex 80 col . Printers, etc. Write for catalogue.
WINDRUSH MICRO DESIGNS SUPPORT THE S50 BUS 6800 SYSTEM!
Write, phone, or Telex Windrush Micro Designs, Gaymers Way, North Walsham, Norfolk. Tel: 069245189 Telex: 975212

HP Terms \& Credit Cards. Dealer Enquiries Welcome

TRS-80 SOFTWARE

FROM THE LEADERS IN INNOVATIVE SOFTWARE...

We were first with TRS-80 Renumber Basic
We were first with the Howe Monitors 1, 2 \& 3 We were first with a software Level 1 in Level II We were first with a TRS-80 Payroll And we were first with many others

AND INTEND TO GO ON BEING FIRST !!!

Send SAE for our current list to:

A.J.HARDING

28 Collington Avenue, Bexhill-on-Sea, E. Sussex. Tel: (0424) 220391

N

 NewBear से
Computing Store Ltd.

Serial and parallel ports
optional extras - 64 Key ASC11 Keyboard.
altemative character sets.
Introducing - Newhear 700
low cost VDU ex stock £299 V24 interface, upper case only keyboard and monitor available separately

Sym 16502 based micro from Synertek fully assembled and tested Down in price now only $\mathbf{\Sigma 1 6 0}$

Newbear now stocks O.K.Tools

Horizon ($\mathbf{S 1 0 0}$ bus $\mathbf{Z 8 0}$ based micros) 16K RAM with single disc drive $£ 1265$ 32K RAM with double disc drive with 2 serial and 1 parallel port $£ 1983$

Schugart SA 400

$51 / 4$ in disc drives down to $£ 190$
Now in stock BASF 51/4in disc drives $\mathfrak{£}$

Books
The Users Guide to North Star Basic R.Rogers £10.00 . 75 pp
Basic with Business Applications Hayden
$£ 5.56 \quad .50 \mathrm{pp}$
Basic Basic (An introduction to computer programming in Basic language) J.S.Coan $£ 5.40 \quad .50 \mathrm{pp}$
Practical Microcomputer Programming(6800) Weller
£17.56 $1.00^{\circ} \mathrm{pp}$
Volume 0. The Beginners Book A.Osbourne £5.95 . 50 pp
Volume 1.Basic Concepts A.Osbourne £5.95 . 50 pp
Volume 11.Some Real Products A. Osbourne £18.95 1.00 pp
Volume 111.Some Real Support Devices A.Osbourne
£11.95 1.00 pp
Understanding microcomputer and Small Computer Systems Scelbi $£ 7.56 \quad .50$ pp

Book orders over $£ 40$ p\&p free
Send for our complete book list

All prices subject to 8\% VAT
Carriage by arrangement.
Barclaycard and Access welcome.
Minimum official order $£ 10$.
Callers welcome Mon - Sat 9.00 to 5.30 but please phone us first on 063530505
Visit our Northern office at 2A Gatley Rd.,
Cheadle, Cheshire.
Tel: 061-491 2290.
All Mail Order to Newbury.

> Our new address is Newbear Computing Ltd. 40 Bartholomew Street, Newbury, Berks.

New Company
Micro Gems are a new company specialising in TRS-80 software. They offer an increasingly wide range of titles all of which, they state, will be of interest to PCW readers.
Further information from:
Micro Gems,
32 Buckingham Avenue, Hucknall, Nottingham NG15 8ET.

Staggeringly Dynamic

The first 64 K bytes memory card for Cromemco systems has been introduced in the UK by MicroCentre, the Edinburgh Cromemco distributor.

Priced at $£ 1026$ the new card replaces four 16 K byte cards previously costing up to $£ 450$ each, a saving of $£ 774$ for 64 K bytes which "represents a staggering 43 per cent price drop".

Details from:

MicroCentre,
132 St. Stephen Street, Edinburgh EH3 5AA.
Tel: 0312252022 Telex: 72165 Ref: W582

RAIR have added the Decwriter IV to the range of DEC terminals they supply. The Decwriter is under $£ 900$, is a 300 baud desk-top terminal printing at burst speeds up to 45 cps, emploving a 9×7 dot matrix to produce the complete 128 character ASCII set. It can be firmware configured from the keyboard or the host computer. Character width, vertical spacing, tab stops and left and right margins are all adjustable.
RAIR Ltd., is at:
30-32 Neal Street, London WC2H 9PS.
Tel: 01.8364663

Giving Viewdata a Fillip

After four vears of development, Philips Data Systems have announced a private Viewdata system designed specially for the business market. It is a new, inexpensive method of recording, storing and accessing business information, and is expected to make the benefits of electronic data handling available to everyone in user companies from Boardroom to shop-floor. The system is very comprehensive and is designed for medium to large companies.
Details from:
Adrian Wheeler, 01-589 3422
The MKB. 01 miniature alphanumeric keyboard from Apex Microsystems is available in chassis or stand-alone versions. Measuring $165 \times 93 \times 14 \mathrm{~mm}$, it is "particularly suited to applications where size is vital", such as portable or mobile data entry systems, or as an alternative to conventional keyboards in small computer systems. Tactile response miniature kevswitches are spaced at 12.5 mm centres.

Apex Microsystems,
27 Cowbridge Road, Pontyclun, Mid-Glamorgan. Tel: Llantrisant (0443) 225578.

A Selection of Lektrokit's IC Test Clips for Dual-in-Line Packages. Lektrokit claims these clips offer a simple and inexpensive means of accessing any IC pin or lead.
Details from:
Lektrokit Ltd.,
Sutton Industrial Park, London Road, Earley, Reading, Berks RG6 1AZ

The New ADOS Regent 20, an "economy class VOU", has many standard options, claimed to be unusual in the dumb terminal market. It's a conversational device, with half duplex and local echo or full duplex and no echo working. The display is 24×80 on a 5×8 matrix with lower case descenders.
For full details contact:
Roger Crumpton, TDS Ltd., at (0254) 662244.

The Melody Eight door chime from Chromatronics, illustrating the bubble pack designed for the retail market. Price is $£ 9.95$. Details obtainable from:
Robin Palmer, Chromatronics.
Tel: Harlow 418611
Small Systems, Big Ideas
Small Systems Engineering have brought off a coup. They are now marketing the famous Pickles and Trout P \& T-488, which interfaces $\mathbf{S 1 0 0}$ bus computers to the IEEE-488 instrumentation bus; functions as a 488 controller, talker or listener; and has three software packages available: North Star DOS/BASIC interface; CP/M interface, and a custom systems interface package.
Small Systems are at:
62 New Cavendish Street, London W1.
Tel: 01-637 0777

CIS Cobol (Version 3) for North Star Systems is available from Microfocus. Supplied on two minifloppy discs, one of which contains the compiler and run-time system and the other utilities CONFIG and FORMS plus some demonstration programs.

Further details from:

Paul O'Grady, Micro Focus Ltd.,
58 Acacia Road, St. John's Wood, London NW8 6AG.
Tel: 01-722 8843 and 8847/8

Filling the Gap

Mutek, microprocessor systems specialists, have come forward with a system close to OSI Superboard capabilities by using readily available OSI products. The package consists of 1) The 500 CPU board with $4 K$ user RAM, $8 K$ Basic, several user ports 2) The 540 interface board with a 64×32 video display capability modified to European TV Standards; cassette interface and keyboard ports. 3) Encoded ASCII keyboards. 4) An 8-slot backplane assembly with 6 free slots for expansion.
Details from:
Dave Graham at The Studio, Quarrey Hill, Box, Corsam, Wiltshire SN14 9HT.

Basically Tiny

CC Soft have developed two versions of a Tiny BASIC for Nascom users. Level A is for use on a Minimum Nascom System. Level B is available on cassette for systems with additional RAM from address 1000 Hex; or in two 2708 PROMs for systems with PROM Sockets addressed from F000 Hex.
Details from:
M.B. Scutt, CC Soft,

83 Longfield Street, Southfields, London SW 18.
Tel: 01-870 4891

The Thinker's Disc Drive

The Computhink Disc Drive offers up to 800 K Bytes of online mass storage, is for the PET, and has "a wide and everextending range" of professional software such as a disc operating system, assembler, a linking loader, assembler-editor, Fortran Compiler, PLM compiler. Software under development includes an accounting package and a data base.

Details:

John Chew, Kingston Computers Ltd.,
Scarborough House, Scarborough Road, Bridlington.

The Winter of Content

Grama (Winter) Ltd., offers hardware systems tailored to requirements and a "complete business package" free with the purchase of a $32 \mathrm{~K}-40 \mathrm{~K}$ computer system. Programs are integrated, are twenty-four in number and functions are selected by number. As an example, program 9 is "examine Sales Ledger". and allows: a) list all sales b) monitor sales by stock code c) invoice search d) amend ledger files e) total all sales. Further details from:
Tony Winter, 21B Dryden Chambers, 119 Oxford St. London W1

This Chip is UP

National Semiconductor, using an advanced process called XMOS, has developed an enhanced version of the industrystandard 8048 family of single chip eight bit microcomputers. Centre-piece of this new family is the (proprietary) INS 8050. It contains 4 K ROM, 256 RAM and the CPU on the same Chip: National claims this is twice the capacity of any similar microcomputer chip now on the market, and that they are ideal for Original Equipment Manufacturers (OEMs).

The development by Petsoft - (micro software subsidiary of bureau group Applied Computer Techniques) - "of versatile, low price business programs", has made personal computers such as the Commodore PET shown here, an increasingly popular accounting tool for small businessmen. Programs range in price from $\mathrm{f5}$ for a telephone charge monitoring program to $£ 49.50$ for a powerful Percentage Costing Package. Details from:
ACT Ltd., Petsoft Division, 5/6 Vicarage Road, Edgbaston,
Birmingham B15 3ES. Tel: 0214545348 Telex: 339396

Intel RAMpant

A new 16 K Dynamic RAM from Intel runs from a single 5 V supply, is pin-compatible with both current 16 K devices lexcept for power supply) and future 64 K devices. The new device is the 2118, housed in a 16 pin package, and is intended for use with systems requiring a 100 nsec access time memory. Power consumption is impressively low: 130 mW operating, 15 mW on standby.
Details:
Intel (UK) Ltd., 4 Between Towns Road, Cowley, Oxford OX4 3NB.

This Hazeltine terminal, the H141D VDU, is designed to optimise real time operations. Features an ANSI standard bit paired keyboard with a separate integral numeric pad.

The microprocessor design of the H1410 is claimed to provide a low component count terminal giving reliability projections "several times greater" than those obtained with conventional designs.

The Hazeltine H1410 is supplied by RAIR, is available exstock at $£ 590$ (or on rent at $£ 37$ a month).
Contact: Howard Sales at RAIR Ltd.,
30-32 Neal Street, London, WC2H 9PS. Tel: 01-836 4663
This oscilloscope is available from Scopex Sales, Pixmore Avenue, Letchworth, SG6 1JJ. (Tel: Letchworth 72771). Price is $£ 188$ exc. VAT.

The 4D10B Dual Trace Oscilloscope features full XY operation and Z modulation, an accuracy of $\pm 3 \%, D C-10 \mathrm{MHz}$ band width and incorporates CMOS technology.

Go to Comart

Comart Ltd - specialists in S100 microcomputers - have launched two new standard configurations of the popular Cromemco Z80A based microcomputer system.

The Computer System 3/64 featuring dual 8" diskette drives, Z80A processor and 64 K bytes of 4 MHz memory and including console and printer interfaces with language support of Macro Assembler, Fortran IV, Extended Basic, COBOL and Multi User Basic is announced at a price of $£ 4385$.

The Computer System 2/64 offering mini-diskette drives and $64 k$ bytes memory is listed at $£ 3050$.
More Information from:
Comart Ltd., PO Box 2, St. Neots, Cambs.
Tel: Huntingdon (0480) 215005 Telex: 32514.

Responding to TIDBITS information or an advertisement?
Say you saw it in PCW
Blow your own trumpet.
Mention your magazine.

High Bred product from Vero: The Hybrid Board AB082
Newly available from Vero Electronics Limited, is this prototyping board.

Intended for general purpose R \& D, the 'Hybrid' Board is available to single Eurocard dimensions, $100 \times 160 \mathrm{~mm}$, and will accommodate up to twelve 14 or 16 -way ICs or sockets and any discrete components required.

With provision, via a copper pattern at one end, for a 64wav connector to DIN 41612 (not supplied) the board is manufactured from $1,6 \mathrm{~mm}$ epoxy glass.
Further details:
Varo Electronics Limited, Industrial Estate, Chandler's Ford, Eastleigh, Hampshire, SO5 3ZR. Tel: (042 15) 69911

The giants ITT and Centronics have pooled resources and knowhow to market the latter's printers. Also distributing the printers are Sintrom Electronics, Cable \& Wireless, Dacoll (Scotland) and Cara (Ireland).

Signing the Centronics/ITT contract are, from left to right: Keith Williams, Divisional Manager, ITT Electronic Services; Chris Gill, Systems Manager, ITT Electronic Services; Mike Boyle, Distributor Sales Manager, Centronics Data Computer (UK) Limited.
Further information from:
Marilyn Holmes. Telephone: Bracknell (0344) 54471

LOGIC MONITOR LM2
The Continental Specialties Corporation call this the "poorman's logic analyser". Price is E68.95. It monitors the logic high state of each of the 16 pins of a standard DIP IC through the lighting of a small LED.
Details from:
CSC, Shine Hill Industrial Estate, Saffron Walden, Essex CB11 3AQ Tel: 079921682

This illustration of Centronics' printers will appear on the front cover of a new brochure being produced and distributed by ITT Electronic Services.
Further information from:
Marilyn Holmes. Telephone: Bracknell (0344) 54471.

Versatility, whén selecting a business computer, means buying a system that will save you enough money to pay for itself in a reasonable amount of time. The more your computer will do, the more money you will save.

The new MSI System 10 is designed to help your business get the most out of a computer . . . and at a price you can afford to pay.

The System 10 processor is the powerful MSI 6800A computer with 56 K of RAM memory. Also housed in the computer module is a Dual Double Density Mini-Floppy Memory which gives you another 630 K of memory for program loading, back-up, software updates and exchanges. For mass storage, the System 10 contains the MSI Fixed/Removable Hard Disk with 10 megabytes of memory. The System 10 also features an industry
standard CRT terminal and high speed printer. The entire system comes complete in a single compact desk unit.

A computer that expands with you
The System 10 makes expansion simple and economical. For situations where additional terminals are needed, MSI has a Multi-User BASIC program which will support up to four terminals. If you need computer power in other locations, any number of MSI 6800A computers can be linked to the System 10 in order to establish inexpensive branch operations.

A system for every application

While the System 10 is perhaps one of the most versatile computers, MSI currently offers nine other systems for use in business, scientific, educational, professional, and personal applications.

For more information about MSI Systems, products, and OEM components write or call.

Strumech Engineering
Electronic Development.
Portland House
Coppice Side,
Brownhills.
Tel. BRO. 4321
Telex: 335243

the Faces Behind the Places

Photographs by Yoshi Imamura

Peter Norman of Computer Centre. He's a very competitive man - and his customers can thank that instinct in him, because it's reflected in his prices. It will be no surprise to PCW if Peter Norman becomes a major figure in the small computer world. In the photograph is Computer Centre's own system, of which Peter Norman is immensely proud. Address: 9 De la Beche Street, Swansea, West Glamorgan.

Barbara Hall of American Data, the marketing company for Ohio Scientific Instruments. OSI is a very cost-conscious company, and the C2-4P that readers see advertised is proof of that. The Challenger 1P in the photograph is a packaged version of the OSI Superboard - a computer-on-b-board with outstanding specifications. The Superboard is not yet available in quantity in Britain

Roland Perry (standing), Nigel Day and Karen Duerden of Sintrom Microshop. While some of the flamboyant figures of the small computer world appear and disappear across the scene in nanoseconds, Roland Perry is hard at work building a solid image of dependability for Sintrom. The Vector MZ Isee PCW, April 79) is its stock-in-trade. Sintrom is at 14, Arkwright Road, Reading, Berks RG2 OLS. Tel: 10734) 84322. Telex: 847395. Cables: Sintrom Reading.

David Bannister and Vanessa Blackburn Kiddle of PCW. David claims to help the editor and Vanessa claims to manage them both. If you look very closely you can also see Phreakstein. And if you don't know PCW's address by now you must be even more bemused than its editor.

The completesupplier*RANCEPRICEDELNERY*

VDU+ Printer from $\ddagger 1395$

At less than the cost of any high speed keyboard printer the ADM-3A and SCI Printer combine to provide V.D.U. Teiminal and fast hard copy. The SCI prints at $2,200 \mathrm{cps}$ and is small, quiet and compact. The ADM-3A is one of the world's most successful dumb V.D.U.s. A full screen of data (24 lines $\times 80 \mathrm{ch}$) can be printed in under 1 second, so you don't keep your computer waiting.

Mass storage, intelligent data collection.
A J 211 Acoustic Coupler

Rugged and reliable coupler

ALSO AVAILABLE
SCI Rotary Printer Teletype 43 Typewriter Terminal Teletype 43 Portable Terminal Teletype 43 ASR Digital V100 VDU Lear Siegler ADM 3A Graphics VDU Lear Siegler ADM 31 VDU Lear Siegler ADM 42 VDU DLC 3000 Paper Tape Terminal Techtran 816 Range Data Cassettes
from $\mathbb{1} 739$
from $£ 995$
from £ 995 from E1549 from E 1194
from f1:395
from E : 309
from E1149
from $£ 920$
from $\mathbb{E} 69$

Also LS 120,LX 180, VT52

Introducing the personal computer you've waited for.

* WORD PROCESSING, COBOL, FORTRAN etc
* PLUG in rom cartridges
* WORKS WITH NORMAL TV
* S100 EXPANSION UNIT
* cassette interface
* 280 CPU
* 32K RAM ON BOARD

* A REAL BUSINESS MACHINE

please make cheques and postal orders payabie to JADE phone your order quoting ACCESS or VISA number tor technical information or advice phone 073666565

The Sorcerer Computer is a completely assembled and tested computer system ready to plug in and use. The standard configuration includes 63 key typewriter.style keyboard and 16 key numeric pad dual cassettes $1 / 0$ with remote computer control at 300 and 1200 baud data rates. RS232 serial I/O for communication. parallef port for direct Centronics printer attachment, 280 processor. 4 K ROM operating system, 8 K Microsolt BASIC in separate plug-in ROM $\mathrm{Pac}^{\text {TM }}$ cartridge, composite video of 64 chars $\times 30$ lines, 128 upper/lower case ASCII character set and a 128 user-detined graphic symbols, up to 32 K on-board RAM memory, operators manual BASIC programming manual and cassette/video cables, connection for S 100 bus expansion unit giving access to the spectrum of exciting and useful weripheral devices, such as Floppy disk drives. voice recognition/synthesis battery back-up board in case of power failure, additional memory boards. E.PROM cards give vou the facility to program and re-program your own ROM memories etc. This is the most useable and flexible system that's now available to the home and business user at such a low price.

EXHIBITIONISM

LONDON

Microforum Europe '79 Wembley
Conference Centre.
Contact: Business Equipment Trade Assoc.
109 Kingsway, WC2B 6PU.
JUNE 26-29
OFFICE '79 (Office and Business Systems
Ex), Belle Vue, Magnum Exhibitions Ltd., 157 Station Road, East Oxted, Surrey RH8 OOF.
JUNE 11-14
The Great British Electronics Bazaar Alexandra Palace.
Contact: The Evan Steadman Communications Group 34-36 High St., Saffron Walden, Essex.
JUNE 28 - 30
1979 Microcomputer Show (Incorporating the DIY Computer Fair) Bloomsbury Centre Hotel.
Contact: Online Conferences Ltd.,
Cleveland Road, Uxbridge
JULY 5-7
International Word Processing Exhibition
\& Conference, Wembley Conference Centre.
Contact: Business Equipment Trade Assoc. JULY 10-13
European Conference on Applied Information Technology
Contact: 13 Mansfield Street,
London W1M OBP.
SEPT 25-28
Personal Computer World Show,
West Centre Hotel.
Contact: PCW Exhibitions, 62a
Westbourne Grove, London W1.
NOV 1-3
Electronics'79 Show, Olympia.
Contact: Industrial Trade Fairs Ltd.,
Radcliffe House, Blenheim Court.
Solihull, B91 2BG.
NOV 20-23
Breadboard ' 79 The Royal Horticultural Halls, Westminster, London SW1 Contact: Trident International Exhibitions, Abbey Mead House, 23a Plymouth Road,
Tavistock, Devon PL198AN.

ELSEWHERE IN BRITAIN

Managing Microprocessors Holiday Inn, Langley, Berks.
Contact: Thames Valley Regional Management Centre, Wellington St., Slough. MAY 30
Leeds Electronics Exhibition, Leeds University.
Contact: Dept. of Electrical \& Electronic Engineerings, Leeds University LS2 9JT. JULY 3-5
Electrical \& Electronics Exhibition, Exhibition Centre Bristol.
Contact: Exhibitions for Industry Ltd.,
157 Station Road East, Oxted, Surrey.
SEPT 10 - 13

THE CONTINENT \& ELSEWHERE

Computer Hardware, Software,

Systems \& Services Exhibition.
Contact: SDL Exhibitions, 68 Fitzwilliams Sq. , Dublin.
MAY 29-31
EDP/USA '79 Milan.
Contact: U.S. Dept. of Commerce, Room 1014 Washington DC 20230.
JUNE 12-15
International Microcomputers Minicomputers, Microprocessors Exhibition and Conference Geneva.
Kiver Communications S.A., 171/185 Ewell Road, Surbiton, Surrey. JUNE 19-21

Computing Techniques, Business \& Copying Machines Exhibition Bucharest.
Contact: Publicom Publicity Agency, Bd. N. Balcescu 2Z, Bucharest. JUNE 19-22
Microcomputers, Microprocessor '79 Exhibition, Geneva.
Contact: Kiver Communications S.A. 171/185 Ewell Road, Surbiton.
JUNE 19-21
Electro-Electronic Trade Fair, Sao Paulo Contact: A.M.I. Ltd., 97/99, Park St., London W1.
JUNE 25 - JULY 1
Consumer Electronics Show, Sydney.
Contact: Riddel Exhibition Promotions Ltd., 166 Albert Road South, Melbourne 3205.

JUNE 28 - JULY 2
Euro Micro '79 Goteborg.
Contact: Swedish Trade Fair Foundation, P.O. Box 5222, S-40224, Goteborg. AUG 28 - 30
INFO ASIA (Information Management
Ex.) Tokyo. ECL (Ex. Agencies) Ltd.,
11 Manchester Square, London W1M 5AB. SEPT 5-8
OFFICE (Office Machinery \& Equipment Ex.), Oslo Norway. Norges V aremesse, PO Box 130, Sloyen, Oslo 2.
International Exhibition of Computers \&
Peripheral Equipment, Munich
ECL (Exhibition Agencies Ltd., , , 1 1
Manchester Square, London W1.
SEPT 17-21
SICOB (International Office Equipment Exhibition), Paris.
French Trade Exhibitions, 54 Conduit Street, London, W1R 9SD.
SEPT 19-28
International Computer \& Business
Efficiency Exhibition, Stock holm.
Marketing Exhibitions Ltd., 113/123
Upper Richmond Road, London SW15 SEPT 27 - OCT 3
International Electrical/Electronics
Conference \& Show, Toronto.
Westbourne Marketing Services Ltd., Crown House, Morden, Surrey.
OCT 1 - 3
INTERBIRO - EDUCA (International
Ex. of D.P., Office Equip., Teaching \&
Training Equip.), Zagreb, Yug.
ECL, 11 Manchester Sq., London,
W1M 5AB.
OCT 15-20
Electronic Show Kowloon
Contact: HK Productivity Centre, Sincere
Building 20/F 173 Des Vouex Road
Central Hong Kong.
OCT 3-8
Eltro-Hobby '79 Stuttgart
Contact: G.E.S. (Overseas) Ltd., 181 Queen Victoria Street, London EC4 OCT 3-7

Electro Technical Trade Exhibition,
Dortmund. Westfalenhalle GmbH
Ausstellungen, Rheinlanddamm 200. 4600 Dortmund.
OCT 10-13
International Computers, Electrical
Technology and Communications
Exhibition, Sydney.
Convention \& Exhibition Administration, 61a Hill Street, Roseville, New South
Wales 2069.
OCT 16-19
Semicon (Japan); Tok yo,
Golden Gate Enterprises Inc., De Anza
Office Center. 1307 So. Mary Ave.,
Suite 210 , Sunnyvale; CA, USA
NOV $28-30$

Electrical Technology \& Professional
Electronics - Finntec ' 79 Helsinki
Contact: ECL (Exhibition Agencies Ltd.,)
11 Manchester Sq. , London W1.
NOV 6-10

International Electronics Exhibition

Brussels.
Contact: Brussels International Trade
Fair, Palais du Centenaire, Parc des
Expositions B-1020 Brussels.
NOV 26 - DEC 1

THE UNITED STATES

Summer Consumer Electronics Show,
McCormick Place, Chicago, IL.
Contact: Consumer Electronics
Two Illino is Center, Suit 1607, 233 N.
Michigan Ave., Chicago, IL 60601.
JUNE 3-6
Semicon East, Boston. Mass. Golden Gate
Enterprises Inc., De Anza Office, 1307
So. Mary Ave., Suite 210, Sunnyvale,

CA 94087

SEPT 18-20
COMPUSIGN (Components, Equipment
\& Materials for Computers Ex.) Anaheim,
CA. Golden Gate Enterprises, Inc., De
Anza Office Center, 1307 So. Mary Ave.,
Suite 210, Sunnyvale, CA 94087.
OCT 9-11
INFO (Information \& Management
Systems Exhibition) New York
ECL (Exhibition Agencies Ltd.,)
11 Manchester Square, London W1M 5AB.
National Computer Conference and
Personal Computing Festival, New York City, NY.
Contact: AFIPS, 210 Summit Ave.,
Montvale, NY 07645. (021) 391-9810
JUNE 4-7
Atlantic Coast Microcomputer Show
Deauville Hotel, Miami Beach, FL.
Contact: Bud Felsburg, Felsburg
Associates, P.O. Box 735, Bowie, MD
20715. (301) 262-0305.

JULY 13-15
International Minicomputer Exposition,
Dallas Convention Center, Dallas, TX.
Contact: I.M.E. 413 Carilon Tower,
13601 Preston Road, Dallas, TX
75240 (214) 271-9311.
SEPT 6-9
Personal and Small Business Computer
Show, New York, NY.
Contact: Ralph lanuzzi, H.A. Bruno and Associates Inc., 78 E. 56th St., New York, NY 10022
SEPT 13-16
Personal Computing '79, Philadelphia
Civic Center, Philadelphia, P.A.
Contact: John Dilks, Rte. 1, Box 242
242, Mays Landing, NJ 08330.
OCT 5-7
5th West Coast Computer Faire,
(tentative), Los Angeles Convention
Center, Los Angeles, CA.
Contact: Jim Warren, The Computer
Faire, P.O. Box 1579, Palo Alto,
CA 94302.
NOV $2-4$.

PROFESSIONAL BUSINESS PACKAGES PERSONAL COMPUTERS FOR BUSINESS

Realistic applications software available now with microcomputers, including the new ITT 2020 (a development from the Apple which has improved memory organization and UHF modulator for TV monitor), Apple II and DTC Microfiles.

* SALES * PURCHASES * GENERAL LEDGER *

Also for early release, PAYROLL, INVENTORY and POINT OF SALE. These systems operate in a real time environment, provide on demand transaction processing, analysis, aged debtors, minimal disk storage requirements, formatted screens, configuration adjustment by user for multi-disk and multi-volume files, validated input and comprehensive operating instructions Dealer enquiries are welcome.

168 FINCHLEY ROAD, LONDON NW3 TEL: 01-794 0202

Expand your Pet so ite full capability with these profestional peripherals

Dual floppy disk unis

A COMMERCIAL GRADE DISK SYSTEM FOR THE PET
Upto 800K Bytes on Line Mass Storage High Speed D.O.S. in ROM
Effectively doubles PET operating syssem commands

- Complete documentation allows use of full resources
- Handles up to four disk drives

Includes Commercial Printer Support
Adds 16 commands to PET basic
Autometic self reorganisation of free space on disk after each save or erase command - Free space is never fragmented

PRICE 5840.00 + VAT

Expandom momory expanaion board

General purpose expansion system for PET and other 6502 Computer Systems (e.g. KIM, SIM, AlM).

- 24 K to 32 K Low Dissipation RAM Mounting slots for 4 option cards All All necessary cables and brackets Disk Controller
Parallel 1/0
Sockets for Eprom
Flexible Serial I/O
S100 1/O Driver
24 K Board f 320.00 + VAT

Plessey Potite add-on mamory From Europa's lergest memory board eupplier
Stend-alone, plug-in memory expansion. Available in $8 \mathrm{~K}, 16 \mathrm{~K}, 24 \mathrm{~K}$, and 32 K versions. Complete in case with built-in P.S.U.
24K£449.00 + VAT

PET 2001-4 4K Bytes of Memory
C $460.00+$ VAT
PET 2001-8 8K Bytes of Memory
5550.00 + VAT

PET 2ND Cassette Unit $\quad 555.00$ + VAT PET Sound Box Plugs direct into 2nd Cassette Port complete with Demo Software
$\mathbf{5 1 2 . 9 8}+$ VAT
PET Dust Covers To protect your PET-(Four Colours) Rust, Blue, Beige, Green
$\mathbf{5 . 3 3}+$ VAT
PET TV Interface Plugs direct into user port Superb Specification $£ 45 \cdot 29$ +VAT

Sofiware

Estate Agency: Very choap, very effectiva method of showing properties to customers. Automatic deletion. Printed copies for prospecive purchasers (Now available on disk). £25.00 Mail List: Printout all your mailshots, names and addresses; printout on self-adhesive labels: disk only, 15.
Payroll: Complete suite, abundant storage on disk. End-of-year summary; coin analysis; two payslips; excellent value; disk only, f50.
We supply all Commodore, Petsoft and Compusette programs. We should be glad to quote for dedicated software applications.
R.H. Mastermind: Surely the best Mastermind ever, 3 Games levels. f5.00
R.H. Shape Matching: Match up two different shapes to score. You against the other guy, You will have to be sharp for this one. $\quad \mathrm{E} 5.00$

Access and Barclaycard accepted for Telephone and Postal Orders.
All prices include post and packing (insured post extra).
We should be glad to discuss your problems of requirements relating to technical matters, software, etc-in-house software experts available.
Dealer enquiries invited for allour stock litems.
U.K.-wide service by our specialist technical staff. Maintenance contracts available after our one-year guarantee at $7 \frac{1}{2} \%$ of capital purchase price.

COMPUTER LANGUAGES

The Multilingual Machine

G. J. Marshall
(Department of Electronic' and Communications Engineering, The Polytechnic of North London)

The developments and improvements that have occurred during the evolution of programming languages can be interpreted as responses to the needs of the programmer. Increasingly sophisticated languages have provided him with much needed tools and techniques for the solution of ever more difficult and complex problems. The aims of this article are to describe the development of computer languages, to give the flavour of some of them and to examine the effects of language developments on personal computing.

Introduction

The process of solving a problem with the aid of a computer can be divided into three parts, they are:-
i) specify the problem,
ii) find a method to solve the problem, and
iii) communicate the method to the computer.

The first step seems obvious. However, on occasion, superb prog. rams have been written to provide the solution to a problem which, on further investigation, turned out to be the wrong problem. The second step is to find or devise a suitable algorithm. In a business environment, the first two steps are, essentially, what is known as systems analysis. Step three relates to the subject of this article, for the way to communicate a solution method to a computer is to express it in a language that the
computer can understand. This is, in essence, what a computer programmer does (he may, of course, carry out the work involved in steps one and two as well).

The aims of this article are, then, to review the development of computer languages, to illustrate features of some of the languages and their applications, and, finally, to examine the impact of computer languages on personal computing.

From Machine Code to
 High-Level Languages

All computers, whether large main-

Fig. 1. Action of an assembler.
frame computers or microcomputers, can only store, and operate on, binary digits. Data and instructions are stored and understood by the computer as patterns of binary digits.

Also, each computer has its own set of instructions, with one instruction for each action that the computer can perform. Thus, a computer, fundamentally, can only obey an instruction that belongs to its instruction set, and it can only understand an instruction when it is expressed as a binary pattern. Another way of expressing the same ideas is to say that a computer can only understand its own machine code. A segment of a machine code program for an eightbit computer is listed as Program 1. (See p. 22)
It is clear that, while machine code is suitable for computers, it is far from ideal for people. We will return to the machine code program to consider its meaning shortly.

Program 1. Machine code program.
Programmers who had to write machine code programs naturally found it impossible to develop their programs from scratch as sequences of binary patterns, since mistakes were easy to make but hard to detect. They soon developed the habit of assigning each instruction a short mnemonic, such as LDA for LoaD a number into the Accumulator and STA for Store the contents of the Accumulator. Only at the final stage of loading the programs into the machine were the mnemonics replaced by their binary codes. In due course, it was realised that this coding chore could be undertaken by the computer itself and so assembly codes originated. A short assembly code program is given as Program 2.

LDA	12
ADD	15
ADD	7
STA	20

Program 2. Assembly code program.
This program finds the sum of three numbers, previously stored in the locations with addresses 12,15 and 7, by loading the contents of location 12 into the accumulator, adding the contents of location 15 to it and adding the contents of location 7 to that: the sum is stored in location 20 so that it is preserved and the accumulator is available for other computations. The program has a degree of generality, for it can compute the sum of any three numbers that are stored in locations 12,15 and 7.

The assembly code instructions of Program 2 are each equivalent to one machine code instruction. This is true of most of the instructions in any assembly code, although facilities available with some assembly codes, most notably macro processors, make certain instructions equivalent to several machine code instructions. Assembly code instructions cannot be executed directly, but must first be translated to machine code. This translation is performed by a special program called an assembler: its operation is represented diagrammatically in Figure 1. To illustrate the basic principles of operation of an assembler, Program 2 can be assembled manually to provide the equivalent machine code program with the aid of the code in Table 1. To translate the instruction LDA 12 to machine code the mnemonic LDA is replaced by its code 000 and the decimal address 12 is replaced by its (five digit) binary equivalent 01100 to give the eight (binary) digit pattern

00001100 . The same process applied to the other instructions converts Program 2 to Program 1.

mnemonic	code
LDA	000
ADD	001
SUB	010
STA	011
JUN	100
JEQ	101
EOR	110
STOP	111

Table 1. Three digit code for eight operations.

Trade Off

When machine code instructions are represented by patterns of eight binary digits, there is a trade-off between the number of operations that can be represented and the number of locations that can be addressed. In the example just discussed, assigning three digits for the operation code allows $2^{3}=8$ operations and $2^{5}=32$ different addresses to be represented. If two digit operation codes are allocated then only $2^{2}=4$ operations can be represented (see, for example, Table 2) but $2^{6}=64$ addresses can be accessed. It should be clear that representing instructions by patterns of eight binary digits imposes considerable restrictions. These restrictions do not apply to computers with longer word lengths. It is probably necessary to use two (8-bit) words to represent instructions in an eightbit machine.

mnemonic	code
LDA	00
ADD	01
SUB	10
STA	11

Table 2. Two digit code for four operations.
A typical instruction set, that of the MOS Technology 6502 micro-

Arithmetic: ADC, SBC
Logical: AND, EOR, ORA
Load and Store: LDA, LDX, LDY, STA, STX, STY
Jump and Branch: BCC, BCS, BEQ, BMI, $B N E, B P L, B V C, B V S, J M P, J S R, R T S$ Increment and Decrement: DEC, DEX, DEY, INC, INX, INY
Transfer: TAX, TAY, TSX, TXA, TXS, TYA
Shift and Rotate: ASL, LSR, ROL, ROR Compare: CMP, CPX, CPY
and fifteen others, including NOP
Table 3. Instruction set of the 6502 microprocessor.
processor (which is used in KIM and PET), is listed in Table 3. It is worth stressing that only two of the 56 instructions are arithmetic, implying quite clearly that the microprocessor is not primarily intended for 'number crunching'.

Auto Codes

The next development in computer languages was the emergence of autocodes. The early, relatively primitive, autocodes have instructions of the form
$A=A+B$
$X=A+C$
These two instructions cause the values of the variables A, B, and C to be added and assigned to the variable X . The introduction of variable names relieves the programmer of address management chores by passing this task to the translation program. Primitive autocode instructions of this type are equivalent to three assembly code instructions - a load instruction and a store instruction so that the programmer now handles a larger amount of computation per instruction than with an assembly code.

However, the task of adding three numbers still cannot be achieved with a single instruction. More sophisticated autocodes were developed, including Mercury Autocode, Extended Mercury Autocode and Atlas Autocode. Each of these languages is specific to a particular machine, but the latter, at least, deserves to be classified as a high-level language, in the sense that its instructions can describe a large amount of computation, being, in appearance, very similar to those of Algol. The development of autocodes overlaps the emergence of the so-called high-level languages. The most widely used ones, in scientific applications, are FORTRAN, Basic and Algol 60. In each of these languages three numbers can be added together by executing a single instruction. The instructions are:
in FORTRAN:- $\mathrm{X}=\mathrm{A}+\mathrm{B}+\mathrm{C}$
in Basic:- LET X $=A+B+C$
and in Algol:- $\mathrm{x}:=\mathrm{a}+\mathrm{b}+\mathrm{c}$
The trend of these developments was to throw an increasing amount of the mundane management chores onto the translation program, thereby relieving the programmer and absolving him from the need to understand the detailed workings of the computer he was using. Also, single instructions

Fig. 2. Action of a compiler.
describe increasingly large amounts of computation, implying that they are equivalent to increasing numbers of machine code instructions. This gives the programmer a better chance of comprehending his entire program; in a phrase, of seeing the wood rather than the trees.

The translator for a high-level language program is called a compiler. Its operation is represented diagrammatically in Figure 2. Clearly, a compiler performs a much more complex task than an assembler. A compiler translates a complete highlevel language program to a complete machine code program prior to its execution. A program to translate a high-level language for execution one line at a time is called an interpreter. Although the use of an interpreter increases program execution times, it makes possible interactive working.

High-level languages

FORTRAN was the first of the high-level languages, emerging from IBM in 1957. Algol 60 was formally defined by a report dated 1960, and implementations followed that date. These two languages were intended for scientific and engineering applications. Basic, which was intended as a teaching language that would be easy to learn and to use, was devised at Dartmouth College, USA, in the early 1960s. Mean while, COBOL had arrived as a high-level language for business applications.

The widespread use of high-level languages, and, of course, their compilers, gave rise to the 'virtual machine concept'. Broadly, this is the idea that a computer can seem to understand FORTRAN (or, indeed, any other language) when the appropriate compiler is stored in its memory. Programs written in a high-level language can then be automatically translated to machine code and run by the computer in a way that need not concern the high-level language programmer at all. Thus, by using the stored program facility to store a translation program, a computer appears to be something it really is not.

These languages, while by no means the only ones, are typical of the early high-level languages. The remainder of this section is devoted to an account and comparison of some of their features.

The features to be considered are:-
i) Input and output

Input, in the form of a value for a variable, A, can be obtained by the following instructions in FORT. RAN, Basic and Algol, respectively: READ (1,100) A (Fortran)
100 FORMAT (F10.2)
! NPUT A (Basic)
a: = read \quad (Algol)

The FORTRAN instruction reads a number from the input device assigned to channel 1 . The 100 refers to the format which specifies the form of the number and its precise location, on, for example, a data card if the input device is a card reader. The Basic instruction is for interactive in put from a keyboard and is obviously much easier to use. The Algol instruction is from ICL Algol and is probably unique to that implementation. The one language feature not defined in the Algol 60 report was input/output, so that the form of these instructions is left to the discretion of the language implementer and almost certainly varies from implementation to implementation. Output instruction in these languages resemble in put instructions and illustrations are given below.

ii) Conditionals

The forms of the conditional instructions in the respective languages are illustrated by:

$$
\begin{aligned}
& \text { IF (A.GT. } 2.5 \text {) } \mathrm{S}=\mathrm{A}+\mathrm{B} \ldots \text { Fortran } \\
& \text { IF } \mathrm{A}>2.5 \text { THEN } \mathrm{S}=\mathrm{A}+\mathrm{B} \\
& \text { if } \text { Basic } \\
& \mathrm{if}:=2.5 \text { then } \mathrm{s}:=\mathrm{a}+\mathrm{b} \text { eise } \\
& \mathrm{s}:=\mathrm{b} \ldots \text { Algol }
\end{aligned}
$$

The instructions all have the general form:
'IF condition THEN conditional instruction', but with variations. During program execution, the conditional instruction is executed only when the condition is true. The FORTRAN instruction is clumsy and the use of the same symbol as a separator and a decimal point is confusing. The Basic form is more readable and the inclusion of THEN is very helpful. However, the Algol instruction with the 'else' at the end is much more powerful.

iii) Repetition

One of the strengths of the
computer is the ease with which it can perform actions repetitively. For this reason languages must contain features that facilitate the handling of repetition. The facilities for repetition in the various languages are illustrated by short prog. rams to print out the integers from 1 to 20 . These programs also illustrate the output instructions.

$\begin{array}{r} 101 \\ 50 \end{array}$	DO 50 I $=1,20$ WRITE $(6,101)$ (FORMAT (13) CONTINUE Fortran	
$\begin{array}{ll} \hline \text { FOR I }=1 \text { TO } 20 \\ \text { PRINT I } \\ \text { NEXT I } & \text { Basic } \end{array}$		
	for $\mathrm{i}:=1$ step 1 until 20 do begin print (i, 2, 0) end	Algol

The shorthand for repetition in Fortran and Basic is similar, although the need in FORTRAN to identify the end of the loop with a number can be irksome. The arrangement in Algol is perfectly explicit and easily readable.
iv) Data structures

Arrays are almost the only facilities provided for structuring data in the early high-level scientific languages. These structures are well suited for handling vectors and matrices. The instructions in the respective languages for reserving storage space for a onedimensional array are:-

DIMENSION V(10) Fortran DIM V(10) Basic real array $\vee[1: 10] \quad$ Algol
The FORTRAN instruction reserves ten locations for variables named $V(1)$ to $V(10)$, while, in most dialects, the Basic instruction reserves eleven locations for $V(0)$ to $Y(10)$. The Algol instruction is explicit.

Cobol, which is intended for use in commercial applications, has instruc:

Fig. 3. Cobol Structure.
tions of a different appearance to those of the scientific languages. Only simple arithmetic facilities are necessary, the major facilities are provided for reading and updating file records and filling in forms. The language is intended to be readable. The Cobol instruction:

MOVE X TO Y

is equivalent to the FORTRAN instruction $\mathrm{Y}=\mathrm{X}$, while

ADD BALANCE TO OLDTOTAL GIVING NEWTOTAL isequivalent to NEWTOTAL = OLDTOTAL + BALANCE. Cobol has more sophisticated data structures than the scientific languages and can support structures such as the one illustrated in Figure 3. Selection of an item in such a structure is achieved by: LAST NAME IN NAME IN EMPLOYEE

Arrays of such structures can also be used, for example

EMPLOYEE (1:25).

Structured Programming and Languages for it

The next stage in language development was the emergence of languages to permit structured programming. The need for such languages emerged because programmers were experi-
encing intense difficulty in the development of long programs. The difficulties arose largely because language facilities were not a vailable to permit the management of a natural flow of control in large programs, so that programmers were forced to use clumsy and unsuitable constructs.

The fundamental concepts of structured programming follow from the idea that the structure of a program should reflect the structure of the problem solution method. If programs can be written in this way they are automatically readable. Thus, there is no real need to add comments to a program to make it readable. More importantly, programs are made more easy to debug because the logical flow of the solution method is preserved directly by the program itself. Properly structured programs are also easier to develop and test because, as illustrated in Figure 4, they can be divided into modules, each of which has only one entry and exit point, that can be developed and tested independently.

The shortcomings of the early high-level languages arise from the fact that they do not provide features to make possible the writing of large, properly structured programs. The languages that are intended for structured programming include Pascal and Algol 68. PL/1 also has facilities for structured programming,

Fig. 4. Good (a) and bad (b) program structures.
although it was conceived as a general purpose language, combining the features of both FORTRAN and Cobol while showing the influence of Algol 60. Pascal was intended as a teaching language that would demonstrate programming as a systematic discipline and that could be efficiently implemented in a compact manner. The first operations compiler became available in 1970. Algol 68 was defined by a formal report dated 1968; it is a general purpose language developed from and updating Algol 60.

It is rather difficult to properly illustrate structured programming without examining long programs. However, the examples and programs discussed in the remainder of this section may give some flavour of it. The Basic program listed as Program 3 can be said to be a very bad one!

```
\(10 A=1\)
\(20 \mathrm{~B}=2\)
30 GOTO 60
40 PRINT C
50 STOP
\(60 \mathrm{C}=\mathrm{A}+\mathrm{B}\)
70 GOTO 40
```

Program 3. A 'spaghetti' program.
A short examination shows that the same computational process is described by Program 4. Program 3 is a 'spaghetti' program that can be reduced to a linear program as in Program 4. (Imagine holding the ends of a piece of spaghetti and puiling until it untangles!)

```
\(10 A=1\)
\(20 B=2\)
\(30 \mathrm{C}=\mathrm{A}+\mathrm{B}\)
40 PRINT C
50 STOP
```

Program 4. Linear program equivalent to Program 3.

Now, when programming in one of the early high-level languages it; is not always possible to write a linear program to express a linear solution method. Typically, the GOTO construct has to be used in a manner that destroys the linearity. (This is equivalent to pulling the ends of the spaghetti and finding that a knot has been produced!)

To illustrate how programs in an appropriate language can reflect a solution method better than another language, we consider two problems and present programs for their solution in Pascal and in Basic. The first problem is:-

Read numbers from data until the first negative number is encountered. Then print out its position and stop.

The natural solution method is to repeatedly read numbers and count them until a negative number is read, and then to print out the value of the counter before stopping. This method can be expressed directly in Pascal as in Program 5.

Fig. 5. Lists and their representations .

Program 7. Pascal program for problem 2.
(* is the multiplication symbol)

$$
\begin{aligned}
& i:=0 \\
& \text { repeat read (} n \text {); } i:=i+1 \text { until } n<0 \\
& \text { writeln (i) }
\end{aligned}
$$

Program 5. Pascal program for problem 1.

Reductions on the full rail fare for a journey are given according to both the length of stay and the age of the passenger as shown in the following tables:-

Length of stay (days)	Discount on full fare
1	50%
$2-14$	30%
15 or more	0

Age (years)	Actual Fare
under 3 $3-13$ over 14	free
half discounted fare	
discounted fare	

Given the full fare, length of stav and age
of the passenger, compute the actual fare
to be paid.

A Pascal program for this which captures the natural solution method is given as Program 7. The variables $f f$, af and fare are used to hold the values of the full fare, adult fare and the fare to be paid, respectively. It is left as an exercise for the reader to attempt the same thing in Basic or FORTRAN.

Special Purpose Languages

All the languages mentioned to this point are intended for either scientific or commercial application. However, other languages have been developed for particular special purposes. These include languages designed for manipulating particular data structures, most notably for manipulating strings and for processing lists. Snobol is the major language designed principally for string manipulation. It has facilities that include pattern matching and pattern replacement. A typical Snobol instruction is

STR "ED" : S(FOUND)

The effect of this instruction is to scan the string named STR for the pattern ED and if the search is successful to jump to the instruction labelled FOUND. The original string manipulation language is LISP. A typical LISP instruction is

((EQ (CAR LAT) A) (CDR LAT))

The applications of string manipulation and list processing include linguistic analysis, compiler writing, computer assisted instruction and artificial intelligence.

Two examples may show, in a limited way, how list processing can be used, but first the meaning of a list must be explained.

A list of the four elements A, B, C and D can be represented by (A , $\mathrm{B}, \mathrm{C}, \mathrm{D}$) and the way in which it is stored is represented in Figure 5a. The figure shows that each element of the list is stored with a pointer to the next element, and this is the way that the elements of a list are linked. A more complex list is represented in Figure 5 b . The first example is drawn from a system developed by Terry Winograd for the machine comprehension of natural language.

The system manipulates a representation of a set of coloured blocks,

A Basic program to do the same thing is given as Program 6 and is a little contrived.

```
\(10 \mathrm{I}=0\)
20 INPUT N
30 I = \(1+1\)
40 IF N < 0 GOTO 60
50 GOTO 20
60 PRINT I
```

Program 6. Basic program for problem 1.
Now consider a second problem which concerns the calculation of rail fares:-

Fig. 6. The blocks world.
such as the one illustrated in Figure 6. The system can understand and obey instructions expressed in natural language such as "put the small red block on the large green block". We consider only how the machine can determine what is meant by "the small red block". Given a list of all the blocks, (A, B, C, D), a list of the red blocks, (A, C), a list of the green blocks, (B, D), a list of the small blocks, (A, B), and a list of the large blocks, (C, D), then the small red block must be a block that is in both the list of small blocks and the list of red blocks. Thus, the small red block is block A.

It is worth noting that operations on sets are being implemented by using lists, for if the list of blocks is regarded as a description of a set, the lists of blocks with a particular property are subsets and the problem of determining what is meant by the small red block becomes that of finding the intersection of two subsets.

The next example illustrates how lists and list processing can be of value in enabling a robot to automatically determine the actions necessary for it to achieve a specified objective. Consider a robot in the rather simple situation illustrated in Figure 7 which is set the task of filling the bucket. The situation in the diagram can be represented by a list (known as the world list) thus:-
((ROBOT, IN,ROOM 2) (TAP, IN, ROOM 2) (BUCKET, IN, ROOM 1) (BUCKET, EMPTY)।

The situation on successful completion of the task is represented by this world list:-
((ROBOT, IN, ROOM 2) (TAP, IN, ROOM 2) (BUCKET, IN, ROOM 2) (BUCKET. FULL)

Now, each action that the robot can take alters the situation in some way and can be represented by a corresponding change in the world list. To achieve its task, the robot must determine an appropriate sequence of actions. This can be done by determining a valid sequence of changes to the initial world list which alters it to the world list representing the situation on completion of the task.

Fig. 8. Language tree.

Impact on Personal Computing

Figure 8 shows, in the form of a tree, the lines of development connecting the languages mentioned in this article. With regard to the languages that have made an impact on personal computing, assembly codes are not really in the running, since an assembly code is specific to a particular micro-processor making it difficult for one to achieve any general impact. The language that has made the greatest impact to date is Basic, and the most likely language to achieve general acceptance in the near future is Pascal.

It is interesting that both were designed as teaching languages. Their general acceptance probably stems from the fact that their principal aims fit the requirements of personal computing almost perfectly. In particular, Basic is easy to learm and

Fig. 7. A robot world.

Pascal is structured and capable of compact implementation. For both languages, interpreters seem to be more suitable than compilers for personal computing because the ability to interact with a program seems, in general, to be more desirable than attaining the shortest possible times for program execution.

As for the future, the possibility of natural language input, at least in a restricted form, has been touched on. Since a speech recognition unit is currently available for the Apple, perhaps programming will soon be possible by addressing the computer in almost ordinary English.

Bibliography

1. 'An introduction to the study of programming languages', D. W. Barron, Cambridge University Press, 1977. 2. 'A comparative study of programming languages', B. Higman, Macdonald and Jane's, 1967. Both books give more details of the languages mentioned in this article and of many other besides. 3. 'Pascal user manual and report', K. Jensen and N. Wirth, Springer-Verlag, 1975. The Pascal report and a tutorial style user manual. 4. 'Illustrating Basic', D. Alcock, Cambridge University Press, 1977. An entertaining introduction to Basic. 5. 'List processing', J. M. Foster, Macdonald and Jane's, 1967. A nice introduction to list processing and its applications. 6. 'Artificial Intelligence and Natural Man', Margaret Boden, Harvester Press, 1977. A description of artificial intelligence work that stresses its human relevance and includes an account of Winograd's blocks program.

Britain is a nation

 of PET lovers

Commercial
Scientist

for the first time user and the professional check out the PET, the world's most popular personal computer

* AVAILABLE in either $4 \mathrm{~K}, 8 \mathrm{~K}, 16 \mathrm{~K}^{*}$ or $32 \mathrm{~K}^{*}$ RAM. (*with large typewriter style keyboards.)
* CAPABLE - just like a traditional computer.
* UNDERSTANDABLE - fast, comprehensive and powerful -

BASIC is one of the easiest computer languages
to learn, understand and use. Machine language accessibility for the professionals.

* PERSONAL - easily portable and operated - just "plug in" and go. Unique graphics make fascinating displays.
* EXPANDABLE - built in IEEE-488 output, 8K RAM expandable to 32 K , parallel user port 2nd. Cassette interface.
* SERVICEABLE - easily serviced - only 3p.c. boards all readily accessible.

Commodore PRINTERS and DUAL DRIVE FLOPPY DISCS now available.

Contact your local dealer for a demonstration, also for memory expansion and peripheral details, also list of readily available soltware.

AUTHORISED COMMODORE PET DEALERS

Birmingham

Taylor Wilson Systems Ltd Knowle (05645) 6192

Bolton

B \& B Consultants
0204-26644
Bristol
Sumlock Tabdown Ltd
0272-26685

Cardiff

Sigma Systems Lid.
0222-21515
Derby
Davidson-Richards (Int) Lid
0332-366803

Durham

Dyson Instruments
0385-66937
Grimsby
Allen Computers
047240568
Gulldford
P.P.M.

0483-37337
Hemel Hempstead
Data Efficiency Lid
0442-57137
Hove
Amplicoa Micro Systems
0273-720716
Leeds
Holdene Limited
0532-459459
Liverpool
Dams Office Equipment Lid 051-227-3301

Liverpool

Rockliffe Brothers Lid
0515215830

London NW4

Da Vinci Computers Lid 012029630
London W.C. 2
TLC World Trading Ltd 01.839-3893

London EC1
Sumlock Bondain I.Id 01-253-2447

Manchester

 Cytek (UK) Lid 061-832-7604Sumlock Electronic Sucs. 061-228-3507

Morley (W. Yorks)
Yorkshire Electronic Sves. 0532-522181
Northern Ireland
Medical \& Scientific
08462-77533
Nottingham
Betos (Systems) Lid
0602-48108
Reading
C.S.E. (Computers)

0734-61492
Southampton
Symtec Systems Lid
0703-37731
Business Electronics 0703738248
Swansea
Radio Supplies (Swansea) 0792-24140
Thame, Oxon
Memec Systems Lid
084-421-3149

Woking

Petalect Lid
048-62-69032

Yeovil

Computerbits Lid 0935.26522

In case of difficulty call COMMODORE SYSTEMS DIVISION 360 Euston Road, London. Tel. 01-388-5702

America's Largest Full Line Microcomputer Company

ECUINOX 300

A powerful multi-user multi-tasking multi-language
16 -bit microcomputer time-sharing system

$$
\begin{aligned}
& \text { supporting } \\
& \text { " BASIC } \\
& \text { * LISP } \\
& \text { " PASCAL } \\
& \text { * Floppy discs } \\
& \text { " Hard discs }
\end{aligned}
$$

including a powerful Text Formatter, Assembly Language Development System and disc-based Sort utilities.

Priced from under $£ 5,000$

Write or phone for further information
EQUINOX COMPUTER SYSTEMS LTD
16 Anning Street,
New Inn Yard
London E.C.2.
(Tel: 01-739 2387/8/9)

For more Details send SAE to:

Quarry Hill, Box, Wilts.
$\mathrm{Tel} \underset{(0249)}{(0225)} 712317$

POLYTECIHNICAL PROCESSING Computer, Students, Teachers in Leicester Polytechnic

Philip Lawton ${ }^{1}$

The purpose of this article is threefold. Firstly to speculate about the future, secondly to describe the Leicester Polytechnic's present computers and show how they are used, thirdly to mention two favourite programs.

A Speculation

First a personal speculation about the future. A new computer laboratory consisting of 20 personal computers will be available with mainly BASIC, perhaps some PASCAL, FORTRAN, ALGOL, APL and other languages. It may be situated in the library, be open from 8 a.m. until 9 p.m. and be supervised by computer centre staff. Interactive computer programs with associated information for learning and calculation purposes will be available from the tutor on duty, these programs would be pre-recorded on cassettes, floppy discs or ROM's. Printers, graph plotters and recorders will. be available to plug into any computer when required. In addition a few intelligent terminals will be on-line to a national/international network.

Personal computers will be available in the present laboratories for simulations and for processing the results of experiments. They will be available for use in lecture theatres with the present closed circuit television system, and for use at home.

Finally, equipment will be available to prepare demonstrations of the use of programs in problem solving; for example, 35 mm camera, tape recorder, video recorder, data recorder, printer, plotter, along with the appropriate replay equipment.

The Present Set-Up
Now a description of our present computers. The central system, located in the Computer Centre, is based on a Burroughs B6700 computer with a memory of 224 K words (1 word is $48+4$ bits, 1 byte is 8 bits), 2 line printers, plus the usual collection of discs, tapes, card readers, modems and terminal lines. Connected to the computer are 28 visual display units (with edit facilities), 3 graphic terminals (2 storage, 1 refresh), 1 on-line digital graph plotter and numerous envoys and teletypes. From the user's view point the main features of the central system are that:- the visual display units (vdus) operate at 600 baud (60 characters a second) - the graphic terminals operate at 9600 baud - 6 languages are normally available - all the terminals are online to edit and modify programs -

The Central System

only 6 to 16 terminals share the data processor to run user programs at any time. In addition, a Honeywell H516 computer is available with:-a disc, graphics terminal, teleprinter, high quality graph plotter, high speed paper tape reader and punch.

The above equipment is distributed between a computer room, a terminal laboratory (16 vdus +3 printers), a graphics laboratory, and various other rooms. It is available for general use between $10 \mathrm{a} . \mathrm{m}$. and 9 p.m. and can be reserved by teachers for supervised student use.

In addition to the central system various Polytechnic Schools have their own computers; namely, Data General, Membrain, DEC, SWTPC's, PET's, and various microprocessor kits.

All these computers are used in two main ways, either to practice a programming language or to use an existing program. A disc based lib:ary of 250 programs for teaching and research purposes has been developed during the past 10 years. These programs are described in a software catalogue which is published by the information section of the computer centre ${ }^{2}$. In addition to the description in the catalogue, demonstrations of the on-line use of some of the interactive programs
have been recorded by means of slide/tape, video cassette, and audio cassette where the left channel is used for data and the right channel for speech. The audio cassette is replayed via a vdu to a television monitor or direct to a television set as illustrated in the photograph. ${ }^{3}$

The Polytechnic was a member of the Engineering Science Project ${ }^{4}$ of the National Development Pro-
gramme in Computer Assisted Learning (1972-77) along with many other Polytechnics and Universities. The results of this Development and the lists of programs available for transfer can be obtained from the Council of Educational Technology. ${ }^{5}$

Two favourites

Now a mention of two favourite programs. These are Interactive Simulation Language (ISL) ${ }^{6}$ and Impedance and Complex Number Calculations (AC) ${ }^{7}$.

ISL consists of 30 mathematical routines which can be interconnected in order to simulate dynamic problems ${ }^{8}$. The program is interactive and the results can be displayed graphically. The main routine is integration, other routines include summation, sine function, pulse, square waves, non-linear, unit delay, counters.

A favourite demonstration is illustrated in figures 1 and 2. Figure 1 shows a square wave synthesised from the first fifteen harmonics, whilst figure 2 shows an exponential decay synthesised from the resultants of the harmonics after each as "passed through" a capacitorresistor circuit (or mathematically equivalent system) ${ }^{9}$. The ratio of periodic time to time constant is 10 to 1.

AC consists of 6 mathematical routines (add, subtract, divide, multiply, parallel, square root) involving complex numbers. These routines can be linked together using standard electrical equations in order to analyse simple electrical circuits. It is used as an introduction to computer aided circuit design.

ISL is introduced to students by means of a problem investigating exercise in a laboratory class whereas ("See "The Learn Machine", PCW

Vol. 1, No. 121

Figure 1. Square wave synthesised from first fifteen harmonics.

Figure 2. Exponential decay synthesised from first fifteen harmonics.

AC has been used to solve problems by a weekly tutorial class. In both cases the use of computer programs enables more experience and knowledge to be gained in the same time relative to the situation a few years ago.

In conclusion, this author eagerly supports the concept of the Mobile Computing Laboratory for Schools proposed by Mick Coleman in a PCW article ${ }^{\mathrm{I}_{0}}$ and which is already available in Pennsylvania ${ }^{11}$. One of
the disappointments of the present situation is that local schools have not been able to take advantage of Computer Centre facilities because of the cost of a terminal and an acoustic coupler, and the telephone charges. But the Open University is doing an excellent job with its online computer system; also Prestel, Oracle \& Ceefax are here to use, and given sufficient demand their cost might remain steady in spite of inflation.

REFERENCES

1 The author is a Senior Lecturer in the School of Electronic and Electrical Engineering at Leicester Polytechnic.
${ }^{2}$ Software Catalogue September 1977 Software Catalogue 'Supplement 1 January 1978; Computer Centre, Leicester Polytechnic.
${ }^{3}$ Recording of the PCW article "Basic the First Steps" by Philip Couzens (Volume 1, Number 2) is illustrated on the screens shown in the photograph.
${ }^{4}$ The Engineering Science Project was based at Queen Mary College, University of London and directed by Dr. Smith, of the Computer Assisted Teaching Unit. This is now the Engineering Science Program Exchange.
5 The Council of Educational Technology for the United Kingdom, 3 Devonshire Street, London W1N 2BA (01636 4186) provides a programme of services for those interested in the application of computers in education and training.
6 Interactive Simulation Language developed by Dr. D.J. Holding, Queen Mary College, University of London.
Impedance and Complex Number Calculations developed by P.J. Lawton Leicester Polytechnic.
${ }^{8}$ PCW article titled "Cutting the World Down to Size" by Werner Sieber (Volume 1, Number 1).

- Wireless World article entitled "A check on Fourier with some side lights on the controversy about phase shifts" by M.G. Scroggie (November 1977).
- PCW article entitled "Do we want our schools to have a personal problem?" by Mick Coleman (September 1978)
Calnews 5 July 1976 (CET, see ${ }^{5}$) page 4. column 2. Department of Education at Pennsylvania State University, USA.

then you need a VECTOR GRAPHIC MZ based system from ALMARC

why?

ADS - 100 Business system with Centronics 779 printer: $£ 3855.00+$ VAT. Delivered \& Installed.
Leasing terms available - under $£ 30.00$ p.w.
Software prices on application

BECAUSE -
The MZ gives enough storage to make your system workable - at an unequalled price.

- BECAUSE -

The MZ is easily expanded.

- BECAUSE -

Almarc understand Y OUR needs. Notice how our systems are packaged to fit your office. The processor is in the printer stand to save space; and these are separated from the V.D.U. to fit into awkward spaces. The V.D.U. desk is at the right height for the typist. Good ergonomics Comfort and Safety.

- BECAUSE -

Almarc understand your problems. If you want to write your own packages then we can give you advice. If you want us to write your system we can do that as well, and at Almare we realise that your operator will probably be a typist and not a specially trained member of staff. We won't try to sell you packages we haven't got, or botched up U.S.A. packages.

- BECAUSE-

Almarc can offer hardware backup. If you live in the Midlands or London area then Almarc can give you onsite service. Maintenance contracts are available at surprisingly low cost.
Write or ring now! Our address is at the bottom of the page.

MIDAS

MIDAS S. 100 SYSTEMS

Substantial Mainframe to house your S100 system, with optional $5^{\prime \prime}$ or $8^{\prime \prime}$ disc drives. Special systems built to your requirements from 280 CPU and other S100 boards held in stock
Mainframes from $£ 228$
MIDAS 1 : Z80 System from $£ 625$ (built) MIDAS 2: Z80 Disc System from $£ 1100$ (built)

2K ZBug Monitor 1K RAM optional 2K EPROM Programmer Cassette Tape Interface Hex Keypad
12 Function Keys
2×8 Bit I/O Ports

6 Digit LED Display
S100 on Board Expansion
Substantial Prototype Area

Kit: £145
Built \& Tested: £195

Suppliers for:
JADE INC.
CROMEMCO
S D SYSTEMS ITHACA AUDIO ETC \& SSM GODBOUT \& others
Comprehensive Range of S100 Boards Stocked
Bare Boards - Kits - Built \& Tested
VIDEO ROM

DISCS | ROM |
| :---: |
| PARALLEL/SERIALI/O |

WRITE OR PHONE FOR CATALOGUE

SOFTWARE

BASIC
CP/M DOS
Z80 ASSEMBLER
MONITOR
BIOS
"Incredible sales figures - in December, January and February we were increasing turnover at about 100% a month."
"We're really serious about looking after people".
"We're the meat in the sandwich, between customer and manufacturer".

A PCW Conversation

THE EVERISS EXPRESS

The above quotes are from a PCW conversation with Bruce Everiss of Microdigital, Liverpool. The conversation ranged from his plans for expansion, to the market outlook, especially for retailing to the small business.

Bruce Everiss has a background in accountancy, a flair for promotion, and plenty of what advertisements for salesmen call "self-motivation". At first glance he seems young and diffident - but as he talks you can see how each phrase satisfies him with its aptness, to become the fuel for following phrases of increasing confidence and authority. Here is another sample of Everiss exposition: "We've been hiring new staff at the rate of one a fortnight. Microdigital has expanded to two suites of offices - we can give a red-hot service".

He seems particularly proud of his stock of books and the turnaround of his mail order service.

But Everiss, speaking from what he regards as a position of strength, doesn't skate over the problems. "We get a manufacturer's delivery date and then advertise in good faith, but there are delays sometimes. Then we get people wondering what's going on. We explain and inform. We are extremely patient because we are proud of our goodwill".

The Evangelist

Everiss is a great fan of the PASCAL language. In fact, while talking he was transformed from fan to evangelist. "PASCAL is totaily portable. A PASCAL program written for the APPLE can be run on a super-machine like the CRAY with absolutely no trouble".

In most people's mouths that would sound like bombast, but it's plain that Everiss lives for what he believes in - the spread of microcomputers. In his opinion, Government is well intentioned but bumbling, with a reaction time to events which is slow because of built-in inertia. So Government can - against its will, perhaps - be insensitive. He thinks that programs like TV's "Blake Seven" are doing more to popularise computers and educate people about them than anything any Government agency does. Government support goes to the bigger companies. "It totally ignores retailers who are doing the groundwork - and taking the risks".

And as for Liverpool, with its University - there's no place like home. "Liverpool University's microcomputer laboratory is the leading centre for microcomputer education".

Later in the conversation, Everiss reverts to PASCAL. Already, he says, PASCAL is the second language of Apple, and may be put on the Sorcerer. Its time is now dawning and the Age of Pascal will be the Age of People's Programming. "Basic is an abomination. Basic is the language of Babel".

PCW person hastily lights another cigarette. PCW is full of BASIC.

And talking of PCW, Everiss says its layout is terrible. Its contents great.

Micro Business

When asked about the requirements for setting up in dealing in
micros, Everiss says, "The technology is so new that a person's background is irrelevant . . . yesterday's window cleaner is today's authority" . . . If the man is intelligent enough, and interested enough, and can get proper backing.

Who's buying? "A lot of businesses, government departments, educational establishments and even multinational companies".

The small business market is there, all right - even the business owned and run by one person or partners. The potential can be realised, and people come to Microdigital looking for a job to be done; but Everiss says that small business applications need micros with at least one disk and file handling routines.

For him, a minimum configuration would be a system with a Disc Operating System of 10 K and user memory of 32 K . A printer would be needed, depending on the application. Microdigital is well placed to sell to the small business, as it's situated in the commercial centre of Liverpool - the equivalent of London's "square mile". And Microdigital's company secretary is also a senior partner in a firm of accountants. On his full-time staff there will be a commercial programmer, who's now looking at writing small business software for the Apple. The Apple, says Everiss, is "the premier machine in the market today". He cites the Trade Counter program for the Apple (at £25) as just one small example of the usefulness of the small computer in business. And people haven't yet looked closely at the practical possibilities of voice input/output, which the Apple has had for some time.

Everiss went on to describe Microdigital's set-up, in the process giving clues to what makes a successful micro retailing enterprise tick.
"This is a new industry. We find that the prime requirement for staff is intelligence rather than experience - in a totally new situation, what experience can be valid? If we took a top systems analyst and let him loose in this line of country, the man would be lost. We need intelligent, adaptable people, with no preconceptions. That is why no big company has succeeded in retailing personal and small business systems.
"The prime requirement is being fast on your feet - and a certain amount of prescience helps".
"I give my staff machines to take home at weekends. I ask them to put together kits like the NASCOM 1." You can't get hands-on experience sitting in an armchair and dozing over a book.

Professionalism

"I have no problems with staff discipline. I can do practically anything they can - that is, I can speak their language - so we're in touch. Everybody at Microdigital is so bright, anyhow. They need very little directing. Our staff find us, and not vice versa.
"I know it's easy to ramble on about customer goodwill and customer satisfaction - it looks good in print. But I believe in it. Our repair service has so far managed turnaround in a week, except", and Everiss winced, "when there's a shortage of a particular component.
"We're more professional than most. We don't believe in exploiting the keenness of an electronics hobbyist to do our repair work for us - the 'repair facilities' of some retailers are just a part-timer who's paid what his employers think he's worth; they get what they pay for; some don't pay very much. If I do anything I do it properly - that means using engineers in digital electronics; and they don't come cheap.
"We cheerfully hire out computers. A sale may be delayed while people are making friends with a computer, but we believe in the future. Then when someone buys a system, we tune it for him before he goes home. I'm not selling cars or fridges or take-away food. I don't regard people as consumers but as customers. Now I'm setting up a genuine technical consultancy service for really practical advice".
'Take the money and run' may be a cute caption for a cartoon, but it is a malevolent motto for microcomputer retailing.

The Categories

Everiss sees the market mainly in terms of its now classic categories: hobbyist, home computers, education and research, and data processing for the small business. He points out, however, that there is a vast market for small computers as adjuncts to bigger systems, in distributed data processing and scientific applications. Then, of course, there is proper electronics control using the dedicated microprocessor. There is a burglar alarm system by Chubb with a 6802 sitting in it. He is certain that the biggest single application affecting the public will be the microprocessor in cars. He has absolutely no doubt that ignition, fuel, readouts will all be controlled or implemented using the microprocessor.

He has one customer who's used the NASCOM to replace the hardwired logic in fruit machines, another using the SC/MP to control two separate machine tools. The micro is in some washing machines, radios and hifi, and will be in anything that can be controlled in discrete steps. It will be sitting there, a swift slave.

And Everiss more believes than hopes that the silicon slave will be exploited mercilessly to benefit all of us.

Stuart Danton

Introduction

We live in a rapidly changing world. Only 30 or so years ago the computer entered our lives and yet now, in the High Street, you can buy a pocket calculator more powerful than the early computers and get change from ten pounds!

The computer today comes in all shapes and sizes, from the largest mainframe or D.A.P. to the most modest of micro-computers. The SYSTEM ONE is a microcomputer but it is by no means a modest one. It boasts an MC6800 microprocessor, up to 56 K bytes of RAM and built-in backing storage provided by mini-floppy discs.

Even in its minimum configuration the SYSTEM ONE costs a bit more than the average British amateur would wish to pay for a personal computer; however, SYSTEM ONE falls naturally into a niche at the lower cost end of the professional market.

SYSTEM ONE is in fact a complete computer system available with single or dual disc drives and all the necessary support software. Although there are at present no standard application packages supplied specifically for the SYSTEM ONE, there is a wealth of such software that with the minimum of adaptation can be run on SYSTEM ONE to advantage due to two very good versions of BASIC
available from S.E.E.D., the suppliers of SYSTEM ONE.

The evaluation kit was the dual disc version with a 2 MHz MC6800 and 32 K of RAM. The terminal used was the SOROC IQ120 which is also available from S.E.E.D.

The Hardware

SYSTEM ONE is a well engineered product in a pleasant, sturdy, non ostentatious box. It is not particularly small, being about $21^{\prime \prime} \times 15^{1 / 2 "} \times 7 "$, but this reflects the fact that the hardware is well laid out on a solid chassis.

The box houses two Shugart SA400 mini-floppy disc drives, an

Stuart Danton is a former consultant with ICL Dataskil.
eight slot motherboard (five are used in the 32 K version) and the power supply. The box is well cooled by a rear mounted fan.

The power supply is rated to give +8 Volts at 18 Amps and +15 \& -15 Volts each at 3 Amps . These rails are further regulated at each board.

The motherboard uses the SWTP SS-50 bus and each board is held firmly in position by the connectors only.

The CPU board is the MSI CP-1 and is based on a 2 MHz MC6800. The 6800 can address up to 64 K bytes of memory, but having no input or output ports it uses some memory addresses for I/O leaving 56 K bytes as a practical limitation. The board provides for up to 4 K bytes of 2708 EPROM and uses an MCM6810A 128 byte static RAM. Clocks are provided for the serial interfaces as well as for the CPU. There are bi-directional bus drivers and address buffers and an MC6875 provides memory timing and DMA control.

On the 32 K RAM system, two MSI RAM-16 boards are provided. These use TMS4044 $4 \mathrm{~K} \times 1$ static RAMs. Address selection is by on board DIL switches. On the 32 K SYSTEM ONE the first 32 K of store is RAM.

The disc drives are controlled by a powerful single board, the SSB BFD-68, which uses the FD1771B-01 single chip disc controller. This leaves enough room on the board for the disc control firmware in on-board ROM (disc bootstrap and all the disc I/O routines). Communication with the CPU is via an MC6820 PIA.

The other board in the SYSTEM ONE is the MSI A- 1 interface adaptor which is capable of providing eight serial channels although on the SYSTEM ONE only one is required to connect to the terminal. The terminal governs the data rate and in the case of the SOROC IQ1 20 used on the evaluation SYSTEM ONE a zippy 19,200 BAUD.

Memory Organisation

The first 32 K of memory in the 32 K SYSTEM ONE is contiguous RAM. The locations from 0000 H to 67 FFH are available as user memory, locations 6800 H to 7 FFFH being used by the disc operating system. Locations 8000 H to 83 FFH are occupied by the disc firmware.

The SMARTBUG EPROM is on the CPU board and is located from E000H to E3FFH. The MCM6810A RAM is located from A 000 H to A 07 FH and is mainly used by SMARTBUG.

There are two other EPROMS on the CPU board. The first, located

MSInside
from E 000 H , is an extension to SMARTBUG provided by S.E.E.D., giving built in diagnostic aids including confidence tests, memory tests. The second is for interrupt vectors.

Controls

One expects a computer to be a mass of flashing lights and a complicated array of switches - that is if you watch T.V.! On the modern computer these functions are performed by monitors and operating systems so on SYSTEM ONE there are just three controls.

The first is the ON/OFF switch. On power up SMARTBUG is automatically started so that SYSTEM ONE is ready for use. The second control is the RESET switch which when used restarts SMARTBUG. The third initiates the disc bootstrap and providing that a DOS68 system disc is in DRIVE 0, the disc operating system is loaded to RAM and becomes operational.

System Software

At the "lowest" level is the elegant SMARTBUG intelligent monitor which provides the SYSTEM ONE programmer with several features including all the "front panel". controls and displays and is a very capable de-bugging aid. Having created a program, the user can use SMARTBUG throughout its development.

The assembly level program may be created using the editor and assembler package (discussed in more detail later), or, for small programs, with the aid of pencil and paper and SMARTBUG itself.

On start up SMARTBUG displays the prompt character (*) on the terminal indicating that it is ready for a command. Commands are recognised on the keying of a single character in response to the prompt.

Some commands require qualifying information and this is indicated to the user by a single space displayed on the terminal directly following the command. The following should give you some idea of just how useful SMARTBUG can be, and incidentally just how much software can be packed into 1 K bytes.

COMMAND
 FUNCTION

A Display content of A accumulator and allow its alteration to any value specified.
As A but for B accumulator.
C As A but for condition code register.
D DOS68 warm start (if previously loaded).
G Go to program starting at location indicated by the contents of locations A$048 \mathrm{H} \& \mathrm{~A} 049 \mathrm{H}$.
$1 \quad$ Insert specified value to all locations between two specified locations.
As G but stop program execution when location specified is reached and display current contents of all registers.
M Display content of specified memory location and if it is RAM allow its alteration to any value specified.
Q DOS68 cold start i.e. simulate DOS switch by boot-strapping the system disc.
Display contents of condition code register, B \& A accumulators, index register, program counter and stack pointer.
Trace through program one instruction at a time each time space keyed starting from specified location; at each step display as for R com. mand and display instruction code.

X	As A but for index register.
4	Transfer control to loca- tion E400H. Gives access
to S.E.E.D. diagnostic	
and confidence testing	
routines.	

The Operating System

The SYSTEM ONE operating system is DOS68. It is a fairly typical microcomputer operating system offering most of the system monitor facilities the user should ever require at console operation and programming levels.

DOS68 is first loaded into SYSTEM ONE by placing a system disc in DRIVE 0 and pressing the DOS switch. After a few moments of disc activity DOS68 "signs on" by displaying on the terminal its name and version number followed by the DOS68 prompt character (\&) on the next line. Once loaded to RAM the facilities of DOS68 are available. DOS68 may be warm started using one of the many system functions.

DOS68 is well supported by the BFD-68 System Manual supplied with the BFD-68 disc controller. It provides comprehensive information about the hardware as well as the DOS68 operating system itself. Operators and programmers guides are included in the manual.

To minimise RAM requirements only a few of DOS68 commands are actually resident in RAM all the time, the other commands, known as transient commands, are loaded only when requested. It should be remembered that the disc I/O routines are in ROM. This is a great plus to the system - many a frustrated programmer has ruined a valuable disc due to inadvertant corruption of RAM resident disc I/O routines!

System commands are run by just typing their name (plus any required parameters) in response to the monitor prompt:-

COMMAND	FUNCTION
LIST	Lists all the program and data files on the disc nominated. System files are listed using a switch parameter. Other information about disc status is also listed.
SAVE	Is used to save selected areas of memory content to a nominated (new) disc file.
GET	Loads a binary object file to RAM without executing it.
GETH	As GET for a hexadecima file.
RUN	Loads a binary objec file to RAM and then executes it.

DELETE	Removes a nominated file from the directory.
RENAME	Is used to change the name of a nominated file.
APPEND	Is used to merge nominated files.
PRINT	Displays a nominated file on the terminal.
COPY	Allows a file or a group of files to be copied from one part of a disc to another part of the same disc or to a second disc.
SDC	is a rare but very useful utility that allows files to be copied one at a time using only DRIVE 0 so removing one of the major objections to single disc systems.
LINK	Is used to tell the bootstrapping routine which program to load and run when the RDM bootstrap is executed.
INSTAL	Allows a nominated file to become a system file and therefore be loadable without the use of RUN.
$\begin{aligned} & \text { REMOVE } \\ & \text { FIND } \end{aligned}$	The opposite to INSTAL. Is used to determine where an object file would load to memory and at what location execution would start.
VIEW	Allows source files to be examined without having to use the editor and so create a new file.
FORMAT	Sets up a new disc for use with the file management system so creating an empty directory and also checks each sector on the disc is OK and gives no CRCC error.

After formatting, a disc has available to the user 628 sectors each of 128 bytes i.e. 80,384 bytes in all. Because of this apparent limitation it is good practice to maintain separate discs for data and program storage. SYSTEM ONE is very helpful to the user in keeping to such a practice, providing all the "housekeeping" features necessary.

Support Software

The evaluation SYSTEM ONE was supplied with various support software packages including the SE/A-1 Super Editor/Assembler and two different BASIC packages - one an interpreter - the other a compiler! S.E.E.D. will also have available, in the very near future, a FORTRAN compiler which will further widen the scope of SYSTEM ONE into scientific applications. Also for release in the near future is another compiler known as STRUBAL (an acronym for STRUctured BAsic Language) which is in fact a hybrid language containing elements of PL / M, assembler and BASIC.

The Super Editor is very well conceived, being very simple to use and easy to learn to operate. Note worthy is the fact that the editing capabilities are not just restricted to the preparation of program source, but are equally useful for simple word processing.

During the edit process each line of text is numbered by the editor, so keeping track of position within the text is easy at all times. Using this editor cuts down the risk of making the type of mistakes that can cost hours to correct.

Facilities include adjustable tab settings, multiple string replacement, block text transfer, insertion and deletion of text, an overlaying facility as well as many other functions; some not to be found on other editors. The documentation provided is simple to understand taking the first time user through the features in a simple and informative manner.

The Assembler too is simple to use, yet it offers a selection of features including multi-level conditional assembly, as well as being fast due to a hashing technique used for symbol table access. Error diagnosis is easy, there is an error summary at the end of the assembly. Used together the

The Soroc terminal used with the MSI 6800

Super Editor/Assembler package eams its name.

BASIC is still the most popular high level language available for microcomputers. RANDOM BASIC is an interpreter designed in close conformity to the ANSI standard. RANDOM refers to the ability to access records in a disc file by key as well as just sequentially. This makes RANDOM BASIC ideal for applications such as stock control where a sequential search through a disc file could be too slow; and being written to the ANSI standard most BASIC programs can be run using RANDOM BASIC, on the SYSTEM ONE, to great advantage.

RANDOM BASIC has amongst its repertoire the usual mathematical functions, array and string handling, disc control and housekeeping functions, program loop, branch and subroutine handling, terminal accept and display, memory peek and poke and program chaining. From the console, commands provide for the saving and retrieval of BASIC programs and file management. Program debugging is greatly facilitated by a trace feature that displays the line number of each instruction of the BASIC program as it is executed. When a syntax error is encountered the erring instruction line is displayed with the error clearly marked.

The second BASIC package, SDBASIC, being a compiler is very unusual. Programs written with SDBASIC are prepared in a similar way to assembly language programs using the Super Editor. The program is then compiled using system program, SDBAS. As a result an intermediate object file is created. This is translated into an executable file by a further system program SDASM. This file is run by loading it using system program SDRUN each time the program is required.

An early start in business, with the MSI 6800,for the author's son.
The big advantage of this is that the object program runs several times faster than it would if it were interpreted. SDBASIC is fairly close to the ANSI standard and has a repertoire similar, but not identical, to RANDOM BASIC.

Application Packages

SYSTEM ONE is not directly associated with specific application packages, but this does not detract from what this microcomputer offers. There is a vast amount of applications written in BASIC that are ideal for SYSTEM ONE.

Prices

The SYSTEM ONE is available from Strumech Engineering Electronics Division (S.E.E.D.). The following prices serve as examples of various builds of SYSTEM ONE but the price of a 16 K single disc system complete with ACT-1 terminal and Sanyo $9^{\prime \prime}$ monitor is only £1674.

System One Hardware

DISCS	32 K RAM
SINGLE	$£ 1510$

DUAL
$£ 1790$

Pack 10 mini discs $£ 35$

Suitable Terminals

ACT-1A Keyboard + Video monitor $£ 385$
SOROC IQ120 Visual Display Unit £699
ELBIT DS1920 Visual Display Unit $£ 850$

Software for System One

RBASIC Random Access	BASIC
Interpreter	$£ 65$
6800BC BASIC Compiler (SDBAS-	
IC)	$£ 185$
SE/A-1 Super Editor/Assembler	
	$£ 36$
STRUBAL Structured BASIC Lang-	
uage	$£ 170$
FORTRAN Fortran Compiler	
	$£$ T.B.A.
TP-1 Text processor	$£ 30$
TD-1 Trace Disassembler	$£ 14.25$
SG-1 Source Generator	$£ 17.70$

All prices are exclusive of delivery and V.A.T.

Maintenance

In keeping with the professional approach they have taken to the production of SYSTEM ONE, S.E. E.D. have organised servicing of this product through one of the national maintenance organisations and the rates for this service, although not known at the time of writing, are likely to be competitive.

Conclusions

SYSTEM ONE is a well composed piece of hardware. It is well constructed, generously laid out and should give the potential owner reliable service. It is supported by good software that can be used to develop programs for all sorts of applications be they educational, scientific, business or pleasure. Furthermore SYSTEM ONE is an ideal computer to run many of the wealth of BASIC programs that have been developed over the past few years. The BASIC compiler overcomes many of the weaknesses of some BASIC interpreters and should make some BASIC programs very competitive.

SYSTEM ONE was not without some quirks. Hi-Fi lovers who are also home computing enthusiastics may find it disturbing that during disc accesses some breakthrough on VHF radio was detectable on stereo signals. The cooling fan was quite noisy and could be annoying in an office environment; however, as the cooling is more than adequate, a slower speed fan would probably suffice; the boards were cool even after several hours running. The system will lock up when trying to access a disc that is not there SYSTEM ONE is not alone in this situation.

Nevertheless SYSTEM ONE is a very fine microcomputer which, with prices starting at $£ 1674$ for a computer with a mini-floppy disc, keyboard and monitor, must be amongst the most competitive on the British market today.

THE RESEARCH MACHINES $380 Z$ A UNIQUE TOOL FOR RESEARCH AND EDUCATION

Microcomputers are extremely good value. The outright purchase price of a $380 Z$ installation with dual mini floppy disk drives, digital I/O and a real-time clock, is about the same as the annual maintenance cost of a typical laboratory minicomputer. It is worth thinking about!

The RESEARCH MACHINES 3802 is an excellent microcomputer for on-line data logging and control. In university departments in general, it is also a very attractive alternative to a central mainframe. Having your own 3802 means an end to fighting the central operating system, immediate feedback of program bugs, no more queuing and a virtually unlimited computing budget. You can program in interactive BASIC or, using our unique Text Editor, run very large programs with a $380 Z$ FORTRAN Compiler. If you already have a minicomputer, you can use your $380 Z$ with a floppy disk system for data capture.

What about Schools and Colleges? You can purchase a 3802 for your Computer Science or Computer Studies department at about the same cost as a terminal. A $380 Z$ has a performance equal to many minicomputers and is ideal for teaching BASIC and Cesil. For A Level machine language instruction, the 380 Z has the best software front panel of any computer. This enables a teacher to single-step through programs and observe the effects on registers and memory, using a single keystroke.

WHAT OTHER FEATURES SET THE 3802 APART?

The 3802 with its professional keyboard is a robust, hardwearing piece of equipment that will endure continual handling for years. It has an integral VDU interface - you only have to plug a black and white television into the system in order to provide a display

380Z/32K complete with SINGLE MINI
 FLOPPY DISK SYSTEM MDS. 1 ع 1787.00

RESEARCH MACHINES Computer Systems are distributed by RESEARCH MACHINES LTD., P.O. Box 75, Chapel Street, Oxford. Telephone: OXFORD (0865) 49792. Please send for the 3802 Information Leaflet. Prices do not include Carriage or VAT @ 8\%.
unit - you do not need to buy a separate terminal. The integral VDU interface gives you upper and lower case characters and low resolution graphics. Text and graphics can be mixed anywhere on the screen. The 3802 has an integral cassette interface, software and hardware, which uses named cassette files for both program and data storage. This means that it is easy to store more than one program per cassette.

Owners of a 3802 microcomputer can upgrade their system to include floppy (standard or mini) disk storage and take full advantage of a unique occurence in the history of computing - the CP/MTM* industry standard disk operating system. The 380 Z uses an 8080 family microprocessor - the $\mathrm{Z80}$ - and this has enabled us to use CP/M. This means that the 3802 user has access to a growing body of CP/M based software, supplied from many independent sources.
$380 Z$ mini floppy disk systems are available with the drives mounted in the computer case itself, presenting a compact and tidy installation. The FDS-2 standard floppy disk system uses double-sided disk drives, providing 1 Megabyte of on-line storage.
-Trademark, Digital Research.
Versions of BASIC are available with the 3802 which automatically provide controlled cassette data files, allow programs to be loaded from paper tape, mark sense card readers or from a mainframe. A disk BASIC is also available with serial and random access to disk files. Most BASICs are available in erasable ROM which will allow for periodic updating.

If you already have a teletype, the 3802 can use this for hard copy or for paper tape input. Alternatively. you can purchase a low cost 3802 compatible printer for under $£ 300$, or choose from a range of higher performance printers.

380Z/16K System with Keyboard

Payroll,Pete and Friends Professional Pet Software

 To help you get the most out of your Commodore PET,

 Computastore has developed a range of software packages to cope with the demands of both Industry and Education.PAYROLL: Runs on the 8 K PET and produces preprinted payslips, totals and coin analysis.
PETE: Turns your PET into an intelligent RS-232 terminal for use with a mainframe.
PETROFF: A text formater to produce neatly typed reports. ALSO: Assembler, Disassembler, Renumber, Keyboard.

Contact your PET dealer or Computastore for a demonstration.

Computastore
 Software that means business

Computastore Ltd, 16 John Dalton Street, Manchester M2 6HG. Tel: 0618324761

THE NEWEST, MOST EXCITING SYSTEM YET TO COME FROM THE USA See advertisement on page opposite for full details

ATTENTION ALL 6800/SS50 BUS SYSTEM USERS (eg SWTPC)

You can now run the FASTER, MORE POWERFUL Z80 CPU on your System using our Z80 cpu board.
WILL it cost a fortune???
NO, ONLY $£ 150.00+$ VȦT (8\%)
Plugs directly into your SS50 bus system (coresident with your 6800 cpu if you wish). Supplied with 2 K monitor plus socketed space for an extra 14 K of EPROM on board. Enables you to run a wide range of $Z 80$ based software. 12 K extended basic available in EPROM.

VIDEO OUTPUT BOARD for SWTPC Plugs directly into $1 / O$ section of motherboard and coupled to an MPL parallel interface gives DIRECT VIDEO in $16 \times 64 \mathrm{~K}$ format.

$$
\text { ONLY } £ 68.00 \text { + VAT (} 8 \% \text {) }
$$

Uses the Thompson-CSF SFF96364 CRT controller microprocessor. 2×2114 static memory chips. A 2513 character generator. Cursor control decoder prom. Full scrolling capabilities.

For further details of "DYNABYTE" or our range of SS50 Bus compatible products contact:

MICROWAVE MODULES LTD., BROOKFIELD DRIVE, AINTREE, LIVERPOOL, L9 7AN. or Tel: 051-342 4011 Telex: 626608 Contact: Richard Butterfield

"ZYTEL" at:

P.M. ELECTRONIC SERVICES, 2, ALEXANDER DRIVE, HESWALL, WIRRAL, MERSEYSIDE, L61 6XT.
Tel: 051-342 4443 Telex: 627371
Contact: Bruce Norcliffe

When we designed our new small business computers, we meant business.

As basic as that seems, it is unique. Just about every other microcomputer being sold as a small business system today was originally designed as a kit for hobbyists.

Every design decision was made with quality and reliability in mind. The result is dependable performance and a solid appearance for business, professional and scientific applications.

FIRST SMALL SYSTEM WITH BIG SYSTEM STORAGE

Many applications handle large quantities of information, so the DB8/2 uses two quad density 5 -inch disk drives with our exclusive Dual Density Disk Controller for up to 1.2 megabytes of formatted storage. That's more capacity than two single density 8 -inch drives.

If you need more storage, our DB8/4 has two 8-inch drives with up to 2 megabytes capacity, more than any other dual floppy disk system on the market.

OUR SOFTWARE IS BIG ON BUSNESS

Dynabyte helps you get down to business immediately. The DB8/2 is the first microcomputer to offer enough storage capacity on 5 -inch drives to fully utilize CP / M,* the most widely accepted disk operating system. We also supply and support BASIC, FOR-- CPM is a trademark of Digital Researich.

TRAN and COBOL programming languages. Our applícations packages include general ledger, accounts receivable, word processing and many other CP/M compatible programs.

Reliability is a big consideration in buying a business computer, so we built it in. Our edge connectors meet military specifications, the toughest electronics manufacturing standard. Our regulated power supply is designed to meet U.L. standards, which means the entire system runs cool and dependable. And our cast aluminum enclosures are rugged as well as attractive.

AND THE BIGGEST THING OFALL

Customer support. Our support starts at the factory with testing and burn-in programs that assure the entire integrated system is reliable prior to shipment. Our completely modular design allows continuing support in the field. After the 1st Qtr of 1979 we shall maintain a stock of all subsystem modules, which means we can deliver replacements almost immediately throughout Europe \& UK.

Dynabyte built in little things, too. Like a fully-populated 12-slot backplane, switched AC outlets for accessories, an option for European power, quiet whisper fans with long-life metal construction, lighted indicator switches for Power On and Halt, a shielded enclosure to protect disk drives from electro-mechanical interference, and a fully enclosed power supply for An Associated Company to DYNABYTE Inc., Palo Alto, USA.
operator safety
Since we didn't cut comers in design, the price/performance ratios of our systems make good business sense.

THE INSIDE FACTS

The DB8/2 Computer System includes two 5 -inch disk drives either single or double sided for up to 1.2 megabytes of mass storage; a 4 MHz Z-80 processing module with one parallel and two serial ports, an EPROM programmer and up to 4 k ROM; 32k of RAM, a 12 -slot fullypopulated backplane; our exclusive Dual Density Disk Controller, and CP/M.

The DB8/1 Computer includes a 4 MHz Z-80 processor with one parallel and two serial I/O ports, an EPROM programmer and up to 4 k of ROM; 32 k RAM, and a 12 -slot fully-populated backplane.

The DB8/4 Disk System, designed to be the mass storage companion to the DB8/1, includes two 8 -inch floppy disk drives in either single or double sided configuration for up to 2 megabytes of mass storage, our Dual Density Disk Controller, and CP/M.

All three units will be available in rack mount models.

For a descriptive brochure and price list, call or write Dynabyte UK \& Europe, 25 Park Road, Scarborough, Yorks, England. Phone 0723-65559

Or better yet, see your local dealer.
 Merseyside Area: ZYTEL; 2 Alexander Drive, Heswall, Wirral. Tel: 051-342 4443 Brookfield Drive, Aintree, Liverpool. Tel: 051-523 4011

PCW The principles in this article and the previous one are applicable to other computers, and for this reason alone the articles are well worth reading carefully PCW.

We now come to the "nitty-gritty". How do we make PET operate our paper system? This is done firstly by entering our membership data onto a cassette tape. A program is entered into PET's internal memory and then 'Run' so writing the data tape. A program consists of a series of numbered Statements, each of which tells the computer to perform a simple operation. It does not matter in what order they are entered for the computer will always go through them in numerical sequence; e.g. if they are entered in the order 3, 2, 1 they will still be executed in sequence $1,2,3$. If they are labelled $10,20,30$ the same procedure will result, but with the advantage that if you later want to add something between the first and second statements i.e. 10 and 20 , then a statement labelled 15 will do this. This fact is very useful in our system.

Now for the first program, which we will call "Write Membership".

This completes the data for the first member, so we go on to the second member.

0101 PRINT \# 1, MRS
and so on, until the data for all the members has been entered.

This may seem to be a laborious task and it is! But it only has to be done once and it can be tackled a bit at a time and the program so far saved on a cassette. When convenient this can be loaded into PET and the next batch of data entered. This can be repeated as often as required until "Write membership" is completed. Moreover, a similar process of entering the initial data has to be performed whatever the system, whether it be a large computer or a simple register, so it is not a defect caused by using PET.

The rather strange method of line numbering shown is to help in verify. ing the data. The first item of data for each member is entered in a line ending in 1 , the second in line 2 , etc. If you find that you are entering the last data item in line 9 then obviously one data item has been missed out.

```
0010 OPEN 1,1,1
0 0 2 1 ~ P R I N T ~ \# ~ 1 , M R ~
0022 PRINT # 1,D J
0023 PRINT # 1, ALLEN
0024 PRINT # 1, THE NOOK
0 0 2 5 ~ P R I N T ~ \# ~ 1 , ~ M A P L E ~ D R I V E ~
0026 PRINT # 1, ANYTOWN
0027 PRINT # 1, SOME COUNTY
0028 PRINT # 1, ANY 1234
0 0 2 9 ~ P R I N T ~ \# ~ 1 , ~ 1 ~
0030 PRINT # 1,1
```

Opens a file called 1 , on a device 1 (the cassette recorder) to write.
Will write MR as the first data item in file 1 .
2nd data item Initials
3rd data item Forename
4th data item Address
5th data item
6 th data item
7 th data item
8th data item 'phone number
9 th data item Category
10th data item Relationship

Leading zeros are given to the line numbers so as to ensure that each type of input appears exactly under the previous one no matter whether the line number is 20 or 9000 . This helps to pinpoint missing characters e.g.

$$
\begin{aligned}
& 0021 \text { PRINT \#1, MR } \\
& 0022 \text { PRINT \#1, D J } \\
& 0023 \text { PRNT \#1, ALLEN }
\end{aligned}
$$

shows up an error in line 0023. The large gaps in the sequence of line numbers between members allows for later insertion of data for new members in correct alphabetical sequence.
"Write membership" can now be run to create the data file on the cassette tape. All fairly simple, but there is one awful snag, which at first sight would appear to invalidate the whole procedure. To test both this and the various operating programs I had set up a dummy membership file of thirty members which was sufficient for this purpose. All went well and odd snags were easily ironed out, but deep down there was a nagging thought that something had been overlooked. But what? Suddenly the thought emerged. Everytime PET is switched on it displays:-

```
**"COMMODORE BASIC***
7167 BYTES FREE
READY
```

Simply, a "byte" is a storage space in the computer's internal memory, and the horrible thought was "How many bytes are needed to write the data for each member?" A few rapid tests and calculations
showed that it was 160 give or take a few, and that 7167 divided by 160 is approximately 44 . This would mean that the longest "write membership" program could only deal with 44 members, and if spaces were to be left to insert future members, perhaps 20 to 30 would be better. This would result in having something like twenty separate data tapes which would have to be put into the cassette player one after the other for the computer to read, so defeating the object of the exercise, automatic operation.

At first this seemed a major stumbling block, but a little thought showed a possible solution. We know that we can produce the program for 25 members, so let us do so for the first 25 . Then first, save the program on a cassette tape and then run the program to record file 1 on another cassette. Don't rewind either cassette. Clear PET's internal memory and then repeat the operation to create file 2 which will hold the data for the next 25 members. The only change in the "Write" program will be that it now refers to file 2 e.g.

0010 OPEN 2,1,1
0021 PRINT \# 2, MR
and finally

9999 CLOSE 2

When the new write program has been run file 2 will be stored on the data tape immediately following file 1 and 2. Write mem will follow 1 Write mem on its own tape. Repeat for file 3 and so on until the data for the 430 th member has been dealt with. This is only a form of batch entry, and is no more or less tedious than the original method.

Obviously, we now have files 1 to 18 successively recorded on the data tape. All that we now have to do is to ensure that the operating programs tell PET to process the data for file 1 and then proceed to file 2 and so on until the processing of file 18 has been completed. This is very simple, as you will see.

Before we finish with the creation of the data tape, there is one other operational point to be mentioned. PET needs to know how many members' data is recorded in each file, otherwise it will try to read beyond the end of the file. All this requires is an additional data item after the file is opened and before the data for the first member i.e. in the Write program:-

0015 PRINT \#1,25

Note that if you later add or delete a member or members, this initial data value must be amended. Ob viously, since 17 files will cover 425 members, this value will be 5 in file 18.

None of this may be very elegant, but it works, and we now have the
membership data stored on a cassette tape, so how do we use it?

We now come to the operating programs, and these are very simple. All that is required is to read the data for a member and then write out those parts that give the required answer. Then go back and read the data for the next member and so on. This is the working part of the program and it must be preceded and followed by some general instructions to PET, such as which file to read. These instructions will be the same for every operating program and we will look at them first.

10 LET $\mathrm{R}=1$	i.e. file no. is 1
20 OPEN R,1.0	Opens file R ondevice 1 to read
30 INPUT R, N	Reads no. of members in file R
40 FOR $Z=1$ TON	Tells PET to go through the working part of the program the same number of times as N
50 INPUT \#R,A \$ H\$,I,J	B \$,C \$.D \$.E \$,F\$.G\$ Reads ten data items from file R

That concludes the opening to each program. Note the use of A\$, etc. for the first eight data items which are either letters or letters \& numbers, whereas just I \& J are used for the last two since they are simple numbers. This gives a valuable check as to whether or not a whole line of data including the line number has been missed on the data writing, since PET expects the data types to match. If they don't the program will stop and give an error message. Ob. viously a test for this should be made at the stage of writing the data tape as each file is completed.

We now leave a number of free lines for the working part of the programs, and then give the closing instructions.

500 NEXT Z	goes back to line 50 and repeats program for next member
510 CLOSE R	Reached when all members in file have been dealt with
520 LET R = R + 1	Gives number of next file
$\begin{gathered} 530 \text { IF R }=19 \\ \text { GOTO } 550 \end{gathered}$	All files have been processed
540 GOTO 20	Starts on next file
550 PRINT "FINISHED"	End of program.

These opening and closing lines can be entered into PET and then recorded on a cassette tape. Then whenever an operating program has to be written, they can be loaded into PET in a few seconds, and lines 51 to 499 are available for the entry of the working part of the program.

Consider the list for the steward. We want to print name ($\mathrm{A} \$, \mathrm{~B} \$, \mathrm{C} \$$, for each member followed by 'phone number ($\mathrm{H} \$$). We must then also
print JUNIOR in the appropriate cases.

The program will be:-

Typical output from this program would be:-

$$
\begin{array}{ll}
\text { MR M JAXSON } & 2916 \\
\text { MR DA JAXSON } & 2916 \text { JUNIOR } \\
\text { MR JE BROWN } & \text { NOPHONE }
\end{array}
$$

Address labels for playing members would be catered for by:-
$60 \mathrm{IFI}=5 \mathrm{OR} \mid=6$ GOTO 500
70 IF I $=11$ OR I $=12$ GOTO 500
80 PRINT A $\$$; B ; $\mathrm{C} \$$
90 PRINTD
100 PRINTE\$
110 PRINTF $\$$
120 PRINT G \$
Lines 60 and 70 omit social members and lines 80 to 120 print names and addresses of playing members. Even simpler for the list of lady members. Since their categories are 7 to 12 , only one line is needed to select them, followed by another line to print their names.

```
60 IF |<7 OR | > 12 GOTO 500
70 PRINT A $; B$;C$
```

The "horror" task even has a very simple program. It requires more lines but the operations are routine. This task could have been tackled in many ways, but the Hon. Sec. has decided that an individual letter should be produced for each member, which suitably folded may be put in a 'window' envelope, so obviating the need to address envelopes and ensure that each has the correct letter inserted. The program could be:-

	PRINT A\$; B\$; C\$	
70	PRINT D\$	
80	PRINT E \$	
90	PRINT F\$	
100	PRINT G\$	
101	PRINT	
102	PRINT	
110	PRINT '"DEAR"; A \% C \$	
111	PRINT	
112	PRINT	
120	PRINT "YOUR SUBSCRIPTION IS NOW DUE FOR NEXT YEAR"	
121	PRINT 'PLEASE SEND IT TO THE HON. TREASURER AS SOON"	
122	PRINT "AS POSSIBLE"	
130	$\|F\|=1$ GOTO 150	
131	$\|F\|=2$ GOTO 152	
132	\|F I= 3 GOTO 154	
133	$\|F\|=4$ GOTO 156	
134	\|F	= 5 GOTO 158
142	$\|F\|=13$ GOTO 174	
144	\|F $=14$ GOTO 176	
150	PRINT "THE SUM DUE IS $£ 51.80$ "	
151	GOTO 180	
152	PRINT "THE SUM DUE IS $£ 50.00$ "	

176 PRINT "THE SUM DUE IS £15.00"
180 PRINT
181 PRINT
182 PRINT "YOURS SINCERELY"
183 PRINT "JOE BLOGGS"
184 PRINT "HON. SECRETARY"

The Hon. Sec. will of course record the program and the annual chore will be virtually eliminated.

Finally, to show the flexibility of the system let us see how data item J can be used to produce address labels for families.
J has the following values:-

No other family members	1
Wife only	2
Wife \& child/children	3
Child/children only	4
Husband is a member	5
Parent is a member	6

The simple address label program is:
200 PRINT A $\$$; ; ; C \$
201 PRINT D
202 PRINTE\$
203 PRINT F \$
. 204 PRINTG\$
This is what is required if no others in family are members i.e. $\mathrm{J}=1$ so:

60 IF J = 1 GOTO 200
Now if $\mathrm{J}=2$, wife a member, the first line on the label must be altered.

70 IF J = 2 GOTO 110
110 PRINT A \$;"\& MRS"; B\$;C\$
111 GOTO 201
Note that the use of A\$; "\& MRS" rather than the apparently simpler "MR \& MRS" ensures that courtesy titles such as DR and REV are preserved, so frustrating the pedants.

Similarly:

```
80 IF J = 3 GOTO 120
90 IF J=4 GOTO 130
120 PRINT A \$: "\& MRS"; B\$; "AND
    FAMILY"
121 GOTO 201
130 PRINT A \$; B \$ C \(\mathbf{C}\); '"AND
    FAMILY"
131 GOTO 201
```

Now we must omit the family members, those for whom $\mathrm{J}=5$ or 6 .
$100 \mathrm{IF} \mathrm{J}=5 \mathrm{OR} \mathrm{J}=6$ GOTO 500

The objective has been achieved. Many of the routine tasks associated with Membership have been transferred to the small computer. No experts have been required. No great knowledge of programming has been needed. The system is simple and it works. It is flexible and can easily be made to give other outputs if wanted. It may be fairly slow, but that does not matter in this context. Depending on the speed of the printer used, an hour or less will see many of these programs completed.

Let us conclude with an example of the sort of thing that happens in real life. The Hon. Sec. has spent many hours recently carrying out his duties, including preparing the list of lady members. It is a lovely evening and he decides that he will relax and actually play some golf himself. He arrives at the club, only to be greeted by the youngest and most attractive member of the ladies committee they always choose her for this type of task - who thanks him for the list and then goes on to say "but you haven't given their 'phone numbers" - they hadn't asked for them - "so could you please add them to the list, and if it is not too much trouble leave it with the steward before you go home to-night?".

In pre-PET days he could have reacted in several ways e.g. resigned on the spot, committed murder, or even, possibly, have given up the idea of playing golf and settled down to some more tedious work. Now, he merely smiles and says "No trouble at all, my dear", goes into the office, loads "PRINT LADIES", changes line 70 to PRINT A \$; B $\$$; $\operatorname{TAB}(20)$; H\$ and sets PET to run. Sometime later, he comes in after an enjoyable game and picks up the revised list from the office; on his way to the mens' bar.

You want software why not D.I.Y.?

ELEMENTARY, INTERMEDIATE, ADVANCED COURSES CONDUCTED BY SIHERIDAN WILLIAMS, WHO IS A QUALIFIED LECTURER IN COMPUTER SCIENCES.
 THESE ARE HELD AT OUR OFFICES IN THE CITY AND ARE SUPPORTED BY GOVERNMENT DEPTS., BANKS, INSURANCE, MED. RESEARCH, COMMERCIAL AND INDUSTRIAL ORGANISATIONS. CURRENT COURSES ARE FULL, BUT RESERVATIONS ARE NOW BEING ACCEPTED FOR COURSES STARTING IN APRIL, MAY, JUNE AND JULY. THESE ARE LIMITED TO 12 STUDENTS PER COURSE AND TUITION IS GIVEN ON 'PET' COMPUTERS. PIIONE FOR DETAILS.

V. \& T. ELECTRONICS

CPU CONTROLLED CASSETTE DECK

Connects to any 8 bit 10 port \& UART, full CPU control of fast forward, reverse, read and write, searches tape under software control for named files at up to 50 inches per second (280 software supplied) includes high speed CUTS interface -2400 baud i.e. 1 K bytes in 4.2 seconds. One C60 tape holds 860 K bytes, ideal for NASCOM 1. Supplied with mechanics ready built, electronics as easy to build kit, includes a.c. mains power supply.
£110
$+8 \%$ VAT
Please call for demonstration
FULLY Relocatable assembler for NASCOM 1 (easily converted to other systems) supports pseudo-ops + all Z80 opcodes, includes powerful text editor, uses approx. $31 / 2 \mathrm{~K}$ memory, all work areas programmable. Supplied on tape.
£10 + 8\% VAT
2716 Eproms Intel
1 off $£ 23.50$
4116 16K Dynamics 8 off $£ 56.00$
2114 4K Statics 2 off $£ 10.00$
Z80a CPU
1 off $£ 14.00$
Z80 PIO
1 off $£ 10.00$
We are usually open 7 days a week until very late, please phone first before calling.

Please add $40 \mathrm{p} p \& \mathrm{p}$.

Pet 2001

 From $£ 435$NEW PET 2001 with large keyboard
From £ 630.00
PET 2001-16N (16K RAM and New Large Keyboard) PET 2001-32N (32K RAM and New Large Keyboard) PET 2001-4 (Standard PET with 4 K memory) PET 2001-8 (Standard PET with 8K memory) PET 2040 (Dual Drive mini-floppy 343K User Storage) PET 2023 (80 col. dot matrix printer with PET graphics) PET 2022 (as above with tractor feed)
IEEE/RS232 Serial Interface ' A ' Output only IEEE/RS232 Serial Interface 'B' Input/output IEEE-488/Centronics type parallel Interface PET C2N External Cassette Deck
Interface to S100 (4 slot motherboard)

Sorcerer

Now with the
S100 Bus Expansion
Interface and Dual
Drive min-floppy Disk

Sorceror 16K RAM (inc.UHF Modulator)
Sorceror 32K RAM (including UHF Modulator) Exidy Video Monitor (High Resolution)
Exidy Dual Drive mini-floppy disk (630K Storage)
Exidy S100 Bus with Interface+Motherboard+PSU
Exidy Mini-floppy Disk Drive (143K Storage)

Disk Drives

Shugart Mini-floppy Disk Drive (including PSU) Micropolis Mini-floppy Disk Drive (incl. PSU)
Percom FD200 Mini-floppy Disk Drive (including PSU)
SMS STD floppy Dual Drive (+controller+PSU+Case for 2.5 Mbyte
Pertec 10MB Top Load Hard Disk System (with controller+disk basic)

APPLE II

Apple mini-floppy Disk Drive (116K Storage)
£425.00 ITT 2020 incl. PAL Modulator (16K RAM) RS 232C Serial Interface for ITT 2020 Motherboard Parallel Input/Output Interface for ITT 2020 Bus Palsoft on ROM Board (extended Basic) £895.00
P. O. A.
P. O. A.
P. O. A

ITT 2020 Authorised Dealers

ALTAIR

300 Multi-User, Multi-Tasking system+floppy and
hard disk options+practical business applications
P. O. A

Software

Petsoft HoMPUEETTEs $\begin{aligned} & \text { Personal } \\ & \text { Software }\end{aligned}$

GEMSOFT
(Authorised Dealerships, Send for Catalogues) PILOT (for TRS 80) text orientated language
$£ 18.00$
COMAC - Computerised Accounting for TRS 80
STOCK CONTROL - (for TRS 80) incl. Inventory,
Purchase Orders and Invoicing
£50.00

Estate Agents/Employment Agency Systems -
CP/M - Fortran 80 - Cobol 80 - Pascal

Etc.

Diskettes 51/4 (blank) boxed (min. order 10) each C60 Cassettes (Min. order 10) each CBM KIM 1 Microcomputer System
$£ 3.00$
$£ 0.40$
$£ 94.00$
Computalker Speech Synthesis for S100
£350.00
Books - Large range of Microcomputer related books \& magazines.
If you don't see it - ask if we have it.
¡ \& V JOHNSON (MICROCOMPUTERS ETC) LTD.
Member of the TV Johnson Group of Companies
165 London Road, Camberley, Surrey GU15 3JS
Branches at: Birmingham, Bristol, Edinburgh, Leeds, London, Louth, Newmarket, Nottingham, Oxford, Byfleet, Wokingham

TRS 80, 4K Level 1 (Keyboard with 4 K memory+ VOU+Cassette drive+240v PSU)
TRS 80 16K Level II (as above but with Level II basic and 16 K memory)
TRS 80, 4K Level I - Keyboard+240v PSU only
TRS 80, 4K Level II - Keyboard+240v PSU onlv
TRS 80, Expansion Interface with 16 K RAM
TRS 80, Expansion Interface with 32K RAM
TVJ 232T Serial Interface for TRS 80
Screen Printer for TRS 80 (text+graphics) Expandor Black Box Interface for TRS 80 Expandor Black Box Power Supply for TRS 80 Centronics Micro Printer Interface for TRS 80 Centronics Parallel Printer Interface for TRS 80 Disk Drives for TRS 80 - see Disk Drives UHF Modulators (encased with leads for 625 lines) RAM upgrade ($4-16 \mathrm{~K}, 16-32 \mathrm{~K}, 32-48 \mathrm{~K}$)
Supplied and fitted at our premises
Upgrade to increase speed 1.78 MHZ to 2.66 MHZ 'Bleeper' for CSAVE/CLOAD \& key functions Switchable selection of Level I or Level II (ROMS required) £25.00 Automatic volume control (AVC) for CLOAD $£ 25.00$ 'Electric Pencil' text/word processing package (on cassette) £65.00 'Electric Pencil' text/word processing package (disk version) £115.00 'Electric Pencil' keyboard mod. to give lower
case with text/word processing package.
£28.00
S100 Interface for TRS 80 'Library 100' - 100 progs for TRS 80 on cassette (Level II) $£ 39.00$

Printers

TELETYPE 43 KSR $£ 875.00$
Keyboard send/receive Serial printer for
PET or TRS 80
(interfaces or friction feed extra)
Teletype 33 KSR Serial (110 Baud) Reconditioned
Expandor Black Box (80 column impact printer)
Centronics 779 parallel (friction feed)
Centronics 779 parallel printer (tractor feed)
Centronics 701 parallel printer, Bi-directional+
tractor fed

Centronics micro printer ($20,40,80$ columns selectable) $£ 1375.00$
QUME daisy wheel serial printer, 45 cps

/n/Out

Altair 6801/2 Analog/Digital convertor board S100
Altair 6804 Process control interface 8 output relays/12
input channels. S100
Phone Modem 2115.00

Terminals

Soroc IQ120 VDU/Keyboard - 80 char. $/ 24$ lines £660.00 Cypher CUB VDU+separate keyboard £380.00
Ansaback 'Phonemate' Telephone Answering Machine, voice operated twin cassette

PRICES EXCLUDE VAT, FREIGHT \& HANDLING. SEND OR
-PHONE FOR PRICE LIST \& BROCHURES
All prices correct at time of compilation
S.G. Johnson, BSC. (Hons.)
T.S. Johnson ABIBA, ACMB FBSC, MBIM
A.S. Barton, ACII. ABIBA. CdipAF.

T(0276)62506

+ Ansaback eves and w/ends.
Telex 858893
Eves. Basingstoke (0256) 24787 and Farnham (0252) 721094 (+ ansaback during office hours)
Hours of business 9.30-5.30 Mon-Fri. 9.30-1.00 Sat.

PCW Book Review \propto

A FORTRAN COLORING BOOK
By Roger Emanuel Kaufman The MIT Press
Cambridge, Massachusetts
and
London, England

Here is a book that makes programming sound like fun. It even makes programming in Fortran sound like funl It more than lives up to its motto on the cover: "Learn COMPUTER PROGRAMMING the Painfully Funny way!"

Fortran is not presented in terms of magical formulae; the author puts forward a clear computational model of the Language. Mommy's bureau drawers may seem a frivolous way to describe a computer's memory, but Kaufman's model is consistent and effective.

The topics covered in this book include :
Names and Values (Integers and Reals)
Assignment (Arithmetic Expressions and Built-in Functions) Branching
Input and Output (Formats)
Loops
Arrays (and implied Do Loops)
Data Types (Explicit, Logical and Complex)
End statement
Subprograms (Functions and Subroutines)
Dummy Arrays
Function Statement
Storage Organisation (Common and Equivalence)
External statement
Data statement
The above list of topics reflects the order of presentation in the book. The text includes as well a complete set of sample problems and exercises. The emphasis is on numerical methods and the reader is encouraged to use these critically.

Kaufman has a very humorous style of presentation. Feminists will be delighted by his offer of an alternative page if they find his outright chauvinism offensive. (See pages 111; there are twoll The handwritten script and illustrations in the text deserve a mention; only a movie of the book could be more entertaining.

On the whole I liked the way Kaufman related the "piddling puny petty paltry particulars" of Fortran. Even his awful puns are endearing. This is an ideal book for people who want to teach themselves computer programming and who have to learn Fortran. It is well worth $\$ 6.75$ (approx. £4) for the paperback edition.

Cornelia Boldyreff
Edinburgh Regional Computing Centre

THE CHEAP VIDEO COOKBOOK

By Don Lancaster.
Howard W. Sams and Co., Inc., \$5.95
Another masterpiece in clear and interesting electronics from the Lancaster stable, this sequel to the "TV Typewriter Cookbook" should be of interest to any computer hobbyist whether or not they have any intention of building a video display. In contrast to the designs in the previous book, the techniques used are predominantly software orientated, with the resulting reduction in the complexity which gives rise to very low hardware costs. This does of course mean that the software is much more complicated since it carries the burden of much of the timing. For users of the 6502 and the KIM 1 in particular, complete debugged software is provided, and this is said to be easily translatable for the 6800 .

As with all books of this type of American origin, it is necessary to remember the differences between the British and American TV standards. However, despite the difference between the 50 Hz and 60 Hz field rates, the line rates is quite small so only small changes will be needed to the software.

This book sets out by setting a problem: to build a TV display device with minimum cost, and solves it in a way which most hobbyists will be able to understand. It also raises some very interesting possibilities, for instance the possibility of building an intelligent (ie. with onboard dedicated microprocessor) visual display unit at a cost apparently below that of a unit using the so-called super-chip controller.

Despite the relatively high cost, which hobbyists must be getting used to, this book is recommended for the libraries of all enthusiasts with interests in hardware.

Paul M. Jessop

Error Message: "Evolutionary Programming" (PCW April 79) In the list of steps on page 46 an extra step should be inserted between steps (iv) and (v). This step reads: 'This input will generate a single digit output - for the sake of the example suppose this is $9 . "$

VT
 MONITOR and KEYBOARD KITS

Keyboard - full 128 character ASCII oncoding Price $\mathbf{£ 2 8 . 5 0} \mathbf{+ 5 0 p} \mathbf{p} / \mathbf{p}$
Monitor - 9"' diagonal high resolution tube - 80 chars per line. Price $£ 85.00+£ 2 \mathrm{p} / \mathrm{p}$

AVAILABLE EX-STOCK

- Coming soon -
boxed, built \& tested V.D.U., full cursor control,
16×64 format, price $-£ 280$ complete All prices include VAT
Video Terminals
197 Hornbeams, Harlow, Essex. Tel: 027930132

The Bit Pad computer digitizer converts graphic information into digital form for direct entry into a computer. By touching a pen like stylus or a cursor, to any position on a drawing. diagram. photograph, or other graphic presentation, the position co-ordinates are converted to digital equivalents.

- Bit Pad interfaces with almost any micro computer.
- Bit Pad consists of a 15" sq, digitizer tablet (11 " sq. active area), a stylus, and a controller cabinet.
- Bit Pad costs only E 450 (excluding VAT). Fill in the coupon and we will send you full information and details.

Terminal Disolay Systems Lid Hillside. Whitebirk Industrial Estale Blackburn 881 5SM Lancs England Send to Department CPPC, Terminal Display Systems Lid Millside, Whitebirk Industial Estate Blackburn 8 BL 5SM. Lancs. England
Name -
| Adoress

GODBOUT Computer Products

Altair/Imsai/Cromemco/Polymorphic Etc. S-100 Bus Computer Compatible Products.

LTT ELECTRONICS has one of the largest stocks of Godbout computer products in the U.K. Only by bulk purchasing and minimising sales overheads can we afford to sell at what amounts to trade prices.
For example: Kit Ass.
Econoram II, $2 \mathrm{MH}_{2} 8 \mathrm{~K}$ bytes £ 85 £ 99
Econoram IV, 4MHz 16K bytes £175 £195
Econoram VII, 4MHz 24K bytes E255 E275

Econoram $\times, 4 \mathrm{MH}_{2} 32 \mathrm{~K}$ bytes $£ 325 \quad £ 359$
All prices include postage and insurance loverseas add £101 - Just add 8% VAT.
Further $2 \% \%$ Discount for cash with order. Also Education/OEM discounts on application. Send S.A.E. for details.
MAIL ORDER ONLY.

LTT ELECTRONICS
8 Waldegrave Road, London S.E. 19.

RECENT ADDITIONS TO OUR RANGE OF BOOKS

RA6800HL - An M6800 Relocatable Macro Assembler by J.E. Hemenway
£15.95
LINK 68 - An M6800 Linking Loader by Grappel and Hemenway £ 5.50
Calculating with BASIC by R. Guido $£ 4.95$
Users Guide to North Star BASIC by R.R. Rogers $£ 10.00$
Programming the 6502 by R. Zaks $£ 7.95$
SCELBAL High Level Language plus supplements by Arnold \& Wadsworth $£ 20.00$
PIMMS - A Database Management System
£ 5.95
Program Design ed, by Liffick £ 4.25
6800 Tracer - an aid to 6800 Program debugging
£ 3.95
MONDEB - An advanced M6800 Monitor Debugger by D Peters
f 3.50
SUPER.WUMPUS - a game in 6800 Assembler code and BASIC, by J. Emmericks
£ 4.25

HOW TO ORDER

Send cash with order to L.P. Enterprises, Room NB/PW, 313 Kingston Road, IIford Essex 1G1 1PJ. Credit card orders (not Diners Card) accepted by telephone.

Tel No.: 01-553 1001
Payments must be in sterling and

Small Systems Engineering Limited

62 CAVENDISH STREET, LONDȮN W1M 7LD TELEPHONE: 01-637 0777. Telex: 8813085 ABACUS

SUPPLIERS OF PET MEMORY BOARDS AND INTERFACES THROUGHOUT EUROPE

PET MEMORY BOARDS

Sole official U.K. Agent for PME memory boards. We provide approved technical back-up, up-grade and service facilities for these boards in the U.K. internally mounting memory boards available in 2 configurations; - $24 \mathrm{~K}-£ 328$ - 32 K - £ 432.
IEEE-488/RS232C SERIAL INTERFACE

- Full IEEE address decoding, R232C or 20MA Loop output,
- Switch selectable Baud Rate, Crystal controlled Baud Rate timing, Lower case Printing
- Boxed units complete with connectors, full operating instructions and sample programs supplied,
- Serial Interface B, input \& output $£ 186$, Serial Interface A, output only $£ 106$.

CUSTOM INTERFACE DESIGN

Interfaces designed for special applications. Interfaces supplied so far include Analog Input/Output, XY plotter, stepper motor control.
PET INTELLIGENT TERMINAL SOFTWARE PACKAGE
A software package which, in conjunction with an Interface B enables the PET to operate as an intelligent terminal. The software implements full IBM or DEC protocols $£ 100$.

TVNIDEO MONITOR INTERFACE

- Video and UHF output (plugs into TV aerial socket) £35 IEEE-488/CENTRONICS TYPE PARALLEL INTERFACE
- Low cost unit without IEEE address decoding
- Also suitable for Anadex DP-800 Printer £45.

P \& T-488 S-100 IEEE-488 INTERFACE

- Interfaces S-100 compu ters to the IEEE-488 instrumentation bus.
- Functions as a 488 controller, talker or listener
- Three software packages available:
- North Star DOS/BASIC Interface
- CP/M Interface
- Custom systems interface package $£ 325.00$

Available now:

COMPUCOLOUR II MODEL 3

- 13" 8-Colour CRT, 8080 Microprocessor
- 16K extended disk BASIC in ROM
- 71-key detached keyboard
- 8K RAM memory for user programs
- 64 characters per line by 32 lines per page
- Special graphics package with 128×128 point plotting
- Built-in mini-floppy disk drive
- 50 pin bus
- RS-232 I/O port for serial printers, etc.
£1,390.00

[^1]

NEWS FROM THE CLUBS

Students at the University College of Swansea are forming a local amateur computer club for the Swansea/South-West Wales area; Peter Skan of 6D7 Vivian House, Roman Bridge Close, Blackpill, Swansea, would like to hear from anyone interested in joining.

The recently formed Grampian Amateur Computer Society meets on the second Monday of each month; details of their meetings may be obtained from their president Michael Brown at 282 Queens Rd., Aberdeen AB1 8DR. Having recruited several new members as a result of publicity in the local press and radio, they suggest that other groups try the local media; which will usually cost the club nothing.

The Amateur Computer Club is now in its seventh year, making it the oldest existing amateur computing organisation in the world and - with around 2000 members - one of the largest. For those who are not aware of it, the ACC is essentially a national club, supported by a bi-monthly newsletter, whose main function is to help enthusiasts get in touch with one another, and to pass ideas, programs and hardware tips between members. Several libraries and user groups exist within the Club, usually based around particular processors. Although the membership fee has risen this year it is still a bargain and can be re-couped many times by taking advantage of discounts available to ACC members. For more details and a (computerised!) membership application form, send a sae to Mr. D.J. Ellis 82 St. Albans Rd., Kingston, Surrey.

A computer Club catering for both amateurs and professionals has been started at Southgate Technical College, High St., London N14. Anyone interested in computers (especially microcomputers) is welcome and can ring Paul Woolley at the college (01-886 6521) for further information.

David James of 5 Ox Lane, Harpenden. Herts asks if anyone is interested in forming a group in his area. If you are, then don't hesitate to write to him or telephone him at Harpenden 5366.

The Bristol Computing Club is now well under way, and holds regular meetings on the third Wednesday of each month. Details of future meetings may be obtained by sending a sae to the Chairman: Mr. L. Wallace at 6 Kilbernie Rd., Bridge Farm Estate, Bristol BS14 OHY.

AND FROM GLOUCESTER

Heathkit's new 'Computer Systems' catalogue makes fascinating reading for DIY enthusiasts, for as well as the H 8 and H 11 computers, Heath are now producing a useful range of peripherals, including the H1OA paper tape reader/punch; which can read 8 hole tape at 50 characters per second and punch at 10 cps ; and the H9 ASCII VDU terminal. But perhaps the most interesting item is the H 14 line printer. At $£ 386$ for the kit, or $£ 554$ assembled, this is a dot matrix printer with a maximum instantaneous speed of 135 upper/lower case characters per second. It uses sprocket feed edge punched paper up to $9 \frac{1}{2 \prime \prime}$ wide and interfaces via a RS232C or 20 mA current loop serial interface at 110 to 4800 baud. Given Heathkit's reputation for a quality of design and documentation, this printer must be attractive to any amateur looking for a decent hard-copy peripheral.

PDP SHOP

The PCW Open Page Service for amateurs. Buy, sell, exchange -
One-off advertisements only accepted. Not more than 50 words.

The South Yorkshire Personal Computing Group meets on the second Wednesday of every month, and details can be had from Tony Rycroft, SYPCG Secretary, 88 Spinneyfield, Moorgate, Rotherham, S. Yorks. Tel: Rotherham 74889 (Evenings)

The Merseyside Nascom Users Group meets on the first Wednesday of every month at 7.30 pm at the Manx Suite, The Mona Hotel, James Street, Liverpool 2. Contact: Graham Myers at 051-677 9340 (after 7pm).

FOR SALE

Large SWTPC/MSI installation (24k), twin discs, VDU, IBM printer, word processor and program development software for sale. Many extras $\mathbf{£ 2 0 0 0}$ for lot or will split. Phone or SAE for details.
Rowat, Braeside, Clarach Road, Borth, Dyfed. (097-081-267)

FOR SALE

MK14, Built, Fully Working with: Additional Onboard Ram, All I.C.s socketed, Ram I/O Chip. Replacement Calculator Keyboard, Full Address Decoding, Cassette Interface + 2k 21 L02 Ram, Manual, Etc. Worth £80+, only $\mathbf{£ 6 5}$ ono

Mr. S. Smith, 36 Woodvale Avenue, London, SE25 4AE.

FOR SALE

PET 2001 + some software $£ 500$ ono Must sell for home purchase. Phone: 01-341 2385 (after 6.30 pm).

Exidy SORCERER (32K). Why pay $£ 850$ plus VAT? Mine has had 3 weeks use, is as new and boxed complete with manuals and plug in ROM PAC. Has modulator for use with domestic TV. A powerful machine for $£ 795.00$

Tel 01-959 6184 Mark Shavick.

Science of Cambridge MK14, sockets throughout, extra RAM10, additional improved keyboard, 2 a 5 v power supply. cassette interface, "Super Scamps" VDU \& AZTEC Modulator, Manual. Wired \& working $\mathbf{f 6 0}$ (will split)

Tel: Chris Swift 076134104 (Near Bath)

FOR SALE

KIM I with power supply. Almost new. Connections to power supply and cassette made. Ready to run. Including three manuals, 'First Book of Kim', Microchess and 'Please' games packages on cassettes, with instructions.
£130.00
R. Faulder, 57 Eskdale Avenue, Carlisle, Cumbria, CA2 50Y. Tel. Carlisle 37568.

FOR SALE

T158 Calculator－perfect（bought January）；complete with manuals，coding forms，case，charger and other accessories． Genuine reason for sale－cost $\mathbf{£ 7 0}$ ：will sell for $\mathbf{£ 5 0 (+ p / p)}$ ． Tel 041－778 2419 （after 7pm）．

FOR SALE－8K PET with cover，plus 5 programmed game cassettes（Startrek，Wartrek etc．）， 13 blank cassettes，games book，basic programming book + selection of computer mags． Less than 2 months old． $\mathbf{£ 6 0 0}$ ono J．Penton， 7 Sutton Road， New Ranges，Shoeburyness，Essex．SS3 9SS．

FOR SALE Two 4K Memory Boards－SWTP S50 bus－ assembled and fully tested， $\mathbf{£ 3 7}$ each．Phone Mr．Johnson－ Davies，0223－63781（Cambridge）．

WANTED Second Hand Mini－Computer and or accessories． Any type or make considered．Will collect if required． Telephone：Eastbourne（0323） 639043

Become a Sorcerer＇s Apprentice．Mr．M．S．L．Patrick casts spells with the aid of an Exidy Sorcerer and is interested in starting an active users＇group and a newsletter．Phone him at（01） 6428362 ，evenings．

Is the Sorcerer magic？S．Gimblett，F \＆CPO Mess，HMS Neptune，Farlane，Helensburgh，Dunbartonshire，GB4 8HL， thinks so and wants to start a magicians＇circle（users＇group）． Get in touch with him if you＇re interested．

MK14．Cased．4A PU．New K／B．Large 7 Seg．Flag Indicators． Audio Interface．Extra RAM．RAM I／O．Spare SC／MP． 4 Manuals．Buyer Collect．$£ 65.22 \times 2112 £ 25$

Ring Cambridge 67395 after 7pm
Michael Brown，president of The Grampian Amateur Com－ puter Society invites canny computer loving Scots to contact him at 282 Queen＇s Road，Aberdeen，AB1 8DR．Meetings usually on 2 nd Monday of each month，locations vary according to event．SAE for details，please．

Ian Preece and friends are endeavouring to begin a Personal Computer Club in the Bournemouth／Poole Area．Interested？ Contact him at 246 Stewart Road，Charminster，Bourne－ mouth．

MICROCOMPUTER WANTED

To swap for my 5 octave，touch sensitive electronic piano． Write to exchange spec＇s：

R．I．GILCHRIST
62 Shelley Road，East Grinstead，West Sussex．
MK14 Professionally built with improved Metal Dome key－ board，perspex case，and power supply IC＇s socketed through－ out $£ 50.00$

Mr．S．Grosvenor
11 Bernard Road，Oldbury，Warley．W．Mids
021－422 3298

FOR SALE Sinclair Cambridge Programmable Calculator Programme Library and Mains Adapter £15．

Mr．A．D．Cann， 16 Pendeen Road．Threemilestone
Truro Cornwall．

$$
\begin{aligned}
& \text { DATA RECORDER MOS1105 For Sale } \\
& \text { With Tapes. Must Dispose due to Space Problems, Offers. } \\
& \text { Tel: Wivenhoe (020 622) } 4484 \text { After } 6 p \mathrm{~m}
\end{aligned} \text { HONEYWELL KEYTAPE }
$$

G Coates；Ipswich 59690

FOR SALE

16K LEVEL II TRS－80，and Several Games Programs $£ 640$. Phone－ 0613208512 Daytime．

FOR SALE

Heath H9 video terminal $£ 320$
Heath H10 paper tape reader／punch $£ 225$
Both carefully constructed and maintained，offered at well below the kit prices．

David Fox， 17 Mornington Avenue，
Wokingham，Berkshire，RG11 4UE．
Tel：Eversley（0734） 734343

OHIO SUPERBOARD II
Ready－built Microcomputer with power supply $£ 260$ ono． Tel：Manchester 2731308 （Ext．7）

FOR SALE

Motorola D2 Kit（Built）＋Manuals $£ 110$
6800 Assembly Programming $£ 5$ Scelbi 6800 Cookbook £6
Texas TI58 Programmable Calculator $£ 45$
Phone：Kevin O＇Brien，Birmingham 4263015 （Evenings／ Weekends）

FOR SALE

SINCLAIR PROGRAMMABLE CALCULATOR，PROGRAM LIBRARY AND MAINS ADAPTOR．
A．Cann， 16 Pendeen Road，Threemilestone，Truro，Cornwall

SPECtacular！That＇s the Sorcerer Program Exchange Club． In business now．Send SAE for bulletin to Messrs．G．F． Counsell \＆M．P．Hannaby at 65 Trafalgar Road，Birkdale， Southport，Merseyside．

FOR SALE

NASCOM 1 Ready built with power supply and 2K Basic， Games Tapes，Nascom Literature and Programming Manual perfect work ing order $£ 190$
Mr．G．R．Lindfield，Telephone：Coventry（0203） 462697

NEW WORKBOOKS FOR SALE

Sorcerer Handbooks（Cost $£ 15$ ）－$£ 10.00$
Pet TIS Workbooks 1－5）（Cost $£ 15.95$ ）－£10．00
Unread．Bought Nascom，so not needed．
Mr．L．Stroud，Hall North，Botton，Danby，Whitby，Yorks Castleton 281

A computer club，for amateurs and professionals，has started at Southgate Technical College．The groups welcome anyone interested in computers，especially micro－computers．Please ring Paul Woolley on 01－886 6521 for further information．

ASSEMBLY

 POINTJ. R. Keneally

Many small system users have the problem of balancing hardware and software costs within a fixed budget. Every penny saved on software means better hardware facilities. The D.I.Y. enthusiast is at a big advantage in this situation, since not only are his software costs minimised, but with a little extra effort the software can be designed to use the available hardware to the best advantage. With these thoughts in mind, the author has written a $Z 80$ Editor/Assembler to run on a NASCOM 1 system. The design objectives and general principles should be of interest to anyone developing systems software for a small system. (The Assembler itself should eventually be available through the INMC.

Design Objectives

1. Target Hardware

This was the NASCOM 1 with 4 K of expansion RAM, and dual cassettes. (A version of the Assembler has in fact run on the basic NASCOM, although this version had numbered instead of named labels). For those unfamiliar with the NASCOM, its basic form has 1 K of RAM dedicated to the VDU, plus 1 K of user RAM. However, the VDU RAM can be used for programs if desired.

2. Memory Required

An important objective was to leave as much RAM as possible for user programs, the aim being 5 K out the total of 6 K including VDU RAM. This was achieved by using separate

Editor, Assembler, and Linker programs.

Development of a user program proceeds as follows. The source code is first saved on cassette using the Editor. This cassette is then input to the Assembler, which outputs an object code cassette containing unassembled labels, but having all code translations completed. Finally, the executable program is linked direct into RAM by feeding the object code into the Linker program. Some other advantages of this arrangement are the potential for creating libraries of object code routines which can be linked with other programs, and the ability to relocate programs easily.

3. Flexibility

The Assembler was written with later expansion in mind, in particular the inclusion of instructions which decode to more than one machine code instruction, and of improved assembler directives. These objectives were met by using a single data table to define both instruction syntax and the actions required to generate the machine code or handle directives. This approach is efficient in memory requirements, easily debugged, and recommended to anyone thinking of writing an Assembler. Further details are discussed below.

Syntax Decoding

All syntax decoding problems are similar in the sense that they specify legal combinations of some basic alphabet or character set, and the context within which these combinations are valid. The legal combina-
tions can themselves be combined into sequences, thus making 'sentences' from the 'words'. Repeating the process generates 'paragraphs' from the 'sentences' etc.

Figure 1. Syntax tree
As a simple example, consider the problem of specifying the syntax for an assembler having only four possible instructions, ADD B, ADD C; SUB A, SUB B. (See Fig. 1). At the highest level of combination, all these instructions are arithmetic types. At the next level down, level 2, the SUB instruction can be followed by A or B, while the ADD instruction can be followed by B or C . The tree diagram of Fig. 1 therefore defines the complete syntax for this assembler.

In a practical assembler, the full tree diagram would be subdivided into a number of sub-trees, each containing only a few levels.

All that remains is to translate tree diagrams into software. Let us attach a unique number, the syntax code, to each syntax element in the tree, where a syntax element can be
any single character, group of characters or word, or any higher level of combination.

In our example, the highest level is all arithmetic instructions, and this is allocated code 1 in Fig. 1.

The problem is now solved, bar the hard work!

Characters from the actual instruction are first converted into the equivalent syntax codes.

A preset table (SYNTAB) is created containing the syntax codes defined in the tree diagram, and an indication of the sequence in which these must occur.

The instruction codes are then checked against those defined in SYNTAB.

If we now take a stroll through the process of verifying the syntax of an instruction, the structure required in the SYNTAB table will become apparent. We enter the table at the highest level, which contains code 1. On its own, this number is not very informative, since we do not know whether it represents a single character, or higher grouping. Consequently, a control bit is needed in each entry to indicate this. In addition, an address word, or means of indicating the start of the next level, is required. Armed with this data, we can proceed to the next level down.

At this point, it is instructive to view the above process in a different way. Let us think of the code (1) at the first level, and its associated control bit, as a 'call' to a 'subchain' de fined elsewhere in the table, i.e. at the address defined by the address word mentioned above. Instead of level 2 , therefore, we shall change the nomenclature to sub-chain 1 . The parallel between subchains and subroutines in a program is obvious, and for most people it is easier to think in terms of subchains rather than syntax levels.

Having reached subchain 1, we see that this can be either of two elements, code 2 or code 3 , and that

LABEL	CW	SYN CODE	CHAIN ADDR	NEXT ADDR
L0:	06	01	L1	\times
L1:	04	02	L2	N1
	06	03	L3	N2
N1:	11	41	\times	\times
N2:	13	42	\times	X
	13	43	X	\times
L2:	02	53	X	N3
N3:	02	55	X	N4
N4:	$0 B$	42	X	X
L3:	02	41	X	N5
N5:	02	$4 E$	X	N6
N6:	$0 D$	44	X	X

Figure 2. The SYNTAB Table
All numbers are in HEX.
X means unused address
both of these are themselves subchains. (See Fig. 1). Subchain 2 is accessed first, and this is seen to have only one possible sequence of letters (SUB) and no subchain calls, and can therefore be checked against the syntax codes from the actual instruction. If the codes match, then we may return to the call to subchain 2 with success.

However, this creates a problem, since where do we go next? If the match had failed, we would have checked subchain 3 , and if that had failed to match also, we would exit with a syntax error. When a match is obtained, however, another address word is required to indicate where to find the next SYNTAB entry, assuming that the syntax is not complete. Every SYNTAB entry is therefore like a conditional jump, since a failed match always goes to the adjacent table entry, while a successful match branches to a non-consecutive entry.

Most of the SYNTAB entry structure is now apparent, and may be summarised as follows:-

1. Define syntax code values for all syntax elements.
2. Equate all code values which are not single characters with the corresponding sub-chain.
3. Use a syntax table with the following minimum format for entries:
a) Control word bits defining subchain calls, end of syntax, and end of a set of consecutive alternative codes.
b) Syntax code value, and address of subchain if needed.
c) Address of next entry if this code was found successfully.

Figure 2 shows a syntax table for the above example, constructed along the lines indicated. The first word of each entry is a control word (CW) with the following bit allocations:
a) Bit 0. End of syntax, or of subchain.
b) Bit 1. End of set of alternative codes.
c) Bit 2. Sub-chain call indicator.
d) Bit 3. Save sub-chain code if set

Two more control bits have been used in addition to those mentioned earlier. These control the storage of syntax codes in an output buffer.

Also note that the syntax codes for single characters in Figure 2 are the same as the ASCII code without parity.

Figure 3 is a flow diagram for a routine which can be used as a syntax decoder in conjunction with the table. The input to this routine is the current instruction, and the output is a list of checked syntax codes plus an indicator for legal syntax. Note the use of a special software controlled stack (SYNSTK) which is used in calling subchains. The following is a brief description of the main variables used:

1. CHP. This is used to point to the current position in the input list.
2. OUTP. This points to the next free entry in output list of syntax codes.
3. SYNP. Points to the current SYNTAB entry.
4. ERR. This is cleared to indicate a syntax error.
5. SYNSTK. This is a FIFO stack, used to save and restore the first three variables above on entry to or exit from a subchain.

So far, no mention has been made of how the actual machine instructions are generated. This is done simply by defining a set of routines which, in conjunction with code definition tables, are capable of generating the required machine code. These routines constitute the code generator, and may be identified by numbers which can be inserted at appro-

Figure 4. Assembler Framework
priate points in the syntax table, together with any required parameters. The appropriate routine can then be executed when the associated syntax code has been successfully matched in SYNTAB. A simple modification of the flow diagram of Figure 3 will allow this to be done.

Typical routines for a Z 80 code generator might be:

1. Get instruction from code defining list.
2. Modify instruction (e.g. to insert register reference).
3. Insert byte to instruction (e.g. for IX and IY references).
4. Write instruction to outputdevice.

This is not intended to be an exhaustive list, but gives an idea of the routines needed. Assembler directives can be handled by a second set of routines.

In conclusion, Figure 4 illustrates all of the main elements of this type of Assembler. Once an Assembler has been written within this general framework, it is relatively easy to generate assemblers with different syntax, or cross assemblers, or even simple high level languages such as BASIC. It is hoped that this article will encourage budding Assembler writers to take the Bit firmly between the teeth!

O.K. so you've got a computer.

Micropolis drives are available in 143 K and 315 K (formatted) versions expandable from one to four drives in various packaging options. Prices quoted below are for single 143 K units including 240 V power supply and case.
For S100 computers: Cromemco, Vector, Horizon, SOL, Sourcerer with S100 expansion.
1042-1 Master unit; includes controller card and Micropolis system software £499 1022-1 Add-on unit $\mathbf{\Sigma} \mathbf{3} \mathbf{3 9}$ CP/M £100 COBOL
£400
FOr NASCOM and other small $\mathbf{Z 8 0}$ configurations:
143BZ Master unit; includes controller card and Raindos system firmware \quad £499 1022-1 Add-on unit E339 For Motorola D1 / D2, SWTPC MP-68 and other small 6800 configurations:
143BM Master unit; includes controller card and RPDOS system firmware \quad E499 1022-1 Add-on unit E339 FOr TANDY TRS 80 with expansion interface:
1027 (T) Drive 1, 2, 3 or 4

Memories

For S100 computers:
Vector 8K Static
ع150
Vector 16 K Static with bank switching
vector 48K Dynamic, 280 refresh
E300
E500

For SS50 (SWTPC, MSI) computers:
4 K Static £ 80
8K Static £140
32K Dynamic, Onboard refresh

Microspeech

For SS50 (SWTPC, MSI) computers:
Microspeech analogue speech synthesiser converts text strings in phonetic spelling to audio output. Complete with special BASIC interpreter

SINTROM GROUP

All prices exclude VAT and carriage Dealer enquiries welcome Please send for complete shortform catalogue
Please enquire for add-ons to computers not mentioned above

; COPY OVER CHARACTERS
COPY6: LDI

兂	
\bigcirc	6_{∞}

∞

- 女oinno

Microcomputers from the world's largest full-line manufacturer

62 New Cavendish Street
London W1 Tel: 01-580 8841

Mutek

Quarry Hill, Box Corsham Wiltshire SN14 9HT Tel: 0225-743289

C3 OEM with 32K RAM, 512K of disk storage and BASIC as standard, $£ 2950.00$ + VAT. (FORTRAN and COBOL available as extras.) All dealer enquiries direct to Abacus Computers Limited.
Thames Personal
Computers
13 Wilmot Way Camberley
Surrey Tel: $0276-27860$
Linn Products
235 Drakemire Drive
Castlemilk Glasgow

G45 952 Scotland Tel: 041-634 3860 U Microcomputers PO Box 24 Noth wich Cheshire CW8 1RS Tel: 0606-75627

Uust look at these feartures.

For the technical.
The Sorcerer Computer is a completely assembled and tested computer system ready to plug in and use. The standard contiguration includes 63 key typewriter-style keyboard and 16 key numeric pad, dual cassette $1 / 0$, with remote computer control at 300 and 1200 baud data rates, RS232 serial 1/O for communication, parallef port for direct Centronics printer attachment, 280 processor, 4K ROM operating system, 8K Microsoft BASIC in separate plug-in Rom PacTM cartridge, composite video of 64 chars 30 lines, 128 upper/lower case ASCII char acter set and a 128 user-defined graphic symbols, up to 32 K on board RAM memory, operators manual, BASIC programming manual and cassetre/ video cables, connection for $\$ 100$ bus expansion unit giving access to the spectrum of exciting and useful peripheral devices, such as Floppy disk drives, voice recognition/synthesis battery back-up board in case of power faiture, additional memory boards, E.PROM cards give you the facility to program and re-program your own ROM memories etc. etc. This is the most useable and flexible system that's now available to the home and business user at such a low price.

* WORD PROCESSING
* PLUG IN PROGRAMME CARTRIDGES
* WORKS WITH NORMAL TV
* EXPANDS TO 48 K
* 1,920 CHARACTER DISPLAY
* OUTPUTS TO PRINTER
* MANY EXPANSION FACILITIES

PRICES		£	£	
$8 K$	Sorcerer	650	Line Printer	850.00
$16 K$	Sorcerer	760	Video Display	240.00
$32 K$	Sorcerer	859	Development Pack	70.00
$630 K$	Dual Disc Drive	1.200	Word Processing Pack	70.00
$143 K$	Single Disc Drive	500	Technical Manual	8.95
S100	Expansion Unit	210	Memory Expansion 16K	110.00

NOW CONTACT YOUR LOCAL DEALER . .

LANCASHIRE
 051-236 0707 MICRODIGITAL 25 Brunswick St., Liverpool L2 BJ

WEST YORKSHIRE
053-65094 BASK COMPUTING Oakville, Oakworth Rd., Keighly
SHEFFIELD
0742.668767 E.S. MICROCOMPUTERS 7 Berkley Precint, Ecclesall Rd., S 11 BPN

NORTH WALES
0248.52042 TRYFAN A/V SERVICES 3 Swifts Bldgs., High St., Bangor, Gwynedd

AVON
0272-292375 ELECTROPRINT 5 Kingsciown Parade, Bristol BSG 5UD

NORTH HANTS
0536.83922 H.B. COMPUTE RS LTD. 22 Newland St., Kettering

LONOON \& Counties
BERKSHIRE
$0635 \cdot 30505$ NEWBEAR COMPUTING STORE 40 Bartholomew St., Newbury RG 14 5LL KENT

1. 3000380 INFORMEX 61 Harland Avenue, Sidcup, DA 15 7NY

SURREY
027634044 MICROBITS 34b London Rd., Blackwater, Camberley
0276.62506 T. \& V.J. MICROCOMPUTERS 165 London Rd, Camberlev

OR SEND COUPON FOR FURTHER INFORMATION

To: GEOFF WILKINSON
Please send me details of the SORCERER COMPUTER FACTOR ONE Computers Ltol, Name \qquad

11-17 Market Place, Penzance, Cornwall. Tel: 0736-66336/66565

Tel. No.

All Systems Are Not Created Equal

Your computer application is unique. It differs from all others. It is because not all applications are equal that MSI has developed a variety of computer systems.

At the heart of every MSI System is the powerful MSI 6800 Computer, one of the fastest and most versatile available. Depending on the System you select, the MSI 6800 has from 16 K to 56 K of RAM. Mass memory storage in MSi Systems range from 315K bytes in the System 1 to over 10 megabytes in our most powerful System 12.

In addition to the computer and mem.ory subsystem, MSI Systems include a CRT terminal and high speed character printer. The System 12 is housed in a compact desk unit.

As with hardware, computer software is not always created equal. Since there are a myriad of programs available, MSI offers a choice of Operating Systems for use with your MSI Computer System. Of course, our favourite is MSIDOS, but we offer the powerful SDOS operating system as well. All MSI Systems will support the other software products associated with each operating system.

MSI also has a variety of software programs including a Multi-User Basic program capable of supporting up to four users.

MSI Systems are currently being used in a broad spectrum of personal, scientific, educational, professional, and business situations. In addition to our Systems, we
can supply you with individual components for personal and OEM use. All MS! System components are available, some in kit form.

Write or call us for more information about MSI Systems and products and the name of your nearest MSI dealer.

Strumech Engineering
Electronic Developments
Portland House,
Coppice Side, Brownhills,
BRO 4321 Telex: 335243

If you can buy more on one board for under £300buy us one too!
 In about the same area as this advertisement, we have designed a microcomputer with 20K of addressable memory ON-BOARD. With Kansas City standard cassette interface ON-BOARD. With TV/monitor interface ON-BOARD. With control decoding ON-BOARD. With all bus lines fully buffered ON-BOARD.
 We call this microcomputer Nascom-2. And for under $£ 300$ this is what it has:

Microprocessor

Z80A. 8 bit CPU. This will run at 4 MHz but is selectable between $1 / 2 / 4 \mathrm{MHz}$.
This CPU has now been generally accepted as the most powerful, 8 bit processor on the market.
The software library for the 280 , with its base around the 8080, has rapidly expanded with the increasing use of its more powerful instruction set.

Hardware

$12^{\prime \prime} \times 8^{\prime \prime}$ Card
All bus lines are to the Nasbus specification.
All bus lines are fully buffered.
PSU $+12 v_{\mathrm{s}}+5 \mathrm{v}_{\mathrm{t}}-12 \mathrm{v}_{\mathrm{s}}-5 \mathrm{v}$.

Memory

On-board, addressable memory:2 K Monitor - Nas-Sys I (2K ROM) 1 K Video RAM (MK4118)
1 K Work space/User RAM (MK4118)
8 K Microsoft Basic (MK36000 ROM)
8K Static RAM/2708 EPROM

INTERFACE

Keyboard

New expanded 57 key Licon solid state keyboard especially built for Nascom. Uses standard Nascom, monitor controlled, decoding.

T.V.

The $1 v$ peak to peak video signal can drive a monitor directly and is also fed to the onboard modulator to drive the domestic TV.

I/O

On-board UART (Int. 6402) which provides serial handling for the on-board cassette interface or the RS232/20mA teletype interface.
The cassette interface is Kansas City standard at either 300 or 1200 baud. This is a link option on the NASCOM-2.
The RS232 and 20 mA loop connector will interface directly into any standard teletype.
The input and output sides of the UART are independently switchable between any of
the options - i.e. it is possible to use input on the cassette and output on the printer.

PIO

There is also a totally uncommitted Parallel I/O (MK3881) giving 16, programmable, I/O lines. These are addressable as 2×8 bit ports with complete handshake controls.

On-board Decoding

The NASCOM-2 makes extensive use of ROMS for on-board control decoding. This reduces the chip count and allows easy changes for specialised industrial use of the board.
Link options are on-board to allow the Reset control to be reassigned to an address other than zero.

Character Generators

The 1 K video RAM drives a 2 K ROM character generator providing the standard ASCII character set with some additions, 128 characters in all. There is also a socket for an optional graphics ROM on-board.
The PCB is, of course, of industrial standard, through hole plated, masked and screen printed.

Documentation

Full construction article is provided for those who buy a kit and an extensive software manual is provided for the monitor and Basic.
We think no other board has quite so much on it for $£ 295$ (plus 8% VAT). If you find a board that has more, buy one for us too!

Nascom Microcomputers
121 High Street Berkhamsted Herts.
(04427) 74343

pUzzLE PAzzLE NO.I-TilE UNDAZzLES

Neil Harrison

Some months ago now, in the November 78 issue of PCW, there was a letter from David Broughton posing an interesting little programming problem for the 8080 which went something like this:
"Imagine you possess an 8080 with 64 K of read/write memory which you want to clear. Write a program that sets all 65536 bytes to zero."

At David's suggestion this turned into a competition the object of which was to write the above program in either the fewest number of bytes or the shortest execution time. Spurred on by a two pound (increased to five pound) prize solutions soon started pouring into the PCW offices. Here at last are the results of the first Puzzle Dazzle competition.

Many people assumed that the program had to start at Iocation 0000, presumably since that is where the 8080 starts execution after a reset. Not so! Since the original problem did not specify whether or not the system in question has a monitor program or not I am prepared to assume it has. After all, how would you set the program in there in the first place? Given a monitor program, execution can usually start at any location. However, just for the purists who think that we should start at 0000 , here is the best solution. It was sent in by Martin Sach and is only 8 bytes long.

Address	Code		Mnemonic	number of clock cycles
0000	$2106 \quad 00$	LXI H,0006	10	
0003	54		MOV D,H	5
0004	$5 C$	MOV E,H	5	
0005	F9	SPHL	5	
0006	D5	PUSH D	11	
0007	E9	PCHL	5	

The first instruction sets the HL registers to 0006100 in $H, 06$ in L) and the next two set the D and E registers to zero using the data (00) in H : The stack pointer SP is then loaded with 0006 from HL. 'Pushing' the DE registers in the next instruction writes zeros into locations 0004 and 0005 and the stack pointer is reduced by two to 0004. The next instruction, PCHL, means 'jump to the address stored in HL' which, since HL contains 0006 means that execution continues with the PUSH D instruction. Successive Pushes write pairs of zero bytes down through memory, past location 0000 to FFFF and on; until, after 32767 pushes, the only two bytes in memory which are not zero are the PUSH'D and PCHL instructions themselves. The 32768th PUSH overwrites these last two and the whole of memory is set to zero. The whole process takes $10+5+5+5+32767^{*}(11+5)+11=$ 524308 cycles or 0.262154 seconds with a 2 MHz clock.

The shortest solution, or I should say solutions, since there are four, turned out to be six bytes long. The first, and by far the most popular entry consists of two three byte instructions which took longer to run than the previous 8 byte solution.

Address	Code	Mnemonic	number of clock cycles	
FFFA	31 FCFF	LXI	SP,FFFC	10
FFFD	CDFDFF	CALL FFFD	17	

The first instruction sets the stack pointer to FFFC, the byte before the next instruction. The CALL instruction which follows calls itself at location FFFD pushing the return address, which happens to be 0000 , onto the stack. With successive CALLs the stack pointer works downwards through memory writing pairs of zero bytes. After the 32767 th CALL only two bytes, FFFD and FFFE, remain unaffected so that the last CALL, which overwrites these last two bytes, jumps to location 00FD. Total execution time is $10+32768 \times 17=557066$ cycles or 0.278533 seconds with a 2 Mhz clock.

The second solution is very similar to the earlier 8 byte program and works in exactly the same way. The extra two bytes are saved by using the HL registers in the PUSH instruction, eliminating the need to load D and E.

Âddress Code Mnemonic number of clock cycles
FFFC AF
FFFD 67
FFFE 6F
FFFF F9
0000 E5
0001 E9
XRA A
MOV H,A
MOV L.A
SPHL
PUSH H
PCHL

Execution time to clear memory is $4+5+5+5+32768 \times 11+$ $32767 \times 5=524302$ cycles or 0.262151 seconds at 2 MHz .

The two remaining six byte solutions are equally 'correct' since they both take the same time to execute.

| Address | Code | | Mnemonic |
| :--- | :--- | :--- | :--- | number of clock cycles

This program is very similar to the previous solution and works in exactly the same way. Four clock cycles (2 microseconds) are saved by loading HL direct rather than using the accumulator. Execution time to clear memory is $10+5+32768$ $\times 11+32767 \times 5=524298$ cycles or 0.262149 seconds at 2 MHz .

Address	Code	Mnemonic	number of clock cycles
FFFB	21 FF FF	LXI H,FFFF	10
FFFE	F9	SPHL	5
FFFF	C7	RST 0	11
0000	E9	PCHL	5

The first instruction loads HL with address FFFF which is then put into the stack pointer by the second instruction. 'Restart 0 ' is a single byte subroutine call to location 0000 , which since it is being executed at location FFFF pushes a return address 0000 on the stack. The PCHL jumps back to FFFF until after the 32768th Restart instruction all memory is set to zero. Execution time is 0.262149 seconds.

Only two readers sent in both correct solutions and as there seems no fair way of discriminating between them I declare Eric Baddiley of Congleton, Cheshire and David Parkinson of Ipswich joint winners of PUZZLE DAZZLE No. 1.

WHICH BRITISH SYSTEM CAN OFFER THE FOLLOWING

- COLOUR $\quad=\underset{\substack{\text { Aerial input, Alphanumeric and } \\ \text { Graphics }}}{\text { B. }}$
- CEEFAX - B.B.C. Television Teletext
- ORACLE - I.B.A. Television Teletext service
- BASIC - ROM - Resident interpreter
- MONITOR - Motorola 6800 Machine Code.
- VIEWDATA - Instant information service.

T.E.C.S.
 TECHNALOGICS
 EXPANDABLE
 COMPUTER
 SYSTEM

PRICES START FROM AROUND £360 RACK MOUNTED AND TABLETOP VERSIONS (illustrated)

- THE LOGICAL DEVELOPMENT EVERYONE HAS BEEN WAITING FOR.
Please send large S.A.E. for details to:
TECHNALOGICS
(Dept. PCW)
8 EGERTON STREET,
LIVERPOOL L8 7LY

Bridge Hands Competition

Sheridan Williams

The PCW competitions seem to have gathered momentum now. The number of entries is staggering. This competition attracted over 200 entries. The age ranges and areas were diverse, but yet I received only one female entry.

This competition was to write a BASIC program to print four Bridge hands. There were two categories for entries. These were: (i) write the Fastest program, and (ii) write the program with the fewest number of statements. Each run should produce different hands of the form North, East, South, and West followed by the cards. I deliberately left the layout undefined. Each entry required the inclusion of a stamped addressed envelope; amazing how many people ignored this request. I always reply personally to each entry, and hence the need for an SAE.

The winner of category (i) was J. Yale of Wimborne, Dorset; who provided a program that ran 20 times in
$211 / 2$ seconds. This program was a clear winner over the next entries. Creditable entries were received from Chris Why, Paul Shirley, John Steggals, P. J. Andrews, and D. C. Broughton.

The winner of category (ii) was J. T. Steggals, whose program was only 8 statements long. Creditable entries that were only nine statements long were received from A. H. MacDonald-Smith, H. O. Roberts, J. Yale, G. M. Tennant, B. Bloomfield, J. A. L. Clark, and H. N. Dobbs; so as you can see, the winner only won by one statement, and even then he only won because I did not specify the layout.

Here are the two winning programs:-

FASTEST

[^2]
LOOK IN

TIME DETHIS

> "Blachberries", Sherriff's Lench, Eveshlham, Ulorcs,
> WR SII SSA.
> tel - 0385 870891

Hardware Esoftware consultant Training courses

EPROM PROGRAMMING
Prompt service. 2708 (1024*8) or 5204 (512*8) EPROMs programmed with your HEX listing $£ 13.50$ each, or your chips erased and programmed $£ 3.00$ each. Special rates for batches.

Pete Marlow, "Rosslyn",
Moorend Grove, Cheltenham, Glos GL53 OEX.
Phone (0242) 55133 evenings.
SWTPC MSI OWNERS - Fast Cassette Interface 4800 baud/300 baud Kansas city interface $£ 54.00$
Real time clock board
£54.00
$\mathbf{£ 5 4 . 0 0}$
Each uses 1 SS-50 I/O Slot
Also available: analogue board, extender board. Prices for assembled, tested units inc. VAT, p\&p

TWOBYFOR LTD.,

3rd Floor, 7 Euston Place,
Leamington Spa, Warwicks.

BIRMINGHAM

All our prices include VAT
PET $20014 K \& 8 K$ from $£ 470.00$ PET 2001 16K \& 32K from $£ 700.00$ PET Dual Floppy £795.00 PET Printer 2023 $£ 580.00$
NASCOM 1 (Free B.BUG \& Monitor) £178.00
KIM 1
$£ 100.00$
KIM 1 PSU Kit
£ 21.00
CAMTECH BD80 Printer. (112 cps, 910 ch.buffer, tractor feed) $£ 675.00$
All goods despatched p\&p free.
Access, Barclaycard terms available.

CAMDEN ELECTRONICS

1st Floor, 462 Coventry Road,
Small Heath, Birmingham B10 021-7738240

Open Mon - Sat 10am - 6pm

SWTPC Micro-Computer System for Sale. MP68 with 24 K RAM, CP-64 Terminal, Cassette Interface, Cassette Recorder, MSI FD-8 Single Drive Floppy Disc, MSI Disc Basic, Assembler /Editor, TV Monitor, Full Documentation. 1 Year Old, bought ready built. Suit amateur or could form basis of small business system. $£ 1,950.00$ ono. Write Box 40.

FOR SALE

Olivetti Audit 5 2K Memory. Used for Sales \& Purchase Ledger. Good Working Order Maintained regularly. Offers around $£ 900.00$

ANNOUNCING THE NEW

μ HEX EPROM PROGRAMMER

PUSH BUTTON SWITCHING FOR 2704, 2708 and 2716

Needs only standard CPU power supplies. Has or-board stabilised 26 v inverter.

PERFECT FOR Nascom, Micros, etc. or any PIO equipped CPU.
Tested and approved by
NASCOM
Includes 280, 8080, and 6800
control programs.
Features zero force Eprom socket.
ONLY £65
inc. VAT \& post.
Early orders ex stock s.a.e. for details

MICRO HEX COMPUTERS
2 Studley Rise, Trowbridge, Wilts.

MICRO BUSINESS

Wanted: Business Partner for investment in potential Micro Retail \& Training Project in London. Interest in TTY, BASIC, BUSINESS APPLICATIONS and Accountancy helpful. Reply to Box $30 \mathrm{c} / \mathrm{O}$ PCW.
130 FOR C=I TO I +12
140 PRINT MID\$ (P\$,4*P(C)+1,4);
150 NEXT C
160 PRINT
170 NEXT I
180 END

FEWEST STATEMENTS

```
P$ = "**AC2C3C4C5C6C7C8C9CTCJCQCKCAD2D3D4
    D5D6D7D8D9DTDJDODKD"
    P$ =P$ + "AH2H3H4H5H6H7H8H9HTHJHOHKHAS2S
    3S4S5S6S7S8S9STSJSOSKS"
    PRINT "NORTH","EAST",''SOUTH",'"WEST"
    FOR M=52 TO 1 STEP -1
    G=1NT(M* RND(1)+2)
    PRINT TAB(40-10*(M-4*INT(M/4)));MID$,2*G-1,2)
    P$=LEFT$ (P$ ,2*G-2)+MID$ (P$ ,2*G+1)
    NEXTM
    END
```

This competition has been very difficult to judge because of the number of entries; as I have said, over 200 entries. It was necessary to run all of the entries. Some people submitted two or three programs making the task even longer. Judging this competition was aided
by the fact that Research Machines supplied me with their "real-time clock board" for the 380 Z . I modified the BASIC interpreter so that it could access the clock, and also allowing BASIC to scan the keyboard in a similar way to PET's GET command. Because of Research Machines' kindness I was able to time the programs much more accurately than I could otherwise have done. As users of the PET will know, there are a great many applications and games that require a clock and to users of the 380 Z I can recommend its purchase. Advice on the above interpreter and on applications for the board can be obtained by including an SAE to my address at the end of this article.

While on the subject of the 380 Z and also considering that I wrote an article on how to make BASIC programs run faster, users of the 380 Z might like to note that 8K/9K BASIC allows you to finish a loop with NEXT with no parameter, this results in a 25% increase in speed. Also NEXT X,Y works.

Back to the subject of judging the competition. I had a great many people who asked, "How are you going to time category (i)." Some people even suggested that I would not be able to judge the competition fairly because of the difference in times between a teleprinter and a VDU, or even a lineprinter. Well, the scheme devised, hopefully, overcomes the problem, and should have occurred to those who posed the question. Each program was run as submitted to see if it worked. If it worked it went through to the next round. I only received three that didn't work, surprising when you consider how many entrants admitted to having no computer on which to test their programs. Round two consisted of dividing the programs into the two categories, category two being put aside for judging later. Category one (the fastest program) proved to be the most time consuming because each of the programs had to be modified in the following ways:

C-12 CASSETTES

Manufactured by Racal Zonal Ltd. Quality Cassettes mean Reliability. Screwed Shell, C/W Library Case. 5 for $£ 3.0010$ for $£ 5.00, .50$ for £22.50
TDK HEAD DEMAGNETISER Simply. The Best - If You own a Pet - This is for you $£ 11.50$
COMPUTER PROGRAMS THAT WORK
Book contains 24 programs written in Basic - Good Value $£ 2.70$
Prices include Postage + VAT.
CWO Only.
DJM SERVICES
92 Hilden Park Road, Hildenborough, Kent TN119BN.

FOR SALE

TRS 80 Software Level Basic Course - £8.00 TRS 80 Level 1
Statistical Analysis Programs - $£ 15.00$ TRS 80 Level 1
Blackjack and Backgammon - $£ 2.50$ Phone: Long Eaton 60679

WANTED All secondhand factory built Micro's
01.9794546

MICRO-FACILITIES

3802 SOFTWARE

BASIC programs guaranteed for 6 months, Using BASG, BASGF, BASGP, BASGC Cassette, listing or paper tape (no parity) supplied

16K programs

£8 STARTREK destroy the Klingons in your allotted time. £5 PONTOON allows doubling, splitting of pairs, five card tricks £5 POKER bluffs very well £4 ROULETTE allows any number of players.
£5 MASTERMIND 1 you guess the computer's code. Variable 1-30 columns
£4 MASTERMIND 2 guess the computer's code before it guesses yours. Restricted to 5 columns only with no repeated digits.
£4 KING rule a country for 8 years managing the economy.
£3 DARTS Darts training program. Computer is a dummy opponent. You will still need a dartboard As published in PCW.
$£ 3$ MOON land the LEM on the Moon
£3 POLY. FIT fits a polynomial of any degree to a set of points.
£3 SIMULT. EQN. solves any set of linearly independent equations.

USING THE 3802's GRAPHICS

 $£ 8$ ROBOT CHASE On a par with Startrek as an addictive game. Requires skill. Gives a rating depending on your ability.$£ 4$ HANGMAN Yes, boring old hangman with over 200 words, expandable.
£6 PLOT will plot any function in polar, parametric or cartesian form. Superb mathematical tool. Fascinating to watch.
£3 PATTERNS Suite of demonstration programs. Many good ideas.

IF YOU HAVE 32K STORE

 then try£10 SUPER STARTREK with blackholes, computer assisted warping

FOR THOSE WITH 32K AND THE

REAL-TIME CLOCK BOARD THERE ARE:-
£8 ROBOTS As for ROBOT CHASE but with an extra real-time option.
£6 MOON LANDER Land on any planetary body in real-time.
Both of the above programs need BASIC, which is an interpreter based on BASGF but also allowing BASIC to access the clock, and having a keyboard scanning function similar to PET's GET command. BASGC is supplied free when purchasing both of the above programs, and is $£ 4$ purchase individually
DISCOUNT 10% on two or more items
20% on five or more items
30% on ten or more items
All items are post free.
Also, written in machine code MOI Mini Pilot $£ 6$

F DONOVAN
114, Beech Road, St. Albans, Hertfordshire AL3 5AU

1. A loop of 20 runs was put in to make the timing more accurate, and also the clock functions had to be put in.
2. Each PRINT statement was replaced by a 'buffer' statement. The purpose of this 'buffer' statement was to remove the differences in times caused by differing PRINT formats. For example here are three PRINT statements and their replaced statements:
PRINT "NORTH SOUTH EAST WEST"
A = "NORTH SOUTH EAST WEST"
PRINT MID\$ (P\$,4*P(C)+1,4)
$A \$=M I D \$\left(P \$.4^{*} P(C)+1,4\right)$
PRINT TAB(40-10(M-4*INT(M/4)));MID\$(P\$,2*G-1,2) $A=\operatorname{INT}\left(40-10\left(\mathrm{M}-4^{*}\right.\right.$ INT(M/4)))
$A \$=M I D \$\left(P \$, 2^{*} G-1,2\right)$

There is no need, in fact it is wrong, to print the buffer lines. There was a great range of times for the programs; from the winning one which ran 20 times in $21 \frac{1}{2}$ seconds to one which took over 200 seconds for 20 runs. The average was around 30 seconds. Some of the output layouts were poor, but as the output format was undefined this made no difference to their final positions.

As an example of programming techniques, and the ability to make a program faster I would like to show a program submitted by Mr. R. Ross which took 50 seconds for 20 runs. After applying some of the techniques outlined in my previous article on faster BASIC programs, it took only 24 seconds, over 100% improvement.

10 DIM Ȧ\$ $(1,53)$
30 FOR $X=1$ TO 53
32 READ A $\$(1, X)$
34 NEXT X
40 FOR $Z=1$ TO 25
50 LET $X=$ INT(51.9999*RND+1)

```
60 LET Y=INT(51.9999*RND+1)
70 LET A S(1,53)=AS(1,X)
80 LET AS(1,X)=A$(1,Y)
90 LETT AS(1,Y)=A$(1,53)
95 NEXT Z
```

I have no idea at all why a 2 -dimensional array is used, but it certainly takes longer to reference an element in a 2-D array than it does for a 1-D array, so these were all changed. $\mathrm{A} \$(1,53)$ is only used to hold a temporary quantity during the swapping process, and could easily be allocated a non-array variable, for example T\$, with a consequent time saving. The RND function returns a value x within the range $0<\mathrm{x}<1$ and hence there is no need for the number 51.9999 to occur, 52 will do. As 52 is an integer quantity the expression will be evaluated faster than using a non-integer. The following program incorporates all my suggested improvements and results in a program which runs twice as fast. I am most grateful to Mr. R. Ross for allowing me to tear his program to pieces in rather a cruel way.

```
10 DIM A$(52)
30 FOR X=1 TO 52
32 READ AS(X)
3 4 ~ N E X T ~ X ~
40 FOR Z=1 TO 25
50 LET X=INர்(52*RND+1)
60 LET Y=iNT (52*RND+1)
70 LET T $=A&(X)
80 LET A S(X)=AS(Y)
90 LET A $(Y)=T$
95 NEXT Z
```

Note also that some interpreters work faster with each numeric constant held as a variable. Consult John Coll's benchmark tests to see whether your machine would benefit from that alteration. (The benchmark tests were given in Vol. 1 No. 1, and the timings again in the November 1978 issue).

LOOK IN

TRS-80 Software
Our latest Catalogue includes over 50 of the best TRS 80 programs from Britain and the USA. If you are looking for:-

- Games - Microchess, Startrek. Tribble, Life etc.
- Business - Sorting, Mailing, Statistics, Data Base, etc.
- Home - Menu Maker, Cheque Book, Loans, etc.
- Programming Aids - Assemblers, Monitors, Renumber, etc.
- or Education, Science, Engineering, Finance etc.
Send an SAE for our catalogue of Level 1/2 programs available on cassette and diskette to.

Micro Gems

32 Buckingham Ave., Hucknall. Nottingham NG 15 8ET

Easy Manufacture or Assembly

 for YOU?We specialise in building electronic sub-assemblies through to complete units to YOUR detailed specification with free issue or our bought out parts. "One offs", short, or long runs. For all enquiries contact:-

George Nall.
Nallman Power Products,
1a, Dakeyne Street, Carlton Road, Nottingham.
Tel. (S.T.D. 0602) 584316.

MicroERG
MICROPROCESSOR EDUCATIONAL RESEARCH GROUP
offers advice to actual or potential small-computer users in education or small businesses. Courses run for your needs (introductory; appli-
cations; programming etc.).
BASIC programmes written; packages designed.
CO-ORDINATOR; Brian Whalley,
Worcester College of
Higher Education, Henwich Grove, WORCESTER
Telephone 0905-422131 ext. 53

AT LAST:

NASCOM DIS.ASSEMBLER!

In 2×2708 Eproms	£22.50
	+ pp 50p
or on Cassette	¢ 4.50
	+ pp 50p

- As written by Dave Parkinson in PCW
- Full documentation
- Runs under NASBUG, B-BUG, executed as a simple command!
- EPROM version uses addresses F000-F7FF (next to Tiny Basic)
- CASSETTE version relocateable
- Decodes all Z-80 opcodes from any program in memory
- Gives easy 10 follow pseudoassembler listing.
DJ SOFTWARE
16 Cuckfield Avenue,
Ipswich, Suffolk.
Prop: D. Johnson, B.Sc., M:Sc.

Wire-by-wire instructions for improving the versatility of the serial-input/output socket of your NASCOM-1 computer and detailed instructions for connecting a Cottis-Blandford highspeed Cassette Interface to the Nascom-1.

Price $£ 1.00$ (post only) W.H.L. Williams,

252 Colney Hatch Lane, London N101BD.

THE SOUQNL OF THE MCROCOWUTER MVESTORS ASSOCUTIOW

COMPUTER SYSTEMS FOR BUSINESS
Our complete consultancy service offers a device and programming support at the right price. We specialize in business systems on mini or microcomputers.
contact: Richard Mortimore 01.9794546

BASIC PROGRAMS ON CASSETTE

 FOR PET, TRS-80 LEVEL 2 Business Accounts, Ledger, Payroll, inventory, V.A.T. at $£ 9.95$ eachS.A.E. for price list. R. JACQUES

16 Market Place, Hexham, Northumberland NE46 1XQ Tel: 3423

In order to restrict the entries to future competitions, I shall be setting harder problems to solve.

Competition - Magic Squares		
We have all met the magic square	2	7
	6	
9	5	1
4	3	8

866775
657687
778566
$\mathrm{MC}=228$. Unfortunately four of the original numbers $(66,67,76,77)$ occur again in the reversed square.

The competition is to find a magic square that satisfies the following conditions:-

1. The square is comprised of 2 digit numbers (zeroes not allowed)
2. It is a 3×3 square
3. When the digits are reversed, another magic square is produced with none of the original numbers reappearing.
4. The sum of the magic constants is less than 200. Solution is to be by BASIC program. A $£ 10$ prize will be awarded to the first correct entry supported by the program.

Entries to Sheridan Williams, 114, Beech Road, St. Albans, Herts AL3 5AU. Enclose an SAE if you require the program returned.

Tifen spibillige

BUSINESS SYSTEMS MAINTENANCE CONTRACTS
Hardware Software

TRS-80 Level 216 K	$665: 00$
Expansion Interface 16K	$325: 00$
Expansion Interface 32K	$435: 00$
TRS-80 Printer (friction)	$790: 00$
Teletype 43 for Pet or TRS-80	$875: 00$
RS-232-D Interface	$45: 00$
Memory Expansion Kit	76.60
Electric Pencil	68.00

Prices exclude VAT and P\&P

118 Wandsworth High Street, London SW 18 Tel: 01-870 4805 Telex: 8813089 (Interprem)
Send stamped addressed envelope for complete price list including discount books.

LOOK IN

TRS-80
 SOFTVARE

WE HAVE THE LARGEST TRS. 80 PROGRAM LIBRARY IN THE COUNTRY, BUSINESS, FINANCE, SCIENTIFIC AND GAMES. LEV 1, LEV II AND DISK. NEW PROGRAMS DAILY. WE PAY GOOD PRICES FOR ORIGINAL PROGRAMS.

SOME EXAMPLES
LIBRARY $100 \quad £ 37.50$
STARTREK 111 £10.50
ELECTRONICS 1 £ 6.50
INVENTORY $£ 6.50$
$£ 13.50$
FINANCE 1 \& 6.50
ASTRONOMY 1
£ 6.50
MICROCOMPUTER APPLICATIONS, 11, RIVERSIDE COURT,
CAVERSHAM, READING RG4 8AL

[^3]David Levy is setting up a company to develop intelligent software for sophisticated microprocessor applications. Any readers interested in writing assembler programs on a contract basis please write to David Levy, Box 123, Personal Computer World, 62a Westbourne Grove, London W2. Anyone actively interested in speech recognition, music composition or robotics is also invited to apply.

NUMBER CRUNCHER KIT

Now you can add all the functions of a powerful calculator to your $\mathrm{Z80}$ or SC/MP Microcomputer. Our MM57109 based kit includes quality P.C.B., all components, complete instructions and software. Only neat soldering is required to complete this kit.
The kit as supplied interfaces to an unmodified Nascom 1 but can be adapted to Interface to other 2.80 or SC/MP based computers.
Functions available include,$+-x$ /. sine, arcsine, logarithms and exponents. The design of the unit ensures that only a minimum amount of memory is required to perform complex calculations.
Complete Kit (Inc. VAT) £39.75 From: $+£ 1.25 \mathrm{p} .+\mathrm{p}$.
Control and Electronic Developments, 719 Pinebank, Craigavon, Co. Armagh, N. Ireland

FOR SALE OR HIRE
Secondhand PET's at reasonable prices. Contact: Richard Mortimore Tel: 01-979 4546

NORTH STAR

COMPATIBLE HARDWARE

INFORMATION UNLIMITED

WHATSIT Data Base Management System can support a disc-resident data base and process enquiries (as well as updates) in a real-time conversational mode $£ 55.00$

MICROSOFT

FORTRAN-80 - ANSI '66 lexcept for COMPLEX) plus many-extensions. Includes relocatable object compiler, linking loader, library and manager, 280 assembler and cross reference list utilities $£ 245.00$
Disk Extended BASIC - New version, ANSI compatible with long variable names, WHILE WEND, chaining $£ 175.00$

ORGANIC SOFTWARE

TEXTWRITER II affords complete word processing capability for North Star systems under the CP/M Operating System £59.00
The above software is supplied on $5.25^{\prime \prime}$ diskettes. Prices are exclusive of VAT @ 8% and postage \& packing (add 75p). Please send large SAE for details.
INTERAM Computer Systems Ltd.
59 Moreton St. Victoria, London SW 1

- 大丸 $\star \star \star$

TRUMPET, VOLUNTARY
Responding to TIDBITS information or
an advertisement?
Say you saw it in PCW
Blow your own trumpet.
Mention your magazine.

APPLEVIISION

Demonstrations

 using the Apple II

G. F. FILBEY

School of Physics, Polytechnic of the South Bank, London

Micro computers can be used in education in various ways, most usually by means of an interactive program. A particular skill is taught by question and answer. However, another use to which the computer can be put is to simulate processes, not for the purpose of solving problems but for a visual impact which cannot really be achieved in any other way. Cine film is useful but it always presents a mere picture whilst the computer can present a close analogue of the physical process.

For this purpose random processes are the ideal choice. A random number generator is used here; a sequence is obtained by adding together seven hexadecimal bytes to get the next byte. In the machine code of an eight-bit processor such as the 6502 in the Apple II which I used for these programs, this is easy to do modulo 256. However, the cycle length in this modulus is too short so we convert to modulo 255 . This is done by an easy trick. You just keep adding the high and low bytes together until the high byte is zero. The result is a number mod. 255 which means the remainder obtained by dividing the original number by 255.

Figure 1

To express, for example, a decimal number as a number mod. 9 you add the digits.

$$
\begin{aligned}
& 196 \rightarrow 1+9+6=16 \rightarrow 1+6=7 \\
\therefore \quad & 196 \mathrm{mod} .9=7
\end{aligned}
$$

You can check this process by using the mod. command in integer BASIC.

The programs are written in machine code (they take all night in BASIC!) and the random number generator resides in locations 11ED to 122 A . You can experiment with your own subroutine. If you have an Apple, or access to one, and haven't tried machine programming, then the resident mini assen bler is the thing to start on. Youll leam by talking to the machine with it just as I did. But mind, it spits back at you. A tip about the mini. You are bound to discover you've missed out some instruction and there doesn't seem to be a way of getting it back in. However, you'll find a simple routine for shifting the whole block of instructions from the missing one downward out of the way; inserting the instruction, and then putting the block back. The routine is in the red book. You've probably got a bit of tidying up to do with branch instructions but it is better than retyping the whole thing. And, by the way, get a book on touch typing and practise right from the start. Nothing looks more ridiculous than a computer wizard sitting at a sophisticated machine with fists partially clenched and a pair of index fingers poking a way!

The programs listed here make use of the machine subroutines of the HIRES demo tape produced by

Apple. You need to load this tape, list it, and alter the instruction in location $\emptyset \mathrm{C} \emptyset 8$ to LDA $\mathbf{C} \emptyset 52$ to give a full screen of graphics.

The Demonstrations

Now for the demonstrations. The first is illustrated in fig. 1 . Bins from zero to 254 are loaded with random numbers as they come up. Some 50,000 numbers are involved. The X axis represents the random number X and the Y axis the incidence of that number. You can see the sort of scatter obtained in 50000 trials. Repetitions, by hitting key R, produce different pictures showing that the generator is not in a short loop.

Figure 2

The second demonstration shows the Boltzmann distribution (figs. 2 and 3). This distribution illustrates energy distributions of molecules and is, in fact, the best-guess distribution

Figure 3

Figure 4
of a system when the average value of a parameter is known.

As a simple example suppose you throw a die repeatedly. What is the probability that you get a six on, say, the 10 th throw and not before? You assume two things.

1) The six must come up eventually i.e. the probability that it comes up in an infinite number of trials is unity.
2) The expectation value for the number of times it comes up is $n / 6$ where n is the number of trials (the fair die assumption).

To show the difference in quality of the distribution function when a small or large number of trials is used the demonstration first produces fig. 2. The top of the picture ($\mathrm{Y} \max$) represents 95 i.e. a success was scored on the first throw in 95 of the trials. (We are here using a die with three faces!).

Fig. 3 shows the improvement when the top of the screen represents 50,000. Fig. 3 also reveals a fault in the random-number generator. Bin 7 is low. (Counting the first bin as bin zero). It is consistently low. This is due to the fact that seven numbers are added to produce the random number. It is as if you were using a die for which it was unlikely to score a six on the seventh throw after a
six last came up! However for most applications this error is unimportant and its consistency permits it to be allowed for. A fourth-order additive system would here put this error in an awkward place.

The next demo is a Poisson distribution. This occurs in the case of a very large number of trials and a very low probability of success. When all the probable causes of human death, including old age, have finally been conquered you are pretty sure to die of something unlikely! The classic poisson distribution concerns the incidence of death among officers of the Prussian army by being kicked by their horses, for which actual records were kept (I am told the converse was a common occurrence).

The Rapid Fall-Off

In this demo 765 trials are made of the occurrence of a random number which has a probability of $1 / 255$ of coming up. This gives an expectation value of three successes. The first bin represents the number of times that no success occurred in a succession of groups of 765 trials. Nearly $3 / 4$ of a million random numbers are used here.

A characteristic of this distribution is the extremely rapid fall-off. With an expectation value of 3 successes the probability of 10 successes is negligibly small. The formula for this distribution is

$$
f_{n}=\frac{\lambda^{n} \exp (-\lambda)}{n!}
$$

Where f_{n} is the probability of n successes and λ is the expectation number. You can test the distribution

Figure 5

Figure 6
shown against this formula. Notice it should give equal answers for 2 and 3 successes. They are nearly equal on the histogram shown. The ratio of two consecutive values of r_{n} comes out as $3 /(n+1)$ which checks up reasonably with the values in fig. 4.

Fig. 5 shows the histogram in its early stages. Better results still can be obtained by, say, sets of 3000 trials with a $1 / 1000$ probability of success. This would take at least 15 minutes to display.

Finally fig. 6 shows a simulation with random numbers. A close-spaced set of dots in parallel lines represents the valence band of a semiconductor (this is for physics students).

A random number is used to punch a hole in the valence band (i.e. to put a black dot amongst the white) and simultaneously to put an electron (a white dot) at a fixed height above it. This represents absorption of a photon. A yes-no random number decides whether this or the reverse will happen. The reverse represents stimulated photon emission.

Figure 7
However, the reverse process does nothing at all unless there is an excited state (white up - black down) to de-excite. If this was the only process (excitation and equally probable de-excitation) then the population of white dots up and white dots down would quickly equalise. We would say that the electron temperature was infinite. This is shown in fig. 6. However, in practice the electron temperature is kept down, unless the photon irradiation is very intense, by being cooled by the atoms of the substance. This is called photon induced recombination and a variable recombination rate (again on a random basis) is fed in during the program. Fig. 7 shows the case of a very high recombination rate.

In concluding this article I should like to thank the "Lion House" of Tottenham Court Road, London, who kindly, on a couple of occasions gave me a print-out of the programs, without which editing would have been difficult. The final print-out which you see in this article was provided by my friends at Personal Computers Ltd., and was done on an Axiom printer. I must have one of these. It is the best thing I have seen for the home user.

Appledem

1 HIME：E＝4186：FOISGOH＝4696：FHOT＝ 4.595

2 HEGEN＝4ここ6
$3 \mathrm{FOR} I=1 \mathrm{TO}$ 个
4 FDKE I，I
5 HEXT I
9 FOCE 1 GE． 6
10 CRLL -95
EQ YTAE 19
36 FRINT uHSTOUEDH DF FRHDTH HUMEE ES．＇
4E FRINT ：FRINT
56 FRIHT＂UIT RHY KEY TO STBRT．＂

30 FREE -1636 E 0
90 CALL HHEERS
95 FOE $I=1$ TO 1EGEE NEXT I
$1016 \mathrm{CFIL}-9 \mathrm{E}$
119 FOKE－1gGES，
120 UTAE 10
130 FEIHT＂HIT P TO FEFERT OR FHY＇ GTHER KE＇＂
149 FRIFT＂TO OUNTHUE：＂
$150 \mathrm{x}=\mathrm{FEEK}$（－15964
160 1F X＜ier THEH 158
17 IF $x=210$ THEN E0
180 FOEE－ $1636 \mathrm{G}, 6$
1 E2 CALL－936
184 TFE 16
185 TAE E
1GE FRINT＂EQLTENAH DISTEIEUTIOH：
189 FRINT F FRIAT＂IF A SHCUESS HEED S OH THE F\＆ERHGE＂R＂＂
159 FEIHT＂TRIES，WHAT IS THE CHAPIGE THFT IT WILL＂
192 FRIdT＂BCGUR ON ENACTLY THE＂H＇T H TR＇？＂
194 PRIHT＂THE NO．OF TRIFLS FOE SUGO ESS IS FLOTTED HOEIZOHTFLLY AH THE SUCOESE FREDUENCY VERTICFILL Y．＂
2gQ FRIHT
2GE FREINT＂THE RESULT DETRIRED WHEN THE HUMEER OF TRIALS IS SMALL I 5 SHOUN S TIMES IH＂
EGS FPIUT＂SHCOESSIOH．THEH THE IMFRE GVEMENT WHICH FESULTS FEOM SEG
7 INES THAT HUMEER IS＂
EQ4 FRIHT＂DISFLFMED＂：FRINT
205 GOEIP 1000
EQG YTRE 1Q：FRINT HIT R TU EEPEAT GE FHY OTHER TO COHTIHUE：
2gT $\mathrm{x}=\mathrm{FEEK}$（－16984）
2ge If K\＆ie？THEN EQT
EGG 1F K＝EtG THEN EgS

E10 FOKE－1ESEG， $0:$ LALL $-936:$ FOKE -16303.5
ここ日 FRIHT＂FOISEON DISTRIEMTIOH．．．ME FiN YRLUE＝3．＂
230 FREIHT ：FRIHT
こ4G FRIHT＂EFIOH FOINT FLOTTED REMUIE ES TSG TEIALS＂
ESU FRIHT＂HHO EFGOH TRIAL HAE $1 / E 51$ CHALHCE＂
2TI FRIHT＂OF SUCEESS．＂
ESU FRIHT ：FRIHT
29G FRENT＂HOTE THE IMFROUEMENT IN： HAFE GE THE＂
EgS FRIHT＂HUMEERS IHCREFSE．＂
29G FRINT ：FREINT
G日6 FRINT＂HIT FHY＇KEY TO COHTIHLE．＂
310 \％ $\mathrm{K}=\mathrm{FEEK}$（ -16394 ）
346 IF Kく1ET THEH 310
$36 \mathrm{FOKE}-16 \mathrm{G6}$ ， G
376 CFILL FOIISEOH
375 FOR $I=1$ TD 1000：NE NT I
380 CALL－93E
390 FOEE－163日S．0
466 FFINT＂FOW FOLLONE A SIMLLATIOA OF THE FROUESS＂
410 FEIHT＂OF FHOTOH RESORFTIOH IH A SEMICOHPUCTOR．＂
420 FRIHT＂THE LOWER EAHD OF CLOSEL＇ －SFRCED DOTS＂
44 G FRIHT＂REFRESENTS THE YFLENCE EA FD．＂
456 FFIHT ：FRINT＂ELECTROHE FRE EMC ITED TO THE CONDUGTION＂
 DE－EKCITED＂
47 E FRIHT＂EFACK TG THE WRLEHEE BHAD． －

4E6 FRINT ${ }^{\text {ir THIS IS CRLLED＇STIMULATE }}$ ［ EMIESIOH＂．＂
4 GE FEINT ：FRINT＂THERE IS RLEO RNU ADOED RATE OF＂
SQU FRTHT＂SFONTPHEOUS EMISEION WHIC H IS＇vRRIED＂
510 FRIHT＂THROUISH THE FROIGRHINE．＂

515 FRIMT＂IN THE THIRD STHIGE THIS R FTE IS ZERO＂
EEG FRINT＂SO THE POPLILATIONE EOUHLI SE．＂
53 FRIHT \％FRIHT＂RLL THESE FROCESS ES RRE EOHTROLLED EY＂
546 FRINT＂IHDEFEHDEHT SETS OF FAHUO M HUMEERS：＂
SEG FEIHT ：FRIMT＂HIT Filfi KEY TO DO HTINUE．＂
576 K＝FEEK（－1ESE4）
5GU lF NC1ET THEH STG
585 FOK － 636 ， 4
59 FOEE 日G， ES
5SE FOHE $129,2 E 5$ FOKE 130，85：FOKE 131，3：FOKE 132，8E

```
GGG GGLL FHOT
GBE CFLL -GGE
6日7 FME -1636%,0
GT0 THE 1\Xi: UTFE 1G
GEO FRIHT "THE EHD"
ESS FOE I=1 TU EODG: HEXT I
EGE CRLL -9GE
EgQ EHD
1GOG FRIPT "HIT FDH KET TO CONTIHUE."
1605 %= FEEK (-15364)
1010 1F K<12? THEH 10GE
19EQ FOKE -1E3E9,0: CALL -95E
1GOQ FOKE 4EE2, SG4: FOKE 4E63,234
    - FOKE 4EE4,234
1040 CALL HEGE%
105G f0E I=1 TO 2GUG: HEXT I
1070 F=F%+1
10Qg IF F<S THEN 1046
1085 F=0
1090 FOKE 426z,EGS: POKE 4263,2e4
    : FONE 4E64, ES2
116G GPLL INEGEX
1110 for I=1 TO 1004: HEXT I
112G FOKE -1E%63,0
1130 EETISFH
```



```
1003- EQ 4E 10 TSF $1046
1006- F9 FF
100B- ह0 EC 63 STF
150S- Efi HOF
10UL- FG EQ LOA ##GG
10EE- FG TFY
```



```
1011- E5 51 STA 拉
101: ES 69 STH FEO
1015- EF HOF
101E- S0 12 G% STA $5\E
1015- EQED 11 JSE F11ED
1010- C9 25 OmF ##2S
H1E- DG GO EtE F102G
16E0- 20 DE 10 JER #100E
10ES- 1S CLC
```



```
1GES- ES 51 ADC 轮i
10EQ- ES 51 STFI F5i
10EA- FO 60 LDA #%a日
IGEC- ES ESG FDG F5G
1NEE- ES 50 STF 55S
1058-6963 trf ###S
```



```
1054- FE EG LOK 钆
16S6- EF HOF
1G37- DE GO GE DEC FECEM%
103A- ED bG EE LDA $QEOQ, 
10G0- HD 1E 日G LOM $ESIE
```



```
104B- 40 5i 10 JHF F10%1
1GCE- FO EE LOF ##CG
104\varepsilon- HE GE LDK 并%GE
104F- SD GQ LE STR FGEGB,%
\begin{tabular}{|c|c|c|c|}
\hline 16169－ & 20.606 & JSF & 9 FCGO \\
\hline 1003－ & 204810 & ISF： & \＄1646 \\
\hline 106E－ & H9 FF & LOF & \＃管号F \\
\hline 1008－ & ED EC 93 & STF & 7650C \\
\hline 1698－ & Efi & HOF－ & \\
\hline 16tic－ & F968 & LOF & \＃+606 \\
\hline 106E－ & Fis & TFY & \\
\hline 16Etif & 8559 & ETF & \％ 5 \\
\hline 1611－ & 8551 & STA & 551 \\
\hline 1013－ & 856 & STA & \％69 \\
\hline 1015－ & EF & HOF & \\
\hline 1015－ & 8012 O & STA & ＋6912 \\
\hline 1615－ & EQ ED 11 & JSE & F1ED \\
\hline 1910－ & 0925 & Cmp & 4＋55 \\
\hline 161E－ & DG CO & Eft & F16玉 \\
\hline 1620－ & 20 De 10 & JER & Fibot \\
\hline
\end{tabular}
```


NORTH STAR COMPATIBLE SOFTWARE

ALLEN ASHLEY ENTERPRISES

PDS Program Development System for 8080 or $\mathbf{Z 8 0}$ computers PDS is an exceptionally powerful assembly language develop． ment package．PDS includes a unified assembler／editor，a macro assembler with a relocating linking leader，a string－ oriented text editor and trace debugger／disassembler．PDS supports full Z 80 code favouring the Intel instruction mne－ monics，treating the $\mathbf{Z 8 0}$ superset as a logical and syntactical extension．
The following is a list of source modules compatible with PDS：－

MODULE	FUNCTION	REQUIREMENTS
ALPHSORT	High speed alphabetic sort	None
NUMRSORT	High speed numeric sort	None
FPPACK	BCD floating point arithmetic	NOne
FOURIER	Fast Fourier transform	FPPACK
MINV	Matrix inversion	FPPACK
MATPED	Matrix product	FPPACK
RATPOL	Rational function and utilities	FPPACK
SQRT	Square root	FPPACK
TRIGS	Sine，cosine，TAN，ATAN	FPPACK，RATPOL
LOGEXP	Exponential，logarithm，V^{\times}	FPPACK，RATPOL
FPIOP	Floating point IlO	None
FORMAT	Formatted floating point output	None
NFILES	North Star disk handler	None
INOPS	Integer multiply／divide	None

of modules（histed abov
BYTE SHOP OF WESTMINSTER
NORTHSHARE North Star BASIC time sharing package The NORTHSHARE system allows you to make much better use of your 8080 or 280 CPU by allowing you to connect two to four terminals to your system and running North Star BASIC in a timesharing mode．Each terminal shares the same copy of BASIC simultaneously；but independent of the other user（s）．All book－keeping is done by a separate task supervisor．

DIGITAL RESEARCH

$C P / M^{*}$ with Horizon customisation
CP／M is a proprietary general－purpose operating system for Intel 8080 or Zilog Z－80 microcomputer systems．CP／M＇s basic facilities include dynamic file management，a fast assembler，a general purpose text editor and an advanced debugger．
MAC Macro Assembler，features include assembly－time express－ ions，conditional assembly，page formatting and a powerful macro assembler
SID Symbolic Instruction Debugger
TEX Text formatter
DESPOOL permits simultaneous printing of data from disk while user executes another program from the console
NORTH STAR SOFTWARE EXCHANGE
NSSE1 Six games plus four utility programs
Games：Chomp，Lunar，Slots，Match，Startrek and Wumpus． Utilities：Memory 16，Memory 24，Memory 32 and Defunct．
NSSE2 Assortment of utility programs
Utilities：File，Heaps，TST16K Compact，Hexdec，Memset， Filedit，Memrymap，Sort and Alphsort．
NSSE3 This disk is entirely devoted to the Guess game
NSSE4 Mathematical routines mostly for matrix manipulations Routines：Fast Fourier Transform，Gaussian Reduction， Matrix Multiplication，Matrix Inversion and Gaussian Elimination．
NSSE5 Complete assembler source code for the PILOT system NSSE6 Assortment of applications programs

Programs：Library，Mailer，Intrate，Biorthm，Chekbook
NSSE 7 Games，mainly for use with SOL video board
f 6.00
£ 6.10
NSSE8 Games programs，mostly in the form of simulations．．．
The above programs have been certifled by their contributors as being in the public domain．Neither North Star Computers Inc． or Interam Computer Systems Ltd．make any claim or offer any warranty that the programs are correct or suitable for any pur－ pose．The set of eight diskettes containing software is priced at NORTH STAR
PASCAL development system includes an editor，compiler，£37．00 debugger and file handler．
PAS－AUX Auxillary package for above，includes an assembler and utilities

The above software is supplied on 5．25＂diskettes．Prices are exclusive of VAT＠ 8% and postage \＆packing（add 75p）．Please send large s．a．e．for full details．
Coming soon－Applications software，including General Ledger package for incomplete records and an Inventory package．
Software products are being continually added to our range，so please enquire about software products not listed above．

INTERAM Computer Systems Ltd．
59 Moreton St．Victoria，London SW1
INTERAM
£65．00
£60．00
£60．00
£45． 10
£ 6.00
£ 6.00

E 6.00
\＆ 6.00
£ 6.00

WhieEler DEALER

ROULETTE JN KEN'S CASINO

Ken Wheeler

This is a simplified form of the now well-known Roulette casino game, written in'Processor Technology's Cassette Extended BASIC, tested, debugged and run on a SOL-20.

The program is, however, straight-forward and will be easy to adapt to another BASIC dialect. A full listing is given.

Lines 140, 1170, 1280 and. 1520 contain a PRINT "\&K" statement. This is a control statement for the SOL-20 which simply clears the screen and can easily be substituted or even left out if necessary. The DIM statement in line 150 is peculiar to PTC BASIC and specifies the number of digits which may be contained in the quoted string. In most BASICs such a statement would be used for subscripted string variables but that facility is not available with PTC's BASIC. There are several PAUSE statements included in the listing and, if your BASIC does not have this facility, it can very simply be replaced by a FOR . . NEXT loop.

There should be nothing else in the program to cause any problems and you should be on your way to losing all your hardearned cash within seconds of typing the program into your machine.

```
10 REM**.*
28 REM***
30 REM****
40 REM=**
50 REM==:
70 REM=**
80 REM=**
90 REMF**
10@ REK=**
110 REM***
124 REM***
130 REM##***
150 OIM E1S(45),825(10),B38(10)
160 PRINF " WELCUME TO KEN'S CASING"
160 PRINF
180 PRINT "TODAY'S gamE IS ROULETtE - NOULD YOU LIKE INSTRUGTIONS?"
190 PRINT "TYPE YES OR NO AND PRESS THE RETURN BUTIUN. "
200 INPUT IS
210 IF 1S= MYES" THEN 256
220 IF 15= "NO" THEN 490
230 PRINT "ANSWER YES OR NO PLELSEI"
240 PRINT : GOTO 200
250 PRINT "IN THIS VERSION OF ROULETTE YOU ARE ALLOWED TO"
270 PRINT "GET ON INDIVIDUAL NUMBERS, NUMBER SETS, UDO NUNBERS"
28| PRINT "OR EVEN NUMBERS."
290 PRINT "THE NUMBERS RUN FROH TO TO AND YOU PLACE YOUR GET"
30日 PRINT "BY ENTERING A NUHEER EETWEEN Y AND 44, THE"
310 PRINT "NUMBER REPRESENIATIONS ARE SHOUN EELOW."
320 PRINT "OB IS ALWAYS A WIN FOR THE HOUSE. IF UQ IS ENTERED"
336 PRINT "AS YOUR NUMBER THIS WILL BE INTERPRETED AS A DEGISION"
340 PRINT "TO END THE GAME."
350 PRINT : PRINT "PRESS THE RETURN BUTTON TO CONTINUE. ";
360 INPUT XS
37% PRINT
3BG PRINT" \TO 36 REPRESENT THEMSELVES." 
390 PRINT " "39 REPRESENTS THE NUMBER GROUP 19 TO 18.""
410 PRINT "40 REPRESENTS EVENS."
43O PRINT 442 FEPRESENTS TME NUMBER GROUP 1 TO 12."
430 PRINT "42 GEPRESENTS TME NUMBER GROUP 1 TO 12*"
440 PRINT "43 \
460 PRINT
478 PRINT "PRESS RETURN TO CONTINUE. "
480 INPUT XS
499 PRINT
500 LET S*G -THE BETTING ODOS ARE:-"
```



```
530 PRINT " GROUPS OF 12 NUMBERS: GROUPS OF SO NUMBERS: EVEN 'TONEY"
548 PRINT " GROUPS OF 'S ORUBERSS: ODOS OR EVENS : EVEN MONEY"
560 PRINT "IF YOUZ WOULD LIKE A PRINT-OUT OF THE TABL
SBO PRINT HETER Y LOTHERHISE PYPE N) AND PRESSSBLE THEN TYPE THE"
580 PRINT "LETTER Y (OTHERWISE TYPE N) AND PRESS "
590 PRINT "THE RETURN BUTTON.
bथ8 INPUT TS MEN THEN 64B
62g IF TSC> "N" THEN PRINT "ANSWER NOT UNDERSTOOD - TRY AGAINI": goto
63v wuTu a4b
648 PHANT
658 PKIKT 
67% LET G2s="
680 FRINT 61s
69% PRINT -
706 LET E3s="
716 PRINT B19
l26 LET O=-2
746 LET O=Q+3
CNOLETN=Q*3
160 PRINT 61$
710 NEXT I
```

Room PW
313 Kingston Road, IIford,

A COMPREMENSIVE SELECTION OF MICROCOMPUTER BOOKS AND MAGAZINES FOR THE HOBBYIST EDUCATIONALIST PROFESSIONAL AND RETAILER

Introduction to Microcomputers:	
Vol 0: Beginners Book	65.95
Vol 1: Basic Concepts	¢6.30
Vol 2: Some Real Microprocessors (without binder)	f18.96
Vol 2: Some Real Microprocessors (with binder)	¢24.70
Vol 3: Some Real Support Devices (without binder)	¢11.95
Vol 3: Some Real Support Devices (with binder)	[17.70
Updating subscription (6 issues) for Vol 2	¢18.95
Updating subscription (6 issues(for Vol 3	¢18.95
Updating subscriptions for Vol 2 \& 3	¢30.00
1 Updeting issue (specify for Vol 2 or 3)	C4.00
1 Binder (Specify for Vol 2 or 3)	85.75

6800 Programming for Logic Design	$\mathbf{6 6 . 3 0}$
8080 Programming for Logic Design	$\mathbf{6 6 . 3 0}$
Z80 Programming for Logic Design	$\mathbf{6 6 . 3 0}$

BASIC Computer Games
What To Do After You Hit Return
8080 Galaxy Game
Computer Rage (A Board Game)
Artist and Computer
Games. Tric̣ks \& Puzzles for a Hand Calculator
65.50
$\mathbf{f 8 . 9 5}$

83.95
$\mathbf{8 2 . 4 9}$

280 Instruction Handbook
8080 Programmers Pocket Guide
8080 Hex Code Card
62.95
61.95
61.95

8080 Octal Code Card

Dr Dobbs Journal Vol 1
10.00

Best of BYTE
Scelbi BYTE Primer
Best of Creative Computing Vol 1
Best of Creative Computing Vol 2
Best of MICRO

```Best of MICRO
```

8080A/8085 Assembly Language Programming
66.45

6800 Assembly Language Programming
6800 Software Gourmet Guide and Cookbook

66.30 66.30

 66.30
STATPACI
 Continued
 i.ISI STATB
 Colin Chatfield

0005 REM STATG
0080 LINE 080
0100 ? "ThIS program is spare fori the useri 10 emter his program"
0110 ? :?TAB(20);"STATPACK"
012060701200
1000 GOSUS 9600

1110 IMPUT" CARRIAGE RETURN UHEN KEADY", AI
1120 GOSUB 5000
1200 GOSUB 9360
1210 IF LEFT $\$(A \$, 1)=" N " T H E N 1290$
1220 If LEFT:(As,1)毋"Y"THEW1140
1230 ImPUT" If LIMEAR REGRESSIOH INPUT Y, ", A3
1232 IF $A B=" Y$ "TAEM1 120
1234 CHAIN STAII
1240 ? TAB(20);"STATPACK ENU": END
5000 REN THIS IS A SPARE PROGRAM LHICH CAN GE USELI BY THE USER 5010 ? "THIS PROGRAM IS SPARE AND HAS NOT REEH URITTEN ": RETURM 9000 REM SUB PRDGRAMS
4300 FOR K=1T05:? \quad (29): NEXTK: RETURN
9360 INPUT" ENTER 'Y' FOR MDRE, 'N' FQK NONE ", AS
9370 RETURN
9380 ? CHR\$(25);:?CHRs(25);:?CHRs(22);
9385 ? CHR:(12);:RETURN
$9400: 2=0:$ IF $=1$ THE HE $2=1: 60109430$
9410 ? : INPUT" COLUAM \# STATISTICS REQUIREIJ FOR ", B2
9420 IF B2>日 THEN ?"T00 HIGH";:GOT09410
9430 ? (29): RETURN
9600 OPEN 110 , STATFLI FOR INPUT
9610 OPE 20, STATFL2 FOR IHPUT
9620 FIELD $10, F=6$
9630 FIELD 120, $A=6, B=6$
9640 SET 10=1:SET\#20=1:GETH20
$9550 \operatorname{lin}[(A, B), 83(A)$
9660 FOR $\mathrm{I}=1$ IOA: $F \mathrm{FDRJ}=110 \mathrm{~B}$
9670 GET H10:C(I, J)=F
9680 NEXI J:NEXT I
9683 INPUT "
9683 INPUT" ENTER Y FOR UISUAL DF SATA", AS:IFAS "Y"THEN9690 9685 ? :FDRI = 1TOA:FOR J=110B:?C(1, J);:MEXIJ:?:NEXTI:? 9690 CLOSE 10:CLOSEM20:RETURN

THE GHOST

WITBIT

David Parkinson \& Graham Trott

The assembly language problem forum

The aim of this column is to set small problems, not necessarily complex or obscure, which will provide those of you who pro gram in assembly language with an opportunity to exercise and develop your skill. The published solutions will illustrate one or more approaches to the problem and we hope that in time the pages will form a useful reference library of small subroutines.

Solutions should be in $\mathbf{Z 8 0}$ or 6800 code, and prizes of $£ 10$ and $£ 5$ will be awarded in each section. Entries for this month's competition should be in by the end of June. Results in August issue.
Problem: To write a short subroutine for an editor to execute a "Find string" command.
Background: The variable SKEY points to a delimiter at the start of an ASCII character string. The string is terminated by an identical delimiter. The variable CURR points to the first character of the current line of an editor source file. The file is stored as:ascii line (CR) ascii line (CR) . . . ascii line (CR) (NULL)
Required: To search the file from CURR in an attempt to match the string pointed to by SKEY. On finding it CURR is set to point to the start of the line containing the string, otherwise CURR points to the end-of-file marker. Any "@" in the search key represents a "don't care" character.

STRUMECH ENGINEERING ELECTRONICS DIVISION
Portland House Coppice Side Brownhills 4321

NEW DOLPHIN BD 80 PRINTER
Low cost 80 column printer combining simple mechanical design with sophisticated micro-processor control, upper and lower case, 112c.p.m., many features.
Stand, cables, memory buffers available.
Ex-stock prices from $£ 595$
Dealer enquiries invited.
SPECIAL OFFERS for July only.
CP/M now available on Micropolis Mod II configured for Sorcerer
£98.00
C12 Computer Cassettes $42 p$ each
$£ 3.75$ for 10
5" diskettes
$\mathbf{£ 2 9 . 5 0}$ per box of 10
2708 EPROMS £7.99 each

NEW PRODUCTS

DOLPHIN PRINTER is plug compatible to the Sorcerer's serial and parallel interfaces and is supplied in a beige cabinet - plug in and print.

The EXIDY MONITOR and PROGRAM DEVELOPMENT ROM PACS are on demonstration in our showroom.
SORCERER TECHNICAL Manuals and handbooks are available ex-stock.
A vast amount of software is nearing completion, so please keep in touch for early news of availability.

EXIDY SORCERER - A COMPLETE BUSINESS SYSTEM UNDER $£ 3000+$ VAT 32 K Machine with $Z 80$ processor and 8K ROM BASIC. 128 character ASCII keyboard and superb graphics.
DOUBLE DRIVE configured MICROPOLIS DISK SYSTEM with MDOS or CP/M 630 Kb . Professional quality monitor, various sizes up to $16^{\prime \prime}$. Printer - optional 80 or 132 column printer. Software packages are available or can be written to your own specification.
The system can be expanded to suit your own applications.

UNDER £1000 - BASIC SYSTEM
32K Machine $10^{\prime \prime}$ professional monitor (not a converted TV), quality cassette recorder, necessary cables, manuals etc.
Price $\mathbf{£ 9 9 9}+\mathrm{VAT}$.
Sorcerer Prices from $\mathbf{£ 6 5 0}$ (8 K)

77/68 BEARBAGS - The well supported 6800 based kit from Newbear. Active user group.
'PRINTERS - CENTRONICS. DOLPHIN, OK 11.

MONITORS - Professional quality $9^{\prime \prime}, 10^{\prime \prime}, 12^{\prime \prime}, 16^{\prime \prime}$ (ideal for teaching).

COMPUTER BOOKS - For professionals, hobbyists, businessmen and newcomers. Catalogue now containing updates - over 500 titles - Micro, Mini and Mainframe. Quantity discounts available.

CROMEMCO Z2 - The powerful one - ASSEMBLER, MACRO ASSEMBLER, FORTRAN, COBOL, DATA BASE MANAGEMENT, WORD PROCESSOR.
Prices from $£ 395$ (Z80 Single Board Computer)

NORTH STAR HORIZON - The popular computer for the business user. Expandable to $48 \mathrm{~K}, 3$ diskettes and hardware floating point. Basic system 16 K RAM, serial interface. EXTENDED BASIC, DOS, CP/M, mini diskette and power supply. Prices from £1295

SOL 20 - the professional terminal computer renowned for its high quality capacative keyboard and Word Processing application. Minimum 16 K RAM, monitor, serial and parallel interfaces. EXTENDED BASIC, FORTRAN, FOCAL, ASSEMBLER, EDITOR, GAMES, mini floppy disks. Prices from £1785
SOL "STAR WORD PROCESSOR from $£ 2500$
THE COMPLETE SERVICE

Feasibility studies - undertaken by our senior consultant analysts with long experience of commercial data processing.

Software packages available and/or specially designed and written for your own applications.
We can supply work stations for your computer hardware, standard configurations or made to measure.
Insurance, maintenance, HP facilities. BARCLAYCARD, TRUSTCARD, ACCESS.
Universities, Colleges and Schools - official orders welcome.

OFFICES and SHOWROOM
 open Monday - Saturday 10.00 a.m. - 6.00 p.m.

Personal callers welcome (Please phone first)
34B London Rd., Blackwater, Camberley, Surrey. Telephone (0276) 34044 Telex 858893

Ga As. Gallium Arsenide - descriptive element of some light emitting diodes and field effect transistors.

Gain. Measure of amplification in an electronic circuit, usually expressed either as a direct multiplier (e.g. 1000 times) or in decibels.

Game Theory. Arithmetical process of selecting the best strategy against an opponent who has a strategy of his own. It is an inherent characteristic of game theory that decisions of one contestant alter the opportunities of others.
Ganged (controls). Physically connected so that they move together, though not necessarily in the same direction. A pair of ganged switches might close one circuit at the same instant as another circuit is opened.

Gap (1). The gap in a read/write head for some magnetic storage peripheral (for example, tape, or disc) is an unchanging physical fact built in by the manufacturer which will not concern a computer user so long as he keeps the heads clean. It is virtually the same as in a-domestic sound recorder.
(2). The space between a read/write head and the magnetic surface it serves. Where that surface is constantly in motion, for example, on disc, physical contact would cause undue wear and the head is, therefore, kept slightly clear. The gap should be kept small and constant.
(3). Interval between successive blocks of data stored, for example, on magnetic tape, where it provides opportunity for acceleration and deceleration of the transport mechanism
Garbage. A meaningless jumble of characters sometimes found (after a mishap) in a computer's data files or output.

Gate. An electronic switch, typically found in an integrated circuit and arranged to respond logically to a particular pattern of signals presented simultaneously to a number of input connections.

Gating. Electronic switching of a. circuit, typically under the control either of a clock lopening and closing the gate periodically) or of logical circuits responding to specific patterns of input signals.

Generalised Routine. A computer program written to a specified structure (for example, to extract information from a magnetic tape file of customers' balances) but which has been designed so that the
parameters can be varied very easily. A general program for sales ledger analysis, for example, might on one occasion be set up to note only slow moving accounts and on another occasion, by minor modification to the initial instructions, the same program could be used to extract only details of balances which had moved within the last few days. There is sometimes very little distinction between a general routine and a general sub-routine which has been designed to be used in a considerable variety of programs.
Generate. To compose a computer file (for data or program) semi-automatically, given a number of initial parameters.

Generated Address. An address composed out of quantities which arise in the operation of a program. A modified address or relative address can be a form of generated address, but a generated address may also be one determined without any reference to a given base or absolute address.

Giga. Prefix signifying one thousand million 109.

GHz. Abbreviation for GigaHertz.
GigaHertz. A frequency of 109 cycles per second.
Gigo. Garbage In Garbage Out (acronym). A reminder that computers do not think and can produce nonsense on a massive scale if fed with inappropriate data.

Golf Ball. A particular design of printing head for an electric typewriter or sequential printer, so called because the type face is embossed on the surface of a metal sphere about the size of a golf ball.

Gosub. A program instruction le.g. in BASIC) which transfers control to a subroutine, written elsewhere in the program, and afterwards (by a RETURN instruction) allows the program to be resumed from the point of diversion. In this way a single subroutine may be invoked many times by different Gosub (Go to SUBroutine) instructions.

Goto. A program instruction (e.g. in BASIC) which transfers control to another part of the program.

Graceful Degradation. Capability in a computer on breakdown, such as power failure, to close its activities in an orderly way so that minimum damage is done either to the machine or to the work being processed. Synonymous with fail soft.

Grandfather-Father-Son. An extension of the Father-Son technique of preserving a copy of the earlier record whenever a new version is prepared. As the title suggests, each tape or other record is kept for an extra generation (or updating cycle) before its data is destroyed; in the FatherSon payroll example data for week 39 would be retained until records for both weeks 40 and 41 had been completed and found free from error.

Graphics. The use, particularly on a computer's display screen, of graphs, bar charts and other designs in place of or in addition to the usual alphanumeric character set.
Graphics Mode. The setting of an adjustable device, such as a daisy wheel type of sequential printer, so that graphs may be drawn on the paper where characters would normally be printed. 'Graphics mode' implies that both print head and paper will be moved by a very small distance (and in either direction) between each imprint of a dot or other chosen plotting character.
Graph Plotter. A computer output device which can draw lines (sometimes in several differentcolours) on paper under computer control.

Gray Code. A binary code drawn up in such a way that in going from one decimal value to the next only one binary digit changes its value, for example:

Decimal	Binary	Gray
0	000	000
1	001	001
2	010	011
3	011	010
4	100	110

Synonymous with a cyclic code.
Ground. An Americanism for earth (as an electrical connection).

Group Mark. A code used to identify the limits of data treated as a single group.

Guard Band. An area capable of carrying information but deliberately left unused in order to prevent accidental. interaction between signals carried in neighbouring bands.

Guard Signal. A signal provided in a central processor to prevent the reading of any area of store while it is in the process of change.
Guillotine. A device for cutting paper accurately, normally many sheets at a time; sometimes (instead of a burster) to separate forms printed on continuous stationery into individual documents.

NASCOM FLOATING POINT

BASIC LEVEL C Runs on an 8 K system
Full floating point arithmetic
Software compatible with Levels A and B
Contains all features found on A and B plus more
Line editor, 52 variables
Commands include:- FOR; NEXT; READ; DATA;
PEEK; POKE; IN; OUT; USR; INKEY
BASIC LEVEL A Runs on the minimum Nascom
No extra memory needed
Fitted in 2 minutes in place of monitor
Integer arithmetic $<,>,<>,<=,>=$, $=$
Fast execution time
Keyboard pause and interrupt
Abbreviated commands allow economical use of your memory, and consist of:- LET; PRINT: IF: GOSUB; RETURN; INPUT: REM: STOP; GOTO; LIST; NEW; RUN; SAVE; ABS; RND
BASIC LEVEL B As previously advertised
LEVEL A or B in 2×2708 PROMS $£ 21.50$
LEVEL B Cassette £ 7.50
LEVELC in 4×2708 PROMS £42.00
LEVEL C Cassette
£12.50
Partial disassembler/debug
£ 5.00
Superstartrek for Level B or C
£ 4.50
Relocator package
£ 4.00
All products fully documented

Ohio Scientific's full lineup of small business computer systems can handle any part of your business. Or all of it. Quickly, accurately, and economically. Each model costs less at the start. Nice for small budgets. And using a low-cost building block approach, Ohio Scientific's computers can grow with your needs. Simply, you get the most for your money, right from the start. There's a full library of easy-to-use business programs, too

MILLBANK COMPUTING
2. EAST LANE, KINGSTON UPON THAMES, SURREY KT1 2NN ENGLAND TELEPHONE. 015497262 TELEX. 8951525

XITAN SYSTEMS

Southern England stockists for CROMEMCO

Selected nationwide by Government departments, Research Establishments, Universities, Professional Consultants, Assurance Companies, Industry and the serious hobbyist. Features include a range of software equalled by no other manufacturer for price and performance. Fortran, Basic, Cobol, Z-80 Macro Assembler, Trace, and Word Processing, all at only $£ 85$ each. Xitan Systems can supply CP/M for use on Cromemco equipment with 8 in. floppy disćs.

[^4]Also suppliers of: PET • HORIZON * PT SOL * DYNABYTE.MEMORY * BOOKS * VDUs * PRINTERS

HORIZON

For Business, Scientific and Educational Uses.

PROFESSIONAL HARDWARE

Use of the North Star Horizon for a short period will enable you to appreciate the professionalism in the product. There's a solid well-built chassis, a good power supply, a quiet fan and an attractive wooden case. There's a 280 A processor running at 4 MHz with the 250 ns static RAM boards.

There are dual integral Shugart minifloppy drives (capacity of about 360 KB on line, with an option for a further two drives), enabling easy and quick handling and copying of programs and data files.

And of course, there's the 12 slot $\mathrm{S}-100$ bus which enables you to plug in many types of peripheral boards, including a hardware floating point board for increased "number crunching" performance.

PROFESSIONAL SOFTWARE

North Star Computers built their professional reputation around their powerful, but simple, Disc Operating System and Disc Extended BASIC Interpreter.

The latter contains, in addition to the usual BASIC commands, random and sequential access disc files, strings, string operators, multiple dimensioned arrays, formatted output, machine language CALL, memory EXAMine and FILL, line editor, program chaining and more.

The CP/M operating system is also available as an option and provides access to a Macro Assembler, C BASIC Compiler and FORTRAN-80 and COBOL-80 Compilers. A standard UCSD PASCAL has now been implemented.

TYPICAL APPLICATIONS SOFTWARE

- Financial
- Purchase Ledger
- Mathematical
- Statistical
- Educational
- Games
- Sales Ledger
- Stock Control
- Payroll
- General Ledger
- Estate Agents Package
- Incomplete Records
- Employment Agents

HORIZON with dual drives, 24 K RAM and standard serial port - $£ 1823$. Extrà 8K 250ns static memory $£ 155$. Extra serial port - $£ 45$. Parallel port - $£ 45$.

COMPLETE HORIZON BUSINESS SYSTEM

(hardware) with 24 K RAM, dual mini-floppy drives, VDU and 30 cps printer - $£ 3616$; 32K RAM, dual mini-floppy drives, VDU and 150 cps printer $£ 4658$.
Prices exclude VAT and carriage.
Dealer, OEM and Educational Discounts available.

$$
\begin{aligned}
& \text { COMPUTER SYSTEMS LTD. } \\
& \text { "KLEEMAN HOUSE"' } \\
& \text { 16 ANNING STREET, NEW INN YARD, } \\
& \text { LONDON EC2A 3HB. } \\
& \text { Tel: } 01-739 \text { 2387/9 } 01.7294460
\end{aligned}
$$

INTERESTED
 IN HOME COMPUTING?

FREE B BUG
valued at $£ 23.00$
plus $10 \times \mathrm{C} 12$ cassettes valued at $£ 4.00$ plus Standard Modulator valued at $£ 2.25$ WITH EVERY NASCOM

Start now and don't get left behind THE NASCOM 1 is here Ex-stock with full technical services
Plus the opportunity to join the fastest moving club of personal computer users enabling you to get the most our of your computer. You can OBTAIN and EXCHANGE programs and other sof tware - many now available.
The Powerful $Z 80$
Microprocessor
Professional Keyboard
1 Kbyte Monitor in EPROM 2 Kbyte RAM (expandable) Audio Cassette interface
Plugs into your domestic TV
Easy construction from
straightforward instructions

- no drilling or special tools
- Just neat soldering
required.

Only E197-5D + 8\% VAT (includes p \& p + insurance) Manuals seperately 2.95 $Z 80$ programming Manual 6.90 280 Technical Manual $\quad 2.95$ P10 Technical Manual 2.95 (All prices add 8\% VAT) NEW LOW PRICE

NASCOM AD ONS - Nascom improved monitor B Bug (2K)
featuring - "Four times tape speed "Direct text"entry without ASCII "Extended keyboard facility "Additional useful subroutines £23.00
Nascom Vero Case £22.50
Nascom Joy Stlck Kit £14.90

Nascom Music Box Kit $£ 9.90$
(write your own lunes and play them on your Nascom. Complete with full documentation).
GRAPHICS ADO ON BOARO $£ 9.90$
Complete kit to upgrade your NASCOM for graphics capability includes full documentation and demonstration program.

NASCOM IMMEDIATE EXPANSION ST00 from COMP -strongly recommended
The only available S100 motherboard kit (fully buffered) that plugs directly into your Nascom. Designed for the insertion of S100 boards (e.g. Static RAM, EPROM and discs etc.). S100 Motherboard/Buffer $£ 47.50$ Motherboard (Complete kit + documentation) comes complete Sultable 8 K Static RAM Memory with $2 K$ Tiny (fully assembled tested and guaranteed) Basic On cassette.

NASCOM LOW COST EXPANSION

Uses dynamic RAM and NASBUS
(please note this expansion does not support S100 memory) Tiny Basic in EPROM $£ 25.00$
8K Dynamic RAM board (in kit only) $£ 85.00$ All Motherboard (in kit only) $£ 12.50$ Buffer board (in kit only) $£ 25.00$

SHORT C12 CASSETTES 10 for $£ 4.00$ FOR COMPUTER PROGRAMMES

SPECIAL DYNAMIC MEMORY OFFER

COMPUKIT UK101 -on oemo

All specifications of Superboard with many improvements and in kit form including power supply and modulator on board. Improved video display with 48 chars $\times 16$ lines. English TV Standard

£219
 RELEASED END OF JUNE 1979.
 + VAT

SEND £10 DEPOSIT TO RESERVE
OHIO SUPERBOARD II NEW W:orn wew
For electronic buffs. Fully assembled and tested. Requires +5 V at 3 Amps and a video monitor or TV with RF converter to be up and running.

STANDARD FEATURES
Uses the ultra powerful 6502 microprocessor

> functimu!

190Mimple
Imin mit 48 m available personal computers and al 8080 -based business computers.
4 K static RAM on board expandable to 8 K
Full 53 -keyboard with upperllower case and user programmability
Kansas City standard audio cassette interface for high reliability
Full machine code monitor and I/O utilities in ROM
Direct access video display has 1 K of dedicated memory (besides 4 K user memory), features upper case, lower case, graphics and gaming characters for an effective screen resolution of up to 256 by 256 points. Normal TV's with overscan display about 24 rows of 24 characters; without overscan up to 30×30 characters.

EX-STOCK - $£ 263$ *at

Please phone to check availability or send £1O to reserve one and pay the balance on delivery

MODULATORS UHF Channel 36
Standard 6 meg band width $£ 2.25$ High Quality 8 meg band width $£ 4.90$

INDUSTRIAL POWER SUPPLY
$+5 \mathrm{v} 10 \mathrm{amps}-£ 63.25$
$+5 v 5 \mathrm{amps}+12 v-12 v-5 v £ 89.00$
DC switched Both housed and fully guaranteed.
Lightweight

TRS 80 SOFTWARE NEW 100 MIXED PROGRAMMES
 on cassette
 £39.00
 (inc.vaT)

HITACHI 9" \& 12" PROFESSIONAL MONITORS

SUPERB DEFINITION

$$
\left.\begin{array}{r}
9^{\prime \prime}-£ 132 \\
12^{\prime \prime}-£ 210
\end{array}\right\} \text { vat }
$$

Delivery charged at cost - Red Star - Securicor - Post etc., Your Choice. Please make cheques and postal orders ayable to COMP, or phone your order quoting BARCLAYCARD or ACCESS number.

OPEN - 10am to 7pm - Monday to Saturday
CONTINUOUS DEMONSTRATIONS

$-\infty$ \ln

JUST COMPARE OUR CASH AND CARRY PRICES!

THE TRS-80 (SPECIAL SCOOP) Low Priced, Ready to Go!

Use your own cassette
Level.II with 4K RAM Improved graphics, print formatting, and a faster cassette transfer rate are features of Level-II BASIC.

Level-II with 16K RAM A combination of 16K RAM and the powerful Level-I! BASIC produces a system capable of handiling most demands. FREE 100 PROGRAMS

NEW! THEITT APPLE (2020)

EX STOCK 4K

 LOW PRICE MEMORY UPGRADE PURCHASED AT TIME OF ORDER

- Full colour. UHF output * Audio Cassette tape interface * Up to 48 K graphics commands include COLOUR $=$ VLIN, HLIN, PLOT and SCRN) * Bullt In Loudspeaker Buckets of software already available "dlsk system (110 K byte per drive - includes controller) only

ATTENTION! $\overline{\text { save } £ 90}$ TRS 80 \& APPLE II USERS

Simple to fit only a screw 16K UP half normal £99 LIFETIME GRADE KIT PRICE + VAT GUARANTEE

NEW Standard OWERTY Keyboard with 16K Memory
 unbeatable price of $£ 499+$ vat

BOOK SHELF
LOW PRICES FAST SERVIC Vol 0 The Beginner's Book $\mathbf{\$ 5 , 4}$ Vol 1 Basic Concepts + $\ldots \ldots \ldots \ldots .$. 1977) ${ }^{2}$ Some Real Products (June 59 Microprocessor serles, by Rodney Zaks C201 From Chips to Systems . $\quad \mathbf{\$ 7 . 5 0}$ C207 Interfacing Techniques $\quad 87.50$ Microprocessor Systems Design by Edwin Klingman ISBN 0.135-81413-8 (1977) 480 pages hard cover. CMOS Cookbook by Don Lancaster $\quad 16.40$ 6800 Assembly Lancaster 86.00 Programming...................... 86.50 6800 Soltware Guide \& Cookbook $\quad 8.50$ from Scelbi $\quad \mathbf{5 7 . 9 0}$ 8080 Software Guide \& Cookbook E7.90 from Scelbi 87.90 $\frac{\text { rom Scelbi. }}{8080 \text { A/8085 }}$
Programming Assembly Language ε \&e..................

8080 A Bugbook Interfacing
Programming by Rony. Larsen \& Programming by Rony. Larsen \&
Titus (1977) 416 pages $\frac{\text { Titus (1977) } 416 \text { pages }}{\text { Z80 Programming for Logic Design }}$ by Adam Osborne................ Z80 Mlicrocomputer Handbook by William Barden Structured Programming \& Problem
Solving with Pascal SBE 0.138-54869-2 (1978) 365 pages
ISB by Kieburtz "When will your" microcomputer speak Pascal"..... \&s. 50 BASIC Computer Games Microcomputer editión 5. Best of BYTE Vol 1 (1977) 376 papes $\quad 88.90$ Besi ol CREATIVE COMPUTING Vot 1 (1977) 326 pages
Vol 2 (1977) 323 pases 18.00 MOI OTHELLO Game for 2 players On NASCOM 1 cassette.......... 82.00 editor and interpreter in $1 / K B$!5500

For technical and sales literature send SAE to: COMP COMPUTER COMPONENTS (Exidy UK Sales), Freepost, 14 Station Road, New Barnet, Herts. Tel: 01-441 2922 (Sales) 01.449 6596 Telex: 298755
take advantage of our SHORT DELIVERY TIME.

All prices exclusive of VAT

[^5]

The CT-82 has 128 different functions all of which are software controlled. Too numerous to list in their entirety they include 18 cursor control commands, 6 ways to configure the cursor, 11 erase functions and graphics capability including point-to-point plotting, field protection, printer pass through, paged edit mode and light pen position reading.

Computer Workshop 3rd Anniversary Offers

4 K Memory board (Can be used with Motorola D2 kits as well as SWTPC)

Kit $£ 45.00$ Ass.£50.00 £20.00 £4.00

Set of 20 male and female Molex 10 way connectors

MP-A processor board containing 6800 MICBUG system, clock and 128 byte scratchpad RAM

Ass.£50.00
All prices include postage, packing and VAT.
All offers subject to availability. Please send cheque with order. Goods or full refund by return.

PR-40 Matrix Printer

This unit can be used with any computer with a parallel printer interface and may be ordered with a special interface for the PET system.

The PR-40 uses an 8 bit parallel interface, with data strobe and acknowledge.

This unit prints the 64 character upper case ASCII set on a 40 character line at a print speed of 55 lines per minute. It uses an impact dot matrix head and prints on standard adding machine paper. It is ideal for development work and applications where a 40 column report is sufficient.

$$
\begin{array}{ll}
\text { PR-40A (25 way RS connector) } & £ 250 \text { + VAT } \\
\text { PR-40P (PET connector) } & £ 250 \text { + VAT }
\end{array}
$$

[^0]: Published monthly by Intra Press, 62A Westbourne Grove, Landon W2. Phone 01.2295599. Contents fully protected by copyright. All rights reserved. Subscription rates Britain £8 for 12 issues. Prices include pastage. USA - $\$ 10$ for six issues. $\$ 20$ for 12 issues. Continent and elsewhere $£ 9.80$ for iwelve issues. Prices include pastage.
 Printed by Keats Printing Limited, 12 Fouberts Place, London WIV 1HH. Sole UK Distributors Seymour Press Ltd.. 334 Brixton Road, London S.W. 9. England.
 Distribution to specialist shops by Intra Press.

[^1]: TERMS: All prices Ex. VAT. All order C.W.O. Cheques should be made payable to
 SMALL SYSTEMS ENGINEERING LTD.
 Orders should include $£ 2.50 \mathrm{p} \& \mathrm{p}$ per unit. All goods supplied under 90 days warranty.

[^2]: 10 DIM P(51)
 $20 \mathrm{PS}={ }^{\prime \prime}, A C, 2 C, 3 C, 4 C, 5 C, 6 C, 7 C, 8 C, 9 C, 10 C, J C, Q C$, KC"

[^3]: Motor and Motorcycle Traders! A "Vehicle Sales Ledger" program, all in plain English - no codes.
 Full Analysis of each purchase and sale Monthly Totals, balances, "after sales" VAT Commission, etc.
 For 8K PET without printer Demonstration Tape and Master Tape $\mathbf{£ 2 0}+\mathbf{p p}$
 SAE for descriptive leaflet to: Will Chapmans Garage Ltd.
 113 Belgrave Road, Leicester

[^4]: XITAN SYSTEMS,. 23 CUMBERLAND PLACE, SOUTHAMPTON SO1 2BB. TEL: (0703) 38740

[^5]: (PART OF THE COMPSHOP LTD. GROUP)

