EV=ivoay DECEMBER 1991 $==1=912016$

MIND MACHINE AUDIONISUAL ENTRAINMENT UNIT

 SIGNAL GENERATOR0.1 Hz T0 100kHz SINE, SQUARE, iRIANGLE

48 PACE
CREENWFID
BARCAN LIST

ThE No. 1 INDEPENDENT MAGAZINE for ELECTRONICS, TECHNOLOGY and COMPUTER PROJECTS

UNIDEN SATELLITE RECEEVER Brand new units (model 8008) $£ 60.00$ ref 60 P 4 V also some 7007 s also $£ 60.00$ re 60 P 5 V
SPECTRUM +2 COMPUTER Built in data recorder, $128 \mathrm{~K}, \mathrm{psu}$ and manuals $£ 59.00$ ref 59 P 4 V
SPECTRUM +3 COMPUTER Buit in disc drive, 128K, psu and manuals $£ 79.00$ rel 79 P 4 V
AMSTRAD CPC464 COMPUTER No manuals but only £ 79.00 rel 79P5V
AMSTRADCPC6128 COMPUTER Again no manuals but only〔 149.00 rel 149 P 4 V
AMSTRAD GT65 Green screen monitor $£ 49.00$ rel 49P4V AMSTRAD PORTABLE PC'S FROM £149 (PPC1512SD). £179 (PPC15120D). $£ 179$ (PPC1640SD). £209 (PPC16400D). MODEMS £30 EXTRA.NO MANUALS OR PSU.

AMSTRAD PC BARGAINIH!!
PC 1512DD COMPLETE WITH CGA COLOUR MONITOR, 2 DISC DRIVES, MANUALS ETC ONLY £249.00 REF 249P4V

HIGH POWER CAR SPEAKERS. Stereo pair output 100 w each 40hm imperance and consisting of $61 / 2^{\prime 2}$ wooter $2^{\prime \prime}$ mid range and pair $£ 30.00$ Order re 30 PTV 2KV 500 WATT TRANSFORMERS Sutable for high voltage experiments or as a spare for a microwave oven etc. 250 v AC Inpul
MICROWAVE CONTROL PANEL.Mains operated, with touch switches Complete with 4 digit display, digital clock. and 2 relay outputs one for power and one tor pulsed power (programmable). FBRE OPTIC CABLE. Stranded optical hibres sheathed in black PVC. Five metre length $£ 7.00$ re

7829

12 V SOLAR CELL. 200 mA output ideal for trickle charging atc.
E15.00 ret 15 P 42 V
PASSIVE INFRA-RED MOTION SENSOR Complete with daylight sensor, adjustable lights on tmer (8 secs -15 mins), 50 range mith a 90
deg coverage. Manual overide tacilty deg coverage. Manual overide facility. Co plete with wall brackets, bubl hotders elc. Brand new and guaran Pack of two PAR38 bulbs
Pack of two PAR 38 butbs for above unit $£ 12.00$ ref 12P43V from esen and video signals from either a video camera, video recorder or computer to ary
standard TV set within a 100 rangel (fune TV to a spare channel). standard TV set within a 100 range fune TV to a spare E5.00 ref SP191v
 adapter (bug is mains drven). $\mathbf{E}^{26.00}$ ref 26P2V
walke talkies with a range of up to 2 kiometres. Units waktir talkies mith a range o up to 2 klometres. Units
measure $22 \times 52 \times 155 \mathrm{~mm}$. Complete with cases. $£ 30.00$ ref 30 P 12 V
 range 2 transmit power levels reas PP3 batrery. Tuneable to any FM
10 BAND COMMUNICATIONS RECEIVER. 7 shon Thin sands, FM, AM and LW DXflocal switch, tuning 'eye' mains eeot = Or battory Complete with shoulde strap
NOW ONLY 19.0011 REF 19P14V.
WHISPER 2000 LISTENING AID.Enables you to hear sounds that would otherwise inaudibilel Complate with headphones Cased 55.00 ref 5P179V
CAR STEREO AND FM RADIOLOw cost stereo system giving 5 wats per channel. Signal to noise ratio better than 450b, wow and fiutier less than 35% Neg errth, $£ 25.00$ net 25P2iV
LOW COST WALIKIE TALKIES. Pair of battery operaled units
pair ref $8 P 50 \mathrm{~V}$
7 Pal ref 8P5OV GRAPHC EQUALIZERDUs a 60 watt power ampl 20-21KH2
NICAD BATTERIES. Brand new top quality. $4 \times$ AA's $£ 4,00$ ref $4 \mathrm{AP}_{4} 4 \mathrm{~V} 2 \times \mathrm{C}^{\prime} \mathrm{s} £ 4.00$ rol $4 \mathrm{P} 73 \mathrm{~V}, 4 \times \mathrm{D}^{\prime} \mathrm{s} £ 9.00$ ret $9 \mathrm{P} 12 \mathrm{~V}, 1 \times$ PP3 £6.00 ref 6 P 35 V V TOWERS INTERNATIONAL TRANSISTOR SELECTOR
GUIDE. The ulimate equivalents book. Latest edition £20.00 ret GOPDEV
 CABLE TIES. $142 \mathrm{~mm} \times 3.2 \mathrm{~mm}$ white nylon pack of $100 £ 3.00$ ref
3P104V. Bumper pack of 1,000 ties $£ 14.00$ ret 14 PGV
VIDEO AND AUDIO MONITORING SYSTEM

Brand new units consisting of a camera, 14 cm monitor, 70 metres of cable, AC adapter, mounting bracket and owners manual. 240 V AC or 12 V DC Operation complete withbuitt in 2 way intercom. 599.00 ref 99 P 2 v .
1991 CATALOGUE AVAILABLE NOW IF YOU DO NOT HAVE A COPY PLEASE REQUEST ONE WHEN ORDERING OR SEND US A $6^{\prime \prime} X 9^{\prime \prime}$ SAE FOR A FREE COPY. GEIGER COUNTER KIT.Complete with tube, PCB and all components to build a battery operated geiger counter. $£ 39.00$ ref 39 Piv FM BUG KIT. New design with PCE embedded coil. Transmits to any FM radio. $9 v$ battery req'd $£ 5.00$ ref 5 P 158 V
FM BUG Built and tested superior $9 v$ operation $£ 14.00$ ref 14 P 3 V COMPOSITE VIDEO KITS. These convert composite video into separate H sync, V sync and video. 12 V DC 88.00 ref 8 P 38 V . SINCLAIR C5 MOTORS $12 v 294$ (tull loud) $3300 \mathrm{rpm} 6^{\prime \prime} \times 4^{*} 1 /$

OP shaft New £20.00 ret 20P22V
As above but with fited 4 to 1 inline reduction box (800 rom) and oothed nylon bell drive cog $£ 40.00$ ref 40 PBV
SINCLAIR C5 WHEELS 13 or $16^{\prime \prime}$ dia including treaded tyre and inner tube Wheels are black, spoked one píece poly carbonste $13^{\prime \prime}$

ELECTRONIC SPEED CONTROL KITior e5 motor, PCB and all
components to build a soeed controller $(0.95 \%$ of
speed). Uses putse width modulation $£ 17.00$ rel 17 P 3 V
SOLAR POWERED NICAD CHARGER.Charges AA nicads in 8 hours. Brand new and cased $£ 6.00$ ref

AT 286 MOTHER BOARD

640K RAM

UPGRADABLE TO 4 M

AT CASE

AT POWER SUPPLY
AT KEYBOARD

MANUAL

NO I/O CARDS
£139
ELECTRONIC TICKET MACHINES These units contain a magnetic card reader, two matrix printers, motors, sensors and
loads of electronic components etc. ($\left.12^{\prime \prime} \times 12^{\prime \prime} \times 7^{\prime \prime}\right)$ Good value at §1200 ref 12P28V
JOYSTICKS. Brand new with 2 fire buttons and suction feet these units can be modified for mos: computers by changing the connector
elc. Price is 2 for $£ 5.00$ ref 5P174V
GAS POWERED SOLDERING IRON AND BLOW TORCH Top quality fool with interchangeable heads and melat body. Fully adjustable, runs on fighter gas, $\mathbb{£ 1 0 . 0 0 \text { ref 10P130V }}$
ANSWER MACHINES BTapproved pemote message playback, intergral push button phone, power supply and tape Exceptional value at $£ 45.00$ ref 45 P 2 V
CAR IONIZER KIT Improve the air In your carl clears smoke and helps to reduce fatigue. Case requirec. $₹ 12.00$ rel 12 P8V 6V 10AH LEAD ACIDsealed battery by yuasha ex equipment but in excellent condition now only 2 for $£ 10.00$ ref 10P95V 12 TO 220 V INVERTER KITAs supplied it will handle up to about 15 w at 220 v but with a larger transtormer it will handele 80 watts Basic kit $£ 12.00$ ref 12P17. Larger transformer $£ 12.00$ rel 12P41V. VERO EASI WIRE PROTOTYPING SYSTEMideal for designing projects on etc. Complete with tools, wire and reusable board Our price $£ 6.00$ ret 6 P 33 V
MICROWAVE TURNTABLE MOTORS. Ideal for window dis. plays etc. $\mathbf{~ 5 5 . 0 0 ~ r e f ~ 5 P 1 6 5 V ~}$
STC SWITCHED MODE POWER SUPPLY220v or 110 v input giving 5 va a $2 \mathrm{~A},+24 \mathrm{v}$ at $0.25 \mathrm{~A},+12 \mathrm{v}$ at 0.15 A and 490 v at 0.4 A โ6.00 ret 6P59V
HIGH RESOLUTION 12" AMBER MONITOR12v 1.5A Hercules compatible (TTL input) now and cased $£ 22.00$ ref 22 P 2 V VGA PAPER WHITE MONO monitors new and cased 240 v AC. E59.00 rel 59P4V
25 WATT STEREO AMPLIFIERC STKO43. With the addition of a handtul of components you can build a 25 watt amplifier. $£ 4.00$ ref 4 4P69V (Circuit dia included)
UNEAR POWER SUPPLY Brand new 220 v input +5 at $3 A_{,}+12$ at $1 \mathrm{~A},-12$ at 1 A Short circuit protected. $£ 12.00$ ref 12P21V MAINS FANS Snail type construction. Approx $4^{\prime \prime} \times 5^{\prime \prime}$ mounted on a metal plate for easy frxing. New $£ 5.005 \mathrm{P} 166 \mathrm{~V}$
POWERFUL IONIZER KIT. Generates 10 times more ions than commercial unitsI Complete kit including case $£ 18.00$ ref 13P2V
MINI RADIO MODULE Only $2^{\prime \prime}$ square with ferrite aerial and tuner. Superhet Req's PP3 battery £1.00 ret BD716V.
HIGH RESOLUTION MONITOR.9" black and white Phillips tube in chassis made for OPD computer but may be suitable for otherg. in chassis made for
$£ 20,00$ rel 20 P 26 V .
BARGAIN NICADS AAA SIZE 200MAH 1.2V PACK OF BARGAIN NICADS AAA SIZE 200MAH 1.2 V PACK
£4.00 REF 4 P92V, PACK OF $100 ~ £ 30.00$ REF 30 P 16 V £4.00 REF 4P92V, PACK of $100 £ 30.00$ REF 30 P 16 V
CB CONVERTORS.Converts a car radio into an AM CB receiver, CB CONVERTORS. Converts a car radio in
Cased with circuit diagram. $£ 4.00$ ref 4 P 48 V
Cased with circuit diagram. $£ 4.00$ ref $4 P 48 V$
FLOPPY DISCS. Pack of $1531 / 2^{\prime \prime}$ DSDD $£ 10.00$ ref 10P85V. Pack of $1051 / 4^{\prime \prime}$ DSDD $£ 5.00$ ref 5 P168V

BULL ELECTRICAL 250 PORTLAND ROAD HOVE SUSSEX BN3 5 OT TELEPHONE 0273203500 MAIL ORDER TERMS: CASH PO OR CHEQUE WITH ORDER PLUS E2.50 PCST PLUS VAT. PLEASE ALLOW $10-14$ DAYS FOR DELIVERY

FAX 027323077

SONIC CONTROLLED MOTOR One click to start, w reverse direction. 3 chck to stop! 23.00 each ret 3 P137
FRESNEL MAGNIFYING LENS $83 \times 52 \mathrm{~mm} \times 1.00$ rel BD827V. CD DISPLAY $41 / 2$ digits supplied with connection data $£ 3.00 \mathrm{ref}$ 3P77V or 5 for $£ 10.00$ ret 10978 V
ALARM TRANSMITTERS. No data avaliable but nicely made complex transmitters $9 v$ operation. $£ 4,00$ each ref $4 P 81 \mathrm{~V}$
100M REEL OF WHITE BELL WIREfigure 8 pattern ideal for tercoms door belis etc $£ 3.00$ a reel ref 3P107V
TRANSMTTER RECEIVER SYSTEMoriglnally made for nurse call systems they consist of a pendant style transmitter and a eceiver with telescopic aerial 12 v . 80 different channels. $£ 12.00$ ref 12P26V
CLAP LIGHT. This device turns on a lamp at a finger 'snap' etc. nicely cased with built in battery operated light. Ideal bedside light etc 4.00 өach rof $4 P 82 V$

ELECTRONIC DIPSTICK KIT.Contains all you need to build an electronic device to give a 10 level liquid indicator. 55.00 (ex case) of 5P194V
UNIVERSAL BATTERY CHARGER.Takes AA's, C's, D's and PP3 nicads. Holds up to 5 batteries at once. New and cased, mains perated. 56.00 ret 6 P36V
ONE THOUSAND CABLE TIES $175 \mathrm{~mm} \times 2.4 \mathrm{~mm}$ white nylon cable ties only $£ 500$ rel SP181 V
PC MODEMS 1200/75 baud modems designed to plug into a C complete with manual but no sottware $£ 18.00$ ref 18 P 12 V ASTEC SWITCHED MODE POWER SUPPLY80 $\mathrm{mm} \times 165 \mathrm{~mm}$ (PCB size) gives +5 at $3.75 \mathrm{~A},+12$ at $1.5 \mathrm{~A},-12$ at 0.4 A . Brand new
E 1200 ref 12 P 39 V E1200 ref 12P39V
VENTILATED CASE FOR ABOVE PSUnth IEC filtered socket and power swith. ES.00 ref SP190V.
IN CAR POWER SUPPLY. Plugs into cigar socket and gives $3.4,5,6,75,9$, and $12 v$ outputs at 800 mA . Complete with universal apider plig, £5,00 re 5P167V
CUSTOMER RETURNEDswitched mode power supplies. Mixed type good for spares or repair. $£ 2.00$ each ref 2 Pr 92 V
DRI I OPERATED PUMP. Fits any drill and is sal? prir
DRILI OPERATED PUMP. Fits any drilt and is sal: prima. $5 \mathbb{E} 0$ ref 3P140V,
PERSONAL ATTACK ALARM. Complete with buit in torch and vanity mirror. Pocker sized, rea's 3 AA batteries. £3.00 ret 3P135V POWERFUL SOLAR CELL IAMP . 45 VOLTBNy 55.00 rof 5P192V (other sizes avaliable In catalogue).
SOLAR PROJECT KIT.Consists of a solar cell. specisl DC motor. plastic fan and turmables etc plus a 20 page book on solar energy! Price is c 8.00 rel 8 BP 51 V
RESISTOR PACK. 10×50 values (500 resistors) all $1 / 4$ watt 2% metal fim. £5 00 ref 5P170V.
CAPACITOR PACK 1.100 assorted non electrolytic capacitors £2.00 rel $2^{P} 286 \mathrm{~V}$.
CAPACITOR PACK 2. 40 assorted electrolytic capacitors $£ 2.00$ ret 2P287N.
QUICK CUPPA? 12 v immersion heater with lead and cigar lighter plug $£ 300$ rel 3P92V
LED PACK 50 red leds, 50 green leds and 50 yellow leds all 5 mm £8.00 ref BP 52 V
FERRARI TESTAROSSA. A true 2 channel radio controlled car with forward, reverse, 2 gears plus turbo. Working headights. £22.00 rol 22P6V
ULTRASONIC WIRELESS ALARM SYSTEMI wo units, one a sensor which plugs into a 13A socket in the afea you wish to protect. The other, a central alarm unit plugs into any other socket olsowere in the builching. When the sensor is tiggered (by body movernent etc) the alam sounds Adjustable sensitivity. Price per pair $\$ 20.00$ rel 20P34V. Additional sensors (max 5 per alarm unit) £ 11.00 ret 11 P6V
W ASHING MACHINE PUMP Mains pperatad new pump Not self
priming $£ 5.00$ ref 51818 V .
IBM PRINTER LEAD. (D25 to centronics plug) 2 metre paralle E5.00 ref 5P186V
COPPER CLAD STRIP BOARD 17 " $\times 4$ " of 1 " pitch "vero" board £4.00 a sheet ret 4P62V or 2 sheets for $£ 7.00$ fef 7P22V
STRIP BOARD CUT TING TOOL.£2. 00 rel 2 P352V
$31 / 2^{\prime \prime}$ disc drive 720 K capacity made by NEC $£ 60.00$ ref 60P2V TV LOUDSPEAKERS 5 watt magnetically screened 4 ohm $55 \times$ 125 mm . 23.00 a pair ref 3 PI 109 V
SPEAKER GRILLS set of 3 matching grills of different diameters. 2 packs tor $£ 2.00$ (6 gnils) ref 2P364V
50 METRES OF MAINS CABLE 53.002 cone black precut in 4 CORE SCREENED AUDIO CABLE 24 METRES $£ 2.00$ Precut into convenient 1.2 m lengths. Ref 2P365v
TWEETERS $21 / 4^{\prime \prime}$ DIA 8 chm mounted on a smant metal plate for easy fixing $£ 2.00$ ref 2 P 366 V
COMPUTER MICE Onginally made for Future PC's but can be adapted for other machines. Swiss made £8.00 ref 8P57. Atari ST conversion kit £2.00 ref 2P362V
6 1/2" 20 WATT SPEAKER Builh in tweeter 4 ohm $£ 5.00$ ref 5P205V
$5^{\prime \prime} \times 3^{\prime \prime} 16$ OHM SPEAKER 3 for $£ 1.0011 \mathrm{r} \in \mathrm{H}_{\mathrm{H}}$ CD213V
ADJUSTABLE SPEAKER BRACKETS Ideal for mounting speakers on interna
\&5.00 ret 5 P207V
PIR UGHT SWITCH Replaces a standard light switch in seconos light operates when anybody comes within detection range (4 m) and daylight sensor. Unit also functions as a dimmer switch! 200 watt max. Not suitable for flourescents. $£ 14.00$ ref 14 P 10 V
2 MEG DISC DRIVES $31 / 2^{2} \mathrm{disc}$ drives made by Sony housed in a $51 / 4^{\text {c }}$ frame 1.2 meg formatted. $\mathbf{5 6 6 . 0 0}$ rel 66P1V.
CUSTOMER RETURNED 2 channel tutl function radio controlied cars only £8.00 ref 8P200
WINDUP SOLAR POWERED RADIO! FM AM radio takes NICAD batteries complete with hand charger and solar panel 14 P 200 V 240 WATT RMS AMP KIT Stereo $30-0-30$ psu required $£ 40.00$ ret 4uP200V
300 WATT RMS MONO AMP KIT $£ 55.00$ Psu required rel S5P200V ALARM PIR SENSORS Standard 12 v alarm type sensor will interface to most alarm panels $£ 16.00$ ref 16P200V
ALARM PANELS 2 zone cased keypad entry, entry exit time delay etc. £18.00 ret 18P200V
35MM CAMERAS Customer returned units with built in flash and 28 mm lene 2 for 58.00 ref 8 P 200 V
STEAM. ENGINE Standard Mamod 1332
engine with botier piston etc £30rel 30 P 200 V
\square
VOL. 20 No. 12 DECEMBER 1991

The No 1 Magazine for Electronic \& Computer Projects

ISSN 02623617

PROJECTS . . THEORY . . . NEWS . . COMMENT . . POPULAR FEATURES .

(0) Wimborne Publishing Ltd 1991. Copyright in all drawings, photographs and articles published in EVERYDAY ELECTRONICS is fully protected, and reproduction or imitations in whole or in part are expressly forbidden.

SIGNAL GENERATOR by Steve Knight
$\begin{array}{ll}\text { Sine, square and triangle output with good stability and accuracy } & 764 \\ \text { MIND MACHINE by Andy Flind } & 782\end{array}$
Photic and binaural entrainment unit
SIMPLEMODELSERIES
6-CHRISTMAS DECORATION by Owen Bishop 791
A novelty with flashing lights and festive tunes
A novelty with flashing lights and festive tunes
AUTO NIGHTLIGHT by Alan Winstanley
Automatically dims a "safe" nightlight
KNOCKERBOX by David Smith
When you press the doorbell a knocker "raps" on the door
Yen2e5
ACTUALLY DOING IT by Robert Penfold
Making your own printed circuit boards
MAGNETIC RECORDING by Vivian Capel 796
Part Three: Head Maintainance and Adjustment
INTERFACE by Robert Penfold
The spot for all computer enthusiasts - 8 bit A to D
INFORMATION TECHNOLOGY AND THE NATIONAL
CURRICULUM by T. R. de Vaux-Balbirnie
Part Two: The electric telegraph
AMATEUR RADIO by Tony Smith G4FAI
Ham Radio and the Coup; Launch Confirmed; NiCad Care; Sangean
Servicing.

Fowtront

EDITORIAL
 FOR YOUR ENTERTAINMENT by Barry Fox

Old Idea - New Batteries; Now Idea - Old Batteries; Will Rabbit run 776 for Hutch?
DOWN TO EARTH by George Hylton 779
SHOPTALK with David Barrington 780
SIMPLE MODELS SERIES SPECIALEASIWIRE OFFER790
ROBOT ROUNDUP by Nigel Clark 818
DIRECT BOOK SERVICE 820Selected technical books and all the EE books by mail order
PRINTEDCIRCUIT BOARD SERVICE
P.C.B.s for EE projects 824
INDEX FOR 1991 - VOLUME 20 826
FREE WITH THIS ISSUE
Greenweld Electronics Bargain List,

Our January '92 lssue will bo published on

 Friday, 6 December 1991 . See paige 755 for details.ADVERTISER'S INDEX 832
Readers Services - Editorial and Advertisement Departments 763

HARD DISC DRIVES

20 Mb (IDE - CONNER) £ 79
20 Mb (MFM or RLL) E 79
40 Mb (IDE) E 140 100 Mb (IDE - CONNER) $£ 235$ MOUNTING KIT
(INCLUDING BEZELS \& LED) $£ 9$ MOUNTIMG KIT (MOUNTING RAILS ONLY) $£ 5$

HARDCARDS

20 Mb AT	$£ 105$
20 Mb XT	$£ 120$
40 Mb AT	$£ 170$
40 Mb XT	E185
100 Mb AT	$£ 265$

HARDCARD KIT

CONVERT YOUR 3:" HARD DISC DRIVE TO A HARDCARD. $£ 16$

FLOPPY DISC DRIVES

3ì'	1.44M	Internal	¢ 40
3!"	1.4414	EXTERNAL	E49
3ı"	720K	INTERNAL	E 33
3ı"	720K	EXTERNAL	¢ 44
5!"	1.2 M	INTERNAL	E 45
5!"	1.2 M	EXTERNAL	E 50
5!'	360K	EXTERNAL	E 2

MONITORS

14" VGA COLOUR 0.31 DOT PITCH
TILT \& SWIVEL BASE $£ 153$
$12^{" 1}$ VGA PAPER WHITE MONITOR TILT \& SWIVEL BASE \& 75

KEYBOARD

AT 102 KEY - UK - IBM CLICK $£ 24$

ACCESSORIES

$5 t^{\prime \prime}$ ADAPTOR KIT FOR 3!" FDD $\quad € 8.0$
$54^{\prime \prime}$ TRAY FOR $33^{\prime \prime}$ FDD $€ 5.50$
POWER LEAD FOR 3!" FDD
IDC PIN TO EDGE CONNECTOR PCB SHORT F D D CONTROLLER CABLE 2. LONG F D D CONTROLLER CABLE 4° POWER SPLITTER
HARD DRIVE CABLES (MFM/RLL) IDE HARD DRIVE CABLE (2 DRIVES) kEYBOARD EXTENSION CABLE

ADD ON CARDS

FDD COMTROLLER - $2 \times F D D$ - ANY FORMAT YGA CARD-8/16BIT-256K

E 25
TRIDENT SUPER VGA - 16BIT-512K
643
2 SERIML / P PARALLEL / I GAMES PORT 4 MB RAM CARD FOR AT WITH EMS
USES 256K OR IM - WITHOUT RAM

CONTROLLER CARDS

IDE - AT 18BIT-2HDD/2FDD £ 17
IDE - AT 16BIT-2HDD/2FDD/2S/RP/10 ± 26
IDE - 8 BIT-Xt/AT/ 1512
E 29
AT RLL - $2 \times$ HDD
AT MFM $-2 \times$ HDD $/ 2 \times$ FDD
E 25
AT RLL $-2 \times$ HDD $/ 2 \times$ FDD
$E 44$
E 40

MOTHERBOARDS

AMI BIOS-EMS 4.0 - SHADOW RAM * COMPLETE WIT I Mb MEMORY * 286-16 L/S $21 \mathrm{MHz} £ 105$ 286-20 L/S 25 MHz E 125 386SX- 26 L/S 31 MHz \& 225
386488 AVAILABLE - PLEASE CALL

COMPUTER CASES

COMPLETE WITH 200W P.S.U
FLIP-TOP
DESKTOP
MINI TOWER
FULL TOWER
with 3 bavs $£ 60$ with 4 bays $£ 80$ with 5 bays $£ 70$
with 6 bars $£ 107$

SPECIAL OFFER 286-16 SYSTEM
 FEATURES INCLUDE 0

- 286-16 (L/S 21MHZ)
- 1 Mb ON BOARD MEMORY
- 20 Mb HARD DISC IDE
- 3̌" 1.44M FLOPPY
- HDD / FDD CONTROLLER
- 2S / IP / I6
- VGa Card (256K)
- KEYBOARD (102 KEYS)
- MINI TOWER CASE
- CHOICE OF MONITOR

12" VGA PAPER WHITE $£ 460$
14" VGA COLOUR £545
LET HOBBYKIT QUOTE FOR YOUR COMPUTER SYSTEM HOBBYKIT
CREDIT CARD HOTLINE 5081-2057485
UNIT I9 CAPITOL INDUSTRIAL PARK CAPITOL WAY, LONDON, NWG OEQ FAX NUMBER: 081-2050603

END OF LINES

MODEMS - V22 BIS - 2400 BPS auto dal - auto answer - full duplex auto redial - tone \& PULSE dIaling BT APPROVAL - BABT APPROVAL SUPPLIED WITH EAZILINK COMMS PACKAGE MC2400 - INTERNAL
£ 65
3k" 7 720K EXT FLOPPY DISE DRIVE NEW - GREY CASE
SPECIAL OFFER PRICE E 26
3 \}n- 1.44 H INT FLOPPY DISC DRIVE BLACK ONLY
SPECIAL OFFER PRICE
E 39
$57^{n}-360 \mathrm{~K}$ INT FLOPPY DISC DRIVE NEW - GREY OR BLACK
SPECIAL OFFER PRICE $£ 24$
CGA CARD - FULL LENGTH -
COMPOSITE \& TTL
€ 12

60 MEG TAPE STREAMER

DC600-5 $\frac{1}{*}$ " TRAY SUITABLE FOR ALLIBM COMPATIBLES

0 N11 PR1RES

FDD EXTERNAL CASES

METAL GREY CASE SuItable for ExTERMAL MOUNTING OF FLOPPY DISC DRIVES, HARD DISC DRIVES, TAPE STREAMERS, CD ROMS ETC

5!" CASE + LEADS FOR F D D 3i" CASE OMLY 3:" CASE + LEADS FOR F D D	20
3 STATION NETWORK SYS	
ALL PARTS FOR 3 STATIONS SUPPLIED IMCLUDING DRIVER SOFTWARE AND DATA. USES TWISTED PAIR CABLE - EXPANDABLE. EASY INSTALLATION - APPROX 30 MINS. I Mb TRANSFER RATE. MANUFACTURED BY WELL KNOWN NETWORKING COMPANY. SPECILL OEEEP PRICE	

MICRO-SENSE ALARM

Thanks to modern technology electronic goods keep becoming smaller and more portable, unfortunately this also makes life easier for the thief. This alarm was designed to protect computers and their peripherals from being removed while unattended.
Items are protected by fixing piezo transducers to them, with self adhesive foam pads. When an attempt is made to remove the sensor a voltage is produced by the piezo crystal as it is distorted, which will set off the alarm. If the security loop is cut or short circuited the alarm will also be set off, tilt switches (and other types of switches) may be connected in series and parallel with the loop and fixed to the back of the sensors for even more security.

STEPPING MOTOR DRIVER/INTERFACE

A single board stand-alone stepping motor driver with built-in oscillator for variable low speed, high speed and acceleration control. A computer connector is included on the p.c.b. The article also explains the basic operation of stepping motors.

CHRISTMAS FUN SPECIAL

An unusual wordsearch puzzle plus a crossword with an electronic theme. To keep you occupied over the festive season.

EVERYDAY ELETBNTPS

 JANUARY ISSUE ON SALE FRIDAY DECEMBBER 6

755
M VIEWCOM
TEL 0814719338 TLX 929709 VICOM G．FAX 0815520946 DIGITAL INTEGRATED CIRCUIT SPECIALISTS

I 4
 45

 －゚ロ゚ロニニロ － \＆゚ํํㅜㄹ
0.2

，

3630 Bm
360 K
4N33

MARCOTRADING

INCORPORATING EAST CORNWALL COMPONENTS ELECTRONIC COMPONENTS

Vs픈\& EQUIPMENT MAIL ORDERS, WHOLESALE SEND ORDERS TO - DEPT 12 MARCO TRADING
THE MALTINGS. HIGH STREET. WEM SHROPSHIRE SY45EN
Tel: (0939) 32763 Telex: 35565 Fax: (0939) 33800 ELECTRICAL \& ELECTRONIC COMPONENT SUPPLIERS

24HR ANSAPHONE

A 2 part wireless mic system designed for use with video camcorders. Microphone has HIGH/LOW power switch io select the transmission range up $\begin{gathered}\text { ming to the camcorder volume }\end{gathered}$ mounting shoe lor with 3.5 mm lack plug. Complete with vinyl carrying case
ORDER CODE: MIC/G210
PRICE E33.99

YUASA SEALED LEAD ACID BATTERY OFFER

We have just purchased over 500 sealed lead acld batteries. Because we bought so many we can offer you a very, very low price. All the batteries are brand new, unused, full spec. etc. etc. We have

CUASA

OUR OTMER BRANCHES SUPERTRONICS Tel: 0216666504 65 HURST STREET BIRMINGHAM B5

WALTONS Ter. 0902 22039
55A WORCESTEA ST WOL VERHAMPTON

FREQUENCY RANGE: $\mathrm{AM} \quad 108-145 \mathrm{MHz}$ PB $145-176 \mathrm{MHz}$ TV $54-87 \mathrm{MHz}$ FM $88-108 \mathrm{MHZ}$ CB 1-80 channels Power 6V d.c (4 \times AA batteriee not Dims $93 \times 198 \times 50$ Price: £17.50

2-WAY HAND HELD B 123

2.WaY Hand Held Crystal Control Tranceivers. Built-in Telescopic Aerial, call button, transmiter rocelve key operation (nol supplied) operation (nol supplied) Transition Power. \qquad

\qquad .100 MHz Frequency Tolerance or -0.005% Range......1-2 Kilo. open field (Depends or conditions) Oscillation...............................al Contro £26.50

B1180 12-BAND RECEIVER
A compact 12 -band radio receiver covering FM, MW. LW, and 9 short wave bands. A builtin lerrte bar antenna receives the MW and LW transmis-
sions and the lelescopic rod anienna recoives FM sions and the lelescopic An addlitional 20 t wire antenna is provided to improve Sw recepion. The funing LED lights when a strong signal is present. Wave band selection, tone and volume is by slider controls.

Frequency coverage			
FM	66 to 108 MMz	SW4	11.45 to 12.23M
MW	530 to 1620 kHz	Sw5	13.40 to 14. 5 MMHz
	150 to 270 kHz	SW6	14.85 10 15.20MHz
SW1	5.85 10 6.23MHz	SW	17.35 to 18. 5.5 KHz
	6.95 to 7.42 MHz		20.80 to 22-51
SW3	9.45 to 9.95 MHz	SW	24951026.00
	ar. 6 V dc ($4 \times \mathrm{AA}$ ba		524.50
	$196 \times 35 \times 123 \mathrm{~mm}$		
CD PLAYER			
3-beam semiconductor laser. 6 leack pro grammable memory. Repeal one repeat all. Buill-in 3 disc adaptor.			
3.			
$\begin{aligned} & \text { Bec } \\ & \text { neu } \end{aligned}$	ause we bo w. unused,	ght	o many we ec. etc. etc. they really a

Number	Maplin
Of	Price
Colls	£17.35
3	E59.35
6	
NP10-6 is spade siyle	

MAGENTA

 EE115

 EE115
 135 Hunter St
 Burton-on-Trent
 Staffs, DE14 2ST
 Tel: 028365435
 Fax: 028346932
 All prices include VAT at $17 \frac{1}{2} \%$

Shop open 9-5 Mon-Fri;

9-2 Saturday

Official orders welcome
PORTABLE ULTRASONIC PEST SCAREN

EE AUG '91

A powerfuil 23 kHz Ultrasonic generator in a compact hand-held case. A MOSFET output drives a weatherproof transducer at up to 300 V peak to peak via a special tuned transformer. Sweeping frequency output requires no setting up or alignment. Kit includes all components, PCB, transducer and case. KIT REF 842 KIT PRICE $£ 22.56$

D.C. MOTOR GEARBOXES

Ideal for Robots and Buggies. A miniature plastic reduction gearbox coupled with a 1.5-4.5 Volt mini motor. Variable gearbox reduction ratios are obtained by fitting from 1 to 6 gearwheels (supplied). Two types available:
SMALL UNIT TYPE MGS
$£ 4.08$
Speed range $3-2200 \mathrm{rpm}$. Size $37 \times 43 \times 25 \mathrm{~mm}$
LARGE UNIT TYPE MGL
£4.65
Speed range 2-1150 rpm . Size $57 \times 43 \times 29 \mathrm{~mm}$

Supplying Electronics for Education, Robotics, Music, Computing and much, much more! CATALOGUE AVAILABLE PRICE £1.00 INC. P\&P

STEPPING MOTORS

A range of top quality stepping motors suitable for driving a wide range of mechanisms under computer control using simple interfacing techniques.
ID36 PERMANENT MAGNET MOTOR48 steps per rev
MD200 HYBRID MOTOR-
200 steps per rev
MD35 $1 / 4$ PERMANENT MAGNET MO 48 steps per rev. 17.10

MD38 PERMANENT MAGNET MOTOR
48 steps per rev.
12.98
£9.15

TPROJECTS
ALL KITS HERE HAVE BEEN FEATURED IN EE AND ARE SUPPLIED WITH MAGAZINE ARTICLE REPRINTS ALL $\operatorname{SEPARATE~REPRINTS~ALSO~AVAILABLE~PRICE~80p~EACH~INCLUSIVE~P\& P.~KITS~INCLUDE~CASES,~PCB'S~}$ SEPARATE REPRINTS ALSO ANANENTS (UNLESS STATED OTHERWISE) CASES ARE NOT DRILLED OR LABELS SUPPLIED UNLESS STATED. Ref
842 PORTABLE ULTRASONIC PEST SCARER, Aug ${ }^{9} 91$
841 DIGITAL LCD TMERMOSTAT May 91
DIGITAL COMBINATION LOCK Mar 9 DIGITAL COMB
with drilled case
839 ANALOGIC TEST PROBE Jan 91
838 MICROCONTROLLER LIGHT SEQUENCER
Dec 90 . With drilled and labelled case
835 SUPERHET BROADCAST RECEIVER Mar 90 With drilled panels and dial
834 QUICK CAP TESTER Feb 90
833 EE 4 CHANNEL LIGHT CHASER Jan 90 815 EE TREASURE HUNTER Aug 89 814 BAT DETECTOR June 89 812 ULTRASONIC PET SCARER May 89 800 SPECTRUM EPROM PROGRAMMER Dec 88 796 SEASHELL SYNTHESISER Nov 88 790 EPROM ERASER OCt 88
769 VARIABLE 25 V - 2 A BENCH POWER SUPPLY Feb 88
744 VIDEO CONTROLLER OCI 87
740 ACOUSTIC PROBE NOv 87
739 ACCENTED BEAT METRONOME Nov 87
734 AUTOMATIC PORCH LIGHT Oct 87
730 BURST-FIRE MAINS CONTROLLER Sep 87
728 PERSONAL STEREO AMP Sep 87
724 SUPER SOUND ADAPTOR Aug 87
722 FERMOSTAT July 87
79 BUCCANEER I.B. METAL DETECTOR July 87 718 3-BAND 1.6-30MHz RADIO Aug 87 75 MINI DISCO LIGHTS June 87 707 EQUALIZER (IONISER) May 87 700 ACTIVE I/R BURGLAR ALARM Mar 87 584 SPECTRUM SPEECH SYNTH (no case) SPECT
Feb 87

Price Ref
ع 22.56
C29.95
£19.86 £13.23
$£ 17.16$
£10.39
C32.13
ull Kit $£ 45.95$ £28.51
£56.82
56.82
£33.29
20.01
£23.94
f19.62
f 19.62
5150
15.50
£13.88
£ 30.22
$£ 30.30$
514.39
f17.
£ 40.7
£23.90

512 MAINS TESTER \& FUSE FINDER Mar 86 493 DIGITAL CAPACITANCE METER Dec 85 481 SOLDERING IRON CONTROLLER OCI 85
c16.34 386 DRILL SPEED CONTROLLER OCI 84
362 VARICAP AM RADIO May 84
Ref
581 VIOEO GUARO Feb 87
Price

569 CAR ALARM Dec 86
563 2OOMHZ OIG. FREQUENCY METER NOV 86 561 LIGHT RIDER LAPEL BADGE Oct 86 560 LIGHT RIDER DISCO VERSION OcI 86 569 LIGHT RIDER 16 LED VERSION Oct 86 556 INFRA-RED BEAM ALARM Sep 86 544 TILT ALARM July 86 542 PERSONAL RADIO June 86 528 PA AMPLIFIER May 86 523 STEREO REVERB Apr 86 513 BBC MIDI INTERFACE Mar 86 COMPUTER less case Aug 85 1035 STEPPER MOTOR EXTRA OPTIONAL POWER SUPPLY PA
CONTINUITY TESTER July 85 455 ELECTRONIC DOORBELL June 85 444 INSULATION TESTER API 85 392 BBC MICRO AUDIO STORAGE SCOPE 8BC MICRO AUDIO
387 MAINS CABLE DETECTOR Oct 84

263 BUZZ OFF MaI 83
242 INTERCOM no case July 82
240 EGG TIMER June 82
108 IN SITU TRANSISTOR TESTER June 78
106 WIERD SOUND EFFECTS GEN Mar 78
101 ELECTRONIC DICE Mar 77

HAMEG HM 203-7 OSCILLOSCOPE

New model just arrived. High quality reliable instrumen made in W. Germany. Outstanding performance.
Full two year parts and labour warranty.
$2 \mathrm{MHz}-2$ channels 1 mV sensitivity
£338
Easy to operate and high pertormance +C69.15VAt cheques must be cleared)

EDUCATIONAL BOOKS \& BOOK PROJECTS

ADVENTURES WITH ELECTRONICS

The classic Easy to Follow book suitable for all ages. Ideal for beginners. No soldering, uses an S-DEC breadboard. Gives clear instructions with lots of pictures. 16 projects including three radios, siren, metronome, organ, intercom timer, etc. Helps you learn about electronic components and how circuits work. Component pack includes an S-DEC breadboard and all the components for the series.
ADVENTURES WITH ELECTRONICS
COMPONENT PACK (less book)

FUN WITH ELECTRONICS

From the USBORNE Pocket Scientist series-An enjoyable introduction to electronics. Full of very clear full colour pictures accompanied by easy to follow text. Ideal for all beginners - children and adults. Only basic tools are needed. 64 full colour pages cover all aspects - soldering - fault finding - components (identification \& how they work). Also full details of how to build 6 projects - burglar alarm, radio, game, etc. Requires soldering - $\$$ pages clearly show you how.
The components supplied in our pack allows all the projects to be built and kept. The book is available separately.

FUN WITH ELECTRONICS Book
$£ 2.95$
COMPONENT PACK (less book)
£17.93

30 SOLDERLESS BREADBOARD PROJECTS

A book of projects by R. A. Penfold covering a wide range of interests. All projects are built on a Verobloc breadboard. Full layout drawings and component identification diagrams enable the projects to be built by beginners. Each circuit can be dismantled and rebuift several times using the same components. The component pack allows all projects in the book to be built one at a time.
Projects covered include amplifiers, light actuated switches, imers, metronome, touch switch, sound activated switch, moisture detector, M.W. Radio, Fuzz unit, etc.

30 SOLDERLESS BREADBOARD
PROJECTS Book 1

ENJOYING ELECTRONICS

A more advanced book which introduces some arithmetic and calculations to electronic circuits, 48 chapters covering elements of electronics such as current, transistor switches, flip-flops, oscillators, charge, pulses, etc. An excelient follow-up to Teach-in or any other of our series. Extremely well explained by Owen Bishop who has written many excellent beginners' articles in numerous electronics magazines.
ENJOYING ELECTRONICS Book

Note - A simple multimeter is needed to fully follow this book. The M102 BZ is ideal.

A FIRST ELECTRONICS COURSE

A copiously illustrated book that explains the principles of electronics by relating them to everyday objects. At the end of each chapter a set of questions and word puzztes allow progress to be checked in an entertaining way. An S-DEC breadboard is used for this series - soldering is not required,

A FIRST ELECTRONIC COURSE BOOK
$〔 2.99$
$£ 23$
PACK

PET
 SCARER

EE MAY 89
Produces high power ultrasound pulses. L.E.D. flashes to indicate power output and level. Battery powered ($9 \mathrm{~V}-12 \mathrm{~V}$ or via Mains Adaptor). KIT REF 812
Mains Adaptor $£ 2.02$

DIGITAL COMBINATION LOCK

EE MAR '91
Digital combination lock with a 12 key keypad. 4 digit - code operates 2 citi-tamper circuit allows the relay to A special anti- amper circuit aifows the relay to be mounted
remotely from the keypad without any loss of seculan Can be operated in many modes (latching/unlatching. manual/automatic setting, continuous/momentary output, etc.). Article describes operation as Vehicle Immobilising security sysuem. Low current drain. Kit includes drilled case.

KIT REF 840
f19.86

ACOUSTIC PROBE

EE NOV '87
A very popular project which picks up vibrations by means of a contact probe and passes them on to a pair of headphones or an

amplifier. Sounds from engines, watches and speech travelling through walls can be amplified and heard clearly. Useful for mechanics, instrument engineers and nosey parkers! KIT REF 740

MICROCONTROLLER L/GHT SEQUENCER

EE DEC'90

A superb kit with pre-drilled painted and silk screen printed case for a really professional finish. This kit uses a microcontroller I.C. to generate 8 -channel light sequences.. Sequences are selected by keypad from over 100 stored in memory. Space for 10 user programmed sequences up to 16 steps long also available. 1000 watts per channel, zero volt switching, inductive load capability. Opto-isolated for total safety. Many other features. Complete kit includes case, PCBs, all components and hardware.
£57.17 KIT REF 838
£20.01
\cdots

EE MAY'87

A mains powered loniser with an output of negative ions that give a refreshing feeling to the surrounding atmosphere. Negligible current consumption and all-insulated construction ensure that the unit is safe and economical in use. Easy to build on a simple PCB. KIT REF 707
$£ 17.75$

LIGHT RIDERS

EE OCT '86

Three projects under one title - all simulations of the Knight Rider lights from the TV series. The three are a lapel badge using six LEDs, a larger LED unit with 16 LEDs and a mains version capable of driving six main lamps totalling over 500 watts.
KIT REF 559 CHASER LIGHT $£ 15.58$ KIT REF 560 DISCO LIGHTS £22.41 KIT REF 561 LAPEL BADGE £11.65

EE TREASURE HUNTER
 EE AUG '89

A sensitive pulse induction Metal Detector. Picks up coins and rings etc., up to 20 cms deep. Low "ground " effect". Can be used with search-head underwater
Easy to use and build, kit

includes search-head, handle, case, PCB and all parts as shown.
KIT REF 815
Including headphones
C45.95

DIGITAL LCD THERMOSTAT

EE MAY '91

A versatile thermostat with LCD read out. MIN/MAX temperature recording. clock and individually settable upper and lower switching points. Covers -10 to 110 degrees Celsius, accurate to within 0.1 degrees. Submersible probe on 3 meter lead. Kit includes punched and pritied case. Save on energy bills by improved contuol of your hot water system. Also ideal for greenhouse soil lemperature and aquarium control. Complete kit includes thermostat and probe, mains power supply and relay output. PCB's and punched and printed case
KIT REF 841

MOSFET VARIABLE BENCH 25V 2.5 A POWER SUPPLY

EEFEE88

A superb design giving 0.25 V and $0-2.5 \mathrm{~A}$. Twin panel meters indicate Voltage and Current. Voltage is variable from zero to 25 V . A Toroidal transformer MOSFET power output device, and Quad op-amp IC design give excellent performance.
KIT REF 769

A 1000W per channel chaser with zero volt switching, hard drive, inductive load capability. mic sound sensor and sophisticated 'beat' detector. Chase steps to music or auto when quiet. Variable sjeed and mic. sens. LED mimic on front panel. Switchable for 3 or 4 channels. P552 output. Ideal for rope lights, pin spots, disco and display lighting. KIT REF 833
£32.13

EPROM ERASER

EE OCT '88
Safe low-cost unit capable of erasing up to four EPROM's simultaneously in less than twenty minutes. Operates from a 12 V supply. Safety interlock. Convenient and simple to build and use.
KIT REF 790
£28.51

SUPERHET BROADCAST RECEIVER

EE MAR '90

At last, an easy to build SUPERHET A.M. radio kit. Covers Long and medium Wave bands. buill in loudspeaker with 1 watt output. Excellent sensitivity and selectivity provided by ceramic I.F. filter. Simple alignment and tuning without
special equipment. Kit available less case, or with pre-cut and drilled transparent plastic panels and dial for a striking see-through effect.
KIT REF 835
f17.16

8 CHANNEL PROGRAMMABLE SEOUENCER

A superb 8 Channel Microprocessor controlled light sequencer kit complete with a punched, painted and screen printed steel case. Absolutely ALL components and hardware supplied in this Magenta Top Kit, including 2 PCBs, heatsink, and 2 P552 output sockets.

- 8 Isolated tab 10A 600 V triacs. Individually fused.
- Inductive load capability and Zero Volt switching
- Fully opto-isolated control board
- Custom micro. has 80 preprogrammed sequences
- RAM area for user sequences from 2 to 160 steps long. Battery backed
- LED function and mimic indicators
- Keypad selection of all functions, including manual operation, sequence selection and speed control
- Use with existing 3 and 4 channel lights or make new 8 channel specials
"An exceptional project with many novel features and a high standard of finish which matches professional Disco equipment costing much more"

KIT REF. 838...£57.17 Ortut via 2 P559 pluss price.............. $£ 3.95$ each

DIGITAL CAPACITANCE METER

A wonderfully easy to use instrument giving direct read-out of capacitors from 1 pF to 1000 uF . Quick and accurate to use even by absolute beginners. 1\% accuracy circuit using close tolerance charging resistors and quartz crystal timing.

- Kit includes punched and printed case, PCB, and all components.
- Large bright 5 Digit LED display
- Direct read-out in $u F, p F, n F$
- Calibration not required

KIT REF. 493..£49.95

ORDER AND SHOP
EE114 135 Hunter Street Burton-on-Trent Staffs, DE14 2ST Tel: 028365435
Fax: 028346932

EVERYDAY
 ELECTRONICS

INCORPORATING ELECTRONICS MONTHLY

The No. 1 Magazine for Electronic \& Computer Projects VOL. 20 No. 12 DECEMBER '91

WIDE RANGE

I doubt if Everyday Electronics has ever before appealed to such a wide range of readership in any single issue. Our Information Technology series is in its infancy and, at this stage, designed to provide information and ideas to those teaching in junior or first schools; although most of us will find some of the information refreshes the brain - or indeed fills in a few gaps.
On the other hand the Mind Machine project can be said to be at the forefront of its field and will interest many people outside of electronic engineering as well as those familiar with our general discipline. So within two articles we have an interest for engineers, those investigating the mind, the general hobbyist, teachers, parents, students in general and all school children now getting to grips with Information Technology, as it has to be taught in UK schools.

STEADY OUTPUT

It has been comforting through the year of recession in the UK to find that the interest in our hobby, and more particularly in Everyday Electronics, has not waned.
The dedicated team that produce EE each month, myself included, has a total of over 80 years of experience in the market place. Hopefully that does not mean we are a bunch of old fuddy-duddies (I certainly consider that I have a good few years left before I even think about considering myself to be "getting on a bit". If you know what I mean?). The point is that while we can bring a certain professionalism to the production of the magazine we also try to keep up to date and interest young new readers in our exciting and fascinating hobby
As I have said before I am always interested in your views on the magazine and all your comments are read to assist me in forming the overall picture of your interests, likes and dislikes. Sometimes we change regular features - this month sees the last of the regular Robot Roundup's, mainly because the general interest in this subject has declined and most of the available product is expensive or aimed totally at teaching - in this way the magazine gradually changes to keep in step with the requirements of its readers.
So, next time you send for a back number, book, p.c.b., binder or subscripton, if you want to add a one line comment to your letter please do. I assure you I will read it and - providing it's not too insulting - it will add to the mental picture of the ideal magazine forming in what's left of my grey matter.

SUBSCRIPTIONS
Annual subscriptions for delivery direct to any address in the UK: $£ 18.50$. Overseas: $£ 23$ ($\mathbf{£ 4 0 . 5 0}$ airmail). Cheques or bank drafts (in $\mathbf{£}$ sterling only) payable to Everyday Electronics and sent to EE Subscriptions Dept., 6 Church Street, Wimborne, Dorset BH21 1JH. Tel: 0202 881749. Subscriptions start with the next

available issue. We accept Access (MasterCard) or Visa payments, minimum credit card order $£ 5$.

BACK ISSUES

Certain back issues of EVERYDAY ELECTRONICS are available price £1.80 (£2.30 overseas surface mail) inclusive of postage and packing per copy - £ sterling only please, Visa and Access (MasterCard) accepted, minimum credit card order E5. Enquiries with remittance, made payable to Everyday Electronics, should be sent to Post Sales Department, Everyday Electronics, 6 Church Street. Wimborne, Dorset BH21 1 JH Tel: 0202 881749. In the event of non-availability one article can be photostatted for the same price. Normally sent within seven days but please allow 28 days for delivery. We have sold out of Jan, Feb, Mar, Apr, June, Oct, \& Dec. 88. Mar \& May 89 \& Mar 90.

BINDERS

Binders to hold one volume (12 issues) are available from the above address for $£ 5.95$ ($£ 6.95$ to European countries and $£ 9.00$ to other countries, surface mail) inclusive of post and packing. Normally sent within seven days but please allow 28 days for delivery.
Payment in $£$ sterling only please. Visa and Access (MasterCard) accepted, minimum credit card order £5. Tel: 0202881749

Editorial Offices:
EVERYDAY ELECTRONICS EDITORIAL
6 CHURCH STREET, WIMBORNE,
DORSET BH21 1 JH
Phone: Wimborne (0202) 881749
Fax: (0202) 841692. DX: Wimborne 45314.
See notes on Readers' Enquiries below - we regret that lengthy technical enquiries cannot be answered over the telephone.

Advertisement Offices:

EVERYDAY ELECTRONICS ADVERTISEMENTS,
HOLLAND WOOD HOUSE, CHURCH LANE,
GREAT HOLLAND, ESSEX CO13 OJS.
Phone (0255) 850596

Editor: MIKE KENWARD

Secretary: PAMELA BROWN
Deputy Editor: DAVID BARRINGTON
Business Manager: DAVID J. LEAVER
Editorial: WIMBORNE (0202) 881749
Advertisement Manager:
PETER J. MEW, Frinton (0255) 850596
Classified Advertisements:
Wimborne (0202) 881749

READERS' ENQUIRIES

We are unable to offer any advice on the use, purchase, repair or modification of commercial equipment or the incorporation or modification of designs published in the magazine. We regret that we cannot provide data or answer queries on articles or projects that are more than five years old. Letters requiring a personal reply must be accompanied by a stamped self-addressed envelope or a self addressed envelope and interntional reply coupons.
All reasonable precautions are taken to ensure that the advice and data given to readers is reliable. We cannot however guarantee it and we cannot accept legal responsibility for it.

COMPONENT SUPPLIES

We do not supply electronic components or kits for building the projects featured, these can be supplied by adverrisers.
We advise readers to check that all parts are still available before commencing any project in a back-dated issue.
We regret that we cannot provide data or answer queries on projects that are more than five years old.

ADVERTISEMENTS

Although the proprietors and staff of EVERYDAY ELECTRONICS take reasonable precautions to protect the interests of readers by ensuring as far as practicable that advertisements are bona fides, the magazine and its Publishers cannot give any undertakings in respect of statements or claims made by advertisers, whether these advertisements are printed as part of the magazine, or are in the form of inserts.
The Publishers regret that under no circumstances will the magazine accept liability for non-receipt of goods ordered, or for late delivery, or for faults in manufactyre. Legal remedies are available in respect of some of these circumstances, and readers who have complaints should first address them to the advertiser.

TRANSMITTERS/BUGS/TELEPHONE EQUIPMENT

We would like to advise readers that certain items of radio transmitting and telephone equipment which may be advertised in our pages cannot be legally used in the U.K. Readers should check the law before using any transmitting or telephone equipmont as a fine, confiscation of equipment and/or imprisonment can result from illegal use. The laws vary from country to country; overseas readers should check local laws.

Constructional Project

SIGNAL GENERATOR

STEVE KNIGHT

An easy to build test instrument that does not compromise on accuracy. 0.1 Hz to 100 KHz , better than 2 per cent.

Anumber of low-frequency signal generator circuits using the 8038 function chip have appeared in electronics magazines over the years. An examination of these designs have shown that most of them have been nothing more than producers of sine, square and triangular waveforms without any particular regard being addressed to the accuracy either of frequency or output voltage levels. It is true that for most measurements over the audio range, precise frequency is not all that important, but for work on such systems as filters it is
Since it is as easy to build an instrument with good accuracy as it is to build one in which the accuracy is indifferent, then it is not something to be neglected. The same is generally true of output levels; in many projects a control is provided to turn the wick up and down, but what the actual output level is for any particular setting is a matter of guesswork or estimation
Well, since the 8038 still seems to be going strong in the integrated circuit world, here is a design for a Signal Generator which enables quantitative measurements to be made over the frequency range 0.1 Hz to 100 kHz with an accuracy better than 2 per cent and an output level range from a maximum of 10 V peak-to-peak to 40 dB
down on this in four switched ranges and a continuously variable control. The output impedance is 50 ohms.
There is a separate TTL compatible square wave output, and provision is made for an external modulating signal to be imposed on the generated frequency, this facility enabling audio-range response curves of amplifiers, filters and the like to be readily displayed on an oscilloscope. The whole assembly (apart from the simple power supply) is arranged on a single printed circuit board (p.c.b.) and when mounted in its case forms an attractive and useful instrument.

THE BOBB

For those constructors who may not be familiar with the 8038 waveform generator chip (and there are newcomers arriving all the time these days), here are a few relevant details about what you get for your money.
The i.c. comes in 14-pin di.i.l. format and is fabricated with monolithic technology, using Schottky diodes and thin film resistors together with something like fifty transistors to provide signal outputs in sine, square and triangular waveshapes over a possible frequency range of 0.001 Hz to something like 250 kHz . A functional diagram is given in Fig. 1, where the system is seen to be made

Fig. 1. Function diagram of the 8038 generator i.c. The constant current generators are shown in the situation of a symmetrical output waveform.

up from two comparators, two constantcurrent sources, two buffer amplifiers, a bistable switch and a triangular-to-sinewave approximation converter
When an external capacitor C is connected, together with an appropriate power supply, $V_{\text {cc }}$, the comparators sense the charging and discharging voltage levels across C and respond to define a rising and falling ramp voltage held between two precise potential excursions. Comparator 1 responds to a voltage level of two-thirds V_{cc} while Comparator 2 responds to a level of one-third $V_{\text {cc }}$.
Suppose the capacitor C is to be charged by way of constant-current source I_{1}, current source I_{2} being switched off at switch S. The voltage across C will rise linearly (since the current is constant) until it reaches a level equal to ${ }^{2} 3 \mathrm{~V}$ cc ; Comparator I will then trigger and cause the bistable to change state. This closes electronic switch S and the capacitor begins to discharge through current source I_{2}, but now decreasing linearly with time.

Fig. 2. Method of balancing the output triangular waveform.

Fig. 3. Relationships between the charging cycle and the bistable switching action.

When the capacitor voltage reaches the trigger level of Comparator 2, set at $1 / 3 V_{\mathrm{cc}}$, the bistable responds by reverting to its initial state, switch S opens, and the capacitor begins again to charge through current source 1_{1}. This cycle of events then repeats indefinitely, with the amplitude of the triangular wave which appears across C being ' $3 V_{\mathrm{cc}}$ and of a frequency depending upon the value of C and the charge and discharge current levels.

BALANCED OUTPUT

These levels, and hence the frequency of the triangular wave, can be varied in a practical circuit by two external resistors connected between positive V_{cc} and pins 4 and 5 on the integrated circuit. Strictly, these resistors are best kept separate, but the arrangement shown in Fig. 2 simplifies the circuif and enables the effective resistance between the pins and the supply line to be adjusted over a sufficient range to make the charge and discharge gradients equal, that is, to achieve triangular symmetry,
Resistance R_{a} controls the rising portion of the charge on C and since the amplitude of the triangular wave is ${ }^{4} \mathrm{~V}_{\mathrm{cc}}$ and as we have seen, the period of the rising portion is $T_{1}=s_{3} C R_{2}$. See Fig. 3.
The falling portion of the wave is slightly more involved, its period is $\left.T_{2}=5\right)\left(R_{\mathrm{a}} R_{\mathrm{b}} C\right) /\left(2 R_{\mathrm{a}}-R_{\mathrm{b}}\right)$. From this we see that if $R_{\mathrm{a}}=R_{\mathrm{b}}, T_{1}$ will equal T_{2} and the triangle will be symmetrical. This is the normal operating condition; the constantcurrent sources then have the relative levels shown in Fig. 1.
If R_{a} and R_{b} are not equal the charge time is not equal to the discharge time, and the triangular wave is asymmetrical, tending towards a sawtooth form as the resistors differ in value. It should be noticed that the supply voltage does not affect the switching actions; this is because both current sources and the comparators thresholds are direct linear functions of V_{oc}, hence the frequency is unaffected even though the supply voltage may vary.
The triangular waveform developed across capacitor C is passed through a buffer stage and is available at pin 3 of the package. The output of the bistable itself is, of course, a square wave, the change of state occurring in step with the changeover from charge to discharge of the capacitor, and conversely. Fig. 3 shows this relationship. After passing through a buffer stage, the square wave is available at pin 9 .
The sinewave output is derived from the triangular wave and is shaped by a series of approximations within a non-linear circuit system made up from 16 transistors and graded resistors. A perfect sinewave cannot be produced by this method but by careful external adjustments which modify the characteristics of the shaping circuit, distortion can be reduced to less than 0.5 per cent at frequencies below 10 kHz and within 2 per cent for frequencies up to 100 kHz . The sinewave output appears at pin 2 of the integrated circuit.
As the sinewave is derived from the triangular wave, it will not be symmetrical unless the triangular wave is symmetrical; the same applies to the square wave. The mark-space ratio will only be 1 to 1 (or the duty cycle equal to 50 per cent) if the triangle is balanced. At the setting up stage, therefore, adjustment of the equivalent resistors R_{a} and R_{b} mentioned above must be made with extreme care.

GOMPONEVTS

Resistors

Resistors	
R1, R4, R18, R19	10k (4 off)
R2, R3, R5, R6	$180 \mathrm{k}(4$ off)
R7	1 k
R8, R9	$4 k 7$ (2 off)
R10, R12	$5 k 1$ (2 off)
R11	$3 k 9$
R13	$1 \mathrm{k} 1 \%$
R14	3001%

All $1 / 2 \mathrm{~W} 5 \%$ carbon, except where stated

R15
R16
R17
$\begin{array}{ll}\text { R17 } & 101 \%\end{array}$
R20, R21, R22
R23, R27
R24
R25, R26
R28
R29, R30
1001%
33 1\%
10 (3 off)
$3 \Omega 9$ (2 off)
$3 \Omega 9$ (2 off)
51
12k (2 off)
3k3 1W
471 W (2 off)

Potentiometers

VR1
VR2
4 k 7 multiturn preset
VR2 10 kmin rotary Colvern CP1601, lin.
VR3, VR4 40 k multiturn preset (2 off)
VR5, VR6 $\quad 100 \mathrm{kmin}$. preset, horiz. (2 off)
VR7
VR8
$2 k 2 \mathrm{~min}$. preset, horiz
VR9
10 kmin . preset, vert.
VR10
1k min. rotary carbon (type P20) lin., with d.p. switch

Capacitors

C1
C2
C3
C 2
C 3
C 4
C5, C14
C6
C7
C8
C9
C11, C12
C13.
C13
C15, C16
100n polyester
4700p polyester 1%
4700 p polyester 1%
100 p silvered mica or polystyrene
330 p silvered mica or polystyrene
$0 \mu 22$ polyester
8200p polystyrene 1\%
39000 p polystyrene 1%
$0 \mu 475 \%$ or selected
$4 \mu 7$ (selected)
10 n polyester.
100μ radial elec. 25 V
10 p min. cetamic
1000μ axial elec. 25 V

See

Minimum 5\% except elects. and where stated
Semiconductors
D1, D2, D7 to D10 1 N4148 signal diode (6 off)
D3 0A90 germanium signal diode
D13 5 mm red l.e.d.
D4 $4 \vee 3,400 \mathrm{~mW}$ Zener diode
D5, D6 2V4, 400mW Zener (2 off)
D11, D12 13V,1.3W Zener (2 off)
TR1. TR5 BC549 npn silicon transistor (2 off)
TR2, TR6 BC559 pnosilicon transistor (2 off)
TR3 BC107 npna.f. driver transistor
TR4 BC177 pmpa.f. amp. transistor
IC1 741 op. amp
IC2 8038 waveform generator
IC3 741 S op. amp
REC1 W005 1.5 A 50 V bridge rectifier
Miscellaneous
S1 to S3
S4 d.p.s.t. switch, part of VR10
T1 Min. mains transformer, 12V-OV-12V 250 mA sec .
FS1 $\quad 500 \mathrm{~mA} 20 \mathrm{~mm}$ fuse and holder
Aluminium, vinyl-covered, case, size $305 \mathrm{~mm} \times 130 \mathrm{~mm} \times 160 \mathrm{~mm} ; 8$-pin d.i.I. low-profile socket (2 off); 14 -pin d.i.l. low-profile socket; 4 mm terminals, one each red, blue, green; 4 mm socket, one each brown, white; control knobs 1 mm dia. (4 off), 45 mm dia. (1 off); solder pins; 3 -core mains cable; rubber grommet, $1 / \mathrm{in}$. inside dia. (2 off); connecting wire; solder etc.
Printed circuit boards available from the EE PCB Service, codes EE776 (Sig Gen) and EE777 (PSU)

CIRCUIT DESCRIPTION

The full circuit diagram of the Signal Generator is shown in Fig. 4, with a suitable power supply unit in Fig. 5. This last unit is a conventional dual voltage arrangement and both positive and negative rails are stabilized by 13 V Zener diodes, D11 and D12 respectively, mounted on the main board.

The choice of 13 V rails may seem an odd value (no pun intended) but the 8038 , although designed to be used up to a $15 \mathrm{~V}-0 \mathrm{~V}-15 \mathrm{~V}$ dual or a single 30 V supply (some references say 36 V), does tend to run, in my experience, rather hot when operated at these limits. As the frequency is temperature dependent, it seems best to avoid as much heating as possible, consistent with being able to generate an output to the design level of 10 V peak-to-peak. The quoted frequency drift for the standard chip is typically $50 \mathrm{ppm}{ }^{\circ} \mathrm{C}$ with an upper operating temperature of $70^{\circ} \mathrm{C}$.
Using a $13 \mathrm{~V}-0 \mathrm{~V}-13 \mathrm{~V}$ supply, any possibility of the device overheating seems to be avoided, particularly when the circuit may be switched on over an extended period. Nothing more elaborate than this simple Zener stabilization is necessary to achieve this.

FRECUENCY
 OUTPUT

The frequency output from the 8038 is determined by the capacitance connected between pin 10 and the negative rail and by the voltage on pin 8 . The voltage across the resistance chain VR1, VR2, VR3 and R1 is 13 V ; taking the presets VRI and VR3 to be approximately at the centre of their tracks when the required frequency range is covered by the main panel control VR2.

The potential excursion swept out by potentiometer VR2 is about 12.5 V to 7.5 V ; in conjunction with the appropriate value of capacitor, this enables a $10: 1$ frequency sweep to be obtained. This enables the

Fig. 5. Circuit diagram of the Power Supply Unit. Switch S4 is part of potentiometer control VR10.
frequency ranges covered to go up in conventional decade steps by a choice of capacitors which go up in the same ratio. The capacitors, two of which are made up from parallelled arrangements, are selected by the front panel rotary switch Si

In most designs, the slider of frequency control potentiometer VR2 is connected directly to pin 8 . This is quite permissible, but by using a unity gain op.amp, ICl , between the control and the 8038, provision is made for frequency modulation from an external source (SK1). This will be considered later on in more detail.
The output of 1 Cl (pin 6) follows the voltage present on its non-inverting input, hence pin 8 of the 8038 receives the voltage variation from VR2. The output frequency of IC2 produced at pins 2,3 and 9 is directly proportional to the voltage on pin 8 , hence potentiometer VR2 is selected with a linear track, so making the panel frequency scaling linear with rotation also.

Pin 8 of IC2 is susceptible to pick-up, so capacitor Cl bypasses any such unwanted transients to "ground". Diode D1 in the supply feed to the 8038 is included to prevent distortion which can occur when the slider of VR2 is close to the V_{cc} voltage.

WA VEFOFMS

The three waveforms available at pins 2 , 3 and 9 of IC2 could be used directly as outputs, but there are reasons why this is not a practical proposition. To begin with, the outputs are all at different amplitudes; the square wave on pin 9 has a peak-topeak amplitude which is not far short of the supply voltage; the triangular wave has, as we have noted, an amplitude of one third $V_{\text {ces }}$, and the sinewave output has an amplitude of only about 0.22 of the supply voltage. So something has to be done to balance things up a bit.

Further, the 8038 can be damaged if the output pins are shorted out or if excessive current is drawn. There is no internal protection which will limit the output currents, so it is necessary to ensure that the generator outputs operate into circuits with high input impedances.

This can be accomplished best by feeding into an op.amp or an emitter-follower. In this circuit, both methods are employed.
The sinewave output (pin 2) of about $0.22 \mathrm{~V}_{\mathrm{cc}}$ (about 6 V peak-to-peak) feeds directly (via Function selector switch S2a) into the non-inverting input of IC3, as does the triangular wave output (pin 3), this

Fig. 4. Circuit diagram for the Signal Generator. It is important that potentiometer VR2 has a wide rotation angle (300) for good frequency spread.

CTHM
being suitably reduced by the preset potentiometer VR7 to equalize its amplitude with that of the sinewave. The gain of IC3 is then set by adjustment of the feedback preset resistor VR8 for the output to be precisely 10 V peak-to-peak at switch S 2 b .

In the meanwhile, the square wave output at pin 9 on IC2 bypasses the op.amp and feeds instead into transistor TR1, an emitter-follower, the output at the emitter being adjusted by preset VR9 to match the 10 V peak-to-peak amplitudes of the sine and triangular waves at switch S2b. In this way, switches S2a and S2b being ganged, all waveform levels are identical at the wiper (w) or pole contact of S2b, and the necessary high impedance loading on the generator outputs is achieved.

TTL OUTPUT

To provide a useful TTL compatible output of a 5 V amplitude square wave independent of the other outputs selected by switch S2b, the square wave appearing at the emitter of TR1 is passed at full amplitude into the base of the second emitter-follower TR2, this time a $p n p$ transistor. Zener diode D4, however, holds the potential at the junction of resistor R10 and diode D2 at 4.3V.
The positive excursion of the square wave cannot therefore exceed 5 V , the drop across D2 being about 0.7 V when it is driven into conduction; and the negative excursion is held at close to earth potential by the conduction of diode D3. A 5 V amplitude square wave consequently appears at the emitter of TR2. This is taken to a separate terminal on the front panel of the instrument as a TTL Drive Output signal.
The switched attenuator made up from resistors R13 to R17 is a coarse control giving voltage ratios of $1,0.3,0.1,0.03$ and 0.01 very closely corresponding to attenuations of $0 \mathrm{~dB},-10 \mathrm{~dB},-20 \mathrm{~dB},-30 \mathrm{~dB}$ and -40 dB respectively below 10 V peak-topeak. The output voltage ranges on potentiometer VR10 which is the fine attenuator control, are therefore $0-10 \mathrm{~V}, 0-3.16 \mathrm{~V}, 0-1 \mathrm{~V}$, $0-31 \mathrm{mV}$ and $0-100 \mathrm{mV}$. The use of a peak to-peak calibration provides easy correlation between sine and the other output waveforms

The output and intermediate driver amplifiers are quite conventional complementary stages, having an overall unity gain. TR3 is a BC107 and TR4 its complement, the BC177. TR5 and TR6 are complementary pairs BC549 and BC559 respectively. The output is taken via resistor R24 and has a nominal impedance of 50 ohms.
A l.e.d. indicator is provided, D13, which is fed from the full dual supply rails by way of limiting resistor $\mathbf{R} 28$.
Little need be said about the power unit, Fig. 5, which is assembled on a small separate p.c.b. A $12 \mathrm{~V}-0 \mathrm{~V}-12 \mathrm{~V}, 250 \mathrm{~mA}$ miniature mains transformer feeds into a bridge rectifier, REC1, which provides both positive and negative outputs of about 18 V (unloaded) about the 0 V line taken from the transformer secondary centre-tap.
Smoothing is carried out by $1000 \mu 25 \mathrm{~V}$ working capacitors Cl 5 and Cl 6 . Two 47 ohm one watt resistors $\mathbf{R} 29$, R30 act as safety limiters for the 13 V Zener stabilizers D11, D12 on the main board.

CONSTRUCTION

Construction of this project is basically very easy as all components are mounted

on two p.c.b's. The component layouts are shown in Fig. 6 and Fig. 10. These boards are available from the EE PCB Service codes, EE776 (Sig. Gen.) and EE777 (PSU)

The only separate wiring runs to externa parts are those to the various output terminals (four wires), those between the power unit and the main board (three wires), and the mains supply input which goes via fuse FSI and on-off switch S4 (on the fine attenuation control VR10) to the transformer primary.
The main board fits directly on to the front panel, the three switches bush nuts being the means by which attachment is made. It is necessary then for the panel drilling to match exactly to the control component spindles and bushes on the board and we will return to this later on.

CIRCUITBDARD

The component layout and full size printed circuit copper foil master pattern of the main signal generator board is given in Fig. 6. If you make your own, it is essential that the hole positions for the Frequency control potentiometer VR2 and the fine

Fig. 7. How the attenuator potentiometer VR10 is fitted to the p.c.b.
output attenuator VR10 (shown at points B and A respectively) are precisely drilled in the positions indicated
These pots are mounted on the track side of the board and the tags of VR10 are bent forward through 90 degrees to make solderable contact with the three copper pads provided for each of them, see Fig. 7. Potentiometer VR2 has a wide electrical rotation angle and must be the type specified if an adequate sweep is to be obtained for each frequency range. This pot is wired with short length of wire from its tags down to the pads on the printed board. It is also necessary to ensure that the switch contact connecting pads on the board are drilled accurately as the switch positions must also coincide with the panel drilling holes.
A Imm drill is suitable for all the component mounting holes except those which are for the miniature preset potentiometers VR5, VR6, VR7 and VR9. These require a 1.2 mm drill

The switches S1, S2 and S3 are mounted directly onto the board and their connecting pads need to be drilled 1.6 mm ($1 / 16$ inch),
through a hole up to 2 mm is acceptable The preset VRI, VR3 and VR4 are multiturn types requiring only a 1 mm drilling.
The order of assembling components on the board is not particularly important; it is perhaps best to begin with the various jumper links (there are eight of these), then all the diodes (taking care with the polarities), then the resistors and capacitors, presets and transistors. Make sure with the transistors that you don't muddle the $n p n$'s with the pnp's.
It is probably advisable to use low-profile i.c. holders for the three integrated circuits just in case you get a dud (not unheard of), but if you are an optimist they may be soldered directly to the board. IC3 must be a 741 S , not a plain 741 , though this latter type is suitable for ICI.
The control potentiometers and the three switches are best left to last as their projecting shafts can prove a hinderance if they are mounted sooner. The two potentiometers VR2 and VR10 which go on the track side of the board must have a thin fibre or other type of insulating washer between the case and the board as Fig. 7 illustrates; this ensures that there is no possibility of the metal case touching onto the board tracks.

FRECUENCY CAPACITORS

Just a word at this point about the frequency selector capacitor associated with the rotary switch SI. Capacitors C3 and C4 are 330 pF and 100 pF one per cent silvered mica (or polystyrene will do) connected in parallel to give a total of 430 pF for the 100 kHz range. In theory a 470 pF is needed but there are sufficient strays to make 430 pF adequate.
Capacitor C2 is a 4700 pF one per cent capacitor, and C6 and C7 are 39000 pF and 8200 pF one per cent capacitors in parallel to give a close 47000 pF . It is necessary for the capacitors to be as accurate as possible, and by using one per cent precision types and combining them where necessary, very accurate frequency scaling is obtained throughout the ranges 1 kHz to 100 kHz .
It is not so easy to obtain a one per cent capacitor of the value required for $\mathbf{C 8}$, but nothing worse than five per cent should be selected. The $4.7 \mu \mathrm{~F}$ electrolytic, C 9 , is just that, though you may be able to get a five per cent polycarbonate type (rather pricey though!) or make up a combination from, say two $2.2 \mu \mathrm{~F}$ plus a 330 nF . If you have access to a capacitance meter or bridge use it as I did, to select these larger value capacitors.

SWITCHES

The three Lorlin rotary switches need a bit of work done on them preparatory to mounting on the board. Not all of the pins are used and certain of them have to be snipped off. Also, the position of the locating stop-ring has to be adjusted. Fig. 8 shows how this is done.
First, turn each switch rully anticlockwise. For S1 and S3 the stop-ring should then be moved back one place to position 5 ; this makes the switches 5 -way types. For S2 put the stop back to position 3; this then makes this a 3 -way type. Replace the washer and nut and check that the switches all move the appropriate number of places from the anticlockwise position.
The following table indicates which of the switch tags have to be snipped off com-

The completed printed circuit board showing component layout. Note that potentiometers VR2 and VR10 are mounted on the track side.

Fig. 8. How to adjust the number of "ways" on the rotary switches.

Fig. 9. Preparing the rotary switcines for the p.c.b. by snipping the tags às indicated in the text.
pletely. Snip them off close to the body of the switch to leave stumps not more than about 1 mm high. Fig. 9 shows the method.

Switch SI: remove tags $6,7,10,11$
Switch $\mathbf{S 2}^{\text {: remove tags } 4,5,6,7 \text {, }}$
$10,11,12$
Switch S3: remove tags 1,4, 5, 12
All the remaining tags then have their eyelets only removed as Fig. 9 indicates, leaving as much of the tag as possible on these so that they will protrude on the track side of the board by about 1 mm when fitted. This enables a sound soldered connection to be made to the copper foil.
Using your snips "upside down" for this job is advantageous in that it enable the eyelet to be removed without biting into the stump itself. The orientation of the flat on the switch shafts will be automatically correct for the fitting of a grub-screwed knob (if you prefer these) when finally assembled.

MOUNTING THE SWITCHES

When mounting the switches on the board, made sure the tag stumps are not bent out of vertical and that their tops haven't been "sprayed" out by your snipping action. Push them into their respective hole positions carefully, making sure that the board is not bent or strained.
It is best, once the pins are located in their holes, to lay the board flat on a soft

but firm surface and press the switch home by applying firm pressure to the body of the switch. This will ensure that the switch sits squarely on the board before soldering; unless you check this point the shaft may not be at right-angles to the plane of the board and it will not locate through the appropriate panel hole later on.
Also, on the front face of the switches there is a small locating boss formed in the plastic; this should be snipped off as well as this is not required for locating purposes. Do not fit the l.e.d. DI 3 indicator at this stage.

POWER SUPPLY

The printed circuit board component layout and full size copper foil master pattern for the Power Supply Unit (PSU) is given in Fig. 10. The two separate secondary windings of the mains transformer are connected together at the two centre tags and this centre-tap point together with the outer connections are wired through to the board foil with short lengths of bare wire.

Take particular care when fitting the bridge rectifier; this can go in any one of four ways since the lead spacing is symmetrical, and only one is correct! Also, make sure the electrolytics are correctly polarized.

Later on, the fitting of the supply board to the instrument case is accomplished by screws and spacers through the two transformer fixing points marked F (so use temporary screws to secure the transformer at this stage) and the hole marked G between the + and - output points. Solder three solder pins to the three output points so that a convenient connection can be made to the main board during preliminary testing. The rest of the circuit and its assembly needs no further comment.

Fig. 11. Balancing the output signal by making the periods A and B equal. Either triangular or square waves may be used.

TESTAND ALIGNMENT

Nearly all of the testing and setting up of voltage levels can be done with the boards on the bench; all that remains once the boards are fitted into the case is the alignment of the main frequency scale. An oscilloscope is necessary for setting waveforms; the other requirements are an a.c. voltmeter and some means of measuring frequency. The oscilloscope does not need to be a particularly good one provided its Y-amplifier is distortion free up to 100 kHz and its time-base is linear.
Using about 305 mm (12 in .) lengths of wire for the time being, connect the main board to the power unit; also connect a short length of wire to the signal output point (from resistor R24) on the main board so that the output is available. Two insulated mains rated wires are also needed from the transformer primary terminals to the mains supply. It is wise to protect these terminals with a piece of insulating tape while setting up to avoid accidental contact.

Before applying power, turn all the preset potentiometers including the multiturns, to about their mid-positions. Turn the mains Frequency control pot VR2 to about its mid-position also, set the Range switch (S1) to the 1 kHz mode (its middle position), the Function switch (S2) to Sine (fully clockwise), the Coarse Attenuator (S3) to 0 dB (fully clockwise) and the Fine Attenuator pot (VR10) to maximum.

WAVEFORMS

Connect the oscilloscope input between the output point from R24 and earth (the Common connection). Switch on; a sinewave, probably distorted somewhat, should appear on the screen. Check briefly, using the Function switch, that a triangle and square wave are also present.

Turn the main Frequency control and verify that the frequency of the sinewave varies. Don't worry at this stage about either their actual shapes or their different amplitudes. Set the scope controls so that you get about three full cycles on the screen.

Fig. 10. Printed circuit board component lavout and full size copper foil master pattern. Fixing holes at F and G are $6 B A$ clearance, transformer $T 1$ is temporarily fitted during assembly by two 6BA screws.

Fig. 12. using VR5 and VR6 adjust for best possible sinewave shape.
We now need to set the balance control VR4 to give us a symmetrical triangular wave. Set the Function switch to Triangle (fully anticlockwise) and adjust VR4 until the triangle on the scope screen is symmetrical, see Fig. 1la. It is sometimes easier to use the square wave for this adjustment; if you choose this, adjust VR4 until the square wave has a $1: 1$ mark-space ratio, see Fig. 11.
When you have got this right, switch back to Sine, and making sure that the Fine output attenuator pot is fully clockwise, adjust the gain preset VR8 (close to IC3) so that the output level is 10 V peak-to-peak sinewave.
Now adjust VR5 and VR6 alternately to give the best sinewave shape you can get. This is a subjective matter and the thing to aim for is to get a sinewave that is equally "rounded" at the maximum and minimum points of each cycle, the rights and wrongs being illustrated in Fig. 12.
Ideally, a distortion meter should be used for the best possible waveform, but with care a very accurate sinewave can be obtained. Recheck now on the output level, as this may have changed slightly with the sinewave shaping adjustment.
For the correct amplitudes of the other two waveforms, the scope can again be used but if its accuracy is suspect, use the a.c. voltmeter again across the output points. Set the triangular amplitude using VR7 so that the meter reads 2.9 V , this will be close enough, and for the square wave (where r.m.s. and peak vales are identical), adjust VR9 to give a reading of 5 V . These measurements are best made at a relatively low frequency, say, somewhere on the 1 kHz range or lower as an a.c. meter is strictly scaled for 50 Hz , though most meters will be O.K. up to several kilohertz without error.

PREPARING THECASE

The specified case measures 305 mm by 130 mm high by 160 mm deep and is a relatively inexpensive box having a vinyl covering over a plain aluminium lower part. For a reasonable finish, this lower part should be sprayed with a colour of your fancy, though the front panel itself will depend upon what you do about adding on a legended overlay. But more of this in a little while.
Apart from two holes to be drilled in the rear for the mains input lead and the fuse fitting, the positions of which are not critical, the front panel must have its holes drilled exactly suited to the positions indicated on the panel layout given in Fig. 13. Unless this is done, the board will not fit

Position and wiring of the two circuit boards inside the metal case.

the panel drillings. You can achieve good results by marking through the holes on the unpopulated p.c.b.
If you are a dab hand with rub-down lettering, you can use Fig. 13 has a guide to make a good copy onto a piece of card or very thin aluminium. Alternately, you can get a twice up photocopy made on to a sheet of good quality paper of a colour of your choice, and stick this onto a piece of aluminium sheet. A full size frequency scale is shown in Fig. 14

DR/LLING

Whatever you decide, position the panel over the front of the case and mark through the hole centres onto the aluminium with a punch or scriber. Preferably drill small guide holes, say one-eighth inch, through the points you have marked and recheck their positions before going on to the full size drilling.

Now drill or punch out the positions to the following sizes: (a) the main frequency scale and the fine attenuator scale, $3 / 8 \mathrm{in}$. dia.; (b) the three switch positions, $3 / 3 \mathrm{in}$. dia., though it eases any slight inaccuracies if you make these $7 / 16 \mathrm{in}$. dia.; (c) the three lower level output terminals, $\% / 32$ in. dia.; (d) the Ext Mod and TTL Drive positions, 5/16 in. dia.; (e) the l.e.d. "ON" position, $1 / 4$ in. dia. If you use a drill, de-burr all the holes carefully.

You will need to file a very small V-shape at the base of each of the three output ter-
minal holes to accommodate the locating lug on each of these terminals. The drillings mentioned under (c) and (d) above assume you use the specified terminals; if you do not, you must make these holes to suit your terminal choice.

ASSEMELY

The front panel print can be either glued to the panel, if it is a paper photocopy, or held in position by the three switch locking nuts and the various terminals if a printed card is used. Put grommets with a $1 / 4$ in. centre hole into the Frequency and Fine Attenuator holes so that the shafts of these two controls can pass through them when the board is offered up to the panel, using the grommets as soft bearings.

It makes things easier to push the shafts through the grommets if you smear a trace of caster oil inside the grommet holes. Check that the board control shafts pass correctly through the panel holes but do not fasten anything yet.
The power supply board is screwed to the base of the case by three fixing screws (6BA or 3 mm metric will do) and held off the case floor by $1 / 1 \mathrm{in}$. spacers. Its position is not critical but it should be mounted about $1 / 4 \mathrm{in}$. from the rear of the case towards the end where the three power input leads come from the main board. The mains input point and fuse can then also be positioned at this end.
Before fitting the main (Sig. Gen.) board,

Fig. 13. Half-size details of front panel layout and frequency scale.

Fig. 14. Full size frequency scale. the 0 V connection pin on the power board where it also joins to the 0 V lead from the main board.

To mount the main board, remove the three locking nuts from the three switches, taking care that the locating rings and the shakeproof washers do not fall out of position as you manoeuvre the board up to the panel and get the shafts into their respective holes. Push the board into position, letting the threaded bushes of the three switches fit snugly through their holes before putting
solder lengths of flexible wire to the Ext Mod point (152 mm), the TTL Drive point (76 mm), and position these wires so that they can be connected to the two upper socket outlets after the board is mounted. Also, cut the three wires which will go to the power unit to about 7 in . in length.
It eases things if you solder the output wires (from R24) to the Hl terminals, and 152 mm lengths of wire to the other two terminals before fitting the board to the front panel. The "earth" one of these wires then goes to the case itself via a tag under one of the transformer fixing screws. The LO output does NOT go to the case but to
their nuts back onto them. The shakeproofs are left behind the panel.
Tighten the nuts (but not overtight) and ensure that the board is straight and parallel to the panel and that nothing has been forced into position against its will. If there are slight inaccuracies in the bush positions, a touch with a file should remedy things, but this won't help if there are gross misalignments.

Once everything is shipshape, cut off the shafts to suit the knobs you are using. One-inch diameter collet knobs with marker caps are best; grub-screwed knobs must have their indicating marks opposite the
screw positions. The main frequency control knob is a 45 mm diameter component and should be fitted so that it moves over its rotation range equally beyond the extremities of the panel scale when turned fully in either direction.
The l.e.d. indicator D1 3 can now be fitted. bend its leads slightly so that they will pass through the two holes in the board, then bring the l.e.d. forwards so that it will slide into either a standard mounting clip of a $1 / 4$ in. inside-hole grommet mounted in the panel hole.

To complete things, the wiring from the mains input leads (three-core) and the fuse can now be taken via the double-pole switch on VR10 to the primary terminals of the transformer. If you have a split primary, don't forget to link the two inner tags.

FRECUENCY CALIERATION

To set up the Signal Generator it is only necessary to align the frequency scale on one of the frequency ranges as the others will then be correct, if the capacitors selected by switch SI are accurate. This is best done on the middle position of the Range switch, i.e. the 100 Hz to 1 kHz range.

Switch to this position, set the frequency knob to indicate 20 on its scale and adjust VRI until the output, as measured on a suitable frequency meter, reads 200 Hz . Turn the Frequency knob to indicate 90 on the scale and adjust VR3 to give an output of 900 Hz . Repeat this procedure a few times until no change is observed when turning from one position to the other.
This completes the calibration. The other ranges will be correct within the tolerance of their capacitors.

EMERYDAY
 ELECTRDNHES

INCORPORATING ELECTRONICS MONTHLY

The No. 1 Magazine for Electronic Computer Projects

NEWSAGENT ORDER FORM

Please reserve/deliver a copy of
Everyday Electronics
for me each month
Signed

Name and Address.
(BLOCK CAPITALS PLEASE)

Everyday Electronics is published on the first Friday of each month and distributed by Seymour.

Make sure of your copy of EE each month - cut out this form, fill it in and hand it to your newsagent.

EVERYDAY
 ELEFTRDNHPS

INCORPORATING ELECTRONICS MONTHLY
The No. 1 Magazine for Electronic \& Computer Projects

SUBSCRIPTION ORDER FORM

Annual subscription rates (1991): UK £18.50. Overseas $£ 23$ (surface mail) $£ 40.50$ (airmail)
To: Everyday Electronics, 6 Church Street Wimborne, Dorset BH21 1JH

Name.
\qquad
Address
\qquad
\qquad

I enclose payment of $\mathbf{£}$........ (cheque/PO in £ sterling only payable to Everyday Electronics) VS Access or Visa No

 UPGRAD

B
oardMaker 1 is a powerful software tool which provides a convenient and professional method of drawing your schematics and designing your printed circuit boards, in one remarkably easy to use package. Engineers worldwide have discovered that it provides an unparalleled price performance advantage over other PC- based systems.
BoardMaker 1 is exceptionally easy to use - Its sensible user Interface allows you to use the cursor keys, mouse or direct keyboard commands to start designing a PCB or schematic within about half an hour of opening the box.

HIGHLIGHTS

Hardware:

- IBM PC, XT, AT or 100% compatible.

MSDOS $3 . x$

- HGA, CGA, MCGA, EGA or VGA display
- Microsoft or compatible mouse recommended
integrated PCB and schematic editor
- Maximum board or schematlc size - 17×17 Inches
moved, rotated, repeated and mirrored.
- User definable symbol and macro library facllities ang a symbol
- Design rule checking (DRC)-checks the clearances between items on the board
Real-fime DRC display - when placing tracks you design rules set
- Placement grid - Separate vislble and snap grid Aplacement grias in the range 2 thou to 0.1 inch. you switch layers - layer pairs can be assigned by the user.
- Blocks - groups of tracks, pads, symbols and text rotate a can be maintained if required
- SMD - full surface mount components and cilitles are catered for, including the use of the board.
- Circles - Arcs and circles up to the maximum board size can be drawn. These can be used to enerale rounded track corners.
Ground piane support - areas of copper can be prove ground plane or large copper are. This will automalically fow around any

Output drivers

- Dot matrix printer
- Compensated HP laser printer

PostScript outout

- Photoplot (Gerber) output.
- NC (ASCII Excellon) drill output

Produce clear, professional schematics for inclusion in your technical documentation.

PCB layout editor provides full analogue, digital and surface mount support - ground and power planes (hatched or solid)- 45 degree, arced and any angle tracks.

Despite its quality and performance. BoardMaker 1 only costs $£ 95.00$. Combine this with the 100% buy back discount if you upgrade to BoardMaker 2 or BoardRouter and your investment in Tsien products is assured. Price excludes carriage and VAT.

Don't fake our word for it. Call us today for a FREE demonstration disk and judge for yourself.

Tsien (UK) Limited
Cambridge Research Laboratories
181A Huntingdon Road
Cambridge CB3 ODJ
Tel 0223277777
tsien
Fax 0223.277747

ACTUALLY DOING ITV by Robert Penfold

FOR anyone just starting out on the hobby of electronics construction I could not really recommend making your own printed circuit boards. There will be plenty of skills to master without adding a few more to the list by making your own circuit boards. Initially it is much better to use stripboard, or better still, a readymade custom printed circuit board. This keeps the task as simple as possible, and optimises your chances of success.

You will probably want to try your hand at printed circuit making before too long though, and I suppose that it is something which every electronics hobbyist should try at some stage or other. To be honest, it is a pastime that is not everyone's "cup of tea". It involves the use of some messy chemicals, one of which is practically guaranteed to permanently stain any clothing, carpets, etc. that it comes into contact with.

I suppose that messing around with chemicals is one of those things you either love or hate, with few people being indifferent about it. Provided you are not put off by this aspect of making printed circuit boards, it is an interesting and rewarding part of the hobby.

SIMPLE METHODS

Making printed circuit boards can be as simple or complicated as you care to make it. At one extreme you can use simple equipment such as pens and hand-drills, while at the other you can use photographic methods, special "bubble" etching tanks, and all sorts of paraphernalia. In this Actually Doing It article we will take a look at the more simple methods, which are the best starting point. These will give you a "taste" of printed circuit board construction without involving you in great expenditure.

If you decide that this aspect of the hobby is one that does not really interest you, then you will not have wasted much money. If you do decide to pursue this aspect of things, then you may find that the simple techniques are all that you will need. However, if you are going to get involved in a lot of printed circuit construction, it would probably be advisable to progress to more advanced methods. These will be discussed in the next Actually Doing It article.

The basic printed circuit board material consists of a piece of board made from an insulating material, and covered with a thin layer of copper on one or both sides. Some designs for the home constructor are based on double-sided boards, but the vast majority use single-sided types. Making double-sided boards is not an
easy task, and is certainly not a good starting point. Initially you should content yourself with fairly simple singlesided designs.

LAMINATE

Two types of copper laminate board are readily available, and these are the s.r.b.p. and fibreglass varieties. These are simply the materials from which the boards are made. Fibreglass consists of fibres of glass plus polyester resin (a type of plastic), as used in boat building etc. This is the tougher type of board, and is the one preferred by many users. Be warned though, that the fibres of glass tend to rapidly blunt saws and drills. Special super-hard drills are available for drilling this material, but they are very expensive and break easily.

For most purposes s.r.b.p. (sheet resin bonded paper) is adequate, and this is the type I mainly use these days. This is much cheaper than fibreglass board, but is still quite rough. It is probably only worthwhile using the fibreglass type when a very large board is being made, or if it will have to accommodate a heavy component such as a mains transformer.

BASIC PROCESSES

In order to turn the raw board into a working printed circuit board there ase two basic processes that must be undertaken. First the unwanted areas of copper must be removed, so as to leave a pattern of copper tracks that will connect all the components together in the appropriate manner. This is achieved using a simple etching process. Then holes for the component leads must be drilled. The components are mounted on the non-copper (top) side of the board, and their leadout wires are soldered to the copper tracks on the underside of the board.

This is very much like stripboard, but there are some important differences. With stripboard the tracks are of uniform width, even at the points where there are holes for leadout wires. With custom printed circuits the tracks are often of several widths, are generally quite narrow, and widen out to form pads at the points where there are holes for leadout wires. Obviously there are only holes where they are needed, and the tracks can go in any direction.

On many boards the track shapes are quite intricate. This enables more compact layouts to be achieved, and usually enables fewer link wires to be used. In fact there may be no need for link wires at all, which is not usually possible when using stripboard.

TRACING

Once a board of the correct size has been cut out, the copper track pattern must be marked on the copper side of the board using etch resist. The board is then immersed in etchant, which removes the exposed areas of copper, but leaves the areas covered by the resist.

Before the track pattern is drawn onto the board it is essential that the copper side of the board is cleaned to produce a bright and shiny finish. This ensures that the board will etch efficiently. A dirty board may etch very slowly, giving poor results. It is even possible that some areas of the board will fail to etch at all.

Cleaning the board is very simple, and there are special abrasive blocks for this purpose. Alternatively, wire-wool gives good results, as do "Brillo-Pads"" and scouring powders. The difficult part is keeping the cleaned board in good condition. Touching the copper surface will leave finger marks that might prove reluctant to etch. Try to only hold the board by the edges once it has been cleaned.

Next the track pattern must be traced from the diagram in the magazine or book onto the copper side of the board. There are various ways of doing this, and you may have your own "pet" method of doing this type of thing. The method I have always found most satisfactory is to first make a photocopy of the design. There is a potential problem here in that many photocopiers produce a copy that is slightly smaller than the original. In most cases the slight shrinkage will not be enough to cause any problems, and the more modern photocopiers seem to be largely free from this trait anyway.

The copy is fixed on the copper side of the board using double-sided tape. If you are prepared to cut up the book or magazine, you can use the original diagram (which should guarantee accurate results). You can now mark the positions of the holes in the board, using a sharp instrument such as a bradawl to make small indentations in the board at the appropriate points. Do this as accurately as possible. Later these indentations will act as guides when drilling the holes in the board.

With a complex board it might be advisable to gently scratch further navigation points onto the boards, such as the corners of intricate tracks. With the drawing and tape removed you can then use your selected method to add the etch resist.

ETCH RESIST

The resist can be a water resistant paint or ink applied by brush. However, the complexity of most modern boards is such that this method is not very practical these days. Rather than a brush, it is more normal for a fibre-tipped pen having a spirit based ink 10 be used. These enable quite fine designs to be produced with good neatness.

Many of the larger component retailers sell pens for this purpose, but just about any pen having a fine tip and a spirit based ink seems to be suitable. You may well already have something suitable. If in doubt, you can always do a test run on a small scrap of copper clad board to see if the ink will resist the etchant properly.

A popular alternative to a pen is to use etch resist transfers. These are rub-on transfers, and there are various types available (pads, tracks, d.i.l. clusters
for integrated circuits, edge connectors etc.). With these it is possible to produce really professional looking results, but they are much more time consuming to use. They are also more expensive. Most people find they provide a more satisfactory method of laying down the resist pattern, and I would have no hesitation in recommending this mathod.

You need to be careful when ordering etch resist transfers, as they are sometimes mixed in with drafting materials in the component catalogues. These drafting materials are for drawing up printed circuit boards on translucent film so that they can be produced using photographic methods. These are mostly of no use in the current context. Therefore, be careful that the items you order are described as "etch resistant", or something similar.

When drawing the copper pattern onto the board it is best to start with the pads. Then add the tracks, starting with the simple ones and finishing with the most complex tracks. If the copper pattern is produced using a pen, make sure that a generous thickness of resist is applied at every point on the pattern.

If you are using rub-on transfers the tracks must be cut to length before they can be rubbed into place. Simply position the transfer sheet on the board with a length of "track" in place, but have the sheet up-side-down. You can then carefully cut the "track" to length using a scalpel or sharp modelling knife, making sure it is fractionally over-length. Turn the sheet over, and rub the track into place on the board, making sure that both ends slightly overlap their respective pads. Also be sure to have a reasonable overlap at any corners of convoluted track runs.

ETCHING

If you use an etch resist pen, make sure that the resist has dried properly before etching the board. Most etch resist pens have a very quick drying ink, so it should not be necessary to wait more than a few minutes for the resist to dry thoroughly.

The standard etchant for do-it-yourself printed circuit making is ferric chloride. Of the various chemicals that are suitable for the job this is about the least dangerous, but it still needs to be treated with due respect. In minute quantities it is apparently used for water purification, but the strong solutions used for etching are decidedly poisonous. It should not be stored in lemonade bottles etc. It attacks many metals, and it must therefore
be stored in containers which are entirely metal-free. The bottles that are sold for use with photographic chemicals are probably the best choice.

Ferric chloride can be washed from formica worktops etc. without any difficulty, but it will probably put a permanent yellow-brown stain into any clothing, carpets, towels, etc. that it touches. It will not etch your skin, but it is an irritant. If any of this chemical is spilled, always clean it up immediately. If any should get it on your skin, wash it off at once with plenty of soap and water. Always try to avoid getting ferric chloride anywhere that it should not be.

Ferric chloride is available as a solution ready for use, or in some cases requiring one-to-one dilution with water before use. This is the most convenient form in which to buy it, but it is not the cheapest. Usually solid forms of the chemical are significantly cheaper, and these days it only seems to be pellets that are available. These will dissolve quite easily in warm water with occasional stirring or agitation.

Opinion seems to vary as to the optimum dilution for etching purposes Some advocate a saturated solution, which means using equal weights of water and ferric chloride (i.e add a 250 gm pack of ferric chloride to 250 ml of water). I prefer to use a half strength solution, and to make up one litre or so at a time. I therefore add two 250 gm packs of the chemical to 1 litre of water.

Photographic dishes and plastic tongues are well suited to making printed circuit boards. Place the board copper side uppermost in a dish and add sufficient ferric chloride to thoroughly cover the board. Etching is quickest if the board and solution are constantly agitated.

The need for agitation can be avoided if the board is suspended up-side-down in the solution, or if it is positioned vertically in the solution. This generally requires some form of etching tank, or a very large jar. If you can improvise something suitable it will make the etching process much easier, and will probably be well worth the effort involved.
Inspect the board frequently to see how etching is progressing. The time taken depends on factors such as the strength of the solution, how much it has been used, the size of the board, and the temperature of the solution. It can take as little as ten minutes, but with a large board and well used etchant it can take over an hour. It is important not to leave
the board in the etchant for any longer than is really necessary as this could cause severe undercutting of the tracks and pads.

Once the board has completely etched, remove it from the etchant and rinse it thoroughly. The resist must then be removed, and this can be done using the same methods that were originally used to polish the board. The board is then ready for drilling.

Most components require 1 millimetre diameter holes, but for most semiconductors 0.8 millimetres is a better size. A few components, such as preset resistors, require larger holes of about 1.6 mil limetres in diameter. The holes can be drilled using a small hand-drill, but this is a slow way of doing things. Also, the drills will tend to snap quite frequently. and the harder miniature drill bits are strictly for use in power drills

A full-size power drill mounted in a stand is usable, but it is probably worth investing in one of the inexpensive miniature electric drills that are available from some component retailers. With one of these plus a matching stand it is possible to drill the holes at a fair rate, and with good accuracy. Provided you proceed with reasonable care, snapped drill bits should then be a rarity.

Cleaning the board with an abrasive block.

Etch resist transfers and pen, with rubbing down tool.
Drilling the board with a miniature drill and drill stand.

FOR YOUR ENTERTANAMENT by Barry Fox

Old Idea - New Batteries

Nice to see the Mail on Sunday pick up on one of Everyday Electronics' constructional projects (September 1991) with a story about the "schoolboy project which is causing fury in Britain's £250 million pound battery industry"
Alan Tong had described how to build a Dry Cell Re-charger from components costing only around $£ 8.50$. He poo-poohed the warnings printed on dry cell labels which threaten danger of leakage or explosion if people try and recharge dry cells. But Tong emphasised that there is no point in even trying to recharge dry cells in NiCad chargers.
NiCad chargers simply push d.c. back through the cell in reverse. This neatly recomposes the chemistry of a NiCad cell because it is designed for recomposition. But if straight d.c. is pushed through a dry cell, recomposition produces a disorderly chemical mass which takes up too much space. This pops the safety vent to make the cell leak. And the cell holds virtually no charge anyway.

Predictably the battery manufacturers mouthed all the usual warnings. It suits them very nicely if people go on throwing cells away instead of recharging them. And my experience of salesmen in the battery business is that they know very little about the curious mix of electrochemistry, cookery and black magic on which their livelyhoods depend.

Also, all this rang bells in the back of my brain and I dug out a file from exactly ten years ago. Sorry to say it, but recharging dry cells is by no means a new idea. (We understand that it was done in the second world war - Ed.).

At the May 1981 electronics industry trade shows in London, British company Fidelity Radio of North London launched the Battery Saver. This was a portable mains/battery radio with a special feature; it incorporated a dry battery charger.

While the radio was plugged into the mains, but not in use, the charger fed a mixture of a.c. and d.c. power back into the batteries. The a.c. was superimposed on the d.c. to prevent the zinc from reforming as dendrites which take up too much space and flake off the electrode. The mixed a.c./d.c. charge was fed as a variable trickle, over a long period of time. The charge rate in the Fidelity radio started at around 24 milliamps and fell away to zero as the 9 volt battery pack returned to a nominal voltage of 8.7 volts.

At the time Fidelity described this as "a British technology breakthrough which could revolutionize the design of many battery powered home electronic products". The Battery Saver sank without trace, Fidelity ran into financial problems and the name was bought by Amstrad.

Environmental thinking makes the time right for a radio which recycles cells. Alan Sugar of Amstrad is not the kind of man to worry about offending the battery industry.

New Idea - Old Batteries!

There is something very interesting buried in the small print of a new brochure from Aiwa, subsidiary of Sony, and purveyor of high tech and stylish portable stereos of the Walkman type.
"Personal stereo users are discovering the economy of rechargeable batteries", says Aiwa, "yet often find long recharge time inconvenient".

Too true.

And nicad rechargeable cells never seem to work as well as the adverts or spec sheet claims. There is good reason for this.

The text books tell that nicad cells should be completely discharged before recharging, not continually topped up. Some chargers used to discharge the cells before starting to charge them. But this increases both cost and charging time. The feature now seems to have
been dropped, for reasons of price and overall charging time.
Some portable telephones, which use nicad cells, now have circuitry built in which control complete discharge. Users are advised to trigger the circuit once a month. But there is no way this kind of circuitry can be built into budget domestic equipment, especially if it is designed to take either expendable or rechargeable cells.

Not surprisingly, people top up the nicads for a portable stereo or computer to be sure of having a full charge before leaving home. This topping up creates a memory effect, whereby the cell is only able to hold a part charge.
Aiwa is now going back to the good old lead acid battery, as used in cars, albeit with the electrolyte in a sticky gel, rather than acid water. New Aiwa portable stereos have lead acid gel batteries. These can take a far heavier charge current than nicads, making it possible to recharge a portable stereo in just ten minutes. Before that Sony had used lead acid batteries for portable CD players.
There is another advantage. Lead acid cells like to be continually topped up. which is of course what happens in a car. So they are ideal for real world use of portable stereos and computers.

But be warned. If you run a lead acid cell flat, do not leave it flat. Irreversible chemical changes will then take place which prevent it ever again holding a charge.

Will Rabbit run for Hutch?

Earlier this year I wrote about the insanity of the CT2 (second generation digital cordless phone) market, and referred to the fourth incompatible service, called Rabbit from BYPS. This is the consortium of Philips, Shell and Barclays. Or rather it was. Hong Kong communications company Hutchison, has bought BYPS.

Hutchison is very successful in Hong Kong, as a cellular radio phone operator. If anyone can make Rabbit run, it will be Hutchison. Witness what happened over the crazy publicity stunt adopted by BYPS, which broke the cardinal rule of advertising - don't encourage the public to buy something until it is actually on sale.

BYPS has been paying for "Try Rabbit" signs round the edge of rugby and cricket pitches. As Rabit CT2 phones
were not on sale, anyone who watched sport on TV and saw a-"Try Rabbit" sign could only wonder what on earth it meant. Apparently anyone going to a rugby match learned all about it from a full page advert in the printed programme. The exhortation to "try" is a word play on rugger "tries".
I asked Philips why they were letting BYPS squander a fortune on perimeter advertising which encouraged millions of people without the printed programme explanation to try something that wasn't available. Why not save the money on perimeter advertising and just rely on the printed programme page inside?
Before I got an answer the Chinese had bought the company. The daft adverts have now disappeared. I suspect some of the BYPS staff will disappear too.
2×220 watt MOSFET AMPLIFIER A top-of-the-range performer that
will satisfy the most demanding audio enthusiast. If you're looking for an amplifler to power your subwooter, th sparkomatic is all you'll need! Highly sophisticated MOS-FET technology dramatically extends frequency response, separate input sensitivity controls, builtin protection circuitry for overheat and short circuit with l.e.d. Indicatlon, output power: 2×220 watt maximum and 2×110 watt at 0.1% THD, Bndged 440 watt mono maximum and 220 watt mono at 0.5% THD.
£164.50 plus $£ 3.50$ P\&P
100 watt $\times 4$ CLASS A AMPLIFIER FOR CARS
Delivers 4×100 watt into 4 woofers or with the aid of its built In active cross over delivers 200 watt of Bass via sub-woofer output and 2×100 watt. full range into 2 speakers; thus giving you all the power you require to make even traffic jams a positive pleasure. SPECIFICATION $4 \times 100 \mathrm{~W}$ (4Ω), $2 \times 200 \mathrm{w}$ Bridged, THD $.08 \%$, S/N RATIO: 7 90 db , RESPONSE $10 \mathrm{~Hz}-50 \mathrm{KHz}$, LOW PASS FILTER SWITCHED 75 Hz 150 Hz , INPUT $4 \times$ PHONO $100-3$ Volts, INPUT $\times 4$ HIGH LEVEL $20 \mathrm{~K} \Omega$. SIZE $240 \mathrm{~mm} \times$ $50 \mathrm{~mm} \times 400 \mathrm{~mm}$.
£118.50 postage $£ 4.50$

75 watt $\times 2$ CLASS A AMPLIFIER

 FOR CARSSmall but powerful, high efficiency amplifier, suitable for a number of hidden mounting locations. Easy connection through phono and high level input capabilty. SPECIFICATION 2×75 watts $4 \Omega, 1 \times 150$ watt Bridged. THD $0.190, \mathrm{~S} / \mathrm{N}$ AATIO: 785 dB , RESPONSE $20 \mathrm{~Hz}-30 \mathrm{KHz}$. INPUTS: $?$ X PHONO 100 mV -3 VOLT $2 \times$ HIGH LEVEL $2 \times$ 20k Ω. SIZE $240 \mathrm{~mm} \times 50 \mathrm{~mm} \times 140 \mathrm{~mm}$
$\mathbf{£ 4 8 . 5 0}$ postage $£ 3.50$

11 BAND COMPONENT GRAPHIC EQUALIZER FOR CARS

This neat unit connects between the line output of your car stereo and your power ampliflers so you are able to adjust the sound as in a studio compensating for sot furnishing and sound reflections from glass, also it has a sub-woofer output to drive a separate amplifler for that extra deep bass sound. FEATURES: 2 channel inputs 4 channel outputs via phono sockets, CD Input via 3.5 mm jack 11 band graphic. SPECIFICATION via 3.5mm jack 11 band graphic. SPECIFICATION EQ FREQUENCIES $60 \mathrm{HZ}, 120 \mathrm{~Hz}, 250 \mathrm{~Hz}, 380 \mathrm{~Hz}$, EQ
$500 \mathrm{~Hz}, 750 \mathrm{~Hz}, 1 \mathrm{KHz}, 2 \mathrm{KHz}, 4 \mathrm{KHz}, 8 \mathrm{KHz}, 16 \mathrm{KHz}$ $500 \mathrm{~Hz}, 750 \mathrm{~Hz}, 1 \mathrm{KHz}, 2 \mathrm{KHz}, 4 \mathrm{KHz}, 8 \mathrm{KHz}, 16 \mathrm{KHz}$
(Boost cut of $\pm 12 \mathrm{~dB}$) SIZE $178 \mathrm{~mm} \times 25 \mathrm{~mm} \times$ (Boost
140 mm .
£32.70 postage $£ 1.80$.

EMINENCE 4Ω PROFESSIONAL USA MADE IN CAR CHASSIS SPEAKERS

All units are fitted with big magnets 'Nomex Voice coils NOT ALUMINIUM, "Nomex" is very light and can stand extremely high temperatures, this mixture makes for high efficiency and long lasting quality of sound
V6 $61 / z^{\prime \prime} 200 \mathrm{~W}$ Max Range $50 \mathrm{~Hz}-3 \mathrm{KHz} £ 34.40$ V8 8" 300 W Max Range $45 \mathrm{~Hz}-3 \mathrm{KHz} £ 39.35$ V10 10" 400W Max V12 10" 400W Max VOSS 15" 12 W Max KING $18^{\prime \prime}$ 1200w Max Range 35Hz-4KHz £79.9

Postage $\mathbb{2} .85$ per speaker

AUDAX JBL 40-100 watt CAR
 TWEETERS

These state of the art advanced technology, high periormance 10 mm dome tweeters are Ferrofluid coded and are active horn-load ed for high dispersion of sound with very low distortions. Ideal for tuning up your dull sounding in-car system
SPECIFICATION IMP4 4840 watts at $5 \mathrm{KHz}, 100$ watt at 10 KHz, MAGNET, SIZE $5 \mathrm{~mm} \times 30 \mathrm{~mm}$, VOICE COIL SIZE 10.5 mm EIFFICIENCY 92.8 dB . SIZE $51 \mathrm{~mm} \times 51 \mathrm{~mm} \times 16.5 \mathrm{~mm}$. RECOMMENDED. 5 k 1st ORDER CROSSOVER, VALUE $1.5 u f-2.2 u f$ sup plied. $\quad \mathbf{E} 7.50$ pair plus $90 p$ post.

MAIL ORDER £1 BARGAIN PACKS BUY 20 GET 1 FREE
Please state pack(s) required

No. Qty. per pack

 BP017 $3{ }^{3} 3000$, F F 16 V dic. electrolvic high quality com puler grade UK made
BPO19 $\quad 20 \quad 20$ ceramic trimmers
BPP20 4 Tuning capacitors, 2 gang dielectric a.m. type BPI a.c. mode in USA
BP022 5 Push-button swiches. push on push off. 2 pole changeover. PC mount JAPAN made
BP024 2 pole 2 way rolary swich
pole, 3 way rotary switch UK made by 4 pole, 3 way rotary switch UK made by LORLIN
BP02S 43 pole. 3 way miniature rotary switch with one extra positlon off (open frame YaxLeY type) $\begin{array}{ll}\text { BP026 } \\ \text { BP027 } & \text { a pole, } 2 \text { way rotary } \\ \text { Mixed control knobs }\end{array}$
$\begin{array}{lll}\text { BP027 } & \text { M } & \text { Mixed control knobs } \\ \text { BP029 } & 6 & \text { Stereo rotary polentiometers }\end{array}$
BPO $30 \quad 2 \quad 10 \mathrm{k}$ wire wound double precision poten tiometers UK made
UHF varicap tuner heads. Uncoxed and Untested
UK made by PHILIPS
BP033 2 FM stereo decoder modutes with diagram UK made by PHILIPS
BP033A $4-6 x^{3}{ }^{3}$ High grade Ferrite rod. UK made
BPO34 3 AM IF modules with diagram PHILIPS UK BP034A 2
lerd
He-Fi stereo pre-amp module inputs for CD tuner, tape, magnetic cartridye with diagram UK made by MULLARD
BP035 6 All metal co-axial aerial plugs
BP036 6 Fuse holders, panel mounting 20 mm typ
BP038 $20-5$ pin din, 180° chassis socket
BPO39 6 Double phono sockets. Paxolin mounted BPO4| $\quad 3 \quad 2 \mathrm{Bm}$ lenghts of 3 core 5 amp mains flex BP042 2 Large VU meters JAPAN made
$\begin{array}{ll}\text { BPO43 } & 30 \\ \text { BPO44 } & \text { 4V miniature bulbs wire ended. new untested }\end{array}$ Sonotone stereo crystal cartidge with 78 and LP styli JAPAN made
BP04SA 2 Mono Cassette Record and play heads
BP046A 2606 Matns transformers, PCB mounting. Size $42 \times 33 \times 35$
BPO47A $1 \quad 25 \mathrm{~V}$ DC 150 mA mains adaptor in black plastic case with flying input and output leads new units made for famous sound mixer manulac-
turer. Size $80 \times 65 \times 47$
oc44 transistors. Remove
becomes a photo-electric cell (ORP 12). UK made by MULLARD
BPOSO 30 Low signat transistors n.p.n. p.n.p. types BPOS 1.614 watt output transistors 3 complimentary pairs in ro66 case. (Ndeal repracement for AD161 and 162 s)
BP0S2A 1 Tape deck pre-amp ic with record/replay BP053 55 watt audio ICs. No TBA800 (ATEZ) $\begin{array}{lll}\text { BP053 } & 5 & 5 \text { watt audio ICs. No TBA800 (ATEZ) } \\ \text { BP054 } & 10 & \text { Motor speed control ICs. as used with }\end{array}$
BP054 10 Motor speed control ICs. as used with most casgital DVM meter I.C made by PLESSEY as used by THANDAR with diagram
BP056 $4 \quad 7$ segment 0.3 LED display (red)
BP057 8 Bradge rectifiers. 1 amp, 24V
BP058 200 Assorted carbon resistors
BP059 1 Power supply PCB with $30 \mathrm{~V} 4 \mathrm{~V} / \mathrm{A}$ iransformer MC7818CT IC \& bridge rectifier Size 4^{-3}
BP061
BP063
BP064 ${ }_{6.35 \mathrm{~mm}}{ }^{23}$ 6.35 mm Mono jack plugs
$\begin{array}{lll}\text { BPPO64 } & 12 & \text { Coax chassis mount sockets }\end{array}$ BP065 il Coax chassis mount sockets Postage £ 3 per order
ROADSTAR OF SWITZERLAND. QUALITY 13 cm 40 watt CAR SPEAKERS. Fitted with dual polypropylene cone and foam rubber surround Large 70 mm magnet for good bass and treble response. Supplied complete with grills, fixing response. Supplied
screws and cable.

OFFER PRICE $£ 11.70$ pair
They welgh nearly 1.5 kg . Postage $£ 3.15$ each
2 pairs for £22 POST PAID UK ONLY UNDER $1 / 2$ PRICE OFFER

AUSTIN ROVER MINI MAYFAIR. 15 watt POD SPEAKERS. Moulded in a black housing for vertical or horizontal use. Fitted with a good mains 10 cm speaker.

£4.95 palr plus £3 pp or

2 pairs for $£ 10.50$ post paid UK only
BSR STEREO RECORD PLAYER DECK Manual auto operation, 3 speed $\left(78,45,33^{h}\right), 240 \mathrm{~V}$ opertion. unused but store soiled
10.50 ea p\&p $3.75 \quad 2$ for £18.00 p\&p E3.75

RADIO AND TV COMPONENTS ACTON LTD 323 EDGWARE ROAD LONDON W21BN Mall ORDER RERMS. POSTAL ORDEESS and or CHE EUU S with orders

Phone 0717238432 or 0819928430
miturn iont im woisw chew

125 watt per channel stereo power amplifier with indeendent volume controls, professional 19 "rack mount and ilent running cooling fan for extra reliability Output power
Output impedance.
per channel
Sensitivity (max power into 4 ohms)

Protection
Power-
Chassis dim 450 V at 22 K ohms
assis dim ort-circuit and fuses
$220-240 \mathrm{~V}$ a.c. 50 Hz $435 \times 125 \times 280 \mathrm{~mm}$
$\mathrm{E} 170+£ 7.00 \mathrm{pp}$

$30+30$ WATT AMPLIFIER KIT

An easy to build amplifier with a good specifica tion. All the components are mounted on the tion. All the components are mounted on the
single PCB which is already punched and backrinted.

- $30 \mathrm{~W} \times 2$ (DIN 4 ohm)
- CD/Aux, tape I, tape II, tuner and phono in puts.
Separate treble and bass
- Headphone jack

Size (H.W.D.) $74 \times 400 \times 195 \mathrm{~mm}$.
Kit enciosed: case. PCB, all components, scale and knobs $£ 40.00+£ 3.50 \mathrm{pp}$.
(Featured project in Everyday Electronics, April 1989 issue). Reprint Free with kit.

MULTIBAND RADIO

VHF $54-176 \mathrm{MHz}_{2}+$ AM CB BANDS $1-80$
Listen to: AIR TRAFFIC CONTROL $\mathbf{£ 1 7 . 9 5}$ AIRCRAFT, RADAR, POSTAGE RADIO AMATEURS AND £2.85 MANY MANY MORE

SQUELCH CONTROL
AERIAL
ROSS PUSH BUTTON RADIO Mains and batirny operated
Mains and bationy
High qually VHF/FM.
Medlum and Long Wave
6 push bunon selected
preser stations.
Fully retractable telescopic
erial
Headphcre/earphone
ack socket.
Size $230 \mathrm{H} \times 150 \mathrm{~W} \times 65 \mathrm{D}$
ef. RE-5500
Listed price over $\mathbf{5 3 0}, 00$
OFFERE15.00

+ ¢ 2.80 pp

VIDEO SENDER

With this handy unit you can transmit the output of your home video, video camera or satelite equipment over-the-air to a receiving televi sion within a range of 100 ft . Simply connect the video and audio output of your equlpment into this unit and a $10-13.8 \mathrm{~V}$ dc power supply extra 83.75 size $122 \times 70 \times 21 \mathrm{~mm}$
$\mathrm{f} 11.50+\mathrm{f} 2 \mathrm{pp}$

VHF RADIO TRANSMITTERS

100 mW mini bug. Built on a neat little fibre glass pcb with condenser mic. Fully tunable over the FM band. 9V DC
$\mathbf{£ 5 . 7 5}+\mathbf{~} 0.90 \mathrm{pp}$ 2 Watt transmitter kit, supplied with fibre glass pcb, all components, diagrams, ready for you to build. 12-24V DC $\quad \mathbf{7 . 5 0}+\boldsymbol{6 0} 70$ DD
25 Watt Transmitter kit. Fully tuneable over the FM band. Kit comprises double sided pcb diaFM band. Kit comprises double sided pcb diaSupply voltage $12-18 \mathrm{~V} D \mathrm{CC}$. $£ 67+£ 1 \mathrm{pp}$ Transmitrers listed on this page are not licensable in the UK.

SPECIAL OFFER

DTMF TONE DIALLER
Suitable tor remote control of telephone answering
machines, videos, appliances
 etc. requiring DTMF signals over telephone lines.
Mease add 750 p 80 when ordeung

Please add 2.2% to all our prices due to the increase of the VAT rate to 17.5%

SURUBIITANCE PREDFRSSICDNA, ODAMATY KITKS

NO』 ! for Kits

Whether your requirement for surveillance equipment is amateur, professional or you are just fascinated by this unique area of electronics SUMA DESIGNS has a kit to fit the bill. We have been designing electronic surveillance equipment for over 12 years and you can be sure that all of our kits are very well tried, tested and proven and come complete with full instructions, circuit diagrams, assembly details and all high quality components including fibreglass PCB. Unless otherwise stated all transmitters are tuneable and can be received on an ordinary VHF FM radio.

UTX Ulitra-miniature Room Iransmitter
Smallest room transmitter kit in the worid! Incredible $10 \mathrm{~mm} \times 20 \mathrm{~mm}$ including mic. 3-
12 V operation. 500 m range.
. 116.45
MTX Micro-miniature Room Transmitter
Best-selling micro-miniature Room Transmitter
Just $17 \mathrm{~mm} \times 17 \mathrm{~mm}$ Including mic. $3-12 \mathrm{~V}$ operation. 1000 m range
. $£ 13.45$
STX High-performance Hoom Transmitter
Hi performance transmitter with a buffered outputstage for greater stability and range Measures $22 \mathrm{~mm} \times 22 \mathrm{~mm}$ including mic. $6-12 \mathrm{~V}$ operation, 1500 m range $£ 15.45$
VT500 Migh-power hoom Iransmitter
Powerful 250 mW output providing excellent range and performance. Slze $20 \mathrm{~mm} \times$ $40 \mathrm{~mm} .9-12 \mathrm{~V}$ operation. 3000 m range .
... $£ 16.45$

VXT Volce Activated Transmitter

Triggers only when sounds are detected. Very low standby currènt. Variable sensitivity and delay with LED indicator. Size $20 \mathrm{~mm} \times 67 \mathrm{~mm}$. 9 V operation. 1000 m range... $\$ 19.45$

IVX400 Malns Powered Room Transmitter

Connects directly to 240 V AC supply for long-term monitoring. Size $30 \mathrm{~mm} \times 35 \mathrm{~mm}$. 500 m range
. $\$ 19.45$
SCRX Subcemier Scrambled Room Transmitter
Scrambled output from this transmitter cannot be monitored without the SCDM decoder connected to the receiver. Size $20 \mathrm{~mm} \times 67 \mathrm{~mm}$. 9 V operation. 1000 m range... SCLX Subcarrier Telephone Transmitter
Connects to telephone line anywhere, requires no batteries. Output scrambled so requires-SCDM connected to receiver. Size $32 \mathrm{~mm} \times 37 \mathrm{~mm}: 1000 \mathrm{~m}$ range........... $£ 23.95$
SCDM Subcarier Decoder Unh tor SCRX
Connects to receiver earphone socket and provides decoded audio output to headphones. Size $32 \mathrm{~mm} \times 70 \mathrm{~mm}$. $9-12 \mathrm{~V}$ operation.
.......................................
. 22.95
ATR2 Micro Sire Telephone Recording Interface
Connects between telephone line (anywhere) and cassette recorder. Switches tape automatically as phone is used. All conversations recorded. Size $16 \mathrm{~mm} \times 32 \mathrm{~mm}$. Powered from line
. 13.45

DMDMORX Ratlo Control Switch

Remote control anything around your home or garden, outside lights, alarms, paging system etc. System consists of a small VHF transmitter with digital encoder and receiver unit with decoder and relay output, momentary or alternate, 8 -way dill switches on both boards set your own unique security code. TX size $45 \mathrm{~mm} \times 45 \mathrm{~mm}$. RX size $35 \mathrm{~mm} x$ 90 mm . Both 9 V operation. Range up to 200 m .
Complete System (2 kits) .550 .95
Individual Transmitter OLTX
Indhidual Receiver DLRX..
. 19.95
Max-1 Mi-fi Micro Broudcaster
Not technically a surveillance device but a great ideal Connects to the headphone output of your Hi-Fi, tape or CO and transmits Hi-FI quality to a nearty radio. Listen to your favourite music anywhere around the house, garden, in the bath or in the garage and you don't have to put up with the OJ's choice and boring waffle. Size $27 \mathrm{~mm} \times 60 \mathrm{~mm}$. 9 V operation. 250 m range.
. $£ 20.95$

UILX Ultra-miniature Telephone Transmitter

Smallest telephone transmitter kit available. Incredible size of $1 \mathrm{~mm} \times 20 \mathrm{mml}$ Connects to line (anywhere) and switches on and off with phone use. All conversation transmitted. Powered from line. 500 m range.
. $£ 15.95$
TUX700 Micro-mialature Telephone Iransmitter
Best-selling telephone transmitter. Being $20 \mathrm{~mm} \times 20 \mathrm{~mm}$ it is easier to assemble than UTLX. Connects to line (anywhere) and switches on and off with phone use. All conversations transmitted. Powered from line. 1000 m range \qquad . . 13.45

STLX High-periormance Telephone Transmitter

High performance transmitter with buffered output stage providing excellent stablity and performance. Connects to line (anywhere) and switches on and off with phone use. All conversations transmitted. Powered from line. Size $22 \mathrm{~mm} \times 22 \mathrm{~mm}$.
1500 m range.
....... 116.45
TKXX900 SIgnaliing/Tracking Transmitter
Transmits a continous stream of audio pulses with variable tone and rate. Ideal for slgnalling or tracking purposes. High power output giving' range up to 3000 m . Size $25 \mathrm{~mm} \times 63 \mathrm{~mm}$. 9 V operation...
. 122.95

CD400 Pocket Bug Detector/Locator

LED and piezo bleeper pulse slowly, rate of pulse and pitch of tome increase as you approach signal. Gain control allows pinpointing of source. Size $45 \mathrm{~mm} \times 54 \mathrm{~mm}$. 9 V operation
...... $£ 30.95$

C0s00 Prolessional Bug Detector/ ocator

Multicolour readout of signal strength with variable rate bleeper and variable sensitivity used to detect and locate hidden transmitters. Switch to AUDID CDNFORM mode to distinguish between localised bug transmission and normal legltimate signals such as pagers, cellular, taxls etc. Size $70 \mathrm{~mm} \times 100 \mathrm{~mm}$. 9 V operation \qquad . 550.95

QTX180 Crystal Controlled Room Iransmitter

Narrow band FM transmitter for the ultimafe in privacy. Operates on 180 MHz and requires the use of a scanner receiver or our QRX180 kit (see catlogue). Size $20 \mathrm{~mm} \times$ 67 mm .9 V operation. 1000 m range. \qquad
OLX180 Crystal Cointroliod Telephone Transmitter
As per QTX180 but connects to telephone line to monitor both sides of conversations. $20 \mathrm{~mm} \times 67 \mathrm{~mm}$. 9 V operation. 1000 m range.

QS $\times 180$ LIne Powered Crystal Controiled Phone Transmitter

As per QLX180 but draws power requirements from line. No batteries required. Size $32 \mathrm{~mm} \times 37 \mathrm{~mm}$. Range 500 m ..

QRX180 Crystal Controlled FM Receiver

For monitoring any of the 'Q' range transmitters. High sensitivity unit. All RF section supplied as a pre-built and aligned module ready to connect on board so no difficulty setting up. Outpl to headphones. $60 \mathrm{~mm} \times 75 \mathrm{~mm}$. 9 V operation \qquad . $£ 60.95$

A build-up service is avallable on all our kits if required.

UK customers please send cheques, POs or registered cash. Please add £1.50 per prder for P\&P. Goods despatched ASAP allowing for cheque clearance. Overseas customers send sterling bank draft and add $£ 5.00$ per order for shipment. Credit card orders welcomed on 0827714476.
> our latest catalogue containing many more mew SURVEILLANCE KITS NOW AVAILABLE. SEND TWO FIRST CLASS STAMPS OR OVERSEAS SEND TWO IRCS.

DEPT. EE
SUMA
DESICNS

> The Workshops, 95 Main Road,
> Baxterley. Near Atherstone,
> Warwickshire CV9 2LE

0827714476

ADDING WITH AMPLIFIERS

cRCuITS tend to get associated with particular applications. So much so that it's easy to overlook the possibility of using a "standard" circuit for some nonstandard task.

MICROPHONE MIXER

A case in point is the circuit commonly used in audio systems for mixing inputs from several sources - microphones, for

Fig. 1. Adding voltages with the aid of a feedback amplifier.
example. Reduced to its essentials (omitting irrelevant details such as coupling capacitors) this boils down to Fig. 1. Here V_{1} and V_{2} are inputs (from two microphones or whatever).

If $\mathbf{R 1}=\mathbf{R 2}=\mathbf{R 3}$, the output voltage ($V_{\text {out }}$) is the sum of the input voltages (V_{1} and V_{2}), but with polarity inversion. Or, rather it's very nearly the sum. In practice, it is very slightly less, because exact summing is obtained only if the amplifier's gain is infinite.

NEGATIVE FEEDBACK

Infinite gain seems to imply infinite amplification, but the gain is reduced (to 1 in the present case) by negative feedback. With the signal polarities shown. signal current flows as the arrows indicate (I_{1} and I_{2}). These input currents flow into point X. Now, if currents flow into something there is a build up of electric
charge, producing a build-up of voltage. However, in the present case feedback from the (inverted) output causes a current I_{3} to flow out of point X. This removes charge and so tends to counteract the build-up of voltage.

If the counterraction were totally effective there would be nothing left at point X, and since point X is the true input to A1 there would be no input voltage and so no output. What happens in practice is that the feed-back cancels as much of the input as it can. What's left is amplified to give a reduced output.

If the true (inner) amplification of A 1 is 1000 and $V_{\text {out }}$ is 1 V then V_{x} (the voltage at X) must be 1 mV . So the voltage at X may be very much less than V_{1} or V_{2}. Suppose V_{1} is 1 V and V_{2} is zero. Then the whole of $V_{\text {out }}$ must be the result of V_{1}. If $V_{1}=1 \mathrm{~V}$ the signal voltage across $R 1$ is the difference between $V_{1}(1 \mathrm{~V})$ and V_{x} $(1 \mathrm{mV})$. This is 999 mV , which is so close to V_{1} that the signal current driven by V_{1} is almost identical to $V_{1} / R 1$. By the same token, the feedback current driven by $\mathrm{V}_{\text {out }}$ through $R 3$ is very nearly $V_{\text {out }} / R 3$.

SCALING FACTOR

The upshot of all this is that the input current can be said (with very small error) to be $V_{1} / R 1$ and feed-back current to be $V_{\text {out }} / R 3$. These currents have opposite effect on the charge at point X and very nearly cancel it. It is therefore almost true to say that they are equal.

If we do say so, as a reasonable approximation, then the feed-back current equals the input current. The voltage at X being (nearly) zero, we can say (with very good approximation) that $V_{\text {out }} / R 3=V_{1} / R 1$. If $R 3=R 1$ then $V_{\text {out }}$ must be the same as V_{1} (except for a voltage inversion, positive to negative). If R3 is different from R1 then $V_{\text {out }}$ is different from V_{1}. A bit of fiddling with numbers tells us that $V_{\text {out }} / V_{1}=R 3 / R 1$.

Since $V_{\text {out }} / V_{1}$ is the voltage gain to V_{1}. this means that if we want to amplify V_{1} by 5 all we need do is make R3 $=5$ R1, and so on. Better still, since the voltage at X is always going to be small compared with the inpui voltage, the current driven by V_{2} through $R 2$ isn't going to be affected much by V_{1}.

If V_{2} is not zero but 100 mV then the 1 mV at point X caused by V_{1} can only change the voltage across $R 2$ by 1 mV , so it can't ever be far from 99 mV . Once again, this is virtually the input voltage (V_{2} in this case) so I_{2} is always close to $V_{2} / R 2$ and is scarcely affected by V_{1}. This is just what's wanted from a microphone mixer, where the signal from one microphone ought not to alter the signal from another.

The output ($V_{\text {out }}$) is the sum of the in-
puts, each changed by a "scaling factor" R3/R1, or R3/R2. Different gains for different inputs can be set by placing appropriate resistors between input and X.

FINITE GAIN

Earlier on I glibly assumed that the gain is 1000 and the signal voltage at X is 1 mV . But what if the gain is other than 1000 ? All that happens is that V_{x} adapts itself to suit the new gain. For an internal amplifier gain of $100, V_{x}$ is $V_{\text {out }} / 100$, which for our input of 1 V means that V_{x} is 10 mV . If the internal gain of A, is 10,000 then V_{x} is 0.1 mV .

In all these cases V_{x} is sufficiently low to make our approximations reasonably accurate. If A1 rises they become even more accurate. Only if A1 falls to less than about 10 are they likely to lead to errors of more than a couple of decibels.

The mixer amplifier is not restricted to two inputs. Given a high gain A1, virtually any number of signals can be applied, each through an appropriate series resistance.

This kind of circuit is often called a virtual earth amplifier because the voltage at X is close to "earth" (zero) voltage. If's widely used in sound systems where its only major snag is noise. For good results when used as an input circuit A1 must be a low-noise amplifier. In practice designers may opt for a low-noise op.amp, with signals and feedback applied to the inverting input.

WAVEFORM ADDITION

This ability to add together input voltages has applications far beyond audio mixing. Recently I had need of a test oscillator capable of delivering sine waves and square waves. Its job was to provide test signals for an audio amplifier. Being far from home and friendly component suppliers I needed to make do with what was available. My stocks in fact amounted to a fair selection of passive components, some transistors and a few simple CMOS chips.

Getting square waves was easy. A simple free-running relaxation oscillator (Fig. 2) made from two inverters (A1, A2) gave a squarish output which could be tidied up by a third inverter (A3) to give reasonable square waves. But what about sine waves? If triangular waves could be obtained (Fig. 3a) their peaks might be crushed by making them overload an amplifier to give an approximation to sine waves (Fig. 3b).

It is quite possible to convert square waves to isoscles triangles by passing them through an integrator circuit. However, as the frequency rises the amplitude falls. What I wanted was waves of constant amplitude.

[E 536180

Fig. 3. Making a "sine wave" from a triangular wave.

SUBTRACTION

After fiddling around and getting nowhere it dawned on me that the answer had been staring at me all along from the face of my 'scope. The waveform $\left(V_{1}\right)$ at the input to A1 can be read as the sum of a distorted triangular wave $\left(V_{3}\right)$ and a square wave $\left(\mathrm{V}_{4}\right)$. To separate the triangular wave all that is needed is to subtract the square wave from V_{1}. Subtraction can be turned into addition by first inverting what you want to subtract.
I had plenty of inverters (six on a 4069. of which l'd only used three for the oscillator). In fact, A3 was already performing the necessary inversion. All I had to do was apply V_{1} and V_{2} to a virtual earth mixer, through suitable scaling resistances, to obtain V_{3}, then crush it.

SERENDIPITY

In fact, what I got after a bit more fiddling was waveform (3c). This is fairly like a sine wave except for pips at the peaks, caused by stray coupling of energy from the edges of the square waves. In theory the pips, being made up of high harmonics could be attenuated with a low-pass filter. After thinking how to arrange it I decided not to bother. Fortunately!
After passing through the amplifier under test, waveform (3c) emerged with pips which had become enlarged into hefty spikes. This indicated a fault; the response of the amplifier was peaking at high frequencies, causing distortion of transients. Which all goes to justify the lazy person's proverb: If a thing's worth doing it's worth doing badly!

SHOP ImTALK
 with David Barrington

Audio Trends

Claiming a price breakthrough for a true sub-woofer loudspeaker line-up, B.K. Electronics have just marketed the SubWoofer Satellite System from Studio Power.
Targeted towards the customer who would normally choose a small pair of traditional loudspeakers, the Studio Power system consists of two "satellite" units and one bass "bin" and costs just $£ 129$ complete. All three units are finished in grey metallic.

The bass bin contains two bass units in a push/pull arrangement, which, it is claimed, gives a non-directional sub-bass sound and may be hidden behind the sofa, curtains or under the coffee table.

The two main enclosures or satellites each contain a 1 in . tweeter and a 3 in mid-range speaker. The system's power handling is 60 W p.m.s. (90 W peak music power).

The Sub-Woofer Satellite System is priced at $£ 129$ (including VAT) plus £6 postage and is available from B.K. Electronics, Dept EE, Unit $1 / 5$, Comet Way. Southend-on-Sea, Essex SS2 6TR. (0702 527572).

Christmas Decoration - Simple

 Model SeriesThe melody i.c. UM66 is available in four versions with differing melodies, ranging from Christmas Carols to Elvis. The one used in the Christmas Decoration, this month's Simple Model Series project, is of course the Carols version and is designated Type 1 (UM66-1).

The circuit "board". Santa, sleigh and reindeer is built up on printed white card, which can be obtained from the EE Editorial Offices for the sum of $£ 1.50$ (including postage). The wiring up of the circuit card is accomplished by the use of the Vero Easiwire "no soldering" wirewrapping system.

To help with assembly special arrangements have been made with Bull Electri cal (0273 203500) and Greenweld Electronic Components (t) 0703236363) to supply a complete kit, including cards, for the sum of $£ 4.95$ plus £1 postage fee. - See Special Offer page 790.

Auto Nightlight

The only item required for the Auto Nightlight that requires special comment is the mains transformer. As this has to sit directly on the printed circuit board
(p.c.b.) the spacing and "circuit" configuration of the transformer's pins is critical.

The 0-9V, 0-9V 6 VA transformer used in the prototype was purchased from Maplin code YJ53H. This has a metric pitch although the rest of the p.c.b. is designed around a 0.1 in pitch.

The plastic case is the Verobox 212 and is currently listed, money with order, by Verospeed (0703 644555), code 75-1238D and Maplin, code LL09K. Other cases can be used, but, as mains is present on the circuit board, it is essential that the two halves of any chosen case can be secured together so that it is impossible to gain access to the interior without the use of a suitable tool.
The printed circuit board for the Auto Nightlight is obtainable from the EE PCB Service, code EE779. For added safety, it would be wise to cover the mains carrying copper tracks with insulation tape.

Signal Generator

To obtain the best performance from the Signal Generator its a case of purchasing the best quality components you can afford, for instance use one per cent tolerance wherever possible. However the best you can hope to achieve with electrolytic capacitors is about ± 20 per cent.

This throws up one particular problem in that the frequency sweep control VR2 must have a large electrical rotation to give a reasonable spread at each end of the front panel scale. The one used in the model has a claimed electrical rotation of 340 degrees.

This control is from the Colvern one watt conductive plastic range and carries the code CP16/001/22. The figure 22 designates the length of spindle. The potentiometer was purchased from Farnell Electronic Components (0532 636311), order code CP1601/22-10k.

It is important that the 741 S op. amp be used in this circuit. The S-designated 741 has an improved slew rate and fullpower bandwidth. To date, the only listing we have been able to find is from Electromail, coded 305-995. It is about eight times as expensive as the standard 741.

The 6VA mains transformer is the Electromail (-0536 204555) type 196-303. The two printed circuit boards are available from the EE PCB Service, codes EE776 (Main board) and EE777 (PSU) respectively.

Knockerbox

One or two problems have come to light when sourcing components for the Knockerbox project. Most of them are only minor and are not likely to cause too much concern.

Having said that suitably powerful 12 V solenoids seem to be few and far between and will, as mentioned, be mostly governed by the amount of power/force required to activate your door knocker. The one used in the model is an RS type (code 349-709) and has a claimed coil power of 10W.

The solenoid can be ordered through any bona fide RS stockist or obtained direct from Electromail (0536 204555), their mail order operation. Other types can be used and it might be worth checking through the new season of catalogues, particularly in the "Bargain" listings section.

The metal frame of this solenoid has M4 tapped fixing holes which allows the metal tab of the power transistor to be bolted to it. The frame then acts as a heatsink.

The 2046 opto-isolator (code 307-979) was also purchased from the same company, but will only be available while stocks last. This is not a problem as it is a general purpose device and most of our advertisers will be able to supply a suitable transistor opto-isolator.

The isolator is a 6 -pin d.i.l. device and sits in an 8 -pin i.c. socket on the board. Two things to note here is that only six mounting holes have been provided for the i.c. socket and the opto device must sit in the bottom pins of the holder. Pins one and eight of the holder should be snipped off or splayed out clear of the board.

Because of the power requirements of this circuit, particularly the solenoid, it is important to use a 30VA mains transformer. The 500 k preset potentiometer specified for VR2 seems to be in very short supply and may prove difficult to locate. However, the more common value of 470 k should work quite comfortably in this circuit.

Due to the presence of mains voltages, it is essential that a metal case be used and that it is Earthed as indicated. The printed circuit board is available from the EE PCB Service, code EE775 (see page 824)

Mind Machine

Looking down the components list for the Mind Machine, only two components stand out as devices that will cause local sourcing problems. These are the 5 V voltage regulators and the programmable CMOS crystal clock oscillator.

These are both RS components and are available through Electromail. The LP2950CZ micropower regulator is coded 648-567 and the EXO-3C programmable crystal cock oscillator is coded 647-075, this is the required 12 MHz version.

The printed circuit board for the Mind Machine is available from the EE PCB Service, code EE778. See page 824. Finally, please pay special attention to the warning note at the start of the article.

\rightarrow

AL 12580-125W AMPLIFIER

A rugged, high powered module that is ideal for
use in discos \& P.A. Systems where powers of up $0125 \mathrm{~W}, 4$ ohms are required. The heavy duty output transistors ensure stable and reliable performance. It is currently supplled to a large number of equlpment manulacturers where rellabillty and periformance are the main considerations, whilst for others tis low price Is the major factor. Operating from a supply voltage of 40-80V into loads from 4.16 ohms.
AL 2550-COMPACT LOW-COST 25W AMPLIFIER One of our most popular audio modules with tens of thousands installed, Ideal for domestic applications where low distortion and compact size are requirements. Used with supply the prime requirements. Used with supply SUPPLIED

MM 100-BUDGET 3-INPUT MIXER
With a host of features including 3 individual level controls, a master volume and separate bass and treble control, it provides for Inputs for microphone magnetic pick-up and tape, or second pick-up (selectable), and yet costs considerably less than competitive units. This module is ideal for discos and public address units and operates from $45 \mathrm{~V}-70 \mathrm{~V}$

MM 100G

As MM 100 with two guitar +1 microphone input intended for guitar amplifier applications.
817.49

** SECURITY $\star \star$

MINIATURE PASSIVE INFRA-RED SENSOR-RP33 Switchable Dual range, detects intruders up to 6 or 12 metres R17.95 Nealy This advanced sensor operates by detecting the body
heat of an intruder moving within the detection field Slow ambient changes such as radiators, etc. are reliable operation from a 12 V supply, it is ideal for use ith the CA 1382 or equivalent high quality control unit. Size $80 \times 60 \times 40 \mathrm{~mm}$
DIGITAL ULTRASONIC DETECTOR-US 5063
Crystal controlled movement detection module operatin £14.93 Sultable for with an effective range up to 20 . Sultable for operation in household or vehicle securlty systems. 12 V operation and
ADVANCED CONTROL UNIT-CA 1382

- Auromatic Loop Test When Switched On - Audible Entry/Exit Warning Buzzer - Two Separare Looo Inpuis +24 -hr Circuits - Easily installed Full Instructions Supplied This advanced control panel provides eflective and reliable control for all security installations, yef its operatlon is sheer simplicity for all members of the

ع44.95 - VAT se with is supplied with two keys. Housed in a steel woulded front panel, it compares

LOW-COST CONTROL UNIT-CA 1250
This tried and tested control unil provides the finest value for money in control systems, with many thousands protecting houses all over the country A suitable steel enclosure is avallable separately.
50FT INFRA-RED BEAM-IR1470 The iR1470 consists of a separate transmitter and recelver providing a beam of up to 50 tt which. hen in

FULL RANGE OF SECURITY ACCESSORIES STOCKED PROVIDING EVERYTHING YOU NEED TO PROTECT YOUR HOME

SENDORTELEPHONE FOR FREE LITERATURE

Dept EE12, 51 POPPY ROAD
 PRINCES RISBOROUGH

BUCKS HP179DB
TEL: (084 44) 6326 FAX: (084 44) 7102
Callersby apointmen Cl
n_{154}

Learn to relax with this sophisticateo programmable Entrainment unit.

|
N THE Brainwave project (Sept '91), the design of a simple mind "entrainment" project was given, and the principles of this relaxation technique were described. Although an effective first project for newcomers to this field, the unit was very simple, and a far more sophisticated instrument can be built.
The next two articles in this series will cover the construction of an advanced version of the Brainwave unit. The Mind Machine combines "photic stimulation" and "binaural" sound, and has the optional facility of a programmer so that users can experiment with various sequences.
Photic stimulation, the flashing of lights in the user's eyes at the desired brainwave frequency, is the most effective entrainment method. Sound is the next most popular, various types of noise being available from instruments sold in the States.

White or pink noise is common, modulated in time with the lights, but the designer tried this and found it irritating! Plain synthesized "surf" sound is better.

HEMI-SYNC

The most effective sound is undoubtedly that termed "Hemi-sync" or "Binaural" This consists of two audio tones, nominally about 400 Hz , but differing by the entrainment frequency in use. For instance, for "Alpha", the lights might flash at 11 Hz with one tone at 400 Hz , whilst the other would be 11 Hz lower at 389 Hz .

Played together through loudspeakers these tones would produce the familiar "beat note" but, played one to each ear
with headphones, the effect is different. It is perceived as a sort of bell-like tone, not at all unpleasant or monotonous as might be expected.

Meanwhile, the theory is that, in synthesizing the "beat note" internally, the brain rapidly settles into it's own internal rhythms at the same frequency. It has also been suggested that this technique encourages synchronisation between the brain's two hemispheres.

The author's personal experience is that, whilst not as powerful as light stimulation, such sound has a useful enhancing effect when synchronised and combined with it.

CLOCK
 OSCILLATOR/ DIVIDER

At first sight, it seems all that is necessary to create the tones is a pair of audio oscillators. In practice this isn't so, because at such close frequencies they tend to "pull" together, becoming unstable, and precise and repeatable control of the frequency difference is very difficult.

After some fruitless attempts with phaselocked loops, a simple and effective circuit was devised however. A single high frequency "clock" oscillator drives two dividers. One simply provides a fixed audio frequency, but the other blocks it's own input briefly each time the output changes state, so the end frequency is a fraction lower.
This technique avoids the "pulling" and instability inherent in the use of two oscillators. The only snag is that a high clock frequency is necessary for reasonably
smooth output control. For example, if the output is 400 Hz and the clock is blocked once per cycle, for adjustment steps of 1 Hz the clock must be 160 kHz .
In practice better resolution than this is desirable and a clock in excess of a megahertz is needed. This caused difficulties as this part of the circuit operates from a five volt supply and most simple oscillator circuits proved unreliable at this frequency and voltage.
The solution came in the form of a CMOS crystal oscillator-divider type EXO3C. Intended for five volt supplies, this can produce a precise 1.5 MHz signal. Supplied in an 8-pin d.i.l. package, it needs no external components other than a 100 n decoupling capacitor.

CIRCUIT DESCRIPTION

In the complete circuit diagram of the Mind Machine, Fig. 1, ICl is the clock oscillator. IC2 divides it by 4096 to give an output of 366 Hz , close to the desired 400 Hz . The clock output also goes to the second divider IC4 through resistor R5, and so can be gated by pulling low
Voltage control of the gating period was needed for later use with a programmer. This is achieved with dual comparator IC3, which operates as follows.

The output of each comparator in IC3 is an open-collector transistor, not a bi-directional source like an op-amp. When an inverting input of one of these is higher than the non-inverting, the output can sink a current to ground, pulling any voltage present low. When the inverting input is lower, the output is effectively open-circuit. A signal for this part of the circuit is taken from pin 15 of divider 1C4, one stage before the output pin 1 .

WARNING NOTICE

Photic stimulation at Alpha frequencies can cause seizures in persons suffering from Epilepsy. For this reason such people MUST NOT try this project.

A user who is not a known epileptic, but when using the "Mind Machine" begins to experience an odd smell, sound or other unexplained effect, should turn it off immediately and seek professional medical advice.

Because of the above possibility the Mind Machine should not be used while on your own.

YOU MUST TREAT THIS UNIT WITH DUE RESPECT.

The non-inverting input to IC3b is held at half the supply voltage. Whilst the inverting input is low, the output will be open circuit so the divider will be clocked. When the signal from IC4 pin 15 goes high, IC 3 ''s output will block the clock by pulling it low.
At the same time, the high signal from IC4 charges capacitor C2. When the voltage across this exceeds the control voltage applied to the input at " B ", IC3a's output will pull the input to IC3b low again and the clock will continue. Thus, the higher the control voltage, the longer each break in the clock, so the higher the difference between the output frequencies from IC2 and IC4.
Most readers will know that a square-
wave signal sounds horrible! As the project is intended to promote relaxation, the divider outputs are shaped into almost pure sine-waves by two third-order filters constructed around IC7.

QUTPUT AMPLIFIER

The choice of output amplifier was unusually critical with this project. A pure sinewave of fairly low frequency sounds relatively quiet, so reasonable output power is needed
However, the least bit of distortion or noise is far more obtrusive and annoying than with music or speech. This means that excellent quality is needed in these stages,

COMPONEVITS

Resistors
R1, R27, R36, R38, R47
100k (5 off)
R2, R3, R4, R20
R5, R6, R17, R21, R22, R24
R25, R28, R29, R39, R40, R49 R7
R8, R9
R10, R11
R12, R13
R14
R15
R16, R35, R46
R18
R19
R23, R26
R30, R31, R41, R42
R32, R33, R43, R44
R34, R45
R37, R48
R50
All 0.6W 1\% metal film
Potentiometérs
VR1, VR3
VR2
VR4
22k (4 off)
10k (12 off) 8k2
3 kg (2 off)
15k (2 off)
1.20k (2 off)

56k
47k
33k (3 off)
680k
4k7
22 (2 off)
39 k (4 off)
270k (4 off)
150k (2 off)
10 (2 off)
1 ks

10k rotary carbon, log
10 k dual (stereo)-ganged rotary carbon, log
1.0k rotary carbon, lin.

Capacitors
C1, C3, C4, C5, C6, C8, C9, C10.
C13, C18, C21, C26, C28, C29
${ }^{C} 2$
C7
C11, C12, C19, C20
C14, C15, C16, C22, C23, C24
C17. C25, C30
C27
Semiconductors
D1, D2
TR1, TR3
TR2, TR4
IC1
IC2, IC4
IC3
IC5
iC6
IC7
IC8, IC9
IC10
Miscellaneous
S1
S2
SK1
SK2 Plastic case with aluminium front and rear panels, Vero 202-21035F, size $205 \mathrm{~mm} \times$ $140 \mathrm{~mm} \times 75 \mathrm{~mm} ; 8$-pin di.i.t socket (4 off); 14 -pin d.i.1. socket (${ }^{2} \mathrm{off}$); 16 -pin d.i.l. socket (2 off); 3-pin in in : swimming goggles for "glasses"; control knobs (4 off); 8 -cell battery holder and off); swimming goggles for giasses ; contron
batteries: "Walkman" type miniature headphones, without headband; connecting wire; solder etc.

Printed circuit board available from the EE PCB Service, code EE778.
and several apparently suitable stereo amplifier chips failed to satisfy. They just did not sound "clean" enough.
The LM386 gave the best results, the only problem being that two separate amplifiers, each with a number of electrolytics, are needed. Even these needed a measure of output damping to remove the last traces of noise.
An auxiliary input is included for users who wish to experiment with the mixing injection of other sounds such as surf, pink noise, soft music or possibly even a selfhypnotic tape!

L.E.D.DRIVER

The signal for the l.e.d. drivers is derived from the two divider outputs. Although it would appear possible to extract it digitally, in practice this causes unacceptable "jitter", so an EX-OR gate, IC5b, followed by a third-order filter stage IC6a, is used.

During testing, some headphones used proved to be connected in anti-phase! Because of this, and to allow for experimenting with the phase of the lamps relative to the sound, Phase switch SI was included Closing it inverts the phase.
The output from filter IC6a is a triangle wave of reasonable linearity. As explained in September's Brainwave article, the l.e.d.s should be driven with a duty cycle of about 25 per cent "on" time, as this allows them to be overdriven to increase brilliance.
In this circuit the required duty cycle is obtained by switching at the appropriate points of the triangle wave. In fact, the positive section of the input signal turns the l.e.d.s "off".

As with the Brainwave circuit, the l.e.d.s are normally "on", their brilliance being set by the " \log " law potentiometer VR1. The signal from IC5d passes through diodes D1 and D2 to force the IC6c and IC6d inverting inputs high, causing their outputs to go low and turn off the lights. A small amount of positive feedback is provided through resistor R18 to ensure clean switching.
There is one difference in the output stages from those of the previous design, this being the inclusion of an extra transistor in each. If the glasses are unplugged from the Brainwave, the op-amps will see an error in the sensed output current, and will force base current into the output transistors in an effort to correct the situation. The only limit to this current is the op-amp output current limiting circuitry.

Whilst not a serious problem, it was decided to eliminate it in this design. If the glasses are unplugged with this circuit, the op-amps will still try to correct or compensate, but the base currents will be limited by the 10 k resistors R21 and R24. The current that can be supplied through these two resistors will not be enough to operate the l.e.d. driving transistors directly though, so the inclusion of transistors TR2 and TR4 overcome this.

POWER SUPPLY

A 12 V battery supply allows the use of three l.e.d.s for each eye. A large decoupling capacitor, C27, reduces the likelihood of heavy l.e.d. currents causing unwanted noises in the audio output, whilst IC10 supplies a 5 V regulated rail for everything except the l.e.d.s.
The regulator specified is a micropower type with greater accuracy and a lower "drop-out" voltage than the standard 78 series.

CONSTRUCTION

Most of the components of this project are mounted on a single printed circuit board, construction of which should present no special problems. This board is available from the $E E P C B$ Service, code EE778.

The component layout and full size copper foil master pattern is shown in Fig. 2. There is a single wire link to fit, after which the components should be fitted in order of physical height.
With the exception of IC1O, d.i.I. sockets are strongly recommended for all i.c.s, the insertion of which should be left until testing is carried out. IClO should be the last soldered component to be fitted, as it is a CMOS device and this will keep the risk of static damage to a minimum.
The polyester capacitors should all be of the silver-coloured miniature layer type, which should fit correctly onto the board. Take care with the polarity of the electrolytics and diodes, and with transistor types since two are npn and two pnp.
Most of the resistors are mounted horizontally, but a few are vertical to suit the layout and keep the board size to a minimum. Solder pins are recommended for external connections as these make testing and wiring easier.

The Mind Machine p.c.b.

TESTING

A board of this complexity should be tested in logical steps. Fortunately, this project's circuit design makes this quite simple. An oscilloscope is useful for some tests, but constructors without access to one need not be deterred as a most sections can be effectively verified as operating correctly using just a meter

Hopefully, sockets will have been used for ICl to IC9, so the initial test is to power the board without any of the i.c.s fitted, and check the 5 V regulated supply. A good place to find this is on the top of capacitor C29. There will be an initial surge of current as the capacitors charge, in particular C27, after which the supply current should settle to a very low value, no more than a milliamp or two.

[EBJIOC

Fig. 2. P.C.B. layout and wiring for the Mind Machine.

The negative supply rail is used as the reference for all tests. The power should always be turned off when fitting i.c.s or making connections other than test gear.
If the regulated supply is working, the oscillator ICl should be inserted on the board, and it's output, at pin 2, checked. A 'scopè should show a 1.5 MHz squarewave, but if this is not available a meter should show the average d.c. value of the output as 2.5 V . If this is present, it's a virtual certainty that the oscillator is operating.

The two dividers IC2 and IC4 can be fitted next. Without IC3, IC4 has an uninterrupted clock signal. Again, a scope should show their 366 Hz squarewave outputs, or a meter should show the average value of 2.5 V . The output of each will be found at pin 1 .

Assuming this is OK, IC7 is next, to complete the two filters. These should have sinewave outputs at pins 7 and 8 . Peak-topeak values seen on a scope are around 0.5 V , or a DVM (Digital Volt Meter) on an a.c. range should show the r.m.s. value of about 0.2 V . Again, the d.c. level should be about 2.5 V , though this time it doesn't indicate presence of the signal. The supply current up until this point should be very low, no more than 5 mA .

The volume control VR2 can now be temporarily connected and IC8 and IC9 plugged in, one at a time. These too should have about 2.5 V d.c. at their outputs, pin 5 , whilst the signal, as seen at each headphone output with VR2 at maximum, should be about 2.5 V peak-to-peak on a scope or about 0.8 V r.m.s. on a meter.
If all is fine so far, the headphone socket should be hooked up and the 'phones plugged in. At this point the frequencies will be identical, so the sound will be apparently "mono". It should, however, be very smooth and pure. Depending on the surroundings of the board on test, there may be some induced hum, but this will not be a problem after final assembly.
If VR4 is now connected to the board and IC3 fitted, the "binaural" sound effect should be audible on the phones, with the frequency of the "beat" adjustable from about two to twenty hertz. The supply current will now depend upon the volume setting. To some extent this is the case even if the headphones are not plugged in, as when the control is turned well up current flow through capacitors C16 and C24 will be apparent.

LIGHTING UP TIME

With the oscillators and sound processing working, attention can be turned to the "lights" part of the circuit. IC5 and IC6 can now be fitted.
With VR4 set to minimum frequency, if the output at IC5 pin 10 appears mostly positive, pulsing low at about two hertz, this part of the circuit is probably satisfactory. At a higher frequency setting the apparent average d.c. voltage at this point should be around 3.8 V .
If there are problems in this area, it may help to know that there should be average d.c. levels of 2.5 V at IC5 pin 4 and pin 3, and at IC6 pin 7. At low frequencies a flicker should be visible at IC5 pin 3 and IC6 pin 7. A scope should show a triangle wave of about two volts peak-to-peak at IC6 pin 7, but don't bother trying this at ICS pin 3 where the signal consists of 5 V peak-to-peak pulses of constantly varying width!
Finally, VRI can be hooked up, an l.e.d. placed across each 1.e.d. output point, and

The complete unit with programmer p.c.b. and charger-see text.

VR1 checked for controlling their brilliance correctly. The frequency control VR4 should adjust their flicker rate from about two to twenty heriz.
The total supply current will now depend on volume and brilliance of the outputs. With both at a minimum, it will be about $20 \mathrm{~mA}-25 \mathrm{~mA}$. At full power on both, it will be in the order of $80 \mathrm{~mA}-90 \mathrm{~mA}$.

CASE

It was felt that this project deserved a smarter case than the grey boxes that have graced many of the author's designs so a smart grey and white Verobox, size 205 mm $\times 140 \mathrm{~mm} \times 75 \mathrm{~mm}$, was purchased. A "tilt leg assembly" added a nice finishing touch, but is not essential.
An aluminium "screening chassis" was made and fitted to the moulded bosses in
the base of the box with the self-tapping screws provided. The other components of the project are mounted on this.
At the back of the plate a section is cut and bent up to secure the battery pack by pressing it against the aluminium back of the case. A drawing of this plate appears in Fig. 3, and the general layout of the various parts inside the case is shown in the photographs and Fig. 4
The batteries are housed in an eight-cel! plastic holder, connecting to the circuit through a PP3-style clip. Some masking tape prevents the metal parts of the holder touching the metal plate.

BOARD
 MOUNTING

The circuit board is mounted on four 50 mm (2 in.) brass 4BA screws projecting

Fig. 3 Metal screening chassis details.

Fig. 4. Interwiring of the front panel mounted components and the p.c.b. Only those sockets and controls that relate to this part are shown.
up from the chassis, detail of one of these is shown in Fig. 5. Some plastic washers are needed to ensure the fixing nuts are insulated from the copper tracks of the board, these being cut from a redundant credit card!
The board is placed low on the screws, to obtain the screening effect of the chassis plate below the audio amplifiers. The reason for the extra length of the screws is
that the programming board, to be described next month, is fitted above the present one.
The front panel layout is shown in detail, Fig. 6, as the components fit onto this with little space to spare. Some holes shown will not be needed unless the programmer is added. It should be borne in mind that some of the clearances in the box are on the tight side, so it might be wise to check that

(बㅏ)

Fig. 5. Mounting the two p.c.b.s (programmer p.c.b. will be described next month).
the components you have will actually fit before cutting and drilling either this panel or the chassis plate.
As the front panel is aluminium and earthed to the negative rail, the controls, sockets and so forth must NOT make contact with it. The headphone and auxiliary input sockets are standard $1 / 4 \mathrm{in}$. types as these are easier to obtain in plastic insulated form. The miniature headphones recommended are used with an adaptor. A 5 -pin DIN socket provides the outlet for the l.e.d. lead.
External connections to the circuit board are shown in Fig. 4. Not shown is the "grounding" arrangement of the metalwork. The battery negative is connected to the point marked on the chassis plate drawing in Fig. 3, then all other negative supply connections are taken from this. Also, a wire is taken from here to the aluminium front plate, using a solder tag placed under one of the DIN socket mounting screws.
This arrangement reduces the possibility
Fig. 6. Front panel drilling detalls.

Fig. 7. Wiring of the l.e.d.s mounted in swimming goggles. The photograph shows the finished goggles.

of annoying clicks and pops on the audio due to currents flowing around "earth loops" in the circuit, and provides adequate screening to prevent hum pickup by the amplifiers. Hookup wire or, for greater neatness, ribbon cable, is fine for most connections, but those to the volume controls VR2 and VR3 should be made using screened lead.
Standard "AA" cells can be used, but the prototype is fitted with rechargeables and a built-in charger, details of which will be given next month: This avoids the need to dismantle the case from time to time to replace the batteries.
Three "AAA" cells may be visible in the photographs. As will be explained next month, these retain program memory when the instrument is switched off. They should not need replacing more than every couple of years or so.

GLASSES

The glasses are similar in construction to those used with the Brainwave project, using three ultrabright l.e.d.s in each lens. They are constructed from swimming goggles with the lenses drilled to take the l.e.d.s, connections for which are shown in Fig. 7.
The goggles are good quality types, with soft foam edging for comfort. Their lead is thin screened twin, with one core each to the l.e.d. cathodes and the screen acting as common for the anodes. This provides a neat, thin and flexible connection.

The headphones can be the cheapest available, as they are required only to play a single tone of medium frequency. "Walkman" phones, the sort that fit right inside the ear without a headband, are recommended as these will not tangle with the glasses as other types tend to.

/NUSE

The use of this project is not going to be covered in depth as the principles of "entrainment" were described in detail in the September " 91 Brainwave article. The warning for anyone who even remotely suspects they may be epileptic is just as important for this project of course, see the caution notice!
The unit should be used with the eyes shut. The light intensity should be set to a comfortable level, and the frequency adjusted until it feels "right". It can then be gradually lowered to produce a sensation of deep relaxation.
The controls are fairly self-evident, save for the phase reversal switch S1. If the frequency is turned right down the two headphones held close to one ear, the sound will be heard as the familiar "beat" note. It will be loudest when the two tones are in phase, and this is when the lights should flash.
If your phones are wired out of phase, as happened to the designer, this switch (S1) will correct matters. You may also like to experiment with reversed phase - it might prove more effective for you.

As a brief recap, the brainwave frequencies this machine can be used to stimulate range from: Delia, 2 Hz to 4 Hz , the rhythm of deep sleep; Theta, 4 Hz to 7 Hz , for vivid imagery and creativity; Alpha, 7 Hz to 14 Hz , relaxed awareness; up to Beta, 14 Hz upwards, which is the normal "wide-awake" pattern.
Before the Programmer was fitted the designer would start at high Alpha, and gradually reduce it almost to Delta before slowly bringing it back up again. A brief burst of Beta was occasionally useful before rejoining the real world!

SHORT SESSIONS

It will be found that the effect of this project, with the addition of sound, is far more powerful than lights alone. If you're new to entrainment, it is suggested that initial sessions are kept fairly short, say fifteen minutes, and the Volume and Brilliance are not turned up too far.
The auxiliary input can be used to inject anything desired, pink noise, surf sounds, soft music, or a hypnotic "self-improvement" tape, if you're into that sort of thing. It might even prove to be the most effective tool for giving up smoking ever devised!
Seriously, the author, and most other people who have tried the prototype, found it very relaxing, just the thing for this stressful age.

Next Month: A Programmer Boatd.

EVERYDAY ELECTRONICS BINDERS
 Don't let your valuable issues of EE get

 binned, burned or bitten (by the dog). Get one of our exquisite orange hard-back binders, slip each issue into it as you get them and you will always know where they are- we hope!
Binders to hold one volume (12 issues) are available from Everyday Electronics, 6 Church Street, Wimborne, Dorset BH21 1 JH for $£ 5.95$ ($£ 6.95$ to European countries and $£ 9.00$ to other countries, surface mail) inclusive of postage and packing. Payment in $£$ sterling only please. Visa and Access (MasterCard) accepted, minimum order value $£ 5$.
Binders are normally sent within seven days of receipt of your order but please allow up to 28 days for UK delivery - more overseas.

SIMPLEMODEL SERIES SPECIAL EASIWIREOFFER

FREE EASIWIRE IF YOU BUY ANY FOUR MODEL KITS OREASIWIREFORES WHEN YOU PURCHASE A PROJECT KIT．

The two companies mentioned below have large stocks of Easiwire solder－ less wire wrapping systems，as used to build all our Simple Model Series projects．They have agreed to make these available to EE readers who pur－ chase complete kits of components for the projects，INCLUDING printed cards to cut out and assemble for each model．If you are prepared to buy any four of the six model kits then you can get your Easiwire FREE．
If you buy any one model kit you can purchase an Easiwire kit for just £． These kits were previously advertised by BICC－Vero at $£ 15$ ，including p\＆pJ．To get your kit and Easiwire simply fill in the appropriate coupon and send it with your cheque cor credit card details）to either of the companies．
The six projects are：Police Car［July 91）；Musical Roundabout（Aug 91）；Micro Micro－a dolls house microcomputer（Sept 91）；Centurion Tank（Dct 91）；Mini Microwave －dolls house microwave oven（Nov 91）； Christmas Novelty Decoration（Dec 91）． These models all play tunes or make nolses or flash lights etc．They will each cost about $£ 8$ or less to build，theprices charged will be as given by EE in the＂approximate costbox．

All the kits will be available separately as the projects are published and the E 5 Easiwire offer will be available with each kit when each project is published．
Please fill in the appropriate coupon below，tick the relevent boxes and send your cheque／Pロ／oredit card number with one of the coupons to：

GREENWELD ELECTRONIC COMPONENTS 27PARKRDAD．
 OR
 BULL ELECTRICAL
 25ロPロRTLANDRDAD， HOVE，SUSSEX BN3 50T
 Tel：0273203500 Fax： 027323077

SEND EITHER COUPON TO EITHER COMPANY－YOU CHOOSE YOUR SUPPLIER Qverseas readers please add E 3 to cover the extra postage charge．

REE ASIWIRE	ESEASIWIRE
Please send me my FREE Easiwire kit．I understand that	Please supply the Novelty Kit
I must buy four model kits at the price given by EE－I	on its own at E4．95 plus E1 p\＆p \square
I enclose a cheque／PO for $£$ ．．．．．．．．．．for the kits ticked below \square	Please supply an Easiwire at
Please debit my credit card \square	ES with the above kit $\quad \square$
Card No．．	lextrepas readers please add 3 to cover the
	1 enclose a cheque／PD fór E ．
Ex．Date．．．．．．．．．．．．．．．．．．．．Signature．	［E5．95 or E10．95］\square
The kitts Irequire are：$\left(\begin{array}{l}\text { Police Car i July＇91）．．．．．．．．．．．．．．．．．．．．．．．95 plus } £ 1 \text { p\＆p } \square \\ \text { Musical Roundabout（Aug＇} 91 \text { ）．．．．．．．．} £ 7.95 \text { plus } £ 1 \text { p\＆p }\end{array}\right.$	Please charge my credit card－
	Name
Narme．．	Addre
Address	

Simple Mode/ Series CHRISTMAS ((M) DECORATION

 \div

OWEN BISHOP

A novel series which combines two hobbies in one - electronics and model-making. Simple electronic circuits combined with easy-to-assemble models that cover a wide range of interests.

WE continue this series of electronically enhanced models with a seasonal offering to amuse all members of the family . This decorative model can be hung on the Christmas tree, or placed on the sideboard among the Christmas cards. It is a model of Santa and his sleigh embellished with flashing lamps and a medley of Christmas tunes.
The lamps flash continuously. The medley consists of snatches of Jingle Bells, Santa Claus is Coming to Town and We Wish You a Merry Christmas - and a Happy New Year. It takes about 25 seconds to play and is repeated every one and a half minutes. Although we present the design
for one particular model, the electronics can be applied equally easily to any similar model or decoration. There is also plenty of scope for ingenuity in adapting the model to suit your taste.

MEDLEY CHIP

The notes and timing for the medley are contained in a small memory included on the chip of the i.c. The i.c., which is inexpensive and is contained in a package no bigger than that of a single transistor, is one of a series intended for use in musical greetings cards.
The version specified for this project has

Christmas tunes but there are three other versions available, appropriate to weddings, birthdays and Valentines. This circuit, when used with a suitable model is therefore apt for other festive occasions.

BUILDING THE MODEL

The model is in semi-relief and is built up in layers on a base-board. Cut out the baseboard from thick (2 mm) card or laminations of thinner card (a). Use a steel ruler and craft knife for this operation. Also cut a sheet of matt black paper of the same size and shape as the base and glue this to the base.
Santa is made of thin coloured card; we used bright red for his body and hat, and a lighe brown for his face and hands, alternatively white card can be coloured as required.
Cut out Santa's face and body and glue these to the base, on the black-papered side, leaving his right arm (left as seen from the front) free so that he can later rest it on the sleigh. Note that his left (raised) arm projects beyond the edge of the base. Cut out his hat (d), and hands (e, f) and glue these in position.

We chose a slightly darker rusty-brown card for the reindeer. Cut out the body (u) and glue the legs (h, i) to it, making sure that the bottoms of the feet are in a straight line. The body cut-out has only one antler, so cut out a second antler, with a small tab at the base for sticking behind the head. The antlers are more-or-less mirror-images of one another.
Prepare a rectangle of the thick card abcut $50 \mathrm{~mm} \times 200 \mathrm{~mm}$ and glue this behind the body. This is for raising the reindeer away from the base to give the 3D effect. Glue the other side of the thick card rectangle and position the reindeer on the base. The bottoms of its feet are 20 mm from the lower edge of the base.
The sleigh can be made in any colours that take your fancy. We have a bright green sleigh (g) with a red stripe along its side, and yellow runner (t). Cut out the sleigh body and mount it on two rectangles of thick card glued on top of one another. This brings the sleigh 4 mm above the baseboard. As you slide the sleigh body into place, lift Santa's right arm so that his elbow rests comfortably on the upper edge of the sleigh.

Fig. 4. Wiring the l.e.d.s and battery.
(A)

GREENWELD

BARGAIN LIST 75 - NEW SURPLUS ELECTRONIC COMPONENTS \& EQUIPMENT

Welcome to the World of Surplus

If you think 'surplus electronic components and equipment' means ancient junk left over from World War II, and auctioned off by the Goverńment; or used components removed from panels, then you're in for a bit of a shock! Most surplus sold today has been manufactured in the last 5 years - some is literally only months old! So where does it all come from?

There are many sources: components left at the end of production runs; finished goods that were either over-produced or not purchased by the intended customer; companies going into liquidation with large stock inventories; discontinued franchises by distributors etc. In all cases, the person responsible for disposal is eager to turn his surplus stocks into cash - so he comes to someone like us. We normally only buy new, full spec parts which are often of a far higher quality than those commercially available to sell at a realistic price to retail customers. We make a fair offer (most are accepted) and collect or have delivered the goods. They are then sorted and appear on our next Bargain List. Because of the vast range of items offered, many odd and interesting devices unavailable elsewhere are included - but please do remember, once sold they are rarely available again!! So don't turn the page when you see 'surplus' mentioned you're probably being offered exceptional value for money!!

ORDERING INFORMATION

Il ordering by post please use the Order Form on Page 45 of this supplement, remembering to write your name, address and postcode in the space provided and glving all the intormation requested: Payment may be by cheque, PO cash inlormation requeste. Payment may be by cheque, PO. Cash inc loreign currey bank iles, book fill need details of Connect. If ordering by phone, or fax we need delans of goods requlred (order code and price), your name and address (including your posicode), your credit card no. and expiry date.
We are happy to process Official Orders from Education and other Government funded sources elther by phone or post. We will despatch orders to anywhere in the world. The most convenient way to order is by fax and the best way to pay is by Credt card. Our international telelax number is +44703 236307, although you may of course telephone us on +44703236363 . Overseas orders are exempt from VAT, \& 15% should be deducted from prices, except books which are zero rated. Send ample postage - excess will be refunded or goods omitted if insufficient.

Greenweld Electronics Ltd 27 Park Road Southampton SO1 3TB

CONTENTS

Batteries	3
Books	3
Cable, Leads	4
Capachors	6
Cases	12
Component Packs	23
Computer, Modems	7
Connectors	9
Finished Items	12
Fuseholders	27
Hardware	18
Keyboards	34
Opto	20
Panels	28
Power Supplies	32
Relays	42
Resistors	38
Semiconductors	17,37
Speclal ONFers	$\mathbf{4 6}$
Statlonery Products	$\mathbf{4 8}$
Swhches	32
Tape, Tools, TV	38
Transducers	33
Wound Products	48

\star STAR BARGAINS \star cablevision CALAMITY!!
Seems like Visionhire became a bit overstocked on their cablevision consoles - we've just purchased a quantity of these superb brand new units which contain some great electronics and as ever can offer them at an absolute Bargain Price!! Two tone brown case (dimensions
 as shown) contains PCB $192 \times 195 \mathrm{~mm}$ with easily removed UHF modulator made by Labgear (Sound and Vision); video pre-amp; stabilised power supply and all the decoding circuitry (9 transistors and TBA673 chip). On the front of the case is a cablel off air switch and 5 push buttons (4 channels and on/ off mains switch). There are 4 cables coming from the rear (these alone are worth what we are asking for the whole thing!) -2 m mains lead, 1.5 m 8 core screened cable with 9 pin plug, 2 m video in lead with coax plug and 2 m video out lead with coax socket. As you would expect from a company like Visionhire, everything is top quality. The case can easily be utilised for other purposes - the dark brown inserts on the front are both easily removable, if required. Please note the low price we are asking in no way reflects their true worth - they're taking up a lot of space, so we need to shift them quickly!! Supplied with circuit diagram.
28939
$\mathbf{8 6 . 9 5} 100+3.50 \quad 1 k+2.50$

24×2 LCD DISPLAY

2217124 character $\times 2$ lines LCD by Optrex. High quality display with 192 character ROM; other characters can be displayed by generation in RAM. Other features include: EL type back light (details of high voltage generator supplied); cursor with control, blink character, scroll display, read and write display data, +5 V and -7 V supply with 150 V AC required for backilght, data and power inputs by solder contacts on board, pin outs standard and compatible with other Optrex displays, extended temperature range (253 to $343^{\circ} \mathrm{K}$), easily interfaced with either 4 or 8 bit uP's. Supplied complete with data.
Characters are 5×7 dot arrays with separate cursor 1 Character measures $3.2 \times 6.0 \mathrm{~mm}$
Display size $93 \times 16 \mathrm{~mm} \quad$ Module size $118 \times 35 \mathrm{~mm}$ DP around $£ 30,00$, Our Prlce $£ 10.00$

SWITCH MODE PSU

A112531 This fine switch mode power supply made by Astec comes as a partially cased unit $160 \times 104 \times 45 \mathrm{~mm}$ containing a Eurocard PCB $160 \times 100 \mathrm{~mm}$. Input \& Outputs are on colour coded flying leads. There is an additional IEC socket to extend mains to another unit.
Input
$115 / 230 \mathrm{~V} 50 / 60 \mathrm{~Hz}$
Outputs5V@5A; + 12V@0.15A
Total wattage .. 50W
Prices ………...........E6.95 $25+5.43 \quad 100+4.53$

Conversion Kit

K726 This kit converts the AA12531 PSU into a much more versatlle supply, giving +5V@2.5A: $+12 \mathrm{~V}(a) 2 \mathrm{~A}:-12 \mathrm{~V} @ 0.1 \mathrm{~A} ;-5 \mathrm{~V} @ 0.55 \mathrm{~A}$
Complete kit of parts and full instructions.
Price
83.60

HIGH QUALITY NICAD CHARGER

25136 Nicad switched mode battery charger for charging $6 \times A A, C$ or D cells. 70 mA 16 hour rate, 700 mA 1.5 hour rate, 25 mA float charge automatically switched in when battery reaches correct charge level. Outputs for fast and slow charging simultaneously if necessary; both on timers to prevent over charging. Fast charge set at 700 mA , but internally adjustable. Slow charge set to 70 mA . Both outputs switch to 25 mA trickle charging after their respective periods of 1.5 hours and 16 hours. Supplied new with instructions and clrcuit diagram. Was originally supplied for charging cellphone batterles.
Price
ع12.95
 dia $\times 21 \mathrm{~mm}$ deep with a 16 tooth 9.5 mm dia gear wheel mounted on the 2 mm dia spindle. Fixing centres $42 \mathrm{~mm} \mathrm{7} 1 / \mathbf{2}^{\circ}$, 48 step. $\quad 100+$ price is $\mathbf{~} 9.04$ Supplied with data sheet.
Prices
c3 each $100+2.00$

NICAD BATTERY PACK

22349 Brand new, intended for use in Zonephones, comprising $4 \times 1 / 2 \mathrm{~A}$ size cells each rated 1.2 V 0.45 Ah , size 16.1 mm dia $\times 28 \mathrm{~mm}$. DP $£ 9.92$. Our Price ع2.00 $100+1.001 k+$

Sealed Lead Acid Batteries
YUASA NP6-12. I2V 6Ah sealed lead acld battery. These have been regularly trickle charged whilst in store. Size $50 \times 95 \times 65 \mathrm{~mm}$. List price $£ 28.00$
Order Code $\mathbf{2 8 9 1 8}$
Price: C14.98.10+11.20
Nicad Batteries

24180 Ex mobile radio battery. $56 \times 63 \times 33 \mathrm{~mm}$ case (sometimes damaged) contalns $8 \times A A$ size rechargeable Nicads. These can be removed by breaking the case open. Each cell rated 1.25 V 600 m A
Price...
 24149 As above but $84 \times 66 \times 33 \mathrm{~mm}$. There are again 8 cells but they are longer than AA slze, belng 73 mm long. Each celt ated 1.25 V 900 mA .

AAA Nicads by Sanyo

SUPERDEAL PRICE!! These superb quality batterles are rated 1.2 V 200 mAh , and may be charged at 20 mA or quick-charged at 60 mA . Normally costing around- $£ 1.50$ each, we can offer these at the SUPERDEAL prices below:

D size Nicads

25088 D-size Nicad - 4 Ah rating. Removed from battery packs
Price

Please Note:

The Free Gifts offered in the Main Catalogue are not available with goods from Bargain Lists.

21830 Sah 40 RF310 back up Nicad battery PC mountting on $70 \times 22.5 \mathrm{~mm}$ centres. Rated 3.6 V . $10 \mathrm{mAH}(20 \mathrm{~mA})$. Overal size $76 \times 28 \times 8 \mathrm{~mm}$.
Price2.00
21951 Varta Memopac PCB Nicad 8.4V 100 mAh . Although new. these batteries are not in pristine condition. so are oflered at way below normal cosis. Size $41 \times 26 \times 14 \mathrm{~mm}$
Price

21720 Lithium Manganese coin cell. Extremely thin, just $1.6 \mathrm{~mm} \times 20 \mathrm{~mm}$ dia. model 2016. Normally $£ 1.67$.
 $\mathbf{\Sigma 2 3 0 7}$ Lithlum battery $1 / 2$ A A size, $P \mathrm{C}$ mounting $3.7 \mathrm{~V}, 0.85 \mathrm{Ah}$ Individually boxed with instructions. DP £4.57.
3908 Our price E2.80
22308 Lithlum battery Varta CR2430, horlzontal mounting. $3 V 0.20 \mathrm{Ah}$. DP §1.58. Our price $\mathbb{1} .00$

$\mathbf{5} 4216$ Much sought after 4.8 V 150 mA tatteries with PCB mounting tags on 25 mm plich. Battery size $25 \times 16 \mathrm{dia}$. Ideal for parallelling. Some corrosion.
Prices reduced to \quad SOp esch $25+0.35100+0.25$

28802 Battery charger unit. 2 part vacuum formed black plastic case $570 \times 210 \times 85 \mathrm{~mm}$ with room for $10 \times 2.6 \mathrm{AH} 6 \mathrm{~V}$ seated lead acid batteries. Inside Is a neat PSU torroidal transtormer. $120 / 240 \mathrm{~V}$ primary 0-9, 0-9 secondary 10VA. There is a bridge rectifier and smoothing cap. The output is taken to a PCB $510 \times 45 \mathrm{~mm}$ containing 10 identica! charging circuits. Each has a TIP31A, 741, IN4002 and couple IRs. and a 3 pin connector
Clearing at
c8.00 each
We are always looking for new lines to add to our lists. Send details/ samples of goods available to:
The Managing Director
Greenweld Electronics Ltd
27 Park Road
Southampton
SO1 3TB

If you like what you see in this supplement make sure you don't miss future bargains only £2 (UK) BFPO; £4 O'seas) for the next 6 issues - see order form for details.

The 1992 GREENWELD Catalogue is out now! 132 pages of electronic and modellers supplies.

Only £2 (UK/BFPO; £4 O'seas)
ORDER NOW!
See order form for details
ROOKS
Sensing \& Control Projects for the BBC
Thomas Nunns

Sensing and Control Projects for the BBC by T. Nunns The designers of the BBC microcomputer included a number of sockets to allow the computer to recieve sig. hals from and send signals to the outside world. Yet the majority of owners of the BBC micro have only used the cassette and TV/RGB sockets at the back of the computer and the printer and disc drive plugs underneath.
This book introduces ways of using the ANALOGUE IN socket and the USER PORT to interface the computer with its environment. The projects are fully explained in non-technical language at every stage and ideas, are non-technical language at every
No experience of electronics is needed - not even a soldering iron. But that does not mean the projects are trivial - they have been carefully designed around comonents which can be fitted together without soldering. If you have never used the computer as a link to the outside world then you wil not have realised how versatile the BBC micro can be. This book will show you the way to many exciting hours of experimenting.
82 po 241×182
£2.00
'Oo Forth' by Paul Kall
An introduction to Forth Language. It's as easy to use as BASIC, but is much laster. This book is a complete loundation course in Forth programming, and contains a number of complete programs. Originally published at 88.95 . number of complete programs. Originally published at £8.95.

4 Craswein CABLE, LEADS

High Quality Audio/ Video Leads
packed in poly bags with header cards, these Nu-Way leads are offered at a surprisingly low price. 16 types avallable, all 2 m long except * which are 1.5 m long. All connectors on all leads are screened - none of your cheapo plastic plugs here!! Code Type Description \qquad $1+25$ +
$\mathbf{2 5 0 3 3} 677$ PL259 +5 pin DIN 180° plug
10 phono plug +5 pIn DiN 180° plug
PL259 + 2 phono plugs to
$25034 \quad 686 \quad$ PL259 + 2 phono plugs to \quad ct.64 0.82 26035687 phono plug +5 pin 180° plug both ends C1.24 0.6 25037680 PL259 + phono plug to BNC $\begin{array}{llll}\text { PL259 + phono plug to BNC } \\ \text { plug + } 3.5 \mathrm{~mm} \text { plug. } & \text { C2.40 } & 1.23\end{array}$ PL259 + phono plug
$\begin{array}{lll}\mathbf{2 5 0 3 8} & 685 & \text { PL259 + phono plug } \\ \text { both ends. } \\ \mathbf{2 5 0 3 9} & 683 & \text { PL259 }+2 \times \text { phono plug to }\end{array}$ c2.12 1.06 BNC plug + 5 pin DIN 180° plug. c2.62 1.31 BNC plug +3.5 mm plug 106 pin DIN plug.
14.770 .88 BNC plug +5 pin DIN
$\begin{array}{lll}25050 & 682 / 764 & \text { BNC plug }+5 \text { pin DIN } \\ & 180^{\circ} \text { plug both ends. }\end{array}$

| $\mathbf{z} 5051$ VTV025' | PL259 + phono plug to | | |
| :--- | :--- | :--- | :--- | :--- |
| | 6 pin DIN plug. | c1.43 | 0.71 |

2505269166 pin DIN plug to 5 pIn DIN 180° plug + phono plug. PL259 + phono plug to 2 phono plugs.
$25053669 \quad \mathrm{PL} 259$ + phono plug to
$\mathbf{2 5 0 5 4} 672 \quad$ PL259 +5 pin DIN 180° plug to 3 phono plugs.
c1.86 0.98

25055675 PL259 + 5 pin DIN 180° plug to PL259 + 2 phono plugs. + 2 phono plugs.
8 pin DIN plug to BNC plug +3.5 mm plug.

Quantity prices apply to any mix. (Don't forget to add VAT!)
24375 Scart plug to scart plug. All pins present, but only video and audio circults connected. Length $1 / 2 \mathrm{~m}$. c2.50 24378 Scart plug to 15 W mini D°. All circuits connected. Length $1 / 2 \mathrm{~m}$

PLe16 DC adaptor lead for Walkman, 1.8 m long
Price 30 p
$\begin{array}{lll} & 100+0.15\end{array}$
Price 2 pin Dinline socketro phono 20 p $100+0.10$ PL708 video lead. PL259 plug to F type plug. 3 m low loss coax.
Price PLSOA 5 pin DIN - 3 pin DIN audio lead 1.2 m long. Price \quad Pl54 Intercom extension lead 3.5 m line socket 103.5 m PL541 Intercom extension lead 3.5 m line socket to 3.5 m plug. 6 m long.
Price .. 40p $100+0.20$
24146 Computer lead 7 pin DIN to 3 pin DIN +2.5 mm jack. Originally $£ 1.95$

Only 50p
Price.
Computer Cables
$\mathbf{2 3 0 3}$ Computer printer lead - 36 way centronics plug to 20 way IDC socket, 1 m long. \quad ع2.00 $\mathbf{z 2 3 0 4}$ Lead 1 m long 20 way IDC - 20 way IDC $\mathbb{1} .00$
24339 BBC Printer Lead. 1 m long with 34 way card edge connector one end and 34 way IDC socket the other. Price..
£1.95

$24186 \mathrm{3m}$ multicore lead terminated both ends with 50 way centronics (IEEE-488) socket. Ideal for stripping down for flex - total 150 m of multicoloured $7 / 0.2$. Connectors alone worth $£ 12.80$
Price .. Only $\mathbf{£ 9 . 9 5}$
20377910 metre long ext'n computer or printer cable. 25 way D plug one end 25 D socket the other.
Price
Computer cables by Mitsubishl. 25 way 'D' socket both ends connected 1-1. 2-3. 3-2, 4-5. 5-4 6-20. 7-7. 13-19, 14-16 \& 25-25. (RS232 Asynchronous Cable for Oata transter Null modem.) $\mathbf{2 8 0 1 7} 10$ metres iong.
Price
c. 8.00

Price
50185 metres long
r5.00

243836 way DIN lead; 1.5 m lead terminated one end with a 6 pin OIN plug. Bare wires the other end.
Prices Pack of 4/C1.00; 100/C12.00; 1000/t90.00

Telephone Leads
$\mathbf{2 4 1 8 9}$ Telephone lead 3 m long with 4 way plug terminated both ends.

C1.50
24309 BT 'breakout' lead. One end has moulded housing with 6 pin BT plug and socket. Other end has 6 pin FCC68 plug (as used on some computers). Overall length 3 m

RIBBON CABLE BONANZA!!

14 \& 16 way Grey 100 ft reels
$z 3017814$ way
23019716 way
28851 Screened and jacketed 50 way rlbbon cable. Found a
few more reels of this popular Item. DP $\mathbb{C 2 0 0 +}$
Our price for $\mathbf{1 0 0 f t}$ reel $£ 45.00$, or $\mathbf{~} \mathbf{2 . 5 0 / m}$

2218114 way ribbon cable 500 mm long terminated both ends with 14 pin DIL header plugs.

Price

c 1.00
22133 Ribbon cable, 16 way 550 mm long terminated both
ends with 16 way IDC sockets
Price.
22180 Grey rlbbon cable in 3 m lengths. Now even cheaper to clear! 10 way.
Price
60p
z510e Double screened (braid and foll) PVC insulated cable 40 coloured $7 / 0.2$ cores. 2.5 m long giving 100 m of flex or just

2642 Data transmission cable. 32 core $1 / 0.4$ conductors. Overall dla 8 mm .
Prices $5 \mathrm{~m} \subset 4.5020 \mathrm{~m} \subset 13.00$

Surplus electronic components and

equipment purchased for cash. Send lists/samples together with price required to: The Managing Director Greenweld Electroncs Lid 27 Park Road southampton SO1 3TB
$\mathbf{2 4 8 0} 2 \mathrm{~m}$ red and black power lead fitted with 2.5 mm power plug.

2002 Curly 6 core flat lead which extends 102.5 m with socket one end

60p
25023 Very springy coiled short lead 12 core, each $7 / 0.1$ Coiled bit 6.5 mm long. Overall length extended about ${ }^{3} \mathrm{dm}$.
Price $\mathbb{C 1 . 0 0}$ 25024. Heavy duty coiled lead. 6 core - very fine llex (80) 0.1?) Overall dia 8 mm . Coiled bit 300 mm . Overall length extended 2 m .

Price

C1. 20
Z1430 Resistance wire - T2 alloy. $95.4 \% \mathrm{Ni}, 1.8 \% \mathrm{Mn}, \mathbf{1 . 6 \%}$ S1. $1.2 \% \mathrm{Al} .2 .521 \Omega / \mathrm{m} . \quad 0.0148^{\prime \prime}$ dia. Sold in 5 m lengths. Price.

Enmenelied Copper Wire

Very thin, on reels varying between 0.4 and 1.06 lb nett. As every reel has a different weight, the best way to sell it is by the lt. Send enough for an exact no. of Ibs Imin Ilbl and we'll credit you with the difference. (or charge the correct amount on Access or open cheque). 24091 46SWG .0024" red solder thru' enamel
24092 44SWG .0032" brown enamel (few red)
All the same price
$E 2.50$ per Ib

CREENWKID－TEL：（0703）236363 FAX：（0703） 236307 CABLE，LEADS

24388 Mains lead－13A plug one end． 3 pin IEC socket the other．Overall length 2 m ．
＿monemo．．．．．．．E2．30 24249 Mains lead－5hrouded IEC plug to open end．Overal ngth 2 m
 203881 Mains cable 5 m long lifed with right angle CEE22 plug．DP ©4． 99
Price
C2．80

2030882 metre mains lead CEE22 socket one end， 3 pin us style plug the other

2032094 metre mains lead CEE22 socket one end，open the other．
82.80

243383 core black mains lead 2 m long One end is fitted with a 2 pin continental plug，the other with a 6A 3pin IEC socket．Both are moulded on．

MAINS CABLE ON REELS

$2302101.0 \mathrm{~mm}^{2} 32 / 0.210 \mathrm{~A} 3$ core mains screened．Black sheath． 50 m colls．List price $\mathbb{C} 35.57$
Our price

SCREENED CABLE ON REELS

30246 Screened 16 core 7／0．2．Grey sheath． 1001 reels． Our price ．． 8

EQUIPMENT WIRE

28041 Some more equipment wire has come our way Made by BICC， $7 / 0.127$ In 3 colours Grey．Brown and White （state 2 nd／3rd choice）
Price／ 100 m reel
E1． 60
230230 woven $7 / 0.2$ blue and orange（ 20 of each）ribbon cable， 40 way．Just pulling a thread separates all cores 10 m length giving 200 m of flex
Price
230230－02 As Z30239（Page 16 of Spring Supplement）but 16 way． 10 m length
Our price
$\mathbf{2 3 0 2 4 4 - 0 3}$ As above but 40 way in 11 colours： way in il colours．In 7.5 m

2 8019 As above but only 3 m long．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Price A．
230171 Insulated earthing braid
Price
$\mathbf{2 3 0 2 4 4}$ Woven iwisted Plobon cable redforange $7 / 0.2 \quad 10$ core．
Price

BULK CABLE BUY！！！

Some 500 m reels of $1 / 0.6$ equipment wire have just arrived． not many．so be quick and give second choice please．DP ©13．75
8942 Purple $1 / 0.6 \mathrm{~mm}$
c6．80

Wire Links

Usefui when breadboarding
2897200 mm long，black
$200 / 11.80$ 21704 30 mm pitch，green …………．．．．．．．1000／ع2．00 $\mathbf{2 4 3 9 E}$ Interboard jumper cable．Short piece of transparent ribbon cable． 10 way $0 . \mathrm{k}^{\prime \prime}$ pitch with ends prestripped and inned ready for use． 50 mm long．DP 30 p each． Peck of 100
c3．00
$\mathbf{2 2 0 0 4}$ Bandollered wire llnks． 0.6 mm dia with solder－thru Insulation， 60 mm long．
81.00

Z1808 We also have bandoliered wire links． 60 mm long 24SWG
Price ．．．．．．200／\＆1．00 1k／£2．60 reel of $15.000 \$ 21.75$

Sleeving

A number of reels of PVC sleeving have just become avainable
zeon 20 mm dia Black 100 m roll
Price ．．．00
39016 10 mm dia Black 50 mroll
Price：．．．
200178 mm dia Black 50 m roll．
Pree ．．
200186 mm dia Green 100 m roll． $\mathbf{~ C o . 0 0}$
Prict...........................$~$
$290196 m$ dla Blue 100 m roll．
Pric．
ع6．00

220010 4mm black PVC sleeving． 30 m reels．DP $\mathbb{C 3} .61$.
Our erice ．．
243．e Clear PVC tubing． 3 mm bore 0.5 mm wall．
100 ． 1 5p／metre
100 metre roll $£ 8.00$
2767 Numbered white sleeving． 25 each $0-9$.
Pric
 about 5 mm when heated．
Price $.12 . .40 \mathrm{~m} / \mathrm{metr} 10 \mathrm{mcoil} 2.2025 \mathrm{~m}$
P20． 40 m coil $2.20 \quad 25 \mathrm{~m}$ coil 4.35
 sled in Cat（YO87）．But we ve a large amount to clear． Rolls of 100 m at 90% off catalogue price．
Price ．． $\mathbf{£ 1 7 . 5 0}$

BUSHES／GROMMETS

Strain reliel bushes lor anchoring cable through panels．For cables up to about 5 mm dia．

28003 Black
28004 White
207007 long sleeved grommet 45 mm long：Hole dia 4 mm
Price ．．Pack of 40 t 1.00 C1．00
zo70se Cable tie mounting base．Natural nylon colour Self adhesive with holes for screw fixing if required． 28.5 mm sq．List Price C5
Our pritce／peck of 100

PC KEYBOARDS

After the Russian keyboards featured in Bargain List 74，we＇ve now purchased some French（sacre bleu！）and German （Donner und Blitzen！）varieties．Slightly different character set to UK models．

Brand new in original packaging．High quality，made by Intelligent，switchable AT／XT offered at a knockout price：
28954 French
c20．00
£20．00

日

BICC．VERO \sim EASIWIRE SOLDRLESS MRING

点 路
VERO
atmecranome

Extraordinary Easiwire Offer！！！

The easy to use no－soldering wiring tool which makes construction of small electronic projects so simple！
All included in the kit are：Wiring pen，Utility tool， Punched wiring board，Self adhesive sheet，Spring loaded terminals and jacks，Spare spool of wire， Excellent instruction book．Catalogue price £15．00

PRICE
$£ 5.00$ बREFNWELD - TEL: (0703)236363

FAX: (0703) 236307

POWER SUPPLY CAPACITORS
These high value, high ripple current cans are made by BHC/ LCR and are of excellent quality and value

All these have screw terminals except those marked which

Code	Value	Vohte	Mnf'r	Stze	$1+$	$100+$
24404	100	350	Novea	$48 \times 30^{-}$	c1.00	0.60
24408	2200	160	Novea	84×51	c2.00	1.20
24409	2200	250	LCR	116×64	c3.00	2.00
24410	3300	16	LCA	$45 \times 26^{*}$	30 p	0.15
24819	3300	25	LCA	50×26	40p	0.25
24411	3300	80	LCR	$55 \times 35^{\text {- }}$	c1.00	0.60
24412	3900	63	Novea	115×35	c1.20	0.75
24413	5600	50	Novea	84×35	c1.60	0.90
24414	10000	6.3	Novea	50×35	c1.00	0.60
24418	10000	25	Novea	84×35	c2.00	1.20

Screw-top electrolytic cans, B41455 + 50 - 10% : $-40^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$. DIN4 1250. Avaliable in 2 values: $2514610,000 \mu$ F $100 \mathrm{~V} 105 \times 64$ dia
Price C4.00 owch; Box of 20 C 60.00
$281474.700 \mu \mathrm{~F} 100 \mathrm{~V} 105 \times 51 \mathrm{dia}$
Pricec3.00 each; Bon of 35 c70.00
$100+1.501 k+1.20$

(c) Cepectiors, non-etectotytic axial leends
(R Radial 10 mm pitch) inc close tolerance
 $344230.1 \quad 100 \quad 13 \times 11 \times 5^{\circ} 4 \mathrm{p} \quad 0.02$

24425	1	63	$E F D$	$18 \times 7 \times 7$	$24 p$	0.12

$\mathbf{2 4 4 2 6} 1 \quad 63$ EFD $18 \times 7 \times 7$ 10p 0.06 $\begin{array}{lllllll}\text { Z4427 } & 1 & 630 & \text { EFD } & 31 \times 27 \times 19 & \text { 20p } & 0.12 \\ \text { Z4428 } & 2.2 & 63 & \text { EFD } & 32 \times 18 \times 7 & 40 p & 0.20\end{array}$

202284 DIL multilayer ceramlc caps - 2 pln, so can be packed closely together on PCB using standard DIL spacing Only one value 0.22μ. LIst price on these is 98 p each. Our price ... of $8 / \mathbf{c}$ $100+0.091 k+0.06$

MULTILAYER CAPS

2152 Dipped ceramic $100 \mathrm{n}(0.1 \mu \mathrm{~F}) 4 \times 3.2 \mathrm{~mm}$.
Priceest of 25/ $\mathbf{8 1 , 0 0}$
22153 Moulded ceramic $100 \mathrm{n}(0.1 \mu \mathrm{~F}) 5 \times 5 \times 2.5 \mathrm{~mm}$.
Peck of $25 /$ C 1.00

Ceramic Disc Capacitors
1200 pF 50 V 4 mm dia. 5 mm pitch. Boxes of 2000 on tapes
$\mathbf{£ 1 2 . 0 0}$
2781 Min ceramic plate cap $.02 \mu \mathrm{~F}$ 50V 5 mm square. 3 mm pitch. 30 mm leads
Prices 100/£1.50 Box of 500/4.35
217090.01 mF 50 V bead ceramic.

Price (sample free) 30/£1.00 1000/17.40
21541 Ceramic disc 2200pF 7 mm dia. 5 mm plich
Price $201 \mathrm{f1.00}$ 21769 High voltage ceramic capacitor -680 pF 2 kV 6 mm dia body
Price
15/ $£ 1.00$
2768 Feedthrough cap. Believed to be 1000 pF and 10 pF Overall length 25 mm .
Price for pack of 25
R.nuina

E1. 20

21428 33pF 5\% polystyrene cap
$100 / \subset 2.00$

Polyester Capacitors

$0.68 \mu \mathrm{~F} 250 \mathrm{~V} 22.5 \mathrm{~mm}$ pitch. Boxes of 200.
Price $\int 3.00$
21766×2 class polyester capacitor $17 \times 14 \times 8 \mathrm{~mm}, 15 \mathrm{~mm}$ plich 0.1 mF 250 Vac
Price 4/£1.00

atand
 Electrolytic Capacitors

$33 \mu \mathrm{~F} 25 \mathrm{~V}$ radial leads. Reels of 1000
Price

We have large quantities of the electrolytics listed below that we now wish to clear at substantially discounted prices: $\mathbf{2 7 4 1}$ Tubular tant cap. $15 \mu \mathrm{~F} 35 \mathrm{~V}$. List price on these is eally silly - $\mathbf{£ 2} .59$ eachl
Our prlce ..
6/ £1.00 25/2.60
2427 Can $50 \times 25 \mathrm{~mm}$ dia. Sprague 2200μ F 40V, tag
ended.
Price 30p 10/ 1.90 100/ 13.00
2428 Can $37 \times 25 \mathrm{~mm}$ dis. Lorlin $1500 \mu \mathrm{~F} 40 \mathrm{~V}$. PC mounting.
Price
2429 Axial $30 \times 16 \mathrm{~mm}$ dia. Lorlin $750 \mu \mathrm{~F} 16 \mathrm{~V}$ wire ended Price 10p $1010.70 \quad 10014.35$
Z1708 $0.47 \mathrm{mF} \overline{40} \mathrm{~V}$ solid axial tant.
 10/ $£ 1.00$
27888 Sprague $8 \mu 25 \mathrm{~V}$ elec axial caps 25/ 1.1 .00
$2822800 \mu \mathrm{~F} 250 \mathrm{~V}$ can 76×38............... £1.00 10/5.20
Paper Block
High capacity for use in motor starter circuits, otc.

Value	Tol $\%$	AC volts	Size	Make	Price
2uF	5	250	48×360	RIC	480 p
2uF	10	440	52×350	RIC	670 p
9uF	10	440	94×500	Advance	1160 p
10uF	10	280	52×400	Gould	930 p
13uF	10	250	$85 \times 68 \times 40$	Hunts	840 p
25uF	10	280	90×450	Erie	1220 p

$2427725 \mathrm{mF} \pm 10 \% 450 \mathrm{~V} 50 \mathrm{~Hz}$ capacitor. 110 mm long x 70 mm dia.
Price
£5.00
25073 Capacitor pack $-4 \times 1 \mu \mathrm{~F} 250 \mathrm{~V}$ ac (600 V oc) WIMA MKS4- R caps connected in series with flying leads. Useful
lor motor starter caps.
Price ... $\mathbf{E 2}$

Please Note:

The Free Gifts offered in the Main Catalogue are not available with goods from Bargain Lists.

Bipolar capacitors - these are useful in crossover networks. and were probably used with $\mathbf{Z 1} 760$ choke. $\mathbf{Z} 17868 \mu \mathrm{~F} 50 \mathrm{~V} 31 \mathrm{~mm}$ long $\times 12 \mathrm{~mm}$ dia.
Price ..
Price $40 \mu \mathrm{~F} 50 \mathrm{~V} 39 \mathrm{~mm}$ long $\times 12 \mathrm{~mm}$ d..
$2175880 \mu \mathrm{~F} 50 \mathrm{~V} 41 \mathrm{~mm}$ long $\times 16 \mathrm{~mm}$ dia.
Price 21759100 mmF 50 V 41 mm long $\times 16 \mathrm{~mm}$ dia
Trimmers

21400 Minlature trimmer, 3.5-13pF, PC mounting. 8 mm dia. Price 10/£1.00 100/6.10 K236 Miniature PCB mounting trimmer, 3-15pF Price.

GRI=ENWEID - TEL: (0703) 236363 FAX: (0703) 236307 COMPUTER, MODEMS

MORE DISK DRIVE BARGAINS
$280343.5720 k$ D/S 80 track hall height drive by YEDATA. Ex-equip, but guaranteed perlect.
Price
c20.96

3" Disk Drive + PSU

Amazing deal allows us to ofter these Amstrad units at this incredibly low price! Please note these are returns and are offered without guarantee. They are however complete with some info.
$\mathbf{2 8 9 4 9} 001$ tor Amstrad CPC464 (First drive, low density). Cased unit $280 \times 105 \times 70 \mathrm{~mm}$ with integral PSU. 18.00 28080 FD1 for Amstrad CPC464 (second drive, high density). Cased unit $280 \times 105 \times 70 \mathrm{~mm}$ with Integral PSU. $\quad \mathbf{2 0 . 0 0}$ 28081 FD2 PCW8256 second drive, high density chassis unit
$155 \times 95 \times 45 \mathrm{~mm}$.
$\mathbf{~} 10.00$ $155 \times 95 \times 45 \mathrm{~mm}$.
$\mathbf{Z 8 0 5 2}$ FDA PCW9512 second drive high density with special mounting frame. Chassis unit $155 \times 95 \times 45 \mathrm{~mm}$. $\quad \mathbb{1 0 . 0 0}$

28945 Micronet 12 text terminals. Top quallty kit by Sidereal Corporation of USA consists of 12° mono white screen monitor In cream case, and 117 key keyboard. Manitor is supplied with $\mathbf{Z 5 1 2 3}$ modem (neeas fitting) and has brightness and volume controls. On rear panel is mains inlet and power on/ oft switch, bat on/ ott switch heyboad socker parallel printer port and 2 RS232 ports. PCB inside has arailel primer por 2 RS232 pors, PCB inside has 6809 processor and 16 k of memory. Brand new units originally selling for several hundred pounds. porese 30

BBC ' ${ }^{\prime}$ ' SOFTWARE FINAL CLEARANCE

This has been cluttering up our atores for fer too long.

(sAll for more information, colour leaflets).

Micro Maestro - Comprises $51 /{ }^{*}$ disk + computer tape; 1 page handbook: C60 stereo cassette with backing iune o popular tracks like 'Ghostbusters', 'Chariots of Fire', and 'Superman'. Original Price ع17.06.

24333 Concert Pitch

C4.98
243348^{6}
C4.08

Music Master - Comprises microphone to attach to recorder + processing device; $5 \%{ }^{\prime \prime}$ disk: 12 page handbook. Original Price es2.78.
$\mathbf{2 4 3 2 5} 40$ track dlsk .. 4.98
14.98

Mupados Recorder Tutor - Comprises $5 \%{ }_{4}{ }^{\text {" }}$ disk: 38 page large format spiral bound handbook: C90 stereo cassette with 52 tunes. Original Price $\mathbf{C 3 0 . 9 4}$
2432840 track disk
67.08

24329 Ensemble Pack
c2.95
$\mathbf{z 4 3 3 0}$ Duet Pack c2.05
24239 Recorder tutor Classroom Ensemble Network pack for use when several micros are being utilised. Includes 2 disks, a casselte and book.

$\mathbf{2 2 2 4 5 4}$ Emulex Intelligent Host Adaptor. MSCP Compatible. Panel with lots of expensive chips, plus a very comprehensive 208 page handbook. Must have cost a fortune orlgInally. Our price ... $\mathbf{x} 30.00$ (Handbook only on approval if required; $\$ 10$ refundable deposit $+\S 2$ posi).
222455 Similar to above: Emulex MTO3 Controller. For intertacing SC51 hosts and controllers to a model TOC3309 $0.25^{\prime \prime}$ streaming cartridge tape drive. Handbook avallable as above
Price
c30.00
$\mathbf{z 0 0 1 0}$ Tape streamer. Tandberg TOC331G. Internal fitting (same size as $5 \%{ }^{\prime \prime \prime}$ disk drive). Takes OC600 tapes. Unsure of capacity - possibly 60 Mb . Does anyone know? Price

C250.00
$\mathbf{2 2 0 4 4}$ Q-PAK cartridge insert. SO100 Price
c20.00
Magnetic card reader head -used for detecting when credit card or slmilar is swiped. Made by DRH. Type no 01.635. No other info (but our technical expert is working on it)
Order Code 22121
Prices .. $100+£ 1.00$

29012 Memorex MRX IV $1 / 3^{\prime \prime}$ computer tape. 600 ff on 175 mm dia spool. 62508PI. In case, in sealed poly bag. List §7.49.
Our price
¢3. $8050+2.00$
222207 Disk pack COC 1204 16MB CMD cartridge.
Price
c20.00
$\mathbf{2 8 0 0 0}$ GNT3606 Tape/Punch station. Brand new in original packaging. This is a sell contained punch station for data egistration on 8 channel paper tape. 19^{*} rack mounting. Punching speed $75 \mathrm{c} / \mathrm{s}$; TTL parallel input. RS232. Can be programmed from $50-1200$ baud. Takes up to $8^{\prime \prime}$ roll. List price is $£ 1,997.55$.
c500.00

COMPUTER TAPES

$\mathbf{2 8 9 4 0} 2400 \mathrm{tt}$ of superb quality used $0.5^{\prime \prime}$ tape on 10° reels. 3250 CPI. Various manufacturers. Supplled in catrler. New they cost $£ 12.00$. Could probably be used as video tape we re checking this out. Meanwhile, why not buy a few reuls usetul as cheap 'wine' tor tying up garden plants etc!!
\qquad or come and collact 100 for CsO + VAT

MODEMS

28006 Buzzbox DSL 21 CCITT V21 modem (300 baud) made by DaCom Systems
Complete, new and boxed modem suitable for use with micro computers with RS232C or RS423 intertace. Comes complete with external PSU, 5 pin DIN plug, and instructions. Very simple to use. only 4 wires employed V24 103 (Tx data). 102 simple to use. only 4 wires employed V24 103 (Tx data). 102
(Ground), 104 (Rx data), 109 (Carrier Oetect). (Grownd), 104 (Rx data), 109 (Carrier Oetect).
Note no auto dial therefore a lelephone is required to be usec with this modem. Originate and answer mode selectable. $\mathbf{2 4 . 9 5}$ 28937 One to One 21/23 IAD CCITT V21/23 auto answer modem 300, 1200/75, 75/1200 baud full duplex, 1200 baud half duplex Tx or Rx. Mace by Master Systems Lid.
Complete, new and boxed modem suitable for use with micro computers with RS232C Interfaces. Prolessional quality modem leaturing full auto dial, last number redial, selectable baud rates speed conversion to allow DTE/DCE communications to proceect at an aparent 120011200 baud all functions operated by control charaters sent from DTE) lo answer, internal bell or CCITT slandaros swith DTE ulo aner, ind many other uselul facilies. Comes with comprehensive 76 page manual, external power supply and 25 pin Din standard OCE connector

5123 Modem. Fully functional brand new and boxed Standard $160 \times 100 \mathrm{~mm}$ Eurocard with DIN41612 connector. Only 300 baud, but at the price we're asking represents superb value for moneyll Supplied complete with wiring detalls - needs $\pm 12 \mathrm{~V}$.
Price
Only 14.98

Miracom Technology, renowned manulacturers of modems have discontinued one or two models, and we've purchased their remaining slocks and thelr component inventory lo these units.

Dataspectrum

5138 Modem serial interlace and soltware package. Plugs directu into spectrum edge connector. Baud rates 1200/ 75. $75 / 1200,300 / 300$. Allows use of Prestel, Vlewtext user-user comms with suitable modem. Includes Prestel telesoltware downloader. Main menu options include: Transmission Forma: selection, Prestel ID storage. Viewdata mode entry. Teletype mode entry, Frame processor, Mallboz edilor. Save. Complete and new with cassette and user guide in plastic case. Only c7.00

Databeeb

25130 Intelligent comms ROM. Complete comms firmware allowing Prestel, Viewiext. Bulletin Board. Telex, Database, user-iser comms with a suitable modem on BBC computer. Allows baud rates of $1200 / 1200,1200 / 75,75 / 1200,300 / 300$, $600 / 600$. Full fitting instructions and user guide supplled in plastlc case.

Only 57.00

Maximiser

2rese Complete unit with power supply and comprehensive instructions. Designed to add the facilities of error correction. speed buttering, encryption (optional) and a battery backed data store with a printer port to existing modems capable of speeds up to 2400 baud. Easy to use. (Send I5 returnable deposit for user manual for further E20.00 2305 Encrypler unit for above. Supplled tree with maximiser. otherwise (no data). $\$ 2.00$

Apple Card

25140 interface to modem, bul no info. Card $140 \times 70 \mathrm{~mm}$ has 25 iway edge plug. PCB fitted with lead +25 way D plug. Price.
c8.00
If you like what you see in this supplement make sure you don't miss future bargains only £2 (UK/ BFPO; £4 O'seas) for the next 6 issues - see order form for details.

CRIEENMEND - TEL: (0703) 236363 SPECIAL OFFERS

SPECLAL OFFER ON LARGE	
ELECTROLYTICS	
High ripple ALT20A cans by BHC at less than a quarter distributor prices!	
$2434510,000 \mu \mathrm{~F}$	OHF $\quad 40 \mathrm{~V} \quad £ 2.00$
$2434615,000 \mu \mathrm{~F}$	00\%F 25V ¢2.50
Qty Prices (+ Vat):	
24345/6 100 + $1.501 \mathrm{l}+.75$	
SPECLAL OFFER ON SWITCH MODE PSU	
Astec Model AA12531. $115 / 230 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ input.	
Size $160 \times 104 \times 45 \mathrm{~mm}$.	
Panel partially enclosed in steel case. Outputs: 5V@5A; 12V@150mA.	
A. 12531	£6.95
$100+3.50+$ VAT	
100+3.50+VAT	

SPECLAL OFFER
ON SWITCH MODE PSU
Astec 65 watt model BM41012
Astec 65 watt model BM4 1012
$115 / 230 \mathrm{~V} \quad 50 / 60 \mathrm{~Hz}$ input via $115 / 230 \mathrm{~V}$ $50 / 60 \mathrm{~Hz}$ input via suppressed, switched and fused IEC inuet. Fult case enclosed in steel case $175 \times 135 \times 6$ mun. +5 V 3.75 A , $\begin{array}{lll}\text { on socket: } \\ +12 \mathrm{~V} & 1.5 \mathrm{~A}, & -12 \mathrm{~V} \\ 0.4 \mathrm{~A}\end{array}$

BM41012
$£ 14.95$
$100+£ 11.00+\mathrm{VAT}$ $1 k+88.00+V A T$

SPECLR OFFER
 ON 25W D SOCKETS

PC right angle mounting by Souriau .

	$100+$	$\mathbf{1 k}$
DB255RA	0.25	.20

All + VAT

SPECLAL OFFER
ON 40V 2A TRANSISTORS

TO92 case by TI. Distributor price on $100+$ is .21 .
$100+1 k+10 k+$
TIPP31 NPN . 07 . 04 . 03 $\begin{array}{llll}\text { TIPP32 PNP } & .07 & .04 & .03\end{array}$
(Oty prices exclude VAT)
Pack of 4 of each type $£ 1.00$

SPECIAL OFFER

ON RESISTORS

Huge parcel of resistors mostly bandoliered in boxes of 1000,2000 or 4000 or on reels of 5000 . In order to get a good selection, you need to buy a lotl Ref K5529.

25,000
100,000
250,000
1,000,000
£ $24+$ VAT
£170
VAT £500 + VAT

SPECIAL OFFER
ON TANT BEADS

Top quality tantalum bead capacitors by AUX, bandoliered.
$2.2 \mu \mathrm{~F} 25 \mathrm{~V} 5 \mathrm{~mm}$ pitch $10 / £ 1$ $100+.04+$ Vat $1 \mathrm{k}+.025+$ vat

SPECIAL OFFER ON 25A RECTIFIERS

Tag ended 200 V bridge rectifiers by IR normally costing $£ 4$ each.

Our low prices:
26MB20A 25A 200V £1.50 $100+0.75+\mathrm{vat}$ $1 \mathrm{k}+0.55+\mathrm{vat}$

SPECLAL OFFER
 DN 5A REGULATORS

These high current devices normally sell for around $£ 10$ each.

Our low prices:
$\begin{array}{lll}\text { LAS1905 } & 5 \mathrm{~V} & £ 3.00 \\ \text { LAS1912 } & 12 \mathrm{~V} & £ 3.00\end{array}$
$100+2.00+$ vat
SPECIAL OFFER
ON $2 k \times 8$ SRAM's
Low power version of this popular RAM by Hitachi, normally about $£ 2.50$ each.

Our low prices:
HM6116LP-4
$£ 1.00$
$100+0.60+\mathrm{VAT}$ $1 \mathrm{k}+0.40+\mathrm{VAT}$

[^0]

Angled solder plise PCE mounting plugs
$\mathbf{Z 1 8 0 1} 15$ way
Z1502 25 way ... 50p
Angled solder pins PCB mntg sockets
Angled solder pins PCB mntg sockets
Z1504 15 way...
Z1505 25 way

Wire wrap plugs
Z1508 25 way
2150937 way

Solder bucket plugs
$\mathbf{2 2 3 5 4} 9$ way

Solder bucket sockets
Z1515 15 way ... 50p

Z2001 50 way 'D' IDC plug
Price
Z2002 50 way 'D' IDC socket
Price
z2003 37 way 'D' cover plastic

22003 37 way 'D' cover. plastic 80\%
2200525 way ${ }^{\circ} D$ ' PC right angle mounting plug
Price
$\mathbf{2 2 0 0 6} 25$ way 'D' PC right angle mounting socket.
$50 p$
sop
$\mathbf{Z 0 3 3 4 0}$ IDC 15 way D sockel.
Price
70p each
203341 IDC 15 way D plug. $25+0.42100+0.32$ Our catalogue price is $£ 2.72$. but we ve rather a lot at the noment!
Clearing at
2 for C1.00
$25+0.35100+0.25$
220589 pin ' D ' plug. Aight angle $P C$ mounting
Price
30p
20579 pin 'D' socket as above, but with captive nuts
Price
$40 p$
219709 pin D plug. right angle PCB mounting by Sourlau. Gold plated pins.
Price

$3 / 41.001000 .20$

D TYPE 25 WAY PLUGS

$\mathbf{z s 0 8 0}$ Right angle PCB mounting in plastic housing by Amp. HDP-20. Gold plated contacts
Priceeck of 24 C $5.00100+.10 .1000+.06$ Z5081 Right angle PCB mounting metal by Eurosab. EDA25PC Gold plated pins and contacts
Price ……202 of 25 Cs.00 $100+0.10 \quad 1 \mathrm{k}+0.60$

8144 Pack of 1025 way ' D ' hoods with clamps 8 screws

 C1.80
PROFESSIONAL CONNECTORS

High quality plugs and sockets as used on military equipment at a fraction of normal prices
(a) McMurdo Fed Range.
(a) Mcilurdo Fed Range.

These are red nylon connectors with a low insertion/withdrawal force. Current rating 5A. Op voltage 800 V . Pitch 4.7 mm . Sockets have floating bushes, 90 mm lixing centres. [P in brackets
$\mathbf{2 5 0 7 7} 8$ way socket (5.00)
$\mathbf{2 5 0 7 8} 16$ way socket (7.92)
2507816 way socket (7.92).
2507932 way sockel (17.48)
(b) McMurdo Micronector.

2214841 way socket arranged in 2 rows of 14 and 1 row of 13 sockets. Type MS 141.
Price.
(c) Ampherol Round Mullipin connector $\mathbf{~ 2 . 0 0}$

22140 126-215 4 way socket. cable mounting with cover
Price ... C1.00
22141 126-216 5 way plug. cable mounting (no cover).

2214216514 . 11 way plug. chassls mounting

22143 165-12, 12 way socket chassis mounting
c1. 80
$22144 \quad 165-25 \quad 24$ way plug. cable mounting.
c1.50
Price ...
c2.00
2248 165-31 14 way plug. chassis mounting.
Prica C1.80
(d) Amphenol IDC PCE mounting pluge. Gold plated with -
22149 stralght 50 way
22180 right angle 60 way
C1.00

Edge Connectors

5508443 way double sided edge connector, 0.156 (4 mm) pitch. PC mounting. Gold plated contacts.
PriceBor of 11 ¢4.00 $100+0.15$ 2808340 way IDC ribbon cable terminating card edge connector. Gold plated
Priceack of 10 c2.00 $100+0.10 \quad 1 \mathrm{k}+0.06$ 2508511 way single sided PCB mounting edge connector. 0.1 pitch. Sample tree

Price................ Peck of 250 e5.00 $1 k+0.01510 k+0.01$
2218429 way Double sided 0.1 phich gold plated edge connector (pin 5 mtssing) for right angle PCB mounting clipped onto plastic bracket.
Price …............. C1.00 $\quad 25+0.60 \quad 100+0.35$ 22185 Back 10 back 0.1 pitch card edge connector. The plastic moulding has room for 12 double sided contacts, but only numbers 3, 4, 5, 6, 7, 8, 9 and 10 are flted Gold plated Priceeck of 10/ ©1.00 $100+0.05$ 22158 PCB rlght angle mounting, card edge connector. 15 way double sided with pin 6 mlssing . Price Pack of 10/ $\mathbb{1} .00 .100+0.05$

22050 Edge connector. 0.1 DS 31 way. PC mounting
Price ..
22051 Edge connector. 0.1 DS 25 way. Right angle PC mounting,
Price
1.50
$220130.156^{\prime \prime}$ double sided 18 way edge connector, DP £2.20. Our price
21895 Edge connector by Souriau 40 way double sided 0.1 pitch with solder tags. Gold plated for extra reliabllity. List price of these Is over $\varepsilon 7$
Our low prices ane........〔2.20; 10 $+\mathbb{C 1 . 3 0 7} 100+c 0.70$
$\mathbf{2 2 3 1 3} 12$ way DS edge connector for C64 computers (0.156")
c1.00
22160 PCB mounting gold plated edge connector with centre flxing hole giving 2 lots of 18 way DS contacts. Pitch 0.15.
C. 1.00
$\mathbf{2 3 4 4}$ High quality 2 pin + earth socket, cable mounting. Made in Germany type no STAK20, rated 250V $540 C$. 1644 C

25169 Above socket with 2 m 3 core 6A mains lead fitted.

Z2345 As 22344 but chassis mounting00
$\mathbf{z 2 3 4 5} 2$ pins + earth cable mounting plug to fit $22344 / 5$
223452 pins + earth cable mounting plug to fit $22344 / 5$.
Price.

2759 BNP plug (it says on the packet 101/BNP/PTFE/ 7C) so if you're desperate for one of these. we've got them!
 2782 Transistor socket. 4 pin TOS PTFE with gold plated pins. Extremely high quality.
Price
$6 / 51.00$

2759 IDC plugs. 40 way with lugs for mounting once cable has been connected.
Price

se42-26 26 pin boxed header plug 3/ ©1.00 $100+0.15$ s.42-40 40 pin boxed header plug s/ $<1.00100+0.15$

2411 Terminal housing 0.1^{\prime} pitch. 2 way
Price 10/30p 100/1.75 1000/13.00 Z410 Shoring link $0.1=$ oitch Price10/30p

10/30p $\quad 100 / 2.60 \quad 1000 / 17.40$

2155112 way PC mounting socket. 2 rows of $6.0 .1^{\text {" pitch }}$ both weys.
Prices...
$10 / £ 1.00 \quad 25+0.07 \quad 100+0.05$ 2155212 way DIL header plug 0.1 pitch. with stand off Used for connecting 2 layers of PCB. Length between spacers (ie gap between boards) 50 mm . Or just use 21551/2 as an ultra low cost 12 way plug and socketl Príces 10/ £1.00 25/ 1.75 100/5.20 2138110 way PCB mounting single sided low cost edge connector, 0.1 " pitch
Prices ... 10/£1.00 100/6.10 2138210 way commoning block. 2×5 way 0.1° pitch by Amp.
Prices
10/£1.00 100/6.10

Molex headers $0.1^{\prime \prime}$ pitch. Ideal for Veroboard etc. at amazingly low prices.
$4030-03$ pins.
Price10/60p 100/3.50 1000/26.00
2165136 way ilght angle header plug, single 0.1 pitch. gold plated. List f1. 20
Prices .. 40p 10/2.60
Prices ... 31 way 0.15 pitch, single header plug. gold plated.
2165231 way 0.15 pitch, single header plug. gold plated.
Prices ... 6/ £1 . 00
Prices6/ 6/ £1.00
21548
32 way turned pin header plug. gold plated. List 2154832 way turned pin header plug. gold plated. List
C2.40 e8ch.
Ourpricms 80p $\quad 10 / 5.20 \quad 100 / 39.15$ Our prices 80p $\quad 10 / 5.20 \quad 100 / 39.15$
2157110 way. 0.1 pitch header plug. gold plated. Lisi 51 p. 2157110 way. 0.1 pitch header plug. gold plated. List 51 p.
Our prices........................ 20p $10 / 1.30 \quad 100 / 8.70$

270328 way double row inght angle pin header (fits 2702)
Price .. 3 for \mathbf{E}
$\mathbf{2 1 8 6 3}$ As above but 33 way 2 fortt $100+0.35$
270228 way edge plug. fits Spectrum edge connector
Price
$60 p$

22018 Pis header 36 way right angle single row. Notched to allow easysubdivision
Pack of 2
c $1.00100+0.25$
$2438990^{\prime \prime}$ PCB socket connector 10 way 0.1 pitch. DP 60 p. Made by Molex.
Price \quad Pack of $10 / \mathbf{C 2} .00100+0.14 \quad 1 k+0.09$

Molex Connectors

These are 36 way (9×4) sockets $38.5 \times 22 \times 20 \mathrm{~mm}$ intended for PCB mounting, but could be used as a cheap form of breadboarding. The sockets are 1.8 mm dia on an $0.166^{\prime \prime}$ pitch (6 to the Inch) and if component leads are doubled ove they are a tight fil. Avallable in 3 colours, blue, yollow and white Also 5×3 way green socket on 3.5 mm pitch w 307 Blue 36 way pack 18 aluing 288 polnts. 24387 Blue 36 way pack of giving 288 polnts.
Price
24388 Yellow 36 way; as above
Price
z4389 White 36 way: as above.
Price
$\mathbf{2 4 3 9 0}$ Jumbo pack. 50 each Blue, Yellow and white
Price.
4391 Green 15 way; pack ol 20 glving 300 points Price
We have about 8,000 allogether and would clear the lot for c200.00 + VAT

2172216 pin SIL socket
Price.
5/ 11.00 2172316 pin SIL header plug
Price.
10/E1.00
22159 Turned pin SIL socket, 7 way notched so can be easlly broken into any number of ways. Gold plated.
Price Pack of $250 ؟ 4.00$ Box of $3200 £ 25,00$
2808814 way 0.1 locking socket. Insert flexlble wiring and push on clamp to lock Into position. Sample free.
Price Pack of $1088 p 100+0.041 k+0.02$
2200424 way centronics style (IEEE 488) socket by 3M. IDC List C5. 81
Price
c2.00
Z2088 6 way telecom type socket, PC mounting (as used with some computers)
Pack of 3
c1.00
219909 pin plug, circular. 8 plns around the edge, the 9 th is thicker centre pin. Made by Contact. Very solid housing. Price 3 for E1.00 278726 way transition connector, IDC type

$\ldots . . .10 / £ 1.00$
2211434 way IOC card edge socket. Normal catalogue price £3.60.
Speciel surplus price2/21 $100+0.25$

217145 pin 240°.
Price.
100/ 56.00
1000/26.10
217156 pin 100/ $£ 10.00$
 Pack of any $10 \mathrm{£1.65}$; any $26 £ 3.50$; any $100 £ 10.45$ 218685 pin DIN 180° socket. Panel mounted by means of a press on clip at the back
Price ...10/£1.00

22086 8 pin DIN socket. PC mounting.

Price

6 for Cl .00
2202514 way DIN type line sockets with locking sleeve
C1.00

CEE22 Connectors

21799 Belling. Lee L2723 fused switched mains inlet (OP on $/$ off rated 6 A). Needs cut out $60 \times 28 \mathrm{~mm}$. Clip fix. Their pitce [3.76. pite E 3.76£1.00 Exremaly uselul for 2692 Fused mains inlet/ outlet. Extremely uselul for equipment - allows linking' between units, thus avolding numerous mains leads. Normally costs around £2.50. Our Price ... 1.00

Appliance Inlet with Single Pole Fuse
J059..
470
2598 PCB mntg 6A IEC power plug by Switchcraft. Brit ish made ..50p 21867 Shuttered IEC socket. $6 \mathrm{amp}, 3$ pin. clip fix. Neect hole $28.5 \times 25 \mathrm{~mm}$.
Price
3/ $£ 1.00$

Horizontal appliance Inlet
$J 055$ Horizontal 6.3 mm Faston
23p 21843 As J055 (page of cat) but vertical mounting appliance Inlet. 6.3 mm tabs Price.

4/ 21.00
21844 Vertical chassis mounting IEC plug. solder tags
Price ..en 1 .00
J056 6.3mm Faston tabs - clip on ...t....................... 31p
RFI Suppressed Mains Inlets

24189 Belling Lee L2136C/L mains inlet filter plug winh 1/4" tabs. 1A rating ..00 22027 Suppressed CEE22 inlet by Shatmer. Thls is a high current version, rated 10A. Connection by $0.25^{\prime \prime}$ tabs at right angles to body. Screw fixing.
Price te.00
54.00

$\mathbf{2} 2029$ US style mains 3 pin plug. Price
c1. 50 22030 Matching 3 pin socket. Price
1.60 C1.00 $\mathbf{2 2 0 3 1}$ Continental style 3 pin plug. Price

22173 Mains plug and socket. Bulgin P429 3pin 1.5A chassis plug and 3 pin fight angle cable mounting socket. current price of these two is around $£ 2.50$. Our epeciak low price (per pair): \quad c1.00 $25+0.65100+0.50$

Electrical Accessories

MK parts available as follows
$\mathbf{2 8 0 1 0}$ Single gang unswitched 13A socket with 9 mm face plate
Price
250115215 45A DP control switch with lamp List C8.45.
Our price ..
250125045 Terminatlon unit - will take $2 \times 10 \mathrm{~mm}^{2}$ conducto ist £4.04
Our price

Terminal Pins

21869 PC mounted header pin requires 2.4 mm hole. Pi dia $2.25 \times 12 \mathrm{~mm}$ above board. Slighly corroded
Price
50/ $£ 1.00$
21870 Crimp sockets for above pins
Price.
25/ $£ 1.00$
2522 AMP Terminal Pins on carrier strip $0.2^{\prime \prime}$ pitch. Bit mall for Vero but OK if you're making your own PCBs. Sample free
Price...200/£1.00 1000/3.00 reel of 10.000 / 26.10 22026 Cambion PCB pins. High quality double sided. Needs 1.8 mm hole.
Packe of 1000
22170 PCB pins - double sided for 0.15 pitch perforated board. 1.3 mm dia, 19 mm long. Packs of 1000 DP 66.62. Our price

218971 mm plugs. Belling \& Lee L1944 type in Red, Black White. Blue, Green and Yellow. 25 of each colour total 150. Price for 150
22167 Single terminal posifor 1 mm plug
Price.......................... of $100 / \mathbf{1} 1.00$. $\mathbf{k}+0.05$
221886 way terminal socket for 1 mm plug.
Price $25 /$ of 1.00 . 0.01
240703 way socket 4 mm pitch by amp.
Price..
10/ 11.00

PCB Terminal Blocks similar to our range on Page 35. Al 5 mm pitch.
$\mathbf{Z 1 9 9 3} 10$ way $90^{*} \quad$ 2/C11 $100+0.25$
2195610 way 90
2/C1; $100+0.25$

Crimp Connectors

Supplled to us on reeis, we have the following types 219883.2 mm receptacle, brass. Pack of 50 $\mathbf{z}_{1080} 5.0 \mathrm{~mm}$ receptacle, brass. Pack of 50 21990 \%" receptacle, tinned. Pack of 30
Pack of $1 /{ }^{\prime \prime}$ locking receptacle tinned
Pack of 80
$210921 /{ }^{\text {" }}$ blade, copper (for use with above
21546 Crimp terminal, box type for use on header described below. Gold plated.

IC SOCKETS

Wirewrap DIL Sockets

Top quality at give away prices.
2189114 way tinned
Less 25% way gold plated.......
$\mathbf{2 1 1 6} 40$ pin wirewrap socket. Usually 126p Spectal pice on surplus slock2/C $1.00 \quad 100+0.25$

DIN41612 Connectors

2201596 way right angle PC mounting plug
Zur price 96 way socket (matches above).
Our price
2201764 way right angle (AC) PC mounting plug.
Our price
21982 DIN4 1612 mini $1 / 3$ B socket. $32(2 \times 16)$ way. DP $£ 2.97$.
Our price
©1 $100+0.35$
26082 OIN 41612 right angle plug 6AW (A and B) Gold plated contacts.
Price 50 cto.00 $250+0.101 \mathbf{k}+0.06$

21717 'QIKEJECT' low extraction force IC sockets designed by Vero. 64 way. Price.

 allowing IC's to be in close contact with PCB. Rows of pins are held on a carrier which is removed after soldering In place. This means that pins could be used individually if required. Jermyn's price $£ 1.02$

2208714 pin turned pin sockets, like 21554 in Spring Supplement (p14).

4 for Cl .00 $100+0.12$

2208640 pin DIL header plug, gold plated. Normally $£ 1.80$
Price .. of 2 for $£ 1.00$ $100+0.30$
22355 Exiremely high quality 14 pin DIL header plug. gold plated, turned pins.
Price .. 3 for $£ 1.00$

21741 High quality 10 pin chassis socket and cable mounted plug. gold plated contacts. Made by SATO, 30 mm FC. Plug $41 \times 30 \times 13 \mathrm{~mm}$.
Price
$£ 1.50$
PC Mounting Sockets

2586 Phono socket. PCB mounting.
Prices10/ £1.00 25/ 1.75 100/6.10 25762.1 power socket, chassis mounting.

Prices 10/ $=1.00$ 25/1.75 100/6.10 1k/ 43.50 217482.5 mm power connector line piug. Fits PO64: Price ...3/ $\mathbf{\text { 3 } 1 . 0 0}$

21495 Line socket for old style P.O. 4 pole plug. Price ..

21367 Right angle. DIL socket for mounting 7 seg displays (takes our MAN6740 dual digit). Extremely hig h quality. Prices $10+0.26 \quad 100+0.17$ Z1402 11 pin relay socket, solder pins. Normally 58 p Prices 10/£3.00 100/17.40 1000/ 130.50 Z1405 Flush mounting coax socket with plastic surround. Normally 32p.
Prices 10/ £1.50 100/8.70 1000/60.90 21555 CRT sockeL. 10 way moulded green plastic.
Price .. 4/ £1.00

2165711 pin relay holder, screw base as
Their price $£ 3.10$
Our 叩rice...00
2350 Amp 50 way panel mntg skt, IEEE 488 type $£ 9.00$

21557 'F' socket, singie hole make low cost RF connector
Price .. 4 / 1.00

BNC Connectors

21399. BNC socket. Single hole chassis mounting by Greenpar. Very high quality in sealed packets. Price .. 2 /£1.00 21835 BNC 75R Crimp plugs by Greenpar. Normally around c1.50 each.
Our Price ... 3/ £1.00

22023 SMC screw coupling elbow plug by Greenpar. Price 22024 SMA screw coupling PC mounting right angle PCB socket. List price £6.66.

$\mathbf{x 1 0 8 7} 75 \mathrm{R}$ Sealectro miniature RF connector type 50-107-0600. List price £3 +
Our price
Z2113 ENC free plug. DP $\$ 1.66$.

Plastic Boxes

These are fine quality $A B S$ black boxes:

25088 Individually packed, $112 \times 62 \times 31 \mathrm{~mm}$. Fixing by 4 screws (supplied) into threaded inserts. Also 2 lengths of PCB spacer included
Only

25126 Conductive plastic storage box $230 \times 128 \times 20 \mathrm{~mm}$ complete with antistatic foam. Same as Farnell 175-838. Thelr price $£ 5.98$.
Our low price 25127 Small version of above. $91 \times 65 \times 20 \mathrm{~mm}$ like Farnel 175-840. Their price £1.40.
or Cl .00
25125 Potting box PB105B $75 \times 50 \times 35 \mathrm{~mm}$. Llst price 48 p. Our Price 4 for $£ 1.0025+0.14100+0.09$

25142 Vacuum moulded case $225 \times 175 \mathrm{~mm}$. Ideal for sloring sottware/ audio cassettes, elc. $\quad 3 / ๕ 1.00100+0.22$

Microvision Case

2557 Sinclair microvision case. Complete case with lens and aerial for all inclusive price of \quad <2.00 (These cases are brand new, and do not contain any electronics)

METER CASE

[^1] smaller models.

Keyboard Enclosure

Jos3 High quality keyboard enclosure $550 \times 225 \times 70 \mathrm{~mm}$ with black aluminium mask. Top professional quality -made by Data Packaging. Normally $£ 38.69$.
Our price

We've just purchased a parcel from a training centre that's closed down. There was a quanthy of test equipment and components. including the following

28932 Limrose Compukit 2 IC patchboard, model CK2 28032 Thls is a mins powered lest and development unit $290 \times 185 \times 85 \mathrm{~mm}$ for educational use. It has 1216 DII $290 \times 105 \times 8511$ lo sockets with all contacts accessed via terminal pins; 10 5 mm red LED's driven by a transistor circuit; 2 clocks; 5
switenes and a 5 V power supply. These are currently listed al Switches and
£184 each.
Our epecial price to you is

Burglar Alarm

SB17 Prevlously featured in our main catalogue al ©2.50 we've bought up all our supplier's remalning stock. One hall houses $2 \times A A$ batteries and loud buzzer operated by reed switch and is screwed to the door. The other pan contains a powertul magnet and is screwed to the frame. Alarm sounds when door is opened.
Price
c 1.50

Please Note:

The Free Gifts offered in the Main Catalogue are not available with goods from Bargain Lists.

Optical Shaft Encoder

2345 Optical Shaft Encoder. Made by sharp. Ideal wherever the position or speed of a rotating shatl needs to be know - le machine tool controt, robotics etc. Supplled with comprehensive data sheet. Size of module $46 \times 33.5 \times 20 \mathrm{~mm}$; size of disc 28 mm dia. Bush with grub screw will take a 4 mm dia shaft. Disc has 96 slots. DP £48.18.
Our Price
Data sheel avallable separately

$\mathbf{2 4 1 3 8} \mu$ Slot. ' T ' connector (1 female, 2 male) for the Specirum enabling 2 peripherals to be connected al one time. Further μ slots can be added allowing more peripherats to be added. New and boxed.

24139 As above but skeleton version - no plastic case.

24081 CB Aerlal Eliminator, enables ordinary car radio aerial to used with CB set. Black metal case $75 \times 70 \times 30 \mathrm{~mm}$ cotains $2 \times 500 \mathrm{pF}$ trimmers 2 switches, coll $75 \times 70 \times 3 \times 10.5 \mathrm{~m}$ teads r rom unt connect to CB rig and car R's etc. $2 \times 10.5 \mathrm{~m}$ leads from unit connect to CB rig and car radio. Socket on unit takes car radio plug, thus enabing either car radio or CB to be used at the flick of switch. These
were orlginally selling (during the CB boom) for around $£ 7.95$. We've gol 3000 to clear.
Prices
c1.00ea 100/0.52

$2515 s$ Min Powar Stereo using $2 \times$ La4140 chips and 6 transistors giving 600 mW output Amp. Neal silver cased unit $88 \times 58 \times 68 \mathrm{~mm}$ with LED on front for use whith personal stereo Inout lead supplied. Just add $4 \times$ AA batteries (supplied) or 6 V PSU and connect speakers! Special low price

24284 Converter S5/8-RS232 box $88 \times 62 \times 24 \mathrm{~mm}$ with small panel inside contains socketed ICL 232 chip (replaces 1480 1) $1488 / 89$) and $74 \mathrm{HC14}$. Coming from box are 2 leads: one is Din plug. Chips alone cost $£ 9.00$!

CRIENWEID-TEL: (0703) 236363 FAX: (0703) 236307 FINISHED ITEMS

24071 MAP LIONT. Magnetic map ilght with magnifier. This useful accessory is fitted wilh a cigar plug and has a curly cord extending to 3 m . The white plastic housing for the lamp has an integral magnet and a swing-out powerful magnitying lens.

3 15 VEROBLOCKIT

This discontinued kit give excellent value for money verobloc, aluminium front panel and design pad. Price c8.98

2652 We've lound a couple of hundred more coin mechs these units were installed in the cream dispensers we had a year or two ago and were extremely popular. Made by Coin Controls, this unit will accept various size coins by simple adjustment of 4 screws. Incorporates various security leatures - magnet, bent coin rejector eic. Microswlich rated 5 A 240 V . Front panel $115 \times 64 \mathrm{~mm}$. Depth 130 mm . Normally £12.

24347 CB Converter. We had some of these a year or two ago and they went like hot cakes! it's in a neat case $108 \times 68 \times 44 \mathrm{~mm}$ with a drilled mounting bracket for installation. By simply connecting the power leads, plugging your aerial into the converter and feeding output to your AM radio you have the facility to fune through channets $1-40$. A rawich is litted to the lront panel so the unit can be by passed. swich is fitted to the front panel so the unit can be by passed.
Comes complete with box whinstructions.

SBE CAR SPEAKGRS. 4^{*} air suspension unit with centre coaxial iweeter and crossover. All black plastic cabinet Shell or door mountiny
Power nom
Power max,

Sizedance
Siker
4Ω
4Ω

Size of speaker
Dims .. $120 \times 90 \mathrm{~mm}$

28884 Acoustic coupler for use with Liberator. Made by Sendata. 700 F series. One end has PCB with lots of chips plus $4 \times$ AA Nicads to power. Other end has socket to take mains power supoly (supplied). Also included is communications cartridge and a comprehensive 46 page manual New

28044 As above but without PSU00

SB3 VIDEO HEAD CARE KIT: Double ended head tool. Snap-in inspection mirror. Three applicator arms. Price
c 1.00
Have you missed the Bargain of a lifetime because you weren't a Bargain LIst Subscriber? Don't miss out next time, subscribe now! li's only s 2 for the next 6 issues, all sent with a reply pald envelope at approximately monthly intervals.

28860 Floppy disc storage boxes. The only problem is they are for $8^{\prime \prime}$ discs I Beautifully made locking boxes with clear lids and cream base. Complete with plastic dividers. holds 90 discs. Size $250 \mathrm{hlgh} \times 240$ wide by 350 deep. (List £40.00)
Our Price........................t..................................... £14.00 24154 Discs for above box. BASF Flexydisc SS/OD in packs of 10 (List $£ 32.00$) ... $£ 9.00$ $\mathbf{2 4 1 5 5}$ As above but DS/DD (list £37.00) £12.00

28873 Industrial compressed alr "cyclone" moisture trap and filter.
Moisture trap works by generating a chamber full of circulating alr which centrituges out molsture droplets and particulate matter. A scintered brass filter removes any remaining particles. Max pressure 250 psi (16 BAR) $1.5^{\prime \prime}$ BSP mitings.
Height 250 mm ; Length 200 mm ; Width 100 mm .
Price .. Reduced to $£ 17.08$

CAR ALARM

This is quite a sophisticated little circuit, built onto a PCB $75 \times 35 \mathrm{~mm}$ with large (45 mm dia) plezo sounder attached. There's also a trembler strip which, when moved activates the alarm. Powered by a PP3 or the car battery, the only other connection requifed is to a switch. Atter switching on there is low bleep for 15 seconds to indicate the car is alarmed. If it is then tampered with. the piezo sounder emits a high level tone.
Order code
28000
Pricellent value Es.98 $25+3.00$

BATTERY TESTER

25113 Neat unit measuring only $52 \times 54 \times 23 \mathrm{~mm}$ that will check a variety of batteries - AAA AA, C, D, PP3 and watch batteries. Meter shows GOOD. SUSPECT and REPLACE. Only

28024 Hi-res mono monitor with $9^{\prime \prime}$ screen by Matsushita TTL input. 12 V operation. Uncased. Supplied with connection data and circuit dlagram. Only a tew avallable be quick!
Price $\mathbf{2 5 . 0 0}$
28025 CRT's for above monitor Type M23/E IGRN. . 85.00

28872 Alr pressure. regulator with motor drive. This unit consists of a strong steel case $(175 \mathrm{~mm} \mathbf{W} \times 250 \mathrm{~mm} \mathrm{~L} \times$ 100 mH) which is sultable for wall mounting. Air inlets and outlets are fixed to the bottom ol the base and fit $1 / 1 / 3^{\prime \prime}$ olives. inside there is a pressure regulator (between 100 and 2 psi) max Input pressure 150psi. The regulator has one alr output leading to the outlet, another leading to a pressure gauge (by Budenberg) reading to 100 psl . Size: 65 mm dial. The motor drive consists of a 250 rpm (a 50 Hz motor wired for 100 vac use (wirable for 220V). Fixed to the motor is a $500: 4$ reduction gear box. the output shaft of which is connected to the regulator adjusiment screw.
The motor is stopped between two limits by micro switches. Meight of motor and regulator 190 mm .
Pric.
Reduced to 229.05

The 1992

GREENWELD

Catalogue is out now! 132 pages of electronic and modellers supplies.

Only £2 (UK/ BFPO; £4 O'seas)

ORDER NOW!
See order form for details

CAMBERA BONLANZAG

Job lot of returns just arrlved, offering the amateur photographer a bargain buy in $110 \& 35 \mathrm{~mm}$ cameras. We've been asked not to mention the manulacturer's name. but it's well known for tis equipment and avaliable in all photographic and chemist shops (Boots) etc. There are a number of different models. but to simplify matters we've grouped them into 4 maln types:
(a) 110 mm manual: (D) 110 mm motor driven: (c) 35 mm manual. Atl are complete and inlact and look OK, so the laults (it any) are probably minor. Because they re so cheap. you can alford to buy 2 or 3 - we're sure you'll be delighted with the value we re otteringl - but please do remember these are returns and are sold without guarantee.

25028110 mm Manual models include 110LF and 110 TF. many have buill in flash.

$\mathbf{5 0 3 0} 35 \mathrm{~mm}$ Manual. Models inciude 35 HL , 806, 35CT. DL10, OL7. Most have built in flash

〔4.50 ea 5 for $\$ 18.00$ 25032 Broken cameras. These have parts missing. A parcel of 6 assorted all 35 mm Including manual, motor driven, autotocus. iwin lens types.
Price

Another job lot have just arrived. One new type in this batch is a 35AFX auto focus motorized camera with pop up tlash. These look perfect. but are relurns. so sold without guaramiees shop price $560+$
Order Code 25128
Our price ce.so

Flash Units

28129 Flash unit Smail PCB $40 \times 25 \mathrm{~mm}$ with Inverter circuit, and 220 uF 350 V capacitor and flash tube and reflector. Price only

XENON FLASH TUBES

$\mathbf{Z 1 6 5 5} 56 \mathrm{~mm}$ long $\times 3.5 \mathrm{~mm}$ dia. No other data at present. Price
Z1656 40 mm long $\times 3 \mathrm{~mm}$ dia
Price ... 2 for £1:00

GREzNWIDD - TEL: $(0703) 236363$ FAX: (0703) 236307 FINISHEDITEMS

CAMERA CLEARANCE

A selection of 110 and 35 mm Hanimex cameras offered at outstanding prices. They are all brand new in original packaging.
26104110 CF Pocket camera with telephoto and flash.

26114 110FL Pocket camera very similar to above but
sllghtly longer case
Price
ze 128 110LF Virtually identical to above model.

26137 35C2s Autoflash compact camera with $\mathbf{C 7 . 0 0}$
Price ...
2814735 HL Focus free compact camera with llash.
Price c11.00
28160 Concord 818 . Very similar to above
Price. c11.00
And some hash guns:
$\mathbf{2 6 0 7 2} \times 214$ electronic Hash
Price
20075×215 electronic flash
Price
26079 TZ1
28082 TZ2020

28083 TZ7000
y of lenses:
28015 28.70 mm . AF macro zoom 1.3.5-4.8.55m PK
Price.
$\mathbf{2 6 0 2 7} 28-200 \mathrm{~mm}$ macro zoom 1.4.0-5 6. 72 mm . PK
Price
zeoso $70-210 \mathrm{~mm}$ A/F zoom 1:4.0-5.6. 52 mm . PK. Price

Line Termination Unit

Comes in 2 parts:
Z035 Grey ABS case $197 \times 106 \times 60 \mathrm{~mm}$ with lid contains PCB with 2 relays, transformer etc. A 3 m lead with 4 pole plug (old type) is fitted one end and a 6 way lead 1 m long the other which connects to:
2036 a PCB $265 \times 143 \mathrm{~mm}$. This contains $5 \times$ LM 348.4016 , 4093 \& ZNA2H006E chlps + transistors, R's, C's, xtal, etc.

Both for $\mathrm{E4}$, or individually $\mathbf{Z 0 3 6} £ 3.00 ; \mathbf{Z 0 3 7} £ 1.00$

Z4133 Corgi telecontroi. Neat 2 part black plastic case $100 \times 60 \times 25 \mathrm{~mm}$ with 3 red control switches, $2 W$, $3 W$ and 8W, believed to come from a low cost game, 1 m long 5 core lead attached.

HIGH QUALITY SLIMLINE LOGIC PROBE/ PULSER

Top quality slim (18mm dia) precision instrument for troubleshooting and analysis of logic circuits. It works as a level detector, pulse detector and pulse stretcher. It is circuit powered, has LED indicators and comes with additional probe lead and clip, and instruction sheet. An excellent addition to your Test Gear at an unrepeatable price. We have purchased all available supplies and can offer this superb instrument for around half the normal selling cost.

Order Code M625 onve $£ 10.00$

VISTELII
Total Communication for Deaf People
Vistel il is a visual telephone plus 'answerphone' which allows everyone to communicate over the telaphone network.

By simply dialling a number and iyping in your message you can be In touch with anyone else with similas equipment. whether they are across the road or at the other end of the country.

By pressing one clearly marked button you can send or receive typec messages even when you are out. Additionally you can prepare and send a message at a particular preset time (during cheap periods to save you money)

Whth Vistel II not only can you talk to other Vistel If users but Vistel I (of which there are over 1.000 already in use by deal people throughout the UK), Telecom Gold. Breakthrough trust's BKU Mailbox Network. Mailink. the RNID telephone exchange or any other computer with a modem.

Specification

Dimensions: $34 \mathrm{~cm} \times 45 \mathrm{~cm} \times 13.7 \mathrm{~cm}$

- Welght: 4.5 kg
- Full 'OWERTY' keyboárd plus 'function' keys for ease of use.
- 40 character screen which displays your messages quickly. clearly and quietly.
- Text editor for preparing recording and storing information
- Memory for up to 9,500 characters.
- Auto-answerlng capability for receiving calls even when you are not there.
- Auto-dialling capability for sending messages during cheap rate telephone periods.
- Real time clock.
- Personal telephone directory for storing your most commonly used numbers
- Carrulator
- Carculator
- Printer interface for connection to a printer
- Telecom Gold, or BKU mali box, function key.
- Vis:elll runs from mains with battery back-up so memory is retained even when Vistel Il is turned off.
- For connection your only requirements are a power point and a British Telecom jack plug socket.

- Printer

This unit formed a telecommunications link for deat people The busic unit is the Vistel II which has an internal moder that handles the following standards V23 auto hunt. V23 originator, V23 answer, V21 originator, V21 answer. Note the auto hunt is a special function that allows the modem to determine the nature of the modem at the other end, either V230 or V23A.
All tites from the transmitting terminal can be stored in memory or sent directly to a printer. Messages can be compesed and stored in memory before transmission.
Other useful features include time, date, calculator, storage of often used numbers, parallel printer port, costing of calls, alarm illock, all PSTN leatures are fully BT approved. alarm alock, all PSTN features are fully BT approved.
On a component level useful thems include a 105 key keyboard with serial output. A linear power supply with the keyooard with serial output. A linear power supply with the
followlag outputs +12 V (a 1A. $2 \times+5 \mathrm{~V}$ (al $2 \mathrm{~A},-5 \mathrm{~V}$ (a) 100 mA , -12 V io 100 mA , useful components include $2 \times 78 T 053 \mathrm{~A}$ regulators with heatsinks, assorted fuses. A main circuit board containing a μ PO8085 micro processor, 3 μ PD8255 universal peripheral interface IC's. 3×27126 EPRON, $2 \times \mu$ PO4364 memory IC's, $1 \times \mu$ PD8251A USART progranmable communications interface ic, HD146818P RTC (real time clock wilh 12/ 24 hour time date and leap year day) IC, and various other micro processor related IC's, other board parts include assorted resistors and capacitors, a 4.8 V memory backup nicad. A 40 character 5×7 dot matrix VFD with cissor. A communications board with assorted approved relays. capachors and opto-isolators.

Although the unit can only be used as a stand alone unit, it is possibls to modily it so that it can talk to other equipment via a RS232 port.

[^2]
1 F CREENWZD - TEL: (0703) 236363-FAX: (0103) 236307 FINISHED ITEMS

Some 'BIB' accessories have come our way. These are all new and boxed, offered at a fraction of their original cost.

sCC8 Computer terminal maintenance kit for screen keyboard and printer. Content: Soft brush for keyboard and stiff brush for printer and print cleaning fluid. Aero sol can of air-blast; Kleen-Screen, an antistatic liquid; cleaning cloths. All this is contained in a presentation pack for just ….. \sum_{2}

8CC11 Liquid Static Eliminator. A spray can of special formula liquid giving long term neutralisation of all harmful static charges from all glass and plastic surfaces. Comes complete with cloth

the electronic football game of skill

2817 Excitlng electronic football game - Waddingtons JIMMY. Brand new models in full working order, but without plastic peripherals, stickers etc. Red plastic case 420 mm long $\times 93 \mathrm{~mm}$ wide contains keypad and 7 segment LEDs to keep score either end. The centre section players are represented by red 5 mm LEDs, 14 altogether. The main chip is the TMS1000, programmed to make odd noises whilst playing and a tune when a goal is scored. Also inside are 13 plastic transistors, 57 mm 8 R speaker, power supply socket. Rs, Cs etc. Powered by $2 \times$ PP3 batteries. Solo or dual play. Supplied with instruction sheet, playing field complete with coloured 'players' Good fun to play as a arme with good value for the electronics within. Originally game with good
Price
Only E5.00

2459960 second timer. High quality instrument by Micron Can be set by knob on top to any time from 0.60 seconds, atter which time a palr ol contacts close. Although these are 110 V they work off standard 230 V mains with the series resistor Included. Notes about its operation are also supplied Overall size $105 \times 63 \times 80 \mathrm{~mm}$. Individually boxed. Price

24177 Printer mechanism model SF3002 by Copal Thermal type requiring conductlve sllver type paper, 17 Alphanumeric characters per line, 7 pin print head. 22 V DC supply, some basic connection data supplled.
Price c10.00

28854 Intercom unit by Tunstall Byes and Co Lid Extremely robust plastic case $235 \times 160 \times 70 \mathrm{~mm}$. Contains PCB $95 \times 80 \mathrm{~mm}$ with $4 P C O \quad 12 \mathrm{~V}$ continental relay; SPCO relecom relay $3 \times$ 'BC301. 2×2 TX107: 2×2 TX108; $8 \times 1 \mathrm{~N} 01+\mathrm{C}$ R's etc. 3 position keyswith and 12 way ax term block. $4 / 2$ Fane speaker and 2 pore in poor condition socket mounted In the case. The cases are in poor condition, (but not broken) having paint and sculmarks pom, but parts inside are In good condition. The biggest drawback I their weight (about a kllok so they're expensive to post. Prices

3190 Disk Drive Power Supply Kit Ideai for powering singe $3^{1 / 2 n}$ or $51 / 4^{n}$ drive. Mains input stabilised mothed outputs, 12V@1A and 5V@1A. Simple. easy to assemble kit with full instructions, at an excellent price.

24132 Firing speed adjuster. Neat device for connecting Cetween loystlck and Atari/ Commodore etc computers setween foystick as firing speed to be changed. 9 pin ' D ' in and out

Only $\mathbb{C 1 . 0 0 1 0 0 + 0 . 3 5}$

24136 "Stethophone' minl stereo headphones, complete with stereo jack plugs. 8R. Hinged headband. Price

28885 TAPE DECK PANEL A type of telephone answering machine belleved to have been used as an alarm system - a recorded message was sent down a BT line in premises were beling entered lliegally. Steel chassis $245 \times 220 \times 35 \mathrm{~mm}$ contalns PCB $228 \times 145 \mathrm{~mm}$ and an 8 track cassere unit almost Identical to Z4307. Thls is attached to the panel by 3 screws and is easlly removable, being co the tape head is led into an MC3301 quad op - amp. The PCB the lape hes ates, 3 relays, isolator transformer, also has 10 CMOS gates. 12 way connector for BT several ranslsiors, solso plug and socket arrangement lor iline, 12 V supply etc, also plug and sockat arrangement lor Auto/ Manual and Bell delay. Made by Muniord \& Whine PLC. Pric.

A parcel of 'Touchmaster' interfaces has just arived Z5130 Spectrum interlace. PCB has 28 way DS edge minector one end and socket the other, with a single Z80A PIO chlp. There's a 20 way IDC socket on the end of a metre long piece of ribbon cable, too. Vacuum formed plastic case.

Price 22.0
25131 Similar to above, but for Dragon. 20 way DS edge socket one end of PCB, plug the other. On board: 68A21 and LS32 chios. Same 20 way lead as above. Price E2.00 25132 CBM interface. This only has a 12 way 0.156° DS sockel and lead.

Price [1.50

We still have a few CASIO KEYBOARDS left. These were stocked some years ago, but were not particularly good sellers.

3 6 note polyphonic. mini keys; 12 preset Wr.5 3.5 octave, 6 nole polypio chord and ilngered chord sounds: 12 auto thythms; Casio chors; built in speaker: system; melody and chord memories, access

A selection of our surplus semi's; we have large quantities of many ditherent devices. Inear and logic IC's fransistors diodes etc. Aing or write with specific enquires

(a) Diodes

BAV20 Signal diodes............. 100/£2.00; 1000/£12.00
22111 IN279 dlode. These are in individually sealed packs in boxes of 10 .
Price per box
2728 Stud rect 6A 300V. BYX38-300 ex-equip. but guaranteed
Price 10/ 1.00 100/6.10 1k/52.20
K 390 Heavy current stud rectitler - IR 25G5. RAted 50 V 60 A. List prices is over $£ 8$
Our apecial low pric

Tuning Diode

wVi404 - very high capacilance change - for a change in blas from $1-10 \mathrm{~V}$. there is a change in capacitance from t0pF-150pF. making this suitable for AM radlo broadcasts. DP £17.94 - which makes them about 12 IImes as valuable as gold!

Our apecial price
c. 6.00

(b) Zeners

Bulk pack of 400 mV zeners, 10 each of following values: 3 V 64 V 34 V 75 V 66 V 26 V 88 V 29 V 111 V 13 V 16 V 20 V 24 V 27 V 30 V 33 V
160 altogether for.. £5.00 Individual values listed above available in packs of 100 at .. $£ 3.35$
1N3326B 36V, 50W .. $£ 1.00$
22000 IN5347B 10 V 5 W Zener diodes. Llst 34p.
© for $\mathbb{C l . 0 0 ~} 100+0.07 \quad$ 1k +0.045

(c) Bridges

1906 Bridge rectifier S4VB2U zoOV 4A in square package 16.5 mm , mounting on 10 mm centres.

Price ... 3 for $\mathbb{E 1}$
24366 Masslve bridge rectilier $57 \times 57 \times 25 \mathrm{~mm}$ but only rated 200 V 10A. Tag connections.
Price
81.00

BYW 20 BRIDOE 25A 50V TOCLEAR: 10 for $\mathrm{C10}$
1408 Ex new equipment 25A 50V bridge rect, metal case $28 \times 28 \mathrm{~mm}, 0.25^{4}$ tabs. Made by Diodes Lid.
Prices …......... $£ 1.00$ 10/6.95 $25 / 15.70 \quad 100 / 52.20$
22366 KBLO 3 A 800 V in-line bricge with preformed leads. Prioe …...2/C1.00 $100+0.25$ 22347 KBPO2 4 A 200 V in-line bridge by GI .
Price …..............................6/⿷1.00 $100+0.09 \quad 1 \mathbf{k}+0.06$

(d) Transistors

2506 New 2N3055B. Reduced spec, but OK for many pplications. 224 BDX8BA PNP PNP, 60V, 12A, 117W. Hfe 7540 @6A

2 for E1.00

Small quantities of 2 Mostets:
22147 IRF843 TO220 case. Think these are 500 V 125W devices
Price
12148 IRF 457 TOP3 case. Believed to be soov 180 W
Price ...
2704 Meatsink $50 \times 36 \mathrm{~mm}$ with BU826 (removed from equip)
Price
27212 maiched 2 N 397 Ger. PNP alloy transistors.
. 60 p
Price ... 40p
21770 Small signal NPN Silicon transistor - like BC182L. numbered 2SC945. Amazing value.
Price .. Sealed packs of $\mathbf{2 5 0 / £ 8 . 0 0}$ Box of 2000/34.80
(e) SCR's/Triacs
$\begin{array}{llllll}\text { CR201C } & \text { TO5 } & \text { SCR } & \text { 1A } & \text { 200V } \\ \text { KF7659 } & \text { ndd } & \text { SCR } & 3 A & 400 \mathrm{~F}\end{array}$ $\begin{array}{llllll}\text { XF7659 } & \text { ndd } & \text { SCR } & \text { 3A } & 400 \mathrm{~V} & \text { 25p } \\ \text { MACR69.2 TO220 } & \text { SCR } & 15 \mathrm{~A} & 50 \mathrm{~V} & 40 \mathrm{p}\end{array}$ MAC11-4 Triac, 200V, 10A .. 25p; 10/E2.00
(f) Voltage Regulators

Type	Cues	Vohte	Current	C2	
723	TO99	$+21037 \mathrm{~V}$	0.1A	6	0.16
70112	TO99	.12V	0.1A	18	0.07
70mos	TO220	-5V	0.5A	12	0.06
$78 \mathrm{m12}$	TO220	$+12 \mathrm{~V}$	0.5A	12	0.00
Lm317MP	TO220	1.2 to 37 V	0.5A	8	0.12
Lem323K	TO3	+5V	3A	1	1.00
70.00	DIP	2 10 30 V	0.5A	6	0.16
78 movic	TO220	5 to 30 V	0.5A	6	0.16
Lm2031A	TO220	5 V	0.4A*	4	0.25
*Low Drop					
$\mathbf{2 2 1 3 1}$ LT1085CT variable voltage regulator. This is a +1.2 V to +29 V 3 A device in a TO220 case. DP §4.32.					
Price ..00					
(9) Linear 1C's					
Z1864 Hybrid audio amplifier type Sl-1010G. These are an extremely high quality amp in an 8 pin SIL package with integral heat sink overall size $62 \times 40 \times 10 \mathrm{~mm}$. 4 mm pitch.					
Max output 10 W RMS into $8 \mathbf{R}$. Supply 34 V or $\pm 17 \mathrm{~V}$					
data.					
Price ... £2.50					
21865 PCB $103 \times 67 \mathrm{~mm}$ for mounting of the above plus external components.					
Price ... 50p					
NE531 Op-amp - hi slew rate TO99 case.					
Price ... 75p					
RC107 Op-amp - general purpose compensated. TO99 case. Price \qquad £1.00					

SPEECH CHIP

As mentioned in Bargain List 29, we have a quantity of speech chips, type SP0256A-AL2. We have now learned (thanks to a couple of our brainy customersl) that the A05 is a high speed CMOS ULA and the R0984CS is used as a index for the SP0256. All these chips are used in the Currah $u \mu$ speech. We can offer all three chips for ust $\mathbf{C 3} .00$ and this price includes circuit diagram, PCB ayout and construction info on making a 'speak board using the SP0256 (not the other two chips), suitable for the Spectrum, $\mathbf{2 \times 8 1 , ~ B B C ~ B , ~ C 6 4 ~ a n d ~ V I C 2 0 ~ c o m p u t e r s . ~}$ 27333 chips as described + data.
Substantial discounts for large quanitites
1000 off $£ 850.00$
22130 2N449D Ferranti surface mount 8 bil AND converter. Supplied with data sheer. DP $£ 3.73$

(i) Computer 1 's's

INS.8048/9/50 Single chip 8 bit micro computer. Each 40 pin chip contains system, timing, control logic, ROM RAM and 27 VO lines. Supplied with data sheet.

	RAM	ROM	PRICE
INS8048	64×8	$1 \mathrm{k} \times 8$	¢3.00
INS8049	128×8	$2 \mathrm{k} \times 8$	¢4.00
IN S8050	256×8	$4 \mathrm{k} \times 8$	£5.00
Z1455 TC5517APL-2 $2 \mathrm{k} \times 8$ RAM. Ex-equip ... 40p each Blown EPROMS: 2764.. £1.50			
21651 27C32O-35 EPROM's. These are ex-equip \& not in prerfect condition. Sold in packs of \qquad 8 for $\mathbf{E 4 . 0 0}$			
Z1652 8050AH Single chip 8 bit micro. These are exequip \& so presumably ROM has been programmed.			exmed. order £1.00
(1) Cl	-		

(J) Crystals

221 si 2.45760 MHz crystal by Hy-O HC33-U. Baud rate generator
Price … ………............................... $10+0.30 \quad 100+0.15$
$60 \boldsymbol{p}$
+0.25
21425 mHz crystal HC6U..................................... $£ 1.00$
Miniature HC18U wire ended.
24128.867238 MHz

Priçs................................ $£ 1.00$ 10/4.35 $100 / 26.10$
21653 HC6W 2.4576 MHz . needs 32 pF load capacitor
Pric £1.00 10/5.20 100/34.80

$216 E 48.863256 \mathrm{MHz}$ wire ended
21744 Crystal by IQO. wire ended $4000 \mathrm{MHz} \ldots \ldots \ldots50 p$
Crystal oscillator modules. Sealed all metal package with pins on std OIL layout. 5V OC operation.
2142I 1.2288 MHz
$2142524.0000 \mathrm{MHz}_{2}$
2.00

More semis on Page 37

FANTASTIC MOSFET OFFER!!
Take advantage of our buyuing skills and help yourself to some FETs and Mosfets at incredibly low prices! All goods are new full spec by Siliconix, IR and are offered at well below normal prices! Limited stock of some types, so order now!

POWER MOSFETS

Type	Case	N/P	Vos	R os	10	P_{0}	Price $1+$
2N7004	4PINOIP	N	100	0.6	1.0	6.25	55p
2N7005	4PINDIP	N	200	1.5	0.6	6.25	$65 p$
2N7006	4PINDIP	N	350	5.0	0.32	6.25	70p
2N7014	TO220	N	100	0.8	3.5	19.5	60 p
BUZ31	T0220	N	200	0.2	12.5	75	£1.60
BUZ41A	TO220	N	500	1.5	4.5	75	E1.50
IRF122	T03	N	100	0.4	7.0		E1.85
IRF150	T03	N	100	0.055	40	150	£4.00
IRF250	TO3	N	200	0.085	30	150	£5.00
IRF620	TO220	N	200	0.8	5.0	40	60p
IRF710	T0220	N	400	3.6	1.5	20	$40 p$
IRF720	T0220	N	400	1.8	3.0	40	40 p
IRF820	T0220	N	500	3.0	2.5	40	65p
IRF9230	T03	P	200	0.8	6.5	75	£3.50
IRF9520	TO220	P	100	0.6	6.0	40	85p
IRF9620	TO220	P	200	1.5	3.5	40	¢1. 20
VN03000	TO220	N	30	1.2			60p

SMALL SIGNAL MOSFETs

Code	Case	N / P	${ }^{\text {A }}$ DS	I_{0}	P_{0}	Price
BST72A	TO92	N	$10{ }^{\text {a }}$	0.3	0.83	5/ 11
VN2222L	T092	N	7R5	0.15	0.4	5/ ¢1
* VN2222LL	T092	N	7R5	0.15	0.4	5/ £1

SMALL SIGNAL JUNCTION FETS

Heatsinks

21812 r0126/220 Heatsink $30 \times 30 \times 12 \mathrm{~mm}$ with lugs for insertion Into PCB.

Price

 740 Heatsinks, clip on type for T0220 package. Farnel pe 170-067. Their price 27p.Our prlce 10/ £1.25 25/ 2.20 100/6.95
2032 Chunky T03. $46 \times 46 \times 19 \mathrm{~mm}$. Weighs 37 g
Price.
22314 Heatsink for TO126/220 devices with lugs tor locating nto PCB. $30 \times 25 \times 12.5 \mathrm{~mm}$. Pack of $8 \mathbf{E 1 . 0 0} 100+0.08$ $1 k+0.05$
$\mathbf{2 8 1 4 8}$ Redpoint heatsink - nice chunky ally sink finished in black, type W. Size $102 \times 130 \times 32 \mathrm{~mm}$ drilied with $3 \times 5 \mathrm{~mm}$ holes. (DP $£ 5+$)

21524 Heatsink $32 \times 23 \times 15 \mathrm{~mm}$
Price Price

5/ $\varepsilon 1.00$

2611 Heatsink from Enterprise, $86 \times 27 \times 38 / 20 \mathrm{~mm}$, fined with 2×7805 regs + plastic cover.
Price
$\mathbf{2 2 0 4 7}$ Heat sink. Black aluminium plate $167 \times 51 \times 4.7 \mathrm{~mm}$ thlck drilled for $4 \times$ TO3 devices and fixing holes. Price
22069 Thin heatsink $(1.2 \mathrm{~mm}) 57 \times 57$ formed to accept single TO3 device.

```
Price 5 for &1.00
```


Please Note:

The Free Gifts offered in the Main Catalogue are not available with goods from Bargain Lists.

25076 Steel panel $210 \times 190 \mathrm{~mm}$ stove enamelled with 7.5 mm hole in each corner.
$\mathbf{2 2 0 4 3}$ Trigger module FY506 by Lite-pac - believed to be lor a Xenon tube with a B9A base - there are 2 hlgh voltage leads and 2 other leads attached. No further information.

Solder

25170500 g reel of 16 SWG resin cored solder at an exceptional price....................... £3.9s $10+2.95 \quad 50+2.60$ 2683 Solder washers $0.3^{\prime \prime} O D, 0.2^{\prime \prime} 10$, in plastic pots of 2500 (sample free).
Price.
£2.50
$\mathbf{z 8 0 9 9}$ Ersin multicore HMP (high melting point) solder, 22 swg on 500 g reels. Composition: $5 \% \mathrm{in}$. 93.52% lead. 1.5% silver. Melting temp 301 C . Rec. bit temp 350 C . DP £ 18.00 .
Our price
c8.00

Mounting Kits

21378 TO3 mounting kit
10 TO3 mica washers
and 20 bushes. Their price \mathcal{E}
10/3.50 100/3.90 Our price 60 p 21379 TO3 mica washers. Price Pack of 100 £2.50 500/ 7.80 24392 Diode mounting insulating list. Pack contains 50 each mica washers, PTFE washers \& solder tags Price

22320 Grey plastic strip $470 \times 40 \times 2$ (make handy rules!)
 25140 Black self amalgamating tape. High stretch, easy build up. 0.8 mm thick 13 mm wide. Large reels 350 mm dia contain about 125 m . DP on this is over £35.00
Our Price .. 15.00
25184 As above but 21 mm wide 20
z6180 Heatsink -TO3 type $7.1^{\circ} \mathrm{C} / \mathrm{W} 46 \times 46 \times 26$. DP $£ 1.00$.
Our Price $2 / £ 1.00$
$\mathbf{Z 2 3 3 0}$ Heatsink -TO220 type $30^{\circ} \mathrm{C} / \mathrm{W} 11 \times 22 \times 19$. DP 53 p .
Our Price $5181.00100+0091 k+00$ Ow Pre 22321 Heatsink -TO220 type $21^{\circ} \mathrm{C} / \mathrm{W} 19 \times 22 \times 19$. DP 53 p . Our Picetion mount 2 studs $13 \mathrm{~mm} \times 6 / \mathrm{mm}$.00 22332 Antivibration mount. 2 studs $13 \mathrm{~mm} \times 6 \mathrm{~mm}$ dia Overall 25 mm dia

$\mathbf{2 2 3 3 2}$ Ceramic insulallng beads 3.4 mm long. $O D 3.4 \mathrm{~mm}$; 10 1.8 mm .

Pack of 200 .. 1.00 25151 Some odd pieces of Clear perspex: $45 \times 22 \times 1$ with central 3.5 mm hole; $82 \times 61 \times 2.8$ with 3.8 mm hole near edge; $100 \times 64 \times 1.9 \mathrm{~mm}$ with a couple of slots
Pack of 20 aseorted
1.00

22334 Right angle steel bracket $38 \times 22.5 \times 10$. Length drilled with $2 \times 4.8 \mathrm{~mm}$ holes; width drilled with 7 mm dia hole. 2 mm thick.
Peck of 10 $100+0.061 k+0.045$ 22338 Stand off insulated terminal 24 mm high with 3.5 mm threaded insert
Peck of 5 - 1.00
22335 Stand oft Insulated terminal 11 mm hioh with 2.5 22336 Stand off Insulated terminal 11 mm high with 2.5 mm threaded insert
Peck of 10 ...c1.00 25152 Pack of plastic bits - stand otts with PCB clip incorporated, cable tie bases etc.
100 sesorted.
C1.00
22337 6BA x 12 pan head pozidrive plated steel screws.
Pack of 200 .. $1.00 \quad 1 k+3.50$ 22338 Current shunt. 15 A 75 mV mounted between 2 brass terminals with 10 mm holes 100 mm apart. Price.

29234 An unusual device known as a left handed throggle flange, with many appllcations in computing and composit making. Avallable in limited quantities only
Price... $10+$ £11.62

Magnets

Z1889 Magnet $20 \mathrm{~mm} \times 5 \mathrm{~mm}$ thick. Hole in centre is 3 mm square.
Price............ Pack of 10/E1.60 100 $+091 k+.06$ $Z 1890$ Magnet $26.5 \times 11.5 \times 8.7 \mathrm{~mm}$. Indent either side. Prico Pack of $10 / £ 2.00 \quad 100+.12 \quad 1 \mathrm{k}+.08$

Knobs

 marker 22 mm dia $\times 14 \mathrm{~mm}$ high. 6.35 mm fixing by grub screw. 3/C1.00 $100+0.20$ mm dia. 4/C1.00

24054 High quality collett knob in matt bleck finish for $6.35 \mathrm{~mm}\left(0.25^{\prime \prime}\right)$ Spindle. 36 mm dia. Clip on black cap and pointer.
Price.
.. 40 p $10+0.26 \quad 100+0.17$ 24174 Knob. push on grey 28 mm dia with clear skirt marked with red line 47 mm dia. Push fit for $\%^{* \prime}$ spindle.
Price 5/ £200

Z4198 Knobs - Bargain price on black plastic control knobs with coloured tops, similar to K 9.19 mm high x 20 mm dia. Top available with indent in white, pale blue belge, mushroom, or green K9 + cap with line costs 30 p these are substantially cheaper, even in small quantites. Only sold with cap.
1-9... 20p each 10-24 .. 15p each
 2718 Knob. Black plastic with ally insert. 27 mm dia $\times 15 \mathrm{~mm}$ high, for use with 4 mm shaft with flat. (Fits inner of Z716). Have you seen a cheaper knob than this? Sample free.
Price 20/£1.00 100/2.60 1k/ 17.40 10k/ 87.00 24053 Antistatic bags. Black 'Velostat by 3M, these begs are $460 \times 350 \mathrm{~mm}$. Ideal for cutting up to store static bags are 460×350
sensitive devices sensitiv

4/ $£ 1.00$

24201 Solid satinised aluminium equipment handies 194 mm long $\times 47 \mathrm{~mm}$ high. Fixing by 2 tapped holes on 164 mm centres.
Price .. $\$ 1.20$ each
201042 Braided Nylon Lacing lape 1.5 mm wide, black. Our price
Our price .. 4.00
$\mathbf{2 2 0 5 4}$ Small flat brass 'spike' 0.3 mm thick as shown. Must
be useful to modellers for something!
Pack of 100

24247 Cable gland with strain relief. Overall length 80 mm dia 11 mm . Takes cables 4 mm to 8 mm dia.
Price ...
6/ f1.00
24067 Strain relief bushes for 6 mm dia cable. Sample Price

25/60p

GRIENWMED - TAL: (0703) 236363 FAX: (0703) 236307 HARDWARE

21432 No6 6 mm PK self rapping screws, cross head Normally $\mathbf{6} 6,90$ / 1000
Price
Z433 Bakellte washers, 6BA (sample free)
.. Only £2.50
Price.
1000/ £2.00
Z1440 Woodscrew with countersunk pozidrive head 8 mm
long x No 4 black. Pack of 100/400 Pack of $1000 / 2.20$ Z1441 PK screw cross head No $2 \times 6 \mathrm{~mm}$. Black
Price PK..............ack of $100 / 30 \mathrm{p}$ Pack of $1000 / 1.90$
Z1871 4BA metal spacer. 25 mm iong.
Price
Pack of $30 / \mathbf{E 1 . 0 0}$
21834 48A solder tags. Pack of 1000 at half our normal price.
Price ... $\mathbf{£ 6 . 7 0}$
21762 Nut. M12 plated brass As used on many toggle switches.
Price Pack of 10/40p Pack of 100/1.75 Z1848 Terry Clips. Bright chrome finish by Lewis. Spring type $100 / 17,27 \mathrm{~mm}$ dia.
..................... Pack of $10 / \mathbf{~} 1.00$
Price Pack of $10 / \mathbf{E 1 . 0 0}$ Z013 Sleeves, silicon rubber, 8 mm OD. 5 mm ID. Length
15 mm .
Price .. Pack of $100 / £ 1.00$
2742 Polarising key
Price ... Pack of 10/50p Z2110 M3 metal spacer 25 mm long with stud. DP 21 p each. ……....... 12 for Cl .00
z2115 $4 \times \%$ Hex sell tappers. Bright zinc
Pricelbo of 1000
82.50
$\mathbf{2 1 7 8}$ Pozi pan $A B$ self tappers No4 $\times 0.5$ Inch. Zinc plated
Price for bon of 2000 <2.75

Cable Gland

Z4203 21 mm max requires 28 mm dia hole.
Price ...
Pack of $5 £ 1.00$
227111 Rexine covered box with felt lined Interior. Overal size $165 \times 85 \times 45 \mathrm{~mm}$

$\mathbf{z 2 0 6 2} 1.74 \mathrm{~m}$ long thin multistrand sieel cable with a loop at both ends. 0.7 mm dia. Very strong and flexible.
Price
c1.00
ALFAC PACKS
Discontinued lines from 1988 Catalogue.

EC803	12	EC993/	8
EC918	10		
EC970/2	6	EC964/	6
EC970/1	2	EC964/	8
Originally costing ¢3.45/ 5 sheets.			
Prices E2.00/pack			
24273 v" bore red, green, yellow or black nylon compressed air line. 150 psimax.			
Price .. EOp/m 15mcoll $£ 5.95$			
2655 Dispenser tube with valve. As used on cream dispenser. 185 mm long, with extra tube and connectors 250 mm long.			
rice			

24120 Filter kit for flash used with Halina TB 655/650 cameras. Black plastic trame into which one of 4 coloured (red, green, yellow, clear) lenses $64 \times 34 \mathrm{~mm}$ fit
Price for complete set

Wheels

Type B
is a solid heavy duty wheel 107 mm dia. with a flat rigid tyre 17 mm wide. Both have 9 mm dia. holes. Wheel type B.

50 peach

24110 Empty cases from CB aerial eliminators (Z4081)
Price .. 3/£1.00 20014 Printed Clrcuit Board Laminate by MAS type FR Sheet $365.5=369 \mathrm{~mm}$ comprised of a layer of copper foil sandwiched between fibreglass. Overall thickness 0.8 mm . ldeal for screening
Price/sheet (difficult to pack) 3.00
§40.00

Drawer Sliders

High quality ball bearing sliders by Accurlde. 3 different models
Z5016 More compact model. Closed length 357 mm . Slide ength 375 mm Only a low of this size. Price per pair.

C10.00
zo7078 Dycam Gripplpad: Antl-slip mat In blue. Size 350×250. Ideal for modelling or in the home to keep crockery, ornaments trom moving. List price £8.28

BOARD

3468 0.1 board copper clad in linked pairs. Ideal for use as patch board. $160 \times 100 \mathrm{~mm}$
Prlce ..20
3950 Socker board, matrix of 12 rows on 0.3^{*} pitch of 50 sockets on $0.1^{\prime \prime}$ pitch $+V$ and GND sockets. All gold plated. $100 \times 160 \mathrm{~mm}$ fibreglass
Price 01350.15 board, plain SRBP $63.5 \times 431.8 \mathrm{~mm}$
¢8.50
Price
.. 75p
Uniquard Development Boards Multi-purpose Micro-systems PCBs for Prototype and Production Use

ETS, E2S \& E1D series are circuitry develoment boards for memory (both dynamic and static. RAM and ROML and also for combined CPU-memory function.
EPBseries have backplane and motherboard uses (both 3 U and 6 U) and the smalier lengths are also used for exiender cards. A range of profiles with and without mounting flanges and extra busbars are available. Used as high density memory development boards they only require a small amount of extra wiring.

Order Code	Type	Size	Price each
12SB-PCB-007SF	E2S-00	$3 U 0.6^{*}$	$\mathbf{£ 1 2 . 6 2}$
12S8-PCB-011SF	EBP-02	Extender 3U-220	£8.46
129B-PCB-012SF	EBP-03	Extender 6U-160	$\mathbf{£ 1 8 . 1 8}$
129B-PCB-014SF	EBP-05	Horizontal Mtg 6U-112	$\mathbf{£ 1 1 . 0 0}$

Clock Case

2472 Clock Case - Oval format. Overall size $130 \times 68 \mathrm{~mm} \times 87 \mathrm{~mm}$ deep. with built-in stand. Rear panel has holes drilled to accept 4 switches and audible alarm. Made in high impact white plastic. No front panel. Price

21417 Right angle plastic tube connector dimensions as shown Peck of 12/50p Z1416 Concentric pulley wheel with lever. Useful for operating switch. 38 mm dia.
Price
Pack of 6/50p

227227 Industrial gas spring - as used tor holding open lids on machines etc. This one requires 40 Newton force, has a stroke of 200 mm wlih a 6 mm dia plunger. 6 mm eye one end. 7.5 mm recess the other. Overall length 500 mm . List price §30.67
On special price .. 100

2582 Stick on feet (3M bumpons) $10 \mathrm{~mm} \mathrm{dia} \times 4 \mathrm{~mm}$ thick. Prices ... Sheet of 56/ £1.70 $\begin{array}{llll}10 / 12.20 & 25 / 26.10 & 100 / 87.00\end{array}$ Screw fix.
Price .. Pack of 40/ $\mathbb{£} 1.00$
24378 Sell aaneslve feel $12.5 \mathrm{~mm}^{2} \times 3 \mathrm{~mm}$ thick, black.
Peks of 24 ..
2437 Screw on feet. Black hard plasilc 14 mm ola $\times 10 \mathrm{~mm}$ high
Pric.
$50 / 81.00$

24349 Anybody who has been dealling with us for a very long time may remember our 7 " tape spools we were selling many years ago. Standard clear plastic spools for $1 / \mathrm{m}^{*}$ tape individually wrapped

3/51; 20/55; 100/518

GREENWELD GIFT VOUCHERS

Available in any value of £'s from $£ 1$ upwards, supplied with a card and envelope. Makes an ideal present for electronics enthusiasts!! CREENWIEID - TEL: (0703)236363

FAX: (0703) 236307 OPTO

LED's

A range of multiple LEDs moulded in strips. As used in car graphic equalizers etc. Each LED is $5 \times 2 \mathrm{~mm}$ * $(4.5 \mathrm{~mm} \times 2 \mathrm{~mm})$ separated by a 2 mm gap. Easily separable if required. Ideal for making jumbo displays; a 5×3 display required. Ideal for making jumbo displays; a 5×3 display
will give digits 30 mm high; (use 3×21460 or 1463); a 9×5 wifl give digits 30 mm high; (use 3×21460 or 1463); a 9×5
display can be used as an alphanumeric display 36 mm high $\times 30 \mathrm{~mm}$ wide (use $9 \times \mathrm{Z1460}$ or Z1463). Cost compares favourably with conventional jumbo LEDs; a 30 mm higtr dol matrix display cost $£ 4.37$ from whilst a 51 mm high (7×5 matrix) cost $£ 5.06$
Z1460 5 way redt length $30 \mathrm{~mm} . . . \quad . \quad 30$ p $10 / 2.10$ $\mathrm{Z1464} 3$ way white (lights up red) $7.5 \mathrm{~mm} . .20 \mathrm{p} 10 / 1.40$

22182 Standard 5 mm red LED with 18 mm leads, bent at righ angles. 18/£1.00 $100+0.03 \quad 1 \mathrm{k}+0.02 \quad 10 \mathrm{k}+0.015$ $\mathbf{Z 2 3 0 2} 5 \mathrm{~mm}$ green LED in panel mounting cilp fix holder with translucent domed bezel. Needs 8 mm hole.

Pack of $8<1.00$
21845 Rectangular LED 7×2.5 Red, Unusual size by Hewlett Packard type LMP301
Price Pack of 12/ £1.00

Sub-min LEDs, ideal for model rallways. Only red and green hough, no yellow Body size $3 \times 2 \times 2 \mathrm{~mm}=$ lens 1 mm dia. Axial leads.
21802 Pack of 6 red.
£1.00
21803 Pack of 6 green
£1.00
Z1804 Also some larger red LEDs with a 2 mm dia lens, 5 mm dia body. Radial leads.
Price.

SUBMIN LED'S

These excellent quality 1.5 mm Led's are housed in a $6.2 \times 5 \times 2.4 \mathrm{~mm}$ package with built in resistor for 5 V operation (add 470R resistor for 12V). Available In Green (DP £1.73) or ed (DP \&1.16).
22135 Red...
2136 Green
$181100+0.15$

21968 Infra red LED's 5 mm . no other data so offered at 6/C1.00

218509100 R Red Bargraph 10" 20DIL package
Opto Slotted Switch

22122 Vactel Type VTL 10DI - IR emitter and detector can be removed from the plastic housing if required. An extremely cheap version of TIL 100/TIL38
Pack of 5

21499 Opto slotted switch on small ($25 \times 26 \mathrm{~mm}$) pane Type P850..
21500 Opto reflective switch type OPB6076 with 3pin connector.. 75p PS4005 Opto slotted switch: £1.00 11438 Reflective optocoupler from sheet teeder type 21436 Rellecive OPB with 4 pin plug fitted
OPB703A on small PCB with pop
Price......itective optocoupler from sheet feeder type 21435 Rellective oprocoupler fro OPB711. on small PCB with 4 pin plug fitted. Price
21743 TIL 143 Opto slotted switch. These have cropped leads and some are ex-equip, but are all working
leads and some are ex-equip, but are all worklng.
Price.. $3 / £ 1.00$

LED Displays

0.3 in (7.62 mm) Display Height

0.8in (20.32mmi) Display Height

H-27.7
W- 19.9
D-8.38
Pin spacing 2.54 Row spacing 15.24
(c) $0.8^{\prime \prime}(20.32 \mathrm{~mm})$ display height; luminous intensity 0.8 mCd 10 mA

Code $7 /+1$ DP CC/CA $1+28+100+$
$21948 \quad 7 \mathrm{seg}$
$2194875 e g$
$2194975 e g$
219407 seg
RH CC
47p
210507 seg
0.30
0.30 0.30

2415 Display. 8 digit LED multiplexed. With data. $31 \times 16 \mathrm{~mm}$. 2416 Display. 9 dlgit LED multiplexed. With dats. $42 \times 10 \mathrm{~mm}$.
Price.
90ρ

218526301 Mini 7 segment LED. Red, 8 mm high in package $11 \times 7 \mathrm{~mm}$.
Price.
Pack of 4/ £1.00
Z1853 6910 Dual 7 segment LED 0.6" red.
Price ...
2/£1.00

OPTO DISPLAYS

21731 NEC Vacuum Flworescent Display FIP8BII. 8 digit multiplexed output 10 mm high. Heater voltage 2 V . grid anode voltage 24 V . (Use 24248 transformer to power). price 3.00

25118 Giant 30 mm fluorescent 2 character green star burst display, $88 \times 49 \times 8 \mathrm{~mm}$. Futaba type 2-JY-O22. Needs 3 V and 10-18V. Data supplied Only $\mathbf{2} .00$

Liquid Crystal Displays

24372 Epson LCD module EA-Y40040AT. 40×4 character 24372 Epson LCD module EA-Y40040AT. Vill alphanumeric 96 character set contalned in the module's own memory. 5 V supply. With comprehensive data. List price over $£ 200$. Our apecial price.
40.00

$\mathbf{2 1 1 0} 4$ digit LCD 12.5 mm high with tow battery and clock symbol. Complete with edge connector.
Price … $1.60 \quad 25+0.95 \quad 100+0.65$

2027 LCD \& driver panel. One PCB contains a 4) digit 12 mm display and this is linked to another PCB with an ICM7211AMIPL decoder/driver and 4070. Price of dis play and driver is normaly over $\mathbf{L 1 2 . 0 0}$ - Our price $\mathbf{£ 4 . 5 0}$

GRIFENWEDD - TAL: (0703) 236363 FAX: (0703) 236307 OPTO
 21

241158 digit 12.7 mm high LCD and holder. These are 14 segment devices allowing alphanumeric display. Normally costing over $£ 15.00$ we are offering these for just §4.50

24148 LCD as 24115 but 6 digit. 50 pins. Trade price $£ 10.86$

21637 LCD Display - Direct drive $31 / 2$ diglt with LO-BATT' 12.7 mm high olgits. Op voltage $4-12$ RMS " 32 Hz type. Consumes only $25 \mu \mathrm{~A}$ wilh all segments on. Trade price $£ 7.97$ each. Supplied with data. but no edge connector
Prices.
+1.00 $25+0.65100+0.50$

221634 Digit multiplexed LCO, $50 \times 30 \mathrm{~mm}$ probably for an electronic balance-symbols include balance pens, 5 stage bas graph. lb 's and $k g^{\prime}$'s etc. Digh height 12 mm . Self adhesive pad on back. 13 pin PCB connector. $\quad \mathbf{2 . 0 0}$
Two super new displays, have just been delivered - liquid crystal with on-board controllers at a fraction of the distributor price! Both will display a full set of alpha-numerical and spectal characters

2217240 character * 1 line LCD, by Optrex (Japan). High quality double helght dlsplay with 192 character ROM: other characters can be dlsplayed by generation in RAM. Other features Include cursor with control. blink character, scroll display. read and write display data. single +5 V supply. data and power inputs by one 16 pln $0.05^{\prime \prime}$ SIL socket. pin outs standard and compatible with other Optrex displays. contrast control. easlyy interlaced with either 4 or 8 bit uP's. Supplied complete with data. Dimensions: Characters are 5×12 dot arrays measuring $3.2 \times 10 \mathrm{~mm}$
arrays measuring $3.2 \times 10 \mathrm{~m}$
Module size $220 \times 40 \mathrm{~mm}$
OP over E50.00
Our Price \& 15.00

2217124 character $\times 2$ lines LCD by Optrex
High quality display whth 192 character ROM: other characters can be displayed by generation in RAM. Other features include: EL type back light (details of high voltage generator supplied): cursor with control, blink character. scroll display, read and write display data, +5 V and -7 V supply with 150 V AC required for backlight. data and power inputs by solder contacts on board. pin outs standard and compatible with other Optrex displays, extended temperature range (253 to $343^{\circ} \mathrm{K}$). easlly interfaced w/th either 4 or 8 bit up's. Supplied complete with data.
Dimensions:
Characters are 5×7 dot arrays with separate cursor
1 Character measures $3.2 \times 6.0 \mathrm{~mm}$ inclualing cursor
Display slze $93 \times 16 \mathrm{~mm}$
Module size $118 \times 35 \mathrm{~mm}$
DP around E 30.00
Our Price E 10.00

BULK LED's

Now! Standard LED's at prices from less than 2p each! This parcel was supposed to contain a variety of shapes and colours for our LED packs - but there are too many standard red ones to mix in, hence this too good to miss offer!!

Code	Colour	Size	Shape	Manf'r/Type	Lead length	C1 pack	$100+$	1k+
22090	Red	5 mm	Ostd	QTMV5752	28.5	15	0.032	0.025
22091	Red	5 mm	\square-std	Liton LTL9223A	29.5	12	0.038	0.030
22092	Green	5 mm	Ostd		13.5	14	0.035	0.028
22094	Red	3 mm	min	MLR327	17	18	0.030	0.022
22098	Red	7×2.55	Rect	Senior elecSE65110	32	12	0.038	0.030
22095	Red	5 mm	Rect*	Phillips HR44DL	26	12	0.038	0.030
22096	Clear(IR)	4.5×1.5	Rect	Honeywell 8406	20	8	0.060	0.040
22097	Red	5×2	Rect	GIMV57123	29	12	0.038	0.030

$\mathbf{1 0 k}+$ mix of any of the above 0.02
$100 k+$ mix 0.016
Total available 250k +

28119 Communications LCD. This large ($140 \times 40 \mathrm{~mm}$) display (made for Marconi) has 110 plns and shows a varlet of symbols and power levels used in radlo communication. Includes a bargraph display. No turther info and only limited appeal. hence the very low price. Just $\mathbf{E 2} .00$

LCD MODULE

$\mathbf{2 8 0 0 6} 16$ character $\times 1$ line. Very stmilar to our 21814 but slightly larger character $-6.3 \times 3.15 \times 5 \times 5 \mathrm{dots})$. Tyoe LCDM 16166 by Refac. Supplled with data Uses Hitach HD44780AOO chip
Prle
18.00

218462 pairs of infra red-emitter/ receivar SDP8406/ 8506 by Honeywell with comprehensive data.

21466 G lamp type $286-002$. this is a 12 V 1.2 W wedge lamp 18 mm long $\times 4.8 \mathrm{~mm}$ dia. Their price 23p each.
Ous price 12p; 25/£2.50; 100/£7.00; 500/£25.00 2712 Amber indicator $12 \mathrm{~V} 80 \mathrm{~mA} \quad 35 \mathrm{~mm}$ long. Needs 87 mm hole.
Price .. 25 p

21922
21923

21928

21930 $\begin{array}{lll}\mathbf{Z 1 D 2 2} & \text { MBC 220V neon indicator } & 5 \text { for } £ 1.00 \\ \mathbf{Z 1 2 2 3} & \text { Slide (PO type) 220V } & 5 \text { for } £ 1.00\end{array}$ $\begin{array}{lll}\mathbf{Z 1 2 2 3} & \text { Slide (PO type) 220V } & \mathbf{5} \text { for } \mathbf{E 1 . 0 0} \\ \mathbf{Z 1 2 2 4} & \text { Small sllde base } 48 \mathrm{~V} 25 \mathrm{~mA} \text { T5.5 } & \mathbf{5} \text { for } \mathbf{E 1 . 0 0}\end{array}$ $\mathbf{z 1 9 2 4}$ Small sllde base 48V 25mA T5.5 5 for $\mathbf{E 1 . 0 0}$ z1025 Small slide base 24V 20mA T5.5 Bfor E1.00 100/E10 $\mathbf{Z 1 2 2 6}$ Small slide base 60V 20mA T5.5 5 for $\mathbf{\Sigma 1 . 0 0}$ $\mathbf{2 1 9 2 7}$ LES 6.5 V 0.15 A
$\mathbf{Z 1 9 2 8}$ MES 110V neon indicator 6 for 11.00 Z1920 T3/4 (10 mm) wedge base $28 \mathrm{~V} 60 \mathrm{~mA} \quad 5$ for $\mathbf{c c} 1.00$ $\mathbf{2 1 9 3 0}$ Small wedge base (5 mm dla) 24 V 30 mAB for $\mathbf{E 1 . 0 0}$ $\mathbf{z 1 \geqslant 3 1}$ Sub-midget flanged $12 \mathrm{~V} 30 \mathrm{mAT1} \quad 3$ for $\mathbb{E} \mathbf{5} .00$

Price 10/ £1.00 Pack of $100 / 6.10$

24374
14V 40mA Opal. Their price
97p.
Ouif price...
2/ 10.00
280.42 MES lamps rated 10 V 0.2 A . These have a larger bulb than normal.
In thores of 50 for

A parcel of IMO Neon indicators and various other lamps has just been delivered and offers the hobbyist a selection of top quality components at rock-bottom prices! Why are they so cheap? They're all for 110/120V! However, that's no problem because with every indicator we supply a suitable resistor for mains operation

Type A - Panel mounting $33 \times 15 \mathrm{~mm}$ with $0.25^{\prime \prime}$ tags. Cllo fix requires $25 \times 12.5 \mathrm{~mm}$ cut-out

Price:

21899 Green $100+0.10 \quad 1 k+0.06$

Type B - Panel mounting $36.5 \times 26.5 \mathrm{~mm}$ with 0.25^{n} tags. Clip fix. requires $30 \times 22.5 \mathrm{~mm}$ cut- out.
21901 Red
21902 Green
21903 Amber
21904 white
Price:
(Any mix) 5 for Cl

Type C-Small round tace 10 mm dia. Clip ilx, requires 9 mm dla hole.
dla hole. Red
21905 Red
21908 Red
$\begin{array}{ll}\mathbf{2 1 9 0 6} & \text { Green } \\ \mathbf{2 1 9 0 8} & \text { White }\end{array}$
Price:

Type O - Large round tace 13.5 mm dia. Clip.fix, requires 12.5 mm dia hole

21910 Green
21012 White (Anymix) 5 for Cl Price: $\quad \begin{gathered}\text { (Anymin) } \\ 100+0.10 \text { th }+0.06\end{gathered}$

4, cher ?

2511 Mains neon, clear $0.25^{\prime \prime}$ tabs require 15 mm hole
Prices
2510 20p
2610 As above, bul red. Same prices.
2514 As above, but 110 V red. Same prices. 12 mm hole. 2517 Mains neon, orange. Square face. Req $1.0 / 1.30 \quad 100 / 10.45$ 2518 Mains neon, white. $0.187^{\prime \prime}$ tabs. Req 15 mm hole Prices 20p 10/1.30 100/ 10.45 $\mathbf{2 5 2 9}$ Mains neons. 90 V neon + resistor with clear sleeve over and leads 70 mm long. Some have dry joints.
over and leads 70 mm lang. Some have dry... 6.00

INDICATORS

A couple of snap-in 12 V indicators. Panel mounting. they require $25 \times 12.5 \mathrm{~mm}$ cut-out. 0.25 tabs.
22138 Red 5 for $\mathrm{C1.00}$
22139 Amber 5 for $\mathbf{C 1 . 0 0}$

STATIONERY

(a) Stationery producte - mostly as used in plotiers Pentei Rolling Writers. These fine point cartridges are essentlally complete pens without an outer casing. so can be used as they are. Current price is around 60p. Now look at our prices! (State 2nd choice)
223199 Black
223201 Blue
223200 Red
223202 Green (Only a tew)
Prices (any min)
30p each
ispens Staedler/Mars lumochrom leads. Pack of 12 in ispenser, Blue 2 mm . Fits all standard lead holders
prices30p $10+0.2050+0.15$
201158 fube of 12×2 H leads 2 mm dia. $\quad 25 \mathrm{p} \quad 10+0.17 \quad 50+0.12$
201159 Tube of 12 Green leads 2 mm dia
Prices 30p $10+0.2050+0.15$
Orawing Ink Staedter/Mars 23 ml plastic bottles in 4 colours. Normally $£ 1.87$
223183 Black
223184 Red
223185 Blue (few only)
223186 Green
Prices (any mix) .. $10+0.70$

Sticky things

3 types otadhesive backed loam strip.
z04001 12 mm wide 2 mm thlck. Roll of 10 m . zO4001 12 mm wide 2 mm thick. Roll of 10 m .
Price
ZO3763 8 mm wide 2 mm thick. Roll of 10 m .
c2.00

Type G - Small round face 7.5 mm dia, threaded body requires 6.5 mm dia hole.
21921 Red
Price:
5 for $\mathrm{C1} ; 100+0.10 ; 1 k+0.00$

Type H - Body dla 17.5 mm - chrome Dezel. Wire ends
2206e Clear
Pric
$100+0.10$ 1k+ 00

K700 Pack of indicators, types A-G. May include any of those listed above. Great value for money! 20 for $\mathbf{E 2} 50$

We are always looking

 for new lines to add to our lists.Send details/samples of goods available to:
The Managing Director Greenweld Electronics Ltd 27 Park Road Southampton SO1 3TB

Price

250023 M , or similar masking tape. 25 mm wide $\times 50 \mathrm{~m}$ long Normally all at over $\AA 2$
Our price
C1.50
Our pricel of while 25 mm wide $\times 66 \mathrm{~m}$ long adhesive tape printed with colour coding of wlres for 13A plugs. Repeats every 75 mm .
Price 1.50
24282 High insulation adhesive tape, like brown translucent sellotape. 33 m reel $\times 12 \mathrm{~mm}$ wide.

24283 Self adhesive protiled sealing strip. Cross section $9 \times 4 \mathrm{~mm}$ (sample free).

20p/metre 50 m roll/ 5.22
Price 20p/mere
2592 Yellow ad hesive tape, 66 m roll 3 mm wide.
Price
30p
$\mathbf{2 5 0 0 1}$ Bulk pack of Araldite 1500 GB iwin pack yellow epoky encapsulant. Bag Is divided by clip which when withorawn enables resins and hardener to mik. Contents can then be squeezed out of bag as required.
Price
223221 Antistatic adhesive labels. Sheet of $4518 \times 12 \mathrm{~mm}$ Black print on yellow background.
Price... $\mathbf{2 2 3 2 2 2}$ As above, but includes wording 'Caution static sensltive. Observe precautions. Sheet of $2145 \times 13 \mathrm{~mm}$. E1.00 201152 Scotch sensing markers for magnetic computer
tape, "4" wide: $1^{4 "}$ long tabs. 250 on a reel.
Price
Price ..80

(नRIENWMED - TEL: (0703)236363 FAX: (0703)236307 COMPONENT PACKS

A bigger, better range of component packs all our packs contaln new, full spec components (unless otherwise stated) giving great value for money! Please note most packs are calculated by weight - quantities are approximate.

HARDWARE

KES3 2BA screw mix, Mostly steel, few brass/nylon etc, cheesehead and countersunk, mainly in lengths from $3-38 \mathrm{~mm}$. Excellent selection.
Price
$100 / \subset 2.80$
K 581 6BA/ BBA screw mix. Again an amazing mixture of lengths from $3-38 \mathrm{~mm}$. Nearly all cheesehead and countersunk in steel.

Pric.

$200 / c 2.40$
K811 6BA screws. Nearly all pan head pozl in plated steel. Lengith to 16 mm .
Pack of 100
c1.80
K806 M2.5 screws. Vartous heads - mostly pan and c/s pozi All plated steel. Lengths to 10 mm
Peck of 100
C1. 30
K807 M3 screws. Good selection of slzes including a few brass. Most heads. Lengths to 35 mm .
Pack of 100
c1. 80
 KB08 M4 screws. Muge variery! Pan, Ci s, cheese, sel, slot pozi. From $4-50 \mathrm{~mm}$ long. All steel, plated, black/ hi-tensile. Pack of 100
©1.60
K800 M5 screws. As above
c2.00
K820 Large bolts and set screws. Could welgh as much as 150 g each (up to 16 mm dia $\times 90 \mathrm{~mm}$ long). Practically all are steel. Many different heads
 K817 Small washers. Big variety including shakeproot, spring and plain. A lew brass and non-metal. $5-16 \mathrm{~mm}$ OD. 2.4-8mm ID.

Peck of 500
c2.00
$\mathbf{K 5 0 9}$ Captlve, shakeprool and locklng nuts in sizes from 2BA 10 6BA, mostly alloy
Price per pack of 100 $K 898$ Solder lags. Good variety of sizes from $3.11 .5 \mathrm{~mm} / 0$. Includes some small crimp types. Most are double ended. Great value
Price ...200/ £2.20
K827 Herdwore Peck. This has a large variety of PK (caps) and self tapper screws from $2 \times 1 \frac{1 / 2}{2}$ up to $8 \times 11 \%^{2}$ also washers, some BA, metrlc and whit. Screws plus other miscellaneous brackets. captive nuts and bits and pleces. 1 kg (up to 1000 pieces).

prices

1ke/c4.00
K 835 Spring Pack. Approx 100 assorted compression, extenstion and torsion springs up to 22 mm diameter and 30 mm long.
Price
c1.70
K 880 Self tapping screws, both pointed (AB) and blunt (B) in an assortment of sizes trom 6 mm to 32 mm long. NO4 to NO8, hex and Pozi head. Excellent value. Price 200 for $\mathrm{E1} .50$

CAPACITORS

K544 Mullard Polyester Caps. Cosmetic imperfections. electrically OK. Wide range of values from 0.01 to $0.47 \mu \mathrm{~F}$ in $100.250,400 \mathrm{~V}$ working.
Price
200/ c4.75
Ps46 Polystyrene/ Mica/ Ceramic Caps. Lots of uselut small value caps up to about $0.01 \mu \mathrm{~F}$ in voltages up to 8 kV . Good variety.
Price
100/ E2.75
$K 828$ Electrolytic Pack. Axial and radial, some ready cropped for PCB mounting. This pack ofters excellent value for money. Good range of values and voltages from $0.47 \mu \mathrm{~F}$ to $1000 \mu \mathrm{~F}$. 6 V to 100 V .
Prices $100 / \mathrm{C4}$.80
PS18 200 Disc Ceramic Caps. Blg yariety of values and Kotages from a lew pF to 2.2uF-3V to 3kV
Price ...
Ks30 100 Assorted Polyester Caps. All new modern components, radial and axial leads. All values from 0.01 to 1 $\mu \mathrm{F}$ at voltages from 63 to 100011
super value a
c3.98
$K 882$ Polystyrene Caps. An amazing range of values from a few pF to .01 . Tolerances $1-20 \%$. Voltages to 500 V . Outstanding value!
Price
Pack of 200/ $\mathbf{4} .00$
K714 Power Supply Cepectiors. All cans, mostly computer grade including popular values like $10,000 \mu 40 \mathrm{~V}$ etc. Big mix of values and voltages up to 100 V or more and $50,000 \mu \mathrm{~F}$.
Price for box of 28
c12.50

BESISTORS

K840 Realstor Pack. Mostly Vo, $1 / 4$ and $1 / 1 / W$, also some 1 and $2 W$ in carbon film, oxide etc. All have full length leads. Tolerances from 2 to 20%. Excellent range of values.
 K623 Resimtor Peck. 1000 -yes, 1000 mainly $1 /$ WW $5 \& 10 \%$ carbon/ carbon film resistors with prelormed leads for PCB mounting. Fair range of preferred values.
Price
Only C 2.98
K829 Bandoliered resistors in bulk, ideal for schools and colleges etc for soldering practice. Up to 5k (depending how they are packed) of one value. Our choice of values and they are packed) of one value.
types may include $1 / 1 / 1 / 1 \mathrm{l}, 1 / 2 / 5 / 10 \%$.
types may include $1 / 1$ /h/ iW, $1 / 2 /$ P/ 10\% $100,000 /$ C 88.00
$K 580$ Metal Oxide resistors, TR4, 0.25W by Electrosill. Wide range of values, mostly 5\%, few closer tolerances. Super value pack.
Price
Ks31 Precision Resistor Peck. High quality, close tolerance R"s with an extremely varied selection of values tolerance R"s with an extremely varied selection of values
mostly $1 / \mathrm{W}$ and $\% \mathrm{~W}$. tolerances from 0.1% to 2% - ideal for mostly $1 / \mathrm{W}$ and $1 / 2 \mathrm{~W}$.
Price:
280/c3.00
K $\$ 72$ Resistor Networks. Both SIL and DIL in here, from 6 to 16 pin . Plenty of popular values like $1 \mathrm{k}, 4 \mathrm{k} 7$ and 10 k , and a good sprinkiling of many other values.
Pack of 100 Ks03 100 Wirewound Resistors. From 1 W to 12 W , with a good range of values.
Price
53.80

K525 Preeet Pack. Big, big variely of types and sizes -sub-min, min and sid, MP, slider, multiturn and cermets are all included. Wide range of values from 20R to $5 \mathrm{M}, 100$ assorted. Prices 58
Ks05 20 Assorted Potentiometore. All types including single, ganged, rotary and slider.
Price.
c2. 30
Ka27 Cermet Trimmers. Contains a good selection of multi turn types in a wide range of values trom manutacturers like Murata, Bourns. Diplohmatic etc. Pack of so c7.98 K828 Low value Wirewound Resistors. A remarkable selection of sizes and types, all less than 5R, going down to ess than OR1! Wattages from $3 W$ to 25 W . A great pack at a terfilic price. Pack of 50

LASTIC/SLEEVING

KB64 PCE Stand-offe. A mixture of 5 difterent styles and sizes from 475 to 12.7 mm high
Price .
$100 / \mathrm{c} 2.98$
K826 Jumbo pack of plastic stand off's and a lew cable clips and other bits and pleces.
Price
000 parts c 9.98
$K 533$ sillicon Rubber $\$$ loeves. 20 mm long, 2 mm bore. 1 mm wall.
Price $200 / \mathrm{ct} .20$
KBis Pillars and stand-otts. This includes conventional threaded pillars and standotts, also unusual shaped types too, up to 60 mm long. Mastly steel, some ally and non-metal. Nearly all M3/6BA or larger.
Pach of 50
c2. 00

SWITCHES AND RELAYS

W4700 Push Button Banke. An assortment of latching and independent switches on banks from 2 :0 7 way. DPCO to 6PCO. A total of at least 100 switches.
Prloet
K 887
100/ ce.so
rom page 12
of our 1990 Catalogue. Includes single pole to 4 pole sub min and min. Pack of 50, £30 at cat prices
Price
c14.95
K820 Switch Peck. 20 difterent assorted switches - rocker slide, push, rotary, toggle. micro etc. Amazing valuel
Price ...80
K882 Reed relsys. Mostly DIL, single pole \& double pole also some changeover, these are manufacturers rejects, but a good proportion work. $5 \mathrm{~V}-50 \mathrm{~V}$ coils 50 assorted.

Price

K 860 Reed 5 witch Peck. A selection of about 15 types ol reed swith from submin 12 mm long to 5 A rated 50 mm long mosly form A (make), lew form C (changeover).
Pack of 30
.... 53.28
K71s DiP 8 witch Peck Tremendous selection of DIP switches, mostly from Page 121 of 1991 catalogue. Everything from 1-9 way at an astonlshingly low price! Pack of 20
Ka24 Rocker swith packs. Excellon selecton or sing
Ka24 Rocker switch packs. Excellent selection of single pole and double pole rockers, ifluminated (all 240V), large minialure and standard in a variety of colours. Purchased individually they would cost over $£ 15.00$!1

OPTO

5530 LED Pack. Not only round but many shaped LEDs in this pack in red, yellow, green, orange and clear. Fantastic mix.
rice
100/ C5.50
K806 LED Peck Contains only Red LED's - round, square, ectangular etc, from 3 mm to $7 \times 2.5 \mathrm{~mm}$.
rice.
$100 / \mathrm{E} 5.00$
K824 Opto Pack A varlety of single point and 7 segment
LEDs (incl dual types) of various colours and sizes, opto isolators. numicators, multi digit gas discharge displays, photo transistors, Infra red emitters and receivers.
price
25 asstd/ C4. 60
KBO1 seven eeg LED pack. Big variety of sizes In this pack. May include Red and Green, also overllow/ polarity displays, single/double dight, aiso 7/ 8/ 9 dight magnified cisplays. Sizes from $0.11^{\prime \prime}$ to $0.8^{\prime \prime}$. 20 pieces for just.. $\mathbf{C 3 . 0 8}$ t804 Lamp Peck. A superb quality pack containing a wide variety of small lamps. Many ditterent types - wire ended, bi-pin, slide, MBC, MES, LES, TI , wedge, miniflange etc in valtages from 2.5 V to 220 V . Most are marked with voltage/ current.
Fack of 80
4.00

CONNECTORS

R557 Terminul Blocke. In all shapes and sizes, solder and screw from single way to 12 way in many ditterent current ratings.
Frice ...
H803 PCB headers pack whth/without ears, straight and right angle from 10-64 way.
Feck of $\mathbf{2 0}$... 5 MBo2 Pack of DINA1612 connectors. These popular PCB connectors come as $32 / 64 / 96$ way. Both plugs and sockets. some with pins missing. Normally costing $£ 1-£\}$ each.
Feck of 25
c8.00
M822 ' D ' Type Connectore. A pack of these popular multipin connectors in 9. 15, and 25 way, may also include 37 and 50 way plugs and sockets, PCB, chassis and cable mounting types.
Price
20/ 13.95 pins and insulators for both single and double sided PCB's.
Price.

SEMICONDUCTORS

W538 Diode Peck - full spec small, signal diodes thke 7N4148 atc at a price never belore seen!
Frlce/ 1000 .. e4.00
W847 Zener Diodes. Glass and plastlc, 250 mW to 5 W ranging from 3 V to 180 V . All readily identifiable, with Hist supplied.
Frice
100 for $\mathrm{C4.98}$
W00 Bridge Rectifiers. Another superb value pack - could include anything from $1 / 3$ amp to $35 \mathrm{~A}, 25 \mathrm{~V}$ to 1000 V , plastic and metal.
Price
20 for Ce. 98
H710 SCR's a TRIACs. Big mixture could include all types from TO92 plastic up to DO5 stud mounting with a chance of everything in between! 25 V to 1000 V . 100 mA to tens of amps. Narvellous value.
Arice
28 for 55.98
MTOB Voltage Rogulatora. This is an excellent pack, made up from a huge variety of the + ve, -ve, fixed and variable regulators from 1.2 V to $37 \mathrm{~V}, 100 \mathrm{~mA}$ to 5 A , plastic and metal. Price ... 28 for cs.os plastic devices PNP NPN RF AF pla $117,172,102,103,190,239,251,214,255$, 320 include 14, 255, 320, BF 198 255. 394, 2N3904 etc, etc. Retall cos! $£ 16+$

Special how price..
K578 Plastic Power pack. Mainly TO126 and TO220 translstors. SCRs. Triacs etc. All new full spec marked devices oftering fantastic value. Lots of TIP and BD types.
Price
50/ 18.08
Ms70 Mixed pack of TO220 and 4 pin power mosfets with data and pinouts. Types may include: 2N7004/5/6/14, IRF620/710/720/820. IRF9520/9620, VNO300D etc.
Arice ... $28 / \mathbf{c 8 . 0 0}$ Me77 Surlace mount FETs Including SM versions of 2N4340/1. 4392. 4857, 5488/9/60/1, also 2N7001/2 etc. Big varloty at a low price
Price .. of $50 / \mathbf{4 . 0 0}$ M336 74 Serles Pack. 'On board' chips for you to desolder - containing many LS and other types. Good mix.
 M71174 Logle Peok. All brand new full spec devices from basic gates to complex logic. May Include $54 \& 64$ types as well as 74 in L. LS, S. ALS, H, MC, MCT, etc.
Price for pack of 100
$c 8.80$
We37 IC Peck. a mix of Hnear and logic chips. Irom 6 to 40 pun. All are new and marked, out some may not be full spec. Prin. All are 100

MOTOR + GEAR PACK

K879 This pack contalns 10 assorted battery powered notors (mostly 3 V) +90 gears etc. $16 \cdot 60 \mathrm{~mm}$ dia + worms and shaths. Amazing value
Price
67.98

MISCELLANEOUS

$K 555$ Fuses. A marvellous selection of 15, 20, 25 and 32 mm fuses both cartridge and wire ended in quickblow and antisurge varleties. May be anything from 32 mA to 50 All Price Prestron of 10 piezo and electromagnetic Iransducers, PC保 $15-30 \mathrm{~mm}$ dia. Manf'rs include Star and Murata. Suppiled C2.80
K829 Transducers. Piezo, electromagnetic, permanent magnet in assorted sizes from 15 mm dia upwards. Lovely mix. Pack of 28 C3.50
$K 874$ Wire link pack. A wide range of slzes from 3 mm to 50 mm for use with Breadboards or PCBs. Some are bare, a lew are not preformed.
Price per pack of 280
c1.00
K5e1 Coils and Choket. Pol cores, IF cans, open wound coils, chakes, etc from a few $\mu \mathrm{H}$ upwards in a wide variety of sizes and values.
Prices.
80/42.8o

K873 Pack of assorted TOKO RCL colls, mainly in $10 \times 10 \mathrm{~mm}$ screened cans
Price
100/ ©6.00
K841 Printed Clrcult Boards. A wide variety of high quality printed circuit boards including audio, RF, digital etc all covered in components - resistors, capacitors, transistors, Cs, LEDs, switches etc, etc. A big pack of 2 kg . Price.

Only $\mathbf{c} 7.00$
K712 Crystals. Mostly HC60 and HC18U in a wide variely of requencies from a few hundred kilohertz to many megahertz and the odd crystal oscillator modute of two.

K713 Fuesholders. Panel and chassis mounting from a basic clip to high current enclosed types for 15.20 and 32 mm luses.
Price for pack of 50
Transducer/ Sounder Parcel
Remains of STC sounder on P120 of 1991 cat + other plezo devices. A parcel of 10 assortec.
Price ..

Power Supply Parce
K888 This one's an absolute gem! Contains a selection of conventional and switch mode power supplies, including AA12531, 24215, $24311+7$ othersll Parcel of 10 orlginally selling for $\mathrm{E} 40+$

PHOTOGRAPHIC

$K 716$ Odds and ends of Flash units, dedicated Flash Modules, Lens converters, incomplete cameras (at least 3).

EVERY SINGLE PACKIN THESE PAGES COSTS JUST ع1.OO!!
There is an enormous varlety of electronic components, hardware, and other interesting parts. We have divided the packs up Into various classiflcations to make selection quick and simple - so look through these pages at:

THE CLASSIFIED COLLECTION

No. 3	Description Capacitors (Tant bead)		No. 11
4	Capacitors (Electrolytic)		12
5	Capacitors (Ceramic)		15
*	Capacitors (Polyester etc)		$\begin{aligned} & 17 \\ & 25 \end{aligned}$
10	Coils, chokes. \& transformers		$\begin{aligned} & 29 \\ & 33 \end{aligned}$
		Capa (Tant	
Code	Value	Descripti	at
K173	1.5 $\mu \mathrm{F}$	25 V Tant ${ }^{\text {b }}$	
K246	0.1 $\mu \mathrm{F}$	$35 \vee$ Tants	
K380	$2.2 \mu \mathrm{~F}$	16 V	
K38 6	$15 \mu \mathrm{~F}$	16 V	
K382	10 $\mu \mathrm{F}$	35 V	
K383	$220 \mu \mathrm{~F}$	10 V	
$\times 364$	$2.2 \mu \mathrm{~F}$	35 V	
K35 6	100MF	10V	
2741	Tubula	nt cap $15 \mu \mathrm{~F}$	

		Capacitors (Electrolytic)
Code	Value	Description Gty
K138	$4.7 \mu \mathrm{~F}$	10 V Radial elecs. 30
K14*	$330 \mu \mathrm{~F}$	4 V Axial caps. 25
$\times 201$	1000 $\mu \mathrm{F}$	6.3V PC mntg electrolytics.
$\times 208$	$0.33 \mu \mathrm{~F}$	50V Radial lead electrolytics.
K20*	$0.47 \mu \mathrm{~F}$	50 V Radial lead electrolytics.
K280	$10 \mu \mathrm{~F}$	40V PC mntg electrolytics.
$\times 258$	$2000 \mu \mathrm{~F}$	10 V long leads. 10
K289	$10.000 \mu \mathrm{~F}$	$6.3 V$ long leads.
K284	10,000 HF	16 V can. 2
$\times 266$	4,700 $\mu \mathrm{F}$	16 V Mullard can. Tag end $50 \times 25 \mathrm{~mm}$ dia.
K267	10.000 $\mu \mathrm{F}$	25 V Elma can, with clip; tag ends $50 \times 31 \mathrm{~mm}$ dia.
K288	4.700 $\mu \mathrm{F}$	16 V ITT Radial leads. $37 \times 18 \mathrm{~mm}$ dia.
K289	$330 \mu \mathrm{~F}$	100V ITT Axialleads. $50 \times 22 \mathrm{~mm}$ dia.
<271	8 $\mu \mathrm{F}$	$25 V$ Sprague axial leads. $13 \times 6.5 \mathrm{~mm}$ dia.
K389	$1 \mu \mathrm{~F}$	50 V axial $12.5 \times 5 \mathrm{~mm}$. 12
K380	$1500 \mu \mathrm{~F}$	16 V radial $40 \times 16 \mathrm{~mm}$.

K364	220 ${ }^{\text {F }}$	10 V radial min.
K407	$470 \mu \mathrm{~F}$	25V Axial.
K408	$10 \mu \mathrm{~F}$	16 V radlal.
1×409	220 $\mu \mathrm{F}$	16 V radial.
K410	$4 \mu 7$	63 V radial.
K411	$1 \mu F$	100V radial.
K412	$10 \mu \mathrm{~F}$	63 V radial.
K413	100 $\mu \mathrm{F}$	25 V radial.
K414	$2200 \mu \mathrm{~F}$	$40 \vee \mathrm{can}$
2822	$800 \mu \mathrm{~F}$	\checkmark can 76 dia 38.

Capacitors (Ceramic)

Code Value

 K124 $0.02 \mu \mathrm{~F}$ K126 3000pF$\times 27 B \quad 0.1 \mu \mathrm{~F}$
K278A 1000pF K279 2200pF K38e $0.47 \mu \mathrm{~F}$ $\mathrm{K} 3870.022 \mu \mathrm{~F}$ K3 $880.047 \mu \mathrm{~F}$ K818 21630 4700pF

2184Q 2200pF

Description

 Disc ceramic 63V Polystyre 50 caps. 32 V disc ceramic 14.5 mm dia. $4 k V$ Disc ceramic. $2 k V$ ceramic. Dipped multilayer, 50 V Ceramic plate, 50 V . Ceramic disc, 12 V . Disc ceramlcmix 20 Disc ceramic 380Vac 15 mm dia.Disc ceramic 380Vac 9 mm dia.

Code	Value	Desecription	Oty
K140	$0.05 \mu \mathrm{~F}$	50 V Mylar caps.	30
K141	0.01 $\mu \mathrm{F}$	400V Axial caps (C296).	. 40
K277	$0.015 \mu \mathrm{~F}$	630 V Axial.	15
K361	$0.33 \mu \mathrm{~F}$	63 V mini-polyester 5 mm pitch.	-
K362	$0.47 \mu \mathrm{~F}$	63 V mini-polyester 5 mm pitch.	6

Description
IC's (Digital)
No. Description IC's (Digital)
IC's (Micro) 53 Crystals Indicators LED's
Miscellaneous Opto devices PCB's
PCB's
Pots $\&$ Presets Pots 8
Relays

Resistors Resistors
SCR's \& Triac' Switches and Reeds Thermistors Tools Transducers Transistors Voltage Regulators Wire, Cable Leads

Coils, chokes and transfomers

K149 Ferrite rods, cat type Z036. 12 K280 Mixture of $33,56 \& 100 \mu \mathrm{H}$ axial chokes.
 K688 TOKiormer 12-0-12V 100mA. 1 K8se TOKOCan type 113CN12249HM. 10 K 690 SIGMA Axial choke type SC10. $150 \mu \mathrm{H}$.

13ab Ferrite core

$\Sigma 143312 \mathrm{~V}$ Sheet feeder solenoid Choke 16 mm long $\times 11 \mathrm{~mm}$ dia. 5
4 Computer
zeto Enterprise demo cassette. z1614 PR280 red/ black ribbon for puma. z1645 Olivetti ribbon. No code number. 241,32 Joystlck firing speed adjuster. 24156 Multistrike film ribbon for ficoh RP600.
24159 Fabric black for qume no. 80009-02. 1

$K 133$ way term block 5A. K16T 16 pin OIL-QIL IC sockets $\times 240$ 2Wtag strip

20
K261 Mini2 28
K314 22 in mold platedic sockel 28 0.4 spacing

10
K318 3.5 mm mono screened plug. 4
K404 Push on crimp connectors. 100
K413 40 way $0.1^{\prime \prime}$ header plug. K\&14 34 way 0.1 " header plug. K416 20 way $0.1^{\prime \prime}$ header plug.

K\＆17 26 way $0.1^{1 \prime}$ header plug． K 822 Amp Aerminal pins on carrier strip． Amp lerminal pins on carrier strip． 200 0.1^{2} plitch
2876 2.1 mm power socket． 10
288 Phono PC mnig socket． 10
z743 24 way socket．Connector on 5 mm centres
2782 Transistor socket． 4 pin TO5 PTFE．${ }^{10}$
$\Sigma 1370$ Amp connector， 3 way $0.156^{\prime \prime}$ pltch．
2138110 way PCB mntg $0.1^{\prime \prime}$ pitch． single sided edge connector 0.1 ＂pitch．

21476 Sealectro connector contex 75R
21477 Sealectro connector SRM 50R．
zt408 Line socket for old BT 4 pole plug．
z1E43 3 row DIN 41612 socket
Rows $6,7,13+14 \mathrm{~m} / \mathrm{ssing}$
2 row DIN 4161264 way plue Alght angle pins
3 row DIN 4161296 way plug Rows 2，5，8，11，14，17，20，23． 26, 32 missing．
21861 12 way DIL header socket ． 1 ＂pitch with standoff．
z185：CRT socket． 10 way green plastic．
Z1857＇F＇socket，single hole female RF connector
21882 31 way 0.15 pitch single header plue gold plated．
Z168s Edge connector． $\mathrm{s} / \mathrm{S} 0.1$ pitch 38 way．solder tags．

Diodes （Bridge）

$\times 240800 \mathrm{~V} 4 \mathrm{~A}$ in－line bridge rect Ka01 Semikron Brldge SKB2／02 （like BY164）．
x 30e BSK B80 C600 Semikron Bride $\mathbf{x} 307 \mu \mathrm{E}$ B380C800W Bridge． z 140850 V 25 A bridge rectilier

	Diodes （Power）
K480	AA132100V 10 mA Ge point contact．
K481	AA133130V 10 mA Ge point contac
K482	BA12875V 50 mA Sid dode．
＜483	BA 13025 V 75 mA Sidiode．
K485	BA14715V 50 mA Si diode．
K488	BA155150V 100ma sidiode．
以486	BA21850V $10 \mathrm{~mA} \mathrm{Siswitching}$.
K322	BAX12A Sllicon glass 90 V 400 mA ．
K323	BAX16 Sllicon glass 150 V 200 mA ．
K457	BB 104 Dual capacitance Si 34－39
K324	B8121A
K326	88142
$\times 32$ ¢	B8221 Variable capacitance diode 1．8－2．2pF 28V．
K327	88329 Variable capacitance diode 2．5－3．2pF 28 V
K488	BY196100V 1．2A last rect．
$\times 328$	BY197200V 1．2A last rect．
0480	BY198400V 12 L
K320	BY199600V 1.2 A laist rect．
K480	BY212－750R 800V 1A SI＇tophat＇ rect．
K330	BY＇250 Pinnacle supplied in a neat clear plastic case．
K461	BY4011A rect．
K482	BY550－100100V 5A Si rect．
K483	BY $22-400400 \mathrm{~V}$ 1．4A Si＇tophat＇ rect．
K484	BYX36－300 300V 1 A rect．
K331	BYX55－300 Stlicon rect 330V 1 A．
k485	DK14 80V 120 mA Ge diode．
K466	HG5085 Small signal diode．
K332	IN277 Germanium diode 125V 100mA．
K467	IN446 Si．
K488	IN459 175V 3mA Si．
K460	IN627 100V 30mA switching Si diode．
K470	IN643 200V 5 mA switching Si diode．
K871	IN916A 75 V 10mA switching SI diode．
K333	IN2069 Sllicon rect 200V 0．75A．
K472	IN3890 100V 40A rect．
K473	IN4 149 75V 10mA Si．
K474	IN4154 25V 30mA Si．

K478 IN4446 75V 10mA Si K47e IN4447 75 V 20 mA Si． K477 IN4448 75 V 5 mA Si． C478 IN4454 75V $10 \mathrm{~mA} S$
K479 IN4744 15V IW 10\％zener diode
K 480 IN4752 33V IW 10\％zener diode．
K334 in4821 silicon rect 500V 1.5 A IN4821 Silicon rect 500 V 1．5A
IN4933 Fast（150ns）rect 50 V 1 A plastic．
1A plastic．
cter IN5062 800V 1 A Si rect

diode．

$\times 483$ 15021 Top hat
Kese 15410 Stud mintg 3A 1 COV．
Kess 15423 stud mntg 10A 400 V

	Dlodes （Sigmal）	
K112	3 A 50 V wire ended rects．	14
K113	DA002 150V 0．5A rects．	30
$\times 222$	GRO5R 50V 4A stud mntg rects．	5
K220	IN4006 Rectifier diodes 1A 600V．	30
＜246	BY×10 1400V rects	10
$\times 248$	SO5M1 1A 50V rects．	30
K287	Sllicon 6A diode by Motorola． Like MA752．	12
K202	RY299，2A 800V dilode preformed H mntg．	6
K208	SK4G4／ 04 switching cliode 400 V 1A preformed for H mntg．	10
K302	BYX 10 Diodes．	10
K308	CV8308 Diodes．	－
K113	BY206 Diode．Fast recovery $0.5 A 400 \mathrm{~V}$ ．	＊
K316	31 DOO3 Diode by IR．Scholtky 3.3 A 40 V ．	3
K310	IN4001．	30
2728	Stud rect 6A 300V BYX38－300．	10

（4）Fuses \because Molders
 K166 $1 / 4$ chassis mntg fusenolder
 2340 Wire ended fuse，glass body． 15 ceps $20 \times 5 \mathrm{~mm}, 1.5 \mathrm{~A} \mathrm{A/S}$ ．Wires could be snipped off and fuse used in holders．
 130815 mm panel mntg fuseholder，size 00 Belling Lee L．575．Finger or screw release．Solder tags．
 21836 PC mntg． 20 mm fuseholder

5	－	$\begin{gathered} \text { Mcs } \\ (\text { Linear } \end{gathered}$	
1223		AC4131T Op－Amps．	3
K330	LA 1385	TV chip．	1
K311		UDN 6116A driver chip．	4
K312		SL521．	3
2732		XK1444 CMOS buffer	
		16 pin chip．	10

5	$\begin{gathered} 1 c^{\prime} s \\ \left(\operatorname{cig}^{\prime} t a l\right) \end{gathered}$	
APBO1	7401	10
EPBO2	7407	10
APBO3	7410	10
（1）PB04	7413	10
（1）PB68	7437	10
四PBO6	7440	10
MPBO7	7443	10
EPBO8	7450	10
BPBOO	7460	－
BPB10	7470	B
apst1	7472	10
APB12	7480	10
EPB13	7481	10
tor 14	7482	10
（\％818	7483	10
EPB16	7484	10
BPB17	7491	B
EPB18	7492	8
Epero	7493	8
Bpr20	7494	－
BP821	7495	e
4p822	7496	8
BP823	74104	e
回P824	74105	8
\％P826	74110	B
6pa26	74118	B
BPB27	74119	8
BPE28	74141	5
BPE20	74151	8
EPB30	74153	8
LPPB31	74155	8
cpa32	74156	8
4P833	74157	8
Sp834	74160	8
日pb36	74161	8
9Pa36	74164	B
¢p837	74165	8
apras	74167	8
（19330	74173	8
aprex	74174	8
Epest	74175	B
EPB42	74181	6
BPEA3	74182	8
EPB44	74191	8
EPB48	74193	8
BPB46	74195	B
EPB47	74196	e

BP848	74197
Bpe40	74199
mpeso	74LS11
BPEst	74LS14
－P8E2	74LS20
19Pes	74LS26
Bpes4	74LS33
BP8Es	74LS42
4peso	74LS55
BPEE7	74LS73
8pese	74LS74
8P85\％	74LS76
BPE＊O	74LS93
Bpes 1	74LS95
BP8E2	74LS122
bpres	74LS148
mpast	74LS153
apres	74LS173
вр8е6	74LS221
Bpret	74LS273
3pres	74LS275
日pe69	74LS279
BP870	74LS393
BPa7t	74LS669
K363	4040 surface mount．
	$\begin{gathered} \text { IC's } \\ \text { (Micro) } \end{gathered}$

K239 C500 calc chips＋data
218828050 AH single chip 8 bit micro．Ex equip so probably ROM programmed．
$K 303$ SL－A 4032 chips by GI．14DIL K308 SL－D－2128 chips by GI．14DIL

57 Crystals

K 320 Watch crystal 32.768 kHz $8 \times 3 \mathrm{~mm}$ dia．
$z 141620 \mathrm{MHz}$ crystal．HC6U．

38

Indicators

K 142 Wire ended neons cover case ＜277 size 90V．
28V 0．04A min flange lamps by GI． 10 z321 Lamp LES 6V 0．06A L15 dla 5mm． 7 z323 Lamp MF 6V 0．1A L15 dia 6 mm ． 2324 Lamp MF 12V 0．1AL15 dia 6mm $5 \times 6 s$
z326 Lamp MF 28 V 0.08 A L15 dia 6 mm $5 \times 6 s$ ．
2330 Lamp MES 50V O．05A L28
z338 dia 10 mm ． 240 V neon 10
z337 dia 10 mm ． 6
dia 11 mm ． 10

LED＇s

K161 3mm Red LEDs K182 5 mm Red LEDs K284 Large（7 $\times 5.5 \mathrm{~mm}$ ）rectangular plink 10 LED．
K300 LD261－4LED．Infra red emitter sub min 0.1 pitch
z1＊＊3 Red LEDs $7 \times 2.5 \mathrm{~mm}$

44 Miscellaneous

Z1868 Xenon flash tube 56 mm long $\times 3.5 \mathrm{dia}$
z1ese Xenon flash tube． 40 mm long $\times 3$ dia．
24081 CB Aerial elliminator．

z1436 OPB703A reflective optocoupler z1436 OPR711 reflective optocoupler．

2202 3V 35R SPCO at 3 A $32 \times 20 \times 11$ 2203 Low profile PC mntg． $4 V 20 R 4 P C O$ at $3 A 35 \times 27 \times 21$ PC mntg．
z200 12 V 1000 R SPCO at $1 \mathrm{~A} 20 \times 10 \times 10$ PC mntg．Reed 500 Hz
221050 Vac 750 R 4 PCO at $3 \mathrm{~A} 35 \times 27 \times 21$ ．
Plug in ．
221212 V 400 R DPCO at $1 \mathrm{~A} 20 \times 15 \times 15$ ．
PC mntg．
Z233 100 V 12K DPCO $47 \times 39 \times 39$
工236 24 V 650R DPCO at $3 A 35 \times 27 \times 21$ ． PC mntg．
$6 V 52$ R DPCO at 3 A $30 \times 320 \times 19$ ． Plug in continental．
226024 V 700 RDPCO at $3 \mathrm{~A} 309 \times 30 \times 15$ ．
2288 Plug in continental

58
 SCR＇s and Triac＇s

K10e 2N5060 30V，O．8A TO92 case SCR＇s． 8 K120 TIC225D $K 430$ TIC226B

－5 Switches and Reeds

$K 160$ Switches（cat type W430）． 10
$K 168$ SPCO centre off white rocker switch． 6
K231 4W DIL switch
$K 232$ 8W DIL switch
2420 Min sllde switch SPCO with
2 leads． 10
4 Switch．Alps SRS 40 way．As used in CB＇s for channel switching．Body $20 \times 20 \mathrm{~mm} 6 \mathrm{~mm}$ dia．Shaft with M9 flxing nut． 7 bits per sirip．Data fheet supplied
21004 S103／ 14 thermal switch．Glass encased with B7G base．At 24 V cold start 70 secs to energise，hot start 10 secs．5A．

－ 8 Thermistors

$K 26$ VA1112 thermistor 22k－4k2． 10 K27e 15k Slemens thermistors． ©
K28．PTC thermistor marked 630H．
Measures 4R $\left(\infty 25^{\circ} \mathrm{C}\right.$ and rises to 30 M （a） $200^{\circ} \mathrm{C}$

$\mathbf{K 2 0 0}$ NTC thermistor 8.3 k （a） $25^{\circ} \mathrm{C}$ reducing

 to $100 \mathrm{R}(a) 100^{\circ} \mathrm{C}$ ．6
3 21472 Thermistor as sused on BT phones Bead type with negative temp co－efficient．$\quad \mathrm{R}(w) 25^{\circ} \mathrm{C}=120 \mathrm{~K}$.

Tools

2314 Bow compass
1

$20465^{\prime \prime} \times 3^{\prime \prime} 80 \mathrm{~A} 1 \mathrm{~W}$ speaker．

72
 Transistors

$\times 102$ BC349A transistors．
K 103 BC546B transistors
$K 100$ EC114 transistors
K114 XK6116（BF241）transistors．
K110 2N5401 PNP 160V TO92 transistors． 10 K134 Unmarked untested OC71 type transistors．
AC187K transistors
K182 PN72 plastic BCY72 TO92 case． K 208 SGS127212 NPN TO5 H HE 75 V CE 50 V ．
$\times 209$ SGS26907 NPN TO5 H BE B 40 V 1
K211 ED1502日 TO106 NPN Siswitching 16
6212 TJ525 TO92 NPN Si 60V．
$k 213$ FW5247 TO5 NPN Si
$K 21$ E5444 TO92 NPN SI 30V
k216 22－6025 TO5 PNP Si 80V H FE 50
$K 217$ 7－4659C TO18 NPN SI H FE 10040 V
Sim BC107．
648005 TO3 GE Hi－Gain 3OV．
$\mathrm{K213} 648005$ GEHi－Gain 30V 12
$K 221$ LD270 Sub－min transistors． 10
K2ee Gen purpose NPN SI TO92 like BC182． BC182．
$\times 201$ BC238 preformed TO5 spacing 20
$K 304$ Matched pair 2SO96 \＆2SB496
$\mathbf{K} 310$ TO39 case transistor，like BFY51

2N6666
B0676
TIP 132
TIP 137
TIP137
TIPP31
TIPP32
TIPP32
BC327A
BC327A
BDW93
BDW94
BC $\times 38 \mathrm{~B}$
K317
$K 312$
$\times 419$
$K 419$
$\times 420$
$K 20$
$\times 421$
K421
$K 422$
$K 423$
$K 423$
$\times 424$
$K 424$
$K 426$
K 426
K427

K428
VP7O1
VPTOI
yp702
vp703
vp704
vp704
VP70
vp707
YP708
YP700
VP710
VP7 11
VP712
VP713
YP714
VP714
YP716
VP717
VP718
VP719
vP720
VP721
VP722
VP7182
VP723
VP724
VP7
VP72
VP72
VPT2
VPT30
VPT31
VP730
VPT31
VP732
VPT33
VP733
VP734
VP735
VPT36
VP737
VP738
VP7163
VPT30
VPT40
VPT41
VP742
VP743

vP744

vp74 6
VP746
VP748
VP740
Vp780
vp781
VP7E1
vP76?
VP762
VP783
VP784
VP785
VP786
VP7ET
VP7
VP7
YPT
YPT

VP7

VP
$Y P$
$Y P$
$Y P$

VP $\mathbf{V P}$ $\mathbf{V P}$

VP
VPT
VP7
VP7

VPY

VP7
VP7
VP7
VPT
VPT

VP7T7	CV9790 (2N2905A
vp778	GET885
YP779	2G401
VP780	ME1120
VP781	MPSA06
vp782	MPSA56
vp7e3	OC41
VP784	0 O 42
Vp7es	OC45
VP786	OC70
VP787	OC72
VP788	OC74
VP789	OC75
VP790	OC76
VPT91	OC79
VP792	OC82
VP793	OC200
VP794	OC201

Vp796	OC203	4
vpros	OC204	3
VP797	OC205	3
VP798	OCP71	10
vp790	TIS43	10
VP7100	TIS90	12
vp7102	2T×109	18
VP7103	ZTX504	12
vp7104	ZTX531	10
VP710*	ZTX550	10
VP7106	2N696	10
VP7107	2N706	18
VP7108	2N708	12
VP7109	2 N717	8
VPT110	2N718	8
VP7111	2N726	10
VPT112	2N727	10
VP7113	2N743	12
VP7114	2N914	12
VP7115	2N929	6
VP7116	- 2N1131	10
VP7117	2N1132	10
VP7118	2N1613	10
VPT119	-2N1711	8
VP7120	- 2N1893	*
VP7121	2N2102	*
VP7122	2N2193	-
VP7123	2N2217	10
VP7124	2N2218	10
VP7126	2N2219	B
VP7126	2N2219A	8
VP7127	2N2220	10
VP7128	2N2221	10
VP7120	2N2221A	10
VP7130	2N2368	10
VP7131	2N2369	12
VP7132	2N2411	4
VP7133	2N2412	4
VP7134	2N2904	10
VP7135	2N2904A	10
VP7136	2N2906	12
VP7137	2N2906A	12
Vp7138	2N2907A	12
VP7130	- 2N3011	12
VP7140	2N3114	8
VPT141	2N3416	20
VP7142	2 2N3704	20
VP7143	2N3708	20
VPT144	2N3710	20
VP7146	2N3711	20
VP7146	2N4058	18
VPT147	7 2N4060	16
VPT148	3. 2N4061	18
VP7149	2N4220FET	3
VP7180	2N5172	12
VP7161	2N6122	8
260* 2	2N3055B transistors.	4
2724	BDX88A TO3 case PNP 60V 12A T17W HFE 750 (a) 6A.	2
21634	PNP TO39 transistor. SIm to BC303.	10

zase Computerlead 1.8 m long: co-ax to
2487 phonoplug. 4
20035 pin DIN - 8 pin DIN line skt, and 5 pin
DIN 180° line skt. Overall length 285 mm .
26125 pin DIN 180° plug one end and zoomm twin cable.
z606 Cream dispenser wiring harness. Z 1430 Resistance wire T2 alloy.
95.4% nickel, 1.8% Ma, 1.6% SI
12% AI $2.521 \Omega /$ metre, $0.0148^{\prime \prime}$ dia
Sold in 5 m lengths.
If you like what you see in this supplement make sure you don't miss future bargains only £2 (UK/ BFPO; £4 O'seas) for the next 6 issues . see order form for details.

Fuseholders
 combined by Corcom. Rated 6A 250V. Mounting hole $66 \times 27 \mathrm{~mm}$. Price
. $£ 3.00$

2421720 mm PC mounting, Paxolin.
Price 2421820 mm Chassis mounting.
price..

100/6.95

1421920 mm PC mounting. plastic.
Price: 12/ £1.00 100/ 6.10 $\mathbf{8} 422020 \mathrm{~mm}$ Panel, screwdriver. Slot 6.3 A max. Price $3 / \mathbf{£ 1} .00$ 100/ 21.75

2422120 mm Panel ${ }_{n}$ screwdriver. Slot 10A max.
Price $3 /$ £1.00 $100 / 21.75$ 2422220 mm Fusechips. PC mounting. Box of $1000 / 14.80$ 21747 Fuse clip, RS412-784 (our FO01).

Pack of 100 £1.00 21721 Fuseholder. Vertically mounting PCB model. Bulgin F456 rated 10A 250 V for 20 mm fuses. Screwdriver selease. Farnell sell these at $£ 1.09$ each. Our low price $. .3 / £ 1.00$ 21753 Fuseholder, how cost 20 mm PCB mounting. Farnell lype. 148-476. Their price 13p.
Our price .. 12/ £1.00

I848 Belling Lee heavy duty fuseholder for 32 mm fuses. Includes 3 A fuse. Complete with rubber shroud. Screwdriver release. Aated 15A. Ex-equip.
Price
223.43 Siemens 32A 550V standard fuse carrier $\mathbb{1 . 0 0}$
z2134 Highland-Alrpax circult breaker rated 30A 250 V . Size $51 \times 42 \times 19 \mathrm{~mm}$, screw terminals.
Frle
c2.00

Please Note:

The Free Gifts offered in the Main Catalogue are not available with goods from Bargain Lists. PANELS

PANELS
A collection of 4 panels, all Eurosize $(160 \times 100 \mathrm{~mm})$ with 64 way DIN plugs fitted

$2508032 \times$ TC5514AP-3 14×4 STATIC RAM, plus lew othe chips etc.

Price	
25000	$12 \times$ M5M516SP-15L $8 \mathrm{~K} \times 8$ STATIC RAM

other chlps etc
Price chil.
zsoer 8×2716 EPROM all in sockets and tew other chips. $\mathbf{~} 4.00$
Price Price......................... chlos. c1.00

$2540016 \times$ HM6167LP-8 + lew other odd bits $51012 \times$ M5N5165P-10C + lew otherchics 5102 same as 75091 but with EPROM chips $\$ 1.50$ Price.... 25114 This one has an 8085 microprocessar chip 50 p 4×2732 s all in sockets, also 20 or so other chips

24210 Panel 260×210 which could plug into the above board. Lots of memory on this ona: $36 \times 1116-20$. Also 8085AC, 8202 \& 2716 in sits +55 other mainly LS chips,
DIL switch, large tants etc................................ 95

2653 Control PCB. M0x 1 Fmm witt $2 \times 4013,4020$ 401 Control PCB. M0x1 Emm witt $2 \times 4013,4020$

194 Newbrain Motherboard Microprocessor panel $265 \times 155 \mathrm{~mm}$. Complete PCB for computer, Z80, EPROM, etc 8 chips altogether + other associated, components, plugs sockets etc. Brand new in original packing.
.
2672 Newbrain motherboards. Complete but probably
2674 Newbrain data. Interface..5.50
i/p, o/p, port map, cct diagram + data on CP420C. (This lot replaces ect diag only for 75p)........................ $£ 2.00$

24052 PCB323 $\times 200 \mathrm{~mm}$ packed with useful components It's a 4 port exchange line unit with integral SPM. Each of the 4 pots has $2 \times 6 \mathrm{~V}$ BT relays, reed relay, BF258, 2N3440 + heatsink, D2917A-1 PCM codec, D2912 PCM line filter, + lots of other bits. The lower part of the panel has 22 chips inc $3 \times$ P8243 input/output expander, $3 \times$ ULN2003 and NS87P50D-6 microprocessor in socket. This chip is designed be used as a prototyping aid and has a 28.2 In in Can there's a 64 pin DIN plug too List price of chips alone is There's a 64 pin DIN plug, 100 . List price of chips alone is well over $£ 300 \mathrm{l}$

2460 AL 30 A amp. Panel $90 \times 64 \mathrm{~mm}$. 10 W RMS with 30 V supply. Popular audlo amp module, these are ex-equip, but believed to be working. Price
 substrate. Easlly removable. 5 panels (20 LM358). Supplied with
circuit. circuil

1w Amplifier -mono
2914 Audio amp panel $95 \times 65 \mathrm{~mm}$ with TBA820 chip. Gives iw output with $9 V$ supply. Switch and vol control. Just connect battery and speaker. Full detalls supplied.
Prices - Only £ $1.50 \quad 25+0.80 \quad 100+0.60$

1W Amplifier - Stereo

2915 Stereo version of above $115 \times 65 \mathrm{~mm}$. featuring $2 \times$ TBA820M and dual volume control. $\Sigma 1699$ Iransis 1 mA) from a $3-7 \mathrm{~V}$ dc LCD or for a $\mathbf{3 - 7 V}$ dc input. Can be used to drive Z1637 LCD or for powering vacuum displays. Originally used in Newbrain computer.
Price
3/ $£ 1.00$
2696160×100 (Eurocard size) with 34 way IDC plug, LS245, LS125, LS04, LS74, LM324, and 40DIL skt with the SAA5070 viewdata peripheral IC missing \quad £1.00

2425468008 Panel - This is the old 2620 PCB from ICL's 'one per desk' but some of the chlps are missing. Al panels have the MC68008P8 in a socket. TMP5220, 74L SO8 38. HCT 138, 245, but up to 3 of the other 4 socketed chips (pre-programmed ROMs) may be missing. Originally sold at
Prlce Now reduced to C2.80

25093 Till display. Plastic housing $200 \times 95 \times 45 \mathrm{~mm}$ contains PCB $195 \times 70 \mathrm{~mm}$ with 87 -seg HP LED'S type $5082-7651$, red a. $43 \mathrm{CA}_{i}, 165 \mathrm{~mm}$ red leds, 8255 programmable interlace and other chips etc

2030 This add-on connects to the user port of the C64 and gives a serial output to a 5 way domino plug. Belleved to be row and working. Components on the panel are 27256. 6502 Pr, 174. Peduced to $\mathbf{C 3 . 9 5}$
z031 As above, but uncased now only

21642 Another model T200A serial/parallel. This uses several large chips, 3850,3858 \& 3871 \& comes with 8 page bookiet....

CREENWITD TEL: (0703)236363 FAX: (0703)236307 A 0

$\mathbf{Z 9 1 0} 391 \times 39 \mathrm{~mm}$. This panel has soldered in componenls TC.A4500A and TBA651R. AM radio with IF amp. Probably complete RF section of radio, as IF's and trimmer are on board + R's. C's, etc.
Price ...00p 2012 RF panel $103 \times 39 \mathrm{~mm}$ with a TDA 1200 FMU IF chip and UPC1176C noise canceller + R's and C 's including tants. Chips worth around $\mathrm{E8} .00$
Price.

2492 M Module. 11 pin in module in $80 \times 50 \times 50 \mathrm{~mm}$ case. PCB within contains $5 \times$ BC184L, + TO5 transistor, R's, C's etc. Useful housing for small projects $3 / \mathbb{E} 1.00$
$\mathbf{2 4 9 3}$ D Module. As above, but PCB has $3 \times$ BC184L. BD124, Rs, Cs etc.
Price

MODEM PANELS.

Another parcel of panels from Dowly. These are all believed to have come from discontinued units and as lar as is known are not laulty. However, please note some have missing chips or boards cut to prevent re-use. They are therefore being sold for their component value only, not as working units.

24320 Kilostream Multlplexer Panel $300 \times 210 \mathrm{~mm}$ with 4×25 way ' D ' sockets. 15 W ' D ' socket Z84C42 $\times 3$, $284 \mathrm{C} 30 \times 2$, CMOS 280 CPU, 6264 RAM. 30 assorted CMOS/ TTL/ LInear chips and nice power supply comprising a potted transformer with mains input and 0-9V, 0-9V outputs both at 1A, 7812, 7915 and 7805 regs. Also Xial, 64 way connector, switches etc. Now even better value.
Price
Reduced to $\$ 4.80$

24321 Expander Panal for above. $230 \times 170 \mathrm{~mm}$ with 4×25 way ' D ' sockets, $2 \times 284 \mathrm{C} 42$. $284 \mathrm{C} 30.8 \times 45406+7,74$ chips. Also short length of 64 way ribbon cable with 10 C socket. This panel is complete.

24323 Minimo Plus a Panel $180 \times 158 \mathrm{~mm}$; secondary panel $90 \times 85 \mathrm{~mm}$ and front panel $165 \times 43 \mathrm{~mm}$ on which is mounted a 25 way 'D' type socket and a BT socket. On the large board is a mains transformer with (presumably) 2 outputs feeding LM317 and LM32? variable voltage regs, and 7805 on a small heatsink. Also 80C32 (in socket), 8256 UART 6264 RAM and several other chips. There are 3 switches, 5 LEDs, 2 relays, a speaker and the usual Ts, Rs and Cs. The smaller panel has M6951 and M85C154 'piggy back' chip and 4HCT chips, 18.432 Xial modure etc. An excellent selection of components.
Pric* ..ed to \&s 80

24319 Small panel $85 \times 43 \mathrm{~mm}$ with 555 timer, BS 107 FET, BC109, $3 \times$ BFW43, $47 \mu \mathrm{~F} 35 \mathrm{~V}$ tant + other Rs, Cs etc.
Price \quad s/£1.00 $100+0.15$ 24313 PCB $57 \times 39 \mathrm{~mm}$ from seal belt alarm. Partially assembled it contains a 4011 and 555, a doten or so Ps, Cs and dlodes. Supplled with circuit and dlo

3/ $\times 1.00$

24318 Ex - BT tone dlvider PCB. Panel $84 \times 69 \mathrm{~mm}$ nas on il 2559 tone divider chip, 3.579545 Xtal, 7 small signal transistors. tants, Rs, Cs, etc. Produces required tones for ransisiors. tants,
Price

24279 interesiling little panel ($75 \mathrm{~mm} \times 40 \mathrm{~mm}$) with 16 position BCD channel swith (24 plns) 2 dual green posmon displays: 2 min keybord switches, and a short 7 -segment-displays. 2 kind A4093. Altached by a shon 4518 panel (same size) with 4518,4019 and 2×5068 chlps Supplled with circuit
Price
Only 82.20

E8883 Extremely large panel $510 \times 335 \mathrm{~mm}$. Consists of 2 PCBs each $245 \times 285 \mathrm{~mm}$ joined logether by an ally stip along one side and a finned heatsink $510 \times 105 \mathrm{~mm}$ along the other. This has mounted on it 12 assorted power ransistors - $2 \mathrm{~N} 3055 / 3772 / 3789$. Another smaller heatsink $152 \times 105 \times 24 \mathrm{~mm}$ has $4 \times 2 \mathrm{~N} 3055$. There are 3 more 2 N 3055 on the PCB also an assortment of chios, 30 trensistors. whe PCB. C5 2 heavy duty 12 V relays in sockets with 3 ets of changeover contacts rated 6A.

Price
ce. 80

Z4293 Panel $225 \times 95 \mathrm{~mm}$ with a number of tuned circuits using small pot cores and close tolerance caps. Also on board is a 10 way DIL switch. 17 mostly LS chips and 7×741 in TO99 case.
Price..

24294 Neat panel $213 \times 37 \mathrm{~mm}$ with 5 keyboard switches, 3 ned LEDs and a DL1416 4 digit LED display with built in nemory. There's half a metre of grey ribbon cable attached to a 34 way IDC socket.
meduced to ..

E1794 Small PCB $45 \times 47 \mathrm{~mm}$ with 9402. OP07, 78L15. 2N3703, 2 trimpots Rs, Cs, etc.

24208 Metal chassis $310 \times 230 \times 25 \mathrm{~mm}$ with 9×50 way double sided 0.1 edge connectors $+9 \times$ LM309k steel 5 V $1.2 \mathrm{~A} / \mathrm{TO} 3$ voltage regulators on smatl heatsinks. Price

30 बRIE=NWTID- TEL: (0703) 236363
 FAX: (0703) 236307 PANELS

24238 Supert panel 340×200 packed with high quality parts, giving outslanding value fop money! 6809 parts. giving outstanding value for moneyt 6809
microprocessor in socket 6840,6850 . 6844 support chips; nicroprocessor in socket 6840, 6850.6844 support chips;
$6 \times 27128-25$ EPROMS in sockets; $9 \times 8264 A-10$ RAMs; over $6 \times 27128-25$ EPROMS in sock
50 other chips, LS. linear etc.
Price

Roduced to $\$ 18.00$

$242362 \times 27 C 256-20$ EPROMS that fit onto above board into 2 vacant sockels. Supplied in sealed plastic box
Price

2074 Mlxer Amp Panel $115 \times 115 \mathrm{~mm}$ and glves 1 W O/P Irom a TBA820M chlp. There are 2 inputs, one vla a pre-amp, from phono sockels and separate volume controls. A third pot is used to tade from one input to the other. There are also $24 p$ 3 w rotary switches. Attached to the PCB by flying leads is a panel on which are mounted the 2 input sockels. 2×5 pin DIN sockets and 2 pin DIN speaker socket. A data sheet is supplied
Price.
Oriy $\mathbf{C 2} .50$

24298 Error Correctlon Card, made by Tulsedata Lto This $130 \times 86 \mathrm{~mm}$ board contalns a 80C85A microprocessor; $82 \mathrm{C} 51 \times 3 ; 5864-15 ; 2764-15 ;+9$ other chips; a 10 way DIL swith; Rs, Cs, etc. There's a 14 way rlbbon cable to a small PCB with 2×1489. Originally cost over $£ 70.00$.
Our low price - now even lower

Please Note:

The Free Gifts offered in the Main Catalogue are not available with goods from Bargain Lists.

[^3] BC182L, BC212L, 3 trimpots. Rs, Cs, etc.

Parts from a sophisticated central heating electronic timer:

24240 Power supply PCB. Panel $154 \times 128 \mathrm{~mm}$ containing mains transformer $\mathbf{Z 4 2 4 8 ;} 5$ relays $\mathbf{Z 1 7 1 8 ;} 4.8 \mathrm{~V} \quad 110 \mathrm{~mA}$ back-up battery. 5 fuseholders 21721; 4 way DIL switches; $2 \times$ W005 bridges: SKB2/02 bridge; 8211: Rs. Cs: 7805 and 7824 on small heat sink.
Price
 way ferminalion termination Boarc $148 \times 114 \mathrm{~mm}$ with 2×16 Price

$\mathbf{2 4 2 4 3}$ Display panel $152 \times 112 \mathrm{~mm}$ with NEC 8 dlgit display (Z1731); 8279-5; MC146818; $3 \times$ UPA80C; and a couple of LS chips, crystal. etc.
Price.
82.00

24285 Complete CPU panel from LIBERATOR COMPUTER $272 \times 98 \mathrm{~mm}$ containing D70008. 27 C 256 EPROM , $9 \times$ D4364C-20L plus other chips, connectors etc.
Price .. solo out
24286 Partially assembled panel, as above. Contains 20 LS chips, O70008C HN61364; TC5517BPL.20. None of these are soldered in.
Pric.

21815 Facillies Carridge. Inside a plastic case $60 \times 50 \times 16$ with a 48 way plug is a 27256 Eprom. Supplled boxed with instructions for use with Liberator.
Price

$\mathbf{2 4 3 0 0}$ Nice panel $330 \times 170 \mathrm{~mm}$ with 3 chunky heatsinks $47 \times 36 \times 32 \mathrm{~mm}$, each whth TO220 voltage reg Also 56×74 series ICs including L+LS. $3 \times 40 \mathrm{~W}$ IDC plugs, few tants etc. Attached to the board are $2 \times 0.5 \mathrm{~m}$ long iwisted and flat ribbon cables terminated in 50 way IDC sockets.
Pric

$$
\text { C. } 4.00
$$

$\mathbf{2 4 2 9 8}$ Panel $95 \times 57 \mathrm{~mm}$ with 18 way D/S 0.156 inch edge connections plus 50 way IDC plug. Also 8 way DIL switch. Price
24325 A few more Newbrain panels have becom available. This one is a Motherboard only party popula Z80/ROMs/EPROMs are missing, but all the other 60 chips are in place not soldered, so removal is simple. Nearly all are LS - but there's also a couple of CM358 and MC1 488/9 How can you go wrong al $6 p$ a chip?
Price ... $£ 3.60$ 24337 Display Panel. Comprises PCB $153 \times 50 \mathrm{~mm}$ with LS259 and 2×6118, also DC-DC PSU. This is the drive circuit for the 5 digit gas discharge display which is mounted on a panel $172 \times 54 \mathrm{~mm}$ at right angles to the board Believed to be from petrol pumps. Reduced to.
$\mathbf{5 3 . 0 0}$

2631 PCB $170 \times 135 \mathrm{~mm}$ with $2 \times$ LM 324; 2×1 LQ74; $2 \times$ MC14416; 4519; $2 \times 4510 ; 2 \times 4099 ; 4001 ; 4584 ; 2 \times 741$; HCI4 LS05: $74125: 2$ relays. Rs. Cs, etc.
Price.
Reduced to © 1.50

2629 Occasionally we obtain repeat supplies of panels This one was featured on B/L 30, and is 170×35 with $2 \times$ MC3419 loop interface 4510, LS505. LS514, 4584 all in sockets, also LM324, 4519, 2×4099, 4013 plus $2 \times 4.5 \mathrm{~V}$ DPCO BT type relays. Also 64 way DIN plug. 2 bridge rects, 6 Iransistors, Rs. Cs, etc.
Priceeed to §1.00 $100+0.60$

2925 OPCO $12 \mathrm{~V} 185 R$ relay. 12 V DPCO relay with heavy duty contacts. SC146D 400V12A trlac, 555 timer. 11×1 N 4001 . $2 N 5061$ SCR, 3×2 N37043. Rs. Cs, etc.

2926 Similar to above, but instead of heavy duty relay, a T2800D 400 V 12A triac and C1220 400V 12A SCR. Both

बR2GNWISID - TEL: (0703)236363 FAX: (0703)236307 PANELS

HIGH QUALITY ICL COMPUTER PANELS - 2 types, the first a mother board and the second a panel which plugs Into the first.
Z 4209 Panel $360 \times 210 \mathrm{~mm}$ covered in high quality chips: 8085 AHC, $8255,8257,8251$ A $\times 2,8253-5,8275$, 8202A. 2732, 2716, all in sockets; $18 \times 4116-2+$ other mainly LS chips + min switches, LED's, oscillator, large tents, 3×50 way double sided edge connectors. Amazing value at only.. £16.95 moduced to

24210 Panel 260×210 which could plug into the above board. Lots of memory on this one: $36 \times 4116-20$. Also 8085 AC. 8202 and 2716 in sockets +55 other mainly LS chips, DIL switch, large tanis etc.
moduced to

½MEG MEMORY BOARD

z8000 Massive panel $460 \times 400 \mathrm{~mm}$ smothered in chips. Could be a complete computer judging by the IC's on the board. Made by Whitechapel Computer Works. Contains at least the following (some panels have extra chips) $64 \times 4164-15$ RAM's: over $20074 \mathrm{LS}, \mathrm{F}$ and other logic chips: $3 \times 4016-3.2 \times 8253-5,8251,2 \times 5516,6$ xtals. $3 \times{ }^{\prime} D^{\prime}$ Plugs and sockets, $3 \times$ DIN 64 way socker. + R's, C's etc. Price equivalent to 4164 s w 30 p each and rest of chips al 3p each!

2559 MICROVISION PANELS

incomplete panels from the lamous SINCLAIR MICROVISION. The $135 \times 75 \mathrm{~mm}$ panel is packed with uselul components: 9 Iransistors, multiturn preset, 6 single turn cermets, 22 mm dia mylar film speaker, power socket, headphone socket, R's. C's and diodes. Supplied with circult too! These were $£ 1$ each now reduced to
for c1.00 $\quad 12$ for E3 for 510

$\mathbf{2 4 3 6 8}$ Panel $310 \times 90 \mathrm{~mm}$ with 20 CMOS chlps. $3 \times$ MC T488, $2 \times$ MC1489, $6 \times$ C251 opic Isolators and a 64 pin chip M860504. Reduced to
$\varepsilon 2.00$

Controller Boards

PCB $175 \times 122 \mathrm{~mm}$ containing a wealth of components - BOC39 PCB $175 \times 122 \mathrm{~mm}$ containing a wealth of components -80 C 39 transistors. 13 TO92 transistors and lots of R's and C's elc. also a 36 tithium baltery. 3 connectors on it 9010 (a) card reader (b) motor panel \& (c) display panel which is Identical to our Z027 (P111 of Catalogue).
Order Code
25047
meduced to
$\$ 2.00100+1.00$

$\mathbf{Z 5 0 4 8}$ Panel $275 \times 178 \mathrm{~mm}$ containing some excellent components: 2×08243 I/O expander, $8035 \mathrm{CPU}, 8253$ timer. 2651 USART all in sockets, 2×2111 A-4 RAM, 25 mostiy CMOS chips. $8 \times$ TO 126 Iransistors, $5 \times$ TO92 transistors, A's. C's efc; 26 W IDC plug. 2×34 WIDC plugs, $2 \times$ xtals. Only

Motor Panels

PCB $92 \times 31 \mathrm{~mm}$ with mercury tilt switch, 2 VTL 10 D 2 opto slotted switches, length of 11 core cable with socket and stepper motor as described above.
Order Code
250.40

Prices
c3.50 $100+2.20$

If you like what you see in this supplement make sure you don't miss future bargains only £2 (UK/ BFPO; £4 O'seas) for the next 6 issues - see order form for details.

Panels

- 5044 Neat display panel comprising 2 boards, each $66 \times 63 \mathrm{~mm}$ held together by $4 \mathrm{~W}, 6 \mathrm{~W}$ and 18 W plugs and sockets. Top panel has 3×7 seg $0.3^{\prime \prime}$ amber displays MAN4510A in sockets. $2 \times$ HC374. HC368. $3 \times$ BC184 + R's. G's etc. Lower panel has 27 C 64 in socket. HO63B03, HC138, HC373. R's. C's etc.
Excellent value at

21438 Control panel from sheet feeder. $90 \times 45 \mathrm{~mm}$. PCB fited with 4 liluminated push switches (all with yellow LED). and separate green LED.
Price
24090 PCB overall $170 \times 105 \mathrm{~mm}$ from sheet feeder. Contains drive circults for stepper motors = $4 \times$ TIP 110 . $4 \times$ TIP115, LM3302. 7407×2, MPSA $\times 4$, As, Cs, Diodes. etc. IOC 34 W plug.
Price
\$075 Interesting panel $155 \times 80 \mathrm{~mm}$ crammed with top quality components: SABBOC535 CMOS microcontroller for external RAM in socket (DP [10.95); 27 CP128 EPROM in socket; $5 \times$ LM $339+$ other chips, SIL resistors, DIL switch. ILC plugs and $5 \times 24 \mathrm{~V}$ relays with DPCO contacts
Price
25183 PCB 140×120 with some nice bits $-0-15,0-15,0.2 \mathrm{~A}$ mains transformer BFX85 $\times 2$, BC 107×2. TL084, LM339, 4081, VW10KM, $7815+$ lots of C's, R's etc.
Price.
Price.

2516 Superb panel $340 \times 130 \mathrm{~mm}$ with 2 large finned heatsinks $130 \times 100 \times 3 \mathrm{imm}$, each with $2 \times$ BUZ25 high power NOSFETS. Also a couple of small FET's. WI W R's C's etc. including $4700 \mu 100 \mathrm{~V}$.
Price.
C12.00

The 1992

GREENWELD

Catalogue is out now! 132 pages of electronic and modellers supplies.

Only £2 (UK/ BFPO; £4 O'seas)

ORDER NOW!

See order form for details

SWITCH MODE POWER SUPPLIES

28921 Apricot PSU - beautiful unit $160 \times 110 \times 55 \mathrm{~mm}$ with IEC switched mains inlet. Made by Astec, Model BM43024. $120 / 240 \mathrm{~V}$ input. Outputs: +5V@2.5A; +12V@2A.
Price
$\varepsilon 12.95$

We still have good supplies of yet another Astec model. This one is partially cased, the overall size being $160 \times 104 \times 45 \mathrm{~mm}$. The PCB measures $160 \times 100 \mathrm{~mm}$. Input and Outputs are on flying leads, all colour coded. There is also an additional IEC socket to extend mains to another unit.
Specification:
Model Number
Input
AA12531
Outputs
$115 / 230 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$

Total Wattage
$+12 \mathrm{~V} 0.15 \mathrm{~A}$
Price $\ldots \ldots \ldots \ldots \ldots .95 \quad 25+5.43 \quad 100+4.53$

HAVE YOU PURCHASED AN

 AA12531 SWITCH MODE PSU?If so, we have a conversion kit to change the output to the same as the AC8151 plus an additional output!! (+5 V 2.5 A ; +12 V 2 A -12 V 0.1 A ; and -5 V 550 mA). The PCB on both these PSU's is identical - by changing a few components and adding a few more, the above outputs can be achieved.
Complete kit of parts and full instructions (K725)
83.50

Instructions only (K726)
$E 1.00$

260536 Weir SMM 30/ 12. 30 watt cased uni $174 \times 100 \times 51 \mathrm{~mm}$ with three outputs: $5 \mathrm{~V} @ 3 \mathrm{~A}_{\text {; }}$ +12 V @ $0.6 \mathrm{~A} ;-12 \mathrm{~V}(@) 0.6 \mathrm{~A}$. List price $£ 87.40$

Our price

ع20.00
206544 Weir SHS100/ 5. 100 watt cased unit $210 \times 115 \times 60 \mathrm{~mm}$. Believed to be 5V (a.20A output. List over $£ 120$
Our price
ع20.00
208521 Weir SMM 100/ 12. 100 watt cased unit $260 \times 152 \times 55 \mathrm{~mm}$. Outputs: 5 V @10A; +12V@2A; -12V@2A. List price §143.17

Our price

ع30.00
206543 Advance P500/ 225FC 600 watt cased lan cooled unit. Outputs $5 \mathrm{~V} 60 \mathrm{~A} ;+12 \mathrm{~V} 7 \mathrm{~A}$; $+12 \mathrm{~V} 7 \mathrm{~A} ;-12 \mathrm{~V} 7 \mathrm{~A}$; -5 V 7 A . List over $£ 500$.

Our price
 c75.00

2660 Astec switched mode PSU type AA7271. This small PCB, just $50 \times 50 \mathrm{~mm}$ will accept $8-24 \mathrm{~V}$ input and give a stable 5 V dc at up to 2A output. The 6 transistor circuit provides current overload protection, thermal cut-out and excellent filtering. Offered at a remarkably low price.
Price.
55.00

28923 Intelligence SM060 80 Watt unit $180 \times 110 \times 57 \mathrm{~mm}$. $120 / 240 \mathrm{~V}$ input, and unusually 4 outputs: (Max rating per output quoted = total load must not exceed 80 W): +5V(a6A; +12V@2A; +25V a 3A; -12V@500mA.
Price
£22.95

Over the years, we've had many different switch mode power supplies, but this latest unit is without doubt one of the finest we've ever seen! Made by Astec, it is a totally enclosed steel cased unit measuring $175 \times 136 \times 65 \mathrm{~mm}$, which has incorporated in it a switched and fused IEC mains inlet. Inside, the PCB is $160 \times 80 \mathrm{~mm}$ with output pins fitted on one end. A connector to these pins to extend the outputs to the exterior of the case is provided.
Specification:
Model Number
Input:
BM41012
$115 / 230 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$
Outputs:
$+5 \mathrm{~V} 3.75 \mathrm{~A}$
$+12 \mathrm{~V} 1.5 \mathrm{~A}$

- 12V 0.4A

Total Wattage
65W
Prices $\ldots \ldots \ldots 4.95 \quad 25+11.70 \quad 100+9.75$
28890 DC-DC CONVERTER BOARD These panels 220×195 require 50 V DC input for 5 V 19.5A output. Inputs and outputs on DIN41612 connector. These brand new panels made by STZ are now being offered at just:
Prices …….... $67.95 \quad 25+5.20 \quad 100+3.89$

28887 Made by STC, this $160 \times 100 \mathrm{~mm}$ panel is attached to an aluminlum chassis. $165 \times 102 \times 65 \mathrm{~mm}$ and has a single 5 V 6 A output. Supplied with connection details, we can offer these at a fraction of their normal cost!
Price
$.55 .9510+4.30100+3.43$
28888 A larger version of the above, PCB $220 \times 100 \mathrm{~mm}$ and chassis $225 \times 102 \times 65 \mathrm{~mm}$ providing a single 5V 10A output. Supplied with connection details.
Price Only ع8.95 $10+6.50100+5.20$

CRFENWEID - TEL: $(0703) 236363$ FAX: (0703)236307 33 POWER SUPPLIES 33

Two 5 watt regulators PCB mounting. DC-DC converters. These are encapsulated in a $51 \times 51 \times 10 \mathrm{~mm}$ package with output pins on 0.1 pitch. These are ex-equip but guaranteed. DP $\mathbb{C} 59.75$.
Z1893 Input $48 \mathrm{~V}(43.52 \mathrm{~V})$. output 5 V 1 A .
Price
Z1894 Input $48 \mathrm{~V}(43-52 \mathrm{~V})$. output 12 V 420 mA .
P2 $80+1.00$
Price .. $100+1.00$

28133 'Touchmaster' PSU. 2 pin plug in wall type with 2.5 mm power socket. Output 6 V 300 mA DC . Price $£ 1.50$

25143 Plug in power supply giving 7.5 V 600 mA on the end of a 2 m lead with a 2.5 mm power plug. \quad C2.50 $100+1.80$

28135 Nicad charger; plug in the wall type power supply with a 5.3 V 140 mA output, ideal for charging $4 \times \mathrm{AA}$ cells Output is on a 1.8 m long lead terminated in a 3.5 mm plug. Only

25027 PSU by Micropad Nice solid steel case $200 \times 110 \times 52 \mathrm{~mm}$ with a lead from either end: one 3 m long lerminated in a 3 pin DIN plug the other a mains lead im lone. Inside, a 30 VA torroidal transtormer with $2 \times 12 \mathrm{~V}$ secondarles These are fed Into some regulation circuitry giving 21 V (c 25 W output. Limited quantity.
Price

Small quantity of Gardners NV22 seriss DC-DC converters All are $90 \times 63 \times 30 \mathrm{~mm}$ and have terminating pins on the base, for PC mounting All have inhibit and oscillator output pins. Normally costing $£ 70+$, these are exceptionally cheap to clear. Few only
2158524 V dc input. output 5V. 3A Price..

21792 6V 400 mA PSU with moulded on European 2 pin plug. Mains input. Output lead 1.5 m long fitted with 2.5 mm power soclet. Price.

c2.00

24216 Siliconix mains input, 4.5 V DC 150 mA outpur to 3.5 mm jack plug on 2 m lead. Buill-in continental 2 -pin
 MW88 This popular versatile plug in power supply which gives $3,4 \frac{1}{2}, 6,7 \div, 9$, or 12 V at 300 mA , is available as a wholes alers return. They have been tested to ensure the transformer is OK, but there may be minor faults on the switch/plug/skt. Complete with spider lead. Normally $£ 3.95$.
Price. \qquad
Price
Available untested in bulk
25/26.10
Only E2.00
Also availe unted bulk

STC POWER SUPPLIES

These are extremely well made linear power supplies by STC (series 15) oltering exceptional value for money. Chassis size $124 \times 100 \times 41 \mathrm{~mm}$. Input voltage can be 100. 120. 220 $230,240 \mathrm{~V}$. There is over-voltage protection on both models. iesees Type 15AAA. Output 5V 3A. STC price in 1987 +43.99.
\qquad
z8015 Type 15AAC. Output $\pm 15 \mathrm{~V}$ O.5A. STC price in 1987 was $£ 60.38$
Our price \quad ع10.00

2075 PSU - Mains input via 13A built in plug. Output 14 V Price AC. Case $00 \times 00 \times 00$. 3.50

Cancelled Power Supply Order

One of our ex-customers ordered 1000 of these 12 V PSU's then decided they didn't want them - so their loss is your gaint POOTK 13A 3 pin plug-in model with reversing swith and output spidet lead fitted. 12 V 500 mA unregulated output Protection by thermal fuse. Normally sells for around $£ 3.50$ offer Price £2.00 $100+£ 1.50$

MODEL RAILWAY CONTROL \& SWITCHING UNIT

This ready bulit versatile piece of equlpment allows

* Full forward and reverse control of trains using regulated and smoothed supply (1.5A)
-Requires 3 components (supplied) to be soldered into panel
* Relay control of 5 separate circuits. (10A change over contacts: ideal for points operation)
- Powering of auxiliary equipment - 2 separate 5 V 1A outputs

A mains powered panel $185 \times 105 \mathrm{~mm}$ contains all electronics. All vollages are fully stablized and both Input and output are fused.
Connections, both input and output are by screw terminals which are clipped onto the on-board pins
The five 12 V relays are controlled by teansistor circuits which require only 5 V 30 mA . supplied by the on board power supply
Supplied uncased with circuit and wiring diagram. (SAE for free copy.)

Sultable black ABS plastic case	C3.50
Order Code 28897	Price Reduced to 814.95

Sultable black ABS plastic case
Price Reduced to C14.95
Order Code 28897

28848 Keyboard by Cherry. Room for 104 keys, all normal keys (65) fitted. Chips on board: LS 373×2. LS374 LM 3086×2. LS 138×3.555, LSOB. 6805 . Size $442 \times 175 \mathrm{~mm}$.
£12.00

28852 Keyboard: Superb brand new keyboard 392×181 with LCD displaying 1 line of 10 characters and a further line with various symbols. 100 keys, inc separate numeric keypad. Chips on board are $2 \times 74 \mathrm{HCO5}, 80 \mathrm{C48}$. LCD + driver chips are easily removable from board. Looks like it was used with a comms pactiage.
Price .. © 10.00

$\mathbf{z 8 8 6} 3$ Keyboard. High quality unit made by Micro Switch 69 pale grey and blue keys. 6 rea 5 mm LED's, 15 various LS chips and socketed 08048 by Intel. Output via 7 way plug and there's a 4 way edge connector 100 . Keyboard frame Is
$317 \times 128 \mathrm{~mm}$. PCB on which it's mounted is $285 \times 170 \mathrm{~m}$ $317 \times 128 \mathrm{~mm}$. PCB on which it's mounted is $285 \times 170 \mathrm{~mm}$. Price Excellent value at $\mathbf{E 1 2 . 0 0}$

28842 Tatung VT4100 keyboard. Cased 85 key unlts with separate numeric keypad. With clircuit. Has 2 or 3 broken key tops. $450 \times 65 \times 125 \mathrm{~mm}$
Price
C. 9.96

$\mathbf{Z 1 7 9 7}$ Membrane keyboard $155 \times 113 \mathrm{~mm}$ with $80 \times 22 \mathrm{~m}$ aperture for display from case Z4245. 22 keys. Output to 11 way flexible connector. Self adhesive Price

Only E 1.00

©

z4354 Computagraph Colorwriter panel $352 \times 67 \times 12 \mathrm{~mm}$. Ally frame supports a membrane keyboard which has 22keys. On the rear of the panel are 6 yellow submin LED's, a 3 mm red LED and $2 \times 19 \mathrm{~W}$ edge conns.
Price

Z4363 Membrane keyboard $225 \times 84 \mathrm{~mm}$ with 11 keys - 1.9 \& 2 others. Output (common bus) on 12 way ribbon cable Could be cut down to $95 \times 70 \mathrm{~mm}$ if only 1.9 needed Price 60 p $100+0.30$

28028 Membrane keypad. Essentlally a PCB $365 \times 92 \mathrm{~mm}$. Used as a tront panel. 30 keys connected to a 16 pin plug. Cut outs for 2 displays ($80 \times 22 \mathrm{~mm}$) and 10 lamps/LED's ($13 \times 8 \mathrm{~mm}$)
Price ..

28882 Keyboard from Liberator Computer. $278 \times 124 \mathrm{~mm}$ 62 keys. Some of these have been used. Output to 20 way connector.
Price
c8.00

KEYPADS

Neat keypads in various styles by ORCOM, both with encoded and matrix outputs. All PCB's have room for coder chip (74C922) to be filted. All feature $0-9$ keys and other characters as shown. Output via 20 pin plug. Dala supplied. (a) No chip mitod:
251073×4 (* ${ }^{\text {\# }}$)
ZS1084×4(A-F)
$\mathbf{Z 5 1 0 0 4} 4 \times 5$ (A-F, F1-F4)
(b) 74C822 nited:

$281114 \times 4(A-F)$

ASCII KEYBOARDS

2803351 key OWERTY keyboard by McMurdo Orcom with 6 bit ASCII encoded parallel output. Measuring $240 \times 115 \mathrm{~mm}$ makes it ideal for rack mounting applications. With cofntrol, shitt and shith lock keys this keyboard can generate all 128 standard ASCll codes
The keyboard requires $\mathrm{a}+12 \mathrm{~V}$ and +5 V power supply connected via a 20 way header type plug. The remaining connections on the plug are DSR. DTR and STR, the strobe and data set ready are switchable to be negative or positive going pulses. The controlling IC is a General instrument AY-5-3600-PRO chip.

28934 As above but supplled in a vacuum formed grey plastlc case $280 \times 185 \times 60 \mathrm{~mm}$.
Price

2411624 way (8×3) membrane keypad. Large ($200 \times 90 \mathrm{~mm}$) area - these were originally used as a teaching aid. Overlay template and pinout supplied.

Now only $\mathbf{E} 2.00$

Z8922 Made by Devlin, this keyboard has 94 keys (18 wlthout caps; 20 with removable tops) and runs off a single 5 V supply. Serial ASCII output + switch to emulate AT and XT keyboards. Price
PC Keyboard

28946 Standard 102 key keyboard made by Cherry with 5 pin DIN connector to plug straight into your PCl (switchable between MF/AT/XT) - Oh yes, nearly torgot - the keys have a Russian character set (in addition to English) so you can practice a blt of peristroika! Only E20.00

Please Note:

The Free Gifts offered in the Main Catalogue are not available with goods from Bargain Lists.

Interesting Parcel of Diplohmatic

 Cermet TrimmersThis is a high quality product from Denmark, at about $1 / 4$ the original price. It originated from a distributor who went into liquidation last year. A full colour brochure is available on request. We have about 32,000 pieces.

Multiturn

Values available:

. 0.5 W (a $70^{\circ} \mathrm{C}$

10 A	500 A	10 k	250 k
50 A	1 k	20 k	500 k
100 A	2 k	25 k	1 M

200 R	$2 k 5$	50 k	
250 R	5 k	100 k	
Order as	$564+$ value		

Prices (any mix) $1+52 p$
$100+0.26$

 RESISTORS

Z1398 Cermet open preset, horizontal mounting. 2k5 Prices 10/£1.00 100/6.10 Convergence pots-preset wirewound pots rated 1 W .
2756 5R .. $10 / 60 \mathrm{p}$
2755 1k... $10 / 60$ p 21535 Convergence type pot, with knob. Value $1 k$ Price

Wirewound Pots

We are overstocked on many values of 1W wirewound pots. as shown on page 62 of our catalogue. All the following values are available, whilst excess stocks last. Prices 60p each 10/4.35 25/9.55 100/30.45 2320 10R, 12R, 50R, 100R. 2k, 2k5, 5k, 10k. 20k, 25k. 50k.

2531 Colvern 4 W wirewound pots all with $1 \mathrm{~K}^{\prime \prime}$ spindles. Type 4001/22. Available in the following values: $10 \mathrm{R}, 250 \mathrm{R}, 500 \mathrm{R}, 2 \mathrm{k}, 5 \mathrm{k}, 10 \mathrm{k}, 20 \mathrm{k}$
All at a fraction of the normal price (around $\mathbf{£ 3} \mathbf{e a c h}$).
All at a fraction of the normal price (around $\mathfrak{\text { E each }}$).
Prices .. Only 80 peac
Prices .. Only 80p each
Prices... Only 80p ea Any 10/5.20 25/11.30 100/34.80

Pots

21388 Precision 360° pot Spectrol 157 series. 22 mm dia spindle 13 mm long. 3 mm dia. $10 \mathrm{k}+2 \%$. List price over €18.00.
Our price ... £4.00
21363 50R wirewound pot. Ideal for speaker volume controls etc. Rated $2 \mathrm{~W} .0 .25^{\circ}$ splndle 15 mm long. Prices ……............. 25p $25+0.16$ Box of 200/ 21.75

21728 Spectrol multiturn pot. 10K. Rated 1 W .25 mm long body. Adjusting spindle can be accessed from either end. Price .. 2/ £1 .00

27165 gang pot, all 22 k long. Strange one this - inner shaf operates switch and one gang, and when pushed in operates another 2 gangs. Outer shaft operates rest. PC mounting Dia 18 mm , body length 40 mm
Price 4/ £1.00 25/3.50 100/8.70 1000/52.20
Z577 5k edgewise pot with switch, no knob.
Prices 10/ £1.00 25/1.75 100/4.35

Sliders

z040 Piher 40 mm sliders. Overall size $69 \times 16 \times 9 \mathrm{~mm}$. Value 220R.
Price
35/ £1.30

Wirewound Resistors

$\mathbf{2 2 0 9 8}$ Very low resistance $2 \frac{1}{2}$ W WW R's, OR04
Price for pack of 6
C1.00
22009 As above, but 0 R068
c1.00
219105 High waltage (100W?) wirewound resistor on mounting brackel. 3R 10%.
Price ..

Wirewound 11 W CGS C1 4 vitreous enamel low value Rs: Z1877 OR1................................6/£1.00 100/10.50 Z1878 OR27 ……........................6/£1.00 100/10.50

Precision Resistors by Holsworthy

21469 H2 5MO 1\% 25ppm. \qquad £1.00 each Z1468 H2 10K $0.1 \% 25 p p m$. \qquad 3 for $\mathbf{£ 1 . 0 0}$
$\mathbf{Z 1 7 3 9 0 . 1 \%}$ precision metal film by Holco, type H2 0.5 W in 1 M .

4/€1.00
$27491 \% 0.4 \mathrm{~W}$ metal film resistors, ideal for series resistors in multimeters - 6 values: 1R 10R 100R 9K 90K 900 K .5 of each, total 30 for All except 900 k avallable at $£ 3.00 / 100$
Z4074 330R 3W 5\% wirewound resistors on cards of 25.
Prices 50p 10/3.50 100/26.10

2988 RS power section 7R 0.7A
Price
4/ 11.00
DIL Networks

[^4]21978 SIL Resistor Network. 10 pin package containing $9 \times 10 \mathrm{k} 5 \%$ resistors
Pack of 8 ….. $11100+0.06$
21979 DIL Resistor network by Beckman. 16 pin DIL containing $15 \times 10 \mathrm{k} 1 \%$ resistors. Normally around 60 peach Price e/ct.00 100 + 0.10 21980 DIL Reslstor Network by Beckman 16 pin DIL 218a DIL Re57 Neiwr Normally around 60 pin DIL containing $8 \times 4 \mathrm{k} 71 \%$ resistors. Normally around 60 p each.
Z1369 14 pin DIL resistor network 7×220. Piher

Wirewound Resistors

(d) Power wirewoun metol clad. All $8 \times$					
code	Value	Wattage	Type	$1+$	$100+$
22402	0 A1.	to	tags	30p	0.15
22109	OR 15	5	PC	20p	0.10
22103	ORA ${ }^{\text {a }}$	5	WE	20p	0.10
14401	18	5	PC	20p	0.10
22104	1 R	6	WE	20p	0.10
24402	1R	25	tags	70p	0.35
22905	50R	15	tags	40p	0.20
22108	225R	23	tags	B0p	0.25
24403	370R	17	WE	40p	0.20

Low value, close tolerance wirewound resistors:
21966 OR5 5W 1\%
Price ... of 8 e1; $100+0.12$
21967 OR1 3W 1\%
Pric.
Pack of 8 E1: $100+0.12$
Z1962 Delay line by MCG Electronics inc. Model SLP-4-100V25.
Price ... 2 for 1.00

Presets

(a) Bourns 3296 W or slmilar series (11 mm sq multiturn)

(d) Bourns 3386P
(9.5 mm sq single turn)
21997 50K 3 for $£ 1.00$
(e) Murata 3321 M
(6.6 mm dia single furn)
Z1908 50م
2 for $\mathrm{C1}, 00$
Also 3386 W single turn (11 mm)
$\mathbf{z 2 0 0 7}$ 25k..5/E1 $100+0.12$
21471 10k trimpot, 1.25 by Plessey. Pack of 4
Price ... $£ 1.00$

CREENWEDD - TEL: (0703) 236363 FAX: (0703) 236307 RESISTORS, SEMICONDUCTORS

RESISTOR NETWORKS
Another mega deal means we can offer a quarter of a million SIL and DIL Matsushita networks at astoundingly low prices!!! Types may be mixed to obtain quantity pricing (minimum quantity of each value as $\mathrm{\Sigma} 1$ pack)

Code	Type No	Pins*	Value	Oty	C1 Peok	100 +	1k+	Code	Type Mo	Pins ${ }^{\text {- }}$	Value	Oty	c1 Pack	100 +	1k+
22202	EO4	554	470R	1700	18	0,033	0.025	22221	EQ8	958	180R	900	11	0.048	0.037
22203	E04	554	4 k 7	980	18	0.033	0.025	22222	EQ8	958	270R	6000	11	0.048	0.037
22204	EQ4	$5 \mathrm{S4}$	6*8	1500	18	0.033	0.025	22223	EO8	958	390R	500	11	0.048	0.037
22204A	EO4	554	22k	6510	18	0.033	0.025	22224	EO8	958	680R	2216	11	0.048	0.037
22208	EO5	$6 \mathrm{S5}$	2k2	426	14	0.036	0.028	22228	EOB	958	1/1	2280	11	0.048	0.037
22207	EO5	$6 \mathrm{S5}$	4 k 7	35	14	0.036	0.028	222284		958	1k2	275	11	0.048	0.037
22208	E05	655	22k	576	14	0.036	0.028	22226	EO8	958	6*8	990	11	0.048	0.037
22200	EO5	655	47k	62	14	0.036	0.028	222264		958	27k	165	11	0.048	0.037
22210	E06	756	470R	1550	13	0.040	0.031	22227	EO8	958	68k	2993	11	0.048	0.037
22211	E06	756	1/k	1294	13	0.040	0.031	22228	EO8	958	150k	475	11	0.048	0.037
22212	E06	756	4k7	699	13	0.040	0.031	22220	EO8	958	220k	8600	11	0.048	0.037
22213	E06	756	100k	388	13	0.040	0.031	22230	E08	9S8	330k	900	11	0.048	0.037
222814	vS4	BS 4	33R	24.000	10	0.050	0.040	22231	EO8	958	680k	1000	11	0.048	0.037
22277	VS4	8S4	100R	1270	10	0.050	0.040	222314		1055	4k7	11,200	11	0.048	0.037
222774	VS4	8 S 4	150R	675	10	0.050	0.040	22281		1055	22k	2000	10	0.050	0.040
22263	vS4	BS4	270R	1000	12	0.044	0.034	222814		1055	1 M	1000	11	0.048	0.037
222634		8S4	330 R	3300	12	0.044	0.034	22233	EO9	1059	470 R	100	10	0.050	0.040
22264	VS4	8S4	390 R	1872	12	0.044	0.034	22234	E09	1059	1k	2999	10	0.050	0.050
22268	vS4	8S4	680R	600	12	0.044	0.034	22236	E09	1059	2k2	5650	10	0.050	0.050
22266	VS4	BSA	1k8	1650	12	0.044	0.034	22236	E09	1059	4k7	950	10	0.050	0.050
22267	vS4	BSA	2k2	1494	12	0.044	0.034	22837	E09	1059	10k	50	10	0.050	0.040
22260	vS4	88_{4}	3 k 3	600	12	0.044	0.034	22290	EQ9	1059	100k	1000	10	0.050	0.040
222604	vS4	8S4	4 k 7	16,328	12	0.044	0.034	22240	E09	1059	220k	74	10	0.050	0.040
22269		BS4	10k	7000	12	0.044	0.034	22241	EQ9	1059	1 M	446	10	0.050	0.040
222600		8S4	22k	19,194	12	0.044	0.034	22241A		11510	10k	100	10	0.050	0.040
22272	VS4	BS4	47k	780	12	0.044	0.034	222418		1256	2208	2000	10	0.050	0.040
22273	vS4	854	68k	815	12	0.044	0.034	22242	RA13	14 D 13	100R	6900	10	0.050	0.040
222734		854	220k	1685	12	0.044	0.034	22243	RA13	14 D 13	270R	5580	10	0.050	0.040
22274	vSA	$8 \mathrm{S4}$	330k	1681	12	0.044	c. 034	22244	RA13	14D13	1k5	800	10	0.050	0.040
22275	vS4	8S4	470k	400	12	0.044	0.034	22248	RA13	14D13	2k2	1334	10	0.050	0.040
22214	E07	857	100R	21.550	12	0.044	0.034	22246	RA13	14D13	3 k 3	800	10	0.050	0.040
22218	E07	857	270R	5500	12	0.044	0.034	22247	RA13	14D13	47k	42	10	0.050	0.040
22216	E07	8S7	330R	3296	12	0.044	0.034	22280	RB7	1407	100R	200	10	0.050	0.040
22217	EQ7	8S7	680 R	2500	12	0.044	0.034	22281	RB7	1407	270 R	83	10	0.050	0.040
22218	EO7	8S7	1k	129	12	0.044	0.034	22282	RB7	$14 \mathrm{D7}$	1k	300	10	0.050	0.040
222184		8S7	1k8	3698	12	0.044	0.034	22283	RB7	$14 \mathrm{D7}$	1 k 8	5698	10	0.050	0.040
22219	EO7	857	2k2	18.500	12	0.044	0.034	22254	RB7	$14 \mathrm{D7}$	2k2	583	10	0.050	0.040
222124	EO7	857	4k7	15.360	12	0.044	0.034	222844		1407	100k	180	10	0.050	0.040
222128		8S7	6k8	96	12	0.044	0.034	22286	RB8	$16 \mathrm{D8}$	47R	6293	10	0.050	0.040
222134	E07	857	10k	2000	12	0.044	0.034	222864		1608	150A	214	10	0.050	0.040
222144	E07	857	47k	2129	12	0.044	0.034	22287	R88	1608	220 A	900	10	0.050	0.040
222184	E07	8S7	220k	4000	12	0.044	0.034	22288	RB8	1608	270R	98	10	0.050	0.040
22284		8S7	1 M	1500	10	0.050	0.040	22250	RB8	$16 \mathrm{D8}$	6k8	700	10	0.050	0.040
222174	EO8	958	33R	1365	11	0.048	0.037	22280	R88	16D8	15k	500	10	0.050	0.040
222184	EQ8	958	68R	2824	11	0.048	0.037	222604	RB8	1608	22k	1313	10	0.050	0.040
222104	EO8	9S8	100R	245	11	0.048	0.037	22261	R88	1608	100k	20,000	10	0.050	0.040
22220	EQB	958	150R	190	11	0.048	0.037								

Loc	Type	Oty	$1+$	$100+$
M	TC5110002-12	349	c8.00	3.00
M	MSL27128K	142	c2.50	1.50
M	MB81256-20	296	c5.00	3.00
M	TMM2063P-10	92	c3.00	2.00
M	mb81C88-38	624	c2.00	1.30
M	TMS4161-15NL	3102	c1.00	0.60
M	TMS2516.JL	184	¢1.20	0.70
M	TMS2114L-48	141	c0.60	0.40
M	mCs8asop	77	51.00	0.60
M	HN482764-4	98	c2.00	1.30
M	HM4B64-2	226	51.50	1.00
M	MK6118N-2	33	c2.00	1.30
132	SAB8088-P	300	C4.00	2.00
OSL	27C84-2	40	c2.00	1.30
OSL	AM29520C	96	c1.00	0.60
OSL	MM882748N	100	c2.50	1.50
132	AM2968DC	780	c1.00	0.60
132	MC10131L	600	c1.00	0.60
132	mCBTOs	188	c1.00	0.60
132	UPB82820	180	c1.00	0.60
132	MC10100L	425	C 1.00	0.60
132	M5L2732K	112	c1.50	1.00
132	A68C22P2	127	c2.00	1.30
132	SCN2B81A	88	c3.00	2.00
132	LH8164D-10	400	c2.00	1.30
132	TMM2016P-1	154	c1.00	0.60
2618	04364-12	27	c2.00	1.00
2618	MM3-2064U-5	14	c2.50	1.50
2618	HME284-12	91	c2.80	1.50
261B	HM62256-12	176	c5.00	3.00
261B	SAA5231	55	C 4.00	2.00
261B	SAB3038	41	C4.00	2.00
503	z80A CTC	52	60p	0.40
503	z80a PIo	68	60 p	0.40
503	zBOA DART	55	c. 1.50	0.80
503	R6 502	56	c2.00	1.10
503	M80C85A-2	144	c2.50	1.30
503	P8250a	21	c1.00	0.60

We are always looking for new lines to add to our lists. Send details/ samples of goods available to: The Managing Director Greenweld Electronics Ltd 27 Park Road Southampton SO1 3TB
(k) New items

- not previously listed

22301 Delay unit. Welwyn 100016-9006-033BJ. Sealed case 20 in DIL $0.6^{\prime \prime}$ pitch. Thick film circuit inside, but no info. 50 p $\mathbf{2 2 3 2 1}$ Semikron diodes. 'Semipack'. Thyrislor/ diode module type SKKH26/ 04D rated 25A 400V. These have screw connections and an integral heatsink. Size $92 \times 30 \times 20$. $\mathrm{FC}=80 . \mathrm{DP} £ 15.00$!
Our price $\mathbb{C 4 . 0 0} 100+2.50$ 22322 As above lew of these
Price
c3.00
22323 Controlled bridge rectifler by IR. 2 SCR's and 2 diodes in module $45 \times 32 \times 15$ rated $600 \mathrm{~V} 25 \mathrm{~A} . \quad F C=50$. DP £24.
Our Price C80 $\mathbf{2 3 2 4}$ Delco DTS701 high power TO3 Silicon transistor rated 800 V IA 50 W .
Price
22326
c 1.00
22326 Small aluminium heatsink mounted with a BD243AS and BD244AS.
Price 2 for ع1.00
22327 Small aluminium heatsink mounted with a BD439 and BD440.
Price ... 3 for $\mathbb{\text { f.00 }}$
28148 Heavy duty linned heatsink $82 \times 56 \times 40$ with single
high power rectifier, SSIG3883 +2 terminal posts.

22328 BAX 16 signal diodes
Pack of 25
c1.00

Price	$100+$
//C1.00	0.15
S/C1.00	0.10
2/c1.00	0.30
C1.00	0.60

Small parcel of IC's Just received.		
Code	Deecription	
74MC4080	Binary Counter	DP 65p
CD4082BLN	Multiplexer	DP 50p
ICL7680CPA	Voltage Converter	DP £1.85
M6242B	Real Time Clock	DP $£ 3.51$
DP-distributor price. Data sheets 10p each.		

SOUNDERS \& SIRENS

A range of piezo-ceramic sounders made by STC. These are top quality units with extremely high output, up to 115 dBm . Now reduced even further to $1 / 4$ the original 1 off trade price!!

Current consumption
10 mA Frequency
Pulsing frequency Soung requency .. 20410 Hz selectable Sound level at 1 metre .. 85dB(A) $60 \times 33 \times 70 \mathrm{~mm}$
2108 U250RD102, 24V, level 85dBm. \qquad £1.70
.$£ 2.00$ 109 U250RD102H, 24V, level 90dBm

28120 9V buzzer - like our A391 serles. List price is $80 p$ Special price 3 for E1 $100+0.20$ $\mathbf{z 2 0 3 2}$ High power 'Pensee' siren 46 mm high $\times 50 \mathrm{~mm}$ dia 60 mm FC giving out steady or pulsed tone
Price

Piezo Transducer

21429 Murata piezoelectric speaker type VSB41025 Only 2 mm thick $\times 50 \mathrm{~mm}$ dia, weight 3.3 gm . Freq, res $500 \mathrm{~Hz}-20 \mathrm{kHz}$. $\mathrm{Z}=1.2 \mathrm{k}$ at 1 kHz . Max input 200 mW . Normally $£ 2.33$
Our prices

21610 Piezo transducer in plastic case 31 mm diax 11 mm high. 3 wires. Needs 2 resistors and transistor to oscillate (supplied, with circuit). Voltage from 3 V upwards by changing R.. 70p
21808 Small piezo transducer $\mathbf{2 4 m m}$ wide $\times 4 \mathrm{~mm}$ thick.
Price .. 2/ $\mathbf{2}$. 00

A parcel of pieze and magnetic transducers from tamous manulacturers from just 4p eachil
1k+

Code	Mant"r	Type	-P/m	Size	C1 Pack	$100+$	
22176	Murata	PKM 25-6AO	P	25×8	6	0.08	1k+
22177	Star	SEC2437P	P	21×7	8	0.06	0.04
22178	Fuji	168 H 008	P	$25 \times 20 \times 8$	6	0.08	0.04
22170	Star	OMB-12	M	15×14	5	0.10	0.07
22180	Star	QMB-12A	M	15×22	4	0.12	0.09
22181	Star	SMX 12	M	$17.7 \times 14 \times 11$	4	0.12	0.09

Kвze Pack of mixture of above - 25 assorted $\mathbf{C 3 . 5 0}$

Speakers

Submin speakers with mylar diaphragms suitable for use in damp situations
2176429 mm dia× 9.5 mm deep. Made by Star, model DS-29A. Rated $8 \Omega 0.1 \mathrm{~W}$.
Price ..2/£1.00

2878 Super flat speaker $30 \times 30 \times 3 \mathrm{~mm}$ by Fujl, rated 16 R 0.4 W. DP $£ 1.50$
 2633 Danavox transducer - used as a speaker in pocket pagers. Impedance 50 R. 20 mm dia leads 90 mm long Extremely high quality unit. Prices 50p 10/3.65 50/14.80

SWITCHES

Push Switch Banks

Z667 Switch bank - 5 way interlocking each 4p c/o complete with black knobs.. 50 p 2668 Switch bank 6 way. 4 are interlocking; 8 p c/o; $2 \times 4 \mathrm{p}$ c/o; 2 p c/o. 2 Independent 6 p c/o $\& 2 \mathrm{p}$ c/o. 5 $2 \times 4 p$ clo; $2 p$ c/o. 2 independent 6p c/o \& 2 p c/o. 5
black knobs. 1 red... $65 p$

[^5]

243858 switches. 6 interlocking $(4 \times 4 P C O, 1 \times D P C O$, $1 \times 6 \mathrm{PCO}$): and 2 independent (both DPCO). No knobs.
Price ..3/£1.00 $100+0.15$
Z436e 5 interlocking 'switches $(2 \times D P C O, 1 \times 4 \mathrm{PCO}$ $1 \times 6 \mathrm{PCO}, 1$ blank): wilh shiny chrome round knobs.

$\mathbf{Z 4 3 6 7} 5$ switches, 3 interlocking ($2 \times$ DPCO, $1 \times$ mains, DP on/ ofl): 2 independent (both DPCO). Shiny chrome oblong knobs.
Price
$\mathbf{Z 4 3 6 8} 5$ switches, 4 interlocking (all 4 PCO); 1 independent 4 PCO . Noknobs

28447 way. End 2 are independent, other 5 are interlocking.
Price.

Proximity Switch

22041 Proximity switch $39 \times 10 \times 5 \mathrm{~mm}$ by Filght Refuelling type RSMO6 A15
Price

3.00

Microswitches

24370 Burgess 20A microswitch. Incorporates 2 switches Into one housing $20 \times 12.5 * 17.5 \mathrm{~mm}-1$ changeover and I preak
$2 / c 1.00 \quad 100+0.25$
21437 Slandard slze microswith with wire lever requires only 5 gm pressure to operate

$\mathbf{2 2 0 8 4}$ Skeleton microswitches. SPCO. 5 A rating. Two 3.5 mm mounting holes on 10 mm centres. They are designed to be mounted side by side - in theory the number is only limilted by the length of bolts avallable! (each switch is 5 mm thlck)
Price
Peck of 4 for $\$ 1.00$ $100+0.15$
21984 Sub minlature microswitch, Omron type D2MO-1. These have a body size of $8 \times 6 \times 2.6 \mathrm{~mm}$. Price 2/ع1 $100+0.25$

22185 Omron miniature type SS rated 3 A 250 V . Single break contact operated by bent lever

22166 Ompon standard type VL631C. These are for slgnal switching, contact rating $0.1 \mathrm{~A} 125 \mathrm{~A} A C / 30 \mathrm{~V} D \mathrm{C}$. Single make
contact
6 for C1 $100+0.09 \quad 1 \mathrm{k}+0.05$

21821 Long tever micro switch. Standard V23 body, rated 5A. Lever 60 mm long may be corroded
price

25158 High current microswitch by Slemens, model 3 SE3 rated 10A 380 V AC. Fully shrouded screw terminals (4): 1 palr make and 1 pair break terminals. Overall size $28 \times 30 \times 32$
Pric.
c1. 50

Key Operated Switches

A couple of key operated switches by Cak requiring 20 mm hole. Yale type key can be withdrawn in any position. 2 keys supplled
22100 Single pole changeover low current $0.4 \mathrm{VA}, 20 \mathrm{~V}$ max

22107 Single pole 4 way rated 2A 250 V ac.
Price
Z20s0 Key operated cablnet latch with 2 keys
1.00

22041 Kby operated switch. 4 position. switches a llow current single pole water and a double pole 2A mains switch. Yale type key can be removed In any pasition.
Price
c2. 60
2232 Yale key mechanism intended for fitting to switch unit Extremely heavy duly and well made by Siemens,
Price

22168 Superb quality British made (TOK). Gold plated DPCO contacts. Key can be removed in either position. PC mounting or clip tix = needs $15 \times 15 \mathrm{~mm}$ cut-out. Ideal for alarms etc.
Price
Mercury Switches

22118 Metal enclosed in case 7.5 mm dia $\times 9 \mathrm{~mm}$ long 10 mm flange one end
Price ……..........................2/E1.00 $100+0.251 k+0.18$
Thermal Switches

Z1694 S103/1K Thermal switch. Glass encased with B7G base. At 24V, cold start 70 secs to energise, hot stant 10 secs. De-energises in 12 secs both cases. SPM contact rated 5A or so... £1.00 21698 Thermal Switch - contacts, normally closed open at approx $40^{\circ} \mathrm{C}$. Rated 2A

E2.00

Joystick Switch

Z004 Skeleton Joystick, switch type. Good quality, made by $A B$. Brass spindle has 44 mm long black plastic handle attached. Body has 4 mounting holes. These really are a fantastic bargainl!

Toggle Switches

2848 Toggle by Arco DPDT rated 13A 250V. Plastic toggle and fixing nut.

21710 Toggle switch double pole on/ of rated 10A 250 V ac.
Threaded bush whith plastic and metal nut, also can be clipped in panel.

Z1711 Another toggle swith, very similar to above. No rating printed on body, but looks about 10A. This one does not have a clip fix.
Price

Toggle switches by Bonella. High quality, high current, solder tags. All are rated 10 A 250 V ac

2382 Type N11LNZ SPCO (4 tags) Metal dolly …........... 66p 2354 Type N41LNZ DPCO (6 tags) Metal dolly 84p Above 4 types less 25% for $25+$. less 50% for $100+$

21486 Togigle switch rated 1A, DPDT with paddle 75p

21816 Minlature PCB mounting swhich, SPCO. Gold plated pins. Red flat toggle.

Slide Switches

22067 Sub min DPCO slide switch, just $11 \times 6 \times 5 \mathrm{~mm}$. PC side mounting. Nice quality.
Price
5 for $\mathbb{C 1} .00100+0.12$
Push Switches

11838 Flexibutton switch. Low cost high quality sealed push button switch. Ideal In damp or even wet environment. Black body, white or yellow (lew only) button. SPCO rated 5A 250 V ac. Normally $£ 5.98$ each.
Our Price ..

21837 Lighiwelght push button switch. Double pole R1ase 15.8 mm cut momentary action. 15.8 mm sq cut-out. Uses $\mathrm{T} 13 / 4$ wedge lamps. Supplied with our 2146612 V 1.2 W . Lens available in white, red, green, blue or yellow. Normally $£ 10.28$ complete. Our low price

Z1957 High quality, high current push to make switch by Arcolectric Rated 250V 1A. Single hole fixing. needs 12 mm dla hole. Plunger 7.5 mm dla $\times 10 \mathrm{~mm}$ long. Price

2/11.00

24352 Metal bracket with push to make switch (W241)
Pack of 5 for

2 attractive push-on. push-aff Indicator swltches, standard rocker mounting hole $30 \times 23 \mathrm{~mm}$. Chrome surround, single pole 10A contacts.
21994 Red mains
80p
21995 Amber 12 V (ideal for dashboard mountling in car). Price

21689 Push on push off power switch rated 5A 250 V Mountling by 2 tapped holes on 20 mm centres. No knob.

Keyboard Switches

Z1523 PCB mounting illuminated keyboard switch. High quality single pole reed with 5 V lamp made by FR. Model $18 \times 18 \mathrm{~mm}$. No tops unfortunately.
Price .. Z1393 PCB mounting keyboard swlich with in bullt yellow LED. SP. Size: $12.5 \times 12.5 \mathrm{~mm}$. No tops.
Price ..00
$\mathbf{5 2 8}$ Switch top, 2 part. Clear plastic top clips over blue base. Fits over 3.5 mm sq splgol Size $12 \times 12 \mathrm{~mm}$.
Price ...20/ 1.00
21755 PCB mounting keyboard switch, white. Type 06 square by ITT. Thelr price 44p. Our price

5/C8.00

22167 Keyboard switch. single pole cllp-in type with standard + stem for cap. $13.6 \times 12.9 \mathrm{~mm} . \quad 7.5 \mathrm{~mm}$ pitch. DP 75p.
Our low price \quad for $\mathrm{Ef}_{1} 100+0.10$ Rocker Switch

[^6]
Rotary Switches

22108 PCB mntg rotary switch, 4 pole 3 way by C8K Price 3 for $£ 1.00$ 22140 4P 3W rotary switches (cal type w025) with cut down (10 mm) shath. pc mounting.
Price.. of \& for $\mathbb{£ 1 . 0 0}$

24185 Switch, high current, 11 terminal device. its 6 positions give a variety of connexions. Data supplied. Standard $0.375^{\prime \prime}$ bush $\& 1 / "^{\prime \prime}$ spindle. Rated 2A 250V. 3A 125 V or 10 A 20 Vac

21522 Switch, Alps SRS 40 way. As used in CB's for channel switching. Body $20 \times 20 \mathrm{~mm}$. 6 mm dia shaft with M9 fixing nut. Not sure if these are binary or BCD. 7 with M9 fixing nut. Not sure if these are binary or BCD. 7
bits per slep. Data sheet supplied....................... $\mathbf{£ 1 . 0 0}$ $\mathbf{z 5 1 8 0}$ Heavy duty 7 position rotary swlich by Siemens complete with knob rated 6 A 380 V AC
Price
28160 SImilar 3 position

Please Note:

The Free Gifts offered in the Main Catalogue are not available with goods from Bargain Lists.

Reed Switches

2798 Large reed switch, 50.8 mm long body. Rated 5A 400 V max
Price ... of $10 / \mathrm{C1.80}$ 25/ $2.60100 / 8.70 \quad 250 / 17.40 \mathrm{1k} / 60.90$

Pressure Switches

These are operated by very low alr pressure - just blowing down the tube will operate the SPCO microswitch within. Useful in a 'spark free' environment.
202480 mm dia× 45 total depth. SPCO switch rated 16A 250 Vac 2025 Similar to above, but 37 mm thick activated by gas or air at very low pressure. Range 13 150 mm w.g. Switch is a SPCO micro switch rated 230 V 2A. Precision instrument overall dia $110 \mathrm{~mm} \times 48 \mathrm{~mm}$

Miniature Circuit Breakers

24100 10A switch/clrcuit breaker. Extremely neat clip tix by Airlax. 3 pole, 12.5 A max. $50 \times 41 \times 39 \mathrm{~mm}$.

25154 MCB 3 pole $+N$ rated $32 \mathrm{~A} 240 / 415 \mathrm{~V}$ AC. Standard DIN rail fixing. Siemens model no 5 SN6. Individually boxed.
Price
c 10.00
22351 As above but rated 16A .. 100

25158 MCB 2 pole rated $50 \mathrm{~A} .240 / 415 \mathrm{~V}$ AC. Standard DIN
rall lixing. Siemens model no 5 SN8
Price …...
22383 As above but rated 3A
25186 MCB single pole rated 6A 240/415V AC. Also aux contacts. Standard DIN rail fixing. Siemens model no 5 SN7 C3.00
Z 5187 MCB single pole rated 16A 240/415V AC. Standard DIN rail fixing. Siemens model no 5 SN1
Price
Price 2 . c3.00

25086 Klippon SAKR 240V 10A isolating switch 4 mm . DP 1.17 each.

Price
Bon of 80 C5.00 1k +0.03

DIL Switches

Z1782 DIL switch. 16 pin 1 pole 8 way by ERG. Gold plated Price 21785 DIL swheh, colour coded by ERG. 8 pin 4 way on/ of

3 Offerent Stytes

Style A - CTS 'Piano Key ' type in 4.8 and 10 way.				
	$1+$	$28+$	$100+$	
$\mathbf{2 1 8 2 2}$	4 way	$30 p$	0.17	0.13

Style B - SAE 'Push' type in 1-10 ways (except 4 way). All have gold plated pins.

21825	1 way	20p	$28+$	$100+$
21627	3 way	30p	0.17	0.08
21629	6 way	40p	0.23	0.13
Z1630	7 way	45p	0.25	0.19

Style C - Piano Key rype by Grayhill 76PSB 105 in 10 way. $1+\quad 28+100+$

22341 Low cost 4 pole changeover DIP swith, 16DIL. Use screwdriver to change position to 1,2 or off. Amazing value!

REMARKABLE RUSSENBERGER ROCKER REDUCTIONS!!!!

A range of rocker and push switches, clip fit by Russenberger. Top quality, complying to all relevant approvals.

MINIATURE ROCKER

Size $14 \times 21 \times 15 \mathrm{~mm}$ require, $19.3 \times 13 \mathrm{~mm}$ contact. All single pole rated 8 A 250 V DC. Solder tags.

CODE	CONTACTS	BODY	ROCKER	OTY	£1 PACK	$100+$	$1000+$
21102	ON/OFF	BLACK	WHITE	4583	6	.12	.08
21201	ON/OFF	WHHTE	BLACK	3000	6	.12	.08
21202	CHANGE	WHITE	WHITE	6779	5	.14	.10

STANDARD ROCKER

Size $20 \times 14 \times 16 \mathrm{~mm}$ requires $27 \times 12 \mathrm{~mm}$ cutout. * Size $31.5 \times 14 \times 22 \mathrm{~mm}$ requires $30 \times 12 \mathrm{~mm}$ cutout. All single pole, 12A 250 V ac or $12-28 \mathrm{~V}$ DC $0.25^{\prime \prime}$ tabs.

Size $31.5 \times 25 \times 34 \mathrm{~mm}$ requires $28 \times 22.5 \mathrm{~mm}$ cutout.

CODE	CONTACTS	BODY	ROCKER	OTY	£1 PACK	$100+$	$1000+$
51190	SP ON/OFF	BLACK	RED NEON	2755	5	14	10
51192	SP ON/OFF	BLACK	GREEN	6907	5	14	10
			NEON				10
51202	SP ON/OFF	WHITE	WHITE	3814	6	12	.08
51390	DP ON/OFF	BROWN	RED NEON	1498	4	16	.12

ILLUMINATED PUSH SWITCHES

Size $31.5 \times 25 \times 34$ requires $28 \times 22.5 \mathrm{~mm}$ cutout. (Same as large rocker switches). Mains Neon. The difference between the two types listed is that 21200 has solder tags; 51200 has 0.25 " tabs.

CODE	CONTACTS	BODY	INSERT	OTY	\&1 PACK	$100+$	$.1000+$
21200	SPCO	WHITE	WHITE	4912	6	.12	.08
51200	SPCO	WHITE	WHITE	1000	6	.12	.08

INDICATORS

Size $31.5 \times 25 \times 34 \mathrm{~mm}$ requires 28×22.5 cutout. These match above push switches and rockers. Available with a black body and lens colour as listed. Mains Neon.

CODE	COLOUR	BODY	OTY	£1 PACK	$100+$	10004
$51100 A$	AMBER	BLACK	500	6	6	.09
$51100 C$	CLEAR	BLACK	600	6	6	.09
$51100 G$	GREEN	BLACK	100	6	6	.09
$51100 N$	NOLENS	BLACK	2500	14	14	.03

42CRIENWISTD - TAL: (0703) 236363 SWITCHES, RELAYS

Submin rotary switches by Erni

Distributor price over $£ 3.00$ each! Body 9 mm da $\times 9 \mathrm{~mm}$ long. (13 mm On 2 waler types) 3 mm dia splndle. $4-8 \mathrm{~mm}$ bush. Gold platec contacts. Supplied with nuts.

Code	Poles	Ways			
22183	2	${ }_{3}$	$1+$	$10+$	28 +
22184	2	6	00	0.30	0.20
22185	1	12	80 p	0.40	0.25
22186	4	4	60p	0.48	0.25
22187	2	8	60 p	0.48	. 30

Professional Digital Switches

Excellent quality digital switches in various sizes. Push button type by Hartmann Geratebau in declmal, BCD and Hexadecimal
(BCH) Available in 4 sizes mostly black. few grey. (DP-dlstributor prices)

Code	Type	Output	Size $\mathbf{H \times W \times 4 .}$	DP	$1+$	$10+$	
22188	PICO-D-301-AK2	BCH	$14 \times 7.5 \times 26$	4.73	c1.00	$10+$ 0.60	100
22180	SMC-D-301-AK2	BCH	$22 \times 7.5 \times 34$	6.62	c1.00	0.60	0.4
22190	SMC-D-301.AK1	BCD	$22 \times 7.5 \times 34$	6.14	C1.00	0.60	0.4
22101	DPS8-111.AK2	DEC	$24 \times 8 \times 35$	6.00	c1.00	0.60	0.4
22192	SMC-137-AK2	BCD	$22 \times 7.5 \times 34$	6.14	C1.00	0.60	0.4
22193	DPS9-131-AK2	BCD	$30.5 \times 7.5 \times 41$	6.00	c1.00	0.60	
22194	DPS9-301-AK2	BCH	$30.5 \times 7.5 \times 41$	6.00	c 1.00	0.60	0.4
22195	DPS9-111-AK2	DEC	$30.5 \times 7.5 \times 41$	6.00	c1.00	0.60	0.
22196	MHE-301-AK2	BCH	$39 \times 10 \times 58$	6.00	C1.00	0.60	0.4
22197	MICO-131-AL2	BCD	$30.5 \times 10 \times 81$	6.00	c1.00	0.60	0.4

*Inc solder pads
 available). sala
C1.00 $100+0.12$ PO padcle switch by C\&K rated 0.4VA. Body size $13 \times 12 \times 10 \mathrm{~mm}$. Clip fix, needs $15 \times 12 \mathrm{~mm}$ cut-out. Price 5 / C1.00 100
$\mathbf{5 0 1 8}$ PC mounting with integral support push switch rated 0.4 VA - push to changeover. locklng. Body size $13 \times 9 \times 7 \mathrm{~mm} .6 \mathrm{~mm}$ threaded bush. Plunger 3 mm dia $\times 7 \mathrm{~mm}$ long. \quad Price $8 / \mathbf{C l} .00100+0.08$
Slide Switches

RELAYS

(4)

Code	Volts	Coll	R	Contacts	Man'r/Type	Size	Fig	Notes	Pri
2202	3 V	35R		SPCO ${ }^{\text {a }} 3 \mathrm{SA}$	AZ535	$32 \times 20 \times 11$	2	Low profile PCmntg	c1
2275	24 V	480 R		DPCO (a 10A	Releco MR54.2	$55 \times 35 \times 35$	\times	Octal Base	E2.
2258	24 V	520R		3 PCO a 10A	B\&R D43	$53 \times 37 \times 36$	x	11 pin plug in	¢2.
2250	24 V	700R		DPCO. 14	Perivale PC2	$30 \times 24 \times 19$	X	Plug in 'Continental'	8
2225	24 V	2000R		SPCOM 2A	Hamtin HE721	$21 \times 8 \times 5$	11	DIL relay	¢1.
2226	24 V	2000R		SPM M 5A	Hamlin HE751	$21 \times 8 \times 5$	11	DIL relay	¢1.
Z251	36 V	1250 R		4PCO(1A	Perivale PC4	$30 \times 30 \times 19$	X	Plug in 'Continental'	8
2252	48 V	2500 R		2PCO (1A	Perivale PC2	$30 \times 24 \times 19$	X	Plug in 'Continental'	6
2253	48 V	2500 R		4PCO-1A	Perivale PC4	$30 \times 30 \times 19$	X	Plug in 'Continental'	8
2219	50 V ac	750R		$4 \mathrm{PCO}(a 3 \mathrm{~A}$	MY4	$35 \times 27 \times 21$	3	Plug in	E1.
2233	100 V	12K		DPCO	Keyswith KMK32	$47 \times 39 \times 39$	X		
Z261	240 Vac	12K		2PCO@7.5A	P\&8 KU11A15	$46 \times 36 \times 31$	x	Octarplug in	E3.

12 V relay from 25p

$+$

12 V relay bargain

22120 Same size and contact arrangement as w853 in our catalogue at $£ 1.42(15.6 \times 10.6 \times 10.5 \mathrm{~mm}$. SPDT contacts rated 1 (el 28 VDC) but dilferent plnout. Standard DiL spacing. Only

22048 Omron LY2 relay $220 / 240$ ac coll. DPCO contacts rated 10A. Llst price on these is over $£ 5.00$.
Our price
2204 Chassis socket for above DP 89 ©2.60
Ourprice.
$40 p$
$\mathbf{2 2 0 4 7}$ Omron time delay relay. Sub min 4 pole clo type $\mathrm{H} 3 \mathrm{Y}-4-\mathrm{U} 5$. 110 V AC coil. $0.1-5 \mathrm{sec}$ tlming range. List price over.E25.
Our price
c6. 60
$\mathbf{2 2 0 4 9}$ Relay miniature low protile flat pack. 24V DC coil, 4 pole c/o contacts. Mounts on 0.1 grid. DP $£ 5.45$.
Our price.
2231 Elapsed time Indicator by Curtis $0-5000$ hours 5 V DC

22309 PCB mounting 20 mm high $\times 20 \times 16 \mathrm{~mm}$. 12 V coil SPCO 3A contact. $\mathbb{1 . 0 0} 25+0.70$ 22310 AX400F-X091. PC mounting reed relay 10.5 mm high $\times 32.5 \times 13 \mathrm{~mm}$. SV coil SP break contact. $\quad \mathbf{8 0 p} 100+0.32$ $1 k+0.25$
22164 PCB relay with SPCO contacts rated 8A, 250ac, 24 V coil. Fully enclosed, slze $27.5 \times 25.8 \times 11$ on 0.1 pitch, made by Zetter. Operating range $15 \mathrm{~V}-30 \mathrm{~V}$
22174 High quality Aronly 7 8p $100+0.351 \mathrm{k}+0.25$ 35×1 1C $\times 10 \mathrm{~mm}, 0.1^{\prime \prime}$ pltch. PC mounting relay. size changeover. 9V Coil (operates from 5-12V). Pinout printed on relay. Model DS4E-S.DC9V Contacts rated 2A 30VDC
Price … \quad C3...................ach $25+2.20100+1: 80$

CRESNWELD - TEL: $(0703) 236363$ FAX: (0703) 236307 TAPE, TOOLS, TV

$\square 5 \square$	
CET READY FOR 992	
Now our ties with Europe are becoming closer, you'll need to	
learn a foreign language. Just so happens we've purchased	
learn Russian too!	
These are Normans Language Courses. Each consists of a	
C90 EMI cassette tape in tibrary case with a 32 page book covering a wide variety of subjects. supplled in a plastic	
waltet. OK, so its not your Linguaphone course, but very	
28060 Italian	c2.00
$\mathbf{2 5 0 8 1}$ German	c2.00
$\mathbf{2 5 0 6 2 ~ P o r t u g u e s e . ~}$	c2.00
25083 Spanish	ع2.00
25064 Russian	c3.00

If you like what you see in this supplement make sure you don't miss future bargains - only £2 (UK/ BFPO; £4 O'seas) for the next 6 issues . see order form for details.

TOOLS

tweezers

A wide variety of sizes and styles, from a small 86 mm tweezer to a robust 205 mm pair for heavy duty work Sold in sets as described below at a substantlal saving over the individual price; typlcally $£ 6$ per pair.

24192 Pack of 6 large pairs (over 130 mm) C. 8.05 24193 Pack of 6 small palrs (up to 150 mm) C4.08 24194 Pack of 6 selected pairs across the range S5.60

[^7]

Z610 Demo cassettes from Enterprise Computer. C8 tape in
liorary case.
Frice
21701 Stereo cassette head........................ Önly $£ 1.00$

We are discontinuing our software service because of poor sales, and selling it as a complete library. We have 630 different programs on both $3.5^{\prime \prime}$ and $5.25^{\prime \prime}$ disks. There are however about 1000 disks of each size because many programs have 2 or more disks. The price represents little more than the cost of the media, and includes plastic lockable storage cases for the $5.25^{\prime \prime}$ disks, cardboard boxes for the $3.5^{\prime \prime}$ disks, and master index/catalogue disks. Complete Library on 3.5" Disks $£ 450$ Complete Library on 5.25" Disks $\$ 300$ Both 8700

TRIPLERS

i'wo types: both fully encapsulated with connecting leads. ¿5004 Made by Konig for Remo type D126 for Teletusion 8nd IFT models.
Price …..................................e1.80 $10+0.90 \quad 100+0.45$ $\mathbf{2 5 0 9 5}$ Remo type 0125 for 22-26 Korning 429 models. Price .. $10+1.20100+0.65$ 2.5103 Another fripler, type D125 © 1.00

TV Stand

18930 TVNideo/HI-fi sland. Satin finish steel slde pieces with black ends held apart by veneered timber. Overall dimensions 485 wide $\times 350$ deep $\times 450 \mathrm{high}$. Abergain at WOUND PRODUCTS

CHOKES/ COILS

TOKO RCL Coils all in $10 \times 10 \mathrm{~mm}$ screened cans.

Code	Marki				
21861	9000	162	002		86023
21882	9000	156	002		86023
21883	0000	920	002		84343
21864	9000	180	002		86049
21565	0000	915	002		86059
21568	9000	175	000		86032
21567	0000	163	002		84214
21568	9000	913	002		85363
21860	0000	086	002		84214
21870		919	002		8551 X
All one price			-meh	$25+0.15$	$100+0.08$

21817 Minlature axial choke SC30. 1 mH
Price
10151.00

21837 Choke 16 mm long $\times 1 \mathrm{~mm}$ dia 3.3 mH
Price ... of 5/ ©1.00
$\mathbf{2 1 7 6 0}$ Choke, high current, Ferrite rod 25 mm long $\times 12.5 \mathrm{~mm}$ dia wound with 120 turns of 22 'swg enamelled copper wire. Useful in crossover networks.
Priee 1767 Choke. $56 \mathrm{mH} 10 \mathrm{~mm} \times 9 \mathrm{~mm}$ dia
Price ... of $10 /$ c1.00
$\mathbf{Z 1 9 6 4} 50 \mathrm{mH}$ choke, fairly low current. PC mounting Adjustable. 13 mm dia $\times 12 \mathrm{~mm}$ long.
Peck of 3 for.
C1.00

Fused Suppressor

2009 This neat potted unlt $60 \times 45 \times 30 \mathrm{~mm}$ has screw terminal input for mains, 20 mm fuseholder and output tags for appliance. Ideal for the suppression of small motors, etc.

The 1992 GREENWELD Catalogue is out now! 132 pages of electronic and modellers supplies.

Only £2 (UK/ BFPO; £4 O'seas)
ORDER NOW!
See order form for details

Transformers

2431. Small mains transformer, 230 V ac pri, sec
$11-8-0-8-11 \mathrm{~V}$ at about 100 mA . Ex-equipment.
Price ... 707 5p

2402 Double wound mains input $6-0-6 \mathrm{~V} 100 \mathrm{~mA}$ secondary. UK made, clamp construction. FC 55 mm . Size $45 \times 37 \times 35 \mathrm{~mm}$.
Price .. $10+0.74$

24248 Mains transformer, $110 / 240 \mathrm{~V}$ input via PCB pins. Secondary; 6.5 V (f $8 \mathrm{VA} ; 22 \mathrm{~V}$ (u 8VA; 22 V (u) $1 \mathrm{VA} ; 1.5-0-1.5 \mathrm{~V}$ (a IVA. Nicely made by Skot.
Price
$\mathbf{c} 3.00$
All mains primary. Secondaries as listed.
$\mathbf{Z 4 2 1 3} 25 \mathrm{~V} 1.5 \mathrm{~A}$. Clamp type $70 \times 57 \times 47 \mathrm{~mm}$ terminated with wires
Price
Price these values by $10 \% . \quad 86 \times .72 \times 86 \mathrm{~mm}$. High quallty 'drop through design. Tags.
Price.
c7.00
24292 Mains transformer size $80 \times 80 \times 66 \mathrm{~mm} . \quad 110 / 230 \mathrm{~V}$ primary, 9V 6A secondary.
Prlee ... $\mathbf{5 . 0 0}$

Solenoids

 with tapped cross hole and slot. 25 mm pull...... 1.75
22132 24V OC solenoid. Chunky coil made by Benson Lid type BOC3/62. $36 \times 32 \times 25 \mathrm{~mm}$ with 4 tapped holes. Core 12.5 mm dia $\times 37 \mathrm{~mm}$ long with slot and hole.
\qquad $c 2.00$
$\geq 143312 \mathrm{~V}$ solenold by Airpax. Body is 37 mm long $x 19 \mathrm{~mm}$ dia. Threaded bush 14 mm dia for fixing. Plunger is 8 mm dla and has attached a wire link. 3 mm movement with supplied bracket attached - probably capable of more.
Price.
c1.00
$\mathbf{2 2 3 3 0}$ Meavy duty Iron cored open wound choke by Siemens $58 \times 23 \times 26$, B82503-U-A14 rated $100 \mu \mathrm{H} \quad 10 \mathrm{~A} 380 \mathrm{~V}$ Ac. Probably more uselul for the wire it uses $\cdot 50 \mathrm{~g}$ of 16 g ECW (about 3m).
 $\mathbf{2 2 3 4 0}$ Encapsulated choke $77 \times 32 \times 27$ by Siemens with screw terminals rated $65 \mu \mathrm{H} 25 \mathrm{~A} .9 \mathrm{~m} \Omega 500 \mathrm{~V}$
Price ...
25183 Migh quality totally screened mains filter unit by Siemens, B84 12 rated 20A. 0.25 tags for line and load. Size $100 \times 84 \times 40$.
Price .. \mathbf{c}

Transformers

29001 0-110-115-120, 0-1.10-115-120 primary. secondary 240V 10 A and 6.3 V 1 A . Use as step up, step down or isolating Iransformer
Price

Price ..00
$290090-240 \mathrm{~V}$ primary, secondary $0-11$ 12-13V 6.3 A and
28-24-0. 24-28V 7.2A.
Price ..
29003 0-220-240V primary, secondary $0-22.2-24 \mathrm{~V}$ 3A $11.2-0-11.2 \mathrm{~V} 3 \mathrm{~A}$.
Price

-120-240V it output,
Price

$290050-220-240 \mathrm{~V}$ primary, secondary $0-8 \mathrm{~V} 1 \mathrm{~A} ; \quad 16-0-16 \mathrm{~V} 1 \mathrm{~A}$:
28-24-0-24-28V 12A
Price 20.00
Our price 20 VA 12 V u 0.8A iwice. DP 6.59 . 4.00
Our price
Z9007 6 VA 6 V u 0.5 A twice. DP $\{3.86$
Our price
c2.00
29008 Filament. 6.3V Mu 1.8A iwice. DP £7.35.
Our price...
c4.00
$\mathbf{Z 4 2 0 7} 30 \mathrm{~V}$ ai $1.5 \mathrm{~A}, 6 \mathrm{~V}$ w $0.5 \mathrm{~A} .80 \times 65 \times 72 \mathrm{~mm}$. 4 way fix design. Tags.
Price .. 4.60
24212 Mains transformer - 0-110-120-240V primary secondary $9-0.9 \mathrm{~V} 2 \mathrm{~A}$ and 20 V 2 A . Size $100 \times 75 \times 60 \mathrm{~mm}$. Price
43.00

24360 Very useful I8VA mains transformer with 0-6. 0-6 secondary, each at 9 VA giving 6 V u 3 A or 12 V (1) $11 / 2 \mathrm{~A}$. PCB mounting $65 \times 52 \times 28 \mathrm{~mm}$

$100+1.40$
20e518 Toproidal Translormer encapsulated unit 92 mm dia $\times 40 \mathrm{~mm} 1201240 \mathrm{~V}$ input. output 30 V 3 A .
Price
22068 Tr
with 2 windings as shown. $42 \times 43 \times 35 \mathrm{~mm}$. 2 bobbins, each . 35 mm . PC mounting

22305 Neat 6VA PCB mounting low profile mains 22305 Neat 6VA PCB mounting low profile mains transiormer $53 \times 44 \times 22 \mathrm{~mm}$. Primary $0-120 \mathrm{~V}, 0.120 \mathrm{~V}$,
Secondary 0.15 V 0.15 V , each at 0.2 A . OP 58.33 Secondary $0-15 \mathrm{~V}, 0.15 \mathrm{~V}$, each at 0.2 A . DP $£ 8.33$
c2.50 $100+1.80$
22306 6VA PCB mounting mains transformer $43 \times 36 \times 36 \mathrm{~mm}$. Primary $0-120 \mathrm{~V}, 0-120 \mathrm{~V}$. Secondary 0.12 V , $0-12 \mathrm{~V}$ each at 0.25 A DP $£ 6.09$.

Toroidal Transformers made by Belciere. These are all physically the same size. rated at 35VA but have different physically the same size. rated at 35 VA but have different
windings as listed below. 75 mm dia $\times 33 \mathrm{~mm}$ thick. Fixing windings as listed below. 75 mm dia $\times 33 \mathrm{~mm}$ thick. Fixing by means of a tapped bush. All mains primaries.
$\mathbf{2 4 2 0 0}$ Type TR7353 5V 1.4A and 12-0-12V (a 120 mA .
Price ... $\mathbf{6 2}$
24291 Type TR7252 12V (u) 130mA: 12V (u) $80 \mathrm{~mA} ; 5-0-5 \mathrm{~V}$ (ar 600 mA
Price
C2.50

LARGE TRANSFORMERS

For callers only or you to arrange transport. Although
electrically $O K$. some of these transtormers have slight damage on the frames and or chipped paxolin panels. 29020240 V pri; 52 V 36 A sec .
Price 1240 V pri; 360V 6 A sec
c9021 240 V pri; 360 V 6 A sec
Price ...
Z9022 220/230/240V pri; 55V 72A sec
Price
c22
220/230/240V prl; 0-58.5-60.5-62.5V 20A sec
29024 220/240V pri: 170 V 60 A sec
Price 2902380 V pri; 121V 6A sec --10
29026380 V prl: 127V6A sec
29027 Choke 76 mH 31 A
c10

TWO STUNNING DIGITAL MULTIMETER OFFERS!!

* $31 / 2$ dight 8 mm LCD diaplay * Fully autoranging - Display hold faclifity - Diode and continulty teat * Probe atyling * Automatic polarity and zero - Protective carrying case

A $£ 34.95$ AUTORANGING MULTIMETER (1991 Catalogue) LESS THAN ½ PRICE! YOURS FOR JUST

Order Code

AC volts

PRICE

£14.95
$\star 19$ ranges
$\star 31 / 2$ digit 12 mm LCD display
\star Signal injector function
\star Diode test
\star Fuse protection
\star Automatic polarity and zero
\star Test leads with 4mm plugs
\star Battery and instruction manual included

Specification

AC volts
$0-200-750 \mathrm{Vac} \pm 1.2 \%$
DC volts 0-200m-2-20-200-1000Vdc $\pm 0.8 \%$
DC current $0-200 \mu-2 \mathrm{~m}-20 \mathrm{~m}-200 \mathrm{~m}-2 \mathrm{Adc} \pm 1.0 \%$
Resistance 0-200-2k-20k-200k-2m $\Omega \pm 0.8 \%$
Signal Injector 50 Hz square wave 5 V peak to peak
Dims $126 \times 70 \times 24 \mathrm{~mm}$
Order Code MX190

बRIEENWEID - TEL: (0703) 236363 FAX: (0703) 236307 WOUND PRODUCTS

Ferrites

21386 Ferrite core, double aperture. $5.5 \times 7 \mathrm{~mm}$ with $2 \times 1.5 \mathrm{~mm}$ dia holes. Few turns of easily removable wire. Pric ...10/ £1.00 100/6.10 Z4393 Ferrlte tube 9.5 mm long 4 mm OD 2.6 mm iD.
Pack of 25 c1.00 $\mathbf{1 k}+0.015$ 24304 Ferrlte Ring 12 mm OD. $7 \mathrm{~mm} 10,5 \mathrm{~mm}$ thick in plastic 24384 Ferne ning 2 mm 0 , 7 murs of 4 strand wire housing and wound with a fow turns of strand wine Pack of 8
1.00

21896 Ferrite rings. These torroids are $26 \mathrm{~mm} 00,14.5 \mathrm{~mm}$ 10 and stand 15 mm high. Material unknown. Made in Hungary. A similar slze ring sells for around £1.50.
Our low price.

Stepper Motors

2408912 V 36 R 75° stepper motor by Airpax. Size 58 mm dia $\times 24 \mathrm{~mm} .20$ tooth gear wheel 17.5 mm dia fitted to 6 mm shate.
c4.00
24386 Stepper motor, 48 step $\left(71 / s^{*}\right)$. Nice compact mode 51 mm dia $\times 24 \mathrm{~mm}$ deep. 3 mm dia splndle. Farnell mode 147-879. Their price $£ 14.40$.
Ourprice
[5.00
The following three modets (and the fan) are all ex-equip, but in good condition. Really good value for the experimenter

2212024 step NMB PM35L minature type 35 mm dia $\times 23 \mathrm{~mm}$. 2 mm dia spindle has brass gearwheet 6.5 mm dia 12 V working.
Price
c2.80
28072 Stepper motor by Phillips 58 mm dia $\times 24 \mathrm{~mm}$ thick Fixing flange has mounting holes 67 mm apart. 12V 36R coil with 15° step (24 per rev) 6 mm spindle has 15 mm dia gear wheel attached.
Price

28070200 step Astrosyn 23LM-C226-P1. 6V 1.8. Much heavier duty, this one 57 mm dia $\times 17.5 \mathrm{~mm}$ long. Attached Is a slotted disk 36 mm dia.
Price

281625 V 3 phase stepper motor by Siemens. Not many; no further information Overall iength 97 mm dia 36 mm . Outpul
to 5.8 mm dia, 13 tooth gear
Price

25020 Papst Multilan 3314. $92 \mathrm{~mm}^{2} \times 32 \mathrm{~mm} 24 \mathrm{~V}$ DC nominal (12-30V). Lis? price £20.49.
Our price00 $10+7.00$ 25021 Papst Fan. $119 \mathrm{~mm}^{2} \times 38 \mathrm{~mm}$. Model 4650 N 220 V 50 Hz . All metal construction. Wi 550 gm . List price £ 16.99 . Our price ... 25006120 mm Fan Guard. 110 mm FC Chrome plated steel. Price $25+0.70$

28071 Boxer fan $92 \times 92 \mathrm{~mm} 12 \mathrm{~V}$. Ball bearing, brushless Price
c3.00

24056 'Patrot' fan. High quality cooling fan for mounting into equipment. 170 mm dla $\times 51 \mathrm{~mm}$. Only probelm is they operate on 48 V ac (but still work down to 24 V). Price

If you like what you see in this supplement make sure you don't miss future bargains - only £2 (UK/ BFPO; £4 O'seas) for the next 6 issues see order form for details.

We are always looking for new lines to add to our lists. Send details/ samples of goods available to: The Managing Director Greenweld Electronics Ltd 27 Park Road
Southampton SO1 3TB

Please Note:

The Free Gifts offered in the Main Catalogue are not available with goods from Bargain Lists.
 $200 \times 95 \times 50 \mathrm{~mm}$ comes in an attractive metallic grey case with controls on top timing, on/off and volume, squelch. The telescopic aerial extends to 500 mm and can be rotated in any direction. The 3 wavebands are:

1) CB , channels, $1-80$
2) TV $154-87 \mathrm{MHz} \&$

FM $88-108 \mathrm{MHz}$
3) AIR $108-145 \mathrm{MHz}$ \&

PB 145-176 MHz
The large $3^{\prime \prime}$ full range speaker delivers 280 mW of undistorted power. There is an earphone jack and DC adaptor jack. The unit is powered by $4 \times A A$ cells. All this technology for just $\mathbf{8 1 7 . 9 5}$

Order Code
MB100

24357 Clock Radio by Ross. Extremely neat unit measuring $140 \times 80 \times 35 \mathrm{~mm}$. MW/FM bands, telescopic aerial, stand, carrying pouch and strap. Clock has LCD display and can be used in 12 or 24 hr mode. Alarm. Light. Earphone socket. Takes $2 \times$ AA cells.
Great value at
\&13.95

28891 Superb 4 waveband radio by Ross, model RR5. Covers FM $88-108 \mathrm{MHz}$, NW $518-1610 \mathrm{kHz}$, LW $150-275 \mathrm{kHz}$ SW $5 \cdot 7-18.1 \mathrm{MHz}(16.5-52.6 \mathrm{~m})$. Nicely styled case measuring $210 \times 145 \times 70 \mathrm{~mm}$ with clear scale markings. Telescopic aerlal, headphone socket. Volume, tone and tuning controls. ON/ OFF switch/waveband selector switch and AFC switch. Mains/battery. (Takes $4 \times$ C cells). Originally retaited at $£ 19.95$
Our Price
$E 14.95$

ZONEPHONE ZAPPEDH

You've probably seen in the press the much hailed personal phone has been a dismal flop - with 3 different systems and the restraints imposed on its use meant it had little practical value. Failure seemed inevitable - but there's a silver lining to every cloud and its an ill wind that blows nobody any good, etc, etc ... we've purchased some of the goods with more to follow.

ZONEPHONE TERMINAL

28956 These were the units screwed to varlous buildings throughout the UK which you stood next to whilst making a phone call with your incredibly useful handset! Too bad if you weren't in range (99.9\% of the UK wasn't!) but it was a nice toy while it lasted. There was a lot of clever technology involved, and we're selling these at probably about 1% or
2% of their real cost! So what do you get for your money?
Well, a lot of case for a start - in the outer steel case (a) $480 \times 300 \times 150 \mathrm{~mm}$ with fibreglass aerial case on top (b) $250 \times 160 \times 75 \mathrm{~mm}$, there's another steel case (c) $325 \times 245 \times 130 \mathrm{~mm}$ and inside this there's a plastic box (d) $200 \times 15 \times 75 \mathrm{~mm}$.
(a) contains a metal surface mounting 13A socket and a BT line socket.
(b) has 2 whip aerlals 200 mm long terminated in PL259 plugs.
(c) contains 8 V 3.8 Ah sealed lead acid battery, mains transformer (10V 2A Sec), mains filter and a plethora of plugs and sockets mounted on top - 3 BNC and 2×9 pin ' D ' type, also 2 fuseholders, a lead with 13Aplug and another lead with BT plug, and a power on/ off toggle. Screwed to the inside of the lid is a PCB 250×160 with lots of nice bits 64180 CPU, 27 C256 EPROM, 5256-15 256k RAM $\times 3$, LM2940, LM317T, BD680 $\times 2$, 3.6 V AA size lithium cell in holder, about 30 various linear/ logic chips, 3 xtals etc, etc. (You're getting great value for money here!)
(d) contains the Tx/Rx panel $170 \times 135 \mathrm{~mm}$. Lovely bit of kit, this, all surface mount - about 20 chips. Inputs
and outputs are taken to 2 min PCB sockets.
There's another panel the same size in this box, with lots of hi-tech devlces - $2 \times$ TMS77C82 programmable 8 bit microcontroller, 77C01, TMS320MC10FNL 16/ 32 bit signal processor, LM2984 triple 5 V output regulator and another 10 chips, 4 ' D ' plugs/ sockets and lots of other bits.
And that's about it!
The whole complete unit is yours for just .. ع29.95
ZONEPHONE CASE
25165 Zonephone cases. Nicely made leather type finish case $190 \times 55 \times 35 \mathrm{~mm}$ with velcro fastening, removable carry strap and further strap to hook on to belt. To clear at 50p $100+0.25$

NICAD BATTERY

PACKS

22349 Nicad battery packs. Brand new, intended for use in zonephones comprising $4 \times 1 / 2 A$ size cells each rated 1.2 V 0.45 Ah , size 16.1 mm dia $\times 28 \mathrm{~mm}$ in a plastic housing easily removed. Solder tag connections. DP £9.92.
Our price. ع2.00 $100+1.00 \quad 1 k+0.70$

£99 Oscilloscope

A high quality portable single beam oscilloscope with $3^{\prime \prime}$ CRT screen, high vertical sensitivity of $10 \mathrm{mV} /$ division, direct cascade amplifiers and a frequency range from DC to 5 MHz . Ideal for lab, school and service use.
Vertical axis:

The runner is attached by two struts Fold each strut back where it joins the runner (along the line), and fold up the end section at the other line. Glue the end sec tion of each strut to the body of the sleigh. The lower edge of the runner is 20 mm from and parallel to the lower edge of the base.

Cut out the sacks (j, k) from coloured card and glue these to the back surface of the sleigh; the larger sack (j) overlaps the smaller (k).

The drawings show a range of goodies to be coloured and glued behind the tops of the sacks, but you can make up your own selection. Perhaps you could draw presents that members of the family have received. Or you could cut out small photographs from the innumerable mail-order catalogues that drop through the letter-box during the preChristmas months.

The harness is made from gift-wrapping tape. Ours was a slightly metallised tape in a deep gold colour. Cut two short pieces and wrap them around the neck and body Glue their ends to the back of the neck and body, leaving the tape fairly loose to give a rounded appearance. Glue a length to the inside of the neck-band, thread it under the body band and glue its other end to the sleigh. Finally, glue another length to the neck-band and let it curve in a graceful way, gluing it to the back to.Santa's right hand.
The snowy terrain consists of a trough (s) made from white card, folded and glued, then glued along the lower edge of the baseboard

Now for the final details. Glue Santa's mouth (p, in red card) in position and draw a semi-circle for his nose. Cut out and colour the eyes. Does he have blue eyes or brown? We thought that brown eyes suited our colour scheme better. The reindeer has a brown eye (r) too
A visit to a stationer's shop will sugge 1 innumerable ways of making the model look really festive. Ours is adorned with self-adhesive stars in various metallised colours. White cotton wool is used for Santa's beard, moustache and eyebrows, as well as for the trimming on his sleeves and the bobble on his hat. Just spread a little glue in the areas where the cotton wool is to be fixed, roll the cotton wool into shape and press it down. The trough is filled with cotton wool to just touch the runner and the feet of the reindeer.

CIACUIT

The circuit is based on two astable multivibrators, referred to as the fast astable and slow astable respectively. An astable multivibrator is a circuit unit, the output of which alternates between high $(+4.5 \mathrm{~V}$ in this case) and low (0 V) at a fixed rate. The astables comprise two inverting logic gates represented by the triangular symbols in Fig. 1. The outputs are at pin 4 and pin 12 respectively.
The rate at which the astable oscillates is determined by the value of the timing resistor and capacitor. The equation for the frequency of operation is $f=1 / 2.2 \mathrm{RC}$. In the fast astable, $R=3.3 \mathrm{M}$ and $\mathrm{C}=100 \mathrm{n}$, so $f=1.4 \mathrm{~Hz}$. In the slow astable, $\mathrm{R}=$ 20 M and $\mathrm{C}=2 \mu$, so $f=0.01 \mathrm{~Hz}$, or one oscillation in 88 seconds. The output from each astable is fed to another inverting gate, which acts as a buffer so that current can flow to the transistor switches without affecting the rate of operation of the astables.
The output of the buffer of the fast astable goes to a transistor switch TR1 which is turned on and off at the rate of 1.4 Hz . When it is on, current flows through the

Fig. 1. Circuit diagram for the Christmas Decoration.
four light emitting diodes D1 to D4. These are high-intensity l.e.d.s and take a current of about 20 mA each.
The output of the buffer of the slow astable goes to a second transistor switch TR2. When this is on, current flows through R5 to the music sub-circuit. R5 is a voltage-dropping resistor, since the medley i.c. (IC2) operates on a maximum voltage of 3.3 V .
When TR2 goes on, a voltage appears across the sub-circuit and is held steady by C3. The medley signal comes from terminal 1 of IC2, is amplified by TR3 and drives the loudspeaker. When the tune has played once, it stops. After about 15 seconds the output from the slow astable falls and TR2 is turned off. C3 discharges rapidly through R8; discharge is essential since the fall to 0 V on the sub-circuit supply resets the medley i.c. The medley repeats when TR2 is turned on again.

CIFCUIT CONSTRUCTION

The circuit is assembled on a 100 mm square of thick (2 mm card). Cut a circular hole for the loudspeaker, a few millimetres less in diameter than the speaker. Make holes in the board, using a sharp point or a 1 mm drill. Insert the components (Fig. 2) and cut their leads to about 4 mm if necessary. The large capacitor (C2) is laid on its side and held in place by a double-sided adhesive pad, or by Blutack. Its leads are bent sideways and inserted in the holes. Glue the rim of the loudspeaker to the wiring side of the board.

Wire up the board circuit as in Fig. 2. Check that the wiring to the loudspeaker does not touch against its rim. Small rectangles of p.y.c. insulating tape are placed where shown to prevent short-circuits between crossing wires.

When complete except for the l.e.d.s, check the following points; ICl is in its socket the right way round, the transistors and IC2 are properly orientated, C3 and C4

Semiconductors
D1 to D4 high intensity light emitting diode (4 off)
TR1 to
TR3 ZTX300 npn transistor (3 off)
IC1 4049BE CMOS hex
inverting buffer UM66 Type 1 medley generator

Miscellaneous

LS1 8 ohm miniature (38 mm diam) loudspeaker; 16 -way d.i.l. socket; p.c.b. eyelet terminals (3 off); 3-cell batterybox and suitable cells - see text.

Materials required

Thin coloured card $\left(250 \mathrm{~g} / \mathrm{m}^{2}\right)$, red, green and other colours; medium white card ($1 \mathrm{~mm}, 650 \mathrm{~g} / \mathrm{m}^{2}$) for the terrain and board supports; thick white card $\left(2 \mathrm{~mm}, 1500 \mathrm{~g} / \mathrm{m}^{2}\right) 100 \mathrm{~mm}$ square and $200 \mathrm{~mm} \times 150 \mathrm{~mm}$, alternatively painted white printed card as supplied (see Shop Talk and Special Offer pages); Tinsel; coloured selfadhesive stars etc., for decoration; cotton wool (white); clear adhesive.

Fig. 2. Circuit card layout and wiring.
are connected with correct polarity, there are no connecting wires touching (particularly in the vicinity of ICI), unwrapped "tails" at the ends of wires are not contacting adjacent wires or pins.
Test the circuit by applying battery power. The circuit operates on 4.5 V (three 1.5 cells in a battery box). Operating it on a higher voltage is likely to destroy the medley-making i.c. The tune may start as soon as the power is applied, or there may be a delay of about 30 seconds, depending on the state of the slow astable to begin with.

The voltage level at pin 2 of ICl alternates between 0 V and 4.5 V about twice a
second; this is the output of the fast astable. If you have a breadboard or a supply of test leads with crocodile clips, temporarily connect the l.e.d.s (in parallel) between the +4.5 V terminal and the l.e.d. terminal. The l.e.d.s flash brightly about twice a second If the circuit is not working, remove the battery, check the wiring and other points again. If the I.e.d.s fail to flash, it may be because they are connected with the wrong polarity. Normally the cathode wire (which connects to the l.e.d. terminal) is identified by a "flat" on the rim of the l.e.d., but we found that the special high-intensity l.e.d.s used in the prototype had the "flat" by the anode wire.

SLOWER

If you feel that it would be better to have the tunes played less frequently, you can make the slow astable run even more slowly by increasing the capacitance of C2. This is best done by using a $4 \mu 7$ capacitor or by wiring a second (or even a third) 2μ capacitor in parallel with C2. A second capacitor halves the rate at which the medley is repeated.

The extra capacitors could be stacked on C2, and held in place by adhesive pads. It is essential to use polyester capacitors or another low leakage type. Although electrolytic capacitors have high capacitance and might be thought suitable for the low astable, they have relatively high leakage. The current flowing through the 20 M combined resistance of R3 and R4 would mostly leak away through the capacitor, which would thus fail to charge.

When the circuit is working properly, lay it on a sheet of newspaper, wiring side up, cover the loudspeaker with a scrap of paper and spray the board with p.c.b. lacquer. This step is not essential but it serves to hold the wrapped wire more securely in position, especially the wires around the pins of the i.c. socket.

FINAL WIRING

Make three supports from mediumthickness card. Bend these twice. Glue one flap of each support to the wiring side of the circuit board. Glue the opposite end of each support to the rear of the base-board (Fig. 4). Bore holes in the base-board just wide enough to allow the l.e.d.s to be inserted from the rear. A drop of glue holds each l.e.d. in place. Cut their leads to about 5 mm long.

Run a wire from the +4.5 V terminal to the cathodes of the l.e.d.s. Run a wire from the l.e.d. terminal to the anodes. These are rather long runs, so keep the wires as tight as possible, so that they do not come into contact with each other. Use pieces of insulating tape to separate the wires, if necessary.

BATTERY

The average current consumption is about 40 mA , and the model is likely to be run for several hours at a time during Christmas, so it is preferable to use size C or D cells in the battery. A battery box holding three cells in a row can be wrapped in Christmas paper and disguised as a Christmas cracker or as a wrapped gift. Alternatively obtain the supply from a 4.5 V d.c. mains adaptor.

READYFOR ACTION

We have not provided a switch, since it is usually more convenient simply to twist one of the power leads around the power terminal when the novelty is to be set working. If it is to be hung on the Christmas tree or among other decorations, attach a loop of tinsel or coloured cord to the upper edge of the base. The battery, suitably disguised as described above, is hung from an adjacent branch. Alternatively, make a cardboard support so that it can be rested upright on a horizontal surface

The antlers may have flattened by now so spread them out sideways. The upper parts diverge slightly from each other, but the lower, forwardly-directed branches are spread wide apart to give the beast a fierce (!) a ppearance head-on.

Specia/ Series
 MAGNETIC RECORDING Part 3: HeadMaintenance

 VIVIAN CAPEL

 VIVIAN CAPEL}

Life today would be difficult ro imagine withour magneric recording: No audio or wideo recorders; no computer disks; no payphome cards; no bank cash cards or magneric security pass cards. In spire of its universal use, magneric recording and the principles of magnetism are still lirtle understood by most people. In this short series we hope to answer some of the questions most often asked abour Magnetic Recording.

THE MAJORITY of problems that occur with audio tape recorders are due to head faults and mechanical failures. Of these, the heads are the most common culprits, which is not surprising considering that in a cassette recorder, 562.5 ft (168 m) of moving tape is pressed against them every hour of recording or playback.
The principal cause of trouble is loose oxide particles from the tape. While with modern good quality tapes only a very small number of particles in proportion to the total becomes free from the binder, with thousands of feet of tape passing, the number soon builds up.

These are deposited on the head face and attract others. In time a blob of significant size accumulates which is compacted by tape pressure to form a hard mound that adheres strongly to the face.

TENTING EFFECT

What then happens depends upon what part of the head-face it happens to be. Often the particles are pushed by the tape to the furthest point of contact. Being well past the gap, the deposit may not have any great effect. But if it is near the gap, the tape rides over it and produces a "tenting" effect whereby the mound holds the tape off from the head-surfaces on either side of it (Fig. 1).

The loss of intimate tape/head contact across the gap affects recording differently from playback. With recording, the flux must pass through the space formed by the "tent" before it reaches the tape. Thus less flux actually penetrates the tape coating, so the recorded level is lower and noise is increased.
It is even worse if the deposit is across the gap itself. Then, in addition to holding the tape off, it also forms a magnetic short-circuit which bypasses a lot of flux. This further reduces the flux reaching the tape and decreases recording level.
The tenting effect is more serious with playback than with recording. The physical size of the field eminating sideways from a bar magnet is dependant on its length. It extends only half the distance compared to another magnet that is four times as long. Now the length of the recorded zones on the tape depends on the recorded wavelength, which in turn depends on the
frequency. High frequencies have short wavelengths and therefore short magnetic recorded zones.
This means that the field from a recorded high frequency extends outward from the tape only half the distance compared to that from a frequency that is two octaves below. Tenting effect thereby reduces the fields picked up by the gap from high frequencies, to a greater extent than those received from low frequencies. So, tapes played with a dirty playback head lose more treble than bass and thereby sound muffled and lacking in top.

The fact that dirt on the head has a more serious effect on playback than recording is really an advantage. It has happened that a tape has been recorded, but sounded awful when played back. Examination of the record/playback head revealed it to be dirty.
As the recording was made with the head in this dirty condition, it seemed logical that the recording was ruined and was useless. But this has not always been so. On cleaning up the head and replaying the tape, it has often been found that though not perfect, the recording is quite acceptable.

Fig. 1. 'Tenting' effect. A blob of dirt holds the tape off from the gap producing low-level recordings, and loss of field from short magnetic zones (high frequencies) during playback.

Another possible effect from dirt is tape flutter. Deposits tend to be sticky and thereby impede the smooth passage of the tape over the head. It passes in a series of minute snatches and jerks as the deposit alternately holds and releases the tape. Sometimes an audible squeak can be heard from the head with the volume turned right down.

The reproduced effect is distortion. If it
was present during a recording, it is permanently recorded and nothing can be done to save it. If though it is heard when playing a tape that was previously free from it, there is no permanent damage and cleaning the head should restore things to normal.

HEAD CLEAN/NG

The obvious solution to all these problems is to keep the heads clean, yet it is a chore that is often neglected, and many recorder owners seem unaware of the need of doing so. I once worked in the service department of a well-known tape-recorder manufacturer and was surprised how often machines were returned for repair with nothing wrong with them other than dirty heads.

An easy way to clean heads is to use a head-cleaning cassette which usually contains a length of woven fabric "tape". When this is "played" it removes oxide deposits by friction. The suggested frequency of use is once every 25 hours, but this is not critical enough to warrant keeping an accurate log of playing time.
Unlike a worn gramophone stylus a dirty head will not damage the tape. Overuse could accelerate head wear, so there is something to be said for using it only when the sound begins to deteriorate.
The best method is hand cleaning, which is easier if full access to the heads is obtained by removing the cassette flap. The flap is usually retained in the open position by side pieces that have small side projections which engage against the inside of the case.

Removal can be effected by gently pressing the side pieces inward until the projections disengage, whereupon the flap can be lifted off of its pivot. A spring may also need to be disengaged from its retaining hole. The flap is re-fitted by reversing the process. After the first time, further flap removals and head cleanings are that much easier.

With the flap out of the way, the state of the heads can be observed; a magnifying glass is useful for this. If they are still not very accessible, press the play button to bring them down into the playing compartment. It is important to ensure that the power lead is disconnected and the
batteries removed when carrying out this operation

Cleaning can now be carried out by using a cotton bud and head cleaning solution. A cheaper alternative to proprietary cleaners is industrial alcohol or methylated spirit. Wet the head face thoroughly and remove all visible deposits, using a magnifying glass to make certain that the smallest deposit has been eliminated.
It is important that after doing so, and before the head is dry, the face is polished with a dry bud (the other end of a dualended one). If this is not done a sticky film may remain. As the cleaner evaporates quickly, polishing must be started as soon as the dirt has been removed.

Take a look at the rubber pincher roller, drive capstan, and tape guides. Deposits can also collect on these, producing speed irregularities and the effect known as wow. Clean as required.

Hand cleaning with buds is gentle and can be done as often as needed without causing head wear. It is also more thorough than cleaning tapes as they can and often do leave stubborn deposits untouched.

WEAR

A flat channel, the width of the tape, is sometimes worn across the head face and gradually gets deeper as wear continues, see Fig. 2. With a permalloy head, the most common and softest head material, the beginnings of a channel becomes evident quite soon after the head is new, but it takes much longer to appear with ferrite or HPF.

Of itself, the wear has little effect until the channel is really deep, providing that it is even. It is when it is uneven that problems arise. A dimple can appear near the gap which prevents intimate tape contact, thereby causing high frequency loss. The edges of the laminations can become rounded or jagged so increasing the effective gap width thereby reducing playback high frequency response.

Part of the shim can break off leaving a cavity in the gap. At best this allows part of the flux to bridge the gap internally instead of externally through the tape, but in addition, oxide deposits can collect in the crevice so providing a low-reluctance path that further reduces the flux through the tape.

Crevices or uneven edges tend to quickly collect debris from the tape, necessitating frequent cleaning of the head. So if a head often needs cleaning it is usually a sign that it is badly worn and it is time to replace it.

Before doing so though, examine it under magnification and if there seems no serious unevenness of wear try a different make of tape. Sometimes a faulty batch of tape comes on the market that sheds oxide readily, though this is rare with the reputable makes.

Cases have been known where the sides of a worn channel grips the edges of the tape causing it to bind or curl. Yet otherwise the wear is even and has no effect on reproduction. In such cases, the edge of the channel furthest from the gaps can be smoothed over by the careful application of a very fine wet-and-dry emery paper, (Fig. 2).

Normally one should never introduce an abrasive to the heads, but as the head must otherwise be replaced, nothing is lost by trying to improve matters. Use the paper wet and concentrate the gentle rubbing ac-
tion against the lower ridge, avoiding the face as much as possible.

This is best done by cutting a strip of wet-and-dry about one-eighth inch wide (3 mm) and drawing it sideways back and forth along the edge of the ridge. Leave the other ridge adjacent to the gap strictly alone, it only needs one to be levelled to stop binding; abrading the other will be sure to damage the gaps.

MAGNETIZATION

In time, the head can acquire a degree of permanent magnetization. The effect is to add noise to recordings. Demagnetization should be carried out periodically and can be accomplished without the need to remove the cassette flap. A demagnetizer consists of a coil in a plastic handle with a probe running through its centre and extended from the end so that it can be introduced to the head. Some are cranked at the end to facilitate easy application to the head.

The coil is plugged into the domestic mains supply, and the probe placed against the head. A plastic cap prevents it scratching the face. The probe is then gradually pulled away from the head face, which is thereby demagnetized.

What happens is that the head material goes through successive but diminishing hysteresis cycles as the probe is drawn

Fig. 2. A channel may be worn in the head that grips the tape, producing speed irregularities (a). The effect can be eliminated by carefully rubbing down the ridge furthest from the head gaps with fine wet-and-dry emery paper.

Fig. 4. A tape recorded with an incorrect azimuth head has slanting magnetic zones and so results in high frequency loss when played with a head that is correct. There is no loss when played with the same head that recorded it.
away, until finally it is left with zero magnetization. The recorder MUST be switched off for this operation otherwise a very loud hum will result which could damage the speakers.
Some head-cleaning cassettes also demagnetize the heads by means of internal revolving magnets. The effect is rather less positive than the mains operated demagnetizer.

AZIMUTH

Azimuth describes the sideways tilt of a record or playback head. The head gap is a
vertical slit which records magnetic zones consisting of a series of vertical stripes, wide ones for low frequencies and narrow ones for high. Imagine a playback head slightly tilted to one side so that the gap is not vertical. The gap now forms a diagonal across two or more adjacent narrow recorded stripes although it may not span more than a single wide one.
The resolution is thereby reduced; the effective width of the gap is increased to that of its vertical projection (Fig. 3). Thus the reproduction of recorded high frequencies is impaired, although that of low frequencies is unaffected.
Let us now consider the situation when the recording head gap is tilted. The resulting recorded magnetic zones are not vertical but tilted the same way as the gap. If these are played by a vertical playback head, its gap thereby forms a diagonal across them just as in the previous case, (Fig. 4). So the result is the same, loss of high frequencies when reproduced.
If though the tape with tilted zones is played on the same single-headed machine that recorded it, the head gap is aligned to the angle of the zones and there is no h.f. loss. This is why tapes recorded on a machine with a mis-adjusted head sound perfectly normal on the same recorder, but fuzzy on any other, while tapes recorded on other machines sound poor when played

Fig. 3. Incorrect azimuth. The gap of the tilted head spans more than one vertical recorded zone thereby increasing its effective width (e.w.), so reducing resolution and losing high frequencies.

Fig. 5. Playback with a stereo head of incorrect azimuth not only suffers loss of h.f., but has one channel lagging in time behind the other, so producing phase errors between channels and thereby impaired stereo.
on the first machine. This effect often perplexes recorder owners!

MMPA/RED STEREO

There is another effect of mis-aligned heads, and that is impaired stereo. Taking a look at the exaggerated mis-aligned stereo head in Fig. 5, it is evident that one gap is displaced laterally from the other along the tape, whereas they should be exactly vertical. So, one gap will be ahead of the other in reading its track. Phase

Fig. 6. Azimuth is adjusted by rocking the head over a central pivot against the tension of a spring.
differences, which are really differences, that were present in the original recording will thus be altered, and spurious ones introduced

As stereo location is conveyed principally by the phase relationship between the two channels, it is evident that a mis-aligned head will give poor and inaccurate stereo. However, a stereo recording made and played back on the same singlehead machine will not be impaired because it will be played back as it was recorded.

AZIMUTH ADJUSTMENT

With some machines the record/playback head is bolted rigidly to the sub-chassis and so no adjustment is possible. With others the base of the head is mounted across a ridge running from the back so that it can rock from side to side. There is a flange on each side of the head, each having a screw securing it to the sub-chassis. One of these has a spring under its head which holds the flange in place when the other screw is adjusted (Fig. 6).

The audio engineer adjusts the azimuth by using an audio oscillator and an output meter. A 10 kHz signal is recorded on a cassette using a recorder known to have a correct azimuth, or a pre-recorded test tape. The tape is then played on the machine to be adjusted and the head screw rotated to obtain a maximum reading on the output meter.

For a stereo recorder the output of one stereo channel is fed to the Y and the other to the X plates of an oscilloscope. A lessajou figure is obtained that indicates phase difference, (Fig. 7). Azimuth is adjusted for minimum phase difference.

If you have no test equipment, do not despair, an accurate adjustment can still be made if you have a good ear. Record some f.m. interstation noise on a radio cassette recorder that is known to be correctly adjusted. This is known as "white" noise.

Play the "noise" tape on the machine to be set up and listen carefully. Set the head for maximum "hissiness", turning the screw to both sides of maximum with decreasing adjustments until it is spot on the maximum setting. Machines carefully adjusted in this way have later been checked with instruments and found to be at optimum, and that no further improvement could be made.

Remember that if the azimuth is incorrect, there will be no impairment of the sound of tapes recorded and played back on the same instrument, but it will be in-
compatible with all other machines and with pre-recorded tapes.

HEIGHTAND TILT

The height of the head must be such that the tape path past all heads and guides is a perfectly straight line. If this is not so the tape will curl and distort, or in the case of a cassette recorder in which the heads move in to engage with the tape, one of the headguide arms will foul the tape causing a series of creases along one edge (Fig. 8).
Usually, the head height is not adjustable and the guides are fixed to the side of the head, so no height setting is required, but in some models it is adjustable. It is not unknown for a head guide to become loose and mis-positioned, especially on an erase head which, having a plastic encapsulation, does not have its guide welded on as does the metal-cased record/playback head. The result, can be tape damage as described. There may also be fore and aft tilt adjustment but this is normally only found on open-reel machines.
also plays an important part in the actual recording process as described more fully in a previous article. Briefly, the tape is magnetically saturated by the erase head. The bias applied by the record head is of opposite polarity from this so that the operation is brought down to the long straight demagnetization portion of the hysteresis loop.

Sometimes d.c. erasure is used with a.c. bias. In this case, the tape saturation plays no significant part in the recording and serves only to wipe out previous recordings.
D.C. erasure can be accomplished either by a permanent magnet or a d.c. current passed through the windings of an erase head which is similar in construction to the record head. When a magnet is used it cannot of course be switched off so it must be physically retracted from the tape path during playback.
For a.c. erasure, the full output of the bias oscillator is applied to the erase head. Unlike the bias therefore, its exact value

Fig. 7. Phase differences revealed by scope traces. The two stereo channels carrying a recorded fixed h.f. tone, are fed into the X and Y scope inputs. The avimuth is adjusted for the 'in phase'trace.

(a) [E]र100]

Fig. 8. A tape guide out of line (a), can produce creasing of one edge (b).

ERASING

An essential part of any tape recorder is the erase system. It is this that gives the medium its remarkable versatility; tapes can be re-recorded over and over again with no deterioration. Any wear is due to the friction of the tape passing over the heads not by re-recording. An equal amount of wear will result from the same number of playings of the initial recording.
The erase head clears all previous recordings by brute force. In the case of d.c. bias it
does not need to be pre-set. It is usually about a hundred times the bias current.
The erase-head gap is large, typically $200 \mu \mathrm{~m}$, and thereby penetrates right through the tape coating to leave no trace of signal buried beneath the surface. It also covers almost half the width of the tape, thereby erasing a mono or pair of stereo tracks from tape edge almost to the centre. A narrow centre area is left to avoid erasing any part of the inner track on the other half.
Next month: Head Driver Circuits.

The new Studio Power Sub 2002 Sub-Woofer Stereo Loudspeaker System is now available, and offers an outstanding sound package at an affordable price.

Due to modern technology, gone are the days when rooms are cluttered with bulky, intrusive speakers. To reproduce the rich bass notes, Studio Power have developed a single sub woofer incorporating twin 61/2 inch drivers (in push/pull). Bass signals contain little directional (stereo) information. So, this unit can effectively be 'hidden' anywhere in the room, such as behind the sofa, curtains, or under a coffee table - yet still deliver the whole weight of the lower audio spectrum.

The 'mid' and 'upper' frequency regions are handled by a pair of Studio Power's innovative satellite speakers, each incorporating a 4 inch mid-range and a 1 inch tweeter. Because of the low frequency cross over point between the sub-bass woofer and the satellite units, your ears will detect the deep bass, purporting to come direct from the small satellite units, giving a wonderfully impressive overall performance

All three units are finished in a deep grey, smooth finish, with the satellites having a contrasting black fabric grille. If you are looking to purchase any small pair of traditional loudspeakers, up to $£ 130.00$ per pair, or any other Sub-Woofer system, costing considerably more, we suggest that you purchase the Sub 2002 System. Why pay more? At $£ 129.00$, everyone can afford the luxury of a true sub-woofer system.

The new Studio Power Sub 2002 Sub Woofer System offers quality stereo sound from two small satellite loudspeakers, with additional rich bass from a single discreet omni-directional sub-woofer. This is ideal for integration into your Hi-Fi or audio-visual system. All this for just $£ 129.00$ complete plus $£ 6.00$ carriage.

To order, please send cheque or postal orders, payable to B.K.Electronics, for $£ 129.00$ plus $£ 6.00$ carriage. Orders can also be placed by post, telephone or fax using elther Access or Visa cards.
Please send your order and payment to:

B.K. Electronics, Units $1 / 5$ Comet Way, Southend-onSea, Essex. SS2 6TR. Telephone: 0702-527572. Fax: 0702-420243.

AUTO NIGHTLIGHT

A. R, WINSTANLEY
 A simple-to-build unit which operates and automatically dims a low voltage nightlight for the nursery.

DURING the early years of infancy it is often comforting to a child to be able to sleep in surroundings which are illuminated by a gentle nightlight, in order to allay any fear of the dark that the child may have. Hopefully, it is not necessary to keep the room's main light switched on, and with luck a small lamp such as a pygmy-type will have the necessary calming effect.

Often a "plug light" is used, which comprises several neon bulbs encased in a translucent plug top. These form a cheap solution, but they can obviously only be placed where the mains socket is located. An alternative is the traditional candle nightlight, but there are obvious drawbacks relating to safety and peace of mind.

The Auto Nightlight is a simple mainspowered low-level lamp but which has the added attraction of automatically dimming itself over an hour or so, if required; the design is obviously an improvement over a simple plug-type nightlight, since you can firstly select either "auto-dim" mode or "bypass" where the lamp will be continuously alight. Secondly, the Iamp itself can be placed exactly where you require it next to the cot, for instance - since the lamp operates at 12 V and there are no potentially hazardous mains cables trailing everywhere.

CIRCUIT DESCRIPTION

The circuit itself is extremely straightforward and is ideal for the less experiencedconstructor wishing to tackle a simple mains-powered project for the first time. The circuit diagram of the Auto Nightlight is shown in Fig. I.
Mains voltage is switched through SI, the On/Off control, and passes via a protective fuse FSI to the primary windings of transformer T1, where it is stepped down to 9 V a.c. This lower voltage is full-wave rectified by the bridge rectifier DI-D4 to produce a direct current. Capacitor Cl is a relatively large smoothing capacitor which smoothes out the ripple content of the bridge rectifier output, the net result being a d.c. voltage of approximately $15 \mathrm{~V}-16 \mathrm{~V}$ no load, $11 \mathrm{~V}-12 \mathrm{~V}$ on load.
A single pole changeover switch S 2. which is a centre-off type, is biased one way. When the switch is moved to the "DIM" position, capacitor C2 charges up from the 12 V supply rail; when the switch is released, it returns to the centre-off position but the charge on $\mathbf{C} 2$ is retained. Positioning S2 in the other direction would connect C2 continuously to the positive rail.
The Darlington transistor TRI can be
considered as two transistors in one package, as depicted by its schematic symbol. It is a very high gain transistor, a figure of 20,000 being typical. This implies that compared with a normal bi-poplar transistor, TRI requires only a very tiny base current to saturate the transistor hard on. The Darlington in fact acts as a driver transistor for TR2, with a higher permissible collector current rating than the Darlington itself; hence, TR2 can drive a larger load than could TRI
Once capacitor C2 is fully charged in the "DIM" mode, both transistors turn on like a switch. TR1 requires its base (b) to be 1.2 V more positive than its emitter (e) because it contains two transistor junctions. whilst TR2 base must be just 0.6 V more positive for that transistor to conduct.
Since the voltage at $\mathrm{C} 2 / \mathrm{R} 2$ junction is about 12 V due to the charge stored on capacitor C2, both transistors switch hard on or "saturate". This completes the circuit to lamp LPI. a 12 V 2.2 W bulb connected via jack socket SKI, and LPI will therefore illuminate.
Capacitor C2 will discharge very slowly through resistor R2 via the base terminals of TR1 and TR2 to 0V. However, provided that the potential at TRI base remains at 1.8 V or more, both transistors will remain on, and hence the bulb will remain alight. Once the voltage drops to below this figure, the transistors will start to turn off, with the effect that LPI will be seen to dim very slowly until it has extinguished altogether.

Unfortunately, it is very difficult to predict precisely the time period that will elapse before LPI extinguishes. This is because of the very large manufacturing tolerance on capacitor C2, typically its value is $330 \mu \mathrm{~F}-50 \%+100 \%$.

The prototype Auto Nightlight started to dim after about 50 minutes or so. This was considered adequate for this application. The fact that the lamp stays fully alight for quite some time before starting to dim was also considered beneficial.
As mentioned earlier. if switch $\mathbf{S} 2$ is moved to the "ON" position, then the base of TR1 is connected via resistor R2 directly to the positive supply rail. In this case the dimming function is bypassed and the lamp will remain fully alight. Under these circumstances it is necessary to turn off at the mains in order to extinguish the lamp, due to the charge that is stored on C2.

CONSTRUCTION

Most of the components, including the mains iransformer, are mounted onto a printed circuit board (p.c.b.), see Fig. 2. This is available from the EE PCB Service,

Fig. 1. Complete circuit diagram of the Auto Nightlight.
code EE779, or can be home-made in the usual manner. Only an experienced constructor should attempt to translate this circuit onto stripboard instead of using a p.c.b., because the board contains a mixture of mains-operated and low voltage parts.
The p.c.b. was designed, by virtue of its fixing centres, to fit into a Verobox No. $75-1238 \mathrm{D}$ measuring $155 \mathrm{~mm} \times 85 \mathrm{~mm} \times$ 60 mm but any other similar case would
suffice. The approved box has a top and bottom moulding in plastic but has front and rear panels made of attractive anodised aluminium.
The layout of the components and full size copper foil master pattern is illustrated in Fig. 2. Even the fuse and mains transformer are p.c.b. mounted, thus reducing mains interwiring and making construction easier and safer.
It is best to start the assembly by solder-

Fig. 2. P.C.B. layout and wiring for the Nightlight.

COMPONEVTS

Resistors
See

	560
R1	$570 k$
R2	470

Capacitors
C1 $\quad 1000 \mu$ axial elect. 25 V C2 $\quad 330 \mu$ axial elect. 25 V

Semiconductors

D1-D4 W005 50 V 1.5 A bridge rect
D5 red l.e.d.

TR1 MPSA14npn Darlington
TR2 BFY52 npngen. purpose

Switches

S1 D.P.S.T. mains rated toggle S2 S.P.C.O. centre-off toggle, biassed one way to match S1

Miscellaneous

T1 6VA mains transformer p.c.b. mounting; 240 V primary, 9V 6VA secondary
SK1 $\quad 3.5 \mathrm{~mm}$ mono jack socket
PL1 $\quad 3.5 \mathrm{~mm}$ mono jack plug
FS1 $\quad 250 \mathrm{~mA} 20 \mathrm{~mm}$ p.c.b. mounted fuseholder
LP1 $\quad 12 \mathrm{~V}$ 2.2W MES bulb in batten holder (see text)
Plastic case, size $155 \mathrm{~mm} \times 85 \mathrm{~mm} \times$ 60 mm , with aluminium front and rear panel (Vero 75-1238D); single-core screened cable (or "figure-eight" iwincore flex), length to suit; 6A 3-core mains cable; mains rated 2-way p.c.b. screw terminal block; TO5 push-on heatsink; materials for lamp diffuser; connecting wire; soider etc.
Printed circuit board available from EE PCB Service, code EE779.

Approx cost guidance only

ing the smallest components into place, so start with the resistors and transistors, observing correct orientation of the transistor leads and taking care not to heat the semiconductors excessively. A push-on TO-5 type heatsink was fitted to TR2 to aid dissipation once the bulb starts to dim; it may be possible to omit the heatsink, otherwise fit it prior to soldering the device into place.
Follow on construction with the bridge rectifier D1-D4 and electrolytic capacitors, and here correct polarity is essemial. Contimue with the two-way p.c.b. screw terminal block, which forms the mains input for the board, then the p.c.b. fuseholder and finally the mains transformer T
There are differences between different makes of p.c.b. mains transformers, so it is obviously necessary to ensure that the unit purchased matches the p.c.b. pin layout. The transformer must sit snugly against the surface of the p.c.b. or damage to the copper track may result (the track could lift off eventually due to mechanical vibration).

CASE

Before completing the interwiring, it is necessary to prepare the aluminium front and rear panels of the box, dependent on the type of box purchased by the constructor. The rear panel is drilled to take the mains cable inlet, and this hole must be fited with a grommet to prevent damage occurring to the cable insulation due to chafing. Further drilling is required for a

Fig. 3. Interwiring, the front and rear aluminium panels must be earthed.
" p " clip which retains the mains cable, and also a 6 mm dia. hole will be required for the jack socket SK I.
The front panel is prepared to accept the toggle switches S1 and S2. If the specified switches are used, then two 6 mm holes are needed. One final 6 mm hole is required for the power-on indicator D5, which can be retained with an I.e.d. clip or lens bezel. If desired, the front panel can be embellished with rub-down lettering to label the controls, followed by a coat or two of protective clear lacquer.
Interwiring is completed in accordance with Fig. 3. Six amp three-core mains flex (e.g. $3 \times 24 / 0.2 \mathrm{~mm}$) is employed for the mains inlet cable and the Earth input is connected via a solder tag to the "P" clip mounting bolt, in order to "ground" the rear panel. The front panel must also be Earthed for safety, and on the prototype this was achieved with an earthing wire (from the rear panel Earth tag) placed under one of the toggle switch mounting nuts.

LAMP UNIT

The lamp unit was constructed using a technique first used by the designer in Everyday Electronics, July 1978, no less! The lamp uses an aerosol top as a diffuser, see Fig. 4.
A batten-mounting M.E.S. bulbholder was fitted to a circular piece of 3 mm
plywood which had been cut to snap fit into the base of the aerosol top. A length of single-core screened cable (twin-core figure eight flex will work equally well) interconnects the lamp and the main unit, and was terminated in a 3.5 mm jack plug to fit socket SK 1
Since long trailing cables at mains voltage are to be discouraged, it is best to
have the mains flex as short as possible. say one metre long. But the lamp connecting wire, being at $12 \mathrm{~V} \mathrm{d.c.can}$ be as long as necessary, so the lamp can be positioned in any desired location.

FINAL CHECK

Complete the assembly of the Auto Nightlight by fitting a mains plug fused $3 A$, to the mains lead, and plug in the lamp unit to the jack socket SK 1. Prior to plugging in and switching on, thoroughly check the unit for any wiring errors, particularly regarding the polarity of the electrolytic capacitors and transistors. With SI set to "OFF", plug into the mains and switch on.
Operating switch SI should illuminate the l.e.d. and by switching S2, the lamp should illuminate. It should stay alight even if switch $\$ 2$ returns to the centre-off position.

It may be possible to time the period that elapses before the lamp gradually extinguishes. This should be about an hour or so.

As explained earlier, there is a large tolerance on capacitor $\mathbf{C 2}$ and if the time period is far too short or too long. then probably the easiest remedy is to raid the junk box and substitute $\mathbf{C} 2$ for another value (observing the correct voltage rating). Some trial and error may be required in extreme cases.

Finally, it is safe to connect a second lamp unit (12 V 2.2 W max.) in parallel with LPI without any problems. Or substitute LPI for a $5 W$ lamp (car type). since there is adequate spare capacity on the transformer and also the output transistor.

Fig. 4. Lampholder made from the top of a large aerosol can.

ESR ELECTRONIC COMPONENTS Station Road, Cullercoats, Tyne \& Wear NE30 4PQ Tel. 0912514363 Fax. 0912522296

Complete with screen prinfed \& solder mask board, components and full

CAR ALARM voltage drop $\mathbf{8 1 2 . 9 9}$ 200W CAR BOOSTER 12 inc housing. SOUND $\begin{array}{r} \\ 6918 \\ \hline 9\end{array}$
 2.5W UNIVERSAL AMPLIFIER $£ 6.8$ AF SIGNAL INJECTOR/TRACER adiustable old \& I/P $\quad \mathbf{E 8 . 3 9}$ DIGITAL CODE LOCR 4 digit
code flip/flop or latch o/p
el code flip/fiop or latch o/p E19.11
AC MOTOR/DRILL CONTROLER
carbon brush 24-240Vac 5A £15.28

D CONNECTORS		
	Plug	Socket
${ }_{15}^{9} \mathrm{pin}$	$\mathbf{6 0 . 2 9}$ $\mathbf{E 0 . 3 9}$	c0. c0. 39
15 Pin H.D.	E0.81	c0.90
25 Pin	c0.48	c0.50
9 Way plast	c cover	c0.3
15 Way plastic	cover	¢0.33
25 Woy plastic	cover	c0.3

SOLDERINGIRONS	
Antex Soldering frons	
M 12 Wat	¢7.11
C 15Wat	c7.11
G 18Watt	¢7.30
CS 17Watt	¢7.21
XS 25Wath	c7.30
ST4 STAND	¢2.75
New PORTASOL HOBBY	
35 Watt gas iron	611.17
DESOLDER PUMP	¢3.00
ANTISTATIC PUMP	¢4.30
22SWG 0.5 Kg Solder	¢7.40
${ }^{18 S W G} 0.6 \mathrm{Kg}$ Solder	${ }^{6} 6.60$
1 mm 3 yds Solder	c0.50

AUDIO CONNECTORS	
PHONO PLUG inc strain retief,	
PHONO PLUG right angle, $\quad 1.23$	
PHOND Chassis Socket $\quad \mathbf{C 0 . 1 6}$6.35mm Plastic Mono Plug	
With strain relier	C0.25
As above but Stereo6.35 mm Chassis Socket, switched	
Mono £0.36, switched Stereo	
3.5 mm Mono Plug	¢0.17
3.5 mm Stereo Plug	E0.29
3.5 mm M ono line skt	¢0.24
SLASTIC OOM PLUGS	
7 pin E0.33, 5 /180 E0.26, 8 pin	
.45, 5 /240 $\mathbf{C 0} 30$	
XLR Chassis Socket	${ }^{1} 1.65$
XLR Chassis Plug	11.32
XLR Line Socket	18.45
XLR Line Plug	c1.36

60.17
.
35 m Chassis Sockel with strain relie1 As above but Stereo

Mono E0.36. switched Stereo E0.49 3.5 mm Mono Plug 3.5 mm Mono line skt
3.6 mm Stereo line skt

ASTIC OIN PLUGS
0.24, 6 pin $£ 0.304$ in E 0.29

7 pin E0.33. $5 / 180$ E0.26, 8 pi
LR Chassis Socket
XLR Chassis Plug
RELAYS

0.70 NEON SCREWORIVER 140 mm
$12 V$ SPDT $6 A$
6V DTDP $6 A$

BATTERIE

BATTERIES E1.20 \#T3773 SIDE CUTERS CNICad E2.40 \# T3778F OBLIQUE CUTER E2.46 \#T3798F OBLIQUE CUTTER *T3770 FLAT NOSE \#T3770 FLAT NOSE
\#T3771 ROUND NOSE 5.43 \#CK box join or Ver 100R-1 MO
$0.1 W$

*

\star

\rightarrow LED ON/OFF
 * 10a Relay outpu
 + MOMENTARYOR
 * POWER SUPPLY: $2 \times 9 \mathrm{~V}$
 t \boldsymbol{t} £19.11

 0.70 CRAFT KNIFE 150 mm

E1.96 SIOE CUTTERS 115 mm

PCB Ny Hy Hand Stand-offs clip in

screw from base
5 mm spacing $\mathbf{£ 0 . 2 4 / 1 0} \mathbf{£ 1 . 5 8 / 1 0 0}$ 10 mm spacing £0.26/10 £1.82/100 13 mm spacing $£ 0.30 / 10$ £2.10/1 0 SELF TAPPING SCREWS Pan head No $6 \times 6.4 \mathrm{~mm}$ £0.14/10 $\mathbf{C 0 . 8 8 / 1 0 0}$ No $6 \times 9.5 \mathrm{~mm}$ C0.12/10 $\mathbb{C O} .78 / 100$
 T2 Box $75 \times 56 \times 25 \mathrm{~mm}$
 T3 Box $75 \times 51 \times 25 \mathrm{~mm}$ MB1 Box $79 \times 61 \times 40 \mathrm{~mm}$ MB2 Box $100 \times 76 \times 41 \mathrm{~mm}$ MB3 Box $118 \times 98 \times 45 \mathrm{~mm}$ MB5 Box $150 \times 100 \times 60 \mathrm{~mm}$

REGULATORS	
78L05, 78L12,78L15	¢0.24
79L05, 79L12, $79 \mathrm{L15}$	¢0. 28
7805. 7812.7815	¢0. 28
7905, 7912,7915	¢0. 38
LM317T 1.5A 1. 2 -37V	¢0.44

DIODES
Zener Diodes 2V7-33V
 B2X85 1.3W
1N4001-1 4005
E0.14 1 N4001-1 N4005 CO .07 1N4006-1 N 4007 EO CO $\begin{array}{lll}\text { N } 5400-1 N 5402 & \text { E0.09 } \\ \text { 1N5404-1N5406 } & \text { E0.11 }\end{array}$ $\begin{array}{lll}\text { N5404-1N5406 } & \text { C0.11 } \\ \text { iN5407-1N5408 } & \text { ع0.15 }\end{array}$ $\begin{array}{lll}1 \text { N4 } 448 \text { Signal } & \text { E0.06 } \\ \text { IN }\end{array}$ $\begin{array}{ll}\text { OA90 Signal } & £ 0.07 \\ \text { OA91 Signal } & £ 0.10\end{array}$

RF C
BNC
BNC
BNC
BNC
PL259
PL259
RND
SQR
FPlug
F Plug
N Plug
ACS
$\mathbf{C 0 . 2 2}$
C0.40
$\mathbf{6 1 . 7 4}$

THYRISTORS \& TRIACS
 SCR
 TIC206D 4A 400V SCR

VELLEMANKITS

Stockists of the full range of Velleman klts Catalogue
available upon request.

RESISTORS

0.5 W 5\% CF E12 Series

$0.25 \mathrm{~W} 1 \%$ MF E24 Series

POTS Log or Lin 470R-1MO 25mm dia 0.25 in shsth
PRESETS Enclosed Ho
or Ver 1 OOR-1 MO or Ver 11
$0.15 W$
PRESETS Skeleton Ho
or Vert $100 \mathrm{R}-1$ MO

CAPACITORS

 100 nF Ceramic Plate 100$1 \mathrm{pF}-1 \mathrm{nF}$ E0.06, $1 \mathrm{n} 2-2 \mathrm{n7}$ ¢0.09. $3 \mathrm{n} 3-4 \mathrm{n} 7 \mathrm{C}$

4

 2.8KHz 100 dB pulsed E 1.60 $3.5 \mathrm{KHz} 75 \mathrm{~dB} 240 \mathrm{Vac} \mathrm{£1.22}$4 KHz 80 dB 30 V pk-pk $\mathbf{£ 0 . 6 8}$

BRIDGE RECTIFIERS

$\begin{array}{ll}\text { WOO5 1.5A 50V } & \mathbf{〔 0 . 1 9} \\ \text { WO21.5A 200V } & \mathbf{1 0 . 2 0} \\ \text { BR32 3A 200V } & \mathbf{8 0 . 3 6} \\ \text { BR62 6A 200V } & \mathbf{E 0 . 6 4}\end{array}$

TL072CP

M3488

4000 Se

002
007

RANSISTORS
ORS
60.14
$\varepsilon 0.12$
$£ 0.12$
$£ 0.16$
$£ 0.16$
$£ 0.16$
£0.16
ع0.16 c0.09
ع0.09
$£ 0.09$
$£ 0.11$
80.09
80.09
80.09
$\mathbf{8 0 . 0 9}$
$£ 0.09$
$£ 0.11$
10.11
$£ 0.12$
$£ 0.10$
£0.10
£0.12
£0.08
$£ 0.12$
$£ 0.08$
$£ 0.24$
f0.24
f0. 24
f0. 24
mom
Ni
Ni
$£ 0.09$
f0.08
$£ 0.10$
$£ 0.09$
£0.09
$£ 0.09$
$\mathbf{f} 0.09$
80.09
$\mathbf{8 0 . 4 6}$

EARIC
TLOT1CP E0.32

M377
M380N
E 1.12
E 2.70
E .48
$\begin{array}{r}£ 1.60 \\ \text { ع } \\ \hline\end{array}$
CA555
NE567N
UA733

| CA741CE | E0.64 |
| :--- | :--- | TBAB10S $\mathrm{E0.37}$ C0.68 JLN2004 E0.26 CA3046 \quad ¢0.37 CA3130 $\begin{array}{ll}\mathbf{£ 0 . 7 2}\end{array}$ CA3140

CA3240
£1.22 LM3900
LM3914 LM3915 MC4558
NE5532 $\begin{array}{ll}\text { NE5532 } & \text { ع0.80 }\end{array}$
$C 0.75$
51.00 81.00
$\mathbf{E} 2.40$

ELECTROLYTIC RADIAL CAPACITORS
$\mathrm{uF} \quad 16 \mathrm{~V} \quad 25 \mathrm{~V} \quad 63 \mathrm{~V} \quad 100 \mathrm{~V}$ $\begin{array}{cccc}16 \mathrm{~V} & 25 \mathrm{~V} & 63 \mathrm{~V} & 100 \mathrm{~V} \\ - & - & £ 0.05 & £ 0.07\end{array}$

-		$\mathbf{£ 0 . 0 5}$	$£ 0.06$
-	-	$\mathbf{£ 0 . 0 5}$	$£ 0.06$
-	-	$£ 0.05$	$£ 0.08$
$\mathbf{£ 0 . 0 5}$	$£ 0.05$	$£ 0.06$	$£ 0.08$
$\mathbf{£ 0 . 0 5}$	$\mathbf{£ 0 . 0 5}$	$\mathbf{C 0 . 0 9}$	

Flug in PSU 300 mA non regulated
 ORDERING INFORMATION

All prices exclude VAT. Please add 85p No minimum order charge.
Please send payment with your order PO/Cheques made payable to ESR Electronic Components Access \& Visa cards accepted Offical orders from schools $\&$ colleges

Robert Penfold

T-HIS month we return to the subject of PC interfacing, and a simple 8 -bit analogue to digital converter that can be used in a multitude of applications. These include such things as voltage, resistance, and temperature measurement. An analogue to digital converter must be one of the most useful add-ons for a computer, as it enables you to measure and monitor all manner of things with the aid of some simple circuits.
There are a number of suitable analogue to digital converters to choose from when selecting one for use with PCs. Some, such as certain devices in the $\mathrm{ADC08}{ }^{* *}$ series, are specifically designed to operate in conjunction with 8080 or 8088 style buses. They have read and write inputs that are compatible with the $\overline{\mathrm{IOR}}$ and $\overline{\overline{I O W}}$ lines of the PC control bus. These devices should interface easily to the PC expansion bus, and in my experience there is no difficulty in getting them to work properly with a PC.

The ZN448E

On the other hand, there are several analogue to digital converters which are not specifically designed for a PC type bus, but which are microprocessor compatible. Most of these will also interface to the PC expansion bus quite easily. The device I have selected for this interface is a chip from this second category, and it is the Ferranti ZN448E. This device has been popular for use with 8 -bit computers for a number of years now, and many Everyday Electronics readers have no doubt used it in add-ons for the Spectrum, BBC model B, etc. It seems to work with the PC every bit as well as with these popular eight bit computers.
Pinout details for the ZN448E are shown in Fig. 1. This is a convenient chip to use as it is microprocessor compatible, has a builtin clock oscillator, and also incorporates a very high quality 2.55 volt reference source. The latter sets the full scale sensitivity at 2.55 volts, or 10 millivolts (0.01 volts) per bit in other words. It is not mandatory to use the built-in voltage reference as there are separate reference inputs and outputs, but in practice there is not usually any point in using a discrete reference generator. If you should decide to do so, the reference voltage should be between 2 and 3 volts.
It should perhaps be explained that the ZN 448 E is one device from a series of three. These are the $\mathrm{ZN} 447 \mathrm{E}, \mathrm{ZN} 448 \mathrm{E}$, and ZN 449 E . The only difference between these three chips are their guaranteed accuracies. The maximum errors are as follows:

$$
\begin{aligned}
& \text { ZN447E } \pm 0.25 \text { LSB } \\
& \text { ZN448E } \pm 0.5 \mathrm{LSB} \\
& \text { ZN449E } \pm 1 \mathrm{LSB}
\end{aligned}
$$

For most purposes the ZN448E is probably the best choice, and this is the only version offered by some suppliers. Where op-
timum accuracy is essential the ZN447E can be used, but this is much more expensive. For many applications the cheaper ZN449E would probably suffice, but this version seems to be difficult to obtain these days.

Basic Converter

The circuit diagram for the Analogue to Digital Converter is shown in Fig. 2. R1 is the "tail" resistor for the voltage comparator at the input of the device. I will not give details of the way in which the ZN 448 E functions, as this has been covered several times in EE over the years. It is a successive approximation converter, and it has a high speed comparator at the input. This requires a negative supply in order to compare voltages right down to the 0 volt supply rail. This represents no problem in a PC context as there are two negative supply rails available. In this case the -5 volt supply has been used. The current drain from this supply is insignificant at about 60 to 70 microamps.

Clock Oscillator

Components R2 and C1 are the discrete load resistor and decoupling capacitor for the internal voltage reference. C 2 is the only discrete component needed in the clock oscillator circuit, and this is used to set the desired clock frequency. A value of 82 p sets
the clock at approximately 1 MHz , which is the highest frequency at which the ZN 448 E is guaranteed to operate properly.

In practice, most ZN448Es seem to function perfectly well at significantly higher frequencies. Where very fast sampling rates are required, you can therefore try experimenting with lower values for C2 in order to determine the lowest value that gives acceptable results.

Nine clock cycles are required per conversion, and the converter is thus guaranteed to be able to complete each conversion in no more than $9 \mu \mathrm{~s}$. Most ZN 448 Es seem able to complete conversions in something more like $6 \mu \mathrm{~s}$. Either way, the conversion rate can be well over one hundred thousand per second, which is sufficient for applications such as audio digitising.

Conversion

In order to start a conversion a dummy value is written to the converter. The value written is unimportant, since it is actually the "write" pulse from the address decoder that initiates the conversion. The ZN 448 E cannot read the data bus - it can only output data onto it.

PC address decoders will not be considered here, as they have been covered in recent Interface articles. The main point to note here is that the address decoder must process the $\overline{\mathrm{IOR}}$ and $\overline{\mathrm{IOW}}$ lines of the

Fig. 2. Circuit for the Analogue to Digital converter.
expansion bus, so as to provide separate "read" and "write" outputs. The circuit of Fig. 1 from the Interface article in the August 1991 issue is suitable, but the extra gating shown in Fig. 3 is needed.
It is essential that the converter is not read before a conversion has been completed. A suitable hold-off can be achieved by monitoring the "Busy" output of IC1, which goes low when a conversion is in progress. However, as the time taken for each conversion is very much the same, a timing loop offers a more simple solution. This avoids the need for a digital input port to monitor the "Busy" line, but a little experimentation might be needed in order to find the optimum delay time.
In many cases readings will only be taken

In this case the full scale sensitivity is about 5 volts, but for precise results R5 would have to be replaced with a 4 k 7 fixed resistor in series with a high quality 4 k 7 preset resistor. The preset would then be adjusted for a full scale sensitivity of precisely 5 volts. The values of R4 and R5 can be altered to produce other full scale sensitivities, but the parallel resistance of these two resistors should always be about 4 k .
For zero adjustment a potential of about 10 millivolts (i.e. 0.5 LSB) must be applied to the input of the circuit. This can be provided by a potential divider connected across the +5 volt and 0 volt supplies. Suitable values are 5 kI for the upper arm and 10 ohms for the lower section. With a continuous stream

With an LM 35 CZ . this gives a useful operating range of 2 to 110 degrees Centigrade. The LM35DZ is substantially cheaper, and provides a useful range of 2 to 100 degrees Centigrade.
The second method requires a negative supply and an additional resistor. With an LM35DZ this increases the useful operating range to 0 to 100 degrees Centigrade. The improvement with the LM 35 CZ is even more impressive, it can handle temperatures from -40 to +100 degrees Centigrade using this method. Note though, that negative temperatures produce negative output voltages. Some level shifting would be needed in order to enable the converter to bring these within the input voltage range of the converter.

Fig. 4. Two basic methods of using the LM35.
infrequently anyway, and quite a long delay can then be used. Note that with interpreted BASICs such as GW BASIC, or the QBASIC interpreter supplied with MS/DOS 5.0, it is unlikely that even the fastest of PCs could operate fast enough to take premature readings.
The ZN448E has tristate outputs which are activated by a read operation from a suitable input address. These outputs seem to be well able to keep up with the expansion bus without any need for added wait states. As a point of interest, I have recently tried interfacing a number of peripheral chips to the PC, and not one of them needed any added wait states.

Zero Adjustment

For optimum results a zero adjustment circuit is needed on the input side of the converter. This is the purpose of the three fixed resistors and variable resistor VR1. The latter is the zero adjustment potentiometer. This network also acts as an attenuator to reduce the sensitivity of the circuit to the desired level.
of readings taken, VRI is adjusted so that the readings fluctuate between 0 and 1 . The offset if no zero adjustment is used is not very large, and in some applications there may be no point in bothering with the zero adjustment circuit.

Temperature Sensors

There are now numerous temperature sensing devices available. For a computer temperature interface some of the integrated circuit temperature sensors are ideal. In particular, the LM35 is not too expensive, but is quite accurate and very easy to use. This provides an output potential that is equal to 10 millivolts per degree Centigrade. Fig. 1 includes leadout details for the LM35, which is contained in an ordinary TO-92 style plastic encapsulation. Fig. 4 shows the two basic ways this device can be used.
The first method is the most basic one, where the LM35 is simply fed with a suitable supply voltage and the appropriate output voltage is produced. The supply potential can be anything from 4 to 30 volts, so the PC's +5 volt supply is suitable,

A very simple way of using these circuits with the A / D converter is to simply connect the output direct to pin 6 of the ZN 448 E , and to omit R3, R4, R5, and VR1. This will not give particularly accurate results at low ternperatures, although in practice it seems to work rather better than the theory would dictate.
The temperature sensor provides an output of 10 millivolts per degree Centigrade, and the converter has a resolution of 10 millivolts. This method is therefore very convenient in that readings from the converter are directly in degrees Centigrade.
There is a severe problem with this system in that readings will never exceed 110 , which means that the converter is effectively only operating as a seven bit type. A resolution of only one degree Centigrade is obtained, whereas the converter is capable of a 0.5 degree resolution over a 0 to 110 degree temperature range. With suitable signal conditioning it is possible to obtain better accuracy and resolution, which is one of the topics we will pursue in next month's Interface article.

EVERYDAY ELECTRONICS BINDERS

Don't let your valuable issues of EE get binned, burned or bitten (by the dog). Get one of our exquisite orange hard-back binders, slip each issue into it as you get them and you will always know where they are- we hope!
Binders to hold one volume (12 issues) are available from Everyday Electronics, 6 Church Street, Wimbarne, Dorset BH21 1JH for $£ 5.95$ ($£ 6.95$ to European countries and $£ 9.00$ to other countries, surface mail) inclusive of postage and packing. Payment in $£$ sterling only please. Visa and Access (MasterCard) accepted, minimum credit card order value $£ 5$.
Binders are normally sent within seven days of receipt of your order but please allow up to 28 days for UK delivery - more overseas.

INFORMATION TECHNOLOGY

AND THE NATIONAL CURRICULUM

 Ti R. de VAUX BALBIRNIE \equiv PART 2
ELECTRIC TELECRAPH,
 G'I. WESTERN RAILWAY.

The Publio are respectfully informed that this interesting \& most extraordinary Apparatus by which upwards of 50 SIGNAIS can b transmitted to a Distance of 280,000 MILES in ONE MINUTE,
May le mero in operaton, deily, (Sundagy ercepted), from 2 till g_{1} at the
Telograph Omec, Rnddimgtom,
AKO PEGEQRABH COETAQE, SLOUGH.
ADMISSION ls.
 of "cimeta" - Momatro Рояt.
 orderid by the Elactace Telsomapy, to be in readioes on the orrivi of a Truin, at eiber Paddiogioa or Slougb Station.

Tbe Turses far neating a Despuch, orderiag Put Hormes,
N.B. Metsengere ie conmant atrendance
N.B. Mersengers io connmot atheodance, se that conomuniczione London, Vilinderor, Etooc, AC
C. NURTON, Priour, w, Chured Surrac, Portmen Market.

THIS is the second article in a 12 -part series concerning Communication, Information Technology and related matters in the Science National Curriculum. This month we shall look at some of the history of long-range communication and give further suggestions for practical work. This will illustrate how electricity has helped man to achieve long-range communication efficiently and conveniently. Next month, we shall look at the topic of information storage.
Readers who have not been following the series are advised to read Part 1 in last month's issue to see how this fits into the scheme of the original and modified Attainment Targets within the National Curriculum.

Children should first be shown that electricity needs a circuit in which to flow. That is, it needs a complete path from one terminal of a battery to the other through components which conduct electricity copper wire, bulbs and so on. Use the simple series circuit shown in Fig. 1. This consists of a PP3 battery, battery connector and a 6 V 0.06 A bulb in a lamp holder.

If a break is made in the circuit (for example, by unscrewing the bulb), the light goes off. If a break is made in one of the connecting wires and the end 10 mm or so of insulation removed from each end, the wires may be touched together to light the bulb - this forms a simple switch. All

Fig. 1. A simple electrical circuit providing a complete path from one battery terminal to the other.
components for this and the other experiments may be obtained cheaply from a mail-order electronics supplier.

THE ELECTRIC TELEGRAPH

The Chappe telegraph (described last month) was an optical system - it used a visual method to send messages. However, here we are concerned with the electric telegraph. This was so important in the history of long-range communication that some time could be devoted to this topic alone.
In the electric telegraph, an operator would make and break an electrical circuit using a code to represent the letters of the alphabet. These signals would pass along the telegraph line and be decoded by another operator at the distant end. The same line could be used to send signals the other way to give a reply.
Although there had been some early experiments in electrical telegraphy, the first "serious" device was not produced until 1837. The messages were decoded by observing the positions of moving pointers (see photograph of the Cooke and Wheatstone 5 -needle telegraph). The telegraph was further developed by an American, Samuel Morse, who erected his first telegraph line between Washington and Baltimore in 1844. He invented the now famous Morse Code - a series of dots and dashes representing the letters of the alphabet - to send messages (the Morse Code was reproduced in last month's issue).

The messages were sent using a "Morse key". This is a type of switch whose contacts complete a circuit when a knob is pressed - a long press gives a "dash" and a short one a "dot". The most used letters were given the simplest codes. In the English language the letter " E " is the one most used so this is given the simplest code of all - a single dot. As well as all the letters of the alphabet, the Morse code may be used to signal punctuation marks, numbers, etc.

Telegraphy quickly became the principle means of long-range communication with every town of note having its own telegraph office from which messages could be sent and received. The

Morse telegraph was soon used to send messages to and from France through a cable laid in the English Channel in 1851.
Soon it became possible to send telegraphic messages between Britain and the United States. For this, a cable had to be laid some 300 km in length. This was duly carried out in 1857-8 with the best materials then available for the job. Unfortunately, after just a few hundred messages, the cable broke.
The telegraph was the forerunner of all modern communications systems - since it sent information so quickly, it seemed to make the world a smaller place. The photograph above shows a contemporary poster inviting the public to see the wonder of the age in action.

A HOME-MADE TELEGRAPH

Refer to Fig. 2 and make a Morse key alternatively, use a real one or a small momentary-action switch from a basic electricity kit. Even a bell-push could be used.

The Cooke and Wheatstone 5 - needle telegraph.
(Reproduced by permission of the Trustees of the Science Museum).

Fig. 2. Construction of a simple Morse key.

Fig. 3. Series circuit for use with the Morse key.

For the home-made Morse key you will need the following parts:

I piece of wood $100 \times 50 \times 15 \mathrm{~mm}$ approximately
2 off size No 4 round headed brass woodscrews $12 \mathrm{~mm}(1 / 2 \mathrm{in})$ long
2 cup washers to fit the woodscrews
Strip of metal (brass, copper or tinplate)
12 mm wide $\times 80 \mathrm{~mm}$ long
You will also need some light-duty twin wire ("bell wire") approximately 20 m long, a 6 V 0.06 A bulb in a lamp holder, a PP3 battery and connector and one section of 3 A screw terminal block.
Drill a hole in one end of the metal strip large enough for one of the woodscrews to pass through then bend the metal as shown in the diagram. Drill a pilot hold and partly insert one of the screws in the wood with a cup washer under its head. Strip the end 10 mm of insulation from each wire and twist one of them round the woodscrew so that it is gripped by the cup washer when the screw is tightened.
Secure the metal strip in the same way with the second wire gripped under its washer. Check that the metal strip can be pressed so that it makes contact with the woodscrew. It is important that the area
of metal making contact with the screw is clean.

Use the PP3 battery, bulb and Morse key to make a series circuit - see Fig. 3. Check that the bulb may be flashed by pressing the key to make dots (short presses) or dashes (longer presses). A buzzer could be substituted for the bulb use a 6 V solid-state buzzer. This will cost approximately 50 p .
Children may investigate how far they can communicate using the home-made telegraph. The speed at which messages can be sent and received may be compared with that of modern devices such as the telephone. It must be remembered, however, that telegraph operators became very proficient at using the Morse key.

Soon the telegraph was made automatic so that it produced dots and dashes on a piece of moving paper tape by means of a pen which would rise and fall with the incoming signal. This could be deciphered later. Thus, the information was stored. This concept of storage is important and information storage will be discussed in more detail next month.

Since one pair of wires could carry only one message at a time, the telegraph office was often very busy. To send more messages, high speed techniques were in-
vented. In one system, the message was first turned into a series of long and short holes in paper tape. The tape could then be fed through a special machine at high speed. This would switch the current on and off at a much higher rate than would be possible using a Morse key. At the distant end, the code of dots and dashes was printed on to a piece of moving tape by means of the rising and falling pen described earlier. In this way, the telegraph line was able to carry a lot more messages in a given time and thus reduce costs.

THE TELEPHONE

There had been some early experimentation with the telephone - that is, a device which would turn the human voice into electrical signals then back into intelligible speech. The results were, however, very indistinct. The Scottish scientist, Alexander Graham Bell, invented a true working telephone in 1876 (see pholograph). With this, he succeeded in sending the spoken word in the form of eleclrical signals along wires instead of merely dots and dashes as in the telegraph.

The telephone quickly overtook the telegraph in terms of speed and convenience. The telephone had the personal touch lacking in the telegraph in that actual voices were heard. It also provided instant two-way conversation which was not possible with the telegraph.

A HOME-MADE TELEPHONE

 This experiment simulates Bell's original telephone apparatus using loudspeakers. You will need two miniature loudspeakers and a long piece (about 20 metres) of bell wire. The best type of loudspeakers to use have a diameter of approximately 60 mm and an impedance of 60 to 80 ohms. You should not pay more than about 50p each for these.This experiment works best when the loudspeakers are used as they are: However, they will then need to be used very carefully to avoid damage. In practice,

Bell's experimental telephone.
(Reproduced by permission of the Trustees of the Science Museum).

Fig. 4. Using miniature loudspeakers as a crude telephone.
you may need to use some sort of protection - perforated boxes, for example. The children should have an opportunity to look at the paper cone and see that it moves backwards and forwards - take care, though, because this part is very fragile. They will remember from last month that sound is caused by vibrations.
Touch the terminals of one of the loudspeakers briefly on to the terminals of the PP3 battery and a click will be heard. If a few light objects such as small pieces of paper are placed on the cone, they will jump when the battery is connected. This will reinforce the idea that electrical signals may be turned into sound and that sound is caused by vibration. The opposite effect is also true - if the cone is made to vibrate, an electrical signal is produced.
Connect the two loudspeakers together using the bell wire (see Fig. 4). The wires may be twisted carefully on to the terminals, soldered or miniature crocodile clips used. Touch the metal frame of one loudspeaker with a sounding tuning fork (the prongs of a dinner fork may do). If a child listens to the cone of the other loudspeaker, a copy of the original sound will be heard. This was roughly the way Bell's original telephone worked.
Note that no battery is used - the first loudspeaker turns the sound vibrations into electrical signals and the second one turns the electrical signals back into sound. Children find it difficult to believe that electrical signals can be produced without using a battery.
Use the circuit above to see if the children can talk to one another using the home-made telephone. One person goes into a distant room and speaks closely into one loudspeaker. The other listens carefully to the other one. The experiment works best when the children cannot hear one another directly. It should be possible to hear speech, albeit rather faintly. The listener and the speaker now change roles.

In this experiment, the loudspeakers are being used for two purposes just as in Bell's original apparatus. One is acting as a microphone while the other is being used as an earpiece. The disadvantage of this method is that the electrical signal is very weak and is reduced still further by long wires. The original telephone could only be used successfully over relatively short distances. Even so, it will work over much greater distances than the string telephone described last month.

Fig. 5. A carbon microphone as used in later telephones.

TELEPHONE DEVELOPMENT

The telephone was further developed to provide a greater range. A "carbon" microphone (see Fig. 5) was used in combination with an earpiece which worked like one of the miniature loudspeakers. The microphone consisted of a small box containing carbon granules with a carbon block at each end. Carbon is a conductor of electricity (it allows electricity to pass through it). When the granules vibrate due to sqund falling on the microphone diaphragm, they will allow electricity to flow between the carbon blocks more or less easily according to whether they are pushed together or allowed to move apart.
A circuit is made using a carbon microphone, earpiece and battery. When the caller speaks near the microphone diaphragm, the carbon granules vibrate. The current flowing is then an electrical copy of the voice patterns. When this changing electrical signal flows through the earpiece at the other end, its diaphragm vibrates with the same pattern so duplicating the original sound,
If any reader wishes to try this out as an experiment, the best way is to obtain a carbon granule microphone from an old dial-type telephone handset. This is easier than making one, although this would be possible. One of the miniature loudspeakers would be suitable to use as the earpiece. A much louder result is obtained although the sound quality may not be as good as in the "Bell" telephone.

Because a battery provides the power,
for longer distances a battery having a higher voltage is all that is required. This will send more current through the circuit. Carbon microphones were used in telephones until the development of the modern push-button type and many are sill in use today.

Children can have a lot of fun using the home-made telephone but it must be impressed on them that this is a completely different device compäred with the "string telephone" or "speaking tube" experiments described last month. In these, the sound itself travelled along the string or in the air contained in the tube. In the present experiment, energy conversions took place - sound to electricity and electricity back to sound. The advantage of doing this is to produce a greater range. Also, the signals can turn corners, etc. You can tie a knot in the wire to show that the electrical signal can still get through!

TELEPHONE EXCHANGE EXPERIMENT

Early telephones were used for private point-to-point communication. Queen Victoria had such a telephone line installed for her personal use. It quickly became apparent that by connecting such private lines together people could talk to one another as they wished. Thus, the first telephone exchange was invented. This was set up in Newhaven, Connecticut in 1878. Soon afterwards, telephone exchanges appeared in all other important centres.
It is fun to show this principle by making and operating a simple telephone exchange using the "Bell" telephone. You will need the following items:

1 piece of wood 30 cm square and 15 mm thick
10 off 25 mm panel pins
100 m of light-duty twin wire (bell wire)
5 off miniature loudspeakers
4 off 6 V 0.06 A lamps and lampholders
4 off PP3 batteries and connectors
4 off bell pushes
4 sections of 3A screw terminal block
8 off pieces of stranded wire 30 cm in
length fitted with a small crocodile clip at each end
4 off self-adhesive plastic feet
Hammer the panel pins into the wood as shown in Fig. 6 until the heads are left 12 mm above the face of the wood. Attach the plastic feet to the underside. Attach the four lamp holders in the positions shown using small woodscrews. Cut off suitable lengths of twin wire for the remote stations and connect the ends to the panel pins as shown. This is done be removing the end 10 mm of insulation and twisting it around the panel pins tightly.
Connect the loudspeakers and the lamp holders. Connect the bell pushes and battery connectors to the distant ends of the wires using the pieces of terminal block as shown. The lamps and batteries will be used by one "subscriber" to call the "operator" and "book" a call to one of the others. Readers with sufficient electrical

Fig. 6. Construction of a small telephone exchange.
knowledge could simplify the circuit by using a common wire for the lamps and loudspeaker circuits but it may then be difficult for children to follow (although in many cases this will not matter anyway)

EXCHANGE OPERATION

The "operator" sits in one room with the "exchange" and the four "subscribers" sit in other places were they cannot hear one another directly. Each subscriber is given a number 1 to 4 . When one person wants to speak to another they first of all flash their lamp to the operator. On receiving this signal, the operator connects his or her loudspeaker to those of the subscriber wishing to make the call using the short wires with crocodile clips on the ends. The operator can then talk to the subscriber and find out which number is wanted.
The operator then disconnects his or her own loudspeaker and connects together the wires of the two subscribers wishing to talk in the same way. The whole activity soon turns into utter chaos with everyone wanting to talk to other people and no one wanting to listen - it is fun, though
In the early 20th century, telephone exchanges operated on a similar principle to this model but on a much larger scale. Rows of operators were needed to connect together the wires of many hundreds of subscribers wishing to make calls. They used pieces of wire with a "jack plug" on each end to make the connections. Today the switching of the lines is done with totally automatic telephone exchanges.
The story behind the automatic telephone exchange is interesting. It was invented by an American callied Almon 8 . Strowger - a man of argumentative disposition. He had frequent quarrels with telephone operators which led him to invent the automatic telephone exchange. Strowger exchanges used mechanical switches to connect the lines together -
many exchanges of this type are still in use throughout the world today. However, the latest automatic exchanges are electronic and have no moving parts. These are smaller, silent in operation and extremely reliable.

RADIO COMMUNICATION

Although the telegraph and the telephone were great advances in the history of long-range communication, it had long been the dream of man to send messages without wires - that is, wireless communication. This would be much more versatile - it could be used to communicate with ships at sea, for example.

James Clerk Maxwell (1831-79) showed mathematically that "radio waves" should exist. However, Maxwell died before Heinrich Hertz in 1887 actually succeeded in producing them and sending a signal from one part of his laboratory to another. It was a rather primitive experiment but showed the way forward.

Hertz produced radio waves by means of electric sparks (we know that the radio crackles when there is a flash of lightn-
ing). When the waves were received by a further piece of apparatus, sparks were produced there also - thus, a signal had been sent over a short distance without connecting wires.

In 1894 the Italian, Guglielmo Marconi, used such a spark transmitter in conjunction with a Morse key to send shortrange messages (see photograph). This turned out to be an historic event and on it rested the development of all modern radio communication including television.

Marconi gradually improved his apparatus and increased the range of communication - soon messages were being transmitted across the English Channel and to ships at sea. In 1901, he succeeded in sending a signal across the Atlantic Ocean from Cornwall to Newfoundland a distance of over 3000 km . The telegraph companies were not pleased because wireless communication threatened their business and they tried to discredit Marconi.
In 1906, the triode valve was invented by the American engineer, Lee de Forest and this led to the production of far more sophisticated transmitters which did not

Marconi with his transmitter and receiver.
rely on using sparks. For his work in the field of wireless communication, Marconi was awarded the 1909 Nobel prize for physics.

WIRELESS TELEPHONY

Soon it was possible to send the human voice by radio - Wireless Telephony was born. In 1922 broadcasting from London was begun from a station with the famous call sign 2 LO and later in the same year this became the British Broadcasting Corporation. People received the programmes using a simple type of radio receiver called a "crystal set". This needed no batteries - the signal received by the aerial providing the power. Unfortunately, the sound was so weak that only headphone reception was possible.

The use of triode valves enabled more powerful and sensitive radios to be made (see photograph of the 1920's receiver) These were capable of operating a horn loudspeaker so that a number of people could listen to the broadcast at the same time. For these radios, a power supply was needed. Battery-powered portable sets were soon produced and even car radios using valves. However, wonderful as they were, valves were large, fragile, unreliable and power-hungry.

The successor to the valve, the transistor, was invented by the team or physicists, Bardeen, Brattain and Shockley. This was demonstrated in 1948. The transistor is much smaller, more reliable, more robust and needs much less power than a valve. Thus, a whole new generation of electronic devices became possible. Smaller and much more reliable battery-operated - even pocket-sized radios - were made.

The invention of the transistor was a major landmark in history and marked the beginning of electronic technology as we
 of the Science Museum).

CRYSTAL SET EXPERIMENT

The simple radio described here is a modern version of the original crystal set. early listeners used a small piece of "crystal" - this was a piece of galena (lead ore) which was touched with a "cat's whisker" - a thin piece of wire: Today a germanium diode may be used to replace the crystal

and cat's whisker, also a modern crystal earpiece replaces the clumsy headphones used long ago. Note that a pair of modern stereo headphones will not work in this circuit.

The crystal set will only give good results if you are fairly near a powerful transmitter and a long aerial is used.
You will need the following components:

A ferrite rod 8 or 10 mm in diameter and 100 mm long approx
Sufficient 24 s.w.g. enamelled copper wire (or thin plastic insulated wire) to wind at least 50 turns on the ferrite rod
Crystal (not magnetic) earpiece
20 m of plastic insulated wire (for the aerial and earth)
OA90 or OA91 germanium diode
500 pF trimmer capacitor
3 pieces of 3 A screw terminal block to make all the connections
Begin by making a thin cardboard sleeve about 5 cm long which will slide along the ferrite rod. Sellotape it into shape. With the sleeve in position on the ferrite rod, wind approximately 50 turns of wire onto it. Wind only one layer with successive turns touching. Keep the wire fairly tight but not so tight that the paper sleeve cannot slide freely. Leave 10 cm of wire free at each end and Sellotape the coil to the sleeve. Now gently scrape the enamel insulation (or remove the plastic) from the end 10 mm of each end of the wire.
Arrange the components on the terminal block as shown in Fig. 7 The aerial should be set up outdoors as long and as high as possible. If it is clear of buildings it will work better. Connect a short length of wire to "earth" - this could be connected to a water tap or to a metal rod which is then pushed as far as possible into the ground outside.
Use a small screwdriver to set the screw on the trimmer to approximately mid-position. Listen to the earpiece and "tune" the radio by adjusting the position of the ferrite rod in the coil. Tuning may also be carried out by adjusting the trimmer capacitor. If you are lucky you will hear some radio broadcasts.
Experiment with a different number of

Marconiphone TV of 1936.
(Reproduced by permission of the Trustees of the Science Museum).
tion of each piece of the picture would be sent by radio waves. The first successful method was demonstrated by John Logie Baird (1888-1946), the son of a Scottish minister. He used a mechanical scanner in a rough and ready arrangement of everyday articles which he bought for practically nothing (see photograph).

Initially the results were very poor but in 1925 he succeeded in sending moving pictures. He even televised colour pictures in 1928. Unfortunately, because Baird used mechanical equipment, it suffered from many problems. His system was used for a short time for commercial broadcasting and receivers were available at the time (see photograph).

In 1928, an electronic system of scanning was invented by the Marconi Company working with EMI. This gave far higher quality pictures than the Baird system and television as we know it was born. The first regular TV service was broadcasted from Alexandra Palace, Lon-
don, in 1936. The second World War stopped these activities but they re-commenced in 1946 when hostilities were over.

Colour television broadcasting began in America but not in Britain until 1967. Today, teletext information is carried by the radio waves along with the sound and picture. We may now receive almost instantaneous broadcasts from all over the world using satellites. More will be said about this in a later part of the series.

Recording live pictures was a further important advance. Video recorders were being used in the USA for recording television broadcasts as long ago as 1958. Before this, live action had to be recorded on film. Video recording is another example of information storage and will be looked at in more detail next month. Today, we use videocassette recorders in our own homes so that we can watch our favourite programmes at times which suit us.

ELECTRONICS TEACH-IN N05

Guide to Building Price Electronic Projects £2.95

Due to the demand from students, teachers and hobbyists we have put together a range of articles from past issues of Everyday Electronics that will assist those getting involved with the construction of electronic projects for the first time.
The book contains the complete Project Development for GCSE series.

Features

First Steps in Project Building
Building with Stripboard
Getting Your Projects Working
Choosing and Using Test

> An invaluable resource for those teaching and studying GCSE Electronics or Technology courses

Printed Circuit Board Design, Layout \& Construction
Project Development for GCSE

Data

Component Codes
Component Identification and Polarity
Circuit Symbols

Projects

Digital Experimenters Unit
Low Cost Capacitance Meter
Personal Radio
Quizmaster
Lie Detector

- Detector

See Direct Book Service pages for ordering details

HAM RADIO AND THE COUP

An intriguing story in the W5YI Report reveals that an amateur radio station, R3A, inside the Russian "White House" parliament building, was used by Boris Yeltsin during the recent events in Moscow.

Both CNN and ABC television showed Mr Yeltsin transmitting on the Icom amateur equipment, while the Wall Street Journal reported "Mr Yeltsin's efforts to rally support are still being hampered by a lack of communications with the nation. So far his aides have been broadcasting news to ham radio operators on a makeshift short wave transmitter installed on the sixth floor of the Russian parliament.

When it was all over, Dick Ehrhorn, W4ETO, received a handwritten Fax from a radio amateur in Moscow. "Dear Dick, I send you the Fax from the Russian Prime Minister office. We win! Mr Gorbachov back in Moscow. Our special emergency station R3A still operates from "Russian White House". Equipment: IC-726 (transceiver) and Alpha 76 (amplifier). Photos will bel 73! Gene, RA3AA."

Gene is a friend and business associate of Dick who owns Ehrhorn Technological Operations Inc., makers of the Alpha line of amplifiers, one of which was used by the Russian station. In talking to the W5YI Report. Dick commented "The average Soviet salary is around 200 to 300 rubles a month.. which is around ten dollars. .. . No one can afford to buy commercial ham gear. The Alpha amplifier they have came from a flea market in western Europe."

LAUNCH CONFIRMED

I mentioned last month that AMSAT, the Radio Amateur Satellite Corporation, was planning a new super enhanced satellite to be known as phase III D. The European Space Agency has now confirmed an October 1995 launch slot for the doughnut shaped, 1,200pound, 10 -feet wide satellite which will have an orbital period of 16 hours. This will make it consecutively accessible over Europe, USA and the Far East.

Colour imaging, educational broadcasting and other experiments are planned. There are currently twelve OSCAR satellites in orbit. The most recent, OSCAR-22, was launched last July. (W5YI Report).

NICAD CARE

Icom are advising all users of their equipment containing NiCad battery packs to fully "cycle" the pack a number of times when the equipment is first purchased. Five or six full charge and discharge cycles, they say, will extend the time between charges and allow the packs to achieve their full potential.

While NiCads can be extremely good
in terms of cost-economy, they are not necessarily the answer to every battery need. Fully charged, they have a typical voltage of 1.2 V dropping to 1.0 V when exhausted, compared to 1.5 to 0.8 V in primary cells which they can usually replace, cell for cell in equivalent sizes.

However, when a high voltage level is required in equipment designed for use with NiCads, such as a transmitter, extra cells are installed to provide the necessary total voltage. Instead of eight primary cells (x 1.5 V nom.) providing a 12 V supply, for instance, ten NiCads (x 1.2 V) are used.

The fact that they hold their full voltage almost to the end of their charge means that it is not always possible to anticipate battery exhaustion. In amateur radio this situation usually occurs when operating in the middle of a field miles from anywhere, just when contact has been made with a rare "Dx" stationl Where equipment needs to tee kept running, therefore, a spare set of fully charged NiCads is needed for immediate replacement purposes.

Care should always be taken to avoid shorting NiCads. They have a low internal resistance and high current will flow causing damage to the cell. They are not suitable for use in very low power equipment, such as electric clocks, where primary cells are normally replaced about once a year, as they normally self-discharge to exhaustion in about half that time. When not in use at all they will also discharge themselves but this does not affect their capability for recharge.

RECHARGING

Makers recommend using a NiCad until it is discharged, and then recharging it for a specified period at a current appropriate for the particular size cell. Care should be taken in cold weather when low temperatures can cause increased internal pressure of a cell with possible harmful results.

Cells can be recharged before they are fully discharged with the time period correspondingly reduced. In this case some estimate of use should be made, adding about 20 per cent to the estimated expired capacity. But if this is done frequently the practice carries the risk of overcharging and reducing the potential life of the cells.

They may also acquire a "memory" for the reduced charge/discharge cycle, resulting in an inability to take the full charge. Advertisements for NiCads sometimes claim that they will not be harmed if they are charged for longer than the recommended periods. This is true in the short term.

The charging rates recommended are such that cells may safely receive overcharge for indefinite periods, but frequent excessive charging can reduce
their overall life due to heating effects. Because of its construction, the PP3 equivalent size NiCad is particularly vulnerable in this connection.

In radio receivers NiCads are fine if the receiver is used frequently. If it is used infrequently the user will be disappointed at the apparent shortness of life following each charge. In use, the cells should be exhausted to the point where the receiver no longer functions satisfactorily and they should then be recharged at normal room temperature.

There are various approaches if you take these and other (not mentioned) precautions seriously. For example, I use a timer/cut-out to restrict the charging time to the recommended period.

An article in an American magazine recently described a unit which discharges cells automatically down to 0.75 V to ensure satisfactory discharge before recharging, while preventing accelerated discharge to zero volts and possible "cell reversal". A German magazine featured a charger which samples the voltage across the NiCads under charge every eight minutes; if the new sample is lower than the previous sample full charging has been achieved and the charger is automatically switched off.

Although there are so many aspects to consider to obtain optimum performance from NiCads I doubt if many users bother much about them. After all, if you get only half the number of recharges claimed, it still represents a good saving over buying new batteries every time the old ones run outl The ideal, of course, would be a rechargeable cell giving the full performance claimed by the manufacturers without any of the reservations or provisos associated with NiCads.

SANGEAN SERVICING

I have received a letter from a reader whose Sangean ATS 803A world band receiver has broken down out of guarantee. He has been told by the original suppliers, Comet, that they are unable to obtain spares and cannot repair it for him. If any readers know somewhere he might get it serviced please let me know via the editor.

It will be disappointing if the ATS 803A is now obsolete. The 1991 issue of "Passport to World Band Radio" reviews it as "the best world band radio for under $\$ 400$ (USA)". However, even the best models become "discontinued" and I'm currently trying to confirm the position with Comet.

In the meantime, if anyone can provide information about the current status of this receiver please let me know. The same set has been sold under their own brand names by Currys, Tandy and Dixons and presumably the supply position is the same with them all?

HART AUDIO KITS - YOUR VALUE FOR MONEY ROUTE TO ULTIMATE HI-FI
 LINSLEY HOOD 'SHUNT FEEDBACK' RIIA.A.
 high ouality replacement

HART AUDIO KITS give you the opportunity to bulld the very best engineered hifl equipment there is, designed by the leaders in their field, using the best components that are available.
Every HART KIT is not just a new equipment acquisition but a valuable investment in knowlecge, giving you gui
hands-on experience of modern electronic techiques. in shor HART is your 'triend in the trade' giving you, knowledgeable constructor, access to better equipment at lower prices than the man in the street
You can buy the reprints and construction manual tor any
kit to see how easy in is to bulld your own equioment the kit to see how easy it is to bulld your own equipment the
HART way. The FUL cost can be credited agalnsi your HART way. The FULL C
subsequent kit purchase.
Our llst will give you fuller details of all our Audio Kits.
components and special offers.

This fantastlc John Linsley Hood designed amplifier is the flagship of our range, and the ideal powerhouse for your ultimate hifl system. This kit is your way to gel CK performance for a low tenins of the cost.. Featured on the fron cover of 'Electronics Today International' this complete allied to the famous HART quality and ease of construction. John Linsley Hood's comments on seeing a complete unlt were enthuslastic:- The external vlew is that of a thoroughly professional piece of audlo gear, neat elegan and functional. This impression is greatly reinforced by the Internal appearance, which is redolent of quallity, both in components and in layout. Optlons include a stereo LED power meter and a versatile passlve front end glving switched inputs using ALPS precision, low-noise volume
and balance controls. A new relay switched front end opand balance controls. A new relay swithed glves a tape input and output facility so that for use with tuners, tape and CD players, or indeed any other 'flat with tuners, tape and CD players, or indeed any oither itheut the need for any external signal handling stages. 'Slave and "monobloc' versions wlthout the passive input stage and power meter are also avallable. All versions th whin our standard $420 \times 260 \times 75 \mathrm{~mm}$ case to match our 400 Series Tuner range. ALL six power supply rails are fully stabillsed, and the complete power supply, using a toroidal transformer. Is contained whith a heavy gauge aluminium chassis/theatsink itted with IEC mains input and output
sockets. All the circuitry is on professional grade printed circuit boards with roller tinned finist and green solder resist on the component ident side, the power amplifiers leature an advanced double sided layout for maximum performance. All wiring in this kit is pre-terminated, ready for instant usel.
RLH11 Reprints of latest articles.
K1100CM HART Construction Manua

COMPUTER CORNER

This month we are pleased to introduce a new range of VERY competitively priced, High Quality, computer sys tems. Due to our long oxperlence of importing we have the necessary conlacts in the Far East to buy at very advan lageous prices and can pass the savings on to you. WORDPROCESSOR/COMPUTER SPECIAL The Fastest wordproces sor in the west! Only ew years ago the AT-286 machine was the fastest standard office computer known. Now we can oller the superdast 16 MHz version (earller ones were only 10 or 12 MHz) at such an incredibly low price that
it can be used in any office or home. Not only that but ours comes with uliratast memory so tha he machine can run in 'zero walt state'

Advanced features are:-
Full 1 MB of memory (Ex.
pandable to 4MB), 102 key UK keyboard, compact desktop case, $1.44 \mathrm{MB} 3.5^{\circ \prime}$ Disk Drive and interface card for extra drive, Graphics/Printer Card, bull in Hard Disk Interiace.
ONLY $£ 277.25$ (Ex Va) $4^{\prime \prime}$ FST (Flatter Sq ONLY 2277

Base) AT-286/16UG Hard Disk Computer..................................... (Exat) Specification as above but with SIMM memory, 45 MB 25 ms hard disk. VGA Colour Graphics Card winh Slak ham upgradeable to 1MB, parallel printer port. 2 serial ports, game port. 14 VGA Mono Monitor. Amber $£ 86.70$ Paper White $£ 89$

MOVING COIL \& MOVING MAGNET PICKUP
 CASSETTE HEADS

-

Do you tapes lack treble?. A worn head could be the problem. For top pertormance cassette recorder heads should be replaced every 1.500 hours. Fitting one of our to better than newt. Standard inductances and mountings to better than new. Standard inductances and mountings see below) and our TC1 Test Cassette helps you set the see below) and our Tci test cassette helps you set on. As we are the actual importers you gel azimuth spot on. As we are the actual importers you gel suppliers and see!. All our heads are suitable for use with any Dolby system and are normally available ex stock. We also stock a wide range of special heads for home construction and industrial users. HM120 Standard Mono R/P Head. HC15 Standard Quallty Stereo R/P Head $£ 3.51$ HC66 High Quality Stereo R/P Head. Per malloy 2.49 y.......... $£ 16.8$ HC80 NEW RANGE High Beta Permalloy Stereo head Modern space saver design for easy litting and low
cost. Sultable for chrome metal and ferric tapes cost. Sultable for chrome metal and ferric tapes, from hi-fl decks to car players and at an incredible price tool.
HO551 4-Track RECORD \& Play Permalloy Head for auto-reverse car players or quadraphonic recording $£ 14.90$ H524 Standard Erase Head...................... $\begin{array}{r}\text { ¢1.90 } \\ \\ \hline\end{array}$ H561 HI Field Erase Head for METAL T
HRP373 Downstream Monitor Stereo
£47.90
importing an exciring new range of precision audio pots In values to cover most quality amplifier applicatlons. All In 2-gang stereo format, with 20 mm long 6 mm dia. $510 e \mathrm{l}$ shatts. Now you can throw out those noisy ill-matched carbon pots and replace with the real hi-lt components only used selectively in the very top flight of world class mpliell. he inpibly ore channels and rock solid image stability. Motorisud versions have 5v DC Drive motor.
2-Gang 100 K Lin
9.60 2-Gang 10 K Special Balance.
-Gang 20K Log MOTORISED.
2-Gang 10K Speciall Balance, MOTORISED. zero
crosstalk and $<10 \%$ centre loss with near
Log/Antllog Tracks)

Many other SPECIAL cassette Heads in
Many other SPECIAL cassette Heads in
stock, see our LIST.

AEEL TO REEL HEADS
. 58.86

Circuits.
998 E
$2 / 4$
Erase Head
1 mH . Universal Mount.
Suits Stuart..
. 11.98

HART TC1 TEST CASSETTE Our famous triple
purpose test cassette. Sets tape azimuth, VU level and tape speed.
5.36 10.71

E19.20
£19.98

Entry level 386 machine for demanding applications at moderate cost. Spec as above but 1 MB Dram memory. Mini Graphics Card with 256 K RAM, 40 MB AT- $386 / 16 \mathrm{~S}^{\prime} \mathrm{EL}$ I IS ONLY〔634.30 (Ex Vat)

HAFT 52MB AT-386/20SX UG

kuxury verslon of the above with higher processor speed and amazing 9 millisecond access time hard disk. 2 MB SIMM RAM, upgradeable to 1 MB of Video memory 40 MB AT$386 / 20$ SXUG ONLY E8E3 10 (Ex Vat)
HART OPTIONAL EXTRAS
HART Computers can be 'custom made' to fit your personal

Send or 'phone for your copy of our LIst (50 p) of these and many other Kits \& Components. Enquiries from Overseas customers are equally welcome, but PLEASE send 2 IRCs it you want a list sent surface post, or 5 for Airmail.
Ordering is easy. Just write, telephone or fax yourrequirements to sample the triendly and efficient HART
service. Payment by cheque, cash or credit card. A telephoned or faxed order with your credil card number will get your order on its way to you THAT DAY.

Please add part cost of carriage and.insurance as follows:--INLAND Ordere up to £20-£1.50 are only sent by courler) OVERSEAS - Please see the ordering (formation all computer pant

Constructional Project

KNOCKERBOX

DAVID SMITH

Press the bell pushand the doorknocker bangs on the door. Its like a ghost standing beside you!

0VER. the years, there have been many circuits published regarding electronic door bells, which generate sounds beyond the normal "dingdong" type of chime. This has enabled the electronics constructor to possess a certain amount of individuality. Visiting family or friends could be greeted with a synthesized rendition of the William Tell Overture, Star Wars or Beethovens 9th.
There has even been an electronic device allowing the sound of a barking dog to be played, in the hope that it would ward off any potential burglar. The list seems endless, so you could be forgiven for thinking "Oh no, not another electronic doorbell circuit"
Well, it's hard to be different nowadays. Many people are no longer impressed when pushing door bells, only to be confronted with the usual melody chip, generating endless tunes through a tiny loudspeaker. What is needed is something entirely different to announce their arrival and the Knockerbox can fulfil that need.

What it offers, is a return to the "good old days". A time when there was no electronic noise pollution around. What the Knockerbox will provide (once a caller has pressed your bellpush), is a sharp "rat-a-tat-tat" on your door knocker! No, not an electronically generated sound as you might well expect, but the real thing!

HOWIT WORKS

What we need from our circuit initially, is to detect when the bellpush has been pressed. We then need to process this information through an electronic circuit, to finally produce an electrical output capable of driving a solenoid connected mechanically to your front door knocker.
Referring to the block diagram in Fig. 1, we can see that the inherent noise emanating from the bellpush and its associated wiring, has to be cleaned up in some way. This is achieved by the use of an optoisolator (IC1).

Fig. 1. Block diagram of the Knockerbox.

Once clean, this signal can be used to trigger the first of two 555 type timers, both housed in the same package. The first monostable timer provides us with an output pulse sufficiently long enough, to enable the second of our 555 timers (IC2b), to generate a short string of pulses.
These pulses are then fed to a Darlington driver pair of transistors, where the pulses are amplified sufficiently to drive a solenoid. It is this solenoid which operates the knocker on your front door.

CIRCUIT DESCRIPTION

The complete circuit diagram for the Knockerbox is shown in Fig. 2. Because the solenoid requires a fair amount of current to operate, it is impractical to run this circuit from dry batteries. The circuit has therefore been designed to run off ordinary domestic house mains.
If we look at Fig. 2, we can see that the power supply consists of a mains isolation transformer T1, a bridge rectifier D2 to D5 and a 12 V stabiliser, IC3. Smoothing is accomplished by capacitors C4, C5 and C6.

The 12 V regulator i.c. can supply up to 2 A of current, to drive the solenoid. Of course the type of solenoid used, will depend very much on your own requirements i.e. size of door knocker fitted, the length of stroke that the solenoid has to travel, plus other mechanical considerations.
Resistor R1 provides voltage to the I.e.d. housed inside the opto-isolator IC1. Pressing the doorbell allows this l.e.d. to light up, thereby causing a transistor (also housed within the same chip) to conduct.
A suitable pulse therefore, is fed from the opto-isolators' output at pin 5, to the trigger input of IC2a, at pin 6. This action now provides an output pulse from IC2a at pin 5 . The length of this output pulse is controlled by adjusting the setting of preset VRI (used to determine the length of knock required).
Connecting IC2a's output (pin 5) to the trigger input pin of the second timer (IC2b, pin 10), initiates our second set of pulses at pin 9. These are the short repetitive pulses which will eventually form our "rat-a-tat-
tat" sound, the speed of which is controlled by preset VR2 and its associated components resistors R4, R5 and capacitor C3.
Transistor TRI receives these short pulses and passes them onto the solenoid driving transistor TR2, this being a TIP31A. Diode D1 offers protection against any back e.m.f., from the solenoid coil, which may cause damage to TR2.

CONSTRUCTION

A metal case should be used to house the project, as safety is of paramount importance. Three-core mains flex should be used in order to earth the circuits "ground rail", plus the metal casing of the enclosure.

Having selected a suitable metal case, drill two small holes in the base of the case to enable it to be fixed to the wall. Also at this stage, and before mounting components on the circuit board, you should use the board as a template to mark out the best positioning for the boards four corner fixing holes on the inside of the case bottom surface.

COMPONEVTS

Resistors		R4	6 k 8
R1	1 k	R5	100 k
R2	12 k	R6	150 k
R3	10 k	R7	$1 \mathrm{k5}$

All 0.6W 1\% metal film

Potentiometers

VR1 100 k horizontal
skeleton preset, lin.
VR2 500 k horizontal skeleton preset, lin. Page

Capacitors

C1	10n polyester layer
C2	47μ axial lelec., 63 V
C3	1μ radial elec.. 100 V
C4	$0 \mu 1$ disc ceramic, 50 V
C5	470μ axial lelec., 25 V
C6	680μ radial elec., 63 V

Semiconductors
D1 1 N4005 1A 600 V rec. diode
TR1 BC108 npn transistor
TR2 TIP31A npn power transistor
IC1 2046 transistor optoisolator
IC2 556 dual timer
IC3 $78 \mathrm{~S} 12+12 \mathrm{~V} 2 \mathrm{~A}$ voltage regulator
D2-D5 $\quad 1.4 \mathrm{~A} 60 \mathrm{~V}$ bridge rectifier

Miscellaneous

T1 Mains transformer, 30VA 15 V secondary
S1 Doorbell push switch

SOL $\quad 12 \mathrm{~V}$ solenoid (see text)
FS1 0.5A fuse with chassis mounting fuseholder
Metal case, size $160 \mathrm{~mm} \times 140 \mathrm{~mm} \times$ 50 mm ; plastic box, to cover solenoid and TR2/D1; 8-pin d.i.I. socket; 14-pin d.i.I. socket; 8 W heatsink for IC3; solder pins (8 off); connecting wire; solder. Leaf spring, wire, pulley etc. as required for door knocker.
Printed circuit board available from EE PCB Service, code EE775.

Approx cost guidance only

Fig. 2. Circuit diagram of the Knockerbox.

Fig. 3. Printed circuit board layout and wiring.

Once they have been marked you can decide whether to use self-adhesive standoff pillars or drill through the case at the marks and use nuts (three per bolt) and bolts, preferably nylon, to secure the board in position later. The case should now be put to one side and attention turned to the printed circuit board.
The printed circuit board component layout and full size copper foil master pattern is shown in Fig. 3. This board is available from the EE PCB Service, code EE775.
Mount the components onto the printed circuit board as shown in Fig. 3. Before fixing the 12 V regulator i.c. to the heatsink, spread a little heat transfer compound between the two mating surfaces to improve thermal conductivity.
When fitting the transistors, diodes and electrolytic capacitors, check carefully their polarity. Also make sure that the i.c.s are correctly orientated.

Note that power transistor TR2 is not mounted on the p.c.b., but against the body of the solenoid, which in turn acts as a heatsink. Diode DI is also connected directly to the transistor emitter lead, see Fig. 4. Both these components and the. solenoid are mounted on the door
Alternatively, TR2 and D1 could be mounted inside the case which houses the other components. The choice is yours, but do bear in mind that the TIP31A has a maximum current carrying capacity of 3A. Something to think about when choosing your solenoid.

WIRING

When all the components have been soldered into place, mount the board inside the case by way of the p.c.b.s four corner fixing holes. Referring to Fig. 5, mount the other components as shown, paying particular attention to the mains wiring.
The "live" mains wire should be connected to the rearmost tag of the fuseholder FSI. Then, in the event of a fuse having to be replaced, the outer contact of the fuse holder, (easily touched by accident), will not be in contact with the mains!
Finally, the box, which must be fully enclosed, should be mounted near the front door. The mains lead should be run to the nearest 13A socket. Twin bell wire
should be connected between the box and bellpush, and the wires used for the solenoid should be extra flexible and looped in such a way from the box to the door to incur minimum bending; see Fig. 6.
A smaller box can be fitted over the top of the door mounted solenoid to give it a neater appearance. This box also covers the power transistor TR2, so ample "air space" should be provided inside the box.
As the choice of solenoid is left to the individual's own requirements, the final "mechanical" arrangement of linking it to the door knocker may vary. However, the suggested method shown in Fig. 7 should prove to be the best approach for most set-ups.

Fig. 4. Mounting and wiring of TR2 and D1 on the solenoid.

Fig. 5. Interwiring of the case mounted components and the p.c.b.

[EE33906

ADJUSTMENTS

As the following adjustments are best made with the circuitry connected to the front door solenoid and mains, it would be wise to make sure no one is likely to walk in through the door, and that toddlers and or pets are safely distanced.

Because of the presence of mains voltage extreme care must be exercised when carrying out adjustments.

First set preset VRI to its longest "on" period. This will enable the setting of preset VR2 to take place over a longer period.

Fig. 6 (left). Fitting the unit to the door.

EVERYDAY
 ELECTRONIES SUBSCRIPTION ORDER FORM

Annual subscription rates (1991):
UK $£ 18.50$. Overseas $£ 23$ (surface mail)
£40.50 (airmail)
To: Everyday Electronics, 6 Church Street Wimborne, Dorset BH21 1JH

Name.
Address.

Signature Card Ex. Date
Please supply name and address of card-holder if different from the subscription address shown above. Subscriptione can only start with the next avallable issue. For back jumbers see the Editorial page.

ROBOTROUNDUP Nigel Clark

MUSEUM OF AUTOMATA

One man's love of things mechanical has resulted in a new tourist attraction in York and the encouragement of an interest in robotics in a growing number of people. The Museum of Automata was opened in March last year in an old warehouse between Cliffords Tower and the River Ouse, in the ancient capital of the North of England.
In its first year (Mar.-to-Dec.) it attracted 50,500 visitors and this year as its fame has spread further afield the figures should show a 50 per cent increase. Up until the end of September, about 60,000 people had visited the museum. One major boost came at the Robot Olympics held last year at the Turing Institute in Glasgow when one of the exhibits, the Japanese Archer, took the Gold Medal in the Javelin class, beating many newer and apparently more sophisticated devices in the process.

The museum is the brainchild of a Surrey property developer, Jon Robertson, and his wife Andrea. His early childhood, spent on a farm, left him with a fascination for machines. Later he bought a singing bird box as an engagement present for his furure wife and they were hooked.

Holidays would often include visits to antique shops and flea markets and the collection grew. They later were able to combine their collection with that of another enthusiast. Jack Donovan, when his collection was offered to them. Donovan used to run a hotel in Bournemouth where his automata helped to entertain the guests. He later dealt in automata with people from all over the world.

DISPLAY

Four years ago Jon and Andrea exhibited all their automata, which, despite being extremely fragile and needing skilled and careful handling and maintenance, were all in working order. From that came a suggestion that they be put on permanent display alongside more contemporary works, of which there are a growing number in Britain. Soon afterwards Robinson bought a disused warehouse in York and the idea began to blossom.

From the start the intention was to educate as well as to display. To this end the first thing visitors see is the video wall giving a five minute history of automata, beginning with the ancient Greeks who developed mechanical marvels such as singing birds and automatic washbasins based on their knowledge of gears, pneumatics and hydraulics and ending with speciallycommissioned pieces.

This is followed by the displays of the actual devices. Unfortunately most of the older and more complex pieces are too delicate to be shown working but each display has a video showing how each piece works.

However many of the clocks, which include small automata as decoration or to chime the hours, are working. It is worthwhile being around on the hour to see many of them perform alithough there is also something to see on the quarters as well.

FRENCH CONNECTION

It is the French section showing models from the 19th century where the creations have been developed to such a degree that they meet one of the definitions of automata with no difficulty. That is that they be man-made objects which mimic the movements of living things, their mechanisms having their motive power so concealed that they appear to move spontaneously.

All the French models, which include smoking monkeys, musicians and jugglers meet the criteria. To give visitors some idea of how the "magic" is created some models have been stripped down to show their mechanics while other displays show the elements which make up the automata.

MODERN VERSION

The modern robots or automata are less concerned with hiding their mechanics than with showing off how they perform their activities. Dex, which stands in the lobby is a perfect example of this. It has metal balls moving on various tracks around its body and is so fascinating that it often holds up the flow of visitors as they watch it before going into the museum.

Many of the modern automata encourage a hands-on approach from the visitors who can press buttons to activate them, some with their workings showing and some without. Possibly the most interesting are the ones where people provide the motive power such as the Wave Machine and an ingenious device which passes balls around, requiring cooperation by a number of people to get the ball from one position to another.

WORKSHOPS

Apart from the experience of going around the displays the museum is concerned with education in the wider sense, using the robots and exhibits to encourage an interest in craft and technology generally. As part of this the museum runs a series of workshops based around a visit followed by study of the mechanisms involved in the exhibits.

Workpacks are provided to go with the workshops, these are designed to meet the requirements of particular levels of the National Curriculum. And this year a competition has been held to design a piece of automata with a prize of $£ 100$. The response was excellen with entries from the large number of schools which have had the opportunity to take advantage of what the museum has to offer. The best of the entries will be put on display.

The growing reputation of the workshops can be gauged by the response to the series was offered in the early autumn. Within a few days of the series being promoted all the places were full.

Despite its success, or even because of it, the museum is looking at ways of developing and expanding its facilities. Only recently an extra room was added for use as a special exhibition area or for workshops.

As has often been noted in this column moving machines like robots and automata have a fascination for a large number of people. This museum enables them to feed their fascination in an accessible and interesting way.

THANKS

This is the last of the regular Robot Roundups. Many thanks to all those who have helped me to fill the column over the years and for your interest.

WINTER 1991/1992 CATALOCUE

OUT NOW!

- 100's of price reductions throughout the catalogue 200 pages Latest new products EEE's worth of discount vouchers

- On sale from 14th November at most large newsagents or directly from Cirkit

$£ 1.70$

 plus 30p postagePark Lane Broxbourne - Hertfordshire EN10 7NQ Telephone (0992) 444111 • Fax (0992) 464457

NEW DISCO KITS

SWITCHABLE 3-4 CHANNEL LIGHTING CONTROLLER. With beatchase and speed controls.
PCB + Components Kit... £21. 00 Hardware + punched case kit with label etc.

MULTICHASE 4 CHANNEL LIGHTING CONTROLLER. With chase select, beatchase and speed controls.
PCB + Components kit....£26.00
Hardware + punched
case kit with label etc
....£13.00
COMPUTER CHASE 4 CHANNEL LIGHTING CONTROLLER. With sound chase/sound to light automatic audio level. 3 superb programs including over 20 different chases.

PCB + Components Kit.
. $£ 35.00$
Hardware + punched
case kit with label etc.
f15.00
All Hardware Kits include Bulgin 8 way socket, mains lead, mains switch, $1 / 1 /$ " audio jack socket, cable restraint, feet and all fixings. All Prices Include VAT. P\&P only £1.50 per order.
 98 School Street, Wolverhampton. West Midlands WV3 ONR. Tel: (0902) 23275

DIRECT воок SERVICE

The books listed have been selected by Everyday Electronics editorial staff as being of special interest to everyone involved in electronics and computing. They are supplied by mail order direct to your door. Full ordering details are given on the last book page. For another selection of books see next month's issue.

EVERYDAY ELECTRONICS DATA BOOK Mike Tooley BA
(published by EE in association with PC Publishing) This book is an invaluable source of information of everyday relevance in the world of electronics. It contalns electronic circuits, but also deals with a wlde range of practical electronic applications.
It is ideal for the hobbyist. student, techniclan and en gineer. The information is presented in the form of a basic electronic recipe book with numerous examples showing how theory can be put into practice using a range of commonly available "Industry standard" components and devices.
A must
256 pages
256 pages
Orater cone DAFA
£8.95

ELECTRONICS TEACHAN No. 3 -EXPLORING ELECTRONICS (published by Everyday Electronics) Owen Bishop
Another EE value for money publication aimed at students of electronics. The course is designed to explain the workings of electronic components and circuits by involving the reader in experimenting with them. The book does not explanations and circuits to build and experiment with. Exploring Electronics contains more than 25 useful profects, assumes no previous knowledge of electronics projects, assumes no previous knowledge
and is splt into 28 easily digestible sections.
88 pages (A4 size) Oriet coderi3

Computers and Computing

COMPUTERS AND MUSIC - AN INTRODUCTION R. A. Penfold

Computers are playing an increasingly important part in the world of music, and the days when computerised music was strictly for the fanatical few are long gone. be either horrendously expensive, very crude or bothl These days, prices are much more modest and the potential of the equipment is much greater. Consequently a lot of musiclans are being tempted into the unfamiliar tervitory of computer music systems.
If you are more used to the black and white keys of a synit keyboard than the QWERTY keyboard of a computer, you may be understandably confused by the jargon and terminology bandied about by computer buffs. But fea not, setting up and using a computer-based music makin
This book will help you learn the basics
running applications you learn the basics of computing, tem and using the system to good effect. in fact just about everything you need to know about hardware and the programs, with no previous knowledge of computing needed or assumed. This book will help you to choose the right components for a system to suit your personal needs. and equip you to exploit that system full
174 pages Ertercoce PC107 £7.95

A CONCISE INTRODUCTION TO MS-DOS
 N. Kantarls

This guide is written with the non-expert, busy person in mind and, as such, it has an underiving structure based on "what you need to know first. appears first", Nonetheless the guide is also designed to be circular, which means that you don't have to start at the beginning and go to the end he more experienced user can start from any section The guide covers versions 3.0, 3.1 and 3.2 of both PC manufacturers of "compatible" microcomputers, including the AMSTRAD PC's. It covers both floppy disc-based systems and hard disc-based systems. 64 pages $\quad \mathbf{f} 2.95$

AN INTRODUCTION TO 280 MACHINE CODE

R. A. B. J.W. Penfold

Takes the reader through the basics of microproces ors and machine code programming with no previous knowledge of these belng assumed. The 280 is used in many popular home computers and simple programming xamples are given for 280-based machines including the CPC 464. Also applicable to the Amstrad CPC 664 and

ANINTROOUCTION TO 68000 ASSEMBLY
LANGUAGE
A.A. \& J. W. Penfold
biain a vast increase in running speed by writing programs for 6800 based micros such as the Commodcrae assembly language. It is not as difficult as one might think and this book covers the fundamentals.

THE ART OF PROGRAMMING THE ZX SPECTRUM M. James, B.Sc., M.B.C.S

It one ihing to have learnt how to use all the Spectrum's commands and functions, but a very different one to be you want them to. This is just what this book is all about eaching you the art of effective programming with your Spectrum.

Order corlebelig $\quad £ 2.50$
A 280 WORKSHOP MANUAL
. A。 Parr, B.Sc., DC.Eng., M.I.E.E.
This book is intended for people who wish to progress as machine code and assembly language programming, or need hardware details of a 280 based computer. 192 pages forder cove BPIT!2

NEWNES COMPUTER ENGINEER'S POCKETBOOK (Second Edition)
An invaluable compendium of lacts, figures, circults and data, indispensable to the designer, student, service engineer and all those interested in computer and microcomputer systems. It will appeal equally to the hardware or software specialist and to the new band of "software engineers. This data ls presented in a succinct and rapidly everyday toolkit.

UNDERSTANOING PC SPECIFICATIONS

R. A. Penfoid

If you require a microcomputer for business applications, or a high quality home computer, an IBM PC or compatible is often the obvious choice. They are compertively priced, programs, hardware add-ons, etc. The main difficulty for the uninitiated is deciding on the specification that will best suit his or her needs. PCs range from simple systems of limited capabilities up to complex systems that can happily run applications that would have been considered bevond the abilities of a microcomputer not so long ago. It would be very easy to choose a PC system that is inade. quate io run your applications efficiently, or one which goes beyond your needs and consequently represents poor
value for money.
This book explains PC specifications in detail, and the subjects covered include the following: Differences
between rypes of PC (XT, AT 80386 , etc) Maths co-processors, Input devices (keyboards, mice, and digitisers); Memory, including both expanded (EMS) and extended RAM: RAM disks and disk caches; Floppy disk drive formats and compatibility; Hard disk drives (including interleave factors and access times); Display adaptors,
including all standard PC types (CGA. Hercules, Super VGA elc) Contains everthing (CGA, Hercules. Super can't tell your EMS from your EGAl need to know if you

Theory and Reference

ELECTRONIC HOBBYISTS HANDBOOK

 R. A. Penfold

 R. A. Penfold}Provides an inexpensive single source of easily tocated information that the amateur electronics enThusiast is likely to nead for the day-to-day pursuance of colour codes. Details the characteristics and pinouts of many popular seimiconductor devices, including various ypes of logic ICs, operational amplifiers, transistors. FETs, unljunctions, diodes, rectifiers, SCRs, dlacs, triacs, regulators and SMDs, etc. Illusirates many useful types of circults, such as timers and oscillators, audio amplifiers and filters, as well as including a separate section on power supplies. Also contains a multitude of other useful data
88 pages
ESSENTIAL THEORY FOR THE ELECTRONICS HOBBYIST
G.T. Rubaroe, T. Eng (C.E.I.), Assoc.I.E.R.E The object of this book is to supply the hobbyist with a background knowledge tailored to meet his or her specific requirements and the author has brought sogether the relevant material and presented it in a readable manne with minimum recourse to mathematics. 128 pages lorder cude 228
c2.50

NEWNES ELECTRONICS POCKET BOOK

E. A. Parr

Newnes Electronics Pocket Book has been in print for over twenty years and has covered the development of electronics from valve to semiconductor technology and from transistors to LSI integrated circuits and micro processors. To keep up to date with the rapidly changing world of electronics, continuous revision has been neces. sary. This new Fitth Edition rakes account of recen changes and includes material suggested by readers of previous editions. New descriptions op op.a been added, tions and the design of digital circuits have been added, long with a totally new chapter on computing, pius other
revisions throughout.
315 pages (hard cover) Ordet cordenNFUZ E10.95

ELECTRONICS - A "MADE SIMPLE" BOOK G. H. Olsen

This book provides excellent background reading for our Introducing Digital Electronics Teach-In Book and will be of interest to everyone studying electronics. The subjec sumes only a very basic knowledge of electricity. 330 pages Orter ciodeneTO E4.95

Component Identification

HOW TO IDENTIFY UNMARKED IC

K. H. Recor

Shows the reader how, with just est-meter to go about recording the particular signature of an unmarked i.c which should enable the i.c. to then be identified with reference to manufacturers' or other data. An i.c. signature is a specially plotted chart produced by measuring the
resistances betwaen all terminal pairs of an l.c. resistances betwaen all terminal pairs of an l.c.
Chart
Order code Bliplitill RADIO AND ELECTRONIC COLOUR CODES AND DATA CHART
B. B. Babani

Although inls chan was first published in 1971 it provides basic information on many colour codes in use throughou the world, for most radio and electronic components. Includes resistors, capacitors, transiormers, field colls, fuses | ing the values of old components |
| :--- |
| Chant |
| Onflen wite: BP] | COLOUR CODES \& DATA CHART

C. E. Miller

Used properiy, should enable the reader to trace most common faults reasonably quickly. Across the top of the chari will be lound four rectangles containing brief desset dead, sound low or distorted and background noises. One then selects the most appropriate of these and following the arrows, carries out the suggested checks in sequence until the fault is cleared.
Chart Ordercoderap70 C0.95
HOW TO USE OSCILLOSCOPES AND OTHER TEST A. A. Panfold

This book explains the basic function of an oscilloscope, iives a detailsd explanation of all the standard controls. and provides advice on buylng. A separate chapter deals with using an oscllloscope for fault finding on llnear and ogic circults. Plenty of example waveforms help to 11. lustrate the control functions and the effects of various fault conditions. The function and use of various other pieces of test equipment are also covered, including sig. calibrators. 1 as pages

Order code Blexal \quad C3.50

Project Building

HOW TO GET YOUR ELECTRONIC PROJECTS WORKING
We have all built projects only to find that they did no work correctly, or at all, when first switched on. The aim of this book is to help the reader overcome just thes problems by indicating how and where to star looking for many of the common faults that can occur when building up projacts
96 pagas
96 pages \quad E2. 2.50
HOW TO DESIGN AND MAKE YOUR OWN P.C.B.S R. A. Fenfold

Deals with the simple methods of copying printed circult board designs from magazines and books and covers all aspects of simple p.c.b. construction including photographic methods and designing your own p.c.b.s. 80 pages \quad Order code BPIETI 50

BEGINNERS GUIDE TO MODERN ELECTRONIC COMPONENT
The purpose of this book is to provide practical information to hetp the reader sont out the bewildering array of componeets currently on offer. An advanced knowledge of the theory of electronics is not needed, and this book is not intended to be a course in electronic theory. The main aim is to axplain the differences between components of the same basic type (e.g. carbon, carbon film, metal fimm, and wire-wound resistors) so that the right component for a given application can be selected. A wide range of components are included, with the emphasis firmly on those home constructor. 166 pages

Torder code BP285 E3.95

BEGINNER'S GUIDE TO BUILDING ELECTRONIC

PROUECTS

Shows the complete beginner how to tackle the practical side of electronics, so that he or she can confidently bulld the electronic projects that are regularly featured in magzzines and books. Also Include examples in the form of simple projects.
112 pages

Order code 227

81.95

ELECTRONIC SCIENCE PROJECTS

O. Bishop

These projects range in complexity from a simple colour temperature meter to an infra-red laser. There are novelties such as an electronic clock regulated by a resonating spring, and an oscilloscope with solid-state display. There are sclentific measuring instruments such as a pH meter and an electro-cardiometer. All projects have a strong scientific flavour. The way they work, and how to build 144 pages [2.95 ELECTRONICS SIMPLIFIED - CRYSTAL SET CONSTRUCTION
F. A Wilson, C.G.I.A., C.Eng.. FI.E.E., F.I.E.R.E. F.BIIM.

Especially written for those who wish to participate in the intricacies of electronics more through practical con struction than by theoretical study. It is designed for all agess upwards from the day one can read intelligently and

Audio and Music

PRACTICAL MIOI HANDBOOK
R. A. Penfold

The Musicel Instrument Digital Interface (MIDI) is, suro rounded by a great deal of misunderstanding, and many of the user manuals that accompany MIDI equipment are quite incomprehensible to the reader.
The Prectical MIDI Handbook is simed primarily at musiclans, enthusiasts and technicians who want to exploit the vast capabilities of MIDI, but who have no previous knowledge of electronics or computing. The MIDI can do and how to exploit it to the full, with practical advice on connecting up a MIOI system and getting it to work, as well as deciphering the technical Information in those equipment manuals.
128 pages [Order cole PCITII E6.96

MUSICAL APPLICATIONS OF THE ATARIST'S

R. A. Penfoid

The Atari ST's are now firmly established as the computers to use for electronic music applications. The range and sophistication of these applications are much greater than most people may realise, but there are still a lot of misconceptions about just what can and cannot be achieved. This book willacy and to get the most musically from the ST's. the fallacy and to get the most musically from ine selection of topics are covered. Including the internal sound chip; MIDI; applications programs such as sequencing and score writing. etc; simple but useful add-on projects and MIDI programming. 90 pages

Orier coterspi46 $\quad 6.95$

AN INTRODUCTION TO LOUDSPEAKERS AND ENCLOSUREDESIGN
V. Capal

This book explores the various features, good points and snags of speaker designs. It examines the whys and Wherefores so that the reader can understand the principles involved and so make an informed choice of herself. Crossover units are also explained, the various types, how they work, the distortions they produce and how to avoid them. Finally there is a step-by-step description of the construction of the Kapellmeiste
 £2.95

Circuits and Design

PRACTICAL ELECTRONIC
 BUILDING BLOCKS-BOOK

PRACTICAL ELECTRONIC

BUILDING BLOCKS-BOOK

R. A. Penfold

These books are designed to aid electronic enthusiasts wholike exper ments wimply following prodished prown deslgns. wave, triangular, puarewave, sawtooth, and pulse wers - simple monostable circuits using i.c.s, the 555 and 7655 devices, etc. Miscellaneous-nolse generators, rectifiers, comparators and triggers, etc.
BOOK 2 contains: Amplifiers - low level discrete and op-amp circuits, voltage and buffer amplifiers including d.c. types. Also low-noise audio and voltage controller per octave typer Miscelloneous -is. power amplifiers. mixers, voltage and current regulators, etc
BOOK 1128 pages \quad Order codensivily 1.95
BOOK 2112 pages OTdercude ElPITI £1.95

MODERN OPTO DEVICE PROJECTS

R. A. Penfold

In recent years, the range of opto devices available to the home constructor has expanded and changed radically. These devices now represent one of the more interesting areas of modern electronics for the hobbyist to experiment In, and many of these have useful practical applications as well. Thls book provides a number of practical designs ncluding such rainge of modern opto-electrical devices. passive IR detectors etc. While many of the
simple" category they should be within the capabilifies of anyone with a reasonable amount of experience in electronics construction and some of the more simple designs are sultable for beginners.
104 pages TOrder code BPIg4
£2.95

ELECTRONIC ALARM CIRCUITS MANUAL

A. M. Marston

One hundred and forty useful alarm clrcuits, of a variety of types, are shown in this volume. The operating princlple of each one is explained in concise but comprehensive terms. Aimed at the practical design engineer, technlcian and experimenter, as well as the electronics student and mateur.
124 pages
Order codenefi $\quad \mathbf{~} 12.95$

DIGITAL LOGIC GATES AND FLIP.FLOPS
Ian R. Sinclair
This book. Intended for enthusiasts, students and tect nicians, seeks to establish a firm foundation in digita
electronics by treating the topics of gates and flip-flops electronics by treating the topics of gates and flip-flops
thoroughly and from the beginning. This is not a construc tor's book in the sense of presenting circuits to build and use, it is for the user who wants to design and troubleshoet digital circuitry with considerably more understanding of principles.
Topics such as Boolean algebra and Karnaugh mapping are explained, demonstrated and used extensively, and more ars than to the simple but less imponant ripp counters chan to the simple but less imponant rippla No b
electronics is aund other than a basic knowledge of explained from the beginning, as also are many working practices. The book concludes with an explanation of microprocessor techniques as applled to digital logic. 200 pages

Order conte FCiog
c8.95
ELECTRONIC CIRCUITS FOR THE COMPUTER CONTROL OF ROBOTS
Robert Penfold
Robots and robotics offer one of the most interesting areat for the electronics hobbyist to experiment in. Today the mechanical side of robots is not too difficult, as there are robotics kit and a wide range of mechanical com ponents available. The micro controller is not too much of a problem elther, since the soltware need not be terribly complex and many inexpensive home computers are well sufted to the task.
The main stumbling block for most would-be robot motors, and the sensors to interface the computer to the robol to the computer. The purpose of this book is to explain and provide some relatively simple electronic circults which bridge this gap.
92 pages $\mathbf{E 2 . 9 5}$

ELECTRONIC POWER SUPPLY HANDBOOK

lan R. Sinclair
This book covers the often neglected topic of electronic power supplies. All types of supplies that are used for electronics purposes are covered in detail, starting with cells linear stabilisers to modern switch-mode systems, iC switch mode regulators, DC-DC converners and inventers.
The devices, theip operating principles and typical circuits are all dealt with in detail. The action of rectifiers and the reservoir capacitor is emphasised, and the subjec or stabilisation is covered. The book includes some usefu tional rectifier reservolr supply. 136 pages
107.95

Radio, TV, Satellite

AN INTRODUCTION TO AMATEUR RADIO

D. Poole

Amateur radio is a unique and fasclnating hobby which has attracted thousands of people since it began at the turn The century.
This book gives the newcomer a comprehensive and easy to understand guide through the subject so that the an essential reference vol from the hobby. It then remains Toplcs covered Include the to be used time and again. uch as operating proce the basic aspects of the hobby, station. Technical topics covered Include propagation, eceivers, transmitters and aerlats etc
150 pages
Order cote 89257
f 3.50

SIMPLE SHORT WAVE RECEIVER CONSTRUCTION

 A. A. PenfoldShor wave radio is a fascinating hobby but one that seems to be regarded by many as an expensive pastime these days. In fact it is possible to pursue this hobby for a minimal monetary outlay if you are prepared to undertake a bit of d.i.y., and the receivers described in this book can all be built at low cost. All the sets are easy to construct, full wiring diagrams erc. are provided, and they are surtable erials, and do not need any complex alignment or other difficult setting up procedures
The topics covered in this book Include: The broad. cast bands and their characteristics; The amateur bands and their characteristics; The propagation of radio signals; Simple aerials; Making an earth connection; Short wave crystal set; Simple t.r.f. receivers; Single sideband recep. lon; Dlrect conversion receiver.
Contains everything you need to know in order to get 88 pages 1 Order conterpers 53.95

AN INTRODUCTION TO SATELLITE TELEVISION

F. A. Wilson

As a definitive introduction to the subject this book is presented on two levels. For the absolute beginner or anyone thinking about purchasing or hiring a satellite TV
system, the story is told as simply as such a complex one system, the story is told as simply as such a complex one an be in the main text.
For the professional engineer, electronics enthusiast, student or others with technical backgrounds, there are additional lechnical and sclentific detail formulae, calculadions, tables etc. There is also plenty for the DiY enthusiast with practical advice on choosing and installing the most problematic part of the system - the dish antenna. 104 pages

Orden code BPTgad
£5.95

AN INTRODUCTION TO AMATEUR
COMMUNICATIONS SATELLITES
A. Pickford

Communications and broadcast satellites are normally Inaccessibie to indlividuals unless they are actively involved in their technicalities by working for organisations such as British Telecom, the various space agencies or
military bodies even those who possess a satellite television receiver system do not participate in the technical aspects of these highly technological systems.
There are a large number of amateur communications satellites in orbit around the world, traversing the globe continuously and they can be tracked and their sig. nals received with relatively inexpensive equipment. This equipment can be connected to a home computer such as the BBC Micro or IBM compatible PCs, for the decoding of
received signals.
This book describes several currently avallable systems,
their connection to several currenty avallable systems, can be operated with suitable software.
102 pages
TOrter cocte 9290

AERIAL PROJECTS

R. A. Penfold

The subject of aerials is vast but in this book the author has considered practical aerial designs, including active. oop and ferrite aerials which give good performances and plex theory and mathematics of aerial design have been plex theor
avoided.
Also included are constructional details of a number of aerial accessories including a pre-selector, attenuator, filters and tuning unit.
96 pages
96 pages E2.50
INTERNATIONAL RADIO STATIONS GUIDE
P. Shore

Provides the casual listener, amateur radio DXer and the work designed to quide him or her around the ever more complex radio bands. This new odition has been completely revised and rewritten and incorporates much more information which is divided into the following sections: Listening to Shor Wave Radio; Choosing a Shor Wave Radio Receiver; How to Use the IRSG; Abbreviations: Country Codes; Worldwide Short Wave Radio StaRadio Stations; European, Near and Middle Eastern and Alrican Medium Wave Radio Stations; Canadian Medium Wave Radio Stations: USA Medium Wave Radio Statlons; Broadcasts in English; Programmes for DXers and Short Wave Listeners; UK FM Radio Stations; Time Differences From GMT; Wavelength/Frequency Conversion.
226 pages
Orker code Blp253

HOW TO USE OP.AMPS

E. A. Par

This book has been written as a designer's guide covering many operational amplifiers, serving both gs a source boo circuits and a reference book for design calculations. 160 pages \quad OTrder cokespgs

MICROINTERFACING CIRCUITS - BOOK 1
AICRO INTERFACING CIRCUITS - BOOK
R. A. Penfold

Both books include practical circuits together whith details of the circuit operation and useful background informe ion. Any special constructional points are covered but ion are not included.
Book 1 is mainly concerned with getting signals in and out of the computer; Book 2 deals primarily with circuits or practical applications.
$\begin{array}{llll}\text { BOOK } 1112 \text { pages } & \text { Order code BP/30 } & \text { E2.75 } \\ \text { BOOK } 2112 \text { pages } & \text { Order code BP131 } & \text { £2.75 }\end{array}$

SENSORS AND TRANSDUCERS

Keith Brindiey
There are a considerable number of transducers. Look hrough any electronic components catalogue and you'ti ind a wide variety of types, and each type has many particular function. In many specifications correctly for a edures are referred to many specifications, terms and pro ne that is, in fact, the which might deter you from using transducer merely because it is easier to intertace into the measuring system is not the answer. A greater knowledge of all types of transducers capable of doing the task is the deal, and only then can a totally satlisfactory decision be made to use one in particular
179 pages POrder codenty? $\mathbf{1 4 . 9 5}$

50 SIMPLE LED CIRCUITS
R. N. Soar

Contains 50 interesting and useful circuits and applice tions. covering many different branches of electronics using one of the most inexpensive and freely available components - the light-emitting diode (LED). Also in cludes circuits for the 707 common anode display.
64 pages
Order code BPG/2] BOOK 250 more l.e.d. circuits Orter cotle BP87 $\mathbf{1 1 . 9 5}$

DIRECT
 BOOK
 ERVICE

ORDERING DETAILS
Please state the title and order code clearly, print your name and address and add the required postage to the total order.
Add 75 p to your total order for postage and packing (overseas readers add $£ 1.50$ for countries in Europe, or add $£ 2.50$ for all countries outside Europe, surface mail postage) and send a PO cheque, international money order, ($£$ sterling only) made payable to Direct Book Service or credit card details (including the card expiry date). Visa or Mastercard (Access) - minimum credit card order is $£ 5$ - quoting your name and address, the order code and quantities required to DIRECT BOOK SERVICE, 33 GRAVEL HILL WIM BORNE, DORSET BH21 1 RW (mail order only).

Although books are normally sent within seven days of receipt of your order, please allow a maximum of 28 days for delivery. Overseas readers allow extra time for surface mail post.

Please check price and availability (see latest issue of Everyday Electronics) before ordering from old lists.

Note - our postage charge is the same for one book or one hundred books!

MORE BOOKS NEXT MONTH

Direct Book Service is a division of Wimborne Publishing Ltd

NEW MULTIMETERS!

A NEW RANGE OF HIGH SPECIFICATION DIGITAL MULTIMETERS FROM CIRKIT
 - $3^{3} / 4,17 \mathrm{~mm}$ LC display
 - IEC 348 II safety standard
 - Tough, splash proof ABS case
 - Current ranges protected by high energy cartridge fuses
 - 0.5\% basic dc accuracy
 - Ranges include; frequency, capacitance and temperature

TM8020

dc volts: 400 mV -1kV ac volts: $\quad 400 \mathrm{mV}-750 \mathrm{~V}$ dc current: $\quad 400 \mathrm{~mA}-20 \mathrm{~A}$ ac current: $\quad 400 \mathrm{~mA}-20 \mathrm{~A}$ resistance: $\quad 400 \Omega-40 \mathrm{M} \Omega$ capacitance: $4 n F-40 u F$ frequency: $\quad 4 \mathrm{kHz}-4 \mathrm{MHz}$ (autoranging) Continuity, diode. HFE and logic test

£59.98

TM8030

de volts: $\quad 400 \mathrm{mV}-1 \mathrm{kV}$ ac volts: $\quad 400 \mathrm{mV}-750 \mathrm{~V}$ de current: 400uA-20A ac current: 400uA-20A resistance: $400 \Omega-40 \mathrm{M} \Omega$ temperature: $400^{\circ} \mathrm{C} .1300^{\circ} \mathrm{C} / 400^{\circ} \mathrm{F}, 2372$ frequency: $4 \mathrm{kHz}-4 \mathrm{MHz}$ (autoranging) Continuity, diode and logic test

£65.20

Prices include VAT at 17.5\% Please add $£ 1.20$ for fuu Catalogue

Park Lane • Broxbourne • Hertfordshire EN10 7NQ Telephone (0992) 444111 • Fax (0992) 464457

The UK Distributor for the complete ILP Audio Range

* Bipolar Modules - 15 watts to 180 watts
* Mosfet Modules - 60 watts to 180 watts
* Power Supplies
* Pre-amplifier Modules
* 100 volt Line Transformers
* Power Slave Amplifiers Write or phone for free Data Pack

Jaytee Electronic Services
143 Reculver Road, Beltinge, Herne Bay, Kent CT6 6FL Telephone: (0227) 375254

electronize CAR ALARM KITS

MICRO-PRESSURE CAR ALARM

This new type of alarm is triggered by a unique pressure sensing system. As any venicle door is opened air is drawn out, causing a minule drop in air pressure. A sensor detects this sudden pressure change and sets of we alarm. An electronic filler, funed to only 3 Hz ., and adjustable sensitivity avo talse alarms whilst an arrangement of timers provide automatic operation.

* Operates on all doors and tallgate - no switches needed.
* Automatically armed 40 seconds atter leaving vehicie.
\& 10 second entry delay with audible warning. (0.5 second avallable.) \& Sounds horn or siren intermittently for 30 seconds - then re-arms.古 Easy fiting - only 3 wires to connect - no holes to drill.
A Controiled by ignition switch, hidden switch or coded remote control. (The optional siren and coded remote control arg supplied separately.) micro-pressure alarm Partsklt $£ 15.95$ Assembled $£ 22.35$

NEW CODEDIR REMOTE CONTROL

Our latest addition allows control of our alarms from outside the vehicle. Both transmitter and receiver use a chip designed specially for car security systems with 59,046 code combinations. You can even sel your own code, with several vehicles on the same code or several transmitters for one vehicle if required.

* HIgh securlty, customer selected, 24 bit code.

Key-ring transmitter with long life minature alkaline battery
High power Intra-red emitter with range up to 5 metres.

- Low proflle dash top recelver/decoder.
* Flashing high Intensity red L.E.D. warns otf intruders.
- Green L.E.D. shows alarm is off.

Use the coded transmitter and receiver with our Micro-Pressure or Volt Drop alarm to form a coded remote controlled system

CODE TRANSMITTER Parts kit £13.95 Assembled £17.95 CODE RECEIVER Parts kit E21.35 Assembled $£ 26.55$
Also available :
VOLT DAOP CAR ALARM
1200B PIEZO SIAEN
Parts kIt $£ 14.90$ Assembled $£ 20.95$
MICROPRESSUPE TRIGGER Parts kit 810.95 Assembled $£ 11.95$
MICRO-PR All the above Include cable, connectors and clear easy to follow instructions. All kits Include case, PC8, evarything down to the last washer, even solder, All prlces now include post, packing and VAT on U.K. orders. Same prices apply to all European countries. For delivery outside Europe please add $£ 3$. Telephone orders accepted with VISA or ACCESS payment. Order direct (please quote ref. E1C) or send for more details from

ELECTRONIZE DESIGN
Tel. 0213085877
2 Hillside Road, Four Oaks. Sution Colddield, B74 4DO

PCB SERVICE
Printed circuit boards for certain constructional projects are available from drilled and roller tinned. All prices include VAT and postage and packing. Add $£ 1$ per board for airmail outside of Europe. Remittances should be sent to The PCB Service, Everyday Electronics, 6 Church Street. Wim. to The PCB Service, Everyday Electronics, 6 Church Street. Wimborne, Dorset BH21 1 JH. Cheques should be crossed and made payable
to Everyday Electronics (Payment in f sterling only) to Everyday Electronics (Payment in $\mathbf{\varepsilon}$ sterling only).
NOTE: While 95% of our boards are now held in stock and are dispatched within
seven days of receipt of order, please allow a maximum of 28 days for deliveryseven days of receipt of order, please allow a maximum of 28 days for deliveryoverseas readers allow extra if ordered by surface mail. Please check price in the
latest issue. latest issue.

Boards can only be supplied on a payment with order basis.
We do have older boards in stock - please enquire.

PROJECT TITLE
Spatial Powe Display
Amstrad PCW Sound Generator JAN 91
T

Amstrad PCW Sound Generator G.P. Transistor Amp Intercom (Teach-In '91 Project 2) Analogic Test Probe
MARC Phone-In
Teach-In ‘91 Part 3-TBA820M Amplifier
High Quality Power Amp
Bench Amplifier (Teach-In 91 Project 3)
Gingernut 80 m Receiver
Gingernut 80 m Receiver
R.F. section (726), Voltage Regulator (727)

Audio Amplifie: (728)

Pocket Tone Dialler

Battery To Mains Inverter
Simple Basic Alarm

Car Code Lock (pair)

Teach-In '91 Part 4- Sinusoidal Oscillator
8038 Oscillator
Waveform Generator (Teach-In'91 Project 4) Humidity Tester
oller (double-sided) APR
Model Train Controller (double-sided)
Electronic Die (Teach-In '91 Project 5)
Electronic Die (Teach-In ‘91 Project 5)
Teach-In 91 Part 5-Digital Counter Module
Madular Disco Lighting System MAY'91
Switched Por
Switched Power Output Module
igital LCD Thermostat-Control Board
-Power/Relay Board
-Power/Relay Board
Pulse Generator (Teach-In '91 Project 6)
Teach-In'91 Part 6-Timer Module
Digilogue Car Tachometer
Modular Disco Lights - Simple Chaser
Sweeper Mod
Sweeper Module
Automatic Light Control-PSU Board
Radio Receiver (Teach-In '91 Project 7)
Teach-In '91 Part 7 - R.F. Amplifier Module
Modular Disco Lights - Masterlink JULY' 91 Ultrasonic Proximity Meter
Display Unit (753) \& Sensor Unit (754) Disco Lights (Teach-In '91 Project 8)
PSU and Pre-amplifier
Low. Mid, High Filter/Triac (set of 3 boards) Teach-In '91 Part 8-Solid State SwitchlModule Mod Disco Lights - Pattern Gen AUG'91 Teach-In '91 Part 8-Light Sensitive Switch
Opto-Link (Teach-In`91 Project 9) - Transmitter
Portable PEsT Scarer Receiver
Capacitance Meter
Modular Disco Lights - Dimmer Interface
Mod. Disco Lights
VU Sound Module (Double-sided)
UV Exposure Unit
PC-Scope Interface - Main Board
Expansion Plug (Double-sided)
Mod. Disco Lights
Superchaser (Double-sided)
Supersweep (Double-sided)
Bicycle Alarm
Darts Scorer
Knockerbox
Signal Generator - Main Board \quad DEC 91
Signal Generator - Main Board
PSU
Mind Machine - Main Board
Auto Nightlight

Order Code
714
715
717
718
719
720
721
723
724
725
$726 / 7 / 8$
all 3 together

7
7
7

729 730

 730731
732 a
$732 \mathrm{a} / \mathrm{b}$
733
734
735
716
736
737
738

739	
740	
741	
742	

$£ 5.91$
$£ 4.05$
$£ 3.76$

743
$£ 4.97$
7
f

[^8]Cost

$£ 4.36$
$£ 4.97$
$£ 4.50$

PCB \& SCHEMATIC CAD	DIGITAL SIMULATION	ANALOGUE SIMULATION	SMITH CHART CAD
EASY-PC	PULSAR	ANALYSER IIII £195	Z-MATCH II ¢195
- Design Single sided, Double sided and Multilayer boards. - Provides Surface Mount suppor. - Standard output Includes Dot Matrix / Laser / Inkjet printers, Pen Plotters Photo-plotters and NC Drill. - Award Winning EASY-PC is In use In over 9000 installations in 50 Countrles World-Wide. - Runs on PC/XT/AT/286/386 with Herc, CGA, EGA, VGA. - Superbly Easy to use. - Not Copy Protected.	- At last! A full featured Digital Circuit Simulator for less than £1000! - Pulsar allows you to test your logic designs without the need for expensive test equipment. - Catch glitches down to a pico second per week! - Includes 4000 Serles CMOS and 74LS Libraries. - Runs on PC/XT/AT/286/386/486 with EGA or VGA. Hard disk recommended. - Not Copy protected.	- NEW powerful ANALYSER III has full graphical output. - Handles R's, L's, C's, BJT's, FET's, OP-amp's, Tapped and untapped Transformers, and Microstrip and Co -axial Transmission Lines. - Caiculates Input and Output Impedances, Gain and Grous Delay. - Covers 0.001 Hz to $>10 \mathrm{GHz}$ - Runs on PC/XT/AT/286/386/486 with EGA or VGA. - Not Copy protected.	- Z-MATCH II takes the drudgery out of RF matching problems and includes many more features than the standard Smith Chart. - Provides quick accurate solutions to many matching problems using transmission line transformers, stubs, discrete components etc.etc.. - Supplled with comprehensive user instructions including many worked examples. - Rums on PCNXT/AT/386/486, CGA, EGA,VGA - Not Copy Potected
For full information please Phone, Fax or Write.	Number One Systems Ltd. The Electronics CAD Specialists		and 137,

REF: EVD, HARDING WAY, SOMERSHAM ROAD, ST.IVES, HUNTINGDON, CAMBS, PE17 4WR, ENGLAND Telephone: 048061778 (7 lines) Fax: 0480 4940.12 International: +44-480-61778 Fax: +44-480-494042

ACCESS, AMEX, MASTERCARD, VISA Welcome.

Jaytee Electronic Services

143 Reculver Road, Beltinge, Herne Bay, Kent CT6 6PL Telephone: (0227) 375254

```
Carbon Film resistors 1/WW 5% E24 series 0.51 R to 10MO 100 off per value - 75p. even hundweds per value totalling 1000 Metal Film resistors \%W 10R to 1 NO 5\% E12 series - 2p. 1\% E24 series Mixed metal/carbon film resistors \%W E24 series 1 RO to 10 MO . 1 watt mixed metal/Carton Film \(5 \%\) E1 2 series 4 R 7 to 10 Megoh
Linear Carton pre-sets 100 mW and \(1 / \mathrm{WW} 100 \mathrm{R}\) to 4 M 7 E series.
\[
\begin{aligned}
& \text { Linear Cabon pre-sets } 100 \mathrm{~mW} \text { and } V / \mathrm{W} 100 \mathrm{R} \text { to } 4 \mathrm{M} 7 \text { E6 series } \\
& \text { Miniature polyster capacitors } 250 \mathrm{~V} \text { working for vertical mounting }
\end{aligned}
\]
\[
\begin{aligned}
& \text { Miniature polyster capacitors 250V working for vertical mounting } \\
& .015, .022, .033, .047, .068-4 p .0 .1,5 p .0 .12,0.15,0.22-6 p .0 .47-8 p .0 .68-8 p .1 .0-12 p
\end{aligned}
\]Mylar (polyester) capacltors 100 V working E 12 series vertical mountling1000 p to \(8200 \mathrm{p}-3 \mathrm{p} .01\) to \(068-4 \mathrm{p} .0 .1-5 \mathrm{p} 0.12 .0 .15,0.22-6 \mathrm{p} .0 .47 / 50 \mathrm{~V}\). 8 pSubmin ceramic plate capacitors 100 V whg vertical mountings. E1 2 series\(2 \% ~ 3.8 p f\) to 47 pf - 3p. 2\% 56pf to 330pf - 4p. 10\% 390p-4700p
\[
\begin{aligned}
& \text { 2\% 4.8pf to 47pf - 3p. 2\% 56pf to 330pf - 4p. 10\% 390p-4700p. } \\
& \text { Disc/plate ceramics } 50 \mathrm{~V} \text { E12 series 1PO to 1000P. E6 Series 1EOOP to 47000P }
\end{aligned}
\]
\[
\text { Polystyrene capacitors } 63 V \text { werking E12 serlas long axial wires }
\]
\[
\text { Popy to 820pf -4p. } 1000 \text { pf to } 10,000 \mathrm{pf}-5 \mathrm{p} .12,000 \mathrm{pf}
\]
\[
\begin{aligned}
& 741 \text { Op Amp - 20p. } 555 \text { Timer } \\
& \text { cmos } 4001 \text { - 20p. } 4011 \text { - 22p. } 4017
\end{aligned}
\]
ALUMINIUM ELECTROLYTICS (Mfds/Volts)
\[
\begin{aligned}
& 1 / 50,2.2 / 50,4.7 / 50,10 / 25,10 / 50 \\
& 22 / 16,22 / 25,22 / 50,47 / 16,47 / 25,47 / 50 \text {. }
\end{aligned}
\]
\[
100 / 16,100 / 257 p ; 100 / 5012 \mathrm{p}: 100 / 100
\]
\[
\begin{aligned}
& 220 / 168 p ; 220 / 25.220 / 5010 p ; 470 / 16.470 / 25 \\
& 1000 / 25,25 \mathrm{p}: 1000 / 35.2200 / 2535 \mathrm{p} \text {. } 4700 / 25 \ldots
\end{aligned}
\]
\[
1000 / 2525 \mathrm{p}: 1000 / 35,2200 / 2535 \mathrm{p} ; 4700 / 25 \ldots
\]
\[
\begin{aligned}
& \text { Submin, tantalum bead electrolyics (Mifds/Volts) } \\
& 0.1 / 35,0.22 / 35,0.47 / 35,1.0 / 35,3.3 / 16.4 .7 / 16
\end{aligned}
\]
\[
0.1 / 35,0.22 / 35,0.47 / 35,1.0 / 35,3.3 / 16.4 .7 / 16
\]
\[
\begin{aligned}
& 2.2 / 35,4,7 / 25,4,7 / 35,6.8 / 6,15 p ; 410,22 / \mathrm{p}, 47 / 35 \\
& 33 / 10,47 / 6,22 / 1630 \mathrm{p} ; 47 / 1035 \mathrm{p} ; 47 / 1660 \mathrm{p} ; ~
\end{aligned}
\]
VOLTAGE REGULATORS
\[
\begin{aligned}
& \text { A + or }-5 \mathrm{~V}, 8 \mathrm{~V}, 12 \mathrm{~V} \\
& \text { DIODES (piv/amps) }
\end{aligned}
\]
```

``` 400/1A 1 N 4004 4p. 1250/1A BY 127 10p. 30/15A OA47
Zener diodes E24 series 3 V 3 to 33 V 400 mW - 8p. 1 watt
Battery snaps for PP3-6p for PPS
E.D. 8 mm. Am. Red, Greea Yellow-10p. Grommets \(3 \mathrm{~mm}-2\) p. 5 mm Mains indicator neons with 220 k resistor
20 mm fuses 100 mA to 5 A . O. blow 5 p . A/surge 10 p . Holders, chassis, mounting High speed pc drill \(0.8,1,0,1.3,1.5,2.0 \mathrm{~mm}-30 \mathrm{p}\). Machines 12 V dc HELPING HANDS 6 ball joints and 2 croc clips to hold awkward jobs AA/HP7 Nicad rechargeable cells 90p each. Universal charger un Glass reed switches with single pole make cbntacts - 8p. Magnets \(0.1^{*}\) Stripboard \(21 / 2^{\prime \prime} \times 1^{\prime \prime} 9\) rows 25 holes - 25 p. \(34 \times 21^{\prime \prime} 24\) rows 37 holes Jack plugs \(2.5 \& 3.5 \mathrm{~m}\)
Sockets Panel Mtg. \(2.5 \& 3.5 \mathrm{~m}\)
TRANSISTORS
BC107/8/9 - 12p. BC547/8/9 - 8p. BC557/8/9 - 8p. BC182. 182L. BC183. 183L BC1 84. 184L, BC212, 212L-10D.
BC327, 337, 337L-12p. BC727, 737 -12p. BD135/6/7/8/9-25p. BCY70-15p BFY50/51/52-20p.
BFY50/51/52 - 20p.
BFX88-15p, 2N3055 - 50 p. TIP31, \(32-30\) p. TIP41, \(42-40\) p. BU208A - £1.20, 8F195, 197, 12p
tonisers with seven year quarantiee, list price £16.95 tonisers with seven year guarantiee, list price \(£ 16.95\)
```

All prices are inclusive of VAT. Postage 30p (free over C5). Lists Free.
THE CR SUPPLY CO
127 Chesterfield Rd., Sheffield S8 ORN Tel: 0742557771

Return posting

The No 1 Magazine for Electronic \& Computer Projects

VOLUME 20 INDEX

CONSTRUCTIONAL PROJECTS

ELEMTRUNICS
The prepaid rate for semi-display space is $\mathbf{C 8}$ (+ VAT) per single column centimetre (minimum 2.5 cm). The prepaid rate for classified adverts is 30 p (+ VAT) per word (minimum 12 words).
All cheques, postal orders, etc., to be made payable to Everyday Electronics. VAT must be added. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Everyday Electronics, 6 Church Street, Wimborne, Dorset BH21 1JH. Tel: (0202) 881749

Vis
 SERVICE MANUALS
 Available for most Video Recorders, Colour \& Mono Televisions, Cameras, Test Equipment, Amateur Radio, Vintage Valve Wireless, Any Audio, Music Systems,
 Computers, Kitchen Appliances, etc. Equipment from the 1930's to the present.
 Over 100,000 models stocked, originals \& photostats.
 FREE Catalogue Repair \& Data Guides with all orders
 MAURITRON TECHNICAL SERVICES (EE)
 8 Cherry Tree Road, Chinnor, Oxfordshire OX9 40Y Tel: (0844) 51694 Fax: (0844) 52554

BTEC ELECTRONICS TECHNICIAN FULL-TIME TRAINING
THOSE ELIGHBLE CAN APPLY FOR E.T. GRANT SUPPORT AN EQUAL OPPORTUNTTES PROGAAMME O.N.C., O.N.D. and H.N.C.
Next course commences
Monday 6th January 1992
FULL PROSPECTUS FROM
LONDON ELECTRONICS COLLEGE
(Dept EE) 20 PENYWERN ROAD
EARLS COURT. LONDON SW5 9SU
TEL: 071-3738721

PCBCAD USERS
Artwork transparencies produced from your printouts or files Superb quality
SAE for details and FREE sample
SB Electronics Services
10 Peacock Crescent
Clifton Estatc, Nottingham NG118EP Tel 0602841831

AA (HPT) 500 mAH
 Quantity
 $100-199$ $80.77+V$

 AA 500 mAM solder tags M 700 mAH high capacity C (HP11), 1.2AH C 2AH wilh solder tags 0 (MP2) 1.2AH D AAH with solder tags PP3 8.4V 110 mAH Sub Cwith solder tags 1.2 AH 1/2 AA with solder tage MA (HP16) 180 mA10.77

+ VAT ع1.95-50.85 + VAT $\varepsilon 1.95 \quad 81.20+$ VAT $\mathrm{E} 2.20 \quad \mathrm{E} 1.69+\mathrm{VAT}$ $\sum_{53.60}^{53.25+\text { VAT }}$ $52.00 \quad \mathrm{E} 1.96+\mathrm{VAT}$ E4.95 $\quad \mathbf{E 3 . 5 9 + \text { VAT }}$ $54.95 \mathrm{E} 3.85+\mathrm{VAT}$ E.50 $\quad 81.70+\mathrm{VAT}$ £1.55 £1.17+VAT £1.75 £1.15+VAT

UCANDO ELECTRONICS TRAINING BY VIDEO
Learn Electronics by Video lessons.
DC/AC Power supplies, Semiconductors, Amplifiers, Oscillators, plus 2 videos for VCR Maintenance \& Repair. Plus Teaching Kitsets.
For all countries using PAL \& NTSC English language instruction.
Worldwide distribution for PAL \& NTSC format. Mastercard and Visa accepted.

ELECTRONICS ASSEMBLY COMPANY

P.O. Box 21191 , Christchurch New Zealand Phone: 3-796-570

- M-LПMEMU•日•

ELECTRONICS FOR THE HOBBYIST IS a 90 minute video-cassette using computer-graphic simulations to enable the hobbylst or student to understand the way in which common electronic components work and is avallable directly from us at only $£ 19.95$ inc. P\&P
Other tittes avallable. S.A.E. for list. Allow 14 days
for delivery. Send Cheques/P.O, payable to:
On-LIne Video Marketing (Dept EV-2)
The Cottage, Tredown Farm, Bradstone, Milton Abbot, Tavistock, Devon PL19 00T

If£ SAVERS/FANCY BITS \& FREEBIES
For him, her, and the kids for Xmas. Plus psu's from E1.25. Faliy lighte $\mathbf{~ E 2 . 2 5 / E 2 . 7 5}$ and more. PLUS tree clearance liste with a tree bonus gith by instant roturn. BAEC members wolcome. SAE 10 :
Northern Moor, Wiorch Road Northern Moor, Wythenshawe Manchester M23 OWJ

NEW VHF MICROTRANSMITTER KIT Tuneabie $80-135 \mathrm{MHz}, 500$ merre range, sensitive electret microphone, high quality PCB. SPECIAL OFFER complete kit ONLY £5.95 Ansmbled and ready to use 89.95 post 11
OUANTEK ELECTRONICS LTD Kits Dept. (EE), 45a Station Road Northfieid, Birmingham B31 3TE
Special offers for unusual sizes only while stocks last. Please check availability before ordering.
F cell 7 AM $32 \times 87 \mathrm{~mm}$ with flat to Collular telephor tags
Collular telephone battery
Stick of 4171×16 dia with 150 mm

$\begin{array}{ll}\begin{array}{ll}1-99 & 100-499 \\ £ 3.95 & £ 2.80+\text { VAT }\end{array} \\ £ & 59.30+\text { VI }\end{array}$
 All 1 to 99 prices include VAT
Please add 95 p postage \& packing per order
N. R. BARDWELL LTD (EE)
BC478 Transisiors.
Asstd. high brightness I.e.d.
Assid. high brightness.e.
Rectangular red I.e.d.s....................
Miniature axiall.e.
Miniature axiall.e.d.e super bright red.
Minlature red
Miniature red $1 . e . d . s 3 \mathrm{~mm}$ dia.
$433^{\circ} \mathrm{COM}$, anode seven segmont diaplays
22 NF I 00 V radial fllm
22 NF 100 V radlal fllm capacitors
33 NF 50 V radilal fim capactors
Asstd. disc ceramic capachors.
$4 U 716 \mathrm{~V}$ Redial electroltrics.
4 U 763 V Radial electrolytics
10UF 16 V Radial electrolytics
10UF
10UF 50 V Radial electrolytios
33UF 25 V Radial electrolytics.
47UF 16 V Radial electrolytics
47UF
100UF 10 V Radial electrolytics
10letrolytics
220 UF 16 V Radial electrolytics
4700 F 10 V Radial electrolytics
1000UF 10 V Radial electrolytics.
Asstd. IF transformers
Assit. RF chokes.
Asstd. dil sockets up to 40 pln.
Assorted sockel/conns/edge-
1 Inch Glass reed witches....
4 3W MBB min. rotary switches
Magnetic ear plps plus le
Paltier alfect hent pump.
10 watt Stereo amplifter, 4 controls plue data.
10 mm Ultra bright l.e d. rea 300 MCO
Prices include VAT, postage $£ 1.00$. Stamp for Lists

288 Abbeydale Road, Sheffield S7 1FL
Phone (0742) 552886. Fax (0742) 500689

Fuselodge Ltd. ToteophonelFax
 267 Acton Lane
 Chiswick, London W4 5DD 6275

We stock a large range of Electronic components, semiconductors, switches, resistors, capacitors, transformers, fans, cables, leads, boxes, tools, etc. Power supplies, test equipment. Custom made S.M. power supplies.

Mail order \& Credit Cards accepted

Kis

Cooke International

We stock used test equipment, scopes, sig. gens DVM's, oscillators, etc in large quantities We can now offer a copy service for workshop manuals for many instruments. Please ask for details. Send SAE for lists
Contact: Cooke International, Unit 4, Fordingbridge Site, Main Road, Barnham Bognor Regls, West Sussex PO22 0EB

Open: Mon-Frl 9am-5pm or phone

243545111 - Fax: 0243542457

Miscellaneous

KITS, PLANS, ETC for surveillance, protection (sonic, HV), "007" gear. Send 2×22 p stamps for list ACE(EE), 53 Woodland Way, Burntwood, Staffs. G.C.S.E. ELECTRONICS KITS at pocke money prices. S.A.E. for FREE catalogue SIR-KIT ELECTRONICS, 70 Oxford Road Clacton CO153TE
PROTOTYPE PRINTED CIRCUIT BOARDS one offs and quantities, for details send s.a.e. to B.M.A. Circuits, 38 Poynings Drive, Sussex BN3 8GR, or phone Brighton 720203
SPY BOOKS. Interested in espionage, counter surveillance, personal freedom or investigation? Do you seek information that some people feel should remain a secret or unpublished? Send large SAE to PO Box 2072, London NW10 ONZ. CHRISTMAS/NEW YEAR - Something novel and fascinating. Nine 4 in chemiluminescent lightsticks sent for $£ 9.99$. Lilco Ltd, 23 Middlewood Park, Livingston EH54 8AZ.
COLLECTORS! First 11 issues of Everyday Electronics from November 1971. Offers invited. Telephone 0745591863.
286 AT SYSTEM Running at $16 \mathrm{MHz}, 51 / 4$ and $31 / 3$ in hd disc drive. 40 Mb hard drive, mono monitor, 1 Mb memory with software, $£ 650$. Write to Lee Yeung, 140 New Road, Skewen, Neath, W. Glam SA 10 6HC
MONEY FROM BUGS booklet of circuits and information on making and selling bugs and accessories $£ 10.95$ system. PO Box 1041 , Misterton, Doncaster DN 104 BQ
PE MOSCODE AMP KIT $100 \mathrm{~W} / \mathrm{CH}$ of superb sound. Easily built, only $£ 189+£ 5$ postage. Details SAE to Hobtek, The Cottage, 8 Bartholomews, Brighton BN 1 IHG

MAKE YOUR INTERESTS PAY!

Over the past 100 vears more than 9 milllon students throughout the worla have found it worth their while! An Ics home.study course can help you get a better iob, make more
monev ano have more fun out of life! ics has over 90 years experience in home-study courses and is the largest correspondence school in the world. You learn at vour own pace, when and where you want under the guicance fexpe wFORMTION PACK on now we can help You. Post or phone today
course of your choice. Trick one pox onlyl

Technical Information Services

76 CHURCH STREET, LARKIAAL, LANARKSIIRE, MLO HE
Tel. (0698) 884585 Mon-Frl 8.30 sm - 5.00 pm Tel. (0698) 883334 Outwith business hours Write now with ill day on both lines Write now wifh an SAE for your
FREE QUOTE FREE VOUCHERS \& FREE CATALOGUE
Remember, nol only do we have EVERY service sheel ever produced. but we also have

THIE WOHLDS LARGEST COLLECTION OF SERVICE MANUALS

- we are sole supplers of various falut-finding guides repair manuals a technical manuals
CTV, Vidzo, CD, Mi-FI, Camionder, Surtilties, Compuler, Domestle Equip; ...er OATA REFERENCE MANUAL -....enentlel for the sarlous elactorctan REE updaling and 10% difcount voucher only 15. Incorporates Chilque Model Identincetion and Chasshs Dexa

C_SIM Electronic Circuit Simulation \& Analysis Software C_SIM is a circuit analysis a simulation environment for small computers. You can check for toop stability. Irequency response or distortions in cirYuits before actually building anything, leading to 'rlght first time' designs, and lower development costs. It features.

* Easy to use graphlcal user intertace.
- Graph ploting program to plot simulation results, up to 4 traces per graph, with fult cursor
measurement system.
Analogue circult simulator utilising a subsel of the industry standard SPICE 2 simulator language, handiling all passlve componerts, BJTs, diodes
sources, and pertorming DC, AC and transient analysis.
- A prepr, and periorming DC. AC andransierarchies and library fliles of subclrcuits.

C_SIM is constantly undergoing devalopment. Forthcoming updates include an expression evaluator for passing parameters to subclrcuits, and defining component values by formulae. C_SIM Is avalable for the ATARI ST, COMMODORE AMIGA, and IBM PCs and compatibles, and comes complete with a ring bound manual The PC version requires 512Kb RAM minimum, the ATARI ST/AMIGA versions reaire TMb RAM and 1Mb disk minimum, All versions run with Iard disk 1 present, and are not copy protected. The
verston comes on both 3.5 and 5.25 inch floppies.

Order now by post direct from

Akula Systems, 49 Lisson Grove, Mutley, Plymouth PL4 7DL using cheque or postal order. Allow up to 28 days for delivery. nquiries welcome. Alernaively, order your demonatration for only £id, This teatures a fully functional, but cut down syst
manual on disk and printed command summary.

AF WAVEFORM GENERATOR

 KIT ONLY
£29.95

(£39.95 BUILT \& TESTED) The major drawback for the electronics enthusiast is the high cost of test gear. This is the first in a series of low cost instruments designed to make test gear more affordable to the enthusiast.

- SINE/SOUARE/TRIANGLE
- FREQUENCY RANGE $20 \mathrm{~Hz}-18 \mathrm{kHz}$
* OUTPUT SIGNAL VOLTAGE 0.10 V p-p
* POWERED BY TWO PP3 BATTERIES (Not supplied)

Just add $£ 1.50 \mathrm{P} \& \mathrm{P}$ and send cash. cheque or P.O. to
KM ELECTRONICS
54 Moorside Road. Kirkheaton. Huddersfield HD5 0LP. Tel: (0484)' 545914

DISTANCE LEARNING COURSES

The National College of Technology offer a range of packaged learning short courses for study at home or in an industrial training environment which carry national BTEC awards. Study can commence at any time and at any level enabling you to create a study routine to fit around existing commitments. Courses on offer include:

> Analogue Electronics
> Digital Electronics
> Fibre/Optoelectronics Programmable Loglc Controllers

Tutor support and BTEC certification are available as options with no travelling or college attendance required. These very popular courses which are ideal for vocational training contain workbooks, audio cassette lecturettes, PCB's, instruments, tools, components and leads as necessary to support the theoretical and practical training. Whether you are a newcomer to electronics or have some experience and simply need an update or certification, there is probably a distance learning course ready for you. Write or telephone for details to:

National College of Technology
NCT Ltd., PO Box 11
Wendover, Bucks
Tel: (0296) 624270

19" RACK MOUNTING EQUIPMENT CASES

PROJECT CASES		
Type	Height	Price
PUI	13.0	¢17.00
PU2	$3^{1} 2^{\prime \prime}(88 \mathrm{~mm})$	[1890
PU3	51* ${ }^{\text {(}}$ (133 mm)	¢20.94
PU4	7% (178mm)	$[22.98$
PU6	$10^{1} \mathrm{z}^{\prime \prime}(266 \mathrm{~mm})$	[27.07
EQUIPMENT CASES		
Type	Height	Price
U1	$13{ }^{4}{ }^{\text {(}}$ (44mm)	[2150
U_{2}	$3^{1} z^{\circ}(88 \mathrm{~mm}$	124.75
U3	$5^{1} \mathrm{i}^{\prime \prime}(133 \mathrm{~mm})$	[2820
U4	$7{ }^{\text {P }}$ (178 mm)	โ30.55

Deinery included (UK only)
BLANKING PANELS, RACKING CONSOLES and RACK CABINETS are also avalable
Please send SAE lor detalls
Tel 0275823983 tor Access/Visa Sales or chequel
with order 10:

RACKZ PRODUCTS
PO Box 1402 Mangotsfield, Bristol, England, BS17 3RY

NEW FROM HIGH-Q
30VELLEMAN KITS
Added To Our Range NOW "130" KITS AVAILABLE For all Electronic Enthusiasts
Sole UK Importers •Trade Enquiries contact below NEW KITS INCLUDE:

CAR ACCESSORIES

LIGHT-EFFECTS COMPUTER INTERFACE
GADGETS MEASURING DEVICES

For 1991 Catalogue \& Price List, please sent 75p (UK) or $£ 2.00$ (Over:seas) to

HIGH-Q-ELECTRONICS

OMNI ELECTRONICS

174 Dalkeith Road, Edinburgh EH16 5DX 0316672611
A COMPREHENSIVE RANGE WITH SERVICE SECOND TO NONE

OUR MUCH EXPANDED, BETTER ILLUSTRATED CATALOGUE COSTS £1.50 - INCLUDES VOUCHERS TO USE AGAINST FUTURE PURCHASES. TO RECEIVE A COPY PLEASE SEND YOUR REMITTANCE WITH THE VOUCHER BELOW.

PROCOM Electronics
 F.M. Wireless microphone
 814.99

Gas Iron.
14.99

Gas Iron Bits. $£ 5.99$
25 way 'D' cover 10 for $£ 3.50$
12 Volt Relays DPDT $75 p 5$ for $£ 3.00$
12 Volt Relays 4PDT
3 Sub-frame racks (flat pack)quantity discount 2N3055
3-16V Piezo Sounders
Mercury tilt switch
...... $5 p 5$ for $£ 4.00$

$$
2 / 24 \text { hrs c/w data (mains transformer }
$$ supplied) not

12 Volt Soleniods. (Dim $20 \mathrm{~mm} \times 20 \mathrm{~mm}$)
Philips $9^{\circ "}$ Colour Monttor (Scart) (S / H)
95p 10 for $\mathbf{8 8 . 0 0}$ (CCD Co Mono Monitor (Comp video) (S/H) (£10 p\&p) $£ 49.99$ Colour Cameras from (S/H) $£ 8$ p p) $£ 225.00$ 20 Meg Hard Disc Drive M.F.M. ($£ 7$ p\& ${ }^{2}$) $£ 85.00$ Pocket Multimeter, 14 ranges $£ 7.99$
$\mathbf{E 1 9 . 9 9}$ Multimeter 20k Ω / V Transistor check $£ 19.99$
$£ 21.99$ Digital Multimeter $31 / 2$ digit diode check 10 A d.c. current ᄃ21.99 Top quality box jointed Japanese long nose pliers. f6.99
Top quality box jointed Japanese oblique cutters. f6. 99
f1. 99 Stereo headphone (mini)
Hex switches (RS337-093)
IEC filtered/fuse carrier chassis plug
AA NiCads

Seasanal Greetings to our customers

ALL. PRICES VAT INCLUSIVE
Access and Visa taken, min. order $£ 5.00$
ALL POSTAGE \& PACKING £1.00 (unless otherwise stated)

13 Clarence Arcade

 Stamford Street Ashton Under LyneLancashire OL6 7PT

Shop Hours: Mon-Sat: 9.30 am-6.00 pm (closed Tues morning)

The CATALOGUE

120 pages, A4. Expertly presented and illustrated. Easily referred to. Packed with valuable information

The COMPONENTS

As wide a choice as you could wish - semiconductors, surface mounting, opto-electronics, Rs \& Cs, etc. Top quality; fairly priced.
The SUPPLIERS
Siemens, Boss, Cliff, Omeg, Lorlin, R.S., Uniross, etc. to our top quality standards.

The

SERVICE
Prompt, personal, with customer satisfaction guaranteed. Access/Visa facilities

Electrolalue

28 (A) St. Jude's Road, Engletield Green, Egham, Surrey TW20 OHB Phone-0784433603 Fax-0784435216

LOW COST UHF RADIO SWITCHING

AS USED BY THE PROFESSIONAL SECURITY MARKET

Incorporating the latest Surtace Acoustic Wave technology, the system consists of a small "zero-power", UHF transmitter with digital encoder and a UHF receiver unit with digital decoder and 3 relay outputs, 2 alternate and 1 momentary.
8-way DIL switches on both boards set the unique security code. Many applications including lighting, alarms, the "automatic home", etc.

Size:	$T \times 45 \times 30 \mathrm{~mm}$	$R \times 55 \times 65 \mathrm{~mm}$
Supply:	$T \times 3-12 \mathrm{~V}$	$R \times 5-12 \mathrm{~V}$
Range	Up to 200 m	

Range
Tx 3-12V
Up to 200 m
$R \times 55 \times 65 \mathrm{~mm}$

Complete System (2 kits $£ 15.99$
Individual Receiver
$£ 19.99$
Please allow 28 days for delivery Cheques/POs to:

ADVERTISERSINEK	
AKULA SYSTEMS	829
AUTONA.	781
N. R. BARDWELL.	. 828
BK ELECTRONICS	799/Cover (ili)
BLB ELECTRONICS	.. 832
BULL ELECTRICAL	. Cover (ii)
CAMBRIDGE COMP. SCIENCE	. 830
CIRKIT DISTRIBUTION.	.819/823
COMPELEC	. 831
CRICKLEWOOD ELECTRONICS	. 789
CROTECH INSTRUMENTS	. 759
CR SUPPLY COMPANY.	. 825
ELECTRONIZE DESIGN.	. 823
ESR ELECTRONIC COMP.	. 803
ELECTROVALUE.	. 831
HART ELECTRONIC KITS	. 813
HIGH-Q-ELECTRONICS.	. 830
HILLS COMPONENTS.	. 789
HOBBYKIT.	754
ICS.	. 829
JAYTEE ELECTRONIC SERVICES	.823/825
JPG ELECTRONICS.	. 828
KM ELECTRONICS	. 829
LITESOLD.	819
MAGENTA ELECTRONICS	760/761/762
MAPLIN ELECTRONICS	. Cover (iv)
MARAPET..	. 781
MARCO TRADING	. 758
MAURITRON TECH. SERV'S.	. 828
NATIONAL COLLEGE OF TECHNOLOG	. 829
NORTECH ELECTRONIC.	. 819
NUMBER ONE SYSTEMS	. 825
OMNIELECTRONICS	. 830
PANRIXELECTRONICS.	. 781
PROCOM ELECTRONICS	. 831
RACKZ PRODUCTS.....	. 830
RADIO \& TV COMPONENTS.	. 777
RICH ELECTRONICS.	. 830
SERVICE TRADING CO	. 829
SHERWOOD ELEC. COMP.	. 830
SUMA DESIGNS.	. 778
TECHNICAL INFO. SERVICES.	. 829
TKELECTRONICS	. 831
TSIEN.	. 773
TYPESETTING BUREAU.	. 832
VIEWCOM ELECTRONICS	..756/757

ADVERTISERS INDEX

IF AN

ADVERT IS WRONG, WHO PUTS IT RIGHT?

We do. The Advertising Standards Authority ensures advertisements meet with the strict Code of Advertising Practice.

So If you question an advertiser, they have to answer to us.

To find out more about the ASA. please write to Advertising Standards Authorily. Departınent X. Brook house Torrington Place. London WCIE 7IIN

 \title{
Typefit
}
 \title{
Typefit
}

The Typesetting Bureau Ltd

6 Church Street, Wimborne Dorset BH211JH

Tel: (0202) 882299
Fax: (0202) 841692
Modem: (0202) 882270
DX: 45314 Wimborne
PC page make-up software and typesetter output bureau
> "For serious document production it knocks other DTP software into the proverbial cocked bat."

Those are the words of Jim Tyler, an independent journalist after reviewing Typefit for "Micro Computer Mart". His letter to us went on to say:
"I spent two years editing a magazine, I bave been involved in running a DTP bureau and I currently make my living writing classic car restoration manuals for a division of Reed Business International. I would choose Typefit for any of these roles."
No we did not pay him anything - he did not even get a free copy of our software (Typefit only costs $£ 225$ + VAT anyway). And just for the sceptics he is not a personal friend, relative or shareholder in the company.
His sentiments are backed up by our customers, some of which have changed from other well-known DTP packages costing much more - they tell us Typefit is more
versatile and provides them with use of a better range of quality typefaces (230 different fonts).
With Typefit you do your own Typesetting, proof and correct your work, we provide the expensive phototypesetter and fonts to give you top quality 2000 dot per inch bromide output.
Before investing in any other DTP package and especially before spending a small fortune on a specialist typesetting computer or other equipment, please investigate Typefit.
$\Gamma^{----\bar{P}} \overline{\text { Please send me more information on Typefit }}$
I Name.
Address:

Post Code.
Tel:
EE12

THE RENOWNED MXF SERIES OF POWER AMPLIFIERS FOUR MODELS：－MXF200（100W＋100W）MXF400（ $200 \mathrm{~W}+200 \mathrm{~W}$ ） MXF600（ $300 \mathrm{~W}+300 \mathrm{~W}$ ）MXF900（ $450 \mathrm{~W}+450 \mathrm{~W}$ ）
FEATURES：\＃OWEA RATINGS R．M．S．NTO 4 OHMS，BOTH CHANNELS DRIVEM

 USED THE WORLD OVER IN CLUBS，PUBS，CINEMAS，OISCOS ETC．

PRICES：－MXF200 ¢175．00 MXF400 ¢233．85 MXF600 329.00 MXF900 £449．15 SPECIALIST CAAAIER DEL E12．SO EACH

GXPVAFISPESD TUANTABLE CHASSIS

＊Manual arm＊Steel chassis＊Electronic speed control $33 \& 45$ R．P．M．＊ari pitch control＊High torque servo driven DC motor＊Transit screws＊ $12^{\prime \prime}$ die cast platter＊Neon strobe＊Calibrated balance weight＊Removable head shell ${ }^{1 / 2}$ cartildge fixings＊Cue lever＊ $220 / 240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ ＊ $390 \times 305 \mathrm{~mm}$＊Supplied with mounting cul－out template

PRICE $861.30+$ ع3．70 P\＆P
OPIIONAL MAGNEIIC CAFTRIDGES STANTON AL500mkII GOLORING G950 PRICE 816.95 －50P P\＆P PRICE E7．15＋50P PAP SHAREO DISCOHIXEFR DJ650C ＊WITH ECHO＊ STEREO DISCO MIXER WHI $2 \propto 7$ band LED Vu meters．MANY OUTSTANDING FEATURES：．Including ECho with repeat 8 s．talk－over switch， 7 Channeis with individual faders plus cross lade，cue Meadphone Monitor．Useful combination of the following inputs：－ 3 turntabies（mag）， 3

Price ع134．99＋ع5．00 P\＆P

Join the Piezo revolution！The low dynamic mass（no voice coil）of a Plezo tweeter produces an improved these unils can be added to existing apeather systems ol up to 100 watts（more if two are put in serles．FREE EXPLANATORY LEAFLETS ARESUPPLIED WITH EACH TWEETER．
EXA

TYPE＇A＇（KSN1O36A） 3 ＂round with protective wire mesh．Ideal for bookshelf and nedium sized Hi ．Fi apeakers．Price $\mathbb{C} 4.90+50 \mathrm{p}$ P\＆P． TYPE＇B＇（V．SN1005A） $31 /$＂super horn for general purpose speakers， disco and P．A．systems elc．Price $£ 5.99$－ 50 p P\＆P．
TYPE＇C＇（KSN1016A）2＂ 5 ＂＂wide disperslon horn for quality HI．Fi sys－ tems and quality discons etc．Price $£ 6.99+50 \mathrm{p}$ P\＆P．
TYPE＇D＇（KSN4 025 1） $22^{\prime} \times 6^{\prime \prime}$ wide dispersion horn． response retained extending down to mid－range（ 2 KHz ）．Suitable for high quality HI－FI systems and quality discos．Price 〔9．99＋50p P\＆P． TYPE＇E＇（KSN1038A） $3^{4}{ }^{4}$＂horn Iweeter with attractive silver finish trim． Suitable for Hi－Fl monitor syslems etc．Price ©5．99＋50p P\＆P． LEVEL CONTROL Comblnes，on a recessed mounting plate，level control and cabinet input jack socket． $85 \times 85 \mathrm{~mm}$ ．Price $£ 4.10$＋ 50 p P\＆P．

THPIINNGTHOUSPEAKGRS

THE VERY BEST IN OUALITY AND VALUE
Mede especially to suit today＂s need tor compaciness w sound levels，linished in hard wearing black vynide with protective plus high Irequency horn for a full Irequency range of 45 Hz －20 KHz

CHOICE OF TWO MODELS
POWER RATINGS QUOTED IN WATTS RMS FOR EACH CABINET OMP 12－100WATTS（100 d8）PRICE C163．50 PERPAIR OMP 12－200WATTS（200dB）PRICE E214．55 PER PAIR

स्लकn IUERISO BOOSTERAKIPS

THREE SUPERB HIGH POWER
CAR STERED BOOSTERAMPLIFIER CAR STERED BOOSTIER AMPLIFIERS
150 WATTS $(75+73)$ Stereo，150W Bridged Mono 250 WaTTS $(125+125)$ Stereo， 250 W Brlaged Mono 400 WATTS $(200+200)$ Stereo， 400 W Bridged Mono
ALL POWERS INTO 4 OHMS Features：
－Stereo，bridgable mono ＊Choice of

RICES： 150 W ع 89.99 250W E99．99
400W $\mathrm{CVO9.95}$ PAPE2．00 EAC

OXP MOSFFZTPOWERAUFLITIERMODULIZ SUPPLIED READY BULTT AND TESTED．

OMP／MF 100 Mos－Fet Output power 110 watts R．M．S．into 40 hms ，trequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB ，Damping Factor >300 ．Slew Rate $45 \mathrm{~V} / \mathrm{uS}$ ， T．H．D．typical 0.002% ，Input Sensitivity 500 mV ，S．N．R 110 dB Size $300 \times 123 \times 60 \mathrm{~mm}$ PRICE ©40．85＋£3．50 P\＆P

OMP／MF 200 Mos－Fet Output power 200 watts R．M．S．into 4 ohms，trequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB ，Damping Factor >300 ，Slew Rate $50 \mathrm{~V} / \mathrm{uS}$ ， T．H．D．typical 0.001% ，input Sensitivity 500 mV ，S．N．R -110 dB ．Size $300 \times 155 \times 100 \mathrm{~mm}$
PRICE $64.35+$＋ 4.00 P\＆P
OMP／MF 300 Mos－Fet Output power 300 watts R．M．S．into 4 ohms，frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB ，Damping Factor >300 ，Slew Rate $60 \mathrm{~V} / \mathrm{uS}$ T．H．D．typical 0.001% ，Input Sensitivity 500 mV ，S．N．R． -110 dB ．Slze $330 \times 175 \times 100 \mathrm{~mm}$
PRICE E81．75－E5．00 P\＆P
OMP／MF 450 Mos－Fet Output power 450 watts R．M．S．into 4 ohms ，frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ －3dB，Damping Factor >300 ，Slew Rate $75 \mathrm{~V} / \mathrm{uS}$ T．H．D．typical 0.001% ，Input Sensitivily 500 mV ，S．N．R -110 dB ，Fan Cooled，D．C．Loudspeaker Protection， Second Anti－Thump Delay．Size $385 \times 210 \times 105 \mathrm{~mm}$ PRICE E132．85＋C5．00 P\＆P
NOTE：MOS－FET MODULES ARE AVAILABLE IN TWO VEASIONS STAMDARD－INPUT SEMS SOOMV，BANO WIOTH IOOKHZ．
PEC（PROFESSIONAL EOUIPMENT COMPATIBLE）－INPUT SEN
 Vu METER Compatible with our lour amplifiers de lafled above．A very accurate visual display employing 11 L．E．D．s（ 7 green， 4 red）plus an additional on／o indicator．Sophisticated logic control lor very last rise and decay times．Tough PRICE \＆8．70 $+\mathbf{5 0 p}$ P\＆P

COUDSPEAKIRE

 LARGE SELECTION OF SPECIAIIST LOUDSPEAKERS AVAILABLE，INCLUDING CABINET FITTINGS，SPEAKE？ GRILLES，CROSS－OVERS AND HIGH POWER，HIGH FREOUENCY BULLETS AND HCRNS，LARGE（A4）S．A．E． （ 50 p STANPED）FOR COMPLET $\overline{\text { E LIS }}$ LISTP．From Mckenzie Professional Series

［MCKENZIE：－INSTRUMENTS，P．A．，DISCO，ETC

ALL MCKENZIE UNITS B OHMS IMPEDANCE
B＂ 100 WATT CB－100GP GEN．PURPOSE，LEAD GUITAR，EXCELLENT MID，DISCO RES．FREQ．BOHZ，FREO．RESP．TO 7 KHz ，SENS $96 d B$ ． 10 100WATT C10－100GP GUITAR，VOICE，KEYBOARD，DISCO，EXCELLENT MIO RES．FREQ．72Hz，FREO．RESP．TO 6 KHz．SENS97dB
10 200WATH C10－200GP GUITAR，KEYB＇D，DISC 10200 WAT FC10－200GP GUITAR，KEYE＇D，DISC
RES．FREO．69HZ．FREO．RESP TO SKHZ，SENS 97dB． RES．FREO． 69 Hz，FREQ．RESP．TO 5KHz，SENS 97dB．
$12,100 W A T T$ C12－100GP HIGH POWER GEN P 12 10WWATT C12－100GP HIGH POWER GEN．
RES．FREO．4TH2，FREO RESP．TO 7KHZ，SENS $98 d B$
 RES．FREO 45Hz，FREO．RESP．TO 12K HZ．SENS 97 CIB． 12 200WATT，C12－200B HIGH POWER BASS，KE RES．FREO．45HZ，FREQ．RESP．TO SKHZ，SENS 99dB．
 RES．FREO． 49 Hz ，FREO．RESP．TO 7 KHz ，SENS 100 d B． 15 100WATT C15－100BS BASS GUITAR，LOW FR
RES．FREQ．AOHZ，FREO．RESP．TO SKHZ，SENS 98 ． RES．FREO．IOHZ FREO．RESP．TO SKHZ，SENS 98d日．
15 200WATT C15－200日S VERY HIGH POWER 15 200WATT C15－200日S VERY HIGH POWER BASS．
RES．FREO．OHZ．FREO．RESP．TO 3KHZ，SENS $980 B$ ． 15 250WATT C15－250BS VEAY HIGH POWEA BA
RES．FREO．S9Hz，FREO．RESP．TO $4 K H Z$, SENS 99 IB
 RES．FREO． 40 Hz ，FREQ．RESP．TO 4 KHz ，SENS 100 dB ．
 RES．FREO．27HZ，FREO．RESP．TO 2K HZ．SENS．9BAB．

EAROSNDEASs－HIFF，STUDIO，IN－CAR，EIC

ALL EARBENDER UNITS 8 OHM S（ExCODP EB8． 508 EB10．50 mich yro due
BASS，SINGLE CONE，MIGH COMPLIANCE，ROLLED SURROUND
BASS，SINGLE CONE，HIGH COMPLIANCE，ROLLED SURROUND
B 50 watt EBB－ 50 DUAL IMPEDENCE，TAPPED $4 / 8$ OHM BASS，HIFI，IN．CAR
10－SOWATT EB10－50 DUAL TO 7KHE SENS 97dE．
RES．FREO．4OHz，FREO．RESP TO SKHZ，SENS ． 990 AB ．
10 100WATTEB1O－100 BASS．HI－FI，STUDIO
RES．FREO． $35 H 2$ FREO．RESP．TO 3 HZ SENS 96 ．
12 100WAT EB12．100 BASS，STUDIO，HI－FI，EXCELLENT DISCO
 FULL RANGE TWIN CONE，HIGH COMPLIANCE，ROLLED SURROUND
5% EOWATT EBS
 RES．FREO．63Hz，FREO．RESP．TO 20KHz，SENS 92dB
\qquad RES．FREO．38Hz，FREQ．RESP．TO 20KHz，SENS $94 d \mathrm{AB}$
8° 60WATT EBB－6OTC（TWIN CONE）HI．FI，MILTI－AR
RES．FREQ． 40 Hz ，FREQ．RESP TO $18 K H z$ ，SENS
ES．FEL． 40 Hz ，FREQ．RESP．TO I6KHz，SENS 890 B
10＂SOWATT EB10－6OTC（TWIN CONE）HI－FI，MULTI

TRANSMITIER HOB：BY KTIS

PROVEN TRANSMITTER DESIGNS INCLUDING GLASS FIBRE PRINTED CIRCUIT BOARD AND HIGH QUALITY COMPONENTS COMPLETE WITH CIRCUIT AND INSTRUCTIONS 3W TRAMSMUTTER BO－100MHZ，VARICAP COHTROLLED PROFESSIONAL

FM micro Thansmitter $100 \cdot 108$ Mhz，VARICAP TUMED，COMPLETE WTM
VERY SENS FEE MIC，RANGE 100－300m，SIZE S6 I L6mm，SUPPLY SV BATIERY．

[^0]: SPECLAL OFFER
 ONDC-DC CONVERTERS
 Heayberd PC mounting $51 \times 51 \mathrm{~mm} .48 \mathrm{~V}$ DC input. List price $£ 50+$
 21893 SV 1A output $£ 2.00$
 Z1894 12V $420 \mathrm{mÅ}$ output $\mathbf{£ 2 . 0 0}$ $100+.80+$ VAT $1 \mathrm{k}+.50+\mathrm{VAT}$

 Please note these are ex-equip
 but fully operational

[^1]: 24224 Meter case $135 \times 120 \times 45 \mathrm{~mm}$, sultable for our

[^2]: These anits are new and boxed, but because the company who manufactured them has gone bankrupt they are offered without guarantee. There is a comprehensive 143 page instruction manual provided. These units originally sold for over 5500 .
 Our Bargein Bacement Price
 c78
 If you want to look through the manual first, send £12 (£10 deposit $+£ 2$ post); $£ 10$ relunded on its return

[^3]: $\mathbf{Z 1 7 0 5}$ PCB $110 \times 50 \mathrm{~mm}$ with 9400, LM339. 24 V DIL relay, $2 \times$

[^4]: Z1370 16 pin OIL resistor network $8 \times 10 \mathrm{k}$. Beckman.
 Price 10/£1.00 100/5.20 Price....................................$~$
 21371
 16 pin DIL resistor network 8×22 R. Beckman. 2137116 pin DIL resistor network 8×22 R. Beckman.
 Price $. ~ 10 / ~ £ 1.00 ~ 100 / 5.20 ~$ 27869 pin SIL resistor: $8 \times 100 \mathrm{~K}$
 Price ... Pack of 10/ £1.00

[^5]: 86434 way interlocking each DPCO
 Pric.
 zese
 30p each $10 / 1.75100810 .45$ 4 pole clo
 40p each $10 / 2.20$ 100/ 13.05

[^6]: 1819 Rocker switch in black plastic. SP on/ off rated 164 250 V ac. Needs $30 \times 12 \mathrm{~mm}$ cutout.
 Price
 Pack of 4/ © 1.00

[^7]: 24255 These tweezers are finest quality stainless stee 130 mm long with serrated ends
 Price
 $75 p$
 20238 A special tool for worglemongering antl-clockwise thripples.

[^8]: $£ 5.03$
 $£ 3.77$
 $£ 3.77$
 $£ 3.83$
 £ 4.41
 $f 3.24$
 f6.87
 $£ 4.05$
 $£ 4.93$
 $£ 4.45$
 per $£ 3.06$
 £3.06
 board
 £8.16

