

CREENWELD ELECTRONICS
 32 PAGE
 CATALOGUE SUPPLEMENT

AUDIO TELESCOPE

VERSATILE AUDIO

AMPLIFIER

EASY SWITCH

NEW FEATURE
CIRCUIT SURGERY
READERS FORUM, HINTS \& TIPS,
TROUBLE SHOOTING, ETC.

AMSTRAD PORTABLE PC'S FROM $£ 149$ (PPC1512SD). £179 (PPC1512DD). £179 (PPC1640SD). §209 (PPC1640DD). MODEMS $£ 30$ EXTRA.NO MANUALS OR PSU.

HIGH POWER CAR SPEAKERS. Stereo pair output 100 w each. 4ohm impedance and consisting of $61 / 2^{\prime \prime}$ wooter 2" mud range and 1 " tweeter. Ideal to work with the amplifier deseribed above. Price per 2KV 500 WATT TRANSFORMERS Suitable for high voltage experiments or as a spare for a microwave oven etc. 250V AC input. experimenis ofas aspar
Now only $\& 4.00$ ref 4 P157
MICROWAVE CONTROL PANEL Mains operated, with touch switches. Complete with 4 digit display. digital clock, and 2 relay outputs one for power and one for pulsed power (programmable). Ideal for all sorts of precision bimer applications elt. Now only $£ 4.00$
FIBRE OPTIC CABLE. Stranded optical fibres sheathed in black PVC. Five matre length $£ 7.00$ ret 7P29R
12 V SOLAR CELL. 200 mA output ideal for trickle
charging otc. 300 mm square. Our price $£ 15,00$ ret
PASSIVE INFRA-RED MOTION SENSOR. Complete with daylight sen sor, adjustable lights on timer (8 secs - -15 mins), 50 range with a 90 deg coverage. Manual overide facility. Complete with wall brackets, bulb holders etc. Brand $19 P 29$
Pack of two PAR38 bulbs for above unit $£ 12.00$ ref 12P43R VIDEO SENDER UNIT Transmit both audio and video signa standard TV set within a 100 ' rengel (tune TV to a spare channel) $12 V D C$ QP. $£ 15.00$ ref $15 P 39$ R Suitable mains adaptor $£ 5.00$ ref 5P191R
FM TRANSMITTER housed in a standard working 13A adapter (bug is mains driven). $£ 26.00$ ref 26 P 2 R MINATURE RADIO TRANSCEIVERS
walkie talkies with a range of up to 2 kilometres. Units measure $22 \times 52 \times 155 \mathrm{~mm}$. Complete with cases. $£ 30.00$ (1) (i) FM CORDLESS MICROPHONE. Small hand held unit with a 500^{\prime} rangel 2 transmit power levels reqs PP3 battery. Tuneable to any FM receiver. Our price $£ 15$ ref 15P42AR
12 BAND COMMUNICATIONS RECEIVER,
bands. FM, AM and LWDX/Ocal switch tuning 'eye' mains bands, FM, AM and LWDX/Iocal switch, tuning 'eye' mains
or battery, Complete with shoulder strap and mains lead or battery, Complete with shoulder strap
NOW ONLY $£ 19.00!!$ REF $19 P 14 R$.
CAR STEREO AND FM RADIOLOw cost stereo sys 5 watts per channel. Signal to noise ratio better than wow and flumer less than 35%. Neg earth. $£ 25.00$ re 25P211
LOW COST WALIKIE TALKIES.Pair of battery op erated units with
a pair ret 8P50R
7 CHANNEL
and
7 CHANNEL GRAPHIC EQUALIZERblus a 60 watt power ampl 20.21 KHZ 4-8R 12 -14VDC negat ve earth. Cased. $£ 25$ ref 25 P 14 R . NICAD BATTERIES. Brand now top quality. $4 \times$ AA's $£ 4.00$ ret 4P44R. $2 \times$ C's $£ 4.00$ ret 4 P73R, $4 \times$ D's $£ 9.00$ ref 9P12R, $1 \times$ PP3 6.00 rer 6 P 35 R

TOWERS INTERNATIONAL TRANSISTOR SELECTOR GUIDE.
CABLE TIES. $142 \mathrm{~mm} \times 3.2 \mathrm{~mm}$ white nylon pack of $100 £ 3.00$ ref 3P104R. Bumper pack of 1.000 ties $£ 14.00$ ref 14P6R

1992 CATALOGUE AVAILABLE NOW
IF YOU DO NOT HAVE A COPY PLEASE REQUEST ONE WHEN ORDERING OR SEND US A 6 "Xg" SAE FOR A FREE COPY.

GEIGER COUNTER KIT.Complete with tube, PCB and alicomponents to build a battery operated geiger counter. £39.00 ref 39P1R FM BUG KIT. Now design with PCB embedded coil Transmits to any FM radio. 9 v battery req'd. $£ 5.00$ rel 5 P158R
FM BuG Built and tested superior gv operation $£ 14.00$ ref 14P3R COMPOSITE VIDEO KITS. These conver composite video into separate H sync. V sync and video. 12 VDC . $£ 8.00$ ref $8 P 39 R$. SINCLAIR C5 MOTORS $12 v 29 A$ (full load) 3300 pm $6^{\circ} \times x^{4} 1 / 14^{\prime \prime}$ O/P shatt. New. $£ 20.00$ rel 20P22R.
As above but with fitted 4 to 1 inline reduction box $(800 \mathrm{rpm})$ and oothed nylon belt drive cog $£ 40.00$ ref 40P8R
SINCLAIR C5 WHEELS $13^{\prime \prime}$ or $16^{\prime \prime}$ dia including treaded tyre and wheel $£ 6.00$ ref 6 620R $16^{\prime \prime}$ wheel $£ 6.00$ pef 6 P21R carbonate. 13° ELECTRONIC SPEED CONTROL KITfor c5 motor. PCB and all components to build a speed controller ($0-95 \%$ of speed). Uses components to build a speed controller (0 SOLAR POWERED NICAD CHARGER.Charges 4 AA nicads in 8 hours. Brand new and cased $\$ 6.00$ ref 6P3R.
12 VOLT BRUSHLESS FANA $1 / 2$ " square brand new ideal tor boat, car, caravan etc. £5.00 ref 5P206.
ACORN DATA RECORDER ALF503 Made for BBC computer out suitabie for others. Includes mains adapter, leads and book. 15.00 rgf 15P43R

VIDEO TAPES. Three hour superior quality tapes made under cence from the famous JVC company. Pack of 5 tapes New low price 88.00 ref 8 P16
PHILIPS LASER. 2MW HELIUM NEON LASER TUBE BRAND NEW FULL SPEC £ 40.00 REF 4OP10R. MAINS POWER SUPPLY KIT £20.00 REF 20P33R READY BUIL AND TESTED LASER IN ONE CASE 575.00 REF 75P4R. 12 TO 220 V INVERTER KITAs supplied it will handle up so about 15 w at 220 vbut with a larger transformerit will handie 80 watts . Basic kit 12.00 ref 12P17R. Larger transfo mer $£ 12.00$ ret 12P41R. VERO EASI WIRE PROTOTYPING SYSTEMIdeal for designing projects on etc. Complete with tools, wire
HIGH RESOLUTION 12" AMBER MONTTOR $2 v$ 1.5A Hercules compatible (TTL input) new and cased £22.00 ref 22P2R

VGA PAPER WHITE MONO monitors new and cased 240 V AC. £59.00 ref 59P4R
25 WATT STEREO AMPLIFERC. STK043. With the addition of a handful of components you can build a 25 watt amplifier. $£ 4.00$ ref 4P69R (Cirauit dia inclu dod).
BARGAIN NICADS AAA SIZE 200MAH 1.2V PACK OF 10 £4.00 REF 4P92R, PACK OF $100 £ 30.00$ REF 30P16R FRESNEL MAGNIFYING LENS $83 \times 52 \mathrm{~mm} £ 1.00$ ret BD827A. ALARM TRANSMITTERS. No data avaliable but nicely made complex radio transmitters 9 V operation. $£ 4.00$ each rel 4P81R. 12V 19A TRANSFORMER. Ex equipment but otherwise ok. Our price £20.00
GX4000 COMPUTERS. Customer returned games machines complete with plug in game. joysticks and power supply. Retail price is almost $£ 100$. Ours is $£ 12.00$ ref B12P1
ULTRASONIC ALARM SYSTEM. Once again in stock these units consist of a detector that plugs into a 13 A socket in the area to protect. The receiver plugs into a 13A socket anywhere else on the same supply. Ideal tor protecting garages, sheds etc. Compiete system $£ 25.00$ ref B25P1 additional detectors $£ 11.00$ ref B11P1 IBM XT KEYBOARDS. Brand new 86 key keyboards $£ 5.00$ ret ${ }^{5} 5612$
IBM AT KEYBOARDSBrand new 86 key keyboards $£ 15.00$ ref 15P612
386 MOTHER BOA RDS. Customer returned units without a cpu fitted. £22.00 rei A22P1
COLOUR MONITORS
AMSTRAD CTM644
RGB INPUT
ع75.00 REF A75P1

286 MOTHER BOARDS. Brand new but customer returns so may need attention. Complete with technical manual $£ 20.00$ rel A20P2 286 MOTHER BOARDS. Brand new and tested complete with technical manual. £49.00 ref A49P1
UNIVERSAL BATTERY CHARGER.Takes AA's, C's, D's and PP3 nicads. Holds up to 5 batteries at once. New and cased, meins operated. $£ 6.00$ ref 6P36R
IN CAR POWER SUPPLY.Piugs into digar socket and gives $3.4,5,6,7.5,9$, and 12 V outputs at 800 mA . Complete with universal spider plig. E5.00 rat 5P167R.
RESISTOR PACK. 10×50 values (500 resistors) all $1 / 4$ watt 2%
metal film. $£ 5.00$ red SP170R.

MIRACOM WS 4000 MODEMS

V21/23

AT COMAND SET

AUTODIAL/AUTOANSWER

FULL SOFTWARE CONTROL

tone and pulse dialling

£29

WASHING MACHINE PUMP.Mains poerated new pump. Not self priming K 5.00 ref 5P18R
IBM PRINTER LEAD. (D25 to centronics plug) 2 matre parallel. £5.00 ref 5P186R.
COPPER CLADSTRIP BOARD 17 " $\times 4$ " of . 1 " pitch "vero" board £4.00 a sheet ref 4P62R or 2 sheets for $\$ 7.00$ ref 7P22R
STRIP BOARD CUTTING TOOL. 22∞ ret $2 P 352 R$
50 METRES OF MAINS CABLE $£ 3.002$ core black precut in
convenient 2 m lengths. Ideal for repairs and projects. ref 3 P91R 4 CORE SCREENED AUDIO CABLE 24 METRES $£ 2.00$ Precut into convenient 1.2 m lengths. Ref 2P365R
TWEETERS $21 / 4^{\prime \prime}$ DIA 8 ohm mounted on a smant metal plate for -asy fixing $£ 200$ ref $2 P 366 R$
COMPUTER MICE Originally made for Future PC's but can be adapted for other machines. Swiss made $£ 8.00$ ref 8P57R. Atan ST conversion kit £2.00 rel 2P362R.
6 1/2" 20 WATT SPEAKER Built in tweeter 4 ohm $£ 5.00$ re 5P205R
ADJUSTABLE SPEAKER BRACKETS Ideal for mounting speakers on internal or external corners, uneven suffaces etc. 2 for 5.00 ref 5P207R

WINDUP SOLAR POWERED RADIOI FMAM radio takes re-
chargeable batteries complete with hand charger and solar panel 14P200R
240 WATT RMS AMP KIT Stereo 30-0-30 psu required £ 40.00 re ${ }^{\dagger}$
40P200R
300 WATT RMS MONO AMP KIT $£ 55.00$ Psu requitred ref 55P200

> BULL ELECTRICAL

250 PORTLAND ROAD HOVE SUSSEX BN3 5 OT TELEPHONE 0273203500 MAIL ORDER TERMS CASH PO OR CHEQUE WITH ORDER PLUSE3.00 POST PLUS VAT. PLEASE ALLOWY - 10 DAYS FOR OELIVERY

WEXT DAY DELIVERY FA, OO
FAX 027323077

ALARM PIR SENSORS Standard 12 valarmiype sensor willinterface to most alarm paneis $£ 16.00$ ref 16 P200
ALARM PANELS 2 zone cased keypad entry, entry exit time delay etc. $£ 18.00$ ref 18 P 2000
MODEMS FOR THREE POUNDSI
Fully cased UK modems designed for dial up system (PSTiN) no data or info but only $\mathrm{E}^{3.00}$ ref 3 P145R
TELEPHONE HANDSETS
Bargain pack of 10 brand new handsets with mic and speaker only E3.00 ref 3P 146R
BARGAIN STRIPPERS
Computer keyboards Loads of switches and components excellemt value at $£ 1.00$ rof CD40R
DATA RECORDERS
Customer returned mains battery units builtin mic idealfor Computer or general purpose audio use. Price is $£ 4.00$ ref 4P100R
SPECTR UM JOYSTICK INTERFACE
Plugs into 48 K Spectrum to provide a standard Atari type joystick port. Our price $£ 4.00$ ref 4P101R
ATARI JOYSTICKS
Ok for use with the above interface, our price $£ 4.00$ ref 4 P102R
BENCH POWER SUPPLIES
Superbly made fully cased (metal) giving $12 v$ at 2 A plus a 6 V supply. Fused and short circuit protected. For sale at less than the cost of the case! Our price is $£ 4.00$ ref 4P103R
SPEAKER WIRE
Brown twin core insulated cable 100 feat for £2.00 REF 2P79R MAINS FANS
Brand new $5^{\prime \prime} \times 3^{\prime \prime}$ complete with mounting plate quite powerfull and quite. Our price $£ 1.00$ ret CD41R
DISC DRIVES
Customer returned units mixed capacitios (up to 1.44M) We have not
soned these so you just get the next one on the shelf. Prece is only £7.00 ref 7P1R (worth it even as a stripper)
HEX KEYBOARDS
Brand new units approx $5^{\prime \prime} \times 3^{\prime \prime}$ only $£ 1.00$ each ref CD42R
PROJECT BOX
$51 / 2^{\prime \prime} \times 31 / 2^{\prime \prime} \times 1^{\prime \prime}$ black ABS with screw on lid. $£ 1.00$ ref CD43R
SCART TO SCART LEADS
Bargain price leads at 2 for $£ 3.00$ ref 3P147R
SCART TO D TYPE LEADS
Standard Scart on one end, Hi density D type on the other. Pack of
ten leads only $\$ 7.00$ ref 7P2R
OZONE FRIENDL Y LATEX
$250 \mathrm{~m} /$ bottle of liquid rubber sets in 2 hours. Ideal for mounting PCB's fixing wires etc. $£ 2.00$ each ref 2P379R
Quing wires ett. $£ 2$
QHOTS
Standard Atari compatible hand controller (same as joysticks) our price is 2 for $£ 2.00$ ref 2 P 380 R
VIEWDATA SYSTEMS
Brand new units made by TANDATA complete with 1200/75 built in modem infra red remote controlled qwerty keyboard BT appproved Prestel compatible, Centronics printer port RGB colour and compose output (works with ordinary television) complete with power supply and fully cased. Our price is only $£ 20.00$ ret 20P1R
AC STEPDOWN CONVERTOR
Cased units that convert 240 v to $110 \mathrm{v} 3^{\prime \prime} \times 2^{\prime \prime}$ with mains input lead and 2 pin American output socket (suitable for resistive loads only) our price E2.00 ref 2P381R
SPECTRUM + 3 LIGHT GUN PACK
complete with software and instructions $£ 8.00$ ref 8P58R CURLY CABLE
Extends from 8" to 6 feel!D connector on one end, spade connectors on the other ideal for joysticks etc (6 core) $£ 1.00$ each ref CD44R COMPUTER JOYSTICK BARGAIN
Pack of 2 joysticks only $£ 2.00$ ref 2P382R BUGGING TAPE RECORDER
Small hand held cassette recorders that onity operate when there is sound then turn off 6 seconds after so you could leave it in a room all
day and just record any thing that was said. Price is $£ 20.00$ ref 20P3R day and just record any
Complete with 13A plug our price is only $£ 3.00$ for TWO! ref 3P148月 COMPUTER SOFTWARE BARGAIN
10 cassettes with games for commodore 64, Spectrum etc. Our bargain price one pound! ref CD44R
NEW SOLAR ENERGY KIT
Contains 8 solar cells, motor, tools, fan etc plus educational bookler deal for the budding enthusiast! Price is $£ 12.00$ ref 12P2R
POTENTIOMETER PACK NO
30 pots for $£ 3.00$ ideal for projects etc. Ret CD45R

286 AT PC

286 MOTHER BOARD WITH 640K RAM FULL SIZE METAL CASE, TECHNICAL MANUAL, KEYBOARD AND POWER SUPPLY £139 REF 139P1 (no i/o cards or

35MM CAMERAS Customer returned units with built in flash and 28 mm lens 2 for E 8.00 ret 8P200
STEAM ENGINE Standard Mamod 1332
engine comp
ref 30P200
TALKING CLOCK
LCD display, alarm, battery operated.
Clock will announce the time at

alarm is due. The alarm is switch
from voice to a cock crowingI£14.0
Small units that are designed to hold over the mouth piece of a telephone to send MF dialling tones. Ideal for the remote control of answer machines. £5.00 ret 5P209R
COMMODORE 64 MICRODRIVE SYSTEM
Complete cased brand new drives with carridge and software 10 times faster than tape machines works with any Commodore 64 setup. The orginal price for these was $£ 49.00$ but we can offer them to you at only £25.00! Ref 25P1R
USED SCART PLUGS
Packof 10 plugs suitable for making up leads only $£ 5.00$ roll 5P209R C CELL SOLAR CHARGER
Same style as our $4 \times A A$ charger but holds $2 C$ cells. Fully cased with flip top lid. Our price $£ 600$ Ref 6P79R
VOL. 21 No. 4 APRIL 1992

The No. 1 Independent Magazine for Electronics, Technology and Computer Projects

ISSN 02623617

PROJECTS . . THEORY . . . NEWS . . .
COMMENT . . . POPULAR FEATURES .

© Wimborne Publishing Lid 1992. Copyright in all drawings, photographs and articles published in EVERYDAY ELECTRONICS is fulty protected, and reproduction or imitations in whole or in part are expressly forbidden.

Projects

AUDIO TELESCOPE by Robert Penfold202Amplify those far away sounds so you can listen in!206
Simple and inexpensive piece of test gear that could be invaluable
EASY SWITCH by T. R. de Vaux-Balbirnie216
An easy to operate mains switch for heavy duty appliances etc.
VERSATILE AUDIO AMPLIFIER by Paul Henderson 232
A test bench amp. that will give up to 80W output
TELEPHONE RINGER by Chris Walker239
Designed for stage producstop) when you want it to
Series
INFORMATION TECHNOLOGY AND THE NATIONAL
CURRICULUM by T. R. de Vaux-Balbirnie 210
Part Six: Circuit Symbols and Logic
INTERFACE by Robert Penfold 224
Pulsed motor controller
CIRCUIT SURGERY by Mike Tooley 228
New clinic for constructors - your problems solved238
Finnish Dxpedition; International Listeners Association; New ISWLPublications; The End Is Nigh; USSR Award
ACTUALLY DOING IT by Robert Penfold244
Stripboard layout from scratch to working project
Features
EDITORIAL 201
STRAIN GAUGES by Chris Walker 220
The theory and operation of these relatively simple transducers EVERYDAY READOUT 223
The best feature in the mag - its written by you! Our new letters page FOR YOUR ENTERTAINMENT by Barry Fox 226
Tape Format War! Digital Camera System; Pay-Per-View TV
What's happening in the world of electronics230
SHOPTALK with David Barrington236
Component buying for projects 236
Programmable Timer; Economy Seven Timer
DOWN TO EARTH by George Hylton 246Equalisers; Acoustic Variations
DIRECT BOOK SERVICE 248
Selected technical books, EE books and all Babani books by mail order
PRINTED CIRCUIT BOARD SERVICE 252
FREE WITH THIS ISSUEGREENWELD ELECTRONICSBetween pages
CATALOGUE SUPPLEMENT 224 and 225
ADVERTISER'S INDEX 256
Our May '92 Issue will be published onReadors Services • Editorial and Advertisement Departments 201Front cover photograph Phil Jude/Science Photo Library

LIGHTING CONTROLLER KITS

For the serious Mobile Disco
SuITCMABLE 3-4 CMANNEL CONTAOLLER
with Beatchase and Speed Controls
PCB + Components Kit .. $£ 21.00$
Hardware Kit 12.00
MULTICHRSE 4 CMANNEL
CONTAOLLEA
with Beatchase, Speed and Chase-
Select Controls.
PCB + Components Kit£26.00
Hardware Kit.
.$£ 13.00$
COMPUTEA CMASE 4 CMANNEL CONTAOLLEA
A Controller designed to achieve very good results from many types of lighting display. Perfect for pinspots, super on screens, can even revitalize spotlamp boxes. Fast tracking autolevel audio input and choice of sound modes ensure accurate and varied interpretation of music.
PCB + Components Kit £35.00
Hardware Kit £15.00
Postage \& Packing $£ 1.50$ per order

DISCO CONSOLE KITS

A new Disco Console with CLI2 varispeed turntables and magnetic cartridges. Incorporating sloping centre mounting mixer with Tape and CD inputs, crossfade between
turntables, mic channel with tone controls and autofade. headphone and l.e.d. monitors.
Black vynide case with pre cut motor boards is deep enough to house most power amp modules if required. Separate panel for input \& output sockets mounted at side.
MAGNUM CONSOLE MIT. \qquad
(including mixer, lights, turntables, cartridges and case)
MAGNUM CONSOLE BUIT © TESTED.
.... $£ 279.00$
£349.00 Carrier Delivery
$\mathbf{£ 1 0 . 0 0}$

MaGNUM MIXER KIT..99.00-P\&P
(including front panel, PCB \& components and
£4.00 input/output panel)

TEST EQUIPMENT KITS

LED DISPLAY OSCILLOSCOPE
with 9×9 grid of high efficiency LEDs with trigger/freerun,
brightness, sensitivity, position and brightness, sensitivity,
timebase.
£19.95
£19.95
Postage \& Packing 50p

+ Postage \& Packing 50p

MAGNUM LOUDSPGAKERS

Compact high output speakers for P.A. and Disco use.

Magnum 100
 f165 pair

$12^{\prime \prime}-100$ Watt R.M.S. bass driver and
$7^{\prime \prime} \times 3^{\prime \prime}$ wide dispersion horn in black vynide
cabinets with bass port.; Side mounted carrying handle.
Size $540 \mathrm{~mm} \times 380 \mathrm{~mm} \times 300 \mathrm{~mm}$

MAGNUM 200 .

.f235 pair
$15^{\prime \prime}-200$ Watt R.M.S. bass driver and $7^{\prime \prime} \times 3^{\prime \prime}$
Horn. This larger cabinet and speaker
combination provides improved bass response. Size $635 \mathrm{~mm} \times 460 \mathrm{~mm} \times 330 \mathrm{~mm}$
GREAT SOUND
GREAT VALUE
Carrier Delivery £12.00 pair

WAVEFORM GENERATOR with sine, triangle and square wave output. Pange, frequency and amplitude.
$£ 9.95$

MAKING YOUR OWN P.C.B.s

This supplement looks at p.c.b.s in general and at their various forms, it then goes on to investigate p.c.b. fabrication techniques available to the hobbyist. Follow up parts will cover Ultra-Violet Processing Techniques and Originating Your Own Artwork. We will also publish a couple of associated projects - an Artwork Light-Box and a U.V. Exposure Timer - in later issues

CAMCORDER HEADPHONE AMP

Many modern camcorders have a jack socket for headphone output but often users find that suitable medium impedance headphones are very expensive. This neat little amplifier is designed to allow the use of inexpensive headphones to monitor the sound being recorded. It is cheap and easy to build, with only a dozen or so components.

IT'S A KNOCKOUT

A novel electronic box-of-tricks to make your party, garden fete or social evening go with a swing. A compendium of games with electronic dice, an on-the-button precedence indicator and automatic scoring for a number of popular games.
Although most of the suggested games can be played using the display on the Knockout box, separate large-scale, easy-to-make electronic displays can be added so that everybody knows what's going on and can join in the fun.
The games include Out For A Duck - hit a duck with a ball; Cat O'Nine Lives - steady hand game; Wheel of Misfortune - questions determined by the spin of a wheel; Bull's Eyes - shooting gallery; Buried Treasure - use a special treasure detector; Get Any Row - reaction and question game.

PLUS

Our new Circuit Surgery and Everyday Readout pages will be featured so why not write in?

ETEBMDMK
 を
 MAY ISSUE ON SALE FRIDAY 3RD APRIL 1992

Everyday Electronics, April 1992

OMNI ELECTRONICS

174 Dalkeith Road, Edinburgh EH16 5DX 0316672611
A COMPREHENSIVE RANGE WITH SERVICE SECOND TO NONE

WE HAVE THE WIDEST CHOICE OF USED OSCILLOSCOPES IN THE COUNTRY

$$
\begin{gathered}
\text { ELECTRON WICROSCOPES } \\
\text { AEI COANTH } 500 \text { TRANSMSSON } \\
\text { ISI SUPER } 111 \mathrm{~A} \text { - SCNNNNC } \\
\hline
\end{gathered}
$$

RACAL 'OANA Wodeband Leve Meter 5002

 WAYNE KERR CCR4250 with ining Opoon. RACAL OANA CHMM ICR Datatridge 934 WAYNE KERR LCR Meter 4210WAMME EERR AUtomatic Component Brobe B6OS WAYE KERR Automatk Component Bridge B605
WAYNE KERR Unversal RF Broge 8602
 MARCONTIT2008 AM.FM 100-7.520 MEZ Sg Cen -

 MARCON IF2016 without Synchronser IF2173 MACCONN T T2 $2356 / 2357$ Level OSCMMEter 20Mist ...the pax MARCON 1 SANCERS Sig Sources Various moders covering RACKL 9009 Mod Meter TECTRONX Waveforme Montor type 5 RACAL NSTRUMENTATON RCCORDERS Store AD and Store 70 KETHEEY 224 Programmable Current Source

SPECTRUM ANALYSERS	
TEKTRONIX 49915.12446	0
	c3000
	Oune $£ 1500$
	$\underline{800}$
HP 180 Series 855880.1 .1500 H - from	
POLARAD Mpe $641 / 1104 \mathrm{~F} \cdot 1.18 \mathrm{CHz}$	3000

 MARCONI UNNERSAL COUNTER TMERS

electronize electronic kits

MICRO-PRESSURE CAR ALARM

* Unique air pressure sensing system. * Operates on all doors and tailgate - no switches neoded. Automaticaly armed 40 seconds atter leaving venide.
म 10 second entry delay with audible warning. (0.5 second available.) मि Sounds hom or siren intermitrently for 30 seconds - then re-arms. \& Easy fitting - only 3 wires to connect - no holes to drill. Wh Controlled by ignition switch. hidden switch or coded remote contral.
(The optional siren and coded remote control are supplied separatey.)
MICRO-PRESSURE ALARM Parts kit $£ 15.95$ Assambled $\mathbf{\varepsilon 2 2 . 3 5}$ 120 dB PIEZO SIREN

Assombled E.11.95
VOLT DROP CAR ALARM

* Volt drop sensing using existing countesy light switches.

म All the features of the Micro-pressure alarm excapt sensing system.
VOLT DROP CAR ALARM Parts klt $£ 14.90$ Assembled $£ 20.95$
NEW CODEDIR REMOTE CONTROL
\& Adds remote control to our Micro-pressure or Volt Drop alarms. \& High security. customer selected, 24 brt code, 59.046 combinations. A Anti-scanning system. \& Key-ring transmiter with long life minature alkaline batery. म Hign power infra-red eminer win range up 105 merres. Low prome dasn rop recenver/decoder. मू Flasning high intensity red L.E.D. warns oft intruders. Green LE.D. shows alarm is of.
CODE TRANSMITTER
Parts kit £13.95 Assembled £17.95

CODE RECEIVER
ICRO-PRESSURE TRIGGER
\& Adds Micro-pressure sensing to any volt drop alarm system.
MICRO-PRESSURE TRIGGER Parts klt $£ 10.95$ Assembled $£ 14.95$
EXTENDED CDI ELECTHONIC IGNITION
\& Unique Total Energy Discharge system gives super power spark.
\& Adds electronic performance to contact breaker systems.
extended coi ignition Partskit $\mathbf{2 2} .75$ Assembled $£ 28.45$
NEW RADIO CONTROL MODEL SPEED CONTROL
म Standard radio control input - no servo required. म Smooth forward/reverse speed control. मे Runs any motor up to 10 amp . continuous current. म 35 amp . shor lerm stall raing. Low loss Power MOSFET switching. \& Neutral 43 VR) adjustment. \& Optional voltage regulator for single battery operation.(Type 43VR)

Type $43 \times$ (2 to 24 v motors) parts kit $£ 17.75$ Assembled $£ 25.95$
Type 43VR (7 to 24 v motors) parts klt $£ 19.45$ Assembled $£ 27.95$ All the above inctude cable, connectors and clear sasy to follow Instructions. All kits include case, ${ }^{\circ} \mathrm{CB}$, everything down to the last washer, even solder. Prices are mail order discount, fuly inclusive and apply to U.K. and Europe Telephone orders accepted with VISA or ACCESS payment.
Ask for detalled brochures or order direct (please quote ret. EE4) from :-
ELECTRONIZE DESGGN
Tel. 0213085877
2 Hillside Road, Four Oaks, Surton Coldtield, 874400

The Catalogue

120 pages. A4. Expertly presented and illustrated Easily referred to. Packed with valuable information.

The cOMPONENTS

As wide a choice as you could wish - semiconductors. surface mounting, opto-electronics, Rs \& Cs, etc. Top quality; fairly priced.
The SUPPLIERS
Siemens, Boss, Cliff, Omeg, Lorlin, R.S., Uniross, etc. to our top quality standards.

The SERVICE

Prompt, personal, with customer satisfaction guaranteed. Access/Visa facilities.

Electrol/alue

$28(A)$ St. Jude's Road, Englefield Green, Egham, Surrey TW20 OHB. Phone - 0784433603 Fax-0784 435216

MAGENTA 폽

VERSATILE BBC INTERFACE

A comprehensive interface which allows the BBC Model B computer to be connected safely to a wide range of input and output devices. Two leads connect the interface to the User port and Printer port. Up to 16 outputs (all via single pole change-over relay contacts) and 8 inputs. All inputs are fully protected. LED indication is provided on all lines. Requires an independent 12 V supply
Full Kit Ref: 844
£51.95

STEPPING MOTOR DRIVER/INTERFACE

EE Jan '92

A single board, stand alone, stepping motor driver with built-in oscillator for variable low speed, high speed, and acceleration control. Suitable for all Magenta's four-phase unipolar motors and most others - up to 35 V and 1.5 A per phase. Half step, Full step and Wave-drive modes switch selectable. LED mimic display and connector for computer port.
Kit includes MD35 motor

Kit Ref: 843

£29.95
Or Builf

EVERYDAY ELECTRONICS KIT PROJECTS

ALL KITS HERE HAVE BEEN FEATURED IN EE AND ARE SUPPLIED WITH MAGAZINE ARTICLE REPRINTS SEPARATE REPRINTS ALSO AVAILABLE PRICE 8Op EACH INCLUSIVE P\&P. KITS INCLUDE CASES. PCB S HARDWARE AND ALL COMPONENTS (UNLESS STATED OTHERWISE) CASES ARE NOT DRILLED OR LABELS

SUPPLIED UNLESS STATED.
Ref
844
843 VERSATILE BBC INTERFACE Mar 92 STEPPING MOTOR DRIVER/INTERFACE Jan 92
842 PORTABLE ULTRASONIC PEST SCARER Aug '91
841
digital LCo thermostat May 9 with punched and printed case
DIGITAL COMBINATION LOCK Mar 91 with drilled case
839 ANALOGIC TEST PROBE Jan 91
838 MICROCONTROLLER LIGHT SEQUENCER Dec 90 . With drilled and labelled case
835 SUPERHET BROADCAST RECEIVER Mar 90 With drilled panels and dial
834 QUICK CAP TESTER Feb 90
833 EE 4 CHANNEL LIGHT CHASER Jan 90
815 EE TREASURE HUNTER Aug 89
14 BAT OETECTOR June 89
812 ULTRASONIC PET SCARER May 89
800 SPECTRUM EPROM PROGRAMMER DeC 88
796 SEASHELL SYNTHESISER Nov 88
90 EPROM ERASER OCI 88
769 VARIABLE 25 V - 2 A BENCH POWER SUPPLY Feb 88
744 VIDEO CONTROLLER Oct 87
740 ACOUSTIC PROBE Nov 87
739 ACCENTED BEAT METRONOME NOV 87
734 AUTOMATIC PORCH LIGHT Oct 87
730 BURST-FIRE MAINS CONTROLLER Sep 87
728 PERSONAL STEREO AMP Sep 87
724 SUPER SOUND ADAPTOR Aug 87
722 FERMOSTAT July 87
719 BUCCANEER I.B. METAL OETECTOR July 87
718 3-8ANO 1.6-30MHz RADIO Aug 87
715 MINI DISCO LIGHTS June 87
707 EQUALIZER (IONISER) May 87

Supplying Electronics for Education, Robotics, Music, Computing and much, much more

 CATALOGUE AVAILABLE PRICE £1.00 INC. P\&PAll prices include VAT at 17.5%
Shop open 9-5 Mon.-Fri.
9-2 Saturday
Official orders welcome
HAMEG HM 203-7 OSCILLOSCOPE
High quality reliable instrument made in W. Germany. Outstanding performance. Full two year parts and labour warranty. $20 \mathrm{MHz}-2$ channels 1 mV sensitivity. Easy to operate and high performance
(Cheques must be cleared) $£ 338+£ 59.15$ VAT Next day Delivery $£ 10.00$

Price Ref

£51.95 700 ACTIVEI/R BURGLAR ALARM Mar 87
584 SPECTRUM SPEECH SYNTH (no case)
E44.95 581 VIDED GUARD Feb 87
569 CAR ALARM Dec 86
£29.95
$\varepsilon 19.86$
£13.23
f57.17
$£ 17.16$
£10.39
$£ 32.13$
Full Kit $£ 45.95$
f21 4
f 14.8
£ 30.60
£28.55
£28.51
โ56.82
1.89
£20.0
ع23.94
$£ 19.62$
£15.50
£16.3
£43.86
£13.88 . 30.22 30.30左
17.75

561 LIGHT RIDER LAPEL BADGE DCt 86
560 LIGHT RIDER DISCO VERSION Oc1 86
559 LIGHT RIDER 16 LED VERSION Oct 86
556 INFRA-RED BEAM ALARM Sep 86
544 TILT ALARM July 86
542 PERSONAL RADIO June 86°
528 PA AMPLIFIER May 86
523 STERED REVERB Apr 86
513 BBC MIDI INTERFACE Mar 86
512 MAINS TESTER \& FUSE FINDER Mar 86
497 MUSICAL DOOR BELL Jan 86
493 DIGITAL CAPACITANCE METER Dec 85
481 SOLOERING IRON CONTROLLER Dct 85
464 STEPPER MOTOR INTERFACE FOR THE BBC COMPUTER less case Aug 85 1035 STEPPER MOTOR EXTRA
OPTIONAL POWER SUPPLY PARTS
461 CONTINUITY TESTER July 85
455 ELECTRONIC DOORBELL June 85
444 INSULATION TESTER ApI 85
392 BBC MICRO AUDIO STORAGE SCOPE INTERFACE Nov 84
387 MAINS CABLE DETECTOR Oct 84 386 DRILL SPEED CONTROLLER Oct 84
362 VARICAP AM RADIO May 84
337 BIOLOGICAL AMPLIFIER Jan 84
263 BUZZ OFF Mar 83
242 INTERCOM no case July 82
240 EGG TIMER June 82
108 IN SITU TRANSISTOR TESTER June 78
106 WIERD SOUND EFFECTS GEN Mar 78

101 ELECTRONIC DICE Mar 77

D.C. MOTOR GEARBOXES

Ideal for Robots and Buggies. A miniature plastic reduction gearbox coupled with a $1 \cdot 5-4 \cdot 5$ Volt mini motor. Variable gearbox reduction ratios are obtained by fitting from 1 to 6
gearwheels (supplied). Two types available:
Small Unit Type MGS
£4.08
Speed range $3-2200$ rpm. Size: $37 \times 43 \times 25 \mathrm{~mm}$
Large Unit Type MGL
£4.65
Speed range 2-1150 rpm. Size: $57 \times 43 \times 29 \mathrm{~mm}$

STEPPING MOTORS

A range of top quality stepping motors suitable for driving a wide range of mechanisms under computer control using simple interfacing techniques. ID36 Permanent Magnet Motor $£ 16.86$ 48 steps per rev
MD200 Hybrid Motor
£17.10
200 steps per rev
MD35 $1 / 4$ Permament Magnet Motor 48 steps per rev. £12.98
MD38 Permanent Magnet Motor $£ 9.15$ 48 steps per rev

EDUCATIONAL BOOKS \& BOOK PROJECTS

ADVENTURE WITH ELECTRONICS

The classic Easy to Follow book suitable for all ages. ideal for beginners. No soldering, uses an S-DEC breadboard. Gives clear instructions with lots of pictures. 16 projects - including three radios, siren, metronome, organ, intercom, timer, etc. Helps you learn about electronic components and how circuits work. Component pack includes an S-DEC breadboard and all the components for the series.
Adventures with Electronics Component Pack (less book)

FUN WITH ELECTRONICS

From the USBORNE Pocket Scientist serles - an enjayable introduction to electronics. Full of very clear full colour pictures accompanied by easy to follow text. Ideal for all beginners - children and adults. Only basic tools are needed. 64 full colour pages cover all aspects - soldering - laul finding - components (identification and how they work). Also full details of how to build 6 projects - burglar alarm, radio, games, etc. Requires soldering - 4 pages clearly show you how. The components supplied in our pack allows all the projects to be built and kept. The book is available separately. Fun with Electronics Book Component pack (less book)

30 SOLDERLESS BREADBOARD PROJECTS

A book of projects by R. A. Penfold coverIng a wide range of interests. All projects are built on a verobloc
breadboard. Full layout drawings and component identification diagrams enable the projects to be buill by beginners. Each circuit can be dismantled and rebuilt several times using the same components. The component pack allows all projects in the book to be built one at a time. Projects covered include amplifiers, light actuated switches, timers, metronome, touch switch, sound activated switch, moisture detector, MW Radio Fuzz unit, etc.
30 Solderless Breadboard Projects (Book 1)
Component Pack

INSULATION TESTER

EE APRIL 85
A reliable electronic tester which checks insulation resistance of wiring appliances etc., at 500 volts. The unit is battery powered simple and safe to operate. Leakage resistance of up to 100 Megohms can be read easily. One of our own designs and extremely popular. KJT REF 444
£22.37

3 BAND

SHORT WAVE RADIO

EE AUG 87

Covers $1.6-30 \mathrm{MHz}$ in 3 bands using modern miniature coils. Audio output is via a built-in loudspeaker. Advanced design gives excellent stability, sensitivity and selectivity. Simple to build.

KIT REF 718
£30.30

PORTABLE ULTRASONIC PEsTSCARER

EE AUG '91

A powerful 23 kHz Ultrasonic generator in a compact hand-held case. A MOSFET output drives a weatherproof transducer at up to 300 V peak to peak via a special tuned transformer. Sweeping frequency output requires no setting up or alignment. Kit includes all components, PCB, transducer and case. KIT REF 842
£22.56

EE

 EQUALISER

EE MAY '87

A mains powered loniser with an output of negative ions that give a refreshing feeling to the surrounding atmosphere. Negligible current consumption and all-insulated construction ensure that the unit is safe and economical in use. Easy to build on a simple PCB. KIT REF 707
117.75

LIGHT RIDERS

EE OCT '86
Three projects under one title -all simulations o the Knight Rider lights from the TV series. The three are a lapel badge using six LEDs, a larger LED unit with 16 LEDs and a mains version capable of driving six main lamps totalling ovar 500 watts.
KIT REF 559 CHASER LIGHT
£15.58
KIT REF 560 DISCO LIGHTS
£22.41
KIT REF 561 LAPEL BADGE
£11.65

Produces high power ultrasound pulses. L.E.D. flashes to indicate power output and level. Battery powered (9V-12V or via Mains Adaptor). KIT REF 812
Mains Adaptor $£ 2.02$

dIGITAL COMBINATION LOCK

EE MAR '91

Digital combination lock with a 12 key keypad. 4 digit code operates 250 V -16A SPCO relay. A special anti- tamper circuit allows the relay to be mounted remotely from the keypad without any loss of security. Can be operated in many modes (latching/unlatching, manual/automatic setting, continuous/momentary output. etc.). Article describes operation as Vehicle Immobilising security system. Low current drain. Kit includes drilled case.
KIT REF 840
119.86

ACOUSTIC PROBE

EE NOV '87

A very popular project which picks up vibrations b means of a centact probe and passes them on to a pair of headphones or an

amplifier. Sounds from engines, watches and speech travelling through walls can be amplified and heard clearly. Useful for mechanics, instrument engineers and nosey parkers! KIT REF 740
£20.01

MICROCONTROLLER LIGHT SEQUENCER

EE DEC '90

A superb kit with pre-drilled painted and silk screen printed case for a really professional finish. This kit uses a microcontroller I.C. to generate 8 -channel light sequences.. Sequences are selected by keypad from over 100 stored in memory. Space for 10 user programmed sequences up to 16 steps long also programmed sequences up to 16 steps long available. 1000 watts per channel, zero volt
switching, inductive load capability. Opto-isolated switching, inductive load capabiry.
for total safety. Many other features. for total safety. Many other features
Complete kit includes case, PCBs, Complete kit includes case, PCB
all components and hardware.

EE TREASURE

 HUNTEREE AUG '89
A sensitive pulse induction Metal Detector. Picks up coins and rings etc., up to 20 cms deep. Low "ground " effect". Can be used with search-head underwater.
 Easy to use and build, kit

EPROM ERASER

EE OCT '88
Safe low-cost unit capable of erasing up to four EPROM's simultaneously in less than twenty minutes. Operates from a 12 V supply. Safety interlock. Convenient and simple to build and use.
KIT REF 790
£28.51

SUPERHET BROADCAST RECEIVER

EE MAR '90

At last, an easy to build SUPERHET A.M. radio kit . Covers Long and medium Wave bands. built in loudspeaker with 1 watt output. Excellent sensitivity and selectivity provided by ceramic I.F. filter. Simple alignment and tuning without special equipment. Kit available less case, or with pre-cut and drilled transparent plastic panels and dial for a striking see-through effect. $£ 17.16$
KIT REF 835
KIT REF 815
Including headphones
¢45.95

ESR ELECTRONIC COMPONENTS Station Road, Cullercoats, Tyne \& Wear NE30 4PO Tel. 0912514363 Fax. 0912522296

UV EXPOSURE UNIT $-229 \times 159 \mathrm{~mm}$
working area, built in timer, $2 \times 8 \mathrm{w}$ tubes
PHOTO RESIST BOARD - single sided pre-sensitised FR4 glass fibre board. 3×4 in. $£ 0.864 \times 6$ in. $\mathbf{£ 1 . 6 2}$ 6×6 in. £2.41
PLASTIC OEVELOPING TRAY £1.35 FERRIC CHLORIDE (0.5 Kg) £2.45 STRIPBOARD 0.1 pitch $64 \times 127 \mathrm{~mm}$ $\mathrm{f} 1.3064 \times 431 \mathrm{~mm} f 4.0395 \mathrm{x}$ $127 \mathrm{~mm} £ 1.5295 \times 95 \mathrm{~mm} £ 1.33$ SREADROARD 81×60 €2.98175 $\times 42 \mathrm{~mm} 640 \mathrm{TP}$ £ 3.40 $175 \times 67 \mathrm{~mm} 840 \mathrm{TP} \mathrm{f} 5.34^{\circ} 203 \times$ 75 mm 840 TP £ 7.00

KITS	
Complete with screen printed $\&$ solder mask board, components and full instructions.	
instructions.	f12.99
200W CAR BOOSTER 12/24	
CD/line/speaker input.	
ELECTRONIC DICE (dual)	£9.15
SOUND GENERATOR 10 tunes,	£19.11
2.5W UNIVERSAL AMPLIFIER	£6.86
AF SIGNALINJECTOR/TRACER adjustable o/p \& i/p	f8.39
DIGITAL CODE LOCK 4 digit	
code flip/flop or latch o/p	¢19
carbon brush 24.240 Vac 5A	¢15.28

D CONNECTO	
9 pin	Plug $\mathrm{f0.29}$
15 Pin	¢0.39
$15 \mathrm{Pin} \mathrm{H.D}$.	¢0.81
23 Pin	¢0.40
25 Pin	¢0.48
9 Way plastic cover 15 Way plastic cover 23 Way plastic cover 25 Way plastic cover	
CAPACITOR	
Ceramic Disc 100V 10pF 100 nF	

f 0.12
SOLDERING IROI
Antex Soldering irons
M 12 Watt
C15Watt
G 18 Watt
CS 17Watt
XS 25Watt
ST4 STAND
New PORTASOL HOBBY
35Wart gas iron
OESOLOER PUMP
ANTISTATICPUMP
22SWG O.5Kg Solder
18SWG O.5Kg Solder
1 mm 3 yds Solder

RESISTORS

$0.25 \mathrm{~W} 5 \%$ CFE12 Series $\mathbf{£ 0 . 6 0 / 1 0 0}$ $0.5 W 5 \%$ CF E12 Series $\quad € 0.95 / 100$ POTS Log or Lin $470 \mathrm{R}-1 \mathrm{MO} 25 \mathrm{~mm}$ dia 0.25 in shaf! PRESETS Enclosed Horz OP Vert 100R - 1 MO 0.1
PRESETS Skeleton Horz

ELECTROLYTIC RADIAL CAPAC

 UF0.47
1.0
2.2
4.7
10
22
47
100
220
470
100
2200
47

HARDWARE	
PCB Nylon Stand-offs clip into board, screw from base. 5 mm spacing $£ 0.24 / 10 £ 1.68 / 100$ 10 mm spacing $£ 0.26 / 10 £ 1.82 / 100$ 13 mm spacing $£ 0.30 / 10 £ 2.10 / 100$	
SELF TAPPING SCREWS Pan head No $6 \times 6.4 \mathrm{~mm} £ 0.14 / 10 £ 0.88 / 100$ No $6 \times 9.5 \mathrm{~mm} £ 0.12 / 10 £ 0.78 / 100$ No $6 \times 13 \mathrm{~mm} £ 0.13 / 10 € 0.85 / 100$ No $6 \times 19 \mathrm{~mm} £ 0.16 / 10 £ 1.04 / 100$	
T2 Box $75 \times 56 \times 25 \mathrm{~mm}$	
T3 Box $75 \times 51 \times 25 \mathrm{~mm}$	¢0.
T4 Box $111 \times 57 \times 22 \mathrm{~mm}$	¢0.
MB1 Box $79 \times 61 \times 40 \mathrm{~mm}$	£1.
82 Box $100 \times 76 \times 41 \mathrm{~mm}$	f1
Box $118 \times 98 \times 45 \mathrm{~m}$	
Box $150 \times 100 \times 60$	
AUDIO CONNECTORS	
PHONO PLUG inc strain relief. Red or Black	
PHONO PLUG right angle,	
Red or Black	¢0.2
PHONO Chassis Socket	
6.35 mm Plastic Mono Plug with strain relief	
s above but Stereo	
6.35 mm Chassis Socket. switched £0.36, switched Stereo £0.49	
3.5 mm Mono Plug	
3.5 mm Stereo Plug	£0.
3.5 mm Mono line skt	
3.5 mm Stereo line skt	
PLASTIC DIN PLUGS	
2 pin £0.15, 5/360 £0.27. 3 pin £0.24.	
6 pin £0.30, 4 pin £0.29. 7 pin £0.33.	
$5 / 180 £ 0.26,8$ pin ¢0.45, $5 / 240$ £0.30	
XLR Chassis Socket	£1.6
XLR Chassis Plug	¢1.3
XLR Line Socket	¢1
R Line Pl	

INCORPORATING ELECTRONICS MONTHLY

Editorial Offices:
EVERYDAY ELECTRONICS EDITORIAL,
6 CHURCH STREET, WIMBORNE,
DORSET BH21 1 JH
Phone: Wimborne (0202) 881749
Fax: (0202) 841692. DX: Wimborne 45314.
See notes on Readers' Enquiries below - we regret that lengthy technical enquiries cannot be answered over the telephone.

Advertisement Offices:
EVERYDAY ELECTRONICS ADVERTISEMENTS, HOLLAND WOOD HOUSE, CHURCH LANE,
GREAT HOLLAND, ESSEX CO 13 OJS.
Phone/Fax: (0255) 850596

VOL. 21 No. 4

APRIL '92

TREND SETTER

In a year which has been very difficult for most businesses in the U.K. it is nice to know that the industry which operates around the hobby and training of electronics seems to be bucking the trend. When most consumer magazines have been reporting large circulations drops Everyday Electronics has remained consistent through the year. Many of our advertisers are also reporting good levels of sales and Maplin tell us that both their direct mail and shop sales are increasing.

KEEPING IT UP

We intend to capitalise on the success of Everyday Electronics and regular readers will find two new regular features starting in this issue. Whenever we have asked readers what they would like to see in EE that we presently do not cover, they most often say a readers' letter page. I must admit that if I pick up any magazine, whatever the subject matter, I often turn to the letters page first.
One request; we do not want Everyday Readout to become full of praise for EE and we are not prepared to concoct letters to fill the space. So, if you have something interesting to say about any aspect of our hobby, the magazine or electronics in general, please feel free to write in.

SURGERY

The second new feature is Mike Tooley's Circuit Surgery. We can take no credit for this, it is Mike's idea and we feel it is an excellent one. Again, please write in if you have any circuit, theory or constructional problems. Mike is unable to answer such queries individually by post but hopefully he can satisfy most of your requests through this regular clinic. His vast experience in electronics in general and through training thousands of students in a wide range of disciplines of electronics, make him ideally suited to getting to grips with all sorts of areas that give readers problems.

SUBSCRIPTIONS

Annual subscriptions for delivery direct to any address in the UK: $£ 18.50$. Overseas: $£ 23$ ($£ 40.50$ airmail). Cheques or bank drafts (in $£$ sterling only) payable to Everyday Electronics and sent to EE Subscriptions Dept., 6 Church Street, Wimborne, Dorset BH21 1 JH. Tel: 0202 881749. Subscriptions start with the next

available issue. We accept Access (MasterCard) or Visa payments, minimum credit card order ff.
BACK ISSUES
Certain back issues of EVERYDAY ELECTRONICS are available price $£ 1.80$ ($£ 2.30$ overseas surface mail) inclusive of postage and packing per copy - f sterling only please, Visa and Access (MasterCard) accepted, minimum credit card order $£ 5$. Enquiries with remittance, made payable to Everyday Electronics, should be sent to Post Sales Department, Everyday Electronics, 6 Church Street, Wimbome, Dorset BH21 1JH Tel: 0202881749 . In the event of non-availability one article can be photostatted for the same price. Normally sent within seven days but please allow 28 days for delivery. We have sold out of Jan, Feb, Mar, Apr, June. Oct, \& Dec. 88, Mar \& May 89 \& Mar 90.

BINDERS

Binders to hold one volume (12 issues) are available from the above address for $£ 5.95$ ($£ 6.95$ to European countries and $£ 8.00$ to other countries, surface mail) inclusive of post and packing. Normally sent within seven days but please allow 28 days for delivery.
Payment in $£$ sterling only please. Visa and Access (MasterCard) accepted, minimum credit card order £5. Tel: 0202881749

Editor: MIKE KENWARD

Secretary: PAMELA BROWN
Deputy Editor: DAVID BARRINGTON
Business Manager: DAVID J. LEAVER
Editorial: WIMBORNE (0202) 881749
Advertisement Manager:
PETER J. MEW, Frinton (0255) 850596
Classified Advertisements:
Wimborne (0202) 881749

READERS' ENQUIRIES

We are unable to offer any advice on the use, purchase, repair or modification of commercial equipment or the incorportion or modification of designs published in the magazine. We regret that we cannot provide data or answer queries on articles or projects that are more than five years old. Letters requiring a personal reply must be accompanied by a stamped self-addressed envelope or a self addressed envelope and internatonal reply coupons.
All reasonable precautions are taken to ensure that the advice and data given to readers is reliable. We cannot however guarantee it and we cannot accept legal responsibility for it.

COMPONENT SUPPLIES

We do not supply electronic components or kits for building the projects featured, these can be supplied by advertisers.
We advise readers to check that all parts are still available before commencing any project in a back-dated issue.
We regret that we cannot provide data or answer queries on projects that are more than five years old.

ADVERTISEMENTS

Although the proprietors and staff of EVERYDAY ELECTRONICS take reasonable precautions to protect the interests of readers by ensuring as far as practicable that advertisements are bona fides, the magazine and its Publishers cannot give any undertakings in respect of statements or claims made by advertisers, whether these advertisements are printed as part of the magazine, or are in the form of inserts.
The Publishers regret that under no circumstances will the magazine accept liability for non-receipt of goods ordered, or for late delivery, or for faults in manufactore. Legal remedies are available in respect of some of these circumstances, and readers who have complaints should first address them to the advertiser.

TRANSMITTERS/BUGS/TELEPHONE

 EQUIPMENTWe would like to advise readers that ertain items of radio transmitting and telephone equipment which may be advertised in our pages cannot be legally used in the U.K. Readers should check the law before using any transmitting or telephone equipment as a fine, confiscation of equipment and/or imprisonment can result from illegal use. The laws vary from country to country; overseas readers should check local laws.

Constructional Project

AUDIO TELESCOPE

ROBERT PENFOLD

Join the nature trail with this super sensitive amplifier. Anaudio equivalent of the telescope that will pick up those weak wildlife sounds which could so easily remain undetected.

Traditionally, when going on a trek through the countryside in search of wildlife you take along visual aids such as binoculars, a monocular, or a low power telescope, plus perhaps a camera. In recent times there has been increasing interest in wildlife sounds, and many animal enthusiasts now set off with cassette recorders and aids to hearing, as well as binoculars, cameras, etc. In a previous article in Everyday Electronics we published a very popular design for a "Bat Detector" (June '89), which is a device that picks up ultrasonic frequencies and converters them to lower frequencies that can be heard by humans.

The unit featured here is a purely audio device, and it simply amplifies sounds so that weak sounds can be heard more clearly. A sort of audio equivalent to a telescope in fact, or it could be regarded as a hearing aid, but for those with healthy hearing.

The output of the unit feeds a pair of personal stereo type headphones. Loudspeaker operation is not really feasible at it would produce audio feedback, and so-called "howl-around" (screeching and whistling sounds).

Even using headphones it is possible that the amount of amplification will need to be held back in order to avoid this problem. As discussed later, some types of headphone are better than others in this respect.

SYGTEM OPERATION

On the face of it, all that is needed is an amplifier having a microphone at one end and a pair of headphones at the other. Such a setup would do the job, but there are a couple of refinements that can improve results. The block diagram for the Audio Telescope project is shown in Fig. I.
The microphone feeds into a low noise preamplifier. It is essential that this stage has a very low noise level because the input voltages will typically be a matter of microvolts rather than millivolts.
Mediocre noise performance would result in a background "hiss" level that would swamp most of the quiet sounds picked up by the microphone. In this case a
low noise level is achieved by using a very low noise operational amplifier in the preamplifier stage.

A highpass filter is included at the output of the preamplifier stage, and this can be switched in to reduce low frequency sounds. Most of the sounds in nature, with a couple of obvious exceptions in the form of wind and thunder, are at quite high
level that provides comfortable listening. The unit will respond to very quiet sounds, and will therefore be overloaded by loud noises, or even sounds of average intensity. This would result in painfully loud signals from the headphones unless steps were taken to limit the output level.
In the original design an automatic level control was used to avoid excessive outputs, but the simple limiting method used in this circuit seems to be better in practice. Strong sounds will produce a very distorted output, but these sounds are not the ones that the unit is designed to detect. An advantage of the limiting method is that when a strong sound has ceased, the unit operates at full sensitivity, and does not require a recovery period (as would an automatic gain control system).

Fig. 1. Block diagram for the Audio Telescope.
frequencies. Bird songs in particular, tend to have strong high frequency components, including ultrasonic frequencies, but very little bass content. In most cases, a lack of bass response will not therefore have an adverse affect on results.
The attenuation of the unit's low frequency response does not help much in terms of reducing the background "hiss" level, but it does help to reduce unwanted noises picked up by the unit. These noises are mainly the inevitable vibrations that occur when you handle the unit in use. Even just tightening or relaxing your grip slightly can produce quite loud "clangs" and "clunks" through the headphones.

HIGHGA/N AMPLIFIER

The output from the highpass filter is coupled to a high gain amplifier via a volume control. Two stages of amplification are needed in order to obtain the very high overall level of gain that the unit must have in order to function properly.

The output of the unit is fed to the headphones via an attenuator. The attenuator is used to limit the output of the unit to a

CIRCUIT OPERATION

The full circuit diagram for the Audio Telescope is shown in Fig. 2. The circuit is designed to operate with an electret microphone insert.
A microphone of this type is actually a microphone plus a built-in f.e.t. preamplifier. These are connected in the arrangement shown in Fig. 3. The f.e.t. operates as a simple source follower buffer stage.
Although the basic electret element has an extremely high output impedance, the f.e.t. preamplifier gives the microphone insert a low output impedance. For the prototype a unidirectional electret microphone insert, which will work on supply voltages from 1.5 V to 10 V , is used. In this case it is provided with a supply of just under 9 V , via a supply decoupling network made up of resistor R1 and capacitor Cl .
If you use an alternative microphone insert there are a few points to bear in mind. Firstly, make sure that it is guaranteed to work safely on a 9 V supply. Secondly,
not all inserts include the load resistor for the f.e.t. This is a point which should be checked with the retailer's catalogue.

If there is no internal load resistor, then a resistor of about 47 k in value must be connected between the negative terminal of capacitor C2 and the 0 V supply rail. Life will be easier if the specified insert (see Shoptalk), or a very similar type is used.
In this application there is an advantage in using an unidirectional insert rather than an omnidirectional one. An omnidirectional insert will pick up sounds over a wide angle of "view". This means that you do not have to aim the unit very accurately at the sound source in order to pick it up correctly, but it also means that the unit may be swamped by masses of unwanted sounds for much of the time. The much

IC2 acts as the buffer stage in the highpass filter. This filter is a conventional active four stage filter having an attenuation rate of 24 dB per octave. In other words, below the cutoff frequency a halving of the input frequency causes the circuit's gain to reduce by a factor of sixteen.

CUTOFF FRECUENCY

The cutoff frequency has to be something of a compromise. Setting it low gives good output quality with some bass response, but even with the steep slope of the filter's response it would give poor attenuation of low frequency "clangs".
Setting the cutoff frequency quite high would virtually eliminate unwanted noises,
but would have unacceptable consequences for the audio quality. A figure of about 300 Hz is provided using the specified values, and this seems to be about optimum in practice. The cutoff frequency is inversely proportional to the value used for capacitors C4 to C7, and can easily be changed if you would prefer a different cutoff point.
Capacitor C8 couples the output of IC2 to the Volume control VRI. From here the signal is coupled to a simple non-inverting amplifier based on IC3. This has a voltage gain of around 180 times. Capacitor Ci0 couples the output of IC3 to the headphone socket via attenuator resistor R15. The headphones must be medium impedance types having the two phones connected in series.

Fig. 2. Full circuit diagram for the Audio Telescope. Switch S1 enables the highpass filtering to be switches in and out of circuit.

Fig. 3. An electret microphone insert includes a built-in f.e.t. preamplifier.
narrower angle of "view" of a unidirectional insert gives much better results, but you do need to aim the unit a little more carefully in order to pick up the required sounds.
The preamplifier is an inverting circuit which is based on a very low noise operational amplifier IC1. This is an NE5534A i.c.. This stage has an input impedance of one kilohm and a voltage gain of about 470 times.
The circuit will work using a device such as a 741 C or LF35IN for IC1, but with about ten times the noise level provided by the NE5534A. Increasing the noise level by a factor of ten effectively reduces the sensitivity of the unit by the same factor. Although the NE5534A is relatively expensive, its extra cost is fully justified in this application.

COMPONENTS

Resistors

R1	4k7	
R2	1k	See
R3, R4	47k (2 off)	SHOp
R5	470k	
R6, R8	6 k 8 (2 off)	
R7	15k	Page
R9, R10	100k (2 off)	
R11, R12	22k (2 off)	
R13	390k	
R14	2k2	
R15	330	

All 0.25W 5\% carbon film

Potentiometer

VR1 10k rotary carbon, log
Capacitors

C1	22μ radial elect. 25 V
C1, C8,	$4 \mu 7$ radial elect. 63 V (3 off)
C11	$4 \mu 7$
C3, C9	$2 \mu 2$ radial elect. 63 V (2 off)
C4. C5,	$47 n$ polyester 10% or better
C6, C7	4 (4 off)
C10	100μ radial elect. 10 V
C12	100μ axial elect. 10 V

Semiconductors

IC1 NE5534A ultra low noise
IC2, IC3 LF351 bifet op. amp (2 off)

Miscellaneous

MIC1	
S1,	s.p
JK1	3.5 mm stereo jack sock
B1	9 voit (PP3 size)
Stripboard 0.1 in. matrix, size 56 holes	
22	ps; case, about 150 mm
$80 \mathrm{~mm} \times 50 \mathrm{~mm}$; 8-pin di.l. holder (3	
off); medium impedance headphones	
ee text); control knob; battery	

Approx cost guidance only

The specified value for resistor R15 should give good results. However, if necessary it can be made higher in value to give reduced maximum volume, or lower in value to give greater maximum volume.
The current consumption of the circuit is only about 7 mA to 8 mA , and a PP3 size 9 volt battery is therefore adequate as the power source.

CONSTRUCTION

Details of the stripboard component layout and the breaks required in the underside copper tracks are provided in Fig. 4. This is based on a 0.1 inch pitch stripboard which has 56 holes by 22 copper strips.
A board of this size must be cut down from one of the larger sizes in which the board is sold. Use a hacksaw to cut along the appropriate rows of holes, and then smooth the edges using a small flat file.
The two mounting holes are 3.3 millimetres in diameter, and they will accept metric M3 or 6BA mounting bolts. The twenty six cuts in the strips can be made using the special spot face cutter tool, or a handheld twist drill bit of about five millimetres in diameter.

The board is now ready for the addition of the components, link wires, and solder pins. The latter are used at the points on the board where it will be connected to off-board components. Single-sided pins will suffice, and they should be generously "tinned" with solder so that wires can be easily connected to them.

The link wires can be made from 22 s.w.g. tinned copper wire. However, as few of them are required, and they are all quite short, trimmings from the resistor leadout wires should be adequate to complete all the links.
Fitting the resistors and capacitors is quite straightforward, but resistors R4 and R15 must be mounted vertically in order to fit them into the available space. Be careful to fit the electrolytic capacitors the right way round. Capacitors C4 to C7 must be printed circuit mounting types having 7.5 millimetre (0.3 inch) lead spacing if they are to fit neatly onto the board.

Although none of the integrated circuits require any anti-static handling precautions, it is still recommended that they be fitted in 8 -pin di.I. holders. Make sure they are fitted with the correct orientation.

CASE

The length of the stripboard panel means that a case having a minimum length of about 150 millimetres is needed for this project. There are several plastic boxes of about this size available, any of which should be well suited to this project.
The component panel is bolted on the base of the case, and some extra nuts or short spacers should be fitted between the board and the case. The microphone insert is fitted at one end of the case, close to terminals on the circuit board to which it will be connected. Drill a hole in the case the same diameter as the body of the microphone insert, and then glue the insert in place using any good general purpose adhesive.
Mount the controls and headphone socket on the top panel of the case, (see photographs). The exact layout is not overly important, but it is always a good idea to use one that will avoid lots of crossed over wires when the unit is wired up. JK1 is a 3.5 millimetre p.c. mounting stereo jack socket. Despite its name, this does have the usual 6.35 millimetre mounting nut and bush, and it is suitable for use as an ordinary panel mounting component.

WIFING UP

Details of the inter wiring are also shown in Fig. 4. Use ordinary multi-strand hookup wire, or pieces of ribbon cable. The leads from the microphone insert to the board can be kept down to about 20 to 30 millimetres in length, making it unnecessary to bother with a screened lead here.
It is advisable to fill the inside of the case with some sound absorbing wadding of some kind. This helps to minimise problems with sounds caused by leads flapping around inside the case, battery rattles, etc. It can also help to keep down problems with general vibration of the case and resonances. Some wool, cotton wool, old socks, or material of this general type should do the job quite well.

INUSE

The Audio Telescope should work using any medium impedance headphones of the type sold as replacements for use with personal stereo units. However, the "inner-

Complete board mounted inside the case. The microphone insert can be seen mounted on the left. The front (lid) panel layout is shown in the photograph at the top of the page.

Fig. 4. Stripboard component layout, interwiring and details of breaks required in the underside copper strips.
ear" type are the best choice as these are largely free from problems with acoustic feedback. Ordinary "mini" headphones are usable, but the maximum gain that can be used may well be limited slightly by feedback problems.
In use Volume control VR1 must be well advanced if the unit is to work effectively. It is not necessarily with VRI fully advanced that optimum results will be obtained. If there is a lot of background noise (wind rustling the leaves of trees etc.) then it may be preferable to back-off VR1 slightly.
Note that the unit simply cannot operate effectively if there is too much background noise. It is much better on calm days well away from roads, than on windy days in a small park in the middle of a town.

You might like to try making the unit more directional by adding a tube in front of the microphone. This needs to be done carefully if it is to give the desired effect.
Simply gluing a piece of metal or plastic tube in place over the microphone will probably produce an odd directional response. Rather than shielding the microphone from off-axis sounds, the tube can easily act as an extension of the diaphragm that will pick up sounds over a wide range of directions.
For the tube to be effective it must be covered with a soft foam material, or something similar, that has good sound absorbent properties. It can be tricky to get the desired effect, but this is an interesting area for experimentation.

EVERYDAY
 ELECTRONICS

Signed.
Name and Address
(BLOCK CAPITALS PLEASE)

Constructional Project

SONIC CONTINUITY CHECKER MARK DANIELS

Abstract

A handy, low cost, gadget for checking p.c.b. tracks and many other applications, suchas fuses, cables, electrolytics (470μ Fand abovel and semiconductor junctions

Continuity testing is one of those seemingly simple operations that are so often fraught with unforeseen complications. Checking printed circuit board tracks for breaks and short circuits with a multimeter is a good example of this. Whilst moving the test prods along the track under test an eye has to be kept on the meter in order to spot any faults.
An audible tester enables both eyes to be kept on the job whilst giving immediate indication of the presence of a short or open circuit. Unfortunately most continuity testers of this type do not give any indication of impedance. This may sometimes indicate that no fault is present when the track has a resistance of 100 ohms or more, due to it being damaged somewhere along its length. This is the type of fault which ordinarily requires the use of a multimeter in order to trace it.

An audible test device that gives an indication of the resistance in the circuit under test would be an advantage in circumstances such as these. The Sonic Continuity Checker described in this article does this by producing an audible tone that changes in frequency with variations in the resistance across its test terminals.

VOLTAGE CONTROLLED OSCILLATOR

The Sonic Continuity Checker uses the voltage controlled oscillator (v.c.o.) section of the 4046 B phase locked (p.1.1.) integrated circuit. It also uses one of the phase comparators as an inverter in order to produce the required complementary outputs for driving a piezoelectric transducer with an a.c. signal.

A v.c.o. produces an output frequency that is proportional to the value of the voltage on its control voltage terminal. The frequency range may be set to give the required minimum frequency with the control voltage at zero volts. The maximum frequency is obtained when the control voltage is equal to the positive supply rail value. This frequency may also be pre-set.

CIRCUIT

DESCRIPTION

The complete circuit diagram for the Sonic Continuity Checker is shown in Fig. 1. ICl is a phased locked loop (p.1.1.) which in common with any other p.1.1. is based on a voltage controlled oscillator (v.c.o.). The frequency range of this device is set by capacitor Cl and resistors R3 and R4. Resistor R3 sets the minimum operating frequency which is given by the formula:

$$
\begin{equation*}
f_{\text {min }}=\frac{1}{\mathrm{R} 3 \times \mathrm{Cl}} \tag{Eq.1}
\end{equation*}
$$

This gives the value of 45.45 Hz for the low frequency.
The maximum frequency, set by resistor R4, is given by the following equation:

$$
\begin{equation*}
f_{\max }=\frac{1}{\mathrm{R} 4 \times \mathbf{C l}}+f_{\min } \tag{Eq.2}
\end{equation*}
$$

Fig. 1. Full circuit diagram for the Sonic Continuity Checker.

This gives 45.5 kHz as the upper frequency.
Obviously, with $f_{\text {max }}$ being so much higher than $f_{\text {min }}$, the component of $f_{\text {min }}$ in Equation 2 may be ignored and still give a very close approximation for $f_{\text {max }}$.
These frequencies are only approximate as they are dependent to some extent
on battery voltage and also component tolerances.
The 4046 B does not have complementary outputs, but these may be obtained by using one of the on chip phase comparators as an inverter. This is done in the Sonic Continuity Checker by connecting the output at pin 4 of ICl to pin 3 and taking the inverted output at pin 2 :
D.C. blocking capacitor $\mathbf{C} 2$ is provided to prevent any d.c. component from reaching the piezo electric transducer WDI. It also acts as a very simple high pass filter by attenuating the signal more at low frequencies than higher ones, as shown in the graph of Fig. 2. This has the additional advantage of increasing the volume automatically at the high frequencies to which the ear is less sensitive.

Resistors R1 and R2 along with the resistance of the item under test form a potential divider which gives a suitable control voltage for ICl at pin 9 .
The control voltage (c.v.) is given by the following formula:

$$
\text { c.v. }=\frac{R 2+R_{\text {TEST }}}{R 1+R_{\text {TEST }}+R 2} \times \text { p.d. }
$$

Where p.d. is the battery voltage (about 9 volts).
From Equation 3 the minimum control voltage (obtained when $R_{\text {TEST }}$ is zero ohms) is 964 mV . The max control voltage is obviously 9 volts when $R_{\text {TEST }}$ is infinite (or open circuit). It can be seen that the minimum frequency given by Equation 1 is unobtainable in this circuit due to the c.v. not going down to zero volts. This gives a modified low frequency of approx. 100 Hz .
Light emitting diode (l.e.d.) DI and its associated current limiting resistor R5 are included to remind the user to turn the Sonic Continuity Checker off when it is not in use.
The unit is powered from a PP3 9 volt battery to give complete portability and a degree of safety.

CONSTRUCTION

All the components, with the exceptions of the transducer WDI and the battery,

Fig. 3. Full size copper master pattern and topside component layout.
are mounted on a single-sided glass fibre printed circuit board (p.c.b.), the foil pattern and component overlay for which is shown in Fig. 3. It is strongly recommended that an i.c. socket be used for IC1. This will greatly simplify matters if the i.c. needs changing later.
Fit the resistors and i.c. socket to the board first and solder them in. Solder pins are suggested for the test leads, battery and transducer connections. Bond the
switch $\mathbf{S} 1$ to the board in the position shown in Fig. 3 using cyanoacrylate adhesive ("Superglue"). Pass three short lengths of 24 s.w.g. bright tinned copper wire through the holes in the switch terminals and p.c.b. and solder these to the pair of terminals on the switch that each wire passes through. Turn the board over and solder the other ends of these leads to the pads. Fit the two capacitors and I.e.d. to the board ensuring that the

top of the l.e.d. stands about 16 mm above the top of the p.c.b.

C4SE

Drill the three holes in the case and make the cut-out for SI as shown in Fig. 4 and photographs. Mark around the transducer inside the case lid and apply a thin layer of contact adhesive inside the circle. Coat the brass side of the transducer with the same.
Allow about 15 minutes for the solvent to evaporate before bonding the transducer in place. Ensure that the leads are facing the correct direction before placement as bonding will be virtually instantaneous.
Solder two lengths of test lead wire to their respective solder pins and pass them underneath the board before threading them through the two holes in the end of the case. Secure the board with the two screws. Make connections between the board and the battery terminals using 24 s.w.g. copper wire. Connect the transducer to its p.c.b. terminals - the polarity is unimportant here. Finally, before assembling the box, fit the i.c. into its socket, (remember that it is static sensitive!), ensuring that it is the correct way around. See the photographs for the case layout and interwiring.

Fit two suitable test prods to the ends of the test leads. Spring loaded test clips were used on the prototype but in practice anything the constructor finds suitable may be used.

TESTIVG

Fit the battery, observing polarity, and switch on. If the l.e.d. does not illuminate switch off immediately and check battery polarity. If this is correct it is likely that the l.e.d. is connected the wrong way round in which case simply unsolder it and turn it around. It is unlikely to have suffered any permanent harm.

If the l.e.d. lights, touch the tips of the test prods together. The transducer should emit a low pitch note, if not recheck all internal wiring, component positioning and values and ICl for correct orientation. Note: If resistors R3 and R4 have accidentally been swapped around the unit will produce only an ultrasonic pitch under any test conditions.
Once a low pitch is obtained, try connecting various resistors, from about 33 ohms to 390 ohms across the test leads. The pitch of the note should increase with any increase in resistance, reaching an ultrasonic pitch with around 500 ohms connected across the leads.

The completed tester

 and "probes".
USING THE SONIC CONTINUITY CHECKER

The unit should now be fully functional and tested. Its primary design function is testing p.c.b. tracks for shorts, bad tracks which show some resistance and open circuits. These tests can only be satisfactorily performed before the board is assembled.
Testing is carried out simply by placing one test prod at one end of a track and the other one at the opposite end of the same track. If the note is low pitched (as when the prods are shorted together) the track can be assumed to be good.
However, if no pitch or a high pitch is produced a fault exists. The location of the fault may be found by sliding one test prod along the track until a low pitch is obtained, the fault is then just behind the moving probe.

Short circuits between adjacent tracks or pads may be found by placing a prod on one track and the other on the adjacent track. Any audible note indicates a fault.

The Sonic Continuity Checker has many uses in addition to the one described above. Checking fuses and cables are well within its capabilities.

Some other, perhaps less obvious uses are; checking large power supply smoothing capacitors of $470 \mu \mathrm{~F}$ or above, and semi-conductor junctions.
To test an electrolytic capacitor, connect it to the Sonic Continuity Checker such that its negative terminal is connected to the black-lead and its positive terminal to the red-lead (the capacitor MUST be fully discharged before starting this test). As the capacitor charges the pitch of note produced by the tester will increase until it can no longer be heard. Small capacitors will do this rapidly while large ones will take much longer.
Diodes will produce a tone of 1 kHz to 2 kHz when connected with their anodes to the red lead and cathodes to the black lead. Reversed connections should pro-
duce no audible tone with a good device
The two junctions of a silicon transistor may be checked as diodes, (see Fig. 5). This will give no indication of gain but will indicate possible serviceability or otherwise of the device.
Before testing any component which is still in circuit ALWAYS ensure that the power is disconnected first!

MODIFICATIONS

As the circuit stands it has a usable resistance range of about 30 ohms to 400 ohms . To extend the lower end of the range increase the value of $\mathbf{R} 2$, up to a maximum of about 220 ohms. This will also reduce the maximum resistance which will give an audible tone.
To increase maximum resistance (at the expense of sensitivity at the lower end) increase the value of R1, which may be taken up to about $I \mathrm{M}$. The maximum resistance for $\mathrm{R}_{\text {TEST, }}$ which will produce an audible tone, is around half the value of R1.

Altering resistors R3 or R4 should not be necessary since these only affect the upper and lower frequency limits as does capacitor Cl .

Fig. 5. Diode representation of transistors.
Fig. 4. Case drilling details. The "test" leads enter the case via two holes drilled at one end.

MMC
 THE NAME IN INNOVATIVE COMMUNICATIONS PRODUCTS
 STOP NUISANCE CALLS PROTECT YOURSELF AGAINST UNWANTED TELEPHONE CALLS
 DL20
 TELEPHONE CALL
 FILTER-MONITOR-ANSAPHONE
 * Call-Screen: Displays the number of incoming calls before the telephone is answered.
 \star Call-filter: No more unwanted calls.
 * Call-Counter: Check number of calls on return.
 * Call-Register: Stores 40 incoming call numbers and the time of the call.
 * Call-Monitor: Listen to any noise in your home/office by a secret code when calling.
 * Normal time display.
 * Memory back-up during power cut.
 * Can connect both tone or pulse telephone systems.
 * 20 phone number memories can be
 2118.29 stored and recalled.
 All prices are exclusite of VAT. 63 p \& p
 * OGM: To record a personalised outgoing message.

NORTHERN MARKETING CONCEPTS

24 HOUR ORDER HOTLINE Tel: (09442) 8887

Also suppliers of -
SCANNERS - TELEPHONE RECORDERS-COMPUTER AIDED SURVEILLANCE SOFTWARE
Please note that certain equipment may need approval before connection or use

Complete your tools with Antex Soldering Irons

 The art of accurate soldering is to maintain the bit temperature at the optimum level.Antex fixed setting, thermally balanced, high efficiency irons maintain constant tip temperature and offer a wide range of soldering bits to suit your particular application.
For the more sophisticated applications, control at lower temperatures is essential. In these cases an adjustable temperature soldering iron is required. Also available are soldering stations with the option of digital temperature read out. Antex products are designed for precision soldering to meet the demands of precision electronics.
Ask for Antex by name at leading Electronics distributors.

ANTEX=

TM SERIES MULTIMETERS

D-MM Good Value!

The TM series of low cost meters. with $31 / 2$ digit LCDs. full overload protection, strong ABS case and packed with features. Supplied with test leads, battery and manual.

315	DC	56-05315	$¢ 19.99$
TM 5365	Capacitance and frequency (200 kHz) ranges	56-05365	£36.50
TM 5375	Frequency range (20 MHz) and HFE test	56-05375	¢36.95
TM 115	$A C$ \& DC current (10A). HFE and continuity test	56-00115	¢32.50
TM 135	Capacitance and temp. ranges (inc. probe)	56-00135	¢45.95
TM 175	Frequency (15 MHz). capacitance ranges with		
	HFE, diode. continuity and LED test.	56-0017	¢53.60
TM8020	$33 / 4$ digit display, frequency (4 MHz). capacitance		
	$(40 \mu \mathrm{~F}) . \mathrm{AC}+\mathrm{DC}$ current to 20A	56-08020	¢54.76
TM8030	$33 / 4$ digit display, frequency (4 MHz), temperat		
	(inc. probe). $\mathrm{AC}+\mathrm{DC}$ current to 20A	56-18030	[59.96
705	Capacitance meter, 1pF to 20,000uF	56-07705	39.82

BLACK STAR
Top quality. UK made. frequency counters and generators.
Jupiter 2010

Jupiter 2010 2 MHz function generator plus 20 MHz 1410 Meteor 100
Meteor 600
Meteor 1000
Apollo 100
Nova 2400
Jupiter $500 \quad 500 \mathrm{kHz}$ function generator Jupiter $2000 \quad 2 \mathrm{MHz}$ function generator 56-01600 £269.00 56-01410 £527.00 56-00100 £128.08 $56-00600$ £158.63 56-01000 £209.15 56-10100 £381.88 $56-02000 \quad £ 351.33$ 56-00500 £129.25 56-02001 £175.05

INFORMATION TECHNOLOGY AND THE NATIONAL CURRICULUM

T. R. de VAUX BALBIRNIE

THIS IS the sixth in a 12 -part series concerning Information Technology, Microelectronics and related matter in the Science National Curriculum.
This month we shall look at the uses of switches and relays in simple circuits. We shall then go on to examine logic gates and their use in decision-making circuits.

USING MODULES

For these experiments, a modular electricity kit (such as one from Unilab) is best. The complete kit of parts is not needed and costs may be saved by buying only the items listed below from the Basic Kit and the 11-13 Kit (see Fig. 1).

An alternative approach is to buy the unmounted components from a mail-order supplier and attach the connecting wires yourself. This is a cheaper method but would demand more time and possibly ínvolve soldering. It may also turn out to be less reliable. If doing this, note that some of the components have been used in previous experiments so check your kit of parts. The number in brackets is that required for one group of children.
" D " size cell holder and cell (1)
Lamp holders fitted with 1.25 V bulbs (3)

Push-to-make switches (2)
Changeover switches (2)
Several short leads with 4 mm plugs on each end (or crocodile clips if using basic components).
Reed relays (2)

CIRCUIT SYMBOLS

Before proceeding to build simple circuits, the children should be shown the various items listed above (apart from the reed relay which follows later) and encouraged to learn their circuit symbols (see Fig. 2). Unfortunately, there are some alternative symbols and you may need to explain these if they occur (for example, if they are marked on the plastic body of the device).

The words cell and battery often cause confusion. Strictly speaking, a single unit is called a cell and a collection of cells, a battery. However, it is not usually clear that a battery has more than one cell inside it. On the whole, it is probably best to use the word "cell" yourself but accept "battery" as well. Some children find great difficulty for some reason in realizing circuit diagrams and you will need great patience with them. Others pick it up very quickly and easily.

The purpose of using symbols should be made clear. This is to simplify circuit drawing and to make a circuit easy to understand at a glance. The actual appearance of a cir-

This on/off effect is important - there is no half-way state. Emphasize this because it will link with digital work later on.

The children should set up the circuit shown in Fig. 3a and note that the lamp lights - there is a complete circuit. Next, they should break the circuit by removing one of the plugs or crocodile clips - the lamp goes off - and bridge the gap with a push-to-make switch (see Fig. 3b). The best type of switch is one where the pieces of metal can be seen to touch clearly - switches from the Unilab 11-13 Kit are of this type but if you are using basic components, a "knife" switch could be used.

When the metal strips touch, the circuit is re-made and the lamp lights once again. At this point it would be a good idea to stress to the children that experiments such as these are perfectly safe using batteries and bulbs, but that mains electricity

Fig. 4. A short circuit, this must be avoided.

bulbs in series circuits
(a)

(i)
(b)

(ii)

EET5866 (iii)

(iv)

(v)

Fig. 5. Some series and parallel circuits to try.
is another matter and that such liberties must never be taken with it. This is why switches for mains equipment, such as wall-switches, are always fully enclosed.

The children should realize that, to work, there must be a complete circuit - an uninterrupted path from one end of the cell to the other through, for example, wires bulb(s) and switches. Make sure they understand that there must always be a lamp (or something similar such as a buzzer or motor) for the electricity to flow through. If a circuit is made with no such components, it is a short-circuit and this drains the battery very quickly.

Children often produce the type of circuit shown in Fig. 4, and report that the switch turns the lamp off. It does - but when the switch is pressed, a short-circuit is formed - most of the current now bypasses the lamp so it goes off. This must be avoided.
Note that everything used in a circuit must conduct electricity and children should know that metals are usually used - copper is a particularly good conductor of electricity. This could be checked by building a circuit with a gap in it. The gap could then be bridged with everyday objects such as coins, pencils, etc. to see whether they conduct electricity or not.

It is fairly common for children to think that a switch must be place before a bulb in a circuit. Allow them to find out that this is not so - the switch may be placed before or after the bulb and it will work equally well - a break anywhere in the circuit will prevent the current from flowing.

The children should learn that where components such as bulbs are connected together like a chain - so that the current has to flow through one component before it can reach another - is called a series circuit - see Fig. 5a. Two or more bulbs in a series circuit will be dim because the current finds it more difficult than going through only one.

Get them to build the parallel circuits shown in Fig. 5b. Parallel circuits have at least one branch where the electricity can follow alternative routes. Let them find out where a switch could be placed to behave as a "master" switch to control all bulbs such as (Fig. 5b(i)) and where to place switches to control individual bulbs (such as in Fig. 5b(ii)).

Build the circuits shown in Fig. 6. Let the children find out that in (a) both switches must be pressed but in (b) either switch may be pressed for the electricity to flow. They should get the idea that the lamp lights when certain conditions are met i.e. it is a decision-making circuit (this will link with Logic Gates later).

CHANGEOVER SWITCHES

Children should know that there are several different types of switch. The one used up to now is a make switch where two pieces of metal fbuch - or "make" - when the switch is in one position (pressed) and part -. or "break" - when it is in the other position (released).

It is possible to have more complicated contact arrangements and a changeover switch is an example of this. A changeover

Fig. 6. (top) Both A and B must be pressed for the lamp to light. (below) Either A or B may be pressed for the lamp to light.
switch works as follows (see Fig. 7). When in Position A as shown, the common or moving contact, X , is connected to Terminal A . When in the alternative position it is connected to Terminal B. This switch could be used to control one circuit when in Position A and another circuit in Position B. In one position, Lamp A is on and when in the other position Lamp B is on. This could be used for a WAIT and COME IN sign used in a doctor's surgery.

TWO-WAY SWITCH

It is interesting and instructive to make a two-way switch circuit. This simulates the type of switching found in houses where a light may be switched on in one place and off in another - for example, to control a landing light from either

Fig. 7. A changeover switch circuit.

Fig. 8. A two-way switch circuit.

Fig. 9. A traditional relay.
upstairs or downstairs. This needs two two-way switches arranged in the circuit shown in Fig. 8.

Begin by considering both switches A and B in the positions shown. A circuit is established via wire X and the lamp could be switched off by placing either switch in the other position. It could then be switched on again by placing the other switch in the alternative position - a circuit would now be established via wire Y.

THE RELAY

A relay is a special type of switch. Its action is not controlled directly but by the magnetic effect which is produced when a current flows in a wire. In the traditional pattern of relay (Fig. 9), a small current flows through a coil of copper wire wrapped around a soft (that is, pure) iron core. The core becomes magnetised and this attracts an arm - called the armature. The armature in its turn "makes" switch contacts (there may be more than one set of these). Some relays have at
least one set of "break" contacts too - that is, contacts which move apart when the coil is energized and, perhaps, some changeover contacts.

An alternative type of relay is the reed relay where the coil is wrapped around the body of a reed switch. The reed switch consists of a glass encapsulation with a pair of "reeds" inside made of magnetic material (see Fig. 10a). When current flows through the coil, the magnetic field produced magnetizes each reed with opposite polarity. These therefore attract and complete the circuit (see Fig. 10 b and 10 c).
Reed relays are very small and reliable but cannot have such a versatile switching arrangement as a traditional relay. A modular reed relay (Unilab 11-13 kit) is best for the following experiments although a basic unmounted reed relay could be used with wires soldered to the coil and contact terminals.
Using a relay may seem a very roundabout way of switching on a circuit. However, the current needed to energize the coil is very small and may be supplied by transistors and integrated circuits. The relay contacts may then go on to switch all manner of high current or high voltage equipment. For example, in the light meter circuit (described last month), the output from the transistor could, instead of operating a small bulb, be used to operate a relay. The relay contacts could then switch on a street light.

A relay may be regarded as an interface between the low current electronic world and the real world of high-powered lights, motors, heaters, etc. In this way, electronic control circuits may be used to

Fig. 11. Monostable with relay output.

operate high-power equipment such as pumps and motors in a factory. Note that it would be extremely dangerous to attempt to switch mains equipment without proper knowledge. Also the relay contacts would need to be correctly rated for mains operation.

RELAY EXPERIMENT

Operation of a relay may be demonstrated using the circuit shown in Fig. 10c. When the switch is pressed, current flows from the 9 V battery through the coil. The reeds move into contact and the lamp lights. Note that there are two distinct circuits with no electrical connection between them.

The monostable circuit last month could be made more versatile by using a relay in the output. All that is required is to remove the lampholder and connect the relay coil in its place (Fig. 11). It would also be necessary to add the diode

Fig. 12. Relay contacts in series (top) and in parallel (below).
shown - this removes the destructive high-voltage pulse which occurs as the magnetic field in the relay coil collapses. The relay contacts could then switch on other equipment such as a buzzer or a motor.

RELAY LOGIC

Consider the circuit shown in Fig. 12a. Here, the relay contacts are connected in series. For the bulb to light, the coils of both relays need to be energized (both switches X and Y pressed). In the circuit shown in Fig. 12b, the contacts are connected in parallel. Now, the lamp will light if either coil is energized (either switch X or Y - pressed).
These are called logic systems because the lamp will only light when the correct conditions are met. This is another type of decision-making circuit similar to those using real logic gates which are considered next.

THE DIGITAL WORLD

In the world of digital electronics, a circuit is either on or off. An ordinary switch is digital because the lamp, or whatever it controls, is either on or off - there are no states in between. A dimmer switch is not digital because the light can be set to any brightness level - the changes are smooth.
Ask the children to note some other digital and non-digital devices - not necessarily of an electrical or electronic nature. For example, a gas or water tap is not digital and neither is a farm gate (it can be open, closed or left in any intermediate position). The lid on a chest, however, is digital - it is either open or closed and is only in the intermediate state momentarily. The lock on a door is also digital - it is either locked or unlocked.
When an electrical or electronic device is on, we call its state "Logic 1 " or simply " 1 " or "High". When it is off, we call it "Logic 0", or "0" or "Low". Logic 1 usually means the same state as the battery positive terminal and Logic 0 the same state as the negative battery terminal.

The digital world is, then, a very simple place where everything is either on (Logic 1) or off (Logic 0). It is rather like a world where every question would have an answer and this answer would always be "Yes" or "No". Moreover, the same question would always have the same answer.
We know, however, that the human world is not the digital world! If you were to ask a friend if you could borrow $£ 5$ then the answer could be "Yes", or "No", but it could also be something else - "Get lost!" or "You can borrow $£ 3$ but not $£ 5$!" or "Come back tomorrow". Furthermore, the same question will not necessarily always have the same answer - it would, depend on the mood your friend happened to be in at the time - a "Yes" today may very well be a "No" tomorrow!

The digital world would be a very boring world for humans. On the other hand - it is a very good world for machines. For example, you might want a cup of coffee from a drinks machine. It must always answer "Yes" - that is, give you a cup of coffee providing you have asked the correct "questions" - i.e. you have pressed the correct buttons and put in the money and, or course, it has a supply of paper cups and the other things it needs. We could say that the logic circuit in a coffee machine has made a decision - that is, it gives an answer based on the questions you have asked it.

DECISIONS, DECISIONS

Decisions such as these are usually made using electronic Logic Gates. These generally have two inputs (called A and B) and one output (called Q). The inputs and output may only be Logic 1 (High) or Logic 0 (Low) - nothing else is allowed. The only possible states of the inputs, then, are:

A B

0	0
0	1
1	0
1	1

The logic state of the output, Q , will depend on the states of A and B and on what type of gate it is. If it is the type of gate called an AND gate, the output, Q . will be Logic 1 when both A AND B are Logic $\mathbf{1}$. In all other cases it is $\mathbf{0}$.

A	B	Q
0	0	0
0	1	0
1	0	0
1	1	1

The table above is called a Truth Table (in this case, the truth table for an AND gate) - it tells the whole truth about the gate - nothing else can happen! Try to make the children draw the inputs in the order stated. It is not wrong to do it in a different order, for example:

\mathbf{A}	\mathbf{B}	\mathbf{Q}
0	1	0
1	1	1
1	0	0
0	0	0

However, this is not conventional and could cause trouble if the subject were to be studied in depth later. There are several other types of gate. One is called the $O R$ gate. The output of this is Logic 1 if either A OR B (or both) is Logic 1 :

A	B	Q
0	0	0
0	1	1
1	0	1
1	1	1

In some previous experiments using switches and relays, circuits were constructed which behaved as AND and OR gates (although they were not called by these names at the time). In one arrangement - Fig. 12a - the lamp only lit when both relay coils were energized and in the other - Fig. 12b - the light came on when either (or both) coils were energized. This is an example of relay logic.
Relay Logic is rarely used in real applications today (although it used to be) because relays are large, relatively expensive, slow to operate (by today's standards), use a relatively large current for the coil to energize and are prone to sticking and failure. In real life, purposemade integrated circuit logic gates are

Fig. 13. General appearance of a gate i.c. package.
used. These are very inexpensive, extremely fast in operation, small and almost totally reliable. They also require very little current. The general appearance of a logic gate is shown in Fig. 13.

OTHER GATES

There are three other common types of gate called NAND, NOR and NOT respectively. The output of a NAND or NOR gate is the opposite of the AND and OR gate - a 0 becoming a 1 and a 1 becoming a 0 . NAND stands for NOT AND and NOR stands for NOT OR. The NOT gate (sometimes called an invertor) is the simplest gate of all and has only one input, A, and one output, Q. Its purpose is to turn a Logic 1 input into a Logic 0 output and vice-versa.

Fig. 14. Gate symbols.

NAND GATE			NOR GATE		
A	B	Q	A	B	Q
0	0	1	0	0	1
0	1	1	0	1	0
1	0	1	1	0	0
1	1	0	1	1	0

NOT GATE

A	\mathbf{Q}
0	1
1	0

Gates are valuable in computers and control circuits (such as coffee machines) because they can make decisions. These may be very simple - almost trivial decisions but many such decisions can be made at great speed and, providing there are many gates, the decision may be quite complex and based on many different inputs. Here are some of the things which a coffee machine must take account of before it decides to give you a cup of coffee.
Is there a supply of paper cups?
AND is there hot water and coffee powder?
AND has the correct money been inserted?
AND have the correct buttons been pressed?
All these questions would be "called Logic 1 if the answer was "Yes" and Logic 0 if the answer was "No". If they are all "Yes", then the output would be Logic 1 and you would get your coffee. This is an example of a complex decision-making system.
There are other situations where not all the answers need to be "Yes" for the output to be Logic 1. For example, if the price of coffee was 20 p the following would apply:

Have two 10p coins been inserted?
OR one 20p coin?
OR four 5 p coins?
etc.
Any one of these - and other - statements having a "Yes" answer would result in the coffee being delivered.
Before using integrated circuit gates, the symbols shown in Fig. 14 should be introduced. These are the American Standard symbols and are used by most examination boards and text books.

GATE EXPERIMENTS

For these experiments you will need either some modular Logic Gates (such as those in the Unilab Alpha Kit) - AND, OR, NAND and NOR and follow the instructions supplied with them. If using an Alpha kit you will also need certain other parts to make them work, in particular, you will need a battery connector and a set of yellow "Alpha links".

An alternative approach is to buy the basic chips listed below and use them on the Vero Plugblock (the procedure for using this was explained last month). It is not worth buying NOT gates since these are easily made using other gates as shown later. Here is a list of the things you would need if choosing this method. The transistor amplifies the small output current from the gate and enables it to light the filament lamp. Check your kit of parts since the starred items have been used in previous experiments.
\star Vero Plugblock
$\star 9 \mathrm{~V}$ PP3 battery and connector
$\star 6 \mathrm{~V} 0.06 \mathrm{~A}$ lamp in lampholder
\star ZTX300 transistor
\star 10k resistor - 2 off
$\star 3 \mathrm{k} 3$ resistor
AND gate 4081BE
OR gate 4071 BE
NAND gate 4011BE
NOR gate 4001BE
It would help to buy several of each gate to do combinational logic work later.
The circuit diagram is shown in Fig. 15 but there is no need to understand this. It is more important to be able to insert the gates in turn into the Plugblock layout shown in Fig. 16. Note that the circuit is "universal" since it applies to all the gates being used. For this reason, a box-type symbol has been used to avoid having to draw a whole set of near-identical diagrams. This is the pin arrangements for the gates:

Pin	Function
1	input
2	input
3	output
7	negative supply
14	positive supply

If anyone wonders why there are so many unused pins - the reason is simple. Each of these integrated circuits contains four gates and we are using only one of them!

CONNECTIONS

The gates used are members of a family called C-Mos. In theory, they can be destroyed by touching the pins if you are charged up electrostatically, this could be the result of walking on a nylon carpet, for example. It is unlikely to cause damage unless the charge is very high since the chips are internally protected. You could remove any charge on the body by touching an earthed object such as a water tap just before handling them but this is hardly worthwhile.

Fig. 15. Gate investigation circuit.
To try out the logic, you need to use short "flying leads" - two short pieces of wire with 5 mm of insulation removed from each end connected to the inputs as shown. If these are touched on the battery positive line this makes them Logic 1 and if left unconnected they will automatically assume a Logic 0 state (due to the effect of the "pull-down" resistors, R1 and R2). If the lamp is on, this indicates a Logic 1 output and if it is off, Logic 0 . Follow the truth table for each gate and check that the output takes the logic state predicted.
To make a NOT gate, connect the two inputs of a NAND or NOR gate together to make one input (see Fig. 17). Check that the output is " 1 " when the input is a " 0 " and the output is a " 0 " when the input is a " 1 ". The reasoning behind this is as follows. Consider the truth table for the NAND gate. When the inputs are connected together it makes it impossitle for them to have different logic states. That is, if one input is Logic 0 the other must also be a 0 and likewise with a 1 . This means that the middle two lines of the truth table are impossible. The top line states that an input of 0 gives an output of 1 and the bottom one states that if the input is a 1 the output must be a 0 . This gives the NOT gate required.

If you examine the truth table for a NOR gate, similar reasoning applies. If you look at the truth tables for the AND and OR gates, you will see that these cannot be used to make a NOT gate. If you try, the output state will be the same as the input one.

Fig. 16. Plugblock layout for gate circuit.

Fig. 17. A NOT gate made from a NAND gate.

(a)

छछउ5976
(b)

Fig. 18. (a) Inverting the output of a NAND gate. (b) Inverting the inputs of a NAND gate.

COMBINATION LOGIC

Connecting gates together to make new ones is called combinational logic. Try this arrangement where the output of the NAND gate is inverted by the home-made NOT gate (Fig. 18a). Common sense predicts that this will make an AND gate and

[713590
Fig. 19. Mystery gate. this may be shown to be so. However, putting gates together in combinations sometimes leads to surprising results.
Make the arrangement of gates shown in Fig. 17b. Here, the inputs to the NAND gate are inverted. This may be constructed either on the Plugblock (but you will need to make our own layout) or with the modular gates. Don't forget that each gate needs its own battery connections. Most people think that this will be an AND gate. In fact, it makes an OR gate - try it and see!

An arrangement to make a "mystery gate" is shown in Fig. 19. Build it and draw its truth table. With care, you could work it out without actually making it. The result will be published next month.
Next time we shall look at logic gates being used in simple control circuits. We shall then look at the differences between analogue and digital signals and instruments. Also, since many of the "children" are now growing up, we start using the word "student" instead!

Name.
Address.
\qquad
\qquad

I enclose payment of E (cheque/PO in f sterling only payable to Evervday Electronics) Access or Visa No.

Signature... Card Ex. Date
Please supply name and address of card-holder if different from the subscription address shown above. Subscriptions can only start with the next available issue. For back numbers see the Editorial page.

Constructional Project

EASY switch

T. R. de VAUX-BALBIRNIE

Two versions of an optically-isolated mains switch with extra-light action. The "featherlight" touch makes it ideal for appliances that may be used by an elderly or disabled person.

THIS Easy Switch circuit was originally designed to replace the standard switch on an elderly person's lawnmower. Due to arthritis, he was unable to maintain sufficient hand pressure to keep it on.
Many lawnmowers have a switch which requires quite a large hand pressure - even people with normal hands can find it difficult keeping it pressed for long periods. This is where loops of string, wire, or "Jubilee" clips are sometimes used to keep it on. Doing this is very dangerous since the whole point of this type of switch is to cut off the supply instantly when released.
This replacement provides a much easier action. The switch may be of any lightduty push-to-make pattern chosen for its light touch, feel, size, ease of operation, etc. There is no need for it to be mains-rated or capable of carrying a high current.
The switches used in the prototype units were keyboard switches. These have a very light action, are inexpensive, work reliably and have a long life. They may also be fitted with tops of various sizes.
The standard circuit maintains the safety requirement of cutting off the supply instantly when the switch is released and being optically-isolated from the mains is entirely safe in operation. The control circuit itself is battery-powered.

TWO VERSIONS

The Easy Switch is very versatile and readers will, no doubt, turn their ingenuity to using it for other purposes. For this reason a further version is described. This has a press-on press-off action using two switches. On no account should this SECOND type be used for lawnmowers or, indeed, any appliance where INSTANT cut-off of the mains is needed in an emergency
Note that in constructing either version of the Easy Switch various mains connections need to be made Any reader who is unsure of being able to make a safe job, or does not understand the need or not for Earthing, or is not absolutely certain on any points of construction must consult a qualified electrician.
Also, the quality of all soldered joints
must be guaranteed. Note that lawnmowers should always be used in conjunction with an RCD (Powerbreaker) and a fused plug and must never be used in the rain whether using the Easy Switch or not.

STANDARD VERSIONCIFCUIT DESCRIPTION

The Easy Switch (Standard Version) is built in two separate sections, interconnected using a short piece of 2 -core wire. The first part houses the switch itself and will be clipped in a convenient place on the lawnmower handle. The second part is
limiting resistor, RI and preset VRI. DI operates and this triggers the triac, CSR1. A conducting path is now established be tween CSR1 main terminals, pins 4 and 6.
The triac can handle mains voltage but only at a low current which would be insufficient for the present purpose. Mains current flowing between pins 4 and 6 is therefore used to energize the coil of relay, RLA, and the double-pole "make" contacts, RLA1 and RLA2, which direct current to the lawnmower motor or other appliance.
Note that the correct type of relay must be used as specified. In particular, its coil MUST be designed for direct connection to the 240 V a.c. mains supply. Most relays have a low-voltage coil - for example, 6 V or 12V. Such a relay would be catastrophically destroyed if used in this circuit.
The relay contacts must also be designed for switching mains current and be generously rated. The specified relay may be used with lawnmowers and other appliances rated up to 1500 W on 240 V mains. Beware of small, cheap relays which seem just adequate "on paper" - these would quickly fail in service.

Fig. 1. Circuit diagram for the Standard Version of the Easy Switch.
situated near the bottom of the handle. This contains the control circuit, battery and screw terminal blocks for making all mains and switch connections.
The entire circuit for the Easy Switch - Standard Version is shown in Fig. 1. 1 Cl is an optically-isolated triac which contains an infra-red I.e.d., D1, and a triac, CSRI built into a 6 -pin integrated circuit package.
With the mains connected and switch S1 (Operate) pressed, current flows from the 3 V battery, B1, through D1 via current-

When S1 is released, D1 and the triac switch off and the mains supply is interrupted instantly. The relay then "drops out" and the motor switches off.
Since the l.e.d., D1, is not electrically connected to the mains section of the circuit, $\mathbf{S 1}$ and associated wiring carry current at battery voltage only. Providing the unit is correctly constructed it will therefore be entirely safe.
The purpose of preset potentiometer VR1 is to allow the 1.e.d. operating current to be reduced to a minimum value
consistent with reliable triggering. This is because D1 will often trigger CSRI with a much lower current than the published data suggests. This fact can be exploited to minimise battery drain. Resistor RI prevents excessive current from damaging DI if VR1 is adjusted to zero resistance. The prototype needs 3 mA while SI is pressed so the two AA size cells will last for many months in normal service. No current is drawn with $\mathbf{S} 1$ released.

CONSTRUCTION STANDARD VERSION

A plastic box must be used for housing the main(s) section. It is advisable to use a splashproof one - this will help to protect the internal components should the mower be left accidentally in damp conditions. No metal parts, for example, metal bolt heads may appear on the outside of the box where they could be touched - nylon fixings must be used for mounting all internal components.
Providing the appliance has no Earth wire (that is, it uses two-core mains cable) it may be used without an Earth when connected to the Easy Switch. For appliances with an Earth connection (that is, using 3 -core mains cable) it is essential to maintain earth continuity and further information for this is given later.
Construction of the Standard Version is based on a main circuit panel made from a piece of 0.1 in. matrix stripboard, size 8 strips $\times 19$ holes. The component layout and details of breaks required in the underside copper strips is shown in Fig. 2.
Cut the board to size, drill the two fixing holes and make all track breaks as indicated. The double row of broken tracks at ICI position must be carefully checked since they isolate the mains section from the low-voltage part of the circuit.
Safety depends on all track breaks being complete so check carefully with a magnifying glass. Take care, however, not to weaken the panel by over enthusiastic use of the spot-face cutter.
Solder the on-board components into position. Note that ICl needs a 6 -pin i.c. socket but this size is not freely available. If necessary use an 8 -pin socket and cut and file it to size. Make a careful check for errors particularly for accidental solder "bridges" occurring between adjacent copper tracks.
Connect a 5 cm piece of light-duty stranded connecting wire to strip F and the negative battery holder connection to strip D on the left-hand side of the panel as shown. The wires connected to ICl pins 4 and 6 should be mains type of 1A rating these are made direct to the pins not through the copper tracks.
Check that these wires are totally secure - the unit could become dangerous if they or anything else became detached in service. Leave VRI sliding contact adjusted fully anti-clockwise (as viewed from IC1).
Prepare the box by drilling holes for the relay, terminal blocks TB1 and TB2 also for battery holder and circuit panel mounting. Mount these using NYLON fixings. Note that the circuit panel should be mounted on short stand-off insulators.
Referring to Fig. 3, complete the internal wiring. The four wires interconnecting the relay "make" and moving contacts to TBI/1 to TBI/4 (shown bold or thicker than the rest of the wiring) must be of stranded mains type having a rating of 6 A

Fig. 2. Standard version stripboard component layout and underside copper strip breaks. Note the dotted, 1A rated, leads are soldered directly to IC1 pins 4 and 6 on the underside.

Fig. 3. Interwiring between the main unit components. The switch S1 is housed in a separate small case, see below.

minimum. Place two used batteries - nearing the end of their life - in the battery holder observing the polarity.

EARTHING

In the event of the appliance having an Earth wire this will require terminal block TB1 to have an additional section, TB1/5; so that the earth wire (E) of the mains input cable may be connected to the earth wire (E) of the appliance cable. On no account may an appliance requiring an earth be used on a non-earthed supply.
Prepare the smaller "switch" box by drilling a hole for the switch and for the wire passing through to the main unit. This wire may be of any light-duty flexible two-core type.
Measuring the length of wire needed, pass it through the hole in the box and secure with a strain relief grommet. Solder it to the switch terminals and connect the other end to terminal block TB2/1 and TB $2 / 2$ in the main unit. Press the top on the switch (if it is of that type) - in the prototype unit the logic symbol 1 was used to mean "on".

TESTING

Important: Whenever the unit is connected to the mains, the lid of the case must be on.

Test the unit with a mains table lamp connected to the output, TB1/3 and TB1/4 rather than the lawnmower. Connect a piece of mains wire with a plug fitted with a 3A fuse on the end to TB1/l (Live) and TB1/2 (Neutral). Plug the unit into the mains and press switch SI - the lamp should light and go off instantly when the switch is released.

Preset VRI may now be adjusted for minimum current requirement. Do this in a

COMPONENTS

STANDARD VERSION

series of small adjustments with the lid replaced each time as explained above. Adjust it clockwise until the lamp fails to light when \mathbf{S} ! is pressed. It should then be adjusted anti-clockwise rather more than necessary to give stable operation. At the critical point relay "chatter" will be heard and the lamp will flicker.
The batteries should now be replaced with new ones. This setting-up procedure ensures that best service is obtained from the batteries. Make certain that they are secure and cannot fall out under vibration.

INSTALLATION

Assuming the appliance has no Earth wire, connect TBI $/ 3$ and TB1/4 to the lawnmower motor using the existing 2 -core cable. The mains input connection is now made to TBI/1 (Live) and TB1/2 (Neutral) using a short "flying lead" with a 2 -pin "Black \& Decker" garden tool type plug on the end - note this is a plug not a socket.
The matching socket is attached to the mains input lead. Note that all wires passing into and out of the main(s) section box must be fitted with strain relief bushes so that they cannot pull free in service - do not use makeshift methods.
Secure the main unit to the bottom of the handle using a plastic bracket and nylon fixings. Attach the switch section to the top of the handle. The Easy Switch may now be put into service. The batteries should be replaced if ever the motor shows signs of unstable operation and, in any case, annually.
Due to the very light action of the switch it is absolutely essential to unplug the lawnower from the mains before touching the blade or making any adjustments. Since vibration will occur in service, all fixings inside the main unit must be checked periodically for tightness.

ALTEFNATIVE VERSION

IMPORTANT: Read carefully the Standard Version and take note of all safety points before proceeding.

The following notes for the Alternative Version are not detailed. Only important differences between this and the Standard Version are fully described.

The circuit receives power from a 9V PP3 battery and although an alkaline one could be used, a lithium one is recommended for long life and better operating charac-
teristics. A battery
holder with hinged cover is used so that the lid of the case does not need to be removed to change the battery (see photograph).
A splashproof box will probably not be required since this circuit is designed for indoor use. On and Off switches, S11 and S12, are mounted in a separate box connected to the main unit using light-duty 3 -core wire. This wire may be of any reasonable length.

CIFCUIT DESCRIPTION

The circuit for the Alternative Version is shown in Fig. 4. Note that components are

Fig. 4. Complete circuit diagram for the Easy Switch - Alternative Version.
numbered from 11 onwards to distinguish them from those in the standard circuit. On and Off switches, S 11 and S12 are identical and may be of the same pattern as S 1 in the Standard Version.
A CMOS version of the 555 timer integrated circuit is used for IC11, but in this application it is used as a bistable. This is achieved by making pins 6 and 7 permanently low.
The device may be "set" that is, switched on by applying a low pulse (battery negative voltage) to pin 2 using switch S11 whereupon the output (pin 3) will become high (battery positive voltage). It may
be subsequently "reset" (switched off) by making pin 4 low for an instant using switch S12. Resistors RII and R12 keep both set and reset inputs normally high and this prevents possible false operation.
The output from IC11 operates the l.e.d., D11, in the optically-coupled triac through current-limiting resistor, R13 and preset VR11. Capacitor, CII ensures that the reset input is low at the instant of switching on so prevents possible self-triggering.
The CMOS timer IC11 requires $100 \mu \mathrm{~A}$ approximately when the circuit is on standby (that is, when switched off using S12). Although this may be regarded as

COMPONENTS

ALTERNATIVE VERSION

Resistors

R11, R12 100k (2 off)
R13 270
All $0.25 \mathrm{~W} 5 \%$ carbon

Potentiometer

VR11 | 10 k min. enclosed |
| :---: |
| vertical preset |

Semiconductors

IC11 ICM7555 low-power
CMOS time
MOC3020 optically-isolated triac

Miscellaneous

S11, S12 Light-action switches - see text (2 off)
S13 Light-duty s.p.s.t. toggle or rocker switch
RLB Mains relay with 7300 ohm $230 / 240 \mathrm{~V}$ coil and 7.5A d.p.d.t. contacts rated for 240 V a.c. mains operation TB11 15A screw terminal block 5 sections required
TB12 3A screw terminal block - 3 B11 PP3 lithium or alkaline battery, connector and battery holder with hinged cover
Stripboard 0.1 in. matrix, size 9 strips x 28. holes; plastic box, size $118 \mathrm{~mm} x$ $98 \mathrm{~mm} \times 45 \mathrm{~mm}$ external (M83 box); 8 -pin d.i.I. socket (2 off); strain relief bushes (3 off); solder; light-duty connecting wire; $1 A$ and $3 A$ mains wire, etc.

Approx cost guidance only

E18
Fig. 6. Alternative Version main unit interwiring.

Fig. 5. Alternative Version stripboard component layout and underside details.
negligible, supply switch S13 may be switched off when the unit is to be left unused for a long period of time.

CONSTRUCTION

Construction of the Easy Switch - Alternative Version is based on a main circuit panel made from a piece of 0.1 in . matrix stripboard, size 9 strips $\times 28$ holes. The component layout and details of breaks required in the underside copper strips is shown in Fig. 5.
Solder 8 cm pieces of light-duty stranded connecting wire to strips D, F and H on the left-hand side of the circuit panel. Solder IA mains type wires directly to IC12 pins 4 and 6.
Make the holes in the boxes and mount all internal components. Refer to Fig. 6 and complete the internal wiring.
Insert ICII into its socket without touching the pins. This is because it is a CMOS device and could be damaged by any static charge existing on the body. Insert IC12.
Press the tops on the switches - in the prototype unit logic symbols were used: 1

for "on" and 0 for "off" but this, of course, is optional. Adjust VR11 fully anti-clockwise (as viewed from IC1I) and connect the battery.

EARTHING

If the appliance to be used with the Easy Switch has an Earth wire then this must be connected to the earth pin (E) of the mains plug. This is done using section TB1 $1 / 5$ of the terminal block. This section is simply ignored if no Earthing is required.

TESTINGAND OPEAATION

Connect a reading lamp to the terminal block (TB11) at points TB11/3 and TB11/4. Connect the mains input wire to TBII/L (Live), TBII/2 (Neutral) and TB11/5 (Earth). Replace the lid and plug the unit into the mains.

Switch on S13 and check that the lamp comes on when switch S11 is pressed and goes off when S12 is pressed. If all is well, preset VR1 may be adjusted clockwise for minimum l.e.d. operating current and the unit put into permanent service.
Sometimes when the unit is first plugged into the mains (either version) the unit triggers for an instant and the relay may be heard to click momentarily. This is no cause for concern.

Completed Alternative Version showing (top) keyboard on/off switches and (above) main unit component layout, including hinged battery holder.

STRAIN GAUGES

 CHRIS WALKER

 CHRIS WALKER
 Electronics can be used to measure force with a strain gauge. This article looks at the theory and next month we describe a simple weighing scale.

HAVE you ever stopped to wonder how you would attempt to use an electronic circuit to measure the size of a force? How, for example would you attempt to measure the weight of an object? One possible solution would be to utilise the elastic properties of a spring by hanging the object from the spring and measuring its extension by mechanically linking it to a potentiometer.
This method is rather crude, and a much more elegant solution involves using strain gauges for the job. These industry-standard force-measuring transducers are beginning to appear on several physics and technology examination syllabuses and yet very little has been written about them and some constructors are afraid to experiment with them because they have a reputation of being difficult to use successfully.
This two-article feature hopes to dispel some of the mystery and fear about using strain gauges for useful applications in the home, school, college or at work. It is also hoped that students taking A-level (or higher) courses and teachers of these courses will find the feature instructive and interesting.
We start by looking at the theory behind
strain gauge operation and, in the next article, go on to see how they can be used to make a simple, but sensitive, electronic weighing scale.

GAUGE
 STRUCTURE

A foil strain gauge consists of a very fine zigzag grid of copper-nickel alloy called "constantan" which is photographically etched onto a polyester or polyimide backing material, see Fig. 1. In most modern gauges the grid is hermetically sealed and so protected from moisture and other contaminants. The entire gauge is very compact, typically 9 mm by 4 mm .
Two leadout wires permit connection to a circuit, without the risk of damaging the grid by soldering directly to it. These leads are, however, very delicate and are normally soldered to a simple self-adhesive lead terminator (supplied with the gauge) which prevents undue flexing.
The strain gauge is bonded, using adhesive, to the surface of the material under investigation. The marks printed on the backing material allow it to be accurately aligned along the direction of principal strain. When a "stress" is applied, the material undergoes "strain" and extends
slightly causing the strain gauge to extend also.
As the gauge stretches, the constantan conductors become longer and thinner. The electrical resistance of a conductor is proportional to its length and inversely proportional to its cross-sectional area. Therefore, straining the gauge will result in the resistance of the grid increasing by a small amount.
Constantan alloy is used because the fractional change of the grid's resistance is nearly proportional to the applied strain. The exact relationship is shown by the formula in Fig. 1. The quantity K_{G} in this formula is called the "Gauge Factor" and typically lies in the range 2.0 to 2.1 . The unstrained resistance of most popular gauges is 120 ohms.

STRESS AND STRA/N

Of course, if you are not a physicist or engineer, the terms stress and strain may be unfamiliar to you in this context. Let us consider a simple tensile situation as shown in Fig. 2.
If a material with a length " 1 " and a cross-sectional area " A " has a force " F " pulling on its ends, then the tensile stress in the material is:

$$
\text { stress }=\frac{F}{A}
$$

If this stress causes the material to extend (stretch) by an amount "e" then the tensile strain it experiences is:

$$
\text { stress }=\frac{e}{l}
$$

Fig. 1. Structure of a foil strain gauge. The photograph indicates the size of the gauge and shows a lead terminator.

Fig. 3. Using a single strain gauge.

The ratio of tensile stress to tensile strain is called the Young Modulus (given the symbol " E ") of the material being used:

Young Modulus $(E)=\frac{\text { tensile stress }}{\text { tensile strain }}$
Let's work through an example. Suppose the strip in question is made from aluminium and measures 16 mm by 3 mm and is 300 mm long. A force of 200 newtons (200 N), which is about equal to the weight of twenty 1 kg bags of sugar, is applied to its end.

The cross-section area of the aluminium is:
area $=0.016 \times 0.003=4.8 \times 10^{-5} \mathrm{~m}^{2}$ remembering to work in S.I. units of metres, not millimetres. Therefore, the tensile stress is:
stress $=\frac{200}{4.8 \times 10^{-5}}=4.17 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$
Now, the Young Modulus (E) for aluminium (found from a data book) is 7.1 $\times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$, so to find the tensile strain in the strip:
strain $=\frac{\text { stress }}{E}=\frac{4.17 \times 10^{6}}{7.1 \times 10^{10}}=5.87 \times 10^{-5}$
Notice that strain is a ratio and has no units. The extension produced by this strain is very small (about one hundredth of a millimetre) and you would have trouble measuring it directly, and yet it poses little problem for a strain gauge.

It is not intended for this feature to substitute a full course on material mechanics or elasticity. If you wish to
know more about how materials behave under the influence of external forces then you should absorb yourself in a little light reading from an engineering textbook!

Suffice it to say that if you can calculate how much strain a particular gauge experiences then you can also predict the fractional change in the resistance of the gauge (an vice-versa).

WHEATSTONE BRIDGE

A single strain gauge G1 can be bonded to the surface of a material, as shown in Fig. 3. If it is bonded properly, then the strain gauge will experience the same strain as that present in the surface of the material.

The gauge is then connected into a "Wheatstone Bridge" as shown. (In case you are interested, Sir Charles Wheatstone, who developed this resistance-measuring bridge, also invented the Concertina and the Stereoscope 3D viewer amongst other things. How's that for trivia?!)
Although the bridge is drawn in a diamond shape, it actually consists of two potential dividers connected across a voltage source $\mathrm{V}_{\text {in }}$. The output from the bridge is the potential difference between the mid-points of the two dividers. The bridge is said to be balanced when $\mathrm{V}_{\text {out }}$ is zero.
Under these conditions it can be shown that the resistor values R1 to R3 and gauge resistance Gl have to satisfy the equation:

$$
\frac{\mathrm{R} 1}{\mathrm{GI}}=\frac{\mathrm{R} 2}{\mathrm{R} 3}
$$

In order to balance the bridge, resistor R3 would need to be equal to the resistance of the strain gauge, whilst resistors R1 and R2 would typically have a resis-* tance of 1 k .
A higher resistance is used for resistors R1 and R2 for two reasons. Importantly, it ensures that the current through the strain gauge is kept to a safe, low level to prevent unwanted heating of the gauge. Also for this reason, the bridge supply voltage is quite low, about 5 V .
The second reason for choosing a high resistance for R1 and R2 is that it reduces the common-mode voltage present at the output. Although the voltage difference at the output is zero when the bridge is balanced, each terminal is at a potential of about 0.5 V above the 0 V rail. This com-mon-mode voltage needs to be kept as low as possible or it will create problems in the following amplification stage.

QUTPUT voltage

If the gauge G1 is strained so that it undergoes a fractional resistance change of $\triangle \mathrm{GI} / \mathrm{GI}$ then (assuming the bridge is initially balanced) it can be shown that the output voltage from this Wheatstone Bridge is given approximately by the formula in Fig. 3.
To continue with our example involving the aluminium, we have calculated above that the strain produced by a 200 N force was $5.87 \times 10-5$. Therefore, if a strain gauge with a gauge factor of 2.0 is fastened to the aluminium, its fractional resistance increase (given by the formula in Fig. 1) is:
$\Delta \mathrm{G} / \mathrm{G}=2.0 \times 5.87 \times 10^{-5}=1.17 \times 10^{-4}$
The output voltage from the bridge shown in Fig. 3 would, therefore, be:
$\mathrm{V}_{\text {out }}=5 \times \frac{120}{(1000+120)} \times(1.17 \times 10-4)=0.06 \mathrm{mV}$
This is a pretty small signal and needs amplification before it can be easily measured but before we discuss amplifiers, let's look at some other Wheatstone Bridge arrangements.

DUAL GAUGE BRIDGE

If, instead of exerting a tensile force to stretch a material, we apply a "torque" as shown in Fig. 4 then the strip will bend. Its top surface will be under tension whilst the bottom surface is in compression. If we fix a strain gauge G1 to the top surface and another one to the bottom. (G2) and wire them into the bridge as shown in Fig. 4 then the equal and opposite effects from the gauges will give double the output voltage from the bridge for a given strain compared to the output from a single gauge.

It is important to realise that this cantilever is a different and more complex situation from the simple tensile example of Fig. 2, although the same basic physical principles still apply.
This arrangement is used to construct the weighing scale in the next article and, for small forces, the output from the bridge is roughly proportional to the applied load. It could also form the basis of an electronic torque wrench.
For increased sensitivity, commercial load-cells may contain four gauges in a complete bridge as shown in Fig. 5. A possible mechanical arrangement for the gauges is also shown. When the cell is

Fig. 4. A dual gauge arrangement.

Fig. 5. Arrangement of a typical commercial tensile load cell.

Fig. 6. Temperature compensated Wheatstone Bridge.
stretched, gauges G1 and G4 experience compression whilst gauges G2 and G3 undergo tension.

TEMPERATURE STAEILITY

As shown earlier, the output from the bridge is very small (typically less than one millivolt) and it is important to prevent environmental changes from affecting the gauges and creating an output which could swamp the effects of strain. Temperature changes create the biggest problems and have two significant effects on the gauges.
An increase in temperature can cause the material (to which the strain gauge is attached) to expand, and this could stretch the gauge and cause it to register apparent strain. To eliminate this effect, a strain gauge is chosen which has a linear expansivity equal to the expansivity of its host material.

Vout $=\mid$ v2 - vil \times ditserenliol gain differentiol goin $=\frac{R b}{R a}$
[E 35646

Fig. 7. A basic differential amplifier.
During a temperature change, both the gauge and its host will expand and contract by the same extent. Gauges matched to aluminium or mild steel are commonly available.
The other temperature effect is a more fundamental one which affects the strain gauge directly. As with all metallic conductors, when the temperature of the constantan grid increases its resistance rises, and this will cause the Wheatstone bridge to become unbalanced.
When using a single strain gauge, the simplest way around this undesirable problem is to introduce a second, dummy strain gauge as shown in Fig. 6. The dummy gauge is placed in close proximity to the active gauge, but it undergoes no strain. A temperature change will affect both gauges identically and their equal resistance changes will not unbalance the bridge, which is now described as "temperature compensated".
Of course, in two-gauge or four-gauge
bridges, temperature compensation is automatically achieved by the presence of more than one active gauge.

All this care to achieve stability could be labour-in-vain if the 1 k bridge resistors you use are el-cheapo "carbon" types with poor stability. Ideally, "precision wirewound" versions are the bees-knees, but if you are not in the habit of spending a week's wages on a single resistor than the modestly priced "metal film" types work quite satisfactorily.

DIFFERENTIAL AMPLIFIER

We have now reached the stage where we need to amplify the small output voltage from the strain gauge bridge so that it can be displayed on a calibrated voltmeter or digitised for storage in a data logger, etc. Remember that the bridge output is the voltage difference between the two arms and, so, a differential amplifier is needed.

An operational amplifier is ideal in this application and Fig. 7 illustrates how the addition of four resistors develops the opamp into a differential amplifier where the output voltage is proportional to the voltage difference between its two inputs.
To obtain a 0.5 V output from a 0.5 mV input, a differential voltage gain ($\mathrm{G}_{\text {diff }}$) of 1000 is required. At these high gains, the common mode rejection ratio (CMRR) of the amplifier is important. The CMRR is a measure of the amplifier's ability to ignore voltages common to both inputs (common-mode voltages).
$C M R R=\frac{G_{\text {diff }}}{G_{\mathrm{cm}}}\binom{$ where G_{cm} is the common }{ mode voltage gain } and this ratio should be as high as possible. More commonly expressed in decibels:
$\operatorname{CMRR}(\mathrm{dB})=20 \times \log _{10} \frac{\mathrm{G}_{\text {diff }}}{\mathrm{G}_{\mathrm{cm}}}$
An inexpensive op-amp may have a CMRR of 90 dB . Without wishing to become too involved in the maths, it turns out that this figure is not high enough to prevent a high gain differential amp from suffering undesirable common-mode effects which could swamp small output signals.
There are two ways around this problem; either use a better op-amp with a higher CMRR, or use a better circuit.

CROSS-COUPLED DIFFERENTIAL AMPLIFIER

A cross-coupled differential amplifier is shown in Fig. 8 and represents a better approach to circuit design'in this application. In the input stage, two cross-coupled op-amps (ICla and IClb) amplify differential signals but offer only unity gain to common-mode signals.

In the second, differential stage, amplifier ICIc amplifies the differential output from the first stage but rejects the common-mode output. The second stage can provide additional gain, if required.

Since the input stage offers no amplification to common-mode inputs, the CMRR of the second stage is effectively improved by an amount equal to the gain of the first stage. Adjustable gain can be achieved by replacing resistor Ry with a variable resistor.

As an example, if we require an overall

Fig. 8. A cross-coupled differential amplifier. gain of 1000 , this could be achieved by giving the input stage a gain of about 100 followed by a gain of 10 in the differential stage.

Setting $R x=470 \mathrm{k}$ and $\mathrm{Ry}=10 \mathrm{k}$ will set the input gain to 95 , and if $\mathrm{Rb}=100 \mathrm{k}$ and $\mathrm{Ra}=10 \mathrm{k}$ this will set the gain of the differential stage to 10.

TEMPERATURE DRIFT

The two input amplifiers should be part of a single chip so that they experience the same temperature fluctuations. This makes sure that the effects of temperature drift are common to both amps and are cancelled out in the differential stage.
The choice of amplifier depends on the performance you require. A simple fet-input type such as the LF353 is a dual-amp package with a CMRR of 100 dB and it will probably give good results at fairly low differential gains. However, an instrumentation grade device such as the quad-package OP-470GP, although expensive, has an excellent CMRR of 120 dB along with a very low noise figure and would be a superior choice.
The op-amps should be run from a splitrail power supply; for example +9 V and -9 V , which can be conveniently supplied from a pair of batteries.
In the next article, we will apply the design principles discussed here and look at the practical aspects involved in using strain gauges to construct a sensitive weighing scale.

EVERYDAY READOUT

MINE OF INSPIRATION

Dear Ed.,
Just to inform you that I am not renewing my subscription to Everyday Electronics as I have now retired from my work as a teacher of CDT Technology.
May I say that I have found the magazine to have been a tremendous source of help in interesting pupils in electronics, and it has been a mine of inspiration for suggestions on project work.
No doubt I shall still be picking up the occasional copy from W. H. Smith for my own enjoyment!

One suggestion that I wonder may be of help for the many school students who read the magazine. Why not an examination question, taken from past GCSE papers in Electronics or Technology, showing model answers, one question per month? This should supplement the excellent series you have done on project work for GCSE and Information Technology.
Here's wishing all success to EE, an excellent magazine for beginners (and old hands too!)
B. A. Hollowell Kettering
We are pleased to have been of assistance. A new GCSE Electronics/A level Electronics series will start in the October issue (Teach-In '93 no less), this will contain GCSE questions and model answers. Thanks for the suggestion.

DIESEL TACHO

Dear Ed.,
I write to ask if you can help me to find a circuit for a tachometer for a diesel engined car. I believe that the digital tacho featured in last June issue relied on the ignition pulses which of course are absent from the diesel.

Some diesel cars are fitted with a tacho as standard and I believe that they sense pulses or current from the alternator "W" terminal. I have connected my multimeter to the "W" terminal but can get no reading on any scale.

It occurs to me that the "W" may be cast onto all the alternator end plates but the terminal not connected if the vehicle was not intended to have a tacho. If this is the case can you tell me what the output from a "W" terminal should be, how to achieve it and how to make use of it.
The system presumably would present this information on a readily available meter and be adjusted to calibrate out any difference in the ratio of the engine and the alternator pullies.

A tip for anyone seeking soft iron for electro-magnetic projects. Florists support fragile flower stems in wreaths and bouquets by inserting Swedish iron wires which are available in various gauges and lengths. It is a farily good quality soft iron - very prone to rusting.
B. Pike

South Humberside
Unfortunately diesel tacho's are not something we know anything about. If any reader can help with information andlor a project we would be interested to hear from you.

PCW ALIVE AND WELL

Dear Ed.,
I read Barry Fox's article in the Feb, issue and felt I simply could not let it pass. He was far too pessimistic about the future of the PCW, and may well have spread gloom and despondancy among many readers who own these excellent machines.

Sales of the PCW really took off, and whether intended for planned obsolescence or not, a 3 -inch disc became the standard for
domestic and many small, as well as not-sosmall businesses. Accurate figures are not available, but well over 600,000 probably approaching one million PCW's have been sold in this country, with a similar number going overseas.

These have created a huge demand for discs. About a year ago six million were supplied to Amstrad from Panasonic, and European makers were also reported as getting in on the act. As readers of the specialized PCW magazines will know, there are many adverts for unbranded 3 -inch discs which are made in various parts of the Far East. I have used many of these and found them to be actually more reliable than the Amstrad Amsoft discs.

To further show that the 3-inch PCW is far from being a dead end, is the large amount of hardware that has been produced specially for it, some quite recently. For any who wish to use $31 / 2$-inch or $51 / 4$-inch discs, there are external drives by Teac and others that can be easily fitted to the 8256 by simply plugging in.
The same situation exists with software. There is an immense range specially produced for the 3 -inch format and more are appearing all the time.
So it can be seen that a large support industry has grown up around the original PCWs. Even though Amstrad have pulled out, with over 600,000 UK users it is much too big a market to let slip. Amstrad of course is happy to play the obsolescence card and stand aloof, as the thought of all those PCW users ditching their machines and buying the latest would surely put a twinkle in Alan Sugar's eye.
So there is no need to panic, the 3 -inch format is likely to be around for some while yet, and supplies of discs from eager Oriental gentlemen as long as there is a demand. But if the worst does come, an easily fitted and operated extra drive will enable both 3 -inch and $31 / 2$-in discs to be read and written on the PCW. Much cheaper than buying a new computer.

Vivian Capel
Bristol

WRITEIN

Many readers have requested a letters page, here it is. Now it's up to you to ensure Readout continues and that it is lively and interesting. Let's hear from you!

Robert Penfold

|"N LAST month's Interface article a simple d.c. power controller of the constant voltage type was described. In conjunction with a digital-to-analogue converter based on a ZN 426 E this provides computerised speed control of a small d.c. electric motor.
A controller of this kind is very simple and straightforward, but it does not provide particularly good performance. The main problem being the starting performance.
A typical application for a controller of this type is as a model train controller. One would expect that sending steadily increasing values to the converter would result in the train steadily moving off and accelerating away.

Jump Starting

Anyone who has used an elementary model train controller will know that a smooth start of this type is virtually impossible to produce. Steadily advancing the speed control results in the train stubbornly refusing to move until the control has been well advanced. It then suddenly moves off at around half speed. Much the same happens if a controller of this type is used under computer control.

Control is much more precise once the train has started. There is still another problem though, in that reliability is not very good at low operating speeds. The motor tends to stall rather easily.

There is a way around the poor starting performance, and this is to give a brief burst of high power to get the train moving. The length of this initial pulse has to be carefully controlled if it is to provide the desired result.

If the pulse is too short the train will simply fail to start. If it is too long the train will have an initial burst of speed which will not give very realistic results.
Getting this just right with a manual controller is tricky, but possible. With a computerised controller it should be much easier, since the software routine used to provide the initial burst will provide consistent results. Some trial and error will be needed to get things optimised, but thereafter the setup should give consistently good starting performance.

There is no easy solution to the poor low speed performance though. Probably the best simple solution is a "panic" key which can be pressed when the train stalls. This just sends a brief pulse of high power to nudge the train back into action.

Pulsed Controller

For reliable operation at low speeds a more sophisticated form of controller is required. Pulsed controllers offer much better performance but are still reasonably simple and inexpensive. These do not
provide steady output voltages, but instead produce a pulsed output signal.
For example, in order to produce half power the output signal is a squarewave having a $1: 1$ mark-space ratio. The output is switched fully on for half the time, and is fully switched off for the rest of the time. The average output voltage is therefore equal to half the peak output potential, and it is this average voltage that governs the speed of the motor.
A higher mark-space ratio gives a higher average output voltage - a lower markspace ratio produces a lower average output potential. Using this method it is therefore possible to produce any effective output voltage from zero to the peak output voltage of the controller.

Unless you are fairly expert at the software side of things it is probably best to use a controller that produces the pulse width modulation (p.w.m.) signal via a digital to analogue converter. The block diagram for a standard p.w.m. controller is shown in Fig. 1.

The amplifier at the input is needed in this case because the 0 to 2.55 volt output from the converter is too small to drive the main circuit properly. The buffer amplifier at the output is needed to permit the circuit to provide the high output currents required by a d.c. electric motor.

The pulse width modulator is formed by the triangular oscillator and the voltage comparator. The voltage comparator's output goes high if the input voltage is higher than the volt-
 age from the oscillator, or low if it is not.

Three sets of waveforms for the modulator are shown in Fig. 2. In each case the top triangular waveform

Provided the output frequency is not very high or very low, a small d.c. motor will work perfectly well from a pulsed signal. A frequency of around 100 Hz to 200 Hz is satisfactory.
The point of using this method of control is that the pulses of full power from the controller are good at nudging the motor into action, giving much improved starting performance. They also resist the tendency of the motor to stall, producing much better reliability at low speeds.

Direct Drive

There are several ways of producing a suitable pulse width modulated signal under computer control. From the hardware point of view the most simple is to use a constant voltage controller, but to omit the digital-toanalogue converter. Instead, the controller circuit is driven direct from a digital output of the computer (or an add-on PIA card). Although this only seems to give simple on/off control, by using software routines to generate suitable pulse signals on the digital output, pulse width control is obtained.
This method is perfectly feasible, but needs some carefully written software if it is to work properly. A fast computer language is needed in order to provide an output signal having suitably precise timing.
Also, the computer must be left with some spare computing capacity and not be fully tied up just generating the pulse signal. An interpreted BASIC, even running on a fairly powerful computer, will probably not be fast enough.
is the output from the oscillator, the broken line is the d.c. input level, and the lower waveform is the output signal.
It will be seen that the higher the input voltage, the higher the mark-space ratio of the output signal. In fact the average output voltage is identical to the d.c. input level.

Controller Circuit

The circuit diagram for the Model Train Pulsed Controller Unit is given in Fig. 3. Starting at the output, transistor TR1 is an emitter follower output stage. As very high gain is needed here and high currents are involved, a Darlington power device is used for TR1.
The power dissipation in TRI is less than one might expect due to the switching mode in which it operates. However, it should still be mounted on a medium sized heatsink to ensure that it is kept reasonably cool.
Resistor R8 is a load resistor for TRI, capacitor C 4 attenuates high frequency harmonics on the output which might otherwise cause radio interference, and diode D1 suppresses any reverse voltage spikes generated by the motor. Incidentally, the method of reversing described last month is applicable to this controller.
The voltage comparator function is performed by IC3, which is actually just an operational amplifier used in the comparator mode. The inverting $(-)$ input is driven from the output of a conventional triarigular waveform generator. This has IC2a as the integrator and IC2b as the trigger circuit. It
operates at about 100 Hz , which should suit any small d.c. electric motor. However, the operating frequency is easily altered, and is inversely proportional to the value of capacitor $\mathbf{C} 2$.
The input amplifier, IC1, drives the noninverting input of IC3. Although it was stated earlier that the average output voltage is equal to the d.c. input level to the modulator, in practice matters are not normally quite as neat as this.
This relationship only applies if the outpuit from the oscillator has a peak-to-peak level equal to the supply voltage. This is very difficult to achieve in practice, and is not very important anyway. If the output of the oscillator is between (say) 0.5 volts and 9.5 volts, then an input signal over this voltage range will give zero to maximum output.
In this case the output from the oscillator is over the approximate voltage range mentioned previously. IC1 provides a nominal voltage gain of 3.7 times, which means that the basic OV to 2.55 V output from the digital-to-analogue converter will give from zero to something approximating to full output (this circuit should be driven direct from the output of the ZN426E).
If you would prefer to trim the gain of IC1 to give precisely maximum output at maximum voltage from the converter, replace R1 with a 22 k resistor and a 10 k preset potentiometer wired in series. The preset is then given the lowest value that permits the full output voltage to be achieved. Of course, the circuit should work perfectly well with

Fig. 3. Modèl Train Pulsed Controller circuit diagram.
other converters provided the gain of ICl is altered to suit the output voltage of the particular converter used.
There will be a small range of low values which give zero output, but it is probably not worthwhile trying to remove this offset. There would still be a limited range of values which gave a low output power but did not cause the motor to operate. These factors are not normally of any practical significance, but compensation can be made for them in the software if necessary.
Note that the integrated circuits specified for this circuit are types which can operate with their outputs at voltages right down to the OV supply potential. Most other operational amplifiers cannot do this, and will not operate properly in this circuit. The CA3140E used for IC1 and IC3 has a PMOS input stage, and therefore requires the normal anti-static handling precautions.

Power Supply Unit

The constant voltage controller described last month operates perfectly well with a non-stabilised supply having a high ripple content. The same is not true of this pulsed controller circuit (Fig. 3). It requires a reasonably stable 15 V supply having no more than a moderate amount of ripple on the output. The supply should also include current limiting since no overload protection circuitry is included in the controller circuit.

A suitable mains power supply circuit is shown in Fig.4. This is a conventional design having full-wave bridge rectification and stabilisation provided by a monolithic voltage regulator. Note that decoupling capacitors C2 and C3 should be fitted close to the regulator IC 1 where they can be fully effective.

Fig. 2. Example p.w.m. waveform. The average output voltage is equal to the d.c. input level.

Fig. 4. Suggested power supply circuit for the Pulsed Controller.
Mains transformer T1 should have a current rating of about two amps or more. As with any circuit that connects to the dangerous mains supply, only construct the unit if you are sure you know what you are doing, and you have the necessary experience in electronics construction.

The regulator IC1 has built-in current limiting which prevents the output current from going much over one amp. An output current of one amp is sufficient for most model trains, but larger types can take up to about two amps. The controller circuit should be able to handle currents of up to two amps provided the Darlington transistor TR1 is mounted on a large enough heatsink.

The mains power supply unit (Fig. 4) needs some changes to the components in order to accommodate higher currents. Transformer TI should have a current rating of at least three amps, and FSI should be a two amp fuse. Incidentally, the fuse should be a "quick-blow" type and IC1 must be a type having a current rating of two amps or more, such as the RS L78S15V two amp regulator.

There is insufficient space available to consider software matters this month, but next month we will consider the ins and outs of using popular PC languages. Some train controller software will also be described.

FOR YOUR ENTIERTITANMENT by Barry Fox

Tape Format War?

The consumer electronics industry loves a format war. The best the industry ever waged were on home video. First there was the Philips N 1500 one hour VCR, then the two hour N 1700, then the Grundig four hour SVR and finally Philips V2000.

All failed when VHS beat Sony's Beta. Now VHS is fighting Sony's Video 8.

Canon has for several years been selling Ion, the snapshot video camera which records still pictures on a magnetic disc. More accurately Canon has been trying, but failing, to sell Ion. Now Canon is repositioning Ion as a business tool, to be used with a Personal Computer. But magazines complain that even when they show interest and offer to review an Ion PC kit they cannot get hold of one to try.

Toshiba has for a year now been promising to start selling its memory card camera. This records still pictures into the same standard size credit card memories used by Sharp's 10 organiser. The Toshiba still picture camera will record 6 full frame pictures (with twice the resolution of Ion) in a nine megabit memory card. In Japan the camera with player and charger costs around $£ 2000$ and the card $£ 220$. So it will not be a consumer product. There will later be an 18 MBit card to store 12 pictures at an even more horrendous price.

Samsung had plans a few years back for a camcorder using DAT cassettes. But these were dropped in favour of Video 8. Now Aiwa, a subsidiary of Sony, has two DAT units which are designed to store still video pictures of the type shot by the Toshiba camera.
The Aiwa HDV-2000 portable records up to 3,600 still pictures on a two hour DAT tape. It connects to a video recorder, still camera or TV tuner. Pressing a "shutter" button records one-off pictures. Pressing "auto" records a picture every two seconds, making it ideal for security surveillance.

The MMD-100 is a table-top machine that records 1,384 pictures on a two hour tape, but with higher resolution.

Both provide running stereo sound to accompany the pictures. The higher picture quality comes from using 8 bits of each 16 bit word for audio and 8 bits for video. The portable uses 10 bits for audio and 6 bits for video. Aiwa has no firm plans yet for the UK.

Now Aiwa promises the storage of moving video on DAT, with the DVI
digital compression system which is similar to that which Philips will use to record moving video as digital code on CD-Interactive discs.

This would take us into a new video tape format war.

Digital Camera System

Kodak believes that domestic photographers are better off with film. The new Photo CD system will rely on the electronic transfer of film pictures onto a blank $C D$. A standard size disc stores around a hundred pictures, each in several levels of digital code. The lower levels give rapid display on a TV screen, using a Photo CD player; the higher levels are used to make high quality prints.

Kodak does, however, believe in electronic imaging for professionals and has developed what it describes as a "brute force" system for digitally recording large quantities of high quality still pictures. The Digital Camera System will cost $\$ 20,000$ in the USA and $£ 17,500$ pounds in the UK.

DCS works with a Nikon F3 film camera, usually the favoured tool of the trade for professional photographers. The removable back of the Nikon is replaced with Kodak's back which contains a solid state image sensor. This has 1.3 million light sensitive picture points or pixels arranged as a 1280×1024 matrix. By comparison the image sensors used in consumer video cameras usually have less than 0.5 million pixels.

Kodak makes these sensors, nominally known as 1 Megapixel chips, in Rochester, NY. They cost around $\$ 1000$ a time, for a monochrome model. Colour models cost more because the sensors must be overlaid with a grid of Red, Green and Blue filters (usually arranged in RG, BG, RG, BG order to give at least twice as many Green as Blue and Red). Kodak also makes 4 Megapixel sensors for High Definition
image scanners, as used for converting photographic negatives or positives into video format. The price on these is not even quoted.

Because the DCS system only modifies the camera back, a photographer can uses the Nikon front with its conventional lenses. Because the image sensor has only half the area of a 35 mm film frame, the focal length of the lenses on the Nikon are doubled, to make telephoto shooting easier.

The electrical output from the sensor is converted into digital code and fed by cable to a portable digital storage unit, DSU, which contains a 200 MByte Winchester computer hard disc driven by rechargeable batteries. The disc can store 158 images in the raw form delivered by the camera back. Alternatively the DSU can compress the images, by discarding redundant information (e.g. in wide expanses of white sky or blue sea) and store around 600 pictures. The penalty is weight, 4.6 kilograms for the DSU.

The stored pictures can either be transferred directly to a computer by connecting lead or sent by telephone line with a modem. Kodak does not claim that picture quality matches 35 mm film, but says that the pictures are clearer than anything yet available from the existing analogue disc cameras, or even Toshiba's digital card camera. The key point is that DCS is free from TV standards.

Kodak is offering DCS to professionals who want to take a large number of pictures, often in poor light, without the need to process film. The system is thus ideal for photojournalism, security surveillance, medical examination and microscopy.

Where photographers need to take pictures faster than the Winchester can store them, up to 24 rapid fire images can be buffered in solid state memory before storage.

PAY-PER-VIEW TV

As more and more people subscribe to BSkyB's movie channels, more and more people realise that they are continually paying for a service which they often do not use, either because they are busy, away on business or away on holiday. This realisation is sowing the seed for pay TV

In a pay-per-view system, you pay nothing until you take a considered decision to
watch something. Then you pay. And that makes a whole lot more sense than paying a regular subscription.

As TV, cable and satellite choice widens, pay-per-view becomes an increasingly attractive option. All the modern encryption systems already make provision for pay-per-view working. The industry is just waiting for public dissatisfaction to make the time right to offer the service.

STANDARD SYSTEMS INCLUDE :

- VGA PAPER WHITE MONITOR
- 1 MB ON BOARD MEMORY
- $3 \mathfrak{y}^{-1.44 \mathrm{Mb} \text { OR } 5 \mathfrak{t}^{-1} 1.2 \mathrm{Mb} \text { FLOPPY DRIVE }}$
- AT 102 KEY KEYBOARD
- IDE CONTROLLER : 2 HDD/2FDD/2S/1P/1G
- GRAPHICS CARD - 256 K
- MINI TOWER CASE - 200W PSU WITH DISPLAY

OPTIONS :
14" VGA COLOUR MONITOR ADD :
14^{*} SVGA MONITOR 1024×768 - 0.28* D.P \& 125
14^{*} SVGA MULTISYNC MONITOR $1024 \times 7680.28^{\circ} \& 210$
SVGA GRAPHICS CARD - 512K
SVGA GRAPHICS CARD - 1 M
SECOND FLOPPY DISC DRIVE
EXTRA ON BOARD MEMORY - PER 1Mb
\& 20

3 BUTTON MOUSE WITH MAT/ADAPTOR/HOLDER \& GOFTWARE
\& 30

DESKTOP CASE - 200W PSU
\& 35

MIDI TOWER CASE - 200W PSU
\& 20

FULL TOWER CASE - 230W PSU
MS DOS 5.0
WINDOWS 3.0

HOBBYKIT RANGE	$\begin{gathered} 20 \mathrm{Mb} \\ 10 \mathrm{E} \\ \mathrm{E} \\ \hline \end{gathered}$	$\begin{gathered} \hline 40 \mathrm{Mb} \\ 10 \mathrm{E} \\ \hline \end{gathered}$	$\begin{gathered} 100 \mathrm{Mb} \\ \mathrm{IDE} \\ \mathrm{E} \\ \hline \end{gathered}$
286-16	460	530	625
286-25	490	560	645
386SX-16	520	590	685
386SX-25	555	625	720
386SX-25 32\% CACHE	620	690	785
3860X-3364\% CACHE	740	810	905
4860X-33128\% ¢асне	1080	1150	1245
all systems are covered by a 12 MONTHS RETURN TO BASE WARRANTY AII PRICES NCLUDE V.A.T			

HARD DISC DRIVES

FLOPPY DISC DRIVES

3ł" 1.44M INTERNAL-GREY
\& 40
3\&゙ 720K INTERNAL-GREY
\& 33
34* 720K
external-grey
\& 26
5ł" 360K
Internal - Grey or black
\& 24
5t* 1.2M INTERNAL - GREY
\& 45
EXTERNAL CASES AVAIL ABLE - SEE ACCESSORIES

MOTHERBOARDS		
COMPLETE WITH 1 Mb OF MEMORY		
286-16	L/S 21MHz	£100
286-20	L/S 25 MHz	2125
286-25	L/s 32MHz	8135
3865x-16	L/S 21 MHz	\&160
3865x - 25	L/S 31MHz	\&195
3865x - 25	32K CACHE	$\varepsilon 250$
3860X - 33	cak cache	£375
486DX - 33	BAK CACHE	\&740
ADDITIONAL MENORY \& 35 PER MB		

COMPUTER CASES
 including psu and led display
 FLIP - TOP 3 BAYs - NO DISPLAY \& 60 DESKTOP 3 BAYS +1 HIDDEN \& 70 MINI TOWER 4 Bavs + 1 HIDDEN £ 70 MIDI TOWER 5 bAYS + 1 HIDDEN $£ 107$ FULL TOWER 6 bars +1 MIDDEN $£ 123$

FAX / MODEM

 INTEGRATED FAX / MODEM 9600BPS / 2400BPS, MNP5, V. 42 DATA COMP \& ERROR CORRECTION internal - R9624FM £ 125 MODEMAUTO DIAL / REDIAL / ANSWER FULL DUPLEX TONE \& PULSE DIAL COM 1 OR 2 (INTERNAL) COM 1, 2, 3 OR 4 (EXTERNAL) STATUS LED'S \& MAINS ADAPTOR WITH EXTERNAL MODEM
MC 2400 -INTERNAL \& 65 LC 8824 - EXTERNAL \& 95 modems are hayes compatible CALL FOR FURTHER DETAILS

MONITORS

14* SVGA+ MULTISYNC
$£ 270$
14° SVGA $/$ / XVGA
8235
ALL SVGA ARE COLOUR 0.28° DOT PITCH $=1024 \times 768$
14" VGA COLOUR
\&185
£ 89
\& 79
GRAPHICS CARDS

CGA CARD	COMPOSITE \&TLL	$£ 12$
VGA CARD	$80 R 16$ 日IT-266K	$£ 43$
SVGA CARD	16 BIT-512K	$£ 60$
SVGA CARD	16 BIT-1ME	$£ 72$

3 BUTTON MOUSE + ACCESSORIES \& 20 AT 102 KEYBOARD WITHCLICK \& 24

CONTROLLER CARDS

IDE - AT 16BIT - 2HDD/2FDD
IDE - AT 18BIT - $2 \mathrm{HDD} / 2 \mathrm{FDD} / 2 \mathrm{~S} / \mathbb{P} / 1 \mathrm{G}$
IDE - 8 BIT - XT
-IDE - 8 BIT - SLAVE / IST OR SND hDD
XT - MFM - 8 BIT - 2 HDD ONLY
AT RLL $-2 \times$ MOD ONLY
AT MFM $-2 \times$ HDD $/ 2 \times$ FDD
AT RLL - $2 \times H O O / 2 \times$ FDO
FDD $-2 \times$ FOD $-X T / A T$ - ALL FORMATS
FDD - $4 x$ FDD - XT/AT - ALL FORMATS
1/O CARD - $2 S / 1 P / 1 G$

- SUITABLE FOR $1612 / 1840$ COMPUTERS

ACCESSORIES	
$5 t^{\prime}$ ADAPTOR KIT FOR $34^{\circ} \mathrm{FBD}$	88.00
56^{*} TRAY ONLY FOR $31{ }^{\circ} \mathrm{FDD}$	\& 5.00
POWER LEAD FOR 34' FOD	83.00
IDC PIN TO EDGE CONNECTOR PCB	\& 4.00
SHORT FDD CONTROLLER CABLE $2^{\prime \prime}$	\& 4.00
LONG FDO CONTROLLER CABLE 4*	\& 7.00
POWER SPLITTER	\& 4.00
HARD DRIVE CABLES (MFM/RLL)	\& 6.00
IDE HARD DRIVE CABLES (2 DRIVES)	\& 6.00
KEYBOARD EXTENSION CABLE	\& 3.00
FDD EXTERNAL CASES	
54' CASE ONLY (NO LEADS)	\& 8.00
54° CASE + LEADS	£17.00
34° CASE (NO LEADS)	\& 8.00
33° CASE + LEADS	\&18.00

PLEFSE MGTE JHUSGYTEME WRE

PERSONAL

CALLERS WELCOME

BY PRIOR
ARRANGEMENT

YREDIT CARD HOTLINE
CRE $081-2057485$
UNIT 19 CAPITOL INDUSTRIAL PARK
CAPITOL WAY, LONDON, NWS OEQ
FAX NUMBER : O81-205 0603

CIRCUIT SURGERY

 MIKE TOOLEY B.A.
Abstract

Welcome to Circuit Surgery - our new clinic especially for Everyday Electronics' constructors. Circuit Surgery aims to provide a regular cocktail of practical hints and tips. It also intends to act as a "self-help" forum for readers as well as a means of providing rapid feedback (including modifications and trouble-shooting information) concerning many of the projects which appear in Everyday Electronics. For good measure, we also hope to put paid to some popular myths and misconceptions. This column will rely heavily on your input so please make one more New Year's resolution and drop me a line to let me know what topics you would like me to cover!

Keeping it warm

Andrew Dunn writes from Loughton with a plea for help. Andrew is a keen constructor and usually finds something in each issue of Everyday Electronics to whet his appetite. Andrew writes:
"I find that a miniature 15 W soldering iron is just not powerful enough for my needs and so have settled upon a cheap-and-cheerful 25W mains iron. However, having gone through three elements in as many years, I am now wondering whether this was a good idea!

Used on a spasmodic basis, my soldering iron remains switched on whenever I am at the bench. This is important as it allows me to use the iron whenever I need it; I just cannot wait for it to warm up from cold every time I need to make a soldered connection.

I had thought about purchasing a temperature controlled soldering station but as a student I can't justify the expense. Have you got any ideas?"

Well, Andrew, I think that the answer is closer to hand than you might think; just take a look in your junk box and locate a 1 N4004 diode and a good quality mains switch (either single or double pole will do). Then connect them as shown in Fig. 1 (the l.e.d. indicator circuit is optional). This will allow you to keep your soldering iron ticking over on "standby" when it is not in use and quickly bring it up to the correct temperature when you actually need to use it. This will not only increase the life of the soldering iron element but it will also prevent the bit from becoming oxidised when it is left for long periods without use.
Before moving on, a brief word of

Fig. 1. Soldering iron standby circuit.
warning is required. Readers should observe the usual precautions associated with mains wiring when carrying out a modification of the type shown in Fig. 1. In particular, the components should be mounted in an insulated enclosure, well away from inquisitive fingers!

Resistance range extender

The resistance ranges on most lowcost analogue multimeters leave a great deal to be desired. Such instruments are usually only reliable up to about $200 \mathrm{k} \Omega$, beyond this the scale calibration becomes so cramped that it becomes impossible to read the value with any degree of accuracy.
Some time ago, I was approached by an ex-student who had purchased a particular type of analogue meter on my recommendation. Unfortunately, he had quickly discovered the limitations of the instrument and had come to me for a cure!
Not wishing to miss the opportunity
for a little impromptu revision, I asked him to sketch the circuit of a simple common emitter transistor amplifier stage. I suggested that, with a little imagination on his part, this might be the answer to his problem.
To cut a long story short, John obliged by drawing a workable circuit to which I added his existing meter (switched to the 5 mA d.c. current range), a 9 V battery, and a pair of terminals to facilitate connection of an unknown resistor (see Fig. 2).
John's resistance range extender is quite easy to set up. The variable resistor (VR1) is first adjusted to provide full-scale indication with the unknown resistor replaced by a short circuit. A calibration graph is then produced using readily available preferred value resistors (in the range 330 k to 10 M). A typical calibration graph is shown in Fig. 3.

Fig. 2. Circuit of the resistance range extender.

Fig. 3. A typical calibration chart for the circuit of Fig. 2.
With his newly designed circuit, John is able to measure high value resistors with reasonable accuracy and his $£ 15$ multimeter is finding a new lease of life. His next project is building a soundlevel meter based on his analogue multimeter. I will let you know how he gets on in a future Surgery!

Go/no-go transistor tester

Like most readers, I tend to be partial to the occasional electronic bargain and keep a close watch on the advertisements in Everyday Electronics. Recent purchases have included a useful switched-mode power supply, a modem, and a parcel containing approximately 200 mixed silicon transistors.
Unfortunately, this last purchase presented me with a few problems since its contents, although predominantly of the TO-18 variety, were unmarked and of uncertain pedigree (the supplier had merely indicated that most were "good but untested"). The situation was further complicated by the fact that the batch appeared to contain a roughly equal mix of p.n.p. and n.p.n. types.
I regularly use a large quantity of BC108/BC478 general purpose transistors and thus the reason for acquiring this particular bargain parcel was simply to replenish my rapidly diminishing stocks. What was needed, therefore, was a simple method of sorting them into n.p.n. and p.n.p. types and rejecting any device which was faulty or of relatively low gain.
Bearing in mind the number of devices which needed testing, I decided to construct a test circuit which would provide me with a simple go/no-go indication (thus avoiding the need to submit each device in turn to my conventional transistor tester).
The go/no-go tester (see Fig. 4) is ideal for anyone who needs to bulk test unknown transistors. It is both simple to use (no adjustments are necessary) and inexpensive to build (a moving coil meter is not required). The state of the device (go/no-go) is indicated by means of an l.e.d. A double-pole switch (miniature toggle or slide variety) is used to select n.p.n. or p.n.p. If the l.e.d. does not become illuminated on either setting of the switch, the transistor is rejected.

EET6026

Fig. 4. Circuit of the go/no-go transistor tester.

The transistor on test forms the active device within the twin-T oscillator circuit based on R1, R2, R3, C1, C2 and C3. Provided the transistor (TR1) is functional and provides a modest value of current gain, this circuit will produce a sinusoidal output at about 1.2 kHz . The circuit is designed so that it will operate identically with either n.p.n. or p.n.p. transistors with the supply polarity switched by means of S1.

The output signal produced by the oscillator circuit is rectified (by D1 and D2) and the resulting d.c. output is passed to a single stage transistor current amplifier (TR2) which drives the 1.e.d. indicator (D3).

Next month: In next month's Circuit Surgery we shall be taking a look at a novel use for the ubiquitous LM380. We also have details of a circuit modification for the popular EE Telesound which can be used to add baby monitoring facilities to your TV. In the meantime, if you have any comments or suggestions for inclusion in Circuit Surgery, please drop me a line at: Faculty of Technology, Brooklands College, Heath Road, Weybridge, Surrey, KT13 8TT. Please note that I cannot undertake to reply to individual queries from readers, however I will do my best to answer all questions from readers through the medium of this column.

COMPONENTS

goono. Go tranasistooptester

Resistors

R1	$68 k$
R2	$68 k$
R3	$3 k 3$
R4	$4 k 7$
R5	$2 k 2$
R6	470

All resistors are $0.25 \mathrm{~W} 5 \%$ carbon film
Capacitors

C1	$4 n 7$ ceramic
C2	$4 n 7$ ceramic
C3	$10 n$ ceramic
C4	$470 n$ polyester
C5	100 n polyester

Diodes

D1	OA91
D2	OA91
D3	Green l.e.d.

Transistors

TR1 Device under test (n.p.n or
TR2 \quad p.n.p.)
BC108

Miscellaneous
TO5/TO18 transistor socket; battery connector (for 9V PP3 battery); DPDT miniature toggle or slide switch;' 0.1 inch matrix stripboard (measuring $30 \mathrm{~mm} \times$ 40 mm approx); small ABS enclosure.

Approx cost

 guidance only
EMEBYDAY
 elettronics
 DATA BOOK

This book explains the concepts, principles and techniques which have everyday relevance in the world of electronics. The information is presented in a succinct and easy to understand format. The book is not a treatise on electronics theory; it is a text which deals with putting principles into practice and represents a fund of practical knowledge which has been accumulated over more than thirty years.

The book has been written by Mike Tooley for practising (and aspiring) electronic technicians and engineers involved with the design, manufacture, testing and maintenance of electronic equipment. It will undoubtedly also have a broad appeal to specialists in other disciplines (such as avionics and information technology) who need to be aware of basic electronic principles and practice. The book assumes very little prvious knowledge and will also meet the needs of the hobbyist and student. In short, anyone involved with the application of electronics will find this book invaluable.
SEE DIRECT BOOK SERVICE PAGES FOR ORDERING DETAILS.

EVERYDAY NEWS

NCC SALARY SURVEY

The effects of the economic recession are clearly evident in this year's National Computing Centre's (NCC) 1992 Annual Salary Survey. The most significant effects are on labour turnover and shortages, both significantly down on last year's levels and at their lowest levels for over ten years. These are some of the trends highlighted in the survey based on the salary and benefit details of some 14,000 Information Systems (IS) staff in the UK.
Despite the fact that the depression has kept computer staffing and staff shortages at a low level the actual take-home pay of computer professionals increased between 6 per cent and 9 per cent over the previous year. The north-south divide remained significant in salary terms although the divergence was not as high as that observed in 1990 and 1991. The survey showed strong indications that the overall predictions of employment growth prospects by respondents were influenced by the current economic climate, although there were also strong indications that support specialists and networking skills are still in demand.

Salaries

Regional differences between salaries in Greater London and the South East and those in the rest of the UK remain significant, although the divergence is not as high as that observed in 1989 and 1990. Salaries in Greater London were 19 per cent above the sample average and those in the South East were 4 per cent above.

Employment

The NCC Salary Survey monitors labour market trends by asking respondents to indicate, under broad job groups, the numbers of staff in post in the current year and the numbers expected to be employed in two years and five years time. Respondents are also asked to report the numbers of staff
joining and leaving the organisation over the previous 12 months and the numbers of any current perceived staff shortage.
The analysis is based on returns from 642 installations which answered the labour market monitor questions in full. Most of the $100+$ incomplete responses were from managers who were unable to predict their demand for staff five years ahead.

Growth

Although the overall picture is one of relatively slow growth, there are certain skills where demand is predicted to increase rapidly. The end-user support function, responsible for easing the spread of PCs and end-user computing into the organisation, continues to show high levels of expected growth, with an expected 26 per cent increase over the next two years and a 49 per cent growth over the next five.
The other high growth job category, also concerned with the spread of the IT function into user areas and the increased emphasis on PCs, is the network specialist. They are predicted to grow rapidly from the current small base 25 per cent over the next two years and 46 per cent over the next five.

On Display

 Lascar Electronics have introduced an LED backlit version of their most popular meter. The new DPM 700 gives a clear display in all lighting conditions with an extremely low current consumption. Features include Auto-zero, Auto-polarity. Low battery indication. 200 mV FSR, 12.7 mm digit height and programmable decimal points. On-card pads for essential interconnections make selection of operating modes a quick and convenient operation. Calibration is by a 20 turn potentiometer allowing sensitive adjustment of the instrument.The DPM 700 costs $£ 32.45$. The larger DPM 950 (19mm charcters) is $£ 36.07$.

SALE SALE SALE

If you are quick you can catch the Maplin Electronics shop sale it started on March 4 and lasts a month, with selected items reduced by between 20 per cent and 50 per cent. The half price items include a keypad door alarm, a graphic equaliser and various temperature modules.
New products available now include a Digital Data Link Module ($£ 22.95$) using fibre optics, and an eight-way Distribution Socket ($£ 19.95$) for those with every gadget and not enough sockets.

By the way, Maplin
 will soon have opened eight new stores in twelve months and are planning for a further 14 new shops to open over the next two years, two other shops have also recently been relocated. We have heard that Maplin put nearly everything "on the line" when they took massive national press advertising for their security lights but, in a year when crime figures are up, it paid off handsomely.

NEWSLINE

You can now get information on the continually changing stock of one of the major hobbyist electronics suppliers. Greenweld Electronics have installed what they claim to be the first 0891 phone information service for customers.
Greenweld are purchasing increasing amounts of surplus electronic items - some of which are in such small quantities that they are not worth advertising elsewhere. Just by dialling 0891505 121 you get a weekly update on their stock.
Calls are charged at 36 p per minute cheap rate and 48 p per minute at other times. They are presently offering a free gift to callers who place an order - details are on the line, we can't tell you what the gift is because the line is so new it had not come into operation as we went to press.

Go-anywhere Scopemeter

The combining of a top digital multimeter and an easy 10 operate digital storage oscilloscope has resulted in the Philips Scopemeter and is now available from Alpha Electronics (0942 873434). This new and versatile instrument has many applications, is battery operated and can be taken just about anywhere.
Ease of operation has been given priority in a unit which will capture, display, store and print out hard copy at a later date for detailed examination, measurement, analysis or comparison. Parameters viewed simultaneously on the $84 \mathrm{~mm} \times 84 \mathrm{~mm}$ super inist liquid crystal display, as a waveform or alphanumeric function, include: Noise; Waveform: Distortion; Signal Quality: Pre and Post Trigger: Single Shots; Power Spikes; Autoranging; Touch and Hold: Min/Max Average and Audible Continuity.
The only drawback is the price fl150!

MARCO TRADING

INCORPORATING EAST CORNWALL COMPONENTS ELECTRONIC COMPONENTS VISA \& EOUIPMENT SEND ORDERS TO - DEPT EE4 MARCO TRADING
the maltings, high street, wem SHROPSHIRE SY45EN
Tel: (0939) 232763 Telex: 35565 Fax: (0939) 233800 ELECTRICAL\& ELECTRONIC COMPONENT SUPPLIERS
24HR ANSAPHONE LATEST 1992 CATALOGUE

- Velleman Kit Catalogue * Free pre-paid envelope - Many new lines - Pages of special offers * Free gifts
 132 PAGES \&2.00 $\quad . .$.

TWIN FLUORESCENT LAMP - 12 V

A very attractive iwin tube lamphoider wi two case with clear plastic ribbed diffuser and ON/OFF ${ }^{3}$ ofich. Supplied with 50 cm s (Red stripe to positive). Ideal for caravans
Overall dimensions: $370 \times 65 \times 41 \mathrm{~mm}$ ORDER COOE Opto TFL 12
Price $\quad £ 6.50$ £6.00 $\mathbf{E 5 . 2 5}^{50+}$ SINGLE FLUORESCENT LAMP - 12 V Identical to above unit but single tube. t2V
dc, 8 watts Dims $360 \times 62 \times 37 \mathrm{~mm}$. ORDEA CODE ODTO SL $£ 5.50$ SPARE TUBES Replacement iube tor above Twin and
Single llourescent lamps. Fits most 127 tluorescent lamps. Philips. etc. Tube length: approx 300 mm (inc
ORDER CODE Opto Tube
£1.50 ea, 10 for £12 PORTABLE FLUORESCENT LAMP-12V

Free-slanding or hanging with 151 cabl terminating in cigar lighter plug. For use in EVEN FLOATS IN WATERI Overall dimensions: $430 \times 30 \mathrm{~mm}$
ORDER CODE $1+\quad 10+$ $\begin{array}{llll}\text { Price } & £ 6.50 & 6.00 & £ 5.25\end{array}$
 Charges AA, AAA, C, D \& PP3 Ni-Cads
240 V AC

AER/002

Scarr plug to 2 BNC plugs seart plug to 4 phono plugs (audio) and 2 Phono plug G210 (V0623)

VISIT
OUR OTMER BRANCHES SUPERTRONICS TITI: 021686 6504
65 HURST STEET GEIURISTSTREET
GIRMINGHAM BS 4TE WALTONS Tel: 090222039 55A WORCESTER ST
IVERMAMPTON WW 24 Visit our shop in WEM Tel 0939232763

APRIL SPECIAL OFFER 3-WAY SCART VIDEO CONTROL

- Connects up to 3 Video Recorders (VCR's) 1 Satellite + 2 VCR's 1 Computer +2 VCR's
- Push-button swtiches to select viewing
- Record from Satellite or another VCR whilst watching TV
- Phono output sockets for TV sound through your Hi-Fi System
 WIRELESS MICROPHONE SYSTEM ONLY $\{35.99$ 2-part wireless microphone system designed for use with video cameras. The hand-held microphone has a high/tow range (up to 200ft). The receiver has a video camera mounting shoe, volume control and integral output lead to 3.5 mm mono plug. The system allows for greater flexibility with the microphone than can be achieved with a conventional microphone. Complete with vinyl carrying case. RESISTOR KITS - each value individually packed

 \%W Wpack Popular - 2 R 21010 M 1000 pieces...
iw pack 5 each value E12-2R2 101 M 365 piec 1W pack 5 each value E12-2R2 to 1 M 365 pileces.
$2 W$ pack 5 each value $E 12-10 \mathrm{R}$ to 2 M 2317 pieces.

ADDITIONAL KITS
 Disc ceramic 50 V 125 pieces $£ 3.99$ Zener Diodes 5 ea ... 55 pleces $£ 3.99$ Electrolytics caps.
 Fuses O blow 20 mm .100 pieces $£ 8.50$ Fuses T delay 20 mm 80 pleces $£ 8.50$ Pre-set pots. Hor.... 120 plices $£ 7.75$ Pre-set pots. Vert.... 120 pieces $£ 7.75$ Polyester $100 \mathrm{~V}110$ pieces $£ 5.00$ Nuts \& Bolts

 EXTENSION SOCKETS - 4-WAY

 EXTENSION SOCKETS - 4-WAY

DESOLDERING PUMF
E2.99 Order Code stan Buy Tool/Desol
\qquad UHF/VHF
ANTENNA
WITH BUIITTIN
AMPLIIIR
$\mathbf{\Sigma 2 2 . 5 0}$ UHF/VHF
ANTENNA
WITH BUIITTIN
AMPLIIIR
$\mathbf{\Sigma 2 2 . 5 0}$ UHF/VHF
ANTENNA
WITH BUILT-IN
AMPLIFIER
$£ 22.50$ UHF/VHF
ANTENNA
WITH BUILT-IN
AMPLIFIER
$£ 22.50$ UHF/VHF
ANTENNA
WITH BUIITTIN
AMPLIIIR
$\mathbf{\Sigma 2 2 . 5 0}$

A choice of three versions of 4 way extension sockets. All are fused, the first has access to the
 fuse from the rear, the second has access from the front therefore making it ideal for wall mounting etc. Thie third has access from the rear. All are white in colour. All have a neon indicator on the front. The third ELEC/MS/4LP has a 3-metre lead with a fused 13A plug fitted.

Type	Order Code	$1+$	$5+$
1	ELEC/MS/4	$£ 4.99$	$£ 4.75$
2	ELECT/MS/4F	$£ 5.99$	$£ 5.75$
3	ELEC/MS/4LP	$£ 6.99$	$£ 6.50$

CD PLAYER G060 (CDP 10

* 3-beam semi-conductor laser
- Repeat one-repeat all facility
- Repeat one-ropeal all
- Bulth-in 3^{-r} disc adaplor
- Irack search and index

899
System. .i........
Optical pick-up.
Optical pick-up. Sampling trequency....................................1RC
 Ellier
Frequency responseigital filter + active filter
$20-2000 \mathrm{~Hz}$ Frequency response
Harmonic disistion. S/N ratio.ion
Channel separation Max. output voitage....................................... $\gg 80 d \mathrm{P}$ Power -

Constructional Project

> An inexpensive hybrid design that will run from a wide input power supply spread. Dutput power: 4W into Bohms; 8W into 4ohms at 9V d.c. supply; rising to 40W into Bohms and 80W into 40hms at 35 V d.c.

AS AN avid electronic enthusiast with an interest in audio, it was often felt that a need existed for a spare power amplifier. Most projects have some kind of audio output and they cannot be tested, or enjoyed without further amplification.

Usually, it was found that if a spare amplifier module was available in the workshop that there was no suitable power supply to hand or vice versa. After this situation had occurred for the umpteenth time recently, it was decided to do something about it and this circuit is the result.
When the problem was thought through, it became evident that an amp with the following characteristics was needed:

First and foremost it should be able to use almost any available mains transformer or low voltage d.c. supply (35 V max.). Also, it should produce a fairly high Audio output and give acceptable HiFidelity (hi fi) performance.

Finally, a circuit that was reasonably cheap and used easily available components was wanted. Having encapsulated these basic specifications, the search was on for a suitable circuit!

DESIGN

The first thought was to use an i.c. power amp. However, those available did not fit all the criteria. Despite their increased performance they still have some way to go to be truly considered hi fi.

The next thought was to go back to transistors. These are available fairly cheaply, but to design a circuit that will work properly on a range of supply and output loads is difficult.

Weighing up the options, a hybrid approach was chosen using a readily available op. amp. chip driving high power Darlington output devices. This gives the best of all possible worlds.

Using 10A Darlington power transistors gives plenty of poke to the output stage whilst requiring very little drive current. By choosing a suitable low noise op.amp a
very high quality power amp can be built for very little expenditure.

The only problem that remained to be solved was that the output power was rather less than planned for. The solution was to use a bridge circuit. This enables an output power of 4 W into $8 \mathrm{ohms} ; 8 \mathrm{~W}$ into 4 ohms, at 9 V d.c. supply; rising to 40 W into 8 ohms and 80 W into 4 ohms at 35 V d.c. To understand how this works look at Fig. 1.

Fig. 1. Schematic circuit diagram for a basic bridge amplifier.

HOWIT WOFKS

A basic bridge amplifier circuit, in schematic form, is shown in Fig. 1. Both A1 and A2 can be considered as power op. amps for the purposes of description.

Input signals are coupled into the noninverting (+) input of A1, resistor RI sets the input impedance. $A 1$ is wired as a noninverting amplifier whose gain is set by the ratio of resistor $\mathbf{R} 2$ to $\mathbf{R} 3$ so that gain $=$ R2/R3 + 1 .

On the other hand, A 2 is wired as an inverting amplifier. The non-inverting input is grounded and the gain of the circuit = -R5/R4. Note the minus sign. This means that the input is 180 degrees out of phase with the input signal applied to resistor R4.

Now R4 is connected to the output of A1 so that $A 2$'s output is out of phase with that from A1. If R4 = R5 the gain of $A 2$ is -1 and the signal across loudspeaker LSI, the load is double that provided by AI alone.

Since the power supplied to the load is determined by the stature of the applied voltage it follows that the bridge circuit delivers four times the power of A1 alone to the load. As a point of interest this circuit is a direct development from the paraphrase phase splitter circuit used in valve amplifier to drive a push-pull output stage.

COMPONFEIS

Resistors R1, R2, R3,

R4, R12.
R13
$100 \mathrm{k}(6 \mathrm{off})$
3 k 9 (2 off)
$\begin{array}{ll}\text { R5, R14 } & \text { 3k9 (2 off) } \\ \text { R6, R11 } & 3 k 3 \text { (2 off) }\end{array}$
See
$\begin{array}{ll}\text { R6, R11 } & \text { Rk3 (2 off) } \\ \text { R7, R8, }\end{array}$
R9, R10 13 W (4 off)
All $0.25 \mathrm{~W} 1 \%$ metal film, All $0.25 \mathrm{~W} 1 \%$ metal film, except where indicated.

Potentiometers
VR1, VR2 $4 k 7$ horizontal enclosed presets, lin. (2 off)

Capacitors
C1, C3, C4 10μ radial elect., 25 V
C2 100μ radial elect., 25 V
C5 $\quad 4.700 \mu$ radial elect., 40 V (see text)

Semiconductors

TR1, TR6 BC109C npn silicon transistor (2 off)
TR2, TR4 TIP142 npn Darlington power transistor (2 off)
TR3, TR5 TIP 147 pnp Darlington power transistor (2 off)
IC1 TLO72CN dual low-noise op. amp
Rec. 1 W005 1.5A 50V bridge rectifier

Miscellaneous
SK1 Twin chassis mounting phono socket
SK2-SK5 4 mm chassis mounting socket (4 off)
Stripboard 0.1 in matrix, size 21 strips x 36 holes; Plastic (2006) or aluminium case, size $190 \mathrm{~mm} \times 110 \mathrm{~mm} \times 60 \mathrm{~mm}$; T066 power transistor mounting kit (4 off): finned heatsink, size approx. $115 \mathrm{~mm} \times 125 \mathrm{~mm}$; capacitor mounting clip (35 mm dia.) for C 5 ; screened cable; multi-strand connecting wire; fixing nuts, bolts and washers; 10 mm rubber grommet (2 off); solder etc.

Approx cost
 guidance only

The advantage gained from the bridge circuit are not just confined to extra output power. For the same output the voltage gain can be halved and with it the distortion and noise generated by the circuit. Also if any noise voltage or supply line variations are present these tend to cancel one another out producing a cleaner sound.

CIACUIT DESCRIPTION

Having described the circuit in general terms, Fig. 2 shows the full circuit diagram for the Versatile Audio Amplifier. Input signals are fed into the non-inverting input, pin 3 of ICla , via capacitor Cl which isolates the circuit from any d.c. that might also be present.

As a single supply voltage is used a
tunately, when a transistor is heated it's base emitter [V_{be}] voltage falls.

If these resistors were absent TR1 and TR2 would turn on harder as they became hot which in turn would lower V_{be} turning the transistors on harder still. More current would flow and the eventual result would be the destruction of the output stage. R7 and R8 prevent this by current limiting and also provide a little local negative feedback which improves the action of the circuit.

Negative, feedback is applied from the junction of R7 and R8 back to the inverting input, pin 2 ICla, via resistor R4. The voltage gain is determined by the ratio of R4 to R5.

Capacitor C3 is connected in the circuit to perform two functions. First it has an infinite resistance at d.c. so reducing the gain of the amplifier to unity at d.c. At the
that just described. The main difference is that the non-inverting input (pin 5) is connected directly to the junction of resistors R1, R2 and capacitor C2. Effectively this input is "earthed".

The same feedback arrangement is used except for the addition of resistor R13 which is coupled to the inverting input (pin 6) by capacitor C4. Resistor R13 has the same value as R12 giving the amplifier built around IClb a gain of -1 . As this is fed directly from the output of the amp built around ICla the conditions for bridge operation are established.

POWERSUPPLY

Lastly the power supply needs to be discussed. This circuit is intended to be used with any available transformer with a secondary voltage between 6 V and

Fig. 2. Complete circuit diagram for the Versatile Audio Amplifier. The d.c. supply output (9V-35V) from the bridge rectifier (Rec.1) will, of course, be higher than the input supply (6V-24V) at SK4/SK5.
potential divider, formed by resistors R1 and $R 2$, sets a reference half the supply voltage to bias the circuit. Capacitor C2 decouples the bias voltage to ground at a.c. The input impedance is set by resistor R3 at R3's value.

The output stage of the op. amp would normally operate in class AB. This is a potential source of distortion which is avoided by sinking current through transistor TR1, preset VR1 and resistor R6. The net effect is to bias the output stage into class A. Transistor TRI and VR1 form a $V_{\text {be }}$ multiplier.
The voltage drop across TR1 is set by the setting of VRI and this voltage is required to stabilise the current flowing through the Darlington power transistor output stage. If this were not done the output devices, TR2 and TR3 would be biased off.

DISTORTION

Because the transfer characteristic of a transistor is very non-linear at low levels severe distortion would result. This distortion is termed crossover distortion because it occurs when the signal is going through zero and hence when the output transistors are switching on and off.

This can be cured by turning the transistors slightly on, hence the need for bias voltage and TR1, VR1. Resistors R7 and R8 are also used to help stabilise the output stage against thermal runaway. Unfor-
same time it looks like a short circuit to a.c. signals thus coupling resistors R5 and R4 together. This component ensures that the output d.c. level is within a few millivolts of the bias voltage generated across resistor R2.

Looking at the circuit built around IClb you will see that it is essentially identical to
$24 V$. For this reason the circuit Fig. 1 shows the bridge rectifier, Rec.l, and the main smoothing component, electrolytic capacitor C5.
There is some latitude in the choice of value for smoothing capacitor C5. Normally a $4700 \mu \mathrm{~F}$ cap, with a 40 V rating, is used, but this may be reduced to $2200 \mu \mathrm{~F}$

without significant deterioration in circuit performance. Similarly the rating can be anything from 35 V upward.
The action of the power supply is very conventional. After the mains voltage has been stepped down by whatever transformer is employed the secondary voltage is full wave rectified by Rec. 1. The resulting raw d.c. is then smoothed by $\mathbf{C} 5$ before being applied to the circuit.
An advantage of using the bridge rectifier, Rec. 1 , is that a d.c. power supply can also be applied to the input and one doesn't have to worry about the polarity of the connection. In this event the voltage applied must not exceed 35 V or ICl will be destroyed. This opens the way for auto applications as a car battery makes a nice power supply.

CONSTRUCTION

The amplifier is constructed on a piece of 0 . lin matrix stripboard, size 21 strips by 36 holes. The component layout and details of breaks required in the underside copper tracks is shown in Fig. 3.
The construction of this project consists mainly of wiring up the stripboard, the wiring requiring little further comment. An i.c. socket can be used for IC1 but is not essential. What does need attention is to ensure that all the electrolytics are inserted the correct way round.
Once the board has been completed turn it over and ensure that you have no unwanted solder blobs between tracks. Next ensure that the breaks in the tracks are in the right places and that the track has been cut completely at these points.
If you are happy that all is well, the next task is to adjust presets VR1 and VR2. If this is done now there is no chance of excessive bias being inadvertently applied to the output transistors. Using a small screwdriver turn the presets so that you have short circuits between TRI base (b) and collector (c) and TR6 base and collector respectively. Check this with a multimeter, set to ohms range.
Before turning your attention to the output stage it is as well to connect flying leads to the board. These should be left at least 230 mm long to facilitate easy connection. Note that the input lead needs to be screened otherwise you will probably have to put up with unnecessary hum.

OUTPUT

Now you can turn your attention to the output stage. The model used TIP142/147 power Darlingtons here. But the cheaper TIP141/146 transistors, lower voltage versions of the above, work just as well. In any event the specified transistors come in a plastic flatpack. These need to be mounted on a heatsink with the usual TO66 insulating kits.

A 152 mm ($6^{\prime \prime}$) by 102 mm (4") finned heatsink is used in the prototype, but a piece of $38 \mathrm{~mm} \times 12 \mathrm{~mm} \times 3 \mathrm{~mm}$ thick aluminium channel, 203 mm long has been successfully used. So if you have something similar already it will probably be suitable. Remember to deburr the mounting holes otherwise you run the risk of puncturing the insulating washer, shorting the transistor case to the heatsink.
The new Teflon washers were used in the prototypes. These cost only a few more -pence than the traditional mica washers .and have the advantage of lower thermal resistance. No more messing around with conductive grease!

Having mounted the output stage power

The completed circuit board is mounted on spacers on the lid of the case. The two "grommetted" holes at the top of the photograph take the leads to the power Darlington transistors located on the underside of the heatsink.

Fig. 3. Stripboard component layout and details of breaks required in the underside copper tracks.
transistors on the heatsink, the next task is to connect them to the board with the flying leads. In the prototype the finned heatsink is mounted on the lid of the case, having drilled a couple of 10 mm diameter holes beforehand for the connecting leads. A pair of 10 mm grommets are used to ensure that the leads do not get frayed.
The flying leads from the board are fed through the grommets and soldered to the power transistor leads, see Fig. 4. Then the heatsink is bolted to the lid
The stripboard panel itself is fitted to the base of the box supported on spacers to ensure that the board cannot short out to the case. Similarly capacitor C5 is mounted by a suitable cap. clip inside the case. The input phono and input/output sockets are also mounted on the case lid.
At this stage give your project a thorough check to ensure that all the connections are correct and soundly made.

SETTINGITUP

To set the project up you need a multimeter, two 100 ohm 0.25 W resistors and a suitable transformer. First temporarily connect one of the resistors between TR2 collector and the positive supply line on the circuit panel. Similarly connect the other resistor between TR4 collector and the positive supply line.
Plug the transformer secondary into the power supply sockets, SK4 and SK5, DO NOT connect the loudspeaker at this point Switch on. If the "test" resistors get hot you have a fault somewhere. Disconnect the power and rectify it.
Assuming all is well nothing should happen. First check the voltage across the output terminals. This should be less than 50 mV . Again if not switch off and rectify
Next connect the multimeter, switched to a range that will give you a clear indication of IV across the 100 ohm resistor in TR2's collector. Slowly adjust VR1 for an indication of IV. Repeat the procedure for the other resistor, adjusting VR2 for a IV drop. About 100 mV either way is of no consequence.
Having adjusted the quiescent current in this way connect the loudspeaker LS1 to the output sockets SK2 and SK3. Now touching the input socket "hot" connector will produce a buzz from the speaker. All that remains is to remove the two "test" resistors and reconnect TR2 and TR4 col lectors to the positive line and the amplifier is functional

Fig. 4. Wiring from the power Darlingtons and smoothing capacitor C5 to the circuit board. The power transistors are mounted on the underside of the heatsink using insulating kits. If using a metal case it MUST be earthed using a solder tag or socket bolted to a metal surface.

The completed amplifier showing the circuit board mounted towards one end of the lid and the main smoothing capacitor C5 clamped on a side panel to clear the board when the lid is closed.

EVERYDAY ELECTRONICS BINDERS

Don't let your valuable issues of EE get binned, burned or bitten (by the dog). Get one of our exquisite orange hard-back binders, slip each issue into it as you get them and you will always know where they are - we hope!

Binders to hold one volume (12 issues) are available from Everyday Electronics, 6 Church Street, Wimborne, Dorset BH21 1JH for $£ 5.95$ ($£ 6.95$ to European countries and $£ 8.00$ to other countries, surface mail) inclusive of postage and packing. Payment in £ sterling only please.

Binders are normally sent within seven days of receipt of your order but please allow up to 28 days for UK delivery - more overseas.

SHOP inTALK

with David Barrington

Audio Telescope

Having looked through our library of components catalogues, to check on availability of the electret microphone insent for the Audio Telescope, we found that most of them listed electret inserts. However, they do not indicate if they are the required "undirectional" type and readers should check with their supplier before purchasing. The unidirectional insert used in the model is the type UE16 purchased from Maplin, code QY63T.

When ordering the rotary volume control be sure to specify a "log" type. Also, although other op. amps can be used in this circuit, for best results the specified ultra low noise NE55334A op. amp should be adhered to. This device should be readily available and is currently listed by Cricklewood, Greenweld, Maplin and Omni Electronics.
The 3.5 mm stereo jack socket used in the prototype unit is the p.c. mounting type with a front panel mounting bezel. This socket was also bought from Maplin. code FK20W.

Telephone Ringer

Having studied the components list for the Telephone Ringer project, some of the components required further comment. Most of the components appear to be readily available and should not cause too many sourcing problems. But first a warning on safety.

For personal safety, all exposed mains connections should be covered with insulating sleeving to prevent accidental contact. Some live test have to be made with the case lid removed, exposing the wiring. and it is very dangerous to work in close proximity to bare, high voltage connections. This makes it doubly important that a good Earth connection is made to the metal case.
Note that resistor R6 is used as a protection limiting device in case of a short on the telephone line. In view of this, it is most important that the recommended 10W wirewound type is used. Wirewound 10 watt resistors are stocked by most of our component advertisers.

The toroidal mains transformer used in the prototype model is rated at 30VA and has a label indicating that it was made by "Airlink Transformers". Toroids are now
carried by quite a number of suppliers as stock items, and Jaytee Electronic Services (0227 375254) who specialise in toroid transformers should be able to meet the specification from their vast stocks.

The relay used in the model is a "Iskra TRM $3003^{\prime \prime}$ type, rated at 12 V 200 ohm coil, with 6 A 250 V a.c. contacts. This was obtained from Maplin and they list it as a 5 A mains relay, code YX98G. Other relays may be used but they may not fit directly on the printed circuit board.

Since the privatisation of the telephone networks, advertisers are stocking quite a range of Telecom accessories and the master socket and leads should be available as "off-the-shelf" items.

The printed circuit board for the Telephone Ringer is obtainable from the EE PCB Service, code EE790 (see page 252).

Easy Switch

The most important points that must be taken into account when building up the Easy Switch project is to use only the specified mains type wires where indicated and only use a relay with correctly rated mains coil (7300 ohms) and high power contacts. It must be emphasised that due to the presence of mains voltages extreme care must be exercised when building and testing this project. It is NOT a substitute for a "power breaker" type mains trip.

The relay purchased was the "open construction" power relay, with double-pole contacts rated at 7.5 A and a 250 V a.c. coil, from Maplin, code FX490. Other relays can be used but they must have similar ratings or even higher, depending on application.

The MOC3020 or similar optically-isolated triac should not prove difficult to locate. The MOC3020 contains a l.e.d., rated at 50 mA max, and a triac capable of low current a.c. switching, rated at 400 V 100 mA . Most good components suppliers should be able to offer this device or suggest a suitable equivalent.

Sonic Continuity Checker

We cannot foresee any component buying problems for anyone constructing the Sonic Continuity Checker. The phase locked loop i.c. and piezoelectric transducer element (with leads) seem to be widely stocked.

Having just said that all components are standard items, the case appears to be a bit of a mystery and cannot be found listed anywhere. However, as the circuit is built on such a small printed circuit board, it should be possible to build the unit in one of the numerous handheld cases, some with a special battery compartment, stocked by most advertisers

The small printed circuit board for the tester is available from the EE PCB Service. code EE789 (see page 252).

Versatile Audio Amplifier

We do not expect constructors undertaking the Versatile Audio Amplifier to experience any component purchasing difficulties. All items are readily available "off-the-shelf"

PLEASE

TAKE NOTE

Programmable Timer (February 1992)
We apologies for omitting the formulae for calculating frequency from this article, this is:

$$
f=\frac{1}{\mathrm{R} 2 \times \mathrm{C} 3}
$$

The frequencies quoted in the article are the actual frequencies measured on the prototype and therefore vary with component tolerances.

Readers should note that switch S9 should not be operated when the unit is in the "dual delay" mode.

Economy Seven

Timer(March 1992)
In view of the possible varying loads put on the specified relay, it might be advantageous to upgrade the relay to Maplin's more robust 12V 16A (contacts: 20A a.c. make, inductive; and 10A a.c. break, inductive) version, code YX99H. It does, of course, mean that the relay will not sit directly on the p.c.b. and it will have to be sited to one side and "hardwired" from the contacts to the relevant pads on the board. It is most important that wire capable of handling the high currents be used for this operation.

It is also necessary to bolster up the power (mains) carrying copper tracks by soldering lengths of 13A tinned wires along their lengths.

TEST EQUIPMENT MAINTENANCE AND TECHNICAL CONSULTANCY

\author{

- \square Service manuals
 \section*{\square Spare parts \square Comprehensive repair service including complete instrument refurbishment at highly competitive rates for radio amateurs

 Distributors for:

 WAUGH INSTRUMENTS RAMTESTLTD}
 \square We support scientific, commercial and industrial equipment manufactured by over 100 different companies
 \square New and second-hand test equipment also available at competitive prices \square Components, valves and miscellaneous items
 KRENZ ELECTRONICS
 Hesing Lechnology H
 41 Bushmead Road. Eaton Socon, St. Neots, Cambs PE19 3BT Telephone and Fax: (0480) 214488
}

 SpS PROMS (Ex equipment. \qquad 322K Bne spam ram chips 83.00 each dill iow profile ic sockecters j. ful boxes drilled \& painted but tinused $28 \times 32.5 \times 5 \mathrm{~cm}$. \square Dept EE, 374 Militon Road, Cambridge CB4 1sU

SURUBIITANCE PRODFESSIDNAL IDUAJTYY KITS

No. 1 for Kits
Whether your requirement for surveillance equipment is amateur, professional or you are just fascinated by this unique area of electronics SUMA DESIGNS has a kit to fit the bill. We have been designing electronic surveillance equipment for over 12 years and you can be sure that all of our kits are very well tried, tested and proven and come complete with full instructions, circuit diagrams, assembly details and all high quality components including fibreglass PCB. Unless otherwise stated all transmitters are tuneable and can be received on an ordinary VHF FM radio.

UIX UItra-miniature Room Iransmitter
Smallest room transmitter kit in the world! Incredible $10 \mathrm{~mm} \times 20 \mathrm{~mm}$ including mic. 312 V operation. 500 m range.
. 16.45

MTX Micro-miniature hoom Transmitter

Best-selling micro-miniature Room Transmitter
Just $17 \mathrm{~mm} \times 17 \mathrm{~mm}$ including mic. $3-12 \mathrm{~V}$ operation. 1000 m range.
£13.45
STX Migh-performance Room Iransmitter
Hi performance transmitter with a buffered output stage for greater stability and range. Measures $22 \mathrm{~mm} \times 22 \mathrm{~mm}$ including mic. 6 -12V operation, 1500 m range $\mathbf{£ 1 5 . 4 5}$

vT500 High-power Room Fransmitter

Powerful 250 mW output providing excellent range and performance. Size $20 \mathrm{~mm} \times$ 40 mm . 9-12V operation. 3000 m range...
. $£ 16.45$

VXT Voice Actlvated Pransmitter

Triggers only when sounds are detected. Very low standby current. Variable sensitivity and delay with LED indicator. Size $20 \mathrm{~mm} \times 67 \mathrm{~mm}$. 9 V operation. 1000 m range... $£ 19.45$
IVX400 Malns Powered Room Transmitter
Connects directly to 240 V AC supply for long-term monitoring. Size $30 \mathrm{~mm} \times 35 \mathrm{~mm}$. 500 m range.
£19.45
SCRX Subcarrier Scrambled Room Transmitter
Scrambled output from this transmitter cannot be monitored without the SCDM decoder connected to the receiver. Size $20 \mathrm{~mm} \times 67 \mathrm{~mm}$. 9 V operation. 1000 m range.
... 222.95
SCLX Subcarrier Telephone Transmitter
Connects to telephone line anywhere, requires no batteries. Output scrambled so requires SCDM connected to receiver. Size $32 \mathrm{~mm} \times 37 \mathrm{~mm}$. 1000 m range .
£23.95

SCDM Subcarier Decoder Unit for SCRX

Connects to receiver earphone socket and provides decoded audio output to headphones. Size $32 \mathrm{~mm} \times 70 \mathrm{~mm}$. 9-12V operation
£22.95
ATR2 Micro Size Telephone Recording Interiace
Connects between telephone line (anywhere) and cassette recorder. Switches tape automatically as phone is used. All conversations recorded. Size $16 \mathrm{~mm} \times 32 \mathrm{~mm}$. Powered from line.
£13.45

$\star \star \star$ Specials $\star \star \star$

DLTXDLAXX Radio Control Switch
Remote control anything around your home or garden, outside lights, alarms, paging system etc. System consists of a small VHF transmitter with digital encoder and receiver unit with decoder and relay output, momentary or alternate, 8 -way dill switches on both boards set your own unique security code. TX size $45 \mathrm{~mm} \times 45 \mathrm{~mm}$. RX size $35 \mathrm{~mm} \times$ 90 mm . Both $9 V$ operation. Range up to 200 m
Complete System (2 kits) ...
. $£ 50.95$
Individual Transmitter DLTX
£19.95
Individual Receiver DLRX.
. 337.95
Mix-1 M-FI Mlere Brasdeaster
Not technically a surveillance device but a great idea! Connects to the headphone output of your Hi-Fi, tape or CD and transmits Hi-Fi quality to a nearby radio. Listen to your favourite music anywhere around the house, garden, in the bath or in the garage and you don't have to put up with the DJ's choice and boring waffle. Size $27 \mathrm{~mm} \times 60 \mathrm{~mm}$. 9 V operation. 250 m range
£20.95

UTLX UItra-miniature Yelephone Transmitter

Smallest telephone transmitter kit available. Incredible size of $1 \mathrm{~mm} \times 20 \mathrm{mml}$ Connects to line (anywhere) and switches on and off with phone use. All conversation transmitted. Powered from line. 500 m range
$£ 15.95$

TLX700 Micro-miniature Telephone Transmitter

Best-selling telephone transmitter. Being $20 \mathrm{~mm} \times 20 \mathrm{~mm}$ it is easier to assemble than UTLX. Connects to line (anywhere) and switches on and off with phone use. All conversations transmitted. Powered from line. 1000 m range .
. 13.45
STLX Migh-performance Felephone Transmitter
High performance transmitter with buffered output stage providing excellent stability and performance. Connects to line (anywhere) and switches on and off with phone use. All conversations transmitted. Powered from line. Size $22 \mathrm{~mm} \times 22 \mathrm{~mm}$. 1500m range
£16.45

noxsoo Signalling/Tracking Transmitter

Transmits a continous stream of audio pulses with variable tone and rate. Ideal for signalling or tracking purposes. High power output giving range up to 3000 m . Size $25 \mathrm{~mm} \times 63 \mathrm{~mm}$. 9 V operation.
.£22.95

C0400 Pocket Bug Detector/hocator

LED and piezo bleeper pulse slowly, rate of pulse and pitch of tome increase as you approach signal. Gain control allows pinpointing of source. Size $45 \mathrm{~mm} \times 54 \mathrm{~mm} .9 \mathrm{~V}$ operation..
£30.95
CDEDO Professional Bug Detector/Locator
Multicolour readout of signal strength with variable rate bleeper and variable sensitivity used to detect and locate hidden transmitters. Switch to AUDIO CONFORM mode to distinguish between localised bug transmission and normal legitimate signals such as pagers, cellular, taxis etc. Size $70 \mathrm{~mm} \times 100 \mathrm{~mm}$. 9 V operation \qquad
QTX180 Crysial Controlled Room Iramamitter
Narrow band FM transmitter for the ultimate in privacy. Operates on 180 MHz and requires the use of a scanner receiver or our QRX180 kit (see catlogue). Size 20 mm x 67 mm . 9 V operation. 1000 m range. \qquad . 440.95
Qx180 Crystal Colntrolled Telophone Transmitter
As per QTX180 but connects to telephone line to monitor both sides of conversations. $20 \mathrm{~mm} \times 67 \mathrm{~mm}$. 9 V operation. 1000 m range.
£40.95
asx 180 Line Powered Crystal Controiled Phone Iransmitter
As per QLX180 but draws power requirements from line. No batteries required. Size $32 \mathrm{~mm} \times 37 \mathrm{~mm}$. Range $500 \mathrm{~m} \ldots$

QRX180 Crystal Controlled FM Recelver

For monitoring any of the ' Q ' range transmitters. High sensitivity unit. All RF section supplied as a pre-built and aligned module ready to connect on board so no difficulty setting up. Outpt to headphones. $60 \mathrm{~mm} \times 75 \mathrm{~mm}$. 9 V operation 560.95

A bulld-up service is avallable on all our kits if required.

UK customers please send cheques, POs or registered cash. Please add $£ 1.50$ per order for P\&P. Goods despatched ASAP allowing for cheque clearance. Overseas customers send sterling bank draft and add $£ 5.00$ per order for shipment. Credit card orders welcomed on 0827714476.

> OUR LATEST CATALOGUE CONTAINING MANY MORE ME WM SURVEILLANCE KITS NOW AVAILABLE. SEND TWO FIRSṪ CLASS STAMPS OR OVERSEAS SEND TWO IRCS.

REPORT/NG AMATEUR RADIO Tony Smith G4FAI

A FEW ANTENNAS!

Dxpeditions usually comprise a group of radio amateurs who take their equipment to some part of the world not noted for regular amateur radio activity. To be successful, they must be well organised but inevitably there is some limitation on what they can take with them due to transportation difficulties.

One would have expected such restrictions to apply to a Finnish Dxpedition to the island of Curacao, in the Netherlands Antilles, set up to participate in the 1990 CQ Worldwide contest. RadioTeam Finland, as it became known, comprised 100 operators and mounted what has become accepted as the largest ever Dx or contest operation in the history of amateur radio. This annual contest is organised by $C Q$ magazine (USA), which reported the logistics of the Finnish operation in its November 1991 issue.

Over ten tons of aluminium towers and beam antennas were shipped from Finland to Curacao, including 18 crank-up towers, some as high as 180 ft , and 25 monoband beams of varying complexity, the total representing 508 metres of aluminium tubing. There were also wire antennas of various types, strung up on the towers which were raised by an 18 -ton crane.

WINNING TEAM

To feed these antennas $10,300 \mathrm{ft}$ of coaxial cable was used. The antennas were rotatable so $4,500 \mathrm{ft}$ of rotator control cable was required, and to keep. everything standing $8,600 \mathrm{ft}$ of guy wires and 11.300 ft of nylon rope was used. Another essential item was $3,000 \mathrm{ft}$ of mains cable.

For the actual radio operation, 15 new Yaesu FT-1000 digital transceivers were used, complete with all accessories including logging computers, which were installed in two air-conditioned portable buildings. With all this effort and organisation it is not surprising that RadioTeam Finland, operating as PJ9A/PJ9W, won the contest with a score of 52.2 million points!

MORE COMPUTERS USED

After noting the use of logging computers by RadioTeam Finland I was interested to see a comment in FOCUS, journal of the First Class CW Operators' Club, recently that in the 1991 ARRL Dx Contest over 50 per cent of entrants used computerised logging and of these about half sent in disc entries. Among the big scorers the percentage rose to 90 with nearly all sending in discs.

It makes a lot of sense. Preparing entry logs after contests has always been a time-consuming task, including a lot of tedious writing, and now programs exist to do all the hard work. Point losing duplicate contacts are automatically deleted, and the con-
test entry is scored and ready for mailing just minutes after the contest.

INTERNATIONAL LISTENERS'

ASSOCIATION

Judging from the number of publications available on the subject, shortwave listening continues to be a popular activity, providing much pleasure in its own right and serving as a useful introduction to the possibility of taking up amateur radio.

Several organisations exist to serve the interests of SWLs, one of which is the International Listeners' Association, founded in 1985 by Trevor Morgan, GW40XB, together with a group of dedicated readers of his SWL column from the now defunct Amateur Radio magazine.

ILA has members in many countries and offers awards for achievements in shortwave listening, contests for the competitive minded and a quarterly newsletter, Just Listening. The Association offers a number of listeners' "sundries" to members, including log books, QSL cards, Spectrum computer programs, club insignia, lists of prefixes, oblasts, countries, etc, and a useful book "Get the best from your ICF2001D'

The December 1991 28-page newsletter has information and articles on a year-long listeners' contest organised by UBA, the Belgian national radio society; v.h.f. dipole aerials; the Soviet amateur scene; Jamboree-on-the-Air 1991; Valentia Radio; a review of the Easyreader DM1000 data decoder which decodes RTTY and Morse signals when connected to the audio output of a receiver; a medium wave column; an airband column, including details of an airband pre-amplifier; radio scouting; the broadcast scene; and more.

Annual membership of ILA costs $£ 5$ (UK), and full details can be obtained from The International Listeners' Association, 1 Jersey Street, Hafod, Swansea, SA1 2 HF .

NEW ISWL PUBLICATIONS

The International Short Wave League, previously mentioned in this column. has produced two new publications of interest to SWLs. A guide to English shortwave broadcasts to Europe (winter schedules 1991/1992) lists the English language broadcasts likely to be heard in Europe in time order, over 24 hours, indicating country, station name, frequency and type of programme.

It also gives details, on a day-by-day basis, of the many programmes aimed at SWLs and Dxers which can be heard throughout the week. This very useful booklet (23 pages of A4), which is now an essential accessory to my world band radio, costs just $£ 1.00$ or two IRCs.

The second publication, Standard Frequency and Time Signal Stations of the World (25 pages of A4), includes
explanations of the various time and transmission systems used by such stations. It lists them in frequency order from 16 to 22536 kHz and from 95.00 to 171.13 MHz ; it also lists them by callsign in alphabetical order, including location and frequencies; and by country, in alphabetical order, with frequencies, transmission times, addresses, system used and OSL card policies.

This booklet would be of value in either a listener's or transmitter's shack to assist in identifying which signal paths on particular frequencies are open at any given time, and to help with calibration of station equipment. Its cost is $£ 1.75$ or three IRCs, and both publications can be obtained from International Short Wave League, 10 Clyde Crescent, Wharton, Winsford, Cheshire CW7 3LA.

THE END IS NIGH

My apologies to Bruce Morris GW4XXF, and to those readers who wrote to him about his cassette, 500 kHz . The End is Nigh, which I mentioned in the February column. Since 1 received my own copy, Bruce has produced a second edition of his unique collection of recordings of historic last transmissions from coast stations and ships on the wireless telegraphy distress and calling frequency, and the price is now $£ 7.50$, not $£ 5.00$ as I stated.

The process of closure continues and no less than five Australian coast stations were due to close down at the end of January. Bruce was trying to ensure that they went down in "a blaze of glory", fully recorded, with the results sent to him. It will be all over by the time this appears in print of course, and no doubt he will then be turning his attention to recording further planned closures. For those interested, Bruce's address is 62 Gerllan, Tywyn, Gwynedd, LL36 9DE.

USSR AWARD

Gennadiy Shul'gin, UZ3AU, senior editor at the Moscow based Radio magazine, was recently awarded the Order "For Personal Courage" for his work at Chernobyl in 1986. He went immediately to the scene (as did about 50 other radio amateurs) to provide emergency communications and stayed more than six months. He was exposed to eight times the permissible dosage of radiation but survived probably because of his excellent physical condition.

Reporting the award, the magazine Sovetskiy Patriot commented "Amateur radio is not a hobby but a state of mind. It unites people into a peculiar kind of fraternity almost like an order of knights. A piece of news spreads to practically all of the world's radio amateurs in a single day. It is impossible to overestimate the value of such a real-time system of communication.'

Constructional Project

TELEPHONE RINGER

CHRIS WALKER

Putyour actors at ease with this authentic sounding telephone "prop" for amateur or professional productions.
 Even Beattie would be proud of it! N THE exciting world of amateur
 real telephone bell! Also, unless the bell is

|dramatics (or even professional dramatics), it is often necessary to make a telephone ring on the stage during a production. The actor then answers the telephone and pretends to hold a conversation with a non-existent person at the other end! The audience are, of course, convinced that there is a two-way dialogue taking place; or rather they should be convinced, it all depends upon the skill of the performer.
Having been involved with various productions staged at schools and at the local theatre, the question that the author is often asked is: "How do you make a telephone ring?"
The answer is quite simple, you require an a.c. voltage source of about 70 volts r.m.s. This is an awkward voltage to obtain and theatre companies often resort to using an ordinary low voltage bell to simula te the telephone ring.
This has several drawbacks not least of which is that nothing quite sounds like a
placed near to the telephone, it is pretty obvious to the audience that the phone is not really ringing.
In a modern play it may be more appropriate to use a "warbling" ringer rather than a bell, and this creates yet more problems when trying to simulate the sound. A taped recording is not a very satisfactory substitute.
Away from the theatre, in the home there could be occasions where it would be useful to be able to ring a phone; perhaps for paging purposes, for testing after repair or just for fun since this unit will "breathe life" into an old telephone which has been handed down for the children to play with.
Perhaps it should be stated here that the Telephone Ringer is NOT at all designed to be connected to the Public Switched Telephone Network (the telephone line from the exchange). To make such a connection would be illegal and could damage exchange equipment, under no circumstances should anyone do this.

CADENCE

In the past the designer has obtained the 70 V a.c. from a combination of a mains step-down transformer followed by a stepup transformer. This rings the bell or warbler satisfactorily but it relies on a human operator to switch the power on and off to create the familiar burr-burr

... burr-burr ... burr-burr cadence (or rhythm) of the British ringing phone.
Most people, when asked to simulate a ringing telephone, will ring too quickly or leave a shortened gap between pairs of rings. Worse still they are inconsistent, generating some long bursts and some short ones.
The Telephone Ringer described here is a single unit which supplies the necessary voltage and cadence to ring a phone. In addition to a cadenced ring, the phone may be sounded continuously as long as a switch is held pressed so that different rhythms or special effects can be created.

Fig. 2. Circuit diagram for a "Master Telephone Socket" and pin assignment of the telephone plug connector. Connections 1, 4 and 6 are not normally used.

The American phone system, for example, has a different ringing cadence to the British system.

Ringing will cease as soon as the handset is picked up because the telephone "hookswitch" interrupts power to the bell. This prevents the rather embarrassing situation where the phone continues to ring after the actor has answered the call!

PINGING VOLTAGE

The telephone exchange rings the phone in your home by sending a large a.c. voltage along the line, typically 75 V r.m.s. at a frequency of about 25 Hz . In actual fact the voltage at your receiver could vary between about 50 V to 100 V depending on the exchange and the line length. The frequency could also vary between 14 Hz and 66 Hz .
This project obtains its ringing voltage from a mains transformer with a 60 V r.m.s. secondary winding (two 30 V windings in series). Since the transformer has a quoted regulation of 18 per cent the actual off-load ringing voltage obtained is about 73 V r.m.s. The frequency is (obviously) that of the mains, 50 Hz , which is above the usual ringing frequency but still within usable limits.
Using a higher ringing frequency is of no consequence if an electronic warbling phone is used since the first thing these machines do is to rectify and smooth the ringing voltage to obtain a d.c. power source for the ringer circuit. In an electromechanical bell the a.c. current is actually used to move the bell hammer, and so a higher frequency results in a more "urgent" ringing sound, if you can imagine this.

CIRCUIT DESCRIPTION

Most of the components in the Telephone Ringer are involved with generating the UK

Fig. 1. Complete circuit diagram for the Telephone Ringer.
ringing cadence. The complete circuit diagram of the unit is given in Fig. 1.
The 555 timer ICl and its surrounding components form an astable multivibrator, creating a square wave of 5 Hz frequency at pin 3. IC2 is configured as a 4-bit binary counter which is clocked by the square wave signal from ICl.
With switch S1 open, pin 1 of IC2 is held high $(+12 \mathrm{~V})$ by resistor R 3 and the counter is reset so that all its outputs are high, i.e. the counter is reset to 15 . When S 1 is closed, the next rising edge at pin 15 IC2 causes the counter to increment to zero and then proceed to count upwards through all sixteen possible states.
The binary output from IC2 (pins 2, 6, 11 and 14) is decoded by IC3 into ten decimal outputs. Therefore, counts 0 to 9 from IC2 will cause one of ten outputs from IC3 to go high.
Outputs $0,1,3$ and 4 (IC3 pins 3, 14, 15 and 1 respectively) are OR-ed through

Completed circuit board and "telephone socket" mounted on rear of the case.

a.c. (off-load voltage) from the two secondary windings of transformer T1 is applied to the "Master Telephone Socket" (described later) into which the telephone is plugged. Older phones which don't have a plug connector can be wired directly to terminal posts which would be mounted on the rear of the "Telephone Ringer" case.
Resistor R6 is a protection resistor which limits the a.c. current to a maximum of 150 mA in the case of a short circuit on the telephone "line". Note that R6 is a 10 W wirewound device.
The relay will be energised only when IC3 decoder outputs $0,1,3$ or 4 are high. The counter strobes through the outputs at a rate of 5 Hz , so each one remains high for 0.2 seconds. Therefore, the relay is switched on for 0.4 s (counts 0 and 1), off for 0.2 s (count 2), on again for 0.4s (counts 3 and 4) and, finally, of for 2.2 s while the counter counts from 5 to 15 . The continuous cycling of the counter results in the burr-burr . . . burr-burr . ringing cadence.
Pressing switch S 2 allows current to flow continuously into the base of TR1 which will, consequently, ring the telephone continuously.

POWER SUPPLY

One secondary winding of Tl is used to supply 30 V a.c. power to the circuit.

Diode D8 rectifies the a.c. and capacitor C3 smooths out the ripple.
A steady potential difference (p.d.) of 13 V is developed across Zener diode D7 This p.d. is buffered by transistor TR2 to result in about 12.4 V at the emitter of this transistor which is used to feed the rest of the circuit.
Transistor TR2 will become rather warm during operation. If a metal case is used the transistor can be bolted to the chassis, otherwise some form of heatsink will be required.
The 240 V mains side of the transformer is protected by fuse FS1, whilst neon lamp LPI provides power indication. This neon indicator MUST be fitted with an internal current-limiting resistor for use at 240 V

MASTER TELEPHONE SOCKET

The pin assignment of a modern telephone plug is shown in Fig. 2 along with the circuit diagram of a "Master Socket"; the kind of socket which terminates the telephone line in your house. Pins 1 and 6 on the plug are often omitted.
The capacitor inside this socket is there to remove the d.c. line voltage but allow the a.c. ringing voltage to reach the ringer cir-
cuit in the phone. Most modern phones require the ringing voltage to be applied between pin 3 and pin 5 on the plug.
The author has, however, encountered phones which will only ring when the ringing voltage is applied directly across the line terminals, pins 2 and 5 . Of course, there is no d.c. line voltage generated by the "Telephone Ringer" unit, but by using a Master Socket complete with capacitor the output ennnection should be compatible with all telephones.
As mentioned previously, screw-down terminal posts may be used if desired, but extreme care should be exercised when using exposed connections because the 70 V r.m.s. output is capable of giving a mild electric shock.

CASE

The main circuit is constructed on a printed circuit board, component layout and copper foil master are shown in Fig. 3. This board is available from the $E E P C B$ Service, code EE790.

Solder all of the components onto the printed circuit-board (p.c.b.). Use d.i.1. sockets for the integrated circuits but do not insert the i.c's just yet. The electrolytic capacitors, the diodes and transistor TRI all have to be placed the correct way around; study the component layout care-

Fig. 3. Printed circuit board component layout and full size copper foil master. Note that resistor $R 6$ is a 10 W wirewound type and 85 rated at 1 W carbon film.
fully to avoid mistakes. One wire link needs to be inserted just to the left of $\mathbf{I C l}$.
If a different relay to that specified is used, you will probably need to modify the p.c.b., or alternatively mount the relay off the p.c.b. and connect it to the board with short lengths of wire.

There are a large number of flying-lead connections to be made as shown in Fig. 4 and you will find these easier to do if you solder terminal pins (p.c.b. pins) to the board, and then solder flexible wires to the terminal pins once the p.c.b. is fastened in the case. Connection within the Master Telephone Socket is made to terminals 2 and 5, as described in Fig. 2.

The wires from transformer Tl are colour coded, usually as follows:

240 V primary - orange
Secondary 1, 0V - grey, 30 V - blue
Secondary $2,0 \mathrm{~V}$ - yellow, 30 V - red.
For safety, all the exposed mains connections MUST be insulated to prevent accidental contact. Some live tests have to made with the case lid removed and it is extremely dangerous to work in close proximity to bare, high voltage connections.

It is also most important to make a good Earth connection to a solder tag bolted to the metal case as shown in Fig. 4. To prevent the 3 -core mains cable from being pulled out of the case, use a strain-relief grommet or similar anchoring device at the point of entry.

CONSTRUCTION

The prototype unit was housed inside an aluminium instrument case measuring $150 \mathrm{~mm} \times 150 \mathrm{~mm} \times 75 \mathrm{~mm}$ high. An aluminium box is better suited to the back-stage environment and it also acts as a good heatsink for transistor TR2.
The case will require drilling to accept the panel-mounted components. Do this first, and then label the controls as desired. A suggested layout of the components within the case is shown in Fig. 4.
Transformer T1 is a toroidal device and is mounted by sandwiching it between the two rubber washers which are provided with the device. The circuit board should

Fig. 4. Interwiring and layout of components inside the case.
be mounted on two supports so that the soldered connections do not touch the case. Similarly, transistor TR2 should be insulated from the case using a mica washer and insulating bush. These pieces are often sold as an "insulating kit" for power transistors; the type of transistor used here has a TO126 type case.

Fasten all of the case-mounted components in place before wiring them to the circuit board. Switches S1 and S2 can either be "momentary" (push-and-release) push buttons or the more easily operated "biased" (spring loaded) toggle switches, as used in the prototype.

TESTING

Double check the 240 V wiring within the unit before connecting to the mains. Then, with the i.c's still out of their sockets, switch on the unit. Neon lamp LP1 should light. If it does not then check the condition of fuse FSI
During this next test, take care not to touch any of the mains connections. Connect a d.c. voltmeter between pin 8 (negative) and pin 16 (positive) of IC2's empty socket. The meter should read about 12 to 13 volts.
If the voltage is significantly outside this range then switch off and check your construction and wiring. Make sure that the transformer T1 and transistor TR2 have been correctly wired to the circuit board.
Once the power supply is satisfactory, switch off and then insert the three i.c's with their identification notches orientated as shown in Fig. 3. IC2 and IC3 are CMOS devices and the usual handling procedure should be followed to avoid damaging them with static electricity

Plug a telephone into the Master Socket and then re-apply power. Switch S1 (Cadenced ring) should cause the phone to ring (and 1.e.d. D6 to illuminate) as though it was being called by the telephone exchange. Switch S2 (Long ring) will ring the phone continuously.

HART AUDIO KITS - YOUR VALUE FOR MONEY ROUTE TO ULTIMATE HI-FI

HART AUDIO KITS give you the opportunity to build the very best engineered hill equipment there is, designed by the leaders in their field, using the best components tha are avallable.
Every HART KIT is not just a new equlpment acquisition
but a valuable investment in knowledge, giving you guided but a valuable investment in knowledge, giving you guide In short HART is your 'friend in the trade' giving you, as knowledgeable constructor. access to better equipment at lower prices than the man in the street.
You can buy the reprints and construction manual for any
kit to see how easy it is to build your own equipment the kit to see how easy it is to bulld your own equipment the
HART way. The FULL cost can be credited against your subsequent kit purchase.
Our list will give you fuller details of all our Audio Kits. components and special offers.

This fantastic John Linsley Hood deslgned amplifier is the flagship of our range, and the ideal powerhouse for your ultimate hifi system. This kit is your way to get E 作 penor
mance for a few tenths of the costl. Featured on the front cover of 'Electronics Today International' this complete stereo power amplifier offers World Class periormance allied to the famous Hont quality and ease of consiruc tion. John Linsley Hood's comments on seeing a complet thoroughly professional plece of audio gear, neat elegant and functional. This Impression is greatly reinforced by the internal appearance, which is redolent of quality, both in components and in layout. Options include a stereo LED power meter and a versatile passive front end giving switched inputs using ALPS precision, low-noise volume and balance controls. A new relay switched front end op-
tion also gives a tape input and output facility so that for use tion also gives a tape input and output lacility so that for use
with tuners, tape and CD players. or indeed any other 'flat' with tuners, tape and CD players. or indeed any other flat
inputs the power amplifier may be used on its own, wlithout the need for any external stonal handling stages. 'Slave and 'monobloc' versions without the passive input stage and power meter are also available. All versions fit within our standard $420 \times 260 \times 75 \mathrm{~mm}$ case to mateh our 400 Series Tuner range. ALL six power supply rails are fully stabilised, and the complete power supply. using a toroidal transformer, is contalned within a heavy gauge aluminium chassis/heatsink fitted with IEC mains input and outpun sockets. All the circuitry is on professional grade printed
circuit boards with roller tinned tinish and green solder circuit boards with roller tinned linish and green solder
resist on the component ident side, the power amplifiers resist on the component ident side, the power ampliliers performance. All wirlng in this kit is pre- terminated, ready periormance. Al
tor instant use!.
RLH11 Reprints of latest articles............................... $\mathbf{\Sigma 1 . 8 0}$
K1100CMHART Construction Manual.
1.80
$\$ 4$

LINSLEY HOOD 'SHUNT FEEDBACK' R.I.A.A.
MOVING COIL \& MOVING MAGNET PICKUP
MOVING CDIL \& MOVING MA

Modern, ultimate sound systems are evolving towards bulli-In RIAA preamplifier within the turntable unit, keepng noise pickup to a minimum. This new circuit by John Linsley hood uses latest generallon integile preferred shunt feedback configuration to in an accurate and musical sound with the ability to use both moving magnet and moving coil cartridges. Power comes rom two 9y PP3 size Datteries or a mains power supply. This HART kit is exceptionally easy to build with detailed instructions and all the specially selected components fitting directly on to the roller tinned fibreglass printed circuit board. Even the gold plated phono sockets mount directly on the board.
This Kit now comes with latest generation low-noise front end IC and onboard power stabilisers for any DC input volt. age between 9 V and 30 v

ALPS PRECISION LOW-NOISE STEREO POTS.

To fulfil the need for higher quality controls we are now importing an excitling new range of precision audio pots in values to cover most quality amplifier applications. Al in 2 -gang stereo format, with 20 mm long 6 mm dia. steel shatis. Now you can throw out those noisy ill-matched only used selectively in the very top flight of world class amplifiers. The improvement in track accuracy and matchIng really is incredible giving better tonal balance between
channels and rock solid image stabillty. Motorised versions channels and rock solid i
have 5 V DC Drive motor.
have 5V DC Drive
Gang look Lin.
2-Gang 10 K . 50 K \& 100 K Log.
2-Gang 10K Special Balance.
2-Gang 10 K Special Balance, MOTORISED, zero
cosstalk and $<10 \%$ centre loss with near

COMPUTER CORNER

The following are a welection of our new range of VERY competitlvely priced, HIgh Quality, compuler systema. Due to our long experiesi to buy at vary advantageous prices and can pass the
Favings on to you. All hard disc machines ordered with DOS are tavings on to you. All hard disc m
fully formatted and ready to use.
HART MODEL AT-286/16WP COMPUTER
Fully fledged AT286 machine. cheap enough to use as the west! Only a few years ago the AT- 286 machine was the fastest standard office computer known. Now we can ofter the supertast 16 MHz version (earlier ones were only 10 or 12 MHz) at such an incredibly in any oftice or home used only that but ours comes with ultratast memory so that the machine can run in zero wait state
Advanced features are:-
 Full 1 MB of memory (Ex pandable to 4MB), 102 key UK keyboard, compact desktop case, 1.2MB 51/4" High
Density Disk Drive and interface card for extra drive Graphics/Printer Card, built in Hard Disk Intertace MART AT-286/16WP.............................ONLY E277. 25 14" FST Hercules monitor, Amber 14* Paper White Hercules Monltor. (Both have T/S Base) Trust Writer W/P Software uses Wordstar commands $£ 19.50$ 40MB AT-286/16UG Hard Disk Computer Specitication as above but with 45 MB 25 ms hard disk. VGA Colour Graphics Card with 512K RAM, parallel printer port, 2

HART 40MB AT-386/16SX EL

Entry level 386 machine for demanding applications at moderate cost. Spec as our AT286/16WP with 1MB Dram memory. Mini Tower case, 45MB 25m
Colour Graphics Card with 256 K RAM
40MB AT-386/16SX EL Is................... ONLY $£ 634.30$ (Ex Vat) HART 52MB AT-386/20SXUG

Luxury version of the above with higher processor speed and amazing 9 millisecond access time hard disk. 2MB SIMM RAM, Compact Tower Case. VGA 1024×768 card with 512 K 40 MB , upgradeable to 1 MB of Video memory. 4OMB AT-386/20SX UG.............
HART Computers can be 'custom made' to fit your personal

Send or 'phone for your copy of our List (50p) of these and many other Kits \& Components. Enquiries from Overseas customers are equally welcome, but PLEASE send 2 IRCs if you want a list sent surface post, or 5 for Airmail.

Ordering is easy. Just write, telephone or tax your requirements to sample the friendly and eflicient HART
service. Payment by cheque, cash or credit card. A telephoned or faxed order with your credit card number will service. Payment by cheque, cash or co
get your order on its way to you THAT DAY
get your order on its way to you THAT DAY.
Please add part cost of carriage and insurance as follows:-IMLAND Orders up to $£ 20-£ 1.50$ Order over $£ 20-£ 3.50$ Express Courler, nexi working day. £10 (For sately all computer parts are ontr sent bn courier OVERSEAS - Please see the orderlar imiormation with our lisis.

MANUFACTURERS OF QUALITY AUDIO KITS AND COMPUTERS

REEL TO REEL HEADS
999R $2 / 4$ Record/Play 110 mH . Suits Stuart Tape Circuits. $98 \mathrm{E} 2 / 4$ Erase Head 1 mH . Universal Mount. Suits Stuart.
Do you lapes lack treble?. A worn head could be the problem. For top performance cassette recorder heads should be replaced every 1,500 hours. Filting one of our high quality replacement heads could restore pertormance obetter than new!. Standard inductances and mountings make fitting easy on nearly all machines (Sony are special, azimuth spot on As we are the actual importers you get prime parts at lower prices. compare our prices with other suppliers and see!. All our heads are suitable for use wlth any Dolby system and are normally available ex stock. We also slock a wide range of speclal heads for home consiruction and industrial users. HM120 Standard Mono R/P Head. HC15 Standard Quality Stereo R/P Head. C66 High Quality Stereo R/P Mead. Permalloy.

Modern pace saver hesion Per malloy Stereo head. ost Sultable saver design for easy fitting and low truly a univers al replacement head for everything rom hi-fi decks to car players and at an incredible rom hi-li deck HO551 \&Track RECORD \& Play Permalloy Head for auto-reverse car players or quadraphonic recording $£ 14.90$ 4524 Standard Erase Head
H561 Hi Field Erase Head for METAL Tapes.......................83. 49 HRP373 Downstream Monitor Stereo

Many other SPECIAL cassette Heads in stock, see our LIST.

TAPE RECORDER CARE PRODUCTS

 HART TC1 TEST CASSETTE Our famous triple purpose test cassette. Sets tape azimuth, VU DEMI Mains Powered Tape Head Demagnetizer prevents noise on playback due to residual
requirements, at NO extra costt. Simply select the options you equirements, at NO extra cost. Simply select the options you that model then deduct the cost of the part not needed. MS-DOS 5 Latest Release. Full version $3.5^{\prime \prime}$ or $5.25^{\prime \prime}$ ORDOS 6 .

Full version. $3.5^{\prime \prime}$ or $5.25^{\prime \prime}$ Mlcrosoft Windows 3. 3.5" or 5.25° Disks SM1421 AM TU Hercules Mono with FST Tube and Stand. Amber.
SM1421 PW TU As Above but Paper White Screen... SM1416A VGA Mono Monitor ciw tilt and swivel stand. Amber M1416W As Above, Paper white SM1485-00 Super VGA Multisync Colour Monitor, $288^{\prime \prime}$ dot ${ }^{2} 35$ pitch, 50 MHz Bandwidth. Up to 1024×7
K261 102 Key Enhanced UK Layout, Tactile Click, AT/XT Switchable with dual slope feet.(Standard Keyboard supplied with systems).
K 108 Similar to above, single slope teet. Alps switches........ $£ 36$ KB6153A As above but with heavy metal bas
AT Super I/O Card $2 \times$ FDD, 1×1 DE, 2 Serial, 1 Parallel, 1 Game
Hercules Mono Graphic \& Printer card-...

Trident 8900 VGA Card, 512 K .. 86
Trident 8900 VGA Card with 1MO
DISK DRIVES
5.25"1.2Mb Floppy Disk Drive.

49
3.5" 1.44 Mb Floppy Disk Drive..

Adapter to fit $3.5^{\prime \prime}$ drive in $5.25^{\prime \prime}$ slot. c/w power adapter 52MB Quantum Hard Disk. Lightning Fast 9ms Access
CASES
WE 611P Desktop Case, Flip Top, 200W PSU.
WE727P Mini Tower Case, 200W PSU....
108MP Mini Tower Case, Compact Style.
AT-286/16 OK.RAM.
MOTMERBOARDS
AT-286/16 OK.RAM.....
.545
C165

AT-386-205X OK.RAM.
£261
...
PLEASE NOTE THAT ALL ITEMS IN THIS
SECTION ARE PRICED EX VAT.

ACTUALLY DOING ITY by Robert Penfold

FROM time to time I get requests for printed circuit board (p.c.b.) or stripboard layouts for circuits of mine that have been published in books and magazines. I also get occasional requests for advice on producing stripboard or p.c.b. layouts. There is usually no easy answer to these requests.

If a neat and copyable component board design exists for a circuit, then it will normally be published along with the circuit. If something has been published as just a circuit plus notes, then the circuit has been thoroughly tested, but it has probably not been built in a neat form. It may have only been built on a solderless breadboard or crudely wire-wrapped.

There is no way that a lesson on circuit layout can be condensed into a short letter! In this article I will try to give some guidance on producing stripboard layouts.

Before proceeding further it is only fair to point out that trying to make up projects working from just a circuit diagram is not a good starting point. You really need to gain a certain amount of experience first, using ready-made printed circuit boards, stripboard layouts in magazines, or whatever. However, once you have a certain amount of experience, and are familiar with the basic techniques involved, it is not too difficult to convert circuit diagrams into working stripboard layouts.

INSTANT STRIPBOARDS

There are several approaches to producing stripboard layouts, and the obvious way is to draw out and check over the layout before actually soldering anything in place. This is easy enough to do, but it is not the method I use.

I have always preferred to simply make up stripboard layouts as I go along, working on a piece of board that is much larger than necessary. Having completed the layout, the excess board is carefully cut away, leaving the finished board ready for installation in the case.
This may seem to be a difficult and wasteful way of doing things, with mistakes being difficult to correct. Admittedly, it is possible to make a mistake that could be difficult or impossible to correct, making it necessary to start again on a new piece of board.

In practice this is not likely to happen very often, if at all. The direct approach has definite advantages, with the main one being that it provides very rapid results. It seems to be the way that many people design stripboards

One problem with drawing out a layout is that you will normally have to work
at two or three times (EE uses twice) actual size. Drawing layouts at actual size tends to be rather awkward and fiddly. When drawing up a layout larger than actual size you need to be careful about un-der-estimating the size of components.

It is easy to draw up a very plausible looking layout that is totally impractical, with areas of board occupied by iwo or more components when you try it with real components. When designing stripboard layouts it is a good idea to have a piece of board and all the components handy, so that you can fit components onto the board in order to determine the closest spacing that can be used.

THINKING AHEAD

Probably the most important thing when designing component layouts is to think ahead. Try to work on groups of components rather than just on a bit by bit basis. Ensure that you always leave free areas of board for any components or interconnections that will follow later.

As a point of interest, one of the main problems with computer programs that automatically design printed circuit layouts is that they tend to "paint themselves into corners". Human designers are much better at looking ahead and avoiding this type of thing. With a little practice you should soon find that this problem is totally avoided.

GETTING STARTED

Whether you decide to jump straight in and make up the board as you go along, or draw up the design before you reach for the soldering iron, the basic method described here should help you to produce working stripboard layouts. It has to be emphasised that there is no single correct layout for each circuit, and for a medium sized project there must be hundreds of different layouts that are perfectly satisfactory. Provided it is reasonably neat, compact, and it works, then the layout is quite acceptable.

Getting started tends to be the most difficult part of any design work. It definitely helps if you are methodical in your approach.

Most circuits have an input and an output, so work through from the input to the output, or vise versa. Where this is not appropriate, work from the left hand side of the circuit diagram to the right hand side.

It helps to bear in mind that most component layouts are firmly based on the circuit diagram. The person who draws up the circuit diagram has effectively done the first stage of the design work for you.

SIMPLE AMPLIFIER

For the basis of this example layout we will use the Simple Amplifier circuit diagram of Fig. 1. This is a simple preamplifier based on an operational amplifier i.c.

We will assume that sockets JK1, JK2, switch S1, and battery B1 are all mounted off-board. While it is possible to use some printed circuit mounting sockets etc. with stripboard, in most cases it is more trouble than it is worth to do so.

The obvious starting point is to put in a couple of solder pins to take the connections to JK1. The convention is to have the bottom copper strip as the "earth" or OV rail (except for dual supplies), so the earth pin for JK1 would go in the bottom left-hand hole. The non-earth pin for JK1 can go a couple of strips higher up the board.

I would recommend having pins spaced at least two holes apart, since having them in adjacent holes can cause problems. The main one is that there is a tendency to get short circuits across the pins when you wire them up to the off-board components. Spacing of more than two holes is acceptable, but the board will be neater and easier to wire to the off-board components if the pins are in neat groups, with one group for each off-board component.

Continuing to work from the input to the output, capacitor C 1 is the next component to deal with. This is a non-

Fig. 1. Circuit diagram for a simple amplifier; used for the component layout example.
electrolytic type, which these days often means a printed circuit mounting component having very short leadouts. This limits your options, since you are more or less obliged to use whatever pin spacing the component has. When using stripboard it is easier if, as far as possible, you avoid components of this type.

In this case we will assume that C1 has $7.5 \mathrm{~mm}(0.3 \mathrm{in}$.) lead spacing. The obvious place for it is just to the right of the non-earth input pin, going vertically up the board.

This makes the sixth copper strip up the board the one to which pin 3 of IC1 and resistors R2, and R3 will connect. It is possible to change this by adding a link wire to connect the upper end of C1 to another copper strip, but in this case there seems to be no point in doing this.

Next resistors R1 to R3 and electrolytic capacitor C2 must be added. We already know which two strips R3 must connect to (the bottom one and the sixth one up). It can therefore be
wired between these two strips, just to the right of C 1 .

The convention is to have the uppermost strip as the one which carries the non-earth supply rail, which in this case is the positive supply rail. Resistors R1 and R2 can therefore be added above C1, going vertically up the board.

The "natural" lead spacing for most miniature resistors is $10 \mathrm{~mm}(0.4 \mathrm{in}$.). You are not forced into using this, and there is no difficulty in using a longer lead spacing if this would be beneficial. In this case it would not, and it would simply make the board "taller" than it really needs to be.

Using a smaller lead spacing is awkward as it means mounting the resistor on-end rather than flat against the board. This is a physically weak method of construction which should be avoided as much as possible, but often it is the "least worst option".

In normal printed circuit design components are not fitted to the board at odd angles. With stripboard you often have to make compromises, and it is better to fit a component on the board at an odd angle than to mount it on-end.

As finished stripboard panels are quite light, a couple of mounting bolts will usually suffice. With large boards it would obviously be advisable to work in one or two extra mounting holes somewhere on the board i.e. at the four corners.

Continuing with the component layout, IC1 is the next component to put into the layout. Its vertical position must be such that pin 3 connects to the same copper strip as C1, etc. For most newcomers to constructng, it is to be recommended that i.c. holders be used for all multi-pin devices.

Horizontally, IC1 holder can be placed just to the right of C2, but a spare column of holes must be left between C2 and IC1. These are for a link wire from pin 4 to the negative supply ("earth") strip, and a link wire that will carry the "common" connection from resistors R4/R5 to pin 2 of IC1.

It would be possible to mount R4 over the top of IC1 so that it could connect directly between pins 2 and 6. This type of thing looks rather scrappy though, and is not a very reliable method of construction. Also, how do you remove the i.c.

Fig. 2. The initial stages
Fig. 3. The finished component layout. " X "s indicate the of the component layout.
breaks in the copper strips.

With R1 and R2 in place, the electrolytic capacitor C2 can then be added to the right of R3, from the bottom strip to the one which connects to R1 and R2 (being careful to get its polarity correct). The lead spacing of C2 works out at 23 mm (0.9 in .), which makes an axial component the natural choice. However, most radial electrolytic capacitors have quite long leads, so a radial electrolytic could probably be fitted without any difficulty

FINISHING OFF

So far we have a layout something along the lines of Fig.2. I have allowed some generous spacing of the components to allow for the fact that the actual capacitors might be somewhat fatter than depicted in Fig. 2.

Apart from this the board space has been used quite efficiently. The layout has not been allowed to spread unnecessarily over to the right, leaving large areas of board wasted.

Obviously the board will usually need to have some mounting holes so that it can be bolted inside the case. I usually have five extra copper strips at the top of the board to provide an area which will accommodate a couple of mounting holes.
from its holder if a breakdown occurs?
When using stripboard you have to accept that a number of link wires will be needed, and avoid taking shortcuts which could be less than satisfactory. In this case only one other link will be needed, and this is from pin 7 of IC1 to the positive supply strip.

Resistor R4 can be mounted to the right of IC1. going vertically up the board from the strip that connects to pin 6 of IC1. There are several unused strips available for the opposite end of R4, and it does not really matter which one you
choose. The link wire from R4 to pin 2 of IC1 can then be added between the appropriate two strips, just to the left of IC1.

You might like to work out the rest of the design yourself. I ended up with the final layout of Fig. 3.

A few connections between the offboard components will usually be required. In this instance only one is needed, and this is from the positive battery lead to one side of switch S1.

TAKE A BREAK

You must be careful not to omit any of the breaks in the underside copper strips. In this case the only essential breaks are between IC1's two rows of pins, to prevent them from being short circuited together.

This board is for a simple single stage circuit. Most of the layouts you design will be for circuits having several stages, and you will then need to add breaks between adjacent stages to keep them properly isolated from one another. When designing layouts you must make sure that vacant holes are left for these breaks.

With the old and now obsolete 0.15 in . pitch stripboard it was quite easy to put in breaks between two holes. Using 0.1 in. pitch matrix board it is very difficult to do this, and it is something that should only be reserved for emergency use.

In Fig. 3 I have added a couple of extra breaks (marked with X's) in the strips. There is a major problem when using stripboard, and this is the capacitance between the copper strips. This capacitance is very good at coupling signals from one part of a circuit to another and needs to be avoided.

In this example there is a risk of stray feedback from the output to the input of the circuit, which could result in the amplifier breaking into oscillation. This is actually quite likely to occur with this layout, since the input and output of the circuit connect to adjacent strips.

Problems of this type can usually be avoided by making some extra breaks in the copper strips, as in this example, so that the unused pieces of copper strip are disconnected from the input and output of the circuit. With very sensitive circuits this might not be sufficient, and it would also be necessary to add a couple of link wires to connect the unused pieces of track to the earth rail. These pieces of copper strip should then act like screens, preventing any significant feedback.

Probably the best advice for anyone thinking about trying to design stripboard layouts is to get stuck in and give it a try. You can only become competent at this sort of thing by getting some practical experience, and it will probably be much easier than you expected.

The stripboard layout for the Audio Telescope (published in this issue) was designed as described here.

Equalizers

Equalizers correct errors in frequency response. An early use was in telephone engineering. Telephone cables have greater loss at high frequencies (h.f.) than at low frequencies (1.f.). This h.f. loss can be quite serious, as a few figures illustrate.
Suppose that, on an audio phone cable, the response is required to be flat to 4 kHz . If the loss in the cable is 1 dB per kilometre at low frequencies and 1.2 dB at 4 kHz . what is the effect of 100 km of cable?
At low frequencies the total attenuation is 100 dB , but at 4 kHz it is 120 dB , so 4 kHz signals are now 20 dB down. This has to be corrected, for example by incorporating "top lift" in the amplifiers (repeaters) which are inserted at intervals along the cable route.

Recording

Equalization has become familiar in the field of sound recording and reproduction. When disc recording was developed the engineers hit a problem. The recording machine registered audio signals by cutting a groove which wobbled from side to side in proportion to signal
Fig. 2. The resonant frequency of $L 1$, C1 can give either a peak or a trough, depending on the setting of VR1.

strength. If this wobble was too large the part of the spiral groove now being recorded might veer too close to the previously cut part.

This can of course be avoided by increasing the pitch of the spiral so as to leave more spaces between one turn and the next. But this reduces the number of turns which can be accommodated on a disc, hence reduces the playing time. You could reduce the amount of wobble by turning down the gain, but signal output from the pickup is then also reduced

It turns out that the greatest amounts of wobble occur at the lower frequencies. So disc recording engineers apply bass cut. The playback machine must then incorporate just enough bass lift to correct the frequency response, this is called "playback equalization". (In practice the required equalization is more complicated but the principle is the same.)
When tape recording arrived on the scene the problem was to correct a loss of treble inherent in the recording process. Standard equalization curves were derived which make the overall response level.

In f.m. radio it pays (from the point of view of getting a good signal to noise

Fig. 1. The acoustic response of a room or other enclosure contains relatively sharp peaks and troughs.
ratio) to boost treble at the transmitter and cut treble at the receiver. Hence the presence of equalization ("de-emphasis") circuits in f.m. receivers.

Acoustic Variations

The equalization required in the systems which l've been talking about so far is standardized. It can be built into audio equipment and doesn't need to be adjusted by the user. But there are also ele-
ments in the audio chains which cannot be dealt with by preset equalization.

The acoustics of a typical bathroom illustrate the point. Your voice sounds louder in the bathroom because the typical hard walls and small dimensions produce strong acoustic resonances which colour the tone of your voice. Comparable effects occur in any small closed space such as the interior of a car.

However flat they be the internal response of a car radio or tape player and however hi-fi the loudspeakers, the car interior itself will colour the tone. Different cars will do this in different ways, and even the same car will change acoustically as its contents (including passengers) are varied.

You may think that an adjustment of the tone controls should correct this. The trouble is that the resonances which need equalizing may be rather sharp, giving a response full of peaks and troughs (Fig. 1). Ordinary tone controls give only gentie changing responses, over relatively broad parts of the audio spectrum. They just can't cope with peaky responses.

Solutions

The natural way to cancel a peak is to use a resonant $\angle C$ circuit to create a dip in the response at the peak frequency. A circuit for doing this (Fig. 2) uses a series-resonant circuit (C1, L1, R3) to shunt signals to earth.

With the slider or wiper contact of potentiometer VR1 at A this produces a dip in the response. If the wiper is at B the series resonant circuit bypasses resistor R2. Since R2 reduces the gain of the transistor (by emitter negative feedback), bypassing it in this way restores gain at the \angle Cresonance frequency, producing a peak in the response.

At some intermediate settings of VR1 wiper there is neither an increase or decrease in gain and the response is flat. Thus VR1 controls the amount of cut or lift at or near the resonant frequency. At remote frequencies the $L C$ circuit has a high impedance and little effect.

The op.amp (IC1) version of the circuit (Fig. 3) works in a similar way. In this case it is practicable to add more potentiometers in parallel with VR1, each with its own LCcircuit. By staggering the tuning of the LC circuits a number of cut/lift frequencies can be provided.

Fig. 3. Graphic equalizer using an op.amp. Extra bands can be added as shown dotted.

Graphic Equalizers
The circuit (Fig. 3) then lends itself to use as a graphic equalizer. If the VR1 potentiometers are of the slider type, mounted in parallel on a front panel, the positions of their knobs can be made to indicate graphically the response at the resonant frequencies.

The maximum lift and cut are determined by resistor R3 along with R1 (for cut) or R2 (for lift). In practice the coil which creates L1 has resistance, which effectively adds to R3, and this can be allowed for in determining the actual size
of R3 on each range. In a typical case the maximum cut or boost is around 15 dB .

There is no guarantee that the selected $L C$ frequency will correspond to the frequencies of acoustic resonances in any particular case. The chance of hitting the right frequency is improved by using a large number of equalization bands. The absolute minimum is three; one low frequency; one middle frequency; and one high frequency. More is better.

The best plan is to make the centre frequency of each band a fixed multiple of the next lower frequency. A possible
value for the multiplexer is the square root of 10 (about 3-16).

This gives ranges such as 100,316 , $1,000,3,160,10,000$, covering most of the audio band in five steps. More steps can be provided by making the multiplier the cube root of ten, or the fourth root, etc.

Since inductors are expensive, designers may seek to avoid them by using active $R C$ circuits which simulate $\angle C$ circuits. For installations with no built in graphic equalizer it is possible to add a graphic equalizer booster amplifier and extra speakers.

DIRECT воок SERVICE

The books listed have been selected by Everyday Electronics editorial staff as being of special interest to everyone involved in electronics and computing. They are supplied by mail order direct to your door. Full ordering details are given on the last book page. For another selection of books seenext month's issue.

EVERYDAY ELECTRONICS DATA BOOK Mike Tooley BA
(published by EE in association with PC Publishing) everyday relevance invaluable source of information of not only sections which deal with the essential theory of electronic circuits, but also deals with a wide range of practical electronic applications.
It is ideal for the hobbyist, student, technician and engineer. The information is presented in the form of a basic how theory can be put into practice using a range of commonly available "industry standard" components and devices.
$\begin{array}{cc}\text { A must for everyone involved in electronicsi } \\ 256 \text { pages } & \text { Order code AiA }\end{array}$

ELECTRONICS TEACH-IN No. 3-EXPLORING
ELECTRONICS (published by Everyday Electronics) Owen Bishop
Another EE value for money publication aimed at students of electronics. The course is designed to explain the workthe reader in experimenting with and circuits by involving contain masses of theory or formulae but straightforward explanations and circuits to build and experiment with. Explaring Electronics contains more than 25 useful projects, assumes no previous knowledge of electronics
and is split into 28 easily digestible sections and is split into 28 easily digestible sections. 88 pages (44 size) Order caderils:

Special Everyday Electronics Books

ELECTRONICS TEACH-IN NO. 4
INTRODUCING DIGITAL ELECTRONICS (published by Everyday Electronics)

by Everyday Electronic Michael J . Cockcroft

Although this book is primarlly a City \& Guilds Introductory level course ($726 / 301$), approximately 80% of the information forms a very basic introduction to electronics in general, it therefore provides an excellent introductory text
for beginners and a course and reference book for GCSE for beginn
students.

students.

Full details on registering for C\&G assessment, details of assessment centres, components required and information on the course in general are given
The Cliy \& Guilds introduction to module $726 / \mathrm{Jul}$ reads: A candidate who satisfactorily completes this
module will have a competence to identify basic components and digital integrated circuits and connect them together to form simple working circuits and logic units." This provides an excellent introduction to the book.
112 pages (A4 size) Order codetitu
£2.95
ELECTRONIC PROJECTS - BOOK 1
Published by Everyday Electronics in as sociation with Magenta Electronics.
Contains twenty of the best projects from previous issues of EE each backed with a kit of components. The projects are: Seashell Sea Synthesiser, EE Treasure Hunter, Mini Strobe, Digital Capacitance Meter, Three Channel Sound to Light, BBC 16K Sideways Ram, Simple Short Wave
Radio, Insulation Tester, Stepper Motor interface, Eprom Eraser, 200 M Hz Digital Frequency Meter, Infra Red Alarm, EE Equaliser Ioniser, Bat Detector, Acoustic Probe, Mains Tester and Fuse Finder, Light Rider - (Lapel Badge, Disco Lights, Chaser Light). Musical Doorbell. Function Generator, Tilt Alarm, 10W Audio Amplifier, EE Buccaneer In. duction Balance Metal Detector, BBC Midi Interface, Variable Bench Power Supply, Pet Scarer, Audio Signal Generator.

Order code EfT
£2.45

ELECTRONICS TEACH-IN NO. 5 G UIDE
TO BUILDING ELECTRONIC PROJECTS
Published by EVERYDAY ELECTRONICS
Published by EVERYDAY ELECTRONICS we have put together a range of articles from past issues of Everyday Elecrronics that will assist those involved with
the construction of electronic projects.
The book contains the complete Project Development for GCSE series.
Contents: Features - First Steps in Project Building; Building with Vero; Project Development for GCSE; Getting your Project Working; Guide 10 Printed Circuit Boards: Choosing and Using Test Equipment - The Multimeter, The Oscilloscope, P.S.U.S, Logic Probes, Digital Frequency Meters, Signal Generators, etc; Data - Circuit Symbols; Component Codes; Resistors; Identitying Com-
ponents; Capacitors; Actually Doing It - Understanding the Circuit Diagram, Component Codes, Mounting circuit boards and controls, Understanding Capacitors; Projects - Lie Detector; Personal Stereo Amplifier: Digital Experimentsr's Unit; Quizmaster; Siren Effects Unit; UV Exposure Unit, Low-cost Capacitance Meter; Personal Radio.
88 pages (A4 size) [Order code TIb]
£2.95
ELECTRONICS TEACH-IN 88/89-
INTRODUCING MICROPROCESSORS
Mike Tooley
A complete course that can lead successful readers to the award of a City and Guilds Certificate in Introductory Microprocessors ($726 / 303$). The book contains everything you need to know including full details on registering for assessment, etc. Starting with basic terminology. integrated circuins, logic families and numbering systems the text builds in stages, with revision and assessments buitt in, up to programming, languages, flow charts, eic. 80 pages (A4 size) Orowcomer to the subject.
$\mathbf{£ 2 . 4 5}$

Computers and Computing

COM PUTERS AND MUSIC - AN INTRODUCTION R.A. Penfold

Computers are playing an increasingly important part in the world of music, and the days when computerised music was strictly for the fanatical few are long gone
Computer-based music systems in the past have tended to be either horrendously expensive, very crude, or bothl These days, prices are much more modest and the poten tial of the equipment is much greater. Consequently a lot of tial of the equipment is much greater. Consequently a lot of computer music systems.
If you are more used to the black and white keys of a synth keyboard than the OWERTY keyboard of a computer you may be understandably confused by the jargon and terminology bandied about by computer buffs. But fea system is not as difficult as you might think.
This book will help you learn the basics of computing, running applications programs, wiring up a MIDI sys tem and using the system to good effect. in fact jus about everything you need to know about hardware and the programs, with no previous knowledge of compuring needed or assumed. This book will help you to choose the ight components for a system to suit your personal needs and equip you to exploit that system fully.
174 pages IOrdercode ${ }^{\circ} \mathrm{Cl} 10$? $\quad \mathrm{E} .95$

A CONCISE INTRODUCTION TOMS-DOS

N. Kantaris

This guide is written with the non-expert, busy person in mind and, as such, it has an underlying structure based on "what you need to know first. appears first". Nonetheless, the guide is also designed to be circular, which means tha you don't have to stan at the beginning and go to the end The more experienced user can start from any section. The guide covers versions 3.0, 3.1 and 3.2 of both PC manufacturers of "compatible" microcomputers including manufacturers of compatible microcomputers, including systems and hard disc-based systems

AN INTRODUCTION TO 280 MACHINE CODE

R. A. B J. W. Penfold

Takes the reader through the basics of microprocessors and machine code programming with no previous
knowledge of these being assumed. The $Z 80$ is used in knowledge of these being assumed. The 280 is used in examples are given for $\mathbf{Z 8 0}$-based machines including the Sinclair ZX-81 and Spectrum, Memotech and the Amstrad CPC 464. Also applicable to the Amstrad CPC 664 and 6128.
-07der codesplist
E2.75

AN INTRODUCTION TO 68000 ASSEMBLY

LANGUAGE
R. A. \& J. W. Penfold

Obtain a vast increase in running speed by writing proAmiga, Atari ST range or Apple Macintosh range etc., in assembly language. It is not as difficuit as one might think and this book covers the fundamentals. 112 pages Order code 8 Pl 8 at

ع2.95
THE ART OF PROGRAMMING THE $2 X$ SPECTRUM M. James, B.SC., M.B.C.S
tis one thing to have learnt how to use all the Spectrum's commands and functions, but a very different one to be you want them to. This is just what this book is all about teaching you the art of effective programming with your 144 pages

Order cade $3 \$ 199$
£2.50
A 280 WORKSHOP MANUAL
E. A. Parr, B.Sc., DC.Eng,, M.I.E.E.

This book is intended for people who wish to progress beyond the stage of BASIC programming to topics such as machine code and assembly language programming, or 192 pages Order code Explity
£ 3.95

NEWNES COMPUTER ENGINEER'S POCKETBOOK (Second Edition)
An invaluable compendium of facts, figures, circuits and An invaluable compendium of facts, figures, circuits and gineer and all those interested in computer and microcomputer systems. It will appeal equally to the hardware or software specialist and to the new band of "software engineers" This data is presented in a succinct and rapidly
accessible form so that the book can become part of an accessible form so that the book can become part of an
everyday tootkit. 205 pages (hard cover) Order codentot $\quad 10.95$

UNDERSTANDING PC SPECIFICATIONS

R. A. Penfold

If you require a microcomputer for business applications, or a high quality home computer, an IBM PC or compatible is often the obvious choice. They are competitively priced, and are backed up by an enormous range of applications programs, hardware add-ons, etc. The main difficulty for the uninitiated is deciding on the specification that will
best suit his or her needs. PCs range from simple systems best suit his or her needs. PCs range from simple systems
of limited capabilities up to complex systems that can of limited capabilities up to complex systems that can
happily run applications that would have been considered happily run applications that would have been considered
beyond the abilities of a microcomputer not so long ago. It beyond the abilities of a microcomputer not so long ago.
would be very easy to choose a PC system that is inadequate to run your applications efficiently, or one which goes beyond your needs and consequently represents poor value for money.
This book explains PC specifications in detail, and the subjects covered include the following: Differences between types of PC (XT, AT, 80386, etc); Maths co-processors; Input devices (keyboards, mice, and
digitisers): Memory including both expanded (EMS) and digitisers): Memory, including both expanded (EMS) and
extended RAM: RAM disks and disk caches; Floppy disk extended RAM: RAM disks and disk caches; Floppy disk
drive formats and compatibility; Hard disk drives (includdrive formats and compatibility: Hard disk drives (including interleave factors and access times): Display adaptors, including all standard PC types (CGA, Hercules, Super can t tell your EMS from your EGAl 104 pages \quad Orderco eB: 282.95

Audio and Music

PRACTICAL MIDI HANDBOOK
R. A. Penfold

The Musical Instrument Digital Interface (MIDI) is surrounded by a great deal of misunderstanding, and many of the user manuals that accompany MIDI equipment are quite incomprehensible to the reader
The Practical MIDI Handbook is aimed primarily at musicians, enthusiasts and technicians who want 10 exploit the vast capabilities of MIDI, but who have no previous knowledge of electronics or computing. The MIDI can do and how to exploit it to the full, with practical advice on connecting up a MIOI system and getting it to work, as well as deciphering the technical information in those equipment manuals.
128 pages
Order code pcto1)
PREAMPLIFIER AND FILTER CIRCUITS NEW R. A. Penfold

This book provides circuits and background information for a range of preamplifiers, plus tone controls, filters, mixers, etc. The use of modern low noise operapreamplifier ins and a specialist high performance audio performance, but which are still quit simple all the performance, but which are still quite simple. All the pounds in most cases).
The preamplifier circuits featured include:- Microphone preamplifiers (low impendance, high impedance, and

Component Identification

HOW TO IDENTIFY UNMARKEDICs

Shows the reader how, with lust a test-meter to go about recording the particular signature of an unmarked i.c. which should enable the i.c. to then be identified with reference to manufacturers' or other data. An i.c. signature is a specially plotted chart produced by measuring the resistances between all terminal pairs of an i.c.
$\begin{aligned} & \text { Chart } \\ & \text { Order core BP101 }\end{aligned}$
£0.95
RADIO AND ELECTRONIC COLOUR CODES AND DATA CHART
B. B. Babani

Although this chart was first published in 1971 it provides basic information on many colour codes in use throughout the world, for most radio and electronic components. Includes resistors, capacitors, transformers, field coils, fuses,
battery leads, speakers, etc. It is particularly useful for findbattery leads, speakers, etc. It is particularly useful for find Chart Order code BP7

crystal). Magnetic cartridge pick-up preamplifiers with R.I.A.A equalisation. Crystal/ceramic pick-up preamplifier Guitar pick-up preamplifier. Tape head preamplifier (for use with compact cassette systems).
Other circuits include:- Audio limiter to prevent overoading of power amplifiers. Passive tone controls. Active tone controls. PA filters (highpass and lowpass). Scratch and rumble filters. Loudness filter. Audio mixers. Volume and balance controls

MUSICAL AP

R. A. Penfold

he Atari St's are now firmly established as the com puters io use for electronic music applications. The greater than most people may realise, but there are still a ot of misconceptions about just what can and cannot be achieved. This book will help you sort out the fact from the fallacy and to get the most musically from the ST's. A wide selection of topics are covered, including the internal sound chip; MIDI; applications programs such add-on projects and MIDI programming. 90 pages \quad Order code B 246,95
AN INTRODUUCTION TO LOUDSPEAKERS AND ENCLOSUREDESIGN
V. Capel

This book explores the various features, good points and snags of speaker designs. It examines the whys and wherefores so that the reader can understand the principles involved and so make an informed choice of design, or even design loudspeaker enclosures for him or herself. Crossover units are also explained, the various types, how they work, the distortions they produce and description of the construction of the Kapellmeister 148 pages enclosure. ACOUSTIC FEEDBACK - HOW NEW TO AVOID IT Feedback is the bane of all public address systems.
While feedback cannot be completely eliminated, many While feedback cannot be completely eliminated, many hings can be don
longer a problem.
Much of the trouble is often the hall itself, not the equipment, but there is a simple and practical way of greatly improving acoustics. Some microphones are prone to feedback while others are not. Certain loudspeaker systems are much better than others, and the way the units are positioned can produce or reduce feedback. All these matters are fully explored as well as electronic aids su
and notch filters.
The special requirements of live group concerts are The special requise the related problem of instability that is somerimes encountered with large set-ups. We even take a look at some unsuccessful attempts to cure feedback so as to save readers wasted time and effor duplicating them.
Also included is the circuit and layout of an inexpensive but highly successful twin-notch filter, and how to operate it
92 pages

Prder code BP3io $\quad \mathbf{3 . 9 5}$
COMPUTERS AND MUSIC. See Computers section

Theory and Reference

ELECTRONIC HOBBYISTS HANDBOOK

R. A. Penfold

Provides an inexpensive single source of easily located information that the amateur electronics en thusiast is likely to need for the day-to-day pursuance of
this fascinating hobby. Covers common component colour cades. Details the characteristics and pinouts of many popular seimiconductor devices, including various types of logic ICs, operational amplifiers, transistors FETs, unijunctions, diodes, rectifiers, SCRs, diacs, triacs, regulators and SMDs, etc. Illustrates many usefu types of circuits, such as timers and oscillators, audio amplifiers and filters, as well as including a separate section on power supplies. Also contains a multitude of 88 pages

NEWNES ELECTRONICS POCKET BOOK

E. A. Part

Newnes Electronics Pocket Book has been in print for over twenty years and has covered the development of electronics from valve to semiconductor technology and from transistors to LSI integrated circuits and microprocessors. To keep up to date with the rapidly changnecessary This new Fifth Edition takes account of recen changes and includes material suggested by readers o previous editions. New descriptions of op.amp. applica tions and the design of digital circuits have been added, along with a totally new chapter on computing, plus other revisions throughout
315 pages (hard cover) Order code NEO2
£10.95 ELECTRONIC MODULES AND SYSTEMS FOR BEGINNERS
This book describes over 60 modular electronic circuits how they work, how to build them, and how to use them. different electronic systems bother to make hundreds show the reader how to begin building systems from mod ules, a selection of over 25 electronic systems are des cribed in detail, covering such widely differing applica tions as timing, home security, measurement, audio (in cluding a simple radio receiver), games and remote con trol.
200

TOrder cone BP26G £3.95

ROM ATOMS TO AMPERES

A. Wilson

Explains in crystal clear terms the absolute fundamentals ehind electricity and electronics. Really helps you to disover and Ha
Have you ever: Wondered about the true Ilnk berween lectricity and magnetism? Felt you could never underand the work of Einstein, Newton, Boltzmann, Planck ike a little black ball? Got mixed up with e.m.f. and p.d.? Thought the idea of holes in semiconductors is a bit much? Then help is at hand with this inexpensive book, in as simple a way as possible and without too much complex
244 pages $£ 3.50$
PRACTICAL DIGITAL ELECTRONICS HANDBOOK Mike Tooley (Published in association with
Everyday Electronics
The vast majority of modern electronic systems rely heavily on the application of digital electronics, and the Practica Digital Electronics Handbook aims to provide readers with a ractically based introduction to this subject. The book manufacture or servicing of digital circuitry, as well as to manufacture or servicing of digital circuitry, as well as to al devices and techniques. Contents: Introduction to in tegrated circuits; basic logic gates; monostable and bistable devices; timers; microprocessors; memories; input and output devices; interfaces; microprocessor buses. Appendix 1 Data. Appendix 2: Digital test gear projects; tools and text equipment, regulated bench power supply; logic pulser; verstaile pulse generator, digital IC tester, current tracer, audio logic tracer; RS-232C breakout box; versatile digital Appendix 4-Suggested reading. Appendix 5: Further study. Appendix 4: Suggested reading. Appendix 5: Further study.
208 pages
O6rder code PCIOO

ELECTRONICS - A "MADE SIMPLE" BOOK

 G. H. OIsenhis book provides excellent background reading for our Introducing Digital Electronics Teach-In Book and will be of interest to everyone studying electronics. The subjec s simply explained and well illustrated and the book as $\begin{array}{lll}\text { sumes only a very basicknowledge of electricity. } \\ 330 \text { pages } & \text { Order code Ne10. }\end{array}$

Project Building

HOW TO GET YOUR ELECTRONIC PROJECTS WORKING
We have all bult projects only to find that they did not work correctly, or at all when first switched on The aim of this book is to help the reader overcome just these problems by indicating how and where to start looking for many of the common faults that can occur when building up projects.

OrdercodeBㅛlit $£ 2.50$
HOW TO DESIGN AND MAKE YOUR OWN P.C.B.S R. A. Penfold

Deals with the simple methods of copying printed circuit board designs from magazines and books and covers at aspects of simple p.c.b. construction including 80 pages \quad Order code firitil $£ 2.50$

A BEGINNERS GUIDE TO MODERN ELECTRONIC COMPONENTS

R. A. Penfold

The purpose of this book is to provide practical information to help the reader sort out the bewildering array of components currently on offer. An advanced knowledge of the theory of electronics is not needed, and this book is not intended to be a course in electronic theory. The main aim is to explain the differences between components of the wire-wound resistors) so that the right component for a given application can be selected. A wide range of components are included, with the emphasis firmly on those components that are used a great deal in projects for the home constructor
166 pages \quad Order code Bprzbd 3.95
BEGINNER'S GUIDE TO BUILDING ELECTRONIC

PROJECTS

Shows the complete beginner how to tackle the practical side of electronics, so that he or she can confidently build the electronic projects that are regularly featured in magazines and books. Also include examples in the form of simple projects.

112 pages

Order cosie $22 y$
£1,95

electronic science projects

O. Bishop

These proiects range in complexity from a simple colour temperature meter to an infra-red laser. There are novelties such as an electronic clock regulated by a resonating are scientific measuring instruments such as a pH meter and an electro-cardiometer. All projects have a strong scientific flavour. The way they work, and how to build and use them are fully explained.
144 pages \quad Order code 8 p104 95
ELECTRONICS SIM PLIFIED - CRYSTAL SET
CONSTRUCTION
F. A. Wilson, C.G.I.A., C.Eng., FI.E.E., FI.E.R.E., F.B.I.M. Especially written for those who wish to participate in struction than by theoretical more through practical conages upwards from the day one can read intelligently and handle simple tools.
80 pages

ع1.75

Testing and Test Gear

TRANSISTOR RADIO FAULT-FINDING CHART

C. E. Miller

Used properly, should enable the reader to trace most common faults reasonably quickly. Across the top of the chart will be found four rectangles containing brief desset dead, sound low or distorted and background noises. One then selects the most appropriate of these and following the arrows, carries out the suggested checks in sequence until the fault is cleared.
CHOM
HOW TO USE OSCILLOSCOPES AND OTHER TEST EQUIPMENT
This book explains the basic function of an oscilloscope, gives a detailed explanation of all the standard controls, and provides advice on buying. A separate chapter deals logic circuits. Plenty of example waveforms help to il. lustrate the control functions and the effects of various fault conditions. The function and use of various other pieces of test equipment are also covered, including signal generators, logic probes, logic pulsers, and crystal calibrators
104 pages
IOrder codecrean
£3.50

Circuits and Design

PRACTICAL ELECTRONIC
BUILDING BLOCKS - BOOK 1
PRACTICAL ELECTRONIC
BUILDING BLOCKS - BOOK 2
R. A. Penfold

These books are designed to aid electronic enthuslasts who like to experiment with circuits and produce their own projects, rather than simply following published projec BOOK 1 contains: Oscillators - sinewave, triangular squarewave, sawtooth, and pulse waveform generators operating at audio frequencies. Timers - simple monostable circuits using i.c.s, the 555 and 7555 devices, etc. Miscellaneous-noise generators, rectifiers, comparator and triggers, etc.
BOOK 2 contains: Amplifiers - low level discrete and op-amp circuits, voltage and buffer amplifiers including d.c. types. Also low-noise audio and voltage controlle amplitiers. Finters - high-pass, low-pass, 6, 12, and 24 d per octave types. Miscellaneous - i.c. power amplifiers
mixers, voltage and current regulators, etc. BOOK 1128 pages UratercodeBpllit $£ 1.95$ BOOK 2112 pages Orrmeodentplis E1.95

MODERN OPTO DEVICE PROJECTS
R. A. Penfold
in recent years, the range of opto devices available to the home constructor has expanded and changed radically areas of modern now represent one of the more interesting in, and many of these have useful practical applications as well. This book provide useful practical applications as which utilize a range of modern opto-electrical devices including such things as fibre optics, ultra bright l.e.d. 5 and passive IR detectors etc.
While many of these designs are not in the "dead simple category, they should be within the capabilities electronics construction and some of the more simple designs are suitable for beginners.
104 pages [Orcercowe BPig9] E2.95

ELECTRONIC ALARM CIRCUITS MANUAL
R. M. Marston

One hundred and forty useful alarm circuits, of a variety of types, are shown in this volume. The operating principle of each one is explained in concise but comprehensive terms and brief construction notes are given where necessary. experimenter. as well as the electronics student and experimenter, as well as the electronics student and 124 pages

Oruer corleNeTI $£ 12.95$

DIGITAL LOGIC GATES AND FLIP-FLOPS
an R. Sinclair
This book, intended for enthusiasts, students and technicians, seeks to establish a firm foundation In digital ectronics by treating the topics of gates and flip-flops or's book in the sense of presenting circuits to build and use, it is for the user who wants to design and froubleshoot digital circuitry with considerably more understanding of principles.
Topics such as Boolean algebra and Karnaugh mapping are explained, demonstrated and used extensively, and more attention is paid to the subject of synchronous counters.
No background other than a basic knowledge of electronics is assumed, and the more theoretical topics are explained from the beginning, as also are many working
practices. The book concludes with an explanation of $\begin{array}{ll}\text { microprocessor techniques as applied to digital logic. } \\ 200 \text { pages } & \text { Order coderelog } \\ \text { E8.95 }\end{array}$

LECTRONIC CIRCUITS FOR THE COMPUTER

ONTROL OFROBOTS

Robots and robotics offer one of the most interesting areas or the electronics hobbyist to experiment in. Today the mechanical side of robots is not too difficult, as there re robotics kit and a wide range of mechanical components available. The micro controller is not too much o aproblem either, since the software need not be terribly complex and many inexpensive home computers are well
The main stum
uilders is the blumbling block for most would-be robot motors, and the sensors which provide feedback from the obot to the computer. The purpose of this book is to explain and provide some telatively simple electronic
circuits which bridge this gap.
92 pages
UOrder code 3 plig
U2.95
ELECTRONIC POWER SUPPLY HANDBOOK
an R. Sinclair
This book covers the often neglected topic of electronic ower supplies. All types of supplies that are used for and batteries and extendingered in detail, starting with celis inear stabilisers to modern switch-mode systems, IC switchmode regulators, DC-DC converters and inverters.
The devices, their operating prlnciples and typical ciruits are all dealt with in detail. The action of rectifiers and the reservoir capacitor is emphasised, and the subject of stabilisation is covered. The book includes some usefu ormulae for assessing the likely hum level of a conven 36 pages reser supply.
136 pages
Orde: code Feje8
$E 7.95$

Radio, TV, Satellite

AN INTRODUCTION TO AMATEUR RADIO

Amateur radio is a unique and fascinating hobby which has attracted thou sands of people since it began at the furn of the century.
This book gives the newcomer a comprehensive and easy to understand guide through the subject so that the eader can gain the most from the hobby. It then remains an essential reference volume to be used time and again such as operating procedures, jargon and senting up a such as operating procedures, jargon and setting up a
station. Technical topics covered include propagation, $\begin{array}{ll}\text { receivers, transmitters and aerials etc. } \\ 150 \text { pages } & \text { Order code BP257 } \\ \text { £3.50 }\end{array}$

SIMPLE SHORT WAVE RECEIVER CONSTRUCTION A. A. Penfold

Short wave radio is a fascinating hobby, but one that these days. In fact it is possible to pursue this hobby for minimal monetary outlay if you are prepared to undertake bit of d.i.y., and the receivers described in this book can all be built at low cost. All the sets are easy to construct, ful wiring diagrams etc. are provided, and they are suitable for complete beginners. The receivers only require simple aerials, and do not need any complex alignment or othe difficulh setting up procedures.
The topics covered in this book include: The broad cast bands and their characteristics; The amateur bands Simple aerials; Making an eart connection; Short wave erystal set; Simple t.r.f. receivers; Single sideband recep
ion; Direct conversion receiver.
Contains everything you need to know in order to get
$\begin{array}{ll}\text { started in this absorbing hobby. } \\ 88 \text { pages } & \text { Orcler conle 892\%st } \\ \mathbf{~} 3.95\end{array}$

AN INTRODUCTION TO SATELUTE TELEVISION

 A. WilsonAs a definitive introduction to the subject this book is presented on two levels. For the absolute beginner o anyone thinking about purchasing or hiring a satellite TV can be in the main text.
For the professional engineer, electronics enthusiast student or others with technical backgrounds, there are humerous appendices backing up the main text with additional technical and scientific detail formulae, calculations, tables etc. There is also plenty for the DIY enthusiast with practical advice on choosing and installing the most problematic part of the system - the dish antenna.
104 pages
Order code 8P195
$\mathbf{E} .95$

\section*{AN INTRODUCTION TO AMATEUR

COMMUNICATIONS SATELLITES

COMMUNICATIONS SATELLITES

A. Plickford

Communications and broadcast satellites are normally naccessible to individuals unless they are actively involved in their technicalities by working for organisations such as British Telecom. the various space agencies or military bodies. even those who possess a satellite television receiver system do not participate in the technical spects of these highly technological systems.
There are a large number of amateur communications satellites in orbit around the world, traversing the globe nals received with relailvely inexpensive equipment. This equipment can be connected to a home computer such as the BBC Micro or IBM compatible PCs, for the decoding of eceived signals.
This book describes several currently available systems, heir connection to an appropriate computer and how they 102 pages Orcter code 8

AERIAL PROJECTS
A. A. Penfold

The subject of aerials is vast but in this book the author has considered practical aerial designs, including active. oop and ferrite aerials which give good performances and are relatively simple and inexpensive to build. The complex theory and mathematics of aerial design have been voided.
Also included are constructional details of a number of aerial accessories including a pre-selector, attenuator, filrs and tuning unit

Trier cocie Blil $05 \quad \mathbf{£ 2 . 5 0}$
INTERNATIONAL RADIO STATIONS GUIDE Phore
Provides the casual listener, amateur radio DXer and the professional radio monitor with an essential reference work designed to guide him or her around the ever more complex radio bands. This new edition has been completely revised and rewritten and incorporates much more formation which is divided imo the following sections: Wave Radio Receiver; How to Use the IRSG; Abbrevia tions; Country Codes; Worldwide Shori Wave Radio Staions; European, Middle Eastern and African Long Wave Radio Stations; European, Near and Middle Eastern and Alrican Medium Wave Radio Stations; Canadian Medium Wave Radio Stations; USA Medium Wave Radio Stations; Broadcasts in English; Programmes for DXers and Short Wave Listeners; UK FM Radio Stations; Time Differences $\begin{array}{ll}\text { From GMT; Wavelength/Frequency Conversion. } \\ 226 \text { pages } & \text { Order code } 8 \text { PE } 55.95\end{array}$

HOW TO E. A. Parr

This book has been written as a designer's guide covering of circuits and amplifiers, serving both as a source book The approach has been made as non-mathematical as possible. 160 pages

Order code Bprss
f2. 95
MICRO INTERFACING CIRCUITS - BOOK 1
MICRO INTERFACING CIRCUITS - BOOK 2
R.A. Penfold

Both books include practical circuits together with details of the circuit operation and useful background informap.c.b. layouts and constructional points are conal information are not included.
Book 1 is mainly concerned with getting signals in and out of the computer; Book 2 deals primarily with circuits for practical applications
BOOK 1112 pages
BOOK 2112 pages Order code BP131
£2.75
£2.75

SENSORS AND TRANSDUCERS

Keith Brindley
There are a considerable number of transducers. Look through any electronic components catalogue and you'll versions. It s notety of types, and each type has many particular function. In many a transducer correctiy for acedures are referred to which might deter you from using one that is, in fact, the best for the job. Yet, opting to use a transducer merely because it is easier to interface into the measuring system is not the answer. A greater knowledge ideal and of ryansducers capable A ging the task is the ideal, and ofty in can a totally satistact 179 pages Orde

50 SIMPLE LED CIRCUITS

R. N. Soar

Contains 50 interesting and useful circuits and applications, covering many different branches of electronics, using one of the most inexpensive and freely available components - the light-emitting diode (LED). Also includes circuits for the 707 common anode display
64 pages
Order code BP42

DIRECT
 BOOK SERVICE

ORDERING DETAILS
Please state the title and order code clearly, print your name and address and add the required postage to the total order.

Add 75 p to your total order for postage and packing (overseas readers add $£ 1.50$ for countries in Europe, or add $£ 2.50$ for all countries outside Europe, surface mail postage) and send a PO, cheque, international money order, (£ sterling only) made payable to Direct Book Service or credit card details (including the card expiry date), Visa or Mastercard (Access) - minimum credit card order is $£ 5$ - quoting your name and address, the order code and quantities required to DIRECT BOOK SERVICE, 33 GRAVEL HILL, WIMBORNE, DORSET BH21 1 RW (mail order only).
Although books are normally sent within seven days of receipt of your order, please allow a maximum of 28 days for delivery. Overseas readers allow extra time for surface mail post.

Please check price and availability (see latest issue of Everyday Electronics) before ordering from old lists.
Note - our postage charge is the same for one book or one hundred books!
MORE BOOKS NEXT MONTH
Direct Book Sarvice is a division of Wimborne Publishing Ltd

BABANI BOOKS

We now supply all the books published by Bernard Babani (Publishing) Lid. We have always supplied a selected list of Babani books and you will find many of them described on the previous pages or in next months issue of Everday Electronics (the books with a BP prefix to the order code are Babani books)
Many readers have asked us to also supply various other Babani books, which have a reputation for value for money. Our customers tell us they appreciate our speedy service and low postage charge and they
would like to be able to purchase all the books from us and thus keep the postage charge to an absolute minimum (75p for UK p\&p no matter how many books you buy). We are pleased to be able to respond; with the aid of Michael Babani (M.D.) we are now able to meet all your requirements for their books. If it's Babani and in print we can supply it. Babani presently list over 180 different technical titles those not described in detail on the previous Direct Book Service pages or in next months issue are listed below:

e	Title	Price	C	Tite	Price	Code	Titla	Pri
208	Practical Stereo \& Quadrophony Handbook	80.76	BP137	BASIC \& FORTRAN in Parallea	c1.95	P2	BBC BASIC86	
214	Audio Enthusiast's Handbook	¢0.85	BP138	BASIC \& FORTH in Parallel	¢1.95		Compatibles - Book 2: Graphics and Disk Files	¢3.95
219	Solid State Novelty Projects	c0. 85	BP143	An Introduction to Programming the Atari		BP245	Digital Audlo Projects	£2.95
225	A Practical Introduction to Digital ICs	£2.50		600/800XL	c1.95	BP246	Musical Applications of the Atari ST's	¢5.95
BP 28	Resistor Selection Handbook	c0.60	BP144	Further Practical Electronics Calculations		BP247	Mare Advanced MIDI Projects	¢2.95
BP37	50 Projects using Relays. SCRs and TRIACs	¢2.95		8_{1} Formulae	0.0.P.	BP249	More Advanced Test Equipmem Construction	¢3.50
BP39	50 (FET) Field Effect Transistor Project\%	£2.95	BP145	25 Simple Tropical and MW Band Aerials	c1. 75	BP250	Programming in FORTRAN 77	¢4.95
BP49	IC 555 Projects	¢2.95	BP148	Computer Terminology Explained	c1.95	BP251	Computer Hobbvists Handbook	¢6.95
BP45	Projects in Opto-Electronics	¢1.95	BP149	A Concise Introduction to the Language		BP2588	Learning to Programin C	E4.95
BP48	Electronic Projects for Beginnars	¢1.95		of BBC BASIC	$¢ 1.95$	BP259	A Concise Introduction to UNIX	¢2.95
BP49	Popular Electronic Projects	¢2.50	BP153	An Imeroduction to Programming the		BP260	A Concise Introduction to $\mathrm{OS} / 2$	¢2.95
BP56	Electronic Security Devices	¢2.50		Amstrad CPC 464 \& 664	¢2.50	BP261	A Concise Introduction to Lotus 1-2-3	
BP58	50 Circuits Using 7400 Series IC's	ع2.50	BP154	An introduction to MSX BASIC	c2.50		(Revised Edition)	¢3.95
BP62	The Simple Electronic Circuits \& Components (Elements of Electronics - Book 1)	¢3,50	BP156 BP157	An Introduction to OL Machine Code How to Write $\mathbf{Z X}$ Spectrum \& $\mathbf{S p e c t r u m}$	E2.50	BP262	A Concise Introduction to Wordperfect (Revised Edition)	£3.95
BP63	Alternating Current Theory \{Elements of Electronics - Book 2)	¢3.50	BP158	Games Programs An Introduction to Programming the	c2.50	$\begin{aligned} & \text { BP } 263 \\ & \text { BP264 } \end{aligned}$	A Concise Introduction to dBASE A Concise Advanced User's Guide to	£3.95
BP64	Semiconductor Technology (Elements of Electronlcs. Book 3)		BP169	Commodore 168 . Plus 4 How to Write Amstrad CPC464 Games	¢2.50	BP269	MS-DOS An Introduction to Desktop Publishing	$\begin{aligned} & \mathrm{E} .95 \\ & \mathrm{E} 5.95 \end{aligned}$
BP68	Choosing and Using Your Hi-Fi	¢1. 65		Programs	c2.50	BP270	A Concise Introduction to Symphony	E3.95
BP69	Electronic Games	£1.76	BP161	Into the QL Archive	c2.50	BP272	Interfacing PC's \& Compatibies	£3.95
BP74	Electronic Music Projects	c2.50	BP162	Counting on QL Abacus	¢2.50	BP273	Practical Electronic Sensors	c4.95
BP76	Power Supply Projects	¢2.50	BP171	Easy Add-on Projects for Amstrad CPC 464,		BP274	A Concise Introduction to Super Cal6	£3.95
BP78	Practical Computer Experiments	c1.75		664, 6128 and MSX Computers	c2.95	BP276	Short Wave Superhet Recelver Constructio	¢2.95
BP84	Digital IC Projects	E1.95	BP174	More Advanced Electronic Music Projects	C2.95	BP277	High Power Audio Amplifier Construction	¢3.95
BP86	An Introduction to BASIC Programming		BP175	How to Write Word Game Programs for		BP279	A Concise Introduction to Excel	¢3.95
	Techniques	¢1.95		the Amstrad CPC 464, 664 and 6128	¢2.95	BP280	Getting the Most From Your PC's Mard Disk	¢3.95
BP90	Audio Projects	¢2.50	BP182	MIDI Projects	¢2.96	BP283	A Concise Introduction to Smart Ware ll	¢4.95
BP94	Electronic Projec ts for Cars and Boats	ع1,95	BP183	An introduction to CPM	c2.95	BP284	Programming in QuickBASIC	¢4.95
BP95	Model Railway Projects	¢2.95	BP187	A Practical Reference Guide to Word		BP286	A Reference Guide to Basic Electronics Terms	¢5.95
BP97	IC Projects for Beginners	¢1.95		Processing on the Amstrad PCW8256 and		BP288	A Concise introduction to Windows 3.0	c3.95
BP99	Mini-matrix Board Projects	¢2.50		PCW8512	C5.95	BP291	A Concise introduction to Ventura	¢3.95
BP106	Modern Op-amp Projects	¢1.95	BP189	Using Your Amstrad CPC Disc Drives	¢2.95	BP292	Public Adress Louds peaker Systems	¢3.95
BP109	The Art of Programming the 1 K 2X81	£1.95	BP190	More Advanced Electronic Security Projects	C2.95	BP293	An introduction to Radio Wave Propagation	¢3.95
BP114	The Art of Programming the $16 \mathrm{~K} 2 \times 81$	C2.50	BP191	Simple Application of the Amstrad CPCs for		BP294	A Concise Introduction to Microsoft Works	¢4.95
BP120	Audio Amplifier Fault-finding Chart	C0.95		Writers	$¢ 2.95$	BP298	A Concise Introduction to the Mac System a	
BP122	Audio Amplifier Construction	¢. 295	8P192	More Advanced Power Supply Projects	c2.95		Finder	¢3.95
BP125	25 Simple Amateur Band Aerials	£1.95	BP193	LOGO for Beginners	¢2.95	BP299	Practical Electronic Filters	¢4.95
BP126	BASIC \& PASCAL in Parallel	E1.50	BP196	BASIC \& LOGO in Parallel	c2.95	BP302	A Concise Users Guide to Lotus 1-2-3	
BP128	20 Programs for the ZX Spectrum \& 16K 2×81	$E 1.95$	BP197	An introduction to the Amstrad PC:	c5.95		Aelease 3.1	E3.95
BP129	An Introduction to Programming the ORIC-1	c1.95	BP198	An Introduction to Antenna Theory	c2.95	BP303	Understanding PC Soltware	c4.95
BP132	25 Simple SW Broadcast Band Aerials	¢1.95	BP199	An Introduction to BASIC-2 on the Amstrad PC'	¢5.95	BP307	A Concise Introduction to QuarkXPress	¢4.96
BP133	An Introduction to Programming the		BP230	A Concise Introduction to GEM	¢2.95	BP312	An introduction to Microwaves	¢3.95
	Dragon 32	¢1.95	BP243	BBC BASIC86 on the Amstred PC's and IBM		BP313	A Concise Introduction to Sage	¢3.96
8P136	25 Simple Indoor and Window Aerials	¢1.76		Compatibles - Book 1: Language	c3.96	BP314	A Concise Introduction to Quattro Pro	¢4.95

SEE PREVIOUS PAGE FOR FULL ORDERING DETAILS

PCB SERVICE

Printed circuit boards for certain constructional projects are available from the PCB Service, see list. These are fabricated in glass fibre, and are fully drilled and roller tinned. All prices include VAT and postage and packing. Add $£ 1$ per board for airmail outside of Europe. Remittances should be sent to The PCB Service, Evaryday Electronics, 6 Church Street, Wimborne. Dorset BH21 1JH. Cheques should be crossed and made payable to Everyday Electronics (Payment in \mathbf{f} sterling only).
NOTE: While 95\% of our boards are now held in stock and are dispatched within seven days of receipt of order, please allow a maximum of 28 days for delivery overseas readers allow extra if ordered by surface mail. Please check price in the latest issue.
Boards can only be supplied on a payment with order basis.
We do have older boards in stock - please enquire.

PROJECT TITLE	Order Code	Cost
Spectrum EPROM Programmer JUN'89	628	$£ 7.87$
Bat Detector	647	£4.95
Power Supplies - Fixed Voltage SEP'89	654	£4.08
Variable Voltage	655	¢4.48
Music on Hold OCT'89	646	£3.85
Power Supplies - 25 V 700 mA	656	£4.35
30 V 1 A	657	£4.55
EE Seismograph - Control	658	£4.08
Detector	659	£4.22
Lego/Logo \& Spectrum	660	£6.49
Wash Pro NOV 89	643	£3.83
Biofeedback Monitor - Front End	661	£4.52
Processor	662	£4.56
Logo/Lego \& Spectrum Interface	664	£5.60
EEG Electrode Impedance Meter DEC 89	665	£3.98
Biofeedback Signal Generator JAN'90	666	£4.08
Quick Cap Tester FEB 90	68	£3.92
Weather Stn: Anemom. - Freq./Volt Board	670	£3.94
Optional Display	669	$£ 3.73$
Wind Direction	673/674	£4.22
System Power Supply	675	£3.59
Prophet In-Car loniser	676	£3.18
Weather Stn: Display Driver MAR'90	672 \& 678	£4.22
Display and Sensor	671	£4.47
Fermostat Mk2	677	£4.28
Superhet Broadcast Receiver/Tuner/Amp	679/680	£4.22
Stereo Noise Generator APR 90	681	£4.24
Digital Experimenter's Unit - Pulse Generator	682	£4.46
Power Supply	683	£3.66
Enlarger Timer	684	£4.28
Weather Stn: Rainfall/Sunlight Display	685	£4.27
Rainfall Sen and Sunlight Sen	686/687	£4.16
Amstrad Speech Synthesiser MAY'90	689	£4.68
80 Metre Direct Conversion Radio JUN'90	691	£4.95
Mains Appliance Remote Control Infra-Red Transmitter	692/693	£4.75
Mains Appliance Remote Control JUL'90		
Encoder Board A	694	£6.61
Encoder Board B	695	£4.78
The Tester	696	£4.15
Mains Appliance Remote Control AUG'90		
Mains ON/OFF Decoder (5 or more 697's ordered rogether $£ 3.25$ each)	697	£4.55
Stmple Metronome	698	£3.94
Hand Tally: Main Bd and Display Bd SEP'90	699, 700	f10.96
Alarm Bell Time-Out	701	¢4.10
Mains Appliance Remote Control		
Temperature Controller (p.c.b. onty)	702	¢5.20
Ghost Waker OCT'90	703	$¢ 4.32$
Frequency Meter	704	¢5.25
Freq. Meter/Tachometer NOV'90	705	¢3.98
EE Musketeer (TV/Video/Audio)	706	$£ 5.78$
Colour Changing Christmas Lights DEC'90	707	£4.39
Microcontroller Light Sequencer	708/709	£10.96
Versatile Bench Power Supply Unit	710	£4.24
Teach-In '91, Part 1 -L200 Module	711	¢3.93
Dual Output Module	712	£4.13
LM723 Module	713	¢4.21
Spatial Power Display JAN'91	714	E5.33
Amstrad PCW Sound Generator	715	$£ 5.03$
Teach-In '91, Part 2 -G.P. Transistor Amp	717	¢3.77
Dual Op.Amp Module	718	£3.83
Intercom (Teach-In'91 Project 2) JAN'91	719	£4.41
Analogic Test Probe	720	£3.24
MARC Phone-In FEB 91	721	E6.87
Teach-In '91 Part 3- TBA820M Amplifier	723	£4.05
High Quality Power Amp	724	£4.93
Bench Amplifier (Teach-In '91 Project 3)	725	£4.45

\begin{tabular}{|c|c|c|}
\hline PROJECT TITLE \& Order Code \& Cost

\hline Gingernut 80m Receiver \quad FEB 91
R.F. section (726), Voltage Regulator (727)
Audio Amplifier (728) \& 726/7/8
all 3 together \& $$
\begin{array}{r}
£ 3.06 \\
\text { per board } \\
£ 8.16
\end{array}
$$

\hline Pocket Tone Dialler MAR'91 \& 729 \& £4.36

\hline Battery To Mains Inverter \& 730 \& ¢4.97

\hline Simple Basic Alarm \& 731 \& £4.50

\hline Car Code Lock (pair) \& 732a/b \& £4.69

\hline Teach-In '91 Part 4 - Sinusoidal Oscillator \& 733 \& £4.39

\hline 8038 Oscillator \& 734 \& £4.15

\hline Waveform Generator (Teach-In '91 Project 4) \& 735 \& £4.72

\hline Humidity Tester APR`91 \& 716 \& $¢ 4.97$

\hline Model Train Controller (double-sided) \& 736 \& $£ 9.75$

\hline Electronic Die (Teach-In '91 Project 5) \& 737 \& ¢4.93

\hline Teach-In '91 Part 5-Digital Counter Module \& 738 \& £4.35

\hline Modular Disco Lighting System MAY'91 Switched Power Output Module \& 739 \& £5.91

\hline Digital LCD Thermostat-Control Board $f 5$ for pair \& 740 \& f4.05

\hline -Power/Relay Board 5 /or pair \& 741 \& £3.76

\hline Pulse Generator (Teach-In 91 Project 6) \& 742 \& $£ 4.97$

\hline Teach-In'91 Part 6- Timer Module \& 743 \& £4.62

\hline | Digilogue Car Tachometer | JUN 91 |
| :--- | :--- | \& 744 \& £5.63

\hline Modular Disco Lights - Simple Chaser \& 745 \& $£ 5.00$

\hline Sweeper Module \& 746 \& £5.17

\hline Automatic Light Control - PSU Board \& 747 \& £4.88

\hline Logic Board \& 748 \& $£ 5.17$

\hline Radio Receiver (Teach-In '91 Project 7) \& 749 \& £4.57

\hline Teach-In '91 Part 7 - R.F. Amplifier Module \& 750 \& £4.23

\hline Modular Disco Lights - Masterlink JULY'91 \& 752 \& £6.36

\hline Ultrasonic Proximity Meter Display Unit (753) \& Sensor Unit (754) \& 753/754 \& $£ 7.06$

\hline Disco Lights (Teach-In '91 Project 8) \& \&

\hline PSU and Pre-amplifier \& 755 \& ¢4.54

\hline Low. Mid, High Filter/Triac (set of 3 boards) \& 756 \& f11.00

\hline Teach-In '91 Part 8-Solid State Switch Module \& 757 \& £4.24

\hline Mod. Disco Lights - Pattern Gen AUG'91 \& 760 \& £6.79

\hline Teach-In '91 Part 8-Light Sensitive Switch \& 761 \& £4.74

\hline Opto-Link (Teach-In '91 Project 9) - Transmitter \& 762 \& £4.85

\hline Receiver \& 763 \& ¢4.88

\hline Portable PEsT Scarer \& 764 \& £3.77

\hline Capacitance Meter SEP 91 \& 751 \& โ5.17

\hline Modular Disco Lights - Dimmer Interface \& 765 \& £8.17

\hline Mod. Disco Lights ${ }^{\text {M }}$ OCT'91 \& \&

\hline VU Sound Module (Double-sided) \& 767 \& £8.68

\hline UV Exposure Unit \& 768 \& $£ 4.63$

\hline PC-Scope Interface - Main Board \& 769 \& £6.95

\hline Expansion Plug (Double-sided) \& 770 \& £5.96

\hline Mod. Disco Lights NOV'91 \& \&

\hline Superchaser (Double-sided) \& 771 \& £6.91

\hline Supersweep (Double-sided) \& 772 \& £8. 26

\hline Bicycle Alarm \& 773 \& $£ 5.01$

\hline Darts Scorer \& 774 \& £7.90

\hline Knockerbox DEC'91 \& 775 \& E5.35

\hline Signal Generator - Main Board \& 776 \& £7.46

\hline PSU \& 777 \& ¢4.73

\hline Mind Machine - Main Board \& 778 \& £7.00

\hline Auto Nightlight \& 779 \& £5.03

\hline Mind Machine - Programmer Board JAN 92 \& 780 \& £7.39

\hline Transistor Checker \& 781 \& £4.63

\hline Stepping Motor Driver/Interface \& 782 \& £10.39

\hline Micro-Sense Alarm \& 783 \& £5.42

\hline Telesound FEB'92 \& EE784 \& £4.66

\hline Programmable Timer \& EE785 \& £4.63

\hline Auto Garage Light MAR'92 \& 786 \& ¢6.10

\hline Versatile BBC Computer Interface \& 787 \& ¢11.59

\hline Economy Seven Timer \& 788 \& £5.20

\hline Sonic Continuity Tester APR'92 \& 789 \& £4.79

\hline Telephone Ringer \& 790 \& £5.46

\hline
\end{tabular}

\&1 BARGAIN PACKS

In fact, cheaper than $£ 1$ because If you buy 10 you can choose one other and recelve it free.

5-13A SPURS provide a fused outlet to a ring main where devices such as a clock must not be sw AIN FLEX SWITCHES with neon on/olf lights, saves leaving things switched on. Order re
2-6V 1A MAINS tranaformers uprlght mounting with fixing
clamps. Order ref. 9 .
$1-8 \% / 2$ " SPEAKER CABINET ideal for extensions, takes our
$6 \% / 2$ speaker. Order ret. 11 ,
12-30 WATT REED SwITCHES, it's surprising what you can
make with these - burglar atarms, secret swliches, relay, etc make with the

225
22.
2-NICAD CONSTANT CURRENT CHARGERS adapt to charge almost any nicad battery. Order ret, 30 .
2-HUMIDITY SWITCHES, as the air becomes damper the mem
32.

5-13A ROCKER SWITCH three lags so on/off, or change over with centre off. Order ref. 42.
1-24HR TIME SWITCH, ex-Electricity Board, automatically adjust for lengthening and shortening day. Original cost $£ 40$ 1-MINI UNISELECTOR, one use is for an electric ligsaw puzzle, we give circuit diagram for this. One p
moves switch through one poie. Order ref. 56 .
2.FLAT SOLENOIOS - you could make your muti-lester read
AC amps with this. Order ref. 79 .

1-SUCK OR BLOW OPERATED PRESSURE SWITCH, or it can be operated by any low pressure variation such as water leve In water tanks. Order rel. 67.
1-MAINS OPERATED MOTORS with gearbox. Final speed 16 pm, 2 watt rated. Order ret. 91.
1.8 V 750 mA POWER SUPPLY, nicely cased with mains input and 6 V output leads. Order ref. 103A.
2-STRIPPER BOARDS, each contalns a 400 V 2 A bridge rectifier and 14 other diodes and rectifiers as well as dozens condensers, etc. Order ref. 120.

10 m
122.
12-VEAY FINE DAILLS for pCb boards etc. Normal cost about 12-VERY FINE OAILES for
2-PLASTIC BOXES approx 3in cube with square hole through
5-MOTORS FOR MOOEL AEROPLANES, spin to start so needs
no switch. Order rel. 134.
6. MICROPHONE INSERTS - magnetic 400 ohm also act as speakers. Order ref. 13
4-REED RELAY KITS, you get 16 reed swithes and 4 coll sets
with notes on making c/o relays and other gadgets. Order ref. with no
148.
6-SAFETY COVER for 13A sockets - prevent those Inquisitive
little fingers from getting nasty shocks. Order ret. 149
6-Neon indicators in panel mounting holders with lens. Order ref. 180.
1-IN FLEX SIMMERSTAT - keeps your soldering iron elc.
aiways at the ready. Order ref. 196 .
1-MAINS SOLENOID, very powertul as $1 /$ " " pull or could push it $^{\text {in }}$
modiled. Order rel
10-KE YBOARD SWITCHES -made for computers but have 1-ELECTRIC CLOCK, mains operated, put this in a box and you need never be late. Order ret 211

4-12V ALARMS, makes a nolse about as loud as a car horn. All 2-6" $\times 4$ " SPEAKERS, 4 ohm made for Radiomobile so very good quality. Order ref. 242
 1-PANOSTAT, controls output of boiling ring from simmer up to 50-LEADS with push-on $1 / 4$ tag
connections te. Order ref. 259 .
2-OBLONG PUSH SWITCHES for bell or chimes, these can switch mains up to 5 amps so could be foot switch if fitted into switch mains up to 5 am
pattress. Order ret. 263.
1-MINI 1 WATT AMP for record player attached to unit that will also change speed of record player motor. Order rel. 268. 3-MILD STEEL BOXES approx $3^{\prime \prime} \times 3^{\prime \prime} \times 1^{\prime \prime}$ deep-standaro 50-MIXED SILICON DIODES, Order ret. 293. 1-6 DIGIT MAINS OPERATED COUNTER, standard size but counts in even numbers. Order ref. 28.
1-IN.FLIGHT STEREO UNIT. Has 2 most useful mini moving coil speakers. Ex BOAC. Order rel. 29.
2-8V OPERATEO REED RELAYs, one normally on, other normally closed. Order rel. 48.
2-PLUG IN RELAYS with 3 changeover contacts. Coll operated by 12 V DC or 24 V AC. Order ref. 50 .
1-CABINET LOCK with 2 keys. Order ret. 55
-DOLLS HOUSE SWITCHES or use them for any other low voltage application. Order ret. 57.
1-MAGNETIC BRAKE for stopping a motor or rotating tool. Order ret. 66
1-TIMER REMINOER. Set it for anything up to 60 minutes. (T)

1-SHADED POLE MAINS MOTOR. ${ }^{\text {s." }}$ stack so quite powertul. Order rel. 85.
2.5" ALUMINIUM FAN BLGOES, Could be fithed to the above

BARGAINS GALORE-

ARE YOU INSTALLING GARDEN LIGHTING? We nave 2.5 mm , heavily insulated twin flexible cable which, although officially
rated at 30 A . will carry up to 50 A In short lengths, with very IIttle
voltage drop. Insulation ample for malns voltage. \&2 for 10 m . Order Ret 2P168.
FOR EVEN HEAVIER CURRENTS. A 200 A cable (size 25 mm) For short rums this can be loaded up to 600 A with very liftle voltage drop. This is single cable with PVC insulation, price $£ 5$.
order Ref 5P1798. order Ref 5P1798
MAINS RELAY, 4-pole changeover, gold plated, 8A contacts.
Pilce $£ 2$ Of Of Rer Ref 2 P144. Price 2 . OIU,
WHITE CEILING SWITCH. Crabtree, 5A 2-way surtace mounting,
complete with cord and tassel. £1. Order Rei 528 . CO ECTRICA1 COROCRAMMER L OM
ELaying and kettle boiling as you wake, or switch on have radio ward oft intruders, or have a warm house to come home to ward out ieaving ine heating on all day. Will nandle up to 25 A as well as being a clock. Beautiful unlt, only $£ 2.50$. Order Ref 2P5/1 TELEPHONE BELLS. These will work off the standard mains. through a transformer, reduced to 50 V .2 for $£ 1$. Order Ref 600 SUPER STAIPPER. Cassette drive Unit. mounted on a metat chassis. Main items are: a high efficiency, battery-operated
motor, $1 / 2 \mathrm{~V}$ to 9 V , easy to reverse; a solenoid, 9 V operated cassette record head and erase head; heavy brass fly wheel to give additional speed control; a magnetic sensor wheel which. working with the semiconductor, would operate a tape counter. All this for $£ 1$. Order Ref 803 B .
POWER CONTROL UNIT. Mounted on a heavy gauge metal panel are two 10A trlp switehes, a pilot light to indicate mams on, a contactor with two sets of contacts for heavy duty unit was part of a 230 V computer power supply system uni was parr of a 230 l computer power supply system but all Yours for K 5 . Order Ref SP180B.
AUOAX I INCH PM SPEAKER. 5 watt loading 15 ohm coll, so four in parallel would be suitable for a 20 watt column. Only f each. Order Rer 504
MAKING AN EXTRA LARGE SIZE COMPASS OR FULL CIRCLE prothactor? this semi-opaque, green disc is about the size of an average dinner plate (actually yin. is Calibe thick ($3 / 8 \mathrm{sin}$.) so
$0-360$, with centre clearly marked, this is quite could form the basis of a heavy duty instrument or sundial. £ Order Ret 790 B
LTTHIUM BATTERIES 3.5 V penlight size, 2 mounted on p.c. b . with diodes, other bits. Lithium batteries as you may know are virtually everlasting (until they are put in circult of course) so
they are ideal for alarms and similar devices that do not draw current but do rely on it always being available. 4 panels that is 8 batteries altogether $£ 2$, Order ref. 2P258B.
POWER SUPPLY WITH EXTRAS output 12 V 1 A , mains input is fused and filtered and 12 V oulput is voltage regulated, very well made on p.c.b., and also mounted on the board but easily rempensive equipment but never installed, price £3, Order ref. 3P80B.
12 VOLT 1.9 AMP-HOUR rechargeable batmery by Jap YUASHA brand new, charged ready for use $£ 6.50$ each. Solar charger to house this and keep it ready $£ 29.50$.
100 WATT MAINS TRANSFORMERS all normal primarles: $20-0-20 \mathrm{~V} 21 / 5 \mathrm{~A}, 30 \mathrm{~V} 31 \mathrm{KA}, 40 \mathrm{~V} 21 / 1 \mathrm{~A}$ and 50 V 2 A secondaries all upright mounting, all $£ 4$ each, good quantities in stock. PHILIPS 9 " HIGH RESOLUTION MONITOR black and white
metal frame for easy mounting, brand new still in makers packing, otlered at less than price of tube alone, only $£ 15$ plus $£ 5$ delivery-good discount for quantities.
16 CHARACTER 2 LINE OISPLAY screen size $85 \mathrm{~mm} \times 36 \mathrm{~mm}$, Alpha-numeric LCD dot matrix modute with Integral microprocessor made by Epson their ref 16027AR brand $£ 8$ each, 10 for $£ 70.100$ for $£ 500$
INSULATION TESTER WITH MULTIMETER Internally generates megohms. The multimeter has four ranges. AC/DC Volts, ranges DC millamps, 3 ranges resistance and 5 amp range. These instruments are EX British Telecom, but in very good condition, tested and gntd. OK, probably cost at least $£ 50$ each. yours for BRUSHLESS D.C. 12 V FAN tiny, only 60 m
mover but causes no interterence $£ 8.00$.
2 2MW LaSER Helium Neon by PHILIPS, full spec, E30, power supply for this in kit form with case is $£ 15.00$, or in larger case to house tube as well $£ 17.00$. The larger unit, made up, tested and ready to use, complete with laser tube $£ 69$ plus $£ 5$ Insured delivery. MAINS 230 V FAN best make "PAPST"' $41 / 2$ " square, metal blades ${ }_{5} 8$.
SOLAR CHABGER holds 4 AA nicads and recharges these in 8 hrs, in very neat plastic case $£ 6$.
SOLAA CELLS with terminals for jolning in series for higher
volts or parallel for extra current: $100 \mathrm{~mA} £ 1,400 \mathrm{~mA} £ 2,700 \mathrm{~mA}$ volts or parallel
E2.75, $1 \mathrm{~A} £ 3.50$.
AR SPACED TAIMMER CAPS 2 -20pf ideal for precision tuning uhf clrcults 25 p each, 10 for $£ 2.100$ for $£ 15$.
1 KHz . TONE GENERATOR this is PP3 battery operated and has a 1 KHz output that can be continuous or interrupted at a rate variable by a panel mounted control. Consifucted on a pcb and tront panel size approx $105 \mathrm{~mm} \times 50 \mathrm{~mm}$ ex equipment but in as MINI MONO AMP on P
volume control and with size $4^{\prime \prime} \times 2^{\prime \prime}$ with front panel holding volume control and with spare hole for 3 witch or tone control. ohm using 9 V . Brand new and pertect only $£ 1$ each or 12 for $£ 10$. 5 RPM GOW MAINS DRIVEN MOTOR AND GEARBOX this has a 3° square mounting plate and is $4^{\prime \prime}$ deen It is a shaded pote motor.

POWER SUPPIY UNITS mains in, 1 c out regulated $£ 1,6 \mathrm{~V} 200 \mathrm{~mA}$ regulated $£ 1,6 \mathrm{~V} 700 \mathrm{~mA} £ 1,9 \mathrm{~V} 500 \mathrm{~mA} £ 2$.

AMSTRAD POWER UNTT 13.5 V at 1.9 A encased and with leads and output plug, normal mains input E5 each, 10 for §45.
AMSTAAD 3.5 FLOPPY DAIVE Reference FD9 brand new and perfect E35.
ATARIGAXE COMPUTER at 65 K this is quite powertul so sutabl for home or business, unused and in pertect order but less PSU:
only $£ 19.50$. Handbook $£ 5$ extra onl Cathode ray Tube philts
resolution but is also X -ray and $\mathrm{M} 24 / 306 \mathrm{~W}$, which is not only high resolution out is also X-ray and implosion protected, regular price unused.
BO WATT MAINS TRANSFORMERS two availabie in good quality. both with normal primaries and upright mounting, one is 20 V 4 A the other 40 V 2 A only $£ 3$ each or 10 for $£ 27$ carriage paid. PROUECT $80 x$ size approx 8 " $\times 4$ " $\times 41 / 4$ " metal, sprayed grey,
louvred ends for ventiation otherwise undrilled made for GPO so louvred elits on ventlation oherwise 10 .
12V SOLENOIO has gooo " $1 /$ " pull or coutd push if moditied, size
approx. $1 / 3$ " long py 1 " souare. $\{1$ each or 10 for $£ 9$.

WATER VALVE 230V operated with hose connections. ideal for auto
plant spray or would control air or gas into tanks etc. $£ 1$ each or 10 or $£ 9$
HANG UP PHONE won't clutter up your desk or workbench, current model, has pushbutton dialling, last number recall, internal alarm HIGH VOLTAGE CAPS If you use these ask for our $1-20 \mathrm{kV}$ Capacitor list, we have over $1 / 4$ million in stock and might seve you tot of money
ELECTRONIC BUMP \& GO SPACESHIP sound a nd impact controlled responds to claps and shouts and reverses or diverts hould it hit anything! Kit with really detailed instructions, will
nake ideal present for budding young electrician. Should be able assemble but you may have to help with the soldering ol the components on the PCB. Complete kit E8.95.
500 V BRIDGE MEGGER developed for G.P.O. lectinicians the Ohmeter 18 B is the modern equivalent of the bridge meggar. 9 V attery oper ated a incorporates a 500 V generation for insulation esting and a null balance bridge for very accurate resistance measur. Yours for a faction of original cosi $\mathrm{C} 45+\mathrm{C5}$ insured delivery

XPERIMENTING WITH VALVES don t spend a fortune on a main ranstormer we can supply one with standard mains input and ecs. of $250-0-250 \mathrm{~V}$ at 75 mA and 6.3 V at 3 A . price $£ 5$.
15 WATT 8 OHM a" SPEAKER \& 3"' TWEETER made for a discontinued high quality music centre, give rea! hi.fi. and for only 4 pair. into pretormed case, is triggered by movement disturbing eflected signal, intended for burglar alarm, car alarm, etc has many extras, time delay,
instrument yours for $£ 10$.
MOVEMENT ALARM goes off with slightest touch, ideal to protect car, cycle, doorway, window, stainway, elc. etc. Complete with TEREO HEAOPHONE extra lightweight with plug E2 each or 10 pairs for £18.
B.T. TELEPHONE LEAO 3 m long with a B.T. tlat plug ideal to make xtensi
$1,000$.
WATER PUMP very powerful and with twin outlets, mains operated.
STUD1O 100 by Amstrad, the ultimate disco controf panel, has to eparately controlied and metered channels, twin cassettes, e oular pire over $£ 400$ we have a fewstill in maker's packing. brand new and guaranteed. yours for $£ 99$.
ROTARY POSTHON CONTROLLER for aerials, ventilators,
dampers, or applications requiring 180 degrees clockwise and inti-clockwise movement. We have the Sauter MVE 4154 servo notor drive ref AR30W3S regular price over $£ 70$ brand new, $£ 15$ 2 vol
2 VOIT 8 AMP MAINS TRANSFORMER \&A. Waterproot metal box for same, 14.
IOTputs of 38 V ITHMODE POWER SUPPLY 230 V mains operated so you can have these at a fraction have a lot and need the space IOVA MAINS TAANSFORMERS all p.c.b. mounting, all ह1 each, 10 or $£ 9,100$ for $£ 75$, for output $12-0-12 \mathrm{~V}$ Order ret wal, 20-0-20V order rer WA3, $18-0-18 \mathrm{~V}$ not p.C.b. mounting but tuily shrouded
$0-1$ mA FULL VISION PANEL METER $22^{\prime \prime}$ " square, scaled $0-100$ but a-1 mA FUL VISION PANEL METER 2 na square, scaled $0-100$ bu
scale easily removed for re-writing $£ 1$ each, 10 for $£ 9,100$ for 75. order rel WA7.
U METER flluminate this from behind becomes on/off Indicator as well, $11 / 3$ " square 75 p each, 10 for $£ 6,100$ for $£ 50$.
EOGE-WISE PANEL METER ideal when short of panel space only $40 \times 14 \mathrm{~mm}$, also have built-in f.s.d., 500μ A i.s.d., scaled $0-5$ £1 each, 10 for $£ 9,100$ for $\varepsilon 75$
IBRATING REED FREQUENCY PANEL METER 4" square $5-65 \mathrm{~Hz}$, only $£ 9$ each.
OW PRICED FIELO TELEPHONES. Ex-GPO models, not quite hat the ringlng is done by means of a hand operated internal generator. This saves a lot of batteries. These 'phones have the ormal type of rotary dlal built in and can still be connected into normal B.T. system. Tested, guaranteed in good order, price

MAND GENERATORS as fitted in the above field telephones, this utput of approximately 50 V depending on how quickly you wind t. If you want a higher voltage then simply connect the output to transtormer. We have llt a 60 watt bulb quite successfully. The hand generator, complete with handle, £4. Order ret 4P51, ORY BATTERIES CAN BE RECHARGED but not with a normal d.c. charger, it must be a periocic current 18
supply the kit, with data. $£ 9$. Order ref $9 P 10$.

SUPER MULTh-METEA EX British Telecom, this is a 19 -ran SUPER M.p.v. top grade instrument, covers AC \& DC voltages. urrent and resistance, very good condition, fully working. complete with leads $£ 9.50$. leather carrying
(batteries not included but readily available).
batteries not included but readily available
SOLAR ENERGY EDUCATIONAL KIT. An ideal present for electrical circuits, how to Increase the voltage or current, how use solar power to work a radio, calculator, cassette player and o charge nicad batteries. The kit comprises 8 solar cells, one solar motor, fan blades to fit motor and metal frame to hold it to astruction manual makes this a lovely littie present. Price order ref 8 P 42 B .
WANT TO KNOW HOW FAST IT'S TURNING? Made by the amous Mulrhead Company, we have DC tachometer generators which have an output voltage depending upon ths speed. At 1000 rpm for insia Ex-equipment, price only 2 for $\mathrm{C1}$. Order ref 246.
SR RECORO PLAVERS. Although records are fast being collection of records that you wish to play from time to time and It would, therelore, be a good idea to buy a spare record player before they dis appear from the market. We have some that were riginally intended for quite expensive midi systems, have never been used, are
Prices include V.A.T. Send cheque/postal order or ring and
M\& 12 Boundary Road, Hove, Sussex BN3 4整M Telephone (0273) 430380 Fax (0273)410142 dent monthly hobby electronics magazine, our audited ABC sales figures prove it. EE has been the leading independent monthly magazine in this market for the last sixyears

If you want your advertisements to be seen by the largest readership at the most economical price our classified and semi-display pages offer the best value. The prepaid rate for semi-display space is $£ 8$ (+ VAT) per single column centimetre (minimum 2.5 cm). The prepaid rate for classified adverts is 30 p (+ VAT) per word (minimum 12 words)
All cheques, postal orders, etc., to be made payable to Everyday Electronics. VAT must be added. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Everyday Electronics, 6 Church Street, Wimborne, Dorset BH21 1JH. Tel: (0202) 881749.
For rates and information on display advertisements (1/4th page and larger spaces) please contact our Advertisement Manager, Peter Mew on 0255850596.

SERVICE MANUALS

Available for most equipment. TV, Video, Audio, Test, Amateur Radio, Military Surplus, Kitchen, etc. Any Video Recorder, Video Camera or Oscilloscope Manual $£ 15.00$ (subject to stock).
All other Manuals $£ 10.00$ (subject to stock).
State Make and Model required with order Over 100,000 manuals available for equipment from 1930's to the present. Circuit sections supplied on full size sheets up to A1 size ($33^{\prime \prime} \times 24^{\prime \prime}$) if applicable. Originals or photostats supplied as available. FREE Repair and Data Guide Catalogue with all orders or send SAE for your copy today
MAURITRON (EE)
8 Cherry Tree Road, Chinnor,
Oxfordshire OX9 4QY
Tel: (0844) 51694
Fax: (0844) 52554
N. R. BARDWELL LTD (EE) Slgnal diodes $1 \mathrm{~N} 4148 \ldots .$.
Rectifier Dlodes 1 N 400 ! Rectifier Dlodes 1N4001
Rectier Olodes 1 N 4003 Rectifier Diodes 1 N4007.
Rectifier Diodes 1 N5401. NE555 Timer i.c.s. C106D1 400 V 5 amp thyrisiors BC478 Transistors. MPSA92 Transiators... Asstd. high brighiness i.e.d....
 Minlature axial l.e.d.s super bright red. Ainiature red l.e.d.s 3 mm dia.
42" Com. anode seven segment displays 22 NF
33 NF 50 V radial film capacitors Assid. disc ceramic capacitors. $4 \mathrm{U7} 63 \mathrm{~V}$ Radial elactrolytics. 1oUF 16 V Radial electrolytics. 10UF 50 V Radial electrolytics.
22 UF 25 V Radial
2Utics 22UF 25 V Radial electrolytics
33 UF 16 V Radial electrolytics. 22 UF 50 V Radial electrolytics
47UF 50 V Radial electrolytics 47UF 50 V Radial electrolytics
100 UF 10 V Radial eletrolytics 220 UF 16 V Radial electrolytics. 470 UF 10 V Radial electrolytics.
1000 UF 10 V Radial electrolytics 1000UF 10 V Radial electrolytics.
Asstd. If transiormars.
Asstd. Coll formers.
Asstd. Coll formers.
Asstd. dil sockets up to 40 pin
Assorted sockevconns/edge-dil-sil-etc.
1Pn Glass reed s witches
Min SP/CO min. rotary switches
Min SP/CO slide swliches
Peltier effect heat pump.
0 watt Stereo amplifier,
0 mm Flashing l.e.d. red......................
Prices include VAT, postage $£ 1.00$. Stamp for Listis
288 Abbeydale Road, Sheffield S7 1FL
Phone (0742) 552886. Fax (0742) 500689

IT PAYS TO ADVERTISE WITH三M בRMDAM ELECTRONICS

Your advert will reach 40% more readers than with any other independent monthly hobby electronics magazine

NEW VHF MICROTRANSMITTER KIT
Tuneable $80-135 \mathrm{MHz}, 500$ metre range, sensitive electret microphone, high quality PCB. Assembled and ready to use $£ 9.95$ posi free. Access/Visa orders telephone 0214111821 Send 2x1st class stamps for Catalogue. Chequess/P.O.s payable to

QUANTEK ELECTRONICS LTD Kits Dept. (EE), 3 Houldey Road, West Heath, SHOP NOW OPEN - CALLERS WELCOME

Fuselodge Ltd. 261 Actom Lane Chiswick, London W45DD

Telephone/Fax 081-994

6275
We stock a large range of Electronic components, semiconductors, switches, resistors, capacitors, transformers, fans, cables, leads boxes, tools, etc. Power supplies, test equipment. Custom made S.M. power supplies.

Mall order \& Credit Cards accepted

Typefit

The Typesetting programme for all your Typesetting needs. If you need typesetting for your Adverts, Brochures, etc. Typefit can help you.
Please telephone
0202882299

BTEC ELECTRONICS TECHNICIAN FULL-TIME TRAINING
 THOSE ELIGIBLE CAN APPLY FOR E.T. GRANT SUPPORT AN EOUAL OPPORTUNITIES PROGRAMME O.N.C., O.N.D. and H.N.C. Next course commences Monday 27th April 1992
 FULL PROSPECTUS FROM
 LONDON ELECTRONICS COLLEGE (Dept EE) 20 PENYWERN ROAD EARLS COURT, LONDON SW5 9SU TEL: 071-3738721

THE BRITISH AMATEUR ELECTRONICS CLUB exists to help electronics enthusiasts by personal contact and through a quarterly Newsletter. For details, write to the Chairman

Mr H. F. Howard, 41 Thingwall Park

Fishponds, Bristol BS16 2AJ
Space donated by Everyday Electronics

Miscellaneous

KITS, PLANS, ETC for surveillance, protection (sonic, HV), "007" gear. Send 2×22 p stamps for list. ACE(EE), 53 Woodland Way, Burntwood, Stafs.
G.C.S.E. ELECTRONICS KITS at pocket money prices. S.A.E. for FREE catalogue. SIR-KIT ELECTRONICS, 70 Oxford Road, Clacton COI5 3TE.
PROTOTYPE PRINTED CIRCUIT BOARDS one offs and quantities, for details send s.a.e. o B.M.A. Circuits, 38 Poynings Drive, Sussex BN3 8GR, or phone Brighton 720203.
BUMPER COMPONENT PACKS only $£ 1.50$ inc p\&p. 16 Rollestons, Writtle, Essex (0860) 821440. Callers welcome by appointment.

EPROM programming, copying and updating from any device or software format. 10 day turn around. Call/Fax: FTL $0491681502 / 681944$.
TRANSMITTER CIRCUIT DIAGRAMS: FM. medium, shortwave, c.b. Full instructions. Minimum seventeen circuits. Cheques/PO's $£ 4.25$ to D. Davies, 33 Gwaelodygarth, Merthyr Tydfil CF478YU, UK
VERSATILE AMP KITS. Direct from the designer! Only $£ 29.99$ includes case, heatsink and all components. Other kits available. Cheques, PO's to 'Eesikitz' c/o 1 Market Lanes, Littlehampton, Sussex BN17 SBS.
ELECTRON UK, The Electronics Club for the enthusiast is now enrolling new members! News, views, competitions, projects and incredable special offers!! For more information send sae to Electron UK, 48 Lancing Park, Lancing, Sussex BNI5 8RF

Technical Information Services

76 CHURCH STREET, LARKHALI, LANARKSHITF, MLO IHE Tel. (0698) 884585 Mon-Frl $8.30 \mathrm{am}-5.00 \mathrm{pm}$
Tei. (0698) 883334 Outwith business hours FAX faclity svallable all day on both line
Write now with an $S A E$ for FREE QUote FREE VOUCHERS \& FREE CATALOGUE

Remember, nof only do we have EVERY service sheef ever produced. but wo also have
THE WORLDS LARGEST COLLECTION OF SERVICE MANUALS
a we are sole supplers of various fault-finding guides repair manuals a technical manuals

CTV, Video, CD, Nh.FI, Camconder, Sarellìes, Computers, Domistic Equif; ..etc DATA REFERENCE MANUAL *....essentiol tor the serlous olectrictan" FREE Updating and s 10% discount vouchor only E5.9 Incorporates Unique Model idenification and Chassts Daia

[^0]THE CR SUPPLY CO
127 Chesterfield Rd.. Sheffield S8 ORN
Tel: 0742557771 Return posting

MISCELLANEOUS ITEMS

Camera returns: 35 mm Auto
Flash/Wind-on, minor faultsf6.00 es or 2 for... .510 .00
Oictaphone cassette, mech/record erase
playback heads. 6 V solenoid, motor, hall
effect switch....
T.V./Printer stands

Bicc-Vero Easiwire
construction kit..
THOS K.......... C 4.95 ea
............4.95
Dor marix LCO 10x2lines
.f3.75 ea
Dot matrix LCD 16×1 lines
© 4.95^{*}
2 digit 16 segment VF display
with data..
C2.95 ea
4 digit intelligent dot matrix display. ${ }^{2.956 .00^{\circ}}$
17 segment V.F. display with driver board and data.
8 digit liquid crystal display.
4 digit LCD with 7211 driver chip.
Digital clock display
. $\mathbf{C 2} .99$ ea

11 key membrane keypad C1.75 ea*

Keyboard $392 \mathrm{~mm} \times 180 \mathrm{~mm} / 100$
keys on board + LCD
$74 \mathrm{HCO} 5 / 80 \mathrm{C} 49$ easily removable
19" 3 U sub rack enclosures.
12 V stepper motor, 48 steps per rev. 7.3° step angle.
Stepper motor board with 2 slotted opto +2 mercury tilt switches 1000 mixed $1 / 4$ watt 1% resistors.... 000 mixed 2 watt 1% resistorsES. 95 ea 250 electrolyic axial + radial caps
100 Mixed trimmer caps popular va 50 off MC 78M12CT Volt Regs...
20 off WO2M Volt Regs.
Cable box UHF modulator/video preamp/transformer/R's + C's/leads 1000 off mixed Multilayer
Ceramic Caps
Solar cell modules 0.45 V 700 mA . B.B.C. Micro to disc drive lead Car 8 urglar alarm vibration auto entry/exit delay..
Single zone alarm panel auto entry/exit delay housed in domestic light socket.

P.S.U.'s,

TRANSFORMERS, COMPONENTS

 $4 \mathrm{~A}+12 \mathrm{~V} 2.5 \mathrm{~A}$ output with buill in fan. IEC inlet + on oft........ 9.
STC P.S.U. 240 V input 5 V 6 A output (converts to 12 V 3 A details available) 5.95 ea 240 V input 5 V 10 A output (converts to 12V $5 A$ no details)5.95 ea 240 V in 0.12 V 0.75 A out
 Transformer + PCB gives $2 \times 7.5 \mathrm{~V} 32 \mathrm{VA}$
with skt for 5 or 12 V regulator, will power floppy drive...........................€ 3.75 ea Ultrasonic transducers (transmit ${ }^{+}$. receive) $\mathbf{£ 1 . 5 0}$ pair
3 to 16 V Piezoelectric sounders 3 to 16 V Piezoelectric sounders..........50p. 9VDC electromechanical sounder 2A 250 V keyswith 3 position 2 A 250 V keyswitch 3 position key DIL switches PCB MT $3 / 4 / 6$ way. 5 V SPCO SIL reed relay. 5V 2PCO DIL miniature relay 12 V 2 PCO or 4 PCO continental relay. 12 V 10 A PCB MT (to make contact) 3 to 12 V electro magnetic acoustic transducer with data...................
$2.4576 / 8.8329 / 21.10 \mathrm{MHz}$ crystals $2.4576 / 8.8329 / 21.10 \mathrm{MHz}$ crystals Bridges 25A 200 V .
316 Mixed components pack. 50 Mixed terminal blocks 250 off $16 / 22 / 24 / 40$ way IC Skts. 100 off Phono plugs
(red/black/grey)...
QUANTITY DISCOUNTS AVAILABLE
PLEASERING

ALL PAICES INCLUDE V.A.T. PLEASE ADD E2.00 D\&D EXCEPT ITEMS MARKED* WHICH ARE SOF. SAE FOR BULK BUYING LIST PAYMENT WITH ORDER TO: Dept EE, COMPELEC, 14 Constable Road St. Ives, Huntingdon, Cambs PE17 GEQ

* New MOSFET Amplifiers
improved range of SMOS modules $30 \mathrm{~W}, 30+30 \mathrm{~W}, 60 \mathrm{~W}, 120 \mathrm{~W}$
$\star 20$ watt Class A Amplifier * Low profile PCB Transformers
a range of encapsulated transformers $4 \mathrm{VA}, 6 \mathrm{VA}, 10 \mathrm{VA}, 18 \mathrm{VA}, 24 \mathrm{VA}, 30 \mathrm{VA}$
Write or phone for data and prices... which include details of standard range of toroidal transformers and audio modules.

No price increase for 1992

Jaytee Electronic Services

143 Reculver Road, Beltinge, Herne Bay, Kent CT6 6PL Telephone: (0227) 375254. Fax: (0227) 365104

MAKE YOUR INTERESTS PAY!
Over the past 100 years more than 10 mililon students throughout the world have found It worth their while! An ics home-study course can help you get a better job, make more money and have more fun out of ilfel ics has over 100 years experience In nome-study courses and is the largest correspondence school in the worid. You learn at your own pace, when and where vou want under the guldance of expert 'personal' tutors. Find out how we can help You. Post or phone today for FREE INFORMATION on the course of your cholce. Tlek one box onlym

Millions of quality components at lowest ever prices!

Plus Tools, Watches, Fancy Goods, Toys. Mail order UK only. All inclusive prices NO post, or VAT etc to add on. Send 34 p stamped self addressed label or envelope for catalogue/clearance list.
At least 2,100 offers to amaze you.

Brian J Reed

6 Queensmead Avenue, East Ewell Epsom, Surrey KT17 3EQ Tel: 081-393 9055

The UK Distributor for Standard Toroidal Transformers
 * 106 types available from stock
 * Sizes from 15VA to 625VA

Write or phone for free Data Pack

Jaytee Electronic Services

143 Reculver Road, Beltinge, Herne Bay, Kent CT6 6PL Telephone: (0227) 375254

ADVERTISERS INDEX

ANTEX (ELECTRONICS) 209 MARCOTRADING.
N. R. BARDWELL 254

BK ELECTRONICS Cover (iii)
BRIAN J. REED. (iii)
.256

BULL ELECTRICAL Cover (ii)
CAMBPIDGE COMP SCIENCE 236 CIRKIT DISTRIBUTION 236

COMPELEC BUTION CRICKLEWOOD ELECTRONICS .255 CR SUPPLY COMPANY ELECTRONIZE DESIGN ESR ELECTRONIC COMP. ELECTROVALUE.
HART ELECTRONIC KITS HESING TECHNOLOGY. HIGH-Q-ELECTRONICS HOBBYKIT.
ICS...
JAYTEE ELECTRONIC SERV $255 / 256$
JPG ELECTRONICS.

M\&B ELECT. SUPPLIES MAGENTA EL ECTRONICS MAPLIN ELECTRONICS............Cover (iv) MARAPET.... MAURITRON TECH SERV'S $\quad 254$ NATIONAL COLLEGE OF TECHNOLOGY 256 NORTECH ELECTRONIC....................... 194 NORTHERN MARKETING CONCEPTS... NUMBER ONE SYSTEMS.. OMNI ELECTRONICS.... PICO TECHNOLOGY. SERVICE TRADING CO. SHERWOOD ELECTRONICS. STEWART OF READING..... SUMA DESIGNS. 255 TK ELECTRONICS

SHERWOOD ELECTRONICS

9 Lower Birchwood, Somercotes, Derbyshire DE55 4NG $\$ 1$ Special Packs - Now even better value. Select 1 pack FREE for every 10 purchas ed

$5 \times 5 \mathrm{~mm}$ Red Leds
$15 \times 5 \mathrm{~mm}$ Green Leds
$12 \times 5 \mathrm{~mm}$ Yellow Leds $15 \times 3 \mathrm{~mm}$ Red Leds $100 \times 1 \mathrm{~N} 4148$ diodes $30 \times 1 \mathrm{~N} 4001$ diodes 30×1 N 4002 diodes $20 \times \mathrm{BC} 182$ transistors $20 \times 8 C 183$ transistors 20×8 BC54 \(\begin{gathered}transistors
20\end{gathered}\) $6 \times \mathrm{Cmos} 4001$ 5×555 timers 5×74100-amps $6 \times$ Cmos 4011 $4 \times$ Cmos 4013 $5 \times$ Cmos 4013 $5 \times$ Cmos 4081 $25 \times 10 \mathrm{ut} / 25 \mathrm{~V}$ radial caps. All new and full spec. components 1992 Catalogue now avallable $\& 1$ Contains vouchers redeemable against orders Cheques or P.O. to

SHERWOOD ELECTRONICS

DISTANCE LEARNING COURSES

The National College of Technology offer a range of packaged learning short courses for study at home or in an industrial training environment which carry national BTEC awards. Study can commence at any time and at any level enabling you to create a study routine to fit around existing commitments. Courses on offer include:

> Analogue Electronics
> Digital Electronics
> Fibre/Optoelectronics Programmable Logic Controllers

Tutor support and BTEC certification are available as options with no travelling or college attendance required. These very popular courses which are ideal for vocational training contain workbooks, audio cassette lecturettes, PCB's, instruments, tools, components and leads as necessary to support the theoretical and practical training. Whether you are a newcomer to electronics or have some experience and simply need an update or certification, there is probably a distance learning course ready for you. Write or telephone for details to:

National College of Technology
NCT Ltd., PO Box 11
Wendover, Bucks
Tel: (0296) 624270

OMP MOS-FET POWER AMPLIFIERMODULES SUPPLIED READY BUILT ANO TESTED.

THOUSANDS OF MODULES PURCHASED BY PROFESSIONAL USERS

OMP/MF 100 Mos-Fet Output power 110 watts R.M.S. into 4 ohms, irequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rate $45 \mathrm{~V} / \mathrm{uS}$, T.H.D. typical 0.002%, Input Sensitivity 500 mV , S.N.R. 110 dB . Size $300 \times 123 \times 60 \mathrm{~mm}$.
PRICE $\mathbf{C 4 0 . 8 5}+\mathbf{8 3 . 5 0}$ P\&
OMP/MF 200 Mos-Fet Output power 200 watts R.M.S. into 4 ohms, frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB . Damping Factor >300, Slew Rate $50 \mathrm{~V} / \mathrm{US}$, T.H.D. typical 0.001%, Input Sensitivity 500 mV , S.N.R. -110 dB . Size $300 \times 155 \times 100 \mathrm{~mm}$ PRICE E64.35 + £4.00 P\&P
OMP/MF 300 Mos-Fet Output power 300 watts R.M.S. into 4 ohms, trequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rate $60 \mathrm{~V} / \mathrm{uS}$, T.H.D. typical 0.001%, Input Sensitivity 500 mV , S.N.R. -110 dB . Size $330 \times 175 \times 100 \mathrm{~mm}$
PRICEEB1.75 + \&5.00 P\&P
OMP/MF 450 Mos-Fet Output power 450 watts R.M.S. into 4 ohms, trequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rate $75 \mathrm{~V} / \mathrm{LSS}$, T.H.D. typical 0.001%, Input Sensitivity 500 mV , S.N.R -110 dB, Fan Cooied, D.C. Loudspeaker Protection, Second Anti-Thump Delay. Size $385 \times 210 \times 105 \mathrm{~mm}$ PRICE $1132.85+\mathbf{C 5} .00$ P\&P note: mos-fet modules are available in two versions STANOARD. INPUT SENS SOOMV, BAND WIDTH 100KH2 775 mV , BAND WIDTH SOKHZ. ORDER STANDARD OR PRC.
 orque servo driven DC motor \star Transit screws \star $12^{\prime \prime}$ die cast platter $\#$ Neon strobe $\#$ Calibrated balance weight \star Removable head shell $\star \frac{1 / 2}{}$ cartridge lixings * Cue lever» 220/240V $50 / 60 \mathrm{~Hz}$ * $390 \times 305 \mathrm{~mm}$ * Supplied with mounting cut-oul template.

PRICE $\mathbf{5 1 . 3 0}+\mathbf{~ 8 3 . 7 0 ~ P \& P ~}$
PTIONALMAGNETIC CARTRIDGES STANTON AL500mkII GOLDRING G950 PRICEE16 95 + 50P P\&P PRICEE7.15 - 50 P P\&P

HEROO DISCO MIXER DJ6500

TEREO DISCO MIXER with 2×7 ban o A graphic equalisers with bar graph SUU meters. MANY OUTSTANDING EATURES:- including Echo with repeat \& eed control, DJ Mic with tone controt talk-over switch, 7 Channels with dividual faders plus cross fade, Cue
eadphone Monitor. Useful combination of eadphone Monitor. Useful combination of ics, 5 Line for $\mathbf{C D}$, Tape, Video etc.

Price $£ 134.99+\mathbf{~} 5.00 \mathrm{P} \& \mathrm{P}$

SIZE: $482 \times 240 \times 120 \mathrm{~mm}$

oin the Piezo revolution! The low dynamic mass (no volce coll) of a Piezo twe ter produces an improved esse units can be wadded to existing speaker systems of up to 100 watts (more it two are put in series. FREE XPLANATORY LEAFLETS ARE SUPPLIED WITH EACH TWEETER
 TYPE 'A' (KSN1036A) 3 round with prolective wire mesh. Ideal bookshell and medium sized Hi-Fl apeakers. Price $£ 4.90+50$ P P\&P. TYPE 'B' (KSN1005A) $31 / 2$ " super horn for general purpose speakers, disco and P.A. syslems etc. Price $\mathbf{£ 5 . 9 9 + 5 0 \text { P P\&P. }}$ TYPE 'C' (KSN1016A) 2" $\times 5$ " wide dispersion horn for quality Hi-Fi syslems and qualily discos etc. Price $\mathbb{£ 6 . 9 9 + 5 0 p \text { P\&P. }}$ TYPE 'D' (KSN1025A) 2"x6" wide dispersion horn. Upper frequency response retained extending down to mid-range (2 KHz). Suitable for high qualily Hi-Fi systems and quality discos. Price $£ 9.99+50 \mathrm{p}$ P\&P.
TYPE ' E ' (KSN1038A) 3^{3} 4" horn Iweeter with attractive silver finish trim. Suitable for Hi -Fl monitor systems etc. Price $£ 5.99+50 \mathrm{p}$ P\&P. LEVEL CONTROL Combines, on a recessed mounting plate, level control and cabinet input jack socket. $85 \times 85 \mathrm{~mm}$. Price $£ 4.10+50 \mathrm{p}$ P\&.

TMPLINNET LOUDSPEAKEFIS

the very best in quality and value
Made especialiy to suit today's need for compactness with high output
sound leveis. tinished in hard wearing black vynide with protective corners, grille and carrying handle. Each unit incorporates a $12^{\prime \prime}$ driver pus high trequency horn for a full frequency range of $45 \mathrm{~Hz}-20 \mathrm{KHz}$.

CHOICE OF TWO MODELS
WER RATINGS QUOTED IN WATTS RMS FOR EACH CABINET
OMP 12-100WATTS (100dB) PRICE E163.50 PER PAIR OMP 12-200WATTS (200dB) PRICE E214.55 PER PAIR

SPECIALIST CARRIER DEL. E12.50 PER PAIR

N-CAR STEREO BOOSTER AMPS

THAEE SUPERB HIGH POWER 150 WATTS Bridged Mono 250 WATTS (12 Bridged Mono B00 WATTS $(200+25$) Stereo, 250w 400 WATTS (200 Bridged Mono
ALL POWERS INTO 4 оHmS
Features:
Stereo, bridgable mono \star Cholce of high \& low level inputs $\#$ L \& R level
controls $\#$ Remote on-oHH \ddagger Speaker \& 150W £49.99 250 W ع99.99 controis \& Remote on-oft $\%$ Speaker of
inergalanolection ACCESS ACCEPTEOEYROST, DHONEDRFAX.

rataVU METER Compatible whth our four amplifiers detailed above. A very accurate visual display employing 11 L.E.D.s $(7$ green, 4 red) plus an additional on/on
indicator. Soonisticated logic control for very tast rise and decay times. Tough Indicator. Sophisticated logic control tor very tast rise and decay moulded plastic case, with acrylic
PRICE E8.70 +50 P P\&

LOUDSPEAKERIS

LARGE SELECTION OF SPECIALIST LOUDSPEAKERS available, including cabinet fittings, Speaker GRILLES, CROSS-OVERS AND HIGH POWER, HIGM (50 P STAMPED) FOR COMPLETELIST. P- From McKenzie Prolessional Serles

- From McKenzie Studio Series

MCKENZXIE:- INSTRUMENIS, P.A., DISCO, EIC

ALL MCKENZIE UNITS 8 OHMS IMPEDANCE 8" 100 WATT F CB-100GP GEN. PURPOSE, LEAD GUITAR, EXCELLENT MID, DISCO
 RES. FREQ. 72 HZ , FREO. RESP. TO 6 KHz , SENS97dB. PRICE E38.88 10" 200WATT C10-200GP GUITAR, SEYB'D, DISCO, EXCELLENT HIGH POWER MID.
RES. FREQ. 69 HZ . FREQ. RESP. TO SKHZ, SENS 97 PB RES. FREQ. 69 Hz , FREQ. RESP. TO 5 KHz , SENS 97 TBB. 12" 100WATTPC12-100GP HIGH POWER GEN. PU
RES. FREQ. AMH2, FREO. RESP TO 7 KHZ SENS $98 d B$. RES FREQ. A9Hz, FREQ. RESP. TO 7 KHz , SENS 98dB.
12 I 100 WATT C 12 -100TC (TWIN CONE) HIGH P 12 100WATT C12-100TC (TWIN CONE) HIGH P
RES. FREQ A5HZ, FREQ. RESP. TO 12 KHz , SENS 97 A . 12" 200WATT C12-200B HIGH POWER BASS, KE 12 200WATT
RES. FREO. 45 Hz . FREQ. RESP. TO 5 KHz , SENS 99 dB . RES. FREQ. 45Hz. FREQ. RESP. TO 5 KHz, SENS 99dB.
12 '300WATT C1 2 -300GP HIGH POWER BASS, LE RES. FREQ. 49HZ, FREO. RESP. TO 7 KHz , SENS 100 dB. 15 " 100WATT C15-100BS BASS GUITAR, LOW FR
RES. FREQ. 40Hz, FREQ. RESP. TO $5 K H z$, SENS 980 .
 15 " 200WATT P15-200BS VERY HIGH POWER BASS RES. FREQ. 40 Hz , FREQ. RESP. TO 3 KHz , SENS $98 d B$. 15" 250WATT C15-250BS VERY HIGH POWER BASS RES. FREO. 39Hz, FREO. RESP. TO 4 KHz , SENS S9dB. S 50 WATH C15-400BS VERY HIGH POWER, LO RES. FREQ. 40 Hz , FREQ. RESP. TO 4 KHz , SENS 100 dB .
8" $500 \mathrm{~W} A T T$ C 18 -500BS EXTREMELY HIGH PO RES. FREQ. 27 Hz , FREO. RESP. TO 2 KHz , SENS. 98 dB .
\qquad PRICE E40.35 + 23.50 PAP NRICE, E.A., VOICE, DISCO ${ }_{P A .}$
PRICE $E 71.91$ OARDS, DISCO ETC PRICE $£ 95.66+$ \& 3.50 Pap sco.
($5.05+\varepsilon 4.00$ P\&P
PRICE E8O. $57+$ + 4.00 PAP
PRICE 590.23 H 84.50 Pap PRS.

PICE $£ 105.46-$ - 4.50 Pap NCY BASS.

EARBENDEROS: HIFFI, STUDIO, IN-CAR, ETC

ALL EARBENDER UNITS 8 OHMS (Excepp EB8.50 A EBBI0.50 which are dual BASS, SINGLE CONE, HIGH COMPLIANCE, ROLLED SURROUND B" 50 Watt EEB-50 DUAL IMPEDENCE, TAPPE D $4 / 8$ O RES. FREQ. 40Hz, FREQ. RESP. TO 7KHZ SENS $97 d 8$. $10^{\prime \prime}$ 50WATT EB $10-50$ DUAL IMPEDENCE, TAPPED $4 / 8$ OHM BASS, H列 RES. FREO. 35Hz, FREO. RESP. TO 3 KHz, SENS $96 d \mathrm{~dB}$. 12" 100WATT EB1 2-100 BASS, STUOIO, HI-FI, EXCELLENT DISCO RES. FREO. 26Hz, FREQ. RESP. TO 3 KHz , SENS 93 dB . FULL RANGETWIN CONE, HIGH COMPLIANCE, ROLLED SURROUND 5% BOWATT EB5-6OTC (TWIN CONE) HI-FI, MULTT-ARRAY DISCO ETC EES. FREQ. 63 Hz , FREQ. RESP. TO 20 KHZ , SENS 92 dB . ', 2 " OOWATT EB6-60TC (TWIN CONE) HI-FF, MULTI-A RES. FREQ. 38Hz, FREO. RESP. TO 20KHz, SENS 94dB. 8. 60 WATT EB8-60TC (TWIN CONE H2 HI-FI, MILTI-ARA
RES. FREO. 40 Hz , FREQ. RESP. TO 18 KHz , SENS B9dB. 10" SOWATT EB10-60TC (TWIN CONE) HIFFI, MULTI RES. FREO. 35 Hz , FREQ. RESP. TO 12 KHz , SENS $98 d B$.

URANSMITTER HOEBY KITE

PROVEN TRANSMITTER DESIGNS INCLUDING GLASS FIBRE PRINTED CIRCUIT BOARD AND MIGH QUALITY COMPONENTS COMPLETE WITH CIRCUIT AND INSTRUCTIONS
3w transmiter so-108MHz, vaAICAP CONTROLLED PROFESSIONAL
PERFORMANCE. RANGE UP TO 3 MILES SS SIEE 38 I 123 mm
FW MICRO TRANSMTTTEA $100-108$ MHZ, VARICAP TUNED, COMPLETE WITH
VERY SENS FET MIC, RANGE 100.300 m , SIZE $56 \times 46 \mathrm{~mm}$. SUPPLY SV BATTERY.

1992 BUYER'S GUIDE TO ELEGTRONIG COMPONENIS

Over 600 product packed pages wit more than 600 brand new products On sale now, only £2.:
Available from all branches of WHSMITH ar Maplin shops nationwide. Hundreds of new produc at super low price

G
 R
 EEN WE LD 1992 SPRING SUPPLEMENT

Welcome to our 1992 Spring Supplement - free with our compliments with your favourite monthly magazine! Inside its 32 pages you'll find the usual mix of new and surplus items, together with a preview of a new category to be included in future Catalogues - Graphic Design Products. We're now stocking Staedtler and Kuretake pens, pencils, markers, drawing instruments, boards and cutting mats, as well as Humbrol airbrushes and a wider selection of paper, labels, staplers etc. Every constructor has to write and draw circuits from time to time, so we hope these additions prove useful to you. There's a wide range of new surplus lines all offering exceptional value for money, and don't miss the remarkable offer of a Hitachi scope with 25% discount on the back page! We look forward to receiving your order soon - the Order Form is on Page29.

LOOR!! FREE WITH ORDERS OVER $£ 20.00$ EASIWIRE KIT ${ }_{ \pm}^{\text {Reaip Pice }} 5$
 The easy to use no-soldering wiring tool which makes construction of small electronic projects so simple!! All included in the kit are: wiring pen, utility tool, punched wiring board, self adhesive sheet, spring loadedterminals and jacks, spare spool of wire, excellent instruction book

YYou MUST stick this ,coupon to the Order 'Form for your FREE Easiwire

LOGIG PROBE

Suitable for displaying the logic state of each gate of TTL,
CMOS etc. Logic state displayed in light and sound. Pulse enlargement capability allows pulse detection down to 25 ns . Supplied with comprehensive instruction manual Order Code Y132
SPECIAL PRICE

Working voltage: $4-16 \mathrm{~V}$ Threshholds: Hi 70\% Vcc; Lo 30\% Vcc Input Z: 1 M . Max input freq: 20 MHz

POCKET PERSONAL DMM

HC32 This neat little autoranging digital multimeter with built in test leads has a big range of features for such a handy instrument - up to $500 \mathrm{~V} \mathrm{ac} / \mathrm{dc}, 6$ resistance ranges to 20 M , continuity tester, diode checker and both ac/dc current up to 200 mAl Size $100 \times 67 \times 14 \mathrm{~mm}$

$$
\begin{aligned}
& \text { PERFECT } \\
& \text { PRIGE }
\end{aligned}
$$

00

F606 £13.95 6+9.92

LIGHT ACTIVATED SWITCH

Plug-in light activated switch, ideal for switching on lights automatically. When the amblent light level falls to a preset point power will be switched on to the buill-in socket for a preset period of time. Light level and time-on period are fully adjustable. Controls: Light level, time
Power.
$220 / 240 \mathrm{Vac} 50 \mathrm{~Hz}$
Max. bod

F608 £11.95 6+ 7.84

AUTOMATIC LIGHT SWITCH

Plug-in light switch which turn on table lamps, radios or other low power appliances (up to 500W) when the ambient light level falls below a preset level, switching off again when the light level rises.
Power.. .220/240Vac 50 Hz $45 \times 65 \times 42 \mathrm{~W}$

F607 £21.95 6+ 14.67

 PLUG-IN TIMERPlug-in timer capable of up to 56 programmable switching operations per week. The programming structure consists of 4 timed events occurring on each day. Monday to Friday and 4 timed events on both Saturday and Sunday (one event is an on/off cycle). The timer is simple to use and comes with full instructions.
Power .. $220 / 240 \mathrm{Vac} 50 \mathrm{~Hz}$
Max. load. $145 \times 65 \times 42 \mathrm{~mm}$

F653 £47.95 3+ 31.89

PIR ALARM KIT

A compact PIR aiarm kit, ideal for small home installations, garages, caravans, trailers, trucks, boats, etc. The kit contains a combined PIR and alarm box, 3 magnetic reed switches, compact siren and power supply. Instruction manual and fixing screws included. An alkaline PP3 can be added for power failure protection.
PIR coverage
Exit delay...
.. $.100 \mathrm{~m}^{2}$
minutes
Entry delay.
2.5 minutes

Alarm reset time
Power
on seconds
Dims \qquad $140 \times 90 \times 5$

$1134 \quad £ 34.95 \quad 4+23.72$

PIR GLOBE LIGHT
A stylish globe shaped lamp with builf-in PIR detector which reacts to body heat, switching on the lamp whenever somebody is within the detection zone. A photo detector built into the unit prevents daylight operation. The sensitivity (detection range) is adjustable. Power: $220 / 240 \mathrm{Vac} 50 \mathrm{~Hz}$.

GREENWELD 27 PARK ROAD SOUTHAMPTON SO 1 3TB TEL: (0703) 236363 FAX: 236307 SPRING SUPPLEMENT

F650 £95.00 5+60.30
VOLUMETRIC ALARM
A self-contained burglar alarm wheh requires nothing more of the user than to plug it in and switch it on, no further wiring is necessary. The alarm works by monitoring the air pressure around it, any change such as opening a door or window in the building will trigger the alarm 80 seconds later, unless the alarm is switched off by the key. An additional external alarm box is available (F651). Built-in back-up batteries prevent the alarm from being switched off by unplugging.
Exit delay time.
40 seconds
20 seconds
Entry delay time $220 / 240 \mathrm{VoC} 50 \mathrm{~Hz}$
Power. $174 \times 60 \times 190 \mathrm{~mm}$
Powe
Dims

G008S £39.95 $3+26.13$

ROPE LIGHT

Self contained 3 -colout rope light with built-in speed controller. 3 clrcuits of 20 lamps within a tough, blister effect 6 m tube.
Length:
........220/240Vac 50 Hz

G006P £39.95 $3+26.73$

4.CHANNEL CONTROLLER

4-channel lighting controller with built-in mic, senslivity control and speed control. Four front panel LEDs mimic the lighting effect. Output via 8-pin Bulgin socket
Max output.
. 1000w/channel resistive .600 W/Channel inductive $220 / 2400 \mathrm{VaC}$ total 50 Hz
$184 \times 100 \times 55 \mathrm{~mm}$

GO08RA $£ 21.95$ 3+ 14.67

ROPE LIGHT

5 m tough but flexible plastic tube rope light. 4 circults of 20 coloured bulbs. May be connected end to end to increase length. Suitable controller: GOO6M.
Length

G006M £49.95 $3+32.83$

4-CHANNEL CONTROLLER

4 channel lighting controller with five built-in sound activated effects: 1 on/3 off, $2 \mathrm{on} / 2 \mathrm{off}, 3 \mathrm{on} / 1 \mathrm{off}, 4 \mathrm{on} / 0$ off plus random, forward and reverse for all four sequencies. Outputs via Bulgin socket and short lead with connector for rope lights.
Max output.
, 1000W/channel,
.2500 W total
Power. $220 / 240 \mathrm{VaC} 50 \mathrm{~Hz}$ $184 \times 100 \times 55 \mathrm{~mm}$

VIDEO/AUDIO BARGAINS! ENHANCE YOUR HOME VIDEOS WITH THESE PRODUCTS!!

G164G £32.95 3+22.11 CAMCORDER DUBBING MIC

A unique mic designed for direct dubbing of an external soundtrack. voice-over, etc. at source, whilst the camcorder is recording. A stereo 3.5 mm input is provided in the side of the mic for insertion of the soundtrack and a rotary control provides balance between mic and soundtrack. An earphone jack is provided for monitoring the mix. Supplied with a mono in-ear phone.

Type
.Super uni-directional electret condenser
mpedance
Response
Sensitivity.
Length..

A 3-channel 2-part wireless microphone system designed for use with video cameras. The tieclip mic has a remote belf clip transmitter with on/off switch. The receiver has a hot shoe for mounting on the video camera. The system allows greater mobility with a microphone than can be achieved with the camcorder mic.

T081 £47.95 $3+32.09$
VIDEO LIGHT
30W halogen video light with 6 V 1700 mAn battery pack. The video light is provided with a synchronisation lead which, when the light is switched to "remote", allows the light to switch on when the camcorder is switched on (Sony and Panasonic camcorder). The on/off/ remote switch has a lock button to prevent accidental movement.

Packed: BOX
T081AA
Spore bulb $£ 4.95 \quad 5+3.28$

T081A £15.95

VIDEO UGHT 4+ 10.63
30W video camera light with hot shoe filting and power on/off switch. Accepts 6 V 1700 mAh battery pack (Sony NP55 and NP77 typically)

Packed: BOX
T081AA
Spore bulb $£ 4.95$

T081B £66.95 3+44.89
VIDEO LIGHT KIT
A semi-professional video light kit comprising 100W halogen lamp, remote 12 Vac 7 Ah sealed lead acid battery in carrying case with shoulder strap, 220/240Vac operated battery charger and camcorder power supply adaptor.

Packed: BOX
T081BA Spore bubl £3.75
$5+2.80$

GREENWELD 27 PARK ROAD SOUTHAMPTON SO1 3TB TEL: (O703) 236363 FAX: 236307 SPRING SUPPLEMENT

T128D £36.95 5+ 24.79

VIDEO ENHANCER/AUDIO MIXER

A 3-channel stereo video sound mixer with a built-In video enhancer, specificially designed for video dubbing. The audio input from the cameraNCR, mic and music sources can be mixed at will, whth overall output conrolled by a master slider. The video enhancer will clean up the picture on older recordings. Powered by an external 12 Vdc power supply (not supplied). Complete with all connecting leads and adaptors.

A unique CD storage system which will hold up to 20 CD's, in thelr cases, allowing them to flip back and forth as you search for the CD you want. Free standing and interlocking.

T122D £12.95 $10+8.56$

VHS-C TO VHS ADAPTOR
All mechanical adapter cassette allowing the playback of VHS-C tapes on VHS video players. The action of closing the door moves the tape into position.

GAFFA TAPE

50 m rolls of $2^{\prime \prime}$ wide self adhesive Gaffa tape
L099R Silver $£ 6.50$ 10+4.36
L099S Black £6.50 10+ 4.36

45 minute tape.

T122J £6.95 10+4.80
30 minute tape.

DC POWER LEAD

Useful universal lead - reversible socket on the end of a DC power lead with 4 interchangeable plugs $-1.3,2.1$, 2.5 DC \& 3.5 mm mono jack 1.8 m long.

A133A £1.25 50+
0.75

G170C $£ 5.95 \quad 10+3.35$

DYпNAMIC MIC 200
Pair of matched dynamic microphones. Black plastic body with chrome metal grille and chrome trim. On/off switch. Independent 1.2 m leads terminating in 3.5 mm jack plugs. Mic stands and 6.35 mm adaptors included.
Type.
Omni-directional dynamic
impedance
Response
Sensitivity.
Dia: Head
Body.
Length

A compact and easy to use tape head demagnetizer. Simply plug the demagnetizer in, press the red button and place the tip gently in contact with the tape head. Rotate the tip across the surface and withdraw slowly. Demagnetizng every 50 hours of play time improves playback and record quality.
Power: 220/240Vac 50Hz

B003C £39.95 5+ 26.40

GRAPHIC EQUALIZER

11 -band graphic equalizer with sub-woofer output and CD input. The sub-woofer output has an adjustable cut-off frequency and level control. The case is standard DIN width for in-dash or under-dash mounting. Low level inputs and outputs only, via phono sockets.

SPE AKERS

A162B
£1.20
$50+0.66$
REPLACEMENT CD CASES
Replacement CD storage cases designed to be direct replacements for the originals
supplied with compoct discs. Two cases per pack. quality headphones. The transmitter will accept inputs from three separate sources; CD, DA tape etc and additionally has a bult-in mic with talk button for contacting the headphone wearer. The system allows complete freedom of movement within a range of approximately 100 feet of the transmitter.
Transmitter: \qquad
 Power ... 12 Vdc 150mA

Receiver:

Frequency response.
. $.48 \cdot 16000 \mathrm{~Hz}$
 Power supply ..PP3 battery Battery life.

A087F £8.95 10+5.15
 STEREO HEADPHONES WITH BOOM MIC

Lightweight stereo headphones with adjustable dynamic boom mic. Tough plastic headband with stainless steel adjusters. Foam padded earpieces containing high quality samarium cobalt transducers for clear sound reproduction. High sensitivity miniature dynamic mic cartridge with foam windshield. Straight screened lead terminates in 6.35 mm stereo plug for headphones and a 3.5 mm mono plug for mic.

Headphones:	
Type...Myiar transducer
Impedance32 3
Response	20-20000Hz
power150mW
Mlerophone:	
Type ..Omni-directional dynamic	
Impedance 250Ω	
Sensitivity ...7808B @ 1kHz	
General:	
Lead .. 2.5 m straight screened	
Plugs ..6.35mm stereo and 3.5 mm mono	
Weight 80 g

B049A £12.95 6+7.50

12Vdc TRAVEL KETLL

12 Vdc kettle complete with mounting stand, cup and cup holder with a self-adhesive base. Plugs directly into a car cigar lighter socket for power. A power-on light is provided at the base of the kettle. Ideal for cars, vans, campers etc.
Capacity.
0.5 pints (0.31ts)

Capac
Dims
$143 \times 125 \times 112 \mathrm{~mm}$ (approx)

B200Z £1.95 20+1.14
PLUG-IN FLASHING LED
A flashing LED built into a car cigar lighter plug to give visual warning that an alarm is activated (whether or not an alarm is fitted). Simply plugs into the car's cigar lighter socket.

B201 £17.95 10+11.93
CAR ALARM
Keyless, self-contained car alarm with simple, three wire connection into the car's wiring harness. The alarm is self arming one minute after the ignition is switched off. The alarm is current sensing and will operate 10 seconds after a door is opened. Once triggered the alarm will sound for 30 seconds before re-setting.
Operation.
Current sensing
Reset time
45 seconds
Power.
12-14Vdc

B047D £12.95 10+8.84

AIR PURIFIER AND IONIZER

A compact, stylish ionizer and air purifier with a coverage volume of $14 \mathrm{~m}^{3}$. Ideal for in car use with the DC lead provided or as a room purifier with the AC adaptor provided. Removes unpleasant smells, alrborne dust, bacteria, tobacco smoke etc.

Power Dims
$9-15 \mathrm{Vdc}$ or $220 / 240 \mathrm{Vac}$ via adaptor
$160 \times 95 \times 43 \mathrm{~mm}$

B047E
 $£ 9.95$
 $10+6.50$

AIR PURIFIER AND IONIZER

A compact, stylish ionizer and air purifier designed specifically for car, truck and bus use with a coverage volume of $14 \mathrm{~m}^{3}$. Removes unpleasant smells, airborne dust, bacteria, tobacco smoke etc Supplied with a double sided self adhesive pad.
Power

GREENWELD 27 PARK ROAD SOUTHAMPTON SO1 3TB TEL: (0703) 236363 FAX: 236307 8

Y122HR $£ 99.95 \quad 2+66.73$

$10 \mathrm{M} \Omega$

The Y122HR (M365OCR) multimeter is capable of communicating either the current LCD readout or up to 5 stored measurement values direct to data acquisition systems, PC's, pen plotter, printer, etc. via its MT/RS232C interface cable. Interface cable and program disc included with meter.

* 3.5 digit 17 mm LCD display
* 30 ranges including 20A ac/dc * Data hold
\star Max/min value capture $\star 40$ point analog bargraph \star Frequency counter * Loglc test with auto level * Capacitance test * Continuity test with buzzer \star Transistor and dlode test \star Bullt and tested to IEC 348 \star Fully shrouded test leads
Battery, Instruction manual and carying case included.

AC volts
DC volts. AC current DC current. Resistance Resistance Capacitance
Frequency... Frequency....
Transistor hfE Dims. FE0-200m-2-20-200-750Vac $\pm 0.8 \%$ $0-200 \mathrm{~m}-2-20-200-1000 \mathrm{Vdc} \pm 0.3 \%$ $0.200 \mathrm{O}-2 \mathrm{~m}-200 \mathrm{~m}-20 \mathrm{Aac}+1.8 \%$. 0 -200 $-2 m-200 \mathrm{~m}-20 \mathrm{AdC} \pm 0.5 \%$. 0 -2000pf-200n-20 $\mu \mathrm{F} \pm 2.0 \%$ $0-20 \mathrm{k}-200 \mathrm{kHz} \pm 2.0 \%$ Dims.. $176 \times 90 \times 36$ NPN

Packed: BOX

Y137M £8.95

$5+6.03$
DIGITAL THERMOMETER
A dual sensor digital thermometer designed for comparative temperature measurement, for example inside/outside temperature. The thermometer can be free standing or mounted with the Velcro strips provided. The remote sensor is fitted with a 3 m lead and mounted with double sided tape. A digital clock is built in.
Temperature range $\ldots-200$ to $+700 \mathrm{C} \pm 10 \mathrm{C}$ Resolution.
…................. 0.10 C Power

P009H button cell

Y137N
 £ 11.95
 $5+7.50$

DIGITAL THERMOMETER

Dual channel inside/outside comparative temperature thermometer with dual readout dispiay. Dual thermocouple, one internal and one on a 3 m extension lead. Free standing or double sided tape attachment.
Temperature range -50 to $+70^{\circ} \mathrm{C}$
\times P009H battery
Power.
........ Dims. $.107 \times 25 \times 13 \mathrm{~mm}$

COMPARTMENT BOXES

A range of three strongly constructed polypropylene compartment storage boxes with hinged lids. Semi-transparent finish.

F662	$180 \times 97 \times 43 \mathrm{~mm} 5$ compartments	$\mathbf{£ 1 . 2 0}$	$40+0.74$
F662A	$185 \times 142 \times 42 \mathrm{~mm}$	9 compartments	$\mathbf{£ 1 . 6 0}$
F662B	$275 \times 180 \times 42 \mathrm{~mm}$	18 compartments	$\mathbf{£ 1 . 9 9}$

F662B $275 \times 180 \times 42 \mathrm{~mm} 18$ compartments $\mathbf{~} 1.99 \quad 40+1.33$

METAL CASES

A range of flat pack steel cases with aluminlum front and rear panels. Rust proof finish, ready for painting.

Ref:
F660
F660A
F6608
F660C
F6600

Size
$£ 3.96$
$110 \times 50 \times 80 \mathrm{~mm} \quad £ 4.78$
$140 \times 56 \times 110 \mathrm{~mm} \quad £ 5.96$
$180 \times 56 \times 130 \mathrm{~mm} \quad \mathbf{£ 7 . 9 0}$
$230 \times 56 \times 190 \mathrm{~mm}$ £ 10.99
$10+2.65$
$10+3.20$
$10+3.99$
$10+5.29$
$10+7.37$

Al50B
£6.95
mini vacuum cleaner $10+3.95$
a battery powered mini vacuum cleaner which is ideal for removing the dust from turntables, cameras, video recorders, computer keyboards etc. 5 piece kit. Powered by four AA alkaline battieries (not supplied).
Power
$4 \times$ AA alkaline batteries

YO30B

PRECISION TOOL SET

5-piece precision, pressed stainless steel tool set with precision ground blades. The se \dagger comprises side cutters, bent nose pliers, round nose pliers, long nose pliers and flat nose pliers. Sprung, insulated handles. length 4^{4} (100 mm)
£12.95
$5+8.01$

$$
\text { Length } 4^{\prime \prime}(100 \mathrm{~mm})
$$

£6.95 10 4.42

PORTABLE SOLDERING IRON

Battery operated portable soldering iron. Powered by 4 ' C ' cells in the handle (not supplied). Tip heats up in seconds from operation of the biased off slide switch. Iip retracts into the body for safety. Supplied with one spare tip and 300 mm of solder.

Power

. bVac ($4 \times \mathrm{C}$ cells)
Dims.
$190 \times 66 \times 30 \mathrm{~mm}$

Y006E

£6.95
$10+4.29$

PRECISION MAGNIFIER

Precision made magnifer with a fixed focus. The lens fits directly over a graduated scale for magnified measurement. Metric and imperial scales. All metal construction. Folds down for storage in the vinyl wallet provided
Dims...................... $53 \times 48 \times 39$ (in use) $47 \times 39 \times 14$ (folded)

PRECISION

Y012C £9.95
$10+6.67$

40-PIECE TOOL KIT

A 40-piece tool kit comprising a ratchet driver handle with a lockable knuckle, 100 mm extension bar, 7 torque driver tips, 8 hex key tips, 6 screwdriver tips, 2 square drive tips, 1 hex to square drive adaptor, 7 metric sockets and 7 imperial sockets in a hinged plastic case.

Y006C 35p
$100+0.19$
PRISMATIC MAGNIFIER
Credit card size prismatic magnifier. All plastic.

Graphic Supplies by Staedtler

(a) Penclls

The Noris school and office pencil avallable in 5 colour coded degrees:

Code	Descriptlon	$1-11$	$12+$	144
S120-2B	2B Pencil	$24 p$	0.17	0.14
S120-B	B Pencil	$24 p$	0.17	0.14
S120-HB	HB Pencil	$24 p$	0.17	0.14
S120-H	H Pencil	$24 p$	0.17	0.14
S120-2H	2H Pencil	$24 p$	0.17	0.14

(b) Propelling Pencils

Fineline propelling pencils. Available in 4 sizes for technical applications. Contoured slip-proof finger grip. Perfectly balanced for convenience and precision. Has 3 mm retractible safety sleeve. Replaceable eraser with cleaning pin under push button.

Code	Description	$1-9$	$10+$	$30+$
S775-03	0.3 mm lead	$£ 2.75$	1.95	1.56
S $775-05$	0.5 mm lead	$£ 2.75$	1.95	1.56
S $775-07$	0.7 mm lead	$£ 2.75$	1.95	1.56
S $775-09$	0.9 mm lead	$£ 2.75$	1.95	1.56

Replacement leads. Fineline black leads with extraordinary point strength, slow wear and opacity. Supplied in tubes of 12.

Code	Descrlption	$1-9$	$10+$	$30+$
S250-03	0.3 mm HB lead $£ 1.70$	1.20	0.97	
S250-05	0.5 mm HB lead $£ 1.05$	0.74	0.60	
S250-07	0.7 mm HB lead 65p	0.46	0.37	
S250-09	0.9 mm HB lead 65p	0.46	0.37	
(Available in different degrees of hardness to				
order)				

(c) Lead Holders

The MARS Technico lead holder with sliding pocket clip. Lead sharpener built into the push button. For all 2 mm leads.
 S780CCA Mars holder $£ 3.25 \quad 2.30 \quad 1.84$

Lightweight plastic model for 2 mm leads

Code	Description	$1-9$	$10+$	$30+$
S78900C	Noris holder	$\mathbf{1 1 . 8 5}$	1.31	1.05

Code	Description	1-5	6-11	12+
S2002B	28 leads	£3.85	2.72	2.18
S200B	B leads	£3.85	2.72	2.18
S200HB	HB leads	£3.85	2.72	2.18
S200H	H leads	£3.85	2.72	2.18
S2002H	2 H leads	£3.85	2.72	
(Other order)	grees from	to 9 H		le 10

Lumochrom Coloured 2 mm drawing leads for use on paper or film. Pack of 12 assorted colours
$\begin{array}{lllll}\mathbf{S 2 0 4 S} 12 & 12 \text { colours } & £ 4.10 & 2.91 & 2.33\end{array}$

(d) Ball point pens

Ventilated caps. Fine point.

Code	Description	$1-9$	$10+$	$30+$
S430F-9	Black	$16 p$	0.11	0.09
S430F-2	Red	$16 p$	0.11	0.09
S430F-5	Green	$16 p$	0.11	0.09
S430F-3	Blue	$16 p$	0.11	0.09

(e) Fibre Pens

Low cost fibre tipped pens -0.8 mm robust point, ventilated cap. Available in a range of colours:

Code	Description	$1-9$	$10+$	$30+$
S333-9	Black	$25 p$	0.17	0.14
S333-2	Red	$25 p$	0.17	0.14
S333-5	Green	$25 p$	0.17	0.14
S333-3	Blue	$25 p$	0.17	0.14
S333-1	Yellow	$25 p$	0.17	0.14
S333-W1 Pack of 10 assorted colours				
£2.50				
1.70				1.40
S333-W2 Pack of 20 assorted colours				
$£ 5.00$				
3.40				2.80

(1) Graphic Liners

Pigment liner, multipurpose fibre tip pen. Fade proof black pigment ink. Excellent reproduction qualities. In 4 line widths:

Code	Description	1-9	10+	30+
S308-01	0.1 mm liner	£1.45	1.02	0.82
S308-03	0.3 mm liner	\$1.45	1.02	0.82
S308-05	0.5 mm liner	£1.45	1.02	0.82
S308-07	0.7 mm liner	£1.45	1.02	0.82
S308WP4 Plastic wallet with one each of the				

(g) AV Pens \& Markers

A range of high quality Lumocolour markers with permanent waterproof ink that will write on all smooth surfaces. Fadeproof. Ideal for OHP - available in 8 colours. Ventilated caps.

Fine Points 0.4 mm

Code	Description	$1-9$	$10+$	$30+$
S318-9	Black	$72 p$	0.51	0.41
S318-2	Red	$72 p$	0.51	0.41
S318-5	Green	$72 p$	0.51	0.41
S318-3	Blue	$72 p$	0.51	0.41

-9	Black	72p	0.51	41
S317-2	Red	72p	0.51	0.41
S317-5	Green	72p	0.51	0.41
S317-3	Blue	72p	0.51	0.41
S317-W8	Pack	of	as	318
W8		£5.76	4.10	3.30
Broad Points 1-2.5mm				
S314-9	Black	£1.00	0.71	0.57
S314-2	Red	£1.00	0.71	0.57
S314-5	Green	£1.00	0.71	0.57
S314-3	Blue	£1.00	0.71	0.5

(h) Highlighters

In 3 popular colours. Universal pigment ink, lightfast for all types of paper including fax, telex and carbonless copy paper. Chisel point.

Marsmatic Techniset
S700C7 Compact desktop set with 2 slide out trays. Upper tray contains 3 Marsmatic 700 technical pens ($0.25,0.35,0.5 \mathrm{~mm}$), 4 ink cartridges, an eraser, fineline pencil and tube of leads, and a compass attachment for technical pens. The lower tray is empty.
$£ 29.305+20.79$

RASOPLAST

Erasers

Code Description $1-9 \quad 10+30+$ S526-B20Rasoplast Soft white vinyl eraser $58 \times 22 \times 12 \mathrm{~mm} \quad 23 \mathrm{p} \quad 0.16 \quad 0.13$ S526BT30Duoplast dual eraser. Removes ink and graphite $\quad 35 p \quad 0.25 \quad 0.20$

5526-61 Rasor eraser pencil with brush
$\begin{array}{lll}75 p & 0.53 & 0.42\end{array}$

Drawing Sets
High quality student compass sets. The Arco range is sturdy and robust, and incorporates features normally only found on more professional models.

S559-09 Arco drawing set - compass, dividers, extn bar, springbow and lead box.
$£ 9.95 \quad 5+6.66$

S559-50 Low cost school compasses and lead box $\quad £ 1.35 \quad 10+0.96$

Rolling Ruler

Versatile instrument for drawing parallel lines both vertically and horizontally; drawing angles, circles, curves and arcs. Comes with full instructions.

S569-22 Set of 45° and 60° set squares, $6^{\prime \prime}$ $\begin{array}{llll}\text { ruler and protractor } & 75 p & 0.51 & 0.41\end{array}$

S971-12 Flexible Curve $£ 2.60 \quad 1.92 \quad 1.63$

S571-40 French curve set - sel of 3 in plastic wallet
$\begin{array}{lll}£ 3.75 & 2.66 & 2.13\end{array}$

Drawing Boards

Portable drawing boards suitable for student and technical draftsperson alike. Advanced features make these quality products excellent value for money. They are made of especially break resistant plastic

S661A4 DIN A4 size has perimeter guide grooves, a recessed sheet clamp with locking key, paper alignment edges and reduction scales. Fixmatic drafting arm has 2 guide grooves for a drafting head. $£ 24.955+14.18$

S661A3 DIN A3 size with fixmatic drafting arm \quad £34.95 $5+19.86$

S660A3 DIN A3 Mars Technico drawing board with additlonal features a s shown for the professional.
£46.50 5+26.38

Accessories
All suitable for above boards

S660-15 The quickmatic drafting head. Quickset angle can be set in the guide grooves and moved along the entire length of the drafting arm for hatching. Locks at 15° intervals. $£ 4.25 \quad 5+3.62$

S660-20 Variomatic drafting head - fits the guide grooves of the parallel drafting arm. It allows instant drawing of 30° angles, has opposing scales $0-90^{\circ}$ and automatic locking at 15° intervals
$\mathbf{£ 1 4 . 5 0 5 + 8 . 2 3}$

Kuratake

A range of top quality supplies from a company established in 1902. Kuratake has been established in the UK for 5 years, providing graphic markers and equipment to education, industry and commerce.

Ceramic Rollerball Pen

The Zig ball 200 is a low cost high quality 0.3 mm rollerball pen, available in 4 colours. Waterbased ink.

Code	Description	1+	$12+$	$96+$
KCB220K	Black	$70 p$	0.43	0.34
KCB220R	Red	$70 p$	0.43	0.34
KCB220GG	Green	$70 p$	0.43	0.34
KCB220B	Blue	$70 p$	0.43	0.34

Textlle Markers
Double ended pens to give a hard line (2 mm) and a brush effect. Waterbased pigment ink exclusively for marking on cloth and fabric that once dry will not wash out. Available in a range of colours and packs as shown:

Code	Description	$1+$	$12+$	$48+$
KTC4000K	Black	$£ 2.23$	1.34	1.08
KTC4000R Red	$£ .23$	1.34	1.08	
KTC4000G	Green	$£ 2.23$	1.34	1.08
KTC4000B Blue	$£ 2.23$	1.34	1.08	
KTC4000Y Yellow	$£ 2.23$	1.34	1.08	

$£ 16.9210 .13 \quad 8.10$

Gold \& Silver Pen
Double ended pen 210 mm long with valve action and fine tip - Gold one end, Silver the other. Instant drying, high opacity.

Code Description 1+ 12+ 48+ $\begin{array}{lllll}\text { KFMP20 Gold \& Sitver } & £ 3.80 & 2.28 & 1.83\end{array}$

Whiteboard \& Markers
A revolutionary new product - a flexible whiteboard! The Flexiwipe needs no fixing, just peel off backing sheet and smooth on to any non-absorbent surface. Easily removable for storage in tube supplied. Available in 3 sizes as shown:

Code	Description 1+	$3+$
FWA2P	A2 $(594 \times 420 \mathrm{~mm}) £ 27.23$	15.73
FWA1P	A1 $(840 \times 594 \mathrm{~mm}) £ 55.46$	31.15
FW2M	$2 \mathrm{~m} \times 930 \mathrm{~mm}$	$£ 126.12$
Markers for above and other whiteboards.		
Alcohol based ink that simply wipes away		
when dry. Sold in packs of 4 bullet tipped		
markers - Black, Red, Green and Blue.		

Code Description 1+ 12+ 48+

$\begin{array}{lllll}\text { KOMW35 } & \text { Pack of } 4 \text { pens } & £ 4.51 & 3.17 & 2.54\end{array}$

Cutting Mats

High quality double sided green cutting mats with high durability and elasticlty. Self healing surface on both sides. Printed with a 2 mm grid.

Code	Description	$1+$	$12+$
CMG/ES	$220 \times 300 \mathrm{~mm}$	$£ 7.47$	4.20
CMG/S	$300 \times 450 \mathrm{~mm}$	$£ 14.95$	8.40
CMG/M	$450 \times 600 \mathrm{~mm}$	$£ 29.68$	16.67

Changln' Glue
Instant adhesive for paper and card - on application the giue is blue, but dries clear. Non-toxic emulsion based. Can be used as permanent (stick while blue) or temporary (wait till clear - can be repositioned as required). Available in 2 sizes:

Code	Description	$\mathbf{1 +}$	$12+$	$96+$
KMSB15	$10 \mathrm{gm}, 6 \mathrm{~mm}$ tip	$\mathbf{£ 1 . 6 9}$	1.02	0.81
KMSB30	25 gm 15 mm tip	$£ 3.37$	2.03	1.63

GREENWELD 27 PARK ROAD SOUTHAMPTON SO1 3TB TEL: (O703) 236363 FAX: 236307 SPRING SUPPLEMENT

Alrbrushes

The Humbrol range of airbrushes and spray guns is designed to offer both modellers and graphic artists an inexpensive introduction to this medium.

H30003 Modellers airbrush designed to give a cost effective method of applying paint. Features include adjustable air jet pattern, air volume and paint flow volume adjustments. The set includes an aerosol power pack and three additional storage jars. $\mathbf{\Sigma 1 9 . 9 5} 3+13.58$

H30006 Hobbicraft airbrush set. This offers greater precision and finer atomisation than the above model. It features a dual action control trigger, controlling both paint volume and airflow, with an additional air supply volume control for attachment to aerosol power packs. Included in this set are an aerosol power pack and three spare storage jars.
$\mathbf{E 4 6 . 5 0 \quad 3 + 3 1 . 6 6}$

Aerosol Power Packs			
H30201	Standard size	$£ 2.95$	$12+2.00$
H30202	Large size	$£ 4.99$	$12+3.40$

OHP FIIm
Clear acetate film for overhead projection, also ideal for PCB layouts. Available in A4 size only, 0.1 mm thick. Supplied in packs of 10 sheets
$\begin{array}{llll}\text { Code Description } & 1-9 & 10+\quad 30\end{array}$

Other Stationary Products

(a) Paper \& Labels

80 gsm high grade copier paper, sold in reams (500 sheets)

(c) Pads and Rolls

A721 Shorthand notepad, spiral bound $8 \times 5^{\prime \prime}$. 80 sheets (160 pages)
$1+40 p ; 12+0.22 ; 144+0.18$
A725 Adding machine rolls. Standard $21 / 4 \times 21 / 4$ ". Sold in cases of 20 rolls.
$1+$ £4.75; 5+ $3.3625+2.68$
A721 Fax Roll. Standard for most makes of machine. 210 mm wide $\times 30 \mathrm{~m}$ long (equivalent to 100 A4 sheets) 12.5 mm tube. Reduced Price:
E2.95; $12+1.80 ; 72+1.68$.

Stapler and Staples
R2 Office 26/6 metal stapler in black. £4.50; $10+3.43$

R3 Office $26 / 6$ staples in boxes of 5000
A458 Computer Listing Paper $11 \times 99^{1 / 2 "}$ plain. 60gsm wood free, microperf. Sold in cases of 2000 sheets.
£15.00 11.06
CL01 Continuous labels $31 / 2 \times 1.7 / 16^{\prime \prime}$. One label across sheet. Vertical spacing $0.2^{\prime \prime}$ Pack of 1000 £6.95; 8000 32.00+VAT

CL02 Continuous labels $4 \times 1.7 / 16^{\prime \prime}$. Three labels across sheet. Vertical spacing 0.2" Pack of $1000 \mathrm{\varepsilon 6.95;} 1200051.00+$ VAT

3M Post-lt notes.

The original removable self-stick notes, available in 3 sizes:

(b) Envelopes

White DL, size $220 \times 110 \mathrm{~mm}$ (takes A4 folded in 3) Self-seal. Sold in packs of 100
$\begin{array}{llll}\text { Code } & \text { Descrlption } & 1+ & 10+ \\ \text { A711 } & 80 \mathrm{gsm} \text { opaqued, plain } £ 2.00 & 1.15 \\ \text { A712 } & 80 \mathrm{gsm} \text { opaqued, window } £ 2.20 & 1.29\end{array}$
Brown C4, size $325 \times 230 \mathrm{~mm}$
unfolded). Sold in packs of 100
Code Description 1+ 10+
$\begin{array}{llll}\text { A716 } & \text { 80gsm gummed } & \text { E4.20 } & 2.27\end{array}$
$\begin{array}{llll}\text { A717 } & 80 \mathrm{gsm} \text { self seal } & £ 4.60 \quad 3.09\end{array}$

75p; 10+0.56

Ballpoint Pens

Low cost ball pens with ventillated caps, in 3 popular colours:

Paper Clips
R4 Large lipped in boxes of 1000
1 box £1.50; 10+0.86

Tippex

S7 The popular white opaquing fluid in 30 ml bottles.
83p; $10+0.58$
A4 Transparent Pockets
Open at the top and multipunched to fit most files.
Pack of 100 £4.40; $10+2.81$

Adhesive Tape
A731 $1^{\prime \prime}$ wide clar adhesive tape, polypropylene 30 micron
$60 p ; 12+0.36 ; 72+0.29$
A735 $2^{\prime \prime}$ wide buff packaging tape, polypropylene 30 micron.
£1.30; $12+0.83 ; 36+0.66$

Code Description
HPE01 Black
HPE02 Blue
10 for $£ 1 ; 100+0.06$
10 for $\Sigma 1$; $100+0.06$
10 for $£ 1$; $100+0.06$
HPE50 Box of 50, any assortment $£ 3.95$

ELECTRONICS BOOKS Reference Tools written for you!

Three books from a well-known and best-selling electronics author!

The Laser Cookbook Gordon McComb

A hands-on introduction to laser theory and operation, with over 80 practical and easy-tofollow projects. These projects range from simple acoustic modulation of laser beam to super-accurate interferometers that precisely measure the speed of light, light wave-lengths, and light frequencies. Readers wanting to increase their knowledge of this subject should look no further than "The Laser Cookbook". "...provides a fascinating tour through the world of lasers. It is well written, amply illustrated, and lots of fun."
(Modern Electronics)
404 pages Size $190 \times 235 \mathrm{~mm}$ ISBN: 0830693904 £18.15 (SC)

The Complete Shortwave Listener's Handbook, 3rd edition Bennett

The bible of shortwave for over a decade, revised and updated for todays electronics market. It has been expanded to include all the very latest equipment, procedures, and operating practices. This book will be a useful reference for all those interested in shortwave radio. All the basics of SWL are covered - receivers, antennas, frequencies, radio-wave propagation, how to keep a logbook, and prepare and sendreception reports. "... a comprehensive guide to the basics of shortwave listening."
(New Technical Books)
294 pages Size $130 \times 210 \mathrm{~mm}$
ISBN: 0830626557 £13.55 (SC)
Designing, Building and Testing Your Own Speaker System

Weems
For those who would like to be able to build a durable, low-cost speaker system that is as good as or better than the most expensive units on the market, now they can, with this completely revised edition of David Weem's best-selling book. There is no better source of clear, step-bystep construction techniques and project plans than Designing, Building and Testing Your Own Speaker System.

224 pages Size $190 \times 235 \mathrm{~mm}$
ISBN: 083063374X £14.95 (SC)

The Robot Builders Bonanza Gordon McComb

A collection of almost 100 tried and tested project modules that can be mixed and matched to create a range of intelligent and workable robot creatures. Clearly illustrated and fun to use, this is a must for electronics enthusiasts interested in the area of robots. The 99 different robot components described in this ingenious guide can be combined in an almost endless variety of intelligent and workable robots of all shapes, sizes, and abilities.

326 pages Size $190 \times 235 \mathrm{~mm}$ ISBN: 0830628002 £14.45 (SC)

Compact Disc Player Maintenance and Repair Manual Gordon McComb

Specific guidelines for maintaining and repairing more than 100 brands of CD players. Packed with quick and reliable answers to the problems of maintaining and repairing $C D$ players, this illustrated do-it-yourself guide takes the apprehension out of first-time repairs. "A valuable accompaniment to a $C D$ purchase...should be in the reference library of anyone who owns or is planning to own a CD player."
(Midwest Book Review)

> 244 pages Size $190 \times 235 \mathrm{~mm}$
> ISBN: $0830627901 £ 11.95(\mathrm{SC})$

Solid-State Electronics Theory with Experiments Sanfilippo

Pragmatic rather than mathematic in approach, this book is a comprehensive introduction to solid-state technology. There are a number of interesting projects at the end of each chapter which reinforce concepts and allow readers to experiment with the solid-state applications described in the textby actually building circuits. Careful attention is given to how to test solidstate devices and how to design circuits using them.

330 pages Size $130 \times 210 \mathrm{~mm}$ ISBN: 0830629262 £16.30 (SC)

How to Build a Small Budget Recording Studio from Scratch - 2nd edition Everest

This is an excellent book about small studios: how to build them and treat them acoustically, with emphasis on budget studios suited to the efficient day-to-day production of radio, audiovisual, film, and television recording. No special skills or training are required to use this book - it is of interest to anyone planning to build or remodel a small recording studio. The author has been involved with TV broadcasting since 1936.

> 295 pages Size $190 \times 235 \mathrm{~mm}$
> ISBN: $0830629661 £ 14.45(\mathrm{SC})$

GREENWELD 27 PARK ROAD SOUTHAMPTON SOI 3TB TEL: (0703) 236363 FAX: 236307 SPRING SUPPLEMENT

The Encyclopedia of Electronic

Circuits - Volumes 1 - 3
Graf
This fully comprehensive best-selling series includes coverage of all aspects of the electronics world. There are fascinating insights into schematics for the latest available alarm amd security circuits; smoke, moisture and metal detectors; computer, fiber optic and laser circuits; and hundreds of other areas.

Size $190 \times 235 \mathrm{~mm}$

Volume 1-0830619380 $\mathbf{£ 2 8 . 1 5 (S C) 7 6 0 \text { pages }}$
Volume 2-0830631380 $\mathbf{2 2 8 . 1 5}$ (SC) 732 pages
Volume 3 - 0830633480 £26.95(SC) 837 pages

The GIANT Book of Easy-to-Build Electronic Projects
 Editor of Elementary Electronics

Here's a giant collection of useful, low-cost electronic projects for both the beginner and experienced hobbyist. Ranging from simple circuits to state-of-the-art electronic gadgets, there are dozens of fascinating projects that simply aren't available else where. There are construction and assembly details, and printed circuit board templates reproduced in actual size

352 pages Size $190 \times 235 \mathrm{~mm}$
ISBN: 0830601996 £19.95 (HC)

Homemade Holograms: The Complete

Guide to Inexpensive,
Do-It-Yourself Holography
John Iovine
This is an ideal 'first-step' into the fascinating world of holograms. The author describes new procedures - using equipment readers can make themselves that take the complexity out of producing simple white-light reflection and transmission holograms of people, as well as computer graphics, and solid objects.

230 pages Size $190 \times 235 \mathrm{~mm}$
ISBN: 0830634606 £11.95 (SC)

500 Electronic IC Circuits with Practical Applications Whitson

Comprehensive and detailed coverage of 500 electronic IC circuits. Electronics enthusiasts will value the easy-lo-follow practical circuit applications and will learn from the basic theory behind each one. A handy tool for anyone working with IC circuits.

340 pages Size $190 \times 235 \mathrm{~mm}$
ISBN: 0830629203 £19.05 (SC)

The Illustrated Dictionary of Electronics - 5th Edition Turner

Featuring more than 27,000 entries, an exhaustive list of abbreviations, and appendices packed with schematic symbols and conversion tables, this is by far the most comprehensive dictionary of practical electronics and computer terms available today.

723 pages Size $190 \times 235 \mathrm{~mm}$
ISBN: 0830633456 £23.95 (SC)

The Thyristor Book - With 49 Projects Delton Horn

With this new collection of 49 projects, the author simply and clearly demystifies these useful components. He explains in simple terms thyristor construction and operation and uses dozens of designs to illustrate the many practical application of thyristors.

205 pages Size $190 \times 235 \mathrm{~mm}$ ISBN: 0830633073 £16.95 (SC)

Physics for Kids: 49 Easy Experiments with Electricity and Magnetism Robert Wood

An outstanding guide for young scientists to the phenomena of electricity and magnetism. There are exciting experiments such as: tracing a magnetic field with a bar magnet, tracing lines of force with a compass, making a battery, making a motor, and many more.

125 pages Size $190 \times 235 \mathrm{~mm}$ ISBN: 0830634126 £9.95 (SC)

Homemade Lightning: Classical Experiments in Electrostatics R A Ford

The electronics ethusiast's guide to designing, building, and using classic high-voltage generators and associated equipment. There is a fascinating collection of experiments that reveal the wide-ranging impact of electrostatics on such topics as motor design, aerodynamics, gravity, photography, and meteorology.

194 pages Size $190 \times 235 \mathrm{~mm}$
ISBN: 0830635796 £11.95 (SC)

Babani Books

2 new titles from this popular publisher:

A REFERENCE GUIDE TO BASIC ELECTRONIC TERMS BP286 £5.95 F.A.WILSON Over 700 fundamental terms explained in depth and backed up by a list of other relevant entries. Published in the popular larger format, this useful tome should be on every enthusiasts bookshelf.
$085934231 X \quad 1992 \quad 198 \times 135 \mathrm{~mm}$ 480pages

INTERFACING PC's AND COMPATIBLES

BP272

£3.95

R.A.PENFOLD

Utilizing the expansion slots for do-it-yourself projects is quite straightforward, and this book gives you detailed descriptions of the relevant parts of the PC. There are practical clrcuits for a number of projects including address decoder, simple TTL 8 bit input and output ports, 8255 PIA, D-A annd A-D converter circuits etc. In fact, all you need in order to produce successful PC add-ons. $0859342174 \quad 1992 \quad 178 \times 111 \mathrm{~mm}$ 120 pages

If you like what you see in this supplement make sure you don't miss future bargains only £2 (UK/ BFPO; £4 O'seas) for the next 6 issues - see order form for details.

LS037B - Great offer on 12" bass speaker! High efficiency wooter with rubber surround wil handle 150 W music power. Freq. response $20-3500 \mathrm{~Hz}$. Magnet weight 1000 , Overall weight 4.4 kg . 8 R impedance. Normally cost over £60 - Our Offer Price $£ 75$ per pair

F217G Metal stereo combination plug assembly. 3.5 mm plug with metal spring outlet with adaptor logive 6.35 mm plug. Assembly screws together to give compact solid unit. Would normally sell for over $£ 1.00$ each - Our Low Price 2 for $£ 1.00 ; 100+$ 0.25

FANTASY DECO ROPE

FDRI 9 meter long tube with 120 lights and special effects controller and power supply. Uses cool and long lasting LED's. 8 different programs on controller - chasing back and forwards at various rates. £49.95

SUPER HEADPHONE DEAL!

H8 Excellent quality Adastra stereo headphones with boom microphone. Freq. response $20-20,000 \mathrm{~Hz}, \quad 32 \mathrm{R}$ impedance. Microphone 600R. 2 m leads fitted with 3.5 mm plug for mic, and 3.5 mm plug tadaptor for headphones. Padded earpieces and leatherette headband.
ONLY £9.95

QUICKSHOT MOUSE

High quality optomechanical mouse by Bondwell

- Microsoft compatible
- IBM PC XT or AT compatible
- Hardware selectable mouse standard
- Programmable resolution 29-1450 DPI
- High tracking speed $500 \mathrm{~mm} / \mathrm{s}$
- Silcone rubber coated tracking ball Includes
- Universal mouse driver
* Performance Test Programme
- D9-D2 5 connector adaptor

ORDER CODE OS 158
PRICE $224.956+16.10$

tricolour led bargain
F166T Chrome holder needs 10 mm hole. LED has 3 leads - common, red and green, when used logether produce yellow. These normally sell for around 80p each - Our special offer price 4 for $£ 1.00 ; 100+0.12 ; 1000+0.09$

SECURITY SENSOR

BPW1 Outdoor light control motion sensor. This automatic sensor is powered from the mains and will handle up to 1000 watts. It has 110° elliptical view field, 9 meters on each side and 12 m forward. Automatic turn on and off of lights.
Features:
Security - instantly reacts to intruders by turning light on

Sensing motion, lurns on/off lights automatically in daylight

Adjustable light sensitivity and shut off time

Manual override

Easy installation
For both incandescent and fluorescent lights.
Ideal for outdoor areas:
Front or back porch
Deck or patio
Secluded walkway
Garage and driveway
Cluttered areas
The globe shape makes adjustment exceptionally simple - just rotate to direction and angle required.. Overall size $110 \mathrm{~mm} \times 100 \times 75 \mathrm{~mm}$.
Price: £29.95 5+21.30
D90 TDK low noise high output cassette tape, normal bias $£ 1.2010+0.80$

Goods sent in error

We have received a batch of leads which are not normally stocked - so we'd like to clear them at a Bargain Price!
Z5273 AV lead - 4 pin mini DIN plug both ends. 2 m long £1.95
 $200 \times 95 \times 50 \mathrm{~mm}$ comes in an attractive metallic grey case with controls on top timing, on/off and volume, squelch. The telescopic aerial extends to 500 mm and can be rotated in any direction. The 3 wavebands are:

1) CB , channels, $1-80$
2) TV1 $54-87 \mathrm{MHz} \&$

FM $88-108 \mathrm{MHz}$
3) AIR $108-145 \mathrm{MHz}$ \&

PB 145-176 MHz.
The large $3^{\prime \prime}$ full range speaker delivers 280 mW of undistorted power. There is an earphone jack and DC adaptor jack. The unit is powered by $4 \times$ AA cells. All this technology for just $£ 17.95$
Order Code MB100

24357 Clock Radio by Ross. Extremely neat unit measuring $140 \times 80 \times 35 \mathrm{~mm}$. MW/FM bands, telescopic aerial, stand, carrying pouch and strap. Clock has LCD display and can be used in 12 or 24 hr mode. Alarm. Light. Earphone socket. Takes $2 \times$ AA cells.
Great value at
E13.95

28891 Superb 4 waveband radio by Ross, model RR5. Covers FM $88-108 \mathrm{MHz}$, MW $518-1610 \mathrm{kHz}$. LW $150-275 \mathrm{kHz}$ SW $5.7-18.1 \mathrm{MHz}(16.5-52.6 \mathrm{~m})$. Nicely styled case measuring $210 \times 145 \times 70 \mathrm{~mm}$ with clear scale markings. Telescopic aerial, headphone socket. Volume, tone and tuning controls. ON/OFF switch/ waveband selector switch and AFC switch. Mains/ battery. (Takes $4 \times$ C cells). Originally retailed at $£ 19.95$ Our Price
114.95

BARGAIN LIST 78

March 1992

Greenweld Electronics Ltd 27 Park Road Southampton S01 3TB

Tel (0703) 236363 Fax (0703) 236307

The next few pages feature goods that have arrived recently - some are available only in small quantities, so don't delay. order today!!

Changes to Bargain Lists.

We're making a few improvements to our Bargain Lists to make them even more interesting readingl
Quite soon, you'll find included a few circuit ideas for the surplus parts we sell - maybe even a complete project or two. We know our customers' range of knowledge, ability and interests is extremely varied - from the novice who has problems identifying a resistor to eminently qualified experts engaged in design and research of leading edge technology - so we'll try and include a wide varlety of ideas. Contributions are weicome, and any published will be paid for.
We're aware that some of our surplus comes without any information, and that thls can be very frustrating, but the cost reflects this - the quantities involved are usually too small to justify chasing data. In future, those items that do include data will have a 'D' suffix to the Z number: i.e. Z8963D. If the info runs to several pages, there will be a seperate charge quoled.
Data can be supplied seperately at $20 p$ per item + SAE if not ordering any goods

SWITCHES

The parts listed below have come from a manufacturer of aids for the physically handicapped. There's a tot more hardware to sort out, but below is a selection from this parcel. As you would expect, there are quite a few switches and relays:
(a) Microswitches

22486 Burgess type V12K $41 \times 14 \times 18 \mathrm{~mm}$, short lever SPCO, probably 15A rating. 2 for £1.00.

22487 Honeywell heavy duty with brass screw terminals and brass threaded plunger. SPCO rated 15A 380V ac. $£ 1.50$

22488 SId 5A mlcroswitch with roller lever on steel brackel with steel plunger. $£ 1.20$

22489 Std 5A microswitch with plastic assembly enabling operation by blowing down tube. $£ 1.50$
$22490 \quad 2$ std 5A microswitches on plastic bracket with lever arrangement. Operate each switch by blowing or sucking. $£ 3.50$
(b) Other Switches

22491 Single pole heavy duty push switch with screw terminals made by Burgess, type KB5-A2 2 for $£ 1.00 ; 100+0.30$
Z2492 The above switch mounted in a pistic box $49 \times 54 \times 18 \mathrm{~mm}$ with plunger assembly £1.60
$Z 2493$ Very large light action rocker switch, SPCO. Lever is 43 mm square. Clip fix mounting. $£ \mathbf{£} .00$

22494 Celing switch with pull cord DP on/off rated 30A 250V ac. Red bezel, but no neon fitted. $£ 2.50$

25258 Air operated indicator(?) Plastic box $83 \times 40 \times 34 \mathrm{~mm}$ with rocker type top. 2 m length of twin tubing - and by blowing or sucking the rocker moves. £2.50

25259 Twin version of above $£ 3.50$
25260 AEG LS07 contactor rated 600 V 16A. 4 pole and subsidary circult $£ 3.50$.

22495 Small suppressor 28 mm long x 12 mm dia by LCR. Rated 250 V ac 2 for $£ 1.00$

22498 Unimax high quality illuminated push switch, DP contacts. Needs 16 mm dia fixing hole and takes wedge lamps. Avallable with green (Z2498G), orange (Z2498R) or black (Z2498B) bezel. $£ 1.00$

28970 Lift control panel. Self contained metal box $265 \times 90 \times 60 \mathrm{~mm}$ with fascia plate $292 \times 100 \mathrm{~mm}$ and 5 heavy duty double pole push switches fitted with 12 V MBC lamps inside. $£ 15.00$

22387 PC mounting push switch - 1 pr make and 1 pr break contracts. Right angle plunger is 5 mm long $\times 2 \mathrm{~mm}$ dia. With protective cover. Again, very high quality. 2 tor $£ 1.00$
22499 Neat limit switch with lever and microswitch action, 1 pr make and 1 pr break contacts. $18.5 \times 10 \times 7.8 \mathrm{~mm}$. Lever is 30 mm long. 4 for $£ 1.00 \quad 100+0.14$ $1000+0.10$
22485 PCB mntg keyboard click switch, low profile, only 3.8 mm thick. 10 mm sq. SP make. 12 for $£ 1 ; 100+0.04$
K591 Pack of 25 miniature toggle switches from page 125 of the 1991 catalogue £4.00

K592 Pack of 25 miniature rocker and lever switches from page 125 of the 1991 catalogue $£ 4.00$

K593 Pack of 25 push and slide switches from page 125 of the 1991 catalogue £3.50

FUSES

Thermal Fuse Offer

A job lot of thermal fuses allows us to offer these at much less than our normal selling price (60 p each). Avallable in the following values:

Z2525 $104^{\circ} \mathrm{C}$ short leads -12.5 mm long. 5 for $£ 1.00 \quad 100+0.10$

Z2526 $109^{\circ} \mathrm{C}$ full length leads, 3 for E .00 ; $100+0.15$
$22527121^{\circ} \mathrm{C}$ one lead cut to 17 mm . 4 for £1.00; $100+0.12$
$Z 2528152^{\circ} \mathrm{C}$ full length leads 3 for $\mathbb{E 1 . 0 0}$; $100+0.15$

K834 Pack of 20 assorted thermal fuses (4 values), some with cropped leads. £2.95

Thermal clrcuit breakers. Voltage rating 32 V dc, 250 V ac. Right angle PCB mounting with manual off/reset button and aux contact. Size $20 \times 6 \times 10$. DP 4.33
Z5191 2A rating $£ 1.00 \quad 100+0.40$
25192 3A rating $£ 1.00100+0.40$
Z439 Wire ended fuse. 20 mm 1.5A antisurge. Pack of $20 £ 1.00$
$Z 2440$ Miniature circuit breaker (MCB) rated 250 V ac 1.5 A . Size $51 \times 40 \times 19 \mathrm{~mm}$. Made by Heinemann. Only $£ 2.00$
$\mathbf{Z 2 4 4 4}$ Protector 14A. This surge arrestor made by Beswickis designed 10 protect equipment from voltage surges. DP 5.27. Our prices: $£ 1.00$ each, $100+0.60,1 k+0.40$
289628 way industrial fusebank, 32A 415 V ac. Totally shrouded incoming terminal will accept conductors up to $120 \mathrm{~mm}^{2}$. DP(1987) 30.55. Our clearance price $£ 10.00$

HARDWARE

More Hardware - seems to be very popular, especially the smaller sizes for modelmakers. However, most of this lot is a bit on the large side - you don't really need M 16 nuts to hold bit of veroboard in a case!!
K830 M8 screws/bolts. Good assortment from $16-90 \mathrm{~mm}$ long c / s. hex, pozi, some hi-tensile. All steel! Pack of $50 \quad £ 3.80$.
K831 M10 Bolts - mostly high tensile hex head, lengths from $16-90 \mathrm{~mm}$. Pack of 20 £3.20

K832 M12 Bolts-mostly high tensile hex head, lengths from $40-150 \mathrm{~mm}$. Pack of $10 £$ 2.40

K833 M6 pack. Excellent value - contains screws in various lengths and head. Mostly steel, some hi-tensile. Pack of 100 £4.50

K553 2BA screws : c/s, cheese, hex, pan heads, slot and pozi in lengths from $7-63 \mathrm{~mm}$. Pack of 100 £2.60.

Z7001 M 16 Full nut-you really shouldn't be with out some of these! Pack of $12 \mathbf{£ 1 . 0 0 .}$

Z7002 Threaded hoop overall length 490 mm . Ends are threaded. M10 to a length of 75 mm . They are $\mathbf{1 2 5 ~ m m}$ apart. Pack of $\mathbf{3}$ for $£ 1.00$

Z7003 M 18 nut and hex bolt 30 mm long. 3 pairs $£ 1.00$
27004 M10 Masonry anchor. Drill 12.5 mm hole 40 mm deep and insert. Use M10 screw to force anchor into brickwork. Pack of 8 £1.00
27005 Screw and nut pack- $1 / 4$ "Whit: 25 each of $38 \mathrm{~mm} \mathrm{C} / \mathrm{S}, 25 \mathrm{~mm}$ C/S, 63 mm (threaded 14 mm) hex bolts and 25 mm (threaded 14 mm) hex bolts +100 steel nuts. Pack of $\mathbf{2 0 0}$ parts $£ 5.00$

27006 Supertwin rufscrew, 8×1.25" combination pozi/straight pan head. Zinc plated. Great as woodscrews. Boxes of 250 $£ 3.00$
$27007 \mathrm{M} 3 \times 50 \mathrm{~mm}$ csk pozi steel screws. Boxes of $250 £ 4.00$
$29029 \mathrm{M} 4 \times 50 \mathrm{~mm}$ pan head pozi steel screws 50/£1.00; box of $200 £ 3.00$

Z9030 M6 x 50 mm csk slot sleel screws 16/£1.00; box of $100 £ 3.00$

29031 M8 x 60 mm (23 mm threaded hex head steel bolt $8 / £ 1.00$; box of $200 £ 12.00$

Z9032 M10 $\times 35 \mathrm{~mm}$ hex head bolt HT steel 8/£1.00; box of 100 £6.00
$29033 \mathrm{M10} \times 90 \mathrm{~mm}$ hex head bolt HT steel 4/£1.00; box of $100 £ 12.00$
Z2373 M16 Full nuts, steel - pack of $6 \mathbf{\$ 1 . 0 0}$ Z2374 M16 Half nuts, steel - pack of $8 \mathbf{8 1 . 0 0}$ 22371 5/16"x1" UNC hex head bolts. A pack of 10 costs $£ 1.00$

Z2372 $3 / 8 \times 1.25^{\prime \prime}$ set screws, hex head, pack of 6 for $£ 1.00$

22365 M6x16 Hex head set screws, pack of 25 for $£ 1$. Box of 200 is $\mathbf{~} 4.00$
$22366 \mathrm{M} 6 \times 1 / 4$ as above. Pack of 50 for $\Sigma 1.00$

22367 5/8" UNC half nut, pack of $10 £ 1.00$
$223685 / 8^{\prime \prime}$ UNC thin nut, pack of $20 £ 1.50$
22369 1/4" $\times 1.5^{\prime \prime}$ UNF hex head high tensile steel screws, Pack of 25 for $\mathbf{£ 1 . 5 0}$. Box of 200, $£ 8.50$
22370 1/2"×1/2" as above, pack of 10 for $£ 2$ or a box of 50 for $£ 8$

K552 4BA Screw mix 200 £2.75
K812 M6 Screw mix 100 for £2.50
K596 Pack of 200 assorted nuts, believed to be all BA , from 2BA to 8BA. Mostly steel. £2.40

K595 Big mix of screws - very few BA, mostly metric, BSF, Whitworth, DZU etc. Tremendous variety of heads - cheese, cs, pan, hex, allan, round etc, etc. As for size, well we've seen some as small as 3 mm and a few as iong a s 80 mm . There's even some 12.5 mm dia in this pack! You'll probably also find a few odd clips, washers, nuts etc, too. 500gm pack $£ 2.70$

K812 Pack of 100 assorted rivets $£ 1.80$
K813 Pack of 100 self tapping screws, sizes $4-8$, lengths to 20 mm most with pozi head $£ 1.50$
$Z 2378$ T03 Silicone impregnated insulated washers. Pack of 25, £1.00
25175 High quality heavy duty ball type castor 63 mm dia, chromed steel with brass insert with 9.3 mm threaded insert. DP 6.25 Our price $\$ 4.00$

Z5176 Smaller brown ball type castor 50 mm dia made by Kenrick. Stel insert with 8 mm threaded Insert. DP 3.15 Our price £2.50

22429 Black plastic foot 19 mm dia $\times 5 \mathrm{~mm}$ thick with 4.5 mm dia hole. Pack of $20 £ 1.00$ $100+.03$
22375 High quality Sifam $1 / 4^{\prime \prime}$ collet knob S150, 15.5 dia $\times 14$ high black knob, cap, and nut cover. Pack of 10 of each $\mathbf{~} 4.20$
$Z 5269$ Olivetti cartridge ribbon - correctable carbon type 16.5 mm wide $\times 120 \mathrm{~mm}$ long, lexicart $90 / 92$ Type No. $568 \mathrm{~N} £ 1.00$ each
25270 Black nylon ribbon type NCR 499 12.4 mm wide by Caribonum. Box of $4 £ 2.00$
$\mathbf{Z 2 5 0 2}$ Olivetti Summa Add ribbon. Twin spools, black $£ 1.00$.
Z23154 Nylon printer ribbon type N465, ref KSR430. Boxed. $£ 1.50$

> NEWSLINE weekly update on new stock. Call 0891505121
> (48p per min. peak 34p off peak)
$Z 2437$ Nylon stand off 2.5 mm high. OD 5.8 mm ID 3.2 mm . Pack of $1000 £ 3.00$

22438 White plastic oblong stand off (for 7 seg LED's) $19.5 \times 10.2 \times 12.2 \mathrm{~mm}$ high. Pack of 100 £2.00
25261 Orange ABS case by boss, type 2002. $100 \times 50 \times 25 \mathrm{~mm}$. Threaded brass inserts and PC slots. 2 BIMdaptors included. DP 1.56. Our price 80p

Z9028 Strong compression spring 125 mm long $\times 31 \mathrm{~mm}$ dia. $£ 1.00$
Z2431 Compression spring 62 mm long $\times 12$ mm dia. Pack of $6 £ 1.00$

25177 Self adhesive grey cable clip 38 mm long. Will take up to 6 mm dia cable. DP 3.48 . Pack of $20 £ 1.0010+$ packs 0.60
22391 Cable gland in black nylon for $8-13 \mathrm{~mm}$ dia cable. Pack of $5 \mathbf{\Sigma 1 . 5 0}$

22392 As above best for $7-10.5 \mathrm{~mm}$ cable. Pack of 5 (DP 2.22) £1.20
25152 Plastic Blts. 100 assorted sland offs etc. $£ 1.00$
2635 Digltal multimeter case DP2010, $110 \times 80 \times 20 \mathrm{~mm}$ with cut outs for switches and terminals. Aluminium fascia plate. 2 for $£ 1.00$
$Z 343$ Ceramic insulating beads. Pack of 100 £1.00
Z1669 Veropins, wirewrap 18-0226. Pack of 500 £2.00
22443 TO3 heatsink - bolts on top of transistor using same fixing screws. Diecast ally $25 \times 41 \times 27 \mathrm{~mm} . \quad 7.3^{\circ} \mathrm{C} / \mathrm{W}$.DP 1.93. Our price 75p
Z2381 Small heatsink, $25 \times 7 \times 6 \mathrm{~mm}$, for sticking on top of DIL IC's. Pack of $5 \mathbf{8 1 . 0 0}$

INSTRUMENT CASE

Z8969 Superb heavy duty steel instrument case finished in light grey $426 \times 290 \times 78 \mathrm{~mm}$ with 4 plastic screw on feet. This was an Isolan repeater for use on a data network, and although the contents have been removed (before being used), the front and back panel remain, the former having 4 oblong red LED's and the latter a fused, suppressed IEC mains inlet, on/off DP rocker switch and 2×15 way D sockets joined to 16 way IDC skts with a short length of ribbon cable. Ther's a 60 mm circular cut-out for a speaker on one side and mounting pillars in the base. Just look around and see the price this type of high quality case normally costs! - somewhere around the $£ 30-$ £40 mark - then compare it to our low, low price - Just £9.95

SEMICONDUCTORS

MICROPROCESSOR CHIPS
P8035AHL Intel 8 bit CPU, 11 MHz Our Price $\$ 3.00$

8051 AH Phillips 8 bit CPU Our. Price $£ 1.00$
M80C31F OKI 8 bit CPU 16 MHz Our Price $£ 2.00$

N8097-90 Intel 16 bit H-MOS CPU 12 MHz PLCC 68 pin. DP 13.86. Our Price $\mathbf{£ 6 . 0 0}$

R80C186-12 Intel 16 bit CMOS CPU. 12 MHz clock. PLCC 64 pin. DP 28.37 Our Price $£ 12.00$

CP82C59A CMOS programmable interrupt controller. DP 3.00 Our Price $\mathbf{\Sigma 1 . 5 0}$

P8256AH UART: DP 7.00 Our Price $\mathbb{£ 2 . 5 0}$
22507 L4962 1.5A switching regulator, 16DIL. 5.1-40V. DP 2.50 Our Price $£ 1.50$

Z2513 L4960 2.5A switching regulator, 7 pin TO220. 5.1-40V. DP 2.64 Our Price £1.80

22508 LF13331 quad SPST J-FET analogue switch. 16DIL. DP 7.58 Our Price £3.00
$Z 2509$ OPA27 low noise precision op-amp 8DIL. DP 1.86 Our Price $£ 1.00$
$Z 2510$ SL670C gain controlled pre-amp. 8DIL DP 2.31 Our Price $£ 1.50$

Z2511 TCA785 16DIL chip by Siemens $£ 1.50$
Z2512 LF398N sample and hold amp 8DIL. DP 2.64 Our Price $\mathbf{\Sigma 1 . 5 0}$

22514 ZTX751 PNP TO92 transistor rated 80V, 2A, 1W. DP 0.48 Our Price 5 for £1.00; $100+0.14 ; 1 k+0.10$

22524 2N3703 PNP TO92 transistor rated 50 V 0.2 A 360 mW . Our normal price is 12 p . Surplus stock offered at 15 for $£ 1.00$; 100+ $0.04 ; 1 k+0.025$

Few SGS Chlps:

22481 M491BB1 List 11.10. Our price

£4.50

22482 M293B1 List 7.40. Our price $£ 3.00$ and an ITT chip:
22483 SAA1293-02 List 7.64. Our price 83.00

22484 2N3903 TO92 transistor. 12 for £1.00; $100+0.04$
Z2112 Ceramic filter 5.5 MHz by Murata. 5 for $£ 1.00$
$Z 2515$ VN2410L TO92 N-channel MOSFET. 1A 0.4W. DP 1.08 Our Price 3 for £1.00; 100 $+0.18 ; 1 k+0.14$

22516 AD517JH TO99 converter £3.00

22517 LM350K steel variable voltage regulator, 1.2 to 33 V at 3A. DP 7.20 Our Price £3.50

22523 TICP106D TO92 SCR rated 400 V 100 mA . DP 0.56 . Our Price 6 for $£!.00$; $100+0.09 ; 1 k+0.06$

22518 BYT13-1000 fast recovery diode rated 3A 1000V. Plastic body, axial leads. DP 0.35 Our Price 5 for $£ 1.00 ; 100+0.13 ; 1 k+$ 0.09

22519 AD667JN 28DIL D/A converter, 12 bit uP compatible. Extremely flexible. DP £28.18 Our Price £10.00

22520 SN75372 8 pin dual MOSFET driver. DP 1.74 Our Price $£ 1.00$

Z2521 Crystal, HC60 20.000 MHz . Only $50 p 100+0.25$

22522 Watch crystal 32.768 kHz , case 2.7 mm dia $\times 8 \mathrm{~mm}$. Pack of $3 £ 1.00100+0.15$

OPTO

22498 Toshiba TLC501 LCD. 24×2 line display with standard connexions (supplied). V. similar to our $22171 \quad £ 9.95$

A couple of small matching rectangular LED's, $3.8 \times 1.75 \mathrm{~mm}$:
22500 Green Pack of 12 £1 100+. 05
$1 \mathrm{k}+.04$
22501 Red Pack of $12 £ 1 \quad 100+.05$
1k+. 04
22505 HCPL2531 dual optocoupler, 7\%
CTR. DP 3.52 Our Price £1.00
22506 HCPL2630 dual optically coupled high speed logic gate. DP 5.24 Our price £2.00
$Z 1935$ LED clip for right angle mounting to PC board. Plastic holder for 5 mm LED has 2.3 mm dia splgot. Great value at 40 for $£ 1.00$; $1000+0.015$

PANELS

25264 Handy black plastic panel $102 \times$ 22 mm with 5 pin 180° DIN skt. 2 phono skts and a single wire aerial/earth socket. Pack of $10 £ 1.00100+0.051 K+0.035$
25263 Panel $80 \times 60 \mathrm{~mm}$ with FPT100A phototransistor, LM324 quad op amp. 24 V SPCO heavy duty relay. BC546, diodes, R's and C 's. Smashing little board - only $£ 1.00$

Z5262 Panel in the Z5089 etc. series as listed in main Bargain List. This one has $8 \times$ 2764 in sockets +1074 LS chips. Only $£ 4.00$

22529 Thick film circuit - small PCB $51 \times 12 \mathrm{~mm}$ with 13 surface mount transistors R's are etched into substrate. Pack of $5 £ 1.00$ Z4252 Seat belt alarm kit. Just a few of these remaining at £3 each
25271 Some more Currah Microspeech returns, for the Spectrum. No tape or handbook, sold for spare parts only. The $67 x$ $65 \times 18 \mathrm{~mm}$ case has a 28 w edge socket. phono lead, 3.5 mm jack plug lead and phono socket. Inside is 78M05 reg. SP0256 speech chip and 2 support chips, trimming cap. transistor etc Only $£ 1.50$ each to clear.
25272 PCB 71×64 with SP0256 speech chip . 2 support chips and few other bits and 5 pin DIN plug. 22way edge connecter. These are returns and may be faulty - but they are only 50p each!!

SOFTWARE

COMMS SOFTWARE
A few odds and ends delivered with a parcel. As far as we can see, all are new and complete as described below:
Z6003 Multicom - handbook + 5.25" disk for Epson QX10/4.1A

Z6004 Multicom - handbook $+3,5^{\prime \prime}$ disk for Apricot PC/XI 4.24

Z6005 Multicom + handbook + 3.5" disk version 4.16

Z6006 Vicom - handbook + 5.25" disk for Apple

26007 Sage Chit-Chat - Handbook + 3.5" disk for Apricot V2. 2

Z6008 Dial-Up Educational - handbook + 5.25 " disk + dongle for RML480Z
$Z 6010$ Dial-Up Educational - handbook + 5.25" disk for RML Nimbus

Z6011 Dial-Up Personal - handbook + 5.25" 80 track disk for BBC B, B+ \& Master

Z6013 Dial up Personal - handbook + 3" disk for Amstrad PCW

All the above are at the same price - now reduced to just $\mathbf{8 1 0 . 0 0}$ each - please give 2nd/3rd choice as numbers are very limited.
Z4266 Software tape for Spectrum "Mountains of Ket". Returns - may not work. 4 for $\$ 1.00$

SOUNDERS

$Z 2376$ Sub-min buzzer 12 dia $\times 8 \mathrm{~mm}$ high. PC mounting by Star QMB111P. Only $£ 1.00$

22377 Star CMB 6V buzzer $22.5 \times 15.8 \times$ 14.4 mm . PCB mounting. High quality, low cost - only £1.00
Z1771 Sounder QMB06 by Star. 3 for £1.00

CONNECTORS

Z042 2 pin DIN speaker sockets, PC mntg. Pack of $25 £ 1.20$
Z4350 A set of 3 different pairs of test leads, offering great value! - a) 67 mm long, 2 mm probes both ends; b) 110 mm long, 2 mm probes one end, 4 mm plugs the other; and c) 90 mm long silicon rubber, 2 mm probes one end, shrouded 3 mm sockets the other. All are red and black pairs. All three for just £2.00 $Z 73940$ way DIL header plug, gold plated. 3 for E 1.00
Z1485 RC4200-8S 8 way gold plated socket - matches McMurdo red range, but blue $£ 1.50$
Edge Connectors
Z1828 31 way double sided $0.1^{\prime \prime}$ pitch gold plated PC mntg $£ 1.00$

Z1668 38 way single sided 0.1" pitch solder tags. $40 p^{\circ}$

2511719 way single sided 0.1" pitch takes flexible wiring and locks into place. Sample free. $20 / £ 1.00 ; 100+0.03 ; 1 k+0.02$

22504 PS2 Keyboard adaptor 6 pin mini -DIN plug to 5 pin 180° socket. Carded. £2.00
22504 Useful battery holder - 3AA side by side with lead and attached. Supplied with double sided sticky pad. Bagged. 25p

252659 way ribbon cable just under 1 m long with 10 pin DIL plug (0.1 pitch) one end and 9 way header skt the other. Pack of 10 leads $£ 2.00$

SURFACE MOUNT

SURFACE MOUNT SURPRISE !!

A parcel of 650,000 devices has been purchased and reveals a wide selection of mainly transistors and resistors. We're selling this in a variety of packs as described below :

KS102 Transistors - about a dozen different types plus a few diodes, mostly SOT23. Type numbers include BCF29/30, BSR15, BC856, BCV71, BCW29/71/72/81. Supplied with code sheet. Pack of 100 for $£ 3.00$

KS103 Resistors. $0.125 \mathrm{~W} 2 \%$ in a range of values from 3R3 to 10M. Although there is a fair range (about 50 values), many are E24. Pack of 1000 for $£ 3.00$.

ALSO AVAILABLE INDIVIDUALLY ARE THE FOLLOWING PARTS:

Type Mark P/NEqulv Vceo ic $\varepsilon 1 \mathrm{pk} 100+1 \mathrm{k}+$ BC856 3AR P BC556 15 . 03 . 02 $\begin{array}{lllll}\text { BCF29R } & \text { C77 } & 15 & .03 & .02\end{array}$ $\begin{array}{lllllll}\text { BCF30R } & \text { C9 } & P & \text { BC559 } & 12 & .04 & .03\end{array}$ $\begin{array}{lllllllll}\text { BCV71 } & \text { K7 } & \text { N } & \text { BC546A } & 60 & 0.1 & 15 & .03 & .02\end{array}$ BCW29R C4, P BC558A $20 \quad 0.115 \quad .03 \quad .02$ BCW71R K1,4 N BC547A $450.1 \quad 15$. 03 . 02 $\begin{array}{lllllll}\text { BCW72R K5 } & \mathrm{N} & 8 C 547 \mathrm{~B} & 15 & .03 & .02\end{array}$ | BCW81R | K31 | N | BC547C | 15 | .03 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| BSR15R | 71 | P | 2N2907 | 12 | 04 |

(b) Dlodes

BZX84 - C18V(Y6) 18 V 350 mW zener. Pack of 10 for $£ 1.00 .100+.051 k+.03$

POWER SUPPLY CAPACITORS

 Incredible value - these two jumbo electrolytics are offered at a fraction of their normal price!! Screw top cans made by Siemens, type B41455 Z5146 10,000 μ F 100V $105 \times 64 \mathrm{~mm}$ dia $£ 4.00$; Box of $20 £ 60.00 ; 100+2.00 ; 1 k+1.70$ Z5147 4700 HF 100V $105 \times 51 \mathrm{~mm}$ dia $£ 3.00$; Box of $35 £ 70.00 ; 100+1.50 ; 1 k+1.20$
STOP PRESS -STOP PRESS-STOP PRESS-STOP

25292D 'Power one' power supply. Conventional unit, $120 / 240 \mathrm{~V}$ input, output 15 V @ 1.5A fully stabilized. Part enclosed size $123 \times 102 \times 54 \mathrm{~mm}$. Comprehensive data supplied $£ 10.00$

Z5293D 'Power One' power supply. Conventional unit, 120/240V input, outputs $+5 \mathrm{~V} @ 2 \mathrm{~A}_{\mathrm{i}}+$ or $-12 \mathrm{~V} @ 0.4 \mathrm{~A} ;-5 \mathrm{~V} @ 0.4 \mathrm{~A}$. Each output uses a 723 regulator and has a preset for adjusting voltage. With data $£ 14.50$

25289 Push button bank - $\$ 1$ switches, all DPCO interlocking. $£ 1.00$

25290 Push button bank - 6 switches, 4 interlocking DPCO and a further 2 DPCO interlocking 60p

Z5291 Push button bank - 6 switches, 4 interlocking DPCO and a a further 2, one nonlocking $D P C O$, the other locking 4 pole changeover. 60p
$Z 2447$ Siemens dual thermistor type P6350. Pack of $10 £ 1.00 \quad 100+0.05$

RESISTORS

Z320 1 Watt wirewound pots - 2 additional values, 250 R and 1 k .
2761 OR056 wirewound resistors 10\% type HWR21. 0.5W 10 for $\$ 1.00$
Z1983 Thermistor, pack of 20, type VA1040. $£ 2.00$
Z414 30M 10\% resistors. Pack of 10 $\$ 1.00100+.06$
K446 Bourns mini cermet trimpol type 3362. 200R. 3 for $£ 1.00$

SIL networks in original packing. 9 pin, 8 resistors. DP 38p. Available in these values, all the same price: Pack of $10 £ 1.00 ; 100+$ $.05 ; 1 k+.04$
25195 330R
25196 10k
Z519747k
Z2394 TO5 case cermet trimpots type 81E. Value 50R. Pack of $6 \mathbf{\Sigma 1 . 0 0}$. Plastic case of $50 £ 4.00 .10+$ cases $£ 3.00$
Z2359 miniature pot 17 mm diameter with 6.75 mm bush and splined spindle, PC mounting. 1 k lin. Pack of 4 for $£ 1.00$.
Z2388 Plastic stand-off for $3 / 4^{\prime \prime}$ trimpots (our 75CER type) Pack of 50 £1.00
25208 PR52 2.5W wirewound resistors, 10k. In boxes of 500 £5.00

25209 As above but 1 k 2 . Box of $500 £ 5.00$
Some more Diplohmatic trimmers, 10 go with those on page 35 of $B / L 75$

Type156 (like 146)
Values available:
200R 500R 10 k 20 k 50 k 100 k 500 k 2 M Prices (any mix) $1+56 p \quad 100+0.28$

Type 382
Value available: 500R
Price $1+44$ p 100 +0.22

Type 386: (like 383)
Values available:
386
1k 10k 50k 100k
Prices: $1+44$ p 100 +0.22

PIR $55-5701$ PRIS5

22530 Precision helical pot by Spectrol, model 534. 3Watt 10 turn, linearity $\pm 0.25 \%$. Value $100 \mathrm{R} \pm 5 \%$. DP 4.23 Our Price $£ 1.00$

THE POW-POW-POWER PAGE!!!

Some great value power supplies - both conventional and switched mode - all offered at a fraction of their original cost!!

25278 Plug in wall type, 24 V ac 100 mA output on 2 m lead. $\mathbf{£ 1 . 7 5 1 0 0 + 1 . 1 0}$

Z5279 Plug in wall type switchable nonregulated $3-6-9 \mathrm{~V} 100 \mathrm{~mA}$. Comes complete with multiway reversible spider lead (worth 99p on It's own!). Special Price ع2.00 100+ 1.25

Z5224 Jupiter Ace mains adaptor (there's a bit of history!) plug in type 240 V , output 9 V 800 mA on 2 m lead with 3.5 mm plug. $£ 3.20$

Z5227 Plug in 240 V ac Beautronix power supply. Output 9 V 333 mA on 2 m lead with 2.5 power socket. £2.00

Z5219 Sinclair $Z X$ powers supply model UK700. 240V ac in, 9V 0.7A DC out. 2 core mains lead. 3.5 mm jack lead output. $£ 2.50$

Z5220 Sinclair ZX powers supply model Euro1200. 220V ac in, 9V 1.2A DC out. 2 core mains lead. 3.5 mm jack lead output. £3.00

Z5221 Sinclair $Z X$ powers supply model Euro1400. 220V ac in, 9V 1.4A DC out. 2 core mains lead with 2 pln Euro plug. 2.1 mm power socket lead output. £3.50

Z5222 Psion Organiser power supply. Plug in type, $220 / 240 \mathrm{~V}$ ac. Output 10.4 V 175 mA on 2 m lead with 2.5 po wer plug $£ 2.00$

Z5223 Psion printer power supply, input $220 / 240 \mathrm{~V}$ ac via lead and 2 pin Euro plug. 10.4 V 600 mA DC output on 2 m lead with 2.5 mm power plug. $£ 3.00$

$Z 5280$ Neat switch mode PSU on panel $120 \times 100 \mathrm{~mm}$ and only 32 mm high. Mains input via skt supplied, 3 outputs on socket are +5 V @ 2A; +12V@ 0.3A;-12V@ 0.2A. These have been removed from equipment, but are clean and in full working order. $\mathbf{£ 7 . 5 0}$

25225 Universal mains adaptor, plug in type 240 V ac. Output switchable 3-6-9V @ 300mA on end of short lead with 2 pin socket $£ 2.00$

25226 Plug in 240 V ac unlabelled power supply with short lead and 5 pin DIN socket. Outputs: $18 \mathrm{~V} @ 250 \mathrm{~mA}$ ac and $10 \mathrm{~V} @ 500 \mathrm{~mA}$ ac. $£ 3.00$
25276 Plug-in-wall power supply with $2 m$ lead fitted with 2.5 mm power socket.
Output 12 V 0.2 A DC. Fitted with thermal fuse. $£ 2.00$

SWITCH MODE PSU's

25256 Switch mode PSU made by Tamura Corporation. Board $195 \times 100 \mathrm{~mm}$ with outputs on PCB pins. Input $120 / 240 \mathrm{~V}$ ac; Outputs: +5 V @ 7.5A; +12V @ 1.25A (2A peak); -12V @ 0.1 A . All this for just $£ 12.95$

25257 Switch mode PSU on PCB $190 \times 78 \mathrm{~mm}$. 120/240 V ac input. Outputs: +5 V @ 3A; +12V@1.2A; -12V@ 0.1A. Made by Tamradio, Japan. Only $£ 7.95$

2660 Astec switched mode PSU type AA7271. This small PCB, just $50 \times 50 \mathrm{~mm}$ will accept $8-24 \mathrm{~V}$ input and give a stable 5 V dc at up to 2A output. The 6 transistor circuit provides current overload protection, thermal cut-out and excellent filtering. Offered at a remarkably low price.
Price
55.00

BM41012 Superb switch mode PSU made by Astec. Enclosed case $175 \times 136 \times 65 \mathrm{~mm}$ with switched and fused IEC mains inlet. $160 \times 80 \mathrm{~mm}$ PCB with output pins extended to external connector. Input $115 / 230 \mathrm{~V} 50 / 60 \mathrm{~Hz}$. Outputs: +5 V @ 3.75 $\mathrm{A} ;+12 \mathrm{~V}$ @ $1.5 \mathrm{~A}_{\mathrm{i}} ;-12 \mathrm{~V}$ @ 0.4A. Total wattage 65W £14.95; $25+11.70 ; 100+9.75$

MOTORS

$\mathbf{2 5 1 7 1}$ Open construction mains fan. Five blade plastic blade 110 mm dia (easily removable). Ex-equip in good condition, E2.50.
25246 Mains synchronous motor with easily accessible gearbox giving a final speed to the 5.5 mm dia 12 toothed gearwheel of 0.2 RPM (12 revs per hour). Only e3.95; 100+ 2.50

ARE YOU A BARGAIN LIST SUBSCRIBER? DON'T MISS THE BARGAINS!!

CAPACITORS

$2521822,000 \mu \mathrm{~F} \quad 16 \mathrm{~V}$ electrolytic can 35 mm dia $\times 102 \mathrm{~mm}$ long. Tag ends. Silly price only 81.00 each
K265 4700uF 40V Phillips can, PC mntg 47×35 dia. 2 for $£ 1.00$
25180 1000uF 10 V radial electrolytic by Nippon 13 dia $\times 25 \mathrm{~mm}$. Pack of $10 \mathrm{£1.00}$ $100+0.05$
25181 330uF 16 V radial electrolytic by ITT. $13 \mathrm{dia} \times 21 \mathrm{~mm}$. Pack of $14 \mathrm{£} .00100+0.035$
$2527440 \mu \mathrm{~F} 2.5 \mathrm{kV}$ capacitor by Bosch. Size $155 \times 100 \mathrm{~mm}$ dia. Superb quality $£ 3.50$.
Z1529 0.22uF ceramic cap. 5 mm pitch. Pack of 30 £1.00
Z1965 0.01uF disc ceramic 6 mm dia. Pack of $40 £ 1.00$

Solid dielectric trimmer caps in 3 values, all PC mounting:
$Z 2454$ 5.5pF Phillips 808 series, polyethylene film DP 36p 8 for $81.00 ; 100+$ 0.06

Z2455 10pF Phillips 809.05 series PTFE film. DP 1.663 for $£ 1.00 ; 100+0.15$
Z2456 18pF As above, 3 for $£ 1.00 ; 100+$ 0.15

PANELS

25203 Relay panel - some panel, thisl 50, yes 50 DPCO 24 V DC min relays, Omron type G2V (our type W834) on PCB $230 \times 160 \mathrm{~mm}$ with $2 \times$ DIN41612 64 way plugs. At 1 off prices, this would cost around $£ 100$, but you can have a complete panel at just 20 p per relay - that's only $£ 10.00$!
25217 Relay panel - Eurocard $160 \times 100 \mathrm{~mm}$ with 64 pin DIN41612 plug, containing $8 \times$ Omron G2V 24 V min DPCO, LSOO, 125 and 14 all in sockets, 4 red LED's, R's, C's, etc. $\Sigma 2.00$
Z5244 Mosfet panel: $56 \times$ VN0808M (DP 1.01 eachl) 80 V -channel 1W 2A device in TO237 case $+28 \times$ ILCT6 8 pin opto isolators, also $30+\mathrm{CMOS}, 74 \mathrm{SC}$ etc; 26 SIL networks, 560.1 uF caps and a few other odd bits. Super value - only $£ 7.50$

25231 Memory panel, contains 208416464 k RAM chips all in sockets. $£ 30.00$

Z5232 As above, but chips are soldered in. $E 20.00$
Along with the panels Z5231/2 mentioned on page 12 (which are here now) there are a great many packed with hi-tech chips - not just 74LS, but Z80 and other processor chips, EPROM's etc. The boards are $430 \times 320 \mathrm{~mm}$ and mostly contain over 250 chips, date coded '84. Order Code 28967 - clearing at £5 per panel - but to get a good mix, you'll need 2 or 3 boards.

More GEC Cablevision units - these were the rack mounted distribution panels. 2 types available as below:

Z5204 Diecast housing $252 \times 140 \times 25 \mathrm{~mm}$ (subscriber module) contains PCB with lots of nice high frequency bits, much of which is containedwithin 2 diecast boxes bolted on to the board. Most of the transistors (there are 17 of them) are BF980, BFR9CA91A BFW92 etc. Single output socket, 2 DIN4 1612 plugs. Great value at $£ 4.50$

25205 Larger diecast housing $252 \times 140 \times 57 \mathrm{~mm}$ with 2 PCB's each containing a number of HF parts, pot cores, crystals, etc. These are input modules - 1 traffic and 1 data panel $£ 4.40$
24295 Although listed in our main Bargain List, we have large stocks of this panel, and it's not selling very quickly - although it contains a number of interesting and useful parts. There's a 27 C 64 Eprom in a socket, 80C85A microprocessor, $2 \times 82 \mathrm{C} 51 \mathrm{~A}$ support chips +5864 RAM, as well as 8×74 HCT chips. There's a small length of ibbon cable to a small sub-panel with $2 \times$ MC1488 and 1489 , and 3 DIL header plugs. These error correction cards by Tulsedala originally cost over $£ 70$ each - they were in last year's catalogue at $£ 10$, reduced this year to $£ 5$. Will you buy them at £2.50?
21641 PCB. Printer driver board by Teijin. Contains M5L8041A 8×74 series, 3.579545 MHz xtal etc $£ 2.00$

25167 ' S ' module-like $\mathrm{Z492} / 3.11$ pin plug in module $80 \times 50 \times 50 \mathrm{~mm}$ with a small PCB inside containing $2 \times$ PC 184 L , R's, C's, etc. 4 for $£ 1$
Z5210 Power supply panel - PCB $150 \times 65 \mathrm{~mm}$ that has been partially assembled but nit soldered. Contains $79 \mathrm{M} 05,741, \mathrm{BDX} 339$, FRC730, 4×1 N $4001,10,000 \mathrm{uF} 10 \mathrm{~V}$ cap + R's, C@s etc. (No transformer) Only $£ 1.00$

25211 Another smaller PSU panel $97 \times 55 \mathrm{~mm}$, again not soldered. Each board contains 9×1 N4001, 121 C thermal fuse etc. 8 panels (72 rects) for just $£ 1.00$

2911 Found some more of this useful 135×135 L shaped panel - nearly a complete radlo front end. Although the tuning cap is missing, there are 2 trimmers, IFT's, lots of R's and C's, 2xBF241 FET, BF194, BC208A, $2 \times B C 148 \mathrm{C}, 2 \times$ BC149C etc. Best of all, the board hasn't been soldered, so the components are easily removeable. All this for just $£ 1.00$

OPTO

$Z 2434$ Dual 7 seg LED, type TDDR5250 by TFK. Red common anode 13 mm digit height. DP 1.14. Our special low price (we have 10000 to clear) 2 for $£ 1.00 ; 100+0.25$; $1 k+0.18$

Z2435 Single 7 seg LED 10 mm high digit. Type LN514RK. Common cathode. 4 for $\mathbf{\varepsilon 1 . 0 0 ; ~} 100+0.15 ; 1 k+0.10$

Z2362 MS463M 0.6" common cathode 4 digit multiplexed display on PCB 70×30 with 15 way connector. Intended for digital clock use. Supplied with pin out. ONLY £1.50
2 more LCD's in small quantitles, both fitted with pins:
Z2357 6 digit $0.5^{\prime \prime} 50$ pin device $£$
$Z 23582$ digit $0.5^{\prime \prime} 18$ pin device £1
Z2432 LCD 8 digit 10 mm high. Single sided 36 way edge connector. Only $£ 2.00 \quad 100+$ $1.001 k+0.80$

LED BAR MODULES

4 couple of large LED light bars in 16 DIL package, 10 mm high. Made by HP.

Z2462 HLMP2685 HE red 80 mcd @ 20 mA . DP 2.19. Our price $£ 1.00 ; 20+0.70$

Z2463 HLMP2785 Yellow 70 mcd @ 20 mA . DP 2.19. Our price $£ 1.00 ; 20+0.70$

Using these, you could build up a massive 7 seg display - each module being 1 element. (In practise, to maintain proportions, you'll need 10 displays for each 70 mm high digit details on request)

Z1854 7 seg LED 81720R - giant 1" digit, red. Common anode. $£ 1.00$ each
Z1855 As above but common cathode $\$ 1.00$

21857 Single 7 seg LED LA6480, matches above - green $0.56^{\prime \prime} 4$ for $£ 1.00$
Z1858 7 seg LED LA301MA green 0.3", CA. 4 for $£ 1.00$
Z1859 7 seg LED LA301MK green 0.3" CK 4 for £1.00

224363 mm red LED's with preformed cropped leads 7.5 mm long. Super buy for quantity user - pack of $100 £ 3.001000+0.02$
22461 PC mntg packaged red LED - mounts at right angles to PCB. $10.5 \times 8 \times 3.9 \mathrm{~mm}$. LED is 3 mm . Ore type 9301A. Pack of 10 £1.00 $100+0.05 ; 1 k+0.04$

21934 Stackable red LED - white casing round $6 \times 3.5 \mathrm{~mm}$. Pack of 10 for $£ 1.00$
Z1932 Red square LED with rounded corners, 5 mm . Pack of 15 for $\mathbf{\Sigma 1 . 0 0}$ Z1933 Thin rect. red LED $-5 \times 1.5 \mathrm{~mm}$. Pack of 20 £ 1.00

22467 4N25 optocoupler - transistor output. DP 0.80 . Our price 3 for $£ 1.00$ 22469 CNY17-1B oplocoupler, transistor output 6DIL. DP 0.67. 3 for $£ 1.00$

22470 HCPL2300 optocoupler by HP. Logic gate output. DP is astaggering 6.33 - our price $\mathbf{E 2 . 0 0}$
22466 ILQ1 16 pin DIL device, probably quad opto isolator, but no info. 2 for $£ 1.00$

Lampholders - rectangular snap in type that take LES bulb. Needs $16.1 \times 11.6 \mathrm{~mm}$ cut-out. DP (1978) 92p
25193 Red $3 / \& 1.00100+0.15$ Z5194 Green $3 / \varepsilon 1.00 \quad 100+0.15$ 22385 6V 5W SBC bulb. Box of 10, $£ 1.50$ 22459 Neon bulbs 5.5 mm dia $\times 15 \mathrm{~mm}$ long - wire ended 90 V neons at a great saving over normal prices! Made by VCH International. In packs of 100 at 84.00 10+ 3.00

ARE YOU A BARGAIN LIST SUBSCRIBER? DON'T MISS THE BARGAINS!!

Fibre Optic Cable

25245 Fibre optic cable, multistrand sheathed, 2.28 mm od, 0.095 mm sq. Type A181. Approx 5 m length $£ 4.00$

Z2476 Similar to above, but 3.6 mm od. £2/metre

22477 Single strand 1 mm dia. Approx 5 m length £2.00

22478 Single strand 0.2 mm dia. Approx 10 m (may not be in one length) $£ 2.00$

SEMICONDUCTORS

(a)

Diodes

Z2439 BZY88C36. 36 V 400 mW zener diodes. Pack of 100 £2.00. $1000 £ 10.00$
22465 Dual fast recovery diode BYW51-150A 150 V 20A. TO220 case. DP 0.99 . Our price 2 for $£ 1.00$
K129 8 AA113 diodes $\mathbf{\$ 1 . 0 0}$
K197 50 AA139 diodes preformed for horiz. mntg $£ 1.00$
K237 200 SD3 diodes, 2 joined back-toback, preformed $£ 1.00$
K242 10 S2AR2 rects, 200V 1A £1.00 K283 100 1 N922 silicon diodes preformed

K286 10 Germanium signal diode $£ 1.00$

22454 MPS5010 1.2V voltage ref, 2 pin TO92. 3 for $£ 1.00100+0.15$

Bridge Rectilier Clearance

22347 4A 200 V in line 6 for 21. 100+.09 $1 k+.06$

(b) Transistors

223832 2N6027 P.U.T DP 49p, Our price 6 for £1.00;100+.08 $1 \mathrm{kt}+.05$

22384 MPSA13 3OV Darlington TO92 transistor. Hie 10,000@ 0.1A DP 32p. Pack of 8 for $£ 1.00 .100+.061 \mathrm{k}+.04$

22453 TIPL762 NPN 6A 120W 350V transistor. DP $4.02 £ 2.00$
K448 12 MPSA92 $£ 1.00$
K449 20 BC258A $£ 1.00$
K447 10 BF419 $£ 1.00$
(c) Voltage Regs
$22460 \quad 78 \mathrm{M} 12500 \mathrm{~mA} 12 \mathrm{~V}$ voltage regulator at a super price -6 for $£ 1.00 \quad 100+0.091 \mathrm{k}+$ 0.06

224557805 riveted to small ally heatsink (unused) 5 for $£ 1.00$
2950 LAS1510 voltage regulator. 10V 1.5A TO3 case. 2 for $£ 1.00$
(d) Digital IC's

Z2452 74HCT164 4 for £1.00
(e) Linear IC's

22456 CA3161E BCD-7 seg decoder driver, with pin out $£ 1.00$
22457 CA3162E A-D converter, 3 digit display, with data. $\mathbf{2 2 . 5 0}$
Z4160 TDA1035. Versatile audio amp chip, with IF amp and demodulator. Electronic volume control. Max output 4 watts into 8R. Supplied with cct and data. Only $£ 1.00$

LOW COST SOUND CHIPS

A new range of sound effect chips is now being stocked. Supplied with typical circuit. UM34811A Melody generator £1.20 $100+0.75$
UM3562
$100+0.38$
UM66
3 gun sound yenerator $75 p$
3 Christmas carol medley 75p
$100+0.38$
$Z 2471$ SN75372 interface chip 50p
Z2472 LF398N sample and hold amp. 8DIL DP 3.94 Only $£ 2.00$
$Z 2473$ OP27 low noise precision op amp. 8DIL. DP 1.70. Only $£ 1.00$

2722 TDA2653A vertical deflection chip.
13 lead SIL package, with comprehensive data $\$ 1.00$
(1) Crystals
224648.000 MHz crystal HC16 case 50p

Data sheets giving pin-outs and brief spec are available on all above items at 10p each

TRANSFORMERS

25207 Torroidal transformer rated 75 VA . Mains primary, 3 secondaries: 7V@7A, 8V @ $1.5 \mathrm{~A}, 14 \mathrm{~V} @ 1.5 \mathrm{~A}$. Useful voltages at a low price - $\mathbf{2 4 . 5 0}$
25202 Torroidal transformer. This is the same series as our Z4290 type by Belclere - 75mm dia $\times 33 \mathrm{~mm}$ thick. Fixing by means of a tapped bush. Mains primary, secondary 14 7.5-0-7.5-14V@1.25A Excellent value at £2.95 each $100+1.50$

Z5206 Super transformer for railway and other modellers. Mains primary, secondary 16 V 3 A . Size $50 \times 55 \times 60 \mathrm{~mm}$ high. 61 mm FC. Great value for money, only $£ 3.00 \quad 100+2.00$ $1 k+1.50$

Some new mains transformers, ideally suited for PSU's:

25212 21V 1A Clamp, wires $60 \times 45 \times 50 \mathrm{~mm} \quad \mathrm{E1.50}$

Z5214	11 V	0.5 A	PC mntg	$53 \times 40 \times 4$
4 mm	£1.00			
Z5215	15 V	$0.25 \mathrm{~A} P \mathrm{PCmntg}$	$43 \times 33 \times 3$	
6 mm	75 p			

All the following are mains transformers, and have secondaries as shown. Current rating is estimated from size of transformer.

Z5233 17V 1A $56 \times 67 \times 53 \mathrm{~mm}$ £1.50
$Z 5234$ 14V $0.5 \mathrm{~A} 45 \times 54 \times 41 \mathrm{~mm}$ £1.00
$\mathrm{Z} 2235 \mathrm{VV}+10.5 \mathrm{~V}$ 15VA max. $56 \times 67 \times 50 \mathrm{~mm}$
£2.00
Z5236 $21 \mathrm{~V} 500 \mathrm{~mA} 50 \times 60 \times 45 \mathrm{~mm}$ £1.50
Z568 Transformer, large auto rated 8.3A £12.00
Z8971 Transformer rated 100VA - 0-120, $0-120 \mathrm{~V}$ primary and $0-20,0-20 \mathrm{~V}$ secondary (5A total). Size $89 \times 75 \times 68 \mathrm{~mm}$. DP 19.06. Our price $£ 9.50$

Z8972 Transformer rated 100VA by Majestic, $0-240 \mathrm{~V}$ pri, 25 V 4 A sec. $100 \times 85 \times 70 \mathrm{~mm}$. £6.50

Z1773 DC-DC Converter - 5V in, 15-0$15 \mathrm{~V} \quad 10-34 \mathrm{~mA}(1 \mathrm{~W})$ Size $34 \times 26 \times 10$. Only E3.00

FINISHED GOODS

25285 Oscillator /amplifier type RT5001 by GEC , housed in an aluminium and bakelite case $180 \times 52 \times 50 \mathrm{~mm}$. The PCB has on it a small transformer, $3 \times 100 \mu \mathrm{~F} 16 \mathrm{~V}$ tant bead caps, $2 \times B C Y 40$ etc. Only $£ 1.50$

25287 Here's an oldie - we had a batch of these some time ago - the "Tyrometer" used to indicate tyre pressures on HGV's, this is the pod that fitted into the drivers cab. On the front panel are two small push and a toggle switch. Inside is a PCB with 11 miniature wire ended bulbs, a choke, 2 caps and a buzzer. There's a short length of 14 way ribbon cable, 100. £3.95

Z5268 Boxed suspension cord set. White painted steel domed ceiling plate 137 mm dia with 0.5 m twin lead terminated to ES plastic hanging socket, also white. 1250 V 500 W max rating). $£ 2.5025+1.75$

22109 Dynamic microphone with lead by Adastra, model M8. $£ 3.50$

25286D Metal detector panel $185 \times 115 \mathrm{~mm}$. This is the complete PCB from an expensive ($£ 80+$) "treasure detector" - just add wire coil and meter to make a working unit. Circuit uses 15 transistors and 3 IC's. There are 5 pots and a rotary switch. Detailed info inc. cct diagram and coil windings supplied.. $£ 12.95$

Z5201 Ingenious level indicator for LPG tanks. Magnetic strip attaches to exterior of tank and works by pouring hot water down gauge. Colour change will indicate level of gas left. 220 mm long. Supplied on card with full instructions. Only £1.00

25288 Polycarbonate grey sealed box $82 \times 80 \times 55 \mathrm{~mm}$ with clear lid (DP 9.11!). Inside is a steel panel with loud 12 V buzzer and a PCB with push button (operates when lid is removed) a green LED and 1N4005. There's a 12 mm hole in the side of the box and a cable gland to fit. Exceptional value at $£ 4.00$

> We buy surplus stock - send details to the Managing Director, Greenweld Electronics, 27 Park Road, Southampton, SO1 उा®

K692 Super deal for modellers - we supply a mains power supply, 100 miniature lamps for wiring into your railway layout or dolls house, and 100 m of flex. Circuits and details of how to wire up the lamps in series/parallel are provided. Everything for just $£ 19.95$

GREENWELD 27 PARK ROAD SOUTHAMPTON SO $13 T B$ TEL: (O703) 236363 FAX: 236307 SPRING SUPPLEMENT

CONNECTORS

Extra special price on gold plated DIL sockets - a parcel of Vero DIL sockets has arrived:

(a) PCB mntg, std proflle:

2523728 way $£ 1 / 10 \quad 100+.06$
Z5238 40 way $\$ 1.50 / 10 \quad 100+.08$
(b) Wirewrap

Z5239	18 way	$£ 3.80 / 10100+0.20$
Z5240	20 way	$£ 4.30 / 10100+0.25$
Z5241	28 way	$£ 7.00 / 10100+0.40$
Z5242	40 way	$£ 10.00 / 10100+0.65$

z2360 Turned pin DIL socket - 24 pin, but $0.3^{\prime \prime}$ pitch not $0.6^{\prime \prime}$. Pack of 5 for 玉1. $100+$ 0.10

ARE YOU A BARGAIN LIST SUBSCRIBER? DON'T MISS THE BARGAINS!!

P5430 14 pin DIL header plug, gold plated solder type. As listed in our cat at 65p special purchase price 3 for $£ 1.00$; $100+$ $0.16 ; 1 k+0.12$
273940 way DIL header plug, gold plated. 3 for $£ 1.00$
P9016 16 way IDC header socket. Pack of 5 £1.00; 100+. 10
Z2379 IDC 16 pin DIL socket. Pack of 5 81.00

Z2382 Double row 0.1 socket PCB/chassis mounting 16 way $\times 2$, but only 1 row of pins. Pack of 5 \$1.00

High quality 3.5 mm mono jack plugs with coloured plastic sleeves made by Cliff:
22457 Red 10/\&1.00 100+0.06
Z2458 Green 10/£1.00 100+ 0.06
Z2479 White 10/\&1.00 $\quad 100+0.06$
22480 Cream 10/\&1.00 100+0.06

Z1485 RC4200-8S 8 way gold plated socket - matches McMurdo red range, but blue $£ 1.50$
Z1768 Numicator/CRT base 13 pin PC mntg by Cinch. Pack of $4 £ 1.00$
20422 pin DIN speaker sockets, PC mitg. Pack of 25 £1.20
22448 Phono plug. Black plastic cover. We have a large quantity of these to dispose of, so are clearing them at 25 for $£ 1.00,100+$ $0.03,1000+0.02$

The 1992 GREENWELD Catalogue is out now! 132 pages of electronic and modellers supplies.

Only £2 (UK/BFPO; £4 O'seas)
ORDER NOW!
See order form for details

$Z 239725$ way ' D ' type shells. Can be used as either plugs or sockets, according to pins fitted. (No pins available) Pack of $6 £ 1.00$

22395 Rlght angle 50 way 'D' plug, PC8 mounting, plastic housing. $£ 2.00$

Z2396 Right angle 9 way ' D ' socket. 40p

$Z 243037$ way 'D' type plug, IDC type $£ 2.00$ $100+1.00$

$Z 242915$ way 'D' connector sliding lock retainer by ITT type DA51220-1 DP £3.45, Only $£ 1.00 \quad 100+0.40$

Z2445 Data connector - like BT skt - 6 way PCB mntg for right hand plug. DP 1.74 Our price 2 for $£ 1.00,100+0.30$

Z2398 DIN 41612 IDC socket, C body, rows A and C only. List $£ 6.65$. Our price $£ 2.50$

Z2399 20 way card edge IDC socket. DP 2.47. Our price $£ 1.00$
$Z 242625$ way double sided $0.1^{1 "}$ pitch edge connector, gold plated, solder tags. $£ 1.00$

Z2427 50 way double sided $0.125^{\prime \prime}$ pitch edge connector, gold plated, wirewrap terminals. £2.00
$Z 2428$ PC mounting edge connector, 13 way double sided $0.15^{\prime \prime}$ pitch. Gold plated. Pack of $2 £ 100100+0.25$

NEED A LEAD?

Here's a selection from a recent parcel:
252471.1 m long twin thick flex, $2 \times 3 \mathrm{~mm}$ wander plugs one end, 3.5 mm mono jack plug the other. Assorted colours. Pack of $3 £ 1.00$; $100+0.18$
252481.8 m long twin flex, 3.5 mm mono jack plug to open end. Fitted with sleeved square grommet. Pack of $5 £ 1.00 ; 100+0.10$
252492 m long twin flex, 2 pin socket to open end. Fitted with sleeved round grommet. Pack of $5 \mathbf{£ 1 . 0 0 ; 1 0 0 + 0 . 1 0}$
$25250 \quad 1.1 \mathrm{~m}$ long 3 core sheathed cabie with odd socket one end, yellow 5 mm LED in plastic housing the other. Pack of $8 \mathbf{£ 1 . 0 0 ; ~}$ $100+0.06$

25251 1m long twin flex, 2.5 mm power socket to open end. Fitted with sleeved square grommet. Pack of 3 £1.00; 100+0.18

25252 Super heavy duty extra long $(2.7 \mathrm{~m})$ twin sheathed cable with moulded on 2.5 mm power socket to open end. 2 for £1.00; 100 +0.25

252542 m long 4 core sheathed cable fitted with a sleeved grommet. 4 pin DIN socket to open end, 4 for $£ 1.00 ; 100+0.12$

Z5255 2 m long 2 core black sheathed mains cable (3A). Moulded 2 pin Euro plug one end, 0.25 tags the other. 3 for $£ 1.00$; $100+0.18$

BATTERIES

$Z 2452$ Lithium battery - inorganic type by Tadiran, type TL5104. AA size, 3.6V PC tabs. Date code 06/88 \$1.70

22453 As above, but type SL360, date code 4/87. £1.50
Z2450 Tadiran AA size battery 3.6V PC mounting. Date code 6/89. DP on these is 5.17. Our price $£ 2.00 \quad 25+1.50 \quad 100+1.20$

Z2451 Tadiran 0.5AA size battery, 3.6V PC mntg. Date code $8 / 86$. DP 4.58 Our price £1.75 $25+1.35100+1.05$

24150 AA NI-Gads at a price never before seen! Pack of 8 in a tough plastic case $56 \times 63 \times 33 \mathrm{~mm}$ - either use as a 10 V battery pack or remove and use cells individually. Special low price $£ 1.60$ each; $25+1.10$ $100+0.80$

time delay relays

These all priginate from the largest component distributor in the UK and are in model 60.42. $£ 1,50$ original packing. Sub min 4 pole changeover plug in type, delay before energize. Same as Omron HЗY4 series

Code	Volts	Time	DP	Price
Z5186	240 Vac	5 s	25.83	$\underline{5.00}$
Z5198	240 V ac	10s	25.83	¢5.00
25490	240 Vac	-10m	-25.83	c5.00
25183	110 Vac	5 s	25.83	\$4.00
25184	110 V ac	10s	25.83	£4.00
25185	110 V ac	60 s	25.83	£4.00
25186	110 V ac	5 m	25.83	£4.00
Z5187	24 V DC	5 s	24.19	£5.00
Z5188	24 V DC	10 s	24.19	¢5.00
Z5189	24 V DC	60s	24.19	£5.00
Z5190	24 V DC	5 m	24.19	$\underline{5.00}$

Z2350. Open construction 12 V relay with 0.25 tabs. Ideal for car use. Single pole make contact rated 15A. \&1

22496 Omron MY4 relay, 48 V ac coil, 4PCO contacts rated 5A £1.00

22497 IMO 60.32 relay. 12V DC coil, DPCO contacts rated 10A $£ 2.50$
25178 Ex-equip PCB mntg 12 V heavy duty

25179 As above but 3 pole changeover IMO 60.43. £2.00

22442 PCB mounting relay $30 \times 24 \times 10 \mathrm{~mm}$. 4 PCO. 1150R coil, operates from $15-30 \mathrm{~V}$. $\$ 1.50$

22433 Hermetically sealed mains relay, miniature plug in type with 4PCO contacts. Size $22,5 \times 29 \times 32 \mathrm{~mm}$. DP (1987) 17.75. Our special low price $\{4.75$

SWITCHES

25174 Timer switch by Dieht of Germany. Superb geared mains motor, (1 rev per 12 hours) operates a cam that switches 2 change over contacts with centre - off positions rated 16 A 250 V . Size $60 \times 54 \times 43 \mathrm{~mm}$. Spindle is $14 \times 6 \mathrm{~mm}$ dia. Only £3.00 100+ £1.50.
22361 Heavy duty push switch - push to change over, locking. Needs 12 mm hole. Plunger is 8 mm dia $\times 9 \mathrm{~mm}$ high, 3 for $£ 1.00$
22387 PC mounting push switch - 1 pr make and 1 pr break contracts. Right angle plunger is 5 mm long $\times 2 \mathrm{~mm}$ dia. With protective cover. Again, very high quality. 2 for $£ 1.00$

POINTS LEVER SWITCHES

Great switch bargains for railway modellers these small switches 18 mm wide and 12 mm high (excluding lever) and just 4 mm thick with 14 mm FC come in two versions:

Z2363 2 position, 2 pairs make and 2 pairs break. Pack of $5 £ 1.00100+0.10$

Z2364 3 position, 6 pairs contacts (2 pole 3 way). Pack of 5 for $£ 1.00100+0.10$

TRANSDUCERS

25266 Miniature 15R speaker $45 \mathrm{~mm}\left(1.75^{\prime \prime}\right)$ dia. 3 for $£ 1.00 ; 100+0.16 ; 1 k+0.10$

Z5267 75R miniature speaker 57 mm dia. 3 for $£ 1.00$

2527557 mm 8R speaker with 0.5 m Iwin flex and socket attached. 3 for $£ 1.00$

22503 Sub-min 8R speaker with mylar cone. 30 mm dia with short lead fitted. 2 for $£ 1.00$

We are always looking for new lines to add to our lists. Send details/ samples of goods available to: The Managing Director Greenweld Electronics Ltd 27 Park Road
Southampton SO13TB

GREENWELD 27 PARK ROAD SOUTHAMPTON SO 1 3TB TEL: (0703) 236363 FAX: 236307 SPRING SUPPLEMENT

Viewdata Terminal/Modem

Tandata TD1100
alphanumeric
Viewdata/Prestel Adaplor.
These units were used with a home banking system. The console was hooked up to your TV and telephone line, and by using the standard qwerty keyboard with seperate numeric keypad, you could access your account. The well styled black and grey case $300 \times 180 \times 75 / 40$ has a 75 key keyboard connected inside by a DIL plug to the main PCB. This has mounted on it the modem subpanel + 3 relays, UM1286 Astec colour modulator with sound, + SAA5020, 5050, 5070, SY6504, 68B10, MCM51101P45, 2×2114 \& 2732 EPROM all in sockets, as well as over 20 other LS and linear chips, transistors etc. There's a back up nicad battery and a regulated power supply. On the rear panel is an on/off rocker switch, UHF output socket, printer skt(15 way D), and cassette DIN socket for recording data.
There are 3 leads attached; 4 m long mains lead with 13 A plug, 4 m long BT lead with oldstyle plug, and a 3 m long TV co-ax lead.
All in all, a versatile, useful compact unit either to use as it is or for the parts within. The component value alone is over $£ 60$, so you can see what a bargain this is - it even comes with a photocopied handbook!!
Order Code Z8963. The whole unit as described for just $£ 12.95$
Also available brand new and boxed, 28964 £16.95

Z8966 Prestel set less monitor. This cased unit $420 \times 430 \times 100 \mathrm{~mm}$ made by Phillips, model HU01 contains all the logic and control circuitry for Prestel - the monitor (not supplied) sits on top. On the back panel there is an 8 pin DIN socket for text output to monitor, mains outtet to monitor and an 8 pin DIN printer socket. There's also a mains lead and old type lead to telephone socket. On the front panel there is a detachable (on curly lead) keypad (20 keys) on/off keyswitch, tape and keyboard sockets and indicator lamps. Inside there's a large transformer and power supply and 4 PCB's - one is a modem panel; one has 8048 and SBB2626 in sockets +15 other chips, transistors etc; the third has SAA5030/5042/5020/5050, a bit of memory (2×2114) + a few other chips. The fourth panel has SAA5010 in socket, $9 \times B S \times 20$, $4 \times B C 548 / 558$. All boards are interconnected with plugs and sockets. These units are complete but not new and may well be in working order - but we're selling them for the parts value only - just $£ 16.00$

MONSTER SCREWDRIVER BARGAIN !!!

Tremendous value $-2 \times 200 \mathrm{~mm}$ screwdrivers, 1 pozi, 1 straight blade in plastic pouch. Wooden handles. Overall length 340 mm . ONLY £1.50. Order code Z5172

A nice parcel of digital thermostats has just been delivered - these are high quality units badged BIRCH and manulactured by Wrynech.

25228 Complete unit in panel mounting clipfix case (requires $60 \times 27 \mathrm{~mm}$ cut out). 2 digit display. Range $40-99^{\circ} \mathrm{C}$. Independant on/off set points. Uses LM35CZ sensor, supplied on a 3 m long lead (DP 5.93). Has 5V relay on board with 240 V 8 A c/o contact. Exceptional value for money $£ 14.95$

Z5229 Case for above unit with red bezel and front clip. Overall dimensions $57.5 \times 25 \times 70 \mathrm{~mm}$ deep. Only $£ 1.50$ each $100+0.80$

25230 Complete panel to fit in above case (no probe) £9.95

28970 Remote control cable TV unit made

 by GEC. Altractive black plastic case $205 \times 120 \times 40 \mathrm{~mm}$ with membrane pushbutton keypad (22 keys). Front panel has $4 \times 5 \mathrm{~mm}$ red LED's to indicate status and a dual 7 seg display to show channel. On the $195 \times 102 \mathrm{~mm}$ PCB is a small regulated power supply (12V \& 5 V) derived from $\mathbf{Z 5 2 2 6}$ plug in PSU (not supplied). The main chip is a KS49429 and there are also TBA120T, ULN2003B, $4049+$ 4.000 MHz crystal \& 3 small signal transistors as well as the IR detector diode. 2 screened cases contain (a) a PCB with some filter circuitry utilizing surface mount technology, few small chokes, couple of trimmer caps and input and output sockets; and (b) the infra red decoding circuitry using a TDA3047 chip. Regrettaby, we don't have any remote controllers, but these units offer great value for money - just $£ 5.95$ each
Greenweld 27 Park Road Southampton SO1 3TB

 Tel (0703) 236363 Fax (0703) 236307 We are open to callers from 9-5.30 Mon-Sat
DRAGON

INTERFACE

Interface unit to convert digital input (as obtained from Atari-compatible joysticks) to the correct analogue level for use with such home computers as Dragon. Tandy Colour. Radio Shack. elc. Two separate channels for competitive games. Two 5 -pin 240° DIN plugs to compact case with two 9 pin plugs, with internal circuitry and connections for Atari-type joysticks. Black plastic
Dims:- (Body) $116 \times 62 \times 29 \mathrm{~mm}$

MODEM MADNESS

This parcel consists of several hundred brand new BT approved modems - but we are not allowed to say who makes them. They do, however, offer extremely good value for money, as they are being sold for a fraction of their true worth

28973 Modem.
A compact V21N23 300 or 1200/75 baud modem made for a major British telephone company. The units are new, boxed and complete with power supply but are without the official instruction manual, and have had the manufacturers label removed. Some instructions have been worked out by our technical department and these will enable you to use it as a working modem - further information gratefully received. Plugs directly into a standard BT 600 series socket and a RS232 port on any computer. Tone/auto dialling + last number re-dial. Dimensions $205 \mathrm{~mm} \times 195 \mathrm{~mm} \times 30 \mathrm{~mm}$. Front panel has reset button, and 5 status LED's. Excellent value for money - £49.95

Cellular Mobile Aerials
A few different types, all new in original packing.

25281 Antiference TAP9036 $1 / 4+1 / 2$ wave 3dB. Frq $890-960 \mathrm{MHz}$ VSWR 1.5:1. Includes $3 / 4^{\prime \prime}$ claw mount with 5 m of RG58 cable. Complete with filting instructions. Only $£ 3.00$

25282 ZS Electroniques ZS914-09 claw mount with 4 m cable and fitting instructions $£ 3.00$

25283 Jaybeam MU904-ZG/h with 4 m of cable attached. $\mathbf{£ 3 . 0 0}$

28974D Transam M1 mobile/mains Inteltigent modem. New and boxed with mains plug in power supply (9.5 V 800 mA) Auto dial and answer, V21/23, buffered terminal interface from 75-9600 baud, password access, Black steel case $230 \times 150 \times 50 \mathrm{~mm}$. Rear panel has lead with BT plug, 15 way D skt for radio interface, $\mathrm{S} 5 / 8$ serial data socket (use our 24284 S5/8RS232 converter, price $\mathbf{£ 6 . 0 0}$ if required), and 12 V input socket. On the front panel there's an ext/bat/off switch; auto/manual answer switch; originate/answer switch; 300/1200 switch; normal/intelligent switch. Comprehensive 36 page user manual (photocopied for $£ 1.50$). Our Price $£ 50.00$

ORDERINGINFORMATION
 Prices in bold include VAT light type do not include VAT which should be added at the current rate. We accept cheques, PO's. Money orders. Bank drafts, cash including foreign currency bank notes, book tokens, Access and Visa. We are happy to process Official Orders from Education and other government funded sources. Don't forget to include your name and address. Send the completed order form to:
 Greenweld Electronics Lid
 27 Park Road
 Southampton
 SO1 3TB
 United Kingdom
 Most orders are despatched within a day or two but some may be delayed because of temporary non-availability of goods.
 HOW TO CONTACT US:
 By Post: Use the address above
 By Phone: (0703) 236363
 Ansaphone our of business hours)
 By Fax: (0703) 236307
 BYEMail (Compuserve): 100014,1463

We are happy to despatch orders to anywhere in the world. The most convenient way 10 order is by Fax, and the best way 10 pay is by credit card. Our International Telefax number is +44703236307 , although you may of course telephone us on +44703 236363, or write to us. Overseas orders are exempt from VAT, and 15% should be deducted from prices shown, except books, which are zero rated.

Z5284 Modified BT socket.

Unusual item believed to be used in conjunction with the above modem. It consists of a slandard BT socket that has 6 way flat type cable wired into it; this probably plugged into a special outlet that could provide power as the centre pair (blue and green wires) are connected to a switch which links to a 6 pin DIN wired as per above modem power supply. A second switch enables selection between the modem and 'phone plugged into the socket. Power and Data LED's indicate the state of the junction box. $£ 3.00$

Z8975 Data Switch
Another Item from this package of data communication hardware. Powered from a modified RS232 connector that has a 12 V supply on line 5 it is believed that the above telephone socket plugged into this device to provide power for the modem and enabled selection belween speech and data communication by both the switch on the unit and the "remote" socket switch.Steel case $170 \times 102 \times 45 \mathrm{~mm}$ has main PCB with 2 relays, pot cores, chips etc, and a small power supply sub panel with an Astec voltage converter, 7805 etc. All for $\mathbf{~} 4.50$

Z8976 This is the above two items - they are boxed together. (Z5284 + Z8975). £6.95

Z8958 Modem returns - model 21/23IAD (Same as our 28937-see P7 of B/L 75). No idea what's wrong with them - some have fault labels on them. Supplied complete with plug in PSU. £15

> SPECIAL OFFER - SAVE E10!! Z8973 Modem + Z8953 Maximiser

Details of maximiser on Page 7 of B/L 75 or Page 5 of B/L 75A Normally £69.95- Offer Price $£ 59.95$

GREENWELD

ELECTRONIC
 COMPONENTS

Customer No:
Name:
Address:

Post code
(A different postcode is correctly shown on reply paid envelopes)

TWO STUNNING DIGITAL MULTIMETER OFFERS!!

* 31/2 digit 8 mm LCD display * Fully autoranging * Display hold facility * Diode and continulty test * Probe styling * Automatic polarity and zero \star Protective carrying case

A £39.95 AUTORANGING MULTIMETER (1991 Catalogue) LESS THAN $1 / 2$ PRICEII
YOURS FOR
JUST

Order Code AC volts DM1360 DC volts .

Vac $\pm 2.3 \%$ 0-200m-2-20-200-500 Vdc $\pm 1.3 \%$ Resistance ... 0-200-2k-20k-2M-20M $\Omega \pm 2 \%$ Dims ..

PRICE

§14.95
$\star 19$ ranges
$\star 31 / 2$ digit 12 mm LCD display
\star Signal injector function
\star Diode test
\star Fuse protection
\star Automatic polarity and zero
\star Test leads with 4 mm plugs
\star Battery and instruction manual included

Specification

AC volts 0-200-750Vac $\pm 1.2 \%$
DC volts 0-200m-2-20-200-1000Vdc $\pm 0.8 \%$
DC current $0-200 \mu-2 \mathrm{~m}-20 \mathrm{~m}-200 \mathrm{~m}-2 \mathrm{Adc} \pm 1.0 \%$
Resistance 0-200-2k-20k-200k-2m $\Omega \pm 0.8 \%$
Signal Injector 50 Hz square wave 5 V peak to peak
Dims ... $126 \times 70 \times 24 \mathrm{~mm}$
Order Code
MX190

GREENWELD 27 PARK ROAD SOUTHAMPTON SO1 3TB TEL: (0703) 236363 FAX: 236307 SPRING SUPPLEMENT

25045D Superb little 12 V slepper motor by Airpax. 35 mm dia $\times 21 \mathrm{~mm}$ deep with a 16 tooth 9.5 mm dia gear wheel mounted on the 2 mmdia spindle. Fixing centres 42 mm . 7.5° 48 step. Supplied with data. $100+$ DP 9.04; Our Price £3.00; 100 +2.00

Y134A

AC MILLIVOLTMETER

A highly sensitive and precise AC millivoltmeter used for measuring $A C$ voltages in the range of $300 \mu \mathrm{~V}$ to 100 V between 5 Hz and 1 MHz . The output terminals allow this unit to be used as a wide-band high gain amplifier or pre-amplifier. Calibrated with AC volts and two decibel scales.
Voltmeter:
Voltage range
300μ to $100 \mathrm{Vac} \pm 3 \%$ Frequency range 5 Hz to 1 Mhz input resistance Input capacitance
. Below 50pF
Amplifier:
Output voltage
Frequency range nge .

1 V no load requency fange \qquad 10 Hz to 500 kHz .. $600 \Omega \pm 20 \%$

Power Dims

PRICE
 $£ 60.00$

CABLEVISION CALAMITY I!!

Seems like Visionhire became a bit overstocked on their cablevision consoles we've just purchased a quantity of these superb brand new units which contain some great electronics and as ever can offer them at an absolute BargainPrice!!
Two tone brown case (dimensions as shown) contains PCB $192 \times 195 \mathrm{~mm}$ with easily removed UHF modulator made by Labgear (Sound and Vision); video preamp; stabilized power supply and all the decoding circuitry (9 transistors and TBA673 chip).
On the front of the case is a cable/off air
 switch and 5 push buttons (4 channels and on/off mains switch). There are 4 cables coming from the rear (these alone are worth what we are asking for the whole thing!) - 2 m mains lead, 1.5 m 8 core screened cable with 9 pin plug, $2 m$ video in lead with coax plug and $2 m$ video out lead with coax socket. As you would expect from a company like Visionhire, everything is top quality. The case can easily be utilised for other purposes - the dark brown inserts on the front are both easily removable, if required. Please note the low price we are asking in no way reflects their true worth - they're taking up a lot of space, so we need to shift them quickly!!
Z8939 £6.95 100+3.50 1k+2.50.

2217124 character $\times 2$ lines LCD by Optrex.
High quality display with 192 character ROM; other characters can be displayed by generation in RAM. Other features include: EL type back light (details of high valtage generator supplied); cursor with control, blink character, scroll display, read and write display data, +5 V and -7 V supply with 150 V $A C$ required for backllght, data and power inputs by solder contacts on board, pin outs standard and compatible with other Optrex displays, extended temperature range (253 to $343^{\circ} \mathrm{K}$), easily interfaced with either 4 or 8 bit uP's. Supplied complete with data.
Characters are 5×7 dot arrays with separate cursor 1 Character measures $3.2 \times 6.0 \mathrm{~mm}$
Display size $93 \times 16 \mathrm{~mm} \quad$ Module size $118 \times 35 \mathrm{~mm}$ DP around $£ 30.00$. Our Price
©10.00

2345 Optical Shaft Encoder. Made by sharp. Ideal wherever the position or speed of a rotating shaft needs to be know - le machine tool control, robotics etc. Supplied with comprehensive data sheet. Size of module $46 \times 33.5 \times 20 \mathrm{~mm}$ size of disc 28 mm dia. Bush with grub screw will take a 4 mm dia shaft. Disc has 96 slots. DP £48.18.
Our Price.
Data sheet available separately30p

z8852D Keyboard. Superb brand new high quality keyboard with LCD displaying 1 line of 10 characters and a further line with various symbols. 100 keys, inc seperate numeric keypad. Chips on board are $2 \times 74 \mathrm{HCO5}$, 80C48. LCD + driver chip are easily removed. Amazing low price - only $£ 10.00$

HIGH QUALITY NICAD CHARGER

25138 Nicad switched mode battery charger for charging $6 \times A A, C$ or D cells. 70 mA 16 hour rate, 700 mA 1.5 hour rate, 25 mA float charge automatically switched in when battery reaches correct charge level. Outputs tor fast and slow charging simultaneously if necessary, both on timers to prevent over charging. Fast charge set at 700 mA , but internally adjustable. Slow charge set to 70 mA . Both outputs switch to 25 mA trickle charging after their respective periods of 1.5 hours and 16 hours. Supplled new with instructions and circuit diagram. Was orlginally supplted for charging cellphone batterles. Price

Cadillac Coupe de Ville

 $Z 89761967$ model, white with blue interior. 2 door. $71 / 4$ litre V8 engine. Auto gearbox, Power steering, brakes, seats, windows and aerial! Tilt and tele column. Original working AM/FM radio with front and rear speakers. Air conditioning. Original/Import documentation. Excellent chrome. Tinted glass. Recent new whitewall tyres and exhaust. Superb bodywork and low mileage. A true full size American car - all 19 ft 4 ins of it! Our Price (1 only) $£ 6995$

EASY-TO-USE

50MHz scopes

\star Dual Channel
\star DC to $50 \mathrm{MHz}-3 \mathrm{~dB}$ Bandwidth
\star Large 6 inch Screen with Internal Gratical
$\star 1 \mathrm{mV}$ Vertical Sensitivity
\star Slim, Compact \& Lightweight Design

* DC Offset Function
\star Alternate Magnification
\star Vertical Trigger Mode
\star TV Sync Trigger Circuit
V522 DC-50MHz, 1 mV /div, Dual Channel, DC offset function, Alternate Magnifier Function $£ 745.00$

25\% OFF

 and FREE next day delivery!Limited Offer - Order Now!

Price Includes VAT- free delivery UK mainland only

[^0]: Carbon Film resistors 1/WW 5\% E24 series 0.51 R to 10MO.
 100 off per value $-75 p$. even hundreds per value totalling 1000 Metal Film resistors $\% / 4$ W 10R to 1 MO 5\% E12 series - 2p. 1\% E24 series Mixed metal/carbon film resistors $1 / 2 \mathrm{WW}$ E2 4 series 1 RO to 10 MO . 1 watt mixed metal/Carbon Film 5% E12 series $4 R 7$ to 10 Megohms
 Linear Carbon pre-sets 100 mW and $1 / \mathrm{W} 100 \mathrm{R}$ to 4 M 7 E6 series Linear Carbon pre-sets 100 mW and $1 / \mathrm{WW}$ 100R to 4 M 7 E6 series.
 Miniature polyster capacitors 250 V working for vertical mounting
 $015, .022, .033, .047, .068-4 p .0 .1-5 p .0 .12,0.15,0.22-6 p .0 .47-8 p$ p. $0.68-8 p .1 .0-12 p$ Mylar (polyester) capacitors 100 V working E12 series vertical mounting
 1000 p to $8200 \mathrm{p}-3 \mathrm{p} .01$ to $.068-4 \mathrm{p} .0 .1-5 \mathrm{p} .0 .12,0.15,0.22-6 \mathrm{p} .0 .47 / 50 \mathrm{~V}-8 \mathrm{p}$ Submin ceramic plate capacitors 100 V wkg vertical mountings. E12 series $2 \% 1.8$ pf to 47 pf - 3 p. $2 \% 56$ pf to 330 pf - 4p. 10\% 390p-4700p
 Disc/plate ceramics 50 V E1 2 series 1PO to 1000P. E6 Series 1500 P to 47000 P
 Polystyrene capacitors $63 \vee$ working E1 2 series long axial wires 10 pf to $820 \mathrm{pf}-4 \mathrm{p} .1000 \mathrm{pf}$ to $10,000 \mathrm{pf}-5 \mathrm{p} .12 .000 \mathrm{pf}$
 741 Op Amp -20p. 555 Timer
 cmos 4001-20p. 4011 - 22p. 4017
 cmos 4001 - 20p. 4011 - 22p. 4017
 ALUMINIUM ELECTROLYTICS (Mfds/Volts)
 /50, 2.2/50, 4.7/50. 10/25. $10 / 5$
 $2 / 16,22 / 25,22 / 50,47 / 16,47 / 25,47 / 50$
 00/16, 100/25 7p; 100/50 12p; 100/100.
 220/168p; 220/25, 220/50 10p; 470/16. 470/2
 Submin, tantalum bead electrolvics (Mfds/Volts)
 $0.1 / 35,0.22 / 35,0.47 / 35,1.0 / 35,3.3 / 16.4 .7 / 16$
 $2.2 / 35,4.7 / 25,4.7 / 35,6.8 / 1615 \mathrm{p} ; 10 / 16,22 / 6$
 $33 / 10,47 / 6,22 / 1630 \mathrm{p} ; 47 / 1035 p ; 47 / 1660$ p: $47 / 35$
 VOLTAGE REGULATORS
 $\mathrm{A}+\mathrm{or}-5 \mathrm{~V}, \mathrm{BV}, 12 \mathrm{~V}, 15 \mathrm{~V}, 18 \mathrm{~V} \& 24 \mathrm{~V}-55 \mathrm{p} .100 \mathrm{~mA}, 5, \mathrm{~B}, 12,15 \mathrm{~V}+$
 DIODES (piv/amps)
 75/25mA 1 N41482p. 800/1A 1N4006 41/2p. 400/3A 1 N5404 14p. 115/15mA OA 91 00/1A 1 N4002 31/2p. 1000/1A 1 N40075p. 60/1.5A S1 M1 5p. 100/1A bridge.
 Zener diodes E24 series 3 V 3 to 33 V 12710p. 30/15A OA4
 Battery snaps for PP3 - 6 p for PP9
 L.E.D. s 3 mm . 5 mm . Red, Green. Yellow - 10p. Grommets $3 \mathrm{~mm}-2 \mathrm{p} .5 \mathrm{~mm}$.

 Red flashing L.E.D.'s require 9-12V supply only
 Mains indicator neons with 220 k resistor
 20 mm fuses 100 mA to 5 A . O. blow 5 p . A/surge 10 p . Holders, chassis, mounting High speed $p c$ drill $0.8,1.0,1.3,1.5,2.0 \mathrm{~mm}-30 \mathrm{p}$. Machines 12 V dc
 AA/HP7 Nicad rechargeable cells 90 peach. Universal charger unit.
 Glass reed switches with single pole make contacts -8 p . Magnets
 $0.1^{\prime \prime}$ Stripboard $21_{2}^{\prime \prime} \times 1^{\prime \prime} 9$ rows 25 holes - 25p. $33_{4} \times 21_{2}^{\prime \prime} 24$ rows 37 holes Jack plugs $2.5 \& 3.5 \mathrm{~m}$
 Sockets Panel Mig. $2.5 \& 3.5 \mathrm{~m}$
 TRANSISTORS
 C187/8/9 - 12p. BC547/8/9 - 8p. BC557/8/9 - 8p. BC182, 182L, BC183, 183L, BC184, 184L, BC212, $212 L-10$ p.
 BC327, 337, 337L - 12p. BC727, $737-12 p$. BD135/6/7/8/9-25p. BCY70-18p. BFY50/51/52-20p.
 BFX88-15p, 2N3055-50p, TIP31, 32-30p, TIP41, 42-40p. BU208A - C1 20, 8F195, 197-12p lonisers with seven vear guarantee, list price $£ 16.95$
 $97-12 p$
 612.00
 All prices are inclusive of VAT. Postage 30 p (free over $£ 5$). Lists Free.

