

ELECTRONIC DARTS SCORER

BICYCLE ALARM

New series
INFORMATION TECHNOLOGY
AND THE NATIONAL CURRICULUM FOR PARENTS, STUDENTS AND TEACHERS

The No. 1 Magazine for Electronics \& Computer Projects

UNIDEN SATELLITE RECEIVER Brand new units (mode B008) $£ 60.00$ ref 60 P 4 V also some 7007 s also $£ 60.00$ ref 60 P 5 V
SPECTRUM +2 COMPUTER Built in data recorder, 128 K , psu and manuals $£ 59.00$ ref 59P4
SPECTRUM +3 COMPUTER Buill in disc drive, 128 K , psu and manuals $£ 79.00$ ref $79 P 4 V$
AMSTRAD CPC464 COMPUTER No manuals but only E79.00 ref 79P5V
AMSTRAD CPC6128 COMPUTER Again no manuals but onty £149.00 ref 149P4V
AMSTRAD GT65 Green screen monitor $£ 49.00$ ref 49P4V AMSTRAD PORTABLE PC'S FROM £149 (PPC1512SD). £179 (PPC1512DD). £179 (PPC1640SD). £209 (PPC16400D). MODEMS £30 EXTRA.NO MANUALS OR PSU.

AMSTRAD PC BARGAINIIII!
PC 1512DD COMPLETE WITH CGA COLOUR MONITOR, 2 DISC DRIVES, MANUALS ETC ONLY £249.00 REF 249P4V

HIGH POWER CAR SPEAKERS. Stereopair ourput 100 w each. 4ohm impedance and consisting of $61 / 2^{\prime \prime}$ wooler $2^{\prime \prime}$ mid range and 4 "twester. Idealto work with the amplifier described above. Price per pair ₹30.00 5 Ider Th0P7
2KV 500 WATT TRANSFORMERS Suitable for high voltage experiments or as a aspare for a microwave oven etc. 250 V AC input
$£ 10.00$ ref 10 P 93 V MICRO TV 10P93V
MICROW AVE CONTROL PANEL Mains operated, with touch switches. Complete with 4 digit display, digital clock. and 2 relay outputs one for power and one for pulsed power (programmable). Ideal for all sorts of precision timer applications etc. $£ 6.00$ ref 6 P18V FIBRE OPTIC CABLE. Stranded optical fibres sheathe
$7 P 29 \mathrm{~V}$
$7 P 29 \mathrm{~V}$
12 V SOLAR CELL. 200 mA output ideal for
rickle charging etc. 300 mm square. Our price
E15.00 rof 15P42
PASSIVE INFRA-RED MOTION SENSOR Complete with daylight sensor, adjustable lights
on timer (8 secs -15 mins), 50 ' range with a 90 deg coverage. Manual overide facility. Com.
 plete with wall brackets, bult holders etc. Brand new and guaran reed $£ 25.00$ ret 25P24V
Pack of two PAR38 bulbs for above unit $£ 1200$ ref 12P43V
VIDEO SENDER UNIT
VIDEO SENDER UNIT Transmit both audio and video signals from either a video camera, video recorder or computer to ary
standard TV set within a 100 ' rangel (fune TV to a spare channel). 12V DC op. E15.00 ref 15P39V Suitable mains adaptor E. 500 ref 5P1911
 adapter (bug is mains diven). $£ 26.00$ rel 26 P 2 V
MINATURE RADIO TRANSCIV MINATURE RADIO TRANSCEIVERS
walkie talkies with a range of up to 2 kilometres. Units
measure $22 \times 52 \times 155 \mathrm{~mm}$. Complete with casses. $£ 30.00$ ret 30 P 12 V FM CORDLESS MICROPHONE.Small hand held unit with a 500^{\prime} rangel 2 transmit power ievels reas PP3 battery. Tuneable to any FM receiver. Our price $£ 15$ ref 15P42AV
10 BAND COMMUNICATIONS RECEIVER. 7 shon min bands, FM, AM and LWOXlocal switch, tuning 'eye' mains or battery. Complete with shoulder strap and mains lead NOW ONLY £19.00!! REF 19P14V.

WHISPER 2000 LISTENING AID.Enables you to hear sounds that would otherwise be inaudible! Complete with headphones. Cased. $£ 5.00$ ref 5P179V
CAR STEREO AND FM RADIOLow cost stereo system giving 5 watts per channel. Signal to noise ratio better than 45 db , wow and flutter less than .35\%. Neg earth. $£ 25.00$ ref 25P21V.
LOW COST WALIKIE TALKIES.Pair of battery operated units with
7 CHANNEL GRAPHIC EQUALIZEPblus a 60 watt power amp! $20-21 \mathrm{KHZ} 4-8 \mathrm{BR}$ 12-14v DC negative earth power ampl $20-21 \mathrm{KHZ}$ Z
Cased $£ 25$ ref 25 P 14 V .
NICAD BATTERIES. Brand new top quality. $4 \times$ AA's $£ 4.00$ ref 4 P44V. $2 \times$ C's $£ 4.00$ ref $4 P 73 \mathrm{~V}, 4 \times \mathrm{D}$'s $£ 9.00$ ref $9 \mathrm{P} 12 \mathrm{~V}, 1 \times \mathrm{PP} 3$ P35V
TOWERS INTERNATIONAL TRANSISTOR SELECTOR GUIDE. The ultimate equivalents book. Latest edition $£ 20.00$ ref ${ }^{204323}$
CABLE TIES. $142 \mathrm{~mm} \times 3.2 \mathrm{~mm}$ white nylon pack of $100 £ 3.00$ ref
VIDEO AND AUDIO MONITORING SYSTEM

Brand new units consisting of a camera, 14 cm monitor. 70 metres of cable, AC adapter, mounting bracket and owners manual. 240 v AC or $12 v$ DC operation complete with built in 2 way intercom. $£ 99.00$ ref $99 P 2 v$.
1991 CATALOGUE AVAILABLE NOW IF YOU DO NOT HAVE A COPY PLEASE REQUEST ONE WHEN ORDERING OR SEND US A $6^{\prime \prime} \times 9^{\prime \prime}$ SAE FOR A FREE COPY. GEIGER COUNTER KIT.Complete with tube، PCB and all compohents to build a battery operated geiger counter. £39.00 ref 39P1v FM BUG KIT.New design with PCB embedded coil. Transmits to any FM radio. $9 v$ battery req'd. $£ 5.00$ ref 5 P 158 V
FM BUG Built and tested superior 9v operation $£ 14.00$ ref 14 P 3 V COMPOSITE VIDEO KITS. These convert composite video in separate H sync. V sync and video. 12v OC. $£ 8.00$ ret 8P39V.
SINCLAIR C5 MOTORS 12 V 294 (full load) $3300 \mathrm{~mm} 66^{\prime \prime} \times 4^{1 / 1 / 4}$

Op shatt Now $£ 20.00$ red 20P22v. As above but with fitted $7 y_{0} 1$ Thine reduction
toothed nylon belt dfue SINCLAIR C5 WHEELS $13^{4 \prime}$ or $16^{\prime \prime}$ dia including treaded tyre and inner tube Wheels are black, spoked one piece poly carbonate. $13^{\prime \prime}$ wheel 86.00 ref 6 P20. $16^{\prime \prime}$ wheel $£ 6.00$ ret 6 P21V ELECTRONIC SPEED CONTROL KITior 55 motor. PCB and al components to build a speed controller ($0-95 \%$ o speed). Sses pulse widrh modulation. $£ 17.00$ ref 17P3V AA nicads in 8 hours. Brand new and cesed $£ 6.00$ ref 6 A 3 V .

AT 286 MOTHER BOARD

640K RAM
UPGRADABLE TO 4 M
AT CASE
AT POWER SUPPLY
AT KEYBOARD

MANUAL

NO I/O CARDS
£139
ELECTRONIC TICKET MACHINES These units contain a magnetic card reader, two matrix printers, motors, sensors and loads of electronic components etc. ($12^{\prime \prime} \times 12^{1 " x} 7^{"}$) Good value a £12.00 ref 12P28V
JOYSTICKS. Brand new with 2 fire buttons and suction feet these units can be modified for most comput ers by changing the connector
etc. Price is 2 for $\Sigma 5.00$ ref 5 P174V. etc. Price is 2 for $£ 5.00$ ref 5P174V
GAS POWERED SOLDERING
GAS POWERED SOLDERING IRON AND BLOW TORCH
Top quality tool with interchangeable heads and metal body. Fully Top quality tool with interchangeable heads and me
adjustable, runs on lighter gas $£ 10.00$ ref 10P130V
adiustable, runs on lighter gas $£ 10.00$ ref 10 P 130 V
ANSWER MACHINES BTapproved remote message playback. intergral push button phone, power supply and tape. Exceptiona. value at $£ 45.00$ rei 45P2V
CAR IONIZER KIT Improve the air in your car! clears smoke and helps to reduce fatigue. Case required. $£ 12.00$ ref 12 PBV .
6 V 10 AH LEAD ACIDsealed battery by yuasha ex equipment bu in excellent condition now only 2 for $£ 10.00$ ref 10 P 95 V .
12 TO 220V INVERTER KITAs supplied it will handle up to about 15 w at 220 v but with a larger transformer it will handle 80 watts. Basic kit $£ 12.00$ ref $12 P 17$. Larger transformer $£ 12.00$ ref 12P41V VERO EASI WIRE PROTOTYPING SYSTEMIdeal tor designing projects on eic. Complete with tools, wire and reusable board. Our price $£ 600$ ref 6P33V.
MICROWAVE TURNTABLE MOTORS. Ideal for window dis-
plays etc. 55.00 fef 5P165V.
STC SWITCHED MODE POWER SUPPLY220v or 110 v input giving $5 v$ at $2 \mathrm{~A},+24 \mathrm{v}$ at $0.25 \mathrm{~A},+12 \mathrm{v}$ at 0.15 A and +90 v at $0.4 \mathrm{~A} £ 6.00$ ref 6P59V
HIGH RESOLUTION 12" AMBER MONITORI2v 1.5A Hercules compatible (TTL input) new and cased $£ 22.00$ ref 22 P 2 V VGA PAPEA WHITE MONO monitors new and cased 240 v AC. £59.00 rel 59P4V
25 WATT STEREO AMPLIFIERC. STK043. With the addition of 25 WATT STEREO AMPLIFERc. STKO43. With the addition of a handiful of components you
4P69V (Circuit dia included). 4PG9V (Circuit die included).
UNEAR POWER SUPPLY
UNEAR POWER SUPPLY Brand new 220 v input +5 at $3 A_{1}+12$ at $1 \mathrm{~A},-12$ at 1A. Short circuit protected. $£ 12.00$ ref 12 P 21 V .
MAINS FANS Snail MAINS FANS Snail type construction. Approx $4^{\prime \prime \times 5} 5^{\prime \prime}$ mounted on a metal plate for easy fixing. Now $£ 5.00$ 5P 166 V
POWERFUL IONIZER KIT. Generates 10 times more ions than commercial units! Complete kit including case $£ 18.00$ ref 18 PF 2 V . MINI RADIO MODUL E Only 2 " square with ferrite aerial and tuner. Supethet. Req's PP3 battery, $£ 1.00$ ref BD716V
HIGH RESOLUTION MONITOR. 9 " black and white Phillips tube in chassis made for OPD computer but may be suitable for others. E20.00 ref 20P 26 V .
BARGAIN NICADS AAA SIZE 200MAH 1.2 V PACK OF 10 £4.00 REF 4P92V, PACK OF 100 £30.00 REF 30P16V CB CONVEATORS.Converts a car radio into an AM CB receiver. Cased with circuit diagram. $£ 4.00$ ref 4P48V FLOPPY DISCS. Pack of $1531 / 2^{\prime \prime}$ DSDD $£ 10.00$ ref 10P88V. Pack of 10 51/4" DSDD $£ 5.00$ ref 5P168V

BULL ELECTRICAL

250PORTLAND ROAD HOUESUSSEX BN3 501 TELEPHONE 0273203500 MAIL OADEA TERMS: CASH PO OR CHEQUE WITH ORDEA PLUS \&2.50 POST PLUS VAT.

NEX DAY DELUVERY 28.00
FAX 027328077

SONIC CONTROLLED MOTOR One click to start, two FRESNEL. MAGNIFYING LENS $83 \times 52 \mathrm{~mm} £ 1.00$ ref BD827V. LCD DISPLAY. $41 / 2$ digits supplied with connection data $£ 3.00$ rel $3 P 77 \mathrm{~V}$ or 5 for $£ 10.00$ ref 10P78V
ALARM TRANSMITERS. No data avaliable but nicel
complex trans mitters 9 y operation. $£ 4.00$ each ref 4F 81 V . intercoms, door bells etc $£ 3.00$ a reel ref $3 P 107 \mathrm{~V}$.
TRANSMTTER RECEVER SYS TEMoriginally made for nurse call systems they consist of a pendant style transmitter and a eceiver with telescopic aerial 12 v LIP
LAP UGHT. This device urns on a lamp at a finger 'snap' etc nicaly cased with built in battery operated light. Ideal bedside light etc £4.00 each ref 4PR2V
ELECTRONIC DIPSTICK KIT.Contains afl you need to build an lectronic device to give a 10 level liquid indicator. $£ 5.00$ (ex case) of 5P194V
UNIVERSAL BATTERY CHARGER.Takes AA's, C's, D's and PP3 nicads. Holds up to 5 batteries at once. New and cased, mains perated 56.00 ref 6 P 36 V
ONE THOUSAND CABLE TIES $175 \mathrm{~mm} \times 2.4 \mathrm{~mm}$ white nylon cable ties only $£ 5.00$ ref $5 P 181 \mathrm{~V}$
PC MODEMS 120075 baud modems designed to plug into a PC complete with manual but no software $£ 18.00$ ref 18P12V ASTEC SWITCHED MODE POWER SUPPLY $80 \mathrm{~mm} \times 165 \mathrm{~mm}$ (PCB size) gives +5 at $3.75 \mathrm{~A},+12$ at $1.5 \mathrm{~A},-12$ at 0.4 A . Brand new E12. 00 ref 12P39V.
VENTILATED CASE FOR ABOVE PSUwith IEC filtered socket and power switch. $£ 5.00$ ref 5 P 190 V .
IN CAR POWER SUPPLY. Plugs into cigar socket and gives $3,4.5 .6 .7 .5,9$ and 12 v outputs at 800 mA . Complete with universal spider phing \&5.00 ref 5P167V
CUSTOMER RETURNED switched mode power supplies. Mixed type, good for speres or repalr. £2.00 each ref 2 P 292 V .
DRILL OPERATED PUMP. Fits any drill and is self priming. $£ 3.00$ ret 3P140V
PERSONAL ATTACK ALARM. Complete with built in torch and vanity mirror. Pocket sized, req's 3 AA batteries. $£ 3.00$ ref $3 P 135 \mathrm{~V}$ POWERFUL SOLAR CELL 1 AMP . 45 VOLTbnly $£ 5.00$ ref 5P192V (other sizes avaliable in catalogue)
SOLAR PRONECT KIT.Consists of a solar cell, special OC motor, plastic fan and turntables etc plus a 20 page book on solar energy! Price is $£ 8.00$ ret 8P SiV.
RESISTOR PACK. 10×50
CAPACITOR PACK 1.100 assorted non electrolytic eapacitors E2.00 ref 2P286V
CAPACITOR PACK 2. 40 assorted electrolytic capacitors $£ 2.00$ - 2P287V

QUICK CUPPA? 12 vimmersion heater with lead and cigar lighter plug £3.00 ref 3P92V
LED PACK. 50 red leds, 50 green leds and 50 yellow leds all 5 mm E8.00 ref 8P52V
FERRARI TESTAROSSA. A true 2 channel radio controlled car with forward, reverse, 2 gears plus turbo. Working headlights £22.00 ref 22P6V
ULTRASONIC WIRELESS ALARM SYSTEMT wo units, one a sensor which plugs into a 13A socket in the area you wish to protect. The other, a central alarm unit plugs into any other socket elsemere in the building. When the sensor is triggered (by body movement etc) the alarm sounds. Adjustable sensitivity. Price per pair 20.00 ref 20 P 34 V . Additional sensors (max 5 per alarm unit) £11.00 ref 11P6V
WASHING MACHINE PUMP Mains operated new pump. Not self priming £5.00 ret 5P18V
IBM PRINTER LEAD. (D25 to centronics plug) 2 metre parallel £5.00 ref 5P186V
COPPER CLAD STRIP EOARD 17 " $\times 4^{4}$ of 1 " pitch "vero" board £4.00 a sheet ref 4 P 62 V or 2 sheets for $£ 7.00$ ref 7 P 22 V
STRIP BOARD CUTTING TOOL. 5200 tef $2 P 352 \mathrm{~V}$
$31 / 2^{\prime \prime}$ disc drive. 720 K capacity made by NEC $£ 60.00$ ref 60 P 2 V
TV LOUDSPEAKERS. 5 watt magnetically screened 4 ohm 55 125 mm . $£ 3.00$ a pair ref 3 P109V .
SPEAKER GRILLS ser of 3 matching grills of different diameters 2 packs for $£ 2.00$ (6 grills) ret 2P364V
50 METRES OF MAINS CABLE $£ 3.002$ core black precut in convenient 2 m lengths. Ideal for repairs and projects. ref 3P91V 4 CORE SCREENED AUDIO CABLE 24 METRES 12.00 Precut in to convenient 1.2 m lengths. Ref 2 P365V
TWEETERS $21 / 4^{"}$ DIA 8 ohm mounted on a smart metal plate for asy fixing £2 00 rel 2 P 366 V
COMPUTER MICE Originally made for Future PC's but can be adapted for other machines. Swiss made £8.00 ref 8P57. Atan ST conversion kit $£ 200$ ref 2 P 362 V
1/2" 20 WATT SPEAKER Buill in tweeter 4 ohm $\mathbf{~} 5.00$ re
5 5205V
5" X 3" 16 OHM SPEAKER 3 for $£ 1.00!$ rel CO213V
ADJUSTABLE SPEAKER BRACKETS Ideal for mounting speakers on imernal or extemal corners, uneven surfaces erc. 2 for £5.00 ret 5P207
PIP UGHT SWITCH Replaces a standard light switch in seconds light operates when anybody comes within detection range (4m) and stays on for an adjustable time (15 secs to 15 mins). Complete with daylight sensor. Unit also functions as a dimmer switch! 200 watt max. Not suitable for flourescents. $£ 14,00$ ref 14P10V
2 MEG DISC DRIVES $31 / 2^{\prime \prime}$ disc drives made by Sony housed in a $51 / 4^{\prime \prime}$ frame 1.2 meg formatted. $\mathbf{£ 6 6 . 0 0}$ ref 66P 1 V CUSTOMER RETURNED 2 channel full function radio controlled cars only $£ 8.00$ ref 8 P 200 V
WINDUP SOLAR POWERED RADIO! FM/AM radio takes NICAD batrenes complete with hand charger and solar panel 14 P 200 V 240 WATT RMS AMP KIT Stereo 30-0-30 psu required $£ 40.00$ ref uP200V
300 WATT RMS MONO AMP KIT E55.00 Psu required ref 55 P 200 V ALARM PIR SENSORS Standard 12 v alarm type sensor will interface to most alarm panels. $£ 16.00$;ef 16P200V
ALARM PANELS 2 zone cased keypad entry, entry exit time delay etc. $£ 18.00$ ref 18 P 200 V
35MM CAMERAS Customer return
STEAM. ENGINE Standard Mamod 1332
\square

[^0]Projects
BICYCLE ALARM by Max Horsey
Avoid the long walk home, the heartache and the insurance claim DARTS SCORER by Richard Stone
No more embarassment for the scorer, this microprocessor based project takes it away from you!
SIMPLE MODEL SERIES
5-MINI-MICROWAVE by Owen Bishop
A modern appliance for the dolls house
MODULAR DISCO LIGHTING SYSTEM by Chris Bowes 728
Part Seven: Superchaser and Supersweep
REMOTE CAMERA RELEASE by T. R. de Vaux-Balbirnie 738
Get in the picture and stay in control.
INFORMATION TECHNOLOGY AND THE NATIONAL CURRICULUM by T. R. de Vaux-Balbirnie 708
Part One: Basic Communication
AMATEUR RADIO by Tony Smith G4FAI 714
No Geostationary Satellite; A Few Statistics; New Book; Safety Important; Test Equipment; Memory Prompted
MAGNETIC RECORDING by Vivian Cape! 722
Part Two: Recording and Playback Heads
INTERFACE by Robert Penfold736
The spot for all computer enthusiasts - C64 Interfacing
Features
EDITORIAL 691
SIMPLE MODELS SERIES SPECIAL EASIWIRE OFFER 721
SHOPTALK with David Barrington 724
Component buying for EE projects
DOWN TO EARTH by George Hylton 726
Motorboating
ROBOT ROUNDUP by Nigel Clark 744
News from the world of robotics 745
Selected technical books and all the EE books by mail order
PRINTED CIRCUIT BOARD SERVICE 748P.C.B.s for EE projects
FREE WITH THIS ISSUE
GREENWELD ELECTRONIC COMPONENTS 1992 CATALOGUE Banded to all copies
ADVERTISER'S INDEX 752

HARD DISC DRIVES

20 Mb (IDE - CONNER)	E 79
20 Mb (MFM or RLL)	E 79
40 Mb (IDE)	E140
40 Mb (MFM)	E 120
100 Mb (IDE - CONNER)	E235
MOUNTING KIT (INCLUDING BEZELS \& LED)	$E 9$
MOUMTIME KIT (MOUNTING RAILS ONLY)	£ 5

HARDCARDS

20 Mb AT - IDE E105
20 Mb XT - IDE E 115
40 Mb AT - IDE E170
40 Mb XT - IDE E180
100 Mb AT - DDE $£ 265$

HARDGARD KIT

CONVERT YOUR $3 \frac{1}{2} "$ HARD DISC DRIVE TO A HARDCARD. PRICE
$E 18$

KEYBOARD

AT 102 KEY - UK E24

FLOPPY DISC DRIVES

3	1.44M	INTERNAL	£ 45
3\%"	1.44M	EXTERNAL	E 52
$31^{\prime \prime}$	720K	INTERNAL	£40
3\%"	720K	EXTERNAL	E4
$5{ }^{1} \times$	1.2 M	INTERNAL	E45
5t"	1.2M	EXTERNAL	E 52
5\% ${ }_{\text {\% }}$	360K	EXTERNAL	£ 31

ACCESSORIES

$5!"$ ADAPTOR KIT FOR $3 \frac{1}{2}$ " FDD
5!" TRAY FOR 3!" FDD
POWER LEAD FOR $3 \stackrel{1}{2}$ FDD
IDC PIN TO EDGE CONNECTOR PCB
SHORT F D D CONTROLLER CABLE 2'
LONG FD D CONTROLLER CABLE 4°
POWER SPLITTER
HARD DRIVE CABLES (MFM/RLL)
IDE HARD DRIVE CABLE (2 DRIVES) KEYBOARD EXTENSION CABLE
MICRO 'T' SWITCH - RS232
$€ 8.00$
£ 5.50
€ 3.00
E 4.00
E 4.00 $E 7.00$ E 4.50 $E 6.00$ E 6.00 £ 4.00 E 6.50

ITTEMTION: AT/XT USERS

WOULD YOU LIKE TO USE I.2M OR I.44M DRIVES ON YOUR COMPUTER. YOU CAN NOW WITH HOBBYKIT'S FLOPPY DISC CONTROLLER CARD. WILL ALLOW 2 EXTRA DRIVES OF ANY FORMAT IN YOUR COMPUTER
SPEGILL PRICE
\& 31

CONTROLLER GARDS

MONITORS

14" YGA COLOUR 0.31 DOT PITCH TILT \& SWIVEL BASE E163
12^{n} VGA PAPER WHITE MONITOR TILT \& SWIVEL BASE E 75 MOTHEREOARDS

AMI BIOS - SUPPORTS EMS 4.0 E SHADOW RAM

* COMPLETE WITH I MU MEMORY *

$286-12$	$L / 816 ~ M H z$	$£ 97$
$286-16$	L/S 21	MHz
286-20	L/ $/ 525 \mathrm{MHz}$	$€ 127$

CASES

COMPLETE WITH 200W P.S.U FLIP-TOP WITH з sLots $£ 60$ DESKTOP WITh 4 sLots $£ 80$ MINI TOWER with 5 slots $£ 70$ TOWER WITH4 sLots E 107

FDD EXTERNAL CASES

METAL GREY CASE SUTTABLE FOR EXTERMAL
MOUNTING OF FLOPPY DISC DRIVES, HARD DISC DRIVES, TAPE STREAMERS, CD ROMS ETC

5\%" CASE ONLY	E 10
$5{ }^{\prime \prime}{ }^{\prime \prime}$ CASE + LEADS FOR F D D	£ 23
$3 i^{\prime \prime}$ CASE ONLY	E 10
$31^{\prime \prime}$ CASE - LEADS FOR F D D	E. 26

ADD ON GARDS

FDD CONTROLLER - 2xFDD - ANY FORMAT
TRIDENT SUPER VGA - 16 BIT - 612 K
2 SERILAL / I PARALLEL / I GAMES PORT
4 MB RAM CARD FOR AT WITH EMS
USES 256K OR M - WITHOUT RAM
LET HOBBYKT QUOTE FOR YOUR COMPUTER SYSTEM HOBBYKIT

CREDIT CARD HOTLINE 081-2057485
UNIT IG CAPITOL INDUSTRIAL PARK CAPITOL WAY, LONDON, NW 9 OEQ FAX NUMBER : 081-205 0603

END OF LINES

MODEMS - Y22 BIS - 2400 BPS AUTO DIAL - AUTO ANSWER - FULL DUPLEX AUTO REDAL - TOME \& PULSE DIALING BT APPROVAL - BABT APPROVAL SUPPLIED WITH EAZLLINK COMMS PACKAGE
MC2400 = IMTERNAL € 65
SM2400-EXTERNAL E93
SY" - 720K EXT FLOPPY DISC DRIVE
MEW - GREY CASE
SPECIAL OFFER PRICE
$3\}^{n}-1.44$ M IUT FLOPPY DSC DRIVE BLACK OMLY
SPECIAL OFFER PRICE
E. 39

6f" - 360K IWT FLOPPY DISC DRIVE MEW - GREY OR BLACK
SPECIAL OFFER PRICE E 24
CGA CARD - FULL LENGTH COMPOSITE \& TTL
£ 12
60 MEG TAPE STREAMER DC600-5 ${ }^{1}$ " TRAY SUITABLE FOR ALL IBM COMPATIBLES PRICE : £ 150
 INCLUDE VAT**

3 Strito nerwouk sisten

ALL PARTS FOR 3 STATIONS SUPPLIED INCLUDING DRIVER SOFTWARE AND DATA. USES TWISTED PAIR CABLE - EXPANDABLE. EASY INSTALLATION - APPROX 30 MINS. I Mb TRANSFER RATE. MANUFACTURED BY WELL KNOWN METWORKING COMPANY. SPECIAL OFFER PRICE
£ 57

SOFTWARE

WORDSTAR 2000 Lan VOL 182	£ 20
account Master lah	E 20
SUPER CALC 4 LAM	E 20
ABILITY PLUS	E 30
PAYMASTER	£ 20
LIMK MASTER	£ 20
SUPER CALC 2 FOR CP/M PLUS	£ 20
LOCOMAIL FOR PCW	£ 20

PLEISE RDD E 3.00 TO ALI ORDEES TO COVER POSTAEE

FREE INSIDE THE DECEMBER ISSUE 48 PAGE PULL-OUT GREENWELD BARGAIN LIST A SUPPLEMENT TO THEIR CATALOGUE

MIND MACHINE

In September's "Brainwave" project, the design of a simple mind "entrainment" project was given, and the principles of this relaxation technique were described. Although an effective first project for newcomers to this field, the "Brainwave" was fairly simple, and a far more sophisticated instrument can be built. The next two articles in this series will cover the construction of an advanced version, combining "photic stimulation" and "binaural" sound, and having the option of a programmer so that users can experiment with various sequences.

SIGNAL GENERATOR

A number of low-frequency signal generator circuits using the 8038 function chip have been published but most of them show no particular regard to the accuracy either of frequency or output voltage levels. Since the 8038 still seems to be going strong in the integrated circuit world, here is a design which enables quantitative measurements to be made over the frequency range 0.1 Hz to 100 KHz with an accuracy better than 2% and an output level range from a maximum of 10V peak-to-peak to 40 dB down.

DECEMBER ISSUE PUBLISHED FRIDAY 1 NOVEMBER

AMPLIFIERS FROM al Mnvirle
 The UK Distributor for the complete ILP Audio Range

* Bipolar Modules - 15 watts to 180 watts
* Mosfet Modules - 60 watts to 180 watts
* Power Supplies
* Pre-amplifier Modules
* 100 volt Line Transformers
* Power Slave Amplifiers Write or phone for free Data Pack

Jaytee Electronic Services

143 Reculver Road, Beltinge, Herne Bay, Kent CT6 6PL Telephone: (0227) 375254

ORDERING INFORMATION. Prices INCLUDE VAT bur please add 1.25 PaP (UK). Overse as Customers: divide total order by 1.175 then add PgP: Europe 3. 50, elsewhere 10 . Send PO/chequeNISA

ORDERS: 08 - 567891024 HOURS

OMNI ELECTRONICS

174 Dalkeith Road, Edinburgh EH16 5DX 0316672611
A COMPREHENSIVE RANGE WITH SERVICE SECOND TO NONE OUR MUCH EXPANDED, BETTER ILLUSTRATED CATALOGUE COSTS 81.50 - INCLUDES VOUCHERS TO USE AGAINST FUTURE PURCHASES. TO RECEIVE A COPY PLEASE SEND YOUR REMITTANCE WITH THE VOUCHER BELOW.

Fimpopy Memorice

4116 150ns pulls
4164 100ns
41256 120ns
41256 100ns
41256 80ns 41464 100ns 414256 80ns 411000 80ns $\quad 3.95$ 1 Megx9 SIMM 80ns 35.50 1 Megx9 SIPP 80ns 37.50

Motherboards

80286 Upto 4Mb RAM EMS on board 12MHz £79 16MHz £95 20MHz £112 80386 SX 16 MHz £ $1552 \mathrm{MMHz} £ 175$ 80386 DX 25 MHz £295 80386DX 33MHz Cache £399 Odds
120Mb Internal Tape Streamer
102 Key Tactile Keyboard 3 Button opto-mech mouse Video
6bit VGA 512K 1024×768 6bit VGA 1Mb $1024 \times 768 \times 256$ Hercules / printer card Amber TTL $14^{\text {" }}$ Monitor VGA Paper White
VGA Colour 1024×768 with 2 yrs on-site warranty
1.00256x9 SIMM 80 ns256x9 SIPP 80ns$1.40 \quad 6264 \quad 100 \mathrm{~ns}$ LP5562256 100ns LP2727C256 250ns11.5012.002.452.952.95
652764 250ns $20 \quad 27128$ 250ns 1.85
2.252.45
27512 250ns 2.45
27C512 250ns 3.75
Diskdrives

1.2Mb Floppy	£ 4
$31 / 2=1.44 \mathrm{Mb}$ Floppy	£44
51/4" Frame for fioppy	¢5
$40 \mathrm{Mb} 28 \mathrm{Ms} 31 / 2{ }^{\text {" }}$ IDE	£149
$90 \mathrm{Mb} 19 \mathrm{Ms} 31 / 2^{\prime \prime}$ " IDE	£259
106Mb 19Ms 31/2" IDE	$£ 299$
211 Mb 15Ms 31/2" IDE	£49

VSA Happy Memories, FREEPOST, Kington, Herefordshire HR5 3BR Tel (054 422) 618 Fax (054 422) 628

MARCO TRADING

INCORPORATING EAST CORNWALL COMPONENTS ELECTRONIC COMPONENTS

VSA \& EQUIPMENT RETAIL

SEND ORDERS TO - DEPT 11
MARCO TRADING
the maltings, high street, wem
SHROPSHIRE SY4 5EN Tel: (0939) 32763 ELECTRICAL \& ELECTRONIC COMPONENT SUPPLIERS

24HR ANSAPHONE

LATEST 1992 rerrer.
CATALOGUE

* Velleman Kit Catalogue - Free pre-paid envelope * Many new lines
- Pages of special offers Free gifts 132 PAGES

VIDEO - WIRELESS

MICROPHONE - HAND HELD

A 2 part wireless mic system designed for use with video camcorders. Microphone has HIGH/LOW power switch to select the transmission range up to 200 tL . The receiver has a mounting shoe for fixing to the camcorder. Volume control and lead with 3.5 mm jack plug. Complete
with vinyl carrying case with vinyi carrying case
ORDER CODE: MIC/G210
PRICE 845.99

IEC FILTER PLUG UNIT
belling Lee TYPE-L2133C/L

Current rating: 2A, operating volt: 250. line frequency: $0-400 \mathrm{MHz}$, Induciance 3 mH per line. RS Price: 99.50 Each OUR
ORDER CODE: SOI262 PRICE 84.50
BELLING LEE TYPE - L2131C/L
Chassis style as above but: 6 A ORDER CODE: SO/262A PRICE: 84.75

SUPERTRONICS Tel: 0216666504 65 HuNST STREET BIRMIGGHAM B5 4TE WALTONS
 $55 A$ WORCESTER ST IVERHAMPTON

FREQUENCY RANGE: $\begin{array}{ll}\mathrm{AM} & 108.145 \mathrm{MHz} \\ \text { PB } & 145-176 \mathrm{MHz}\end{array}$ $\begin{array}{ll}\text { PB } & 145-176 \mathrm{MHz} \\ \mathrm{Wb} & 162.5 \mathrm{MHz}\end{array}$ Wb 162.5 MHz
TV $54-87 \mathrm{MHz}$ FM $88-108 \mathrm{MHz}$ CB $1-80$ channels Power 6V d.c. (Ax AA batteries, not
included)
Dims $93 \times 198 \times 50$ Price: $\varepsilon 17.50$

(normally $£ 59.00$)

800 W max- 4Ω $£ 95.00$ (normally £99.00)

SEE OUR LATEST CATALOGUE FOR FULL SPEC. OFFER ENDS $£ 75.00$ (normally £79.00)
200 W max -4Ω £35.99 (normally £39.00)

$N /-C A$		
AAA AA C D PP3	PRICE $1+$ $£ 1.50$ $95 p$ $£ 1.95$ $£ 2.00$ $£ 3.90$	EACH $10+$ f1.30 85p f1.80 f1.85 £3.75

HIGH PERFORMANCE CAR SPEAKERS by EMINENCE MADE IN U.S.A.
HIGH PERFORMANCE DRIVER

300W max-4?
£46.00 (normally £49.00)

1200W max-4 Ω £190.00 (normally £199:00) NI-CAD CHARGER
 Charges AA. AAA. C. D \& PP3 Ni -Cads
240 V AC £4.99

87.50

ORDER CODE SO/SIE/10A Onter

2 for \&10.00

Very high quality, brand new, unused, really a true bargain, Ideal for Computer, Radio, which require electrical noise
free supply. Each filter constructed using toroidal chokes free supply. Each filter constructed using toroidal chokes
and combination of salety $X 2$ and Y capacitors configuraand combination of safety $X 2$ and Y capacitors configura-
tion in a delta formation. pling three pleces of audlo, video equipment with scart sockets.

JUST ARRIVED PCB STORAGE TRAY

BY ALLIBERT
Dim: $300 \times 395 \mathrm{~mm}$. Depth 75 mm Colour grey. Order code SO/GRE $1 \times £ 1.50 \quad 25+£ 1.25$ $100+£ 1.00$
HURAY!! HURRY!!

YUASA SEALED LEAD ACID BATTERY OFFER
We have just purchased over 500 sealed lead acid batteries. Because we bought so many we can offer you a very, very low prlce. All the batteries are brand new, unused, full spec. etc. efc. We However. demand will be high and so do not delay, this offer carinot be repeated.

Weights: NP10-6 $\quad 2.2 \mathrm{Kg}$

Number	
Of	Mapiln
Celli	Price
3	$£ 17.95$
6	$£ 59.95$
NP10-6 is spade style	

SURVBITMANCE PIROHESSYONAL DUAWHTY KTIS

No.

 For KitsWhether your requirement for surveillance equipment is amateur, professional or you are just fascinated by this unique area of electronics SUMA DESIGNS has a kit to fit the bill. We have been designing electronic surveillance equipment for over 12 years and you can be sure that all of our kits are very well tried, tested and proven and come complete with full instructions, circuit diagrams, assembly details and all high quality components including fibreglass PCB. Unless otherwise stated all transmitters are tuneable and can be received on an ordinary VHF FM radio.

UTX Ultre-miniature 路sem Treadealiter
Smallest room transmitter kit in the world! Incredible $10 \mathrm{~mm} \times 20 \mathrm{~mm}$ including mic. 3 12 V operation. 500 m range...
... $£ 16.45$
MTX Micro-miniature Room Transmitter
Best-selling micro-miniature Room Transmitter
Just $17 \mathrm{~mm} \times 17 \mathrm{~mm}$ including mic. $3-12 \mathrm{~V}$ operation. 1000 m range....................... 13.45

STX Migh-performance llives Transmitter

Hi pertormance transmitter with a buffered output stage for greater stability and range. Measures $22 \mathrm{~mm} \times 22 \mathrm{~mm}$ including mic. $6-12 \mathrm{~V}$ operation, 1500 m range E 15.45
VT500 Migh-power Room Transmitter
Powerful 250 mW output providing excellent range and performance. SIze $20 \mathrm{~mm} x$ 40mm. 9-12V operation. 3000 m range... 16.45
VXT Voice Activated Transmitter
Triggers only when sounds are detected. Very low standby current. Variable sensitivity and delay with LED indicator. Size $20 \mathrm{~mm} \times 67 \mathrm{~mm}$. 9 V operation. 1000 m range... $£ 19.45$
HNX400 Mains Powerod Room Transmitter
Connects directly 10240 V AC supply for long-term monitoring. Size $30 \mathrm{~mm} \times 35 \mathrm{~mm}$. 500m range
. $£ 19.45$
SCRX Subcarter Scrambled hoom Transmitter
Scrambled output from this transmitter cannot be monitored without the SCDM decoder connected to the receiver. Size $20 \mathrm{~mm} \times 67 \mathrm{~mm}$. 9 V operation. 100 m range...........£22.95

scux subcarrier Telephone Transmitter

Connects to telephone line anywhere, requires no batteries. Output scrambled so requires. SCDM connected to receiver. Size $32 \mathrm{~mm} \times 37 \mathrm{~mm}$. 1000 m range............ $£ 23.95$

SCDM Subcarrler Decoder Unit for SCRX

Connects to receiver earphone socket and provides decoded audio output to headphones. Size $32 \mathrm{~mm} \times 70 \mathrm{~mm}$. 9-12V operation...
.. $£ 22.95$

ATR2 Mlcro SIze Telophone Recording Intertace

Connects between telephone line (anywhere) and cassette recorder. Switches tape automatically as phone is used. All conversations recorded. Size $16 \mathrm{~mm} \times 32 \mathrm{~mm}$. Powered from line.
£13.45

UTLX UItra-miniature Teiephone Transmitter

Smallest telephone transmitter kit available. Incredible size of $1 \mathrm{~mm} \times 20 \mathrm{~mm}$! Connects to line (anywhere) and switches on and off with phone use. All conversation transmitted. Powered from line. 500 m range .
£15.95

TLX700 MIcro-m/niature Telophone Transinitter

Best-selling telephone transmitter. Being $20 \mathrm{~mm} \times 20 \mathrm{~mm}$ it is easier to assemble than UTLX. Connects to line (anywhere) and switches on and off with phone use. All conversations transmitted. Powered from line. 1000 m range
. $£ 13.45$ STUX High-perfomance Telephone Transmitter
High performance transmitter with buffered output stage providing excellent stability and performance. Connects to line (anywhere) and switches on and off with phone use. All conversations transmitted. Powered from line. Size $22 \mathrm{~mm} \times 22 \mathrm{~mm}$.
1500 m range
£16.45
TKXS00 SIgnalling/Tracking Transmiltter
Transmits a continous stream of audio pulses with variable tone and rate. Ideal for signalling or tracking purposes. High power output giving range up to 3000 m . Size $25 \mathrm{~mm} \times 63 \mathrm{~mm}$. 9 V operation.
$£ 22.95$
CO400 Pocket Bug Detectoi/Locrtor
LED and piezo bleeper pulse slowly, rate of pulse and pitch of tome increase as you approach signal. Gain control allows pinpointing of source. Size $45 \mathrm{~mm} \times 54 \mathrm{~mm}$. 9 V operation.
.. $£ 30.95$

coso0 Professlonal Bug Dotector/Locator

Multicolour readout of signal strength with variable rate bleeper and variable sensitivity used to detect and locate hidden transmitters. Switch to AUDIO CONFORM mode to distinguish between localised bug transmission and normal legitimate signals such as pagers, cellular, taxis etc. Size $70 \mathrm{~mm} \times 100 \mathrm{~mm}$. 9 V operation.
£50.95 QTX180 Crystal Controlled Room Iransmitter
Narrow band FM transmitter for the ultimate in privacy. Operates on 180 MHz and requires the use of a scanner receiver or our QRX180 kit (see catlogue). Size $20 \mathrm{~mm} \times$ 67 mm . 9 V operation. 1000 m range... $\mathrm{E}_{2} .95$ aLX180 Crystal Colntrollod Telephone Transmitter
As per OTX180 but connects to telephone line to monitor both sides of conversations. $20 \mathrm{~mm} \times 67 \mathrm{~mm}$. 9 V operation. 1000 m range...
OSX180 Une Powered Crystal Controlied Phone Tramsmitter
As per QLX180 but draws power requirements from line. No batteries required. Size $32 \mathrm{~mm} \times 37 \mathrm{~mm}$. Range 500 m .
£ $£ 35.95$

QRX180 Crystal Controlled FM Receiver

For monitoring any of the ' Q ' range transmitters. High sensitivity unit. All RF section supplied as a pre-buitt and aligned module ready to connect on board so no difficulty setting up. Outpt to headphones. $60 \mathrm{~mm} \times 75 \mathrm{~mm}$. 9 V operation ..

..$£ 60.95$

A bulld-up service is avallable on all our kits if required.

UK customers please send cheques, POs or registered cash. Please add £1.50 per prder for P\&P. Goods despatched ASAP allowing for cheque clearance. Overseas customers send sterling bank draft and add $£ 5.00$ per order for shipment. Credit card orders welcomed on 0827714476.
OUR Latest catalogue containing many more mew SURVEILLANCE KITS NOW AVAILABLE. SEND TWO FIRST CLASS STAMPS OR OVERSEAS SEND TWO IRCS.

The Workshops, 95 Main Road,
Baxterley. Near Atherstone, Warwickshire CV9 2LE

Jaytee Electronic Services

143 Reculver Road, Beltinge, Herne Bay, Kent CT6 6PL Telephone: (0227) 375254

PCB \& SCHEMATIC CAD	DIGITAL SIMULATION	ANALOGUE SIMULATION	SMITH CHART CAD
EASY-PC	PULSAR	ANALYSER III	Z-MATCHII 195
- Design Single slded, Double sided and Multilayer boards. - Providee Surface Mount support. - Standard output Includes Dot Matrix / Laser / Inkjet printers, Pon Plorterse Drill. - Award Winning EASY-PC is In use in over 8000 installations in 50 Countrios World-WIde. - Runs on PC/XT/AT/286/386 with Herc, CGA, EGA, VGA. - Superbly Easy to use. - Not Copy Protected.	- At lastl A full featured Dighal Clicult Simulator for leas than E10001 - Pulaar allowe you to toet your logic dosigns without the noed for expenslve test equipment. - Catch gllichee down to a pico second per weok! - Includes 4000 Serles CMOS and 74LS Lbrarles. - Runs on PC/XT/AT/286/386/486 whth EGA or VGA. Hard dlek recommended. - Not Copy protected.	- NEW powerful ANALYSER III has full graphical output. - Handles R's,L's, C's, B.JT's, FET's, OP-amp's, Tapped ánd untapped Transformers, and Microstrip and Co-axial Transmission Lines. - Calculates Input and Output Impedances, Gain and Group Dolay. - Covers 0.001 Hz to $>10 \mathrm{GHz}$ - Runs on PC/XT/AT/286/386/486 with EGA or VGA. - Not Copy protected.	- Z-MATCH II takes the drudgery out of RF matching problems and includes many more features than the standard Smith Chart. - Provides quick accurate solutions to many matching problems using transmission ine transformers, stubs, dlscrete components etc.etc.. - Supplied with comprehensive user instructions Including many worked examples. - Runs on PC/XT/AT/386/486, CGA, EGA,VGA - Not Copy Potected
See us at DES, Stand 1214 8-11 Oct. Number One Systems Ltd. The Electronics CAD Specialists See us at Desk-Top CAD Stand 137, 5-7 Nov. REF: EVD, HARDING WAY, SOMERSHAM ROAD, ST.IVES, HUNTINGDON, CAMBS, PE17 4WR, ENGLAND. Telephone: 048061778 (7 Ines) Fax: 0480494042 International: $+44-480-61778$ Fax: $+44-480-494042$ For full info' please Phone, Fax or Write. ACCESS, AMEX, MASTERCARD, VISA Welcome.			

MAGENTA:

All prices include VAT at $17 \frac{1}{2} \%$

Shop open 9-5 Mon-Fri;	Add $£ 2$
9-2 Saturday	p\& to
Official orders welcome	all orders

PORTABLE ULTRASONIC PEST SCARER

EE AUG '91

A powerful 23 kHz Ultrasonic generator in a compact hand-held case. A
MOSFET output drives a weatherproof transducer at up to 300 V peak to peak via a special tuned transformer. Sweeping frequency output requires no setting up or alignment. Kit includes all
components, PCB, transducer and case. KIT REF 842 KIT PRICE £22.56
D.C. MOTOR GEARBOXES

Ideal for Robots and Buggies. A miniature plastic reduction gearbox coupled with a $1-5-4.5$ Volt mini motor. Variable gearbox reduction ratios are obtained by fitting from 1 to 6 gearwheels (supplied). Two types available:
SMALL UNIT TYPE MGS
£4.08
Speed range $3-2200 \mathrm{rpm}$. Size $37 \times 43 \times 25 \mathrm{~mm}$
LARGE UNIT TYPE MGL
£4.65
Speed range $2-1150 \mathrm{rpm}$. Size $57 \times 43 \times 29 \mathrm{~mm}$

Supplying Electronics for Education, Robotics, Music, Computing and much, much more! CATALOGUE AVAILABLE PRICE £1.00 INC. P\&P

STEPPING MOTORS

A range of top quality stepping motors suitable for driving a wide range of mechanisms under computer control using simple interfacing techniques.
ID36 PERMANENT MAGNET MOTOR
48 steps per rev
£16.86
MD200 HYBRID MOTOR-
200 steps per rev
£17.10
MD35 $1 / 4$ PERMANENT MAGNET MOTOR-
48 steps per rev.
£ 12.98
R-15
48 steps per rev.
£9.15

New model just arrived. High quality reliable instrument made in W . Germany. Outstanding performance. Full two year parts and labour warranty.

EDUCATIONAL BOOKS \& BOOK PROJECTS

ADVENTURES WITH ELECTRONICS

The classic Easy to Follow book suitable for all ages. Ideal for beginners. No soldering, uses an S-DEC breadboard. Gives clear instructions with lots of pictures. 16 projects including three radios, siren, metronome, organ, intercom, timer, etc. Helps you learn about electronic components and how circuits work. Component pack includes an S-DEC breadboard and all the components for the series.
ADVENTURES WITH ELECTRONICS
COMPONENT PACK (less book)

FUN WITH ELECTRONICS

From the USBORNE Pocket Scientist series - An enjoyable introduction to electronics. Full of very clear full colour pictures accompanied by easy to follow text. Ideal for all beginners - children and adults. Only basic tools are needed. 64 full colour pages cover all aspects - soldering - faull finding - components (identification \& how they work). Also full details of how to build 6 projects - burglar alarm, radio, game, etc. Requires soldering -4 pages clearly show you how.
The components supplied in our pack allows all the projects to be built and kept. The book is available separately.
FUN WITH ELECTRONICS Book
f2.95
COMPONENT PACK (less book)
£17.93

30 SOLDERLESS BREADBOARD PROJECTS

A book of projects by R. A. Penfold covering a wide range of interests. All projects are built on a Verobloc breadboard. Full layout drawings and component identification diagrams enable the projects to be built by beginners. Each circuit can be dismantled and rebuilt several times using the same components. The component pack allows all projects in the book to be built one at a time.
Projects covered include amplifiers, light actuated switches, timers, metronome, touch switch, sound activated switch, moisture detector, M.W. Radio, Fuzz unit, etc.

30 SOLDERLESS BREADBOARD
PROJECTS Book 1
f2.95

ENJOYING ELECTRONICS

A more advanced book which introduces some arithmetic and calculations to electronic circuits. 48 chapters covering elements of electronics such as current, transistor switches, flip-flops, oscillators, charge, pulses, etc. An excellent follow-up to Teach-in or any other of our series. Extremely well explained by Owen Bishop who has written many excellent beginners' articles in numerous electronics magazines.
ENJOYING ELECTRONICS Book
COMPONENT PACK
14.62

Note - A simpie multimeter is needed to fully follow this book. The M102 BZ is ideal.

A FIRST ELECTRONICS COURSE

A copiously illustrated book that explains the principles of electronics by relating them to everyday objects. At the end of each chapter a set of questions and word puzzes allow progress to be checked in an entertaining way. An S-DEC breadboard is used for this series - soldering is not required.

A FIRST ELECTRONIC COURSE BOOK
〔4.99 PACK
¢22.83

INSULATION TESTER

EE APRIL 85

A reliable electronic tester which checks insulation resistance of wiring appliances etc., at 500 volts. The unit is battery powered simple and safe to operate. Leakage resistance of up to 100 Megohms can be read easily. One of our own designs and extremely popular.
KIT REF 444
£22.37

PET SCARER

EE MAY 89
Produces high power ultrasound pulses. L.E.D. flashes to indicate power output and level. Battery powered (9V-12V or via Mains Adaptor). KIT REF 812
Mains Adaptor $£ 2.02$

DIGITAL COMBINATION LOCK
EE MAR '91
Digital combination lock with a 12 key keypad. 4 digit - code operates 250V.16A SPCO relay. A special anti-tamper circuit allows the relay to be mounted remotely from the keypad without any loss of security Can be operated in many modes (latching/unlatching, manual/automatic setting, continuous/momentary output. etc.). Article describes operation as Vehicle Immobilising security system. Low current drain. Kit includes drilled case

KIT REF 840
$£ 19.86$

DIGITAL FREQUENCY 200 MHz METER

EE NOV 86

An 8 digit meter reading from AF up to 200 MHz in two ranges. Large $0.5^{\prime \prime}$ Red LED display. Ideal for AF and RF measurements. Amateur and C.B. frequencies.
KIT REF 563

EE
 EQUALISER

EE MAY ' 87

A mains powered loniser with an output of negative ions that give a refreshing feeling to the surrounding atmosphere. Negligible current consumption and all-insulated construction ensure that the unit is safe and economical in use. Easy to build on a simple PCB. KIT REF 707
f17.75

LIGHT RIDERS

EE OCT ' 86
Three projects under one title - all simulations of the Knight Rider lights from the TV series. The three are a lapel badge using six LEDs, a larger LED unit with 16 LEDs and a mains version capable of driving six main lamps totalling over 500 watts.

$$
\text { KIT REF } 559 \text { CHASER LIGHT }
$$

$£ 15.58$ KIT REF 560 DISCO LIGHTS £22.41

KIT REF 561 LAPEL BADGE
$£ 11.65$

ACOUSTIC PROBE

 EE NOV '87A very popular project which picks up vibrations by means of a contact probe and passes them on to a pair of headphones or an
 amplifier. Sounds from engines, watches and speech travelling through walls can be amplified and heard clearly. Useful for mechanics, instrument engineers and nosey parkers! KIT REF 740
$£ 20.01$

MICROCONTROLLER LIGHT SEQUENCER

EE DEC '90

A superb kit with pre-drilled painted and silk screen printed case for a really professional finish. This kit uses a microcontrolier I.C. to generate 8 -channel light sequences. Sequences are selected by keypad from over 100 stored in memory. Space for 10 user programmed sequences up to 16 steps long also available 1000 watts per channel, zero volt switching, inductive load capability. Opto-isolated for total safety. Many other features. Completekit includes case PCBs all components and hardware.

EE TREASURE HUNTER
 EE AUG '89

A sensitive pulse inductio Metal Detector. Picks up coins and rings etc., up to 20 cms deep. Low "ground effect". Can be used with search-head underwater
 Easy to use and build, kit

DIGITAL LCD THERMOSTAT

EE MAY '91
A versatile thermostat with LCD read out. MIN/MAX temperature recording, clock and individually settable upper and lower switching points. Covers -10 to 110 degrees Celsius, accurate to within 0.1 degrees. Submersible probe on 3 meter lead. Kit includes punched and printed case. Save on energy bills by improved control of your hot water system. Also ideal for greenhouse soil temperature and aquarium control. Complete kit includes thermostat and probe, mains power supply and relay output, PCB's and punched and printed case.
KIT REF 841

MOSFET

 VARIABLE BENCH 25V 2.5A POWER SUPPLY EE FEB 88
A superb design giving 0.25 V and $0-2.5 \mathrm{~A}$. Twin panel meters indicate Voltage and Current. Voltage is variable from zero to 25 V . A Toroidal transformer MOSFET power output device, and Quad op-amp IC design give excellent performance.
KIT REF 769
$£ 56.82$

EPROM ERASER

4 CHANNEL

LIGHT CHASER

EE Jan '90

A 1000 W per channel chaser with zero volt switching, hard drive, inductive load capability. mic sound sensor and sophisticated 'beat' detector. Chase steps to music or auto when quiet. Variable speed and mic. sens. LED mimic on front panel. Switchable for 3 or 4 channels. P552 output. Ideal for rope lights, pin spots, disco and display lighting. KIT REF 833
f32.13

EE OCT '88
Safe low-cost unit capable of erasing up 10 four EPROM's simultaneously in less than twenty minutes. Operates from a 12 V supply. Safety interlock. Convenient and simple to build and use.
KIT REF 790
£28.51

SUPERHET BROADCAST RECEIVER

EE MAR '90

At last, an easy to build SUPERHET A.M. radio kit. Covers Long and medium Wave bands. buill in loudspeaker with 1 watt output. Excellent sensitivity and selectivity provided by ceramic I.F. filter. Simple alignment and tuning without special equipment. Kit available less case, oi with pre-cut and drilled transparent plastic panels and dial for a striking see-through effect.
KIT REF $\mathbf{8 3 5}$

8 CHANNEL PROGRAMMABLE SEOUENCER

A superb 8 Channel Microprocessor controlled light sequencer kit complete with a punched, painted and screen printed steel case. Absolutely ALL components and hardware supplied in this Magenta Top Kit, including 2 PCBs, heatsink, and 2 P552 output sockets.

- 8 Isolated tab 10 A 600 V triacs. Individually fused.
- Inductive load capability and Zero Volt switching
- Fully opto-isolated control board
- Custom micro. has 80 preprogrammed sequences
- RAM area for user sequences from 2 to 160 steps long. Battery backed

LED function and mimic indicators
Keypad selection of all functions, including manual operation, sequence selection and speed control

Use with existing 3 and 4 channel lights or make new 8 channel specials

"An exceptional project with many novel features and a high standard of finish which matches professional Disco equipment costing much more"

KIT REF. 838....£57.17

Outputs via 2 P551 plugs
price.............. 53.95 each

DIGITAL CAPACITANCE METER

A wonderfully easy to use instrument giving direct read-out of capacitors from 1 pF to 1000 uF . Quick and accurate to use even by absolute beginners. 1\% accuracy circuit using close tolerance charging resistors and quartz crystal timing.

- Kit includes punched and printed case, PCB, and all components.
- Large bright 5 Digit LED display
- Direct read-out in $u F, p F, n F$
- Calibration not required

MAIL ORDER AND SHOP MAGENTA

EVERYDAY
 Electronics

INCORPORATING ELECTRONICS MONTHLY

Editorial Offices:
EVERYDAY ELECTRONICS EDITORIAL
6 CHURCH STREET, WIMBORNE,
DORSET BH21 1JH
Phone: Wimborne (0202) 881749
Fax: (0202) 841692 . DX: Wimborne 45314
See notes on Readers' Enquiries below - we regret that lengthy technical enquiries cannot be answered over the telephone.

Advertisement Offices:
EVERYDAY ELECTRONICS ADVERTISEMENTS,
HOLLAND WOOD HOUSE, CHURCH LANE,
GREAT HOLLAND, ESSEX CO 130JS.
Phone (0255) 850596

PEN IN HAND

Nearly every month II sit down pen in hand - yes even with half a dozen PC's on the premises I still write my leader with a pen, then scratch it out and muck it about before Pam types it up, sorts out the spelling and the grammar before I re-read it and muck it about a bit more -now where was I?
Oh yes, I sit down pen in hand and scratch my head about just what to say. Should it be something topical like the effect of information technology on opinion polls and the possibility of a general election? Or maybe the changes to the National Curriculum for Information Technology that affect every student, plenty of teachers and should be of interest to all parents - see our new series starting in this issue.
Or something unusual or funny, like why in this day and age does the editor not type with more than one finger and still has not used Typefit, our typesetting software, even though it is employed by many of our advertisers and a local butcher! Or maybe it should be about something technically topical like the microprocessor based project that illustrates how complex tasks can be undertaken by relatively easy to build projects using dedicated m.p.u.s. and fairly complex interfacing/decoding/encoding chips - yes the Darts Scorer is a good project.

SO WHAT?

In the end it is often very difficult to decide what to say and sometimes all I have are ideas that fail to materialise into an interesting and enlightening piece - hence these three hundred odd words about little or nothing - sometimes it's just like that. I hope you don't feel too cheated?

SUBSCRIPTIONS

Annual subscriptions for delivery direct to any address in the UK: $£ 18.50$. Overseas: $£ 23$ ($£ 40.50$ airmail). Cheques or bank drafts (in $£$ sterling only) payable to Everyday Electronics and sent to EE Subscriptions Dept., 6 Church Street, Wimborne, Dorset BH21 1JH. Tel: 0202 881749. Subscriptions start with the next

available issue. We accept Access (Master Card) or Visa payments, minimum credit card order £5.

BACK ISSUES

Certain back issues of EVERYDAY ELECTRONICS are available price $£ 1.80$ ($£ 2.30$ overseas surface mail) inclusive of postage and packing per copy - \mathbf{f} sterling only please, Visa and Access (MasterCard) accepted, minimum credit card order £5. Enquiries with remittance, made payable to Everyday Electronics, should be sent to Post Sales Department, Everyday Electronics, 6 Church Street. Wimborne, Dorset BH21 1JH Tel: 0202 881749. In the event of non-availability one article can be photostatted for the same price. Normally sent within seven days but please allow 28 days for delivery. We have sold out of Jan, Feb, Mar, Apr, June Oct, \& Dec. 88, Mar \& May 89 \& Mar 90.

BINDERS

Binders to hold one volume (12 issues) are available from the above address for $£ 5.95$ ($£ 6.95$ to European countries and $£ 9.00$ to other countries, surface mail) inclusive of post and packing. Normally sent' within seven days but please allow 28 days for delivery.
Payment in \& sterling only please. Visa and Access (MasterCard) accepted, minimum credit card order £5. Tel: 0202881749

Editor: MIKE KENWARD

Secretary: PAMELA BROWN

Deputy Editor: DAVID BARRINGTON
Business Manager: DAVID J. LEAVER
Editorial: WIMBORNE (0202) 881749
Advertisement Manager:
PETER J. MEW, Frinton (0255) 850596
Classified Advertisements:
Wimborne (0202) 881749

READERS' ENQUIRIES

We are unable to offer any advice on the use, purchase, repair or modification of commercial equipment or the incorproration or modification of designs published in the magazine. We regret that we cannot provide data or answer queries on articles or projects that are more than five years old. Letters requiring a personal reply must be accompanied by a stamped self-addressed envelope or a self addressed envelope and internatonal reply coupons.
All reasonable precautions are taken to ensure that the advice and data given to readers is reliable. We cannot however guarantee it and we cannot accept legal responsibility for it.

COMPONENT SUPPLIES

We do not supply electronic components or kits for building the projects featured, these can be supplied by advermisers.
We advise readers to check that all parts are still available before commencing any project in a back-dated issue.
We regret that we cannot provide data or answer queries on projects that are more than five years old.

ADVERTISEMENTS

Although the proprietors and staff of EVERYDAY ELECTRONICS take reasonable precautions to protect the interests of readers by ensuring as far as practicable that advertisements are bona fides, the magazine and its Publishers cannot give any undertakings in respect of statements or claims made by advertisers, whether these advertisements are printed as part of the magazine, or are in the form of inserts.
The Publishers regret that under no circumstances will the magazine accept liability for non-receipt of goods ordered, or for late delivery, or for faults in manufactore. Legal remedies are available in respect of some of these circumstances, and readers who have complaints should first address them to the advertiser.

TRANSMITTERS/BUGS/TELEPHONE

 EQUIPMENTWe would like to advise readers that cortain items of radio transmitting and telephone equipment which may be advertised in our pages cannot be legally used in the U.K. Readers should check the law before using any transmitting or telephone equipment as a fine, confiscation of equipment and/or imprisonment can result from illegal use. The laws vary from country to country; overseas readers should check local laws.

MAX HORSEY

Valuable bikes disappear
 everyday. This alarm may deter the casual thief and could save you a long walk home.

Thus Bicycle Alarm project has been designed for maximum ease of operation, and offers the following features:
\star Alarm is set by a single toggle switch.

* Alarm is reset by inserting a correctly wired jack plug, or keyswitch if preferred.
* Alarm is triggered by a vibration switch.
* Alarm sounds for only 10 seconds if knocked, or if the bicycle simply falls over.
* Alarm sounds continuously if the bicycle is ridden.
* Alarm sounds continuously if the wrong jack plug is inserted, or if the switch is turned off without inserting the plug.
* No external wiring is necessary.

The Bicycle Alarm is set by simply switching a toggle switch from "off" to "on". If the switch is returned to its off position the alarm will sound continuously. The user may only disarm the alarm by inserting a correctly wired jack plug, then
switching the toggle switch to the Off position. The jack plug is then removed.

HOWIT WOAKS

The block diagram for the Bicycle Alarm is shown in Fig. 1. The heart of the circuit is the monostable which acts as a timer. The numbers shown indicate the pins of the i.c. This enables a comparison to be made with the circuit diagram, Fig. 2.
Returning to Fig. 1, monostables require feedback of some kind to keep them latched for the time required. In this case the latch is taken from the output of an OR gate (actually made from diodes D1, D2 and D3).
The 3-input AND gate satisfies the condition that the monostable will be triggered if:
the switch SI is ON (alarm set),
AND the vibration switch $S 1$ is moved AND the jack plug is NOT inserted,

This unit is attached to the bike frame with two Jubilee clips bolted to the case. This is the suggested position for the finished unit.

If the correct jack plug is inserted the output from the AND gate will always be at logic 0 (about 0 V). If the wrong type of plug is inserted, or a plug not wired as described later, either the AND gate will not be inhibited (i.e. it will continue to work), or the OR gate will be activated. In this case the monostable will latch with its output at logic I.
The toggle switch $\mathbf{S} 2$ cannot be used to de-activate the alarm unless the jack plug is first inserted. If S2 is switched to "off" without inserting the jack plug it causes a negative pulse, via capacitor Cl , which triggers the alarm.

A problem could arise here. After 10 seconds the alarm would stop sounding, and with S2 in the off position the alarm would not be triggered from the vibration switch. The inclusion of a 2 -input AND gate solves the problem.
During the initial 10 seconds the output from the monostable is at logic 1 . This, combined with the "off" setting, of S2 causes the output from the AND gate to switch to logic 1. When fed via the OR gate, this keeps the siren sounding indefinitely. The 2 -input AND gate is actually connected to the inverted output from the monostable, but since the logic is inverted again at the AND gate, the effect is as described.
In practice the monostable is ideally constructed using NOR gates, and to make full use of the four gates provided in a single i.c. the AND gates are also constructed from NOR gates. This simplifies the construction enormously and reduces the cost, but makes the circuit diagram look rather different to the block diagram!

CIRCUIT DESCRIPTION

The full circuit diagram for the Bicycle Alarm is shown in Fig. 2. When comparing Fig. 1 and Fig. 2 note that the two AND gates are made by using NOR gates with the input logic levels inverted. This avoids the need for using a second i.c. and simplifies the construction.
The block diagram shows a 3 -input AND gate, but in the real circuit only 2 -input gates are available. The AND condition between switches S1 and S2 is satisfied by connecting the switches in series. In other words when $\mathbf{S} 2$ is in the "on" position it connects with \mathbf{S} 1 which in turn is connected to input pin 2 of the gate ICla .

Resistor R2 normally keeps pin 2 at logic 1 , but if $\mathbf{S} 1$ is "on" AND vibration switch

Fig. 1. Block diagram of the Bicycle Alarm.

Sl is moved, pin 2 will briefly switch to logic 0 . Assuming that the jack plug is NOT inserted, pin I will be held at logic 0 by resistor R1.

A glance at the NOR gate truth table (Fig. 3) will confirm that the outpit from pin 3 now switches to logic 1 each time pin 2 switches to logic 0 . A single positive pulse (i.e. logic 1) from pin 3 will trigger the monostable.
The monostable is constructed from NOR gates IC1b and ICIc. Resistor R4 and capacitor C2 control the time period. If either are doubled in value, the time for which the alarm sounds will double.
The trigger input is pin five and a brief positive pulse here will cause the output pin 4 to switch from logic $1(12 \mathrm{~V})$ to logic 0. This sudden change of voltage will be transferred via capacitor C2 to pin 12, making it also logic 0 .
Assuming that the jack plug is NOT inserted, pin 13 will also be at logic 0 , and output pin 11 will switch to logic 1 . With pin 11 at logic 1 , current will flow via resistors R5 and R7 to switch on transistor TR1 and activate the siren WDI.
The logic I from pin II will also feed back to pin 6, causing the monostable to remain latched in this state. With pin 12 at logic 0 a voltage difference exists across resistor R4, and current flows, slowly charging up capacitor C 2 . As the voltage on pin 12 rises to about 8 V , pin 11 will switch back to logic

0 , and the alarm will stop sounding. With the feedback action stopped the monostable will revert to its original condition with pin 4 -at logic 1 .

JACKPLUG

The diagram of SK 1 refers to "Screen", "Right sound channel" and "Left sound channel" in a normal stereo jack plug. The circuit assumes that the screen terminal will be connected to the left using a piece of wire, and the right channel will remain unconnected.
If the correct jack plug is inserted, pin ! of ICla will be at logic 1 (high), and pin 3 will therefore remain at logic 0 (low) regardless of the level at pin 2. The alarm cannot now be triggered. If the alarm is already sounding when the plug is inserted, the change to logic 1 at pin 13 will force the monostable to reset.
If an incorrectly wired plug is used, then pin I and pin 13 may not switch to logic 1 . Alternatively (particularly if a mono jack plug or a nail is used) the screen terminal will connect with the "right channel" and current will flow via diode D1 and resistor R6 causing the alarm to sound, and also latching the monostable. If the nail is withdrawn the alarm will reset after 10 seconds, but if the nail is left in place the alarm will sound continuously.
Whenever the correct jack plug is inserted or removed, the right channel will

COMPONENTS

Resistors

R1	1 k	
R2	100 k	See
R3	1 M	SHOP
R4	470 k	SHO
R5	2 k 2	TALK
R6	10 k	Page
R7	1 k	Pak
R8	100 k	

All 0.25W 5\% carbon film

Capacitors

C1	$0 \mu 1$ poly or disc
C2	22μ radial elect. 25 V
C3	47μ radial elect. 25 V
C4	1000μ axial elect. 35 V
C5	$0 \mu 1$ poly or disc

Semiconductors

D1,D2,

D3,D4 1 N4148 signal diode (4 off) D5 1N4001 1A50V rec. diode
TR1 BC184L npn silicon transistor
IC1 4001 B Quad 2 -input NOR gate

Miscellaneous

WD1 12V high power buzzer
S1 Mercury vibrator switch
S2 Single-pole double throw toggle switch
Plastic case, size $152 \mathrm{~mm} \times 102 \mathrm{~mm} \times$ 64 mm ; stereo jack socket $(2.5 \mathrm{~mm}$ or 3.5 mm) and plug; Jubilee clips, to suit bicycle frame; eight AA cells and battery holder ($8 \times \mathrm{AA}$); connecting wire; solder, etc.
Printed circuit board available from $E E$ PCB Service, code EE773

InPuTS		OUTPUT
B	A	a
0	0	1
0	1	0
1	0	0
1	1	0

Fig. 3. NOR gate truth table.

Fig. 2. Circuit diagram for the Bicycle Alarm

be made positive for a moment, causing the alarm to trigger. The arrangement of resistor R6, and R8 combined with capacitor C3 causes a slight delay before the transistor and siren are turned on.
Providing the plug is inserted swiftly the siren should not produce a sound. This also prevents problems which may arise if the vibration switch is activated as the plug is inserted.
Similarly if the plug is removed swiftly, the positive pulse flowing via diode DI will be absorbed by capacitor C3 and the alarm will not be triggered. Resistor R5 is needed to ensure that the monostable is able to latch immediately it is triggered, without the damping effect imposed by capacitor C3.

TOGCLE SMITCH

The toggle switch $S 2$ is used to set the alarm as described. When switching off the alarm the jack plug must first be inserted. This prevents any negative (logic 0) pulses from Sl or Cl having any affect on ICla gate output.

If the jack plug is not inserted. and assuming that $\mathbf{S} 2$ is in the On position the alarm will trigger when the bicycle is moved as described earlier. If S2 is moved to the Off position a negative pulse will flow via capacitor C 1 , and this will activate the alarm as if the bicycle had been moved. Returning S2 to the On position will allow the monostable to complete its time period, but it will re-trigger if the bicycle is moved.

Leaving S2 in its Off position will cause the alarm to sound continuously. This is achieved by means of gate ICId. When the alarm is sounding. pin 4 of the monostable is at logic 0 . and hence pin 9 of ICld will be at logic 0 .

When S2 is off. pin 8 will also be at logic 0 . Output pin 10 will therefore switch to logic 1, and current will flow through diode D2, resistors R5 and R7. causing the transistor and siren to switch on. Pin 6 of the monostable will also rise to logic I causing the monostable to latch. The alarm will sound continuously even after pin II has switched back to logic 0 . to prevent a potential thief from stealing the bicycle after the 10 second time period.

OUTPUT STAGE

The transistor TRI increases the current available up to about 100 mA . If a siren is used which requires a larger current. the existing siren may be replaced by a relay. and the larger siren driven from the relay's switch contacts. Diode D4 prevents any damage which may occur
to the transistor by back e.m.f. from the siren or relay.
Diode D5 is included to prevent damage if the battery is connected the wrong way round, and capacitor C4 and C5 decouple the circuit, to provide a smooth power supply.

ALTERNATIVES

Assuming that the jack plug is kept on a key ring, it is convenient to remove it from the socket immediately $\mathbf{S} 2$ is switched to its Off position. It is possible to leave the jack plug in its socket whenever the alarm is not active, but a larger than desired current will be drawn continuously via resistor RI.

A low value of one kilohm is indicated for resistor R1 to assure reliable operation, if for example the jack socket becomes damp. However, any person wishing to leave the jack plug in the socket for long periods could increase RI to say 100k.

KEYSWITCH

The jack plug and socket could be replaced by a keyswitch, in which case the connections labelled Screen and Left should be arranged so that they are "closed" (connected together) when the alarm is to be turned off, and "open" when the alarm is set. Connection Right should be ignored.

When de-activating the alarm, the keyswitch should be moved to its closed position, then switch S2 switched off, before returning the key switch back to open. If the keyswitch is left in its closed position the problem will be similar to that of leaving the jack plug in its socket, described in the previous paragraphs.

The keyswitch could be connected in series with the battery if preferred. Unless two lines of defence are required, the jack
plug and socket could be omitted, and switch S 2 could also be omitted, with a wire link joining the pads labelled "ON" and "C" on the printed circuit board.

CURRENT CONSUMPTION

When the jack plug is not inserted, and switch $\mathbf{S} 2$ is set to On, virtually no current will flow from the battery unless the alarm is triggered. When riding the bicycle, $\mathbf{S} 2$ will be set to Off. and a current of about 12 micro-amps will flow through resistor R3. The battery life should be about a year.

CONSTRUCTION

Construction of the alarm is relatively straightforward with most of the components mounted on a printed circuit board (p.c.b.) as shown in Fig. 4. This board is available from the $E E \cdot P C B$ Service, code EE773
Begin construction by fitting the socket for ICl , followed by the wire link, resistors. and capacitors Cl and C 5 . The diodes and capacitors C2, C3 and C4 must be fitted the correct way round, as must the BC184L transistor.
The mercury filled vibration switch SI is normally supplied with a single rather stout wire. which should be pushed into the pad as indicated. The other connection is via the case of SI, and this is achieved by soldering a bare wire into the other pad as shown, then soldering the other end of the wire to the edge of the switch metal case.

This may appear difficult, and it is wise to coat the corner of the case with a little solder prior to joining the wire. Press the soldering iron firmly against the case until the solder melts into place, since a larger than normal amount of heat will be needed to make a sound joining. Do not
leave the soldering iron on the cuse any longer than absolutely necessary.
The toggle switch $\$ 2$ should be connected via flexible leads as shown, ensuring that they are long enough to allow S2 to be mounted in the case. Similarly the stereo jack socket SK 1 should be connected, ensuring it is wired exactly as in the diagram. Finally connect the siren and battery holder checking that the red and black leads are round the correct way in both cases.
The stereo jack plug "key" should be "coded" by soldering a short wire from the small tag nearest the centre, to the longest metal tag as shown. If in doubt check that you have joined the tip of the plug to the longest metal section.

TESTING

Do not insert the key jack plug, but set S2 to Off. Connect the batteries. The alarm should not sound, even if the "vibration" switch S1 is jolted.

Now set S2 to On. The siren should not sound unless the p.c.b. (and hence Sl) is jotted. Now knock the p.c.b. to make the siren sound. Check that the siren stops sounding after about 10 seconds. Now set S2 to Off. The siren should sound continuously. Set S2 back to On and allow the siren to stop sounding again.
Insert the correctly wired key jack plug. It should now be possible to set S 2 to Off without triggering the siren.

Set S2 to On again, and insert a mono jack plug or join points Screen and right on the p.c.b. The siren should start again.

FAULT FINDING

If after carefully checking the completed p.c.b. for track "shorts", and making sure that all polarity dependent components have been wired in correctly, the unit still fails to function as it should the following procedure should be adopted.
Many people find jack plugs and sockets confusing, and if in doubt it might be worth disconnecting the jack socket, and simulating the effect of the plug by joining pad Screen to pad Left to represent the plug pushed in. Likewise, leaving all three pads unconnected represents the plug pulled out.
To check that the siren works (regardless of anything else), the collector (c) lead of the transistor (which leads to the siren) can be joined briefly to the emitter (which leads to 0 V) using a small piece of wire. Take care not to touch the base lead by mistake. If the siren works, try joining the junction of resistors R5, R6, R7 and capacitor C3 directly to the positive supply. If the siren works, then at least the output section of the circuit is working properly.

Assuming that the circuit fails to work or the siren sounds continuously (which is even more annoying), check the voltage across pin 14 (positive) and pin $7(0 \mathrm{~V})$ of ICI. It should be about 12 V .
Now connect the negative (black) lead of a voltmeter (multimeter) to 0 V in the circuit (the negative side of capacitor C 4 is a useful place for attaching leads). Use the positive voltmeter (red) lead as a probe, touching various points in the circuit in order to identify the area of trouble.

The pins of ICI make useful test points. The following table refers to " $h i$ ", meaning more than 9 V , and " $/ 0$ ", meaning less than 2 V . Remember that the pin numbers count up from pin 1 (top left, near the

notch or dot) to pin 7 (bottom left), then pin 8 (bottom right), to pin 14 (top right).

When the jack plug is out, and $\mathbf{S} 2$ is On. Check that pin 1 and pin 13 are 10 Check that pin 4 is hi
Wait for at least 10 seconds, then check switch S1.

Check that pin 4 is 10 (measure within 10 secs of knock)
Check that pin 9 copies pin 4
Check that pin 11 is $h i$ for about 10 secs after the knock, then returns $l o$. Check that the junction of D2, D3, and $\mathbf{R} 5$ is $h i$ when pin 11 is $h i$.
Check that pin 6 copies this junction.
If the siren sounds continuously, wait at least 15 secs, then without knocking SI.

Check that both sides of Dl are 10
Check that both sides of D3 are 10
Check pins 4:hi, 6:lo, 9:hi, 10:lo, 11:lo
When the jack plug is inserted, but \$2 remains On. Check pins 1:hi, 3:lo, 4:hi, 5:lo, 6:10, 9:hi, 10:lo, 11:lo, 13 hi
Now move S2 to Off.
All readings should be unchanged and pin 8 should be 0 V .
No readings are quoted for pin 8 (when $h i$) and pin 12 , since only voltmeters with a very high resistance will provide accurate results.

CASE

A case measuring 152 mm by 102 mm by

64 mm was used in the prototype. Begin by drilling holes for the jack socket, switch S2 and a hole for the sound produced by the siren.
At an early stage it is wise to check the method of securing the case to the bicycle. In the prototype, Jubilee clips were used to fasten round the two supports just below the saddle, see photographs. The case should be mounted so that water is unlikely to drip through any holes in the case - particularly the one drilled for the siren.
The p.c.b. is mounted vertically using one of the slots in the end of the case and a self-adhesive stand-off support at the other end of the p.c.b. The 12 V battery box is also held in position by means of self-adhesive supports, and a piece of foam glued to the lid of the case. The siren was glued to the bottom of the case, up-side-down so that the sound could escape through the hole drilled in the bottom of case.

Finally secure the jack socket and toggle switch, and insert the batteries. A final test should be made before securing the lid.
The alarm may now be mounted on the bicycle in any convenient place. The struts just below the saddle are suggested since this area tends to be shielded from rain, and the alarm will be less noticeable.

DARTS SCORER

RICHARD STONE

> Don't let the lack of mental dexterity spoil your game. This scorer will keep count for you and give you the time when not in use.

THIS article describes the design and construction of a microprocessor controlled Electronic Darts Scorer similar in specification and performance to commercially available units. The Darts Scorer has the following features :-

- Players scores displayed on individual 3-digit l.e.d. displays.
H Home and Away players scores entered via common keypad.
म Facility to recall previously entered score.
~ Individual start scores can be entered for each player (to allow handicapping).
น Correction facility available for incorrectly entered scores.
Functions as a digital clock when not being used for darts. Low power consumption components used wherever possible.
\& Straightforward construction.

4) Free-standing or wall mounted

The construction of this unit should give the reader a useful insight into the design and construction of a typical 'embedded' microprocessor application.

DESIGN OVERVIEW

A simplified block diagram of the Darts Scorer is given in Fig. 1. The heart of the system is a simple microcomputer built around the Motorola MCl46805E2 microprocessor.
The microprocessor reads program instructions contained in a ROM (Read Only Memory) and then executes these instructions in order to perform the functions of the Darts Scorer.
User input is via a 16 key keypad which is continually scanned for a keypress by a dedicated keypad encoder chip. Detected keypresses are input to the microprocessor and appropriate action taken upon them under program control.
Output to the user is via a six digit multiplexed 1.e.d. display. The microprocessor continually updates the display at a frequency greater than the persistence of vision and hence the display appears continuous to the user.
A full circuit diagram of the unit is given

in Fig. 2 and this should be referred to when reading the following text which gives a detailed description of the circuit design.

MICROPROCESSOR AND SUPPRRT CIRCUITRY

The microcomputer which provides the 'control' element for the Darts Scorer is based around the Motorola MCl46805E2 8 -bit microprocessor (MPU) chip (IC1). This chip is a member of the MC6805 microcomputer family but has an external bus interface allowing it to access up to 8 K of external memory. The chip is highly integrated and contains 112 bytes of internal RAM (Random Access or Read/Write Memory),internal programmable timer,sixteen programmable I/O lines and on-chip oscillator circuitry.
In order to allow the chip to be packaged in a standard 40 pin d.i.I. package,the 8 -bit data bus (D0-D7) and lower order address lines (A0-A7) are multiplexed and hence require to be de-multiplexed in order to work with ordinary non-multiplexed memory chips. The bus timing for the 146805E2 is shown in Fig. 3.
Five clock periods are used per bus cycle. The lower order address signals, provided by ICl ,appear in the first part of the cycle and are qualified by the falling edge of AS (Address Strobe). A 74 HC 573 octal latch (IC4) is used to latch the lower order address lines. The outputs of this chip (Q0-Q7) follow the inputs (D0-D7) exactly providing that the LE (Latch Enable) input is high.
A falling edge at LE latches the outputs to retain the data that was set up at the inputs. On the Darts Scorer LE is connected directly to the AS output of ICI and hence the lower order address lines are latched by the falling edge of AS as per the timing diagram. The 74 HC 573 is functionally identical to the more common 74HC373 but has a bus orientated pinout.
The Q0-Q7 outputs of IC4 which contain the de-multiplexed lower order address lines from the microprocessor are connected directly to the corresponding address inputs of the 27 C64 EPROM (IC3). Non-multiplexed address outputs A8-A1I from the microprocessor are connected directly to the corresponding inputs of the EPROM.
The EPROM used in the Darts Scorer is a 27 C 64 which is an 8 K device although the code occupies only just over 2 K of the available 8 K and was originally written

to reside within a 27 C 32 (4 K device). The reason for using a 27 C 64 is that as memory chips increase in capacity the smaller devices become less popular and hence more expensive. Address input AI2 of the EPROM is tied to 0 V and hence only the lower 4 K of memory is accessible by the microprocessor.
The 27C64 CE* (Chip Enable) and OE* (Output Enable) inputs are tied together and connected to the output of a 3 input NAND gate (IC8a). The output of this gate will only go low, and hence enable the EPROM, when all of the gate inputs are simultaneously high. The gate inputs are A12, R/W* (Read/Write*) and DS (Data Strobe) which are all outputs from the microprocessor. The $\mathrm{R} / \mathrm{W}^{*}$ output from ICl is used to indicate the direction of data transfer between the microprocessor and external devices and is high for a read cycle and low for a write cycle.

DS occurs anytime the microprocessor does a read or write cycle and is used to latch (on it's falling edge) data into the microprocessor from the multiplexed address/data bus during read cycles. This is important because the tri-state data lines of the EPROM (D0-D7) are connected to the corresponding multiplexed address/data bus pins of the microprocessor (ICI). This method of enabling the EPROM means that it can only be accessed during bus read cycles to the upper 4 K of memory $\left(1000_{\text {HEX }}\right.$ to 1 FFF HEX). It is important that the EPROM resides in the upper part of the addressing range as the microprocessor reset and interrupt vectors must be stored in ROM between addresses 1FF6 HEX and IFFF HEX. A memory map of the $8 \mathbf{K}$ address range of the microprocessor is given in Fig. 4.
A crystal circuit comprising of a 4.9152 MHz parallel resonant crystal X1,R18,C4 and C 5 is used to generate the fundamental

Fig. 1. Block diagram of the Darts Scorer.

clock signal for the microprocessor. This circuit makes use of the internal oscillator circuitry connected between OSCl and OSC2. Although the maximum clock frequency of the 146805 E 2 is 5 MHz , a frequency of 4.9152 MHz was chosen as this
can be divided down, using the internal timer, to give an exact divisor of one second which is used as the basis of the real time clock feature of the Darts Scorer.
The 146805 E 2 resets itself automatically on power-up using internal circuitry. Resis-

Fig. 3. Bus timing diagram for the MC146805E2.

required to update all the displays must be shorter than the persistence of vision of the human eye. This equates to a required display update frequency of 50 Hz or greater.
The display updating on the Darts Scorer is performed by a continuous software loop which outputs the required information to external segment and digit drivers via I/O Port A of the microprocessor. The two 8 -bit I/O ports of the 146805E2, referred to as Port A and Port B , can be configured by the software as inputs, outputs or any mixture of the two. In this application Port A is configured entirely as outputs.
The segment drive function is performed by a 74 LS 47 BCD to 7 -segment encoder/driver (IC7). This chip converts a 4-bit BCD (Binary Coded Decimal) input to the corresponding 7 -segment code. The segment drivers provided on this chip are open-collector which means that common anode type displays must be used

DIGITDRIVERS

The digit drivers are discrete pnp transistors (TRI-TR6). Discrete transistors are used because in the worst case (all segments on) each transistor must switch a current of 70 mA . Each digit drive transistor is switched on (conducting) or off (non-conducting) by an active low output of a 74 HCl 383 to 8 line decoder chip (IC6). A three bit binary code on the inputs of this chip will cause the corresponding Y output to switch to a low level which will switch the corresponding digit drive transistor on. The remaining Y outputs of the chip remain in the high state and hence all the other digit drive transistors are switched off.

As mentioned earlier, both the 74LS47 (IC7) and the 74 HCl 38 (IC6) are controlled by Port A of the microprocessor The lower order 4 bits (PAO-PA3) are connected to the data inputs of IC7 and contain the numeric value of the character to be displayed in BCD format. Bits PA4PA6 are connected to the address inputs of IC6 and are used to select the required digit. PA8 is used to enable/disable IC6. A low level on PA8 will disable IC6 and cause all the Y outputs to remain high regardless of the address input state. The software for the Darts Scorer continually outputs to Port A the correct data to continuously update the multiplexed display in the required manner.
If an illegal BCD bit pattern is presented to the 74LS47 (IC7), i.e. >9 DEC, then it outputs non numeric segment patterns (for inputs of $10_{\mathrm{DEC}}-14_{\mathrm{DEC}}$) or turns all segments off (for an input of 15_{DEC}). This feature is used to provide the cursor symbol used in the clock and also to suppress leading zeros in the display.

Multiplexing numeric l.e.d. displays has several advantages compared with driving the displays directly. Some of these are:-
(i) less hardware is required. Direct drive requires a separate decoder/driver for each digit.
(ii) less interconnections are required.
(iii) l.e.d.s are more efficient (i.e. give out more light) if they are pulsed with current rather then driven with a steady current, for the same average value of current.

The main disadvantage of microprocessor driven display multiplexing is that as the display requires constant updating, this places a significant overhead on processor time. This however is not a major problem on the Darts Scorer as the microprocessor

[0132×10

Fig. 5. Keypad switch layout.
spends the vast majority of the time waiting to service interrupts (either external or timer) and hence can handle the display updating as a background task.

KEYPAD
 ENCODING AND INTERRUPT

User input to the Darts Scorer is via a 16 key keypad through which all the functions of the Darts Scorer can be controlled. The membrane type keypad used has the 16 individual switches arranged in the common four by four matrix arrangement.

Pressing a particular key will short out the corresponding row and column at the switch intersection point. This is illustrated in Fig. 5. A 74C922 16 key keypad encoder chip (IC5) is used to convert this row and column information into a 4 -bit code corresponding to the key pressed. This can then be directly read by the microprocessor using part of I/O Port B.
The keypad matrix is continually scanned by IC5 to detect a keypress. The scan frequency is set by an external capacitor (C2) and is set at 650 Hz . Once a keypress has been detected it is "debounced" for a period of 10 mS , set by C3, to eliminate the problem of multiple keypresses being detected due to contact bounce. If the keypress is still valid after the debounce period then the DA (Data Available) output goes high. At this time the unique 4 -bit code corresponding to the key pressed is available on the data outputs (D0-D3) which are connected to Port B inputs PB0-PB3.
The external interrupt input (IRQ*) on the microprocessor is used to signal to the microprocessor that a valid keypress requires attention. A negative going edge or a low level on this pin will cause the microprocessor to finish executing its current instruction and then vector to the external interrupt service routine. After this routine has been completed then normal program execution resumes from the same point at which the interrupt occured. However if, after execution of the external interrupt service, the level at the IRQ* pin is still low then the external interrupt service routine is executed again.
On the Darts Scorer it is important that each keypress is only seen once by the microprocessor This is accomplished by converting the rising edge of the DA output of IC5 to a narrow negative going pulse of approximately $30 \mu \mathrm{~S}$ in duration.

COMPONENVIS

Resistors

Resistors		
R1 to R6	2k2 (6 off)	
R7 to R13	330 (7 off)	SHOP
R14,R19	1 k 8 (2 off)	
R15	1k	
R16.R17	100k (2 off)	Page
R18	10M	Page

All 0.25W 5\% carbon film

Capacitors

C1	22 n disc ceramic
C2	100 n disc ceramic
C3	1μ elect. 10 V
C4,C5	27p ceramic (2
C6 to C1	2100 n disc
C13	10μ elect. 10 V
C14	100

Semiconductors

IC1 MC146805E2P 8-bit microprocessor
IC2 $7805+5 \mathrm{~V}$ voltage regulator
IC3 27C648K byte CMOS EPROM - See Shop Talk
IC4 $\quad 74 \mathrm{HC573}$ Octal latch
IC5 74C922 Keypad encoder
IC6 74HC138 3:8 line decoder
IC7 74LS477 segment display encoder
IC8 74 HC 10 Triple $31 / P$ NAND gate
D3 1N4001
TR1 to
TRG
BC212 (6 off)
D1, D2 5 mm low current red l.e.d. (2 off)
X 2 to $\mathrm{X7} 0.56$ inch low current common anode, 7 segment l.e.d. display (6 off)

Miscellaneous

$\begin{array}{ll}\text { X1 } & 4.9152 \mathrm{MHz} \text { crystal } \\ \text { SK1 } & 3.5 \mathrm{~mm} \text { jack socket }\end{array}$
SK1 $\quad 3.5 \mathrm{~mm}$ jack socket
CON1 8 way 0.1 inch R/A p.c.b. header plug and socket
CON2 4 -way 0.1 inch pitch p.c.b. terminal block
16 key membrane keypad; APPOLO case; display bezel (2 off); 20 mm spacer (4 off); M2 CSK screw (2 off); M3 CSK screw (4 off); wire, solder etc. PCB available from the EE PCB Service, order code EE774.

Approx cost

guidance only

This is performed by using $\mathrm{C} 1, \mathrm{R} 15$ and IC8b connected as a positive edge triggered negative going pulse generator.
When DA goes high the voltage on Cl becomes +5 V and the output of IC8b, which is connected as an inverter, switches to $0 \mathrm{~V} . \mathrm{Cl}$ then discharges through R15 with a time constant of CIRIS. As the decaying voltage passes through the switching threshold of IC8b the output of this switches high again. In this way a narrow negative going pulse is presented to the IRQ* input of the microprocessor. As the external interrupt service routine takes longer than $30 \mu \mathrm{~S}$ to execute then the IRQ* input will have returned high before the interrupt service routine is completed. Hence the microprocessor is interrupted only once per keypress.
The 74C922 also provides two key rollover protection between any two switches. This means that if a new key is pressed before the previous key is released that, once the first key has been released, then the DA output will go low and then return
high, after a normal debounce, to indicate acceptance of the second key. If two key rollover were not provided then the second keypress would not be seen by the microprocessor.

DISCRETEL.E.D.S

Two l.e.d.s, D1 and D2, are used on the Darts Scorer to indicate which player has control of the shared keypad. These are driven by I/O lines PB6 and PB7 respectively. A low output at the port pin will illuminate the l.e.d.
The l.e.d.s used are "low current" types as the microprocessor output port cannot supply enough current to drive conventional types directly. Resistors R14 and R19 limit the current sunk by the port outputs to 1.6 mA .

TIMESETMODE SWITCH

A switch (S 1) is provided on the Darts Scorer in order to allow the user to enter the correct time for the real time clock. This switch is connected to PB4 which is configured by the system as an input.
When the switch is open circuit the level at PB4 is +5 V due to pull-up resistor R16. However when the switch is short circuit the level at PB4 is 0 V . These different states are interpreted by the software to decide whether the Darts Scorer is to operate in "normal" or "time set" mode.

SUPPLY

The Darts Scorer is intended to operate from an external "plug top" mains adaptor which is capable of supplying +9 V to +12 V d.c. at 250 mA . The input to the Darts Scorer (SKI) is via a 3.5 mm jack socket wired in the tip + ve configuration: A diode. D3 protects the circuit against an inadvertent wrong polarity connection
The input d.c. voltage is smoothed by C14 and then fed to a 7805 series regulator (IC2). This provides a regulated +5 V output which is used to power the rest of the circuit. The +5 V supply is decoupled by

Fig. 6(a) Flow chart of background multiplexed display driving routine
capacitor $\mathrm{Cl3}$: Each i.c. package is further decoupled by 100 n capacitors, C 7 to Cl 2 .

SOFTMARE

The control software for the Darts Scorer is too involved to describe fully in this article. However the three major functional blocks of the software have been illustrated in flowchart form in Fig. 6. These are the main display driving routine (Fig. 6a), the external (keypress) interrupt service routine (Fig. 6b) and the timer interrupt service routine (Fig. 6c).

MULTIPLEXED DISPLA Y DFIVINE FOUTINE

The main display driving routine is entered after the power-up system initialisation has taken place. The function of this routine is to drive the display hardware in the manner described earlier. On powerup the displays will show the default start score value of 501 .
During operation of the Darts Scorer the displays can show either the last score entered, present score left to obtain or the current time depending on which keypad operations have taken place. Six bytes of the internal RAM of the microprocessor are used to store the character (in BCD format) for each of the 7 -segment displays. Depending on which mode the Darts Scorer is operating in, the software moves the necessary information into these six bytes of display RAM.
The display driving software then accesses this RAM in order to obtain the character for each display. Leading zero suppression is also performed on the contents of the display RAM. If leading zeroes are found in the display RAM then they are replaced by the BCD code for 15 DEC . When this is output to the segment driver chip (IC7) it causes all segments to be switched off and hence the digit will be blank.
The display driving routine is continuous but it can be temporarily halted so that either a keypress (external) interrupt or an internal timer interrupt can be serviced. As either of these interrupts takes less than 0.1 mS to execute there is no perceivable discontinuity in the display.

Fig. 7. P. C. B. master and wiring.

EXTERNAL

 INTERRUPT
SEFVICEROUTINE

Each time a valid keypress occurs the external interrupt service routine is executed. The first action is to determine the status of the time set mode switch. The routine then
branches depending on whether the Darts Scorer is in "time set" or "normal" mode In each branch the keypress value is determined and checked for validity
For example if the L/P key has been pressed once in order to display the last scores entered for each player, then the software will disregard all other key presses
until \mathbf{L} / \mathbf{P} is pressed again to restore the present scores to the display. Once the validity of the keypress has been established a subroutine is then executed in order to implement the function required by the keypress. On completion of this subroutine the interrupt service routine is exited and the microprocessor returns back

to the display driving routine and continues to execute it from the point it was at before the interrupt occured.

TIMER INTERRUPT ANDREAL TIME CLDCK

During the initialisation stage of the main program the microprocessor internal timer is configured to time out and generate a timer interrupt 30 times a second. This is accomplished by dividing the internal clock frequency which is 983040 Hz $(4.9152 \mathrm{MHz} / 5)$ by 2_{15} (i.e. 32768) using the internal timer to give the required 30 Hz timer interrupt frequency.
The purpose of the 30 Hz timer interrupt is to provide the "tick" for the software controlled real time clock. As the software to provide this function is very simple it is included within the timer interrupt service routine. The routine, shown in Fig. 6c, uses four variables which are stored in the microprocessor internal RAM. These are named 30THSEC, SECONDS, MINUTES and HOURS

On each occasion the timer interrupt is serviced the variable 30THSEC is incremented by one. If this incremented value is less than 30 then the routine is exited. However if 30 THSEC is equal to 30 it means that one seconds worth of time has elapsed and so SECONDS is incremented by one and 30THSEC reset back to zero.

If the incremented value of seconds is less than 60 then the routine is exited. If SECONDS is equal to 60 this signifies that a minute has elapsed and so MINUTES is incremented by one and SECONDS reset back to zero. A similar process occurs with the MINUTES and HOURS variables.
The clock works in 24 hour mode only so all variables are reset back to zero when the HOURS count reaches 24. As the "tick" for the clock is derived from a crystal controlled oscillator the clock exhibits a high degree of accuracy.

CONSTRUCTION AND TESTING

The Darts Scorer was designed to be a self contained unit requiring only an external "plug top" transformer to operate. All components with the exception of the keypad, 3.5 mm jack socket (SK1) and "time set" mode switch (S1) are mounted on a single p.c.b.. The p.c.b. is itself mounted in the Darts Scorer case such that the l.e.d. displays are visible through bezels mounted in the upper surface of the case.
The keypad is also mounted on the upper surface of the case and connects to the p.c.b. via an 8 way header plug. Connections to SK1 and S1 which are mounted on the aluminium side panel of the case, are via flying leads.

PCB ASSEMBLY

All of the components for the Darts Scorer with the exception of SK1 and S1 are mounted on a single sided p.c.b. The master artwork for the p.c.b. is given in Fig. 7.
Assembly of the components onto the p.c.b. is relatively straight forward but it is recommended that the following sequence is adhered to :-
Firstly, before beginning assembly, the p.c.b. should be inspected to ensure that all holes are drilled and clear. Next fit all the wire links using tinned copper wire of an appropriate gauge. There are a total of 47 of these (as the board is single sided) so care should be taken not to omit any. Ten of the wire links are fitted underneath where the 7 -segment displays will be fitted so these should be fitted as flush to the upper surface of the p.c.b. as possible.

The resistors, R1 to R18, and diode D3 can be fitted next. The orientation of the resistors is unimportant but the diode must be fitted the correct way round. The cathode of the diode is usually indicated by a band on the component body at the relevant end.

The i.c. sockets can now be fitted. Al-
though i.c. sockets are not strictly essential it is recomended that they are used. The sockets will be marked to indicate orientation and this should be carefully checked against Fig. 7.

The next stage is to fit transistors TR1 to TR6 and the voltage regulator IC2. The leads on all these devices should be carefully formed to match the relevant holes in the p.c.b.
The capacitors Cl to Cl 4 and crystal X1 should now be fitted. Capacitors C3, C13 and C14 are polarised types so this should be observed when placing them on the p.c.b

The next stage is to fit discrete I.e.d.s, D1 and D2, and the 7 -segment displays X2 to X 7 . Orientation is important with all these components. The cathode on the discrete l.e.d.s will be indicated by a flat on the body of the component. The 7 -segment displays should be orientated such that the decimal point is at the bottom right hand corner. As the 7 -segment displays are fitted over some wire links they should be fitted to the p.c.b. such that the body of the component is approximately 1 mm clear of the upper surface of the p.c.b.

The final stage is to fit the 8 -way s.i.1. header, CON. 1 and the 4 -way terminal block CON. 2 .

DARTS SCORER CASE

The case used for the Darts Scorer is from the BICC-Vero 'APOLLO' range. It consists of two clip together halves, which form the front and rear of the Darts Scorer, and two side panels.

The front panel should be marked out as in Fig. 9. and the shaded areas removed by chain drilling and filing.
The rear panel should have the four holes drilled in it as shown in Fig. 9. These holes are used to secure the p.c.b. mounting pillars which are supplied with cheese head machine screws. In order to allow a flush rear panel countersunk head screws are used instead to fasten the pillars to the rear

Fig. 8. Front panel and side panel cutting and drilling.
panel. Consequently the four holes should be contersunk to suit the screws used.
If wall mounting of the Darts Scorer is required then two "keyhole" slots should also be drilled and filed out. The centres for these "keyholes" are moulded onto the inner face of the rear panel, the actual dimensions of the "keyhole" will depend on the screw sizes used to fix the unit to a wall.

The aluminium side panel should also be marked out as shown in Fig. 8. and drilled and filed in order to accept the switch and jack socket.
keypad. The keypad is fastened to the front panel with its self adhesive backing. The lower edge of the keypad is aligned with the lower edge of the front panel and the left hand edge is aligned with the "centre-line" of the front panel.

The power socket, SK1, is inserted through the hole in the aluminium side panel and secured with the locking ring nut.
The switch, S1, is fastened to the rear of the panel using two M2 countersunk screws which are inserted through the front
panel. Two flying leads, of 75 mm in length, should then be attached to the centre and left-hand terminals of the switch. Another two flying leads, of similar length, should then be attached to the "tip" and "ring" terminals of SK 1
The p.c.b. is fastened to the rear panel of the case using four insulated spacers. The spacers should be fastened to the inside of the rear panel using countersunk M3 screws. The p.c.b. is then fastened to the spacers using the M3 screws supplied with the spacers.

Once the p.c.b. has been attached to the rear panel of the case then the two halves of the case can be joined together. The aluminium side panel should be placed in the outer slot of the lower edge of the rear panel and the plastic side panel should be placed in the next to outer slot of the upper edge of the rear panel.
The flying leads from the switch and socket should be connected to the p.c.b. terminal block as shown in Fig. 9. The flexible cable from the keypad should now be carefully connected to the header plug on the p.c.b.
The two halves of the case can now be carefully "clipped" together. It is important that no strain be placed on the keypad cable during this operation.

It may be considered expedient by the constructor to consider the advice contained in the following section before applying power to the Darts Scorer. Otherwise the Darts Scorer is now complete and ready for use. Instructions for use are contained at the end of this article.

TESTING

The first test of the assembled p.c.b. should be a visual one, to check for any soldering defects and for the correct orientation of polarised components. If this is satisfactory then an external voltage $(9 \mathrm{~V}$ to 12 V d.c.) should be applied to the jack socket, taking care to observe the correct polarity.
Check that +5 V d.c. is present at all the relevant points on the p.c.b. If this

ASSEMELY YF UNIT

Before the unit is assembled it is necessary to fix the keypad and display bezels to the front panel and SI and SKI to the aluminium side panel. The display bezels are supplied with the outer moulding and the filter separate. The filter has a protective film covering which should be removed before the filter is carefully pressed into the slots in the outer moulding.
The bezels are a press fit in their respective cutouts but it may be necessary to retain them with a small amount of plastic glue applied sparingly.
Before the keypad is fixed to the front panel it is necessary to apply the appropriate legends to the insert sheets. The keypad is supplied with two altenative pairs of inserts and the pair with the "arrow" keys and "CLR" and "ENT" marked on them should be used.

The non-numeric keys will need changing to show the Darts Scorer functions. This was done on the prototype by applying rub-down transfers to white adhesive labels to form the appropriate legends and then sticking these over the supplied legends. Spray on varnish was then used to protect the rub-down transfers. Once this has been done then the legend sheets can be inserted in the slots in the back of the

Fig. 9. Mounting the p.c.b. and CON. 2 wiring.
voltage is only present at certain parts of the p.c.b. then the p.c.b. should be tested using a continuity checker for dry joints or track breaks. Once the power supply has been verified then the integrated circuits can be inserted into their appropriate sockets. This should be done with power off and care should be taken that the chips are inserted correctly.

Power may then be applied to the p.c.b. If all is well the displays will show " 501 " and the left hand l.e.d. will be lit. If this is not the case then the power should be removed immediately and further testing carried out.

Microprocessor based systems are difficult to test without specialised equipment but it is possible, on the Darts Scorer, to test the keypad and display circuitry fairly comprehensively as well as perform simple tests on the microprocessor. It should be noted however that unless incorrect operation is due to faulty soldering or some other easily remedied problem, then replacement of integrated circuits or other components may be necessary.

DISPLAY
 CIRCUITRY TESTIVG

The multiplexed l.e.d. display and associated circuitry can be tested statically by following the procedure detailed below. IC6 and IC7 should be inserted into their respective sockets. Each connection shown in Table 1 should then be made to the microprocessor socket, in turn, using temporary "patch" leads and then power applied to the p.c.b.

The voltages, listed in Table 1 simulate the signals the microprocessor produces in order to display an '8' on each digit of the display. Power should only be applied to the p.c.b. long enough to ascertain correct operation of each digit in order to avoid overloading the segment and digit drivers.

MICROPROCESSOR TESTS

The only simple test of correct operation of the microprocessor is to monitor the AS and DS outputs using a logic probe or oscilloscope. The microprocessor should be inserted in its socket and power applied to the p.c.b. A logic probe should indicate continual pulsing on each of these outputs which will indicate correct operation of the oscillator circuitry. If an oscilloscope is used it will be possible to observe the AS and DS waveforms shown in Fig. 3.

Table 2. Keypad encoder outputs for each key.

IC5 socket pin				
Key	14	15	16	17
	D	C	B	A
0	0	0	0	1
1	0	1	0	0
2	0	1	0	1
3	0	1	1	0
4	1	0	0	0
5	1	0	0	1
6	1	0	1	0
7	1	1	0	0
8	1	1	0	1
9	1	1	1	0
H/A	1	1	1	1
SUB	1	0	1	1
L/P	0	1	1	1
NEW	0	0	1	1
START	0	0	1	0
TIME	0	0	0	0
"1" $=4.5 \mathrm{~V}$ min	"0" +0.5 V max			

KEYPAD INTERFACE TESTING

The keypad encoder chip (IC5) can be tested in isolation by temporarily connecting up the keypad to the p.c.b.; inserting IC5 in its socket, applying power to the p.c.b. and then pressing each key in turn and monitoring the encoder outputs. Table 2. lists the expected output for each key.

Each time a key is pressed the DA output should also go high, returning low when the key is released. This can be monitored using a logic probe or voltmeter.

DAFTS SCOAER OPEFATION

The Darts Scorer has been designed to be simple in operation. All user input is via the 16 key keypad and user scores (or the current time) are shown on the 6 -digit l.e.d.

Table 1. Connections for static testing of displays.

Microprocessor socket pin								
14	13	12	11	10	9	8	7	Results
PAO	PA1	PA2	PA3	PA4	PA5	PA6	PA7	
0	0	0	1	0	0	0	1	Home hundreds shows 8
0	0	0	1	1	0	0	1	Home tens shows 8
0	0	0	1	0	1	0	1	Home units shows 8
0	0	0	1	1	1	0	1	Away hundreds shows 8
0	0	0	1	0	0	1	1	Away tens shows 8
0	0	0	1	1	0	1	1	Away units shows 8

display. The Darts Scorer resets itself on power-up and is ready for immediate use. The Home and Away players scores are set to the default values of 501, keyboard control is with the Home player and the clock is initialised to 00:00.

Whenever the user is required to enter numeric data the software checks, wherever possible, that the input data does not exceed valid limits. For example when entering the current time, in "time set" mode, any digit above two will not be accepted for the first digit of the hours value (as there are only 24 hours in a day).
The 16 keys on the keypad have the following functions assigned to them :-

0-9 Numeric keys. These keys are used for numeric input to the Darts Scorer.
H/A Home/Away player select. This key is used to select which player has "control" over the keypad. When an operation only affects one players score, the H/A key may need to be pressed first. An l.e.d. illuminates to indicate which player currently has control of the keypad.
SUB Operation of this key deducts a players most recently entered score from that players current score.
L/P This key is used to "toggle" the display between displaying the players present scores or the last scores entered. When the last score entered is being displayed, no further keypresses are accepted until the L/P key is pressed again to restore the present scores to the display.
TIMEOperation of this key toggles the display between displaying the present scores or displaying the current time. When the time is being displayed, no further keypresses are accepted until the TIME key is pressed again to restore the present scores to the display (unless the Darts Scorer is in 'time set' mode when the software will allow the entry of the new time).
ENT This key allows an entered number to be transferred to the players present score. The main purpose of this is to allow different start scores to be entered rather than the default 501 . However it can also be used to "correct" the present score if an incorrect score is accidentally subtracted.
NEW Operation of this key will "reset" the software and allow a new game to be commenced. All relevant variables are initialised and the present score is set to 501 for both players. N.B. the time is unaffected.

ENTERING AND SUBTRACTIVGA SCDRE

In order to enter a score and subtract it from the player's present score, it is necessary to follow the keypad sequence listed below
(1) H / A (optional)
(2) xxx
(3) SUB

The H/A key may need to be pressed if the keypad control is not with the correct player.
xxx signifies the entered number (of up to three digits). If more than three digits are entered then additional digits will overwrite those already entered.

Operation of the SUB key will cause the entered score to be subtracted from the present score and also to be stored for possible recall using the L/P key. If the number entered is greater than the present score then operation of the SUB key will have no apparent effect.
If the default start score of 501 is not required then a different start score may be entered by exactly the same procedure as above except that the ENT key should be pressed instead of the SUB key.
The operation of the L/P, NEW and TIME keys are as previously detailed in the keypad functional description.

SETTING THE CLDCK

In order to set a different time for the clock, it is first necessary to place the Darts Scorer in "time set" mode. This is done by first ensuring that the Darts Scorer is displaying the players present score and then moving the Time Set switch to the left hand position. The TIME key should then be pressed. The display will now show four "U" symbols instead of the current time. The new time can now be entered by using the numeric keys.
If an illegal value is entered the Darts Scorer will not proceed to the next digit

until a valid digit has been entered. When all four digits have been entered the Time Set switch should be moved back to the right hand position. The TIME key should
then be pressed twice to return the Darts Scorer to normal mode.
Good though it is the Darts Scorer will unfortunately:not improve your game! \square

NEW FROM HIGH-Q 30VELLEMAN KITS Added To Our Range NOW "130" KITS AVAILABLE For all Electronic Enthusiasts

Sole UK Importers oTrade Enquiries contact below NEW KITS INCLUDE: CODELOCK

CAR ACCESSORIES

CAR ACCESSOR CAR ALARM	COUNTERS DIMMERS
DOWER SUPPLIES AUDIO TIMERS	DOUSEHOLD APPLICATIONS
SENSORS	

For 1991 Catalogue \& Price List, please sent 75p (UK) or $£ 2.00$ (Overseas) to:

MC-R-

VS
P.O. BOX 142, Hatfield, Herts AL9 7JH Tel: 0707263562

Fax: 0707276746

PROCOM Electronics
 IBM Type PSU $+12 \mathrm{~V},+5 \mathrm{~V}$,

12 Volt Relays DPDT
75p 5 for $£ 3.00$
12 Volt Relays 4 PDT
$95 p 5$ for $£ 4.00$
3U Sub-frame racks (flat pack) quantity discount
$\mathbf{£ 7 . 9 9 + £ 2 . 0 0 p \& p}$
2N3055......................... 10 for £4.99 2N3819............................. 10 for $£ 3.00$ 3-16V Piezo Sounders.... 2 for $\mathbf{£ 1 . 0 0}$ Encapsulated Piezo transducer...50p 100 mixed Tant Caps (values from
$0.1 \mu-68 \mu \mathrm{f}$).........................£4.99 Mercury tit switch...99p5 for $£ 4.00$ 8 Digit L.C.D. (Carrier not
supplied)....... $\mathbf{£ 2 . 9 9} 5$ for $£ 10.00$
Pulse transformer 1:1 +1
50p 10 fpr £4.00

40 watts output (see picture) Ideal for home built x.t.s. etc. $\mathbf{£ 1 0 . 9 9}+\mathbf{£ 2 . 0 0} \mathbf{p \& p}$
Stepper Motor $7^{\circ} 30^{\prime}$ (Dia. 33 mm)
£4.99 10 for $£ 30.00$
C.C. 7 segment displays, Red $0.5^{\prime \prime}$ 85p 10 for $£ 7.00$
L.E.D. Clock Module, $12 / 24 \mathrm{hrs}$ facility, c/w Data (mains transformer not supplied)

12 Volt Soleniods,
(Dim 20mm x 20 mm)
.95p 10 for $\mathbf{£ 8 . 0 0}$
10A Thermal Cutout Rocker
switches.
£1.00
Ferrite rings 23 mm Dia. $\mathbf{3}$ for . $\mathbf{£ 1 . 0 0}$
12 Volt fans, Dia. $60 \mathrm{~mm} \mathbf{E 7 . 9 9}$
12 Volt fans, Dia. 90 mm $\mathbf{£ 7 . 9 9}$
One Zone Alarm Panel with
entry/exit delay. P.A. built
into a standard light switch, C/W Data...
Philips 9" Colour Monitor (no
postage, collect from shop),
Scart Socket, (R.G.B. comp.
video input)...........f110.00 S/H

\rightarrow ALL PRICES VAT INCLUSIVE

VISA
Access and Visa taken, min. order $£ 5.00$
ALL POSTAGE \& PACKING $£ 1.00$ (unless otherwise stated)

13 Clarence Arcade Stamford Street
Ashton Under Lyne Lancashire OL6 7PT

Shop Hours:
Mon-Sat: 9.30 am-6.00 pm (closed Tues. morning)

Telephone 061-343 2782

Finally... an exceptional PCB and Schematic CAD system for every electronics engineer!

BoardMaker 1 is a powerful software tool which provides a convenient and professional method of drawing your schematics and designing your printed circuit boards, in one remarkably easy to use package. Engineers worldwide have discovered that it provides an unparalleled price performance advantage over other PC- based systems.
BoardMaker 1 is exceptionally easy to use - its sensible user interface allows you to use the cursor keys, mouse or direct keyboard commands to start designing a PCB or schematic within about half an hour of opening the box.

HIGHLIGHTS

Hardware:

- IBM PC, XT, AT or 100% compatible.
- MSDOS 3.x.
- 640K bytes system memory.
- HGA, CGA, MCGA, EGA or VGA display.
- Microsoft or compatible mouse recommended.

Capabilities

- Integrated PCB and schematic editor.
- 8 tracking layers, 2 silk screen layers.
- Maximum board or schematic size - 17×17 Inches.
- 2000 components per layout. Symbols can be moved, rotated, repeated and mirrored.
- User definable symbol and macro library facllities Including a symbol library editor.
- Graphical library browse facility.
- Design rule checking (DRC)-checks the clearances between items on the board.
- Real-time DRC display - when placing tracks you can see a continuous graphical display of the design rules set.
- Placement grid - Separate visible and snap grid 7 placement grids in the range 2 thou to 0.1 inch.
- Auto via - vias are automatically placed when you switch layers - layer pairs can be asslgned by the user.
- Blocks - groups of tracks, pads, symbols and text can be block manipulated using repeat, move, rotate and mirroring commands. Connectivity can be maintained if required.
- SMD - full surface mount components and facillties are catered for, including the use of the same SMD library symbols on both sides of the board.
- Clicles - Arcs and circles up to the maximum board size can be drawn. These can be used to generate rounded track comers.
- Ground plane support - areas of copper can be filled to provide a ground plane or large copper area. This will automatically flow around any existing tracks and pads respecting design rules.
Output drivers :
- Dot matrix printer
- Compensated HP laser printer
- PostScript output.
- Penplotter driver (HPGL or DMPI).
- Photoplot (Gerber) output.
- NC (ASCll Excellon) drill output.

Produce clear, professional schematics for inclusion in your technical documentation.

PCB layout editor provides full analogue, digital and surface mount support - ground and power planes (hatched or solid)- 45 degree, arced and any angle tracks.

Despite its quality and performance, BoardMaker 1 only costs $£ 95.00$. Combine this with the 100% buy back dlscount if you upgrade to BoardMaker 2 or BoardRouter and your investment in Tsien products is assured. Price excludes carriage and VAT.

Don't take our word for it. Call us today for a FREE demonstration disk and judge for yourself.

Tsien (UK) Limited
Cambridge Research Laboratories
181A Huntingdon Road
Cambridge CB3 ODJ
Tel 0223277777
tsien
Fax 0223277747

/NFORMATION TECHNOLOGY

AND THE NATIONAL CURRICULUM T. R. de VAUX BALBIRNIE

THIS is the first article in a twelve part series concerning Information Technology. Communication and other aspects of science. The original intention was to help science teachers deliver Attainment Target 12 (AT12) The scientific aspects of information technology including microelectronics in the original Science National Curriculum. However, at the time of writing, there have been some significant changes to this document, some of which are yet to be resolved - more will be said about this later. While preparing this series, it became clear that it would make interesting reading in its own right for anyone interested in electronics whether for National Curriculum purposes or not.

SCIENCE NATIONAL CURRICULUM

Many parents and students have only a vague understanding of the Science Na tional Curriculum so at this point it may be appropriate to give a little background information and to see how the Na tional Curriculum fits into the scheme of science education. Certain simplifications have been made - readers wishing to make a detailed study should obtain a copy of Science in the National Curriculum and the later document - Science for ages 5 to 16 (1991) (Proposals of the Secretary of State for Education and Science and the Secretary of State for Wales) from HMSO.

The Education Reform Act 1988, provides for a National Curriculum for all children of compulsory school age in maintained schools in England and Wales. In March 1989, the Education (National Curriculum) (Attainment Targets and Programmes of Study in Science) Order 1989 was laid before Parliament. A document entitled Science in the National Curriculum was subsequently distributed toschools. This lists specific topic areas called Attainment Targets (AT's) and detailed programmes of study which mast be taught by law. In its original form, there were 17 such AT's which were themselves divided into 10 Attainment Levels and further subdivided into various Statements of Attainment. The lowest levels were appropriate to the youngest children and so on.

Children's education is divided into four "Key Stages". Broadly speaking, Key Stage 1 refers to children from 5 to 7 years, Key Stage 2 children up to 11 years, Key Stage 3 children up to 14 years and Key Stage 4 children up to the school leaving age of 16 . The introduction of the Science National Curriculum has been staged as explained in document. If all this seems complicated, there is a further statement of correlation between the age of the child and the expected Attainment Level. Thus, children at Key Stage 1 should cover AT Levels 1 to 3, those at Key Stage 2 Levels 2 to 5, Key Stage 3 Levels 3 to 7 and Key Stage 4 Levels 4 to 10. Note the overlaps built into the system.
At the end of each Key Stage, children are to be tested against the criteria of the Attainment Targets. The tests used are called Standard Assessment Tests (SATs) - sometimes called Standard Assessment Tasks by teachers who do not like to regard them as tests. The exact timings of the introduction of SATs and the uses to which they are put is laid out in the appropriate documents.

RECENT PROPOSALS

On 8th May, 1991 the Secretary of State for Education published proposals for simplifying the original scheme. Thus, the 17 original Attainment Targets are to be replaced by five new ones. There were several reasons for doing this which need not be discussed here. However, he made it clear that the entire programme of study would not be significantly changed - only the simplified structure of the Attainment Targets and Statements of Attainment therein. Thus, teachers' plans for courses would remain valid but the demands of assessment, hopefully, reduced.

Existing. Attainment Targets have therefore been amalgamated under broader descriptions and there remain ten Attainment Levels in each as before. However, rather than the 409 Statements of Attainment in the original scheme there are now only 178. The Programmes of Study have also been altered to reflect these changes.
It is said that this will assist examining bodies to support the National Curriculum and should also help parents understand
reports on pupils' progress. It turns out that the present work no longer appears in one attainment target - AT12 - but now appears in more than one and in the detailed Programmes of Study.
It is expected that assessment in Key Stage 1 in 1992 will use the existing Attainment Targets. However, the first statutory Key Stage 3 assessment will be made in 1993. using the new ATs.' It is hoped that GCSE examinations will reflect the new structure in 1994.
Since this series was already well advanced at the time of announcement of the new proposals and because the original material is still valid, it will follow the structure of the original AT's. It is thought that, for the purpose, this forms a more convenient pattern anyway. However, to avoid ambiguity between old and new schemes, references to specific Attainment Targets and associated Levels of Attainment have been removed.

A TEACHER'S LOT

Aspects of information technology and electronics are among the least popular subjects to teach in the National Curriculum. This is because teachers with little or no specialist background are being asked to teach topics for which they feel illprepared. Much of this feeling is unfounded and comes down to terminology.
Scientists have long promoted a "closed shop" attitude. By using certain words and phrases - by using special terminology and jargon - they have succeeded in keeping non-specialists at bay. By avoiding some of this jargon and presenting this series in everyday terms, teachers, parents and students alike will see that these topics are fairly straightforward to teach and enjoyable to leam.
The content of the earlier parts will be of particular interest to those teaching young children. However, although the content has been kept fairly simple, childish language has been avoided - it is up to the reader to interpret the style and level of the information appropriate to the ages and abilities of the children concerned.

PRACTICAL WORK

This series aims to help teachers, parents
and students by exploring topics in and around the National Curriculum. Practical work is suggested which will reinforce and add interest to certain topics. It must be stressed that there is far more material here than will be needed to study a particular topic. Likewise, some topics have not been covered at all and standard text-books will be needed for these.

This series is designed as a resource from which ideas can be drawn as required. Some of the work is of a more advanced nature than will normally be required - this may be useful for more able children. The path chosen will depend to a large extent on the interests of the teacher, of the children and the facilities available.
The National Curriculum is fairly vague in its statements of attainment, this vagueness in practice allows quite a lot of freedom in its delivery. However, users will need to keep an eye.on the Programme of Study.

Where practical work is suggested, this will use simple equipment. For later levels, some specialized components will be needed but every effort has been made to keep costs to a minimum by using home-made parts wherever possible.
Parents may wish to pursue this series with their children and, in so doing, complement the activities of the hard-worked teachers at their local school. Although teachers are charged with the actual delivery, recording and documentation for the National Curriculum, some parents with a few hours to spare per week may wish to attend clubs and workshops at the school and so back-up the National Curriculum in a relaxed atmosphere. Most of the practical work would be appropriate here.

OFF WE GO!

This section is to show youing children that certain everyday devices will receive text, sound and images over long distances, using information technology.

The modern world abounds with such devices. Everyone is familiar with radio (sound) and television (images). An increasing number of television receivers have a teletext facility (text) so that they can receive pages of written information, magazine style.

Television and radio normally receive information but the telephone can send it too. The telephone allows you to speak and listen (that is, transfer information) with just about anyone in the world. Telex (text) and Fax (images) are a further two information facilities now fairly commonplace.

Young children should know a little about some of these. They will not understand some of the words but these may be simply accepted for the moment. They should be aware that all these devices handle information - whether this be the spoken word, music, pictures or text. They should know that these modern devices provide us with information more quickly or more conveniently than "old" methods

CमIस
and that this, hopefully, helps us to become more informed members of society. Modern handling of information is called information technology.

Children should know that it is not the actual sound, pictures, text, etc. itself which travels from one place to another but that the information is first converted into electrical signals. These can then travel over vast distances quickly and conveniently either through wires or by means of invisible waves (radio waves).

Children often believe that telephone wires carry the sound itself and saying things like "we speak in here and the sound comes out there" seems to imply that it is the same sound going in which finally emerges at the other end. This could cause problems later. For many children the foregoing will be more than sufficient. However, here is some basic information which may be drawn upon as required.
someone is sure to have one of these in the attic.
With the back removed from an old but working transistor radio - this must be battery-powered and not mainsoperated - it may be possible to touch the cone of the loudspeaker. With music playing, the vibrations may be clearly felt.
Radio waves can travel much greater distances than sound itself so we can hear people talking or music playing even though the studio is a long way from the listener. Radio waves have different frequencies and the transmitter will send the information using just one particular frequency. The radio is tuned to the frequency we want - this is shown as a number on the dial.

In this way we only hear the broadcast we want and not those using the other frequencies which the aerial receives. Compare this with a lot of people all talking at once - it is difficult picking out the voice you want to hear. This is another advantage of using radio waves rather than sound itself.
Perhaps a pair of walkie-talkies could be used to illustrate the principle of two-way radio communication where information can be sent as well as received. Children will not understand the concept of radio waves but may understand that they are like light (which is very real) but invisible and able to go round corners, bounce off things (reflect), etc. They may be told that microwave ovens use radio waves to cook food instead of for communication. They may also understand radio waves being used for radar where a picture of a distant ship, aircraft, etc. is produced by reflecting the waves off them.

Terms like "on the air" should be avoided. These are confusing because they imply that radio waves need air to travel through. This was once thought to be the case but is not so. If it were true, we would not be able to receive information from distant space craft or from satellites. Radio waves travel and carry information with the speed of light - the equivalent of seven circuits of the earth per second. " $300,000 \mathrm{~km}$ per second" means little to children.

TELEVISION

Television uses radio waves too. However, this time pictures, sound and text are turned into electrical signals then sent by wires to the transmitter. They are then carried by the radio waves from the transmitter aerial just like a radio broadcast. If a teletext receiver is available, this should be shown and children familiarize themselves with the index page. They should be encouraged to choose the information they want rather than just pressing buttons at random.

They should understand that not everyone needs access to all the information so only the page required is called up as needed, for example, a weather map. They should understand that the pages are being

A.-	J. $-\cdots$	S	2..-- -
B -	K - -	T-	3 . - -
C -	L …	U . -	4.... -
D -	M - -		5.
E	N-.	W. - -	6
	O-- -	X - - -	7 -
G -	P. - -	Y - : -	8--
H.	Q - -	Z --	9---
	R.	1. -	10 - - -
	Fig. 2	Morse Code.	

sent one after another continuously like flicking through the pages of a magazine. To find the one they select may therefore take a little time. Note that teletext is called Ceefax on BBC and Oracle on ITV.

THE TELEPHONE

Pressing the correct buttons (or using the old-fashioned dial) sends electrical signals along the telephone line to the exchange. This connects your telephone to the one you wish to speak to. A microphone at one end converts speech into electrical signals which then travel along a wire (optical fibres are mentioned later in the seriesl). These signals end up at the distant telephone and an earpiece converts them back into sound.
By having a microphone and an earpiece at each end, true two-way conversation is possible. This should be compared with radio and television - in the telephone the signals are carried along a wire so the conversation is kept "private". Signals carried by radio waves can be picked up by anyone with a suitable receiver. Some child will probably mention a cordless telephone which may be described as a mixture of radio and telephone techniques. Similarly, there may be some children who mention car telephones. A simple home-made electrical telephone will be described next month.
If Fax is available - and many schools are now suitably equipped, this could be demonstrated. This shows that not only can speech information be sent along a telephone line but text and pictures can also be turned into electrical signals and this information sent along too.
Allow the children to send a home-made greeting poster to children at a distant Fax machine. They can then receive a greeting back. The children may compare this technique with the postal service where the actual poster would be sent. Comparisons with regard to speed, cost, convenience, quality, etc. would make a useful exercise.
Young people accept all these longdistance communications devices and treat them as if they had always existed. It is
therefore useful to look at some early methods of communication to build up a perspective. This also lends itself to some inexpensive practical work which can be great fun.

LONG DISTANCE COMMUNICATION

For long distance communication we show children in greater detail that there is a wide variety of means of communicating information over long distances. In a later article we show how information can be stored using a variety of devices including the computer.
We shall explore some of these methods of long-range communication - past and present. We shall also look at some of their history. After that, we shall discuss some simple experiments which can be done to illustrate some of them.
Since the very earliest times, people have felt the need to communicate with one another. Over short distances this is fairly easy - crude drawings and grunts can convey simple ideas fairly well. However, speech developed and a more sophisticated transfer of ideas became possible. Man could now discuss complicated issues and express feelings which had hitherto been impossible. Unfortunately, communication by speech was successful only over short distances. Shouting at the top of ones voice could increase the range but only by a relatively small degree.
In ancient times, messages were sometimes sent over long distances by using a chain of people shouting from hill top to hill top. It is easy to see that the message could become distorted and end up quite different from the original one! This could be tried out by the children on a small scale.

BEACONS

Beacons (bonfires) could be used for long-distance communication but, of course, lighting a beacon had to have just one unambiguous meaning. By arranging for a string of beacons to be set up on hill tops so that the previous one was visible to.
an observer at the next, the message could be sent quickly by lighting the beacons in turn. In this way, a simple message could reach all parts of the country in a very short time.
In 1588, Britain was under threat of invasion by the Spanish Armada. A set of hilltop beacons was set up to pass on the warning quickly if this were to happen. The disadvantage of the simple beacon is that the message is not easily changed. Long before, the ancient Greeks had developed a system of torches placed on hill tops. By using certain patterns of torches to represent the letters of the alphabet, messages could be spelled out - a sophisticated method for its day.
In Africa, fairly complicated messages are sent over relatively long distances by means of drums. A similar idea is to use smoke signals. This method was once used by the Red Indians and other peoples.
Some people developed ways of increasing the range of the human voice - "whistling languages" and yodelling by mountain dwellers are examples. The written word could be carried by a runner or runners (relay fashion) or carried on horseback to a distant person. This method was relatively slow. The first marathon was run in Greece in the battle of Marathon (490 BC). A Greek runner named Phidippides ran from Athens to Sparta to summon help. However, the Greeks had defeated the Persians before the help arrived.
The natural homing instinct of a pigeon could be exploited by attaching a small written message - this method was successfully used in wartime to send messages across enemy lines until fairly recently. The advantage here was that the message was quite secure since a pigeon flying by did not attract much attention.

Optical Telegraph

No major developments took place from these early times until the late 18th century when a French engineer, Claude Chappe, demonstrated his invention - the "optical telegraph" - in 1793. This consisted of long arms on tall poles. The arms could be pivoted in certain ways with each pattern representing a letter of the alphabet, a number, etc.
The posts were placed about six miles apart with an operator at each one looking through a telescope at the one before. It is said that a message from Paris to Lille - a distance of over 200 km , arrived within two minutes. Chappe's telegraph was widely used, especially to convey military information. By 1796, Britain had a Chappe telegraph system operating between London and the channel ports. Signalling with two flags (semaphore) is a small-scale variation of the Chappe telegraph. This uses the idea that each letter of the alphabet may be represented by holding the flags like the hands of clock (see Fig. 1).

Morse Code and Flags

Long-distance communication could be achieved by flashing the sun's light using a mirror (the heliograph) or by flashing a lamp (the Aldis lamp). Here the Morse Code (see Fig. 2) could be used. This is a

H

P blue peter

Fig. 3. Brown's International Code of Flag Signals.
system of "dots" and "dashes" used to represent the letters of the alphabet, numbers, etc.

Brown's International Code of Flag Signals (see Fig. 3) used on ships is interesting. Here, flags are hoisted for the distant ship to observe by means of a telescope. The flags may be used in two ways. The pattern and colour of each flag represents a particular letter of the alphabet and the words may be spelled out. Alternatively, the same flags have meanings in their own right so for day-to-day messages a few flags can communicate quite complicated ideas even between people speaking different languages.

For example, the 'as representing the
letter C also means "yes". The flag representing the letter I also means "I am altering course". Just about everyone knows what a white flag or a flag bearing the Skull and Crossbones means! (although these two are not part of the International Code).

In the modern navy, there are times when radio silence needs to be observed (since the radio signal can be picked up by the enemy). Here, the International Flag Code, semaphore signals and the Aldis lamp come in useful.

Communication between continents remained a problem until recent times. The only method available in early times was to carry a letter by ship. In the early 19th
century a letter to America would take several days to arrive and, of course, a similar time for the replay to be received by the original sender. It seems difficult to believe that this was the only method possible until the electric telegraph was invented. This will be looked at in more detail next month.

EXPERIMENTS: SPEECH COMMUNICATION

Use some of the following ideas to extend the range of your voice:

1. String telephone: This experiment needs two people, two yogurt containers and a long piece of thin string. The string is passed through a hole in the bottom of each container. Knots are then tied to prevent the string from pulling free (see Fig. 4). Two children go to a large open space and take one container each. The string is now pulled fairly tightly. One person speaks closely into one yogurt container while the other listens at the other.
Encourage speaking in whispers. Let them try communicating in both directions. Ask them how one person can signal the other that he or she wants to speak. See if they can devise a string telephone to provide true two-way communication. They can investigate the range of the device and see if the type of string makes any difference. Let them try to communicate round a comer and comment on the result.
This makes a very instructive and enjoyable lesson. The children should beshown that sound is caused by vibration _ "twanging" a ruler will illustrate this or a variety of musical instruments could be used. The vibration of cymbals or a drumskin may be clearly felt.

In the string telephone, each yogurt container bottom acts as a diaphragm. The first one vibrates due to the sound of the voice and the string carries these vibrations to the second diaphragm. The string prevents the vibrations from spreading out so that the voice can be heard at a greater distance than would be possible without it.
2. Speaking tubes: It is possible to speak over a fairly large distance using a hosepipe or some rubber tubing. Fit a funnel to each end and let the children use these to speak and listen in turn. Investigate the range by using as long a piece of tubing as possible. Let them find

out what happens when the tubing is squashed. Discuss the advantages of using such a method on board ship.

The same idea was once used in large hotels. For this, there was a whistle at each end. The "caller" removed his or her whistle and blew hard. The whistle at the distant end would then sound. The person being called would now remove his or her whistle and establish a conversation. Like the string telephone, the vibrations themselves are carried along the tube - in this case by the air inside. The tubing prevents the vibrations from spreading out as they would in free air and so extends the range. 3. Whistling language. The children may invent a whistling language. Whistles may be short or long, high and low notes, etc. They may then go outdoors and try it out. They can test the range and efficiency of such a language. Someone may even try yodelling! The children may give their
ideas as to why this method extends the range of the voice.

Note that in all these experiments, it is the actual sound which is carried unlike the radio and television signals. If you had a piece of rubber tubing long enough to reach Australia and spoke into one end, the sound would be far too quiet to be heard by the time it reached its destination. Also, it would travel at the speed of sound which is much less than that of radio waves. This would mean that it would take about 16 hours to reach Australia!

NON SPEECH COMMUNICATION

Use some of the following to communicate at a distance without using the human voice:

1. The Heliograph: Use a mirror to flash sunlight to a distant person. A home-made code of flashes may be used to mean every-
day things. Alternatively, the Morse Code could be used to spell out the message. If the day is not sunny, flash a torch instead (Aldis lamp).
2. Semaphore: Let the children make two flags and use them to send messages. They may then check the speed and range at which messages may be sent and received.
3. The International Code of Flag Signals: Use the International Signal Code (Fig. 3) to draw and colour some flags which are then used to send a message. This is a good and relatively quiet indoor activity. Someone is certain to be amused by the Blue Peter (which is hoisted on a ship about to leave port). Find out the meaning of "flagship".

Next time we shall look at some experiments using simple electrical apparatus to illustrate long range communication.

EVERYDAY ELECTRONICS BINDERS

Don't let your valuable issues of EE get binned, burned or bitten (by the dog). Get one of our exquisite orange hard-back binders, slip each issue into it as you get them and you will always know where they are - we hope!

Binders to hold one volume (12 issues) are available from Everyday Electronics, 6 Church Street, Wimborne, Dorset BH21 1 JH for $£ 5.95$ ($£ 6.95$ to

European countries and $£ 9.00$ to other countries, surface mail) inclusive of postage and packing. Payment in $£$ sterling only please. Visa and Access (MasterCard) accepted, minimum credit card order value $£ 5$.

Binders are normally sent within seven days of receipt of your order but please allow up to 28 days for UK delivery - more overseas.

HAVING INTERFACING PROBLEMS?
At last the best solution you are ever likely to find!

A COMPLETE SINGLE BOARD

 COMPUTERat $£ 199$ (+ VAT) for the standard unit
(The screen and keyboard alone are worth more than that)

Z 80 CPU
Complete with BASIC ROM Keyboard, 80 character, 8 line display. Battery backed (All functions)
Two RS232 ports. Two A/D ports

Programming advice for first 3 months Full technical manuals provided Software included to connect to other computers
30 day money back guarantee

Order direct or contact us for more details

COVEND ELECTRONICS
32 Poplar Grove, London W6 7RE
Tel: (071) 3716497
Fax: (081) 7411135

DISTANCE LEARNING COURSES

The National College of Technology offer a range of packaged learning short courses for study at home or in an industrial training environment which carry national BTEC awards. Study can commence at any time and at any level enabling you to create a study routine to fit around existing commitments. Courses on offer include:

Analogue Electronics Digital Electronics Fibre/Optoelectronics
Programmable Logic Controllers

Tutor support and BTEC certification are available as options with no travelling or college attendance required. These very popular courses which are ideal for vocational training contain workbooks, audio cassette lecturettes, PCB's, instruments, tools, components and leads as necessary to support the theoretical and practical training. Whether you are a newcomer to electronics or have some experience and simply need an update or certification, there is probably a distance learning course ready for you. Write or telephone for details to:

National College of Technology
NCT Ltd:, PO Box 11
Wendover, Bucks
Tel: (0296) 624270

The most important addition you will make to your
 If electronics is your hobby or your livelihood there's no doubt about it. As New Computer Express said: "The Electronics Repair Manual is a complete reference in itself. On its own it would be worth the $£ 44.95$ asking price. The supplements that are already available and those planned make it an absolute necessity."

We couldn't have put it better ourselves.
The Manual contains over 800 pages packed with valuable information on the ins and outs of repairing and maintaining everything from your TV, Hi-Fi Amplifier, Radio and Video, right through to your Personal Computer. Information that's easy-tofollow, as each topic is lavishly illustrated and layed out with simple step-by-step instructions,

Continual updating means you're never outpaced by technology. Every two or three months you'll receive supplements for your manual, guaranteeing that the Electronics Repair Manual remains the most comprehensive reference source available.

If you're involved in electronics, how can you be without it? To receive your copy on 10 days Free backed up by a clear and comprehensive index.

ORDER FORM - SEND NO MONEY

Approval, just complete the coupon below or ring FREEPHONE.

To: WEKA Publishing Limited FREEPOST
The Forum 74-80 Camden Street London NW1 1YW Tel: 071-3888400
FREEPHONE 24hr Order Hotline. Use your credit card on 0800289762

YES

 please send me immediately on 10 days free approval THE ELECTRONICS REPAIR MANUAL(Order No 12800). If I decide to keep the manual, I shall then pay only $\mathbf{£ 4 4 . 9 5}$ plus $£ 5.50$ postage and packing at the end of the 10 day approval period. I shall also receive the appropriate Updating Supplements throughout the year, priced at $£ 22.00$ plus $£ 2.50$ p\&p. These are billed separately and can be discontinued at any time
(CAPITALS PLEASE)
NAME

ADDRESS \qquad

POSTCODE \qquad

SIGNATURE \qquad AGE (if under 18)

OVERSEAS ORDERS
All overseas orders have to be prepaid but will be supplied under a Money-Back Guarantee of Satisfaction. If you are an overseas customer send no money at this stage, but return the complete order form. Upon receipt of this we will issue a pro-forma invoice for you to pay against. Payment must be made in sterling We reserve the right to alter the price and page extent of future supplements
You will be informed as and when any such decisions are made.
From time to tume we wil tell you about other companies' products and services which we fee' you might be interested in.

WEKA GUARANTEE

You risk nothing by ordering today - as this title i covered by WEKA Publishing's Guarantee of Satisfaction. If for any reason it fails to match your expectations simply return it in perfect condition and you will owe us nothing

$\square 7$

WEKA PUBLSHING GROUP
GERMANY AUSTRIA FRANCE - ITALY USA NETHERLANDS
MER

SWTZERLAND - UNTTED KINGDOM

NO GEOSYNCHRONOUS

 SATELLITE1991 marks the 30th anniversary of the launching of the first amateur satellite, OSCAR 1. In the intervening years the amateur space programme has been divided into phases intended to lead to phase IV, the launching of geosynchronous satellites providing 24 hours continuous coverage from "fixed" positions around the world.

According to a recent report in The AMSAT Journal, the Board of Directors of AMSAT, the Radio Amateur Satellite Corporation, have decided to terminate the phase IV programme because of the huge, multi-million dollar, costs involved compared to previous projects costing tens of thousands of dollars.

A new project is now under consideration, known as phase III D, which will be a super enhanced amateur satellite in a high elliptical orbit, with improved performance and facilities compared to present phase III satellites. While the cost of a geosynchronous satellite would have had to be met only by groups served by the satellite the new project, having world-wide communications capability, can be financed with assistance from users on a world-wide basis.

A FEW STATISTICS

Figures published recently show that there are now $1.074,367$ licensed amateurs in Japan. This represents a gain in one year of over 47,000 new licenses, nearly as many as the entire total of amateur licences in the UK! Twenty one years previously there were just 100,000 amateurs in Japan.

At the end of December 1990, there were 19.194 Australian amateur radio licences. By comparison, CB licences totalled 407,844 . During the preceding quarter, amateurs increased by 156 and CBers by 11,848 . Amateur Radio, journal of the Wireless Institute of Australia, raises the question, "When there is that much interest in radio as a communication method, why is the amateur service attracting so few newcomers?"

In June 1991 the official number of amateur licences in the USA was 523.351 . This appears to be a 15.2 per cent increase over the previous year's figure, but as from the implementation of a 10 -year licence in 1984 those dropping out from amateur radio are remaining on the official data base until the first ten years have expired. As a result, until recently, these official figures really indicated a continuing reduction in the number of licensed amateurs in the USA. Since March 1991, however, a new VHF licence not requiring a Morse. code test has resulted in an upsurge of new licences (10,000 in the first 60 days) and the statistics are now being viewed more optimistically. (W5Y/ Report).

NEW BOOK

From the pen of Ian Poole, G3YWX, comes yet another publication aimed at the beginner to amateur radio. Setting Up An Amateur Radio Station provides the sort of practical advice and information 1 would have greatly welcomed when I set up my first station.

Much of the advice is applicable to either a short wave listening or transmitting station, and for SWL's there is brief information on the different types of amateur radio licence available, including the new novice licence, and how to obtain them. Of necessity, some previous knowledge is assumed and an SWL not already familiar with basic radio theory might find some parts of the book hard going.

While it is not a highly technical book it would certainly be of most value to someone who has just passed one of the amateur exams or, at the very least, has read the author's previously published An Introduction to Amateur Radio. A chapter on "Receivers and Transmitters" offers advice on buying new or secondhand equipment, the facilities to look for, frequencies to be covered, sensitivity and selectivity, desirable modes and so on.

Having acquired the equipment it needs to be suitably located, as is explained in a chapter "Setting up the Shack". Some operators make do with an odd corner of the house, perhaps a cupboard. Some have a whole room set aside for the purpose, while others use the loft, a part of the garage, or a specially adapted garden shed.

SAFETY IMPORTANT

The layout of the equipment should be planned for ease and comfort of operation compatible with electrical safety. The wiring of the shack is important in this context and the use of a Residual Current Circuit Breaker (RCCB) is strongly recommended, together with a single switch to cut off power to the whole station when not in use. A good earthing arrangement is also of great importance to overcome problems associated with r.f. instability when transmitting.

The performance of the aerial serving any station, transmitting or receiving, is crucial to successful operation. A chapter on this subject suggests that time and money invested in the aerial is likely to be far more worthwhile than replacing the equipment in the shack with the very latest model.

For any location there will be a variety of aerials which can be used. The advantages and disadvantages of different types are discussed together with the different types of feeder arrangement, plus aerial tuning units which provide a good "match" between the equipment and the aerial in some circumstances.

TEST EQUIPMENT

A useful chapter on "Test Equipment and Testing" explains the use of the multimeter, including metering in circuit, diode tests and transistor tests. The function of the grid-dip oscillator (also known as a gate-dip oscillator, f.e.t. dip oscillator or by other nomenclature) is explained, including measuring the resonant frequency of a tuned circuit, measuring inductance and capacitance, the resonant frequency of an aerial, the electrical length of a feeder and feeder impedance.

Brief notes also introduce frequency counters and oscilloscopes. In both cases more information would be need ed before thinking seriously about acquiring such equipment but this is inevitable in a publication of this size (86 pages)

There is enough basic information in this book to help a newcomer set up a simple but effective amateur radio station and the author has succeeded in his declared aim of helping the newcomer learn from the mistakes of others "without having to find out the hard way too much." There are useful "further reading" lists at the end of each chapter to help those wishing to go deeper into any particular matter.

Setting Up An Amateur Radio Station, by I. D. Poole, is published by Bernard Babani (publishing) Ltd, price £3.95. (Available from the EE Direct Book Service - see this issue for details.)

MEMORY PROMPTED

Its funny how some of the things write about prompt half-forgotten memories. Last month 1 briefly mentioned my RAF service and this has reminded me of my very first meeting with a radio amateur.

I was on guard duty at RAF Butterworth in north Malaya (as it was then), patrolling the jungle perimeter of the airfield accompanied by a soldier from the Malay Regiment. One of our checkpoints was the RAF transmitting station located at a remote part of the site. walked in on one occasion, in the early hours, to find the operator using the RAF's powerful international transmitter as an amateur station, chatting happily with a young lady in Texas.

It made quite an impression on me, although I don't know what my Malayan colleague thought of it all. At that time such activities seemed far beyond my reach so the incident, although interesting, faded in my memory.

The operation was of course quite illegal and could have resulted in severe disciplinary action if discovered by the authorities. It was a long time ago, however, and I'm sure they don't do things like that in the RAF nowadays!

AUDIO

BSR 10" Belt driven turntable complete with ceramic cartridge. 12 V d.c. 33 and 45 r.p.m.

BSR 10 " Belt driven turntable complete with metal arm, ceramic cartridge and electronic speed conerol. 33 and 45 r.p.m. 12 V d.e.

BSR $12^{\prime \prime}$ Belt driven turntable complete with ceramic cartridge and electronic speed control. 33 and 45 r.p.m. 12 V d.c.

Moonflower

Moonflower in a grey metal case with ceiling mounting bracket. Fan cooled with 150 mm lens, built in sound to light conerolter to give multi-coloured beams of light to the music. Bulb 250W. Power 240 V.

SCA4 Scanner

PAR 36 four headed scanner in grey metal case. 220° rotation forward and reverse on separate motors. Complete with transformers and bulbs. 240V.

FFI Fluorescent Fitting $£ 4.99$

$2^{\prime}, 600 \mathrm{~mm}$ British made fluorescent fitting complete with 18 watt slimline tube. Wall, ceiling or cabinet fixing

SL 280 Light Sequencer
$€ 59.00$

Self contalned 8 light sequencer in a metal case. Built in sound detection circuit allows the speed of the sequence to react to the beat of the music. Lamps with red, green, blue and amber covers. Wal!/celling mounted. 240 V .

Sundancer in metal case for wall/ceiling mounting. Produces 7 flat beams of different coloured light which rotate to the beat of the music. Fan cooled, fused and with a thermal cut our. 240V. Bulb 500W.

$£ 99.00$

PAR 36 double headed scanner in grey metal case. 220° rotation forward and reverse on separate motors. Complete with transformer and PAR 36 bulbs. 240 V .
FF2 Fluorescent Fitting
$£ 5.99$
$3^{\prime}, 900 \mathrm{~mm}$ British made fluorescent fitting complete with 30 watt slimline tube. Wall, ceiling or cabinet fixing.

RO80 E.S. 60 watt bulbs in four colours; red blue, green and amber. Supplied in packs of four.
ower supply kit for converting to mains use $£ 3.50$

ACCESSORIES

High Fidellty Speaker in veneer cases. 10 watt at 8 ohms.

Modef Railway Controller $£ 39.00$

Model rallway controller in grey metal case with off/direction control, brake and precision speed conerol. Complete with output and overload illumination. Outputs: 12 V d.c., 16 V ac and relay facility.

RAT I - Four 8 pin Bulgin Sockets in a
RAT 2-Two 8 pin Bulgin sockets and four 3 pin shuttered sockets and plugs in a metal case
RAT 3 - One 8 pin Bulgin socket and four 3 pin shuttered sockets and plugs in a metal case
RAT 4 - Whise plastic four way, in line
13 amp extension board. Fused $£ 4.95$

Payment to be made with order plus $£ 2.50$ postage and packaging 1991/92 Catalogue now available $£ 1$ post free (Refundable on first order)

OWEN BISHOP

A novelseries which combines two

 hobbies in one-electronics and model-making. Simple electronic circuits combined with easy-to-assemble models that cover a wide range of interests.ACOUPLE of months ago we presented an essential adjunct to the twen-tieth-century doll's house, a micromicrocomputer. Now we cater for the gastronomic inhabitants of the doll's house with this design for a mini-microwave oven. This is built to the standard onetwelfth scale, originally one inch to one foot, and comes complete with a kitchen unit to stand it on.

The kitchen unit has the more essential function of concealing the electronic circuit which drives the microwave. If you already have a kitchen unit or similar piece of furniture in which to hide the circuit board, you do not need to build our unit.

The action of the oven simulates that of a real microwave oven, the main omission being that it does not generate microwaves and so does not cook anything. When the oven is in its stand-by mode a green l.e.d. glows on the control panel, representing the usual digital clock. The interior oven

lamp comes on when you open the door to put the food on the turntable, and is extinguished when you close the door again.

When you touch the contacts on the control panel, the interior lamp of the oven comes on once more until the food is "cooked". At the same time, the green l.e.d. flashes on an off once a second, simulating the timer display counting down the seconds. This takes about 30 seconds at the end of which time the interior lamp goes out, the l.e.d. returns to glowing continuously and four to six high-pitched "beeps" indicate that the food is "done to a turn"

ASSEMBLING THE KITCHEN UNIT

The kitchen unit is made from sheet polystyrene, available from modeller's shops; we used sheets in two thicknesses, which we refer to as thick (2.5 mm) and thin $(0.5 \mathrm{~mm})$. The joints are strengthened by gluing lengths of angle-plastic (2.5 mm x 2.5 mm) into them.

The unit is a simple shell, without back or bottom. Rectangular panels stuck on the front are painted a contrasting colour to give the appearance of a cupboard and four drawers, but these do not actually open.

The assembled unit is shown in Fig. 1. Begin by drilling the hole in the top. This is for the wiring, assuming the oven is to stand on the right. Drill it further to the left, if preferred. Next glue the sides to the top; the front edge of the top projects 1 mm . Without waiting for the glue to set, glue the front panel in position, with a piece of angle between it and the top. Also glue the back bar across from one side to the other, with its lower edge level with the lower edges of the sides. Form the toe-space from the two strips strengthened with the two remaining angles, as in Fig 2. Put the unit aside for at least six hours for the cement to harden.

COLOURS

We painted the unit in two contrasting colours. If you prefer a single colour, glue the door and drawers on the front and

Fig. 1. Construction of the kitchen unit.

Fig. 2. Construction of the toe space using angle plastic.
paint the whole unit. For a two-tone unit, mark in pencil the positions of the door and drawers on the front of the unit. Paint the unit in the basic colour, leaving the door and drawer areas mainly free of paint; just carry the paint a little over the drawn lines so that there will be no gaps in the painting.
Leave the top if it is to be in the contrasting colour, but paint its edges in the basic colour. Paint the door and drawer panels in the contrasting colour. When the paint is dry, glue the panels in place. Then paint the top in the contrasting colour, if not already painted.
Make the door and drawer handles from scraps of plastic or other suitable oddments and glue these in position.

ASSEMELING THE OVEN

The oven is 30 mm deep with a 3 mm thick door hinged to it on the left, and a 3 mm thick control panel fixed to it on the right (Fig 3). The cutting list for the oven is shown below. Due to the size and arrangement of the door operation this model is not suitable for card construction. The card available with the kits (see Shop Talk or the Special Offer page) is for the circuit card and oven liner only.
The cut-out in the oven front panel for the microswitch may need to be a different size or shape, depending on the dimensions of the microswitch lever.
Drill the hole in the bottom of the oven, then glue the sides to the top and bottom. Attach the front panel, with two pieces of

Fig. 3. Construction of the MiniMicrowave.
angle at the front corners. Push the narrow end of one of the hinge brackets out through the slit in the front panel, gluing the wider part to the underside of the oven top (Fig. 4). Glue the other hinge bracket vertically beneath it, to the underside of the oven bottom.
The rear panel has two strips of angle glued to it (Fig. 5). They should be just long enough to hold the panel firmly in the back of the body when pushed in.

OVENDODR

Cut out the door; the window aperture can be made by marking a rectangle for the aperture, then drilling a row of 1 mm holes just inside the rectangle. Cut between the holes with a sharp craft knife. File the edges of the aperture to make them smooth. Cut the slot at the top. left of the door so that the projecting end of the upper hinge lies neatly within this when the door is in position. Drill holes at the top and

[EE33646
Fig. 4. Arrangement of the door hinges.

Fig. 5. Oven back panel.

bottom of the edge of the door. The drill bit may soon become warm and, if drilling is prolonged, the plastic will melt and a hole of larger diameter may be produced. To avoid this, drill for no more than a few seconds at a time, removing melted plastic from the drill bit between each drilling.
The door facing is made from thin plastic sheet with the same outer and aperture dimensions as the door but lacks the hinge slot and drilled holes. Cut a rectangle of transparent plastic film (acetate sheet) about 28×20. Taking care to avoid excess glue, glue the door facing to the front of the door, sandwiching the transparent film between them. It is best to leave hinging the door until all other work on the oven has been done.
At this stage, paint the oven; the door and control panel are usually in a contrasting colour, black in many makes of oven.

LINING

Cut the oven lining from thin card, the same colour as the oven. Bend it and glue it to form an open-fronted box. Bend the four lugs on the front edges of the box outward, ready for sticking to the rear of the oven front panel.
There is a small window on its right side for the interior lamp; glue a piece of transparent acetate sheet over this. For greater realism, apply a rectangle of Letratone to this, to make it look as if the window is covered by a perforated metal screen. We used LT12, but a finer pattern of dots might look even better.
It is also possible to use Letratone on the door window, to give the appearance of a perforated metal screen there, but it is not fully transparent and the content of the oven cannot be seen when the door is shut.
Cut two card discs to support the turntable. The easiest way is to punch discs 6 mm in diameter using an ordinary paper punch. Glue one disc on top of the other in the centre of the bottom of the oven lining.
Cut a disc 23 mm diameter from acetate sheet or, for preference, from colourless drafting film with a matt surface. This is the turntable, which is glued onto the supporting card discs.
Strengthen the right wall of the oven

Details of the hinge bracket, front panel, control panel and door. The diagram below is for the oven lining.

liner on the outside by gluing a $15 \mathrm{~mm} \times$ 19 mm piece of stiff card to it, not covering the window. This is where the microswitch is to be fixed later. Apply glue to the front lugs and stick the oven liner to the rear of the oven front panel, aligning it with the aperture. Two squares of thick card, glued on both sides and inserted between the top and bottom of the liner and the top and

Fig. 6. System diagram for the MiniMicrowave.
bottom of the oven body, help hold the liner in place.
Glue two strips of plastic to the bottom of the oven to act as feet. Colour these black using a spirit marker.

HOWIT WORKS

The system diagram of Fig. 6 shows that the circuit is driven by two monostable multivibrators and one astable multivibrator. The astable oscillates at 1 Hz , flashing the l.e.d. during the cooking period.
When the first monostable is triggered by a touch switch, its output goes high, turning on the lamp for 30 seconds, and allowing the l.e.d. to flash. The lamp can also be turned on by a microswitch which closes when the door of the oven is opened.
At the end of the cooking period, the output of the first monostable goes low and this triggers the second monostable. Its output goes high for five seconds. This is the bleeping period. During this period the bleeper has a potential of +6 V from the second monostable at its $(+)$ pin and an alternating 0 V or 6 V at its $(-)$ from the astable. When the $(-)$ pin is at 0 V , current flows through the bleeper, which emits a bleep. Since the bleeping period is five
seconds long and the astable operates at 1 Hz , about 4 to 6 bleeps are heard, at one-second intervals.
The circuit diagram, Fig. 7, shows that the monostables and astable are all based on the 7555 timer i.c. ICl is the 30 s monostable, which normally has a low output. In this state it draws current through R8, D3 and D5; causing D3 to be lit continuously, independently of the state of the output of IC3.

Normally the input of ICl is held high, by RI but, when a finger-tip bridges the gap between the touch contacts, the resultant fall in input voltage triggers the i.c. and its output goes high. Current flows through DI and R3, turning on TR1. The collector current of TR1 lights the lamp LPI. This can also be lit by closing S1, the door microswitch. The diode DI prevents current flowing from the positive rail to the i.c. when S 1 is closed. When the output of ICl is high, no current is drawn through D5 and the l.e.d. is controlled by the output of IC3.
When the output from ICI goes low at the end of the cooking period, a low pulse is transmitted across $\mathbf{C} 2$ to the input of IC2. This is the second monostable. Its output goes high raising the potential of

Fig. 7. Circuit diagram of the Mini-Microwave.

WIRING SIDE

COMPONENTS

Resistors

R1, R5	1 M (2 off)	
R2	5 M 6	
R3	1 k	See
R4	100 k	Sin O
R6	8 k 2	
R7	68 k	(see text)
R8	220 Page	

Capacitors

C1, C3	$4 \mu 7$ tantalum bead (2 off)
C2	
100 n polyester	

100 n polyester
C4 $\quad 10 \mu$ tantalum bead

Semiconductors

D1, D2,
D4, D5 1 N4001 silicon diode (4 off)
D3 light-emitting diode (green)
IC1 to
IC3 7555 CMOS timer (3 off)

Miscellaneous

S1 lever-operated microswitch, body approx $19 \times 9 \times 6 \mathrm{~mm}$ LP1 $6.5 \mathrm{~V}, 0.6 \mathrm{~W}$, tubular LES type with lampholder
WD1 piezo-electric sounder, frequency $2-3 \mathrm{kHz}$, operating voltage $3-16 \mathrm{~V}$ d.c., with p.c.b. pins. (flying-lead type can be used)
8 -way d.i.l. sockets (3 off); p.c.b. eyelet terminals (7 off)

Materials

Printed model card - see Shop Talk and Special Offer page plus materials for the Oven and Kitchen Unit, polystyrene sheet, 2.5 mm (see cutting list); polystyrene sheet, 0.5 mm (see cutting list); thin clear acetate sheet, a scrap; 2.5 mm $x 2.5 \mathrm{~mm}$ angle polystyrene, 320 mm ; tube polystyrene cement; tube clea adhesive (e.g. Bostick Clear); model gloss paint (e.g. Humbrol) in 1 or 2 colours; spirit marker pen, black; optional - Letratone, self-adhesive film, LT12 or similar (from Office or Graphic Artist's suppliers)

Approx cost
 gulidance only

Fig. 8. Circuit card layout and wiring.

the $(+)$ pin of the AWD to +6 V for 5 seconds.
The astable is formed by IC3, its output going high and low once every second. When its output is low, current is drawn through R8, D3, and D4, making the l.e.d. light. When the output is high and the output of ICl is also high (i.e. during the cooking period), the 1.e.d. goes out. Thus it flashes during the cooking period, but is continuously on at other times. The output of IC3 is also connected to the WDI(-) pin through the diode D2. When the output of IC2 is high and that of IC3 is low (i.e. during bleeping time), current passes through D2 and WD1, sounding the bleep. Diode D2 prevents a reverse current passing through WD1 at other times.

CIFCUIT CARD

The circuit is designed to work on 6 V d.c., but will also work on 9 V or 12 V d.c. Note that a direct current supply is essential. Some "power packs" used with doll's houses consist simply of a transformer which produces 6 V or 12 V alternating current. Such supplies must not be used with this circuit. Suitable 6V d.c. "mains adaptors" or "battery eliminators" are available cheaply, producing 300 mA of current, which is more than sufficient.
If operating on other than 6 V , the only changes to the circuit are to replace R8 with a 390 ohm resistor for 9 V operation or with a 560 ohm resistor for 12 V operation, and to replace LPI with a 12 V lamp for 9 V or 12 V operation.
The whole circuit is assembled on a single card (Fig. 8) which just fits into the kitchen unit. When you have drilled or otherwise made the holes in the card, insert the i.c. sockets and WD1, first placing a spot or two of glue beneath them so that they are attached firmly to the card. Similarly, insert C2, bend it over and glue it to the card. Wiring is also shown in Fig. 8; note that there are two layers of insulating tape beneath IC3, where three wires cross.

TESTING

For testing, connect the card to off-board components, as in Fig. 9 except that the wires are not threaded through the holes in the oven and unit. Fix the two contact wires so that their ends are about 3 mm apart. Hold the lever of S1 depressed, as if the door were closed.

Begin testing with only ICl in its socket.

When power is applied, the lamp may light for about 30 seconds. When it goes out, touch the contact wires with a finger-tip so that the gap is bridged. It may help if the finger tip is slightly moist. The lamp goes on for about 30 seconds. The lamp also goes on if the lever of S1 is released. If this fails to work, check the output (pin 3) of IC1, which goes high $(+6 \mathrm{~V})$ for 30 seconds after the contacts have been touched. If this does not happen check all wiring around IC1. If the output behaves correctly, but LPI does not light, check the wiring of D1, R3 and TR1, and also that D1 is connected the correct way round.
Disconnect the power, insert IC3 and re-apply power. The l.e.d. shines continuously. Touching the contacts turns on LP1, as before, and the l.e.d. flashes at approximately 1 Hz (one flash per second). The output of IC2 (pin 3) alternates between low (0V) and high (6V) at the same rate. After 30 seconds LP1 goes out; the l.e.d. stops flashing and remains permanently on. If the l.e.d. does not light, check that it is wired the right way round and that D3 and D4 are also correctly wired.
Disconnect the power, insert IC2 and reapply power. The l.e.d. comes on as before. Touch the contacts; LP1 comes on for 30 seconds and the l.e.d. flashes. Immediately LPI goes out, WDI emits 4 to 6 bleeps, in time with the flashing l.e.d. The output

Photograph of the completed prototype circuit , card for the Mini-Microwave.

Fig. 9. Interwiring of the various offboard components.
of IC2 goes high when LP1 goes out and stays high for about five seconds. If this does not happen check the wiring around IC2. If the output is correct but WD1 does not sound, check that D2 is inserted the right way round.
Disconnect the power, insert 1C3 and re-apply power. The l.e.d. shines continuously. Touching the contacts turns on LP1, as before, and the l.e.d. flashes at approximately 1 Hz (one flash per second). The output of IC2 (pin 3) alternates between low (0 V) and high (6 V) at the same rate. After 30 seconds LP1 goes out; the l.e.d. stops flashing and remains permanently on. If the l.e.d. does not light, check that it is wired the right way round and that D3 and D4 are also correctly wired.
Disconnect the power, insert IC2 and reapply power. The l.e.d. comes on as before. Touch the contacts; LPI comes on for 30 seconds and the l.e.d. flashes. Immediately LPI goes out, WDI emits 4 to 6 bleeps, in time with the flashing l.e.d. The output of IC2 goes high when LP1 goes out and stays high for about five seconds. If this does not happen check the wiring around IC2. If the output is correct but WD1 does not sound, check that D2 is inserted the right way round.

FINALASSEMELY

There is only just enough space behind the control panel to hold the microswitch, the l.e.d., the contact wires and the lamp, so this part of the assembly needs to be well thought out at all stages. First attach leads about 120 mm long to the l.e.d., lamp and microswitch and twist the contact wires together (Fig. 10). Use multistranded insulated wire of as light a gauge as you can obtain. We used 7/0.15 (7 strands, 0.15 mm diameter) P.V.C. covered cable, with external diameter 1 mm . Make sure that the anode and cathode leads of the l.e.d. are identifiable, either by using wire of different colours or by marking their free ends. Check that the microswitch leads are attached to the correct pair of terminals, 'common' (C) and "normally closed" (NC).

Glue the microswitch to the oven liner (Fig. 11). Depending on the exact make of switch used, you may need to glue one or two more layers of card as spacers between the switch and the stiff card. Before the glue

Fig. 10. Connections to D3 and the touch contacts.
hardens, check that the end of the lever is able to move freely and that the switch just clicks open when the lever is pressed flush with the front panel of the oven.

Push the contact wires through the two lower holes in the control panel and glue the insulating tape binding to the bottom of the oven body. Trim the contact wires so that they project about 0.5 mm from the front of the panel.

If you have a short length (a mere 5 mm is enough)! of optical fibre, thread this through the upper hole in the control panel, so that its outer end is flush with the front of the panel. Glue the fibre at the rear to fix it to the panel, then glue the green l.e.d. to the other end of the fibre. If you do not have optical fibre, mono-filament nylon (fishing line) might work instead. Otherwise simply glue the l.e.d. to the rear of the oven front panel so that it shines through the hole. In either case, also glue the insulation around the leads to the top of the oven body.

Draw a miniature key-panel on paper about $8 \times 13 \mathrm{~mm}$, and stick this to the control panel. For greater realism, photograph the key panel of a real oven

Fig. 11. Mounting and wiring of the microswitch S1.
and have a colour-print made to the required size. Hang the door in its hinges (Fig. 4) using steel pins, which can be cut from dressmaker's pins. If the door will not stay shut to hold SI open, a small ball of Blutack inside the top right corner of the door will secure it.

Fix the lamp-holder with Blutack so that it is just beside the "perforated" window in the oven lining. To complete the assembly, you could secure everything firmly in place by packing the remaining space behind the control panel with pieces of plastic foam. Gather the leads together and thread them through the hole in the bottom of the oven. The rear panel is a push-fit in the rear of the oven body.

Thread the wires through the hole in the unit top. Glue the oven on top of the kitchen unit, to prevent it from sliding about. Make the connections to the circuit card (Fig. 9). Place the circuit card in the unit and then connect it to the doll's house power supply, or to a battery if this is not suitable.

The mini-microwave is now ready to cook its first meal for the occupants of the doll's house.

GIMPLEMODEL SERIES SPECIAL EASIWIRE OFFER

FREE EASIWIREIF YOU BUY ANY FOUR MODEL KITS OREASIWIRE FORE5 WHEN YOU PURCHASE A PROJECT KIT．

The two companies mentioned below have large stocks of Easiwire solder－ less wire wrapping systems，as used to build all our Simple Model Series projects．They have agreed to make these available to EE readers who purchase complete kits of com－ ponents for the projects，INCLUDING printed cards to cut out and assemble for each model．If you are prepared to buy any four of the six model kits that kick off the series then you can get your Easiwire FREE．
If you buy any one model kit you can purchase an Easiwire kit for just ES． TThese kits were previously advertised by BICC－Vero at E15，including p\＆pJ．To get your kit and Easiwire simply fill in the appropriate coupon and send it with your cheque cor credit card detailsl to either of the companies．

The six projects that kick off the series are：Police Car（July 91）；Musical Roundabout（Aug 91）；Micro Micro－a dolls house microcomputer（Sept 91）；Cen－ turion Tank（Oct 91）；Mini Microwave－dolls house microwave oven（Nov 91）；Christmas Novelty Decoration（Dec 91）．These models all play tunes or make noises or flash lights etc．They will each cost about $£ 8$ or less to build，the prices charged will be as given by
 EE in the＂approximate cost box．＂
All the kits will be available separately as the projects are published and the E5 Easiwire offer will be available with each kit when each project is published．
Please fill in the appropriate coupon below，tick the relevent boxes and send your cheque／PD／oredit card number with one of the coupons to：

日ULL ELECTRICAL 2SロPロRTLANDRDAD， HOVE，SUSSEX BN35QT Tel：0273203500 Fax：0273 23077

GREENWELD ELECTRONIC COMPONENTS 27PARKRDAD，

OR SOUTHAMPTONSO1 3TE Tel：ロフロЗ 236363 Fax：070ヨ2э6307

SEND EITHER COUPON TO EITHER COMPANY－YOU CHDOSE YOUR SUPPLIER Qverseas readers please add $£ 3$ to cover the extra postage charge．

FREEEASIWIRE

Please send me my FREE Easiwire kit．I understand that I must buy four model kits at the price given by EE－ I enclose a cheque／PD for $£ 2 \square$ for the kits ticked below and as a deposit on further kits
Please debit my credit card as each kit is sent
Card No．
o．． \qquad

ES EASIWIRE

Please supply the Microwave Kit I on its own at $£ 5.5 \square$ plus E1p\＆p \square I Please supply an Easiwire at

I Overseas readers please add $£ 3$ to cover the ｜extro postage charge． I lenclose a cheque／PO for $£$ ．

Thekits I require are：Tick four or more	olice Car（July＇91）．．．．．．．．．．．．．．．．．．．．．．．．．E5．95 plus £1p\＆
	Musical Roundabout（Aug＇91）．．．．．．．．E7．95 plus $£$
	Micro Micro（Sept＇91）．．．．．．．．．．．．．．．．．．．E2．50 plus E
Tick four or more baxes．	on Tank（Oct＇91）．．．．．．．．．．．．．．．．．．． 4.95 plus $\mathrm{E}_{1} \mathrm{p}$ \＆p
	ini Microwave（Nov＇91）．．．．．．．．．．．．．．．．$£ 5.50$ pl
	Christmas Novelty（Oec＇91）．．．．．．．．．．．．．．．．．．．．．．．．plus $£ 1$ p\＆p

Name．
Address．
（E6．50 or E11．50）\square
I I Please charge my credit card－\square
\qquad
\qquad
\qquad
Name
Address
I

Life roday would be dificult ro imagine withour magneric recording: No audio or video recorders; no compurer disks;' no payphone cards; no bank cash cards or magneric security pass cards. In spite of its universal use, magmetic recording and the principles of magnerism are still little understood by most people. In this short series we hope to answer some of the questions most often asked about Magmeric Recording.

WHY is the gap in a recording head much wider than that of a playback head? and how can it record wavelengths shorter than itself? Why do some heads last much longer than others? These are questions that often puzale inquiring tape-deck owners, and ones we shall try to answer in this article along with a few more.

Both the recording head and the playback head are basically of the same construction, in fact a single head is commonly used for both, although the design is thereby somewhat of a compromise. Basically, the head is a ring of magnetic material having a gap filled with a nonmagnetic shim. A pair of coils are wound, one on each side of the ring, through which is passed the signal current. A corresponding magnetic field thereby appears across the gap, but diverted around the outside of the shim, so that it penetrates the magnetic coating of the recording tape.

During playback, fluctuating magnetic flux from the tape is conducted from the gap in a magnetic circuit around the ring and thus induces voltage in the coils.

The coils are wound in opposite phase, although connected to reinforce each other. The reason for this is that any stray hum fields that may affect the coils are thereby cancelled out. Stereo heads have two identical rings and sets of coils mounted one above the other. The proximity and similar orientation makes coupling between them a strong possibility, which produces crosstalk and deterioration of the stereo image. To minimise this, careful screening is required.

If two separate heads for recording and playback are employed, the design of each can be optimized. Furthermore, a facility called $A B$ monitoring can be provided. This is the playback of a tape as it is actually being recorded, a switch providing a comparison between the played back signal of the tape and the recording signal being applied to it.

Playback Mead

First of all we will consider the playback head. When a complete recorded wavelength equals the width of the head gap, both negative and positive half cycles: are in the gap at the same time, so they
cancel and there can be no electrical output. As the wavelength increases relative to the gap width, the output rises form zero to a maximum at twice the gap width which is equivalent to one half cycle.
The gap width is therefore one of the factors that limit the upper frequency response of the head, and the smaller the width the higher the response. The response for a given width, or the width required for a specified response can be calculated according to the speed of the
 determine the gap in microns (g) to give a response up to a particular frequency (f), the formula is:

$$
g=\frac{47,500}{2 f}
$$

So for a theoretical response up to 20 kHz , the gap width must be no greater than $1.2 \mu \mathrm{~m}$.

Recording Head

Gap specifications for heads that are used only for recording, reveal widths up to ten times those for playback heads. In view of what has just been said about the effect
imposed audio. So, it is around the trailing edge that the final magnetic value is imparted, hence the width of the gap has no effect on the frequency.
Why though have such a wide gap? The field from any recording head gap is roughly hemispherical. Its radius is therefore proportional to the gap width. A wide gap produces a field that extends out further than one generated by a small gap, Fig. I illustrates the principle.
Coating thickness for a C90 cassette tape is $5 \mu \mathrm{~m}$. A head gap of around $1 \mu \mathrm{~m}$ thus produces only a small penetration and most of the coating remains unmagnetized. Larger gaps utilize more of the coating which thus record a higher level and so give a better signal-to-noise ratio. Furthermore, more of the flux is longitudinal with a wide gap, so the influence of the perpendicular fringe field which partially erases high audio frequencies, is less.
From this it is evident that the width requirement of recording and playback heads are not compatible and separate heads are the ideal solution. However these are uncommon, so a compromise must be

Fig. 1. A wide recording head gap produces a field that penetrates deeper into the tape coating than a narrow one because the radius of the field is proportional to it.
of playback gap width on upper frequency response, these may seem incapable of recording anything above mid frequencies.
However, the recording process is rather more complex than that of playback. As we saw in the last article, any particular magnetic particle in the tape coating goes through several hysteresis cycles resulting from the applied h.f. bias, as it passes the gap. it leaves the trailing edge of the gap with a magnetic value from some part of the cycle which is determined by the super-
effected. As a narrow gap is essential for playback to maintain good h.f. response, the gap is a dual-purpose head must favour the playback rather than the recording function.

Losses and
 Frequency Response

The frequency response of a replay head including the effects of various recording and tape losses is far from fiat. As shown in

Fig. 2; it consists of a large peak at around 3 kHz with falling response on either side.
The amplitude of an induced signal in any conductor is proportional to the velocity of the flux cutting across it, the conductor in this case being the turns of the coils. Now the velocity of the flux is determined by the frequency, because it changes more rapidly at high frequencies than at low.
So, the amplitude falls in proportion to any drop in frequency, becoming half the level at half the frequency. Put in technical terms this is a 6dB drop per octave and accounts for that decline in the response curve below the peak.
Voltages are induced in the core as well as the windings, and they cause eddy currents to circulate that do no good and so represent a loss. They are minimised in Permalloy cores by laminating them, that is building them up from a stack of thin wafers, but at very short wavelengths (high frequencies) currents are induced into each wafer. This means that core hysteresis losses as they are called, are negligible at low frequencies, but are increasingly evident at high. So they add to the falling h.f. playback response.
High frequencies also suffer during recording by the perpendicular fringe field, and by selfdemagnetization of the recorded tape. The latter effect arises because successive half cycles of the recorded signal are of opposite polarity, so the successive magnetic domains are likewise opposite, which means that the sequence of poles is $\mathrm{N}-\mathrm{S}, \mathrm{S}-\mathrm{N}$, N - S , and so on.

Now magnets stored with like poles adjacent as in this sequence, tend- to become demagnetized. The extent depends on the physical size of the magnets, short thick ones demagnitize more readily than long thin ones. The short thin domains are those that correspond to the short wavelengths of the high frequencies, so these are the ones that suffer most.
In addition to these there is also the reducing h.f. response as the playback gap width increases relative to the recorded wavelength. All these effects add up to produce that rapidly falling h.f. response above 3 kHz .

Flattening It Out

It looks rather a tall order, but it can be done. The first step is known as preemphasis, which gives some boost to the high frequencies during recording. This also helps with noise as most noise is concentrated in the upper octaves, so boosting the signal high frequencies improves the signal-to-noise ratio. If boosted too much though, the tape could saturate, so the boost must be limited. Different amounts are applied to normal ferric and to chrome tape.
The next step is equalisation. This is applied to the playback amplifier and consists mostly of bass boost at the rate of 6 db per octave below 3 kHz . So this takes care of the falling bass response.
A certain amount of treble boost is also applied to make up the short-fall there. The amount is specified as a time constant which is the time that a capacitor used in the boost circuit takes to charge through a specified resistor to 63 per cent of its maximum amount. The term is a convenient way of describing the
capacitor/resistor combination required to achieve a particular response.
For ferric tape, the equalisation is $120 \mu \mathrm{~S}$ which boosts frequencies above 1.2 kHz . However, due to the influence of the bass boost, the curve does not flatten and start to climb until 3 kHz which is just the point required to give an inverse curve needed to balance the response. This can be seen in Fig. 2.
In the case of chrome tape, more boost can be applied in the recording pre-emphasis, and also the tape has reduced h.f. losses, so the equalisation at high frequencies can be less. It is $70 \mu \mathrm{~S}$, which starts at 2.2 kHz . here again the bass boost delays the flattening out and treble boost climb which in this case commences at 4 kHz .

It is remarkable that with all these losses and response deviations, and with the various boosts applied to correct them, that hi-fi is possible from tape at all. However, now we will take a look at the head core materials and how they affect performance.

Fig. 2. Playback head frequency response having peak at 3 kHz with falling bass and treble output either side. Equalisation curve compensates. The $120 \mu S$ curve is used for ferric tape and the 70μ S for chrome.

Permellay

Permalloy is the most common core material being an alloy of some 78 per cent nickel and iron with a trace of molybdenum. It has the advantage of permitting a high flux density without saturating and so it can take high recording levels before distortion occurs.
However, the permeability is not constant but falls with increasing frequency. Its value at 10 kHz is only a tenth of what it is at 1 kHz . This is another of the reasons for the poor high-frequency performance of a Permalloy playback head.
Another effect is that it imposes a limit on the frequency of the bias signal. Ideally this should be as high as possible to avoid intermodulation with the higher audio frequencies, but must be kept low with Permalloy to reduce heavy hysteresis losses and subsequenty heating of the core. Laminating the head helps as we have seen but does not eliminate the problem.

Lamination actually introduces problems of its own which are in producing an accurately aligned head gap. With gaps of only a few microns it can be appreciated that assembling a stack of laminations so that all the gaps are perfectly in line is no easy task. Deviations effectively increase
the gap width and thereby increase the h.f, loss during playback.
Permalloy is also the softest of core materiais, rating $130-140$ on the Vickers hardness scale. It thus wears rapidly, an average being $120 \mu \mathrm{~m}$ per thousand hours. The average life is $1,000-2,000$ hours. The life depends on the type of tape used, some are more abrasive than others, and also if the tape is in contact with the head during fast winding as it is with some programme search facilities.
The non-magnetic shim used to fill the gap is carefully chosen to have the same degree of wear as the core so that a uniform face is maintained during the life of the head with no high spots or cavities. For Permalloy the material is usually beryllium copper.

Sintered Ferrite

Sintered ferrite is made up of an amalgam of various different oxides, the main ones being iron oxide, zinc oxide, nickel oxide and manganese oxide. These are combined in the form of fine grains with a ceramic filter and binder to form solid blocks.

As the material is not solid metal, the flux density before saturation is just half that of Permalloy. Permeability is only a tenth of a Permalloy core but it is more consistent; the value at 10 kHz being threequarters of its 1 kHz value.
The presence of the ceramic binder results in a high electrical resistance. Eddy current losses are thus very low which together with the more consistent permeability at high frequencies, means that the h.f. response of a playback head is better than Permalloy. For the same reason higher bias frequencies can be used.

Another effect of the absence of eddy currents is that the core can be made out of a solid block; laminations are not necessary, so more accurate gaps can be achieved. However, the material is brittle and chips very easily. Also tiny bubbles can form in the manufacture, which reveal themselves as cavities on the head face when machined. It is much harder than Permalloy, registering some 400 on the Vickers scale which is three times that of Permalloy. Heads therefore have a much longer life.

However, the residual magnetism of Sintered Ferrite is greater than Permalloy so requiring a larger coercive force to overcome it. This can result in a higher noise level. So, although there are advantages over Permalloy, there are also disadvantages. Some of these are avoided with HPF.

HPF

The initials HPF are for Hot Pressed Ferrite. It is made by compressing ferrite at pressures of around $7,0001 \mathrm{lb}$ per square inch $(48 \mathrm{MPa})$, at a temperature of $1,400^{\circ} \mathrm{C}$. Permeability is greater than ordinary ferrite as may be expected from its compacted nature, but surprisingly it is also greater than the metal Permalloy.

Table of Head Core Materials

Material	Composition	Permaability $\mathbf{1 k H z}$ $\mathbf{1 0 k H z}$	Max Flux (T)	Coerc force	Spec (oersted) $\left(\Omega / \mathrm{cm}^{2}\right)$	Vickers hardness	
Permalloy	$\mathrm{Ni}, \mathrm{Fe}, \mathrm{Mo}$	18,000	1,500	0.7	0.02	0.00005	135
Ferrite	$\mathrm{MnO}, \mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{Zn} 0, \mathrm{Ni} 0$	1,200	900	0.4	0.5	>100	400
HPF	$\mathrm{MnO}, \mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{Zn} 0, \mathrm{NiO}$	20,000	10,000	0.4	0.015	>100	700

The effect of frequency on permeability is much less than Pernalloy but slightly more than ferrite. The level at 10 kHz is just half that at 1 kHz . Maximum flux density is the same as unpressed ferrite which as we saw is half that of Permalloy. Residual magnetism is less than ferrite and even less than Permalloy thus enabling low noise recordings to be produced.
The hardness is rated at 650-700 on the Vickers scale which is greater than ordinary ferrite. It is so hard that hard glass must be used as the gap filler. No bubbles can remain in the material due to the very high pressures used in manufacture, so no cavities can appear when it is machined. It is capable of taking a high polish which reduces tape friction and thereby also flutter effect. Wear is very low being about $0.4 \mu \mathrm{~m}$ per thousand hours.
HPF is thus close to being the ideal tape head core material for ferric tapes. but the
reduced maximum flux density compared to Permalloy can be a drawback for metal tape which needs high flux densities for recording and even higher ones for erasing. As the flux density of the head core increases so does the distortion. This is mostly third harmonic as it is with the tape itself, and it can become severe as the saturation point is approached. It is not a problem with Permalloy heads and ferric tapes as tape saturation is reached long before the head core. With iron tape and to a lesser extent chrome, the high recording flux needed can drive ferrite cores well. toward saturation. Even playback heads can be driven into distortion by heavily pre-recorded tapes.

Sendust

Another core material is Sendust. This has the hardness of ferrite with the flux capacity of Permalloy. The disadvantage is
its low electrical resistance which like Permalloy results in eddy currents and h.f. losses as well as low bias frequencies.

The solution to this is the same as for Permalloy, that of rolling the material out into a ribbon when it is hot. then making up the head core from a stack of laminations. This of course brings back the staggered gap problem of the Permalloy head. For dual-head machines, the solution is to use Sendust for the record and erase heads in which gap size is unimportant but flux density is, and HPF for the playback head which requires an accurate gap.

In the next article we will consider the maintenance and adjustments needed to ensure top performance from a record/playback head, and take a look at tape erasure too.

SHOP IMTALK

with David Barringion

Car Alarm

With car crimes repeatedly hitting the headlines lately, Electronize Design have introduced an infra-red key-ring transmitter and a dash top receiver to deter would-be "joyriders". With a possible 59,046 codes, the system is unusual in that the user can select their own code.

The unit has a claimed range of up to 5 metres, the transmitter and receiver are priced separately at $£ 17.95$ and $£ 26.55$ respectively. With an alarm and siren added, the complete coded system retails for $£ 77$. For the D.I.Y. enthusiasts, kits are available bringing the system cost down to $£ 62$.

Electronize Design. Dept EE, 2 Hillside Road, Four Oaks, Sutton Coldfield. West Midlands, B74 4DQ. (4) 0213085877).

Darts Scorer

Some of the semiconductor devices called for in the Darts Scorer are special items and only appear to be available from one source.

The CMOS 8-bit microprocessor type MC146805E2P is currently only listed by Electromail (0536 204555) code 642-272, and Viewcom (081471 9338). The octal latch chip 74 HC 573 (code 643-512 or 631-165), the CMOS keypad switch encoder MM74C922N (code 307-907) and the Hewlett Packard low current, common anode, 0.56 in . high 7 -segment display (code 588-623) were all purchased from Electromail. The connections for the 7 -segment display are along the top and bottom edges of the device package.

The 4.9152 MHz crystal (code $657-577$) and the 16-key, 4-by-4 matrix, membrane keypad (code 331-269) were also purchased from the above source. The use of this particular keypad was chosen because of the inclusion of an insert sheet carrying standard printed legends, whilst the other side of the sheet will take "rub-down" transfers (such as Letraset) enabling the keys to be customised for the scorer.

By special arrangement with the designer, a ready programmed 27C64 CMOS EPROM is available for the sum of $£ 7$ inclusive. Orders should be sent direct to: R. Stone, 19 Cherryfields, Poplars Farm, Bradford. West Yorks, BD2 11B. A photostat copy of the complete "Hex dump" listing is available to readers from
the EE Editorial Offices for the sum of $£ 1$ and a large SAE.

The case used in the prototype is a BICC-Vero case from the Appolo range size 4 (order code $75-38118 \mathrm{E}$) available, money with order, from Verospeed (0800 272555). The single-sided printed circuit board is available from the EE PCB Service, code EE774 (see page 748).

Mini Microwave - Simple Model Series

Looking through the various components catalogues to make sure that they all stock a suitable selection of microswitches in the Mini Microwave. this month's Simple Model Series project, we notice that the sub-miniature types appear to be the only ones that have their contact tags "in-line". As space is at a premium, it is best to stick to the sub-miniature type; however there is no reason why other types cannot be used provided suitable space is allowed for in the final model.

The microswitch should, of course, be the lever operated type and the metal lever "kinked" to the required shape. This is best accomplished in gradual stages by using two pairs of long-nosed pliers and checking the switch operation on the model, before making any further adjustments.

The model and electronic circuit is built on printed card, which can be obtained from the EE Editorial Offices for the sum of E 1 (including postage). The wiring-up of the "electronics" card is accomplished by the use of the Vero Easiwire "no soldering" wire-wrapping system.

To help with assembly; Greenweld Electronic Components (0703 236363) and Bull Electrical (0273 203500) have put together a complete kit, including cards, for the sum of $\mathbf{£ 5 . 5 0}$ plus £1 postage. - See Special Offer page 721.

The above mentioned companies have large stocks of the Easiwire solderless wiring packs and have agreed to make these available to EE readers who order kits from them. If you purchase any one single kit an Easiwire pack will set you back just £5. However, if you are prepared to order four or more of the kits listed they will. supply an Easiwire kit FREE.

Modular Disco Lighting

We do not expect any component buying problems to be encountered by readers
undertaking the Superchaser or Supersweep, this month's concluding projects for the Modular Disco Lighting System.

The specified metal instrument case for both modules is the same for all modules in the series and is the Maplin Blue case 233, code XY48C. Other cases may be used, but, for safety they must be METAL and it is essential that the case be "Earthed".

The 7 -way DIN plugs and chassis mounting sockets are standard items stocked by most of our component advertisers. However, the 10-pin circular "video" chassis mounting plug, with matching cable mounted socket, may prove to be difficult to locate from a local source. The one used in the models was purchased from Electromail. To some, these may seem expensive and readers may wish to use alternatives but bear in mind that they should be indentical for all modules to enable them to be interconnected within the system.

The double-sided printed circuit boards for both projects are available from the $E E$ PCB Service. Quote codes EE771 (Superchaser) and EE772 (Supersweep).

Remote Camera Release

Looking down the components list for the Remote Camera Release, the motorised gearbox is the only item that stands out as one that will cause readers problems trying to find a local supplier. The only source we have been able to find is from Magenta Electronics and is their larger unit type MGL.

The 40 kHz ultrasonic transducer for the transmitter and receiver circuits are nearly always sold as matched pairs and should be stocked by most of our component advertisers. The 6 V 100 ohm coil 5A relay used in the prototype model is the Maplin JM17T $(6 \mathrm{~V} / 5 \mathrm{~A}$. Min Relay). Other relays can, of course, be used but must be suitably rated and sit on the circuit board as space is limited inside the case.

Bicycle Alarm

The mercury vibration switch used in the Bicycle Alarm is available from Maplin, code UK57M. The metal case of the switch is also one of the switch contacts and a lead must be soldered to the casing as indicated. It is important that the soldering iron bit is held against the casing no longer than absolutely necessary to make a good joint.

The high power buzzer should be available generally and is the type which will operate from 3 V to 24 V d.c. at a resonant frequency of about 3 kHz . Be careful when ordering the BC184L transistor, make sure that it carries the suffix L as other types have a different pinout alignment.

The small printed circuit board for the alarm is obtainable from the EE PCB Service, code EE773 (see page 748).

2×220 watt MOSFET AMPLIFIER

 A top-of-the-range performer that most demanding audio enthusiast. If you're looking for an amplifier to power your ubwoofer, the SPARKOMATIC is all you'll need! Highly sophisticated MOS-FET technology dramatically extends frequency response, separate input sensitivity controls, built-in protection circuitry for overheat and short circult with I.e.d. indication, output power: 2×220 watt maximum and 2×110 watt at 0.1% THD, Bridged 440 watt mono maximum and 220 watt mono at 0.5% THD.£164:50 plus £3.50 P\&P

100 watt $\times 4$ CLASS A AMPLIFIER

 FOR CARSDelivers 4×100 watt into 4 woofers or with the aid of its built in active cross over delivers 200 watt of Bass via sub-woofer output and 2×100 watt, range into 2 speakers; thus giving you all the power you require to make even traffic jams a positive pleasure. SPECIFICATION $4 \times 100 \mathrm{~W}$ (4ת), $2 \times 200 w$ Bridged, THD .08\%, S/N RATIO; 7 90 db , RESPONSE $10 \mathrm{~Hz}-50 \mathrm{KHz}$, LOW PASS FILTER SWITCHED 75 Hz 150 Hz , INPUT $4 \times$ PHONO $100-3$ Volts, INPUT $\times 4$ HIGH LEVEL $20 \mathrm{~K} \Omega$, SIZE $240 \mathrm{~mm} \times$ $50 \mathrm{~mm} \times 400 \mathrm{~mm}$.
£118.50 postage $£ 4.50$
75 watt $\times 2$ CLASS A AMPLIFIER FOR CARS
Small but powerful, high efficiency amplifier, suitable for a number of hidden mounting locations. Easy connection through phono and locations. Easy connection through phono and high level input capability. SPECIFICATION 2×75
watts $4 \Omega, 1 \times 150$ watt Bridged, THD $0.190, \mathrm{~S} / \mathrm{N}$ watts $4 \Omega, 1 \times 150$ watt Bridged, THD 0.190 , S/N
RATIO: 785 dB , RESPONSE $20 \mathrm{~Hz}-30 \mathrm{KHz}$. INPUTS; RATIO: 785 dB , RESPONSE $20 \mathrm{~Hz}-30 \mathrm{KHz}$. INPUTS;
$2 \times$ PHONO $100 \mathrm{mV}-3$ VOLT $2 \times \mathrm{HIGH}$ LEVEL 2 X $20 \mathrm{k} \Omega$. SIZE $240 \mathrm{~mm} \times 50 \mathrm{~mm} \times 140 \mathrm{~mm}$.
$\mathbf{£ 4 8 . 5 0}$ postage $\mathbb{£ 3 . 5 0}$
11 BAND COMPONENT GRAPHIC EQUALIZER FOR CARS

This neat unit connects between the line output o your car stereo and your power amplifiers so you are able to adjust the sound as in a studio compensating for soft furnishing and sound reflections from glass, also it has a sub-woofer output to drive a separate amplifler for that extra deep bass sound. FEATURES: 2 channel inputs 4 channel outputs via phono sockets, $C D$ input 4 channel outputs via phono sockets, CD input
via 3.5 mm jack 11 band graphic. SPECIFICATION VIa 3.5 mm Jack 11 Hand graphic. SPECITIO 85 dB . RANGE $20 \mathrm{~Hz}-60 \mathrm{KHz}$ THD 0.05%, S/N RAT 385 dB .
EQ FREQUENCIES $60 \mathrm{HZ}, 120 \mathrm{~Hz}, 250 \mathrm{~Hz}, 380 \mathrm{~Hz}$, EQ
$500 \mathrm{~Hz}, 750 \mathrm{~Hz}, 1 \mathrm{KHz}, 2 \mathrm{KHz}, 4 \mathrm{KHz}, 8 \mathrm{KHz}, 16 \mathrm{KHz}$ (Boost cut of $\pm 12 \mathrm{~dB}$) SIZE $178 \mathrm{~mm} \times 25 \mathrm{~mm} \times$ 140 mm .
£32.70 postage $£ 1.80$.

EMINENCE 4Ω PROFESSIONAL USA MADE IN CAR CHASSIS SPEAKERS

All units are fitted with big magnets "Nomex' Voice coils NOT ALUMINIUM, "Nomex'" is very light and can stand extremely high temperatures this mixture makes for high efficiency and long lasting quality of sound.
V6 $61 / z^{\prime \prime} 200 \mathrm{~W}$ Max Range $50 \mathrm{~Hz}-3 \mathrm{KHz} \mathbf{£ 3 4 . 4 0}$ V8 8" 300 W Max. Range $45 \mathrm{~Hz}-3 \mathrm{KHz}$ £39.35 V10 $10^{\prime \prime} 400 \mathrm{~W}$ Max Range $33 \mathrm{~Hz}-4 \mathrm{KHz} \mathbf{~} 44.45$ V12 12" 400W Max Range $35 \mathrm{~Hz}-3 \mathrm{KHz} £ 45.95$ BOSS $15^{\prime \prime} 800 \mathrm{~W}$ Max Range $35 \mathrm{~Hz}-4 \mathrm{KHz} £ 79.90$ KING $18^{\prime \prime}$ 1200W Max Range $20 \mathrm{~Hz}-1 \mathrm{KHz}$ P.O.A. Postage $£ 3.85$ per speaker

AUDAX JBL 40-100 watt CAR TWEETERS

These state of the art advanced technology, high performance 10 mm dome tweeters are Ferrofluid coded and are active horn-loaded for high dispersion of sound with very low distortions. Ideal for tuning up your dull sounding in-car system.
SPECIFICATION IMP $4 \Omega 40$ watts at $5 \mathrm{KHz}, 100$ watt at 10 KHz, MAGNET, SIZE $5 \mathrm{~mm} \times 30 \mathrm{~mm}$, VOICE COIL SIZE 10.5 mm EIFFICIENCY $92.8 \mathrm{~dB}, 5 \mathrm{k}$. SIZE $51 \mathrm{~mm} \times 51 \mathrm{~mm} \times 16.5 \mathrm{~mm}$. RECOMMENDED.
1 st ORDER CROSSOVER, VALUE $1.5 u f-2.2 u f$ sup plied. $£ 7.50$ pair plus 90 p post.

MAIL ORDER £1 BARGAIN PACKS BUY 20 GET 1 FREE Please state pack(s) required

No. Qiy. per pack

 $00 \mu \mathrm{~F} 16 \mathrm{~V}$ d.c. electrolytic high quality com puler grade UK mac
BP019 2020 ceramic trimmers
BP020 4 Tuning capacitors, 2 gang dielectric a.m. type BP021 103 position. 8 tag slide switch 3 amp rated 125 a.c. made in USA

Push-bulton switches, push on push of. 2 pole 2 changeover. PC mount 2 way rotary switch
BP024 22 Right angle, PCB mounting rotary switch, 4 pole. 3 way rotary switch UK made by LOR LIN
BP025 43 pole, 3 way minlature rotary switch with one extra position off (open frame YAXLEY type)
BP026 44 extra 2 way rotary switch UK made by LORLIN BP027 30 Mixed control knobs
BP029 $6 \quad$ Stereo rotary potentiometers
$\begin{array}{lll}\text { BP029 } & 6 & \text { Stereo rotary potentiomenble } \\ \text { BP030 } & 2 & 10 k \\ \end{array}$
tiometers UK made
BP032 4 UHF varicap tuner heads, unboxed and untested
UK made by PHILIPS
BP033A 4 made by PHILIPS $\quad 6 \cdot x^{3} \beta^{\prime \prime}$ High grade Ferrite rod. UK made
BP034 3 AM IF modules with diagram PHILIPS UK
BP034A MADE
BP034B $1 \quad \mathrm{HI}$. Fi stereo pre-amo module inputs for CD stereo pre-amp module imputs for CD unet, tape, magnetic cartridge with diagram UK made by MULLARD
$\begin{array}{lll}\text { BP035 } & 6 & \text { All metal co-axial aerial plug } \\ \text { BP036 } & 6 & \text { Fuse holdars, panel mounting }\end{array}$

BP B049

Double phono sockets, Paxolin mounted
2.8 m lenghts of 3 core 5 amp mains flex

Large VU meters JAPAN made
BP043 $30 \quad 4 \mathrm{~V}$ miniature bulbs, wire ended, new untested
BP044 2 Sonotone stereo crystal cartridge with 78 and L
BP045A 2 Mryli JAPAN made
BP045A 2 Mono Cassette Record and play heads
BP046A 2606 Mains transformers, PCB mounting. Slze
BP047A 125 V DC 150 mA mains adaptor in black plastic case with flying input and output leads new units made for famous sound mixer manufac turer. Size $80 \times 55 \times 47$
BP049 10 OC44 transistors. Remove paint from top and it becomes a photo-electric cell (ORP 12). UK made by MULLARD
BPOS0 30 Low signal transistors n.p..., p.n.p. yypes
BP051 614 watt output transistors. 3 complimentary pairs in TO66 case. (ldeal replacement for AD161 and 162 s)
BP052A.1 Tape deck pre-amp IC with record/replay switching No LM1818 with diagram
BP053 55 watt audio ICs. No TBA800 (ATEZ)
$\begin{array}{lll}\text { BP053 } & 5 \text { watt audio ICs. No TBA800 (ATE2) } \\ \text { BP054 } & 10 & \text { Motor speed controt ICs, as used with }\end{array}$
sette and record player motors
BP055 1 Digital DVM meter I.C. mede by PLESSEY as
BP056 $4 \quad 7$ segment O.3 LED display diagram
$\begin{array}{lll}\text { BP057 } & 8 & 7 \text { segment 0.3 LED display (red) } \\ \text { Bridge rectiflers, } 1 \text { amp. } 24 \mathrm{~V}\end{array}$
BP058 200 Assorted carbon resistors
BP059 1 Power supply PCB with $30 \mathrm{~V} 4 \mathrm{~V} / \mathrm{A}$ transformer MC7818CT IC \& bridge rectifier: Size $4^{\prime \prime} \times$

BP061 $5 \quad 6.35 \mathrm{~mm}$ Mono jack plugs
BP063 $\quad 5 \quad 6.35 \mathrm{~mm}$ stereo switched jack sockets
BP064 12 Coax chassis mount sockets
BP065 1 3mtr Euro-mains lead with chassis socket Postage f3 per order
ROADSTAR OF SWITZERLAND. QUALITY 13 cm 40 watt CAR SPEAKERS. Fitted with dua polypropylene cone and foam rubber surround Large 70 mm magnet for good bass and ireble response. Supplied complete with grills, fixing screws and cable.

OFFER PRICE $£ 11.70$ pair

They weigh nearly 1.5 kg . Postage $£ 3.15$ each
2 pairs for £22 POST PAID UK ONLY UNDER $1 / 2$ PRICE OFFER

AUSTIN ROVER MINI MAYFAIR. 15 watt POD SPEAKERS. Moulded in a black housing for vertical or horizontal use. Fitted with a good mains 10 cm speaker.

£4.95 pair plus £3 pp or

2 pairs for $£ 10.50$ post paid UK only
BSR STEREO RECORD PLAYER DECK
Manual auto operation, 3 speed $(78,45,3313), 240 \mathrm{~V}$ opertlon. unused but store soiled
£10.50 ea p\&p £3.75 2 for $£ 18.00$ p\&p $£ 3.75$

RADIO AND TV COMPONENTS ACTON LTD

 323 EDGWARE ROAD LONDON W21BN

Phone 0717238432 or 0819928430

AMPHONIC $125+125$ POWER AMPLIFIER

125 watt per channel stereo power amplifier with inde pendent volume controls, professional 19"' rack mount and silent running cooling fan for extra reliability.
Output power....................... 125 W RMS max. per channel Output impedance 4 to 16 ohms
(max power into 40 hms
Protection
Power. .450 V at 22 K ohms

Chassis dim
Electronic short-circuit and fuses $.220-240 \mathrm{~V}$ a.c. 50 Hz
$.435 \times 125 \times 280 \mathrm{~mm}$ $\mathrm{£} 170+£ 7.00 \mathrm{pp}$
$30+30$ WATT AMPLIFIER KIT

An easy to build amplifier with a good specifica ion. All the components are mounted on the single PCB which is already punched and back printed.
30W $\times 2$ (DIN 4 ohm)

- CD/Aux, tape I, tape II, tuner and phono in puts.
Separate treble and bass.
- Headphone jack.

Size (H.W.D.) $74 \times 400 \times 195 \mathrm{~mm}$
Kit enclosed: case. PCB, all components, scale and knobs $\quad \mathbf{£ 4 0 . 0 0}+\mathbf{£ 3 . 5 0} \mathrm{pp}$ (Featured project in Everyday Electronics, April 1989 issue). Reprint Free with kit

MULTIBAND RADIO
VHF $54-176 \mathrm{MHz}$ + AM CB BANDS $1-80$ Listen to: AIR TRAFFIC CONTROL f17.95 AIRCRAFT,RADAR, POSTAGE RADIO AMATEURS AND £2.85 MANYMANY MORE SQUELCH CONTROL AERIAL

ROSS PUSH BUTTON RADIO

Mains and battery operated.
High quality VHF/FM,
Medium and Long Wav
6 push butron selected
preset stations.
Fully retractable telescopic
aerial
Headphone/earphone
ack socket.
望 $230 \mathrm{H} \times 150 \mathrm{~W} \times 65 \mathrm{D}$
Rer.
Brand new.
Listed price over $£ 30.00$
OFFER E15.00
$+\varepsilon 2.80 \mathrm{pp}$

VIDEO SENDER

With this handy unit you can transmit the output of your home video, video camera or satellite equipment over-the-air to a receiving television within a range of 100 ft . Simply connect the video and audio output of your equipment into his unit and a $10-13.8 \mathrm{~V}$ dc power supply extra E3.75 size $122 \times 70 \times 21 \mathrm{~mm}$
$\mathbf{£ 1 1 . 5 0} \mathbf{+ £ 2 p p}$

VHF RADIO TRANSMITTERS

100 mW mini bug. Built on a neat little fibre glass pcb with condenser mic. Fully tunable over the FM band. 9V DC
$\mathbf{6 5 . 7 5}+\mathbf{£ 0 . 9 0} \mathrm{pp}$ 2 Watt transmitter kit, supplied with fibre glass pcb, all components, diagrams, ready for you to build. $12-24 \mathrm{~V}$ DC. $\mathbf{E} 7.50+£ 0.70 \mathrm{pp}$ 25 Watt Transmitter kit. Fully tuneable over the FM band. Kit comprises double sided pcb dia grams and all components, including heat sink. Supply voltage $\mathbf{1 2 - 1 8 V ~ D C . ~} \quad \mathbf{E 6 7}+\mathrm{f} 1 \mathrm{pp}$ Transmitters listed on this page are not licensable in the UK.

SPECIAL OFFER

DTMF TONE DIALLER
Sultable for remote control of telephone answering machines, videos, appllances C8.95 elc. requiring DTMF $£ 8.95$ signals over telephone lines Please add $75 \mathrm{p} p \& \mathrm{p}$ when ordering

Please add 2.2\% to all our prices due to the increase of the VAT rate to 17.5%

SOMETIMES a circuit which is intended to be an audio amplifier turns out to be a low frequency oscillator. The loudspeaker emits a sound which can be anything form a loud ticking or regular thumping to a hideous pulsating throb, which accounts for the name of the effect: motorboating.

There are several possible causes. In classical motorboating (Fig. 1) the basic cause is the resistance (r) of the power supply. If there are three inverting stages, as shown, a voltage across r may be fed back via the $+V_{c c}$ connection to the output of A1, e.g. via a collector load resistance. It is subsequently amplified and inverted by A2 and A3 to set up more voltage across r. If this is in phase with the original voltage, feedback is positive and the circuit may oscillate.

With two inversions the voltage fed back is indeed in phase, so if the gain is high enough (or rhigh enough) oscillation does occur. Of course, there is also feedback via A2 and A3 but stray signals there aren't amplified so much, so they don't actually have much influence.

The obvious remedy is to reduce r to the point where there isn't enough feedback to cause a problem. Occasionally, the motorboating can be stopped by increasing the decoupling capacitance C_{D}. However, if the amplifier has a good l.f. response this may call for such a

Fig. 1. Classical motorboating is caused by accidental feedback via the internal resistance (r) of the power supply.

large capacitance as to be impracticable. Restricting the bass response may cure the trouble, but perhaps at the expense of fidelity.

PRACTICAL EXAMPLE

This kind of motorboating has become much less of a problem since the advent of integrated-circuit a.f. amplifiers. These are usually designed round an op-amplike differential amplifier circuit. This usually has very low sensitivity to stray voltages on the power supply lines. (In op-amp parlance it has a high powersupply rejection factor.) It is also fairly standard, nowadays, to stabilise $V_{c c}$. Most voltage stabilisers have very low output resistance, so their use ensures a low r.

However, motorboating can still be a problem in simple low frequency amplifiers using discrete transistors. In. typical cases the problem arises when there are three stages, but two-stage bipolar circuits can motorboat if voltages on the power supply can reach the input. One possible countermeasure is to add one more stage. This introduces a further phase inversion which turns the positive feedback into negative feedback.

Four stages provide far too much gain for any normal application. However, the final stage can be a unity-gain emitter follower. This doesn't invert the wanted signals but does invert the power-supply disturbance, since r is its collector load. So it improves stability, in theory.
earthed via the input-signal source. In conjunction with R1 this causes a further delay. There must also be some delay in the passage of signals through the transistors. The combined effect of all these delays is to shift the phase of signals fed back from TR4 to TR1 via the bias network.

At some frequency, the phase shift is 180 degrees. This turns what should be hegative feedback into positive feedback. If there is enough gain the circuit oscillates.

This sort of motorboating can be difficult to cure without drastically reducing gain. But the whole point of using an amplifier with three gain stages is to obtain very high gain. If C4 is omitted, thereby removing one cause of phase shift, the amplifier may be stable but there is now overall negative feedback of wanted signals. This drastically reduces both gain and input impedance.

Generally the best plan is to try different values of C1 and C4 to see if some. combination gives stability and an acceptable frequency response. A good bet is to make C4 as small and C1 as large as practicable.

INPUT TRANSFORMER

If an input transformer can be used, the problem is eased. The secondary is connected across R1, and C1 is omitted (see inset diagram). This removes the R1C1 phase shift. A variation, used in early

Fig. 2. High gain amplifier. A second motorboating mode is possible. Component values are typical. C2 and R4 help to avoid high frequency instability.

A representative circuit is shown in Fig. 2. Unfortunately, anyone who builds this sort of amplifier discovers that it is still very liable to motorboating!

PHASE SHIFT

MOTORBOATING

The trouble arises because the Fig. 2 type of circuit contains a new mechanism for provoking motorboating. This is feedback via the bias network R6, R7, R1. Clearly, voltages at the base of TR4 set up an emitter current through the potentiometer ($R 6+R 7$). Voltages across $R 7$ cause current to flow via R1 to TR1 base.

On the face of things this feedback is negative, because with three inverting stages the output at TR4 emitter is in anti-phase with the input at TR1 base. Unfortunately, the decoupling capacitor C4 causes phase delay. Also, C1 is
designs of transistor hearing aid, was to connect a dynamic microphone across or in place of R1.

These procedures may still fail in really high gain circuits, forcing the designer to use a two section circuit with a preamplifier and a separate main amplifier, each with its own stabilised supply.

BASS LIFT

It is not often necessary to use circuits with as high a gain as Fig. 2 provides. The risk of phase-shift motorboating is less with lower gain circuits. However, the phase-shift mechanism can still cause problems even when there is no motorboating.

In the much-used two-stage circuit of Fig. 3, there are two phase-lags caused by C2 and C1 and the associated resistance. Their combined effect is to cause

[E]j530
Fig. 3. In this popular circuit the bass response is influenced by C1, R1, C2, R4. the biasing feedback from TR2 emitter to TR1 base to be not properly negative to a.c. signals. This can result in a hump in the bass response, possibly at a sub-audio frequency, giving vulnerability to rumble and "needle-dropping" transients.

SQUEGGING

There is a third type of motorboating. If an amplifier breaks into high-frequency oscillation the amplitude builds up until limited by overload. It can happen that the oscillation chokes itself off in some way, then, (usually after a capacitor which was charged during build-up had discharged) starts up again. And so on, at regular intervals.

The high frequency may be quite inaudible, but the effect of the periodic choking-off (often called "squegging") can cause intense low-frequency noise which may closely mimic classical motorboating. The remedy is to eliminate the h.f. feedback. A network like C2, R4 in Fig. 2 may help.

TRANSIENT

MOTORBOATING

If a bipolar transistor is driven by a very large signal its collector voltage may fall, during signal peaks, practically to zero. In this, the "bottomed" condition, it no longer acts as a transistor. The signal peaks which cause the bottoming
pass internally from base to collector where they appear without the usual phase inversion. In the negative feedback amplifier, this loss of inversion in one stage can transform the negative feedback into positive feedback and so promote oscillation.

The oscillation is often not continuous, because it stops as soon as the overloaded transistor comes out of the bottomed state. The result can be a puzzling form of distortion.

At low audio signal levels the circuit behaves as it should. As the signal increases to the point where peaks cause bottoming the circuit goes through one cycle of motorboating on each overload.

The audible effect is much worse than ordinary peak clipping because the duration of a cycle of motorboating is quite long. During this cycle the amplifier is paralysed, and a short passage of the audio signal is lost. To avoid this the designer must ensure that when the inevitable overload peaks do occur they don't cause bottoming inside a negative feedback loop.

Everyaly
 ELEHTRONICS

SUBSCRIPTION ORDER FORM

Annual subscription rates (1991): UK $£ 18.50$.
Overseas $£ 23$ (surface mail) £40.50 (airmail)
To: Everyday Electronics, 6 Church Street
Wimborne, Dorset BH21 1JH

Name.

\qquad
ienclose payment of E. (cheque/PO in
 VIS f sterling only payable to Everyday Electronics) Access or Visa No.

Signature.
Card Ex. Date
Please supply name and address of card-holder if different from the subscription address shown above. Subscriptions can only start with the next available issue. For back shown above. Subscriptions
numbers see the Editorial page.

NEW MULTIMETERS!

A NEW RANGE OF HIGH SPECIFICATION DICITAL MULTIMETERS FROM CIRKIT
 - $3 \not 3,4,17 \mathrm{~mm}$ LC display
 - IEC 348 II safety standard
 - Tough, splash proof ABS case
 - Current ranges protected by high energy cartridge fuses
 - 0.5\% basic dc accuracy
 - Ranges include: frequency, capàcitance and temperature

TM8020

de volts: 400 mV - 1 kV ac volts: dc current: ac current: ac 400 mA -20A capacitance: $4 \mathrm{nF}-40 \mathrm{uF}$ frequency: $\quad 4 \mathrm{kHz}-4 \mathrm{MHz}$ (autoranging) Continuity, diode. HFE and logic test

TM8030

dc volts: $\quad 400 \mathrm{mV}-1 \mathrm{kV}$ ac volts: $\quad 400 \mathrm{mV}-750 \mathrm{~V}$ dc current: 400uA-20A ac current: 400uA-20A resistance: $400 \Omega-40 \mathrm{M} \Omega$ temperature: $400^{\circ} \mathrm{C}, 1300^{\circ} \mathrm{C} / 400^{\circ} \mathrm{F}, 2372^{\prime}$
frequency: $4 \mathrm{kHz}-4 \mathrm{MHz}$ (autoranging)
Continuity, diode and logic test

25 . $5^{\circ}:$

Prices include VAT at 17.5\% Please add $£ 1.20$ for postage and packing

Constructional Project

MODULAR DISCO

 LIGHTING SYSTEM
Part Sevent SUPERCHASER\& SUPERSWEEP

CHRIS BOWES

Light up your party or disco road show with these easy-build modules.

The Superchaser and Supersweep modules of the Modular Disco Lighting System are designed to include a number of very sophisticated facilities, whilst being based on the same sequences as those described earlier in this series for the Sweeper and Chaser modules in the June 1991 Issue. The modules featured in this concluding article take the basic sequences used by those modules and increase the sophistication of them by adding External Pulse, Manual Pulse, Automatic Sprint, Automatic Reverse, Automatic Pattern Change and Masterlink control facilities.

CIFCUIT DESCAIPTION

The basic operation of the two circuits is somewhat similar so only the Su perchaser Module is described in full. Even if your intention is to construct only the Supersweep Module it is important to read through the description for the Superchaser circuit as well.

SUPERCHASER

 The full circuit diagram for the Superchaser module is shown in Fig. 1. The power to operate the circuit is obtained from the output module(s) to which the effects module is connected. As two sources of connection are potentially available, the negative (0 V) connections at pin 8 of the two output "plugs" PL1/PL2 are commoned together on the printed circuit board (p.c.b.). The incoming positive supplies from pin 7 of the output chassismounted plugs are connected to power the circuit via the two diodes D1 and D2.
The diodes are included in the circuit to prevent problems which might otherwise arise, should a fault or reversed connection occur in one of the output connections or the module to which it is connected. Fuse FS1 is used to give protection to the components in the event of a fault arising on the p.c.b.
The outgoing positive supply required to power the Masterlink Module is fed to the Masterlink DIN sockets SK 1/SK2, pin 1's, via diode D3, whilst both pin 2's of the Masterlink sockets are connected to the common 0 V points on the p.c.b.
In common with all of the other modules in this series capacitor Cl is a tantalum capacitor, which is used to provide decoupling for the i.c.s in the module. The l.e.d. D4, and it's associated dropping resistor, RI, are included to indicate that power is being supplied to the module.

CLOCK CIRCUIT

The basic chase sequence is generated by IC3, which is a 4017 Johnson Counter. This counter is pulsed by the high-to-low transition of the CP_{1} input (pin 13) as long as the CP_{0} input (pin 14) is held in the Logic 1 state by means of resistor R9.
The required pulse is supplied by the operation of transistor TR2, which is made to conduct by whichever pulse source is connected to it. When TR2 is not conducting the pull up resistor R8 holds pin 13 of IC3 in the Logic 1 state.
As soon as a positive voltage is applied to resistor R7 then the action of current so supplied, flowing through the base/emitter junction of TR2, causes the transistor to conduct. This in turn causes a current to be drawn through R8 causing the logic state at pin 13 of IC3 to change from Logic 1 to Logic 0 .
The pulses used to drive this circuit can be obtained from one of several sources at a time, the source being selected by the positions of switches S2, S3a and S4. In independent use the primary source of these pulses is the output of ICl. This is a CMOS 555 timer configured as an astable.

In the configuration shown a series of pulses are produced by ICI, at a frequency determined by the values of R3, VR1, R4 and C2. The values given in Fig. 1. have been selected to give a wide range of pulse speeds, depending on the setting of VR1.
As the pulses produced by this section of the circuit are predominantly in the Logic 1 state the output of ICl is inverted by means of IC2a, which is one quarter of a 4011, quad, two-input NAND gate, with both of it's inputs commoned so as to make an inverter. This inversion is necessary so as to avoid the signal from the other internal source of pulses (the One-Shot Circuit) being masked by the output of IC1

The pulses from the output of IC2a are fed, via the routing switches S2 and S3, to the base of TR2 through the diode D5 and resistor R7. Diode D5 and it's partner D6 form a simple OR gate which allows the transistor to be fed with pulses both from the selected source and the One-Shot.

EASE
 PAOTECTION

Resistor R7 is included in the circuit as a "base protection" resistor. This prevents the direct connection of the base of TR2 to the positive voltage rail, were this to happen severe damage would be caused to the transistor and the source of the current. The routing switches S2 and S3 are used to replace the input to TR2 with the signals derived from either the Masterlink Module or a selected Sound Module via the Masterlink connections.
As IC3 is clocked each of it's outputs O_{0} to O_{4} are made to go, in turn, to the Logic 1 state. The outputs O_{0} to O_{3} are used to provide the signals which are used to activate the outputs of the module as shown in Table 1, whilst output O_{4} is connected to the Master Reset input (pin 15) of IC3. This signal is used by the internal circuitry of IC3 to reset the counter, so that to the state output O_{0} is once more in the Logic 1 state. This resetting action happens in such
an incredibly short space of time that it appears to be instantaneous and makes the circuit perform as a four stage counter as shown in Table 1.
The output of the reset connection to pin 15 of IC3 is also fed to the CP_{1} input of one half of IC4, which is a 4520 Dual BCD counter. The two counters in this i.c. are wired together in a cascade formation so as to give a 256 stage binary counter. The outputs from this counter are used to provide the signals which are used to drive the Sprint, Reverse and Pattern Change circuits, when selected to their Automatic functions, by means of switches $\mathrm{S} 1, \mathrm{~S} 5$ and S6 respectively.

SPAINT CIRCUIT

The output from pin 11 of IC4 is taken, via switch $S 1$ and resistor $R 2$, to the base of transistor TR1. This is connected in an unusual configuration. The effect of this is that when the voltage at the base (b) of the transistor is higher than the voltage to the collector (c) the transistor saturates and effectively shorts out VR1.
This causes the frequency of the pulses generated by ICl to be governed solely by the values of resistors R3 and R4, as though VR1 had been turned to it's minimum setting. This produces a Sprint facility such that when this signal is present the circuit runs as fast as possible, returning to the speed set by VRI when the signal is absent.

REVERSEAND PATTERN CHANGE

The operation of the reverse and pattern switching circuits is accomplished by means of a similar system to that which is used to provide the pulse inputs to IC3. This rather complex method is necessary because of the need to switch the circuits with signals, at logic levels, from a number of sources.
The basis of this method of operation is to use a pull up resistor, switched by a transistor as typified by the action of TR4 and it's associated resistors R12 and R13. R13 is a pull up resistor which is connected so that a current may be drawn through it by the action of TR4 when required.

When no current flows through the transistor, resistor R13 acts to pull the voltage at it's junction with the collector of TR4. This causes a Logic 1 state to be present at the junction of R13 with the collector of TR4.

When a current is allowed to fiow through the base/emitter junction of the transistor, by the connection of a voltage source to resistor R12, the transistor conducts and effectively shorts the junction of R13 and the collector of TR4 to 0 V . This causes the logic state at this point to change to the Logic 0 state.
This method of operation in effect inverts the sense of the control signals. The logic

Table 1: Output Sequence for Superchaser Module

Step	IC3 Active Output	Dot Mode	Bar Mode	Reverse Mode	Reverse Bar Mode	
1	O_{0}	1	$2,3,4$	4	$1,2,3$	
2	O_{1}	2	$1,3,4$	3	$1,2,4$	
3	O_{2}	3	$1,2,4$	2	$1,3,4$	
4	O_{3}	4	$1,2,4$	1	$2,3,4$	
5	O_{4}	Reset IC to make O_{0} active No Display Showing				

Fig. 1. Circuit diagram for the Superchaser. The front half, on the opposite page, also applies to the Supersweep.

states are therefore buffered and inverted by being fed to IC5a and IC5b which are each one sixth of a 4049 Hex Inverting Buffer.

Thus the switching action operates by the presence or absence of a voltage, routed by the appropriate switches. Depending on how these switches are set, the input to the transistor switching circuit can be connected to anything (permanently off) connected to the positive voltage line (permanently on) or connected to the outputs of other circuits such as the Masterlink outputs or the internal automatic sequencer counter (IC4).

REVERSEMODE

In the Reverse mode of operation the output sequence is altered so that instead of going $1,2,3,4,1 \ldots$ the pattern is reversed to go $4,3,2,1,4 \ldots$ and so on. In the Pattern Change mode the outputs of the module are made to be in accordance with Bar mode pattern, shown in Table 1, with three outputs being active instead of one.

In effect this is the inverse of the Dot Mode, since in the Bar mode the outputs are all on except for the output which would be on in the Dot mode. In order to achieve this outputs O_{0} to O_{3} of IC3 are inverted by IC5c, IC5d, IC5e and IC5f before being applied to the switching circuit.
The selection of which of the four possible output modes is in operation is achieved by means of IC6 and IC7. These are both 4539 dual, four-input multiplexers. These are connected in a slightly unorthodox way in order to facilitate the manufacture of the p.c.b., with IC6 governing the switching of outputs 2 and 3 of the module and IC7 being used to switch outputs 1 and 4 . The use of this configuration saves much cumbersome track routing since the reverse pattern connections switch around the signals to outputs 1 and 4 and 2 and 3 respectively.
The inputs I_{0} to I_{3} of IC6 and IC7 are fed with the outputs of the normal and inverted outputs from IC3 and IC5c to IC5f in such a way that with both TR3 and TR4 unenergised the outputs of the Multiplexers are connected to the \mathbf{I}_{0} inputs. These are fed directly from the outputs of IC4 so the module's outputs are sequenced in accordance with the "dot mode" Table 1.

If transistor TR3 is energised this causes a change in the logic state at pin 4 of IC6 and IC7. This switches the outputs of the multiplexers to be connected to the \mathbf{I}_{1} inputs. These are connected to the inverted outputs of IC3, which are available at the outputs of IC5c, ICd, ICe, and ICf. The module's outputs therefore follow the Bar mode sequence shown in Table 1
Transistor TR4 is similarly used to provide the reverse pattern sequence by
switching the logic states of pin 2 of IC6 and IC7. This activates the multiplexers to follow the states of inputs I_{2} and I_{3} (depending on whether TR3 is active or not).
The connections to these inputs are the same as those to the I_{0} and I_{1} inputs except that the pattern is reversed by the multiplexer. This connects the outputs of the module so that output 1 is now driven by the signals which would previously have driven
output 4, and output 2 is now fed with the signals which would have driven output 3, output 3 is now driven with the signals which would have driven output 2 and output 4 is now driven with the signals which would previously have driven output 1 .
The operation of these circuits is controlled by means of the switches S5 and S6 so that the input to the transistor switches used to set the logic levels to the multiplier may be permanently at Logic 1, permanently disconnected or under the control of the outputs of IC4.

ONE SHOT CIRCUIT

As well as being pulsed by the internal clock (IC1) or the outputs from the Masterlink module, the Superchaser Module can also be stepped through it's sequence by means of the manually operated One-Shot circuit, comprising S4, IC2b, IC2c, R5 and R6. This is essentially a standard logic "Anti Bounce" circuit, the use of which is necessitated by the need to avoid several pulses being generated by the high speed bouncing action of the contacts of the push-to-changeover one-shot switch, S4.
When switch S4 is operated the output

COMPONENTS

SUPERCHASER

Potentiometer

VR1
Capacitors C 1
C 2

250k rotary carbon, lin.
$2 \mu 2$ tantalum, 25 V
47μ radial elect., 25 V

See

 SHOPTALK

Semiconductors
D1-D3
D5, D6
D4
D4
D11-014
TR1-TR5
IC1
IC2

103
1 C 4

IC4
IC5
iC6, IC7
1N4001 1A 50V rec. diode (5 off)
1 N4148 signal diode (2 off)
Standard Red l.e.d.
Standard Orange I.e.d. (4 off)
Zener diode (see text)
ZTX300 npn silicon transistor (5 off)
555 CMOS timer
4011 Quad 2 -input, NAND gate
4017 10-step Johnson counter
4520 Dual binary counter
4049 Hex inverting buffer
4539 Dual 4 -input Multiplexer (2 off)
Switches S1

Min. s.p.s.t. toggle
Min. s.p.d.t. toggle
4 -pole changeover Min. toggle
Min. s.p.d.t. push-to-changeover
Min. s.p.c.o. toggle
Miscellaneous FS1

100 mA 20 mm fuse and p.c.b. fuse clips
10 -way "video" chassis mounting plug, with matching cable mounted socket (2 off)
PL1, PL2
7-pin DIN 180° DIN chassis mounting socket, with matching plug (2 off)

Aluminium instrument case (Maplin "Blue Case $233^{\prime \prime}$ " size $250 \mathrm{~mm} \times 150 \mathrm{~mm}$
$75 \mathrm{~mm} ; 8$-pin d.i.l socket: 14 -pin d.i.I socket; 16 -pin d.i.l socket (5 off): plastic $\times 75 \mathrm{~mm}$; 8 -pin d.i.I. socket; 14 -pin d.i.I. socket; 16 -pin d.i.l. socket (5 off); plastic knobs for VR1 and S4; self-adhesive p.c.b. stand-off pillars (4 off); connecting wire; solder pins; l.e.d. clips; nuts and bolts for sockets; solder etc.

Printed circuit board available from the EE PCB Service, code EE771.

Fig. 2. Printed circuit board (double-sided) component layout for the Superchaser.

Full size copper foil track master pattern for the top, component side.

Full size copper foil track master pattern for the board underside.
from IC2b goes to the Logic 1 state and remains there until S 4 is released, at which point it reverts to the Logic 0 state. The output from this circuit is fed, via diode D6, to transistor TR2 which operates as previously described.

EXTERNAL SICNALS

Switch S3 is used to transfer the source of the control signals to the functions of the module from those internally generated to those generated by the Masterlink module. When S3 is in the normal (up) position, the signals used to pulse the chaser circuit and operate the Auto Pattern Reverse and Auto Pattern Change circuits are derived from the internal sources within the Superchase module. When the Masterlink switch is in the on (down) position, control of these functions is transferred to the Masterlink module.
In a similar way switch S 2 is used to transfer the source of the clock pulse from that generated internally by ICl to that bussed through the Masterlink cables from a "sound operated" source, such as the VU Module described last month.

OUTPUT CIFCUITS

The outputs from the two multiplexers (IC6, IC7) are fed to the appropriate pins of the output sockets and to the orange indicator l.e.d.s (D7 to D10) which are wired in series with their respective current limiting resistors (R14 to R17) to indicate the state of the outputs of the module. The Zenner diodes (D11 to D14) and their associated resistors are included in the circuit to prevent complications arising in the event of direct connection of the effects modules to certain types of proprietary Theatrical Dimmer Racks.
If the module is to be used solely with other modules from this series then these components can be omitted. In this case the connections to the module's outputs should be taken from the multiplexer outputs on the p.c.b.

Completed circuit board and wiring to front panel I.e.d.s and switches.

SUPERSWEEP

The output circuit diagram for the Supersweep appears in Fig. 3. Since much of the circuit, e.g. the power supply, pulse production, output and "Auto sprint" circuitry is similar to that of the Superchaser these details have been omitted from this description. For information about these aspects of the circuitry you should read through the previous section, which describes the Superchaser circuit in full.
The major differences in the operation of the Supersweep module is the order in which the outputs are switched. The basic sequence of operation of this module is that the outputs operate as a $1,2,3,4,3,2,1,2$ sequence, as shown in Table 2.
This sequence requires seven steps, rather than the five required for the Superchaser. This sequence is derived from a 4017 Johnson counter (IC3) with the outputs O_{0} to O_{5} being used to drive the outputs of the module and output O_{6} connected to the MR input (pin 15) to reset the counter with O_{0} in the logic 1 state.

Fig. 3. Output circuit diagram for the Supersweep (See Fig. 1).

This is relatively simple to achieve in the cases of module outputs 1 and 4, which can be directly fed from outputs O_{1} and O_{3} of IC3 respectively. Module outputs 2 and 3 are slightly more complex, since in each case they are switched on by two outputs from IC3.

Table 2: Output Sequence for Supersweep Module

Step	IC3 Active Output	Module Active Outputs	
	Dot Mode	Bar Mode	
1	O_{0}	1	$2,3,4$
2	O_{1}	2	$1,3,4$
3	O_{2}	3	$1,2,4$
4	O_{3}	4	1,2,
5	O_{4}	3	1,2,
6	O_{5}	2	$1,3,4$
7	O_{6}	Reset IC3 to make O_{0} active No Display Showing	

It is not possible to directly connect two outputs from a logic i.c. in parallel, since this will cause damage to the internal circuitry of the i.c. It is therefore necessary to combine the two outputs from IC3 which are required to operate the module outputs by means of a two-input OR gate, one gate being used for each output.
In the Supersweep circuit these are IC4a and IC4b. Each of these is one quarter of a 4071 quad, two-input, OR gate. Thus the OR gate IC4a, which is used to act as a source of the signals used to drive output 2 of the module is connected to outputs O_{1} and O_{5} of IC3, whilst IC4b, which provides the signals used to drive module output 3 , is connected to outputs O_{2} and O_{4} of IC3.

DOT/BAR

The Supersweep module can also be switched to provide two alternative output patterns. These are referred to as "Dot" (one output active) and "Bar" (three outputs active) as shown in Table 2.
In essence the "Bar" mode is the inverse (or NOT function) of the "Dot" mode. It is therefore very easy to produce the required signals, simply by inverting the "Dot" signals to provide the "Bar" output and switching the output circuits appropriately. In this circuit IC5a, IC5b, IC5c and IC5d, which are each one sixth of a 4049 Hex Inverting Buffer i.c., are used to provide this function.
The switching function, which determines whether the outputs are in the "Dot" or "Bar" mode is achieved by the use of IC6.

This i.c. has four outputs, each of which is switchable between an " A " or " B " input. In order to provide the required effect all of the direct signals from the outputs of IC3, IC4a and IC4b are connected to the A inputs and the inverted signals obtained from IC5a, IC5b, IC5c and IC5d are connected to the B inputs.
Whether the outputs are connected to the A or B inputs is determined by the states of the

$6011 \% 015$	
SUPERSWEEP	
Resistors	
R1	1k
R2	470
R3	5k6
R4	3k
R5; R6, R8, R9,	
R7, R10	82k (2 off)
R12-R15	1 k (4 off)
R16-R19	See Text

Potentiometer
VR1 250k rotary carbon, lin

Capacitors

$\begin{array}{ll}\mathrm{C} 1 & 2 \mu 2 \text { tantalum, } 25 \mathrm{~V} \\ \mathrm{C} 2 & 47 \mu \text { radial elect., } 25\end{array}$
Semiconductors
D1-D3 1N40011A 50V rec. diode (3 off)
D5, D6 1 N4148 signal diode (2 off)
D4 Standard Red l.e.d.
D7-D10 Standard Orange l.e.d. (4 off)
D11-D14 Zener diode (see text) (4 off)
TR1-TR3 ZTX300 npn silicon transistor (3 off)
IC1 555 CMOS timer
IC2 4011 Quad 2 -input, NAND gate
IC3 401710-step Johnson counter
IC4 4071 Dual, 2 -input OR gate
IC5 4049 Hex inverting buffer
IC6 4019 Quad, 2-input
Multiplexer
IC7 4520 Dual binary counter

Switches

S1	Min. s.p.s.t. toggle
S2	Min.s.p.d.t. toggle
S3	Min. d.p.c.o. oggle
S4	Min. s.p.d.t. push-to-
	changeover
S5	Min. s.p.c.o. toggle (2 off)

Miscellaneous
FS1 100 mA 20 mm fuse and p.c.b. fuse clips
PL1, PL2 10 -way "video" chassis mounting pug, with matching cable mounted socket (2 off)
SK1, SK2 7 -pin DIN 180° chassis mounting socket, with matching plug (2 off)

Aluminium instrument case (Maplin "Blue Case $233^{\prime \prime}$, size $250 \mathrm{~mm} \times 150 \mathrm{~mm} \times$ 75 mm ; 8 -pin di.i. socket; 14 -pin d.i.l. socket (2 off); 16 -pin d.i.I. socket (5 off); plastic knobs for VR1 and S4; self-adhesive p.c.b. stand-off pillars (4 off); connecting wire; solder pins; l.e.d. clips; nuts and bolts for sockets; solder etc.
Printed circuit board available from the $E E$ PCB Service, code EE772.

Approx cost
 guidance only

plus case
switch selector (S_{A} and S_{B}) inputs to the Multiplexer. If the S_{A} input is at the Logic 1 state and the S_{B} input is in the Logic 0 state then the outputs $\left(\mathrm{O}_{0}\right.$ to $\left.\mathrm{O}_{3}\right)$ follow the states of the A inputs $\left(A_{0}\right.$ to $\left.A_{3}\right)$. If input S_{B} is at the Logic 1 state and the S_{A} input is in the Logic 0 state then the outputs $\left(\mathrm{O}_{0}\right.$ to O_{3}) will follow the logic states of the B inputs (B to B_{3}).
A problem, leading to unacceptable output states with either all channels on or all channels off, would arise should the S_{A} and the S_{B} inputs be both at the same logic state.

In order to prevent this happening a single signal is used to drive both inputs with an inverter (IC5e) being interposed in the connection to pin 14 (S_{B}) of IC6. This ensures that the S_{A} and S_{B} inputs to IC6 are always in the opposite logic states.
The signal which is used to determine the logic states at the switch inputs of IC6 is derived from the connection of resistor R11 and transistor TR3. This operates in exactly the same way as is used for all of the rest of the pattern switching operations of the

Fig. 4. Printed circuit board component layout for the Supersweep.

Modular Disco Lighting System. The Supersweep Module's output does not readily lend itself to a Pattern Reverse mode and therefore this is not included.

CONETRUCTION

Both of these modules are built using double-sided printed circuit boards, the full size copper foil patterns for which are shown as Fig. 2. (Superchaser) and Fig. 4. (Supersweep). These should either be made by the normal process or prepared boards may be purchased from the EE PCB service, codes EE771 and EE772 respectively.
After the board has been prepared or obtained the components should be inserted into the correct positions as shown in the appropriate layout diagrams (Figs. 2 and 4), and soldered into place. Because of the use of double-sided p.c.b.s for these circuits it is important that where components are connected to tracks on both sides of the board both sides are soldered, since these connections are used to route signals from one side of the board to the other.
Care must be taken to ensure that polarised components such as semiconductors, i.c.s and polarised capacitors are inserted in the board the correct way round, since if these are inserted with incorrect polarity the circuit will not work and components may be damaged. Although this process can be carried out in any order you will probably find that it is easier to accomplish if the components are inserted in ascending order of size,
The integrated circuits are best carried in integrated circuit holders. Where i.c.s carry connections which are soldered to tracks on the top surface of the p.c.b. the best method of accomplishing this is to use wire wrap i.c. holder pins to be soldered to the top surface of the board.
The connection of the p.c.b. to the case mounted components will be found easier by the use of connecting pins soldered to the points on the p.c.b. where wires are to be attached to route connections to the case mounted components. If the special components required for use when the module is to be used with theatre dimmer racks are to be omitted then these should be installed in the alternative positions described in the text and not as shown in the circuit diagrams.

BOAPD TESTINE

Once completed the boards should be carefully inspected to ensure that there are no broken tracks, solder blobs bridging tracks or components misplaced before attempting to test the circuit. This can be done before the circuit is mounted in it's case by making temporary power connections to the plus volts $(+\mathrm{V})$ and zero volts $(0 \mathrm{~V})$ terminations on the p.c.b. and directly connecting the l.e.d.s between their connecting points on the p.c.b. and a suitable 0 V connection point.
The required switching points for external pulse and control signals can be mimicked by the use of a flying lead connected temporarily to +V as required. Alternatively testing can be postponed until the p.c.b. has been mounted in the module's case.
Irrespective of which strategy is adopted the testing process should be conducted to ensure that the circuits behave as described in the circuit descriptions. If the circuit should fail to operate as described then the fault should be traced using the circuit diagram and the circuit descriptions.

CASE

As with the other modules in this series the case layouts should follow the general

Supersweep full size copper foil master pattern component side.

principles exhibited in the other modules in this series. The p.c.b.s have been designed to fit into the case detailed in the Components List, which matches those given for the other modules in the series.
Before mounting the case mounted components the case should be drilled and lettered in the normal way. Once the case is ready the first step is to install the p.c.b. into a suitable position, using self-adhesive p.c.b. supports. The p.c.b. can then be connected to the case mounted components in accordance with the circuit diagram. This will be eased if as many different colours of wire as possible are used.
You may find that connection of the output sockets is eased if these are prewired
prior to installation. The Masterlink DIN sockets SK1 and SK2 must be wired with all of the pins on one socket connected to the corresponding pins on the other socket, even if these connections are not used on the module being constructed, so as to ensure that the modules can be stacked in any order. When wiring up the p.c.b. to the case mounted components it is important to remember that it may be necessary to remove the p.c.b. from the module case in order to trace faults etc. and sufficient wire should be left to enable this to happen.

INUSE

The two modules described in this article must be connected into the rest of the system

Supersweep full size copper foil master pattern component side.
in the same way as all of the other modules, by connecting them to at least one Output Module. The Masterlink DIN sockets on all of the modules in use must also be connected together if either the Masterlink or the External Pulse facilities are to be used by any module in the system. This is because of the fact that all of these signals are "bussed" through the Masterlink sockets on each module.
These two modules offer very sophisticated facilities but their method of operation is exactly as described for the other modules in the series. Once the modules have been connected together all that has to be done is to set the control and routing switches and
speed controls to the desired positions. The system should then almost drive itself whilst you get on with looking after the rest of the show.
When the Masterlink switch is set to the "ON" position the entire control of the module's outputs is linked into the signals from the Masterlink Module. When this is selected for all of the modules in the system the effect is somewhat spectacular, since the sight of all of the modules, with their many different patterns all stepping at the same moment is very impressive, especially if these are synchronised to the music by switching the pulse inputs of the Masterlink module to the external pulse mode.

Electronics Teach-In

Guide to Building

Electronic Projects

Now On Sale Price $£ 2.95$

Due to the demand from students, teachers and hobbyists we have put together a range of articles from past issues of Everyday Electronics that will assist those getting involved with the construction of electronic projects for the first time.
The book contains the complete Project Development for GCSE series.

CONTENTS

Features

First Steps in Project Building Building with Stripboard Getting Your Projects Working Choosing and Using Test Equipment Printed Circuit Board Design, Layout \& Construction
Project Development for GCSE

Data

Component Codes
Component Identification and Polarity Circuit Symbols

Digital Experimenters Unit
Simple SW/MW Radio
Quizmaster
Lie Detector
An invaluable resource for those teaching and studying GCSE electronics or technology courses.

Now available from your

 newsagent
Robert Penfold

WHEN the interface series started we promised that the "golden oldie" 8 bit computers would not be forgotten. This month we will take a break from IBM PC compatible interfacing and consider one of the most popular of the 8 bit computers, the Commodore 64. This computer dates back almost as far as the BBC model B, but I think I am right in saying that it is still available today (it is currently advertised in some of the "mega" mail order catalogues).
It is only fair to point out that there have been several versions of this computer over the years. These range from a games console through to an enhanced model with extra memory etc. The information given here is for the original version, and versions that are fully software/hardware compatible with the original Commodore 64. This probably includes most of the Commodore 64 s in existence, but would obviously not include something like the games console version.

The Commodore 64 is quite a good computer from the interfacing point of view, and it really deserves rather more attention in the electronics press than it has received over the years. Interfacing to its buses is possible via the cartridge port, but is not particularly easy. On the other hand, it has a user port which is similar to that on the BBC computers, and this offers an easy means of connecting your own circuits to the computer.
One slight snag here is that some software utilizes the user port as a parallel printer port or a serial port. If you are using the port in either of these ways, then it will clearly be difficult to use it for you add-on circuits. I suppose that it should be possible to devise a switch-over box to permit switching between the printer or modem and your add-on devices.

User Port

The Commodore 64 user port is provided by port B of a 6526 CIA (complex inter-
face adaptor). This is very similar to the standard 6522 VIA (versatile interface adaptor), as used on the BBC model B, VIC20, etc. There are some substantial differences though, particularly with regard to the handshake lines and the counter/timers. Fig. 1 gives details of the functions available on the user port.
You need a female 2×12 way 0.156 inch edge connector to provide the physical connections to the port. Note that this connector has a pitch of 0.156 inches, and not the more common 0.1 inch pitch type. The port has provision for two polarising keys, and some suppliers sell keys which can be fitted into the appropriate positions. If you do not use a connector with at least one of the polarising keys fitted, clearly mark the top and bottom edges of the connector as such. Fitting the connector the wrong way up could have disastrous consequences for your add-on circuit

The usual ground (0 volt) and +5 volt supplies are available, and up to 100 milliamps can be drawn from the +5 volt supply. There is also a 9 volt a.c. supply, which can be useful if a negative supply is required. Fig. 2 shows the basic method of deriving a negative supply from one of the 9 volt a.c. outputs. This will give a non-stabilised supply voltage of about - 12 volts, but this can obviously be reduced to (say) -5 volts using a simple regulator circuit. A maximum current of about 50 milliamps should be drawn from the 9 volt a.c. outputs.

8 Bit Port

Lines PBO to PB7 are an 8 bit input/output port which is very similar to that of the BBC model B computer. A data direction register enables each line to be individually set as an input or an output. The data direction register is at address 56579, while the port itself is accessed at address 56577. Using data direction registers and input/output ports is a subject that has been covered in
previous articles in Everyday Electronics, and it is not something we will consider in detail here.
Setting a bit to I in the data direction sets the corresponding user port line as an output - setting it to 0 sets it as an input. For example, from BASIC the instruction POKE 56579,240 would set PBO to PB3 as inputs, and PB4 to PB7 as outputs. The logic AND function can be used to selectively read bits of the user port. In this example, ANDing with a mask value of 15 would read PBO to PB3 while masking PB4 to PB7.
Handshaking is rather different to the usual $65^{* *}$ and $68^{* *}$ scheme of things, with no direct equivalents to the usual CBI and CB2 handshake lines. The most simple of the handshake lines is PC2, which is a strobe output. This goes low for one clock cycle after each read and write operation to the user port. It is not needed to latch data from the port, since lines set as outputs are latching types.
This output can be used to indicate that fresh data is available on the outputs, or to indicate that data has been read by input lines and that fresh data is awaited. This line is a convenient one in that it provides the handshake signal automatically. However, this might render it unusable if the port is used to provide both input and output lines. Remember that read and write operations to the port both activate this output signal.
Flag 2 is a negative edge sensitive handshake input. In other words, it sets a flag in a status register when it is taken from the high state to the low state. Like most handshake inputs, its static logic level cannot be read. When Flag 2 is activated bit 4 of the interrupt control register is set to I.
The interrupt control register is at address 56589 , and bit 4 can be read using the AND function plus a masking number of 16 . From BASIC the instruction PRINT PEEK(56589) AND 16 would therefore return a value of 16 if the flag is set, or 0 if it is not. To reset the flag simply perform a read or write

Fig. 2. Deriving a negative supply from one of the 9 V a.c. outputs of the C64.
operation to the user port. On finding that the flag has been set, such an operation would normally be performed anyway.
PC2 and Flag 2 do not provide as many handshaking options as CB1 and CB2 on chips such as the 6522 . In fact you are limited to what is basically one form of handshaking, but for most purposes they can provide simple but effective handshaking. If they should not "fit the bill", there is a third handshake line available, and this is PA2. The 6526 has two 8 bit ports, which are port A and port B. PA2 is simply bit 2 of port A, and is a standard input/output line, like PBO, PB1, etc. of the user port.

Port A

Port A is at address 56576 , while the data direction register for this port is at address 56578. Writing a value of 4 to address 56578 will therefore set PA2 as an output, or a value of 0 will set it as an input (which it is by default anyway). Writing a value of 4 to address 56576 will set PA2 high, or writing a value of 0 to this address will set it low. Reading address 56576 with a masking number of 4 (e.g. PRINT PEEK(56576) AND 4) will return a value of 0 if PA2 is low, or 4 if it is high.
Having PA2 available obviously increases the versatility of the user port, but where possible it is better to use PC2 and (or) Flag 2 for the handshaking. These lines 'are specifically designed for handshaking purposes, and will generally be faster in operation and easier to use. Of course, PA2 does not have to be used for handshaking purposes. If you need an odd output line to control a relay driver or something of this nature, then PA2 should be able to handle the job.
RST is a reset output, and this pulses low at switch-on and whenever the computer is reset. Some add-on circuits require a reset pulse to ensure that they start-up with everything in the right state. In most cases RST can. be used to provide this signal, and it will avoid the need to include a reset generator in the add-on circuit. Note that RST can be pulled low by an open collector output or mechanical switch in order to produce a "cold-start" from the computer.

Counting On It

Like the 6522 , the 6526 has two 16 bit timer/counters. These are "down" counters. In other words, you write a value to the latches, load it into the counters, and they then count down from this value to zero. The counters are 16 bit types, but they must be loaded and read using two 8 bit bytes.
Although these are similar to the 6522 timer counters, they are not direct equivalents. For each timer there are two $\mathrm{read} /$ write registers, which are the usual high and low byte pairs. The write registers are used to latch control data into the timers, while the read registers are used to read the current values. The mode of each timer is governed by a control register. These are the addresses of the six registers associated with the timer/counters.

REGISTER

ADDRESS

Timer A Low Byte	56580
Timer A High Byte	56581
Timer B Low Byte	56582
Timer B High Byte	56583
Control Register A	56590
Control Register B	56591

If we consider control register A first, this is a list of the functions performed by the. bits associated with timer/counter \mathbf{A} :

Bit 0 - Set to 0 in order to halt timer A, or 1 in order to start it.
Bit 1 - Set to 0 to provide normal operation, or set to 1 to enable output on PB6.
Bit 2 - This controls the output mode. When set to 0 timer A provides brief (about $1 \mu s$) positive pulses. When set to I the output is a squarewave with each half cycle equal to one count-down in duration.
Bit 3 - This bit controls the running mode. It is set to 1 for one-shot operation, or 0 for continuous operation. In other words, when it is set to 1 the timer does one down count and then stops. When set to 0 the counter is reloaded each time the count reaches zero, and a fresh count down is commenced.

Bit 4 - It is only valid to write a 1 to this bit. Doing so results in the value in the timer latches being loaded into the actual counters. This will happen whether or not the timer is running.

Bit 5 - This selects the source of input pulses for the timer. This is the system clock signal with bit 5 set to 0 , and the input signal on CNT1 of the user port if it is set to 1 .
Bits 0 to 4 of control register B operate in much the same way, but for timer B. The only difference is that the output from timer B is on PB7, not PB6. The input mode of timer B is controlled by bits 5 and 6 , and this operates in the following manner:

Bit 6	Bit 5	Mode
0	0	Counts system clock pulses
0	1	Counts positive transitions on 1
1	1	CNT1 Counts completed runs of timer A
	1	Counts completed runs of timer A, but only while CNTI is held in the high state

These timer counters seem to be at least as versatile as those of the 6522, and they can be used to generate low clock frequencies, act as pulse counters, etc. The Commodore 64 user port is very versatile indeed, and I would guess that any of the many projects for the BBC model B that utilize this port could easily be adapted for operation with the Commodore 64.
In the past I have certainly had no real difficult in producing projects that could be used with either computer. The only real difficulty is that BBC BASIC and the Commodore 64 version of BASIC are very different. Any software for a BBC add-on would need to be totally rewritten in order to run properly on the Commodore 64.
For do-it-yourself interfacing the Commodore 64 remains one of the best computers available. A good secondhand Commodore 64 system probably represents the cheapest way of getting into serous computer interfacing.

19" RACK MOUNTING EQUIPMENT CASES
 with the erear box assembly construcred tom 20 SWG (9 mm) stee. The siandard uniss are $10^{\circ}(254 \mathrm{~mm})$ deep. 19° proiect csses only $4^{\text {" }}(101 \mathrm{~mm})$ deep and are arai able in the loiliowing pooular sizes

PO Box 1402 Mangotsfield, Bristol, England, BS17 3RY

REMOTE

T. R. de VAUX BALBIRNIE

Get in the picture with our ultrasonic controller!

WHEN taking a group, the photographer would often like to be in the picture too. For this purpose, many cameras have a self-timer. The camera is arranged on a tripod or other firm support, the button pressed and the operator gets into position. After a short delay, the shutter clicks and the picture is taken.

The problem is that the photographer loses control the moment the self-timer is actuated. This often leads to poor results since no one knows exactly when the picture will be taken and expressions tend to take on a strained look. Where unpredictable subjects such as children or pets appear in the picture, the problem is made much worse.

The Remote Camera Release solves the problem by allowing the photographer to operate the shutter at the best moment. This is done by pressing a button on a small handheld unit which works in conjunction with a camera-based main section.

Although intended for photographic use, the basic circuit is very versatile and some readers will use it for other shortdistance low voltage remote control applications. The prototype has a range of between 10 and 15 metres (33 ft to 50 ft approximately) and this will be found sufficient for most purposes.

The handheld unit is small and will not be noticed in the "subject" photograph. Note, however, that it is necessary for it to have a clear "line of sight" to the sensor at the camera end.

The Remote Camera Release may be used with any camera so long as it is fitted with a standard cable release socket. Although the mechanical - that is, the nonelectronic work is not too difficult, the constructor will need access to a set of small taps and dies and be reasonably proficient at metalwork.

OPERATING PRINCIPLE

The circuit operates on the ultrasonic principle. On pressing a button on the handheld transmitter unit, a signal is produced by a 40 kHz transducer. This is a sound wave but of a much higher frequency than the ear can hear (humans can hear up to 18 kHz approximately)

The sound is detected and turned into an electrical signal by a matching 40 kHz
receiver sensor, which is plugged into the camera-based unit. This signal is amplified and used to operate a miniature motorized gearbox.

A cam attached to the gearbox output shaft then actuates a cable release and hence the camera shutter. The force provided by the cable release has been found adequate for all cameras tested.

The relatively simple nature of the circuit means that there is a chance of false triggering. Sounds such as breaking glass, sharp whistles and loud hand claps may sometimes operate the unit. However, in view of the short time which elapses between switching on and taking the photograph this is unlikely to be a problem.

Once the photograph has been taken, the unit becomes insensitive to further action and must be reset using a push-button switch before being used again. This avoids possible damage if the unit were to operate a second time without winding on the film. A red l.e.d. indicator signals this "locked out" condition.

The receiver section consists of two parts. The first is the sensor unit which contains an ultrasonic receiver transducer, circuit panel, battery, on-off switch, reset switch and l.e.d. indicator.

The second part is the actuator unit and contains the motor/gearbox, cam and cable release assembly. It also houses a 4.5 V battery pack to operate the motor. The sensor is connected to the actuator unit through a short flying lead and a jack plug and socket.

The handheld transmitter unit contains an ultrasonic transmitter, circuit panel, battery and pushbutton switch. The battery is a special miniature 15 V type. If a larger box is used then a 9V PP3 battery could be used without further modification.

CIRCUIT DESCRIPTION

The circuits for the Remote Camera Release are shown in Fig. 1 (transmitter) and Fig. 2 (receiver). The transmitter circuit centres on IC1, a 555 timer i.c. which is configured as an astable multivibrator.

With switch SI (Shutter) pressed, a supply is established from the 15 V battery, B1. ICl output, pin 3, then delivers a signal whose frequency depends on the values of fixed resistor, R1, preset, VR1
and capacitor, C2. With the values specified, this will lie between 30 kHz and 50 kHz approximately depending on VRI adjustment.

The output from ICl , pin 3 , is directly coupled to the ultrasonic transmitter transducer, X1, which then emits the high-frequency tone. Preset VRI is adjusted at the setting-up stage so that the output frequency matches the resonant frequency of X1 (nominally 40 kHz). The "loudest" signal is then emitted and the maximum operating range obtained.

With switch SI off, no current is drawn from the battery. While pressed, the unit draws 10 mA approximately.

Fig. 1. Circuit diagram for the handheld transmitter.

Turning to the Receiver circuit diagram Fig. 2. With switch S3 (On/Off) switched on, a supply is established from the 9 V battery, B2, to the control circuit. When the receiver transducer X 2 detects the wave emitted by XI in the transmitter, it converts it into a low-level a.c. signal. This signal is applied to transistor, TRI base through capactior, C4 and an amplified signal appears at the collector. Resistor R2 provides base bias.

A dual 7556 CMOS integrated circuit IC2 contains two identical timer sections, IC $2 a$ and IC2b. IC $2 a$ is connected as a monostable. Thus, when triggered by making pin 6 low (less than $1 / 3$ supply voltage) for an instant, the output, pin 5, goes high for a short time then reverts to low. The time during which it remains
high depends on the values of resistor R7, preset VR3 and capacitor C7 and with those specified will lie between 0.2 and 2 seconds approximately.
The collector of TRI is coupled via capacitor C5 to IC2a trigger input, pin 6. Resistor R4, preset VR2, and resistor R5 form a potential divider which applies a steady voltage to pin 6 and with VR2 correctly adjusted, this voltage just exceeds the triggering voltage - that is, IC2a remains off.
When the received signal appears at TRI collector it has the effect of modulating the voltage already existing at pin 6 the voltage rising and falling about the steady value. On the first occasion when it falls, IC2a is triggered and the output, pin 5 , goes high (positive supply voltage).

This high state is applied, via resistor R8, to the base of transistor TR2 which turns on. Collector current then flows through the coil of relay RLA and energizes it.
The changeover contacts of the relay switch over, with the common one moving from the normally-closed (n.c.) to the normally-open (n.o.) position. Motor MI turns with current flowing from battery B3 through RLA normally-open contacts and microswitch S 4 normally-open contacts.

DYNAMIC BRAKING

Attached to the motor/gearbox output shaft is a cam and, in the rest position, its lobe presses against S4 microswitch
receives current direct through S4 nor-mally-closed contacts.
Meanwhile, the monostable switches off and the relay is de-energized. Its contacts then move back to their normally-closed position. The cam, however, continues to turn for the rest of the duty cycle and actuates the camera shutter.
Soon after this, the lobe of the cam presses the microswitch arm once again and the normally-open contacts "make" This applies a short circuit to the motor armature winding via RLA normallyclosed contacts. This has the effect of stopping the motor instantly and not allowing it to overrun as would be the tendency otherwise.

This is called "dynamic braking" and is used in such things as car windscreen

COMPONENTS

TRANSMITTER

Resistor

R1 $\quad 10 \mathrm{k} 0.25 \mathrm{~W} 5 \%$ carbon film
Potentiometer
VR1 $\begin{gathered}\text { 10k Sub-min. vertical } \\ \text { preset, lin. }\end{gathered}$
Capacitors

C1	10 n ceramic
C2	$1 n$ ceramic
C3	47μ p.c.b. elect., 16 V

Semicondctor

IC1 NE555V timer

Miscellaneous

X1 $\quad 40 \mathrm{kHz}$ ultrasonic transmitter (matched to receiver X2)
S1 Sub-miniature
push-to-make switch
B1 $\quad 15 \mathrm{~V}$ BLR1 21 type battery
Stripboard 0.1 in matrix, size 9 strips
$\times 20$ holes; 8 -pin i.c. socket; small handheld plastic box (Verobox 401); connecting wire; stranded wire; small fixings; solder etc.

Approx cost guidance only

Fig. 2. Circuit diagram for the Receiver and motor-driven camera shutter trigger lead.
actuating lever, keeping the normallyclosed contacts open and the normallyopen ones closed. When the motor begins to turn, the actuating arm is released and the contacts change over - that is, the normally-closed ones now close and the normally-open ones open: The motor now
wipers. If the motor overran, there would be the possibility of $\mathbf{S 4}$ normally-closed contacts "making" again so allowing the motor to turn indefinitely.

The use of a relay and separate batteries for control and motor prevents problems with false triggering. Diode D2 bypasses the high-voltage "spike" formed as the magnetic field in the relay coil collapses.

This could otherwise damage semiconductor components. Capacitor C6, in conjunction with fixed resistor R6, keeps IC2a reset input (pin 4) low for an instant after switching on and this prevents selftriggering.

TIMIING

The time period of the monostable is not critical. It must be long enough to allow the cam lobe to release the microswitch lever but be less than the time taken for one rotation of the output shaft.

The gearbox increases the torque of the motor and reduces the speed to a manageable rate - approximately one revolution in three seconds. At this speed, the shutter will operate one second approximately after the button on the handheld transmitter unit has been pressed.

LOCK-UP

When IC2a output, pin 5 , is high the collector of transistor TR2 is low and this state triggers IC2b at pin 8. IC $2 b$ is configured as a set-reset bistable.

Once triggered IC2b output, pin 9, goes high. However, unlike IC2a, it will remain high indefinitely since the threshold and discharge pins are kept low through fixed resistor, R11.

The high state of pin 9 is applied through diode D1 to the trigger input of IC2a (pin 6) so causing it to lock-up and be insensitive to receiving further trigger pulses. The l.e.d. D3 signals the lockedup state with current flowing from pin 9 through current-limiting resistor, R12. Resetting is achieved by making IC2b pins 12 and 13 high for an instant by using pushbutton Reset switch S2.

CONSTRUCTION

The transmitter unit uses a circuit panel made from a piece of 0.1 in . matrix stripboard, size 9 strips $\times 20$ holes. The topside component layout and details of breaks required in the underside copper tracks is shown in Fig. 3. If using the specified box it will be necessary to file off one corner of the panel to clear the lid securing bush.

Drill the two mounting holes and make all copper track breaks and inter-strip links. Mount the on-board components as shown observing polarity of capacitor C3.

When bending the leads to mount transducer X1, great care must be taken to avoid damage. Use two pairs of pliers, one to grip a lead near the body of the device and the other to make a right-angle bend approximately 4 mm long.
Solder 10 cm pieces of light-duty stranded connecting wire to strips G and I on the right-hand edge of the circuit panel. Adjust preset VRI to approximately mid-track position and insert ICI into the socket with the correct orientation.
Prepare the handheld case by drilling holes for the ultrasonic transducer X1, switch SI (Shutter) and for the circuit panel mounting. Referring to Fig. 4 , mount switch Sl , complete the wiring and attach the circuit panel on short stand-off insulators.
When correctly mounted, XI should protrude slightly through the hole in the case (see photograph). Switch SI connections should be bent away from the circuit panel so that they cannot touch the copper strips.
Solder the connecting wires to the battery Bl quickly to avoid melting the plastic. Alternatively, hold them in position
using a small elastic band. Secure the battery to the base of the box using an adhesive fixing pad. Check that the lid fits but do not secure it yet.

RECEIVER

Construction of the Receiver is split into two sections, Sensor and Actuator, and requires two boxes. The actuator, built in a metal case, houses the motor/gearbox, cam assembly and also the motor power supply B3.

The Sensor is built in a plastic case and houses the control circuit and battery B2. This box also carries the "locked out" l.e.d. indicator, D3, reset switch S2 and on-off switch, S3. A flying lead with a jack plug on the end connects the sensor to a matching socket on the actuator.

The specified motor/gearbox unit is bought as a kit and is type 431G made by Como Drills. A cable release will need to be bought too since this becomes part of whole assembly.

The circuit board for the Receiver is made from a piece of 0.1 in . matrix stripboard, size 14 strips $\times 27$ holes. Fig. 5 shows full top and underside details.

Cut the panel to size, drill the mounting holes and make all inter-strip links and track breaks. Note that the links must be made before the on-board components are added.

Solder the components into position
taking care over the orientation of diodes, D1 and D2. Note that D2 is soldered directly on the relay RLA coil connections on the underside - that is, the copper strip side of the panel.
The relay pin spacing does not match the 0. lin. matrix exactly but slight bending of the pins allows a good fit. The moving contact connection is not soldered to the circuit panel but is bent away from it and a direct connection made. Solder 10 cm . pieces of light-duty stranded connecting wire to strip / on the left-hand side and to strips A, C and F on the right-hand side.

SENSOR CASE

Prepare the Sensor plastic case to receive the circuit panel by drilling holes and mounting switches S2, S3 and l.e.d. indicator D3. Drill holes also for circuit panel mounting and for the relay flying lead to pass through.

Make up this lead using a piece of lightduty 3 -core wire 30 cm (1 ft) long. Connect it up and tie a piece of string tightly inside the box to provide strain relief. Pass it through the hole drilled for the purpose and fit the 3.5 mm stereo-type jack plug on the free end.
Refer to Fig. 6 and complete the wiring, shortening any wires as necessary. Mount the circuit panel on short stand-off insulators. Insert IC2 into its socket without touching the pins. This is because it is a

Fig. 3. Transmitter stripboard component lavout and details of breaks required in the underside copper tracks.

Fig. 4. Interwiring from the transmitter board to the transducer, switch and battery.

The complete sensor board installed in its case. Note the "string" cable strain relief for the relay lead.

COMPONENTS

RECEIVER

Resistor

R2	2 M 2	R6, R9
R3	4 M 7	R7
R 2 off $)$		
R4	8 M 2	R8, R11
R5	3 M 3	R10
	R10	10 k (2 off)
	R12	330

All $0.25 \mathrm{~W} 5 \%$ carbon film

Potentiometer

VR2, VR3 4M7 Sub-min horiz. lin.

Capacitors

C4	$10 n$
C5	100 n
C6, C8	$22 \mathrm{n}(2$ off $)$
C7	470 n

Semiconductor

D1 1N4148 signal diode
D2 1N4001 1A 50V rec. diode
D3 Standard red I.e.d.
TR1 BC108 npn silicon transistor
TR2 ZTX300 npn silicon transisto
IC2 7556 dual CMOS timer

Switches

S2 Min. push-to-make switch
S3 Miniature s.p.s.t. slide or toggle switch
S4 Sub-miniature s.p.d.t. microswitch, with leverarm and roller

Miscellaneous

B2 9V PP3 battery
B3 3 off $A A$ size alkaline cells, holder and connector
M1 Motorized gearbox (see text) X2 $\quad 40 \mathrm{kHz}$ ultrasonic receiver (matched to transmitter X1)
PL1/SK1 3.5 mm stereo-type jack plug and chassis socket
RLA 6 V 100 ohm coil relay, with 5A changeover contacts
Stripboard 0.1 in. matrix, size 14 strips x 27 holes; 14 -pin i.c. socket; plastic box, size $54.5 \mathrm{~mm} \times 104.5 \mathrm{~mm} \times 42 \mathrm{~mm}$ (for Sensor); aluminium box, size $102 \mathrm{~mm} \times$ $102 \mathrm{~mm} \times 64 \mathrm{~mm}$ (for Actuator); stranded wire; connecting wire; small fixings, solder etc.

Approx cost guidance only

CMOS device and could be damage by any static charge which might exist on the body.

Adjust preset VR2 fully clockwise and VR3 to approximately mid-track position. Switch off S3 and connect the battery. Secure this to the side of the case using a small bracket or adhesive fixing pads.

MOTOAAND GEAREOX

Make up the motor/gearbox assembly using five gearwheels, full instructions for fitting these are given on the pack. Fit the 3 mm diameter output shaft temporarily and mark the long end 15 mm from the plastic casing. Remove it again and cut it at the marked position.

Now, using a size 6B.A. die, cut a thread on the end 10 mm of the shaft. This threaded section will be used to secure the cam later. If a die set is not owned, a local garage, engineering workshop or school should be able to oblige.

With this done, the output shaft may be replaced and the lid of the gearbox secured using a little glue. Oil the gearwheels and bearing very lightly.

Using a piece of scrap film in the camera, measure the travel of the cable release from its rest position to the point where the shutter operates. Referring to Fig. 7, cut out the cam from a piece of rigid plastic 3 mm thick.

Fig. 7. Profile and measurements for the cam.

The travel provided by the cam should be slightly greater than that actually needed to operate the shutter. The profile illustrated in Fig. 7 provides a travel of 10 mm approximately but should be adjusted to suit the camera being used.
Smooth and polish the cam operating surface carefully. Drill a hole 3 mm in diameter in the position shown in Fig. 7. Attach the cam to the gearbox output shaft using a nut and plain washer on the inside surface and a nut, washer and star washer on the outside. Put a trace of Vaseline on the operating surface of the cam.

CABLERELEASE

Refer to the photographs and mount the cable release. Drill a hole in the case and thread the shank using a suitable size die. Attach it using a nut on each side as shown. It may be possible to attach the cable release in others ways but it must be secure.

Refer to the photographs and mount the motor/gearbox assembly on a wooden platform so that it is high enough for the cam to clear the base of the case as it turns, and also to operate the head of the cable release correctly. A piece of wood

Close up of the lever-operated microswitch bracket, the camera cable release and motor-driven cam.
20 mm thick was used as a platform in the prototype unit. Drill the hole for SKI and mount it.
Connect a 4.5 V battery direct to the motor and check that the cam operates the cable release smoothly. The polarity of the motor should be such that the cam rotates anticlockwise - the securing nut thus tends to tighten on the shaft as it rotates. When this point has been checked, mark the positive terminal of the motor.
Adjust the travel as necessary by moving the cable release end slightly nearer or further from the cam. With scrap film in the camera again, check that the shutter is operated when the motor is connected to the supply. Switch off promptly to prevent the cable release being operated a second time with possible damage.

Cut out and mount the small aluminium bracket shown in Fig. 8 and mount the microswitch $\mathbf{S} 4$ on it. Connect 10 cm pieces of stranded connecting wire to the microswitch terminals. Check that these connections remain clear of the
metalwork and provide some insulation if necessary.
Connect the battery direct to the motor once again and check that the microswitch is operated smoothly and that it is heard to click when the lobe of the cam passes. Note that the specified microswitch is fitted with a small plastic roller and this helps greatly in giving a smooth action. It does not matter at this stage that the motor overruns.
Refer to Fig. 6 and complete the internal wiring. Take particular care to connect socket SKI correctly to correspond with plug PLI wiring. Mount the battery holder (see photograph).

SETTING UP AND TESTINE

For initial adjustments do not plug the Sensor Unit into the Actuator Unit. Take the Sensor Unit, switch on S3 and turn preset VR2 sliding contact slowly anticlockwise. There should be a point where the monostable triggers, the relay is neard to click and the l.e.d. lights.

Layout of components inside the actuator unit. The battery pack is bolted to one of the case side panels.

Fig. 8. Measurements and details of the small aluminium bracket for mounting the lever-operated microswitch.

Re-adjust VR2 slightly clockwise again and reset using S2. When VR2 is correctly adjusted, there should be no tendency for the unit to self-trigger.
Now, holding the Transmitter Unit approximately 2 m (6 ft) away from the Sensor and with the ultrasonic transducers X1 and X2 facing each other, press switch S1 (Shutter). The unit should operate - the relay should click and the l.e.d. light. A weak audible tone is sometimes heard from the transmitter this is not the ultrasound itself and may be ignored. Carefully adjust VRI in the transmitter until the greatest range is obtained.
The Sensor preset VR2 may be adjusted more critically but do not carry this too far in an attempt to obtain greatest sensitivity or trouble will be experienced with self-triggering. Adjust VR3 as necessary to alter the monostable period - anticlockwise rotation of the sliding contact will increase it and vice-versa.
Place the AA cells in the battery holder of the Actuator Unit and plug in the Sensor. Note that in operation, the Sensor and Actuator Units must be placed at least 30 cm (1 ft) apart or there may be interference between the two which could cause false triggering.
Fit the camera with a piece of scrap film, attach the cable release and check that the shutter operates smoothly in response to a signal from the transmitter. Make any final adjustments to presets VR1 and VR2.
Attach thin straps to the two boxes of the Receiver units or other means of hanging them from the camera tripod. It now only remains to label the switches and put the Remote Camera Release into service. Happy shooting!

The
 ONFETCP Component Shop

Massive Stocks

Every kind of component available

Latest Semi-conductors
\& Transistors Available from All Over the World

CREDIT CARD TELEPHONE HOTLINES
Tel:0814520161 \& 0814500995 40 Cricklewood Broadway, London NW2 3ET Fax:081 2081441 Telex: 914977 CRICKEL G

ROBOTROUNDUP Nigel Clark

The UK is falling further behind in the use it makes of robots. In 1990 a total of 51.0 robots were installed, according to the British Robot Association's annual review, an increase of 11 per cent over the year. That followed a 19.5 per cent rise in 1989.

The 1989 increase compared with 55 per cent in the US and 26.5 per cent in the Federal Republic of Germany. Even France managed to do better with a 24.8 percent improvement, matching Japan's figure. The French moved further ahead in 1990 with another 1,488 installations, a rise of 21 per cent.

The BRA's definition of a robot is a reprogrammable device designed both to manipulate and transport parts, tools or specialised manufacturing implements through variable programmed motions for the performance of specific manufacturing tasks. That does not include many of the items usually covered in this column, but the figures still give a good indication of the increasing use of robots throughout the country.

From the breakdown of prices of installations in 1990 the BTA has calculated that the total value of new robot systems during the year was $£ 18.5 \mathrm{~m}$. Assuming this represented a third of the cost of installation this gave a total investment of 555 m , or a little less than 6 per cent of the total investment in plant and equipment in the UK during the year.

BIGGEST USER

Japan remains by far the biggest user of robots with more installations than the rest of the world put together. In the league table of installations the UK comes sixth just behind France and a little further behind Italy, but less than a third of the West German figure and a fifth of the US.

However the UK had double the number of the next most important user, Swedeñ.

We get most of our robots from Japan, with home-grown supplies being the next most important source. Only five came from the States.

Reflecting the increasing costs of robots the biggest category by value was the $£ 30,000$ to $£ 50,000$ range, followed closely by those costing more than $£ 50,000$. Robots costing less than $£ 30,000$ accounted for less than one third of all installations in 1990.

USE

The most popular use for the machines remains injection moulding even though it failed to add to the total number of 1,212 in use at the end of 1989. That allowed spot welding, which recorded the most installations during the year, and arc welding which came secona, to improve their overall positions at two, with 1,167, and three, with 797, respectively.

Education and research had a quiet year with only eight new robots acquired, putting it tenth out of 14 applications. However it maintained its sixth position in the all-time lists having a total of 347

The automotive industry was again by far the biggest user of new robots, its 291 being more than half the total installed in 1990. That further consolidated its lead overall with a total of 2,232 . The next nearest industry was rubber and plastics with 1,214.

The BRA's figures reveal that the UK's robot usage is not typical but there again there is no typical usage. In Japan the electronics industry is the major user followed by automotive while in the USSR electrical equipment accounts for 45 per cent of usage with automotive at the surprisingly low level of 6.5 per cent.

In Sweden the major use is in the machine industry with transport equipment a close second. France is probably the country whose usage is closest to our own with the automotive industry accounting for 42.5 per cent of robots with spot and arc welding being the most popular uses.

REGIONS

In the regional analysis of where in the UK robot usage is increasing the north west of England emphasised its dominance increasing its share from 25 per cent to 31.6 per cent during 1990 . Its nearest rival last year, the north east of England slipped badly during the year from 23 per cent to 13.5 per cent and into third place behind the West Midlands which improved from 11.8 per cent to $\mathbf{1 5} 5$ per cent. share slightly except for the south west

Most other regions increased their
of England and a large decline in Scotland from 5.6 per cent to 1.8 per cent.

DEMISE AND CHANGE

Recent months have seen the demise of a number of the early "educational" robots in the UK market, with a combination of upgrading and the economic recession to blame. Unless yet another company decides to attempt' a further resuscitation the Armroid is now no longer available along with the Genesis and the Cyber 310.

Hasfield Systems, which was the latest company to produce the 5 -axis Armroid, following the closure of its original maker (Colne Robotics), has decided to concentrate on its upgraded version the Bidroid. The latest machine has the same basic design as the original but with bipoplar motors giving greater speed and accuracy.

The Genesis and Cyber decisions were both the result of falling sales. They were both also under their second owners, Genesis being taken over when Feedback bought Powertran, and the sale of Cyber being taken over by Computervoice when Cyber Robotics stopped selling it.

Genesis had been under threat for some time. Known in later years as the HRA 934, one version of it had been discontinued and it was eventually only available on special order. Production was finally ended when Feedback decided to pull out of robots, also ending production of the IVAX901, another Powertran machine, and its own-developed PW801. The decision followed a running down of the robot side which began two years ago when the range was cut to three.

The Cyber 310.

SPECIALEVERYDAY ELECTRONICSEOOKS

TEACH-IN No. 5 OUT NOW -see page 735

ELECTRONICS TEACH-IN 88/89
INTRODUCING MICROPROCESSORS
Mike Tooley BA (published by Everyday Electronics)
A complete course that can lead successful readers to the award of a City and Guilds Certificate in Introductory Microprocessors ($726 / 303$). The book contains everything you need to kno
ing for assessment, etc.
Sections cover Microcomputer Systems, Micro-proces sors, Memories, Input/Output. Interfacing and ProgramData Pages covering the most popular microprocessor chips.
An excellent introduction to the subject even for those Who do not wish to take the City and Guilds assessment.
80 pages (A4 size)
$\mathbf{E 2 . 4 5}$

ELECTRONIC PROJECTS BOOK
Published by Everyday Electronics in association with Magenta Electronics.
Contains twenty of the best projects from previous issues of EE each backed with a kit of components. The projects are: Seashell Sea Synthesiser, EE Treasure Hunter, Mini Strobe. Digital Capacitance Meter, Three Channel Sound to Light. BBC 16K sideways Ram. Simple Short Wave Radio, insulation Tester, Stepper Motor interface, Eprom Eraser, 200 MHz Digital Frequency Meter, Infra Red Alarm EE Equaliser Finder, Light Rider - (Lapel Badge, Disco Lights Chaser Finder, Light Rider - (Lapel Badge. Disco Lights, Chaser IOW Audio Amplifier, EE Buccaneer Induction Balance Metal Detector, BBC Midi Interface, Variable Bench Power Supply, Pet Scarer, Audio Signal Generator.
128 pages (A4 size) Or(les conle EPT1.

ELECTRONICS TEACH-IN NO. 3 - EXPLORING ELECTRONICS (published by Everyday Electronics) Owen Bishop
Another EE value for money publication aimed at students of electronics. The course is designed to explain the workings of elecironic components and circuits by involving the reade masses of theory or formulae but straightonward explane tions and circuits to build and experiment with.
Exploring Electronics contains more than 25 useful projects, assumes no previous knowledge of electronics and is split into 28 easily digestible sections.
88 pages (44 size) Order coute ils
£2.45

ELECTRONICS TEACH -IN No. 4
INTRODUCING DIGITALELECTRONICS (published
by Evervday Eloctronics)
Although this book is primarily a City \& Guilds Introductory Although this book is primarily a City \& Guilds Introductory
level course ($726 / 301$), approximately 80% of the informalevel cou'se ($726 / 301$), approximately 80% of the informait therefore provides an excellent introductory text for beginners and a course and reference book for GCSE students.
Full details on registering for C\&G assessment, details of assessment centres, components required and information on the course in general are given.
The City \& Guilds introduction to module 726/301 reads: "A candidate who satisfactorily completes this module will have a competence to identify basic components and digital Integrated circuits and connect them together to form simple working circuits and logic units." This provides an excellent 112 pages (A4 size)

Order code 714
£2.95

EVERDAY ELECTRONICS DATA BOOK

Mike Tooley BA
(published by EE in association with PC Publishing) This book is an invaluable source of information of everyday relevance in the world of electronics. It contains not only sections which deal with the essential theory of electronic circuits, but it also deals with a wide range of practical electronic applications.
It is ideal for the hobbyist. student, technician and engineer. The information is presented in the form of a basic electronic recipe book with numerous examples showing how theory can be put into practice using a range of devices.
$\begin{array}{ll}\text { A must for everyone involved in electronics } \\ 256 \text { pages } & \text { Praer cocle DA1A } \\ & \mathbf{~ D 8 . 9 5}\end{array}$

DIRECT BOOK SER VICE

The books listed have been selected by Everyday Electronics editorial staff as
being of special interest to everyone involved in electronics and computing. They
are supplied by mail order direct to your door. Full ordering details are given on
the last book page. For another selection of books see next month's issue

TESTING, THEORY AND REFERENCE

ELECTRONIC TEST EQUIPMENT HANDBOOK

Steve Money

The principles of operation of the various types of test instrument are explained in simple terms with a minimum of mathematical analysis. The book covers analogue and dighal meters, bridges, oscilloscopes, signal generators, counters, timers and frequency measurement.
Everything from Audio oscillators, through
measurements (and a whole lot more) to Waveform Generators and testing Zeners. A truly comprehensive book for the hobbyist, student. technician and engineer. 206 pages

Orcier code PC109
£8.95
HOW TO TEST ALMOST EVERYTHING
ELECTRONIC-2nd EDITION
Jack Darr and Delton T. Horn
Describes electronic tests and measurements - how to make them with all kinds of test equipment, and how to
interpret the results. New sections in this edition include interpret the results. New sections in this edition include more. (An American book.)
190 pages
Orde: code rl2925.
£9.05

GETTING THE MOST FROM YOUR MULTIMETER

 R. A. PenfoldThis book is primarily aimed at beginners and those of limited experience of electronics. Chapter 1 covers the basics of analogue and digital multimeters, discussing the Chapter 2 various methods of component checking are described, including tests for transistors, thyristors, resistors, capacitors and diodes. Circuit testing is covered in Chapter 3 , with subjects such as voltage, current and continuity checks being discussed.
In the main little or no previous knowledge or experience is assumed. Using these simple component and circuit testing techniques the reader should be able to confidently tackle servicing of most electronic projects. 96 pages

Order code BP23
$£ 2.95$
MORE ADVANCED USES OF THE MULTIMETER R. A. Penfold

This book is primarily intended as a follow-up to BP239, (see above), and should also be of value to anyone who arready understands the basics of voltage testing and cribed in chapter 1 you can test and analyse the performance of a range of components with just a multimeter (plus a very fow inexpensive components in some cases). Some useful quick check methods are also covered. While a multimeter is supremely versatile, it does have
its limitations. The simple add-ons described in chapter 2
extended the capabilities of a multimeter to make it even more useful. The add-ons described include an active r.f. probe, a high resistance probe, an a.c. sensitivity booster, 84 pages

Order cade BP265
£2.95

THE ILLUSTRATED DICTIONARY OF
 ELECTRONICS - 4th EDITION

Rufus P. Turner and Stan Gibilisco
With more than 27,000 terms used in electronics today, this collection is THE most comprehensive dictionary available. Including all practical electronics and computer terms, it is as up-to-date as the latest advances in the field itselfi Tables and data on subjects most often consulted for projects and experiments are included. Other conversion ables include English/metric and metric/English conversions for units of energy, power and volume, and Fahrenheit/Celsius temperature conversion charts.
Setting this edition apart from other electronic dictionaries is its emphasis on illustration. Featuring more 450 detailed drawings and diagrams.
All entries are listed in alphabetical order. Abbreviations and initials are listed in sequence with whole words. All terms of more than one word are treated as one word. (An American book).

Orcercode 12900 £23.65

ELECTRONICS - A "MADE SIMPLE" BOOK

G. H. Olsen

This book provides excellent background reading for our Introducing Digital Electronics series and will be of interest plained and well illusiectronics. The subject is simply exvery basic knowledge of electricity. 330 pages \quad Oider code NE10 10.95

PRACTICAL ELECTRONICS CALCULATIONS AND FORMULAE
F. A. Wilson, C.G.I.A., C.Eng., F.I.E.E., F.I.E.R.E., F.B.I.M. Bridges the gap between complicated technical theory. and "cut-and-tried" methods which may bring success in design but leave the experimenter unfulfilled. A strong avoided where possible and many tables have been included.
The book is divided into six basic sections: Units and Constants, Direct-current Circuits, Passive Components, Alternating-current Circuits, Networks and Theorems, Measurements.
256 pages Order code BP53 £3.96

MICROELECTRONIC

N2 CHECKBOOK

R. Vears

The aim of this book is to provide a foundation in microcomputer hardware, software and interfacing techniques. Each topic is presented in a way that assumes only an elementary knowledge of microelecrronics systems and logic functions. The book concentrates on 6502, 280 and 160 worked problems and 250 further problems. 256 pages 256 pages Order corde N-04N

PRACTICAL DIGITAL ELECTRONICS HANDBOOK

Mike Tooley (Published in association with
Everyday Electronics)
The vast majority of modern electronic systems rely heavily on the application of digital electronics, and the Practical Digital Electronics Handbook aims to provide readers with a practically based introduction to this subject. The book will prove invaluable to anyone
involved with the design, manufacture or servicing of digital circuitry, as well as to those wishing to update their knowledge of modern digital devices and techniques. Contents: Introduction to integrated circuits; basic logic gates; monostable and bistable devices; timers; microprocessors; memories; input and output devices; interfaces; microprocessor buses. Appendix 1: Data. Appendix 2: Digital test gear projects; tools and probe: logic pulser, versatile pulse generator: digital ic tester; current tracer; audio logic tracer; RS-232C breakout box; versatile digital counter/frequency meter. Appendix 3: The oscilloscope. Appendix 4: Suggested $\begin{array}{ll}\text { reading. Appendix 5: Further study. } \\ 208 \text { pages } & \text { Oiger code PCT00 } \\ & \text { E6.95 }\end{array}$

ELECTRONICS-BUILD AND LEARN

R. A. Penfold

The first chapter gives full constructional details of a circuit demonstrator unit that is used in subsequent chapters capacitors, transformers, diodes, transistors, thyristors, fers, and op amps. Later chapters go on to descrite how these components are built up into useful circuits, oscillators, multivibrators, bistables and logic circuits.
At every stage in the book there are practical tests and experiments that you can carry out on the demonstrator unit to investigate the points described and to help you understand the principles involved. You will soon be able to go on to more complex circuits and tackle fault finding logically in other circuits you build.
120 pages 120 pages Order code pC103
£5.95

AUDIO AND MUSIC

MAKE MONEY FROM HOME RECORDING
Clive Brooks
Now that you've spent a fortune on all that recording gear, MIDI and all, wouldn't it be nice to get some of it back? Wheres the book to show you how
It's packed with money making ideas, any one of which ill recoup the price of the book many times over. Whethe you have a fully fledged recording studio at home, or jus couple of stereo cassette recorders and a microphone you'll be able to put the ideas in this book into practice and make money
105 pages

Ordercode PCi09
£5.95

NTRODUCTION TO DIGITAL AUDIO

lan Sinclair
Digital recording methods have existed for many years and have become familiar to the professional recording en gineer, but the compact disc (CD) was the first device to ring digital audio methods into the home. The next step is he appearance of digital audio tape (DAT) equipment.
All this development has involved methods and circuit
hat are totally alien to the technician or keen amateur who has previously worked with audio circuits. The principles and practices of digital audio owe little or nothing to the aditional linear circuits of the past, and are much more comprehensible to today's compu
This book is intended to bridge the gap of understand ing for the technician and enthusiast. The principles and methods are explained, but the mathematical backgroun nd theory is avoided, other than to state the end product.

SYNTHESIZERS FOR MUSICIANS

A. Panfold

Modern synthesizers are extremely complex, but they mostly work on principles that are not too difficult to understand, If you want to go beyond using the factor presets or the random poking of buttons, this is the book or you.
It covers the principles of modern synthesis - linear
arithmetlc as used by Roland. phase distortion (Casio).

Yamaha's frequency modulation, and sampling - and hen describes how the instruments are adjusted to produce various types of sound - strings, brass, percus son, etc. The theoretical side of synthesis is treated in an easy to understand way - the technical information being restricted to what you need to know to use you instrument effectively
68 pages
Order code PCTOAT
£6.95

AUDIO
F. A. Wilson, C. G. I. A., C.Eng., F.I.E.E., F.I.E.R.E., F.B.I.M.

Analysis of the sound wave and an explanation of acoustial quantities prepare the way. These are followed by a tudy of the mechanism of hearing and examination of the arious sounds we hear. A look at room acoustics with subsequent chapter on microphones and loudspeaker
 lectronic music
320 pages Order code BP1i]

CIRCUITS AND DESICN

ELECTRONIC CIRCUITS FOR THE COMPUTER CONTROL OF MODEL RAILWAYS A. A. Penfold

Home computers may easily be applied to the control of model railways and really quite sophisticated control which needs only simple programming, is not too difficult achieve. The main problem lies in interfacing the com puter to the layout, but fortunately it is not too difficult o expensive to build suitable interfaces, and this book show ou how.
The project consists of various types of controller, in cluding a high quality pulse type, as well as circuits for train position sensing, signal and electric points contro etc. The use of computers does not have to be reswicted to wassive a single siding can be given a new dimension by adding computer control and much fun can be had from hese relatively simple set-ups.

| 88 pages | Order code 8P980 |
| :--- | :--- | :--- |

REMOTE CONTROL HANDBOOK

Owen Bishop
Remote control systems lend themselves to a modular approach. This makes it possible for a wide range of built up from a number of relatively simple modules The author has tried to ensure that, as far as possible the circuit modules in this book are compatible with one another. They can be linked together in many different configurations to produce remote control systems tailored to switch a table lamp on and off, or to operate an industrial robot, this book should provide the circui you require

Orcler cade BPrad $\quad \mathbf{8 3 . 9 5}$
COIL DESIGN AND CONSTRUCTION MANUAL
B. B. Babani

A complete book for the home constructor on "how to make" RF, IF, audio and power coils, chokes and trans ormers. Practically every possible type is discussed and calculations necessary are given and explained in detai Although this book is now rather old, with the exception of torroids and pulse transformers Iltte has changed in coi design since it was written
96 pages \quad Order code 160
E2.50
30 SOLDERLESS BREADBOARD PROJECTS -
BOOK 1
R. A. Penfold

Each project, which is designed to be built on a "Verobloc" breadboard, is presented in a similar fashion with a brief circuit description, circuit diagram, component layou diagram, components list and notes on construction and use where necessary. Whenever possible, the component used are common to several projects, hence with only nodest number of reasonably inexpensive components, it s possible to build in turn, every project shown. Recom mended by BICC-V
160 pages

BOOK 2-
All projects use CMOS i.c.s. but the items on component dentification erc., are not repeated from Book 1 . 160 pages

Order corle BPI13
£2. 25

ELECTRONIC CIRCUITS HANDBOOK

Michael Tooley BA
This book aims to explode two popular misconceptions concerning the design of electronic circuits: that only those with many years of experience should undertake circuit design and that the process relies on an underoo ambitious, nelther of these popularly held beliafs is too
true.
Specifically, this book aims to provide the reader with unique collection of practical working circuits to gether with supporting information so that circuits can be produced in the shortest possible time and withou ecourse to theoretical texts.
Furthermore, information has been Included so that the circuits can readly be modified and extended by readers to meet their own individual needs. Related circuits have been grouped logether and cross-referenced within the which-circuits can ere readily connecteder are aware. ol more complex systems. As far as possible, a common range of supply voltages, signal levels and impedances has been adopted.
As a bonus, ten test gear projects have been included These not only serve to illustrate the techniques described

The manual is divided into eleven chapters, and presents over 300 practical circuits, diagrams and tables. The sub ects covered include: Basic principles; Sine wave tors; Square wave generators; Pulse generator circuits; "Timer IC" generator circuits; Triangle and sawtooth gen erators; Multi-waveform generation; Waveform synthesize Cs; Special waveform generators; Phaselocked loop cir cults; Miscellaneous 5555° circuits.
267 pages \quad Order coaeN. 12.95

PTOELECTRONICS CIRCUITS MANUAL

A. M. Marston

A useful single-volume guide to the optoelectronics evice user, specifically aimed at the practical design
 an easy-to-read down-to-eur. It deals with the subjec et comprehensive manner, explaining the basic principles and characteristics of the best known devices, and presenting the reader with many practical applications and ver 200 circuits. Most of the i.c.s. and other devices use are inexpensive and readily available types, with univer ally recognised type numbers.
182 pages \quad Order codene14 12.95
POPULAR ELECTRONIC CIRCUITS - BOOK 1
POPULAR ELECTRONIC CIRCUITS - BOOK 2
R.A. Penfold

Each book provides a wide range of designs for electronic nthusiasts who are capable of producing wortronic projects from lust a circuit diagram without the aid o detailed construction information. Any special setting-up procedures are described.

BOOK 1160 pages Order code BP80 $\mathbf{2} .95$ | B00K 2160 pages | Order cocle BP80 | Ordercode B.p98 | £2.95 |
| :--- | :--- | :--- | :--- |
| BOOK | | | |

CMOS CIRCUITS MANUAL
R. M. Marston

Writen for the professional engineer, student or en-
Wusiast It the professional engineer, student or en les of these devices and includes over 200 circuits.
All the circuits have been designed, built and fully valuated by the author; all use inexpensive and interna
187 pages \quad O12.95
A book that deals with the design of the vital area of nalog circuitry covering design with modern linear inlegrated circuit devices. The first chapter introduces the reader to important design techniques, test strategies, layout, and protection and also includes a section on the use or a typical CAD tool. There are separate chapters tha ach with detailed design examples and reader exercises. A final chapter brings all the previous work together in number of complete design problems with fully worked solutions. The text is essentially non-mathematical and is 180 pages by many diagrams.

TIMER/GENERATOR CIRCUITS MANUAL

A. M. Marston

This manual is concerned mainly with waveform generato techniques and circuits. Waveform generators are used somewhere or other in most types of electronic equipment, and thus form one of the most widely used classes of ine square triangle ramp pulse stalrcase or a variety sine, square, triangie, ramp, pulse, staircase, or a variety of unmodulated outputs, and the outputs may be of single or multiple form
Waveform generator circuits may be built using transisors, op-amps, standard digital ICs, or dedicated waveform or "function" generator ICs

PROJECTCONSTRUCTION

HOW TO DESIGN AND MAKE YOUR OWN P.C.B. R. A. Penfold

Deals with the simple methods of copying primed circuit board deslgns from magazines and books and covers all aspects of simple p.c.b. construction including 80 pages \quad Order code Bryl21 \quad E2.50

HOW TO GET YOUR ELECTRONIC PROJECTS WORKING
We have all built projects oniy to find that they did no work correctly, or at all, when first switched on. The aim of this book is to help the reader overcome just these problems by indlcating how and where to start looking for many of the common faults that can occur when building p projects.

Order code BPITO
Order code BP1TO $£ 2.50$

ELECTRONIC SCIENCE PROJECTS

O. Bishop

These projects range in complexity from a simple colour temperature merer to an infra-red laser. There are novelties such as an electronic clock regulated by a resonating pring, and an oscilloscope with solid-state display. There are scientific measuring insiruments such as a pH mete and an electro-cardiometer. All projects have a strong work, and how to build 144 pages forder code 8pit04 £2.95

BEGINNER'S GUIDETO BUILDING ELECTRONICS PROJECTS
R. A. Penfold

Shows the complete beginner how to tackle the practi都
magazines and books. Also includes examples in the form f simple projects.
12 pages Order code 227
$£ 1.95$

TEST EQUIPMENT CONSTRUCTION

A. A. Penfold

This book describes in detail how to construct some simple and inexpensive but extremely useful, pieces of test equip gether with wiring diagrams where appropriate, plus notes on construction and use.
The following designs are included:- AF Generator Capacitance Meter, Test Bench Amplifier, AF Frequency Meter, Audio Millivoltmeter, Analogue Probe, High Resis ance Voltmeter, CMOS Probe, Transistor Tester, TTL Probe. The designs are suitable for both newcomers and more exp

Orde cocre BP-48
£2.95

DATA AND COMPONENTIDENTIFICATION

ONIC, SEMICONOUCTAR \& LOGIC SYMBOLS

CHART OF RADIO, ELECTRONIC,
SEMICONDUCTOR AND LOGIC SYMBOLS
M. H. Banani B.Sc.(Eng.)
llustrates the common, and many of the not-so-common radio, electronic, semiconductor and logic symbols tha are used in books, magazines and instruction manuals,
eic., in most countries throughout the worto
Chart

NTER GUIDE
Aelps the reader to find possible substitutes for popular selection of European. American and Japanese ransistors. Also shows material type, polarity, manufac turer and use.
320 pages
Frder code BP85
£3.50

SETTING UP AN AMATEUR RADIO STATION NEW

D. Poole

The aim of this book is to give guidance on the decisions or short wave listening station. Often the experience which is needed is learned by one's mistakes, however, this can be expensive. To help overcome this, guidance is given on many aspects of setting up and running an efficient sta ion. It then proceeds to the steps that need to be-taken in gaining a fuli transmitting licence.
Topics covered include: The equipment that is needed: Setting up the shack; Which aerials to use; Methods of construction; Preparing for the licence.
An essentar addition to the library of all those taking
86 pages Erder coder Be300 E3.95
BEGINNER'S GUIDE TO RADIO - 9th EDITION
Gordon J. King
Radio signals, transmitters, receivers, antennas, components, valves and semiconductors, CB and amateur adio. 266 pages Erder cocieNE08 E6.95

AN INTRODUCTION TO RADIO DXING
A. A. Penfold

Anyone can switch on a shon wave recelver and play with he controls until they pick up something, but to find a particular station, country or type of broadcast and to receive it as clearly as possible requires a little more skill and knowledge. The object of this book is to help the eader to do just that, which in essence is the fascinating hobby of radio DXing
112 pages Erder code BP9? 1.95
EXPERIMENTAL ANTENNA TOPICS
H. C. Wright

Although nearly a century has passed since Marconi's firs? demonstration of radio communication, there is still research and experiment to be carried out in the field of ntenna design and behaviour.
The aim of the experimenter will be to make a measurement or confirm a principle, and this can be done with relatively fragile, short-life apparatus. Because of this devices described in this book make liberal use of cardboard, cooking foil, plastic bottles, cat food tins, etc.
These materials are, in general, cheap to obtain and easily
worked with simple tools, encouraging the trial-and-erro philosophy which leads to innovation and discovery. Although primarily a practical book with text closely
supported by diagrams, some formulae which can be used by straightforward substitution and some simple graphs have also been included.

NEWNES SHORTWAVE LISTENING HANDBOOK
oo Pritchard G1 U0W
Part One covers the "science" side of the subject, going from few simple electrical "first principles", through a brief treatent or radio transmission methods to simple receivers. The mphasis is on practical receiver designs and how to build Part Two covers the use of sets, what can be heard, he various bands, propagation, identification of stations, sources of information, QSLing of stations and listening o amateurs. Some computer techniques, such as computer morse decoding and radio teletype decoding are also
224 pages \quad Orcler codene16 14.95
Order codenel6 $£ 14.95$

COMPUTINE

SERVICING PERSONAL COMPUTERS -

2nd EDITION

Mike Tooley BA
The revised and enlarged second edition contains a new chapter on the IBM PC, AT, TX and compatibles. It is es sential for anyone concerned with the maintenance of persional service technician, student or enthusiast.
240 pages (Hard cove Order cor NE15) £25

HOW TO EXPAND, MODERNISE AND REPAIR PCs AND COMPATIBLES
R. A. Penfold

Not only are PC and compatible computers very expan dable, but before long most users actually wish to take advantage of that expandability and start upgrading thei PC systems. Some aspects of PC upgrading can be a bi confusing, but this book provides advice and guidance on he popular forms of internal PC expansion, and should less. Little knowledge of computing is assumed. The only less. Little knowledge of computing is assumed. The only assumption is that you can operate, a standard
kind (PC, PC XT, PC AT, or a 80386 based PC).

The subjects covered include: PC overview; Memory upgrades; Adding a hard disk drive; Adding a floppy disk drive; Display adaptors and monitors; Fitting a maths o-processor; Keyboards; Ports; Mice and digitisers Maintenance (including preventative maintenance) and 156 pages Ordercode BP271 §4.95

AN INTRODUCTION TO PROGRAMMING THE BBC MODELB MICRO
R. A \& J. W. Penfold

Written for readers wanting to leam more about program ming and how to make best use of the Incredibly powerful model B's versatile features. Most aspects of the BBC Micro are covered, the omissions being where little could usefully be added to the information provided by the 44 pages

AN INTRODUCTION TO 6502 MACHINE CODE R. A. J. W. Penfold
machine code is assumed. Topics covered are: ssembly language and assemblers, the register se and memory, binary and hexadecimal numbering systems, addressing modes and the instruction set and also mixing machine code with BASIC. Some simple programming examples are given for 5502-based home computers like the VIC-20,
ORIC-1/Atmos, Electron. BBC and also the Commodore 64. Oriler cocte 8P947 £2.95

The PRE-BASIC BOOK
F. A. Wilson, C.G.I.A., C.ENG., F.I.E.E.
F.I.E.R.E., F.B.I.M

Another book on BASIC but with a difference. This one does not skip through the whole of the subject and thereby leave many would-be programmers floundering but instead concentrates on introducing the technique by looking in depth at the computer instructions. For all new and potential micro $\begin{array}{lll}\text { users. } \\ 192 \text { pages } & \text { Ortercode 3pl4 } \\ \end{array}$

$$
\begin{gathered}
\text { DIREPT BOOK SERVICE } \\
\text { ORDERING DETAILS }
\end{gathered}
$$

Please state the title and order code clearly, print your name and address and add the required postage to the total order.
Add 75 p to your total order for postage and packing (overseas readers add $£ 1.50$ for countries in Europe, or add $£ 2.50$ for all countries outside Europe, surface mail postage) and send a PO, cheque, international money order ($£$ sterling only) made payable to Direct Book Service or credit card details (including card expiry date), Visa or Mastercard (Access) - minimum credit card order is $£ 5$ - quoting your name and address, the order code and quantities required to DI-

RECT BOOK SERVICE, 33 GRAVEL HILL, WIMBORNE, DORSET BH21 1 RW (mail order only).
Although books are normally sent within seven days of receipt of your order, please allow a maximum of 28 days for delivery. Overseas readers allow extra time for surface mail post.
Please check price and availability (see latest issue of Everyday Electronics) before ordering from old lists.
Note-our postage charge is the same for one book or one hundred books!

MORE BOOKS NEXT MONTH

PCB SERVICE
Printed circuit boards for certain constructional projects are available from the PCB Service, see list. These are fabricated in glass fibre, and are fully drilled and roller tinned. All prices include VAT and postage and packing. Add $£ 1$ per board for airmail outside of Europe. Remittances should be sent to The PCB Service, Everyday Elecrronics, 6 Church Street, Wimborne, Dorset BH21 1JH. Cheques should be crossed and made payable to Everyday Electronics (Payment in $£$ sterling only).
We do have some older boards in stock - please enquire.
NOTE: While 95% of our boards are now held in stock and are dispatched within seven days of receipt of order, please allow a maximum of 28 days for delivery-overseas readers allow extra if ordered by surface mail. Please check price and availability in the latest issue. Boards can only be supplied on a payment with order basis.

HART AUDIO KITS - YOUR VALUE FOR MONEY ROUTE TO ULTIMATE HI-FI

HART KITS give you the opportunity to build the very best engineered hifi equipment there is. designed by the leaders in their field, using the best components that are available: Every HART KIT is not just a new equipment acquisition but a valuable investment in knowledge, giving yo guided
niques.
niques. HART is your friend in the trade' giving you, as a
knowledgeable constructor, access to better equipment a lower prices than the man in the street.
You can buy the reprints and construction manual for any kit to see how easy it is to build your own equipment the HART way. The FULL cost can be credited against your subsequent kit purchase.
Our list will give you fuller details of all our Audio Kits.
AUDIO DESIGN 80 WATT POWER AMPLIFIER.

This fantastic John Linsley Hood designed amplifier is the flagship of our range, and the ideal powerhouse for your ultimate hifi system. This kit is your way to get EK performance for a few tenths of the cost!. Featured on the front cover of 'Electronics Today International' this complete stereo power amplifier offers World Class perfor-
mance allied to the famous HART quality and ease of mance allied to the famous HART quality and sase of construction. John Linsley Hood's comments on seeing a
complete unit were enthusiastic:- "The external view Is that of a thoroughly professional piece of audio gear, neat elegant and functional. This impression is greatly reinforced by the internal appearance, which is.r.edolent o quality, both in components and in layout.
dard amplifier comes with the option of a
power meter and a versatile passi
switched inputs, and ALPS precisio
and balance controls.
aption also gives a
means that for use
indeed any other
used on its own, withe
handing stages. Slave
the passive input slage a - \%ow er meter are also av with Al versions fit within
supply rails are fully stabllisedtrand he all six pow
supply, using a roroidal whisfomer. it n , ne withive

professi d \% de p ntey culthoarde with roller tinned
finishang halde relnstyon the component ident side,
 pre- tel nithed, featy for instant usel. Remember with pre- te nisked, eady for instant usel. Remember wio MART y you get the performance you want at the price quoted through advanced circuit design, proper engineeryour intelligence by offering a kit at what seems a fair price and then tell you that you have to spend twice as much to get an upgraded modell.
RLH11 Reprints of latest 'Audio Design Amplifier'
articles....
K 1100 CM HART Construction Manual with full Joining this amplifier now as a further option is Joining this amplifier now as a further option is the most advanced preamplifier ever offered on the kit, or indeed made-up marketplace. Facilities include separate tape signal selection to enable you to listen to one programme wancellable 3 -level tone controls and many other useful functions, all selected by high quality relays. For advance details see our list
LINSLEY HOOD 'SHUNT FEEDBACK' R.I.A.A. MOVING COIL \& MOVING MAGNET PICKUP PREAMPLIFIER

Modern, ultimate sound systems are evolving towards a built-in preamplifier within the turntable unit. This keeps noise pickup to a minimum. This new circuit by John the sonically preferred shunt feedback configuration to give an accurate and musical sound, with the ability to use moving magnet and moving coil cartridges. Power comes from two 9v PP3 size batteries or a mains power supply. See our lists for custom designed unit. This HART kit is exceptionally easy to build with very detailed instructions and all the specially selected components fitting di-
rectly on to the roller tinned fibreglass printed circuit rectly on to the roller tinned fibreglass printed circuit
board. Even the gold plated phana sockets mount board. Even the gold
directly on the board.

This Kit now comes with latest generation low-noise front end IC and onboard power stabilisers for any DC input voltage between 9 v and 30 v .
K1500 Special Discount Price for complete
Kit.
Kir
ALPS PRECISION LOW-NOISE STEREO POTS.

To fulfil the need for higher quality controls we are now importing an exciting new range of precision audio pots in values to cover most quality amplifier applications. All in 2 -gang stereo format, with 20 mm long 6 mm dia. steel shatts. Now you can throw out those noisy ill-matched carbon pots and replace with the real hi-fi components only used selectively in the very top flight of World class amplifiers. The improvement in track accuracy and matching really is incredible giving betrer tonal balance between channels and rock solid image stability. Matorised ver-

> 2-Gang 100K Lin
> 2-Gang 10K, 50 K \& 100 K Log.
zero crosstalk and
zero centre loss......................
ang 20K Log (Volume Control)
MOTORISED

STUART EL-TO-REELTAPE RECORDER CIRCUITS
cord, replay and bias circuit system

 $£ 2.60$

CIRCUITS

 low noise stereo cassette recorder. Circuits are suitable for use with any high quality cassette deck. Switched bias and tions.Complete Stereo Record/Play Kit.
V M Meters to suit..........................
RLH1 \& 2 Reprints of original Articles.
... $£ 62.58$

CAR RADIO FM IF STRIP WITH STEREO

 DECODERTOKO EC 3302 VARICAP FM FRONT END Extremely useful compact Varicap FM Tuner front end with Mosiet input stage. Supply required is 9 v at only 17 mA . Tunes the full FM band from 87 to 109 MHz . Power gain 22 dB . Tuning voltage 21 to cover up to 109 MHz . Standard 10.7 MHz If out to suit any FM IF strip TOKO EC3302 FM Varicap Front End. metal screening can $62 \times 31 \times 17 \mathrm{~mm}$ and ideal for PCB mounting. LP1 186 FM Front End....

HIGH QUALITY REPLACEMENT CASSETTE

Do you tapes lack treble?. A worn head could be the see below) and our TC1 Test Cassette helps you set the azimuth spot on. As we are the actual importers you get suppliers and seel. All our heads are suitable for use with any Dolby system and are normally available ex stock. We aiso stock a wide range of special heads for home Construction and industria users.
HC15 Standard Quality Stereo R/P Head...

Wenplete record and replay circuits for very high quality versatile with separate record and play circuits and easy to assemble on plug-in PCBs. Complete with full instruc.

BARGAIN OFFERS

MULLARD LP1186 VARICAP FM FRONT END
Ever popular compact front end unit capable of being used with any 10.7 MHz if strip. Supply required is only 8 v on the unit and 12 v on the varicaps. Completely enclosed in a
 problem. For top performance cassette recorder heads high quality replacement heads could restore performance to better than newl. Standard inductances and mountings make fitting easy on nearly all machines (Sony are special, prime parts at lower prices, compare our prices with otherHC66 High Quality Stereo R/P Head. Hard Permalloy
construction with Hyperbolic Face for improved
tape to head contact.. 98
HS16 Sendust Alloy Stereo Head...
HC80 NEW RANGE High Beta Permalloy Stereo
head. Modern space saver design for easy fitting
and lower cost. Suitable foi chrome metal and
ferric tapes, truly a universal replacement head
for everything from hi-fi decks to car players and
at an incredible price tool...............................88. 30 at an incredible price tool
HC60S SONY Special Stereo R/P head. This head has the unusual Sony mounting bracket and is suitable for mas5 powered domestic Hifirecorders.................. 37
for auto-reverse car players or quadraphonic
recording. .
H524 Standard Erase Head.
14.90
1.90

H561 Hi Field Erase Head for METAL Tapes $\mathbf{\Sigma 3 . 4 9}$ HRP373 Downstream Monitor Sterea Combination
Many other SPECIAL cassette Heads In stock, see our LIST.

REEL TO REEL HEADS

999R 2/4 Record/Play 110 mH . Suits Stuart
 - 11.98

TAPE RECORDER CARE PRODUCTS

HART TC1 TEST CASSETTE Our famous triple pur -
pose test cassette. Sets tape azimuth, VU level
and tape speed.. 56
DEM1 Mains Powered Tape Head Demagnetizer. prevents noise on playback due to residual head EM1 15 Electronic. Cassette Type, demagnetizer........£8.91

COMPUTER CORNER

Manufacturers overrun enables us to make this fantastic offer of ready built modules ideal for use with any of the above FM front ends. PCB carries IF amplifier with 10.7 MHz ceramic filters. 2 transformer ratio detector,
AX010 noise suppression IC and TCA 4500 A advanced AX010 noise suppression IC and TCA 4500A advanced stereo decoder IC. Supplied complete with circuit diagram. (Available separately 40p).
Our Special Bargain Price ONLY.
.... $£ 3.99$
TOKO NT3302 MANUAL FM TUNERHEAD A very compact and economically priced capacitor tuned incorporated. A current consumption of less than 18 mA at $9 v$ makes it suitable for static or portable uses. RF stage is mosfet with bipolar oscillator and mixer. Power gain is 25 dB , Image rejection 45 dB . Overall size, excluding tuning shatt and gears is 67×51.9 overall height is 55.7 , tuning shaft is 32.7 above PCB surface when unit is mounted.
Toko NT3302 Variable Capacitor tuned

$£ 2.99$
.35p

Fax: (0691) 662864

The prepaid rate for semi-display space is $£ 8$ (+ VAT) per single column centimetre (minimum 2.5 cm). The prepaid rate for classified adverts is 30 p (+ VAT) per word (minimum 12 words).
All cheques, postal orders, etc., to be made payable to Everyday Electronics. VAT must be added Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Everyday Electronics, 6 Church Street, Wimborne, Dorset BH21 1JH. Tel: (0202) 881749.

VISA SERVICE \square MANUALS

Available for most Video Recorders, Colour \& Mono Televisions, Cameras, Test Equipment, Amateur Radio; Vintage Valve Wireless, Any Audio, Music Systems, Computers, Kitchen Appliances, etc.
Equipment from the 1930's to the present.
Over 100,000 models stocked, originals \& photostats.
FREE Catalogue Repair \& Data Guides with all orders

MAURITRON TECHNICAL SERVICES (EE)
 8 Cherry Tree Road, Chinnor, Oxfordshire OX9 40Y Tel: (0844) 51694
 Fax: (0844) 52554

BTEC ELECTRONICS TECHNICIAN FULL-TIME TRAINING
 THOSE ELGIBLE CAN APPLY FORET. GRANT SUPPORT aneoual opportuntit O.N.C., O.N.D. and H.N.C. Next course commences Monday 6th January 1992 FULL PROSPECTUS FROM
 LONDON ELECTRONICS COLLEGE (Dept EE) 20 PENYWERN ROAD EARLS COURT, LONDON SW5 9SU TEL: 071-373 8721

Engineer Wanted

to DESIGN and BUILD
interesting project
Please contact
David Knox
0714315147

UCANDO ELECTRONICS TRAINING BY VIDEO
 Learn Electronics by Video lessons.
 DC/AC Power supplies, Semiconductors, Amplifiers, Oscillators, plus 2 videos for VCR Maintenance \& Repair Plus Teaching Kitsets.
 For all countries using PAL \& NTSC English language instruction. Worldwide distribution for PAL \& NTSC format. Mastercard and Visa accepted.
 ELECTRONICS ASSEMBLY COMPANY

P.O. Box 21191, Christchurch New Zealand
Phone: 3-795-570

I
 Cooke International

We stock used scopes, signal generators, power supplies, power meters, DVM's, oscillators, attenuators, test equipment. Much more available, visit our showroom and bargain store Prices from $£ 5$ upwards! Send SAE for lists Contact: Cooke International, Unit 4, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex PO22 0EB Tel: 0243545111 -Fax: 0243542457
Open: Mon-Fri Gam-5pm or phone

Quantliy
 AA (HP7) 500 mAH
 A 500 mAH solder tags A A 700 mAH high ca pacity C (HP11), 1.2AH C 2AH with solder tags $\mathrm{D}(\mathrm{HP} 2) 1.2 \mathrm{H}$
 D 4AH with solder tags PP38.4V 110 mAH Sub C with solder tags 1 . $1 / 2 A A$ with solder tacs 1/2 AA with solder tags AAA (HP16) 180mAH
 $\begin{array}{ll}1-99 & 100-499\end{array}$ $\begin{array}{ll}10.99 & \varepsilon 0.77+\text { VAT }\end{array}$ $\varepsilon 1.55 \quad £ 0.95$ + VAT $\varepsilon 1.95 \quad 81.20+$ VAT £2.20 $\quad £ 1.69$ + VAT $\varepsilon 3.60 \quad £ 2.25+$ VAT $£ 2.60 \quad \varepsilon 1.96+$ VAT £4.95 $\quad \mathrm{E3.59}+\mathrm{VAT}$ $£ 4.95$ £3.85 + VAT £2.50- $£ 1.70+$ VAT £1.55 $\quad £ 1.17+$ VAT

Special offers for unusual sizes only while stocks last. Please check availability before ordering.
Fcell 7 AH $32 \times 87 \mathrm{~mm}$ wintity $\quad 1-99 \quad 100-499$
\qquad with flat top
F cell with solder tags
Cellular telephone battery
42 mm long $\times 16 \mathrm{~mm}$ dia
Stick of 4171×16 dia with 150 mm.
Stick od black leads

£4.30 $81.45-50.95+$ VAT All 1 £5.95 $£ 4.00+$ VAT All 1 to 99 prices include VAT Please add 95 p postage \& packing per order

276-278 Chatsworth Road, Chesterfield S40 2BH
Access \& Visa orders tel: (0246) 211202

N. R. BARDWELL LTD (EE)	
	Signal diodes IN4148. Rectifier Diodes 1 N4001
	Rectifier Diodes 1 N4007
	Rectilier Diodes 1N540
	7410 p Amplic.s.
	C10601400V 5 amp thyristors...........................1.00
	BFY51 Trans
	BC478 Trans istors
	MPSA92 Transistors.............................1.00
	Rectangular redi.e.d.s.................................1.00
	Miniature axial l.e.d.s super b
	Miniature red I.e.d.s 3
	Asstd. seven segme
	.43".Com. anode seven se
	22NF 100 V radial tilm capacitors......................1. ${ }^{\text {a }}$
200 Assto. Visc ceramic	
	4 U 716 V Radial electrolytic
(1)............1.00	
So	
5050220UF$470 U F$10 V RadialRadial	
48100$108 s s t i d ~$Asstid	
20 Min SP/CO slide switches.............................1.00	
Magnetic ear pips plus	
10 watt Stereo a mplifier, 4 controls plus data.........2.95 10 mm Flashing l.e.d. red	
10 mm Ultra brighti.e.d. red 300 MCD $E 0.60$ Prices include Vat, postage $£ 1.00$. Stamp for Lists	
288 Abbeydale Road, Sheffield S7 1FL	
	hone (0742) 552886. Fax (0742) 500689

> PERSONAL STEREO TAPE PLAYERS
> Complete with headphones, for spares or repair, to clear, $£ 2$ each Mini FM transmitter, sensitive built-in microphone, 100 yards range, runs for months on two pencells, ready built p.c.b. with battery holder $£ 3.50$. Boxed with switch, ready to use $\mathrm{E6.50}$. Please add 50 p per order pos
on request

> LIVEWIRELESS, 25 Halsall Road, Birkdale.
> Southport, Lancs PR8 3DB
> MAILORDER ONLY PLEASE

Miscellaneous

KITS, PLANS, ETC for surveillance, protection (sonic, HV), "007" gear. Send $2 \times 22 p$ stamps for list. ACE (EE), 53 Woodland Way, Burntwood, Staffs
G.C.S.E. ELECTRONICS KITS at pocket money prices. S.A.E. for FREE catalogue. SIR-KIT ELECTRONICS, 70 Oxford Road, Clacton COI 5 3TE.
PROTOTYPE PRINTED CIRCUIT BOARDS one offs and quantities, for details send s.a.e. to B.M.A. Circuits, 38 Poynings Drive, Sussex BN3 8GR, or phone Brighton 720203.
FM STEREO TRANSMITTER. Full kit including PC Board, Tuneable $88-108 \mathrm{MHz}$ to broadcast stereo audio from your CD, record player etc to any FM radio throughout your house or garden. Kit $£ 15.95$, built add $£ 8$. Send cheques/POs to Gentech, Room HE, 11 Uxbridge St. Kensington, London W8 7TQ. Trade enquiries welcome.
SPY BOOKS. Interested in espionage, countersurveillance, personal freedom or investigation? Do you seek information that some people feel should remain a secret or unpublished? Send large Should remain a secret or unpublished? Send
SAE to PO Box 2072, London NW10 0NZ.
UNUSUAL KITS, bat detectors, ultrasonic audio sender and receiver, solid state wind vane, microtransmitters etc. For list send SAE to \mathbf{P} Cartwright, 10 Charlotte Road, Edgbaston Birmingham B15 2NQ.
CLEARANCE \& Xmas freebies. Free lists. SAE to C. Bibby, 2 Moorcroft Rd, Northern Moor, Wythenshawe, Manchester M23 OWJ. BAEC member's welcome.
BONFIRE NIGHT/HALLOWEEN - fascinating effect, something different for use indoors or outdoors. Nine 4 in chemiluminescent lightsticks for £9.99. Lilco Limited, 23 Middlewood Park, Livingston EH54 8AZ.
CLEARANCE SALE. Components, software, hardware, PSU's. Send 44 p stamps for list to 21 Duchess Drive, Newmarket, Suffolk CB8 8AG
SCHEMATIC CAD and PCB design software for
IBM compatible computers, cost $£ 114$, sell for $£ 35$. Also digital simulator software, cost £228, sell $£ 50$. Phone 031 5536527.
OSCILLOSCOPE for sale. Hameg HM203-7, 20 MHz dual trace, complete with probes etc., 6 months old, as new condition, $£ 200$ o.v.n.o. Tel Warrington 31259.

FM Microtransmitter Kit - Tuneable $80-130 \mathrm{Mhz}, 500$ metre range, measures just $40 \times 20 \mathrm{~mm}$, PCB embedded coii, sensitive electret microphone Assemble...... Kit $£ 5.95$
Also available assembled and ready to use. Assembled $\mathbf{£ 9 . 9 5}$
Power Strobe Light - Produces intense light pulses, frequency adjustable
 Ion Generator (Ioniser) - Generates negative ions, removes dust, smoke,
bacteria from atmosphere, can be used in car or home. Measures $70 \times 70 \mathrm{~mm}$ 6.18 Volts..
nm, 10.95
Electrifying Apparatus. Produces voltage pulses of approx $80-300$ volts (limited current) from a 3 to 9 vort supply, output voltage is adjustable, can be used by anglers for catching worms, experiments etc, size $60 \times 60 \mathrm{~mm}$
Dual Electronic Dice - 2 fully independam dice which generate random numbers between 1 and 6 displayed by an array of LED's selectable display 1 or 2 dice, display blanking after 30 seconds if not in use. Size $75 \times 75 \mathrm{~mm}, 9 \mathrm{~V}$.
.. 14.68
The above kits are just a small selection from our vast range to receive a catalogue please send us your name, address and $2 \times 22 \mathrm{p}$ stamps.
All prices include VAT, please add f 1.50 per order for $\mathrm{P} \& \mathrm{P}$, and send cheques, PO 's to the address below, alternatively you can place a credit card order by phone,

510241231
QUANTEK ELECTRONICS LTD (EE)
45a Station Rd, Northfield, Birmingham B31 3TE.
Tel: 0214111821 Fax: 0214112355.

MAKE YOUR INTERESTS PAY!
Over the past 100 years more than 9 million students inroughout the world have found it worth thelr whilet An ics home-study course can help you get a better job, make more money and have more fun out of lifel ics has over 90 years experience in home-study pace, when and where you want under the guldance of expert 'personal tutors. Find out how we can help you. post or phone today for your free imformation Pack on the course of your cholce. (Tick one box only!

Technical Information Services

76 ChURCH STREET, LARKHALL, LANARKSHIRE, MLS JHE Tel. (0698) 884585 Mon-Frl 8.30am - 5.00 pm Tel. (0698) 883334 Outwith business hours FAX fachity avalleble ell day on bolt theo
Write now with an SAE for your Write now with an SAE for your FREE QUote FREE VOUCHERS \& FREE CATALOGUE

Remember, nof only do wo hove EVERY service sheet ever produced, but we also have

THE WORLDS LARGEST COLLECTION OF SERVICE MANUALS
a we are sole suppliers of various fault-finding guides repair manuals a technical manuals
CTV, vitea, CD, Hi-FL, Camconder, Seellites, Computer, Domesic Equip', ,ete
DATA REFERENCE MANUAL "....esiontiat tor the serlous electitclen" FREE updating and a $10 x$ discount voucher only 85.95 Incorportes Unique Model Identificetion and Chassis Dela

LOW COST UHF RADIO SWITCHING

AS USED BY THE PROFESSIONAL SECURITY MARKET

Incorporating the latest Surface Acoustic Wave technology, the system consists of a small "zero-power". UHF transmitter with digital encoder and a UHF receiver unlt with digital decoder and 3 relay outputs, 2 alternate and 1 momentary.
8 -way DIL switches on both boards set the unique security code. Many applications including lighting, alarms, the "automatic home", etc.
Size:
$T \times 45 \times 30 \mathrm{~mm}$ Tx 3-12V Up to 200 m
Rx $55 \times 65 \mathrm{~mm}$ Supply
Range
kits)..
£29.99
Complete System (2 kits)
Individual Transmitter
£19.99
Individual Receiver
Please allow 28 days for delivery
Cheques/POs to

BLB Electronics

341 Darwen Road, Bromley Cross, Bolton BL7 9BY

MISCELLANEOUS
Camera returns; 35 mm Auto Flash/Wind-on, minor faults - easily repairable... C6.00 ea or 2 for. f10.00 Dictaphone casseme, mech/record erase playback heads, 6 V solenoid, motor. hall effect switch.................... $£ 2.00$ ea T.V./Printer stands................................ 95 ea Bicc-Vero Easiwire construction TLICMOS short circuit snooper © 4.95^{*} Dot matrix LCD 10x2 lines........£3.75 ea" Dotmatix LCD 16×1 lines
Dot matrix LCD 16×1 lines with Data.
digit 16 segment VF display
with data.............................
4 digit intelligent dot matrix display.
7 segment V.F. display with driver board and data. 8 digit liquid crystal display 4 digit LCD with 7211 driver chip.
£2.99 ea

Digital clock display.
11 key membrane keypad Keread.........f1.50 ea Keyboard $392 \mathrm{~mm} \times 180 \mathrm{~mm} / 100$ 74 keys on board + LCD 74 ricosirac easily C.B. aerial eliminators. £4.95 f2.95 ea* 19" 3 U sub rack enclosures 95 ea 12 V stepper motor, 48 steps.............f8.95 step angle..
. $£ 3.95$ ea
Stepper motor board with 2 slotted opto +2 mercury tilt switches....... $\mathbf{£ 3 . 9 5}$ ea 1000 mixed $1 / 4$ watt 1% resistors. .f 4.95 ea 250 electrolyic axial + radial caps

250 mixed resistor networks 44.95 240 V 80 mm square 115 V 4 inch square fans. 12 V 60 mm square fans. 14.95 ea lar cell modules 0.45 V 700 mA
B.B.C. Micro to disc drive lead....... $\mathbf{£ 1 . 5 0}$ Car Burglar alarm vibration auto entry/exit delay..
f5.95 ea" Single zone alarm panel auto entry/exit delay housed in domestic light socket
f9.95
P.S.U.'s, TRANSFORMERS COMPONENTS P.C.P.S.U. 50 watt $115-230 \mathrm{~V}$ input +5 V $4 A+12 V 2.5 A$ output with built in fan, IEC inlet + on off................95 ea ASTEC 60 Watt $115 / 230 \mathrm{~V}$ input/outputs $+5 \mathrm{~V} 3.75 \mathrm{~A}+12 \mathrm{~V} 1.5 \mathrm{~A}-12 \mathrm{~V} 0.75 \mathrm{~A}$ ased IEC inlet on/aft switch.....£12.95 STC P.S.U. 240 V input 5 V 6 A output (converts to 12 V 3 A details
available)..................................55.95ea
240 V input 5 V 10 A output (converts to 12V 5 A no details) 55.95 ea 600Ω line output transformers... $£ 1.25$ ea* 240 V in $0-12 \mathrm{~V} 0.75 \mathrm{~A}$ out
transformer.
240 V in $0-28 \mathrm{~V} 62 \mathrm{VA}$ out
transformer..
.f1.75*
transformer................................£2.75
Transformer + PCB gives $2 \times 7.5 \mathrm{~V} 32 \mathrm{VA}$ with skt for 5 or 12 V regulator, will
power floppy drive.................. $\mathbf{5 3} 75$ ea Ultrasonic transducers (transmit + receive)
....f1.50 pai
3 to 16 V Piezoelectric sounders.......50p. 9 9DC electromechanical sounder....50p 24 V DC electromechanical sounder 2A 250 V keyswitch 3 position key OIL switches PCB MT 3/4/6 way 35 , $5 V$ SPCO SIL reed relay way....35p 5V 2PCO DIL miniature relay
12 V 2 PCO or 4 PCO continental
relay.....................................60p*
12 V 1OA PCB MT (to make contact)
100 UA panel meter..
3 to 12 V electro magnetic acoustic E 3 transducer with data....................75p ${ }^{\text {* }}$ $2.4576 / 8.8329 / 21.10 \mathrm{MHz}$ crystals
\qquad
Bridges $25 A$
2A 100 V . f1.00
. .50
QUANTITY DISCOUNTS AVAILABLE

electronize CAR ALARM KITS

MICRO-PRESSURE CAR ALARM

This new type of atarm is triggered by a unique pressure sensing system. As any vehicle door is opened air is drawn out, causing a minute drop in air any vessure. A sensor detects this sudden pressure change and sets off the alarm. An electronic filter is tuned to a very low frequency which, with alarm. An electronic, iler is funed to ade

* Opprates on all doors and tallgatte - no switches noeded.
* Automatically armed 40 soconds anter leaving vehicte.
\& 10 eacond entry deley with mudble weming. (No deley verelon avalable) \& Sounds horn or siren Intermitrently for 30 seconds - then ro-arms. \# Essy fitting - only 3 whes to connect - no holes to drill.
* Controlled by ignition awtich, hidden switch or remote control below. MICRO-PRESSURE ALARM DIY parts kit $\mathbf{E 1 5 . 9 5}$ Assembled $\mathbf{\varepsilon 2 2 . 3 5}$
NEW CODED IR REMOTE CONTROL
Our latest addition allows control of our alarms from outside the vehicie. Both transmitter and recelver use a chip designed specially for car securtiy systems with 59,046 code combinations. You can even set your own code, with several vehides on the same codie or several transmitters for one vehicte if required.
The code transmitter, supptied compiete with battery, is housed in a purpose made case to attach to your key-ring. A high power infra-red omitter transmits the 24 bit digital code over a range up to 5 metres
CODE TRANSMITTER
OIY parta kit $£ 13.95$ Aseombled $£ 17.95$ The low profile recelver is designed to sit on the dashooerd top and contains all the eiectronics to amplity and decode the infra-red signal. It also has a high intensity red L.E.D. which pulses continuousty, when armed, to warn of intruders and a green LE.D. which flashes to tell you the system has been disarmed. When used with our vorl Droo or Mirro-Pressure alarms a simple disarmed. (When used with our voh Drop or Micro-
modfication can remove the entry delay if required.)
CODE RECEIVER
Also avaliable
VOLTDROP CAR ALARM DIY parts kit $\mathbf{\$ 1 4 . 9 0}$ 1200B PIEZO SIREN (optional for the above alarms) MICRO-PRESSURE TRIGGER DIY parts ktt $£ 10.95$

Aseembled $£ 20.95$ All kits include cude cable, conneciors and clear easy to follow instructions. Case, PCB, everything down to the last washer, even solder. All prices now include post, packing and VAT on U.K. orders. Same prices apply to all European countries. For delivery outside Europe please add £3. Telephone orders accepted with VISA or ACCESS payment.
Order direct (please quote ret. E1B) or send for more details from:

EL ECTRONIZE DESIGN

Tel. 0213085877
2 Hillside Road, Four Oaks, Sutton Coidfield, B74 4DQ

ADVERTISERS INDEX

N.R. BARD750
BKELECTRONICS Cover (iii)
BLB ELECTRONICS 751
BULL ELECTRICAL Cover (ii)
CAMBRIDGE COMP. SCIENCE 737
CIRKIT DISTRIBUTION 727
COMPELEC. 751
COVEND ELECTRONICS 712
CRICKLEWOOD ELECTRONICS. 743
CR SUPPLY COMPANY 752
ELECTRONIZE DESIGN. 752
ESR ELECTRONIC COMP 696
HAPPY MEMORIES. 684
HART ELECTRONIC KITS 749
HENRY'SAUDIO ELECT 687
HIGH-Q-ELECTRONICS 706
HILLS COMPONENTS. 683
HOBBYKIT 682
ICS 751
JAYTEE ELECTRONIC SERVICES
JAYTEE ELECTRONIC SERVICES 684, 687 684, 687
JPG ELECTRONICS 750 752
MAGENTA ELECTRONICS
MAGENTA ELECTRONICS MAGENTA ELECTRONICS 688/689/690 688/689/690
MARAPET Cover (iv)
MARCO TRADING 75
MAURITRON TECH. SERV'S 750
NATIONAL COLLEGE OF TECHNOLOGY 712
NUMBER ONE SYSTEMS 687
OMNI ELECTRONICS. 684
PROCOM ELECTRONICS 706
QUANTEK ELECTRONICS 75
RACKZ PRODUCTS 737
RADIO \& TV COMPONENTS 725
RICH ELECTRONICS 752
SHERWOOD ELEC. COMP SUMA DESIGNS. 751
TECHNICAL INFO. SERVICES. 75
TK ELECTRONICS. 684
TSIEN. 707
VISUAL AUDIO SALES. 715
WEKA 713

AF WAVEFORM GENERATOR KIT ONLY $£ 29.95$
 (£39.95 BUILT \& TESTED) The major drawback for the electronics enthusiast is the high cost of test gear. This is the first in a series of low cost instruments designed to make test gear more affordable to the enthusiast.
 - SINE/SQUARE/TRIANGLE

- FREQUENCY RANGE $20 \mathrm{~Hz}-18 \mathrm{kHz}$
- OUTPUT SIGNAL VOLTAGE 0-10V p-p
* POWERED BY TWO PP3 BATTERIES (Not supplied)

Just add $£ 1.50$ P\&P and send cash, cheque or P.O. to:-
KM ELECTRONICS
54 Moorside Road, Kirkheaton, Huddersfield HD5 0LP. Tel: (0484) 545914

All prices are inclusive of VAT. Postage 30p (free over £5). Lists Free.

THE CR SUPPLY CO

127 Chesterfield Rd., Sheffield S8 ORN Tel: 0742557771
 Return posting

OMP MOS-FET ROWER AMPERIIEIE HIGH POWER, TWO CHANNEL 19 INCH RACK

(MP WOS-FET POWER AMPLIFIER MODULEE SUPPLIED READY BUILT AND TESTED. These modules now enjoy a world-wide reputation tor quality, rellability and pertormance at a reatistic price. Fo
models are avaliable 10 sull the needs of the protessional and hobby markel lie. Indualry, Leisure, Inatrumental and Mi-F atc. When comparing prices, NOTE that stl models include loroidal power supply, integrai heal sink, gless fibre P.C.B. and

THOUSANDS OF MODULES PURCHASED BY PROFESSIONAL USERS

THE RENOWNED MXF SERIES OF POWER AMPLIFIERS FOUR MODELS:- MXF200 (100W + 100W) MXF400 ($200 \mathrm{~W}+200 \mathrm{~W}$) MXF600 (300W + 300W) MXF900 (450W + 450W) FEATURES: NOWER RATNGS R.M.S. INTO 4 OHMS, BOTH CHANMELS DRIVEN EATURES: AIndependent power supplles with two toroidal transtormers *Twin L.E.D. Vu meters *

 USED THE WORLD OVER IN CLUBS, PUBS, CINEMAS, DISCOS ETC.

SIZES:- MXF200 W $19^{\prime \prime} \times \mathrm{HH}^{1 / 2, "(2 U) \times D 11 "}$

PRICES:-MXF200 ع175.00 MXF400 £233.85 MXF600 £329.00 MXF900 £449.15
SPECIALLST CARAIER DEL. \&12.50 EACH

OMP VARISPEED TURNTABLE CHASSIS

* Manual arm \# Sleel chassis \# Electronic speed control 33 \& 45 R.P.M. * Vari pitch control * High lorque servo driven DC motor \star Transit screws \star $12^{\prime \prime}$ die cast platter \star Neon strobe \star Calibrated balance weight \star Removable head shell $\star \psi_{2}$ cartridge fixings \star Cue lever $\# 220 / 240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ * $390 \times 305 \mathrm{~mm}$ * Supplied with mounting cut-out emplate.

PRICE 861.30 + E3.70 P\&P
STANTON AL500mkII GOLDRING 6950 PRICEE16.95 + 50 P

PRICEG7.15 + 50P
WITH ECHO
SUEREO DRCO MIXER DJ650C
STEREO DISCO MIXER with 2×7 bano L \& A graphic equalisers with bar grap ED VU meters. MANY OUTSTANDING speed control, DJ Mic with fone control talk-over switch. 7 Channels contro individual faders plus cross fade, wit Meadphone Monitor. Usetul combination of the following inputs:- 3 turntables (mag), cs, 5 Line for CD, Tape, Video etc.

Price £134.99 + E5.00 P\&P

Pl₹zOEECTIC TWEJTEAS - MOTOROLA

Join the Piezo revolution! The low dynamic mass (no voice coil) of a Plezo tweeter produces an improvec the units EXPLANATORY LEAFLETS ARE SUPPLIED WITH EACH TWEETER

TVPE ' A ' (KSN1036A) 3 ' round with protective wire mesh. Ideal for bookshelf and medium sized Hi-Fi apeakers. Price $£ 4.90+50 \mathrm{p}$ P\&P. TYPE 'B' (KSN1005A) $31 / 2^{\prime \prime}$ super horn for general purpose speakers, disco and P.A. systems etc. Price $£ 5.99+50$ p P\&P. TYPE 'C' (KSN1016A) 2 " $\times 5$ " wide dispersion horn for quality Hi-Fi systems and quality discos etc. Price $\mathbb{8 . 9 9}+\mathbf{5 0 p}$ P\&P. TYPE ' ${ }^{\prime}$ ' (KSN1025A) $\mathbf{2}^{\prime \prime} \times 6^{\prime \prime}$ wide dispersion horn. Upper frequency response retained extending down to mid-range (2 KHz). Suitable for high quality HI-Fi systems and quallity discos. Price C9.99 + 50p P\&P. TYPE 'E' (KSN1038A) $\mathbf{3}^{3}{ }^{4}$ " horn tweeter with attractive silver finish trim Suitable for Hi-Fi monitor systems etc. Price $\mathbb{£ 5 . 9 9}+50 \mathrm{p}$ P\&P LEVEL CONTROL Combines, on a recessed mounting plate, level control and cabinet input jack socket. $85 \times 85 \mathrm{~mm}$. Price $£ 4.10+50$ p P\&P.

गMP LINNET LOUOSFEAKERS

THE VERY BESTIN QUALITY AND VALUE
Aade especially to suit today's need for compactness with high outpu orners, grille and carrying handle. Each unit incorporates a $12^{\prime \prime}$ drive odegh frequency horn for a full frequency range of $45 \mathrm{~Hz}-20 \mathrm{~Hz}$. Both nodels are 8 Ohm impedance. Size: H20" \times W15" \times D12

CHOICE OF TWO MODELS
POWER RATINGS QUOTED IN WATTS RMS FOR EACH CABINET
OMP 12-100WATTS (100 dB) PRICE $£ 163.50$ PER PAIR
OMP 12-200WATTS (200dB) PRICE E214.55 PER PAIR
SPECIALIST CARRIER DEL. §12.50 PER PAIR

*RICES: 1 50W £49.99 250W £99.99 400W E109.95 PRPE2.00 EACH

0

POSTAL CHARGEE PER OROER
ORDERS FROM SCHOOLE, CDLLEGEE, GOVT. BODIES, PLCFICIAL ACCESEACCEPTEAT. SALEE COUNTER. VI
OUT, FHONEORFAX

RICES INCLSIVE OF $\mathcal{A C M}$
THAEE SUPERB HIOH POWER CAR STEREO BOOSTER AMPLIFIERS 150 Watts $(75+75$) Stereo, 150 W Bridged Mono
250 WATTS $(125+125)$ Stereo, 250 W Bridged Mono 400 WATTS $(200+200)$ Stereo, 400 W Brldged Mono
ALL POWERS INTO 4 OHMS Features:

* Stereo, bridgable mono \star Cholce of high \& low level inputs $\$$ \& R level
controls $\$$ Remote on-ott $\$$ Speaker \&

V/SA

OMP/MF 100 Mos-Fet Output power 110 watts R.M.S. Into 4 ohms, frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rate $45 \mathrm{~V} / \mathrm{uS}$, T.H.D. typical 0.002%, Input Sensitivity 500 mV , S.N.R -110 dB . Size $300 \times 123 \times 60 \mathrm{~mm}$. PRICE $40.85+$ e3.50 P\&P

OMP/MF 200 Mos-Fet Output power 200 watts R.M.S. Into 4 ohms, frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rate $50 \mathrm{~V} / \mathrm{uS}$, T.H.D. typical 0.001%, Input Sensitivity 500 mV , S.N.R. -110 dB . Size $300 \times 155 \times 100 \mathrm{~mm}$.
PRICE $\mathbf{8 6 4 . 3 5}+\mathbf{8 4 . 0 0}$ P\&P
OMP/MF 300 Mos-Fet Output power 300 watts R.M.S. into 4 ohms, frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rate $60 \mathrm{~V} / \mathrm{uS}$ T.H.D. typical 0.001%, Input Sensitivity 500 mV , S.N.R 110 dB . Size $330 \times 175 \times 100 \mathrm{~mm}$ PRICE E81.75 + E5.00 P\&P

OMP/MF 450 Mos-Fet Output power 450 watts R.M.S. into 4 ohms, frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rate $75 \mathrm{~V} / \mathrm{uS}$, T.H.D. typical 0.001%, Input Sensitivity 500 mV , S.N.R -110 dB , Fan Cooled, D.C. Loudspeaker Protection, Second Anti-Thump Delay. Size $385 \times 210 \times 105 \mathrm{~mm}$. PRICE C132.85 + C5.00 P\&P NOTE: MOS-FET MODULES ARE AVALLELE IN/TWO VERSIONS
STANDARD - INPUT SEMS SOOMV, BAND WIDTH 100 KHz . PEC (PROFESSIINAL EGUIPMENT COMPATIBLE) - TMPUT SENS

 AVAILABLE, INCLUDING CABINET FITTINGS, SPEAKER GRILLES, CROSS-OVERS AND HIGH POWER, HIGN (50p STAMPED) FOR COMPLETE LIST

- From McKenzle Prolessional Serles

MAKKMzIE- INSTRUMENTS, P.A., DISCO,ETC

ALL MCKENZIE UNITS 8 OHMS IMPEDANCE
100 WATT PB-100GP GEN. PURPOSE, LEAD GUITAR, EXCELLENT MID, DISCO RES. FREQ. 80 Hz , FREQ. RESP. TO 7 KHz , SENS 96 dB . RES. FAEQ. 72 Hz, FREQ. RESP. TO 6 KHz, SENS 97 dB . $10^{\prime \prime} 200$ WATTS C10-200GP GUITAR, KEYB'D, DISCO, EXCELLENT HIGH POWER MID RES. FREQ. 69 Hz , FREQ. RESP. TO $5 K H z$, SENS 97 dB . 12" 100WATT PC12-100GP HIGH POWER GEN. P
RES. FREQ. 49 Hz , FREQ. RESP. TO 7 KHz SENS 98 dB . RES. FREQ. 49Hz, FREQ. RESP. TO 7 KHz , SENS 98 dB . $12 " 1$ OOWATT C C1 2-1 00TC (TWIN CONE) HIGH PO
RES. FREQ 45Hz. FREQ. RESP. TO 12 KHz , SENS 97 dB . 12" 200 WATT 目 C12-200B HIGH POWER BASS, KEY RES. FREQ. 45 Hz , FREO. RESP. TO 5 KHz , SENS 99 dB . 12" 300 WATT C C ${ }^{\circ}$ 2-300GP HIGH POWER BASS, L RES. FREQ. 49 Hz , FREQ. RESP. TO 7 KHz , SENS 100 dB . 15" 100WATT PC15-100BS BASS GUITAR, LOW F
RES. FREQ. 40 Hz , FREQ. RESP. TO 5 KHz , SENS 98 dB RES. FREQ. 40 Hz , FREQ. RESP. TO $5 K \mathrm{~Hz}$, SENS 98 dB . 15 200WATT BC15-200BS VERY HIGH POWEA BAS RES. FREQ. 40 Hz , FREQ. RESP. TO 3 KHz , SENS 98 dB . 15 " 250 WATTS C1 5-250BS VERY HIGH POWER BASS.
RES. FREO. 39Hz, FREQ. RESP. TO 4 KHz , SENS 99 dB RES. FREQ. 39Hz, FREQ. RESP. TO $4 K H z$, SENS 99 dB . 15" 400 WATT C1 5-400BS VERY HIGH POWER, LO
RES. FREQ. 40 Hz , FREQ. RESP. TO 4 KHz , SENS 100 dB $18^{\prime \prime} 500$ WATT C $18-500$ BS EXTREMELY HIGH POW RES. FAEQ. 27 Hz , FREQ. RESP. TO 2 KHz , SENS. 98 dB . OSE, LEAD GUITAR PRICE CS3.21
\qquad PRICE ©S3.21 + £2.50 PAP
AR, DISCO.
PRICE ©40.35 + £3.50 PAP PRICE C.A., VOICE, DISCO PR.A. P.A. PRICE E71.01 + E3.50 PAP ARDS, DISCO ETC PRICE C95.66 + ©3.50 Pap PRICE ¢ $59.05+$ ¢4.00 PRP PRICE C80.57 + ¢4.00 PRP PRICE $\mathbf{c} 9.23+\mathbf{~} 4.50$ Pas PRS.
PRICE $£ 105.46+\varepsilon 4.50$ Pap PRICE $6174.97+$ E5.00 PAP BARBENDEISA- HI-FI, STUDIO, IN-CAR, ETC
ALL EARBENDER UNITS \& OHMS (Except EB8-50 \& EB10-50 whlch are dual
BASS, SINGLE CONE, HIGH COMPLIANCE, ROLLED SURROUND BASS, SINGLE CONE, HIGH COMPLIANCE, ROLLED SURROUND
$8^{\prime \prime} 50$ watt EB8-50 DUAL IMPEDENCE, TAPPED $4 / 8$ OHM BASS, HI-FI, IN-CAR RES. FREQ. 40 Hz, FREQ. RESP. TO 7 KHz SENS 97 dB . 1050 WATT EB $10-50$ DUAL IMPEDENCE, TAPPED $4 / 8$ OHM BASS, H RES. FREQ. 40 Hz , FREQ. RESP. TO 5 KHz , SENS. 99 dB . RES. FREQ. 35 Hz , FREQ. RESP. TO 3 KHz , SENS 96 dB 12" 100WATT EB1 2-100 EASS, STUDIO, HI-FI EXC RES. FAEQ. 26 Hz , FREQ. AESP. TO 3 KHz , SENS 93 dB .

PRICE C8.00 + C2.00 PAP IN-CAR.
PRICEC13.65 + £2.50 PAP PRICEC30.30 + ¢3.50 PAP PRICE C42.12 + ¢3.50 PAP FULL RANGE TWIN CONE, HIGM COMPLIANCE, ROLLED SURAOUND 5% " 60 WATT EE5-6OTC (TWIN CONE) HI.FI, MULTI-ARRAY DISCO ETC
 6 $1 / 2$ ' OOWATT EBE-6OTC (TWIN CONE) HI-FI, MULTIRES. FREQ. 38 Hz , FREQ. RESP. TO 20 KHz , SENS 94 dB . B" 6OWATT EBB-6OTC (TWIN CONE) HI-FI, MILTI-AR RES. FREQ. 40 Hz , FREQ. RESP. TO 18 KHz , SENS 89 dB . 10 ©OWATT EB 10-60 C (TW NO CONE) HI-FI, MULTI ARAAY DISCO ET RES. FREQ. 35 Hz , FREQ. RESP. TO 12 KHz , SENS 98 dB .

RICE C9.99 + E1.50 PAP PRICE C10.99 + 1.50 PAR
 PRICE $16.49+$ ¢2.00 P AR

TRANSMITTEB HOBBY KITS

PROVEN TRANSMITTER DESIGNS incLuding glass fibae PRINTED CIRCUIT BOARD AND HIGH QUALITY COMPONENTS COMPLETE WITH CIRCUIT AND INSTRUCTIONS
3 W TRANSMITTER $80-108 \mathrm{MHz}$, VARICAP CONTROLLED PROFESSIONAL
PERFORMANCE, RANGE UP TO 3 MILES, SIZE $38 \times 123 \mathrm{~mm}$, SUPPLY 12 V @ 0.5 AMP .
TM MICRO TRANS MITTE
VERY SENS FET MIC RANGE 100 . 08 MH2, VARICAP TUNED, COMPLETE WITH

B.K. ELECTRONICS UNITS $1 \& 5$ COMET WAY, SOUTHEND-ON-SEA, Tel.:070e-5E7572 Fax. 0 ETioe-4eoe43

1992 BUYER'S CUIDE TO EEEGTRONIC CODPPONENTS
 more than 600 brand new produc On sale now, only $£ 2$
Available from all branches of WHSMITH Maplin shops nationwide. Hundreds of new prod at super low pr:

[^0]: © Wimborne Publishing Lid 1991. Copyright in all drawings, photographs and articles published in EVERYDAY ELECTRONICS is fully protected, and reproduction or imitations in whole or in part are expressly forbidden.

 Our December '91 lesue will be published on Friday, 1 November 1991. Soe page 683 for details.

