$=V=\mathrm{B}$ WITH PRACTICAL

코 Hioncs

GUITAR PREAMP

\& DISTORTION UNM
LINEAR CLOCK
An
SOINING THINGSOVOEETHER ohn Linsley
mixanomatol

UNIVERSAL ALARMMODULE

MCROWAVE CONTROL PANEL Mains operated, with touch switches. Complete with 4 digit display, digital clock, and 2 relay
outputs one for power and one for pulsed power (programmable). outputs one for power and one for pulsed power (programmable).
Ideal for all sorts of precision timer apolications etc. Ideal for all sorts of precision timer apolic
ref 4P151. Good experimenters board.
FBRE OPTIC CABLE. Stranded optical fibres sheathed in black PVC. Five metre length $£ 7.00$ ref 7 P 29 R or $£ 2$ a me
12V SOLAR CELL. 200 mA output ideal for trickle
charging atc. 300 mm square. Our price $£ 15.00$ rel
15P42R. Gives up to 15 v .
PASSIVE INFRA-RED
Complete with daylight sensor adiustable lights on fimer (8 secs -15 mins). 50 r range with a 99 deg coverage. Manual overide facility. Complete with wallbrackets, bulb holders etc. Brand n
anteed. Now only $£ 19.00$ ref 19p29
anteed. Now only £19.00 ref 19P29
Pack of two PAR38 bulbs for above unit $£ 12.00$ ref 12P 43 R
VIDEO SENDER UNTT Transmit VIDEO SENDER UNTT Transmit both audio and video signals from either a video camera, video recorder or computer to any
standard TV set within a $100^{\text {r rangel ((tune TV to a spare channer). }}$ 12v DC ©p. $£ 15.00$ ref 15P39R Suitable mains adaptor $£ 5.00$ re FM TRANSMITTERHCOUSer into a cordless camera!
FM TRANSMTTERHoused in a standard working 13A adapter (bug is mains driven). E26.00 ret 26P2R. Good range MNATURE RADIO TRANSCEIVERS A pair of walk takies with a range of up to 2 kilometres. Units measure on 30.00 ref 30P 12A

FM CORDLESS MICROPHONE.Small hand held unit I with a 500 'range! 2 transmit power levels. Reqs PP3 battery. Tuneable to any FM recerver. Our price $£ 15$ rel 15P42AR 12 BAND COMMUNICATIONS RECEIVER. 9 shot bands, FM, AM and LW DXhocal switch, tuning 'eye' mains or battery Complete with shoulder strap and mains lead $£ 19$ ref 19P14R. Ideal for listering all over the world.
CAR STEREO AND FM RADIO. Low cost stereo system giving 5 watts per channel. Signal to noise ratio better than 45db, wow and futter less than $.35 \%$. Neg earth $£ 19.00$ ref 19P30
LOW COST WALIKIE TALKIESPair of battery operated units with a range of about 200'. Our price $£ 8.00$ a pair re 7 CHANNEL GRAPHIC EOUALIZERplus a 60 power ampl $20-21 \mathrm{KHZ} 4-8 \mathrm{R}$ 12-14v DC negative earth. Cased. 525 ref 25P14R.
NICAD BATTERIES. Brand now top quality. $4 \times A A$'s $£ 4.00$ ref 4 P44R. $2 \times$ C's $£ 4.00$ ref 4 P73R, $4 \times$ D's $£ 9.00$ ref 9P12R, $1 \times$ PP3 £6.00 ref 6P35P Pack of 10 AAA ,s $£ 4.00$ ref 4P92R
TOWERS INTERNATHNAL TRANSSTOR SELECTOR GUIDE. The utimate equivalents book New ed. £20.00 ref 20P32R GEIGER COUNTER KIT.Complete with tube, PCB and all compoFM BUG KIT Natery operated gerger counter. £39.00 ref 39P1R My FM radio. New design with FCB embedded coil. Transmits to any FM radio. ov battery req'd. $£ 5.00$ ret 5 P1 58 R . 35 mm square.
FM BUG Built and tested superior $9 v$ operation $£ 14.00$ ref 14 P3A COMPOSITE VIDEO KITS. These convert composite video into separate H sync. V sync and videc. 12v DC. $£ 8.00$ ref 8 P 39 R . SNCLANR C5 MOTORS 12v $29 A$ (full load) $3300 \mathrm{pm} 6^{\prime \prime} \times 4^{\prime \prime} 1 / 4^{\circ}$ OP shath. New. $£ 20.00$ rel 20P22R. Limited slocks.
As abowe but with fitted 4 to 1 inline reduction box (800 mpm) and toothed nyion bell drive $\operatorname{cog} £ 40,00$ ret 40P8R 800 rpm .
ELECTRONMC SPEED CONTROL KIT for C5 motor ELECTRON C SPEED CONTROL KIT for C5 motor. PCB and all components to build a speed controhler ($0-95 \%$ of speed). Uses
pulse width modulation. $£ 17.00$ ref 17P3R Potentiometer control pulse width modulation. £17.00 ref 17P3R Potentiometer co
SOLAR POWERED NICAD CHARGER.Charges 4 AA
nicads in 8 hours. Brand new and cased E6.00 re16P3R. $2 \times C$
cell model $£ 6.00$
ACORN DATA RECORDER ALF503 Made for BBC
computer but suitable for others. Includes mains adapter, leads and book $£ 15.00$ ref 15P43R
VIDEO TAPES. Three hour superior quality tapes made under Icence from the famous JVC company. Pack of 10 tapes New low price E15.00 rel J15P4
PHDUPS LASER. 2NW HELIUM NEON LASER TUBE. BRAND NEW FULL SPEC $£ 40.00$ REF 40P10R. MAINS POWER SUPPLY KIT E20.00 REF 20P33R READY BUILT AND TESTED LASER IN ONE CASE 875.00 REF 75P4R. 12 TO 220 V INVERTER KITAs supplied it will handle up to about 15 w at 220 v but with a larger transformerit will handie 80 watts. Basi 25 WATT STEREO AMP LIFIER IC STK0.
of a handful of components you can build a 25 watt amplifier: $£ 4.00$ of a handul of components you
BARGAIN NICADS AAA SIZE 2OOMAH 1.2V PACK OF 10 £4.00 REF 4P92R, PACK OF $100 £ 30.00$ REF 30P16R FRESNEL MAGNIFYING LENS $83 \times 52 \mathrm{~mm} £ 1.00$ ref $80827 R$ 12V 19A TRANSFORMER Ex equipment $£ 20$ but OK. POWER SUPPLES Made for the Spectrum plus 3 give +5 @ $2 A .+12 @ 700 \mathrm{~mA} \&-12 @ 50 \mathrm{~mA}$. EB ref O8P3
UNIVERSAL BATTERY CHARGER.Takes AA's. C's, D's and PP3 nicads. Holds up to 5 batteries at once. Now and cased, mains operated. $£ 6.00$ red 6P36R.
IN CAR POWER SUPPLY. Plugs into cigar socket and gives $3,4,5,6,7.5,9$, and $12 v$ outputs at 800 mA . Complete with universal spider plug. E5.00 ref 5P167R
 plug £3.00 ref 3P922 ideal for tea on the movel
LED PACK . 50 red, 50 green, 50 yellow all 5 mm £ 8.00 ref 8P52 IBM PRINTER LEAD. (D25 to centronics plug) 2 metre parallel. £5.00 ref 5P186R. 3 metre version $£ 6.00$ rel 6 6P50.
COPPER CLAD STRIP BOARD $177^{\prime \prime} \times 4$ " of 1 " pitch "vero" board £4.00 a sheet ref 4P62R or 2 sheets for $£ 7.00$ ref 7P22R COL POWERED PADIOI FMAM chargeable batteries. Complete with hand charger \& solares ro14 P200R. Ser of $2 A A$ nicads $E 2$ ref L2Pg PC STYLE POWER SUPPLY Made by AZTEC 110vor240vinput +5@15A,+12 lan, on/otf switch, IEC inler and standard
 C fyleads. E15.00 ref F15P4
TELEPHONE HANDSETS 10 brand new handsets with mic and
speaker only $£ 3.00$ for 10 ref 3 P146R

BENCH POWER SUPPLIES Superty made fuly cased (metal) giving 12 V at 2 A plus a 6 V supply. Fused and short circuit protected.
For sale at less than the cost of the case! Our price is $£ 4.00 \mathrm{ref}$ 4P103R
SPEAKER WIRE Brown twin core 100 feel for $£ 200$ REF 2P79R 720K 3 1/2" DISC DRIVE FOR E9rand new units made by JVC complete with tech info just $£ 9.0011$ they have a metal tab instead of a button and you may want to fit an led. Combined power and data cable easily modified to IBM standard. ref L9P2
MONO VGA MONITORS 559 Standard IBM compatible monitor made by Amstrad. Ex display Our price just $£ 59$. Ref $59 P 4 R 8$. CAR BATTERY CHARGER Brand new units complete with panel meler and leads 6 or 12 V output $£ 7.00$ ref J7P2
CUSTOMER RETURNED SPECTRUM +2
Complete but sold as seen so may need attention $£ 25.00$ ref J25P1 CUSTOMER RETURNED SPECTRUM +3

AMSTRAD 1640DD BASE UNITS
 BRAND NEW AND CASED
 TWO BUILT IN 5 1/4" DRIYES

 mother board with 640 K Memorykeyboard, mouse \& manual
our price just

£79!!!!

SCART TOD TYPE LEADS

Standard Scart on one end. Hi density D type (standard VGA Connector) on the other. Pack of ten leads only $£ 7.00$ rei 7P2R OZONE FRIENDLY LATEX
$250 \mathrm{~m} /$ bottif of fiquid nubber sets in 2 hours. Idealfor mounting PCB's hxing wires etc. $£ 2.00$ each ret 2P379R

VIE WDATA SYSTEMS

Brand new units made by TANDATA complete with 1200/75 built in modem intra red remote controlled qwenty keyboard BT appproved Prestel compatible, Centronics printer port RGB colour and composite output (works with ordinary television) complete with power supply and fully cased. Our price is only $£ 20.00$ ref 20P1R COMMODORE 64 COMPENDIUM Pack consisting of a Com. modore 64 comput
PPC MODEM CARDS Made for the Amstrad PPC16401512 range these are plug in modules that operate at 2400 baud. No data. E15 ret Q15P5.
AMSTRAD LQ3500 PRINTER ASSEMBLIES Entire mechanical assembies including print head, platen, cables, stepper motors etc etc. infact e
AMSTRAD DMP 4000 PRINTER ASSEMBLIES Entire printer assemblies including print head, platen, cables, stepper motors etc. Everything bar the electronics and case. Our price just $£ 20$ ref and 32 v will give 50 v at 3 A or 32 at 4 A etc. Centre tapped primary. $£ 9$ ref Q9P2. Fixing kit is $£ 2$ ret Q2P1
AERIAL BRACKETS Wall plate $7.5^{\prime \prime}$ sq complete with rawl bolts 10" stand off brackets with standard tube clamps. Will take up to $2^{\prime \prime}$ mest. Substantial bracket (would take body weight). $£ 7$ ref Q7P1 TV SOUND RECEIVERS Popular units that with the addition of a speaker act as a tv sound receiver. Ideal as a stand alone unit or for connecting into HI FI! £12 ref Q12P4
2,000 COMPONENTS FOR £3 Yes thats right just send us £3 and you can have 1,000 resistors plus 1,000 capacitors! Our choice of value. Order ref O3P1
ETRI FANS Mains, 11 watt 80 mm diameter. £G. Ret Q6P3 UGHTGUNS Originally made for the Spectrum +2 but may have other uses (good stripper). £2 Rel O2P3
GX4000 GAMES CONSOLES Complete with motor racing game. psu and joystick. £15 ref O15P3. Extra 4 games $£ 12$ ref O12P2 VCR RABBIT SYSTEM Lets you control your VCR from a secon set using the VCA remote control. Retail $£ 99$ ours $£ 39111$
CAMERAS Customer
CAMERAS Customer returned units 3 for $£ 10$ ref L10P2
STEAM ENGINE Standard Mamod 1332 engine complete with boiler piston etc $£ 30$ ret 30P200

HANDHELD TONE DIALLERS

Small units that are designed to hold
over the mouth piece of a telephone
 over the mouth piece of a telephone
remote cont answer machines. 5500 ret 5P209R AMAZING TALKING COINBOXI
Fully programmable talking. lockable coinbox BT approved, retai price is $£ 79$ ours is just $£ 29!$ rei J29P2
ANSWER PHONES $£ 15$ Customer returned units with 2 faults one we tell you how to tix the other you do your selt! 18 ret J18P 2 or 4 for $£ 60$ ref J60P3 BT approved (retail price $£ 79.95$!! each) COMMODORE 64 MICRODRIVE SYSTEM
Complete cased brand new drives with cartridge and software 10
times faster than tape machines works with any Commodore 64 setup. The orginal price for these was 549.00 but we can offer them to you at only £25.00! Ref 25P1R

BULL ELECTRICAL

 250 PORTLAND ROAD HOVE SUSSEX BN3 501 TELEPHONE 0273203500 MAIL ORDER TERMS: CASH PO OR CHEQU WTHORDER PLUSE3.00 POST PLUSVAT.PLEASE ALLOW 7 - 10 DAYS FOR DELVERY

FAX 0273323077
Mr

90 WATT MAINS MOTORS Ex equipment but ok Good general pupose unit C 9.00 ref F9P1
H FI SPEAKER BARG
tonsist of a 4"10 watt4R speaker and a 2" 140R tweeter. If you want two of each plus 2 crossovers for $£ 5.00$ ref F5P2.
EMERGENCY LIGHTING SYSTEM
EMERGENCY LIGHTING SYSTEM
Fully cased complete with 2 adjustable food hights. All you need is a
standard 6 v lead acid battery. Our price is wist $£ 10$ ref $J 10 \mathrm{P} 29$ standard 6 v lead acid battery. Our price is inst $£ 10$ ref J 10 P 29
AMSTRAD 464 COMPUTERSCustomer returned units complete with a monitor for just £35! These units are fauly non retumable. WOLSEY DMAC DECODERS
Made for installation in hotels etc as the main sat receiver no data but fully cased quaity unit. $£ 20$ ref K20P1. Suitable psu $£ 8$ rei K8P3 REMOTE CONTROLS
Brand new infra red CONTROLS originally made for controlling WOLSEY satelinte receivers, £2 ea ref K2P1 or 20 for $£ 19$ ref K19P1. DOS PACKSComplete set of PC discs with DOS 3.2, basic. CORDLESS TIE CLP MCROPHONE
transmits between 88-108MHZ FM $5.2 \mathrm{~cm} \times 2 \mathrm{~cm}$, uses LR44 watch banery. Complete with wire aerial \& battery. E16 ref K16P1 CHASSIS MOUNT TRANSFORMERS
240 v primary, 12 v secondary 20 VA E 2 ret K2P2
240 v primary. 16 v secondary 10A (splt winding) £10 ref L10P1 100 RED LED PACK (5MM) \&5 REF K5P2
12V STEPPR MOTOR ideaCK 100 CERAMICS $£ 2$ ret J2P14 CAPACITOR BARGAIN PACK 100 CERAMICS $£ 2$ REF J2P2. SPECTRUM JOYSTICKS TWO FOR [5 REF J 5 P 2
AMSTRAD'PC CASE, POWER SUPPIY AND 720k FLOPPY DRIVE ALL THIS FOR \&30 REFO30P15
USEFUL POWER SUPPLES. 18 v 900 mA dc output (regulated) fully cased with mains cable and DC out cable- 66 ref K6P1 UNCASED PC POWER SUPPLES. Standard PC psu without case, fan etc. Good for spare or low cost PCl. £4 ref L4P6.
RADAR DETECTORS. Detects X and K bands (le speed
Not logal in the UK so only avallable H you Intend to 'export't. E59 ref J59P1
100 WATT MOSFET PAIR.Same spec as 2Sk343 and 2SJ4 13 ($8 \mathrm{~A}, 140 \mathrm{~V}, 100 \mathrm{w}$) 1 N channel and 1 P channel. £3 a pair ref j 3 Pg . LOW COST CAPS. 1,000 capaciors £3 (33ut.25v) ref J3P10. VELCRO. 1 metre iength 20 mm wide, blue. $\mathrm{£2}$ ref J2P16.
JUG KETTLE ELEMENTS. Good general purpose heating element just $£ 3$ ea ref £3P8 or 5 for £10 ref J10P3.
VERY BIG MOTOR. 200 v induction $1.1 \mathrm{kw} 1410 \mathrm{pm} 10^{\prime \prime} \times 7^{7 \prime}$ GEC 1"keyed shaft Brand new. $£ 95$ ref J95P1
BIG MOTOR. 220-240v $1425 \mathrm{pmm} 28 A 5 / 8 \mathrm{th"}$ keyed shat GEC 6.5° $\times 8^{4}$ complete with mounting plate. $£ 38$ ref J 38 P 1 .
SMALL MOTOR. Electrolux 160 want $3,000 \mathrm{rpm}, 220-240 \mathrm{~N} 5 / 8^{\prime \prime}$ shaft precision built $£ 18$ ref $\mathrm{J} 18 \mathrm{P} \uparrow$.
EPROMS 27C64 PACK OF 10 £ 7 REF M7P1. 27 C256 PK OF 10 £9 REF M9P1. 27C5 12 PK OF 10 £ 10 REF M10P1. MODEMS FOR £1.25? These modems are suitable for stripping only hence they are only 4 for $£ 5$ ref J5P3.
SOLAR POWERED WOODEN MODELS. Complete with solar panet, motor and full instructions. $£ 9$ ret J9P2. 3 diff $£ 20$ ref J20P3. SOUND OPERATED LIGHT. Clap your hands and light comes on. Turns after preset delay (4 AA's req'd). £2 ref $J 2 P 3$.
FERGUSON SRB1 REMOTE CONTROLS. Brand
FERGUSON SRB1 REMOTE CONTROLS. Brand new units ideal for a spare or have two remotesl £4 each.
$51 / 4^{" 3} 360 \mathrm{~K}$ DISC DRIVE Made for AMSTRA
$51 / 4360 \mathrm{~K}$ DISC DAVE

PC CORNER

PC CASES Deskiop case +psu £51 60 rel BPCC1, Deluxe shimline case +psu $£ 60.00$ rel BPCC2. Minitower case +psu $£ 51.60$ ref BPCC3, Deluxe midi case tpsu 990.00 ref BPCC4.
MONITORS Mitac 14^{n} SVGA .39DP £ 174 ref BPCMO2. Mitac 14* SVGA 28DP $£ 202$ ref BPCM01
MEMORY 256 K Simm 7 Ons $£ 8.40$ ref BPCMI1, 1 MB SImm 70 ns £26.40 ref BPCMI2, 4MB Simm 70ns E96 ref BPCM13
MICE 2 button serial mouse with $3.5^{\prime \prime}$ siware. $£ 8.40$ ref BPCMI6. 36utton serial mouse with $3.5^{\text {n }}$ s/ware $\varepsilon 960$ ref BPCMI7. KEYBOARDS 102 AT UK standard keyboard $£ 18.60$ ref BPCMI4, Deluxe keyboard 102 AT UK £26.40 ref BPCM15. SOFTWARE MS DOS VS OEM version. $£ 39.60$ ref BPCMI8, MS WINDOWS V3.1 OEM version. $£ 42$ ret BPCMi9.
MOTHERBOARDS 286-16 Headiand chipset $£ 46.80$ ref BPCMB1, 386SX-33 Acer chipset $£ 82.80$ ref BPCMB2. 386 SX-40 UMC with 64 K cache $£ 110$ ret BPCMB3, $4865 \mathrm{X}-25$ UMC with 64 k cache §191 ref BPCMB4, 486DX-33 UMC with 256k cache £378 ref BPCMB5, 486DX-66 UMC with 256k cache E515 ref BPCMB6. FLOPPY DRIVES 1.44 mb 3.5 "drive $£ 32.34$ ret BPCDD $05,1.2 \mathrm{MB}$ $525^{\prime \prime}$ drive $£ 38.40 .35^{\prime \prime}$ mounting kit $£ 5$ ref BPCDDO7.
HARD DRIVES 42MB IDE $17 \mathrm{~ms} £ 99$ ref BPCDDO1, 89 MB IDE 16 ms ref $\mathrm{BPCDDO2}$. 130 MB IDE 15 ms £ 215 ref BPCDD03, 213 MB IDE 14 ms E298 ref BPCDO 04.
VIDEO CARDS 256k C\& T 8 bit SVGA card $£ 19.20$ ret BPCVCO1. 512. Trident 900016 bit SVGA card £31 20 rei BPCVCO2. 1 MB Trident 890016 bt SVGA card $£ 45$ ref BPCVC03, 1 MB Carrus E82 80 ret BPCVCOS
ADD ONCARDS Muttil/O card 2 serial. 1 parraiel, 1 game, 2 foppy. 2 IDE hard drives $₹ 11$ ref BPCAOC01. ADLIB sound card with speakers $£ 37$ ref BPCAOCO2, Orchid sound card with speakers $£ 63$ speakers BPCAOCO3.
ret

EXAMPLES OF COMPLETE SYSTEMS

3865X-33 SYSTEM
$386 S \mathrm{X}-33$ board at $£ 8280$, case $£ 51,60,2 \mathrm{MB}$ ram $£ 52.80,42 \mathrm{MB}$ dive $£ 99,512$ SVGA card $£ 31,20,3.5^{\prime \prime}$ FDD $£ 3234$, multi 100 card drive $£ 99,512$ SVGA card $£ 31,20,3.5^{\prime \prime}$ FDD $£ 3234$, multi $1 / 0$ cand
£11 SVGA colour monitor $£ 174,102$ k'board, $£ 25$ build foe if required. Total £579.34
Quired. Total SYSTEM
 486 Dx - 33 board $£ 378$, case $£ 51.60,2 \mathrm{MB}$ ram $£ 52.80,89 \mathrm{MB}$ drive
$£ 166,512$ SVGA cand $£ 31.20,3.5^{\prime \prime}$ FDD $£ 32.34$, mulf $\mathrm{I} /$ o card $£ 11$, $£ 166,512$ SVGA cand $£ 31.20,3.5^{\prime \prime}$ FDD $£ 32.34$, mult loo card $£ 11$
SVGA monitor $£ 174.102 \mathrm{k}$ booard $£ 18.60$, $£ 25$ build fee if required SVGA monitor
Total £939.84.
YEAR PARTS AND LABOUR.
1993 CATALOGUE AVAILABLE WITH ALL ORDERS IF RE OUESTED OTHERWISE A4 SAE FOR FREE COPY.
in sussex? CALL IN AND SEE US!

EUERYDAY
WITH PRAGTICAL

INCORPORATING ELECTRONICS MONTHLY

The No. 1 Independent Magazine for Electronics, ITechnology and Computer Projects

ISSN 02623617
PROJECTS . . . THEORY . . . NEWS . . . COMMENT . . . POPULAR FEATURES . .

(C) Wimborme Publishing Ltd 1993. Copyright in all drawings, photographs and articles published in EVERYDAY with PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or in part are expressly forbidden.

Projects

GUITAR PREAMP AND DISTORTION UNIT

by John Chatwin 326
Variable gain and distortion from this straightforward unit
UNIVERSAL ALARM MODULE by Paul Kerman328

Provides "entry" and "exit" delays plus a timed alarm set off by vibration
SUPERHET RADIO CONTROL RECEIVER by Robert Penfold 340
Selective and sensitive, can provide increased remote control range
LINEAR CLOCK by W. D. Phillips
348
An instructive and unusual design
MIND MACHINE MK II - 2 by Andy Flind 362
Photic stimulation for mind entrainment
MINI LAB by Alan Winstanley and Keith Dye 378
A Digital Display is added to our Teach-In development board

CIRCUIT SURGERY by Mike Tooley334
Advice, information and circuit designs for readers
INTERFACE by Robert Penfold 356
Putting together or expanding a PCTEACH-IN '93-7 by Alan Winstanley and Keith Dye368
More digital electronics, flip flops, counters, BCD - decimal etc
TECHNIQUES - ACTUALLY DOING IT by Robert Penfold 380
Using stripboard to build projectsAMATEUR RADIO by Tony Smith G4FAI388
Code Free Licence; Club Syndrome; Novice Licence Improvement; MoreFrequencies/Modes; Young Amateur
EPCLINTOS
EDITORIAL325
SHOPTALK with David Barrington 330
Component buying for EPE projects
INNOVATIONS 332
News and patent applications from the world of electronics
JOINING THINGS TOGETHER by John Linsley Hood 336
Some assistance to help you "mix and match" audio circuits
NEW TECHNOLOGY UPDATE by lan Poole 344
Developments in liquid crystal displays
READOUT 345
Our readers letters page - air your views
HOME BASE by Terry Pinnell 358
Jottings of an electronics hobbyist
FOX REPORT by Barry Fox 377
Nintendo and Sega prices and health scare
ELECTRONICS VIDEOS 382
An extended range of videos to compliment your studies
DIRECT BOOK SERVICE 383
A wide range of technical books available by mail order
PRINTED CIRCUIT BOARD SERVICE 386
Some p.c.b.s at sale prices plus all boards for recent projects

256k RAM - expandable to 640 k
4.7 Mhz speed

360k 5-1/4" floppy - 2 serial \& 1 parallel ports MS-DOS 4.01
Optional FITTED extras: 6 monitor with card £39. 2nd $5-1 / 4^{*} 360 \mathrm{~K}$ floppy $£ 29.95 .20$
mat mbyle MFM hard drive $\mathrm{E99}$.

Ony £99.00

FLOPPY DISK DRIVES

$51 / 4^{\text {" }}$ from $£ 22.95-31 / 2^{\prime \prime}$ from £21.95! Massive purchases of standard $51 / 44^{\text {a }}$ and 312 ' drives enables us
to present prime product at industry beating low prices! All units (unless stated) are removed form often brand new equipment and are fully tested, aligned and shipped to you with a 90 day guarantee and operate from standard voltages and are of standard size. All are IBM-PC compatible (if $31 /^{*}$ supported). 3.5" Panasonic JU363/4 720K or equivaient \quad E29.95(B) 3.5" Mitsubishi MF355C-L. 1.4 Meg. Laptops only" ع29.95(B) 3.5" Mitsubishl MF355C-D. 1.4 Meg. Non laptop
5.25" EXTRA SPECIAL BRAND NEW Mitsuioishi MF5018

360 K . Absolutely standard fits most computers $£ 22.95$ (B) Data cable Included in price.
Shugart 800/801 SS refurbished \& tested Shugart 851 double sided refurbished \& tested Mitsubishl M2894-63 double sided switchable hard or soft sectors- BRAND NEW

ع175.00(E
Dual 8" drives with 2 mbye capacity housed in a $£ 250.00(\mathrm{E})$ with buit in power supplyl Ideal as exterior drivesl $£ 499.00(F)$ End of line purchase scoop! Brand new NEC D2246 8 85 megabye of hard disk storagel Full CPU control and industry
standard SMD interface. Ullra hi speed transfer and access time leaves the good old ST506 interface standing In mint condition leaves the good old ST506 intentace standing. In mint condition
and comes complete with manual. Only..................29(E)

THE AMAZING TELEBOX!

Converts your colour monitor into a
QUALITY COLOUR TVII

The TELEBOX consists of an attractive fully cased mains powered unit, containing all electronics ready to plug into a host of video monitors made by manufacturers such as PHIUPS TATUNG AMSTRAD A , SONY. COMMODORE, PHILIPS, TATUNG, AMSTRAD and many more. The composite video output will also plug directly into most video recorders, allowing reception of TV channels not nornally receivable on
most television recaivers (TELEBOX MB). Push button controls most television recaivers (TELEBOX MB). Push button controls on the front panel allow reception of 8 fully tuneable 'off air' UHF colour television or video channels. TELEBOX MB covers virtually all television trequencies VHF and UHF including the
HYPERBAND as used by most cable TV operators composit HYPEREAND as used by most cable TV operators. Composite and RGB video outputs are located on the rear panel for direct
connection to most makes of monitor. For complete compatibility connection to most makes of monitor. For complete compatibility - even for monitors without sound - an integral 4 watt audio amplifier and low level Hi Fi audio output are provided as standard.
Telebox ST for composite video input monitors \quad E32.95 Trlebox STL as ST but with integral speaker E36.50 Telebox MB as ST with Multiband tuner VHF-UHF-Cable. $\$$ hypertand For overseas PAL versions state 5.5 or 6 mhz sound specification. $\quad \mathbf{6 9 . 9 5}$ Telebox RGB for analogue RGB monitors (15 khz)
Shipping code on all Teleboxes is (B) RGB Telebox also suitable for IBM multisync monitors with $R G B$ analog and composite s.mmc. Overseas sersions VHF \& UHF call.

No Break Uninterruptable PSU's

 Brand new and boxed 230 volts uninterruptable power supplies from Densel. Model MUK 0565-AUAF is 0.5 kva and MUD $1085-\mathrm{AHBH}$ is 1 kva . Both have sealed lead acid batteries. MUK are intemal, MUD has them in a matching case. Times from interrupt are 5 and 15 minutes respectively. Complete with fulloperation manuals.........MUK.-....£249 (F) MUD...... 525 (G)

-640k RAM expandable - 2 serial \& 1 paraliel ports

- 12 Mhz Landmark speed - MS-DOS 4.01
- 20 meg hard disk - Co-processor socket 1.2 meg 5-1/4" floppy "Enhanced 102 key 1.4 meg 3-1/2" floppy

EGA driver on board

2 meg RAM expanded by slôts
20 Mhz with 32 k cache ble to 64 40 meg hard disk 1.2 meg 5-1/4" floppy VGA card installed

386 AT - PC386

- 2 serial \& 1 paraliel ports
MS-DOS 4.01 - Co-processor socket Enhanced 102 keyboard Kwik Disk Accelerator Software - FREE BRAND NEW AND BOXED:

only£425.00

MONITORS

 multisorerront Model MTS-9600 SVGA with resolution or $1024 \times 768.0 .28$ pitch. Text switch for word processing etc 386 or PC switch included. Ideal for the PC compatibe with BBC, Amiga, Atañ (including the monochrome high resolution mode), Arrame giving $+5 v 35 a,-5 v 1.5 a,+12 v 4 a$ (8a peak) $-12 v 1.5 a$ $24 v 4 a$ (6a peak). All outputs fully regulated with over voltage votection on the +5 v output. AC input selectable for $110 / 240$ Power SPL 130.130 . 285.00 (B) 2A). 5 v \& 20A. $\pm 12 \mathrm{v}$ © 1.5 A . Switch mode. New. \quad E59.95(B) Astec AC-8151 40 watts. Switch mode. $+5 v$ (92.5a. $+12 v$ (2a. $-12 v$ (9.1a. 6-1/4 $\times 4^{\circ} \times 1-3 / 4^{\circ}$. New E22.95(B) Greendale 19ABOE 60 watts switch mode. +5 v ($6 \mathrm{a}+12 \mathrm{v}$ e $1 \mathrm{a},+15 \mathrm{v}$ 1a. RFE and fully tested. $11 \times 20 \times 5.5 \mathrm{cms}$. $\mathbf{\Sigma 2 4 . 9 5 (\mathrm { C })}$ Conver AC130. 130 watt hi-grade VDE spec. Switch mode. +5 v (9) $15 \mathrm{a},-5 \mathrm{v}$ - $1 \mathrm{a}, \pm 12 \mathrm{v}$ © $6 \mathrm{a} .27 \times 12.5 \times 6.5 \mathrm{cms}$. New, $£ 49.95$ (C) Boshert 13090. Switch mode. Ideal for drives \& system. +5 v क 6 a
 Famell G24/5S. As above but 24 v © 5 a .

BBC Model B APM Board
£100 CASH FOR THE MOST NOVEL
DEmONSTRATABLE APPLICATION!
BBC Model B type computer on a board. A major purchase allows us to offer you the PROFESSIONAL version of the BBC computer at a parts only price. Used as a front end graphics board has so many similarities to the regular BBC model B that we are sure that with a bit of experimentation and ingenuity many useful applications will be found for this boardh it is supplied and BNC type connectors - all you have to do is provide +5 and $\pm 12 \mathrm{v}$ DC. The APM consists of a single PCB with most maior c's socketed. The ic's are too numerous to list but include a 6502. RAM and an SAA5050 teletext chip. Three 27128 EPROMS contain the custom operating system on which we have no data, On application of DC power the system boots and provides diagnostic information on the video output. On board DIP switches and fumpers select the ECONET address and nable the four extra EPROM sockets for user software. Appx,
 Only 229.95 or 2 tor 553

SPECIAL INTEREST

rujlteu 18 vdc bench PSU. 30 amps . N
DEC LS/02 CPU board
Rhode \& Schwarz SBUF TV test transmitter
25-1000mhz. Complete with SBTF2 Modulator
aicomp 1036 large drum 3 pen plotter
Thurlby LA 160B logic analyser
1.5kw 115 v 60 hz power source

Anton Plliar 400 Hz 3 phase frequency converter 75 K
Newton Derby 400 Hz 70 Kw converter
Nikon PL-2 Projection lens meter/scope
Sekonic SD 150H 18 channel Hybrid recorder
HP 7580A A1 8 pen high speed drum plotter
\qquad

Kenwood DA-3501 CD tester, laser pickup simulator
BRAND NEW PRINTERS
Microline 183. NLQ 17×17 dot matrix. Full width.
Hyundai HDP-920. NL 24×18 dot matrix full wis $£ 139$ (D) Hundal chimedes etc. In good used condition (possible minor screen bums). 90 day guarantee. $15^{\prime} \times 14^{\prime \prime} \times 12^{\prime}$. Only,........... $5159(\mathrm{E})$
 with 640×480 resolution. CGA. EGA or VGA, digitaVanalog, switch selectable. Sound with volume control. There is also a special "Text' switch for word processing, spreadsheets and the like. Compatible with IBM PC's, Amiga, Atari (excluding the Archimedes efc. Good used condition (possible minor screen bums) 90 day guarantee. $15^{\circ} \times 14^{\prime} \times 12^{*}$. Only $£ 139(\mathrm{E})$ Phllips 9CM073 similar (not identical) to above for EGAVCGA PC and compats. 640×350 resolution. With Tex switch with mber or green screen selection. $14^{\circ} \times 12^{\circ} \times 13^{-1 / 2^{\prime}} \ldots \ldots . . .[99(E)$ KME $10^{\prime \prime}$ high definition colour monitors. Nice ight 0.28° dot pitch for superb clarity and modem styling. Operates from any 15.625 khz symc RGB video source, with RGB analog and composite sync such as Atari, Commodore Amiga, Acom Archimedes \& BBC. Measures only $13.5^{\circ} \times 12^{\circ} \times 11^{\circ}$. Also works as quality Tv win our HGB Telebox. Good used condition. 90 day guarantee. Only. $£ 125$ (E) KME as above for PC EGA standard... Brand new Centronic 14* monitor for IBM PC and comes 145 (E) a lower than ever pricel Completely CGA equivalent. Hi-res Mitsubishi 0.42 dot pitch giving 669×507 pixels. Big. Hi-res andwith. A super monit or in atractive stylemould Big 28 Mhz 90 day guarantee. Only
quality ex-equipment fully compatible. High
ay guarantee. In an attractive with a 90
bbed grey plastic case measuring $15^{\circ} \mathrm{L}$
$3^{\circ} \mathrm{W} \times 12^{\prime} \mathrm{H}$. The tront cosmetic bezel has
een removed for contractual $\mathbf{E 6 9}$ (E)
Superbly made $20^{\circ \prime}$ 'UK' mand $26^{\prime \prime}$ AV SPECIALS

 min our HCiB nly. El 125 (E) complatibes alent. Hi-res Big 28 Mhz

 nonitors, complet解 EXCELL ENT little used condition with full 90 day guarantee 20"....£135 22"…£155 26"....£185 (F)

19" Rack Cabinets

Massive Reductions

 Virtually New, Ultra Smart!Less Than Half Price! Top quality 19° rack cabinets made in UK by Optima Enclosures Ltd. Units feature designer, smoked acrylic lockable front door, full height tockable half louvered back door and removable side panels. Fully adjustable internal fixing struts, ready punched for any configuration of equipment mounting plus ready mounted integral 12 way 13 amp socket switched mains distribution strip make these racks some of the most versatile we have

1992 WInter Issue of Display News now available - send large SAE - PACKED with bargalnsi
DEFLAt

FUZZY LOGIC EXPLAINED

Fuzzy Logic is quickly establishing itself as the top growth technology of the nineties. The reason for which is very simple; user-friendliness is reaching new levels of simplicity and the order of the day is to optimise human interface where at all possible - hence the new generations of pen-based computing and voice recognition products. Fuzzy addresses many such applications perfectly as it resembles human decision making with an ability to generate precise solutions from uncertain or approximate information. We take a look at what Fuzzy is all about.

SNOOKER SCOREBOARD

This high tech scoreboard replaces the traditional wooden sliding pointers, with a set of L.E.D.'s arranged to look as much like the traditional scoreboard as possible. The score is entered by a set of colour coded push-buttons corresponding to the different coloured balls. The single display is switched between the two players and the score is always added to the selected player. At the end of the game the reset button is pushed and the score board resets, after first testing the lamps and sounding the buzzer, ready for the next game.

IMMERSION HEATER CONTROLLER

Automatic control for your water heater. This timer was designed in response to a request for an -easy-fo-use immersion heater controller for an elderly person. It would be equally useful, however, for anyone needing hot water at a preset time each day. By switching on the immersion heater early in the morning, it is possible to take advantage of the Economy-7 system (if one is installed) and make considerable savings using ott-peak electricity. Some details of Economy-7 are also given.

QUIZ MONITOR

This Quiz Monitor can provide precedence switching, as used in TV quiz games, for up to eight contestants. Each contestant has a key-pad which includes a pushbutton and a visual I.e.d. indicator. The question master's control panel is equipped with an on/off switch, a reset pushbutton, a seven-segment l.e.d. display, indicating the number of the contestant that pressed first, and an "appealing" audible output tone that differentiates between contestants. The entire system is battery operated.
 JUNE ISSUE ON SALE FRIDAY 7th MAY

SJRVITHAAMCY PROFBESSIONAL ODADITY KIIS

N.

Whether your requirement for surveillance equipment is amateur, professional or you are just fascinated by this unique area of electronics SUMA DESIGNS has a kit to fit the bill. We have been designing electronic surveillance equipment for over 12 years and you can be sure that all of our kits are very well tried, tested and proven and come complete with full instructions, circuit diagrams, assembly details and all high quality components including fibreglass PCB. Unless otherwise stated all transmitters are tuneable and can be received on an ordinary VHF FM radio.

UTX Ultra-miniature Room Transmitter
Smallest room transmitter kit in the wortd! Incredible $10 \mathrm{~mm} \times 20 \mathrm{~mm}$ including mic. $3-12 \mathrm{~V}$ operation. 500 m range.

MTX Micro-miniatura Room Transmitter

Best-selling micro-miniature Room Transmitter
Just $17 \mathrm{~mm} \times 17 \mathrm{~mm}$ incluúing mic. $3-12 \mathrm{~V}$ operation. 1000 m range \qquad . .13 .45
STX Migh-perfomance Room Transmittor
Hi performance transmitter with a buffered output stage for greater stability and range. Measures $22 \mathrm{~mm} \times 22 \mathrm{~mm}$ including mic. $6-12 \mathrm{~V}$ operation, 1500 m range $£ 15.45$
VT500 Migh-power Room Iransmittor
Powerful 250 mW output providing excellent range and performance. Size $20 \mathrm{~mm} \times$ 40 mm . 9.12 V operation. 3000 m range.
£16.45

VXT Voice Activated Iransimitter

Triggers only when sounds are detected. Very low standby current. Variable sensitivity and delay with LED indicator. Size $20 \mathrm{~mm} \times 67 \mathrm{~mm}$. 9 V operation. 1000 m range... $£ 19.45$

HVX400 Malus Powered Room Transmittor

Connects directly to 240 V AC supply for long-term monitoring. Size $30 \mathrm{~mm} \times 35 \mathrm{~mm}$. 500 m range
. 19.45
SCAX Subcarrier Scrambled Room Transmitter
Scrambled output from this transmitter cannot be monitored without the SCDM decoder connected to the receiver. Size $20 \mathrm{~mm} \times 67 \mathrm{~mm}$. 9 V operation. 1000 m range.
£22.95
SCLX Subcerrler Tslephone Transmitter
Connects to telephone line anywhere, requires no batteries. Output scrambled so requires SCDM connected to receiver. Size $32 \mathrm{~mm} \times 37 \mathrm{~mm} .1000 \mathrm{~m}$ range........... $£ 23.95$
SCDM Subcartier Decoder Untt for SCRX
Connects to receiver earphone socket and provides decoded audio output to headphones. Size $32 \mathrm{~mm} \times 70 \mathrm{~mm} .9-12 \mathrm{~V}$ operation
. $£ 22.95$

ATR2 Micro Size Telephone Recording Interface

Connects between telephone line (anywhere) and cassette recorder. Switches tape automatically as phone is used. All conversations recorded. Size $16 \mathrm{~mm} \times 32 \mathrm{~mm}$. Powered from line
.$£ 13.45$

$\star \star \star$ Specials $\star \star \star$

DITXPRRX Radio Control Swrich
Remote control anything around your home or garden, outside lights, alarms, paging system etc. System consists of a small VHF rransmitter with digital encoder and receiver unit with decoder and relay output, momentary or aiternate, 8 -way dil switches on both boards set your own unique security code. TX size $45 \mathrm{~mm} \times 45 \mathrm{~mm}$. RX size $35 \mathrm{~mm} \times$ 90 mm . Both 9 V operation. Range up to 200 m .
Complete System (2 kits).
. 550.95
Individual Transmitter DLTX £19.95
Individual Receiver DLRX.
. 237.95

max-1 H-FI Micro sroadeaster

Not technically a surveillance device but a great idea! Connects to the headphone output of your Hi -Fi, tape or CD and transmits Hi-Fi quality to a nearby radio. Listen to your tavourite music anywhere around the house, garden, in the bath or in the garage and you don't have to put up with the DJ's choice and boring waffle. Size $27 \mathrm{~mm} \times 60 \mathrm{~mm}$. 9 V operation. 250 m range.
£20.95

UTLX Ultra-miniature Telephone Transmitter
Smallest telephone transmitter kit available. Incredible size of $10 \mathrm{~mm} \times 20 \mathrm{~mm}$! Connects to line (anywhere) and switches on and off with phone use. All conversation transmitted. Powered from line. 500 m range.

ILX700 Micro-miniature Telephone Transwittor

Best-selling telephone transmitter. Being $20 \mathrm{~mm} \times 20 \mathrm{~mm}$ it is easier to assemble than UTLX. Connects to line (anywhere) and switches on and off with phone use. All conversations transmitted. Powered from line. 1000 m range. \qquad .$£ 13.45$

sTLX High-performance Telephons Transmitter

High performance transmitter with buffered output stage providing exceilent stability and performance. Connects to line (anywhere) and switches on and off with phone use. All conversations transmitted. Powered from line. Size $22 \mathrm{~mm} \times 22 \mathrm{~mm}$. 1500 m range
. 16.45
TKX900 Signaliling/Tracking Transmitter
Transmits a continous stream of audio pulses with variable tone and rate. Ideal for signalling or tracking purposes. High power output giving range up to 3000 m . Size $25 \mathrm{~mm} \times 63 \mathrm{~mm}$. 9 V operation.
$£ 22.95$

CDAOO Pocket Buy Detector/Locator

LED and piezo bleeper pulse slowly, rate of pulse and pitch of tome increase as you approach signal. Gain control allows pinpointing of source. Size $45 \mathrm{~mm} \times 54 \mathrm{~mm}$. 9 V operation.
$£ 30.95$

CD600 Professional Bug Detector/Locator

Multicolour readout of signal strength with variable rate bleeper and variable sensitivity used to detect and locate hidden transmitters. Switch to AUDIO CONFORM mode to distinguish between localised bug transmission and normal legitimate signals such as pagers, cellular, taxis etc. Size $70 \mathrm{~mm} \times 100 \mathrm{~mm}$. 9 V operation
.$£ 50.95$ OTX180 Crystal Controlled Room Transmitter
Narrow band FM transmitter for the ultimate in privacy. Operates on 180 MHz and requires the use of a scanner receiver or our QRX180 kit (see catalogue). Size $20 \mathrm{~mm} \times 67 \mathrm{~mm}$. 9 V operation. 1000 m range.
$£ 40.95$
OLX180 Crystal Controlled Telephone Transmitter
As per QTX180 but connects to telephone line to monitor both sides of conversattions $.20 \mathrm{~mm} \times 67 \mathrm{~mm}$. 9 V operation. 1000 m range.
£40.95
asX180 Lina Powered Crystal Controiled Phone Transinitter
As per QLX180 but draws power requirements from line. No batteries required. Size $32 \mathrm{~mm} \times 37 \mathrm{~mm}$. Range 500 m .
. 235.95

Q AXX180 Crystal Contrelled FM Receiver

For monitoring any of the ' Q ' range transmitters. High sensitivity unit. All RF section supplied as a pre-built and aligned module ready to connect on board so no difficulty setting up. Outpt to headphones. $60 \mathrm{~mm} \times 75 \mathrm{~mm}$. 9 V operation.
.560 .95

A bulld-up service is avallable on all our kits if required.

UK customers please send cheques, POs or registered cash. Please add £1.50 per order for P\&P. Goods despatched ASAP allowing for cheque clearance. Overseas customers send sterling bank dratt and add $£ 5.00$ per order for shipment. Credit card orders welcomed on 0827714476
> our latest catalogue contaiming many more mew
> SURVEILLAMCE KITS NOW AVAILABLE. SEND TWO FIRST CLASS STAMPS OR OVERSEAS SEMD TWO IRCS.

Dept. EE
SUMA
DESIGNS

The Worisshops, 95 Main Road,
Baxterley. Near Atherstone, Warwicishire CV2 $2 L E$
VISITORS STRICTLY BY APPOINTMENT ONLY

B]IVC
 $\star \star$ GRAND CLEARANCE SALE $\star \star$
 EVERYTHING MUST GO

All new and unused hardware, semiconductors, loudspeakers, cable, wire, capacitors, resistors, tweeters, screws, i.c.s and much, much more.

BULK BUY ORDERS ONLY
Orders in bulk and appointments to view on Sundays only, please phone for details of your requirements.

Telephone:-
Warehousing: 0819928430
Retail Shop: 0717238432
Fax: 0717233467

Retail Shop at 376 Edgware Road, London W2 1 EB
Warehouse only at 21 High Street, London W3 6NG

BARGAINS - Many New Ones This Month

SILENT EFFORTLESS MOVEMENT with our 35 mm ballrace complete with removable spindle. 4 for $£ 1$. Order Ref. 912
45A DOUBLE POLE MAINS SWITCH mounted on a $6 \times 31 / 2$ aluminium plate, beautifully finished in gold, with pilot light. Top quality, made by MEM, £2, Orde Ref. 2 P316.
FULLY ENCLOSED MAINS TRANSFORMER on a 2 m 3 core lead terminating with a 13 A piug. Secondary rated at 6 V 4 A . Brought out on a well insulated 2 core lead terminating with insulated push on tags. £3, Order Ref. 3P152. Ditto but 8A. Order Rel. 4P69
ILLUMMINATION PANEL. 166 V bulbs, coloured red with a foil reflector panel. Intended for any log effect fire. £2. Order Ref. 2P2317. (The transformer described above, Order Ref. 3P152 is the one intended to operate this
SWITCHED BC CORD GRIP LAMPHOLDERS. Always useful. A good make, 3 for $£ 1$, Order Ref. 913. 35MH BALLRACE, complete wi removed. 4 for $\mathbf{8 1}$, Order Ref. 912. SCREWDRIVERS - pocket sized. W te last one! 10 for $£ 1$ Order Ref. 909. INTERESTED IN STARS \& PLANETS? if so, here is your opportunity to acquire a very comprehensive set of parts which will enable you to make several models of astronomical telescopes as well as terrestrial telescopes. The kit comes complete with a 28 page manual. Price $£ 15$, Order Ref. 15 P 48.
STEPPER MOTOR BARGAIN. This is Just a minl motor, 12 V operated and 7.5° step angle. Offered at the very low price of only $£ 1$, Order Ref. 910
STANDARD CASSETTE MOTOR for 9 V recorder players. This is brushless and has internal electronics to facilitate speed change and reverse. $£ 1.50$ each Order Ref. 1.5P14.
MINI CASSETTE MOTOR but will.operate from $1 V$ upwards as it is so well made. Speed, of course, increases with voltage and is speed regulated at 9 V . $£ 1$, Orde Ref. 540.
STOP THOSE PEAKS as they come through the mains, they can damage your equipment. 2A unit is a combination of cores and caps gives complete protec tion. 22 , Order Ref. 2P315
models at a BARGAIN. A recent lucky purchase enables us to offer 2 sola models at approximately half price. The Aeroplane kit comprises all the parts The kit was $£ 7.50$ but can be yours for only $£ 3.75$, Order Ref. 3.75P1. The second one is the Vintage Gramophone Again all the parts to make the second one islar cell which drives the module which plays the to make the model, the solar cell which drives the module which plays the tune. Again, the kit was $£ 7.50$, now only $£ 3.75$, Order Ref. 3.75P2
INSULATION TAPE 5 rolls of assorted colours, only £1, Order Ref. 911
GENERAL PURPOSE FAN KIT comprises beautifully made "Boxer" tan, transformer and switch to give dual speed and off from the mains. Complete with pentrated front panel which, if bent, could make a suitable stand for a desk fan, etc. Or, it could be used as a general Complete kit $\mathbf{6}$, Order Ret. 6P28.
COUBLE HEADPHONE OUTLET. A standard type stereo OOUBLE HEAOPHONE OUTLET. A standard type stereo plug with 2 leads coming out, each terminating with a standard size stereo socket thus enabling 2 people to listen from the one outlet. Very well made. Price $£ 2$, Order Ref. 2 P312.
12V POWER SUPPLY. Plugs into 13A socket and gives 200 mA d.c. out. Price £2 Order Ref. 2P313
ASTEC 135W PSU. Mains input, $\}$ outputs:- +12 V at $4 \mathrm{~A},+5 \mathrm{~V}$ at 16 A , and -12 V at $1 / 2 A$. In plated steel case, brand new, $£ 9.50$, Order Ref. $9.5 P 4$.
DIMMER SWITCH on stand
DIMMER SWITCH on standard electrical plate to replace normal wall switch
500W, slightly coloured but takes emulsion. Only $500 W$, slightly coloured but takes emulsion. Only $£ 2$, Order Ref. 2P309.
INFRA RED RECEIVER
INFRA RED RECEIVER CONTROLLER made by Thorn to channel switch their T.V. receivers. Mounted on panel with luminous channel indicator, mains on/off swltch, leads and plugs all yours for £2, Order Ret. 2P304.
HIGH QUALITY KEY SWITCH single pole on/off or changeover through panel mounted by hexagonal nut. Complete with 2 keys. Regular price $£ 3$, our price E1.50, Order Ret. 1.5P12.
DIGITAL MULTI TESTER M 3800 single switching covers 32 ranges including 20A a.c. and d.c. 10 meg input impedence, $31 / 2$ LCD display. Complete with carrying case and lead. Currently advertised by many dealers at nearly $£ 40$, our price only £25, Order Ret, 25P 14.
ANALOGUE TESTER. Input impedence 2 K ohms per volt. It has 14 ranges, a.c volts $0-500$, d.c. volts $0-500$, d.c. current 500 micro amps at 250 milliamp, resistance $0-1$ meg-ohm, decibels $20-+56 \mathrm{~dB}$. Fitted diode protection, overall size $90 \times 60 \times 30 \mathrm{~mm}$. Complete with test prods, price $£ 7.50$, Order Ref. 7.5 P 8
2" 50 OHM LOUDSPEAKER replacement for pocket radio, baby alarm, etc. Also makes good pillow 'phone. 2 for $£ 1$, Order Ref. 905.
LCD CLOCK MODULE $1 \cdot 5 \mathrm{~V}$ battery-operated, fits nicely into our 50 p project box, Order Ref. 876. Onfy E2, Order Ref. 2P307.
OPTICAL INSTAUMENTS KIT makes microscope and six other optical instruments, $£ 15$, Order Ref. 15P28.
SINTINEL COMPONENT BOARO
SINTINEL COMPONENT BOARD amongst hunders of other
parts, this has 15 ICS all plug in so don't need de-soldering. Cost well over $£ 100$, yours for $£ 4$. Order Ret. 4 P67 9V 2.1A POWER SUPPLY made for Sinclair to operate their 128 K Spectrum Plus 2. £3, Order Ref. 3P 151.
$12 V 250$ MILLAMP SOLAR POWER.
12 V 250 MILLIAMP SOLAR POWER. Could keep that 12 V battery charged where there is no access to the mains. £15, Order Ref. 15 P47.
EXTRA LIGHTWEIGHT STEREO HEADPHONES. Adiustab
EXTRA LIGHTWEIGHT STEREO HEADPHONES. Adjustable headband. Suitable for use with all types of cassette players and radios, only $£ 1$ per pair, Order Ret. 898. 6 -12V AXIAL FAN. Japanese-made 12 V d.c. battery operated, brushless axia fan. 93 mm square, its optimum is 12 V but it periorms equally well at only 6 V and its current then is only 100 mA , price only $£ 4$. Order Ref. 4 P 65 . Mains power unit to operate this at variable speeds $£ 2$, Order Ret. 2 P3.
ELECTRONIC BUMP \& GO SPACESHIP sound and impact controlled responds to claps and shouts and reverses or diverts should it hit anything! Kit with really detailed instructions, will make ideal present for budding young electriclan. Should be able to assemble but you may have to help with the soldering of the components on the PCB. Complete kit, $£ 8.95$, Order Ret. 9P9,
20W 4 OHM SPEAKER made by Goodmans for Ford, this is mounted on a panel and has an anodized cone protector cover but can be easily removed from this. it's a beautiful reproducer and the replacement price is nearly $£ 20$. Yours for only £3, Order Ref. 3 P145.
2OW 4 OHM TWEETER also made by Goodmans for Ford, mounted on a baffle but easily unscrewed from this. Yours for $£ 1.50$, Order Ref. 1.5P9.
AMSTRAD KEYBOARO MODEL KB5. This is a most comprehensive keyboard, having over 100 keys including, of course full numerical and qwerty. Brand new, still in maker 's packing, £5, Order Ret. 5P202.
F.M. CORDLESS RADIO MIKE hand-held battery-operated professional model, has usual shaped body and head and is tuneable to transmit and be picked up on the F.M. band of any radio. Yours for only $£ 8.50$, Order Ref. 8.5P1

4 MORE SPEAKERS: Order Ref. 1.5P11 is Japanese-made $6 \frac{1}{2} \mathbf{2}^{\prime \prime}, 8$ ohm, rated at 12 W max. This is a very fine reproducer. The makers are SANYO Yours for §1.50.
Order Ret. 900 Is another Far East made $61 / 2^{\prime \prime \prime}, 40 \mathrm{hm}, 12 \mathrm{~W}$ max speaker. Very - nicely made, using Japanese Hitachi tools and technlque, only $\varepsilon 1$. nicely made, using Japanese hitachi tools and lechnlque, only £1. Order Ref. 896 is $61 / 2 \quad 60 \mathrm{hm}$, 10W, exceptionally good sounder and yours for Only E1.
Order Ref. 897 is another 8 ohm speaker rated at 5 W but its unusual feature is

P.C. OPERATING SYSTEMS

software.
software.
S-DOS 3.20, 55 , Order Ref. 5P207: MS-DOS 3.3, E5, Order Ref. 5P208:

LIMITED SUPPLY ITEMS

are only described in our newsletter
Many appear in our current issue.
you order something this month you
posted to you that it has a built-in tweeter. Price still only $£ 1$
MOVEMENT ALARM goes off with slightest touch, ideal to protect car, cycle, doorway, window, stairway, etc, etc. Complete with Piezo shrieker, ready to use. Only £2 (PP3 battery not supplied). Order Rel. 2P282.
SOLAR ENERGY EDUCATIONAL KIT an ideal present for electronics students. KIt comprises 8 solar cells, one solar motor, tan blades to fit motor and metal frame to hold it to complete a free-standing electric fan. A really well written instruction manual makes this a lovely little present. Price $\varepsilon 8$, Order Ref. 8P12B.
PROJECT BOX a first-class, Japanese two-part moulding size $95 \mathrm{~mm} \times 66 \mathrm{~mm} \times$ 23 mm . Will hold a PP3 battery and a PCB and is ideal for many projects, nicely finished and very substantial. 2 for $£ 1$, Order Ref. 876 .
AM/FM RADIO CHASSIS with separate LCD clock module, complete with loudspeaker and ready to go, price is $£ 3.50$, Order Ref. 3.5P5.
2,3 AND 4 WAY TERMINAL BLOCKS
, ing a mixture of the 3 types, giving you 100 ways for $£ 1$, Order Ref. 875. 2M 3-CORE LEAD terminating with flat pin instrument socket, $£ 1$, Order Ref. 879. Ditto but with plug on the other end so that you could use this to extend an instrument lead. E1.50, Order Ref. 1.5P10.
SAFETY LEADS curly so they contract but don't hang down. Could easily save a child from being scalded. 2 core, 5 A , extends to $3 \mathrm{~m}, ~ £ 1$, Order Ref. 846 , 3 core, 13 A , extends to 1 m , $£ 1$ each, Order Ref. 847,3 core, 13A, extends to 3 m , $£ 2$ each, Order Ref. 2P290
ULTRA SONIC TRANSOUCERS 2 metal cased units, one transmits, one receives. Built to operate around 40 kHz . Price $£ 1.50$ the pair, Order Ref. 1.5P/4. 100W MAINS TRANSFORMERS normal primaries $20-0-20$ at 2.5 A or 30 V at 3.5 A , \&4, Order Ref. 4P24. 40V at $2.5 \mathrm{~A}, £ 4$, Order Ret. 4 P 59.50 V at 2A, $£ 4$, Order Ref. P60.
PHILIPS 9" HIGH RESOLUTION MONITOR black \& white in metal frame for easy mounting, brand new still in maker's packing, offered at less than price of tube alone, only E15, Order Ref. 15P1.
16 CHARACTER 2-LINE DISPLAY screen size $85 \mathrm{~mm} \times 36 \mathrm{~mm}$, Alpha-numeric LCD dot matrix module with integral micro processor made by Epson, their Ref. 16027AR, E8, Order Ref. 8P48
INSULATION TESTER WITH MULTIMETER internally generates voltages The multimes you to read insulation directly in megohms. milliamps, 3 ranges resistance and 5 volts, 3 ranges DC instruments are ex British Telecom 5 amp range. These tion, tested and ex British Telecom but in very good condieach, yours for only $£ 7.50$, with Order Ref. 7.5P/4.
MAINS 230V FAN best make "PAPST" $41 / 2$ " square, metal blades, £8, Order Ref. 8P8.
2MW LASER Helium neon by Phillps, full spec. £30, Order Ref. 30p1. Power supply for this in kit form with case is $£ 15$, Order Ref. 15P16, or in larger case to house tube as well £18, Order Ref. 18P2. The larger unit, made up, tested and ready to use, complete with laser tube $£ 69$, Order Ref. 69P1.
$1 / 3 \mathrm{HP} 12 \mathrm{~V}$ MOTOR - THE FAMOUS SINCLAIR C5 brand new, $£ 15$, Order Ref. 15 P 8.
SOLAR CHARGER holds 4 AA nicads and recharges these in 8 hours, in very neat plastic case, 66, Order Ref. 6P3.
AIR SPACED TRIMMER CAPS $2-20$ pf ideal for precision tuning UHF circuits, 4 for 1 1, Order Ref. 818B.
MAINS ISOLATION TRANSFORMER stops you getting "to earth" shocks. 230 V in and 230 V out. 150 watt upright mounting, $£ 7.50$, Order Ref. $7.5 \mathrm{P} / 5$ and a 250 W version is $£ 10$, Order Ref. 10P79.
MINI MONO AMP on PCB. Size $4^{\prime \prime} \times 2^{\prime \prime}$ with front panel holding volume controt and with spare hole for switch or tone control. Output is 4 watt into 4 ohm speaker using 12 V or 1 watt into 8 ohm using 9 V . Brand new and perfect, only $£ 1$ each, Order Ref. 495.
ATARI 65XE at 65 K this is quite powerful, so suitable for home or business, unused and in perfect order but less PSU, only $£ 19.50$, Order Ret. 19.5P/5B.
80W MAINS TRANSFORMERS two available, good quality, both with normal primaries and upright mounting, one is 20 V 4 A , Order Ref. 3P106 the other 40V 2A, Order Ret. 3P107, only £3 each
PROJECT BOX size approx $8^{\prime \prime \prime} \times 4^{\prime \prime} \times 4^{\prime \prime} /^{\prime \prime}$ metal, sprayed grey, louvred
MOS size approx $8 \times 4 \times 4 / 2$ metal, sprayed grey, louvred

JUST ARRIVED

$720 k 31 / 2^{\prime \prime}$ Floppy Disks 4 for £1. Order Ret 914 quality, only $£ 3$ each, Order Ref. 3P74.
EXPERIMENTING WITH VALVES don't spend a fortune on a mains transformer, we can supply one with standard mains input and secs. of $250-0-250 \mathrm{~V}$ at 75 mA and 6.3 V at 3 A . $£ 5$, Order Ref. 5P167.
15W 8 OHM 8" SPEAKER \& 3 " TWEETER made for a discontinued high quality music centre, gives real hi-fi, and only £4 per pair, Order ref. 4P57.
$0-1$ MA FULL VISION PANEL METER $2^{\text {b/ }}$ " square, scaled $0-100$ but scale easily removed for re-writing, £1 each, Order Ref. 756
PCB DRILLS 12 assorted sizes between . 75 and 1.5 mm , $\mathbf{\Sigma 1}$ the lot, Order Ref. 128.
Prices include V.A.T. Send cheque/postal order or ring and quote credit card number. Add $£ 3$ post and packing. Orders over $£ 50$ post free.
If intending to call please phone first.

M \& B ELECTRICAL SUPPLIES LTD

Pilgrim Works (Dept. E.E.) Stairbridge Lane
Bolney, Sussex RH17 5PA
Telephone or Fax: 0444881965

1993 CATALOCUE

 160 Pages of regular lines + our famous Bargain List - 32 Pages of Surplus Bargains + First Class Reply Paid Order Form + Latest Offer Sheet - You can't afford to miss it!A big parcel of opto product - everything from surface mount LED's to massive dot matrix LCD's has recently been purchased, offering you, the constructor, professional grade devices at Bargain List Prices! Full details in our lists, but see below for some tempting offers:
,

Z5469 Green $35 \mathrm{~mm} 5 \times 8$ CC $£ 1.60$ $\mathbf{Z 5 4 7 0} \mathrm{HE}$ Red $35 \mathrm{~mm} 5 \times 8 \mathrm{CC}$ £1.60 Z5471 Yellow 51mm 5x7 CC $\mathbf{\Sigma 1 . 7 5}$ Z5475 Green $51 \mathrm{~mm} 5 \times 7$ CC $£ 1.75$ 25478 HE Red $51 \mathrm{~mm} 5 \times 7$ CA $\mathbf{~} 1.75$ 25479 HE Red $51 \mathrm{~mm} 5 \times 7 \mathrm{CC}$ £ 1.75 Z5473 Yellow 58 mm 8x8 CC £3.50 Z5477 Green $58 \mathrm{~mm} 8 \times 8$ CC $£ 3.50$ Z5480 HE Red $58 \mathrm{~mm} 8 \times 8$ CC $£ 3.50$

OPTO PACKS

K539 LED's: Round and shaped, red, yellow, green, clear. Great mix 100 for $\mathbf{5} 6.50$
K806 LED's: Red only - round, square, rect from 2 mm up. 100 for $£ 5.00$
K801 Seven seg LED's - Red/green/ yellow, single, double, multiple digit. Sizes from 0.11 to $0.8^{\prime \prime} 20$ for $£ 3.95$
KS106 Surface mount LED's - red, green, yellow, orange inc some dual types. Most SOT23 100 for $£ 8.95$
K845 Optocouplers, Iransistor up to 4 kV 100\%. 25 for $£ 2.95$
K846 Optocouplers, darlington up to $2.5 \mathrm{kV} 600 \%$. 25 for £3.95
K847 Optocouplers, Triac/SCR up to 7.5 kV \& Vb 800 V 25 for $£ 3.95$

LIQUID CRYSTAL DISPLAYS

LCD dot matrix modules fitted with controller. All supplied with data. Application notes - 16 page book $£ 2.00$ Z54810 $16 \times 1,5.73 \mathrm{~mm}$ char.ht. $£ 4.00$ Z54820 $16 \times 2,4.27 \mathrm{~mm}$ char ht. $£ 6.00$ Z5484D 20×1, 5.2 mm char.ht. $£ 4.60$ Z5485D $20 \times 2,4.85 \mathrm{~mm}$ char.ht. $£ 7.00$ Z5486D 40x2, 5.2 mm char.ht. £9.50 All characters $5 \times$?

JUMBO DISPLAY

LM225 Hilachi 640×20 dol LCO tor
PC's, WP's \& ind. equip. Module size $270 \times 150 \times 13 \mathrm{~mm}$. Display area $239 \times 104 \mathrm{~mm}$. Dot size 0.32×0.46; pilch $0.35 \times 0.49 \mathrm{~mm}$. Uses With comprehensive data. $\mathbf{£ 3} .50$ PRICECDE25 OPTO ISOLATORS
22771 4N30 Darlington 8 for $£ 2$ 22781 CNY48 600\% Darlington 6 for $£ 2$ Z2798 H11B2 200\% Darlington 8 for £2 22779 CNY47 Transistor 10 for $\mathbf{\Sigma 2}$ 22794 H11AV1 4kV Transistor 10 for $\mathbf{\Sigma 2}$ Z2793 HI1AG1 CMOS Tr, 300\% 10 for $£ 2$ 22776 CNY30 SCR 200 V 6 for $\mathbf{\varepsilon 2}$ 22828 H11L3 Schmitt 5 mA 3 for E 2 22837 MOC3011 Triac 10 mA 6 for $£ 2$ 22840 MOC3021LP Triac 15 mA 6 for $£ 2$ Supplied with data sheet. Booklet giving data on about 50 types $£ 2$

PC SOFTWARE AT AMAZING PRICES!!
 and dalabase with graphics. Needs PC with DOS $2+, 256 \mathrm{k}$ RAM, mono or colour display. Supports over 200
printers. 546 page manual, spread out menu and disks, all in library case.
 75444 PC-MIX Muttitasking Interfacing Executive -
enables up to 3 progs to be run simutaneously. 96 CROSSTALK XVI 25495 Data comms - new 5.25° disk \& 182 page INDIVIDUAL TUTORS - boxed set with handbook and disk
 SmartGuide for DOS 25452 On line reference guide to Z5448 51/4"; $2544931 / 2^{\prime \prime}$ Learn 10 use DOS $£ 3.95$ procedures. 8 oxed set with handbook 25450 51/4" Learn to use your PC $£ 3.95$ (75453

BURID TREASUR - FAn

So easy to find with C.Scope Metal Dectectors Gold sovereigns, Roman coins, historic pots and med
and lost current coinage! C.Scooe Metal Detectors From just $£ 79$.

superior Metal Detectors IWWWN

Full colour brochure on request - all models on view and demonstrated at our shop. Prices start from less than £80!

NEW LISTS NOW AVAILABLE!
 BI-PAK CLEARANCE
 Thousands of lines, all at 1989 prices. SAE List
 HOBBY BOOKS - Robols, cars, boats, planes etc - all at $£ 2.50$ up to 60% off! - SAE list SEMICONDUCTORS
 Thousands, all at giveaway prices. SAE List
 GARDEN TOOLS
 Great range by Draper. SAE list
 HOME ALARM SYSTEM Sophisticated hi-tech fire \& burglary control system No wiring required! Speech synth'ed instructions! Detectors (not supplied) communicate with alarm panel by radio transmitter. $\begin{array}{ll}\text { More info } \\ \text { on request } & \text { C }\end{array}$

 THE 'Greenweld Guardian' IS OUR MONTHLY NEWSLETTER FREE TO ALL BARGAIN LIST SUBSCRIBERS - ONLY £6 A YEAR FOR THE NEXT 12 ISSUES OF ALL OUR LISTS!!

Professional OHP transparencies at your fingertips

Pints on paper or dea merchangeable pens.
3 MODE OPERATION
Type Mode: Characters trped on pressing key
ine Mode: Char. entered into memory. up to Lan me are: Charged on entere
Edit Mode: Add, delete, insert graphics or words,
packing, complete with mains 4 GRAPH MAKING FUNCTIONS PSU and FREE OHP set Layouts (lor lables), baa, linear and pie, charts

4 colour pen set. Originally sold 18 FONTS IN 9 TYPE SIZES
tandard, halt bold or bold, in sizes trom 8 .75 ithaic. satanara,
per ine
COMPUTER PLOTTER? As this unit has all the necessary hardware, seems po
computer

CABLE TV IJNIT DISK DRIVE DEALYUASA LEAD ACID BATTS
25510 Knockout price on $5.25^{\prime \prime}$ double 28920 Type NP10-6 rated 6V 10 A Not sided 360 kPC compatible drives, brand new, but regularly maintained and full

29135 Brang new and boxed, size $220 \times 150 \times 60 \mathrm{~mm}$. 6 digit starburst LCD with int. char. gen. 3 connexions on back - TV co-ax hside, high quality PCB has mains $f x$, bridges, 7805, 7812 v.regs, smoothing caps, huse, 2 xtals, 7 transistors, 4 green 5 mm LED's, TDA5930, 4093 \& 87C51 PROM in 5kt. IR rn LED with integral pre-amp, UHF modulator ceramic filters eitc. Great component value and all for

ELECTRONIC COMPONENTS

All 1 off and pack prices include VAT, aly prices do not. P\& P $\mathbf{\Sigma 2 . 7 5}$ per order ($\mathbf{~} 9.50$ next day) Min Credit Card $£ 12$. Official orders from Education welcome; min invoice charge $£ 15$. Payment is accepled by cheque, PO, cash (inc loreign currency banknoles), slocks - we are open from 9-5.30 Mon-Sat. Come and see us!

VISA
27D PARK ROAD, SOUTHAMPTON, SO1 3TB

LOW COST CASSETTE MECH
254889 V stereo. Record/replay \& erase head +6 push buttons - forward, reverse, play, record, pause and stop. Oniy $52-95$ SPEAKER CABINETS

$\rightarrow \sim$

$Z 9121$ Veneered cabinet $330 \times 217 \times 116 \mathrm{~mm}$ with $100 \mathrm{~mm} 4 R$ speaker. Ideal as extn spkrs for kitchen elc. E12.95/pr
CASSETTE MOTORS

25487 Mabuchi hi-torque 9V cassette motor 35 mm dai $\times 25 \mathrm{~mm}$. $£ 1.00$ Box of $200 £ 65$
FIBBON CABLE HALF CAT PRICE!
Z9122 50 way grey 100 ft reel $£ 8.50$ Z9123 34 way grey 100 ft reel $£ 13.00$

ENGINEERING - GRAPHICS - BUSINESS - PC-TUTORIALS CALCULATIONS - SCIENCE - EDUCATION
Can you imagine shopping for expensive shoes, only to be told you cannot even open the box to look at a pair unless you have aiready bought them?
Yet this is exactly how software has traditionally been sold!
SHAREWARE is a TRY-BEFORE-YOU-BUY APPROACH TO SOFTWARE: You pay y nominal charge for Prorgram distribution tocover disks, copying, carriage, etc.
ONL I F YOU FIND A PACKAGE USEFUL ARE YOU THEN REQURED TO PAY A REGISTRATION FEE (to the software author), which allows you to continue using it. THISCAN WORK OUT CONSIDERABLY LESSEXPENSIVE THAN BUYING SIMILAR SOFTWARE IN THE CONVENTIONAL WAY

AFFORDABLE CAD/CAM- simply!

Choosing from the many 1000's of excellent Shareware \& Public Domain programs on offer can be a daunting task for anyone outside the "initiated" fraternity of computer programmers, bulletin board users. etc. To simplify evaluation we have grouped together sets of distribution disks according to function, e.g. Electronics Design \& Simulation, Wordprocessing, Printing Utilities, etc. In this way we are also able to keep costs down, allowing us to offer HIGH QUALITY DISKS AT THE LOWEST DISTRIBUTION PRICES AROUND.
Ask for our free IBM-PC Shareware/PD guide TODAY- AND SAVE £ \mathcal{E} 's!!! CAD/CAM-PCB DESIGN-CRCUIT EMULATION \& TEST-PC-ENGINEERIN - RADIO-COMM'S Profile Electronics (EPE) "Your APPROACHABLE supplier," 100-102 Woodhouse Road, Leytonstone, London, E11 3NA. Telephone 081-470 2038

VISA
 Cooke International
 SUPPLIER OF QUALITY USED TEST INSTRUMENTS

ANALYSERS, BRIDGES, CALIBRATORS, VOLTMETERS.
GENERATORS, OSCILLOSCOPES, POWER METERS. ETC ALWAYS AVAILABLE
ORIGINAL SERVICE MANUALS FOR SALE
COPY SERVICE ALSO AVAILABLE
EXPORT, TRADE AND U.K. ENQUIRIES WELCOME
SENDS.A.E. FOR LISTS OF EQUIPMENT AND MANUALS ALL
PRICES EXCLUDE VAT AND CARRIAGE
DISCOUNT FOR BULK ORDERS
SHIPPING ARRANGED
OPEN MONDAY TO FRIDAY 9AM-5PM
Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex, PO22 0EB
$\mathrm{Tel}(+44) 0243545111 / 2 \mathrm{Fax}(+44) 0243542457$

Electronic Designs Right First Time?

Schematic Design and Capture

Create your schematics quickly and efficiently using EASY-PC Professional Areas of the circuit can be highlighted on screen and simulated automatically using PULSAR, ANALYSER III and Z-MATCH II our simulation programs.

Digital and Analogue Simulation

PCB Design

The design, complete with connectivity, can then be translated into the PCB. The connectivity and design rules can be checked automatically to ensure that the PCB matches the schematic.

Affordable Electronics CAD

EASY- PC: Low cost PCB and Schematic CAD	$\underline{88.00}$
EASY-PC Professional: Schematic Capture and PCB CAD. Links to ANALYSER III and PULSAR.	£195.00
PULSAR: Low cost Digital Circuit Simulator ~ 1500 gate capacity.	$\underline{88.00}$
PULSAR Professional: Digital Circuit Simulator ~50,000 gate capacity.	£195.00
ANALYSER III: Low cost Linear Analogue Circuit Simulator ~ 130 nodes	$£ 98.00$
ANALYSER III Professional: Linear Analogue Circuit Simulator ~ 750 nodes	£195.00
Z-MATCH II: Smith Chart Program for R.F. Engineers	£195.00
No penalty upgrade policy. Prices exclude P\&P and	Prices exclude P\&P and VAT.

Number One Systems Ltd.

Harding Way, St. Ives, Huntingdon, Cambs. PE17 4WR, UK.

For Full Information: Please Write, Phone or Fax. Tel: 0480461778 Fax: 0480494042

MAUPIITON TECHNCAL PJBICAITONS

A selection from our range of Technical Books and Guides for the TV \& Video Trade

TELEVISION EQUIVALENTS. New Book lists Exact Equivalent for Many different Makes. TELEVISION CHASSIS GUIDE. Identify your TV chassis from the model number.

Order MP-150. £5.00 VIDEO RECORDER \& CAMCORDER EQUIVALENTS.

Lists all known models and their Equivalents. New 2 Volume Set.
Makes A - J. Order MP-217. £5.00
Makes K - Z. Order MP-218. £5.00 VIDEO RECORDER FAULTS Repair Guide for Beginners. Know where to start lookingl Order MP-5. £3.00 VHS VIDEO RECORDER PRINCIPLES Essential Theory on the Principles of operation of VHS Order MP-58. £3.00 CMOS DATABOOK Detailed Specification on the 4000 Series with circuits. Order MP-10. £5.00 TTL DATABOOK. Detailed Specification on the 7400 Series with circuits. Order MP-34. £5.00 TRANSISTOR EQUIVALENTS AND TESTING MANUAL. Includes Testing Procedure. POWER SUPPLIES, STABILISERS \& VOLTAGE REGULATORS. Inc/udes Circuits REMOTE CONTROL CIRCUITS - TV. Dozens of Remote Control Circuits for Colour TV's. Order MP-24. £3.00 Order MP-9. £3.00

MANUFACTURERS EQUIVALENTS. Know which Makers Trade Names are the Same.
Order MP-167. £10.00

VIDEO HEAD CLEANING KIT. Unique Kit with Comprehensive Instructions on how to do it right. Order VHCK. £4.00 VIDEO TEST JIG. Run the machine and gain access to the mechanics as well. Order VTJ. £15.00 SCART EUROCONNECTOR SYSTEM. Detailed Pinout Specifications of this interface. Order MP-21. £3.00 SWITCH MODE PSU IC TYPE TDA-4600. Comprehensive Details of this popular TV PSUIC. Order MP-37. £6.00 TELETEXT REPAIR MANUAL. Covers the SAA range as used in many Sets. Order MP-38. £6.00 P.C. HARD DISC DRIVE REFERENCE MANUAL. Specifications of Hundreds of Hard Discs. Order MP-84. £5.00 CITIZENS BAND RADIO CIRCUITS MANUAL. Covers Dozens of popular models. Order MP-40. £10.00 RECORD PLAYER SPEED DISC. Lets you accurately align any turntable speed. Order MP-8. £1.00 CITIZENS EAND RADIO DATA REFERENCE BOOK. Technical Specifications of C.B. IC's. Order MP-165. $\mathbf{\Sigma} 5.00$ TELEPHONE CODE LOCATION GUIDE. Find the Town from the Phone Code. Order MP-19. $£ 5.00$ VALVE AMPLIFIERS CONSTRUCTION MANUAL. Full Building Details for Vintage Buffs. Order MP-173. £5.00 VINTAGE WIRELESS SERVICING. 2 Volume set covers Vintage Servicing in detail. Order MP-22+35. £6.00 OFFICE EQUIPMENT EQUIVALENTS. Complete Cross Reference for all Photocopier or Fax. Order MP-200. £6.00 REEL TO REEL TAPE RECORDER SERVICING. Details on Reel Servicing for Collectors. Order MP-201. £5.00

SERVICE MANUALS

WE have the most comprehensive library of service manuals available anywhere From the Earliest Valve Wireless to the Latest Video Recorder. Originals or Photostats as available.

Colour Televisions, Video Recorders, Test Gear, Audio, Computers, in fact practically anything. If you need a Service Manual, Give us a call.

MAURITRON PUBLICATIONS (EPE) All order plus 2.2 .55 Pp. 8 Cherry Tree Road, Acecss Phone your credit Card Order Chinnor, Oxfordshire, OX9 4QY Tel:- (0844) 351694 Fax:- (0844) 352554

Many new Titles coming soon - Write or Phone for your FREE catalogue.

MAGENTA
 135 Hunter Street Burton - on - Trent Staffs. DE14 2ST Tel 028365435 Fax 46932
 3

All Prices include V.A.T. Add $\mathbf{f} 2.00$ per

EE131 order p \& p
 SHOP OPEN 9-5 Mon-Fri 9-2 Sat -.- OFFICIAL ORDERS WELCOME

Abstract

VERSATILE BBC INTERFACE A comprehensive interface which allows the BBC computer to to be connected safely to a wide range of input and output devices. Two leads connect the interface to the User Port and the Printer port. The interface to the User Port and the Printer port. The interiace connects to the 'real world' via standard screw terminal blocks. Up to 16 outputs (all via plug-in single pole change over relays - $\mathbf{8}$ supplied) and 8 fully protected inputs. L.e.d. status monitoring is provided on all input and output lines. The interface requires an independent 12 Volt supply. KIT 844. £51.95

STEPPING MOTOR DRIVER \& INTERFACE

A single board stand-alone stepping motor driver with built in oscillator and speed control circuits. A computer is not required with this board which will drive most unipolar 4 phase motors. Variable Acceleration, Speed, and Direction, may be controlled in HALF STEP. FULL STEP, and ONE PHASE modes. Up to 35 V and 1.5 A per phase. Le.d. mimic display. Connector is provided for a computer port KIT 843 £29.95-BUILT £44.95

DIGITAL LCD THERMOSTAT

 A versatile thermostat using a thermistor probe andhaving an l.c.d. display. MiN/MAX memories, -10 to 110 degrees celsius, or can be set to read in Fahrenheit. Individually settable upper and lower switching temperatures allow close control, or alter can result in substantial energy savings when which can result in substantial energy savings when used house ventilation or heating control, aquaria home brewing, etc. Mains powered, 10A SPCO relay output. Punched and printed case.
KIT 841
$£ 29.95$
4 CHANNEL LIGHT CHASER A 1000 W per channel chaser with Zero Volt Switch Built-in mic. and sophisticated 'Beat Seeker' cirity. Built-in mic. and sophisticated 'Beat Seeker' circuit -chase steps to music, or auto when silent. Variable front panel. Switchable for 3 or 4 channels. P552 output socket. Suits Rope Lights, Pin Spots, Disco. and Display lighting.
KIT 833
£32.13
SUPERHET LW MW RADIO At last an easy to buitd SUPERHET AM radio
kit. Covers Long and Medium waves. Built in loudspeaker with 1 Watt output. Excellent sensitivity ard selectivity provided by ceramic If filter. Simple alignment and tuning without special equipment. Supplied with pre-drilled transparent front panel and dial, for interesting see-through KIT 835.
£17.16
ACOUSTIC PROBE
A veans of a contact probe and passes them on to pair of headphones probe and passes them on to a engines, watches, and speech travelling through walls can be amplified and heard clearly. Useful for mechanics, instrument engineers, and nosey parkers!.
KIT 740 .
$£ 19.98$
PEsT SCARER
Produces high power ultrasound pulses. L.e.d.
flashes to indicate power output. Battery powered -12V. or mains adaptor £2.00 EXTRA. KIT812.
f14.81

KIT HIGHLIGHT

DIGITAL CAPACITANCE METER KIT 493
This has been one of Megenta's best ever kits. It provides clear readings of capacitance values from a few pF up to
thousands of $\mu \mathrm{F}$. It is ldeal for beginners as there is no confusion over the placing the decimal point, and It allows obscurely marked components to be identified auick easily. Quartz controlled accuracy of 1%, 1 and clear 5 digit display and high speed operation make it a very useful instrument for production and testing departments. The kit is now supplied with a punched and printed front panel as well as
the case. all components and top quality printed clrcuit board. When assembled it looks a really professional job. For a limited time this kit is ofiered at a new low price.

SPECIAL KIT PRICE $£ 34.95$

MOSFET VARIABLE BENCH POWER SUPPLY 25V 2.5A

Our own high performance design. Variable output Coltage from 0 to 25 V and Current limit from 0 to 2.5A Capable of powering almost anything. Two panel against short-circuits. The variable Current protected trol makes this charging of NICAD cells and benstant current MOSFET handles the cult batteries. A Power ness and reliability, Uses a toroidal mains transformer. KIT 769

£56.82

DIGITAL CAPACITANCE METER

Provides clear readings of capacitance values from a few pF up to thousands μ F. Ideal for beginners. It allows obscurely marked components to be identified quickly and easily. Quartz controlled accuracy of 1%, and large clear 5 digit display. Kit is now supplied with a punched and printed front panel, case, all com ponents and top quality printed circuit board. New low price
KIT 493.
f34.95

BAT DETECTOR

An excellent circuit which reduces ultrasound frequencies between 20 and 100 kHz to the normal (human) audible range. Operating rather like a radio receiver the circuit allows the listner to tune-in to the ultrasonic frequencies of interest. Listening to Bats is fascinating. and it is possible to identify various different types using this project Other uses have been found in industry for vibration monitoring etc
KIT 814.
£21.44

QUICK CAPACITANCE TESTER

A low cost hand-held audio/visual unit which can identify short, open and working capacitors quickly and with a minimum of fuss. Also gives indication of leakage current. An ideal kit for beginners, built on a single printed circuit board needed. 2 l.e.d.s and a piezo transducer provide the output inimimum of wiring is KIT 834.
£10.34

ONISER

A highly efficient mains powered Negative Ion Generator that clears the air by neutralising excess positive ions. Many claimed health benefits due to the ioniser removing dust and pollen from the air and clearing smoke particles. Costs virtually nothing to run and is completely safe in operation. Uses five point emitters KIT 707
£17.75

ACTIVE I.R. BURGLAR ALARM

This alarm is useful where ordinary 'passive' (pir) detectors are not suitable. It via mains rated relay contacts. Built in timer and mains transformed beam. Output is KIT 700.

12 V EPROM ERASER
A safe low cost eraser for up to 4 EPROMS at a time in less than 20 minutes. Operates from a 12 V supply (400 mA). Used extensively for mobile work - updating equipment in the field etc. Also in educational situations where mains supplies are not al KIT 790.......................... $\mathbf{~} 28.51$

EE TREASURE HUNTER

Our own widety acclaimed design. This sensitive Pulse Induction metal detecior picks up coins and rings etc up to 20 cm deep. Negligible "ground effect means that the detector can even be used with the head immersed in sea water. Easy to use, circuit requires only a minimum of setting up as a
Quartz crystal provides all of the critical timing. Kit includes search-head, handle, case, PCB and all KIT 815.
£45.95

INSULATION TESTER

A reliable and neat electronic tester which checks at 500 Volts. The unit is battery powered simple and safe to operate. Leakage resistance of simple 100 Mer to operate. Leakage resistance of up to college project.
KIT 444
£22.37
3 BAND SHORT WAVE RADIO Covers 1.6 to 30 MHz in three bands using modern miniature plug-in coils. Audio output is via a builtin loudspeaker. Advanced stable design gives excellent stability, sensitivity and selectivity. Simple to build battery powered circuit. Receives a vast number of stations at all times of the day.
KIT 718
£30.30
DIGITAL COMBINATION LOCK Digital lock with 12 key keypad. Entering a four digit code operates a 250 V 16 A relay. A special anti-tamper circuit permits the relay board to be from 12 V . Drilled case, brushed aluminium keypad KIT 840
£19.86

PORTABLE ULTRASONIC

 PEsT SCARERA powerful 23 kHz ultrasound generator in a compact hand-held case. MOSFET output drives a spe cial tuned transformer. Sweeping pulses via a spe is designed to give maximum output without any special setting up.
KIT 842.
£22.56
LIGHT RIDER DISCO LIGHTS A sik channel light driver that scans from left to rol. Up to 500 watts per channel. Housed in a plastic box for complete safety. Built on a single KIT 560 .

LIGHT RIDER
9-12V CHASER LIGHTS
A low voltage DC powered end-to-end type chaser 3 and 16 . The for any number of lights between 3 and 16. The kit is supplied with 16 l.e.d.s but by adding power transistors it is possible to drive filament bulbs for a larger brighter display. Very popular with car customisers and modelters. L.e.d.s can be randomly positioned and paired to give
KIT 559
$£ 15.58$

SEE OUR FULL RANGE OF KITS, BOOKS, TOOLS, AND COMPONENTS IN OUR CATALOGUE

HAMEG HM203-7 20 MHz

 DUAL TRACE OSCILLOSCOPE \& COMPONENT TESTERWestern Europe's best selling oscilloscope - It is RELI
ABLE. HIGHPERFORMANCE, \& EASY TO USE. ABLE, HIGH PERFORMANCE, \& EASY TO USE.
Sharp bright display on $8 \times 10 \mathrm{~cm}$ screen with interna graticule. A special extra feature is the built-in com
ponent tester which allows capacitors ponent tester which allows capacitors, resistors, transis-
tors, diodes and many other components to be checked. The quality of this instrument is outstanding, and is sup ported by a two year parts and labour warranty. If you are buying an oscilloscope - this is the one costs a fraction more than some other 20 MHz scopes but it is far far superior. Supplied with test probes, mains
lead and manual.

(Cheques must be cleared)

EDUCATIONAL BOOKS \& PACKS

ADVENTURES WITH ELECTRONICS

The classic book by Tom Duncan used throughout on. No soldering. Uses an S. DEC breadboard for age 10 Book \& Components £28.95. Book only $\mathbf{f} 6.25$

FUN WITH ELECTRONICS

An Usborne book, wonderfully illustrated in colour. Component pack allows 6 projects to be built and kept. Soldering is necessary. Age 12 on, or younger with adult
help. Book \& Components $£ 20.88$, Book only $£ 2.95$

30 SOLDERLESS BREADBOARD PROJECTS A more advanced book to follow the others. No soldering Circuits cover a wide range of interests. Book \& Components E30.69. Book only $\mathbf{E 2} 95$

DC MOTOR/GEARBOXES
 Ideal for robots, buggies. and many other mechaniesai proiects. Min. .lastic gearbox with 1.5-4.5v oc motror 6 ratios can be entup. Small type MGS.

STEPPING MOTORS
For computer control via MD35 $1 / 4$ - standard 48 standard 4 pole unipolar steps per rev.......f12.99 drivers.
MD38
$\begin{array}{lll}\text { steps per miniature } & 48 & \text { MD200 - miniature } 200 \\ \text { steps per rev............f9.15 } & \end{array}$

MINI LAB KITS

ALL COMPONENTS TO ASSEMBLE THE EPE MINI LAB ARE AVAILABLE FROMMAGENTA.

The easy way to buy the correct parts to follow this exciting new educational series.

> Components are supplied in packs to keep ordering simple.

A full MINI LAB consists of ML1, ML3, ML5, ML6. These are available at a special combined price of. \qquad . 114.99 or less the p.c.b. ML2, ML3, ML5, ML6 at.. $£ 104.99$ The transformer unit ML4 is also needed.....£21.45

KIT ML1 MINI-LAB P.C.B. + all components inclusive of breadboard for Part 1 (Nov. '92). \qquad .£49.95
KIT ML2 All Components for Part 1 less p.c.b.

£39.95

KIT ML3 Power Supply components..
KIT ML4 Transformer unit................................21.45
KIT ML5 L.E.D. Voltmeter, signal generator, audio amplifier and 555 timer
.$£ 33.95$

(Note: batteries not included)
All prices include V.A.T. Add $£ 2.00$ p ε p.
Tel: 028365435 Fax: 028346932

MAGENTA ELECTRONICS 㗊LTD UITRASONIC PEST SCARER

Keep pets/pests away from newly sown areas, fruit, vegetable and flower beds, children's play areas, patios etc. This project produces intense pulses of ultrasound which deter visiting animals.

- Kit includes all components, PCB , and case
- Efficient 100 V transducer output
- Low current consumption
KIT Ref. 838

- Completely inaudible to humans
- Weatherproof construction
- Easy to build suitable for beginners

MAINS ADAPTOR

E.E. TREASURE HUNTER P.I. METAL DETECTOR

A highly developed and acclaimed Magenta design giving excellent performance and reliability. Quartz crystal controlled circuit with MOSFET coil drive and high slew-rate DC coupled amplification. Detects a $10 p$ coin at 20 cm and larger objects much deeper. Full kit includes ALL components, drilled and tinned PCB, search head, handle, case and all plastic parts. Some simple drilling is required.

- Efficient CMOS design with low battery drain
- Single winding search coil needs no sensitive adjustments
- No 'ground effect' works normally with search head immersed in sea water
- Variable pitch audio output to lightweight headphones
- Simple operation using single onetouch control
- Powerful coil drive
- Detects Ferrous and non.ferrous metal Gold, Silver, Copper etc.
- 190mm diameter search coil gives large area coverage

KIT Ref. 815
Kit includes headphones

All prices include V.A.T. Add $£ 2.00$ pEp.
Tel: 028365435 Fax: 028346932
135 Hunter Street, Burton-on-Trent, Staffs. DE14 2ST

CALLIN - OPEN: MON-FRI 8.30-5.00 SAT 10.00-5.00

Editorial Offices:
EVERYDAY with PRACTICAL ELECTRONICS EDITORIAL, 6 CHURCH STREET, WIMBORNE, DORSET BH21 1JH
Phone: Wimborne (0202) 881749
Fax: (0202) 841692. DX: Wimborne 45314
See notes on Readers' Enquiries below - we regret that lengthy technical enquiries cannot be answered over the telephone.

Advertisement Offices:
EVERYDAY with PRACTICAL ELECTRONICS ADVERTISEMENTS,
HOLLAND WOOD HOUSE, CHURCH LANE,
GREAT HOLLAND, ESSEX CO13 OJS.
Phone/Fax: (0255) 850596

GETTING IT TOGETHER

The name of John Linsley Hood has been synonymous with high quality audio design for many years. EPE readers will no doubt have seen kits for his designs advertised regularly in our pages. We are, therefore, pleased to present the first article from John to be published in this magazine.

Joining Things Together deals with the problems many readers face when trying to join various circuit designs together to form a "hybrid" that meets their requirements. As we know tens of thousands of readers study a multitude of electronic projects each month, a few of them build those projects but many more "pinch" bits of circuitry to put together designs of their own making. This, of course, is the very stuff of electronics as a hobby. It is what makes it interesting to many readers, and what leads to a fuller understanding of the subject and gradual development of design skills.

We hope John's article will encourage more readers to "have a go" and develop their own personalised circuitry.

ENGINEERING OR ALCHEMY

Looking a few months ahead we will also be publishing a short series of articles from the same author entitled Audio Amplifier Design - Engineering or Alchemy? In this series John considers the two opposing views on audio design; the engineers, some of whom believe that all competently designed amplifiers will sound the same; and the "subjectivists", who believe even the nature of the wire used in the amplifier will change the sound of the system.

Finding himself caught in the middle, John discusses some of the design aspects the engineer must now consider and looks at how much effect various types of component have on the reproduction of an audio signal. The series is highly informative and looks, in a balanced way, at the opposing opinions, what lies behind them and how they can be justified.

All the articles are fascinating and informative - we hope you enjoy them, in due course, as much as we have

SUBSCRIPTIONS
Annual subscriptions for delivery direct to any address in the UK: £20. Overseas: £26 (£43.50 address in the Cheques or bank drafts (in $£$ sterling only) airmaif). Cheques or bank drafts (in £ Sterling only)
payable to Everyday with Practical Electronics and payable to Everyday with Practical Electronics and
sent to EPE Subscriptions Dept. 6 Church Street sent to EPE Subscriptions Dept., 6 Church Street. Wimborne, Dorset BH21 1 JH . Tel: 0202881749 . Subscriptions start with the next available

BACKISSUES
Certain back issues of EVERYDAY ELECTRONICS PRACTICAL ELECTRONICS and EVERYDAY with PRACTICAL ELECTRONICS (from Nov '92 onwards) are available price $£ 2.00$ ($£ 2.50$ overseas surface mail) are available price $£ 2.00$ ($£ 2.50$ overseas surface mail) inclusive of postage and packing per copy - I sterling only please, Visa and Access (MasterCard) accepted, minimum credit card order E5. Enquiries With remittance, made payable to Everyday with Practical Electronics, should be sent to Post Sales Department, Everyday with Practical Electronics, 0202881749 . Wimborne, Dorset BH21 1JH Tel article can be photostatted for the same price. Norarticle can be photostatted for the same price. Norfor deliver. We have sold out of an. Feb Mar for delivery. We have sold out of Jan. Feb. Mar Apr, May, June. Oct, \& Dec 88. Mar \& May 89 Mar $90 \&$ Sept 91 Everyday Electronics, and can only supply back issues from Jan 92 to Oct 92 (excluding Mar 92) of Practical Electronics Feb 93 Everyday with Practical Electronics is also unavailable

BINDERS

New style binders to hold one volume (12 issues) are now available from the above address for $£ 4.95$ plus $£ 3.00$ post and packing (for overseas readers the postage is $\mathbf{£ 6 . 0 0}$ to everywhere except Australia and Papua New Guinea which cost £10.50). Normally sent within seven days but please allow 28 days for delivery.
Payment in \mathbf{f} sterling only please
Visa and Access (MasterCard) accepted. minimum credit card order $\mathrm{f5}$. Send card number and card expiry date with your name and address etc.

Editor: MIKE KENWARD

Secretary: PAM BROWN
Deputy Editor: DAVID BARRINGTON
Business Manager: DAVID J. LEAVER
Subscriptions: MARILYN GOLDBERG
Editorial: Wimborne (0202) 881749
Advertisement Manager:
PETER J. MEW, Frinton (0255) 850596
Advertisement Copy Controller:
DEREK NEW, Wimborne (0202) 882299

READERS' ENQUIRIES

We are unable to offer any advice on the use, purchase, repair or modification of commercial equipment or the incorporation or modification of designs published in the magazine. We regret that we cannot provide data or answer queries on articles or projects that are more than five years old. Letters requiring a personal reply must be accompanied by a stamped self-addressed envelope or a self addressed envelope and international reply coupons.

All reasonable precautions are taken to ensure that the advice and data given to readers is reliable. We cannot however guarantee it and we cannot accept legal responsibility for it.

COMPONENT SUPPLIES

We do not supply electronic components or kits for building the projects featured, these can be supplied by advertisers.

We advise readers to check that all parts are still available before commencing any project in a back-dated issue.

We regret that we cannot provide data or answer queries on projects that are more than five years old.

ADVERTISEMENTS

Although the proprietors and staff of EVERYDAY with PRACTICAL ELECTRONICS take reasonable precautions to protect the interests of readers by ensuring as far as practicable that advertisements are bona fide, the magazine and its Publishers cannot give any undertakings in respect of statements or claims made by advertisers, whether these advertisements are printed as part of the magazine, or are in the form of inserts.

The Publishers regret that under no circumstances will the magazine accept liability for non-receipt of goods ordered, or for late delivery, or for faults in manufacture. Legal remedies are available in respect of some of these circumstances, and readers who have complaints should first address them to the advertiser

TRANSMITTERS/BUGS/TELEPHONE

 EQUIPMENTWe would like to advise readers that certain items of radio transmitting and telephone equipment which may be advertised in our pages cannot be legally used in the UK. Readers should check the law before using any transmitting or telephone equipment as a fine, confiscation of equipment and/or imprisonment can result from illegal use. The laws vary from country to country: overseas readers should check local laws.

ELECTRIC GUITAR

 PREAMPAND DISTORTION UNIT

JOHN CHATWIN

A versatile preamplifier that can make you loud and clear or send you wild with distortion.

DISTORTION units have been around for a long time, ever since Jimi Hendrix started to use a "big muff" back in the sixties. It is the most common guitar effect and can give even the cheapest guitars much more power and sustain.

Units usually come in two forms, "overdrive" and "fuzz". Though basically the same they sound subtly different. Overdrive has a raunchy feel with lots of guts, much loved by hard rock and heavy metal players, while Fuzz is smoother and more round sounding.
Many of the early seventies groups such as T-Rex used this type of sound and it is gaining popularity again today. The unit described here combines the best of both types of distortion and can also be used as a clean signal booster to give more power and clarity to other electric instruments.

CIRCUIT

DESCRIPTION

The Guitar Preamp and Distortion Unit is based around two op. amps, see Fig. I. ICl is a low noise TL071 which is connected so that it amplifies the guitar signal fed in through the jack socket SK1. The gain for this stage is adjusted by rotary potentiometer VRI and ranges from unity to around +26 dB . From here the undistorted signal is taken to IC2 which is a general purpose 741 op . amp.
Diodes D1 and D2 connected across the feedback resistor R6 and "Distortion" control VR2 act as limiters that clip the signal into a square wave, giving the characteristic fuzzy sound. VR2 controls the depth of the effect. Capacitor C4 is used to remove high frequency interference that can be a problem at high gain levels.

Both i.c.s share a voltage divider formed by resistors R2 and R3 which keeps the non-inverting (pin 3) inputs at a mid point, that is half the supply voltage. Capacitors C2 and C6 help to smooth things along.

DUTPUT

The outputs from the "clean" and "dirty" sections of the circuit are fed into potentiometer VR3 which acts as a Balance control. At one end of its travel all the output comes from ICl, giving a distortion free, low noise signal boost. As the control is turned the other way this fades out and the output of IC2 is brought in until the output from the unit is a distorted signal only.
The preamp can be switched in and out using the d.p.d.t. toggle switch SI which disconnects the unit's input and output, and connects SK 1 to SK 2 . This method of bypass is better than just turning the power on and off as it avoids thumps and other noise that occurs when this is done.

Overall power on/off is achieved when a normal Mono guitar lead is plugged into socket SK1. The shaft of the leads jack plug shorts across the first two terminals of the socket and connects the negative supply line to the battery.

Fig. 1. Complete circuit diagram for the Electric Guitar Preamp and Distortion Unit.

CONSTRUCTION

The printed circuit board (p.c.b.) component layout and full size underside copper foil master pattern is shown in Fig. 2. This board is available from the EPE PCB Service code 829.
Construction of the unit is very straight forward and should present no real problems. All components fit onto the p.c.b. apart from the rotary potentiometers, sockets and bypass switch S1. These should be wired-up once in position, if possible, to keep wire runs as short as is practical.
Components should be soldered in carefully as the p.c.b. is quite small and it would be easy to make unwanted solder bridges between the copper tracks. Be particularly careful to ensure that the polarity conscious components, electrolytic capacitors, diodes and i.c.s, are mounted on the board the correct way round.
For the prototype unit a small aluminium case was used, of the type found in many of the component catalogues. It measured approximately $133 \mathrm{~mm} \times 102 \mathrm{~mm}$ $\times 38 \mathrm{~mm}$, dimensions are not important as long as the p.c.b., jack sockets, "pots" and battery can all be mounted inside the case.

It is most important that the case be metal. The circuit operates at high gains and will leap at the chance of picking up stray interference from lighting, mains cables etc.

TESTING

Before you plug in and blow the room away with a wild solo, it's important to check everything one more time. A little bit of care now can save hours of fiddling about later on
When you are totally satisfied that everything is the right way round and all the wires go to the right places, connect a PP3 battery and plug a jack plug into the input socket. If the l.e.d. D3 lights, at least this is connected up OK, you might as well try the unit out with a guitar.
Start with all the controls on the unit and your guitar amplifier turned right down in case you have problems with feedback, then, starting with the bypass switch, make sure that you can hear a normal guitar signal with the unit bypassed. Turn the unit on and raise the gain control. This should enable you to get a large boost in volume without any distortion.
Turning the Balance control VR3 fully clockwise should bring in a distorted signal

Fig. 2. Printed circuit board layout and full size copper master pattern.

COMPONFVIS

Resistors R1, R2,	
R3, R4	47k (4 off)
R5, R6	22k (2 off)
R7	1 k
All 0.25	5\% carbon
Potentiometers	
VR1, VR2	1 M rotary carb (2 off)
VR3	1 M rotary carb

Capacitor

C1	100 n min. polyester layer
C2	10μ radial elect., 16 V
C3, $\mathrm{C5}$	150 n min. polyester layer
C4	220 off .
C6	220 p cemic
C6	100μ radial elect., 16 V

Semiconductors

D1, D2 OA91 germanium diode (2 off)
D3 $\quad 5 \mathrm{~mm}$ red l.e.d
IC1 TLO71 low noise op. amp IC2 $\quad 741$ op.amp.

Miscellaneous

S1 Miniature d.p.d.t. toggle switch
SK1 $\quad 1 / 4$ inch stereo jack socket
SK2 $1 / 4$ inch mono jack socket B1 9 V battery (PP3), with snap-on clips
Aluminium case, size $133 \mathrm{~mm} \times$ $102 \mathrm{~mm} \times 38 \mathrm{~mm}$ approx; printed circuit board available from the EPE PCB Service, code 829; 8-pin d.i.l. socket (2 off); multistrand connecting wire; solder etc.

Approx cost

 guidance only
212

at the same level as the clean one. By using the distortion control you should be able to vary the depth of the fuzz effect from a slight clipping to a totally over the top screaming sustain.
If everything is working OK you can put away your soldering iron and get back to the serious business of playing along to your Led Zeplin albums.

Fig. 3. Interwiring from p.c.b. to case mounted components.

Constructional Project

 UNIUERSAL

 UNIUERSAL ALABM ALABM MODULE

 MODULE}

PAUL KERMAN

> A basic module that provides vibration sensedalarm timing, together with "entry"and "exit" delays.

THIS versatile alarm circuit can be used for virtually any application where vibration will trigger it off. Due to its small size and very low quiescent battery consumption it is ideal for use with personal items where its use could prevent the items being carried away. It is also suitable for use in cars, on bicycles, motorcycles, or to protect video recorders, etc.

BASIS OF OPERATION

The circuit has to produce three time delays as follows: one to allow for the setting of the alarm (and leaving the car, or item)arming phase; another to allow time to deactivate the alarm (when entering the vehicle) - disarming phase, and a third to prevent the alarm from ringing too long in
the event of it being triggered - alarm phase The circuit has been designed to keep power consumption to the barest minimum hence the use of CMOS devices and very high resistances throughtout. It should be noted that both IC1 and IC2 are static sensitive devices and should be handled accordingly.

The time delays are achieved by an arrangement of capacitors and resistors and a number of Schmitt triggers. In fact the entire circuit consists of essentially five Schmitt triggers.

C/FCUIT

When the switch SI (Fig. 1) is closed the inputs to the NAND gate IC2c are taken low causing its output to swing high. The use of such a method of powering the op.amp means that even if $\mathbf{S l}$ contacts
are relatively high resistance the alarm will trigger, also it uses the remaining i.c. gate. This powers up the op.amp IC1 and increases the potential of node A to approximately the sûpply voltage. The inputs of the NAND gate IC2b are taken high by this action and as a consequence the output then goes low, this is, in turn, inverted by the NAND gate IC2a.
At point B current from the output of IC2a divides into two; one portion flowing through D4, R11 and WD1. The purpose of this is to generate the faint bleep emitted from the alarm during the arming phase. The remaining portion of the current flows through R12 and the base emitter junction of TR1, this inhibits any current flowing into the non-inverting input of the op.amp IC1 by providing a current path to ground via TR1. This prevents the Schmitt trigger formed by ICl and R4 from triggering again during the arming phase.

ARMING PHASE

During the arming phase the output from the op.amp ICI must be low and this

Fig. 1. Complete circuit of the Universal Alarm Module.
will provide a path for the current I_{1} to flow to ground via D3 and R10. As C4 charges so the potential of node A falls, when this voltage drops to approximately 4 V IC2b triggers switching off the bleeper and TR1 - the alarm is now armed.
Should any vibration that causes a deflection of the sensor X1 occur a voltage will be produced. If this voltage is over a threshold value set by R1, R2 and R3 (approximately $1 / 100$ th of the supply voltage) the Schmitt trigger formed by ICl and R4 will trigger.
In the event of the threshold voltage being attained the output of the op.amp goes high as does node C. At C current from the op-amp will divide into two. One current path is through R5 to charge C1. The other is via R10 and R9 (since D3 is reverse biased and is non-conducting) to discharge C4.
Considering the path through R5 first: as the voltage across Cl rises the voltage applied to one of the inputs to the NAND gate IC2d rises to the threshold value of the Schmitt trigger on that input. This starts the astable multivibrator, formed with C2, R7 and the gate itself, oscillating at approximately 1 Hz .

DISARMING PHASE

The period of time required to charge Cl is the disarming phase; if the alarm is not turned off before the voltage across Cl reaches the threshold value then the bleeper WD1 will start to sound. The above oscillator drives the base of TR2 so that the current supplied to the sounder is chopped up into a series of pulses each approximately 0.5 second in duration.
The other portion of the current (I_{2}) from the output of ICl as stated discharges C4 (fairly slowly as it has to flow through a total resistance of 12.7 megohms). When
the voltage at node A reaches the trigger point of the Schmitt gate IC2b node B goes high turning on TRI, thus resetting the Schmitt trigger formed from IC1. The period of time required to discharge C4 is the alarm phase.
The diodes D5 and D1 protect the inputs of their associated gates. D2 guards against any back e.m.f. or flyback voltage produced by WDI.

CONSTRUCTION

The alarm is built on a small p.c.b. which is available from the EPE PCB Service order code EPE9070. As mentioned above the i.c.s are both static sensitive and should be left in their protective packaging until the board is completed. It is a good idea to use sockets for mounting these i.c.s.
Commence. construction by fitting the resistors, diodes and capacitors first, observing the polarity of the last two where marked.
Note that ICl is a performance programmable op-amp, i.e. its a.c. performance can be selected by the bias select pin (pin 8). This can be left floating for medium performance, connected to 0 V for high performance, or connected to $V_{\text {DD }}$ for low performance. The setting of this pin also affects the current drawn by the TS271 i.c.
On the original circuit board pins 7 and 8 of the op.amp were bridged with solder to 'reduce current consumption (low performance). For further information refer to the Texas Instruments LinMOS Design Manual.
If an unmounted piezo element is used as the sensor this should be carefully and quickly soldered to avoid damaging it, it is not a polarised component. Check carefully that all wiring is complete and correct before inserting the i.c.s.

Fig. 2. PCB layout and wiring of the module.
self-contained in a small plastic case and may use a key-operated switch or an internal normally closed (changeover) reed switch with a magnet to switch it off. In this way the unit can be placed on, or stuck to, almost any item that requires protection.
In a car the arming switch could again be a key-operated type mounted inside the car or simply a hidden or disguised toggleswitch. The unit can also provide protection to a bicycle or motorcycle in the same way.
If you are using the module as a video alarm open up an old video cassette, remove the tape and spools, and fit the module inside the cassette case. A suitable power supply here would be an alkaline PP3 battery. The best way of arming the unit is to use a changeover reed switch glued to the inside of the lid, the normally closed contacts are connected to the arming wires. Keeping a magnet on top of the alarm when not in use will deactivate it and removing the magnet prior to inserting the alarm into the video recorder will arm it.
If the unit is required to sound a high power alarm or siren (taking more than 200 mA), then WD1 can be replaced by a 12 V 200 ohm (or greater) relay and the contacts used to switch the alarm.

with David Barrington

Universal Alarm Module
The TS271CN i.c. used in the Universal Alarm Module is a special i.c. and as far as we are aware, only available from one source. The i.c. is "performance programmable" op.amp, which basically means its a.c. performance can be selected by the bias pin (8). This can be left loating for medium; connected to OV for high or connected to $V_{\text {dd }}$ for low performance.

The TS271CN is included in a very good "value-for-money" kit (XK222) being offered by Greenweld Electronic Components (0703236363). Costing only $£ 4.95$, the kit contains everything (including a com ponent screen printed p.c.b.) to build the project, except the "arming" switch which is left to individual choice. For those wishing to purchase a set of parts, excluding the circuit board, switch and piezo sensor, this will work out at $£ 3.95$. Add $£ 1$ for post and packing for either of these kits
The cost of parts shown in our components list is based on an individual item costing. So you can see that the Greenweld kit offers a good saving. No case has been specified for the module but they will supply a suitable one for an extra $£ 1.50$. Greenweld will also be sending a free copy of their catalogue with each order received

The small printed circuit board is available from the EPE PCB Service, code 9070
Mini Lab (Teach-In '93)
This month's subject for our Mini Lab (Teach-In '93) experimenter's "test bed" is the Display Module. This circuit contains three identical BCD-to-decimal, seven-segment decoder/driver i.c.s type 74 HCT 4511 This should be available from most of our semiconductor advertisers.

It is most important that 0.5 inch common cathode displays be used in this circuit. Nearly all the popular types sold by advertisers should fit the board, but check before purchase

The dual-in-line resistor module contains an eight resistor network and is the RS package, code 140-603. Be careful, some other types have different pinouts from the one specified. It is the " 8 -individual" type which is required.

A selection of kits for the Mini Lab, including the Display Module, has been specially prepared by Magenta Electronics (0283 65435). These include the single

Eurobreadboàrd which replaces the two original Veroblocs (discontinued)
The large Mini Lab printed circuit board is available from the EPE PCB Service, code MINI LAB (see page 387)

Guitar Preamp/Distortion Unit

We do not expect any component buying problems to arise when shopping for parts for the Guitar Preamp/Distortion Unit.
It is important that a Metal case is used in this project and it must be "earthed". This is achieved by inserting a solder tag under one of the fixing bolts and taking a lead from the tag to the earth (Chassis) point on the board
Note that the stereo jack socket is used to switch the battery supply, so make sure the two sockets do not get mixed up and are mounted correctly. Also, be sure to specify the wo "Log" law potentiometers when ordering
The printed circuit board is obtainable from the EPE PCB Service, code 829.

Mind Machine MkII - Magic Lights

Most of the components required to complete the Mind Machine Mk/I - Magic Lights unit are standard items and should not prove to troublesome to find locally. However, all parts or this project, including switches and sockets, are intended to fit directly on the circuit board and will have to be selected carefully.

The following items were all purchased from Maplin (0702 554161): Hyperbright (3.5 cd) I.e.d.s, code UK20W; p.c.b. slide switches, code FV01B; p.c.b. stereo sockets code JM23A; 2.5 mm p.c.b. socket, code FK01B; $2 \cdot 1 \mathrm{~mm}$ d.c. power socket, code RK37s. The plastic case is the Vero part number 202-21040F and was purchased from the same source (code LLO8J)

The micropower 5 V positive voltage regulator, type LP2950CZ, was chosen in preference to one of the more popular 78L05 series for its ability to operate at a lower current and voltage. At present it only appears in the Electromail (0536204555) listing, code 648-567.

Note that the control VR1 must be a "log law" component and must be ordered as such The printed circuit board is available from the EPE PCB Service, code 827 (see page 387)

Superhet Radio Control Receiver

Some of the items called up for the Super-
het Radio Control Receiver are "specials" and may prove difficult to find locally. This applies particularly to the r.f. MOSFET transistor type MFE207. It seems to be only listed by Cirkit (60.099244411) and carries the stock code of 60-04201

Cirkit are the main stockists for Toko coils and can supply all the transformer coils for this project. They are also stocked by Maplin. When ordering make sure you write down each type number very clearly as there is quite a range to choose from

The relay used in this circuit is the $12 \mathrm{~V}, 400$ ohm coil, ultra miniature p.c.b. mounting relay, with 2A (resistive) 1A (a.c. inductive) s.p.d.t contacts. This relay was purchased from Maplin code YX94C (Ult-Mn Relay 12V SPDT). Othe relays, with identical electrical characteristics, may be used provided they fit on the p.c.b. They can, or course, be hard-wired to the board.

The CA3140E op.amp should be used in this circuit, most other op.amps (such as the $\mu \mathrm{A} 741 \mathrm{C}$, LF351N, etc.) will not work properly here. The printed circuit board is available from the EPE PCB Service, code 828.

Linear Clock

The only item that looks as though it could cause some headaches when shopping around for components for the Linear Clock, is the 32.768 kHz crystal. This crystal is usually found under the timekeeping sections in catalogues and is normally used in digital watches. If any readers do experience local supply difficulties, it is currently listed by Maplin, code UJ02C

Quite a few of our advertisers carry special offers on "Mains $/ 12 \mathrm{~V}$ d.c. regulated adapters" and a suitable one should not be to hard to find. You could try contacting Marco, Greenweld, Cricklewood, Bull Electrical to name just a few. The one used by the author is the Maplin mains adaptor, code YZ21X.

The two fairly large printed circuit boards are available from the EPE PCB Service, codes 830 (Timing) and 831 (Display)

PLEASE TAKE NOTE

Universal Data Logger (March '93)
The 11 MHz crystal specified for last month's Universal Data Logger should have been a 11.05920 MHz type. We understand that the circuit will not function with the 11 MHz crystal.

The only supply source we have been able to locate for the correct 11.05920 MHz crystal is Viewcom (3081471 9338). This is listed under their HC49/U4H range.
Spatial Sound (March '93)
Some constructors have been experiencing some distortion being produced by IC2 in the Spatial Sound project.. The remedy for this is to place a 100 kilohm resistor to ground" after capacitor C3. Since IC2 is a.c. coupled, via C3, and has no biasing, adding the resistor stops it "floating

EASY FAST \& POWERFUL CAD SOFTWARE THAT GIVES YOU THE EDGE

ISIS - SCHEMATIC CAPTURE

Easy to use yet extremely powerful schematic entry system with all the features you need to create input for ARES or other CAD software. Now available in a super-fast 32 bit version capable of handling huge designs even on A0-sized sheets.

- Graphical User Interface gives exceptional ease of use - two mouse clicks will place \& route a wire
- Automatic wire routing, dot placement, label generation
- 2D drawing capability with symbol library.
- Comprehensive device libraries
- Heterogeneous devices (e.g. relay and coil) allowed in different places on the schematic.
- Special support for connector pins put each pin just where you want it.
- Output to printers, plotters, Postscript.
- Export designs to DTP and WP packages.
- Netlist formats for most popular PCB \& simulation software
- Bill of Materials and Electrical Rules Check reports.
- Multi-sheet and hierarchical design support.
- Automatic annotation/packaging.
- ASCII data import database facility

ARES - PCB DESIGN

Advanced netlist based PCB layout software newly updated to version 2.5. Major new features include SMT library, real time snap (for those tricky SMT spacings), thermal relief power planes and enhanced autorouting.

- Graphical User Interface. Real time snap.
- Auto track necking.
- Curved, 45/90 or any angle tracks.
- Extensive through hole and SMT package libraries as standard.
- 2D drawing capability with symbol library.
- Connectivity highlight.
- Output to printers, plotters, Postscript, Gerber and NC drill.
- Gerber View facility.
- Graphics export for DTP etc.
- Advanced netlist management with forward design modification.
- Component renumber and back-annotate to ISIS
- Full physical and electrical design rule checks.
- Autorouter handles single, double or multi-layer boards.
- Power plane generator
- Strategy \& DRC information loadable from ISIS.
- Gerber import utility available.
from

Elecircoiccos

Schematic drawing for MS Windows $3 . X$ - produces high quality schematics like you see in the magazines with your choice of line thicknesses, fill styles, fonts, colours etc. Once entered, drawings can be copied to most Windows software through the clipboard.

New version 1.10 includes library browser and export to WMF and EPS files.
just

CADPAK - BUDGET PRICE CAD

Two programs ISIS SUPERSKETCH and PCB II for the price of one.

CADPAK has everything you need to produce circuit diagrams and PCBs on your PC and is exceptionally easy to use. It also has many advanced features from ISIS \& ARES, not normally found in entry level products.
only

Call us today on 0274542868 or fax 0274481078 for a demo pack Combination, mull-copy and educational ascounts avalable. Prices exc P\&P and VAT.

Innovations

A roundup of the latest Everyday News from the world of electronics

TELEPRESENCE

HEADSETS of the type seen in futuristic adventure movies are being developed by BT. In fact they already have a working prototype at their Martlesham Heath labs and expect commercial systems to be available during 1995. The "telepresence" system uses advanced voice, data and visual communication to enable people to operate with the benefit of an expert looking over their shoulder - who is really not there at all.

By mounting a miniature TV camera or cameras, for stereoscopic vision - on a remote headset, an almost exact feeling of presence can be given to someone many miles away. He or she sees exactly what the person wearing the headset sees, whatever the angle.
BT's work on this remarkable technology is the most advanced in the world, embodied in what it calls the Camnet telepresence system.
"We still have a great deal of work to do, but the basic elements are all there and working," says BT's Keith Cameron.
"We now need to concentrate on getting the weight down and packaging components and circuitry into something that is practical and comfortable for someone to carry on their head for long periods."

50's REVIVAL

Now those of us that are "over 21 " can indulge in a little nostalgia - at a price. Roberts Radio have launched The Revival, a three band - I.w./s.w./f.m. - radio with modern performance and technology but styled in the image of the 50 's. Roberts say that "the cabinet of the Revival is an authentic replica of the R200 which became a must for style connoisseurs and celebrities in the 50 's and 60 's. It has all the stylish charm of the original, built in the same mahogany and leathercloth finish as before. However the Revival at $£ 99.99$ is packed with all the latest components and technology to combine the distinctive Roberts quality with a contemporary performance. F.M. sound is now available in this lightweight portable radio that is sure to prove as much an essential fashion accessory for the famous and stylish, as the R200 did in its heyday."

Telepresence could soon revolutionise news gathering. With Camnet, one lone reporter would become his own sound recordist and cameraman - with all the equipment he needs sitting on his head.
For the service engineer, Camnet could become one of the fundamental tools of the trade, putting an expert at his shoulder whenever he has a problem diagnosing or correcting a fault.
It could also help in aircraft checks following an accident. A rapid visual inspection could be made under the eye of remote experts, shortening the time the airline would have to ground its aircraft.
It could even become a key weapon in the fight against crime, with equipment

Electronic Newspaper

A joing venture between the RNIB, The Guardian, Aptech Ltd and Intelligent Research Ltd, has resulted in the launch of an electronic newspaper for the blind under the joint venture company Electronic Text Network Associates (ETNA) Ltd.

The launch of the electronic newspaper means that visually impaired people in the UK will be able to access the full text of the days Guardian by six a.m. - before some people receive their printed version.

The evening before publication, The Guardian pages are processed to remove photographs, graphics, and tables which are diffucult to convey with synthesised speech. The pages are then compressed and coded for transmission using an encryption technique which ensures that only ETNA users can receive and decode files.

The Electronic Newspaper reader plugs a TV aerial into the ETNA decoder board fitted to his/her personal computer. Overnight The Guardian files are received via teletext transmissions and stored on the computer's hard disk. When required, they are decompressed and processed ready for reading. The Guardian can be read using a speech synthesiser, braille display or large character display. Teletext and TV sound are available at any time.

The newspaper reading software allows the user to find and read articles and teletext pages with a series of simple menus.

The majority of operations can be completed by using a handful of keystrokes, making the system suitable for people who have never used a computer before.
Cost of the basic system (for those that already have a suitable PC) is $£ 560$, including $£ 160$ for a years subscription. The cost of a speech synthesiser adds at least $£ 350$ to this price.

MINI IRON

A new range of miniature soldering irons have been introduced by Cooper Tools, manufacturers of Weller equipment. The Weller Mini Series 2000 is a range of seven different irons rated at 12 , 15 , and 20 watts, prices start at around £13 including VAT.

More Phones

Up to 1,100 BT payphones will be installed in post offices nationwide under a new multi-million pound contract with Post Office Counters.
The programme of installation is expected to take about a year to complete, with the first being installed shortly. Most of the payphones are BT's new Payphone 490 model, designed to accept coins and credit card payments. The contract also includes 60 Cardphones which take BT Phonecards and commercial credit cards.

"'Gogglevox"' may be developed to help partially sighted
 sible for the partially sighted. Although all this is in its infancy, I am excited by the

by Hazel Cavendish

A HAMPSHIRE man who developed the world's first television set mounted in a pair of goggles may further develop his invention to restore a degree of vision to the near-blind who retain some vestige of sight.
William Johnson, whose "Gogglevox" was launched on the international market in January (see Jan '93 Innovations), was made aware of the perils experienced by partially sighted pedestrians when he saw two people narrowly avoid an accident with a car in Lymington High Street. As he walked back to his home in the town it suddenly occurred to him that his recent invention could be adapted to bring sight to those officially classed as "legally blind".
While negotiations proceed with both the United States and Japan to produce the Gogglevox under licence, Johnson has had time to put his inventive genius into solving this problem.
"Although it is still early days in this development, I can say now that we may be able to do something to help people with eyesight problems. Living in a town where so many are elderly and retired, I have long felt sympathy for those who lead their daily lives with the ever-present handicap of minimal eyesight.
"Using the same 'Microsharp' technology that was employed in producing Gogglevox, you could have something on the lines of a miniaturised TV camera which would feed its picture into the l.c.d. screen placed in front of each eye. The scene would be magnified to the virtual size it was in reality, and because it would be close to the eye they would see it more clearly.
"I also foresee the development of a device rather like a pencil, containing a miniaturised camera, which could be plugged into the system for reading purposes, magnifying the words and making reading pos-
prospect of helping people with tragically reduced eye-sight."
Johnson took seven years to produce the Gogglevox with the assistance of a team of scientists from Loughborough University, under the leadership of Professor Nicholas Phillips. He gives full credit to his "team of geniuses" whose physics enabled him to smooth out the screen pixels and produce a near-faultless picture offered by the miniature goggles set, using a patented paper-thin transparent film of "Microsharp" material.
It has aroused enormous interest worldwide, being widely publicised in scientific journals in the United States and Japan, and negotiations to produce it are well forward. To Johnson's continuing regret, no firm in Britain has showed interest in acquiring and marketing his original invention, but it remains to be seen whether the British medical world will be quicker when his latest idea reaches the market place.

THE THNNGS PEOPLE PAVENT!

The following abstracts are taken from recent UK patent applications in the general electrical/electronics area. British Patent Specifications can be ordered from The Patent Office, Sales Branch, Unit 6, Nine Mile Point, Cwmfelinfach, Cross Keys, Newport, Gwent, NP1 7HZ.

Microwave space and water heating system

In UK patent 2248681 Alan Keith Baker, Paul David Neale Cain and David Alan Combes describe a microwave heating system. It includes a heat generator and means for circulating fluid through a generator in order to abstract heat for transfer to space to be heated.
-The generator comprises a microwave source and a microwave absorber. A transfer device comprising a tortuous passageway through which heat transfer fluid is passed, the passageway includes a number of surfaces which absorb the microwave energy and reflect the energy into the heat transfer fluid. The heat transfer fluid may be water, and may contain sodium chloride to increase its absorbency of microwave energy. The heat transfer fluid may be piped to a radiator system and to a hot water cylinder.

Razor with hair detection means

In UK patent 2249515 Keter Plastic L.td describe a razor having an integral hair detector. It comprises a razor assembly (2) mounted on a handle (1) for brushing against the surface of a person's face and vibrating in response to contact with
hairs. A pickup (3) is coupled to the handle and responds to the vibrations, generating a corresponding signal.

Electronic or acoustic audio frequency amplifying means (5) are provided within the handle (1) for amplifying the signal from the pickup (3) and producing an audio frequency output. In use, the person shaving hears the amplified vibrations either directly via a loudspeaker or via an earpiece (8) so as to obtain feedback relating to the surface quality of the shave.

Warning triangle

In UK patent 2254094 John West Holes describes a collapsible warning triangle. The support for this is in the form of a box which is adapted to enclose the triangle when it is collapsed. The warning triangle comprise three reflective, linear elements and a light source arranged to project light to make the triangle more visible. The light source includes one or more electric lamps connected via an electric socket to an electric power source.

Detecting cable faults

In UK patent 2249841 Radiodetection Lid describe a method of detecting faults in a buried cable that comprises an inner core and conductive armouring. This is done in three stages. First, a fault is detected by measuring the resistance of the conductive armouring and comparing this with the expected resistance. of the armouring. This method makes use of an alternating signal having a frequency less than 1 kHz . Resistance of the cable is then measured using equipment connected to the ground via three ground spikes.
By first measuring the resistance between each pair of ground spikes the
resistance of one ground spike can be determined and this resistance can then be eliminated from the measurement of cable resistance. By repeating this operation at a remote point in the cable using further measuring equipment connected to the ground via further ground spikes, the location and resistance value of a fault in the cable can be determined.
Data may be transmitted between the measuring equipment at a frequency less than 1 kHz via the armouring. The use of a low frequency reduces capacitative effects.

An illuminating electric light switch

In UK patent 2251060 Andreas Charalambous Georgiou describes an electric light switch (1). It comprises a housing (2) for mouting on the wall of a room and serves to control a remote primary source of illumination that gives a high level of illumination required for normal activity within the room.
The switch housing (2) incorporates a secondary source of illumination (3) providing a lower level of light. The switch (1) includes a contact (5) for selecting either the primary or the secondary source as the source of illumination within the room.

CIRCUIT SURGERY

MIKE TOOLEY B.A.

> Welcome to Circuit Surgery, our regular clinic which deals with readers' problems. In this month's Surgery we shall be returning to a regular favourite with readers, power supply design. We also provide some hints for estimating the ratings of power transformers and details of a simple aerial booster which can be used with most types of radio receiver. For good measure we also briefly revisit the bargraph ammeter described in February's Circuit Surgery.

More power supply hints

Prompted by Circuit Surgery, several readers have sent in hints and tips for erstwhile power supply designers. Judging by the amount of mail received, this is obviously still a subject which interests many readers!

Phil Morris from Gloucester is a regular experimenter. Phil writes:
"I have come to the conclusion that the L200 regulator can meet virlually any need for a low-voltage regulated d.c. supply up to about IA. Unlike fixed voltage regulators like the popular 7805 and 7812, this handy chip can easily be configured for any voltage or current by means of two simple pre-set adjustments."

Phil has supplied the circuit diagram shown in Fig. 1. The L200 voltage/current regulator should be mounted on a suitable heatsink and an input voltage of between 17 V and 22 V should be quite adequate for output voltages in the range 9 V to 15 V .

Mr F. Yeates writes from the Isle of Wight with two useful suggestions:
"With reference to your article on regulator protection, I came across the enclosed circuil (Fig. 2) many years ago. Apparently, a voltage regulator which has its voltage increased by diodes loses its

Fig. 1. Circuit diagram for the $L 200$ voltage/current regulator suggested by Phil Morris.

protection if it experiences a short circuit on its output.

To prevent this, and to stop the common voltage being reverse biased by more than $0 \cdot 2 \mathrm{~V}$, a germanium diode (D3) is connected as shown: I have used this circuit but not tested it to destruction."
Mr Yeates also offers a very useful hint for those who need an accurate split-supply (or a half-supply rail) at a few tens of milliamps. The circuit, Fig. 3, is based on the ubiquitous LM380 in which pins $3,4,5,10$, 11 and 12 are all connected to the negative rail using as much spare copper as possible in order to act as a heat shunt.
The output voltage from pin 8 of the LM380 will be half that of the input voltage. If this point is then used as a 0 V rail the $+v e$ and $-v e$ rails will be at +6 V and -6 V respectively.

Fig. 2. Using a germanium diode as an output "protection" device.

Fig. 3. Obtaining a split-supply voltage using the LM380N audio amp i.c. Note that pins 3, 4, 5 and 10, 11, 12 must be connected to the negative line.

Finally, Andrew Paul, a student from York, suggests that budding power supply designers should be wary of the large value electrolytic capacitors found in high-current low-voltage supplies. Andrew writes:
"These capacitors are not charged to any' great voltage but that doesn't mean that they don't contain a very large amount of charge. A short circuit across the terminals will release a very large amount of energy. Be particularly careful if you have a metal watch strap -I melted part of mine when it came into contact with a $68,000 \mu \mathrm{~F}$ electrolytic!"

Bargraph ammeter display

Eric Johnson writes from Worcester with some pertinent points regarding the LM3914-based bargraph ammeter described in February's Surgery. Eric writes:
"I was interested in your L.E.D. Bargraph Ammeter in the February issue of EPE using the voltage dropped across the earth strap since I had built an ammeter with a meter display starting from that point. I have now built up the circuit to your design and I have the following comments:
I. It was necessary to change D4 to a 3 V Zener and to increase resistor $R 7$ to 1 k to get sufficient drive to the LM3914.
2. VRI gave far to coarse adjustment and I found it necessary to replace it with a 200 ohm potentiometer padded out with $2 k 2$ resistors on each side.
3. Is it correct to describe TRI and TR2 as a long-tailed pair since there is no common resistor "tail" in the source connections, TR2 is completely unaffected by the signal. The description misled me at first."
The first two points noted by Mr Johnson may be extremely useful to anyone who is having problems with setting-up the ammeter circuit and, in particular, achieving a satisfactory fullscale indication.

Mr Johnson is perfectly correct on the third point - although the circuit configuration for TR1 and TR2 resembles the classic differential amplifier circuit, it should not be described as a long-tailed pair. Having searched through the recesses of my mind, I now recall that the reason for using this particular arrangement was simply to help reduce susceptibility to
temperature induced variations in the input stage (the input voltage is only a few millivolts and the circuitry has to operate reliably over quite a wide temperature range).

Testing mains transformers

John Wyllie writes from the Irish Republic with an interesting query:
'I have a large number of mains transformers with unknown secondary outputs. Voltage output is no problem but how can the maxinum current be measured without causing damage? Also, by how much should this figure be reduced for continuous use?
I seem to develop a mental block (perhaps it's panic!') when it comes to transformers. so I would be grateful if you could find a few empty lines in your EPE pages to answer this."
Thanks for bowling this one, John, but as you might expect the answer is not at all straightforward!
One method of estimating the rated secondary current for a transformer simply involves measuring the diameter of the secondary windings. Sadly, this technique can only be applied when the secondary windings are brought out to tags or when they form flying leads.
If this measurement can be performed, the following table can be used to estimate the maximum rated current:

Wire diam. Approx. gauge Fusing Max. rated current current

(mm)	SWG	AWG	(A)	(A)
0.2	35	32	5	0.33
0.32	30	28	9	0.9
0.56	24	23	17	2.5
0.71	22	21	25	3.5
1.25	18	16	45	12
1.6	16	14	70	22

Notes: 1. AWG = American Wire Gauge 2. SWG = Standard Wire Gauge (UK)
3. Maximum rated current is dependent upon permissible temperature rise. In the case of a transformer (where the wire is densely packed) the values given in the right-hand column should be de-rated by at least 50 per cent.
Even when operated within the maximum current ratings determined as above, a transformer may still fail to operate satisfactorily if it is driven beyond the onset of saturation. At this point, losses will increase rapidly and efficiency will fall.
Another rule-of-thumb technique for estimating the rating of a transformer involves comparing its size and weight with that of a known component of similar construction. For example, if a transformer has a known rating of, say 50 VA , and it is slightly smaller and lighter than another (unknown) component which produces an off-load output of 12 V , it would be reasonably safe to assume that the unknown transformer could happily supply a load current of up to 4A.

Some (don't) like it hot!

Before moving on from this topic it is worth emphasising that power transformer ratings (as with all other components) are dependent on the temperature at which they operate. This point was once brought home to me when operating a very hefty home-built public address amplifier. This
equipment used four high-power pentode valves in the output stage and produced anoutput of around 200 W into a 100 V line.
Due to limited funds, the mains and output transformer selected for this project were only barely adequate for the job. Despite this, the equipment ran reliably on my workbench during a lengthy "soaktest".
Unfortunately, when using the equipment for the first time (and in front of an audience of several hundred) the amplifier was subjected to a continuous ambient temperature of around 40 deg.C! When things started to go wrong, I found that both the mains and output transformers were running at excessive temperatures and, in order to keep the show running, I was forced to rapidly improvise an exceedingly risky cooling system.
Despite my efforts, both transformers later failed internally. This story very effectively demonstrated the fact that something that works well in the relatively gentle environment of the workshop may rapidly fail when subjected to "real-world" conditions.

Aerial booster

Another reader from Ireland, Mark McGuinness, writes to ask for some assistance with the design of an aerial booster. Mark writes:
"I have for some time been looking for a circuit for an aerial amplifier for use with a mono. radio receiver which I have at home. Could you publish a suitable design in Circuit Surgery?"

Well, Mark, you have not given me an indication as to whether your receiver is used for VHF (f.m.) reception or for Medium/Long Wave (a.m.) reception so I will try to give you a circuit which will cover both (i.e. a "Wideband" Amplifier).
The complete circuit diagram of the Wideband Amplifier Aerial Booster is shown in Fig. 4. The single-stage unit provides ample gain over an extremely wide range (typically more than 15 dB over the range 100 kHz to 100 MHz).
The circuit is based on a UHF transistor having a typical transition frequency of 2 GHz (normal low-frequency and standard r.f. transistors will NOT operate in this circuit). The circuit will provide a reasonable match to a 75 ohm aerial source and a 75 ohm receiver input. In either case, coaxial feeder cable should be used.
The circuit operates from a low-current 9 V d.c. supply (the prototype used a PP3 battery) and ideally should be laid out on a small printed circuit board with a generous copper ground (0 V) plane. Matrix board can also be used provided signal leads are kept very short and several parallel-connected tracks are used to provide an effective ground connection at the input and output. Note that, whichever technique is used, ALL component leads must be kept VERY short if VHF performance is to be maintained.
The transistor bias point is adjustable by means of preset VR1. This component should be set to the position at which maximum gain is obtained (simply adjust VRI for a peak indication on a signal meter or bargraph tuning indicator).

One final point worth noting is that the
circuit provides very considerable gain (particularly at low and medium frequencies) and this can sometimes result in overloading and cross-modulation when very strong signals are present at the input. In such cases, the setting of VRI should be adjusted so that the gain is reduced to the point at which the symptoms disappear.

Next Month: In response to several requests from readers, we shall be describing means of boosting the output of a portable CD player for home and "in-car" use. In the meantime, if you have any comments or suggestions for inclusion in Circuit Surgery, please drop me a line at: Faculty of Technology, Brooklands College, Heath Road, Weybridge, Surrey, KT13 8TT.
Please note that I cannot undertake to reply to individual queries from readers however I will do my best to answer all questions from readers through the medium of this column.
Fig. 4 (below). Circuit diagram for the Wideband Amplifier Aerial Booster.

JOINING

 THINGS TOGETHER
JOHN LINSLEY HOOD

Abstract

One of the problems for the newcomer is that articles in technical magazines tend to be written by experts, who fail to explain some of the simple things which can cause problems to the novice. One of the questions most often asked by readers is: "How do I join circuits, expecially audio designs, together?" Here, that renowned audiophile John Linsley Hood offers some advice.

AN INEVITABLE problem in any kind of technical article is that the text is usually written by an expert, or at least someone with a good working knowledge of the subject, but the article is then read, and the hardware in question is put together, by enthusiasts of a rather lesser degree of expertise. This kind of situation isn't too trouble prone if the would-be constructor only wants to do what the author of the article describes.
However, in real life, the fun of electronics lies mostly in adapting ideas from various sources, and adding them together to make something different yet again. This kind of empire building may not be too difficult with logic circuitry where the d.c. power supply line for the hardware is just a low impedance +5 V source, and the input and output signals are of a standard pulse height, but in analogue circuits things are much less cut and dried, and in audio circuitry, in particular, DIY activity can become a mine field.
I become aware of this problem from time to time when I get letters from readers who have seen a design of mine for, say, a tone control or filter layout, and want to put this on the input of an audio amplifier circuit from some different author; "need to know how to do it - and would, ideally, like a ten word answer." My heart sinks when I consider that, without knowing their exact circumstances, it might take a five page reply to cover all the possibilities - so, for all of you out there, I hope this gives a general reply.
The things which need to be sorted out, in order to do the job satisfactorily, can be divided into four groups: Supply line voltages; signal return (0 V) line connections; signal output/input impedance matching; and interface d.c. and signal level voltages. Starting with the first of these catagories, the following may help to understand the problems involved in "joining things together".

D.C. supply line voltages

It is becoming increasingly common for audio circuit designers to choose circuit layouts based on i.c. gain blocks, using devices like the LM833 or TL052 dual op.amps. which run, typically, from a pair of $\pm 15 \mathrm{~V}$ supply lines. It is also fairly common for the audio amp. to have a pair of split voltage supply lines, though usually in the range $\pm 30 \mathrm{~V}$ to $\pm 55 \mathrm{~V}$. So it would seem, in principle, that all that is needed is to drop the voltage from the power amp. supply, and pinch the few milliamps needed by the filter circuit or whatever, from this.
With recent types of op.amp gain blocks, which have very good supply line ripple rejection; which can be up to $100,000: 1$ in terms of breakthrough from the supply line to the output signal line; a simple hook-up using a couple of Zener diodes, of the kind shown in Fig. la, will probably be quite adequate. As an alternative, if the input supply lines are not more than 35 V , one could use a pair of "three terminal" voltage regulator i.c.s. These could be the popular 7815 and 7915 negative and positive line devices, as shown in Fig. 1b, and all ones problems would be solved. (Note, however, that these i.c.s have different pin connections, as shown in the drawing).

However, if the designer has chosen to use an input smallsignal circuit based on separate transistors, capacitors and resistors - because some people believe that discrete component audio circuitry can sound a shade more "open" than comparable circuitry based on i.c.s - one must remember that such layouts may not be as good as an i.c. in terms of supply line rejection. In this case a simple Zener voltage dropper layout, like that in Fig. la, may not be good enough to stop "hum", audio signal residues on the power amp. supply line (which will probably be badly distorted if the output stage uses a push-pull output layout), and other unwanted supply line rubbish from breaking through into the signal channel.
This is a very tricky area for the constructor who hasn't got access to a distortion meter, since the circuit may appear to work to specification, but has, in fact, got a distortion figure about a hundred times worse than it should have had. The only safe answer, here, is to be very careful about the quality of the d.c. supply lines to such discrete component preamplifier stages.

The skilled circuit designer wishing to use discrete component layouts can choose circuit arrangements which have got good rejection of supply line breakthrough, and can recognise those layouts which haven't - usually those in which the output signal circuit has a load resistor connected to one or other supply line - but, for those less certain of their design skills, the best answer is to make doubly sure of avoiding trouble by using a power supply system with a low output noise and rubbish content. Two improvements over the simple Zener/resistor circuit of Fig. la, are shown in Figs. 2a and Fig. 2b.

Single-rall and dual-rall supply system

To use common supplies for input and output circuits is certainly practicable if both of them have either a single-rail or a dual-rail supply, or if the input circuit has a single-rail and the output has a dual-rail supply system. Though, in the latter case, there will almost certainly be a standing d.c. voltage on the signal output line, and some d.c. blocking capacitor must be included in the signal line.
Trying to power a dual-rail input stage from a single-rail output system is tricky, since most of the i.c. devices which will generate a negative output voltage when fed from a single positive supply line only provide a fairly small output current, and are often unsuitable for high gain audio systems because of breakthrough from their internal oscillator circuit. Dual-rail supplied circuitry can be rearranged to operate from a single supply, using the method shown in Fig. 3, but some care is needed to avoid big switch-on voltage surges.

Signal return (OW) line interconnections

lt is obvious that, if two or more units are to be connected in cascade, their " 0 V "' signal return lines must be connected together. However, if one of these units is, say, an audio power amplifier, its own " 0 V " line will need to be taken;' via a very low resistance path, to the " 0 V " point of the power supply.
This can lead to problems if the stages preceding the power amp. have a significant amount of gain (say five-times or more), and their inputs need to be "earthed" to the chas sis. In this case, the usual answer is to insert a small resistance in the " 0 V " line, where the two units join, as shown in Fig. 4. Remember, though, that any input circuit supply line

Fig. 3. An amplifier supplied by a pair of d.c. lines can often be rearranged to operate from a single supply line.

EE4T076
Fig. 4. Typical "OV"line connection between a preamplifier and a power amplifier.

Fig. 5. Typical stage gain determining negative feedback connections.
decoupling capacitors must then be connected, as shown, to the input side of this " 0 V ' line.

Signal and d.c. output lovel considerations

Any audio circuit will have a maximum input signal level, beyond which it will overload, and cause signal clipping. If the designer hasn't specified what this signal level will be, it can be worked out, approximately, by taking note of the d.c. supply voltages fed to the output stage and the gain of the system. If, for example, the output stage is fed with a $\pm 50 \mathrm{~V}$ supply, the maximum possible peak-to-peak output voltage swing will be 100 V , or $100 / 2 \mathrm{~V} 2 \mathrm{~V}(35.36 \mathrm{~V})$ r.m.s.

Being realistic, the practical output swing, on load, will probably be rather less than this - say 32 V r.m.s. - and if the gain of the stage is $30 \times$, then the maximum signal input, before overload, will be a bit over 1V r.m.s.
If the designer hasn't quoted the gain, and the amplifier circuit uses overall negative feedback, and most of them do, one can work out the gain, in the case of the circuit of Fig. 5a, by looking at the values of $R_{f 1}$ and $R_{f b 2}$, from which the gain equation is $R_{f b 2} / R_{\text {fbl }}$. In the circuits of Figs. $5 b$ and $5 c$, which are

Fig. 6. Inserting a gain control (VR1) between the input amplifier and succeeding gain stage.

Fig. 7(a). "Push-pull" and (b) "single-ended" output stage layout.
the ones which are most commonly found in practice, the gain will be $\left(R_{f 1}+R_{f b 2}\right) /\left(R_{f 1}\right)$.
If the preceding stage is likely to have an output which is larger than this, then it would be prudent to insert some kind of gain control, such as a preset potentiometer, (VR1), in the signal line, as shown in Fig. 6. The way of working out the best value to use for this "pot." is explained later.

Interface d.c. Iovel problems

Most electronic circuits will have an output which is composed of d.c. and a.c. voltages. If, as is nearly always the case in audio circuits, it is only the a.c. voltages which are required, and the d.c. output component is a nuisance, a d.c. blocking capacitor, such as Cl in Fig. 6, is usually inserted in the signal line.
This capacitor should be big enough in size to avoid any loss of low frequency audio signals, and the frequency at which the output voltage is reduced by $3 \mathrm{~dB},(0.707 \times)$, is given by the equation $f_{0}=1 /\left(2 \pi \mathrm{Cl} \mathrm{R}_{\mathrm{in}}\right)$, where f_{o} is the roll-off frequency in Hz , and $\mathrm{R}_{\text {in }}$ is the effective input resistance of the following stage. If the following stage has a fairly high input resistance, as would be the case, at l.f., with most op.amps and similar audio gain stages, one could assume, fairly safely, that the input resistance, $R_{i n}$, will not be much different from R1.
It is not always sensible to choose a value for Cl which is a lot larger than would be needed to give a -3 dB point at, say, 30 Hz , (lew loudspeaker units and almost no headphones will give a usable output below this frequency), since a needlessly large d.c. blocking "coupling" capacitor will make the switch-on "thumps" and d.c. level surges more of a nuisance. The working voltage of Cl must be, at least, equal to the value of the d.c. supply lines, even though there may be no actual d.c. voltage across it for most of the time.
The choice of value for R1, (or VR1), if the circuit designer hasn't already specified some resistance in this position, depends on the output resistance of the preceding stage and, ideally, the input resistance should always be a good bit larger than this. If the preceding stage uses a "push-pull" circuit layout, of the kind shown in Fig. 7a, then its output resistance will probably be fairly low - less than a few hundred ohms. If it is a "single-ended" layout, of the kind shown in Fig. 7b, then it is best to assume that the output resistance is the same as the value of R_{L}.

Output to Input impedance matching

In general, there is no difficulty in feeding a signal from a circuit with a low output impedance into a circuit with a high input impedance. The other way round can, however, lead to problems, due to loss of signal level, limitation of output voltage swing and possible input waveform distortion, so the interconnection of such mis-matched systems is best avoided.

HART AUDIO KITS - YOUR VALUE FOR MONEY ROUTE TO ULTIMATE HI-FI

HART KITS give you the opportunity to build the very best engineered hifi equipment there is, designed by the leaders in their field, using the best components that are available.
Every HART KIT is not just a new equipment acquisition but a valuable investment in knowledge, giving you guided hands-on experience of modern electronic techniques.
In short HART is your 'friend in the trade' giving you, as a knowledgeable constructor, access to better equipment at lower prices than the man in the street.
You can buy the reprints and construction manual for any kit to see how easy it is to build your own equipment the HART way. The FULL cost can be credited against your subsequent kit purchase. Our list will give you fuller details of all our Audio Kits, components and special offers.

AUDIO DESIGN 80 WATT POWER AMPLIFIER

This fantastic John Linsley Hood designed amplifier is the flagship of our range, and the ideal powerhouse for your ultimate hifl system. This kit is your way to get $£ K$ performance for a few tenths of the cost!. Featured on the front cover of 'Electronics Today International' this complete stereo power amplifier offers World Class performance allied to the famous HART quality and ease of construction. John Linsley Hood's comments on seeing a complete unit were enthusiastic:- "The external view is that of a thoroughly professional piece of audio gear, neat elegant and functional. This impression is greatly reinforced by the internal appearance, which is redolent of quality, both in components and in layout." Options include a stereo LED power meter and a versatile passive front end giving switched inputs using ALPS precision, low-noise volume and balance controls. A new relay switched front end option also gives a tape input and output facility so that for use with tuners, tape and CD players, or indeed any other 'flat' inputs the power amplifier may be used on its own, without the need for any external signal handling stages. 'Slave' and 'monobloc' versions without the passive input stage and power meter are also available. All versions fit within our standard $420 \times 260 \times 75 \mathrm{~mm}$ case to match our 400 Series Tuner range. ALL six power supply rails are fully stabilised, and the complete power supply, using a toroidal transcomplete power supply, using a toroidal trans-
former, is contained within a heavy gauge former, is contained within a heavy gauge
aluminium chassis/heatsink fitted with IEC mains input and output sockets. All the circuitry is on protessional grade printed circuit boards with roller tinned finish and green solder resist on the component ident side, the power amplifiers feature an advanced double sided layout for feature an advanced double sided layout for
maximum performance. All wiring in this kit is premaximum performance. All wiring
terminated, ready for instant use!
RLH11 Reprints of latest articles.
K1100CM HART Construction Manual
£1.80

LINSLEY HOOD 1400 SERIES

ULTRA HIGH-QUALITY PREAMP
Joining our magnificent 80 Watt power amplifier now is the most advanced preamplifier ever offered on the kit, or indeed made-up marketplace. Facilities include separate tape signal selection to enable you to listen to one programme while recording another, up to 7 inputs, cross recording facilities, class A headphone amplifier, cancellable 3 -level tone controls and many other useful functions, all selected by high quallty relays. For full detalls see our list.

LINSLEY HOOD 'SHUNT FEEDBACK' R.I.A.A. MOVING COIL \& MOVING MAGNET PICKUP PREAMPLIFIERS

Modern, ultimate sound systems are evolving towards built-in preamplifiers within or near the turntable unit. This keeps noise pickup and treble loss to a minimum. We now offer two units, both having the sonically preferred shunt feedback configuration to give an accurate and musical sound, and both having the ability to use both moving magnet and moving coil cartridges.
Kit K1500 uses modern integrated circuits to achieve outstanding sound quality at minimal cost. The very low power requirements enable this unit to be operated from dry batteries and the kit comes with very detalled instructions making it ideal for the beginner. K1500 Complete kit with all components, printed circuit board, full instructions and fully finished case.
.567 .99 Instructions only
£2.80 Kit K1450 is a fully discrete component implementation of the shunt feedback concept and used with the right cartridge offers the discerning user the ultimate in sound quality from vinyl disks. Can be fitted inside our 1400 Preamp, used externally or as a standalone unit. It has a higher power requirement and needs to be powered from our 1400 Series preamplifier or its own dedicated power supply. K1450 Complete kit of board mounting parts for discrete component RIAA preamplifier..
61.06 1500/2-8 Case to suit, including Hardware.
£39.52 K1565 Power Supply in matching case. Features shielded toroidal transformer and upgrade path to
full preamp power supply.............................. 79.42 full preamp power supply

LINSLEY-HOOD SERIES SUPER HIGH QUALITY

 FM TUNERThis ultra high quality, fully analogue, tuner system is the ideal companion to the 80W Audio Design Amplifier in any ultimate hi-fl setup, with case size, front plate layout and even control pitches unified for stacking. Like the 80W Audio Design Amplifier this is your route to ultimate performance at incredibly modest cost! Novel circuit features include ready built pre-aligned front end, phase locked loop signal demodulation, with a response down to DC. and advanced sample and hold stereo decoder. Together these features make a tuner which sounds better than the best of the high-priced exotica but, thanks to HART engineering, remains very easy to build and set up. If you want the very best in real $\mathrm{Hi}-\mathrm{Fi}$ listening then this is the tuner for you. All components are selected to give the very best sound quality so this tuner is not cheap, but in terms of its sheer sound quality it is incredible value for money. Further details are in our fully illustrated lists.
K400FM, total cost of all parts is $£ 211.90$, Our Special Discount Price for complete Kit only........ 169.52 Don't forget you can buy the construction manual and reprints to see how easy it is and the cost will be credited IN FULL when you buy your kit. RLH8 Reprints of 3 articles covering the FM tuner.
£2.70

INS400 Construction Manual

SANYO DENKI 'Step-Syn' STEPPER MOTORS 1.8 Deg 3.3V 1.1A 4-wire Type 103-775-2040. Size 56.5 mm Dia. 40 mm long with $0.9^{\prime \prime} \times 1 / 4^{\prime \prime}$ shaft. Ex new equipment only \qquad

TOKO NT3302 MANUAL FM TUNERHEAD

A very compact and economically priced capacitor tuned Fm front end with AM tuning capacitors and trimmers incorporated. A current consumption of less than 18 mA at 9 V makes it suitable for static or

Send or 'phone for your copy of our List (50 p) of these and many other Kits \& Components. Enquiries from
Ordering is easy. Just write or telephone your requirements to sample the friendly and efficient HART
Ordering is easy. Just write or telephone your requirements to sample the friendly and efficient HART get your order on its way to you THAT DAY.
Please add part cost of carriage and insurance as follows:-INLANO Orders up to £20- £1.50 Orders over $£ 20-£ 3.50$ Express Courler, next working day. $\mathbf{£ 1 0}$ (For salety all computer parts are only sent by courler) OVERSEAS - Please see the ordering informatlon with our lists.

Constructional Project

SUPERHET RADIO CONTROL

 RECEIVER
ROBERTPENFOLD

Improved operating range, up to 50 metres, and sensitivity is possible with the "superhet"receiver. No special test equipment needed for setting-up.

ASIMPLE 27 MHz radio control system was described in the February 1993 issue of Everyday With Practical Electronics. This system has very limited range due to the use of a rather basic receiver circuit of the t.r.f. (tuned radio frequency) variety.
The radio control receiver featured here can be used in place of the original receiver design in order to obtain a much greater range. It is a superheterodyne ("superhet") receiver which is more complex than the original design.
It is also slightly more difficult to set this receiver up properly for maximum sensitivity. However, it is still reasonably simple to build, and can be set up for optimum performance without the aid of any test equipment.

The maximum range that can be achieved depends on a number of factors, but reliable operation at up to about 50 metres is usually possible. Even if the system is only going to be used at short ranges indoors, the higher sensitivity is still an advantage.

Standing waves can produce "dead" spots where there is an inadequate signal level due to reflected signals cancelling out the direct signal. Higher sensitivity does not remove these "dead" spots, but it does render them so small as to be of no practical importance.

SYSTEM
 OPERATION

No form of modulation is used at the transmitter, other than simple on/off keying of the carrier wave. The receiver must close a pair of relay contacts when the signal from the transmitter is present, and open the contacts when the signal is absent. Fig. I shows the block diagram for the Superhet Radio Control receiver.

A t.r.f. receiver provides all the radio frequency (r.f.) amplification at the transmission frequency, which in this case is a frequency of around 27 MHz . A superhet receiver provides only a relatively small amount of gain at the transmission frequency.

Prior to detection, the incoming signal to the superhet is converted to a lower frequency, known as the intermediate frequency (i.f.). It is at the intermediate frequency that most of the radio frequency gain is obtained.

The main point of using this conversion process is that it is much easier to obtain high gain at the lower intermediate frequency. Also, good selectivity is much easier to achieve at a lower frequency.

The mixer produces sum and difference signals, and it is the latter which is required in this case. The oscillator stage operates 455 kHz below the reception frequency. This obviously gives a difference between the input and oscillator frequencies of 455 kHz , which is the intermediate frequency used here.
A single stage of amplification is used at the intermediate frequency. Two intermediate frequency amplifier stages are used in most superhet receivers, but for the present application a single stage seems to be better. The higher gain of two stages tends to give problems with spurious triggering.

Remember that this radio control system does not use any form of modulation, and

Fig. 1. The Superhet Radio Control Receiver block diagram.

SELECTIVITY

The selectivity of a receiver is its ability to ignore strong signals on adjacent channels. Even though the 27 MHz radio control band has a quite generous channel spacing of 50 kHz , the selectivity of the t.r.f. set is wide enough for transmissions on adjacent channels to give occasional problems.

The superhet circuit has much higher sensitivity, but the selectivity is vastly better. Consequently, it is unlikely that adjacent channel interference will ever be a problem when using the superhet receiver.

The aerial signal is coupled to a tuned circuit which acts as an input filter. There is a slight problem with a superhet receiver in that it can pick up signals on a number of spurious responses. The input filter keeps the sensitivity on these responses down to an acceptable level.

The mixer and the oscillator provide the conversion to the intermediate frequency.
that any signal of adequate strength within the passband of the receiver (even just noise) will activate it. A single intermediate frequency amplifier gives adequate range for most simple radio control applications, and avoids problems with spurious operations of the receiver.
The rest of the receiver is very similar to the final stages of the t.r.f. design. A demodulator stage produces a positive d.c. output level that is roughly proportional to the strength of the received signal. This signal will usually be quite weak, but it is amplified by a d.c. amplifier to provide a more useful signal level.
The next stage is a simple relay driver circuit. Under standby conditions the output level from the d.c. amplifier is insufficient to activate this stage, but in the presence of a reasonably strong signal from the transmitter the relay will be switched on. A pair of normally open relay contacts are used to control the model, camera, etc.

Fig. 2. Complete circuit diagram for the Superhet Radio Control Receiver. The black spots indicate the start of the transformer coil windings.
quite short, and better results are therefore obtained if it is coupled
direct to the tuned circuit.
direct to the tuned circuit.
Capacitor C2 couples the oscillator signal to the gate 2 terminal
of TR2. The varying gate 2 voltage produces variations in gain of TR the gate I terminal to the output at TR2's drain. These gain variations give the required mixing effect, and produce the 455 kHz difference signal across the primary winding of T 3 , the first i.f.
transformer.

The output from T3's low impedance secondary winding is coupled to the base of transistor TR3 via capacitor C7. TR3
operates as a common emitter amplifier, and it provides much of the receiver's gain. The second i.f. transformer T4, provides an efficient coupling from the output of TR3 to the detector stage. The detector is a simple diode type based on DI. Due to its lower forward voltage drop a germanium diode is preferable in this
application.

The d.c. amplifier is a non-inverting mode circuit based on operational amplififer ICL. The CA3 140 E i.c. used for ICL is a type which can operate properiy as a single supply d.c. amplifier. Note
that most other operational amplifiers (uA74IC, LF351N, etc.)
will not work properly in this circuit.
Resistors R8 and R9 set the voltage gain of the amplifier at
approximately 30 times. Higher gain and increased range can be
Making R8 much lower than the specified value of 3 k 3 will result
.

The full circuit diame for Receiver is shown in Fig. 2. Transistor TR1 is used in the crystal transformer T1 has an integral tuning capacitor but results seem to be better if an external capacitor (C1) is added in parallel with this. Adjustment of TI is then far less critical, and a much

The crystal, X 1 , must be matched to the crystal in the receiver. Radio control crystals are normally sold in matched pairs, and it is the lower frequency crystal $(26 \cdot 54 \mathrm{MHz}$ to 26.79 MHz$)$ that is
used in the receiver. The higher frequency crystal $(26 \cdot 995 \mathrm{MHz}$ to 27.215 MHz) is used in the transmitter circuit.

The system might actually work if the crystals are swapped over, but the system would be illegal as it would not be operating within
the authorised band. There are six channels, and this receiver will
unction correctly using a cryst for any of hese. MOSFET. The aerial transformer T2 and capacitor C5 form the input tuned circuit, which is direct coupled to the gate I terminal of TR2. The input capacitance of TR2 also acts as part of the
tuning capacitance, and it probably provides most of the tuning

There is a low impedance winding on $T 2$ which would normally be used as the aerial coupling winding. In this case the aerial will be

COMPONEVTS

Resistors		
R1, R5	1M (2 off)	
R2, R9	100 k	
R3	270	
R4	1 k	See
R6	220k	SHOP
R8	3 k 3	
R10	1 k 8	,
R11	4 k 7	Page
R12	2k2	

All 25 W 5\% carbon film

Capacitors

C1	320
C2	2p2 ceramic plate
C3	100 disc ceramic
C4, C9	100μ radial elect., 10 V (2 off)
C5	4 p 7 ceramic plate
C6, C7	10 n polyester (2 off)
C8	100 n polyester

Semiconductors

D1	OA91 germanium signal diode
D2	Red l.e.d. (see text)
D3	1 N4148 silicon signal
diode	

Miscellaneous

T1 Toko MKXCSK3464
T2 Toko KANK3335R
$\begin{array}{ll}\text { T3 } & \text { Toko YRCS11098AC } \\ \text { T4 } & \text { Toko YHCS11100AC }\end{array}$
$X 1 \quad 26 \mathrm{MHzHC}-25 \mathrm{URC}$
crystal (see text)
RLA 12 V .400 ohms coil, miniature p.c.b. mounting relay, with 2 A (resistive), 1A (a.c. inductive), s.p.d.t. contacts
S1 s.p.s.t. miniature toggle B1 12 V battery pack (eight HP7 size cells in holder)
Printed circuit board available from EPE PCB Service, code 828; plastic case (see text); aerial (see text); HC25 U printed circuit mounting crystal holder; battery connector (PP3 type); wire; solder; etc.

Approx cost
guidance only

CONSTRUCTION

Details of the printed circuit board component layout and underside copper foil master pattern are provided in Fig.3. This board is available through the EPE PCB Service, code 828. Construction of the board is reasonably straightforward, but due to the use of several unusual components there are several points which are worthy of note.
Crystal X1 might have ordinary leadout wires, and if so it can be soldered direct to the board. Each soldered joint should be completed as quickly as possible to avoid internal damage to the crystal or its mounting.

It is more likely that the crystal will have pins rather than leads. A crystal of this type can be soldered direct to a printed circuit board, or mounted via solder-pins.

EE40086

Fig. 3. Printed circuit board component layout and full size copper foil master pattern. As the metal "can" of transformer T4 completes the battery negative line (B1 -) connection, extra care should be taken to ensure that the mounting lugs are securely soldered to the board. The completed circuit board is shown in the photograph below.

Fitting a printed circuit mounting HC25 U socket on the board and then plugging the crystal into this is a much neater solution. It also makes it much easier to change the crystal if you need to move the system to a different channel. However, if the receiver is likely to be subjected to a lot of vibration it is probably best to mount a pair of solder-pins on the board, and then carefully solder the crystal onto these.
The four r.f. transformers (Tl to T 4) each have five pins plus two mounting lugs. All five pins and both lugs should be soldered to the board, and plenty of solder should be used when connecting the two lugs. This will securely fix the transformers to the board.
The dual gate MOSFET TR2 is a static sensitive device, but it has built-in static protection circuits which render any special handling precautions unnecessary. It should be connected using a soldering iron having an "earthed" bit though. Dual gate MOSFETs seem to be less easily obtained than they were a few years ago. Many of those that are available are of the surfacemount variety, and cannot easily be used with this printed circuit design. The 40673, MFE201, and 3N201 are all suitable for use in this design, as are any similar types which have ordinary leadout wires.

OPERATIONAL AMPLIFIER

IC1 is also static-sensitive, and it should therefore be mounted in a holder. It should not be fitted into its holder until the receiver is finished in all other respects. Until then it should be left in its anti-static packaging, and it should be handled as little as possible when it is being fitted into the holder.
Diode D ! is a germanium type, and it is more vulnerable to heat damage than the more familiar silicon types. It is not essential to use a heatshunt when connecting this component, but each soldered joint must be completed quickly so that it does not have a chance to become excessively hot. s

The board has been designed to take the specified relay, which is a very small type. From the electrical point of view, any 12 V relay which has a coil resistance of about 300 ohms or more should be suitable.
There is little chance of being able to fit other relays into the available space on the board, and they would be unlikely to have the same pinout arrangement as the specified component. Therefore, it is advisable to use the specified relay unless there is genuinely a compelling reason for using an alternative type.

If it should be necessary to use an alternative relay, it will almost certainly have to be mounted off-board and then hard wired 10 the printed circuit board. The contacts of the specified relay are rated 2 A for resistive loads, or 1 A for a.c. inductive loads. The maximum voltage ratings are 24 V d.c. and 120 V a.c.

No attempt has been made to reduce the printed circuit board to the smallest possible size. It is still quite small though, and the capacitors must all be miniature printed circuit mounting types if they are to fit into the available space. The three polyester capacitors (C 6 to C 8) should have 7.5 millimetre (0.3 inch) lead spacing.

INCASE

If the unit is used as a camera trigger or some similar application, it must be fitted in a medium sized plastic case. When choosing the case remember that it must be large enough to accommodate the relatively large battery pack

Probably most users will fit the receiver into a model of some kind. A case is then unnecessary, although if the unit is fitted in a model boat it might be as well to use a plastic case to shield the board from water splashes.

AERIAL

The aerial can be any telescopic type, having an extended length of about 0.6 m to one metre, or any piece of wire that is about 0.6 to one metre long. Aerials about one metre long give somewhat better sensitivity than short types. The receiver will operate using an aerial of less than 0.6 metres in length, but a short aerial is almost certain to significantly reduce the maximum operating range of the system.

Note that the aerial must not be allowed to come into electrical contact with anything other than the input terminal of the receiver board. It should not be allowed to come into contact with the metal chassis of a model car for instance. Also, it is no good having the aerial within the metal
bodywork of a model. The metalwork would screen the aerial from the transmitter's signal.

ADJUSTMENT

The cores of T1 to T4 must be given suitable settings before the receiver will work properly. Only use proper trimming tools when adjusting these components. Using a small screwdriver can damage the brittle ferrites cores. The slotted cores of T1 and T2 are particularly vulnerable to damage from a wedge shaped screwdriver blade.

The receiver will probably function with the cores at their initial settings, but only with a very limited range. If the receiver does not even function over a range of half a metre or so, adjustment of T3 should bring results. The cores of T3 and T4 should then be adjusted for peak

In the absence of any test equipment to aid with the alignment of the receiver, the best way of going about this task is to use the transmitter as the signal source, and D2 as a tuning indicator. It is more than a little helpful to have an assistant to operate the transmitter

With the transmitter permanently switched on, move it away from the receiver until the l.e.d. D2 is just barely glowing. Then adjust the cores of T3 and T4 for maximum brightness from D2.

Next move the transmitter further away from the receiver until $D 2$ is quite dim again, and then readjust the cores of T3 and T4 for optimum brightness from D2 once again. Repeat this process until no further improvement in sensitivity can be obtained.

Much the same process is used to find the optimum setting for T2's core. The bandwidth of the input filter is quite wide, especially if a fairly long aerial is used The peak setting is much less well defined than that of T3 or T4, but any setting that provides good sensitivity should give perfectly satisfactory results.

NEW STYLE EPE BINDERS

A totally new type of binder is now available to hold and protect twelve issues of Everyday with Practical Electronics. This new ring binder uses a special system to allow the issues to be easily removed and reinserted without any damage. A nylon strip slips over each issue and this-passes over the four rings, thus holding the magazine in place (see photo).
The new binders are finished in hard wearing royal blue p.v.c. with the magazine logo in gold on the spine. We were hoping to keep the price the same as the previous binders but unfortunately the postage cost has defeated us as they are much heavier than the previous ones. The price is $£ 4.95$ plus $£ 3.00$ post and packing (for overseas readers the postage is
$£ 6.00$ to everywhere except Australia and Papua New Guinea which costs $£ 10.50$).

Send your payment in £'s sterling to Everyday with Practical Electronics, 6 Church Street, Wimborne, Dorset BH21 1JH. Tel: 0202881749 Fax: 0202841692

We also accept credit card payments Mastercard (Access) or Visa (minimum credit card order £5). Send your card number and card expiry date plus cardholders address (if different to the delivery address).

New Technology

lan Poole reports on techniques for improving Liquid Crystal Display design.

LIQUID crystal displays are now firmly established in the electronics scene. Since they first appeared in the 1970s their use has grown very rapidly. Offering advantages of flexibility and low current consumption over the i.e.d. displays used in watches and calculators of the time, their use has spread to virtually every corner of electronics.
Now vastly more complicated displays are used in lap-top computers and many people expect that they will eventually replace the ageing cathode ray tube for use in televisions. However before this can happen a considerable amount of development still needs to be done. But in the mean time many interesting and innovative developments continue to appear, enabling liquid crystal technology to be used in even more applications.

Liquid Crystal Basics

The way in which a liquid crystal display (l.c.d.) works is quite simple, although manufacturing them requires extremely clean conditions if they are to work correctly. Unlike many other displays including the c.r.t. and the l.e.d..., liquid crystal displays do not emit light. Instead they are seen by the light that falls on them.
Although there are two types of 1.c.d., the most usual type is called a twisted nematic display. A typical display is shown in Fig. 1, and it can be seen that it contains two plates of glass. These are held apart an exact distance by a spacer around the edge. The gap which is left between the glass plates is then filled with the liquid crystal.
Layers of polarising material are placed behind the display and also in front of it. These are set so that their polarisations are at 90 degrees to one another. In addition to this there is a reflecting layer behind the back of the display. In this state the display would appear dark because any light entering the display, or reflected off the back of it would be blocked by the cross polarised films.

Light Rotation

However the liquid crystal actually rotates the polarisation of the light. The amount of rotation depends on the thickness, and in most cases about $10 \mu \mathrm{~m}$ gives the required 90 degrees rotation. This rotation means that the light will have the correct polarisation to pass through each of the cross polarised films and the display will appear light.
When a voltage is applied across the liquid crystal, it ceases to rotate the polarisation of the light. When this happens the affected area of the display turns dark.
In order to enable shapes to be displayed, transparent conductors
are set down on the inside surfaces of the glass. By activating the different sets of conductors, it is possible to create a large number of shapes.
The liquid crystal is an insulator so the display consumes virtually no current making it ideal for low power applications. Unfortunately like all good ideas there are some drawbacks. The main one is that if a direct voltage is applied to the display for even a short length of time it will fail to operate. To overcome this an alternating voltage must be applied. Once this is done the display becomes trouble free.
The other main problem is that the displays are not as inherently robust as 1.e.d.s for example. In view of this they have to be constructed in a very robust manner. As very few displays fail nowadays, manufacturers seem to have been very successful in achieving this.

New Developments

Development of the l.c.d. has come a long way since the first ones were used in calculators and watches. Now they are even being used as quite large screens in lap-top computers. Here the display consists of colossal numbers of individual elements across the whole screen so that the various characters can be made up.
With this sort of display the main problem is the enormous number of pixels which are required, and the large amount of drive circuitry needed. In view of the interconnection problems, most of this circuitry is contained within the display itself.
Despite the enormous complications this causes, progress is being made very fast. In 1990 for example, one manufacturer had developed a display with a resolution of 640×400 pixels for a notebook computer. Now displays are available having resolu-

Fig. 1. The construction of a typical liquid crystal display.
tions of 1280×1024 pixels. To achieve this over four million transistors are required in the drive circuitry to drive the 1.3 million pixels.

In order to place all the required transistors onto the substrate, thin film transistor technology is often used. However this is not easy because of the complexity of putting down this number of transistors onto the substrate with all the associated interconnecting tracks.
One of the major problems encountered is the low yields which can be obtained when the displays are in production. It is not uncommon for yields as low as 10 per cent to be achieved initially. Naturally this has to increase if the product is to become economically viable and eventually most products of this nature will be able to achieve 80 to 90 per cent when they are established.
To achieve this high yield is not at all easy. Usually one of the keys is found in improving the cleanliness as it has been found that the cause of more than 50 per cent of defects is dust particles. This stresses the importance which must be placed in ensuring that the whole production process is maintained to the highest standards of cleanliness.

Image Retention

A new type of l.c.d. which can retain its image has recently been developed. This new type of display does not need a glass substrate unlike those currently in use.
Instead of the more normal mode of operation this display uses a change in the amount of reflection from the back surface. By doing this the costly glass substrates are no longer needed and much cheaper plastic ones can be used instead.

The new display has been produced by adding a polymer into the liquid crystal. This introduces defects into the crystal's structure giving a greater degree of stability because the crystal structure is split into more domains. In view of this it is found that the image remains in place until the next data is written to the display. In fact data remains displayed even when the supply is removed.

An Unusual Use

Polymers have provided the key to another development which has lead to a very useful, if rather unusual, application for liquid crystals. In this application they are used to produce an image on a film.
As reported in the GEC Journal of Research flexible plastic sheets have been coated with a thin layer of a specialised liquid crystal polymer. This is initialised to give an opaque texture which scatters light.
Images can then be written onto this film using a low cost semiconduc-
tor laser. Areas scanned by the laser undergo localised heating which is followed by rapid cooling. This causes a change in the optical properties of the liquid crystal so that an image can be seen.
As the liquid crystals are bound to the polymer chains, any information written onto the film remains intact. However it is possible to add further detail if required at a later date, or if necessary, the sheet can be re-initialised making it available for re-use.
Using this technique it has been possible to achieve a very high degree of resolution. Lines only $5 \mu \mathrm{~m}$ wide have been successfully produced. In addition to this shades of grey can also be produced making it possible to store pictures.

This development is of particular interest for reproducing material from computers in a convenient and manageable way. As the
lasers have to be controlied by computer, the production of the images from computer aided design (CAD) packages presents comparatively few problems. In fact the new technology appears to lend itself very well to use with microfiches. The originals can be produced by the computer without the use of messy toners or developers previously needed. Updates can also be made very easily because of the way in which the films can be over-written or re-used.

The Future

Whilst liquid crystal technology will undoubtedly find uses in many new and unusual fields the main spotlight is on its use as a replacement for the c.r.t.. In some areas of development the l.c.d. is now sufficiently well advanced. Colour l.c.d.s have
been produced and they can offer sufficient resolution.
However there are two areas where there are problems which still need to be solved. The first is the refresh rate. As any user of a calculator with an l.c.d. will know they respond fairly slowly. Newly developed displays can offer a refresh rate of around 15 Hz , but this is still not sufficient for a television.
The other problem is the cost. Currently the cost is several times that of an equivalent c.r.t. Whilst this price difference remains there is little chance of them being used in all but the most specialised of televisions. Unfortunately prices are likely to remain high for some time. Despite this, work is still progressing very fast and possibly by the turn of the century the first full size l.c.d. televisions may be available.

READOUT

FACETIOUS

Dear Ed.,
I had long contemplated writing a letter to your readers column but quite inadvertently the other day I picked up the wrong end of a soldering iron and now have my hand swathed in bandages. Ever resourceful and never daunted I resorted to the use of a cassette tape recorder. If you find the large gaps of silence on this tape somewhat irritating be patient and bear with me. These interruptions are due to the main fuses constantly blowing despite my ever increasing the thickness of the fuse wires.

My letter reads -
I shall be quite disappointed if Everyday Electronics takes over where Practical Electronics left off. Prior to Everyday Electronics union with Practical Electronics, I cancelled after many years my order for the latter as it became too technical and often featured projects costing more to make than one can buy at most electronic stores at a fraction of the cost.

My old copies of EE tell me that I have been with you for over twenty years now and have gained knowledge in consequence and technical skill and ability because of it. Similar mags have come and gone and they too have left their mark notably with their "Whoops" column resulting in unworking, half completed, drawer filling projects.
My remedy was to wait several months before deciding to make these projects and before ordering these often hard to get components and to see if there were any omissions or additions, etc. Satisfied there were none, correspondence would then ensue with the mail order firms and back would come some of the answers - Out of Stock, Part Order, Awaiting New Deliveries, Substituted quite unrelated components (some far bigger than the p.c.b. itself). Unmarked i.c.s, resistors, capacitors wrong valued, polarised for nonpole, etc., etc. all great fun but at a cost.
My three recent successful projects, Sea Shell Synthesiser being the latest, are all working fine and I have great pleasure in watching the birds flying and perching on and around the Pest Scarer watched closely by my neighbour's two cats. I have now become addicted to Qwells for sea sickness too. The Dream Machine is working very well indeed but it does keep me awake at nights with its white noise and as regards the Mind Entrainment project, well I cannot concentrate very well because of its flashing l.e.d.s.

My doctor has now prescribed a short course of Valium but I think he did so out of umbridge because when he left my flat he received a shock when he touched the light dimmer switch. By the time you receive this somewhat doleful missive I shall have been evicted in all probability.
The Morse Code Practice Key has blanked
out half the televisions in the area and my Electronic Barking Dog Alarm has caused the R.S.P.C.A. to take me to court for animal cruelty. My Infra-Red Remote Control project is working too well, Ha! Ha! but it's great fun in the middle of the night watching my pyjama clad neighbours running in the roadway switching off their car alarms and searching for the intruders. Could it be that I have a cold solder joint somehow?

Seriously, though, do you think that I should abandon electronics and take up another hobby - after all I am now sixty-six years old and my sight isn't as good as it was when I made my first crystal set. But before the men in white coats come to take me away I have three questions to ask -

1. What does DIN in DIN plug mean?
2. How does one find out the amperage
output for a transformer connected to nothing?
3. How can I improve my memory to remember what the fourth question was.
I wasn't as bad as this - I think things began to happen when I assembled my first computer and Black Watch - Sinclair I mean, not the Scots regiment. Oh! Well! I must sign off now - someone is pushing my door bell - I hope I have connected it correctly to the mains. Ah! Yesl the fourth question was, is the green and yellow cable the live one - it is isn't it?

But before I finally sign off I must mention the successful Dog Scarer that I assembled. I made a present of this to my friendly postman last Christmas. He thanked me profusely for the gift and as he walked down my garden path I heard him muttering 'I'll show them vicious dogs l'll show em
We have a different postman now. Our usual chap had to retire after being bitten by two vicious dogs. I'd forgotten at the time to mention that it required a 9 V battery. I must hastily sign off now. There is someone at the front door - I just heard them scream.

I do apologise for that interruption, the main fuses have blown again. Ah! Well! as I said I must sign off.

Larry Rudd
Birmingham
P.S. I don't mind what people say about me as long as they spell my name right. But, facetiousness apart, I really enjoy my monthly edition of Everday with Practical Electronics. I wouldn't be without it. Over and out!

This letter arrived in the editorial office on tape - with brilliant timing and delivery - it gave us all a smile at the end of a particularly harrowing week when someone plantod a fire bomb in our building, thankfully the bomb was discovered before it went off and defused by the bomb squad. So thank you Mr. Rudd for cheering us all up.

To answer your questions:

1. DIN stands for Deutsche Industrie Normal
2. See this month's Circuit Surgery
3. Try the Entrainment unit?

By the way, if you are still with us, the Green and Yellow is the Earth - the Brown is the live lead (just in case anyone is not sure). Let's hope your visitor survived. - Ed.

HAZARD

Dear Ed.,
Although I am now working in artificial intelligence (AI) research, my early profes sional engineering career was spent in the design, testing and commissioning of electrical installations. I have inspected every type of electrical installation, from the small domestic to industrial sites - including complex control systems and computer equipment.
I was therefore interested to read Terry Pinnell's account in the April issue's Home Base feature, of how he managed to save himself money by tracing a cable insulation fault himself. Despite a mix-up in the reproduced wiring diagram of Fig. 1. Terry's approach is both logical and sensible. However, I would discourage non-professionals from attempting to deal with electrical problems of this kind.
Earth leakage faults are a potential fire hazard, and there are insurance implications for the DIY electrician. Wiring insulation tests made with an ordinary multimeter are unreliable, and the electricity supply must always be switched off at the mains - removing the loca circuit fuse cannot be relied upon.
I have detected many serious and dangerous earth leakage and similar faults in my time - even in work carried out by fully qualified electricians employed by the largest UK electrical contractors. Never take chances with domestic wiring faults!
Your comments on page 252 of the same issue - concerning the fitting of 13 amp plugs on all domestic appliances by the manufac turers - are interesting. Customers-fitted 13 amp plugs have always been a source of danger, greater even than most electrical in stallation faults. I would expect that appliance manufacturers would be made responsible for the initial fitting of a correctly-rated fuse.
However, fuses and circuit breakers are installed to protect cables and flexible cords not the domestic appliances and fittings themselves. Therefore, I expect that manufacturers may upgrade the rating of flexible cords on the larger appliances (fridges, etc.) so that a subsequently-fitted 13 amp fuse would still protect the flexible cord. However, table lamps and the like will continue to have reduced capacity flexible cords, and will still need suitably-rated fuses inserted in their 13 amp plugs.
Finally, may I as a (schoolboy) reader of the very first issue of the original Practical Electronics congratulate you on the excellence of your publication. EPE has revived both the spirit and interest of the original PE which, 1 am sorry to say, had become quite boring in its final years. And please maintain the high quality and style of your circuit diagrams. The new BS logic and component symbols might be more informative, but I still prefer "squiggly" resistors, and your older-style schematics for logic gates.
Thomas McIndoe, CGIA BSc MPhil DipTech FIAP CEng MIEE MBCS

Glasgow

SIREN AND ZENON STROBE PCB

12V d.c. supply, on board Ni-Cad battery, antitamper connection + ve or $-v e$ triggering requires a 8ohm speaker for the siren output. £8.75 each

RESET TIMER PCB

Gives a timed relay closure following a momentary input. Requires 12 V d.c. supply SP c/o relay output LED indication. 19 different time intervals from 25 sec to 35 min 20 sec . $£ 5.98$ each

ALARM CONTROL UNIT

MAINS TRANSFORMER Pri. 120V-0V, 120V-0V.
Sec. OV-12V, OV-12V, at 3VA
PROJECT BOXES A range of high quality boxes moulded in black high impact ABS, easily drilled or punched to produce a professional looking end product

TYPE	W	L		PRICE	$\begin{aligned} & \text { SPECIAL OFFER - PROJECT } \\ & \text { BOX } \end{aligned}$
T2	75	56	25	$\begin{aligned} & \text { PRICE } \\ & \text { £0.77 } \end{aligned}$	
T4	111	57	22	¢0.92	As above boxes
MB1	79	61	40	£1.35	60p each 10 for $£ 5.00$
MB2	100	76	41	£1.47	KEY SWITCH 3 Position keyswitch £2.35
MB3	118	98	45	£1.71	
MB4	216	130	85	£5.19	
MB5	150	100	60	$£ 2.35$	CRYSTAL OSCILLATORS
MB6	220	150	64	£3.95	4.0 mhz ALL
MB 7	177	120	83	£3.42	
MB8	150	80	50	¢2.22	12.0 mhz OR
All sizes are in millimetres					$\begin{array}{ll}18.432 \mathrm{mhz} & 4 \text { FOR } \\ 33.33 \mathrm{mhz} & £ 5.00\end{array}$

MICRO SWITCH roller arm operation spdt 40p each MINIATURE TOGGLE SWITCHES
spdt 60p each spdt 3 position c/off
70p each
$\begin{array}{ll}\text { dpdt } & \text { 70p each } \\ \text { spdt biased } & 60 \text { e each }\end{array}$
dpdt 3 position c/off
spdt 3 position c/off biased both ways 70 p each dpdt 3 position c/off biased one way 80p each
MINIATURE TOGGLE SWITCH pcb mounting 3pdt 50p each 10 for $£ 4.00$

MINIATURE PUSH TO MAKE SWITCH
DIL RELAYS 5 volt $\mathrm{dp} / \mathrm{ch}$ angeover
12 volt dp/changeover
RELAY 10 amp contacts $\mathrm{sp} /$ changeover 12 volt coil
CAR HORN RELAY in metal can with fixing lug, s/pole on
10 amp contacts
20 AMP RELAY dp on 12 volt coil
REED RELAY 12 volt
240 VOLT AC RELAY. 3-pole c/o 10 amp contacts
£1.00 each 6 for $£ 5.00$
$£ 1.50$ each 4 for $£ 5.00$
50 p each 10 for $£ 4.00$
8 pin DIL SKTS
$\begin{array}{rrrrrrr}16 \text { pin } & 10 \text { for } & £ 1.00 & 9 \text { pin } & 30 \mathrm{p} & 30 \mathrm{p} & 35 \mathrm{p} \\ 18 \text { pin } & 10 \text { for } & £ 1.00 & 25 \text { pin } & 40 \mathrm{p} & 40 \mathrm{p} & 35 \mathrm{p}\end{array}$
$\begin{array}{lllllll}18 \text { pin } & 10 \text { for } & £ 1.00 & 25 \text { pin } & 50 p & 50 p & 40 p\end{array}$
$\begin{array}{llr}20 \text { pin } & 8 \text { for } & £ 1.00 \\ 24 & \text { pin } & 8 \text { for } \\ 28 & £ 1.00 \\ & \text { pin COMPONENTS FULL }\end{array}$

28 pin	6 for	$£ 1.00$	SPECIFICATION DEVICES
40 pin	5 for	$£ 1.00$	SPE

SEMICONDUCTORS - TRANSISTORS - ICS - DIODES REGULATORS - ETC

TIP31B
TIP 3055
2N3055H
2N3771
741 op-amp
555 timer ic LM324 quad op-amp 30p each 7851212 V + VE 2amp regulator 50 p each $785055 \mathrm{~V}+\mathrm{VE}$ 2amp regulator 50 p each
MICRO IC'S -Z80A CPU £1.20; Z80A PIO £1.50; Z80B SIO-1 £4.00

OPTO DEVICES - LEDS - ETC

5 mm rnd red/yellow/green/amber
10 p each 12 for $£ 1.00$ any mix
5 mm rnd high brightness red/green
red 60p 20p each 6 for $£ 1.00$ an 5 mm rnd flashing
5 mm rnd bi-colour
LED mounted in chrome bezel red, yellow or green
LED mounted in a black bezel red only
PLASTIC BEZEL for 5 mm rnd leds
High brightness bi-colour l.e.d., rectangular, red/green, two leads
LCD DOT MATRIX
GRAPHICS DISPLAY made by Hitachi part No. LM225 module size
$270 \mathrm{w} \times 150 \mathrm{~h} \times 13 \mathrm{t}(\mathrm{mm})$ display area $239 w \times 104 h$ 640×200 dots
data sheet supplied ONLY £23.50

COOLING FANS - BRA

 230 V a.c. $50 / 60 \mathrm{~Hz}$ impedance protected $80 \mathrm{~mm} \times 80 \mathrm{~mm} \times 25 \mathrm{~mm}$ £6.96 each 115 V a.c. $50 / 60 \mathrm{~Hz}$ impedance protected $92 \mathrm{~mm} \times 92 \mathrm{~mm} \times 25 \mathrm{~mm} \quad £ 5.25$ each 24 V d.c. brushless fan motor 2.9 watt $80 \mathrm{~mm} \times 80 \mathrm{~mm} \times 25 \mathrm{~mm}$§5.25 each
12 V d.c. brushless fan motor
$0.15 \mathrm{amp} 60 \mathrm{~mm} \times 60 \mathrm{~mm} \times 25 \mathrm{~mm}$

Single zone alarm control unit built into a domestic light switch box. Ideal for home, caravan, boat, garage, shed etc.
Facilities: - Normally closed loop for pir sensors, door/window contacts etc.

Normally open loop for pressure mats. 12 SIREN

 24-hour loop for personal attack button Visual indication that the system is operational.Automatic entry/exit delay
Automatic system reset.
Alarm output cmos logic level

12 volt dc for external use

 115db
BELL BOX

A plastic bell box cover supplied with backplate. Red/yellow/white
£8.99 eath
PRICE COMPLETE WITH FULL INSTRUCTIONS
$£ 8.95$ BELL/SIREN INTERFACE BOARD COMPLETE
$£ 3.95$

PASSIVE INFRA-RED ALARM SENSORS

SUB-MINIATURE PASSIVE

INFRA-RED SENSOR ONLY

$£ 5.95$

Brand new passive in-fra-red sensor, measures only $33 \mathrm{mmW} \times 24 \mathrm{mmH} \times$ 29 mmD . Logic level output. Full data and application

notes supplied.

EX INSTALLATION SENSORS tested working
Type 1. Measures $180 \times 112 \times 70 \mathrm{~mm}$ with waik test led, relay output and tamper protection. 12 volt dc supply required \quad Ty. 50 each Type 2. As above but a smaller unit $123 \times 62 \times 50 \mathrm{~mm} \quad £ 11.75$ each Type 3. Ceiling mounting passive, infra red sensor 360° detection, 12 V d.c. supply relay output, tamper circuit and pulse count option. Data supplied

DOOR/WINDOW

CONTACTS
Surface or flush mounting.
White $£ 1.10$ each
hite 6 way
white 6 way \qquad

Please note: There may be variations in the size of the above passive infra red sensors depending on stock at the time of ordering. But the unit will certainly be

DUAL TECH SENSOR Microwave and passive infra-red combined Separate led indication for each function. Measures $120 \times 75 \times 50 \mathrm{~mm}$. 12 volt d.c. supply, Relay output. Tamper protection. $£ 29.95$ each

BREADBOARDS - CAPACITORS - SOLAR CELLS -

 HEATSHRINK - ETCSOLAR CELL 2 volt 150 mA max, size $60 \times 100 \mathrm{~mm} \quad £ 1.35$ each 5 for $£ 6$ BNC SOCKETS 50 ohm single hole fixing 50 p each 10 for $£ 4.00$ MIN BNC PLUG AND SOCKET MERCURY TILT SWITCH
Standard on/off $£ 1.00$ each
4 Contact (Directional) $£ 1.50$ each

PIEZO VIBRATION SENSOR

with data sheet $£ 1.00$ each
2 pairs for $£ 1.50$

BREADBOARD
$173 \times 65 m m$ 840TP $£ 5.25$ each
TEXTOOL ZIF SOCKET
28 pin zero insertion Socket 55.95 each
SOLID STATE RELAY
Switch mains up to 7 amp 12 volt control
voltage Data supplied $£ 2.95$ each

voltage. Data supplied $£ 2.95$ each

6 VOLT NI-CAD PACK 5AA NI-CADS, fast charge type $£ 3.95$
CAPACITOR $10,000 \mathrm{mfd} 25$ volt with fixing clip
60p each
CAPACITOR 470 mfd 400 volt
£1.50 each 4 for $£ 5.00$
512 - 25. Once programmed but never
rom the carrier from the carrier or used with a low insertion force socket.
27C256 £1.00 each 6 for $£ 5.00 \quad 27 C 512 £ 1.20$ each 5 for $£ 5.00$
Suitable low insertion force socket 28 pin 40 p each 3 for $£ 1.00$
MULTITURN PRESETS 20 mm RECT, $500 \mathrm{R}, 1 \mathrm{~K}, 5 \mathrm{~K}, 10 \mathrm{~K}, 20 \mathrm{~K}, 50 \mathrm{~K}$ 100 K 1 MO.

40p each, 3 for $£ 1.00$
CAR CIGAR LIGHTER ADAPTER (DUAL SIZE)
mounted on two metres of cable
§2.00 each
100db PIEZO SOUNDER
2 KHz note, $3-12 \mathrm{~V}$ d.c. $40 \mathrm{Ma}, 45 \mathrm{~mm}$ dia. $\times 26 \mathrm{~mm}$
£1.76 each
VIBRATION SENSITIVE ALARM BOARD WITH PIEZO SOUNDER
Originally a bike alarm. There is a short delay after activation then the piezo sounder operates for a preset period. £3.76 each or the above alarm board with custom designed case, fixing clip and keyswitch
¢9.95
ENCAPSULATED TOROIDAL TRANSFORMER
prim, 0-120, 0-120 V; sec, $0-15,0-15 \mathrm{~V} 50 \mathrm{VA}$
£7.85
INFRA-RED BREAK BEAM Transmitter and receiver p.c.b. with 2
lens assemblies. 12V d.c. supply. These are ex-installation units and are not guaranteed to be working.
£4.96 pair
ALUMINIUM DIE-CAST BOX $220 \mathrm{~mm} \times 145 \mathrm{~mm} \times 105 \mathrm{~mm}$ deep
RECHARGEABLE BATTERIES
£7.64 each
AA (HP7) $600 \mathrm{mAH} £ 1.02$ each $\quad \mathrm{C}$ (HP11) $1200 \mathrm{mAH} \quad £ 2.29$ each
D(HP2) $1200 \mathrm{mAH} £ 2.40$ each PP38.4V $100 \mathrm{mAH} \quad £ 4.77$ each
FLOURESCENT LIGHT INVERTOR. Drives an 8 watt tube directly

21.00 BARGAIN PACKS

SUB-MINIATURE TOGGLE SWITCHES

P.C.B. Mounting

B01 S.P. on 4 for $£ 1.00$
BO2 D.P. on 3 for $£ 1.00$
BO3 $3 \times$ D.P. 3 pos, centre off
BOO4 DIL SWITCHES 4 -way S.P. on 3 for $£ 1.00$
BOO5 DIL SWITCHES 8 -way S.P. on 2 for $£ 1.00$
BOO6 DIL SWITCHES 12 -way 90° sp on 2 for $£ 1.00$
BOO7 $12 \times$ PP3 BATTERY SNAPS
BOO8 $1 \times$ CAPACITOR 1 FARAD 5.5 VOLT 20 mm dia. $\times 7 \mathrm{~mm}$ high
BOO9 INSTRUMENT KNOBS ($0.25^{\prime \prime}$ SHAFT) High quality grey plastic knob, collet fixing 15 mm dia, 5 for $£ 1.00$
BO10 as above but 29 mm dia, 3 for $£ 1.00$
BO11 $4 \times$ MAGNETIC EARPIECE 8 ohm with 3.5 mm plug
BO12 4×28-WAY TURNED PIN DIL SOCKET
BO13 15×12 VOLT WIRE-ENDED LAMPS
BO14 8×2 PIN DIN PLUGS screw terminal connection
BO15 $2 \times$ LIGHT DEPENDENT RESISTOR Less than 200 ohms in daylight, greater than 10 megohms in darkness
BO16 $1 \times$ KEYPAD 20-key in 5×4 matrix bubble type switch contacts
BO17 $2 \times$ PIEZO BUZZERS approx 3 to 20 volt d.c.
BO18 $5 \times 78 \mathrm{M} 12$ VOLTAGE REGULATORS positive 12 V 500 mA
BO19 $4 \times$ TL082CP bi-fet op-amps
BO20 $20 \times$ ASSORTED LEDS full spec, various shapes and sizes
BO21 $3 \times$ INFRA-RED DIODE TX/RX PAIRS made by Honeywell (no info)
BO22 $4 \times$ CONSTANT CURRENT LED 5 mm round, red $2-18 \mathrm{~V}$ d.c. or a.c. nominal 14 mA

BO23 $50 \times$ IN 4148 diode
BO24 $2 \times$ INFRA-RED TRANSISTOR FPT5133
BO25 $5 \times$ DIACS
BO26 3 BDX33C 10 amp 100 V npn transistor
BO27 12×2 N3702 Transistor
BO28 12×2 N3904 Transistor
BO29 $12 \times$ BC337 Transistor
BO30 $4 \times$ LM317T Variable regulator mounted on a small heatsink BO31 $2 \times$ MAN6610 2 digit $0.6^{\prime \prime} 7$ segment display Com anode, amber BO32 $3 \times$ PHONO TO PHONO LEAD 63 cm long
BO33 $15 \times$ RECTANGULAR RED LEDs $6 \times 6 \times 2 \mathrm{~mm}$ stackable
BO34 $1 \times$ PHOTO SENSITIVE SCR mounted on a PCB, data sheet supplied
BO35 $4 \times$ IEC Panel Mounting Mains Plug Snap fix
BO36 $5 \times$ ASSORTED PIEZO TRANSDUCERS
BO37 5 LENGTHS OF HEATSHRINK SLEEVING 8 mm dia. 400 mm long
BO38 $25 \times$ CERAMIC DISC CAPACITORS 0.1 mfd 63 V
BO39 $15 \times$ MONOLITHIC CERAMIC CAPACITORS 0.1 mfd 63 V , in a dil package
BO40 $25 \times$ ASSORTED ELECTROLYTIC CAPACITORS PCB mounting useful values
BO41 25 ASSORTED PRE-SET RESISTORS
BO42 $8 \times 3.5 \mathrm{~mm}$ LINE JACK SOCKETS (mono)
BO43 $8 \times 3 \cdot 5 \mathrm{~mm}$ JACK PLUG (mono)
BO44 $8 \times 3.5 \mathrm{~mm}$ CHASSIS SOCKET (mono)
BO45 $2 \times$ TRIACS 800 volt 8 amp
BO46 $12 \times$ BC213L Transistor
BO47 $12 \times$ MIN SLIDE SWITCH dpdt
BO48 $15 \times$ MIN CERMET TRIMMER POTS (good range of values)
BO49 $1 \times$ PCB WITH TWO LARGE LEDS 15 mm square, one red and one green
BO50 $1 \times 12 \mathrm{~V}$ DC RELAY 4-pole c/o with plug in base
BO51 $4 \times$ LM324 quad op-amps
BO52 4×555 Timer
BO53 5×741 op-amp
BO54 $25 \times \operatorname{lN} 4001$ diode
BO55 $20 \times$ IN 4007 diode
BO56 $1 \times$ SLOTTED OPTO
BO57 $1 \times$ DAC08 Digital to analogue convertor with data
BO58 $4 \times$ OPTO ISOLATOR
BO59 20 ASSORTED 74LS IC'S
Please use order code when ordering the bargain packs.
Please make cheques and postal orders payable to Mailtech.
All prices include VAT
Please add $75 p$ postage to all orders.
At the moment it is not possible to have a full telephone answering service. But we will have the phone definitely manned on Tuesdays, Wednesdays and Thursdays between 10am and 5pm.

> Dept \equiv E, Mailtech PO Box 16 Ludiow Shropshire SY8 4NA Telf 058474475

Low cost dafa acquisition for IBM PCs \& compatibles
X4) All our products ore easy to install - they comneat diratily to
either the printer or sexial pert and requiro mo power sopply Wither the printer or secial pert and require no power sepply.
They are supplied with eesy to use sofinure whth colfets dots. for cither display or print-out.

- 8 - bit resolution
- one channel
- 10-25K samples per second
- Osclloscope/Voltmeter softwore
-0.5V input range
- Coments to printer port
$E 49$

ADC-11

- 10-bir resolution

- II donnel
- S-10N samples per second
- Data logger software
- 0.2 .5 V input range
- Commerts to priviter port

ADC-16

- 8, 12, 16-bit resolution + sign
- $8 \mathrm{~s} / \mathrm{e}$ or 4 differentiol inputs
- 216 or 300 \&-bit samples per second
- $\pm 2.5 \mathrm{~V}$ inpur range
- Data logger softwore
- Connects to serial porf

PICO TECHNOLOGY LTD

Broadwey House, 149 - 151 5t Heots lload, Hordwikk, Cambridge CB3 7QJ

```
VISA TE:: 0954-211716 FAX: 0954-211880
```


FROM ' A ' TO 'B'

UMIIES ACROSS RIVERS, ROADS, BUILDINGS AND ROUGH

MPTI $340,418 \mathrm{MHz}$, DTI APPROVED QEM DATA MODULES BY

 RADIOMETRIXTXM: TRANSMITTER: Data I/P 10000BPS (MAX), free space range DXM: up to 200M, $10 \times 30 \times 6 \mathrm{~mm},<20 \mathrm{~mA}$ @ 6-12V DC.......
RXM: RECEIVER: Data O/P 10000BPS (MAX), 20mA @ 5V. $31 \times 51 \times 12 \mathrm{~mm} .$.
RECEIVER: Data O/P 5000 BPS (MAX), $13 \mathrm{~mA} @ 5-9 \mathrm{~V}$, RECEIVER: Data O/P 5000BPS (MAX).
$20 \times 50 \times 6 \mathrm{~mm}$.. 625.58 VHF MODULES TO MPT 1328 FROM $\{25.48$, Range up to 2 KM
PORTABLE REMOTE CONTROL TRANSMITTERS FOR INDUSTRIAL CONTROL AND ALARMS
PEN-TX PENDANT TRANSMITTER, up to 100 M range, 8 -bit address +4 data codes, or 3 data codes + low battery, to BS6799. Bartery, case and neck chord inc. We. only $\mathbf{3 0 g m} ~ C 31.68 ~$ 4-CH-TX 4 -BUTTON CONTROL TRANSMITTER PCB: 4×1 |P67 4.BUTTON CONTROL TRANSMITTER PCB: 4×1 P67
sealfd buttons, +256 addresses (req. PP3)................... $\mathbf{1 5 8 . 0 0}$

REMOTE COÚN TROL RECEIVERS C/W DATA DECODER AND OPEN COLLECTOR OUTPUTS
I-CH-RX 4-CH-RX-N f-CHANNEL RECEIVER for PEN-TX, meess BS6799 636.37 4-CH-RX.N 4-CHANNEL RECEIVER for PEN-TX and 4-CH-TX 635.95 $4 \mathrm{CH} \cdot \mathrm{RX} \cdot \mathrm{I}$, 4 CHANNEL RECEIVER + INVERT as above meets 4.CHANNEL RECEIVER + INVERT as above meets
BS6799.. ... 638.00

IN HOUSE DESIGN SERVICE

WE OFFER A FULL IN HOUSE TECHNICAL SUPPORT AND CUSTOM INTEGRATION SERVICE FOR OUR CUSTOMERS. CONSULTANCY SERVICES AVAILABLE ON A DAILY RATE.
All products manufactured in the UK. come fully assembled and tested. Orders: Please add 66.00 to cover p p p and insuratice.
Prices exclude VAT. Quantity discounts and exports available. Payment by cheque, T.T., Access or Visa card welcome.
A memeer of Ordersto:
M\&B ELECTRONICS LIMITED,
The Ground Floor,
Middiesex University Building. Bounds Green Road,
London NII 2NQ.

Constructional Project

LINEAR CLOCK

W. D. PHILLIPS

> Now is the right time to try something different. An interesting variation on the traditional approach - Will help you develop lateral thinking!

NO-ONE needs a linear clock ... but it is different! The circuit described below offers an interesting variation on traditional displays and provides an intriguing artefact without which your collection of executive playthings is incomplete.
A block diagram of the system is given in Fig. 1 and the full circuit diagram of the Linear Clock is shown in Fig. 2.

KEEPING TIME

Circuit simplicity dictates that the timing signal should be either: (1) a 50 Hz signal derived from the 240 V a.c. domestic mains, or (2) a signal generated by a crystal-controlled oscillator. Although both sources are sufficiently accurate, a crystal circuit was chosen.
Safety was an important consideration in the design of the clock and it was decided to use a regulated a.c. to d.c. adaptor as the power supply. These adaptors are readily available and well-suited to providing continuous power. The mains transformer, rectifier and smoothing circuit are all safely enclosed so that there is no danger of receiving a shock from any part of the clock circuit. As a result, the 50 Hz signal from the secondary of the transformer is not available

The timekeeping circuit used is based on a 4060 CMOS integrated circuit (ICI in Fig. 2). A crystal identical to that used in digital watches provides a frequency of 215 $=32,768 \mathrm{~Hz}$.

The 4060 contains a 14 -stage binary counter which divides this fundamental frequency, giving a final output at 2 Hz . Outputs from many of the earlier division stages are also available. The variable capacitor VCl allows fine-tuning of the oscillator frequency

TIME SETT/NG

In normal operation, 2 Hz passes directly to the remainder of the clock but, for time setting, higher frequencies are needed. The arrangement around IC2 provides a fast setting signal at 2048 Hz and a slow setting signal at 64 Hz . IC2 is a 4512 data selector: this has eight data inputs and a single output.
The signal at the output can be made to follow the signal at any individual data input by means of three select inputs. If $\mathrm{CBA}=000$, the data at input 0 appears
at the output; if $\mathrm{CBA}=001$, input 1 is selected; CBA $=010$ selects input 2 and so on. As you can see, the select inputs are connected to 0 V by 10 kilohms pull-down resistors (R3, R4, R5).
If none of the switches $\mathrm{S} 1, \mathrm{~S} 2, \mathrm{~S} 3$ are pressed. CBA $=00$ and 2 Hz appears at the output. Switch SI is used as a time set Allow. Pressing Sl and S2 together makes CBA $=110$ and selects the 2048 Hz signal at data input 6. Pressing S1 and S3 together makes CBA $=101$ and selects 64 Hz from data input 5 . The remaining data inputs are connected to 0 V .

DIVISION STAGES

To fully appreciate the operation of the division stages of the circuit, reference
should be made to Fig. 3. and Fig. 4. Fig. 3a shows a 4 -bit binary counter. Fig. 3b gives the truth table for the counting sequence and Fig. 3c shows the corresponding voltage-time (V / t) graphs obtained at the counter outputs. Note that this particular counter changes state on the rising edge of the clock pulse. Output A is a square signal at half the clock frequency. output B changes at one quarter the clock frequency, output C at one eighth and output D at one sixteenth of the clock frequency.

In this circuit, the overall divide-bysixteen action of 4 -bit counters must be modified to shorten their count sequences. For example. IC3, a 4520 dual 4 -bit counter, must divide its 2 Hz input signal by 120 to give output pulses at the rate of one per minute. A divide-by-ten stage is followed by a divide-by-twelve.

Look again at the truth table of Fig. 3b. Outputs B and D first become "High" together at the start of the clock pulse

Fig. 1. Block schematic diagram for the Linear Clock.

Fig. 4. The AND gate connections for $\div 6, \div 10$ and $\div 12$ counters.
numbered \wp. What is needed is a way of resetting the counter at this point, forcing DCBA to become 0000 .
As shown in Fig. 4b, this is easily done by connecting B and D to the inputs of an AND gate, the output of which drives the reset pin of the counter. A divide-by-six stage can be implemented in the same way by connecting B and C to the AND gate, and a divide-by-twelve stage by connecting C and D; see Fig. 4a and Fig. 4c.
In Fig. 2, two sorts of AND gate are used. A 4081 CMOS i.c., IC4, provides four AND gates which are used individually to reset the second stage of IC3 and the three 4516 counters, IC5, IC6 and IC7, giving count sequences of the correct lengths. The first stage of the 4520 is reset by a fifth AND gate formed from diodes D1, D2 and the 10 kilohms pull-up resistor R6. Fig. 5 shows the diode/resistor AND gate circuit.
Check that you understand why the output of the gate is "High" only when both inputs are connected "High". Diode-resistor logic, sometimes called "Mickey Mouse Logic", is often useful when a single gate is needed. (How could you alter the circuit to make an OR gate?).
Because 4516 counters change state upon the rising edge of the clock pulse, simple transistor NOT gates are needed to link between IC5, IC6 and IC7. A final D-type flip-flop, IC11, is toggled by the output of IC7 and drives an l.e.d. via transistor TR5 to provide $\mathrm{am} / \mathrm{pm}$ indication (D32).
(a) CIRCUIT DIAGRAM
(b) TRUTH TABLE

INPUTS OUTPUT
B

0	0	0
0	1	0
1	0	0
1	1	1

Fig. 5. The diode/resistor AND gate circuit and truth table.

DISPLAYS

The arrangement of the display l.e.d.s can be seen from Fig. 7, which shows the topside component layout and details of the underside copper foil master pattern for the Display printed circuit board.

There are three main rows of l.e.d.s. The Minutes (Units) display consists of ten l.e.d.s with the "0" l.e.d. offset to the left of those for the numbers " 1 " to " 9 ". The Minutes (Tens) display consists of six l.e.d.s similarly arranged. The hours display consists of twelve l.e.d.s with different colours for the l.e.d.s representing one o'clock to five oclock, six oclock to 10 o° clock, and 11 and 120° clock.

The displays are driven by 128, IC9 and IC10. Each of these 4514 CMOS i.c.s is a 4-16 line decoder: the binary code at inputs DCBA causes the corresponding output to go "high". For example, if DCBA +0101 , output 5 goes high.
The outputs of the 4514 s provide sufficient current to drive the l.e.d.s directly, and, since only one l.e.d. in each row is illuminated at a time, only one 390 ohm current-limiting resistor is needed per row.
An l.e.d. D3 flashing at 1 Hz gives an indication of seconids and is driven via transistor TRI from the A output from the first stage of IC3.

Fig. 8. Fitting s.i.l. pins to the track side of the display board.

CONSTALCTION

The component layout and underside copper foil master pattern for the main Timing printed circuit board (p.c.b.) is shown in Fig. 6. This board together with the Display board is available from the EPE PCB Service, codes 830 (Timing Board) and 831 (Display Board).
Start construction with the printed circuit board for the Timing board. Solder in the i.c. sockets using pins at opposite corners and check that they are flat to the board before soldering the remaining pins. Next solder in the wire links: refer to Fig. 6 to make sure that these are fitted correctly. Insulated wire must be used wherever links run parallel.

Next the resistors, capacitors and other components can be added. The s.i.l. sockets, SK1 to Sk6, should be vertical. Connect 15 cm flying leads to the 1 Hz and $a m / p m$ outputs and to points X, Y and Z.

Finally, inspect the underside of the p.c.b. for possible solder bridges and/or

dry joints. If all is satisfactory, the board can be put aside and attention now turned to the Display board.
Assembly of the Display p.c.b. is fairly straightforward. There are only three wire links and all the l.e.d.s face the same way, see Fig. 7. The prototype used 8 mm I.e.d.s: Red was used to represent the numbers 15 , Green for 6-10, and Yellow for 0 and $11-12$. The 1 Hz seconds indicator was Yellow and the $a m / p m$ indicator Red. Other arrangements of colours and sizes could be used.
Fitting the s.i.l. p.c.b. pins, PLI to PL6, to the underside (trackside) of the Display p.c.b. is less difficult than it might appear. Push the long ends of the pins in an individual strip through from the copper trackside of the p.c.b., as illustrated in Fig. 8.
Press the pins back from the plain side until they are level and do not project from

Resistors

$$
\begin{aligned}
& \text { R1 } \\
& \text { R2 }
\end{aligned}
$$

See
220k
10M
SHOP
TALK
10k (10 off)
3k9 (2 off)
560 (2 off) 560 (2 off)
390 (3 off)
$\begin{array}{ll}\text { R10, R14, R18 } & 390 \text { (3 off) } \\ \text { R12, R16, R20 } & 1 \mathrm{k} \text { (3 off) }\end{array}$
All $0.25 \mathrm{~W} 5 \%$ carbon film

Capacitors

C1	15 p polystyrene
C2, C4, C6, C8	220μ radial elect.,
C3, C5, C7, C9	25 V (4 off)
100n polyester	
VC1	(4 off)
	$5 \mathrm{p}-30 \mathrm{p}$ variable trimmer capacitor

Semiconductors

D1, D2
D3, D4, D14,
D30, D31

1N4148 signal

 diode (2 off)D30, D31
8 mm yellow l.e.d. (5 off)
D5, D6, D7, D8,
D9, D15, D16,
D17, D18, D19,
D20, D21, D22,
D23, D24, D32 8 mm red l.e.d.
(16 off)
D10, D11, D12,
D13, D25, D26,
D27, D28, D29 8 mm green l.e.d.
(9 off)
TR1 to TR5 BC547 non silicon transistor (5 off)
IC1
IC2 4512B 8-input data
selector
IC3 4520B dual 4-bit binary counter 4081 B quad 2 -input AND gate
IC5, IC6, IC7 4516B 4-bit binary up/down counter (3 off)
IC8, IC9, IC10 4514B 1-of-16 decoder (high output) (3 off)
IC11 4013 dual D-type flip-flop

Miscellaneous
$\mathrm{X} 1 \quad 32,768 \mathrm{~Hz}$ watch crystal
S1 to S3 s.p.s.t. p.c.b. mounting switch (3 off)
SK1 to SK6 10-way p.c.b. mounting s.i.l. sockets (6 off)

PL1 to PL6 10-way p.c.b. mounting s.i.l. pins (6 off)

PL7 2.5 mm d.c. power connector
Mains/12V d.c. regulated adaptor; 14 -pin d.i.l. sockets (2 off); 16 -pin d.i.l. sockets (6 off); 24-pin d.i.l. sockets (3 off); mounting hardware; Perspex; insulated wire links; connecting wire; solder etc. Printed circuit boards available from EPE PCB Service. codes 830 (Timing Board) and 831 (Display Board).

LINEAR CLOCK - TIMING BOARD

(EEL0870)

Fig. 6. Printed circuit board component layout and full size copper master pattern for the main Timing board. All i.c.s should be mounted in dil. sockets and the wire links must be made with insulated wire; double check all link connections before moving on to the discrete components.

LINEAR CLOCK - DISPLAY BOARD

[EEL0886

Fig. 7. Display printed circuit board component layout and full size copper foil master pattern. Note that the 10-way s.i.. plugs PL1 to PL6 are mounted on the copper track side of the board, see Fig. 8.

The "sandwich" construction of the Perspex front, Display board, main board and plain back cover board.

The completed main Timing board showing the s.i.l. sockets between the decoder i.c.s and four of the threaded board-spacers.
the surface. Using a fine-tipped soldering iron, solder each pin to the copper track.
Finally, push the plastic spacer strip firmly towards the soldered joints. Check PLI to PL6 for fit with the matching sockets on the main board but do not push them home too firmly at this stage.

TESTING

The main Timing circuit board should be tested first. None of the i.c.s should be fitted in their sockets at this stage. After re-checking for solder bridges etc, connect the a.c./d.c. 12 V adaptor and test for the presence of power supply voltages at the
appropriate pins of the vacant i.c. sockets. Switch off, wait a few moments for the power supply decoupling capacitors to discharge, and then insert IC1.
An oscilloscope or logic probe can be used to monitor the 2 Hz output at pin 3 . If an oscilloscope is available, check the higher frequency outputs from other pins of ICl . Switch off.
Next fit IC2, IC3 and IC4 in their sockets. A 2 Hz signal should be present at pin 1 of IC3 and 1 Hz at pin 3. Connecting flying leads X and Y, or X and Z, to the positive end of the power supply should result in higher frequencies at the input to IC3. The final output of IC3 appears at pin 14. Fit the remaining i.c.s and follow their action with X and Y connected "High" (fast setting).
If everything is in order, disconnect the adaptor and solder the ends of the flying leads to the corresponding points on the copper track side of the Display p.c.b. The two boards can now be carefully mated together, using threaded 15 mm spacers to maintain the correct distance between them. If power is re-connected the clock should be seen to function and the operation of the time-setting controls can be investigated.

DECORATION

The Linear Clock is distinctly enigmatic and you can learn to read it accurately without further embellishment. However, you may prefer to add a Perspex panel identifying the various elements of the display.
A possible front panel design is given in the photographs. Alternatively, your own designs could be applied directly to the Display p.c.b. for a more individual appearance.

SYSTEM 200 DEVICE PROGRAMMER

SYSTEM:
Programs 24, 28, 32 pin EPROMS, EE-PROMS, FLASH and Emulators as standard, quickly, reliably and at low cost.
Expandable to cover virtually any programmable part including serial E^{2}, PALS, GALS, EPLD's and microcontrollers from all manufacturers.
DESIGN: Not a plug in card but connects to the PC serial or parallel port; it comes complete with powerful yet easy to control software, cable and manual.
SUPPORT: UK design, manufacture and support. Same day dispatch, 12 month warranty. 10 day money back guarantee.

ASK FOR FREE INFORMATION PACK

 Unit 2, Park Road Centre, Malmesbury, Wiltshire, SN16 OBX UKTEL. 0666825146 FAX. 0666825141

GERMANY 089/4602071
NORWAY 071-17890 ITALY 0292103554 FRANCE (1)69.41.28.01 Also from VEROSPEED UK

EMERYDAY

 WITH PRACTICAL ELECTRDNICS SUBSCRIPTION ORDER FORM
Annual subscription rates (1993): UK $£ 20.00$. Overseas $£ 26$ (surface mail) £43.50 (airmail)

To: Everyday with Practical Electronics, 6 Church Street, Wimborne. Dorset BH21 1 JH

Name.
Address.
\qquad

I enclose payment of $£$......... (cheque/PO in f sterling only, payable to Everyday with Practical Electronics) Access or Visa No.
\square

Signature.
Card Ex. Date
Please supply name and address of card-holder if different from the subscription address Please supply name and address of card-holder if different from the subscription address
shown above. Subscriptions can only start with the next available issue. For back shown above. Subscriptions
numbers see the Editorial page.

 MAIL ORDER - WHOLESALE-RETAIL
 P\&P NOW $£ 3.00$. All prices include V.A.T. Delivery Guaranteed within three days

VISIT OUR BRANCHES

WALTONS
55A WORCESTER STREET
WOLVERHAMPTON WV2 4LL Tel: 090222039

SUPERTRONICS 65 HURST STREET BIRMINGHAM B54TE
HAVE YOU GOT OUR LATEST.
'93 CATALOGUE
172 PAGES LOADS OF SPECIAL OFFERS ONLY $£ 2.00$ Pre-paid envelope
PIR FLOODLIGHT ONLY £29.99
HURRY WHILE STOCKS LAST A high power security floodlight with built in PIR detector which reacts to body heat, switching on the floodlight whenever somebody is within the detection zone. The PIR detector is adjustable for horizontal and vertical angle and contains a photo detection detec tor to prevent daylight operation. Power: 220-240Vac 50 Hz

FM MINI-TRANSMITTER

A superb quality, very small mini-bug, ideal for baby alarms etc. Simply runs off $1 \times$ ÁA $(1.5 \mathrm{~V})$ battery. We had a unit running for over a week non-stop! Whilst the range is difficult to quote because it depends on location and conditions, because it depends on location and conditions,

we have achieved over half a mile! A well tried we have achieved over half a mile! A w FREO. $95-110 \mathrm{MHz}$ (DIM-72-46-22) Order Codem $1+$| t | $4+$ | $10+$ |
| :--- | :--- | :--- | COM/KIT/004 f7.50 £6.85 f5.99

$S E C / F M B \quad \mathrm{E} 7.50$

A super kit, using a ferrite antenna. The Detection range is up to approx. 6 cm . Complete with tion range is up to approx. 6 cm . Complete with
LED for visual indication. Operates at $3 V$ using 2 \times AA batteries.
Applications include: Detecting cables in walls, under floors, detecting hidden pipes, nails in wood.
$\begin{array}{llll}\text { Order Code } & 1+ & 4+ & 10+ \\ \text { COM/KIT } / 002 & £ 595 & £ 5.45 & 〔 495\end{array}$

Regulated power supply for use with CB rigs, auto equipment. High stability circuitry with high surge current capability. Overload protection. Manufactured according to the requirements of the Electrical Safety Regulations for domestic use. Input voltage...
$.220 / 240 \mathrm{Vac} 50 \mathrm{~Hz}$ Output voltage
Output current. \qquad A continuous 73.8 Vdc Stability.
\qquad …........................1\% Ripple. 4 mm banana socket (screw terminats) Connec Dims.
. $195 \times 140 \times$
EXIRONS

TUNGSTEN
 DRILL BITS

 A range of metric, solid tungsten drill bits, suitable for drilling glass fibre based pch's and genera based pcbs and generahobby use, giving extended life over HSS drills. Drill bits range in size from 0.4 mm to 3.0 mm . Our packs of 10 are a random mix. Unsorted. Original price of these bits was E4.20 each!!! They really are the highest quality. ORDER CODE: SO/610 $£ 3.50$ per pack of 10 Buy 10 packs for only $£ 30$

SOLDER
 60/40 MULTICORE

NI-CAD CH
$\substack{\text { Charges AA, AA A C. } \mathrm{N} \& \mathrm{PP} 3 \\ \text { Ni. Cads } 240 \mathrm{~V} \text { AC }}$
£4.99
ELECTRONIC ACUPUNCTURE KIT

8005JA
18737
$2 \times 30 W$ POWER BOOSTER
Compact 2×30 W power booster taking the usual $7 W$ two speaker output from the car radio cassette and boosting it to a 30W per channel four speaker system. Complete with under-dash mounting brackets.
Output power
..30W per channél Frequency response. $.20-21000 \mathrm{~Hz}$ Signal-to-noise-ratio....better than 40db Power. Dims.... $11-16 \mathrm{~V}$ dc 6 A
$1+$
$6+$
£15.99
£10.99

B005LC
$2 \times 30 W$ CLASS " A " AMPLIFIER CPA60 Class "A" stereo in-car amplifier capable of delivering $2 \times 30 \mathrm{~W}$ into 4Ω. Inputs direct from the speaker outputs of the car radio/cassette or low level phono inputs. Overall output level control.
Output power.......................... $2 \times 30 \mathrm{~W}$ stereo Signal-to-noise-ratio...............................85dB
 Frequency response................ $30-20,000 \mathrm{~Hz}$
Input sensitivity......... $100 \mathrm{mV}-3 \mathrm{~V}$ adjustable Input impedance...................High level 100Ω
Power... 14 level 20k

Dims... $240 \times 70 \times 50 \mathrm{~mm}$
f29.99
$240 \times 70 \times 50 \mathrm{~mm}$
$5+$
£23.99

24 HOUR ANSWER PHONE OR FAX

 YOUR ORDER NOW 0939233800

G205A

TIE CLIP MICROPHONE SYSTEM

A portable diversity receiver with tone squelch and noise reduction circuitry. The antenna A-B indicators indicate the switch in channels as the performer moves about. The belt-clip transmitter has an intermediate mute position on the on/off switch to eliminate switch-on pop. Output from the receiver is via a 6.35 mm unbalanced socket. Note: the receiver is 12 Vdc powered.
Receiver
Frequency
Frequency..............
.173.8, 174.1. 174.5, 174.8 añd 175.0 MHz
S/N ratio.
RF sensitivity.
De-amphasis.
Power..
Transmitter
Frequency response
onse.
.. .30 Hz to 18 kHz

RF power...
Modulation........
Spurios emission
Spurios
Power..
 and 12 V .

- Arthritic pain or a sprain • Lumbago or Back Aches -Stimulates Blood Circulation - Strained Shoulders * Muscle pain • Arm and Leg Neuralgia and lots more!
$\begin{array}{lccc}\text { Order Code } & 1+ & 4+ & 10+ \\ \text { COM/KIT/003 } & \mathbf{£ 8 . 9 5} & \mathbf{£ 8 . 0 0} & \mathbf{£ 6 . 7 5}\end{array}$
$13.8 \mathrm{Vdc}-5 \mathrm{~A}$
Regulated output

NI-CAD RECHARGEABLE BAIIERIES		
	PRICE	EA
	f1.5	E1.30
	95 p	85
	¢1.95	
	£2.00	
3	¢3.90	¢3.

-

Robert Penfold

THE subject of do-it-yourself PCs is something that crops up from time to time in readers' letters. The two usual queries are will it save money compared to the cost of a ready made PC, and just what is involved? Like many of the queries received from readers, these are "how long is a piece of string" style questions!

For those who are not familiar with PCs it has to be pointed out that do-it-yourself PCs are put together using ready-made motherboards, display cards, etc. It is basically just a simple assembly job, and is not comparable to building a project featured in Everyday With Practical Electronics. It does not usually involve the use of a soldering iron at all.

Cost Cutting

As a cost cutting exercise there is probably less to be gained from the do-ityourself approach than you might think. It only takes a few hours to assemble a PC. You are doing very little of the work yourself, and could not reasonably expect to make massive savings. In fact the potential savings are so low that unless you shop around carefully for the parts you would almost certainly end up paying more than if you bought an equivalent PC from one of the more competitive "clone" manufacturers.

If all you require is a simple PC for use with home constructed add-ons, the best low cost solution is almost certainly to buy one of the cheap XT class PCs that still seem to be available from some of the large mail order computer suppliers. For add-on projects it is not essential to have a powerful PC, and for most purposes something as basic as an XT type PC running Microsoft GW BASIC or QBASIC will suffice.

If you also wish to run word processors, d.t.p. software, etc., then a very basic PC is not a good choice. A computer of this type is incapable of running much of the better software currently on offer, which is the reason these computers are being sold at what is often a small fraction of their original price.

Add On

Another good way of obtaining a PC at low cost is to buy a basic system from one of the clone manufacturers, and then add the display, hard disk, etc. yourself. This often seems to give a significant saving compared to either building an equivalent system from scratch, or buying the complete system ready-made.
It has the advantage that everything in
the basic system will fit together properly. Physical incompatibilities between certain components are now a major problem for the do-it-yourself PC builder. In particular, the case and power supply usually have to be bought as a matched pair, since the "standard" size PC power supplies will not fit in most modern PC cases.
Unhelpfully, some of the traditional PC connectors now seem to be less standard than they once were. Some keyboards for instance, seem to be fitted with a form of 5 -way DIN plug, but not the 180 degree type usually fitted to PC keyboards.
In order to get a basic system up and running it is merely necessary to add a display card and a monitor. V.G.A. cards are so cheap these days that there is no point in bothering with one of the earlier PC display systems. Nearly all the current V.G.A. cards seem to offer some super V.G.A. modes provided they are equipped with a full complement of RAM (which is often included as standard).

If funds are limited, there are plenty of good quality monochrome (grey-scale) monitors available at surprisingly low prices. Most of the low cost colour super V.G.A. monitors provide very good quality and are very reliable.
As a point of interest, I have owned several monitors over a period of more than ten years, and as yet have never had one go wrong. Although monitors might be expected to be unreliable due to the heat generated by some of the components, and the very high voltages used, they actually seem to be about the most reliable part of a computer system!

Identity Problems

It is useful to check that the computer is working properly by "booting-up" from a floppy disk, but in order to use the computer in earnest a hard disk drive will have to be added. The supplied hard disk controller will almost certainly be of the IDE variety. This is not really a controller at all, and it simply provides connections to the 16 -bit bus of the computer. The controller is built into IDE hard disk drives.

The computer's setup program (which is in the BIOS ROM) must be used to store basic technical details of the hard disk drive in the CMOS RAM. This program is usually run by pressing the "Del". or "Esc" key during the boot-up process (an on-screen message tells you which key to press). In the original scheme of things there was a list of standard disk drive parameters, and you chose the set which matched your drive.

If your disk drive was not one of the standard types, then you chose the set of parameters that gave the highest capacity without trying to exceed the physical limitations of your drive. In practice this usually meant that about 10 to 25 per cent of the drive's capacity was lost.
Modern BIOS ROMs still have a list of 40 or more standard drive types, but they also have an option that enables the user to enter the number of heads, cylinders (tracks), and sectors per track. Within reason, this enables any drive to be used at full capacity.

An oddity of IDE drives is that they have more sectors on the long tracks towards the outside of the disk, than they do on the shorter tracks near the middle. This permits higher capacities to be obtained, but a PC BIOS can only handle a fixed number of sectors per track.

This problem is overcome by the builtin disk controller, which can make the drive appear to match any set of BIOS parameters. The only proviso is that the apparent capacity of the drive must not be higher than its real capacity. The drive manufacturer usually provides a recommended set of parameters which will give the optimum capacity, and are known to be free from any problems (some parameters might give boot-up difficulties for instance).

Hard Boot

With the drive installed, the computer is booted-up from a floppy disk, and then the MS/DOS FDISK program is run. This is used to partition the disk, and must be run even if the entire disk will be used as drive C .

Next the MS/DOS FORMAT program is used to do the high level formatting, and to place the system files onto the disk. If all goes well it should then be possible to boot-up from the hard disk, and the computer is then ready for use.

Note that IDE hard disk drives do not require a low level format to be carried out. Low level formatting is done as part of the manufacturing process, and normal low level format programs will not work with an IDE drive anyway.

Crossed Wires

Adding a second floppy disk drive to a PC is not difficult, but there are a few points worthy of note. Normally a twin drive computer has a cable which connects straight through to both disk drives. Jumper terminals or di.i.p. switches on the drives are used to set one drive as drive " DFO^{\prime} ", and the other as drive " DF 1 ".

These are drives " A " and " B " respectively in PC terminology.

Some PCs do handle the drives in this conventional manner, but most copy the original PC method, which was to have both drives set as drive " B ". A twist in the drive cable (Fig.1) effectively configures one of the drives to operate as the " A " drive. The point of this is that drives can be sold ready-configured to operate as drive " A " or " B ". Whichever type of cable is fitted to your PC, make sure that the additional drive is configured to operate as drive "DF1".

The Debug program provided with DOS includes a rudimentary disassembly facility, but, like the rest of Debug, it is all but unusable. It can also only be used with .COM files, and not the more complex EXE files.
The shareware MD86 disassembler (Magic Disassembler) is an altogether superior tool. It will examine and disassemble any executable program or any series of machine instructions (like a ROM image). MD86 is designed to run on any IBM PC, XT, or AT or compatible with at least 128 K of RAM memory.

Fig. 1. A normal PC twin disk drive cable includes a twist in the leads to points 10-16.

Termination Resistors

Disk drives are fitted with termination resistors. These are in d.i.l. or s.i.l. packages, and are not separate components. In a twin drive system only the drive at the end of the cable should have this resistor pack fitted.

This means that the resistor pack in an add-on second drive must be located and removed (although both drives will probably work all right if it should happen to be left in). The resistor pack will be fitted in a socket, and is easily removed.
Before an additional drive will operate properly the BIOS setup program must be run. The CMOS RAM entries can then be edited to take into account the new drive. An important point to bear in mind is that you can only use a disk drive of a type that is supported by the ROM BIOS. Because of this, some modern PCs cannot be fitted with $5 \cdot 25$ inch 360 k drives.
Assembling and upgrading PCs is quite straightforward from the technical standpoint, and can be undertaken by practically anyone who has some experience of using PCs. Any problems are likely to be mechanical ones, and you need to take great care to ensure that the items you buy will all fit together properly.

MD86 Disassembler

Disassembly of executable programs is something all programmers seem to try sooner or later. It can be interesting to the point of obsession, but it can also be a frustrating business. Finding the right tool is all-important.

Neither a graphics adaptor or a colour monitor is required. A hard disk is desirable but MD86 can be run on a floppy based system.

According to the Authors, MD86 was developed to produce useable source code from an executable program file. This means understandable assembly instructions and meaningful label names and comments. MD86 produces source files that are compatible with the Microsoft assembler MASM version 4.00 or later.
After MD86 has produced a source file, some changes may be needed before it can be assembled without error. This is especially likely with EXE type programs which have complex segment structures.

MD86's video display works very much like a full screen editor; allowing movement within the disassembled source file with single keys. However, though moving down through a file is straightforward, it is not always so easy to move up again, as in some cases it is difficult for the program to determine where the preceding instruction begins.

Editing

When executed, MD86 presents the user with a full screen of information that looks very similar to the printed output from an assembler. Once you have this display, it may be edited. In particular, labels may be associated with memory addresses, just as is done when writing assembly-language programs. When the disassembler comes across these address locations again during disassembly, it uses the labels, making the listing easier to follow.

Comments may also be edited. This is all done in a manner similar to using an editor. There is a limited help facility built-in, to provide reminders of the function kéy assignments.

A program consists not only of instructions but also of data, such as message strings. It is sometimes possible to disassemble such areas into valid instructions, though they will make no sense as program instructions: Disassemblers can offer only limited help in identifying data areas, but MD86 does quite well here. Once identified, the data areas can be marked so that they will not interfere in the disassembly process further.

The modified file can be written to disk. The program also creates a number of data files automatically, for example to store label assignments. These make it easier to spread the task of disassembly over a number of sessions. This is likely to be necessary if you want to disassemble a large program.

Once you have a fully disassembled file, you can try passing it through an assembler to re-create the original program. After that, presumably, you can try to modify and improve it.

Ease of Use

Of course, any job of disassembly requires programming skills, and a knowledge of assembly language programming. For this reason, it perhaps does not matter that this program (in common with all tools of this type) is not as easy to use as current business applications. There are terse commands which have to be remembered, and only the limited help mentioned. However, the documentation is adequate, not always the case with programs of this type.

It is not really practical these days to disassemble a full application. EXE files can easily exceed 250 K , and this is too big for this program to handle in one bite. In any case, licenses often forbid reverse engineering of any kind. However, programs like this can be useful to disassemble small utilities, to find out how they work, and it can also be interesting to disassemble one's own programs, to find out exactly what code the compiler produces.

MD86 is an American program, and the registration fee is $\$ 17.50$. It is available from the PDSL, Dept EPE, Winscombe House, Beacon Road, Crowborough, Sussex. TN6 IUL (Tel. 0892 663298). It is included on disk number 2593, and may be available from other sources under different reference numbers.

Jottings of an electronics hobbyist -Terry Pinnell

Cause for Alarm

I've always found it difficult to understand why car manufacturers have been sluggish about including burglar alarms as standard in their new models. Although this is at last changing, with many higher priced versions offering remote-control centralised-locking combined with an alarm, why has it taken so long?
Surely price is not the issue? I know that marginal cost is proffered as a key factor when it comes to discussing the merits of nice-tohaves, and in these hard times potential buyers are highly price-conscious. But alarms could have been appearing on a mass-production scale fifteen years ago, long before this recession started. And anyway the actual cost of installing a simple alarm at the manufacturing stage (rather than the considerably more difficult task of adding one later) must be miniscule.
As l've mentioned before in this column, I proudly added an anti-theft device to my very first heap, back in 1958. That was before I knew about electronics, and it simply took the form of a secret switch in the ignition circuit. But since starting this hobby some 18 years later, I've fitted proper alarms to all my cars.

Optimising the Design

I've tried many circuits over the years, with various combinations of the main elements: switching, exit facilities, triggering method, reentry method and alarm signal.
My first unit was externally switched, using a heavy-duty toggle concealed behind the front bumper. This had the great advantage of simplicity and meant that the alarm could be triggered immediately on illegal entry. In retrospect I should have known better. No doubt the switch would have survived a Californian climate, but despite all my prior weather-proofing precautions it gave up the ghost after its first UK winter.
Apart from that, I never felt too comfortable with it. Although a potential car thief would hardly be expected to be watching as I switched it on furtively (I used to go through a sort of "just-checking-the-tyres" charade each time) it was not very secure. Not so good on the shirt cuffs either, especially on rainy nights after travelling down a muddy lane.
I firted briefly with the idea of a keyswitch, flush-mounted into a door just like the normal door lock, but couldn't bring myself to inflict the necessary violence on the bodywork. I suppose if I'd been prepared to strip down the door panel I could have improvised something by positioning a microswitch so that it was activated by the locking mechanism.
Come to think of it, for the last couple of decades, at a trivial extra cost, manufacturers could easily have been fitting door locks with integral electrical switching. One of my latterday company cars, a large 1987 Ford, had such an arrangement. This was to allow the addition of a (very expensive) burglar-alarm as an optional extra, but it proved a devil of a job getting access to the appropriate two wires.

The design evolution that I am recalling here was of course well before the widespread use of remote control devices, so a miniat urised radio transmitter neatly installed in my key-fob was not an option.
A few published circuits (and some commercially available ones) have adopted the approach of activating the alarm whenever the ignition is switched off. I haven't tried this so can't do it justice, but I'm a bit uncomfortable with it, as there are certainly occasions when I switch off but don't necessarily want my alarm to become operational.
The preferred switching method I have settled on is an internal toggle or slide switch. Lots of concealment options, all of them guaranteed clean and dry, and no long runs of wire through the engine compartment.

CELT030

Fig. 1. Using the courtesy light switch to trigger the alarm. When the door is open a logic low is registered by the alàm.
Incidentally, on a practical note, it is a good idea to use a double-pole switch and route the output signal from the alarm through the second pole, en-route to the load (horn relay or siren or whatever). This will ensure you are never embarrassed in the way I was; one of my earlier alarms started unexpectedly when I was about to drive off and refused to stop until I ripped a few wires out. Needless to say, that was on a rainy night in the most densely populated spot within miles.

Graceful Exit

One obvious disadvantage of an internal switch is that an exit delay becomes necessary, but in practice this is simple enough to implement. During this exit period of a minute or so, my alarms also generate a warning signal, in case the driver gets pre-occupied with a radio programme, or a passenger takes a while to remove luggage or something. I originally used a simple buzzer but changed at some point to a gentle gong sound in an attempt to reduce the tendency of my passengers to panic when the alert sounded. If you prefer to preserve any tranquility you've been lucky enough to find during your drive, then a visual signal such as a brightly-flashing l.e.d. would be an alternative.
Speaking of l.e.d.s, my present car's commercial alarm (a first!) flashes constantly whilst the alarm is armed, to warn-off those with
dishonourable intentions, so I might incorporate this if I build another unit.
My favoured method of triggering uses the wiring to the door microswitches and courtesy light. Implementing it in practice can be a piece of cake or a real slog. It depends on the accessibility of the connection you need, namely X or Y in Fig.I. The point X near the courtesy light is always easily accessible, to you that is, usually by just removing the plastic light cover. But the more relevant matter is its accessibility to the alarm unit itself. Șometimes it's possible to get an extra wire across the roof (behind the lining) and thence to your alarm. But it's usually easier to concentrate on point Y, behind the door microswitch, or to intercept the wire on its way up to the courtesy light, and graft in a new one.
If like me you also want to protect your boot or bonnet, then you will need to install additional microswitches. On several cars I also added a bonnet light while doing so. This is another desirable extra, rarely fitted to the modern car, and has proved its worth for me on several rainy nights. It beats groping around for my torch, which will either have flat batteries or fall irretrievably into the greasy depths as soon as I try propping it in place.
To regain your rightful place behind the steering wheel without setting off the alarm yourself, you need a re-entry delay. How long you allow depends largely on how awkward it is to get to your concealed on/off switch, especially when you are carrying an armful of fragile shopping and a large umbrella (that dark stormy night scenario again, with added gales). But I have typically found that 10 seconds is adequate. I appreciate that might sound quite a long time for your would-be thief to search for the switch, but remember that he (or she, sorry) will be a trifle nervous. especially as your circuit should have started the warning sound on re-entry.

Noisy Parker?

Turning finally to the end product of the alarm circuit, there are various ways of making the requisite loud racket. A 12 V siren is a popular choice, a typical unit generating around 120 dB at one metre, and consuming a modest 300 to 400 mA . But you might have to pay around $£ 15$ for these, so on balance I prefer to pulse the existing car horns.
There are still a few old cars around that are powered directly from the horn-button, but most modern vehicles use a relay. So this usually means taking the output from the final stage of your alarm logic, probably an astable enabled by a monostable, first to a transistor driver which in turn then activates the horn relay and hence the horn or horns. While you are groping around getting access to these wires, you may as well go that bit further and take the same signal to your headlight or foglight relay too.
The monostable should have a period of about five minutes. I'm not sure if it's actually illegal to have the horn blasting away for the entire night until it exhausts the battery. But limiting it to a few minutes is not only considerate to those in the vicinity at the time but also minimises the chances of someone cracking under the strain and doing your motor car an injury. That would be a bit ironic after all the effort you've made to protect it.
There are alternatives to the siren or horn options. I did once toy fleetingly with the dramatic idea of a tape recording, producing a much-amplified roar for help to the outside world. Something like HELP! Someone is breaking into this car!. But, several false alarms now wincingly behind me, I am relieved that sanity prevailed.

CONTROL PORT for PCs

This I/O Port follows the general approach of the 'INTERFACING to PCs' series in this mag, BUT allows user's prototype control circuitry to be set up and run OUTSIDE the PC
The double sided pcb fits into an I/O slot, and a ribbon cable terminating in a D-25 plug allows the control of projects with little risk to the PC. On board facilities include: 8 -bit A-D, 8-bit D-A, 8 inputs, 8 latched outputs, 3 strobes and 1 IRQ
Available as
(a) Etched double sided board with full instructions for drilling/assembly/testing using BASIC.
(b) Complete I/O card with ribbon cable and BASIC test programs. (Built and tested).
f12.50

Also available: Test pod with D-25 socket providing analogue and
digital test signals/outputs for the I/O card, with BASIC test
prógrams on disc.
?
f17.00
All above prices include P\&P. Mail Order only from

17 LIME TREEAVENUE, TILE HILL COVENTRY CV4 9EY

HOME AUTOMATION

LAMP MODULE Plugs in to UK wall socket to control incandescent lamps up to 300W Responds to ONIOFF/DIM/BRIGHT commands from controllers $£ 22.45$
MINI TIMER Tirned control of up to 4 modules twice a day. Also features direct ON/OFF/DINBRIGHT control plus clock functions $£ 29.95$.

ENERLOGIC 1400 e Controller

UNDERSTANDING \&

WSTALLING HOME SYSTEMS, How to Automate Your Home
The best practical guide to date for the nome automation enthusiast. Packed full of advice and Ideas on Installing nome oysteme and equipment. 140 pages and 120 Illustrations of the most up to date deta on home automation. $\quad \mathbf{2 2 . 9 5}$ The first intelligent home automation system. A remarkable hardware + software package that adds brains to the range of X -10 modules and controlers $£ 349.95$
Part of a remarkable range of home automation components from
SMART HOUSE SYSTEMS LTD
3 Buchanan Street, Largs, Ayrshire KA30 8PP
Tel: 0475672589

PC EPROM PROGRAMMER Internal Card for PC, XT, AT, 386, 486 or Compatible

* Easy to instal, just plug in.
* Adaptors available for MICRO'S, and others (see below).
* Automatically sets programming voltage.
* Supports 2716 through 27C2001 EPROMS.
* Upgradeable to 32 Meg EPROMS.
\star No personality modules required.
* Reads, programs, verifies and saves to disk.
* Accepts Intel hex, Motorola S, and binary format.
\star External 40 pin ZIF socket on 2 ft cable.
\star Intelligent algorithm programs 2764 A in 10 sec .
* Manages 16 and 32 bit word split.
\star Requires 8 -bit bus slot of MS-DOS PC with 512 K ram.
* MACRO's.

ADAPTORS for above.
MICRO ADAPTOR supports 8748/49/51/52/55.
87C75I ADAPTOR supports $87 C 751 / 752$ and locks security bits. EPSON ADAPTOR supports 40 and 50 pin EPROM and SRAM Cards. 210 ADAPTOR supports 27210,271024 and 57 C1024 devices. STAND-ALONE PROGRAMMERS also available.

Call us today for further information and DEMO DISK.

KARE ELECTRONICS

32 Pear Tree Avenue, Ditton, Aylesford, Kent ME20 6EB. Tel: 0732844633

ЭगИA.JIヨVqU2 SURVEILLANGE

A SMALL SAMPLE OF OUR RANGE	KTI	MODULE	PROF FINISHED
ROOM TRANSMITTER RTI An extromoly sensitive miniature transmiter with long battery life. Dimensions: $20 \times 20 \mathrm{~mm}$	203	13.75	19.00
MAINS TRANSMITTER MTT 4 Can beonneded inside any equiprnent that is meins powered. Ditmonsions $35 \times 20 \mathrm{~mm}$	30.\%	31.50	45.00
TELEPHONE TRANSMITTER TTS Small onough to concoal within a temeathone. Will transmit both sides of a conversation (series connection) Dimensions: $10 \times 20 \mathrm{~mm}$	12.73	17.50	25.00
TELEPHONE SOCKET TRANSMITTER TSTS Replace your telephone socket with this one within which a transmiter has been concealed.	14.74	\cdots	20.00
ROOM AND TELEPHONE TRANSMITTER RTT Operates as a room transmater, then switches to telephone fransminermode during melephone calls Dimensions: $30 \times 25 \mathrm{~mm}$	31.50	45.50	85,00
AUTOMATIC TELEPHONE RECORDER SWITCH TRS2 Record melephone converzetions with this intertaco unit and your own tape recorder. Dimensions: $36 \times 50 \mathrm{~mm}$	18.00	25.90	39.00
AUTOMATIC TELEPHONE RECORDER ATRI Adapt the tape recorder included to record teleptione cals automaticaliy.	34.5	-	59.00
TELEPHONE TAP ALERT TTA1 Visuan waming of any invasions of privecy on your teleptione line. Dimensions: $38 \times 52 \mathrm{~mm}$	21.58	31.50	45.00
RF DETECTOR RFD1 Highy senshive nanc-held detector. Range batween 10 klihz and 600 Mhz . Sliont operation. Dimeneions: $70 \times 50 \mathrm{~mm}$	42.73	69.00	95.00
CAMERA DETECTOR CD8 Dorects hidden video camoras (even miniature CCD models). Dimensions: $63 \times 38 \mathrm{~mm}$	89.00	89.00	125.00
RECORDING BRIEFCASE RBC1 Complately discrea recordings al a value for monoy pilce	\longrightarrow	---	145.00
SHOTGUN MICROPHONE AMPLIFIER SMA ideal for surveillance. The ampilitier will prick up sounds trom a long dislance.	24.85	36.00	45.00
SIGNALLING TRANSMITTER SIGT Sends a continual audio pulse. Can bo integratod into alarm. tracking or warning sysiems. Dimonslons: $20 \times 50 \mathrm{~mm}$	21.95	34.89	45.00
TELEPHONE AMPLIFIER TA5 Connected directy to the termothone, this unit will ampity both sides of a telephone call Dimensions: $25 \times 52 \mathrm{~mm}$	10.95	16.95	19.95
PROFESSIONAL SOUND TO LIGHT UNIT SK72 Custom buiti ior disco or hame use. Audio signal divided into bass, mid and trobio bands, with Intemal microphione and spothagt option. Dimmensions $210 \times 45 \mathrm{~mm}$	21.85	32.49	44.95
MICRO METAL DETECTOR MMD Doded the prosence of lorrous and various non-forrous metals. Usseful for all thome DIY joos. Dimen sions: $40 \times 25 \mathrm{~mm}$	9.95	16.95	-

[^0]For full catabogue please eend two 1st class stamps or 2 IRC'S
172 Caledonian Road Depl EE

CANAL

 London N1 OSG BRIDGE AUDIO -071-837 4423
WHETHER ELECTRONICS IS YOUR HOBBY OR YOUR LIVELIHOOD . . . YOU NEFD THE MODERN ELECTRONICS MANUAL

EVERYTHING YOU NEED TO KNOW ABOUT ELECTRONICS!

The essential reference Work

- Easy-to-use format
- Clear and simple layout
- Regular updates
- Sturdy ring-binder
- News of latest developments
- Full components checklist
- Extensive data tables
- Detailed supply information
- Ready-to-transfer PCBs
- Comprehensive subject range
- Accurate assembly instructions
- Concise repair procedures

If the fascinating and fast-changing world of electronics is your livelihood, your study subject or simply your passion, the revised edition of THE MODERN ELECTRONICS MANUAL is the reference work for you to have at your side.

The base manual contains information on the following subjects:
BASIC PRINCIPLES: symbols, components and their characteristics, passive component circuits, power supplies, acoustics and electroacoustics, the workshop, principles of metrology, measuring instruments, digital electronics, operational amplifiers, timers, physics for electronics.
CIRCUITS TO BUILD: construction techniques, radio, telephony, microcomputing, measuring instruments, vehicle electronics, security, audio, power supplies, electronic music (over 25 different projects).
REPAIRS AND MIANTENANCE: radio, television, audio/hi-fi, telephones.
DATA: diodes, transistors, thyristors and triacs, digital and linear i.c.s, microprocessors. The manual also covers Safety, Specialist Vocabulary with Abbreviations and Suppliers. OVER 1,000 pages, A4 format weighing over 3.5 kg .

> Now - at last - the most comprehensive reference work ever produced at a price you can afford, the revised edition of THE MODERN ELECTRONICS MANUAL provides you with all the essential information you need.

Over 1,000 pages of well-organised and clearly explained information is brought to you by an expert editorial team whose combined experience ensures the widest coverage.

Regular supplements to this unique publication, each around 160 pages,

 mean that you will always be kept abreast of the latest developments from around the world as they occur
ALL-IN-ONE AND EASY-TO-USE

A sturdy ring-binder allows you to use the manual on your workbench. The looseleaf format also means you can slot in the regular updates as they arrive -so all your information is there at a glance.

EXTENSIVE GLOSSARY

Should you come across a technical word, phrase or abbreviation you're not familiar with-simply turn to the glossary included in the manual and you'll find a comprehensive definition in plain English.

REGULAR UPDATES

Unlike a book or encyclopedia, the manual is a living work - continuously updated by new material. Recent or upcoming supplements include radio, superconductors, electric motors, basic electronic building blocks for beginners which can be joined together to construct elaborate circuits, filters, IBM PC and compatibles (including use of PC cards). Supplements are sent to you approximately every two months.

Each supplement contains approxi-

 mately 160 pages - all for only £23.50 $+£ 2.50$ p\&p. You can of course return any supplement which you feel is superfluous to your needs.
RESPONDING TO YOUR NEEDS

We are able to provide you w...s the most important and popular articles in our updating supplements. Our unique updating system is based on answers from readers request questionnaires. Through this service you are able to let us know exactly what information you require in your manual. You can also contact the editor directly in writing if you have a specific technical request or query relating to the manual.

ASSEMBLING

There's nothing to beat the satisfaction of creating your own project. From basic principles to circuit-building, the manual describes clearly, with appropriate diagrams, how to assemble radios, loudspeakers, amplifiers, micro-computers and measuring instruments.

The revised edition of The Modern Electronics Manual contains practical, easy-to-follow instructions for building and programming your own computer. It shows you how to make fun gadgets such as a remote control door opener and a digital rev. counter for your car. It also tells you how to construct useful devices llike test gear, security and baby alarms - plus - many more popular devices.
Wimborne Publishing Ltd., 6 Church St, Wimborne, Dorset BH21 1JH Tel: 0202881749 Fax: 0202841692

THE MODERN ELECTRONICS MANUAL

Revised Edition of Basic Work: Now contains over 1,000 pages of information.
Regular Updates: Approximately 160 -page supplements of additional information which are forwarded to you immediately on publication. These are billed separately and can be discontinued at any time.
Presentation: Durable looseleaf system in large A4 format ($297 \mathrm{~mm} \times 210 \mathrm{~mm}$)
Price of the Basic Work: $£ 39.95+£ 5.50$ p\&p (to include a recent supplement).

[^1]
Constructional Project

MIND MACHINE Mk // MAGIC L/GHTS
 ANDY FLIND

Adding synchronised light stimulation to lastmonth's binaural relaxation signal generator. Uses the same audio cassette tape to relax the mind.

|N LAST month's Mind Machine Mk II "Binaural Signal Generator" project, it was stated that, whilst "binaural" sound alone may promote desired "brainwave" patterns, it is far more effective when accompanied by photic (light) stimulation. Most commercial "entrainment" devices rely mainly on lights for their effect, these usually being l.e.d.s fitted into glasses worn by the user.

The "Magic Lights" does this by taking the audio signals from a stereo cassette tape made with last month's signal generator and creating synchronised lights from l.e.d.equipped goggles. It is self-powered and compact, about the size of a Walkman, so it may be slipped into a pocket and used anywhere to relieve the stresses of daily life.

WARNING

It must be stated that there is a hazard associated with photic stimulation. Whilst sound alone is harmless, flashing lights carry a small but well-known risk of triggering epileptic seizures, which may happen to persons not previously aware of susceptibility to this.
Although this risk is small, known epileptics should never use an entrainment device, whilst anyone experiencing strange sounds, smells etc. with no apparent cause should stop using the device immediately and seek medical advice.
Awful Warning over; most users experience only peace, relaxation and sometimes creativity. The "Magic Lights" unit connects in parallel with the headphones of a cassette player and operates from the two sinewave signals of a "binaural" recording.
These signals are amplified into logic level squarewaves, combined in an ex-clusive-or gate and then filtered to extract their low-frequency difference. This controls the output stage, driving a pair of high-intensity l.e.d.s fitted into goggles worn by the user.
The combination of synchronised binaural sound and light stimulation can produce extraodinary effects, deep relaxation, inner calm, and sometimes high levels of imagery and creativity. It must be stressed that when first using the "lights",
the light intensity control MUST be set to minimum and gradually increased to a comfortable level. It may also be wise to keep the eyes shut during relaxation sessions; turning the unit off or removing the goggles before opening them.

CIRCUIT DESCRIPTION

The full circuit diagram for the Mind Machine MkII - Magic Lights is shown in Fig. I. Two stereo sockets JK 1 and JK2 are connected in parallel, with the output from the cassette player plugged into one and the headphones into the other.
The two signals are amplified by ICla and ICIb. The voltage gain of these is initially about 33 , but as the signal amplitude rises the diodes, D1/D2 and D3/D4, in their feedback paths start to conduct, reducing the gain to around unity.
The next stages, ICIc and ICId, have positive feedback so their outputs have only two states, high and low, squaring the signals. Gates IC2a and IC2b are buffers, speeding transitions between states and giving rail-to-rail output voltage swings. The positive feedback also means that the inputs must reach a certain minimum amplitude to operate these stages, eliminating unwanted output in the absence of input signals.

These input stages provide clean logic level outputs from inputs of around ten millivolts up to a few volts. The TL064 op. amp is used because it's output swings to within about the same voltage from either supply rail, maintaỉning a reasonable output waveform when overdriven as with this circuit.
The gate IC2c, following IC2b, normally follows the signal, but when switch S1 is closed inverts it, inverting the final output to the l.e.d.s. This feature was added when the author discovered a pair of cheap headphones in use with this project were out of phase, but is often provided by commercial units for users to experiment with. The occasional use of opposite-phased sound and light may enhance the effects.

The signals are then combined by the EX-OR gate IC2d, producing a series of pulses of twice the audio frequency, but with varying width. If these are summed for their average value the output is found to be a triangle wave at the difference frequency between the two original input signals. Filter IC3a, a sort of third-order circuit, extracts this triangle wave in a fairly clean form across the frequency range of this project and it is then used to control the output stage.

ロUTPL゙

The output stage is easier to follow if described from the final stage first. IC $s \mathrm{~d}$ is a voltage follower driving :ransistors TRI and TR2 to reprouiuce the voitage from VR1 across resistor R31. The resulting current through R31 also passes through the output l.e.d.s so their brightness is controlled by VRI.

WARNING NOTICE

Photic stimulation at Alpha frequencies can cause seizures in persons suffering from Epilepsy. For this feason such people MUST NOT try this project.

A user who is not a known epileptic, but when using the Mind Machine begins to experience an odd smell, sound or other unexplained effects, should TURN IT OFF IMMEDIATELY and seek professional medical advice.
Because of the above possibility the Mind Machine should not be used while on your own.

YOU MUST TREAT THIS UNIT WITH DUE RESPECT

COMPONEVTS

Resistors
R1, R2, R3,
R4, R5, R7
R9, R10, R13,
R29, R30 10k (11 off)
R6, R8 330k (2 off)
R11, R12, R25 100k (3 off)
R14 8k2
R15, R16 3k9 (2 off)
R17.R18 15k (2 off)
R19, R20 82k (2 off)
R21
56k
R22 33k
R23 22k
R24 1k2
R26 47k
R27
39k
828 4k7
See

R31 10
560
All 0.6W 1\% metal film type

Potentiometer

VR1 10k rotary carbon, log.

Capacitors

C1, C2 1μ radial elect, 100 V (2 off)
C3, C7 $\quad 10 \mu$ radial elect, 50V (2 off)
C4 $\quad 1 \mu$ polyester layer
C5, C6.
C9. C10 100 n polyester layer (4 off)
C8 $\quad 100 \mu$ radial elect., 10 V
C11 4700μ radial lead elect.
16 V
Semiconductors
D1, D2.
D3, D4
D5, D6
D7 1 N4148 signal diode (7 off)
D8 5 mm green l.e.d.,
low-current type
D9, D10 Hyperbright (3.5cd) 5 mm red le.d. (2 off)
TR1 BC184L non silicon
transistor
TR2 BC214L pnp silicon transistor
IC1 TL064C quad op. amp
IC2 4070BE CMOS quad EX-OR gate
IC3 LM324N quad op. amp. IC4 LP2950CZ +5 V regulator, micropower type

Miscellaneous

S1, S2 S.P.D.T. right-angled p.c,b. mounting slide switch (2 off)
JK1, JK2 3.5 mm p.c.b. mounting stereo jack socket (2 off)
JK3 $\quad 2.5 \mathrm{~mm}$ p.c.b. móunting mono jack socket
K4 $\quad 2 \cdot 1 \mathrm{~mm}$ p.c.b. mounting d.c. power socket
B1 9 V battery pack, 1.5V AA cells (six off with battery holder)
Printed circuit board available from $E P E$ PCB Service, code 827; two-piece plastic case (with aluminium front and back panels), size $153 \mathrm{~mm} \times 84 \mathrm{~mm} \times$ $39.5 \mathrm{~mm} ; 2.5 \mathrm{~mm}$ mono jack plug; 14-pin d.i.l. socket (3 off); 15 mm diameter knob, or smaller; plastic cable tie for C11; solder; swimming goggles - see text.

Approx cost
 guidance only

Control VR1 is a "log-law" component since the eye, like the ear, has a logarithmic amplitude response. If the control is to appear linear, it must in fact have a log characteristic.
The latest hyperbright l.e.d.s D9 and D10, used in the glasses, each provide more light than the three used for each eye in the original Mind Machine project so only two are required, and these can be driven in series with a single output stage and a 9 V supply.
The l.e.d.s are normally "on"; control is achieved by turning them "off" for the appropriate periods by applying a positive voltage to resistor R28. This pulls the inverting input of IC3d high so that it's output goes low and turns off the transistors.
The triangle-wave from IC3a is compared by IC3b with a reference voltage from resistors R22 and R23. Whilst it is lower than the reference voltage the output of IC3b is low, allowing the output stage to light the l.e.d.s. These are on for about 25 per cent of each cycle, this being generally accepted as the best ratio, and also allowing the l.e.d.s to be overdriven for increased brightness.
With this circuit it is possible, when the input signals stop, for the output from IC2d to remain low. This would result in the l.e.d.s being continuously "on" and, if the brilliance were turned up, might cause damage, not to mention heavy battery drain.
IC3c prevents this. Each time the output of IC3b goes high, it charges capcitor C7 through diode D5, and in normal operation the voltage across this capacitor, despite the discharge path through resistor R26. never falls low enough for the output of IC3c to go high. If the output of IC3b remains low, within about half a second the output of IC3c goes high and turns off the output.
The op. amp used for this part of the circuit, an LM324, was chosen because it's output can fall to within millivolts of the negative supply for effectively biasing diodes and transistors "off"
(Below) The completed unit showing the layout of components inside the case and positioning of the battery pack.

POWER SUPPLY

Power is supplied by a pack of six "AA" size cells, which may be standard, alkaline or rechargeables. The output l.e.d.s are driven directly from the battery voltage. whilst the rest of the circuit is provided with five volts from regulator IC4. This is a "micropower" type, chosen because it can operate with an input only a fraction of a volt above the output, so extending battery life.

The unusually large value of decoupling capacitor C 11 is intended to cope with the large low-frequency current pulses taken by the output stage. Resistor R32 and l.e.d. D8 remind the user that the unit is switched on.

CONSTRUCTION

All the components of this project, including switches and sockets, are intended to be fitted directly onto the printed circuit board (p.c.b.), making assembly quick and simple and reducing the chance of errors. Whilst a different case could be used, with the sockets and switches panel mounted and wired to the appropriate points, the layout given does result in a very compact unit. However, the exact parts specified will have to be used if they are to fit.

Fig. 2. Printed circuit board component layout and full size copper foil master pattern. Particular attention should
be paid to the "copperl power link" between points " A " and " B " See Text.

The p.c.b. component layout and fuil size copper foil master pattern is shown in Fig. 2. This board is available from the EPE PCB Service, code 827.
Some of the holes on the board may need enlargement, notably those for the two switches, output and power sockets, the three for securing the unit to the case and VR.1, which must be as close as possible to the board Some of these holes, for VRI and SK3, are better cut as slots than simply enlarged. This is easily done by gently pushing an appropriate drill bit sideways in them. This should be done and the items checked for correct fit before commencing assembly.
The link holes " A " and " B " behind socket JK4 allow for various external power and battery options. Initially this link is "made" by a track on the p.c.b. If ordinary batteries are to be used, it should be cut, so that plugging in an external supply results in battery disconnection. Alternatively, if rechargeables are fitted, it should be left intact so that a charger plugged into the socket is connected to them. The twa holes allow for later changes of mind!

MOUNTING COMPONENTS

Once the supply options have been sorted out, all the components can be fitted. As usual, sockets are suggested for the three d.i.l. i.c.s, which should not be plugged in yet.

Jack sockets JKI and JK2 have small plastic projections on their undersides, which prevent the solder pins projecting very far through the board. If it seems this will prevent good joints from being made these projections can be trimmed with a sharp knife.

Capacitor Cll should be secured to the board with double-sided sticky foam or a dollop of glue. Watch out for the polarities of the small electrolytics as C3 and C7 are the opposite way up to the others.
The leads of diode D8 are bent at right angles before soldering to the board so that it's horizontal centre is about level with that of switch S , and it projects out about the same distance. It's cathode (k) is denoted by the fiat on the body, this should be to the left, i.e. facing away from the switch.

GLASSES

The glasses for the prototype were made from swimming goggles. The author has tried various methods of construction using safety goggles etc, but swimming goggles have been found to be the best. They are comfortable, and can position the l.e.d.s accurately.

The method of siting the l.e.d.s is to first adjust the goggles for a comfortable fit, then experiment with two small blobs of "Blu-tac" to find mounting positions for the lights where they will be exactly over the pupils. Holes are then drilled at these points for a tight press fit of the l.e.d.s which are wired as shown in Fig. 3. Any thin twin-flex may be used to connect them to the jack plug.

TESTING

For testing, a suitable cassette recorder with a "binaural" tape should be available, with long sections of the lowest possible frequency. A special tape can be recorded for the purpose if necessary. A lead with a 3.5 mm stereo plug on each end will be needed to connect the player to the unit.

The first check is to connect the player through the unit to the headphones to ensure the audio path is OK. Then power should be applied via the battery connector with a meter measuring the current drawn. At this point $\mathrm{IC} 1, \mathrm{IC} 2$ and IC3 should not be in place.
 easy point to find this is across pins 7 and 14 of the socket for IC2. When the unit is switched off diode D8 will take several seconds to extinguish as Cl 1 discharges.
The TL064C op. amp ICl should now be fitted, raising the drain by about 0.6 mA . A d.c. voltage check of pins one and seven should show about 2.5 V at each. If IC2 is now fitted, a check at ICI pins 8 and 14 , should be either high (about 4.5 V) or low (about 0.6 V), but not somewhere in between.
If the cassette player is now connected and the binaural signal supplied from it, these points should show an average d.c. level of about 2.5 V , indicating that they are switching rapidly between high and low with practically equal mark-space ratios. If not, check with the headphones that a reasonable sound volume is actually being supplied to the circuit.
A check of the outputs of IC2 (pins 3,4, 11 and 10) should similarly show an average $2 \cdot 5 \mathrm{~V}$ d.c. level, though with a low-frequency input difference pin 10 may show a visible flicker, as this is the recovered low-frequency output. This should be visible on most analogue meters.

The glasses will now be needed for further testing. IC3 should be inserted, requiring careful lifting of the shaft of VR1 as it fits beneath this. If the unit is now switched on with the glasses plugged in, VRI set to
about half-travel and a low frequency signal applied, the l.e.d.s should flash.
If they do not, the low-frequency flicker may be looked for at IC3 pin 7. centred around 2.5 V , then again at pin 8 , though here it should be high around three quarters of the time so the overall voltage should be a little higher. Pin 14 should be low so long as the input signal is present, and should go high when it is removed.
The total current drawn by the circuit with the input off or the glasses unplugged should be about 8.2 mA to 8.3 mA , although this will obviously increase when the output l.e.d.s are being driven.

CASEDETA/LS

The p.c.b. is a fairly tight fit into the case, so some modifications are needed to accommodate it. It is secured with self-tapping screws to three of the four pillars in the lower, grey half.
The remaining pillar must be removed to allow room for the battery pack. There are various ways to do this, one is to melt it off with a soldering iron, though care has to be taken to avoid this showing on the outside (and fumes)!

Two of the pillars in the top of the case need shortening too, these being above the battery and the one diagonally opposite, over the shaft of VR1. It should be noted

Fig. 3. Wiring to the "hyperbright" l.e.d.s mounted in the glasses lenses.

The headphones and swimming goggles ready to relax the "patient".

 the "Binaural Signal Generator" (last month) units.

The finished p.c.b. showing IC3

that the case halves only fit one way round they are not symmetrical.

Finally, holes have to be cut in the front and rear panels for the sockets, controls and l.e.d. D8 to project through. A good way to mark these accurately is to screw the board in place, then fit a piece of card into the panel slots and use this to mark and transfer the horizontal centre lines to the actual panel.

Once the horizontal lines have been transfered, the panel can be slid into place until it rests on the components and the vertical centre lines marked. The holes can then be marked out and drilled and filed to shape. This obviously needs care and it could pay to practise on thick card first.
The control shaft of VR1 should project parallel with the p.c.b., through a hole in the panel, with sufficient length to attach the knob. The smallest knob found required a small semi-circular cutaway in the top half of the case for clearance. Sloping the shaft downwards so that it projects closer to the centre of the panel is not recommended as it just doesn't look right.

Once the panels have been cut, they can be slipped into place over the board and the assembly fitted to the case and secured with the self-tappers. A bit of foam plastic keeps the battery holder secure when the case top is snapped on. completing the project.

At this point it should be observed that the two metal panels will probably be in contact with the circuit through the metalwork of the sockets. The front will be connected to negative supply by JKI and JK2, the rear to battery positive by the outer part of JK3 and possibly by the plug from an external power supply.

This means that the two panels should never be accidentally shorted logether by contact with something metallic. However, it does make them handy points for checking the batteries! If an external supply is used. either for charging or operation, the centre of the plug should be negative and the outer positive.

INUSE

Using the unit is simple. A suitable tape is inserted into the player and run, the headphone circuit is connected through JK1 and JK2, the glasses plugged into the socket at the rear and VRI adjusted for comfortable brightness.

First-time users will probably see interesting patterns as the program progresses, although in the author's experience this effect wears off with repeated use. The deeply calming effect remains though, all one has to do is relax and let it work

With these two units, the constructor has access to an entrainment tool as powerful as the original Mind Machine, though far simpler to construct and use. The one snag is that for best results the tapes should be individually recorded, which can be tedious.

However, there is even a way around this, although not quite as simple. A future article will describe an interface in use by the author for creating tapes with a computer.

electronize electronic kits

 conditions where the standard system just cannot cope. The contact breaker is retained for ease of fitting but operates only at low powerEXTENDED CDI IGNITION
parts kit £22.75 assembled £28.45
MICRO-PRESSURE CAR AL ARM
A unique air pressure sensing system operates automatically without door switches etc. and is disarmed with the ignition key. Provides exit and entry delays with audible warning when triggered. Easily fitted with only three leads. A Power MOSFET output drives a siren or the car hom.
MICRO-PRESSURE CAR ALARM parts kit $£ 15.95$ assembled $£ 22.35$
VOLT DROP OPERA TED CAR ALARM
A similar unit to the above but relying on the courtesy light operation and the well known volt drop detection system.
VOLT DROP CAR ALARM parts kit £14.90 assembled £20.95

A smail module to up-grade any volt drop alarm to "Micro-Pressure" sensing or combine the benefits of both systerns.
MICRO PRESSURE TRIGGER parts kit £10.95 aśsembled £14.95
$7200 B$ PIEZO SIREN
A high intensity vehicle alarm siren for use with the above alarms.
120dB PIEZO SIREN
assembled only
£11.95
CODED INFRARED RECEIVER
A dash top mounted unit gives coded remote control of the above alarms. Includes a security chip with anti-scanning and 59,046 customer selectable combinations. Aiso has "Mega Bright" flashing LED to warn off intruders.
CODED IR RECEIVER parts kit $£ 21.35$ assembled $£ 26.55$
CODED WFRARED TRANSMITER
A key ring code transmitter for the above with a range up to 5 metres.
CODED IR TRANSMITTER
parts kit $£ 13.95$ assembled $£ 17.95$
All the above include cable, connectors and clear easy to follow Instructions. All kits include case, PCB, everything down to the last washer, even solder.
Prices are mall order discount, fully inclusive and apply for U.K. and expor. Telephone orders accepted with VISA or ACCESS payment.
Ask for detailed brochures or order direct (please quote EE5) from

> ELECTRONVZE DESJGN \quad Tel. 0213085877 2 Hillside Road, Four Oaks, Sutton Coldfield, B74 4DQ

CAMBRIDGE COMPUTER SCIENCE LIMITED

Borland $C++2.0$ for DOS \& Windows complete with mouse.
LCD modules. 16 char by $1: \mathbf{£ 4 . 0 0}, 20$ char by $2: \mathbf{£ 6 . 0 0}$, 40 char by $1: £ 6.00$
35.720 K Diskette Drives LCD modules, 16 char by 1: $\mathbf{4 . 0 0}, 20$ char by 2: £6.00, 40 char by $1: \mathbf{£ 6 . 0 0}$
3.5 720K Diskette Drives.
 20MByte $£ 29$, $10 \mathrm{MByte} £ 14$, Limited quantities. phone before ordering
Used PC memory/ card AST six pack with 384 k RAM
$£ 15.00$ each

 Used Compaq Enhanced Colour Graphics Card.
lucky Dip' PC cards, untested, no warranty, various types $5.25^{\prime \prime}$ Disk Drives. 1.2 MByte slimiline PC $5.25^{\circ \prime}$ Disk Drives, 80 Tk, DSDD.................
5.25° Disk Drives. 80 Tk, DSDD Used. No Wty £19.00 each

The 25° Disk Drives, 80 Tk, DSDD Used. No Wty
57.00 drives are sold on a strictly "as is" basis)
£ 7.00 each

Digital multimeter 14 ranges, inc leads 8 manual.
5V (u 6A PSU
$5 V$ iu 10A PSU

Disk Drive Data lead BBC Micro to Disk Drive(s)
Disk Drive Power lead BBC Micro to Disk Drive(s)
68000 CPUs 8 MHz S)
 f9.00 each E400 each Single 2.00 Dual $£ 5.00$ each 8086 CPUChips 280A CPU. CTC, PIO.....................
74 LS TTL. pick and 10 or more for E2.50 each
E1.20each: DMA 2.00 each 7415 TIL pick and mix buy 10 or more for \quad 1.20each: DMA $\mathbf{£ 2 . 0 0}$ £4.50 all 4

 27128 EPROMS (EX Equipment).. each or $£ 5.00 / 5$
 27C256-2S EPROMS £2.60 each
27C512 EPROMS (Ex Equipment)
1MBIT-10 DRAM (Ex Equipment)
6116 2K Byte SRAM
$6264-12$ BK Byte SRAM.
$\Sigma 3.50 \mathrm{each}$
£0.40 each

6525632 K Byterams...... Ms....... 1.40 each
 8 K Byte NV ram chips. $\quad \mathbf{\Sigma 3 . 0 0}$ each or $£ 10.00$ each 16.18\&20 pin dil low profle IC sockets 0.3" wide.................... $80.40 / 10 ; £ 3.00 / 100$ $24,28,32,40848$ pin dillow profile iC sockets 0.6 " wide........ $\mathbf{~} 0.40 / 10: 53 / 00 / 100$ Circuit tester, finds faults in TTL \& CMOS logic circuits, inc leads................00 each Metai project boxes drlled \& painted but unused $28 \times 32.5 \times 5 \mathrm{~cm}$ Eurocard Racks...
Smoke detectors
Used compyter cards many useful components (large ones socketed) WPU controler (380 (chip)...
Keyboards, full Qwerty, number pad and LCD Desktop computer case with 200 W mains PSU (used). Used IBM PC Cases with PSU Prices include postage. Add £1 plus vant to orders below 55.00 All items new untess stated
Add $\uparrow \uparrow .5 \%$ VAT to all prices Send an SAE for our larest ist or for more info. Dept EE, 374 Milton Road, Cambridge CB4 $15 U$ Tel: 0223424602,0831430496 or 0831430552 (Mall order only)

OUT NOW!

The Brand New Cirkit Electronic Consfrucfors Cafalogue Winfer 92/93

- 192 pages
$>$ £££'s worth discount vouchers
> 100s new products.......
Books - the latest titles.
Capacitors - new range ceramic discs, extended ranges electrolytic and polyester types.
Computers - new CAD PCB layout software.
Connectors - extended ranges of BNC, Jacks, XLR and PCB types.
Filters - new narrow band ceramic and low pass TV filters.
Hardware - additions include new range control knobs,
cabinet hardware and heatsinks.
Inductors - more additions to our already extensive range.
KIts - new additions to the Velleman range.
Rigs - handheld 'CB' transceiver, wavemeters and scanning receiver accessories.
Semis - new linear ICs, transistors and a complete new. range of LEDS including blue types.
Speakers - new radio mic systems.
Test Equipment - new hand-held frequency meter and satellite TV dish alignment system.
And much more besides.....
Send for your copy today!

CIRKIT DISTRIBUTION LTD

Park Lane. Broxbourne . Hertfordshire. EN10 7NQ Telephone (0992) 444111 . Fax (0992) 464457

Teach-In '93

with Alan Winstanley and Keith Dye B.Eng(Tech)AMIEE

Teach-In '93 continues a tradition of offering an interesting and thorough tutorial series aimed specifically at the novice or complete beginner in electronics. The series is designed to support those undertaking either GCSE Electronics or GCE Advanced Levels.

,ART SIX introduced the world of digital electronics which use logic chips as basic building blocks. These operate in terns of logic 1 or logic 0 , or "high" and "low". Unlike anälogue systems, digital logic is best suited to applications where clearty defined voltage levels or states are involved, rather than the continually varying signals met in analogue systems such as audio amplifiers.

SNAP GAME

A fun application using logic gates is: shown in Fig. 7.1. This "Snap" Indicator is a two-player game which clearty indicates who pressed their button first. No arguments! A pair of NAND gates are needed, which can be found in the 74LSOO chip we introduced last month. The truth table for the NAND is given below. Also see last month's issue.

NAND GATE TRUTH TABLE

\mathbf{A}	\mathbf{B}	\mathbf{Q}
0	0	1
0	1	1
1	0	1
1	1	0

The truth table tells us that the gate output (Q) is onty logic 0 when both inputs (A and B) are logic 1. The circuit of Fig. 7.1 uses two of the Mini Lab normally-closed push switches, one for each player. The circuit is
symmetrical, so each gate system works the same way. Switch S 1, being normalty-closed, sends a logic 0 to one input of IC1a. Looking at the truth table, this means that the output must be logic 1 - it doesn't matter what state the other input is at.

This logic 1 output (roughly 5V) ensures that the l.e.d. D1 is extinguished, because there is no voltage drop across it. The same applies for D2. Also, either gate's high output is sent to the other input of the opponent's NAND gate, therefore with each NAND having a 0 and 1 input, a logic 1 output is guaranteed anyway. So both l.e.d.'s are off.
Pressing S1 opens it and allows R1 to pull up the input to a logic 1 . Now both inputs of IC1 are logic 1 so the output goes to logic 0 which lights the l.e.d. to indicate the winner. Also, the output sends a logic 0 to the input of IC 1 b , which means that its output remains high since its inputs, previously 0 and 1 are now both logic 0 . Pressing S2 has no effect on IC1b output. Hence the opponent's l.e.d. is locked out and cannot light so long as S1 is pressed. The circuit automatically resets itself as soon as Player One releases his/her switch.
We can see how a digital system like this is perfectly suited to processing digital input signals - after all, we're simply interested in the "closed" or "open" state of the two push switches, and the "win" or "lose" status of the players. An analogue system using transistors or perhaps thyristors could undoubtedly be built but a logic gate system is a perfect choice here.

It is fairty straightforward to as-
semble this on the Mini Lab breadboard using the pin-out diagram for the 74LSOO given last month. Use the +5 V rail of the Mini Lab Power Supply to power the chip, and simply connect the logic gate pins using short lengths of solid core hook-up wire on the breadboard. Follow the pin numbers carefully using the circuit diagram as a guide, since some of the layout might become a little cramped.
The two light-emitting diodes can be fitted directly onto the breadboard and two of the Mini Lab's normaliy-closed switches can be conveniently hooked up as usual. If it doesn't work, thoroughly check the pin-outs - and are the l.e.d.'s correctly orientated? Have fun.

TIME DELAY

A further enhancement would be to build the circuit of Fig. 7.2(a) to form a time delay indicator. This uses a new chip for us, the 74 LS 14 which is a Hex Schmitt inverter. "Hex" in this case means that there are six of them in the chip. We met the Schmitt trigger when we checked out operational amplifiers. Recall that it's a circuit which converts a slowly moving voltage into a very rapid snapaction switch. In the circuit of Fig. 7.2(a), an $R C$ network starts charging as soon as the pushswitch S3 is released. At this time a logic 0 is present at the input of the inverter, so its output is a logic 1.

The 74LS14 Schmitt trigger has a threshold voltage of about 1.6 V and this is more consistent than a normal inverter or NOT gate, which could trigger at anything from about 0.8 V upwards. When the voltage

Fig. 7.1 "Snap" indicator game.

Fig. 7.2a. Time delay indicator.

Fig. 7.2b. 74LS14 Hex Schmitt pin-out.

Fig. 7.3a. Light-sensor analogue-to-digital interface.

Fig. 7.3b. Schnitt hysteresis curve.
at the Schmitt inverter input reaches or exceeds 1.6 V , this is treated by the Schmitt as a logic 1, so its output goes LOW. Obtain the appropriate chip and build this on the Mini Lab, next to the "Snap" Indicator assembled earlier. It's very easy and the pin-out in Fig. 7.2(b) will be useful. Hook pin 1 over to the third push switch on the p.c.b., and connect the inverter output.(pin 2) to the Logic Probe.
Pressing S3 sends a logic 0 to the Schmitt inverter, so the Logic Probe changes to indicate a 1 at the Schmitt output. Release S3: nothing should happen for five or six seconds (as measured in our test) when the Logic Probe changes to indicate a LOW - in other words the input of the inverter has now gone high because its threshold voltage has been reached by the charging capacitor. Vary the capacitor value to alter the period.
This circuit can't produce very accurate delays because of the very high leakage current on the large electrolytic capacitor C 1 , which also has a very wide tolerance on its value. However the circuit demonstrates the action of the TTL logic version of the Schmitt Trigger. Use it as a reaction timer with your "Snap" Indicator - as soon as the logic probe changes over, the first to press their button is the winner. We'll build a more advanced digital version later on.

TRANSDUCERS

The Schmitt trigger is also available in the form of a NAND gate (the 74LS132) remember that a NAND gate with both its inputs wired together, forms a NOT gate or inverter - see last month. Either the 74LS14 inverter chip or the 74LS 132 could be used to interface an input transducer, to a digital circuit. A suitable I.d.r. like the ORP12 can be used with a Schmitt inverter to generate a logic signal from a slowly varying input.
The circuit of Fig. 7.3(a) shows how a light-sensitive digital switch could be lassembled in this way. It is obviously much simpler to understand than the op-amp version shown in Part Five, though the
switching threshold is predetermined up to a point by the inverter, so it's less easy to customise the design. We can determine the threshold voltage by monitoring the input level with the L.E.D. Voltmeter.
Construct this on the Mini Lab using one of the Schmitt inverters found in the 74LS14, or use a Schmitt NAND from the 74LS 132 if you have one to hand. Clsing the 5 V rail, connect the output to the Logic Probe, and wire the LE.D. Voltmeter as shown (2.5 V scale), to measure the voltage at the inverter's input. Cover the I.d.r. as necessary to vary the input voltage. The experiment warks best in strong light and a short tube of cardboard placed over the ORP12 improves sensitivity. It should also be possible to build everything on a single Veroblock breadboard though the Euro breadboard (if fitted) allows you to spread out a bit more.
How high does the input voltage have to rise before the logic probe changes to "LOW'? (We measured 1.7 N or so.) Similarly, to what voltage does the input have to fall before the input changes to "HIGH" again? (Roughly 0.8 V .) The 74LS14, like all Schmitt triggers, has the property of hysteresis, which is the difference in the two switching thresholds. The input has to rise to 1. T or higher, then fall back to 0.8 V or lower for the inverter to switch over, so the hysteresis is typically 0.9 V .
The typical characteristic curve for this I.d.r. circuit is shown in Fig. 7.3(b). It also explains why there is generally that funny sign within the Schmitt schematic symbol: it resembles the hysteresis curve.
Exactly the same principle could be used to form a temperature-sensitive switch with a thermistor to obtain a logic signal from a slowly-moving temperature dependent analogue waveform. So although logic systems prefer to function with distinct high or low levels, it is quite possible to interface analogue signals to a digital circuit using a Schmitt trigger.

OUTPUT INTERFACE

Similarly we can interface digital logic chips to a variety of output transducers - like, the lightemitting diodes of our "Snap" indicator. We explained last month that TTL logic gates aren't very good at driving loads themselves, so although a gate output may be high, it is only capable of sourcing a few milliamps. They are somewhat better at sinking current (say 8 mA or so) but they need an output buffer to drive really heavy loads like a relay or a lamp.
The Mini Lab power transistor can be used effectively here because it's a high gain Darlington transistor which needs a base voltage of 1.4 V to saturate. Fig. 7.4(a) shows how to drive a load from a gate using the Darlington. A 10k base resistor limits the base current to a reasonable value, and the Darlington will saturate when the TTL output is logic 1 .
Another idea is shown in Fig. 7.4(b) which uses a potential divider across the output of a gate, and drives a normal npn bipolar transistor. When the output is high then the voltage at TR1 base will be about 0.7 V which will turn on the transistor and its collector load. The resistor values are not too critical because the transistor gain (h_{FE}) varies widely between samples in any case. Using a potential divider like this is an excellent way of turning on a transistor reliably because the buffer then doesn't rely solely on the hFE of the transistor.
Note that whilst the TTL gate must be driven from the 5 V power supply, it's O.K. to
return the collector load to a higher voltage than this, with reference to OV. In Fig. 7.4(b) the relay is powered from 6 V provided by the Variable Power Supply, and the TTL gate is driven from the 5 V rail as usual, so every. thing is happy. Use the buzzer or relay as a load for the Darlington transistor and construct the buffer of Fig. 7.4(a) on the breadboard, to drive the buzzer from either of the inverter circuits given earlier.
Substitute the Darlington for the transistor driver circuit of Fig. 7.4(b) and confirm that it works. Recall that if you use the Mini Lab relay, it is imperative that it is correctly onentated to take account of the back.e.m.f. diode which was incorporated in Part Two. In general terms, relay contacts could be used to controf still heavier loads such as mains-operated circuits, but you must never connect any mains or high.voltage systems to the relay mounted on the Mini Lab p.c.b.
The load could actually be connected to an even higher voltage - providing that the load and transistor ratings are not exceeded. You could, for instance, drive a 12 V load (e.g. the two 6 V bulbs wired in series) simply by connecting the load to the 12 V rail instead of the 5V TTL rail, thereby obtaining a higher drive voltage for your load. The 5 V rail is a bit low to drive some loads, but by level-shifting it to a higher voltage, this restriction is removed. The Mini Lab will provide up to nearty 20 V if needed, from its Variable Power Supply.

MEMORIES

The area of combinational logic, which we introduced last month, uses logic gates to form logic systems, the outputs of which are simply dependent upon the current states of the inputs, nothing else. Changing an input may or may not change the output, depending on the system's truth table. Take a look at Fig. 7.5(a). It looks quite straightforward, and is an example of sequential logic. This not only looks at the current combination of the input levels, but it also takes into account their history as well.
Two NOR gates IC1a and IC1b from a

Fig. 7.4a. Driving a load through a buffer.

Fig. 7.4b. Using a bipolar transistor to buffer a gate.

Fig. 7.5a. Bistable of "flip-flop".
74LS02 are used in a symmetrical crosscoupled connection. Ignoring the switch, one of each NOR gate's inputs is pulled up with a resistor to Logic 1. From the truth table of the MOR gate (last month) we can say straight away that the output of each MOR gate must thus be a Logic 0 , regard. less of the state of the other input. This Logic 0 output in any case is cross-coupled to the other NOR gate's input, so each NOR gate must definitely be Logic 0 , be. cause the inputs are pulled up to logic 1 through the resistors, and logic 0 from the other gate's output. However, there's a complication.
We have added a changeover switch S1, which shunts either of the pulled-up inputs down to Logic 0 . We have also labelled the two NOR outputs as \mathbf{Q} and \mathbf{Q}. Recall that the overbar means "invert". In logic it also means the "complement" or opposite. So \bar{Q} is always the complement or opposite of Q Note too that we labelled the "poles" of the switch as S and R. These connect to the pull-up resistors. What effect does that switch have? Lots! Let's take it step by step.

With the switch set as shown to S, this sends a logic 0 to IC1a. Over at IC1b, its input is pulled up to logic 1 by R2, so the Q output goes to logic 0 (NOR gate truth table). IC1a then has a logic 0 S input and a logic 0 from the \bar{Q} output, so the Q output is a logic 1 . Conclusion: in this circuit, with S at logic $0, Q$ output is 1 so \bar{Q} is logic 0.
Changing over the switch sends a logic 0 to the R input this time. Meanwhile the S input is allowed to pull up to logic 1 so the Q output changes to a logic 0 . This is also sent over to IC1b which now has a logic 0 at both inputs: \bar{Q} changes to a logic 1. Conclusion: when the R input is logic 0 , the Q output goes to logic 0 so \mathbb{Q} the output goes high. Reversing the inputs once more, changes the Q and Q to their previous state.

Try building this circuit using two NOR gates from a 74LS02. Preferably use a wire link to make either the S or R input low in succession. Use the logic probe on the two outputs to see what happens every time you change over input status.
This circuit clearly has two stable states it's called a bistable or "flip-flop" and it's a fundamental element of sequential logic systems. (Recall our work with 555 timers which demonstrated the "monostable" or orie shot, and the "astable" or free-running mode.) Once the flip-flop has been "set" by sending the S input low, it remembers that state until the flip-flop is reset by sending the R input low. The flip-flop acts as a memory in the same way that a conducting thyristor "remembers" its state until you

Fig. 7.5b. Switch bounce observed on the Mini Lab.
reset it. This bistable circuit is known therefore as the set-reset or SR (or RS) flip-flop. A 74LS279 contains no less than four of these S-R bistables.

REGISTER

Another word for a memory is a register. This simple flip-flop could form a register which is capable of memorising one binary digit or BIT (i.e. either 0 or 1) - so it would be a one-bit register. If we ignore the \bar{Q} output for now, the flip-flop Q output could be seen to alternate or "toggle" between 0 and 1 every time you reset or set it. The register memorises or "latches in" the current state. It's the basis of computer memory. Exercise: prove that a pair of NAND gates could form an S-R flip-flop too.
The flip-flop is especially useful in interfacing mechanical switches to logic circuits. You probably think that switches are either on or off. In reality, switch contacts are made of a springy metal and often the contacts trampoline several times before settling down to their designated position. In high speed logic circuits, this contact bounce can cause chaos: pressing a button just once can actually generate multiple erroneous signals. We managed to capture this effect using one of the Mini Lab push switches on our test equipment, see Fig. 7.5(b).
"Noisy" switch contacts on say a radio or hi. fi, manifest themselves with an audible crackle over the loudspeaker, every time you operate the switch. Early calculator key. boards of the mid 1970's suffered terribly from switch bounce, resulting infuriatingly in a whole string of digits being entered accidentally. (This
somewhat offset the new-found novelty of writing "SHELLOIL" on your new seven segment display, held upside down!)
A good way of overcoming switch bounce is to utilise a flip-flop, placed between the switch and the logic system: the first contact bounce is enough to toggle the flip-flop which then ignores any subsequent transitions.

CLOCK

A more versatile version of the flip-flop is shown in Fig. 7.6. This uses the same NOR gates to form a bistable as before (though NAND gates could be used instead), but extra logic has been added to the input in the form of a "gating" system made with two AND gates. There are still two input terminals S and R, but now we have added a third input called CLOCK. The clock signal actually forms an Instruction to the system to tell it to "read" the states of the Set and Reset inputs, and switch the output Q ac. cording to the truth table of the system.
As is often the case, the best way of leaming about it is to observe it by constructing the system on the Mini Lab. The circuit diagram clearty shows the pin-outs of the various gates, noting that you will require

Fig. 7.6. Clocked SR flip-flop.

CMOS v. TTL

Our Teach-In experiments have used standard TIL (transistor-transistor logic) chips to demonstrate basic logic principles. These chips use bipolar transistors and so they are thirsty for current and require a reasonable stable 5 V supply.

The Digital Display module in the Mini Lab however makes use a CMOS BCD-Decoder Driver chip, the 74HC4511. This is a CMOS 74-series equivalent of its sister in the competing 4000 CMOS family, the CD4511.

The CMOS logic family (the 4000 series) sprang up in the late 1970's as one manufacturer's answer to 74 bipolar TIL logic. CMOS logic has some good points, particularly its very low quiescent current and zero input currents frefer to the section "F.E.T.s" in Part Five) compared with TTL plus a more tolerant supply voltage requirement. Hence CMOS is widely used in power-sensitive applications like battery-operated projects. But like most CMOS devices, it is static sensitive and requires special handling precautions.

The 74 HC series of CMOS devices was produced as a response by TLL makers. These are in effect CMOS versions of earlier 74-series TIL devices, so that they could compete with 4000 CMOS types. Looking through a component supplier's catalogue, you will see a bewildering array of logic chips and families. Here's a brief run-down:

CD4000 series - the original CMOS logic chip family, still available today.
74XX series - the original TTL, for use in basic circuits where speed and power consumption isn't important. Now considered obsolete, but still perfectly usable for basic circuits and experiments.
74LSXX - the Low Power Schottky version, used in our experiments. Consumes only 20 per cent of the power that an original $74 \times \times$ gate does.

74ALSOX - Advanced Low power Schottky has twice the speed and half the power consumption compared with 74LS.

740XX - the original CMOS version of 74 -series TIL logic, and broadly pin compatible. Since superseded by 74HCT logic - High Speed CMOS versions. In our own circle, it's quite acceptable to use 74LS (bipolar) or 74HCT (CMOS pin-compatible version) families from the TIL stable, or the CMOS 4000 series as an alternative. It depends on the speed of operation and power consumption you desire.

There are some differences in the way you use the various familles of logic chips. 4000 series CMOS devices are not necessarily compatible with TTL because of the different threshold voltages the families may have, so some levelshifting might be needed. Also, CMOS chips need any unused pins to be tied firmiy to a supply rail and not left floating like we have with our TIL experiments. Finally of course, CMOS chips need special anti-static handling precautions.
a 74LS08 AND gate chip and a 74LS02 NOR chip. We have also used a changeover toggle switch to send either set or reset to Logic 0. (Note that a TTL input which is left unconnected or "floating" actually assumes a Logic 1 , so we didn't use pull up resistors this time.)
Tip: when your toggle switch is pushed upwards (pointing at the power supply), the pins marked C and N / C (Common and Normally Closed) are the ones which are connected together. Switching the toggle over towards the loudspeaker joins the pins C and N/O (Common and Normally Open) instead. This is relevant when you need to know whether the Set or Reset terminal is the one connected to 0 V at the moment.

One of the normally-open push switches is used with a pull-down resistor to generate a suitable clock signal. Pressing the switch sends the clock signal high to logic 1 , otherwise it's at Logic 0 . Connect the Q output (pin 1 of IC2a) to the Logic Probe. It goes without saying that pin 4 of IC2b would be the \mathbb{Q} output of the flip.flop - the opposite of Q - so we wor't monitor it here.
Check your wiring most carefully - are all the pins interconnected as required, and is the 5 V power supply correctly applied? If so, switch on the 5 V rail and the 12 V supply for the Logic Probe. Press the push switch to apply a cloćk pulse: the Logic Probe may or may not change over the first time. Change the toggle switch over then apply a clock pulse: now the Q output should be seen to change states. Now pressing the clock
repeatedly should make no difference.
The Q output will only change state once the S / R toggle switch is changed over. Then the clock pulse forces the bistable to change states. Clocking the circuit again makes no difference: you have to change the toggle switch again before the clock pulse will allow the Q output to change. Try to draw the truth table yourself.
Now keep the clock switch pressed down to apply a full.time logic 1 clock signal. Toggle the Set/Reset repeatedly. The Logic Probe will show that the Q output is now changing over in sympathy with the S / R input signal. Recall that a floating TTL input assumes Logic 1. Prove that when Reset is 0 (so Set, floating, is 1) then Q is high at logic 1. Conversely, when Reset is 1 (so Set is 0) then the Q output is low. If you're with us this far - well done!
The way in which the AND gates control the bistable is quite straightforward: the clock input and also either the Set or Reset input needs to be high before the S-R flipflop changes state. The Set and Reset pins tell the flip-flop what to do, but the clock tells it when to do it. The clock forces the latch to read the data at the Set and Reset pins and change over the Q pin as required. This circuit is therefore called a clocked SetReset flip-flop.
Because of its ability to "read" data at the S / R pins, it's quite useful - more than the basic flip.flop we met initially. A drawback with this particular type is that when the clock is permanently high (the clock switch
pressed down), the Q output will see right through back to the input of the circuit and switch over accordingly. Thus the circuit is also called a "transparent" latch. You proved this when you kept the clock switch pressed down whilst changing the Set/Reset states.

TRUTH TABLE

The truth table needs to reflect the fact that the output follows a sequence which depends on its previous state: this is different from a simple logic gate where the output simply depends on the combinations of logic levels on the inputs.

SET	RESET	Q BEFORE CLOCK	Q AFTER CLOCK
0	0	Qn	Qn
1	0	$Q n$	1
0	1	1	0
1	1	0	$? ? ?$

So we now have the ability to "read data" when a suitable clock signal is received. The above circuit forms the most basic of registers and is not quite as versatile as you might think: depending on the Set and Reset data, the Q output can change states whenever the clock input is high, giving that "transparent" effect.

This means that in order to use the reg. ister as a memory system, you would have to make sure that the clock signal was of an appropriate time period, otherwise you could be caught out if the Set and Reset pins changed states when the clock was at logic 1. In this way, the clock system enables the register whenever it is logic 1. In largescale systems, trying to synchronise all those clocks to avoid accidental memory changes, is a headache!

A better system would actually ignore the length of the clock signal, and simply goes by the edge of the clock pulse. As soon as an edge (a change from low to high or vice versa) is received, this instructs the digital system to perform an operation. After changing states, the system ignores the length of the pulse and waits until another suitable edge signal is received at the clock terminal: then the system obediently follows its truth table.

As you have probably seen, using several TTL gate chips in order to create a reg. ister - or any other digital system - is a bit tricky, and thankfully i.c. manufacturers quickly created a whole range of logic chips which in essence contain ready-made gate systems, registers, latches and a whole lot more, you name it!
Fortunately it is quite in order to treat these chips as simple black boxes, and in our case their internal operation is irrelevant, and being realistic, there is little to gain except academic satisfaction in trying to create these chips using separate logic gates. So "black box" approach it is from now on. At this stage, you may well wish to construct this month's Mini Lab module the Digital Display - so go right ahead. You will need it soon.

D-TYPE

Introducing yet another TTL device: the 74LS74, officially described as a Dual Positive-Edge-Triggered D-Type Flip-Flop. "Dual" means that there are two flip-flops in one single d.i.l. package. "D" means Data. They are versatile in that they have edge-sensitive clock circuits, symbolised by the lopsided triangle in the symbol of Fig. 7.7(a).

Fig. 7.7a. "D-type" flip-flop.

Fig. 7.76. 74LS74 dual D-type flip-flop pin-out.

The Data (logic 0 or 1) on the " D " terminal is read by the flip-flop every time a positive-going edge signal is received at the clock terminal. The flip-flop then transfers this data over to the Q and Q outputs, with Q being the same as Data. Two further inputs "Preset" (PR) and "Clear" (CLR) behave like Set and Reset pins respectively. A logic 0 on either pin will Set or Reset the outputs, regardless of the state of all the other inputs. This is signified by the "negation" circle on the PR and CLR terminals, so fix both pins at logic 1 to enable the flip-flop.

You will need two of these devices, which gives you four D-type flip-flops. Pin-outs are shown in Fig. 7.7(b). Build the circuit shown in Fig. 7.8 on your Mini Lab - it's easy. A push switch with pull-down resistor provides a suitable clock signal, whilst Data is provided by a changeover toggle switch. Connect the Q output to the Logic Probe, and switch on the 5 V and 12 V rails. (Recall the \mathbb{Q} output is the complement or opposite of Q).
With Data of 1 , this appears at the \mathbf{Q} output when the clock switch is pressed: notice how it happens immediately the switch is closed, which sends a positive edge to the clock. Nothing else happens until another positive edge is sent, when

Fig. 7.8. Demonstration of the "D-type" latch.

Fig. 7.9a. 12V to SV TTL interface, for the 555 Timer.
the Data (either 0 or 1 , whichever way the toggle switch is set) will be read and stored and sent to the Q output. More of this shortly.

CLOCKS

Pressing $\dot{\mathbf{a}}$ switch is one way of providing a suitable clock pulse for demonstration purposes. The problem is that switch contact bounce may cause erroneous clock signals to be transmitted - the logic is quite capable of reading these fast, false signals and acting on it. By using an oscillator circuit or square wave generator to provide continuous clock signals, we can create an electronic clock signal which doesn't cause any false signals to be generated.

The NE555 astable circuit provides a stream of pulses which can be utilised as a clock, to save you having to repeatedly press the switch. The Mini Lab Timer uses a 555 astable, but it is very important to remember that it functions from 12 V , not the 5 V rail used by TTL logic, and so produces 12 V pulses which can't be used directly'on our 5V TTL systems.

It's easy to interface the 555 to TTL Logic by using a simple level-shifting circuit, such as the simple transistor circuit of Fig. 7.9(a). This can readily be built on the breadboard, testing the output with both the L.E.D. Voltmeter and the Logic Probe to confirm that the 12 V square wave from the 555 is shifted to a TTL-compatible level.

Aso, remember that the 8038 Signal Generator provides a 5 V square wave (pulled up to +5 V), so you're spoilt for choice. The 8038 has the option of varying the mark-to-space ratio, but this has no effect with edge-triggered circuits, where only the positive-going edge has any effect. not the period of the pulse itself. In fact there are yet more ways of generating suitable clock signals. Fig. 7.9(b) shows how a single Schmitt inverter from a 74LS14, which we met earlier, can be used with an RC network to generate clean square waves, suitable for clocking. C could be anything from $0 \mu 1$ to 100μ or more, R might be up to 10 k or more. Anyone with access to an oscilloscope can experiment.

Reverting to our D-type flip-flop, remove the clock push-switch and instead use the 555 via the transistor interface, to provide a stream of 5 V clock pulses. Use the lowest frequency settings on the generator controls. The l.e.d. on the Mini Lab Timer shows when the 555 output is high, but confusingly the transistor inverts this to a low signal. Hence we added the l.e.d. D1 in the transistor buffer, which lights whenever the clock is high, to make it easier to monitor the clock.

Fig. 7.9b. Using a Schmitt inverter to generate clock pulses.

Now the D-type flip-flop is clocked automatically by the 555 astable module and it will read the Data at the D terminal every time a clock is received. Toggle the Data setting between 0 and 1 , and watch this transfer to the Q output (Logic Probe) every time a clock rising edge is received.

AROUND AND AROUND

The circuit of Fig. 7.10 shows a D-Type flip-flop where the \mathbf{Q} output is fed back to the Data input, instead of reading data from an external source. This has an interesting effect. Construct this now on your breadboard using one half of a 74LS74, and hook up the Logic Probe to the \mathbf{Q} output, pin 6 . Life becomes complicated with several l.e.d.'s to monitor, so concentrate solely on the "clock high" l.e.d. in the transistor buffer, and the "HIGH" l.e.d. (middle) in the Logic Probe. Switch on the 12 V and 5 V rails. Run the 555 timer at its lowest frequency.

You will notice that the "HIGH" l.e.d. will be flashing half as quickly as the "CLOCK" signal. The clock goes high which makes the \mathbf{Q} go high, then the clock goes low but nothing else happens until the clock goes high again - another positive edge is received - when the \bar{Q} output goes low once more. It's readily summarised in the timing diagram of Fig. 7.10(b).

When power is first applied, assuming the Q output is 0 so the \mathbf{Q} is 1 , this means that Data is 1 too. When the first clock edge is received, Data 1 is read into the flip-flop, so now Q becomes 1 and the \bar{Q} and Data become 0 . The \mathbf{Q} stays like this until the next positive-going clock edge is received.

DIVIDE BY
 TWO / FOUR / EIGHT

This implies that the clock must now go through the whole of its period - the time when it is both high and low - before the

Fig. 7.10a. Divide-by-two function using a D-type flip-flop.

Fig. 7.10b. Timing diagram of the divide-by-two circuit.
next rising clock edge is received. Then the Data 0 is read and this makes the Q output go to 0 so \mathbf{Q} and Data become 1 again. Result: the outputs change over only once the clock has gone through a complete cycle. This circuit acts as a Divide-by-Two Counter the output of which is half the frequency of the clock signal.
It's still true that the circuit doesn't really care about time periods and is much more concerned with edges. The divided signal which is generated at the \mathbb{Q} output can itself be used as the clock to a subsequent divider which will divide again by two. Try to build the circuit of Fig. 7.11, which will divide your original clock signal by four. The best thing to do is to position the three light-emitting diodes (clock, Q1 and Q3
outputs) so that they are adjacent to each other anywhere on the breadboard; you will then see the counting pattern clearly. Adjust the clock frequency as required.

Now we become a little more ambitious. Insert a second 74LS74 circuit to give a $\div 8$ and 16 effect as outlined schematically in Fig. 7.12. Connecting the output of one flip-flop into the clock of subsequent counter produces a ripple counter, where the waveform is repeatedly divided down by each subsequent section. The data shuffles or "ripples" down the row of registers, here dividing by two every time. Now we take a closer look at the outputs.

Use four light-emitting diodes and connect one to each of the Q outputs (not the \mathbf{Q} outputs). The wiring becomes a little complicated, so use sticky labels if necessary to label the four output leads Q1 to Q4. If at all possible, try to use high-efficiency (ultra-bright) l.e.d.'s for the four indicators because these will provide a much brighter signal as the drive capabilities of the registers are poor. Normal l.e.d.'s will just about suffice though. Place them in the right order in a prominent position on your breadboard.

After turning on the 12 V and 5 V rails, you should see a pattern
emerging on the row of light-emitting diodes, like that in the following truth table where a " 1 " signifies an illuminated l.e.d.

$\begin{gathered} \Theta_{4} \\ \text { BIT } \\ \left(8^{\prime} \mathrm{s}\right) \end{gathered}$	$\begin{aligned} & 03 \\ & \text { B173 } \\ & (4 \text { 's) } \end{aligned}$	$\begin{aligned} & Q_{2} \\ & \frac{B T T 2}{(2 ' s)} \end{aligned}$	Q1 (1's)	decimal.
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	10
1	0	1	1	11
1	1	0	0	12
1	1	0	1	13
1	1	1	0	14
1	1	1	1	15

FOUR BIT COUNTER

Because we are counting four binary states or digits (i.e. four "bits") we have assembled a four-bit binary ripple counter. We are actually counting up in binary, where a clock pulse represents the addition of binary 1 to the number represented by the light-emitting diodes. Look back to last month if you need a quick reminder about Binary Notation and how a decimal number can be represented with binary digits. For instance, the four-bit number 1011 equals $8+2+1=11$ in decimal.
We've shown the decimal equivalents of the four-bit number, in the right-hand column of the truth table. See if you agree. Our four-bit counter starts at 0000 (which is zero in decimal) and can count up to 15 (1111 in binary) - so there are 16 possible states in all. The first bit to pop out -Q1. is called the Least Significant Bit (LSB) so Q4 is the MSB (Most Significant Bit). Increase the clock frequency and watch the number pattem progress more quickly. Award yourself a pat on the back if you have success. fully built this demonstration! You will use it again shortly.

The next few more advanced topics require the use of the Mini Lab Digital Display the assembly of which is described separately.

Fig. 7.12. A complete 4-Bit binary counter.

TEACH-IN GCSE QUESTIONS

This month, a question posed by the Southem Examining Group in their GCSE Examination of Summer 1991 Paper 1 (1061-1063) and reproduced with their kind permission. It was designed to test your awareness of digital systems. The answers are the work of the Authors not the SEG and may not constitute the only possible solution.
Question (C) The Southern Examining Group.

SEG 1991

3. A person who works at night and sleeps during the day has made a door buzzer which will only sound when it is dark. Fig. I shows its block diagram.

Fig 1
(a) (i) Write down the names of the two input blocks.

Input 1
Input 2
(ii) Write down the name of the output block.
(3 marks)
(b) (i) The output from the light sensor is high in the dark and low in the light. The output from the push swith is high when pressed and low when not pressed.

Complete the truth tuble in Fig. 2 using 0's and l's.

Conditions	Light Sensor Output	Doorbell Switch Output	Output of Block X
Switch not pressed in the light			0
Switch not pressed in the dark			0
Switched pressed in the light			0
Switch pressed in the dark			1

Fig. 2
(ii) Which logic gate hus the same truth table as this?

DECODER

The pattem of l.e.d.'s which you created with four binary digits in the last experiment shows how any decimal number between 0 to 15 can be represented by a logic system using a four bit counter. There are other forms of counter which will do the same job, often with an improved performance.
The previous circuit is ideal for our demonstration, but if it was used as part of a high-speed logic system then errors could occur in use. For instance, there is a tiny time lag which accumulates the further down the line of registers the clock data goes. This "propagation delay" becomes more noticeable with fast, sensitive circuits. However this system of ripple counting is perfectly acceptable in less demanding applications.
Logic systems are readily available which will help us out when it comes to making sense of counters. The Mini Lab Digital Display contains three seven-segment dis plays, each one driven by a simple decoding chip, the 74HCT4511. It's a BCD-to-7 Segment Latch/Decoder Driver ($B C D$ means

Binary Coded Decimal - see later). Note that this is a CMOS chip, not a TTL device, and requires anti-static and other usage precautions - see the separate panel "TIL us CMOS". This chip automatically converts a four-bit number into its decimal equivalent, and shows it on the seven-segment display. So it becomes easy to decode that four-bit number generated by the preceding ripple counter, and display this in "English" on a digital display.

DIGITAL DISPLAY

Having successfully constructed the fourbit register using two 74LS74 D-type flipflops, SWITCH OFF and continue by connecting the Q1 to Q4 bits to the Digital Display terminals A.D respectively. Use the s.i.l. sockets in the Digital Display module marked "CONNECTOR 1" on the Mini Lab. This contains the pin-outs for digital display number one, marked on the right of the module as "DISP 1". Ensure that you do not allow the link wires to short to each other, as adjacent terminals in the socket strips are used.

The pin-out functions of the Digital Display are explained in the constructional article. The pin marked "LE" (Latch Enable) controls the 4 -bit transparent latch of the decoder chip. A logic 1 on LE will freeze the display, showing the decoded (decimal) number present at the $A B C D$ input of the module at that time. The decoding function still continues internally and "keeps up with" the input data, but the display is locked or "latched". However a logic 0 on LE permits the data on the input to be transmitted straight through the transparent latch after which it is viewed on the seven-segment display. Set LE to logic 0 therefore, for now. The other pins aren't used just yet.
When you are satisfied that the Digital display is correctly and soundly connected, switch on the 5 V rail for the TTL logic and Digital Display, and the 12 V rail for the 555 timer which provides the clock signal. With luck, DISP 1 of your Digital Display will be counting from zero upwards, and repeating. Adjust the clock frequency of the 555 timer as necessary. Compare the state of the four l.e.d.'s monitoring Q1 to Q4, against the decimal reading shown by the seven-seg. ment l.e.d.

BCD-DECIMAL

What is happening is that the ripple counter is generating a Binary Coded Decimal four bit number. This is shown in the table given earlier, where 0000 represents decimal zero, whilst 1111 represents decimal 15. The flip-flops generate the next number in the sequence every time a clock edge is received. So a four-bit number is created by looking at the Q1 to Q4 outputs.

The BCD-Decimal Decoder Driver within the Mini Lab Digital Display decodes this four-bit number, and translates it into a code which drives the seven segments of the l.e.d. display, in a suitable decimal format. The trouble is, the display can only show decimal 0 to decimal 9. The four-bit number counts all the way up to decimal 15 , as shown in the sequence of bits given earlier.
The decimal decoder/ driver can't cope with anything higher than 1001 (Decimal 9) so when the counter receives a BCD code representing 10 to 15 (1010 to 1111 inclusive - see table) - the display is blank. That's why the digital display seems to pause after counting up to 9 : the next numbers in the input sequence cannot be displayed by the 4511 chip, though they will still be counted.

Don't worry unduly if the other two digits in your Digital Display are apparently doing their own thing: it's caused by noise and static charges accumulating on the other $A B C D$ inputs, which fools the counters into thinking that it's reading a number. Simply connect all the other $A B C D$ terminals to +5 V to prevent it. This causes the displays to try to show 15, which is an "illegal" state blank.

The system of Binary Coded Decimal is a method by which we can convert a decimal digit ($0-9$) into its equivalent four-bit number. Binary Coded Decimal differs from ordinary binary annotation in the way it represents decimal numbers greater than decimal 9. The decimal number 237 in decimal is 11101101 in true binary (according to the calculator Microsoft kindly included in our Windows software!), but in BCD format we have to consider each decimal digit as a separate four-bit number. So 237 becomes 001000110111 in BCD: nothing like the true binary conversion.
To actually represent this number using D-type latches (like the 74LS74) you would

Fig. 7.13. Decoding a 4-bit binary number into decimal, using the Mini Lab Digital Display. Use both the 74LS93 and 74LS90 decoder chips in turn.
need no less than twelve flip-flops to generate the three 4 bit groups of BCD data, which could be decoded by the three decoder drivers of the Mini Lab Digital Display. Perish the thought... The next few experiments are somewhat more ambitious and will appeal to more advanced readers, as we investigate further logic functions which use the principles we have outlined so far.

DECADE COUNTER

A complete BCD counter is available in the form of a 74LS93 chip. This contains four flipflop circuits, all connected together to form a four-bit ripple counter just like the circuit we assembled earlier. Again it has a BCD output, consisting of a four-bit number which counts in binary from 0000 up to 1111 .
Construct the suggested circuit of Fig. 7.13 using a 74LS93. Important: the +5 V supply is connected to pin 5 whilst OV goes to pin 10 . If this circuit is working correctly, it will mimic the previous demonstration which used the 74LS74's, and will count from 0.9 with a blank when the values of 10.15 cannot be displayed. th's counting in binary.

Fig. 7.14. A complete 3-digit decimal counter module. This is used as the basis for the following experiments.

The chip continues to count these forbidden numbers until decimal 0 is reached once more, when the display will light again.
To avoid counting numbers which we cannot display, the 74LS90 i.c. can be used instead of the ' 93 : it is pin-for-pin compatible with the 74LS93, so simply swap the chip on your breadboard directly. Now power up again and see the difference: the digital display counts from 0.9 and immediately starts to count from 0 again. Internally, the 74LS90 has extra logic to reset the count after reaching decimal 9 , not 15 . It's a decade counter.
The circuit of Fig. 7.14 shows a complete three digit counter. This uses three 74LS90 decade counters. This can be buitt on one breadboard, trying to be as neat as possible because it will be useful for the next demonstrations. Try to leave the second breadboard free for the additional components we will add.
You can see that the output from the first counter feeds the input of the second, which in tum feeds the input of the third. Connect the binary-coded decimal outputs of all three decade counters to the appropriate ABCD terminals of the Mini Lab digital display. There are lots of wires between the breadboard and the display module, so take care not to rush the assembly. Use either the 8038 clock (easier) or the 555 Timer via the TTL interface shown earlier.
Also note the extra capacitors which can

Fig. 7.15. A digital frequency meter.

be wired across the 5 V supplies for each chip. These reduce noise and prevent spurious signals from affecting operation. Apply 5 V and if all is well, the display will be counting from 000 to 999 . Adjust the clock frequency as required. Well done! Here are some interesting applications for this three digit decade counter module.

REACTION TIMER

This sophisticated circuit will test your reaction times and give a digital count of your performance. Fig. 7.15 shows the suggested circuit which uses the three-digit decade counter just constructed. Use a normally open (n.o.) switch across C1. The Logic Probe is used to monitor the output of KI which is connected to the reset inputs of all the counters.
When S3 is pressed and released, C1 charges through R1. After about five seconds the schmitt output goes low, which allows the counters to start counting up from zero. At this point, nothing is seen of the count because the BI (Blank Input) is grounded through the n.c. contacts of S1. When this switch is pushed and held open, the count in the 74LS90's is displayed on the Digital Display module. The count cannot change when the switch is held open as the LE (Latch Enable) is also connected to S3.

To play this game, press S3 and release. Wait for the Logic Probe to change from high to low. Then press S1 as fast as you can and hold down. The reading on the digital display is a measure of your reaction time. Vary the clock frequency until you get a count of over 100 for your best reaction. Now try to beat it! (Cheats may notice that the counter wraps around and starts again from 000 after reaching 999 . If you delay your response you seem to get very low times once the timer starts from 000 again. (So that's why / lost hands down! - A.W.) Have fun. If youngsters use this module, ensure that the switches are treated with a little respect.

DIGITAL FREQUENCY METER

By definition, frequency is the number of complete cycles which occur every second. So if we use our counter system to count the number of input pulses for precisely one second, we have a Digital Frequency Meter (D.F.M). The result will be a digital reading in Hertz.
The signals are allowed through to the counter by a "time gate" which is made by taking the LE pin low for a period of one second. The 4511 chips in the Digital display module count up during this time, and capture the reading.
The counter must be reset to 0 im mediately before the count is measured.

Fig. 7.16. A suggested digital frequency meter.

This is effected as follows. The 74LS90 can be reset to 0 using pins 2,3,6 and 7. Pins 6 and 7 are permanently connected in this circuit to $O V$ (logic 0) whilst 2,3 , and 7 are all joined to form a reset circuit. When these pins are taken high, the decade counter is reset to zero.

In Fig. 7.16 the time base for the counter is made from three 74LS14 Schmitt in. verters. iC4a forms an astable of about two seconds duration. IC4b inverts and buffers the clock whilst IC4c is fed via an RC network to delay the signal by about $40 \mu \mathrm{~S}$. The output of the second and third stage are fed to an OR gate IC5 to generate 40μ S.wide reset pulses. Fig. 7.16(b) shows the timing waveforms of this pulse generator circuit, for the benefit of advanced readers.

Note that the output from the second stage of the 74LS 14 is fed to the LE and B pins of Connector 1 , so amend the connection here after building the Reaction Timer. BI is used to suppress the displayed count which avoids confused readings. Now, use the 8038 square wave generator $(500 \mathrm{~Hz}$ range) and connect as shown, and tum on the 5 V and 12 V rails.

Hopefully, you will see the display turning on and off at about 1 Hz . The count value should be stable when the display is on the 4511 chips have latched the count to the display) as counting takes place when the display is blanked. Alter the 8038 frequency and see the reading alter. When we used a tantalum capacitor for C1, we managed to make the measured frequency to well within 10 per cent of its true value - the greater the oscillator error, the more inaccurate the cir cuit becomes.

As it stands, the circuit will measure fre quencies from 1 to 999 Hz . By changing the gate time, the range can be altered Changing C 1 to 1μ allows measurement to $9,990 \mathrm{~Hz}(9.99 \mathrm{kHz}) .0 \mu 1$ allows readings up to 99.9 kHz . Try this and use the 8038 ac cordingly. Utilise the decimal points by con necting the appropriate DP pin to OV. Try removing the BI input, so the Digital display becomes "transparent" - see how confusing the display becomes. Definitely award yourself a prize for getting this far!

LIGHT-FREQUENCY CONVERTER

Texas Instruments launched an interesting device in 1992: the TSL220 is a crys-tal-clear chip which combines a light-level detector with a pulse generator circuit. The
result is a signal the frequency of which is dependent upon incidental light levels, refer to Fig. 7.17. If connected to the above DFM instead of the 8038, a digital count will be observed which is related to ambient light. Applications: a photographer's light meter, a smoke detector, a range finder (detect reflected light from an object). Can you think of more? Write and tell us.

In discussing digital systems (starting with the simplest of logic gates) we have tried to demonstrate how a simple "black box" approach is all that you need to construct even quite advanced circuits. None of it would be possible without integrated circuit technol ogy, which allows for miniaturisation of logic

Fig. 7.17. Texas Instruments' light-to-frequency chip TSL220. For experimenters this could form the basis of many lightsensitive projects.
functions, essential in today's technological world.
In Part Nine, we will introduce the microprocessor - the ultimate logic system, but really nothing more than a large "general purpose" black box that performs logic routines according to a program. Over three parts of Teach $\cdot \mathrm{In}$ are devoted to this crucial application of microelectronics. The optional Micro Lab is specially designed to run alongside the Mini Lab and using it we will take you step-by-step through the world of computerised logic systems to support those undertaking studies in GCE "A" Level Electronics.

Next month: Part Eight considers communications - a general outlook on this vital application of electronics. We experiment with the fascinating world of fibre optics, and your Mini Lab bursts into song with the addition of the Radio Tuner. Join us!

GCSE QUESTION (see previous page)

ANSWERS

(a) (i) Input 1: Either Light Sensor or Push switch Input 2: Either Push switch or Light Sensor
(ii) Buzzer
(b) (i) Light sensor

Output
Doorbell Switch Output
0
1
0
0
0
1
1
(ii) An AND gate.
(c) The interface provides the current needed to drive the buzzer without overloading the output of the AND gate.

GAME PRICES

Everyone and their dog has now had something to say on the matter of video games, and the battle between Nintendo and Sega. The tabloid press has turned it into a circulation war.
Both Nintendo and Sega have played a clever game. They sell their console hardware cheap (around a third the price of a PC or CD-I player) and charge absurdly high prices for the software. Casual customers do not look at the software, price before they buy the hardware.
Neither company shows the slightest interest in communicating with the technical press; I have never received a press release from either. There is precious little technology to report, except the bare fact that both companies can charge high prices because they release their software on memory cartridges, which cannot be easily copied, instead of floppy discs or tapes, which can.
All this talk about the Office of Fair Trading investigating the pricing rings hollow, because all the companies are doing is putting Lenny Bruce's old philosophy into practice. "If they give, l'll grab".

PHOTOSENSITIVE

Most papers are now headlining the health scare over epilepsy. But the facts have been garbled. Here is a run down.

Of course children will turn nasty if their parents nag them to eat dinner just as they are notching up a record score.
The issue of epilepsy is old hat, too. We have been through this many times in the past, with disco strobe lights, faulty TV sets and fast-cut art movie sequences, for instance in pop videos. They have already had a game scare in the USA.
One in two hundred people suffer from epilepsy, but of these only 3 to 5 per cent are "photosensitive", that is to say their fits are triggered by flashing lights. Photosensitive epilepsy is most common below the age of 20 and females are more at risk than males. So although 0.3 million people suffer from epilepsy in the UK, only around 15,000 , mostly children, are photosensitive.

Fits can be triggered in photosensitive epileptics by any light which flashes at a trigger frequency. This varies from individual to individual but is usually around 18 Hz .

Remember that the human brain naturally produces low level electrical signals of varying frequency. When awake and active, there are Beta waves at between $13-30 \mathrm{~Hz}$. When relaxed but alert and creative, the frequency drops to the Alpha range $(8-12 \mathrm{~Hz})$. Theta waves ($4-7 \mathrm{~Hz}$) are associated with flashes of inspiration and Delta waves ($1-3 \mathrm{~Hz}$) come with deep sleep.

The flashes caused by driving down a sunlit road, with trees by the side, can hit the trigger frequency for epilepsy. So can flashing lights at a disco. Some firms sell visor gadgets which deliberately flash lights into the wearer's eyes to alter consciousness. The flash rates include the risk frequencies of around 18 Hz .
Television screens can trigger a photosensitive fit, too. Confusion arises because there are several ways this can happen.
The brain needs to get a strong trigger. This happens when someone, whether service engineer or game-player, gets close to the screen and the retina of each eye gets a full dose of flash energy. The quick remedy is to cover one eye to halve the dose.

TV FLICKER

Normal TV viewing puts the flash frequency above the danger trigger, because from a distance the two sets of interlaced lines which scan the picture blend into a 50 Hz flicker. Going too close to the screen reveals the individual interlace scans, which are flickering at 25 Hz , close to the trigger. And people who play video games peer close into the screen.
There is less risk when games are played on a personal computer, because the picture refresh rate used to be 60 Hz and is now rising to 70,72 or even 74 Hz . Also the image is not interlaced, it is made up from 480 horizontal rows or lines of 640 pixels each (for VGA, or Video Graphics Adaptor resolution), 600/800 for Super VGA or 768/1024 for Extended VGA. Also the screen phosphors may have a longer decay time, which smoothes the flicker. There is also less risk from an LCD screen because it is not bright and is too small to overdose the retina.
But Nintendo and Sega games hardware connects to a domestic TV set, and players sit cclose for hours on end, peering at the screen. There is more risk in Europe with $25 / 50 \mathrm{~Hz}$ flicker than in the USA and Japan with $30 / 60 \mathrm{~Hz}$. There is no risk from the new 100 Hz flicker-free TV sets, e.g. from Philips, but they are expensive.
Whatever the screen type, there may be a quite separate risk if the game itself generates flashes, for instance when the sprites and targets on screen flash.

It can be argued that it is better for parents to find out that their children are epileptic, in the safety of their own home, rather than out at a disco or games arcade. The British Epilepsy Association has a help line (0345089 599) with all calls charged at local rate. It has kept a cool head on the current scare
and produced an information leaflet on photosensitive epilepsy. Dealers might like to get a few copies to pass on to worried customers.

The Association says there is "dire need for more information". Here I am reminded of something which a video engineer said to me when we were discussing TV flicker. Try watching TV upside down. I did. If you are close and there is bright content, the picture flickers appallingly.
Why should this be?

INVERTED VIEWING

When people who live in the USA or Canada come to Europe, they immediately complain about the flicker of our TV system. (Japanese people notice it too, but are usually too polite to complain). Americans have grown up with a 60 Hz TV picture display rate and are offended by the 50 Hz rate in Europe.
Europeans who have grown up with 50 Hz , have grown not to notice the flicker.

But we have grown used to watching a TV image which is scanned from top to bottom, and the brain is thrown into confusion when confronted with an image that is scanned from bottom to top. And this is what you will see if you look at a TV upside down. It is comparable to the way dry land seems to pitch and roll after a rough sea journey, or walking onto a stationary escalator jolts and jars because the brain expects it to be moving.
Some years ago the BBC was testing loudspeakers and played a listening panel music with some frequencies sucked out. Once the panel had got used to the sucked out version, full-range music sounded wrong.
So be warned. If you are a photosensitive epileptic, do not be tempted to play Nintendo or Sega video games while standing on your head.

BRAIN DAMAGE

On a similarly light note, I loved the way one of the tabloids recently turned things round and used a video game analogy to explain other health matters.
"The brain is as fragile as a giant Nintendo computer game" explained the Daily Star. "If you bash it or knock it on the ground the wires of a Nintendo will come out and it stops working. If you bash your brain about you go into a coma".
"The brain then needs time to be repaired" continues the explanation. "New 'wires' need to grow".
This left me wondering how many people who had bashed their Nintendos around were waiting hopefully for them to repair themselves.

Teach-In Project

MINI

 LAB
Alan Winstanley \& Keith Dye b.Eng(Tech)AMIEE

The Everyday with Practical Electronics Mini Lab has been created to accompany Teach•In '93, and enables the reader to assemble demonstration circuits by following the clear instructions and diagrams contained in the main text, with every chance of it working first time.

THE "Display" module marked on your Mini Lab p.c.b. contains three BCD-to-decimal decoder drivers. These will read a 4 -bit binary number, convert it into "English" (decimal) and then display it directly on a sevensegment l.e.d. display.
The circuit diagram is given In Fig. 1. This may look complex, but it is only the same basic mod. ule replicated three times. IC1 to IC3 are three 74 HCT 4511 BCD decoder driver chips. A four bit number is presented to the bi-nary-coded decimal inputs $A B C D$ of each chip, where A is the least significant bit. (Refer to the tutorial for a further explanation).

Each chip decodes this into a decimal format which is then directly shown on a seven-segment display. As explained in this month's tutorial, it's not possible for the chips to display the decimal equivalent of a binary number greater than 1001 (decimal 9 or 9_{10}) though it will count up to 1111 (decimal 15). Any "illegal states" result in a blank display.

DISPLAYS

Three common-cathode displays are used, and the 4511 chip simply drives the segments A-G as needed to form a decimal number. Each segment of the display requires a current-limiting resistor just like any other l.e.d., and rather than use 24 individual resistors, we specified three dual-in-line 220 ohm thick. film resistor packages instead. Additionally, the decimal points in the seven segment displays are driven by extemal pnp transistors TR1 to TR3 which act like transistor buffers, (The 4511 cannot drive a decimal point itself).

We brought all the connections out to two

 ten-way single-in-line socket strips. Connector l carries the BCD inputs for Digital Display Mo. 1 and all three decimal points whilst Connector 2 carries the BCD inputs for both Display No. 2 and No. 3. Further input features are available as clearly marked on the

Fig. 1. Complete circuit diagram of the Display module.
silk-screen print, which makes your Digital Display a little more versatile.
The system operates from the 5 V rail provided by the Mini Lab power supply. Whenever all three digits are lit, expect the 5 V heatsink in the p.s.u. to become warm or hot. This is perfectly safe and there is no need to worry.

CONSTRUCTION

The silk screen printing and solder-resist coating of the Mini Lab p.c.b. should ensure that this module can be assembled with the minimum of disappointment. However, a fine.tipped low-power (15 W say) soldering iron is a must. Follow the diagram
in Fig． 2 carefully．This is printed off directly from the CAD system which we used to design the p．c．b．artwork，and should be followed closely．It is essential that only the specified parts are used，to guarantee com－ patibility with the board．
Keep the 74HCT4511 chips in their anti－ static packaging until it is time to insert them．Start by soldering in the solid tinned copper－wire jump leads．Note the conned－ ion over into the power supply section． Follow with the s．i．l．sockets－hold them down with sticky tape if needed－and the di．i．l．sockets for the three integrated cir－ clits．
Add the discrete components，noting the polarity of the transistors and tantalum capacitor．Then solder in the digital dis－ plays（you could use further single－in－line sockets instead here，if you are worried about soldering them－six 5 －way strips will be needed）．Finally，take anti－static precau－

MINI LAB COMPONENTS

Resistors

R1 to R3 220×8 dual in line resistor module．Represents 24 resistors．
R4 to R6 1 k （3 off）
R7 to R9 470 （3 off）
R10 to
R12 47 k （3 off）
All $1 / 2 \mathrm{~W} \pm 5 \%$ carbon film except R1 to R3．

Capacitors
CI $\quad 10 \mu$ tantalum 35 V
C2 100 n polyester
Semiconductors
IC 1 to IC 3 74 HCT 4511 BCD to seven－segment decoder／driver（3 off）
D1 to D3 7 －segment $0 \cdot 5$ in com－ mon cathode display
TR1 to
TR
ZTX502 pop transistor

Miscellaneous

16 －pin dill．socket（ 3 off）：s．i．I．turned pin sockets， 2×10 ；solder，tinned cop－ per wire，etc．

Price

ET
Approx

trons as described in Part Six and swiftly locate the three decoder chips into their respective sockets，observing their orient－ dion as always．

TESTING

After assembly，closely inspect your soldering，looking especially for solder bridges between adjacent solder pads，and dry or incomplete joints．Also check for any missing links．Then power up the module by switching on the 5 V rail．The digital display may be showing a random number or nothing at all．

Connect the terminal LT（Lamp Test）to OV（＝Logic 0 ）and all seven segments should light．Connect the DP1 to DP3 （Decimal Point）pins to $O V$ to enable the appropriate decimal point l．e．d．A four bit number presented on the $A B C D$ in－ puts of each digit，should result in a decimal number being displayed，refer to the tutorial．
In use－the BI（Blank Input）pin is useful if you wish to blank the display for any reason，although counting continues in－ ternally．Shunt this pin to logic 0 to blank the display，and then just disconnect BI or send it to logic 1 to display the current counting operation．The seven－segment display will change as quickly as the $B C D$ input code does－so some flickering will be evident when counting rapidly．Use this pin also if you are not using the Display module and find the digits distracting．A OV terminal is nearby in Connector 1. Note that LT is the only input that takes precedence over BI ．

A further pin，LE（Latch Enable）must be sent to Logic 0 if you are to dis－ play the current count．In this mode，the ＂transparent＂latch decodes the input and displays it immediately．A logic 1 （or floating connection）on BI will freeze the display on the current count，although counting continues internally．

Use the LE terminal to＂sample＂and ＂freeze＂the display at a particular inter－ val，rather then let it free－run．The 8038 Signal Generator provides a suitable 5 V square wave clock which is useful for sam－ pling the display in this manner．Just try everything，and you will soon see how the module operates．For further information， we recommend ordering a copy of Na－ tonal Semiconductor＇s Data Sheet describ－ ing the（MM）74HC4511．This shows the decoder＇s truth table in detail．

Next month：The Mini Lab is finally completed with the addition of an a．m．／m．w．radio．It receives Radio 1 clearly as well as local stations，not to mention a Swedish soap which we＇ve listened to for the past six months，and we still don＇t understand a word！Tak Sal Mycket！

Connections for TR 1 to TR3．

Fig．2．Mini Lab component layout for the Display module．

DISP1

○○（〇〇（〇〇
○○○○○○○○
（0） lin
POWER SUPPLY
©

©

O

R \quad AI
－ఠఠఠఠఠఠఠ ○○○○○○○○ OCD

Techniques ACTUALLY DOING पTT: by Robert Penfold
 which run horizontally, vertically, or at any

sTRIPBOARD is a form of general purpose printed circuit board that has been popular as the basis of electronic projects for what must be about 25 years. It is often sold under the proprietary name "Veroboard", and is probably better known by this name.
A normal (custom) printed circuit board (p.c.b.) is only suitable for one particular project, but stripboard can accommodate virtually any circuit. It is most commonly used for small to medium size projects, but it can be used successfully for quite large projects.

STRAIGHT AND NARROW

Like most really good ideas, stripboard is basically very simple. It consists of a piece of thin board made from an insulating material which is drilled with a matrix of small holes.
The only stripboards that are readily available these days have the holes on a 0.1 inch (2.54 millimetre) matrix. This matches the pin spacing of d.i.l. integrated circuits and many other components. A few components have pins which do not match a 0.1 inch matrix, and the inability to accept such components is one of the few major limitation of stripboard.

Narrow copper strips run along rows of holes on one side of the board. Fig. 1 shows this general scheme of things. Stripboard is used in standard printed circuit board fashion. The components are fitted on the plain (non-copper) side of the board with their leadout wires or pins threaded through the appropriate holes. The pins or leads are then soldered to the copper strips on the underside of the board. The copper strips carry the component interconnections.
A custom printed circuit has tracks
angle in between. There are usually a number of tracks which intricately zig-zag their way around the board. Obviously this sort of thing is not possible with stripboard, which is limited to simple horizontal tracks running across the board. The board layout designer therefore has to accept some compromises.
One of these is that the component layout tends to be less neat than that of an equivalent custom printed circuit design. With the latter it is normal to have standard lead spacing for resistors, capacitors, diodes, etc. Also, the components normally run "north - south", with perhaps one or two components running "east west".
These are luxuries which are not practcal with stripboard layouts. Axial lead components are generally used with a variety of lead spacings, and in order to keep the layout reasonably compact it is often necessary to have a few components at odd angles.

LINKS

Single-sided custom printed circuit boards often have a few link wires, but with stripboard layouts there is often a substantial number of links. These effectively take the place of the vertical and angled tracks on a custom p.c.b.
This may all seem to be of only academic importance, but there are practical consequences. A custom printed circuit board has one hole per leadout wire or pin. A stripboard has hundreds of unused holes. In fact the unused holes vastly outnumber the holes that are utilized.
This factor, together with the points mentioned previously, mean that great care has to be taken when building a
stripboard project, as errors are relatively easy to make. You need to ensure that every component is fitted in exactly the right place.

IDENTIFICATION

Stripboard component layouts in books and magazines are often marked with letters to identify the rows of copper strips, and numbers to identify the vertical rows of holes (Fig.2). Many constructors find it easier to quickly navigate their way around the board if it is marked in the same fashion using a fibre-tipped pen. A pen having a spirit based ink is needed for this. Water based inks will not mark the board very well in the first place, and will soon rub off.

Rather than adding a full set of numbers and letters, I usually just settle for marking every tenth column of holes, and every fifth row of copper strips. This enables any hole to be located quite quickly and reliably, and avoids any intricate labelling of the board.
The component-side view of the board normally includes a corner marker, and a matching marker on the copper side view makes the relative orientations of the two views ${ }^{3}$ perfectly clear. The identification numbers and letters might also be included on the underside view, particularly with large boards.

BOARD BUILDING

When building a stripboard the first task is to cut out a board of the right size. Occasionally a project may use a standard size board, but in most cases a larger board must be trimmed down to the required size. I find that a full size hacksaw is the best tool to use for this job. Cut along rows of holes using a minimum amount of pressure.
Modern stripboard seems to be quite thin and brittle, so a "hammer and tongs" approach will almost certainly produce an end result that is only suitable for lots of very small projects! The cut edges of the board will probably be quite rough, but they are easily filed to a smooth finish using a small flat file.

Next any necessary breaks in the copper strips are made. Most stripboard projects require at least a few breaks in the strips, and these are represented in stripboard diagrams in the manner shown in Fig.3. The point of using breaks is that they enable each copper strip to carry several

Fig. 1. Stripboard is basically very simple, but is extremely effective.

Fig. 2. Stripboard top views are often marked with identification numbers/letters for the columns and rows of holes.
interconnections, with each section of strip carrying a different set of connections.
A special tool (a spot face cutter) for making the breaks in strips is readily available, but it is by no means essential to use this. A hand-held twist drill of about 5 millimetres in diameter seems to do the job quite well. Either way, be sure to cut through the full width of the track. On the other hand, do not get carried away and cut deeply into the board. This could seriously weaken it, especially if there are a lot of breaks in the copper strips.
The board mounting holes should be drilled next. Again, go gently when drilling these holes, using no more pressure than is really necessary. Holes of 3.3 millimetres in diameter will accept 6BA or metric M3 mounting bolts. I could not recommend most types of plastic standoff for use with stripboard, as they rarely hold the board securely in place. Mounting bolts plus spacers seem to give much more reliable results.

COMPONENT FITTING

The board is then ready for the components and any link wires to be fitted. I generally start by putting in the integrated circuit holders, being very care-
from resistor leadouts. It is worth keeping some lead trimmings for this purpose, but you will also need a small spool of 22 or 24 s.w.g. wire for the longer link-wires.
One way of adding the link wires is to preshape each wire using pliers, fit it in place, trim the ends so that about two millimetres of wire protrudes on the underside of the board, and then solder both ends of the wire to the copper strips. An alternative is to first fit one end of the wire and solder it in position. Then the other end is threaded through the appropriate hole, and the wire is then pulled tight using a pair of pliers. Pull the wire hard enough to straighten it out properly, but not so hard that it is seriously weakened or even snapped. The free end of the wire is then trimmed to length and soldered in place.
Whatever method you use, it is important that the link wires should run straight from one hole to the other. If they are allowed to meander from one hole to the other there is a danger of short circuits occurring. With long link wires you might like to play safe and fit them with pieces of p.v.c. insulating sleeving.

Be careful not to miss out any of the link wires, and be especially careful with boards that have large numbers of links. Missing link wires and breaks in the cop-
will be clearly visible, but sometimes the problem is a very narrow trail of solder which is very difficult to see. In fact it might be hidden under some excess flux, leaving the constructor totally unaware of its presence.
If a stripboard project fails to work I always start by checking for accidental short circuits between the copper strips. If a visual search of the board is to be made, it is essential to clean the board first, to remove any excess flux. Special cleaning fluids and aerosols for this purpose are available from some of the larger component retailers.
It is also essential to use a fairly powerful magnifying glass, even if you have good short-distance eyesight. In fact something like an $8 \times$ eye-lupe (as sold by some camera shops) is the best tool for the job. Pay particular attention to areas of the board where there are large numbers of joints, and to the ends of the copper tracks.

ONE HUNDRED PER CENT

I have never found a visual inspection to be a totally reliable method. Checks using a continuity tester are 100 per cent reliable. and will always reveal the presence of a solder trail, however well hidden it might be. Once you know that there is a short

Fig. 3. The normal method of representation in underside views.

Stripboard (or Veroboard) tracks can be cut using the special tool available or a small (7 mm or 8 mm) hand held drill bit.
ful to get these in the right positions. These then act as guides which make it easier to fit the other components in the right places. It is generally easier if, as far as possible, components are placed relative to other components, rather than by their absolute positions.
For example, it might be easier to work on the basis of a resistor being two holes to the right of an existing component on the board, rather than bothering about its position in terms of coordinates. There is a slight drawback to this method in that a mistake in the positioning of one component can lead to a number of others being offset from their correct positions. Therefore, it is advisable to periodically double-check the absolute positioning. Probably the most important thing is to work your way methodically across the board, rather than fitting the components in a random fashion.

LINK WIRES

The link wires can be made from 22 or 24 s.w.g. tinned copper wire. I find that the best wire to use is actually trimmings
per strips are common causes of failed stripboard projects.
Connections to off-board components should always be made via solder pins. Connecting these leads direct to the board can easily result in copper strips becoming torn away from the board, which will usually result in them breaking before too long. Normal $0 \cdot 1$ inch matrix stripboard takes one millimetre diameter pins.

STRIP-SEARCH

The main cause of problems with stripboard construction is accidental short circuits between adjacent copper strips. The distance between strips is very small, and is actually well under one millimetre. If you tried to deliberately solder across such a gap it would probably prove to be extremely difficult. Accidentally bridging the gap is another matter though, and this inevitably occurs from time to time.
Often the offending solder
circuit between two strips it can usually be found quite quickly.
If you cannot find the cause of the short circuit, ty carefully scoring between the two tracks using a modelling knife. If this is done a few times it should clear away any small pieces of solder, or make any larger pieces more obvious.
Small pieces of solder are easily cut away or removed with the hot bit of a soldering iron. With large blobs of solder across two tracks it is advisable to remove all the offending solder using desoldering equipment, and to then resolder the joint or joints.

The right hand joint is a good one, with the solder covering the wire and track nicely. The joint on the left looks suspect.

VIDEOS ON ELECTRONICS

Everyday with Practical Electronics is pleased to announce the availability of a range of videos designed to provide instruction on electronics theory. Each video gives a sound introduction and grounding in a specialised area of the subject. The tapes make learning both easier and more enjoyable than pure textbook or magazine study. They should prove particularly useful in schools, colleges, training departments and electronics clubs as well as to general hobbyists and those following distance learning courses etc.

VT201 to VT206 is a basic electronics course and is designed to be used as a complete series, if required.
VT201 54 minutes. Part one; D.C. Circuits. This video is an absolute must for the beginner, Series circuits, parallel circuits, Ohms law, how to use the digital multimeter and much more.

Order Code VT201
VT202 62 minutes. Part two; A.C. Circuits. This is your next step in understanding the basics of electronics. You will learn about how coils, transformers, capacitors, etc are used in common circuits.

Order Code VT202
VT203 57 minutes. Part three; Semiconductors. Gives you an exciting look into the world of semiconductors. With basic semiconductor theory. Plus 15 different semiconductor devices explained.

Order Code VT203
VT204 56 minutes. Part four; Power Supplies. Guides you step by step through different sections of a power supply. Order Code VT204
VT205 57 minutes. Part five; Amplifiers. Shows you how amplifiers work as you have never seen them before. Class A, class B, class C, op.amps. etc.

Order Code VT205
VT206 56 minutes. Part six; Oscillators. Oscillators are found in both linear and digital circuits. Gives a good basic background in oscillator circuits.

Order Code VT206
By the time you have completed VT206 you have completed the basic electronics course and should have a good understanding of the operation of basic circuit elements.
Each video uses a mixture of animated current flow in circuits plus text, plus cartoon instruction etc., and a very full commentary to get the points across. The tapes are imported by us and originate from VCR Educational Products Co, an American supplier.

Now for the new digital series of six videos. This series is designed to provide a good grounding in computer technology.
VT301 56 minutes. Digital One begins with the basics as you learn about seven of the most common gates which are used in almost every digital circuit, plus Binary notation.

Order Code VT301
VT302 55 minutes. Digital Two will further enhance your knowledge of digital basics. You will learn about Octal and Hexadecimal notation groups, flip-flops, counters, etc.

Order Code VT302
VT303 56 minutes. Digital Three is your next step in obtaining a solid understanding of the basic circuits found in todays digital design. Gets into multiplexers, registers, display devices, etc.

Order Code VT303
VT304 57 minutes. Digital Four shows you how the computer is able to communicate with the real world. You will leam about digital to analogue and analogue to digital converter circuits.

Order Code VT304
VT305 56 minutes. Digital Five introduces you to the technology used in many of todays memory devices. You will learn all about ROM devices and then proceed into PROM, EPROM, EEPROM, SRAM, DRAM, and MBM devices.

Order Code VT305
VT306 56 minutes. Digital Six gives you a thorough understanding in the basics of the central processing unit and the input/output circuits used to make the system work.

Order Code VT306
By now you should have a good understanding of computer technology and what makes computers work. This series is also invaluable to the computer technician to understand the basics and thus aid troubleshooting.

ORDERING

To order see our Direct Book Service "Ordering Details" - the postage for tapes is the same as for our range of books and you can order tapes and books at the same time and pay only one lot of postage. Each video costs $£ 29.95$ inc. VAT. If ordering any six together we will give you an extra video FREE, just indicate on your order which extra one you would like.

SPECIALEVERYDAY ELECTTRONICSEOOKS

ELECTRONICS TEACH-IN 88/89
NTRODUCING MICROPROCESSORS
Mike Tooley BA (published by Everyday Elec tronics)
A complete course that can lead successful readers to the Microprocessors $(726 / 303)$ Centificate in Inttoductory hing you need to know including full details on register ing for assessment, etc
Sections cover Microcomputer Systems, MIcro-proces sors, Memories, Input/Output, Interfacing and Programming. There are various practical assignments and eight chlps.

An excellent introduction to the subject even for those 80 pages (A4 size) Drder code Tligibib9 \quad E2.45

ELECTRONIC PROJECTS BOOK 1
Published by Everydey Electronics in association with Magenta Electronics.
Contains twenty of the best projects from previous issues o EE each backed with a kit of components. The projects are: Seashell Sea Synthesiser, EE Treasure Hunter, Mini Strobe Digital Capacitance Meter, Three Channel Sound to Light. BBC 16 K sideways Ram, Simple Shor Wave Radio, Insula tion Tester, Stepper Motor interface, Eprom Eraser, 200MH Digital Frequency Meter, Infra Red Alarm EE Equalise

Ioniser, Bat Detector, Acoustic Probe. Mainstester and Fuse Finder, Light Rider - (Lapel Badge, Disco Lights, Chaser Light), Musical Doorbell, Function Generator, Tilt Alarm IOW Audio Amplifie, EE Buccaneer Induction Balance Meta! Detector, BBC Midl Interface, Variable Bench Powe 128 pages (A4 size) Order code Eprit

ELECTRONICS TEACH-IN No. 3 - EXPLORING ELEC TRONICS (published by Everyday Electronics) Owen Bishop
Another EE value for money publication aimed at students of electronics. The course is designed to explain the workings of electronic components and circuits by involving the reade in experimenting with them. The book does not contain masses of theory or formulae but straightforward explanaExploring Elircuits to build and experiment with.
Exploring Electronics contains more than 25 useful projects, assumes no previous knowledge of electronics and is split into 28 easily digestible sections.
88 pages (A4 size)
Order code T13
f2.45
ELECTRONICS TEACH-IN No. 4
NTRODUCING DIGITAL ELECTRONICS (published by Everyday Electronics)
Although this book is primarily a City \& Guilds Introductory
rion forms a very basic introduction to electronics in general itherefore provides an excellent introductory text for beginners and a course and reference book for GCSE students. Full details on registering for C\&G assessment, details of assessment centres, components required and information on the course in general are given.
The City $\&$ Guilds introduction to module 726/301 reads: A candidate who satisfactorily completes this module will integrated circuits and connect them together to form simple working circuits and logic units." This provides an excellent introduction to the book.
112 pages (A4 siza) Order coderla
f2.95
ELECTRONICS TEACH-IN No. 5 GUIDE
TO BUILDING ELECTRONIC PROJECT
Published by Everyday Eloctronics
Due to the demand from students, teachers and hobbyists we have put together a range of anicles from past issues of Everyday Electronics that will assist those involved with the construction of electronic projects
The book contains the complete Project Development for CSEE series
Contents: Features - First Steps in Project Building Building with Vero; Project Development for GCSE; Getting your Projects Working; Guide to Printed Circuit
Boards: Choosing and Using Test Equipment - The Boards: Choosing and Using Test Equipment - The
Multimeter, The Oscilloscope, P.S.U.s, Logic Probes, Multimeter, The Oscilloscope, P.S.U.s, Logic Probes,
Digital Frequency Meters, Signal Generators, etc; Data Digital Frequency Meters, Signal Generators, etc; Data ifying Components: Capacitors; Actually Doing It Understanding the Circuit Diagram, Component Codes, Mounting circuit boards and controls, Understanding Capacitors; Projects - Lie Detector; Personal Stereo Amplifier: Digltal Experimentsr's Unir, Quizmaster; Siren Effects Unit; UV Exposure Unit; Low-cost Capacitance Meter; Personal Radio.
88 pages (A4 size) Order code II5
£2.95
EVERDAY ELECTRONICS DATA BOOK
Mike Tooley BA
published by EE in association with PC
This book is
This book is an invaluable source of information of everyday relevance in the world of electronics. It con-
tains not only sections which deal with the essential theory of electronic circuits, but it also deals with a wid ange of practical electronic applications.
It is ideal for the hobbyist, student, technician an engineer. The information is presented in the form of a basic electronic reclpe book with numerous examples showing how theory can be put into practice using a range of commonly available "industry standard" com ponents and devices.
A must for everyone involved in electronics
256 pages Order corfeDAMA

DJRECT BOOK SERVICE

The books listed have been selected by Everyday with Practical Electronics editorial staff as being of special interest to everyone involved in electronics and computing. Thev are supplied by mail order direct to your door. Full ordering details are given on the last book page. For another selection of books see next month's issue

ELECTRONIC
 BOOK

Steve Money

The principles of operation of the various types of iest instrument are explained in simple terms with a minimum of mathematical analysis. The book covers analogue and digital meters, bridges. oscilloscopes, signal generators counters, timers and frequency measurement. The practi cal uses of the instruments are also examined.
Everything from Audio osctllators, through R, C \& L measurements (and a whole lot more) to Waveform Generators and testing Zeners. A truly comprehensive book for 206 pages student. technician and engineer.
Order coderictiog]
O8.96

AREFERENCE GUIDE TO BASIC ELECTRONICS TERMS
F. A. Wilson

The wonders of electronics multiply unceasingly and electronic devices are creeping relentlessly into all walks of
modern life. As with most pross language of its with most professions, ours too has a ing several thousands of terms. This book picks out and explains some of the more important fundamental terms (over 700), making the explanations as easy to und erstand as can be expected of a complicated subject and avoiding high-level mathematics
However, this is more than just a dictionary of elec-
tronics, it can in fact be considered as a tronics, it can in fact be considered as a whole range of basic electronics text books rolled into one. Through its system of references, each term is backed up by a list of
other relavant or more fundamental terms so that a chosen subject can be studied to any depth required that a chosen subject can
472 pages
torder corle BP286
£5.95
GETTING THE MOST FROM YOUR MULTIMETER R. A. Penfold

This book is primarily aimed at beginners and those of limited experience of electronics Chapter 1 covers the basics of analogue and digital multimeters, discussing the Chapter 2 various the limitations of the two types. In described, including methods of component checking are lors, capacitors and diodes. Circuit testing is covered in Chapter 3, with subjects such as voltage, current and continuity checks being discussed.
is assumed. Using these simple knowledge or experience estinum. Using these simple component and circuit esting techniques the reader should be able to confidently 96 pages IORCD

Order code BP239

MORE ADVANCED USES OF THE MULTIMETER R. A. Penfold

This book is primarily intended as a follow-up to BP239, (see above), and should also be of value to anyone who already understands the basics of voltage testing and simple component testlng. By using the techniques described in chapter 1 you can test and analyse the perfor(plus a very few inexpensive components in some cases) (plus a very few inexpensive components in some cases) Whise quick check methods are also covered. its limitations. The simple add-ons described in chapter 2 extended the capabilities of a multimeter to make it even more useful.

Oraer cone BP2 $\mathbf{E} 2.95$

THE ILLUSTRATED DICTIONARY OF

ELECTRONICS - 5 th EDITION
Rufus P. Turner and Stan Gibillisco
With more than 27,000 terms used in electronics today. this collection is THE most comprehensive dictionary available. Including all practical electronics and computer itselfil Tables and data on subiects midvances in the held projects and experiments are included Oither conversion tables include English/metric and metric/English con versions for units of energy and metric/English con versions or units of energy, power and volume, and
Fahrenheit/Celsius temperature conversion charts
Setting this edition apart from other electronic tionanies is its emphasis on illustration. Featuring dlc than complete definitions, this fourth edition includes over 450 drawings and diagrams. (An American book). $\mathbf{7 2 0}$ pages

ELECTRONICS-BUILD AND LEARN
 R. A. Penfold

The first chapter gives full constructional details of a cir cuit demonstrator unit that is used in subsequent chapters to introduce common electronic components - resistors capacitors, transiormers, diodes, transistors, thyristors, fets and op amps. Later chapters go on to describe how these components are built up into uselul circuits, oscillators multivibrators, bistables and logic circuits
experiments that you can carn out on thectical tests and experiments that you can carry out on the demonstrato understand the principles involved. You will soon be yble to go on to more complex circuits and tackle fautt finding 120 pages ither circuits you build.
ground reading for our book provides excellent back sing our Introducing Digital Electronics tronics. The subject is simply explained and well illustec and the book assumes only a very basic knowledge of electricity
330 pages

Order code NETO

£5.95

PRACTICAL ELECTRONICS CALCULATIONS
AND FORMULAE
F. A. Wilson. C.G.I.A. C.Eng., F.I.E.E., F.I.E.R.E F.B.I.M.

Bridges the gap between complicated technical theory and cut-and-tried" methods which may bring success in design but leave the experimenter unfulfilled. A strong practical bias - tedious and higher mathematics have been avoided where possible and many tables have been in cluded.
The book is divided into six basic sections: Units and Alsernating -current Circuits Networks and Theonems, Aliernating-current Circuits, Neiw 256 pages

Order conde BP53
£3.95

PRACTICAL DIGITAL ELECTRONICS

HANDBOOK
Mike Tooley (Published in association with
Everyday Electronics)
The vast majority of modern electronic systems rely heavily on the application of digital electronics, and the Practical Digital Electronics Handbook aims to provide readers with a practically based introduction to this subject. The book will prove invaluable to anyone involved with the design, manufacture or servicing of digital clicultry, as well as to those wishing to update their knowledge of modern dightal devices and techbasic logic gates; monostable and bistable devices: timers: microprocessors; memories: input and devices; devices; interfaces; microprocessor buses Appendix Data. Appendix 2: Dlgital test gear projects; tools and est equipment; regulated bench power supply: logic probe; logic pulser; versatile pulse generator digital IC tester, current tracer, audio logic tracer, RS-232C breakout box; versatile digital counter/frequency meter. Appendix 3: The oscllloscope. Appendix 4: Suggested 208 pages 208 pages Order code peryo
£6.95

COMPUTINE

HOW TO CHOOSE A SMALL

BUSINESS COMPUTER SYSTEM

This book
This book is for anyone intending to buy an IBM compatible computer system, whether it is their first system or tion and systems programs, and how to actually make your choice as well as sections on the law, ergonomics and a lossary or common terms. The text contains many useful tips and some warnings (which could save much effort and expense). After having read this book you should have a better idea of what is sultable for your needs, how to obtain it and how to ensure that the system is operated with the minlmum of difficulty.
144 pages \quad Orcer codeBPEZ3 4.95
HOW TO EXPAND, MODERNISE AND REPAIR PCS AND COMPATIBLES

R. A. Penfold

Not only are PC and compatible computers very expandable, but before long most users actually wish to take PC systems. Some aspects of PC upgrading can be their confusing, but this book provides advice and guidance on the popular forms of internal PC expansion, and should help to make things reasonably straightorward and painless. Little knowledge of computing is assumed. The onily assumption is that you can operate, a standard PC of some kind (PC, PC XT, PC AT, or a 80386 based PC).
The subjects covered include: PC overview; Memory upgrades; Adding a hard disk drive; Adding a floppy disk drive; Display adaptors and monitors; Fitting maths co-processor; Keyboards; Ports; Mice and digitisers: Maintenance (including preventative maintenance) and Repairs, and the increasingly popular subject of d.i.y. PCs. 156 pages forder cotletine\%1 4.95

The PRE-BASIC BOOK

F. A. Wilson. C.G.I

Another book on BASIC but with a difference. This one does not skip through the whole of the subject and thereby leave many would-be prointroducing the technique by looking in depth at the most frequently used and more easily understood computer instructions. For all new and potential micro users.

| users. |
| :--- | :--- |
| 192 pages \quad Orter corle BP146 |

AN INTRODUCTION TO 6502 MACHINE CODE

 R. A. \& J. W. PenfoldNo previous knowledge of microprocessors or machine code is assumed. Topics covered are assembly language and assemblers, the register se and memory binary and hexadecimal numbering systems, addressing modes and the instruction set and also mixing machine code with BASIC. Some simple programming examples are given fo 6502 -based home computers like the VIC-20 ORIC-1/Atmos, Electron. BBC and atso the Commodore 64

112 pages Crter codeBP1a7 f2.95

AN INTRODUCTION TO PROGRAMMING THE
BBC MODELB MICRO
R. A \& J. W. Penfold

Written for readers wanting to learn more about programming and how to make best use of the incredibly of the BBC Micro are covered, the omissions being where litile could usefully be added to the information where little could usefully be added to the informatio 144 pages \quad Order coce BY139 1.95 SERVICING PERSONAL COMPUTERS 3nd EDITION

Mike Tooley BA

The revised and enlarged second edition contains new chapter on the IBM PC. AT, TX and com patibles. It is essential for anyone concerned with the maintenance of personal computer equipment o peripherals, whether professional service technician student or enthusiast.
240 pages (Hard cover) Order codentis $£ 25$
A CONCISE USER'S GUIDE TO WINDOWS 3.1
N. Kantonis

If you are a PC user and want to get to grips with Microsoft's Windows 3.1, then this book will teach you how to do just that in the shortest and most effec
The book is written with the non-expert, busy per son in mind, and as such, it has an underlying struc sure based on "what you need to know first, appears first". However, the more experienced user cas start from any section, as the sections are self contained
The book explains: what hardware requirements you need in order to run Windows 3.1 successfully. and
how to install, customise and fine-tune the program nd how to optimise your system resources. How to manipulate Windows screens and how to run Win Graphical User Interface (GUI) envIronment. How to use the Windows triple Management system; Program Manager, File Manager and Print Manager 10 ad vantage. How to use the word processor accessory Write to type, edit, format, print and save focuments. How to use Palntbursh and its tools to draw and dit drawings, and how to set up, sort and search a Cardfile database and exploit its autodial feature. How o use the Windows Calendar to enter appoiniments. add special times and alarms. How to use the Tolly ter accessory to connect to remole systications setting lephon and prepare files for transfor. How 0 use the Notepad "Macro Recorder, PIF Editor and o use the 138 pages Ofercode Blays £4.95

A CONCISE USER'S GUIDE TO MS-DOS

N. Kantonis

I you-are a PC user and want to get the most out of your computer in terms of efficiency and producfivity, then you must learn the Intricacies of its MSDOS operating system. With this book you will learn to do just that in the shortest and most effective way
The book explains: The enhancements to be found in MS-DOS version 5, over previous versions of the operating system. How the DOS operating system is structured so that you can undersiand what happens when you first switch on your computer. How diere your hard disc for maximum efficiency. How to use the DOS Shell program (a menu-driven graphical interface) to perform various house-keeping operations on your disc. How to manage disc files, and how to use the MS-DOS Editor to fully configure your system by writing your own CONFIG.SYS and AUTOEXEC.BAT files. How to optimise your system by either increasing its conventional memory or increas ing its speed. How to write batch files to automate the operation of your system
A summary of all DOS commands, illustrated with examples, is given in the penultimate chapter, whlch turns it into a useful reference guide.
124 pages Order code BP3F3

CIRCUITS AND DESIGN

REMOTE CONTROL HANDBOOK

Owen Bishop
Remote control systems lend themselves to a modular approach. This makes it possible for a wide range of systems, from the simplest to the most complex, to be
built up from a number of relatively simple modules, The author has tried to ensure that. as far as possible, the clrcuit modules in this book are compatible with one another. They can be linked together in many different configurations to produce remote control systems tailored to switch a table lamp on and off. or to operate an industrial robot, this book should provide the circuit you require

Order code 3P240
£3.95

COIL DESIGN AND CONSTRUCTION MANUAL
B. B. Babsni

A complete book for the home constructor on "how to make" RF, IF, audlo and power coils, chokes and trans. formers. Practically every possible type is discussed and Alchough this book is now rather old, with the exception of Although this book is now rather old, with the exception of design since it was written.
96 pages Ordercode 160
£2.50

30 SOLDERLESS BREADBOARD PROJECTS BOOK 1
R. A. Penfold

Each project. which is designed to be built on a "Vero. bloc" breadboard, is presented In a similar fashion with a brief circuit description, circuit diagram, component layou diagram, components ist and notes on construction and used are common to several projects, hence with only used are common to several projects, hence with only a is possible to build in turn, every project shown. Recom mended by BICC. Vero 160 pages

Order cosle BP107
£2,95

BOOK $2-$
All projects use CMOS i.c.s. but the items on component identification etc., are not reoeated from Book 1. 160 pages

AUDIO IC CIRCUITS MANUAL

R. M. Marston
A. M. Marston
A vast range of audio and audio-associated i.c.s. are A vast range of audio and audio-associated i.c.s. are
resdily avaliable for use by amateur and professional resdily avaiable for use by amateur and protessional to the most popular and useful of these devices, with over 240 diagrams. It deals with i.c.s. such as low frequency linear amplifiers, dual pre-amplifiers, audio power amplifiers, charge coupled device delay lines, bar-graph display drivers, and power supply regulators and shows how to use these devices in circuits ranging from simple signal conditioners and filters to com plex graphic equalizers, stereo amplifier systems, and echo/reverb delay line systems eic.
168 pages
lorder code Net3
$\mathbf{£ 1 3 . 9 5}$

50 CIRCUITS USING GERMANIUM SILICON AND ZENER DIODES
R. N. Soar

Contains 50 interesting and useful circuits and applications, covering many different branches of electronics, using one of the most simple and inexpensive of components - the diode. Includes the use of germanium and silicon signal diodes, silicon rectifier diodes and Zener diodes, etc.

Orcler code BP36
$£ 1.95$

DESIGNING WITH LINEARICs

G, C. Loveday
A book that deals with the design of the vital area of nalog circuitry covering design with modern linear integrated clrcult devices. The first chapter introduces the eader to important design techniques, test strategies, layout, and protection and also includes a section on the use of a typical CAO rool. There sre separate chapters that cover in depth the use of op-amps, comparators and timers each with detailed design examples and reader exercises. A final chapter brings all the previous work together in a number of complete design problems with fully worked solutions. The text is essentamy non-math64 pages Orater code 6 my

TIMER/GENERATOR CIRCUITS MANUAL
 TIMER/GENER R. M. Marston

This manual is concerned mainly with waveform generator techniques and circuits. Waveform generators are used somewhere or other in most types of electronic equipment, and thus form one of the most widely used classes of circuit. They may be designed to produce outputs with sine, square, triangle, ramp, pulse, staircase, or a variety of other forms. The generstors may produce modulated or unmodulated outputs, and the outputs may be of single or multiple form.
Waveform generator circuits may be built using transistors, op-amps, standard digital JCs, or dedicated waveform or "function" generator ICs.
The manual is divided into eleven chapters, and presents over 300 practical circuits, diagrams and tables wave generators; Square wave generators; Pulse gener-
ator circuits: "Timer IC" generator circuits; Triangle and sawtooth generators: Multi-waveform generation Waveform synthesizer ICs; Special waveform generators; Phaselocked loop circuits; Miscellaneous " $555^{\prime \prime}$ circuits.
267 pa
267 pages Ordercode Net8
£13.95

OPTOELECTRONICS CIRCUITS MANUAL

A. M. Marston device user, specifically aimed at the practical design engineer, technician, and the experimenter, as well as the electronics student and amateur. It deals with the subject in an easy-to-read, down-to-earth, and non mathemstical yet comprehensive manner, explaining the basic principles and characterlstics of the best known devices, and presenting the reader with many practice applications and over 200 circuits. Most of the i.c.s. and other devices used are inexpensive and readily availabl types, with universally recognised type numbers
182 pages
Order cadeln Th
$£ 13.95$

POPULAR ELECTRONIC CIRCUITS - BOOK 1
POPULAR ELECTRONIC CIRCUITS - BOOK 2
R. A. Penfold

Each book provides a wide range of designs for electronic enthusiasts who are capable of producing working projects from just a circuit diagram without the aid of detailed construction information. Any special setting-up procedures are described.
BOOK 1160 pages Order code Byry
BOOK 2160 pages toratir code 3 Pg 8

CMOS CIRCUITS MANUAL

R. M. Marston

Written for the professional engineer, student or on thusiast. It describes the basic princlples and charac teristics of these devices and includes over 200 circuits All the circuits have been designed, bullt and fully evaluated by the suthor, all
187 pages Orcler codentiz

PROJECT CONSTRUCTION
 TEST EOUIPMENT CONSTRUCTION
 R. A. Penfold
 This book describes in detall how to construct some simple and inexpensive but extremely useful. pleces of test equipment. Stripboard layouts are provided for propriate, plus notes on construction and use The following designs are included:-
 AF Generator, Capacitance Meter. Test Bench Amplifiers AF Frequency Meter, Audio Millivoltmeter, Analogue Probe, High Resistance Voltmeter. CMOS Probe, Tran
 The designs are suitabl
 xperins more
 104 pages
 Order code BP248

AUDIO AND MUSIC

LOUDSPEAKERS FOR MUSICIANS

Vivian Capel
This book contains all that a working musician needs to know about loudspeakers; the different types, how the work, the most sultable for different instruments, fo cabaret work, and for vocals. It gives tips on constructing cabinets, wiring up, when and where to use wadding, and ensure they travel well, how to connect multi speake arrays and much more.
Ten practical enclos
ments are given in the designs with plans and comread that far you should be chapter, but by the time you've 164 pages \quad Order code 8P297

MAKEMONEY FROM HOME RECORDING
Clive Brooks
Now that you've spent a fortune on all that recording gear, MIDI and all, wouldn't it be nice to get some of it back? Well here's the book to show you how.
witl recoup the price of the making ideas, any one of which you recoup the price of the book many times over. Whethe you have a fully fledged recording studio at home, or just you'll be able to put the ideas in this book into practice and make money. 105 pages

Order code pcition
f 5.95

INTRODUCTION TO DIGITAL AUDIO

(Second Edition)
lan Sinclair
Digital recording methods have existed for many years and have become familiar to the professional recording engineer, but the compact disc (CD) was the first device to bring digital audio methods into the home. The next step is the appearance of digital audio tape (DAT) equipment
All this development has involved methods and circuits that are totally alien to the techniclan or keen The principles and previously worked with audio circuits. nothing to the traditional linear citcuits of owe little or are much more comprehensible to today's compust, and gineer than the older generation of audio engineers.
This book is intended to bridge the gap of understand ing for the technician and enthusiast. The principles and methods are explained, but the mathematical background and theory is avoided, other than to state the end product.

Orfer codepC10z $\mathbf{C 6 . 9 5}$
SYNTHESIZERS FOR MUSICIANS
R. A. Penfold

Modern synthesizers are extremely complex, but they mostly work on principles that are not too difficult to understand. If you want to go beyond using the factory presets or the random poking of buttons, this is the book or you
It covers the principles of modern synthesis - linear
arithmetic as used by Roland, phase distontion (Casio)

Yamaha's frequency modulation, and sampling $=$ and then describes how the instruments are adjusted to produce various types of sound - strings, brass, percusslon. etc. The theoretical side of synthesis is treated in an easy to understand way - the technical information being restricted to what you need to know to use your nstrument effectively. 168 pages $\mathbf{E 6 . 9 5}$ AUDIO
F. A. Wilson, C. G.I. A., C.Eng., F.I.E.E.; F.I.E.R.E. F.B.I.M.

Analysis of the sound wave and an explanation of acoustical quantities prepare the way, These are followed by a sludy of the mechanism of hearing and examination of the a subsequent chapter on microphones and loudspeakers then sets the scene for the main chapter on audio systems -amplifiers, oscillarors, disc and magnetic recording and $\begin{array}{ll}\text { eloctronic music. Orater code BPITY } \\ 320 \text { pages } & \text { E3.95 }\end{array}$

DATA

PRACTICAL ELECTRONIC DESIGN DATA

Owen Bishop
This book is a comprehensive ready-reference manual for electronics enthusiasts of all levels, be they hobbyists, students or professionals. A helpful major section covers devices. Foe each somponent. it lists the mosing surface-mounted available types, complete with details of their and readily characteristics, pin-outs and other essential information. A special feature of this section are the easily followed charts and tables which advise the reader on how to select the best type of component for any particular puspose.

Basic electronic units are defined, backed up by a com pendium of the most often required formulae, fully ex plained. There are flve more extensive sections devoted to circuit deslgn, covering analogue, digital, radio, dlsplay and power supply circuits. Over 150 practical circit dia grams cover a broad range of functions. The reader is showications. Many of ihese basic designs to a variety of by-step instructions for using most of the standude step by step instructions for using most of the standard type parators, filters, voltage converters and switched-mode power supply devices, as well as the principal loglc cir | cuits. |
| :--- |
| 328 pages Order codes |
| HTH |

INTERNATIONAL TRANSISTOR EQUIVALENTS GUIDE
A. Michaels

Helps the reader to find possible substitutes for a popular selection of European. American and Japanese Iransistors | Also shows material type, polarity, manufacturer and use. |
| :--- |
| 320 pages |
| |
| |

BEGINNER'S GUIDE TO BUILDING ELECTRONICS PROJECTS
R. A. Penfold

Shows the complete beginner how to tackle the practical side of electronics, so that he or she can confidently build the lectronic projects that are regularly featured in magazines and books. Also includes exsmples in the form of simple 112 pages

Order codeczi]
£1.95

RADIO/TV

SETTING UP AN AMATEUR RADIO STATION

I. D. Poole

The aim of this book is to give guidance on the decisions which have to be made when setting up any amateur radio or shor wave listening station. Often the experience which is needed is learned by one's mistakes, however, this can be expensive. To help overcome this, quidance is given on many aspects of setting up and running an efficient station. It then proceeds to the steps that need to be taken in gaining a full transmitting licence.
Sopics covered include: The equipment that is needed; Setting up the shack: Which aerials to use; Methods of An essential addition to ticence.
An essential addition to the library of all those taking 86 pages \quad Order code BiL_30 3.95 EXPERIMENTAL ANTENNA TOPICS H.C. Wright

Although nearly a century has passed since Marconi's first demonstration of radio communication, there is still research and experiment to be carried out in the field of antenna design and behaviour.
The aim of the experimenter will be to make a measurement or confirm a principle, and :his can be done with relatively fragile, short.life apparatus. Because of this, devices described in this book make liberal use of cardboard, cooking foil, plastic bottles, cat food tins, etc. worked with simple in general. cheap to obtain and easily worked with simple tools, encouraging the trial- and-error philosophy which leads to innovation and discovery.
supported by diagrams some formulae which can besely suppored by wist have also been included 72 pages

NEWNES SHORTWAVE LISTENING
HANDBOOK
Joe Pritchard G1 UOW
Part One covers the "science" side of the subject, going from a few simple electrical "first principles", through a briel treatment or radio transmission methods to simple receivers. The emphasis is on practical receiver designs and how to build and modity them, with several circuits in the book.
Part Two covers the use of sets, what can be heard, the various bands, propagation, identification of stations, sources of information, QSLing of stations and listening puter morse decoding and radio teletype decoding are also puter morse decoding and radio teletype decoding are also 224 pages

```
                                    Ordec corenNETG E15.95
```


POSTAGE

PLEASE NOTE OUR POSTAGE CHARGE IS THE SAME FOR 1 BOOK OR 100 BOOKS

MORE BOOKS NEXT MONTH

$$
\begin{gathered}
\text { DIRECT BOOK BERVICE } \\
\text { ORDERINGDETAlLs }
\end{gathered}
$$

Please state the title and order code clearly, print your name and address and add the required postage to the total order.
Add $£ 1$ to your total order for postage and packing (overseas readers add $£ 1.50$ for countries in Europe, or add $£ 3$ for all countries outside Europe, surface mail postage) and send a PO, cheque, international money order (£ sterling only) made payable to Direct Book Service or credit card details (including card expiry date), Visa or Mastercard (Access) - minimum credit card order is
$£ 5$ - quoting your name and address, the order code and quantities required to DIRECT BOOK SERVICE, 33 GRAVEL HILL, WIMBORNE, DORSET BH21 1RW (mail order only).
Although books are normally sent within seven days of receipt of your order, please allow a maximum of 28 days for delivery. Overseas readers allow extra time for surface mail post.
Please check price and availability (see latest issue of Everyday with Practical Electronics) before ordering from old lists.

BABANI BOOKS

We now supply all the books published by Bernard Banani (Publishing) Lid We have always supplied a selected list of Babani books and you will find many of them described on the previous pages or in next months issue of Everyday with Practical Electronics (the books with a BP prefix to the order code are Babani books).
Many readers have asked us to also supply various other Babani books, which have a reputation for value for money. Our customers tell us they appreciate our speedy service and low postage charge and they
would like to be able to purchase all the books from us and thus keep the postage charge to an absolute minimum ($£ 1$ for UK p\&p no matter how many books you buy). We are pleased to be able to respond; with the aid of Michael Babani (M.D.) we are now able to meet all your requirements for their books. If it's Babani and in print we can supply it. Babani presently list over 180 different technical titles those not described in detail on the previous Direct Book Service pages or in next months issue are listed below

Code					-	Cod	Tit	
208	Practical Stereo \& Cuadrophony Handbook	£0.75	BP145	25 Simple Tropical and MW Band A	£1.75	BP2	More Advanced Test Equlpr	
214	Audio Enthusiast 's Handbook	¢0. 85	BP148	Computer Terminology Explained	$E 1.95$		兂	
BP28	Resistor Selection Handboo	¢0.60	BP149	A Concise introduction to the Language			Programming in FORTRAN 77	E4.9
8P37	50 Projocis using Relays. SCRs and TRIACs	$\mathrm{E}^{2} .95$		of BBC Basic	¢1.95	$8 \mathrm{BP251}$	Computer Hobbyists Handbook	C5.
$8 P 39$	50 (FET) Field Effect Transistor Projects	E2.95	BP152	An introduction to Z80 Machine Code	¢2.75	8 P 258	Learning to Progr	
$8 \mathrm{BP44}$	IC 555 Projects	£2.95	BP153	An introduction to Programming the		BP259	A Concise Introduction to UNIX	
${ }^{8 P 48}$	Electronic Projects for Beginners	E1.95		Amstrad CPC 464 \& 664	50	BP260	A Concise Introduction to OS/2	
${ }^{8 P 49}$	Popular Electronic Projec	¢2.50	BP154	An Introduction to MSX BASIC	E2.50	BP261	A Concise Introduction to Lotus	
8 856	Electronic Security Devices	-0.0.P.	BP156	An Intuoduction to OL Machine Code	f2.50		(Revised Edition)	
BP58	50 Circuits Using 7400 Series IC's.	¢2.50	BP157	How to Write ZX Spectrum a Spectrum		BP262	A Cor	
BP63	Alternating Current Theory (Elemenis of			Games Progr			(Revised Edition)	
PP68	Electronics - Book 2)	${ }^{6} 3.50$	BP158	An Introduction to Programming the		8 P 263	A Concise introduc	
	Choosing and Using Your $\mathrm{HI} \cdot \mathrm{Fi}$			Imr			A	
${ }^{8 P 74}$	Electronic Music	0.0.P.		How to Write Amstrad CPC464			MS. ${ }^{\text {dos }}$	
BP78	Poricuppr Poiect			Programs	$\underline{2}$	BP2	An Introduction to Desktop Publishing	
BP	Practical Computer Experiments	${ }^{1} 1.75$	8 P 161	Into the QL Archiv			A Concise introductio	
BP86	An Introduction to BASIC Programming		BP171	Easy Add-on Projectis for Amstrad CPC 46		8 P 273	Practical Electronic Sensors	¢ 4.95
	Techniques	E1.		664.6128 and MSX Co	¢2.95	BP274	A Concise introduction to Su	. 95
	Audio Proje		P174	More Advanced Electronic Music Projects	E2.95	BP276	Shor Wave Superhat Receiver Construction	E2.95
8P94	Electronic Projecis for Cars and Boats	£1.95	8P175	How to Withe		BP279	A Concise Introduction to Exc	£3.95
BP95	Model Railway Projects	¢2.95		the Amstrad CPC 464. 664 and 6128	¢2.95	BP280	Getting the Most From Your PC's Hard Disc	£3.95
8P97	IC Projects for Beginners	F1.95	BP182	MIDI Projects	¢2.96	8 P 283		
$8 \mathrm{P99}$	Mini-matrix Board Project	r 2.50	BP187	A Practical Referènce Guide to Word		8 P 284	Programming in OuickBASIC	
8 8P106	Modern Op-amp Projects	${ }^{\text {f1. }} 1.95$		Processing on the Amstrad PCWB256		BP287	A Reierence Guide to Practical Electron	
$8 \mathrm{PP109}$	The Art of Programming the $1 \times 2 \times 81$	¢1.95		and PCW8512	£5.95		Term	
$8 \mathrm{BP114}$	The Aft of Programming the 16K ZX81	¢2. 50	8P190	More Advanced Electronic Security Proj	£2.95		A Concise introduction to Window	. 95
$8 \mathrm{BP}_{122}$	Audio Amplifier Construction	¢2.95	BP191	Simple Application of the Amstrad CPCs		BP291	A Concise introduction to	¢3.95
$8 \mathrm{BP125}$	25 Simple Amateur Band Aeri	¢1.95		Writer	£2.95	BP292	Public Address Loudspeaker Systems	¢3.95
$8 \mathrm{BP}^{126}$	BASIC \& PASCAL in Parallel	${ }^{51} .50$	8P192	More Advanced Power Suppl	£2.95	8 8P293	An Introduction to Radio Wave Propagation	
$8 \mathrm{BP128}$	20 Programs for the ZX Spectrum \& $16 \mathrm{~K} 2 \times 81$	f1.95	$8 \mathrm{PP193}$	LOGO tor Beginners	£2.95	$8 \mathrm{PP}^{294}$	A Concise Introdu	
${ }^{\text {BP129 }}$	An introduction to Programming the ORIC-1	¢1.95	8P196	BASIC \& LOGO in Parallel	¢2.95	BP298	A Concise introduction to the Mac System \&	
${ }_{8}^{8 P 132}$	25 Simple SW Broadcast Band Aerials	¢1.95	8 P 197	An Introduction to the Amstrad PC's	¢5.95			
$8 \mathrm{BP}_{13} 1$	An Introduction to Programming the Dragon 32		$\begin{aligned} & \text { BP198 } \\ & \text { 日P230 } \end{aligned}$	An Intuoduction to Antenna Theor A Concise Introduction to GEM	$\begin{aligned} & £ 2.95 \\ & £ 2.95 \end{aligned}$	BP302	A Concise Users Guide to Lotus 1-2.3 Release 3.1	
	25 Simple Indoor and Window Aerials	E1.75	BP243	B8C BASIC86 on the Amstrad PC's and IBM			Undersiandi	¢4.9
BP137	BASIC \& FORTRAN in Paralial	£1.95		Compatibles-Book 1: Lonquage	£3.95		A Concise Introduction to Quarid	
8P138	BASIC \& FORTH In Parallel	¢1.95	BP244	BBC BASIC86 on the Amstrad PC 's and IB		BP311	rs and Scanning	E4.95
BP143	An Introduction to Programming the Atari			Compatibles-Book 2: Graphics and Disk Files	£3.95	$8{ }^{8} 312$	An Introduction to Microwaves	¢3.95
BP144	Furner Practical Electronics Calcula	c1.9		Digltal Audio Projects	¢2.95	$8{ }^{8} 313$	A Concise in	. 95
	\& formulae			Musical Applications of the Atarists	¢ 2.95		A Concise introduction to Quatro	. 9

IF NO PRICE IS SHOWN THE BOOK IS OUT OF PRINT (O.O.P.)

SEE PREVIOUS PAGE FOR FULL ORDERING DETAILS

PCB SERVICE
Printed circuit boards for certain EPE constructional projects are available from the PCB Service, see list. These are fabricated in glass fibre, and are fully drilled and roller tinned. All prices include VAT and postage and packing. Add £1 per board for airmail outside of Europe. Remittances should be sent to The PCB Service, Everyday with Practical Electronics, 6 Church Street. Wimborne. Dorset BH21 1JH. Cheques should be crossed and made payable to Everyday with Practical Electronics (Payment in $£$ sterling only).
NOTE: While 95% of our boards are now held in stock and are dispatched within seven days of receipt of order, please allow a maximum of 28 days for delivery -overseas readers allow extra if ordered by surface mail.
Please check price and availability in the latest issue.
Boards can only be supplied on a payment with order basis.

Il al pobsom mis page reduced to $1 / 2$ PRICE

(Just send half the price shown, while stocks last) PCBS ON OPPOSITE PAGE PRICES AS SHOWN

PROJECT TiTLE		Order Code	Cost
Video Guard Alarm	FEB'87	556	$£ 3.80$
Computer Buffer/Interface	MAR'87	560	$£ 3.32$
Fridge Alarm	MAY'87	565	$£ 3.00$
Multi-Chan Remote Light Dim	JUNE'88		
Relay/Decoder		601	$£ 4.86$
\quad Power Supply		603	$£ 3.00$
Tea Tune Thermostat	AUG'88	609	$£ 3.00$
Time Switch		614	$£ 4.84$
Suntan'Timer		610	$£ 3.07$
Car Alarm		615	$£ 3.12$
Eprom Eraser	OCT'88	620	$£ 4.07$
Doorbell Delay	NOV'88	616	$£ 3.56$
Infra-Red Object Counter (Set)		$622 / 3 / 4$	$£ 9.28$
Continuity Tester	FEB'89	619	$£ 2.67$

PROJECT TITLE	Order Code	Cost
Sound-to-Light Interface MAR'89	637	¢6.24
Midi Pedal	639	¢7.00
Midi Merge	640	£3.00
Audio Lead Tester	641	£5.77
Light Sentinel: Main Board APR 89	632	¢9.20
4-Channel Auto-Fader Interface	642	f6.80
Electron A/D Interface MAY 89	645	¢4.84
Programmable Pocket Timer JULY'89	648	¢3.82
$\begin{array}{ll}\text { Electronic Spirit Level } & \text { AUG:89 }\end{array}$	649	¢3.85
Distance Recorder	651	f5.23
Xenon Beacon SEP'89	650	£4.13
Power Supplies: Fixed Voltage	654	¢4.08
Music on Hold OCT 89	646	f3.85
Power Supplies - 25 V 700 mA	656	f4.35
EE Seismograph - Control board only	658	f4.08
Lego/Logo \& Spectrum	660	¢6.49
Wash Pro NOV 89	643	f3.83
Logo/lego \& Sepctrum Interface	664	f5.60
Biofeedback Signal Generator JAN 90	666	[4.08
Quick Cap Tester FEB 90	668	¢3.92
Weather Stn: Anemom, - Freq./Volt Board	670	¢3.94
Optional Display	669	f3.73
Wind Direction	673/674	f4.22
Prophet In-Car loniser	676	f3.18
Superhet Receiver/Tuner/Amp MIAR 90	679/680	¢4.22
Stereo Noise Generator APR 90	681	f4.24
Digital Experimenter's Unit - Pulse Generator	682	¢4.46
Power Supply	683	f3.66
Enlarger Timer	684	¢4.28
Weather Stn: Rainfall Sen and Sunlight Sen	686/687	¢4.16
Amstrad Speech Synthesiser WMAY'90	689	¢.4.68
80 Metre Direct Conversion Radio JUN 90	691	¢4.95
Mains Appliance Remote Control JUL90		
Encoder Board A	694	¢6.61
Encoder Board-B	695	¢4.78
The Tester	696	¢4.15
Mains Appliance Remote Control Mains ON/OFF Decoder (5 or more 697's ordered together $£ 3.25$ each)	697	£4.55
Hand Tally: Main Bd and Display Bd SEP'90]	699,700	£10.95
Alarm Bell Time-Out	701	£4.10
Mains Appliance Remote Control Temperature Controller (p.c.b. only)	702	£5.20

PROJECT TITLE	Order Code	Cost
Ghost Waker OCT'90 Frequency Meter	$\begin{aligned} & 703 \\ & 704 \end{aligned}$	$\begin{array}{r} £ 4.32 \\ \mathbf{£ 5 . 2 5} \end{array}$
Freq. Meter/Tachometer NOV'90 EE Musketeer (TV/Video/Audio)	$\begin{aligned} & 705 \\ & 706 \end{aligned}$	
Microcontroller Light Sequencer DEC'90 Versatile Bench Power Supply Unit Teach-In'91, Part 1 -L200 Module Dual Output Module LM723 Module	$\begin{aligned} & 708 / 709 \\ & 710 \\ & 711 \\ & 712 \\ & 713 \end{aligned}$	$\begin{array}{r} £ 10.90 \\ £ 4.24 \\ £ 3.93 \\ £ 4.13 \\ £ 4.21 \end{array}$
Spatial Power Display Amstrad PCW Sound Generator Teach-In '91, Part 2 -G.P. Transistor Amp Dual Op.Amp Module Intercom (Teach-In ‘91 Project 2) Analogic Test Probe	714 715 717 718 719 720	$\begin{array}{r} £ 5.33 \\ £ 5.03 \\ £ 3.77 \\ £ 3.83 \\ £ 4.41 \\ £ 3.24 \end{array}$
Teach-In '91 Part 3 - TBA820M Amplifier High Quality Power Amp Bench Amplifier (Teach-In 91 Project 3) Gingernut 80 m Receiver R.F. section (726). Voltage Regulator (727). Audio Amplifier (728)	$\begin{aligned} & 721 \\ & 723 \\ & 724 \\ & 725 \\ & 726 / 7 / 8 \\ & \text { all } 3 \text { together } \end{aligned}$	£6.87 $£ 4.05$ $£ 4.93$ $£ 4.45$ $£ 3.06$ per board $£ 8.16$
Pocket Tone Dialler Battery To Mains Inverter Simple Basic Alarm Car Code Lock (pair) Teach-In '91 Part 4 - Sinusoidal Oscillator 8038 Oscillator Waveform Generator (Teach-In '91 Project 4)	$\begin{aligned} & 729 \\ & 730 \\ & 731 \\ & 732 a / b \\ & 733 \\ & 734 \\ & 735 \end{aligned}$	$£ 4.36$ $£ 4.97$ £4:50 $£ 4.69$ $£ 4.39$ £4.15 £4.72
Humidity Tester Model Train Controller (double-sided) Electronic Die (Teach-In 91 Project 5) Teach-In ‘91 Part 5 -Digital Counter Module	$\begin{aligned} & 716 \\ & 736 \\ & 737 \\ & 738 \end{aligned}$	$\begin{aligned} & £ 4.97 \\ & £ 9.75 \\ & £ 4.93 \\ & £ 4.35 \end{aligned}$
Modular Disco Lighting System Switched Power Output Module Digital LCD Thermostat-Control Board -Power/Relay Board E5 for pair Pulse Generator (Teach-In '91 Project 6) Teach-In '91 Part 6- Timer Module	$\begin{aligned} & 739 \\ & 740 \\ & 741 \\ & 742 \\ & 743 \end{aligned}$	$\begin{aligned} & £ 5.91 \\ & £ 4.05 \\ & £ 3.76 \\ & £ 4.97 \\ & £ 4.62 \end{aligned}$
Digilogue Car Tachometer Modular Disco Lights - Simple Chaser Sweeper Module Automatic Light Control - PSU Board Logic Board Radio Receiver (Teach-In ' 91 Project 7) Teach-In '91 Part 7 - R.F. Amplifier Module	$\begin{aligned} & 744 \\ & 745 \\ & 746 \\ & 747 \\ & 748 \\ & 749 \\ & 750 \end{aligned}$	$\begin{aligned} & £ 5.63 \\ & £ 5.00 \\ & £ 5.17 \\ & £ 4.88 \\ & £ 5.17 \\ & £ 4.57 \\ & £ 4.23 \end{aligned}$
Modular Disco Lights - Masterlink Ultrasonic Proximity Meter Display Unit (753) \& Sensor Unit (754) Disco Lights (Teach-In`91 Project 8) PSU and Pre-amplifier Low, Mid, High Filter/Triac (set of 3 boards) Teach-In '91 Part 8 -Solid State Switch Module Mod. Disco Lights - Pattern Gen AUG'91	$\begin{aligned} & 752 \\ & 753 / 754 \\ & 755 \\ & 756 \\ & 757 \\ & 760 \end{aligned}$	$\begin{array}{r} £ 6.36 \\ \\ £ 7.06 \\ \\ £ 4.54 \\ £ 11.00 \\ £ 4.24 \\ £ 6.79 \end{array}$
Teach-In'91 Part 8-Light Sensitive Switch Opto-Link (Teach-In '91 Project 9) - Transmitter Receiver Portable PEsT Scarer	$\begin{aligned} & 761 \\ & 762 \\ & 763 \\ & 764 \end{aligned}$	$\begin{aligned} & £ 4.74 \\ & £ 4.85 \\ & £ 4.88 \\ & £ 3.77 \end{aligned}$
Capacitance Meter SEP 91 Modular Disco Lights - Dimmer Interface	$\begin{aligned} & 751 \\ & 765 \end{aligned}$	¢5.17 £8.17
Mod. Disco Lights VU Sound Module (Double-sided) UV Exposure Unit PC-Scope Interface - Main Board Expansion Plug (Double-sided)	$\begin{aligned} & 767 \\ & 768 \\ & 769 \\ & 770 \end{aligned}$	$\begin{aligned} & £ 8.68 \\ & £ 4.63 \\ & £ 6.95 \\ & £ 5.96 \end{aligned}$
Mod. Disco Lights Superchaser (Double-sided) Supersweep (Double-sided) Bicycle Alarm Darts Scorer	$\begin{aligned} & 771 \\ & 772 \\ & 773 \\ & 774 \end{aligned}$	$\begin{aligned} & £ 6.91 \\ & £ 8.26 \\ & £ 5.01 \\ & £ 7.90 \end{aligned}$
Knockerbox Signal Generator - Main Board PSU Mind Machine - Main Board Auto Nightlight	$\begin{aligned} & 775 \\ & 776 \\ & 777 \\ & 778 \\ & 779 \end{aligned}$	$\begin{aligned} & £ 5.35 \\ & £ 7.46 \\ & £ 4.73 \\ & £ 7.00 \\ & £ 5.03 \end{aligned}$
Mind Machine - Programmer Board Transistor Checker	$\begin{aligned} & 780 \\ & 781 \end{aligned}$	$\begin{array}{r} £ 7.39 \\ £ 4.63 \end{array}$

CODE-FREE LICENCE?

Many thanks to those readers who responded to my invitation to suggest why amateur radio might appear daunting to potential newcomers. Their letters, several of which were published last month, have been passed to the Radio Society of Great Britain whose response, when received, will also be published.
The question was asked "Why is it necessary to learn Morse to operate below 30 MHz , when it need not be used once a licence is issued?" This is, in fact, the big debate inside amateur radio at present, so much so that the RSGB recently invited all UK amateurs and SWLs to express their views for or against the idea of a code-free licence for h.f. operation.
However, even if a vast majority voted in favour of a code-free licence, the RSGB is not, itself, able to change the rules. The Morse test is an international requirement and any change in the regulations needs to be made by an ITU World Administrative Radio Conference.

Radio amateurs are not represented at these conferences but representatives of their national societies do accompany national delegations to advise on matters affecting the amateur service. In this way, a society could arrange for proposals to abolish the Morse requirement to be put to a WARC. If other national societies persuaded their delegations to support such a proposal then the Morse test could well be abolished.

However, even assuming international agreement by national societies on this course of action, it could still be a longterm process. Each WARC, held every few years, defines the scope of its agenda in advance and proposals outside that agenda may have to wait for another conference.

THE ARGUMENTS

The Morse test was originally introduced to make sure that amateurs interfering with official or emergency CW communications understood instructions to shift frequency or close down. The main argument against the test today is that its original purpose no longer exists and that its retention deters possible newcomers to the hobby who see it as irrelevant in modern communications.

Within the hobby. practitioners of newer modes, e.g., data, seeking more spectrum space, feel that if the test was abolished "old-fashioned" CW would die and more frequencies would become available for them.

Those who use CW argue that, with its great capability for communication in adverse conditions, it is too valuable a mode to be lost and that, for a variety of reasons, it is now in the interest of amateur radio itself to retain the test.

The RSGB is considering all these
points and 1 will report back on their conclusions in due course. By coincidence, the matter was also discussed by the Board of Directors of the American national radio society, ARRL, earlier this year.

They reaffirmed their continued support for a Morse test as part of the amateur license requirements for operation below 30 MHz ; and instructed all ARRL representatives to continue to insist before all national and international bodies that there be no modification of the present requirements. (W5Y/ Report).

CLUB SYNDROME?

One correspondent, referred to hams "bubbling with self-righteousness on the virtues of Morse as a means to keep the 'Cowboy' element out", and to "the 'Club syndrome' where the established members . . . proclaim the need for new members ... (and) deliberately obstruct this happening due to an overriding fear of diluting their elitism and status."
As a Morse enthusiast myself, I must take issue with that description! The Morse operators \& know don't seem elitist or self-righteous at all!
in my experience, those who like and use Morse are more conscious of operating ethics, reasonably considerate of others, and represent the nicer end of the market. Of course that's a generalisation! I know some very nice people who use packet and there are some CW operators that l'd rather not work at all!
Some see advantages in retaining the Morse test, others accept that it has to go sometime. Those in favour genuinely see it as being in the best interest of the hobby, not as a means of self-aggrandizement, or foiling the legitimate aspirations of others.

CLIQUEY?

Another correspondent describes radio amateurs as cliquey and unwelcoming. I thought they were too at first, but soon discovered that it had more to do with human nature than amateur radio. Its the same if you take up other activities. The old hands appear to know everything. and seem rather stand-offish.

Some radio clubs make a special effort to welcome beginners, but its really down to the newcomers to introduce themselves, explain that they are new to the game and in no time everyone is doing their best to be helpful.

On the air, there is a more instant camaradie. Answer a station's CQ call. explain that you are a beginner and usually the other operator will be very encouraging and welcoming. But you have to make the effort!

Public demonstrations don't always present the hobby at its best. How often do visitors find a few amateurs grouped round a display, talking to each other and ignoring those who want to know what's
going on? This is usually because the demonstrators are ill at ease and unsure how to behave in public. The suggestion made that a properly organised advice desk be set up at such functions would surely make all the difference?

NOVICE LICENCE IMPROVED

A review by the Radiocommunications Agency and interested parties has concluded that the radio amateur Novice licence has been a success in its first year.

Several minor changes have been made to the examination objectives and syllabus, effective from the June 1993 examination. The number of questions in each section of the syllabus will then be: Receivers and receiving techniques - 5 ; Components, applications and units - 3; Measurements - 4; Propagation and antennas - 5; Transmitters and transmitting techniques - 10; Operating techniques 6; Station layout - 1; Construction - 1; Safety - 2; Licensing conditions -8 . Total questions, 45.

MORE FREQUENCIES/MODES

Additionally, Novices have been given extra frequencies, plus additional modes in some bands, to give them better opportunities to contact other amateurs.
The present $3 \cdot 565-3 \cdot 585 \mathrm{MHz}$ Novice band now begins at 3.560 MHz ; and $28 \cdot 100-28 \cdot 190 \mathrm{MHz}$ now begins at 28.060 MHz . Both these changes will enable Novices who have passed the 5 w.p.m. Novice Morse test to operate on the internationally recognised ORP (low power) frequencies.

The $50 \cdot 620 \cdot 50 \cdot 760 \mathrm{MHz}$ band is extended to $50 \cdot 000-51 \cdot 000 \mathrm{MHz}$ with Morse and telephony added to data as permitted modes; and 51.25051.750 MHz is extended to $51.000-$ 52.000 MHz .

The $433 \cdot 000-435 \cdot 00 \mathrm{MHz}$ band now begins at $432 \cdot 000 \mathrm{MHz}$; and $435 \cdot 000$ $440 \cdot 000 \mathrm{MHz}$ is now available for operation with Morse, telephony, data, SSTV and FSTV.

The Novice licence is now an even better way to start in amateur radio, with limited study, inexpensive low power equipment, and a potential to make international contacts that was not available to full class B licensees a few years ago!

YOUNG AMATEUR

The RA has also announced details of the Young Amateur of the Year Award 1993, for the most outstanding achievement by a young amateur radio enthusiast under 18. Entrants can enter themselves or be nominated by an adult sponsor, and there is no requirement to hold an amateur radio licence. Closing date for applications is 31 st July and full details can be obtained from RSGB, Lambda House, Cranborne Road, Potters Bar, Herts EN6 3JE.

Metal detector boards with Data has tuner, mode, discriminate, headphone jack, on/off volume \& push button facilities. \qquad c7.95 өа*	Universal bell timer, both 10 min . delay and 20 min . cut off functions Spectrum $128 \mathrm{k}+2$ PSU's $\quad \mathbf{~} 4.95$
35 mm Camera returns with auto flash. wind on etc. \qquad E6 ea or $\mathbf{2}$ for $\mathbf{E 1 0}$	STC P.S.U. 240 V input 5 V 6 A output (converts to 12 V 3 A details
100k Lin. Joystick, mech............................. $E 1{ }^{\circ}$	available)..........................55.95 ea
Dictaphone cassette, mech/record erase playback heads, 6 V solenoid, motor, hall effect switch. f2.00 ea	240 V input 5 V 10 A output (converts to 12V 5A no details) 55.95 eg 600Ω line output transformers..... $\mathbf{£ 1 . 2 5}$ ea
	240 V in 0.12 V 0.75 A out transformer. £1.75*
Dot matrix LCD 10x 2 lines................ 53.75 ea	3
40 characters $\times 1$ line dot matrix LCD with data \qquad c6.95*	9VDC electromechanical sounder....... 50 p $24 \mathrm{~V} D \mathrm{C}$ electromechanical sounder....50p
2 digit 16 segment VF display with data..	DIL switches PCB MT 3/4/6 way.......35p $5 V$ SPCO SIL reed relay
4 digit intelligent dot matrix display....¢3.50 ea*	5 V 2 CCO DIL miniature relay.............60p.
17 segment V.F. display with driver board and data... £2.99 ea	12 V 2PCO or 4 PCO continental relay. 60 p 12V 10A PCB MT (to make contact)
8 digit liquid crystal display1.75 ea*	relay......................................95p ${ }^{\text {* }}$
4 digit LCD with 7211 driver chip....... 53.50 ea*.	3 to 12 V electro magnetic acoustic transducer with data $75 p^{*}$
Digital clock display...........................¢2.50*	$2.4576 / 8.8329 / 21.10 \mathrm{MHz}$ crystals
11 key membrane keypad................. ¢1.50 ea*	$50 \mathrm{pea}$
Keyboard $392 \mathrm{~mm} \times 180 \mathrm{~mm} / 100$ keys on board + LCD + 74HCO5/80C49 easily removable. £ 4.95	Bridges 25A 200V 2A 100 V .
19* 3U sub rack enclosures.....................88.95	25 off mixed relays............................£5.95\%
12 V stepper motor, 48 steps per rev. 7.3° step angle. $\mathrm{f} 3.95 \text { өa }$	40 off mixed toggle switches.............£9.95* 50 off mixed switches, loggle, rocker.
Stepper motor board with 2 slotted opto +2 mercury tilt switches........ $£ 3.95$ es ${ }^{\circ}$	slide, micro. C9.95 Miniature axial chokes 0.1, 0.18, 0.12.
$1000 \mathrm{mixed} 1 / \mathrm{watt} 1 \%$ resistors........... $\mathbf{4} 4.95$ ea	$0.33,0.39,0.15,1,3.3 \mathrm{UH}$
250 electrolyic axial + radial caps $\mathbf{4} .95$ ea	10p ea., 100 for $£ 7.50{ }^{\circ}$
200 off mixed polyester caps $\mathbf{¢ 7 . 9 5}^{*}$	250 off 16/22/24/40 way IC Skts.... 4.95 *
100 Mixed trimmer caps popular values . $\mathbf{¢ 4 . 9 5}$	Crystal Osclillators 10/24/48 MHz.... [1 ea*
100 off Phono plugs (red/black/grey) $\mathrm{f} 3.50^{\circ}$	Spider Plug Leads...........................75p ea
50 Mixed terminal blocks $\mathbf{C 2 . 9 5}$	EASE RING
25 off asst. buzzers \& sounders............... ¢4.95*	also buy all forms of electronic
Cable box UHF modulator/video preamp/transformer/R's + C's/leads $\mathbf{C 6 . 9 5}$	components. p.s.u's. disk drives etc. Lists to below address.
1000 off mixed Multilayer Cerâmic Caps ..95	
B.B.C. Micro to disc drive lead................ $1.50{ }^{\text {* }}$	PGMS MARKED* WHICHARE GOP.
Car Burglar alarm vibration auto entry/exit delay............................55.95 ea*	SAE FOR BULK BUYING LIST PA YMENT WITH ORDER TO:
Single zone alarm panel auto entry/exit delay housed in domestic light socket. $.59 .95 \text { ea" }$	Dept EE, COMPELEC, 14 Constable Road,
$\begin{aligned} & \text { SM P.S.U. } 115-240 \mathrm{~V} \text { input }+5 \mathrm{~V} 5.5 \mathrm{~A} \\ & +12 \mathrm{~V} 1.5 \mathrm{~A}-12 \mathrm{~V} 0.3 \mathrm{~A}-5 \mathrm{~V} 0.3 \mathrm{~A} \text { with } \\ & \text { IEC inlet and outlet. fully cased. } \quad \mathrm{E} 6.95 \text { ea } \end{aligned}$	St. Ives, Huntingdon, Cambs PE176EO
UM1233 Video Modulators............. 53.50 ea ${ }^{\text {® }}$	Tel/Fax:0480300819

tuner mode discriminate, Deata has ack, on/off volume \& push button facilities
3 mm Camera returns with auto $\mathbf{C 7 . 9 5}$ 8a on 6 Lc. 00k Lin. Joystick, mech
Dictaphone cassette, mech/record era frect switch.
Sicc. Vero Easiwi
construction kit
Dot matrix LCD 10×2 fines
40 characters $x 1$ line dot matrix LCD digit 16 segment VF display din 1
segment V.F. display with
er board and data. digit LCD with 7211 driver chip... Digital clock display Keyboard $392 \mathrm{~mm} \times 180 \mathrm{~mm} / 100$ eys on board + LCD 74HCO5/80C49 easily removable - 3U sub rack enclosures 2 V stepper motor, 48 steps per rev
73° step angle. Stepper motor board with 2 slotted 000 mixed $1 / 4$ watt 1% resistors. ectrolyic axial + radial caps 100 Mixed trimmer caps popula 00 off Phono plugs
50 Mixed terminal block 25 off asst. buzzers $\&$ sounders. able box UHF modulator/video 000 off mixed Multilayer Cerämic Caps
. Micro lo disc dive lead entry/exit delay.
entry/exit delay housed in M.S.U. $115-240 \mathrm{~V}$ input +5 V 5.5 A IEC inlet and outlet, fully cased........ $\mathbf{\$ 6 . 9 5}$ ea

OMNI ELECTRONICS

174 Dalkeith Road, Edinburgh EH16 5DX $\star 0316672611$
The supplier to use if you're looking

A WIDE RANGE OF for:OF 8 $7=50$等 \star COMPONENTS AIMED AT THE \star (2) HOBBYIST

* COMPETITIVE VAT INCLUSIVE * PRICES

* MAIL ORDER - generally by \star RETURN OF POST
\star FRIENDLY SERVICE \star
 OPEN:
Monday-Thursday 9.15-6.00
Friday 9.15-5.00
Saturday 9.30-5.00

19" RACK MOUNTING EQUIPMENT CASES
This range of 19° rack cases features satin black finished 16 SWG (1.5 mm) steel front panels (no twing holes visible). With the reat bor assembly constructed from $205 W \mathrm{~F}(. \mathrm{mm})$ steel The standard units are $10^{\circ}(254 \mathrm{~mm})$ deep. 19° project cases only 4^{4} ($(101 \mathrm{~mm})$ deep and are avaitable in the foliowing popular siees

PROJECT CASES

PROJECT CASES		
Type	Height	Price
PUt	$11^{\prime \prime}(44 \mathrm{~mm})$	¢18.02
PU2	$3^{1} \mathbf{2}^{(188 m m)}$	¢20.01
Pu3	$5{ }^{1} \overbrace{}^{\prime \prime}(133 \mathrm{~mm})$	¢22.11
PU4	7° (178 mm)	[24,16
PU6	$10^{\prime} z^{\prime \prime}(266 \mathrm{~mm})$	$¢ 2825$
EQUIPMENT CASES		
Type	Height	Price
U1	13.0 (44mm)	¢22 33
U2	$3^{\prime} 2^{\prime \prime}(88 \mathrm{~mm})$	¢2585
U3	$55^{\prime \prime}(133 \mathrm{~mm})$	¢29 38
U4	$7{ }^{\prime \prime}(178 \mathrm{~mm})$	[31.72

Deivery included (UK only)
BLANKING PANELS, RACKING CONSOLES
and RACK CABINETS are also avalable.
Piease send SAE for detals
Tel: 0272373983 for Access/Visa Sales or cheque
with order 10
RACKZ PRODUCTS
PO Box 1402 Mangotsfield. Bristol. England, BS17 3RY

N. R. BARDWELL LTD (EPE)

200	Signal diodes 1N4148...................... $£ 1.00$
75	Rectilier Diodes 1N4001...................1.00
50	Rectifier Diodes 1N400700
56	Rectifier Dlodes 1N5401................ $£ 1.00$
100	Asstd. Zeners................................ $¢ .00$
10	NE555 Timer ICs............................. $£ 1.00$
8	C106D 400V 6 amp thyristors........... 81.00
8	BFY51 Transistors $£ 1.00$
30	BC478 Transistors.......................... 51.00
30	MPSA42 Transistors....................... $£ 1.00$
30	5 mm red l.e.d.s............................ $£ 1.00$
25	Assto. Migh brightness l.e.d.s.......... 1.00
24	Mindature red l.e.d.s 3 mm dia $\ldots \quad ¢ 1.00$
50	Axiall.e.d.s (Dlode package) wide angle l.e.d.s.
12	Asstd. seven segment displays.......¢1.00
30	Asstd. If transformers......................1.00
48	Asstd. coil formers....................... $¢ 1.00$
100	Asstd. RF chokes (inductors) $¢ 1.00$
30	Asstd. cornectors edge-dil-sil etc... $£ 1.00$
10	4P 3W MBB min. rotary switches..... $¢ 1.00$
20	1 Inch Glass reed swithes $£ 1.00$
20	Magnetic ear pips plus lead \& plug . ¢t.00
20	Min SP/CO slide switches.............. $\$ 1.00$
30	Assid. d.l.f. sockets up to 40 pin....... $£ 1.00$
20	24-way turned pin IC sockets........... 51.00
16	40 pin d.i.1. wire wrap IC sockets...... $£ 1.00$
2	- ORP12 light dependant resistors \&1.00

clips................................... Asstd. disc ceramic capacitor Assid. capacitors inf to lut.
Asstd electrolytic capacitors Asstd electrolytic capacitors 4.7UF 63 V Radial electrolytics 10UF 16 V Radial electrolytics 10UF 50 V Radial eiectrolytics 22UF 25 V Radial electrolytics 33UF 16 V Radial electrolytics
47UF 50 V Radial electrolytics 100UF 10 V Radial eletrolytics 220UF 16 V Radial electrolyics 470UF 10 V Radal electrolytics. 1000UF 10 V Radial electrolytics. 1000UF 25 V Axtal electroltics. 1 Farad 5.5V memory back up capacitor Peltier eftect heat pump................1.95 plus data.c2.9

Prices include VAT. postage $\mathbb{1 1 . 2 5}$. Stamp lor Lists 288 Abbeydale Road, Sheffield S7 1FL Phone (0742) 552886 Fax (0742) 500689
 as many UK readers as any other independent monthly hobby electronics magazine, our audited sales figures prove it. We have been the leading independent monthly magazine in this market for the last eight years

If you want your advertisements to be seen by the largest readership at the most economical price our classified and semi-display pages offer the best value. The prepaid rate for semi-display space is $£ 8$ (+ VAT) per single column centimetpe (minimum 2.5 cm). The prepaid rate for classified adverts is 30 p (+ VAT) per word (minimum 12 words)
All cheques, postal orders, etc., to be made payable to Everyday with Practical Electronics. VAT must be added. Advertisements, together with remittance, should be sent to Advertisements, Everyday with Practical Electronics, Holland Wood House, Church Lane, Great Holland, Essex C013 0JS. Phone/Fax (0255) 850596.
For rates and information on display and classified advertising please contact our Advertisement Manager, Peter Mew as above.

```
1 9 9 3 \text { Electronics Design Competition}
Entry deadlline has now been extended to Friday 29th
October, allowing late entries from schoois & colleges
    to be considered. Ask for an entry form.
HURRY, our clearance semiconductors are selling last, e.g. \(27 \mathrm{C} 1001 \mathrm{~A}-15\) £3.45, CA3140E £0.22 INCLUDING VAT! Extensive lists \(£ 1\).
```


Profile Electronics (EPE)

```
100-102 Woodhouse Rd, Leytonstone, London E11 3NA. Tel: 081-470 2038
Are you getting all you can from your IBM-Compatlble PC?
See our main advertlsement for details!
```


WANTED

SHEET METAL FOLDING MACHINE
(RS or similar) also
SHEET METAL GUILLOTINE
TEL: (0902) 344339

BARKING DOORBELL
Also elephants wail, sheeps baaa, and lions roar. Size $10 \mathrm{~cm} \times 14 \mathrm{~cm} \times 50 \mathrm{~cm}$. Includes cable and bellpush.
Requires $2 \times$ AA batteries. $£ 17.50$ p inc P\&P and VAT. Cheque/PO payable 10:
M.H.C. Dept EPE, 51 Kempton Grove, Cheitenham, Glos. GL51 0JX.

Typefit

The Typesetting programme for all your Typesetting needs. If you need typesetting for your Adverts, Brochures, etc. Typefit can help you. Please telephone

$$
0202882299
$$

BTEC ELECTRONICS
TECHNICIAN
FULL-TIME TRAINING
THOSE ELGIBLECANAPPYFORE. GRANT SMPORT
ANEUALOPPORUNTTES PROGRAME
O.N.C., O.N.D. and H.N.C.
Next courses commence
Monday 26th April 1993/
Monday 20th September 1993
FULL PROSPECTUS FROM
LONDON ELECTRRONICS COLLEGE
(Dept EPE) 20 PENYWERN ROAD
EARLS COURT, LONDON SW5 9SU
TEL: O71-373 8721

SOLAR PANELS

Special offer 12 V nom ($20 \mathrm{~V} \mathrm{o} / \mathrm{c}$) 80 mA .12 " $\times 66^{\prime \prime}$ pre-wired Amorphous Sillicon panel $£ 4.50$ (5 for $£ 18$) plus $£ 1.50$ p\&p per order. Many (5ther sizes, wind generators and other products.
other Orders to (Catogue 2×1 1st class stamps)
or Keysolar Systems, 4 Glanmor Crescent Newport, Gwent NP9 8AX

N. R. BARDWELL LTD (EPE) COMPONENT PACKS

Over 400 types of Capacitor packs
Over 150 types of Semiconductor packs Over 40 types of LED packs Over 40 types of Resistor packs Over 115 types of Component packs MANY OTHER ITEMS LARGE S.A.E. FOR LISTS 288 Abbeydale Road, Sheffield S7 1FL Phone (0742) 552886. Fax (0742) 500689

THE BRITISH AMATEUR ELECTRONICS CLUB

exlsis to help electronlcs enthuslasis by persona contact and through a quarterly Newsletter. For membership detalls, write to the Secretary
Mr J. s. . Hind, 7 Carlyle Road West Brigtord. Notingham NG2 TNS Space donated by Everyday with Practical Electronics

SURVEILLANCE KITS

MICRO TRANSMITTER. funeable $70-115 \mathrm{MHz}, 500 \mathrm{M}$
range, $40 \mathrm{~mm} \times 20 \mathrm{~mm}$ including microphone, $3-12 \mathrm{~V}$. Kh range. $40 \mathrm{~mm} \times 20 \mathrm{~mm}$
£5.95, Assembled $£ 9.95$. TELEPHONE TRANSMITTER. $30 \mathrm{~mm} \times 10 \mathrm{~mm}$, powered from line, transmits both sldes of conversation. 500 M renge, 88-130MHz. Kit £7.95, Assembled £12. 95. 3 WATT TRANSMITTER, $80-110 \mathrm{MHz}, 12-15 \mathrm{~V}$, adjustable input sensitivity, varicap co
£15.95. Assembled $£ 25.95$.

All prices include $p \&$.p.
Credit card orders telephone 021
class stamps lon Colaloge. Ch
Send 2×1 st class stamps lor Catalogue. Cheques/P.O.s payable to:
OUANTEK ELECTRONICS
Kits Dept. (EPE), 3 Houldey Road, West Heath.
Birmingham B31 3HL

Birmingham B31 3 HL
This $21 / 2 \mathrm{~cm}$ space in
Everyday with
Practical Electronics
Will ONLY cost you
£20 + +ar

Miscellaneous

G.C.S.E ELECTRONICS KITS at pocket money prices. S.A.E. for FREE cataloguc. SIR-KIT ELEC TRONICS. 70 Oxford Road. Clacton COIS 3 TE PROTOTYPE PRINTED CIRCUIT BOARDS one off and quantities, for details send s.a.ce. 10 B. M. Ansbro, 38 Poynings Drive, Sussex BN3 8GR. or phone Brighton 883871.

THE HOMEBUILT DYNAMO (Plans). Reviewed 1989 in PE January and Model Engineer December 15th Price £42 post paid airmail from Alfred Forbes. PO Box 3919. Auckland. New Zealand. Tel (09) 818-8967.
V.U METERS, one 65 mm high. 85 mm wide: one 80 mm high, 110 mm wide, $£ 7.50$ the two. (40 components) potentiometers, switches and coloured knobs, $£ 7.50$ General purpose op-amp VA748C. 8 pin. 50 for $£ 7.50$ Bridge rectifiers, 200 V .35 amp . 5 for $£ 7.50$. Low noise op-amp, TL071C, 8 pin, 50 for $£ 7.50$. Payable to G. Hannington, Surplectronics, 216 Leagrave Road. Luton. Beds LU3 IJD.
ELECTRONIC KITS, Consultancy \& Design: Send $\mathbb{E} 5$ Pounds (IN ENGLISH NOTES) With A4 Addressed Pounds (IN ENGLISH NOTES) Circuits: Mr. Lucas Envelope; For List \& H4 Unusual Circuits: Mr. Lucas
P.O. Box 755, Saint Helier, Jersey JE4 82Z Channel Islands, UK
MOST UNUSUAL ELECTRONIC KITS. Worldwide Source. Lasers/Metal Delectors/Night Vision/Test EQ; For list, See Advert Mr Lucas P.O. Box 755.
PROFESSIONAL ELECTRONIC ASSEMBLY/PCB population, at competitive rates. Tel. Julian Wright (AV population, ar comperitive rates.
Electronic ervices, lustrated and priced catalogues from "Information Unlimited" \& "Amazing Concepts". Terrific. new plans. kits and units. Send £1 for both. refundable on first order. Cheques/PO's payable (B. Marshall). UK Dealership. "First Line Enterprises", 32 Fairfield Approach, Wraysbury, Nr. Staines, Middlesex. TW 19 5DS.
PALs, PLDS \& EPROMs programmed. Very competitive rates. Send SAE for details to PO Box 1561 Bath or phone 0225444467.
CONTENTS HOBBYISTS WORKSHOP, resistors. capacitors, pots. i.c.'s elc. Books. Scopex 14D15 dual trace scope with built-in function generator, Maplin organ complete not working. $£ 400$ the lot. Consider split. 0904632795.
SITUATION VACANT. Disco shop require assistant to help repair and maintain audio and lighting equipment. Accommodation available. Mervyn 081-7439999.
WANTED. Cheap supply of Peltier/thermoelectric heat pumps. Can you help? Tel. 0242227754.
68000 SINGLE BOARD COMPUTER: ECB Compatible, upto $64 \mathrm{~K} \times 2$ EPROM, $32 \mathrm{~K} \times 2$ SRAM. 2 serial \& parallel ports, 8 TTL I/O. I timer. support TUTOR firmware. Assembled \& Tested $£ 155$ includes shipping. Money order only. Please ask for our free catalogue. Adaptive Technology. Shop 72, 1/F. Richard Garden, TMTL333. Tuen Mun. N.T., Hong Kong. Fax: (852)-404-7952.
P.C.B. ARTWORK (C.A.D.) DESIGN SERVICE and circuit design. Experienced industry professional designer. Neat solutions fast. Write G.N. Slee, P.O. Box 58. Barnsley. S71 3YZ. or phone 0226-297615.
ROBOT DINOSAUR KIT. Complete with control box, big LED eyes and twin drive motors for tank like control, ideally suited for computer interfacing, kit includes: Trycerotops templates. 2 high torque motors and superbright LEDs, control box, gearwheels, switches, battery holder and fixings. Send $£ 11.95$ plus $\mathfrak{£ 1 . 0 0}$ p\&p to \mathbf{P}. simpson. Studio 1, Shelley Priory Farm. [pswich IP7 simps
SRQ. ${ }^{\text {IBM. }}$ INTERFACING PROJECTS. 24-line I/O card. Speech and music synthesiser. stepper motor driver, A/D converter, disco light driver. digital recorder and many more projects connected to the card. Write to 58 Lamport Court, Manchester M1 7EG. Tel: (061) 272 8279.

CONTROL COMPUTER KIT. Single board. machine code monitor, battery backed RAM 14 I/O BITS plus RS232 serial port. £34.50 or SAE for details. Cheques only to G. Brown, 27 Kirkleatham Lane. Redcar Cleveland, TS 10 INS.

Hesing Technology

Cromwell Chambers, 8 St . Johns Street, Huntingdon, Cambs. PE18 6DD

TEST EQUIPMENT
Supply
Maintenance
Commissioning

SYSTEM CONSULTANCY
Replacement Parts
Supply of Service \&
Operators Manuals
Components
Distributors for
WAUGH INSTRUMENTS, RAMTEST LTD., KRENZ EIECTRONICS. PANTHER

Audio * Computer	
	MPUTER SPA
Buspa ${ }^{\text {a }}$	cole
E,se	(ex
	co, 0
cose	

Technical Information Services

76 CHURCH STREET, LARKHALL, LANARKSHIRE, ML9 IHE Tel. (0698) 884585 Mon-Fri 8.30am - 5.00 pm Tel. (06\%) 883334 Outwith business hour AX facility available all day on both lines Wrile now' with an SAE for your
REE QUOTE FREE VOUCHERS \& FREE CATALOGUE
Remember, not only do we have EVERY service sheet ever produced but we also have

The worlin Largest collectiov or SERVICE MANUALS

\& WE ARE SOLE SUPPLIEAS OF VARIOUS FAULT FINDING GUIDES REPAIR MANUALS \& TECHNICAL MANUALS

OATA REFERENCE MANUAL ".....essential for the serious electrician
FREE updating and a 10% discount voucher only $£ 5.95$

MAKE YOUR INTERESTS PAY!

over the past 100 years more than 10 mullon students throughout the worla have found
it worth thelr whHel An ics home-study course can helo you it worth thelr whul/ An ICS home-study course can help you get a better Job, make more courses and is the largest correspondence school 100 years experience In home-study pace, when and where you want under the guldance the world. You learn at your own how we can help You. Post or phone today for Fige imponma ion on the cors. Find out

International Correspondence Schoois Dept ECS 53
$312 / 314$ High Street. Sutton. Surrey SM1 1PR or 041

DISTANCE LEARNING COURSES

The National College of Technology offer a range of packaged learning short courses for stüdy at home or in an industrial training environment which carry national BTEC awards. Study can commence at any time and a any level enabling you to create a study routine to fit around existing commitments. Courses on offer include

> Analogue Electronics Digital Electronics Fibre/Optoelectronics

Programmable Logic Controllers Electronic Testing \& Fault Diagnosis
Tutor support and BTEC certification are available as options with no travelling or college attendance required. These very popular courses which are ideal for vocational training contain workbooks, audio cassette lecturettes, PCB's, instruments, tools, components and leads as necessary to support the theoretical and practical training. Whether you are a newcomer to electronics or have some experience and simply need an update or certification, there is probably a distance learning course ready for you. Write or telephone for details to:

National College of Technology
NCT Ltd., PO Box 11
Wendover, Bucks
Tel: (0296) 624270

Jaytee Electronic Services

143 Reculver Road, Beltinge, Herne Bay, Kent CT6 6PL Telephone: (0227) 375254

SHERWOOD ELECTRONICS

9 Lower Birchwood, Somercotes, Derbyshire DE55 4NG *****SPECIAL OFFER *****
£1 Special Packs -
15 $\times 5 \mathrm{~mm}$ Red Leds

SP1	$15 \times 5 \mathrm{~mm}$ Red Leds		SP36	$25 \times 10 \mathrm{~F} / 25 \mathrm{~V}$ radial elect caps
SP2	$15 \times 5 \mathrm{~mm}$ Green Leds		SP38	$25 \times 47 \mathrm{uF} / 25 \mathrm{~V}$ radial elect caps
SP3	$12 \times 5 \mathrm{~mm}$ Yellow Leds		SP39	$12 \times 470 u F / 16 \mathrm{~V}$ radial elect caps
SP6	$15 \times 3 \mathrm{~mm}$ Red Leas		SP_{4}	$200 \times$ Mixed 0.25 W C.Film resistors
SP7	$12 \times 3 \mathrm{~mm}$ GreenLeds		Sp47	$5 \times$ Min. push button switches
SP8	$10 \times 3 \mathrm{~mm}$ Yellow Leds		SP102	20×8 pin Dil sockets
SP10	100×1 N4148 diodes		SP103	15×14 pin Dil sockets
SP11	30×1 N4001 diodes		SP104	15×16 pin Dil sockets
SP12	$30 \times 1 \mathrm{~N} 4002$ dibdes		SP112	$6 \times$ Cmos 4093
SP18	$20 \times 8 C 182$ transistors		SP124	$20 \times$ Assorled ceramic caps
SP23	$20 \times 8 \mathrm{BC} 49$ transistors		SP136	$10 \times 0 \mathrm{~A} 90$ diades
SP25	5×555 timers		SP137	$4 \times$ Woos bridge rectifiers
SP26	$5 \times 7410 \mathrm{p}$-amps		SP138	$20 \times 2.24 \mathrm{~F} / 50 \mathrm{~V}$ racial elect caps
SP28	$6 \times$ Cmos 4011		SP139	$12 \times 1000 \mathrm{f} / 10 \mathrm{~V}$ radial elect caps
RESISTOR PACKS				
${ }_{\text {RPP }}{ }_{\text {R }}$	5 each value - total 365 10 each value - total 730			with first order over $£ 5$
RP 10	1000 popular values	K5.30		

Millions of quality components at lowest ever prices!

Plus Tools, Watches, Fancy Goods, Toys. Mail order UK only. All inclusive prices NO post, or VAT etc to add on. Send 34 p stamped self addressed label or envelope for catalogue/clearance list.

At least 2,100 offers to amaze you.
Brian J Reed
6 Queensmead Avenue, East Ewell Epsom, Surrey KT17 3EQ Tel: 081-393 9055

ADVERTISERS INDEX

N. R. BARDWELL
R. BARTLETT......... .359
BK ELECTRONICS …...
BRIAN J. REED. .392 Cover (ii)
BULL ELECTRICAL
BULL ELECTRICAL

CAMBRIDGE COMP. SCIENCE.
367

CANAL BRIDGE AUDIO
359

CIRKIT DISTRIBUTION.
367
COMPELEC..................... 389 389
320
CRICKLEWOOD ELECTRONICS.
CR SUPPLY COMPANY. 320
DISPLAY ELECTRONICS 314
ELECTRONIZE DESIGN. 367
ESR ELECTRONIC COMP.. 324
319
GREENWELD ELECTRONICS 319
HART ELECTRONIC KITS
HESING TECHNOLOGY. 391
ICS. 389. 39
JAYTEE ELECTRONIC SERVICES
JAYTEE ELECTRONIC SERVICES 392
KARE ELECTRONICS 359
LABCENTER ELECTRONICS 32/323
MAGENTA
MAILTECH 346/347
MAPLIN ELECTRONICS Cover (iv) 391
355
MARAPET.
MARAPET.
MARCO TRADING 321
MAURITRON 318
M\&B ELECTRONICS
360/36
360/36
MODERN ELECTRONICS MANUAL 354
MAP ELECTRONIONAL COLLEGE OF TECH. 391
NUMBER ONE SYSTEMS 320
.389
OMNI ELECTRONICS 347
PROFILE ELECTRONICS 320
RACKZ PRODUCTS. 389
RADIO \& TV COMPONENTS. 317
.392
SMART HOUSE SYSTEMS. 359
SUMA DESIGNS 316
TECHNICAL INFO. SERVICES. 391
Carbon Film resistors $1 / 2 \mathrm{~W} 5 \%$ E24 series 0.51 R to 10 MO100 off per value - 75 p . even hundreds per value totalling 1000
Metal Film resisiors $\% W$ V 10 R to $1 \mathrm{MO} 5 \% \mathrm{E} 12$ series $-2 \mathrm{p} .1 \% \mathrm{E} 24$ seriesMetal Film resistors KW 10 to 1 MO 5% E12 series- 2 p . 1\% E2
Mixed metal/carbon film resistors $1 / 2 \mathrm{~W}$ E24 series 1 RO 10 10MO1 watt mixed metal/Carbon Film 5\% E12 series 4 R7 1010 MegohmsLinear Carbon pre-sets 100 mW and $1 / 6 \mathrm{~W} 100 \mathrm{R}$ to 4 M 7 E6 series
Miniature polyster capacitors 250 V working for vertical mounting015, 022. 033 . $047, .068-4 \mathrm{p} .0 .1-5 \mathrm{p} .0 .12,0.15,0.22-6 \mathrm{p} .0 .47-8 \mathrm{p} .0 .68-8 \mathrm{p}, 1.0-12 p$Mylar (polyester) capacitors 100 V working E12 series vertical mounting$1000 \mathrm{p} 108200 \mathrm{p}-3 \mathrm{p} .01$ to $068-4 \mathrm{p} .0 .1-5 \mathrm{p} .0 .12,0.15,0.22-6 \mathrm{p} .0 .47 / 50 \mathrm{~V}$ - 8 pplate capacitors 100 V wkg vertical mountings. E12 series$2 \% 1.8 \mathrm{pf}$ to $47 \mathrm{pf}-3 \mathrm{p} .2 \% 56 \mathrm{pf}$ to $330 \mathrm{pf}-4 \mathrm{p} .10 \% 390 \mathrm{p}-4700 \mathrm{p}, \ldots$.... 47000 pDisc/plate ceramics Polystyrene capacitors 63 V working E12 series tong axial wires10 pf 10820 pf - 5 p . 1000 pf to $10,000 \mathrm{pf}$ - $6 \mathrm{p} .12,000 \mathrm{pf}$
41 Op Amp - 20p. 555 Timer
ALUMINIUM ELECTROLYTICS (Mfds/Volts)
$1 / 50,2.2 / 50,4.7 / 50,10125,10 / 50 \ldots, \ldots, \ldots, \ldots 1 / 50$
22/16. 22/25, 22/50, 33/16,
$100 / 16,100 / 257 p ; 100 / 50$
220/16, 8p. 220/25, 220/50 10p. 470/16. 470/25
$1000 / 25$ 25p: 1000/35, 2200/25 35p; 4700/25
Submin, tantalum bead electrolyics (Mfds/Volts)
Submin. tantalum $0.1 / 35,0.22 / 35,0.47 / 35,1.0 / 35,3.3 / 16.4 .7 / 16$
2.2/35, 4.7/25, 4.7/35, 6.8/16 15p; 10/16, 22/6
33/10. 47/6, 22/16 30p: $47 / 11035$ p: $47 / 1660$ p: $47 / 35$
VOLTAGEREGULATORS
$1 \mathrm{~A}+\mathrm{or}-5 \mathrm{~V}, 8 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}, 18 \mathrm{~V} \& 24 \mathrm{~V}, 55 \mathrm{p} .100 \mathrm{~mA} .5 .8,12.15 \mathrm{~V}+\cdots \quad 30 \mathrm{p}$
DIODES (piv/8mps)
$75 / 25 \mathrm{~mA} 1$ N41 48 2p. $800 / 1$ A 1 N4006 41/2p. $400 / 3$ A 1 N 540414 p. $115 / 15 \mathrm{~mA}$ OA 91
75/25mA 1 N41 48 2p. $800 / 1$ A 1 N4006 41/2p. $400 / 3 A 1$ N5404 14p. $15 / 15 m A$
$100 / 1$ A 1 N4002 $3 / 2 p .1000 / 1$ A 1 N4007 5p. $60 / 1.5 A$ S1 M1 5p. $100 / 1$ A bridge
100/1A 1 N4002 31/2D. 1000/1A 1N4007 5p. 60/15A OA47
Zone
Zener diodes E24 series $3 V 3$ to 33
Battery snaps for PP3-6p for PP9
Battery snaps for PP3-6p for Lee, Yellow - 10 p . Grommets $3 \mathrm{~mm}-2 \mathrm{p} .5 \mathrm{~mm}$
Red flashing L.E.D.'s require 9.12 V supply only
Mains Indicator neons with 220 k resistor
20 mm fuses 100 mA to 5 A . 0 . blow 6 p. A/surge 10 p . Holders, chassis, mounting
High speed pc drill $0.8,1.0,1.3,1.5,2.0 \mathrm{~mm}$ - 40 p. Machines 12 V dc
HELPING HANDS 6 ball joints and 2 croc clips to hold awkward jobs
AA/HP7 Nicad rechargeable cells 90 p each. Universal charger unit
AA/HP7 zinc/carbon batteries in packs of 4
Glass reed switches with single pole make contacts - 8p. Magnets
$0.1^{\prime \prime}$ Stripboard $2 / 3^{*} \times 1^{-9} 9$ rows 25 holes $-25 p .3^{2} \times 21 / 2^{\prime 2} 24$ rows 37 holes
Jack plugs $2.583 .5 \mathrm{~m}-14 \mathrm{p}$: Sockets Panel Mig. 2.583 .5 m
Ear pieces 2.5 \& 3.5 mm , dynamic - $2 \mathrm{p}, 3.5 \mathrm{~mm}$ crysta
Multi cored solder $22 \mathrm{G}-8 \mathrm{pyard} 18 \mathrm{G}-14 \mathrm{p}$ yard.
Multi cored sol
TRANSISTORS ${ }_{\text {BC107 }}$ SC5/9-12p. BC547/8/9 - 8p. BC557/8/9 - 8p. BC182, 182L. BC183, 183L
BC327 337 337L-12p. BC727, 737 -12p. BD135/6/7/8/9-25p. BCY70-18p
BC327,337, 337L

All prices are inclusive of VAT. Postage 30 p (free over $\mathrm{E5}$). Stamp for list.

THE CR SUPPLY CO
127 Chesterfield Rd., Sheffield S8 ORN
Tel: 0742557771 Return posting

THE RENOWNED MXF SERIES OF POWER AMPLIFIERS FOUR MODELS:- MXF200 (100W + 100W) MXF400 (200W + 200W) MXF600 ($300 \mathrm{~W}+300 \mathrm{~W}$) MXF900 ($450 \mathrm{~W}+450 \mathrm{~W}$) Level controis $\#$ IIluminated oniont swilch $\#$ XLR connoctors $\#$ Standard 7 TSmV
 distortion $\begin{aligned} & \text { Aluminlum cases } \text {. MXF600 \& MXF900 lan cooled with D.C. Ioudspeaker and thermai protection. }\end{aligned}$ USED THE WORLD OVER IN CLUBS, PUBS, CINEMAS, DISCOS ETC.
 MXF600 W 19 " \times H5 $5^{1 / 4}$ (${ }^{(3 U) \times D 13 "}$

PRICES:- MXF200 ¢175.00 MXF400〔233.85 MXF600 ᄃ329.00 MXF900 £449.15 SPECIALIST CARRIER DEL. $\subset 12.50$ EACH
 OMP VARISPEED TUANTABLE CHASSIS

* Manual arm *Steel chassis * Electronic speed control 33 \& 45 R.P.M. *Vari pitch control * High torque servo driven DC motor \star Transit screws \# $12^{\prime \prime}$ die cast platter * Neon strobe \#alibrated balance weight * Removable head shell * $1 / 2^{*}$ cartridge fixings * Cue lever ${ }^{2201240 V} 50 / 60 \mathrm{~Hz}$ - $390 \times 305 \mathrm{~mm}$ * Supplied with mounting cut-out template.

PRICE 61.30 * 53.70 P\&P

OPTIONAL MAGNETIC CARTRIOGES STANTON AL500mkH

STEREO DISCO MIXXRIDJ6500

 RICE E16.95 + 50P PAPSTEREO DISCO MIXER with 2×7 band ED vu melers. MANY OUTSTANDING FEATURES:- including Echo with repeat a apeed control, D.J Mic with tone control Lalk-over switch, 7 Channels with
individual taders plus cross fade, Cue Headphone Monitor. Uselul combination of the following in puts:- -3 turntables (mag), mics, 5 Line for CD, Tape, Video etc.
Price 〔134.99 + £5.00 P\&P

FIEKOELECTRIC TWEETERS-MOTOROLA

Join the Piezo revolution! The low dynamic mass (no voice coil) of a Piezo tweeter produces an improved transient response with a lower distortion leveit than ordinary dynamic tweeters. As a crossover is not required
these units can be added to existing speaker systems of up to 100 watts (more if two are put in series. FREE These units can be added to existing speaker systems of up to 100 walts
EXPLANATORY LEAFLETS ARE SUPPLIED WITH EACH TWEETER.

TYPE 'A' (KSN1036A) $3^{\prime \prime}$ round with protective wire mesh. Ideal for bookshelf and medium sized Hi-Fi apeakers. Price $£ 4.90+50 \mathrm{p}$ P\&P, TYPE 'B' (KSN1005A) $31 / 2^{\prime \prime}$ super horn for general purpose speakers, disco and P.A. systems etc. Price $\mathbf{5 5 . 9 9}+\mathbf{5 0 p}$ P\&P. TYPE 'C' (KSN1016A) 2" $\times 5$ " wide dispersion horn for quality Hi-Fi sys lems and quality discos etc. Price $£ 6.99+50 \mathrm{p}$ P\&P. TYPE ' D ' (KSN1025A) 2" $\times 6^{\prime \prime}$ wide dispersion horn. Upper frequency response retained extending down to mid-range $(2 \mathrm{KHz})$. Suitable for high quality Hi-Fi systems and quality discos. Price $\mathbf{£ 9 . 9 9 \rightarrow 5 0 p \text { P\&P. }}$ TYPE 'E' (KSN1038A) 3³"" $^{\text {4 }}$ horn tweeter with attraclive silver finish trm Suitable for Hi-Fi monitor systems etc. Price $85.99+50$ p P\&P. EVEL CONTROL Combines, on a recessed mounting plate, level contro and cabinet input jack socket. $85 \times 85 \mathrm{~mm}$. Price $\mathbf{C 4 . 1 0}+50 \mathrm{p}$ P\&P.

ETFLIGHT CASED LOUOSPEAKERS

Anew range of quality louds peakers, designed to take advantage of the lates $2^{\prime \prime}$ cast aluminium loudspeakers with factory fined grllles, wide dispersion ball corners, complimented with heavy duty biack covering. The e
are fitted as standard with top hats for optional loudspeaker stands.

OWER RATINGS QUOTEDIN WATTS RMS FOR EACH CABINET FREQUENCY RESPONSE FULL RANGE $45 \mathrm{~Hz}-20 \mathrm{KHz}$
1bI FC 12-100WATTS (100 dB) PRICE $£ 159.00$ PER PAIR
tbIFC 12-200WATTS (100 dB) PRICE E175.00 PER PAIR SPECIALIST CARRIER DEL. ©12.50 PER PAIR
OPTIONAL STANDS PRICE PER PAIR £49.00
Delivery $\mathbf{£ 6 . 0 0}$ per pair
THĀEE SUPERB HIGH POWER CAR STEREO BOOSTER AMPLIFIERS 150 WATTS (75 Bridged Mono 250 WATTS (125 Bridged Mono Brdged Mono 125) Stereo, 250 W Bridged Mono
ALL POWERS INTO 4 OHMS
Features:
 * Stereo, bridgable mono * Choiçe of

OMP/MF 100 Mos-Fet Output power 110 watts R.M.S. into 4 ohms, trequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rate $45 \mathrm{~V} / \mathrm{uS}$, T.H.D. typical 0.002%, Input Sensitivity 500 mV , S.N.R. -110 dB . Size $300 \times 123 \times 60 \mathrm{~mm}$.
PRICE $\mathbf{C 4 0 . 8 5}+\mathbf{C 3} .50$ P\&P
OMP/MF 200 Mos-Fet Output power 200 watts R.M.S. into 4 ohms, Irequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rate $50 \mathrm{~V} / \mathrm{uS}$, T.H.D. typical 0.001%, Input Sensitivity 500 mV , S.N.R. -110 dB . Size $300 \times 155 \times 100 \mathrm{~mm}$.
PRICE £64.35 + £4.00 P\&P
OMP/MF 300 Mos-Fet Output power 300 watts A.M.S. into 40 hms , trequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rate $60 \mathrm{~V} / \mathrm{uS}$, T.H.D. typical 0.001%, Input Sensitivity 500 mV , S.N.R. -110 dB . Size $330 \times 175 \times 100 \mathrm{~mm}$
PRICE E81.75 + E5.00 P\&P
OMP/MF 450 Mos-Fet Output power 450 watts R.M.S. into 4 ohms, frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3dB, Damping Factor >300, Slew Rate $75 \mathrm{~V} / \mathrm{uS}$, T.H.O. typical 0.001%, Input Sensitivity 500 mV , S.N.R -110 dB, Fan Cooled, D.C. Loudspeaker Protection, 2 Second Anti-Thump Delay. Size $385 \times 210 \times 105 \mathrm{~mm}$ PRICE $1132.85+$ C5.00 P\&
NOTE: MOS-FET MODULES ARE AVAILABLE IN TWO VERSIOMS STANDARD - INPUT SENS SOOMV, EANO WIDTH TOOKHZ. 775 mV , BAHD WIDTH SOKHE. ORDER STAMDARD OR PEC

Vu METER Compatible with our four amplifiers detailed above. A very accurate visual display employing 11 L.E.D.s $(7$ green, 4 red) plus an additional on/on indicalor. Sophisticated logic control for very last rise and decay times. Tough PRICE ع8.70 + SOP P\&P

LOUDSPEAKERE

LARGE SELECTION OF SPECIALIST LOUDSPEAKERS AVAILABLE, INCLUDING CABINET FITTINGS, SPEAKER GRILLES, CROSS-OVERS AND HIGH POWER, HIGH FREQUENCY BULLETS AND HORNS, LARGE (A4) S.A.E. ($50 p$ STAMPED) FOR COMPLETE LIST.
P. From McKenzie Protessional Series

CMCKENZIEF-INSTRUMENTS, P.A., DISCO, ETC

ALL MCKENZIE UNITS 8 OHMS IMPEDANCE

IOO WATT P C8-100GP GEN. PURPOSE, LEAD GUITAR, EXCELLENT MID, OISCO RES. FREQ. 80Hz, FREQ. RESP. TO 7KHz, SENS 96dB RES FREO T1 C1 O- 100 GP GUITAR, VOICE, KE
 $10^{\prime \prime}$ 200WATH C10-200GP GUITAR, KEYB'D, DIS
RES. FREO. $69 H 2$, FREO. RESP TO SKHz SENS 97 dB 12" 100WATH C12.100GP HIGH POWER GEN. 12 RES. FREQ. 49Hz, FREQ. RESP. TO 7 KHz , SENS 98dB. 12 100WATT C12-1OOTC (TWIN CONE) HIGH RES. FREQ 45Hz FREO. RESP. TO 12 KHz , SENS 97 dB . 12 200WATT C12-200B HIGH POWER BASS, KE
RES. FREQ. $45 H 2$, FREO. RESP. TO SKHz, SENS 99 dB . 12" FREO. A5Hz, FREO. RESP. TO SKHz, SENS 99dB. 12 300WATT C12-300GP HIGH POWER BASS, LE
RES. FREQ. 49HZ, FREO. RESP. TO 7KHZ, SENS 100dB.
15" 100WATT FC C15. ROOBS BASS GUUTTAR LOW FRE
RES. FREQ. 40HZ, FREQ. RESP. TO 5 KHZ, SENS 98dB. 15" 200WATT © C15-200BS VERY HIGH POWER BASS
RES. FREO. 40 Hz , FREO. RESP. TO 3 KHz , SENS 98 AB 15' 2 20WATT C1 5-250BS VERY HIGH POWER BASS AES. FREO. 39 Hz , FREO. RESP. TO 4 KHz , SENS $99 d B$. 15" 400WATT C1 15 -400BS VERY HIGH POWER, LO RES. FREO. 40 Hz , FREO. RESP. TO $4 \mathrm{KHz}_{\mathrm{t}}$, SENS 100 dB . 8" SOOWATT BC18-500BS EXTREMELY HIGH POWE LOW RES. FREO. 27 Hz , FREO. RESP. TO 2 KHz , SENS. 98 dB .

ZARBINDERS:- HI-FI, STUDIO, IN-CAR, ETC

ALL EARBENDER UNITS $~$ OHMS (Except EB8. 50 \& EP10.50 which are du
BASS, SINGLE CONE, HIGH COMPLIANCE, ROLLED SURROUND
BASS, SINGLE CONE, HIGH COMPLIANCE, ROLLED SURROUND
8" 50watt Ebe-50 DUAL IMPEDENCE, TAPPED 4/B OHM BASS, HI-FI, IN. C
RES. FREO. 40Hz, FREQ. RESP. TO 7 KHz SENS 97d8.
10" SOWATT EB $10-50$ DUAL IMPEDENCE TAPPED
RES. FREQ. 40Hz, FREO. RESP. TO SKHz, SENS. 99dB.
10 100WATT EB10-100 BASS, H1-FI, STUDIO.
RES. FREO. 35 Mz . FREQ. RESP. TO 3 KHz, SENS 96 B
12" 100WATT EB12-1 OO BASS, STUDIO, HI-FI, EX
RES. FREQ. 26 Hz , FREQ. RESP. TO 3 KHz , SENS 93 dB .
FULL RANGE TWIN CONE, HIGH COMPLIANCE, ROLLED SURROUNPRICE ع42.12 + E3.50 PAP 3\%.
RES. FREO. 63 Hz , FREO. RE SP. TO 20 KHz, SENS 92 dB .

RES. FREQ. 38 Hz , FREO. RESP. TO 20 KHz , SENS 940 AB .
8" GOWATT EB8-GOTC (TWIN CONE) HIFFI, MLTI-ARRAY DISCO ETC. PRICE E10.90 + 1.50 PAP
RES. FREQ. 40 Hz , FREQ. RESP. TO 18 KHz , SENS 89 dB . 10"

TRANSMITEER HOBBY KITS

proven transmitter designs including glass fibre PRINTED CIRCUIT BOARD AND HIGH OUALITY COMPONENTS COMPLETE WITH CIRCUIT AND INSTRUCTIONS 3W TRAMSMITER SO-100MHz, VARICAP CONTROLLED PROFESSIONAL PERFORMANCE RANGE UP TO 3 MILES, SIZE $36 \times 123 \mathrm{~mm}$. SUPPLY 12 V © 0.5 SAMP . PRICE $\mathbb{1 4 . 8 5}+\mathbf{C 1 . 0 0}$ PEP
FII MICAO TRANSMITTEA $100 \cdot 10 \mathrm{BMHz}$, VARICAP TUNED, COMPLETE WITH
VERY SENS FET MIC, RANGE $100-300 \mathrm{~m}$. SIZE 56 n 4 mmm . SUPPLY GV BATIERY

SERIOUS SOUND SERIOUS SAving HIGH QUALITY PROFESSIONAL 100W POWER AMPLIFIER KIT - SAVE $£ 30$

* Ideal for Instrument Amplification * Stage Foldback *Small Venue P.A. * Studio Monitor Amplifier

his superb amplifier kit brings together five of the best and most popular 'Audio Building Blocks', to produce an amplifier of unrivalled sound quality at the price. The Power Output Stage is an excellent 150W MOSFET design which is currently Maplin's Best Selling Audio Kit. It is complemented by the excellent performance of the SSM2016 Differential Preamplifier which has also featured in Maplin's 'Top 20' kits. The superb audio stages are supported by a High Quality Power Supply Unit, sophisticated Monitoring Circuitry and a Thermal Protection System. Housed in a rugged 19in. rack mounting case, this outstanding amplifier is designed for longevity, purity of sound reproduction and ease of integration with other professional equipment.
The kit contains everything you need to build this superb amplifier and is supplied complete with comprehensive constructional information.

For a friendly welcome and the best of service, visit your local Maplln store: BIRMINGHAM; Sutton New Road. Erdington. BRIGHTON; 65 London Road. BRISTOL; 302 Gloucester Road. CARDIFF 29-31 City Road. CHATHAM; 2 Luton Road. COVENTRY; 12 Bishop Street. EDINBURGH; 126 Dalry Road. GLASGOW; 264-266 Great Western Road. ILFORD; 302-304 Green Lane. LEEDS; Carpet World Building. 3 Regent Sireet. LEICESTER; Office World Building, Burton Street. LONDON; 146-148 Burnt Oak Broadway, Edgware. 107.1 13 Stanstead Road. Forest Hill. 120-122 King Street. Hammersmith. MANCHESTER; 8 Oxford Road. NEWCASTLE-UPON-TYNE; Unit 4, Allison Court, The Metro Centre, Gateshead. NOTTINGHAM; 86-88 Lower Parliament Street. PORTSMOUTH; 98-100 Kingston Road. READING; 129-131 Oxiord Road. SHEFFIELD; 413 Langsett Road, Hillsborough. SOUTHAMPTON; 46-48 Bevois Valley Road. SOUTHEND-ON-SEA; 282-284 London Road. Westcliff. Plus a NEW STORE opening soon in MIDDLESBROUGH. Phone 0702552911 for further detalis. Subject to avallability. Price subject to change. Price inclusive of VAT. H indicates a carriage charge of $£ 5.50$

Features:

* Standard 19in. 2 U Rack Mounting Case
* 100W RMS Power Output
* Balanced Line Input
* Loudspeaker Protection
* Switch-on Mute
* Thermal Protection

Typical Specification:
Rated Load Impedance: 4 to 8Ω
Maximum Power Output:
4Ω
8Ω
THD @ 75W (1kHz): 0.02\%
Frequency Response: 10 Hz to $40 \mathrm{kHz},-1 \mathrm{~dB}$

Mail Order to: P.O. Box 3, Rayleigh, Essex SS6 8LR

[^0]: Phease add $\mathbf{E} 200 \mathrm{P}$ \& P to all orders and 17.5% VAT on all U.K orders

[^1]: ## ORDER FORM

 Simply complete and return the order form to the following address:
 Wimborne Publishing Lid, 6 Church Street

 ## Whmborne Dorset BH21 1 JH

 Manuals on 10 days approval may be subject to delay in
 dilspatch; if you require a manual quickly please pay in
 advance - we offer a 30 day money back guarantee.

 OVERSEAS ORDERS: All overseas orders must be prepald but are supplied under a money-back quarantee of satisfaction. If you are not entirely happy with the manual return it within a month for a refund of the purchase price pou do have to pay the postage). Add the following amounts to the price of the manual to cover postage:

 EIRE E 10.50 (air mail only)
 EUROPE (including C.I.S.) E21.00 (air mail only)
 MIDDLE EAST/FAR EAST/INDIA $£ 20$ surtace $\left.\begin{array}{l}\text { AFRICA/SOUTH AFRICA } \\ \text { SOUTH AMERICA }\end{array}\right\} \begin{aligned} & \mathrm{E} 20 \text { surf } \\ & £ 37 \text { air }\end{aligned}$
 REST OF THE WORLD $\mathbf{2 5}$ surface, $£ 31$ air Note surface mail can take around 8 weeks to some parts of the world. Each manual weighs about 4.5 kg when packed.
 All payments must be made in E's Sterling payable to Wimborne Publishing Ltd. We accept Mastercard (Access) ana Visa credit cards.

