=YE:TDIM

[^0]TELEPHONE BIT
Master socket thas surge arrestor - ringing condenser etc) and takes B.T. plug
Dual adaptors $(2$ from one socket
Cord terminating with B.T. plug 3 metres

socket, complete with 4 core cable cable clips and 2 B.T
extension şockets
100 mtrs 4 core telephone cable

COMPACT FLOPPY DISC DRIVE EME-101

The EME-101 drives a $3^{\prime \prime}$ disc of the new standard which despite its s mall size provides a capacity of 500 k per disc. which is equivalent to the $31 /{ }^{*}$ and $5 / /^{" ~}$ discs. We supply the Operators Manual and other information showing how to use this with popular computers: BBC, Spectrum, Amstrad etc. All at a special snip price of $£ 27.50$ including post and VAT. Data available separately $£ 2$, refundable if you purchase

MULLARD UNILEX AMPLIFIERS

We are probably the only firm in the country with these now in tock. Although only four watts per channel, these give superb ower unit (EP9002) Pre amp module (EP9001) and two amplifier modules (EP9000) all for $£ 6.00$ plus $\subseteq 2$ postage. For prices of
CAR STARTER/CHARGERKIT this unit - 250 watt transforme
data and case $\mathbf{f 1 7 . 5 0}$ post $£ 2$.

THIS MONTH'S SNIP

is a $21 / 2 \mathrm{~kW}$ tangential heater, metal box to contain it and 3
level switch to control it. Special price $£ 7.50$ post paid

VENNER TIME SWITCH

nand one off win 20 amp switch, on utomatically correcting for the lengthening or shortening day. An expensive time switch but you can have it for only $£ 2.95$ without case, metal ase - $\mathbf{E 2} .95$, adaptor kit to convert this added advantage of up to $12 \mathrm{on} / \mathrm{offs}$ per 2 h rs. This makes an ideal controller for he immersion heater. Price of adaptorkit

Ex-Electricity 8 oard.

 is $£ 2.30$
12 volt MOTORS BY SMITHS

Made for use in cars, etc. these ar Size $3 h^{\prime \prime}$ long by 3^{-1} dia
They have a good length of
1/8 hp $£ 5.75 .1 / 6 \mathrm{hp} £ 7.50 \quad$ SOUND TO LIGHT UNIT

Complete kit of parts for a three channel sound to light unit controlling over 2000 watts of lighting. Use this at home if you wish but it is plenty rugged enough for disco work. The unit is each channel, and a master on/off. The audio input and output are by $1 / 4$ " sockets and three panel mounting fuse holders provide thyristor protection. A four pin plug and socket facilitate ease of connecting lamps. Special price is £ 14.95 in kit form.

$\mathbf{9}^{\prime \prime}$ MONITOR

Ideal to work with computer or video camera uses Philips black and white tube ref M24/306W. Which tube is implosion time base and EHT circuitry. Requires only a 16 V dc supply to set it going. It's made up in a lacquered metal framework but has open sides so should be cased. The VDU comes complete with circuit diagram and has been line tested and has our six months guarantee. Offered at a lot less than some firms are asking for the tube alone. only $£ 16$ plus $£$

LIGHT BOX

This when completed measures approximately $15^{\prime \prime} \times 14^{\prime \prime}$. The light source is the Philips fluorescent ' W' tube. Above the light a sheet you to follow the circuit on fibreglass PCBs. Price for the omplete kit, that is the box. choke. starter, tube and switch, and

TANGENTIAL HEATERS

We again have very good stocks of these quiet runnng instant heat units. They require only a simple case, or could easily be fitted into the bottom of a kitchen unit or book case etc. At $£_{5}$ each for the first 3 . and $£ 6.95$ for the 3 k . Add post $£ 1.50$ per heater if not collecting,
CONTROL SWITCH enabling full heat, half heat or cold blow
with connection diagram, 50 p for 2 kw , 75 p for 3 kw .

FANS \& BLOWERS

$5^{\prime \prime}$ E5 $+£ 1.25$ post. $6^{\circ} \mathrm{E} 6+£ 1.50$ pos
$4^{\prime \prime} \times 4^{4 \prime}$ Muffin equipment cooling fan $115 \mathrm{~V} £ 2.00$ $4^{4 *} \times 4^{4}$ Muffin equipment cooling fan $230 / 240 \mathrm{~V} £ 5.00$ $9 "$ Extractor or blower 115 V supplied with 230 to 115 V adaptor
f9. $50+E 2$ post. c9.50 +2 post
All above are ex computers but guaranteed 12 months 115 V adaptor on usial Blower. New. Very quiet - supplied with 230 to post or $£ 4.00+\mathbb{E} .00$ pos 1 for two

TELEPHONE LEAD

3 mtrs long terminating one end with new BT, flat plug and the other end with 4 correctly coloured coded wires to fit to phone o appliance. Replaces the lead on old phone making it suitable for

POWERFUL IONISER

Generates approx. 10 times more IONS than the ETI and similar circuits. Will refresh your home, office, shop, work room etc. Makes you feel better and work hardei-a
complete mains operated kit, case included. $59.50+$ E2 PGP.

J \& N BULL ELECTRICAL

Dept. E.E., 250 PORTLAND ROAD, HOVE, BRIGHTON, SUSSEX BN3 5QT MAIL ORDER TERMS: Cash, P.O, or cheque with order. Orders under $£ 20$ add $£ 1$ service charge. Monthly account orders orders accepted. Brighton (0273) 734648 or 203500.

NEW ITEMS

© POUNDERS

122	control ${ }^{-130 \mathrm{a}}$ rotary switch, surface mounting
2 P 123	- 125 a rotary switch, sufface mounting, cover engraved, high.
2 P 124	- 128 kv .001 mid block condensor
2 P 127	-130a bridge rectifier assembly on heat sinks
${ }^{2 P 129}$	- 1 10rpm motor 115 V so supplied with adaptor for 230
${ }^{21} 131$	-1 Crouzet motor 230 V fits the Crouzet gearbox
2 P 132	-1 ceiling heat-stal for fire warning or protection
2P133	-1 Cir cuir breaker 20a, Crabtree ref C50
2 P 134	-19V 500ma psu. plugs into 13a socket
2 P 135	-10m 10 conductor intercom cable
${ }_{2} 2136$	$-121 / \mathrm{kw}$ element made for tangential blowers
2 P 137	- 1 Thermo couple, stainless stee/ tipped for measuring inte heat
2P138	-1 Mains transformer $20 \mathrm{~V} \cdot 0 \cdot \mathrm{-20V}$ la upright mounting
141	- 1 rechargeable battery D size 14 AH) solder tag ended
2 P 142	- 10 m 4 d pair intercom cable White PVC outer
2 P 144	-1 mains operated relay with $4 \times 8 \mathrm{c} / 0$ conta
2 P 145	-110.000 uf 70 V d.c. smoothing capacitor
2 P 146	-17.800 uf 150C d.c. smoothing capacitor
${ }^{2} 1488$	-1 Technical infor mation on 3^{-}FDD reis
$2 \mathrm{PP149}$	- 5 diff battery operated model motors
2 P 150	-1 PSU chassis with all components for 24 V 2 A d.c. unwi
2P151	-1 Metal box $14 \% / 2 \times 14 \times 4$ with lid add $£ 2.00$ post
2P152	-1 Motor start capacitor 80 ul 250 V
2 P 153	-1 Two station intercom unused but line reject
2P154a	-1 Nicad charger - plug into 13a socket 5.2V.7UA Output
	- 1 Nicad charger - plug into 13a socket 6 V . 9 VA output
2 P 155	-1
2 P 158	-1 Oven thermostat with temp calibrated knob
$2 \mathrm{P159}$	-19V 500 ma cased with mains lead and outpu
${ }_{2}{ }^{2} 160$	-113a plug adaptor fused tak
2 P 161	$-16^{\text {² diagonal side cutters }}$
162	-1 Ster
2 P 163	-1 AC Working ca pacitor 12uf 660 V AC or 15

POUNDERS*

24h voltage, doubler or halver for 12 V to 24 V 12 to 6 V 24 to 12 V
12 V 500 mA a spu plugs in 13 a socker regulated
1 Mains transformer 50 V 2 A with 6,3 pilo ligh
upright mounting, fuly shrouded plus $f 1$ post
-1 Noise filter to fit in mains lead of appliance up to 25a 1 waterproof case will take 150 watt transformer
1 signal box. 3 la mps on face plate of metal box size $5 \% \times 3 / 2 / 20$ 1 Choke and starter to work 8 fluorescent tube al 125 W
122 V 3 m mains transformer with bridge rect fitted on top pan
12 10.5 a ammeter $3 \mathrm{kac} / \mathrm{dc}$ ex equipment
1 power factor correction condenser 35it 350ac
200 1200 Va - auto transtormer 230 to 115 V tortoidal encapsulated

136 V .0 .36 V tapped $20 \mathrm{~V}-0.20 \mathrm{~V} 100 \mathrm{va}$
13" Floppy disc for Amstrad etc.
17^{*} Electricians pliers
£4 POUNDERS*
-50 m low loss co-3x $75 \mathrm{hm}+\mathrm{C1}$ post
 -1 powertul motor 2^{-}stack fitted with geatbox final speed 60 ppm mains operated. could operate door opener el
-1 Uniselector 3 pole 25 W . 50 V coil standard size 1 Volt meter with digital display IDIGIVISOR) 112 V dc motor will fit to gearbox 4 P 20

55 POUNDERS*

1 Transtan
$\begin{array}{ll}\text { 5P88 } & \text { Secondary } \\ \text { 5P } \\ \text { 5P89 } & 1 \text { Transformer in waterproot metal box } 24 \mathrm{~V} 5 \mathrm{~A} \text { add } £ 2 \text { pos } \\ \text { - } 14 \text { bank heating alement each } 2 \mathrm{kw} \text { ideal }\end{array}$

-10.90 ammeter for mounting outside control panal
-10.100 a ammeter for mounting 10. 180 ammeter for mounting ourside control panel
-1 Mains operated blower centrifugal output size app. $5^{" \prime} \times 1 / \mathrm{h}^{\circ}$ 5P100 - 1 Mains spliter 45 switch 3×15 a fused ecircuits
SP101 - 1 Model motor 9 rom from 6 V reversible

$€ 7$ POUNDERS*

-1 Instant heat solder gun - mains with renewable tip and job

f8 POUNDERS*

	16v 10a secondary
8P2	$-16^{\prime \prime}$ underdome alarmbell suitable for a fire alarm or burglar alarm mains operated
	-1 heat sink big powerful so ideal for power tansmitter
	-1\% hp motor 900 'pm capac
${ }^{8 P 6}$	-124hr time switch - 2 on offs 16 a c/o contacts $3^{\prime \prime} \times 3^{\prime \prime} \times 1$
8 P 7	- 1 Silent sentinel invisible ray kit
${ }^{888}$	- 1 Papst $\tan 3 \% \times 3 \% \times 11 / 230 \mathrm{Vm}$
£10 POUNDERS*	
10P13-1 reversible motor w	
10P14-1100a time switch 1 on/o	
10P16-1 poweriul air mover 2 sma	
10P18-1m	
10P19 -1post	
$\begin{aligned} & 10 P 22 \\ & 10 P 23 \end{aligned}$	-1 sensitive volt meter relay
	-1 fruit machine heart 3 fruit wheels each stepper motor operated add $£ 3$ post
10 P 24	-1 big panel meter face size $4 / 6 \times 2 \% 200 \mathrm{uA}$ movement scaled $1-10$
P26	-1 "Secretary' phone auto-dialer complete untested sold as such
P29	-112 V engine cooling tan
10P30	-1 instrument psu on peb has 4 outputs $.12 \mathrm{~V} / .5 \mathrm{~V} 6 \mathrm{~A} / 12 \mathrm{~V}$ 5A
	17 d

10P32-168 rpm 1/6th hp motor reversible
f15 POUNDERS*
$\begin{array}{ll}\text { 15P2 } & -1 \text { kit for psu to supply one or two } 15 P 1 \text { amps } \\ \text { 15P3 } \\ -1 \text { time switch battery or mains operated }-16 \text { c/o contacts. } 7\end{array}$
$\mathrm{f}_{25 \mathrm{P} 1} \mathrm{PO}$ UNDERS*

- 11500 PSI hydraulic pur
aircraft undercariage etc.

LIGHT CHASER KIT motor driven switch bank with connection diagram, used in bank with connection diagram, used connection with 4 sets of xmas lights
makes a very eye catching display for makes a very eye catching display for
hóme, shop or disco, only E5 ref 5P56.

ISSN 0262-3617

PROJECTS . . . THEORY . . . NEWS . .
COMMENT . . . POPULAR FEATURES . . .

© Wimborne Publishing Led 1987. Copyright in all drawings, photographs and articles published in EVERYDAY ELECTRONICS is fully protected, and reproduction or imitations in whole or in part and expressly forbidden.

The Magazine for Electronic \& Computer Projects
Projects
VIDEO CONTROLLER by Robert Penfold 528
Improve your home videos with this audio/video controller
TRANSTEST by Andy Flind 534
"In-circuit" transistor and diode testing made easyVERSATILE COUNTER/TIMER544
Add-on project for Spectrum owners
AUTOMATIC/MANUAL PORCH LIGHT by M.P. Horsey 548
Light-activated switch with many possible applications 552
Fast and slow oscillators using logic i.c.s. -
An Exploring Electronics project
CARAVAN FRIDGE ALERT by T.R. de Vaux Balbirnie 560
Safety warning device for mobile fridges
STATIC MONITOR by G.T. Theasby 566
Low cost fun project that will amuse your friends
Series
INTRODUCING MICROPROCESSORS by Mike Tooley BA 538
An EE exclusive C\&G certificate course.
Part One: Introduction and listing of assessment centres
ON SPEC by Mike Tooley BA 544
Readers Sinclair Spectrum page
EXPLORING ELECTRONICS by Owen Bishop 552
Part Sixteen: Investigating oscillators
BBC MICRO by R.A. \& J.W. Penfold 558
Regular spot for Beeb fanatics
ROBOT ROUNDUP by Nigel Clark 564
Investigating the world of robotics
ACTUALLY DOING IT by R.A. Penfold 568
Producing printed circuit boards photographically
AMATEUR RADIO by Tony Smith G4FA1 570
Illegal Operation; Good Neighbour; USA Novice Licence
Features
EDITORIAL 527
FOR YOUR ENTERTAINMENT by Barry Fox 533
Free Check; Warning for Speaker 554
It's 25 years since the first transatlantic satellite pictures
READERS LETTERS 532, 551
Your news and views
546, 569
MARKET PLACE
Free readers' buy and sell spot
SHOPTALK by David Barrington 563
Product news and component buying
READERS DISCOUNT SCHEME 563
PRINTED CIRCUIT BOARD SERVICE 571
BOOK SERVICE 572
Our own service to readers of EE
ADVERTISERS INDEX 576
SPECIAL OFFER 547
Sony Loudspeakers

 The UK Distributor for the complete ILP Audio Range

* Bipolar Modules - 15 watts to 180 watts
* Mosfet Modules - 60 watts to 180 watts
* Power Booster - 15 watts (for 12 v dc supply)
* Power Supplies
* Pre-amplifier and Mixer Modules
* 100 volt Line Transformers
* Loudspeakers - 12" 350 watt Bass and 200 watt Wideband Bass
* Power Slave Amplifiers

Write or phone for free Data Pack
Jaytee Electronic Services
143 Reculver Road, Beltinge, Herne Bay, Kent CT6 6PL Telephone: (0227) 375254

Full Kits inc. PCBs, or veroboard, hardware.
electronics. cases (unless steted). Less electron If you do not hove the issue of E.E. which
includes the project - you will need to order the nstruction reprint as an extre - 80 p each. Reprints
80 p esch + p\&p file 1.00 .

THIS MONTH'S KITS

SAE or 'phone for prices

 ELECTRONIC MULTIMETER Sept 87 ¢4.72 NOISE GATE STP 187 CAR OVERHEATING ALARM Sept 87 QURST. FIRE MAINS CONTROLLER Seol SUPER SOUMD ADAPTOR AUO 87 IMMERSION HEATER TMMER Aug 87 BANO 1.t-30MHz RADIO Aug 87 £17.99 BUCCAMEER I.B. METAL DE TECTOR inc. coils and Case, loss handit ad hartware July 87 £25.1OICITAL COUNTER/FREO METER (1OMH2) inc. caso Joly 87 MONOMIX July 87 ERMOSTAT July 87 IISUAL GUITAR TUNER Jun 8 MIMI OISCO LIGHT JUN 87 Jun 87 WIMDSCREEM WASHER WARMING M f 11 . ERIOGE ALARM May 87 My 87
Aprii 87 4.72 C27. 14 13.63
58.21 58.21

12.91 | 36.56 |
| :--- | 17.99

25.27 cils mad
[25.1
21
inc.

LLARM THERMOMETER Apri 87
f14.70
$\mathbf{f} 25.98$
EXP. SPEECH RECOGMITION April 87
COMPUTER BUFFER IMTERFACE Mas 87
$\begin{array}{lll}\text { ACTIVE } 1 / \text { R BURGLAR ALARM Mas } 87 & \mathrm{f} 11.96 \\ \mathrm{f} 33.95\end{array}$
VIOEO GUARD feb 87
CAR VOLTAGE MONTTOR FEG 87
SPECTRUM SPEECH SYWTH. Ino f11.98

STEPPING MOTOR BOOSTER (for aboval Feb
87 STEPPING MOTOR MO200 Feb 87
MAMOS-OFF INTERCOM (per station) inc.
car alarm dec 86
UuAL READING TMERMDMETER (lass f10.87
finoom mumber cenerator f 39.98
RANODM MUMBER GENERATOR Dec 86 f14.97
8 CHAMNEL A.0 (SPECTRUM) COMVERTER Dec

86C 16K Sloeways ram dec $88 \quad$| 834.29 |
| :--- |

$\begin{array}{ll}\text { SBC 16K SIOEWAYS RAM Dec } 86 & £ 12.35 \\ \text { MODEM TONE OECOOER NoY } 86 & £ 18.99\end{array}$
OPTICALIY ISOLATEO SWITCH Nov $36 \quad$ f 11.99
CAR FLASHER WARMING Nov 86
200 MHz OIG. FREQUENCY METER NoV
10 WATT AUOIO AMPLLPIER Oct 86
LIGHT RIDER LAPEL BAGEE Oct
LGGT RIDER DISCO VERSIOM
UGHT RIOER DISCO VERSION
SCRATCH BLANKER SEpt 86
SCRRA-RE O EAMM ALARM Sept 88
IFPEEZER FALIURE ALARM Sept 86
CAR TIMER Sept 86
GATTĖRY TESTER ALg
TILT ALARM July 86
R July 86
HEADPHONE MIXER July 86
CARAVAM GATTERY MONITOR July 86
SOUEEKIE CONTINUITY TESTER Uuly 8
ELECTRONIC SCARECROW Juh 86
vox Box AMP July 86
PERCUSSION SYHTH June 86
UGHT PEN (loss casa) June 86
PERSONAL RADIO June 86
WATCHOOG June 88
MIII STROBE May 86
OGIC SWITCH May 86
aUTO FIRING JOYSTICK May 86
STEREO REVERB ADC 86
VERSATLLE PSU ADI 86
VERSATILE PSU Apr 86
CIRCLE CHASER Apr 86
FREEIOADER AOR 86
FREELOAOER API 86
STEPPER MOTOR ORIVER APM 86
STEPPER MOTOR ORIVER App 86
BBC MIOI IWTERFACE Mar 86
BBC MIOL IWTERFACE Mar
IWTEAVAL TIMER Mar 86
STEREO HI-FI PRE-AMP
MAIMS TESTER \& FUSE FINOER Ma 88
FUWCTION GEMERATOA FEt 86
POWER SUPPLY FOR ABDVE
TOUCH CONTROLLER Feb 88
PH TRANSOUCER (less Probe) Feb 86
SPECTRUM OUTPUT PORT Fse 86
DPORT Jen 88
ACHOMETER Jan 86 lese case Jan 86
ome Chip alarm Jon 86
muSICAL OOOR BELL Jan 80
TTL LOGIC PROBE Dac 85
OIGITAL CAPACITAMCE METER Dec 85
FLUX DENSITY TRANSOUCER Nov 85
FLASHING PUMPKIM lass cass Noy 85
soueaking gat less casa Nov 85
SCREAMING MASK less case Noy 85
STRAIM GAUGE AMPLIFIEA Det 85
SOLDERING IRON CONTROLLER OCt 85
voltage regulator sept 85
PERSONAL STEREO P.S.U. Sept 85
R.I.A.A. PRE-AMP Sept 85
CARAVAN ALARM Sept 85
caravan alarm sept
FRIOGE ALARM Sept 85
SEMI-COMOUCTOR TEMP. SEMSOR Sept 85
SEMI-CONOUCTO TEWP. SEMSOA Sept 85 £20.02
Probe

520:
SOLOER MANOY SIZES
SODER CAROM
 LOW COST POWER SUPPIY UNIT ALQ 85 E18.39 TRI-STATE THERMOMETER (BAtT) AUD 85
TREMOLO/VIARATO AuO 85 STEPPER MOTOR INTERFACE FOR THE BBC COMPUTER less case Aug 85
1035 STEPPER MOTOR EXTRA
OPTIONAL POWER SUPPLY PART
CONTINUITY TESTER JUHY 85
TRAIN SIGNAL CONTMRLIER JUIY 85
AMSTRAD USER PORT JUIY 85 ACROSS THE RIVER JUne 858 EIECTRONIC OOORBELL June 8 GRAPMIC EQUALISER June 85 AUTO PHASE May 85 INSULATION TESTER ADC 85
LOAO SIMPLIFER FED 85 COAO SIMPLIFER FED 85 SPECTRUMI AMPLIFIEA JAn 85 TV AERIAL PRE-AMP Doc 84 Oprional PSU 12V 82.4 [14.5 MINI WORKSHOP POWER SUPPIY Dec 84 f 41.88 DOOR CHIME Dec 84
BEC MICRO AUOIO STORAGE SCOPE INTEREACE Nov 84 ATCROLO STORAGE SCOPE INTERFAC
PROXImity ALARM Nov 84
MAINS CABLE DETECTOR Oct 84 MICRO MEMORY SYTHTHESISER OCT 84 [5.27 ORIL SPEED CONTROLLER OC1 84 Cl 84 [57.57 GUITAR HEAO PHOME AMPLIFIER Sem 98.27 SOUND OPERATEO FLASH Less lead Sept 84 e5.98 SOUND OPERATEO FLASH less lead Seot 84 © 5.9
TEMPERATURE INTERFACE FOR BBC AU
 $\begin{array}{ll}\text { CAR RADIO 800STER AUD } 84 & \text { f1E.64 } \\ \text { CAR LIGHTS WARMING July } 84 & \text { f9.5B }\end{array}$ CAR LGGHTS WARMING JIIY 84
VARICAP AM RADIO May 84 VARICAP AM RAOIO MEY 84
EXPERIMEMTAL POWEF SUPPIY Mey $84 \mathbf{~} 822.44$
SMPIE SIMPLE LOOP BURGLAR ALARM May 84 £16.34
MASTERMMO TIMER May 84 $\begin{array}{ll}\text { MASTERMINO TIMER MAY } 84 & \text { [8.52 } \\ \text { FUSE/OLOOE CHECKER ADF } 84 & \text { E4.14 }\end{array}$ QUASI STEREO AOAPTOR Apr 84 § 13.08 OiGital multimeter add on for bec Micro Ma 84 M-CaO battery charger Mar $84 \quad$ [29.98 MH-CAO BATTERY CHARGER Mar 84 ¢11.82
REVERSING BLEEPER Mas 84
PIPE FIMOER ME 84
IONISER Feb 84
SIGNAL TRACER Feo 8a
CAR LIGHT WARMING Fed 84
GUITAR TUMER Jan 84
 BIOLOGICAL AMPLIFIER Jan 84 $\quad \mathbf{~} 21.28$ CONTIMUITY TESTER Dec 83
CHILOREN'S OISCO UGHTS Dec $83 \quad\{11.99$ WOVEL EGG TIMER Oec 83 inc case $\quad \mathbf{1 2 . 2 9}$ SPEECH SYNTHESIZER FOR THE BBC MICRO NO 83 less catbe + sockets $\quad \$ 25.38$ MULTIMOD Nor 83
$\mathbf{5 2 8 . 3 8}$
$\mathbf{5 2 0 . 3 8}$
HOME INTERCOM less link wire Oct $83 \quad \$ 17.26$ STORAGE 'SCOPE INTERFACE FDR BEC MICRD Aug 83 less software
HIGH POWER INTERFACE 80ARO Aug 83 no
f12.45

case
USER PORT $1 / 0$ 日OARO less cable + olug $\mathbf{f 1 2 . 4 5}$
12.59

USER PORT Y/O BOARO less cable + olvg f12.59
USER PORT COWTROL BOARO Juhy 83 less cable +

MOISTURE OETECTOR MAY 83
MOVELTY EGG IIMEA April 83 less case $\quad \mathbf{f 6 . 5 8}$
DUAL POWER SUPPIY March B3 BUZZ OFF March 83
PUSH BIKE ALARM
ZX TAPE CONTROL Nov B2
2-WAY MTERCOM July 82 no case
REFLEX TESTER JUIY 82
SEAT BELT REMMOER
EGG TIMER JUne 82
GAR LED VOLTMETER less case Ma C.C. SOUND EFFECTS UNIT APr 82 โ3.8 CAMERA OR FLASH GUN TRIGGER Mar 82 less tripod bushes POCEET TIMERMA 82
SIMPLE STABILISEO POWER SUPPL 82 SIE STABILISEO POWER SUPPLY JE SIMPLE IMFRA REO REMOTE COMTROL 55.28 81 £ 22.4 SUSTAMM UMIT Oct 81 TAPE MOISE LMMITER OE 81 HEADS ANO TAILS GAME Oct 81 fuzZ 80×0 Oct 81
SOIL MOISTURE UNIT OET 81 O-12V POWER SUPPLY Sept 81 COMBIMATION LOCK JUlY 81 less case
SOHL MOISTURE INDICATOR E.E. Way 8 SOHL MOISTUAE INDICATOR E.E. May 81 PHONE BELL REPEATER/BAEY ALAR
81 MOOULATEO TONE OOORBELL
2 MOTE DOOR CHIME Oec 80 LIVE WIRE GAME Dec 80
 ase Standad CIE Amplifier Nov $80 £ 14.10$ tess SOUNO TO LGLHT How 803 chang 55.98 AUOIO EFFECTS UNIT FOR WEIRO SOUMOS O28 ${ }_{80}$ AUOIO EFFECTS UNIT FOR WEIRO SOUMOS Oc
${ }^{80}$ SPRING UNE REVERE UNIT JIEN 80 UPIBOARO BURGLAR ALARM DAC 79 OARKROOM TIMER JIY 79 MICROCHIME DOORBELL Feb 1 Feb 79 $£ 17.28$
$£ 32.64$

$£ 7.98$ SOUNO TO LIGHT Sept 78 | 8 Sepl 78 |
| :--- |
| RESTR | in Situ tanmsistor tester Jun 78 WEIRO SOUND EFFECTS GEMERATOR M ELECTGONIC OICE Ma 71 $\mathbf{1 7 . 4}$

DIGITAL

TROUBLESHOOTING

Top quality kits \& parts for this new series. Our excellent technical back-up jects succeed every time.
PART 1 BENCH POWER SUPPLY--Full kit $£ 24.98$
LOGIC PROBE- $£ 7.58$ including case. LOGIC PULSER- $\mathbf{~} 7.48$ including case. VERSATILE PULSE GENERA. TOR-£29.98 including case.
DIGITAL I.C. TESTER-f29.21 case different).
CURRENT TRACER-£20.56.
AUOIO LOGIC TRACER-E8.99
EXPLORING

ELECTRONICS

A full set of parts including the Veroblo oreadboard to follow the series right up to Nov.
issue. $\mathbf{£ 1 4 . 8 7}$. Dec pans $\mathrm{f4.99}$. Jan parts $\mathrm{f4.99}$. Feb parts $\mathbf{6 4} .29$. March parts $\mathbf{1 6 . 9 9 \text { . April }}$ parts $£ 4.44$. May parts $£ 3.98$. June parts
£4.40. July parts $£ 4.79$. Aug parts $£ 3.85$. Sept £4.40. July
parts 72 p .

INTRODUCTION
 TO ELECTRONICS

An introduction to the basic principles of electronics. With lots of simple experi-
ments. Uses soldering. Lots of full colour illustrations and simple explanations. A lovely book. Ideal for all ages. IMTROOUCTION TO ELECTROMICS COMPPMENT
BOOK EXTRA
B00K EXTRA
£ 10.99
10.99
$\mathbf{5 2 . 4 5}$

Sook also avails ble separately.

NEW BOOKS

Electronic Circuits for the Con-

BP176
Midi Proiect
Miof Propects. Penlotd
Garting The Most From
Gouting The Most From $\quad \mathbf{5}$
More Actvanced
Electronit Music Projects.
P2.95
Penfold

BOOKS

How to Geer Your Eliectoonic Propects
Working. Penfold
$\mathbf{5 2 . 1 5}$
A practical Introduction to Microprocessors.
Penfold
Basic Electronics. Hodder \& Stoughton $\mathbf{6} 2.10$
$\mathbf{f 8 . 9 8}$
Beginners Guide to Building Electronic Proiects.
OIY Robotics a Sensars Billfrinsley. BBC Commodore 64 £2.25

Elementary Efectronics Staddin

 $\mathbf{8 7 . 9 5}$$\mathbf{8 7 . 9 9}$ How to Oesign \& Make Your Own PCBs. BP121£2.15 How to Make Computer Controlled Robots. Potter $£ 3.20$ How to Make Computer Model Controllers. Potterf 3.19 Interficing to Microprocessors \& Microcomputers 5.50 Machune Code for Bepgnners. Ustborne $\quad \mathbf{2 . 4 5}$ Micro interisang Crants Book 12.45
54.98 Mricoprocessors for Hobbyists. Coles $\quad \mathbf{5 4 . 9 8}$ Practical Things to do With a Microcomputer.
 Understimding the Micro. Usborne

- JUST A SMAL SELECTIOM. LOTS MORE IN

TEACH IN 86

MULTIMETER TYPE M102BZ as specified. Guaranteed. Top quality. $20 \mathrm{k} / \mathrm{N}$, with battery check, contimuity
tester buzzer and fuse and diode protection, 10A de range.
Complete with leads, battery and manual.
PAD MDVNT
Complete with leads, battery and manual.
VEROBLOC BREADBOARD, DESIGN PAD, MDUNTING PANEL ANO 10 CRDCOOILE CLIP CONNECTING LEAOS.
REGULATOR UNIT FDR SAFE POWER SUPPLY. All components including the specified case Also th plugs, fuse and fuseholders to suit the EE mains adaptor. \quad I16.78 COMPONENTS FOR PRACTICAL ASSIGMMENTS. Parts 1 and 2 (Oct \& Nov) ©1.94. Part 3 (0ec) f1.37
Part 4 (Jan) £2.48. Part 5 (Feb) £2.22. Part 6 (Mar) f8.31. Parts 7.8 \& 9 (combined) £2.55.

TEACH IN 86 PROJECTS

UNIVERSAL LCR BRIDGE Nov $85 \quad £ 25.83$ OIODE/TRANSISTDR TESTER Dec 85 £18.89 USEFUL AUDIO SIGMAL TRACER Jan 86
AUDIO SIGNAL GENERATOR FEL $86 \begin{aligned} & \mathrm{f} \\ & \mathrm{f} 26.21\end{aligned}$ R.F. SIGNAL GENERATOR March 86 f24.48 FET VOLTMETER ApI 86 digital pulse generator may 86 f16.68

MINI MDOEL MOTORS NEW
$1 \frac{1}{2}$-3V, 2 TYPES. MM1-59p MM2-61p

LEGO Technic Sets

TEACHERS WE ARE STOCKISTS OF THE WHOLE RANGE. CONTACT US FOR BROCHURES. VERY COMPETITIVE PRICES AND QUICK DELIVERIES.

STEPPING MOTORS 12 VOLT

MOTOR - GEARBOX ASSEMBLIES

achieved by fitting from 1-6 gearwheels (supplied) as required. Operates from 1.5 V to 4.5 V Small unit type MGS speed range 3 rmp -2200rpm depending on voltage \& gear ratio. Large unit type MGL (higher obots and buggies
S) f3.49. Large Unit (MGL) £3.98
pulley wheels. New Range-plastic WITH BRASS BUSH \$" dia. hole-easily 36 p. 3° dia. 44p. $1^{\prime \prime}$ dis. 44p. Metal collar with fixing screw. 3 mm bore $\mathbf{2 4}$ p. Flexible spring coupling 5 mm . Length 31 mm 68 p .
Flexible metal coup
£2.98: $2 \mathrm{~mm} £ 3.34$

1987 CATALOGUE

Bref details of each kit, our books. illustrations of our range of tools \& components. Also stepper motor, interface kin a simple robotics. Plus circuit ideas for you to build. If you read Everyday Electronics then you need a copy of the MAGENT A
-
Catalogue a price list - Sond fl in stamp: tc. or add fo to yom ordar. Price list -9×4 se Cotalogue FREE TO SCHOOLS/COLLEGES RE-
OUESTED ON OFFICIAL LETIERHEAO.

MAGENTA ELECTRONICS LTD. EE57, 135 HUNTERST. BURTON-ON-TRENT, STAFFS, OE14 2ST. 0283 65435, Mon-Fri 9-5. Access/Barclaycard (Visa) by phone or pest. 24 hr Answerphone for credit card orders Our prices include VAT.	SH
	ADD E1 Pap To ALI ORDERS
	PRICES INCLUDE VAY. ${ }^{\text {SAE AHI EMOUIIES }}$
	OFFICLAL OROERS WELCDME.
	OVERSEAS P Pmment must bo stertiong.
	IRISH REPUEUC Ind BPPO UK PPRCTS ELPOPR: WY PPICES ows 108.
	EISEWHERE Wha for quor
	SHOP HOURS 9-5 MON-FRI

PRICE LIST-FREE WITH ORDERS OR SEND SAE

TOP KITS

A SELECTION OF OUR BEST PROJECT KITS
As usual these kits come complete with printed circuit boards, cases, all components, nuts, screws, wire etc. All have been tested by our engineers (many of them are our own designs) to ensure that you get excellent results.

INSULATION TESTER

An electronic High Voltage tester for mains appliances and wiring. An inverter circuit produces 500 volts from a PP3 battery and applies it to the circuit under test. Reads insulation up to 100 Megohms. Completely safe in use.
OUR KIT REF E444 £18.65

DIGITAL CAPACITANCE METER

Simple and accurate (1%) measurements of capacitors from a few pF up to 10,000 uF. Clear 5 digit LED display indicates exact value. Three ranges $-\mathrm{pF}, \mathrm{nF}$, and uF. Just connect the capacitor, press the button and read the value.
£39.57
OUR KIT
REF E493

3 BAND SHORTWAVE RADIO

Covers $1.6-30 \mathrm{MHz}$ in 3 bands using modern miniature coils. Audio output is via a built-in loudspeaker Advanced design gives excellent stability, sensitivity and selectivity. Simple to build.
OUR KIT REF E718 £25.27

DIGITAL FREQUENCY METER

200 MHz

An 8 digit meter reading from A.F up to 200 MHz in two ranges. Large $0.5^{\prime \prime}$ Red LED display. Ideal for AF and RF measurements, Amateur and C.B. frequencies.
KIT REF E 563 £59.98

'EQUALISER' IONISER

A mains powered Ioniser that produces a breeze of negative ions in the air. A compact. safe, simple unit that uses a negligible amount of electricity.
KIT REF E707 £14.79

A crystal controlled tuner with a New type of 'rotating' LED display Clockwise or Anticlockwise rotation indicates high or low frequency. indicates high or low frequency. Perfect tuning is obtained when the pattern is stationary. Suitable for electric guitar pick-ups or may be used with a microphone for acoustic instruments. Also has an audio 'pitch pipe' output. KIT REF E711 £21.99

FROM MAGENTA

NEWSAGENT ORDER FORM

Please reserve/deliver a copy of Everyday Electronics for me each month.

Signed

Namé \& Address
(BLOCK CAPITALS PLEASE)

Everyday Electronics is published on the third Friday of each month and distributed by Seymour.

Make sure of your copy of EE each month cut out this form, fill it in and hand it to your newsagent.

SUBSCRIPTIONS

Sell-out disappointment can upset any reader! So why not take out a year's subscription and make sure of every issue, by post, straight from the Publisher? Complete the order form below and post to:
EVERYDAY ELECTRONICS. Subscription Dept., 6 Church Street, Wimborne, Dorset BH2l 1 JH .
Tel. 0202881749.
Annual subscxiption rates:
UX $£ 14$. Orerseas $£ 17$ ($£$ sterling only)
Overseas alr mall $£ 33$ ($£$ sterling only)

MICRONTA NEW PRECISION MULTITESTERS

[A] 28-Range FET VOM. Perfect for electronics testing! 10 megohms per volt DC sensitivity. Measures: 1000 volts DC in seven ranges and 1000 volts AC in five ranges. DC current to 10 amps , resistance to 100 megohms. Decibles: -20 to +62 dB . Fuse protected. Requires one 9 v and one

22-220

[B 43-Range Multitester. 50,000 ohms per volt DC sensitivity. Fuse and overload protected. Measures to 1000 volts DC in 12 ranges and 1000 volts $A C$ in 8 ranges. DC current to 10 amps , resistance to 20 megohms. Decibles: -20 to +62 dB . Requires one 9 v and one " AA " battery. Measures: $611 / 16 \times 47 / 8 \times 23 / 8^{n}$
22-214
£29.95

For The Best In High Quality Electronics

See notes on Readers' Enquiries below-ive regret that lengthy technical enquiries cannot be answered over the telephone

The Magazine for Electronic \& Computer Projects
VOL 16 No. 10
October '87

Advertisement Offices

EVERYDAY ELECTRONICS ADVERTISEMENTS
4 NEASDEN AVE., CLACTON-ON-SEA, ESSEX
CO16 7HG. Clacton (0255) 436471

BEST

T is our proud boast that EE has been the highest selling UK monthly electronics magazine for some time now and we believe this is due to our continuing policy of giving value for money. Each issue contains a good range of projects plus all the regular features, however we do not always have room for everything we would like to publish.

You will find if you compare EE with its rivals that we pack much more onto every page than any of our competitors and, on average, carry more projects per issue than other monthlies. Even though we do this there is often still not room for the likes of Circuit Exchange or a feature article every month.

Of course issue size is governed by cover price, advertisement revenue, circulation and production costs. In view of our buoyant circulation, and advertising (in addition to some cost savings on production) from the December issue, we will be including free Data Cards in seven issues (starting with two free cards in December issue).

BENEFITS

Of course good circulation brings other benefits, like the free Mullard wallchart in this issue or good response to advertisements which is beneficial to the hobby electronics industry in general. This in turn results in extras for you - like the free advertisers components catalogue we will be giving away next month, or the special offers we now run fairly often. It's a sort of spiral - a spiral which for EE is slowly but surely going up.

We must of course thank you for your part in this continuing success. The magazine is shaped to some extent in response to your views and wishes. Please continue to let us know of your likes and dislikes - all feedback on the magazine is very welcome.

You will find some more Readers' Letters in this issue. We will be particularly keen to get some feedback on our new City and Guilds certificate series and there is provision for this in the planned topics - see page 538.

BACK ISSUES \& BINDERS

Certain back issues of EVERYDAY ELECTRONICS and ELECTRONICS MONTHLY are available price $£ 1.50$ ($£ 2.00$ overseas surface mail) inclusive of postage and packing per copy. Enquiries with remittance, made payable to Everyday Electronics, should be sent to Post Sales Department, Everyday Electronics, 6 Church Street Wimborne, Dorset BH2 1 1 JH . In the event of non-availability remittances will be returned. Please allow 28 days for delivery. (We have sold out of Oct. \& Nov. 85, April, May \& Dec 86.)
Binders to hold one volume (12 issues) are available from the above address for $£ 4.95$ ($£ 9.00$ overseas surface mail) inclusive of p\&p. Please allow 28 days for delivery.
Payment in $\mathbf{£}$ sterling only please.

Editor MIKE KENWARD
 Personal Assistant

PAULINE MITCHELL
Assistant Editor/Production
DAVID BARRINGTON
Assistant Editor/Projects
DAVID BRUNSKILL
Editorial: WIMBORNE (0202) 881749
Advertisement Manager
PETER J. MEW Clacton (0255) 436471
Classified Advertisements
Wimborne (0202) 881749

READERS' ENQUIRIES

We are unable to offer any advice on the use, purchase, repair or modification of commercial equipment or the incorporation or modification of designs published in the magazine. We regret that we cannot provide data or answer queries on articles or projects that are more than five years old. Letters requiring a personal reply must be accompanied by a stamped self-addressed envelope or a selfaddressed envelope and international reply coupons.

All reasonable precautions are taken to ensure that the advice and data given to readers is reliable. We cannot, however, guarantee it and we cannot accept legal responsibility for it.

COMPONENT SUPPLIES

We do not supply electronic components or kits for building the projects featured, these can be supplied by advertisers

OLD PROJECTS

We advise readers to check that all parts are still available before commencing any project in a back-dated issue

We regret that we cannot provide data or answer queries on projects that are more than five years old.

ADVERTISEMENTS

Although the proprietors and staff of EVERYDAY ELECTRONICS take reasonable precautions to protect the interests of readers by ensuring as far as practicable that advertisements are bona fide, the magazine and its Publishers cannot give any undertakings in respect of statements or claims made by advertisers, whether these advertisements are printed as part of the magazine, or are in the form of inserts.

The Publishers regret that under no circumstances will the magazine accept liability for non-receipt of goods ordered, or for late delivery, or for faults in manufacture. Legal remedies are available in respect of some of these circumstances, and readers who have complaints should address them to the advertiser or should consult a local trading standards office, or a Citizen's Advice Bureau, or a solicitor.

SUBSCRIPTIONS

Annual subscription for delivery direct to any address in the UK: $£ 14.00$. Overseas: £17.00 ($£ 33$ airmail). Cheques or bank drafts (in \mathbf{E} sterling only) payable to Everyday Electronics and sent to EE Subscription Dept., 6 Church Street, Wimborne, Dorset BH2 11 JH . Subscriptions can only start with the next available issue. For back numbers see the note on the left.

VIDEO CONTROLLER

ROBERT PENFOLD

A simple unit which provides a video fader and audio mono/stereo mixer and fader

Home-video production appears to be an increasingly popular hobby, and seems likely to gain a larger following than home movies of the cine film variety ever managed. Methods of production are very different to the old cine techniques, and there is no absolute equivalent to splicing pieces of film together to edit the individual scenes into the finished product. The accepted technique with videos is to copy the scenes from tapes placed in one recorder to a single tape in a second recorder where the full video is built up
This can actually be done without the need for any extra equipment apart from the connecting lead, albeit rather crudely. More professional results can be obtained with the aid of a video controller of some kind, and the most basic type is just a video fader. The idea is to fade down the signal at the end of one scene, and then fade it up again at the beginning of the next scene. This gives what is generally a better effect than an abrupt cut from one scene to the next, and it is a technique that is much used by professional programme makers.
For best results an audio fader should also be fitted to the unit, so that the sound signal can be faded in unison with the video signal if desired. The normal approach is to have separate video and audio fader controls so that the two signals can be controlled in precisely the required manner, but to use slider controls mounted side-by-side so that they are easily operated together when necessary. For greater versatility an audio mixer should be included, so that background music or a commentary are easily added to the original sound track.

THE SYSTEM

This video controller uses the arrangement shown in the block diagram of Fig. I. The top set of three blocks form the video fader, which is separate from the audio section of the unit apart from a common on/off switch and battery supply. Although an audio signal can be faded up and down using nothing more than a simple potentiometer connected to act as a variable attenuator, things are far less

Fig. 1. Block diagram of the Video Controller

Straight forward with a video signal. This is due to the fact that a video signal is really a mixture of two signals. The main one is the positive modulation signal which varies the brightness of the spot which is scanned across the screen to produce the image. This is the signal which must be attenuated in order to fade down the
picture. The other part of the signal is the negative going synchronization pulses
There are two types of s;nclironization pulse, the frame pulses at a frequency of 50 Hz , and the line synchronization pulses which are shorter and at a much higher frequency of 15.625 k Hz . This second frequency may seem to

be $t 00$ low at first sight. However, it should be remembered that although there are 50 frames per second, a system of interlacing is used, and iwo frames are needed to produce one complete picture. This gives only 25 full pictures per second (25 pictures $\times 625$ lines $=15625$).

In the present context the important point is that a simple attenuator will not just fade down the modulation signal, but will also affect the synchronization pulses. It will give the desired fading effect, but there is a strong likelihood of proper synchronization being lost before the picture is fully faded down. At best this would give a grossly distorted picture, and at worst synchronization would be lost completely with the picture breaking up as a result.
There are quite complex fader circuits which split the signal into its modulation and synchronization pulse elements, process the modulation signal, and then recombine the signals. It is not essential to do things in this way though, and it is possible to devise a circuit that will fade out the main picture signal while leaving a perfectly adequate modulation signal. In this case the general scheme of things is to use some preprocessing ahead of a variable attenuator to ensure that the faded signal retains a sufficiently strong synchronization signal.

A buffer amplifier at the output of the video section ensures that the unit has a low enough output impedance to drive a composite video input properly. Note that the unit will only work with a composite video signal, and it can not be used with a u.h.f. signal.

AUDIO SECTION

The audio section includes a two stage microphone preamplifier which incorporates a microphone level control. There are three mixer stages, which can make the unit look a bit
confusing at first, but the extra mixer is needed because the unit is designed to give both mono and stereo outputs. The microphone signal is fed to both inputs of the stereo mixer, and a channel balance control is included here. There are two high level inputs for each channel of the stereo mixer circuit, but there are no level controls for either of these. It has been assumed that the output controls of the tape decks (or whatever equipment feeds these inputs) will be used to get the signal levels right. Of course, there would be no difficulty in adding volume control style variable attenuators at each input if desired.

A dual gang potentiometer can be used to control the output level from both channels of the mixer. It is the outputs from this main fader control that constitute the stereo output signal. The third mixer stage is simply used to combine the stereo output signals to provide a mono output. If the mono output is used, then obviously the microphone balance control is superfluous, and will have little effect.

VIDEO CIRCUIT

The circuit diagram for the video stages of the unit appears in Fig. 2. There is nothing much to the preprocessing circuit which is basically just a diode and potential divider circuit which ensures that suitable voltages are fed to the video fader potentiometer, VR2. Transistor TR1 acts as a buffer amplifier which provides a low enough output impedance to drive the fader circuit properly. VR1 and VR6 are adjusted to give a good control characteristic from VR2. This avoids having the fade-down introduced over a short length of track towards the middle of VR2's adjustment range.

By having the fade-down introduced over virtually all V'R2's adjustment range it is much
easier to precisely control things and to have a very slow fade out if desired. It also gives a better match with the audio fade-down control. The effect on the picture as the signal is faded out is much the same as turning down the brightness control of a television recciver, but there is also some reduction in contrast as the signal is attenuated

AUDIO CIRCUIT

The audio stages are somewhat more complex, as can be seen from the preamplifier and mixer circuit diagram which appears in Fig. 2. ICI acts as the preamplifier stage, and this is a special low noise operational amplifier which operates here in the inverting mode. It has a voltage gain of about 45 times and gives an input impedance of 2 k 2 . The circuit will work using a less expensive device in the ICI position, including the standard $\mu \mathrm{A} 741 \mathrm{C}$ type. The NE5534A is much to be preferred though, as the output from a microphone is at a very low level, and noise from the preamplifier can be excessive when using a device which offers anything less than excellent noise performance. The noise level is actually about 20 dB lower (i.e. about one tenth in terms of voltage) using the NE5534A instead of an ordinary $\mu \mathrm{A} 741 \mathrm{C}$ or a similar device.
The input characteristics of the microphone input are suitable for most types of microphone. Low or medium impedance dynamic types will work well with the unit, as will any types that have similar output properties. With some low impedance types it may be better to reduce R7 to 1 k so as to give slightly increased gain. The unit will work with high impedance dynamic microphones and similar types, but better results are likely with these if R7 is raised to about 22 k in value. This reduces gain and boosts the input impedance.

Fig. 2. Complete circuit diagram showing the video and audio sections.

COMPONENTS

Crystal microphones are unsuitable for use with this project.

Potentiometer VR3 is the microphone gain control, and this is followed by the second stage of the microphone preamplifier. This is a noninverting circuit based on IC2, and it provides a voltage gain of approximately 22 times. Its output feeds straight into the channel balance control, VR4.

The stereo mixer uses IC3 and IC5 as conventional summing mode mixers, one in each stereo channel. These have unity voltage gain and provide an input impedance of about l00k at each input. VR4 forms part of one input resistance for each channel, and it gives approximately unity voltage gain from the output of IC2 to the output of each mixer, but only when it is at a central setting. By adjusting VR4 so that the wiper is right at one end of its track or the other, the two input resistances become unequal. One becomes just the 47 k of the fixed input resistor, while the other becomes this 47 k plus the full I00k of VR4's track (totalling 147k).

The gain of each mixer circuit is equal to l00k divided by the input resistance. Therefore, at the extremes of its settings VR4 boosts the microphone signal in one channel by about 6 dB , and reduces it by a few dB in the other channel. This does not permit the microphone signal to be panned from full left channel only through to right channel only. In terms of position in the sound stage, as little as 6 dB difference between the two channels is adequate to place a signal well over to one side or the other. VR4 can therefore be used to pan the microphone signal over to one side of the sound stage if desired, instead of using it to balance the signal for a central image.

The main audio fader control is VR5 and the stereo outputs are fed direct from its wiper terminals. The two signals are combined into the mono output by IC4 which acts as another summing mode mixer circuit.

Power is provided by a nine volt battery,
and as the current consumption is quite high at around 17 milliamps a fairly high capacity battery such as six HP7 size cells in a holder is required, alternatively a "high power" version of the PP3 is suitable

CONSTRUCTION

Details of the printed circuit board are provided in Fig. 3. None of the integrated circuits are MOS types, but I would still strongly advocate the use of a holder for ICl at least. The NE5534A is rather more expensive than the average operational amplifier. The capacitors must all be miniature printed circuit mounting types if they are to fit onto the board neatly and without difficulty. I deally the four polyester capacitors should be 7.5 millimetre pitch components.

Be careful not to omit the single link wire which is situated about half way between IC3 and IC5. A piece of wire trimmed from a resistor leadout can be used for this link. Be careful to fit the integrated circuits and the polarised components the right way round. At points where connections to off-board components will be made only single-sided pins are fitted to the board at this stage.
For a project which has some slider controls there is a definite advantage in using a sloping front case, and a number of these are available. It is also beneficial to use a case of all metal construction and to earth it to the negative supply rail. This helps to minimise any problems with stray pick up of electrical noise. Unfortunately, there seems to be a paucity of sloping front cases of all metal construction at present. I used a type hàving an aluminium front/top panel but otherwise of plastic construction. Of course, it is not essential to use a sloping front case, and the controls could be mounted on the top panel of an ordinary type. It is not even necessary to use slider potentiometers (I only used this type for VR2 and VR5). However, accurate control of the two fader controls is very much easier if they are both slider types, and the case is a sloping front type.

From the electrical point of view the exact layout used is not too important, and it is really a matter of arranging the components in a manner that makes the unit easy to use. Phono

Fig. 3 Printed circuit board layout and wiring for the Video Controller. The $\star s$ mark the earth connections.

sockets were used for all the input and output sockets, apart from SK3 (the microphone socket) which is a 3.5 millimetre jack type. If necessary though, these can be changed to any types which fit in with your particular audio and video equipment. You might find it better to use BNC connectors for SK1 and SK2 for example.

The completed printed circuit board is mounted on the base panel of the case using M3 or 6BA fixings. Make sure that it is mounted where it will not come into contact with any of the front panel mounted components when the top/front panel is fitted into place. Also be careful to leave sufficient space for the battery somewhere in the case!

Making the slots in the front panel for the slider potentiometers can be a bit difficult, but probably the easiest method is to first drill a row of holes about 3 to 4 millimetres in diameter along the length of the required slot. The holes can then be joined up using a miniature round file. This method is generally less strenuous than simply filing out the slot, and the holes help to keep the file going in a straight line. A miniature flat file can be used to

Fig. 4. Interwiring of the controls.
enlarge the slois to exactly the required shape and size. Self-adhesive slider control bezels are available, and the use of these helps to give a very neat and professional appearance to the completed unit. The bezels might be slightly too long to fit the case properly, but they can easily be trimmed to size using a hacksaw.

WIRING

There is a substantial amount of hard wiring

Meter Resistance

Sir - Referring to your writing of Down To Earth in EE of May, when you mentioned that the ohmmeter with a 1.5 V internal battery is using about 0.7 volts on the diode, don't you think that you have excluded the series resistor or variable resistor to set the zero position of the needle? Although I am nothing compared with you in electronic servicing, I say that there will be a small loss on the series resistor.
I have been buying EE for four years, I hope I am not bothering you with my letter. Thank you very much.
J. Camillen, Gozo, Malta

You are correct in saying that the potential drops across the ohms-range resistance and the ohms-zero resistance come into the picture. These voltage drops were taken into account by my description, but it is worthwhile looking in detail at an ohmmeter circuit to see what happens when a diode is tested.

The diagram shows what is about the simplest practical ohmmeter arrangement. There are four resistances inside the meter. One is the ohms-range-setting resistance, switched into circuit (in a multimeter) as required. To this must be added the resistance of the moving coil of the meter itself lassuming that we are using an analogue meter with a
needed to complete the unit. It is probably best to start with the wiring to the sockets, and this is fairly straightforward. The only point to watch is that each "earth" terminal on the board connects to the appropriate tag on its corresponding socket. The cable which connects the board to SK 3 must be a screened type (with the outer braiding carrying the earth connection) as the microphone input is very sensitive to stray pick up. It is advisable to use
screened lead for the connections from SKI and SK2 to the board. This is to prevent radiation of the video signal and stray pick up in the microphone preamplifier wiring. It is also advisable to keep the wiring to VR2 as far away from the microphone preamplifier components as possible. It is not essential to use screened cable for the connections to the other sockets, but it is probably best to play safe and do so for any leads that are more than about 25 millimetres long.

The wiring to the controls is shown in Fig. 4. I would recommend the use of twin screened cable for the leads which connect to VR3, VR4 and VR5. In the case of VR4 there is no track connection to the negative supply rail that can be connected to the outer braiding in order to provide screening. Connecting the braiding to the wiper (middle) terminal of VR4 will give effective screening of the other two leads though, and these are the ones that are sensitive to stray pick up.

ADJUSTMENT AND USE

Exactly how the unit is wired into your system will obviously depend on precisely what equipment is in use. All the connecting leads should be of the appropriate screened variety. There should be no difficulty in testing the audio mixer section of the unit, and this does not require any setting up or adjustment before it is ready to use.

There are two presets to be set up in the video fader section, and initially VRI should be adjusted to a roughly mid-point setting. VR6 should be set at maximum value (turned fully clock wise). The unit may well work perfectly satisfactorily with the presets at these initial settings, but it might be found that there is still some picture evident when VR2 is fully backed off. VR6 should then be adjusted in an anticlock wise direction just far enough to fully blank the screen of the monitor. VR1 is given any setting that provides a good fade-up characteristic. A little experimentation is called for here, and with some systems virtually any selting of VR! will give good results.
pointer indicator). There is an important hidden resistance: this is the internal resistance of the meter's battery or cell. This internal resistance varies with the condition of the battery. To correct for these variations, an ohms-zerosetting resistance is provided.

When the internal resistance of the battery is low, the ohms-zero resistance is set high, and vice versa. The setting is done by connecting together the meter leads and adjusting the ohms-zero resistor for full-scale deflection. This is marked " O " on the ohms range, which "reads backwards" in comparison to the voltage and current ranges.
If the "battery" is in fact just a single 1.5 V cell, and the meter reads full scale at 1 mA then,

when the ohms-zero resistor is correctly set, all these resistances inside the meter must add up to $1.5 \mathrm{k} .(1.5 \mathrm{~V} / 1.5 \mathrm{k}=1 \mathrm{~mA}$.) The whole of the battery's 1.5 V is, under these conditions, absorbed by the inside resistances.

If the meter leads are now unshorted and connected across an external resistance of 1.5 k the total resistance in circuit is doubled to $3 k$ and the meter reads half scale. Clearly, half the battery voltage is now being absorbed by the external 1.5 k and half by the internal 1.5 k . If. instead of an external 1.5 k resistor, a diode were connected fin the way needed to allow current to flow) then the diode would absorb some of the battery voltage.

If the diode happened to drop 0.75 V then the meter would again read half scale. In practice, the voltage drop across a silicon diode is likely to be less than 0.75 V .

Most multimeters nowadays read full scale at a current less than 1 mA . If the full-scale current is $100 \mu \mathrm{~A}$ the diode drop for a silicon diode may be, say, 0.6 V . The relative amounts of battery voltage absorbed by the diode and the inside resistance of the meter vary with the ohmsrange setting, because on the higher ohms ranges the range resistor is higher. This means that if the same diode is tested on different ranges the meter deflections differ. If the diode drop is only 0.5 V on some particular range then the meter will read two-thirds scale.

The internal arrangement of a multimeter for ohms measurement varies somewhat from one design to another and these figures are therefore only a rough guide.

Georgy Hylton
the Britannica Macropaedia both say the metal is the negative anode.

So I'm forsaking Kodak's literature, my Penguin Dictionary of Electronics and my Paladin How Things Work. As from now on I am voting for metal anode negative terminals.

It will be interesting to see what happens when Kodak launches its next range of batteries. Will the metal still be the cathode or will it have quietly switched parties to anode?

Called To Task

We hear a lot of talk about computer fraud - programmers taking advantage of loopholes in a system which no-one else has spotted. British Telecom has a different problem. Exchange operators have been taking advantage of a system which is vulnerable because it isn't computerised. The scam has cost BT's shareholders $£ 10$ million.

A sorry stream of international operators and phone users recently trailed through the Guildhall Magistrates Court, after two dawn raids by the City of London police on BT's Wren House exchange. The first raid, in February, netted 57 operators of which 36 were charged with conspiracy to defraud BT; the next, early in July, netted one more.
The police then swooped on BT customers suspected of getting free calls in return for cash or favours. At least seven were booked.
Whereas direct-dialled calls are automatically billed to a subscriber's account, calls connected by an operator are manually billed. The operator fills out a paper slip, with ticks in numbered boxes, The slip is passed to an electronic device which optically reads the ticks and bills the call.

Some operators had hit on the idea of 'losing' slips or adding a mark to signify no reply or number unobtainable. So expensive international calls went uncharged.

Honest operators grew suspicious. BT monitored Wren House and gave evidence to the police. One businessman was fined $£ 150$ with $£ 100$ costs for making free calls to Kenya.

More cases were tried through the summer. The newspapers tucked reports away in the small print or ignored the matter altogether,

BT will not say how it collected the evidence. insiders believe that investigators were monitoring and recording international calls made through Wren House for the last five months of 1986. Innocent subscribers, who paid for calls, may now wonder what they may have said which they would prefer the police did not hear.

BT admits that 100 per cent security is impossible because the docket system, like banking, relies on staff honesty. And where trunk dialling is unreliable or unavailable there is no alternative to operator connection.
that they can do nothing to prevent grey
importing from other EEC countries. Over the last two years a trickle of greys has become a flood. Batteries have become a currency commodity.

Duracell says there is only one way to be sure. Look on the back of the packet and see if it carries the Duracell UK address. If it doesn't, it isn'\$ an approved import.

More public warnings are needed but the battery makers keep quiet for fear of blackening their name.

Poles Apart

You would be surprised how few people in the battery business understand what they are selling. I stumbled recently on some entertaining proof of this.

Even the text books contradict each other on the crucial issue of how to identify the electrodes. Some books call the positive terminal of a battery the anode; others call it the cathode. Here is the nitty gritty.

Root cause is the fact of physics that when negative electrons flow from negative to positive, electric current flows in the opposite direction. It was truly unfortunate that when electrons were discovered, after electricity. physicists defined them as electrically negative, instead of positive.

Since then engineers and electricians have thought positive while physicists think negative. I know one engineer who is married to a physicist and on that score they can never agree.

In a cell there are two electrodes, a metal and a metal oxide, in electrolyte paste. The metal can be zinc or mercury or silver or lithium; the oxide is usually manganese dioxide. I was brought up to call the metal the cathode or negative terminal. Old text books say it that way.

Duracell has published some glossy technical literature which says exactly the opposite. The metal is the anode because it is dissolving. releasing negative electrons to the external circuit and positive ions to the electrolyte.
The metal oxide is the cathode and the released ions are called cations because they make their way through the electrolyte to the cathode. So the cathode is the positive terminal and the anode is the negative terminal.

Kodak recently launched a new range of 9 V lithium batteries - although I must tell you that a couple of months later none were actually available, not even in the staff store of Kodak's head office in Hemel Hempstead. With the launch brochure came a technical backgrounder which explained that the lithium metal is the cathode and manganese dioxide is the anode.

When I asked Kodak about the contradiction with Duracell's description, Kodak said the original description from America had been worded the Duracell way but the British office had reversed the wording to suit local convention.

Macropaedia

Both Duracell and Kodak quoted me dictionaries to support their opposite wordings; metal-anode for Duracell and metal-cathode for Kodak. I have to say that Duracell's references were by far the most impressive. They contradict the older books on my shelf, and Kodak's shelf too. McGraw-Hill's Encyclopaedia of Science and Technology and

Warning for Speaker

Loudspeaker manufacturer KEF asks me to warn readers about unauthorised, unnecessary and potentially damaging modification of speaker driver units.
Some high power drivers have ferrofluid in the gap between the magnet and voice coil. Ferrofluid is an odd material; a magnetic oil which conducts heat and so helps keep the coil cool and safeguard it against overload and burnouts. Some speaker drivers are designed for use with ferrofluid. Others are not.

Some people have the idea that they can improve existing speakers by adding ferrofluid to the gap. Usually they can't. More often they cause expensive damage to the driver.

Hopefuls have been paying $£ 5$ or more to have a few drops of ferrofluid squirted into the
voice coil gaps of drivers that were never intended to be fluid-filled. In most cases the fluid won't get into the gap. It just clings to the magnet coil outside. And if it does get into the gap, it will alter the electrical and mechanical damping of the loudspeaker and so alter the system performance, probably for the worse.

KEF tell me that it cost one of their customers the best part of $£ 100$ to pay first for unnecessary ferrofluid conversion and then for replacement of all the drivers that had been spoiled by the modification. Needless to say all speaker guarantees are invalidated by unauthorised modifications like this.

If you are tempted, ask the maunfacturer for advice first. The chances are that he will tell you to leave well alone.

TRANSTEST

Simple in-circuit testing of diodes and transistors

0NE of the more useful service aids that has recently appeared on the market is a simple "in circuit" transistor and diode checker. Compact and battery powered, it indicates which end of a semiconductor junction is the cathode, and whether it is healthy, by means of flashing l.e.d.s. Since in basic d.c. continuity checks transistors behave like two diodes placed back-to-back, they can be given simple functional tests with this instrument, often without even being removed from circuit.
Ordinary diodes and Zeners may also be tested, so it can be seen that this is an extremely useful addition to any repair bench. The types presently available are priced around thirty pounds, enough to deter many potential amateur users. Fortunately however, the circuitry involved is so simple that the complete instrument can be built for little more than $£ 10$, placing it within reach of just about everyone.

OPERATING PRINCIPLE

The operating principle of the instrument is quite straightforward. Between the two test probes, which are placed on either side of the junction to be tested, there is a low alternating voltage. Any current passed by the junction as a result of this voltage is indicated by a pair of flashing l.e.d.s. These will remain unlit for an open circuit, whilst both will light for'a short. If the junction is healthy, current will pass in only one direction, so only one l.e.d. will light, indicating that the associated probe is in contact with the cathode.

Where devices are to be tested whilst still in circuit, they will often be shunted to some extent by other components; usually resistors, capacitors or a combination of both. For the tester to be effective, it must be capable of ignoring resistance above a few hundred ohms and capacitance up to a few tens of microfarads. Resistance is no problem as it simply restricts the current too much to be confused with a forward-biased junction. Capacitance is slightly more difficult to cope with.

As is well known, capacitors conduct alternating current, their effective impedance being related to capacitance and frequency. As a start, the frequency has been kept very low, to about 10 Hz in this design. For each half-cycle the positive probe is connected in series with a 100μ capacitor that has been discharged during the previous half cycle. The voltage rise
producedacross this depends, of course, on the total current passed between the probes, but it must reach half the supply voltage before the appropriate l.e.d. will light. If the shunt capacitance is less than about 47μ the total charge passed will be insufficient to do this, despite the high initial current flow. This principle works well and the resulting circuitry is reasonably uncomplicated, yet it enables effective in-circuit testing of semiconductor components in most cases.

CIRCUIT

In the full circuit of Fig. $1, I C L$ is a CMOS quad NAND gate. Two of the gates, " a " and " b ", are connected as an oscillator with a frequency of about 10 Hz and two outputs. These are "complementary", that is, when one is high, the other is low, and they are buffered by pairs of transistors, TR2, TR3 and TR5, TR6, which supply the probes. The action of the circuit is best understood by considering what happens during a single half-cycle. If it is assumed that the output from 1 Cla has just gone high, then probe " A " will be high (positive). At the same time 1 Clb and probe "B" will have gone low (negative). TRI will have just turned "off", having been "on" for the previous half-cycle, so C 2 will be in a discharged state. The test current is supplied through this capacitor. It flows down through TR2, out through probe " A " to the component on test, back in through probe " B " and reaches negative through TR6.

The negative end of C 2 thus starts at positive supply voltage and falls by an amount depending on the total current allowed to pass between the probes. If it drops below half the supply, IC Ic output goes positive (NAND gates invert) and turns on TR7, which lights l.e.d. D1. Whilst all this is in progress, TR3 and TR5 are "off"' but TR4 is "on", ensuring that C3 becomes fully discharged. During the next half cycle the situation is reversed, probe " A " becoming negative and probe " B " positive, with D2 being lit if the voltage from C3 should become low enough. To ensure a constant, low test voltage, all the circuitry apart from the l.e.d.s is supplied from the five volt regulator lC2.

CONSTRUCTION

All the components for this project are mounted on a single, compact printed circuit board. The track pattern and component layout are shown in Fig. 2. It is suggested that for ease of assembly the resistors are fitted first. Care should be taken to see that the electrolytics are mounted the correct way round. Being CMOS, ICl is potentially staticsensitive so the usual handling precautions should be observed. A d.i.l. socket should be used, and the i.c. should not be inserted until the rest of the board is complete.
For testing, a pair of l.e.d.s should be temporarily soldered to the appropriate connection points and a nine volt battery

Fig. 1. Transtest circuit diagram

COMPONENTS

EEE 10920

Fig. 2. Component and printed circuit board layout and wiring for the Transtest

connected. The current drawn from the supply should be checked; after the initial surge as CS charges this should fall to a mere 3 mA or so. Five volts should appear across the 10μ capacitor $\mathbf{C 4}$, indicating correct operation of the regulator IC2. With respect to negative, an analogue meter should indicate about 2 V to 2.5 V at each probe connection, possibly with a slight visible flicker. If it does not, the appropriate outputs of ICl (pins 10 and 11) can be checked as a first step.
Assuming all is well, shorting the probe connection points should cause both l.e.d.s to flicker brightly. If a diode is used instead of the short, only the l.e.d. at the cathode end should flicker. If these tests are successful, the board is ready for use.

CASE

The case used and the final layout are very much up to the individual constructor. The board could be incorporated into an existing piece of equipment, with simple switching to bring it into operation. For the prototype a neat, inexpensive case described as a "small remote control box" was used. This has a compartment with a removable cover to hold a PP3 battery, and a space where the p.c.b. is fitted with double-sided sticky pads. The tiny, recessed front panel was drilled to take a slide switch and a securing clip for the probe leads.

The obvious place to put the l.e.d.s is in the case; one of the two manufactured models seen
by the author has them mounted here and this would be the simplest arrangement to construct. However, another version has them incorporated into the probes, and for the intended use this has some advantages. Since custom-moulded probes are not available to home constructors a certain amount of ingenuity is necessary, but it's by no means impossible. In the prototype they are fitted into the clear plastic tubes from a pair of cheap ballpoint pens.
The lead from the p.c.b. to each probe is a miniature twin audio cable with a braided screen, this being connected to the probe tip, whilst the two cores carry power to the l.e.d.s. Fig. 3 shows how the cable l.e.d. and probe tip are connected. Each tip is made from a 20 mm length of 4BA brass screw, held in the chuck of an electric drill whilst a neat point is filed on one end. To obtain more clearance in the tube the flange around the base of the l.e.d. is carefully filed off:
The l.e.d. should ideally face back towards the user, but even with the flange removed there is insufficient room for the necessary three cores to pass; also they might obscure some of the light. To overcome this, short lengths of thin enamelled copper wire ($28 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. in the prototype) are used to connect the screened cable to the l.e.d. and probe tip.
The probe "works" are potted into the tube with a clear silicon rubber sealant; "Dow Corning" aquaria sealant is ideal. These

Fig. 3. Details of the Transtest probe construction

sealants are normally supplied in some form of plunger-operated container fitted with a nozzle. The tip and l.e.d. are passed right through the tube and bent over so that the three thin enamelled wires are all that obstructs sealing between the injection nozzle and the tube. Silicon compound is then forced down the full length of the tube from the tip end. A large blob of it is formed around the l.e.d. and tip, so that they can be pulled carefully back into place without drawing in any air bubbles, after which the surplus is wiped off with tissue.

The procedure is messy but reasonably practical, and results in a totally potted probe incorporating the l.e.d. It should be left to cure for a couple of days, after which the surplus compound can be picked away quite easily from the cable and outside of the probe.

IN USE

The cases of commercially produced testers are adorned with little drawings like those of Fig. 4, which are practically self-explanatory. For a simple diode, the probe (or l.e.d.) associated with the cathode will flash, A p.n.p. transistor behaves like two diodes, emitter to base, and collector to base, the base in each case being the cathode. With an n.p.n. type these apparent diodes are reversed, the cathodes being the emitter and collector whilst the base acts as common anode.

An apparent open circuit should exist between emitter and collector. Through these tests it is usually possible to identify the base, whether the device is p.n.p. or n.p.n., and if there is a reasonable chance of it being healthy. In most cases it will be possible to carry them out without removing the component from circuit (switch off first though!), although shunt components, as mentioned earlier, may sometimes produce false indications.

The tester should not respond to resistors above about three hundred ohms or capacitors below about 47μ. Testing is also possible with Zener diodes down to 2.7 V ; these behave like ordinary diodes with clear indication of the cathode. L.e.d.s, unfortunately do not give reliable results, although most do light dimly on the probe current, which may prove useful in some instances.

Fig. 4. Using the Transtest

Build this superb preamp and power amp kit and enjoy high fidelity sound at a fraction of the cost of cómparable ready built amplifiers.
Complete kits as described in March-June issues of Everyday Electronics including high current transformers and attractively styled cases with high quality components. Preamp
£ 192.50
Power amp-stereo
Or build it with the very best components available including AR Wonder caps, Extended foll polystyrene capacitors, bulk foil resistors, Holco precision resistors, silver plated switches, gold plated phono sockets and Kimber cable for internal wiring Preamp f410 Mono Power amp £232
All components including PCBs available separately
For full parts price list of the EE Apex preamp and
 please send $9^{\prime \prime} \times 4^{\prime \prime}$ SAE to: Δ

6 MILL CLOSE, BORROWASH, DERBY DE7 3GU. Tel: 0332674929

OMNI ELECTRONICS

for a comprehensive range of components aimed at the enthusiast:
$10 \times 1 \mathrm{~N} 4148$ @0.35 $10 \times 5 \mathrm{~mm}$ leds in black bezel
10×1 N4001 $10 \times$ LM741 5×7805 $10 \times 5 \mathrm{~mm}$ red leds $10 \times 5 \mathrm{~mm}$ green UM1286 modulator
@0.35 $\quad 10 \times 5 \mathrm{~mm}$ leds in black bezel
@. red 3.50 green 3.90
@2.00 5×7 segment display - red
@2.35 0.3" common cathode 2.50
@1.00 Data entry keypad
2.50
3.30
@1.20 Panel meters, 38 mm cutout
$50 \mu \mathrm{~A}, 100 \mu \mathrm{~A}, 1 \mathrm{~mA}, 1 \mathrm{~A}, 30 \mathrm{~V} 5.98$ 10 bar dil led array 2.50 The above is a sample of our range and includes VAT. P\&P 60p. Send for catalogue: $20 p+18 p$ or $13 p$ stamp. Shop open: Monday-Friday 9 9.m.-6p.m. Saturday 9 a.m. $-5 \mathrm{p} . \mathrm{m}$.

174 Dalkeith Road EDINBURGH EH165DX 031-667 2611

- Surveillance Transmitter
- Matchbox Sized!
- Uses Any FM Recelver

ROBOVOX

- Dalek Volce Modulator
- Incredible Sound And Feedback Effects
- Case included
£14.95

MINI-SYNTH

- Dual Stylus Operation
- Simple Music Synthesizer
- Case included

£18.95

LAB-AMP

- Battery Powered Amplifier *
- Can Be Used With Sound Effects Kits
- Case Included
$£ 11.95$

All the above kits are available exclusively by mail order from :
COMMOTION, 241 Green St., Enfield, EN3 7TD. Phone 01-804-1378 for more details. Please add $£ 1.00$ per item P\&P. Make Cheques and Postal orders payable to Commotion Ltd. Access and Visa orders welcome.

ysin City and Guilds

CH

INTRODUCING MICROPROCESSORS

 MIKE TOOLEY B.A.
Introduction

Abstract

Welcome to Introducing Microprocessors! Over the next nine months this brand new series aims to provide readers with a thorough understanding of the principles and practice of microprocessors. More significantly, this series breaks new ground in the field of distance learning; it is the first to offer assessment and certification in conjunction with an internationally recognised examining body. We hope that you will stay with us for the next nine months and that many of you will complete the study programme which leads to the award of a City and Guilds certificate in Introductory Microprocessors.

THIS introductory part aims to prepare readers for the study programme which follows and should help to answer many of the questions which you may have. In particular, it provides an outline of the syllabus content and course calendar. Those following the course will need to refer to this information as the course progresses and thus it should be filed away safely for future reference!

Syllabus content

The City and Guilds syllabus for Introductory Microprocessors is divided into seven principal sections as follows:

1. Microcomputer Systems
2. Microprocessors
3. Memories
4. Input/output
5. Interfacing
6. Programming
7. Related Theory

The teaching text for the module will broadly follow these seven syllabus headings but, from time to time, we shall pause to review the work covered in an attempt to put things into context. in keeping with the general philosophy of the programme, we shall be introducing Related Theory as, and when, it is required.
The teaching order of the EE series will thus be as follows:

Part Number 1	E.E. Issue November 1987	Topics Covered
		MICROCOMPUTER SYSTEMS
		Terminology. Integrated circuits.
		Logic families. System architecture.
		Binary and hexadecimal number systems.
2	December 1987	MICROPROCESSORS - 1
		Internal features and architecture.
		Some common microprocessors.
3	January 1988	MICROPROCESSORS-2
		Instruction sets. The fetch-execute cycle. The system monitor.
4	February 1988	REVISION OF PARTS 1 TO 3
		Readers' Forum.
		Assessment preparation.
		Practical Assignment-1.
5	March 1988	MEMORIES
		Semiconductor RAM and ROM.
		Memory maps.
		Practical Assignment - 2 .
6	April 1988	INPUT/OUTPUT
		1/O methods. Programmable parallel
		1/O devices.
7	May 1988	INTERFACING
		Driving peripheral lines; I.e.d.s and relays.
8	June 1988	PROGRAMMING
		High and low level languages.
		Flow charts. Assembly language.
		Practical Assignment - 3 .
9	July 1988	REVISION OF PARTS 5 to 8
		Readers' Forum.
		Assessment preparation.
		Practical Assignment - 4 .

With the exception of parts four and nine, each instalment will have stated aims (in objective format), questions (with answers), supplementary practical work (optional), and a glossary of the most recently introduced terms and abbreviations. In addition, we shall be including some suggestions for additional background reading (and some pull out data cards with useful information) so there should be plenty of work to do!

Assessments

The various course assessments will be introduced at the point at which they should be first attempted together with some "hints and tips" for their successful completion. Readers will, however, not be tied to any specific examination timetable as this particular City and Guilds programme has been designed with flexibility in mind. More on this topic later!

In order that readers can plan ahead, the following "course calendar" is presented as a guide:

Course calendar

October 1987 Course commences in EE
January 1988 Register with your local centre
February 1988 Complete first practical assignment
March 1988 Complete first written assignment
April
1988 Complete second practical assignment
May 1988 Complete third practical assignment
June 1988 Complete fourth practical assessment
July 1988 Complete second written assessment
July 1988 Centre requests issue of certificate

Prospective candidates should note that the above schedule is given only as a guide and that, whilst the EE series has been designed to be studied over a conventional academic year, the various course assessments may be taken as, and when, readers feel that they are ready for them.

Students who would prefer to work at a slower pace, or may have other commitments which must take a higher priority, need therefore not worry overmuch. The suggested timescale should, however, suit the vast majority of readers and should also prove acceptable to most of the centres Whlch will be providing the necessary facilities for student assessment.

Feedback

We always welcome feedback from readers and furthermore shall be devoting
space in the series to answering readers queries. To this end, parts four and nine of the series will include a Readers' Forum. This will not only aim to provide answers to questions raised by readers but will also help clarify any points which may not have been properly understood.

We expect a larger than usual amount of mail from readers in connection with the series so please include a stamped addressed envelope and also be prepared to wait a week or two if you require an individual reply. Also note that all correspondence on the series should be sent directly to the author at the address given at the end of this article land NOT to the Editorial Office).

About the City and Guilds 726 scheme

The City and Guilds 726 scheme has been designed to meet the needs of a wide variety of people requiring nationally recognised qualifications in Information Technology and its component disciplines.

The main features of the scheme are: a) a modular structure which provides self-contained units each covering an area of information technology
b) each syllabus is presented in objective format (i.e. precise statements of what the candidate needs to achieve in order to meet the requirements of the scheme)
c) progress is made at a pace determined by the candidate and tutor
d) assessment is administered by an approved centre and can be undertaken by the candidate at any mutually agreed time. The assessment material is provided as part of a scheme's documentation (supplied to approved centres). A system of monitoring (by means of Visiting Assessors) is used to maintain standards and ensure validity
e) the modules will permit candidates and tutors to select and undertake those subjects which meet individual and local requirements
f) the "self-pacing" and "on demand assessment" features of the scheme permit flexible scheduling and open study methods (such as this) to be employed g) each module is regularly reviewed to ensure that it remains up-to-date.

The Information Technology scheme comprises a number of modules which are grouped together under three disciplines; Computer Programming and Software, Electronics and Hardware, and Computer Applications and Related Studies. Modules are also offered at four distinct levels; Introductory, Elementary, Intermediate, and Advanced.

Each "module document" (available from City and Guilds at the address given at the end of this article) contains aims; syllabus; objectives, assessment procedures and materials.

The scheme's flexibility provides for transfer and progress at all levels within the scheme and can be undertaken at centres of all types including further education colleges, ITeCs, schools,
training centres and company training establishments. A prime feature of the scheme land unlike most of its conventional counterparts) is that the course objectives can be met at a pace appropriate to individual candidates. No time limits are imposed for any module and assessment can be undertaken as, and when, the candidate is ready. In the case of the Introductory level modules, City and Guilds suggest a study time of between 30 and 60 hours as being normally adequate.

The scheme is currently offered by a large number of approved centres who register their candidates and the modules being undertaken. After registration, centres receive from City and Guilds the necessary documentation for completing the scheme, such as assessment materials and answer sheets. Centres carry out all candidate assessment and are monitored during the running of the scheme. On completion of the scheme, centres request certificates for all successful candidates and these are then issued by City and Guilds.

Overseas readers should note that, unlike many other fity and Guilds schemes, the 726 programme is NOT available overseas. It does, however, seem likely that consideration will be given to wider availability of the scheme in the near future and we will keep readers fully informed of any changes which may extend the programme to overseas centres.

Assessment

The assessment of a candidate's understanding of introductory Microprocessors involves two major components:
a) Written Assessments. These are multiple choice questions (which comprise a short question "stem" and four possible answers of which only ONE is correct). The candidate has to select the ONE correct answer in each case but no marks are deducted for incorrect answers. Question papers (which generally comprise some twenty, or so, questions) are selected randomly for candidates. In the case of Introductory Microprocessors, candidates will be required to tackle two individual written assessment papers.
b) Practical Assignments. These have been devised to cover a number of related objectives. The resource requirements and marking criteria are stated in the module documentation. In the case of Introductory Microprocessors, candidates will be required to tackle four individual practical assignments.

A record of a candidate's performance (both successful and unsuccessful) is kept by the centre and this information is kept for inspection by the centre's visiting assessor who may also wish to question individual candidates about their work. Requests for certificates can be made at any time after successful completion of a module.

Questions and answers

Having dealt with some of the more important administrative details of the City and Guilds 726 scheme, I shall attempt to ward off a large quantity of correspondence by dealing with some of the questions which readers are most likely to raise!

Why Introductory Microprocessors?
Microprocessors are fundamental to the operation of the majority of modern electronic systems and are finding their way into almost every facet of electronics. Whether we like it or not, the most cost-effective solution to many of today's electronic design problems involves the use of a microprocessor. Such devices offer a highly flexible solution to the problem of control since significant changes in performance can be affected simply by making changes to software. This is usually far easier and quicker to implement than making extensive changes to hardware.

Will the course be dominated by software?
No, but software is important. Until recently there has been a rather rigid boundary between software and hardware. The world of modern electronics is dominated by microprocessor based systems and it is essential to have a knowledge of both hardware AND software in order to provide fully functional and fully optimised systems. In short, we are advocating a partnership between hardware and software; one complements the other and neither would function properly if the other was deficient in any respect. This is a fact of life which many of today's electronic engineers are only slowly beginning to grasp.

Which microprocessor will be

 featured?Introducing Microprocessors is only concerned with the most common eightbit microprocessors of which the following are typical examples: 6502, 6800,8085 , and $\mathbf{Z 8 0}$. If you already have some knowledge of any one (or more) of these devices you will already have a foundation on which to build. If not, don't worry as we shall assume that you have not met any of them before!

What previous knowledge is assumed?
 Very little. The course is ideal for the complete newcomer.

How much will it cost?

We have tried to make the programme as inexpensive as possible. At a minimum you will need to secure the next nine issues of EE (at a cost of around $£(11$). If you don't already subscribe, now would be an ideal time to take out a subscription or place a regular order with your newsagent (see page 525 for both). You will probably also wish to purchase a number of components to carry out Practical Assignments 3 and 4 and these
will be available from advertisers in EE at the time (expected cost will be around £25 in total).

In addition, you can purchase a copy of the City and Guilds module documentation (cost $£ 10$ including postage, available from the address given at the end of this article) but this is by no means essential. You will also need to register with a local centre as a candidate/ student. The fee for registering with the City and Guilds is approximately $£ 5$ and this is payable by the centre with whom you register. The centre will also make a charge for offering their facilities and for supervision of the assessment, etc. This charge may vary considerably and some centres may not accept external candidates. In all cases this will be a matter for you to negotiate with the centre and the cost will depend upon the facilities offered, the amount of time you require, and the normal scale of fees levied by a centre. We would normally expect this to involve a total expense of between $£ 15$ to $£ 45$ depending upon your needs and the centre's facilities.

Readers may also wish to equip themselves with one, or more, of the books suggested for background reading. These are all reasonably priced but should you not wish to purchase them, they may often be obtained from college and centre libraries (which you will almost certainly have access to as a registered 726 candidate). The total minimum cost, spread over a period of nine months, can thus be expected to be in the region of £60. We think that this represents exceptional value for money when compared with alternative study programmes! If you are prepared to spend much more than this, you may like to consider equipping yourself with your own educational microprocessor system (see our next issue for a list of suppliers). This will of course be useful if you wish to go on to higher level studies later.

What form will the assessment take?

The assessment is based on two straightforward multi-choice tests (each containing approximately twenty questions) and four practical assignments. There will be no longwinded examinations!

What further courses are available?

A huge range of modules are currently available within the City and Guilds 726 scheme. Whilst the most obvious modules for progression would be Elementary Microprocessors and Intermediate Microprocessors, candidates may wish to progress to modules in other areas such as Introductory Digital Electronics, Introductory Electronic Circuits and Components, or even Introductory BASIC. See the City and Guilds advertisement at the end of this article.

How often will I need to visit my local

 centre?As a minimum, you will need to visit your local centre to register and undertake the various course
assessments and assignments. These can be arranged to take place at times which are mutually convenient between the centre and yourself. Centres will wish to be given notice well ahead of your needs for assessment as most of them will have extensive commitments to candidates for other examinations. In addition, you may also wish to make more extensive use of the centre's practical facilities (such as a microprocessor laboratory or microcomputer workshopl for which a fee may be charged to cover supervision and overheads. If, on the other hand, you have access to your own educational microprocessor system or even a microcomputer then you will need to spend proportionately less time at a centre.

What do I have to do now?

Quite simply, nothing other than making sure that you get next month's issue of EE so that you can make a start. If you do want to start with some background reading then follow the suggestion given under Preparatory Reading.

Recommended Books

Rather than provide a long list of recommended books at this stage (which readers may be tempted to rush out and buy!), we will simply suggest titles for background reading as the course progresses. The books suggested are all well known and should be available from most public and college libraries. Rather than use a single source of reference for the series we feel that students should get into the habit of reading more widely; selecting relevant chapters or sections from several books. To start the series off we would suggest the following title (which is broadly relevant to the entire study programme and ideal for beginners):
Beginner's Guide to Microprocessors by E.A. Parr
(A Newnes Technical Book published by Heinemann-Newnes) ISBN 0408005793 This is available from the EE Book Service - see page 572. Price £4.95.

Preparatory Reading

The following reading should help readers get ready for the course; Beginner's Guide to Microprocessors, Chapter One. This sets the scene nicely and introduces readers to a hypothetical computer (called Marvin). Readers should also take a look at the Appendix entitled "Number Systems".

List of Approved Centres

The following is a list of centres which have City and Guilds approval to offer the 726 programme. Readers should note that they may not all have the necessary resources required to provide assessment in conjunction with the Introductory Microprocessors module. The list has been printed at this stage so that readers can identify one, or two, centres which are near to them; readers should NOT contact centres at this stage.

APPROVED CENTRES

AV	TEL
Bath Control Centre ITeC	0225337992
Bristol ITeC	0272779247
Brunel Technical College - (Bristol)	027241241
Business ITeC (Bristol)	0272603871
North Bristol ITeC (Bristol)	0272517127
BEDFORDSHIRE	
Bediord College of HE	023445151
INTEC Training Service	
Luton College of HE	058234111
Milton Keynes Skillcentre (Bleak Hall)	0908670001
BERKSHIRE	
Bracknell ITeC	0344489091
Langley College of FE	075349222
Newbury \& District Industriai	063549382
Rank Xerox ITeC (Slough)	0753684358
Reading College of Technology	0734583501
Reading 1 TeC	0734598515
Slough College of HE	073534585
Windsor \& Maidenhead College (Windsor)	062825221
BUCKINGHAMSHIRE	
John Hampton Grammar School (High Wycombe)	049429589
Milton Keynes College CAMBRIDGESHIRE	
Cambridge ITeC	0223323612
Peterborough ITeC	0733312120
CHESHIRE	
Chester College of Further Education	0244677677
Halton College of FE	0514231391
Macclesfield College of FE	062527744
South Cheshire College	027069133
Specialised Technical Services Ltd CLEVELAND	061477777
Cleveland ITeC (Middlesbrough)	0642221280
Cleveland Technical College	
Hartlepool College of FE	042975453
Longlands College of FE (Middlesbrough)	0642248351
Stockton Sixth Form College	0642012611
CO DURHAM	
Derwentside ITeC (Consert)	0207501252
Derwentside Technical College (Consett)	0207502906
Derwentside Training Workshop	
Durham ITeC	0385772474
Durham Skill Centre	0385780601
Peterlee College	0783862225
Peterlee ITeC	0783871177
CORNWALL	
Cornwall ITeC (Truro)	087270964
Mid Cornwall College of FE (St Austell)	07265541
Riverside Business Centre (Truro)	087271600
CUMBRIA	
West Cumbria ITeC	094666636
DERBYSHIRE	
Chesterfield College of Technology and Arts 024631212	
Chesterfield ITeC	0246211738
South East Derbyshire College	0602324212
DEVON	
Dartington ITeC	0803866076
Exeter ITeC	0392219038
North Devon College (Barnstaple)	027145291
North Devon Microcentre (Barnstaple)	027144260
Plymouth College of FE	0752264728
Plymouth ITeC	0752671110
Plymouth Skill Centre	0752335921
South Devon College of Arts \& Tech DORSET	0803213242
Bournemouth Computer and Technology	
Centre Lid	0202290943
Bournemouth and Poole College of FE	0202295511
Christchurch ITeC	0425278795
ESSEX	
Basildon ITeC	0268286929
Ford Training Workshop (Dagenham)	015263538
Harlow ITeC	0279446556
Havering Technical College	042455011
South East Essex Technology Centre	0702201070
Thurrock Technical College	037571621
Witham Technology Centre	0376521411
GLOUCESTERSHIRE	
	0452426504
Gloucestershire ITeC (Hucclecote) 045263141	
Bury Metro College of FE	0617614327
Central Manchester College (Centre of Building)	0618317791

Central Manchester College
IOpenshaw Site, Openshaw
(Manchester) Training College
(Manchester)
Nord Anglia Training Services
(Manchester) (Manchester)
North Manchester College
(Moston Centre)
North Trafford College
0612238282
0618351315
0614454860

ORT/GEC ITeC IGEC Distribution
Switchgear Ltd, Higher Openshaw) 0613012201 Rochdale ITeC (Wythenshawe) 0619029982 Wythenshawe
Y.M.C.A. (Manchester)

HAMPSHIRE
Basingstoke Technical College
Computer Education Centre
Southampton) 0614299146 0612860090 Eastleigh College of FE Gosport Computer Centre sle of Wight College of Arts \& Tech (Newport)
sle of Wight ITeC (Newport)
Portsmouth ITeC 0705 834014/834054
Southampton ITeC 070338966
Southampton Technical College 070335222

HEREFORD/WORCESTER Herefordshire Technical College	
Redditch College of FE	052763607
Worcester ITeC	0905358118
HERTFORDSHIRE	
e Havilland Colleg	
(Welwyn Garden City)	0707326318
HUMBERSIDE	
Beverley College of Further Education	0482868362
East Yorkshire College of FE	
Grimsby College of Technology	047279292
Grimsby ITeC	0472362779
Hull ITeC	048225576
North Lindsey College of Technology	0724855022
Scunthorpe ITeC	0724852302
KENT	
Ashford ITeC 0	02332165415
Key Training Workshop (Chatham)	063444930
Maidstone ITeC	0622686489
Medway ITeC (Chatham)	0634577777
Mid-Kent College of Higher and	
Thanet Technical College	084365111
LANCASHIRE	
Balderstone Community School (Rochdale)	070649049
Burnley ITeC	028234327
Ferranti PLC (Oldham ITeC)	0616240281
Fylde Coast ITeC (Blackpool)	0253302511
Preston ITeC	0772735753
LEICESTERSHIRE	
Charles Keene College of FE (Leicester)	r) 053325840
Leicestershire Training Workshop (Leicester)	
Loughborough Technical College	0509215831
North Leicestershire ITeC (Loughborough)	0509261763
LINCOLNSHIRE	
East Lindsey ITeC (Louth)	0507601111
Lincoln ITeC	052243532
LONDON	
Acton Technical College (Mill Hill Road, W3)	019932344
Brent ITeC (Harrow Road, NW10)	019657232
Camden ITeC (Kentish Town, NW5)	014853324
Cavendish College (Court Road, W1)	01580 6043/4
City and East London College	
Computer Insight Ltd (Penge)	
Computer Literacy Centre	
Covent Garden ITeC (Long Acre, WC2)	012408377
Croydon ITeC (Thornton Heath)	016833183
David Game Tutorial College (Old Brompton Road, SW7)	015847580
Docklands ITeC	
East Ham College of Technology	
Enterprise Training	
Greenwich ITeC	
(Macbean Street, SE18)	018548255

Hackney College of FE (Dalston Lane, E8)	019858484
Hackney ITeC (French Place, E1)	017293116
Hammersmith \& West London Cold	- ${ }^{\text {- }}$
Dept. of Crafts (Barons Court, W14)	017433321
Islington ITeC (Old Street, EC1V)	016081961
John Kelly Boys School (Crest Road, NW2)	012082201
Kingsway Princeton Collegé (Sidmouth Street, WC1H)	012780541
North London College (Camden Road, N7)	016099981
Outset ITeC (Creekside, SE8)	016927141
Paddington College (Paddington Green, W2)	017238826
Poplar Centre of FE - Hackney (Poplar High Street, E14)	lege 019874205
School of Computer Technology (Oxford Street, WiN)	016366441
Southwark Microtech Ltd (London Road, SE1)	019288434
Tottenham College of Technology (High Road, N15)	018023111
Tower Hamlets Adv Tech Training (THATT)	
(Whitechapel Road, E1)	01247 4682/3
Waltham Forest ITeC (Hoe Street, E17)	015214311
Willesden College of Technology (Denzil Road, NW10)	014513411
MERSEYSIDE	
Cavendish Enterprise Centre Ltd	0516533525
Charles Wootton ITeC (Liverpool)	0517090340
Knowsley Central Tertiary College (Roby)	0514806161
Knowsley ITeC	0515473933
Marconi ITeC (Wallasey, Wirral)	0516306027
METEL ITeC (Liverpool)	0512072281
Newton-le-Willows College of FE	092524656
Sefton ITeC	0519333100
South Liverpool ITeC	0514880018
Si Helen's ITeC	0744611365
The Greenbank Project (Liverpool)	0517337255
Wirral Commercial Business Traini Centre (Birkenhead)	$0516475486 / 7$
Wirral Metropolitan College (Birkenhead)	0513274331
MIDDLESEX	
Ambrose Fleming School (Enfield)	018041393
Brent Microelectronics Project (Wembley)	019033903
Hounslow ITeC (lsleworth)	015685108
Middlesex Training Centre (Uxbridge)	089556849
Pathway FE Centre (Southall)	015712241
Southall ITeC	015746565
Spelthorne ITeC (Stanwell)	0784248804
NORFOLK	
Great Yarmouth College of FE	0493655261
Norwich ITeC	060320341
NORTHAMPTON	
Corby ITeC	0536363290
Nene College (Northampton)	0604714101
Northampton ITeC	060424427
The Wellingborough College	0933224165
NORTHERN IRELAND/EIRE	
AnCo (Ballytivan, Sligo)	0103537161121
AnCo (Finglas)	0001348311
AnCo (Limerick)	06128333
AnCo (Loughlinstown, Dublin)	0001821811
Bann Area Training Services (Coleraine)	026553764
Belfast College of Technology	0232227244
Castlereagh College of FE (Belfast)	0203797144
North Down College of FE (Newtownards)	62254/5812116
Portadown College of FE (Craigavon)	0762337111
Quest Youth Workshop Ltd (Belfast)	0232238009
Tullow Community School (Co Carlow)	050351473
NORTH YORKSHIRE	
Craven College (Skipton)	075661411
Whitby School	0947602406
NOTTINGHAM	
Arnold \& Cariton College of FE (Mapperley)	0602876503
Mansfield ITeC	0623050263
Nottingham ITeC	0602584647
W.E.B.S. Training Association (Nottingham)	0602866886
OXFORDSHIRE	
Information Processing Services (Oxford)	

North Oxfordshire Technical College (Banbury)
Oxford College of FE
West Oxfordshire Tech College (Witney)
SCOTLAND
Aberdeen ITeC
Ayrshire ITeC
Borders ITeC (Galashiels)
Clydebank ITeC
Cumbernauld ITeC
Dundee \& Tayside ITeC (Dundee)
Dumfries ITeC
Edinburgh ITeC
Falkirk ITeC
FalkirkITeC
Gear ITeC (Glasgow)
Gear ITeC (Glasgow)
Govan ITeC (Glasgow)
Govan ITeC (Glasgow)
Highland ITeC (Inverness)
Intec (Inverclyde) Ltd (Greenock)
Sterling ITeC
West Lothian ITeC (Livingstone)
SHROPSHIRE
Telford ITeC
SOMERSET
Somerset College of Arts \& Technology (Taunton)
SOUTH YORKSHIRE
Barnsley College of Technology Barnsley ITeC
Doncaster College for the Deaf
Doncaster ITeC
Doncaster Metropolitan Institute Higher Education (Waterdale)
Rockingham College of FE (Rotherham)
Rotherham College of Arts 8 Technology
Sheffield PC Skillcentre
STAFFORDSHIRE
Cannock ITeC
Computeach (Stoke) Ltd
Newcastle ITeC
(Newcastle under Lyme)
Newcastle under Lyme College of FE
Stafford ITeC
Stoke on Trent ITeC (Hanley)
Stoke on Trent Technical College (Burslem)
SURREY
Brooklands Technical College (Weybridge)
East Surrey College (Redhill)
Guildford ITeC
North East Surrey College of Tech (Ewell)
SUSSEX
Brighton College of Technology
Brighton ITeC
TYNE AND WEAR
Gateshead ITeC
Gateshead Technical College
Hebburn ITeC
Lloyds British - NewcastleITeC (Walker)
North Tyneside Brass Tacks Ltd (North Shields)
North Tyneside College of FE (Wallsend)

029552221 0865245971

09933464
022464212
0294212252
089656517
0419522459
0236722111
038225473
0382767633
031652128 0316521288 032420710 0415541185 0414401059
0463226505
047529123
078673171 0506415208

0952581738

082383403

0226299191 022629919 030262166 03026216

030222122
0709874310
070962111 0742446471

0543577039
0782416412
0782626354
0782611531
0785212255 0782279423

Sunderland ITeC
Wearside College of Further Education (Sunderland) WALES
Aberdare College of FE Afan College
(Port Talbot College of FE)
Bargoed 6 District Training Workshop (Bargoed)
Barry College of FE
Blaenau Gwent ITeC (Tredegar)
Brecon College of FE
Cardiff ITeC
Deeside ITeC (Flint)
East Dyfed ITeC (Llanelli)
Ebbw Vale College of FE
Gwynedd ITeC (Caenarfon)
Llandrillo ITeC
Llynfi Training Workshop (Maesteg)
Mainport Training (Pembroke Dock)
Merthyr Tydfil Technical College Neath ITeC Newport ITeC
Pontypridd Tech College
(Rhydyfelin)
Rhondda Enteip
(Mid Glam) (Cardiff)
Swansea ITeC
Treforest ITeC (Pontypridd)
Vale of Clwyd ITeC (Rhyll)
West Dyfed ITeC (Pembroke) Wrexham ITeC
WARKWICKSHIRE
Bedworth ITeC
Intec Training Services
(Leamington Spa)
Intec Training Services (Nuneaton)
Intec Training Services (Rugby)
Mid Warwickshire College of FE
(Leamington Spa)
Rugby ITeC
South Warwickshire College of Further
Education (Stratford upon Avon)

0783492842
670794653870
0685873405
0639882107
0443838184 0446733251 0495254311
08745252 0222448429 0244816236 0554778321 0554778321 0495302083 028676477 049246666 0213603543

06855399 06394141 0633280991

0443400121 0443682312
0222493351
0792464561
0443854133
0443854133
0745824832
0646684650
0978350575

0926882524
0203344054 078870578

0926311711
078860825
078966245

WEST MIDLANDS
Aston ITeC (Birmingham)
Austin Rover ITeC (Birmingham)
Brooklyn Technical College
(Birmingham
Coventry ITeC
Coventry Technical College
Forward Training Group (Birmingham)
G.E.C. Telecommunications (Coventry)
Handsworth Technical College Henley College of FE (Coventry)
Matthew Boulton Technical College (Birmingham)
NACRO (Wolverhampton ITeC
Project TEC-COM ITEC
(West Bromwich)
Queen Alexandra College (Birmingham)
Solihull College of Technology
Solihull ITeC (Sheldon)
Sutton Coldfield College of FE
Tile Hill College of FE (Coventry)
Tyseley ITeC (Birmingham)
Walsall College of Technology
Walsall TEC (Darlaston)
West Bromwich College of Commerce and Technology
WEST YORKSHIRE
Bradford \& Ilkley Community College (IIkiey)
Bradford ITeC
Bramley Unemployed Self Help (Leeds)
Halifax ITeC
Huddersfield Technical College
Kirklees ITeC (Batley)
St John Fisher High School (Dewsbury)
Wakefield District College
Wakefield ITeC
Womens Technology Centre (Bradford)

021359289 0214755135

0213603543 020325555 02035722

0216432653
0203452152 021551603 0203611021

021359672 0902636170

0215536096
021162115 021705637 021742859 0213555671 020346144
0217074242
092225124 0215266050

0215569955

0274753309
0274752894
0532553310
042259026
048436521
0924441661
0924462927
092437050 0924373635

0274752139

078285258

093253300 $073772611 / 4$ 0483502414

013941731
0273685971 0273606089 029325912

0914787107 0632770524 0632832231

0632635456
0632575029
0912624081

Addresses

Readers requiring their own copy of the module documentation should write to the following address, clearly stating "Everyday Electronics - Introductory Microprocessors" and enclosing a cheque or P.O. for $£ 10$ made payable to City and Guilds (do not forget to include your name and address!): Publications Department, City and Guilds of London, 76 Portland Place, London W1N 4AA.

Comments and queries from readers should be sent directly to the author at the following address: Department of Technology, Brooklands Technical College, Heath Road, Weybridge, Surrey KT13 8TT.

Please include a stamped addressed envelope if you require an individual reply. General queries will be dealt with in Readers' Forum which will appear in parts four and nine of the series.

Information Technology

City and Guilds' development of the Information Technology (726) scheme is continually expanding to meet the needs of school leavers and specialists alike. The modules are:
726/200 Introductory Coding and Programming in BASIC
726/201 Introductory Coding and Programming in COBOL
726/203 Introductory Cor'ing and Programming in PASCAL
726/212 Introductory Computers and Computing
726/220 Elementary Coding and Programming in BASIC
726/221 Elementary Coding and Programming in COBOL
726/223 Elementary Coding and Programming in PASCAL
726/238 Elementary Program Design Techniques
726/300 Introductory Electronic Circuits and Components
726/301 Introductory Digital Electronics
726/302 Introductory Electronic Systems
726/303 Introductory Microprocessors (to be published)
726/310 Introductory Technical and Graphical
Communications
726/320 Elementary Electronic Circuits and Testing
726/400 Introductory Wordprocessing
726/401 Introductory Database Methods
726/402 Introductory Spreadsheet Methods
726/405 Introductory Microcomputers and Business Applications
726/411 Introductory Office Practice and Organisation
726/412 Introductory Health and Safety
726/420 Elementary Wordprocessing
726/421 Elementary Database Methods
726/422 Elementary Spreadsheet Methods.
Further details may be obtained from Division 13, City and Guilds of London Institute, 46 Britannia Street, London WC1X 9RG. Tel. 01-278 2468.
Telex 266586. Prestel $\star 21163$.

by Mike Tooley ba

THis month, as promised, we shall be describing a versatile Counter/Timer Interface based on the Z80-CTC. We also have some important news for those of you who would like to make more use of machine code routines but don't wish to go to the extent of investing in a full-blown assembler/debugger.

VERSATILE COUNTER/TIMER

Some months ago I described how a Z80-P1O could be very easily added to a Spectrum in order to provide two 8 -bit parallel I/O ports. This month I shall show how another member of the Z 80 chip family can be added to the Spectrum in order to provide some useful counter/timer facilities.
The counter/timer module is based on the Z80-CTC. This versatile device can be used in a variety of timing and counting applications; the aim being that of relieving the workload on the CPU such that it is free to get on with more useful and more demanding tasks.
The internal architecture of the Z80-CTC is shown in Fig. 1. The four independent counter/timer channels (0 to 3) are linked by an internal bus which is driven from the Z 80 system bus by means of some conventional bus interfacing logic. The CTC chip is also able to generate a unique interrupt vector for each channel which can be used for automatic vectoring to appropriate interrupt service routines.
The simplified schematic of each of the counter/timer channels is shown in Fig. 2. Essentially, the channel logic comprises:
(a) registers for channel control and time constant
(b) an 8 -bit prescaler (binary divider)
(c) an 8 -bit down counter (another binary divider).
Happily, the Z80-CTC can be very easily interfaced to the system and no additional logic is required since the two chip select lines (CSO and CSI) are driven from address lines A5 and A6 respectively whilst the chip enable (CE) line is connected to address line A7.
The complete circuit of our Spectrum Counter/Timer Interface is shown in Fig. 3. This circuit is suitable for use with the following versions of the Spectrum; $16 \mathrm{~K} ; 48 \mathrm{~K}$, 128 K , Plus, and Plus Two.
For test purposes, three transistor l.e.d. drivers have been fitted. These can be used to indicate the state of the four channel outputs.

Readers should note that the Channel 3 CTC output has no zero count/timeout output pin and thus three, rather than four l.e.d. drivers are required. Constructors should feel free to omit the l.e.d. drivers from the board should they not be required.

Construction

The Counter/Timer Interface may be assembled on a piece of Veroboard measuring approximately $80 \mathrm{~mm} \times 100 \mathrm{~mm}$. The precise dimensions of the board are unimportant provided that it has a minimum of 28 tracks aligned in the vertical plane sufficient to allow the mounting of a 28 -way double-sided edge connector. This connector should be fitted to the lower edge of the board and will require five holes across the full width of the stripboard so that the board stands vertically when the connector is mated with the Spectrum.
Before soldering any of the components (including the 28 -pin i.c. socket) it is important to allow some clearance for the rear overhang of the case. For the Spectrum this gap should correspond to 8 rows of holes (20 mm approx.) whilst for the Spectrum Plus and 128, the gap should be increased to 12 rows of holes (30 mm approx.).
Component layout is generally uncritical though, as with most of our On Spec projects, considerable economies can be made by carefully planning the layout in advance of mounting the components and i.c. socket.

Readers are advised to carry out this exercise on paper first (using, if desired, the layout sheet provided with our On Spec Update).

After mounting the i.c. socket, great care must be taken to ensure that all unwanted tracks are cut (including, in particular, those which link the upper and lower sides of the 28 -way connector). A purpose designed "spotface" cutter is ideal for this purpose or, if such a tool is not obtainable, a small sharp drill bit may be used.
The remaining components (resistors, capacitors, connectors and optional transistors and l.e.d.s) should then be fitted to the board. As usual, the decoupling capacitors (Cl to C 3) should be distributed around the board with the smaller value capacitors ($\mathbf{C} 2$ and C 3) being placed close to the supply input pins of IC1.
Links on the underside of the board should make use of appropriate lengths of miniature insulated wire (of the type normally used for wire wrapping). Readers requiring further information on the connector should refer to March 1985 On Spec or send for the Update.
When the stripboard wiring has been completed, the $280-\mathrm{CTC}$ circuit should be inserted into its socket (taking care to ensure correct orientation of each device). Finally, the entire board and wiring should be very carefully checked before attempting to connect it to the Spectrum. (Note that the Spectrum should ALWA YS be disconnected from its supply before either connecting or disconnecting any interface module.)

Fig. 1. The internal architecture for the Z80-CTC microprocessor.
Fig. 2. Simplified block diagram of each of the counter/timer channels.

If all is well, when power is re-applied, the normal copyright message should appear. If not, disconnect the power, remove the interface and carefully check again!

Machine Code on a Budget

For some months now, our On Spec Update has contained a simple hexadecimal code loader together with a subset of the most commonly used Z80 instructions listed in hexadecimal form. This little package can be used to develop simple machine code routines using a process known as "hand assembly"; one writes the code first in assembler mnemonics and then translates each instruction to its hexadecimal form by referring to the instruction subset. Whilst this process is tedious for anything other than the shortest of routines (say, 64 bytes or less) it is both simple (there are no complex commands to remember) and inexpensive (the services of an assembler are not required).
Whilst not being in any way special, our hex. code loader has provoked quite a lot of interest from readers and several of you have asked for an enhanced version. Accordingly, our latest Update contains a full listing of our new On Spec "Machine Code Loader". This program occupies approximately 3 K of BASIC (hence it is too long to list in these pages) but will only require half an hour, or so, to type in.

On loading, the user is presented with a menu screen which offers the following menu options:
EDIT E<address> LOAD L<filename>
DUMP D<address> SAVE S<filename>
RUN G<address> QUIT Q
The user is then prompted for a command (entered in upper case) and the Spectrum's ' C ' cursor will be seen flashing in the lower input area of the screen. Commands are entered using a single keystroke followed by an optional parameter (e.g. an address or filename). We shall now briefly explain each of the main menu options in turn:

EDIT

Edit allows the user to alter the byte present at any given memory address. The command will obviously only be effective within an area of RAM (i.e. it will not change the contents of the Spectrum's ROM!).

The edit command is invoked using E followed by an address given in hexadecimal form. Note that NO space should appear between E and its address parameter.

As an example, suppose we wish to change the byte stored at an address of A000 (40960 decimal). The following command would be used:

EA000
Pressing the ENTER key will generate the following prompt line in the bottom two lines of the screen;

$$
\begin{array}{lll}
\text { Address } & \text { Data } & \text { New Data } \\
\text { A000 } & 00 &
\end{array}
$$

The Spectrum's cursor should now apear in the "New Data" column and the user will be able to type the new value in hexadecimal form. If we wished to place C3 into A000, for example, the reply should simply be C3 (followed by ENTER).

Having pressed ENTER, the address will increment automatically to A001 in the previous example) and the user will then be prompted for new data to be placed in this location. If no further data is to be written to memory, the user simply presses Q and is returned to the "Command" prompt.

DUMP

Dump prints the contents of 64 bytes of memory (in hexadecimal form) from a given starting address. For example,

D0000

dumps the first 64 bytes of Spectrum ROM (from address 0000 to 4000 hexadecimal).

RUN

Run executes code from a given starting

Resistors

R. 1 - R4 270 (4 off)

R5-R7 10k (3off)
R8-R114k7 (4 off)
All 0.25 W 5\% carbon

Capacitors

C1 $\quad 10 \mu$ p.c. elec. 16 V
C2 - C3 100n polyester (2 off)

Semiconductors

IC1	Z80 - CTC counter/timer
D1 - D4	Red I.e.d. (4 off)
TR1 - TR3 BC548 (3 off)	

Miscellaneous

28-pin low profile DIL socket 3 -way 0.1 in. pitch p.c.b. mounting connectors $(4$ off): Veroboard, 0.1 in . pitch, measuring approx. $80 \mathrm{~mm} \times 100 \mathrm{~mm}$; 28 way open-end double-sided 2.54 mm $(0.1 \mathrm{in}$.) pitch edge connector (e.g. Vero part number 838-24826A).

Approx. cost
Guidance only
£11

Fig. 3. Complete circuit diagram of the Versatile Counter/\$imer Interface.

address. The command,

G8000
for example, will execute the code starting at a hexad ecimal address of 8000 (32768 decimal). It is very important to note that any code which is to be tested using the " G " command MUST be terminated by a RET (C9 hex.) instruction. Failure to observe this precaution will result in loss of control and the machine will probably "lock up".
In such an eventuality the user's code will be lost since recovery can only be made by rebooting the Spectrum. Note, however, that readers who have previously constructed our Escape Interface (Oct-Nov '86 issues) will be relatively immune from such disasters!

In any event it is ALWAYS good practice to save any code segment to tape, microdrive or disk, BEFORE testing. This can, be instrumental in saving a great deal of heartache. Incidentally,

G0000
can be used to reset the machine and clear the Spectrum's memory!

LOAD

The " L " command is used to load a machine code file from tape. Disk and microdrive users can, if desired; easily modify the program to cope with microdrive or disk storage. Users should again note that NO SPACE should be present between the " L " command and a subsequent filename. To load a machine code file called TEST, for example, the user should enter the following command:

LTEST
Having entered a filename (maximum 10 characters) the user is prompted for an address to load into. This address should again be specified in hexadecimal, however, if the user simply presses ENTER in reply to the prompt, the program will be loaded starting at the address which was used for the SAVE. Hence,
if you develop all your code modules starting from the same address (e.g. 8000 hexadecimal) it should not be necessary for you to specify the load address and you can simply default the request by pressing ENTER.

The LOAD command can be extremely useful "assembling" blocks of code into a longer program. Commonly used modules (such as port initialisation, delay routines, etc.) can be produced, SAVEd to tape, and then loaded into more sophisticated programs at any desired address. This technique is extremely powerful and can be thought of as being somewhat analogous to BASIC's MERGE command.

SAVE

The " S " command is used to save machine code in a named file. The command must therefore be immediately followed by a filename and the user will then be prompted for the start address of the code to save and the length of the code (in bytes). Note that the start address and length of code to save must BOTH be specified in hexadecimal.

Once this information has been accepted by the program, the user is presented with the usual:

Start tape, and press any key
Readers should not, of course, forget to press Play AND Record on their cassette machines otherwise the code will NOT be SAVEd!

QUIT

The " Q " command quits the program and performs a NEW command (erasing the program from memory). Readers should note that, since a NEW command preserves any code resident above RAMTOP, it may be useful to preset RAMTOP before use.

This can be done simply br entering a direct command of the form:

CLEAR 32767
which sets RAMTOP to 32767 and protects any code resident above it (i.e. from 8000 hex. onwards). The CLEAR command should, of course, be entered BEFORE the Machine Code Loader is RUN.

Now, let's just discuss a typical session with
the Machine Code Loader. Suppose that we wish to enter the following code module:

Address	Hex. code	Labels	Mnemonics
8000	210058	START	LD HL, 5800H
8003	7E	LOOP	LD. A, (HL)
8004	E6 FB		AND FBH
8006	4 F		LD C, A
8007	ED 5F		LD A, R
8009	E6 07		AND 7
800B	B1		OR C
800 C	77		LD (HL), A
800D	23		INC HL
800 E	3E 5B		LD A, 5BH
8010	BC		CP H
8011	C8		RET Z
8013	18 EF		JR LOOP

Enter the code from address 8000 using the command:

E8000
The last byte of code should appear at address 8013 and, when prompted for "New Data" at address 8014 , users should reply with Q.

Now check that the code has been correctly entered by dumping memory from 8000 using: D8000
The resulting display should show:
Address Data
$8000 \quad 21 \quad 00 \quad 58$ 7E E6 FB 4F ED
8008 5F E6 07 B1 7723 3E 5B
8010 BC C8 18 EF 00000000
(the rest of the block should all be 00)
Any mistakes in entering the code should now be corrected by editing the address at which any error has occurred and then pressing Q as soon as the address pointer has incremented. If, for example, the byte at 800 D had been " 03 " not " 23 "' the user should enter: E800 D
and then enter 23 under "New Data". The next New Data should be responded to with Q . Finally, it is worth dumping the memory block again ta check that 23 now appears at 800 D .
The code module should now be saved using an appropriate filename (we shall call it RANDINK for reasons which should become obvious when the code is eventually RUN!). The command to enter is:

SRANDINK

The user should reply to the "Hex start address" prompt with 8000 and 14 in response to the "Length of code" prompt. Readers should note that the code starts at 8000 and ends at 8013 making a total of 14 (NOT 13!) hexadecimal bytes.

Having SAVEd the code (don't forget to press Play AND Record) the code may be executed using:

G8000
If all is well, readers should be rewarded with a very interesting display to look at! Note, however, that the "Command" prompt should still be intact and the cursor obediently flashing ready to accept another command.

To reload your code at another address, rewind the tape to the beginning of the program and then type:

LRANDINK
In response to the "Address to load into" prompt, reply 9000 and then press Play. After the code has loaded, display the memory from its new start address using:

D9000
and check that the program has been duplicated at this new start address (note that the display will be resplendent in the original ink colours!).

Finally, readers who wish to further develop the Machine Code Loader are advised to replace the "NEW" in line 5090 with "STOP". This allows changes to be made without the program NEWing itself from memory each time the user quits!

If you have any comments or suggestions or would just like a copy of our On Spec Update, please drop me a line enclosing a large (at least $250 \mathrm{~mm} \times 300 \mathrm{~mm}$!) stamped addressed envelope.

Mike Tooley,
Department of Technology,
Brooklands Technica! College,
Heath Road, Weybridge,
Surrey KT13 8TT.
Next month: we shall be describing software for use with the Versatile Counter/Timer Interface.

WANTED: Cartridges compatible to Radofin 1292 and Prinztronic microprocessor system plus any offcuts of Vero stripboard. G.M. Jordan, 1 Hall Rd., Hemblington, Norwich, Norfolk.

APPROX: 600 mixed components, transistors, resistors, diodes, capacitors, etc. All coded and unused, bargain. £5. J. Shemeid, 103 The Oval, Firth Park, Sheffield, S. Yorks S5 6SP.

FOR SALE: 27 series EPROMS all new 27128 £2, 2764 f 1 , etc. A few 61166-P3 RAMS $£ 1$. Write: S.C. Gregory, 22 Derby Grove, Lenton, Nottingham NG7 1PF. Tel: (0602) 412352.
WANTED: Mains adaptor for Dragon 32 or any other bits and pieces. A. Beecroft, 91b Dowell Close, Taunton, Somerset TA2 6AU.
WANTED: Circuit diagrams or info on the Bush 1000 Audio System. Martin Poyner, 91 Eltham Hill, Eltham, London SE9 5SU.

FREE READERS ADS.

RULES Maximum of 16 words plus address and/or phone no. Private advertisers only (trade or business ads. can be placed in our classified columns). Items related to electronics only. No computer software. EE cannot accept responsibility for the accuracy of ads. or for any transaction arising between readers as a result of a free ad. We reserve the right to refuse advertisements. Each ad. must be accompanied by a cut-out valid "date corner". Ads. will not appear (or be returned) if these rules are broken.

MAPLIN 25W Mos-Fet Amp v.g.c. f25. M. Payne, 294 White Leas Way, South Shields, Tyne \& Wear NE34 8HW.

[^1]
gory

SONY SPEAKERS £20.95 per pair

including VAT, plus postage

$E E$ are pleased to be able to offer readers these modern Sony Z3000 speakers at magic prices in conjunction with R.T.V.C.

The speakers measure $41.5 \mathrm{~cm} \times 25 \mathrm{~cm} \times 17 \mathrm{~cm}$ approx. and are 20 W two way 60 hm units incorporating a 165 mm bass/midrange driver plus a piezo tweeter. They are made in the UK and finished in simulated black teak with a black grille. Quantitites are limited at this special price, so first come, first served.

Sorry but we cannot accept overseas orders due to the problem of delivery.

Post to: EE Sony Speaker Offer, RTVC, 21 High Street, Acton, London W3 6NG. Telephone Orders: 01-992 8430

automatic/ manual PORCH LIGHT

M.P. HORSEY

A light activated switch for the home with many other possible applications

T
HE PROJECT to be described causes a porch light (or any light) to switch on automatically at dusk, and switch off again in daylight. Two push switches are provided which enable manual control without affecting automatic operation. For example, the light may be switched off by pressing the "Reset" button, but it will still switch on automatically at dusk the following day.

HOW IT WORKS

The block diagram Fig. 1 shows how the circuit is divided into three main sections. Section 1 is the light sensor and Schmitt trigger. As light falling on the sensor decreases, line "a" from the Schmitt trigger goes "high" (i.e. the voltage rises to nearly 12 V) and a capacitor (C2) converts this into a single pulse

When the light level rises the Schmitt trigger causes line "a"' to go "low" (i.e. nearly zero volts) and line "b" now goes "high". Again, this is converted into a single pulse, this time by capacitor Cl .

The Schmitt trigger is a device which ensures that the circuit does not hesitate as the light level rises or falls. This is important as passing clouds could otherwise cause the Porch Light to
switch on and off repeatedly at dusk or dawn. The Schmitt trigger reduces the sensitivity of the sensor so that slight changes in light level have no effect.

Section 2 consists of a bistable multivibrator - sometimes called a "flip flop". When line " a " goes high the output from the bistable goes high. The bistable now remains in that state even when line " a " goes low again. However, if line "b" goes high the output from the bistable returns to low. A very small current is available from the bistable, and a transistor and relay are required to enable control of the Porch Light.
Section 3 consists of the power supply. A transformer is employed to isolate the mains supply from the circuit.

CIRCUIT DESCRIPTION

The complete circuit diagram for the Automatic/Manual Porch Light is shown in Fig. 2. A single i.c. (CMOS 4001 B) contains the four NOR gates required to make the Schmitt trigger and bistable.

Gates ICla and IClb are wired as inverters by connecting their inputs together. When pins 8 and 9 are low, output from pin 10 is high as

Fig. 1. Block diagram for the Automatic/Manual Porch Light.

are input pins 12 and 13. Output pin 11 is therefore low. Resistor R4 tends to hold down the voltage at input pins 8 and 9, and this "feedback" produces the Schmitt trigger action described before.

Variable resistor VR1 and R1, a light dependent resistor (LDR), form a potential divider, with resistor R2 providing some resistance if VRI is set to zero ohms. In practice, the user must set VR1 so that the Porch Light switches on at a suitable moment as darkness falls.
In daylight, the resistance of the LDR will be quite low, and with VR1 set correctly, the voltage at point P will be sufficiently low to maintain the output from gate ICIb low.

As the light level decreases, the resistance of the LDR will rise. Thus the voltage at point P will rise. At a certain level, the voltage at pins 8 and 9 will be sufficient to cause gate ICla and hence ICIb to change state. Resistor R4 will reinforce this new state, preventing the gates changing back again even if the voltage at point P falls slightly. İn fact, a fairly large rise in light level is required before the gates will return to their previous states.
If greater sensitivity is required, R4 may be increased in value, or removed altogether. However, it is likely that passing clouds will now become a problem. Resistor R3 is required to enable R4 to have the required effect on the voltage at pins 8 and 9
To sum up, in daylight the output from gate ICla (pin 10) is "high" and pin 11 is "low". At night, the output from ICla (pin 10) is "low" and pin II is "high".

BISTABLE MULTIVIBRATOR

The two remaining gates ICIc and IC1d (which would otherwise be unused) are employed as a bistable or flip-flop. This allows manual control of the Porch Light without affecting automatic operation
Understanding the bistable requires a clear knowledge of a NOR gate, and the following Truth Table summarising the input and output states for one gate may help.

INPUT 1	INPUT 2	OUTPUT
low	low	high
high	low	low
low	high	low
high	high	low

Assuming that the bistable is in its "low" state (i.e. ICIc output pin 3 is low), IC1d pin 5 will be low, pin 6 will be low due to the action of resistor R5, and output pin 4 will thus be
"high". This high will hold 1 Cle input pin 2 high, and with either input at ICIc high, its output will remain low. Note that pressing the reset switch S 2 will have no effect as pin 1 may be high or low providing pin 2 is high.
When the Set switch S1 is pressed, 1CId input pin 6 becomes high. This causes output pin 4 and hence ICIc input pin 2 to go low. With both inputs to IClc low, its output goes high. Thus input pin 5 goes high and this maintains the bistable in its new state when SI is released and pin 6 goes low again.
When $\mathbf{S} 2$ is pressed, input pin 1 goes high, and by similar reasoning the bistable returns to its former state. Correct operation of the bistable only occurs if the push switches are pressed then released. In effect a positive pulse at pin 6 "sets." the bistable, and a positive pulse at pin 1 causes it to "reset".

Capacitor C3 removes any small electrical spikes from the supply, and is mounted close to ICl supply pins 7 and 14 .
The primary windings of TI are connected to the mains via fuse FSI, with the neon LP1 providing a visual warning when the supply is connected. The completed unit should be connected to the mains via a 13A plug with IA fuse fitted, to protect the relay contacts and associated wiring.

CONSTRUCTION

WARNING: Ensure that the mains wiring is kept fully isolated from the low voltage circuit, and take the usual precautions when connecting to the mains supply.
The i.c. is a CMOS type and should be left in its protective packaging until required. An i.c. socket is essential.

Mount the i.c. socket followed by the wire links. When fitting short wire links, thin bare tinned copper wire is ideal. Cut off a long piece, solder one end in position, then thread it though the other hole before cutting to length. This method enables links to be made quickly and neatly. A total of 9 short links are required.
The order in which components are fitted is not important, though it is more convenient to fit the smaller items first, and the long connecting wires at the ends of the board, last.
Ensure that the diodes and capacitor C4 are fitted the correct way round, and TR1 is fitted with the flat side towards the left. A type BCl84L must be chosen (a type BC184 (without the "L") has leads in a different order).
The two push-to-make switches and potentiometer VR1 will require connecting

Fig. 2. Complete circuit diagram for the Automatic/Manual Porch Light. This circuit is broken down into three sections; Schmitt trigger, 'flip-flop' and power supply.

The Schmitt trigger is linked to 1 Cld pin 6 via capacitor C2. This ensures that when 1C1b output pin 11 goes high a brief positive pulse is applied to pin 6, before resistor R5 reduces the voltage to zero again. If the voltage at pin 6 remained high, proper manual control would not be possible. Similarly, as the light on the LDR increases and gates ICla and IClb change state, output pin 10 goes high and capacitor Cl applies a brief positive pulse to input pin 1 .
The bistable is therefore controlled by the Schmit trigger for automatic operation, or by the push switches for manual operation, without either affecting the operation of the other.

OUTPUT OPERATION

The output from the bistable pin 3 is fed via current limiting resistor R7 to transistor TR1. When pin 3 is low TRI is switched off. When pin 3 goes high, TRI turns on and allows sufficient current to flow through the coil of the relay RLA to close its contacts and switch on the Porch Light.

The relay should be a 12 V type, and have a coil resistance of 180 ohms or more. Its contacts should be able to switch about IA at 240V. Diode Dl prevents back e.m.f. damaging the transistor when the relay switches off.

POWER SUPPLY

Transformer $T 1$ is a miniature type converting the 240 V a.c. mains into $9 \mathrm{~V}-0 \mathrm{~V}-9 \mathrm{~V}$ a.c. Diodes D2 and D3 produce a full wave d.c. supply, which is smoothed by capacitor C4.

CIRCUIT BOARD

The Automatic/Manual Porch Light is constructed on a piece of stripboard of at least 30 holes by 15 tracks. The prototype employed a piece measuring 80 mm by 65 mm to provide room for the mounting holes and relay RLA.
The stripboard component layout is shown in Fig. 3. Begin by labelling the stripboard and the positions of the breaks. Next make the 9 breaks as shown, ensuring that loose copper fragments are carefully removed.
wires sufficiently long to reach their chosen mounting positions in the case. The light dependent resistor, R1, may be positioned on the case, or via a longer pair of wires to enable the LDR to be mounted on a window.

This choice will depend upon where the project case is situated in relation to daylight. Note that the LDR may be affected by other lights - including the Porch Light itself - if mounted too close.

The relay is not shown mounted on the stripboard as this restricts the type which may

Fig. 4. Interwiring details for the high voltage (mains) section of the unit and wiring to the circuit board. The compact positioning of components inside the plastic case can be seen in the photograph below.

be chosen. If a stripboard mounting type is purchased, ensure that the mains connections are completely isolated from other parts of the stripboard - by several breaks. If mounting off the stipboard ensure a firm fit to prevent "live" connections touching the circuit, should the relay become loose.
The transformer will normally have three wires leading from its secondary coil. Ensure that the centre tap (zero volts) is connected to "earth" and track L. The metal core of the transformer should also be connected to "earth".

CMOS i.c.s are easily damaged by static electricity, and care should be taken to earth any change in your body before removing the i.c. from its protective packaging. This is achieved by' touching an earthed object, such as the metal case of an appliance plugged into the mains. Once the i.c. is plugged into its socket, the other components in the circuit will remove any static charges.

TESTING

Before mounting the components and circuit board in the case it should be tested for correct working. To prevent any risk of a mains shock, a separate 12 V supply may be used for testing the circuit. Its positive side should be connected to track D (e.g. by clipping it to the positive side of capacitor C 4) and the negative side connected to track L (e.g. by clipping to the negative side of C 4).

Most relays produce an audible click when switching on or off. If in doubt, use a Voltmeter or l.e.d. and a series resistor of about 1 k ohms across the relay coil to test the circuit. Note that the negative side of the Voltmeter or l.e.d, (flaț) must be nearest the transistor.
Switch on and press S1 or S2. It should be possible to switch on the relay by pressing Sl, and switch it off by pressing S2. If all is well, turn VR1 until the relay switches on, then turn the opposite way until the relay just switches off. Now shade the LDR. The relay should switch on again.

If these tests fail, check the supply voltage across pin 14 (positive) and pin 7 (negative) of 1 Cl . Monitor the voltage at output pin 3 , with the Voltmeter negative connected to the negative side of capacitor C 4 . Repeat the tests described above.
The voltage at pin 3 should be above 10 V for on and below 2 V for off. If this test works, the fault lies around transistor TR1, otherwise further tests must be carried out by checking that the voltage on the pins of the i.c. is in accordance with the circuit description outlined earlier.
There should be no problem in taking voltage readings on the pins of the i.c. apart from pins 8 and 9. Here the high values of resistors R3 and R4 may make readings unreliable. Instead, check that the voltage at point P rises and falls as VRI is turned; check that the voltage at pin 10 does the opposite (noting that it should be either "high" or "low", rather than an intermediate value), and if this is the case it may be assumed that the circuit around pins 8 and 9 is correct

MOUNTING IN A CASE

The prototype was housed in a Verobox type 102 , measuring 150 mm by 80 mm by 50 mm . Begin by placing the parts in the case to ensure they fit inside the rather limited space, see Fig. 4.
Select the positions of VR1 and the switches S2 and S2, ensuring there is enough clearance inside. The transformer Tl should be mounted using nuts and bolts (nylon ones are ideal). For safety, the terminal block TBI, fuse and

COMPONENTS

Resistors

Resist
R1
R2
R3 \quad ORP12 light dependent resistor

Semiconductors

Semiconductors	
D1	1N4148
D2	1N4001
D3	1N4001
TR1	BC 184L
IC1	4001B CMOS quad 2-input
	NOR gate

Miscellaneous

T1 Miniature mains transformer 240V primary, 9V-0V-9V 100 mA sec. RLA $\quad 12 \mathrm{~V}$ relay, 180 ohm or more coil and contacts rated at 1 A 240 V minimum. S1, S2 Push-to-make switch (2off)
Stripboard, at least 30 holes by 15 strips; case, Verobox type 102 $(150 \mathrm{~mm} \times 80 \mathrm{~mm} \times 50 \mathrm{~mm}$); 240 V mains neon (with integral resistor); 14-pin d.i.I. socket; 5 -way screw terminal block; 100 mA fuse and fuseholder; plastic control knob; connecting wires and nuts and bolts, etc.

Approx. cost Guidance only

£15 (including case)

stripboard should also be mounted using nylon nuts and bolts. The relay RLA should be fixed securely in place, or soldered on the stripboard as described earlier.

Mark and drill all the holes necessary including the two mains cable holes for the mains input and Porch Light output, and a hole for the LDR cable, unless mounting on the
case. Complete the mains wiring, noting that the "earth" lead connects to the metal core of the transformer in addition to the secondary centre tap, and copper track L of the stripboard. Bolt the items to the case, and double check that the live and neutral mains connections are completely isolated from the low voltage parts of the circuit.

FINAL TESTS AND SAFETY CHECK

Before plugging into the mains supply, connect a Voltmeter across capacitor C4 to establish that the power supply components are functioning. Connect to the mains and switch on. The Voltmeter should read about 12 V . A value below 10 V or above 16 V indicates a serious fault. Switch off at once!
Finally, disconnect from the mains, unclip the Voltmeter, connect up the lamp, and replace the lid of the case ensuring that no metal part (e.g. VRI) touches any internal connection.

The current used by the circuit is negligible compared with the current used by the house Porch Light. A fairly low wattage bulb may be employed to reduce running costs. For example, a 15W Pygmy will cost about Ip per 12 hour night.

Introductory Microprocessor Course CGLI 726-303

Due to demand for the above City \& Guilds certificate course, it is anticipated that it will commence in October 1987

Content of the course is mainly practical, and persons attending will be encouraged to purchase Everyday Electronics each month in order to assist their personal studies.

Would you kindly bring this item to the attention of your readers so that anybody in the Humberside region wishing to undertake the course can contact me, either by writing to the following address, or telephoning 0482 448717/8
K.H. Lamb, Lecturer in Electrical Engineering Studies, Department of Engineering, Hull College of
Further Education, Ryde Avenue,
Hull HU5 1QF.

You've finished your project Now COMPLETE it!

Build an enclosure to fit it exactly

 ENCORE has been developed and designed to make any enclosure to the exact dimensions you want Brand new ENCORE is an ingenious but simple exiruded strip system that you can shape, bend, file and cut. Incorporated in the section profile is a screw fastening hole. When the plastic sheet is cut to size the drilled holes will register exactly using the jig and drill supplied with each kit.Angles, projections, odd shapes (even circular) - can all be made easily and quickly for a fraction of the cost of off the-peg 'boxes' the free jig and drill. what a clean for your current project you'll be surprised what a clean professional finish it gives to any kind of projec

Send for

full details,
FREE
LEAFLET
LEAFLET
and pric
list

OWEN BISHOP

2 」 5 - 5 」 5

This series is designed to explain the workings of electronic components and circuits by involving the reader in experimenting with them. There will not be masses of theory or formulae but straightforward explanations and circuits to build and experiment with.

Part 16 Oscillators using logic I.C.s

AST month we saw how we could build -a bistable circuit from two NAND logic gates, wired together. As explained then, the bistable (or "flip-flop") has two stable states. It can be made to flip from one state to the other by briefly connecting one of its inputs to 0 V .

We can also use logic i.c.s. to build the related circuit, the astable multivibrator, which continuously alternates between one state and the other. As this project shows, an oscillating circuit such as this one has many applications.

NAND GATE OSCILLATOR

The NAND gate oscillator circuit shown in Fig. 16.1 consists of two crossconnected NAND gates, as in last month's project. In that circuit the connections were "direct-coupled" by means of plain wires, but here we use capacitors instead.

HOW IT WORKS

In one state of the circuit the output of Gate 2 has just gone high (Fig. 16.2a). This makes the potential at one plate of capacitor C2 go high.

A change of potential at one plate of a capacitor initially causes an equal change at the other plate. Consequently, both plates of capacitor C2 go high.

As a result of this, both inputs of Gate 1 are high (remember that an unconnected input counts as being "high"), so its output is low. A low and high at Gate 2 gives a high output (see Truth Table), so the circuit is stable for the moment.

The charge on one plate of C 2 gradually leaks away through resistor R2. The higher the values of R 2 and C 2 , the longer this takes.

Eventually, the voltage in this part of the circuit has fallen low enough to produce one low input to Gate 1. Immediately this happens its output goes high. Both plates of capacitor Cl become charged and Gate 2 now has two high inputs. Its output must go low.
The circuit is now in its other stable state (Fig. 16.2b). It remains in this state until the charge has leaked away from

Fig. 6.1. Oscillator circuit using two NAND gates.
Fig. 6.4 (above right). Próviding an audio output for the oscillators.
capacitor Cl through resistor R 1 . Then the reverse of the action above makes it change back to its original state again.

The circuit has just the same kind of action as the transistor oscillator described in Part 7 (EE, Jan 1987) but is much easier to build because the manufacturers of the i.c. have done most of the work for us. This encourages us to go one step further and, in the third project this month, we connect two oscillators together.

ONE - SLOW OSCILLATOR

First build an oscillator that operates at about 0.5 Hz by connecting up two gates as shown (Fig. 16.1) and the "test bed" component layout (Fig. 16.3). The capacitors should have the value $470 \mu \mathrm{~F}$. The resistors should always be close to 2.2 k , so the only way to alter frequency is to change the capacitors.
At this stage, omit the wire link $J 7$ to C21. When this oscillator is working properly, the l.e.d. should go on and off once in 2 seconds. If you now connect the wire link as indicated by the dotted line, you should hear a steady series of ticks, about one tick per second, as the bistable changes state.

Fig. 16.2 The two states of the NAND gate oscillator and truth table

TWO - FAST OSCILLATOR

Having built the Slow Oscillator, we next build one that works 1000 times faster. Build it on another breadboard, as shown in Fig. 16.5.

The circuit is the same as that of the Slow Oscillator except that we use $0.47 \mu \mathrm{~F}$ capacitors and there is no point in having the l.e.d. These capacitors have only $1 / 1000$ of the capacitance of those used in the Slow Oscillator so they discharge 1000 times faster.

When this oscillator is connected to the loudspeaker circuit by a wire link from $J 13$ on this breadboard to $C 21$ on the other, we obtain a clear musical note, at about 500 Hz (a little below middle C on the piano).

Fig. 16.3. Slow Oscillator "test-bed".

THREE - COMBINING THE OSCILLATORS

What about combining the outputs of these two oscillators?
The easiest way of doing this is to NAND them together by making the dashed connections shown in Fig. 16.5, first removing the wire at $J 13$. We take the outputs from each oscillator and feed them to the inputs of a spare NAND gate.
The output of this gate is taken to the loudspeaker. What do you hear now?
Fig. 16.5. Fast Oscillator "test-bed".

Fig. 16.6. Timing waveforms for the oscillators.
The timing on waveform diagram (Fig. 16.6) helps to explain what happens when the two oscillators are connected together. When the Slow Oscillator output is low, the NAND output is high, no matter whether the Fast Oscillator is low or high. No sound is heard.
When the Slow Oscillator goes high, the NAND output is the inverse of the Fast Oscillator. We hear the high-pitched sound.

You will probably have noticed that this bleeping sound is far more attentioncatching than a continuous tone. 1t makes a good alarm tone to use with some of the devices described earlier in this series, such as the Rain Detector (August 1986), Light Operated Switch (November 1986) and the Telephone/Baby Alarm (July 1987).

To control it, we need one or more NAND gates. Use the spare gates in IC1 or IC2. The control input is taken from the collector terminals of the circuits and possibly a NAND gate is needed to invert the control output. We leave it to the reader to work out the logic required.

Note that we shall be using the Slow Oscillator again in next month's investigations.
Next Month: Investigating the JK FlipFlop and counting circuits.

25 YeARS OF GOONHILLY It is twenty-five years since the first transatlantic communications via Telstar

N The spring of 1961 it was jointly announced in the United Kingdom, the USA and France that the US National Aeronautics and Space Administration (NASA), the French Centre for Telecommunications Studies and British Telecom, as its predecessor Post Office Telecommunications, would cooperate in a programme for transatlantic testing of communications satellites.
At the same time it was announced that satellite earth stations would be built in England and France "for the reception and transmission of telephone, telegraph and television signals across the Atlantic using satelites to be launched by NASA during 1962 and 1963."
Work began shortly afterwards to build the UK's first satellite station at Goonhilly Downs in Cornwall. The site was chosen because it was as far west as possible to obtain the maximum period of visibility to the United States via the satellite, to be remote from sources of electrical interference, and to provide an unobscured view to the horizon for the longest possible contact with the satellite.
In less than a year from gaining access to the site the station was ready. A massive, steerable dish antenna, weighing 870 tonnes with a 25.9 m dish had been built. All of the equipment on the station was of British design and manufacture, with the exception of one American transmitting klystron valve.
The British design was the odd-man-out among the three earth stations to be used for the tests. Both the American station at Andover, Maine, and the French station at Pleumeur Bodou in Britt any, were equipped with horn antennas housed in radomes. The British station had cost around $£ 800,000$ to complete, about a quarter of the cost of the American and French stations.

TELSTAR

In early July 1962 it was announced that Telstar would be launched from Cape Canaveral on either July 10 or 11.

The successful launch took place at 8.35 GMT on Tuesday, July 10 , and the desired orbit was achieved. With Telstar circling the earth at heights varying between 590 and 3500 miles, it was possible to achieve three or four periods during each 24 hours when mutual visibility between Goonhilly and Andover lasted for 30 to 40 minutes
During these periods the antenna at Goonhilly had to be accurately manoeuvred to follow the satellite from the moment it rose above the horizon until it again disappeared from view. The signal transmitted from the antenna to the satellite was concentrated into a narrow beam, one-fifth of a degree in width, so absolute precision was necessary. To maintain this accuracy in high wind meant that the antenna had to be massive and sturdy. In order to move the antenna so accurately it was equipped with electric motors of some 100 horse power. However, the engineering design resulted in such good balance and smooth movement of the antenna that normally less than two horse power was required under reasonable weather conditions.
The primary purpose of the Telstar satellite tests was to acquire data on which to base the future design of satellite systems for commercial operation. However, during the period from July 10 to July 27 a number of demonstrations were carried out which illustrated the potentialities of satellite systems for world-wide telecommunications.

FAILURE!

In the early hours of July 11 the first usable orbits were the sixth and seventh and the first attempt at television reception was made. Reception was decidedly poor. Some experts were quick to blame Goonhilly's unique antenna design, and The Times described the experiment as "an almost total failure". Some experts said the antenna was too heavy and cumbersome to accurately track the satellite, others blamed the driving mechanism.

The problem proved to be that one component had been fitted the wrong way round and it was a twenty-minute job to correct it. The effect of the incorrect fitting had been to reverse the direction of the wave polarisation of the antenna, relative to that of the satellite, introducing a serious weakening of the strength of signals received. The problem arose because of an ambiguity in the accepted definition of the sense of rotation of radio waves; a difficulty which had been encountered both in the USA and the UK in the period just before the tests.

With the correction made, excellent pictures were received on orbit 15 during the evening of July 11 , and during orbit 16 the first live television transmission between Europe and the USA was made from Goonhilly to Andover. The pictures and sound received at Andover were reported to be of excellent quality and were broadcast as received throughout the USA.

On July 12 the first two-day transatlantic telephony tests were made, showing that good-quality, stable telephone circuits with low noise levels had been achieved. These tests were to be followed two days later by the first transatlantic telephone call and photo-telegraphy (facsimile) transmission via satellite.

On July 14 during orbit 34 , the director general of the Post Office, Sir Ronald German, spoke from his home in London to the president of American Telephone and Telegraph Co (AT\&T), Mr Eugene McNeely, in New York. Simultaneously, one pair of channels was used to send facsimile pictures between London and New York.

On July 15 tests to access the ability of a communications satellite to carry large numbers of telephone circuits were carried out during orbit 43. These demonstrated that at least 600 firstgrade international circuits should be possible by satellite.

The first transmissions of colour television signals by satellite were made from Goonhilly during orbits 60 and 61 on July 16 . With the co-operation of the BBC's research and design department, who provided a colour slide scanner and monitor equipment, the signals, on 525 -line NTSC standards, comprised captions, test cards and still pictures to assess colour quality. The transmissions were initially made from Goonhilly to the satellite and back to Goonhilly but were also received in Andover. Andover reported: "Colour - good; picture quality - excellent."

During orbit 87 on July 19 satellite communications were opened up to the press. Twenty-four calls were made by the British press from Fleet Building in London, to the American press in New York.

On July 23 during orbit 125 an 18 -minute long programme from the European Broadcasting Union was transmitted from Goonhilly to Andover. The programme consisted of scenes from
many European countries and was transmitted by the Eurovision link to Goonhilly, from Goonhilly to the satellite, and was received at Andover and broadcast throughout the USA.
During orbit 151 on July 26, the Telstar link between Goonhilly and Andover was used to provide telephone circuits for the US Information Agency involving conversation between "notable persons" in 20 pairs of cities in the USA and Europe for the Agency's "People-to People" programme. The circuits were reported as excellent.

The Telstar Tests confirmed that communications satellites could provide high-quality, stable circuits for television and multi-channel telephony. The performance of Goonhilly earth station was reported as excellent in every respect, and the equipment, almost all of which was of a unique new design, had worked well. In fact, Goonhilly's antenna design was to prove to be the blue-print for the future.

GEOSTATIONARY

Arthur C. Clarke had, in his 1945 paper published in Wireless World, proposed that satellites, circling the earth above the equator at a certain height, would appear to be stationary to the earth's surface - their period of orbit would exactly match that of the earth's natural rotation. That distance was 22,300 miles above the equator.
After INTELSAT I's successful launch to this height, commercial service opened in June 1965.
Arther C. Clarke had also proposed that three satellites in geostationary orbit could give world-wide radio coverage.
A second satellite - INTELSAT II - was launched in October 1966, and with the launch of INTELSAT II, Aerial 1 at Goonhilly, which now no longer needed to track low-orbiting satellites across the sky, had an extra reflecting surface added, pushing its weight up to 1100 tonnes.
Satellite communications had now truly entered commercial operation. As the demand for transatlantic TV and telephone transmission grew, so did Goonhilly with the added Aerial 2 in 1968.

By 1969 three geostationary satellites were in orbit, fulfilling Arthur C. Clarke's prophesy of global communications. INTELSAT III was positioned above the Indian Ocean and demand for satellite communications with the Far East grew. To meet this need Aerial 3 was brought into service in 1972.
Aerial 4 was added in 1978, to meet an ever-increasing demand for communications across the Atlantic. This was also one of the first antennas in the world to use the $11 / 14 \mathrm{GHz}$

Goonhilly operational control area

Experimental Skyphone at Goonhilly
frequency as soon as it became available for business satellite communications.

Demand for satellite communications grew by 20 percent a year during the 1970s and early 1980s. Further satellites were put into orbit and in October 1978 a second earth station was brought into service by British Telecom at Madley in Herefordshire, on the England/Wales border.

Demand for specialist services also grew during this period and in 1983 Aerial 5 at Goonhilly was completed to provide satellite services to ships at sea.

At the same time Aerial 6 was being built to provide further capacity on the busy transatlantic route. Aerial 6 is Goonhilly's largest dish with a diameter of 32 m . It was also the first "dualfrequency" anterna, able to both transmit and receive on two frequencies simultaneously - doubling potential capacity. It entered service in September 1985.

While Aerial 6 was being built Aerial 7 was also being brought into service to provide leased TV services to North America.

LONDON TELEPORT

With continuing growth in demand for satellite communications, British Telecom announced plans in August 1983 to build a third earth station in London's Docklands, primarily for satellite TV distribution and specialised business services. The London Teleport, in North Woolwich, opened for operation in February the next year - less than six months after site clearance began.

Aerial 7 at Goonhilly, initially for TV circuits, is now being used for the trial of "Skyphone" - a telephone service to aircraft in flight - which is due to start in the autumn.

Meanwhile Aerials 8, 9 and 10 have been built. These are small-dish antennas below 14 mm in diameter. They are used for research and development, and to provide monitoring and control facilities on the more than 130 satellites currently in use.

DEVELOPMENTS

Today, development at Goonhilly continues. Aerial 6, the biggest antenna has been equipped to operate to the latest development in satellite communications - Time Division Multiple Access/Digital Speech Interpolation (TDMA/DSI). TDMA/DSI means that signals from the station are grouped and sent by time rather than frequency, and on the principle that during the average telephone conversation either party is only speaking for one third of the time of the call, other groups of signals can be sent along the same channels during the lapses of conversation.

Goonhilly aerials and laboratories are used for testing new stations being built around the world. The centre is at the forefront of interference monitoring and investigation into propagation, plus the development of new systems and services.
Over the years many technological advances have been made,
for instance although communications satellites are in geostationary orbit they appear to move in a relatively small figure of eight pattern during each day due to the earth's "wobble" on its axis. In order to receive high quality signals each aerial must be moved slightly to track the satellite. Originally this was done by stepping the aerial in one direction and seeing if the signal improved - by continuing the steps for a better signal or reversing them if reception was worse, the satellite was tracked. This of course is a continual process with motion on both axes. An improvement has come by using a microprocessor to "learn" the tracking path each day and therefore make more intelligent "guesses" at the direction of each step the following day. This system is called the "smooth step track controller". Both the above systems require the continual movement of the aerial over very small angles.

A novel alternative approach has now been developed by British Telecom International whereby "mode generators" are attached to the walls of the feed. These "mode generators", incorporating a PIN diode, filter and short circuit, may be switched on and off with a resulting very small deflection of the antenna beam without any physical movement of the antenna. In operation, the beam is deflected perhaps 1000 times per second in four directions and using a single channel receiver the optimum direction for any necessary wholescale antenna movement can be derived. The controller is a modified version of the smooth step track controller. Key advantages are an equivalent high performance at a lower cost arising from the simple feed and single channel receiver and the reduction in wear of the main antenna steering motors, etc.

The new "beam squint" concept is also particularly attractive for antennas mounted on moving platforms (ships, aircraft, vehicles, etc.), or antennas following fast moving low-orbiting satellites. The European Space Agency (ESA) has already adopted the system for use on-board a satellite for an intersatellite link application.

THE FUTURE

Future developments include the Skyphone - a consumer phone system for aircraft where in-flight passengers will be able to use a credit card in a payphone and dial up their friends or businesses via satellite around the world. Trials of the world's first satellite radiopaging system are also underway. This will ènable drivers of long-distance lorries to be contacted immediately by their companies while they are on the road particularly those of road haulage firms operating on routes across Europe, the Middle East and Africa. The service will provide another international extension to the existing radiopaging service operated in the United Kingdom by British Mobile Communications (BTMC).
The Message Master pagers to be used in the trial will allow short messages of up to 90 characters to be sent with the characteristic bleep-tones. The pagers will have seven digit numbers, and a liquid crystal display similar to those widely in use in Britain. Messages to drivers can be telephoned, keyed-in, or telexed in the normal way to the radiopaging system's computers. The combined Message Master pager and printer fits conveniently on the parcel shelf of the cab dashboard.

The purpose-built antenna mounted on the lorry cab roof comprises a flat plate approximately 120 mm square and 10 mm thick, which is wired to a small low-noise receiver mounted in a box underneath.

Communication via satellite has come a long way in the last twenty-five years.
Beam squint feed

Zenith Electronics.	
Its - Modules - Mardmare	
NEV Built. finished in white plastic andBrass touch plate, £12.99 inc. VAT \&P\&P.	
The following are examples of our proven product designs in kit form:	
$\star 10$ Channel Variable Speed Running Light; Drives LÉDs or mains lamps. Kit. \qquad .14 .97	
3 Note Electronic Door Chime unit; 9 volt operation, 3 melodious tones; variable frequency. \qquad . $c 9.83$	
$\star 300$ Watt Light Dimmer unit for 240 volt mains lights. Kit $£ 6.95$ $\star 4$ Code Digital Code unit plus Key Pad-select own code; 9 volt. Kit. \qquad $£ 15.95$	
5-100 Watt Electronic Loudspeaker Overload Protector, adjustable. Kit \qquad 111.11	
\star vU Meter 10 LED indicator; -5 to +12dB range. Kit............... $£ 12.59$	
* Automatic light controller; automatically turns on and off	
lights at pre-set times and triggered by darkness. Sit $£ 25.08$ * Mains Wiring and Metal Detector. R/Built.................................... $\mathbf{£ 1 1 . 0 0}$	
* Amplifier Power Meter; 10 LED indicator from	
0.25-100 Watt Input-9 volt operation. Kit \qquad Light sensitive relay unit; variable sensitivity trigger control; senses light or dark--selectable. Kit \qquad 88.45	
ALL EITS CONTAIN FULL INSTRUCTIONS: P.C.RE AND COMPONENTS. ALL PRICES INCLUDE VAT AND POSTAGE \& PACKNG. OVERSERS ORDERS-KDD 10\% TO ABOVE PRICES. PLEASE SEND CHEQUE OR POSTAL ORDERS WTTH ORDER.	
Zenith Electronics, 14 Cortlandt Business Centre, Hailsham, E. Sussex, U.K. BN27 1AE. Tel: 0323847973	

OMEGA ELECTRONICS

252A HIGH STREET, HARLESDEN, LONDON NW10 4TD. TEL: 01.965 5748 MAIL ORDER \& RETAIL SHOP
TELEX: 265871 MONREF G Quoting 72: MAG31197 nus:

BARGAIN PACKS
 DUE TO DISCONTINUATION OF MANY PASSIVE LINES, WE ARE OFFERING THOUSANDS OF BRAND NEW COMPONENTS AT THROW AWAY PRICES

RESISTORS 0.25W Carbon Film 5\%
QTY 100 One Value E20 Series $£ 0.50$
QTY 500 Assorted Mixed Values $£ 1.50$
QTY 100 Your Choice $£ 0.60$
QTY 5 Rotary Potentiometers Assorted $£ 1.20$
QTY 5 Rotary Potentiometers Your Choice $£ 1.50$
QTY 50 Assorted Miniature Presets Assorted Log and Lin £1.75
CAPACITORS
QTY 50 Ceramic Capacitors Mixed Values $£ 0.75$
QTY 50 Electrolytic Capacitors Mixed $£ 1.00$
QTY 50 Assorted Polyester/Tantalum $£ 1.00$
QTY 103300μ UF \& Other High Values $£ 1.50$

Please send SAE for our latest semiconductor price list consisting of over 3000 items to include CMOS, TTL. 74 HC 74 HCT , Linear, Transistors, Triacs, Japanese components, all at prices so low that we do not want to print here. Send for your list now

JUST ARRIVED!!
A major electronic distributor's dis continued lines all being sold off at LESS THAN HALF PRICE!! - Boxes, cases, connectors, LEDs, switches, DIP boards, cable ties, etc. All goods detailed in a 16 page supplement, available now, FREEI! Examples:
Briefcase type combination locks $\mathbf{£ 4 . 7 1}$ per pair. Sloping front cases: $161 x$ f1.49. Plastic box with PCB slots $190 \times$ £1.49. Plastic box with PCB slots $190 x$ $110 \times 60 \mathrm{~mm}$ f1.40. Large steel case $336 \times 269 \times 148 \mathrm{~mm} \mathbf{C 1 5 . 4 5}$. Tidyman Kits: contain a wide variety of suppor pillars, stand offs, cable straps and clase Small: (201 total) f7 80 . Large (708 case. Small: (201 total) £7.80; Large (708 (Post on all above f 2)

Waw Prain

2494 Motherboard microprocessor panel $265 \times 155 \mathrm{~mm}$. Complete PCB for computer. 280 , char EPROM, etc. 68 chips altogether + other associated components, plugs, skts, etc. $\quad \mathbf{5} .50$ Z495 RAM panel. PCB $230 \times 78 \mathrm{~mm}$ with $14 \times \mathrm{MM} 5290-2$ (4116) (2 missing) giving
28 k of memory. Also 8 LS chips. These 28 k of memory. Also 8 LS chips. These panels have not been soldered, so chips

> 'NEWBRAIN' PSU

BRAND NEW Stabilized Supply in heavy duty ABS case with rubber feet. Inpu $220 / 240 \mathrm{~V}$ ac to heavy duty transforme via suppressor filter. Regulated DC outputs: 6.5 V @ 1.2 A ; 13.5 V @ $0.3 \mathrm{~A} ;-12 \mathrm{~V} @ 0.05 \mathrm{~A}$. All components readily accessible for mods etc. Chunky heatsink has $2 \times$ TIP31A. Mains lead (fitted with 2 pin continental plug) is 2 m long. 4 core output lead 1.5 m long fitted with 6 pole skt on $0.1^{\prime \prime}$ pitch. Overall size $165 \times 75 \times 72 \mathrm{~mm}$. $\quad £ 5.95$ ea 10 for E 40 2679 KEYBOARD 62 keys on ally chassis $260 \times 90 \mathrm{~mm}$. No PCB.
2670 HANDBOOK 204pp. Useful appendix Jabout $1 / 2$ the book) gives some tech info.

Z674 DATA PACK. Interfaces and connector pin-out, i/p, o/p, por map, cc diagram + data on COP420C $\quad \mathbf{1 2 . 0 0}$ 2672 MOTHERBOARDS Complete but probably faulty.

C3.50

VIDEO FANSI!

Here's your chance to never be withou power againll We're offering a set of 10 6 V 3 A sealed lead acid rechargeable batteries, together with a mains powered charger that takes all 10 batts at an unbeatable pricel They can be wired up in parallel/series combination to provide 6 V 30 A or 12 V 15A, thus giving over 20 hrs recording time on most camcorders Limited stocks, so order now. Price 7902 leads and mains lead.
$\mathbf{2 8 0 2} \mathbf{£ 9 9}+\mathbf{5 5}$ car

2652 COIN ACCEPTOR MECHANISM Made by Coin Controls, this will accep various size coins by simple adjustment of 4 screws. Incorporates various security features - magnet, bent coin rejecto etc. Microswitch rated 5 A 240 V . Front panel 115×64, depth 130 mm . Cos £10.85. Our Price

CREAM DISPENSER
2801 Coin operated machine for dis pensing hand cream. Cabinet $620 \times 365 \times$ 200 mm , wt 10 kg , contains coin mech PCB, counter, pump mech consisting o high torque geared 6 V motor driving cam - Components, all powered by internal 6 V 2.6A rechargeable battery $\quad \mathbf{£ 1 5 + £ 5}$

Parts available separately. See list 30 carr
SPEECH CHIP
2733 SPO256A + index chip + ULA chip as used in Currah microspeech. Cct and info for using SPQ256 with Spectrum, ZX81, BBC, VIC \& C64. No info on other 2 chips. All 3 for

AUTO DIALLER
Sloping front case $240 \times 145 \times 90 / 50$ contains 2 PCB's: one has 4 keypads (total 54 switches) +14 digit LED display. $2 \times$ ULN2004, ULN 2033 and 4067; the other has 12 chips +4 power devices etc. Case contains speaker. 8 core cable 2 m long with plug. For use with PABX $£ 9.00$

SWITCHED MODE PSU
Astec type AA7271. PCB $50 \times 50 \mathrm{~mm}$ has 6 transistor cct providing current overload protection, thermal cut-out and excellen filtering. Input 8-24V DC. Output 5V 2A Regulation 0.2\%

PANELS

Z620 68000 Panel. PCB 190×45 believed to be from ICL's 'One per Desk' compute containing MC68008P8 (8MHz $16 / 8$ bi microprocessor, +4 ROMs, all in skts; TMP5220CNL, 74 HCT 245,138 , LS08, 38 etc.

Z625 32k Memory Board. PCB 170×170 with $162 k \times 86116$ static RAMs. Also 3.6 V 100 mA memopack nicad 13 other HC/LS devices 96 w edge plig 8 way | DIL switch, Rs, Cs etc. $\quad \mathbf{£ 4 . 8 0}$ |
| :--- |

SOLDER SPECIAL!!

* 15W 240V ac soldering iron
* High power desolder pump
* Large tube solder

ALL FOR

£7.95

DIODE BARGAINS

Minimum 10 of any one type: 20 for $\mathbf{f 1 ; 5 0}$ for $\mathrm{£2} ; 250$ for $\mathrm{E8} ; 1000$ for $\mathrm{£25.00}$. Type available: BAX12, BAX12A, BAX16, BY206, BYX55-300, BY207, CV8308, LR75C, MR817, MV1404, VSK140 1N659, 1 N4933.

MICROVISION

CASESI!!

We now have a supply of cases, complete with aerial at the special low price of 55.00 .
We have a quantity of these units in varying states. From labels attached to some of the PCBs it seems after assembly on the production line they did not function correctly. No attempt has been made to repair them, though - instead the following parts were removed:
a) RF Tuner
b) Vol control and switch
c) ZN401E chip
$26662 \times$ PCB in good condition with $2 \times$ CRT that have been removed, but may be repairable. Conductive paint (15mi bottle £3.45) will probably be needed to remake contacts. With
diagram and notes.
$\mathbf{£ 6 . 9 5}$ diagram and notes
RF Tuner E6.95: ZN401 chip E9.95;
Vol control + switch with knob $£ 1.00$

All prices include VAT; just add 60 D PaP Min Access order E5. Official Min Access order E5. OHf
orders from schools etc. welcome - min invoice charge $f 10$. Our shop has enormous stock of components and is open 9.5.30 Mon-Sat. Come and see us!!

4430 Millbrook Road, Southampton SO1 OHX. Tel. (0703) 772501/783740

. . . Archimedes - all things to all men

AT THE time of writing this (about the middle of July) the new Acorn computers have recently been announced. These are the Archimedes range of computers, or what is really two separate ranges. The A305 and A310 are the least expensive versions, and will have the BBC name rather than being marketed as Acorn computers.

As far as I can tell, the only difference between these two models is that the A305 has 500 K of memory as opposed to the 1 M of the A310. Upgrading from one to the other seems to just be a matter of plugging in the extra memory chips.

The up-market Archimedes computers are the A410 and A440. The former has 1 M of RAM plus a hard disc controller, whereas the latter has 4 M of RAM plus a 20 M hard disc drive.

These computers are of potential interest to Everyday Electronics readers who are interested in computer projects, as they have the facility to take "podules", which are addon boards of various types. Included amongst these is one to give the machines the 1 MHz Bus and some of the other input/output ports of the original BBC Model B computer.

The A410 and A440 are equipped to take the podules as standard, but an add-on back-plane is required for the two cheaper models. Incidentally, all models come with a 3.5 inch (640k or 800 k formatted capacity) disc drive and three button mouse as standard

RISC

The new machines are a substantial step forward from the earlier Acorn computers with their 2 MHz 6502 microprocessors. The speed of the new machines should be sufficient to make even the Master Turbo computer with its 4 MHz second processor look quite sluggish.
The new machines are based on Acorn's RISC (Reduced Instruction Set Computer) technology. This is very straightforward as far as the basic principle is concerned, and the general idea is to have a full 32-bit microprocessor which has only a limited but well sèlected range of instructions.
This may not seem like a key to high processing speeds, but with fewer instructions to contend with the processor can be made very efficient on the ones that are included. This enables virtually all the instructions to be carried out in a single clock cycle, which is 4 million per second with the Acorn processors.

In many cases several instructions are needed to replace a single instruction on conventional processors, but a RISC chip can still get the job done more quickly. Bear in mind that some instructions can take over twenty clock cycles with conventlonal processors.
Due to their relatively simple circuitry it is possible to run RISC chips at high clock rates more easily than for a conventional design, but this gives problems with expensive memory chips that can keep up with the processor. The Acorn RISC chips can be used with standard and inexpensive memory devices.

Dream Machines

The Archimedes computers have an enhanced version of BBC BASIC which runs extremely fast, and they also have impressive graphics capability. Apart from all the standard BBC modes (including mode 7) there are new modes which include a 640×512 pixel sixteen colour mode ${ }_{\text {, }}$ and a 1024×1024 pixel mono mode.
These computers sound very much like "dream machines", but they start at VAT inclusive prices of under $£ 1000$. However, the most expensive model plus a high resolution monitor would probably cost in excess of $£ 3000$.
While I suppose that it is true to say that computers provide an increasing amount of computing power for an ever decreasing amount of money, this is only really the case if you are prepared to spend a fair amount of money - what happened to sub-f100 computers, let alone sub-£50 types?
The new Acorn/BBC computers offer more computer per pound than the original Model B , but entry level price seems to be somewhat higher. From the point of view of user constructed add-ons most current computers offer little scope, with expansion ports that are usually very difficult to use by comparison with earlier machines.

It is nice to see that the Archimedes computers will provide the standard BBC B ports, albeit via an add-on unit. I would suggest though, that any electronics enthusiast who currently owns a BBC model B should keep it for all time, as it seems unlikely that there will be anything quite as convenient for user addons ever again.

The new Acorn computers look to be worthy successors to the original machine, which offered a similarly amazing specification for the money at the time it was launched. The new machines keep up the "all things to all men" tradition of the Model B.

Other Machines

Lack of software and hardware compatibility between computers is probably one of the main reasons for the problems many computers manufacturers have faced over the past few years. It certainly gives computer project designers a lot of problems with questions about using a project for one computer with a different model. This is often possible, but only with a lot of changes to the software and the project itself
A point that is worth mentioning here, is that a lot of the information given in the $B E E B$ Micro articles is concerned with the user port, and the port B of the 6522 VIA which is used to provide this. Most of this information is relevant to any computer which has a 6522 VIA with port \mathbf{B} available to the user.
The VIC-20 certainly falls into this category, with the VIA at addresses from 37136 to 37151. VIA add-on boards are available for some computers, or there have been designs
published for them. With one of these added it should be possible to successfully interface vitually any add-on for the BBC machine's user port to the computer.

There are a vast number of Commodore 64 users who are not well served for computer projects. This computer (and its derivatives) have a user port, but it is supplied by one section of a 6526 CIA (Complex Interface Adaptor).

This is one of Commodore's own chips, and it is essentially an "improved" 6522. It has many features in common with the 6522 , including the two timers. The Commodore 64 Programmer's Reference Guide includes a data sheet for the 6526, and reference to this will usually provide a means of using the Commodore 64 with add-ons intended for the BBC model B or ViC-20 user ports.

Usoful Bits

Often when interfacing a project to the BBC computer an extra digital line or two is often required. It is useful to bear in mind that there are two digital lines available at the analogue port.

These are PB0 and PB1 (Fig. 1), and are intended for use when reading the "Firebuttons" of the joysticks. They can be read from BASIC using the ADVAL function, or directly from the 6522 VIA at address \&FE40 This is port B of a 6522 VIA, which is obviously not the same one that is used for the user port.

Fig. 1. Using the analogue port to provide two digital inputs.

Although these lines are referred to as PBO and PB1 in the BBC computer's manual (or, less confusingly, I/O0 and I/O1 in places), they are actually lines PB4 and PB5 of the VIA PB0 is therefore read by ANDing the value from ?\&FE40 with 16, while the same procedure and a value of 32 is used when reading PBI. In other words, PRINT ?\&FE 40 AND 16 will give a returned value of 16 if PBO is high, or 0 if it is low. PRINT ?\&FE 40 AND 32 returns values of 32 and 0 respectively if PB1 is high or low.

Using these lines as outputs is a little more difficult, and is probably not possible. The first problem is that the four least significant lines of port B of this VIA seems to be used as outputs.

Inadvertently changing the state of these outputs seems to activate the sound generator! This problem is surmountable, but there is a second one that is probably not.

The difficulty is that shortly after setting one of these line high, the computer almost immediately resets them to 0 again! I tried feeding these outputs to a 4013 BE dual flip/flop, and using the pulses generated by setting these outputs high to toggle the outputs of the flip/flops from one state to another.

This worked, but using the keyboard seemed to produce output pulses that altered the states of the outputs. It would therefore seem that these two lines have to be regarded as only usable in the input mode.
Most BBC Model B computers were sold without the disc interface fitted, but probably the vast majority of these computers have now been upgraded to disc systems. I was some time in adding the disc interface to my machine as I had gained the impression that it involved a lot of dismantling, soldering, and reassembly.

Fig. 2. The cassette port provides a useful relay for simple control applications

In fact, it involves little more than plugging the extra integrated circuits into holders already fitted on the printed circuits board. Disc interface kits are readily available, and it is well worth making this upgrade. Even a basic 100K drive is much more convenient and capable than a cassette recorder.

If this upgrade is made, this leaves the cassette port unused. The data input and output lines are of little obvious value, but the relay used to control the cassette recorder's motor could be very useful.

The relay provides a pair of normally open contacts across pins 6 and 7 of the 7-pin Din
socket used at the cassette port, Fig. 2. These contacts should NOT be used for mains loads, but are perfectly all right for low voltage loads and currents of up to about IA.

By connecting one contact to the 0 V rail and the other to the +5 V rail, via a Ik resistor, a TTL compatible output is produced. It would be limited to fairly low switching speeds, and might need "debouncing" in some applications, but if only a single extra output line is needed it could be much easier than having to provide an output port on the 1 MHz Bus.

The contacts are closed using the *MOTOR I instruction, and opened by the *MOTOR 0 instruction. Both are usable within BASIC programs.

Home CAD/CAM

Due to its widespread use in the educational and scientific fields, the BBC micro has what could be the broadest range of peripherals and software available for any computer apart from the IBM PC and compatibles. This includes software and hardware to aid the design and manufacture of printed circuit boards.

Some of the printed circuit drafting programs provide output to a dot matrix printer, and give an output at $2: 1$ that printed circuit manufacturing companies can use to produce boards. This system has the advantage of being relatively cheap as many BBC computer owners will already have a suitable printer. For the home constructor though, it can be difficult to translate the printed drawing into an actual board.

The alternative to a printer is a pen plotter, and the Plotmate plotters from Linear Graphics Ltd are low cost machines of special interest to BBC owners who pursue electronics as a hobby. Apart from three standard plotter languages they have what is probably the unique feature of a language that responds to the BBC computer's VDU commands. Software for the BBC computer plus Plotmate plotter includes a simple drawing program for circuit diagrams, and a printed circuit drafting program.

I used this combination to produce printed circuit boards for some time, and some of the designs have been published in Everyday Electronics. While not rivalling systems based on mainframes, it enables quite complex

The Plotmate A3M plotter from Linear Graphics
boards to be produced with relative ease. By plotting the designs onto tracing or drafting film at $1: 1$ it is possible to produce prototype boards using a simple photographic method (as described in Actually Doing It).
As a point of interest, the techniques used in printed circuit design are based on ideas developed originally for designing plumbing systems. The scale may be very different, but the principles involved are much the same.

According to the latest press release from Linear Graphics the Plotmate equipment and software are now recommended by the Inner London Education Authority (ILEA). Their products are British designed and built, which is unusual in the Far-Eastern dominated market.

Their products are certainly well worth investigating if you own a BBC computer and are considering using it for printed circuit design work, or are interested in low cost CAD/CAM equipment for educational purposes. For further details contact: Linear Graphics Ltd., Dept. EE, 28 Purdeys Way, Rochford, Essex SS4 INE.

Next month, if it is ready in time, we will consider adding a Master 128 style battery clock/calendar to the 1 MHz Bus of the standard BBC model B computer.

PROTEIS
 Ir Seapcle of The bost bard

- No 14 OUT NOW

PROTEUS - THE BEST SOLO ROLE PLA YING GAME
MAGAZINE AVAILABLE
ON SALE AT YOUR NEWSAGENTS NOW - $85 p$

> Don't take chances, on the road or on site, build this simple fridge alarm.

AREFRIGERATOR is now fitted in most caravans. This is of the absorption type where refrigerant is heated in a boiler to the rear of the cabinet. Two means of heating are generally provided - one for gas and the other for 12 V operation. There may be a 240 V mains heater also.

The gas (or mains) system is used while static and on-site because the large current drawn by the element (typically 7A) would quickly discharge the battery. While travelling, the 12 V heater is used - the car generator now provides the current.

The Caravan Fridge Alert described here has two functions. Firstly, to sound a warning if the gas supply is left turned on and the ignition operated. As well as being dangerous to drive with the gas turned on, this could result in both heaters -12 V and gas - being used together with consequent overheating and damage to the fridge.

The second function of the circuit is to monitor the current flowing through the 12 V element and to sound a warning if it fails for any reason such as a blown fuse, open-circuit element, broken wire or loose connection. Such faults are common and soon result in ruined food.

The circuit is housed in a small plastic box with a strip of terminal block for the external wiring. An on-off switch is provided to cancel the unit if the fridge is not in use or when a caravan is not being towed.

It is important to note that this switch does not control the refrigerator - if forgotten, the fridge will still work normally but no warning will be given in the event of the 12 V system failing. The "gas on" warning will be given, however, whether the switch is on or off.

Although originally intended for a caravanette, there should be no difficulty using the unit with a trailer caravan. Beforé beginning construction work, it would be wise to check that the existing gas supply tap can be fitted with a microswitch which operates as the tap is tightened.
Specific details cannot be given since there are many different types of gas tap. However, Fig. 4 shows the method used in the prototype unit.

Readers are warned that the microswitch must in no way interfere with normal operation of the gas supply. If there is any doubt about being able to make a safe job, the assistance of a qualified caravan gas fitter must be sought.

Fig. 1. Complefe circuit diagram for the Caravan Fridge Alert.

CIRCUIT DESCRIPTION

The complete circuit diagram for the Caravan Fridge Alert is shown in Fig. 1. Transistors TR1, TR2 and associated components form two almost identical sections. If either transistor is turned on the buzzer, WDI, sounds.

The 12 V heater element operates through coil L1, which therefore carries the main-line current from the car electrical system. The existing fridge on-off switch, S1, may be situated anywhere in this circuit and not necessarily as shown. Switch $\mathbf{S} 2$ is the gas tap microswitch referred to earlier.

With the ignition switched on and the gas off (S 2 contacts closed) transistor TR1 base is connected to the negative supply rail. Transistor TR1 is therefore off so no current flows through diode D1. The buzzer, WD1, therefore remains silent.

With the gas on ($\mathbf{S} 2$ contacts open) TR1 turns on, with base current entering via resistor R1. Collector/emitter current now flows through diode D1 operating WD1. Transistor TR2 works in similar fashion and is responsible for the " 12 V Fail" warning.

COMPONENTS

Resistors
R1, R2 10 k (2 off)
All 0.25 W
5 $\%$ carbon
Semiconductors

TR1, TR2 ZTX300 npn transistor
(2 oft)
D1, D2 1N4001 (2 off)
Miscellaneous
WD1 $\quad 12 \mathrm{~V}$ Solid-state buzzer S2 Lever-arm microswitch with one pair of changeover contacts.
S3 Miniature reed switch, with single-pole
"make" contacts. Body size 20 mm long $\times 3 \mathrm{~mm}$

S4 diameter approximately. Miniature rocker switch with single-pole "make" contacts
Stripboard (0.1in matrix size 8 strips $\times 12$ holes); 15A terminal block 5 sections required; 3A auto-type connecting wire; aluminium for microswitch support bracket; L1, 20 s.w.g. enamelled copper wire; 20 cm approx. case and connecting wire, etc.

Approx. cost
Guidance only

A coil of copper wire (L1) is wrapped around the body of reed switch, S3. Providing L1 carries sufficient current, the magnetic field so generated operates S 3 , closing its contacts. This keeps TR2 off so no current flows through diode D2. The warning buzzer WD1 is therefore silent.

If the supply fails for any reason, S 3 contacts open and transistor TR2 turns on, with base current entering through resistor R2; WD1 then sounds. S4 switches the 12 V warning off when not required.

The circuit has been designed to be "failsafe' under most circumstances. Thus, a fault in switch S2 or its connections will generally cause the alarm to sound. However, it will not work if the wiring to the ignition switch fails.

CONSTRUCTION

Construction of the Caravan Fridge Alert is fairly straightforward and is built on a single piece of 0.1 in matrix stripboard, size 8 strips $\times 12$ holes. The component layout and the underside view showing breaks in the copper strips is shown in Fig. 2.

Begin by drilling the mounting hole, making the breaks in the copper strips and inserting the link wire as indicated. Follow with the soldered on-board components noting the polarity of the diodes.

Take care when preparing the reed switch for mounting - do not bend the wire ends close to the body since this may break the glass and render it useless. Solder the reed switch 2 mm clear of the circuit panel to allow for winding the coil Ll later

After a careful check for errors, particularly for accidental 'bridging'" of adjacent copper strips, solder 10 cm pieces of light-duty stranded connecting wire to strips A, B, E, F and H at the left-hand side of the circuit panel. Using different colours will reduce the possibility of wiring errors.

INTERWIRING

Make a hole in the side of the box for switch S4. Mount all remaining components together with terminal block TB1 in the rear panel (see photograph). TB1 must be of the heavy-duty

Fig. 3. Details of interwiring from the circuit board to the 5 -way terminal block, rocker switch and the warning buzzer.
pattern with a rating of 15A. It is not normally necessary to provide holes for the sound from the buzzer WD1 to pass through. Drill small holes near TB1 position for the connecting wires passing through from the circuit panel.
Complete the internal connections shortening any wires as necessary as shown in Fig. 3. The exact number of turns to be used for L1 will depend on the reed switch being used and the current requirement of the fridge - 4 turns was correct in the prototype unit.

The coil must be wound with great care to avoid damage to the reed switch body. Allow a small space between successive turns. Note that

Fig. 2. Circuit board component layout and details of
the wire used must be of the specified type and thickness to avoid excessive local heating and voltage drop due to its resistance. For the same reason, it should be kept as short as possible. Twist it once at the reed switch body to secure it and pass the ends through the hole drilled for the purpose - this should be of sufficient size to allow the wire to pass easily. Scrape off the insulation at the ends before connecting to TB1/2 and TB1/3.
Construct and fit gas tap switch assembly as shown in Fig. 4. The lever arm should be carefully bent so that the knob presses it and the contacts are just heard to click when fully off. breaks to be made in the copper tracts.

The completed unit with top removed to show layout of components inside the plastic case. Note that the reed switch is mounted well above the board.

INSTALLATION

Before installing the circuit, disconnect the car battery. Refer to Fig. 3 and make the external connections. Cut one of the existing feed wires to the 12 V element at some convenient point as close as possible to the chosen place for the unit.

Do not extend the wires unless absolutely necessary and then only with a heavy-duty auto type having a cross-sectional area of $2 \mathrm{~mm}^{2}$ minimum. Wire of a lower rating may introduce an excessive voltage drop leading to poor operation of the fridge. The free ends of the wires should be connected to TB1/2 and TB1/3 (polarity unimportant).

Connect one $\mathbf{S} 2$ normally-open contact to TB1/4 and the other to an "earth" point (battery negative). If the unit is to be fitted to a motor caravan, there will no difficulty with the $\mathbf{S} 2$ connections.

However, if it is being used with a trailer caravan having a single 7-pin drawbar plug and socket, there is no unused pin available for this. The best solution is to fit the later type of 7 S (supplementary) socket in addition to the existing 7N (normal) one. This will give scope for future additions and bring the installation up to date. Use Pin 6 and Pin 3 on the 7S socket for the positive and negative fridge connections respectively. Use Pin 7 to connect S1.

Connect TB1/5 to a fuse which is live only while the ignition is switched on and TB1/1 to a nearby earth point (car chassis). Use proper auto-type wire of 3 A rating for these external connections and use a rubber grommet wherever wires pass through a hole drilled in metal.

Turn the gas off and re-connect the battery. Switch the fridge and S4 on. Turn the gas on.

Fig. 4. Suggested method of mounting the microswitch below the gas supply "valve" control knob. The microswitch operating lever should be carefully bent so that adjustment of the gas knob operates the lever arm. If there is any doubt about being able to make a safe job, the assistance of a qualified caravan gas fitter must be sought.

Switch the ignition on and the buzzer should sound. Turn the gas off and the sound should stop. Switch off the fridge (to simulate a fault) and the buzzer should sound once again.

If the buzzer sounds continuously even when
it is known that the fridge is working correctly, it will be necessary to increase the number of turns on coil L1. The coil will become warm in use but the heating should not be excessive check after a period of operation.

SHOP is 㴬
 BY DAVID BARRINGTON

Video Controller

The plastic case, with metal sloping front panel, used in the prototype version of the Video Controller is a Bimbox 6006 type. However, most of our advertisers now stock excellent ranges of cases and a suitable one should be fairly easy to find.

When ordering the Gain and Balance controls, be sure to specify "log" and "lin" types respectively. The single and dual slider controls should be available as "off-the-shelf" items.

The printed circuit board for this project is available through the EE PCB Service, code EE581 (see page 571).

Simple Static Monitor

We have only been able to find two companies who list the $50 \mu \mathrm{~A}-0-50 \mu \mathrm{~A}$ centre zero panel meter specified for the Simple Static

Monitor. This meter is currently being listed by Marco Trading and Smith Electronics.

Practically any type of meter rated at up to 1 mA f.s.d. could possibly be used in this circuit, but would need to be off-set by VR1 potentiometer before installing in the case. The size of aluminium case used will, of course, depend on the final selection of meter.

Caravan Fridge Alert

It is important to use wire rated at $3 A$, or more where specified when constructing the Caravan Fridge Alert.
Reed switches are fairly common items and most good component suppliers should carry stocks. Ensure that a 15A type is specified when ordering the 5 -way terminal block.

A suitable microswitch, with lever arm, is currently listed by TK Electronics, Maplin, Electromail and Greenweld Electronics.

Transtest
We cannot foresee any purchasing problems when ordering parts for the Transtest. However, one word of warning, when buying the transistor type BC184L it is important to purchase the one with the L suffix as pin connections vary for this device.
The printed circuit board for the Transtest is available through the EE PCB Service, code EE580.

Automatic/Manual Porch Light
The note above about buying the BC184L transistor also applies to the Automatic/Manual Porch Light project.
If the relay is to be mounted on the circuit board, it is vitally important that the mains connection to the contacts are fully isolated from other parts of the board by a series of breaks in the copper foil. For added safety, use nylon nuts and bolts to secure the mains transformer, terminal block, fuse and stripboard to the case.
Finally, remember to use mains cable for all high voltage wiring, including wires from the relay contacts.

Timer/Counter Interface

Readers intending to build the Timer/Counter Interface described in this month's On Spec feature may find that the Z80-CTC chip is in scarce supply in some areas. However, it is currently listed by TK Electronics, Omega and Omni Electronics.

All the components required for this month's Exploring Electronics investigations into Oscillators appear to be standard parts and should not cause readers any buying problems.

Readers-you can obtain a 5\% discount on goods from the advertisers listed using coupons cut from EE, provided you follow the rules below:
 \section*{GREENWELD ELECTRONICS LTD.}
 OMNI ELECTRONICS are willing to give

A full range of components at our shop in Southampton; open 9-5.30 Mon-Sat, as well as many surplus lines, all available by mail order. Bargain List free with our Catalogue. Send for your copy today, only £ 1 inc. post. Now even better value with EE Discount Vouchers!

RADIO COMPONENT SPECIALISTS

Amplifiers-(PA, disco, music), audio leads all types, components, capacitors, potentiometers, resistors, disco lighting, sound to light units, disco decks, disco consoles, disco mixers, echo chambers, fuzz lights. Multimeters, mains transformers, microphones, stands, leads, goose necks, speakers with or without cabinets, tweeters, mid range units, 100 V line matching audio transformers, etc.

TK ELECTRONICS stock a wide range of components including triacs; ICs \& opto together with other accessories (switches, tools, multimeters, buzzers, crystals, Antex, Velleman and Vero products, etc.). We specialise in kits for timers, disco and home lighting, remote control kits for beginners. Send s.a.e. and 50p (refundable on first order) for catalogue.
a 5% discount on all orders over $£ 10.00$, excluding VAT, if a valid voucher is enclosed. We stock a wide range of com-ponents-ideal for the hobbyist. Goods listed in our catalogue are generally in stock, orders will be sent by return post. Why wait?

RULES

1. Discounts are available from advertisers listed on this page
2. Unless otherwise stated by the advertiser, discounts are only available on orders over $£ 20$ in value.
3. Unless otherwise stated by the adver. tiser, one voucher is required for each f 50 value of the order placed (i.e. for orders between $£ 20$ and $£ 50$ send one voucher, between £50 and £100 send two vouchers, etc.)
4. Cut out vouchers (not photostats) must be sent when claiming the discount. 5. Each voucher sent must be valid on the day of posting (i.e. it cannot be used after its expiry date)
5. Discount is not available on "sale" or "special offer" items.
6. You must indicate on your order that the 5% EE Readers Discount has been deducted from the payment sent
7. All advertisers reserve the right to refuse this discount on any item supplied.

BECKER-PHONOSONICS, established 1972. Designers and suppliers of a wide range of kits for projects published in Everyday Electronics and other leading periodicals. Range íncludes musical and audio effects, computer controlled circuits and Geiger counters. EE discount scheme applies to all full kits over $£ 30$ goods value, excluding Geiger counters.

IT is now more than a year since I began writing about robots in the columns of Everyday Electronics. In that time there have been a great many changes in the numbers and abilities of the devices which are on the market.
I therefore thought it would be worthwhile to recap this month and list the machines which are now available with a brief description. While every effort has been made to ensure that all items have been included I apologise if anything has been left out. All prices are approximate.

ARMS
Alfred (Robot City Technology) 5-axis plus gripper, servo-driven with toothed belts, lift 170 gm . $£ 275+$ VAT. The constructional details for the early model of Alfred were first published in the November ' 85 issue of EE.

Armatrol II (Feedback Instruments) 5-axis plus gripper, servos with closed loop control, lift 1lb. Software: BBC B, C64, Apple Ile, ZX 81, IBM PC. £995 + VAT.

Atlas II (LJ Electronics) 5-axis plus gripper, stepper driven plus toothed belts. Lift 1 kg . Update of the previous Atlas with improved software. On-board controller and wide range of operating software, Work cell also provided. £2,500 + VAT.

Beasty Arm (Commotion) 3-axis, gripper available, servo driven, lift $75 \mathrm{gm} . £ 120,+$ VAT. Interface available for the sum of $£ 35$.

Cyber 310 (Cyber) 5-axis plus gripper, stepper driven with belt and cable, lift 250 gm . Software: BBC B, Apple Ile, IBM PC, Pet, C64. £695 + VAT.

EMU (LJ Electronics) 4-axis plus gripper, servo, lift 100 gm . Software: BBC B and LJ's Emma. $£ 325+$ VAT.

HRA 934 (Feedback) 5-axis plus gripper, hydraulically powered. Software: On board processor, BBC B, Apple lle, C64. $\mathrm{E} 2,730+\mathrm{VAT}$.

Minimover (Syke Instrumentation) 5-axis plus gripper, stepper motors, lift 1lb. Software: Apple II, TRS 80. £2, 150 + VAT.

MA 2000 (Tecquipment) 6-axis plus gripper, servos with toothed belts, pneumatic gripper. Lift 1 kg . Software: BBC B and Open University's Hektor. Gripper is fitted to take pneumatic tools and wired for sensors. $£ 3,200$.

Mentor (Cybernetic Applications) 5-axis plus gripper. Servo driven, lift 300 gm . Can be controlled by small scale-model simulator. Software: BBC B, Vic 20 Spectrum. Work cell available, will work with other Cybernetic machines. $£ 535$ + VAT.

Naiad (Cybernetic Applications) 5-axis plus gripper, hydraulics (water). All axes powered by different kinds of hydraulic piston and all cylinders made of see-through acrylic, simulator, work cell, works with other Cybernetic machines. Software: BBC B, C64, Apple and IBM PC. £1,125+VAT with controller $£ 220$.

Neptune 1 (Cybernetic Applications) 5-axis plus gripper, electro-hydraulic (water), lift 2.5kg. Software: BBC B, Spectrum, IBM PC and on board processor. Simulator and
work cell extra. Works with other Cybernetic machines. $£ 1,980+$ VAT, controller $£ 530$ + VAT.

Neptune II (Cybernetic Applications) 6 -axis plus gripper. Rest same as above. $£ 2,910+V A T$, controller $£ 745+$ VAT.

Robotarm (Logotron) 5-axis plus gripper, bucket or magnet, servos, battery-powered and has two standard Atari joystick ports for control. Software: BBC B and Master series. £89 + VAT.

Scorbot (Syke Instrumentation) 5-axis plus gripper, servos plus optical encoders, lift 1 kg . Comes with textbook and workbook but does not have machine-specific software. $£ 2,800+$ VAT.

Teachmover (Syke Instrumentation) 5-axis plus gripper, stepper motors, lift 1lb, onboard processor. $£ 3,000+$ VAT.

SCARA ARMS
IVAX (Feedback Instruments) 4-axis plus pneumatic gripper, servo driven, lift 1 kg . Software: on-board processor, IBM, BBC, Apple. Work cell available. $£ 2,900+$ VAT.

PW800 (Feedback Instruments) 4-axis plus gripper, servos on all axes except end rotation which has a stepper, lift 2 kg . Software: on-board processor, BBC B, IBM PC, Apricot. Work cell available, interchangeable gripper jaws. $£ 6,900+$ VAT.

Serpent 1 (Cybernetic Applications) 4-axis plus gripper, servos and pneumatic power for vertical movement of gripper. Lift 2 kg . Software: BBC B, Apple lle IBM PC. Work cell available, can be linked to other Cybernetic devices, gripper can be replaced by vacuum pick-up pad, can be controlled by using a scalemodel simulator. £1,395+VAT, control box $\mathrm{E} 775+$ VAT .

Serpent II. Only difference from above is that the two limbs are longer. $£ 1,980+$ VAT, control box $£ 775$.
Feedback HRA 934

OTHERS
Tracer (LJ Electronics) Unique device based on $X Y$ plotter with a gripper which can be raised or lowered. Steppers power $X Y$ axes, servos on gripper. Comes with PCB assembly kit. Also supplied with pen carrier for conversion to plotter. $\mathbf{£ 7 5 0}+\mathrm{VAT}$.

MOBILES
Jessop Turtle (Jessop Microelectronics) also known as the Edinburgh Turtle, it looks like an upturned mixing bowl, one of the earliest turtles controlled by a version of Logo. Servos with optical encoders. Includes pen. Linked to computer by umbilical cord. Software: BBC B, Apple II. $£ 220$ + VAT (Education discounts).

Penman Plotter (Penman Products) Developed primarily as a three colour plotter but uses same basis as a mobile. Servo driven, linked by umbilical cord to controller. Software: IBM PC, Apple II, BBC B. $£ 450$ + VAT.

Trekker (Clwyd Technics) Two-wheeled, servo-driven. Developed by children at North Wales school and given extensive in-service testing before being put on market. Substantial software and documentation. Software BBC B, Commodores. $\mathbf{£ 1 5 0 + V A T}$.

Valiant Turtle (Valiant Technology) Twowheeled servo-driven with pen. Remote controlled via infra-red link, designed to resemble a turtle. Uses version of Logo for instructions. Software: BBC B, Apple II, IBM PC and Spectrum. Microworlds being designed to expand uses. $\mathrm{f} 250+$ VAT.

HEROS
Hero 1 (Maplin Professional Supplies) Large mobile. Has light, sound and motion detectors, rangefinder and speech. On-board processor, 4 -axis arm driven by stepper motors, lift $80 z$. Includes range of demonstration programs. Easily built and

dismantled to show how it works. Imported from the US and one of the first machines on the small robot market. $£ 1,200+$ VAT (kit), £2,150 + VAT ready built.

Hero 2000. More powerful version of Hero 1 with much larger memory and expansion options. Two-wheel drive system using servos and arm expanded to five axes. Gripper has touch sensor to adjust gripping force. Lift 1 lb . Two specially-written courses. $£ 2,000+$ VAT for the kit, $£ 2,500$ ready built.

KITS

The computing kit from Fischertechnik includes two d.c. motors, two potentiometers,

Cybernetic Serpent

Feedback Instruments, Park Road, Crowborough, East Sussex.
LJ Electronics, Francis Way, Bowthorpe Industrial Estate, Norwich. Logotron, Dales Brewery, Gwydir Street, Cambridge.
Maplin Professional Supplies, PO Box 777, Rayleigh, Essex.
Penman Products, 8 Hazelwood Close, Dominion Way, Worthing, West Sussex.
Syke Automated Systems, Lynchborough Rd., Passfield, Hampshire.
Tecquipment International, Bonsall Street, Long Eaton, Nottingham.
Valiant Technology, Gulf House, 370
York Road, Wandsworth, London

Names and addresses
Clwyd Technics, Antelope Industrial Estate, Rhydynwyn, near Mold, Clwyd. Commotion, 241 Green Street, Enfield, Middlesex.
Cyber Robotics, Tilling Drive, Watson Stone, Staffordshire.

SW18.
eight switches and a large selection of pieces for making computer-controlled models including plans for two arms. Interfaces and software available for BBC B.
Arm and piotter/scanner kits. Arm has three axes and uses more powerful servos than computing kit, drive by worm screws. Plotter uses stepper motors. Uses same interfaces and software as Computing kit. Prices vary.
The Lego-Technic series includes kits from which an arm, a plotter and a buggy can be made as well as a number of other devices which can be controlled by computer. Servos with optical encoders.

Programs and interface for the BBC B. Battery-powered controller aiso available. Extra software for buggy available from Pilot One. Prices vary.

The Meccano-Kits come in various complexities. Contain motors but no specific instructions for robot devices or computer interfaces. Prices vary.

Fischertechnic robot arm

SIMPLE STATIC monitor

G.ITHEASBY

A simple fun project that will make your hair stand on end!

AFTER receiving several nasty "electric shocks" from the most unlikely of objects, which, often on closer investigation, turned out to be nothing more serious than "static electricity discharges", the designer thought that it might make a fascinating project to produce a simple static electricity indicator. Although a meter is used to indicate the presence of static electricity, it is not calibrated, and the calibration and construction of such a meter would be both complex and expensive.

Apart from enabling the reader to entertain him or herself, it would be a cheap and useful project for a school science lesson.

CIRCUIT DESCRIPTION

The Simple Static Monitor is based on the well known Wheatstone bridge which in its basic form is shown in Fig. 1.

Fig. 1. Basic circuit for a Wheatstone bridge.
If a voltage is applied as shown, and the resistance combinations of R1, R2 and R3, R4 are equal, equal currents will flow in each arm of the bridge, and a meter placed between A and B will show no deflection as the voltages at these points will also be equal. Also, if resistors R1 and R3 are equal but different to R2 and R4 equal currents would still flow in each arm, and the meter would again show no deflection.

Now, if resistors R1 and R2 are combined into a potentiometer, and point A becomes the slider, then even if R3 and R4 are slightly different in resistance, adjustment of the
potentiometer will "balance" the bridge so that the meter does not deflect. This condition is shown in Fig. 2.

If resistor R 3 is varied slightly, the meter will deflect, and this is the way that the static electricity indicator works. We do not wish to balance the bridge, but to observe the amount of unbalance occurring. Resistor R3 is therefore replaced with a field effect transistor (f.e.t.) such as the 2 N 3819 or its equivalent and the resistance of that device will vary according to the voltage applied to its gate terminal.

Fig. 2. Adding a potentiometer to "balance" the bridge circuit.

The final circuit for the Simple Static Monitor, including an f.e.t. transistor, is shown in Fig. 3. Such an f.e.t. is, in fact, so sensitive that it will react to a static electric charge induced in the gate terminal without any electrical contact being made at all.
There is no advantage to be gained by using a MOSFET or IGFET in this circuit as the induced charge is so high that it would most probably destroy the device. If not, the gate leakage current is so low that a charge would take much too long to leak away. The leakage current of a junction f.e.t. such as the 2 N3819

Fig. 3. Complete circuit diagram for the Simple Static Monitor

(about 2 nanoamps) is such that the charge leaks away in a few seconds, automatically preparing the circuit for the next experiment.
The meter can be any type of 1 mA full scale deflection or less. It should preferably be a centre-zero type, but if not a normal meter can be set at centre scale by unbalancing the bridge with the porentiometer VRI beforehand. This is because static electricity can be of either polarity.

CONSTRUCTION
The construction of the Static Monitor is fairly straight forward and should not cause any problems. It could, for instance, be built on a scrap piece of stripboard or on some spare tag strip.

The components in the author's unit were mounted directly on the meter terminals. The layout and wiring is shown in Fig. 4 and the meter is mounted in an aluminium case scarcely larger than the meter itself.

Almost any small battery, such as a PP3, can be used and in fact this circuit will run from a battery which is too tired to run anything else.

The static electricity charge is picked up by an insulated wire from the f.e.t gate terminal and brought out through the box side via a coaxial socket. A similar insulated wire is mounted in a coaxial plug to form a removable probe and should be about three inches long.

IN USE

Static electricity is easily generated by friction between many different types of insulating materials. For instance switch on the indicator and rub a plastic comb on the sleeve and then approach the probe with the comb whilst watching the meter

Other possibilities are: remove an item of artificial fibre clothing, shuffle the feet whilst standing on a mat made from artificial fibres, operate a gas cooker spark igniter near the probe, or a Zerostat pistol (LP record static discharger). Other possible interesting applications would be to leave it near the window during a thunderstorm, approach the

Fig. 4. Wiring details for the prototype model. The f.e.t. transistor is mounted directly on the coaxial socket
screen of a television set slowly, stroke a cat or to remove a record from its sleeve, and then observe the action of the Zerostat pistol.

No doubt other experiments will suggest themselves to readers.

constructional	MUSIC AND EFFECTS		LOW COST GEIGER	
			NUCLEAR FREE ZONES?	
\star BE KIT CREATIVE			GET A GEIGER	
	Digital Delay \& Disco Light Co			
* LEARN BY BUILDING THROUG		$\begin{array}{r} 57.66 \\ 25.33 \\ 39.50 \end{array}$	THE PE GEIGER WAS	
\star ENJOY BY USING	$\begin{aligned} & \text { fien } \\ & \text { ran } \\ & \text { char } \end{aligned}$		FOR IT" PROGRAM	
			Denes	
			METERED GEIGER (PE. MK2)Bunlf-In probe speaker, mete: digilal output Detectolube odtons - ZP1310 for normal sensitivity. ZP 1320	
		$\substack{22,16 \\ 2261 \\ 2261}$		
\star GEIGER			rean	
COUNTERS	Ring Modulato Storm Wind \&			
			GEIGER-MITE SET 271 £ 39.50Minature geiger with $2 P$ i 1390 fube LED displaysradiation impacts. Socket for neadphones or digtal monitoring Kul-torm only	
		$\begin{aligned} & B C, ~ C 64, ~ P E T) \\ & \text { separately } \end{aligned}$		
\star MANY MORE	 			
	PHONOSONICS, DEPT EE70, 8 FINUCANE DRIVE, ORPINGTON, KENT BR54RD. Tel: 068937821			
KITS TH				

MAKING your own printed circuit boards is a subject that was covered in an Actually Doing It article some time ago, but at that time we dealt with only the most basic methods of production. In other words, the methods where the track pattern is marked onto the copper clad board using either rub-on transfers or an etch resist pen.

These are really quite adequate for producing most boards, but they can be very difficult to use with complex boards. They are at least a little awkward when producing any printed circuit board, due to the difficulties in accurately copying the design onto the board.

MASTERING THE TECHNIQUE

The alternative method is to use photosensitive copper clad board together with a simple photographic technique. This type of board is covered with a thin coating of photosensitive etch resist, and the unwanted areas of resist are removed by exposing them to ultraviolet light and then developing the board in caustic soda solution.
In order to expose the board a 1:1 master artwork is required. This must be on a transparent or translucent backing material, with the track pattern drawn using something that is suitably opaque to ultraviolet rays.

There are several ways of producing the master artwork, and some are quicker than others. All generally offer good accuracy, and a very faithful copy of the original design can be made using this photographic method of board production. Here we will consider several methods of producing the master artwork.

Many printed circuit boards are drawn up using computer based systems these days, but in the pre-computer aided design era the standard technique was to first draw the design in pencil on translucent drafting film. The design is drawn as a component side view, with a backing grid (similar to graph paper) being used to aid accurate placement of pads and tracks. The finished pencil drawing is turned over, and then used as a guide when drawing up the final artwork:

Originally the final artwork was done in ink using a technical pen, but these days it is more usual for rub-on transfers or crêpe tapes and diecast pads to be used. As a matter of interest, many computer p.c.b. design systems produce the final output via a plotter, which produces an "old style" artwork drawn in ink using a technical pen!

It is possible to draw up a master artwork using what is basically the same technique to the one outlined above. A piece of translucent drafting film is taped over the design that is to be copied, and then rub-on transfers or tapes/diecast symbols are used to copy the design as accurately as possible.

I find this job much easier using the tapes and diecast symbols rather than rub-on transfers, but many people seem to prefer the transfer method. Tapes and diecast symbols certainly seem to provide a tougher finished article, although the master artwork should always be treated with care.

With both systems the general method of production is to first fit all the pads in place,
and then to join them up with the track transfers or tapes. Obviously a certain amount of skill is involved in the copying process, and it is not a bad idea to start off by copying any fairly simple design just to give yourself some practice before progressing to the "real thing".

It is not essential to use track widths and pad sizes/shapes that exactly match the drawing you are copying. However, there are less likely to be any problems if you stay quite close to the original design in both respects.

Take great care with accurate positioning of the pads. Any lack of accuracy here will be reflected in the finished board, and at best will give a less than professional appearance. At worst, some printed circuit mounting components could be difficult to fit into place, or might not fit at all!
The problem is eased with some components, particularly transistors and integrated circuits, as clusters of pads can be obtained. Using these virtually guarantees that the relative placing of each pad in the cluster will be correct. With the rub-on type though, take care not to move the transfer sheet during the rubbing-down process.

Many readers will probably be unfamiliar with the diecast pads. These are mostly supplied on long rolls of backing paper or on cards. They are made from a self adhesive plastic material, and the easiest way of using the small types required for 1:1 artworks is to pick each pad off the card or paper backing using a modelling knife or scalpel, carefully position it on the drawing, and then press it into place. As always when using anything with a sharp blade, take due care to avoid injuring yourself or others.

The clusters of pads are different in that they consist of a transparent self-adhesive backing material, with the pads marked in ink. The paper backing is in two halves, and only one half is removed initially. This enables the cluster

Producing a tape master from a magazine article.

to be easily manoeuvred into position and semi fixed in place. The other half of the backing paper is then removed so that the cluster can be fully fixed in position.

Rub-on tracks are quite easy to use when copying designs that only have straight tracks. The main point to note with these is that they should be cut to size prior to putting them in place on the drawing. This is jusf a matter of placing the track in position, marking the position of the required cut, and then cutting through the track with scissors or a modelling knife. When applying rub-on transfers it is usually much easier to get really good results if the proper spatula tool can be obtained, rather than improvising something.

Curved tracks are a little more difficult to deal with. Sheets of curved track transfers can be obtained, but might not always match up with precisely the curve that the drawing calls for. If necessary, curves can be made up from several short pieces of track. This can be a little slow, but with patience it is possible to produce any curve, and quite neat results can be obtained.
The crêpe tapes can be taken round any reasonable curve if necessary. With these the basic method is to first press one end of the tape in place, then carefully route the track along to the second pad, and then cut the tape to length. A very sharp knife or scalpel should be used.
Whatever type of track material you use, make sure that the hole in the middle of each pad is not covered over by any track. With the crêpe tapes try to avoid cutting right through the pads as well as through the tape. Angle the blade slightly so that it cuts away from the centre of the pad and under-cuts the tape slightly; in this way, if you should happen to cut through the pad, it should fail to produce a break in the copper on the finished board.
The pads in clusters are more easily damaged, and where possible tracks should be started at these pads. This minimises the number of track cuts at these more vulnerable pads. Make sure that the tracks are properly pushed down onto the drafting film over their full lengths.

SHORT CUTS

This method of master production has the advantage of only requiring inexpensive and easily obtained materials, and provided due care is taken it gives a very high quality end product. It is not a particularly quick method, but I find it quite an interesting and enjoyable task, and a worthwhile part of the hobby.

Items from the CM100 kit.

A point in favour of this method is that you can easily make minor modifications to the original design if you should wish to do so for some reason. It is not everyone's cup of tea though, and you may well prefer to try a somewhat faster method.

Probably the easiest and quickest method of all is to use a photocopier. Not all types are suitable, but some can produce an accurate 1:1 copy onto drafting or tracing film, and I have seen some very fine copies made in this way.

Any minor imperfections could probably be corrected by hand, with gaps being inked in and unwanted spots scratched off with a sharp blade. However, for this method to be practical it is essential that the copy should be of a reasonably high quality, and it must be accurately to scale.

An alternative is to use a special spray (such as ISOdraft) on the original drawing. This has the effect of making the white paper translucent, but leaving the black ink opaque. In this way the drawing is effectively turned into a master artwork. Often this method will
not be practical as you will not want to cut up the book or magazine from which the design is being taken, and there will be printing on the opposite side of the page which will show through after the page has been treated.

These problems can be overcome by photocopying the drawing, and then giving this copy the spray treatment. Again, it is important that the photocopy is at an accurate scale of $\mathbf{1 : 1}$. I must admit that I have not yet tried this method, and I cannot comment on how well (or otherwise) it works in practice.

There are many photographic methods for copying printed circuit designs onto film having

Fig. 1. Basic set up used by the CM100 kit.

BLACK CARD
DRAWING (FACING UPWARDS)

WANTED: Working $\mathrm{ZX81}$ issue 3 p.c.b. (if possible with removable ROM, ULA and Z80) £10. Mohammed Tahir, 34 Meadowhill, Newton Mearns G77 6SX.
WANTED: Two cassette type microphones and two ULN 2283B microchips, all wanted for $£ 3$. Write to: N. Childs, 25 Wood Road, Tettenhall Wood, Wolverhampton, West Midlands WV6 8NG.
WANTED: 48k upwards Spectrum with microdrives, music RAM data, recorder, word processor, all lēads, printer, etc. Mr Ivan Comiskey, 33D Nth Gt. Clarence Street, Flats, Dublin 1, Ireland.
WANTED: Damaged/broken BBC computer for student project. Write/ring stating extent of damage, price, etc. Mr Musa, 141 Olive Lane, Darwen, Lancs. BB3 3DQ. Tel: (0254) 776586. WANTED: Enterprise 64 (not working) for case plus working PSU keyboard, must be working. Michael Robinson, 146 Moss Road, Lambeg, Lisburn BT27 4LF.
WANTED: 20 or 21 KHz transducers and D40D4 power Icb or Tip47. Reward cash paid. M.R. Sheppard, 76 Letterston Rd., Rumney. Cardiff CF38PU.

WANTED: PET 200 equipment, obsolete or broken by penniless student. Please write now: Mr Graham Mitchell, 43 Cranbrook Avenue, Odsal, Bradford BD6 1JF,
WANTED: Information on diode type and number, also meter movement rating for making microwave leakage detector. Mr B. Marshall, 32 Dewlands, Fairfield App, Wraysbury, Nr. Staines, Middx. TW19 5DS. Tel: (078481) 2289.
HORN SPEAKER, re-entrant 25W 20 in circ. 20 in deep. Unused f20. Tel: 01-524 3606.
WANTED: For cash (sterling) Casio CZ-101 synthesizer or keyboard with Midi. Ivan Comiskey, 33D Nth. Gt. Clarence St., Flats, Dublin 1, Ireland.
15 MIXED MAGAZINES, EE, ETI, PE, Map mags., also Archer Semi-conductor Guide 1986, £5 the lot, $£ 2$ post. Mr G. Hatfield, 43 St . Pauls Road, Stockingford, Nuneaton CV10 8HW.
E/MM 720W power controller f12. 25W stereo MOSFET amplifier surround $£ 95$. Both fully working order. D. Checkley, 110 Putney Road, Handsworth, Birmingham B20 3PU. Tel: 021-554 3984 (after 6 p.m.).
a transparent backing material suitable for our present purposes. These mostly require expensive equipment to which few people will have access. Presumably anyone who has the necessary equipment available to them will be able to carry out the copying process without too much difficulty. It would probably be possible to get a photographic studio to produce an accurate 1:1 positive copy having good contrast, but I suspect that the cost of doing things this way could be excessive.

There are some relatively simple methods of making a photographic copy though, and the one used in the CM100 "Circuit Maker Kit" is probably the most simple of all. The exposure is made onto a positive film having low sensitivity and high contrast, using the basic set up shown in Fig. 1.

The film can be handled in subdued light incidentally, and a darkroom is not required when using this system. This method of exposing the film is an unusual one, with the light source on the non-emulsion side of the film. Presumably the film is subjected to a higher light level over the white areas of paper where a much greater proportion of the light is reflected back through the film, and the high contrast of the film gives a good quality copy from this relatively small difference in light level.

Being a high contrast process the exposure has to be made very accurately, but provided everything is done meticulously it seems to be possible to obtain consistent results using this method. Like hand-copying a design, it represents an interesting pursuit which adds a new dimension to the hobby, and it is a practical way of doing things if you are going to produce a fair number of boards.

Of course, producing the master artwork is only the first stage of producing the board. Converting this artwork into a finished board will be the subject of the next Actually Doing It.

Rabert Penfold

14 Gold Plated $2 \times 25(0.1 \mathrm{in})$ closed and edge connectors $£ 35.30$ crystals 4 MHz and 4.19304 MHz £25. Grant Wastle. Tel: (0383) 736158 (after 7 p.m.).
WANTED: Data dynamics 303 teleprinter user or tech manual. Contact Mike Royle. Tel: 061 7973630.

WANTED: AY-1-67216 and pinout diagram, or equivalent device, to repair electronic organ. Cash paid. M.J. Ward, 27 Edith Road, Canvey Island, Essex SS8 OLP. Tel: (0268) 680109.
2X81 Speech Synthesizer (Maplin Talkback) £14. Maplin ZX81 Motherboard p.c.b. with two edge connectors $\mathfrak{£ 5}$. O. Morris, Mochrum Park Cottage, Kirkcowan, Wigtownshire, Scotland DG80BY.
SPECTRUM Speech joystick sound interfaces for sale. Details: Paul, 40a Union Street, Lye, Stourbridge, W. Midlands.
SALE: Assorted electronic magazines 1974 to 1980 and complete 24 basic programming books. Will sell cheap. B.F. Allessendro, 18 Blomfield Ct., Westbridge Rd., London SW11. Tel: 01-223 7881.
LYNX 48k computer. Excellent condition, all leads etc. No software. Hence bargain price $£ 25$ ono. Lee Barton, 54 Halton Brow, Runcorn, Cheshire. Tel: 61892 (to confirm).
OAP needs service sheet/manual for Rediffusion B\&W TV type no. MU2430 (Shannon) 13A series. Mr G. Martin, 39 Green Lane, Manchester M24 2NF. Tel: 061-653 8275 (p.m.)

TONY SMITH G4FAI

ILLEGAL OPERATION

The Radio Investigation Service (RIS) is the enforcement arm of the Department of Trade and Industry's Radio Communications Division. The RIS works to prevent interference to and jamming of licensed radio communications throughout the radio frequency spectrum, and figures published by the DTI for 1986 show the extent of this work. For example, over 10,000 private mobile radio (PMR) transmitter base stations were checked, and many were found to deviate in some respect from the licence conditions imposed on them to prevent interference to other users.

Under the Wireless Telegraphy Act 1949, unlicensed radio users face fines of up to $£ 2000$ and/or three months imprisonment, plus forfeiture of the equipment used. During the year the RIS issued 2800 formal warnings about unlicensed radio use, mainly to users of CB equipment, illegal cordless phones, PMR and marine radio. Continued unlicensed use resulted in 727 convictions, of which 601 were for CB misuse, 18 for PMR, 16 for cordless phones, and 5 for illegal operation on the amateur bands.

RAIDS

The RIS carried out 209 raids on 70 unlicensed pirate broadcasters, and 74 people were convicted for illegal broadcasting. 19,200 users of CB and marine radio were contacted in two nation-wide campaigns to counter licence evasion, and 5000 complaints were dealt with from householders concerning TV and radio interference and reception problems.

Fortunately, few cases relating to amateur radio ever appear in the courts, although there have been some rare examples of people illegally sitting for the Radio Amateur's Examination on behalf of others, the occasional pirate, or interference caused to neighbours by amateur transmissions.

VARIOUS REMEDIES

Because amateurs have to pass an examination which requires, among other things, a detailed knowledge of the licence regulations and the importance of not causing interference to others, they are very conscious of the latter problem. However, the fault often lies in the radio or TV receiver itself and with the co-operation of the householder there are a number of remedies which can be applied without a need to "go inside" the domestic equipment. There is usually no insurmountable reason why the amateur can't practise his or her hobby while the neighbours continue to enjoy Dallas or Radio Three's latest offering.
It should be stressed that the vast majority of amateurs will not continue transmitting when they know they are causing interference. They want to co-operate with the affected parties in eliminating the problem. The world is not perfect of course, and there will be some
unfortunate occasions when tempers run high on one or bath sides, and the RIS exists to come in at that time.
This used to be a free service. Nowadays it costs $£ 21$ to call them in. So if you do get interference from the "ham" next door, try having a friendly chat with him first. He can probably sort the problem out on an amicable basis, and avoid you being involved in unecessary expenditure and aggravation.

GOOD NEIGHBOUR

I had personal experience of this when I first started in amateur radio. Coming home one day I was greeted at my front gate by the lady next door who said, 'I hope you don't mind me telling you, but I can hear you speaking sometimes on my television."
I asked if she would mind if I carried out a few tests, and she gladly agreed. I immediately suspected that the probiem lay in the proximity of my two metre band antenna to her TV aerial. My son, also a licensed amateur, thereupon operated the transmitter upstairs, rotating our antenna as he did so. I sat downstairs at the telephone speaking to my neighbour while my son called down to me, via our home intercom, reporting the directions in which the antenna was firing.
I would say to the neighbour, "anything now?", and she would say "No". We went round the compass like that, and we finally established that the trouble only occurred when the two antennas were virtually pointing at each other.
I made up a small filter - just a coil and a trimmer capacitor tuned to 145 MHz inside a small can, with a short length of coaxial cable at one end terminated by a standard TV plug. The other end of the can had a coaxial socket. I plugged the unit into the TV antenna socket, and the antenna cable into the socket on the filter.

We repeated the experiments and found, as I expected, that while the filter happily allowed the TV signals to pass, it blocked the 2 m signals. I suppose I was lucky, but my neighbour quite enjoyed all this experimenting, and thought I was terribly clever sorting out the problem so quickly.

A little later she told me she quite missed hearing my conversation over the air! Of course, it's not always as easy as that, but it does give some idea of what can be done with a little goodwill on both sides.

PUBLIC SERVICE

I have previously mentioned the work of volunteer members of the Radio Amateur Emergency Network, RAYNET, in providing communications when the "official" systems are overloaded or are not available for any reason.

There is, in fact, another form of involvement open to amateurs, through the

Civil Defence arrangements of County Emergency Planning Teams. As an example, have just been looking at a leaflet issued by Wiltshire County Council, 'Volunteers - the practical approach to Civil Defence in Wiltshire"
This says that although the risk of war in Europe is low, the Government requires County and District Councils to plan for all possibilities, from conventional air raids to nuclear attack. One aspect of this preparation is the formation of a volunteer survival network in the county consisting of people trained for various wartime tasks, among which are Wartime Volunteer Radio Operators. These operate their own amateur radio or CB equipment to enable the authorities to assist towns, parishes or other communities when telephones and other communications have failed.
A short Civil Defence familiarisation course is provided for network members who have not already received other training, and representatives of the radio volunteers help the Emergency Planning staff work out communication procedures and run exercises for the network. There's nothing secret about all this. Some people are greatly in favour of it, and others object strongly. No matter how one regards the broader issues, the existence of the radio volunteers is yet another aspect of today's amateur radio scene.

USA NOVICE LICENCE

In the June column I referred to the campaign for an amateur radio novice licence in this country, allowing newcomers with a limited qualification to operate with Morse code. In the USA, not only have they had such a novice licence for many years, but as from 21 March 1987, it has been expanded to permit operation on extra bands, with voice and other modes, including packet radio, on some of them.
Previously, the country's 80,000 plus novice licensees had access to limited parts of the 80 , 40,15 , and 10 metre bands. Now they can also use the 1.25 and 0.23 metre bands. While Morse can still be used, all other emission modes are permitted on the two new bands, with packet and single sideband as additional modes on 10 metres.

Becoming a novice operator is relatively simple. The examination is administered by any two existing amateurs holding the General Class licence or above, and novices can then go on to upgrade to higher class licences, attracting greater privileges, or remain as permanent novices if they wish.
In recent years there has been concern in many countries that the hobby is not attracting enough newcomers. In the USA at least it is now hoped that this new arrangement, particularly with its potential for world-wide voice communication on 10 metres, will begin to reverse the trend.

Printed circuit boards for certain constructional projects (up to two years old) are available from the PCB Service, see list. These are fabricated in glassfibre, and are fully drilled and roller tinned. All prices include VAT and postage and packing. Add $£ 1$ per board for overseas airmail. Remittances should be sent to: The PCB Service, Everyday Electronics Editorial Offices, 6 Church Street, Wimborne, Dorset BH21 1 JH. Cheques should be crossed and made payable to Everyday Electronics. (Payment in £ sterling only.)

Please note that when ordering it is important to give project title as well as order code. Please print name and address in Block Caps. Do not send any other correspondence with your order.
Readers are advised to check with prices appearing in the current issue before ordering.

NOTE: Please allow 28 days for delivery. We can only supply boards listed in the latest issue. Boards can only be supplied by mail order and on a payment with order basis.

PROJECT TITLE	Order Code	Cost
- DEC '85 - Electronic Building Blocks - 5 to 8 Opto Intensity Transducer Digital Capacitance Meter	$\begin{aligned} & 508 \\ & 509 \\ & 512 \end{aligned}$	£3.85 £3.38 £6.52
```- JAN '86 - Mains Delay Musical Doorbell Tachometer - Transducers Series```	$\begin{aligned} & 503 \\ & 507 \\ & 513 \end{aligned}$	$\begin{aligned} & £ 2.65 \\ & £ 3.63 \\ & £ 3.15 \end{aligned}$
```- FEB '86 - Touch Controller Function Generator Function Generator PSU Board pH Transducer - Transducers Series```	$\begin{aligned} & 510 \\ & 514 \\ & 515 \\ & 516 \end{aligned}$	$\begin{aligned} & £ 3.32 \\ & £ 3.54 \\ & £ 2.56 \\ & £ 3.30 \end{aligned}$
- MAR '86 - Mains Tester \& Fuse Finder BBC Midi Interface Stereo Hi Fi Preamp Interval Timer	$\begin{aligned} & 517 \\ & 518 \\ & 519 \\ & 520 \end{aligned}$	$\begin{aligned} & £ 2.84 \\ & £ 4.08 \\ & £ 7.13 \\ & £ 2.95 \end{aligned}$
$\text { Stereo Reverb }- \text { APRIL '86 - }$	521	¢3.73
$\begin{aligned} & \text { PA Amplifier } \\ & \text { Mini Strobe } \\ & \text { Auto Firing Joystick Adaptor } \end{aligned}$	$\begin{aligned} & 511 \\ & 522 \\ & 523 \end{aligned}$	$\begin{array}{r} £ 3.34 \\ £ 2.79 \\ £ 3.42 \end{array}$
```- JUNE '86 - Watchdog Percussion Synthesiser Personal Radio```	$\begin{aligned} & 524 \\ & 525 \\ & 526 \end{aligned}$	$\begin{aligned} & £ 3.51 \\ & £ 7.06 \\ & £ 2.58 \end{aligned}$
- JULY '86 -   Tilt Alarm   Electronic Scarecrow VOX Box Amplifier Headphone Mixer	$\begin{aligned} & 527 \\ & 528 \\ & 529 \\ & 530 \end{aligned}$	$\begin{array}{r} £ 2.65 \\ £ 2.86 \\ £ 2.93 \\ £ 5.71 \end{array}$
- AUG '86 -   Solar Heating Controllier	533	£4.16
- SEPT '86 -   Car Timer   Freezer Failure Alarm Infra Red Beam Alarm (Trans) Infra Red Beam Alarm (Rec) Scratch Blanker	$\begin{aligned} & 538 \\ & 534 \\ & 536 \\ & 537 \\ & 539 \end{aligned}$	$\begin{aligned} & £ 2.53 \\ & £ 2.38 \\ & £ 4.16 \\ & £ 4.16 \\ & £ 6.80 \end{aligned}$
	$\begin{aligned} & 543 \\ & 544 \\ & 540 \text { \& } 541 \\ & 542 \\ & 546 \end{aligned}$	$\begin{aligned} & £ 3.23 \\ & £ 3.97 \\ & £ 2.97 \\ & £ 5.12 \\ & £ 4.04 \end{aligned}$
- NOV'86 -   Modem Tone Decoder   200 MHz Digital Frequency Meter	$\begin{aligned} & 547 \\ & 548 \end{aligned}$	$\begin{aligned} & £ 3.46 \\ & £ 5.14 \end{aligned}$
- DEC '86 -   Dual Reading Thermometer Automatic Car Alarm BBC 16K Sideways RAM (Software Cassette)	$\begin{aligned} & 549 \\ & 550 \\ & 551 \\ & 551 S \end{aligned}$	$\begin{array}{r} £ 7.34 \\ £ 2.93 \\ £ 2.97 \\ £ 3.88 \end{array}$


$\text { Random Light Unit }-$	552	¢5.88
- FEB '87 -   Car Voltage Monitor   Mini Amp.   Video Guard   Spectrum 1/O   Spectrum Speech Synthesiser	$\begin{aligned} & 553 \\ & 554 \text { \& } 555 \\ & 556 \\ & 557 \\ & 558 \end{aligned}$	$\begin{aligned} & £ 2.48 \\ & £ 5.68 \\ & £ 3.80 \\ & £ 4.35 \\ & £ 4.86 \end{aligned}$
- MAR '87 -   Computer Buffer/Interface   Infra Red Alarm: Sensor head PSU/Relay Driver	$\begin{aligned} & 560 \\ & 561 \\ & 562 \\ & \hline \end{aligned}$	$\begin{aligned} & £ 3.32 \\ & £ 4.19 \\ & £ 4.50 \end{aligned}$
- APRIL '87 -   Alarm Thermometer Experimental Speech Recognition Bulb Life Extender	$\begin{aligned} & 559 \\ & 563 \\ & 564 \end{aligned}$	$\begin{aligned} & £ 2.60 \\ & £ 4.75 \\ & £ 2.48 \end{aligned}$
```- MAY '87 - Fridge Alarm EE Equaliser - Ioniser```	$\begin{aligned} & 565 \\ & 566 \end{aligned}$	$\begin{array}{r} £ 2.40 \\ £ 4.10 \end{array}$
$\begin{aligned} & \text { Mini Disco Light JUNE '87 - } \\ & \text { Visual Guitar/Instrument Tuner } \end{aligned}$	$\begin{aligned} & 567 \\ & 568 \end{aligned}$	$\begin{array}{r} £ 2.93 \\ £ 3.97 \end{array}$
```- JULY '87 - Fermostat EE Buccaneer Metal Detector Monomix```	$\begin{aligned} & 569 \\ & 570 \\ & 571 \end{aligned}$	$\begin{array}{r} £ 3.34 \\ £ 4.10 \\ £ 4.75 \end{array}$
- AUG '87 -   Super Sound Adaptor, Main Board PSU Board Simple Shortwave Radio, Tuner Amplifier	$\begin{aligned} & 572 \\ & 573 \\ & 575 \\ & 576 \end{aligned}$	$\begin{aligned} & £ 4.21 \\ & £ 3.32 \\ & £ 3.15 \\ & £ 2.84 \end{aligned}$
- SEPT ‘87 -   Noise Gate   Burst Fire Mains Controller Electronic Analogue/Digital Multimeter	$\begin{array}{r} 577 \\ 578 \\ 579 \\ \hline \end{array}$	$\begin{aligned} & \mathbf{£ 4 . 4 1} \\ & £ 3.31 \\ & \mathbf{£ 6 . 4 0} \end{aligned}$
- OCT '87 -   Transtest   Video Controller	$\begin{aligned} & 580 \\ & 581 \end{aligned}$	$\begin{aligned} & \text { £3. } 32 \\ & \text { £4.83 } \end{aligned}$




The books listed below have been selected as being of special interest to our readers, they are supplied from our editorial address direct to your door.

## DATA AND REFERENCE

PRACTICAL ELECTRONICS
CALCULATIONS AND FOA
F. A. Wilson, C.G.I.A., C.Eng., F.I.E.E., F.I.E.R.E.,
F.B.I.M

Bridges the gap between complicated technical theory, and "cut-and-ried" methods which may bring success practical bias-tedious and higher mathematics have been avoided where possible and many tables have been included.
The book is divided into six basic sections: Units and Constants, Direct-current Circuits, Passive Components, Alternating-current Circuits. Networks and Theo 256 pages

ESSENTIAL THEORY FOR THE
LECTRONICS HOBBYIST
G. T. Rubaroe, T.Eng (C.E.I.), Assoc.I.E.R.E.

The object of this book is to supply the hobbyist with a background knowledge tailored to meet his or her gether the relevant material and presented it in a readable manner with minimum recourse 10 mathematics.
128 pages
Order Code 228 $\mathbf{£ 2 . 5 0}$

MICROPROCESSING SYSTEMS AND CIRCUITS F. A. Wilson, C.G.I.A., C.Eng., F.I.E.E., F.I.E.R.E F.B.I.M

A truly comprehensive guide to the elements of micro processing systems which really starts at the beginning Teaches the reader the essential fundamentals that ar so important for a sound understanding of the subject.
256 pages
Order Code 日P77

COMMUNICATION
F. A. Wilson, C.G.I.A., C.Eng., F.I.E.E., F.I.E.R.E F.B.i.M.

A look at the electronic fundamentals over the whole of the communication scene. This book aims to teach the important elements of each branch of the subject in style as interesting and practical as possible. While no getting involved in the more complicated theory and mathematics. most of the modern transmission system techniques are examined including line, microwave submarine, satelite and digital multiplex systems, radio and telegraphy. To assist in understanding these more magnetic wave, networks and transmissions assess ment are included, finally a short chapter on optical $\begin{array}{lll}\text { transmission. Order Code BP89 } \\ 256 \text { pages } & \text { £2.95 }\end{array}$

## AUDIO

F. A. Wilson, C.G.I.A., C.Eng., F.I.E.E., F.I.E.R.E. F.B.I.M

Analysis of the sound wave and an explanation o acoustical quantities prepare the way. These are fol lowed by a sludy of the mechanism of hearing and examination of the various sounds we hear. A look a phones and loudspeakers then sets chapter on micro main chapter on audio systems-amplifiers, oscillarors $\begin{array}{ll}\text { disc and magnetic recording and electironic music. } \\ 320 \text { pages } & \text { Order Code BP111 } \\ \mathbf{1} 3.50\end{array}$

## HOW TO IDENTIFY UNMARKED IC

K. H. Recort

Shows the reader how, with just a test-meter, 10 go about recording the particular signature of an unmarked i.c. Which should enable the i.c. to then be identified with signature is a specially plotted chart produced by mea suring the resistances between all terminal pairs of mea $\begin{array}{ll}\text { Chart } & \text { Order code BP101 } \\ \text { C0.95 }\end{array}$

RADIO AND ELECTRONIC COLOUR CODES AND 8. B. Babani

## 8. B. Baban

Although this chart was first published in 1971 it provides basic information on many colour codes in use components. Includes resistors, capacitors, electronic mers, field coils, fuses, battery leads, speakers, etc. It is particularly useful for finding the values of old cómponents. Chart

Order code BP7
£0.95
CHART OF RADIO, ELECTRONIC
SEMICONDUCTOR AND LOGIC SYMBOLS
M. H. Banani, B.Sc.(Eng.)
llustrates the common, and many of the not-so-com mon, radio, electronic, semiconductor and logic symbol manuals, etc., in most countries throug and instruction Chart Order Code BP27 $\quad \mathbf{~ O . 9 5}$

## INTERNATIONAL TRANSISTOR

EQUIVALENTS GUIDE
A. Michaels

Helps the reader to find possible substitutes for a popula tors. Also shows material ivpe, polarity mane transis and use. 320 page.

Order code BP85

TRANSISTOR SELECTOR GUIDE
This unique guide offers a range of selection rables compiled so as to be of maximum use to all electronics engineers, designers and hobbyists.
Section 1: Covers component markings; codings and standards, as well as explaining the symbols used.
Section 2: Tabulates in alpha-numeric sequence th comprehensive specifications of over 1400 devices.
Section 3: Tabulates the devices by case type.
Section 4: Considers particular limits to the electrica parameters when compiling the tables
Section 5: Illustrates package outlines and leadouts
Section 6: Consists of a surface mounting device markings 192 pages

Order code BP234
TRANSISTOR RADIO FAULT-FINDING CHART C. E. Miller

Used properly. should enable the reader to trace most common faulis reasonably quickly. Across the top of the description of thend four recrangles containing brief orted, set dead, sound low or distorted and background noises. One then selects the most appropriate of these and following the arrows, carries out the suggested checks in sequence until the fault is cleared. Chart

Order code BP 70
$\mathbf{£ 0 . 9 5}$

## digital ic equivalent

## AND PIN CONNECTIONS

Shows equivalents and pin connections of a popular selection of European, American and Japanese digital i.c.s. Also includes details of packaging, families, funcions, manufacturer and country of origin
4.95

## LINEAR IC EQUIVALENTS <br> AND PIN CONNECTIONS

A. Michaels

Shows equivalents and pin connections of a popular selection of European, American and Japanese linear c.s. Also includes details of functions, manufacturer and couniry of origin
320 Oages Order code BP14
$£ 4.95$

## INTERNATIONAL DIODE <br> EQUIVALENTS GUIDE

A. Michaels

Designed to help the user in finding possible substitutes for a large selection of the many different types of diodes hat are available. Besides simple rectifier diodes, also 144 . OCls, photo and display diodes.
14 pages Order code BP108
O2.25

## NEWNES ELECTRONICS <br> POCKET BOOK

E. A. Parr

Newnes Electronics Pocket Book has been in print for over iwenty years and has covered the development of electronics from valve to semiconductor technology and processors. To keep up to date with the rapidly changing world of electronics. continuous revision has been necessary. This new Fifth Edition takes account of recent changes and includes material suggested by readers of previous editions. New descriptions of op amp. applica tions and the design of digital circuits have been added along with a totally new chapter on computing. plus other revisions throughout
315 pages
315 pages (hard cover) Order Code NEO2 $\mathbf{4 8 . 9 5}$

## CIRCUITS AND DESIGN

## ELECTRONICS SIMPLIFIED

F. A. Wilson SET CONSTRUCTION
F. A. Wilson, C.G.I.A., C.Eng., F.I.E.E., F.I.E.R.E. F.B.I.M.

Especially written for those who wish 10 participate in the intricacies of electronics more through practical con struction than by theorelical study. It is designed for a ages upwards simple
80 pages Order Code BP92
$£ 1.75$

50 CIRCUITS USING GERMANIUM
RILICON AND ZENER DIODES
R. N. Soa

Contains 50 interesting and useful circuits and applica using one of the most simple and inexpensive components-the diode. Includes the use of germanium and silicon signal diodes, silicon rectifier diodes and Zener diodes, etc
64 pages Order Code BP36 £1.50

## 50 SIMPLE LED CIRCUITS

R. N. Soar

Contains 50 interesting and useful circuits and applications, covering many different branches of electronics sing one of the most inexpensive and freely available components-the light-emitting diode (LED). Also in64 pages $\quad$ Order Code BP42 $£ 1.95$

## COIL DESIGN AND CONSTRUCTION MANUAL

B. B. Babani

A complete book for the home constructor on "how 10 make" RF. IF, audio and power colls, chokes and transformers. Practically every possible type is discussed and calculations necessary are given and ex with the exception of torroids and pulse transformers ittle has changed in cofl design since it was writtermers $\begin{array}{lll}96 \text { pages } & \text { Order Code } \mathbf{1 6 0} & \\ \mathbf{1 6} .50\end{array}$

## MICRO INTERFACING CIRCUITS-BOOK 1

R. A. Pentold

Both books include practical circuits together with details of the circult operation and useful background information. Any special constructional points are covered but p.c.b. layouts and other detailed constructional informaion are not included
Book 1 is mainly concerned with getting signals in and out of the computer; Book 2 deals primarily with circuits for practical applications.
$\begin{array}{llll}\text { Book } 1112 \text { pages } & \text { Order code BP130 } \\ \text { Book } 2112 \text { pages } & \text { Order code BP131 } & \text { £25 }\end{array}$

## A MICROPROCESSOR PRIMER

E. A. Parr, B.SC., C.Eng., M.I.E.E.
its simplicity and logical struciure coter which, because of to be easily learnt and understood. The shortcomings are then discussed and the reader is shown how these can be overcome by changes and additions to the insiruction et. In this way, such ideas as relative addressing, index registers, etc., are developed
96 pages $\quad$ Order code BP72.75

A PRACTICAL INTRODUCTION TO
MICROPROCESSORS
R. A. Penfold

Provides an introduction which includes a very simple microprocessor circuit which can be constructed so that the reader can experiment and gain practical experience.
96 pages $\quad$ Order code $\mathbf{~ B P 1 2 3}$
$\mathbf{E 1 . 9 5}$

## HOW TO USE OP-AMPS

E. A, Part

This book has been written as a designer's guide covering many operational amplifiers, serving both as a source book of circuits and a reference book for design calculations. The approach has been made as nonmathematical as possible.
160 pages Order code BP88
$£ 2.95$

## PRACTICAL ELECTRONIC <br> BUILDING BLOCKS-BOOK <br> BUILDING BLOCKS-BOOK 2

## R. A. Penfold

These books are designed to aid electronic enthusiasts who like to experiment with circuits and produce the own projects, rather than simply following published project designs
BOOK 1 contains: Oscillators-sinewave, triangular squarewave, sawtooth, and pulse waveform generators operating at audio frequencies. Timers-simple mono stable circuits using i.c.s, the 555 and 7555 devices, etc Miscellaneous-noise generators, rectifiers, compara tors and triggers, etc
op-amp circuits, voltage and buffer level discrete and op-amp circuits, voltage and buffer amplifiers including amplifiers. Filters-high-pass, low-pass, 6, 12, and 24 dB per octave types. Miscellaneous-i.c. power amplifiers
$\begin{array}{llll}\text { mixers, voltage and current regulators, etc. } & \\ \text { BOOK } 1 & 128 \text { pages } & \text { Order code BP117 } & \text { £1.95 } \\ \text { BOOK } 2 & 112 \text { pages } & \text { Order code BP118 } & \mathbf{£ 1 . 9 5}\end{array}$
HOW TO DESIGN ELECTRONIC
PROUECTS
The aim of this book is to help the reader to put toget he projects from standard circuit blocks with a minimum o trial and error, but without resorting to any advanced mathematics. Hints on designing circult blocks to mee $\begin{array}{lll}\text { your special requirements are also provided. } \\ 128 \text { pages } & \text { Order code BP127 }\end{array}$

## POPULAR ELECTRONIC CIRCUITS <br> -BOOK 1 EOPULAR ELECTRONIC CIRCUITS <br> -BOOK 2

Each book provides a wide range of designs for elec tronic enthusiasts who are capable of producing working projects from just a circuit diagram without the aid o detailed construction information. Any special setting-up procedures are described
BOOK 1 Temporarily out of print
BOOK $2 \quad 160$ pages Order cod
B00K 2160 pages Order code BP98
f2.25

## GETTING THE MOST FROM YOUR PRINTER

 J. W. PenfoldDetalis how to use all the features provided on most dotmatrix printers from programs and popular word proces sor packages like Wordwise, Visawrite and Quill, etc Shows exactly what must be typed in to achieve a given 96 pages

Order Code BP 181
£2.95

A 280 WORKSHOP MANUAL
E. A. Parr, B.Sc., C.Eng., M.I.E.E. wish to progress beyond the stage of BASIC programming to topics such as machine code and assembly language programming. or need hardware details of a 280 based computer.
192 pages
Order Code BP 112

AN INTRODUCTION TO 68000 ASSEMBLY LANGUAGE
R. A. \&. J. W. Penfold Obtain a vast increase in running speed by
programs for 68000 based micros such as the commo dore Amiga, Atari ST range or Apple Macintosh range dore., in assembly language. It is not as difficult as one might think and this book covers the fundamentals. 112 pages $\quad$ Order Code BP184

THE ART OF PROGRAMMING THE ZX SPECTRUM
M. James, B.Sc., M.B.C.S.

It is one thing to have learnt how to use all the Spectrum's commands and functions. but a very different one to be able to combine them into programs that do exactly what you want them to. This is just what this book is all about-leaching you the arr of effective programming with your Spectrum.
144 pages
Order code BP119

O2.50

AN INTRODUCTION TO PROGRAMMING THE COMMODORE 16 \& PLUS 4
R. A. Penfold

Helps you to learn to use and program these two Commodore machines with the minimum of difficulty by expanding and complementing the information supplied $\begin{array}{ll}\text { in the manuacturer sown manuals. } \\ 128 \text { pages } & \text { Order code BP158 } \\ & \mathbf{£ 2 . 5 0}\end{array}$

AN INTRODUCTION TO PROGRAMMING THE BBC MODEL B MICRO
R. A. \& J. W. Penfold

Written for readers wanting to learn more about pro. gramming and how 10 make best use of the incredibly powerful model 8 's versatile features. Most aspects of the BBC micro are covered, the omissions being where little could usefully be added to the information provided
by the manufacturer's own manual. 144 pages Order code BP 139
£1.95

AN INTRODUCTION TO PROGRAMMING THE ACORN ELECTRON
R. A. A. W. Penfold ming and to make best use of the Electron's many features. Adds considerably to the information already supplied in the manufacturer's own instruction manual.
Order code BP142
181

## AN INTRODUCTION TO PROGRAMMING THE

ATARI 600/800 XL
A. A. \& J. W. Penfold

Especially written to supplement the manufacturer's own handbook. The information supplied will help the reader to master BASIC programming and to make best use o 128 pages $\quad$ £1.95

## AN INTRODUCTION TO PROGRAMMING THE <br> AN INTRODUCTION TO PROG

R. A. \& J. W. Penfold
R. A. \& J. W. Ponfold 664 running with Locomotive BASIC makes an extremely potent and versatile machine and this book is designed to help the reader get the most from this powerful combination. Written to complement rather than duplicate the information already given in the manufacturer's own manual. Also applicable to the CPC
6128 Order Code BP153 $\quad$ £2.50
AN INTRODUCTION TO PROGRAMMING THE SINCLAIR OL
Helps the reader Penfold OL's almost unlimited range of features. Designed to complement the manufacturer's handbook.
Order code BP150

## AN INTRODUCTION TO Z8O MACHINE CODE

A. A. \& J. W. Penfold

Takes the reader through the basics of microprocessors and machine code programming with no previous knowledge of these being assumed. The 280 is used in many popular home computers and simple programming ex amples are given for 280 -based machines including the ${ }_{\text {strad CPC }}$ 464. Also applicable to the Amstrad CPC 664 and 6128
144 pages Order code BP152 £2.75

## AN INTRODUCTION TO 6502 MACHINE CODE

 R. A. \& J. W. PenfoldNo previous knowledge of microprocessors or machine code is assumed. Topics covered are: assembly lan guage and assemblers, the register set and memori, binary and hexadecimal numbering systems, add machine modes and the instructionstian simple programming examplas are given for 6502 -based home computers like the VIC20 . ORIC- $1 /$ Atmos, Electron, BCC and also the Commo-
$\begin{array}{ll}\text { dore } 64 . \\ \text { Y12 pages } & \text { Order code BP147 } \\ \end{array}$

## PROJECT CONSTRUCTION

## HOW TO GET YOUR

ELECTRONIC PROJECTS WORKING
R. A. Penfold

We have all built projects only to find that they did not work correctly, or at all, when first switched on. The aim of this book is to help the reader overcome just these problems by indicating how and where to start looking for many of the common faults that can occur when building up projects.
96 pages projects. Order BP 110
HOW TO DESIGN AND MAKE
YOUR OWN P.C.B.
R. A. Penfold
Deals with the simple methods of copying printed circuit
board designs from magazines and books and covers al aspects of simple p.c.b. construction including photo aspaphic methods and designing your own p.c.b.s.
Order code BP121
80

BEGINNER'S GUIDE TO BUILDING

## ELECTRONIC PROJECTS

R. A. Panfold

Shows the complete beginner how to tackle the practical side of electronics, so that he or she can confidently build the electronic projects that are regularly featured in form of simple projects.


RADIO

AN INTRODUCTION TO RADIO DXING
R. A. Penfold

Anyone can switch on a short wave receiver and play with the controls until they pick up something, but to finc a particular station, country or type of broadcast ard and knowledge. The object of this book is to help the reader to do just that, which in essence is the fascinating hobby of radio DXing 112 pages Order code BP91
$£ 1.95$

## international radio stations <br> GUIDE

Completely revised and updated, this book is an invaluable aid in helping all those who have a radio receiver to
obtain the maximum entertainment value and enjoyment
from their sers.
and/or wavelength, as well as the effective radiation power of the transmitter
128 pages Order code BP155
E2.95

## RECOMMENDED READING <br> INTRODUCING MICROPROCESSORS

BEGINNERS GUIDE TO MICROPROCESSORS
E.A. Part

An excellent grounding in microprocessors, this book is broadly relevent to the whole of our Introducing Microproce
224 pages $\quad$ Order codé NE03 4.95

RECOMMENDED READING

THE PRE-BASIC BOOK
F. A. Wilson, C.G.I.A., C.ENG. F.IIE.E., F.I.E.R.E., F.B.I.M.

Another book on BASIC but with a difference. This one does not skip through the whole of the subject and thereby leave many would-be programmers floundering but instead concentrates most frequently used and more loally understood computer instructions. For all new and potential micro users. $\quad$ £2.95 192 pages Order code BP146

## HOW TO G

## RUNNING

Have you ever written your own programs only to find that they did not workl Help is now at hand with this book which shows you how to go about looking for your errors, and helps you to avoid the common bugs and pitfalls of program writing. Applicable to all dialects of the BASIC language.
144 pages Order code BP169
AN INTRODUCTION TO COMPUTER

## COMMUNICATIONS

A. A. Penfold

Provides details of the various types of modem and their suitability for specific applications, plus details of connecting various computers 10 modems, and modems to the telephone system. Also information on common networking systems and RTTY.
96 pages Order code BP177 £2.95

\section*{AN INTRODUCTION TO

## COMPUTER PERIPHERALS

## COMPUTER PERIPHERALS

J. W. Penfold

Covers such items as monitors, printers, disc drives, cassette recorders, modems, etc., explaining what they are, how to use them and the various types and you buy will work with your computer.
80 pages $\quad$ Order code BP170 $\mathbf{~} 2.50$

## COMPUTER TERMINOLOGY EXPLAINED

I. D. Poole

Explains a wide range of terms that form the computer jargon used by enthusiasts. Includes a reference guide to the more commonly used BASIC commands
96 pages Order code BP 148
£ 1.95

## THE PRE-COMPUTER BOOK

F. A. Wilson

Aimed at the absolute beginner with no knowledge of computing. An entirely non-technical discussion of com puter bits and pieces and programming.
96 pages $\quad$ Order code BP1 15
£1.95
NEWNES COMPUTER ENGINEER'S
POCKETBOOK
Michael Tooley
An invaluable compendium of facts, figures, circuits and data, indispensable to the designer, student, service engineer and all those interested in computer and microcomputer systems. It will appeal equally to the hardware or software specialist and to the new band of range of subjects at a practical level, with the necessary range of subjects The data is presented in a succinct and rapidly accessible form so that the book can become par of an everyday toolkit
205 pages (hard cover) Order code NE01 £8.95

## EE BOOK SERVICE TO ORDER

Please check the latest issue for price and availability.

Add 50p per order postage (overseas readers add $£ 1$; surface mail postage) and send a PO, cheque or international money order ( $£$ sterling only) made payable to Everyday Electronics (quoting the order code and quantities required) to EE BOOK SERVICE, 6 CHURCH STREET, WIMBORNE, DORSET. BH21 1JH.

Although books are normally sent within seven days of receipt of your order please allow a maximum of 28 days for delivery. Overseas readers allow extra time for surface mail post


Reach effectively and economically today's enthusiasts anxious to know of your products and services through our semi-display and classified pages. The prepaid rate for semi-display spaces is $£ 8.00$ per single column centimetre (minimum 2.5 cm ). The prepaid rate for classified advertisements is 30 pence per word (minimum 12 words), box number 60p extra. All cheques, postal orders, etc., to be made payable to Everyday Electronics VAT must be added. Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Everyday Electronics, 6 Church Street, Wimborne, Dorset BH21 1JH. Tel: 0202881749.

## Electronic Components

RESISTORS (metal film, full length leads): mixed (1, $2,5 \%$ ) 1000 off $£ 6.50$, 100 off $£ 1.10$. Mixed ( $1 \%$ ) 70 off $£ 1,(2 \%$, $1 / 4 \mathrm{~W}$ ) 70 off $£ 1$, (1W) 35 off $£ 1$, ( 2 W ) 30 off fl . Enclosed miniature cermet trimpots (assorted): 10 off $£ 1.50,50$ off $£ 5$. Ten turn wirewound potentiometers: 5 assorted $£ 1.60$. Low profile turned pin d.i.I. sockets: 8 off 24 pin $£ 2.30,40$ pin 60 p each. Postage and packing 70p. SAE for full list. Milner Electronics, 2 Elgarth Drive, Wokingham, Berkshire RG114HH.

MICRO TRANSMITTER KIT, 500 m range, tunable $88-115 \mathrm{MHz}$, sensitive microphone, $£ 3.95$. Cheques/PO to: Quantum Electronics (EE), 267 Rednal Road, Kings Norton, Birmingham B38 8EB.

TECH-SUPPLY. Variable power supply 3.30 V 1.5 amp, fully tested, guaranteed. With meter $£ 45.50$ inclusive. Without meter $£ 38.50$ inclusive. Cheques/PO payable to: Tech Supply, 1 Holland House, Botion Road, Radeliffe, Manchester M26 $0 G W$. Allow 14 to 21 days delivery.

## QUALITY COMPONENTS AND ACCESSORIES

12in 150 W 8ohm GUITAR POWER SPEAKER only $£ 25+£ 2.50$ P\&P. EAGLE V-INDUCED MAGNETIC CARTRIDGE WITH HEADSHELL $\{18$ post free was $£ 36$. Send or phone for free lists
STRACHAN ELECTRONICS, 9 CROALL PLACE, EDINBURGH EH 7 4LT Tel: 031.5569549

THE SCIENTIFIC WIRE COMPANY   811 Forest Road. London E17. Telephone 01-531 1568 ENAMELLED COPPER WIRE				
SWG	116	802	402	202
8 to 34	3.63	2.09	1.10	0.88
351039	3.82	2.31	1.27	0.93
401043	6.00	3.20	2.25	1.61
44 to 47	8.67	5.80	3.49	2.75
48	15.96	9.58	6.38	3.69
SILVER PLATED COPPER WIRE				
14 to 30	9.09	5.20	2.93	1.97
TINNED COPPER WIRE				
14 to 30	3.97	2.41	1.39	0.94
Fluxcore				
Solder	5.90	3.25	1.82	0.94
Prices include PGP. Please add VAT. Orders under C3 add 50p. SAE for list of copper and resistance wire Dealer enquiries welcome				

## Special Offers

FREE MEMBERSHIP to a new national electronics club. For details and a free pack of components worth over $£ 10$ send only $£ 1$ p\&p to Dept. EE, Woodside, Dowselt Lane, Ramsden Heath Billericay, Essex CM111JL.

## Services

## ELECTRONIC REPAIRS

Repair and rebuild service carried out by our electronic engineers to get your project working or help you with any problems you have.
No project too small or too big.
D.G. Electronics Services Ltd. Chelmsford (0245) 266160

## Service Manuals

UNIQUE REPAIR DATA WITH CIRCS Video or mono TV £10.50: CTV 12.95 : Sinclair Spectrum
Repalt/Service 55

SERVICE SMEETS: Radios, Mono TV, Rec PP $£ 2.50+$ isae. CTV Mus. C. Combis $\mathbf{C 3 .} 59+1$ sae.
Wond's largest stockist data all equipment. Lsae brings quotes/price. lists - or E3 for set of catalogues with $£ 4$ worth of vouchers. Phone 0698 8845es for fast quotes TISEE. 76 Church St., Larkhill, Lanarkshire ML9 1HE.

## WORKSHOP SERVICE MANUALS

Any Music Audio. Mono TV - $£ 4.50$ Any Colour TV. - $£ 9.50$ Any Video Recorder - $£ 19.50$ State make/model/type. Plus 50p post LSAE enquiries any others. MAURITRON (EE), 8 CHERRY TREE ROAD, CHINNOR, OXON OX94QY.

## PLEASE MENTION EVERYDAY ELECTRONICS WHEN REPLYING TO ADVERTISEMENTS

## TURN YOUR SURPLUS

ICS transistors etc into cash, immediate settlement. We also welcome the opportunity to quote for complete factory clearance.
Contact COLES-HARDING \& CO, 103 South Brink, Wisbech, Cambs. *ESTABLISHED OVER 10 YEARS* Tel: 0945584188

```
ORDER FORM PLEASE WRITE IN BLOCK CAPITALS
Please insert the advertisement below in the next available issue of Everyday Electronics for Insertions. I enclose Cheque/P.O. for £...
```



``` and ELECTRONICS MONTHLY Classified Advartizement Dept., 6 Church Streat, Wimborne,
Dorset 8H21 1JH.
Tolophone 0202881749
RATE: 30p per word, minimum 12 words. Box No. SOp extra. VAT must be aded.
```



# BRYANT ACOUSTIX 

## 8MM LEDs NOW IN STOCK

[DH 1-2 HR. TEL (091) 3864500 .
Please enclose SAE, at least $9 \times 4^{\prime \prime}$ for a copy of our free current catalogue containing.
DUBLIER ELECTROLYTICS/MULLARD CERAMIC-POLYESTER CAPS/BABANI BOOKS/ACCESSORIES
CABLES/CONNECTORS/DIODES/CMOS/LSTTC TRANSISTORS/AUDIO-MAINS LEADS test equipment etc ALL PRICES GUARANTEED FOR A FIXED PERIOD SPECIAL OFFERS LISTS AVAILABLE

	A SELECTION OF STOCKED COMPONENTS				
3 mmRED	12p	uF/Volt		4000 U	20 p
3 mm YELL	$14 p$	1/100	9p	40018	200
3 mm GRN	14.0	4.7/63	12p	4011 C	23p
5 mm RED	130	10/25	10 p	40178	43p
5 mm YELL	15p	47/16	$11 p$	40414	600
5 mm GRN	$15 p$	100/16	16 p	40468	55
8 mm RED	45p	100/63	310	4049 U	${ }^{270}$
8 mm YELL	46p	470/25	30p	4050 B	27p
8 mm GRN	46p			40828	23 p
3 mm CLIP	4 p	RADIAL		40938	27p
5 mm CLIP	4 p	4.7/100	90	40106 B	48p
8 mm CLIP	$7{ }^{\text {P }}$	10/16	$7 p$		
		100/16	11p	LS TL.	
OPTO		100/63	20 p	LS00	23p
MOC 3020	99p	470/35	32p	LS42	47p
				LS47	69 p
LINEAR		AESISTO			


linear		RESISTORS		
CA3130E	89p	\%/wan 5\%	ACCESSORIES	
CA3140E	500	$E 12$ series	VHS cleaner	
ICM7555	85p	10R-1 meg	15w Soldering Iron	¢3.95
LF351	600	each 2p	10 m Solder reel	35p
LF353	87p	100 mixed	Single mains rubber	
NE5534	97p	£1.60	trailing socket	1.9
UA741	26p	1000 mixed		
UA747	68p	¢11.00	CONNECTORS	
				38p
C108C	-	Por	HD Jack ple Bik	4p
BC108C	190	$470 / 12 / 4 \mathrm{~K}$	XLR line male mel	£1.35
${ }_{\text {BC1 }}^{\text {BC547/B }}$	110	10K/22k	$\times 1 \mathrm{P}$ line fem. met	E1.55
BC548C	12p	$47 \mathrm{~K} / 100 \mathrm{~K}$	8 pin Dill.C.	8 p
TIP127	85p	220K/470K		110

Please add $£ 1.00$ carriage on orders under $£ 50$ and $£ 1.50$ on all orders over $£ 50$

## ELECTRONICS TECHNICIAN FULL-TIME TRAINING

(full time courses approved by the business \& technician education council

## BTEC National Diploma (OND)

2 YEAR ELECTRONIC \& COMMUNICATIONS ENGINEERING
(Etectronics, Computing, Teievision, Video, Testing a Favil Oignossis) 1 YEAR
BTEC National Certificate (ONC) INFORMATION TECHNOLOGY

ELECTRONIC EQUIPMENT SERVICING (Electronics, Television, video Cassente Recorders, CCTV, Testing 8 Fault Disgnosis)

## SOFTWARE ENGINEERING

COMPUTING TECHNOLOGY
(Electoonics, Connuting Sotiwaie/Hadruare, Microelectronic Tesing Methoos)
10 MONTHS
BTEC Hïgher National Certificate (HNC) COMPUTING TECHNOLOGY \& ROBOTICS

THESE COURSES INCLUDE A HIGH PERCENTAGE OF COLLEGE BASED PRACTICAL WORK TO ENHANCE FUTURE EMPLOYMENT PROSPECTS NO ADOITIONAL FEES FOR OVERSEAS STUDENTS SHORTENED COURSES OF FROM 3 TO 6 MONTHS CAN BE ARRANGED FOR APPIICANTS WITH PREVIOUS ELECTRONICS KNOWIEDGE
O.N.C. 21 st September 1987 FULL PROSPECTUS FROM

[^2]

NATIONAL COMPONENT
CLUB
an our packs are brame new, no manutacturers
rejects tauity o unmarked components if you are anything less than deflighteed whty your rorder
please send it back for a tull money refund

## ALL PACKS ONLY £1EACH

- FkI 300 ASSORTED RESISTORS Values from 1 -Pk2 50 WIRE WOUND RESISTORS All high wattage lots of difterent values multigang. BRESETS Sider. ASSORTED CAPACITORS All ditteren ysev values up to 4700ut, voltages to LARGE ELECTROLYTICS Values like 25.000uf Electrolyic capacito new and tully marke the IN4148 rectifiers from the iN400 18 WAY IC SOCKETS Low profile
Pk10 1 PROJECT BOX $153 \mathrm{~mm} \times 83 \mathrm{~mm} \times 48 \mathrm{~mm}$ complete with lid and screws multiplexed with d VV 105db SIREN 120 m ASSORTED SWITCHES micro-switches. MICRO
-Pk 15 MYSTERY PACK Our best selling pack lastort. able ties. bolts, grommets, sleeving $P C B$

Pk17 5 FUSE HOLDERS 20 mm new style
-Pk18 15 PP3 BATTERY CLIPS With 100 mm red and black leads. order to:

DEPT. EE WOODSIDE. DOWSETT LANE All prices include VAT at $15 \%$

## INDEX TO ADVERTISERS

AUDIOKITS ........................................... 537
BARRIE ELECTRONICS ........................... 537
BI-PAK .............................................. 576
B.K. ELECTRONICS ........................ Cover IIt

BRYANT ACOUSTIX .............................. 575
BULL, J. \& N. .................................. Cover II
CIRKIT DISTRIBUTION ........................... 575
COLES-HARDING
574
COMMOTION ..
537
ENCORE ENCLOSURES ............................ 551
GREENWELD ELECTRONICS ................... 557
I.C.S. ................................................... 575

JAYTEE ELECTRONIC SERVICES............. 522
LONDON ELECTRONICS COLLEGE ......... 575
MAGENTA ELECTRONICS ...................... 524
MAPLIN ELECTRIONIC SUPPLIES .... Cover IV
MARCO TRADING ................................ 562
MAURITRON ........................................ 574
M.J.R. WHOLESALE ................................. 575

NATHONAL COMPONENT CLUB .............. 576
OMEGA ELECTRONICS ............................ 557
OMNI ELECTRONICS.............................. 537
PHONOSONICS ..................................... 567
RADIO COMPONENT SPECIALISTS ........ 576
RISCOMP............................................... 565
STRACHAN ELECTRONICS ..................... 574
TANDY ................................................ 526
T.K. ELECTRONICS.................................. 523

XEN-ELECTRONICS ................................. 522
ZENITH ELECTRONICS ........................... 55



Published on approximately the third Friday of each month by Wimborne Publishing Lid., 6 Chureh Sireet. Wimbornc. Dorsey BH2I IJH. Printed in England by Benham \& Co. Limited. Agency EVERYIDAY ELECTRONIC $S$ is sold subject to the following conditions out or otherwise disposed of by way of Trade at more than the recommended selling price shown on the cover, and that it shall not be ient iesolt having been given. be lent, resold. hired mutilated condition or in any unauthorised cover hy way of Trade or affixed to or as part of any publication or advenising. literary or pietorial matter whatsoever.

# DGITAI LCD THFRMOMFIFRS 



## Dual Scale Thermometer

A neat digital thermometer with internal and external sensors displaying ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$. The external sensor is a waterproof probe (max. length 3 m ). Temperature range $-5^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ (internal), $-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (external). Includes a 12 hour clock.
Order Code FD25C Price $£ 9.95$

## Pocket Thermometer

A well made temperature meter displaying
${ }^{\circ} \mathrm{C}$ and a 12 hour clock. Temperature range $-5^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ (internal), $-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ using external probe (max. length 900 mm ). High and low temperatures can be set and an alarm sounds when these are reached. A set/lock switch prevents accidental resetting.
Order Code FD26D Price £14.95


Temperature Module
Versatile thermometer module displays in ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$, includes a 12 hour clock and serial data output. Temperature range $-5^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ (internal), $-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ with external probe. Overall size $68 \times 35 \times 23 \mathrm{~mm}$ deep. Probe (max. length 3 m ) and bezel also available.
Module Order Code FE33L Price £6.95
Probe Order Code FE34M Price £2.50
Bezel Order Code FE35Q Price 15p
All prices include VAT. Please add 50p fowards postage. Prices firm until 6th November 1987. Subject to availability. If order bolow $£ 5.00$, please add 50 p handling.

## 1/101O ELECTRONIC SUPPLIES LTD.

Mall Order: P.O. Box 3, Rayleigh, Essex SS6 8LR. Tel: Southend (0702) Sales: 554161, Enquiries: 552911; Trade sales: 554171, Trade enquiries: 552961.

## Shops

Birmingham: Sutton New Road, Erdington, Birmingham. Telephone: 0213848411
London: 159-161 King Street, Hammersmith W6. Telephone: 017480926.
Manchester: 8 Oxford Road. Telephone: 0612360281.
Southampton: 46-48 Bevois Valley Road. Telephone: 0703225831.
Southend-on-Sea: 282-284 London Road, Westcliff-on-Sea, Essex. Tel: 0702554000 All shops except Manchesfer and Birmingham closed all day Monday.


Pick up a copy of our 1987 catalogue from any branch of W.H. Smith for just $£ 1.50$. Or to receive your copy by post just send $£ 1.50+40$ p $\mathrm{p} \& \mathrm{p}$ to Mail Order address. If you live outside the
U.K. please send $£ 2.50$ or 11 International Reply Coupons.



[^0]:    - 513 amp ring main junction box

    513 amp ring main spur boxe

    - 4in flex line s witches with
    -280 watt brass cased elements
    2 mains transformers with 6V 1A secondaries
    $11-2$ mains transformers with $12 \mathrm{~V} / 2 \mathrm{~A}$ secondaries
    $11-1$ extension speaker cabinet for $6 \% /{ }^{2}$ speaker
    $12-5$ octal bases for relays or valves
    $13-12$ glass reed switches
    $14-40 \mathrm{CP} 70$ phe
    $14-4$ OCP 70 photo transistors
    $16-4$ tape heads, 2 record, 2 eras
    $16-4$ tape heads, 2 record. 2 erase
    $17-1$ ultrasonic transmitter and 1 ditto receiver
    18-215000 mfd computer grade electrolytics
    19- 2 light dependent resistors
    $20-5$ different micro $s$ witches
    $20-5$ different micro 5 witches
    $21-2$ mains interference suppressors
    $22-225$ watt crossover units 2 way
    $23-140$ watt 3 way crossover unit
    - 16 digit counter mains voltage

    30-2 Nicad battery chargers
    $31-1$ key switch with key
    $32-2$ humidity switches
    $34-96 \times 1$ metre lengths
    -2 air spacted 2 gang colour coded connecting wires
    -2 air spaced 2 gang tuning condensors
    38- 10 compression trimmers 4 mains SPST
    43-5 Rocker Switches 10 amp SPDT Centre Off
    44-4 Rocker Switches 10 amp DPDT
    45-124 hour time switch mains operated (s.h.)

    - 16 hour clock times witch
    $8-26 \mathrm{~V}$ operated reed switch relays
    $50-2 \times 12 \mathrm{~V}$ DC or $24 \mathrm{~V} A C, 4 \mathrm{CO}$ relays
    $51 \times 12 \mathrm{~V} 2 \mathrm{C} 0$ very sensitive relay
    $52-112 \mathrm{~V} 4 \mathrm{C}$ relay
    - 1 locking mechanis $m$ with 2 keys

    Miniature Uniselector with circuit for electric jigsaw
    5 Dolls' House switches
    -5 ferrite rods $4^{*} \times 5 / 16^{\prime \prime}$ diameter aerials

    - 4 ferrite slab aerials with L \& $M$ wave coils
    - 4200 ohm earpieces
    -10 aullard thyristor trigger module
    5 different themostats, maing
    Magnetic brake - 5 tops mainly bi metal
    Magneric brare 3 level switch instantly
    -225 watt pots 8 ohm
    -225 watt pots 1000 ohm
    43 watt wire pots - 18, 33,50 and 100 ohm
    -1 time reminder adjustable 1.60 hm
    $78-5.5 \mathrm{amp}$ stud rectifiers 400 V
    1 mains shaded pole motor $1 / 4$ " stack - $1 / 4$ shaft
    $7-23^{\prime \prime}$ plastic fan blades fit $\%$ " sha
    - Mains motor suitable for above blades

    89-1 mains motor with gearbox 1 rev per 24 hours
    $91-2$ mains motors with gearbox 16 rpm
    93-4 11 pin moulded bases for relays
    $94-5 \mathrm{B7G}$ valve bases
    $95-4$ skirted B9A valve bases
    $96-1$ thermostar for
    $96-1$ thermostar for fridge
    $98-1$ motorised
    $98-1$ motorised stud switch (s .h.)
    $101-121 / 2$ hours delay switch
    103-16v mains power supply
    104-1 $14 / 2 \mathrm{~V}$ mains power supply unit
    107-15 speaker size radio cabinet with handle
    $-10 \%$ " spindle type volume controls
    -10 slider type volume controls
    14-1 heating pad 200 watts mains

    - 1 Wall mounting thermostat 24 V

    1 Teak effect extension 5 speaker cabine
    
    -2 metrs twin screened flex white p.v.c. outer
    beam switch etc
    $188-1$ plastic box, sloping metal front. $16 \times 95 \mathrm{~mm}$, average depth 45 mm

    - 1 car door speaker Ivery flat $161 / 2^{\prime \prime} 15 \mathrm{ohm}$ made for Radiomobile
    $243-2$ speakers' $6^{\prime \prime} \times 4^{\prime \prime} 15$ ohm 5 watt made for Radiomobile 2 mains transformer 9V $1 / 2$ A secondary split primary so OK also for 115 V
    267-1 mains transformers 15 V 1 A secondary p.c.b. mounting 0-40 double pole leaf switches

    17 ff 660 V 50 hz metal cased condenser
    $-22 \%$ in 60 ohm loudspeakers
    $-22 \%$ in 8 ohm loudspeakers
    1 mains operated relay with 2 sets c/o contacts 2 packers resin filler/sealer with cures
    35A round 3 pin plugs will fit item 193
    pegmend fo.d. displays
    $470-4 \mathrm{pc}$ boards for stripping, lots of valuable parts
    $480-13 \mathrm{~A}$ double pole magnetic trip, saves repairing 480-1 108 double pole magnetic trip, saves repairing fuses 504-1 Audax PM 8" speaker 15 ohm 5 watt ratin $515-10048 \mathrm{~A} 11 /{ }^{\prime \prime}$ cheesehead plated screws and 100 4BA nut 541 - 1 pair stereo tape head as in cassette recorder/players
    $546-1$ bridge rectifier 600 V international rectifier ref $3 S B 100$ $546-1$ bridge rectifier 600 V international rectifier ref 3 SB 100
    $548-2$ battery operated relays $(3-6 \mathrm{v})$ each with $5 A$ c/o contacts 2 pairs

[^1]:    Please read the RULES then write your advertisement hereone word to each box. Add your name, address and/or phone no. Please publish the following small ad. FREE in the next available issue. I am not a dealer in electronics or associated equipment. I have read the rules. I enclose a cut-out valid date corner.

    ## Signature .............................................Date

    COUPON VALID FOR POSTING BEFORE 16 OCT., 1987
    (One month later for overseas readers.)
    SEND TO: EE MARKET PLACE, EVERYDAY ELECTRONICS, 6 CHURCH STREET, WIMBORNE, DORSET BH2 11 JH .

[^2]:    LONDON ELECTRONICS COLLEGE (Dept ES) 20 PENYWERN ROAD, EARLS COURT, LONDON SW5 9SU. Tel: 01-3738721.

