zy=RYPay

Eleatronichanamue/Dim Mulimeter: ParsunalStereo Amplifer Bar Oremberating Arm Bilret firt meins controller

 Special Feature, Using a Multimeter

The Magazine for Electro ic\& Computer Projacts

£1 BAKERS DOZEN PARCELS

Price per parcel is $£ 1.00$, but if you order 12 you get

 one extra free.All the parcels listed below are brand new components. Unless marked s.h.

```
513 amp ring main junction boxes
    513 amp ring main spur box
    3 flush electrical switches
    280 watt brass cased elements
    2 mains transformers with 6V 1A secondarie
    2 mains transformers with 12V A secondaries
    1 extension speaker cabinet for 6\frac{1}{2}" speaker
    5octal bases for relays or valves
    12 glass reed switches
    4 OCP 70 photo transistors
    4 tape heads, 2 record, 2 erase
    ultra sonic transmitters and 1 ditto receiver
    2 15000 mfd computer grade electrollics
    5 different micro switches
    2 mains interference suppressors
    225 watt crossover units 2 way
    140 watt 3 way crossover unit
    16 digit counter mains voltage
    2 Nicad battery chargers
    1 key switch with key
    2 humidity switches
    2 aerosol cans of ICI Dry Lubricant
    2 air spaced 2 ghs colourcoded connecting wires
    2 solid diaelectric 2 gang tuning conde
    2 solid diaelectric 2 gang tuning condens
    6 Rocker Switches }10\mathrm{ amp mains SPST
    5 Rocker Switches }10\textrm{amp}\mathrm{ SPDT Centre Off
    4 Rocker Switches }10\textrm{amp}\mathrm{ DPDT
    124 hour time switch mains operated (s.h.)
    16 hour clock timeswitch
    26V operated reed switch relays
    10 neon valves - make good night lights
    2\times12V DC or 24V AC,4 CO relay
    1 12V 4C relay
    12V 4C relay
    2 mains operated relays 3\times8 amp changeovers
    locking mechanism with 2 keys
    Miniature Uniselector with circuit for electric jigsaw
    5 ferrite rods 4" }\times5/1\mp@subsup{6}{}{\prime\prime}\mathrm{ diameter aerials
    4 ferrite slab aerials with L & M wave coils
    4200 ohm earpieces
    1 Mullard thyristor trigger modul
    10 assorted knobs & spindles
    5 different thermostats, mainly bi metal
```

 Magnetic brake - stops rotation instantly
 225 watt pots 8 ohm
 225 watt pots 1000 ohm
 4 wire wound pots - 18, 33, 50 and 100 ohm
 43 watt wire wound pots 50 ohm
 1 time reminder adjustable \(1-60 \mathrm{mins}\)
 5.5 amp stud rectifiers 400 V
 1 mains shaded pole motor \(\frac{3}{\prime \prime}^{\prime \prime}\) stack \(-\frac{1}{4}\) shaft
 $5^{\circ} 5^{\circ}$ ali fan blades fit $1^{\prime \prime}$ shaft
$23^{\prime \prime}$ plastic fan blades fit +" sh
$23^{\prime \prime}$ plastic fan blades fit $\}^{\prime \prime}$ shaft
1 mains motor with gear box 1 rev per 24 hours
2 mains motors with gear box 16 rpm
411 pin moulded bases for relays
5 B7G valve bases
4 skirted B9A valve bases
1 thermostat for fridge
1 motorised stud switch (s.h.)
16 V mains delay switch
$14 \frac{1}{\mathrm{~V}}$ mains power supply unit
15 pin flex plug and panel sock
$15^{\prime \prime}$ speaker size radio cabinet with handie
$10 \frac{1 "}{\text { " }}$ spindle type volume controls
10 slider type volume controls
1 heating pad 200 watts mains
1 1W amplifier Mullard 1172
Wall mounting thermostat 24 V
Teak effect extension $5^{\prime \prime}$ speaker cabinet
p.c.b. with 2 amp full wave and 17 other recs
10 mtrs twin screened flex white p.v.c. out
2 beam switch etc
3 varicap push burton tuners with knobs
1 plastic box, sloping metal front, $16 \times 95 \mathrm{~mm}$, average
depth 45 mm
1 car door speaker (very flat) $6 \frac{1}{2}$ " 15 ohm made for
Radiomobile
2 speakers' $6^{\prime \prime} \times 4^{\prime \prime} 15$ ohm 5 watt made for
Radiomobile
Radiomobile

1 mains transformers 15 V 1 A secondary p.c.b.
mounting
26 V 0.6 V mains transformer 3 A p.c.b. mounting
-40 double pole leaf switches
17 uf 660 V 50 hz metal cased condenser
$22 \frac{\mathrm{in} .}{} 80 \mathrm{ohm}$ loudspeakers
$22 \frac{\mathrm{in} .}{} 8 \mathrm{hm}$ loudspeakers
1 mains operated relay with 2 sets c/o contacts
2 packets resin filler/sealer with cures
3
$5 A$
35 A round 3 pin plugs will fit item 193
47 segment.e.d. displays
$15^{\prime \prime} 40 \mathrm{hm}$ speaker with buite in valuable parts
1 3A double pole magnetic trip, saves repairing fuses
4 1000uf 25 V axial electrolytic capacitors
TELEPHONE BITS
Master soc
B.T. plug.
Extension
Extension socket
Dual adaptors (2 from one socke1)
Cord terminating with B.T. plug $\mathbf{3}$ metres,
Kit for converting old entry terminal box to new B.T. master socket
\&1
complete with 4 core cable, cable clips and 2 BT extension
sockets.
100 mtrs
00 mtrs 4 core selephone cable

COMPACT FLOPPY DISC DRIVE EME-101 The EME-101 drives a $3^{\prime \prime}$ disc of the new standard which despite its small size provides a capacity of 500 k per disc, which is equivalent to the $3 \frac{1}{2}$ "and $5 \frac{1}{4}$ " discs. We supply the Operators
Manual and ather information showing how to use this with computers: BBC Spectrum Amstrad how to use this with popular computers: BBC, Spectrum, Amstrad etc. All at a special snip price
of $£ 27.50$ including post and VAT. Data available separately f2 of $\mathbf{2 7 . 5 0}$ including post and VAT. Data available separately f 2 ,
refundable if you purchase the drive.

EVERLASTING BATTERIES!
Well n not quite, but if you don't switch it on, the lithium hatrery has an almost indefinite
shall sheff ite, which makes it suntable for emergency, standby \& similar applitations, also fo
quart clocks and instuments that diaw only microscooic curenis. The linhium bavery
 we have is in and a sout as ury ant inick
these plug into Dil socket our ref 80553 .

3 POLE MODEL MOTOR

Will operate fiom as low as 1.5 V and speed will increase steadiy as the voliage is increased, at gV however a goverroo takes over and the speas remains constant - and
ideal motor for models. Sizze aprox $28 \mathrm{~mm} \times 40 \mathrm{~mm}$ easily evee sible and with ideal motor tor modelis. Size approx $28 \mathrm{~mm} \times 40 \mathrm{~mm}$ easily reve sible and with good
fength soindle 60 peach our ref 8 M 30
CASSETTE STEREO TAPE HEADS With mounting brackets an
erase Ef pair ref B0541.

OPTO INTERRUPTER

Consists of a \mathbb{R} emitter mounted close to light dependent resistor whien light or \mathbb{R} is
internupted the change on interrupted the change of resistance can be made to switch or operate a relay - usetu

VENNER TIME SWITCH Mains operated with 20 amp switch, one
on and one off per 24 hrs . repeats daily
automatically correcting for the automatically correcting for the expensive time switch but you can have it for only $£ 2.95$ without case, metal case - £2.95, adaptor kit to convert this into a normai 24 hr , time switch but with the added advantage of up to 12 on/ofts per
24 hrs . This makes an ideal controller for 24 hrs . This makes an ideal controller for
the immersion heater. Price of adaptor kit Ex-Eleetricity Poard.
Guaranteed 12 months is $£ 2.30$.
12 volt MOTORS BY SMITHS
Made for use in cars, etc. these a
Made for use in cars, elc. these are
very powerful and easily reversible. Size
$3 \frac{1}{2}$ " long by 3^{2} dia. They have a 3ood length of dia. They have a
got spindle -
$1 / 10 \mathrm{hp} 73.45^{\text {a }}$
$1 / 10 \mathrm{hp}$ E 3.455^{4}
$1 / 8 \mathrm{hp} £ 5.75$. $1 / 6 \mathrm{hp} £ 7.50$
SOUND TO LIGHT UNIT

Complete kit of parts for a three channel sound to light unit
controlling over 2000 watts of lighting. Use this it controlling over 2000 watts of lighting. Use this at home if you
wish but if is plenty rugged enough for disco work. The unit is housed in an attractive two tone metal case and has controls for each channel, and a master on/off. The audio input and output are
by
$\frac{1}{2}$ " sockets and three panel mounting fuse by $\frac{1}{2}$ " sockets and three panel mounting fuse holders provide
thyristor protection A four pin plug and socket facilitate ease of thyristor protection. A four pin plug and socket facilita
connecting lamps. Special price is 14.95 in kit form.

This Month's Snip

g" VDU OR MONITOR ideal to work with computer or video camera uses Philips black and white lube ref M24/306W. Which tube is implasion and X.fiay radiation protected. VDU is brand new and has a time base and EHT circuity. Requires only a 16V dc supply to set in going it's made up in a lacquered metal tramework but has open sides so should be cased fif you are handy with a drill and tite you could make a case out of two of our $6 \frac{1}{2}$ " speaket cabinets). The VDU comes complete with cricuit diagram and has been fine tested and has our six months guarantee. Otfered at a lot less than some firms are asking for the tube alone, only $f 16$ plus $\mathbf{f} 3$ post. We alse have some that faled the line test, again brand new but offered without guarantee at f 8 plus $£ 3$ post. We do a kit for the 16 V 2 A pse to operate this monitor price is $£ 3$ our ref $3 P 26$.

SLIDE SWITCHES

Sub minin
B0553.

LOW VOLTAGE RELAY

OMRON 3.5V coli, plug in dil sockerts, 5 a $/ 4$ contacts. Bland new othered at a silly prite 2

POLARISED RELAY

Dependingy upon its direction dc current as low 14 Ma makes this open circuit, so it could be used to protect delicate instruments or as 0 on earth leakage, or reverse voltage trip etc.
2 for $f 1$ ref $8[549$.

SLOTTED OPTO SWITCH

Intra red emitter and senser mounted in slotted noulding, so that the emitter beam when
broken makes a contactless switch, can be used in electionic igraition, speed sensing etc. broken makes a contactiess switch, can be used in electronic ignitition, speed sensing etc. etc. Price 2 for E 1 ret BO545.

24 hr TIME SWITCH

Beauttuly made with West German precision Just under 4" square with $15 \mathrm{mmp} \mathrm{c} / \mathrm{o}$ contects can be sel anywhere zound 24 h dial to the nearest 15 mins also with a overide
switch. Ret 8 P 6 but hurry we hav eoniy 300 Price f8 swich. Ret 8 b 6 but humry we hav eoniy 300 . Price $\mathrm{f8}$.

COMPUTERS

The Acorn "Electron" as used in many schools for games and ssious iobs. Works
into colour or Black and White TV Proper price was $£ 19{ }^{2}$. into colour or Black and White TV. Proper price was $£ 199$, our Price, tested and

 page very low prices.
at

TELEPHONE LEAD

3 mits long terminating one end with new $8 T$, flas putug and the other end with 4 correctly
coloured coded wies to fit to phone or appliance Replaces the lead on old phene making it

POWERFUL IONISER
 Generates approx. 10 times more IONS than the ETI and similar circcits. Will refresh Yout home, otice, shop, work room ett. Makes you feel better and work refresh your home, oticice, shop, work room atc. Makes you feel better and work harder - a complete mains operated kit, case inctuded. $£ 9.50+£ 2$ P\&P.

J \& N BULL ELECTRICAL Dept. E.E., 250 PORTLAND ROAD, HOVE, BRIGHTON, SUSSEX BN3 50T

MAIL ORDER TERMS: Cash, P.O. or cheque with order. Orders
under 民20 add $£$ I service charge. Monthly account orders accepted

NEW ITEMS

Some of the many described in E2 POUNDERS*

 $-125 a$ rotary switch, surface mountila
off
-128 kr .001 mff block condensor
-130 a rididg rectititer assembly on
$2 \mathrm{P} 124-128 \mathrm{kv} .001 \mathrm{mff}$ block condensor
$2 P 127-130 \mathrm{a}$ bridge rectifies assembly on heal sinks

10 m 10 conductor intercom cable
10 m 10 conductor intercom cable
12 kw element made for tangential Howers
1 Thermo couple stan less steel tinar tor
1 Thermo couple stainless steel tipper for measuring internal heal 1 Mans transtor mer $20 \mathrm{~V}-0-20 \mathrm{~V}$ la curriph mounting
1 rechargeable battery 0 sizz (4 AH) solder tag
1 mains speratied criar with 4×8 cioc contacts
10,000 uf 70 V d.c. smooothing capactior
7,800 uf 150 C dc . smoothng capactior
1.800 uf 150 C de. smoothing capactior

5 diff batrery operataded model metors
1 PSU chassis with all components for 24 V 2 A o.c. unwired
Meial box $14 \frac{1}{1} \times 14 \times 4$ with lid add $£ 2.00$ post
Motor staxt capactior 80 ut 250 y
Motor siar capachior bout 250 l

1 Mains transtormer giving 16, 17, 1£ \& 20V 60W
1 Oven themostat with temp cadibratard knob
1 g 500 ma cased with mains lead ard output lead
130
113 a plug acaptor fussed takes 3×13 a plugs

${ }_{2 P 164}$ - 3 Phone leads 3 mus long togs one end B.T. plug other end
£3 POUNDERS*

- 10 C voltage, doutbies or hialver for $12 /$ to 24 V 12 to 6 ov 24 to 12 V
-124 h fime switch Sangamo new codition
- $12 V 50 \mathrm{~mA}$ psu plugs in 13 a socket

1 Miins taranstormer 50 V 2 A with 6.3 pilol light winding, upright mounting,
fully shrounded
fully shrauted
1 Noise filter to

- 1 Noise filter to fit in mains lead of appliance up to 25a

- $136 \mathrm{~V}-0-36 \mathrm{~V}$ tapped $20 \mathrm{~V}-0-20 \mathrm{~V} 100 \mathrm{va}$
3^{*} Hlopopy disa for Amstrad etc.
7
7
Electicicians pliats

POUNDERS*
 - 1 Car Radio aerial

operatec, covitu operate slack ofted water tec.
-1 Uniselector 3 pola $25 \mathrm{~W}, 5 \mathrm{~V}$ coil stand
17 - 1 Uniselector 3 poial $25 \mathrm{~W}, 50 \mathrm{~V}$ cril standard size

19	-112 Vac mator will fit to pearbox 4P20
20	-1 Gear train giving speed reduction

5 POUNDERS*

-1 Transtormer upighte mounting 230/240V primary 2×100 la secondary

- 1 Transtormet upight mounting 230/240V primary 2×100
- 14 bank heating elementron each 2 kw ideal convector heftet

- $114^{\text {a }}$ blower, motor in middle

10 m Aude $\mathrm{co-ax}$ doulle screened 75 chm super low loss for TV
16^{-}Alarm beil 24 V de or oc

- 1 Current transtormel 14 V out with la dc input
-1 Vintage photo cell

1 Vnrage photo celi
1 Impedance malcthmo transtormer 0-4-5-8-160 ohm 100 add $\mathbf{f 1 5 0}$ post
$10-90$ a ammeter for mounting outsite control paniel
$10-100 \mathrm{a}$ ammeter tor mounting outside control panal

£7 POUNDERS*
PP1 - 1 Instant heat solder gun - mains with tenewable tip and joh light
£8 POUNDERS*

```
8%2 secondeny 
```


$1 / 3$ ho motor 900 rpm capacitor nun
24 h time switch -2 on offs $16 \mathrm{a} \mathrm{c} / \mathrm{Q}$ contacs $3^{\prime \prime} \times 3^{\prime \prime} \times 1 \frac{1}{2}^{\text {n }}$
1 Stent sentinel invisible ray kit

£10 POUNDERS*

10 P 13	1 reversible motor with gearbox 104rp
10P14-1 100a time switch 1 on/oth per 24hr extra triggers $£ 1$ pair	
10P16 - 1 powertul air mover 2 small type blowers with motar in midd	
10P18-1 mains operated klaxon	
10P19 - 112 V alarm beil realy lowd, mains operated, in iron case +f 5 post	
10P21-1 super metai box size $19^{\prime \prime} \times 20^{\prime \prime} \times 7^{\prime \prime}$ deep lockable	
$10 \mathrm{P} 22-1$ sensitive volt meter relay	
10P23-1 fruit machine heart 3 frit wheels	
10P24 - 1 bip panel meter face size 43 $\times 2 \frac{1}{2000} \mathbf{2 0 4}$ movemem scaied 1 -	
10P29 - 112 V engine cooling fan	
$10 \mathrm{P} 30-1$ instrument psu on pcb has 4 outputs .12V/.5V 6A/12V . $5 \mathrm{~A} / 5 \mathrm{~V}$. 5 A	
10 P 31	17 day time switen 16a c/0 contacts

pounoens.

15P1 - 1 kt for 115 W hi fismp

1 time switch battery or mains opeated - 16 a c/0 contacts, 7 day
${ }_{2525} \mathbf{2 5}$ POUNDERS*
11500 PSI hyctraulic pump 24 V dc motor, made for operatimg aicratt under-
carriage etc.
LIGHT CHASER KIT motor driven switch bank with connection diagram, used in connection with 4 sets of xmas lights makes a very eye catching display for
home, shop or disco, only $\mathbf{f} 5$ ref 5 P56.

VOL 16 No. 9 SEPTEMBER '87

The Magazine for Electronic \& Computer Projects

Projects

NOISE GATE by lan Coughlan
Amplify the sound not the noise
PERSONAL STEREO AMPLIFIER by Owen Bishop
Mobile mini amplifier for your personal player

ELECTRONIC ANALOGUE/DIGITAL MULTIMETER
 by Mark Stuart

Easy to build test meter for the workbench
BURST FIRE MAINS CONTROLLER by Andy Flind
Interference-free control of soldering irons, electric blankets and flashing lights

SIMPLE NAND GATE AND FLIP-FLOP 504
An "Exploring Electronics" project
CAR OVERHEATING ALARM by T. R. de Vaux-Balbirnie 508
You won't get overheated if you listen to this alarm
LIGHT PEN
Low-cost project for Beeb Micro owners

$\$$ Sorics

ROBOT ROUNDUP by Nigel Clark 479
Investigating the world of robotics
ON SPEC by Mike Tooley BA
486
Readers Sinclair Spectrum page
AMATEUR RADIO by Tony Smith 488
New frequency allocations; Amateur Radio for the Handicapped
ACTUALLY DOING IT by R. A. Penfold
Making your own front panels
EXPLORING ELECTRONICS by Owen Bishop
Part Fifteen: Investigating logic circuits
BBC MICRO by R. A. \& J. W. Penfold
Regular spot for Beeb fanatics

Fenturps

EDITORIAL
USING A MULTIMETER by Mark Stuart 480
What to look for, its limitations and how to use it
SHOPTALK by David Barrington
Product news and component buying
READERS' DISCOUNT SCHEME 495
NEWS 498
What's happening in the world of electronics
READERS' LETTERS Your news and views
MARKET PLACE Free readers' buy and sell spot 506
FOR YOUR ENTERTAINMENT by Barry Fox 507
Time warp; Speak Easy; Bi-Grounding
BOOK SERVICE Our own service to readers of $E E$ 514
PRINTED CIRCUIT BOARD SERVICE 516
ADVERTISERS INDEX 520

Omega Electronics

252A HIGH STREET, HARLESDEN. LONDON NW10 4 TD.
TEL: 01-965 5748 MAIL ORDER \& RETAIL SHOP TELEX: 265871 MONREF G Quoting 72: MAG31197

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{4000 cmos} \& \(40688{ }^{\text {a }}\) \& 0.13 \& 1995 \& 0.40 \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{IC SOCKETS}} \\
\hline 40008 P \& 0.13 \& 4065118P \& 0.13 \& 7908 \& 0.40 \& \& 0.05 \\
\hline 40018 P \& 0.13 \& 40708 P \& 0.18 \& 7912 \& 0.40 \& 14 PIN \& 0.06 \\
\hline 40028 P \& 0.13 \& 40718 P \& 0.13 \& 7915 \& 0.40 \& 189 Na \& 0.08 \\
\hline \(40068{ }^{\text {P }}\) \& 0.28 \& 40728 P \& 0.13 \& 7918 \& 0.40 \& \(18 \mathrm{PR} \times\) \& 0.12 \\
\hline 40078 P \& 0.13 \& 40738 P \& 0.13 \& 7924 \& 0.40 \& \({ }^{20 p / 1 N}\) \& 0.16 \\
\hline 40088 P \& 0.28 \& 407588 \& 0.13 \& 78105 \& 0.28 \& \({ }^{22 P 1 / N}\) \& 0.17 \\
\hline 40098 P \& 0.13 \& \(40768{ }^{4}\) \& 0.37 \& 78108 \& 0.28 \& \({ }^{24 P 1 / \mathrm{N}}\) \& 0.19 \\
\hline 40108P \& 0.16 \& 40778P \& 0.21 \& 78112 \& 0.28 \& \({ }^{28 P \mathrm{PN}}\) \& 0.22 \\
\hline \(401118 P^{4}\)
401288 \& 0.13
0.13 \& \({ }_{\text {407818P }}\) \& 0.13
0.13 \& 7815
78124 \& \begin{tabular}{l}
0.28 \\
0.28 \\
\hline 18
\end{tabular} \& 40 PN \& 0.25 \\
\hline \({ }_{40138 \mathrm{P}}\) \& 0.19 \& \({ }_{40828 P}\) \& 0.13 \& 7905 \& -0.40 \& bricie rectifis \& \\
\hline 40148 P \& 0.28 \& 48858 P \& 0.24 \& 19112 \& -0.45 \& woos \& 0.23 \\
\hline 4015 BP \& 0.28 \& 408988 \& 1.00 \& 7915 \& 0.48 \& wo1 \& 0.26 \\
\hline \(40168{ }^{5}\) \& 0.17 \& 40938P \& 0.16 \& [M317k \& 255 \& woz \& 0.32 \\
\hline 40178P \& 0.27 \& 40988P \& 0.49 \& [M317 \& 1.50 \& W04 \& 0.36 \\
\hline 401888 P
40198 P \& 0.27 \& \({ }^{409568 P}\) \& 0.75
0.65
0.6 \& \multicolumn{2}{|c|}{\multirow[t]{2}{*}{zemens}} \& W06 \& \({ }_{0}^{0.45}\) \\
\hline \({ }^{402088}\) \& 0.29 \& \({ }^{409888}\) \& 0.60 \& \& \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{transistors}} \\
\hline 40218 P \& 0.24 \& \({ }^{409988}\) \& 0.3 \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
400MW BZYY8 RANGE \\
2V7 to \(56 \mathrm{VV} \quad 0.5\)
\end{tabular}}} \& \& \\
\hline \({ }_{\text {402238 }}^{40288}\) \& 0.29 \& \({ }^{4550288}\) \& 0.45 \& \& \& \multicolumn{2}{|l|}{BC107 0.11} \\
\hline \({ }^{402338 P}\) \& 0.13
0.23 \& \({ }_{4}^{4503888}\) \& 0.40
0.70 \& \multicolumn{2}{|l|}{} \& \({ }_{\text {BC108 }}^{\text {BC109 }}\) \& \({ }_{0}^{0.111}\) \\
\hline 402588 \& 0.13 \& 451068 \& \({ }_{0} .30\) \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{computer ic's}} \& \({ }_{81} 182\) \& 0.06 \\
\hline 40268P \& 0.72 \& 45118 BP \& 0.45 \& \& \& \multicolumn{2}{|l|}{\({ }^{\text {BC1 } 1821} \quad 0.06\)} \\
\hline \({ }^{402789}\) \& 0.16 \& \({ }^{45128 P}\) \& 0.34 \& \multicolumn{2}{|l|}{\(4118 \quad 0.75\)} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{88183

8C1831}}

\hline $40288{ }^{\circ}$ \& 0.24 \& 45148 P \& 0.61 \& 4184 \& 0.99 \& \&

\hline ${ }^{402989}$ \& ${ }_{0}^{0.29}$ \& ${ }^{45155 P}$ \& 0.61 \& \multicolumn{2}{|l|}{41256} \& \multicolumn{2}{|l|}{}

\hline 403088 \& 0.13 \& $45168{ }^{\text {a }}$ \& 0.34 \& \multicolumn{2}{|l|}{41464 3.90} \& \multicolumn{2}{|l|}{| C194 | 0.06 |
| :--- | :--- |
| C184, | 0.06 |
| 0.06 | |}

\hline ${ }_{4}^{4031858}$ \& 0.90
0.90 \& 45188P
45208 P \& 0.34 \& \multicolumn{2}{|l|}{${ }_{\text {SP0256AL2 }}$} \& \multicolumn{2}{|l|}{${ }^{\text {BC212 }}$}

\hline ${ }_{40388 \mathrm{P}}$ \& 0.70 \& ${ }^{45228 P}$ \& ${ }_{0.82}$ \& \multicolumn{2}{|l|}{${ }_{280 \mathrm{Acc}}^{28 \mathrm{Cl}} \quad 2.50$} \& \multicolumn{2}{|l|}{| BC2121 | 0.06 |
| :--- | :--- |
| 0.0213 | |
| 0.06 | |
| 0213 | |}

\hline 404088 \& 0.30 \& 45268P \& 0.34 \& \multicolumn{2}{|l|}{780 A DM $\quad 7.50$} \& \multicolumn{2}{|l|}{}

\hline 40418 P \& 0.50 \& 45288P \& 0.30 \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \& \multicolumn{2}{|l|}{}

\hline 402238
40388 \& 023 \& ${ }^{4535288}$ \& 0, 0.4 \& \& \& \multicolumn{2}{|l|}{c214L ${ }^{\text {c20 }}$}

\hline ${ }_{40448 P}$ \& ${ }_{0} .31$ \& ${ }_{453689}$ \& ${ }_{2} .25$ \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \& \multicolumn{2}{|l|}{${ }^{\text {B6237 }} 0$}

\hline 40458 P \& 0.80 \& ${ }^{453888}$ \& 0.39 \& \& \& \multicolumn{2}{|l|}{| C238 | 0.10 |
| :--- | :--- |
| 0.10 | |
| 629 | |}

\hline 404688 \& 0.47 \& ${ }^{453388}$ \& 0.36 \& \multicolumn{2}{|l|}{${ }_{\text {IR-10m }}^{\text {Resistons a }} 0$} \& \multicolumn{2}{|l|}{}

\hline ${ }_{4}^{4019988 P}$ \& -0.39 \& ${ }^{4543389}$ \& 0.39

0.31 \& \multicolumn{2}{|c|}{MIM PaESETS} \& \multicolumn{2}{|l|}{| BC238 | |
| :--- | :--- |
| BC546 | 0.15 |
| 0.15 | |
| 0.15 | |}

\hline 40508 P \& 0.16 \& ${ }_{45568 P}$ \& ${ }_{0} .40$ \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{H0R 0.10}} \& \multicolumn{2}{|l|}{}

\hline 40518 P \& 0.31 \& 45728P \& 0.20 \& \& \& \multicolumn{2}{|l|}{$\begin{array}{ll}\text { BC548 } \\ \text { BC549 } & 0.10 \\ 0\end{array}$}

\hline ${ }_{4}^{4055388}$ \& ${ }_{0}^{0.31}$ \& ${ }_{4}^{45888588}$ \& 0.34
0.41 \& \multicolumn{2}{|l|}{VERT 0.10} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{BC549
BC550}}

\hline ${ }^{405484 P}$ \& 0.52 \& \& \& \& \& \&

\hline 40558 P \& 0.50 \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{votrage regulatoas}} \& \multirow[t]{5}{*}{| 1 IN001 |
| :--- |
| IN4002 |
| 1 M4004 |
| ${ }^{1} \mathbf{N} 40007$ |
| IN4148 |} \& \multirow[t]{5}{*}{\[

$$
\begin{aligned}
& 0.03 \\
& 0.03 \\
& 0.04 \\
& 0.06 \\
& 0.06 \\
& 0.02
\end{aligned}
$$
\]} \& \multicolumn{2}{|l|}{}

\hline 40568P \& 0.55 \& \& \& \& \& \multicolumn{2}{|l|}{IN STOCK}

\hline ${ }_{4}^{406088}$ \& 0.51 \& 7812 \& ${ }^{0.35}$ \& \& \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{SPECIAL OFFER}}

\hline ${ }^{406568 P}$ \& 0.55
0.19 \& 7815
7818 \& 0.35
0.35 \& \& \& \&

\hline 40678 P \& 1.00 \& 7824 \& 0.35 \& \& \& 6VA 0-6V-0-6V \& 2.00

\hline \& \multicolumn{7}{|l|}{\multirow[t]{2}{*}{PLEASE PHONE FOR UNLISTED ITEMS AS WE STOCK OVER 3000 ITEMS. PLEASE ADD 75p P\&P + 15\% VAT. OVERSEAS NO VAT ADD $\mathbf{£ 2 . 0 0}$.}}

\hline VG1 \& \& \& \& \& \& \&

\hline
\end{tabular}

MULTIMETERS
 Cirkit Affordable

 -

DM105 ${ }^{-}$E21.50
A meter to suit all pockets, including the one that holds the walletl Full complement of ranges: 2V-1kV DC 200 V -750V AC. $2 \mathrm{~mA}-2 \mathrm{~A} D C$ current and 2 k - 2 M resistance range. Basic accuracy 0.5%

Accuracy

A comprehensive range of quality Multimeters at very competitive prices

DIGITAL

All models feature full ranges, $31 / 2$ digit 0.5 in LCD, low battery indication, auto zero and auto polarity, strong ABS casing. 10 Amp range (except DM105). overload protection. Prices from $£ 21.50$ to $£ 52.50$. Battery, spare fuse, test leads and manual included with each model.

ANALOGUE

A choice of four meters with prices ranging from $£ 5.50$ to $£ 21.00$. All models include battery, test leads and manual.

Please add 15% VAT to all prices and 70p for post and packing.

catalogue price £ 1.20 to
Cirkit Distribution Lid.
Park Lane, Broxbourne, Herts EN10 7NQ
Telephone (0992) 444111

TOTAL ENERGY DISCHARGE ELECTRONIC IGNITION

IS YOUR CAR AS GOOD AS IT COULD BE ?

* Is it EASY TO START in the cold and damp? Total Energy Discharge will give the most powerful spark and maintain full output even with a near flat battery.
\star is it ECONOMICAL or does it "go off" between services as the ignition perlormance deteriates? Total Energy Discharge gives much more output to lire lean tuel mixtures.
- Has it PEAK PERFORMANCE or is it llat at high and low revs. where ignition output is marginal?Tola! Energy Discharge gives a more powerful spark from idle to the engines maximum (even with 8 cylinders).
* Is the PERFORMANCE SMOOTH? The more poweriul spark of Total Energy Discharge eliminates the near "misfires" whilst an electronic filter smoothes out the effects of contact bounce etc.
\star Do the PLUGS AND POINTS always need changing to bring the engine back to its best? Total Energy Discharge eliminates contact arcing and erosion by removing the heavy electrical load. The timing stays "spot on" and the contact condition does not affect the periormance either. Larger plug gaps can be used, even wet or badly fouled plugs can be fired with this system.
\star TOTAL ENERGY DISCHARGE is a unique system and the most powerful on the market - 3.5 times the power of inductive syslems -3 times the energy and 3 times the duration of ordinary capacilive systems. Send for full technical details
- ALSO FEATURES

EASY FITTING, STANDARD/ELECTRONIC CHANGEOVER SWITCH, STATIC TMING LIGHTand DESIGNED IN RELABILITY (14 years experlence and a 3 year guarantee)

* In KIT FORM it provides a top performance system al less than hali the price of a comparable ready built unit. The kit includes: pre-drilled fibreglass PCB, pre-wound and vamished tenite translormer, high quality $2 \mu \mathrm{l}$ discharge capacitor, case, easy to tollow instructions, solder and everything you need to build and fit to your car. All you need is a soldering iron and a tew basic tools.
TOTAL ENERGY DISCHARGE KIT $£ 17.95\left\{\begin{array}{l}\text { Prices include VAT }\end{array}\right.$ ASSEMBLED READY TO FIT $£ 23.90$ Add 51.00 Ps P
ALSO AVAILABLE: Other Ignition systems and electronic car alarms Order now or send for further details:
ELECTRONIZE DESIGN
tel021 3085877
2 Hillside Road, Four Oaks, Sutton Coldfield B744DQ

ELECTRONIC
COMPONENTS

443D Millbrook Road, Southampton SO1 OHX. Tel. (0703) 772501/783740 All prices include VAT; just add 60p P\&P ($£ 2$ sale items)
Min Access order $£ 5$. Official
orders from schools etc. wel-
come - min invoice charge f 10 .
Our shop has enormous stock of compl
$9-5.30$ Mon-Sat. Come and see us!!!

1987 CATALOGUE

Out nowll Bigger and better than ever 80 pages packed with components and equipment, from humble resistors to high tech scopes! Bargain List. Order Forms and $£ 1.50$ Discount Vouchers all included for just $£ 1.00$ inc. post.

FNHRPRISE SIXTTYFOUR

Although we have now sold out of the complete computers and Z601 boards, we do have the following:
2657 As 2601 (see previous ads for details) complete, but probably not fully functional (customers returns). Supplied with demo cassette, 2 booklets, + comprehensive data \& cct £12.00 Z658 As above, but NICK or DAVE chip and ROM missing $£ 9.00$

LOGIC PROBE For TTL, CMOS etc. LED and sound indication Pulse enlargement capability allows pulse direction down to 25 nsec Max $f=20 \mathrm{MHz} 4-16 \mathrm{~V} . \mathrm{I} / \mathrm{P} \mathrm{Z}: 1 \mathrm{M} £ 9.99$

\star 15W 240Vac soldering iron \star High power desolder pump \star Large tube solder

NEW THIS MONTH

CREAM DISPENSER
2801 Coin operated machine for dispensing hand cream. Cabinet 620×365 $\times 200 \mathrm{~mm}$, wt 10 kg , contains coin mech, PCB, counter, pump mech consisting of high torque geared 6 V motor driving cam that pumps cream, and sensing components, all powered by internal 6V 2.6A rechargeable battery....... $£ 15+£ 5$ carr

SPEECH CHIP

2733 SPO256A + index chip + ULA chip as used in Currah micro-speech. Cct and info for using SPO256 with Spectrum ZX81, BBC VIC \& C64. No info on other 2 chips. All 3 for

TELETEXT + PANELS

Z622 Teletext Unit. Keyfax T100 manufactured for the US market, hence 120 V ac supply (but Tx can easily be changed for 240 V model). Chassis with Rx/decoder circuitry, Mullard VM6700 module, channel display, i / p \& o/p skts. Believed to be new $\&$ working, but no data. Size

Z620 68000 Panel. PCB 190×45 be lieved to be from ICL's 'One per Desk

AUTO DIALLER
Sloping front case $240 \times 145 \times 90 / 50$ contains 2 PCB's: One has 4 key-pads (total 54 switches) +14 digit LED display. $2 \times$ ULN2004, ULN2033 \& 4067; the other has 12 chips +4 power devices etc. Case contains speaker. 8 core cable 2 m long with plug. For use with PABX. $£ 9.00$ COIN OPERATED MECHANISM
Made by Coin Controls, this will accep various size coins by simple adjustment of 4 screws. Incorporates various security measures - magnet bent coin release etc. Microswitch rated 5A 240V. Front panel 115×64. Depth 130 mm . Cos £10.85........................ Our price £4.00
computer containing MC68008P8 18 MHz $16 / 8$ bit microprocessor, + 4 ROM's, all in skts; TMP5220CNL, 74HCT245, 138 LSO8, 38 etc.

2625 32k Memory Board. PCB 170 x 170 with $162 \mathrm{kx8} 6116$ static RAM's Also 3.6 V 100 mA memopack nicad, 13 other HC/LS devices, 96 W edge plug, 8 way DIL switch, R's, C's etc........ $£ 4.80$

MICROVISION
We have a quantity of these units in varying states. From labels attached to some of the PCB's it seems after assembly on the production line they did not function correctly. No attempt has been made to repair them, though - instead the following parts were removed:
a) RF Tuner
b) Vol control 8
c) ZN401E chip

Z666 2 PCB's in good condition +2 CRT's + comprehensive data (replaces Z555)....................................... £6.95 2556 PCB in good condition with CRT that has been removed, but maybe repairable. Conductive paint 115 ml bottle £3.45) will probably be needed to remake contacts £ 3.95 2558 CRT in as seen' condition possibly repairable $£ 2.00$ 2559 PCB in good condition without CRT £2.50 CRT ... $\mathbf{£ 2} \mathbf{5 0}$ 2560 Circuit diagram and notes: 7 pages
detailing tech. spec., description, cct opdetailing tech. spec., description, cct operation, fault diagnosis \& repair, aid to fauti-finding chart, picture set up procedure, PCB layout, info on the various possibilities. £2.00 RF Tuner $£ 6.95$; ZN401 chip £9.95; Vol control + switch with knob $£ 1.00$

JUST ARRIVED!!

A major electronic distributors discontinued lines, all being sold off at LESS THAN $\frac{1}{2}$ PRICEll-Boxes, cases, connectors, LED's switches, DIP boards, cable ties etc. All goods detailed in a 16 page supplement available now FREE.

SPEAKERS

2578 Sub-min speaker $30 \times 30 \times 3 \mathrm{~mm}$ thick by Fuji. 16R 0.4W. 60p ea; 10 £3.70; $25 £ 7 ; 100 £ 22 ; 1000 £ 180$. $257570 \times 45 \mathrm{~mm}$ 45R 0.5W 55p ea; 10 £3.30; $25 £ 6 ; 100 £ 20$ SOLDER
500 g reels resin cored. 18 g
.$£ 5.95$
500 g reels resin cored 22 g
$£ 7.95$

SUMMER SALE

Up to 66% off our already low, low prices!! Dozens of half price items!!
But stocks are limited, so it's first come, first served!

ORDER NOW to be sure of your share!!
Our SALE list and Bargain Lists are FREE!!
Our 80 page Catalogue costs just $£ 1$, with vouchers worth $£ 1.50$

ALL BELOW ARE SALE ITEMS: MIN ORDER VALUE £10 + £2 POST

$\frac{1}{2}$ PRICE PACKS

K547 Zener diodes $£ 4.50 £ 2.25$

 K544 Mullard polyesters. K556 FuseholdersK557 Terminal strips Z525 Vero officuts $£ 4.75 £ 2.35$ £2.00£1.00 $£ 2.40 £ 1.20$ £3.80 £1.90

25\% OFF PACKS

K548 Tantalum caps £6.50 £4.85

 K549 Variable caps. K546 Mica/ps/cer caps K554 Thermistors. K555 Fuses K538 Diodes. K541 PCB Panels. K542 Reed Relays K530 Polyesters K518 Disc Ceramics K 518 Disc CeramicsK 503 Wirewound Resisto K 503 Wirew
K 505 Pots W4700 Push button bank K526 Heatsinks K527 Hardware... K534 Sleeve Pack . $K 53674$ Series Pack 5337 I.C. Pack. $K 538$ Diode Pack K539 L.e.d. Pack K540 Resistor Pack 5335 Spring Pack 524 Opto Pack K525 Preset Pack K528 Electrolytic Pack

K532 Relays.

K517 Transistors …........ $£ 6.00 £ 4.50$ K523 Resistors £2.75£2.05 K520 Switches $£ 2.50 £ 1.85$

'NEWBRAIN' PANELS

2494 Motherboard microprocessor panel $265 \times 155 \mathrm{~mm}$. Complete PCB for computer. Z80, char EPROM, etc. 68 chips altogether + other associated components, plugs, skts, etc. $£ 4.00$ 2495 RAM panel. PCB $230 \times 78 \mathrm{~mm}$ with $14 \times$ MM5 290-2 (4 116) (2 missing) giving 28 k of memory. Also 8 LS chips. These panels have not been soldered, so chips can easily be removed if required. £3.75
2679 Keyboard. 62 keys on ally chassis

'NEWBRAIN' PSU

BRAND NEW Stabilized Supply in heavy duty ABS case with rubber feet. Input $220 / 240 \mathrm{~V}$ ac to heavy duty transformer via suppressor filter. Regulated DC outputs: $6.5 \mathrm{~V} @ 1.2 \mathrm{~A}$; $13.5 \mathrm{~V} @ 0.3 \mathrm{~A}_{;}-12 \mathrm{~V}$ $@ 0.05 \mathrm{~A}$. All components readily accessible for mods etc. Chunky heatsink has 2 \times TIP31A. Mains lead (fitted with 2 pin continental plug) is 2 m long. 4 core output lead 1.5 m long fitted with 6 pole skt on 0.1^{*} pitch. Overall size $165 \times 75 \times$ 72 mm .
£4.75 ea 10 for $£ \mathbf{3 2}$

The Archer Z8O \$BC

The SDS ARCHER - The 280 based single board computer chosen by professionals and OEM users. * Top quality board with 4 parallel and 2 serial ports. counter-timers, power-fail interrupt, watchdog timer EPROM \& battery backed RAM

* OPTIONS: on board power supply. smart case. ROMable BASIC, Debug Monitor, wide range of I/O \& memory extension cards.

The Bowman 68000 sBC

The SDS BOWMAN - The 68000 based single board computer for advanced high speed applications.

* Extended double Eurocard with 2 parallel \& 2 serial ports, battery backed CMOS RAM, EPROM, 2 countertimers, watchdog timer, powerfail interrupt, \& an optional zero wait state half megabyte D-RAM
* Extended width versions with on board power supply and case.

Sherwood Data Systems Ltd

Sherwood House, The Avenue, Farnham Common, Slough SL2 3JX. Tel. 02814-5067

City and Guilds

 Certificate CourseHome video production takes on a new dimension with the use of this audio/ video unit for mixing audio signals and fading video.

SIMPLE STATIC MONITOR

> "See" the static generated by stroking a cat or combing your hair. A simple project that could be useful in a school science lab or just use it for interest and entertainment.

Over the next nine months this brand new series being published in Everyday Electronics magazine aims to provide readers with a thorough understanding. of the principles and practice of microprocessors. More significantly, this series breaks new ground in the field of distance learning; it is the first to offer assessment and certification in conjunction with an internationally recognised examining body. We hope that you will follow this course for the next nine months and that many readers will complete the study programme which can lead to the award of a City and Guilds certificate in Introductory Microprocessors.

The Introduction, to be published next month, details the syllabus, explains how the course is set out, how and where to register for assessment, how the assessments are conducted, the microprocessors covered, cost, etc.

TRANSTEST

> A simple but very useful "in circuit" transistor and diode tester. Much cheaper than commercial units.

Order Noot

We are already experiencing unprecedented interest in the City and Guilds series and anticipate that the October issue will be in great demand. We strongly advise you to make sure of your copy by placing an order with your Newsagent NOW lyou can use the order form) or by taking out a subscription - see page 517. If you have not ordered a copy we cannot guarantee to be able to supply.

E.E. PROJECT KITS

MAGENTA

Full Khs inc. PCBs, or veroboard, hardware
electronics, cases (unless stated). Les batteries.
you do not have the issue of E.E. which instruction reprint as an extra - 80p each Reprints available separately

THIS MONTH'S KITS
 \section*{SAE or 'phone for prices}

ELECTRONIC MULTIMETER Sept 87 $\begin{array}{ll}\text { SUPER SOUNO AOAPTOR Aug } 87 & \mathbf{8 7 4 . 7 2} \\ \mathbf{\$ 3 6 . 5 6}\end{array}$ IMMERSION HEATER TIMER Aug 87 f17.99 3 BAND $1.6-30 \mathrm{MHz}$ RADIO Aug $87 \quad$ £25.27 BUC CANEER 1.8. METAL DETECTOR inc. coils and
$£ 25.19$ case, less handie and handwirg July 87 £25.19
OIGITAL COUNTER/FREQ METER (IOMHz) inc. case July 87
f 67.0
EERMOSTATY July
f20.00
VISUAL GUITAR TUNER Jun 87 £11.56 MINI OISCO LIGHT Jun 87 £11.99 WINDSCREEN WASHER WARNING May 87 £4.88 RIDGE ALARM May 87 £9.4 EQUALIZER (IONISER) May 87
14.79 LARM THERMOMETER Apnil 87 c25.98 EXP. SPEECH RECOGMITION Apil 87 caso) f4.93 EXP. SPEECH RECOGNITION APNil 87 ACTIVE I/R BURGLAR ALARM Mar 87 19.98 £ 33.95 MINI-AMP Feb 87
CaR voltage monitar feb 87
f 14.99
f11.98 7 SHELH SYNTH. (no case) Fe
SPECTRUM I/O PORT less case Feb $87-19.92$ STEPPING MOTOR BOOSTER Ifor

STEPPING MOTOR MD200 FAb 87 Feb (per station) inc. ar Alarm dec 86 UUAL READIMG THERMOMETER (less f 10.9 | 86 |
| :--- | CHANHEL A-D (SPECTRUM) CONVERTEA

BC 16K SIOEWAYS RAM Dec $86 \quad$ £ 34.2
MODEM TONE DECODER Nov 86 §18.99
OPTICALLY ISOLATED SWITCH Nov 86
CAR FLASHEA WARNIMG Nov 86
OOMHATT AUOIO AMPLIFIER OA 86
IGHT-PIDER LAPEL BADCE Oct 86
IGHT RIOER DISCO YERSIOM
IGHT MIDER 16 led VERSIO
CRATCH blanker Sept 86
MFRA-RED BEAM ALARM Sept 8
FREEZER FAILURE ALARM Sept 86
AR TIMER Sept 86
THT ALARM July 86
HEADPHONE MIXER July 8
SQuEEKIE CONTINUITY TESTER July 86
ELECTRONIC SCARECROW July BE
OX BOX AMP July 88
LGHT PEN (lass case) June 86
PERSOMAL RADIO June 86
WATCHDOG June 86
MIWI STROBE May 86
PA AMPLIFIER May 8
OGIC SWITCH May 8
UTO FIRING JOYSTICK May 86
YERSATLIE PSU Apy 86
circie Chaser Apr 86
FREELOADER Apt 86
STEPPER MOTOR ORIVER Apr 86
BBC MIOI INTEAFACE Mar 86
TERPD HIMEA Mar 8 O
MAIMS TESTER \& FUSE FINOER Mar 86
function generator fab 86
OWER SUPPLY FOR ABOV
H TRANSDUCER (lass Probe) Feb 86
PECTRUM OUTPUT PORT FED 86
PPORT Jan 86
ACHOME
AAIN OELAY SWITCH less case Jan 86
WE CHIP ALARM Jan 86
MUSICAL DOOR BELL Jan 86
TIL LOGIC PROBE Dec 8
IIGITAL CAPACITANCE METER Dec $85 \quad \mathbf{~} 89.45$
FLUX OENSITY TRANSOUCER Nov 85
LASHING PUMPKIN less case Nov 85
CREANHG BAT less case Nov 85
TRAIN GAUGE AMPIIFIER Oct 85
OLDERING IRON COMTROLLER Oct 85
Voltage regulator Sept 85
ERSDNAL STEREO P.S.U. Sept 85
R.A.A. PRE-AMP Sept 85
atoge alarm Sbit

ESISTANCE THERMOMETER Sept 85
Platinum probe Extra
: 1
MAGENTA ELECTRONICS LTD.
EE56, 135 HUNTER ST
BURTON-ON-TENT.
STAFFS, OE14 2 ST.
028365435 , Mon-Fri 9-5.
phone or pont
24 hr Answerphona for

PRICE LIST-FREE WITH ORDERS OR SEND SAE 1035 STEPPER MOTOR EXTRA
OPTIONAL POWER SUPPLY PARTS
CONTINUITY TESTER JULY 85 TRAN SIGNAL CONTROLLER July 85 ACROSS THE RIVER JUNE $85{ }^{2}$ ELECTRONIC DOORBEIL JUne 8 GRAPHIC EDUALISER JUNE 85 AlJTO PHASE May 85
INSULATION TESTER API 85 GAMES TIMER Jan 85 \qquad SPECTRUM AMPLIFIER Jan 85 TV AERIAL PRE-AMP Dec 84
Glional PSU $12 \mathrm{~V} £ 2.44$ Nov 84
PROXIMITY ALARM Nov 84 MAINS CABLE OETECTOR OCt 84 DRILL SPEED CONTROLIER Oct 84 $\begin{array}{ll}\text { CAR RAOLO BOOSTER Aug } 84 & \text { f23.64 } \\ \text { C15.64 }\end{array}$ FUSE/DIOOE CHECKER APY 84
QUASI STEREO ADAPTOR ApI REVERSING BLEEPER Mar 84
PIPE FIMBER Mar 84 PIPE FINBER Mar 8 IOWISER Feh 84
SIGMAL TRACER
CAR LIGHT WARNING 8 . gUITAR TUNER Jan 84
BIOLOGICAL AMPLIFIER Jan 84 CONTINUITY TESTER Dec 83

LOW COST POWER SUPPLY UNIT Aug 85 f 18.39 TRI-STATE THERMOMETER (Batt) Aug 85 f6.66 TREMOLO/VIBRATO AUg 85 f 37.92
STEPPER MOTOR INTEAFACE FOR THE BBC COMPUTER less case Aug 85 THE $\quad \mathrm{f} 13.99$

July 85
 OOOR CHIME OP POWER SUPPLY DEC 84 \{41.98 OOOR CHIME Oec 84

BBC MICRO AUOIO STORAGE SCOPE INTERFACE | BBC MICRO AUOIO STORAGE SCOPE INTERFACE |
| :--- |
| No | $\mathbf{1} 34.52$

$\mathbf{1 2 1 . 5 8}$ $\begin{array}{llr}\text { MICRO MEMORY SYNTHESISER OCI } 84 & \mathbf{5 5 7 . 2 7} \\ \mathbf{5 5 7 . 5 7}\end{array}$ $\mathbf{5} 5.27$

$\mathbf{5} 7.57$ GUITAR HEAD PHONE AMPLIFIER Sept 84 | | $\mathbf{1 8 . 2 7}$ |
| :--- | :--- |
| 7.66 | | SOUND DPERATEO FLASH less lead Sepi 8416.98

 CAR LIGHTS WARMING July 84 VARICAP AM RADIO May 84 £12.52 EXPERIMENTAL POWER SUPPLY M*y 84 โ22.46 SIMPLE LOOP BURGLAR ALARM May 84 £ 16.34 OIGITAL MULTIMETER add on for BBC Micro Mar 84 f29.98 NI-CAO BATTERY CHARGER Mar $84 \quad$ E 11.82

DIGITAL

TROUBLESHOOTING

Top quality kits \& parts for this new series. Our excellent tochnical back-up service helps to ensure that your proects succeed every time.
F K24.98
OOGIC PROBE- $£ 7.58$ including case. VERSATILE PULSE GENERA TOR-£29.98 including case. different
CURRENT TRACER-£20.56.
AUDIO LOGIC TRACER-£8.99.
EXPLORING ELECTRONICS

A full set of parrs including the Verobloc breadboard to follow the series right up to Nov. issue. $£ 14.87$. Dec parts $£ 4.99$. Jan
parts $£ 4.99$. Feb parts $£ 4.29$. March arts $\mathbb{\text { E6.99. Ap }}$. April parts $£ 4.44$. May parts £3.98. June parts $£ 4.40$. July parts
£4.79. Aug pars $£ 3.85$.

INTRODUCTION

TO ELECTRONICS

An introduction to the basic principles of electronics. With lots of simple experiments. Uses soldering, Lots of full colour illustrations and simple expla
lovely book. Ideal for all ages. lovely book. Ideal for all ages.
INTRODUCTION TO ELECTHONICS COMPONENT PACK BOOK EXTRA
f10.99 Book also svailable separately.

TEACH IN 86

MULTIMETER TYPE M102BZ as speciried Guaranteed. Top quality. 20k/V, with battery check, continuity tester buzzer and fuse and diode protection. 10A de range.
Complete with leads, battery and manual.
VEROBLOC BREADBOARO, OESIGN PAD, MOUNTING PANEL ANO 10 CROCODIL 14.98 CONNECTING LEAOS.
REGULATOR UNIT FOR SAFE POWER SUPPIY All $\quad \mathbf{6} .98$ plugs, fuse and fuseholders to suit the EE mains adaptor. \qquad Also the COMPONENTS FOR PRACTICAL ASSIGNMENTS. Parts 1 and 2 (Oct \& Nov) f1.94. Part 3 (Dec) 11.37.

TEACH IN 86 PROJECTS

 URIVERSAL LCR BRIDGE Nov 85 f25.83 DIODE/TRANSISTOR TESTER Dec 85 f 18.89 USEFUL AUDIO SIGNAL TRACER Jan 86AUDIO SIGNAL GENERATOR Feb 86 f26.21 R.F. SIGNAL GENERATOR March 86 f24.48 ET VOLTMETEH ApI 86

LEGO Technic Sets
TEACHERS WE ARE STOCKISTS OF THE WHOLE RANGE. CONTACT US FOR BROCHURES. VERY COMPETITIVE PRICES AND QUICK DELIVERIES

STEPPING MOTORS 12 VOLT

MINI MODEL MOTORS
$\frac{1}{2}-3 V, 2$ TYPES. MM1-59p MM2-61p

(8.) ${ }^{48} 5$ stres

1035	MD200
f 14.50	f 16.80

MOTOR - GEARBOX ASSEMBLIES
 Miniature precision made, Complete with quality electric motor. Variable reduction ratios

achieved by fitting from $1-6$ gearwheels (supplied) as requlred. Operates from 1.5 V to 4.5 V unlt type MGL (higher torque motor) 2 mm 1 150 pm depending . 3 mm dia outout shafts. Ideal fo
robots and buggies.
Small Unit (MGS) £3.49. Large Unit (MGL) £3.98. PULLEY WHEELS. New Range PLASTIC WITH BRASS BUSH \%r dia. hole-easily

Metal collar with fixing screw. 3 mm bore 24p. Flexible spring coupling 5 mm . Length 31 mm 68 p .
Flexible metal coup
ع $2.98 ; 2 \mathrm{~mm}$ £ 3.34 .

1987 CATALOGUE

Brief details of each kit, our books, \& illustrations of our range of tools \& cormponents. Also stepper motor, interface kit to build. If you read Everyday Electronics then you need a copy of the MAGENTA catalogue.
catalogue \& price ust - Send $f 1$ in stemps otc. or add $f 1$ to your order. Price list - 9×4 see. Cstalogue FREE TO SCHOOLS/COLIEGES RE-

ADVENTURES WITH ELECTRONICS

An easy to follow book suitable for all ages. Ideal for Givas cleat instructions uses an sioec breacoand. - including threa radios siren pers. 16 progects - intercom, timerer, etc. Helps you learn about delectronic components and how circuits work Component pack includes an S-Dac breadboard and all the components for the projects. Adventures with Electronics $\mathbf{\text { f.5.58. Component pack }}$ f 20.98 less battery.

EVERYDAY ELECTRONICS EDITORIAL, 6 CHURCH STREET, WIMBORNE DORSET BH2 1 1JH
Phone: Wimborne (0202) 881749
See notes on Readers' Enquiries below-we regret that lengthy technical enquiries cannot be answered over the telephone

The Magazine for Electronic \& Computer Projects

 VOL 16 NO9
Advertisement Offices

EVERYDAY ELECTRONICS ADVERTISEMENTS
4 NEASDEN AVE., CLACTON-ON-SEA, ESSEX
CO16 7HG. Clactón (0255) 436471

CITY \& GUILDS

AS MENTIONED a couple of months ago, our new series Introducing Microprocessors starts next month. The series can lead to the award of a City \& Guilds certificate (Introductory Microprocessors) and we believe this is a first for any UK monthly magazine. It is also exclusive to EE.
Make sure you get next month's issue-it carries the introduction to the series with all the details of how to register for assessment, centres, cost etc. We are already experiencing unprecedented interest in this series and I strongly recommend that you make sure of your copy by either ordering it from your newsagent or by taking out a subscription-see pages 468 and 517 .
If you do not have a copy on order we cannot guarantee to be able to supply!
The course should provide all readers with a thorough understanding of the principles and practice of microprocessors. Even if you do not wish to try to gain a C\&G certificate, Introducing Microprocessors will be well worth following. For those who are interested in the qualification you may like to know that you do not have to take the assessments within any given period. The study can thus be spread over a couple of years if you so wish. As I said, don't miss next month's issue-order now!

PCBs

I would like to warn all readers that we are about to rationalise our $E E P C B$ Service. The number of boards available will be reduced from next month when virtually all boards over two years old will be dropped from the list.
We have found that after two years the very low requirement for p.c.b.s makes the service uneconomical. It will also be necessary to increase the price of some boards. So if you want a p.c.b.-particularly if it is an old one-get your order in now. You have been warned!
Many of our p.c.b. prices have never been raised and with the rising cost of materials and labour, we now have to increase the price to cover these. I assure you our p.c.b.s will still be good value for money and competitive with other suppliers.

BACK ISSUES \& BINDERS
Certain back issues of EVERYDAY ELECTRONICS and ELECTRONICS MONTHLY are available price $£ 1.50$ ($£ 2.00$ overseas surface mail) inclusive of postage and packing, per copy. Enquiries with remittance, made payable to Everyday Electronics, should be sent to Post Sales Department, Everyday Electronics, 6 Church Street, Wimborne, Dorset BH21 1 JH . In the event of non-availability remittances will be returned. Please allow 28 days for delivery. (We have sold out of Oct. \& Nov. 85, April, May \& Dec 86.)

Binders to hold one volume (12 issues are available from the above address for $£ 4.95$ ($£ 9.00$ overseas surface mail) inclusive of p\&p. Please allow 28 days for delivery.

Payment in $£$ sterling only please.

Editor MIKE KENWARD
Personal Assistant
PAULINE MITCHELL
Assistant Editor/Production
DAVID BARRINGTON
Assistant Editor/Projects
DAVID BRUNSKILL
Editorial: WIMBORNE (0202) 881749
Advertisement Manager
PETER J. MEW Clacton (0255) 436471
Classified Advertisements
Wimborne (0202) 881749

READERS' ENQUIRIES

We are unable to offer any advice on the use, purchase, repair or modification of commercial equipment or the incorporation or modification of designs published in the magazine. We regret that we cannot provide data or answer queries on articles or projects that are more than five years old. Letters requiring a personal reply must be accompanied by a stamped self-addressed envelope or a selfaddressed envelope and international reply coupons.

All reasonable precautions are taken to ensure that the advice and data given to readers is reliable. We cannot, however guarantee it and we cannot accept legal responsibility for it.

COMPONENT SUPPLIES

We do not supply electronic com ponents or kits for building the projects featured, these can be supplied by advertisers

OLD PROJECTS

We advise readers to check that all parts are still available before commencing any project in a back-dated issue.

We regret that we cannot provide data or answer queries on projects that are more than five years old.

ADVERTISEMENTS

Although the proprietors and staff of EVERYDAY ELECTRONICS take reasonable precautions to protect the interests o readers by ensuring as far as practicable that advertisements are bona fide, the magazine and its Publishers cannot give any undertakings in respect of statements or claims made by advertisers, whether these advertisements are printed as part of the magazine, or are in the form of inserts.

The Publishers regret that under no circumstances will the magazine accept liability for non-receipt of goods ordered, or for late delivery, or for faults in manufacture. Legal remedies are available in re spect of some of these circumstances, and readers who have complaints should address them to the advertiser or should consult a local trading standards office, or a Citizen's Advice Bureau, or a solicitor

SUBSCRIPTIONS

Annual subscription for delivery direct to any address in the UK: $£ 14.00$. Overseas: $£ 17.00$ ($£ 33$ airmail). Cheques or bank drafts (in. £ sterling only) payable to Everyday Electronics and sent to EE Subscription Dept., 6 Church Street, Wimborne, Dorset BH21 1JH. Subscriptions can only start with the next available issue. For back numbers see the note on the left.

IOISE GATE

|ar cuidillan

\square Ideal project for the musician who wants to create the right sounds, without the noise

0
VER the last few years the popularity of electronics effects units for musicians has grown dramatically particularly those using time-delay techniques. These include flangers, choruses, echo, reverbs, and so on. While these effects offer the musician new and interesting sounds, they often suffer from a poor signal-to-noise ratio; that is, the amount of noise produced relative to the maximum signal level that the system can handle. This noise is normally masked by the music, but stop playing and the same noise becomes quite objectionable, manifesting itself in the form of hisses, whistles, crackles, whoops, etc.

Using more than one effect-box simply makes matters worse, as do noisy leads and jack-connectors. One solution would be to turn the amplifier's volume control down whenever playing stops, but that is obviously impractical. The Noise-Gate offers a neat and simple answer to the problem. Connected immediately before the input to the amplifier-and therefore after any effectboxes in use-it constantly monitors the signal level. If the signal is below a certain level, then the Noise-Gate will "close" and prevent the signal from reaching the amplifier. Start playing and the signal rises, causing the Noise-Gate to "open", allowing the signal to get through to the amplifier. So when there is music, the signal gets through; when there is only noise, it doesn't.
The signal level at which the Noise-Gate will open is called the "threshold", and a control is provided so that it may be adjusted. The threshold should be set just above the level of the noise (the so-called "noise floor"), so that any signal above the threshold, and therefore above the noise floor, will open the Noise-Gate. Note the terminology used: open means the signal is allowed to pass through, closed means it is not. Don't think in terms of a switch: think in terms of a gate (hence the name "noisegate").

The Noise-Gate should open as quickly as possible in response to an increase in the input level, so that little of the music is lost. In this design, the response time is around a couple of milliseconds. Obviously, the same does not hold true when the input level falls below the threshold, otherwise the NoiseGate would close with every gap in the music of more than a millisecond or two. This design will remain open for about half a second after the music stops. These times
are not externally adjustable, but the experimentor may wish to try altering the values of the relative components, to lengthen or shorten either or both times.
There is also a control for adjusting the gain of the Noise-Gate. Normally this would be set to unity (output = input), but can be set anywhere between 0.02 and 5 (or -34 dB to +14 dB gain). A switch on the rear allows the user to open the Noise-Gate regardless of the signal level, this is handy for tuning-up instruments; and an l.e.d. on the front panel displays the status of the Noise-Gate.

CIRCUIT DESCRIPTION

Integrated circuit IC3 (Fig. 1) is a quad CMOS switch, and IC3a, is the "gate" in noise-gate. For the input signal to reach the output, it must first pass through IC3a, and
the state of this switch is controlled by the voltage on IC3 pin 13. When this voltage is high, the switch allows the signal to pass; and when it is low, the signal is blocked IC1b, wired as a variable gain stage, boosts or attenuates the gated signal, and provides a low output impedance suitable for driving virtually any amplifier or tape-recorder input stage.

For the Noise-Gate to open, about six volts peak-peak is required at IC2a pin three. This is much larger than can be provided by musical instruments, so the input signal is boosted considerably by ICla, another variable gain stage, whose gain is adjustable between 23 and 73 , giving a threshold that can be set from about 85 mV peak-peak, to 250 mV peak-peak. IC2a pin two is biased by R10 and R12 to

Resistors

R1,R12,R15,R16,R18,R19	1M (6 off)	R8,R10	330k (2 off)
R2	200k	R11,R17	10 k (2 off)
R3,R4	470k (2off)	R13	5 k 1
R5,R9	4 k 7 (2 off)	R14	33k
R6	100	R22,R23	3k9 (2 off)
R7,R20,R2 1	100k (3 off)		
All 0.25 watt 5% carbon			See
Potentiometers			
VR1 1M log. car			
VR2 10K log. ca	on		

Capacitors	
\quad C1	330 n miniature layer polyester 100 V
C2,C3,C4,C7	10μ miniature radial elect. $16 \mathrm{~V}(4 \mathrm{off})$
C5	100μ miniature radial elect. 16 V
C6	22 p polystyrene 160 V
C8,C10	100 n miniature layer polyester 100 V (2 off)
$\mathrm{C9}$	470 n miniature layer polyester 100 V

page 484

Semiconductors

IC1	TLO72 dual low-noise op-amp
IC2	TL082 dual op-amp
IC3	4066B quad switch
IC4	78L12 +12V voltage regulator
D1.D2,D3,D4	1N4001 1 A 50V rectifier diode (4 off)
D5	1N4148 small signal diode
D6,D7	3mm red light emitting diode (2 off)

Miscellaneous

 \[$$
\begin{array}{ll}
\text { S1 } & \text { s.p.s.t. miniature toggle switch } \\
\text { SK 1, SK2 } & 6.3 \mathrm{~mm} \text { jack sockets (2 off) } \\
\text { FS1 } & 500 \mathrm{~mA} \text { fuse and } 20 \mathrm{~mm} \text { panel mounting fuse holder } \\
\text { T1 } & 1.2 \mathrm{VA} \text { mains transformer with } 12 \mathrm{~V} \text { secondary } \\
\text { rinted circuit board available from the } E E \text { PCB Service, order code } 5
\end{array}
$$
\]
 \section*{S1
 \section*{S1

 s.p.s.t. miniature toggle switch

 s.p.s.t. miniature toggle switch

 6.3 mm jack sockets (2 off)

 6.3 mm jack sockets (2 off)

 500 mA fuse and 20 mm panel mounting fuse holder

 500 mA fuse and 20 mm panel mounting fuse holder

 1.2 VA mains transformer with 12 V secondary

 1.2 VA mains transformer with 12 V secondary

 FS

 FS

 T1}

 T1}

330 n miniature layer polyester 100 V
miature radial elect. $16 \mathrm{~V}(4 \mathrm{off})$
20μ miniature radial elect. 16 V
100 n miniature layer polyester 100 V (2 off)
470 n miniature layer polyester 100 V

577; case $154 \mathrm{~mm} \times 120 \mathrm{~mm} \times 45 \mathrm{~mm}$; p.c.b. mounthg pilars (4 off); I.e.d. mounting clip (2 off); 7/02 wire; miniature screened cable; 3-core 3A mains cable; cable grommet and clamp for mains cable; control knobs (2 off); primer and paint; instant lettering; solder tag; screws for p.c.b. pillars; 1 mm rubber sleeving; p.v.c. insulating tape.
plus case

Fig. 1. Complete circuit diagram for the Noise-Gate. The 12 V power supply section is shown below.
about 9 V . With no input signal present, IC2a pin three is at 6 V . Therefore, for IC2a, which is the threshold detector, to operate, IC2a pin three must exceed 3 V peak (or 6 V peak-peak). When the threshold is reached, IC2a pin one will go high, charging C9 via R13 and D5. R13 and C9 determine the time taken for the Noise-Gate to open. When the voltage on C9 exceeds about 6.2 V , so the voltage on IC2b pin five will exceed that on pin six (6 V), and will cause IC2b pin seven to go high. Without R19, IC2b would tend to oscillate as the voltages on pins five and six approached each other.

When the input level drops below the threshold, so C9 will no longer be getting charged from IC2a pin one, and will discharge through R15. R15 sets the time taken for the Noise-Gate to close. This resistor may be decreased for shorter hold times, but must not be increased, otherwise the Noise-Gate will not function.
Switch S1, when closed, pulls IC3b pin five to 0 V , causing IC3b to open, and allowing IC3 pins 12 and 13 to be pulled high via R21. IC3a will therefore close, allowing the input signal to reach the amplifier stage, as described above, and IC3d will close, causing D6, an l.e.d. to light, indicating that the Noise-Gate is open. Since IC3b is open, the voltage on IC2b will have no effect on the status of the Noise-Gate: i.e., the 'Gate will be open regardless of the input signal. When SI is open, IC3b pin five will be pulled high by R20. IC3b will then be closed, and the state of IC3a and IC3d, and therefore the status of the Noise-Gate, will depend on the voltage on IC2b pin seven, and this in turn depends on the input signal level.
Power is supplied by transformer T 1 , and regulated by IC4, a 78 L 12 voltage regulator, see Fig. 1.

CONSTRUCTION

Construction of the Noise-Gate is fairly straightforward and is built on a single printed circuit board. Because the mains transformer is also mounted on the board extreme care must be taken when testing.

The component layout and printed circuit board foil master pattern is shown in Fig. 2. This board is available from the $E E$

PCB Service, code 577

Begin by checking the bare printed-circuit board for shorts. Veropins should be inserted into the p.c.b. from the foil side. These can be gently tapped into place with a hammer, and then soldered. Fix the resistors to the p.c.b., followed by the capacitors and the link-wire. If using d.i.l. sockets for the i.c.s, fit these next, then the fuse-clips,

IC4, and the diodes. Turn the p.c.b. over, and connect insulated wire between the points shown in Fig. 2. Lastly, fix the transformer to the board, and fit the i.c.s in their sockets.

If using the same box as the prototype, drill it as shown in the photographs. Deburr the holes, and rub-down the surfaces to be painted (the front and the rear), prime

Fig. 3. Front and rear panel wiring and connections to the p.c.b. The internal wiring, board positioning and rear mounted components are shown in the photographs above.

them, and paint them. When the paint is dry, lettering can be applied, using Letraset or Mecanorma dry-transfers, which should then be protected with a light coat of varnish. Fix the earthing-point and the p.c.b. mounting pillars to the base of the box. As a safety measure, apply a few lengths of p.v.c. adhesive insulating tape to the inside of the box, underneath those areas of the p.c.b. that carry mains voltages. Fix the p.c.b. to the four mounting pillars.

INTERWIRING

Connect the mains cable (not forgetting the grommet and a cable clamp) to the p.c.b., and the earth conductor to the earth tag, which should be connected to the earthing point on the box. At this point it may be worth checking that the power supply is operating.

Fit a 500 mA fuse, and check the resistance between the live and neutral conductors of the mains cable (this should be a few tens of ohms). Next, check that the earth conductor is connected to the case, and that the resistance between the earth conductor and the live and neutral conductors is very high (it ought to be immeasurably high on a normal multimeter-in other words, check for an open circuit). Next, check for a similarly high resistance between the live and neutral conductors and the 6 V windings of the transformer. If all is well, then the mains can be applied. Take extreme care, as mains voltages are potentially lethal. Check across pins seven and 14 of IC3 for 12 volts.

If the 12 volts is not present, then disconnect the mains before attempting to find out why. If the 12 volt supply is correct, disconnect the mains before continuing the construction.

Fix the two sockets, the switch, the two potentiometers, and the two l.e.d.s to the box. Connect these components as shown in Fig. 3, using 7/02 connecting wire and miniature screened cable. Make a quick visual check over the p.c.b. to ensure nothing has been missed out or fitted the wrong way round. Fix the lid on the bqx, and connect the mains supply. The Power l.e.d. should light. The Open l.e.d. may also be lit, depending on the position of the switch on the rear of the noise-gate: position the switch so that the l.e.d. goes out.

TESTING

Connect the noise-gate between an instrument and the amplifier. If using effects boxes, the noise-gate should be connected between the last of these and the amplifier. As the instrument is played, the Open I.e.d. should light, and the signal from the instrument should reach the amplifier. The Open l.e.d. should go out as playing stops: if it does not, then rotate the threshold control until it does. The Output control should be set to provide an output level suitable for whatever amplifier or tape-recorder is being used.
Flangers and choruses are among the worst producers of noise, so, if using one or both of these effects, switch them on, and adjust them for their worst ouput (that is, for maximum noise). Adjust the threshold control until the Open l.e.d. just lights, and then rotate it in the opposite direction until it goes back out. Playing the instrument should now open the gate, and the gate should close about half a second or so after playing stops. Construction and testing is now complete.

PERSOMAL STEREO amplifier

Turn your personal stereo player into a portable mini hi fi system

ONe person's music is another person's cacophony! Owners of personal tape players avoid this situation by keeping their music to themselves. Their favourite melodies may be reproduced with high fidelity anywhere in the world. Yet this will not petrify the passing pedestrian or Pukeka (depending on location) with that bane of civilization-other peoples' music! On the other hand, there are occasions for sharing the enjoyment of music with friends or loved ones (subject to their consent, of course) and this is the reason for presenting this project.
It is possible to buy stereo amplifiers designed to operate with certain makes of

Fig. 1. Circuit of the right hand channel of the amplifier. In the left hand channel VR 1 and R3 are replaced by R5. Capacitors C6 and C7 are common to both channels, all other components are duplicated.

personal tape player. But these are usually expensive and are not available for all players. The amplifier described here has been designed to connect to the Sony Walkman. It also works with the Grundig Beat Boy and has been successfully tested with many other tape players. The design features small size, light weight, robust construction and low battery consumption. In short, it is intended to be complementary to the personal tape-player. In addition, being based on a pair of readily available i.c.s, the amplifier is inexpensive and is simple to construct.

THE CIRCUIT

The circuit (Fig. I) consists of two virtually identical amplifiers each built around a TBA 820 M audio amplifier i.c. The special features of this i.c. are that it can operate on a supply voltage as low as 3 V , and that it has a low quiescent current (aboul 3 mA). Its maximum output is only 2 W but, since the amplifier is to be powered by M 1500 cells, it is not realistic to demand more. The amplifier will play for several hours before the cells become discharged and the sound quality deteriorates. The lower the output volume, the cheaper the running costs!
The diagram (Fig. 1) shows the circuit of the right channel amplifier, left hand component numbers are plus 100 . Input from the right channel of the tape player is fed to pin three of ICI. The gain of the amplifier is set by adjusting the setting of VRI. The purpose of this is to allow the user to

Approx. cost
 Guidance only
 E 12 (

equalise the gains of the two amplifiers to produce a satisfactory stereophonic output. The variable output of the right channel amplifier is set to match the fixed output level of the left channel amplifier. The output volume of the system as a whole is more simply controlled by adjusting the volume control of the player itself.
The circuit is powered by four M1500 alkaline dry cells connected as a 6 V battery. Although the i.c.s are able to operate at 3 V , the sound quality tends to be inferior at this supply voltage.

Fig. 2. Components layout and wiring

Fig. 3. Interconnection of the various parts of the amplifier system.

CONSTRUCTION

The circuit may be accommodated on a small piece of strip-board as shown in Fig. 2. Before beginning assembly, check that the board will fit neatly into the intended enclosure (see later). Take note of points at which holes will need to be made through the board for mounting screws or bolts. It may be necessary to adapt the component layout slightly to allow for these.

First cut the copper strips beneath the board at the locations shown in Fig 2. Then solder in the connecting wires, followed by the resistors. Finally mount the other components, taking care to observe the correct polarity of the electrolytic capacitors.

The off-board connections are shown in Fig 3. Wiring up the connections depends on the type of case used for the enclosure. In the prototype an enclosure with a built-in battery compartment was used. The spring contacts for the individual cells were not already connected, so it was necessary to solder short wires so as to join the cells to form a 6 V battery (Fig 4). The enclosure had a panel at one end. This was drilled for mounting the sockets and controls as shown in the photographs.
A push-on-push-off switch was used for SI, as this type is cheap and simply needs a circular hole for mounting. However, in a tightly packed suitcase or backpack, such a switch can be turned on by jolting or accidental pressure during the course of a journey. This could soon result in the cells becoming discharged. If you are concerned that this may happen, fit a slide switch instead. The light-emitting diode is not strictly necessary. It consumes about 10 mA but, since it acts as a warning that the power supply is on, it probably saves current in the long run. Fig 3 shows the connection to the tape player. The stereo jack plug JKI is connected by a two-core screened lead to the circuit board. This lead passes through a grommeted aperture in the front panel.
Before mounting the circuit board in its case, check the circuit carefully against the diagrams. Make sure all joints are properly soldered, and that there are no solder bridges between adjacent copper strips. It is worth while to inspect the underside of the circuit board using a hand lens at this stage
as even the finest "hair" of solder can prevent a circuit from working.

The case used for the prototype had four conveniently placed mounting pillars on the bottom half. The circuit board was drilled to match these, and self-tapping screws used to fix the board to the case. If the case you are using does not have such pillars, the board may be fixed in place with bolis, or with "sticky fixers".

SPEAKER ENCLOSURES

The speakers can be mounted in any type of enclosure, depending on the preference of the reader. It would be possible to use two existing speakers from a sterco system. For the prototype, which was intended to be a highly portable system, two identical cases just large enough to hold the miniature speakers were used, and (in one of them) the circuit board and cells were also mounted. Although it is slightly uneconomical to use a case with battery compartment for the left channel speaker, it is preferable to have matching cases. The battery compartment of the left-channel enclosure is a handy place for storing spare cells.

Before mounting the speakers in the lids of the cases, mark the inside of the lids to show where the speakers are to be located. When deciding where to place the speakers take account of the positions of the battery compartment, the circuit board and other

Fig. 4. Battery connections.

Fig. 5. Loudspeaker mounting.
components in the other half of the case. A radial pattern of holes drilled through the lid of the case with a 1 mm bit, make a robust "grille".
Four holes suited to 4BA bolts are drilled just outside the edge of the loudspeaker area. The four bolts each have a solder tag, and a nut threaded on them. The solder tags are turned inward to overlap the rim of the speaker (Fig. 5). The nuts are then tightened, so that the rim of the speaker is gripped firmly by the tags.

With all components mounted, the various connections are made as in Fig 3, using multistranded connecting wire. The pair of wires from the left channel speaker should be about one to three metres long and terminate in a mono jack plug to fit the socket on the panel of the right channel enclosure. Nex1, place the lids on the cases. Inspect carefully as you place the lid on the right channel case to ensure that the speaker does not come into contact with the circuit board or any other components. The lid of the left channel case may be be bolted in place, but leave the other lid off until the system has been tested.

TESTING

Put four cells into the battery compartment, arranging them as Fig 4. Set VR1 to about the middle of its track. Insert the stereo jack plug into the earphone socket of a tape player. Insert the mono jack plug of the left channel speaker into the correct socket on the panel of the right channel case. Set up the two cases on the bench with speakers a metre or two apart and facing loward you. Switch on. The l.e.d. should glow and there should be a slight crackle from the speakers as the switch is operated. If there is no light, no crackle, or there is continuous whistling or crackling etc, switch off and re-examine the circuit board and other connections.
Assuming that all appears to be well. Place a tape in the player, turn the volume setting of the player well down (the amplifiers have high gain), and start the player. Turn the tape-player volume up to the required level. Check that sound is coming from both speakers. Now adjust VRI until an equal volume of sound is obtained from each speaker and a realistic stereo effect is obtained. The resistance values quoted for VR1 and R3 are such that it should be possible to make the right channel sound either louder or softer than the left channel. If the right channel sounds louder than the left no matter what the setting of VR1, then replace R3 with a resistor of higher resistance, such as 100 ohms. Conversely, if the volume on the right channel is always too low, replace R3 with a resistor of smaller value, such as 27 ohms.

Having established the correct setting of VRI, switch off, replace the lid on the right channel enclosure and bolt it in place. The stereo tape amplifier is now ready for use. \square

COCKROACH
The dream of a mechanical cockroach is fast becoming reality. It is complete mechanically and is in the process of having its software developed further to allow it to perform as well as intended in the original specification.

Dr John Billingsley, of the Electronic and Electrical Engineering Department of Portsmouth Polytechnic, and leader of the project said that the software for the first phase was now complete and work had begun on the second phase. At the moment the central processor was telling each of the legs what to do and when but it was intended that the central system would only issue general commands leaving the legs to work out how to achieve them.

This however is no toy mechanical insect. It is a serious attempt by a team at the polytechnic to create a new type of walking robot. The idea to model the device on a cockroach came from Arthur Collie, one of the members of the team. Cockroaches do not have central nervous systems and so cannot control their movements centrally as most creatures do. The legs work independently moving one step in response to a stimulus with obstacles sensed by the inability to go through with a step. When the concept first came to Collie about ten years ago it was not feasible to have six independent legs because of the size and cost of the individual controllers. The microprocessor changed that. Now with the help of grants from the Royal Society, the Science and Engineering Research Council and a little help from the armed forces unmanned vehicle programmme Collie has taken two years off from his job to work on the idea.

Billingsley said that the present software was quite sophisticated with constant checks being carried out to see if the instructions were being followed. However, it was still a system of big brother giving orders from the centre.

Each of the legs is being told to go through a set procedure of picking up, moving forward and putting down again. We want the only instruction to be to walk with a particular combination of legs, it would then be up to the legs how that was achieved.

When the project began Billingsley said he was searching for a cantering, rather than a walking, robot. That was a reference to the intention for the device to mimic the movement of humans who while walking are dynamically stable but statically unstable. They are permanently off balance while moving and although they are stable, if they come to a sudden halt they will fall over as when being tripped up. Existing walking robots remain stable throughout their movement. While they gain in steadiness they lose on speed and. fluency of motion.

The most usual form of movement by the cockroach is based on stable triangles. While the first and third legs of one side and the middle leg of the other remain steady, supporting the machine, the others move. With the weight towards the front of the device the centre of gravity, during movement, does not yet move in front of lines between the first and middle legs of each side, thus keeping it stable at all times. Human-like movement is being planned.

At the moment the movement is force driven to ensure that each leg continues

moving until it finds something solid to stand on. However, the robot is still a little wobbly because of some software problems.

Each leg has joints at the hip and knee. The thigh is powered by two pneumatic cylinders working in opposite directions so that movement is always achieved by a cylinder pulling rather than pushing, with a double acting cylinder for the hip. Feedback is obtained from pressure sensors on the cylinders and angle sensors on the joints.

MOUSE AND ROBAT
Two of Billingsley's other interests are progressing during the summer. On September 15 in Portsmouth the European finals of the Robat contest this year are taking place as part of the EuroMicro Conference. And the Institution of Electrical Engineers is hosting the World Finals of the Micromouse competition.

Billingsley is hoping that the Robat event goes better than last year's European finals in Venice when Britain's John Knight was the only person to achieve a hit of the ball with the bat. The Finnish team could not get their machine through customs and the Belgian device did not work. There were also problems with the table and running repairs were required necessitating the finding of a hardware shop in Venice (with no knowledge of the Italian for the relevant items!). Portsmouth may not be as exotic but it should enable a better contest to take place.
Billingsley is also hoping that some new entrants will take part. The British heats were held by the IEE in July and some enquiries had been received from newcomers but at the time of writing it was not known if there were any new faces to challenge Knight and Dr John Marr. In addition sponsors are being sought to help with prizes and the costs of holding the event. Anyone who would like to help should contact Billingsley at Portsmouth Polytechnic.
The MicroMouse contest, which has been taken over by the IEE, was also held in July. It was given the grand title of World Finals because the Americans are holding the event next year and said that they were going to designate them the worid finals. However it was thought unlikely that the Japanese would be appearing because of the cost, this, despite beating all European opposition when a contest was held in Tokyo last year.
By using what was considered by most of the regular competitors as an out-ofdate design they managed to reach the centre of the maze far more quickly than the more "sophisticated" models. The Japanese were still using stepper motors instead of the faster d.c. motors but by staying with a basic design and continually making improvements they had developed some very efficient machines.

What to look for, it's limitations and how to use one of the most versatile of test instruments.

LIKE most electronics enthusiasts my tool kit started with a screwdriver, a pair of pliers and a soldering iron. The first "measurements" that I needed to make were simple and crude. There were three very common questions to answer:

Is the battery flat?
Has the fuse blown?
Is the "power" getting through?
Without knowing it I was asking about the three basic electrical units -voltage, resistance and current. With the aid of a battery and a bulb I was able to get some indication of all three, using the methods shown in Fig. 1.

With experience I was able to judge voltage and current by the brightness of the bulb, and by using the fuse checking arrangement I was able to test some low value resistors as well as fuses. I got by using these methods for quite some time until the great day arrived and I carefuly unpacked my first multimeter. With this prized possession I was able to measure voltage, resistance and current accurately over wide ranges. The real beauty of it
though, was that I could use it in exactly the same way as my battery and bulb. The principles were exactly the same, only the quality of the equipment had changed.

As my electronics knowledge advanced I learned that my multimeter also had some shortcomings. Just as the battery and bulb method had its limitations, so too did the multimeter. The multimeter of course got much nearer to telling me exactly what was happening, but it wasn't always telling me everything, and sometimes it could be quite a long way from the truth. In fact, I had a good deal more to learn about electrical and electronic measurements as the rest of this article shows.

VOLTAGE MEASUREMENTS

In Fig. 1a the basic principle of voltage measurement is shown. Voltage appears across components in a circuit and so is measured by putting the meter leads one each end of the component, that is, in parallel. To ilustrate some typical measurements

Fig. 1. First attempts at "measuring" Voltage, Resistance and Current with a battery and bulb.

the circuit of the Active Infra-Red Burglar Alarm project (March '87 EE) is reproduced in Fig.2.
The most common measurement made in circuits of this kind are voltage measurements. The reason for this is that unlike currents, voltages can be read without breaking the circuit. For example, the first sensible check on a circuit is to measure the supply voltage. A simple multimeter set to the 25 volt d.c. range could be used with the negative probe (usually black) connected to point(a) and the positive probe (red) to point (b).
The next check would be to move the positive probe to point (I) to read the Zener stabilised supply voltage across D2. To measure the collector voltage of TR1, the positive probe is moved on to point (d) still keeping the negative probe connected to point (a). A great deal can be learned about a circuit by voltage measurements made in this way.
With most circuits all of the voltage measurements are made from a common point (in this case point (a)) usually the negative supply point. The voltage at points (b), (B), and (©) are said to be measured "with respect to negative". Voltages may be measured with respect to any suitable point in a circuit or across individual components. For example the voltage across R11 is measured by putting the negative probe on point $(\mathbb{P}$ and the positive probe on point (D).

OHMS PER VOLT

So far the voltages measured have all been from "low impedance" points in the circuit and will read accurately. If the meter is connected to read the voltages at points (C) and (B) (with respect to negative) the readings will be low. The reason for this, is best ex-
plained by reference to Fig. 3 which shows the internal circuit of a multimeter when set to its voltage ranges. The meter movement is essentially a current measuring device, the construction and operation of which has been described elsewhere.

To convert a basic 50 microamps meter movement into a voltmeter, a series resistor is used. The value of a resistor is calculated from Ohms law so that it passes 50 microamps at the required full scale voltage. For example a 10 volt range needs a resistor of 10 volts divided by 50 microamps that is $10 / 0 \cdot 00005$ ohms $=200,000$ or 200 k . The other ranges are calculated in a similar way, giving 500 k for 25 V and 2 M for 100 V . A value of 50 microamps has been chosen as this is an extremely common value for standard multimeters.

The expression "ohms per volt" which appears in multimeter specifications is derived by working out the series resistor that would be required

Fig. 3. Circuit diagram of multimeter Voltage ranges-10V; 25 V and 100 V .
the current flowing through R6 and into the base of TR 1 is two microamps. If the multimeter is set to the 10 volt range its resistance is 200 k . At 0.6 volts 200 k draws a current of $0.6 / 200,000$ or
where there are high value resistors, voltages will read lower than they really are.

AVERAGE READING

Another situation where a multimeter doesn't tell the whole truth is when the voltage at point (D) is measured (with respect to negative). At point (1) there is not a steady voltage, but one which varies one hundred times a second from approximately 14 volts to 16 volts. The meter will try to follow the voltage, but fail, because it can't move quickly enough. The result is an average reading of 15 volts. For most purposes an average reading is adequate, but it gives no indication of the ripple voltage. This is simply a job that a multimeter can't do. The best instrument for this is an oscilloscope.

Other points in the circuit will also give misleading readings. For example, point (b) oscillates between 0 V and +10 V , spending half of its time in each state. The meter will read the average

Fig. 2. Some typical measurement "test points" in a working circuit for an Active Infra Red Burglar A/arm (EE Mar '87). Points k. I, and m indicate where current measurements are made.
to give a full scale voltage of one volt. For a 50 microamp meter, it is $1 / 0.00005=20 \mathrm{k}$. A multimeter with a 50 microamp meter is therefore a " 20 kilohms per volt" type. The best (most sensitive) analogue multimeters are based on a $10 \mu \mathrm{~A}$ movement and so have a sensitivity of $1 / .00001$ or 100 k per volt.

How this affects the circuit under test depends upon how easily the circuit can supply the 10 or 50 microamps that the meter requires. Power supply points such as (b) and (B) can supply an extra 50 microamps without any difficulty, but to sensitive parts of the circuit such as points (C) and (B) 50 microamps represents a heavy current drain that substantially affects circuit operation.
In the case of point (c) the actual voltage in the circuit is 0.6 volts and
three microamps. Since this is more than the current already flowing in the circuit there is not enough current to drive the meter properly and so the meter reads low.

Similarly when the voltage at point (8) is measured the current required by the meter is drawn from point (1) via R15. As the voltage here is approximately one volt the meter requires five microamps on the 10 volt range which must be drawn through R15. Now, to get five microamps through one megohm takes five volts (Ohms law again). As there is only one volt available it is obvious that the meter will read very low. In fact the meter will read 0.2 volts which is miles away from the true voltage.

If all the arithmetic here is a bit too much, don't worry, the principle is simply that at points in the circuit
voltage which is five volts, but give no indication of the oscillation.
The voltage at points (d), (©) and (r) will give one reading when the infrared beam is being received, and another reading when it is not. In many circuits voltage differences such as this do occur and sometimes service sheets or manuals give two sets of voltage readings. The "quiescent" voltages are usually those found when the circuit is operating normally but without an input signal, and are the most commonly quoted ones.
Despite these imperfections, voltages measured with a multimeter are still the simplest and most effective "first approach" to circuit testing. The number of voltage measurements made using multimeters each day must exceed the numbers of all other electrical measurements put together.

RESISTANCE MEASUREMENTS

The measurement of resistance is much more straightforward than voltage measurement but the meter circuit is slightly more complicated. Fig. 4 shows a simplified standard multimeter circuit for resistance measurement. Resistors R1, VR1, and R2 are simply to make the $50 \mu \mathrm{~A}$ meter movement into a voltmeter reading 0 to 3 volts. The variable resistor (VR1) allows the sensitivity to be varied slightly so that full scale deflection can still be achieved when the battery voltage falls to $2 \cdot 5 \mathrm{~V}$. The three range resistors R 3 , R4, and R5 are selected individually by the range switch $S 1$.

Fig. 4. Circuit diagram of multimeter Ohms ranges- 20 ohms; 200 ohms and $2 \mathrm{ki}-$ lohms (2k).

When the probes are touched together the full battery voltage is connected across whichever range resistor is in circuit and the meter reads full scale. If necessary, adjustment of VR1
can be made for exactly full scale. When the probes are separated the battery negative terminal is no longer connected anywhere and there is no deflection of the meter. These two extremes represent zero resistance (or short-circuit) and infinite resistance (or open-circuit) respectively. The scale of the meter reads backwards because zero resistance corresponds to full scale deflection and infinite resistance to no deflection.

When an unknown resistance is connected across the meter terminals, the battery is no longer connected directly across the range resistor. Instead, it is connected to the range resistor via the unknown resistor. If the unknown resistor is equal to the range resistor, half of the battery voltage will appear across each, and the meter will read centre scale deflection. So with the three range resistors given, centre scale is obtained by measuring resistors of 20 ohms , 200 ohms and 2 k . For those who want to do the arithmetic the deflection for other values of resistance is given by dividing R (Range) by (Range) plus R_{X} where R_{X} is the unknown resistor.

For the 20 ohm range this gives a deflection on the 50 microamp meter corresponding to nine microamps for $200 \mathrm{ohms}, 33 \mathrm{mic}$ oamps for 10 ohms , 25 microamps (centre scale) for 20 ohms and a tiny deflection of one microamp for 2 k ohms. A glance at any multimeter resistance scale will show that this is non-linear, and is especially cramped at the high resistance end.
If there are sufficient ranges (usually four or five) however, it is possible to get satisfactory readings from one ohm

The Hobby Mu/timeter from Maplin has 10k/V d.c. and $4 k / V$ a.c. sensitivities. The meter also features a clear, easy to read, mirrored scale for accurate reading. -Ma plin Supplies 00702552911

The HM-102BZ multimeter from Cirkit is protected against accidental overload, has a continuity test buzzer and a jack socket for measuring audio output voltages. The meter is rated at $20 \mathrm{k} / \mathrm{V}$ d.c. and $8 k / V$ a.c. -Cikit 0992 444111

The general purpose Miselco Mini 20 from Alcon Instruments boasts an easy to read mirrored scale, single knob switching and sensitivities of $20 \mathrm{k} / \mathrm{V}$ d.c. and $4 \mathrm{k} / \mathrm{V}$ a.c.-A/con Instruments \mathbf{B} 01-352 1897
to one megohm. Higher resistance readings can also be obtained but it is necessary to have a higher voltage battery. Some multimeters have provision for two batteries, the higher one being switched into circuit when the highest resistance range is selected.

Apart from measuring resistance, one of the other uses of the k ohms ranges is to make simple checks for continuity, and to test diodes.

DIODES

When testing diodes it is essential to bear in mind this very important fact: The RED Probe is NEGATIVE and the BLACK Probe is POSITIVE.
This comes about because of the need to keep the negative terminal of the meter movement permanently connected to the negative probe. The construction of the meter and the switching arrangements are made much simpler by this means. Referring to Fig. 4 should help to make it plain. Over the years this polarity reversal has been accepted as "standard" and all conventional analogue multimeters are the same. Digital meters and electronic meters, however, have more complicated switching arrangements and, as if to add to the confusion, have their positive output on the red probe for ohms measurement. If in doubt the best way is to keep a known diode handy. Usually resistor values are measured by first removing the resistor from circuit.
In-situ measurements can be made but often the readings will be low because of other components forming parallel paths. This is particularly so in circuits with transistors and i.c.s. For example the value of R 7 in Fig. 2 could be measured in theory by connecting the probe between points (D) and (d).
With the black probe on (d) and the red probe on (D) a correct reading could be obtained, but with the probes reversed a parallel path via R8 and the base-emitter junction of TR2 is introduced leading to a reading nearer to 15 k .
In a situation like this where one way the resistance is lower than the other way, it is always true that the higher value is nearer to the correct reading.

If the resistance reads the same in both directions it is probable that the value is correct, but by no means certain, because there could be purely resistive parallel paths in existence.

A final note on resistance ranges: Make sure that the circuit is switched off whenever resistance measurements are made. A glance at Fig. 4 shows that on the resistance ranges all that exists between the probes is a battery and the range resistor. Connecting a power supply across this unlucky combination is a frequent source of smoke as the range resistor is destroyed. Luckily the meter movement itself is usually adequately protected by R1, but it's better not to put it to the test.

CURRENT MEASUREMENTS

Current measurements are made by breaking the circuit and inserting the meter. Whilst voltage is measured across components current passes through them.

The multimeter current ranges circuits are shown in Fig. 5. As with the voltage circuit the current circuit is very straightforward. The three resistors are known as shunts because that is their function.

Fig. 5. Circuit diagram of multimeter Current ranges-1A; 100mA and 1 mA .

For example on the 1 mA range 950 microamps flow through the shunt resistor whilst 50 microamps flow through the meter. On the one amp and 100 mA ranges the same principle applies, with all but 50 microamps flowing in the shunt resistors. To calculate the value of the shunt resistors (here comes some more arithmetic) the meter movement resistance needs to be known. In the case of most standard 50 microamps meters this is 2 k . The value of the current that must flow in the shunt if first calculated e.g. for 1 mA the shunt current is 1 mA minus 50 microamps which equals 950 mi croamps. The shunt value can then be worked out as follows: Shunt value $=$ meter movement current times meter resistance divided by shunt current.

For 1 mA this gives: 0.00005 times 2000 divided by 0.000950 which gives

105 ohms. The other shunt values are one ohm and 0.1 ohm for the 100 mA and 1 A ranges respectively.

The measurement of the power supply current of the main circuit board of the Infra-Red alarm in Fig. 2 is taken by breaking the circuit at point (1) and inserting the meter. When measuring an unknown current it is wise to start with the highest range (in this case one amp) so that the meter is not overloaded. The range switch can then be advanced until the best range is reached. The alarm circuit takes approximately 20 mA so is best measured on the 100 mA range.

SERIES RESISTANCE

When the meter is put into the circuit it adds another series resistance which has some effect on the current being measured. In this instance when set to the 100 mA range the meter shunt resistance one ohm is added to the circuit. With 20 mA flowing a resistance of one ohm produces a voltage drop of 20 millivolts. This is not significant in 10 volts, but there are sometimes situations where the extra voltage drop of a meter can have a significant effect. An example of where meter resistance begins to cause problems is given when measuring the current in the Infra-Red emitter circuit (point ($\mathbb{K}^{\text {) }}$. The current is not continuous but instead is a series of pulses of approximately 0.5 amps with a markspace ratio of 100 to 1 . The average current is therefore 0.5 divided by 100 or 5 mA .

Connecting the meter into circuit adds an extra one ohm to the 150 hms already present (R4) and so the pulse current is reduced. The average current reading will be lowered from 5 mA and will read one part in 15 lower than the true value.

Another problem encountered when inserting a multimeter into power supply circuits is that sometimes even a small extra resistance can cause severe

The naw breed of multimeters now boast ranges with digital displays. The very latest Metex M-3650 from Crotech a/so has special facilities for testing transistor hFE, measuring capacitors (2000pF to 20رF) and for taking frequency measurements up to 200 kHz
Crotech Instruments 20480301818
instability and violent circuit oscillation. In these conditions the meter reading will be quite different from the true circuit current. In general, current measurements are relatively troublefree and accurate, without the huge errors that can occur when making voltage measurements.

A.C.
 MEASUREMENTS

So far the voltage and current measurements made have all been in d.c. circuits. Another essential requirement is to be able to measure alternating currents and voltages, particularly at mains frequency. The usual way to achieve a.c. measurements is simply to put a diode in series with the meter. The meter is thus fed with a half wave rectified signal which it averages to produce a constant reading. A separate set of series resistors and current shunts are required so that the meter reads correctly.

In most meters it is assumed that the a.c. signals being measured will be sine waves and that the frequency is in between 10 Hz and 5 kHz . Some better meters give a wider frequency range. In general the meter manufacturers take some liberties with a.c. measurements, particularly a.c. current, based on the fact that the main use of such ranges is to measure power supply voltages and currents where an error of up to ten per cent can be acceptable. High quality expensive multimeters have elaborate a.c. ranges often using special transformers to step up the voltage so that the rectifier circuits can work to their very best.
The main problem encountered when taking a.c. measurements is that any departure from a sine wave signal will produce inaccurate readings. A square wave and a pulse waveform will both give strange readings, and as the waveform is not usually known to the meter user it is very hard indeed to get meaningful results. It is safest to stick to reading mains frequency sinewave signals, and leave the rest until an oscilloscope is available.

CONCLUSION

Having spent most of this article discussing the drawbacks and limitations of multimeters I think I should say that I find my multimeter to be indispensable. There are very few circuits that can't be examined or repaired with its aid. My toolkit is now much more extensive than 25 years ago when that first multimeter arrived, and in those years the changes in electronics have been incredible. Sadly I no longer have the original meter-I dropped it downstairs some time ago, and before that I blew the 20 ohm range resistor by trying to measure a power supply voltage with the meter set to k ohms.

SHOP TALK

 BY DAVID BARRINGTON

Catalogue Received

With the possible call on the stocks of one of Europe's largest component suppliers, they claim to carry a bank of over 30,000 parts, Smith Electronics have issued a 100-page "International Electronic Catalogue" entitled Electronic Actuell.
With items ranging from circuit boards to complete kits, the catalogue is fully illustrated and contains special "buy line" panels. It also lists test equipment and computer peripherals
Although all descriptions are in English, the prices are given in Deutsch Marks. Even so, the catalogue is free to EE readers and is well worth adding to the book library. To obtain a copy, send a large (A4) stamped, addressed envelope to: Smith Electronics, Dept EE, 157 Chapel Street, Leigh, Lancs WN7 2AL. (1) 0942 606674).

Kits and Modules

Knowing the amount of interest we received when, a few years ago, we published a design for a Digital Rule working on "doppler shift principles", readers might like to explore the possibilities of the latest "Distance Measuring Instrument" from Xen-Electronics of the Isle of Wight.
The EE Rule was only capable of measuring fairly short distances whereas the Xen module, working on similar principles, is claimed to be capable of distances, between two parallel objects, of up to 26 ft . With the addition of an optional display board the unit will give a digital readout of distance measured.
By adding a low cost ($£ 2.95$) parabolic reflector it is claimed that distances up to 65 ft have been achieved.
Ideal for DIY enthusiasts for measuring a room for either wallpapering or carpeting, the Xen instrument could also be used for robotics, height gauge or even vehicle reversing applications. Another application that springs to mind, is that by using several "reflectors" strategically placed around a room or valuables it might form the basis of an intruder alarm.
The basic kit, comprising printed circuit board, components and ultrasonic transducer, costs $£ 22.95$ plus VAT (built and tested $£ 34.95+\mathrm{VAT})$. The kit price for the I.c.d. Display Board is $£ 13.95$ plus VAT ($£ 17.95$ +VAT ready-built). The Parabolic Reflector costs $£ 2.95$ plus VAT. A postage and packing charge of $£ 1.15$ per order must also be added.
For further details of the Distance Measuring Instrument contact: Xen-Electronics, Dept EE, Unit 4, Samuel Whites Estate, Medina Road, Cowes, Isle of Wight PO31 7LP. ($\mathbf{P} 9083$ 292847).
One of the latest excellent bargain modules from Greenweld Electronics is a low voltage power supply claimed to be
capable of operating at up to 2 A output.
The Astec type AA7271 is a six transistor, "switched mode" power supply module built on a neat, 50 mm square, printed circuit board. The circuit will accept low voltage inputs up to 24 V d.c. and give a stable 5 V d.c. output at up to 2 A . The circuit also incorporates current overload protection, thermal cutout and excellent filtering.
The Astec AA7271 switched mode power supply module is being offered at an all inclusive price of just $£ 5$. For further details of their many other "summer specials" contact Greenweld Electronics, Dept EE, 443 Millbrook Road, Southampton, SO1 OHX. ($\mathbf{S} 0703772501$).

CONSTRUCTIONAL PROJECTS

Electronics Analogue/Digital Multimeter

The low noise diodes used in the prototype Electronic Analogue/Digital Multimeter were types BAS45. Provided that they are "classed" as low noise, almost any gen-eral-purpose or signal diodes should work in this circuit. However, there may be slight variations in meter performance from device to device.

Digital panel meter modules are now stocked by quite a few companies and, provided they will operate from a 9 V supply, readers should not experience any difficulties in selecting a suitable display module. The module used by the designer was a $3 \frac{1}{2}$ digit LCD type, with 10 mm display digits, stocked by Magenta.

A complete kit ($£ 44.72$), including the printed circuit board, is available from Margenta Electronics, Dept EE, 135 Hunter Street, Burton on Trent, Staffs DE14 2ST. Add $£ 1$ for $\mathrm{p} \& \mathrm{p}$ per order. The printed circuit board is available from the EE PCB Service, code EE579 (see page 516)

Car Overheating Alarm

Most of the parts required for the Car Overheating Alarm appear to be standard components and should be available, "off-the-shelf", from most of our advertisers.

However, a couple of items may possibly cause local sourcing problems.
The glass bead thermistor type GL16 used in the prototype is currently listed by Maplin, code WH23A. This thermistor has a resistance of 1 Megohm at $20^{\circ} \mathrm{C}$ and a maximum operating temperature of $300^{\circ} \mathrm{C}$. The GL16 seems to be rather expensive at $£ 4.95$ and other bead thermistors may be used, provided they are capable of operating within the range of the above characteristics.

Finally, be sure to use the light-duty automobile type cable and connectors were specified. These items should be available from most car spares shops.

Burst Fire Mains Controller

We cannot foresee any component buying problems when ordering parts for the Burst Fire Mains Controller. Note that the capacitor C1 is a 250 V a.c. suppression type and it is important to point this out when ordering.

The mains transient suppressor VDR1 should be available from most component stockists and should not prove difficult to purchase. The one in the author's model was purchased from Maplin. Also, be sure to ask for a potentiometer with a plastic spindle when ordering VR1.

The printed circuit board is available separately through the EE PCB Service, code 578 (see page 516).

Noise Gate

A couple of items need special attention when ordering components for the Noise Gate.

When ordering the front panel mounted potentiometers, VR1 and VR2, be sure to specify "logrithinic" types. Also, note that the working voltage rating of the capacitors is a minimum rating and should not be less than that specified, particularly C6. It is quite in order to use types which have a higher working voltage rating.

Some readers may experience difficulty in locating a suitable p.c.b. mounting mains transformer for this project. The one used in author's prototype is a Colne type (code 3543) and was purchased from MS Components Ltd., (tel: 01-670 4466) Cat No. 700. Although it may need to be "hard wired" to the p.c.b., it should be possible to use one of the many excellent mains transformers stocked by advertisers, such as Barrie Electronics (01-555 0228).

The printed circuit board for this project is available through the EE PCB Service, code EE577 (see page 516).

Personal Stereo Amplifier

All components for the Personal Stereo Amplifier are standard items and should not cause any purchasing problems. The 2 W power amplifier i.c., type TBA820M, is a fairly popular device and is listed or stocked by practically all of our advertisers.

The loudspeakers can be mounted in almost any type of enclosure, the prototype use two plastic instrument cases with battery compartments, and the final choice is left to the individual constructor. The case should have enough room to take the circuit board and speaker. Existing enclosures can be used if they are rated at 8 ohms.
We do not expect readers to experience any component buying problems for the Exploring Electronics project or the Light Pen-this month's On Spec project.

THIS month's constructional project provides users with a simple five-key keypad which can be used for control applications and also makes an excellent alternative to a conventional joystick for fast moving games by providing "fingertip" rather than "lever yanking" control! We begin, however, by describing some simple software routines and interface circuitry for use with the five channel optically isolated input interface described last month.

Five-bit Input Interface Software

In last month's On Spec I glibly mentioned that the state of the five input channels of the optically isolated interface can be more easily sampled from machine code than from BASIC. The reason for this is simply that the Z80 instruction set conlains a number of useful "bit test" instructions. These instructions allow the programmer to examine the state of individual bits within the CPU registers. Subsequent code can then branch depending upon the outcome of the bit test.
Alternatively we can simply flag the results of our bit test back to BASIC using a value returned in the BC register pair. We shall briefly examine both of these techniques but first, it is worth briefly outlining the method used to read the joystick port from machine code.

Reading the Joystick Port

The joystick port can be easily read using the following code:
OE FE joyread LD C, \#FF; Read the keyboard with
$06 \mathrm{EF} \quad \mathrm{LD}, \ldots \mathrm{AF} ; \mathrm{A} 0$ and A 12 low and the
ED $78 \quad \operatorname{IN} \mathrm{~A}_{1}(\mathrm{C})$; address in BC , then return C9 RET to the ;calling routine

The single line address decoding employed in the Spectrum ULA associates address line A0 with the keyboard such that, when both the A 0 and input/output request (IORQ) lines are taken low, the state of the keyboard is placed on the data bus. The keyboard thus has binary, decimal and hexadecimal addresses of 11111110,254 , and FE respectively. Joystick 1 corresponds to the row of keys extending from " 6 " to " 0 " which is decoded from the keyboard
matrix by taking address line twelve (A12) low (whilst all of the other upper eight address lines remain high).

To accomplish this task in BASIC we can simply use IN 61438 (A0 and A12 will both be low) but in machine code we must use the BC register pair (either loading B and C separately as in the example above or, saving one byte of code, by loading the BC register pair with EFFE in one go!). In either case we can then read the state of the port by executing an IN A,(C) instruction. Note that the contents of the \mathbf{B} register will appear on the upper eight address lines when the IN A, (C) instruction is executed and hence the data from the relevant keyboard row is then transferred into the accumulator. The five least significant accumulator bits represent the five joystick switches according to the following table:

Bit	Joystick
0	fire
1	up
2	down
3	right
4	left

Bit Testing

Now, to return to the main theme, we can examine the state of each individual channel of the five channel optically-isolated input interface we can test the state of the channel(s) in which we are currently interested by using the Z 80 BIT instruction. Suppose that we have an application in which channels 1 and 2 (corresponding to bits 0 and 1) are to be repeatedly sensed and, depending upon which channel is active we wish to make the Spectrum's border colour either red (channel 1 active) or green (channel 2 active). Furthermore, we will assume that channel 1 is to have precedence and that, if neither channel is currently active, the border should be black.

The above code is not particularly elegant but has been presented in a form which, hopefully, most readers will be able to understand. Those familiar with machine code may have spotted that there is a much simpler solution to this particular problem which does not involve using the bit test instructions. For the benefit of the curious here it is;
inport EQU \#EFFE ; Input port address border EQU \#229B ; ROM border routine ORG \#A000; Relocatable
01 FE EF readin LD BC, inport; Get ready for input, ED $78 \quad$ IN A. (C) ; fetch current port status

07	RLCA	; Shift left and
$2 F$	CPL	; invert the result then
CD 9B 22	CALL border ; drop into the ROM	

before C9 RET ; going back
The second program does almost the same as the first program and readers wanting a challenge are invited to suggest what the difference is and why it occurs!
Both demonstration routines may be tested using an assembler (e.g. Hisoft's DEVPAC) however those not having access to an assembler need not despair. Both routines have been given with the resulting object code given in hexadecimal form. To enter the code into your Spectrum all that is required is our On Spec hexloader (available in the current On Spec package). All you will need then do is to choose a suitable start address for the code (e.g. A000 hex, or 40960) and enter the hex bytes from the left hand column of the listings. Then save the program for future use before exiting to BASIC for testing. A suitable BASIC program for calling the routine would be as follows:
10 REM Five channel input port demo.
20 RANDOMISE USR 40960
30 GOTO 20
The alternative method of flagging the outcome of a bit test back to BASIC is also quite straightforward as witnessed by the following example which produces a low pitched BEEP if channel 1 is active and a high pitched BEEP if channel 2 is active. Channel 1 again has precedence and no BEEP is produced if neither channel is active:

> inport EQU \#EFFE; ; Input port address ORG \#AOOO; Relocatable

01 FE EF readin LD BC, inport; Get ready for input and ED $78 \quad \operatorname{INA},(C)$; fetch current port status.

CB 47	BIT 0.A	; Is channel 1 active?
2808	JR Z,lobeep	If so, branch
CB 4F	BIT 1,A	; Is channel 2 active?
2808	JR Z,hibeep	If so, branch
010000	LD BC, 0	; Neither is active so flag
C9	RET	; a zero and return
010100 lobeep	pLD BC, 1	; Channel 1 is active so
C9	RET	; return with 1
010 A 00 hibeep	pLD BC, 10	; Channel 2 is active so
C9	RET	urn

A suitable BASIC test program would then take the following form:
10 LET $z=$ USR 40960
20 IF $\mathrm{z}<>0$ THEN BEEP 0.1 , z
30 GO TO 10
Finally, it is worth mentioning that you don't need to have a completed five channel optically isolated input interface to hand in order to test any of these routines! For those who just want to try out the code, both programs can be tested using the " 0 " and " 9 " keys to simulate inputs on channels 1 and 2 respectively. In the case of the first two programs, if you hold the " 0 " key down when the code is running you should be rewarded with a red border. Holding the "9" key down, on the other hand, should produce a green border and, when neither key is held down, the border should revert to black. In the case of the last program,

Fig. 1. Temperature sensor signal conditioning (NB: No series limiting resistor need be used within the interface).

Fig. 2. Light level sensor signal conditioning (NB: No series limiting resistor need be used within the interface).
pressing the "0" kcy should result in a low frequency BEEP whilst pressing the "9" key should produce a high frequency BEEP. When neither key is held down, no sound should be emitted.

Temperature and Light Level Sensing

With the aid of suitable transducers and a single comparator chip, the five channel interface circuitry can easily be extended to permit sensing of temperature and light

EET069]
Fig. 3. Keypad circuitry (NB: See July EE for Spectrum Plus Two joystick connections).
levels on a simple "high"/"low" or "above"/"below" basis. Typical additional circuitry is shown in Fig. 1 and 2. Neither of these circuits is at all critical as regards layout, component tolerances, or adjustment and a wide range of commonly ávailable temperature and light level sensors will operate successfully in this configuration.

Five-key keypad

The five-key keypad is designed to replace the five switches fitted to a standard joystick. The minimal circuitry of the fivekey keypad is shown in Fig. 3. The switches are low profile p.c.b. mounting types which are fitted to a small piece of 0.1 inch matrix stripboard following the layout shown in Fig. 4. The keys should be arranged so that they fit comfortably below the user's fingers and the spacing should be adjusted accordingly.
The matrix board assembly should be mounted in a small plastic case (that used in the prototype measured $112 \mathrm{~mm} \times 62 \mathrm{~mm} \times$ 31 mm). The switches are connected to the joystick interface by a length of multi-core cable terminated with a female nine-way D connector (connections given in July's instalment of E.E. or send for our Update).
If you have any comments or suggestions or would just like a copy of our On Spec Update, please drop me a line enclosing a large (at least $250 \mathrm{~m} \times 300 \mathrm{~mm}$!) stamped addressed envelope. Mike Tooley, Department of Technology, Brooklands Technical College, Heath Road, Weybridge, Surrey KT138TT.

Fig. 4. Suggest keypad layout using low profile p.c.b. mounting switches.

Next month we shall be describing a versatile counter/timer interface based on the Z80-CTC. We shall also have some further notes for those wishing to incorporate machine code routines within their own programs.

NEW FREQUENCY ALLOCATIONS

Despite my gloomy prognosis last month on the possibility of the future reductions in the amount of radio spectrum allocated to radio amateurs-arising from the DTI sponsored report "Deregulation of the Radio Spectrum in the UK"there is some good news for the moment.

The DTI has announced that as from 1 st June, 1987, both the 50 MHz and the 70 MHz amateur allocations are expanded and, even better, these bands are now available for use by class B licensees

The 50 MHz band, covering 50.000 to 50.500 MHz was made available to amateurs from 1st February, 1986, following a trial period with a limited number of authorised stations, as was reported in this column in February and April, 1986. Now the band has been expanded to cover 50.000 to 52.000 MHz , although there are still restrictions on the power and the type (and height) of antenna to be used, to avoid interference to television transmitters which are still operating on these frequencies in Europe.
UK amateurs have "primary" status on 50.000 to 51.000 MHz and "secondary" status on 51.000 to 52.000 MHz , meaning that operation in the latter is subject to not causing interference with other services. A further relaxation is that portable (/P) or temporary premises (/A) operation is now permissible, although mobile $(/ \mathrm{M})$ is still not allowed on this band.

The 70 MHz band was previously 70.025 to 70.500 MHz , and is now expanded to 70.000 to 70.500 , remaining unchanged as a secondary allocation.

ENTER THE "B' LICENSEES

While the extra spectrum allocation is good news, the bignews from the amateur point of view is that class B licensees, representing nearly half of all licensed amateurs in the UK, who were previously restricted to frequencies above 144 MHz , can now use these two lower frequency bands.

Class B operators now have the opportunity to obtain long distance (DX) contacts far more often than they have on the v.h.f. bands previously available to them. Many countries of the world have amateur allocations at 50 MHz , although there are not many in Europe. Even in low sun-spot conditions there are occasional "openings" permitting contacts with the USA and Canada, and as conditions improve during the new sunspot cycle B licensees previously delighted with the occasional "lift" conditions across Europe on two metres, will enjoy rare and exotic DX around the world.
On 70 MHz , the situation is different. It has never been a popular band with A licensees except for contests, because only the UK, Gibraltar, and Eire have regular allocations.
Many B licensees may find, however, that they get better inter-UK results than
on two metres, covering greater distances with lower powers and more modest antennas. This could now become quite a popular band, with increased activity attracting even those who previously spurned it.

TIME-BOMB!

So its good news all round this month, and the Radio Society of Great Britain is to be congratulated on obtaining these valuable new concessions for amateur radio. But in the midst of their euphoria they would do well not to ignore the time-bomb quietly ticking away in the corner-the recommendation to the government by management consultants (reported last month) that far from amateurs having additional spectrum allocations, they should have less. At the risk of being called a misery-bags, I can't help wondering how long it will be before I find myself reporting not additions, but reductions in amateur frequency allocations!

AMATEUR RADIO FOR THE HANDICAPPED

Sometimes when I work other amateurs on the air they will mention in passing that they are "white stick" (i.e. blind) operators, or that their equipment has been modified to help them overcome some form of handicap.

Quite often, local amateurs will have helped them study for and pass the Radio Amateurs Examination (RAE), erect their antennas, and instal their equipment. They sometimes go on to say just how much amateur radio has expanded their immediate horizons, and how helpful they find it.

They need not have told me any of this, and if they hadn't I would probably have never known their situation. This is the great advantage of amateur radio for the handicapped-in most cases they can meet other amateurs over the air on equal terms. Whatever their disability, means can usually be found for them to put out signals sounding no different to anyone else's.

Although such operators rarely need help to actually operate their stations, they do need help or advice in setting them up in the first place. To this end, The Radio Amateur Invalid and Blind Club (RAIBC) was founded in 1954 as a self-help organisation to enable blind and handicapped people to pool their knowledge and skills, and to benefit from each other's experience.

HELP AVAILABLE

The range of assistance to help with particular disabilities is wide. For those studying for the RAE, cassettes of textbooks are available for the visually handicapped, and special arrangements are made for those who are blind, or unable to travel or write, to take the RAE orally (or to take the Morse test) in their own homes.

Once they have their licences, devices are available to help those with limited sight, for instance, to tune their equipment aurally instead of visually. Other disabilities can be overcome-even deafness-by adapting standard equipment to suit needs of most individuals, and when speech itself is difficult Morse code operating, sometimes with special keying arrangements, comes into its own.

Members of RAIBC keep in touch with each other through the Club's magazine Radial, and through regular "nets" on the air. The magazine gives news of members and their activities, future events, details of equipment for sale or wanted, and other relevant information for handicapped amateurs.

There are Club nets on the air every day of the week, including an international one on 14.290 MHz on Thursdays at 1400 hours and Saturdays at 0730. Apart from licensed amateurs there are many listeners to these nets, often also handicapped in some way, and the exchange of news and views which takes place is widely disseminated to an appreciative audience.

While members help each other and undertake a good deal of fund-raising themselves, the RAIBC also receives valuable support from non-handicapped amateurs. Clubs and other organisations donate money, some regularly, while individuals act as helpers to members in preparing for their examinations, installing, modifying or reparing equipment, and providing general support and encouragement where needed.

There is a continuing need for such help, which is always much appreciated. If you feel you could assist in any way, even if you are not a licensed amateur, please contact RAIBC, 9 Conigre, Chinnor, Oxon.

Members operating a special event station during an RAIBC "open day" at the Wedgewood Electrical Collection, in Christchurch, Dorset, last year.

CIRCULAR RADIO CONTROL MOVIT KIT £16.95 including VAT and postage

This fascinating unit will provide hours of interest and pleasure. The Circular Movit consists of two large wheels each independently driven by an electric motor and gear train; these are housed in discs between the wheels. A battery pack and the control electronics are housed in plastic domes fitted to the outside of each wheel. The whole unit is controlled from a hand held radio control transmitter.

The Movit comes as a kit of parts plus full instructions for assembly - the electronic control units are supplied built and tested. Enjoy building it, be fascinated by operating it!

EE Movit Offer, Commotion Ltd., 241 Green Street, Enfield, Middlesex EN3 7TD. Tel: 01-804 1378.

MARK Stuant

A versatile test instrument for the workshop

The design of an Electronic Analogue/ Digital Multimeter was a very interesting exercise in compromise. During the course of its development a great deal of respect was gained for the designers of what were considered to be "ordinary" commercial instruments.
The basic electronic circuit for Voltage, Current, Resistance, and A.C. Measurements are fairly easy to deal with when taken individually, but combining them into a compact hand-held unit with a single range switch is another matter.
After some thought, it was concluded that the only solution suitable for home construction would be a "bench" meter and to incorporate a number of separate range switches. The idea of a single multi-pole multi-way switch was considered, but the price, and the complicated wiring that would be necessary completely ruled this out.
Two advantages of using separate range switches are that the switches can be printed circuit board mounting types--so eliminating wiring and wiring error and that parts of
the circuit can be built separately and used individually in other applications.

The "indicating device" specified is a panel meter with a $100 \mu \mathrm{~A}$ sensitivity. This is modified by means of a series resistor to read $0-1 \mathrm{~V}$. Almost any standard panel meter can be used, or instead one of the new digital panel meter modules could be added.

The overall performance of the meter is very good, its frequency range when measuring a.c. voltages and currents is good up to 50 kHz and the input impedance of 10 Megohmns on all voltage ranges gives good accuracy in high impedance circuits where a normal analogue multimeter would be useless.

In addition to the standard range the meter has an "A.C. Millivolts" circuit which allows audio frequency measurements from 3 mV r.m.s. up to 1 V and is very useful for testing amplifier signal levels, microphone and pick-up outputs, frequency responses and general signal tracing.
The resistance ranges have the benefit of a linear scale that reads from left to right instead of the usual non-linear, reverse reading scales, also the probes are correctly polarised-that is red is positive-when making Ohms checks. All resistance measurements are made at a maximum of 100 mV so in-situ measurements will not be affected by transistors, i.c.s and diodes in the circuit.

Other features are that the meter is protected from overloading by a fuse and electronically, and measurements up to 1000 V and 10 A a.c. and d.c. are possible. The meter is built in a fully insulated case for safety.

CIRCUIT DESCRIPTION

The full circuit diagram for the Electronic Analogue/Digital Multimeter is shown in Fig. 1. For clarity each section will be described separately.

VOLTAGE

Inputs for voltage measurements are applied to the voltage divider chain made up of resistors R2 to R7. Voltage ranges are selected by Sla, which taps off a proportion of the input voltage from the divider chain and passes it to IC , the input amplifier circuit.

On the 1 kV range an extra resistor (R 1) is added to the top of the divider. To avoid having high voltages on the circuit board this resistor is made up from a series combination of values which are sleeved and mounted in the lead to the 1 kV terminal (SK3).
The input impedance of the circuit is set by the total combined value of R 2 to R 7 which is 10 Megohms. In order to make accurate measurements on all ranges it is essential that the input amplifier circuit has an impedance which is in excess of 50 Megohms.
Use of a f.e.t. input amplifier i.c., TL071, and careful board layout ensures that this is achieved. ICl does not have any gain, but it acts as a buffer circuit with a very high input impedance and a low output impedance.

From IC1 the signal passes to a second amplifier stage IC2 via resistor R32. S1b switches resistor R33 in and out of circuit on alternate ranges to give the $3 \mathrm{~V}, 30 \mathrm{~V}$, and 300 V ranges.
The combination of resistors R32 and R33 is such that the signal is reduced by 3 to 1 on each of these ranges but remains unaltered on the $1 \mathrm{~V}, 10 \mathrm{~V}$, and 100 V ranges. The amplifier IC2 has a gain of 10 and its output is applied to the meter movement via switch S 5 when d.c. measurements are selected.

A.C. VOLTAGE

The circuit as far as the output of IC2 is identical for A.C. and D.C. ranges. Capaci-
tors $\mathrm{Cl}, \mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 4$, and C 5 correct for the effects of stray capacitance and maintain a level frequency response to above 50 kHz .
When a.c. measurements are made the meter is connected via switch S 5 to the ouput of the rectifier circuit IC5. This circuit takes its input from IC2 and produces a half-wave rectified ouput which is averaged by the meter movement to give a steady d.c. reading.
Diodes D3 and D4 in the feedback loop around IC3 are connected so that on negative half-cycles the output stays at 0 V , but positive half-cycles are passed normally with a gain of just over 2 .
The value of gain is selected so that the meter reads the average value of the incoming signal and indicates the correct (r.m.s.) voltage. As with all meters the accuracy of a.c. readings depends on the signal waveform. Sine waves are the most frequently encountered and so the meter is set to read correctly for these.

Diodes D7 and D8 across the meter protect it from being overdriven when switching ranges etc. Diodes D1 and D2 provide similar protection for IC1.

CURRENT

On the Current range the shunt resistors R8 to R13 are connected in circuit by S3a and the voltage across them read by the standard voltage circuits. S2a selects the value of shunt resistor and S 3 b makes the connection between the shunt resistors and the input of ICl .
The values of the shunt resistors are selected to drop 100 mV at the full scale current. A shunt of one ohm will give full scale reading on the meter when a current of 100 mA is passing and so on.
For the 10 A range a shunt value of 0.01 ohm is required. This is made from a length of wire connected directly between the 10A socket (SK4) and the negative (Common) socket SK2. This is necessary because the
range switch is only rated at 1 A , and the p.c.b. copper tracks would have to be huge to carry 10A comfortably.
The a.c. and d.c. current measurements are treated by the amplifier section in exactly the same way as voltages. The current ranges increase in direct decades (x 10) so that the use of S1b is not involved. Switch S3c ensures that this is switched out of circuit on all ranges except voltage.

RESISTANCE

Resistance is measured by passing a known constant current through the resistor under test and measuring the voltage drop across it using the standard voltage circuits.
The current source consists of IC4, transistor TR1, and associated components.
A reference voltage of 5.6 V from Zener diode D5 is connected to the non-inverting input of IC4. Negative feedback around IC4 via TRI and resistor R42 works in such a way that the emitter voltage of TR1 is made

COMPONENTS

Resistors	
R1	$23 \cdot 3 M(2 \times 10 M+1 \times$ 3M3 in series 5 per cent)
R2	$9 \times 1 \mathrm{M}$ (in series-see text)
R3	750K
R4	150K
R5	75K
R6	15K
R7,8,33,37	10K
R9,22	1 K
R10,30,42	100
R11	10
R12	1
R13	$0 \cdot 1$
R14	560
R15	5K6
R16	56K
R17	560K
R18	5M6
R19	56 M (series combination-see text)
R20	16
R2 1	300
R23	270
R24	3K
R25	11k
R26	43K
R27	3K3
R28	10M
R43,44	100K See
R29	1M
R3 1,36	$1 \mathrm{~K} 5-1$
R32	22K
R34	2K
R35	18K
R38	9K1 page 484
R39	
R40	22K
R41	2K7
R45	910
R46	8 K 6 (or value to suit meter-see text)
R(10A)	0.01 Ohm made from resistance wire (see text)
All 0.25 W carbon except where stated	
Potentiometers	
VR1,VR2	100K Horizontal
	Preset (2 off)
VR3	22K Horizontal Preset

Fig. 2. Component layout on the printed circuit board. Note that the long link wires should be made with plastic insulated connecting wire, see photographs.

Capacitors

C1
C2
C3
C4
C5
C6
C7
C8
C9,C11
C10,C12

C10,C12
C 13
Semiconductors
D1,02,D7,D8
D3,04
D5
D6
TR1
4.7 p axial 500 V

22 p ceramic 50 V
220 p ceramic
2,200p polystyrene
$10 p$ ceramic
in ceramic
$1 \mu \mathrm{~min}$ layer 100 V
$0.22 \mu 100 \mathrm{~V}$
100n disc ceramic 50 V (2 off)
15p ceramic

BAS45 low leakage diodes (4 off) low leakage diodes (4 off)
0A90 (2 off)
5 V 6 Zener diode
1N4001
BC214

IC1,IC2,IC4
IC3,IC5
Switches
S1,S2
S3
S4
S5,S6

TL071 (3 off)
LF356N (2 off)

2-pole 6-way, make-before-break (2 off)
3-pole 4 -way
1-pole 12-way, make-before-break
DPDT Min. slide switches (2 off)

Miscellaneous

$100 \mu \mathrm{~A}$ Panel meter 1.4 k resistance (see text); 8 -pin i.c. sockets, 5 off; fuse, 1 A Q.B; 20 mm chassis fuseholder; knobs, four with coloured caps; case, with insulated front panel; 4 mm sockets, 4 off; insulated jack socket (with N/C switch); test leads and probes, 2 off; PP3 battery clips, $6 \times$ AA battery holders, 2 off. Printed circuit board, available from EE PCB Service-Code EE579 (see page 516)

Fig. 3. Full size printed circuit board foil master pattern. This board is available from the EE PCB Service.

equal to this reference voltage. This means that 5.6 V appears across whichever emitter resistor is selected by S 4 .
This constant reference voltage across a fixed resistance value gives a constant current output at the collector of TR1. As the reference voltage is 5.6 V a 5 k 6 range resistor gives a current of 1 mA . The standard voltage circuit, which is connected via S3b, gives full scale deflection for 100 mV . A range current of 1 mA thus gives a full scale reading of 100 ohms. Low value resistors drop less voltage and so the reading is directly proportional to the resistor value.
On the higher resistance ranges the current becomes rather too small for comfort. For example on the 100 k range a current of only $1 \mu \mathrm{~A}$ is required. The 1 M and 10 M ranges require $0.1 \mu \mathrm{~A}$ and $0.01 \mu \mathrm{~A}$ respectively. A current of $0.1 \mu \mathrm{~A}$ is just about the limit of the circuit, so readings on this range will not be too accurate, and a 10 M range is impractical.

The middle resistance ranges are accurate and linear, and much easier to use than a standard meter. No compensation has been made for wiring and test lead resistance, so on the lower ranges 100 ohm and 10 ohm , an offset zero will be present when the test leads are short circuited. This value should be subtracted from any measured resistance value to give the true reading.

A.C. MILLIVOLTS

The measurement of A.C. Millivolts is made by first amplifying the input to 1 V and using the standard rectifier circuit IC3.
The A.C. Pre-Amplifier, IC5, is connected to IC3 via resistors R45 and R38. The gain of IC5 is set by the feedback resistor R43 and the range resistor selected by S2b. The values of resistors R20 to R28 are chosen to given ranges of 1 V 300 mV , $100 \mathrm{mV}, 30 \mathrm{mV}, 10 \mathrm{mV}$ and 3 mV . The frequency response is level up to 100 kHz except on the 3 mV range where it is slightly lower.

When making measurements on the mV range the input of ICl is connected to 0 V by S3b so that stray inputs do not interfere. In a similar way the input of the mV range is shorted out when the input lead is disconnected by use of a switched jack socket (JK1).

The input impedance on this range is set to 100 kilohms by the input resistor R44.

POWER SUPPLIES

The Multimeter circuit consumes very low current, but as meters tend to be used frequently it is recommended that two sets of six AA cells are used. These can be standard or re-chargeable types, and should give very long life.

Mains derived power supplies can also be used, but take care to use double insulated circuits without an earth on the output side as this could cause all sorts of problems with earth loops.

CONSTRUCTION

As the circuit is all built on a single printed circuit board the assembly is fairly straightforward. Fig. 2 shows the component layout and Fig. 3 the printed circuit board track pattern, full size. This board is available from the EE PCB Service, code EE579 (see page 516),

Begin assembly by fitting the wire links as shown. The longer links should be made with insulated wire whilst the shorter ones çan be made from offcut resistor leads.

As there are rather a lot of resistors and most of them carry the five-band one per cent colour code system it is necessary to be rather careful to get the correct values in the right places. Any errors will give "odd" ranges which may not be easy to spot as the meter may appear to be working perfectly.
Sockets should be used for all i.c.s. The rotary switches are usually supplied with loop tags for direct wiring and these must be cut off leaving as much of the straight stems of the tags as possible.
Switches S1, S2, and S3 will fit more than one way round, so take care to set them fully anticlockwise and use the "flat" of the shaft as a guide to get them right. Remember that the pointer on the knob is exactly opposite the flat on the spindle. If you get it wrong and don't want to unsolder the switch, screw fix knobs are a good alternative way out.
Capacitor Cl is mounted between two distant points-its leads must be sleeved and may need extending to fit the board centres. Make sure that all diodes, and capacitors C9 and Cl1 are the right way round.
The final component to be fitted to the board is the fuseholder which is fitted to the track side to keep easy access to the fuse. Once the board assembly is complete connect the necessary wires to the board. The mV input should use screened cable, the other input socket connections should be made with $16 / 0.2$ wire
Resistors for the 1 KV socket should be fitted in a length of sleeving between the board and the input socket. The 10A shunt is made from a 71 cm length of $18 \mathrm{~s} . \mathrm{w} . g$. enamelled wire connected directly between the 10A socket and the negative (Com) socket SK2. The wire can be loosely wound on a flat piece of insulating material (e.g. Paxolin).
The wiring diagram Fig. 4 shows how the shunt can be fitted and the wiring to the other parts of the board from the sockets.

TESTING AND SETTING UP

The thorough testing of a meter of this type presents quite a problem. The wide range of accurate voltages and currents necessary to check each range fully is not likely to be available even in electronics workshops. The best way is to make comparisons with other meters using whatever sources of voltage and current are available. It is possible that a local training centre, school or college will be able to help, so ask around.

Fine tuning of capacitor values $\mathrm{C} 1, \mathrm{C} 2$, $\mathrm{C} 3, \mathrm{C} 4$, and C 5 may be undertaken by those determined to extract the very best from the meter. These components affect the frequency response on the A.C. Voltage ranges. Capacitors Cl and C 5 in particular have a large effect and should be changed only if a good reliable sine wave source of $0-100 \mathrm{kHz}$ or more is available.

If no test gear is available it is safe to say that the meter should work accurately first time provided no errors are made in assembly.

There are three presets that must be set up to remove the zero offsets of IC1, IC2 and IC3. To do this, set the A.C./D.C. switch S5 to D.C. and the Range switch to mV . Link pin 3 of IC 2 to 0 V and if necessary adjust VR2 to zero the meter. Remove the link and if necessary adjust VRI for zero. These two are now correctly set.

Fig. 4. Interwiring details for the off-board components. The circuit board and components are all mounted on the rear of the front panel. Note the resistors "encased" in plastic sleeving, see photo opposite page.

Front panel layout and lettering. The positioning of the p.c.b. and other components is shown below.

The 10A "shunt resistor" wound around some plain board. Also shown are the two resistor leads, R1 and R46.

The completed printed circuit board ready for mounting on the rear of the front panel. The board is held in place by the potentiometer fixing nuts.

Next set the A.C./D.C. switch to A.C. and turn VR3 until the meter deflects to the right. Back of the setting of VR3 to the point where the meter just touches zero and the settings are complete.

The accuracy of the Ohms range depends on the Zener diode D5 which is specified as a five per cent component. More accurate voltage references can be obtained and substituted if required.

The value of resistor R 46 depends on the meter being used. Its value can be calculat ed easily as its function is to make the meter resistance value up to 10 kilohms. A meter of four kilohms resistance thus requires a six kilohms resistor and so on.

It is also possible to use meters of other current ratings, all that is necessary is to set
the meter and series resistor so that 1 V gives a full scale deflection (f.s.d.). Thus a 1 mA meter would need a combined meter plus series resistor value of one kilohm. A $50 \mu \mathrm{~A}$ meter, 20 kilohms; a $500 \mu \mathrm{~A}$ meter, 2 kilohms etc.
On A.C. ranges the "averaging" effect of some types of meter may be affected by the diode (D4) in the drive circuit. A 1 k resistor from D4 cathode to 0V line overcomes this and allows any type of meter to be used.

SAFETY

For complete safety an INSULATED case is ESSENTIAL where high voltage readings are to be made. It is also necessary to add some screening to the meter electronics.

The best way to combine these two functions is to use a plastic case with a metal front panel overlaid with a Paxolin insulating panel. The metal panel should be connected to the 0 V point in the circuit.

DECIBEL RANGES

The dB Range on the meter is set to be accurate on the A.C. mV Ranges. On the $1 V$ A.C. Range (mV) the 0 dB point represents the universal 1 mW in 600 ohms. Each range down from this subtracts exactly 10 dB so relative measurements are easy.

The use of dB scales is a difficult subject for beginners and it is not intended to go into details here. Hopefully, a further article explaining their meaning and use will be published shortly.

Readers-you can obtain a 5\% discount on goods from the advertisers listed using coupons cut from EE, provided you follow the rules below:
 OMNI ELECTRONICS are willing to give

GREENWELD ELECTRONICS LTD.

A full range of components at our shop in Southampton; open 9-5.30 Mon-Sat, as well as many surplus lines, all available by mail order. Bargain List free with our Catalogue. Send for your copy today, only $£ 1$ inc. post. Now even better value with EE Discount Vouchers!

RADIO COMPONENT SPECIALISTS

Amplifiers-(PA, disco, music), audio leads all types, components, capacitors, potentiometers, resistors, disco lighting, sound to light units, disco decks, disco consoles, disco mixers, echo chambers, fuzz lights. Multimeters, mains transformers, microphones, stands, leads, goose necks, speakers with or without cabinets, tweeters, mid range units, 100 V line matching audio transformers, etc

TK ELECTRONICS stock a wide range of components including triacs, ICs \& opto together with other accessories (switches, tools, multimeters, buzzers, crystals, Antex, Velleman and. Vero products, etc.). We specialise in kits for timers, disco and home lighting, remote control kits for beginners. Send s.a.e. and 50p (refundable on first order) for catalogue
a 5% discount on all orders over $£ 10.00$, excluding VAT, if a valid voucher is enclosed. We stock a wide range of com-ponents-ideal for the hobbyist. Goods listed in our catalogue are generally in stock, orders will be sent by return post. Why wait?

RULES

1. Discounts are available from advertisers listed on this page.
2. Unless otherwise stated by the advertiser, discounts are only available on orders over $£ 20$ in value.
3. Unless otherwise stated by the adver3. Unless otherwise stated by for vertiser, one voucher is required for each $£ 50$ value of the order placed (i.e. for orders between $£ 20$ and $£ 50$ send one voucher, between $£ 50$ and $£ 100$ send two vouchers, etc.)
4. Cut out vouchers (not photostats) must be sent when claiming the discount. 5 . Each voucher sent must be valid on the day of posting (i.e. it cannot be used after its expiry date).
6 . Discount is not available on "sale" or "special offer" items.
5. You must indicate on your order that the 5\% EE Readers Discount has been deducted from the payment sent.
6. All advertisers reserve the right to refuse this discount on any item supplied.

BECKER-PHONOSONICS, established 1972. Designers and suppliers of a wide range of kits for projects published in Everyday Electronics and other leading periodicals. Range includes musical and audio effects, computer controlled circuits and Geiger counters. EE discount scheme applies to all full kits over $£ 30$ goods value, excluding Geiger counters

ADDING panel legends to a project using rub-on transfers, provided it is done reasonably skillfully, can certainly make the finished unit look much more professional. Even well finished projects tend to have a home-made look about them though. Unfortunately, rub-on transfers rub off almost as easily as they can be applied, and cannot easily be given a really effective protective covering. There are alternative methods of panel labelling which can give much more professional results, and are good enough to fool many people into thinking that a home constructed project is the "real thing". On a more practical level, these alternatives give much more durable labels. In fact they give such a tough finish that the lettering is virtually impossible to damage, and it will not show any signs of wear even after the project has been subjected to many years of hard use.
It is only fair to point out from the start that these advanced systems of labelling are much more involved than applying a few rub-on transfers. Perhaps of more importance to most constructors, they are quite expensive. Some of the more sophisticated systems (particularly the brushed aluminium effect types) are so expensive as to be something that few of us can seriously consider, even for the occasional project. It could even cost more for the front panel than for the rest of the project However, there are much cheaper labelling systems, and it is these that we will consider in this article.

MASTERING THE TECHNIQUE

The panel labels under discussion here are the type that are produced by a simple photographic process. The films are not ordinary daylight types, but are ultra-violet sensitive films that can be exposed to daylight for short periods without any risk of fogging. Little special equipment is required in order to produce an exposure, but ideally an ultra-violet light box should be available. Failing that it is possible to use some other source of ultra-violet, such as a sun-ray lamp or even strong direct sunlight.

Before an exposure can be made it is necessary to have a "master" artwork from which the photographic copy can be made. It is possible to make up individual labels for the controls, etc., but it is generally easier to make up a large labe that covers the entire panel. This also gives much neater results. The first stage in making up the master artwork is to draw out the panel design onto paper. This does not need to be an exact representation of the required front panel design, and basically all that is needed are lines to indicate the perimeter of the panel, plus base lines for the legends. It is also more than a little helpful to mark the centre of each word using a short vertical line beneath the base line.
This drawing is taped to a drawing board (which can just be the kitchen table or a
piece of faced chipboard) and then a piece of tracing paper or drafting film is taped in place over it. The required design is then marked onto the film or tracing paper, including corner markings which can simply be drawn on with pencil. The lettering is produced using rub-on transfers, and these are readily available in a number of sizes and letter styles. They can be obtained from stationers, graphics art suppliers, and somie of the larger electronic component retailers. A useful range are available from shops in the W.H. Smiths chain. Some useful symbols and other panel markings are available from a few sources.
Both tracing paper and drafting film provide a surface to which the transfers will adhere well. An old ballpoint pen or something of this nature can be used as the rub-on tool, but I have always found it much easier to use the correct "spatula" tool which is available from a few suppliers of the transfers. Reasonable care needs to be taken when applying the transfers, and making a neat job of this is not too difficult provided due care is taken and the job is not rushed.
The base lines on the paper pattern make it easy to get the vertical alignment of the letters right, but more care needs to be taken with the spacing. With a little experience this can be done accurately by eye, and some transfer systems include some form of aid to accurate spacing. For the finished panel to look reasonably neat it is essential that the legends are centred properly. This is basically just a matter of counting the number of letters in each word, and then starting with the middle letter over the centre line. If the word has an even number of letters, the middle two letters should be positioned just either side of the centre mark. This does not actually guarantee perfect results since some letters are wider than others. Initially it might be as well to ignore this fact, but with experience you can learn to compensate for narrow letters (particularly the letter " i ") and wide letters such as "W"

COMPUTER GRAPHICS

These days there is the alternative of using a computer and some form of drawing or graphics programme to generate the panel design. This will only give usable results though, if the output can be produced accurately to scale, and in really
opaque ink on some form of transparent or translucent medium. There is unlikely to be any problem if the output device is a plotter, but using a dot matrix printer some form of processing will be needed in order to give a usable master artwork. For example, the design can be printed onto ordinary paper, and with a suitable copier, then photocopied into translucent film.

EXPOSURE

The materials I have used have been the "Permasign" type, and the film can be handled in ordinary daylight without any risk of it being fogged. However, it should be stored in total darkness and should not be exposed to bright sunlight. It is cut to size prior to making an exposure, but take great care not to damage the emulsion side (the dull surface). Try not to touch this surface either, as finger marks seem to be reproduced on the qeveloped film.
If an ultra-violet lightbox is available, the exposure is made in the manner shown in Fig. 1. It is probably not worthwhile buying a lightbox just for producing a few photographic front panels, but it is a more viable proposition if you will also use it when producing your own printed circuit boards. A lightbox is something that is not too difficult to build yourself, but at least two tubes are needed to give even illumination over even a fairly small area of around 150 by 250 millimetres. More tubes give a stronger light source and shorter exposure times. An essential feature is the foam pad which presses the film down onto the artwork so that a "crisp" image is obtained on the film. There is often a tenden cy for the film and artwork to shift slightly when the lid of the box is closed. To avoid this tape the artwork onto the glass panel, and then tape the film in place over the artwork. Make quite sure that the master has the transfer side facing upwards, and that the film has its shiny side facing upwards.

The manufacturer's recommended exposure times are 45 seconds for a 120 watt lightbox, and 90 seconds for 32 waṭt type. I find an exposure time of five minutes gives good results with my 16 watt lightbox. It is worthwhile experimenting with some small pieces of film to find an exposure time that gives good results with the particular box you are using.
If a lightbox is not available the alternative set up of Fig. 2 can be adopted. The base board needs to be something that has a smooth, flat surface, and a piece of good quality faced chipboard is ideal. The sheet of glass is used to press the master and film flat against one another, and the glass must not be a type which gives high absorbtion of ultra-violet rays. As the film is against the baseboard and is emulsion side up it is not feasible to tape it in place unless some double-sided tape fixed to the underside is used. However, with this set

Fig. 1. The set up when using a lightbox to make the exposure.

Fig. 2. Using a u.v. lamp or sunlight to make the exposure.
up it is not too difficult to get everything properly aligned and to then carefully place the glass in position. Take care not to disturb anything during the exposure. For reasons of safety, the edges of the glass plate should be ground to a smooth finish, or given a protective covering of some kind.

The exposure time can only be determined by trial and error, and with direct sunlight it may be difficult to obtain consistent results as the strength of the light will inevitably vary somewhat from one time to the next. An exposure time of around five to ten minutes will probably be needed. It is unlikely that satisfactory results will be obtained using daylight on an overcast day. The correct exposure time could be very long indeed, and could vary enormously from one exposure to the next. Provided the artwork is of high quality with really opaque lettering it is better to err on the long side with exposure times.
Things should be much easier using a sun-ray lamp, and consistent exposures should be obtained provided the lamp to film distance is always the same. It will still be necessary to determine the best exposure time by empirical means. Bear in mind that ultra-violet light can be harmful to ones eye-sight, and observe the lamp manufacturer's recommendations. This basically means keeping yourself and any
other living matter (plants and pets) out of the ultra-violet light while the exposure is being made.

DEVELOPMENT

A flat-bottomed dish of adequate size is needed for development of the film. Dishes sold for photographic use or for etching printed circuit boards are suitable. Sufficient developer to fully immerse the film is poured into the dish, and then the film is placed into the developer for about ten seconds. Then remove the film and place it emulsion side uppermost on the worktop. Use photographic tongs to remove the film, or only handle it by the edges. The emulsion is very easily damaged at this stage.

Next a developer pad is soaked in developer, and is carefully wiped across the film to remove the areas of softened emulsion. Note that it is the areas of film that were not exposed to ultraviolet (i.e. the lettering) that are removed. The film is then rinsed in water and wiped gently some more in order to remove any residues. Once it has been allowed to dry or has been dried with a paper towel it is ready for inspection. There will often be minor damage to the emulsion, and any minor holes or scratches will probably not show up on the finished panel. However, any serious blemishes can be repaired using some-
thing like a technical pen or an overhead transparency pen, filling in the affected areas on the emulsion side of the film. Any blemishes must be repaired at this stage and cannot be fixed later on.

FIXING

The film is fixed in place on the front panel of the project using special doublesided self-adhesive card. These cards are white on one side, and are available in a variety of colours on the other side. It is just a matter of removing the backing paper and fixing one side of the card to the front panel, and then removing the second piece of release paper so that the film can be fixed in place.

The film has its adhesive surface towards the adhesive, which should result in a panel with right-way-round lettering if the exposure has been made correctly. The panel is black with lettering in whatever colour shows through from the card. Clear material is available where something like the silver colour from an aluminium panel must show through on the letters. It is, of course, possible to have black letters on a coloured panel. This requires a negative master artwork though, and producing one of these could be difficult.

Front panels of this type are very tough due to the fact that the emulsion side of the film is facing towards the front panel. The exposed surface is the blank side of the film, and this can be cleaned and polished without any risk of damaging the lettering. The finished panels certainly look very neat and professional, and justify the extra time and expense involved in their production.

Next month we will continue in a similar vein, and will consider photographically reproduced printed circuit boards.

Robert $\mathscr{P}_{\text {enfold }}$

Developer, transfers, film, developer pads and double-sided adhesive cards

The master artwork and finished panel produced by the method described.
 ...from the wor

younc electoinic DESHMER RMAROS

Neil and Jonathan tread softly and walk off with $£ 10,000$ computer.

TWENTY FIVE enthusiastic young electronic designers, ranging from 12 to 21 years of age and representing sixteen different education institutions took part in this year's finals of the "1987 Young Electronic Designer Awards" contest at the Institution of Civil Engineers, London, last month (July). The competition challenges students to design and construct an electronic device with a possible application in everyday life.

Organised under the auspices of the YEDA Trust, a registered charity, the annual contest is sponsored by Cirkit Holdings plc and Texas Instruments Lid. Winning finalists were awarded trophies, cash and certificates which could launch them on rewarding careers in the electronics industry.
Top prize in the Senior Class carried a reserved place in the Texas graduate intake (upon graduation)-a job! In addition it carries TI sponsorship for the remainder of his/her course, at the rate of $£ 450$ per annum, and a vacation job during the summer of 1987.
The educational institution whose entrant's project was adjudged to have the most commercial potential was awarded a Texas Instruments Business-Pro computer valued at over $£ 10,000$. In addition, TI donated a "Personal Consultant Plus" development package and a week's training course in its use and operation.

Final Results

After the opening ceremonies the big moment arrived and the judges' final decisions were revealed.

Winner of the $£ 500$ first prize in the senior category went to Douglas Mackay (21) of Robert Gordon's Institute, Aberdeen for his Robotic Functional Arm. Robert was in a team from Thurso Technical College that took second place in this category last year.

Second place ($£ 250$) went to Stephen Morrison (21), Carl Gibson (18) and Paul Briggs (19) from Brunel University for their Wheelchair Controller. Third position ($£ 100$) was awarded to Morgan Metters (21) and Tim Mottershead (20) from Hatfield Poly. for their Speech Synthesiser entry.

Watched by their reacher Mr. L. Haywood (left), Ken Sanders (second left), MD Texas Instruments and TI Engineer Philip Hutson (second right), junior winners Neil (seated) and Jonathan of Wilford Meadows School get 10 grips with the School Prize of a TI Business-Pro computer. Their Digital Tyre Pressure Gauge project was considered to have the most commercial potential.

Intermediate Class

Intermediate category winner went to Paul Dagley-Morris (16) and Roger Lucas (15) of Cheltenham College and received $£ 350$ for their Animal Stress Meter.

Runner up in this section and $£ 200$ went to Jonathan Ackland (15) and William Meere (15), Cheltenham College for their Saucepan for the Blind. The $£ 75$ third prize went to David Earle (17) of Brentwood School for his Colour Recognition System.

Junior Class

Winners of the junior class ($£ 250$) were Neil Motson (14) and Jonathan Cragg from Wilford Meadows School for their Digital Tyre Pressure Gauge.
Second spot ($£ 150$) went to Ian Levy from Allerton High School for his Ladder Safety Device. The $£ 50$ third prize went to the only girl finalist, Sophia Ballarini of Hayfield Comp. School for her Water Level Indicator and Alarm project.

Paul and Roger from Cheltenham College receive their awards and congratulations from Sir John Egan, Chairman of Jaguar Cars.

Judging Panel

The 1987 awards were presented by Sir John Egan. Chairman of Jaguar p/c, who is a YEDA Trustee and the members of the judging panel were Professor John Eggleston of Warwick University; Sir Alec Morris, British Aerospace; John Wesley, Investors in Industry PLC; Richard Reisz, Editor BBC 'Tomorrow's World',

Jeffrey Archer, a special guest at the event, made a final address following the announcement of the results.

School Prize

The project adjudged to have the best commercial potential was the Digital Tyre Pressure Gauge submitted by Neil Motson and Jonathan Cragg. Their design won a TI Business-Pro Computer, worth over $£ 10,000$, for the Wilford Meadows School, Nottingham.

Senior winner, Douglas of Robert Gordon's Institute demonstrates his
Robotic Arm project to Richard Bulgin Chief Robotic Arm project to Richard Bulgin, Chief Executive of Cirkit Holdings.

Id of electronics

TUBE INVESTMENT

An investment of some $£ 15$ million in its television tube assembly plant at Durham to make it the main European production centre for high-resolution data graphic (DGD) has been announced by Mullard tubes. Part of the investment will also go into Durham's sister tube components plant at Simonstone, near Burnley.

Initially production will concentrate on 90 degree 14 -in. colour DGD tubes and by the end of 1988 is expected to reach an annual level of around a quarter of a million tubes. High-resolution $D G D$ colour tubes are used in VDUs and work stations produced by the world's leading manufacturers of computer hardware.
At present all European based manufacturers of VDUs rely on imported DGD tubes-mainly from Japan. An indigenous source of tubes not only reduces imports but also opens-up a valuable and growing export market which in Europe alone stands at around $£ 100$ million.
Data graphic colour display tubes differ from conventional colour TV picture tubes in that they are required to display a much higher-resolution picture. This is achieved by using a shadowmask with a finer pitch 10.3 compared with 0.6 for a TV tube), an extremely high-precision electron gun, tigheter controls on all glass tolerances and a specially designed deflection coil assembly.

Europe Calling

British Telecom is to play a major role in the development of a Pan-European digital cellular radio network. This follows an agreement made in Bonn between the United Kingdom, France, West Germany and Italy.
The four countries have now agreed to work towards a commercial service on the new network by 1991. This will allow customers to use their phones wherever they are in each of the four countries.
BT also welcomed assurances that the proposed Pan-European digital cellular radio system would not be jeopardised by the decision to allocate, on a temporary basis, 40 additional channels to Racal-Vodafone. The channels have been allocated on the understanding that they be returned by the end of December 1987.

Innovation Award

The Scottish Business in the Community award for innovation (SCOTBIC) has been won by East Kilbride based Fern Developments for their development work on "High-Tec" digital filters.

The award, sponsored by the National Girobank, Scotland, was presented, together with a cheque for $£ 1,000$, by HRH The Prince of Wales to Fern's Managing Director Murdo Mackay at a special ceremony in Glasgow recently.

Solar Power

Mitsubishi Electric Corporation of Japan, has developed the world's highest performance gallium arsenide (GaAs) solar cell for space use with average photoelectric conversion efficiency of more than 20 per cent.

The cell, measuring 2 centimetres by 2 centimetres, employs metal organic chemical vapor deposition (MOCVD) technology and features maximum conversion efficiency of 21.9 per cent under air mass zero condition and less deterioration under radiation in outer space. Even after 10 years of use in space, 82 per cent of its original output will be maintained

MOCVD technology allows simultaneous uniform growth of many GaAs crystals. Based on this, Mitsubishi have established the mass production
technology to manufacture 120 such GaAs solar cells at a time.

A superlattice structure of thin aluminium gallium arsenide and GaAs layers inserted under the active portion of the solar cell allowed improvement in conversion efficiency with layer thickness of less than half of the conventional cell to reduce film making cost. To minimize characteristic deterioration as a result of exposure to radiation in outer space, they also developed the technology to decrease the depth of $P-n$ junction from 0.5 to 0.3 micron.

GaAs solar cells have higher photoelectric conversion efficiency and less efficiency deterioration under exposure to radiation and high temperature compared with silicon solar cells which have so far been used in satellites.

ON COURSE

A listing of some forthcoming study courses:
Name: Radio Amateurs Course
Location: North Trafford College of Further Education
Date (Enrol.): September 2-4. 1987
Info:: North Trafford College, Tel: 0618723731
Name: Amateur Radio (C\&G No. 765)
Location: Addington High School, Croydon.
Date (Enrol.): September 19 (9a.m.-12.30p.m.)
Info.: Addington, Tel: 068941461
Name: Radio Amateurs Exam (C\&G No. 765)
Location: Hendon College, Colindale NW9.
Date (Enrol.): September 9 (7.30p.m.-9.30p.m.)
Info.: Hendon College, Tel: 01-200 8300
Name: Morse Classes and Radio Amateur Exam
Location: Croydon College
Date (Enrol.): September (7p.m.-9.30p.m.)
Info.: Tom G3EUU. Tel: 01-668 1725

London Electronics College

The LEC new series of up-dated one year full-time BTEC National Certificate courses starts from September 21. Selection of subjects available include: Equipment Servicing (TV, VCR \& CCTV)-Computing Technology-information Technology-Software Engineering.

These courses are for those wishing to update or retrain, either with Employer sponsorship (up to $£ 1000$ ATS grant aid) or for those recently taking redundancy.
Details and Prospectus: The London Electronic College, Tel: 01-373 8721

YOUNG SCIENTISTS TRIUMPH IN EUROPE

Three young British scientists won major recognition in the "19th European Philips Competition for Young Scientists and Inventors" heid in Paris recently.
From a total of 27 entrants from 14 nations, Peter Badger, aged 19, from West Bridgeford School, Nottingham, won an award of $14,000 \mathrm{FF}(\mathrm{E} 1,424$) for his computer based design for improving table tennis skills. Placed third overall, Peter's invention was praised by judges drawn from seven countries for its thoroughness in design and its commercial potential.

Youngest contestants of the competition, Andrew Sutton and Nicholas Porter, both aged 14, of Aylestone School, Hereford, won Certificates of Distinction, worth 4,000FF ($£ 407$) for their practical device to measure accurately extremely slow speeds of wire drawing in an annealing process, for Messrs Wiggins Alloys of Hereford.
(left to right) Andrew, Nicholas and Peter with their commendations.

BURST FIRE MIM MMM MIL mains controller

\square
An inexpensive controller for soldering irons, and other low power heating devices-also useful as a lamp flasher.

THE idea for this project arose when a new soldering iron was purchased for the author's workshop. The old iron was a fifteen-watt model, perfectly adequate for light electronic work, but sadly unequal to the occasional heavier task. It was decided that the replacement should be a twentyfive watt iron, especially as a very popular version just happened to be on "special offer" at the time.
The extra power is sometimes useful, but for lighter day-to-day work it soon proved to be an embarrassment. The bit (an ironcoated type) continually oxidised and refused to tin properly; eventually it turned blue and started to warp! Joints made with it took ages to solidify and displayed the typical appearance of overheating short, something had to be done.

BURST FIRE

The usual method of controlling light loads is by variable phase control, as used in lamp dimmers. Even when well suppressed though, these create a lot of radio frequency interference at close range, especially unwelcome where sensitive electronic equipment is being tested. As a soldering iron has a fair degree of thermal inertia, some form of "burst fire" controller seemed the best solution, as these are inherently inter-ference-free.
Since the mains supply alternates between positive and negative peak voltages at fifty hertz, it follows that it must pass through zero a hundred times a second. If the load can be switched on and off at, or very close to, these zero points, the switching device will not make or break any heavy currents so the interference generated will in consequence be negligible. "Burst fire" controllers switch loads on and off at regular intervals, the switching taking place at zero crossings. The net power delivered depends on the ratio between the "on" and "off" times.

Fig. 1a. CMOS NAND gate oscillator. Fig. 1b. Oscillator built with a "D" type flip-flop. Fig. 1c. Substitute for R1 to obtain variable mark to space output.

Switching "off" at the right moment is easy. If the drive is removed from a triac gate it will continue to conduct until the current passing through it falls to a low level, which of course coincides with the low voltage point (for a resistive load). Thus the correct "off" point is selected automatically. Switching on is slightly more difficult; the right point has to be sensed in some way and drive applied to the triac at that exact moment.
Custom chips are available for the job, but are not really suited to light loads. The reason for this is that they usually fire the triac with a very short pulse to the gate, then rely on the "on" condition being maintained by the load current. With a small load such as a twenty-five watt iron this is likely to be insufficient at the point where the gate pulse ends; for such applications a continuous gate drive is better. Fortunately
it is possible to construct an extremely simple circuit around a "D" type flip-flop which will not only generate the required variable mark-space timing function, but can be synchronised to the zero crossings through its clock input.

A common oscillator circuit that can be built with the two inverting logic gates is shown in Fig. 1a. Positive feedback is applied right around the circuit via capacitor C and R 2 , ensuring clean and positive switching. However, after each switching action, negative feedback from R1 gradually pulls the input towards the opposite polarity until another change of state takes place. R2, by the way, prevents the gate's input protection from loading the timing circuit.

In Fig. 1b the same circuit is shown built with a "D" type flip-flop. With this type of device, the " Q " output will assume the state

present on the "D" input, whilst the "Q" output will take up the opposite state. We thus have an input and two opposing outputs, so an oscillator circuit can be constructed exactly as before. However, changes of input are only transferred to the outputs when the "clock" input changes state, so this can be used to synchronize output changês to another input signal.
As shown, the output will have equal "on" and "off" periods, but with some simple additions these can be altered as desired. If a linear pot is used for RI with a couple of steering diodes, the output will have a constant frequency but the ratio between high and low states will be directly proportional to the pot setting.

CIRCUIT

The full circuit appears in Fig. 2. A low voltage supply for the electronics is derived from the mains through a series capacitor, C1, together with diodes D1, D2 and Zener D3. C2 stores and smoothes the output. With capacitive mains droppers there is always a slight risk of catastrophic failure should the capacitor fail, but in the author's experience this is uncommon, especially where protection against high voltage transients (VDRI) is provided. Capacitors are much cheaper and easier to mount on p.c.b.s than transformers!

To generate the clock signal, current flowing through R2 is passed through the transistor's base-emitter junction during positive half-cycles, turning it on. During the negative periods it flows through D4, and the transistor turns off. A logic signal synchronised to the mains can thus be taken from its collector. The i.c. used, a CMOS 4013B, actually contains two "D" type flipflops. The first of these is used as described, the output switching at about 1 Hz , with the on-off ratio being adjustable through VR1.
The flip-flops in the 4013 are also provided with "set" and "reset" inputs, which can be used to drive the outputs directly regardless of the "D" and the "clock" inputs. In the first stage these are not used so they are connected to ground. The second flip-flop is used simply as a follower to buffer "the output before it drives the triac. Its "set" and "reset" inputs are driven from the " Q "
and "区" outputs of the first stage, and the unused "D" and "clock" inputs are grounded.
The triac is a C206D, chosen for this project as it is readily available and requires less gate current than most other types. The neon lamp is optional; it provides indication that the unit is operating correctly and if, like the author, you're in the habit of forgetting to switch off the iron after a long day at the bench, the flashing will serve as a useful reminder!

CONSTRUCTION

Construction of this project is quite straightforward, so little needs to be said about it. Since live testing is difficult and a faulty component in some areas could result in a fair degree of destruction, it is a good idea to check some of the parts before insertion, in particular diodes D1 to D4. Zener D3 can be tested with a suitable voltage source, say a couple of nine volt batteries, and a series resistor of 1 k or so (R6 will suffice for this), then measure the voltage across the diode-it should be 12 V . Fig. 3 shows the positions of all the components; take care to ensure that the diodes are fitted the correct way round.

TESTING

Testing, of course, must be carried out with due regard for the fact that all of the

Fig. 2. Complete circuit of the Burst Fire Mains Controller

circuit will be connected directly to the mains and MUST therefore be treated as "live". It is suggested that a socket is used for IC1, and initially the unit should be plugged in without this i.c. It is a good idea to connect the meter probes to the points indicated before plugging in, to eliminate the risk of making contact with live parts. Begin with

COMPONENTS See
page 484
?
Resistors

Resistors	
R1	3901 wati
R2	100 k 1 watt
R3,5	10 k (2 off)
R4	1 M
R6	1 k

All 0.5W types except R1 and R2

Potentiometer

VR1	470k lin. carbon with nylon or plastic spindle

Capacitors

C1 $0.47 \mu \quad 250 \mathrm{~V}$ r.m.s. a.c. suppression type

C2 $\quad 470 \mu$ axial lead elect. 25 V
C3 $\quad 1 \mu$ polyester layer

Semiconductors

IC1	CMOS 4013B dual
	"D" type flip-flop
TR1	BC184L
D1,D2,D4	1N4007 (3 off)
D3	BZX61C12V 12volt
	Zener
D5,D6	1N4148 (2 off)
CSR1	C206D triac

Miscellaneous

VDR1 mains transient suppressor; printed circuit board available from the EE PCB Service, order code 578; ABS box, $120 \times 65 \times$ 40 mm ; plastic control knob; 240 V mains neon indicator (with integral resistor); 8 -pin d.i.I. socket; connecting wire; fixings etc.

Fig. 3. Layout and wiring of the controller. The earth wires from the mains input and to the load should be connected together with a screw connector-see photo
the meter connected across the 470μ capacitor C 2 , set to a range covering up to 250 volts d.c. This will protect your meter if a fault is present.

Plug in, and if there is scarcely any reading, reduce the meter range until you can see the voltage on C 2 , which should be around 11.5 to 12 volts. If this seems correct, unplug and reconnect the meter between negative and the bottom end of R3 (collector of TR1), which should read around five volts when plugged in again. This is an average reading, indicating that TR1 is switching properly. Ignore any reading present when the unit is unplugged, which will be due to charge stored in C 2 . If all appears well, it remains only to insert ICl and plug in again; the neon indicator should begin to flash at about 1 Hz , and adjustment of VR1 should vary the flashes from so brief they're just visible to so long they're very nearly continuous.

FINAL ASSEMBLY

The layout of the unit in its case is shown in Fig. 4. The "cord-grip" arrangement is a little unusual; since the unit is rather compact, there isn't space for most of the available types of cable clamp. The solution is to place a nylon 2BA or similar scréw between the two cable entry holes and tie the cables firmly to it with a couple of nylon cable-ties. This provides a compact, cheap and effective fixing for both leads. No metal parts should be exposed on the outside of the case. A potentiometer with a nylon shaft and a plastic knob must be used. The unit must be connected to the mains via a fused (3A) plug.

Fig. 4. Method of securing the mains leads.

IN USE

Though designed to control a soldering iron, this simple unit could be used or adopted for a host of other applications. It can be employed anywhere where a lowpower interference-free controller is required, for instance with an electric blanket. The specified triac is rated at three amps, permitting safe use with loads up to about 500 watts (though a small heatsink may be required above a couple of hundred watts).
Alternatively it could be used to operate flashing displays of various kinds, disco lights, Christmas tree lights, and so forth. The flash rate can easily be altered or made variable just by changing the pot connections and the value of C3. Two pots would allow independent adjustment of the "on" and "off" periods. C3 of course must be non-polarised: in practice this means that larger values should be made from two electrolytics placed back-to-back. Lowleakage types such as tantalums are preferable for this. The prototype has been tested with two 10μ tantalum beads giving a flash rate of around five seconds, with no problems at all.

LETTERS

Improving

Sir-1 have been reading EE ever since the very first issue (November 1971 and I still have it!), through the years the magazine has been featuring transistor only projects, then onto i.c. projects and now to computer projects. The magazine has improved ever since and is improving even more as the years go on, who knows we might see a project using fibre optics instead of connecting wires.
I read S. Hudman's letter in the EE July issue and agree with him that there are very limited projects for the Commodore 64/128, I would like to buy an EPROM Programmer to interface with my computer but alas they are too expensive, I would like to see this as a future project in EE but, I'm good at building projects but not designing them so this is a hint to any project designer.
I noticed that there are two features in the magazine for Spectrum and the BBC computers but none for the humble Commodore. So how about it Mr Kenward, will there be a page or half a page for us Commodore owners? I'm sure that after S. Hudman's letter was printed it will now create a flood of letters from other Commodore owners . . .

Alan Smith

Aberdeen
The Fibrealarm (EE April 85) used an optic fibre as part of a loop alarm system-another project using fibre optics is now being designed.
The "flood" of letters is now about six.

Electronics on the Curriculum

Sir-l have noticed with interest the recent correspondence about electronics in schools. As someone closely involved in teaching and examining electronics at both " O " and " A " level perhaps i could be allowed to make a few points.
(1) Electronics is most usually found in schools as modules within other subjects (e.g. Physics or CDT), only rarely is it taught as a separate subject. Whether this picture will change significantly remains to be seen.
(2) While the systems approach, where pupils of 12-13-14 assemble working electronic systems from prebuilt modular boards, is excellent for making children aware of what electronic systems are capable of and giving them some "design" experience, albeit somewhat constrained by resources, there comes a time when to progress further pupils have to be shown how to design with electronics at the "naked chip"' level. Unfortunately most modular courses do not get heavily into this area which is a pity since it is only here that pupils begin to feel "in control" of what they are doing. There is always some mystery about modular boards which able pupils are unhappy with. At the naked chip level concepts such as the potential divider, voltage and current requirements of
inputs and outputs, loading effects and interfacing come to dominate and need teaching and practical experience.
(3) At this school we have been fortunate to be able to assemble classes for fully blown courses at " O " and " A ' level and most students appear to enjoy the work. It has been interesting to note that a high proportion of those taking the senior course have decided to undertake electronics related courses at University, some with considerable distinction. I am told that they would not normally have considered electronics as a career had they not experienced it in a practical sense in the lower part of the school. This backs up your point about the need for coherent courses pre 16
(4) Hobbyists do not rule OK. The days are long since past when the supply of electronics engineers could come mainly from those who have discovered it as a hobby during their teenage years. One could claim that such people have taken up electronics in spite of their school experience. What we need now are coherent courses of real substance within which young people can discover that the subject is interesting, challenging and useful regardless of hobby interest. Being a girl's school none of our pupils would normally have electronics as a hobby nor would they call into WH Smiths to buy an electronics magazine, yet given experience of the work in school some are indeed prepared to base a career on it. Such courses already exist but many schools find it difficult to fit them into a school week. We are here up against not just the old arts/science divide of C. P. Snow but the updated tripartite divide of arts/science/technik. Electronics is of course part of technik-a concept weak in English culture and education.
(5) Physics as a discipline is in no way essential to the study of electronics and many science teachers fail to realize this. How many pupils who say "I would like to be an electronics engineer" are told "Oh-you will need strong Physics then" Whether the Universities or Colleges ask for it or not this is simply not true. Some mathematical facility is of course important but having Physics is a bonus, not an essential
(6) Do not base your case for teaching electronics on its economic value alone. Its educational virtues lie in its systems orientated thinking and the problem solving approach, together with the global applicability of concepts such as feedback and stability. If examples are needed consider the effect of opinion polls on an election outcome or the importance of systems ideas to ecological problems. We would wish to teach electronics whether there were jobs at the end of it or not. In fact I am very cynical about the current attempts to attract more women into electronics. This has only occurred because there is a shortage and not through altruism and ideas of natural equality. Should the shortage disappear will there still be the cries to encourage women?-l think not. A certain critical mass of women in the engineering professions may significantly change the tasks engineering applies itself to. Are the men in the profession ready for this? This brings me to my final point.
(7) To obtain a "good press" amongst school students electronics as a discipline must decouple itself from the arms and
weaponry industries and the issue of technologically caused unemployment. It is not just a case of emphasising medical, caring, conservationist and humanly orientated applications in publicity but actually emphasising them in fact. Having half our working engineers connected to the "nasty" end of the business is nothing to be proud of even if the most alluring or complex technology is to be found there. Do we need an Engineering Hippocratic Oath? One could claim that Physics had committed suicide by its association in people's minds with 'the bomb' and Chernobyl and one would not like to see electronics and Information Technology go the same way. At the moment the latter appear to have a relatively neutral image Will things stay that way?

We were warned nearly two decades ago about the social strains electronics developments would bring to society and the schools are now feeling some of them I do assure you that we are doing our best to cope while trying to serve many masters. A large infusion of directly targetted money to go to all secondary schools to buy equipment and teacher preparation time would go a long way towards improving the numbers taking up electronics. (We have yet to see the effects of the TVEI schemes.) As a discipline in schools it is capable of selling itself given sufficient equipment and knowledgable staff. What other suggestions do people have for getting electronics a decent slice of the curriculum.

Your own efforts to champion this cause are to be applauded.

Paul Stevenson
Physics/Electronics Dept
Norwich High School for Girls
Norwich

Teaching Experience

Sir-Although I have only subscribed to your magazine since last September, your editorial in the May 1987 issue has prompted me to write and inform you of my experience of teaching electronics.
I am a teacher of Maths and Physics at The British School in The Netherlands and have taught there since 1975. Two years ago, due to a change in our Physics syllabus at " O ' level, I was faced with the task of teaching a small amount of electronics to the fifth form. This was a topic about which, even as a Physics teacher, I knew absolutely nothing. In order to educate myself I decided to run a CEE (Certificate of Extended Education) course for a small group of sixth formers first, with the idea that we could learn together and then I would be able to teach my fifth formers properly. I used Robert Penfold's book Electronics-build and learn as a main guide and any other electronics book I could get my hands on

In the beginning it was incredibly difficult, perhaps you cannot imagine it but I still remember the problems. Here are a few examples: I did not know of the existence of "S Dec" or "Breadboard" (in fact I still don't know what breadboard really means). I did not know what l.e.d. stood for, nor what a "sieven segment display" was. Transistor numbers were very confusing, $Z T \times 300$ sounds a lot different to BC109. What is the difference between a bistable, a multivibrator and a flip flop .. etc.

However 1 pressed on with the CEE syllabus as it appeared to be suitable and it contained a fair emphasis on practical work. Being inexperienced and also unable to visit other schools to see how to run such a course, I wrote to the Examining Board for advice. I received from them a copy of their detailed syllabus notes. I did not find these notes at all helpful. My letters to the Examining Board regarding the standard of my pupils' practical project were not answered: I had to assess the projects but still do not know if, a) I assessed them fairly, b) the standard of the projects was satisfactory.

My point is that the Examining Board will award the certificates but they do not appear to have the resources to provide adequate advice or teaching material for anyone wishing to run the courses! If, at the same time as using their wisdom to compile a syllabus they prepared detailed, structured notes and a suggested teaching plan, together with a list of available equipment, then teachers like me would not find the task so daunting and would certainly make a better job of it!

Fortunately, last September (1986) I came across your magazine. Owen Bishop's Exploring Electronics series is really excellent and pitched just at the right level for my pupils. I myself find it very enlightening and I look forward to trying out the circuits each month. It contains just the sort of information I would have appreciated from the Examining Board and it provides an interesting and stimulating course. I will certainly use it in my teaching next year.

I too would like more students to be able to move into employment in the field of electronics but how do I guide them? Perhaps you can help me-I have two requests for information.

Firstly, as the CEE will cease to exist soon, can you tell me what "certificate" courses are commonly recognised in the UK and could you recommend one in particular (roughily which is equivalent to the CEE?)

Secondly, I see advertisements for "'Teach In" courses in your magazine but I do not know exactly what they are. Is it possible to buy a complete course as a package, including the computer software, or is it necessary to buy back issues (now sold out) of EE from October ' 85 to June ' 86 ? Would the software be any use on its own? I would very much appreciate any information you could send me on this matter. We have BBC computers here at school and if "Teach \ln " is at all suitable, I would like to get it organised as soon as possible.

Chris Davis

The British School in The Netherlands
"Breadboard" is derived from one form of construction of prototypes used in the early days of radio. This consisted of a wooden board into which were hammered panel pins; the circuit was then constructed on this base. Modern plug in "breadboards" are of course much neater and re-usable.

We believe the City \& Guilds courses will be of interest to you in place of CEE-see our new series starting next month.

Our various Teach-In series are aimed at teaching beginners the basics of electronics. They have been running since 1971. Teach In ' 86 will be republished as a book in the very near future-price around E2. The Teach-In '86 tapes are useful on their own as they are in the form of questions and answers on electronics theory.

Part 15 Investigating logic circuits

This series is designed to explain the workings of electronic components and circuits by involving the reader in experimenting with them. There will not be masses of theory or formulae but straightforward explanations and circuits to build and experiment with.

A^{s}StheIr name implies, logic circuits carry out a logical operation. Such a circuit may have one or more input terminals and one output terminal.

The state of the output is determined by the state of the inputs, depending on a logical rule. What the rule is depends on the "wiring" of the circuit.

Logical circuits can be built up from diodes, transistors and other components but ready-made integrated circuits give better performance at lower cost. The i.c. chosen for these investigations is the 7400 i.c. It contains four separate and identical logic gates, see Fig 15.1.
A logic gate is the logical unit out of which more complicated logic circuits can be built. Each gate of the 7400 has two inputs and performs the NAND operation. We will not try to understand "how it works", but simply to find out "What It Does".

INVESTIGATION ONE

We shall commence our investigation of logic circuits by taking a look at the operation of just one NAND gate as shown in Fig. 15.2. The i.c. needs a power supply through pins 7 and 14 . Pin 14 is connected to the positive supply and pin 7 to 0 V ("ground"), as shown in the demonstration breadboard layout in Fig 15.3. This supply feeds all four gates.

Note that the 7400 series of logic i.c.s, to which the 7400 i.c. belongs, is designed to work on a 5 V supply. A 6 V supply may be used, but never use anything higher than 6 V .

The output of the gate is indicated by the light emitting diode (1.e.d.), D1. This lights when output is "high", and is off when output is "low".
There are two inputs to which we attach flying leads, A and B. Try connecting them both to 0 V (both low), then one to low and one to 6 V (high), and finally connect both to high. Check that the behaviour of the output agrees with the Truth Table for NAND as described in the next section.

Fig. 15.1. The 7400 i.c. showing the pin connections for its four NAND gates.

LOGIC GATES

Inputs and outputs may be either "high" (for example +6 V) or "low" $(=0 \mathrm{~V}$). For convenience, we represent a high input or output by " l " and a low input or output by " 0 ". The way a logic gate behaves depends on the logical operation it is designed to perform.

Fig. 15.2. Investigating the action of a NAND gate. The numbers by the gate terminals are the i.c. pin numbers.

There are three main logical operations:

NOT (also called INVERT): There is only one input. The output is the opposite of the input. If the input is " 1 ", output is " 0 ". If the input is " 0 ", output is " 1 ".
OR: There are two or more inputs. If any one or more inputs are high, the output is high. So output is low only if all inputs are low.
AND: There are two or more inputs. If all inputs are high, then output is also high. But if any one or more inputs are low, output is low.
The action of these gates can be summarised in the following truth tables:
Fig. 15.3. Demonstration component layout for the NAND gate.

NOT		OR			AND		
Input	Output	Inputs		Output	Inputs		Output
		A	B		A	B	
0	1	0	0	0	0	0	0
1	0	0	1	1	0	1	0
			1	0	1	1	0
0							
			1	1	1	1	1

Although the diagrams and tables above show only two inputs, remember that OR and AND gates can have more than two inputs.

MORE LOGIC GATES

Three other kinds of logic gate are often used:
NOR: which is short for NOT-OR. It is equivalent to an OR gate followed by a NOT gate, so its output is the opposite of that of an OR gate.
NAND: which is short for NOTAND. It is equivalent to an AND gate followed by a NOT gate, so its output is the opposite of that of an AND gate.

EXCLUSIVE-OR: there are two inputs. Output is high when one OR the other BUT NOT BOTH of the inputs are high. When both inputs are low or both are high, output is low.
The action of the gates is summarised in the following Truth Tables:

Fig. 15.4. Another way of using a 2 -input NAND gate.

Next, using your breadboard, layout and connect up the circuit of Fig 15.5(a). Try to work out what will happen when A and B are touched (i)

NOR		NAND		EXCLUSIVE-OR	
Inputs	Outputs	Inputs	Outputs	Inputs	Outputs
A B		A B		A B	
00	1	00	1	00	0
$0 \quad 1$	0	01	1	0.1	1
10	0	10	1	10	1
11	0	11	0	11	0

INVESTIGATION TWO

Try the effect of joining both inputs of the NAND gate together as shown in Fig 15.4. Work out what you think will happen when the flying lead A is touched to (i) low and (ii) high. Try it and see. What is the name given to this logical operation? (answer p.506).
both to low, (ii) one to high and one low, and finally (iii) both to high. Try it.

Check the Truth Tables to see which logical operation these three gates are performing. (answer p.000) Repeat for the circuit of Fig 15.5(b). How could you build a NOR gate, using NAND gates?

COMPONENTS:

See Stap
 page 484

Resistors

R1, R2 180 ohm (2 off)
All 0.25W 5\% carbon
Semiconductors
D1, D2, TIL 209 or similar lightemitting diode
IC1 7400 quadruple NAND gate

Miscellaneous

Breadboard (e.g. Verobloc); connecting wire and 5 V to 6 V supply.

Approx. cost

Guidance only,
£5

Fig. 15.5. Two more ways of connecting NAND gates:

INVESTIGATION THREE

Fig. 15.6. A "flip-flop" circuit using NAND gates.
Connect up two gates as shown in the circuit diagram Fig 15.6 and the "test bed" component layout Fig. 15.7. In your previous experiments, you may have noticed that, when an input is not connected to anything, it behaves as if it was connected to high.
The two inputs A and B are both high when unconnected, as in the diagram. Now touch one of them to low. What happens? Now take it away from low again. What happens?-Maybe nothing has happened so far.

Now touch the other input to low. What happens now? Remove it from low, then touch it to low again. Does anything happen? Play around with this circuit until you have found out just how it behaves.

This circuit has the properties of a bistable or "flip-flop", like the one described in Part 7 of Everyday ElecTRONICS January 1987. It is much easier to build. It can remember which input was the last one to be made low. Bistables similar to this are used by the thousand in the memory i.c.s of pocket calculators and computers.

Try any other ways of joining gates that you can think of: try to work out what should happen, then find out if it does. You can join two or more input pins together; you can feed an output

ANSWERS

Fig 15.4 is equivalent to a NOT gate

Fig 15.5a is equivalent to an OR gate.

Fig 15.5 b is equivalent to an AND gate.

Make a NOR gate by feeding the output of Fig 15.5a to a NOT gate, made as in Fig 15.4.

Fig. 15.7. Test-bed component layout for demonstrating the action of the "flip-flop" circuit.
to up to eight inputs: but you can NOT wire two or more outputs together.
Next Month: Oscillators using logic i.c.s.

MARREF PLAGE

MICRO Ammeters, Voltmeters, ISOLtrans, 3phs motor, wattmeter, PSU, 50 volt trans. $£ 10$ the lot. Blackburn, 57 Friern Watch Avenue, Nth. Finchley, London N12 9NY. Tel: 01-445 6997
FOR SALE: Two Centronics 101 printers with manuals and spare parts $£ 280$. ono. Tel: Haddenham (0844) 291993
WANTED Elan Enterprise 164 basic cartridge or complete computer, cheaply. Mr. J.D. Crossley, "The White House" Limpenhoe, Norfolk NR13 3AL. Tel: Gt. Yarmouth 700332 .
EPROMS 27162 K blanked and fully working $£ 1$ each. David Keene, 3 Trelawny Road, Exhall, Coventry CV7 9FB. Tel: (0203) 490050 (evenings)

WANTED: Newbrain A/AD computer circuit diagram, also operating manual. S. Coppin, 3 St. Pauls Road, Honiton, Devon EX14 8BR.
WANTED: Panel meters with scales of 020V f.s.d. and 0-1A must be unscratched and same size. S. G. Phelan, 47 Doothorpe, O.P.E., Hull HU5 9HA. Tel: 0482 851244.

PRESENT address of Teleton Electronics Audio Co. or circuit of Teleton Amplifier 54Q-307. Tel: Accrington (0254) 35672. JUPITER Ace User Domain Resource Centre hardware and software projects for free. For details contact: lan Jones, 21 Dene Street, Pallion, Sunderland, Tyne \& Wear.

FREE READERS ADS

RULES Maximum of 16 words plus address and/or phone no. Private advertisers only (trade or business ads. can be placed in our classified columns). Items related to electronics only. No computer software. EE cannot accept responsibility for the accuracy of ads. or for any transaction arising between readers as a result of a free ad. We reserve the right to refuse advertisements. Each ad must be accompanied by a cut-out valid "date corner". Ads. will not appear (or be returned) if these rules are broken.

COMPONENTS, resistors, capacitors, transistors, diodes, pots, switches, cable. £10. M. Topping. Tree Court A, Owens Park, Fallowfield, Manchester M14 6HD. WANTED: Sinclair ZX81 computer in good working order preferably with instruction and/or accessories. C. C. Fowler, 32 Joselin Close, Earls Colne, Essex CO6 2SE
 Please publish the following small ad. FREE in the next available issue. I am not a dealer in electronics or associated equipment. I have read the rules. I enclose a cut-out valid date corner.

Time Warp
We all know the old adage GIGO; garbage in, garbage out. If you give a computer poor information, it will give you poor answers. We also all know the other old adage; computers don't make mistakes. it's the people who use them.

Not always. Sometimes the people who use computers are trapped by the mistakes made by others-Try these two.
Recently owners of Apricot computers wondered why their files were coming up with the wrong date and accounting systems were going up the spout. Closer examination showed that the date stored in their computer's calendar memory was 40 days and 40 nights out of step.

This can put the wrong dates on test, letters and invoices. Apricot discovered that the fault lies in the Basic Input/Output System, or BIOS, which was for several years supplied with all Apricots.

The BIOS is software which interfaces the computer's electrical circuits with the operating system software controlling all its vital functions. A battery-backed clock inside the computer is controlled by the BIOS and is supposed to keep a permanent running check on the time and date, with allowance for leap years.
For several years the Apricot clock worked properly. Then, at the beginning of March 1987, it went wrong by 40 days and will stay wrong for the next full year.

Apricot has been trying to salvage the situation by offering owners an updated version of the BIOS software. But replacing the old BIOS with the new version requires a degree of computer skill well beyond most business users. Worse still, some programs tailored to the BIOS will not work properly with the new BIOS. The keyboard is different and the screen layout changes for some programs. Some "utility" programs just aren't usable.
For these people Apricot is offering an extra program, which, when loaded into the computer, automatically back-dates the clock by 40 days every time the computer is switched on. But installing this program also requires a fair knowledge of how computers work. Fine for readers of EE but not so fine for businesses which regard computers as glorified typewriters.

Reserved Word

The MS-DOS operating system from Microsoft has now become the de facto standard for home and personal computers. So all over the world people are using MS-DOS machines as word processors.

Let's suppose you are writing an article, as I was recently, about electrical connections. When the text was written I went to save it on disc as a file named Con. The word processing program automatically put a .doc label on the end.

The word processor immediately told me that there was already a file named Con.doc on the disc. I knew there wasn't but did a directory check. This confirmed that there was no such file on the disc. So I tried to save again and the computer asked me if I wanted to overwrite what it said was already there, but I knew wasn't.

All right, I thought, if you think there is something there called Con.doc, go ahead and overwrite it. So I entered the command. Immediately the system threw up its hands in horror and crashed.
Subsequently I found that something similar is likely to happen with other short words like "aux" and "com", file names you might perhaps use when writing an article about auxiliary power supplies or common ground connections.
' O ' yes'". said a computer-wise friend, 'they are reserved words. MS-DOS uses them as basic commands, so you can't use them as file names for wordprocessing, or spreadsheets or databases."
I phoned Microsoft, authors of MS-DOS.
"O' yes, it's a well known fact", said Microsoft. "We've never had any reports of problems. Any good programmer should write the wordprocessing software round it, to warn the user"

I asked Microsoft what their own word processing program WORD did when someone tries to save a file with a reserved name. It gives a "disc full" error message, Microsoft told me.

Why not a more useful message like - You cannot use this file name, it is one of our reserved words"?
"It's a well known fact etc etc", came back Microsoft. "It always has been and it always will be. No-one uses those words for files" Not true. I did.
So here's what I am going to do. The next time I am at a trade or public computer show, with the opportunity to get my hands on equipment, I am going to go round every stand that is running a word processor program, type in a couple of words and try to save them as a test file with the file name Con. Then we'll see whether "it's a well known fact"

Speak Easy

Hi fi buffs lie awake at night, not dreaming of music, but worrying about the latest development and whether they should have it.

Over recent years loudspeaker cables have been a major source of hi fi worry. Few people dispute that it makes poor sense to use thin bell wire to carry the heavy currents at low voltage with which modern amplifiers drive modern loudspeakers.

The currents are high because modern loudspeakers are inefficient at converting electrical energy into sound. This is the penalty we pay for higher fidelity and good bass response from a small cabinet.

Effectively the speaker system has to throw away some energy in the middle and upper frequency range so that the low frequency sound energy can be of matching level.
If the speaker connecting cables are thin wires of high resistance, then some of the expensive audio energy from the amplifier is converted into useless heat before it even gets to the loudspeakers.

There is a wide choice now of specialist loudspeaker cables, made from thick, low resistance copper, Sometimes the copper is braided and sometimes it is formed by a
process which aligns the crystals and minimises the amount of oxygen impurity. All this is supposed to improve the sound.
Whether linear oxygen free copper cable (LOFC) really makes a difference, or whether the difference is heard only by people who have paid extra for their cables and want to hear a difference, is a moot point. But certainly there is a lot to be said for using thick copper wires.

The cheapest way of buying thick copper wire is to go to an electricians' shop not a hi fi dealer - and buy 15A or even 30A mains wiring cable. The copper cores are thick and has very low resistance
Although mains cable is expensive, it is far cheaper than fancy hi fi cable. The only problem is that when you buy heavy mains wire, it comes as 3 -core cable, not 2 -core. So you are paying heavily for an extra core which serves no useful purpose. Now, there is a purpose for this extra core.

Bi-Grounding

Marantz, once an American hi fi company but now a Japanese operation with a majority shareholding owned by Philips, has come up with an idea called "bigrounding". The original proposal came from Marantz engineer Ken Ishiwata who is Japanese but works in Europe. His design for a loudspeaker which uses three wires instead of two is now being made in England for the Euro pean market by Goodmans of Havant-A cosmopolitan idea!
Hi fi loudspeakers contain at least two separate transducers, one designed to handle only low frequencies ("woofers') and the other only high frequencies ("'weeters"). In the most expensive hi fi systems these transducers are individually powered by separate amplifiers connected by separate pairs of wires. In less expensive systems the loudspeaker is fed from a single amplifier by a single pair of wires, and the separate transducers inside the loudspeaker are joined together by an electric circuit called a "crossover". This separates the high and low frequency signals and feeds only low frequency signals to one transducer and only high frequency signals to the other.

Ken Ishiwata's idea is to provide a halfway stage between these two, expensive and cheap, approaches. He believes that there is unwanted electrical interaction between the two transducers if they share the same "negative earth" wire to the amplifier.

This is because all transducers produce spurious signals (back e.m.f.) and if these feed back into the crossover, low frequency signals will reach the high frequency transducer. By using separate "earth' wires back to the amplifier there is less chance of interaction in the crossover.

As supplied, the Marantz loudspeaker has a short bridging wire between two of the terminals, so that owners can connect it in conventional manner with an ordinary pair of wires running to a pair of terminals on a hi fi amplifier. Adventurous hi fi enthusiasts, however, can remove the bridging wire and try connecting the loudspeaker to their amplifier using 3-core cable instead of 2-core cable. This, claims Marantz, gives a marked improvement in sound quality.

By subcontracting manufacture to UK company Goodmans, Marantz has kept the cost down to under £200 a stereo pair of loudspeakers. It is easy for people to try the bi-ground connection if they want, by using the third, unused, core of mains cable.

CAR OUERHEATIMG alarm

I. R.de VAUX-BALBIRNIE

An audible bleep warning of car overheating

This circuit was designed with caravanning in mind since the engines of many tow cars tend to overheat especially in mountainous areas. It could also be useful to non-caravanning readers who experience overheating problems with any car. It is suitable for both positive and negativeearth systems.

AUDIBLE WARNING

Although the car may be fitted with a water temperature gauge, the reading on this is easily missed and an audible warning is more effective in attracting attention. Some designs produce a continuous signal in the event of overheating. This is unnecessary and causes undue annoyance especially since it may take several minutes for the engine to cool to normal operating temperature again. In the present system, a short bleep (of nominally one second duration) is given each half-minute. This gives excellent warning without being obtrusive.
The entire circuit, apart from the enginemounted temperature sensor, is housed in a plastic box with an audible warning device mounted on top. A terminal block connects the sensor and car electrical supply. The sensor is attached with adhesive so, although firmly mounted on the engine, it may be removed should the need arise.

CIRCUIT DESCRIPTION

The circuit of the Overheating Alarm is shown in Fig. 1; ICl is an operational amplifier used in comparator mode. It switches on when the temperature of the sensor, Rl, rises above some preset va-lue-nominally 95 degrees C. The potential divider, R3/R4, applies a fixed reference voltage to ICl non-inverting input (pin three). A second potential divider is formed between R2 and VR1 in the upper section and R1 in the lower one. Since R1 is a negative temperature coefficient device, its resistance falls as its temperature rises. Thus, the voltage applied to the inverting input falls with rising temperature.

With correct adjustment of VR1, the inverting input voltage will fall below the non-inverting one at the required tempera-

Fig. 1 Circuit diagram of the Car Overheating Alarm.
ture. ICl ouput (pin six) then goes high (positive supply voltage). This allows no current to flow through R6 and D2 since D2 is reverse-biased. There is therefore no effect on IC2 which functions as a freerunning mulitvibrator producing a train of positive-going pulses from its output (pin three). With the values of $\mathrm{Cl}, \mathrm{R} 7$ and R 8 used in the prototype, each pulse will be high for 30 seconds and low for one second approximately.

Transistors TR1 and TR2 invert the pulses to give short high and low states (see

Fig. 2). This happens in the following way. With IC2 pin three high, current flows throug R9 to the base of TRI so turning it on. TR1 collector is then low so TR2 is off. With IC2 pin three low, TR1 is off with its collector high. TR2 is then switched on and the audible warning device, WD1, in its collector circuit operates. The inverting effect causes WD1 to bleep for one second each 30 seconds approximately. With RI below the operating temperature, ICI is off with pin six low. This makes IC2 pins two and six low also, resulting in IC2 ouput

Fig. 2 IC2 output and WD1 drive waveforms.

COMPONENTS

Semiconductors

IC1	741 op. amp.
IC2	555 timer
TR1,TR2	ZTX300 npn silicon
D1	BZY88 10V Zener diode
D2,D3	1N4001

Miscelláneous

WD1 12 V solid-state buzzer (480 ohms impedance)

Fig. 3 Veroboard layout and wiring

EE10646

20 mm chassis fuseholder with 1 A fuse 3A terminal block-three sections. Eight pin d.i.l. i.c. sockets (2 off); plastic box approx $120 \times 65 \times$ $40 \mathrm{~mm} ; 0.1$ inch matric stripboard size 11 strips $\times 34$ holes; stranded wire; auto-type wire; connectors; fixings; materials for sensor (see text).

Approx. cost
Guidance only

£13.50

being high continuously. After inversion, WDI remains off.
The purpose of R5 and Zener diode, D1, is to stabilise the supply to the op-amp inputs for precise operation. D3 and C3 smooth the fluctuations produced by the car generator. FSI is a fuse which protects the system from accidental short-circuits.

CONSTRUCTION

Construction is based on a circuit panel made from a piece of 0.1 inch matrix stripboard size 11 strips by 34 holes. Refer to Fig. 3. Drill the two mounting holes and make all breaks and inter-strip links. Use a spot-face cutter or a small drill to make the

breaks and check that these are complete. Follow with the soldered on-board components. Note that C1, C3 and the diodes must be connected the correct way round. Solder
lengths of light-duty stranded connecting wire to strip E on the left-hand side and strips A and J on the right-hand side of the circuit panel.

Refer to Fig. 4 and mount WD1 (using a little glue around the rim), FSI and TBI on the lid of the case (see photograph). WDI could be direct surface-mounted if desired. Drill a 3 mm diameter hole near TB1 for the wires passing through from inside. Complete all wiring and mount the circuit panel on the lid of the box using the holes drilled for the purpose. Drill a hole in the side of the case so that VR1 may be adjusted using a small screwdriver when the lid is in position. Leave VRI adjusted to approximately mid-track position, insert the fuse and fit the lid checking for trapped wires.

SENSOR

The bead thermistor used for the sensor is delicate and needs good protection. Fig. 5 shows how this was achieved in the prototype. The sensor should be attached to a sheltered part of the engine where it will not be subject to the effect of cool moving air-make a small shield if necessary Choose a part of the engine which becomes hot in operation and is clear of moving parts. Clean this part carefully and roughen the surface with carborundum paper. Treat the attachment surface of the sensor in a similar fashion. Bond the sensor in position using a thin film of quick-setting epoxy resin adhesive.

Use light-duty auto type wire for all connections-where it passes through any hole in metal use a rubber grommet. For a negative-earth car, connect the sensor wires to TB1/2 and TB1/3. Find a suitable fuse which is live only when the ignition is switched on and connect this to TBI/I. Make sure that the correct side has been used-when the fuse is removed the circuit should not work. Connect TB1/3 to an earth point (car chassis). For a positive-earth vehicle, make the sensor connections to TB $1 / 2$ and TBI/3. Connect the fuse to TB $1 / 3$ and TBI/ 1 to the earth point.

Adjust VR1 over a trial period so that the alarm just remains off with the engine at normal operating temperature. Clockwise rotation of the sliding contact increases the operating temperature and vice-versa. Once adjusted, the unit may be hidden behind the car dashboard. If the alarm tends to operate when the car is travelling slowly but not at higher speeds, this usually means that the sensor is badly sited and needs additional shielding from moving air.

The K5000 Metal Detector Kit combines the challenge of DIY Electronics assembly with the reward and excitement of discovering Britain's buried past.
THE KIT - simplified assembly techniques require little technical knowledge and no complex electronic test equipment. All stages of assembly covered in a detailed 36 page manual.

THE DETECTOR - features Analytical Discrimination \& Ground Exclusion, backed by the proven pedigree of C-Scope, Europe's leading detector manufacturer
A comprehensive instruction book is available @ $£ 5$ (deductable from order). Ask at your local Hobby/Electronics shop or contact C-Scope for a copy of a published Field Test Report.

ค 5 ค円) Wotton Road, Ashford, Kent TN23 2LN. Telephone: 023329181.

Send now for our latest 100 PAGE INTERNATIONAL ELECTRONICS CATALOGUE

1000s of major and minor electronic components, audio, hi-fi, stylish car radios, amps, kits, meters, scopes, test gear, transistors, disco, hardware, tools, computer bits etc.

SMITHS ELECTRONICS
151 Chapel Street, Leigh, Lancs WN7 2AL Telephone: 0942606674

OMNI ELECTRONICS

for a comprehensive range of components aimed at the enthusiast:

1N4148	4 p	1.5A 100V bridge	36p
1 N4001	5p	5 mm red leds	13p
LM741	25p	5 mm green leds	14p
7805	50p	400 mW zeners	10p
0A90/0A91	13p	1.3W zeners	17 p
Skeleton presets	11p	Red/black phono plugs	148
UM1286 modulator	7.95	Quality panel meters	5.98
98 mm cable ties	2.00/100	Velleman kits/Babani books	

174 Dalkeith Road EDINBURGH EH16 5DX 031-667 2611

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Tel: (0983) 292847
24 hours} \& \multicolumn{3}{|r|}{} \& \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
ectronics \\
Component Supplies 000's of stock items
\end{tabular}}} \& \multicolumn{2}{|l|}{} \\
\hline visi \& \multicolumn{2}{|r|}{Just a s} \& 1 select \& \multicolumn{2}{|l|}{ion from 100} \& \& \& \& \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Surveying, Robotics, Instrusion, BCD (Multiplexed),
lots more. OUPUT: Four Digit BCD
Interfaces Indirectly to a four-digit LCD Display}} \\
\hline 4000 SERIES \& \& \& \& \& \& \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{\begin{tabular}{l}
ENAMEULD COPPRER \\
WIRE SOLD EY TBE
\end{tabular}} \& \& \\
\hline 4001 UB 0.16 \& 7445139 \& Stereo \& घ, \& \({ }^{\text {Br2 }}\) \& \& 0.13 \& \& \& \& \\
\hline 401 \& 193 \& varsood haill fiter IC 2.88 \& \%rves \({ }^{\text {end }}\) \& \& \(2{ }^{2} \times 2\) \& 0.15 \& \(1008-2008\) \& \& \& \\
\hline \& \& \& \& \({ }_{\text {buss }}\) \& \({ }_{2}{ }^{2}\) \& 0.17 \& PCB SDE AD \& \& \& \\
\hline \({ }_{0}^{0.3}\) \& \({ }_{0}^{0.58}\) \& \& 8xx1600 1, 1.0 \& nrsai \& 30 \& 20 \& \& \& bunt And \& \\
\hline 0.2 \& 析 \& \& [ixy \& \({ }_{7}^{0.380}\) \& \({ }_{0}^{40 \mathrm{~W}}\) \& \& \& \& \& \\
\hline \(40.18 \mathrm{~B} \quad 0.50\) \& \({ }^{7415373}\) \& \({ }_{331}^{311}\) \& \({ }_{\text {corfrao }}^{116}\) \& 12FB \& \& \& \& \& \& \\
\hline \& \({ }_{\text {ratco }}\) \& \({ }^{\text {ata }}\) \& mit-10 \& mp/ \& \& \& \& \& \& \\
\hline 4048 \& 74 4.cian \(\quad 0.33\) \& \& 0 \& mpesel \(\quad 1.158\) \& \& 0 \& \({ }_{\text {a }}^{\text {a }}\) \& \& \& \\
\hline \& \({ }^{7+\mathrm{COM}}\) \& \(71.0 \mathrm{p} / \mathrm{LmP}\) P 0.18 \& M35 \& TP118 \& \& O.0.08 \& 5WY Pounss 037 \& \& \& \\
\hline \({ }_{0}^{0.36}\) \& (1) \& \& \& 239 \& \& \& 0.1 Prich hoosmcs \& \& \& \\
\hline \& 244C179 \& \& \& 71728 0.39 \& \& \& \& \& \& \\
\hline 0.41 \& 74Cca0 1.01 \& reguhtor \& trins 0.40 \& 159 \& 0.14 m \& \& 10 Whr pounsspo 20 \& \& R2323- \& \\
\hline 0.29 \& \& Conroler \({ }^{2} 85\) \& zaxtr boioms \& \({ }_{0}^{1.55}\) \& \& \& \& \& \& \\
\hline \& H2C45 \& \& \& \({ }_{\text {an305s }} \quad 0.50\) \& 10,HFITV \& \& 0.15 P PITCP PIJGS \& \& \& \\
\hline \& \({ }^{2} \mathrm{H}\) cisis \& \& 878ecsyl 0.06 \& 2к3704 0.30 \& 6.amiov \& \& INC 0.20 \& O, 027 \& \& \\
\hline \& \& noticy \& \& 0.40 \& \& 0.10 \& \& \& \& \\
\hline \& \& \& 877eç91 \(\quad 0.06\) \& \({ }^{2 \text { N53307 }}\) \& \& \& \({ }_{8}^{1 / 2}\) \& \& \& \\
\hline \({ }^{\text {407088 }}\) \& 7 H \& \({ }_{273}^{192}\) \& 8z7ec \& \({ }_{\text {an }}^{\substack{\text { an } \\ \text { ics }}}\) \& \& 0.38 \& 10 wny non locing \& пisctroumc \& \& \\
\hline \& \({ }^{7 \text { frcalce }}\) \& M1sasp \& \({ }^{\text {arrectil }}\) \& trent \& ,zur \& \& 0.15 \& \& \& \\
\hline \& \& \& cimacs \& 0.12 \& \& \& \& 0 \& \& \\
\hline \& \& PLustric tora \& \& \& \& \& 4 \& 12045 \& \& \\
\hline 45118
48148
419 \& \& \(7300 / 750051\) \& \& \(16 \mathrm{~Wh}{ }^{1038}\) \& ca \& \& \& \& \& \\
\hline \({ }_{45198}\) \& мсанея \& - \(-2 \times 10\) \& \& \({ }^{18 \text { WAY }}{ }^{0.36}\) \& 0.25 \& \& \& \& \& \\
\hline 0.58 \& \& 1810/ 915 \& \& \& \& \& \& \& \& \\
\hline 123 \& \& \& \& \& \& \& \& \& \& \\
\hline \& \& \& (1) \& \({ }_{28 \mathrm{w}}\) \& \& \& 30 \& 1000 \& \& \\
\hline 0.56 \& z30, SLIO/ 4.36 \& \& 0.12 \& \& \& \& \& \& \& \\
\hline \& APr-3 \& Im \& всз37 0.12 \& \& \& \& \& \& \& (mTRO) 5.34 \\
\hline 0.83 \& cb \& \({ }_{1}^{1 / 1}\) \& \& \({ }_{8 \text { \%NT }}\) \& \& \& \& \& ga, gsy kioul 0.84 \& Mr (axidi 270 \\
\hline \& \& \& 80131 \& 14 WhY 0.10 \& \& \& THE \& \& \& \[
\begin{array}{ll}
3.6168 \mathrm{MHE} \text { (ILML) } \& 2.10 \\
\text { 40NHE (MCRO) } \& 2.70
\end{array}
\] \\
\hline \& ADD3SELN 19 \& \& \& \& \& \& \& \& \& \\
\hline \& \& \& \& \& \& \& \& \& \& \\
\hline 744513 0.28 \& \& GRN TLLII3M 0.13 \& catra3s 0.88 \& \& \& \& \& \& \& \\
\hline \& * \& rem myiza \& an N1/R33 0089 \& \& \%0. \& \& \& \& \& \\
\hline 7415382

745 \& \& DRC \& \& \& \& \& \& \& \&

\hline \& \& ${ }_{\text {che }}^{\text {nem mine }}$ \& an mixaz \& \& \& \& \& \& \&

\hline \& NDSLIEN \& \& \& \& \& \& \& \& \&

\hline ${ }_{724} 715123 \quad 0.67$ \& \& \& \& \& 1.16 \& \& 4 (\& \& \&

\hline
\end{tabular}

... Simple Light pen

THERE are few aspects of the BBC Ports which have not been covered at least briefly in previous "BEEB Micro" articles, but one notable exception is the Light Pen input. This is actually a terminal on the analogue port rather than a separate input port, and it operates in conjunction with circuitry included in the machine's 6845 c.r.t. controller chip.

Light pens are perhaps less popular than they once were, having been to some extent eclipsed by Mice and other pointing devices. Despite this they still represent an interesting and practical approach to cursor control etc., and can be home constructed for a few pounds.

Scanning

The term "light pen" tends to give the impression that the device produces light, but this is actually the opposite of its function. A light pen is really just a simple light detector circuit, but in order to function properly it must have a high operating speed and a narrow angle of view.

Some light pens operate in a very simple manner, and can only indicate whether the pen is aimed at a light or dark area of a screen. Most can be used to indicate to a computer (with reasonable resolution) the point on the screen at which the pen is aimed. The BBC Light Pen input and internal circuit enables quite accurate pointing of this type.

Fig. 1. Computer/television display is produced using this scanning system (dotted lines represent the flyback periods)

To act as an accurate pointing device a light pen relies on the scanning process used to produce the display on the television or monitor. This operates in the manner shown in Fig. 1, with the electron beam being scanned across the screen in a series of horizontal lines, starting at the top of the screen and working downwards.
The dotted lines represent the "flyback" periods, and during these the beam is moved much faster. The beam is normally switched off during the flyback periods as well.
The electron beam produces a spot of light at the point, where it strikes the phosphor coating of the screen, but the spot is to fast to be perceived as such by the
human eye. Instead, the display appears to be a series of closely spaced lines across the screen (with a real display having hundreds of lines, and not just the dozen or so shown in Fig. 1). At normal viewing distances the lines are not apparent, but they can be seen quite clearly if you look at any television or monitor display.

Of course, to produce an image of some kind the intensity of the electron beam (and thus also the brightness of the spot of light) are modulated in the appropriate manner. With television displays and some computer displays a system of interlacing is used.

With this method only every other line is covered by the first scan, and then the remaining lines are covered by the next scan. Two frames (scans) are then needed to produce each complete picture, but there are fifty frames per second, giving the same picture rate of twenty five per second for both systems.

Whichever method of scanning is used, the timing signals are generated by circuits in the computer. The light pen must produce an output pulse as the spot of light passes in front of it, and from the time in each scan that this pulse occurs the circuits of the c.r.t. (cathode ray tube) controller can deduce the position of the pen. With some c.r.t. controllers the light pen position is read from two registers, with these giving X and Y co-ordinates.

The system used in the 6845 c.r.t. controller is a little less convenient, and although there are two light pen registers, these provide figures that must be combined to form one large value, rather than taken as X and Y values. The two most significant bits of the most significant byte are unused, giving a 14 -bit number. The light pen value is at a minimum in the top left hand corner of the screen, and increases as the pen is moved to the right and down the screen.

In order to derive X and Y co-ordinate values it is first necessary to deduct the large offset value (i.e. value obtained with the pen in the top left hand corner of the screen). If values are then divided by the appropriate amount, the integer part of the result gives the Y co-ordinate, and the remainder is the X co-ordinate.

Light Pen Circuit

Light pen circuits can be very simple indeed, and can in fact consist of just a
single component (an integrated circuit having a photo-diode driving a Schmitt trigger). Suitable components for this ultrasimple approach tend to be relatively expensive and difficult to obtain, and the alternative approach used in the circuit of Fig. 2 has its merits.

The light pen proper is formed by the photo-transistor TR1 and the first of the inverting Schmitt triggers, ICla. The circuit is very simple in operation, and normally the input of the trigger drifts to the high state. This gives a low output level from the circuit under quiescent conditions.

When photo-transistor TR1 detects the passing spot of light it changes from having the very low leakage level associated with silicon transistors, to a much higher leakage level of a few milliamps. This is sufficient to pull the input of the trigger low, so that its output switches to the high state.
It is this low to high transition that activates the light pen circuitry in the 6845 c.r.t. controller, and it is essential that the light pen provides positive output pulses. A high operating speed is obviously imperative if the pen is to accurately and consistently indicate the correct screen position, and this combination of a photo-transistor and a Schmitt trigger seems to be perfectly adequate in this respect.
With virtually any practical light pen application there is a need for the computer to have some means of determining when the pen has been positioned on the screen and a reading should be taken. Some light pens incorporate a micro-switch that is automatically operated when the pen is placed against the screen, and some have a built-in switch for manual operation. Neither of these methods are very easy to implement in a home constructed pen, and simply using the computer's keyboard for manual indication is a more practical method.
A more sophisticated alternative is to use some additional circuitry to provide a means of automatic indication. In this design the second Schmitt trigger (IClb) acts as a buffer stage which drives a smoothing and rectifier network based on diodes D1 and D2.
When the pen is in position on the screen the rectifier network is fed with a 50 Hz signal that produces a positive output signal from the smoothing circuit. This switches on transistor TR2 and pulls a digital input on the analogue port (PB0) to the low state. Automatic indication can therefore be ob-

Fig. 2. The light pen circuit diagram.
tained by monitoring PB0, or manual indication via the keyboard can still be used if preferred.

Construction

The Light Pen can be built with transistor TRI as a remote sensor, but in the interests of optimum speed and reliability it is better if the whole circuit is built into the "pen". There are few components in the unit and it can be made quite small without any real difficulty. In order to be usable it does need to be made quite small, otherwise there will be a tendency for the unit to severely obstruct your view of the screen.
Although a TIL81 photo-transistor is specified for the TR1 position, some other photo-transistors with built-in lenses will also work in the circuit (the BPX25 for example). However, the TIL81 is relatively cheap, readily available, and has the very narrow angle of view needed for good results in this application. Consequently, it is probably only worthwhile trying an alternative if you happen to have a likely component in the spares box
ICl should be the $L S$ version of the 7414, and I would not recommend the use of any other version. Connections to the analogue port are made via a 15 -way "D" plug, and connection details are shown in Fig. 3.

Fig. 3. Rear view of D-plug.

Software

The 6845 c.r.t. controller is at addresses \&FE00 and \&FE01. Data is written to and read from the device at the higher address, but this address is shared by some eighteen registers!

The required register is selected by writing the appropriate value (from 0 to 17) to the lower address. The light pen registers are registers 16 (high byte) and 17 (low byte).

To read the light pen it is a matter of first writing a value 16 to ?\&FE00, then reading $? \& F E 01$. Then 17 is written to ? \&FE00 and another reading is taken from ? \&FE01.
Multiplying the first reading by 256 and adding it to the second reading gives the basic light pen value. For optimum reliability the light pen registers should be read using an assembly language routine.
The offset to be removed from the raw light pen value depends on the mode in use, and also to a smaller extent on the characteristics of the light pen itself. The pen will detect the spot less than instantly, and a delay of only a few microseconds enables the spot to move on by a few cursor positions.

The list below gives approximate offset values, but it should only be regarded as a rough guide, and some fine tuning of the offsets will probably be needed in order to get the cursor and pen positions to accurately match:
$\begin{array}{lr}\text { Modes } 0,1 \text { and } 2 & 1548 \\ \text { Mode 3 } & 2060 \\ \text { Modes 4 and 5 } & 2826 \\ \text { Mode 6 } & 3082 \\ \text { Mode 7 } & 10254\end{array}$

The MOD and DIV functions provide convenient methods of producing the X and Y cursor positions.
PB0 is one of the fire-button inputs of the Joystick Port, and as such can be read using the ADVAL function. An alternative is to read the appropriate input line directly, and this is bit 4 at address \&FE40. ANDing the value read from this address will give an answer of 16 if the pen is not in position, or 0 if it is.
The accompanying listing will permit testing of the pen, and it simply places a cross at the pen position. It demonstrates the basic method of reading the pen and using the values, and could serve as a basis for your own programs.
A feature of every light pen I have ever encountered, including this one, is a lack of stability with the indicated position tending to jump around slightly. The standard approach to combatting this is to take several readings and then average them, or something of this nature.
It can also be useful to include a routine to remove any readings that are well removed from the average, and then to recalculate the average. With error correction of this type it is generally possible to obtain very stable results.
When using the pen (and writing software for it), bear in mind that it will only work if it is aimed at a fairly bright part of the screen. Also, it must be held close to the screen and held steady if stable results are to be obtained.
One final point is that scrolling of the screen changes the correct offset value, and the software should therefore be written to avoid any scrolling of the screen.

LIGHT PEN Listing

10 REM Lightpen Program
20 REM makes a + follow pen
30 MODE 1
40 COLOUR 0:COLOUR 130
50 DIM P\% 25
60 [.PENCODE
70 LDA £16
80 STA \&FEOO
90 LDX \&FE01
100 LDA 17
110 STA \&FEOO
120 LDY \&FE01
130 STX \& 70
140 STY \& 71
150 RTS:]
160 CLS
170 REPEAT
180 PROCpen(2)
190 PROCspot
200 FOR X=1 TO 100: NEXT
210 UNTIL. FALSE
220
230
240 DEF PROCpen (scale_factor)
250 offset=1548
260 CALL PENCODE
270 penval=(7\&70*256+7\&71)-offset
280 ypen\%=penval DIV 80
290 xpen\%=(penval MOD 80)/scale. factor
300 ENDPROC
310
320
330 DEF PROCspot
340 PRINTTAB (X\%,Y\%) ;" ":
$350 \times \%=x p e n \%: Y \%=y p e n \%$
360 IF T\&FE40 and 16 ENDPROC
370 PRINTTAB (X\%,Y\%);"+";
380 ENDPROC

NATIONAL COMPONENT

 CLUBAll our packs are brand new, no manufacturers rejects, taulty or unmarked components. If you are anything less than delighted with your order
please send it back fot a full money refund lease send it back for a full money refund
within seven days of purchase.
ALL PACKS ONLY £1 EACH
-Pk1 300 ASSORTED RESISTORS Values from 1 ohm to 1 M all full length leads
-Pk2 50 WIRE WOUND RESISTORS All high wattage, lots of difterent values.

- Pk3 25 POTS AND PRESETS Sliders, multiturn, multigang, cermet, carbon etc.
-Pk4 70 ASSORTED CAPACITORS All different types values up to 4700uf, voltages to 250 V .
-Pk5 20 LARGE ELECTROLYTICS Values like
4700uf, 2200ut at voltages up to 250 V
-Pk6 1 25,000ul Electrolytic capacitor
- Pk 720 ASSORTED IC's TTL. Linear etc all brand new and fully mafked
-Pk8 60 ASSORTED DIODES Zeners, signals like the IN4148, rectifiers from the IN4000 series.
Pk $10 \quad 18$ WAY IC SOCKETS Low protile
-Pk10 1 PROJECT BOX $153 \mathrm{~mm} \times 83 \mathrm{~mm} \times 48 \mathrm{~mm}$ complete with lid and screws.
-Pk11 14 DIGIT DISPLAY Seven segment. multiplexed with data sheets.
-Pk12 1 9V 105db SIREN 120mA electro mechanical.
-PK13 10 ASSORTED SWITCHES micro-switches,
-Pk14 5 MICRO-SWITCHES all different
-Pk15 MYSTERY PACK Our best selling pack last month.
Pk16 75 ASSORTED HARDWARE. Rubber feet, cable ties, bolts, grommets, sleeving, PCB mounts etc.
-Pk17 5 FUSE HOLDERS 20 mm new style complete with protective boots.
-Pk18 15 PP3 BATTERY CLIPS With 100 mm red and black leads.
Please send your order together with cheque or postal order to:

DEPT EE, WOOOSIDE, DOWSETT LANE.
RAMSDEN HEATH, NI BILLERICAY, ESSEX, CM 111 JL. Please add $75 p$ towards P \& P. All prices include VAT at 15%.

The books listed below have been selected as being of special interest to our readers, they are supplied from our editorial address direct to your door.

DATA AND REFERENCE

PRACTICAL ELECTRONICS
CALCULATIONS AND FORMULAE
F. A. Wilson, C.G.I.A., C.Eng., F.I.E.E., F.I.E.R.E F.B.I,M

Bridges the gap between complicated technical theory. and cut-and-tried' methods which may bring success in design but leave the experimenter unfulfilled. A strong practical bias-tedious and higher mathematics have included
The book is divided into six basic sections: Units and Constants, Direct-current Circuits, Passive Components, Alternating-current Circuits, Networks and Theorems, Measurements
256 pages
Order Code BP53
£2.95

ESSENTIAL THEORY FOR THE

ELECTRONICS HOBBYIST

G. T. Rubaroe, T.Eng (C.E.I.), Assoc.I.E.R.E.

The object of this book is to supply the hobbyist with a background knowledge tailored to meet his or her specific requirements and the author has brought io mether the relevanimuterial minimum recourse to mathematics. 128 pages \quad Order Code $228 \quad £ 2.50$

MICROPROCESSING SYSTEMS AND CIRCUITS F. A. Wilson, C.G.I.A., C.Eng., F.I.E.E., F.I.E.R.E., F. A. Wil

A truly comprehensive guide to the elements of microprocessing systems which really starts at the beginning. Teaches the reader the essential fundamentals that are so important for a sound understanding of the subject.
256 pages \quad Order Code BP77

COMMUNICATION
F. A. Wilson, C.G.I.A., C.Eng., F.I.E.E., F.I.E.R.E., F.B.I.M.

A look at the electronic fundamentals over the whole of the communication scene. This book aims to teach the important elements of each branch of the subject in a style as interesting and practical as possible. While not getting involved in the more complicated theory and techniques are examined including line, microwave, techniques are examined including line, microwave, submarine, satelite and digital multiplex systems, radio
and telegraphy. To assist in understanding these more thoroughly, chapters on signal processing, the electromagnetic wave, networks and transmissions assessment are included, finally a short chapter on optical transmission.
256 pages
Order Code BP89
£2.95
F. A. Wilson, C.G.I.A., C.Eng., F.I.E.E., F.I.E.R.E., F.B.I.M.

Analysis of the sound wave and an explanation of acoustical quantities prepare the way. These are followed by a study of the mechanism of hearing and examination of the various sounds we hear. A look at room acoustics with a subsequent chapter on microphones and loudspeakers then sets the scene for the main chapter on audio systems-amplifiers, oscillators disc and magnetic recording and electronic music.
320 pages
Order Code BP111

HOW TO IDENTIFY UNMARKED ICs

Shows Recorr about recording the particular signature of an unmarked i.c. which should enable the i.c. to then be identified with reference 10 manufacturers' or other data. An i.c. signature is a speclally plotted chart produced by mea $\begin{array}{ll}\text { suring the resistances between all terminal pairs of an i.c. } \\ \text { Chart } & \text { Order code BP101 } \\ \text { £0.95 }\end{array}$

RADIO AND ELECTRONIC COLOUR CODES AND DATA CHART
Although this chart was first published in 1971 it Although this chart was first published in 1971 it throughout the world, for most radio and electronic components. Includes resistors, capacitors, transfor mers, field coils, fuses, battery leads, speakers, etc. It is mers, field coils, fuses, battery leads, speakers, eic. Is components.
Chart
Order code BP7
f0.95

CHART OF RADIO, ELECTRONIC

SEMICONDUCTOR AND LOGIC ŚYMBOLS
M. H. Banani, B.Sc.(Eng.)

Illustrates the common, and many of the not-so-comthat are used in books, magazines and instruction hat are used in books, magazines and instruction Chart \quad Order Code BP27 \quad E0.95

INTERNATIONAL TRANSISTOR

EQUIVALENTS GUIDE
A. Michaels

Helps the reader to find possible substitutes for a popular selection of European, American and Japanese transis ors. Also shows material type, polarity, manufacture and use.
320 pages
Order code BP85
£2.95

TRANSISTOR RADIO FAULT-FINDING CHART

C. E, Miller

Used properly, should enable the reader to trace most common faults reasonably quickly. Across the top of the chart will be found four rectangles containing brief description of these faults, vis-sound weak but undistorted, set dead, sound low or distorted and background and following the arrows carries out the suggested and following the arrows, carries out the suggested Chart $\quad \mathbf{£ 0 . 9 5}$

DIGITAL IC EQUIVALENTS

AND PIN CONNECTIONS

A. Michaels

Shows equivalents and pin connections of a popular selection of European, American and Japanese digital i,c.s. Also includes details of packaging, families, functions, manufacturer and country of origin
256 pages Order code BP140
£4.95

LINEAR IC EQUIVALENTS AND PIN CONNECTIONS
 AND PIN CONNECTIONS

A. Michaels

Shows equivalents and pin connections of a popular selection of European, American and Japanese linear c.s. Also includes details of functions, manufacturer and country of origin.
320 pages \quad Order code BP141
£4.95

NTERNATIONAL DIODE

QUIVALENTS GUIDE
EQUIVALEN
Designed to help the user in finding possible substitutes for a large selection of the many different types of diodes that are available. Besides simple rectifier diodes, also cluded are Zener diodes, l.e.d.s, diacs, triacs, thyris 144 pages photo and display diodes. \quad Order code BP108 $\quad \mathbf{1 0 2 5}$
NEWNES ELECTRONICS
POCKET BOOK
E. A. Parr

Newnes Electronics Pocket Book has been in print for over twenty years and has covered the development of electronics from valve to semiconductor technology and processors. To keep up to date with the rapidly changing world of electronics, continuous revision has been wocessary. This new FifthEdition takes account of recent changes and includes material suggested by readers of previous editions. New descriptions of op.amp. applica-
tions and the design of digital circuits have been added, along with a totally new chapter on computing, plus other revisions throughout.
315 pages (hard cover) Order Code NE02 $\mathbf{8 8 . 9 5}$

CIRCUITS AND DESIGN

ELECTRONICS SIMPLIFIED
CRYSTAL SET CONSTRUCTION
F. A. Wilson, C.G.I.A., C.Eng., F.I.E.E., F.I.E.R.E. F.B.I.M.

Especially written for those who wish to participate in the intricacies of electronics more through practical con struction than by theoretical study. It is designed for all ages upwards from the day one can read intelligently and handle simple tools
80 pages Order Code BP92

50 CIRCUITS USING GERMANIUM
 SILICON AND ZENER DIODES

R. N. Soar

Contains 50 interesting and useful circuits and applica tions, covering many different branches of electronics using one of the most simple and inexpensive of components-the diode. Includes the use of germanium and silicon signal diode. ener diodes, etc
64 pages
Order Code BP36
£1.50

50 SIMPLE LED CIRCUITS

R. N. Soar

Contains 50 interesting and useful circults and applications, covering many different branches of electronics, using one of the most inexpensive and freely available components-the light-emitting diode (LED). Also in cludes circuits for the 707 common anode display
64 pages
Order Code BP42

COIL DESIGN AND CONSTRUCTION MANUAL

 B. B. BabaniA complete book for the home constructor on "how to make" RF, IF, audio and power coils, chokes and transformers. Practically every possible type is discussed and calculations necessary are given and exwith the exception of torroids and pulse transformers ttle has ehanged in coil design since it was written 96 pages \quad Order Code $160 \quad £ 2.50$

MICRO INTERFACING CIRCUITS-BOOK

MICRO INTERFACING CIRCUITS-BOOK 2

R. A. Penfold

Both books include practical circuits logether with depalls of the circuit operation and useful background informa tion. Any special constructional points are covered but p.c.b. layouts and other detalled constructional informa on are not included
Book 1 is mainly concerned with getting signals in and out of the computer;: Book 2 deals primarily with circuits or practical applications
$\begin{array}{llll}\text { Book } 1 / 2 \text { pages } & \text { Order code BP130 } & £ 2.25 \\ \text { Book } 2 \text { 1/2 pages } & \text { Order code BP131 } & £ 2.25\end{array}$

A MICROPROCESSOR PRIMER

E. A. Parr, B.SC., C.Eng., M.I.E.E

Starts by designing a small computer which, because of its simplicity and logical structure, enables the language then discussed and the reader is shown how these can be overcome by changes and additions to the instruction set. In this way, such ideas as relative addressing, index $\begin{array}{ll}\text { registers, etc., are developed. } \\ 96 \text { pages } & \text { Order code BP72 } 71.75\end{array}$

A PRACTICAL INTRODUCTION TO
 MICROPROCESSORS

R. A. Penfold

Provides an introduction which includes a very simple microprocessor circuit which can be constructed so that 96 pages \quad Order code BP123 experience.

HOW TO USE OP-AMPS

E. A. Parr

This book has been written as a designer's guide covering many operational amplifiers, serving both as source book of circuits and a reference book for design calculations. The approach has been made as non 160 pages \quad Order code BPB8 2.95

PRACTICAL ELECTRONIC
BUILDING BLOCKS-BOOK
PRACTICAL ELECTRONIC
BUILDING BLOCKS-BOOK 2

R. A. Penfold

These books are designed to aid electronic enthusiasts who like to experiment with circuits and produce their own projects, rather than simply following published project designs
BOOK 1 contains: Oscillators-sinewave, triangular, squarewave, sawtooth, and pulse waveform generators operating at audio frequencies. Timers-simple mono Miscellaneous-noise generators rectifiers, compara tors and triggers, etc.
BOOK 2 contains: Ampllfiers-low level discrete and op-amp circuits, voltage and buffer amplifiers including d.c. types. Also low-noise audio and voltage controhed amplifiers. Filters-high-pass. low-pass, 6, 12, and 24 dB per octave types. Miscellaneous-i.c. power amplifiers, mixers, voltage and current regulators, etc.
BOOK $1 \quad 128$ pages Order code BP117 f1.95
HOW TO DESIGN ELECTRONIC

PROJECTS
The aim of this book is to help the reader to put together The aim of this book is to help the reader to put together
projects from standard circuit blocks with a minimum of trial and error, but without resorting to any advanced mathematics. Hints on designing circuit blocks to meet $\begin{array}{ll}\text { your special requirements are also provided. } \\ 128 \text { pages } & \text { Order code BP127 } \\ \text { O2.25 }\end{array}$

POPULAR ELECTRONIC CIRCUITS

-BOOK 1
POPULAR ELECTRONIC CIRCUITS
-BOOK 2

R. A. Penfold

Each book provides a wide range of designs for electronic enthusiasts who are capable of producing working projects from just a circuit diagram without the aid of detailed construction information. Any special setting-up procedures are described.
BOOK $2 \quad 160$ pages Order code BP9B \quad £2.25

J. W. Penfold

Details how to use all the features provided on most dot sor packeges from programs and popular word proces sor packages like Wordwise, Visawrite and Quill, etc effect.

Order Code BP181
$\mathbf{£ 2 . 9 5}$

A 280 WORKSHOP MANUAL
E. A. Part, B.Sc., C.Eng., M.I.E.E

This book is intended for people who wish to progress beyond the stage of BASIC programming to topics such as machine code and assembly language programming $\begin{array}{ll}\text { or nead hardware details of a Z80 based computer. } \\ 192 \text { pages } & \text { Order Code BP } 112\end{array}$

AN INTRODUCTION TO 68000 ASSEMBLY

LANGUAGE
P. A. 8 J. W. Penfold

Obtain a vast increase in running speed by writing programs for 68000 based micros such as the Commo dore Amiga, Atari ST range or Apple Macintosh range etc., in assembly language. It is not as difficult as one
might think and this book covers the fundamentals. 112 poges Order Code BP184 £2.95

THE ART OF PROGRAMMING THE ZX

SPECTRUM
M. James, B.Sc., M.B.C.S.

It is one thing to have learnt how to use all the Spectrum's commands and functions, but a very different one to be able to combine them into programs that do exactly what you want them to. This is just what this book is all about-teaching yous the art of effective rogramming with your Spectrum
order code BP119
£2.50

AN INTRODUCTION TO PROGRAMMING THE
COMMODORE 16 孟 PLUS 4
R. A. Penfold

Helps you to learn to use and program these two Commodore machines with the minimum of difficulty by expanding and complementing the information supplied in the manufacturer's own manuals.
128 pages Order code BP158
£2.50

AN INTRODUCTION TO PROGRAMMING THE BBC MODEL B MICRO
. A. \& J. W. Penfold
Written for readers wanting to learn more about programming and how to make best use of the incredibly he BBC micro are covered, the omissions being where little could usefully be added to the information provided y the manufacturer's own manual.
44 pages Order code BP139
£1.95

AN INTRODUCTION TO PROGRAMMING THE ACORN ELECTRON
R. A. \& J. W. Penfold

Designed to help the reader learn more about programming and to make best use of the Electron s mony leatures. Adds considerably to the information already supplied in the manufacturer's own instruction manual.
144 peges
Order code BP142

AN INTRODUCTION TO PROGRAMMING THE

 ATARI 600/800 XLR. A. \&. W. Panfold handbook. The information supplied will help the reade to master BASIC programming and to make best use of the Atari's many powerful features.
$\begin{array}{lll}128 \text { pages many powerful features. } & \text { Order code BP143 } 14.95\end{array}$

AN INTRODUCTION TO PROGRAMMING THE

 AMSTRAD CPC 464 AND 664R. A. B. J. W. Penfold

The Amstrad CPC 464 or 664 running with Locomotive BASIC makes an extremely potent and versatile machine and this book is designed to help the reader get the most rather than duplicate the information already given in the manufacturer's own manual. Also applicable to the CPC 6128 . Order Code BP153 E2.50 AN INTRODUCTION TO PROGRAMMING THE SINCLAIR OL

R. A. \& J. W. Penfold

Helps the reader to make best use of the fantastic Sinclai QL's almost unlimited range of features. Designed to complement the manufacturer's handbook.
112 pages
Order code BP150

AN INTRODUCTION TO 280 MACHINE CODE

 R. A. \& J. W. PenfoldTakes the reader through the basics of microprocessor and machine code programming with no previous know ledge of these being assumed. The $Z 80$ is used in many popular home computers and simple programming ex amples are given for Z80-based machines including the Sinclair ZX-81 and Spectrum, Memotech and the Am strad CPC 464. Also applicable to the Amstrad CPC 664 and 6128
144 pages Order code BP152 $\mathbf{2} 2.75$
AN INTRODUCTION TO 6502 MACHINE CODE R. A. \& J. W. Penfold

No previous knowledge of microprocessors or machine code is assumed. Topics covered are: assambly lan-隹, the register set and memory binary and hexadecimsl numbering systems, addressing modes and the instruction set, and also mixing machine code with BASIC. Some simple programming example are given for 6502-based home computers like the VIC 20. ORIC-1/Atmos. Electron, BCC and also the Commo dore 64.
112 pages \quad Order code Bp147 50

PROJECT CONSTRUCTION

HOW TO GET YOUR
ELECTRONIC PROJECTS WORKING
R. A. Penfold

We have all built projects only to find that they did not work correctly, or at all, when first switched on. The aim of this book is to help the reader overcome just these for many of the common faults that can occur when building up projects.

building up projects.
96 poges
Order code BP110
105

HOW TO DESIGN AND MAKE
YOUR OWN P.C.B.
R. A. Penfold

Deals with the simple methods of copying printed circuit
board designs from magazines and books and covers al aspects of simple p.c.b. construction including photographic methods and designing your own p.c.b.s.
80 pages Order code ap121 f1.95

BEGINNER'S GUIDE TO BUILDING
ELECTRONIC PROJECTS
R. A. Penfold

Shows the complete beginner how to tackle the practica side of electronics, so that he or she can confidently build the electronic projects that are regularly featured in magazines and books. Also includes examples in the form of simple projects.
112 peges Order code No. 227

RADIO

AN INTRODUCTION TO RADIO DXING

R. A. Penfold

Anyone can switch on a short wave receiver and play with the controls until they pick up something, but to find a particular station, country or type of broadcast and to and knowledge. The object of this book is to help the reader to do just that, which in essence is the fascinating 112 pages \quad Order code EP91
£1.95

NTERNATIONAL RADIO STATIONS
 GUIDE

Completely revised and updated, this book is an invaluable aid in helping all those who have a radio receiver to obtain the maximum entertainment value and enjoyment rom their sets.
Clearly shown are the station site, country, frequency and/or wavelength, as well as the effective radiation power of the transmitter
128 pages Order code BP155 £2.95

NEW RELEASE
 TRANSISTOR SELECTOR GUIDE

Prepared using the latest computerised techniques, from a vast database of electronic component specifications, this unique guide offers a range of setection tabics engineers, designers and hobbyists.
Section 1 : Covers component markings, codings and standards, as well as explaining the symbols used and how the tables are arranged.
Section 2: Tabulates in alpha-numeric sequence the comprehensive specifications of over 1400 devices. Section 3: Tabulates the devices in a similar fashion to the previous section but this time they are arranged by case type.
Section 4: Considers particular limits to the electrical parameters when compiling the tables and it is subcan handle voltages upwards of 300 V ; devices that can handle currents upwards of 5 A ; devices that can handle powers upwards of 5 W ; radio frequency devices that operate upwards of 30MiHz; FETs.
Section 5: Illustrates package outlines and leadouts. Section 6: Consists of a surface mounting device mark ings conversion list.

Order code BP234

THE PRE-BASIC BOOK
F. A. Wilson, C.G.I.A., C.ENG., F.I.E.E., F.I.E.R.E., F.B.I.M.

Another book on BASIC but with a difference. This one does not skip through the whole of the subject and hereby leave many would-be programmers floundering rise in concent the most frequently used and mor asily understood computer instructions. For all new and 192 pages $\begin{array}{lll}\text { potential micro users. } & \text { Order code BP146 } & \text { £2.95 }\end{array}$

HOW TO GET YOUR COMPUTER PROGRAMS UUNNING
J. W. Penfold

Have you ever written your own programs only to find hat they did not workl Help is now at hand with this book which shows you how to go about looking for your rrors, and helps you to avoid the common bugs and he BASIC language. the BASIC language.

AN INTRODUCTION TO COMPUTER

OMMUNICATIONS

Provides details of the various types of modem and their suitability for specific applications, plus details of connecting various computers to modems, and modems to he telephone system. Also information on common networking systems and RTT
96 pages Order code BP177
£2.95
AN INTRODUCTION TO

COMPUTER PERIPHERALS

I. W. Penfold

Covers such items as monitors, printers, disc drives cassatte recorders, modems, etc., explaining what they are, how to use them and the various types and you buy will work with your computer.

COMPUTER TERMINOLOGY EXPLAINED

D. Poole

Explains a wide range of terms that form the computer argon used by enthusiasis. Includes a reference guide to .

THE PRE-COMPUTER BOOK
 \section*{THE PRE-CO Wilson}

Aimed at the absolute beginner with no knowledge of computing. An entirely non-technical discussion of computer bits and pieces and programming.
prehensive specifications of over 1400 devices. $£ 1.95$

NEWNES COMPUTER ENGINEER'S

POCKETBOOK
An invaluable compendium of facts, figures, circuits and An invaluable compendium of facts, figures, circuits and
data, indispensable to the designer, student, service data, indispensable to the designer, student, service microcomputer systems. It will appeal equally to the microcomputer systems. 'software engineers". This first edition covers a vast ange of subjects at a practical level, with the necessary explanatory text. The data is presented in a succinct and rapidly accessible form so that the book can become part 205 pages (hard colkit.
205 pages (hard cover) Order code NE01 $\mathbf{~} 8.95$

EE BOOK SERVICE TO ORDER

Please check the latest issue for price and availability.

Add 50p per order postage (overseas readers add $£ 1$, surface mail postage) and send a PO, cheque or international money order (f sterling only) made payable to Everyday Electronics (quoting the order code and quantities required) to EE BOOK SERVICE, 6 CHURCH STREET, WIMBORNE, DORSET. BH21 1JH.

Although books are normally sent within seven days of receipt of your order please allow a maximum of 28 days for delivery. Overseas readers allow extra time for surface mail post.

Printed circuit boards for certain constructional projects are now available from the PCB Service, see list. These are fabricated in glassfibre, and are fully drilled and roller tinned. All prices include VAT and postage and packing. Add $£ 1$ per board for overseas airmail. Remittances should be sent to: The PCB Service, Everyday Electronics Editorial Offices, 6 Church Street, Wimborne, Dorset BH21 1JH. Cheques should be crossed and made payable to Everyday Electronics. (Payment in $£$ sterling only.)
Please note that when ordering it is important to give project title as well as order code. Please print name and address in Block Caps. Do not send any other correspondence with your order.

Readers are advised to check with prices appearing in the current issue before ordering.

NOTE: Please allow 28 days for delivery. We can only supply boards listed in the latest issue. Boards can only be supplied by mail order and on a payment with order basis.

PROJECT TITLE	Order Code	Cost
$\begin{aligned} & - \text { JULY '83 }-\overline{1} \\ & \text { User Port Input/Output M.I.T. Part } 1 \end{aligned}$ User Port Control M.I. T. Part 1	$\begin{aligned} & 8307-01 \\ & 8307-02 \end{aligned}$	$\begin{aligned} & £ 4.82 \\ & £ 5.17 \end{aligned}$
- AUGUST '83 - Storage 'Scope Interface, BBC Micro Car Intruder Alarm High Power Interface M. I. T. Part 2 Pedestrian Crossing Simulation M.I. T. Pt 2	$\begin{aligned} & 8308-01 \\ & 8308-02 \\ & 8308-03 \\ & 8308-04 \end{aligned}$	$\begin{aligned} & £ 3.20 \\ & £ 5.15 \\ & £ 5.08 \\ & £ 3.56 \end{aligned}$
— SEPTEMBER '83 - High Speed A-to-D Converter M.I. T. Pt 3 Signal Conditioning Amplifier M.I.T. Pt 3 Stylus Organ	$\begin{aligned} & 8309-01 \\ & 8309-02 \\ & 8309-03 \end{aligned}$	$\begin{aligned} & \text { £4.53 } \\ & £ 4.48 \\ & £ 6.84 \end{aligned}$
- OCTOBER ‘83 - D-to-A Converter M.I.T. Part 4 High Power DAC Driver M.I.T. Part 4	$\begin{aligned} & 8310-01 \\ & 8310-02 \end{aligned}$	$\begin{array}{r} £ 5.77 \\ £ 5.13 \end{array}$
- NOVEMBER '83 - TTL/Power Interface for Stepper Motor- M.I.T. Part 5 Stepper Motor Manual Controller M.I.T. Part 5 Speech Synthesiser for BBC Micro	$\begin{aligned} & 8311-01 \\ & 8311-02 \\ & 8311-04 \end{aligned}$	$\begin{aligned} & £ 5.46 \\ & £ 5.70 \\ & £ 3.93 \end{aligned}$
- DECEMBER 83 - 4-Channel High Speed ADC (Analogue) M.I.T. Part 6 4-Channel High Speed ADC (Digital) M.I.T. Part 6 Environmental Data Recorder Continuity Tester	$\begin{aligned} & 8312-01 \\ & 8312-02 \\ & 8312-04 \\ & 8312-08 \end{aligned}$	$\begin{aligned} & £ 5.72 \\ & £ 5.29 \\ & £ 7.24 \\ & £ 3.41 \end{aligned}$
- JANUARY 84 - Biological Amplifier M.I.T. Part 7 Temp. Measure \& Control for ZX Comprs Analogue Thermometer Unit Analogue-to-Digital Unit Games Scoreboard	$\begin{aligned} & 8401-02 \\ & 8401-03 \\ & 8401-04 \\ & 8401-06 / 07 \end{aligned}$	$\begin{aligned} & £ 6.27 \\ & £ 2.40 \\ & £ 2.56 \\ & £ 9.60 \end{aligned}$
- FEBRUARY 84 - Oric Port Board M.I.T. Part 8 Negative Ion Generator Temp. Measure \& Control for ZX Comprs Relay Driver	$\begin{aligned} & 8402-02 \\ & 8402-03^{*} \\ & 8402-04 \end{aligned}$	$\begin{array}{r} £ 9.56 \\ £ 8.95 \\ £ 3.52 \end{array}$
$\text { — MARCH ' } 84 \text { - }$ Latched Output Port M.I.T. Part 9 Buffered Input Port M.I.T. Part 9 VIC-20 Extension Port Con. M.I.T. Part 9 CBM 64 Extension Port Con. M.I.T. Part 9 Digital Multimeter Add-On for BBC Micro	$\begin{aligned} & 8403-01 \\ & 8403-02 \\ & 8403-03 \\ & 8403-04 \\ & 8403-05 \end{aligned}$	$£ 5.30$ $£ 4.80$ $£ 4.42$ $£ 4.71$ $£ 4.63$
- APRIL 84 - Multipurpose Interface for Computers Data Acquisition "Input" M.I.T. Part 10 Data Acquisition "Output" M.I.T. Part 10 Data Acquisition "PSU" M.I.T. Part 10 A.F. Sweep Generator Quasi Stereo Adaptor	$\begin{aligned} & 8404-01 \\ & 8404-02 \\ & 8404-03 \\ & 8404-04 \\ & 8404-06 \\ & 8404-07 \end{aligned}$	$\begin{aligned} & £ 5.72 \\ & £ 5.20 \\ & £ 5.20 \\ & £ 3.09 \\ & £ 3.55 \\ & £ 3.56 \end{aligned}$

Simple Loop Burglar Alarm Computer Controlled Buggy M.I.T. Part 11 Interface/Motor Drive Collision Sensing — MAY '84 Power Supply	$\begin{aligned} & 8405-01 \\ & \\ & 8405-02 \\ & 8405-03 \\ & 8405-04 \end{aligned}$	$\begin{aligned} & £ 3.07 \\ & \\ & £ 5.17 \\ & £ 3.20 \\ & £ 4.93 \end{aligned}$
Infra-Red Alarm System Spectrum Bench PSU - JUNE ‘84 - Speech Synthesiser M.I.T. Part 12 Train Wait	$\begin{aligned} & 8406-01 \\ & 8406-02 \\ & 8406-03 \\ & 8406-04 \end{aligned}$	$\begin{aligned} & £ 2.55 \\ & £ 3.99 \\ & £ 4.85 \\ & £ 3.42 \end{aligned}$
Ultrasonic Alarm System Electronic Code Lock - JULY '84 Main Board Keyboard	$\begin{gathered} 8407-01 \\ 1 \\ 8407-03 \\ 8407-04 \end{gathered}$	$\begin{array}{r} \text { £4.72 } \\ \text { £2.70 } \\ \text { £3.24 } \end{array}$
$\begin{aligned} & \quad \text { - AUGUST • } 84- \\ & \text { Microwave Alarm System } \\ & \text { Temperature Interface-BBC Micro } \end{aligned}$	$\begin{aligned} & 8408-01 \\ & 8408-02 \end{aligned}$	$\begin{aligned} & £ 4.36 \\ & £ 2.40 \end{aligned}$
- SEPTEMBER '84 - Op-Amp Power Supply	8409-01	£3.45
Micro Memory Synthesiser Drill Speed Controller \qquad	$\begin{aligned} & 8410-01^{*} \\ & 8410-04 \end{aligned}$	$\begin{aligned} & £ 8.20 \\ & £ 2.40 \end{aligned}$
- NOVEMBER '84 BBC Audio Storage Scope Interface Próximity Alarm	$\begin{aligned} & 8411-01 \\ & 8411-02 \end{aligned}$	$\begin{aligned} & £ 2.90 \\ & £ 2.65 \end{aligned}$
TV Aerial Pre-Amp Digital Multimeter - DEC '84 Mini Workshop Power Supply	$\begin{aligned} & 8412-01^{\circ} \\ & 8412-02 / 03^{*} \\ & 8412-04 \end{aligned}$	$\begin{aligned} & £ 2.40 \\ & £ 5.20 \\ & £ 2.78 \end{aligned}$
Power Lighting Interface Games Timer Spectrum Amplifier	$\begin{aligned} & 8501-01 \\ & 8501-02 \\ & 8501-03 \end{aligned}$	$\begin{aligned} & £ 8.23 \\ & £ 2.40 \end{aligned}$ $£ 2.40$
Solid State Reverb Computerised Train Controller -FEB '85-	$\begin{aligned} & 8502-01 \\ & 8502-02 \end{aligned}$	$\begin{aligned} & £ 3.68 \\ & £ 3.38 \end{aligned}$
- MARCH 85 - Model Railway Points Controller	8503-01	£2.78
Insulation Tester Fibrelarm \quad - APRIL '85 -	$\begin{aligned} & 8504-02 \\ & 8504-03 \end{aligned}$	$\begin{aligned} & £ 2.53 \\ & £ 3.89 \end{aligned}$
Auto Phase Amstrad CPC464 Amplifier Mains Unit MAY '85- Micro Unit Voltage Probe	$\begin{aligned} & 8505-01 \\ & 8505-02 \\ & 8505-03 \\ & 8505-04 \end{aligned}$	$\begin{aligned} & £ 3.02 \\ & \text { £2.56 } \\ & £ 2.56 \\ & \text { £2.67 } \end{aligned}$
Graphic Equaliser - JUNE '85 Computerised Shutter Timer Mono-Bi-Astables (Experimenters Test Bed) Across The River	$\begin{aligned} & 8506-01 \\ & 8506-02 \\ & 8506-03 \\ & 8506-04 \end{aligned}$	$\begin{aligned} & \mathrm{f} 3.21 \\ & \mathrm{£} 2.40 \\ & \mathrm{£} 2.45 \\ & \mathrm{f} 2.63 \end{aligned}$
Amstrad User Port Nascom Printer Handshake	$\begin{aligned} & 8507-01 \\ & 850701 \end{aligned}$	$\begin{aligned} & \text { £3.17 } \\ & \text { £2.40 } \end{aligned}$
Electronic Building Blocks-1 to 4 \dagger Tremolo/Vibrato Stepper Motor Interface- AUGUST '85 - Drill Control Unit	$\begin{aligned} & 8508-01 \\ & 8508-02 \\ & 8508-03 \\ & 8508-04 \end{aligned}$	$\begin{aligned} & £ 2.98 \\ & £ 4.03 \\ & £ 2.40 \\ & £ 2.90 \end{aligned}$
— SEPTEMBER '85 - RIAA Preamplifier Input Selector Transducers Resistance Thermometer Transducers Semiconductor Temp. Sensor	$\begin{aligned} & 8509-01 \\ & 8509-03 \\ & 8509-04 \end{aligned}$	$\begin{aligned} & £ 2.40 \\ & £ 2.64 \\ & £ 2.72 \end{aligned}$
Transducers Strain Gauge - OCT '85 Soldering Iron Power Controller	$\begin{array}{r} 501 \\ 504 \end{array}$	$\begin{aligned} & £ 2.87 \\ & £ 2.40 \end{aligned}$
Transducers- Magnetic Flux Density Amplifier Hallowe'en Projects (single board price)	$\begin{array}{r} 505 \\ 506 \\ \hline \end{array}$	$\begin{aligned} & £ 3.93 \\ & £ 2.68 \end{aligned}$
Electronic Building Blocks - 5 to $8 \dagger$ Opto Intensity Transducer - DEC ‘85 - Digital Capacitance Meter	$\begin{aligned} & 508 \\ & 509 \\ & 512 \end{aligned}$	$\begin{aligned} & £ 3.07 \\ & £ 2.70 \\ & £ 5.22 \end{aligned}$
Mains Delay Musical Doorbell - JAN '86 - Tachometer-Transducers	$\begin{aligned} & 503 \\ & 507 \\ & 513 \end{aligned}$	$\begin{aligned} & £ 2.40 \\ & £ 2.91 \\ & £ 2.52 \end{aligned}$
Touch Controller Function Generator - FEB 86 - Function Generator PSU Board pH Transducer	$\begin{aligned} & 510 \\ & 514 \\ & 515 \\ & 516 \end{aligned}$	$\begin{aligned} & \text { £2.65 } \\ & \text { £ } 3.10 \\ & \text { f2.40 } \end{aligned}$

*Complete set of boards.
M.I.T.-Microcomputer Interfacing Techniques, 12-Part Series.
\dagger Four separate circuits.

PROJECT TITLE	Order Code	Cost
Mains Tester \& Fuse Finder BBC Midi Interface Stereo Hi Fi Preamp — MAR '86 - Interval Timer	$\begin{aligned} & 517 \\ & 518 \\ & 519 \\ & 520 \\ & \hline \end{aligned}$	$\begin{aligned} & £ 2.40 \\ & £ 3.26 \\ & £ 5.70 \\ & £ 2.40 \\ & \hline \end{aligned}$
Stereo Reverb - APRIL '86-	521	£2.89
PA Amplifier Mini Strobe - MAY '86 - Auto Firing Joystick Adaptor	$\begin{aligned} & \hline 511 \\ & 522 \\ & 523 \\ & \hline \end{aligned}$	$\begin{array}{r} £ 2.67 \\ £ 2.40 \\ £ 2.73 \end{array}$
Watchdog Percussion Synthesiser - JUNE '86 - Personal Radio	$\begin{aligned} & 524 \\ & 525 \\ & 526 \end{aligned}$	$\begin{aligned} & \mathrm{f} 2.81 \\ & £ 5.65 \\ & £ 2.40 \end{aligned}$
Tilt Alarm Electronic Scarecrow VOX Box Amplifier	$\begin{aligned} & 527 \\ & 528 \\ & 529 \\ & 530 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{f2.40} \\ & £ 2.40 \\ & £ 2.40 \\ & £ 4.56 \end{aligned}$
Solar Heating Controller - AUG '86-	533	£3.32
	$\begin{aligned} & 538 \\ & 534 \\ & 536 \\ & 537 \\ & 539 \\ & \hline \end{aligned}$	$£ 2.40$ $£ 2.40$ $£ 3.32$ $£ 3.32$ $£ 5.43$
10W Audio Amp (Power Amp) (Pre-Amp) f4.78 Pair Light Rider-Lapel Badge -Disco Lights -Chaser Light — OCT '86	$\begin{gathered} 543 \\ 544 \\ 5408541 \\ 542 \\ 546 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{£2.58} \\ & £ 3.18 \\ & £ 2.70 \\ & £ 4.55 \\ & £ 3.23 \\ & \hline \end{aligned}$
Modem Tone Decoder - NOV '86 200 MHz Digital Frequency Meter	$\begin{aligned} & 547 \\ & 548 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{£2.76} \\ & £ 4.12 \end{aligned}$
Dual Reading Thermometer Automatic Car Alarm BBC 16K Sideways RAM — DEC'86 - (Software Cassette)	$\begin{gathered} 549 \\ 550 \\ 551 \\ 551 \mathrm{~S} \\ \hline \end{gathered}$	$\begin{array}{r} \mathrm{£} 5.87 \\ £ 2.40 \\ \mathrm{£} 2.40 \\ \mathrm{£} 4.95 \\ \hline \end{array}$
Random Light Unit - JAN ${ }^{\text {8 }} 87$ -	552	£4.70
Car Voltage Monitor Mini Amp. Video Guard - FEB '87 - Spectrum 1/O Spectrum Speech Synthesiser	553 5548555 556 557 558	$\begin{aligned} & \text { £2.40 } \\ & £ 4.55 \\ & \text { £3.05 } \\ & \text { £3.78 } \\ & £ 3.88 \\ & \hline \end{aligned}$
Computer Buffer/Interface - MAR '87 Infra Red Alarm: Sensor head PSU/Relay Driver	$\begin{aligned} & 560 \\ & 561 \\ & 562 \\ & \hline \end{aligned}$	£2.66 £3.35 £3.60
Alarm Thermometer - APRIL '87 Experimental Speech Recognition Bulb Life Extender	$\begin{aligned} & \hline 559 \\ & 563 \\ & 564 \end{aligned}$	$\begin{aligned} & £ 2.40 \\ & £ 3.80 \\ & £ 2.40 \end{aligned}$
Fridge Alarm EE Equaliser-loniser MAY '87 -	$\begin{aligned} & 565 \\ & 566 \end{aligned}$	$\begin{aligned} & £ 2.40 \\ & £ 3.28 \end{aligned}$
Mini Disco Light -JUNE '87- Visual Guitar/Instrument Tuner Visual Guitar/Instrument Tuner	$\begin{aligned} & 567 \\ & 568 \end{aligned}$	$\begin{aligned} & £ 2.40 \\ & £ 3.18 \end{aligned}$
Fermostat -JULY '87 - EE Buccaneer Metal Detector Monomix	$\begin{aligned} & 569 \\ & 570 \\ & 571 \end{aligned}$	$\begin{aligned} & \mathrm{f} 2.67 \\ & \mathrm{f} 3.28 \\ & \text { £3.80 } \end{aligned}$
Super Sound Adaptor, Main Board PSU Board Simple Shortwave Radio, Tuner Amplifier	$\begin{aligned} & 572 \\ & 573 \\ & 575 \\ & 576 \end{aligned}$	$\begin{aligned} & £ 3.37 \\ & £ 2.65 \\ & £ 2.51 \\ & \text { £2.40 } \end{aligned}$
Noise Gate Burst Fire Mains Controller Electronic Analogue/Ditigal \quad Multimeter	$\begin{aligned} & 577 \\ & 578 \\ & 579 \end{aligned}$	$\begin{array}{r} \mathrm{£4.41} \\ £ 3.31 \\ £ 6.40 \\ \hline \end{array}$

TEACH-IN-SOFTWARE

To complement each published part of the Teach-In series (Oct. '85 to June '86), we have produced an accompanying computer program. The Teach-In Software is available for . both the BBC Micromputer (Model B) and the Sinclair .Spectrum (48 k) or Spectrum-P/us. The programs are de.signed to reinforce and consolidate important concepts and ${ }_{\text {Ip }}$ principles introduced in the series. The software also allows readers to monitor their progress by means of a series of multi-choice tests, with scores at the end.
Tape 1 (Teach-In parts 1, 2 and 3). Tape 2 (part 3, 4 and 5) and Tape 3 (parts 6, 7, 8 and 9) are available for $£ 4.95$ each (inclusive of VAT and postage) from Everyday Electronics. 6 Church Street, Wimborne, Dorset BH21 1 JH . IMPORTANT State BBC or Spectrum; add 50 pence for overseas orders; allow 28 days for delivery.

Warning to readers: From next month we will be dropping a number of older p.c.b.s from our service, these will mainly be those over two years old-if you want one or likely to want one order NOW! The price of some other p.c.b.s will also be increased.

Reach effectively and economically today's enthusiasts anxious to know of your products and services through our semi-display and classified pages. The prepaid rate for semi-display spaces is $£ 8.00$ per single column centimetre (minimum 2.5 cm). The prepaid rate for classified advertisements is 30 pence per word (minimum 12 words), box number 60p extra. All cheques, postal orders, etc., to be made payable to Everyday Electronics VAT must be added. Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Everyday Electronics, 6 Church Street, Wimborne, Dorset BH21 1JH. Tel: 0202881749.

Electronic Components

RESISTORS (metal film, full length leads): mixed $(1,2,5 \%) 1000$ off $£ 6.50,100$ off $£ 1.10$. Mixed (1%) 70 off $£ 1,\left(2 \%, \frac{1}{4} \mathrm{~W}\right) 70$ off $£ 1,(1 W) 35$ off $£ 1$, (2W) 30 off $£ 1$. Enclosed miniature cermet trimpots (assorted): 10 off $£ 1.50,50$ off $£ 5$. Ten turn wirewound potentiometers: 5 assorted $£ 1.60$. Low profile turned pin d.i.l. sockets: 8 off 24 pin $£ 2.30$, 40 pin 60p each. Postage and packing 70p. SAE for full list. Milner Electronics, 2 Elgarth Drive, Wokingham, Berkshire RG 114 HH .

MICRO TRANSMITTER KIT, 500 m range, tunable $88-115 \mathrm{MHz}$, sensitive microphone, $£ 3.95$. Cheques/PO to: Quantum Electronics (EE), 267 Rednal Road, Kings Norton, Birmingham B38 8EB.

DELUXE WALKIE TALKIES long range, $49 \mathrm{MHz} £ 24.99 /$ pair (normally $£ 31.49$). Satisfaction or refund. Send $£ 3$ now, pay balance upon receipt. 48 hrs . delivery. Xenon (Dept EE9), 24 Wharncliffe Street, Barnsley, Yorkshire.

TECH-SUPPLY. Variable power supply 3-30V 1.5 amp , fully tested, guaranteed. With meter $£ 45.50$ inclusive. Without meter $£ 38.50$ inclusive. Cheque/PO payable to: Tech Supply, 1 Holland House, Bolton Road, Radcliffe, Manchester M26 0 GW . Allow 14 to 21 days delivery.

Bargain Bags

BARGAIN BAGS. Resistors, tuners, panels, speakers, caps, presets etc. Bargain at $£ 10+£ 2$ p\&p. Cheque payable to K. Pendlebury, 43 Cowpe Road, Waterfoot, Rossendale, Lancs BB4 7DQ.

ROCK BOTTOM PRICES FOR QUALITY COMPONENTS
Turntable belts Tape heads Multimeters Soldering irons Styli Speakers Aerials Crossovers Video copy kits Plugs Leads SEND OR PHONE FOR FREE LISTS STRACHAN ELECTRONICS, 9 CROALL PLACE, EDINBURGH EH7 4LT Tel: 031-556 9549

TURN YOUR SURPLUS

ICS transistors etc into cash, immediate settlement. We also welcome the opportunity to quote for complete factory clearance.
Contact COLES-HARDING \& CO,
103 South Brink, Wisbech, Cambs. *ESTABLISHED OVER 10 YEARS* Tel: 0945584188

> PLEASE MENTION EVERYDAY ELECTRONICS WHEN REPLYING TO ADVERTISEMENTS

Services

ELECTRONIC repairs and rebuild service. All projects undertaken. Tel: D.G. Electronics, Chelmsford (0245) 266160.

Service Manuals

SERVICE SHEETS from $£ 2.50 / 1$ sae ctv/ music/combis $£ 3.50 / 1 \mathrm{sae}$. Sae Newnes \& TV Technic Books in stock. Thousands Service \& Repair Manuals. SAE Free Review/pricelists. TIS (EE), 76 Church St, Larkhall (0698 883334), Lanarkshire.

WORKSHOP SERVICE MANUALS

Thousands stocked, most makes, models, types, audio, TV, video, test, amateur etc. LSAE enquiries/quotation and FREE Review/price lists with details of our Unique Repair and Data Guides, from Valves to Videos
MAURITRON (EE), 8 CHERRY TREE
ROAD, CHINNOR, OXON OX9 4QY.

Printed Circuit Boards

PRINTED CIRCUIT BOARDS produced to own personal requirements. Please send sae for details: Mr. B. M. Ansbro, 38 Poynings Drive, Hove, Sussex.

Special Offers

FREE MEMBERSHIP to a new national clectronics club. For details and a free pack of components worth over $£ 10$ send only $£ 1$ p\&p to Dept. EE, Woodside, Dowsett Lane, Ramsden Heath, Billericay, Essex CM11 1JL.

Choose from our standard range below, or if you are looking for a specific size, then we can produce YOUR OWN CUSTOM BOX WITHOUT ANY TOOLING COSTS, with all holes, slots, PCB grooves, etc, already machined in, ready to assemble.

H W O	$\begin{aligned} & \text { D10: } 50 \times 100 \times 110^{\circ} \\ & \text { D20: } 35 \times 145 \times 170^{\circ} \end{aligned}$	CONSOLE BOXES
¢1: $30 \times 50 \times 80^{*}$	D30: $40 \times 120 \times 170^{\circ}$	PRG1: $20 / 60 \times 130 \times 160^{*}$
C2: $40 \times 60 \times 90^{\circ}$	D40: $70 \times 110 \times 145^{*}$	PRG2: $35 / 70 \times 230 \times 160^{*}$
C3: $50 \times 70 \times 110^{*}$	$\begin{aligned} & 050: 60 \times 160 \times 170 \\ & 060: 100 \times 180 \times 210 \end{aligned}$	PRG3: $35 / 77 \times 290 \times 190$
BA4: $20 \times 85 \times 120$	D70: $70 \times 200 \times 215$ GA1: $93 \times 280 \times 160$ GA2: $140 \times 400 \times 205$	All sizes are in millimeties, and are internal.

All made from high impact resistant plastic which is easily drilled or
Boxes marked * are available through Cirkit Distribution Ltd., Park Lane, Broxbourne, Herts.
For other sizes and details of Custom Service contact us at the address below.
Distributor enquiries welcome.

BAFBOX LTD.

Unit A, Park End Works, Croughton, BRACKLEY NN13 5LX Telephone: 0869810830

$\not Z$ Zenith Electronics.

Kits - Modules - Hardware

NEW

\star High quality TOUCH DIMMER R/Built. finished in white plastic and Brass touch plate. £12.99 inc. VAT \& P\&P.
The following are examples of our proven product designs in kit form:

* 10 Channel Variable Speed Running Light; Drives LEDs or mains lamps. Kit.
* 3 Note Electronic Door Chime unit; 9 volt operation,

3 melodious tones; variable frequency. Kit....................................9.83

* Miniature FM Transmitter; 60-145MHz. Kit $£ 6.95$

R/Built
Ł 3 Watt FM Transmitter, $80-108 \mathrm{MHz}$. Kit... $£ 13.99$
R/Built ...9

* 300 Watt Light Dimmer unit for 240 volt mains lights. Kit 66.95
$\star 4$ Code Digital Code unit plus Key Pad-select own code; 9 volt. Kit£15.95
\star 5-100 Watt Electronic Loudspeaker Overload
Protector, adjustable. Kit . 811.11
\star VU Meter 10 LED indicator; -5 to +12dB range. Kit 12.59
* Automatic light controller; automatically turns on and off
lights at pre-set times and triggered by darkness. Kit $\mathbf{2 5} .08$
* Mains Wiring and Metal Detector. R/Built.................................... 11.00
\star Digital Clock module; 12-24 hour timing; LED type $£ 17.49$
or LCD type ... $0.25-100$ Watt Input-9 volt operation. Kit
Light sensitive relay unit; variable sensitivity trigger control; senses light or dark-selectable. Kit. ALL PRICES INCLUDE VAT AND POSTAGE \& PACKING. OVERSEAS ORDERS-ADD 10\% TO ABOVE PRICES. PLEASE SEND CHEQUE OR POSTAL ORDERS WITH ORDER.

Zenith Electronics, 14 Cortlandt Business Centre,
Hailsham, E. Sussex, U.K. BN2T 1AE. Tel: 0323847973
INDEX TO ADVERTISERS
AUDIOKITS 520
BAFBOX 519
BI-PAK 519
468
B. ELECTRONICS Cover III
BULL, J. \& NCover II
CIRKIT DISTRIBUTION
466
466
COLES-HARDING 518
C-SCOPE 511
ELECTRONIZE DESIGN. 466
GREENWELD ELECTRONICS 467
I.C.S 519
LONDON ELECTRONICS COLLEGE 519
MAGENTA ELECTRONICS
470
470
MAPLIN ELECTRONIC SUPPLIES
Cover IV
Cover IV
MARCO TRADING 466
MAURITRON 518
.519
M.J.R. WHOLESALENATIONAL COMPONENT CLUB513
OMEGA ELECTRONICS 466
OMNI ELECTRONICS 511
PHONOSONICS 520
RADIO COMPONENT SPECIALISTS 513
SHERWOOD DATA SYSTEMS 468
SMITHELECTRONICS 511
STRACHAN ELECTRONIS 518
T.K. ELECTRONICS 485
XEN-ELECTRONICS 511
ZENITH ELECTRONICS 519

FASCINATING ELECTRONIC PROJECTS

* BE KIT CREATIVE
\star RAISE YOUR SKILLS
* LEARN BY BUILDING
* ENJOY BY USING

\rightarrow DIGITAL INTERFACES MANY MORE FINE DESIGNS

 \square

THROUGH ELECTRONICS UNDERSTAND ESSENTIAL TECHNOLOGY
MUSIC MODULES GeIGER COUNTERS

> KITS THAT FIT

MUSIC AND EFFECTS

A-D-A interface Chip Test 24-Pin* Chorus Flanger Dual Compander Cybervox Voice FX Digital Delay \& MCS Echo-Reverb Stereo Equaliser 3-Chan Event Counter Flanger (Mono) Guitar Modulo Micro-Scope*
Micro-Trace* Mini-Sampler Mixer 4.Ch Stereo Mixer Simple 4 Chan Mock Stereo Morse Decoder Noise Gate Phaser-Enhanced Polywhatsit! FX Ring Modulator Storm Wind \& Rain Thunder \& Lightning Tuner-Micro** Vodalek Voice FX

Computer controlled (BBC, C64, PET) Most PCBs available separately

Send A4 SAE for detailed catalogue, and with all enquiries (overseas send $£ 1,00$ or 5 I.R.C.'s). Add 15% VAT. Add P\&PP - Sets over $£ 50$ add $£ 2.50$. Others add $£ 1.50$. Overseas P\&.P in catalogue. Text photocopies - Geiger \& DDL Texts $£ 1.50$ each, others 50 p, plus 50 p post or large SAE. Insurance 50p per $£ 50$. Mail order, CWO, CHQ, PO, Access, Visa.
PHONOSONICS, DEPT EE79, 8 FINUCANE DRIVE, ORPINGTON, KENT BR5 4ED. Tel: 068937821

[^0] ('olchester. Essex. Disstibuted by Seymour, 334 Brixion Road, London SW9 7AG. Sole Agents for Austratia and New Zealand - Gordon \& Goich (Asia) Lid: South Africa - Central News Agency Lid Subscriptions INLAND f14 and OVERSEAS \&17 payable 10 "Everyday Electronics" Subscription Depariment. 6 Church Street. Wimborne. Dorsel BH2I IH out or otherwise disposed of hy way of Trade al more than the recommended selling price shown on the cover and chat in shat the Publishers first having been given, be lent. resold, hired mutilated condition or in any unauthorised cover by way of Trade or affixed to or as parn of any publication or adverising. literary or pictorial malter whatsoever.

OUP POWER AMPLIFIER MODULES OMP POWER AMPLIFIER MODULES

Now enjoy

 world-wide reputation for quality, reliability and performance at a reatistic price. Four modelsavailable to suit the needs of the professional and hobby market. i.e., Industry, Leisure avalabe to suit the needs. When comparing prices, NOTE all models include Toroidal pawer supply, integra heat sink, Gen and shori circuit proof. Supplied ready built and tested. OMP 100 Mk II Bi-Polar Output power 110 watts R.M.S. into 4 ohms, Frequency Res ponse $15 \mathrm{~Hz}-30 \mathrm{KHz}-3 \mathrm{~dB}, \mathrm{~T} . \mathrm{H} . \mathrm{D} \quad 0.01 \%$, S.N.R. -118 dB . Sens for Max output 500 mV at 10 K , Size $355 \times 115 \times 65 \mathrm{~mm}$. PRICE $£ 33.99+£ 3.00$ P\&P.
OMP/MF100 Mos-Fet Output power 110 watts R.M.S into 4 ohms, Frequency Response $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$, Damping Factor 80, Slew Rate $45 \mathrm{~V} / \mathrm{uS}$, T.H.D. Typical 0.002%, Input Sensitivity 500 mV . S.N.R.

OMP/MF200 Mos-Fet Output power 200 watts R.M.S into 4 ohms, Frequency Response $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$, Damping Factor 250, Slew Rate 50V/uS. T.H.D. Typical 0.001%. Input Sensitivity 500 mV , S.N.R. $=130 \mathrm{~dB}$ Size $300 \times 150 \times 100 \mathrm{~mm}$. PRICE PRICE $£ 62.99+£ 3.50$ P\&P
OMP/MF300 Mos-Fet Output power 300 watts R.M.S into 4 ohms, Frequency Response $1 \mathrm{~Hz}=100 \mathrm{KHz}-3 \mathrm{~dB}$, Damping Factor 350. Slew Rate 60V/uS, T.H.D Typical . 30 dB , Input Sensitivity 500 mV , S.N.R. PRICE $£ 79.99+£ 4.50$ P\&P
NOTE: Mos-Fets are supplied as standard (100 KHz bandwidth $\&$ Inpul Sensitivity 500 mV). If required

VU METER Compatible with our four amplifiers detailed above. A very accurate visual display employing illis. diodes (7) green. 4
red) plus an additional on/off indicator Sophisticated logic control circuits for very fast rise and decay times. Tough moulded plastic PRICE $£ 8.50+50 \mathrm{p}$ P\& P

LOUDSPEAKERS 5" to $15^{\prime \prime}$ up to 400 WATTS R.M.S Cabinet Fixing in stock. Huge selection of McKenzie Loudspeakers available including Cabinet Plans. Large S.A.E. (28p) for free details
pÖWER RANGE
" 50 WATT R.M.S. Hi-Fi/ Disco

$12^{\prime \prime} 100$ WATT R.M.S. Hi Fi/Disco
50 oz magnet $2^{\prime \prime}$ ally voice coil. Ground ally fixing escutcheon. Die-cast chassis. Whitercone. Res.

Mckenzie
 PRICE $£ 29.99+£ 3.00$ P8P ea
$12^{\prime \prime} 85$ WATT R.M.S. C1285TC P.A./Disco $2^{\prime \prime}$ ally voice coil. Twin cone. Res. Freq. 45 Hz . Freq. Resp. 10 14KHz.
$15^{\prime \prime} 150$ WATI R.M.S. C15 Bass Guitar/Disco
$3^{\text {s }}$ ally voice coil. Die-cast chassis. Res. Freq. 40 Hz . Freq. Resp. 104 KHz . PRICE $\mathrm{f} 57.87+\mathrm{f} 4.00$ P\&P ea.

 " voice coil Ref FiH200GP Guitar/Keyboard/Disco.

WEM WATT R.M.S. Multiple Array Disco etc
 " "oice coil Res. F. Feq. 52 Hz . Freq. Resp to 5 KHz ,
$8^{\prime \prime}{ }^{150}$ WATHRM.S. Multiple Array Disco etc.

敦 voice coil. Res. Freq. 35 Hz . Freq. Resp. to 4 KHz . Sens. 9
$\mathbf{1 2}^{\prime \prime} 300$ WATT R.M.S. Disco/Sound re-enforcement etc.
$1 \frac{1}{2}{ }^{-1}$ voice coil. Res. Freq. 35 Hz . Freq. Resp. to 4 KHz . Sens. 94 dB . PRICE $£ 47.00+£ 3.00 \mathrm{P} \& \mathrm{P}$ ea. soun DLAB (Full Range Twin Cone\}
(" 60 WATT R.M.S. Hi-Fi. Multiple Array Disco
 voice coll Res. Frea. 56 Hz Freq Resp. to 20 KHz . Sens. 89 dB . PRICE $£ 10.99+£ 1.50 \mathrm{P} \& \mathrm{P}$ ea

$10^{\circ} 60$ WATT R.M.S. Hi-Fi/Disco etc.
omponents complete with instructions
FM MICROTRANSMITTER (BUG) $90 / 105 \mathrm{MHz}$ with vary sensitive
microphone. Range 100/300 metres. $57 \times 46 \times 14 \mathrm{~mm}$ (9 volt)

> 3 WATT FM TRANSMMITTER 3 WATT $85 / 115 M H z$ varicap controtled professional performance, Range up to 3 miles $35 \times 84 \times 12 \mathrm{~mm}$ (12 vor) Price: $514.49+75 \mathrm{p}$ P\&P
> RECEIVER 27 MHz Range up to 500 MNTROLLED TRANSMITTER Receiver output operates relay with 2 amp 240 volt contacts. Ideal for $\begin{aligned} & \text { Recoiver output operates relay with } 2 \text { amp/240 vot contacts. } \\ & \text { many applications. Receiver } 90 \times 70 \times 22 \mathrm{~mm}(9 / 12 \text { volt). Price: }\end{aligned}$ $f 17.82$ Transmitter $80 \times 50 \times 15 \mathrm{~mm} \times 9 / 12$ volt). Price: $£ 11.29$ P\&P $+75 p$ each. S.A.E. for complete list.

3 watt $F \bar{M}$

VISA

 POSTAL CHARGES PER ORDER $£ 1.00$ minimum. OFFICIALORDERS WELCOME, SCHOOLS, COLLEGES, GOVERNMENT BODIES, ETC. PRICES INCLUSIVE OF VA.T. SALES COUNTER VISA/ACCESS/C.O.D. ACCEPTED

PRICES INCLUDE V.A.T. * PROMPT DELIVERIES \star FRIEN
SERVICE \star LARGE S.A.E. 28% STAMP FOR CURRENT LIST

BURGLAR ALARM

Thandar's famous' ${ }^{\text {Minder }}$ ' Burglar Alarm System. Supe i iet microwave principle. Supplied ast hree units.
comith interconnection cable. FULLY GUARANTEED
Control Unit - Houses microwave radar unit, range
up to 15 metres adjustable by sensitivity control
up to 15 metres adjustable by sensitivity contiol
Three position. key operated facia switch - off - test
Thremed 30 second exit and entry delay
Indoor alarm
104 dB output
freq. siren
Outoor Alarm - Electronic swept freq. siren 98dB
Output. Housed in a tamper-proof heayy duty case
Both the control unit and outdoor alarm contain re chargeabe bateries which provide ull protection $\mathrm{AC} 50 / 60 \mathrm{~Hz}$. Expandable with door sensors. pani
SAVE $\boldsymbol{f} 13 \overline{8} . \overline{0} 0$ Usual Price $£ 228.85$
BKE's PRICE $£ 89.99+£ 4.00$ P\&P

OMP LINNET LOUDSPEAKERS

The very best in quality and value. Made specially to sult todays heed for compactness with high sound output levels. Finished in handle. All models 8 ohms. Full range $45 \mathrm{~Hz}-20 \mathrm{~K} \mathrm{~Hz}$. Size $20^{\prime \prime} \times$

OMP 12-100 Watts 100 dB . Price $£ 149.99$
per pair.
OMP 12 -200 Watts 102 dB. Price $£ 199.99$ per pair.

OMP 19" STEREO RACK AMPS

Professional 19" cased Mos-Fet stereo amps. Used the World over in clubs, pubs, discos etc. With twin V_{u} meters, twin toroidal power supplies, XLR connections. MF600 Fan cooled. Three models (Ratings R.M.S. into 4 ohms). input Sensitivily 775 mV MF200 (100 + 100)W. £ 171.35 Securicor MF400 $(200+200) W$ § $£ 228.85$ Delivery
MF600 $(300+300)$ W. $£ 322.00 \quad £ 10.00$
1 K-WATT SLIDE DIMMER

BS800
\star Suitable for both resist numerable applications
industry, the ho
disco's. theatres et
PRICE $£ 13.99$

PIEZO ELECTRIC TWEETERS MOTOROLA
Join the piezo revolution. The low dynamic mass (no veice coill of a Piezo tweeter produces an
improved transient response with a lower distortion level than ordinaiy dynamic iweeters As a crossover is not required these units can be added to existing speaker systems of up to 100 wart
imare if 2 put in series). FREE EXPLANATORY LEAFLETS SUPPLIED WITH EACH TWE ETER.

TYPE 'A' (KSN2036A) $3^{\prime \prime}$ ' round with protective wire
mesh ideal for toookshelf and medium sized Hi - Fi Speakers, Price $f 4.90$ each +40 p P\&P
TYPE ' B^{\prime} (KSN1005A) $31 / 2^{\prime \prime}$ super horn For general purbose speakers. disco and P.A. systems etc. Price
E5. 99 each +40 P $P \& P$.

TYPE 'C' (KSN6016A) $2^{\prime \prime} \times 5^{\prime \prime}$ wide dispersion horn. For quality Hiti systems a
Price $f 6.99$ each +40 p P\& TYPE ' D ' (KSN1025A) 2 " $\times 6^{\prime \prime}$ wide dispersion horn. Upper frequency response retained extending down to mid range (2KHz) Suitable for high qualiiy Hi-fi systems and quality discos. Price $£ 9.99$ each

TYPE 'E' (KSN1038A) 33/4" horn tweeter with attractive silver finish trim. Suitable for Hi-fi
systems etc. Price $\mathbf{~} 5.99$ each +40 P P\&P
LEVEL CONTROL Combines on a recessed mounting plate, level control and cabinet input jack socket

STEREO DISCO MIXER

 STEREO DISCO MIXER with 2×5 band L. \& R. graphic equalisers and twin 10 segmentL.E.D Vu Meters. Many outstanding features Inputs with individual faders providing a useful combination of the following: 3 Turntables (Mag). 3 Mics, 4 Line plus Mic with talk over switch. Hearphone Monitor
Pan Pot. L. \& R. Master Output controls OutPan Pot.L. \& R Master Output control
put 775 mV . Size $360 \times 280 \times 90 \mathrm{mmm}$
Price $\mathrm{f} 134.99 \rightarrow 53.00 \mathrm{P} \mathrm{\&} \mathrm{P}$

B. K. ELEHTHOTIOS

UNIT 5, COMET WAY, SOUTHEND-ON-SEA, ESSEX. SS2 6TR TEL: 0702-527572

[^0]: Published on approximately the third Friday of each month by Wimborne Publishing Lid., 6 Church Sireet. Wimborne, Dorsel BH21 IJH. Printed in England by Benham \& Co. Limited.

