EV/FiTDAY

DECEMBER 1986

DUAL THERMOMETER AUOMATG CAR ALARM B:C 16K SIDEMAYS RAM MIN AGTNE SPEAKER Plus INDEX FOR VOLUME 15

Newcomers Magazine for Electronic \& Computer Projects
£1 BAKERS DOZEN PACKS Price per pack is $£ 1.00$ ．＂Order 12 you may choose another free．Items marked（sh）are not new but guaranteed ok．
$5-13$ amp ring main junction box
$5-13$ amp
－surface mounting
－electrical switiches，white flush mounting
－in fiex line switches with neons
2 －mains transtormers with $6 V 1$ A secondaries
－mains transtormers with
－extenslon speaker cabinet for $6 \frac{1}{2}{ }^{*}$ secondaries speaker
12 －glass reed switches
2 －ultrasonic transmitters and 2 receivers with circuit
wafer switches $-6 p 2$ way， $4 p 3$ way， $2 p 6$ way， $2 p 5$ way， $1 p$
12 way small one hold fixing and good length it spindle your choice
－ 6 digit counter mains voltage
－Nicad battery chargers
2 －aerosol cans of ICI Dry Lubricant
1－long and mis colour－coded connecting wire
8 －rocker switch 10 amp mains SPST
-24 hour time switch mains operated（s．h．）
$10-$ neon valves－make good night lig
$2-12 \mathrm{~V} D \mathrm{C}$ or 24 VAC 3 CO relays
12V 2 CO miniature relay very sensitive
－rows of 32 old plated IC
10 －rows of 32 gold plated IC sockets（total 320 sockets）
－miniature uniselector with circuit
－ferrite rods $4^{\prime \prime} \times 5 / 16^{\prime \prime}$ diameter aeriails
－ferrite slab aerials with L \＆M wave coils
－Mullard thyristor trigger module
－magnetic brake－stops rotation instantly
－low pressure 3 level switch can be mouth operated
25 watt pots 8 ohm
－wire wound pots－18，33，50 and 100 ohm your choice
tirme reminder adjustable 1.60 mins clockwort
mains shaded pole motor $\frac{8}{4}$ stack－ 2 shath
－mains motors with gear box 16 rpm
－thermostat for fridge
－motorised stud switch（s．h．）
$-2 \frac{1}{2}$ hours delay switch
－mains power supply unit $-6 V D C$
1 －mains power supply unit $-4 \frac{1}{2} V D C$
$-5^{\prime \prime}$ speaker size radio cabinet with handie
－heating pad 200 watts mains
－ 1 W amplifier Mullard 1172
－wall mounting thermostat 24 V
－teak effect extension 5 speaker cabinet
－push push switches for table lamps etc．
10 －mits twin screned flex white p．y．
25 －clear plastic lenses $1 \frac{3}{3}$ diameter
10 －very fine drills for pobs etc．
4 －extra thin screw drivers for instruments
－plastic boxes with windows ideal for int －plastic boxes with windows，ideal for interrupted beam switch
10 －model aircraft motor－require no on／ott
start
$1-6 \frac{1}{2}{ }^{\prime \prime} 4$ ohm 10 watt speaker
$10-4$ BA spanners 1 end open
10－4 BA spanners 1 end open，other end closed
2－4 reed relay kits 3 V coil normally open or c / o if magnets added
$1-12 \mathrm{~V}$ drip proot relay－ideal
－varicap push button tuners with knobs
4 －short wave air spaced trimmers $2-30 \mathrm{f}$
$10-12 \mathrm{~V} 6 \mathrm{~W}$ bulbs Philips m．e s
$10-12 \mathrm{~V}$ 6W bulbs Philips m．e．s．
3 －oblong amber indicators with lilliputs 12 V
8 －round amber indicators with neons 240 V
8 －round amber indicators with neons 240 V
100 －p．v．c．grommets 各 hole size
100 －p．v．c．grommets 友 hole size
1 －short wave tunling condenser 50 pf with $\frac{1}{2 \prime}$＂spindle
1 －three gang tuning condenser each
1 －plastic box sloping metal front， $16 \times 95 \mathrm{~mm}$ average depth 45 mm
3． 6 － 5 amp 3 pin flush sockets brown
－B．C．lampholders brown bakelite th
－B．C．lampholders brown bakelite threaded entry －in flex simmerstat for electric blanket soldering iron etc． thermostats，spindle setting－adjustable range for ovens etc． 10 digit switch pad for telephones etc
computer keyboard switches with knobs，pcb or vero mounting
－mtres 80 ohm，standard type co－ax off white
－alectric clock mains driven，always right time－
－alectric clock mains driven，always right time－not cased
stereo pre－amp Mulard EP9001
12 V solenoids，small with plunger
－mains transformer 9V 1 amp secondary C core construction car coor speaker（very flat） $6 \frac{1}{2 \prime 2} 15$ ohm made for Radiomobile speakers $6^{\prime \prime} \times 4^{*} 16$ ohm 5 watt made for Radiomobile mains motor with gear－box very small，toothed output 1 rpm standard size pots，$\frac{1}{2}$ meg with dp switch 13A switched socket on double plate mains transformers $15 V^{\wedge} 1 \mathrm{~A}$ secondar ．c． ten turns 3 watt pot \ddagger spindle 100 ohm car cigar lighter sacket plugs
mains solenoid with plungr bakelite ceramic magnets Mullard $1^{\prime \prime} \times 3 / 8 \times 5 / 16$ 12 pole 3 way ceramic wave charge switch tubular dymamic microphone with desk rest T．V．turret tuner（black \＆white T．V．） oven thermostats
sub miniature micro switches
$12 " 8$ watt min fluorescent tube white
$6^{\prime \prime} 4$ watt min fluorescent tube white round pin kettle plugg with moulded on lead
2－2 $\frac{1}{\mathrm{in}}$ ．80ohm loudspeakers
454．2－2 $\frac{1}{4} \mathrm{in}$ ．8ohm loudspeakers

FROZEN PIPES Can be avoided by winding our heating cable around them， 15 mtrs connected to mains cost only about 10 p per week to run．Hundreds of other uses as it is waterproof and very flexible．Resistance $60 \mathrm{ohms} /$ metre．Price $28 \mathrm{p} /$ metre or 15 m for $£ 3.95$ ．

MULLARD UNILEX AMPLIFIERS

We are probably the oniy firm in the country with these now in stock．Although only four warts per channel，these give superb
reproduction．We now offer the 4 Mullard modules－i．Mains reproduction．We now onfer the ant（EP9002）Pre amp module（EP9001）and two amplifier mower Unit（EP902）Pre amp module（EP900 1）
modules（EP9000）all for $£ 6.00$ plus $£ 2$ postage．For prices of
modules bought separately see modulas bought separately see WO POUNDEA
CAR STARTER／CHARGER KIT
with bartery Do 250 wory you will star your car with this unit－ 250 watr transformer 20 amp rectifiers，case and all
parts with data $£ 14.50$ or without case $£ 18.50$ post $£ 2$ ．

VENNER TIME SWITCH

 Mains operated with 20 amp switch，oneon and one off per 24 hrs．repeats dally automatically correcting for the lengthening or shoriening day．An expensive time switch but you can have it for only $£ 2.95$ without case，metal case
$-£ 2.95$ ，adaptor kit to convert this into －£2．95，adaptor kit to convert this into added advantage of up 1012 on／ofts per
24 hirs．This makes an idesi controlier for 24 hrs．This makes an ide日i controller for the inmerslon heater．Price of adaptor kit
is $£ 2.30$ ． SOUND TO LIGHT UNIT

Complete kit of parts of a thres channel sound to light unit controlling over 2000 werts of lighting．Use this at home if you housed＇in an attractive two tone metal case and has controls for by it sockers and ithres panel mounting fuse holders provide thyristor protection．A four pin plug and socket facilitate asse of

12 volt MOTOR BY SMITHS

Made for use in cars，etc．These are very powerful and easily rever sible．Size
$3 \frac{1}{2}$＂long by 3° dia．They have a good

ength of t^{-3} spind

1／B hp $£ 5.75 .1 / 6 \mathrm{hp} £ 7.50$

25A ELECTRICAL PROGRAMMER

－earn in your sleep．Have radio playing and kettle
boiling as you wake－switch on lights to ward off intruders－have a warm house to come home to．You can do all these and more．By a famous maker with 25
unit at $£ 2.50$

SNI is a 9 black \＆white video display unit，made in Japan by the Famous Hitachi company their model number H9905 11．It has it＇s own power supply and display electronics．It is a Professional instrument tested before dispatch．Special snip Price is $£ 10$ plus $£ 3$ post

INSTRUMENT TURNTABLE

Vory well made with unique coiled arrangement for Hitachi vide unit，also suitable for most modern scoges and meny other
instrumenis．Price \＆5 plus $£ 2$ post，Our Price 5 P72．

LIGHT BOX

This when completed measures approximately $15^{\prime \prime} \times 14^{\prime \prime}$ ．The light source is the Phillips fluorescent＇W＇1ube．Above the light a sheet
of fibreglass and through this should be sufficient light to enable you to follow the circuit on fibreglass PCBs．Price for the complete kit．that is the box，choke，starer，tube and swith，and fibreglass is
$£ 5$ plus $£ 2$ post，order rei 5P69．

TANGENTIALHEATERS？

We again have very good stocks of these quiet running instant heat
units．They require only a simple case，or could easily be fitted into the bottom of a kitchen unit or book case efc．At present we have stocks of $1.2 \mathrm{kw}, 2 \mathrm{kw}, 2.5 \mathrm{kw}$ ，and 3 kw ．Prices are $£ 5$ each for the
first 3 ，and $£ 6.95$ for the 3 k ．Add post $£ 1.50$ per heater if not collecting SWITCH ensbling full heat，half heat or cold blow，with FANS \＆BLOWERS
$5^{-£} £+£ 1.25$ post． $6^{-} £ 6+£ 1.50$ posi
$4^{-} \times 4^{-1}$ Muftin equipment cooling fan $115 \mathrm{~V} £ 2.00$
$4^{-} \times 4^{-1}$ Muffin equipment cooling fan $230 / 240 \mathrm{~V} £ 5.00$ 5－Plannarr extractor $£ 5.50$
9 ＂Exractor or blower 115 V supplied with 230 to 115 V adapto ch． $50+22$ post．
Als above are ex computers but guaranteed 12 months．
$10^{-1} \times 3^{-1}$ Tangential Blower．New．Very quiet－supplied with 230 to 115 V adaptor on use two in seres to give lo
$£ 1.50$ post or $£ 4.00+£ 2.00$ post for twó．

IONISER KIT

Refresh your home，office，shop，work roorn，etc．With
negative ION generator．Makes you feel better and work negative ION generator．Makes you feel better and worl
harder－a complete mains operated kit，case included． £ 11.95 plus $£ 2.00$ post

TELEPHONE BITS
Mastes 8．T．plug．．．
Extension socket
Extension socket．．．．．．．．．．．．．．．．．．．．．．
Cord terminating with B．T．plug 3 metres
Kit for converting old entry termirtal box to new B．．．．．．．．．．．．．．．．．．．．$£ 2.95$ complete with 4 core cable，cable clips and 2 BT extension
sockets．
100 mitrs 4 core telephone cable．
£11．60
.$£ 8.50$

MINI MONO AMP on p．c．b．size $4^{*} \times 2^{\prime \prime}$（app．）

 Fitted volurne control and a hole for atrol should you require it．The amplifier trol should you require it．The amplifier
hes three transistors and we estum－ ate the output to be 3 W rms． More rechnical data will be included whit the amp．Brand new，

J \＆N BULL ELECTRICAL

Dept．E．E．， 128 PORTLAND ROAD，HOVE， BRIGHTON，SUSSEX BN3 50L
MAIL ORDER TERMS：Cash，P．O．or cheque with order．Orders under E 20 add $£ 1$ service charge．Monthly account orders accepted
from schools and public companies．Access $\& \mathrm{~B} / \mathrm{card}$ orders
£2 POUNDERS
－thairmometring tharmosten，high precision with
－Varable and reversible 8.12 v psu for model control
-24 woth psu with separate channels for steren made Mullat -100 W mains to 115 V auto－transtormer with volitage tapping Series wound so Time and sat switch．Boxed glass
15 mmps Ideel to program tilectnc heaters
$2 P 10-12$ volt 5 amp mains transtormer
2P12－Disk or Tape pracision motor－has balanced roter and is reversible 230v mains operated 1500 pm
2P14－Mug Stop kit－when thrown emits piarcing squawt
2P17－2 rev pr minute mains driven motor，ideal to operate mirror ball
2P18－L，Lauid／gas shut oft valve mains solenoild operated
2P19－Disco switch－molor drives 6 or mora 10 amp chenge
Supplied reaty for mains operetion
－ideal most Black and Decker garren
tools atc
-10 watt
2P21－ 10 watt amplifier，Mullerd module reference 1173
2P22
－Motor driven switch 20 secs on or off gtter push
${ }_{2 P 26}^{2 P 27-C o u n t e r ~ r a s e n t a b l e ~ m a i n s ~ o p e r a t e d ~} 3$ digin
2P27－Goodmens Soesker 8 inch round 8 ohm 12 wot
2P28－Oril Pump－always useful couples to
$2 P 28$－Orilt Pump－always useful couples to any make portable drill
2 P31－4 metres 98 way interconnecting wire easy to strip
2 P32－Hot Wire amp meter－ 41 round surface mounting
working and definitely a bit of histor
2P34－Soloenord Air Valve mains coperated
2P38－200 R．P．M．
2P38－200 R．P．M．Coarad Mains Motor $1^{\prime \prime}$ stack quite powerful，definitgly large

2P46－Our femous drill control kit complate and with prepared case．
$2 P 49$－Fire Alerm break glass swich in heary cast case
${ }_{2 P 51}^{2 P 5}$－Stereo ampifier， 3 woer channel
2P55－Mains motor，extra powerful has $1 \frac{1}{2}$～stack and good length of spindle
2P62－1 palk Goodmans 15 ohm spaakers for Unilox
2P64－1 five bladed tan $6{ }^{1}$ ，with mans motor
$2 P 64-1$ five bladed fan $6 \frac{1}{2}{ }^{2}$ with mans motor
$2 P 66-12 \mathrm{Kw}$ tangential heater 115 v oasily convertible for 230 V
$2 P 67-112 v-0-12 v 2$ amp mains transtormer
$2 P 68-115 v-0-15 v 2$ ame mains trenstormar

2P70－1 E．M．I．tape motor two speed and rever sible
$2 P 72-1115$ Muffin fan $4^{*} \times 4^{* *}$ soprax．（s h．）
$2 P 72-1115 v$ Muffin fan $4^{\prime \prime} \times 4^{\prime \prime}$ soprax．（s h ．）
$2975-12$ hour timer，plugs into 13 A socker
$2 P 82-9 v-0-9 v 2 \mathrm{mpp}$ mains transformer
2P84－Modem board with press kers for teiephone redialler
$2 P 95$
20y
2P85－20v－0－20v，${ }^{\text {a }}$ A Mains transtormer
2P88－Sangamo 24 hr time switch 20 amp（s．h．）
2P89－120 min．time switch with knob
2P90－90 min．time switch with edgewise engraved controlier
2P94－Elephone handset for EE home telephone circuit
2P95－13A socket on satin chrome plets
2P97－mains transformer 24V 2A upright
2P98－man
2 core telephone cable，white outer
2P99－ 500 hardenad pin type staples for telephione cable
2P101－15V mains transtormer 4A upripht mounting
2P105－capillary type thermostor for air temperature whth c / o switch 2 P107－membrane keyboard，telephone type
P108－mans motor with gear box giving 11 2P108－manns motor with gear box grving 110 pmm
2P109 -5^{*} wide black adhesive puc tape 33 mm ，add $£ 1$ post if not collecting

OVER 400 GIFTS YOU CAN CHOOSE FROM There is a total of over 400 packs in

 our Baker＇s dozen range and you become entitled to a free gift with each dozen pounds you spend on these

A classified list of these packs and our latest News Letter＂will be enclosed with your goods，and you will automatically receive our next news letters．

£5 POUNDERS＊

12 voli submersibio
5 52．Sol caravan unit．
5P3．Wittent
complete
5P5． 250 watt Isolatung transformer to make
saff．plus $£ 3$ postage if you can＇t collect．
5P12．Equipted from direct rainfall．Ex GPO but in perfect order
5P12．Equipment cooling fan－mini snail type mains operated 5P13．Ping pong ball blower－or for any job that requires a po
stream of air－ex computer．Collect or add E 2 post．
5P15－Unisalector 4 pole， 25 wey 50 volt coil
5P18－motor driven water pump as fitted to many washing machines
5 P20
5P20－ 2 kits，matchbox size，surveilance trensmitter and FM recein
${ }^{5}$ S23－miniature（appr． $2 \frac{1}{}{ }^{\text {＂}}$＂mde）tangentiol blow heater， $1 \cdot 2 \mathrm{kw}$
add $£ 3$ post
5p25－special affects
5P21－cartridge playes 12V，has high quality sterso amplifer
5P28－gear punnp，mains motor driven with inlet and outlet pipe connectors
5P32－larga mains operated push or pull solenoid．Heavy so add $£ 1.50$ post 5P34－24V 5A toroidal mains transtormer
－modem board from telephone suto dialler，complete with kayped and all $\underset{5 \text { ICs }}{\substack{\text { ICs } \\-24}}$
－24 hour time switch， 2 on／offs and clockwork reserve，bx Elac．Boarr
$5 P 41-5^{* *}$ extractor fan，very quiet runner（s．h．），gntd 12 miths．
5P45－pack of 6 cooker clock swtichas
5P48－talephone extension bell in black case，Ex－GPO
5 550－bor of 20 intra red quartu glass enclosed 360 W heating elaments
5P51－200W anto transformer 230V to 115 V tortondal
5 P 52 －meins transtormer 26 V 104 ．
5P52－meins transtormer 28V 10A upright mounting，edd $£ 2$ post
5P54－mains mor
5P54－mains motor with gear box，final speed 5 ppm
5P58－Amstrad starmo tunat FM and
5 5960－AC Muffin trpe fan 18 to 27 V onty 3 W
5P61－drill pump mounted on trame，couplad to mains motor
$5 \mathrm{~F} 62-2 \frac{1}{2}$ tw tengentiol blow haster，add $£ 1.50$ post if not collecting

LIGHT CHASER KIT motor driven switch bank with connection diagram，used in connection with 4 sets of xmas lights makes a very eye catching display for
home，shop or disco，only f5 ref 5P56．
sccepted．Brighton 0273734648 ．Bulk orders：write for quote．

(C) Wimborne Publishing Ltd 1986. Copyright in all drawings, photographs and articles published in EVERYDAY ELECTRONICS and ELECTRONICS EVERYDAY ELECTRONICS and ELECTRONICS or imitations in whole or in part are expressly forbidden.

Projects

AUTOMATIC CAR ALARM by Paul Harding
Protect your vehicle from the Christmas shopping list! DUAL THERMOMETER by R. A. Penfold 636
Two location monitoring from a single control "station" SIMPLE INTERCOM AMPLIFIER 646
An "Exploring Electronics" project
SIMPLE DIODE RADIO RECEIVER 648
An "Exploring Electronics" project
LOGIC PROBE by Mike Tooley BA 657
Logic state tracing made easy; CMOS and TTL compatible BBC 16K SIDEWAYS RAM by Tim Parker 664
Budget price RAM board for Beeb enthusiasts8-CHANNEL ANALOGUE TO DIGITAL CONVERTER670
Expand the capabilities of your Spectrum
MINI ACTIVE SPEAKER by J. P. Macaulay 672
High quality compact speaker system
RANDOM NUMBER GENERATOR 678
For pools, bingo, raffles, etc.
Series641
A regular series that investigates the world of robotics SEMICONDUCTOR RAMs by Joe Pritchard 642
What is a RAM? How does it work?
EXPLORING ELECTRONICS by Owen N. Bishop 646
Part Six: Junction transistor as an amplifier
BBC MICRO by R. A. Penfold \& J. W. Penfold 652
Regular spot for Beeb fanatics
DIGITAL TROUBLESHOOTING by Mike Tooley BA 654
Part Two: Logic symbols and basic logic gatesACTUALLY DOING IT by Robert Penfold668
Investigating capacitors
ON SPEC by, Mike Tooley BA 670
Readers' Sinclair Spectrum page
AMATEUR RADIO by Tony Smith G4FA 1 677
Xmas greetings; Museum of Communication
Features
EDITORIAL 631
READERS' DISCOUNT SCHEME 645
NEW PRODUCTS 650
Facts and photos of instruments, equipment and tools SPECIAL OFFER Riscomp DVM/Thermometer 651
NEWS What's happening in the world of electronics 660
SHOPTALK by David Barrington 661
Product news and component buying
BOOK SERVICE 662
MARKET PLACE Free readers' buy and sell spot 666
PLEASE TAKE NOTE 669
FET Voltmeter; Car Flasher Warning; Optically Isolated Switch FOR YOUR ENTERTAINMENT by Barry Fox 676
Wedge-Pulling; Big Bang; 2010
PRINTED CIRCUIT BOARD SERVICE 682
INDEX VOLUME 15 685

PRACTICAL ELECTRONICS STEREO CASSETTE RECORDER KIT £19.95

Nolse Reduction System. Auto Stop. Tape
Counter Swichableq Wow \& Flutier 0.10
Controls Twin VI Moter with Electronic Switching

- Fully variabla recording blas for accurate matching of all tepes, Metal, Chrome, etc.
Kit includes transport mechanism, ready punched and back printed quality circult board and all electronic parts. i.e. semicon ductors, resistors, capacitors, hardware,
top cover, printed scale and mains transformer
You only supply the solder and hook-up wire. Complete
As featured In b. E. reprint 50p. Free with kit. with case.
Completo

125W HIGH POWER

AMP MODULES
The power amp kit is a module for high power applications - disco units, gultar amplifiers, public address systems and even high power mestic systems. The unit is protected against
short circuiting of the load and is sate in an open circult condition. Supplied with all parts, circuit diagram \& in structions. circuit diagram \& instructions. ACCESSORIES: 8 SPECIFICATIONS: Max output power E12.50 + E2.00 pap. $4-16$ ohms. Frequency response (RMS): 125 W . Loads: $4: \overline{16}$ ohms. Frequency response watts: 400 mV 47K. Dimenslons: 205×90 and $190 \times 36 \mathrm{~mm}$.
виเт 17.50

Built and ready-to-use version with all accessories including power supply and case £42.50 + £2.00 pap.
VHF STEREO TUNER KIT - £8.95
Easy to bulld 3 band ster AMIFM tuner kit
desig bull 3-band stereo AMIFM tuner kit
andigned in conjunction with PE. For ease of construction
FEATURES. VHF MW WW Rands, 3 Mulard modules and an I.C. IF. System. FEATURES: VHF, MW, LW Bands, interstation muting and AFC on VHF. Tuning Meter. Two back printed PCBs. Ready made chassis and scale. Aerial: AM- ferrite rod, FM ponents supplied are to strict P.E. specific

Mail to: 21 HIGH ST, ACTON Mail or telephone orders by W3 6NG. Callers to Acton or ACCESS. Tel: $01-9928430$. 323 EDGWARE RD, LONDON W2. (Open 6 days a week). Please allow 14 days delivery Payments to RTVC Ltd.

Write a phone or call for yours
WIDE RANGE OF
SIEMENS' PRODUCTS
ICs, SEMI-
CONDUCTORS, OPTOS

- FREE POSTAGE \& DISCOUNTS, CWO
COMPONENTS GALORE!
TWO SHOPS FOR PERSONAL CALLERS
- PROMPT DESPATCH

ACCESS OR
BARCLAYCARD

SAMPLE SELECTION TO SHOW

 E.V. QUALITY \& PRICES WAVECHANGE SWITCHES Lorlin CK 1P 12W; 2P6W; 3P4W; 4P3W 52p miniature togglesCK: SPOT 68p: OPOT 1.05: 3POT 2.30 Low Cosi SPDT 50p: DPDT 68p: 3PDT £ 1.25 Standard toggles
Low Cost SPST 39p: OPOT 49p Standard screw terminals 15 AMP, 8 difterent colours TP1 35p DIL SWITCHES
Low cost 4-pole 52p: 8-pole 78p ERG 4 pole 1.35. 8-pole 2.06 ERG C/O 4-pole 2.70: 8-pole 4.16

SBV566 Hall eftect 4.49
KPY10 Absolute pressure 26.87
KPYI2 Relative pressure 29.5
KSY10 Position hall effect 4.32
KTY10 Temperature sensor 1.58
SFHsuo/2 Position, opta 1.78
K 164 NTC Thermistor 6.8 ohms $=470 \mathrm{~K}$ 17 values $23 p$
lorel See catalogue, send wor monties
CRYSTALS
$1 \mathrm{MHz}, 3.6 \mathrm{MHz}, 4 \mathrm{MHz} 88 \mathrm{p}$: 8 MHz 1.00 DIN 41612 CONNECTORS
96. way plug 1.93: 96. way socket 2.73

CAPACITORS
Electrolytic in a huge range from small to large CHOKES
$0.1 \mu \mathrm{H}$ to $33 \mu \mathrm{H} 33 \mathrm{p}: 47-680 \mu \mathrm{H} 36 \mathrm{p}$ 1 mH to 4.7 mH 39 p
Pant metens (51 x 45 mm) $500 \mathrm{~mA} .1 \mathrm{mmp}-$ each 4.25

Head Office \& Mail Order 28 St Judes Road, Englefield Green, Egham, Surrey TW20 OHB.
Phone 078433603.
X 26445
NORT
680 Burnage Lane, Manchester M19 1M Phone 061-432 4945
SHOP HOURS
9-5.30; Sat. 9-1.30

OMNI ELECTRONICS

-would like to wish their customers all the best for the festive season.
We stock a wide range of components:
transformers, switches, pots, ICs, capacitors, resistors, diodes, boxes, triacs, LEDs, cable, connectors, PCBs-
in fact, all you need for your projects.
Send for our 21 page catalogue- $20 p+12 p$ postage or call at our shop Mon-Fri 9am-6pm, Sat 9am-5pm.
Please note-we will close at 2.00 pm on December 24th and reopen on January 5th.

174 Dalkeith Road EDINBURGH EH16 5DX 031-667 2611

E1 BARGAIN PACKS

PK 1. 350 A.ssored ressitass full lempth leads PX 2. 400 Assorteo crustas Pie tormed leeds PK 3. 60 Assoreded misistors Wre wound PX 5. 200 Assored camacto
PK 6 . 60 Elartiontic cupactions
PX 7. 22200 H 1100 volt capocions
PK 日. ${ }_{2}{ }^{2} 2700 \mathrm{H} 130$ volt cememars.
PK 9 . 12 Assonted rotery polentiometers Singie
 Px 11.12 Assorveo siver pormiometers
Px 12. 40 Assoned pes set potminemeners
PK 13.5 100K lin mutrium potentionsters
PX 14.51 meg in muintum patentioneevers
Px is. 12 Assonted swiches.
PX 18. 1 benk 4 wor pursh button swicteses c / w inots
Px 17.14 pole 5 wer wefe smic
PK 18 15 Assonex control kmobs
 PK. 21. 25 Assoried truminton. Al new A cond PK 22. 15 Assored LC's. All rew A cooded PK 23. 50 Assorted unmetred 8 in ination 1.5 : PR 25. 20 E.H.T. doves

 PK 29. 1 Mirgophone c / w isad. swich. puugs \& rund. -PX 30.3 Mcrophoose inserts
PK 31. 3 Omamic earneces c / w heod a 3.5 smm plieg
Px 32.2 Teiesconsic miais
PK 33.1 Stwoc cassetro tup haod.
PK 34. 2 Smali cassonte moters.
PK 35. I Lave cassolte motar.
PK 3. I Wre pack Mans cable

PK 38 . 1 Wrot past Carnacting wre Assorted
Postal order or cheque with order. Plaase add $£ 1$ postage \& packing per order. Shop open
$9.30-6.00$ Mon to Sat. Closed all day Thursday.
MJR WHOLESALE, 238 Waterside,
Chesham, Bucks HP5 1 PG. Tel: 0494771033

EACH INSTRUMENT HAS A CLEAR MIRRORED SCALE AND COMES COMPLETE WITH A ROBUST CARRYING CASE, LEADS \& INSTRUCTIONS.
PRICES Our prices include VAT and postage and goods are normally despatched by return.
Please write or telephone for detaids of these and the many other instruments in the Alcon range, including multimeters, components measuring, automotive and electronic instruments.

DIGITAL ELECTRONICS

 MADE EASYSUPERKIT £22.00
SUPERKIT II £16.00 (£35.00 if bought together)
The SUPERKIT series introduces beginners to practical digital electronics. SUPERKIT (SUP I) is the first kit, which contains an instruction manual, a solderless breadboard, and components 17 integrated circuits, switch. resistors, capacitors, LED and wire). It teaches boolean logic, gating, flipflops, shift registers, ripple counters and half adders. SUPERKIT II (SUP II), extends SUPERKIT. It contains an instruction manual and components (10 integrated circuits, 7 -segment display, resistors, capacitors and wire), and explains how to design and use adders, subtractors, counters, registers, pattern recognisers and 7 -segment displays.

DIGITAL COMPUTER LOGIC DIGITAL COMPUTER DESIGN MICROPROCESSORS \& MICROELECTRONICS

The SUPERKIT series is backed by our theory courses. DIGITAL COMPUTER LOGIC (DCL), the beginners course, covers the use and design of logical circuits, flipflops and registers. DIGITAL COM PUTER DESIGN (DCD), a more advanced course, covers the design of digital computers both from their individual logic elements and from integrated circuits. MICROPROCESSORS and MICROELECTRONICS (MIC) teaches what a microprocessor is, how it evolved, how it is made and what it can do.

GUARANTEE. If you are not completely satisfied. return the item io us in good condition within 28 days for a full refund. All prices include worldwide surface postage flask for prepayment invoice fo airmaill. Orders despatched within 48 hours. Overseas payment by international credit card or by bank draft draw

CAMBRIDGE LEARNING LTD, Unit 38, Rivermill Site, FREEPOST, St. Ives, Huntingdon, Carbs. PE17 4BR, England Telephone: 048067446.
VAT No. 313026022 Transcash, No. 2789159 Reg. No. 1328762

Please send me \{initial letters used\}

SUP I	@ $£ 22.00$	DC	@ $£ 7.00$
SUP II	@ $£ 16.00$	$\ldots . .$.	DC	@ $£ 9.50$
SUP I +11	@ $£ 35.00$	$\ldots . .$.	MIC	@ $£ 6.50$

Full details of all your courses (please tick)

I enclose a cheque/ PO payable to Cambridge Learning Ltd. for $£$.

Please charge my
credit card
No.
Expiry date
Telephone orders from credit card holders accepted on 048067446124 hrs).

Name
Address

Signature
CAMBRIDGE LEARNING LTD
Unit 38, Rivermill Site, FREEPOST,
St. Ives, Huntingdon, Combs PE174BR
England.

NEW SURPLUS LINES

'NEWBRAIN' PANELS

 2494 Motherboard microprocessor panel $265 \times 155 \mathrm{~mm}$. Complete PCB for computer. Z80, char EPROM, etc. 68 chips altogether + other associated components, plugs, skis, etc. $£ 5.50$ 2495 RAM panel. PCB $230 \times 78 \mathrm{~mm}$ with $14 \times$ MM 5290-2 (411ध) $(2$ miss ing) giving 28 k of memory. Also 8 LS chips. These panels have not been soldered, so chips can easily be re moved if required.'NEWBRAIN' PSU 2467 BRAND NEW Stabilized Supply in heavy duty $A B S$ case with rubber feet. heavy $220 / 240 \mathrm{~V}$ ac to heavy duty input $220 / 240 \mathrm{~V}$ ac to heavy duty lated DC outputs: 6.5 V Q $1.2 \mathrm{~A} \cdot 13.5 \mathrm{~V}$ lated 0 outputs. 0.5 A @ -12 V . 0.05 A , 13. @ 0.3A; -12V@0.05A. All compon ents readily accessible for mods etc Chunky heating has 2 or plug) is 2 m long. 4 core output lead plug) is 2 m long. 4 core output lead pitch Overall size $165 \times 75 \times 72 \mathrm{~mm}$ pitch. Overall size $165 \times 75 \times 72 \mathrm{~mm}$ a 10 for $\mathbf{4} 4$ Z469 AL30A amp. Panel $90 \times 64 \mathrm{~mm}$ 10W RMS O/P with 30 V supply. Popular audio amp module -these are exequip but believed to be working.

E2.50.
2475 TRIAC PANEL- $240 \times 165 \mathrm{~mm}$ 14 triads 2N6346, TXAL 1168 or sim 200V 6-8A: 16 SCR's C106A1 AA 30V; 6×4099 in skis; 15 suppres C's plugs etc. Only $£ 4.50$

FLASH UNIT

$\mathbf{Z 4 8 8}$ complete apart from case. Xe non tube, neon indicator, on/of switch, trigger wires. Requires 3 V supply. $50 \times 55 \times 30 \mathrm{~mm}$. Brand new, with data.
£2.70
2975 Power Supply Unit. As used in 'Teach in 86°. Built in 13A plug. Case $92 \times 57 \times 45 \mathrm{~mm}$. Output 14 V at 600 mA AC . $£ 3.50$ 2483 NI-CAD Panel $177 \times 144 \mathrm{~mm}$ PCB with one massive Varia Dead $57 \times$ 50 mm rated 7.2 V 1000 mAH and another smaller Deac $32 \times 35 \mathrm{~mm} \emptyset$ rated 3.6 V 600 mA . The price of these Ni-cad stacks new is over E20. Also on the panel is a mains input charger transformer with two separate secondaries wired via bridge rectifiers, smoothing capacitors and a relay to the output tags. The panel weighs 1 kgm . All this for just $£ 6.00$

KEYBOARDS

TATUNG VT1400 Video Terminal Keyboard. Brand new cased unit $445 \times$ $225 \times 65 / 25 \mathrm{~mm} 71$ Alphanumeric $225 \times 65 / 25 \mathrm{~mm} 71$ Alphanumeric and function keys, + separate 14 key numeric keypad. ASCN output via curly cord and 6 way plug. Data and connec tion sheet supplied. Now only $£ 17.50$ CAMPUTERS LYNX keyboard 58 full travel keys. Size $334 \times 112 \mathrm{~mm}$. Brand new. Reduced to $£ 5.95$ 2470 COMPONENT UNIT. Panel 130 $\times 165 \mathrm{~mm}$ with 10×74 series IC's, all in sockets, R's, C's, etc. inc. $100 \mu \mathrm{~F} 16 \mathrm{~V}$ tant. Also 5A DPCO relay and 6 brass pillars 60 mm long supporting a steel panel upon which is mounted a mains transformer giving 5 V and 12 V output; 7805 KC regulator and a screened box $110 \times 80 \times 30 \mathrm{~mm}$ with phono input containing 76131 stereo preamp IC + associated comports. Various plugs and sockets. Apart over 550

Yours for just $\mathbf{£ 4 . 5 0}$
Strobe L300 housed in attractive wood grain cabinet $150 \times 150 \times$ 120 mm with variable speed control. Mains powered. $£ 22.95$ Strobe tubes also available. See Cateloge for details.

1987 CATALOGUE

 OUT NOWBIGGER \& BETTER THAN EVER. -80pp packed with components \& equipment. Bargain List, order forms 8 for just £1 inc. post

 COMPONENT PACKS

Greenweld are No. 1 in component packs-No. 1 for value and No. 1 for variety We sell thousands of packs containing millions of components avery year They all offer incredible value for money-order some now and see how much you save over buying individual parts!
Full details in catalogue.

COMPUTER BOOKS

C64, VIC20, BBC, MSX, Spectrum Dragon, etc. Originally up to $£ 9.95$ each. All now $f 1$ each
Full details in catalogue.
REGULATED POWER SUPPLY A103 300 mA switched $6-7.5-9 \mathrm{~V}$ Built in mains plug. Internal thermal fuse. Output via spider lead. $£ 6.50$

POWER SUPPLIES

299365 Watt switch mode multi output power supply. Astec Mode AA 12790. Offered at around one third normal price, this has to ba the $\times 105 \times 50 \mathrm{~mm}$ accepting $115 / 230 \mathrm{~V}$ $\times 105 \times 50 \mathrm{~mm}$.
ac input. Outputs
$\begin{array}{ll}+5 \mathrm{~V} & 3 \mathrm{~A} \\ +12 \mathrm{~V} & 2.9 \mathrm{~A} \\ +18 \mathrm{~V} & 1.0 \mathrm{~A}\end{array}$
£29.95

2468 Switched mode PSU by Euro power model EP3008/MMS. Eurocard size $160 \times 100 \mathrm{~mm}, 230 \mathrm{~V}$ input, 5 V at 3 A and 12 V at $\frac{1}{2} \mathrm{~A}$ output. Excellent value.

2482 Siliconix mains input, 4.5 V DC 150 mA output to 3.5 mm jack plug on 2 m lead Builtin continental 2 -pin plug Size $62 \times 46 \times 35$. $£ 1.50$

2973 P.S.U. kit. Mains input, output via LM317T regulator $10 \mathrm{~V}-20 \mathrm{~V}$ at 1 A (set by preset on panel). Kit consists of regulator panel already assembled mains ransformer heat sink V218 case, terminals. Excellent value at
$\mathbf{8} 8.50$
SENSING \& CONTROL PROJECTS FOR THE BBC MICRO'
Have you ever wondered what all those plugs and sockets on the back of the BBC micro are for? This book assumes no previous electronic knowledge and no soldering is required, but guides the reader (pupil or teacher) from basic connections of the user sockets, to quite complex projects. The author, an experienced teacher in this field, has provided lots of practical experiments, with ideas on how to follow up the basic principles. A complete kit of parts for all the experiments is also available Book, $245 \times 185 \mathrm{~mm} 120 \mathrm{pp} \mathrm{£} 5.95$ Kit £29.95

All prices include VAT; just add 60p P\&P Min Access order £5. Official orders from schools etc. welcome-min invoice charge $£ 10$. Our shop has enormous stock of components and is open 9-5.30 Mon-Sat. Come and see us!
443D Millbrook Road, Southampton, S01 OHX.
Tel. (0703) $772501 / 783740$

Q■『FROM JAYTEE

THE SPECIAL DISTRIBUTOR FOR SPECIAL AMPLIFIERS
ILP have long been recognised as manufacturers of top quality amplifiers
All ILP products are built to extremely high specification for the ultimate in hi-fi performance. They're unique in being completely encapsulated with integral heatsinks, and can bolt straight onto the chassis. They're also extremely robust, ensuring high levels of reliability as well as performance
ILP Amplifiers are now avaitable through Jaytee. The UK Distributor with the availability and service to match the quality of the amplifiers. POWER BOOSTER AMPLFERS
The C15 and C1515 are power booster amplifiers designed to increase the output of your exisiting car radio or cassette player to 15 watt rms.
C15 15 watts ..f10.65
C1515............. 15 + 15 watts ... 19.78

ILP LOUDSPEAKER

power 350 watt rms
size.................... 12 inches
impedance 8 ohms
range 20 Hz to 5 KHz
NEW £78.61

FOR FREE DATA PACK PLEASE

WRITE TO OUR SALES DEPT.

PREAMPLIFIER MODULES
All modules are supplied with in line connectors but require potentionmeters, switches, etc. If used with our power amps they are powered from the appropriate Power Supply

Type Application HY6..........MonoPreAmp. HY66Stereo Pre.At.0p. HY73.......Guitar Pre•Amp Stereo Pre-Amp

Price

Functions

FullHififacilities. Full Hi Fifacilities 18.95
$\Gamma 14.55$ Two Guitars plus Microphone... 14.55 As HY66less tone controls 14.25 NEW! HY83 Guitar and Special Effects Pre-Amp as HY 73 Plus Overdrive and Reverb 18.95 MOUNTING BOARDS: For ease of construction we recommend the B6 for HY6 £0-95. B66 for HY66-83 $£ 1.45$.

MOSFET MODULES	Type	Output Power Watts (rms)	$\begin{aligned} & \text { Load Price } \\ & \text { Impedence } \\ & \Omega \end{aligned}$	
Ideal for Disco's, public address and				
applications with complex loads (line	MOS 128	$60 . .$.	4.8.	5.95
transformers etc.). Integral Heatsink	MOS248	120		2.25
slew rate $20 \mathrm{~V} / \mu \mathrm{s}$ distortion less than 0.01%	MOS364	180		7.45

POWER SUPPLY UNT

BIPOLAR MODULES
ldeal for Hi Fi, Full load protection
integral Heatsink. slew rate $15 \mathrm{v} / \mu \mathrm{s}$

HY30..

 HY60....HY6060 HY6060
HY124. HY $124 \ldots . .$.
HY128....
HY244....
HY248 HY244...
HY248...
HY364
HY364..
HY368..

Jaytee Electronic Services, 143 Reculver Road, Beltinge, Herne Bay, Kent CT6 6PL Telephone: (0227) 375254 All Prices include VAT, Post \& Packing

Type	For Use With	Prica
PSu30	PRE AMP	69.45
PSU212.	1 or 2 Hr 30	¢17.20
PSU412.	1 or 2 HY60. 1 HY	f19.35
PSU422.	1 HY128	f21.35
PSU432.	1 MOS 128.	f22.35
PSU512.	2 HY128, 1 HY244	$¢ 23.70$
PSU522.	2 HY124	¢23.70
PSU532.	2 MOS128.	f24.65
PSU542.	1 HY248	. 24.65
PSU552.	1 MOS248.	C26.65
PSU712.	2 HY244	$\underline{28.35}$
PSU722.	2 HY248	[29.30
PSU732.	1 HY364	. 29.30
PSU742	1 HY368	f31.25
PSU752.	2 MOS248. MOS 3	c31.25
All the al	ove are tor 240 V op	

fo $^{\circ}$ JOHN BECKER IS A REGULAR CONTRIBUTOR OF AUTHORIT ATIVE CONSTRUCTIONAL ARTICLES FOR EE and PE).

BECKER'S TOP DOZEN

G4K DIGITAL DELAY LINE (PE JUN 85) UP TO 65 SECONDS DELAY, ECHO, REVERB, RE-PITCH, MULTI \& REVERSE TRACK, LOOP, ETC MICRO-INTERFACE (BBC, C64, PET). 19 INCH RACK. SET 234-RK E198.50
CHIP TESTER (PE AUG 861 COMPUTER CONTROLLED LOGIC AND
CHIP ANALYSER (UP TO 24 PINS). FOR BBC, C64, PET. PROG INCL. CHIP ANALYSER (UP TO 24 PINS). FOR BBC, C64, PET. PROG INCL. SET 258 F £ 39.30 CHORUS.FLANGER (PE JAN. 84) MONO-STEREO. SUPERB DUAL-MODE MUSIC ENHANCEMENT. SET 235 f59.99 AND REVERE. SET 228 E44.76 DISCO-LIGHT CONTROL (PE NOV 85) 3 CHAN SOUND TO LIGHT, WITH CHASERS,
AUTO LEVEL \& COMPUTER INTERFACE (BBC, C64, PET, ETC). PROGRAM INCL. SET $245 F$ AUTOLEVEL \&
E62.50
ECHO-REVERB (PE SEP 84) MONO-STEREO. 200 MS ECHO (EXTENDABLE), LENGTHY ECHO-REVERB (PE SEP 84) MONO-STEREO. 200 MS ECHO (EXTENDABLE), LENGTHY
REVERB, SWITCHABLE MULTITRACKING. SET $218 £ 57.66$ REVERB, SWITCHABLE MULTITRACKING. SET 18 I 1 MICROSCOPE (PE DEC 85) TURNS A COMPUTER (PET, C64, BBC) INTO AN OSCILLOSCOPE. PROGRAM INCL. SET 247 £44.50
MICRO-TUNER (EE AUG 86) MUSIC TUNING AID FOR USE WITH BBC, C64 AND PET COMPUTERS. SET 259 £ 22.50
PHASER(PE OCT 84) EXCELLENT PHASING ENHANCED WITH MODULATED FILTERING. SET $226 £ 42.36$
RING MODULATOR (PE NOV 84) FABULOUS EFFECTS GENERATION, WITH ALC AND MULTIWAVEFORM VCO. SET 231 £ 45.58
TEMPEST 250 T f 29.50
MANY MORE KITS IN CATALOGUE-OVER 70 OF THEMI
ALL KITS INCL. PCBS, PARTS, BLACK STEEL \& ALI BOXES, UNLESS STATED, INSTRUCTIONS, FREE WIRE AND SOLOER. FURTHER DETAILS IN CATALOGUE
PCB SERVICE PCB'S FOR ALL PROJECTS DESIGNED BY JOHN BECKER AND PUBLISHED IN PE \& EE ARE AVAILABLE SEPARATELY AS IN CATALOGUE.
CATALOGUE AND ENQUIRIES SEND 9×4 S.A.E. FOR FREE CATALOGUE, AND WITH
ALL ENQUIRIES. (OVERSEAS SEND $£ 1.00$ OR 5 I.R.C'S).
ORDERS AND POST MAIL ORDER, CWO. CHO, PO, ACCESS, VISA. ADD 15% VAT. ADD P\&P-SET 234RK £3.50, UNIT TZ-272 £2.50, OTHERS £1.50. EACH. INSURANCE 5OP PER E50. OVERSEAS P\&P IN CATALOGUE.
TEXTPHOTOCOPIES DDL $£ 1.50$, TZ-272 $\& 274$ UNITS £1.00, OTHERS 50PEACH. SEND LARGE STAMPED ENVELOPE.
I ALSO CARE BY PROVIDING A KIT MAINTENANCE SERVICE SHOULD YOU NEED IT-MY

E.E. PROJECT KITS

Full Kits tho electronics

batteries. includes the project - you will need to or which the instruction reprint as an extra- 70 opeach.
Peprints avallable separately Meprints
$70 p$ each $+p \& p \mathrm{p} 1.00$.

THIS MONTH'S KITS

SAE or 'phone for price BBC 16K SIOEWAYS RAM Dec $86 \quad \$ 12.35$ MODEM TONE DECODE月 Nov 86 © 18.99 OPTICALLY ISOLATEO SWITCH Nov $86 \quad \mathbf{£ 1 1 . 9 9}$ CAB FLASHER WARWING NOV 86 10 WAIT AUDIO AMPLIFIER Oc 86 10 WATT AUDIO AMPLIFIER Oct 86
LIGHT RIOER LAPEL BADGE Oct 86 LIGHT RIDER DISCO VERSION 6559.98 SCRATCH BLANKER Sept 86 SIMPLE PRINTER BUFFER Sept 86 le EPROM
IMFRA-REO BEAM ALARM Sept 86 freezer fallure alarm sept 88 CAR TIMER Sept 86 TILT ALARM JULY $B 6$ HEADPHONE MIXER Jully 86 CARAVAN BATTERY MONITOR Juty 86 SOUEEKIE CONTINUITY TESTER Jhly 86
EIECTRONIC SCARECROW July 86 ELECTRONIC SCARECROW July 86 VOX BOX AMP July 86 PERCUSSION SYTTH June 86 UGHT PEN (bess case) June 86 WATCHDOG June 86 MIN: STROBE May 66 PA AMPLIFIER May 86 LOcic SwITCH May 86 AUTO FIRING JOYSTICK May 86 STEREO REVERB Apr 86 VERSATILE PSU ADT 86
CIRCLE CHASER Apr
STEPPER MOTOR ORIVER Apr 86
B8C MIII INTERFACE Mar B6 WTERVAL TIMER MA 86 STEREO HI-FI PRE-AMP MAINS TESTER \& FUSE FIMOER Mar 86 FUNCTION GEMERATOR FEb 86 POWER SUPPLY FOR ABOVE TOUCN CONTROLLER FEb 86

GUITAR HEAO PHONE AMPLIFIER Sept 84 f7.6 SOUNO OPERATED FLASH less lead Sapt 84f6.9 TEMPERATURE INTERFACE FOR BBC AUN
CAR hadio booster aud ba
CAR LIGHTS WARNING JUIY B
VARICAP AM RAOIO May 84
$f 16.64$
$f 9.58$
EXPERIMENTAL POWER SUPPLY May $84 \begin{aligned} & \mathrm{f} 12.52 \\ & \mathbf{5 2 2 . 4 6}\end{aligned}$ SImPIE LOOP BURGLAR ALARM May $84 \mathrm{f16.34}$ MASTERMINO TIMER May 84 €6.52 FUSE/DIODE CHECKER ApI 84 QUASI STEREO AOAPTOR ApI $84 \quad$ f13.08 DIGITAL MULTIMETER add on for BEC Micro Mar
MI-CAD BATTERY CHARGER Mar $84 \quad £ 29.98$ REVERSING BLEEPER Mar 84 f8.14
IOMISER Feo 84
2×81 EPROM PROGRAMMER FED 84
SIGMAL TRACER FEb 84
CAR LISHI WARNING FOO 84
GUITAR TUNER Jan 84
BIOLOGICAL AMPLIFIER Jan 84
CONTINUITY TESTER
CHILDREN'S OISCO UGHTS Oec
movel egc timer dec 83 inc. case SPEECH SYMTHESIZER FOR THE BEC $\quad 12.29$ 83 less cable + sockets
MULTIMOD Nov 83
$\$ 26.38$
LONG RAMGE CAMERA/FLASHGUNTICER $\$ 20.38$
83 ,
B3
MONE INTERCOM lass link wire OM $83 \quad \$ 16.20$
$\$ 1726$
HONE INTERCOM less link wire Oct $83 \quad\{17.26$
DIGITAL TO ANALOGUE BOARD Oct 83 less cabia
OIGITAL TO ANALOGUE BDARD Oct 83 less cabia.
case 4 comnector
[23.95
Case \& COMnecior
HIGH POWER
83. less

CIIGH SPEEO A TO D COWYERTER Sent 83 lessi.99
a comnector $£ 33.57$
STORAGE SCOPE INTERFACE FOR BBC MICRD
Aug 83 less software
HIGH POWER IMTERFACE BOARO Aug 83.42
830
HIGH POWER IWTERFACE BOARO Aug 83 no
Case
USER PDRT I $/ 0$ BOARD less cable + plug
f 12.59
USER PORT CONTROL BOARD July 83 less cable +
plug + case
GUITAR HEAOPHOME AMPLIFIER May 83
MW PERSONAL RAOIO less case, May $83 \quad \mathbf{~} 9.14$
MOISTUAE DETECTOR M8y 83 E 6.55
CAR RADIO POWER BOOSTER APRII $83 \quad$ f14.39 FUNCTION GENERATOR April 83 § 85.17 $\begin{array}{ll}\text { FLANGER SOUNO EFFECTS April } 83 & £ 29.00 \\ \text { NOVELTY EGE TIMER April } 83 \text { less case } \\ \text { £6.58 }\end{array}$

BUZZ OFF March B3 March 83	E69.48
1541	

PUSH BIKE ALARM Feb 83 ZXTAPE CONTROL Nov 82
COMTINUITY CHECKER Sept 82
2-WAY INTERCOM July 82 no case
ELECTRONIC PITCH PIPE July 82
REFLEX TESTER July 82
SEAT BELT REMINDER Jun 82
GG TIMER JUne 82
CAh LED VOLTMETER less case May 82 .C.O. SOUND EFFECTS UNIT Apr 82 82 less tripod bushias
POCKET TIMER Mar 82
SUTTAR TUNER Mar 82
$\begin{array}{lr} & £ 16.38 \\ \text { SUITAR TUNER Mar } 82 & £ 40.92 \\ \text { SIMPIE SIABILISEO } & £ 20.62\end{array}$
SIMPLE STABILISEO POWER SUPPLY Jan
82 MINI EGG TIMER Jan 82
f32.37
CINI EGG TIMER Jan 82
SIMPLE INFRA REO REMOTE COMTROI
SIMPLE INFRA REO REMOTE COWTROL Nov
$\begin{array}{ll}81 \\ \text { CAPACITANCE METER DC1 } 81 & £ 22.44 \\ & £ 30.98\end{array}$
SUSTAIN UNIT Oct 81
HEADS ANO TALLS GAME OCT 8
CONTINUITY TESTER Oct 81
PHOTO FLASH SLAVE Oct 81
FUZZ B0X Oct 81
SOIL MOISTURE UNIT Oct 81

-12V POWER SUPPLY Sept $81 \quad$| 7.66 |
| :---: |
| 23.38 |

OMBINATIOH Lock July 81 less case $\$ 25.89$ SOIL MOISTURE INOICATOR E.E. MEy 81 © 5.39
PHONE BELL REPEATER/8ABY ALARM MAY ${ }^{81}$ IWTERCOM April 81
MOOULATEO TONE DOORBELL MaI 81 2 NOTE ODOR CHIME Oec 80
LIVE WIRE GAME Oec 80
GUITAR PRACTICE AMPLIFIER NOV 80 C14 $\$ 15.44$
Cose. Standard case extra 5.98
$\begin{array}{ll}\text { SOUNO TO LIGHT Nov. } 803 \text { channel } & \text { [20.08 } \\ \text { TRANSISTDR TESTEA Nov } 80 & \text { [15.36 }\end{array}$
AUDIO EFFECTS UNIT FOR WEIRD SOUNOS OCt
MICRO MUSIC 80X Fwo 80
Case extra

Case extra
SPRING LIME REVERB UnIt Jan 80

UPRIBOARD BURGLAR ALARM Dec 79 DARKROOM TIMER July 79
MICROCHIME OODREELL

SEUND TO LIGHT Sept 78 $\begin{array}{ll}\mathrm{C} & \mathrm{f} 20.98 \\ \mathbf{~} 10.98\end{array}$ 78 antient State indicator less case Sep R.F sigmal gemerator sen 70 [2.75 IN SITU TRAMSISTOR TESTER Jun 78 [9.00 WEIRD SOUNO EFFECTS GEMERATOR | 78 | |
| :--- | :--- |
| ELECTRONIC OICE Mar 77 | |
| 7.44 | |
| 5.97 | | $[5.97$

 Our excellent technical back-up sersucceed every time. PART 1 BENCH POWER SUPPLY-Full kit $£ 24.98$.
Plus a FREE copy of our NEW catalogue.
LOGIC PROBE-'phone.

> EXPLORING ELECTRONICS

A full set of parts including the Verobloc breadboard to follow the series right yp to Nov. issue. L14.87. De

INTRODUCTION TO ELECTRONICS

An introduction to the basic principles of

 electronics. With lots of simple experillustrations and img, Lors of illustrations and simple explanations. imTRODUCTION TO ELECTMOMCS INTRODUCTION TO ELECTHONICS COMPONEMT PACK BOOK EXTRA$\$ 10.99$

Book also evailable soparatoh

NEW

BOOKS

Midi Prosects Pentold

 Getung The Most From Your Printer. Pentold $\$ 2.9$ More Advanced ElectronPenfold

BOOKS

Worting Penfold

A practical introduction to Microproceassors

 PenfoldBasic Electronics. Hodder \& Stoughtion
Beginners Guide to Building Electronic Propect enfold
IY Robotics \& Sensors Billingsiey. B8C Elementary Electroncs Sladdin Science Experiments with Your Computer f 2.10 E2.43 How to Design \& Make Your Own PCBS. BP 121 E2.16 How to Make Computer Controllad Robots. Potter £3.20 How to Make Computer Model Controllers. Potterf 3.19 .erficing to Microprocessors a Microcanpuiterse 6.50 Machine Code for Beginners. Usborne $\quad \mathbf{2 2 . 4 5}$ Micro Interiacing Circuits Book 1 Microprocessors for Hobbyists. Cole Practical Computer Expenments. Parr Usborne hings to do With alicrocomputer. Usborne $\mathbf{8} 4.98$
$\mathbf{~} 1.95$ 12.19
$\mathbf{5 3} .45$

Luestions of Answers - Electromics. Hictman $£ 3.45$ Understanding the Micro. Usborne 1.95

- JUST A SMALI SELECTION. LOTS MORE IM
OUR PRICE LIST:

TEACH IN 86

MULTIMETER TYPE M102BZ as spacined. Guaranteed. Top quality. 20k/V, with battery check, continuity tester buzer and fuse and diode protection. 10A dc range.
Complete with leads, battery and manual. 193.98 CONNECTING LEADS. $\mathbf{~ E 6 . 9 8}$ CONNECTING LEADS.
REGULATOR UNIT FOR SAFE POWER SUPPLY. All components including the specified case. Also the pluggs, fose and fusenotders to suit the EE mains adaptor. \qquad
\qquad COMPONENTS FOR PRACTICAL ASSIGNMENTS. Parts 1 and 2 (Det \& Nov) f1.94. Part 3 (Oec) f1. 37 (Jan) £2.48. Part 5 (Feb) £2.22. Pat 6 (Mar) f6.31. Parts 7,8 \& 9 (combined) $\mathbf{1 2 : 5 5}$

TEACH IN 86 PROJECTS

UNIVERSAL LCR BRIDGE Nov 85 £25.83 DIODE/TRANSISTOR TESTER DeC $85 \mathbf{1 1 8 . 8 9}$ USEFUL AUDIO SIGNAL TAACER Jan 86

LEGO Technic Sets
teachers we are stockists of the AUDIO SIGNAL GENERATOR Feb $86 \begin{array}{r}\mathbf{1 6} 6.75 \\ \mathbf{1 2 6 . 2 1}\end{array}$ A.F. SIGNAL GENERATOR March $86 \quad \mathbf{〔 2 4 . 4 8}$ FET VDLTMETER Apr 86 WHOLE RANGE. CONTACT US FOR BROCHURES. VERY COMPETITIVE PRICES AND QuICK DELIVERIES
STEPPING MOTORS 12 VOLT

MINI MDDEL MOTORS - NEV

> | 48 STEPS | 200 STEPS |
| ---: | :--- |
| ID35 | MO200 |

1035 M0200

2V 2 TYPES, MM1-59p MM2-61p

f14.50 f 16.80

MOTOR - GEARBOX ASSEMBLIES

Miniature precision made. Complete with quality electric motor. Variable reduction ratios
achieved by fitting from $1-6$ gearwheels (supplie d) as required. Operates from 1.5 V to 4.5 V . Small unit type MGS speed range $3 \mathrm{rmp}-2200 \mathrm{rpm}$ depending on voltage \& gear ratio. Large unit type MGL (higher torque motor) 2 rom-1150rpm. Long robots and buggies
Small Unit (MGS)
Pulley wheels 3 mm bore. Metal flange with brass hub. 10 mm dia, $£ 1.75 .20 \mathrm{~mm}$ dia £ 1.84 .30 mm dia. $£ 1.99$
Metal collar with fixing screw, 3 mm bore 24 p . Flexible spring coupling 5 mm . Length 31 mm 68 p .
Flexible metal coup
£2.98: $2 \mathrm{~mm} £ 3.34$

NEW 1987 CATALOGUE

JUST ARRIVEDI Brief details of each kit, Our books, \& illustrations of our range of tools \& components. Also stepper motor, interface kit \& simple robotics. Plus circuit ideas for you to build. If you read Everyday Electronics then you need a copy of the MAGENTA catalogue.
CATALOGUE \& PRICE LIST - Send 11 in arampa otc. or add II to your order. Price list - 9×4 sac. COtalogue FREE TO SCHOOLS/COLLEGES RE QUESTEO OW OFFICLAL LETTERHEAD.

ADVENTURES WITH ELECTRONICS

Oec Breabboard .ives clear instructions with lots of pictures 16 proiects tricem time radios. sxem, metronoris, organ, components and how circuits work. Component pack ncludes an S - OBC breadboart and all the components to the proiects
Advoikres with Electronics $\mathbf{\$ 3 . 5 8}$. Component pact c20.98 less bettery.

VOL 15 No 12
DECEMBER '86

Editorial Offices
EVERYDAY ELECTRONICS EDITORIAL
6 CHURCH STREET, WIMBORNE,
DORSET BH21 1JH
Phone: Wimborne (0202) 881749
See notes on Readers' Enquiries below-we regret that lengthy technical enquiries cannot be answered over the telephone

Advertisement Offices

EVERYDAY ELECTRONICS ADVERTISEMENTS
4 NEASDEN AVE., CLACTON-ON-SEA, ESSEX
CO16 7HG. Clacton (0255) 436471

IT can be very rewarding to edit Everyday Electronics-some of the letters of praise we get make it all worthwhile-but it can also be very frustrating! By way of explanation and in the hope that we can eliminate a few problems I want to mention some of our frustrations this month.

SEND MONEY

Many of you send us money, and it is all gratefully received; you send it for p.c.b.s, books, back numbers, binders and subscriptions-either new or renewals. On average we receive about 150 such letters with cheques, PO's and bank drafts each week and very gratifying it is too; however, among these 150 letters there are always a few that cause concern, either because something is wrong with the payment-wrong amount, cheque not signed, cheque made out to the wrong company, cheque not payable in $£$ sterling or not drawn on a bank with a UK address, PO not a British one-or because there is something wrong with the order-no name and address, no clear description of what is required, address and/or order illegible, order for items we do not supply.
You may by now think I am bleating on about my problems but actually they are often your problems! We now have quite a file of "unidentified payments" (actually it's called the Wally File but we won't rub that in too much). These cheque and bank drafts represent readers' money sent in for the above services without any name or address. Of course we could send them all back to the bank on which they are drawn but the banks are most unhelpful with this (not surprisingly) and often decline to return correspondence to their customers. So please, please make sure you don't get into the "W" file-simply check things before you post them.

If by any chance you have been waiting for your back numbers or subscription copies for more than a few weeks (even months in some cases), can you remember if you included your address with your cheque?

OUR MISTAKES

Of course, we are not perfect ourselves-we make mistakes and occasionally someone somewhere gets the wrong issue or the wrong p.c.b. In these cases, and thankfully they happen very infrequently, we will apologise and send the right one if you let us know what has happened.

Perhaps more embarassing is a mistake in an issue-maybe a component wrongly labelled or not labelled at all, or some aspect of a drawing wrongly shown (see Please Take Note). We do check all our articles and drawings carefully each month but we have deadlines to meet and sometimes a mistake gets through, usually to be noticed like a sore thumb as soon as we get finished issues from the printer, when of course it is too late! We will go on trying to eliminate such mistakes; the perfect issue is our aim.

NEW LOGO

From next month the title artwork on our cover will change, we will also have a new style cover-watch out for it at your newsagent.

BACK ISSUES \& BINDERS

Certain back issues of EVERYDAY EL:ECTRONICS and ELECTRONICS MONTHLY are available price $£ 1.50$ ($£ 2.00$ overseas surface mail) inclusive of postage and packing per copy. Enquiries with remittance, made payable to Everyday Electronics, should be sent to Post Sales Department, Everyday Electronics, 6 Church Street, Wimborne, Dorset BH21 1 JH . In the event of non-availability remittances will be returned. Please allow 28 days for delivery. (We have now sold out of Oct. and Nov. 85 and April 86.)
Binders to hold one volume (12 issues) are available from the above address for $£ 4.95$ ($£ 5.95$ overseas surface mail) inclusive of p\&p. Please allow 28 days for delivery.
Payment in $£$ sterling only please.

Editor MIKE KENWARD
 Personal Assistant
 PAULINE MITCHELL

Assistant Editor/Production
DAVID BARRINGTON
Assistant Editor/Projects
DAVID BRUNSKILL
Editorial: WIMBORNE (0202) 881749
Advertisement Manager
PETER J. MEW Clacton (0255) 436471
Classified Advertisements
Wimborne (0202) 881749

READERS' ENQUIRIES

We are unable to offer any advice on the use, purchase, repair or modification of commercial equipment or the incorporation or modification of designs published in the magazine. We regret that we cannot provide data or answer queries on articles or projects that are more than five years old. Letters requiring a personal reply must be accompanied by a stamped self-addressed envelope or a selfaddressed envelope and international reply coupons.
All reasonable precautions are taken to ensure that the advice and data given to readers is reliable. We cannot, however, guarantee it and we cannot accept legal responsibility for it.

COMPONENT SUPPLIES

We do not supply electronic components or kits for building the projects featured, these can be supplied by advertisers.

OLD PROJECTS

We advise readers to check that all parts are still available before commencing any project in a back-dated issue
We regret that we cannot provide data or answer queries on projects that are more than five years old.

ADVERTISEMENTS

Although the proprietors and staff of EVERYDAY ELECTRONICS take reasonable precautions to protect the interests of readers by ensuring as far as practicable that advertisements are bona fide, the magazine and its Publishers cannot give any undertakings in respect of statements or claims made by advertisers, whether these advertisements are printed as part of the magazine, or are in the form of inserts.

The Publishers regret that under no circumstances will the magazine accept liability for non-receipt of goods ordered, or for late delivery, or for faults in manufacture. Legal remedies are available in respect of some of these circumstances, and readers who have complaints should address them to the advertiser or should consult a local trading standards office, or a Citizen's Advice Bureau, or their own solicitor.

SUBSCRIPTIONS

Annual subscription for delivery direct to any address in the UK: $£ 13.00$. Overseas: £15.00. Cheques or bank drafts (in £ sterling only) payable to Everyday Electronics and sent to EE Subscription Dept. 6 Church Street, Wimborne, Dorset BH21 1JH. Subscriptions can only start with the next available issue. For back numbers see the note on the left.

aUTOMATIK \square CAR ALARM
 PAUL HARDING

Protect your car and its contents with this easy to use alarm

MANY different methods of detecting illegal entry to a vehicle have been tried, from motion or vibration of the car itself to small voltage drops appearing at different parts of the car electrics. This design uses the large voltage swing that occurs at the earthy end of the courtesy light, as the car door is opened, as a trigger source.
No holes need be cut for keyswitches in the body of the car since the circuit is both fully automatic and is provided with entry and exit delays.
The circuit is enabled and disabled by the ignition switch-it will arm within about ninety seconds of turning the ignition off (the exit delay), and can be disarmed at any time by turning the ignition to Phase 1. To act as a preliminary warning to both authorised and unauthorised users, a buzzer sounds during the entry delay period of approximately twelve seconds. The courtesy light is also held switched on, so that the ignition switch can be found quickly and easily even on wet evenings when the user will far prefer to have the car's door closed.
As is required by law, the circuit will switch off after a preset time. This time is
set with a link to be either $1.25,2.5$ or 5.0 minutes, approximately. The relays specified for the project are rated at 10A for the horn and 2A for the courtesy light; in most cars this will mean that additional relays will not be needed. The project is suitable for negative earth vehicles only.

CIRCUIT OPERATION

Consider the block diagram (Fig. 1), and assume that the exit delay has timed out. If one of the car's doors is opened, the courtesy light line becomes active, and the flip flop is set. The entry delay introduces a pause before the main alarm is triggered. If, during this time, the ignition switch is
moved to phase 1 the alarm resets and no further action is taken. If this is not done, however, the entry delay will time out, enabling the clock, and hence, via the binary counter, and driver stages, the car's horn.
After a preset number of clock pulses, Qn will swing high and reset the flip flop. If the car door has been closed, the circuit will switch off and. rearm itself. If the car door is still open, the above procedure will repeat. To prevent the alarm being triggered as the user leaves the car the exit delay holds the flip flop reset for a short time after the ignition phase 1 line becomes inactive.
The "out of phase" detector is active during the time that the flip flop's output is

Fig. 2. Complete circuit diagram of the Automatic Car 'Alarm.
high and the entry delay's output is low, i.e during the entry delay period. During this time, the warning buzzer is sounding, and the courtesy light is held on regardless of whether the car's door is open or closed.
Note that the logic levels referred to above do not necessarily agree with those in the actual circuit.
Looking now at the circuit diagram, Fig. 2: Cars are intrinsically electrically noisy places, and R1 to R4 protect the circuit's inputs from spikes. D6, R11 and C5 remove spikes from, and decouple, the supply lines.
The exit delay function is provided by $\mathrm{C} 1, \mathrm{R} 2$ and ICla. When the voltage across Cl is greater than the upper input threshold of ICla, as is the case when the IGN line is high, and for a short time after it goes low, the gate's output holds the flip flop around IC1b, and ICIC reset, and hence C2 fully charged, regardless of the status of the CL line. As Cl discharges, the voltage across it will cross the CMOS lower input threshold, ICla's output will swing high, and the circuit will arm. DI ensures that any other items connected to the IGN line do not rapidly discharge Cl as the ignition is turned off, thus disabling the delays.
With the exit delay timed out, circuit operation is as follows: When the car's door is opened, IC1b's output swings high, and ICle's goes low. This condition is latched. Capacitor C2 starts to discharge through IClc via R6. When the voltage across C2 reaches the CMOS low input threshold, the combined clock and counter, IC2, is enabled, and the relay is driven from the now pulsing output.
The Qn output of IC2 will go high after $\left.2^{(n-1)}\right) / 16$ pulses as measured at the Q4 output, where $\mathrm{n}=12,13$, or 14 . When this happens, pin 12 of ICIc is pulled low by the output of IC1d via D2, the former's output swings high, and $\mathbf{C} 2$ rapidly charges to $V_{d d}$ via D3. The counter is reset, the clock disabled, and the circuit rearms. Taking the

IGN line high at any time will have a similar effect. With the component values shown, the turn off time is approximately $1 \cdot 25,2 \cdot 5$, or 5.0 minutes, with $\mathrm{n}=12,13$, or 14 , respectively.
The tone generator is a standard Schmitt trigger oscillator driving a piezo resonator, X1. Three of the NAND gates in the circuit are required to be Schmitt trigger types, because they are fed from slowly changing voltages. These are shown with the Schmitt symbol on the circuit diagram. For ease of p.c.b. design, however, all the remaining NAND's are also Schmitt's, although this is not necessary for correct circuit operation.

The relay drivers are standard common emitter switching circuits. Diodes D4 and D5 protect their respective transistors from reverse e.m.f.'s as the relays switch off:

CONSTRUCTION

Construction should not present any problems, assuming a soldering iron with a fairly fine tip is used. Insert and solder the three topside links, into the p.c.b. (Fig. 3), first; one of them is partially covered by IC2 and so must not be forgotten at this stage! The links should be followed by the resistors and diodes. Link 1 on the underside of the board can then be made to the appropriate pad using, preferably, p.t.f.e. insulated wire (the insulation does not melt at normal soldering temperatures). Do not forget R5, R8 and R9, which also mount under the p.c.b. IC sockets are recommended for the i.c.'s. Next come the capacitors and transistors. Ensure that the transistors; diodes, and C1, C2 and C5 are orientated correctly...C5 must have a lead pitch of 2.5 mm ; if a 100μ device to this specification cannot be found, a 47μ component will suffice.
Lastly, solder in the relays and insert the i.c.'s into their sockets, again ensuring correct orientation. They all point towards the top of the board.

COMPONENTS

Resistors

R1,R3,R12	1 k (3 off)
R2	10 M
R4,R5	$100 \mathrm{k}(2$ off)
R6,R7.R10	1 M (3 off)
R8,R9	33 k (3 off)
R11	100

All $0.25 \mathrm{~W}, 5 \%$ tolerance

Capacitors

C1.C2	10μ radial elect. 16 V
C3	22 n mylar
C4	1n mylar
C5	100μ or 47μ radial
	elect. 16 V

Semiconductors

D1 to D3	IN4 148 (3 off)
D4 to D6	IN4001 (3 off)
IC1,IC3	4093B Cuad 2-input
	NAND Schmitt (2 off)
IC2	4060B 12-stage ripple-carry binary
	counter
TR1,TR2	BC239 (2 off)

Miscellaneous

X1	PB2720 or PBN2720 (see text)
RLA	12 V 320 ohm coil
	10 A p.c.b. mounting
	relay
RLB	12 V 320 ohm coil
	2 A p.c.b. mounting
	relay

Case, Verobox type 301; printed circuit board, available from the EE PCB Senvice code EE 550; 6way 5A connector block; mounting hardware; Scotchlock connectors; wire; heatshrink sleeving, etc.

DOTTED COMPONENTS MOUNTEO ON UNDERSIDE OF BOARD

Fig. 3. P.C.B. layout and wiring. The p.c.b. is available from the, EE PCB Service.

Fig. 4. Mounting details of the two types of piezo-electric sounders.
the top of the board.
If the specified case is used, the connector block can be screwed onto one of its long sides. Cut some small notches along the side of the case. Then, with the completed p.c.b. placed upside down in the case, short lengths of tinned wire (use heavy gauge for the horn and courtesy light connections) can be screwed into one side of the connector block and the other end soldered to the correct pad on the p.c.b., passing over the notches. An adhesive foam pad stuck onto RLA and the case bottom will ensure that the board is mounted securely. It would be wise, however, to test the circuit first.

If the cased version of the piezo-resonator is being used, it can be glued or bolted to the outside of the case and its leads brought inside through a small hole (Fig. 4). The uncased version needs a larger hole cut in the case; its brass face will then glue under the hole. Two fine wires need to be soldered to the uncased resonator, one to the silvered centre, the other to the brass surround. Leave the iron in contact with the silvered face for as short a time as possible.

TESTING

Connect the circuit to a 12 V power supply. Connect a multimeter switched to resistance across the two horn connectors. Briefly short the IGN pad to the positive line. Connect the CL pad to ground; the resonator should not sound. A high impedance voltmeter or oscilloscope monitoring pin 5 or 6 of ICl should show a slowly falling voltage. Using a standard (one megohm) oscilloscope probe the rate of decay will be about ten times faster than it will be in normal use.
As the observed voltage reaches about four volts the buzzer will sound. Remove the CL-ground connection. A short time later a pulse train should be apparent at pin 9 IC2, and the multimeter should indicate alternately an open and short circuit at the horn pads. If not, ensure that $\mathbf{C} 2$ has fully discharged, pin 11 ICl is low, and R 6 is not open circuit.
After the appropriate time delay, the circuit should switch off and rearm. An extremely thin pulse will be observed at the

Qn output of IC2. Retrigger the circuit by briefly taking CL low. With the multimeter, check that the CL pad is grounded during the time that the buzzer is sounding.

INSTALLATION

The unit should be mounted in a dry place, because the case is not particularly watertight. The most convenient place will probably be near the steering column, since all the required leads will be nearby. The connection diagrams (Fig. 5), although not exhaustive, show the basic idea. Use heavy gauge wire for the horn connections, as they will probably have to carry the full horn current of perhaps 8A.
The easiest way of making the connections to the existing wiring will be with Scotchlock connectors. Alternatively, cut the relevant wire, slip on a length of heat shrink tubing, and solder the new wire and the original two ends together, insulating the joint with the tubing. In locating the correct wires, and annotated circuit diagram for the car will be found very useful. \square

THE WORLD OF

FOR ONLY £2.50

ELECTROMAIL-A BRAND NEW WAY TO BUY RS PRODUCTS.

- Over 13,000 products from a single source.
The quality range - proven by industry.
Excellent stock availability.24 hour ordering.
704 page catalogue.
Write or phone today for your copy of the new Electromail catalogue.
It's an invaluable technical reference packed with photographs and detailed descriptions of the complete product range.
Send $£ 2.50$ or, if phoning, quote your Access/Visa number.

The Electromail service is only available to UK customers

Dept. 301, PO Box 33, Corby, Northants. NN17 9EL TELEPHONE:
0536204555 를

Soldering and desoldering
Speakers \& microphones
Suppressors \& fllters
Switches
Technical books and videos
TMmers, counters, controllers
Tools \&e production alds
Transformors and wound components
Wiring accessories
Workshop equipment

dual reading THERMOMETER

\square
R.A.PENFOLD

Suitable for use in a variety of applications, but primarily intended for balancing central heating radiators

The original idea behind this thermometer was for a device to permit easy balancing of radiators in a central heating system. With a conventional thermometer at each end of the radiator it is difficult to monitor them both continuously due to the distance of a few feet which separates them. The problem can be considerably eased by having electronic temperature sensor's which feed into an electronic unit that displays both temperatures digitally.

It would, of course, be possible to have two independent thermometer circuits with separate displays, but this is a rather expensive solution to the problem. The alternative utilized here is to have a single display with the reading being taken from the sensors alternately. Switching from one sensor to the other is automatic, and a couple of l.e.d. indicators show which sensor is being read at any given time. In practice this system is easy to use, and is not really any less convenient in this respect than having twin displays.

The unit is not restricted to the application outlined above, and it has many other possible uses. It could be used in photographic applications, another use is in heat experiments in schools. Here it is often necessary to monitor two temperatures simultaneously, and for demonstation purposes an electronic instrument with a fairly large and easy to read display is obviously ideal. The unit could also be used in the home to show inside and outside temperatures although it will not read below 0 degrees.

The temperature range covered is 2 to 100 degrees Centigrade, but this can be extended to 2 to 110 degrees Centigrade if desired. The display is a $3 \frac{1}{2}$ digit liquid crystal type, giving a resolution of $0 \cdot 1$ degrees Centigrade, although the accuracy of the unit does not require this level of resolution over the full range. However, for comparison purposes a high degree of resolution can be very useful. The use of a liquid crystal display and a low consumption chip to drive it results in the unit having a low

enough current consumption to permit economic operation from a small nine volt battery. In fact the majority of the nominal nine milliamp current consumption of the unit is accounted for by the two l.e.d. indicators. The finished unit is very easy to calibrate, and either an accurate ther: mometer or a good quality digital voltmeter is all that is required.

SYSTEM OPERATION

A unit of this type is a highly complex piece of equipment, but the use of a digital voltmeter chip as the basis of the circuit dramatically reduces the component count. Most of the components are involved with
converting temperature to a linearity proportional voltage, and with the automatic switching between one temperature sensor and the other. Fig. 1 shows the block diagram for the unit.

The temperature sensors are modern integrated circuits designed specifically for this purpose, and they provide an output equal to ten millivolts (0.01 volts) per degree Centigrade. This is very convenient, as with the voltmeter having a full scale value of 1.999 volts, and with the appropriate decimal point of the display switched on, this gives a direct reading in degrees Centigrade with 0.1 degree resolution. With most temperature sensors there is a d.c. offset to balance out, but this problem is

avoided with the particular type used here
The output of each temperature sensor connects to the input of the digital voltmeter by way of an electronic switch. One of these switches is operated direct from the output of a low frequency squarewave oscillator, and it connects temperature sensor 1 through to the input of the voltmeter during positive output half cycles from the low frequency oscillator. The other switch is fed from the oscillator via an inverter, and it con nects temperature sensor 2 though to the input of the voltmeter during negative half cycles from the oscillator. This gives the required alternate switching action at a rate which is governed by the oscillator. The oscillator and inverter drive the two l.e.d. indicators.

The temperature sensors require a supply voltage in the range four to 30 volts, and with the circuit powered from a nine volt battery, on the face of it there is no problem in this respect. In reality things are not as simple as this, and the problem stems from the fact that the negative input to the voltmeter is not at zero volts, but is nominally 2.8 volts below $\mathrm{V}+$. This effectively gives a supply potential of just 2.8 volts for the temperature sensors, which is obviously inadequate.

In order to avoid the need for a second battery, an oscillator, rectifier, and smoothing circuit are used to provide a voltage doubler action. Due to inefficiencies in the circuit this gives a supply potential for the temperature sensors of about +15 volts rather than +18 volts. This boost of about six volts gives a true supply voltage to the temperature sensors of almost nine volts, which is comfortably more than the minimum requirement of four volts.

VOLTMETER CIRCUIT

The circuit diagram of the voltmeter section of the unit is shown in Fig. 2. This is centred on ICl , which is an ICL7106 d.v.m. chip. This is the version of the chip designed for use with liquid crystal displays, and there is also a version of l.e.d. displays (the ICL7107). Where battery operation is required the latter is not a very practical
choice due to the relatively high cuirrent regirement of l.e.d. displays.

ICl uses an integration process to provide the voltage to digital conversion. It consists basically of a $3 \frac{1}{2}$ digit decimal counter fed from a clock oscillator, plus the integrator and some complex control logic. Looking at its operation in a somewhat over simplified manner, the integrator converts the input voltage to a pulse of proportional duration. The clock signal is allowed to pass to the input of the counter circuit only for the duration of this pulse, and the longer the pulse, the greater the final count that is displayed. The circuit includes latches so that a valid display is always provided, and the counting action is not apparent to the user. The circuit automatically takes several readings per second.

Resistor R3 and Cl are discrete components in the clock circuit. The exact clock frequency is unimportant except in that it controls the number of readings per second. Usually a rate of just two or three per second is used, but in this case a higher rate is preferably. This is due to the switching of the input voltage source, which is not synchronised with the taking of new readings (and cannot easily be synchronised with this). Switching of the input source inevitably occurs during the the course of a reading being taken, rendering that reading invalid. Having a high reading rate results in any invalid readings being almost instantly up-dated by correct readings, and prevents misleading or ambiguous results from being obtained. The specified values give about a dozen readings per second.
Resistor R4 and VR1 are part of a reference voltage generator circuit; VRI is adjusted to give the circuit precisely the correct level of sensitivity. R5 and C3 form a lowpass filter at the input of the circuit. The purpose of these is to combat noise on the input signal which might otherwise give unstable readings. Most of the other components are concerned with the integrator and the automatic-zero circuit (which avoids the need for any manual zero adjustment).

A simple inverter stage is formed by R1, $R 2$, and TR1. This is used to drive the

Fig. 2. Circuit diagram of the voltmeter circuit.

appropriate decimal point of the display with the inverted BP (back plane) signal. For those who are unfamiliar with liquid crystal displays it should perhaps be explained that they are not driven from a d.c. source like l.e.d. displays, but must be driven with an a.c. signal. A d.c. drive will, in fact, operate segments of a liquid crystal display perfectly well for a while, but "burning" would result after a few hours of operation, rendering the display useless. The normal way of driving a liquid crystal display is to provide the common (BP) terminal with a squarewave signal, and to switch on a segment by taking its input

COMPONENTS

Resistors

Resistors		
R1	220 k	
R2,R3	$100 \mathrm{k}(2$ off)	
R4	$22 \mathrm{k} \quad$ See	
R5	1 M	
R6	470 k	
R7	18 k	
R8,R9	$1 \mathrm{k} \mathrm{(2} \mathrm{off)}$	
R10	10 M	
All 0.25 W	5% carbon page 66.	

Potentiometers

VR1 1k sub-min horizontal preset

Capacitors

C1	22 p ceramic plate
C2	100 n carbonate
C3	22 n ceramic
C4	470 n carbonate
C5	47 n carbonate
C6	100μ radial elect.
	10 V
C7	220 p ceramic plate
C8,C9	22μ radial elect. 25 V
	(2 off) C10$\quad 330 \mathrm{n}$ carbonate

Semiconductors

IC1	ICL7106 d.v.m.
IC2	$3 \frac{1}{2}$ digit I.C.d. display
IC3,IC7	4001 BE CMOS quad
	2-input NOR gate (2 off)
IC4,IC5	LM35DZ temperature sensor (2 off)
IC6	4016 BE CMOS quad analogue switch
TR1	BC547 silicon non D1,D2
IN4148 silicon diode	
D3,D4	(2 off) TIL209 red I.e.d.s 12 off)

Miscellaneous

Si s.p.s.t. miniature toggle switch
B1 9 V battery (PP3 size) Case about $205 \times 140 \times 40 \mathrm{~mm}$; printed circuit board available from the EE PCB Service, order code EE 549; two 3.5 mm stereo jack sockets and matching plugs; battery connector; two 40-pin d.i.l. i.c. holders (see text); three 14-pin d.i.l. i.c. holders; wire; solder; pins; etc.

Fig. 3. Sensor and switching circuit diagram.
terminal to an inverted version of the squarewave. The inverted signal is supplied via an electronic switch, and turning this off results in no drive to the segment and switches it off. Although the display segments are being driven with d.c. levels, each segment receives about +5 volts on one drive phase, and about -5 volts on the other phase. This gives what is effectively a 10 volt peak to peak a.c. drive signal.

By inverting the backplane signal and applying it to the appropriate decimal point input, this display segment is turned on continuously while the unit is operating. The ICL7106 provides a squarewave drive signal which has a very accurate one to one mark-space ratio so that there is no significant positive or negative bias in the signals applied to the display, which should, therefore, have a long operating life of many years.

SENSOR AND SWITCHING

The circuit diagram of the temperature sensor and switching sections of the unit appear in Fig. 3. IC6a and IC6b are the two electronic switches, and these are two sections of a CMOS 4016 BE quad analogue switch. The other two switches in IC6 are left unused. IC6a and IC6b are connected to give the required s.p.d.t. action in conjunction with inverter IC7a. The other three gates of IC7, which are all wired to act as inverters, operate as a standard CMOS oscillator and buffer stage. R10 and C10 set the operating frequency at approximately one cycle every three seconds. In other words, each temperature sensor is connected through to the voltmeter for roughly 1.5 seconds at a time. The switching time is proportional to the value of ClO , and is, therefore, easily altered if desired.

Diodes D3 and D4 are the two l.e.d. indicators, and IC4 plus ICS are the two temperature sensors. D3 switches on when IC 5 is selected-D4 switches on when IC4 is selected. The temperature sensors are LM35DZs which are suitable for use over a 2 to 100 degree Centigrade temperature range. In fact, these sensors seem to work well down to 0 degress, although they are not guaranteed to do so. The range can be extended to a maximum of 110 degrees

Centigrade using the more expensive LM35XZ version of the temperature sensor. Both versions of the sensor have a typical quiescent current consumption of only 56 microamps, giving an insignificant level of self-heating and reliable results at low temperatures.

For their operation the sensors rely on the fact that the voltage across a forward biased silicon junction varies in sympathy with the applied temperature, and increases by about 2 or 3 millivolts per degree Centigrade. The LM35** sensors include an amplifier to boost the output to 10 millivolts per degree Centigrade, as well as a circuit to effectively eliminate the large d.c. offset across the sensing element.

IC3 operates as another CMOS astable and buffer circuit, but in this case the values of the timing components (R 7 and C 7) give an operating frequency of many kilohertz. The output from the circuit is rectified by C8, D1, and D2, and then smoothed by C9. The resulting d.c. potential of about six volts is effectively added in series with the nine volt supply, and used to power both temperature sensors. The supply to the sensors is far from stable, but the sensors
are not affected significantly by even quite large supply voltage variations.

CONSTRUCTION

Practically all the components fit onto the printed circuit board, and full details of the board are provided in Fig. 4. Apart from the temperature sensors, the integrated circuits (including the display) are all prone to damage by static charges. Accordingly, they should be fitted in integrated circuit holders and should not be plugged into circuit until all the wiring has been completed.
It is unlikely that a suitable 40 -pin socket for the display will be available, since it has 1.3 inch rather than the standard 0.6 inch row spacing. However, it might be possible to obtain two 20 -pin s.i.l. sockets, or Soldercon pins can be used. For the prototype a 40 -pin s.i.l. socket was cut in two using a hacksaw, to produce two 20 -pin s.i.l. sockets. The display has a protective coating over its front surface, and this should be left in place until the unit has been completed, at which point it should be carefully peeled off.
A number of link wires are needed, and

these are made from 20 or 22s.w.g. tinned copper wire. Where several wires run close together they must be drawn quite taut, or p.v.c. sleeving should be used to make sure that there is no risk of any accidental short circuits. It is essential that the capacitors are all miniature printed circuit mounting types or they will not fit onto the board easily, and there would be a risk of them preventing the lid of the of the case fitting into place properly. D3 and D4 are left with quite long leadout wires so that they protrude several
millimetres above the display. Virtually any l.e.d.s can be used for D3 and D4, but as they operate at fairly modest currents high brightness types are preferable.

A case measuring 205 by 140 by 40 millimetres is an excellent choice for this project. The printed circuit board is mounted on the base panel using 6BA or M3 screws about 25 millimetres long. Threaded spacers totalling about 19 millimetres in length are used over each screw to hold the board at a suitable height, bringing the
display almost to the same level as the top panel of the case. A rectangular cutout to act as a display window must be made in the top panel, together with a couple of holes for the l.e.d.s. These must be carefully positioned so that they accurately match up with the l.e.d.s and the display when the lid of the case is put into place.
The rectangular cutout for the display can be made using a fretsaw or a miniature round file, with a small flat file being used to finish it off neatly. The size of the cutout is

19 by 50 millimetres. It is advisable to fit some thin transparent plastic behind the display window to protect the front of the display against accidental scratches.

The sensors can be wired to the printed circuit board using two lengths of twin screened cable with the outer braiding of each cable carrying the " $\mathrm{V}-$ " connection. Rather than using direct connection to the board it is likely to be more convenient in use if the board is connected to a couple of three-way sockets fitted on the rear panel, and the leads from the sensors are fitted with matching (and correctly connected) three-way plugs. On the prototype stereo 3.5 mm connectors are used, but any type of three-way connector should be perfectly suitable. Whichever method of connection is used, the cables can be many metres long if necessary. The on/off switch can be mounted on the front panel or the rear panel, as preferred.

ADJUSTMENT AND USE

Start with VR1 at a roughly mid setting. When the unit is switched on the display should show a realistic but not necessarily a very accurate reading, and the two 1.e.d.s should flash on and off alternately with an "on" time of around 1.5 seconds. Switch off immediately and recheck all the wiring if either or both of these conditions are not met.

If all is well, one way of calibrating the unit is to measure the output voltage from one of the sensors using an accurate digital multimeter, and to then adjust VR1 for the corresponding reading. For example, if the measured voltage is 0.249 volts, VR1 would be adjusted for a display of 24.9 degrees.

VR1 must be adjusted very carefully in order to obtain exactly the required reading, but adjustment is not so critical as to merit the use of a multiturn potentiometer.

A more accurage method is to calibrate the unit against a precision thermometer. With the thermometer and the sensors placed side-by-side and allowed to settle to the same temperature for a minute or so, simply adjust VR1 for a display reading which matches the temperature indicated by the calibration thermometer.

If the sensors are to be used in liquids it is essential that they be fitted into protective probes, such as small test tubes. Some silicon grease can be used to give a good thermal contact between sensor and tube, but it will always take at least a few seconds for the sensors to adjust to any large changes in temperature. If the sensors are not be used in liquids it is a good idea to at least insulate each leadout wire using insulation tape so that there is no danger of accidental short circuits arising.

Ombga Electronics

Free price list
on request

Please ring us for any type not listod-we will try to find fo if it exiata. Quantry digcounta avallabte. Lat on requeat, free of charge. PLEASE ADD 50p PRP and VAT at 15% Govt Colleges, otc. orders accepted. Prices are subject to change.
P.O. BOX 135, EDGWARE, MIDDX. HA8 5NA

EMU-IMU
As the year draws to a close and the days get shorter there is a growing optimism among the purveyors of small robotic devices. Nothing very flash but there has been a steady pick-up in orders, admittedly from a very low level, but it has persuaded a number of companies to take some action.
From LJ Electronics, makers of the Atlas, comes the EMU robotic trainer, with a price in the region of $£ 300$ it is described as a low-cost training aid. It has three powered axes, base, shoulder and elbow, a further two at the wrist which can be moved manually, either rotated or up and down, and a gripper.
It is powered by d.c. motors with direct mechanical linkages to the movement axes and a cable linkage for the gripper opening and closing. It can be controlled from any micro with an 8-bit user I/O port.
The arm has software packages included in the price developed for the Emma 11 , LJ's micro, and BBC B, which allows all the usual sequence input, edit, relay and storage on cassette, disc or EPROM, simultaneous drive on all three movement axes and gripper and direct control from the keyboard.
It has a reach of 230 mm and can lift a maximum 100 gms . The working envelope is limited by base movements through 90 degrees, shoulder 90 degrees, elbow 60 degrees, gripper rotation 360 degrees and 40 degrees up and down.

Just to confuse the issue slightly L. W. Staines, makers of the Ogres, are intending to launch an arm with the acronym of IMU which stands for Industrial Manipulation Unit. IMU is a four-axis arm with an optional gripper selling for between $£ 500$ and $£ 600$. Development work is still being carried out on it and it is hoped to have it ready for the Hi -Tech exhibition at the Barbican, London, in January.
It is again planned to be a simple learning device with a single extendable limb moving up and down, left and right and a rotating wrist. The power is provided by d.c. servos with a worm and screw drive. It can work with any micro with a
parallel port and software is being written for the BBC B and Commodore.

OFFICIAL

The other arms which were announced some time ago have been given their official launches, Alfred II from Robot City Technology and the RTX from Universal Machine Intelligence. The RTX SCARA robot arm has been around since last year but the launch has been delayed to allow time to get the production correct. Now at a price of about $£ \mathbf{£}, 000$ it is ready for its intended markets of education, health care and light industry. Powered by servos, feedback is supplied by optical encoders and the machine is strong enough to lift 2 kg . It can be linked to any micro with an RS232 port and software is available for the IBM PC.

Alfred II is a larger, stronger version of Alfred I (originally published in EE; Nov, Dec 84 and Jan 85), the five-axis articulated arm powered by servos with toothed belt drive. Alfred II has an onboard Z80based processor which can accept up to 200 steps and can also be controlled via the serial port by the BBC B and Spectrum.

The Memoco Electron, the programmable version of Tomy's Armatron is now available for the Amstrad. An interface was built for a special order from Spain and has been put on general sale at a price of $£ 80$. The cost is higher than the $£ 50$ for the C64, BBC B and Spectrum because of the lack of a port on the Amstrad.

The five axis Memoco arm, plus gripper is selling for about $£ 130$. Although sales are steady, further improvements are being delayed because of pressure of work. However, Bob French, who runs the company said he was hoping to attract a technician and salesman to help give him time to develop a buggy

The EMU Robot Trainer
which could be used to make the Electron mobile. It is an idea he first mentioned more than a year ago.
In the eagerly-awaited stakes, Staines' Troll appears to have been sidelined for the moment. The last news was that this two-armed robot using the Ogre technology was waiting for the grippers to be completed. That is still the situation and Staines says that they do not know when it will be completed.

Further work depends on how the robot market develops and the company is keeping a watch on the situation.

COLLOQUIUM

The colloquium on personal robots in the home organised by the institution of Electrical Engineers in the summer, which was addressed by your correspondent, was not an outstanding success. Only a small number of people turned up to hear the speakers, including most of the wellknown names in the industry.

However, Robin Bradbeer, of IGR, who organised the event, said he was hoping to arrange another next year and that he had some ideas for attracting more interest. By contrast the previous day's colloquium on personal robots in education attracted a great deal of interest with a number of talks on how robots were being used in schools.

The RTX SCARA robot arm

SEIIILOMIULTOR JOE PRITCHARD

NN a recent article for EE \& EM, we examined the semiconductor ROM (Read Only Memory). In this article, we'll take a look at Semiconductor RAMs, or Random Access Memory.

WHAT IS A RAM?

A RAM is simply a device that can store sequence of binary digits-" 1 "s or " 0 " s, or BITS-that can be read back as required, the time needed to retrieve a certain bit of information being the same no matter where in the RAM that bit of information is. In this definition, a RAM can be a magnetic disc, or electronic memory. However, the term RAM has come to mean a semiconductor device, capable of storing information, the contents of which can be read or changed on request. Indeed, some writers have suggested that the phrase "Readily Alterable Memory" is more descriptive than the one we used above, for this is effectively what a RAM is; a memory device whose contents can be altered quickly and easily.

With very few exceptions, which will be described later, RAMs lose their contents when the power is removed, and are thus described as VOLATILE memory devices. RAMs have become important components in recent years, as the home computer "boom" has burst upon us. A RAM may have between as few as 16 and as many as several thousand different "words" in it, each word being a collection of bits which is accessed as a single "set" of data

Common word lengths are 1-bit, 4-bits and 8 -bits. The selection of a given word is done by putting a pattern of electrical signals, usually 0 V and 5 V , representing 0 's
and 1 's respectively, on to a set of inputs to the RAM called the ADDRESS LINES. When this is done, the word held at that address can be accessed on a series of lines called the DATA LINES. A RAM usually has data lines that are common to both input and output operations, but a few RAMs have Input Data lines and Output Data lines, the Input lines used to write to the chip and the Output lines used to read from the chip.

HAVING WORDS

Whether a RAM is written to or read from depends upon the status of the CONTROL LINES of the RAM, which tell the RAM whether a read or write operation is required. RAMs are often described in terms of the number of bits they can hold, or in terms of the number of words they can hold and the word length.

Thus a 16384 bit RAM would be able to hold 16384 bits of information. This could be arranged as $16384^{*} 1$, in which there would be 16384 separate 1 bit words, 4096^{*} 4 , which would contain 4096 separate 4 -bit words, or 2048 * 8, which would contain 2048 separate 8 -bit words.

The number of bits in the word decides the number of data lines that the RAM chip will have. The number of separate words in the RAM decides the number of address lines that the RAM will have. For a RAM chip with N address lines, there will be $2 \uparrow \mathrm{~N}$ different words in the RAM.

In addition to the inputs and outputs to the RAM that we've already seen, there can also be CHIP SELECT lines, which, when taken to a particular logic level, enable or disable the RAM. These are used to allow

Fig. 1. Basic "building brick" for a Static RAM. (a) bipolar technology, (b) MOS technology.

the RAM to be used anywhere within the Memory Map of the computer of which the RAM is part

For example, if we have a 2048 * 8 RAM in a microcomputer system, the obvious set of addresses for the RAM to be accessed at are addresses 0 to 2047. But the use of Chip Select lines would allow the same RAM to be addressed at any 2048 byte block of the computer's memory space, the Chip Select lines being switched to the appropriate logic levels by the address lines of the microcomputer. We'll see an example of this later.

STATIC AND DYNAMIC RAMS

Having looked at the general characteristics of RAMs, it's time to look at the real devices. The RAM family is made up of two groups, called STATIC and DYNAMIC RAM chips. The essential difference is in the way in which the bits are stored, but this leads to differences in the circuitry needed to support the RAMs in computer circuits.

Simply put, in a dynamic RAM the bits of data are effectively repeatedly rewritten to the RAM. In a static RAM the bits are written to the RAM once, and they can then be forgotten about until the data is read or changed.

We'll now look at how these two groups of RAM chips work, their relative advantages and disadvantages, and how real RAM chips can be used. Of these two types, Static RAM is the easiest to understand and use; so, being a fan of the easy life, I'll start with them.

STATIC RAM

The basic "building brick" of a Static RAM is shown in Fig. 1. Such a "CELL" is capable of holding a single bit of information, and is the humble Flip Flop circuit.

It can be made using either Bipolàr technology, Fig, 1a; in which the active components are bipolar transistor, or MOS technology, Fig. 1b, in which FETs are the active components. Note how in MOS technology the resistor part of the circuit is formed by a suitably biased FET.

Let's see how these "cells" can be put together to form a RAM chip. As many of these cells as there are bits to be "remembered" are needed, and they are arranged in a grid as shown in Fig. 2. The "Column" and "Row" signals are derived from the Address Lines, and are used to access a single cell or group of cells, depending on the number of bits in the RAM word.

The way in which these control signals are use to actually access a given cell depends upon the RAM in use. For example, if Bipolar Technology has been used to build
the RAM, it's common to see the transistors used having more than one emitter; two of the emitters are used as "Row" and "Column" inputs to the cell. A third emitter can be used as the " 0 " and " 1 " lines, in place of those shown in Fig. 1.
Once selected, a Read/Write control signal decides what the operation is to be. For a write; the two bit lines are used to input data in to the flip flop. If a " 1 " is present on the input data line to the RAM, $a+5 \mathrm{~V}$ signal is applied to TR2. A " 0 " requires a +5 V signal to be applied to TR1 via the " 0 " bit line. The business of sorting out which bit line is to be used for a given cell is done by the Control Electronics of the RAM chip.
For a read operation, the bit lines allow the status of the flip flop to be read; if bit line ". 1 " is high, the cell is storing a" " ", and if bit line " 0 " is high, it's storing a zero. Circuitry within the RAM, known as SENSE AMPLIFIERS, then make the appropiate output data line "high" or "low", depending upon the status of these lines.
Once a cell is set to a value, it will hold that bit until it is changed or the power is removed. This ability is due totally to the flip flops used to hold the bits, and the flip flops also provide the disadvantages of Static RAM.
The flip flop requires that at any time one of the two transistors in the circuit will be turned on. This consumes current, and Dynamic RAMs do not have this require-

Fig. 2. Matrix of "cells" put together to form a RAM chip.
ment for a large "standing current" drain. However, this can be reduced with MOS Static RAMs.
Another disadvantage is that each cell requires two transistors on the integrated circuit that will be the RAM. Until recently, this led to Static RAMs being rather small affairs in terms of bits of storage when compared with Dynamic RAMs.
In a Dynamic RAM, only about a quarter to a third of the space is needed to store the same number of bits, thus allowing the Dynamic RAMs to store more information in a given space. Large Static RAMs were available, but at a price. This led to Static RAMs being used in small systems until recently, when falling prices and increasing density has led to cheaper and larger Static RAMS, thus leading to revived interest in the device.
A good' example of the way in which Static RAMs are used in smaller systems and Dynamic RAMs in larger ones occurred in the Sinclair ZX-81. The basic 1 K machine had its RAM implemented with Static Devices. However, the Sinclair 16K

Rampack used Dynamic devices to keep costs down.
A further advantage of Static Devices is their speed of operation; they are faster than their Dynamic counterparts.

THE 6810

Let's now take a look at a couple of examples of Static RAM, starting with an OAP of the Static RAM world, the 6810 . This is shown in Fig. 3. It is a 128 * 8 -bit Static RAM which was originally designed to support the 6800 microprocessor. Yes, that is 128 bytes; not much in these days of 128K QL machines!

Fig. 3. Pin functions for the 6810 Static RAM.

However, it's a nice chip to use to learn about Static RAM with. It has eight data lines, which are used for both input and output, and seven addresses lines. There are six chip selects, CS 0 and CS 3 being active high and CS1, CS2, CS4 and CS5 being active low.

Thus for the chip to be enabled, and data transferred, CS0 and CS3 must be at logic 1 and CS1, CS2, CS4 and CS5 should be at logic 0 . The address can then be set up on line A0 to A7 and the operation carried out.
The R/W line is high for a read or low for a write. If the chip is disabled, then the data lines will "float" (have no effect on anything else connected to the data bus) as they are implemented in tri-state logic. The inputs and outputs are all TTL compatible, and only, a single 5 V supply is needed.

The worst ACCESS TIME, which is the time needed to read data from memory, is about 450 nS , and the best about 250 nS . The practical upshot of this is that the chip would be useless in fast microprocessor circuits unless means were available to "slow down" the microprocessor chip until the memory was ready! As with many RAMs, you pay more for the faster versions of the chip.

THE 6116

The 6116 chip is a more recent addition to the Static RAM clan, and is of more use in microcomputer systems. It is a 16384 bit device arranged as 2048 words of 8 -bits, and for this reason is often called a 2 K RAM.

The pin functions for the 6116, together with a typical circuit for its use, is shown in Fig. 4. The other chips provide the Chip Select signal. The WE pin is the Write Enable pin, and when taken to a logic low allows data to be written to the RAM. There is one Chip Select at Pin 18, which is active low.

The only difference between this chip and the 6810 in terms of control signals is the presence of the Output Enable connection at pin 20. This must be low for data to be output from the RAM. In Fig. 4b it's simply driven by the logic signal that we're using as Chip Select, thus enabling the output only when the chip is selected.

The 6116 has other nice features; it's pin compatible with 2 K EPROMs, thus allowing you to swap between the two types of memory without rewiring the circuit. All the signals are compatible with TTL signals, and it's fast. Access times range between 100 nS and 250 nS .

The speed of a particular chip is often specified by a suffix to the part number; thus 6116-15 would indicate a chip with a 150 nS access time. There are, by the way, no problems about using a chip faster than that specified in a given design, it's just more expensive!

Finally, there have been attempts with this chip to keep power consumption within reasonable limits. CMOS technology has been used to fabricate the chip, and this gives a power consumption of microwatts when the chip is not active, and about 10 mW to 20 mW when the chip is in operation.

Fig. 4. Typical pin functions for the 6119 Static RAM together with a "practical" circuit arrangement.

Fig. 5(a). Simplified view of the 4116 Dynamic RAM and (b) typical Dynamic RAM "cell".

NO VOLATILE STATIC RAMs

As was mentioned earlier, it's possible to get Non Volatile RAM. Historically, the earliest way of doing this was to take a CMOS RAM, such as a 6116 , and equip it with a backup power supply which often consisted of a couple of Lithium batteries. As the standby power drain is in the microwatt region, this arrangement was very useful, allowing the RAM thus powered to keep its memory when all around it were losing theirs for around 10 years!
Commercial units look like small boxes with the same pin-out as the 6116 RAM, so they can plug straight into circuit boards designed for 6116 s . A similar system is used in the 6802 Microprocessor chip, which has 128 bytes of on-board RAM which can be maintained by "battery backup".
However, a recent development has been the use of EEPROM technology (see last month's issue) in RAMs, where each cell of the Static RAM is backed up with an EEPROM cell. Data can be transferred between the two memory types when required by applying suitable control signals to the chip. The disadvantage with this memory at the moment is the price and the small memory size, typically 256 * 4 bit, but this could easily change in the near future. A typical example is the Xicor X2212 chip.

DYNAMIC RAM

The Dynamic RAM chips use charge retention to hold bits, rather than a circuit that effectively remembers a voltage. This has the advantages that power consumption is low. However, the amount of "peripheral" electronics required to keep the memory happy is rather high.
A "cell" from a Dynamic RAM is shown in Fig. 5. As you can see, it's simply a capacitor and a single f.e.t. Dynamic RAMs are fabricated only in MOS; bipolar devices are not suitable for any application involving charge. The cell holds a " 1 " as a tiny charge, in the region of $10 \mathrm{E}-15$ coulombs, and a "zero" as an absence of charge.
Most Dynamic RAMs are arranged as several thousand 1 -bit words, although a 16384 * 4 bit Dynamic RAM is available. Typical sizes are between 4096 * 1 and 262144 * 1. The word length of one bit can mean that for small RAM requirements, such as 2 K , you will need eight dynamic chips, one for each bit of an 8-bit word, as opposed to a single 6116 Static RAM!
However, for larger RAM sizes there is little contest. The difference in the number of cells you get into a Dynamic Chip as
opposed to the number of cells you get into a Dynamic Chip as opposed to the number of cells you can get on a Static Chip is due to the smaller size of the Dynamic Cell, using one transistor as opposed to two. This tends to make large Dynamic RAMs cheaper than large Static RAMs.
Addressing of individual cells is done in a similar way to that in which Static Cells are addressed. Fig. 6 shows a typical Dynamic RAM i.c., the 4116 , and if you study it and remember that it is a 16384 bit RAM you will soon realise that there aren't enough address lines! We need 14 separate lines to give 16384 individual addresses, as required by this RAM, and we have only. seven.

Fig. 6. Pin functions for the 4116 Dynamic RAM.

The CAS (Column Address Strobe) and RAS (Row Address Strobe), are the solution to this apparent problem. The address is given to the RAM in two parts, the Row Address and the Column Address. The relevant address bits are put on the address bus and then either RAS or CAS is taken low to signal to the RAM which part of the address is required.
This timing of strobe pulses makes the use of Dynamic RAM difficult for the amateur building system to their own design, and requires additional components to look after the timing. The requirement for the address to be written to the RAM in two parts slows down the operation of the RAM. For the 4116 RAM, for example, an access time of 375 nS is typical.

Although the Dynamic RAMs have lower power consumption than many Static RAMs, they still need some power. Typical figures, for the 4116 RAM, are 300 mW or so when active and around 10 mW on standby. Another problem associated with some Dynamic RAMs is there requirement for extra supply voltages in addition to +5 V and 0 V . For example, -12 V is not commonly found around digital circuits and often requires generating specially for the RAM!'

CHARGE RETENTION

The charge retention method of holding information has a problem; the charge decays within a few milliseconds if left to its own devices. Herein lies the problem with Dynamic RAM. The charge, or absence of charge, in each cell must be regenerated, or REFRESHED, every now and again to ensure that the memory doesn't forget what is in it.
The Refresh is carried out by additional electronics, and thus adds to the cost and complexity of a Dynamic RAM board. Some Dynamic RAMs have the refresh circuitry built as part of the chip, but for the others the refresh circuitry must ensure that every cell of the RAM is refreshed every 2 mS or so.
Dynamic RAMs are built so that each Read operation refreshes the cell read, and this is the basis of the refresh operation. The Dynamic RAM is arranged in a grid, as Fig. 6 b shows, and it's not feasible to expect each RAM cell to be read from within the 2 mS period as part of a program. No, we

Fig. 7. Simplified "grid" arrangement for a Dynamic RAM.
have to be a little more organised, and Refresh circuitry simply ensures that each cell is refreshed within the necessary time.
There are a couple of ways of doing this; the most obvious is that the Refresh should be done all at once, each row of cells being refreshed one after each other. This will take a finite time, and the microprocessor using the memory will be forbidden to access the memory while the Refresh is taking place. Therefore, the Refresh action slows down the computer by a tiny amount.
The other way is to refresh the memory a row at a time, with the microprocessor getting access to the memory when the refresh is not taking place. This spreads out the refresh action.
The refreshing of memory requires some additional circuitry called the REFRESH CONTROLLER, and there are chips, such as the $\operatorname{lntel} 3222$, which are designed to do this.

REFRESH CONTROLLER

The task of the Refresh Controller is to refresh each row in each Dynamic RAM on a regular basis, and to ensure that while the refresh is taking place the microprocessor does not try and access the memory at the same time. Each row is addressed by the Refresh Circuitry putting the Row address onto the RAM address bus, and then the row is refreshed by a modified read action.

In many microcomputer systems, the Refresh is carried out at times when the microprocessor is not using the Dynamic RAM; these times can be worked out by using the control lines of the microprocessor, although a good knowledge of the
microprocessor is needed. One interesting feature of the $\mathbf{Z 8 0}$ microprocessor is that it contains a special Refresh Register which, in conjunction with some of the control lines of the Z 80 , can be used to do an automatic, or transparent, refresh of the memory. This is one reason why Dynamic RAMs have found wide use in Z 80 based systems.

The Dynamic RAM, despite its extra requirements, will remain popular especially in systems requiring large memories- 16 or 32 -bit microprocessors, for example. They aren't as easy as Static RAMs for the amateur to use, although there are Dynamic RAMs around which have the Refresh circuitry and circuitry for strobing the Row and Column addresses on to the chip
actually built in to the i.c. This makes them almost as easy to use as Static RAMs.
Apart from turning up in dedicated RAM chips, there are devices that combine RAM functions with microprocessor I/O operations. An example of this is the rather prosaically named 6532 RIOT. In addition, microprocessors occasionally contain RAM.
The development of memories will continue, of course, and we'll probably soon have Magnetic Bubble memories available to the amateur and other such esoteric technology. However, for the time being our memories will be of the type we've seen in the last two successive articles, and I hope that the articles have been of interest to you.

R READERS DISCOUNH' SCHEME

Readers-you can obtain a 5\% discount on goods from the advertisers listed using coupons cut from EE, provided you follow the rules below:

CPL ELECTRONICS

Kits for Everyday Electronics and Electronics Monthly and Practical Wireless projects including kits for the "Teach $/ n$ " series. Plus a wide range of competitively priced components, hardware, test equipment and tools. We can also supply, in many cases, "one off" kits for specific projects. Free price lists on request.

GREENWELD ELECTRONICS LTD.

A full range of components at our shop in Southampton; open 9-5.30 Mon-Sat, as well as many surplus lines, all available by mail order. Bargain List free with our Catalogue. Send for your copy today, only $£ 1$ inc. post. Now even better value with EE Discount Vouchers!

TK ELECTRONICS stock a wide range of components including triacs, ICs \& opto together with other accessories (switches, tools, multimeters, buzzers, crystals, Antex, Velleman and Vero products, etc.). We specialise in kits for timers, disco and home lighting, remote control kits for beginners. Send s.a.e. and 50p (refundable on first order) for catalogue.

OMNI ELECTRONICS are willing to give a 5% discount on all orders over $£ 10.00$, excluding VAT, if a valid voucher is enclosed. We stock a wide range of com-ponents-ideal for the hobbyist. Goods listed in our catalogue are generally in stock, orders will be sent by return post. Why wait?

RADIO COMPONENT SPECIALISTS

Amplifiers-(PA, disco, music), audio leads all, types, components, capacitors, potentiometers, resistors, disco lighting, sound to light units, disco decks, disco consoles, disco mixers, echo chambers, fuzz lights. Multimeters, mains transformers, microphones, stands, leads, goose necks, speakers with or without cabinets, tweeters, mid range units, 100 V line matching audio transformers, etc.

CROTECH's complete range of single and dual trace oscilloscopes along with accessories is eligible for the discount scheme. For orders below $£ 250.00$ then one voucher is required, on orders above $£ 250.00$ only two vouchers are required. This could mean a saving of over £ 14.00 on our 3132 Dual Trace 20 MHz scope

HENRY'S AUDIO-ELECTRONICS

Test instruments-for every application. Security-alarms, doorphones, intercoms. P.A.-amplifiers, speakers, mixers, microphones. Computer-drives, programs, connectors, leads. Tools-service aids, irons, etc. Components-semiconductors, all types of components. Acces-sories-TV-video, telephone, hi-fi. Com-munications-C.B. rigs and accessories. New catalogue now available-see Henry's advert.
E.S.R. ELECTRONIC COMPONENTS supplies the full range of Velleman kits which include amplifiers, light controllers, power supplies, timers and computer interfaces. To complement these kits E.S.R. can offer connectors, switches, control knobs and project cases. A range of small handtools, soldering irons, test equipment and service aids is also available.

BECKER-PHONOSONJCS, established 1972. Designers and suppliers of a wide range of kits for projects published in Everyday Electronics and other leading periodicals. Range includes musical and audio effects, computer controlled circuits and Geiger counters. EE discount scheme applies to all full kits over $£ 30$ goods value, excluding Geiger counters
nimus zirlt
D.M.R. ELECTRONICS afe prepared to give a 5% discount on ${ }^{\circ}$ giders of their Oscilloscope Component Tester, ideal for testing surplus components and fault finding on p.c.b.s. We also design, manufacture and repair electranic equipment and computers, specialising in the Sinclair Spectrum

EE BOOK SERVICE, a 5% discount will be given on the total cost-including post-age-of all orders that are sent with a valid voucher. Our complete list of books appears in each issue together with ordering details.

RULES

Discounts are available from advertisers listed on this page.
2. Unless otherwise stated by the advertiser, discounts are only available on orders over $£ 20$ in value.
3. Unless otherwise stated by the advertiser, one voucher is required for each $£ 50$ value of the order placed (i.e. for orders between $£ 20$ and $£ 50$ send one voucher, between $£ 50$ and $£ 100$ send two vouchers, etc.)
4. Cut out vouchers (not photostats) must be sent when claiming the discount. 5 . Each voucher sent must be valid on the day of posting (i.e. it cannot be used after its expiry date).
6. Discount is not available on "sale" or "special offer" items.
7. You must indicate on your order that the 5\% EE Readers Discount has been deducted from the payment sent.
8. All advertisers reserve the right to refuse this discount on any item supplied. Discounts will not be given or coupons returned if these rules are broken.

PART 6 Junction transistor as amplifier

N PREVIOUS parts we have used the junction transistor as a switch. We have considered it only as being in one of two states:

1) OFF; No base current, therefore no collector current
2) ON; Ample base current, therefore maximum collector current. In this state the transistor is said to be saturated.
When the transistor is being used as an amplifier, it is operated under conditions which lie between the two extreme states described above. To be used effectively as an amplifier, its base current must be large enough to begin to turn it on, yet not so large as to saturate it.

Within this range the collector current is proportional to the base current. The ratio between these two currents is known as the gain of the transistor.

$$
\text { Gain }=\frac{\text { Collector current }}{\text { Base current }}
$$

Depending upon the type of transistor, the collector current may be from 25 to 800 times greater than the base

Layout of components on the "breadboard" version of the Simple Intercom Amplifier.

current. Small changes in the base current cause large changes in the collector current so the transistor acts as a current amplifier.

There are exceptions to this general rule. When the collector voltage is less than 1 V , the transistor does not have proper operating conditions and gain is smaller. Another obvious exception is that, if the collector current is already as great as the transistor can pass (the transistor is saturated) an increase of base current produces no further increase in collector current.

SIMPLE INTERCOM AMPLIFIER

A circuit for a simple Intercom Amplifier is shown in Fig. 6.1. In this project we shall see how to use a transistor as an amplifier. We shall use it to amplify the tiny currents that come from a crystal microphone when the crystal is made to vibrate by sound.
The amplified current is then used to drive an earphone or small loudspeaker, which may be in another room. This circuit will also form the basis for a Simple Diode Radio Receiver to be described later.

HOW IT WORKS

Resistors R1 and R2 (Fig. 6.1) act as potential dividers, giving a potential at A that is enough to supply a base current to the transistor TR1 and make a steady collector current flow in resistor R3. Transistor TR1 is on, but not saturated.
When a sound is made close to the microphone, a small current is generated. This increases and decreases the charge on capacitor Cl very rapidly, in phase with the vibration of the sound.

A small current flows to and fro between Cl^{\prime} and the junction between R1 and R2. This small current alter-

This series is designed to explain the workings of electronic components and circuits by involving the reader in experimenting with them. There will not be masses of theory or formulae but straightforward explanations and circuits to build and experiment with.

nately increases and decreases the base current in phase with the sound vibrations. Small changes in base current bring about corresponding changes in the collector current of TR1.

Since this is a larger current, the changes are greater. The current through R3 is no longer steady. It varies in phase with the sound. As the current through R3 increases and decreases the potential difference across R3 increases and decreases. This means that the base current to TR2 varies in phase with the sound. The two transistors TR 2 and TR 3 are connected so as to produce very high gain (see Fig. 6.6). The large collector current through TR3 therefore varies in phase with the sound waves. This means that the potential at point C varies considerably. As the potential at
C rises and falls, the charge on capacitor C3 is alternately increased and decreased, in phase with the sound. The variations in the charge on C3 cause currents to flow through the loudspeaker. These currents cause the loudspeaker to produce a sound very similar to the șound originally picked up by the microphone.
As a point of interest, note the function of resistors R3 and R5 in this circuit. Variations of current through R3 cause variation in voltage (potential) at point B. These variations are larger than those originally produced by the microphone. A transistor such as TRl is a current amplifier. The circuit consisting of TR1, R3 and other components is a voltage amplifier. In a similar way TR3 and R5 constitute a second voltage amplifier.

Fig. 6.3. Stripboard component layout for the Simple Intercom Amplifier. Remember to make the breaks in the underside copper tracks at points M23 and N26

COMPONENTS

Resistors
R1 3 M 3
R2 820 k
R3 39 k
R4 10 k (see text)
R5 330
All $\frac{1}{4} \mathrm{~W} \pm 5 \%$ carbon

Capacitors

C1	O $\mu 1$ polyester
C2	47μ elect. 10 V
C3	220μ elect. 10 V
C4	10 n polyester (if diode radio is to be connected)

Semiconductors

TR1-TR3 ZTX300 non transistor (3 off)

Miscellaneous

Breadboard or 0.1 in. matrix stripboard, 24 strips $\times 37$ holes; crystal microphone or mic. inset; 8 ohm loudspeaker (crystal earpiece preferred for radio version); 1 mm terminal pins (6 off); connecting wire, including several metres twin speaker lead for intercom version; battery box for four "D" type cells.

abnena. cost
 dultanese drify

25

CONSTRUCTION

The Simple Intercom Amplifier circuit may be assembled on the experimental breadboard (Fig. 6.2) or on a piece of $0 \cdot 1 \mathrm{in}$. stripboard, (having 24 strips $\times 37$ holes (Fig. 6.3). The main point to watch out for here is that all the connections are properly made This circuit is rather more complicated than the earlier ones in this series, so there is more chance of making a mistake.

Check everything carefully before you switch on the battery. When you switch on, you should hear a fairly loud click from the loudspeaker. Now take the speaker to another room and connect it to the circuit using a long pair of wires. The intercom is ready for action.

Instead of the microphone you may use a crystal pick-up cartridge from a record player. If you can get an old record deck that has a crystal cartridge, you can use this circuit to complete the system and can listen to your favourite discs whenever you want.

Turn over for a Simple Diode Radio Receiver

SIMPLE DIODE RADIO RECEIVER

The amplifier can also be connected to the Simple Diode Radio Receiver described in Part 1-Fig. 1.3 EE July 86. You need a connection from the cathode (k) of D1 (Fig. 1.3) to capacitor Cl of Fig. 6.1. You also need a connection running from the "earth" side of the radio circuit to the 0 V line of the amplifier circuit.

The method of connecting the radio to the amplifier is shown in Fig. 6.4, and Fig. 6.5 shows how to accommodate the radio circuit on the stripboard version of the amplifier. No additional

Fig. 6.4. Connecting the "radio" circuit (see Part 1) to the amplifier.
breaks in the underside copper strips are required.
Now the tiny currents from the diode are amplified and the circuit produces a current powerful enough to drive the speaker. However, unless you have a good aerial, the volume of sound from the speaker may be too faint to be heard clearly.
If this is so, try using an earpiece (as used with a portable radio set) in place of the speaker. This will cut out external noise and enable you to hear the stations more easily.

One of the problems with this simple circuit is that it is not selective. In other words it is not easy to tune to just one station at a time. For this reason you may obtain best results during daytime, when there is less interference from foreign stations. On the other hand it is fun to listen to foreign stations, provided that you do not mind hearing several at once!

Fig. 6.6. One method of obtaining high gain is to use the Darlington pair configuration.

HIGHER GAIN
One way of obtaining high gain is to connect two transistors as shown in Fig. 6.6. This configuration of two transistors is known as a Darlington pair.

A very small current, $I_{b A}$, to the base of TRA causes a larger current, I_{cA}, to flow from the emitter of TRA. This becomes I_{bB}, flowing to the base of TRB. It causes an even larger current, I_{cB}, to flow from the emitter of TRB. If the transistors have the same current gain, h, then:

$$
\mathrm{I}_{\mathrm{cA}}=\mathrm{h} \times \mathrm{I}_{\mathrm{bA}}
$$

and $I_{c B}=h \times I_{b B}=h \times I_{c A}=h^{2} \times I_{b A}$.
Thus the gain of this circuit is h^{2}. For example, if the gain of each transistor is 100 , the gain of the pair is 10,000 .

This arrangement is particularly useful for sensitive switching circuits and amplifiers.

Gain of the pair =
gain of TRA \times gain of TRB

Fig. 6.5. Stripboard component layout for building the Simple Diode Radio Receiver. The full circuit for the radio section appeared in Part 1 (July '86). The loudspeaker can be replaced by an earphone.

E ETOV

FEEDBACK

This month's circuit provides a good example of feedback. As described in Part 3 (EE Sept '86), feedback occurs when we take a signal from one stage of a circuit and feed it back to an earlier stage.

In the Electronic Candle (Part 3), the light signal was fed back to the LDR that first turned the lamp on. Re-sult-the lamp stayed on. This was called positive feedback, because the signal fed back tended to increase the action that first caused it.

With this month's audio amplifier circuit you can obtain feedback by putting the microphone close in front of the loudspeaker. Any small sound made nearby is picked up by the microphone, amplified by the circuit, produced as a louder sound from the loudspeaker, picked up again by the microphone, amplified again . . . and so on. This produces positive feedback.

The result is that the system goes into oscillation and a loud and generally unpleasant screeching sound is heard. This effect often occurs in public address systems, when the volume is turned up too much. The only cure is to break the feedback loop, either by turning the volume down, or by positioning the speakers or microphone so
that the microphone can not easily pick up the sound coming from the speakers.

NEGATIVE FEEDBACK

A more useful type of feedback for amplifiers is negative feedback. Part of the output signal is fed back in such a way that as output increases, the signal fed back tends to reduce the output. This effect prevents the output becoming too great, and so prevents the sound from being distorted.

Fig. 6.7. Modifying the circuit of Fig. 6.1 to give increased negative feedback.

In the amplifier circuit, Fig. 6.1, the components concerned with feedback are resistor R4 and capacitor C2. The amount of the collector current of TR1
depends on the p.d. between its base and emitter. If base potential (at A) increases, collector current increases and the current through R4 increases.
The effect of this is to raise the p.d. across R4. This makes the emitter potential (at D) rise, which acts to reduce the base-emitter p.d. In short, as the base potential rises, emitter potential rises too, tending to cancel out the difference. This is a kind of negative feedback, since it reduces the effects of changes of base potential.

However, in this circuit the amount of amplification is limited and we can not afford to have too much negative feedback. This is the reason for having capacitor C 2 in the circuit. If you remove $\mathbf{C} 2$ from the circuit, you will find that the gain of the amplifier is much reduced because full feedback is allowed. Capacitor C2 helps smooth out the changes in emitter potential at D, and so reduces the feedback effect.

We have only a limited amount of feedback because, with this simple amplifier it is more important to have high gain than to have high fidelity. To slightly increase the negative feedback, which gives better reproduction (though less gain), R4 can be replaced by two resistors, with C 2 across only one of them - see Fig. 6.7.
Next Month: Introducing the Multivibrator.

WATCH OUT FOR

No 9 AT YOUR NEWSAGENT NOW 80p

A replica of the very rare No. 1 issue of Proteus will be given away inside each issue of No. 9 - Two

SUBSCRIPTIONS

Sell-out disappointment can upset even the less ambitious reader! So why not take out a year's subscription and make sure of every issue. stradght from the Publisher? Complete the order form below and post to: EVERYDAY
ELECTRONICS and ELECTRONICS MONTHLY, Subscription Dept., 6 Church Street, Wimbome. Dorset BH21 1JH
Tel. 0202881749.
Annual subseription rates:
UX £13. Overseas $£ 15$. ($£$ sterling only)
 games for the price of one! Plus a free poster.

POCKET MULTIMETER

APocket size Digital Multimeter, hardly bigger than a credit card, from AB European Marketing sits inside its own plastic wallet complete with permanently attached test probes and operating instructions.

The meter, weighing less than 80 g , has a $3 \frac{1}{2}$ digit display and a rotary mode sèlector incorporating an on/off switch. This enables easy selection of a.c./d.c. voltage ranges, resistance and continuity and diode testing. It is fully autoranging in all modes.

Warning indicators visually tell the user when the batteries are running low and which measurement mode the meter is in. An audible tone indicates a low resistance path in the continuity test mode.

Despite the meter's small size, it is claimed that its rugged design enables it to be used in a wide range of applications from computer maintenance, tele-

vision repair, fault finding and motor repair.
The Digital Multimeter retails for $£ 24.60$, excluding VAT and $p \& p$, and further information may be obtained from:

AB European Marketing, Dept EE, Forest Farm Industrial Estate, Whitchurch, Cardiff CF4 7YS.

SCOPE FOR DIGITAL MEMORY

The new Maplin ID-4850 Digital Memory Oscilloscope is designed to increase the power and versatility of both oscilloscopes and personal computers. The interface adds testing capabilities to any IBM PC or PCcompatible computer, enhancing the computer function as a workstation.
The supplied software enables the user to maintain full control of the DMO from the computer keyboard by means of a waveform on the CRT monitor. These waveforms can be stored for reference or hard copies of all screen displays can be printed-out, together with the print utilities contained within the operating system.
To add the ID-4850 capabi-
lity to a personal computer, an IBM PC or PC-compatible computer containing at least 128 K and a $5 \frac{1}{4} \mathrm{in}$. floppy disc drive, colour graphic card and a RS232 connector will be required. It can also be used as an interface to enhance a low bandwidth 5 MHz scope into a 50 MHz dual-trace digital storage scope, with a fast 7-nanosecond rise time.
The Maplin ID-4850, which is a Heathkit product is available in kit format for $£ 434.74$ or fully assembled for $£ 649.99$, both prices exclusive of VAT.
For further technical details contact:
Maplin Professional Supplies, Dept EE, PO Box 777, Rayleigh, Essex SS6 8LU.

SURFACE MOUNTED

 TRANSFORMERSWhat are claimed to be the first power supply transformers to be added to the ever increasing choice of surface mounted devices (SMD's) are now being marketed by AvelLindberg.
The Avel type OB/SM flatpack transformers range from 1.8 to 24 VA . Dual $50 / 60 \mathrm{~Hz}$ primary windings can be series or parallel connected for 120 V or 240 V operation. The dual secondary windings give 5 V , $6 \mathrm{~V}, 8 \mathrm{~V}, 9 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}$ and 18 V r.m.s. in parallel, and $10 \mathrm{~V}, 12 \mathrm{~V}$, $16 \mathrm{~V}, 18 \mathrm{~V}, 24 \mathrm{~V}, 30 \mathrm{~V}$ and 36 V r.m.s. when series connected.

The non-concentric twin primary and secondary windings are wound on separate bobbins which, it is claimed, gives maximum isolation and low interwinding capacitance. It is also claimed that the core construction and winding configuration achieve a near toroidal characteristic.

For full technical details and prices write to:

Avel-Lindberg Ltd.,
Dept EE,
South Ockendon, Essex RM15 5TD.

RAPID EVALUATION

ANEW evaluation board in double extended Eurocard format, which enables users to evaluate and demonstrate the use of multiple Inmos transputers, is now available from Rapid Silicon.

Known as the IMS B003, the board contains four 32-bit IMS T414 transputers to provide a powerful processing tool. Each transputer has its own 256 K byte dynamic RAM. In addition, eight standard Inmos serial links are provided, allowing the user to build an array of transputers by connecting other boards.
A 96-way DIN connector is incorporated and the board also has an l.e.d. error indicator and
switches for link speed selection. Connection cables for the power supply, links, reset and transputer development systems are all included.
Applications for the B003 can be developed on an IBM PC AT/XT, Digital VAX or MicroVAX, or a Stride computer using the OCCAM language

Full details of the IMS B003 multiple transputer evaluation board and other Inmos transputer products are available from:

Rapid Silicon,
Dept EE, Rapid House, Denmark Street,
High Wycombe,
Bucks HP11 2ER

DTWThermomeder (afick

OBIITA VOITMFTRR MODUE E14.40

WUA POWEREIUPYY E5.70

Postage and Packing 75p per order all prices include vat

DVM

The DVM3 14 module is a high performance ($\pm 0.1 \%$ accuracy) panel meter providing a digital readout of d.c. voltages from -99 mV to 999 mV . Its compact size and low power consumption make it ideal for use in a wide range of applications such as multi meters, temperature measuring equipment and weighing machines, both battery and mains powered. The unit incorporates considerable protection against mis-use and is therefore extremely robust. The unit has a high output 0.43 inch red l.e.d. readout and measures $95 \times 41 \times 101 \mathrm{~mm}$.

PSU

The PS209 Mains Power Supply module provides two separate 9 V stabilised outputs at up to 250 mA each. The unit is ideally suited for use with the Digital Voltmeter Module and the Temperature Measuring Kit. Supplied built and tested the module measures $104 \times 54 \times 37 \mathrm{~mm}$.

TEMPERATURE KIT

The DT10 Temperature Measuring Kit provides an output d.c. voltage of 10 mV per degree centigrade over the range from $-10^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$. It uses an integrated circuit in a TO92 plastic encapsulation as the sensing device which may be used at considerable distances from the module without loss of accuracy. It is also possible with the module to employ a number of remotely located probes using an appropriate selector switch. The kit is easy to construct and measures just $52 \times 35 \times 25 \mathrm{~mm}$ when complete.
These items are manufactured in the UK, supplied with full data sheets and are covered by a money back guarantee.

Overseas readers add $£ 1.00$ per order to our total prices for postage.
Make cheques payable to Riscomp Ltd.
Post to: Riscomp Ltd. (EE Offer), 51 Poppy Road, Princes Risborough, Bucks, NP 17 9DB.

digital to analogue converter . . .

FOR the vast majority of applications that require analogue inputs the analogue port of the BBC machines is well able to cope, and as we have seen in previous articles in this series, it can be expanded to have considerably more than four channels if desired. Its one major drawback is the slow conversion rate, with a maximum of only about one hundred readings per second being possible. There are few practical applications that require something in excess of this figure, but this is little comfort if you wish to use the BBC machine in one of these. Another limitation of the BBC computer's analogue port is that it only provides inputs, and there is no analogue output: This is perhaps a more serious omission as there are numerous control applications which require fairly precise control of speed, position, or whatever, and simple on/off control via a digital output line is then inadequate for the task.

There is no shortage of ports for expansion purposes on the BBC computer, and it is not difficult to add a high speed analogue to digital converter, and (or) an analogue output. This type of expansion enables the machine to be easily used in a wide range of control applications, as well as audio digitizing systems. The latter includes applications such as digital sound sampling and playback, and using the computer as a simple digital storage oscilloscope.

Analogue Output

We will consider both analogue to digital and digital to analogue converter circuits in this and the subsequent Beeb Micro article, but we will start with digital to analogue circuits as these are the more simple of the two processes, and are certainly the more simple of the two from the interfacing point of view.

One of the best general purpose digital to analogue converters currently available is the Ferranti ZN 426 E . This is a relatively simple and inexpensive type, but this makes it very straightforward as far as interfacing to a computer is concerned, and its degree of accuracy is more than adequate for most purposes.

A detailed description of how the ZN426E functions would be out of place here, and it is a subject that has been covered in previous issues of this magazine. It consists basically of a highly stable 2.55 volt reference source, some electronic switches, and a complex resistor network known as a R-2R type. Sending values from 0 to 255 gives a range of output voltage from zero to the reference voltage potextial, or 0 to 2.55 volts, which means that the output voltage increments in 10 millivolt (0.01 volt) steps.

It is important to realise that unlike an ordinary potentiometer which, in theory anyway, has infinite resolution, a digital to analogue converter has a rigidly defined
level of resolution. The higher the number of inputs it uses, the larger the range of output voltages available, and the higher the degree of precision that can be achieved. For most purposes an 8 bit type with its 256 output levels is perfectly adequate, and in an application such as motor speed control the variation in speed from one value to the next would be very small (probably too small to be noticed). Similarly, with something like a computer controlled audio gain control, even a dynamic range as wide as 100 dB could be accommodated in increments of under 0.5 dB , which would give no noticeable stepping of the volume.

In fact, in both these applications 8 bit resolution would be more than was really needed, and a lower resolution converter could be used. These days 8 bits is about the lowest resolution that can be obtained, but an 8 bit type can be effectively converted to a lower resolution converter simply by connecting one or more of the least significant inputs to earth and using fewer output lines of the computer port. There may be no real advantage in doing this, but if the lines that are freed can be utilized for other purposes, then it is obviously worthwhile doing so.

There are some critical applications where 8 bit resolution is inadequate, and audio digitizing is one such example. Higher resolution converters are available, but tend to be rather expensive, especially in applications that require both digital to analogue and analogue to digital conversion. They are also more difficult to interface to an 8 bit microcomputer, although many 10 and 12 bit converters have provision for 8 bit interfacing. It is sometimes possible to make more effective use of 8 bit resolution and to obtain satisfactory results without having to resort to more expensive converters, and in audio digitizing this can be achieved using audio compression and expansion techniques. This is a subject that we will consider in more detail in a later article.

D/A Converter Circuit

The circuit diagram of a digital to analogue converter based on the ZN426E is shown in Fig. 1. This can be driven from the user or printer ports of the BBC computer. The ZN426E has no built-in data latch, and it can therefore only be driven successfully from a port which provides latching outputs. It can not be driven direct from the 1 MHz Bus, but it could be used with this port if it was to be driven via the simple 8 bit output port that was described in an earlier article. In actual fact it can be driven from any 8 bit latching output port, and it is usable with computers such as the Commodore 64, VIC-20, and Memotech MTX machines as well.

The circuit is very simple,indeed, with the digital to analogue converter chip (ICl) doing practically all the work, and requiring little in the way of discrete components. RI and Cl are the load resistor and decoupling capacitor for the internal 2.55 volt reference source, which is a shunt type regulator. It is a high quality and highly stable type though, and although it is possible to use an external reference voltage, there would normally be no point in doing so.

IC2 is an operational amplifier which is connected to act as a non-inverting unity voltage gain buffer stage. The output impedance of ICl is fairly high, and the purpose of IC2 is to provide a low impedance output which is little affected by normal loading. ICl can only provide output currents of up to a few milliamps, and its maximum output voltage is 2.55 volts. Many practical applications will consequently require further buffering and (or) voltage amplification in order to produce an adequate output voltage swing and drive current. However, this is something that must be tailored to suit the intended application of the circuit.

Potentiometer VRI is an offset null control, and it enables errors in the output voltage at low output levels to be trimmed

Fig. 1. A simple digital to analogue converter that can be driven from the user or printer ports.

SINEWAVE GENERATION PROGRAMME

```
1 0 \text { REM SINE FUNCTION GENERATOR}
20 REM USE WITHOUT 2nd. PROCESSOR
30 ?&FE62=255
40 DIM CODE 50, STORE 510
50 STOREPAGE=&71:SPEED=&72
?STOREPAGE=STORE DIV 256+1
0 ?(STOREPAGE-1)=0
CLS
IF B% GOTO 320
PRINT "Please wait..."
PROCfill
P%=CODE
COPT 2
LDY #0
SEI
. OUTLODP
LDA (STOREPAGE-1),Y
STA &FEG|
LDX SPEED
. INLOOP
DEX
BNE INLOOP
INY
JMP DUTLOOF
]
#K.10 OLD:M RUN:M
B%=TRUE
310
320 PRINT "Please enter speed factor"
330 PRINT "1-255, higher is slower"
INPUT ?&72
PRINT "Press any key to start output"
REPEAT UNTIL GET
PRINT "Fress <BREAK> to stop"
call code
END
DEF PROCfill
    offset=0
FOR V=0 TO 2*PI STEP PI/128
        of fset?(?STOREPAGE*256)=SIN(v)*127+128
        offset=offset+1
    NEXT V
    ENDPROC
480
490 REM enter "B%=FALSE" before
500 REM re-running program
```


Fig. 3. Digital synthesis of (a) a ramp signal and (b) a triangular waveform.
out. This is just a matter of outputting a value of zero to the converter, and then adjusting VR1 to give an output of 0 volts. In many applications the small errors caused by voltage offsets in IC2 will not be of any significance, and VRI can then be omitted. In fact the negative supply rail will not then be needed, and pin 4 of IC2 can instead be connected to the 0 volt supply rail.
Assuming the unit is driven from the user port, first a value of 255 is written to data direction register B at address \&FE62 to set all the user port lines as outputs, and then values to be written to the converter are sent to address \&FE60. If the circuit is driven from the printer port, a value of 255 is written to data direction register A at address \&FE63, and data for the converter is written to address \&FE61

Bus Version

As an alternative to driving the circuit of Fig. 1 from the 1 MHz Bus via a data latch, the circuit of Fig. 2 can be used. This is based on the ZN428E rather than the ZN426E, and these two devices are virtually the same apart from the fact that the ZN428E has a built-in 8 bit data latch. It
can therefore be directly interfaced to the buses of a computer, with its 'Enable' input being fed with a negative latching pulse from the address decoder. In the case of the BBC machines, this pulse can be supplied by the cleaned up NPGFC or NPGFD line, or by one of these lines after further decoding with the lower half of the address bus (see the BEEB Micro article in the October 1986 issue of this magazine for details of interfacing to the 1 MHz Bus).

Sound Generation

The basic circuits shown here are of little value on their own, and for most practical applications will require extra hardware. One application in which a basic digital to analogue converter can be used is sound generation, where a series of values are repeatedly sent to the converter so as to generate the required output waveform. The waveforms are produced from a series of steps, and Fig. 3 shows how ramp and triangular signals can be produced.

Using the full 8 bit resolution the distortion produced by the steps in the output signal can be kept down to under one per cent, and some of the distortion products will be in the ultrasonic range and therefore
inaudible. Unfortunately, even using an assembly language program it is only possible to output values at a high enough rate to use the full 8 bit resolution at frequencies of up to a few hundred Hertz. At higher frequencies larger steps have to be used, giving increased distortion. At low frequencies the steps are too small to show up on an oscilloscope display, but at frequencies of several kilohertz or more the waveforms can clearly show their digital origins. As far as the sound is concerned though, the distortion products are largely too high in frequency to be audible, and results are perfectly acceptable.

With the right software it is possible to produce anything from simple pulse signals, to more complex waveforms such as sinewaves or even multiple tones. It is certainly an interesting area for experimentation. The accompanying program is a good starting point, and it produces a sinewave output at a range of frequencies which goes from the subsonic to around 500 Hz . The basic technique is to store 256 values in a page of memory (things are much easier if no page boundaries have to be crossed) and then to repeatedly output these in sequence at a rate which gives the required output frequency.

Abstract

Welcome to our new nine part series on Digital Troubleshooting which aims to provide readers with a practically biased introduction to the diagnosis of faults within digital equipment. The series should also be of interest to anyone wishing to update their knowledge of modern digital devices and circuitry.

THe first part of our series on Digital Troubleshooting dealt with integrated circuits, TTL and CMOS logic circuits, and power supplies. This month we shall be introducing some basic logic gates. We also focus our attention on what is arguably the most versatile tool in digital fault finding; the logic probe! We conclude, as usual, with our Digital Test Gear Project which, this month, features the construction of a logic probe which can be used for logic tracing in both CMOS and TTL circuits.

SYMBOLS AND LOGIC DIAGRAMS

The newcomer to digital circuitry is often bewildered by the fact that digital circuitry looks quite different from analogue circuitry. This is perhaps not surprising when one remembers that digital circuits may be almost completely devoid of such commonplace components as resistors, diodes and transistors! The reason, of course, is simply that digital circuits are invariably composed of i.c. building blocks (logic gates, bistables, memories, etc.) and, with the exception of the occasional decoupling capacitor, relatively few discrete components are required.
Readers will doubtless recall that we justified the use of integrated circuits on the grounds of cost effectiveness and reliability. The use of such devices has, however, brought with it a radical new approach to electronics; that of treating electronic circuitry as a number of interconnected building blocks.
This, admittedly simplistic, approach lends itself well to fault diagnosis; it merely becomes necessary to identify, locate, and replace the particular block (usually a single i.c.) which has actually failed. In order to do this, however, it is well worth developing an understanding of the logical function and electrical characteristics of each of the basic blocks. Not only will this information be
instrumental in actually pinpointing a failed device but it can also be invaluable when unravelling more complex problems.

DIGITAL SIGNALS

Before we examine some of the basic logic gates used in digital circuits we should first mention the essential characteristic which distinguishes digital circuits from their analogue counterparts. Readers will doubtless be well aware that, in electronic circuits, signals are represented by voltages or currents. Signals in digital circuits exist only in discrete steps or "levels"; intermediate states are disallowed. Furthermore conventional (positive) logic is based on only two states. These are commonly referred to as "logic 0 " and "logic 1" or simply "low" and "high".

Signals in analogue circuits, on the other hand, can adopt an infinite number of voltages or current levels and the transition between them is usually smooth rather than abrupt as in the case of digital circuits where voltages or current changes occur very rapidly.

TRI-STATE LOGIC

More complex digital devices which are designed specifically for use in microprocessor or microcomputer systems are usually designed so that they are compatible with a multiple connecting arrangement known as a "bus". Since several outputs may be linked to several inputs in such an arrangement there is a danger that conflicting logic levels will appear simultaneously on the bus.

To overcome this problem, we require logic devices which are not only capable of generating logic 0 and logic 1 outputs but can also disconnect themselves from the bus when required. This "high impedance" condition effectively represents a third state and

Fig. 2.1. Comparison of ordinary and tri-state logic devices.

consequently such devices are said to belong to a family known as "tri-state" logic.

Tri-state devices have an input (usually called enable, EN, or chip select, CS) which activates the device. Such an input may be "active high" (the output of the gate is valid when the enable or chip select input is taken to logic 1) or may be "active low" (the output of the gate is valid when the enable or chip select input is taken to logic 0). On the symbol of the device a small circle is used to denote an "active low" enable or chip select input (see Fig. 2.1).

LOGIC LEVELS

Logic levels are simply the range of voltages used to represent the logic states 0 and 1. Not surprisingly, the logic levels for CMOS differ markedly from those associated with TTL. In particular, CMOS logic levels are relative to the supply voltage used (recall that this can be anything from 3 V to 15 V !) whilst the logic levels associated with TTL devices tend to be absolute. The following table usually applies:

	CMOS	TTL
Logic 1	more than $\frac{2}{3} \mathrm{~V}_{\mathrm{DD}}$	more than 2 V
Logic 0	less than $\frac{1}{3} \mathrm{~V}_{\mathrm{DD}}$	less than 0.8 V
Indeterminate	between $\frac{1}{3}$ and $\frac{2}{3} \mathrm{~V}_{\mathrm{DD}}$	between 0.8 V and 2V

(Note: V_{DD} is the positive supply associated with CMOS devices)

NOISE MARGIN

In a perfect world there would be no uncertainty nor any ambiguity about the logic levels present in a digital circuit. Unfortunately, this is seldom the case since spurious signals (or "noise") are invariably present to some degree. The ability to reject noise is thus an important property of logic devices. This is, of course, particularly true where the digital system is to be used in a particularly noisy environment (such as a steelworks or shipyard).

The ability of a logic device to reject noise is measured in terms of its "noise margin" and is defined as the difference between:
(i) the minimum values of high state output and input voltage and,
(ii) the maximum values of low state output and input voltage. The noise margin for standard 7400 series TTL is usually 400 mV whilst that for CMOS is $\frac{1}{3} V_{D D}$, as shown in Fig. 2.2.

LOGIC GATES

The British Standard (BS) and American Standard (MIL/ANSI) symbols for some basic logic gates are shown in Fig. 2.3. It is fair to say that, in the U.K., the MIL/ANSI standard has overwhelming support and very few manufacturers adhere to the recommended BS symbols.

We shall now briefly consider the action of each of the basic logic gates depicted in Fig. 2.3:

BUFFERS

Buffers do not affect the logical state of a digital signal (i.e. a logic 1 input results in a logic 1 output whereas a logic 0 input results in a logic 0 output). Buffers are normally used to provide extra current drive at the output but can also be used to regularise the logic levels present at an interface.

INVERTERS

Inverters are used to complement the logical state (i.e. a logic I input results in a logic 0 output and vice versa). Inverters also provide extra current drive and, like buffers, are used in interfacing applications.

AND GATES

AND gates will only produce a logic 1 output when all inputs are simultaneously at logic 1 . Any other input combination results in a logic 0 output.

OR GATES

OR gates will produce a logic 1 output whenever any one, or more, inputs are at logic 1. Putting this another way, an OR gate will only produce a logic 0 output whenever all of its inputs are simultaneously at logic 0 .

NAND GATES

NAND gates will only produce a logic 0 output when all inputs are simultaneously at logic 1. Any other input combination will produce a logic 1 output. A NAND gate, therefore, is nothing more than an AND gate with its output inverted! The circle shown at the output denotes this inversion.

Fig. 2.2 (above). Logic levels for CMOS and TTL.

Fig. 2.3 (right). Logic symbols and truth tables for some common logic gates.

Fig. 2.4. Circuit diagram for a 4 -input Intruder Alarm.

NOR GATES

NOR gates will only produce a logic 1 output when all inputs are simultaneously at logic 0 . Any other input combination will produce a logic 0 output. A NOR gate, therefore, is nothing more than an OR gate with its output inverted. A circle is again used to indicate inversion.

EXCLUSIVE-OR GATES

Exclusive-OR gates will produce a logic 1 output whenever either one of the inputs is at logic 1 and the other is at logic 0 . ExclusiveOR gates produce a logic 0 output whenever both inputs have the same logical state (i.e. when both are at logic 0 or both are at logic 1).

Readers should note that, whilst inverters and buffers each have only one input, exclusive-OR gates have two inputs and the other basic gates (AND, OR, NAND and NOR) are commonly available with up to eight inputs.

TRUTH TABLES

Truth tables provide a handy method of illustrating the function of a logic gate. Truth tables, like those depicted in Fig. 2.3, show the state of the output of the gate resulting from all possible input conditions. For a logic gate with n inputs, there are 2^{n} possible input conditions. Hence a two-input gate will have four possible input states, a three-input gate will have eight possible input states, and so on.

INTRUDER ALARM

Now let's return to our main theme by putting into context what we have learned so far. Fig. 2.4 shows the circuit of an intruder alarm system which has four inputs. Each input is driven from a normally closed switch which links the input to "common" thus generating a logic 0 state at the respective input. When the switch is opened the logic state at the input concerned changes from logic 0 to logic 1 and this activates the alarm for as long as the input circuit is broken.

Four l.e.d.s, each driven by an inverter, are used to indicate the logical state of the alarm's inputs whilst a fifth l.e.d. is used to indicate that the supply is present. The output of the alarm is used to activate a loudspeaker warning device, LSI, which is pulsed "on" and "off" using audible and low frequency signals respectively

Fig. 2.5. Internal circuit of the logic gate IC3a.
generated by two Schmitt oscillators, IC2a, IC2f and associated timing components, $\mathrm{Cl} /$ R 10 and $\mathrm{C} 2 /$ R11. (A Schmitt gate performs the same logical function as its conventional counterpart but offers improved switching characteristics.)

IC3a is just one of the four AND gates contained within the 7408. In this circuit only one other of the 7408's gates is used and the other two gates are simply left disconnected or "floating". The inputs of IC3a (square waves of different frequency) are applied to pins one and two whilst the pulsed output appears at pin three.

The inset shows how the circuit diagram relates to the 14 -pin d.i. 1 package which houses IC3 and, going one stage further, Fig. 2.5 shows the internal circuitry of the logic gate itself. The +5 V and 0 V supply rails are common to all four AND gates within the device. Furthermore, in common with the majority of 14 -pin d.i.l. devices, these rails are connected to pin-14 (+5 V) and pin-7 (0 V).

LOGIC STATE TRACING

In general, if any of the internal components fail within a logic gate the entire chip will have to be replaced. The task of identifying a gate which is failing to perform its logical function can be accomplished by various means but the simplest and most expedient is with the aid of a logic probe. This invaluable tool comprises a hand-held probe fitted with l.e.d.s to indicate the logic state of its probe tip.

Whereas a pulse of relatively long duration, say one second or more, can be readily detected using a logic probe which only provides logic 0 and logic 1 indications, a short duration pulse (of say it second or less) can only be detected when the probe incorporates circuitry which stretches the pulse so that a third l.e.d. remains illuminated for sufficient time to be seen.

Logic probes normally derive their power supply from the circuit under test and are invariably connected by means of a short length of twin flex fitted with insulated crocodile clips. Whilst almost any convenient connecting point may be used, the leads of an electrolytic decoupling capacitor or the output terminals of a regulator both make ideal connecting points which can be readily identified.
Now, let's assume that our alarm circuit fails to produce an audible output regardless of the state of any of its inputs. Assuming that a logic probe was to hand we could adopt the following procedure for locating the fault:

1. Check the +5 V and +12 V supply rails. If either is low or missing, check the power supply along the lines suggested last month.
2. Disconnect all four inputs thereby placing logic 1 levels (via the "pull-up" resistors, R1 to R4) on the inputs of ICla and ICIb. Now examine the state of D1 to D4; if any of these is not illuminated remove and replace IC4.
3. Check that a logic 1 appears at pins three, six, and eight of IC1. If not, remove and replace ICI. (Note that ICIa, ICIb, and ICIC
jointly constitute a four-input OR gate). Pin eight of IC1 should go high whenever any one, or more, of the alarm inputs goes high. If this is not the case, remove and replace IC1.
4. Transfer the logic probe to IC3d and examine the state of its inputs and outputs; pin 13 should be high, whilst pins 12 and 11 should both be pulsing. If pin 12 of IC3 is permanently held low or high proceed to step 6 , otherwise proceed to step 5 .
5. If pin 11 of IC 3 is not pulsing whilst pin 13 is high and pin 12 is pulsing, remove and replace IC3. If pin 11 is pulsing, proceed to step 8.
6. Transfer the logic probe to IC3a and check the state of its inputs and outputs; pins one, two and three should all be pulsing. If either (or both) of the inputs of IC 3a are permanently held low or high, proceed to step 7. If pin three is not pulsed whilst pins one and two are pulsed, remove and replace IC3.
7. Remove and replace IC2. If this fails to effect a cure, check the timing components, C1/R10 and C2/R11.
8. Disconnect the supply and check LS1 and R13 using a multirange meter on the ohms range. If neither is faulty, remove and replace TR1.

Next month we shall be dealing with bistable and monostable circuits. Our next Digital Test Gear Project is a versatile logic pulser designed for use in conjunction with the logic probe described this month.

This month's Digital Test Gear Project deals with the construction of a Versatile Logic Probe. This handy device is invaluable for logic state tracing in digital circuits and has been designed for compatibility with both CMOS and TTL devices.

CIRCUIT DESCRIPTION

The complete circuit of the logic probe is shown in Fig. 1. IC1, a dual comparator, is used to detect the voltage level at the probe tip by comparing it with voltages produced in the potential divider, R1 to R4. When connected to a normal 5V TLL supply, the voltage appearing at the junction of R1 and R 2 is approximately 2.5 V whilst that at the junction of R3 and R4 is 1.2 V . In the absence of any input (i.e. when the probe tip is left "floating"), the voltage appearing at the inverting input of ICIb and the noninverting input of ICla will be the same as that appearing at the junction of R2 and R3 (i.e. approximately 2.3 V).

The inputs of IC1 are arranged so that the output of ICla (pin one) will go low whenever a logic 0 appears at the probe tip whilst the output of IClb (pin seven) will go low whenever a logic 1 appears at the probe tip. In either case, the respective l.e.d. (D2 or D1) becomes illuminated to indicate the state of the probe tip. In the absence of either a logic 0 or logic 1 input (i.e. an indeterminate, open-circuit, or tri-state condition) both of the outputs of 1 Cl will go high and neither of the l.e.d.s will be illuminated.
IC2 is a 555 timer operating in monostable mode (we shall be fully describing
this arrangement in part four of the series) and is used to provide the necessary pulse stretching facilities. The monostable timing period is initiated by means of a negative
going (falling) edge formed by either Cl or C2 in conjunction with R9 or R10, respectively. This falling edge will occur whenever either one of the outputs of 1 Cl goes low.

SPECIFICATION

Input resistance at probe tip: 400 k approx.

Stretched pulse duration: 200 ms Minimum detectable pulse width: 50ns

Threshold voltages:
TTL logic $1 \quad 2.5 \mathrm{~V}$ (General purpose version)
2.4 V (TTL only version)

TTL logic $0 \quad 1.2 \mathrm{~V}$ (General purpose version)
1.2 V (TTL only version)

Maximum input signal frequency (TTL): 6 MHz

Power supply requirements: TTL 4.5 V to 5.5 V at less than 30 mA CMOS 3 V to 15 V at less than 60 mA

CMOS logic 160% of supply (General purpose version)
70% of supply (CMOS only version)
CMOS logic $0 \quad 30 \%$ of supply (General purpose version) 30% of supply (CMOS only version)

The monostable timing period (and time for which D3 will remain illuminated) is governed by the timing components, R1I and C3. The logic probe supply is decoupled by means of C4 whilst D4 has been included in order to protect the probe from inadvertent reversal of the supply.

COMPONENTS

\section*{Resistors
 | R1 | 15 k |
| :--- | :--- |
| R2,R3,R9,R10 | 4 k 7 (4 off) |
| R4,R5 | 10 k (2 off) |
| R6 | 470 k |
| R7,R8,R12 | 270 (3 off) |
| R11 | 22 k |
| All resistors | |
| are 0.25W | See |
| $\pm 5 \%$ carbon | |}

Capacitors

C1,C2
C3
C4

100n (2 off)
$4 \mu 7$ tantalum 16 V

Semiconductors

Semiconductors	
IC1	LM393
IC2	555 Timer
D1 to D3	Red I.e.d. 3 mm diam. (3 off)
D4	1N4001

Miscellaneous

8-pin low profile i.c. sockets (2 off); probe case measuring $140 \mathrm{~mm} \times 30 \mathrm{~mm} \times 20 \mathrm{~mm}$ approx; single-sided 1 mm terminal pins (3 off); Veroboard 0.1 inch matrix measuring $95 \mathrm{~mm} \times 63 \mathrm{~mm}$ approx. (see text).

Approx. cost
Guidance only $£ 7.25$

Fig. 1. Complete circuit diagram for the EE Versatile Logic Probe.

CONSTRUCTION

All components for the logic probe are mounted on a piece of Veroboard comprising nine strips by 37 holes. This can be cut from the standard size Veroboard used in this series (24 strips by 37 holes); the remainder being saved for next month's Digital Test Gear Project.
The Veroboard layout of the logic probe is shown in Fig. 2. Readers should note that a total of 23 track breaks are required and these should be made using a spot face cutter. If such a tool is unavailable, a sharp drill bit of appropriate size may be substituted.
The following sequence of component assembly is recommended; i.c. sockets, terminal pins, links, resistors, diode, capacitors, and l.e.d.s (leaving sufficient lead length to permit the l.e.d.s to appear in the apertures provided in the upper half of the probe case). The supply lead should now be connected, taking care to ensure the correct polarity (red crocodile clip/striped lead to positive).
Before inserting the two integrated sockets into their holders and mounting the Veroboard in its final position, constructors
should very carefully check the components, links, and track breaks. Furthermore, it is also worth checking that all of the polarised components (including l.e.d.s, diode and electrolytic capacitors) have been correctly oriented. Constructors should also carefully examine the underside of the Veroboard for dry joints, solder splashes, and bridges between adjacent tracks.
When the board has been thoroughly checked, the integrated circuits should be inserted into their holders (taking care to ensure correct orientation). The circuit board should then be mounted in the base of the probe case (no mounting hardware is required as the board should be held snugly in place when the two probe case halves are mated together). The probe tip mounting boss should now be connected to the probe input using a short length of insulated wire and the tip screwed in place.

TESTING

The logic probe should be tested using a current limited 5 V supply of the type normally employed with TTL and CMOS circuits (see last month). Connect the logic

Fig. 2. Component layout and wiring for the EE Versatile Logic Probe. The breaks to be made in the underside copper tracks are shown left.

probe's supply lead to the power supply (taking care to observe correct polarity) and ensure that the probe tip is left unconnected. In this condition none of the I.e.d.s should be illuminated

Now connect the probe tip to the 0 V line. D3 ("pulse") should flash momentarily (indicating a change in logical state at the probe tip) whilst D2 ("logic 0") should become illuminated. Finally, connect the probe tip to the +5 V line. D3 should again flash momentarily but this time DI ("logic 1 ") should become illuminated.

If the logic probe should fail to produce these indications, the circuit board should be removed from the probe case and carefully checked with particular emphasis on the orientation of polarised components (l.e.d.s, diode, electrolytic capacitors, and integrated circuits) and on the placement of links and breaks.

	Logic family		
Resistor	General purpose (CMOS		
	CMOS only	TTL only.	
R1	15 k	8 k 2	18 k
R4	10 k	8 k 2	8 k 2

Note: In neither case should the value of R2 or R3 be altered!

MODIFICATIONS

We have already stated that the logic levels for TTL differ from those associated with CMOS devices. The threshold voltage levels used by the logic probe must therefore represent something of a compromise. Where the probe is to be used exclusively for one type of logic or the other, the component, changes shown above are recommended.

Happy Memories

Part type	$\mathbf{1}$ off	$\mathbf{2 5 - 9 9}$	$\mathbf{1 0 0}$ up
4164 150ns Not Texas	1.05	.95	.88
41256 150ns	2.25	$2: 15$	2.05
41464 150ns	3.35	2.99	2.79
2114 200ns Low Power	1.75	1.60	1.55
6116 150ns Low Power	1.40	1.25	1.20
6264 150ns Low Power	2.40	2.15	2.05
2716 450ns 5 volt	2.75	2.60	2.45
2532 450ns	5.40	4.85	4.50
2732 450ns	2.60	2.40	2.25
2732A 250ns	3.30	2.85	2.75
2764 250ns Suit BBC	2.45	2.20	2.05
27128 250ns Suit BBC	2.75	2.60	2.40
27256 250ns	3.70	3.45	3.30

Low profile IC sockets:Pins $\quad 814161820242840$ Pence $5 \quad 9 \quad 10,1112151724$
Please ask for quote on higher quantities or items not shown. Data free on memories purchased, enquiré cost for others.
Write or 'phone for list of other items including our 74LS series with DIY discounts starting at a mix of just 25 pieces

Please add 50p post \& packing to orders under 115 and VAT to total. Access orders by 'phone or mail we/come. Non-Military, Government \& Educational orders welcome for minimum invoice value of $£ 15$ net.

HAPPY MEMORIES (EE),
FREEPOST, Kington, Herefordshire HR5 3BR.
Tel: (054 422) 618

DRIVING BY SATELLITE

"Riding the airwaves" takes on a new meaning with the development of a satellite automobile navigation system

THE FIRST practical automobile navigation system using satellites has been developed jointly by Mitsubishi Electric and Japan Radio Co. Philips of Holland are also developing a European system, but to date there has been no news on how far forward their proposed system is or when it is likely to be operational.
Scheduled to be introduced commercially in 1989, the system automatically pinpoints the exact location of the car and guides the driver safely to his destination. Even in a strange area the driver need have no fears of getting losi.

The System

The high accuracy of the system is obtained by a combination of a global positioning system (GPS) and a stand-alone navigation system, which consists of a GPS receiver, geomagnetic sensor, speed sensor, flat antenna, control unit, map generator and colour cathode ray tube (CRT) display that shows the car's position on a map.
The GPS can pinpoint a car's location with an accuracy of 100 metres wherever it may be by receiving information simultaneously from three or four satellites. The combination of the GPS with the stand-alone navigation system which is based on information obtained by the geomagnetic and speed sensors allows pinpointing the position of a car even in a tunnel or between high-rise buildings
where radio reception from satellites may be poor or even impossible.

Conventional stand-alone navigation systems cannot be so precise because positioning errors are made and accumulate due to changes in driving conditions.

In the future, a total information system will be developed for a more comfortable driving environment with reduced psychological burdens on the driver. It will have a computer to control a display panel and all separate systems, such as self-diagnosis, driving information, air conditioning, television, audio and mobile phone systems. Operation, display and monitoring of these systems will be done on a single CRT display.

Navigation systems, which tell the driver, where he is, are part of this information system.

"Cockpit" display for the Mitsubishi Satellite Automobile Navigation System.

CELLULAR GROWTH

The Department of Trade and Industry and the Ministry of Defence announced that the number of radio frequencies available for use by cellular radio in London is to be increased by using frequencies currently allocated to the Ministry of Defence.

This decision should enable the maximum traffic capacity of the two cellular radio systems in the Central London area to be more than doubled. The netd for further frequencies has been brought about by the rapid success of cellular radio in the UK.
The speed of uptake, particularly in the London area, has

The second national UK Atari Computer show is to be held in London in November.
The Atari Christmas Show will be held at the Royal Horticultural Hall, Westminster, London, on November 28 to 30.
exceeded expectations. In order to avoid unacceptable "airwave" congestion in the future, the Department has agreed that the frequencies immediately below those used for cellular radio, presently allocated to the MOD, may in future be used by the London cellular radio operators. This is provided certain restrictions are adhered to.

Initially, a further 200 channels are to become available to each operator, compared with 300 channels at present. Ultimately, if demand justifies it, a further 120 channels could be made available making a total within Central London of up to 620 for each operator:

A new exhibition entitled Satellite Communications is to be included in "The British Electronics Week 1987", the premier UK show organised by Evan Steadman.

COMPUTER GOES TO UNIVERSITY

A contract worth more than $£ \frac{1}{2}$ million for the University of York's new computing system has been awarded to the Digital Equipment Company (DEC). DEC, who also supplied the University's existing system ten years ago, competed with five other companies for the contract.

A large number of computer terminals will be connected to the system of the York campus to serve more than 15,000 potential users ranging from academics, students to administrative staff. It is expected that running costs, including staffing, will amount to more than $£ \frac{1}{2}$ million a year.

British Telecom have announced a pre-tax profit of $£ 502$ million for the first quarter ended June 30, 1986. The profit represented an increase of 12 per cent over the corresponding period last year. Earnings per share at 5.1 pence were 21 per cent higher.

TRANSATLANTIC LINK

A British company is claiming a world first for providing a computer link to allow users on both sides of the Atlantic to chat to each other using their micros. Microlink are offering this facility via satellite to New York at, they claim, approximately half
the transatlantic phone charge.
The new service is the result of a deal struck with Mnematics of America. With the help of its new partner, Microlink has set up a gateway which enables the exchange of messages between micros in the US and the UK.

SHOP N: BY DAVID BARRINGTON

Count Down

Following on from the highly successful and popular design of a portable Geiger Counter published in the pages of EE (Aug '86). Becker-Phonosonics have just added a new ready-built version to their range of general purpose radiation monitors.
Designed specifically for non-professional users who are interested in locating radiation sources within the environment, the TZ-272 uses the same industry-standard Geiger-Muller detection tube and features an integral and extendable dualfunction probe for background and closequarter monitoring. The unit has a built-in loudspeaker, a rate detection meter and an output socket suitable for linking to a computer for count analysis.
The geiger tube is built into the unit and housed in a wide aperture primary mount containing an extendable tube. For normal radiation detection the unit is used with the tube retracted and protected by an end cap. For greater sensitivity the cap is removed and a secondary tube extracted and extended, allowing the tube to be placed closer to the source.
Powered by a 9 V battery, at less than 20 mA , or mains, via battery eliminator, the TZ-272 Geiger Counter weighs less than 1 Kg and cost $£ 89.32$, including VAT and UK delivery charges (Overseas charges extra). Payment is accepted by credit card, postal order, cheque or international bank draft.
For more details of the range of Geiger Counters, including a pocket version, send a 9 in. $\times 4$ in. stamped self-addressed envelope to Becker-Phonosonics, Dept EE, 8 Finucane Drive, Orpington, Kent, BR5 4ED. Tel 0689 37821. Overseas enquiries are welcome, but should include a payment of $£ 1$ (or five international reply coupons), to cover catalogue postage.

Catalogues Received

The 1987 edition of the Greenweld Components catalogue has just been released. It contains 80 pages of electronic components and equipment ranging from humble resistors to sophisticated oscilloscopes.
Also included are order forms, $£ 1.50$ redeemable discount vouchers and a special "Bargain List". The catalogue cost just £ 1 including post.
As an added incentive, there's the opportunity for every customer who spends £ 10 or over to enter a free monthly draw for a 3-day break at a hotel of their choice. Anyone spending over $£ 200$ automatically receives two vouchers for this same break.
Copies of the 1987 Greenweld Catalogue may be obtained from: Greenweld Electronics Ltd., Dept EE, 443 Millbrook Road, Southampton, SO1 OHX.

The latest edition of the Electrovalue Catalogue (Oct '86-Jan '87) contains 56 pages and is of a handy A5 "pocket" size. Nearly all the pages carry illustrations of the vast range of products stocked.
Although the catalogue may not contain as many pages as some others in the market place, Electrovalue have used their many years experience as component suppliers and crammed it full of items that the dedicated experimenter and constructor is likely to need. This includes a good range of transistors and integrated circuits. There is plenty of test equipment and tools to choose from.
They also specialise in stocking a large range of Siemens products, these include ferrite cores and capacitors. They are even in a position to obtain the more specialised items on a "small quantity" order basis.
Another item of interest was a listing of "Denco" products. These coils are often specified in radio projects and readers have, in the past, had difficulties in locating a local stockist for these items.
The catalogue is available FREE of charge from: Electrovalue Ltd., Dept EE, 28 St Judes Road, Englefield Green, Egham, Surrey, TW20 OHB. A $230 \mathrm{~mm} \times$ 160 mm approx. stamped self-addressed envelope would be appreciated.

CONSTRUCTIONAL PROJECTS

Dual Reading Thermometer

The ICL7 106, $3 \frac{1}{2}$ digit A to D converter chip used in the Dual Reading Thermometer is listed by Omega, Rapid and Electromail. The temperature sensor i.c.s type LM35DZ, stocked by most component suppliers, operate over a range of $2^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$. The range can be extended to $110^{\circ} \mathrm{C}$ by using the more expensive LM355XZ version.
It is unlikely that a suita $678^{\circ} 40$-pin socket for the display can be found, since it has 1.3 in . instead of the standard 0.6 in . row spacing. It is suggested that Soldercon pins be used, or possibly two 20-pin single-in-line (s.i.I.) sockets.

16K Sideways RAM

Readers may experience some difficulties in sourcing the Static RAM type 6264LP-15 used in the 16K Sideways RAM. These devices are carried by Magenta, Electromail, Cirkit and Rapid Electronics.

A complete kit, including the printed circuit board ($£ 13.35$ inclusive of VAT, p\&p), is available from Magenta Electronics, Dept EE, 135 Hunter Street, Burton-on-Trent, Staffs, DE14 2ST.

The Software Cassette ($£ 4.95$) and the printed circuit board may be purchased through our PCB Service-See page 682.

Automatic Car Alarm

The p.c.b. mounting relays called for in the Automatic Car Alarm must have contacts rated at 10 A and 2 A respectively. The ones used in our prototype model were purchased from Maplin, order codes YX97F and BK47B.

Other types of relay could be used but they may not fit on the p.c.b. However, the relay could be mounted to the side of the board and the coil contacts "hard wired" to the board. Remember that the switch contacts must be rated as above.
The Scotchlock connectors should be available from most car accessory shops.

Mini Active Speaker

The dual J-FET op-amp (TLO72) and the power amplifier (TDA2030) i.c.s. used in the Mini Active Speaker project are stocked by most component suppliers.
Suitable power amplifier p.c.b.s may be purchased from Electromail-code 434 576-68p each, plus VAT and a $£ 2$ carriage charge. If you ordered all the components this would make the $£ 2$ charge seem more reasonable. The loudspeakers are available from Wilmslow Audio, 35-39 Church St, Wilmslow, Cheshire SK9 1AS. Tel: 0625529599.

Intercom Amp/Simple Radio Receiver

This month's chapter of Exploring Electronics offers the choice of two "experimental" projects. All of the components for the Intercom Amp and the Simple Radio Receiver are standard off-the-shelf items and should not cause buying problems

For those readers who only wish to build these circuits on a breadboard basis, a suitable "test bed" would be the same circuit block used in our recent Teach In ' 86 series. These solderless circuit blocks are available separately and readers should look through the advertisements in this issue.
A suitable loudspeaker for these projects is currently being advertised by J \& N Bull Electrical under their " $£ 1$ Bakers Dozen Packs"-code 454 (2 speakers).

Eight-Channel ADC

Readers undertaking to build the circuit for the Eight-Channel ADC - see On Spec -should have no difficulties in sourcing components.
The high speed, 8 -bit 8 -channel ADC CMOS chip type 7581 is currently stocked by Electromail, Omega and Maplin. We would point out that this chip is not cheap (from $£ 15$ to $£ 20$) and care should be exercised when handling this device.

The books listed below have been

 selected as being of special interest to our readers, they are supplied from our editorial address direct to your door.
DATA AND REFERENCE

PRACTICAL ELECTRONICS

AND FORMULAE F.A. W.I.M.

Bridges the gap between complicated technical theory and "cut-and-tried" methods which may bring succes resical bile verious higher mathematics have practical bias where possible and many ables have been cluded. included.
The book is divided into six basic sections: Units and Constants, Direct-current Circuits, Passive Compoents, Alternating-current Circuits, Networks and Theoems, Measurements
256 pages Order Code BP53 2.95

ESSENTIAL TMEORY FOR THE

. T. Rubaroe, T.EnD (C.E.I.), Assoc,I.E.R.E
The object of this book is to supply the hobbyist with a background knowledge tailored to meet his or he pecific requirements and the author has brought to gether the relevant material and presented it in a
128 pages minimum recourse to mathematics. \quad Onder Code 228.50
MICROPROCESSING SYSTEMS AND CIRCUITS F. A. Wison, C.G.I.A., C.Eng., F.I.E.E., F.I.E.R.E. F.B.i.M.

A truly comprehensive guide to the elements of microprocessing systems which really starts at the beginning. Teaches the reader the essential fundamentals that are so important for a sound understanding of the subject.
256 pages
Order Code BP77

COMMUNICATION

.A. Wilson, C.G.I.A., C.Eng., F.I.E.E., F.I.E.R.E. .B.i.M.

A look at the electronic fundamentals over the whole of he communication scene. This book aims to teach the important elements of each branch of the subject in getting involved in the more complicated theory and mathematics, most of the modern transmission system echniques are examined including line, microwave submarine, satellite and digital multiplex systems, radio and telegraphy. To assist in understanding these more thoroughly, chapters on signal processing, the electro
magnetic wave, networks and transmissions assess ment are included, finally a short chapter on optica transmission.
256 pages
Order Code BP89
$£ 2.95$
AUDIO
F. A. Wilson, C.G.I.A., C.Eng., F.I.E.E., F.I.E.R.E., .B.I.M.

Analysis of the sound wave and an explanation of coustical quantities prepare the way. These are fol owed by a study of the mechanism of hearing and examination of the various sounds we hear. A look a oom acoustics with a subsequent chapter on micro phones and loudspeakers then sets the scene for the isc apter on audio systems alectronlc music | disc and magnetic recording and electronic music. | |
| :--- | :--- |
| 320 pages | Order Code Bp111 |
| | |

HOW TO IDENTIFY UNMARKED IC ${ }_{s}$

K. H. Recort

Shows the reader how, with just a test-meter, to go about recording the particular signature of an unmarked i.c. which should enable the i.c. to then be identified with eference to manufacturers or other data. An i.c signature is a specially plotted chart produced by mea $\begin{array}{ll}\text { suring the resistances between ali terminal pairs of an i.c } \\ \text { Chart } & \text { Order code BP101 } \\ \text { f0.95 }\end{array}$

RADIO AND ELECTRONIC COLOUR CODES AND

DATA CMART

Although this chart was first published in 1971 it provides basic information on many colour codes in us throughout the world, for most radio and electronic components. Includes resistors, capacitors, transfor mers, field coils, fuses, battery leads, speakers, eic. It is particularly useful for finding the values of old
components. Components. Order code BP7 £0.95 CHART OF RADIO, ELECTRONIC,

SEMICONDUCTOR AND LOGIC SYMBOLS

M. H. Bananl, B.Sc.(Eng.)

Illustrates the common, and many of the not-so-common, radio, electronic, semiconductor and logic symbols hat are used in books, magazines and instruction manuals, etc., in most countries throughout the world.
Chart
Order Code BP27
$\mathbf{Y O . 9 5}$

TRANSISTOR RADIO FAULT-FINDING CHART

 E. MillerUsed properly, should enable the reader to trace most common faulis reasonably quickly. Across the top of the chart will be found four rectangles containing brie description of these faults, vis-sound weak but undis torted, set dead, sound low or distorted and background and following selects the most approphe suggested checks in sequence until the fault is cleared.
Chart Order code BP70
£0.95

DIGITAL IC EQUIVALENTS

AND PIN CONNECTIONS
A. Michaels

Shows equlvalents and pin connections of a popular selection of European, American and Japanese digital i.c.s. Also includes details of packaging, families, functions, manufacturer and country of origin
£4.95

LINEAR IC EQUIVALENTS
 AND PIN CONNECTIONS

A. Michaels

Shows equivalents and pin connections of a popular selection of European, American and Japanese linear i.c.s. Also includes details of functions, manufacturer and country of origin.
320 pages
Order code BP141
£4.95

INTERNATIONAL TRANSISTOR
caUIVALENTS GUIO
A. Michaols

Helps the reader to find possible substitutes for a popular selection of European, American and Japanese transis tors. Also shows material type, polarity, manufacture and use.

Order code BP85
£2.95
INTERNATIONAL DIODE
EQUIVALENTS GUIDE
A. Michaels

Designed to help the user in finding possible substitutes for a large selection of the many different types of diodes that are available. Besides simple rectifier diodes, als included are Zener diodes, l.e.d.s, diacs, triacs, thyris tors, OCls, photo and display diodes.
144 pages \quad Order code BP108 2.25

CIRCUITS AND DESIGN

ELECTRONICS SIMPLIFIED

CAYSTAL SET CONSTRUCTION
F. A. Wilson, C.C.I.A., C.Eng., F.I.E.E., F.I.E.R.E. F.B.i.t.

Especially writen for those who wish to participate in the intricacies of electronics more through practical con truction than by theoretical study. It is designed for a ages upwards from the day
80 pages
Order Code BP92
£1.75

50 CIRCUITS USING GERMANIUM
 SILICON AND ZENER DIODES

R. N. Soar

Contains 50 interesting and useful circuits and applica ons, covering many different branches of electronics sing one of the most simple and inexpensive of and silicon signal diodes, sllicon rectifier diodes and Zener diodes, atc.
64 pages
Order Code BP36
£1.50

0 SIA却PLE LED CIRCUITS

R. N, Soar interesting and useful circuits and applica tions, covering many different branches of electronics using one of the most inexpensive and freely available components-the light-emitting diode (LED). Also in$\begin{array}{ll}\text { cludes circuits for the } 707 \text { common anode display } \\ 64 \text { pages } & \text { Order Code BP42 }\end{array}$

[^0]MICRO INTERFACING CIRCUITS-BOOK
MICRO INTERFACING CIRCUITS-BOOK 2

R. A. Penfold

Both books include practical circuits together with detalls of the circuit operation and useful background informa tion. Any special constructional points are covered bu p.c.b. layouts and other detailed constructional inform Book 1 is mainly.
Book 1 is mainly concemed with getting signals in and $\begin{array}{llll}\text { Book } 1112 \text { pages } & \text { Order code BP130 } & \text { E2.25 } \\ \text { Book } 2112 \text { pages } & \text { Order code BP131 } & \mathbf{2} .25\end{array}$

A MICROPROCESSOR PRIMER
Starts by designing a small computer which, because of is simplicity and logical structure, enables the language o be easily learnt and understood. The shortcomings are then discussed and the reader is shown how these can be overcorme by changes and additions to the instruction set. In this way, such ideas as relative addressing, inde registers, etc., are developed
96 pages Order code BP72
$£ 1.75$

A PRACTICAL INTRODUCTION TO
 MICROPROCESSORS

Provides an introduction which includes a very simple microprocessor circuit which can be constructed so that $\begin{array}{ll}\text { the reader can experiment and gain practical experience } \\ 96 \text { pages } & \text { Order code BP123 }\end{array}$

HOW TO USE OP-AMPS

This' book has been written as a designer's guid covering many operational amplifiers, serving both as a source book of circuits and a reference book for design calculations. The approach has been made as nonmathematical as possible
160 pages Order code BP88 £2.95

PRACTICAL ELECTRONIC
BUILDING BLOCKS-BOOK
PRACTICAL ELECTRONIC
BUILDING BLOCKS-BOOK 2

R. A. Penfold

These books are designed to aid electronic enthusiast who like to experiment with circuits and produce the own projects, rather than simply following published project designs
squarewave sawtains: Oscillators-sinewave, triangular squarewave, sawtooth, and pulse waveform generators stable circuits using i.c.s, the 555 and 7555 devices, etc Miscellaneous-noise generators, rectifiers, compara ors and triggers, etc.
BOOK 2 contains: Amplifiers-low level discrete and op-amp circuits, voltage and buffer amplifiers including d.c. types. Also low-noise audio and voltage controlled ampliers. Filers-high-pass, low-pass,. 6,12 , and 240 per octave types. Miscellaneous-l.c. power amplifiers, moors, 128 pages Order code BP BOOK 2 112 pages Order code BP118 £1.95

HOW TO DESIGN ELECTRONIC

PROJECTS

The aim of this book is to help the reader to put together projects from standard circuit blocks with a minimum of rial and error, but without resorting to any advanced mathematics. Hints on designing circuit blocks to mee your special requirements are also provided.
128 pages \quad Order code BP127

POPULAR ELECTRONIC CIRCUITS
-BOOK 1
POPULAR ELECTRONIC CIRCUITS
BOOK 2
. A. Penfold
Each book provides a wide range of designs for elec tronic enthusiasts who are capable of producing working detailed construction information. Any special setting-up procedures are described.
sook 1 Temporarily out of print
BOOK2 160 pages Order code BP98 £2.25

GETTING THE MOST FROM YOUR PRINTER

J. W. Penfold

Details how to use all the features provided on most dotmatrix printers from programs and popular word processor packages like wordwise, Visawrite and Quil, etc. effect 96 page

Order Code BP181
£2.95

A 280 WORKSHOP MANUAL

This book is intended for people who wish to progress beyond the stage of BASIC programming to topics such as machine code and assembly language programming. or need hardware details of a Z80 based computer.
192 pages Order Code BP112
E3.50

AN INTRODUCTION TO 68000 ASSEMBLV

LANGUAGE

R. A. \& J. W. Penfold

Obtain a vast increase in running speed by writing programs for 68000 based micros such as the Cornmodore Amiga, Atari ST range or Apple Macintosh range etc., in assembly language. It is not as difficult as one might think and this book covers the fundamentals.
$1 / 2$ pages
Order Code BP184

THE ART OF PROGRAMMING THE ZX

SPECTRUM

M. James, B.Sc., M.B.C.S.

It is one thing to have learnt how to use all the Spectrum's commands and functions, but a very different one to be able to combine them into programs that do exactly what you want them to. This is just what this book is all about-teaching you the art of effective programming with your Spectrum
144 pages Order code BP119
E2.50

AN INTRODUCTION TO PROGRAMMING THE

COMMODORE 18 \& PLUS 4

R. A. Penfole

Helps you to learn to use and program these two Commodora machines with the minimum of dificulty by expanding and complementing the information supplied
in the manufacturer's own manuals.
128 pages
Order code BP158
$£ 2.50$

AN INTRODUCTION TO PROGRAMMING THE

 BBC MODEL B MICROWritten for readers wanting to learn more about programming and how to make best use of the incredibly powerful model B's versatile features. Most aspects of the BBC micro are covered, the omissions being where little could usefully be added to the information provided by the manufacturer's own manual.
144 pages
Order code BP139
$£ 1.95$

AN INTRODUCTION TO PROGRAMMINE THE ACORN ELECTRON
R. A. 8 J . W. Penfold

Designed to help the reader learn more about program ming and to make best use of the Electron's many reatures. Adds considerably to the information already 144 pages Order code BP142 $£ 1.95$

AN INTRODUCTION

ATARI 600/800 XL

Especially written to supplement the manufacturer's own handbook. The information supplied will help the reader to master BASIC programming and to make best use of the Atari's many powerful features.
128 pages Order code BP143 £1.95

AN INTRODUCTION TO PROGRAMMING THE

 AMSTRAD CPC 464 AND 664
R. A. \& W. W. Penfold

The Amstrad CPC 464 or 664 running with Locomotive BASIC makes an extremely potent and versatile machine and this book is designed to help the reader get the mos from this powerful combination. Written to complemen manufacturer's own manual. Also applicable to the CPC 6128 (144 pages Order Code BP153 £2.50

AN INTRODUCTION TO PROGRAMMINE THE

SINCLAIR OL

R. A. \& J. W. Penfold

Helps the reader to make best use of the fantastic Sinclair OL's almost unlimited range of features. Designed to complement the manufacturer's handbook. £1.95
112 pages
Order code BP150

AN INTRODUCTION TO 280 MACHINE CODE

R. A. 8 J. W. Penfold

Takes the reader through the basics of microprocessors and machine code programming with no previous know ledge of these being assumed. The 280 is used in many popular home computers and simple programming ex amples are given for 280 -based machines including the Sinclair $2 X-81$ and Spectrum, Memotech and the Am strad CPC 464. Also applicable to the Amstrad CPC 664 144 pages Order code BP152 £2.75

AN INTRODUCTION TO 6502 MACHINE CODE

R. A. 8 J J. W. Penfold

No previous knowledge of microprocessors or machine code is assumed. Toplcs covered are: assembly lan guage and assemblers, the register set and memory binary and hexadecimal numbering, systems, addressing modes and the instructlon set, and also mixing machine code with BASIC. Some simple programming examples are given for 6502-based home computers like the VIC 20. ORIC-1/Atmos, Electron, BCC and also the Commo

112 pages
Order code BP147 £2.50

THE PRE-BASIC BOOK
F. A. Wilson, C.G.I.A., C.ENG., F.I.E.E., F.I.E.R.E. F.B.I.M.

Another book on BASIC but with a difference. This one does not skip through the whole of the subject and thereby leave many would-be programmers flounderin but instead concentrates on introducing the technique b ooking in depth at the most frequently used and mor asily understood computer instructions. For all new and 192 pages Order code BP146
$£ 2.95$

HOWTO

J. W. Penfold

Have you ever written your own programs only to find that they did not workl Help is now at hand with this book which shows you how to go about looking for your arrors, and helps you to avoid the common bugs and pitfalls of program writing. Applicable to all dialects of the BASIC language
44 pages Order code BP169
£2.50

AN INTRODUCTION TO COMPUTER

COMMUNICATIONS
R. A. Penfold

Provides details of the various types of modem and their suitability for specific applications, plus details of con-
necting various computers to modems, and modems to the telephone system. Also information on common $\begin{array}{ll}\text { networking systerns and RTTY. } \\ \text { Order code BP177 } \\ \text { Oages } & 2.95\end{array}$

AN INTRODUCTION TO
COMPUTER PERIPHERALS
J. W. Ponfold

Covers such items as monitors, printers, disc drives, cassette recorders, modems, etc., explaining what they are, how to use them and the various types and standards. Helps you to make sure that the peripherals you buy will work with your computer.
80 pages
Order code BP170
£2.50

COMPUTER TERMINOLOGY EXPLAINED
 I. D. Poole

Explains a wide range of terms that form the computer jargon used by enthusiasts. Includes a reference, guide to the more commonly used BASIC commands.
96 pages Order code BP148 £1.95

THE PRE-COMPUTER BOOK

F. A. Wilson

Aimed at the absolute beginner with no knowledge of computing. An entirely non-technical discussion of com 96 pages and pieces and programming
$£ 1.95$

PROJECT CONSTRUCTION

HOW TO GET YOUR

ELECTRONIC PROJECTS WORKING

R. A. Penfold

We have all built projects only to find that they did not work correctly, or at all, when first switched on. The aim of this book is to help the reader overcorne just these problems by indicating how and where to start looking
for many of the common faults that can occur when
building up projects.
96 pages
Order code BP110 1.95
HOW TO DESIGN AND MAKE
YOUR OWN P.C.B.s
A. A. Penfold

Deals with the simple methods of copying printed circuit
board designs from magazines and books and covers all aspects of simple p.c.b. construction including photographic methods and designing your own p.c.b.s.
80 pages
Order code BP121

BEGINNER'S GUIDE TO BUILDING

ELECTRONIC PROJECTS

R.A. Penfold

Shows the complete beginner how to tackle the practica side of electronics, so that he or she can confidently build the electronic projects that are regularly featured in magazines and books. Also includes examples in the form of simple projects
112 pages Order code No. 227
$£ 1.95$

RADIO

AN INTRODUCTION TO RADIO DXING
 \section*{R. A. Penfold}

Anyone can switch on a short wave receiver and play with the controls untll they plck up something, but to find a particular station, country or type of broadcast and to receive it as clearly as possible requires a little more skill and knowledge. The object of this book is to help the reader to do just that, which in essence is the fascinating hobby of radio DXing. 112 pages Order code BP91
£1.95

INTERNATIONAL RADIO STATIONS

GUIDE

Completely revised and updated, 'this book 7 's thin finvaluable aid in helping all those who have a radio receiver to obtain the maximum entertainment value and enjoyment from their sets
wn are the station site, country, frequency and/or wavelength, as well as the effective radiation
128 pages Order code BP155 £2.95

TO ORDER

Please check the latest issue for price and availability.

Add 50p per order postage (overseas readers add $£ 1$, surface mail postage) and send a PO, cheque or international money order (£ sterling only) made payable to Everyday Electronics (quoting the order code and quantities required) to EE BOOK SERVICE, 6 CHURCH STREET, WIMBORNE, DORSET. BH21 1JH.

Although books are normally sent within seven days of receipt of your order .please allow a maximum of 28 days for delivery. Overseas readers allow extra for surface mail

IGK SIDEWAYS RAM TIM PARKER

A cheaper alternative to buying a complete sideways RAM board

There are many different sideways RAM boards on offer to the BBC micro user nowadays. However, these tend to be a little expensive if all you require is 16 K of RAM to develop sideways ROM software ready for transferring to EPROM. The design presented here is a reasonably small unit which plugs directly into one of the spare ROM sockets inside of the BBC computer and allows up to 16 K of software to be developed in RAM before "blowing" it into an EPROM. This method eliminates the need to keep erasing EPROMs if the software does not function as it should (and it usually doesn't!) the first time.
Ease of construction and installation were considered important factors in the design of the module, which is evident from there only being one external connection to be made to the computer. Cost was also considered important and this is kept low by using readily available components. Only three chips are required and two of these are the RAM devices themselves. The third chip is a standard LS TTL device which is needed to ensure that the correct RAM chip is accessed at the appropriate time.

CIRCUIT DESCRIPTION

The complete circuit diagram is shown in Fig. 1. Do not be misled by its simplicity, this really is all that is needed. Two 62648 K by eight bit RAM chips are used connected in parallel to give 16 K by eight bit confi-. gured as 8 K lower and 8 K upper RAM. The only other chip is a 74LS14 hex Schmitt inverter and is used to enable either the lower 8 K or the upper 8 K accordingly.

Pin 20 of the 6264 RAM chip is the CS (Chip Select) line as found on most other memory devices. This pin must be taken to a logic 0 (low) in order for the chip to be active. In addition the 6264 also has a CS line (pin 26) which must be taken to a logic 1 (high) for the chip to become active. Both of these pins must have the appropriate logic on them at the same time in order for the chip to operate and this feature is made use of in this application.

ICl and IC 2 are 8 K devices so only one can be active at any time. This function is performed by IC3. When memory from

Fig. 1. Circuit diagram of the 16 K Sideways RAM.
\&8000 to \&9FFF is being accessed the computer address line Al3 is low. This is inverted by IC3 and applied to pin 26 of IC2 thus enabling the chip and giving us the lower 8 K area. In other words, IC2 resides in memory from \& 8000 to \&9FFF.

When memory is accessed from \& A 000
to \& BFFF the computer address line A 13 goes high and enables IC1. Once again IC3 inverts A13 and pulls pin 26 of IC2 low, thus disabling it. This now means that ICl operates as the upper 8 K of RAM and

Fig. 2. P.C.B. layout and wiring for the sideways RAM.
occupies memory from \& A000 to \&BFFF, which incidentally is the highest allowable memory location for any sideways ROM or RAM.
There is one minor problem with plugging RAM into a sideways ROM socket inside the BBC micro, and that is the provision of a write strobe in order to program it. This pulse is not connected to the ROM sockets and we must obtain one from elsewhere in the computer. Unfortunately there is a flaw if it is taken directly from the CPU. The problem is that the R / \bar{W} (Read/Write) signal is still valid when the data bus has changed, which leads to spurious and unpredictable results. Fortunately we can obtain a R / \bar{W} pulse from another chip inside the computer which has the advantage of being gated with the 2 MHz processor clock and gives us the correctly timed write pulse we require.

Having obtained the write line we must connect it to the WE (Write Enable) pin of the two RAM chips. This is done via switch Sl which acts as a simple write protect switch. When the switch is closed it applies the $\mathrm{R} / \overline{\mathrm{W}}$ strobe to pin 27 of ICI and IC2 thus enabling them to be written to. When the switch is open, the R / W strobe is disconnected and resistor RI holds pin 27 of the two ICs high preventing accidental (or intentional!) writing to the RAM.

CONSTRUCTION

The design is built on a single sided printed circuit board the layout of which is shown in Fig. 2. Begin by soldering in the two wire links followed by R1 and IC3. It is recommended that i.c. sockets are used for the two RAM chips and these should be soldered to the board next. This requires some careful soldering as there is very little space between the i.c. pads and the tracks running in between them.

A good quality 28 -pin turned pin i.c. socket is required for insertion into the ROM socket. Normal long pin wire wrap sockets have rather thick pins and these
tend to splay out the ROM sockets in the computer. This leads to unreliable connections to the ROMs if one is inserted into a socket which has had a wire wrap socket forced into it then later removed. A possible cheap alternative is to use a 0.1 inch 23-way edge connector (the type used for ZX-81 peripherals) cut to a lower profile. This is then cut down to 28 way and in half along its length. These two halves are then soldered in place of the 28 pin socket.

Although the p.c.b. is designed to have a small low profile slide switch mounted on board to perform the write protect function, there is no reason why two lengths of insulated wire cannot be soldered to the board and the switch mounted in a more convenient place. If this method is used it must be remembered that it is the computers internal R / \bar{W} signal on these wires and if they are too long it is possible to pick up other stray pulses from inside of the computer which could lead to data corruption in the system, and not necessarily just in the sideways RAM. Finally, solder about 300 mm of single stranded insulated wire to the board as shown in the layout.

INSTALLATION

Before plugging the board into the computer give it a thorough check for any solder bridges that may have occurred during construction, especially between the i.c. pads where space is minimal. Once you are satisfied everything is all right it can be fitted inside the computer as follows.

Switch off the BBC micro and remove the top half of the casing. This is done by removing the two screws found on the outer edges of the back of the case (on some older models these are marked "FIX") and the two larger headed ones underneath the keyboard at the front of the case, the top half of the case can now be lifted clear of the bottom. Next, remove the two screws securing the keyboard in place, lift the keyboard slightly and gently pull it towards the front of the case. There is no need to remove the

Resistor R1

10k $\frac{1}{4}$ Watt Resistor

Semiconductors

IC1,IC2 HM6264LP-15 8K static RAM (2 off)
IC3 74LS14 hex Schmitt inverter
Miscellaneous
S1 p.c.b. mounting slide switch
28 pin i.c. sockets (2 off); 28 pin turned pin i.c. socket (see text); printed circuit board and software cassette, available from the $E E$ PCB Service, Order Code EE55 1 ; 300 mm of single stranded insulated wire
connector between the keyboard and the main board as there is enough room available for what we want to do.

The following information refers to a BBC micro with no extra ROMs except perhaps for a DFS ROM, if this is the case there will only be two spare ROM sockets instead of the usual three found on tape based machines.

At the bottom right hand side of the main board are the ROM sockets. Actually only four of the five sockets are for sideways ROMs, the one on the far left is the Operating System and must not be moved. The socket we require is the one on the far right and there are two main reason for this. Firstly, this is the highest priority ROM socket which means if a language ROM is present here it will have the first chance to initialise itself on power-up or when BREAK/CTRL-BREAK are pressed. If ROM priority is not important the unit can be installed in any of the other available spare sockets. Secondly, the size of the RAM module is such that it will sit comfortably over the top of the rest of the ROMs without over-hanging the left hand side. If this socket is occupied it is a simple matter of carefully "shuffling" all of them to the left by one socket.

The module can now be plugged into the vacant socket. It may be a tight fit (especially if the socket was already empty) but should go in if it is rocked slightly to and fro. The flying lead for the R / W signal can now be connected. Remove about 5 mm of insulation from the end of it and push in into pin 10 of the 8271 disc controller chip, this is the large (40 pin) i.c. located three chips in from the left hand side of the main p.c.b. about half way down the board. If you do not have this chip fitted it is simply a matter of pushing the lead into pin 10 of the i.c. socket. If the 8271 is in place, push the wire in between the pin and the socket.

Once the module is in place it is necessary to slide a small piece of cardboard or other insulating material underneath the board between the RAM module and the ROMs,

warning! do not switch the computer on until this is done. There are three diodes directly above the operating system ROM which have the computers 0 V rail connected to them and since the track at the top of the RAM board is connected to the +5 V rail,
the BBCs power supply unit will be short circuited if the power is applied without the insulation in place. Replace the keyboard on its locating lugs but do not secure it in place yet. Switch on the micro and if all's well the usual start-up message should
appear, if not switch off immediately, remove the board and re-check the soldering, also check orientation of the components. If the start-up prompt does appear, the keyboard and casing can be reassembled. All that remains now is to program the RAM with the machine code routines you require.

SOFTWARE

As the board is designed to be built and installed by the novice, it is not possible to *LOAD code directly into the RAM or write machine code programs that will assemble the code into the RAM area. The ability to do this would involve too much "fiddling about" inside the computer for the inexperienced. Space does not permit the software listing to be published here. However a cassette containing software which enables code that is assembled into the computers main memory to be written into the sideways RAM with relative ease is available through the EE PCB Service, see page 682. The software is self documented with instructions on how to use it and includes a few utilities to help get you started.

FRFt! Refdeffr bulf sill spot E MARKEP PLACE

Oscilloscope; 10 MHz , single beam, very little use. Perfect condition. $£ 65$. Tel: 01 9800837.

Wanted: Solartron A 100 oscilloscope. Spares A101 Y amp. A111 timebase, A112 timebase, and PSU and EHT modules considered. Mr. R. Neale, 2 Salmond Avenue, Beaconside, Stafford ST 16 3QP. Everyday Electronics: Feb. ' 75 to Oct. 84. P.W. Nov. '74 to June '81. P.E. Nov. '74 and June '81. H.E. Nov. ' 78 to March '80. Offers please. A. R. Miller, 34 Fangrove Park, Lyne Lane, Chertsey, Surrey KT16 OBN. Tel: Ottershaw 4281
Resistors: 50 for 30p. P \& P 10p. Unused mainly, with good lead length. Mixed wattage. Adrian Thake, 35 Hillsway, Chellaston, Derby DE7 1RN.
Sinclair ZX81; with 16K RAM, ZX81 printer. Also books on Basic $£ 40$ o.n.o. G. Chürcher, 15 Rosemary Hill Road, Streetly, West Midlands B74 4HL
Wanted: Quarter inch 8-track tape heads (record/play + erase) or two sets of 4track cassette heads. S. Powell, Fircroft, Feniton, Honiton, Devon EX 14 ODE.

Wanted: information how to program Kay DRM-1 Memory Rhythm Machine Reasonable for disabled OAP Home use. Mr. W. E. Turner, 5 Alexandra St., Thorne, Doncaster, S. Yorks DN8 4EE.
Wanted: Mushroom user/printer port for Acorn Electron operating data. Costs paid Contact: Jones, Tel: 076740220.
SX200N scanning RX plus antenna/MPU £200. ARA30 active antenna £80. Datong AD370 active antenna $£ 50$. Mr. N. Porter, 23 Calder Court, Britannia Road, Surbiton, Surrey KT5 8TS. Tel: 01-390 2650.
ZX/Spec sound board, with details, 55 . Speech board 55 . Keyboard with 74 Hall effect keys $£ 10$. Ben. Tel: 021-525 9772 . Bargain bag! 100 s of de-soldered items incl. 8 digit display $£ 2.50$. Phone Norwich 868975 after 4 p.m.
Swap: Prestel Ace Telecom data decoder (working) for oscilloscope suitable for beginner. Steven Stanley, 28 Cissbury Road, Hove, Sussex BN3 6EN. Tel: 731845
Creed 444 Teleprinter f25. Want $154 \dagger$ Commodore 64 disc drive. Phone Tony. 0375378783 (Grays, Essex)

> RULES Maximum of 16 words plus address and/or phone no. Private advertisers only (trade or business ads. can be placed in our classified columns). Items related to electronics only. No computer software. EE cannot accept responsibility for the accuracy of ads. or for any transaction arising between readers as a result of a free ad. We reserve the right to refuse advertisements. Each ad. must be accompanied by a cut-out valid "date corner". Ads. will not appear (or be returned) if these rules are broken.

Loads of components, i.c.s, caps, resistors, etc. $£ 5$ only inc. p\&p. Mr. J. A Caldwell, 31 Neston Green, Great Sutton, South Wirral L66 3NY. Tel: 051-339 7506.

150W switchmode PSU, +5V @ 13A. +12 V @ $1 \mathrm{~A},+12 \mathrm{~V}$ @ $1.5 \mathrm{~A},+24 \mathrm{~V}$ @ $1.7 \mathrm{~A},-12 \mathrm{~V}$ @ 0.2A. Perfect working order £29. Tel: 024559027 after 6.00 p.m.

300 P.W., P.T. magazines 1946-1966. Fair condition. Hence $£ 10$. Buyer collects--London. Tel: 01-359 2313.
Wanted: Circuit diagram or photocopy for Scopex 14D-10 scope. A. P. Gauci, 1a Brantwood Close, The Drive, Walthamstow, London E17 3DY.
Wanted: November 1984 Electronics Monthly. Good price paid. N. J. Sutcliffe, 63 Manor Road North, Hinchley Wood, Esher, Surrey KT10 OAB. Tel: 01-398 1233.

Tandy: 8 MHz single beam oscilloscope, with leads, $£ 60$ o.n.o. 43 St. Pauls Road, Stockingford, Nuneaton CV 108 HW .

Please read the RULES then write your advertisement hereone word to each box. Add your name, address and/or phone no.
Please publish the following small ad. FREE in the next available issue. I am not a dealer in electronics or associated equipment. I have read the rules. I enclose a cut-out valid date corner.

Signature
 Date
 COUPON VALID FOR POSTING BEFORE 19 DECEMBER,
 1986 (One month later for overseas readers.)

SEND TO: EE MARKET PLACE, EVERYDAY ELECTRONICS, 6 CHURCH STREET, WIMBORNE, DORSET BH2 1 1JH.

[^1]
RANTOMA RIGHT UNITT

A lighting effects unit for discos and parties. This device can control nearly 2 kW of lighting arranged in four channels with automatic or manual control of the speed changes.

With the use of a home computer it is not necessary to be able to read Morse code to decode it. This unit interfaces a radio to a home computer and allows Morse transmissions to be automatically decoded.

MAMDS O = = ME = COM

Easy to build, easy to install, easy to use. This two way intercom provides good speech quality at reasonable cost.

Special Feature...

 BUILDING UITH VERO

UNDOUBTEDLY one factor which tends to put off newcomers to the hobby from actually building a project is the doubt in their minds as to whether they can successfully complete it. Probably most people who take an interest in electronics eventually take the plunge and give it a try, and immediately run up against the problem of obtaining the components, or perhaps more to the point, obtaining the right components. Things were much easier about twenty years or more ago when there were relatively few components to choose from, and most electronic projects were based on just a few of the more popular types. I suppose that even today a study of a few circuit diagrams in this magazine would reveal that most of the projects were based on a relatively smal number of components, with certain integrated circuits and resistor values cropping up time and time again. On the other hand, in practically every project there is one or more unusual component, and it is this factor that partially accounts for the steady increase in the number of different components that are available. The other is the large number of variations on components of a different type, with numerous almost identical transistors, capacitors of various styles, resistors of different power ratings, tolerance and composition, and so on.

WHERE TO BUY

Electronic component shops are not exactly found on every high street in the country, and even if you do have a local alectronics shop (even a large one) it is unlikely to be able to provide all your component needs. Electronics construc tion is very much a mail order hobby, and without a selection of component catalogues you are likely to find it tough going to obtain the components for anything but the most simple and mundane of projects

A selection of catalogues is likely to cost several pounds, which may seem like a lot of money, but with the three or four of the biggest catalogues you will have a total of well over a thousand pages. It is tempting to simply buy one of the larger catalogues in the hope that this will list every component that you will require. The range of available components is so wide these days that this is unlikely to be the case, and there are big gaps in the ranges of virtually every supplier. For example, several of the larger catalogues list very little in the way of inductors, coils, and transformers, whereas other suppliers specialise in these and offer a wide selection of them

By taking a few hours to carefully look through some electronics catalogues you can certainly learn a great deal about the practical side of electronics. Most of the larger catalogues are well illustrated, and will help to familiarise you with what the various components look like. There have been few electronic catalogues produced which do not more than justify the asking price, and in some cases there are dis-
count vouchers which can be used to recover some or all of the cost when ordering components.
It is worth studying the catalogues to build up a good knowledge of what components are available from each supplier. This can save a lot of time when searching through the catalogues to find your requirements. Perhaps one day there will be a computerised and continuously updated components directory to make things easy, but in the meantime components have to be tracked down the hard way. There is often some help, with sources for unusual components being provided in the book or magazine concerned (Shop Talk in this magazine being a good example). At one stage the response to the "See Shop Talk" note which accompanies each components list was so underwhelming that they were all printed up-side-down to make them more noticeable. You can save a lot of wasted time and effort by reading the relevant section of Shop Talk, and any component which is not mentioned there should be readily available from a number of sources

An important function of catalogues is to provide data on the components that are being sold. Some catalogues include data such as transistor and integrated circuit leadout data, and this can be extremely useful. If a piece of vital constructional information is missing from a book or magazine article the catalogue from which the component in question was bought will often provide the missing information.

Component catalogues generally have information on the physical characteristics of the components, and this can be an important factor to take into account Generally speaking, the physical shape and size of a component is of secondary importance, and provided it has the right electrical characteristics it will work. Being more practical and less theoretical about things, most projects are currently constructed on custom printed circuit boards and components must be of the right physical type if they are to fit onto the board correctly

The variations that occur in components of the same electrical specification are quite surprising, and I have, for example, had $1 \mu 63 \mathrm{~V}$ electrolytic capacitors in a range of sizes from about 5 by 2 millimetres to about 15 by 12 millimetres. Some variation in size is usually quite tolerable, and there is not normally any difficulty in using a component that is smaller than the one for which the board is designed. Using much larger components is more, difficult, especially if there are a numbeo of them to: fit onto the board Provided, you buy good components from a reputable retailer you should always be supplied with good quality components of modern manufacture. Although at one time there were a lot of problems with old or poor quality components (or even total duds) being marketed as new and guaran-
teed, in recent times I have purchased components from a number of mail order retailers, and they have all been of excellent quality

There are many inexpensive packs of components available, and in many ways these are very good and represent excellent value for money. They are probably better suited to experienced constructors who are able to sort out the good from the bad and indifferent, than to a beginner who could have problems with many of the components. The components in these bargain packs are sometimes fairly old, and consequently quite large by current standards. These are often perfectly usable, and are a useful source of cheap components for the experimenter, but there could be difficulty in trying to fit them into a modern design.

CAPACITORS

Capacitors come in a variety of types, as far as electrical characteristics are concerned there are two basic types-polarised and non-polarised. When it comes to construction the difference is that the polarised capacitors have to be fitted the right way round, whereas the non-polarsed capacitors can be fitted either way round. By far the most common type of polarised capacitor is the electrolytic type, and these usually have the two leadout wires clearly identified by " + " and " - " signs on the body of the component. The constructional diagrams should similarly identify the two leadout wires, or at least identify the appropriate lead with a " + " sign

With axial style electrolytics there is usually an indentation towards one end of the component's body, as in Fig. 1(a), and this indicates the positive ("+") terminal The other style of electrolytic is the radial or PC (printed circuit) type, as shown in Fig. 1 (b).

Fig. 1b. The radial or PC (printed circuit) type of electrolytic capacitor.

The axial type are intended for horizontal mounting, whereas the radial type are designed for vertical mounting. It is not difficult to fit a printed circuit type where the board is designed to take an axial component, provided the component has reasonably long leads. However, the component will protrude far further above the board than an axial type would \bar{r} and in some instances this could make it difficult to fit the finished board inside the case unless it is possible to manoeuvre the component so that it lies flat against the board.

It is generally quite easy to mount an axial capacitor vertically, but it might be
 place of an axial one.

COLOUR	BAND 1	BAND 2	SPOT	BAND 3
BLACK	-	0	$\times 1$	10 V
BROWN	1	1	$\times 10$	-
RED	2	2	$\times 100$	-
ORANGE	3	3	-	-
YELLOW	4	4	-	6.3 V
GREEN	5	5	-	16 V
BLUE	6	6	-	20 V
VIOLET	7	7	-	-
GREY	8	8	$\times 0.01$	25 V
WHITE	9	9	$\times 0.1$	3 V
PINK	-	-	-	35 V

necessary to do some forming of the leadout wires, as in Fig. 2, so that the component is kept within its allotted area of the board. It is advisable to fit the longer leadout wire with a piece of p.v.c. sleeving to minimise the risk of accidental short circuits. This method of mounting is physically less strong than using the right type of component, and I would strongly recommend the use of modern miniature electrolytics of the appropriate type wherever possible. Many modern printed circuit designs have very compact component layouts, and trying to use unsuitable components, apart from giving a rather messy looking finished article, will also give poor reliability.

TANTALUM CAPACITORS

There is actually a type of electrolytic oapacitor which is non-polarised, but these are something of a rarity, and you are unlikely to ever use one in a project. Obviously they can be connected either way round, and represent no difficulty from the constructional point of view.

You are much more likely to encounter tantalum capacitors, or "tantalum beads" as they are often called, due to their very rounded bead-like shape. These are polarised capacitors which are used where the performance of electrolytic types is inadequate. Electrolytic capacitors generally have very high tolerances, poor temperature stability, large physical size, and quite high leakage levels. In most of their normal applications this does not matter, but some critical applications require superior performance in one or more of these departments, and a tantalum capacitor is then the normal choice. In fact there are now superior grade miniature electrolytics which can be used where ordinary electrolytics are inadequate, but where a tantalum type is specified for a project I would not recommend the use of any form of electrolytic component.

All the tantalum capacitors I have obtained recently have had their value and polarity marked on them in the usual way, but in the past it was common for a system of colour coding to be used. There are
almost certainly still components of this type in circulation, and you may well encounter some of them. Fig. 3 helps to explain this system of colour coding.
This is very similar to the system of resistor colour coding, with the first two bands indicating the first two digits of the value, and the third colour indicating a multiplier. However, note that the third colour in the code is the spot, and not the third coloured band. The latter indicates the maximum operating voltage for the component. Unlike resistor colour coding, this system does not show the tolerance of the component. Note that a secondary role of the coloured spot is to indicate the polarity of the component the " + " lead is the one on the right when looking at the side of the component which carries the spot). Details of the tantalum colour coding system are given in the table shown above.

As an example, the colour coding yellow (4), violet (7), white ($\times 0,1$), grey (25 V). would be a $4 \mu 7(47 \times 0.1=4.7) 25$ volt component.

It would be reasonable to ask what happens if a polarised capacitor is connected the wrong way round? In the case of tantalum types, they are easily damaged by reverse voltages and the destruction of the component would be quite likely. Electrolytics are generally somewhat tougher, and in a circuit where the d.c. voltage across the component is very low the component might work perfectly well. It would be likely to have a high leakage current though, which would be reflected in the performance of the circuit. At worst, where a large smoothing capacitor in a power supply is fitted the wrong way round, there is a strong possibility of the component getting seriously overheated 3 or even explodingl So make sure you observe polarity markings when fitting components.

THIs month (and in the hope of giving you a brief respite from the Christmas festivities!) we shall be describing the construction of an eight-channel analogue to digital converter. Before we get started, however, there is just time to wish you all a very happy Christmas and take a look at the last of three BASIC interpreters for the Spectrum in the form of LASER BASIC.

LASER BASIC

LASER BASIC was written by Kevin Hambleton, published by Oasis Software, and marketed by Ocean as part of their "i.q." range of "Interactive Software". LASER BASIC promises to provide the "secret of advanced games program-ming"-a somewhat rash claim but one which is not altogether unfounded, as we shall see!

The neatly presented package comprises two cassette tapes together with a comprehensive manual. Loading takes some considerable time (largely attributable to a lengthy BASIC loader which provides several options, including saving to microdrive). Once loaded, one is somewhat disappointingly presented with the familiar Sinclair screen complete with flashing keyword cursor.
It is important to stress at the outset that LASER BASIC is primarily concerned with sprite graphics and thus differs substantially from the other two enhanced BASIC interpreters previously reviewed in this column. Futhermore, LASER BASIC does not produce stand-alone programs. In order to do this, users will require a matching compiler (available from Oasis).
New commands provided by the LASER -interpreter are preceded by a full-stop. Care must, however, be taken to avoid inserting any spaces within extended commands. As an example, the following program moves sprite number four across the screen; XORing the sprite into, and out of, each column location:
10. $\mathrm{SET}=0: . \mathrm{SPN}=4: \quad$ ROW0: $. \mathrm{COL}=-4$

20 BORDER I: BRIGHT 1: INK 6: PAPER 1: CLS: .ATOF
30 FOR $\mathrm{I}=-4$ TO 32
40 .PTXR: .COL=I+1: .PTXR
50 PAUSE 4
60 NEXT I
70 STOP

Besides the graphics extensions, LASER BASIC also provides a few "toolkit" commands. These include .RMK (a REM stripper), TRON and TROFF (a trace facility), and .RNUM (a renumberíng command).
The way in which parameters are passed to LASER BASIC's graphics routines is somewhat unusual. Each graphics command uses a particular subset of the 10 graphics variables. Some commands require up to five parameters and, in most cases, more time would be spent evaluating the five expressions than actually executing the command.
More often than not, only one or two parameters need to be re-evaluated between successive executions of a command and LASER BASIC sensibly only requires those parameters which actually need to be changed. This, of course, results in a much faster speed of execution than would otherwise be possible.

LASER BASIC provides for 16 sets of the 10 graphics variables, selected using the .SET command. The variables include such items as SPN (sprite number), ROW, COL, HGT, LEN, etc. The short mnemonics employed represent a good compromise between speed of keyboard entry (LASER BASIC commands all involve single keystroke entry) and a format which can be easily memorised.
LASER BASIC is supplied with an extremely good manual (approximately 90 AS pages) which contains numerous examples and commented code for more than 30 well chosen demonstration routines. Also supplied with the package is a Sprite Generator program by Paul Newnham, two very extensive sprite libraries, and a game written in LASER BASIC.

Other than procedures, LASER BASIC does not offer much in the way of powerful control structures, de-bugging and string handling commands possessed by its two main rivals, BETA BASIC and MEGA BASIC. Prospective purchasers should also be aware that another Oasis product, "White Lightning", provides an arguably superior graphics development environment based on the FORTH language. As a devotee of FORTH, I much prefer White Lightning, however, LASER BASIC does make a good starting point for someone wishing to develop sprite oriented software from BASIC.
Oasis is at Dept. E.E., 12 Walliscote Road, Weston-super-Mare, Avon BS23 1UG.

Eight-Channel

Analogue to Digital Converter

In a previous instalment of On Spec I described the construction of a Simple Analogue to Digital Converter (ADC) for the Spectrum. This interface, based on the ADC0804 chip, suffers from a number of limitations, not the least of which is that it only provides for a single analogue input channel. It is not surprising, therefore, that several readers have written to ask if there is any way of adding further inputs to this unit.
The obvious answer to such a question would be simply that of using a number of CMOS analogue switches connected to the input of an ADC0804 single-channel ADC. Individual analogue inputs could then be connected when required or, alternatively, the software could be arranged so that the input channels are successively sampled. A four-channel ADC would require four analogue switches whilst an eight-chaninel unit would need eight analogue switches.

In either case an output latch would be necessary in order to provide temporary storage for the data applied to the control inputs of the analogue switches. Unfortunately, such an arrangement would probably necessitate the use of more than six d.i.1. integrated circuits and construction using simple matrix board techniques could be something of a headache. A far better solution would be that of making use of a multi-channel ADC (such as the 7581).

The 7581 ADC

The 7581 is an 8 -bit 8 -channel ADC which incorporates its own internal 8×8 dual-port RAM. The device employs successive approximation techniques and results are stored internally until required. Conversion of a single channel takes 80 clock periods with a complete scan through all eight channels taking 640 clock cycles. (Readers should, however, note that the clock referred to is NOT the Spectrum's 3.5MHz system clock!.)

When channel conversion is complete, the successive approximation register's contents are transferred into the appropriate internal RAM location. The contents of this RAM can later be examined by placing the appropriate binary address pattern on the $\mathrm{A} 0, \mathrm{~A} 1$ and A 2 lines whilst, at the same time, taking the CS line low.
To ensure that memory updates only occur when the host microcomputer is not addressing the converter's memory, automatic interleaved direct memory access (DMA) is provided by on-chip logic.

Multi-Channel ADC

The complete circuit diagram of a 7581based ADC for the Spectrum is shown in Fig. 1. Address decoding for the CS line is provided by IC2 and IC3. This arrangement ensures that the output of the 7581 is only

COMPONENTS

Resistors	
R1 270	R4 ik
R2 1k	R5 10k
R3 470	R6 470
All 0.25W	W 5\% carbon
Capacitors	
C1,C5	10μ p.c.b. elec. 16 V (2 off)
C2, C3	10 n disc ceramic (2 off)
C4	1n polystyrene
C6,C7	10n polyester (2 off)
C8.C10	10μ p.c.b. elec. 16 V (2 off)
	10μ p.c.b. elec. 25 V

Semiconductors
D1 Redl.e.d.
D2.D3 1N4001 (2 off)
D4 BZY88 C9V1
IC1 75818-bit 8-channel ADC
IC2 74LS30 8-input NAND
IC3 74LS14 Schmitt Hex
IC4 inverter

Miscellaneous

Low-profile d.i.l. sockets: 1×28-pin, 2×14-pin, and 1×8-pin; 10 -way 0.1 in. pitch p.c.b. mounting input connector; stripboard, $0 \cdot 1$ in. pitch, measuring approx. $80 \mathrm{~mm} \times 80 \mathrm{~mm}$; 28 way open end double-sided 2.54 mm (0.1 in .) pitch edge connector (e.g. Vero part number 838-24826A).
Approx. cost
Guidance only
128
placed on the data bus when address lines A0 to A4 are all high with the RD and IORQ simultaneously low.

The remaining three address lines (A5 to A7) used for conventional I/O port addressing are taken to the 7581 's address inputs. This arrangement results in the address allocation set out in Table I.

Table 1: Address Allocation

| Channel
 No. | (binary) | | |
| :---: | :--- | :---: | :---: | (dec.) | Address |
| :---: |
| (hex.) |
| 1 |

IC3e and IC3f act as a simple buffered Schmitt oscillator which provides a square wave input to the 7581 at a frequency of approximately 2 MHz (the precise frequency of this signal is unimportant). The negative reference voltage required by the 7581 is provided by IC4, a 555 timer operating as an astable oscillator. This device produces a square wave output at approximately 10 kHz which is fed to a voltage doubler arrangement provided by diodes D2 and D3. The negative rectified output is held constant at approximately 9 V by means of a Zener diode shunt regulator, D4.

Construction

Like most of our previous projects, the Eight Channel ADC is assembled on a piece of stripboard measuring approximately $80 \mathrm{~mm} \times 100 \mathrm{~mm}$. The precise dimensions of the board are unimportant provided that it has a minimum of 28 tracks aligned in the vertical plane sufficient to allow the mounting of a 28 -way double sided edge connector. This connector should be fitted to the lower edge of the board and will require five holes across the full width of the stripboard so that the board stands vertically when the connector is mated with the Spectrum.
Before soldering any of the components (including i.c. sockets) it is important to allow some clearance for the rear overhang of the case. For the Spectrum this gap should correspond to 8 rows of holes (20 mm approx.) whilst for the Spectrum Plus the gap should be increased to 12 rows of holes (30 mm approx.).

Component layout is generally uncritical though considerable economies can be made by carefully planning the layout in advance of mounting the components and i.c. sockets. Readers are advised to carry out this exercise on paper first (using, if desired, the layout sheet provided with our ' On Spec Update').
Great care must be taken to ensure that all unwanted tracks are cut (including, in particular, those which link the upper and lower sides of the 28 -way connector). A purpose designed "spot-face" cutter is ideal for this purpose or, if such a tool is not obtainable, a small sharp drill bit may be used.

Links on the underside of the board should make use of appropriate lengths of miniature insulated wire (of the type normally used for wire wrapping). Readers requiring further information on the connector should refer to March 1985 'On Spec' or send for the 'Update'.
When the stripboard wiring has been completed, the integrated circuits should be inserted into their respective sockets (taking care to ensure correct orientation of each device) and the entire board should be very carefully checked before attempting to connect it to the Spectrum. Note that the Spectrum should always be disconnected from its supply before either connecting or disconnecting any interface module. If all is well, when power is re-applied, the normal copyright message should appear. If not, disconnect the power, remove the interface and check again!

If you have any comments or suggestions, please send them to:
Mike Tooley,
Department of Technology, Brooklands Technical College, Heath Road, WEYBRIDGE, Surrey KT13 8TT.
P.S. Don't forget to include a large (A4 size) stamped addressed envelope if you would like to receive a copy of our 'Update"!

Next month: We shall deal with testing and using the Eight-Channel ADC. We shall also be "taking the lid off" Hisoft's COLT compiler and providing a few hints for those wishing to drive a parallel printer from our Z80-PIO interface.

minl active SPEAKER

J.P.MACAULAY

An active speaker that is compact but which produces excellent sound quality

THis project was the result of the writer moving into a flat! This necessitated a complete rethink of the audio system and these speakers were the result. The main problem for flat dwellers is a relative lack of space. This means that large speaker systems are definitely out.
In fact there is little to recommend large speakers except of course for their relatively extended bass response. Their disadvantages are more obvious, women particularly tend to frown upon them even if they sound excellent. The aim was to produce a pair of no compromise speakers which would leave a reasonable amount of floor space in the flat.
Small speakers have a lot to recommend them from the performance point of view. For starters a smaller frontal area produces better sound dispersion and hence better imaging. Secondly the cabinet panels, being smaller, don't contribute so much colouration to the sound.

DESIGN PHILOSOPHY

Before delving too deeply into the techniques used in this project it will be as well to examine the design philosophy in more detail. Having lived for some years now with active speaker systems the author was well aware of their virtues. Normal "passive" speaker systems employ complex crossover net works to divide the amplifier's signal for feeding into the drivers. This is fraught with difficulties from the engineering point of view.

It is simply hopeless to design such a crossover network on the assumption that the speakers are pure resistive loads. It is an unfortunate fact of life that speaker units are very complex electrical loads. The result is that as often as not the crossover network modifies the response of the speaker itself in unpredictable ways. Even in these days of computer aided design the crossover network component values have to be adjusted empiricly to obtain optimum results.

Even when this has been done successfully the resulting speaker system will be
inefficient due to the insertion loss of the crossover. Also any of the possible advantage to be gained from the amplifier's low output impedance damping the cones will be lost.
In an active speaker the situation is radically different. The crossover is achieved with standard electronic filters. As these terminate into the resistive load of an amplifier input the vagaries of the speaker's electrical load are irrelevant. Textbook perfect crossovers are achieved without undue effort on the designer's part.

By directly driving the speakers from the amplifier output's a high damping factor is automatically achieved. This means that the cone is controlled far more closely than in a passive speaker with consequently improved transient response. Tweeters are also better controlled and, because these require less power, there is always a lot of headroom in reserve for musical peaks.

The direct interconnection of the speakers and amplifiers also leads to a far more efficient unit. If the equivalent passive crossover were to be used in this design a 40W per channel amplifier would be required to give the same power level.

Another good reason for going active is that the power frequency distribution curve
for speech and music peaks at about 200 Hz . In a passive system if the amplifier clips then the tweeter is subjected to high level distorted signals. In the active system the ill effect are confined to the woofer.
Now all these advantages add up to the superior sound quality but they would be wasted unless the drivers chosen were capable of equally good performance. The drivers for this design are the KEF BIIOA woofer and the Audax HDI00/25 tweeter. The woofer, a 5.25 inch driver, is world renowned for its linearity and lack of colouration. The tweeter is somewhat less well known but its performance fully complements that of the B110A.

Interfacing the speakers is easy. All that is required is an existing amplifier's output signal and a source of mains electricity. Alternatively the speakers may be directly driven from the output of a preamplifier. They require an input of 500 mV r.m.s. for full output.

CIRCUIT DESCRIPTION

The circuit consists of two distinct parts. Before describing these in detail it will be as well to consider how the speakers are interfaced to the existing equipment.

Fig. 1. Complete circuit diagram of the Mini Active Speaker.

The major disảdvantage of commercially available active systems is that they can be quite difficult to connect up to the rest of the system. For simplicity these speakers are designed to be driven directly from the output sockets of an existing amp. As the existing amp will have unwanted voltage gain an attenuator, simply a two resistor divider is interposed between the main amp. and the speakers.

The amplifier will see a relatively high impedance load. This is a good thing from the point of view of fidelity since the output stage will then operate in class A änd hence the signal provided will be less distorted.

COMPONENTS

All $0.25 \mathrm{~W} \pm 5 \%$ unless stated

Potentiometer

VR1 $4 k 7 \log$

Capacitors

C1,C6. 100μ elect. $25 \cdot \mathrm{~V}$ radial (2 off)
C3
$4 n 7$
C2,C4,C5 10 n polyester (3 off)
C7.C10 100n, ceramic or polyester (2 off)
C8,C9 100μ elect. 25 V (2 off)
C11.C12 100n ceramic (2 off)
C13,C14 $2,200 \mu$ elect. 25 V 12 off)
C15.C16 100n ceramic (2 off)
Semiconductors
IC1 TLO72
IC2.IC3 TDA2030 (2 off)
D1-D4 100V, 1.5A bridge rectifier

Miscellaneous
T1 $12-0-12 \mathrm{~V} 1 \mathrm{~A}$ secondary. 240 V primary transformer
LS1 B110A Kef speaker
LS2 HD100/25 Audax tweeter
SK1 phono socket
Control knob; small aluminium heat sink panel $150 \mathrm{~mm} \times 75 \mathrm{~mm}$ approx: Veroboard 14 strips by 20 holes; two p.c.b.s available from Electromail order code 343 576. Plywood panels, all exterior quality $12 \mathrm{~mm} ; 2$ off 305 mm by 230 mm ; 2 off 305 mm by $\uparrow 80 \mathrm{~mm}$: 2 off 206 mm by 156 mm .
NOTE: Two complete sets of the above are required for a pair of speakers (for stereo).
$£ 55$
each

The, filter circuitry at the input of the speakers will also see a nice low drive impedance which helps to reduce the noise level. Looking at the circuit proper, with reference to Fig. 1, input signals are fed across RI (this resistor is 4 k 7 for use on an amplifier output or 47 k when the unit is driven by a pre-amp). From here they enter the 2 nd order filter networks built around IC1, a TL072 op-amp. This device was chosen both for its high slew rate and its low noise.
Filters are characterised by their slope. The first order filters (one R and one C) have a rolloff of 6 db per octave. Second order filters have double this rolloff, 12 db per octave; 3 rd order filters rolloff at 18 db per octave and so on.

CROSSOVERS

There is a continous debate in hi.fi. circles as to what the optimum order filter for crossovers is. The higher the order the -greater the attenuation of out of band signals. However this is only part of the story. The higher the filter order the more phase shift and ripples in the passband become a problem. Second order filters have been used in this design after a great deal of experimentation with 3 rd and 4 th order types. They appear to give the best all round performance at least with these drive units and crossover frequency.

Choosing the crossover frequency itself can also be fraught with difficulties. One of the advantages of using a smaller woofer is that the transient response is superior to the usually encountered 8inch types. The reason for this is not difficult to find. The smaller the cone the less mass it has, other factors being equal. This means that it can respond more quickly to the input signal. Because its momentum is less there is also less spurious output when the signal is removed.

Bextrene coned drivers are not renowned for their extended high frequency response and the B11OA is no exception. It is however sensibly flat, used on its own to about 3.5 kHz .

Thereafter the response rolls off at 12 db per octave due to mechanical factors. On the other hand the tweeter chosen, the Audax D100/25 is flat from about 1.5 kHz to 20 kHz . A soft dome tweeter has been chosen as this type of driver is essentially free from resonant modes which tend to plague the hard dome types.

Getting back to the circuit the crossover is'built around IC1. The configuration used is entirely conventional and provides the optimum " Q " of 0.7 . The response is therefore of the Butterworth type and provides maximum rolloff and minimum phase shift. 1 Cla is used, in conjunction with $\mathrm{R} 2, \mathrm{R} 3, \mathrm{C} 3$ and C 2 to provide the low pass filter whilst $\mathrm{IClb}, \mathrm{R} 5, \mathrm{R} 6, \mathrm{C} 4$ and C 5 provide high pass filtering.

For reasons of stability R4 and R7 are connected between the outputs and inverting inputs of ICla and IClb respectively. Decoupling is provided for the positive and negative lines by $\mathrm{R} 9, \mathrm{Cl}$ and $\mathrm{R} 8, \mathrm{C} 6$.

POWER AMPLIFIERS

The power amplifiers are the well known TDA2030 chips. These have several advantages over discrete transistor designs in this application. Firstly because of the very close matching of the output devices within the chip the distortion at low levels is extremely
small. This is often the Achilles heel of discrete power amps whose distortion level tends to increase at these levels.
Secondly an equivalent power and performance amplifier would be quite an elaborate circuit which would add nothing to the project but extra cost. Looking again at Fig. 1 both amplifiers are identical except for the potentiometer VR1. This acts as a straightforward volume control and is required because of the difference in sensitivity between the drive units.
Tweeters tend to be more sensitive than woofers because of the difference in moving mass between them. It is theoretically possible to compensate for this by using a simple resistive divider between the two. This has not been done because component tolerances elsewhere in the circuit might upset the balance.
There is however a much more important reason for using a pot for this task. Flat response in an anechoic chamber is one thing but the average lounge is another! If the listening room has heavy drapes and soft carpeting the sound from an optimumly flat speaker will sound lacking in top. On the other hand if the furnishing is sparse the sound will be top heavy. Also the matter of personal choice enters into this equation. Some people like lots of top others prefer none; with this design the choice is yours!

As both amplifiers are identical discussion will be confined to IC2. This chip is essentially an op. amp. with a high power output stage. Direct coupling from the output of ICl causes no problems as both are at ground potential plus or minus a few millivolts.
The input signals are fed into the noninverting input. The overall feedback loop is formed by R11 and R10. The voltage gain is set by the ratio of the values of these components. Capacitor $\mathbf{C 8}$ appears to be a dead short to the signal but to d.c. it looks like an open circuit.
In this way the d.c. gain is held at unity. R15 and C12 form what is known as a Zobel network. This is necessary because the speakers contain a considerable amount of inductance. This means that at high frequencies the impedance of the speaker is many times its nominal value. In fact every speaker is a quite complex electrical load and this can cause problems for the chip unless something is done to compensate. The Zobel network does just this and makes the speaker look to the output stage more like a pure resistance
A split rail power supply is required to power the electronics and this is done in a conventional way using a centre tapped transformer T1. The raw a.c. is rectified by D1 to D4 and smoothed by C13 and C14 to the centre tap. No switching has been provided as the speakers have been designed to be switched on and off via the a.c. outlet normally provided on the existing amplifier. If separate switching is required it is a simple matter to add an on off switch to the mains input.
The only other point left to be discussed is the fact that the tweeter is phase inverted to the woofer. This is done to maintain an even response across the crossover region. If the tweeter were not reversed there would be a "hole" in the response at the crossover frequency.

CONSTRUCTION

Construction starts with the cabinets. These are made from 12 m plywood. This is slightly more expensive than the normally

Fig. 2. Cabinet construction details-two are required for stereo.

Fig. 3. The component layout on the Electromail printed circuit boards.
encountered high density chipboard but is a great deal more easy to work with. The author is not the best handyman so the design is deliberately simple. The most laborious part of the job is screwing the panels together.
The fundamental requirement, as in all woodworking projects, is to get the panels cut accurately. There is nothing worse than having to plane down panels! Most large d.i.y. stores and woodmerchants will cut panels to size for a small fee.
Having cut the panels the next task is to assemble them into the cabinet. This is done by gluing the panels together, excluding the rear panel upon which the electronics is assembled. The adhesive used is a matter of taste but the author has found that Thixofix contact adhesive works well in this application.
The areas of contact between the panels are smeared with the adhesive. After about five minutes these are then brought together. At this point they can be slid into position. Firm pressure is then applied to the joint and the panels are permanently attached.
The cabinet details are shown in Fig. 2. Having glued the panels the hard work begins. To strengthen the cabinet the panels have to be screwed together. The best way to do this is to drill 3 mm pilot holes. Counter-

FROM SKI I/F

Fig. 4. Layout and wiring of the pre-amp on Veroboard.
sink these holes with a countersink bit before driving the screws home.
The next task is the hole cutting on the front baffle. Again Fig. 2 shows the details. A jig saw attachment will make easy work of this although they can be hacked out by hand at a pinch.

The drivers are attached next. The B110's are mounted from the front using the captive nuts and bolts provided. Make sure the sealing gasket provided is placed under the speaker. The tweeter is mounted with four, $\frac{1}{2}$ inch number 8 shelf tapping screws. Before attaching the drivers solder the leads

Fig. 5. Interwiring of the boards and other components in the Mini Active Speaker.
to the terminals. These should be reasonably thick gauge to ensure low series impedance. $16 / 0.2$ wire or 5 A twin core mains lead is ideal. Leave the wires about 300 mm long to facilitate easy fitting to the p.c.b.'s.

To stop the panels vibrating some form of damping must be applied. Bitumous pads are often used for this purpose but the writer has found that ceramic tiles, stuck to the interior of the cabinet are just as effective, and less expensive. These are stuck into position either with some more Thixofix or alternatively Araldite rapid.

CIRCUIT BOARDS

Once this stage has been reached the cabinet can be put to one side and work can get started on the electronics. This is very straightforward as shown in Figs. 3, 4 and 5. The only points to watch are that all the polarised components are correctly orientated and that no dry joints have been made. The amplifiers and filters are assembled on their respective p.c.b's. The interconnections are shown in Fig. 5. The p.c.b.'s, transformers and heatsinks are
attached to the back panel with short self tapping screws.

DAMPING

Before connecting the speaker leads the damping material must be added to the cabinet. Ideally a piece of BAF wadding 300 mm by 600 mm rolled up and inserted vertically is required. If this is not available a piece of fibre glass wadding could be used. Failing this four ounces of cotton wool well teased out to fill the cabinet will work well. If you use the fibre glass don't forget to wear gloves!

The last task to complete the construction is to connect the speaker leads; observe the polarities shown. At this point the speaker can be tested.

Apply power, apart from a slight pop on switch on nothing should be heard. If you get a loud hum disconnect the power and search for the wiring fault: Assuming all is well apply an input signal.

Adjusting VRI should alter the tonal balance of the speaker. Assuming all is still well the back panel can be screwed into place. The project is now complete.

Wedge-Pulling

If you were trying to phone a London telephone number on the 600 exchange (for instance St. Bartholomew's Hospital) one lunchtime late in August, and couldn't get through or were cut off, take heart. There was nothing wrong with your equipment. British Telecom was installing the first major System X all-digital telephone exchange at Wood Street in the City of London ready for the "Big Bang
The switch to new technology, called "wedge-pulling", relied on an almost comic procedure. For a month before the changeover BT engineers pushed 4,700 small plastic wedges between contacts in the Strowger electromechanical relays which had been switching calls since 1947. Another 4,700 wedges were pushed into contacts connected to the GEC System X exchange next door. All the wedges were neatly tied together by string. At 13.27, to the command "Gentlemen cut out the old equipment" bowtied BT engineers pulled the strings to disconnect all calls. Three minutes later, at another "Gentlemen" command, they pulled the next batch of strings to send all calls on a digital route. Subscribers had been warned in advance not to make calls at changeover time, but inevitably some tried and were cut off.
It has to be said that the ceremony, and surrounding publicity, was BT's way of restoring public confidence in the System X project. Although System X is good news, it has had a chequered history.
It began in the 70 s when the Post Office paid $£ 350$ million to a string of outside contractors. In 1982 BT rationalised the project by making GEC and Plessey sole suppliers. The project still ran badly behind schedule; BT admits to 15 months. ThornEricsson won the order to supply a rival digital system. lain Vallance is BT's Chief of Operations, and next main boss at BT after Sir George Jefferson steps sideways. He says BT is "doing its damnedest to catch up" on the System X schedule. Of the future, says Vallance, 'the way orders are placed will depend on performance

Wood Street was the 71st System X exchange and one new digital exchange now goes into service every working day. By the end of the year one million subscribers should be digitally switched; by the end of the decade the number will have risen to 12 million, half the network. In London the 328, 489, 620 and 600 exchanges are now digital.

Subscribers on these exchanges should immediately notice an improvement; fewer wrong numbers and crackly lines. The mechanical switches in a Strowger exchange can misroute calls and the 50 volt d.c. signal being switched is easily distorted by dirt on the relay contacts. Unless faults develop the contacts are routinely cleaned only once a year. In a digital exchange the switching is by microchip with no contacts to get dirty

For businesses, digital switching allows the direct connection of data links like BT's Integrated Digital Access, IDA. It also offers everyone far faster speech call
routing-but only if subscribers change their telephones. Old style exchanges work with dial pulses at a rate of 10 a second. The new digital exchanges can work either with dial pulses or with multi frequency, MF, touch tones. MF tones are musical notes which the telephone emits when the number is keyed. With an MF phone and digital exchange the subscriber is connected almost instantly. With a pulse phone on a digital exchange, connection speed is limited by the agonisingly slow pulse rate.

BT now has to educate the trade and public about MF. Most phones currently on sale generate pulses. Some are switchable or available with MF circuitry at a premium price of a few pounds. One shop selling telephones close to the Wood Street exchange on wedge-pulling day had mainly pulse phones on display and had not been told in advance by BT that the local line was switching over to digital and MF operation.

Digitising exchanges doesn't help people get lines if there aren't any. In the bad old days of five years ago a quarter of a million people were waiting for a phone. Now, says BT, you can usually get one within 10 days-especially in the mainly residential north, south and west areas of London. The problems begin in the City of London, the West End and Westminster where there are long waiting lists. BT admits to up to 11 weeks. Disgruntled businesses say it is longer

Big Bang

The kicker is that demand for telephones in the City of London is 5 times what it was last year, due mainly to the Big Bang. Demand in London's West End is up too, because firms hoping to capitalize on BB have been moving in. When a small office building is pulled down and replaced by a skyscraper, the lines already laid under the ground will not be adequate. In Australia they get round the problem by timemultiplexing several lines on a single wire pair. BT either routes lines through less crowded areas, which means the calls must travel several extra miles, or frequen-cy-multiplexes two lines on a single copper cable, by stacking them in frequency.

When this does not work the only option left is to lay extra cables. Eventually there is no room in the ducts for extra cables. Hence BT's long term policy to replace copper with optical fibre, which has a much wider bandwidth and can thus carry more calls per strand. BT claims to have more optical fibre already laid than any other network in the world.

At BT's Annual General Meeting this year, at the Birmingham National Exhibition Centre, Sir George Jefferson took the unusual step of talking politics. He urged 1.5 million shareholders to lobby against the Labour plan to renationalise BT. Don't make us a "political football" he pleaded.

Whatever the rights and wrongs of nationalisation, it seems dangerous to mess around with BT so soon. The Post Office became BT in 1980 and BT only left the public sector in October 1984. BT's
talk of improved profits and better service for customers (which seems justified) prompts a question. If BT's management can do so well now, why couldn't they have done better before? Sir George has been boss for six years. It is only six years ago that the Post Office and BT had a quarter of a million people on its waiting list. It seems only yesterday that the PO and BT were excruciatingly arrogant and self-satisfied. There is nothing like the threat of competition, whether between a couple of greengrocers or between BT and Mercury, to get things moving.

2010

Arthur C. Clarke talked recently at the National Film Theatre in London about his work in films. His first was "2001: A Space Odyssey" with Stanley Kubrick; then "2010: Space Odyssey II" with Peter Hymans.

Clarke turned out to be a surprisingly nervous speaker, with the infuriating habit of answering questions by just giving the title of one of his many books and saying the audience should buy it and read it. He would do well on British chat shows!

Some interesting insights did however slip through the net of non-communication. "I never saw a complete screenplay of '2001'- I don't even know if one ever existed," he explained when quizzed about some of the obscure but apparently meaningful content. It turns out that some of this was not half as meaningful as it seemed. For instance, the magic size ratio of the monoliths 1:4:9" meant nothing at all" confirms Clarke.

And what about the folklore story that the wicked computer in 2001 was named HAL as a dig at IBM, because the letters are adjacent in the alphabet?
"Complete nonsense," says Clarke, "HAL was simply an acronym for something I have now forgotten.'

I asked Clarke how he came to publish his now famous article in the October 1945 issue of Wireless World on "extra terrestrial relays". This was the article which predicted the use of satellites in geostationary orbit for world communication. At the end of the war Clarke was working on microwave radar, in the three and ten centimetre bands. It was used for ground approach aircraft landing systems. He was also a member of the Interplanetary Society and looking at peaceful uses for rockets and the type that Germany had been raining onto London.

He published the maths which showed that a transponder in a satellite circling the earth with an orbit radius of $42,000 \mathrm{~km}$ would make a full round tour every 24 hours and so appear stationary. It could also transmit to nearly half the Earth's surface.

Clarke didn't patent his idea. It would have been pointless, because patent law doesn't extend into space and any patent filed in 1945 would have expired of old age before satellites were launched into what is now called the Clarke orbit. Wireless World paid him £ 15 for the article which is quite a fee for changing the course of communications history!

Clarke himself benefits from, this. He lives in Sri Lanka, formerly Ceylon, and writes scripts for Hollywood. He doesn't have to leave his island home because he squirts the text direct from a Kaypro computer down a telephone line and satellite link to the film studios in California

XMAS GREETINGS!

At Christmas, amateur radio still goes on. Not so many operators seem to be on the air as usual, but the ultra-enthusiastic, plus those jaded by a surfeit of festive fare, manage to put in an hour or two at the rig, finding others only too willing to listen.

Over the years, I confess, I have managed to slip away from the family festivities to chat with fellow-amateurs late on Christmas Eve or Christmas night. I have, of course, always closed down long enough to avoid causing r.f. burns to Santa's reindeer as he hitches them to my rooftop antenna before paying his usual visit to the household below

Everything is more relaxed than usual, and there are some very pleasant contacts at this time. In the week that follows, everyone is busy finding others they haven't worked for a long time, exchanging traditional greetings, and catching up with their news. Amateur radio is always enjoyable, but it's extra nice at Christmas.

STRAIGHT KEY NIGHT

During December, many clubs have "'Christmas" events-dinners, social evenings, special meetings, and there are a number of organised activities on the air.

The G-QRP club, for instance, holds a week long "ORP Winter Sports" event, starting on Boxing Day. This simply means that ORP operators spend as much time on the air as they possibly can, finding and working fellow low-power buffs in the many countries where the club has its members-and achieving some quite remarkable results in the process.

New Year's Eve features an American tradition which has spread into EuropeStraight Key Night. Morse code operating is still practised today, but many use automatic keys, generating streams of dots and dashes electronically. Few use the old-fashioned up-and-down hand key, but on SKN the old keys are brought out, dusted down, and put back into use, ensuring that this much-respected oldtime form of communication is not entirely forgotten.

As well as looking back, amateurs look forward. Any time now, the 11-year sunspot cycle will reach its lowest point. From then on, radio conditions will begin fo improve, something all amateurs are looking forward to. For that alone, within our hobby, the new year will be one to celebrate.

SAFE DRIVING

A proposed addition to the Highway Code, announced by the DoT, has implications for radio amateurs amongst other mobile-radio users. This will be rule 49a, which says, "Do not use a hand-held microphone or telephone handset while your vehicle is moving, except in an emergency.

You should only speak into a fixed, neckslung, or clipped-on microphone
when it would not distract your attention from the road. Do not stop on the hard shoulder of a motorway to answer or make a call, however urgent'

As far as most amateurs are concerned, this is already standard mobile-operating practice. Not only do they have their microphones fixed in their vehicles, but they also have transmit/receive controls mounted on their steering wheels to ensure that radio operation does not result in '"hands-off" driving.
In fact, the Radio Society of Great Britain has a safety code for mobile operation, which could- well be adapted for use by other mobile users.

This covers the construction and secure installation of equipment; the construction and height of antennas (maximum 4.3 m above the ground); safe wiring within the car; fuses and battery isolation; the need for a single, easily accessible, changeover switch performing all functions; attachment of the microphone to the vehicle; non-use of a hand microphone or doubleheadphone; making adjustments, bandchanging, etc, only when the vehicle is stationary; illumination of essential equipment controls in the dark; no logging when the vehicle is in motion; switching off all equipment when the vehicle is fuelling, or is near petrol tanks, or explosives normally detonated by electricity, e.g. in a quarry; and the need to carry a fire extinguisher.

MUSEUM OF COMMUNICATION

The concept of transmitting electromagnetic waves for communications purposes goes back well over a hundred years. In successive pioneering activities over this time, amateurs have played their part and, on occasion, have led the way. With such a background to our hobby there is now an Harry Matthews with a few of the museum's 6000 vintage valves.

interest in the history of radio, and all that led to its discovery.

A number of museums exist to provide a permanent home for relics of those days, and offer interesting presentations to those with even the slightest acquaintance with the subject. Probably the largest collection is in the Science Museum in London, but around the British Isles there are a number of smaller museums which I hope to mention from time to time

In Edinburgh, for instance, there is the Museum of Communication, located in the James Clerk Maxwell Building of the city's University. This small museum is, in effect, the tip of an iceberg, because tucked away in store are three tons of potential exhibits, including 6000 pre-1960's valves!

Back in 1973. Harry Matthews, a founder member of staff in the University's Electrical Engineering Department, saw an old radio chassis on the kerbside, awaiting the dustman, and realised that this was happening all over the UK. This observation stimulated the idea of making a collection which, over the years, has grown to its present size.

EXPERIMENTAL WORK

The museum, housed in the Physics Department, outlines the progress of electrical communication, from experiments with electrical machines to developments arising from the work of Morse and Bell, leading to wired telegraphy and telephony.

The ideas of Faraday, developed mathematically by Maxwell, and confirmed experimentally by Hertz, resulted in the commercial introduction of radio by Marconi. The invention of the valve, and its evolution, led to TV, radar, telemetry, and radioastronomy. The discovery of the transistor began the dramatic reduction in equipment size, leading to integrated circuits.

Exhibits covering these fields, many dating from well before 1900, include friction machines, induction coils, crystal receivers, valves and early valve receivers, microphones, headphones, loudspeakers, picture machines, medical equipment, and electrical measuring instruments.

A display of communications equipment includes a number of military sets, such as the AR88 receiver and the 1154 transmitter, which were popular with radio amateurs on the "surplus" market immediately after WW2, and which are now becoming increasingly scarce and "vintage".

A large complex of museums is planned along the shore of the Forth, near Edinburgh, featuring local industries etc, and, in due course, the Museum of Communication will be finding its place in this ambitious project. In the meantime it is open to the public in its present location daily, from 9 a.m. to 7 p.m., admission free. A small library is available for serious researchers, and evening visits for groups can be arranged by telephoning Mr Matthews, now the museum's curator, on 0506824507

RANDOM NUMBER GENERATOR

\square I.I. 1 ITHITII

THERE is much evidence to suggest that the "form book" is no guide to success on the football pools. This is why so many people adopt door numbers, birthdays or other random ways of making match selections - and often win! Others frequently do not have time to study form. This project offers a simple, time-saving method of producing random numbers from 1 to 55 for standard pools coupons and also numbers from 1 to 90 for playing bingo with the family or some local group, perhaps.

When the project's pools/bingo switch is in the desired mode, the select button is pressed and after this is released a random number appears in the display. Although there may be some repetitions of numbers, these should not be so numerous as to be bothersome. A double zero which sometimes occurs is ignored.

The project uses 74LS TTL i.c.s and all components are readily obtainable from most suppliers.

PRINCIPLE OF OPERATION

Driven by a clock pulse generator operating at around 50 kHz , the main logic circuitry of Fig. 1 counts up to 56 or to 91 several hundred times per second. After a burst of clock pulses from SI to the counting circuits, the display freezes on the number corresponding to the last particular pulse counted so that selected numbers are quite random.

Every number from 1 to 55 or 1 to 90 exist for an equal period resulting in there being no bias towards or against any parti-

Fig. 1. Circuit diagram of the Random Number Generator.
cular one. Numbers 56 and 91 are used purely to produce reset pulses and are much too short lived to be seen in the display.

CIRCUIT DESCRIPTION

In the circuit of Fig. I, ICI is the versatile 74LS13 dual NAND Schmitt Trigger. The first half of this is connected in the multivibrator mode and with the values of Cl and R1 given, oscillates at a fixed frequency of about 50 kHz . The second half acts as a pulse shaper ensuring clean pulses which are applied, via S1, to the CK A input of the decade counter IC2. This i.c. operates as a units counter alongside IC4 which counts tens.

It will be helpful to keep in mind that IC2 does not respond to the leading (positive going) edge of a pulse applied to CK A. A pulse is counted only on its trailing (negative going) edge. Also, a 74LS90 can only count if at least one Reset 0 pin and one Reset 9 pin are low. So long as this last condition is true, IC2 repeatedly counts incoming pulses in decades, from 0 to 9 . At any instant, the number thus far counted appears at the $\mathrm{Q} 0, \mathrm{Q} 1, \mathrm{Q} 2$ and Q 3 outputs and these BCD voltage levels are applied to the inputs of IC3.

IC3 is a BCD-to-Seven Segment Decoder Driver designed to drive common-anode I.e.d. numerals. Table 1 shows how this i.c.

The 74LS47 is functionally identical to the older 7447 it replaces and both i.c.s compose sixes and nines without "tails", that is, segments a and d, respectively, are not illuminated. This simplifies the problem of resetting the counters at the required times.
All reset 0 inputs must go high in order to reset both counters to 0 . When $S 2$ is in the Pools position, all reset 0 inputs receive the output of AND gate IC6b whose three inputs utilise decoder outputs. Remember that unilluminated segment outputs are high and a study of the tables will show that counting from zero-at least one low is always present on an input of IC6b until the count reaches 56. When this happens, IC6b turns on, both counters are reset to 0 and, momentarily, stop counting. However, number 56 cannot exist in the display for more than the few nanoseconds it takes to reset the counters. Because resetting produces two zeros in the display, IC6b turns off and its output returns all reset 0 inputs to low so that counting is resumed. When S2 is switched to Bingo, IC6c controls resetting. Further study of the Tables 1 and 2 and

INPUTS		
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

composes decimal numbers from the $B C D$ input levels. The 74LS47 is an active low driver which simply means that a segment is illuminated only when its associated output is low. X1 displays the counted units.

In order to create a Carry pulse for the tens counter, the Q0 and Q3 outputs of IC2 are routed to the three inputs of IC6a which is connected as a two input AND gate. When the IC2 count reaches 9 (seee Tables I and 2) IC6a turns on and its output sets up a high positive level on the CK A input of IC4. But when IC2 resets to 0 , IC6a turns off and the high level on CK A goes to low. This negative transition is the trailing edge of the carry pulse which is then counted as mentioned earlier. IC5 decodes the tens which are displayed by X2.

Table 1. (Below) BCD codes
Table 2. (Right) Reset codes

EE265A速

	D	C	B	A	a	b	c	d	e	f	9
0	0	0	0	0	0	0	0	0	0	0	1
1	0	0	0	1	1	0	0	1	1	1	1
2	0	0	1	0	0	0	1	0	0	1	0
3	0	0	1	1	0	0	0	0	1	1	0
4	0	1	0	0	1	0	0	1	1	0	0
5	0	1	0	1	0	1	0	0	1	0	0
6	0	1	1	0	1	1	0	0	0	0	0
7	0	1	1	1	0	0	0	1	1	1	1
8	1	0	0	0	0	0	0	0	0	0	0
9	1	0	0	1	0	0	0	1	1	0	0

the circuit reveals that IC6c turns on only when the count reaches 91 . At this time, the counters are reset in the manner described for count 56.

* Operating S2 also resets the counters. This is because unconnected TTL inputs go high and for some brief instant during switching, the switch arm is somewhere between and not touching either of the two contacts. All reset inputs therefore go high during S2 switching and so the counters are reset.

Diode, DI is a silicon type and its purpose is to drop the 6 V supply to the 5 V or so necessary for TTL.

CONSTRUCTION

In order to facilitate construction, an allparallel method of wiring is used for the main circuit board, and the numeric display is built as a sub assembly. The main board is 0.1 inch pitch stripboard, 43 holes by 33 strips. This includes a spare strip and rows of holes to cover edge damage or provide an alternative route in the event of a minor constructional disaster.

Begin by drilling the two 6BA clearance holes used for mounting the main board. Next, make all the circuit breaks and, afterwards, brush the strips thoroughly to remove copper swarf. (The writer finds an .old, cut-down shaving brush ideal for this.)
It is strongly recommended that the board now be closely inspected, preferably using some kind of optical magnifier. The -importance of close visual inspection cannot be over emphasised particularly with stripboard. Only when you are satisfied that all breaks are true breaks and all stubborn bits of copper have been removed should you proceed.

The i.c. holders and components are mounted next, ensuring that these are positioned exactly as shown in Fig. 2. With the board now well "signposted", the wire links can be fitted. To avoid making awkward little links, a single bare wire is used to

COMPONENTS

Resistors

R1 330
R2-R15 1k (14 off)
All resistors $\frac{1}{4}$ watt 10%

Capacitors

C1 $47 n$ poly.

Semiconductors

D1	1N4001
IC1	SN74LS13
IC2,IC4	SN74LS90 (2 off)
IC3,IC5	SN74LS47 (2 off)
IC6	SN74LS11
X1, 2	FND $507(2$ off

Miscellaneous

 locking push to make s.p.d.t. miniatureD.i.l. holders 14 -pin (4 off), 16 -pin (2 off), 24-pin (1 off) (low profile types); 0.1 inch stripboard, 11 holes by 12 strips and 43 holes by 33 strips; 6BA nuts \& bolts; $\frac{1}{4}$ inch grommet; $7 / 0.2 \mathrm{~mm}$ flex; aluminium case.

Fig. 3. Constructional details of the display board assembly including Veroboard layout and track cutting details.

connect pins $10,11,12,13$, and 14 of IC1. Thread this wire under and over through the holes as shown. Covered or sleeved wire is used for the rest of the links and after every few links made, double check that these are in the correct holes. Corrections are better made at this stage than after completion.
The display board is 0.1 inch pitch stripboard 11 holes by 12 strips. Having made (and inspected) the breaks fil the 24 -pin holder for the display i.c.s. Sixteen lengths of thin flex about 7 inches long connect the display to the main circuit but first solder these to the display board. Similarly, suitable lengths of flex may first be soldered to the switches. It will help to avoid wiring errors if the display i.c.s. are now correctly inserted in their holder. The top from the bottom of the display can then be distiguished at a glance whilst the connections are now made to the main board. After the switches have been connected, resist the templation to twist any wires into neat cords. To do so would be to add extra stray capacitance which, at the frequencies involved, could give rise to anomalies. However, twisted flex can be used for connection to the external battery or power supply and this will complete the electrical work.

Any suitable box may be used to house the completed assembly but a standard aluminium case measuring $105 \times 133 \times$ 38 mm was used for the prototype. The

aperture for the numeric display was made by first drilling a $\frac{1}{4}$ inch hole, enlarging this with a file, and, finally, shaping the aperture with a small flat file. It will be found that the display i.c.s are a tight fit in the holder and because this is a low profile type, there will be a gap between the holder and the i.c.s. Into this gap is slid the display mounting bar, the dimensions of which are given in Fig. 3. Where necessary, the bar holes may be elongated or enlarged which, together with free lateral movement of the display, should absorb any small drilling and filing errors. A piece of stripboard was used to make the prototype bar but any material of sufficient rigidity will serve.

TESTING

Ensure that all i.c.s are correctly inserted before connecting to the 6 V supply, then, using crocodile clips, connect a 1000μ electrolytic across Cl (plus sign to pin I of 1 Cl). This will reduce the clock frequency to about 1 Hz or so. Holding down the Select button will then enable the constructor to check that all numbers are formed correctly; appear in correct sequence; and, lastly, that resetting appears to occur after numbers 55 and 90 . As has been explained, resetting numbers 56 and 91 will not be seen.

JOLN UP WITH: LTY
 Professional Soldering Equipment at Special Mail-Order Prices.

EC50 Mains Electronic Iron. £31.64

titusos.
Features spike-free, solid state

Fegtures spike-free, solid state
SK18 Soldering Kit. $£ 16.36$

ADAMIN Miniature Iron $£ 7.08$
Possibly smallest mains iron in the
world. Ideal for fine work. Slim
proportional electronic temperature control inside the handle. Adjustable 280° to $400^{\circ} \mathrm{C}$. Burn-proof 3 -wire mains lead. Fitted 3.2 mm Long-Life bit. $1.6,2.4$ and 4.7 mm available. 240 va a.c
nylon handle with finger grip. Interchangeable bits available 1.2, $1.6,2.4,3.4$ and 4.7 mm . Fitted with 2.4 mm . 240 v 12 w (12v available). Presentation wallet.
'L' Series Lightweight Irans. 12w £7.06 High efficiency irons for all electronic hobby work. Non-roll handles with finger guards.
Stainless steel element shafts. Screw connected elements. Slip-on bits $\square 5$ 18 w E 7.12 available from 1.6 to $4: 7 \mathrm{~mm}$. LA12
model, $12 \mathrm{w}, 2.4 \mathrm{~mm}$ bit. LC 18 Model, $18 \mathrm{w}, 3.2 \mathrm{~mm}$ bit. 240 v Std -12 v available. Presentation wallet.
Soldering Iron
 Stands
$£ 5.66$
No. 5〔5.88 Designed specially for LITESDLD irons. Heavy, solid-plastic base with non-slip pads. Won't tip over, holds iron safely. With wiping sponge and location for spare (hot) bits. No 5 stand for EC50 iron No 4 stand for ADAMIN miniature Iron No 3 stand for LA12 and LC18 Irons.

Replacement Bits

For all above irons. Non-stick designs, machined from special copper alloy, with Inconel retaining rings. Two types - Chromium plated with copper face (for economy and ease of usel and Iron plated with
BRADEWICK De.Solder Braid.

De.Solder Pumps $\mathbf{£ 6 . 2 6}$ High Quality version of increasingly popular type of tool. Precision made anodised aluminium body, plunger guard and high seal piston. Easy

Microcutters. £4.82 Light weight hardened and precision ground. Flush cutting. Screw joint, return spring, cushion-grip handles. Safety wire-retaining clip.

Set of $3 £ 4.22$
Scraper/Knife, Hook/Probe, BrushlFork. 3 useful double-ended aids to soldering/desolderingl assembly. In plastic wallet.

Pre-tinned face (Long Life). State tip size. iron and type.

		Copper	UL
EC50	\square	-	£1.64
Adamin 12 and			
LA12		91p	£1.62
LC18	\underline{L}	¢1.01	£1.79

For simple, safe and effective de-soldering of all types of joint, using a standard soldering iron. Handy colour-coded packs of 1.5 metres in 3 widths: Yellow $\mathbf{- 1 . 5 m m}$, Green - 2 mm , Blue - 3 mm .
thumb operation. Automatic solder ejection. Conductive PTFE nozzle no static problems.

VERSATILE REMOTE CONTROL KIT			
This kif includes all components (+ transtormert to make a sensitive IR frceiver with 16 lopic outpurts (10-15V) which with surable interface crivuint (rolars, triacs, Etc--details supplead) can be used to swich up 1016 Itatchef tho the last feceined code) or momentrary (on during lransmission) by spectinng the decodier IC and e 15 V stabilised suppoly is aveatable to oower exter nal circuits. Supply 240 V AC or $15-24 \mathrm{~V}$ DC at 10 mA Size. (exclucting transtormet) $9 \times 4 \times 2$ cms. From a $9 V$ PP3 battery and gives a range of th peratas Two kerroards are avaitable MK9 (4-woy) and MK10 			
MK18 Transmiter \quad E7.50			
MK10 16-wor Kerboard			
EN HIGH SECURITY LOCK KIT			
$=5000$ possstie $4 . \operatorname{don}$ com. 			
things even more dificuld for an unsuthorsoci user an alem tom be scunded after 3 to 9 incorrect ontries--selectiole by means			
minurtes during which time the keyboard is disabled preventing further entries. A latched or momentery output is zveisole			
making the unit ideol for door locks, burgiles olasms. car may be used end o beep saunds when a key is dapressed lan includes hiah quality PCB, all components. connetcias, high			
inctudes high quality PCB, all components, connaetcirs, high power preat buzer and full assembly and user instructions.			
${ }_{\substack{\text { xK121 } \\ 350118}}$			
KB12S	12.We Mem		f6.
701150	Eluarice lock		
LOW COST MULTIMETER			
A versetile meter with 19 ranges including $10 A D C$ a BATTERY TEST. Casse is tited for easy reasing Supplied complete with batterens, tost leads and a manual ldad meter for the beginine. Input impedanee 20 K ohm per wott			
ac Volts: 0-2-5-10-25 $250+1000+5 \%$ DC Currant: 0.-2.5m-2			
lele			

DVM/ULTRA SENSITIVE THERMOMETER KIT

Bases on the 1 CL
7126 and $3!$
7126 and a 31 dipin
liquid
crysal
dis-
liquid crissar dis-
play, this
kit
will
play, this. kty mily
form the basis of a
digitel mutin a
digital multimeter
(only a few acdi
tronal resistors and
simithes quired - details sup-
plied) or a senstive digital thermometer $\left(-50^{\circ} \mathrm{C}\right.$ to +150. reading 0.1. The kit has a sensthity yo 200 m

DISCO LIGHTING KITS

DL1000K - This value-for-money 4way chaser features bi-directional sequence and dimming. $\begin{aligned} & \text { channel. } \\ & \text { E17.50 }\end{aligned}$ DLZ1000K - A lower cost uni-directional version of the above. Zero switching to reduce interference. $\mathbf{£ 9 . 8 5}$ DLA1 - Optional opto input allowing audio beat $\mathrm{DL} 3000 \mathrm{~K}-3$-chan ren spor features zero voltage switching autofeatures zero voltage switching, auto-
matic level control and built-in micromatic level kW per channel. $£ 14.25$

The DL8000K is an 8 -way sequencer kit with built in opto-isolated sound to light input which comes complete with a pre-programmed EPROM containing EIGHTY-YES 801 different sequences including standard flashing and chase routines. The KIT includes full instructions and all components feven the PCB a control knob to complete. Other fea fures include manual sequence speed adjustment, zero voltage switching. LED mimic lamps and sound to light LEB and a 300 W output per channel.
And the best thing about It is the price;
ONLY £28.50

XK 102-3-NOTE DOOR CHIME

Based on the SAB0600 1C the kit is supplied with all components, including loudspeaker, printed circuit board, a predrilled box ($95 \times 71 \times 35 \mathrm{~mm}$) and full instructions. Requires oniy a PP3 9V battery and push-switch to complete. ANIDEAL PROJECT FOR
BEGINNERS
£6.00
HOME LIGHTING KITS
These kits contain all necessary components and full instructions \& are de-
signed to replace a standard wall switch and control up to 300 W of lighting. TDR300K Remote Control MK6 Transmitter for TD300K Touch TD300K Touchdimmer T\$300K Touchswitch $\quad \mathbf{~} 8.50$ TDE/K Extension kit for 2-way
switching for TD300K

ELECTRONICS
SEND 9"×6" S.A.E.\& 13 BOSTON RD 50 p FOR CATALOGU LONDON W7 3SJ MON-FRI 9-5pm Tel: 01-567 8910 SATURDAY $10-4 \mathrm{pm}$

ORADERINGINFORMATION:

FREE P\&P on orders over $£ 20$ (UK only), otherwise add $75 p+$ VAT. Overseas P\&P: Europe $£ 2.75$. Elsewhere 66.50. Send cheque/PO/Barclaycard/Access No.
with order. Giro No. 529314002
LOCAL AUTHORITY AND EXPORT ORDERS WELCOME GOODS BY RETURN SUBJECT TO AVAILABILITY

Printed circuit boards for certain constructional projects are now available from the PCB Service, see list. These are fabricated in glassfibre, and are fully drilled and roller tinned. All prices include VAT and postage and packing. Add $£ 1$ per board for overseas airmail. Remittances should be sent to: The PCB Service, Everyday Electronics and Electronics Monthly Editorial Offices, 6 Church Street, Wimborne,
Dorset BH2 1 1JH. Cheques should be crossed and made payable to Everyday Electronics. (Payment in E sterling only.)

Please note that when ordering it is important to give project title as well as order code. Please print name and address in Block Caps. Do not send any other correspondence with your order.

Readers are advised to check with prices appearing in the current issue before ordering.

NOTE: Please allow 28 days for delivery. We can only supply boards listed in the latest issue. Boards can only be supplied by mail order on a payment with order basis.

PROJECT TITLE	Order Code	Cost
- JULY '83 - User Port input/Output M.I.T. Part 1 User Port Control M.I.T. Part 1	$\begin{aligned} & 8307-01 \\ & 8307-02 \end{aligned}$	$\begin{aligned} & £ 4.82 \\ & £ 5.17 \end{aligned}$
\qquad Storage 'Scope Interface, BBC Micro. Car Intruder Alarm High Power Interface M.I.T. Part 2 Pedestrian Crossing Simulation M.I.T. Pq 2	$\begin{aligned} & 8308-01 \\ & 8308-02 \\ & 8308-03 \\ & 8308-04 \end{aligned}$	$\begin{array}{r} £ 3.20 \\ £ 5.15 \\ £ 5.08 \\ £ 3.56 \end{array}$
- SEPTEMBER '83 - High Speed A-to-D Converter M.I.T. Pt 3 Signal Conditioning Amplifier M.I. T. Pt 3 Stylus Organ	$\begin{aligned} & 8309-01 \\ & 8309-02 \\ & 8309-03 \end{aligned}$	$\begin{array}{r} £ 4.53 \\ £ 4.48 \\ £ 6.84 \end{array}$
- OCTOBER '83 - D-to-A Converter M.I.T. Part 4 High Power DAC Driver M.I.T. Part 4	$\begin{aligned} & 8310-01 \\ & 8310-02 \end{aligned}$	$\begin{array}{r} £ 5.77 \\ £ 5: 13 \end{array}$
- NOVEMBER '83 - TTL/Power Interface for Stepper Motor M.I.T. Part 5 Stepper Motor Manual Controller M.I.T. Part 5 Speech Synthesiser for BBC Micro	$\begin{aligned} & 8311-01 \\ & 8311-02 \\ & 8311-04 \end{aligned}$	$\begin{array}{r} £ 5.46 \\ £ 5.70 \\ £ 3.93 \end{array}$
- DECEMBER '83 - 4-Channel High Speed ADC (Analogue) M.I.T. Part 6 4-Channel High Speed ADC (Digital) M.I.T. Part 6 Environmental Data Recorder Continuity Tester	$\begin{aligned} & 8312-01 \\ & 8312-02 \\ & 8312-04 \\ & 8312-08 \end{aligned}$	$\begin{aligned} & £ 5.7 .2 \\ & £ 5.29 \\ & £ 7.24 \\ & £ 3.41 \end{aligned}$
- JANUARY '84 - Biological Amplifier M.I.T. Part 7 Temp. Measure \& Control for ZX Comprs Analogue Thermometer Unit Analogue-to-Digital Unit Games Scoreboard	$\begin{aligned} & 8401-02 \\ & 8401-03 \\ & 8401-04 \\ & 8401-06 / 07 \end{aligned}$	$\begin{aligned} & £ 6.27 \\ & £ 2.35 \\ & £ 2.56 \\ & £ 9.60 \end{aligned}$
- FEBRUARY '84 - Oric Port Board M.I.T. Part 8 Negative Ion Generator Temp. Measure \& Control for ZX Comprs Relay Driver	$\begin{aligned} & 8402-02 \\ & 8402-03^{*} \\ & 8402-04 \end{aligned}$	$\begin{aligned} & £ 9.56 \\ & £ 8.95 \\ & £ 3.52 \end{aligned}$
- MARCH ${ }^{\prime} 84$ - Latched Output Port M.I.T. Part 9 Buffered Input Port M.I.T. Part 9 VIC-20 Extension Port Con. M.I. T. Part 9 CBM 64 Extension Port Con. M.I.T. Part 9 Digital Multimeter Add-On for BBC Micro	$\begin{aligned} & 8403-01 \\ & 8403-02 \\ & 8403-03 \\ & 8403-04 \\ & 8403-05 \end{aligned}$	$\begin{aligned} & £ 5.30 \\ & £ 4.80 \\ & £ 4.42 \\ & £ 4.71 \\ & £ 4.63 \end{aligned}$
- APRIL '84 - Multipurpose Interface for Computers Data Acquisition "Input" M.I.T. Part 10 Data Acquisition "Output" M.I.T. Part 10 Data Acquisition "PSU'" M.I.T. Part 10 A.F. Sweep Generator Quasi Stereo Adaptor	$\begin{aligned} & 8404-01 \\ & 8404-02 \\ & 8404-03 \\ & 8404-04 \\ & 8404-06 \\ & 8404-07 \end{aligned}$	£5.72 £5.20 £5.20 £3.09 £3.55 £3.56

Simple Loop Burglar Alarm Computer Controlled Buggy M.I. T. Part 11 Interface/Motor Drive Collision Sensing - MAY '84 Power Supply	$\begin{aligned} & 8405-01 \\ & \\ & 8405-02 \\ & 8405-03 \\ & 8405-04 \end{aligned}$	$\begin{array}{r} £ 3.07 \\ \\ £ 5.17 \\ £ 3.20 \\ £ 4.93 \end{array}$
Infra-Red Alarm System Spectrum Bench PSU Speech Synthesiser M.I. T. Part 12 Train Wait	$\begin{aligned} & 8406-01 \\ & 8406-02 \\ & 8406-03 \\ & 8406-04 \end{aligned}$	$£ 2.55$ $£ 3.99$ $£ 4.85$ $£ 3.42$
Ultrasonic Alarm System Electronic Code Lock - JULY '84 - Main Board Keyboard	$\begin{aligned} & 8407-01 \\ & 8407-03 \\ & 8407-04 \end{aligned}$	$\begin{aligned} & £ 4.72 \\ & £ 2.70 \\ & £ 3.24 \end{aligned}$
- AUGUST '84 - Microwave Alarm System Temperature Interface-BBC Micro	$\begin{aligned} & 8408-01 \\ & 8408-02 \end{aligned}$	$\begin{array}{r} £ 4.36 \\ £ 2.24 \end{array}$
- SEPTEMBER '84 -Op-Amp Power Supply	8409-01	£3.45
Micro Memory Synthesiser Drill Speed Controller \qquad	$\begin{aligned} & 8410-01^{*} \\ & 8410-04 \end{aligned}$	$\begin{array}{r} £ 8.20 \\ £ 1.60 \end{array}$
- NOVEMBER '84 BBC Audio Storage Scope Interface Proximity Alarm	$\begin{aligned} & 8411-01 \\ & 8411-02 \end{aligned}$	$\begin{array}{r} £ 2.90 \\ £ 2.65 \end{array}$
TV Aerial Pre-Amp Digital Multimeter Mini Workshop Power Supply — DEC '84-	$\begin{aligned} & 8412-01^{\circ} \\ & 8412-02 / 03^{\circ} \\ & 8412-04 \end{aligned}$	$\begin{aligned} & £ 1.60 \\ & £ 5.20 \\ & £ 2.78 \end{aligned}$
Power Lighting Interface Games Timer -JAN '85 - Spectrum Amplifier	$\begin{aligned} & 8501-01 \\ & 8501-02 \\ & 8501-03 \end{aligned}$	$£ 8.23$ £1.86 $£ 1.70$
Solid State Reverb Computerised Train Controller -FEB '85-	$\begin{aligned} & 8502-01 \\ & 8502-02 \end{aligned}$	$\begin{aligned} & \text { £3.68 } \\ & \text { £3.38 } \end{aligned}$
- MARCH ${ }^{\circ} 85$ - Model Railway Points Controller	8503-01	£2.78
Insulation Tester Fibrelarm	$\begin{aligned} & 8504-02 \\ & 8504-03 \end{aligned}$	$\begin{array}{r} £ 2.53 \\ £ 3.89 \end{array}$
Auto Phase Amstrad CPC464 Amplifier -MAY '85- Mains Unit Micro Unit Voltage Probe	$\begin{aligned} & 8505-01 \\ & 8505-02 \\ & 8505-03 \\ & 8505-04 \end{aligned}$	$\begin{array}{r} £ 3.02 \\ \\ £ 2.56 \\ £ 2.56 \\ £ 2.67 \end{array}$
Graphic Equaliser Computerised Shutter Timer Mono-Bi-Astables (Experimenters Test Bed) Across The River	$\begin{aligned} & 8506-01 \\ & 8506-02 \\ & 8506-03 \\ & 8506-04 \end{aligned}$	$\begin{aligned} & \text { £3.21 } \\ & £ 2.09 \\ & \text { £2.45 } \\ & \text { £2.63 } \end{aligned}$
Amstrad User Port - JULY '85- Nascom Printer Handshake	$\begin{aligned} & 8507-01 \\ & 8507-02 \end{aligned}$	$\begin{array}{r} £ 3.17 \\ \mathrm{f} 1.90 \end{array}$
Electronic Building Blocks-1 to $4 \uparrow$ Tremolo/Vibrato Stepper Motor Interface- AUGUST '85 - Drill Control Unit	$\begin{aligned} & 8508-01 \\ & 8508-02 \\ & 8508-03 \\ & 8508-04 \end{aligned}$	$\begin{array}{r} \text { £2.98 } \\ \text { £4.03 } \\ \text { £2.40 } \\ \text { £2.90 } \end{array}$
- SEPTEMBER '85 - RIAA Preamplifier Input Selector Transducers Resistance Thermometer Transducers Semiconductor Temp. Sensor	$\begin{aligned} & 8509-01 \\ & 8509-03 \\ & 8509-04 \end{aligned}$	$\begin{aligned} & \text { £2.36 } \\ & \text { £2.64 } \\ & £ 2.72 \end{aligned}$
Transducers Strain Gauge - OCT '85 Soldering Iron Power Controller	$\begin{aligned} & 501 \\ & 504 \end{aligned}$	$\begin{aligned} & £ 2.87 \\ & £ 2.09 \end{aligned}$
TransducersMagnetic Flux Density Amplifier Hallowe'en Projects (single board price)	$\begin{aligned} & 505 \\ & 506 \end{aligned}$	$\begin{array}{r} £ 3.93 \\ £ 2.68 \end{array}$
Electronic Building Blocks - 5 to $8 \dagger$ Opto Intensity Transducer - DEC '85 - Digital Capacitance Meter	$\begin{aligned} & 508 \\ & 509 \\ & 512 \end{aligned}$	$\begin{aligned} & £ 3.07 \\ & £ 2.70 \\ & £ 5.22 \end{aligned}$
Mains Delay Musical Doorbell Tachometer-Transducers	$\begin{aligned} & 503 \\ & 507 \\ & 513 \end{aligned}$	$\begin{aligned} & £ 2.13 \\ & \mathrm{f} 2.91 \\ & \mathrm{f} 2.52 \end{aligned}$
Touch Controller Function Generator - FEB '86Function Generator PSU Board pH Transducer	$\begin{array}{r} 510 \\ -514 \\ 515 \\ 516 \end{array}$	$\begin{array}{r} £ 2.65 \\ £ 3.10 \\ £ 2.09 \\ £ 2.75 \end{array}$

PROJECT TITLE	Order Code	Cost
Mains Tester \& Fuse Finder BBC Midi Interface Stereo Hi Fi Preamp Interval Timer	$\begin{aligned} & 517 \\ & 518 \\ & 519 \\ & 520 \end{aligned}$	$\begin{aligned} & £ 2.27 \\ & £ 3.26 \\ & £ 5.70 \\ & £ 2.36 \end{aligned}$
Stereo Reverb - APRIL '86-	521	£2.89
PA Amplifier Mini Strobe - MAY '86 - Auto Firing Joystick Adaptor	$\begin{aligned} & 511 \\ & 522 \\ & 523 \end{aligned}$	$\begin{aligned} & £ 2.67 \\ & £ 2.24 \\ & £ 2.73 \end{aligned}$
Watchdog Percussion Synthesiser - JUNE '86 - Personal Radio	$\begin{aligned} & 524 \\ & 525 \\ & 526 \end{aligned}$	$\begin{aligned} & £ 2.81 \\ & £ 5.65 \\ & £ 2.07 \end{aligned}$
Tilt Alarm Electronic Scarecrow VOX Box Amplifier - JULY '86 - Headphone Mixer	$\begin{aligned} & 527 \\ & 528 \\ & 529 \\ & 530 \end{aligned}$	$\begin{aligned} & £ 2.13 \\ & £ 2.28 \\ & £ 2.35 \\ & £ 4.56 \end{aligned}$
Solar Heating Controller - AUG '86-	533	£3.32
Car Timer \quad SEPT '86- Freezer Failure Alarm Infra Red Beam Alarm (Trans) Infra Red Beam Alarm (Rec) Scratch Blanker	$\begin{aligned} & 538 \\ & 534 \\ & 536 \\ & 537 \\ & 539 \end{aligned}$	$\begin{aligned} & £ 2.02 \\ & £ 1.90 \\ & £ 3.32 \\ & £ 3.32 \\ & £ 5.43 \end{aligned}$
10W Audio Amp (Power Amp) (Pre-Amp) £4.78 Pair Light Rider-Lapel Badge -Disco Lights -Chaser Light — OCT '86	$\begin{gathered} 543 \\ 544 \\ 540 \& 541 \\ 542 \\ 546 \end{gathered}$	$\begin{aligned} & £ 2.58 \\ & £ 3.18 \\ & £ 2.70 \\ & £ 4.55 \\ & £ 3.23 \end{aligned}$
Modem Tone Decoder - NOV 86 200 MHz Digital Frequency Meter	$\begin{aligned} & 547 \\ & 548 \end{aligned}$	$\begin{aligned} & £ 2.76 \\ & \text { £ } 4.12 \end{aligned}$
Dual Reading Thermometer Automatic Car Alarm BBC 16K Sideways RAM - DEC '86 - (Software Cassette)	$\begin{gathered} 549 \\ 550 \\ 551 \\ 551 \mathrm{~S} \end{gathered}$	$\begin{aligned} & £ 5.87 \\ & £ 2.35 \\ & £ 2.38 \\ & £ 4.95 \end{aligned}$

[^2]

Prices for ELECTRONUCS MONTHLY PCBs are shown below.

PROJECT TITLE	Order Code	Cost
Cymbal Synth - DEC '84- The Thing	EM/8412/2 EM/8412/4	$\begin{aligned} & £ 4.86 \\ & £ 3.18 \end{aligned}$
Speak Board - JAN '85 -	EM/8501/2	£3.97
Headphone Amp Intelligent Nicad Charger Anti Phaser - FEB '85 - Logical Lock Touch Dimmer	EM/8502/1 EM/8502/2 EM/8502/3 EM/8502/4 EM/8502/5	$\begin{aligned} & £ 2.08 \\ & £ 3.50 \\ & £ 4.56 \\ & £ 3.58 \\ & £ 3.29 \end{aligned}$
Courtesy Light Extender Disco Light Chaser \qquad 85 -	$\begin{aligned} & \text { EM/8503/4 } \\ & \text { EM/8503/5 } \end{aligned}$	$\begin{aligned} & £ 3.29 \\ & £ 8.11 \end{aligned}$
Sound to Light Unit Car Audio Booster - APRIL '85 Short Wave Converter	EM/8504/1 EM/8504/2 EM/8504/3	$\begin{aligned} & \text { £4.02 } \\ & \mathrm{f} 3.12 \\ & \mathrm{f} 4.15 \end{aligned}$
Car Burglar Alarm - MAY '85 -	EM/8505/3	£2.88
Metal Detector Power Supply Module - JUNE '85 Flanger	EM/8506/1 EM/8506/3 EM/8506/4	$\begin{aligned} & £ 4.24 \\ & £ 3.20 \\ & £ 4.29 \end{aligned}$
El Tom/El Tom+ El Cymb - JULY '85 - Heartbeat Monitor Real Time Clock	$\begin{aligned} & \mathrm{EM} / 8507 / 1 \\ & \text { EM/8507/2 } \\ & \text { EM/8507/3 } \\ & \text { EM/8507/4 } \end{aligned}$	$\begin{array}{r} £ 4.10 \\ £ 4.10 \\ £ 3.98 \\ £ 4.62 \end{array}$
```Intelligent Windscreen Wiper (incl. Terminal Board) Hifi Intercom (2 boards) Plug Power Supply - AUG '85 - Hot Water Alarm```	EM/8508/1/2   EM/8508/3   EM/8508/4   EM/8508/5	£4. 12   £2.92   £2.28   £ 1.93
Sinewave Generator $\qquad$   Household Battery Checker   Audio Signal Generator	EM/8509/1   EM/8509/2   EM/8509/3	$\begin{aligned} & £ 2.76 \\ & £ 1.97 \\ & £ 3.65 \end{aligned}$
Compressor Pedal Computer Cont Filter - OCT '85Spectrum MIDI Interface	EM/8510/1   EM/85 10/2   EM/8510/3	$\begin{array}{r} \text { £2.87 } \\ \text { £2.94 } \\ \text { £ } 3.20 \end{array}$



## 'VISIT SUSSEX'S NEWEST COMPONENTS SHOP'

 COMPONENTSWide range of components in stock including ICs, Resistors, Diodes, Switches, Capacitors, Boxes, Cables, Connectors, etc, etc Current special offer on LEDs and Capacitors Please send two 13p stamps for FREE mail order catalogue

## SCS COMPONENTS

 218 Portland Road, Hove BN3 5QTCallers welcome<br>Barclaycard accepted<br>Open Monday to Saturday from 9 to 5 - closed all day Wednesday

Reach effectively and economically today's enthusiasts anxious to know of your products and services through our semi-display and classified pages. The prepaid rate for semi-display spaces is $£ 8.00$ per single column centimetre (minimum 2.5 cm ). The prepaid rate for classified advertisements is 30 pence per word (minimum 12 words), box number $60 p$ extra. VAT must be added. All cheques, postal orders, etc., to be made payable to Everyday Electronics. Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Everyday Electronics, 6 Church Street, Wimborne, Dorset BH21 1JH. Tel.: 0202881749.

## Electronic Components

ELECTRONIC COMPONENTS IN HOVE, SCS Components, 218 Portland Road, Hove, Sussex (also mail order). Tel: 770191.

EXCEPTIONAL SALE of surplus factory stores, e.g. 74LS244 = 40p. Quantity discount. SAE for list. A. Kireluk, 15 Barcombe Road, Paignton, Devon TQ3 1PZ.

THE SCIENTIFIC WIRE COMPANY 811 Forest Robd, London E17. Telephone 015311568				
ENAMELLED COPPER WIRE				
SWG	116	802	4 oz	202
8 to 34	3.63	2.09	1.10	0.88
35 to 39	3.82	2.31	1.27	0.93
40 to 43	6.00	3.20	2.25	1.61
44 to 47	8.67	5.80	3.49	2.75
48	15.96	9.58	6.38	3.69
SIL VER PLATED COPPER WIRE 3.69				
TINNED COPPER WIRE				
14 to 30	3.97	2.41	1.39	0.94
Fluxcore				
Solder	5.90	3.25	1.82	
SAE for list of copper and resistance wire. Dealer enquiries welcome.				

## Test Gear



## TURN YOUR SURPLUS

ICS transistors etc into cash, immediate settlement. We also welcome the opportunity to quote for complete factory clearance.
Contact COLES-HARDING \& CO, 103 South Brink, Wisbech, Cambs. *ESTABLISHED OVER 10 YEARS* Tel: 0945584188

## Satellite TV

SATELLITE TV RECEIVER KITS, only $£ 150$ for postal site survey and information pack. Details send $£ 2.95$ to: C \& STV, P. A. Kendall, 11 Wensley Gardens, Leeds 7, LS7 2LY

## Careers Guidance

CV PLANNER booklet to improve job prospects. Send Cheque/PO $£ 2.00$ to TELSEC, 1 Keighley Road, Trawden, Colne, Lancs. BB8 8RW.

## Service Manuals

SERVICE MANUALS. Most makes Audio, Television, Test, Amateur, Video. SAE enquiries. Mauritron (EE), 8 Cherrytree Road, Chinnor, Oxfordshire.


## Miscellaneous

SERVICE SHEETS from $£ 2.50 / 1$ sae ctv/musc/combis $£ 3.50 / 1$ sae. Sae Newnes \& TV Technic Books in stock. Thousands Service \& Repair Manuals. SAE Free Review/pricelists. TIS (EE), 76. Church St, Larkhall (0698 883334), Lanarkshire.

ELECTRONIC
FUll range of Components      Electronic Kits
Send for New Catalogue
13A Station Rd, Cullercoats, North Shields,    Tyne \& Wear NE30 4PO Tol. 0912514363

## Printed Circuit Boards

COMPUTER AIDED DESIGN PCB LAYOUT from your schematic drawings. Single and double sided. Output as either pen-plot. photo-plot or prototype PCBs. Includes component overlay, solder mask and computer drawn schematic. Further details from TrucounT Lid., P.O. Box 11, Burntwood. Walsall WS7 0LS, or Phone (05436) 75588.

PCBs designed/manufactured to your specifications. Fast service, competitive rates. H \& M Design, 93 Everest Road, Kidsgrove, Staffs. Tel: 078165656.

CIRCUIT BOARDS etched to your design. Contact Q.E.D., 6 Totternhoe Road, Dunstable, Beds. LU6 2AG.

## ORDER FORM PLEASE WRITE IN BLOCK CAPITALS

Please insert the advertisement below in the next available issue of Everyday Electronics for ............ Insertions. I enclose Cheque/P.0. for f....
(Cheques and Postal Orders should be made payable to Everyday Electronics)


HEADING REQUIRED:
NAME
ADDRESS

> EVERYDAY ELECTRONICS and ELECTRONICS MONTHLY
> Classified Advertisement Dept.,
> 6 Church Streat,
> Wimborne
> Darset BH21 1JH.
> Telephone 0202881749
> RATE: 30 p per word, minimum 12 words. Box No. 60 pertrs, VAT must be added.

## VOLUME 15 INDEX

JANUARY 1986 TO DECEMBER 1986

Pages	Issue	Pages	Issue
$1-56$	January	$337-392$	Juty
$57-112$	February	$393-448$	August
$113-168$	March	$449-504$	September
$169-224$	April	$505-560$	October
$225-280$	May	$561-624$	November
$281-336$	June	$625-688$	December

CONSTRUCTIONAL PROJECTS

AERIAL, FLAT TV
AF SIGNAL GENERATOR
ALARM, AUTOMATIC CAR
ALARM, FREEZER FAILURE
ALARM, INFRA RED BEAM
ALARM, ONE CHIP
ALARM, TILT
AMPLIFERE, PA
AMPLIFIER, SIMPLE INTERCOM
AMPLIFIER, VOX BOX
AMPLIFIER, IOW AUDIO
AUDIO SIGNAL TRACER
AUTO-FIRE, CUSTOM JOYSTICK WITH
AUTOMATIC FIRING JOYSTICK ADAPTOR by J. R. Evans

BADGE, LAPEL
BATTERY MONITOR, CARAVAN
BATTERY TESTFR by T. R. de Vaux Balbirnie
BBC INPUT EXPANDER
BBC MICRO, VOLTMETER ADD-ON FOR
BBC MIDI INTERFACE by R. A. Penfold
BBC RESISTANCE/CAPACITANCE METER
BBC 16K SIDEW AYS RAM by Tim Parker
BENCH POWER SUPPLY, REGULATED
CANDLE ELECTRONIC
CAR ALARM, AUTOMATIC
CAR FLASHER, WARNING by T. R. de Vaux Balbirnie
CAR LIGHTS-ON REMINDER
CAR TIMER by D. Butler
CARAVAN BATTERY MONITOR
by T. R. de Vaux Balbirnie
CHASER LIGHTS by George Hynes
CIRCLE CHASER by M. P. Horsey
CMOS POWER SUPPLY
COMPUTER INTERFACE, BBC MIDI
COMPUTER INTERFACE, LIGHT ACTIVATED
COMPUTER OUTPUT PORT
COUNTER, GEIGER
CUSTOM JOYSTICK WITH AUTO-FIRE
DECODER, MODEM TONE
DELAY SWITCH, MAINS
DIGITAL FREQUENCY METER, 200 MHz 568
DIGITAL PULSE GENERATOR
by M. Tooley \& D. Whitfield
DIODE RADIO RECEIVER, SIMPLE
DISCO LIGHTS Mark Stuart
DOORBELL, MUSICAL
DUAL THERMOMETER
ELECTRONIC CANDLE
ELECTRONIC SCARECROW by Michael Perrow
ESCAPE INTERFACE
EXTERNAL PSU FOR SPECTRUM
FET VOLTMETER by M. Tooley \& D. Whitfield
FLASHER WARNING, CAR
FLAT TV AERIAL by M. James
FREELOADER by I. M. Rees
FREEZER FAlLURE ALARM by W. Hunter
FUNCTION GENERATOR by Mark Stuart
FUSE FINDER
GAME UNIT
GEIGER COUNTER by John Becker

426
84
632
474
454
43
358
232
646
362
512
28
460

529
368
406
418
320
120
486
664
593
476
632
612
324
478
368
534
202
593
120
8
97
400
460
600
47
252
649
531
53
636
474
372
524
328
196
612
426
186
474
67
148
96
400

HEADLIGHT ONE SHOT by T. R. de Vaux Balbirnie 104
HEADPHONE MIXER by R. A. Penfold 344
HEATING CONTROLLER 412
HI-FI PREAMP, STEREO
HOME TELEPHONE by T. R. de Vaux Balbirnie 134
INFRA RED BEAM ALARM by R. A. Penfold 454
INTERCOM AMPLIFIER, SIMPLE
INTERVAL TIMER by C. J. Bowes
JOYSTICK ADAPTOR, AUTOMATIC FIRING
JOYSTICK, TOUCH CONTROL
JOYSTICK WITH AUTO-FREE, CUSTOM
LAPEL BADGE by Mark Stuart
LIGHT PEN by Ashley Lane
LIGHT TRIGGERED SWITCH
LIGHTS, CHASER
LIGHTS, DISCO
LIQUID DETECTOR
LOGIC PROBE by Mike Tooley
LOGIC SWITCH by T. R. de Vaux Balbirnie
MAINS DELAY SWITCH by T. R. de Vaux Balbirnie
MAINS TESTER \& FUSE FINDER by Mark Stuart
METER, 200 MHz DIGITAL FREQUENCY
MICRO MINI TUNER by John Becker
MICRO TRACER by John Becker
MIDI INTERFACE, BBC
MINI ACTIVE SPÉAKER by J. P. Macaulay
MINI STROBE by Mark Stuart
MIXER, HEADPHONE
MODEM TONE DECODER by R. A. Penfold
MUSICAL DOORBELL by Mark Stuart
NUMBER GENERATOR, RANDOM
ONE CHIP ALARM
OPORT by Gideon Tearle
OPTICALLY ISOLATED by T. R. de Vaux Balbirnie
OUTPUT PORT, COMPUTER
PA AMPLIFIER by R. A. Penfold
PERCUSSION SYNTHESISER by Mark Stuart
pH TRANSDUCER
TRANSDUCER
POWER SUPPLY, REGULATED BENCH 593
PRINTED BUFFER, SIMPLE 464
PROBE, LOGIC
PSU UNIT
PULSE GENERA TOR, DIGITAL
RANDOM NUMBER GENERATOR
RADIO, PERSONAL M.W
RADIO RECEIVER, SIMPLE DIODE
RAM, BBC 16K SIDEWAYS
REGÚLATED BENCH POWER SUPPLY by Mike Tooley
RESISTANCE/CAPACITANCE METER
REVERB, STEREO
RF SIGNAL GENERATOR by M. Tooley \& D. Whitfield
SCARECROW, ELECTRONIC
A. Penfold

SIGNAL GENERATOR, AF
SIGNAL GENERATOR, RF
SIGNAL TRACER, AUDIO
SIMPLE INTERCOM AMPLIFIER
SIMPLE DIODE RADIO RECEIVER


## GENERAL FEATURES

BOOK REVIEWS
BOOK SALE
CIRCUIT EXCHANGE
20,76,210,360,371,469
26, 76, 216, 366, 371, 469
COMPETITION RESULTS
255
COMPUTER INTERFACES EXPLAINED by R. A. Penfold 350
COUNTER INTELLIGENCE by Paul Young 49,440
DOWN TO EARTH by George Hylton 52, 92, 214, 276. 307, 382, 423, 490, 526, 599

ECONOMICAL REPAIRS by L. J. Stean 322
EDITORIAL 7,63, 119, 175, 231, 243
287, 399, 453, 511, 567, 631
EUROPEAN AUDIO SHOW by Barry Fox 20
FOR YOUR ENTERTAINMENT by Barry Fox 27, 71, 164,
220, 265, 291, 380, 408, 459, 552, 611, 676
GRAVITATION WAVES by George Hylton 548
HINTS AND TIPS

NEW PRODUCTS NEWS

201, 269, 330, 375, 442, 561
34, 77, 88, 144, 190, 256, 316 $374,424,443,482,523,560$
$161,257,425,525$
PLEASE TAKE NOTE
BBC Midi Interface (March '86)
Computer Output Port (Feb '86-Building Blocks) 16
Digital Capacitance Meter (Dec '85) 161
Flat TV Aerial (Aug '86)
525
Geiger Counter (Aug '86)
Infra-Red Beam Alarm (Sept '86)
LCR Bridge (Nov '85)
525
Tilt Alarm
257

READERS' LETTERS
266, 373, 429, 499, 528, 580
SEMICONDUCTORS IN PERSPECTIVE by James Fowkes 472 SHOPTALK by Richard Barron \& David Barrington 25, 94 $146,208,246,313,367,436,485,537,588,645$ SOLDERING by R. A. Penfold
SPEAKING TO MACHINES by Tim Ival
292

## SPECIAL OFFERS AND SERVICES



## £500 of Electronic Equipment to be WON in the new Cirkit amtasese <br>  <br> * §8 worth discount vouchers

 $\star 164$ pages featuring over 3,000 products$\star$ Many new products, plus all the old favourites $\star £ 500$ worth of electronic equipment and components to be won in our catalogue competition.
$\star$ On sale at your newsagent from 16th October, or direct
 from the address below
Cirkit Distribution Ltd
Park Lane. Broxbourne, Herts, ENIO 7NQ Tel: (0992) 444111. Tlx: 22478

## CRIO 10 D HRE: ouT catâlogue now! It's no secret!

 that there is a real difference at Cricklewood Electronics. That's why you should never be without the FREE CRICKLEWOOD ELECTRONICS COMPONENTS CATALOGUE, for sheer variety, competitive prices and service from the U.K.'s number one $100 \%$ component shop. No gimmicks, no gadgets or computers, just components, millions of them, all easily available by mail order, calling or credit card telephone orders. Just pick up the phone (or a pen) to get your FREE copy now (no S.A.E. required). You have nothing to lose.
## CRICKLEWOOD ELECTRONICS LTD. 40 Cricklewood Broadway NW2 3ET 01-450 0995 \& 01-452 0161 ALL MAJOR CREDIT CARDS ACCEPTED <br> Telex 914977

UNIVERSAL NICAD CHARGER $£ 6.95$
WITH 4 RECHARGEABLEAA/HP7 CELLS EX-EQUIP (TESTED 8


GUARANTEED) CHARGES ANY
COMBINATION PP3, AA, C \& D CELLS

NICADS ex-equip AA/HP7 onily (tested \& guaranteed) $\mathbf{4}$ for $\mathbf{£ 2}$ or 10 for $\mathbf{5 4 . 5}$ BUTTON BATTERIES
AG3 $7.87 \times 3.6 \mathrm{~mm}$
AG10 $11.58 \times 3 \mathrm{~mm}$
AG12 $11.58 \times 4.2 \mathrm{~mm}$
4 for $£ 1.60$ or 10 for f 3.
SEALED LEAD ACID RECHARGEABLE BATTERY
6V $2 \cdot 6$ A/Hr $132 \times 60 \times 32 \mathrm{~mm} £ 9.95$
2V $2.6 \mathrm{~A} / \mathrm{Hr} £ 18.00$
ON/OFF OPTO-ISOLATOR 20 Milli-second response. 6 V 60 mA lamp \& cadmium photoresistor housed in small metal can for PCB moung. Wa in serrent relay £ 1.20 each or 5 for $\mathbf{f} 5$
ULTRASONIC TRANSDUCERS
40kHz Matched pairs, transmitter/receiver. Per pair $£ 4.20$.
BUZZER AND FLASHING LED ALARM I2V housed in neat box with reset button. Used in car for belt-up or trafficator reminder etc, or annwhere a reseltable alarm is required. High resistanc
for $\mathbb{5} 6$.


PCB KIT $\mathbf{5 5 . 9 5}$ 4 pieces copper clad, circuit etchant, 2 pens. sheet transfers. plastic tray $\&$ instructions. Book 'How to Design \& Mahe Your Own PCBs" f 1.95

CROYDON DISCOUNT ELECTRONICS
40 Lower Addiscombe Road. Croydon CRO 6AA. Tel. 016882950



## PLUS - PLENTY OF BARGAINS

## POST

TODAY

SEND LARGE S.A.E. (min $12^{\prime \prime} \times 9^{\prime \prime}$ with 98 p stamp UK) - (Overseas send
$£ 1.00$ with address) Price $£ 1.00$ to callers FREE ON WRITTEN REQUEST TO ALL TRAINING AND EDUCATIONAL ESTABLISHMENTS (ref EE)

QUANTITY DISCOUNTS AVAILABLE
HSORYY RUDIOELECTRONICS 404 Edgware Road, London W2 1ED.
Sales office: 01-258 1831
OPEN 6 DAYS AWEEK-ALL WELCOME

## TELEVISION/COMPUTER FULL-TIME TRAINING

(FULL TIME COURSES APPROVED BY THE BUSINESS \& TECHNICIAN EDUCATION COUNCIL)

2 YEAR
BTEC National Diploma (OND)
ELECTRONIC \&

## COMMUNICATIONS ENGINEERING

\{Electronics, Computing, Television, Video, Testing \& Fault Diagnosis\}
15 MONTHS
BTEC National Certificate (ONC) ELECTRONIC EQUIPMENT SERVICING
(Electronics, Television, Video Cassette Recorders, CcTV. Testing \& Fant Diagnosis)

## 15 MONTHS

BTEC National Certificate (ONC)
COMPUTING TECHNOLOGY
(Electronics, Computing Sotwware/Hariware, Microelectronic Testing Metrodss)

## 9 MONTHS

BTEC Higher National Certificate (HNC) COMPUTING TECHNOLOGY \& ROBOTICS
(Microprocessor Based Systems, Faut Diagnosis, ATE, Robotics)
these counses include a high percentage of coulege based PRACTICAL WORK TO ENHANCE FUTURE EMPLOYMENT PROSPECTS NO ADDITIONAL FEES FOR OVERSEAS STUDENTS
SHORTENED COUASES OF FROM 3 TO. 6 MONTHS CAN BE ARRANGEO FOR APPIICANTS WITH PREVIOUS ELECTRONICS KNOWLEDGE
O.N.C. 5th Jan/20th April 1987

FULL PROSPECTUS FROM
LONDON ELECTRONICS COLLEGE (Dept EE) 20 PENYWERN ROAD, EARLS COURT, LONDON SW5 9SU. Tel: 01-3738721.

## MAKE YOUR INTERESTS PAY!

More than 8 mililion students throughout the world have found it worth their whilet An ICS home-study course can help you get a better job, maike more money and have more fun out of lifel ICS has over 90 years experience In home-study courses and is the largest correspondence school in the world. You learn at your own pace, when and where you want under the guldance of expert 'personal' tutors. Flnd out how we can help you. Post or phone today for your FreE informano lick on the course of your cholce. (Tick one box onlyl)


## INDEX TO ADVERTISERS

ALCON INSTRUMENTS B.K. ELECTRONICS.. .... Cover III (I.B.C.) DEVELOPMENTS ULL, J. \& N. ................. Cover H (I.F.C.) LONDON ELECTRONICS COLLEGE ... 688 CAMBRIDGE LEARNING LTD........... 628 MAGENTA ELECTRONICS .............. 630 CIRKIT HOLDING... CIRKIT HOLDING .......
C.P.L. ELECTRONICS C.P.L. ELECTRONICS CRICKLEWOOD ELECTRON
CROTECH INSTRUMENTS. CROYDON DISCOUNT ELECTRONICS
DATAMITE.
ELECTROMAIL ELECTROVALUE ESR ELECTRONIC COMPONENTS GREENWELD ELECTRONICS HAPPY MEMORIES HENRY'S AUDIO ELECTRONICS . I.C.S. INTERTEXT JAYTEE ELECTRONIC SERVICES.

687 MAPLIN ELECTRONICS Cover IV (O.B.C.)
687 MARCO TRADING............. 687
659 MARCO TRADING.............................. 687 687 OMEGA ELECTRONICS ........................ 640 OMNI ELECTRONICS ............................ 627
687 PHONOSONICS ................................ 629
623 PROTEUS ..
635 RADIO COMPONENT
626 SPECIALISTS
684 RADIO ELECTRONICS
628 RISCOMP LTD........
628 ROOEN PROOUCTS 659 R.T.V.C
688 SCS COMPONENTS.
688 STEWART OF READING
629 T.K. ELECTRONICS

## 669

 .669 .565 626.
683 .683 .683
.640 . .681

## THRFEI IWTO ONE WIIL GO - WITH THE CROITCH 3132



1 SCOPE:
DC -20 MHz Bandwidth $2 \mathrm{mV} /$ div Sensitvity 40ns - 0.2s/div Sweep 14 Trigger Functions Including active TV trigger on line \& frame.
3 Triple Output DC Source
$+5 \mathrm{~V}(1 \mathrm{~A})$; -ve grounded $\pm 12 \mathrm{~V}(200 \mathrm{~mA})$ Common Floating

2 Active Component Comparator
(for checking Transistors, diodes and I.C.'s etc)

Test Voltage: $8.6 \mathrm{Vrms}(28 \mathrm{~mA})$
All for the price of a scope at £285*

2 Stephenson Road, St. Ives, Huntingdon, Cambs. PE17 4WJ Telephone: (0480) 301818

## OVP POWER AMPLIFIER <br> AMPLIFIER MODULES OM POWER AMPLIFIER MODULES <br> Now enjoy

world-wide reputation for quality, reliability and performance at a realistic price. Four models available to suit the needs of the professional and hobby market. ie. Industry, Leisure, power supply Integral heat sink Glass fibre PCB and Drive circuit to power compatible Vo meter. Open and short circuit proof. Supplied ready built and tested.

UMP 100 Mk II Bi-Polar Output power 110 watts R.M.S. into 4 ohms, Frequency Res posse $15 \mathrm{~Hz}-30 \mathrm{KHz}-3 \mathrm{~dB}$, T.H.D. $0.01 \%$ S.N.R. - 118 dB , Sens. for Max. output 500 mV at 10 K , Size $355 \times 115 \times 65 \mathrm{~mm}$. PRICE $£ 33.99+£ 3.00$ P\&P.

OMP/MF100 Mos-Fet Output power 110 watts R.M.S. into 4 ohms, Frequency Res posse $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$, Damping Factor 80, Slew Rate $45 \mathrm{~V} / \mathrm{uS}$. T.H.D. Typical $0.002 \%$, Input Sensitivity 500 mV , S.N.R -125 dB . Size $300 \times 123 \times 60 \mathrm{~mm}$. PRICE PRICE $23.99+23.00$ P\&P.
OMP/MF200 Mos-Fet Output power 200 watts R.M.S. into 4 ohms, Frequency Resposse $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$, Damping Factor 250, Slew Rate $50 \mathrm{~V} / \mathrm{uS}$, T.H.D. Typical $0.001 \%$, Input Sensitivity 500 mV , S.N.R 130 dB. Size $300 \times 150 \times 100 \mathrm{~mm}$. PRICE
PRICE $\mathrm{f} 62.99+f 3.50 \mathrm{P} \mathrm{\&}$ P. OMP/MF300 Mos-Fet Output power 300 watts R.M.S into 4 ohms Frequency Reswatts R.M.S. into 4 ohms, Frequency Res-
ponce $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$, Damping Factor ponse $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$. Damping Factor 350 . Slew Rate $60 \mathrm{~V} / \mathrm{uS}$. T.H.D. Typical
$0.0008 \%$, Input Sensitivity 500 mV , S.N.R 130 dB , Size $330 \times 147 \times 102 \mathrm{~mm}$. PRICE PRICE $£ 79.99+£ 4.50$ P\&P.

OTE: Mos-Fels are supplied as standard ( 100 KHz bandwidth \& Input Sensitivity 500 mV ). If required


Qu METER Companble with our four amplifiers detailed above. A very accurate visual display employing 11 L.F.D. diodes 17 green. 4
red) plus an additional on off indicator Sophisticated logic control circuits for very fast rise and decay times. Tough moulded plastic case, with tinted acrylic front Size $84 \times 27 \times 45 \mathrm{~mm}$ PRICE $£ 8.50+50 \mathrm{p}$ P P P

LOUDSPEAKERS 5" to $15^{\prime \prime}$ up to 400 WATTS R.M.S Cabinet Fixing in stock. Huge selection of McKenzie Loudspeakers available including Cabinet Plans. Large S.A.E. (28p) for free details

POWER RANGE
8.50 .
${ }_{20}^{8.50}$ WATT R.M.S. Hi-Fi/Disco.
 2. oz magnet R"M S. Hi-Fi/Disco

5 Hz. Freq. Resp. to 4 KHz . Sens. 95 dB . PRICE $โ 28.60+\lceil 3.00 \mathrm{P} \mathrm{\&}$ P ea
McKENZIE
${ }^{12^{\prime \prime} 85}$ WATT R.M.S. C1285GP Lead Guitar/Keyboard/Disco
$2^{2 \prime}$ ally voice coil. Ally centre dome. Res. Freq. 45 Hz Freq Resp to 6.5 KHz . Sens. 98 dB
12"
12" 85 WAT R.M.S. C1285TC P.A./Disco $2^{\prime \prime}$ ally voice coil. Twin cone
Res. 1 req WA TR Req. Resp. to Bass Guitar/Disco
$3^{\prime \prime} 150$
$3^{3}$ ally voice coil. Die-cast chassis. Res. Freq. 40 Hz . Freq. Resp. to 4 KHz . PRICE $£ 57.87+£ 4.00 \mathrm{P} \mathrm{\& P}$ as 10060 WATT R.M.S. 1060 GP Gen. Purpose/Lead Guitar/Keyboard/Mid. P.A.
$2^{4}$ voice coil. Res. Freq. 75 Hz . Freq. Resp. to 7.5 KHz . Sens. 99 dB . PRICE $£ 19.99+£ 2.00$ P\&P
 voice coil. Res. Freq. 45 Hz . Freq. Resp. to 7 KHz . Sens. 101 $15^{\circ} 200$ WATT P.M.S. C 15200 High Power Bass
Res. Freq. 40 Hz. Freq. Resp. 105 KHz . Sens. 101 dB . PRICE $£ 62.41+£ 4.00$ P\&P 15" 400 WAT R.M.S. C 15400 High Power Bass
$\qquad$
$1^{1 "}$ voice $10^{\text {voice }} \mathbf{3 0}$ coil. Res. Freq. 48 Hz . Freq. Resp. to 5 KHz . Sens. 92 dB . PRICE $£ 32.00+£ 1.50$ P\&P ea $10^{\circ} 300$ WATRR.M.S. Disco/Sound re-enforcement otc. 2" 300 WATTR.M.S. Disco/Sound re-enforcement etc.
voice coil. Res. Freq. 35 Hz . Freq. Resp. to 4 KHz . Sens. 94 dB . PRICE $£ 47.00+£ 3.00 \mathrm{P} \mathrm{\& P}$ ea. SOUNDLAB (Full Range Twin Cone)

60 WATT R.M.S. Hi.-Fi/Multiple Array Disco etc.
voice coil. Res. Freq. 63 Hz . Freq Resp to 20 KHz S
voice coil Res Freq. 63 Hz . Freq. Resp. to 20 KHz . Sens. 86 dB . PRICE $£ 9.99+61.00 \mathrm{P} 8 \mathrm{P}$ ea
voice coil. Res. Freq. 56 Hz . Freq. Resp to 20 KHz . Sens. 89 dB PRICE f10.99+ $\mathrm{f1} .50 \mathrm{P}$ P. P ea
60 WAT R.M.S. Hi-Fi/Multiple Array Disco etc.
60 WATT R.M.S. Hi-Fi/Disco etc
voice coil. Res. Freq. 35 Hz . Freq. Resp. to 15 KHz . Sens. 89 dB . PRICE $£ 16.49+£ 2.00$ P\&P
A Wis HOBBY KITS. Proven designs including glass fibre printed circuit board and high quali components complete with instructions FM MICROTRANSMITTER (BUG) $90 / 105 \mathrm{MHz}$ with vary sensitive microphone. Range 10
3 WATT FM TRANSMITTER 3 WATT $85 / 115 \mathrm{MHz}$ varicap controlled professional performance, Range up to 3 miles $35 \times 84 \times 12 \mathrm{~mm}$ ( 12 volt) Price: $: 14.49+75 p$ P\&P.
SINGLE CHANNEL RAD HO CONTROLLED TRANSMITTER/ RECEIVER 27 MHz . Range up to 500 metres. Double coded modulation Receiver output operates relay with $2 a \mathrm{mp} / 240$ volt contacts. Ideal for many applications. Receiver $90 \times 70 \times 22 \mathrm{~mm}$ ( $9 / 12$ volt). Price: $£ 17.82$ Transmitter $80 \times 50 \times 15 \mathrm{~mm} \times(9 / 12$ volt). Price: $\mathrm{f11.29}$
P\&P +75 p each. S.A.E. for complete list.


PRICES INCLUDE V.A.T. * PROMPT DELIVERIES * FRIEND
BURGLAR ALARM
Better to be "Alarmed" then terrified.
Thandar's famous 'Minder' Burglar Alarm System, Thandar's famous 'Minder' Burglar Alarm System, GUARANTEED
Control Unit - Houses microwave radar unit, range up to 15 metres adjustable by sensitivity control - armed 30 second exit and entry delay. Indoor alarm - Electronic swept ire 104 dB output.
Outdoor Alarm - Electronic swept freq. siren. 98 dB output. Housed in a tamper-proof heavy duty metal
Case case.
Both
Both the control unit and outdoor alarm contain rechargeable batteries which provide full protection
during mains failure. Power requirement $200 / 260$ volt AC $50 / 60 \mathrm{~Hz}$. Expandable with door sensors. panic
SAVE $\ddagger 13 \mathbf{8 . 0 0}$ Usual Price $f 228.8$
BK's PRICE $£ 89.99+£ 4.00$ P\&P


OMP LINNET LOUDSPEAKERS The very best in quality and value. Made specially to suit today
need for compactness with high sound output levels. Finished in hard wearing black vynide with protective cor hers, grille and carry handle. All models 8 ohms. Full range 45 Hz - 20k Hz. Size $20^{\prime \prime} \times$
$15^{\prime \prime} \times 12^{\prime \prime}$ Watts R.M.S. per cabinet. Sensitivity 1 W .1 mtr . dB.
OMP 12-100 Watts 100 dB . Price $£ 149.99$ per pair
OMP 12-200 Watts 102 dB . Price $£ 199.99$
per pair.


Professional 19" cased Mos-Fet stereo amps. Used the World over in clubs, pubs, discos etc. With twin Qu meters, twin toroidal power supplies, XLR connections MF600 Fan cooled. Three models (Ratings R.M.S. into 40 hms ). Input Sensitivity 775 mv MF200 (100 + 100)W. £169.00 Securicor MF400 $(200+200)$ W. £228.85 Delivery MF600 $(300+300)$ W. $£ 299.99 \quad £ 10.00$

1 K-WATT SLIDE DIMMER

$\qquad$ to Compact Size
$4 \times, \times 1, \times 2$ ${ }_{*}^{4}$ Easy snap in fi ing through pane cabinet cut out

* Insulated pas * Insula
case
F Full trot using 8 amp
triad

BS800 * Suitable for both resist ance and inductive loads. In numerable applications in disco's. theatres etc PRICE $113.99+75$ P P\& P


PIEZO ELECTRIC TWEETERS MOTOROLA PIEZO ELECTRIC YWETEN
Join the Piezo revolution. The tow dynamic mass (no voice oil) of a Piezo tweeter produces an
improved transient response with a lower distortion level than ordina, $y$ dynamic tweeters. As a crossover is not required these units can be added to existing speaker systems of 4 to 100 watts
(more it 2 put in series). FREE EXPLANATORY LEAFLETS SUPPLIED WITH EACH TWEETER.

TYPE 'A' (KSN2036A) 3" round with protective wire mesh, ideal for bookshelf and medium sized Hi -ii speakers. Price f 4.90 each +40 p P\&P
 TYPE 'B' (KSN1005A) $31 / 2$ " super horn. For general purpose speakers, disco and P.A. systems etc. Price
$\$ 5.99$ each +40 P\&\& 55.99 each +40 p P\&P. TYPE 'C' (KSN6016A) $2^{\prime \prime} \times 5^{\prime \prime}$ wide dispersion horn. For quality Hi-fi systems and quality discos etc
Price $f 6.99$ each +40 P $P \& P$. Price f6.99 each + 40 P Pa horn Upper frequency response reside dispersion horn toper frequency response retained extending
down mid range ( 2 KHz ) Suitable for high quality Hi-fi systems and quality discos. Price f9.99 each TYPE PEP (KSN1038A) $33 / 4$ " horn tweeter with
+4. attractive silver finish trim. Suitable for Hi-fi monitor systems etc. Price f5.99 each +40 p P\&P.
LEVEL CONTROL Combines LEVEL CONTROL Combines on a recessed mount$85 \times 85 \mathrm{~mm}$. Price $£ 3.99+40 \mathrm{p}$ P\&P.

STEREO DISCO MIXER
STEREO DISCO MIXER with $2 \times 5$ band L. \& R. graphic equalisers and twin 10 segment
L.E.D. Vu Meters. Many outstanding features 5 Inputs with individual fader providing a 3 useful combination of the following: 3 Turntables (Mag). 3 Mics, 4 Line plus Mic with talk over switch. Headphone Monitor Pan Pot.L. \& R Master Output control
put 775 mV . Size $360 \times 280 \times 90 \mathrm{~mm}$.




Pick up a copy of our new 1987 catalogue from all branches of W.H. Smith for just $£ 1.50$.
Or post this coupon now, to receive your copy by post for just $£ 1.50+40$ p p \& p. If you live outside the U.K. send $£ 2.50$ or 11 International Reply Coupons. I enclose $£ 1.90$.

## Name

## Address

...................................................................................

Post Code
.............................. EE/12/86

AVAILABLE IN ALI W.H. SMITH STORES FROM 14 TH NOV. ORDER YOUR COPY NOW!

## MAPLIN ELECTRONIC SUPPLIES LTD.

Mail Order: P.O. Box 3, Rayleigh, Essex SS6 8LR.
Telephone: Southend (0702) 554161
SHOPS

- BIRMINGHAM Lynton Square, Perry Barr, Tel: 021-356 7292
- LONDON 159-161 King Street, Hammersmith, W6.

Telephone:01-748 0926

- MANCHESTER 8 Oxford Road, Tel: 061-236 0281.
- SOUTHAMPTON 46-48 Bevois Valley Road, Tel: 0703225831.
- SOUTHEND 282-284 London Rd, Westcliff-on-Sea, Essex.

Telephone:0702-554000
Shops closed all day Monday.


[^0]:    COIL DESIGN AND CONSTRUCTION MANUAL B. B. Baban!

    A complete book for the home constructor on "how to make" RF, IF, audio and power coils, chokes and transformers. Practically every possible type is dis cussed and calculations necessary are given and exwithed in detail. Although this book is now rather old with the exception of torroids and pulse transformers littla has changed in coil design since it was written.
    96 pages
    Order Code 160

[^1]:    For readers who don't want to damage the issue send a photostat or a copy of the coupon (filled in of course) with a cut-out valid "date corner"

[^2]:    EE PRINTED CIRCUIT BOARD SERVICE
    Please send me the following P.c.b.s.
    winder
    Make cheques/PO payable to: Everyday Electronics
    (Payment in $£$ sterling only)
    Quantity

