

CAR LICHTS REMNDER
 ULRASONIC ALARM SYSTEM =L =CRONIC LOCK

EVERYDAY = = CRRONOS
PROJECTS
ELECTRONIC CODE LOCK by Dr. W. D. Phillips 426
Prevent unauthorised use of electronic equipment
CAPACITANCE COMPARATOR by LS. Cook 431
Quick check for unmarked devices
ATOM EPROM SIMULATOR by J. R. W. Barnes 444
Low cost program adaptor
ULTRASONIC BURGLAR ALARM by I. H. F. Goult 454
Rumble the quietest burglar with an even quieter whistle
CB MINI POWER SUPPLY by T. R. de Vaux Balbirnie 470
Allows hand-held tranceivers to be used at home without constantbattery replacement
CAR LIGHTS WARNING by H. B. Foster472
Don't drive in the dark
SERIES
TEACH-IN 84 by George Hylton 436
Part 10: Digital Circuits
ANATOMY OF YOUR MICRO by Owen Bishop 448
Part One: Introduction-The Microprocessor
OSCILLATORS by J. R. Davies 463Part 2: Using the 555 and ICM7555
FEATURES
EDITORIAL New Technology 425
SHOPTALK by Dave Barrington 434
Product news and component buying
CIRCUIT EXCHANGE 441,475
A forum of readers' ideas
FOR YOUR ENTERTAINNENT by Barry Fox 442
Computer Time; Video Dropouts; Microchip Clean-up
PRINTED CIRCUIT BOARD SERVICE 443
COUNTER INTELLIGENCE by Paul Young 446
A retaller comments
EVERYDAY NEWS 452
What's happening in the world of electronics
NEW PRODUCTS 480
Facts and photos of instrument, equipment and tools
RADIO WORLD by Pat Hawker G3VA 462
New Licences; Baby Broadcasters; High-Speed Satellite
SQUARE ONE474
Beginners' Page: Integrated circuits drawings, photographs and articles published in EVERYDAY ELECTRONICS is fully protected, and reproduction or imitations in whole or in part are expressly forbidden.

Cirkit.A new name

This year Ambit will stop being Ambit. And become Cirkit.

Cirkit is more than just a change of name. It means a better service for you. Faster delivery.

A bigger range of the best and latest products with well over 10,000 different items available.

Everything for the home and industrial user.
A whole new Cirkit range of constructional kits, graded for the student, expert and enthusiast.

Modules to build for everyone.
Cirkit is a go ahead company that believes in giving service to its customers.

There's a technically skilled staff to help you.
We keep in touch with the manufacturers and we know what's going on.

As soon as new products are available, Cirkit has them.

Cirkit means a bigger catalogue. A better company to deal with.

And a wider than ever range of products that's growing all the time.

For you, Cirkit means a bigger stock and better service.

For further information send for our latest catalogue or visit one of our three outlets at: 200 North Service Road, Brentwood, Essex, CM14 4SG; 53 Burrfields Road, Portsmouth, Hampshire, PO3 5EB; Park Lane, Broxbourne, Hertfordshire, EN10 7NQ.

To: Cirkit Holdings PLC, Park Lane, Broxbourne, Hertfordshire I enclose 80 p. Please send me your latest catalogue and $3 \times \$ 1$ discount vouchers! If you have any enquiries please telephone us on Hoddesdon (0992) 444111. Name Address

> Telephone

Area of Special Interest

for a better service.
 NES56N Dual version of the $555 \quad 61.05560 \quad 0.50$

UA74ICN DIL low cost op amp A747CN Dual 741 op amp UA74CCN 741 with external frequency comp
$\begin{array}{ll} & \text { comp } \\ \text { HA1388 } & \text { 18W PA trom 14V } \\ \text { TDA2002 } & \text { BW into } 2 \text { ohms power amp }\end{array}$
UN2283 IW max 3-12V power amp
MC3357 Low power NBFM IF system and detector
ULN3859 Low current dual conversion NBFM IF and delector M3900 Quad norton amp LM3909N 8pin DIL LED flasher
KB4445 Radio control 4 channe
encoder and RF
KB4446 Radio control 4 channe Radio control 4 chann
receiver and decuder
ICM7555 Low power CMOS versjon of timer 61.074110 .22 $6104780 \quad 0.40$ $6101388 \quad 2.75$

ICL8038CC Versalile AF signal penerator with sine/square/triangle OPs
$\begin{array}{lllll}\text { TK10170 } & 5 \text { channel version of KB4445 } & 61-10170 & 1.87\end{array}$
HA12002 Protection monitor system foramps. PSUx, TXs etc Pomamps. PSUx, IXs etc HA12017 83dB S/N pho \% THD
MC14412 300 baud MODEM controlier (Eduro/US specs) $61-14412 \quad 6.85$

Microprocessor \& Memories

$\begin{array}{cl}\text { Z80A } & \begin{array}{l}\text { Popular and powertul } \\ \\ 8-b i t ~ C P U ~\end{array}\end{array}$

Z80APIO 2 pori parallel input/outpu: 2.80A CTC 4 channel counter/timer $28671 \quad 28$ Micro comp. and Basic 6116.3 16K (2kx8) CMOS RAM 200 mS $26132-6 \quad 32 \mathrm{~K}(4 \mathrm{kx} \times$) quasi RAM 350nS
4116.2 16K (16 kx 1$) 150 \mathrm{hS}$

2764 GAK (8 kx 8) 450 nS $2732 \quad 32 \mathrm{~K}(4 \mathrm{k} \times 8) 450 \mathrm{mS}$ Voltage Regulators 7805 5V IA pusitive 7812 12V IA positive 7815 15V IA positive $7905 \quad 5 \mathrm{~V} 1 \mathrm{~A}$ negative $7912 \quad 12 \mathrm{~V}$ IA negative $7915 \quad 15 \mathrm{~V}$ IA negative Transitors

BC182	General purpose	5800182	0.10
BC212	General purpose	5800212	0.10
BC237	Plastic BC107	5800237	0.08
BC238	Plastic BC108	58.00238	0.08
BC239	Plastic BC109	5800239	0.08
BC307	Complement to BC237	58.00307	0.08
BC308	Complement to BC238	5800308	0.08

26-18400 $\quad 3.40$ 26-18420 $\quad 2.95$ 26-18430 2.90 26.0867117 .50 $26-36116 \quad 6.68$ 26.0613215 .00 $26-24116 \quad 1.59$ 26.02764 9.50 $2602732 \quad 5.70$

27-78052 0.40 $27.78122 \quad 0.40$ $27.78152 \quad 0.40$ 27-79052 0.49 $27-791220.49$ 27-79152 0.49

Aluminium Electrolytics Radial PCB Mounting

		Pack of 4	
10u	16 V	$05-10606$	0.24
47 u	16 V	$05-47606$	0.28
47 u	25 V	$05-47607$	0.28
470 u	6.3 V	$05-47705$	0.36
470 u	16 V	$05-47706$	0.48
Tantalum Beads			
1uf	35 V		
10 uf	16 V	$05-10501$	0.18
47 ut	6.3 V	$05-10601$	0.28
47 ul	16 V	$05-47601$	0.45
		$05-47602$	0.92

Controlled Rectifiers
BRY5S-100 100V.8A 52.5sico 0.50 C122DI 400 V 8.0 A
3 mm Diameter LEDs V179P Green
VI80P Yellow
-10400 $\quad 0.12$ 10720

15-10990 $\quad 0.56$

Monolithic Capacitors

	Pack of 3	
In	$04-10204$	0.39
10n	$04-10304$	0.42
100n	$04-10404$	0.45
Low Voltage Disc Cermaic		
		Pack of 5
In	$04-10203$	0.20
10n	$04-10303$	0.20
Polyester (C280)		
		Pack of 3
IOn	$04-10305$	0.18
47n	$04-47305$	0.24
I00n	04.10405	0.24
470n	$04-47405$	0.51
IuF	$04-10505$	0.66

R F Components

Filters

CFU/LFB CFW/LFH SERIES
Miniature 455 kHz filters. I / P and O / P impedance 2 K

Crystal Filters 2 Pole Types
$10 \mathrm{M} 15 \mathrm{~A} \quad 10.7$ Centre Frea. $\quad 20.10152 \quad 210$ 10 10mosal $\quad 10.695$ Centre Frea. $\quad 20-11152 \quad 3.49$

Inductors

We offer the complete Toko range of fixed and variable inductors. Over 500 coils from audio to V.H.F. See catalogue for details.

Soldering Irons (Antex)

Please add 15\% VAT to all advertised prices and 60 p post and packing. Minimum order value $s 2$ please. We reserve the right to vary prices in accordance with market
fluctuation. ,

Not only will you find a wide selection of all the usual types you may require in our $A Z$ products fist; there are also many others made necessary by today's ever-advancing electronics - just one more example of how much better Electrovalue serves you. Please mention this journal when getting in touch with Electrovalue	
D SERIES CONNECTORS $9,15,25,37$ or 50 way connectors with corresponding covers and retainers. Goldplated contacts. Max current per contact $\rightarrow 5 \mathrm{~A}$. ID CONNECTORS	
For connecting ribbon cable to PCBs. Insulation Displacement Type: 16, 20, 26,34 or 40 way. 1A per contact. Straight or right angle plug fitting; cable socket has strain relief. RPC CONNECTORS	
5 way and 7 way chassis plus and sockets. DIN style layout. Gold-plated pins 250V/ 5A rating per socket. OTHER TYPES	
Edge connectors, DIN, jack plugs and sockets, phono, XLR, BNC, UHF and power.	
SUPPLIERS-SEND FOR FREE 36 PACE A-Z LIST ATTRACTIVE DISCOUNTS-FREE POSTAGE-GOOU SERVICE \& DELIVERY	
ELECTROVALUE LTD Phone (0784) 33603 . Telex 26475 28 St Jude's Road Englefield Grn, Egham Surrey TWZO OMB North: 680 Bumage Lane, Manchester (051) 4324345 EV Computing Shop: 700 Burnage Lane, Manchester (051) 431 ACCESS ANB barclaycand phoned Orders welcome	

YOUR CAREER.Your Fu URE.YOUR OWN BUSINESS. YOUP HoBes
THIS IS THE AGE OF ELECTRONICS! the world's fastest growth industry.

Our new style course will enable anyone to have a real and visual method. No previous knowledge is required,
and visual method. No previous knowledge is required
no marhs, and an absolute minimum of theo
You learn by the practical way in easy stees
all the essentials of vour har woy in easy steps, mastering a career in electronics or as a self-emploved senvicino
engineer. All the training can be carried out in the comfor
of your own home and at your own pace.
A tutor is available to whom you can write personally at any time, for advice or help during your work. A Certific
is given at the end of every course.

- Build a modern oscilloscope
- Recognise and handle current electronic
components
- Read, draw and understand circuit diagrams

Cary out 40 experiments on basic
electronic circuits used in modern

- Equipment using the oscilloscope and current solid state 'chips
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T. V Hi.Fi, VCA and microprocessor/computer equipment

FRTHE!
COLOUR BROCHURE

Please send your brochure without any obligation to NAME

I am interested in ADDRESS \qquad as described above RADIO AMATEUR LICENCE MICROPROCESSORS OTHER SUBJECTS please state below
Post now to: BLOCK CAPS PLEASE

British National Radio\& Electromics School Reading. Berks.RGI 1BR CACC

KITS FROM £7 TO £60

Sparkite

Buy Sparkrite Brand Leading Auto Electronics in self-assembly kit form - And save pounds!! - Electronic Ignition systems - contact triggered and contactless - Electronic Car Security Systems - including a new ultrasonic uni - Car Drive Computer - with 12 functions

SEND FOR FREE LITERATURE PACK - TODAY! 8 SOPHISTICATED

S
SPARKRITE (A Division of Stadium Lid I, Queensway, Enfield EN3 4SD $-$

NAME
Telephone: 01-8044343

ADDRESS.

MOTORIZED GEARBOX
As featured in Computer Contro Small Vehicles' in May issue. Complete set of components (not PCB) + Gearbox \& Wheels (as recommended by the authors) for E37

These units are as used in a computerized tank, and offer the opportunity to buy the electromechanical parts required in building remote controled vehicles. The unit has $2 \times 3 V$ motors, linked by a of the vehicle, thus enabling turning of the vehicle, and a gearbox contained the final drive speed to approx 50 rpm Data is supplied with the unit showing various options on driving the motors etc. E5.95. Suitable wheels also vailable: 3^{7} Dia plastic with blue tyre, driled to push-fit on spindle. 2 for $\mathbf{£ 1 . 3 0}$ $\left(1 i m i t e d q(y) .3^{\prime \prime}\right.$ dia aluminium disc spindle thick, drill

NKCAD CHARGERS

Versatile unit for charging AA, C, D and PP3 batteries. Charge/test switch, LED indicators at each of the 5 charging points. Mains powered. $210 \times 100 \times$ 50 mm £7.95.
Model A124. Unit plugs directly into 3A socket, and will charge up to 4 AA

NI-CAD BATTERIES
AA size 99p each; C size 199p; D size 220p; PP3 size 395p.
SPECIALII $6 \times$ 'D' size, only $£ 11.001$!

THE 1984 GREENWELD 84 PAGE CATALOGUE NOW AVAILABLE!!

 It's Bigger, Brighter, Befter, more components than ever before. With each copy there's discount vouchers Bargain List, Wholesale Discount Lis Buik Buyers List, Order Form and PACKSI PACK PACKS! PACKS! PACKS! Transistor Pack. 50 assorted full NPN PF AF include 9C19F, Type number 198 839 14, 117, 172, 182, 183 BF198, 255, 394, 2N3004, Retail cost $\mathbf{6 7 +}$ Special low pricenew Assorted polyester caps - all and modern components, radia 0.01 to fuf 100011 Super valuges from 63 to 1 h 's backll Our mo at 395p ever - Vero offcuts Thipular pack estricted for some time, but have now built up a reasonable ock and can unce reath offer sq ins of vero copper clad offcuts, average size $4 \times 3^{\circ}$
Ofreled at around $\frac{1}{2}$ the price of new board and it watt 5% hi-stab carbon film esistors with pre-formed lead one mouning. Enormous ahm to a several mes Only 250p. 5000 £ $10 ; 20,000 £ 35$ $K 520$ Switch Pack 20 different ascorted switches - rocker slide pust otary, toggle, micro etc. Amazing value at only 200 p Otficial orders welcome - minimum
 GPEENWELD SO1 OH1 SHA PRUCES INCLUDE VAT: YUST ADD MOD PAF

PREVIOUSLY ADVERTISED STILL AVAILABLE

Tape punch and reader
Bench isolating transformer 250 wati ．．．．
$£ 22.50$
$£ 7.75$ BOAC in－fight stereo unit
Drill assortment 4 each 25 sizes
Nicao chargers，msin
Flourescent inventor 13 watt from 12 v
Ten digit stitch padopb phone erc．
Uniselector 2 pols 25 way
Water valve mains operated
ditto $12 v$ resettable
Double gtazing clear PVC sheet，
Magnetic Cluten
Mouth operated suck or blow switch
ditro 230 mains
Timer Omron STP NM 1100° AC Coil
Kev switch with 2 keys dp mains
Airvsive mains operated
Dry film lubricant serosol can
Coin on witeh，cased with coin tray

Complete kit of parts for a three channel sound to thit unit wish but it is plenty rugged enough for disco work．The unit is housed in an attractive two tone metal case and has controls for
each channel，and a master on／off．The audio inpur and outpur each channel，and a master onfoff．The audio input and output
are by \％＂soc kers and three panel mounting fuse holders provide are by $1 / s o c k e r s$ and three panel mounting fuse hoiders provide
thyristor protection．A four pin plug and sock ket faciltate ease of
connecting lamps．Special price is $£ 1495$ in kit form or $\mathbf{£ 2 5 . 0 0}$ connecting lamps．Spe
assembled and tested．

12 volt MOTOR BY SMITHS

Ditro，but double ended $£ 4.25$ ．
Ditto，but permanent magnet $£ 3.75$
EXTRA POWERFUL 12 v MOTOR Probably develops up to $\% \mathrm{~h}$ ．p．so it could be used 80 power

THERMOSTAT ASSORTMENT

$$
10 \text { different thermostats. } 7 \text { bi-metal evpes and } 3 \text { liguid types, }
$$ There are the current stats which will open the switch to protect devices against overload，short circuits，etc．，or when fitted say

in front of the edement of a blow heater，the neat would trip in front of the element of a blow hearer，the ite stat if the blower fuses；appliance stats，one for high temp． the stat if the blower fuses；appliance stats，emperatures which
eratures，otherss adiustable over a rane of temer
could include $0-100^{\circ} \mathrm{C}$ ．There is also a thermostatic pod which can be immersed，an oven stat，a calibrated boiler stot，finally an iee stat which，fitted to our waterproot heater element，up in the
loft could protect your pipes from treezing．Separately，these loft could protect your pipes from treezing．Separately，these
thermostats could cost around $£ 1500$ ．however，you can have the parcel for $£ 2.50$ ．

> - BARGAIN OF THE YEAR
> The AMSTRAD Stereo Tuner.

This ready assembled unit is the ldeat tuner for a music
centre or an amplitier，it can also be uuickly mate inic centre or an amplifier，it can also be yuickly marte into a
personal stereo radio－easy to carry about and which will personai sereer radie－－ass
give you superb reception．
Other uses are as a＂get you to sleep radio＂，you could even
take it with you to use in the lounge whize the rest of the take it with you to use in the lounge when the rest of the
famity want to view programmes in which you are not interested．You can listen to some music instead．
Some of the features are：long wave band $115-270 \mathrm{KHz}$
medium wave band $525-1650 \mathrm{KHz}, \mathrm{FM}$ band $87-$ medium wave band $525-1650 \mathrm{KHz}$ ，FM band $87-$
108 MMz ，mono，stered \＆AFC switchable，tuning meter 108 MMz ，mono，stereo \＆AFC switchable，tuning meter to give you spot on stereo funing，optional LED wave band
indicator，fully assembled and fully aligned．Full wiring up dato showing you how to connect to amplitier or heac phones and details of suhtubte FM aerial（note ferrite rod aerial is included for mediurn and
mede up on very compact board．
Offered at efraction of its cost：
only £6．00

THIS MONTH＇S SNIPI
 pm speaker \＆instructions $£ 2.45$

REVERSIBLE MOTOR with control gear Mede by the famouss Framco Company this robuss motor is approx 74 ＂long， $31 /$
dia． $3 / 8^{\circ}$ shaft．Very powerful，almost impossible to stop．Ideal for operating stage curtains，doors，ventlators，etc．Even garage doors if Droperly balanced．Offered complete with control gear as follow 1 Framco motor with gear box 1 push to start switch
1 manual reversing \＆on／otf switch 2 Itmle stop switches

FOR SOMEONE SPECIAL
Why not make your gree ting card play ot tune？It could play
＇Happy Blithdoy＇，Mern Christmas＇．Wedding March＇etc Happy Strithday，Merry Christm as，Wedding March＇，etc，of
＇Home Swaet Mome＇，exc．Wafer thin 3 part assemblies，for making chards musical．Mini microchip speaker and bstitry with switch that operates as the card is opened．
ordering．Complete，ready to work $£ 1,25$ ．
JOYSTICK
WHY PAY E10 OR MORE－Make yourself o Joystick full details were given in Dec／San＇Sinclair Projects＇s We wil
supply complete kit for $\mathbf{E 2 . 3 0}$ ．Although desligned for the OX81 lt is equally suitabe tor any home computer． TELEPHONE ITEMS（ex－GPO）
Plugs only 4 pin or 5 pin
Modern desk telephone
Heary bleck old ty
External bell unit
Bell ringing power unit
STABILISED POWER SUPPLY（Mains Input） By LAMDA（USA）－Ideal for computer add－ons，d．c．output． Regulated for tine volts and losd current．Voltage regulation． 1%
with input variations up to 20%－losd regulation 1\％from no with input variations up zo 20%－losd regulation is fromn no
load to full load－or full load to no load．Complete in heavy duty case－Models available： $5 \mathrm{v} \cdot 9 \mathrm{~A}$ £23． 12 z
$£ 13.25$ ． $15 \mathrm{v} \cdot 1.2 \mathrm{~A}$ £ $13.25 .24 \mathrm{v}-2 \mathrm{~A} £ 23$ ．
PRESTEL UNIT

Hooter／Siren $6 v$－ $12 v$ Loud，med 8 soft buzzer Open buzzer ex G．P．O．

 $12^{\prime \prime}$ Gong cast ir$6^{\circ "}$ Gang $12 v^{\prime}$ dc

$75 p$ 50 p 19.50 8750 68.50

50 THINGS YOU CAN MAKE

Things you can make include Multi range meter，Low ohms tester，A．C．amps meter，Alarm clock，Soldering

\section*{$6^{\prime \prime}$－ $\mathbf{\text { E6．95\％Post }} 181.25$} | 5＂Plannair extractor |
| :--- |
| E6．50．Poost $£ 1.25$. |
| 1 ．． | 4 ＂ 4 ＂Mulf in 115 v ．

 4 ＂$\times 4^{4}$＂Muffin 2300 ． E5．75．Post 75p． those below are unused．
$4^{\prime \prime} \times 4^{4}=88.50$ ．Poss 75 p ． 9＂American made
 Tangential Blower tor

LIGHTING \＆POWER CABLES
Made by Volex to BRITISH STANDARD SPECIFICATIONS
P．V．C．shesthed outer－eopper elad conduction
 6 mm flat 3 core metres $£ 54.00$

MINIATURE WAFER SWITCHES

 MINIATURE WAFER SWITCHES 2 pole， 2 wey -4 pole， 2 way 3 pole， 3 way 4 pole， 3 way－ 2 pole 4 way 3 pole， 4 wBy 4 pole， 3 way -2 pole， 4 way 2 pols， 6 way -1 pole， 12 way． All at 25 p gach OTHER TYPES IN STOCK－PLEASE ENOUIRE

BLEEP TONE These work off $12 v$ and have on unusual and CONNECTING WIRE PACK $\%$ lengths of connecting wire，each 9 metre long and differently colour coded，a must fo RED LEDS 10 for 69 p． 100 for $\mathbf{5 5 . 7 5} 1000$ for $£ 52$

IN LINE SIMMERSTAT Ideal heat contrilier for soldering

VENNER TIME SWITCH Mains operated with 20 amp switch，ons
on snd one ofl per 24 hrs ．repeate dally sutomatically correcting for the lengthen ing or shortening day．An expensive time switch but you can have it for only $\mathbf{£ 2 . 9 5}$ a plastic case． $\mathbf{5 1 . 7 5}$ or metal case． $\mathbf{5 2 9 5}$ Also ava isble is aftaptor kit to convert
this into a normal 24 hr ．time switch but with the added advantage of up to 12 on／offs per 24 hra ．This makes an t is E 2.30 ． Ex－Electricity Board．
Guaranteed 12 months

IONISER KIT
Refresh your home，office，shop，work room，etc．with
negative ION generator．Makes you feel betler and work俍 £11．95 plus $£ 2.00$ post．

OTHER POPULAR PROJECTS

Short Wave Set－covers alt plugtin coils．Klt complete．

ohms tester．A．C．amps meter，Alarm clock，Soldering
iron minder，Two way telephone，Memory fogger，Live line tester，Continuty checker，etc．etc．，and you will stil
have hudreds of parts for furure projocts．Our tokg have hundreds of parts for future projects．Our 10 Kg
parcel contains not less than 1,000 hems－panel meters， parcel contains not less than 1,000 items－panel meters，
timers，thermal trips，telays，swiches，motars，drilis，taps timers，thermal trips，telays，swiches，matars，resistors，
and dies，toots，thermostats，coils，condensers，
neons，carohone／microphones，nicad charger，power uni neons，earphone／mict ophones，nicad charger，
multi－turn pote and notes on the 50 projects YOURS FOH ONLY $£ 11.50$ plus $\mathbf{~} \mathbf{3} .00$ post．

TELEPHONE \＆INTERCOM CABLES

10 conductors colaur coded
Flex extension lead win ruber
Flex extension lead twin rubber
.5 mm ideal qarass cutters etc ． 250 mtn coll $£ 25.00$
50 meter coll Ex.75
MAINS TRANSFORMERS

4 voit	4 amp	$\underline{1.75}$	24 vo！t	4 a	¢4．85
6 vols	1 mmp	$\underline{1.15}$	25 volt	1 amp	£2． 25
12 voll	\％amp	¢1．15	35 volt	2 amp	23.95
12 vol	x_{6} amp	£1．55	38 volt	2\％3mp	¢4．95
12 volf	1 amp	E1．75	26 volt	10 amp	c9．95
15 volt	2 amp	63.45	50 volt	2 mp	¢5．50
15 volt	4 amo	¢4．60	25．0．25	\％ $\mathrm{mmp}^{\text {a }}$	E3．95
18 valt	1 amp	E1．95	12．a． 12	2 amp	¢4．95
20 volt	1 amo	¢2．30	115 v 10	w auto	c3．95
		£3．45	$115 \sim 2$		¢5． 75

J．BULL（Electrical）Ltd．
 HAYWARDS HEATH，SUSSEX RH 16 3OU． 30 YEARS

 MAIL ORDER TERMS：Cash，P．O．Of chequie with ordet．Orders Underf12 add 600 service charge．Monthiy account or ders accepled from schools and public cumpanies．Access \＆ 8 ／card orders accepted day or night．Hay wards Heath $(04441454563$ ．Buth orders：phone for quote．
Shoo open $9.00-5.30$ ，mon to Fri，not Saturday．

STORE CLOSING SALE

All srocks must go from one of our blg wareho ses． $10,000,000$ iems，everything from AERIALS to 2 ENER will be cleared at
fantasfically low prices．－if you are a manufacurer you can save yourself a fortune－sen
minimum order fioo RC Bridge Kit
Channel Sound to Light－with iuly peraed meta 69.95
Dinto－made up ．
Robot controller－receiver／irensmitter
Ignition kit－helps starting，saves petrol，improves
Silent sentinel Uitre Sonic Transmitter and receiver
Car Light＂left on＇alarm
Secret switeh－fools friends and enemies alike
3－30v Variable Power Supply
2 Short \＆Medium wave Crystal Radio
2 Short \＆Medium wave Crystat Radio
3 v to 16 v Mains Power Supply Kit
2viot 16 v Ma
Light Chaser
Light Chaser．－three modes
Radio stethoscone－fault linding aid
Radio stethoscone－fault finding aid
Mug stod－emits piercing squark
Mug stod－emits prercing squark
Morse Trainer－complete with kev
Orith controt kit
Delll control klt－made up
Transmifter surveillance kit
Radio Mike
FM receiver kit－lor survellance or normal FM
Seat 8elt reminder
Car Starter Charger Kit．
Soil heater for planis and seed
Insulation Tester－electronic megger
Insulation Tester－electronic megget
Battery shaver or fluorescent from 12 v
Battery shaver of fluorescent from 12 ，
Mixer Pre amp－disco special with case
Aerial Rotator－mams op
Aerlat direction indicatar
Aerfal direction indicator
40 watt amp－hifl $20 \mathrm{~Hz}-20 \mathrm{kHz}$
Microvolt multiplier
ordinary multitester
Pure Sine Wave Gener ator
Lineas Power outpul meler
Powet supoly for 115 watt amo
Stereo Bass Booster，most liems

EMERYDAY EL=CTRONTCS and computer PROJECTS

Editor

MIKE KENWARD
Consultant Editor
FRED BENNETT
Assistant Editors
DAVE BARRINGTON (Production)
DAVID SHORTLAND (Technical)

Tochnical Editor

MIKE ABBOTT

Projects Editor

DAVID BRUNSKILL

Technical Sub-Editors

RICHARD BARRON
BRIAN BUTLER

Art Editor

JACK POUNTNEY
Assistant Art Editor
KEITH WOODRUFF
Senior Technical Illustrator
JOHN PICKERING
Technical Illustrator
ISABELLE GREENAWAY

Editorial Offices
EVERYDAY ELECTRONICS EDITORIAL
WESTOVER HOUSE
WEST QUAY ROAD POOLE, DORSET BH 15 1JG
Phone: Poole (0202) 671191
We regret that lengthy technical enquiries
cannot be answered over the telephone
Advertisement Manager
DAVID TILLEARD 01-2616676

Secretary
 CHRISTINE POCKNELL 01-2616676

Advertisement Sales Erecutives
ALFRED TONGE 01-2616819
RICHARD WILLETT 01-2616865
Classified Supervisor
BARBARA BLAKE 01-2615897
Advart Make-Up and Copy Department JULIE FISH 01-2616615

Advertisement Offices
EVERYDAY ELECTRONICS ADVERTISEMENTS
KING'S REACH TOWER
STAMFORD STREET
LONDON SEI 9LS
Telex 915748 MAGDIV-G

NEW TECHNOLOGY

OER THE years of my involvement with the electronics industry many high lechnology companies have spoken of the difficulties in getting business to accept new ideas and innovations. Of course there are a number of reasons, not the least being that hard headed businessmen need to know that the product is reliable, can be serviced quickly, will not be outdated as soon as they get it and will actually be of benefit to the company. Most of the above reasons take some time to establish and are, in my book, precisely the reasons that the new Sinclair QL will probably not become the business machine Sinclair are marketing it as.
There are, however, a couple of other reasons why new technology is not taken up more quickly. One of these is the poor back-up service, including supply delays and even over-pricing of replacements and add-ons by the suppliers. Many companies find more difficulties once the installations are in operation, simply because they are not flexible enough to reorganise operating procedures to make the best possible use of new equipment. This is often why things like "computer errors" occur on invoicing systems, etc. Take a recent outstanding example of lack of co-ordination within British Telecom-an organisation that does now appear to be moving with the times even though they have a long way to go yet. About a year ago we had a Prestel system in the editorial office, having discovered what we wanted to know about the system and found it rather cumbersome and of little value to the magazine (that is another story) we decided to have it taken out.

Both the installation, operation and removal were reasonably efficient and I felt that BT were just beginning to catch up with the service offered in countries like Canada-of which I have some experience. However, what followed after the removal of the service goes to show that they still need to rearrange some operating procedures and improve their own communications. We were billed for use of the system after its removal, followed by a reminder and a threat to bar our access to the service. Having telephoned the Prestel office each time we were promised things would be sorted out, but now, three months later, we have been billed for a further quarterly rental. Another phone call to Prestel followed by a further reminder and threat to bar our access if we do not pay within seven days.

Once again we called and were informed that the billing was done by a different department and that it would now be sorted out. We hope so, because it would be awful to be barred from a service we do not havel Incidentally we still get the Prestel Directory mailed to us as well.

What I hope, is that as a new generation of computer-oriented youngsters grows up and fills many jobs in the UK, such problems will be overcome. At least the next generation of businessmen will understand the technology, know that, used properly, it will make us more efficient and not be worried about unknown v.d.u. emissions making their hair fall out. With so many of you being computer users perhaps the future of UK industry will be bright.

Readers' Enquiries

We cannot undertake to answer readers' letters requesting modifications, designs or information on commerclal equipment or subjects not published by us. All letters requiring a personal reply should be accompanied by a stamped self-addressed envelope or international reply coupons.

We cannot undertake to engage in lengthy discussions on the telephone.

Component Supplies
Readers should note that we do not supply electronic components for building the projects featured in EVERYDAY ELECTRONICS, but these requirements can be met by our advertisers.

All reasonable precautions are taken to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

Back Issues
Certain back issues of EVERYDAY ELECTRONICS are avallable worldwide price E 1.00 inclusive of postage and packing per copy. Enquiries with remittance should be sent to Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Sireet, London SE 1 OPF. In the event of non-availability remittances will be returned.

Binders

Binders to hold one volume (12 issues) are available from the above ddress for $£ 4.60$ inclusive of postage and packing worldwide.
Please state which Volume.

Subscriptions

Annual subscription for delivery direct to any address in the UK: £12.00. Overseas: $\mathbf{1 3} \mathbf{1 3 0}$. Cheques should be made payable to IPC Magazines Ltd., and sent to Room 2613. King's Reach Tower, Stamford Street, London SE 1 9LS.

electronic LOCK For mains operated equipmer
 W.D.PHILLIPS bsc Phd

This device is designed to prevent unauthorised use of mains-operated equipment up to $5 \mathrm{~A}(1.2 \mathrm{~kW})$, including microcomputers, CB radio home-base stations, hi-fi systems and video recorders. The codelock unit is connected to the domestic mains supply as shown in Fig. 1. The correct 4 -digit code must be entered using the keyboard before power is switched to the protected equipment by means of a 2 -pole relay, switching both LIVE and NEUTRAL. The code is selected from 5040 possible combinations during construction and must be entered within a 5 -second period in order to operate the device. Although the codelock gives good protection against casual misuse, it can be overcome by a determined person, prepared to cut and rewire the mains supply.

CIRCUIT DESCRIPTION

Figure 2 gives the complete circuit diagram for the codelock. Almost all the work is done by a single integrated circuit, IC1. This is the LS 7225 keyless lock i.c., as shown in Fig. 3.

An internal circuit (power on reset) sets the device to the "locked" condition when power is first applied. Pins 11-14 provide the 4 -digit sequence input. Pressing $\mathbf{S} 5$
enters the first digit of the code by applying the positive supply voltage (logic 1) to pin 11. At the same time, C3 is charged to supply potential. C3 discharges slowly, the potential at pin 11 gradually declining as charge leaks away. When a critical level is reached, the internal sequence detector is reset.

With $\mathrm{C} 3=1 \mu \mathrm{~F}$ and $\mathrm{V}_{\mathrm{ss}}=12 \mathrm{~V}$, there is a delay of approximately 5 seconds during which the remaining digits of the code must be entered. This is done by pressing S4, S3, and S2. The remaining keyboard switches, $\mathbf{S} 6-$ S11, are connected to the unselected input, pin 10. Logic 1 at this pin immediately resets the sequence detector.
Three important outputs are available from IC1. The lock indicator, pin 7,
drives an l.e.d. directly, with no need for a series resistor. The l.e.d. is illuminated to indicate that the device is "locked" and becomes extinguished only after entering the correct code. The unlock output, pin 8 , is used here. This is toggled to logic 1 following a correct entry and remains in this condition indefinitely, being reset only by re-entering the code or switching off the supply. The output from pin 8 drives the relay, RLA1, via R2 and TR1, thereby switching the mains supply. The momentary unlock output is not used in this circuit.

MAINS SAFETY

In any project involving connection to the domestic mains supply, very high

Fig. 3 (Right). LM7225 pin connections.

Fig. 1 (Below). Block diagram of electronic codelock system.

Fig. 2. Circuit diagram of electronic codelock system.
standards of electrical safety are essential. This project incorporates a number of important safety features, following the recommendations of G.C.E. examination boards for O-level and A-level projects:

1. 3-CORE MAINS CABLE AND EARTHED METAL BOX: Metal boxes take longer to drill and to prepare than plastic boxes but they do offer a better standard of safety in the event of constructional errors. Provided the metal of the box is electrically connected to the mains EARTH terminal, any serious fault in the mains wiring is liable to blow the mains fuse and is unlikely to result in electric shock. Less dangerous faults in the low voltage secondary circuit can cause the mains transformer or other components to become warm or hot. While plastic boxes melt, metal boxes can
withstand high temperatures and, even in normal operation, they act as heat sinks, helping to dissipate any heat produced.

The mains cable is protected by a sleeved rubber grommet where it passes through the box and must be properly anchored, in this case by a P-clip. All mains wiring inside the box should be carried out using the appropriate colour and thickness of wire.
2. MAINS INDICATOR NEON (LP1): The neon is illuminated as soon as the codelock is plugged in and gives an instant visible warning that parts of the internal circuit are at mains LIVE potential. This is particularly imporant during testing.
3. DOUBLE POLE MAINS ON/OFF SWITCH (S1): Both LIVE and NEUTRAL are switched so that the
equipment is properly isolated, making it safe, even if the mains connections are accidentally reversed. In this circuit a d.p.s.t. illuminated switch is used to give a visible indication of mains switching.
4. MAINS FUSE. A 20 mm mains fuse to BS4265 is used and is mounted in a screw release fuseholder. The rating of the fuse is best chosen to correspond to the power requirements of the equipment controlled by the codelock. The maximum of 5 A must not be exceeded.

CONSTRUCTION

PLANNED ASSEMBLY: All the components used must be sensibly located with an adequate separation between the mains and low voltage parts of the circuit. Equally, all the components
must be firmly fixed, including circuit boards, which are securely bolted to the box. Interwiring between components is colour-coded using several different colours of stranded wire, and all the connections are kept short but strain-free. Spaghetti-type wiring in one colour is difficult or impossible to check and must be avoided.

MAIN CIRCUIT BOARD: The two printed circuit boards are shown in Figure 4 a and 4 b . Begin construction by assembling the main circuit board as shown in Figure 5. It is generally more convenient to insert the low-lying components, including resistors R1 and R2, D5, and the socket for IC1, first, followed by the larger components. Take care to insert the electrolytic capacitor (C1) and tantalum capacitor (C3) with the correct polarity. Do not insert IC1 at this stage. Complete the assembly of the main circuit board by soldering in various colours of flying leads about 15 cm long, using stranded wire and ribbon cable, as indicated.
SETTING THE CODE: The keyboard p.c.b. is assembled simply by soldering S2-S11 in position. The code is set using the method illustrated in Figure 6. This shows the wiring matrix of the keyboard viewed from the component side. The switch terminal corresponding to the first digit of the code, in this case 7 , is connected by an insulated wire link to the copper track E. In the same way, the switch terminal for the second digit (2) is connected to copper track D, the third digit (5) to track C, and the fourth digit (1) to track B. This sets the code 7251 . However, any combination using four different switch terminals can be set, so that constructors can choose from $10 \times 9 \times 8$ $\times 7=5040$ different codes. It is a simple matter to reset the code from time to time by rewiring the matrix.

The six "unselected" switch terminals are connected to track \mathbf{F}. Track \mathbf{A} is connected to $V_{s s}$ and provides the commonpositive supply to all ten keyboard switches. The insulated wire links must be

Fig. 5. Main p.c.b. component layout.

Resistors
Resistors

R1	$2 \mathrm{k} \Omega$
R2	$3.9 \mathrm{k} \Omega$
All $\pm \mathrm{W}$	carbon film $\pm 5 \%$

Capacitors

C1 $2200 \mu \mathrm{~F} 25 \mathrm{~V}$ elect. axial - leads

C2 $47 n F$ polyester
C3 $1 \mu \mathrm{~F} 35 \mathrm{~V}$ tantalum

Semiconductors

D1-4	200V. 1.6 A bridge
	rectifier
D5	1N4001 silicon diode
D6	TIL220 (0.2in red l.e.d.)
IC1	LS7225 keyless lock I.c.
TR1	BC109 silicon non

Miscellaneous

FS $1 \quad 20 \mathrm{~mm}$ mains fuse LP1 (maximum 5A-see text) 240 V a.c. mains neon with integral resistor RLA1 d.p.d.t. 12 V d.c. 110Ω coil
S1 d.p.s.t. with 240 V a.c. neon indicator
S2-11 (10 off) p.c.b. mounting keyboard switch (RS337-605)
SK1 shuttered power outlet socket (RS489-245) shrouded plug (RS489-251)
6 VA main transformer, $0-4.5,0-4 \cdot 5$, or 9 V secondary

PRINTED CIRCUIT BOARDS: maincircuit board size $100 \times$ 50 mm , keyboard size $100 \times$ 55 mm ; aluminium diecast box $170 \times 120 \times 55 \mathrm{~mm}$; screw release 20 mm fuseholder; sleeved ${ }_{6 \text { grommet; }}$ I.e.d. fixing clip; P-clip; 6A mains cable.

Fig. 4a. Main p.c.b. layout.

Fig. 4b. Keyboard p.c.b. layout.

Fig. 7. Top panel drilling details.
complete the interwiring procedure. The trickiest part of this procedure is connecting the ribbon cable to the terminal pins projecting from the track side of the keyboard p.c.b. To avoid shorting between these connections, only a short length of wire from the cable should be exposed and the soldered joints should be insulated using PVC tape.

TESTING

One method of circuit testing widely in use is to "switch on and see if it works". With mains-operated equipment this should NEVER be attempted. The proper procedure for testing the completed codelock is as follows.

1. Carefully check all wiring and
kept close to the surface of the p.c.b. so that the completed board can be mounted flush to the inside of the box. To complete the keyboard assembly, terminal pins are pushed through from the component side at the end of each track and soldered in position.

BOX PREPARATION: Drilling details for the aluminum diecast box used in the prototype are given in Figure 7. Mark the box carefuly and check component sizes before you begin. Patience and care taken at this stage will help to ensure a good final appearance. Large areas of metal are best removed using a small hacksaw fitted with a tension file in place of the normal blade. With drilling completed, the box can be cleaned and spray painted if desired.

FINAL ASSEMBLY: Once LP1, S1, the fuseholder FSI, and the transformer T1, have been fitted, the major part of the mains wiring can be carried out (Figure 8). Constructors are advised to check carefully that this is completed correctly. Next, fit RLA1, the output socket SK 1 and the main circuit board together with its flying leads. When the board is bolted in position these leads are cut to the correct length, stripped, and soldered to

Fig. 8. Codelock wiring diagram.
make sure that the soldered connections on both circuit boards stand well clear or are insulated from the metal box.
2. With a multimeter set to read resistance, check that the exposed metal of the box is directly connected to the EARTH terminal (centre pin) of the mains plug.
3. Remove the mains fuse FSI from its holder, plug in the mains lead and check the operation of LP1 and S1.
4. Disconnect the mains, replace FSI, and then reconnect the mains supply. Using a multimeter switched to a suitable d.c. voltage scale, check the low voltage power supply across the large smoothing capacitor (C 1) on the main circuit board. N.B. KEEP YOUR FINGERS WELL AWAY FROM ANY MAINS WIRING

AND HANDLE ONLY THE INSULATED ENDS OF THE METER PROBES. A reading of $12-16 \mathrm{~V}$ should be obtained.
5. Switch off again, allow time for Cl to discharge, and only then fit IC1 in its socket, checking for correct orientation.
6. Place the lid loosely on the box, switch on again and check that LED1 is illuminated. Now enter the selected code and listen for a slight 'click' indicating relay operation. At the same time, LEDI should be extinguished.
7. If everything is in order, disconnect the mains and screw down the lid of the box. Finally, connect the computer or other codelock controlled equipment via SK1, PLI and check operation of the complete system.

OTHER APPLICATIONS

The LS7225 is a very versatile device. The circuit given here can easily be adapted for other uses. For example, a general purpose combination lock can be made by using the relay to switch current to a solenoid operated bolt instead of switching the mains supply. Alternatively, the codelock could be used to arm and disarm domestic burglar alarms or other security systems. The quiescent current consumption of the device is extremely low $(40 \mu \mathrm{~A})$, allowing battery operation if desired.

Only experienced constructors should attempt such modifications. Interested readers are referred to "PRACTICAL ELECTRONICS", May 1983, pp 26-28 for further information.

CapACITAIICE COMPARATOR
 L.S.COOK

CAPACrTORS are manufactured from various materials in many shapes, physical sizes and nominal values, and with tolerances commonly from ± 1 per cent to $+100 /-20$ per cent. Very often the value required in a particular position is not critical, but there are limits; so a method determining the approximate value of a suspect capacitor, or one which has lost its markings, can be useful.

The comparator described here readily performs this function, being easy to use and relatively inexpensive.

PRINCIPLES OF OPERATION

Let the value of the unknown capacitance be C and that of an accurately known one be C^{\prime}. These are incorporated into two separate monostables, using a 556 dual timer i.c., with associated resistances R and R', respectively, giving "on times" (high output, $k R C$ and $k R^{\prime} C^{\prime}$ where k is a constant. If these are made equal $\mathbf{R C}=\mathbf{R}^{\prime} \mathbf{C}^{\prime}$ hence \mathbf{C} $=C^{\prime} R^{\prime} / R$. C^{\prime} and R are known and R^{\prime} is the value at a particular setting of a potentiometer, which can be measured or, as will be seen later, a scale can be calibrated directly in capacitance values.

Five ranges are provided, each covering values ten times those in the preceding range (see photographs).

CIRCUIT DESCRIPTION

Fig. 1 shows the circuit diagram. R, referred to above, is R1, 2, 3, 4 or 5 and R^{\prime} is the value of VR1 (between its wiper and R6). C^{\prime} is C 2 .
Initially, the outputs (call them outputs A and B from the $556 \mathrm{ICla}, \mathrm{b}$) are low, so the output of IC2c is high and that of IC2b low, thus triggering both sections of ICl and taking their outputs high, the reset input of IC1a being held high by IC2a; the trigger inputs then rise. When the output from either monostable drops to zero its effect is momentarily transferred through C5 or C6 to the corresponding input of IC2d and when, and only when, the two zero-bound spikes coincide (i.e., equal "on times" since the monostables were triggered simultaneously) a high output is obtained from IC2d, illuminating D5 via TR1. With output B now low the monostables are retriggered and the cycle is repeated. C9 acts as a reservoir capacitor prevented from discharging through IC2d by D4.

If output A drops before output B , it remains in that state until retriggered. If output B drops first it is possible for IClb
to be triggered again, perhaps more than once (depending on the setting of VR1), before output \mathbf{A} drops so when the latter does eventually fall it could coincide with the second, third, etc., fall of output B, thus indicating a false coincidence. To avoid this occurring, when output B falls ICla is reset via IC2a but not immediately, otherwise a coincidence would automatically be indicated, again falsely; R7 and C4 introduce a suitable delay. R13 and C8 provide a further delay to allow IC2a, and hence the reset input of IC1 a, to recover before retriggering takes place. D1, 2,3 allow C4, 7, 8 to rapidly charge or discharge (as appropriate) when output B rises.

Switch S2 provides a COARSE/FINE control. With the switch open (COARSE) D5 is illuminated for a wide range of values of VR1 to enable its approximate required setting to be located quickly. Closing S2 (FINE) enables a more accurate setting to be found.

COMSTRILTILIN

CIRCUIT BOARD

The circuit board is quite straightforward, and Fig. 2 shows the breaks to be made in the tracks on the underside
and the layout of the components on top. Make the breaks, first checking there are twenty-seven, and add the five wire links on the trackside (also shown in Fig. 2). Next, solder in the i.c. holders and the twelve wire links on top, allowing those joining E19-F19 and F25-G25 to stand above the board in order to attach flying leads. Then add the resistors, capacitors (remembering C10 is polarised) and finally the semiconductors. Leave the flying leads until their lengths are known.

INTERWIRING AND CASE

In the prototype, the circuit board and all the remaining components are mounted on a removable panel (3 mm plywood) with a section arranged to sit in a rectangular hole in the top of the case. Fig. 4 shows this panel with all the interwiring details. The circuit board is screwed onto pillars attached to the panel and lies above C2; alternatively, it could be bolted to the panel using spacers of a suitable length. Ensure that the screws used do not short adjacent tracks. Cut the shafts of VRI and S1 to the required length, filing a flat side if necessary, before mounting these components.

Fig. 1. Complete circuit diagram of the Capacitance Comparator.

Fig. 2. Track-side of the circuit board.

EE356
Fig. 3. Component layout (actual size).

The dimensions of the case (also 3 mm plywood) are given in Fig. 5. Glued butt joints are used, with short lengths of 12 mm square wood strengthening the four vertical corners. These do not quite reach the bottom of the case and provide points for screwing on a base panel and rubber feet. Ensure they do not obstruct the removable component panel. The case is covered with an adhesive plastic film.
Alternatively, the case could be a suitable sized plastics box, the components being mounted on the underside of the lid with a similar layout to that shown.
Whatever case is used, complete the wiring as shown in Fig. 4, adding flying leads to the circuit board before fixing the latter and attach crocodile clips to the test leads. Screw on the removable panel (if used) using spacers as necessary and add suitable poínter knobs. The battery holder just fits in the prototype, but if found to be loose a piece of foam rubber will hold it in place.

CALIBRATION

There are two alternative methods for calibrating the comparator. The first requires a reliable resistance measuring device that can measure up to about $2 \mathrm{M} \Omega$. The resistance to be measured is the section of VR1 in use, that is from its wiper to R6. (Leave IC1 out of the circuit when doing this.) Points numbered 1 to 10 on the dial are given by resistances of 212766Ω and its multiples (for example, 212766Ω for " 1 ", 425532Ω for " 2 ", etc.) rounded to about two significant figures in practice. Further division of the scale can be estimated sufficiently accurately for this instrument. The " 1 " then corresponds to the lowest capacitance in the selected range and the " 10 " to the highest.

It could be that a multimeter is the only resistance measuring device available and the accuracy of this, particularly for the higher values, may well be questionable. The second method of calibration, although involving some expense, may be considered preferable. Using the $1 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ range (the i.c. is now inserted and the battery connected) measure the capacitances of several 1 per cent tolerance capacitors within this range and mark the dial accordingly, again estimating the intermediate values. (Remember that 1 per cent polystyrene

capacitors are generally considerably less expensive than equivalent silvered mica types.) If this method of calibration is employed, a 5 per cent polystyrene capacitor will suffice for $\mathbf{C} 2$.

RANGES

Potentiometer VR1, C2 and R1 to RS have been chosen to produce the ranges described earlier, with continuity from one to the next. If the actual value of VR1 is well below its nominal one the top end of the scale could be lost. In this case R1 to R5 could be reduced to $82052,8 \cdot 2 \mathrm{k} \Omega$, etc., or C 2 increased to $5 \cdot 6 \mu \mathrm{~F}$.

USING THE COMPARATOR

Grip the leads of the capacitor under test in the crocodile clips observing polarity where applicable. Switch to COARSE and scan the dial on each range until the l.e.d. lights. Then switch to FINE, readjust the setting of VR1 to obtain the brightest steady light and read off the required value. Do not touch the capacitor or leads when doing this.

Some residual capacitance must be expected, but it is significant only on the lowest range. To estimate its value, measure a few close tolerance capacitors from 100 pF to $1 \mu \mathrm{~F}$. The differences between these known values and the readings obtained can be averaged to give the required figure. (On the prototype it is around 20 pF .) Remember to allow for this when using the lowest range; alternatively, mark a second scale on the dial.

To measure values below 100 pF the

Fig. 4. Components and wiring on the "removable panel". The two sections are glued or screwed together with suitable spacers between. Identical thickness spacers are used between the panel and the case top.

Fig. 5. Case dimensions. The circuit board stands 18 mm off the panel, screwed onto pillars of wood, or bolted using spacers.
scale could be extended, but a more reliable result may be obtained by first measuring the value of a capacitor of, say, about 150 pF then repeating with this and the one under test in parallel. Subtraction gives the required figure, automatically cancelling the resident capacitance.

A similar method can be used for values greater than $10 \mu \mathrm{~F}$ measuring a $10 \mu \mathrm{~F}$ capacitor first, then this in series with the one under test. The required value can be obtained from the series connection formula.

Note that the value of R5 (top range) is below that recommended for the resistance in this position (5 kHz), but no error has been detected as a result.

shop TALK

 1

 1
 BY DAVE BARRINGTON

Catalogue Received

The new 28 -page TK Electronics catalogue contains several new items of interest. Also, it is interesting to note that not only have they put their stocks on computer but the catalogue has been produced by the same machine.
The readout or "printing" is very clear (for a printout) and easy to read, and is another example of the excellent progressive service this company runs.
Amongst new products added to their listings are a new range of telephone connectors and a collection of security accessories. These include pressure mats, door/window contact sets, window tape connectors, bell box and passive infra-red detection unit.
Copies of the TK Electronics "Yellow Catalogue" are available free from TK Electronics, Dept EE, 11-13 Boston Road, London W7 3SJ. A selfaddressed envelope ($9 \mathrm{in} \times 6 \mathrm{in}$) would be appreciated.

Link Up

With the sales of video recorders and home computers now running into millions, the Reeler TV extension cable from Pullway will undoubtedly find many applications around the home.

Apart from the common domestic application, it is a god-send for the growing band of home computer and video game users. Here a portable TV is often used as a monitor, or even the family colour set is usurped, to display programs or play games.

By using the extension lead, wouldbe games "masters" and budding programmers need not run the risk of headaches or blurred vision from being too close to the screen.

For the caravanner, camper and boating enthusiast the extension reel will also prove an asset where storage space is often at a premium. They can position their remote aerial for optimum reception without yards of unwieldy cable, and, after use, the cable can be rewound and stored in any convenient small space.

Moulded in tough ABS plastics, the Reeler incorporates a carrying handle with integral socket and moulded coaxial plug. It is available in two capacities of either 30 or 45 feet of standard $75-$ ohm coaxial cable and has a recommended selling price of $£ 7.95$, including VAT.

For details of local stockists readers should write to: Pullway Ltd., Dept EE, Venn House, 11 Clayton Road Hayes, Middlesex.

Please mention

> EVERYDAY ELECTRONICS

when replying to products mentioned on this page and to Classified Ads

Change of Name

With all the recent changes at Ambit International and their opening of new premises at Portsmouth and Broxbourne, we have just received news that the component side of their operation is now trading under the name of Cirkit.
The change of name coincides with an increased product line 10,000 items now stocked) and the introduction of a range of Cirkit constructional kits, graded for the student, expert and enthusiast.
They have also issued a new catalogue which covers such items as: computer connectors and printers; microprocessors and memories; voltage regulators and semiconductors. Their listings of capacitors and r.f. components is probably one of the most extensive amongst component suppliers.

Copies of the new Cirkit catalogue cost 80p and may be obtained from: Cirkit Holdings PLC, Dept EE, Park Lane, Broxbourne, Herts. Included with each catalogue are three f 1 discount vouchers.

CONSTRUCTIONAL PROJECTS

Electronic Lock
The LS7225 "keyless" lock i.c. used in the Electronic Lock is a P-MOS device which performs the code sequencing. Also included, within the device but not used, is an auxiliary delay facility.
The LS7225 integrated circuit is avallable from TK Electronics or RS Components, Order code: 304-554. It should be pointed out that RS will NOT supply to the general public but must be ordered through a local stockist.
Most of our advertisers now stock suitable keypads for the "master" combination keyboard.

Ultrasonic Burglar Alarm
The 40 kHz transducers used in the Uitrasonic Burglar Alarm are usually sold in pairs and can be purchased with pin or phono plug connectors. The ones required are of the pin type. These are available from: Riscomp. Rapid, Enfield and Maplin.

The warning sounder, $\times 70$ W06, is available direct from: Avionic Systems (Heathrow) Ltd., Dept EE, Viscount Way. Hounslow. Middx TW6 2JW. The TOKO coil, CAN1A350ER, is stocked by Cirkit.

Car Lights Warning

Almost any type of 12 V d.c. buzzer would be suitable for the Car Lights Warning project.

If difficulties are experienced in locating the MCR102 thyristor for this circuit, then it would appear that the C103 Y from RS would be an alternative device.

Atom EPROM Simulator

The 2 K by 8 static CMOS RAM memory i.c.s used in the Atom EPROM Simulator are currently listed by Rapid Electronics and Cirkit.

We cannot envisage any component buying problems for the CB Mini Power Supply or the Capacitance Comparator.

F ENFIELD ELECTRONICS 208 Baker Street, Enfield L Middlesex. EN1 3JY. Tel: 01-366 1873

 $\left(\begin{array}{l}\text { Accus } \\ \text { MEA } \\ \text { Minatit }\end{array}\right.$

A TWELVE-PART HOME STUDY COURSE IN THE PRINCIPLES AND PRACTICE OF ELECTRONIC CIRCUITS. ESSENTIALLY PRACTICAL, EACH PART INCLUDES EXPERIMENTS TO DEMONSTRATE AND PROVE THE THEORY.
USE OF A PROPRIETARY BREADBOARD ELIMINATES NEED FOR SOLDERING AND MAKES ASSEMBLY OF CIRCUITS SIMPLE.
THE IDEAL INTRODUCTION TO THE SUBJECT FOR NEWCOMERS. ALSO A USEFUL REFRESHER COURSE FOR OTHERS.

By GEORGE HYLTON

This month we look at a few digital circuits and indulge in a bit of philosophy on the art of designing things. As I explained earlier, it's not the intention of this series to go into logic circuits as such. That's well covered in other articles. All the same, some of the digital integrated circuits developed for computing and similar uses can quite easily be adapted for use in analogue or linear circuits.

EXPERIMENT 10.1

COMPLEMENTARY INVERTER

Let's start by building a simple circuit which illustrates some aspects of digital electronics. In Fig. 10.1, two bipolar transistors TR1 and TR2, one pnp and the other npn, are connected "back to back" across the power supply. Circuits in which devices of opposite polarity work together like this are called "complementary" circuits.

The component layout is given in Fig. 10.2.

With S1 in position 2, bias current flows out of the base of TR1 (the pnp transistor) through R1 and R2 and into the base of TR2. Both transistors therefore have the same bias current and both are turned on.
What voltage does the meter read? In an ideal world, with identical transistors, the circuit would be perfectly symmetrical and the collectors would sit at just half Vcc. In the real world, one transistor has a higher gain and the output voltage is driven as far positive or as far negative as it can go. The meter reads either HIGH (nearly 9 V) or LOW (nearly zero).

Moving S1 changes the situation. In position 3, TR1 is turned on harder and the output must go HIGH. In position 1, TR2 is turned on and the output is LOW.

If you connect a pair of l.e.d.s as shown and switch S1 back and forth they light alternately.

Note that the output goes low when the input is high and vice-versa. This reversal of the input signal is called inversion and the circuit is an inverter. Its symbol is an "amplifier" triangle with a small circle at the apex. (As with op-amps, the supply
voltages are usually omitted from the diagram.)

Inverters are common building bricks for more complex circuits. They exist in integrated circuit form in all the common "families" of digital i.c.s.

Some of these families (TTL, ECL, and so on) are designed round bipolar transistors; others (cmos, nmos) round fieldeffect transistors. It so happens that cmos (pronounced like "sea moss") lends itself well to the sort of uses we are concerned with, so let's take a look at a cmos inverter (Fig. 10.3).

CMOS INVERTERS

It could hardly be simpler. TR1 and TR2 are field-effect transistors, of opposite polarity. They are connected like TR1 and TR2 in Fig. 10.1, except that no biasing resistances are needed. Each transistor acts as a "load" for the other.
Note that in Fig. 10.3 TR1 and TR2 are drawn as discrete f.e.t.s, that is, with enclosing circles. This is to help identification and comparison of these devices with the ordinary transistor symbol. In

Fig. 10.1. Circuit to illustrate inverter action, with two transistors, one pnp and one non, connected "back-to-back" as a complementary pair.

Fig. 10.2. Layout for Fig. 10.1 using EBBO discrete module. Note that the layout shows the final circuit: the l.e.d.s and the link between points C9 and C11 are not needed for the first experiment.
actual fact we shafl be using f.e.t. transistors that are elements within an in tegrated circuit, and such elements are normally drawn without any enclosing circle. The pin numbers given in Fig. 10.3 relate to the i.c. type 4069UB.

The three electrodes of a field-effect transistor (f.e.t.) have different names from those of bipolar transistors:

The SOURCE (s) of a f.e.t. corresponds to the EMITTER.

The GATE (g) corresponds to the BASE.

The DRAIN (d) corresponds to the COLLECTOR.

There is another connection, to what's called the substrate, but this is usually connected internally to the source and you don't have to worry about it
F.e.t.s are controiled by applying voltages to their gates. No gate current flows, so the f.e.t. has virtually infinite input resistance.

The two polarities of f.e.t. are:
n-channel, corresponding to $n p n$, requiring a positive drain voltage.
p-channel, corresponding to $p n p$ and requiring a negative drain voltage.

BIASING F.E.T.S

Biasing the kind of f.e.t.s used in смоs is similar to biasing bipolars. To turn on a f.e.t. its gate-source bias (Vas) must have the same polarity as its drain-source voltage (VDS). So for an n-channel f.e.t., Vas is positive and for a p-channel f.e.t. Vgs is negative.
F.e.t.s which require this kind of bias to turn them on are called enhancementmode f.e.t.s.

There are other kinds, including depletion-mode f.e.t.s, which turn on without any bias; that means gate and source are at the same voltage. Indeed, they usually need a reverse bias to keep their drain current down to a safe value. We shan't use any depletion-mode f.e.t.s but you may well come across them as discrete transistors in radio and TV receivers and audio amplifiers.
In a cmos inverter when the input goes high the output goes low and vice-versa. In digital electronics inverters are driven from high to low with no intermediate states. The output is always either close to VDD or close to Vss as the power supply rails are called.

INVERTERS AS AMPLIFIERS

For our purposes it's more useful to turn each f.e.t. half-way on. They then cooperate to act as a single-stage push-pull voltage amplifier. To arrange this, all you need do is connect a resistance from output to input (Fig. 10.4). The output voltage then adjusts itself to roughly half the supply voltage. Since there is no current through the added resistance the voltage at the input is the same as at the output.

Fig. 10.3. CMOS inverter as contained in the 4069 UB i.c. (Numbers refer to 4069 pins.)

Fig. 10.4. Biasing a CMOS inverter for use as an amplifier.

[हE 3

Fig. 10.5. EBBO i.c. layout for biasing experiment. The positions of the six inverters are shown on IC1 outline.

SAFETY PRECAUTIONS

The f.e.t.s in cmos (called mosFets, where mOS stands for metal-oxide-silicon) can be destroyed by static electricity of the kind that builds up on one's clothing in dry weather. To avoid discharging yourself through a cmos i.c., follow this safety rule: Before handling the i.c. or working on a circuit which incorporates it, touch the table-top or the "earth" line Vss.

HEX INVERTER

You can buy a cmos i.c. which contains six inverters, like the one in Fig. 10.3, for a few tens of pence. It's the hextuple ("hex") inverter type 4069. Letters may be added; for example, HEF4069UB. The "front" letters are the manufacturer's code. "UB" at the end (or sometimes " A ") means that the circuit is "unbuffered". This means that the inverter is not followed, inside the i.c., by an extra amplifier.

Many cmos circuits are buffered (B). This means that there is a buffer amplifier to prevent the inverter from being affected much by its load. A buffered cmos inverter has three circuits like Fig. 10.3 in each of its six inverters. Three stages are needed because two would invert twice and turn the inverter into a non-inverter. The third inverts again and restores the status quo.

Don't try to use buffered cmos for your experiments. Because of its very high gain it has a habit of oscillating instead of amplifying.

EXPERIMENT 10.2

SETTING UP

Use two yellow EBBO modules, sandwiched between two red ones (Fig. 10.5). Put a blue (discrete component) module beneath these. The red modules are terminal strips, each with two rows. Connect the two rows of the upper strip together and use it as the positive (+9 V) supply rail. Similarly, connect the rows of the lower strip for use as the negative (Vss) rail.

It would be convenient to begin circuit assembly by inserting the 4069 UB i.c. into the board to act as a marker for the connections. But this would increase the risk of static damage while you are setting up.

Instead, insert an i.c. holder (14-pin d.i.l. holder). The empty holder then becomes the marker and you put the i.c. itself in the holder when everything else has been completed.

Connect the negative supply line Vss before you start. This is very important when mains power units are used in place of a battery; the rule for connecting the "earthy" or common line is: first in, last out. Working on an "unearthed" circuit can allow mains leakage currents to flow through f.e.t.s and damage them.

Connect a $100 \mu \mathrm{~F}, 25 \mathrm{~V}$ capacitor bet ween positive and negative rails (use the spare holes on the battery holder). This reduces stray a.c. voltages which might creep from one part of the circuit to
another via the power supply, with upsetting results.

First connections to the i.c. socket are battery negative (-) to pin 7 and positive $(+)$ to pin 14. Now connect the output of each inverter back to its input via a resistor (Fig. 10.4).

You'll probably find it convenient to bend the resistors into "hairpins" and cut off part of one lead to match the bent one. Short direct connections, when needed, can be made with bare wire, but you don't need any at the moment.
"Earth" yourself to the negative line, insert the 4069UB and connect the battery. Measure the voltage at each output; that is, pins $2,4,6,8,10$ and 12. All should be within about 1 V of 4.5 V , demonstrating that the added d.c. feedback resistors have had the desired effect of setting the outputs near the half-supply-voltage mark. (In my case they were all 5 V , but individual i.c.s vary.)

If you run into trouble, switch off, check all connections, make sure the i.c. is plugged in the right way round and that each pin is really in. (It's quite easy to bend back a pin on the i.c. or the holder by accident. Check.)

It's unlikely that a hex inverter will fail on all six amplifiers, but if one happens to develop an internal short between VDD and Vss it will remove battery voltage from the rest. If all connections are correct but you still have problems try a different 4069UB.

EXPERIMENT 10.3

OSCILLATORS

We'll now turn the amplifiers labelled F and E on Fig. 10.5 into a square-wave oscillator (Fig. 10.6a). This generates a low frequency (about 6 Hz), audible as clicking in your crystal earphone. (Connect the earphone between any point and the negative rail.)

Next we'll use amplifier \mathbf{D} as a buffer (Fig. 10.6b). If R2 = R3 the gain is very nearly 1 . With this kind of feedback the signal voltage at amplifier D input is very much reduced, as you can check with your earphone: compare volumes at pins 9 and 8.

EXPERIMENT 10.4

SINE-WAVE OSCILLATOR

Our next step is more ambitious. It will call for more connecting points than the EBBO i.c. module can conveniently provide. So we'll off-load the extra connections on to the "discrete" module, Fig. 10.8. Your circuit is Fig. 10.7. This is a sine-wave oscillator and buffer. To get a

good sinewave, VR1 is set so that the circuit just oscillates steadily. The frequency is about 1.6 kHz .

EXPERIMENT 10.5

GATES

Now we'll make the two frequencies interact. To do this we'll use another standard digital circuit, a "gate". A смOS gate is a sort of switch which is opened or shut
by applying a large voltage (for example, the full battery voltage) to its control terminal.

The gate we'll use is part of a 4001 UB integrated circuit. Its symbol (Fig. 10.9) shows two inputs $(1,2)$ and one output (3). The little circle at the apex indicates that it's an inverting gate. That is, its output goes low when its input is high. Which input? In this case, either.

The 4001 contains four such gates. Their outputs go high if neither input 1 or input 2 is high. So this type of gate is

Fig. 10.6(a). Square-wave oscillator made from two inverters (" F " and "E") of a 4069 (IC1). Frequency about 6 Hz .

Fig. 10.6(b). Unity gain buffer amplifier (inverter "D").

Fig. 10.7. Sine-wave oscillator using two inverters (" A " and " B ") followed by unity-gain buffer "C". VR1 sets the amplitude, which is greatest when the spindle is turned fully anti-clockwise.
called a NOR gate, and in this case it's a 2 -input NOR Gate.

Insert the 4001 UB integrated circuit (IC2) onto the yellow module, to the right of IC1. See Fig. 10.10.
If input 1 is driven low, for example, by connecting it to Vss) and input 2 is connected to the output of the sine-wave oscillator, then a 1.6 kHz square-wave appears at pin 3, provided that the sinewave input is big enough. What is happening is that positive peaks of the sinewave drives the gate output low, negative ones high. The crests of the wave are flattened in the process, turning the sinewave into a rectangular wave. The gate output goes low, high, low, high .. at 1.6 kHz . If input 1 is now connected to VDD (that is, driven permanently high) the 1.6 kHz output is suppressed because the high on input 1 makes the output permanently low.

Now connect the output of your square-wave oscillator (Fig. 10.6a) to input 1 . This makes input 1 sometimes high and sometimes low. When low, the

[EETF
Fig. 10.9. A 2 -input NOR gate. Four such gates are contained in the 4001 i.c., as shown on the accompanying EB'BO layout (Fig. 10.10).

sinewave on input 2 can switch the gate on and off. When high the sinewave has no effect. The result is that the output is 1.6 kHz periodically turned on and off at 6 Hz . The sound in your earphone is a rapid sequence of "pips".

You can change the frequency of either oscillator by changing the \mathbf{R} or \mathbf{C} values.

Increasing \mathbf{R} or \mathbf{C} reduces the frequency. In the sine-wave oscillator (Fig. 10.7), use equal values for R4, R5 and C2, C3. If the sinewave is set to about 4 kHz and the square to about 20 Hz the combined output is a passable imitation of the ringing of an electronic telephone, if you turn the circuit on and off in the correct rhythm.

EE43P [E44]
Fig. 10.8. Complete EBBO i.c. board layout for square and sine-wave oscillators and buffers, Fig. 10.6 and Fig. 10.7, respectively.

[EE和

Fig. 10.10. The EB8O i.c. board layout for the 4001 UB.

USE YOUR IMAGINATION

Gates are very useful to the experimenter. In Fig. 10.11 a 2 -input Nor gate (as in the 4001) has audio applied to one input and a "high" to the other via R1 and R2. Result: no audio output because the "high" on input 2 keeps the output low. If terminals A and B are connected together this removes the high from input 2 and audio reaches the output.

One possible use for this circuit is as an audible "continuity tester". If A and B are used as test terminals, when they are connected to opposite ends of a conductor audio reaches the output, indicating that the conductor is intact.

Clearly, the circuit could be used as an alarm, activated by closing a contact between A and B. It can check the polarity of a diode, connected across A and B. Sound emerges only if the anode is connected to A and the cathode to B , not the other way round.

For this sort of job it is useful to connect a loudspeaker to the output. Ordinary moving-coil loudspeakers cannot be used, but you can use a piezo-electric "sounder", which is a sort of grown-up version of a crystal earphone, tuned to particular frequencies. (An inexpensive type, the Toko PB2720, works well at about 4 kHz .)

Note that R2 and C1 protect the gate against static; R2 limits the current and $\mathrm{C} \mid$ absorbs much of the charge.

No doubt you can think of other possible uses. You get four gates in every 4001, at a cost of (at the time of writing this) about 15 pence. Incidentally, I've been rather slipshod with mine, because I've left the unused gates disconnected.

Fig. 10.11. This gate arrangement can be made to do many useful jobs.

Fig. 10.12. Essentials of a timer circuit. Closing S 1 allows C1 to charge via R1. Closing S2 discharges C1 and so resets the circuit. In timer i.c.s the functions of S1 and S2 are performed electronically.

It's good practice to connect unused inputs permanently to the + or - line to avoid the possibility of stray voltages getting to them.
Gates can be used as amplifiers. Connect the two inputs together and add a feedback resistance from output to input just as we did with the 4069 . Two gates with strapped inputs can be used to make oscillators.

NAND GATES

There's another common type of gate, the NAND gate. Its output goes low only when all its inputs are high. These can also be connected as amplifiers. A cheap example in i.c. form is the 4011 quadruple 2 -input nand gate.

TIMERS

There are lots of integrated circuits designed for special purposes. Some are too specialised for general use, but there are many which are very adaptable. One such is the "timer" i.c.
The essence of a timer is illustrated in Fig. 10.12. Here a sort of differential amplifier, called a voltage comparator, has one input maintained at a steady voltage, the "reference voltage" via the divider, R2, R3. The other input receives the voltage across a capacitor Cl which at present is discharged. When S1 is closed, C 1 charges via R1. When the charge voltage reaches the reference voltage the output of the comparator switches from low to high. The time taken depends on the value of R1 and C1 and on the reference voltage.
The change in output can be made to activate useful functions like switching an appliance on or off. It can also be made to operate a "reset" circuit which acts like S2 to discharge C1. In this case, the circuit can be made to go on charging and discharging Cl . It is an "astable" circuit, an oscillator.

For practical purposes it is convenient to start the timing cycle by applying a voltage pulse rather than by throwing a switch like S1. So timer i.c.s incorporate a "start" or "trigger" facility. A type 555 timer i.c. with all these facilities can be bought for about 25 pence. You'll often see this particular i.c. used in designs in this magazine.

COUNTERS AND FREQUENCY DIVIDERS

It is easy to make two-state circuits which are put into one state by one input pulse and stay in that condition until a second pulse is applied to return them to their original state.

When driven by a sequence of input pulses these circuits give out just half as many output pulses. That is, they divide the number of pulses by two. Two such circuits, one driven by the other, divide by

4 , three by $8(=2 \times 2 \times 2)$ and so on, doubling up every time.

It is possible to divide by intermediate numbers by arranging feedback which resets the divider when the appropriate pattern of states appears in the chain of two-state circuits. Thus a "divide by 16 " circuit can be reset at 10 . It then becomes a divide-by-ten, otherwise called a Decade Counter. Three decade counters in succession divide by $1,000(=10 \times 10$ $\times 10$).

The basic "divide by two" element is called a binary counter (or sometimes a "flip-flop" or a "bi-stable").

Quartz crystal clocks contain long chains of binary counters. Quartz, when vibrated, generates a voltage. This can be picked up by electrodes, amplified, and fed back to sustain oscillation at the natural frequency of the piece of quartz, which can be very stable. In quartz clocks and watches a frequency is chosen which when divided by a chain of binary counters gives one output pulse per second. For example, $4,194,304 \mathrm{~Hz}$ yields 1 Hz when divided by 2 twenty-two times.

In superhet radio receivers a quartz frequency can be used as the "local oscillation". By dividing the frequency one crystal can be made to yield a multiplicity of frequencies, to give, say, one tuning point every 100 Hz .

LOGICAL DESIGN

The starting point for any design is to analyse the requirement very carefully, step by step. Unless you are quite certain what a piece of equipment is intended to do you are unlikely to be successful in making it. At this stage the design is not electronic at all, but rather a written specification.

Suppose, for example, that you want to make a touch-operated switch. The electronics is easy. Indeed, you can get i.c.s to do the job. But the i.c. does only the electronic part. You, the designer, have to make sure that the electronics are compatible with the physical part, the finger on the pad.

You might, for example, use the idea of allowing a tiny current to flow from the pad through the finger and to earth. Very tiny currents (much too small to be noticed) can be used. But what if the person who touches the pad is wearing plastic boots which insulate him from earth?

Thinking of this may steer you in the direction of making a touch-pad split into two parts, so that the finger allows current to flow from one part to the other. If you settle on this solution, you must ensure that the current is sufficient, by making actual tests on fingers, in dry conditions as well as moist ones, and so on. And you must ensure that an accidental accumulation of dirt on the pad doesn't allow enough current for a false operation.

You must also think about what might happen in unusual circumstances. One solution to the touch-switch problem is to make the pad sensitive to the heat of the finger. This, in a particular case, caused a disaster. Somebody used heat-sensitive buttons to summon lifts in a tower block. When the block caught fire the heat activated the controls and brought lifts full of people to the floor where the fire was raging.

HUMAN FACTORS

That cautionary tale illustrates the need to take all factors into account. Often the most important factors are the human ones. Designs must be compatible with the people who are to use them. Nobody (I hope) would give his grandmother a radio whose tuning control was so stiff that her poor old arthritic fingers couldn't turn it. But why have a tuning knob anyway? If the old dear never listens to anything but Radio Two wouldn't a single-station set be better?

It's surprising how often professional designers forget to think carefully about how their equipment is likely to be used. Recently I went shopping for a small bedside radio.

It should be obvious to any designer that small radios are likely to be used on bedside tables. It should then be apparent that such a radio is likely to be used in the dark. Many of the sets I looked at had to be rejected because their design was of the elegant slimline type which is doomed to be knocked over in the dark, when you wake up, realise you've left the radio on

CHECK YOUR PROGRESS

Questions on Teach In 84 Part 10 Answers next month
Q10.1 Ten inverters are connected in cascade; that is, output of the first to input of the second, and so on. If the input to the first is high what is the output of the last: high or low?
Q10.2 A 3-input NOR gate has all inputs tied together. A resistance of $10 \mathrm{k} \Omega$ is connected from output to input. If $V_{D D}=10 \mathrm{~V}$, what is:
(a) the approximate output voltage
(b) what is the output voltage if the resistance is increased to $10 \mathrm{M} \Omega$?
Q10.3 In the sine-wave oscillator circuit (Fig. 10.7) what would be the likely effect of increasing R4 and R5 to $1 \mathrm{M} \Omega$?

ANSWERS TO PART 9

Q9.1 About $160 \mu \mathrm{~A}$. There is 0.5 V (500 mV) across R4, which must be passing $150 \mu \mathrm{~A}$. $(m V / k \Omega=\mu A)$. If $V_{B E}$ for

TR2 is 0.7 V , its base is at $0.7 \mathrm{~V}+0.5 \mathrm{~V}=1.2 \mathrm{~V}$. This leaves 7.8 V across R2, which passes $7.8 \mu 4(V / M \Omega=\mu A)$. About $0.8 \mu \mathrm{~A}$ of this is TR2 base current; the rest is TR1 collector current. The total is then $157 \mu \mathrm{~A}$ or $160 \mu \mathrm{~A}$ in round terms.
Q9.2 There are two answers 39 MHz and 21 MHz . Each yields a difference frequency of 9 MHz when "mixed" with a 30 MHz input signal. In the same way, with any given oscillator frequency there are always two signal frequencies which give the same i.f. The unwanted signal frequency. called the image frequency, must be heavily attentuated by a signal-frequency filter preceding the frequencychanger, or it will cause interference. Using a high i.f. makes this easier by placing the image frequency far from the wanted-signal frequency. But to get adequate selectivity at an i.f. of 9 MHz calls for an expensive i.f. filter of the quartz-crystal type.
and sleepily fumble for the off switch. I eventually chose one which was not only broad-based but had a tuning l.e.d. which shows up in the dark.

Commercially, good "human engineering" should pay off. Consumer advice
organisations draw attention to design deficiencies so a bad design must suffer. Your designs, I hope, will always be good ones

Next month: New developments.

A project for beginners, using the 555 timer.

MOTORCYCLE ALARM

N this circuit a 555 timer (IC1) is used as a monostable, and when triggered by pin 2 being brought low, drives another 555 (IC2) which is wired as an astable. The output from IC2 turns TR1, and thus the relay on and off. This gives a series of bursts of the horn for a time set by R2 and C1. Pin 2 can be triggered by a ball bearing tilt mechanism, as shown in the diagram.

This unit can also be used in cars by wiring the trip switch wire to the courtesy light. Pin 2 will be held high via the lamp, and will be triggered by the car door being opened. If this method is used it will be necessary to install an isolation switch outside the car.
G. Bamford,
Cleckheaton,
West Yorks.

Video Dropouts

Dust is the big enemy of modern electronics. Recently I visited the Agfa tape factory in Munich and was reminded yet again of the lengths manufacturers must go to it they are to keep their product dust free.
Early domestic video tape suffered seriously from "dropout". That's a white blip on the screen caused by a gap in the magnetic coating.

Remember that on a modern video recorder the helical scan tracks are always under 50 microns in width and often half that or even less. That means the track is always narrower than a human hair.
So, if a speck of dust (or fleck of human hair!) gets into the tape coating it will mean that for a split second the video head is reading dirt instead of magnetic coating. As dirt is non-magnetic this means that there will be a (momentary) complete loss of signal.

Video recorders have a dropout compensator which is a small analogue memory, to fill in short gaps. But it can't cope with more than one line of the picture

A line takes 64 microseconds to scan. When there is dropout shorter than a picture line the compensator just pulls out the last line of memory and uses it again.
Obviously if the dust speck is larger, the compensator is defeated. That's when you see a white blip on the screen-it's just a hole in the recording that the memory can't fill and disguise.
The standard requirement for domestic VHS video tape is usally no more than 50 dropouts a minute, each lasting no longer than 15 microseconds. When you bear in mind that on a VHS recorder the heads are scanning at a rate of 4.85 metres a second (which is 4.85 microns a microsecond), a 15 microsecond dropout is equal to a 73 micron fault in the coating-that's still not much wider than a human hair

Most tape companies aim for a much lower, or better, dropout rate than the minimum standard requirement of fifty a minute. Agfa, for instance, aims for below 20 dropouts a minute on high grade tape and below 35 a minute on standard grade. Counting is of course electronic, and automatic, on cassettes sampled from the production run.

Incidentally, this helps clear up the ageold question; what is the difference between standard and high grade video tape? When I asked JVC's Japanese engineers once, they told me "high grade is better" When I asked in reply: "You mean standard grade is worse". they became very flustered!

Down To Earth

All modern tape plants seal off vital areas of the coating machine where the hot mix of plastics binder and magnetic coating is applied to the thin, transparent plastics base film. This way any dust in the factory air cannot get into the coating mix or settle on the tape while it is still sticky

The factory itself must also have a very clean atmosphere. In fact factory is the
wrong word. Most modern tape plants are more like hospitals. If visitors are allowed anywhere near the tape coating facility, they have to pass through an air shower which blasts any dust from their body. Or they must don protective clothing, hats and shoes. Often both precautions are taken.

At Agfa in Munich I noticed an interesting extra precaution. All the floors near the coating area are made of conductive material which is earthed by thick copper wires.

There are two reasons for this. If there is any build up of static in a building, there can easily be a spark. You know what happens in a dry centrally-heated atmosphere where there is a nylon carpet. Every time you touch metal there's a spark.

In a tape coating plant, where there are potentially explosive solvents in use, a spark could be very dangerous. Also a build up of static can mean a build up of dust. So
it makes sense on both counts to earth everything from the floor upwards.

Microchip Clean-Up

The anti-dust precautions needed in a tape plant are as nothing compared to those in a microchip factory. Toshiba in Japan has only now explained what it does to keep dust out of its VLSI plant at Kawasaki, near Tokyo.
It is at Kawasaki that the planning and production of 4 -megabit, and even 16 megabit memories using micro lithograph technology to draw circuit lines 0.5 microns wide is carried out. That's 100 th the width of a human hair.

This needs "super" clean rooms with dust limited to less than one particle of 0.1 micron size, per cubic foot of air. This is "Class 1" cleanliness. Compare this with around one million particles of such size in a cubic foot of air in a city street, or between 10,000 and 100,000 in a home or office.

The super clean air atmosphere is achieved by very dense air filters and a laminar air flow that comes down from the celling and is absorbed through the floor. Wherever possible sterile robots are used to operate machines and carry chips, rather than humans which have the nasty habit of shedding particles of skin and hair, however clean they may be.

Computer Time

I bought some computer equipment recen tly. It was like travelling in time back to the early days of the hi fi consumer boom. The ignorance of the people selling expensive equipment is beyond belief.

Several shops could not demonstrate a £500 printer to me because they quite literally didn't have the right connecting lead. Without the right connecting lead even the most expensive printer in the world is just a heap of useless junk.

One shop had the printer I wanted on demonstration and the salesman knew he had to alter the series of d.i.p.-switches to get it working properly. What he did was flip the switches randomly to see what happened.

Repeatedly, I suggested that he check with the instruction book. Only in desperation, af ter ten minutes of futile switch flicking, did he give in and try reading the instruction book. A specialist shop had Centronics and RS 232 plugs in stock, but not made-up leads.

All this is fine for the devoted computer enthusiast who avidly reads the specialist magazines and treats computing as a hobby. But Heaven help the small business that believes all the hype and tries to buy a personal computer for use as a business tool.

No wonder so many people have paid over the odds to buy an IBM PC. It's quite simply that they want to buy a total system from a well-known name which they feel they can trust.
My bet is that the hobbyist market will soon saturate. There is a limit to the number of people who want to play with computers as a hobby, rather than use them. There is also a limit to the number of computers any one hobbyist will buy.
It's what created the boom in hi fi music centres and rack systems. Astute electronics companies started to offer hi fi systems that needed no extra leads or technical knowledge to connect up. It's what made the video boom take off so fast, once it started.

Although a video recorder is by far the most complex piece of mechanical and electronic equipment you'll find in any home, it is remarkably simple to operate. Only the clock and timer need care and skill to understand.
Some people never use the timer on their video recorder or even set the clock. When a service engineer visited one home recently he asked why they had a piece of black tape over the window for the clock l.e.d. It was blacked out, the owners said, because it kept flashing " 8 s ". No-one had ever learned how to set it to the right time!

Friendly Vampire

Although computer firms keep talking about their equipment being "user friendly" most of it is still as friendly as a vampire. Of course when today's school children, who are weaned on computers, grow up and become businessmen and women it won't matter. But for many years yet there will still be a vast population of business people who are too old to have learned computing at school. They represent a vast untapped market for the computer equivalent of a hi fi music centre or domestic video recorder.
For what it is worth, my bet is that it will be the Japanese who cash in on this untapped market by offering low cost computers that are as easy to use as a music centre or video recorder. If you don't believe me, just remember what happened in the video market.
It was Philips who launched the first videocassette recorder, ten years ago. But it was the Japanese who waited a few extra years, learned by Philips's mistakes, and launched the VHS and Beta systems which now dominate the market. In fact Philips is now starting to manufacture VHS format recorders under licence from the Japanese and will be selling them in Europe by the end of this year.

EDERYDAY ELECTRONICS PRIITTED CIRCUIT BOARD SERUICE

Printed circuit boards for certain EE constructional projects are now available from the EE PCB Service, see list. These are fabricated in glass-fibre, and are fully drilled and roller tinned. All prices include VAT and postage and packing. Add $£ 1$ per board for overseas airmail. Remittances should be sent to: EE PCB Service, Everyday Electronics Editorial Offices, Westover House, West Quay Road, Poole, Dorset BH15 1JG. Cheques should be crossed and made payable to IPC Magazines Ltd.
We regret that the ordering codes for the August projects have been incorrectly quoted in the Sept-Oct issues. Correct codes are given here.
Please note that when ordering it-is important to give project ittle as well as order code. Please print name and address in Block Caps.
Readers ordering both p.c.b.s and software cassettes may send a single cheque/PO for the combined amounts listed.

NOTE: Please allow 21 daye for delivery. We can only supply boards listed here.

PROJECT TITLE	Order Code	Cost
Eprom Programmer, TRS-80 Eprom Programmer, Genie Eprom Programmer, TRS-80 \& Genie	$\begin{aligned} & 8306-01 \\ & 8306-02 \\ & 8306-03 \end{aligned}$	$\begin{aligned} & £ 9.31 \\ & £ 9.31 \\ & £ 1.98 \end{aligned}$
- JULY'83 - User Port Input/Output M.I.T. Part 1 User Port Control M.I.T. Part 1	$\begin{aligned} & 8307-01 \\ & 8307-02 \end{aligned}$	$\begin{aligned} & £ 4.82 \\ & £ 5.17 \end{aligned}$
\qquad AUGUST '83 - Storage 'Scope Interface, BBC Micro Car Intruder Alarm High Power Interface M.I.T. Part 2 Pedestrian Crossing Simulation M.I.T. Part 2 Electronic Die	$\begin{aligned} & 8308-01 \\ & 8308-02 \\ & 8308-03 \\ & \\ & 8308-04 \\ & 8308-05 \end{aligned}$	$\begin{aligned} & £ 3.20 \\ & £ 5.15 \\ & £ 5.08 \\ & £ 3.56 \\ & £ 4.56 \end{aligned}$
SEPTEMBER'83 - High Speed A-to-D Converter M.I.T. Part 3 Signal Conditioning Amplifier M.I.T. Part 3 Stylus Organ Distress Beacon Distress Beacon Pocket Version	$8309-01$ $8309-02$ $8309-03$ $8309-04$ $8309-05$	$£ 4.53$ $£ 4.48$ $£ 6.84$ $£ 5.36$ $£ 3.98$
\qquad OCTOBER • 83 D-to-A Converter M.I.T. Part 4 High Power DAC Driver M.I.T. Part 4 Electronic Pendulum	$\begin{aligned} & 8310-01 \\ & 8310-02 \\ & 8310-03 \end{aligned}$	$\begin{aligned} & £ 5.77 \\ & £ 5.13 \\ & £ 5.43 \end{aligned}$
- NOVEMBER'83 - TTL/Power Interface for Stepper Motor M.I.T. Part 5 Stepper Motor Manual Controller M.I.T. Part 5 Digital Gauss Meter Speech Synthesiser for BBC Micro Car On/OH Touch Switch	$\begin{aligned} & 8311-01 \\ & 8311-02 \\ & 8311-03 \\ & 83111-04 \\ & 8311-05 \end{aligned}$	$\begin{aligned} & £ 5.46 \\ & £ 5.70 \\ & £ 4.45 \\ & £ 3.93 \\ & £ 3.11 \end{aligned}$
- DECEMBER '83 - 4-Channel High Speed ADC (Analogue) M.I.T. Part 6 4-Channel High Speed ADC (Digital) M.I.T. Part 6 TRS-80 Twin Cassette Interface Environmental Data Recorder Touch Operated Die (Dot matrix) Touch Operated Die (7-segment) Continuity Tester	$\begin{aligned} & 8312-01 \\ & 8312-02 \\ & 8312-03 / 09 \\ & 8312-04 \\ & 8312-05 / 06 \\ & 8312-05 / 07 \\ & 8312-08 \end{aligned}$	$£ 5.72$ $\mathbf{¢} 5.29$ $£ 7.43$ $£ 7.24$ $£ 4.34$ $£ 4.34$ $£ 3.41$

Readers are advised to check with prices appearing in the current issue before ordering.
-Set of four boards.

- Calibrated with C1, VR1 and IC3 fitted.
M.I.T.-Microcomputer Interfacing Techniques, 12-Part Series.

PROJECT TITLE	Order Code	Cost
\qquad JANUARY'84 - Central Heating Pump Delay Biological Amplifier M.I.T. Part 7 Temp. Measure \& Control for ZX Comprs Analogue Thermometer Unit Analogue-to-Digital Unit Games Scoreboard	$\begin{aligned} & 8401-01 \\ & 8401-02 \\ & \\ & 8401-03 \\ & 8401-04 \\ & 8401-06 / 07 \end{aligned}$	$£ 3.33$ f 6.27 £2.35 £2.56 £9.60
- FEBRUARY'84 - Eprom Programmer/ROM Card for $\mathbf{Z X 8 1}$ Oric Port Board M.I.T. Part 8 Negative Ion Generator Temp. Measure \& Control for ZX Comprs Relay Driver	$\begin{array}{r} * 8402-01 \\ 8402-02 \\ \bullet 8402-03 \\ 8402-04 \end{array}$	£7.84 $£ 9.56$ $£ 8.95$ £3.52
- MARCH '84 - Latched Output Port M.I.T. Part 9 Buffered Input Port M.I.T. Part 9 VIC-20 Extension Port Connector M.I.T. Part 9 Commodore 64 Extension Port Connector M.I.T. Part 9 Digital Multimeter Add-On for BBC Micro	$\begin{aligned} & 8403-01 \\ & 8403-02 \\ & 8403-03 \\ & 8403-04 \\ & 8403-05 \end{aligned}$	$\begin{aligned} & £ 5.30 \\ & £ 4.80 \\ & £ 4.42 \\ & £ 4.71 \\ & £ 4.63 \end{aligned}$
- APRIL'84 - Data Acquisition "Input" M.I.T. Part 10 Data Acquisition "Output" M.I.T. Part 10 Data Acquisition "PSU" M.I.T. Part 10 Timer Module A.F. Sweep Generator Quasi Stereo Adaptor	$\begin{aligned} & 8404-02 \\ & 8404-03 \\ & 8404-04 \\ & 8404-05 \\ & 8404-06 \\ & 8404-07 \end{aligned}$	$\begin{aligned} & £ 5.20 \\ & £ 5.20 \\ & £ 3.09 \\ & £ 3.58 \\ & £ 3.55 \\ & £ 3.56 \end{aligned}$
Simple Loop Burglar Alarm Computer Controlled Buggy M.I.T. Part 11 Interface/Motor Drive Collision Sensing Power Supply	$\begin{aligned} & 8405-01 \\ & 8405-02 \\ & 8405-03 \\ & 8405-04 \end{aligned}$	$\begin{aligned} & £ 3.07 \\ & £ 5.17 \\ & £ 3.20 \\ & £ 4.93 \end{aligned}$
```- JUNE`84 - Infra-Red Alarm System Spectrum Bench PSU Speech Synthesiser M.I.T. Part }1 Train Wait```	$\begin{aligned} & 8406-01 \\ & 8406-02 \\ & 8406-03 \\ & 8406-04 \end{aligned}$	$\begin{aligned} & £ 2.55 \\ & £ 3.99 \\ & £ 4.85 \\ & £ 3.42 \end{aligned}$
$\qquad$   Ultrasonic Alarm System Atom EPROM Simulator Electronic Code Lock Main board Keyboard	$\begin{aligned} & 8407-01 \\ & 8407-02 \\ & 8407-03 \\ & 8407-04 \end{aligned}$	$£ 4.72$ $£ 3.08$ $£ 2.70$ $£ 3.24$



ALARGE number of EPROM programmer circuits have been published over the last two years. A simple programmer can be constructed for about twenty pounds. But, to develop EPROMbased software is a very lengthy procedure. To blow an EPROM takes fifty milliseconds per location, for example, a 2532 4K EPROM takes about four minutes. EPROMs must also be erased, this requires a special ultra violet lamp in its protective housing. These often cost several times the cost of the programmer. When de-bugging the software three or four EPROMs are required so that some can be erased while others are being programmed. The whole system can be very expensive.

## ALTERNATIVE SOLUTION

An alternative to using EPROMs for program development is presented in this article. An adapter has been designed so that RAM can replace ROM. The unit plugs into a 2532 socket and the only other connection required is to the READ/WRITE line. Programs either machine code or Basic can be written and run in the EPROM socket. Once the program has been proved it can be transferred to an EPROM.

Another significant advantage is that an assembler can be used to assemble the machine code directly to where it is going to be used. The alternative is to assemble the machine code elsewhere and then relocate the program by hand. In the case of the 6502 this relocation has to change the addresses of look up tables and jump instructions. Although the unit was originally designed for an Acorn Atom it should be possible to use the unit with several other computers.

## CIRCUIT DESCRIPTION

The complete circuit is shown in Fig. 1.

It is centred around IC1 and IC2, these are 2 K by eight static CMOS RAM integrated circuits. A third integrated circuit, IC3, is used to provide address decoding. The truth table for the circuit enable lines is shown in Table 1. Neither of the memory circuits must be enabled if the chip select line of the host socket is high. If the chip select is low then the memory selected is dependent on the state of the highest order address line. This was implemented by four two-input NAND gates.

All	CE	SELECT	SELECT   2
0	0	0	1
0	1	1	1
1	0	1	0
1	1	1	1

EE58]
Table 1
Truth table for the circuit enable lines
Capacitor C1 provides supply decoupling. Resistor R1 is a pull up resistor on the READ/WRITE line.

The circuit obtains its power from the host computer.


## CIRCUIT BOARD

The circuit was built on a printed circuit board $100 \times 50 \mathrm{~mm}$. The track layout is shown in Fig. 2 with the component layout shown in Fig. 3. If readers decide to make their own circuit board great care must be taken where the tracks go
between the pins of the integrated circuits. It is strongly recommended that sockets are used for the integrated circuits. Construction should begin with the wire links under the integrated circuits. The sockets and the other components should then be soldered in place. A Veropin can be fitted for the READ/ WRITE line. Care should be taken with the orientation of the integrated circuits.

The prototype was not housed as during use it was fastened with double-sided adhesive pads to the bottom of the Atom. A second piece of printed circuit board material was bolted to the underside of the first, using spacers, to provide protection. A 24 -way jumper lead is required to connect the circuit to the ROM socket, this can either be home-made or purchased from a supplier. It should not be longer than 30 centimetres.

## INSTALLATION

As the circuit is mainly of CMOS normal handling precautions should be taken. When the unit is not in use it is advisable to keep the spare connector in a piece of anti-static foam.

The unit is connected with the jumper cable to the ROM socket, the utility ROM socket is normally used, but the floating point socket may also be utilised.

A thin piece of flexible connecting wire is connected from pin 34 of the 6502 to the READ/WRITE pin on the board.

## TESTING

The RAM test program in "Atomic Theory and Practice", page 92, was used to test the memory, run the program, and test the memory from \#ADO to \#AFFF. This test should show the memory to be all right. If this test fails then carefully check the board for whiskers of solder between the tracks and the pads.


COMPONENTS
Resistor
R1 $1 \mathrm{k} \Omega$ Page 434

## Capacitor

C1 $\quad 0.22 \mu \mathrm{~F}$

Semiconductors
IC1,2 HM6116 2 K by eight IC3 CMOS memories (2 off)
IC3 74 LSOO Quad 2-input NAND gate

Miscellaneous
Single-sided p.c.b. $100 \times 50 \mathrm{~mm}$, EE PCB Service, Order code 8407-02; 24-pin d.i.l. sockets (3 off); 14-pin d.i.l. socket; jumper cable 24 -way 30 cm long.

Approx.cost Guidance only
£18.00


L
Fig. 3. Component layout.


Basic programs can be written into the new memory by setting the text pointer to \#A 0 .

> ?18=\#A $\emptyset$ (return) NEW (return)

A Basic program can now be typed into the new memory and RUN. It should be noted that the text space pointer has to be reset if the "break" key is pressed.

Machine code can be assembled into the new memory by setting the location counter, $\mathbf{P}$ to $\# A \emptyset \emptyset \emptyset$ prior to assembling. For example:

When you have written your own software and you are sure that it is correct, an EPROM programmer can

10 REM RANDOM NOISE
$2 \emptyset \operatorname{DIM} \operatorname{LL}(2), \mathrm{NN}(1), \mathrm{P}(-1)$
$30 \mathrm{C}=\# \mathrm{~B} \emptyset \emptyset 2$
35 FOR N=1 TO 2
$40 \mathrm{P}=\# \mathrm{~A} \emptyset \emptyset 0$
501
60:NNの LDA L:STA C
70 AND @\#48; ADC @\#38
80 ASL A;ASL A
90 ROL L +2 ; ROL L+1; ROL L
$1 \emptyset \emptyset$ JMP NN $\emptyset$
120]
130 NEXT
140 LINK NND
150 END
Table 2
Program example for setting the location counter


## Profile Of A Specialist

Last year I included in some of my articles, potted biographies of one or two of the better known component suppliers. It was a fascinating task, and one that, apart from general interest, I am sure was helpful to the would be entrepreneur, who wished to take up this line of business.

Continuing this trend, I made my way recently to the premises of Radio Component Specialists of 337 Whitehorse Road, Croydon, to meet John Ladd. This company is undoubtedly well known to our readers through their extensive advertising. I had met Johnd Ladd many years ago through our business connections.
The first fact that emerged was, that we were both war-time pilots and we had both continued flying for several years after the war. John is still flying, when business interests permit, and holds a current private licence and an instrument rating.

Unfortunately, these revelations, hindered rather than helped my enquiries, because it meant inevitably we kept on digressing from electronics to aeroplanes. The time flew by, and, "At the end of the day", as the politicians and union leaders say with monotonous regularity, I found myself with only a few notes recorded. Naturally, with our readers in mind, I shall concentrate on the electronic prowess of our subject.

Radio was John's hobby before the war and he soon became proficient enough to take on a part-time job with a radio shop in South Croydon. His next advancement came in 1938 when he was appointed Service Manager for Drubel Radio Distributors. He had then reached the ripe old age of $15 \frac{1}{2}$.

In 1939 the war intervened and by 1941 John was flying. He was made a Flying Instructor in 1942. Later he was sent to do a course on heavy bombers, only to find by the time it was completed there was a surplus of bomber pilots.

The result was they sent him off to do a conversion course on Typhoons which were being used as fighter bombers. By the time that was finished so were the hostilities.

He returned to Drubels as a salesman which kept him busy for the next five years. In 1951 he went into partnership with Mr. Harold Livesey in a firm called Televox Radio Services. In 1954 he started on his own at 307A Whitehorse Road, Croydon. In 1955 Frank Jackson was taken on and later was made a partner. In 1959 he moved to his present address and in 1964 he acquired the firm of Baker Speakers.

At this point I was able to tell John a story about Baker Speakers that was unknown to him. Many years ago I visited the Baker factory and was intrigued to see a huge tank of goldfish. I was told they were used to test the high frequency response. John then introduced me to Eric Coppard who has been in charge of the Baker Speaker section since 1947. He was able to confirm my story of the fish test.

I asked John if he had had any lucky breaks that set him up. He said no, just steady progress, although the advent of commercial television when everyone wanted to buy Band Three Converter kits certainly gave the business a push in the right direction.

## Sound Approach

His undoubted success is due to sticking to sound policies, which I could sum up as follows:
(1) Buy your premises (essential).
(2) Limited objectives. Expand gradually and don't over-trade.
(3) Concentrate on one or two aspects and do them well. In John's case, audio, hi fi and large wattage amplifiers, including disco equipment. He also stocks an impressive range of standard components which is listed in his 20-page brochure.
(4) Give good service after-sales and always have at least one technical person on hand. John not only does this but gives a 12 -month guarantee on all the goods he supplies.

Like the rest of us, John has felt the effects of the recession and the diversification caused by Home Computers but much of his business comes from good-will and
then be used to store the memory from \#A $Ю \emptyset$ to $\#$ AFFF in a 2532.

Commercial software such as the "Wordpack ROM" and the various utility ROMs may be SAVE on tape using the following command:
*SAVE"NAME"A $\varnothing \emptyset$ Bøロ
with the ROM in the utility socket. The software can then be load back into the ROM/RAM unit described here and then run in the normal way. To load the software use:

## *LOAD"NAME"AøDø

This is one way of avoiding the need for a ROM selector board.
recommendation. He has been in business for 30 years and I am sure he will be there for many years to come.

## Weathering The Storm

I was naturally very pleased to receive several letters from readers on the subject of Ionisers. There is a divergence of opinion as to whether colour televisions emit positive lons.

Having been in the business for 15 years, Medion Ltd. of Oxted in Surrey say. "We can reassure readers that colour televisions do not emit positive lons". But they go on to say, "that in the vast majority of sets they tested, the television screens bullt up a large static charge, this resulted in no negative lons, and some 1000 positlve lons per cubic capacity at typical VDU operator distance. In the case of the VDU operators this can result in headaches, lethargy, and sore eyes."

Fortunately Medion concludes, "The ourput of even the smallest negative loniser is sufficient to suppress the screen charge and to maintain a healthy lon level." They also manufacture an atmospheric lon analyser which can measure the amount of positive or negative lons in a room or in the atmosphere. The price is $£ 1495$.

Another reader, Graham Lewis, kindly sent me a leaflet from a firm which markets an loniser under the name, Mountain Breeze Air lonisers. They make the claim, "If you feel the difference before and after a thunderstorm, you have already experienced the effect of air ionisation.

I asked Mr. P. Laws, Manager of Medion Environmental Division what the implication of this was, and he explained that before the storm breaks, there is a heavy build up of positive lons, after the lightning it is reversed, resulting in a large surplus of negative lons. They say you learn something new every day, I think in electronics it is more likely to be every hour.

## Changing Times

I suppose it had to happen. The Japanese have made a watch with a builtin computer. Made by Seiko, it can memorise 2000 characters, store 100 words in two languages and costs around £200.

At the other end of the scale, I noticed my Garage offering five function watches for sale at $£ 1.49$. "How much to change the battery?" I asked the lad. Back came the answer, " $£ 1.50$ Guv". I give up, this high finance is too difficult to work out!
 Built into a hi fi speal cabinet, this
microwave doppler intruder alarm has a range of 8 m , yet is completely self-contained, The unit requiring no external wires. measures only $245 \times 155 \times 155 \mathrm{~mm}$.

## TEMPERATURE INTERFACE for BBC...

Using the machine's own four channel A to D converter this article shows how a simple temperature interface can be made with good linearity and accuracy over a temperature range of $-50^{\circ}$ to $+150^{\circ}$ Centigrade.

## feature article: WHAT IS RADIATION?



# anMrony of MUW MICRI 



THERE are now more microcomputers per person in the UK than in any other country. But what really goes on underneath the keyboard? This series begins by examining the internal workings of a typical microprocessor-the "heart" of any microcomputer. Later parts will consider how memory space is allocated and how it can be used, and the requirements for interfacing to cassette recorder, disk or TV display.
Of all the devices which have been produced as a result of microelectronics, the microcomputer is the one which seems to have made the greatest impact on the average person. Of course, there are digital watches and clocks, there are pocket calculators in a multitude of designs, and many of the circuits in radio sets and TVs are based on microelectronics, but these developments have been largely taken for granted. They have never roused the public interest to the same extent as has the micro. A glance at the newsagent's shelves, which today carry well over a dozen popular magazines devoted to microcomputing, confirms the extent of this interest. Interest in micros is not only more widespread than interest in other aspects of mieroelectronics, but is more intense. People rarely want to know what goes on inside a digital watch or a TV set, but they do want to know what is happening inside their micro. Perhaps it is the way in which a micro seems to be almost human at times-be it clever, stupid, helpful, or just plain awkward - that makes us think there is "something" there which we want to know more about.
This is the reason for trying to in-
troduce you to what goes on inside the typical home computer. We know it does not really have its own personality, but it does have a complicated assembly of electronic circuits which are somehow made to behave in this almost-human fashion. It is the anatomy of these circuits which is the subject of this article. Although the circuits themselves are complicated, the principles by which they operate are relatively simple. We shall be concentrating on the principles rather than on the details, and only a minimal knowledge of electronics will be assumed.

## BINARY SIGNALS

Although you can "talk" to your micro using a language such as BASIC, which has many ordinary English words, the circuits of the micro really understand only two words-true and false. These words have exactly opposite meanings, and no half-truths are possible. As might be expected, an electronic circuit does not recognise these words as such. Instead, it recognises distinct voltage levels. Micros are normally based on TTL circuits, and these recognise two voltage levels, which we refer to as "high" and "low". A "high" voltage is one between +2 V and +5 V (the maximum). A "low" voltage is one between 0 V (the minimum) and 0.8 V . Having to respond to only two different voltages, the TTL circuits can be designed to be fast-acting and extremely reliable. They can also be manufactured very cheaply, which is one reason that micros are so popular today.
"True" and "false" are opposites. So
are "high" and "low", in the sense used above, for the circuits do not recognise any in-between voltages. If we make "high" equivalent to "true" and "low" equivalent to "false", we can now talk to the micro by feeding high or low voltages to the input terminals of its circuits. Sometimes this is dorie by pressing a key. The key i's pressed, giving a closed circuit, or not pressed, giving an open circuit. There is nothing in between. Repeatedly, we find this idea of two opposites, with no in-betweens. Everything is in lwoseverything is binary.

This leads us directly to a way of expressing numbers to the computer. If we take "true" (or "high") to mean " 1 " and "false" (or "low") to mean " 0 ", we can send numbers to the micro. Such numbers consist only of " 1 "s and " 0 "s, but this binary system is capable of expressing numbers of any size. Binary numbers tend to have more digits than their decimal cousins, as can be seen in Table 1. When we speak of the digits which make up a binary number, we usually call them "bits", which is short for "Binary digITS".

Not only do we express numbers in binary form, but we also design the circuits so that they accept certain combinations of bits as instructions. For example, the number " 01001100 " instructs the relevant part of the micro to jump from one part of its program to another. Whether a number is taken to be a number or a coded instruction depends upon what stage the micro is at in its cycle of operations.

For most purposes, including sending coded instructions, it is sufficient to have

numbers with up to eight bits. This allows them to have 256 different values ( 0 to 255 , inclusive). We can code up to 256 different instructions in this way. If we want to use values greater than 255 in our calculations, there are ways of representing larger numbers as several 8 -bit binary numbers. An 8 -bit binary number or code is called a byte.
Having seen some of the essential features of how the parts of a micro can communicate with each other or with the user electronically, we are ready to see what parts there are and what they each do.

Table 1. Binary Numbers and Their Equivalents in Decimal

BINARY	DECIMAL
0	0
1	1
10	2
11	3
100	4
101	5
110	6
1000	8
1111	15
10000	16
100000	32
1000000	64
10000000	128
11111111	255
100000000	256
1000000000	$1024(1 \mathrm{~K})$
11111111111111	65535

## THE HEART OF THE MICRO

At the heart of the micro is the microprocessor. This is a complex integrated circuit which controls all other parts of the micro and does most of the work besides. There are dozens of different kinds of microprocessor (or MPU), but two types in particular, the 6502 and the $\mathbf{Z} 80$ are commonly used in personal micros (see Table 2). We will look inside the 6502 to see what it contains.

Like all MPUs used in personal micros, the 6502 is an 8 -bit device. That is to say it handles eight bits (or one byte) at a time. It has a number of registers, each of which holds a byte (Fig. 1.1). Each register consists of a set of eight bistable circuits (or flip-flops) which can be in one of two states. In one state (flipped) it can be said to hold a " 1 ", in the other (flopped) it can be said to hold a " 0 ". Once again, we come across the binary idea. A flip-flop has no in-between state. Depending on the state of each llipflop, a register can hold the equivalent of any one of the 256 binary numbers or codes.
The most important register is the accumulator. This holds the number upon which the MPU is currently working. Numbers can be transferred between the accumulator and other parts of the micro. While the number is in the accumulator, it can have other numbers added to it, for example, or be operated on in many other ways. Additions and other arithmetical and logical operations are done by the
arithmetic logic unit (ALU). This is where the main activity of the microcomputer takes place.

The X and Y registers can also be used for holding numbers, which can be operated on in various ways. A major part of the activity of the MPU consists of passing numbers between the ALU, the accumulator and the X and Y registers. All these operations are supervised by the control circuits. The operations involved are actually very simple. In order to do anything worth while, the MPU has to do very many operations in succession at extremely high speed. To help it work as quickly as possible, the registers are connected to a set of eight lines, known as the data bus. Data can be transferred between registers a byte at a time. This bus also goes to the terminal pins of the MPU (via the data bus buffer) and joins to the data bus of the micro (Fig. 1.2). This carries data (numbers or instructions) between the MPU and the other parts of the computer.

The program counter is the register by which the MPU remembers how far it has got in its programı A program with only 256 steps would not be a very extensive one, so this register stores two bytes, allowing it to hold binary numbers up to 65535. The fifth register is the processor status register. The bits held here act individually as "flags" or indicators. For example, one of them is the carry flag. When this is " 1 " it indicates that the result of the previous addition left a " 1 " to be carried over to the next addition.

The "zero" flag is set to " 1 " whenever the result of any operation leaves all zeros in the register concerned. Information stored in this register is very useful for certain types of calculation and logical operation.

## THE CLOCK

With so many numbers being transferred in and out of the MPU and between the various registers, it is essential that all these operations are synchronised. This is the function of the clock, a crystalcontrolled oscillator (Fig. 1.3). The frequency of the crystal is usually several megahertz, so that the time taken by one cycle of operation of the MPU is of the order of 1 or 2 microseconds. This is why the micro is able to perform so many operations so very quickly, which is the key to its apparent cleverness. It is not so much that it can do complicated and clever things, but that it does long sequences of very simple things extremely quickly, without making mistakes.

## OP CODES

We have seen that the MPU has the facilities for performing a range of operations on numbers taken into its registers from other parts of the micro, but how does it know which operations to perform? Its instructions are stored in the memory of the computer as a series of bytes. There is more to say about memory later, but let us assume that, when the MPU wants to know what to do next it is able to go to the part of its memory indicated in its program counter register and there find an instruction. It reads this byte in one operation, for the eight bits of it can be transferred to the instruction register of the MPU along the eight lines of the data bus. Let us suppose that the byte it receives is " 10101001 ". Because the MPU is at the stage of its operation when it is looking for an instruction, it interprets this byte as an instruction, not as a number. It puts it in the instruction register. Since this is a coded instruction to the MPU to perform an operation, we refer to this byte as an op code. This particular op code tells the control circuit of the MPU that it is to take a number from memory and put it into its accumulator. Which number? Given this op code, the number is to be found stored in memory in the location immediately following that in which the op code itself was stored. So the MPU increments its program counter and goes back to memory and receives the next byte along the data bus. This time it is expecting a number and the byte it receives is put into the accumulator and treated as a number, not as an op code.

Some op codes are sufficient on their own; the code " 10011000 ", for example, tells the MPU to transfer the contents of the Y register to the accumulator. Other op codes are followed by two bytes, both to be taken as numbers. Such a code is the "jump" code mentioned earlier. It is


Any microcomputer system requires an input facility (keyboard), a display for output (TV). and some long-term storage medium (cassette or disk).


Fig. 1.1. The main sections of the 6502 microprocessor. Arrowheads indicate direction of control, or flow of data.
followed in memory by two bytes, to be put into the program counter, so that the MPU then jumps to the part of memory specified by these two bytes.

From the above, it can be seen that the MPU is programmed by a sequence of bytes stored in a given order in the memory of the micro. Some of these bytes are op codes and the others are numbers. Some of the numbers are values being used in calculations, while others are the addresses of different locations in memory.

ADDRESSING
We have touched upon the idea of addressing earlier, and now will examine it in more detail. If memory is to hold many bytes and the MPU is to be able to take in these bytes as data or instructions, or perhaps send out data to be stored in memory, it follows that it must be possible to identify every location in memory in which a byte can be stored. This identifying number is what is called its address. As we have seen, the program counter holds 16 bits, so an address can be any number between 0 and 65535 (Table 1). Each location in memory must be informed when the MPU wants to receive data from it or put data in it. We therefore need a 16 -line bus, the address bus, to which all parts of the computer's circuits are connected (Fig. 1.2). Each part responds when and only when its own address is present on the bus. When we say that an address is "present on the bus" we mean that the voltages on the 16 lines are "high" or "low" corresponding to the pattern of " 1 "s and " 0 "s which make up the address.

The address bus runs from the MPU to all other parts of the micro. In particular, it goes to the integrated circuits which make up memory, and to circuits concerned with the keyboard, the video screen and the input/output ports. We shall deal with all these later, and will also consider how a device knows when its address is on the bus.

READING AND WRITING
The address bus gives the MPU control of the flow of data in the system, for it is only when the address of a given device has been put on the bus that the device can become active. In addition to this bus, the MPU has a number of control lines, coliectively known as the control bus. One of these lines controls the direction in which data flows-this is the "read/write" line, usually shortened to $\mathrm{R} / \overline{\mathrm{W}}$. It is a convention that when a line is normally held in the "high" state, but is made "low" for a given action to occur, we draw a bar over the name of that line. The MPU can read from memory when the line is high, and in order to write to memory, it takes the line low.

Next Month: The control of data flow, and how memory is partitioned into areas.


## ENERYDAY ค - , ... from the world of



$\mathrm{A}^{\mathrm{N}}$N important new event has just been announced for the autumn showtime season and Everyday Electronics, in conjunction with our sister publications, will be there.

Recognising the importance of this new show we have agreed to join forces with other publications and sponsor this exciting addition.

Called Leisuretronics, it promises to be a truly all electronics family show that will highlight the impact "amateur" involvement has had on the application of electronics today and also point the way to future developments.
To be held in the heart of London-8 to 11 November-at the Royal Horticultural Hall, Victoria; the show will present items from the field of radio controlled models to electronic music; ham radio to hi fi; robots to photography; a synthesiser to satellite broadcasting; and electronic games and computing to disco and light shows.

Special features will be mounted by the organisers to give
visitors the opportunity to see the latest developments in most of the above areas in "live" action.
Although this is a completely new event, the Organisers, Trident International Exhibitions have many years' experience in putting on this type of public exhibition. Commenting on the new event, David Timmirs' of Trident said, "We are confident that Leisuretronics will prove to be an excellent market-place for companies to reach new customers and for the enthusiast to discover and explore new ideas!
"The technology of electronics has brought new life to many leisure-time activities and Leisuretronics aims to combine all elements of the hobby industry into a totally new and imaginative show that will excite and attract a large audience."

Being only a short "bike ride" from Westminster; who knows, perhaps some of the M.P.s, from all parties, might like to come along and see what is really happening in the world of electronics now!

## ROYAL AWARDS

Prestel, British Telecom's world-leading communications system has received the Queen's Award for Technological Achievement.

The Queen's Award goes to the Videotex Section of British Telecom's research laboratories at Martlesham Heath, Suffolk and Prestel Headquarters in the City of London.

## DESIGN AWARDS

A combined plotter and display system, for several
applications, including bank note design, and with a digitiser incorporated for automated cartography, has won a 1984 Design Council award for LaserScan Laboratories Ltd. of Cambridge.

## Executive Award

Following on from its 1983 Award for the Perfector telex system, STC Telecommunications of Brighton have won the 1984 Award for Executel, a sleek desk-top unit that combines telephone, electronic diary and telex terminal.


## electronics

## RAINBOW TOPS

Claimed to be the world's second largest computer manufacturer, Digital Equipment Co. Ltd. have "loaned" five Rainbow 100 personal computers to assist in the retraining of unemployed and redundant people attending a TOPS course at the South Bank Polytechnic, London.

The course entitled Information Technology and Salesmanship aims to teach students to use computer technology and to acquire the associated selling skills. The students are taught BASIC and learn to use four applications packages (provided by Digital), including word processing, accounting, spreadsheet and database functions. During the course the students also complete a project.

## Summer School

Nottingham University is the venue for the Information Technology Summer School being run by the Information and Word Processing Association, from 17 to 19 July.

This is the fourth of the annual Summer Schools, for which an excellent reputation has been established. The programmes are specially designed to be of value 10 delegates from both industry and education, providing a forum where teachers and lecturers can exchange ideas and discuss the latest developments in IT with managers and professionals from the business world.

The summer schools are always popular events and intending delegates would be well advised to book early.

## Electromusic Calls The Tune

The British company, Electromusic Research has just produced its first MIDI package for the BBC Computer.

Miditrack is a manual (step) input program that enables music composition on up to six tracks, with full memory assignment of 7500 notes for the number of tracks selected.

Each Miditrack will store details of note pitch, dynamics, length and style as well as voice change and other parameters. Traditional note input is entered from the BBC B keyboard in order to avoid coding unfamiliar to the musician. Full on-screen editing features are included.

## Quality Offer

In support of the National Quality Campaign, The British Standards Institution is now offering its well-known Handbook 22 Quality Assurance at a special price of $£ 8$ per copy. This offer is made possible through the help of the Department of Trade and Industry who want to see this publication in the hands of as many British companies as possible. The Handbook is usually priced at $£ 78$ to non-members of BSI and $£ 39$ to members.

The number of copies available on this special offer is limited and buyers are urged to place orders as swiftly as possible. They should send cash with order to BSI Sales Department, Linford Wood, Mitton Keynes, MK 14 6LE.

Orders should be submitted on official company headed paper, signed by the chief executive, and cheques should be made payable to the British Standards Institution.

Colchester based microcomputer company Dataview is participating in Britain's first International Garden Festival in Liverpool.

Dataview has joined forces with Stack Computers of Liverpool to display the latest developments of the microcomputer industry.

The London Borough of Ealing will become the first user of a new leisure activity booking system launched by Quota Computer Associates Lid.

INMOS has appointed Celdis Italiana SpA as their distributor in ltaly. A member of the successful UK based Unitec Group, Celdis Italiana, is the leading high technology components and systems distributor with offices throughout Italy.

## Computer Calls

British Telecom have announced that they are to go ahead with a major computing development programme 10 provide new business information systems for use in its local offices.

The new system, to be known as customer service systems (CSS), will be fully integrated and controlled locally. Each district will have its own computing centre, and there will be about 30 in all.

The initial systems development will be undertaken by a joint team of BT and Logica staff with support from McKinsey and Co.

## THE PEOPLE'S COMPUTER

The hi-fi and television manufacturers, Amstrad have launched what they call "The People's Computer" claiming that it will bring the home computer within reach of almost every family in the country.

The subject of this claim is called the CPC464; a complete system priced at $£ 229$ and featuring a built-in cassette recorder, its own monitor, 64 K of RAM and just one mains lead: the power supply for the computer is in the monitor.

There will be four models in the CPC464 range: System 1, keyboard with built-in cassette and green monitor (£229); System 2, keyboard and a colour monitor (£329); System 3, keyboard, disc drive and green monitor ( $£ 429$ ); System 4, keyboard, disc drive and colour monitor ( $£ 529$ ).

All models of the CPC464 will be available from traditional stockists like Rumbelows, Dixons, Comet and Boots.


# ULTRASOMIC BURGLAR ALARM I.F.H. GOULT 

Part 2 of the Surveillance series

The Ultrasonic Burglar Alarm has been designed to provide a simple low cost unit which is self-contained, operating from an internal battery. Any person crossing the ultrasonic beam will trigger a screeching piezo-electric sounder mounted in the unit. A relay may be used instead of the sounder to operate an alternative alarm.

The unit is designed to be placed across the access to a room, or across the hallway or stairs. By careful placing it can be arranged that household pets will not trigger the alarm. A beam-break device also has the advantage of enabling movement in other areas away from the guarded access.

Being portable it could also be used to prevent unwelcome visitors in your hotel room when on holiday, without inhibiting your own movement within the room. The unit also illustrates many basic electronic principles, each of which is fully explained in the following circuit description.

Its range is deliberately limited to around two metres, for use across a doorway or landing, in order to eliminate the possibility of false alarms.

## CIRCUIT DESCRIPTION

The circuit diagram is illustrated in Fig. 1. First, the transmitter. IC2 contains four cmos NOR gates. Two of these are connected as a multivibrator oscillator. VR1 is adjusted to set the frequency of oscillation to 40 kHz . The output from the multivibrator is connected to the two remaining gates as illustrated. An ultrasonic transducer is connected between these two gate outputs. When one output is positive the other is negative and viceversa. Hence the transducer has a signal applied to it alternating at 40 kHz . A metallic diaphragm in the transducer vibrates at the input frequency to create air pressure waves at the ultrasonic frequency of 40 kHz , in a similar manner to a loudspeaker producing pressure waves at audio frequencies. The geometry of the transducer radiates these waves in a narrow beam. If the input to pin 1 of IC2 is maintained at logic state 0 , i.e. zero volts, oscillation will be continuous. If
input is allowed to go to logic state 1 , i.e. a positive potential, the gate will give no output and oscillations will be inhibited. In order to conserve battery life, the oscillator and hence the transducer is pulsed on for a small period a few times a second.

IC1 consists of four semiconductor switches with high input resistance on-of? control. Two of these switches are interconnected to form an astable multivibrator. Capacitor C14 is alternatively charged and discharged by switches $b$ and $c$.

Resistors R25 and R23 in conjunction with C14, control the recovery time for this capacitor. This is best understood by reference to the waveforms $\mathrm{a}, \mathrm{b}$, and c in Fig. 2. Resistors R23 and R25 are chosen to give a negative pulse to provide logic 0 (zero volts) to the input pin 1 of IC2 for a period of one millisecond, seven or eight times per second. This enables a burst of oscillations and consequent transmission during this pulse period.

## RECEIVER \& AMPLIFIER

If the unit is placed facing an opposite wall or door, the ultrasonic waves will be reflected back to the receiving transducer. This acts in a similar manner to a microphone. A metallic diaphragm in the transducer produces an electrical output at the frequency of the received signal. This 40 kHz signal is amplified by transistors TR1, TR3 and TR4, each operating at a very low current-a fraction of a micro-amp base current and about 10 micro-amps collector current. This low current operation enables series operation due to the comparatively high input resistance of the base. Battery drain is also minimised.

A parallel resonant circuit is introduced between the second and third amplifiers and presents a high impedance to 40 kHz , but cuts down all other frequencies. This reduces circuit noise and inhibits low frequency transient signals from banging doors and other similar sources of mechanical vibration.

Emitter follower TR9 provides a low impedance drive for both the amplitude detectors. Assuming switch a of IC1 to be

closed, the signal detector diodes D3 and D4 will rectify the signal to give a negative d.c. potential at the gate of the field effect transistor TR2.

The d.c. level will be dependent on signal amplitude. TR2 acts as a variable resistance. The more negative the gate the less current is allowed to pass from source to drain and hence the greater is the apparent resistance between the source and drain for a given voltage. Increasing the effective resistance of TR2 lowers the gain of the amplifier TR1. This automatic gain control sets a constant signal level at the output of TR4 independent of the average received signal level. The comparatively large capacitor C 4 , together with the $10 \mathrm{M} \Omega$ resistance R11, ensure that once the AGC level at the gate of TR2 has settled, subsequent to switch on, it will not respond to fast changes of signal level. The time constant at the gate is the product of C4 and R11 which is 47 seconds.

A second signal level detector is formed by the transistor TR5. TR 5 pumps current into C10 for each positive cycle of the 40 kHz signal enabling C10 to become positively charged. Diode D5 prevents the mean d.c. voltage at the base of TR5 from going negative. The positive potential at C 10 will remain constant provided the signal level is constant.

## SPECIFICATION

Compact and portable self-contained unit.
Battery operated.
Effective Range: 3 metres. 100 dB alarm sounds when intruder crosses protected zone.
Alarm resets after sounding for one minute.
Alternative relay may switch external load.


Fig. 1. Complete circuit diagram for the Ultrasonic Burglar Alarm. References $R \times$ and $T x$ are the receiver and transmitter transducer inputoutput points.


Fig. 2. Timing diagram of the Ultrasonic Burglar Alarm.

A change in signal level due to the disturbance of the ultrasonic beam will change the positive potential on $\mathrm{C10}$, which in conjunction with R12 has a time constant of only one second, allowing change of signal level to give a change of voltage on C10 before the automatic gain control, with its longer time of response, is able to change.

It is important that the detectors respond only to the received pulses and not to the transmitter pulse, part of which leaks directly into the receiver. Hence the detectors are cut off from the amplifier output by switch a of IC1 during the transmission period. The waveform diagram, Fig. 2 shows the various switching sequences of switches $\mathrm{a}, \mathrm{b}$ and c .

## ALARM LATCH

When there is a stable d.c. level on C10 there is no changing signal applied via C11 to either TR6 or TR7. There is no base current applied to either transistor and they both remain cut off. The collector of TR6 is at the positive supply voltage and the collector of TR7 is at the negative supply voltage. There is therefore no current drive to the alarm output transistor TR 8 .

Should there be an increase of level on C10 due to an increased received signal resulting from reflections from a person between the unit and the reflecting sur face, this will be applied via C11 to the
base of the npn transistor TR6 causing it to conduct, supplying base current to the pnp transistor TR7, which will also conduct. The collector of TR7 will move positive supplying current through diode D7 to the base of TR6 holding both transistors in their conducting state. The positive potential at TR7 collector switches on transistor TR8 to provide a continuous current through the sounder or relay coil.

A reduction in signal level will switch on TR7 by applying a negative going signal onto its base. The resulting positive potential on the collector will switch on TR6 via diode D 7 to latch on the alarm.

## TIMING CIRCUITS

When the alarm is triggered and latched, TR7 is conducting; voltage at its collector is positive. C15 will slowly charge positively through R22, the time constant of C15 R22 being 220 seconds. C15 will have charged sufficiently positive to activate switch d of IC1 in approximately one minute. Closure of switch d connects TR7 base to its emitter, switching off the current through TR7 and consequently switching of TR6 and the alarm driver TR8. The collector of TR7 returns to zero volts. C15 will now discharge towards zero volts through D8, R21 and R18 in series; after a few seconds switch d will open allowing the alarm latching circuits to respond to any further variations of received signal.

## COMPONENTS

Resistors
R1,R2,R4. R5,R7,
R8.R11
R12.


R13,R16,
R13,R16, page 434
R22,R23

R3,R6.
R27
R9,R14.
R15 $\quad 150 \mathrm{k} \Omega$ (3 off)
R10 $8.2 \mathrm{k} \Omega$
$817-5.6 \mathrm{k} \Omega$
R18.R25,
R26 $56 \mathrm{k} \Omega$ (3 off)
R19,R28 $27 \mathrm{k} \Omega$ (2 off)
R20 $12 \mathrm{k} \Omega$
R21 1.5 Ms
R24 $15 \mathrm{k} \Omega$
All resistors $\frac{1}{3} \mathrm{~W}$ carbon film $\pm 5 \%$
Potentiometers
VR1 $22 \mathrm{k} \Omega$
Capacitors
C1.C8, $\quad 150 \mathrm{pF}$ metallised
C16 ceramic plate (3 off)
C7 180pF metallised
C2,C5, $\quad 10 \mu \mathrm{~F} / 16 \mathrm{~V}$ tant. bead
C15 (3 off)
C4 $\quad 47 \mu \mathrm{~F}$ tant bead
C3,C10, 100 nF monolithic
C11.C12 ceramic (4 off)
C6 $\quad 39 \mathrm{nF}$ polycarbonate
C9 $\quad 1 \mathrm{nF}$ monolithic ceramic
C13 $\quad 10 \mathrm{nF}$ monolithic ceramic
C14 22 nF monolithic ceramic

Semiconductors

D1-D11	1N4148 (11 off)
TR1,3,4,	BC108 or BC238
$5,6,8$	(6 off)
TR2	BF244
TR7	BC478
IC1	4016
IC2	4001

Miscellaneous

L1	TOKO coil type CAN1A350ER (Ambit)
JK1	2.5 mm chassis socket
	'as switch (use jack plug as keyswitch)
Rx	40 kHz ultrasonic
	receiving transducer
Tx	40 kHz ultrasonic
$\times 1$	Sounder X70 WO6 (from Avionics)
Relay	12 V (Ambit No.
(optional)	46-70050)
Battery	(Ambit No. 01-06108)
holder	
Battery connector for PP3	
P.c.b.	
Plastic box with metal panel (150	
$\times 90 \times 50 \mathrm{~mm}$ ) (Ambit No.	
21927511	
Fixing screws for p.c.b. (4 off)	

## Approx. cost

Guidance only
£17.00


Fig. 3. Actual-size master pattern for the Ultrasonic Burglar Alarm. This board is available from the EE PCB Service, Order code 8407-01.


Fig. 4. Layout of components on the topside of the p.c.b. and interwiring to the jack socket/switch and warning device.

Switch d also inhibits the operation of the alarm latching circuits for about 30 seconds after initial switch-on, allowing the signal level to settle to its steady state. The negative terminal of C15 is initially positive on switch-on. This holds switch d closed to prevent TR7 conducting and latching on the alarm. C15 discharges to zero voltage through D8, R21 and R18 in series allowing switch $d$ to open, and the detectors to activate the alarm latch circuits for any variation of received signal level.

## construction

## MAIN CIRCUIT BOARD

Construction of the main circuit board is relatively simple using the printed circuit board in conjunction with the illustrated layout. Care should be taken to see that the diodes are all inserted with the correct polarity, i.e. the cathode, which is marked with a bar on the diode is connected into the position marked + . Note also that ICI and IC2 are mOs devices. They should be handled with care, removed from their packing and mounted directly into their respective IC mounts.

Electrostatic discharge can damage TR2. Before applying the soldering iron to TR2 the iron should be disconnected from the mains or other power source so that it is completely isolated. It should be momentarily touched onto the earth track ( 0 volts) before being applied to the pins of TR2. It would also be advisable to mount TR2 before mounting C4 and to ensure that C 4 is completely discharged
by shorting its leads together just before mounting. An isolated iron should also be used when mounting the other two components connected to the gate of TR2, namely R11 and D4-it would be preferable to mount R1I before mounting TR2.

## POWER

The unit runs from a 12 volt battery supply. Current consumption on standby is about $400 \mu \mathrm{~A}$. Using eight MN 1500 alkaline batteries this should give standby operation of around 2,000 hrs. Battery consumption is increased by about 100
times during alarm and it is therefore important, once satisfactory operation is established, to minimise the test time.

The tag on the screen of coil Ll on the inside of the p.c.b. should be cut off. The transducers should be cemented into the holes provided, again care being taken to ensure that the transmitter and receiver are correctly connected. They should stand proud of the p.c.b. the base with the two terminals being flush with the component side of the board. It is recommended that they are assembled into the front panel as illustrated. The 45 deg. inset prevents ultrasonic energy being reflected from objects alongside the unit.


Fig. 5. Block diagram of the Ultrasonic Burglar Alarm. This type of alarm has a limited range. This particular unit is directed primarily at the educational application.


Fig. 6. Window, or horn for the transmitter/receiver aperture. This could be made of stiff card or plastic sheet.

## SETTING WITHOUT AN OSCILLOSCOPE

Temporarily remove IC1. Place unit about a metre from reflecting surface. A high resistance voltmeter on the a.g.c. line (negative end of C 4 ), referenced positive clip to GND ( 0 V ) will facilitate adjustment alternately of VR1 and L1 for maximum reading. After refitting $\mathrm{IC1}$, a fine adjustment of VR1 and L1 may be necessary. The unit will need to be fairly close to a reflecting surface to obtain a reasonable reading on the a.g.c. line.

## SITING

Ideally the unit should be sited with an uninterrupted "view" of the opposite wall or closed door. Range is deliberately limited to a couple of metres for reliability. Beyond this distance there will be a passage near the wall where the reflection from a body will be neither more nor less than that from the wall allowing a "gate" through the beam. A radiator or window directly opposite the unit will cause fluctuations of the received level due to reflections from air of different, density and should be avoided.

Fig. 7. Front panal cutting details.



The Infra-red Alarm System published last month can incorporate several sensors connected to a single alarm latch unit. Here are some notes on how to do this, and a couple of additional notes on the system's use.

Any number of additional IR Sensors can be added to give greater coverage of the protected premises. The sensors may be wired in parallel but it is recommended that they are wired in sequence as illustrated. Only one resistance Rx should be used. This should be connected to the last sensor in the sequence, then if any of the connecting wires are cut the alarm will be triggered.

An alternative IR Sensor for use with household pets, IR 883, limits the sensitive zones to approximately 3 ft , provided it is sited at a height of 3 ft . 6 ins . or above. The limit of the sensitive zone will have to be established by trial and error, tilting the sensor slightly as necessary.

The alarm system may be used to set off an outside alarm or siren. The relay specified in the components list has its coll connected to the alarm output as illustrated. The relay contacts act as an ON-OFF switch, switching the 12 volt d.c. supply to the outside alarm when the alarm and latching circuit is triggered.




BENCH POWER

AFAMILY of four high performance bench power supplies, the GPL series, has been introduced by Gresham Powerdyne. The series offers a choice of single, dual and triple output models featuring excellent voltage and current regulation.

The smallest model in the series is the GPL 20 , a lightweight unit offering a variable 0 V to 30 V at 1 A maximum output plus a fixed 5 V output ( 1 A max). It also features variable current limiting.

The GPL 23, a triple output unit, features two independent variable outputs each of OV to

30 V (2A max) with a choice of constant current or constant voltage modes. In addition, it has a fixed $5 \mathrm{~V}, 3 \mathrm{~A}$ output rail facility.

Although it is a single output instrument providing 0 V to 40 V at up to 1A, the model GPL 25 features variable current limiting and two front panel meters for simultaneous indication of voltage and current. Largest unit in the series is the GPL 28 , which offers a single $O \mathrm{~V}$ to $60 \mathrm{~V}, 2 \mathrm{~A}$ output with dual tracking ( 0 V to $30 \mathrm{~V}, 2 \mathrm{~A}$ ) facilities as standard.

Further technical details of the complete range of Gresham power supplies can be obtained from:

Gresham Powerdyne Lid.,
Dept EE, Osborne Way. Station Road, Hook, Hants.


## DIGITAL PANEL METER

The DPM60 digital panel meter from Lascar Electronics features liquid crystal display, auto-zero, auto-polarity, and a logic switched 200 mV or 2 V f.s.d., giving a resolution of $10 \mu \mathrm{~V}$. Other features include programmable decimal points, digital hold, low battery indication, continuity indication and a $10 \mathrm{~mm} 4 \frac{1}{2}$-digit high contrast l.c.d. readout.

The panel meter can be readily scaled by the user to indicate amps, volts, ohms and other units. Supplied complete with
mounting bezel, clips and connector, it will suit many applications in portable and bench instruments.

The DPM60 is available in kit form and costs $£ 29.95$ inclusive. More information can be obtained from:

Lascar Electronies Lid., Dept EE, Module House,
Whteparish, Salisbury, Wilts SPS 2SJ.


# SLIMLINE SCOPE 

The new V-222 oscilloscope from Hitachi is a 20 MHz dual-trace model incorporating a 6 in rectangular c.r.t. in an ultralightweight slimline format and is being marketed by Reltech Instruments.
An alternate sweep magnifier enables any section of a waveform to be expanded ten times and displayed simultaneously with the un-magnified signal. A d.c. offset control and offset measurement socket allow a digital voltmeter to be used to moni-
tor voltages on the screen, whilst a low impedance signal output socket enables a frequency meter or counter-timer to be connected.
The 'scope has a sensitivity of $1 \mathrm{mV} / \mathrm{cm}$ and a maximum sweep speed of $20 \mathrm{nsec} / \mathrm{cm}$. Fully variable gain and sweep rate controls have un-calibrated warning lights to avoid accidental measurement errors. Full XY mode and $Z$ modulation facilities are provided.
The V-222 oscilloscope comes complete with two $\times 1, \times 10$ switchable probes. Price in the UK is $£ 340$ plus VAT, a lower specification version is also available at £295 plus VAT.

Reliech Instruments,
Dept EE, Coach Mews,
SL Ives, Huntingdon,
Cambs PE17 4BN.

## KIT TIME

Three new kits have recently been announced by Vellerman (UK) Lid. They are a microprocessor Precision Timer K2584, a Codelock K2585, and a Programmable controller Module K2591.

The Precision Timer, which includes housing, transformer and sheet keyboard, has four programs which can vary from one second to 99 minutes 99 seconds. The timer counts down to zero and activates the output which can also be manually switched on or off.

Running programs can be stopped, interrupted or continued. This makes the unit ideal for dark room timing, process control and light control.

The Codelock has two memory levels, each level capable of storing 20 numbers of six digits. The memory contains a CMOS RAM, which is fed by a battery in case of power failure. All the numbers therefore, are retained even if a mains failure were to last a month.

The codelock has a sheet
keyboard as a front panel and its applications include: protection of machines, protection of rooms where only authorised personnel may enter, entry systems for flats, offices and homes, and burglar protection in general.

The Programmable Controller Module is designed to control measurements of temperature, humidity, acid and chlorine levels. It has a 24 -hour clock, four programmable registers and a display for the input signal.

The input signal can be made up of an analogue voltage from 0 to 999 mV d.c. This measure value reads and displays by the means of an A/D converter and an interface with the central processor.
The module compares the input signal with the values which are programmed in the memory, and switches on an output relay. Switching occurs with a precision of 10 mV to the input signal.

Full technical details and prices are available from:

Vellerman (UK) Lid.,
Dept EE, PO Box 30,
St Leonards-on-Sea
East Sussex TN3 7 7NL.

## ELECTRON ADD-ON

ASWITCHED joystick interface for the Electron microcomputer has been developed by First Byte Computers, and should be available now from good High Street retailers.

A free conversion tape is supplied with the interface, to allow games such as "Killer Gorilla" and "Cyclon Attack" to be played under joystick control.

Also, major software houses are now writing games programs intended for use with this add-on

The plug-in cartridge takes all standard "Atari-Style" joysticks, which are cheaper and more popular than analogue joysticks.
FBC intend to launch an extensive advertising campaign, and to demonstrate the new interface at home computer shows during 1984.

FBC Lid,
Dept EE,
10 Castefields,
Main Centre,
Derby.


## PANTOGRAPH FOR THE BBC B

ANEW add-on for the BBC model $B$ allows the reproduction of drawings, maps, and diagrams at an affordable price. The Image Plotter comes with calibration sheet and handbook and has a recommended retail price of $£ 49.95$.

Even the most complex shapes can be enlarged or reduced, and
shown in any colour. If a printer is available, a hard copy can be made, or the image can be stored on disk or cassette.
The plotter comes ready assembled, is made of aluminium, and software is available on disk or cassette. Available at present through mail order only.

Reekie Technology Company, Dept EE, Beaufort Road, Off Richmond Road,
Ease Twickenham, Middlesex TW1 2PH.



## DIGITAL STORAGE OSCILLOSCOPE

A
LL the facilities of a 20 MHz dual-trace oscilloscope with the option of switching into digital storage mode; this is the latest offering from Gould Instruments, called the OS 1400 series.

Gould claim it is the first instrument of its type to retail at under $£ 1000$, and point out that it is entirely U.K.-designed and manufactured.

Used as a normal oscilloscope, the 1400 has continuously variable sensitivity from $2 \mathrm{mV} / \mathrm{cm}$ to $25 \mathrm{~V} / \mathrm{cm}$, and timebase variable from $0.5 \mu \mathrm{~s} / \mathrm{cm}$ to $0.2 \mathrm{~s} / \mathrm{cm}$.
In storage mode, the OS1400 can sample at rates from 0.5 s per sample to $0.5 \mu \mathrm{~s}$ per sample, and there are three display modes. Pre-trigger viewing of from $0 \%$ to $100 \%$ of the display is available in roll mode, and the display can be expanded by ten times after storage.

Gould Instruments Lid, Dept EE, Roebuck Road,

Hainault,
IVord,
Essex.

## 60 WATT MOBILE AMPLIFIER



Baker Loudspeakers Lid, announce the addition of a new mobile amplifier to their comprehensive range of disco/public address equipment.

With the accent on portability this amplifier weighs only 12 pounds and measures only $15 \frac{1}{2} x$ $8 \frac{1}{2} \times 6$ inches yet can deliver 60 watts R.M.S. into 4 ohms with distortion less than $2 \%$ at full output. A special feature is it's ability to operate from a 12 volt car battery if the normal 200/240 volt mains supply is not available or added safety is required in an outdoor location.

Housed in a robust case that is both attractive and functional the unit has four separate volume controls (for 4 channel mixing) plus a master volume control, a
mains switch and bass and treble controls that give a wide $\pm 10 \mathrm{~dB}$ variation over the $80-12 \mathrm{KHz}$ $\pm 3 \mathrm{db}$ claimed frequency response. Four high gain inputs are provided ( 3 at $20 \mathrm{mV} 50 \mathrm{~K} \Omega$ plus magnetic phono 3 mV ) and two standard jack socket loudspeaker outlets for 4,8 or 16 ohms plus terminals for 100 volt line.

This English made amplifier is fully protected against short and open circuits and is guaranteed for 12 months. The unit costs $£ 89$ (plus $£ 3$ if ordered by post), including VAT.

Baker Loudspeakers Lid.,
337 Whttehorse Road.
Croydon,
Surrev.
$01-6841665$

## RADIO WORLD

BY PAT HAWKER G3VA

## New licences

During the past few months nearly 4000 amateur (Class B) licences have been issued in the UK with the new "number one" in the callsign (G1AAA, etc.) plus a lesser number of "G4" Class $A$ licences. This is a remarkable indication of the current interest in the hobby.

Less easy to determine is the number of enthusiasts who, after going to the trouble and expense of obtaining a licence, either fail to renew it a year or two later, or else retain their licence but put their equipment away and thereafter make few appearances on the bands. Certainly the drop-out rate is much higher than it used to be, and appears to be higher among Class B operators than those who, after taking a Morse test, are free to use h.f. as well as v.h.f. bands

In the UK you can get a good idea how long an amateur has held his presen licence from his callsign. Most of those with personal "two-letter" callsigns, such as mine, date back to the 1930 s or even 1920s. There are a few exceptions since close relatives can apply to take over a calisign and sometimes a club will seek and obtain the callsign of a prominent former member.

Two-letter callsigns with a GB prefix are allocated to repeaters. A "G2" (plus three letter) callsign similarly dates back to 1939 or earlier when these call-letters were issued to persons holding what were called "artificial aerial" licences, permitting holders to build and experiment with transmitters provided that they did not connect an aerial.

## The G-Men

The "G3" (three letter) callsigns began to be issued in 1946 and the sequence was completed in 1971, reaching the G3N series roughly 25 years ago in 1958 to 1960. The "G4" (three letter) series began In 1971 and is not yet exhausted but has now reached the G4X sequence

The first Class 8 licences in 1964 started with the "G8" (three letter) series (at first these licences covered only 430 MHz and above, and there was limited demand). The G82s were exhausted in 1981 but the following "G6" (three letter) sequence lasted only until the autumn of 1983 although some callsigns in this sequence were issued many years earlier to those in terested in amateur television transmission.

A "G" prefix, of course, means the station is in England; if the owner moves to Scotland it becomes GM. Northern Ireland GI, Wales GW, and so on. The "G5" (three letter) callsigns are held by foreign amateurs operating the UK and have been much put out by a suggestion that soon
heir callsigns may be changed into the British nationals" sequences.
Amateurs who have held the same callsign for many years intensely resent any suggestion that they could lose their "identity". I must admit that I was not altogether pleased when a repeater in Buckinghamshire acquired GB3VA

## Baby Broadcasters

Last year the Federal Communications Commission (FCC) conducted an enquiry into the proposals to issue in the USA amateur radio licences without a Morse code examination, akin to the Class B VHF-only licences issued in the UK. However, the FCC invariably invites comments on such proposals before implementing them.

The result was that over 5000 comments were filed with the FCC running $20-10-1$ against the proposal which has now been dropped. In the USA even the "novice" amateur licence requires a five words-perminute code test.

The FCC is now considering a new class of CB licence-a "hobby class" licence that would permit computer hobbyists to establish radio links for the transmission of data. For as long as I can recall most of us have never been ashamed of being called "radio amateurs" although not everyone relishes the sobriquet of "ham" operators

The international regulations define the amateur radio services and it seems surprising that the Radio Society of Great Britain appears to accept the curious notion that amateur-radio enthusiasts now "suffer" from the alternative use of the word "amateur" in a derogatory sense and have been inviting suggestions of what the hobby should be called! But I hope they do not revive a term of abuse used in the 1930 s for 7 MHz phone operators: "baby broadcasters".

## Cable In A Twist?

It has been suggested that the only people likely to make real money out of cable elevision in Britain in the near future are either the market researchers with their high-cost reports or the organisers of the seemingly endless series of conferences, seminars and exhibitions. For all the talk it still looks like being many months before the first of the 25-30 channel systems opens-possibly the one being installed by Rediffusion in Guildford as a "shop window" for its star-switched but all coaxialcable system.

Meanwhile, satellite-distributed channels have started up on the existing low-
capacity systems, on which the "mustcarry" rules for broadcast channels have been waived provided that the subscribers are given an aerial capable of providing good quality off-air signals
The $\$ 64,000$ question is whether the premium TEN film channel will prove capable of attracting and retaining a significant percentage of those served by cable or who are "passed by cable". Most people agree that the earlier, less ambitious, at tempt to provide a film channel on a few British cable networks, without satellitedistribution, was far from an unqualified success with only about 5 to 25 per cent o connected households prepared to pay the monthly subscription.

## Door-to-Door Selling

In the USA it has been found that aggressive door-to-door selling is needed and cable operators then have to worry about the "chum rate", the term used to describe the people who fail to renew their monthly subscriptions. Since British cable firms are convinced that an initial "connection fee" would discourage people from subscribing, a high churn rate soon adds up to a great deal of money buried uselessly in the ground. A buzz term in cable and DBS at the moment is "conditional access" implying a system whereby a viewer who has not paid his monthly sub can be denied access to the channel without the need to remove the decoder.

Surprisingly, one of the most rewarding series of lectures and discussion on cable has been a series of lunch-time lectures at the National Film Theatre in London during February and March. For 60p a time, one heard more balanced and realistic views from both cable people and politicians on the opportunities and problems of cable than at many of the high-cost trade seminars.

However, nobody is finding it easy to predict what percentage of British viewers with four off-air channels, a substantia licence fee, and with a quarter of homes already having the extra choice provided by a VCR machine, will be willing to pay for "basic" cable channels. Neither are they prepared to predict the numbers willing to pay extra for "super-basic" channels, or extra still for "premium" channels each of which could cost up to $£ 10$ per month. It would still be cheaper than frequent visits to the cinema, but how many people these days are regular cinema-goers?

The most depressing forecast comes from the research firm CIT suggesting that the number of British homes cabled in 1990 may actually be less than in 1980 when 1.6 million homes were on commercial cable networks.

## High-Speed Satellite

Congratulations to the team at the University of Surrey who built and tested out their new UOSAT amateur radio satellite carrying scientific and educational experi ments in a matter of a few monthspossibly the quickest time from planning to launch for any new satellite yet I

Launched into low Earth orbit by NASA on March 1. 1984, at 17.59 UT, the firs beacon signals were received at 19.49 UT on 145.825 MHz although it will take some time to check out all systems on this second bird from the Surrey woods.

## OSCILLATORS

A variety of different types of resistance capacitance feedback oscillators, all having wide use, are described in this short series. Some of the circuits are based on discrete semiconductors, others on familiar i.c.s. In addition to theory of operation, design pointers for particular needs and applications are given. Each part in the series also includes a detailed circuit for a practical project.

Part Two: USING THE 555 AND ICM7555

## By J. R. DAVIES

T
HE MAIN uses for the 555 and the ICM7555 are as a timer and as an oscillator. The 555 is a well-established i.c. incorporating bipolar circuitry, whilst the more recently introduced ICM7555 is a CMOS version which requires a considerably lower supply current. The 555 and ICM7555 are pin-compatible and are directly interchangeable in many, but by no means all, applications.

## 555 OPERATION

The internal circuitry of the 555 is shown in simplified form in Fig. 2.1. An internal potential divider between the positive (VCC) and negative (ground) rails consists of three equal resistors, each having a nominal value of $5 \mathrm{k} \Omega$.

Reference voltages of two-thirds sup ply voltage and one-third supply voltage are available as shown, the first being applied to a voltage comparator coupled to pin 6 of the device and the second to another comparator connected to pin 2.

The reference voltages may be altered, if desired, by applying external connections to pin 5. For most applications, pin 5 is left open-circuit or is coupled to the negative rail via a bypass capacitor.

An internal transistor provides a discharge function at pin 7. When this transistor is turned off pin 7 is virtually opencircuit, and when the transistor is turned on pin 7 is effectively short-circuited to the negative rail.

The comparator outputs are fed to a flip-flop which controls the internal discharge transistor. Also controlled by the


Fig. 2.1. Block diagram illustrating the functioning of the 555 i.c
flip-flop is an output stage coupling to pin 3. The voltage on pin 3 is high (close to or at the positive supply rail potential) when the discharge transistor is turned off and is low (close to or at the negative rail potential) when the discharge transistor is turned on.

Pin 4 is the reset pin and is normally only employed when the 555 is used for timing applications. For oscillator applications, pin 4 can be left open-circuit. It is preferable, however, to connect it to the positive rail as this completely disables the reset facility and ensures the reset circuitry cannot affect oscillator operation.

Alternatively, pin 4 can be used to enable or inhibit the 555 when used as an oscillator. If pin 4 is high the oscillator runs normally, and if pin 4 is low the oscillator stops with the output at pin 3 low and the discharge transistor turned on.

## SUPPLY RANGE

The supply voltage range for the 555 is 4.5 to 16 volts and its current consumption is of the order of 6 mA at 9 volts. To that current has to be added any current flowing in an output load and in the frequency control components. When the 555 output is high it can source load currents up to 200 mA , and when it is low it can sink currents up to the same value.

The ICM7555 has precisely the same pin functions as the 555 and it has a supply voltage range of 2 to 18 volts. The supply current requirement is very much lower, being typically 40 to $50 \mu \mathrm{~A}$ only from a 9 -volt supply. With an 18 -volt supply it can sink output currents up to 100 mA , the maximum sink current reducing, roughly proportionately, with supply voltage. The output source current capability is much lower.

We shall consider the output performances of both the 555 and the ICM7555 in more detail later in this article. Although the ICM7555 uses CMOS circuitry, all inputs and outputs are fully protected against damage by static voltages, and it does not need the special handling procedures normally associated with CMOS devices.

## OSCILLATOR CIRCUIT

The basic 555 and ICM7555 oscillator circuit is shown in Fig. 2.2. Pins 2 and 6 are connected together and to the external capacitor C. Two external resistors, RA and RB, couple the capacitor to the positive supply rall, with their junction connected to the discharge pin, pin 7.
When power is applied, pin 7 is opencircuit and the capacitor commences to charge via RA and RB. The i.c. output at pin 3 is high. When the voltage across the capacitor reaches two-thirds of the supply voltage the threshold comparator trips the flip-flop, causing the internal discharge transistor connected to pin 7 to turn on and the pin 3 output to go low.
The capacitor now discharges into RB on its own until the voltage across it falls to one-third of the supply voltage. The trigger comparator then trips the flip-flop to its previous state, causing the discharge transistor to turn off and the output to go high. The capacitor charges once more via RA and RB until, again, the voltage across it reaches two-thirds of the supply voltage.

The cycles proceed in this manner with the capacitor voltage changing continually between one-third and two-thirds of supply voltage. Since the reference voltages are derived from the supply and the capacitor charge and discharge currents are proportional to supply voltage, the frequency of oscillation is independent of the supply voltage. Note that the output voltage is high when the
capacitor charges, and is low when the capacitor discharges.

## FREQUENCY CALCULATION

The charge time in the oscillator cycle is equal to $0.685(\mathrm{RA}+\mathrm{RB}) \mathrm{C}$, and the discharge time is equal to $0.685(\mathrm{RB}) \mathrm{C}$. Total time for one cycle is therefore $0.685(\mathrm{RA}+2 \mathrm{RB}) \mathrm{C}$ and frequency is the reciprocal of this, or
1.46

## (RA + 2RB)C

As with the symmetric multivibrator of Part One, convenient units to work with are megohms, microfarads, seconds and hertz.

To take an example, let us say that RA is $820 \mathrm{k} \Omega, \mathrm{RB}$ is $220 \mathrm{k} \Omega$ and C is $0.47 \mu \mathrm{~F}$. The total cycle time is:

$$
0.685(0.82+0.44) 0.47
$$

A calculator soon tells us that this works out as 0.406 second to three significant figures. The reciprocal gives a frequency of 2.47 Hz .

Fig. 2.3 (a) shows an oscillator with a calculated frequency of 4.85 kHz , and Fig. 2.3 (b) shows one with a calculated frequency of 0.0221 Hz and a calculated cycle length of 45.2 seconds. Table 2.1 gives calculated frequencies for different values of ( $R A+2 R B$ ) over some seven decades of frequency, and will be found helpful in arriving at suitable component values for a specific frequency.

The 555 will oscillate satisfactorily for values of $(\mathrm{RA}+2 \mathrm{RB})$ up to $10 \mathrm{M} \Omega$ and
down to values of $1 \mathbf{k} \Omega$. The ICM7555 draws lower input currents at pins 2 and 6 and will operate satisfactorily with values of ( $R A+2 R B$ ) ranging from $100 \mathrm{M} \Omega$ to $1 \mathrm{k} \Omega$.

If $\mathbf{C}$ is an electrolytic capacitor it is preferable to limit (RA +2 RB) to some $500 \mathrm{k} \Omega$ with either i.c. This will ensure that capacitor leakage current does not significantly affect oscillator functioning.

## OUTPUT PERFORMANCE

The internal output transistors in the 555 have the circuit configuration shown in Fig. 2.4. When the 555 output is low, transistors TRA and TRB are turned off, whilst TRC is turned on. Fig. 2.5 (a) shows the voltage between pin 3 and the negative rail for different currents flowing in a load connected between pin 3 and the positive rail when the supply voltage is 9 volts.

At currents below 40 mA the voltage drop across transistor TRC ranges from less than 0.1 volt to some 0.4 volt. At around 50 mA the voltage drop increases sharply to around 1.5 volts and then increases to 2 volts at 100 mA .
When the 555 output is high, transistors TRA and TRB are turned on, with TRC turned off. Both TRA and TRB are emitter followers with the results that for currents above 0.15 mA (at which 0.6 volt is dropped across the $3.9 \mathrm{k} \Omega$ resistor) the voltage drop across TRB must be at least 1.2 volts because of the voltage drop

Table 2.1:555 AND ICM7555 FREQUENCIES

$(R A+2 R B)$	$0.01 \mu \mathrm{~F}$	$0.022 \mu \mathrm{~F}$	$0.047 \mu \mathrm{~F}$	$0.1 \mu \mathrm{~F}$	$0.22 \mu \mathrm{~F}$	$0.47 \mu \mathrm{~F}$	$1 \mu \mathrm{~F}$	$2.2 \mu \mathrm{~F}$	$4.7 \mu \mathrm{~F}$	
$1 \mathrm{k} \Omega$		66.4 kHz	31.1 kHz	14.6 kHz	6.64 kHz	3.11 kHz	1.46 kHz	664 Hz	311 Hz	146 Hz
$3 \mathrm{k} \Omega$	48.7 kHz	22.1 kHz	10.4 kHz	4.87 kHz	2.21 kHz	1.04 kHz	487 Hz	221 Hz	104 Hz	48.7 Hz
$10 \mathrm{k} \Omega$	14.6 kHz	6.64 kHz	3.11 kHz	1.46 kHz	664 Hz	311 Hz	146 Hz	66.4 Hz	31.1 Hz	14.6 Hz
$30 \mathrm{k} \Omega$	4.87 kHz	2.21 kHz	1.04 kHz	487 Hz	221 Hz	104 Hz	48.7 Hz	22.1 Hz	10.4 Hz	4.87 Hz
$100 \mathrm{k} \Omega$	1.46 kHz	664 Hz	311 Hz	146 Hz	66.4 Hz	31.1 Hz	14.6 Hz	6.64 Hz	3.11 Hz	1.46 Hz
$300 \mathrm{k} \Omega$	487 Hz	221 Hz	104 Hz	48.7 Hz	22.1 Hz	10.4 Hz	4.87 Hz	2.21 Hz	1.04 Hz	0.487 Hz
$1 \mathrm{M} \Omega$	146 Hz	66.4 Hz	31.1 Hz	14.6 Hz	6.64 Hz	3.11 Hz	1.46 Hz	0.664 Hz	0.311 Hz	0.146 Hz
$3 \mathrm{M} \Omega$	48.7 Hz	22.1 Hz	10.4 Hz	4.87 Hz	2.21 Hz	1.04 Hz	0.487 Hz	0.221 Hz	0.104 Hz	0.0487 Hz
$10 \mathrm{M} \Omega$	14.6 Hz	6.64 Hz	3.11 Hz	1.46 Hz	0.664 Hz	0.311 Hz	0.146 Hz	0.0664 Hz	0.0311 Hz	0.0146 Hz

Calculated frequencies for (RA $\times 2$ RB) and capacitance

in each of the two base-emitter junctions. The voltage drop for source currents up to 100 mA is shown in Fig. 2.5 (b).

Since, for currents up to around 40 mA , there is a much lower voltage drop in the 555 when it is providing a sink current than there is when it provides a source current, it is often more desirable to have the 555 drive a load which is connected between its pin 3 and the positive rail. The load current then flows when the 555 output is low.

The ICM7555 is specified as sinking output currents of up to 100 mA maximum with a supply of 18 volts. With a 9 volt supply the maximum sink current to



the period in the cycle when the output is high is equal to $0.685($ RA )C and the period when the output is low is equal to $0.685(\mathrm{RB}) \mathrm{C}$. To find frequency, the two periods are added and the sum inverted.

## INVERTER FUNCTION

When pins 2 and 6 of a 555 or ICM7555 are connected together and are taken below one-third of the supply voltage, the output at pin 3 is always high. The output is always low when pins 2 and 6 are taken above two-thirds of the supply voltage. This fact enables a 555 or ICM7555 to function as an inverter, using the circuit shown in Fig. 2.9.

If the output of ICl in this circuit has a duty ratio of, say, 70 per cent, the output
of IC2 will have a duty ratio of 30 per cent. This arrangement enables duty ratios of less than 50 per cent to be achieved without the introduction of the two diodes of Fig. 2.8. An ICM7555 will drive a 555 employed as an inverter and this fact may be of assistance when it is desired to provide high load currents whilst using very high values for RA and RB in the ICM7555 oscillator circuit.

A useful trick for obtaining a $50: 50$ square-wave from the 555 or ICM7555 is to simply add a third resistor, RC, to RA and RB, as shown in Fig. 2.10. The i.c. gives a $50: 50$ output when RA is equal to RB and RC is equal to four times RA or RB. The added resistor causes the capacitor charging time to be shorter than that given by RA and RB on their
own, and the discharge time to be longer than that given by RB on its own.
The operating frequency with this circuit is about 12.5 per cent higher than the frequency which would be given with RC removed from the circuit. With the circuit shown in Fig. 2.10 the total cycle period is approximately equal to $1 \cdot 8(\mathrm{RA}) \mathrm{C}$ and the frequency to

$$
\frac{0.55}{(\text { RA }) C}
$$

## CHECKING THE DUTY RATIO

It is possible to check the duty ratio of a 555 or ICM7555 without an oscilloscope. All that is required is to slow down the oscillator by connecting a high value capacitor across $\mathbf{C}$.



As an example, Fig. 2.11 (a) shows an oscillator with a calculated frequency of 523 Hz . If a $220 \mu \mathrm{~F}$ capacitor is temporarily connected across C, as in Fig. 2.11 (b), the calculated running frequency falls to 0.0523 Hz with a total cycle length of 19 seconds.

The lengths of the high and low output periods in each cycle can then be assessed by connecting a voltmeter between the i.c. output and the negative rail and timing the periods with the aid of a watch.

Remember that, when the high value capacitor is initially applied, the i.c. output goes high for a longer period than it will subsequently do in the following cycles. This is because the capacitor has to charge from zero to two-thirds of supply voltage before the regular cycles commence.

## APPLICATIONS

There are a large number of applications for the 555 and ICM7555. Both may be used as oscillators giving a useful performance up to 100 kHz , and can function as a.f. tone generators, logic clocks and in many other circuits.

When running at very low frequencies, either i.c. can be caused to turn on and off relatively heavy current circuits, such as lamps in an advertising display, by connecting the output to the coil of a relay, as in Fig. 2.12. The relay should be capable of energising reliably at a coil voltage of slightly less than the supply voltage, and reasonable figures for coil resistance would be such that energising current is less than some 50 mA with the 555 and less than 20 mA with the ICM7555.

Using a 9 -volt supply (and ignoring voltage drop in the i.c.) these currents
correspond to coil resistances of about $180 \Omega$ and $450 \Omega$, respectively. Higher relay energising currents within the capabilities of the i.c.s could, of course, be used if desired.

The diode shown in Fig. 2.12 can be any small silicon diode or rectifier, and it prevents the generation of a high reverse voltage across the relay coil when the relay is released.

Fig. 2.13 shows a 555 turning on a triac when its output is low. A triac gate current of around 50 mA is given and, since the circuit operates in two of the more sensitive triac quadrants (MT2 positive or negative with gate negative) this current should be satisfactory with most small triacs. Gate current can be increased further, if necessary, by reducing the value of the resistor connecting to pin 3 of the 555.
Adding a second 555 as an inverter, as illustrated in Fig. 2.14, allows two lamps, or sets of lamps, to be turned on and off alternately. The frequency control component values give a nominal $50: 50$ output at approximately 0.2 Hz with a total cycle length of about 5 seconds. The cycle length may be increased by increasing the value of the capacitor, or reduced by reducing that value.

## THE 556

A variant of the 555 is the 556 i.c. This is a 14 -pin device which contains two 555 s in one package, with pin 7 as the negative supply pin for both and pin 14 as the positive supply pin.

The functions for one of the 555 s are available at pins 1 to 6 , and those for the other 555 at pins 8 to 13. The pin allocations are shown in Fig. 2.15.

[EETOA]

$$
\begin{aligned}
& .556 \\
& \text { TOP VIEW }
\end{aligned}
$$

Fig. 2.15. The 556 i.c. comprises two 555 s in a single package.

## OSCILLOSCOPE CALIBRATOR

A practical project which can employ either a 555 or an ICM7555 is shown in Fig. 2.16. In this circuit, switch $\$ 1$ selects positive-going pulses having an amplitude of $1 \mathrm{~V}, 100 \mathrm{mV}$ or 10 mV , and these can be applied to an oscilloscope to set up its $Y$ axis voltage calibration. The oscilloscope input couples to the Common and D.C. output terminals for a direct coupling, or to the Common and A.C. output terminals for an a.c. coupling.

ICI produces a nominally 50:50 square-wave with a frequency of approximately 1 kHz . IC2 is a 5 -volt regulator which holds the emitter of TR1 steady at a fixed voltage of 5 volts $\pm 4$ per cent. When ICI output is high, TR1 is cut off since its base-emitter junction is reverse biased by about 4 volts. (IC2 output remains regulated for zero output current or small currents to the 9 -volt positive rail.)

TR1 turns hard on when IC1 output goes low and its collector current flows through the chain of resistors, VR1,


Fig. 2.16. A practical project. This circuit produces positive-going pulses of known amplitude to enable an oscilloscope to be calibrated.

R5-R8. VR1 is adjusted to make this collector current precisely 5 mA . In con sequence, 10 mV is built up across R8, 100 mV across R9 and R7, and IV across R8, R7 and R6. These voltages are tapped off by S 1 .
After VR1 has been adjusted, the current in the resistor chain maintains its value because the collector-emitter voltage of TR1, when turned on, is always less than 0.1 volt, and because the transistor is supplied by the voltage regulator. The current drawn from the 9 -volt supply is about 9 mA with a 555 , or about 5mA when using an ICM7555.

There are no critical features in the assembly of the circuit, apart from the fact that C2 and C3 should be positioned close to IC2.

## SETTING-UP

Potentiometer VR1 is adjusted in the following manner. Set S1 to the IV position and connect a voltmeter capable of giving a clear reading of 1 volt between the Common and D.C. terminals. Temporarily short-circuit R1. This takes pins 2 and 6 of ICl high and drives pin 3 low, turning on the transistor. Adjust VR1 until the voltmeter indicates exactly 1 volt. Remove the short-circuit across R1, whereupon the calibrator is ready for use.

For optimum accuracy, R6, R7 and R 8 should be 1 per cent resistors. If difficulty is experienced in obtaining a close tolerance $2 \Omega$ resistor for R8, this can consist instead of a 1 per cent $2.2 \Omega$ and a 1 per cent $22 \Omega$ resistor in parallel.

Part Three of this series will discuss the use of digital CMOS devices in RC oscillator circuits.

## PEASE TAKENOIE

## Circuit Exchange (June 84)

## Digital Capacitance Moter

The connection from IC6 pin 11 and IC7 pin 6 can be used to extend the range of the display to two digits, by the addition of extra counter and driver i.c.s.

## all in the <br> AUCUST issue!



In 1931 Karle Guthe Jansky mounted a make-shift aerial on an old Ford chassis and became the world's first radio-astronomer. This article takes a trip through the fifty-three year history of this fascinating subject and covers the basic principles right up to present day operating techniques.


This straightforward project will allow the Commodore 64 to drive a printer directly, or to communicate via a serial line with other machines.


Any cassette recorder may be turned into a realtime data logger using V-to-F techniques. We describe the principles involved, and presenf a simple design.

## PORTABLE CHESS GAME OFFER

## PRACTICAL

# aIEMTRDNICS 

THE AUGUST ISSUE WILL BE ON SALE FRIDAY, JULY Gth

# C.B. Mini Power <br> Supply 

## T.R.de Vaux Balbirnie

HAND-held CB transceivers having an output of 2 watts are of interest to outdoor enthusiasts wishing to extend their hobby beyond home and car. Tests show that portable units are surprisingly good for home-base use. Naturally, they are limited compared with the 4 -watt equipment but range is rarely a problem if a good outdoor antenna is employed. Hand-held CB units have a socket for this purpose.
For home use it makes sense to use a mains-operated power supply to maintain maximum power output and to conserve the rather short life of the batteries. Such a power supply is the subject of this article.

## SUITABILITY

The Mini Power Supply is suitable for CB transceivers requiring a 12 -volt supply at up to 1 amp. Power is usually provided in these units by eight $1 \cdot 6 \mathrm{~V}$ cells
or ten nickel cadmium batteries. The Harrier WT2 is one such example requiring approximately 500 mA in the "transmit" mode and about 70 mA when switched to "receive". In this respect, the manufacturer's leaflet seems to over-rate the current requirement.

The project is described as "mini" since it provides sufficient current for the intended purpose with only a little reserve. In this way, the physical size and cost are kept low. Ready-built units are made with mobile equipment in mind. They can supply a higher current and usually operate at about 13.8 V . The higher output voltage could damage hand-held equipment.

Before constructing the power supply, read the manufacturer's leaflet to check that less than 1 A is required when transmitting (although, as stated previously, this may be over-stated). If this data is not available-or if in doubt-make a direct measurement using an ammeter. This should be connected in series with the battery supply. For this test, make sure that the batteries are fresh so that the maximum current is measured.

## CIRCUIT DESCRIPTION

The circuit for the CB Mini Power Supply is shown in Fig. 1. Mains current flows through S1 and the primary winding of T1. The secondary then gives about 12 V a.c. This is converted into d.c. by the bridge rectifier D1-D4 then
smoothed by means of C1. This provides about 16 V d.c. Regulation is achieved by IC1 so that a steady 12 V is obtained at the output whatever the current drawn by the CB equipment. ICl also gives short circuit, overload and thermal protection.

The mains switch, S1, incorporates a neon indicator. C2 and R1 ensure correct operation of IC1. Note: The case of the project, being metal, is connected to the negative of the output so simplifying much of the wiring.

## CONSTRUCTION

Use the aluminium case specified in the parts list. The specified transformer fits the case comfortably with plenty of ventilation space all round. Holes should be made for S 1 and for the input and output wires. These latter holes must be fitted with rubber grommets.

Mount T1 and IC1 as shown (see photograph). Note that IC1 makes metal-to-metal contact with the case so providing the common negative connection. For this reason, the centre tag of IC1 is not used and may be cut off short if desired. When mounting T1, include a solder tag beneath one of the fixings for earthing later. A further solder tag is used for the negative connection of Cl and the bridge rectifier. Solder C2 and R1 in parallel to the piece of tag strip. Mount this in position (see photograph) noting that one side of $\mathbf{C 2}$ and $\mathbf{R} 1$ are connected to the case. The output connections are also made to these tags.

## MAINS LEAD

Pass the mains inlet wire through the grommet and make the soldered connections to S1. A neutral connection is needed here for the neon indicator to work. From S1, connections are made to the 240 V primary of T1. In the prototype a connection was needed between the two 120V primary windings (Fig. 2).

Solder the earth wire of the mains lead to the solder tag at T1. This earths the case and the transformer core. This is essential safety procedure-on no account use this project on a non-earthed supply.

Complete all wiring (Fig. 2). Check for short circuits. Bend component leads as necessary to allow a free flow of air. Tie string tightly around the inlet and output


Fig. 1. Complete circuit diagram for the CB Mini PSU.
wires where they enter the case to provide strain relief. Pull the leads to make sure that connections are not dislodged.

Using great care, drill four or five 6 mm holes in the base of the box to provide ventilation. These holes must obviously be clear of any wiring or components. Fit the feet on the case. These are necessary not only to prevent scratching of the work surface but also to allow ventilation. Mount the lid on the case slightly higher than normal by lengthening the fixing holes slightly. This will leave 2 or 3 mm gaps at the front and rear. These will also assist with ventilation.

## CONNECTING TO THE CB EQUIPMENT

The best way of connecting the output wires to the CB is to use two dummy batteries. Hand-held units usually use HP7 (AA) size batteries. Dummies of this size are freely available. Making certain that the correct polarity is observed, use one
for the positive and one for the negative connection. It is not necessary to remove the bridge linking the two ends of the dummy batteries together, in fact this may by used to accept the soldered connection.
Insert the dummy batteries in the extreme positions normally occupied by the real batteries. Unless the back is to be left off while operating the CB it will be necessary to file a corner off so that the connecting wire may pass with it in place.

If the power supply delivers a continuous 1A output it will become quite warm after a long period of operation. In normal use, there will be periods of receiving as well as transmitting and the current requirement on "transmit" will probably fall well short of 1A anyway. In practice, the case of the prototype remained fairly cool. When using for the first time, however, a frequent check should be made on the temperature of the case. A poor quality component for TI could cause overheating.

Capacitors

C 1	$2200 \mu \mathrm{~F}$ elect.
C2	16 V or higher
$0.47 \mu \mathrm{~F}$-any rating	
above 12 V	

Semiconductors

IC1	$781212 \mathrm{~V} / 1 \mathrm{~A}$ regulator
D1-4	50 V 1 A silicon bridge
	rectifier

## Miscellaneous

T1 Mains transformer with 240 V (or 2 off 120V) primary. 12 V (or 2 off 6 V ) secondary. 1 A rating. RS type rating. RS
207-633.
S1 Double-pole mains rocker switch with neon indicator
FS $1 \quad 1.5 \mathrm{~A}$ fuse (and holder) AB28 aluminium. $102 \times$ case $\quad 70 \times 64 \mathrm{~mm}$ approx.
Two sections of tag strip; solder tag- 2 off; rubber grommets-2 off; 3A 3-core mains cable; 2-core output wire; feet for case - 4 off; connecting wire; solder; sleeving; dummy batteries-2 off; open construction type (see text).

Approx. cost
Guidance only
£10.00

Fig. 2. Wiring diagram. Note that pin 2 of IC1 is internally connected to the metal tab.


THIS unit has been designed to warn drivers to put their lights on when the amount of daylight falls below a preset level and also to remind them to switch off their lights at the end of a journey should the ignition be switched off before the lights; if parking lights are required then the ignition should be turned off and the lights switched off then on again. The design also includes a charging circuit in dicator so that the buzzer will not operate at low light levels if the charging circuit is not supplying current to the battery.

## CIRCUIT DESCRIPTION

The complete circuit diagram of the Car Lights Warning is shown in Fig. 1. The light dependent resistor R1, the preset VR1 and the resistor R2 form a potential divider across the 12 volt supply. The resistance value of the LDR increases as the light level falls, causing the voltage at point $A$ to fall. This falling voltage forward biases the base/emitter junction of TR1 switching TR1 on and therefore TR2 via R3. The voltage at the emitter of TR2 is applied to the buzzer WD1 via D4 and to the gate terminal of CSR2 via R7.

The resistors R7 and R8 together with the capacitor C 2 form a time delay of between 18 and 20 seconds after the engine has been turned on. After this time the thyristor CSR2 fires and the buzzer is energised.

Once the alarm has been activated it can be disabled by switching on the car lights which will turn TR1 off via the positive voltage applied through D3 to its base. As TR1 turns off the base current to TR2 is reduced and TR2 turns off,
removing the supply to the buzzer and turning off CSR2. The buzzer would remain on if current was allowed to flow straight to it from the lighting circuit so TR3, CSR 1, R3, R4, R5 and C1 are used to form a delay circuit to enable CSR2 to be shut down. Diode D4 is used to isolate the gate of CSR2 when it is required to park with the lights on otherwise the buzzer will sound again.

As soon as the ignition is turned on CSR 3 fires but has no effect on TR4 until the ignition is switched off again and providing that the lights are on, TR4 will conduct, supplying gate current to CSR4 regulated by R10 and R11, firing the device, and turning the buzzer on again.

## DIODE PROTECTION

Diode D1 isolates the lighting circuit from the ignition circuit as well as reducing any spikes that may be generated by the ignition circuit. Diodes D5, D6, D7 and D8 are all used as isolators and diode D2 protects the base/emitter junction from any pulses present when the lights are switched on. D9 is included to hold TR3 of when driving with the lights on as it was found that leakage current through C2 can sometimes trigger CSR2 on.

## STRIPBOARD

The components are mounted on a piece of stripboard measuring 18 strips by 26 holes. The component layout and track breaks are shown in Fig. 2.

After the components have been soldered into position the case can then be drilled and the light dependent resistor (R1), the two l.e.d.s (D10 and D11), and
the two in-line fuses fitted and wired to the stripboard. Check there are no solder shorts on the board and that all the track breaks are completely cut through.

## INSTALLATION AND SETTING UP

The unit should be mounted into position using double sided tape and placed where daylight can fall directly onto the LDR. Before finally fixing the unit into position it should be set up correctly. Because the output from different charging circuits can vary by as much as 3 volts a $220 \mathrm{k} \Omega$ preset can be used in place of R7 to set the operation of the buzzer. A final value of $R 7$ between $150 \mathrm{k} \Omega$ and $180 \mathrm{k} \Omega$ should be suitable for most cars.
The two supply leads to the circuit should go to the light switch and the ignition switch. Because it is not always possible to wire directly to both these switches the wiring diagram of the car should be studied to decide the best place to make the connections.

When the unit is in position and it is dark outside the engine should be started and VR1 adjusted to bring on the buzzer. The rest of the operation of the circuit can then be tested.

## SPECIFICATION

For use on negative earth vehicles only Working voltage $10-16$ volts d.c. Current consumption:
@ 14 V (no lights) 6 mA
(a) 14 V (with lights) 8.5 mA
(0) 14 V (parking lights on) 3 mA



Fig. 1. Circuit diagram of the Car Lights Warning.


EE506]

[EESTG]
Fig. 2. Stripboard and component layout.

## COMPONENTS

Resistors
R1
ORP 12 light dependent resistor
R2,3 $100 \Omega$ (2 off)
$R 4 \quad 1 \mathrm{k} \Omega$
R5 $47 \mathrm{k} \Omega$
R6,8,9,12 $10 \mathrm{k} \Omega$ (4 off)
-R7 220k
R10.11 $12 \mathrm{k} \Omega$ (2 off)
R13.14 $4.7 \mathrm{k} \Omega$ (2 off)
VR1 $100 \mathrm{k} \Omega$ hor. min. preset
All resistors $\frac{1}{4} \mathrm{~W} 5 \%$ carbon
Capacitors
C1.2 $220 \mu \mathrm{~F} 16 \mathrm{~V}$ radial elect.
C3 $\quad 2 \cdot 2 \mu \mathrm{~F} 16 \mathrm{~V}$ radial elect.
Semiconductors

D1,4,6,7,8	1N4001 (5 off)
D2,3,5,9	1N914 (4 off)
D10.11	T1L209 red I.e.d. (2 off)
TR1,3,4	BC212 (3 off)
TR2	BC107
CSA1,2,3,4	MCR102 (4 off)

Miscellaneous
FS1,2 100mA fuse (2 off)
WD1 12 V d.c. buzzer
Maplin FL4OT
Panel mounted in-line fuse holder (2 off)
Plastic case $78 \times 50 \times 25 \mathrm{~mm}$
Stripboard 18 strips by 26 holes

- See setting up procedure

Approx. cost
Guidance only
£11.00


THE COMPONENTS LIST for any constructional project will nowadays usually include some integrated circuits (i.c.s). There are hundreds of different i.c.s now available, costing anything from a few pence to several pounds; generally, the cost reflects the complexity of the device, but very popular complex devices (such as microprocessors) are relatively cheap.

Integrated circuits may be considered as falling into one of two categories; linear, or logic, and it is under these headings that they are usually advertised by component suppliers. The suppliers' catalogues should be consulted for details of power supply requirements and connections for any particular i.c., but it is possible to give some general information, and to explain the numbering system. For beginners, simple projects are obviously best, and the regular Circuit Exchange feature should provide plenty of good ideas.

## LINEAR INTEGRATED CIRCUITS

These have been designed to provide, in one package, a commonly-required function; examples include general-purpose amplifiers, voltage regulators and video amplifiers. A very popular device is the 555 precision timer; although essentially this circuit simply provides a time delay, home constructors have found hundreds of applications for it. Generalpurpose amplifiers include the 741 and 748 , and all the devices are available from a number of manufacturers in various package types.

The letters associated with the number indicate the maker and the packaging: common prefixes include LM and NE. The letter after the number, if any, indicates the package type, for example H for a metal can, and N for a dual-in-line package. Because different manufacturers have different conventions, it is the type number which is normally referred to in the text. For example, if a " 555 timer" is specified, the device could equally well be LM555CN (National), CA555CE (RCA), or NE555N (Signetics).

Once this is understood, pin numbers on the package can be related to the circuit diagram connections, and a working project can be completed without having to know what is actually inside the i.c. Some common package types for linear i.c.s are shown in Fig. I.

## LOGIC CIRCUITS

Most of the logic i.c.s used in projects have 14 or 16 pins and are housed in a standard dual-in-line package (Fig. 2). Unlike linear circuits, which may require a number of different power supply connections, TTL (TransistorTransistor Logic) i.c.s work on only two


Fig. 1. Pin numbering for linear i.c.s. Metal cans have either atag or a wider pin spacing to identify pin 8. Dual-in-line packages have a notch and/or a depression to indicate pin 1.
levels: +5 volts and ground (zero volts). For all standard TTL i.c.s, +5 volts is connected to pin 14 (or pin 16 for a 16 -pin package), and zero volts to pin 7 (or pin 8). The functions of the other pins depend on the device, but Fig. 3 shows the inputs and outputs for a quad 2 input AND gate. It is called a quad gate because there are actually four separate, in dependent gates inside the chip. So a design


Fig. 3. Internal connections for a 7408 or 74 LS08 quad 2 -input AND gate.
which required eight such gates, for example, would only need two i.c.s.

The part number is made up of a manufacturer's prefix (usually SN), followed by the number 74 for standard circuits ( 54 for a wide temperature range), and then the number
which indicates the type of circuit. An '08, as shown, is a quad AND gate, while an ' 02 is a quad NOR gate. The final letter shows the package type, which is usually plastic dual-inline, indicated by the letter $\mathbf{N}$ or $\mathbf{P}$.
Finally the letters "LS", as in SN74LS08N: this stands for "low-power Schottky" and means that the i.c. is a fast-switching type. There are other families of TTL (for example very low power and super-fast) but either LS TTL or standard TTL is usually specified for projects. Different families should not, as a rule, be mixed.

## CMOS

These digital integrated circuits are designed for use where low power consumption is required, or where the power supply may be "noisy" (random fluctuations in voltage level). This makes them ideal devices for some applications, but CMOS operates more slowly than TTL. The part number is made up of a manufacturer's prefix (e.g., MCl for Motorola), followed by four digits beginning with " 4 " to indicate function, and then one or more letters to show the package type. A plastic dual-in-line quad 2 -input NAND gate could be MC14011BCP (Motorola) or CD4011BE (RCA) or CD4011BCN (National). The number which specifies the function is 4011 , and it is this which the supplier advertises.


Fig. 2. Dual-in-line 14-pin and 16-pin TL i.c.s have a notch at the end of the package to identify pin 1.

## cIRCuIT EXCHANGE

This is the spot where readers pass on to fellow enthusiasts useful and interesting circuits they have themselves devised. Payment is made for all circuits published in this feature. Contributions should be accompanied by a letter stating that the circuit idea offered is wholly or in significant part the original work of the sender and that it has not been offered for publication elsewhere.


## SIMPLE PHOTOELECTRIC SWITCH

TIIIs circuit requires very few components and is therefore cheap to build, yet despite its simplicity is able to switch at very low light levels, the level being set by RI. Whenever possible the I.d.r. should be kept away from the lamp being controlled to prevent feedback. If difficulty is experienced then R3 can be lowered to increase the difference between Switch-On and Switch-Off light levels, and may also solve feedback problems. None of the component values or types are critical, except that the relay should have a minimum resistance of 185 ohms.
R. Ormston,

Southampton,
Hants.
reversed, the diode blocks the flow of current through the relay ccil preventing it from switching on.
P. Thompson, Lennoxton,
Glasgow.


## MOTORCYCLE ALARM

N this circuit a 555 timer (IC1) is used as a monostable, and when triggered by pin 2 being brought low, drives another 555 (IC2) which is wired as an astable. The output from IC2 turns TR1, and thus the relay on and off. This gives a series of bursts of the horn for a time set by R2 and C1. Pin 2 can be triggered by a ball bearing tilt mechanism, as shown in the diagram.
This unit can also be used in cars by wiring the trip switch wire to the courtesy light. Pin 2 will be held high via the lamp, and will be triggered by the car door being opened. If this method is used it will be necessary to install an isolation switch outside the car.
G. Bamford, Clackheaton West Yorks.

## REVERSED BATTERY PROTECTION

MIEN constructing portable electronic equipment, it is often advisable to have some form of protection should the battery be connected the wrong way around.

A diode connected in series with one of the supply lines will do, but has the disadvantage of producing a forward volt drop of about IV. A neater solution, which produces no drop in the supply, is to use a relay, as in the circuit shown.

With the battery connected correctly, the diode conducts, operating the relay, and applying power to the equipment. Should it be


## CIRCUTT EXCHANGE

## LOW NOISE HIGH GAIN PREAMPLIFIER

THIS useful circuit has pre-programmable high gain and can be used for many applications. The gain of the circuit, will be set at $\times 30, \times 160$ or $\times 700$, by selecting R3 to be
$150 \Omega, 680 \Omega$ or $4.7 \mathrm{k} \Omega$, respectively. The output of the circuit is suitable for most power amplifiers and may also be used to drive headphones independently of power amps.

A small 9 V battery can be used as a power supply and because of the low current consumption of the circuit, the life of such a battery will be long. However, if you wish to use this preamplifier with a power amplifier it is better to use the P.A. power supply. In this case the use of a noise filter is essential.
When using the filter R6 should be $1.2 \mathrm{k} \Omega$ minimum for a 12 V supply. If higher voltages are being used then this should be increased to $4.7 \mathrm{k} \Omega$. The maximum supply voltage should be 18 V .

Kamel Alizadeh,
Tehran, Iran.


## FLASHING DECORATION LIGHTS

T
HIS circuit was designed last Christmas to improve on the stationary, rather drab decorations in the living room with the aid of flashing lights arranged to give the appearance of one light moving back and forth. The heart of the circuit is IC2, a CMOS decade counter divider with ten decoded outputs. Therefore, with each positive pulse given to pin 14 (the clock input), the output from one pin drops, and the next pin in the series rises to supply
voltage. The pulses are provided by ICl , a 555 timer, wired up to give astable square waves from the output pin. The resistance across pins 6 and 7 is variable so that the frequency of the pulses can be altered to a pleasing value.
The first six outputs of IC2 are connected via signal diodes to the bases of six transistors controlling l.e.d.s, so that with the first six pulses the l.e.d.s are lit in order. To give the appearance of the light moving back, the seventh output is connected to the transistor base from the fifth, the eighth to that of the
forth and so on. Pin 11 (the tenth output) is also connected to pin 15 (reset) to allow continuous operation. The l.e.d.s situated in order across the room are joined to the main circuit by seven wires; one from each cathode and one for the supply line. The bundle of wires, which incidentally diminish to two at the farthest end, is easily hidden amongst other decorations if bound together and covered with dark insulation.
M. Allen,

Pinner,
Middlesex.

## T.V. SOUND TUNER <br> SERIES II BUILT AND TESTED Complete whith case. $£ 26.50+£ 2.00$ p\&p.

Ine cut-throat world o the auer electronics, one of the questions designer is "Will anyone porer we save money by choop ing this out?" In the domestic TV ser, one first casualties seems to be the sound quality. Small speaker
 and no tone controls are common

Also avallable with built-in headphone and all this is really quite sad, as the OMP. ONLY $\mathbf{\varepsilon} 3250$ - 50 headphone TV companies do their best to transmit the highest quality sound. Given this background a compact and independent TV funer that connects direct to your HI.FI is a must for quality This TV SOUND TUNER offers full UMF
This TV SOUND TUNER offers full UHF coverage with 5 pre-selected runing controls. It can E.T.I. kit version of above without chassis, case and hardware. $£ 16.20$ plus E 1.50 p 8 p .

## PRACTICAL ELECTRONICS STEREO CASSETTE RECORDER KIT civiricis <br> ONLY $£ 34.50$ plus $£ 2.75$ p\&p.

 - NOISE REDUCTION SYSTEM. - AUTO . TAPE COUNT LEVE CONTROLE - TWIN V.U. METER. WOW \& FLUTTER $0.1 \%$. RECORD/PLAYBACK I.C. WITH ELECTRONIC SWITCHING. FULLY VARIABLE RECORDING BIAS FOR ACCURATE MATCHING OF ALL TYPES.Kit includes tape transport mechanism, ready punched and back
printed quality circuit board and all electronic parts. Ie. semiconductors,
Yours, capacitors, har dware, lop cover, printed scale and mains rransformer.

## 125W HIGH POWER AMP MODULES

The power amp kis is a module for high iers, public address systems and even high power domestic systems. The unit is protected against short cincuiting of the load and is sale in an open circuit condition. A large satety margin exists by use of generously rated com The PC board is back printed erched and ready to drill for ease of construction and the aluminium chassis is preformed and ready to use. Supplled with all parts, circuit diagrams and instructions.
Accessories: Stereo mains power supply kit with
trans. $£ 10.50+\varepsilon 2 p \& p$. Mono: $£ 7.50+£ 2 p \& p$.

## GOODMANS SPEAKERS

70 watt Bass/Midrange speak 8 ohm impedance. Frequency magnet. $£ 14.95$ plus $£ 975 \mathrm{p}$

## BSR RECORD DECKS

Auto-Changer model - takes up to 6 records
with manual override. Supplied with stereo ceramic cartridge. $£ 12.95$ plus $£ 1.75$ psp.
 3 speed, auro, ser-down; with auto return. Fitted with viscous
darnped cue, tubular aluminium counter-weighted arm, fitted with ADC magnetic head. Ideally suited for home or disco use. $£ 25.95$
Manual single play record deck with auto return and cueing mic cartridge 2 speeds with 45 rpm spindle adaptor idealiy suited for home or

## did. $13 \times 1$ approx. $£ 14.95$ plus $£ 1.75$ p\&p.

HI-FI SPEAKER BARGAINS
High AX 8 SPEAKER Hass/mid. Ideal for sits RM Hifi or Disco use thls sor eatures an aminis speake coil and a heawy 70 mm dia. magnet. Freq Res. 20 Hz to 7 kHz . mm .8 ohms
AUDAX 4OW FERRO.FLUID
HI-FI TWEETER Frea, res $5 \mathrm{KHz} \cdot 22 \mathrm{KHz}$ 1 mp .: 8 ohms. 60 mm sq. $£ 5.50+60$ p p\&p. GOODMANS TWEETERS 8 ohm soft dome radiator iweeter $13 \%$ "s
 All mait to: 21A MIGH ST, ACTON W3 6 NG Access phone orders of 01-592 8430
 Pheose allow whem to chenge whloul notico ho derborch RTVC Limned teserve ine figm io ion



SPECIFICATIONS
Max. output power (RMS): 125 W. Operating voltage (DC): $50-80 \mathrm{max}$. Loads: $4-16 \mathrm{ohm}$ $25 \mathrm{~Hz}-20 \mathrm{KHz}$. Sensirivity 100 watts: @ 47 K . Typical T.H.D. @ 50 watts, 4 ohms: $0.1 \%$. Dimensions: $205 \times 90$ and $190 \times 36 \mathrm{~mm}$.

KIT $£ 12.00$ BUILT $£ 17.50$

## AT BARGAIN PRICES

 systems up to 65 watts. Bass/
Midrange. $£ 13.95+£ 2.50$ p\&p. STEREO TUNER KIT
SPECIAL OFFER!
£13.95

+ £2.50 p\& $\rho$.
This easy to bulid 3 band stereo AM/FM tuner kit is designed in conjunction with P.E. (July '81). For ease of construction and alignment it incorporates three Mullard mod ules and an I.C. IF System. Froni scale size $10 \%$ " $\times 2 \%^{\prime \prime}$ approx. Complete with diagram


## MONO MIXER AMP

 Ideal forhalls and clubs. £ 45.00

## + £2 p\&p

So Watt, six individually mixed imputs for 2 pickups (Cer. or mag), 2 moving coil microphones and 2 auxiliary for zape runer, organs etc. Eight slider controls -6 for level and 2 for master bass and ireble, 4 extra treble $13 \%^{\prime \prime} \times 6 \%^{\prime \prime} \times 3 \%^{\prime \prime}$ app. Pomer RMS (cont 1 for use with 4 to 8 ohm speakers. Attractive black vinyl case with matching fascia and knobs. Ready to use. CALLERS TO: 323 EDGWARE ROAD OONDON W2. Telephone: 01-723 8432
回TTㅏ딛

TWO FABULOUS OFFERS FROM

## 시 <br> IG (0)

 The incredible 'MINI 20'
## 28 ranges

$20 \mathrm{k} \Omega / \mathrm{V}$ d.c. $8 \mathrm{k} \Omega / \mathrm{V}$ a.c.
(With protective fuse)
Accuracy: $2 \%$ d.c. and resistance, $3 \%$ a.c.
28 ranges: d.c. $V 100 \mathrm{mV}, 3 \mathrm{~V}, 10 \mathrm{~V}$ $30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 600 \mathrm{~V}$. d.c. $150 \mu \mathrm{~A}$. $600 \mu \mathrm{~A}, 6 \mathrm{~mA}, 600 \mathrm{~mA}$. a.c. V 15 V , $50 \mathrm{~V}, 150 \mathrm{~V}, 500 \mathrm{~V}, 1500 \mathrm{~V}$. a.c. $130 \mathrm{~mA}, 300 \mathrm{~mA}, 3.0 \mathrm{~A}$. Ohms o$2 \mathrm{k} \Omega, 0-2 \mathrm{M} \Omega$. dB from -10 to +62 in 6 ranges.
Dimensions: $105 \times 130 \times 40 \mathrm{~mm}$.
The 28 ranges cover all likely requirements. Operation is straightforward, just turn the selection switch to the required range.

This special offer is a wonderful opportunity to acquire an essential piece of test gear with a saving of nearly $£ 10.00$.
THE IDEAL INSTRUMENT FOR THE CONSTRUCTOR

(complete with carrying case, leads and instructions)
'SUPER 20'
A SUPER PROTECTED UNIVERSAL MULTIMETER


Accuracy: d.c. ranges and $\Omega 2 \%$ a.c. $3 \%$ (of f.s.d.) 39 ranges: d.c. $\mathrm{V} 100 \mathrm{mV}, 1.0 \mathrm{~V}, 3.0 \mathrm{~V}, 10 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$. d.c. $150 \mu \mathrm{~A}, 100 \mu \mathrm{~A}, 300 \mu \mathrm{~A}, 1.0 \mu \mathrm{~mA}, 3 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$, $100 \mathrm{~mA}, 1 \mathrm{~A}, 10 \mathrm{~A}$
a.c. $\mathrm{V} 10,30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$;
a.c. $13 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}, 100 \mathrm{~mA}, 1.0 \mathrm{~A}, 10 \mathrm{~A}$ $\Omega 0-5.0 \mathrm{k} \Omega, 0-50 \mathrm{k} \Omega, 0-500 \mathrm{k} \Omega, 5 \mathrm{M} \Omega, 50 \mathrm{M} \Omega$. dB from -10 to +61 in 5 ranges.
Dimensions: $105 \times 130 \times 40 \mathrm{~mm}$.
These special offers is a wonderful opportunity to acquire an essential piece of test gear with a saving of nearly $£ 20.00$.
(complete with carrying case. leads and instructions)

ONLY £33-50
PRICES Our prices include VAT and postage and goods are normally despatched by return.

For details of these and the many other instruments in the Alcon range, including multimeters, components measuring, automotive and electronic instruments, please write or telephone

## Courses

CONQUER THE CHIP-master modern electronics the practical way by seeing and doing in your own home. Write for your free colour brochure now to BRITISH NATIONAL RADIO \& ELECTRONICS SCHOOL, Dept C3, Reading, Berks RG1 1BR.

## INVENTORS

## Think of something new?

Write it down!
American industry offers potential royalties for you innovations and new products. We offer free confidential disclosure registration and initial consultation in London regarding your idea's potential value. Write without delay for your free information package.
American Inventors Corporation 82 Broad Street, Dept. EV.
Westfield, Massachusetts 01086. United States of America
A fee based marketing company

## Receivers \& Components

500 SMALL COMPONENTS including TTL transistors $£ 2.50,7 \mathrm{lbs}$ or 10 lbs assorted components $£ 5.00 /$ £6.50. Fifty 74 series I.Cs on panel $£ 2.20$. Post Paid. J. W. BLANSHARD, 2 Barnfield Crescent, Sale Cheshire, M33 INL.

VERY LARGE PACK of Mixed Components. Capacitors, Transistors, Resistors, Diodes, Boards, Thyristors, Multipin Plugs \& Sockets and many more items. $£ 6.50$ p post \& packing inclusive. G. EVANS, 7, Mendip Close, Pendine Park, Summerhill, Wrexham, Clwyd.

COMPONENTS \& EQUIPMENT - 1984 Catalogue $70 p+20 p$ P\&P. Callers: 18 Victoria Road, TAMWORTH. 369 Alumrock Road, BIRMINGHAM. 103 Coventry Street, KIDDERMINSTER. Express Mail Order Service. LIGHTNING ELECTRONICS, PO Box 8, Tamworth, Staffs.

TURN YOUR SURPLUS capacitors, transistors etc., into cash. Contact Coles Harding \& Co., 103 South Brink, Wisbech, Cambs. 0945-584188. Immediate settlement.

## EVERYDAY and computer proj=cts

Reach effectively and economically to-days enthusiasts anxious to know of your products and services through our semi-display and classified pages. Semi-display spaces may be booked at $£ 7.80$ per single column centimetre (minimum 2.5 cm ). The prepaid rate for classified advertisements is 33 pence per word (minimum 12 words), box number 60 p extra. All cheques, postal orders, etc., to be made payable to

## For Sale

WORKING TEST EQUIPMENT, signal generators, variable P.S.U.s meters, isolating transformers and breakdown units etc. at giveaway prices. S.A.E. to: S.H.E. 5 St. Josephs, Ballycruttle, Downpatrick, BT30 7EN.

Miscellaneous Cont.

THE SCIENTIFIC WIRE COMPANY 811 Forest hoad, London E17. Telephone 01-531 1568				
ENAMELLED COPPER WIRE				
SWG	1 lb	8 oz	4 Oz	202
8 to 34	3.63	2.09	1.10	0.88
35 to 39	3.82	2.31	1.27	0.93
40 to 43	6.00	3.20	2.25	1.61
44 to 47	8.67	5.80	3.49	2.75
48 SILVER PLATED ${ }^{15.96}$ COPPER WIRE ${ }^{\text {¢ }}$				
14 to 30	9.09	5.20	2.93	1.97
TINNED COPPER WIRE				
14 to 30	3.97	2.41	1.39	0.94
Fluxcore				
Solder	5.90	3.25	1.82	
SAE for list of copper and resistance wire.				

TO ADVERTISE ON THESE PAGES PLEASE RING PAT ON 01-2615942

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS
Please insert the advertisement below in the next available issue of Everyday Electronics for Insertions. I enclose Cheque/P. 0 for $£$ (Cheques and Postal Orders should be crossed Lioyds Bank Ltd and made payable to Everyday Electronics)


NAME
ADDRESS

## EVERYDAY ELECTRONICS

Classified Advertisement Dept., Room 2612,
King's Reach Tower, Stamford Street, London SE1 9LS Telephone 01-261 5942
Rate:
33p per word, minimum 12 words. Box No. 60p extra. Company registered in England. Registered No, 53626. Registered Office: King's Reach Tower, Stamford Street, London SE1 9LS.

# at Your Service 

Everyday Electronics and Computer Projects and crossed "Lloyds Bank Ltd." Treasury notes should always be sent registered post Advertisements, together with remittance, should be sent to the Classified Advertisement Department, Everyday Electronics and Computer Projects, Room 2612, IPC Magazines Limited, King's Reach Tower, Stamford St, London SE1 9LS. (Telephone 01-261 5942).

Service Sheets

FULL SIZE SERVICE SHEETS $£ 2+1$ sae; CTV $/$ MusC $£ 3+1$ sac. Repair/circs almost any named TV/ VCR 99.50 . I sae free quotations for manuals, sheets - free mag inc. service sheet. T.I.S.E.E. 76 Church Street, LarkhalL Lanarks - Phone 0698883334.

BELL'S TELEVISION SERVICE for service sheets on Radio, TV etc. $£ 1.50$ plus S.A.E. Service Manuals on Colour TV and Video Recorders, prices on request. S.A.E. with enquiries to: BTS, 190 King's Road, Harrogate, N. Yorkshire. Tel: 042355885.

## OVERSEAS ORDERS

Overseas readers are reminded that unless otherwise stated, postage and packing charges published in advertisements apply to the United Kingdom only.
Readers wishing to import goods from the United Kingdom are advised to first obtain from the advertiser(s) concerned an exact quotation of the cost of supplying their requirements carriage paid home.

## FREE CAREER BOOKLET Train for success, for a better job, better pay

Enjoy all the advantages of an ICS Diploma Course, training you ready for a new, higher paid, more exciting career.

Learn in your own home, in your own time, at your own pace, through ICS home study, used by over 8 million already!

Look at the wide range of opportunities awaiting you. Whatever your interest or skill, there's an ICS Diploma Course there for you to use.

Send for your FREE CAREER BOOKLET
today-at no cost or obligation at all.
TICK THE FREE BOOKLET YOU WANT

## ELECTRONICS <br> ENGINEERING <br> ELECTRICAL ENGINEERING <br>  TV \& AUDIO

 Name Address
## INDEX TO ADVERTISERS

AC/DC Electronics ................. 479 Alcon Instruments 477

Bi-Pak ..............................Cover II
BK Electronics ....................... 422
B.N.R.ES. ............................. 420

Bull J.
423

Cirkit Holdings ................418, 419
Dzuibas M $\qquad$

Electrovalue 420 Enfield Electronics ................. 433

Greenweld Electronics .......... 422

ICS Intertext
479
Magenta Electronics ......Cover III Maplin Electronics ... Cover IV
Radio Comp. Spec. ..... 468
R \& TVC421
Software Index ..... 480
Sparkrite422
T.K. Electronics ..... 424


## SREE CATALOGUE

AC/DC COMPONENT PACKS

	ar	ar	Oescriplon	Pine
		${ }^{12}$	RED Smm EOO	E100
$\left\lvert\, \begin{aligned} & \frac{\pi}{T 12} \\ & \hline 13 \end{aligned}\right.$		${ }_{3}^{30}$	Somm zeners 5	$\underbrace{\substack{100}}_{\text {fico }}$
	(14			
			series	
${ }_{\text {Trin }}^{\text {Trib }}$		${ }^{\circ}$	Tremistar pait	
	(188	20		ction
Trin	110			Sm
T112	112		${ }^{\text {a }}$	000
${ }_{\text {Tr17 }}$	113		icsalid	${ }^{\infty}$
$\underset{\substack{\text { Tr114 } \\ \text { Tr15 }}}{ }$	(145	${ }_{12}$		cin
TF16	116	20	Domm hoierest fer	
T21				
$\underset{\substack{\text { Tr } \\ \text { TF3 }}}{ }$		10		$\left(\begin{array}{l}200 \\ 000 \\ 200 \\ \hline 0\end{array}\right.$
$\mathrm{Tr}^{124}$				
$\underset{\substack{\text { TrFir } \\ \text { Trit }}}{ }$				0
	${ }^{28}$	${ }_{10}^{10}$	\%	
Tis1	(1)	${ }_{\substack{100}}^{\substack{ \\ }}$	Materea Smm	
	(1020	${ }_{2}$		
trsa	5			
			Soler	
		5	20071	
AC/DC ELECTRONICS				
COMPONENTS				
ENFIELD, MIDO				

## PROGRAM SORTER IN CHAOS?

## SOFTWaRerndex

The user guide to microcomputer software.

## IS THE ANSWER

It's the most comprehensive magazine listing of software programs for the eight leading

BBC • COMMODORE 64 • DRAGON VIC $20 \cdot$ ORIC 1/ATMOS • ATARI 400/800 • SPECTRUM • ZX81 GAMES EDUCATION BUSINESS PERSONAL MANAGEMENT SPECIALIST PROGRAMS
microcomputers.


## E.E. PROJECT KITS MAGENTA TEACH IN 84

## THIS MONTHS KITS

PHONE OR WRITE FOR PRICES Fuul kits inc PCPBs. or vetoroard. nard-
ware, electronics. coses (uniess stated) Less batteries
If you do not have the issue of E.E. which
indludes the project - You will need to
order the instrution 0.
50 p each Reprints apailable separately
$50 \mathrm{peach}+\mathrm{p} \mathrm{\& p} 50 \mathrm{p}$. VARICAP AM RADIO MOY 84
SXPERIMENTAL POWER SUPPLY 84MPLE LOOP BURGLAR ALARM ${ }^{\mathrm{E} 18.72} \mathrm{May}$
SIM MAS ERMIND TIMER MAY 84 AUDIO SINEWAVE SWEEP GENERATOR DATA ACOUISTTION B CONTROL AD BU
FUSE/DIODE CHECXER Apr. 84
E3.45 QUASI STEREO ADAPTOA ADI. 84 TIMER MODULE SVIGITAL
Mar. 84


NH-CAD BATTERY CHARGER Ma REVERSING BLEEPER Mar,
DIN LEAD TESTER Mar, 84
PINE FNDER Mar. 84
OW POWER STERE
LOW POWER STEREO AMP Mar. 84
IONISER FEb 84 EPROM PROGRAMMER FED 8 SIGNAL TRACER Feb 84 CAR LIGHT WARNING Fe
GUITAR TUNER Jan GUHAR TUNER Jan 84
BIOLOGICAL AMPLIFIER Jan $84 £ 19.16$ CONTINUTV TESTER DEE 83 CHLDREN'S DISCO LIGHTS Dec 83 NOVEL EGG TIMEA Dec 83 inc. CASe
SPEECH SYNTMESIZER FOR THE BBC Nov. 83 less cable + sockets MULTIM
LONGR
Nov. 83 Nov. 83 GECAMERA/FLASHGUN TRIGGER HOME INTERCOM less link wite Oct. 83 E14.38 IMMERSION HEATER TELL.TALE Oc. 8359.98
 Mono headphones oxira
ELECTRONIC PENDULUM Oct. 83 63.36
17.98 less wire \& hardware for electromagnet
DIGITAL TO ANALOGUE BOARD Oct. $83 £ 19.98$ less cable. Case 8 connecto
HIGH POWER DAC DRIVER BOARD Oct 83 less Case
A TO D CONVERTER FOR RM380Z Sept. 83 inc
E35...88 plug
HIGH SPEED A TO D CONVERTER Sept
83, less
83,

e7 | coble Ax connector |
| :--- |
| SIGNAL CONOITIONING AMP Sept |
| 83 |
| 827.98 |
| no | case

STORAGE SCOPE INTERFACE FOR B8C
CR. M1.
CRO CRO Aug 83 less Software
PEDESTAIAN CROSSING SIMULATION
E15,3 BOARD Aug 83 no case $£ 10.29$
 AUTOMATIC GREENHOUSE WATERING SYS. TEM JIY 83
TRI BOOST GUITAR TONE CONTROLLER JUly
88
 Cable + Plug
BINARY BANDIT GAME July 83 less case $\mathbf{E 9 . 1 4 . 1 4}$ EPROM PROGRAMMEA JUn. 83 less sotware. ENVELOPE SHAPER JUN. 83 less case 12.33
REAL TIME CLOCK May 83 less sottware and
 GUTAR HEADPHONE A MPLIFIER May 8367.92 MW PERSONAL RADIO less case, May 83 E7.02
MOISTURE DETECTOR MAY 83 CAR RADIO POWER BOOSTER FUNCTION GENERATOR APRII 8 FLANGER SOUNO EFFECTS April 83 NOVELTY EGG TIMER ADHII 83 less
ZX SPECTRUM AMPLIFIER ADril 83 DUAL POWER SUPPLY March 83 BUZZ OFF March 83
SPEECH PROCESSO SPEECH PROCESSOR Feb. 83
PUSH BIKE ALARM Feb 83 DOUBLE DICE Jan 83 ELECTRONIC V/I METER Dec. 82
$2 X$ TAPE CONTROL Nov 82 2X TAPE CONTROL NOV.
SINE WAVE GEN OCt, 82
G. G. P. PAE-AMP OCt, 82 CONTINON ALERT OCt. 82 CONTINUITY CHECKER Sept
SOUND SPLITER Sept. 82 SOUND RECOMBINER SeD. 82
SCREEN WASH DELAY Sept. 82

CB ROGER BLEEPER Aug. 82
2. WAY INTERGOM July 82 no
ELECTRONIC PICH
2. WAY INTERCOM July 82 no case
ELECRONIC PITCH PIPE July 82
REFLEX TESTER JIY REFLEX TESTER JUIV 82
EGG TIMER June 82
EGG LIMER JUNe 82 V.C.O. SOUND EFFECTS UNITADR. 82 CAMERA OR FLASH GUN TRIGGER Mar. 82
POCKET TIMER Mar. 82.65 less tripod bushes
Ed 10 POCKET TIMER Mar. 82
GUITAR TUNER Mar. 82
SIMPLE STABILISEO POWER SUPPLY
MINI EGG TIMER. Jan. 82.
SIREN MOOULE Jan. 82 less speaker
MODEL TRAIN CHUFFER Jan. 82

MIREN MOOULE Jan. 82 less speaker
MODEL TRAIN CHUFFER Jan. 82 MIMPLE INFRA REO REMOTE CO
CAPACITANCE METER OCT. 81 SUSTAIN UNIT OCt 81 TAPE NOISE LIMITER HEADS AND TAILS GAM CONTINUITY TESTER PUZZ BOX
FUZZ BOX MOISTURE UNIT
ICE ALARM
O-12V POWER SUPPLY Sept. 81
CMOS CAR SECURITY ALARM Sept. CMOS DIE Sept 81
CMOS METHONOME CMOS METMONOME Aug. 8 COMBINAISTUREINDICATOR E.E. May 81 GUITAR HEADPHONE AMP E.E. May 81 PHONE BELL REPEATER/BABY ALARM INTERCOM Apriil 81
SIMPLE TRANSISTO 81 Ohmeter versio
Led version

## LED DICE Mar. 8

MODULATED TONE DOORBELL Mar 2 NOTE DOOR CHIME DEC. GUITAR PRACTICE AMPLIFIER Nov, S14. 10 less case Slandard case extra
SOUNO TO LIGHT Nov. 803 channel TRANSISTOR TESTER NOV. 80
AUDIO EFFECTS UNIT FOR WEIRD SO OC. 80 IRON HEAT CONTROL OCT. BO TTL LOGIC PROBE Sept. 80 LIGHTS WARNING SYSTEM May 80
May 80
OR May 80 BATTERY VOLTAGE MONITOR May 80 KITCHEN TIMER Mar, 80
MICRO MUSIC BOX FEb. 80
 CRSE EXPA
SLIDE/TAPE SYNCHRONILATOR

E30 MORSE PRACTICE OSCILLATOR 80 E 13.50 SPRING LINE REVERB UNIT Jin Fob. 80 E4.98 UNIBOARD BURGLAR ALARM Dec. 7986.70 | DARKROOM TIMER JUY 79 |  |
| :--- | ---: |
| ELECTRONIC CANARY JUN. 79 | 66.20 |
| TRANSISTOR TETER AP. 79 | f5. 38 |

FUSE CHECKER Sept 78
FUSE CHECKER Sept 78
SOUNO TO LIGHT Sept
CAR BATTE Y STATE 78DICATOR $\mathbf{E 9 . 2 0}$
Sept. 78
R.F. SIGNAL GENERATOR Sept. 78 R. SIGNAL GENERATOR Sepr. 78
IN SITU TRANSISTOR TESTER JUn. 78 FLASHMETER less caic ol difuser
78
WEIRD SOUND EFFECTS GENERATOR 78 WIRD AUDIO VISUAL METRONOME JAN. 78 RAPID DIODE CHECK JAR. 78 PHONEIDOORGELL REPEATER JUIY 77

## + + +

$\rightarrow \star+\boldsymbol{*} \boldsymbol{*} \boldsymbol{*}+\boldsymbol{t} \boldsymbol{*} \boldsymbol{*}$ * Enjoyal FUN with electronics * very clear full colocur pictures and easy. Foll follow - text ldeal tor all beginners - children and * pages cover all aspects - soldering - fault * Also work). details of how to build 6 projects * burglar alarm, radio, games, etc. Requires sol - dering - 4 pages clearly show you how AL * PROJECTS TO BE BUILT AND KEPT. - Supplied less batteries \& cases. - FUNW WITH ELECTRONICS. - COMPONENT PACK

## +***+*******

## ELECTRONICS CATALOGUE

## Illustrations, product descriptions, circuits all in

 ducts are stock lines for fast delivery.Send 80 p in stamps or add 80 p to order Free to Schools/Colleges requested on official letterhead.

## MAGENTA ELECTRONICS LTD

EE18, 135 HUNTER ST BURTON-ON-TREN STAFFS, DE14 ORDER ONIY 0283 65435, Mon-Fri 9.5. Access/Barclaycard (Visa) by Add $50 \mathrm{p} p \& \mathrm{p}$ to all orders.
Prices include VAT Sae all enquiries. OHficial orders welcome
OVERSEAS: Payment must be sterling
IRISH REPUBLIC IRISH REPUBLIC and
EURPOPE: UK PRICES plus $10 \%$ 24 hr Answerphone for credit card orders.



## SOLDERING/TOOLS

ANTEX X5 SOLDERING IRON 25W SOLDERING IRON STAND each. For $X 5+X 25$
SOLDER. Handy size SOLDER CARTON DEEAT SINK WWEEZER DESOLOER PUMP
HOW TO SOLDER HOW TO SOLDER LEAFLET
LOW COST CUTTERS LOW COST LONG NOSE PLIERS
WIRE STRIPPERS \& CUTTERS PRECISION PETIT $12 V$ PCB DRILL
DRILL STANO PIN INSERTON TOOL
VEFOPINS \{ph of 100 )
 With 20 ctips
RESISTOR COLOUR CODE CALCULATOR 23 RESISTOR COLOUR CODE CALCULA
CONNECTING WIRE PACK TYPE ED. ILLUMINATED MAGNIFIERS Small $2^{*}$ dib. ( $5 \times$ mag)
Large $3^{*}$ dia. ( $4 \times$ mag) CORE TRIM TOOL
PRESET TRIM TOO
FREEZER AEROSOL
CONTACT CLEANER AEROSOI ELECOLIT CONDUUCTIVE SCREWDRIVER SET
POCKET TOOL SET
DENTISTS INSPECTION MIRROR JEWELLERS EYEGLASS
PLASTIC TWEERERS $\mathbf{5 6} .29$
$\mathbf{E 2 . 1 8 8}$
$\mathbf{1 . 0 4}$ E2. 18
E1.04 E1.38
8.50 22.50
$69 p$
$35 p$ $35 p$
f6.48
13 p
$\mathbf{6 1 . 6 9}$ $£ 1.69$
$£ 1.68$
$£ 2.88$ 12.80
0 ohm

Speakers Min 8 ohm 87p; 64 90 p.	ohm
Crystal earpiece	57p
Magnetic earpiece	190
Stethoscope attachment	69p
Mona headphones	${ }^{\text {c }}$ 3.36
Stereo headphones	65.49
Telephone pickup coil Min buzzer 6V 75p. 12V 72p.	68 p
Euro breadboard	E6.20
S Dec breadboard	E3.98
Bimboard breadboard	¢6.98
Verobioc breadbourd	¢5 88

BOOKS:

A Practical Introduction to Digital IC's $\mathbf{E 1 . 7 5}$
Simple L.E.D. Circuits Book 2
How to Make Walkle- Talkies
Electronic Projects for Beginners
Electronic Security Devices 50 Circuits Using 7400 Series IC's Electronic Household Projects Electronic Househoid Projects Electronic Synthesiser Projects
How to Identify Unmarted international Diode Equivalents Handbook of Integrated Circuirs (IC's)
S Substitutes 8. Substitutes
eginners Guide to Building Electronic
Projects
Second Book of Transistor Equivalents
Substites
Substitutes
How to Build Your Own Solid State How to Build
Oscilloscope
Semiconductor Data Book Newnes Basic Electronics. Theory and practice Electronics, Build and Lear Electronic Projects in Music Electronic Projects in Photography


MULTIMETER TYPE 2. (YN360TR) 20K o.p.V. with transistor tester.
$A C$
tance
talts $D C$ current. 4 very useful resis.


PAIR OF PROBES WITH LEADS (OC). 77p



## ADVENTURES WITH ELEGTRONIGS Bynom

[^0]Microprocessors for Hobbyists
Electronic Test Equipment Construal $\quad \mathbf{4 . 7 5}$ Electronic Test Equipment Constis 175 Electronic Projects for Mome Security
Questions and Answers Electronics 20 Solid State Projects Car and Garas 110 Electronic Alarm Project IC555 Prolects Electronic Music Projects Controls, Fitters + Atter,
How To Make Walkie Talkies Moblie Disco Handbook $£ 1.75$
$\varepsilon 3.90$
$E 2.70$
5.75 63.90
E2.70
$E 4.80$
E5. 98 E4.80
51.98
125 1.95
81.75 More books in out price list

## ADVENTURES WITH MICROELECTRONICS

Similar to 'Electronics' below. Uses I.C.s. Includes dice, electronic organ, doorbeli, reaction timer, radio
Based on Bimboard 1 bread board Adventures with Microelectronics $£ 3.20$ Component pack $£ 34.64$ less battery

## กißplIIn riassive range of components for your hobby....insist on haplin quality?



## MAPLIN'S FASCINATING PROJECTS BOOKS

Full details in our Project Books Price 70p each.
In Book 1 (XA01B) 120W rms Mosfet Combo-Amplifier - Universal Timer with 18 program times and 4 outputs Temperature Gauge - 6 Vero Projects. In Book 2 (XA02C) Home Security System - Train Controller for 14 trains on one circuit - Stopwatch with multiple modes - Miles-per-Gallon Meter.
In Book 3 (XA03D) ZX81 Keyboard with electronics - Stereo 25 W Mosfet Amplifier - Doppler Radar Intruder Detector - Remote Control for Train Controller.
In Book 4 (XAO4E) Telephone Exchange for 16 extensions Frequency Counter 10 Hz to 600 MHz Ulirasonic Intruder Detector - I/O Port for ZX81 - Car Burglar Alarm Remote Control for 25W Stereo Amp. In Book 5 (XA05F) 300 Baud Duplex Modem to European Standard - 100 W 240 VAC Inverter - Sounds Generator for ZX81 - Central Heating Controller - Panic Button for Home Security System - Model Train Projects Timer for External Alarm.烸 $x-2 x^{2}$
$x^{2}$

In Book 6 (XA06G) Speech Synthesiser for ZX81 \& VIC20. Module to Bridge two of our Mosiet Amps to make a 350W Amp - ZX81 Sound on your TV - Scratch Filter - Damp Meter Four Simple Projects.
In Book 7 (XA07H) Modem (RS232) Interface for ZX81NIC20/Commodore 64 - Digital Enlarger Timer/Controller - DXers Audio Processor - Sweep Oscillator - CMOS Crystal Calibrator. In Book 8 (XA08J) Modem (RS232) Interface for Dragon 32 \& Spectrum Synchime - I/O Ports for Dragon 32 Electronic Lock • Minilab Power Supply - Logic Probe - Doorbell for the Deal.
In Book 9 (XA09K) Keyboard with Electronics for ZX Spectrum - Infra-

Red Intruder Detector - Multimeter to Frequency Meter Converter - FM Radio needs no alignment - Hi-Res Graphics for ZX81 - Speech Synihesiser for Oric 1 - VIC20 Extendiboard - ZX81 ExtendiRAM - Dynamic Nol'se Limiter for Personal Cassette Players - TL Levels to RS232 Converter Logic Pulser - Pseudo-Stereo AM Radio - Ni-Cad Charger Timer -

## 1984 <br> CATALOCUE

A massive 480 big pages of description, pictures and data and now with prices on the page. The new Maplin catalogue is the one book no constructor should be without. Now includes new Heathkit section. On sale in all branches of W.H. Smith. Price £1.35 - It's incredible value for money. Or send $£ 1.65$ (including p \& p) to our mail-order address.

Adder-Subtracter - Syndrum's interface - Microphone Pre-Amp Limiter. In Book 10 (XA10L) Cassette Easyload for ZX Spectrum - 80 m Amateur Receiver - Auto Waa-Waa Effects Unit - Oric 1 Modem Interface - 2.8kW Mains Power Controller Extendlpor for Dragon 32 - 12V Fluorescent Tube Driver - 32-Line Extension for Digi-Tel.

## GREAT PROJECTS FROM E8MM

Our book "Best of E\&MM Projects Vol. 1" brings together 21 fascinating and novel projects from E\&MM's first Year.
Projects include Harmony Generator, Guitar Tuner, Hexadrum. Syntom, Auto Swell, Partylite, Car Aeria Booster, MOS-FET Amp and other musical, hi-fi and car projects. Order As XH61R. Price $\mathbf{£ 1 .}$

Post this coupon now for your copy of the 1984 catalogue. Price $£ 1.35$ + 30 p post and packaging If you live outside the U.K. send $£ 2.20$ or 11 International Reply Coupons. I enclose $£ 1.65$ Name

Address



Mail Order. P.O. Box 3, Rayleigh, Essex SS6 8LR. Tel: Southend (0702) 552911 . Shops at: 159-161 King Street, Hammersmith, London W6. Tel: 01-748-0926. - 8 Oxford Road, Manchester. Tel: 061-236-0281. - Lynton Square, Perry Barr, Birmingham. Tel: 021-3567292. - 282-284 London Road, Westcliff-on-Sea, Essex. Tel: 0702 554000. - 46-48 Bevois Valley Road, Southampton. Tel: 070325831. All shops closed all day Monday.
All prices include VAT and carriage. Please add 50p handling charge to orders under $£ 5$ total value (except catalogue).

## BHPAK BARCANS

Miniture snipe nose pliers with side
cutter and serrated izws - insulated
cutter and serrated faws - insulated

## SPEAKER PROTECTOR

Limits volitage to speaker or
to the permissible max, by
automatically introducing a
resistor in series with speakresistor in series with speak-
ers. When excessive voltage is
duced the unit resets itself. Electronic
vohage-sensing relay circuir. Spring terminals. Cui-off
level adiustable from level adjustable from row-120W. Full instructions includ

ANTENNA SWITCH 2 and 3 WAY


## MINIATURE TOOLS FOR HOBBYISTS

8. Miniature round nose side curters- - insula

## fexey diver

A fexite shath screwdriver for hose awkwerd
10 get 10 I screws Overail lent
 f1.75 each.
$=\square$ grip-diver
8inch long screwariviver with spiring looded
grip on end to holid screws in postion grip on end to hold screws in instion


Oching into those difficult places
Order No: SD-1 Flat blade 4 mm SD
Cross point no. D . $\mathrm{ES5p}$ each.

### 21.75 eac



ALL AT $£ 1.25$ each

13 PIECE TOOL KIT AND CASE
 13-prece tool set housed in
atractive moulded plastic
case with clear sfiding cover case with clear sliding crover

- 1 off 5 " snipe nose "radio"
pliers pliers with side cutters $\bullet$ I ${ }^{\text {On }} 43^{\prime \prime}$ end cutters -2 off hex. "Allen" key drivers 2 mm and $2.5 \mathrm{~mm}: 2$ off cross-point Philips" drivers No. 0 and
No. 1 (with sommy barl - 6 Sizes from 1 mm to 3.5 mm -

PRECISION
JEWELLERS' TOOLS
Rustproof. Tempered Handles and Blades.
Chrome Plated Handles Swivel Heads for use Chrome Plated -Handies
5 T21 SCREWDRIVER SET 6 precision screwdrivers in hinged plastic 5 T31 NUT DRIVER SET 5 precision nut drivers in hinged plastic case.
With turning rod. Sues -3.3 .5 .4 .4 .5 and 5 mm (
${ }_{5}$ T41 TOOL SET
5 precision instruments in hinged plastic case. Crosspoint (Philpst screwdivivers - H0 and H1
Hex key wrenches. Sizes -1.52 and 2.5 mm ( 81.75

5 T51 WRENCH SET
5 precision wrenches in hinged plastic case.
Eizes -4.4 .5 .5 .5 .5 and 6 Grmm

## MULTITESTER

1.000 opv including test leads \&

AC volis - $0.15-150-500-1.000$
OC volts - $0.15-150-500-1.000$
OC currents - 0.1 ma- 150 ma
Resistance -0.25 K ohms 100 K

BRAND NEW LCD DISPLAY MULTITESTER RE 188m
LCO 10 MEGOHM INPUT IMPEDANCE $3)^{3}$ digit 16 ranges plus hft test faciity for PNP and NPN transistors -Auno zero, auto polarity -Single -handed, pushbutton operation - Over range indication ${ }^{\circ} 12.5 \mathrm{~mm}$ (子-inch) large LCD readout *Diode check ${ }^{\circ}$ ast circuif protection "Test leads, battery and instructions included.
Max inficat Polarity indication

1999 or -1999
Negative only
Positive readings appear
winhout + sign
10 Megohms
Inpur Impedance
Zero adust
Sampling time 250 millisecond
Temperature ran
Power Supply
Consumption
$1 \times$ PP3 Size
RANGES
OC Voltage 0.200 mV 0-2.20.200-1000V. Acc. 08\% AC Voltage $0.200-1000 \mathrm{~V}$ Acc. $12 \%$ DC Current $0-2001 \mathrm{~A}$ $0.2-20.200 \mathrm{~mA} .0 .10 \mathrm{~A}$ Acc. $12 \%$
Resistance 0.2 .20 .200 K ohms Resistance $0.2 \cdot 20.200 \mathrm{~K}$ ohms
BIPAK VERY LOWEST PRICE
$\mathbf{£ 4 5 . 0 0}$ each
Dims $-90 \times 61 \times 30 \mathrm{~mm}$.
O/No. 1322 OUR PRICE f6.50 ONLY Leather Case for $188 \mathrm{~m} £ 2.50$ EACH


Simple push button operation. Oscilates at 700

-1 kz with harmonics to $30 \mathrm{MHz} 1 . \mathrm{AV}$ o/o outpuz wimpedarce 10k $\Omega$ ideal tor trouble | shooting with audio equipment. One "AA" |
| :--- |
| pienight harmery supplied. $0 /$ No VP96 | 2.50

 CURRENT/POL CHECKER tor testing polarity: indicates whether ac. or
d.c. 3.5 V to 400 V . $0 / \mathrm{Na}$ VP9s $\mathbf{~} 2.50$
Universal tester with ceramic buzzer. Tesis

Universal tester with ceramic buzzer Tests
diodes. ransistors, resistors, capacitors and diodes, rransisistors. resistors, capacitiors and
continuity One AA" penlight bartery included. continuity, One "AA penlight bat
Test cuirrent:
Test $\begin{array}{ll}\text { Test voltage: } & 12 \mathrm{~V} \\ \text { Response range: } & 100 \mathrm{M} \Omega \\ \text { Max voltage: } & \\ & \end{array}$ Max voltage:
Internal resistance: $\quad 390 \mathrm{k} \Omega$ $\begin{array}{llr}\text { Length: } & \mathbf{1 3 5 m m} & \mathbf{£ 5} .00 \\ & & \mathbf{N o} \text { VP99 }\end{array}$ 0 O.NOM D.C. continuity tester for circuit checking on all D.C. continuity tester for circuit checking on all
low voltage equipment and components. Diode thecking also possible. Takes two AA batteries.
90 cm lead has crocodile clio. Body length

| 145 mm . $0 / \mathrm{No}$. VP100 750 |
| :--- | :--- | ELECTKONIC SIREN 12v DC Red plastic case with adjustable fixing

bracket Emits high-pitched wailing note bracket Emits high-pitched wailing note of
varying pitch - 100 cycles per minute. Dim varving pitch - 100 cycles per minute. Dims
90 mm (dia.) 60 mm (depth). Power - $12 v$ DC O/P 90dBA Im type

Our Price: $\mathbf{f 5 . 5 0}$ O/No. VP79 TAPE RECORDER SWITCH Unit to control motor of tape recorder 18 m cord and 2.5 mm plug attached. | On/Off switch. Dims: $55 \times 20 \times 20 \mathrm{~mm}$ |
| :--- |
| $0 / \mathrm{No}$. VP 127 |

POWER SUPPLY OUR PRICE $\mathbf{£ 4 . 2 5}$ Power supply fits directly into 13 amp socke
Fused tor safety. Polarity reversing socket. Voltage switch. Lead with multi plug Input - 240 V AC 50 HZ , Output - 3 . ${ }^{\&} .5 .6$
$7.5,9$ \& 12 V 0 C Hating - 300 ma VPing. RATCHET SCREWDRIVER KIT Comprises 2 standard screwdriver blades 5 \& 7 mm sire 2 cross point size $4 \& 61$ Ratchet
handle. 5 -in-1 Kit. $\mathbf{~ 1 . 4 5}$ each. $0 /$ No 329 B

## ed. Dims: $85 \times 74 \times 25 \mathrm{~mm}$. O/No. VP 118



ANTENNA COUPLER Transcenver/car radio antenna coupler. With co-a cables. One co-xxial Terminates in antenna plug and the other in P1259
plug Dims: $67 \times 46 \times 30 \mathrm{~m}$ plug Oims: $67 \times 46 \times 17.00$
$\mathbf{E 2} .00$


## ELECT \& PIEZO BUZZERS

ELECT \& PIEZO BUZZERS

buzzer
consumption


0/No VP 107
9pp
0 (o)
Píero burze. White plastis
PIEZO
Sic
Somm



$\frac{\mathrm{O} / \mathrm{Na} \text { VP } 112<}{\text { MINIATURE VICE }}$


## LEARN ALNGOO PILLOW SPEAKER

## 

 3.5 mm mone jack plug BlactMETRIC 8
BRITISH
MEASURES $=$
Steet tapes in sturdy ABs

## plassic case. Silk wrist strap These vellow coated convex tapes have inch

am long $\pm 13 \mathrm{~mm}$ wide. O/ve. VP 89
3 m long
3 m long $\times 13 \mathrm{~mm}$ wide. $\mathrm{O} / \mathrm{Na}$ VP 90
Sm long $\times 16 \mathrm{~mm}$ wide. $0 / \mathrm{Na}$ VP 91
$\mathbf{1} 1.00$
$\mathbf{1 1 . 5 0}$
$\mathbf{£ 2 . 0 0}$
 two antennae or one antenna 10 32 mm (Boody) O/No. VP 113
£4.75

HIGH PASS FILTER/SUPRESSOR


Send your orders to Oepr EE7 BI-PAK PO BOX 6 WARE, HETTS
SHOP AA 3 BADOCK ST. WARE, HERTS
 BARCLAYCARD ALSO ACCEPTED. TEL (CS24) 3182 , GIRO 338 7006
ADD $15 \%$ VAT AND 75p FER ORDER POSTACE AND PACKING


[^0]:    An easy to follow book suitable for all ages. Ideal for beginners. No soldering, uses an S Dec Breadboard. Gives clear Instructions with lots of pictures. 16 projects - including three radios, siren, metronome, organ, intercom, timer, etc. Helps you learn about electronic components and how circuits work. Component pack includes an S-Dec breadboard and all the components for the projects.
    Adventures with Electronics $£ \mathbf{2} .85$. Component pack $£ 20.98$ less battery.

