XMAS IDEAS MAGIC CANDLE
 CHILDRENS DISCO LICHIS NOVEL EGG TIMER

ENVIRONMENTAR DA

 RECORDER

AUTO-ELECTRONIC PRODUCTS

KIIS OR READY BUIT

TOTAL ENERGY DISCHARGE ELECTRONIC IGNITION

IS

AS GOOD AS IT COULD BE ?

\& is it EASY TO START in the cold and the damp? Total Energy Discharge will give the most powerful spark and maintain full output even with a near flat battery.

* Is it ECONOMICAL or does it "go off" between services as the ignition performance deteriorates? Total Energy Discharge gives much more output and maintains it from service to service.
t Has it PEAK PERFORMANCE or is it flat at high and low revs. where the ignition output is marginal? Total Energy Discharge gives a more powerful spark from idle to the engines maximum leven with 8 cylinders).

4. Is the PERFORMANCE SMOOTH. The more powerful spark of Total Energy Discharge eliminates the "near misfires" whilst an electronic filter smoothes out the effects of contact bounce etc.

* Do the PLUGS and POINTS always need changing to bring engine back to its best? Total Energy Discharge eliminates pontact arcing and erosion by removing the heavy electrical load. T stays "spot on" and the contact condition doespt a performance either. Larger plug gaps can be
+ TOTAL ENERGY DISCHARGE is a unigue systefto and most powerful on the market $-31 / 2$ times the powetph inductive systents systems. These are the facts:
Performance át only 6 volt SPARK POWER
SPARK DURATION 140 LOADED OUTPUT VOLTAGE

50 pF load - 38 kV We challenge any manufacturer to publish he ter performianen figures. Before you buy any other make, ask for the cacts, its probably only an inductive system. But if an induct what you really want we'll still give you a good deal

- All ELECTRONIZE electronic ignitions feature EASY FITTING, STANDARDIELECTRONIC CHANGEOVER SWITCH. STATIC TIMING LIGHT and DESIGNED IN RELIABILITY (14 years experience and a 3 vear guarantee).
* IN KIT FORM it provides a top performance system at less than half the price of comparable ready buitt units. The kit includes: pre-drilled fibreglass PCB. pre-wound and varnished ferrite transtormer, high quality 2 uF discharge capacitor, case, easy to follow instructions. solder and evervthing needed to build and fit to your car. All you need is a soldering iron and a few basic tools.
Most NEW CARS already have eleccronic ignition. Update YOUR CAR

ELECTRONIZE ELECTRONIC CAR ALARM

HOW SAFE IS YOUR CAR?

More and more cars are stolen each week and even a steering lock seems little help. But a car thief will avoid a car that will cause him trouble and attract attention. If your car has a good alarm system well there are plenty of other cars to choose from
LOOK AT THE PROUECTION AN ELECTRONIZE ALARM CAN GIVE
4 MINIATURE MEY PUHOG miniature jack plug attaches to your key ring and is oden to Yourparticular alarm.

* 20 is INDIVIDUALCOMBINATIONS The key plug contains two 1 . intetance esistors both must be the correct value and together resistors both mus
ATTRACTS MAXIMUM ATTENTION This alarm system not only intermittentl ounds the horn, but also flashes the headlight and prevenire e ne beingstarted.

60 CE M M PERIOD Once triggered the alarm will sound

 iless cancelled by the key plug, before resetting - adrabo ggered asal30 SECOND EXISDEL Y The gitstem is armed by pressing a small putigen on a dallated mounted control panel. This starts a 30 econd dety pergeoduring which the owner can open and close doors with tri goeng the alarm.
10.5OON N WPY DELAY When a door is opened a 10 second d operate lollow the owner to disarm the system with the plug. Latching circuits are used and once triggered the only be cancelled by the key plug
-5. FUNCTION INDICATOR An LED is included in the Aashboard unit and indicates the systems operating state. The LED lights continuously to show the system is armed and in the exit delay condition. A flashing LED Indicates that the alarm has been triggered and is in the entry delay condition.

* ACCESSORY LOOP - BONNET/BOOT SWITCH - IGNITION TRIGGER These operate three separate circuits and will trigger the alarm immediately, regardless of entry and exit delays.
\$ SAFETY INTERLOCK The system cannot be armed by accident when the engine is running and the car is in motion.
* LOW SUPPLY CURRENT CMOS IC's and low power operational amplifiers achieve a normal operating current of only 2.5 mA
\rightarrow IN KIT FORM It provides a high level of protection at a really low cost. The kit includes everything needed, the case, fibreglass PCB random selection resistors to set the code and full set of components etc. In fact everything down to the last washer plus easy to follow instructions.

fill in the coupon and send to

Please send more information
ELFCTRONIZE DESIGN Dept C Magnus Rd Wilnecote • Tamworth B B77 5BY . tel 0827281000

Goods normally despatched within 7 days.
Prices Include VAT
E1-00 PP (UK) per Unit

TOTAL ENERGY DISCHARGE (6 or 12 vole negative earth)
 Assembled ready to fit D.I.Y. parts kit £15.90 £14.95

TWIN OUTPUT for cars and motor cycles with dual ignition
\square Twin, Assembled ready to fit
£ $36.45 £ 29.95$ £20.55 £22.95Twin, D.I.Y. parts kit

INDUCTIVE DISCHARGE (12 voli only)
Assembled ready to fit
£15.55 $£ 12.75$

CAR ALARM (12 volt negative earth)
Assembled ready to fit (All wires and
$£ 37.55 £ 33.70$ D.I.Y. parts kit connectors incl.) £24.95 £22.40

I enclose cheque/postal order OR debit my Access/Visa card

Name
Address

EVERYDAY
 =LECTROMCS and computer PROJECTS

VOL. 12 NO. 12 DECEMBER 1983

PROJECTS . . . THEORY . . . NEWS . . . COMMENT . . . POPULAR FEATURES . . .

(c) IPC Magazines Limited 1983. Copyright in all drawings, photographs and articles published in EVERYDAY ELECTRONICS is fully protected, and reproduction or imitations in whole or in part are expressly forbidden.

PROJECTS

TRS-80 TWIN CASSETTE INTERFACE by S. Rainey 790
Two cassette deck operation without Expansion Interface
CHILDREN'S DISCO LIGHTS by T. R. de Vaux-Balbirnie
796
Light display for a children's party
MAGIC CANDLE by T. R. de Vaux-Balbirnie 798
Blow it out and it relights itself!
ENVIRONMENTAE DATA RECORDER
By M. Lawrie \& L. Wilkinson
Field data storage for Spectrum users
4-CHANNELHIGH SPEED ADC
by J. Adams \& G. M. Feather
816
NOVELEGG-TIMER by I. Hickman $\mathbf{8 2 6}$
Tlme your eggs to perfection
CONTINUITY TESTER by R. A. Penfold 830
Useful test instrument for electronic circuits
TOUCH OPERATED DIE by C. J. Bowes
834
With a choice of either dot or numeric display

SERIES

TEACH-IN 84 by G. Hylton
Part 3: Potentiometers and Transistors
MICROCOMPUTERINTERFACING TECHNIQUES
by J. Adams \& G. M. Feather
Part 6: Analogue Data Multiplexing and 4-Channel High Speed ADC

FEATURES

EDITORIAL Quite simple; Another Schools Winner 789
BOOK REVIEWS A selection of recent releases $\mathbf{7 9 5 , 8 2 8}$
CIRCUIT EXCHANGE
800, 839, 840
A forum for readers' ideas
PLEASE TAKE NOTE 800

Multimod, Speech Synthesiser for the BBC Micro
SHOPTALK by Dave Barrington
801
Product news, component buying and EE PCB Service
COUNTER INTELLIGENCE by Paul Young
812
A retailer comments
SEDAC 1984 Schools electronic design award competition 813
EVERYDAY NEWS
What's happening in the world of electronics
FOR YOUR ENTERTAIN MENT by Barry Fox 824
Confusing Law; Citizen's Band TV, Flat-Screen TV; Hot Memory
RADIO WORLD by Pat Hawker G3VA
829
Where have all the viewers gone; Still spinning; Pen Radios
NEW PRODUCTS
841
Facts and photos of instruments, equipments and tools
INDEX VOLUME 12

Our January 1984 issue will be published on
Friday, December 16. See page 825 for details.

MASTMTR внझGu:ONICS now:

 The PRACHTHATMEy!
YOUR CAREER..YOUR FUTURE. YOUR OWN BUSINESS..YOUR HOBBY THIS IS THE AGE - OF ELECTRONICS! the word's's fastest growth industry...

There is a world wide demand for designers/engineers and for men to service and maintain all the electronic equipment on the market today - industrial - commercial and domestic. No unemployment in this walk of life! Also - the most exciting of all hobbies - especially if you know the basic essentials of the subject. A few hours a week for less than a year - and the knowledge will be yours. We have had over 40 years of experience in training men and women successfully in this subject.

Our new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minumum of theory.

You learn by the practical way in easy steps, mastering all the essentials of your hobby or to start, or further, a career in electronics or as a self-
emploved servicing engineer.
All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write personally at any time, for advice or help during your work. A Certificate is given at the end of every course

You will do the following:

- Build a modern oscilloscope
- Recognise and handle current electronic components
Read, draw and understand circuit diagrams - Carry out 40 experiments on basic electronic circuits used in modern equipment using the oscilloscope
- Build and use digital electronic circuits and current solid state 'chips'
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V., Hi-Fi, VCR and microprocessor/computer equipment.

COLOUR BROCHURE

Please send your brochure without any obligation to

NAME

ADORESS

1 am interested in:
\square COURSE IN ELECTRONICS as described above
 RADIO AMATEUR LICENCE MICROPROCESSORS
OTHER SUBJECTS
please state below
OR TELEPHONE US 073451515 OR TELEX 22758 (24 HR SERVICE)

POST NOW TO

BLOCK CAPS PLEASE
British National RadioocFlectronics School Reading,Berks.RG1 IBR

G.P.E. SELF-FEED SOLDERING IRON Preiented

A new concept in miniature soldering iron design

This new development in Soldering Irons combines light weight $(80 \mathrm{~g}$.) with unique one-handed operation Solder is housed in the transparent handle and applied directly to the joint by turning the serrated wheel (located in the handle) with the index finger, allowing a clean, bright joint to be made every time. To renew the solder, the spring clip at the end of the handle is released, the cap is removed and a refil is inserted.

ORDERING INFORMATION. (MAIL ORDER ONLY)
Soldering Iron $240 \mathrm{v}, 18 \mathrm{w}$. Fitted with 2.3 mm Dia. Bit. Complete with 4 metres of solder. Price $£ 14.95$. Solder refills (Pack of 4) Price £2.44
Spare Bits. Tip. Dia. $2.3 \mathrm{~mm}, 3 \mathrm{~mm}$ or 4.7 mm .
Price £1.36 each.
All prices include VAT and P \& P. S.A.E. for details.
Manufactured and supplied by.
GARDNER PRECISION ENGINEERING
North Road, Woking, Surrey GU21 5DS.
Tel. Woking 20722

The K5000 Metal Detector Kit combines the challenge of DIY electronics assembly with the reward and excitement of discovering Britain's buried past.
As a Metal Detector-the K5000 boasts the proven pedigree of C-Scope, Europe's leading detector manufacturer. As a Kit-simplified assembly techniques require little technica knowledge, and no complex electronic test equipment. All stages of assembly are covered in a finely-detailed 36 page manual. Detector Features Analytical Discrimination \&Ground Exclusion Ask at your local Hobby/Electronics shop or use the coupon and send with your remittance to:
C-Scope International Ltd., PO Box 36, Ashford, Kent TN23 2LN
Please send me $\bar{K} 5000$ Kits $@ 119.99(+£ 3.00$ p+p) each.

| Name

- - - - - - - - - - - 照」
step-by-step fully illustrated assembiys are fitting together with circuit descriptions. Highest quality components are

SK 1000
Electronic Ignition
- Inductive Discharge Extended coil Three position changeover switch - Patented clip-to-coil fitting - Easy to assemble, easy to fit Contact breaker triggered - includes bounce suppression circuit.

TX 1002

Electronic Ignition

- Inductive discharge
Extended dwell circuit stores greater energy in coil Three
position changeover switch Contactless or contact breaker triggered
coil or remote mounting Rugged die-cast case Contactless adaptors vehicles Easy to build For details of vehicles fitted by contactless trigger, ring Technical Service Dept on (0922) 611338-9.

SK $\mathbf{2 0 0 0}$ Electronic Ignition

- Reactive Discharge Combines inducilve \& capacitive energy storage Gives highest possible fitting Easy assembly sequence Contact breaker triggered - includes bounce suppression circuit
SUPER SAVE
PRICES REDUCED ON SUPER SAVE D.I.Y. KITS
SELF ASSEMBLY ELECTRONIC KITS

AT-40 Electronic Car Alarm

- Guards doors, boot, bonnet from unauthorised entry Armed/disarmed using concealed switch 30 second delay-ro-arm: 7 second entry delay Can alternatively

ULTRASONIC Intruder Detector

- Supplementary to AT-40 \& AT- 80 . Will work in conjunction with any door switch input or voltage sensing alarm Detects attempted break-in and - Crystal controlled for low drifty Ingenious sensitivity

TX 2002

Electronic Ignition

- Two separate systems in one unit! Discharge, wischarge OR Inductive changeover switch Gives highest possible spark energy Clip-to-coil
or remote mounting Rugged die-ca or remote mounting e Rugged die-ca case Contactless or contact breaker triggered Contactless adaptors
included for majority of 4 \& 6 cylinder vehicles 9 For details of vehicles fitted by Service Dept on (0922) 611338-9

AT-80 Electronic Car Security System

-Guards doors, boot, bonnet from unauthorised entry \bullet Armed
disarmed from outside vehicle by magnetic key fob passed across
sensor pad adhered to inside of windscreen Individually programmable code $\bullet 30$ second delay-10-arm \bullet Flashes headlights and sounds horn intermittently for ${ }^{60}$ seconds when activated Security loop protects accessories
Of unction lights to assist settingup © Low consumption C-MOS up
circuitry.

VOYAGER Car Drive Computer

- 12 functions centred on Fuel, Speed, Distance and Time Single chip dimming feature - High accuracy distance \& fuel transducers indurice
 Visual audible warnings of excess speed, ice, lighss-let on on controlled circuitry.

SPECIAL OFFER

"FREE" MAGIDICE KIT WITH ALL ORDERS OVER $£ 40.00$

MAGIDICE Electronic Dice

Triggered by waving hand over dice \bullet Completely random selection Bleeps \& flashes during 4 sec tumble Throw displayed for 10
seconds then flashes to conserve battery . Low consumption C-MOS
circuitry.
82 BATH ST., WALSALL XS 1 IDE.
SPARKRITE (A Division of Stadium Lid. 182 Bath Street, Walsall, WSI 3DE England Tel: (0922) 614791 Allow 28 days for deliver

NAME
ADDRESS

I ENCLOSE CHEQUE(S)/POSTAL ORDERS FOR

£ KIT REF.
CHEQUE No

 TRIACS - PLASTIC
 1 AMP - 400 - TOQQ - TAG $136 G$
 VALUE PACKS
 VALUE PACKS

MINIATURE FM TRANSMITTER Freq: $95-106 \mathrm{MHz}$. Range: i mile
Size: $45 \times 20 \mathrm{~mm}$ Add: $9 v$ oatt \quad ONLY Sue:
No licenced in U.K.
ideai for: 007 M15 FBICIA KGB etc $\$ 5.50$ PROGRAMMABLE UNIJUNCTION TRANSISTOR
PUT Case TO106 pastic MEU22 Similar to 2 N 6027 $\begin{array}{lllll} & & \\ \text { Price } & 1.9 & 10-49 & 50-99 & 100+ \\ \text { Each } & 20 p & 189 & 15 p & 13 p\end{array}$

SEMICONDUCTORS FROM
AROUND THE WORLD
100 a collection of Transistors SCR's. Triacs IC's \&etifers \& sridges which are current every-day useable

Guaranteed Value Over $£ 10$ Normal Retal Price.
Data etc in every pack Order No. VP56 1

BI-PAK'S OPTO SPECIAL
A selection of large and small sized LEO's in various shapes $\&$ colours, tooeth er with 7 Segment Displays both anode \& cathode plus photo transistors emitters and detectors. Cadmium Cell ORP12 and Germ. photo transistor OCP71 included. In ail a total of 25 Opto pieces valued over

Polk No, Qry Description Price VP16 50 Wirewound Res. 9W (avg) $\mathrm{E1.00}$ Ass. 1 ohm - 12 K
Metres PVC Covered Sinlge Strand Wire Mbed Colours
Metres PVC Covered Mutti Metres PVC Covered Mult ${ }^{\mathbf{1} .00}$ Strand Wire Mixed Colours $£ 1.00$ Metres PVC Single/Multo Strand Hook-Up Wire Maxed $\$ 1$
 Pcs $1-2$ \& 4 mm Plugs \&
Sockers Mathing Sq. Inches Total, Copper Clad Board Mixed Suzes

Pak No. Oty Description

VP23 20 Assorted Slider Potsic 20 Mssed Values | Mixer |
| :--- |
| 1.00 |

 VP25 10 Slider Pots $40 \mathrm{~mm} 47 \mathrm{~K} 5 \times$
 TRANSISTORCLEARANCE All Sorts Transistors, A mixed Bag NPN PNP Silicon \& Gem 100 Mainty Uncoded You To Son Making Simple Transisto Tester. Super Value. Order No
VP60.
$£ 12$ Normal Price

HYERID

LED COLOUR DISPLAYS

Red, Green, Yellow .3/.5/.6 inch Mixed types and colours UMERIC \& OVER
FLOW COMmOn
AnodelCathoden GaAsP/GaP. Brand New, Full Data incl.

10 pieces (our mix) .. £ 4.00 Normal Retail Value Over $£ 10.00$ Order No. VP58

VALUE PACKS

Pak No. Oty description
VP28 10 Rectangular 2^{*} Green LED'S f100
Mixed Vis Coded $\mathrm{f1.00}$
VP30 10 Ass 10W Zener Diodes Mixed Vts.
XP31 $\quad 10 \quad 5 \mathrm{Amp}$ SCR's TO $-6650-400 \mathrm{~V}$ Coded E .00
VP32 203 Amp SCFIS TO 66 Up To 400 V Un- $£ 1.00$

VP34 $200{ }^{\text {Sil Diodes Gen. Purpose Like 0A200 }} \stackrel{ }{ } 1.00$
VP35 $50 \quad 1$ Amp IN4000 Series SII. Diodes Unt coded All Good
Bridge Rects. $4 \times$
Mixed Vits. Coded 4×1 Amp 4×2 Amp
VP37 8 Black Instrument Type Knobs With Pointer ${ }^{1 "}$ Std
Black Heatsinks To fit T0-3, T0-220
$\begin{array}{lll}\text { VP42 } 10 & \text { Black Heatsinks To Fit TO-3, T0.220 } \\ \text { Ready Orilted } \\ \text { VP4.00 }\end{array}$
Power-fin Heatsinks $2 \times 10.32 \times$
T0 66 Size T0. 66 Size
Large Power Hearsink $90 \times 80 \times 35$ mm Drilled For Up To 4 TO. 3 Devicesf1.00

VP45	50
$\begin{array}{ll}\text { BC107/8 Type NPN Transistors Good } \\ \text { Gen. Purpose Uncoded }\end{array}$	
	$£ 1.00$

TEACHIN 84
Complete kit of component parts.
Price $\mathbb{\$ 1 . 5 0}$
£1.50

IC BARGAINS

Vp40 30 Assorted 74 Series TL i.C.'s Gates,
Flip.flops \& M.SI's + Data Boot All New, Normal Retail Value Over $\mathrm{f6} 00$ Our Pnce cuOs ic © VP41 30 Assonted CMOS L.C.S CD 4000 Senes $25 / 28 / 30 / 35 / 44 / 68$ AY/AE Types Plu Data Sheet Value Over fido Normal retail MAY ORDER any ONE TVPE of the above CMOS at C200 per 25 pieces.
ORDEA AS VP41 + type number required.

RATCHET SCREWDRIVER KIT
Comprises 2 standard screwdriver blades $5 \& 7 \mathrm{~mm}$
size. 2 cross point size $4 \& 6$. 1 Ratchet handle. 5 -in-
1 Kit $£ 1.45$ each. O/No 3298

DIGITAL VOLT METER MODULE 3×7 segment displays Basic Circuit 0-
$2 v \pm$ instructions provided to extend oltage \& current ranges Operating volage $9 / 12 \mathrm{v}$.

0/No. VP99 Once only price f9.95
SINGLE SIDED FIBREGLASS BOARD
 $\begin{array}{llll}\text { F83 } & 4 & 13 \times 33^{\prime \prime} 100 \\ \text { DOUBLE SIDED FIBREGLASS }\end{array}$ BOARD

INTRUSION ALARM

The DOOR BIRD DB 2000 alerts you before your door is opened. Just hang on the inside door knob - alarm is activated as outside door knob is touched. ONLY £3.95

BIPAK PCB ETCHANT AND
DRILL KIT
Complete PCB Kit comprises
1 Expo Mini Drill 10.000 RP
collets \& $3 \times$ Twst Bits
colets \& 3 Thist Bits
1 Sheer PCB Transters 210 m
150 mm
1 Etch Resist Pen
1 yh pack FERRIC CHLORIDE
crystals
3 sheets copper dad poard
2 sheets Fibreglass copper clad board
Full ins
Full instructions for making your own PCB boards
Retail Value over [15.00
OUR BIPPAK SPECIAL KIT PRICE $\mathbf{8 9 . 9 5}$ ORDER NO. VPBI

SILICON BRIDGE
 RECTIFIERS

Comprising $4 x$ mounted on PCB VRM - 150 PC IFM - 1.5 Amps

in!

Size: 1 inch square
10 off $£ 1.00$
50 off $£ 4.50$
100 off $£ 7.50$
ORDER NO: 4R1 B
Reat

OPTO 7-Segment Displaya LITRONIX DL $707 R$ 14-pin

Red 0.3" Common Anode Display 0-9 with right hand decimal point TIL compatible $5 v$ DC Supply. Data supplled

	5 pieces $£ 3$	$(60$ p each)
IN	10 pieces $£ 5$	(50p each)
PACKS	50 pieces $£ 20$	$(40$ peach)
OF	100 pleces $£ 35$	$(35 p$ each $)$
	1,000 pieces $£ 300$	(30p each)

THE MORE YOU BUY
THE LESS YOU PAY

OUR GREAT NEW CATALOGUE

Presented with a Professional Approach and Appeal to ALL who require Quality Electronic Components. Semiconductors and other Accessories All ar realistic prices. There are no wasted pages of useles Just solid facts often included in Catalogues published nowadavs. Just solid facts i.e. price, description and individual features of what we have available. But remember, BI-PAK's policy has always been STILL DO.

We hold vast stocks "in stock" for fast immediate dellvery, ail items in our Catalogue are available ex stock. The Catalogue is designed for use with our 24 hours ansaphone service
and the Visa/Access credit cards, which we accept over the relephone.

PLUS 25p p\&p to:

Silicon NPNL' Type Transistor
T0-92 Plastic Centre Coilector Like 8C182L 183L-184L
VCBO 45 VCEO 30 IC200 mA Hie $100-400$ All perfect devices - uncoded ORDER AS 50 off 100 off 500 off 1000 off $\begin{array}{cccc}\mathrm{E} .50 & \mathrm{E} .50 & \mathrm{E} 10.00 \quad \mathrm{E} 17.00\end{array}$ silicon General Purpose NPN Transistors TO-18 Case. Lock fit leads - coded CV7644
similar to BC147 - BC107 70 V IC500mA ORDER AS CVS4 50 off 100 off 500 off 1000 off
 Sticon General Purpose PNP Transistors TO-5 Case. Lock fit leads coded CV9507 similar 2N2905A to BFX30 VC60 IC600mA Min HFE 50. ALL NEW. OROER AS CV9507.

PRICE | 50 off | | |
| :--- | :--- | :--- |
| | 2.50 | $\$ 4.00$ |

VP38 VP39	100 100	Silicon NPN Transistors All Perfect Coded Mixed Types With Data And EqM Sheet No Rejects Rantastic Value Silicon PNP Transistors All Perfect. coded Mixed Types Wrh Data And EqM Sheet No Rejects Real Value	63.00 63.00
2N3O55 10 off £3.50	The the Our	best known Power Trans world - 2N3055 NPN. 115 w . Bi-Pak Special Offer Price 50 of 100 off £16.00 f30.00	or in
$\begin{aligned} & \text { B0312 CC } \\ & \text { SISTORS } \\ & -80312- \\ & 10 \text { of } \\ & \mathbf{E 6 . 5 0} \end{aligned}$	$\begin{aligned} & \text { OMPL } \\ & 1021 \\ & 103.5 \end{aligned}$	LIMENTARY PNP POWER 2N3055. Equivaient MJ2055 Special price $£ 0.70$	$A N \text {. }$
Use your credit card. Ring us on Ware 3182 NOW and get your order even faster. Goods normally sent 2nd Class Mail. Remember you must add VAT af 15% to your order. Toisl Pastage add 75 p per Total order.			

T．V．SOUND TUNER（\＃wio

In the cut－throat world of consumer electronics，one of the questions designers apparently ponder over is＂Will anyone notice if we save money by chopping this out？＂In the domestic TV set，one of the first casualties seems to be the sound quality．Small speakers and no tone controls are common and all this is really quite sad，as the TV compan ies do their best to transmit the highest quality sound． Given this background a compact and independent TV tuner that connects direct to your Hi－Fi is a must for quality reproduction．The unit is mains operated． This TV SOUND TUNER offers full UHF coverage with 5 pre－selected tuning controls．It can also be used in conjunct－
£24．95 ET ，kit versin with Vour video recorder．Dimensions． $11 \% \times 8 / 2 \times 3 \% / 2$

PRACTICAL ELECTRONICS STEREO CASSETTE RECORDER KIT
$£ 32.95+\varepsilon 2.75$ р 8
－NOISE REDUCTION SYSTEM－AUTO STOP．TAPE COUNTER－SWITCHABLE E．Q．－INDEPENDENT LEVEL CONTROLS．TWIN V．U．METER • WOW \＆
FLUTTER 0.1%－RECORD／PLAYBACKI．C．WITH ELEC TRONIC SWITCHING．FULLY VARIABLE RECORDING BIAS FOR ACCURATE MATCHING OF ALL TAPES．
Kit includes tape transport mechanism，ready punched and back printed quality circuit board and all electronic parts． cover，printed scale and mains transformer．You only supply solder and hook－up wire． Featured in April issue P．E． Reprint 50 p ．Free with kih． Self assembly simulated wood E31．00 olus $\mathrm{C2} .75 \mathrm{p} \&$ sleeve $-\mathbf{£ 4 . 5 0}+£ 1.50$ p $\& \mathrm{p}$ ． Complete with case．

STEREO CARTRIDGES

SPEAKER KIT
 10 WATT

$8^{\prime \prime}$ bass／mid range and 3% ineeter．Complete with screw wire，crossover components and cabinet．Cabinet comes in finish－chipboard covered wood simulate size $14^{\prime} \mathrm{K}^{\prime \prime \prime}$ 8\％＂．\times 4＂．PAIR Ior ONLY £12．50 plus $£ 1.75$ p\＆p．

All mail to
21A HIGH STREET，ACTON W3 6NG．
Note：Goods despatched to U．K．postal addresses only All items subject to availability．Prices correct at 30／9／83 and subject to change without notice． Please allow 14 working days from receipt of order for despatch．RTVC Limlted reserve the right to up－

MONO MIXER AMP

Ideal for Church $£ 45.00$

50 WATT Six individually mixed innuts for two pick ups Ker．or mag．），two moving coil microphones and two auxiliary for tape tuner，organs，etc．Eight slider controls six for level and two for master bass and treble，fou
extra treble controls for mic．and aux，innuts．Size： extra，treble controls for mic．and aux，inputs．Size：
$13 \%^{\prime \prime} \times 6 \% \%^{\prime \prime} 3 \%^{\prime}$＂app．Power output 50 watts A．M．S． （cont．）for use with 4 to 8 ohm speakers．Attractive black vinyl case with matching fascla and knots．Ready to use．

Matching AKG Microphone to suit（with speech and music filter）．Complete with lead．ONLY $£ 9.95$ plus 75p p\＆p．
VHF STEREO TUNER KIT

This easy to build 3 band stereo AM／FM zuner kit is designed in conjunction with Practical Electronics（July＇ 81 Issue）．
For ease of construction and alignment it incorporates three For ease of construction and alignment it
Mullard modules and an I．C．IF．System．
FEATURES：VHF，MW，LW Bands，Interstation muting and AFC on VHF．Tuning meter．Two back printed PCB＇s．Ready made chassis and scale．Aerial：AM－ferrite rod，FM． 75 or 300 ohms．Stabalised power supply with＇C＇core mains trans former．All components supplied are to strict P．E．specificat－ lon．Front scale size： $101 /{ }^{\prime \prime} \times 21 / 2^{\prime \prime}$ approx．Complete with
diagram and instructions．

HI－FI TWEETER BARGAIN

GOODMANS TWEETERS 8 ohm soft dome radiator tweet systerns；with 2 element crossover $\mathbf{£ 3 . 9 5}$ each（ $p \& p \mathrm{f} 1$ ）o £6．95 pair（ $p \& p$ £1．50）

125W HIGH POWER AMP MODULES
 £10．50 £14．25
 ＋ $\mathbb{1 . 1 5 p \& p + E 1 . 1 5 p \& p}$

The power amp kit is a module for high power applications －disco units，guitar amplifiers，public address systems and even high power domestic systems．The unit is protected against short circuiting of the load and is safe in an open cir cuif condition．A large sofety margin exists by use of gener． ously rated components，result，a high powered rugged unit． ease of construction and the aluminium chassis is preformed and ready to use． and ready to use
ACCESSORY：Stereo／mono mains power supoly kit with transformer．$£ 10.50$ plus $£ 2.00$ p $\& \mathrm{p}$

Operating voliage（DC）： $50-80$ max
Loads： 4 － 16 ohms．
Frequency response measured＠ 100 watts： $25 \mathrm{~Hz}-20 \mathrm{KHz}$ ．
Sensitivity for 100 watts： $400 \mathrm{mV} @ 47 \mathrm{~K}$ ．
Typical T．H．D．＠ 50 watts， 4 ohms： 0.1% ．
Dimensions： 205×90 and $190 \times 36 \mathrm{~mm}$ ．

STEREO CASSETTE DECK

Stereo cassette rape deck transport with electronics
Manufacturer＇s surplus
brand new and operatlon
£11．95
plus $\mathbb{E 2 . 5 0} \mathrm{p} 8 \mathrm{p}$ ．
Just requires mains trans． former and input／output sockets and a volume

Supplie
details．

AUDAX 40W FERRO－FLUID HI－FI TWEETER

X／over on 5 kHz
$22 \mathrm{kHz} .60 \mathrm{~mm} \quad £ 5.50$
square． 8 ohm ．$\quad+60 \rho \rho \&$
date their products without notice．All enquibies send S．A．E．

ALL CALLERS TO： 323 EDGWARE ROAD， LONDON W2．Telephone：01－723 8432. （ 5 minutes walk from Edgware Road Tube Station） Now open 6 days a week 9－6．Prices include VAT

Telephone or mail orders by ACCESS welcome．

VOL. 12 NO. 12 DECEMBER 1983

EVERYDAY
 ELECTRONCS

Editor
F. E. BENNETT

Assistant Editor
B. W. TERRELL B.Sc.

Production and Neivs Editor
D. G. BARRINGTON

Projects Editor
G. P. HODGSON

Technical Sub-Edtor
R. A. HOOPER

Art Editor
R. F. PALMER

Assistant Art Editor
P. A. LOATES

Technical lllustrator D. J. GOODING Tech. (CEI)

Secretary

JACQUELINE DOIDGE
Editorial Offices
KING'S REACH TOWER
STAMFORD STREET
LONOONSE1 9LS
Phone:01-2616873

Advertisement Manager
R. SMITH

Phone: O1-261 6671
Representative
R. WILLET

Phone:01-261 6865
Classified Supervisor
B. BLAKE

Phone: 01-261 5897
Make-Up and Copy Department
Phone:01-2616615
Advertisement Offices
KING S REACH TOWER
STAMFORD STREET
LONDON SE1 9LS

QUITE SIMPLE

Small is beautiful. This adage has relevance to our hobby. Experienced constructors will agree that satisfaction derived from one's efforts is not directly proportional to the component count nor to the overall complexity of the design. A simple circuit using few, if indeed any, i.c.s can provide much enjoyment during its construction and this enjoyment is compounded when the completed project is seen to give pleasure (however simple and innocent) to others.

Computer projects apart, our complement of designs in this final issue for the year is unashamedly biased towards the simple and novel-in particular to projects having a part to play over the Christmas period. In this age of video and computer games, and other kinds of sophisticated electronic toys, it may be questioned whether interest can be ároused in so modest a device as a Magic Candle; or whether children will be attracted and excited by a flashing light display emitting merely a watt or two of illuminance. But surely it will be a sad state of affairs if over-exposure to high-technology-based consumer products jades our ability to be enthralled and amused by unpretentious objects. And this applies most especially in the case of young children.

At this time, Christmas presents are uppermost in our minds and sugges tions are always welcome. Well here's one. Egg-timers are not exactly a rarity, but this month's design is novel in that it generates a reasonable imitation of a clucking chicken. Perhaps a useful and amusing gift to make for ma or the wife?

ANOTHER SCHOOLS WINNER

The Environmental Data Recorder featured in this issue won for its schoolgirl and schoolboy designers the third prize in this year's Schools Electronic Design Award Competition. It provides yet another fine example of the enterprise and technical ability that exists amongst scholars in our secondary schools. Though conceived and designed with science department studies in mind, the Environmental Data Recorder is likely to find many uses amongst personal computer owners.

It is hoped that the appearance of this article will also act as a reminderand a stimulant-to scholars throughout the UK who have produced an interesting piece of electronic equipment to enter this year's SEDAC. Schools please note that Registration should be made by November 30, 1983.

Readers' Enquiries
We cannot undertake to answer readers' letters requesting modifications, designs or information on commerclal equipment or subjects not published by us. All vetters requiring a personal reply should be accompanied by a stamped self-addressed envelope.

We cannot undertake to engage in discussions on the telephone.
Component Supplies
Readers should note that we do not supply electronic components for building the projects featured in EVERYDAY ELECTRONICS, but these requirements can be met by our advertisers.

All reasonable precautions are taken to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

Back Issues
Certain back issues of EVERYDAY ELECTRONICS are available worldwide price $£ 1.00$ inclusive of postage and packing per copy. Enquiries with remittance should be sent to Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE 1 OPF. In the event of non-availability remittances will be returned.

Binders

Binders to hold one volume (12 issues) are available from the above address for $\mathbf{E} 4.60$ inclusive of postage and packing worldwide. Please state which Volume.
Subscriptions
Annual subscription for delivery direct to any address in the UK: $£ 12 \cdot 00$. Overseas: $£ 13.00$. Cheques should be made payable to IPC Magazines Ltd., and sent to Room 2613, King's Reach Tower, Stamford Street, London SE 1 9LS.

BY S. RAINEY

OWners of the TRS-80 Model I Level II Microcomputer will know that this computer has the capability of driving two cassette decks. However, with just the basic system, only one may be used, since only one I/O port is provided. On adding the expensive and now discontinued Expansion Interface, two cassette I/O ports are provided. This project provides two cassette ports for the basic system without the need for the Expansion Interface.

CIRCUIT DESCRIPTION

Before the operation of the circuit can be understood it is necessary to understand its purpose. Those familiar with Level II Basic will know that any tape I/O command may have the suffix $\nexists-1$, or $\#-2$, placed after it. A $\#-1$ denotes that the next cassette I/O must go to cassette deck No. 1, while a $\# 2$ denotes that the I/O must go to cassette deck No. 2.
If the Basic interpreter detects a $\#-1$, then a \emptyset is written to memory location

37 E 4 H , whereas if a $\#-2$, is detected then FFH is written to this location. In both cases the actual I/O goes through port FFH, the cassette port on the rear of the Model I Console. All that has to be done then is to look at memory location

37E4H and use its state to select either cassette deck.
The circuit consists of four basic sections (see Fig. 1). There is an address decoder which monitors the address bus and when the value 37 E 4 H is present it enables the data latch. The data latch monitors data line and, when enabled reads and stores the state of this data line.
The output of the data latch, which is an echo of its input, is presented to the relay driver and relays. The relays are used to switch the I/O port between the two cassette decks. Finally, there is a small power supply to power the whole circuit.

ADDRESS DECODER

The address decoder consists of IC1, IC2, IC 3 a , IC 3 b , and IC4. To understand its working we must consider the binary equivalent of 37 E 4 H , which is what actually appears on the 16 address lines, see Fig. 2. As can be seen, when this location appears on the address bus, A2, $5,6,7,8,9,10,12$ and 13 all go high, that is, they have a potential of $5 \mathrm{~V} . \mathrm{A} \emptyset, 1$, $3,4,11,14$ and 15 all go low; they have a potential of 0 V . IC1 and IC2 are the major components of the decoder and are 8 -input NAND gates. When all eight inputs are high then the output goes low. A2, 5 , $6,78,9,10$ and 12 are connected to the eight inputs of IC1. See Fig. 3.
As can be seen from Fig. 2, all these address lines go high when 37 E 4 H is addressed and so the output of IC1 will go low. AD goes low when 37 E 4 H is addressed and this low, along with the low from the output of IC1, is applied to the inputs of the 2 -input NOR gate, IC3a. The output of this NOR gate will therefore go high and is applied to one of the inputs of the other 8 -input NAND gate, IC2. A1, 3, $4,11,14$ and 15 all go low when 37 E 4 H is addressed and these are each inverted by one of the six inverters making up IC4. The six highs from the outputs of IC4 are applied to six of the inputs of IC2. Finally, A13, which goes high when 37 E 4 H is addressed, is applied to the last input of IC2. Since all eight inputs of IC2 are now high, the output will go low.

We have now uniquely decoded the memory address 37 E 4 H which appears

Fig. 1. Block diagram of the TRS-80 Twin Cassette Interface.

as a low on the output of IC2. It is now necessary to decide whether or not the computer wants to write to or read from this memory location. If this was not done, the data latch may become active at the wrong time and hence remember the wrong data.

The computer tells us when it wants to write to a memory location by sending a low on its $\overline{W R}$ output. The "bar" means that this output is true when it is low and hence is normally high.

The WR signal is connected to one of the inputs of IC3b, a 2 -input NOR gate. The output of IC2 (the output of the address decoder) is connected to the other input of IC3b. Since both inputs of IC3b will be low when the computer wants to write to 37 E 4 H , the output will go high. This output is used to control the data latch, IC5.

DATA LATCH

The data latch consists of a D-type flip-flop which forms half of IC5. For

ADORESS LINE A15 A14 A13 A12 All A10 AS A8 A7 A6 A5 A4 A3 A2 A5 A9

$$
\emptyset=0 \mathrm{~V} \quad 1=5 \mathrm{~V}
$$

Fig. 2. Binary state of the TRS-80 address bus at 37 E 4 H .
those unfamiliar with the operation of the D-type flip-flop, a brief description is given.

This type of flip-flop has two inputs and two outputs. One input is the D, or data, input and the other is the CLK, or clock input. The two outputs are Q and Q.

If the CLK input is kept low then the outputs remain in a constant state no matter what signal is present at the D input.

However, when the CLK input is taken high, the outputs begin to echo the signal at the D input. Q takes the same state as the D input while \bar{Q} takes the opposite state. When the CLK input goes low then whatever state is present on the \mathbf{D} input
will be latched into the flip-flop and remembered until another high CLK step.

The outputs will be kept in their respective states, whatever they were when the CLK input went low.

The D input of the flip-flop IC5 is connected to the first data line of the computer, D0. Normally this is changing state many thousand times a second as data is moved about the computer. However, since 37 E 4 H is not being written to, the CLK input of the flip-flop will be low and so the signal at the D input will have no effect.

When 37 E 4 H is written to, the CLK input goes high and the state of $D \emptyset$ is latched into the flip-flop. The timing of the computer is such that the address

Fig. 3. The circuit diagram of the TRS-80 Twin Cassette Interface. The power supply section is shown in Fig. 4. SK1 is connected to the $1 / O$ port on the TRS-80 computer.
lines and data lines change state in synchrony and hence the data fed to the flip-flop remains constant until the CLK input goes low. The non-inverted output, Q, is fed to the relay driver.

RELAY DRIVER

The relay driver consists of a single transistor connected in the common emitter configuration. Its operation is that of a current amplifier, amplifying the 20 mA available from the output of the data latch to the 125 mA necessary to drive the relays. Diode D1 is reverse biased across the coils of the two relays. Its purpose is to conduct away the reverse e.m.f.

produced by the relays as they turn off, and hence protect the transistor.

The contacts of the two relays form four single-pole changeover switches. These are used to switch four of the five data routes from one cassette deck to the other. The only route not switched is the common motor switch connection. Note that it is necessary to switch the earth line as well as the signal paths since otherwise bad hum loops or even cassette malfunctions can occur.

As has already been described, a \emptyset is written to 37 E 4 H when cassette 1 is to be used and FFH is written to this location when cassette 2 is to be used. Thus the output of the data latch will be low for cassette 1 and high for cassette 2. The relays will be off for cassette 1 and on for cassette 2.

The relay contacts are wired up so as to connect cassette 1 to the cassette port when the relays are off and to connect cassette 2 to the port when the relays are on.

POWER SUPPLY

The power supply is based on the widely known 78 series of voltage regulators. The output of Tl is 6 V a.c. and this is rectified by D3-D6, a bridge rectifier. Smoothing of the supply is achieved using C 6 , a $1000 \mu \mathrm{~F}$ electrolytic capacitor. The 8.5 V d.c. across C 6 is applied to the input of IC6, a $5 \mathrm{~V}, 500 \mathrm{~mA}$ positive voltage regulator. The output of IC 6 is +5 V d.c. C 4 is placed across the output of the regulator to reduce any high frequencies on the supply line. R3 and

D2, an 1.e.d., form an indicator to tell when the interface is on. See Fig. 4.

Finally, C1, C2 and C3 are placed around the circuit to further decouple the supply for the TTL i.c.s. IC3c and IC3d have their inputs connected to +5 V via $R 1$, a $1 \mathrm{k} \Omega$ resistor. This is done since floating inputs are damaging to TtL i.c.s.

PRINTED CIRCUIT BOARD

It is recommended that the circuit be built on a printed circuit board since the many interconnections become difficult on stripboard. Once the p.c.b. has been made up, preferably using glass-fibre board, it should be scrutinised for bridges between the tracks.

The actual-size master printed circuit board pattern used for the prototype is shown in Fig. 5. This is available from the EE PCB Service, Order code 8312-03. The layout of the components on the topside of this board is also shown in Fig. 5.

Using a fine tipped soldering iron and thín solder, construction can begin. Start by soldering in all the wire links followed by the Veropins, if these are to be used. Next, solder in the i.c. sockets. The relays are best mounted in low profile i.c. sockets, since otherwise removal will be difficult should they become faulty

Mount the resistors and capacitors next, ensuring C6 is fitted the right way round. Now fit the transformer and finally solder in the transistor and voltage regulator. Ensure these latter components are fitted correctly.

After fitting the diode, the i.c.s may be inserted, checking their orientation is correct. Now fit the relays. The main board is now finished.

Some method of connecting the main board to the expansion socket on the Console is necessary, and a good method, especially if another peripheral is connected, is to make the header shown in Fig. 6. A double-sided p.c.b. is soldered to a 40 -way edge connector and also forms an edge connector for another peripheral. Taps are taken from the appropriate lines using Veropins. Although not the neatest way of making connection, it is certainly effective.

Fig. 4. The power supply circuit diagram. Note that the mains earth is not required.

Fig. 5. The full-size p.c.b. track artwork and component layout diagram. This board is available from the EE PCB Service, Order code 8312-03. All wires (including the ribbon cable) must be terminated with a Veropin. Note that the mains input cable will require a clamp
to act as strain relief at the point of entry on the case.

COMPONENTS

Resistors
 R1 $1 \mathrm{k} \Omega$
 $R 2 \quad 4.7 \mathrm{k} \Omega$
 All $\ddagger W$ carbon $\pm 5 \%$

 page 801

Capacitors

C1 23
100 nF miniature
ceramic
C4 $\quad 470 \mathrm{nF}$ polyester type
$5 \quad 220 \mathrm{nF}$ polyester type C280
C6 $\quad 1000 \mu \mathrm{~F} 16 \mathrm{~V}$ elect.

Semiconductors

$\begin{aligned} & \text { D1 } \\ & \text { D2 } \\ & \text { D3-D6 } \end{aligned}$	1 N4148 silicon diode
	TIL220 red l.e.d.
	W005 1A 50 V bridge rectifier
$\begin{aligned} & \text { TR1 } \\ & \text { IC } 1,2 \end{aligned}$	2N3704 silicon npn
	74LS30 TL low power
	Schottky 8 -imput NANO gate (2 off)
IC3	74LSO2 TLL low power
	Schottky quad 2 -input
	NOR gate
IC4	74LS04 TLL low power
	Schottky hex inverter
IC5	74 LS 74 TTL low power
	Schottky dual D-type
	flip-flop
IC6	$78 \mathrm{MO5}+5 \mathrm{~V}$
	monolithic vo
	regulator

Miscellaneous
SK $1 \quad 20+20$ way doublesided card edge connector
SK2,3 5-pin DIN 180° socket
PL1.2 5-pin DIN 180° plug (2 off)
PL3.4 $\quad \mathbf{3 . 5 m m}$ jack plug (2 off)
PL5 $\quad 2.5 \mathrm{~mm}$ jack plug
S1 s.p.s.t. mains on-off
mains/ $0-6 \mathrm{~V}, 0-6 \mathrm{~V}$ 1.5VA per secondary winding, type Clairtronic 9300
RLA, RLB Ultra miniature d.i.t. relay, 6 V , coil resistance 80 ohms double-pole changeover contacts (Maplin BK48C) (2 off)
Printed circuit boards: singlesided size $135 \times 75 \mathrm{~mm}$; EE PCB Service, Order code 8312-03 double-sided size $53 \times 37 \mathrm{~mm}$ EE PCB Service, Order code 8312-09; single-sided Veropins (72 off): 20-way ribbon cable (1 metre); d.i.l. i.c. sockets; 14-pin (7 off); mains cable (2 metres); 4 core individual screen screened cable $(2$ metres); 3 mm fixing hardware; plastics case, size 160 $\times 100 \times 75 \mathrm{~mm}$ approximately tinned copper wire for board links.

Approx. cost
 Guidance only

 (SKI) SOLDERED ON HERE

ON THIS FINGER SET

Fig. 6. Full-size track artwork of the double-sided header p.c.b. This board carries the 40 -way edge connector (SK1) and also permits additional peripherals to be plugged into the TRS-80 I/O port. Top view shows the ribbon cable wiring.

Fig. 7. Wiring of the cassette lead to connect the interface to the cassette player. If the 4 -core screen cable is used, the screens must not be used for the remote (PL5) connections.

CABLES

A length of 20 -way ribbon cable is used to link the header to the main p.c.b., as shown in Figs. 5 and 6.

A length of four-core screened cable is used to connect the cassette port to the p.c.b. A 5 -pin 180° DIN plug (PL1) should be soldered on the end of this as shown. Using the same cable, two 5 -pin 180° DIN sockets (SK2 and SK3) are wired to the board.
The whole project may be fitted into a small plastic box. A metal box is not recommended since it would have to be earthed and the bodies of the DIN sockets are connected to computer ground. A slot may be cut in the end of the box to take the ribbon cable. Remember to pass the cable through this slot before soldering to the main p.c.b. The two output sockets, on/off switch and power indicator can be mounted as desired.

You should already have one cassette lead but another one is required for connection to the second cassette deck. This may be made up from a length of the 4 . core screened cable. A 5 -pin 180° DIN plug (PL2) is soldered to one end as shown. The other end is stripped back about 100 mm and mini-jack plugs are soldered to the ends. Two of the ends have 3.5 mm jack plugs (PL3 and PL4) while the third has a 2.5 mm plug (PL5). A mark such as a piece of insulation tape wrapped around the plug should be made on the plug which goes to the ear socket of the cassette deck. The connections for this lead are shown in Fig. 7.

If the recommended four-core individual screen cable is used, then none of the screens should be used in the cassette motor control circuit (remote). Instead, two of the insulated cores should be used.

TESTING

First, connect the header to the expansion port of the keyboard Console. Ensure the header is the right way round. With the interface turned off and disconnected from the mains, switch on the computer. If all is well, the familiar MEMORY SIZE? will appear. Press

The complete prototype printed circuit board assembly.
<ENTER>. If the READY prompt appears, then all is well with the wiring. If anything unusual happens, check the connections at both ends of the ribbon cable and also check for solder bridges between tracks of both the main and header printed circuit boards.

With the computer turned off, switch on the interface. The two relays should click on. If not, check the main board for broken tracks or solder bridges. If the power light does not come on then, check out the power supply first. If the l.e.d. glows very bright, then it is probably the voltage regulator at fault. Should the relays click on, then switch on the TRS80. All should be well, but if not it will either be IC1, IC2 or IC3 at fault.

To the MEMORY SIZE? prompt press <ENTER>. Once in Basic enter

POKE $14308, \emptyset$
The relays should switch off. If so, enter

POKE 14308,255
The relays should switch on. If all is well, continue at the next paragraph. If not, it could be any one of the i.c.s at fault. Check the connections to each one in turn and ensure that no links are missing. Note that there is a link underneath one of the i.c. sockets and this may have been missed out.

Next, connect the interface to the cassette port and connect two cassette
decks to the interface. Place a tape with a program on it into cassette 1 and set it to play.

Type in
CLOAD $\#-1$
The cassette should turn on and the program should load. If not, check the wiring to the relays and the lead to the cassette port. If all this fails it is probably a fault with one of the relays.

If all is well, then insert a tape with a progrkol on it into cassette 2.

Tyいの"
CLDro $4-2$
The cassette should turn on and the program load. If not, check out the wiring as for the first cassette. Now test the saving by loading a program and entering either
CSAVEH-1, "A" or CSAVEH-2, "A" as appropriate.

IN USE

In use, the interface may be left turned off if only one cassette is required. However, it should not be turned on while the computer is on else the computer will probably crash. All the usual cassette I/O commands may be used, but now with the suffix \#-1, or \#-2. For CSAVE or CLOAD there is no need to add the suffix if the first cassette is to be used.

BASIC ELECTRICAL INSTALLATIONS 3rd EDITION

Author	M. Neidle
Price	$£ 3.95$ Limp edition
Size	$254 \times 229 \mathrm{~mm} .77$ pages
Publisher	Macmillan Press
ISBN	0333346815

OR students following electrical installation courses this book should provide some very useful reference material. All the
material contained within has been thoroughly revised in line with new installation developments and techniques.

The book contains 13 chapters starting with basic electrical theory and finishing up with an introduction to the electrical installation industry. A welcome addition to this type of book is a chapter dealing with Care and Safety which gives advice on handling materials and equipment, tool care, safety at work, electric shock treatment, and fire protection.

The text and worked examples are approached in a clear and orderly manner and each new topic has plenty of diagrams to support the text.
R.A.H.

Books in Brief

Electronic Science Projects by O. Bishop (Bernard Babani). Limp $£ 2.25$. A different type of electronics book in that all the projects have a strong scientific bias. There are 12 projects starting with A Simple Infra-red Laser and finally a more complex electronic project called Measuring the Earth's Electric Field.

CHIDRENS DISCO LIGHTS

BY T.R.deVaux-Balbimie

HAVE SOME PARTY FUN WITH THE CHILDREN'S LIGHT DISPLAY

WHEN the author's eight-year-old wanted some flashing lights for a Christmas party, some careful thought was needed. Mains-operated equipment was banned. A similar ban would also be placed on direct connections to the audio equipment.

When the problem was discussed, it appeared that any small coloured lights would be suitable just as long as they flashed in time to the music.

A circuit was devised which involves no connections to the record-player, operates from a battery and is cheap to construct. A "string" of small coloured bulbs, Christmas tree lamps for example, flash when the music plays. The sound from the audio equipment is picked up by a microphone built into the case of the project. This is interesting since the lights not only respond to music but also to other sounds in the room. Naturally, this system has limitations and is hardly suitable for serious use.

CIRCUIT DESCRIPTION

The circuit diagram for the Children's Disco Lights is shown in Fig. 1. The microphone, in reality a miniature
loudspeaker, LSI picks up the sound of the music. This gives a weak electrical signal at its terminals which is amplified by TR 1 and associated components.

This amplified signal is applied through C2 to the non-inverting input (pin 3) of the operational amplifier IC1. This input also receives a steady 4.5 V , approximately, due to the potential divider formed by R3 and R4. VR1, a miniature preset potentiometer, supplies a steady voltage to the inverting input of IC1 (pin 2). Before use VR1 will be adjusted so that the steady voltage at the inverting input is just above that at the non-inverting input. Under these conditions the op-amp will be off with no output at pin 6 .

When the music plays there will be a small voltage superimposed on the steady one existing at pin 3. Thus, the voltage here will exceed that at pin 2 and the opamp will switch on and off in time with the music. The light-emitting diode, DI, in the output circuit of the op-amp will then flash in sympathy. The l.e.d. is necessary to help in adjusting VR1 at the testing stage.

The output pulses need to be lengthened and smoothed to some extent to make them more suitable for operating
filament lamps. This is achieved by D2 and C3. The pulses are then passed onto the Darlington lamp driver stage TR2 and TR3. This operates the bulbs in the collector circuit. VR2 is used to match the output of the op-amp to the lamp
driver stage. driver stage.

No input sensitivity control is included. To adjust the response of the circuit to the loudness of the music, the case is simply moved to the best distance from the record-player loudspeaker.

COMPONENT BOARD

The component board is a piece of 0.1 in matrix stripboard having 14 strips by 29 holes and can be seen in Fig. 2. Note that all the 13 breaks in the copper track should be made in the board before any of the components are soldered in place. A holder should be used for ICI so that damage does not occur to the i.c.

CASE

The plastics case used for the prototype measures $147 \times 76 \times 45 \mathrm{~mm}$ although any case of similar size should be suitable. Prepare the case by making a

Fig. 1. The complete circuit diagram for the Children's Disco Lights.

matrix of holes for the loudspeaker, for S1 and for the battery and lamp leads. The loudspeaker is fixed in place using a quick setting epoxy resin.

LAMPS

The lamp driver can handle current up to 500 mA , so up to eight $6 \mathrm{~V}, 0.06 \mathrm{~A}$ lamps may be used in parallel. Alternatively, Christmas tree lights may be used as in the prototype. These must be of the 6 V -type normally used in $240 \mathrm{~V}, 40$ lamp sets. Direct solder joints may be made to the lamps which are then connected in parallel as shown in Fig. 2.

Note: up to six Christmas tree lamps may be used but only five are shown connected on the prototype.

ADJUSTING AND TESTING

Do not place the circuit panel in the runners of the case yet. Adjust VR1 and VR2 to approximately mid-track position. Connect up the battery and switch on. Adjust VRI until the balance point is reached where D1 is off.

Adjust VR2 so that the filament lamps glow dimly, this usually gives best results. Snap the fingers near the loudspeaker and if all is well, the l.e.d. and filament lamps will flash. The adjustment of VR1 is critical. If the slider is adjusted too far clockwise the circuit will lack sensitivity or fail to work at all.

COMPONENTS	
Resistors	
R1,3,4 100	$100 \mathrm{k} \Omega$ (3 off)
R2 4.71	$4.7 \mathrm{k} \Omega$
R5 $1 \mathrm{k} \Omega$	$1 \mathrm{k} \Omega$
All \ddagger W carbon	bon $\pm 5 \%$
Capacitors	
C1 0.1	$0.1 \mu \mathrm{~F}$
	polycarbonate
C2 0.47	$0.47 \mu \mathrm{~F}$
C3 1, ${ }^{\text {c }}$	${ }_{\text {potycarbonate }}^{\text {pen }}$
Semiconductors	
D1 TIL2	TIL2200. 2 in red l.e.d.
	1 N4001 rectifier
TR1,2,3	ZTX300 silicon npm
IC1 741	
Miscellaneous	
S1 s.p.s	s.p.s.t.t. miniature toggle
	switch
$1 \mathrm{M}$	$1 M \Omega$ lin. miniature carbon preset
VR2 50 k)	$50 \mathrm{k} \Omega \mathrm{lin}$. miniature
	cermet preset
LS1 mini	miniature, 60-80 ${ }^{\text {a }}$,
	60 mm dia. approx.
$\text { LP1-5 } 6 \mathrm{~V} \text {, }$	$6 \mathrm{~V}, 0.06$ filament lamps
B1,2 See textStripboard: 0.1 in matrix size 14	
strlps $\times 29$ holes, plastic case, $147 \times 76 \times 45 \mathrm{~mm}$ (ABS box	
2005): 7 -pin d.i.I. i.c. holder.	
Approx. cost	59.00
Guidance only	

If adjusted too far anti-clockwise, the lamps will be on continuously. VR2 may need final adjustment to obtain the most satisfactory setting. Note that the adjustment of VR2 depends on the number and type of lamps in the chain. When music is played, the lamps should flash in sympathy.

POWER SUPPLY

Depending on the number of lamps and periods of use, a small battery (a PP3 for example) will probably give poor service. It may seem tempting to house the battery inside the case but much better
results are obtained by using a larger external battery. Excellent service is given from two 4.5 V type 1289 batteries connected in series. Alkaline batteries or Nickel-Cadmium rechargeable batteries would also be a wise choice.

PRESENTATION

This is left to the imagination of the user. The lamps may simply be strung up. Alternatively, they may be pushed through the eyes, nose and mouth of a large mask. Another possibility is portable use with the lamps placed around a hat and the battery in a pocket.

Fig. 2. The component layout and trackside view of the Disco Light's circuit board, with offboard wiring details also shown.

anll MAGIC CANDLE

 $\stackrel{\text { N }}{\text { ミ }}$BY T.R. de Vaux-Balbirnie

A FILAMENT LAMP "CANDLE" THAT CAN BE BLOWN OUT BUT MAGICALLY RELIGHTS

The Magic Candle was originally intended as a Christmas novelty but it could be used as part of a conjuring routine, as a game or simply as a conversation piece at a party.

It appears as a large candle having a filament lamp instead of a flame. After switching on, the lamp may be "blown out" and after several seconds, relights itself. This gives children great delight.

CIRCUIT OPERATION

The action of this project depends on the two thermistors, RTH1 and RTH2 (see circuit diagram, Fig. 1). These components have fixed resistors, R1 and R2, respectively, "strapped" to them with thin wire "piggy-back" fashion. Since R1 and R2 are connected in parallel across the supply battery, they will become warm soon after switching on as their power rating is slightly exceeded.

This in turn will warm the thermistors. Some heat will be developed by the thermistors themselves as they are connected in series across the battery but this will be much less than that developed by the fixed resistors. Thermistors are temperature dependent resistors and RTHI and RTH2 are negative coefficient types which reduce resistance on heating.

RTH1 and RTH2 form a potential divider and a voltage is developed at pin 3
of IC1. The value of this voltage will depend on the relative temperatures of RTH1 and RTH2. Thus, if the temperature of RTH1 becomes less than that of RTH2 the voltage will fall and viceversa.

OPERATIONAL AMPLIFIER

The Operational Amplifier, IC1, compares the voltages at its two inputs. The voltage at pin 3 is applied to the noninverting input (marked +) while a voltage obtained according to the setting of VR1 is applied to the inverting input (marked -). If the voltage at the noninverting input exceeds that at the inverting input then the op-amp switches on. Otherwise it will be off. It is working as a comparator.

When on, the op-amp operates TRI hence the filament lamp in its collector circuit. In its "normal" state, both thermistors will be warmed equally and so attain the same temperature. The voltage at pin 3 will then be approximately on half of the battery voltage, about 4.5 V . One reason why this value cannot be predicted accurately is because thermistors, even of the same type, are not truly identical in performance. VR2 is adjusted so that the voltage applied to the inverting input (pin 2) is just less than that at pin 3 . The lamp will then be on.

Fig. 1. Circuit diagram of the Magic Candle.

To "blow out the candle," breath is directed at RTH1. This component will be slightly cooled while the temperature of RTH 2 remains unchanged. The action of the potential divider will now be upset resulting in a fall in voltage at pin 3 . This is now less than that at the inverting input so TR1 and the lamp will switch off.

After a few seconds, RTH 1 will regain its former temperature, its resistance will fall and the lamp switch on again.

IMMUNITY

The reason for providing two thermistors instead of just one and a fixed resistor, is to give some measure of temperature stability. If the project were moved to a room at a different temperature then both thermistors would be equally affected. In theory, the voltage at pin 3 would not change. How well this is realised in practice depends on the particular thermistors being used.

COMPONENTS

Resistors

R1.2	$470 \Omega \frac{1}{\frac{1}{2} W}(2$ off $)$
R3	$4.7 \mathrm{k} \Omega \frac{1}{2} \mathrm{~W}$
R4	$1 \mathrm{k} \Omega \frac{1}{2} \mathrm{~W}$

Semiconductors

RTH1,2 VA1055S miniature TR1 rod thermistor (2 off)
IC1 741 op-amp
Miscellaneous
VR1 $100 \mathrm{k} \Omega$ miniature horizontal preset
B1 PP69V battery
LP1 6V,60mA m.e.s. bulb
S1 minlature toggle switch 0.1 in matrix stripboard, 11 strips by 19 holes; cardboard tube (for candle body); battery ctip: 8-pin d.i.I. holder; fine copper wire (see text).

CARDBOARD TUBE

Before constructing the circuit panel, a cardboard tube (a kitchen roll tube for example) should be chosen large enough to accommodate the circuit panel and the battery. The current requirement is about 100 mA which is too high for a standard PP3 battery. If the reader intends using such a small battery, then the alkaline version (Duracell type) is strongly advised since this will give far better service.
A PP6 battery may be used but this will require a tube of greater diameter than a standard kitchen roll. It is also possible to house the battery in an ornamental base. A large battery is better where heavy use is contemplated.

SENSORS

The next job is to prepare the pairs of components RTH1/R1 and RTH2/R2. These are bound together using about four turns of fine copper wire (thin fuse wire will do)-see Fig. 2.

Construct the circuit panel using a piece of $0 \cdot 1$ in matrix stripboard, 11 strips by 19 holes as shown in Fig. 3. Although the i.c. socket should be soldered in position along with the other components, the op-amp itself should not be inserted in it until the end. Make the five breaks in the copper strips; four between the i.c. socket pins and one between the terminals of VR1 and insert the five inter-strip links.

Check all wiring and make certain that no "bridges" exist between adjacent copper tracks. Connect the lamp on two short $(20 \mathrm{~mm})$ leads to strips B and K and two longer leads for the battery connections to strips B and I.

CHECKING

The circuit may be checked before fitting it into the candle body. Connect

Fig. 2. The method of fixing R1 to RTH1 (and R2 to RTH2) using fuse wire. Note these resistors must be W components.

Fig. 3. The stripboard component layout and trackside view. Note that the Ri/RTH 1 assembly must be mounted on the board so that the stream of air reaches it but not the R2/RTH2 assembly (see photo above).

FOUR-DIGIT
 COMBINATION LOCK

THIS circuit is a 4 -digit combination lock with the added feature of resetting itself if the user makes an incorrect entry, which makes it virtually "unpickable" along with the 11,880 permutations of the combination!
It uses four 7400 quad 2 -input Nand gates (TTL) that go to make up four bistables and inverters. The keyboard used is a 12-key type with 12 contacts and 1 common contact. The inputs to the bistables are connected to the contacts on the keyboard corresponding to the digits used in the combination. All the unused contacts are connected to the reset inputs.

The final bistable, after the correct combination has been entered, drives TR1 which operates the relay. The gates are powered by the voltage regulator (5 V) which runs off of the supply voltage of 9 to 12 V .
the battery and wait one minute for the thermistors to reach their operating temperature. Whether the lamp lights or not is unimportant at the moment. Adjust VR1 very carefully to the point where it can be switched on or off by small movements of the slider. Leave VR1 adjusted so that the lamp is just on. Using a drinking straw, blow at RTH1 but not at RTH2. The lamp should go off and after a short while come on again. Repeat and adjust VRI for best operation.

If all is well, the "candle" body may be prepared. Here, any artistic talents the reader might have may be freely exercised. The hole in the top of the candle is made rather large on purpose (about 12 mm). The real reason for this is to allow breath to reach RTH1. It will be noted that the arrangement of the circuit panel when in position is such that RTH1 will be in "direct line of fire" of breath while RTH2 is shielded.

FINAL TESTING

When finally testing the assembled project, the shielding effect of the tube may necessitate further adjustment to VR1 for best operation. It may be found
necessary to make a small hole in the side of the tube to allow for adjustment of VRI. The circuit panel may be held in position using a small piece of plastic foam. The leads of RTH1 and RTH2 may be gently bent as necessary to give the correct effect.
A miniature toggle switch may be used as an on-off switch or the battery simply disconnected when the project is not in use.

Readers are advised to switch off when the project is not actually in use since the battery will soon run down otherwise.

If a base is not used it may be necessary to place a piece of "Plasticine" or similar material low down in the tube to aid stability.

VARIATIONS

A variation of the Magic Candle is to blow it on as well as off! For this, RTH2 must be accessible for breath as well as RTHI. If RTH1 is blown at then the lamp will go off: If breath is now directed at RTH2 instead, the lamp will instantly re-light! By knowing this trick, readers may make a good "magic" routine.

TEMPERATURE SENSOR

THE unit is very simple. It uses the fact that a germanium transistor has a varying resistance according to the temperature. It can be used as a boiling liquid alarm or for finding the temperature of a bath by putting the sensor in the water and turning the knob until the l.e.d. lights up, then reading out the temperature.

As the circuit diagram shows, the transistor collector and emitter are connected between the positive supply line and the wiper at VRI. This acts as a potential divider. The output is fed to a Darlington pair which works the alarm.

The unit reads from about 30 degrees

C to 100 degrees C but this depends on the potentiometer.

David Corder,
Kirkby Stephen, Cumbria.

Once the circuit is switched on, the bistables must be set to zero by pressing any key other than one used in the combination. After this the relay will not activate until the correct combination has been entered in the right order. The relay can be reset by pressing another key that isn't used in the combination.

The relay could operate something like an electrically-operated lock or it could be used to de-activate a larger security system. It is in these contexts that I have used the lock myself.
B. Hobson, Countesthorpe, Leicester.

PLEASE
 TAKENOTE

Speech Synthesiser for the BBC Micro (November 1983)

The circuit diagram Fig. 2 (page 699) shows two pins on IC1 labelled " 27 ". The pin connecting to R9/C5 should be labelled " 24 ".

The user port pin numbering on pins 8,10,12 and 13 of the circuit diagram are incorrect and should be renumbered $6,8,10,12$, respectively. The printed circuit board is correct.

Multimod (November 1983)
Circuit diagram (Fig. 1, page 705) shows the bottom half of S1 drawn incorrectly; the pole should be connected to OV not to B2 +ve as shown. Wiring diagram (Fig. 4, page 707) is correct.

CONSTRUCTIONAL PROJÉCTS

TRS-80 Twin Cassette Interface

The p.c.b. mains transformer used in the TRS-80 Twin Cassette Interface is available from Rapid Electronics. This should be ordered as: PCB min. mains transformer $3 V A \quad 0-6,0-6$ at $0.25 A$. Price $£ 2.87 \mathrm{in}$ clusive. Other transformers may be used but this may necessitate altering the p.c.b. copper strip layout.

The miniature di.I. 6 V 80 -ohm coil relays, with double-pole changeover contacts, are available from Maplin Electronic Supplies: Order code, BK48C Ultra MIn, Relay 6 V (DPDT).

For those readers who do not wish to make up their own cassette lead, one may be purchased from any Tandy store; ask for a Model I CPU to audio cassette lead, Code 26-1207 (E2).

Novel Egg Timer

The 14 -bit binary counter (4060B) and the CMOS dual 4 -input AND gate (4082B) integrated circuits used in the Novel Egg Timer are available from Enfield Electronics,

Rapid, Benningcross, Cricklewood and Magenta Electronics.

We have not been able to locate a "readily" available source for a 40 -ohm loudspeaker. However, one of the 64 -ohm, 64 mm diameter range of miniature loudspeakers stocked by most of our advertisers will work in this circuit.

The final choice of housing is left to the individual, but a plastics or "soft" toy from
one of the large multiple stores or toy shops would make a novel finish to this project. Also, the completed board and speaker could be housed in one of those "egg baskets" in the shape of a chicken that are very popular.

Enviromental Data Recorder

The MK5168 single channel 8-bit analogue-to-digital converter lic. used in the Environmental Data Recorder may be obtained from Lock Distribution Ltd., P.O Box L064, Neville Street, Oldham, Lancs OL9 6PY. The inclusive cost is $£ 10.76$.

Microcomputer Interfacing
 Techniques

The only device likely to cause any purchasing problems in this month's Microcomputer Interfacing Techniques is the ZN448 8-bit A-to-D Converter used in the Digital Board. This device is available from Magenta Electronics, Dept EE, 135 Hunter Street, Burton-on-Trent, DE14 2ST. Price $£ 10.85$ plus 50 p postage.

We do not expect any component purchasing problems for the "Christmas Ideas" and the remaining constructiona projects in this issue.

EEPRINTED CIRCUIT BOARD SERVICE

Printed circuit boards for certain EE constructional projects are now available from the EE PCB Service, see list below. These are fabricated in glass-fibre, and are fully drilled and roller tinned. All prices include VAT and postage and packing. Remittances should be sent to: EE PCB Service, Everyday Electronics Editorial Offices, King's Reach Tower, Stamford Street, London SE1 9LS.

Cheques should be crossed and made payable to IPC Magazines Ltd.

We regret that the ordering codes for the August projects have been incorrectly quoted in the Sept-Oct issues. Correct codes are given below.

Please note that when ordering it is important to give project title as well as order code.
Readers are advised to check with prices appearing in current issue before ordering.

Teach-In 84

Readers wishing to purchase kits for the new Teach-In 84 series may obtain them from the following advertisers. Prices appear in their relevant advertisement in this issue.

We understand that advertisers have had difficulty in obtaining the EBBO boards which has meant a delay in sending out kits. This problem has now been resolved and the back-log of orders completed.

SUPPLIERS OF KITS FOR TEACH-IN 84

Please refer to advertisement on page stated.

Greenweld Electronics (page 846) 43 Millbrook Road
Southampton, SO 1 OHX .
Magenta Electronics (page 848)
135 Hunter Street.
Burton-on-Trent, Staffs
DE14 2ST.
TK Electronics (page 784)
11 Boston Road,
London, W7 3SJ.

PROJECT TITLE	Order Code	Cost
Eprom Programmer, TRS-80 (June 83)	$8306-01$	$£ 9.31$
Eprom Programmer, Genie (June 83)	$8306-02$	$£ 9.31$
Eprom Programmer, TRS-80 \& Genie (June 83)	$8306-03$	$£ 1.98$
User Port Input/Output M.I.T. Part 1 (July 83)	$8307-01$	$£ 4.82$
User Port Control M.I.T. Part 1 (July 83)	$8307-02$	$£ 5.17$
Storage 'Scope Interface, BBC Micro (Aug 83)	$8308-01$	$£ 3.20$
Car Intruder Alarm (Aug 83)	$8308-02$	$£ 5.15$
High Power Interface M.I.T. Part 2 (Aug 83)	$8308-03$	$£ 5.08$
Pedestrian Crossing Simulation M.I.T. Part 2 (Aug 83)	$8308-04$	$£ 3.56$
Electronic Die (Aug 83)	$8308-05$	$£ 4.56$
High Speed A-to-D Converter M.I.T. Part 3 (Sept 83)	$8309-01$	$£ 4.53$
Signal Conditioning Amplifier M.I.T. Part 3 (Sept 83)	$8309-02$	$£ 4.48$
Stylus Organ (Sept 83)	$8309-03$	$£ 6.84$
Distress Beacon (Sept 83)	$8309-04$	$£ 5.36$
Distress Beacon Pocket Version (Sept 83)	$8309-05$	$£ 3.98$
D-to-A Converter M.I.T. Part 4 (Oct 83)	$8310-01$	$£ 5.77$
High Power DAC Driver M.I.T. Part 4 (Oct 83)	$8310-02$	$£ 5.13$
Electronic.Pendulum (Oct 83)	$8310-03$	$£ 5.43$
TH/Power Interface for Stepper Motor M.I.T. Part 5 (Nov 83)	$8311-01$	$£ 5.46$
Stepper Motor Manual Controller M.I.T. Part 5 (Nov 83)	$8311-02$	$£ 5.70$
Digital Gauss Meter (Nov 83)	$8311-03$	$£ 4.45$
Speech Synthesiser for BBC Micro (Nov 83)	$8311-04$	$£ 3.93$
Car On/Off Touch Switch (Nov 83)	$8311-05$	$£ 3.11$
4-Channel High Speed ADC (Analogue) M.I.T. Part 6 (Dec 83)	$8312-01$	$£ 5.72$
4-Channel High Speed ADC (Digital) M.I.T. Part 6 (Dec 83)	$8312-02$	$£ 5.29$
TRS-80 Twin Cassette Interface (Dec 83)	$8312-03 / 09$	$£ 7.43$
Environmental Data Recorder (Dec 83)	$8312-04$	$£ 7.24$
Touch Operated Die (Dot matrix) (Dec 83)	$8312-05 / 06$	$£ 4.34$
Touch Operated Die (7-segment)(Dec 83)	$8312-05 / 07$	$£ 4.34$
Continuity Tester (Dec 83)	$8312-08$	$£ 3.41$

A TWELVE-PART HOME STUDY COURSE IN THE PRINCIPLES AND PRACTICE OF ELECTRONIC CIRCUITS. ESSENTIALLY PRACTICAL, EACH PART INCLUDES EXPERIMENTS TO DEMONSTRATE AND PROVE THE THEORY.
USE OF A PROPRIETARY BREADBOARD ELIMINATES NEED FOR SOLDERING AND MAKES ASSEMBLY OF CIRCUITS SIMPLE.
THE IDEAL INTRODUCTION TO THE SUBJECT FOR NEWCOMERS. ALSO A USEFUL REFRESHER COURSE FOR OTHERS.

THIS MONTH we'll start making an acquaintance with the transistor. Not before time, you may say. However, all that work you've done on resistance, voltage and current will now begin to pay off. You need just one more bit before we can really get started.

VOLTAGE DIVIDERS

Two resistances, R1 and R2, are connected in series (Fig. 3.1) across a battery. Each of these resistances "feels" the same current, and in its struggle to resist this current flow it consumes a portion of the voltage.

How big a portion? You will know from previous experiments that it depends on the relative sizes (ohmic values) of the resistances. If R1 and R2 are equal then each "drops" half of the voltage. Don't take my word for it. Try it.

Use $1 \mathrm{k} \Omega$ resistors to keep the meter loading effect small, and remember that your resistors have a tolerance, so the voltage across R1 may not be exactly the same as across R2. (With 5 per cent tolerance resistors the worst that can happen is that one resistance is 5 per cent high and the other 5 per cent low. The difference in voltages can't be more than 10 per cent.)
If $R 1$ is twice $R 2$ then it drops twice as much voltage as the latter. If we divide our 9 V into three equal parts, R1 drops
two parts (two-thirds) and R2 one part (one-third), or in actual voltages, 6 V and 3 V , respectively. If we regard 9 V as the input and 3 V as the output of the circuit then the action of the circuit is to divide the input voltage by 3.

The circuit is a voltage divider (also called a potential divider). It is used a lot, because it often happens that we need to apply less than the full voltage to some part of a complex circuit.

We'll be doing it in earnest later in this article. First, however, I'd like to make the point that you can use this type of circuit to divide a voltage by any number, not just three.

What fixes the number? It's the relative sizes of the resistances. If for example R1 is eight times R2, then R1 must absorb eight times the voltage. Thus if R2 drops $1 V, R 1$ must drop 8 V . For an input of $9 \mathrm{~V}, 1 \mathrm{~V}$ comes out. The division is by 9 .

Suppose we need a ten-fold reduction in voltage. If we imagine the output to be 1 V , the input must be 10 V . The "unwanted" 9 V must be lost in R1. So for a tenfold reduction in voltage R1 must be, not ten times R2, but nine times R2. It works like this for any required reduction. If the circuit is to divide the input voltage by 100 , then R1 must be 99 times R 2 .

Fig. 3.1. Resistors R1 and R2 form a voltage divider across the 9 V battery.

Fig. 3.2. A volume control or "potentiometer" has a resistance track $a-b$ and a sliding contact c.

(a)

In articles on electronics you'll come across the expression: "voltage attenuation factor". Attenuation means reduction, and a factor is a number. So "voltage attenuation factor" is the number by which the voltage is divided. In our type of voltage divider R1 is greater than R2 and the number of times greater is one less than the voltage attenuation factor.

VOLUME CONTROLS

Resistances behave in the same way towards a.c. and d.c. So voltage dividers of our type can be used to reduce or attenuate a.c. signals as well as d.c. voltages. Often an adjustable form of attenuator is needed. The volume control is the most familiar type. It adjusts the voltage which goes into the audio part of a receiver, or into an audio amplifier.

To make the attenuation adjustable, a resistive track ($a-b$ in Fig. 3.2) is provided with a sliding contact c. By moving this contact to different parts of the track, different amounts of attenuation can be obtained.

With the sliding contact at a, the full input voltage is passed onto the output. With c down at b, there is no output: the attenuation is infinite. So in theory a volume control can attenuate by any factor from 1 to infinity. In practice, it can't manage that very well, but $1-100$ or even $1-1,000$ is practicable.

(b)

Fig. 3.3(a). How a potentiometer can "tap off' any portion of an input voltage. (Experiment 3.1); (b) Connecting R1 as a relatively low resistance "load" hás a marked effect on the output voltage. (Experiment 3.2).

EXPERIMENT 3.1

PREPARING YOUR POT

Get an ordinary rotary type of volume control of the type known as a " $10 \mathrm{k} \Omega$ log. law potentiometer." Connect a length of insulated wire to each of its three tags. If you start with lengths of about 300 mm (12 in) they will end up about right.

To make connections without soldering, first make sure the tags are clean and bright. Then strip off about 40 mm ($1 \frac{1}{2}$ in) of insulation from one end of each of these leads. Wrap this bared wire firmly round and round a tag, squeezing it from time to time with pliers to give it extra grip. When all the bared wire is wrapped, continue with a few turns of the insulated part: this helps to hold the bared wire in place. Do this for each lead.
If possible, use wire of a different colour for each lead. If not, mark the free ends of the leads in some way. You will need to strip off a few millimetres of insulation later, so don't put your markers right at the end. When all three tags are connected, twist the wires together. Finally strip off about $6 \mathrm{~mm}\left(\frac{1}{4} \mathrm{in}\right)$ of insulation from the free ends, for plugging into your breadboard.

Your finished volume control should look like the one in the photograph. When the spindle is turned fully clockwise the internal sliding contact touches terminal a. In the fully anti-clockwise position it touches b.

If you connect an ohmmeter to terminals b and c, the resistance indicated increases as the spindle turnes clockwise.

For a and c, anti-clockwise motion increases the resistance. (Remember to reset your meter to a voltage range immediately after making this test.)

Connect your volume control to your 9 V battery (Fig. 3.3a) and measure the output voltage as shown. Note that this can be set to anything from 0 V to 9 V .

LOADING ERROR

When a resistance is connected across the output of a voltage divider the output voltage falls. This is because extra current flows through R1 (Fig. 3.1) or the corresponding resistance in Fig. 3.3a, which is the upper part of the track; that is, from a to c.
The amount of extra current depends on the size of the "load"; in other words, the resistance connected across the output. If this is very large, little extra current flows through R1 and the output voltage is not much reduced. But a lowresistance load pulls down the voltage seriously.

EXPERIMENT 3.2

To illustrate this, connect a $1 \mathrm{k} \Omega$ resistor to your $10 \mathrm{k} \Omega$ potentiometer (Fig. 3.3 b). Note that if the resistor is unplugged when the slider is set at an intermediate position the voltage indicated jumps up. This loading effect is worst at the point where, in the absence of a load, the meter reads half the battery voltage.

The loading effect can be reduced by making the divider resistances small compared with the load resistance. This

CURRENT FLOW

One point which causes difficulty may as well be dealt with here. Currents are flows of electric charges. An electric charge can be positive or negative. If positive, the charge travels in the same direction as the current. If negative, it travels in the opposite direction. It so happens that most real-life currents are flows of negative charges, carried by electrons. So an electron, being negative, goes in the opposite direction to the current. To deal with this anomaly, the current, which is universally regarded as flowing from positive to negative, is sometimes called converitional current.

Only physicists and transistor designers need worry about whether currents are carried by positive or negative charges. As engineers we can forget about the nature of the charge carriers and design purely in terms of conventional flow of current from positive to negative. The arrow-like parts of the standard symbols for transistors and diodes always point in the direction of conventional current flow. All the circuits in this Teach In are described in terms of conventional current flow from positive to negative.
means wasting current in R1 and R2 (or your "potentiometer") but this is often tolerable.

Fig. 3.4. The circuit of Fig. 3.3(a) assembled on the EBBO Block.

Fig. 3.5. The circuit of Fig. 3.3(b) assembled on the EBBO Block.

EXPERIMENT 3.3

TURNING ON A TRANSISTOR

Our next experiment will be to find out how much voltage is needed to "turn on" a transistor; that is, to make it pass current.

Referring to Fig. 3.6, a transistor has three terminals or "electrodes": they are, base (b), collector (c) and emitter (e). The main current path through a transistor lies between collector and emitter. The little arrow on the emitter (e) shows the permitted direction of current flow. (Transistors are one-way devices; current can flow only in permitted directions.)

To permit current to flow via the collector-emitter ($c-e$) path the transistor must be turned on by driving a small current through the base-emitter path, Our $10 \mathrm{k} \Omega$ potentiometer allows us to adjust this current by applying any part of the battery voltage to the resistor R1. The meter (on its 2.5 V range if you are using the KEW7S) measures the resulting voltage between base (b) and emitter (e). We'll call this voltage VBE for short.

With the kind of transistor we are using at the moment (an npn transistor) the normal direction of current flow is into the base and into the collector and out of the emitter. Collector and base are then positive with respect to the emitter.

CURRENT INDICATOR

To show that collector current is flowing, connect a l.e.d. and limiting resistor as shown (Fig. 3.6), making all connections witiain one half of your EBBO discrete component module. Try it.

My test results were:
D1 just glowingVBE $=0.65 \mathrm{~V}$
DI brightVBE $=0.75 \mathrm{~V}$
To pinpoint the "bright" setting of VRI, I first turned it fully up then gently back to find the point where the l.e.d. just began to dim. Transistors vary. Your voltages may be somewhat different.

The collector current with the l.e.d. bright is actually about 7 mA . Assuming the "dim" current to be 1 mA , we can look at our results like this:
$V_{B E}=0.65 V$ makes 1 mA flow into the collector
$\mathrm{V} \mathrm{BE}=0.75 \mathrm{~V}$ makes 7 mA flow into the collector
From this you can see that (for my BC 107 B) a change in VBE of 0.1 V produced a change in collector current (Ic) of 6 mA .

This ability of a change in VBE to produce a corresponding change in collector current (IC) is an important transistor characteristic. It has a name: mutual conductance or transconductance, and a symbol, gm:
$\mathrm{gm}=($ Change in Ic)/(Change in Vbe)

Fig. 3.7. The circuit of Fig. 3.6 assembled on the EBBO Block.

For small values of Ic, this is expressed in mA (of Ic) and volts (of VBE). Then, gm comes out in milliamps per volt (mA / V). However, mA / V also has a name: $1 \mathrm{~mA} / \mathrm{V}=1$ milli-siemens (1 mS).

My figures indicate a mutual conductance of about 60 mS .

VOLTAGE AMPLIFICATION

As the collector current increases, more voltage is dropped by the l.e.d. and R2. With the l.e.d. just glowing, the total drop across it and R2 is about 3 V . When the l.e.d. is bright, the drop is nearly 9 V . So a change of 6 V in the collector part of the circuit has been produced by a change of 0.1 V at the base.

If the change in VBE $(0.1 \mathrm{~V})$ is an input signal, and the change in collector voltage an output signal, then the transistor has amplified the input sixty-fold. In engineer's talk, the voltage gain is 60 .

CURRENT AMPLIFICATION

A transistor amplifies current, too. The input is the current which flows into the base (and out at the emitter along with the main current from the collector). The output current is the collector current. It is true that for an npn transistor this "output" flows into the transistor. But we'll see in a later article how it can be taken elsewhere.

POTENTIOMETERS (left and right) normal panel mounting volume controls; (centre) iwinganged type with mains switch at rear. The two smaller components are preset potentiometers for direct mounting on clrcuit boards, screwdriver adjustment.

To investigate current amplification, it is necessary to know the base current, Ib. The most direct way of finding IB is to connect a current meter in the base circuit (Fig. 3.8a). In practice, this is neither practical nor safe. Meters when switched to "current" ranges are easily overloaded by accidental momentary connection across the power supply. In this particular circuit there is a design error which almost guarantees it will happen!
If VR1 slider is moved up to the top of the track (a), which is the same thing as battery + , current can flow freely from battery + through the meter, through the base and emitter and back to battery The transistor base-emitter "junction" offers little resistance, and the resulting large current wrecks both transistor and meter.
Some meters are protected internally against overload but it is always better to play safe and measure voltages rather than currents.

On a voltage range the meter always has a fairly high resistance. (For a KEW7S, whose sensitivity is $2 \mathrm{k} \Omega / \mathrm{V}$ d.c., the resistance is $2 \mathrm{k} \Omega$ times the voltage range to which the meter is set. On the 10 V d.c. range it is $2 \mathrm{k} \Omega \times 10=20 \mathrm{k} \Omega$.)

EXPERIMENT 3.4

In any case, the base current is likely to be too small to measure on a cheap meter. We'll avoid the problem by using the circuit Fig. 3.5b. This makes use of the fact that if we know the voltage across a resistance we can find the current flowing through it.

Here, the base current sets up a voltage across $\mathrm{R} 1,100 \mathrm{k} \Omega$. Every volt applied to $100 \mathrm{k} \Omega$ produces a current of 10 microamps $(10 \mu \mathrm{~A})$, that is, ten-millionths of an amp or a hundredth of a milliamp.
The voltmeter doesn't measure the voltage across R 1 , but merely the voltage at one end. Fortunately, we can estimate

Fig. 3.8. How base current governs collector current; (a) A not very good way of finding out; (b) This way is safer, but the base current must be estimated. (Experiment 3.4).

Fig. 3.9. The circuit of Fig. 3.8(b) assembled on the EBBO Block.

TRANSISTORS. High gain, small signal, metal can types as used in this series.

the voltage at the other end. It is Vbe, which is never very far from 0.7 V . (The most extreme values of VBE you are likely to come across in silicon transistors are 0.4 V and 1 V ; that is, $0.7 \mathrm{~V} \pm 0.3 \mathrm{~V}$). Let's call it 0.7 V .

My voltmeter readings were:

$$
\begin{aligned}
& \text { D1 dim............................. } 1 \mathrm{~V} \\
& \text { D1 bright } 4 V
\end{aligned}
$$

Knocking off 0.7 V for VBE , the voltages across R1 must have been about 0.3 V and 3.3 V . The corresponding base currents are $3 \mu \mathrm{~A}$ and $33 \mu \mathrm{~A}$.

In the "l.e.d. dim" case, if Ic was ImA $(1,000 \mu \mathrm{~A})$ the current amplification was $1,000 / 3=333$. In the "l.e.d. bright" case, if IC was $6 \mathrm{~mA}(6,000 \mu \mathrm{~A}) \mathrm{my} \mathrm{BCl} 107 \mathrm{~B}$ had a current gain (Ic/Ib) of 180 .

You may suspect that the current gain of a transistor varies with its collector current. It does. But our results are based

CHECK YOUR PROGRESS

Questions on Teach-In 84 Part 3 Answers next month

Q3.1 In the circuit of Fig. 3.8b, why can't the meter be connected across R1 to measure the voltage directly?
Q3.2 A transistor has a current amplification factor ($h_{F E}$) of 100 If its base current is $10 \mu \mathrm{~A}$ what is its:
(a) collector current
(b) emitter current.

Q3.3 The burglar alarm circuit of Fig. 3.11 makes use of the fact that the resistance of the light-dependent resistor PCC1 falls considerably when a beam of infra-red light strikes it. If the alarm bell is to sound when an intruder's body interrupts the beam how must the circuit work?

Q3.4 The collector current of a transistor is to be used to light a l.e.d. If $\mathrm{Vcc}=6 \mathrm{~V}$ and the current must not exceed 20 mA what minimum value of current-limiting resistance is required? (The l.e.d drops 2 V at 20 mA .)

Fig. 3.11. See 03.3.

ANSWERS TO PART 2

Q2.1 (a) $2 \mathrm{~mA} ;(b) 9.9 \mathrm{~V}$ (c) $18 \mathrm{k} \Omega$.
Q2.2 (a) $9 k \Omega ;(b) 3 k \Omega$ the lowest two resistors are short circuited); (c) 1 kS (current can flow from X to Y via any one of the resistors so they are all in parallell.
Q2.3 3 mA . There is 4 V across the parallel resistors so the $2 k \Omega$ passes 2 mA and the 4 kS passes 1 mA .
Q2.4 4V. The meter acts as a resistance of $10 \mathrm{k} \Omega$. In parallel with R2 this makes $5 k \Omega$. The total resistance is then R1 $(10 k \Omega)+5 k \Omega=15 k \Omega$. 12 V applied to $15 \mathrm{k} \Omega$ drives 0.8 mA , which produces 4 V in flowing through the $5 \mathrm{k} \Omega$. So 4 V appears across the meter and this is what it indicates.
on estimates and are very rough. The real value of the current gain for a BC107B is likely to be 200-500.

BIASING

Transistors are often used to amplify small voltages and currents (small signals). For example, the output from a record-player magnetic pickup may be only a thousandth of a volt ($=1$ millivolt, $1 \mathrm{mV} ; 1,000 \mathrm{mV}=1 \mathrm{~V}$). Such a small voltage can't turn on a transistor, which, as we've seen, needs about 0.7 V ($=700 \mathrm{mV}$).
To make the amplification of small signals possible, the transistor is turned on, permanently, by a steady d.c. voltage or current from the power supply. The signal is added to this, so that the transistor is turned on a bit more.
In this way, a small signal can produce an increase in collector current even though, on its own, it couldn't make any collector current flow. The output signal is the increase in collector current, which can be separated from the steady current caused by the turning-on voltage or current.

This trick of turning on a transistor like this is called biasing. Purely by way of illustration, Fig. 3.10 illustrates how a gramophone amplifier might be set up. The voltage divider, R1, R2 sets up enough base-emitter voltage to produce a suitable collector current. This flows through a loudspeaket. Any variations in this steady current at audio frequency produces sound.

To insert these variations the magnetic pickup is connected in the base lead. Any

Fig. 3.10. An illustrative, but Impractical audio amplifier circuit.
voltage developed in the pickup coil then adds to or subtracts from the 700 mV bias. So as the pickup generates its few millivolts of audio signal (which is a.c. not d.c.) the collector current rises and falls in sympathy. These a.c. variations superimposed on the steady d.c. produce sound in the speaker.

That, at any rate, is the theory. In practice, it won't work, because a single transistor doesn't amplify enough. Also, this circuit is badly affected by variations in the supply voltage (VCC) and temperature, which changes the required Vbe of the transistor.
Next time we'll look at more practical circuits and at a useful way of separating the output signal from the steady collector current.

- If you are buying as you go along you'll need a crystal earphone and at least two $100 \mathrm{nF}(0.1 \mu \mathrm{~F})$ capacitors, 30 V (minimum) working, non-polarised. Disc types with long leads are most convenient. Also a $1,000 \mu \mathrm{~F}$ electrolytic capacitor, 16 V (minimum).

Next

month: Transistors and Capacitance

Is Your Youngster's Future Worth 90p per Month?

Electronics and computer-based industries offer many job opportunities to the technically trained. Your son or daughter's career prospects could be enhanced if they have a knowledge of electronics.
Our twelve-part series Teach-In 84 has been planned with this object in view. An ideal home-study course with practical experiments, easily performed without soldering
Make sure of your copy of EVERYDAY ELECTRONICS by placing a firm order with your Newsagent NOWI

WHEN measuring changes in biological and environmental science experiments, the quantities being measured often change very slowly. For this reason it may take days, or even weeks, to take readings of, say, pH changes in water over a length of time. If the experiments are being carried out-ofdoors, then the problems of setting up the experiment and collecting the readings are far greater.

DESIGN CONSIDERATIONS

The unit described here is designed to be waterproof and weatherproof which can be left on site using its own power supply. It can be fitted with many different sensors, for example, oxygen probes, pH probes, light dependent resistors (for light) and thermistors (for heat) and with these it can measure oxygen level changes, pH level changes, light level changes and temperature changes.

The Environmental Data Recorder can take readings ranging from over 500 per second to over once per hour. The data is stored digitally in a 2 K byte memory that can be read at a later date by plugging it into the expansion slot of the Sinclair ZX Spectrum. A short program is used to put the data or a graph of the results onto the screen. It is helpful to have a Sinclair ZX Printer to get a hard copy of the graph or data.

When designing the circuit, several points had to be considered because it (a) is to be portable so it must be a physically small unit, (b) should have a low power consumption, (c) must be able to be plugged into the back of the Spectrum without losing any data or crashing the computer, and (d) must be able to be used over a long period, continuously for a month if necessary.

CIRCUIT DETAILS

The unit works in one of two modes, first write then read. Switches S1 to S3 select the mode. The reset switch (S4) resets the address counter to zero in either mode. Fig. 1 shows a block diagram of the unit in write mode. Brief operating descriptions follow. The full circuit diagram is shown in Fig. 2.

The MV5516 cmos static ram (IC5) was used because its low power consumption when not selected (CE_{1} and CE_{2} both at logic 1) uses only about $1 \mu \mathrm{~A}$.

The MK5168 analogue-to-digital converter (IC3) was selected for its simplicity of operation. In the basic unit described here, the reference voltage (pin 4) is +5 V but may be changed for other applications. To measure changes in light intensities, an ORP12 light dependent resistor (l.d.r.) was connected across the analogue input and +5 V . If absolute values of intensity are needed, calibration against a standard must be carried out.

If other level changes are to be recorded, the output voltage of the sensor should be in the range of 0 to +5 V , so a buffer or attenuator may be needed.

Provision for easy change of write pulse times (the time between each successive sample) has not been made. The time may be changed by altering the values of R3, R4 and C1. The timing period is approximately $0.7 \times \mathrm{R} 3 \times \mathrm{C} 3$ (R4 must be small compared with R3). With R3 $=3 \cdot 3 \mathrm{M} \Omega$, the period is approximately $2 \cdot 3$ seconds times capacitance of C 1 in microfarads. With a $1500 \mu \mathrm{~F}$ capacitor, a reading will be recorded approximately once per hour. For all periods greater than 0.7 seconds, R4 should be $1 \mathrm{k} \Omega$. For periods shorter than this, R4 should be increased.

Equations for calculating the component values for a 555 timer as an astable multivibrator are given below.

Output high for

$0.685 \times(R 3+R 4) \times C 1$ seconds
Output low for
$0.685 \times \mathrm{R} 4 \times \mathrm{C} 1$ seconds
Period of one cycle
$=0.685 \times(R 3+2 R 4) \times C 1$ seconds

WRITE MODE

Data is entered into the random access memory (RAM) on the falling edge of the clock oscillator (IC4) output. On this edge, the 12 -bit counter is advanced one address and the memory (IC5) and A/D converter (IC3) are also selected.

The busy line (pin 3, IC3) goes low when conversion is complete. This level,

Fig. 1. Environmental Data Recorder shown with S1-S4 in the wRITE mode.
and the clock are fed to an OR gate (in the circuit, two NOR gates, IC2b and IC2c) and the output of this selects READ if high and write if low.

The process repeats itself on the next falling edge from the clock oscillator. In this way, the analogue value on pin 4 of IC3 is converted to an 8 -bit digital representation and written into the memory with every sample pulse.

READ MODE

When switches S1-S3 are taken to the read position (opposite to that shown in Figs. 1 and 2), the A/D converter is turned off as the $\overline{C S}$ input (pin 5) is taken to +5 V . With the unit plugged into the back of the Spectrum, IC 1, an 8 -input NAND gate, is switched on (as it takes its
power from the computer not the battery pack).

The program selects ports 255 or 127 (via the command IN255 or 127) and so pulses the 12 -bit address counter adding one to the memory address. Data is read from the memory after each address has been incremented.

CIRCUIT BOARD

The circuit is constructed on a doublesided p.c.b., $100 \times 100 \mathrm{~mm}$, the track pattern and component layout of which is shown in Fig. 3. This board is available from the EE PCB Service, Order code 8312-04 or can be made using the usual methods, although special care must be taken as it is double-sided, to ensure alignment of the two artworks.

The 26 shorting pins (the links between the top and bottom tracks) must first be inserted. Note that these must be soldered on both sides. Next, the resistors and capacitors are inserted and some of the leads require soldering on both sides.

The d.i.l. i.c. holders are then soldered in place but the i.c.s are not plugged-in until later. Note that IC3 and IC5 face the opposite direction to all the other i.c.s. Finally, the di.i. switch (S1-S4) and the 23-way edge connector are fitted.

EDGE CONNECTOR

The 23 -way double-sided edge connector has the polarising key fitted at position three and this is mounted to the left side when viewed from the top with the connector pointing down (as in Fig. 3).

Fig. 2. Complete circuit diagram of the Environmental Data Recorder in WRITE mode. To set to READ mode, Si-S3 are switched to opposite position. PCC1 is connected to the analogue input to measure light intensity.

The light-dependent resistor (PCC1) used for light level monitoring.

The last connections are the wires to the battery pack and to the sensor (on the prototype, a light dependent resistor, PCC1).

The battery wires should be long enough to allow the board to be withdrawn from the case to be plugged onto the Spectrum computer. Ensure that there is no short circuit on these leads as the low internal resistance of the cells compared with their high output can produce a lot of heat quickly!
When assembly is complete, the i.c.s can be inserted into their holders, observing the correct orientation shown in Fig. 3.

CASE

The Environmental Data Recorder p.c.b. is mounted into a watertight case when out in the field, which also houses the battery pack. This is a holder for four C size (HP11) ni-cad rechargeable bat teries and it is held in place with doublesided adhesive tabs.
The prototype was housed in a die-cast box, $170 \times 120 \times 50 \mathrm{~mm}$ with a specially fabricated bracket at one end to hold the edge connector of the board. (See photographs.) This bracket must use an insulating material (plain matrix board for example) to slot into the connector to prevent short circuits.

INSTRUCTIONS

To use the Data Recorder, the following set of instructions must be followed. First set up the correct sample period with the selected values of R3, R4 and C1 on the astable timer (IC4), the calculations for which are given in the circuit description.

1. Set switches S1, 2 and 3 to the down position (write) and S4 to the up (RESET).
2. Place the ni-cad batteries in the holder (observing the correct polarity) to switch the unit on.
3. When ready, set S 4 to the down position to begin recording.
4. Place the board onto its holder in the case and seal the lid.
5. When the readings are complete, set all the switches to the up position ($\mathbf{S} 1-\mathbf{S} 3$ to READ and S4 to RESET):

SOFTWARE

10 REM Environmental Data Recorder
$2 \emptyset$ REM (c) Everyday Electronics
$3 \emptyset$ REM December 1983
40 FOR $n=175$ TO \emptyset STEP -1
50 PLOT IN 255,n
$6 \emptyset$ IF $\mathrm{n}=\emptyset$ THEN GO TO $8 \emptyset$
$7 \emptyset$ NEXT n
$8 \emptyset$ PAUSE $1 \emptyset$
90 COPY
10 CLS
110 GO TO $4 \emptyset$
6. Remove the module from the case (but do not disconnect batteries) and plug onto the Spectrum edge connector-with or without the ZX Printer.
7. Connect the Spectrum power supply.
8. Enter the program (listed separately) and set S 4 to the down position. RUN the program.
9. When complete, remove Spectrum power supply.
10. Remove batteries from holder (to switch Data Recorder off).

CONCLUSION

Like many electronics systems, further developments can be carried out. The Environmental Data Recorder described

here uses less than 2 mA compared with over 8 mA in the original prototype unit presented for SEDAC. The timing circuit has been completely redesigned and the selection logic simplified.

Further developments could include multi-channel A/D conversion; using
switches to select the timing period and increasing the memory. A selectable voltage gain unit buffering the analogue input would be a useful feature. The prototype has been used extensively for light level comparison and no problems have been found.

BY PAUL YOUNG

Boost For CB

The other day I was idly wondering why the good people advocating a Citizen's police watch to assist the police and prevent burglaries, did not suggest that they use Citizen's Band Radio, when I spotted an intriguing piece in a national newspaper. It appears that young girls are using CB radio to lure men to their doom. My male colleagues would no doubt phrase this differently.

No, Paul Young is not leading a headlong rush to the nearest CB emporium. When you reach my mature and serene age and I sincerely hope you will, you will appreciate the wisdom of the great Groucho. When, in his eighties, he was asked if he still chased the girls, he replied: "Yes, but only downhill".

I mention all this, particularly for the benefit of my lady readers (if I have any). If your husband hints that you might like to buy him a CB radio for Christmas, I would suggest you should reply: "Of course darling, so long as I can have an extension speaker to listen in to you."

Finally, the CB jargon for a meeting of two CB enthusiasts is: "Eyeball to Eyeball". I wonder what the word spinners will dream up for this type of assignment? I
could think of a few, but I fear in a respectable family magazine like ours, they would not be printable.

All At Sea

I don't often get angry, my blood pressure prevents it but I must confess to getting hot under the collar, when I read of the plight of the transatlantic yachtsman Tom McClean.

He was crossing the atlantic in a yacht just about eleven foot in length. His only communication was through British radio amateurs. Along comes two officials from the licensing department and forbids the two "Hams" to communicate with him because he has no licence.

How I would love to have the power to act like Gilbert's Mikado and make the punishment fit the crime. I would place the two bureaucrats in an eleven foot yacht in mid-atlantic, not without a paddle but without any communication.

Time Out

Hardly a week goes by without some funny story concerning digital watches. The latest concerns a small boy riding home on his bicycle wearing his sister's watch.

Suddenly the strap broke, and in order
not to lose it, he put it in his mouth. Then to add to his misery, he hit a bump which caused him to swallow it.

He went along to his G.P. who was certainly a bit behind the times, and obviously not a reader of EE. "That's all right son, I will follow its progress with my stethoscope."

The final outcome was a happy one, his grandfather gave him a Silver Hunter with a tick that would have done credit to Big Ben, and, to phrase it delicately, in due course time passed.

Atomic Cars

Seeing a headline a short time ago: " New 'A' Car Craze Sweeps Britain"', I immediately jumped to the wrong conclusion. "Ahal" I said, "atomic driven cars, the obvious answer", only to find they were talking about number plates. Rather a let down I'm afraid, though I am certain the day will come when we shall be driving them.

Consider for example, the Polaris submarine. The fuel container is about the size of a dustbin but the atomic contents, not only propel the vessel, it also provides all the power for heating, cooking, lighting and all ancillary equipment and even turns the sea-water into oxygen for breathing. Unbelievably, it only needs replacing every seven years. Translate that into car terms and think what it could doll
Alas, they may not arrive in my life time. but by way of compensation I see the Wizard of Electronics, I mean of course Sir Clive Sinclair, hopes to have his Electric Car coming off the production line by the end of 1984. So, if you see me running up the road singing: "I'm Off to See the Wizard", you will know the reason why.

1984 SEHOOLS
 Electronic Design Award COMP ETITION Build for the Future and Reap the Rewards

THE TWELVE FINALISTS WILL SHARE OVER £3000 AND PARTICIPATE IN AN ALL-EXPENSES-PAID TWO-DAY VISIT TO LONDON DURING JULY 1984

For the third year running Mullard Ltd.-the largest electronic components company in the UK-and Everyday Electronics join forces to present a rewarding challenge to Secondary Schools within the United Kingdom.

As distinct from the two previous contests, this year the conditions have been somewhat broadened so that entries can relate to electronic equipment having practical use anywhere within the school, or at any external event in which the school participates.

FIRST PRIZE The Sedac Trophy and $£ 300$
SECOND PRIZE £200
Plus a selectión of components valued at $£ 200$
THIRD PRIZE £100
NINE RUNNERS-UP. A selection of components valued at $£ 100$.
In addition, all twelve finalists will receive a certificate and one year's subscription to Everyday Electronics-and will enjoy an all-expenses-paid two-day visit to London during July 1984.

Science teachers of Secondary Schools are invited to apply for a Registration Form which contains full details of this competition.

Write to: SEDAC Schools Competition, Room 2130, King's Reach Tower, Stamford Street, London SE1 9LS.

Secondary School Pupils-make sure your school accepts this challenge and enters this contest. So bring this announcement to the attention of your science teacher or the head of your school.

MICROCOMPUTER INTERFACIIG TECHIIQUES

INCLUDING MANY USEFUL CONSTRUCTIONAL PROJECTS

PART SIX: ANALOGUE DATA MULTIPLEXING AND 4-CHANNEL ADC

BY J. ADAMS b.Sc. M.Sc. \& G.M. FEATHER B.Sc.

N Part 4 of this series, the techniques of analogue-to-digital conversion were discussed and a practical single channel system, using the successive approximation type of converter, was described.

In this part, the associated techniques of analogue data multiplexing and signal conditioning will be dealt with together with the construction of a high speed four channel data acquisition system.

The first part of a series dealing with transducers for use with this (and other) systems will be published in later issues of EE.

SIGNAL CONDITIONING

The output voltage ranges of transducers to be used with ADCs will not usually be compatible with the analogue input voltage range of the converter.

As an example, a bridge network used for developing an analogue voltage which represents the deflection of a strain gauge might produce only a few millivolts, which is far too small to apply directly to the input of the ADC.

Some form of amplification is then usually necessary and circuits based upon operational amplifiers are generally employed. The simple theory of operational amplifiers with applied negative feedback is well known, but it is helpful to deal briefly with it here.

In Fig. 6.1 a, the operational amplifier is used in the inverting mode, that is, the input and output signals are out of phase with each other and the voltage gain, G, of the arrangement is dependent only on the values of input resistor $R_{\text {IN }}$ and feed-
back resistor $\boldsymbol{R}_{\mathrm{F}}$. The voltage gain may be obtained from the simple formula

$$
G=R_{\mathrm{F}} / \boldsymbol{R}_{\mathrm{IN}}
$$

Note that the feedback signal is applied to the invert $(\rightarrow$) input of the device, so giving negative feedback.

Fig. 6.1b shows a non-inverting amplifier configuration and, in this case, the voltage gain G may be calculated using the formula

$$
G=1+\left(R_{\mathrm{F}} / R 1\right)
$$

The input impedance of this arrangement is very high indeed-a desirable feature if it is to be used to amplify analogue voltages from transducers which may themselves possess relatively high source impedances.

In the practical four-channel system described, each analogue input is applied to its own signal conditioning amplifier, the non-inverting configuration being used. The analogue signal range of each channel is $0-100 \mathrm{mV}$ full scale and the full scale input range of the ZN448 ADC used is 2.5 V . The amplifiers are thus required to give a voltage gain of $(2 \cdot 5 / 0 \cdot 1)$ $=\times 25$.

Using the voltage gain formula, we see that:

$$
25=1+\left(R_{\mathrm{F}} / R 1\right)
$$

and, choosing a value of $10 \mathrm{k} \Omega$ for R 1 , then R_{F} should have a value of $240 \mathrm{k} \Omega$. The accuracy of the system is partly dependent upon the amplifier gains, and close tolerance resistors should be used for these components. (The channel gain is easily changed by using another value for $\boldsymbol{R}_{\mathrm{F}}$, but voltage gains of more than
$\times 100$ should not be attempted with a single operational amplifier.)

LOW-PASS FILTERING

Many transducers develop very low level signals and problems can arise with spurious signals originating from, for example, voltages induced into the system by 50 Hz mains fields. Careful circuit layout and screening is helpful, but with data acquisition systems in which the signals are sampled and measured very rapidly, serious errors can arise if false signals are present.

Since most analogue quantities encountered will change fairly slowly, the corresponding electrical signals developed by the transducers will be of very low frequency and some signal conditioning circuits entail the use of low-pass filters which allow only the low frequency signal voltages to be passed onto the output, higher frequency spurious signals being heavily attenuated.

The response of a typical low-pass filter is shown in Fig. 6.2. A later article dealing with the development of a single conditioning amplifier for very low level biological signals will include a more detailed description of a typical low-pass filter.

BBC Microcomputer users will be aware that the model B already possesses a 4-channel analogue input facility. The ADC employed is a 12 -bit device but its conversion time is rather slow. Transducers intended for application with the system described in this article can be employed with the BBC machine if the analogue section of the circuit is con-

Fig. 6.1a. The operational amplifier shown is being used in the inverting mode.

Fig. 6.1b. The configuration for a non-inverting amplifier.

Fig. 6.2. The response for a typical low-pass filter.

Fig. 6.3. Typical arrangement for an eight channel system.

(a)

(b)

Fig. 6.4(a). Truth table for the 4051 analogue multiplexer; and (b) pin-out diagram.
structed and the amplifier gains are altered to an appropriate value. Details of this are given at the end of the article.

ANALOGUE MULTIPLEXING

ADCs offering multiple analogue input channels are available, for example, National Semiconductors ADC0816/ ADC0817 Single Chip Data Acquisition System allows 16 analogue inputs), but Ferranti's ZN448 is a single channel device only.

In order to accommodate several channels of analogue data, some form of multiplexing technique is necessary, in which the individual channels are connected one at a time to the input of the ADC. Integrated circuit switches which can perform this function are available in both CMOS and TTL; the switching operation is usually controlled by applying binary signals to the channel select pins of the device. Fig. 6.3 shows a typical arrangement for an eight channel system.

The 4051 analogue multiplexer behaves basically as a single-pole, 8 -way switch, the switch position being determined by the binary code presented to the channel select pins. Its truth table and pin-out diagram are shown in Fig. 6.4.

CHANNEL SELECT CODE

In the project described, four channels are required and a CMOS 4052 dual 4-channel multiplexer is employed.

The binary channel select code can be
generated in a number of ways. A single pulse (which could be obtained from the ADC end of conversion signal, EOC) can be used to increment a three-bit binary counter and the code generated then applied to the analogue switch.

An alternative method, employed by the authors in the four channel system described, offers a "software solution" in which the appropriate code is generated by the microcomputer itself. This code is then presented at the user port and routed
to the analogue multiplexer via the two least significant lines available at the user port. Clearly, these switching code signals must only be present on the port lines when the microcomputer is not engaged in a data read operation.

During the channel select period, the tri-state facility of the ZN448 output latches is utilised to effectively disconnect the ADC from the data bus lines; the tri-state enable/disable signal being generated in software.

4 Charnel HICH SPEED ADC

THE PRACTICAL CIRCUIT

Fig. 6.5 shows the circuit of the complete 4-Channel ADC. Each of the four analogue signals to be monitored (in the range $0-100 \mathrm{mV}$) is applied to the input of its signal conditioning amplifier, IC1 to

IC4, CA3140 смоs devices are used here and offer low power consumption and extremely high input impedances. As mentioned previously, the gain of each amplifier is set at $\times 25$ by the $240 \mathrm{k} \Omega / 10 \mathrm{k} \Omega$ feedback resistor combination.

The amplifiers are situated on a separate p.c.b. to that used for the channel switching and ADC sections of the circuit, thus obviating the possibility of any interaction between the large TTL level pulses present in that part of the

Fig. 6.5. Complete circuit diagram of the 4-Channel High Speed ADC.

circuitry and the relatively low level analogue voltages present at the op-amp inputs.

The amplifier outputs are connected to the inputs of the 4052 dual, one of four cmos switch, IC8 (only one half of the i.c. is used), and the output pin of this provides the analogue input to the ZN448 ADC. Zener diode, D6, provides protection for the ADC in the case of over range inputs by simply conducting when the p.d. across it (and the input to the ZN448) exceeds about 3 V .

The ADC section of the circuit is similar to that used in the single channel converter in Part 3 except that it has been arranged for unipolar operation (that is, it can only convert input voltages which are positive with respect to ground). Transducers employed with this system should develop voltages suitable for this mode of operation.

The conversion rate has been reduced considerably (to about 30,000 per second) by increasing the size of the clock timing capacitor C6. The slower operating rate, is again, appropriate to the transducers used with the ADC.

The two channel select lines of the 4052 switch are connected directly to the $P \emptyset$ and P1 (two least significant bit) lines of the user port whilst the tri-state enable pin, instead of being grounded (and permanently enabling the latches) is taken, via the ribbon cable to pin M of the user port, this pin being used to output the tri-state control signals.

The power supply section of the circuitry is constructed largely on the analogue board and is quite conventional. A single +5 V supply is required for the ZN448 and this is provided by the 78L05A voltage regulator IC6.

CONSTRUCTION OF THE BOARD

Printed circuit boards are used for both analogue and digital sections of the circuit and full size patterns are given for these in Figs. 6.6 and 6.8. These boards are available from the $E E P C B$ Service, Order codes 8312-01 and 8312-02, respectively.

Starting with the analogue board, 8-pin d.i.l. sockets should be inserted and carefully soldered, as shown in Fig. 6.7. The five link wires should now be carefully formed and soldered into the appropriate positions. 22 s.w.g. bare tinned copper wire is used here. The seven Veropins should now be inserted, pressed home and soldered to the copper tracks.

PLS is a 4 -way inter-p.c.b. plug and this should be inserted and soldered in next.

All other components should now be inserted and soldered, particular care being taken with electrolytic capacitors and the three voltage regulators. (Readers should note that the p.c.b. appearing in the photograph is the prototype. The layout given in Fig. 6.6 is an improved version and hence differs slightly from the original.)

Construction of the digital board, Fig. 6.9, follows along similar lines and again readers should note that there are slight differences between the p.c.b. layout of original and published designs.

Connection to the microcomputer user port is via a 12 -way cable and two interp.c.b. plugs, a 10 -way and a 4 -way type are employed for this purpose. Ribbon or multicore cable can be used.

An aluminium case of dimensions 27.5 $\times 19 \times 9 \mathrm{~cm}$ was used to house the prototype. The front panel should be drilled to accommodate the four bnc analogue input sockets (SK1-SK4), the mains switch and the power on indicator l.e.d. The rear panel needs drillings for the fuse, mains lead, and ribbon or multicore user port cable.

The mains transformer $(6-0-6 \mathrm{~V}$ at 100 mA) should be mounted as shown in Fig. 6.10, which also gives the interwiring arrangement for the boards. With all of these components mounted, the boards should be fixed in place and the various interconnections completed.

SETTING UP AND TESTING THE UNIT

After switching on, power supplies to both analogue and digital boards should be checked. If either is incorrect, switch off immediately and locate the fault. If all is well, the operational amplifier offsets should be nulled.

A digital voltmeter should be connected between GND and the output

COMPONENTS

Resistors

R1,5,9, 13
10 MR (4 off)
R2,6,10,14
R3,7,11,15
R4,8,12,16
R17,18,19
R20
R21
$1 \mathrm{M} \Omega$ (4 off)
$10 \mathrm{k} \Omega$ (4 off) 1% metal film
$240 \mathrm{k} \Omega$ (4 off) 1% metal film
$4.7 \mathrm{k} \Omega$ (3 off)
270Ω (2 off)
$3.9 k \Omega$
$270 \mathrm{k} \Omega$

R22
All $\frac{1}{4}$ W carbon $\pm 5 \%$ except where stated otherwise

Capacitors

C1.2
$0.1 \mu \mathrm{~F}$ polyester type C280 (2 off)
$1000 \mu \mathrm{~F} 16 \mathrm{~V}$ elect. (2 off)
$0.22 \mu \mathrm{~F}$ polyester type C280
150pF ceramic
22 pF compression trimmer
$1 \mu \mathrm{~F} 16 \mathrm{~V}$ elect. radial leads
Semiconductors
IC1-IC4
IC5.6
IC7
IC8
IC9
D1-D4
D5
D6

CA3140 f.e.t. input op-amp (4 off)
$78 L 05 A+5 V$ fixed voltage regulator (2 off)
79L05A -5V fixed voltage regulator
4052 смOS dual 4-input analogue multiplexer
ZN448 analogue-to-digital converter
VM28 0.9A d.i.I. bridge rectifier
TIL220 red I.e.d. plus fixing bush/clip
BZY88C3V3 3.3V 400 mW Zener diode
Miscellaneous
SK1-SK4
bnc panel mounting socket (4 off)
SK5
SK6
SK7
SK8
SK9
PL5, 7
PL8
T1
VR1-VR4
4-way inter p.c.b. socket
4 mm insulated panel mounting socket
4 -way inter p.c.b. socket
10 -way inter p.c.b. socket
Commodore user port connector $12+12$-way
double-sided card edge type, 0.156 inch pitch 4 -way inter p.c.b. straight plug (2 off) 8 -way inter p.c.b. straight plug
mains primary/6-0-6V 100 mA secondary
$10 \mathrm{k} \Omega$ miniature horizontal preset (4 off)
2A 20 mm type with panel mounting fuseholder
Printed circuit boards: Analogue board single-sided size $127 \times 95 \mathrm{~mm}, E E P C B$ Service, Order code 8312-01, Digital board single-sided size $127 \times 95 \mathrm{~mm}$, $E E$ PCB Service, Order code 8312-02; d.i.I. sockets: 8 -pin (4 off), 16-pin (1 off), 18 pin (1 off); single-sided Veropins (18 off); bare tinned copper wire; 12-core cable (1 m); rubber grommets (2 off); cable retaining clips (2 off); 4BA fixings (2 sets): 6 BA fixings (6 sets) and 20 mm spacers (4 off); metal case approx. $280 \times 190 \times$ 90 mm ; rubber feet for case.

Fig. 6.6. Full-size printed circuit board master for the analogue board.

Fig. 6.7. Complete component layout for the analogue (ADC) board.

Fig. 6.8. Full-size printed circuit board master for the digital board.

Fig. 6.9. Complete component layout for the digital (clock) board.

MOISTEN HERE AND FOLD DOWN
S76 LヨS uopu07
1ซэม！pıofuels
лөмод чэеәу s،бu！
9182 wooy
pl7 sou！ze6ew OdI
\square
$\stackrel{N}{\omega}$
SUBSCRIPTION RATES
United Kingdom
Other Overseas（Surface Mail）
Air Mail rates available on request
Please register the Everyday Electronics
subscription（s）below．

PRICE
Name
Address

I would like to arrange a gift subscription
to the person below（Enter your own name and address above as Donor）

> Address

$\square \square \square$
> （
> Bill me later
> I enclose payment
（Cheques made payable to IPC Magazines Ltd）
> Please charge my credit card account

Name of card

Signature－axisany miat areavio（11）
Card No．$\quad=2$

4 CHANMEL HIGH SPEED ADC

side of the $240 \mathrm{k} \Omega$ feedback resistor in each channel; the analogue inputs should be short circuited. Rotation of the offsetnull potentiometers should bring each output to zero.
The system is now ready and may be connected to the microcomputer with the appropriate plug.

COMMODORE MICROCOMPUTERS

To select one of the four analogue signals for conversion it is necessary to present the binary representation of the channel number to the channel select in puts of the 4052 (IC8). As four channels are employed in this design only two channel select lines are connected to two lower order lines ($\mathbf{P \emptyset}$ and P 1) available at the user port.

Initially these lines must be configured for output as the microcomputer must select the appropriate analogue input. This is accomplished by setting the requisite bits in the data direction register for the particular port. The ADC must then be instructed to initiate conversion of the selected analogue input into an eightbit digital form.

One of the lines available at the top of the user port can be selected to provide this start conversion pulse. Pin 7 allows the same pin connections for both PET and VIC-20 microcomputers whereas pin 8 is used with the Commodore 64. PET: Pin 7 is the cassette-write line which is automatically initialised for output This can be used to fashion the start conversion pulse as follows:

POKE 59456,PEEK(59456)OR8

POKE 59456,PEEK(59456)AND247 POKE 59456,PEEK(59456)OR8
VIC-20: Pin 7 is derived from Port A. It is necessary to initialise this line for output by setting bit 5 in the data direction register for the port (37139) before sending the line to logic high by appropriate bit manipulation of the Port A I/O register (37151).

POKE 37139,PEEK(37139)OR32

POKE 37151,PEEK(37151)OR32
POKE 37151,PEEK(37151)AND223
POKE 37151, PEEK(37151)OR32
Commodore 64: Pin 8 is a handshaking line and allows a one-shot pulse to be output following any read or write of Port B. This is ideal for initiating conversion of the analogue input. For example:

POKE 56577. \varnothing

In this application Pin M at the user port is not used to fashion the start conversion pulse (unlike the single channel ADC detailed in Part 4 of this series). When the line attached to Pin M is held low the tri-state facility is enabled allowing relevant data to be read by the microcomputer.

Full software listings for collecting the data from the ADC are given below for the three Commodore machines catered for in this series.

PET

5 REM PET 4 CHANNELADC
10 POKE 59468,PEEK(59468)OR192
20 POKE 59468,PEEK(59468)AND223
$3 \emptyset$ POKE 59456, PEEK(59456)OR8
40 POKE 59459.255
50 INPUT C
$6 \emptyset$ IF ($C-1$)* $(C-3)^{*}(C-2)$

- $\mathrm{C}=\emptyset$ THEN GOSUB 500
$7 \varnothing$ GOTO $5 \emptyset$
50 POKE 59471.C
$51 \emptyset$ POKE 59456,PEEK(59456)AND247
520 POKE 59456,PEEK(59456)OR8
$53 \varnothing$ POKE 59459, \varnothing
540 POKE 59468,PEEK(59468)AND223
$55 \emptyset$ PRINT PEEK (59471)
560 POKE 59468,PEEK(59468)OR32
57ø POKE 59459,255
$58 \emptyset$ RETURN
VIC-20
5 REM VIC- $2 \emptyset 4$ CHANNEL ADC
$1 \emptyset$ POKE 37147.PEEK(37147)AND227
20 POKE 37148,PEEK (37148)OR 192
30 POKE 37148,PEEK(37148)OR32
40 POKE 37139,PEEK(37139)OR32
$5 \emptyset$ POKE 37151,PEEK(37151)OR32
60 POKE 37138,255
$7 \varnothing$ INPUTC
80 IF $(\mathrm{C}-1)^{*}(\mathrm{C}-3)^{*}(\mathrm{C}-2)$
- $\mathrm{C}=\emptyset$ THEN GOSUB 500
$9 \emptyset$ GOTO $7 \varnothing$
5 POKE 37136,C
510 POKE 37151,PEEK(37151)ANO223
520 POKE 37151,PEEK(37151)OR32
530 POKE 37138, 0
540 POKE 37148,PEEK(37148)AND223
$55 \emptyset$ PRINT PEEK (37136)
560 POKE 37148.PEEK(37148)OR32
$57 \varnothing$ POKE 37138,255
580 RETURN

COMMODORE 64

5 REM COMMODORE 644 CHANNEL ADC
10 POKE 56578,PEEK(56578)OR4
20 POKE 56576.PEEK(56576)OR4
30 POKE 56579.255
40 INPUT C
50 IF $(C-1)^{*}(C-3)^{*}(C-2)$

* $\mathrm{C}=\emptyset$ THEN GOSUB 500

60 GOTO $4 \emptyset$
500 POKE 56577.C
510 POKE 56579, \varnothing
520 POKE 56576,PEEK(56576)AND251
$53 \emptyset$ PRINT PEEK (56577)
$54 \emptyset$ POKE 56576,PEEK(56576)OR4
55ø POKE 56579,255
560 RETURN

BBC MODEL B

As previously mentioned, the BBC Model B Microcomputer has an internal 4 -channel 12 -bit ADC. The full scale analogue voltage of each channel is 1.8 V and the analogue board design given can be used to give a 100 mV range if the feedback network is modified slightly. The gain required is now $\times 18$ and, using the op-amp gain equation for the noninverting mode:

$$
G=\left(1+R_{\mathrm{F}} / R_{\mathrm{IN}}\right)
$$

gives a ratio of 17 for $R_{\mathrm{F}} / R_{\mathrm{IN}}$. Suitable resistor values for R_{F} and $R_{\text {iN }}$ are $220 \mathrm{k} \Omega$

and $13 \mathrm{k} \Omega$, respectively (R_{F} should actually be $221 \mathrm{k} \Omega$, but a $220 \mathrm{k} \Omega$ resistor is within 0.5% of this). Once again, close tolerance resistors should be employed.
The +5 V regulator for the digital board supply can be omitted. Outputs from the board should be taken to the BBC analogue input via screened cable and the appropriate miniature 15-way D-type plug.

BBC MICRO SOFTWARE

The form the BASIC statement used, to extract digital information from the BBCs ADC, is

$$
\mathrm{X}=\operatorname{ADVAL}(\mathrm{N})
$$

where N refers to the channels numbered $1,2,3,4$. The number returned is in the range 0 to 65520 in steps of 16 . This may seem odd when the converter itself produces a number in the range 0 to 4095. The reason for this is to allow for future converters with higher resolutions.

It should be added that a resolution of 1 part in 256 (that is, approximately 0.4% for 8 -bit resolution), is quite adequate for most applications since transducer and signal conditioning tolerances are seldom better than 1%.

The number for each channel is stored in the twelve most significant bits of two eight-bit memory locations so that the largest digital value is

1111111111110000 in binary

which is 65520 in decimal. As the least significant four bits are always zero the numeric results increase in steps of 16 . To obtain digital values in the range 0 to 4095 then the actual value must be divided by 16 .

As the channel readings are taken sequentially on an interrupt basis every 10 milliseconds then if less than four channels are required it is sensible to disable those channels not in use so that time is not wasted converting them.

Ihe command to accomplish this is
*FX16,N
where N is the number of channels enabled. (If $\mathrm{N}=0$ then all channels are disabled.)
Next month: Biological Amplifier with High Speed ADC

new electronics-BBC puts schools on right wavelength

BBC School Radio is breaking new ground with three innovative series designed to prepare schoolchildren for the new electronic age: (1) Using Your Computer, a 5-part series for 9 to 12 year olds; (2) Junior Electronics, a 5-part series for 9 to 12 year olds and (3) Microtechnology, a 10-part series for ' O ' level and CSE students. These series have been prepared by the BBC with help from the Microelectronic Education Programme (MEP) and the Department of Industry.

Using Your Computer

Using Your Computer started on Nov. 1, 2.20pm on Radio $4 V H F$. It is expected that this series will help teachers in primary and middle schools to introduce children to the computers supplied to schools under the DoI "computers in schools" scheme, that is the BBC Micro model B, the Sinclair Spectrum and the Link 480 Z .

The series offers a completely new dimension in educational broadcasting in which recorded radio broadcasts are synchronised with specially prepared software to use the graphic, sound and "computing" abilities of these micros to provide a fully integrated audio/visual presentation. In this way the computer is given a friendly voice (it is in fact the voice of Fred Harris well known to children in the mentioned age group) which guides the children through the initial stages of the operation and application of the machine. Thus children learn to use a computer by using a computer.

Junior Electronics

Junior Electronics begins on Feb. 28, 1984, on Radio 4 VHF at 2.20pm. In this series of programmes the children are piloted through very simple practical work, learning to construct basic electrical and electronic circuits on a custom designed circuit board, which is a compo nent in a special kit of parts, on sale from BBC Publications.

The last of the five broadcasts is a Radiovision programme in which the children are shown the relevance of the real-life applications of the circuits they have been working with, such as-why a street light automatically lights up, and how a burglar alarm works.

This and the previous series are designed so that they can be handled by teachers with little or no previous knowledge of the subjects. Comprehensive teacher's notes are provided.

Microtechnology

Microtechnology starts on Jan. 20, 1984, on Radio 4 VHF at 10.45 am. It forms an introduction to basic microelectronics leading to ideas of control technology and is dependent on the medium of Radiovision associated with practical work. There is a kit of parts, film strips and software, as well as a specially developed circuit board and a "safe" power supply unit for the experiments.

electronics

DIGITAL ROUTE FINDER

Signs of future developments in the digital audio field were in evidence at the recent International Audio and Video Fair held in Berlin.

One of the items that was shown for the first time was the Philips In-Car Compact Disc Player. Research, it is claimed, shows that the improved sound quality is clearly noticeable in the acoustic environment of a moving car.

Also, because of the large information storage capacity, the unit is not limited to sound
reproduction applications only. Future developments could include the presentation of route or touring information, for example, with a single disc replacing a number of conventional maps and guide books.

The system is based on a 12 cm diameter disc, carrying up to one hour of digitally encoded programme material which is read by a focused laser beam. The prototype car player will undergo a number of changes before it finally reaches the market probably in two years time.

FIRE PROOF

When Data Dynamics claimed that their metal cased ZIP printers would stand up well to rough industrial usage they did not have incineration in mind.
However, when a fire broke out in a warehouse the printer received extensive damage from heat and flames-see Photo The printer was retrieved from the remains and was found to be in perfect working order.

PLAY IT AGAIN SAM

From the nostalgia of movie classics like "Casablanca" and "Hard Times" to the latest film hits such as "On Golden Pond" and "A French Lieutenant's Woman", Humphrey Bogart (alias Kenny Wymark) was on hand to launch the long awaited CED VideoDisc system and video library from RCA.

This totally new videodisc system, which the manufacturers believe will have a major effect on the market, was announced in London recently. Launched in itially as a joint venture by RCA, Hitachi and GEC, the new system is claimed to provide high quality pictures and sound at around half the price of most conventional VCRs.

The CED VideoDisc playerCED stands for Capacitance Electronic Disc-works on a principle similar to that of a hi-fi turntable. The disc is contained in a caddy, rather like a longplaying record sleeve. This is inserted into the player, the caddy is then withdrawn and playing begins automatically.

This simple operation ensures the disc itself need never be touched. A stylus reads the grooves on the disc, playing them back through any black and white

or colour television receiver. The signal produces both audio and visual playback
The CED VideoDisc players are available in both mono and stereo versions and different models offer infra-red or wired remote control. The three models available include the VIP 101P incorporating visual search, mono sound, scan and pause, which will sell for around $£ 199.95$ and the VIP 202P, which will sell for around $£ 229.95$ and which also includes stereo sound, full visual search and as an optional extra, wired remote control
At the top of the range is the VIP 201P. This player, incor porates stereo sound, full visual search, full scan, pause and infra red remote control. This will sell at around $£ 259.95$.

Disc prices, and there will be 100 titles available, will be $£ 9.95$ and $£ 12.95$. RCA plan to add new releases each month, starting December.

FOR YOUR
 ENTERTATNMENT

Confusing Law

The Olympia "Great Home Entertainment Spectacular" Show typified the confusion that now exists over what electronic gadgets are, and are not. legal.

In this column we have already explained how the law now requires people who sell telephones to mark them either with a green circle, signifying official approval, or with a red triangle, to show that they are prohibited from connection to the British telephone lines. But plenty of prohibited phones are on sale, sometimes but not always marked, and you don't risk a fine or prison if you connect one to your line. What you do risk is disconnection of your service. by British Telecom, if their engineers find out and you refuse to disconnect the prohibited phone yourself.

Although CB is now legal in Britaln, it is only legal on the carefully specified frequencies. Likewise cordless telephones, which use a radio link to the handset, are only legal if they operate on carefully specified frequencies. Many cordless radio phones still on sale in Britain are illegal. In this case you don't just run the risk of annoying British Telecom and losing your phone service. You also run the risk of three months in jail and/or a $£ 1,000$ fine for contravening the Wireless Telegraphy Act.

Not surprisingly the public is very confused. At the Olympia Show, one stand was manned by the British Eleotrotechnical Approvals Board, which runs the scheme which tests telephones. They were giving away a leaflet that reminded people that "green is for go" and "red is for no". Literally feet away, another stand was showing telephones, many of them clearly marked with a red triangle as prohibited. They also had cordless telephones marked in the same way because they operate on illegal frequencies

Citizen's Band TV

Even more confusing was the stand across the hall which was selling what the show catalogue described as "at last-your very own portable colour TV transmitter!" This neat little gadget, which costs $£ 1,000$, works as a miniature u.h.f. TV transmitter. You plug in a video camera, or video recorder, and it broadcasts the signal to any TV set tuned to the transmitted frequency.

The unit has three watts output power which, according to the company's salesman, carries up to seven miles. But for another $£ 600$ the salesman could offer a 100 -watt amplifier that carries the signal 20 to 25 miles.
"Is Citizen's Band TV on the way?" asked the Olympia Show publicity. I asked the firm demonstrating the system about the law, and they told me that they were "speaking to the Home Office"
In fact, the Home Office is no longer responsible for radio regulations. The Department of Trade and Industry took on the job soon after the last election. During the show the DTI confirmed to me that the penalty for illegal TV iransmissions was still a $£ 1,000$ fine and/or three months in jail.

To be fair, the firm selling the system did say, right at the bottom of the data sheet that "the unit is not approved for use in the UK". But that's after a suggested list of uses, including amateur TV!
For the record, I didn't play spoil-sport and tell the Department of Trade and Industry where they could go to catch someone red-handed breaking the Wireless Telegraphy Act.

Flat-Screen TV

Suddenly flat-screen television, or rather pocket televisions with flat TV tubes, are in the news. Sir Clive Sinclair has finally launched the set which, in February 1981. he promised would be available during 1982.

The price has risen from $£ 50$ to $£ 80$, and the f.m. radio section has been dropped. One reason for the delay was an industrial dispute at the Timex plant in Dundee earlier this year. But is it really launched, and is it really a multi-standard set as claimed by the company's publicity?

Well, although the flat-screen TV was "introduced" in September, just in time to show at the Great Home Entertainment Spectacular at Olympia, no-one could actually buy one. When quizzed over availability, Sir Clive hedged, and talked about going into production.

My bet is that they won't be readily available until around Christmas. But at least Sir Clive has learned from past mistakes. He isn't taking money up-front from mail orders until he is ready to supply.

This is what caused such bad feeling over his computers. People were encouraged to send money for something that wasn't actually available.

On the question of "multi-standard" operation, 1 don't doubt that the set will, as Sir Clive says, automatically switch beiween 525 -line and 625 -line operation and cope with the different sound and vision frequencies used in Europe. But note well that the Sinclair set receives only u.h.f. TV. whereas most television in 525 -line countries like America and Japan is on v.h.f. Some Continental TV is also on v.h.f.

Later models will have a tuner which sweeps between 40 MHz and 900 MHz , to receive all television and f.m. radio broadcasts around the world. But that's in the future. So far the sets are u.h.f only.

And how will they work on tubes, buses, trains, cars and planes? I asked to borrow a 'set after the press launch, but wasn't even allowed to buy one to test. They weren't, I was told, ready. So 1 took a Sony Watchman TV to the press conference and tried one against the other.

The Sony, at three times the price, pulled in a better picture. But watch out for a low cost Watchman in the near future. It's already on sale in America.

I then took the Sony Watchman on some trips. It won't work at all on an underground train. It works reasonably well, but erratically, on overground transport, like a bus.

I can't imagine watching for pleasure, because you keep losing the picture as you
turn a corner or pass a building. Remember that u.h.f. waves travel in straight lines, and don't penetrate into concrete boxes or metal cabins half as easily as long or medium wave radio transmissions.

In The Air

I then tried using the Sony on board an aircraft flying to Munich but was soon stopped by the cabin crew. The airlines are frightened that TV equipment may interfere with their navigation equipment.
I used it long enough to find out about another problem. At ground level a u.h.f. TV set picks up only local stations. That's why different transmitters around the countries can share the same frequency. But up in the air you pick up everything from hundreds of miles around. So nothing is watchable.

The Sony worked well in Germany. picking up both u.h.f. and v.h.f. TV pictures in my hotel room. But most hotels now have a TV set in each room, often colour.

So, who wants to watch a two-inch black and white picture off expensive batteries, if there is a mains-powered large screen colour set on the table? And how often do you want to watch TV while sitting in a park or sight-seeing in a foreign city? And don't forget that foreign TV programmes have foreign language sound-tracks.

Bear all this in mind before rushing out to buy a pocket TV set just for the sake of buying a pocket TV set.

Hot Memory

A few words of advice for anyone buying a memory telephone that stores strings of numbers for repertory dialling.
Some of the most powerful memories on the market are not officially approved and use a two-wire connection to the phone line. This means that the memory jangles the bell of every other phone in the house as you make a call. But approved memory phones, which use three wires and don't cause bell jangle, usually offer less memory capacity for more money.

Check also whether what you are buying has a battery back-up. The more expensive memory phones contain a string of ni-cad rechargeable cells in series across the low voltage d.c. power line.

If the power fails this battery pack keeps the memory alive. Otherwise even a short interruption of power will lose every number you have keyed into the memory.

Cheaper memory phones may not have battery back-up. It is not a condition of official approval. For instance, I bought the AceTeicom approved phone, which for just under $£ 100$ has a memory store of 50 numbers.

Essentially it's an approved version of a previously unapproved Lamda phone from Hong Kong. But the Ace-Telcom does not have a battery back-up. So even a brief break in the power supply loses every number you have laboriously keyed into the memory.

I solved the problem by stringing six ni-cad pen cells in series with a 50 -ohm resistor, and put them across the 9 V d.c. supply. The resistor limits charging current, to prevent damaging the cells, but it lets through enough current to keep the memory alive if the mains cuts out.

But far better, in the first place, to buy a memory phone with a battery back-up built in So check this before buying.

Ace-Telcom in Britain now tell me they are thinking of making some kind of modification. What a pity they didn't think about that before starting to sell a memory phone that is prone to amnesia.

A phase-locked loop is the basis of this tuner. Six tones corresponding to the notes from the open strings of an electric guitar are available for initial tuning and the final accurate adjustment of each string is performed with the aid of the tuning meter.

Adds individual scores of between 1 and 99 and stores the totals for up to four players. Total scores are displayed on a three-digit seven-segment display. The ideal land indisputablel) electronic scorekeeper for games where running totals are kept.

THERMOMETER for ZX MICROS

Central Heating Pump Delay Unit

 Senses the temperature of the circulating water and after the boiler has been switched off at the end of the heating period, keeps the pump running until the water has fallen below a preset temperature. This allows the radiators to extract most of the stored energy and deliver it as useful room heating.

NOVEL EGG TIMER

BY I. HICKMAN

LET A CHICKEN TELL YOU WHEN YOUR EGG IS COOKED

Unlike most normal egg-timers, this project is based on an electronic circuit. The Novel Egg-Timer makes use of a deceptively simple circuit which makes a creditable imitation of a cackling chicken that has just layed an egg.

CIRCUIT DESCRIPTION

The complete circuit diagram is shown in Fig. 1. IC1 is a 14 -bit binary counter with built-in oscillator and reset facilities. R2, R3, VR1 and C2 set the oscillation frequency to about 50 Hz , the exact value is adjustable by means of VR1.

When the circuit is switched on, pin 12 is momentarily carried to +9 V by $\mathrm{C1}$, resetting all 14 counter stages to zero. Cl charges up via R1 releasing the reset and the counter starts counting. For the first 8092 cycles the output of the 14th stage, Q_{14}, stays low (0 V) and the outputs of the two 4 -input AND gates therefore also remain low.

On the 8093 cycle of the built-in oscillator, after approximately three minutes, Q_{14} goes high (+9 V). This enables IC2a and from then on the gates produce groups of four pulses (pin 13) and single pulses (pin 1) as shown in Fig. 3. Up until now the 555 timer IC3, which has been connected as an oscillator, has been inhibited by the low voltage on its reset pin (pin 2).

However, each time a positive-going pulse appears at pin 13 of IC2 its leading edge is differentiated by C3 and R4. This results in a narrow positive spike being applied to pin 4 of IC3, briefly enabling the oscillator.

The few cycles of oscillation that take place constitute a "cluck". On the fourth cluck the lower end of R4 is taken to +9 V by the pulse at pin 1 of IC2, so pin 4 of the oscillator IC3 sees a full width pulse instead of a narrow pulse (Fig. 3).

Simultaneously, the pulse at pin 1 of IC2 turns on TR1 with the result that the voltage at pin 5 of IC3 starts to fall as C 4
discharges via R6. This results in the extended fourth burst of tone having a rising pitch, the characteristic chicken's squawk following the three clucks.

The output at pin 3 of IC3 is coupled to the loudspeaker LSI via C6 and the egg-timer produces sufficient volume to be heard even if there is no-one in the kitchen.

COMPONENT BOARD

The components are laid out on a piece of 0.1 inch matrix stripboard which is 39 strips by 31 holes and the layout is shown in Fig. 2. The use of di.l. sockets is recommended for the integrated circuits which should only be inserted when all the soldering is completed. Note that the cmos devices should be handled with care.
The power supply is provided by a 9 V PP3 battery which is contained within the case. The housing used for the project is left to personal choice.

Fig. 1. The complete circuit diagram of the Novel Egg-Timer.

TESTING

Using an oscilloscope, check that groups of four pulses are obtained at pin 13 of IC2 and single pulses at pin 1 as shown in Fig. 3.

Fig. 2. The component layout and trackside view of the Egg-Timer circuit board. Note that on the prototype the author has used unfamiliar style electrolytic capacitors but any suitable type can be used.

COMPONENTS

Resistors

R1.5.7.8	$100 \mathrm{k} \Omega$ (4 off)	
R2	$560 \mathrm{k} \Omega$	See
R3	$10 \mathrm{M} \Omega$	
R4	$8.2 \mathrm{k} \Omega$	
R6	$3.3 \mathrm{k} \Omega$	
All +W carbon $\pm 5 \%$		

Capacitors

$\begin{array}{ll}\text { C1.2.5 } & 10 \mathrm{nF} \text { ceramic (3 off) } \\ \text { C3 } & 0.68 \mu \mathrm{~F} \text { polyester }\end{array}$
$\begin{array}{ll}\text { C3 } & 0.68 \mu \mathrm{~F} \text { polyester } \\ \text { C4.6.7 } & 10 \mu \mathrm{~F} 16 \mathrm{~V} \text { elect. (3 off) }\end{array}$

Semiconductors
TR1 BC109 silicon npn
IC1 4060BE cMOS 14 -stage ripple counter and oscillator
IC2 4082 BE сMOS dual
4 -input AND gate
IC3 NE555 tlmer i.c.

Miscellaneous

VR1 $1 M \Omega$ lin. miniature carbon preset
S1 s.p.s.t. miniature toggle LS 1 miniature, $64 \Omega, 60 \mathrm{~mm}$ dia. approx.

$9 \vee$ PP3
 B1 9VPP3

Stripboard: 0.1 in matrix size 39 strips by 31 holes; case, $180 \times$ $110 \times 50 \mathrm{~mm} ; 8$-pin d.i.I. i.c holder; 7-pin d.i.l. i.c. holder; 4-pin d.i.l. i.c. holder; battery clip.

Component board shown fitted to the lid of the case, with off-board wiring details also shown.

- $\Omega \quad \Omega \quad \Omega \quad \Omega \quad{ }^{122 ~ P N I}$
- r har har har \quad ice pina

Fig. 3. Shown are the pulses that should be obtained when testing IC1, IC2 and IC3 with an oscilloscope. Note that pin 4 of the oscillator IC3 sees a full width pulse instead of a narrow pulse on the fourth count to produce the "squawk"

Switch the unit on and check that the waveforms at pins 13 and 1 of IC2 only commence after approximately three minutes. Increasing or decreasing the value of C3 will make the clucks longer or shorter. Decreasing or increasing the value of R6 will cause the final squawk to rise higher or not so high.

Reducing the value of C5 will cause the sound of a squawk to rise more rapidly. The final values of these compo nents may be chosen to produce what sounds you like but the values shown will generally prove satisfactory.

One final note, if you leave the eggtimer switched on after it has started to sound, it will continue to do so for the set amount of time (as set by VR1). It will then fall silent for a set time and then start to sound again, this will continue indefinitely.

BEGINNER'S GUIDE TO INTEGRATED CIRCUITS SECOND EDITION

Author
Price
Size
Publisher
ISBN
I. R. Sinclair
£4.35 Limp edition
$185 \times 124 \mathrm{~mm} .194$ pages
Butterworth \& Co. Ltd. (Newnes Technical)
$0-408-01301-X$

Ass the name suggests "Beginner's Guide to Integrated Circuits" is a book intended for the comparative new-comer to electronics. The book contains nine chapters and the first deals with basic electronic theory, which gives a good grounding for the more complex chapters to come.

Many examples are given of practical i.c. circuits; and linear, digital integrated circuits are also covered. The microprocessor and associated chips are also described with comprehensive diagrams to support the text. As before Ian Sinclair has managed to produce an outstanding book for the beginner to electronics.
R.A.H.

25 SIMPLE AMATEUR BAND AERIALS
 Author
 E. M. Noll
 Price $\quad £ 1.95$ Limp edition
 Size $\quad 178 \times 110 \mathrm{~mm} .63$ pages
 Publisher Bernard Babani
 ISBN
 0859341003

MANY radio enthusiasts construct their own aerials and " 25 Simple Amateur Band Aerials" should prove a useful reference book to even the most experienced constructor.

Starting with a simple dipole aerial the book describes how to build 25 amateur band aerials, including a mini-rhombic made from four TV masts.

All the aerials described are inexpensive and easy to construct, and each new aerial has a diagram to support its in troduction with clear informative text. Finally, there are a complete set of dimension tables which will help you identify an aerial on a particular frequency. Data is also provided for the spacing and cutting of phase lengths.
R.A.H.

SERVICING MONOCHROME PORTABLE TELEVISION

Author G. R. Wilding
Price $£ 13.50$ limp
Size $\quad 295 \times 210 \mathrm{~mm} .138$ pages
Publisher Butterworth \& Co. Ltd. (Newnes Technical)
ISBN 0408011432

IF YOU are involved with, or merely interested in, the servicing of TV sets, then this book will be an invaluable addition to your library. Mr. Wilding has spent over 40 years servicing and writing about televisions and this guide presents a comprehensive insight into how current portable black and white receivers operate (which, incidently, represent the largest proportion of "second" sets throughout the world).

Covering a diversity of British, European and Japanese models, the well illustrated text discusses typical faults and their rectification with special emphasis on new and unusual circuitry. A large section of the book is given over to the reproduction of circuit diagrams and board layouts of many popular and currently available portables.
G.P.H.

Books in Brief

IBA Technical Review No 20, "Developments in Teletext" by Technical Editor Paul Gardiner (IBA). This 69 -page book, with 57 illustrations, includes seven papers written by engineers working the teletext field. The Review covers the ten years of teletext development; the enhancements of additional levels including the possibility of using alpha-geometric coding; networking; integrated circuit decoders; and the NEWFOR system of teletext subtitling developed at the University of Southampton.

RADIO

BY PAT HAWKER G3VA

Where Have All The Viewers Gone

Over six years ago, in one of the broadcasting journals, I wrote an article "Broadcasting to the two-set home". In this I pointed out that if, as to me seemed likely. the number of homes with more than one TV set continued to rise (in. the period 1970-75 it had doubled from only 3 per cent to about 6 per cent) this would need to be taken into account in the planning of broadcast programmes and schedules.

I began this article as follows: "Generals, it is often said, always prepare to flght the last war all over again. Broadcasters, if they are to avoid this mistake, need to be more perceptive of change; to detect the way in which the public taste and viewing patterns are gradually changing". Programmes I stressed, need to be on the basis of current public viewing habits suitable for the conditions under which the public views, the times when it views, and the sets on which it views.

Not everyone in broadcasting agreed with me. One senior administrator told me that the second set was just a passing phase-amounting to little more than keeping an old black-and-white set when buying or renting a new colour set.

Another was much upset at my suggestion that it could no longer be taken for granted that everybody sitting in a room in which there was a switched-on TV set was necessarily watching the programmes and advertisements with bated breath, but might be doing other things such as reading or even dozing, using the programme as a background accompaniment to other activities. Nor did the quote that "television is the only activity that occupies more time in the home than sleeping-though some would observe that the two pastimes are synonymous"-go down too well. The stream of television, I suggested, goes onthe mind wanders off to its own explorations or just sinks into timeless oblivion!

In the intervening six years the number of two-set homes has continued to increaseuntil today about a third of UK homes are in this category. But, potentially even more significant, has been the impact of almost three-million video recorders.

This enables viewers both to choose and make up their own programme schedules, either by buying or renting cassettes or by using the recorders as time-machines to view broadcast programmes at convenient
times. A breach of copyright but who takes notice of this?
It now seems certain that two-set homes, and more especially video recorders, are affecting TV audiences, not only the head-counts of people watching toprated programmes at the time they are transmitted, but also public attitudes to television. The old idea of programmes being "compulsive viewing" is being by-passed by the new technology.

One does not worry over much about bad programmes-more significant is that what, by any standard, are some extremely good programmes seem no longer to attract the audiences that would have watched them six years ago. And as a final straw a scientist is now suggesting that the brain rhythms of a TV viewer are almost the same as those of someone asleep!

Still Spinning

Most people believe that interest in lowdefinition mechanical television came to a stop in 1935 with the ending of BBC's transmissions of the 30-line Baird system, although a few European radio amateurs continued transmitting low-definition patterns up to about 1939.

Very few seem to have heard about the revival of interest in NBTV (narrow band television) in the past few years, sparked off initially in Australia. Today there is in the UK a very active Narrow Bandwidth Television Association made up of members interested in mechanical forms of television, though much of it is considerably more sophisticated than the old spinning Nipkow discs of the Baird era.

The NBTA under chairman D. B. Pitt (1 Burnwood Drive, Wollaton, Nottingham) publishes a quarterly newsletter that reflects a good deal of active interest in closed-circuit home-built mechanical systems and there are plans to transmit 32 -line pictures on 144 MHz in a bandwidth of 9.6 kHz . An NBTV convention was held recently (10 September) near Manchester, and another at Nottingham last May.

One of the developments is a camera based on solar cells. The pictures may seem crude but enthusiasm still runs high.

Happy Workers

A survey of how electranics engineers feel about their work, based on 650 replies to a questionnaire in the American "Electronics" magazine, suggests that almost 86 per cent are very or resonably satisfied with their work. Only 14 per cent unsatisfied or
hardly satisfied; 72 per cent believe they are fairly paid, against 24 per cent who think the opposite.

Two-thirds would again study engineering, if they had their time over again, though some 11 per cent would switch to the medical or dental professions. Some 9 per cent would opt for pure science and 6.5 per cent for business administration.

Almost 88 per cent would encourage their children to study engineering; 28 per cent believe that what they are doing is very important to the well-being of soclety: 54 per cent believe their work is "fairly important", only 1.6 per cent rate it as "unimportant

Fewer than half American engineers earn more than $\$ 40,000$ per year, and average starting salary for fully qualified engineers is about $\$ 25,000$. About 10 per cent top the \$60,000 mark
In the States, as in the UK, the quickest way to top earnings appears to be developing new computer-based video games. However, market-busting software tends to have a meteorite rise but an equally fast fall, often all within a single year.

Tiny TV

It is too early to predict whether Sir Clive Sinclair will succeed in making a financial as well as a technical success of his pocket TV set. I remember an earlier Sinclair model shown at Earl's Court in the 1960s that never really got going.
The flat tube in his new set represents the fulfilment of ideas first proposed in the 1950s by Denis Gabor, the man who also predicted the development of holography. Then again, the Ferranti chip used by Sir Clive succeeds in putting virtually all the basic stages of a black-and-white, multi-standard TV set onto a single chip, a remarkable feat

Similarly, the 15 -hour Polaroid lithium battery must be the first time one of these highenergy batteries has been used in British consumer electronics. It will also be interesting to see whether his mail-order-now, pay-later approach (to cover the possibility of production delays?) will succeed: it is an approach that is unlikely to prove popular with the retail tradel Walk-about audio has proved a winner but does not involve the problem of looking at a picture while watching where you are going!

Pen Radios

For over a year I have had one of those low-cost Japanese digital watches in the stem of a ball-point pen. The watch has worked perfectly, the miniature battery seems easy to replace though this has not been necessary so far. My trouble is that I have never succeeded in finding out how to fit an ink refill! I have a compact watch but a full-size empty pen.

Now I see Mullard/Philips have marketed an integrated circuit (TDA 7000) that contains virtually all the circuitry (except for 14 tiny ceramic capacitors) needed to form a complete v.h.f./f.m. radio small enough to fit inside a pencil, wristwatch or key-ring. I suppose you could also fit a tiny earphone in the pen and then stick it in your ear.

Sounds fine, but I hope the set manufacturers make it simpler to fit those ink refills!

DESPITE the fact that a Continuity Tester is an extremely simple piece of test equipment it can nevertheless be very useful when fault-finding on electronic equipment. Uses of continuity testers include such things as checking fuses, tracing broken wires or printed circuit tracks, checking diodes, and tracing short circuits on printed circuit boards.

An ordinary multimeter switched to a low resistance range can be utilised as a continuity tester, but this method is often inconvenient in use due to the need to look away from test prods or probes and at the meter each time a check is made.

When checking complex circuit boards, switches or something of this nature, it is often necessary to concentrate on the test prods in order to keep them in good contact with the appropriate two points. Another problem is simply that some multimeters pass quite a high current when used on a low resistance range and there is a consequent risk of damaging delicate semiconductor components.

AUDIO TONE

This simple Tri-State Continuity Tester design provides an audio tone to indicate continuity, and the maximum current that can flow through the circuit under test is only a little over 1 mA . This means that there is no real risk of components being damaged while making tests using the unit. An unusual feature of the circuit is its indication of three levels of continuity rather than the usual two.
It provides a low frequency tone if a very low resistance of just a few ohms is detected, a higher tone if a higher
resistance is detected, and no tone if a resistance of more than a few hundred ohms is present across the test prods.

Many continuity testers will indicate continuity if a forward biased semiconductor junction is present between the test points. This can produce misleading results when checking circuit boards for broken tracks or short circuits as there are likely to be numerous semiconductor junctions present in the circuit, bearing in mind that these junctions can be part of a can be produced by a simple continuity tester.
transistor or integrated circuit and do not have to be present in the form of a diode.

This tester clearly differentiates between a true low resistance path, a slightly higher resistance or semiconductor junction, and a high resistance path, so that much of the ambiguity that can occur when testing circuit boards with a conventional continuity tester is avoided.

CIRCUIT DESCRIPTION

The full circuit diagram of the continuity tester is shown in Fig. 1, and the only active device used in the unit is an MC3302P quad comparator (IC 1). A voltage comparator of this type has an $n p n$ output transistor which is used in the common emitter mode, but does not have a built-in load resistor or other form of collector load.
The output transistor is switched off if the inverting $(-)$ input is taken to a higher voltage than the non-inverting (+) input, and is switched on if the comparative input states are reversed.

There is no built-in triggering in the comparators and they can have the output transistor partially switched on if the input voltages are balanced. It is therefore possible to use a comparator as an operational amplifier by adding a load resistor at the output and ICIC is used in this way. R10 is the load resistor and this comparator is used in what is a wellknown operational amplifier oscillator configuration. The values specified for R9 and C1 set the operating frequency of the oscillator at a fairly low audio frequency of only about 100 Hz .

The potential divider chain consisting of R1, R2, D1 and R3 biases the inverting input of IC1a to about 0.75 V , and the inverting input of 1 Clb to only a few millivolts above the negative supply potential. R4 takes the non-inverting

The circuit is based on two voltage detectors and an audio oscillator. The oscillator drives a loudspeaker which then produces the audio tone and indicates continuity between the test prods. By indicating iwo degrees of continuity the unit eliminates the misleading results that

COMPONENTS

Resistors		
R1	$10 \mathrm{k} \Omega$	See
R2	100Ω	
R3	10Ω	
R4	$8.2 \mathrm{k} \Omega$	
R5	$47 \mathrm{k} \Omega$	
$R 6,7,8$	$220 \mathrm{k} \Omega(3$ off $)$	
R9	$100 \mathrm{k} \Omega$	
R10	$5.6 \mathrm{k} \Omega$	
R1 1,12	$270 \mathrm{k} \Omega(2$ off $)$	
R13	470Ω	
All $\frac{1}{4} \mathrm{~W}$ carbon $\pm 5 \%$		

Capacitors

C1	10 nF polyester
C2	$100 \mu \mathrm{~F} 10 \mathrm{~V}$ elect

Semiconductors

D1	1N4148 silicon signal
IC1	diode MC3302 P quad comparator

Miscellaneous

S1	s.p.s.t. miniature toggle
LS1	miniature, 64Ω,
	66 mm dia. approx.

B1 9V PP3
Printed circuit board: single-sided size, $64 \times 51 \mathrm{~mm}$ EE PCB Service, Order code 8312-08; case $111 \times 71 \times$ 48 mm ; battery connector; 6BA fixings.

Lid removed showing the interwiring details inside the case.
inputs of both IC1a and IC1b to virtually the full positive supply voltage, and the output transistors of both devices are switched on with the circuit as it stands. The output transistor of ICla holds the input of ICIC at little more than the negative supply potential and prevents the oscillator from operating.

If a low enough resistance is connected across the test prods the non-inverting input of ICla will be pulled down to a lower voltage than the 0.75 V bias fed to
the inverting input, causing IC Ia's output transistor to switch off and the oscillator to operate.

However, the oscillator will not operate normally unless a resistance of about 8 ohms or less is placed across the test prods, so that the input voltage to the non-inverting input of IC1b is taken below the minute bias voltage fed to the inverting input of this comparator. Unless this requirement is met the output transistor of IC Ib effectively connects R5

Fig. 1. The complete circuit diagram of the Continuity Tester.

in parallel with R7 so that the operating frequency of the oscillator is boosted to around 300 Hz

Thus the required tri-state indication is obtained with a high resistance giving no oscillation, a very low resistance giving low frequency oscillation, and an intermediate resistance giving a higher frequency tone. IC lc could be used to drive the loudspeaker (LS1), but its output transistor is switched on under stand-by conditions and this would result in a rather high quiescent current consumption.

The loudspeaker is therefore driven via ICld which is used as an inverter, and this gives a quiescent current drain of only about 3 mA , with the current consumption rising to about 10 mA when the unit is activated. R13 ensures that the current fed to LS1 does not exceed the maximum permissible output current for comparators in the MC3302P device and this 20 mA limit means that the unit does not generate a very loud tone.

In this application high volume is not necessary and this is not of any practical importance.

CASE

A plastic case having an aluminium front panel and approximate outside dimensions of $111 \times 71 \times 48 \mathrm{~mm}$ is suitable for this project, and represents about the smallest case that will comfortably accommodate all the components. A matrix of holes about 3 mm to 5 mm in diameter are drilled in

the left-hand portion of the front panel to produce a speaker grille, and as miniature speakers invariably lack any próvision for screw fixing it will be necessary to glue the speaker in place behind the grille using a good quality general purpose adhesive.

The test prods connect to the unit via a 3.5 mm jack or any other convenient type of socket. This is mounted on the front panel on the right-hand side, beneath the ON/OFF switch.

PRINTED CIRCUIT BOARD

The components are mounted on a single-sided printed circuit board as shown in Fig. 2 measuring $64 \times 51 \mathrm{~mm}$. The board is constructed using the usual techniques and this should be perfectly straightforward. The board is available from the EE PCB Service, Order code 8312-08.

The completed board is mounted on the rear panel of the case using 6BA fixings and this leaves sufficient space for the battery on the right-hand side of the case. The power source is provided by a 9V PP3 battery and after wiring the battery clip into the circuit and completing the component interwiring, the unit is then ready for testing.

TESTING

When the unit is switched on there should be no tone or other sounds from the speaker, but with the test prods touched firmly together there should be a low frequency tone of reasonable volume. Placing a resistor of between 10 ohms and 470 ohms in value across the test prods should give the higher frequency tone, and the difference in pitch should be large enough to be readily apparent. $\quad \square$

DRACTICAL

DECEMBER 1983

Projects

GAS SAVER

Reduce central heating costs ZAP GUN

Star Wars type "Directed Energy Weapon" for fun only with excellent sound effects

Feature

DINORWIG
We investigate the Welsh pumped storage power station.

Plus

Microbus, Semiconductor Circuits, Patents, Spacewatch, Bazaar etc. etc.

ON SALE NOW

TWO FABULOUS OFFERS FROM

심 It c.

SUPER 20

$20 k \Omega / \mathrm{V}$ a.c. 8 d.c.
A SUPER PROTECTED UNIVERSAL MULTIMETER
Undestructible, with automatic protection on all ranges but 10A.

ONLY $£ 33.50$

inc. VAT, P\&P, complete with
carrying case, leads and instructions.
This special offers is a wonderful opportunity to acquire an essential piece of test gear whth a saving of nearly $£ 20.00$.
Accuracy: d.c. ranges and $\Omega 2 \%$ a.c. 3% (of f.s.d.)
39 ranges: d.c. $\mathrm{V} 100 \mathrm{mV}, 1.0 \mathrm{~V}, 3.0 \mathrm{~V}, 10 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$. d.c. $150 \mu \mathrm{~A}, 100 \mu \mathrm{~A}, 300 \mu \mathrm{~A}, 1.0 \mu \mathrm{~mA}, 3 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ $100 \mathrm{~mA}, 1 \mathrm{~A}, 10 \mathrm{~A}$
a.c. $\mathrm{V} 10 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$.
a.c. $13 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}, 100 \mathrm{~mA}, 1.0 \mathrm{~A}, 10 \mathrm{~A}$. $\Omega 0-5.0 \mathrm{k} \Omega, 0-50 \mathrm{k} \Omega, 0-500 \mathrm{k} \Omega, 5 \mathrm{M} \Omega, 50 \mathrm{M} \Omega$. dB from -10 to +61 in 5 ranges
Dimensions: $105 \times 130 \times 40 \mathrm{~mm}$

SUPER TESTER 50 50k Ω V a.c. and d.c

A 39 ranges fool-proof multimeter with protective diodes, quick acting 1.25A fuse and resettable cut-out.

PROFESSIONAL
SOLUTION TO GENERAL MEASUREMENT PROBLEMS ONLY $£ 36.30$
incl. VAT, P\&P, complete with carrying case, leads and instructions. Goods normally by return of post.

The best instrument for the workshop, school, toolbox, TV shop and anywhere accurate measurement is needed quickly and simply.

Accuracy: d.c. ranges and $\$ 2 \%$ a.c. 3% (off.s.d)
39 ranges: d.c. $V 150 \mathrm{mV}, 1 \mathrm{~V}, 3 \mathrm{~V}, 10 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$; d.c. $120 \mu \mathrm{~A}, 100 \mu \mathrm{~A}, 300 \mu \mathrm{~A}, 1.0 \mathrm{~mA}, 3 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ $100 \mathrm{~mA}, 1 \mathrm{~A}, 3 \mathrm{~A}$
a.c. V $10 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$
a.c. $13 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}, 100 \mathrm{~mA}, 1 \mathrm{~A}, 3 \mathrm{~A}$

Ohms $5 \mathrm{k} \Omega, 50 \mathrm{k} \Omega, 500 \mathrm{k} \Omega, 5 \mathrm{M} \Omega, 50 \mathrm{M} \Omega$.
dB from -10 to +61 in 5 ranges.
Dimensions: $105 \times 130 \times 40 \mathrm{~mm}$.

For details of these and the many other instruments in the Alcon range, including multmeters, components measuring, automotive and elec tronic instruments, please write or telephone:

[^0]
Hiknill Build your own system and Save pounins!

DIGITAL ULTRASONIC DETECTOR US 5063

- 3 levets of discrimnation ayanst falis
- Adjustable range up to 1025 st
- Bullt-in detays
- 12V oper ation processing to provide the highest level of
sensitivitywhisidiscrimunatuggaganstpotenfial sensitivity whisisdischminatuggagans potenna
Rase alarm conditons. The module has bult. inexit delay and immed alar mperiod, toge ther with
a setectable entrance delay, plus many more outstanding teatures. This advanced new only $£ 13.95$ + V.A.T

ULTRASONIC MODULE US 4012

- Adjustable range from 5-25ft.

This popular low cost ultrasonic detector is atreay used in a wider range of applicalimstrom and doot opening equipment. featyring 2 LED
indicators for ease of selting up. the unit $\mathbf{1 1 0 . 9 5}+$ V.A.T
INFRA-RED SYSTEM
IR 1470

Consistingot sepatate rransmitter andreceiver cases. the system piovides an invisible modulated beam over distances of up to 501 t. Intended for use in security \&ystems, but also ideal for photographic and measurement only $£ 25.61+$ V.A.T. Size: $80 \times 50 \times$

POWER SUPPLY \& RELAY UNIT PS 4012
Provides stabulised 12 V output at 85 mA and

SIREN MODULE SL 157
Produces aloud penetrating stidingtone which,
when coupled 10 a suinable horn speaker, produces S.P.L. is of 11 odbs at 2 metres
Operating from 9.15 V , the module contans an mhibit facility for use in
circuits. Price $1295 *$ v.A.

51/2" HORN SPEAKER HS 588
This weather-proot horn speaker provides
exttemely high sound pressure levels 1110 dus of 2 merres) when used with the CA 1250 . PS
3.POS. KEY SWITCH 3901

Single pole, 3-pus. key switch intend
a
All modules are supplied with comprehensive instructions.

Units on demonstration Shop hours 9.00-5.30 p.m Wed. 9.00-1.00 p.m.
SAE with all enquiries.

Add 15\% to all prices
Add 50p post \& packing to al
orders. Please allow 7 days for delivery
Order by telephone or post
[mis. using

The heart of any alarm system is the control unit The CA 1250 ofters evervpossible feature that
is tikely to be tequired when constructing a is dikely to be required when constructing a installation, or simply controlling a single
magnetic switich on the front door. magnetce swich on the front door. - Provides exit and entrance delavs togethe - Battery back-up with irlckle charging tacilur - Battery back-up with hitckle charging facility

- Operales with magnetic switches, pressure - Dads. ultrasonic of I.R. Units - Anti-tamper and panic facility - Siabhised output voltage and panic faciltty - Screw connections for ease of installation - Toads Price $[19.95$ + V.A.T.
SIREN \& POWER SUPPLY MODULE PSL 1865 is capable of providing sound levels of 11 odbs addenion, the whint provides as stabilised 12 V output so that the unit may be used incontiunction with the US 5063 or US 4012 to form a compiete Price $£ 9.95$ + V.A.

HARDWARE KIT HW 1250
only
£9.50

This atrractive case is designed to house the conirol unit CA 1250 , rogether with the
appropnate LED indicators and key swinch. Supplied with necessary mounting pillars an punched from panel, the unit is given protessional appearance by an dithesive
screened label. Size $200 \times 180 \times 70 \mathrm{~mm}$
HARDWARE KIT HW 5063
only
E 9.95

+ V.A.T.
This hardware kit provides the necessan enclosure for a complete self-contained alarm
system which comprises the US 5063 , PS 1865, loud speaker type 3515 and key switch 3901. Atrractively styted, the unh when com-
pieted, provides an effective warning system without installation problems. Sire: 200×18

ULTRASONIC MODULE ENCLOSURE
only
£2.95

+ V.A.T.
Surable metal enclosure for housing an ind
vidual ulizasoni vidual ultrasonic modute type US 5063 or US

4012. Supplied wih the necessary mounting pillars and screws atc For US 5063 ordee SC

RISCOMP LIMITED
Dept. EE6
21 Duke Street.
Princes Risborough
Bucks. HP17 0AT
Princes Risborough (084 44) 6326

田者

TOUCH OPRRATED DIE

BY C.J.BOWES

A NOVEL ELECTRONIC DIE WITH A CHOICE OF EITHER A DOT OR NUMERIC DISPLAY

ALARGE number of games require some sort of random number generator to make decisions as the game proceeds. The most common of these devices is the cubic die which gives a random number between one and six.

There have been a number of designs published detailing how an electronic die can be made. Most use some form of counter which drives a matrix of l.e.d.s in the familiar pattern. The die described in this article is specifically designed to enable the use of two alternative displays, one the standard spot pattern and the other a numeric display using a 7 segment display.

In order to make the die simple to use, and pack away, the design incorporates a touch switch and automatically turns off after a short time.

CIRCUIT DESCRIPTION

The circuit diagrams for the die are shown in Figs. 1, 2 and 3. Fig. 1 shows the main logic circuit, which is common to both designs, whilst Figs. 2 and 3 are alternative display designs, only one of
which is needed for each die.
The main logic circuit consists of a touch operated system which controls the number generating and display systems. In order to dispense with a mechanical switch, use is made of the fact that skin is a high resistance conductor.

TOUCH SWITCH

The touch switch, which is either laid out on the front panel as a printed circuit track or made up of commercially available pads, is in effect two conductors which can easily be bridged with a finger. One of the pads is connected to the 9 V supply and the other is connected, via R1, to the base of TR1, one half of a Darlington pair with TR2.

When the tracks are bridged, a very small current passes through the finger and into the base of the transistor. The current gain of the Darlington pair is extremely high and the minute current is sufficient to make the transistors conduct, causing a current to flow both through them and R2. R1 is included as a precaution to prevent damage to the transistors
in the event of a low resistance being inadvertently connected across the touch pads.

When TR1 and TR2 conduct, a voltage drop occurs across R2. This is used to operate the count enable input of IC2 and also causes a voltage difference between the base and emitter of TR3. This voltage causes TR3 to conduct, allowing C1 to charge up and TR4 to conduct. Which in turn, energises the display and counter circuits.

RANDOM NUMBER GENERATOR

IC1 is a cmos version of the 555 timer and has been chosen for this design in preference to the standard bipolar 555 which has a rather unpleasant habit of producing spikes on the power supply lines that can upset other devices connected to the same power supply. The смоs 555 does not suffer from this but operates in exactly the same way as the standard timer.

In the design shown, it is connected as

Fig. 1. Circuit diagram of the control logic section of the Touch Operated Die.

an astable multivibrator with a high frequency output. The output frequency is in fact set by the values of R6, R7 and C2, and is about 700 Hz . The output from the timer is connected to the $\mathbf{C P}$ (clock pulse) input of IC2, which is a CMOs 4510 programmable up/down counter. This device is used because it has the ability to be reset to any number from 0 to 9 , set on the P_{0} to P_{3} inputs, by a logic 1 signal to the PL (parallel load) input.

Whilst the touch pads are bridged, the input to the CE pin of IC2 is held at logic 0 . This allows the output pulses from IC1 to be clocked through IC2. Pin 10 of IC2 is held at logic 1 by being connected to the 9 V line via R 8 causing the counter to count up. The outputs Q_{0} to Q_{2} are connected to the display and cause it to change so rapidly that the actual value shown is not apparent.

The outputs are also connected to IC3 which is a triple 3 -input Nand gate configured so as to reset the counter by producing a logic 1 state at the PL input every time the count reaches 7 . When the PL input goes to logic 1 the counter is set to the value set on the P_{0} to P_{3} inputs. P_{0} is held at logic 1 and the other inputs are held at $\operatorname{logic} 0$, so the counter is reset to 1 every time the outputs Q_{0} to Q_{2} are all at logic 1. This causes the counter to cycle through the numbers from one to six for as long as the touch pads are bridged.

When the user's finger is removed from the touch pads, TR1 and TR2 no longer conduct and the CE input to IC2 is pulled up to logic 1 by R2. This causes the counter gate to be disabled and the count to stop at the value it reached immediately before the finger was removed. The b.c.d. (binary coded decimal) value of this number is present on the output lines and is decoded and displayed on the chosen display system.

As soon as TR1 and TR2 stop conducting, TR3 also ceases to conduct and C1 starts to discharge through R4, but as
it is also connected to the base of TR4 through R5, this causes TR4 to continue conducting for a time dependent on the values of C1, R4 and the base current of TR4.

As long as the base-emitter voltage of TR4 exceeds about 0.7 V , it conducts. This enables the counter and display circuitry to remain operative for a short period after the touch pads are released. When TR4's base-emitter voltage falls below the turn on voltage, the transistor turns off and the display fades and eventually, is switched off.

DOT DISPLAY

To operate the die display it is necessary to decode the outputs from the counter to illuminate the required number of l.e.d.s which are arranged as shown in Fig. 2. Decoding of the b.c.d. information is accomplished by the use of two 2 -input NAND gates and two diodes.
The standard packaging of the 2 -input nand gates in the cmos 4011 i.c. provides four gates in one package. Advantage has been taken of this to use two of these gates as a buffer, thereby reducing the load on the outputs of the counter. The truth table for the display is shown in the table below.

No.	IC2 outputs			I.8.d. groups			
	0_{2}	\square_{1}	0_{0}	D6	05, D	,	4.08
1	0	0	1	on	Off	Off	017
2	0	1	0	Off	on	off	off
3	0	1	1	on	on	off	off
4	1	0	0	off	on	on	Off
5	1	0	1	on	on	on	off
6	1	1	0	Off	on	on	on

The single l.e.d. (D6) mounted at the centre of the display is required to be on for the odd numbers (1,3 and 5). Inspection of the truth table shows that this coincides with the presence of a logic 1 level on output Q_{0}. This l.e.d. can
therefore be wired, through resistor R9 directly to the Q_{0} output. The remaining l.e.d.s are operated as pairs in series.

When the truth table is consulted, it can be seen that l.e.d.s D3 and D9 are on only when output Q_{2} is at logic 1. This pair could be connected via a suitable resistor directly to this output but as Q_{2} is also used to drive other l.e.d.s they are in fact wired through the two spare gates, which are each wired as inverters. These buffer the output and reduce the load on it.

The two l.e.d.s D5 and D7 are required to be on when either output Q_{1} or Q_{2} are at logic 1. This could be achieved by using an OR gate but is more easily done by using the simple matrix of D1 and D2 as shown. The final pair of 1.e.d.s (D4 and D8) are required to be illuminated only when both Q_{1} and Q_{2} are at logic 1. This is in fact the AND function which has been obtained by using a NAND gate followed by another NAND gate wired as an inverter.

The circuit diagram for the die display is shown in Fig. 2. The only component not mentioned in this description is C4 which is merely a decoupling capacitor which should be mounted as close as possible to IC5.

NUMERIC DISPLAY

The alternative display to the traditional spot pattern is to use a 7 segment display as shown in Fig. 3. This circuit is conventional and uses cmos 4543 decoder/driver i.c. This device enables either a common anode (as used on the prototype) or a common cathode display.

If a common cathode display is used, the p.c.b. must be modified to provide the correct connections to the display and pin 6 of IC5 must be connected to the 0 V line instead of the 9 V line. C 5 is included as a decoupling capacitor and should be mounted as close as possible to ICs.

Fig. 2. Circuit diagram of the dot matrix display.

Fig. 3. The 7-segment display circuit.

construction

LOGIC BOARD

The unit has been designed to fit inside the specified case, size $85 \times 56 \times 35 \mathrm{~mm}$ Other cases can be used but care should be taken to ensure that the p.c.b.s will fit. The components for the main logic circuit are mounted onto the p.c.b. as shown in Fig. 4, and the full size track layout is also shown. This can be made using conventional techniques or ordered from the EE PCB Service. Care should be taken wherever the tracks are closely packed or pass between the pins of the i.c.s. When the board has been etched and drilled it should be closely inspected for broken or short circuited tracks.

The components can then be mounted as shown starting with the smallest components. C1 must be left until last as it is mounted above the adjacent resistors with its leads passing between R3 and R4. Care must also be taken to ensure correct polarity of the capacitors.

The components are very closely packed on this board and it should be thoroughly inspected before attaching the battery or installing the i.c.s.

DISPLAY BOARDS

The track design for dot display board is given in Fig. 5. It is important that the cut-out in the corner, which enables the face plate mounting screw to be fitted, is made before attempting to fit any of the components. Care must be taken to ensure the correct polarity of all the components as incorrect orientation will produce a strange display and some extremely interesting problems in fault diagnosis!

The display board is mounted directly under the face plate and, in order to reduce the space required, IC4 is soldered directly onto the p.c.b. and not fitted into a socket. This operation should be done with care, taking precautions to avoid the risk of static electricity destroying the device. In practice, this should not present any problems providing that a buffered type of 4011 is used.

When making this board care should be taken to ensure that the resistors do not foul the holes used for mounting the board to the face plate.

7-SEGMENT DISPLAY

The 7 -segment display board is constructed using the track diagram shown in Fig. 6. As with the dot display, the driver/decoder, TC5, is soldered directly to the p.c.b. and the same precautions as detailed earlier should be taken to avoid damage.

In common with the other display board, there should be no major problems but the cut-outs should be made before mounting any of the components.

Fig. 4. Printed circuit board component layout and track pattern for the control logic section.

RIBBON CABLE TO DISPLAY BOARD (1) (3) (5)

DOT MATRIX DISPLAY

Resistors

R9,11,12 560Ω (3 off)
R10 820
Capacitor
C4
$2 \cdot 2 \mu \mathrm{~F} 10 \mathrm{~V}$ tantalum bead

Semiconductors

D1,2 1N4148 silicon (2 off)
D3-9 TIL220 0-2in red l.e.d. (7 off)
IC4 4011 B cmosquad 2-input NAND gate

Miscellaneous

B1 9V PP3
Printed circuit board: singlesided, size $55 \times 35 \mathrm{~mm}, E E P C B$
Service, Order code 8312-06.

7-SEGMENT DISPLAY

Resistors
R13-19 820 (7 off)
Capacitor
C5 $\quad \underset{\text { bead }}{2.2 \mu \mathrm{~F}} 10 \mathrm{~V}$ tantalum
Semiconductor

X1	0.3in common anode 7-segment display
IC5	4543B CMOS b.c.d. to 7-segment decoder

Miscellaneous

B1 9V PP3
Printed circuit board: singlesided, size $73 \times 32 \mathrm{~mm}$, EE PCB Service, Order code 8312-07.

TESTING

After both the main logic board and the display board have been constructed and checked, they should be connected together and tested. It is advisable to use ribbon cable to join the main board and display board together since this will reduce the problems of the "spaghetti" like tangle that would otherwise result every time the die is opened.

To check the boards for correct operation, the battery should be carefully inserted into its clips without either of the p.c.b.s being touched. If all is well, there should be no sign of life on the display. The touch pads should then be touched with the finger so that a current flows to the base of TR 1 .

The display should immediately light, showing either the figure "eight" on the numeric display or all seven dots on the matrix display. In the latter case, l.e.d.s D4 and D8 will appear to be at low brightness. This is perfectly normal and results from the fact that as the device cycles rapidly through the numbers from one to six, these diodes are only lit for one-sixth of the cycle period.

When the contact to the touch pads is released, the display should stop cycling and show a number between one and six for a short while before fading away. The test should be repeated several times in order to check that the die is not "loaded".
If it is suspected that the die does not
give a random result but is biased to a particular number or set of numbers, then the operation of the number generator can be checked by temporarily connecting a $100 \mu \mathrm{~F}$ capacitor across C 1 and letting the die pulse slowly through the sequence from one to six. The first few numbers displayed may be random or out of the required range but after a maximum of four changes, the die should reset and start to go through the repetitive sequence from one to six.

If the time for which the die remains illuminated after the touch pads are released is incorrect, this can be adjusted by altering the value of Cl . Increasing the value increases the delay time and reducing it will reduce the delay time.

Fig. 7. The face plate drilling details. The mounting holes are positioned using the p.c.b. as a template.

Fig. 8. Method of mounting the display p.c.b. to the face plate.

The prototype Touch Operated Die with face plate removed to show the assembly using the dot matrix display board.

FACE PLATE

The face plate of the unit must be made of an insulating material and not the aluminium panel supplied with the case. If it is desired to make the touch plates as printed circuit tracks, this can be done by the same method as that used for making p.c.b.s. Alternatively, commercially available touch pads can be screwed through suitable material. In each case, it is important to ensure that the pads are placed at least 2 mm apart and are not fouled by the display or mounting screws.
It is important to note that the face plate fits on top of the case and is not inset into the recess in the case, as is the aluminium plate supplied. The face plate
must be cut to the same size as the outside of the case and appropriate mounting holes drilled through it to line up with the pillars moulded into the inside of the case.

The appropriate display board is fixed to the underside of the display panel so that the l.e.d.s protrude through the face plate or the 7 -segment display fits flush into a cut-out in the face plate.

The mounting holes are then marked and drilled ready for mounting the board as shown in Fig. 7. If the 7 -segment display is used, the shape should be marked out on the face plate and then carefully drilled and filed out until a good fit is obtained. The positions of the mounting holes can then be determined.

With both types of display, it is impor-
tant that a dry run is conducted with the boards to ensure that they will fit into the case, leaving room for the battery, in the marked positions before committing the face plate to the attention of the cutting tools.

The face plate and display board are fixed together by using three screws, each fitted with three nuts, as shown in Fig. 8. After the holes have been drilled, the boards should be given a final check before being assembled. The control logic p.c.b. should then be fitted into place in the grooves moulded in the main case. The battery is then connected and placed in the case and the face plate fixed to the case using longer self-tapping screws than those supplied with the case.

Face plate of the dot matrix display version made from a piece of p.c.b. material with two tracks forming the touch switch.

Face plate of the 7 -segment numeric display die with the touch switch made from commercially available touch plates.

EXCRCUTITE

This is the spot where readers pass on to fellow enthusiasts useful and interesting circuits they have themselves devised. Payment is made for all circuits published in this feature. Contributions should be accompanied by a letter stating that the circuit idea offered is wholly or in significant part the original work of the sender and that it has not been offered for publication elsewhere.

CAR LIGHTS ALARM

M
Y Car is a Ford Falcon with a negative earth and as such I thought your Car Lights Alert (October 1982) circuit would work. The main trouble I found was with the courtesy lights. As 1 considered the circuit and logic behind the circuit too good not to use, I re-designed the circuit still using the same logic. I feel other readers may have had the same trouble as myself so I am offering the circuit I "designed" for my car's existing wiring.

The pillar switches are positioned between the lamp and positive. I have taken out the transistor and used the circuit, so that with the switches open, the reset of Cl (pin 4) is held low through the lamp filament.
E. Westerman, Victoria, Australia.

Editorial note: This circuit will not work with cars having earthed door pillar switches.

TRAFFIC LIGHT SIMULATOR

This circuit simulates the sequence of lights at a typical cross-roads. The circuit is based upon a 16 -bit counter which provides the inputs to the combinational logic gates.
The clock for the 16 -bit counter is derived from a 555 timer which is connected as an astable multivibrator.

The components around the 555 are chosen so that its period of oscillation is approximately five seconds, meaning that the lights change at a realistic rate.

The 16 -bit counter is based on four JK flip-flops connected in such a way that each divides the clock frequency by two.

The outputs of the 16 -bit counter are used for the inputs for the logic gates
which have been arranged to generate the necessary sequence of lights.

Since the logic gates are required to drive l.e.d.s, each output needs buffering. All six buffer stages are identical, except of course for the colour of the l.e.d. used. Any l.e.d. can be used but for realism it is best to use red, orange and green.
W. Barlow, Basildon, Essex.

CIRCUIT EXCHANGE

TELEPHONE RING SIMULATOR

The two close-rings of a phone are provided by IC2 being switched on and off by IC3. The longish space between the two short close-rings is provided by IC1. VRI adjusts the period between the ringring ring-ring, that is the long space. VR2 adjusts the space between one ring and the next, that is ring .. VR2 . ring . . VR1 . . ring . . VR2 . . ring. The tone from $I C 2$ is not 25 Hz like a telephone bell, it is nearer perhaps 2 kHz .

If a 25 Hz tone is required, increase value of C3 (use an electrolytic). Note the telephone ring simulator is designed to ring like a phone, not sound like it but ring in the manner of a phone.

Brian S. Craigie,
Edinburgh,
Scotland.

FIRE ALARM-ELECTRONIC TEMPERATURE CONTROLLER

Transistors TR1 and TR2 are the master comparator pair with TR2 base, maintained at around 5.6 V by the Zener, D2. Transistor TR3 regulates the current and thence the base voltage of TR2 in relation to the common emitter voltage which is also TR3 base drive.

Unlike many comparator switching circuits, my circuit latches permanently on (for example, the l.e.d. glows) once activated. In my experiment a thermistor with a rating of 30 kilohms at around $70^{\circ} \mathrm{F}$ was used to form a voltage divider with a 1 kilohm and 10 kilohm potentiometer in series. In practice, about 6.5 V is required to trigger TR1 on, slightly raising the common emitter voltage and cutting transistor TR2 off. TR2 collector voltage rises, D3, R7 and C3 detect this rise and activate transistor TR4, thus lighting the l.e.d. D4 (setting off the alarm).

Of course, a miniature relay can take the place of the glowing l.e.d. for control applications-for instance, to switch a device on or off when a set temperature is reached. Once latched on, TR4 will continue to conduct unless reset switch S 1 is depressed to open transistor TR2 base connections to 0 V . The circuit is then ready to begin a new cycle.

Capacitors C1 and C2 are stabilising capacitors. Diode D1 maintains the conductive sensitivity of TR3 and thence TR2. Potentiometer VR1 is provided to set the limiting temperature which could go higher than the $70^{\circ} \mathrm{F}$ for this project.

The thermistor is the temperature detector and should be mounted on the object which is the temperature source,
the other parts of the circuit could be placed remote from the same source. Applications are very wide, it would include the switching off of appliances such as water heaters or kettles, when the limiting temperature is reached. Besides alarm, the same circuit could be used in in-
dustrial automation and many other critical services.
I have suggested and actually used $\frac{1}{2}$ watt resistors, except R4 which is 1 watt, for my experimental circuit.

Toh Eng Kiong, Singapore.

FUNCTION GENERATOR

A
versatile function generator providing sine, square, triangle, ramp and pulse waveforms over the frequency range 0.1 Hz to 2 MHz in seven decade ranges has just been marketed by House of Instruments.
Output is continuously variable to $20 \mathrm{~V} p-\mathrm{p}$ from and into 50 ohms, with switchable d.c.
offset available to +10 V . A variable duty cycle and symmetry control enables adjustment of main, square and TTL outputs.

Other facilities include: exter nal sweep over a $1000: 1$ frequency range; polarity invert and sync output.

The IFG422 Function Generator is guaranteed for one year and costs $£ 195$, excluding VAT and carriage.

House of Instruments.
Dept EE, Clifton Chambers,
62 High Street, Saffron Walden, Essex CBIO IEE.

EPROM ERASERS

Three new low-cost EPROM
Erasers have been specifically designed by J. P. Designs, for use in the laboratory, classroom and by the hobbyist. All three versions use the same simple drawer construction which allows easy access.

The drawer section, with antistatic foam, holds either 20 EPROMS (Model 82) or 40 EPROMS (models 84 and 84T).

A timer version, model 84T, is available to preset exposure times and safeguard against "cooking" EPROMS. The timer gives intervals of 10 and 30 minutes. An l.e.d. shows when the unit is erasing.
The price for the basic unit, Model 82, is $£ 31.25$; Model 84 , £44.95; and Model 84T, with timer, $£ 54.95$.
J. P. Designs, Dept EE, Oyster Row, Cambridge CB5 8LJ.

TIME CONTROLLER

ATIME CONTROLLER for the and Spectrum com puters is now being marketed by Glanmire Electronics.

The timer consists of a battery back-up real time clock with eight programmable inputs and eight programmable outputs. It provides the computer with the month, day, date, hours, minutes and seconds.

The controller has its own built-in program, in PROM
memory. Only a single instruction in the users program is required to read or write the time or date.

Applications include: diary with alarm; home control; burglar alarm; sound effects; games and process control. The recommen ded retail prices for the Time Controller for ZX81 and Spectrum are $£ 34.50$ and $£ 38.50$ respectively

Glanmire Electronics Lid., Dept EE, Westley House
Trintty Avenue, Bush Hill Park,
Enfield ENI IPH.

DIGITAL FREQUENCY METER

THE launch of a new range of professional quality low-cost test instruments designed and manufactured in the UK is announced by Black Star.

The first products to be released come under the Meteor series and consist of three Digital Frequency Counters with a measurement range up to $100 \mathrm{MHz}, 600 \mathrm{MHz}$ and 1 GHz .

The Meteor 600 is the first meter available and has a typical frequency range of 2 Hz to 700 MHz ; sensitivity of about 25 mV at 600 MHz and resolution down to 0.1 Hz . The counter also features eight $\frac{1}{2}$ in l.e.d. displays, three gate times, two inputs, trigger level control and an integral low-pass filter.

Black Star Lid.,
Dept EE, 9A Crown Street
St. Ives, Huntingdon,
Cambs PE174ER.

EVERYDAY
 and computer prodzcts

VOLUME 12 INDEX

JANUARY 1983 TO DECEMBER 1983
Pages Issue

1-64 January
65-128 February
129-192 March
193-256 April
257-328 May
329-400 June

Pages 401-472 473-544 44 Augus 545-616 617-688 October 689-760 November 781-852 December

CONSTRUCTIONAL PROJECTS
ACORN ATOM EPROM PROGRAMMER 113. 178
ADC, 4-CHANNEL HIGH SPEED 816ALARM, CARAVAN FRIDGE336
ALARM, CAR INTRUDER519
ALARMS FOR PUSHBIKE OR MOTORBIKE by J. Duffy 74
AMPLIFIER, DIGI ALARM WRISTWATCH 430
AMPLIFIER, GUITAR HEADPHONE 282
AMPLIFIER, PERSONAL LS10
AMPLIFIER ZX SPECTRUM 202
APPLE II PEALLTME CLOCK 66,461,518
A to D CONVERTER FOR PET COMPUTERby J. Adlington, L. Chapman and L. Monk30
A to D CONVERTER FOR RM380Z COMPUTER 559
EHOUSE WATERING SYSTEM
424
424
by J. Lewis
by J. Lewis 378
BBC MICRO REAL-TIME CIOCK 266
BBC MICRO SPEECH SYNTHESISER 698,800
BBC MICRO STORAGE 'SCOPE INTERFACE 482
BEEHIVE TEMPERATURE METER by D. Allewell,A. Green, J. Green and A. Smith82
BINARY BANDIT GAME by F. G. Rayer 452
BUZZ OFFI by T. R. de Vaux-Balbirnie 154
CAMERA/FLASH GUN TRIGGER 726
CANDLE, MAGIC798
CARAVAN FRIDGE ALARM by T. R. de Vaux-Balbirnie 366
CARAVAN POWER SUPPLY by T. R. de Vaux-Balbirnie 362
CAR INTRUDER ALARM by P. Barber 519, 644CAR ON/OFF TOUCH SWITCH by P. Barber744CAR RADIO BOOSTER by C. Lare242CAR THERMOMETER by M. Plant150
CHILDREN'S DISCO LIGHTS by T. R. de Vaux-Balbirnie 150
COMPUTER A to D CONVERTER FOR PET 30
COMPUTER A to D CONVERTER FOR RM380Z 559
CONTROLLER, MODEL TRAIN 306
CONTINUITY TESTER by R. A. Penfold 830
DATA RECORDER, ENVIRONMENTAL 807
314DETECTOR, MOISTURE
DIE TOUCH OPERATED 834
DIGI ALARM WRISTWATCH AMPLIFIER by D. E. Smith 430
DIGITAL GAUSS METER by R. Rowe 738
DIGITAL TO ANALOGUE BOARD 652
DISCO LIGHTS, CHILDREN'S
796
566
DISTRESS BEACON by P. E. HopkinsDOUBLE DICE by D. W. Crabtree50
DUAL POWER SUPPLY 159, 518
EGG TIMER, NOVELTY212,826
ELECTRONIC DIE by G. P. Hawksford 500
ELECTRONIC PENDULUM by M. Cragg 670
ENVELOPE SHAPER FOR BASS GUITAR by A. Niemiro 378ENVIRONMENTAL DATA RECORDER by M. Lawrie and
L. Wilkinson 807
WM PRE BAMMER by B. W. Terrell and J W. 338PROM PROGRAMMER FOR THE ACORN ATOM
by D. C. Grindrod113, 178
EPROM PROGRAMMER, GENIE 338, 518
EPROM PROGRAMMER, TRS-80 338, 518
EXPANDED ADD-ON KEYBOARD FOR THE ZX81 170,234
FLANGER SOUND EFFECT by R. A. Penfold 221
FUNCTION GENERATOR 20
GAUSS METER, DIGITAL 738
GENIE EPROM PROGRAMMER 338, 518
GREENHOUSE WATERING SYSTEM 424GUITAR TONE CONTROLLER, TRI BOOST282
HIGH POWER DAC DRIVER BOARD 655
HIGH POWER INTERFACE BOARD 493
High Speed analogue-to-digital converter 582
HOME INTERCOM by R. A. Penfold 626
HOME SYSTEMS MONITOR by H. G. Field 508
MMERSION HEATER TELL-TALE 630
NTERCO 138
LABORATORY AMPLIFIER 291
LIGHTS, CHILDREN'S DISCO 796
OCK PUSHBUTION COMBINATION 352
ONG RANGE CAMERAFIASH GUN TRIGGER 726
MAGIC CANDLE by T. R. de Vaux-Balbirnie 798
MAINS POWER CONTROLLER, 1 kW 526
METER, DIGITAL GAUSS 738
MODEL CAR "PETROL TANK" by A. P. Donleavy 640
MODEL TRAIN CONTROLLER by R. A. Penfold 306
MOISTURE DETECTOR by N. Kay 314
MOTORBIKE ALARM
MULTIMOD by J. D. Rogers
MULTI-STATION INTERCOM by T. Rule
MW PERSONAL RADIO
NEON NIGHTLIGHT by D. A. Corder 232
NOVEL EGG TIMER by I. Hickman
NOVELTY EGG TIMER by L. S. Cook
OPTO REPEATER by A. Ro Winstanley 42
PEDESTRIAN CROSSING SIMULATION BOARD 496 PENDULUM, ELECTRONIC
PERSONAL LS AMPLIFIER by L. Cohen
670
PET COMPUTER, A TO D CONVERTER FOR
PET COMPUTER, TEMPERATURE SENSOR
POWER SUPPLY, CARAVAN
POWER SUPPLY DUAL
10
PULSE GENERATOR 159
PUSHBIKE ALARM 159 456
PUSHBUTTON COMBINATION LOCK by J. Hadley
RADIO BOOSTER, CAR
242
RADIO, MW PERSONAL
REAL-TIME CLOCK by O. N. Bishop
266
SHORT INTERVAL TIMER by A. P. Donleavy
SHORT WAVE RADIO by R. A. Penfold
SIGNAL CONDITIONING AMPLIFIER
SOUND EFFECT, FLANGER
SOUND EFFECTS
SPEECH PROCESSOR by R. A. Penfold
90
SPEECH SYNTHESISER FOR THE BBC MICRO by R. A. Penfold
664
586
221
by R.A. Penfold
STEPPER MOTOR MANUAL CONTROLLER
STORAGE 'SCOPE INTERFACE FOR BBC MICRO by R. A. Penfold
STYLUS ORGAN by R. A. Penfold
SWITCH, CAR ON/OFF TOUCH

TEMPERÁTURE METER, BEEHIVE
TEMPERATURE SENSOR by J. Adlington, L. Chapman and S. Mank
2-Function Generator 205
3-Laboratory Amplifier
4 -Transistor Tester 370, 518

ulse Generator
456
THERMOMETER CAR456
150
TIMER, EGG 212.826
TIMER, SHORT INTERVAL 90
THE B B B C. Bowes 83
TRAFFIC LIGHT SIMULATOR by N. P. Naughton 744
TRAIN CONTROLLER, MODEL 306
TRANSISTOR TESTER 370,518
TRI BOOST GUITAR TONE CONTROLLER by J. D. Rogers 432
TRS-80 EPROM PROGRAMMER 338, 518
TRS-80 TWIN CASSETTE INTERFACE by S. Rainey 518
790
TTLPOWER INTERFACE FOR STEPPER MOTOR 718
USER PORT CONTROL BOARD 417
USER PORT INPUT/OUTPUT BOARD 414
VIC 20 TEMPERATURE SENSOR 278
VOLTAGE DUALISER by L. S. Cook 606
ZX SPECTRUM AMPLIFIER by V. Terrell 202
ZX81, EXPANDED ADD-ON KEYBOARD FOR 170
A. Williams78
4-CHANNEL HIGH SPEED ADC 8161 kW MAINS POWER CONTROLLERby T. R. de Vaux-Balbirnie
526
$8+8 V$ POWER SUPPLY 606

SPECIAL SERIES

CIRCUIT EXCHANGE $\quad 115,118,173,216,232,237,238$ $241,304,309,317,358,384,423,435$, $439,450,462,530,532,578,611,663$,
$678,748,800,839,840$
Alarm Circuit
Auto Water Feeder
Bleeper Circult
Burglar Alarm
Car Circuit Tester
Car Light Alert
Car Lights Alarm
Car Overheating Indicator
Car Voltage Monitor
CB Rig Light
Chirping Bird
Combination Lock
Converting a Multimeter to a 'VU' Meter
Digital Darkness/Light Measurer
Disco Traffic Lights
Door Alarm with L.E.D. Indicator
Electronic Dice Generator
Electronic House Register
Electronic Key
Electronic Switch/Doorbell-Alarm
Electronic Timer
FET Darkroom Timer
Fire Alarm-Electronic Temperature Controller
Flashing Light Bleeping Siren
Four-Digit Combination Lock
Fuzz Box
Jogger's Pacemaker
Model Traffic Lights
Op-Amp Tester
Outside Light Switch
Probeless Continuity Tester
Programmable Divider
Quick Polarity Tester
Rear-Light Failure Indicator

Seat Beit Reminder 533
Shaky Hand Game
Simple Reaction Meter
Speed Chess and Draughts Timer
Stablliser for use with low cost Battery Eliminators
Strength Meter
Tampering Detector
Telephone Ring Simulator
Temperature Sensor
Three-way Snap Indicator
Tilt Alarm
Traffic Light Simulator
Trailer Flashing Direction Indicator Switching Unit 533
Two-way Doorbell
Utillty Audio Amplifier-Doorbell-Latch Alarm 532
V.H.F. Aerial Preamplifier 530

Variable Squential Switch 304
Warbling Oscillator 232
COMPUTER AIDED EXPERIMENTS by A. A. Chanerley 600 ,
1: Investigation of diffraction patterns 674.732
2: Naphthalene cooling characteristic 674
3: Transistor Voltage-Transfer Characteristic 732
ELECTRONICS AND THE ELECTRON by J. B. Dance
1: Introducing the Electron
$356,428,504,576$

- 289

3. Conduction in Various Materials

3: Conduction in Various Materials (cont.) 428
4: Conduction in Semiconductors
5: Doped Semiconductor Materials
FOR YOUR ENTERTAINMENT by Barry Fox
46, 97, 158
$227,285,361,440,507,579,649,736$
Cordless Calt, Almost Legal
Mysterles of hi fi, Shopping in Tokyo 97
Why Markets Are Lost, Buying a Home Computer 158
Cellular Radio, Recording with Videodiscs 227
Sounds of Video, Calculating Time 285Computer Forecast, Video In a Spin, Hospital Radio361
Sung Line, Japanese Way, Computer Tip 440Surround-Sound Video, Stereo Film507
Video Facts, Teleprompting 579649
Computer Record, Radio Litter824
INTRODUCING ELECTRONICS by George Hylton 24.86,
146, 302
4: Amplifiers24
5: Radio Receivers 86
6: Digital Electronics 146
7: Summing Up 302
MICROCOMPUTER INTERFACING TECHNIQUES
by J. Adams and G. M. Feather $410,490,580,650,716$
1: The Microprocessor and User Ports 410
2: Experiments using the User Port Control Board 490
3: Analogue-to-Digital Conversion 580
4: Digital-to-Analogue Conversion 650
: Stepper Motor Control 716
6: 4-Channel High Speed ADC 814
SPECIAL REPORTS $174,276,350,488,598,724$
Acorn Atom User's Report by T. J. Johnson 174
FX Computer Kit by R. A. Hooper 276
In/Out Port Board for ZX81 by B. W. Terrell 488
Sinclair ZX Spectrum by J. W Terrell 350
ZX8 1 Personal Computer by G. P. Hodgson 598
SQUARE ONE $54,116,246,318,448,531,610,668,750$
Light Emitting Diodes 54
Earphones 116
Electrolytic Capacitors 246
Capacitors 318
Diodes 448
Polarity Conscious Components 531
Circuit Symbols 610
Switches 668
Audio Amplifier Integrated Circuits 750
TEACH-IN 84 by G. Hylton634, 710,802
1: A.C., D.C. and Signals 634
2: Batteries and Resistors 710
3: Potentiometers \& Transistors 802
THE ELECTRONICS OF INFORMATION TECHNOLOGY by T. Ivall
4: Time Divion Methods 100
1665: Information Unlts
6: Information Storage 218

GENERAL FEATURES

ACORN ATOM USER'S REPORT by T. J. Johnson 174
BOOK REVIEWS $53,81,110,238,288,376,454$,
BRIGHTIDEAS 604, 608, 648, 741, 795, 828
Circuit Board Dril 23
COUNTER INTELLIGENCE by Paul Young 29, 89, 165,
$238,296,376,461,518,564,633,714,812$
by R. A. Hall 422,518
EDITORIAL $9,73,137,201,265,337,409,481,553$, $625,697,789$
ELECTRONIC HOBBIES FAIR94.
EVERYDAY NEWS $36,104,176,228,298,442,516$, $590,660,734,822$
FREE TRANSISTORS284
JACK PLUG \& FAMILY by Doug Baker 29, 77, 225, 296,
OGIC SYMBOLS 349MEASUREMENT OF AUDIO AMPLIFIER PARAMETERSby A. E. Rule436
NEW PRODUCTS $\quad 300,385,447,534,609,676,749,841$
PLEASE TAKE NOTE $226,461,518,709,800$
Analogue to Digital Converter Board 709
Apple II Real Time Clock 461,518Beat the Relay226Car Intruder Alarm644
Cyclic Redundancy Check for the Acorn Atom 518
Dual Power Supply
Eprom Programmer for the TRS-80 \& Genie 518
Multimod 800
Speech Synthesiser for BBC Micro 800
Transistor Tester 518
RADIO WORLD by Pat Hawker 49, 98, 182, 230, 310$382,446,536,605,659,742$
Cost of TV. Cable Vision, CB Success42
Exit the Pirates, Telecommunications Bill 98
The Electronics Epoch, Crystal-Ball Gazing 182
Your Personal Humanoid, Vintage Valves The Young Tutor 230
Cost of Quality, A.M. and CB, Teddy on the Dole 310
SW Broadcasting, Sporting Ploy, Teletext 10 382
RTTY Legal Maze, Vintage Form-Filling446
European DX Council, CB Collapse, Long Distance TV, Topic in the Air 536
Japanese No-code 605 659
Age of Contestants, Talkabout, Radio Marti
Standing Hazard 742
Where have all the viewers gone, Tiny TV, Pen Radlos 829
READERS' LETTERS 226, 297, 387, 445, 506, 608,662, 747
SHOP TALK by Dave Barrington $23,85,145,217,281$,$369,427,487,565,629,703,801$
SCHOOL RADIO CLUB by D. J. Fry 444
SEDAC 1983 592
SEDAC 1984 $645,715,813$
TRANSISTOR DATA 312
WIRE BENDING GAUGE 156

SPECIAL INSERTS AND OFFERS

WIRE BENDING GAUGE (Cover Mounted) March 1983
FREE TRANSISTORS-BCY65EP-2N4123
(Cover Mounted)
May 1983

VERO MICROBOARDS (Special Offer)
May 1983 SMOKE DETECTOR/FIRE ALARM (Special Offer) June 1983 EAGLE KEW7S MULTIMETER (Special Offer) October 1983

The

Proto- Board
Now circuit designing is as easy as pushing a lead into a hole . . No soldering No de-soldering No heat-spoilt components No manual labour No wasted time

For quick signal tracing and circuit modification For quick circuit analysis and diagramming
With or without built-in regulated power supplies
Use with virtually all parts - most
plug in directly, in seconds.
Ideal for design, prototype and hobby

N0	${ }_{\text {NO }} \mathrm{MODE}$	$\begin{aligned} & \text { NO OF } \\ & \text { SOLDERESS } \\ & \text { TIEPOINTS } \end{aligned}$	${ }_{\text {chapactiv }}$ 114 pmol 01 Ps	${ }_{\text {URIICE }}^{\text {UNTI }}$	$\left\lvert\, \begin{aligned} & \text { PRICE } \\ & \text { RNC PAP } \\ & 15 \% \text { VAT } \end{aligned}\right.$	OTHER featuris
1	P86	630	6	11.00	13.80	Kir
2	P8100	760	10	14.25	17.53	Kit
3	PB101	940	10	19.65	24.32	
4	${ }^{\text {P8B102 }}$	1240	12	24.95	30.41	
6	${ }^{\text {P8103 }}$	2250	24	40.95	48.81	
7	P8105	3560	32	59.45	61.46	
8	P8203	2250	24	76.00	89.97 8.70	
9	PB203A	2250	24	105.00	124.20	$5 \mathrm{~S} @ 1 \mathrm{~A}$ $5 \mathrm{~V} \pm 15 \mathrm{~V}$
10	PB203AK	2250	24	85.00	100.05	$5 V=15 \mathrm{~V}$

Tomorrow's tools for today's problems
GLOBAL SPECIALTIES CORPORATION

G.S.C. (UK) Limited, Dept. 4 U Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex. CB11 3AQ. Telephone: Saffron Walden (0799) 21682 Telex; 817477

TEACH-IN 84

Once again GREENWELD will be supplying a complete set of parts for this ever popular series - as we have done for all previous series.
Our experience in this field means your kit can be supplied from stock at the best possible price, so order with confidence. Price for complete kit is only $£ 18.95$ inc post and VAT

MOTORIRED GEARBOX These units are as used in a computerized tank, and offer the
experimenter in robotics the experimenter in robotics the opportunity to buy the electromechanical parts required in building remote controlled vehicles. The unit magnetic clurch, thus enabling turning of the vehicle, and a gearbox containg within the black ABS housing, reducing the final drive speed to approx 50rpm. Data is supplied with the unit showing various options on driving the motors etc. 55.95 . Suitable wheels also available: $3^{\prime \prime}$ Dia plastic with black tyre, drilled to push-fit on spindle. 2 for $£ 1.30$ 3 mm thick. drililed to pushofit on spindle. 2 for 68 p.

1 PRICE
 2 SALE

RBBBON CABLE
Special purchase of multicoloured 14 Way ribbon cable - 40 p/metre; 50 m £18; 100 m モ32.00; 250m 665.00 TIL PANELS
Panels with assorted THL inc LS types Big varietr. 20 chips $£ 1.00$; 100 chips E4.00; 1000 chips 830.00 .
"THE SENSIBLE 64" David Highmores new book on the Commodore 64 now available. $\mathbf{£ 5} .95$.

THE 1984 GREENWELD CATALOGUE

Now in the course of production, the 1984 GREENWELO Catalogue will be published in November. It's Bigger,
 than ever before. With each copy there's discount vouchers, Bargain List, Wholesale Discount List. Bulk Buyers liss. Ordif now for earty delivery

COMPUTER GAMES
2901 Can you foliow the flashing lighU pulsating tone sequance of this famous game? Supplied as a fully working PCB instructions. Only £4.95 2902 Probably the most popular electronic game on the market - based battleshio game, this computerized version has brought h bang up to datel version has brought k bang up to date
We supply a ready built PCB containing 76477 sound effect chip. TMS 1000 micro-processor chip. R's, C's etc. Offered for its component value only (board may be cracked or chipped, it's only $\mathbf{E 1 , 9 5}$. Instructions and circuit, 30p.

TREAT YOURSELF TO A NICE NEW DIGTIAL MULTIMETERI! KD55C A DVN for the professional this 3 digit multitester has overload protection, low battery and over range indication. Full auto polarity operation.
AC Vorts: 0.2-700
DC Vors: 0.2-1000
AC Current: 200UA-10A
DC Current: 200ua-10A
Total 28 ranges for lust $£ 44.95$
Any of the goods listed below - for every one bought at full price, another may be purchased at HALF PRICEII (Offer ends Jan 31st 1984)
PACKS! PACKSI PACKSI K 517 Transistor Pack. 50 assorted full Spec manked plastic devices PNP include BC114, 117, 172, 182, 183, 198, 239, 251, 214, 225, 320
 Retail cost $£ 7+$. Special low price 275p
K523 Resistor Pack 1000 - yes, 10001 and it wat 5% hi-stab carbon film esistors with pre-formed leads PCB mounting. Enormous ange of preferred values from Onty 250 p. $5000 £ 10 ; 20,000 ~ £ 36$.
K520 Switch Pack. 20 diffferent assorted switches - rocker, slide, push, value at only

K522 Copper clad board. All pieces too smail for our etching kits. Mostiy lapprox 110 sq insl for 200 g 541 its backll Our most popular pack ever - Vero offtcuts. This has been estricted for some fime, but we have now bult up a reasonable stock and can once again ofter 100 sa ins or vero copper clad ficuls. avera sid ax new board

K530 100 Assorted polyester caps - al hew madern components, radia and axia leads. All values from 000011 Super value at 395 p

602 Electrolytics - all long leaded radial type - most values from 16 V gag of 100 assonted $\& 3.50$

GREENWELD

443D Millbrook Road Southampton SO1 OHX Tel (0703) 772501
ALL PRICES INCLUDE VAT; JUST ADD 60p P\&P

FREE CAREER BOOKLET Train for success, for a better job, better pay

Enjoy all the advantages of an ICS Diploma Course, training you ready for a new, higher paid, more exciting career.

Learn in your own home, in your own time, at your own pace, through ICS home study, used by over 8 million already!

Look at the wide range of opportunities awaiting you. Whatever your interest or skill, there's an ICS Diploma Course there for you to use.
Send for your FREE CAREER BOOKLET today-at no cost or obligation at all.

TICK THE FREE BOOKLET YOU WANT

NEW ITEMS FROM OUR BARGAIN LIST

Screwits enable wires to be quickly ioined and insulated in
one simple operation without screwdriver or pitiers. Ideal
tor hooking up experlmentral cirruwtits but quifit sate to use
inside merai or plastic boxes tor loining mains witho
inside metal or plastic boxes for loining mains wirfing.
Sample pack, 5 large, 5 smatl
2 Kw immersion heater -10 " tong standard mounting

adaptable to 1 hr or $1 / \mathrm{h}$ n
mouming $\%$ sppindie
BC 102 Twin Adaptors for operazing Christmas wee lights
Mult rom a lamp holder Stand - 101 Ior
Multime ter Siand - oneat plastic adiustabie holder. Ideal
lor pocket sized multimeter calculator eqc. Makes it so

instrument from being dam aged
PP3 Replacer Kit comprising plastic ease transformer.
rectifiers, condensors, and wring diagr am
Fining staples - always useful to have a tew of these around
The thouse. Corsist of hardened pin on plassic piece shaped
to take cablie. Various sizes to suit wires from spoaker
Trigger Mats - a simple and sure way of setung oft -

aism. 1
24×18
2
Wait Mounting Thermostat by Danfoss has a really pretty
2 tone grec case weth circular whitits scale and dial. Serting
.
Therro Couple Prod - when used with a sultabie minl-.
val meter this could be used to find the centie tempere.
vires of sav, meat or llquilds
tur
Complete kit of parts for athree channel sound to light unit
comrolltho over 2000 watts of lighting. Use this at home if you
controulng bver bentr rughs enough lor disco work. The unit is
housec in an atractive two tone meral case and has controls for
each channel, ond s master on/oft? The audio input and outpur
are by $\%$ "sockets and ihree panel mounting tuse holders provide

assembled and teste.
12 volt MOTOR BY SMITHS

3 CHANNEL SOUND TO LIGHT KIT
 2028
 CHANNEL SOUND TO LIGHT KIT
 22084

 controlling over 2000 watts of lighting. Use this at home if youwish but it is plenty rugged enough for disco work. The unit housed in an atractive iwo tone metal case and has controls for
each channel, and a master on/off. The audio input and outpur are bristor protection. A four pin plug and socker taciliters provic ansembled and teste

12 volt MOTOR BY SMITHS

Ditto, bur doubtie endeo $£ 4.25$.
Ditto, but permanent magnee $£ 3.75$.

Ditto, bur double ended $£ 4.25$.
Ditto, but permanent magnet $£ 3.75$

EXTRA POWERFUL 12 v MOTOR | Probsbly develope up to $\% \mathrm{~h} . \mathrm{p}$. so it could be used 10 power |
| :--- |
| go-kart or to drive a compressor, etc. $~$ |
| $7.95 \$ £ 1,50$ post |

THERMOSTAT ASSORTMENT

10 oifterent the Amostass. 7 bi metal itypes and 3 Ilquid types.
There are the current stats which will open the swirch to prote
 in front of the olement of a blow hear
the stat if the blower fuses; appliance eratures, others adjustable over a renge of temperatures which could include $0-100^{\circ} \mathrm{C}$. There is also a thermostatic pood which
can be immersed, an oven stat, a calitrated boiler stat, finally an ice stat which, fitted to our waterproof heater element, up in th
loft could protect your pipes from freezing. Separately, these thermostats could cost around $£ 15.00 \cdots$ however, you can have

- bargain of the year

The AMSTRAD Stereo Tuner.
This ready assembied unit is the ideal funer for s mustic
centre or an amplifier, it can a so be quickly made into

give vou superb recepit.
OTher uses ore as e" "get vou ro sleep radio". Vou could even
take it with you to use in the lounge when ine rest of the
treke it with you to use in the lounge when the rest of
fanily want to view programmes in muich vou ure not
interested. You can lisen to
Some of the features are: 100 g mave band $115-270 \mathrm{KHz}$, medium wave Lend $525-1650 \mathrm{KHz}$, FM band 87 -
108 MHz , mono, stereo AFC switcholo, funling meter to give You soot on stereo funing. optional LED wave ba
indicator, fully assembled and fullyaligned Full min indicator, hully assembled and fully aligned. Full wiring
UP data showng you how to connect to amplifier or hea up enes showny you how to connect to amolitior or headseriol it incluted for medium and long wave bends. All
madie up on very comoccu board
\qquad
Oltered et ofraction of itu cost: only $£ 6.00$

THIS MONTH'S SNIPI
 12v DRILL WITH CHUCK to take up to 2.5 mm drills

REVERSIBLE MOTOR WITH CONTROL GEAR
 size anproximatev
power Iul motor, almost impossibibe to stop. Ideal for operating

E19.50 plus postage e2.50
Why not make vour greeting card play a tune? It could play

 makting cards musitai. Mini microchip speaker and batier with
switect thot operates as te cord in opened. Please state tune when REEL TO REEL TAPE DECKS
Ex-LL

 MAINS CLOCK SWITCH

 6V POWER SUPPLY UNIT
neat plastic case only $£ 1.15$ each but ma out ©ut. Enclosed in neat plastic case only $£ 1.15$ each, but we are of fering these ar
such a sill price because they are intended to plug into shever sockets but it is ox simple matrer to remoeve the pins and solder on tlex lead. The 6x outrut termination is 3.51 seck plug.
thus making it suitable tor many cassetres and radios. APRESTEL UNIT, brend new

WATERPROOF HEATING WIRE 100 ohms per yard, this is then covered with pre. Dozens of usees
around water pipes, under grow boxes.
glowes and socks Price: 23 p per merre. TIME SWITCH BARGAIN
 thete with knobs FOR ONLY E2.50.

ROPE LIGHT
4 sets of coloured lamps in translucent plastic tube arranged io
give the appearance of a running or travelting light. With varibole speed control box, ideal for difsco or shop window dieplay.

50 THINGS YOU CAN MAKE

 Things you con make include Multi range meter, Low iron minder. Thio mav telephone, Memory logger, Live parcel contains not less than 1.000 trems. -panel meters
timers, thermal trips, relays, witches, motrass, drits, ala
 and dies, trois, thermostats, colls, condensers, resistors,
neons, earphone/microphones, nic aco charger, power unit. YOURS FOR ONLY $£ 11.50$ plus $£ 3.00$ post.

MINI-MULTI TESTER Deluxe pocker size precision mov
 Continuity and resistance 0.1 meg ohm
in tino ranges. Complete with test proos in twitarges. Complete with hest prods
and instruction book thowing how to Measure cabacity end induct Pance as neul
Unbelievable yolue at only $66.78 \% 60$

FREE Amps range kit ro emab you to ead dCc current from 0
10 amps. directil on the $0-10$
 Mink.7.ester and would 11 ke one
send Ez.50.
J. BULL (Electrical) Ltd.
 hail order terms

$4 \times x 4^{4 . M}$ Mufin 230
All here boove oxecomputer

9" Americon made
Tangential Blower 10x

TANGENTIAL BLOW HEATER

plete mith 'cold 'half' and
'Ful' heat switch, satety

cur out and connection dig
Please add post E 1.50 for
2.5 Kw KIT Still available: $\mathbf{E 4 . 9 5}+\mathbf{E 1} 1.50$ pos

BLEEP TONE T
CONNECTING WIRE PACK 48 Iengths of connecting wire, each 1 metre long enc difterently colour co
those difficult interconnecting iobss. 85 s the iot.
GPO PLUG \& SOCKET ideal for connecting extenslo

RED LEDS 10 for $\mathbf{6 9 p}$. 100 for 55.75 .1000 for E 52
IN LINE SIMMERSTAT ideat heat controller for sorderin

IONISER KIT Reftesh Your home, office, shop, work room, etc. with negsive ION generator. Makes you feel better and work

OTHER POPULAR PROJECTS

	¢14
R C Bridoe Kir	€9.95
3 Channel Sound to Light - with fully prepared metal cas	E14.9
Ditre - made up	¢25.00
Big Ear, listen through walls	¢9.5
Robot controlter - recelver/transmitter	¢9.50
Ignition kit - nelos starting. saves petrol, Improves performance	¢13.95
Silent sentinel Ulira Sonic Trenumitrer end receiver	¢9.50
Cer Light 'left on' slarm	c3.50
Sectet switch - toots friends and enemies allike	95
3-30w Verioble Power Supply	£13.80
2 Short \& Medium wave Crystal Radio	. 99
3v to 16v Malins Power Supply Kit	E1.95
Light Chaser . . . - three modes	E17.50
Mullard Unilex Hifi stereo amplifier with speakers	¢16.75
Radio stethoscope - fault finding sid	4.80
Mug siod - emits piereing squark	c2.50
Morse Trainer - complete with kev	¢2.99
Orill control kit	63.95
Drill control klt - made up	¢6.95
Interrupted deam kis	£2.50
Transminter surveillance kit	¢2.30
Racio Mike	
FM receiver kit - for surveillance or normal FM	¢3.50
Seat Belt reminder	¢3.00
Car Starter Charger Kit	¢15.5J
Soit hester for plantu and seeas	£16.50
Insulation Tenter - eloctronic megger	¢7.95
Batrery shaver or fluerescent from 12v	E690
Matchbox fastio - receiver Medium Wave	¢2.95
Mixer Pre amp - disco special with cose	c16.00
Aerlal Poteter - mains oversted	£29.50
Aerie direction indicator	E5.50
40 wotl amp - hlif $20 \mathrm{hz}-20 \mathrm{kHz}$	59.50
Microvolt multioliet - measure verv low currents with ordinary multitester	E3.95
Pure Sino Wove Generator	f5 75
Linear Power output meter	£11.50
115 Waft Amolifier 5 Hzz 25 kHz - -	£13.50
Power supply for one or two 115 watt amps	E17.50
Stereo Bess Booster, most liems	¢8.95

Build and test your own circuit with the New Verobloc Kit

Try the new prototyping method of building and testing circuits with the Britishmade Verobloc kit. It consists of:

1. Verobloc. 2. A pad of design sheets for planning the circuits. 3. A component mounting panel for the larger components, i.e. switches, etc

You can expand the circuit area by simply interlocking two or more Veroblocs and, of course, with normal usage, they can be used time and time again without damaging contacts or component leads. The glass nylon material is virtually unbreakable and able to withstand temperatures from $-60^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$.
So take advantage of our special price of $£ 5$ per kit (including VAT) by completing the coupon below, or telephone (04215) 62829 (24 hours). This offer closes December 31st, 1983.

SOLDERING/TOOLS

SAW BLADE
BURR
VERO SPOT FACE CUTTER
PIN INSERTION TOOL
VEROPINS (pk of 100) 0.1
MULTIMETER TYPE 1 (1,D00 OPV)
CROCODILE CLIP TESTIEAO

with 20 clips COLOUR
CALCULATOR WIRE PACK TVPE
COLOURI ILUMATED MAGNIFIERS
Small 2^{*} dia. ($5 \times$ mag $)$
Large ${ }^{*}$ dia. (4x mag)
CAST IRON VICE
CAST IRON VICE
SCREWDRIVER SET
POCKET TOOL SET
DENTISTS INSPECTION MIRROR
JEWELLERS EYEGLASS

Speakers Min 8 ohm 87p; 64 onm 89p; 80 ohm 98p.
Crystal oarpiece
Stethoscope attachmont
Mono hesdphonez
Storeo hasdphones
Min buzzer 6 V 50 p . 12 V 65 p .
Euro breadboard
S Dec bresdboard
Bimboard braedboar
Verobloc breadboard
MAGENTA ELECTRONICS LTD.
Type
Eurobreadboard
Eurobreadboard
PCB
Bimboard 1
Bimbusstripe
Bimboard PCB
Bimboard Layout
Pad
MPUrobread-
board
Bimboard
Designer
0

Number of Contact Points 500

500

550

IIM	2701	178	76	210	38.5	70
IM	2702	280	102	210	38.5	70
1120						

IM	2703	381	102	210	38.5	70
	1120					

IM	6006	170	555	143	31.5	375

BIMSALES

Dept EE1, 48a Station Road, Cheadle Hulme, Cheadle Cheshire, SK8 7AB. Tel: 0614856667

Please mention
EVERYDAY ELECTRONICS

When replying to

Advertisements

E.E. PROJECT KITS

TEACH IN 84

ware, electro
includes the project issue of E.E. which order the instruction - vou will need to 50 p each. Reprints
50 p each + pap 50 p.

SPEECH SYNTHESIZER FOR BBC MICRO

 TEMPERATURE TRANSDUCER AMP Oct. ${ }_{83}{ }_{8}^{3}$ LLECTRONTC PENDYM less wire $\&$ hardware for electromagnet
DKGITAL TO ANALOGUE BOARD Oct 83 IT 9.98 HIGH POWER DAC ORIVER
Case TO D CONVERTER FOR RM3802 Sepr. 83

case
STORAGE
SCOPE INTERFACE FOR BBC M1-
E8. 98

 BOARD Aug 88 no case
HGH POWER INTERFACE BOARD Aug 89 no
80
 USER PORTIO BOARD less Cable \ddagger Plug 57.54 able + plu CONTROL BOARD July 83 less SULSE GENERATOR JUIV 83 INARY BANDIT GAME July 83 less case ERE.98
EPROM PROGRAMMER Jun 83 less sotwer
 TRANSISTOA TESTER JUn. 83
ENVELOPE SHAPER JUn. 83 less case
E26.31 ENVELOPE SHAPER JUN 83 less case E11.21
 MODEL TRAIN CONTROLLER MV 83 ET25 17 GUITAR HEADPHONE AMPLIFIER May 8337.20
MW PERSONAL RADIO less case. May 83 f6.93 ABORATOAY AMPLIFIES Mes. 8 B3 \quad E30.98 MOISTURE DEETCTOR May 83 FUNC TION GENERATOR AJRII 8 LANGER SOND EFFECTS ADRH 83 X SPFCTRUM AMP LIFELEA APril 83 BUZZ OFF March 83
SPEECH PROCESSOA Fel
USH BIKE AL ARM Feb 83
LECTRONIC VAM METER DeC 8
X TAPE CONTROL Nov,
G. P. PRE AMP OT ${ }^{2}$

IGHTS ON ALERT OCL
CONTINUITY CHECKER Sept.
SOUND SPITEEA SED SOUND SPLTTTEA Sept 8
SOUND AECOMBINEA SCREEN WASH DELAY Sepp
STEN INSTRUMENT PRE AMP AUP 82 2. WAY INTERCOM July 82 no case
TWO TONE TRAIN HORN WTH
8.11 TRIGGER OPTION May 8 CAR LEO VOLTMETER less case May 82 2ez CAMERA OR FLASH GUN TAIGGER MAR 82 POCKET TIMER Mar. B SIMPLE STABILISEO POW

MINI EGG TIMER. Jan 8
SIREN MODULE Jan 82 less soeaker GUITAA ADAPTEA DEC 81 ELECTRONIC IGNITION Nov PRESSURE MAT TRIGGER AL ARM Nov. 81 EXPERIMENTER CRYSTAL SET Nov. 81 liess Heriad
CAPACITANCE METER Oct. $81 \quad$ E2.98 extra SUSTAIN UNIT OCt 81
TAPE NOISE UMITO

MORE KITS AND COMPONENTS IN OUR LISTS

REE PRICE LIST
 KITSS PCDS
COMPONENTS
heads and talls game
CONTINUITY TESTER
HOTO FLASH SLAVE
FUZZ BOX
OPTO ALARM
OPTO ALARM
O.12V POWER SUPPLY Sepr 81 CMOS DIE Sepl ${ }^{\text {日 }}$ CME ALA COMBINATION LOCK July 81 less case $\varepsilon 8$ Lop \& Mices LiGHTS REMINOER AND IGNITON LOCATOA E.EIM MYY 81 THUAE INDIC ATORE.E. May 81 E4.06
 PHONE BELL REPEATER/BABY ALARM E. SIMPIE TRANSISTOR \& DIOOE TESTERS Ma led version

IINI SIIEN Mar, 8

ED DICE Mar. 81 POWER SUPPIY Mar. 81 ${ }_{81} \mathrm{E6} 64$ 3 CHANNEL STEREO. MIXER Feb. 81 Hi. Cd BATTEAY CHARGER Feb 81 less case GUTAR PRACTICE AMPLIFIER Nov. 80 12.22 less Case. Standard case extra
OUND TO LIGHT Now 803 OUNDISTOR TESTER Nov Bo AUDIO EFFECTS UNIT FOR WEIRD SOUNO IRON HEAT CONTIOL OCt BO
THENOGC PROBE Seot 80
ZENE DIODE TESTER JUn. 80
SIGNAL TYACEA JJen Bon. 80
BATERY VOLTAGE MONITOR May Bo CABLE \& PIPE LOCATOR less coil lorme KITCMEN TIMER Mar. BO
STEREO MEADPHONE ${ }_{\text {MICRO }}^{80}$ MUSIC BOX FOB. 80
Case extr
SLIOETTAPE SYNCHRONISER Feb 80 MORSE PRACTICE OSCILLATOR Fob SPRING UNE REVERE UNIT JJn 80
UNIBOARD BURGLAR ALARM D UNIBOARD BURGLAR ALIR Jan. 80 Doc 79 E25.86
E6.03 CHASER LIGMTS Sept
Suirable mic \& pliug ex
WARBLING TMED Ausfa 19
ELECTRONIC CANARYY JIT. TRANSISTOA TESTER AOF. 79
ONE TRANSISTOR AADIO ${ }^{\text {CaSE }}$ MCROCHIME DOORBELL Feb 79 THYRISTOR TESTER Feb 79 HEAPHONE ENHANCEA
FUSE CHECKEASODT 78
SUND TO
SOUND TO LGGHT Sep
St
Sept. 78 RIGAL GENEPato inicato

 WEIRD SOUND EFFECTS GENERATOR E1.98 T8EIRD SOUND EFFECTS GENERATOR Mar
AUDIO VISUAL METRONOME Jan. 78 E5.59 ELECRONIC TOUCH SWITCH Jan 78
RAPIO
E2.73

17,98

87.99

5823

* NEW SERIES - ALL COMPONENTS IN STOCK NOW FOR * FAST DELIVERY. All top quality components as specified by * Everyday Electronics. Our kit comes complete with FREE * COMPONENT IDENTIFICATION SHEET. Follow this education* al series and learn about electronics - Start today.

* MAGENTA'S TEACH IN KIT INCLUDES ALL OF THESE TOP *

* QUALITY ITEMS: resistors, pot, capacitors, semiconductors, * varicap diode, leds, ferrite rod, sockets, crystal earpiece, termi* nal blocks, wire and of course 2 breadboards. PLUS A FREE * COPY OF OUR CATALOGUE \& PRICE LIST. AVAILABLE NOW * TEACH IN 84 KIT. £18.98 inc VAT. P + P 50p. Send now for * fast delivery. Reprints of previously published parts 50p each. * Official school/college orders welcome.

BOOKS: ELECTRONICS \& COMPUTING

First Book of HI -Fi Loudspenk
28 TTested Transistor Project
50 50 Projects Using IC CASi3130
A Practical Introduction
 Essen Essentiol Theory for the Electronics Hobbyiss 50 IFET) Field Effect Transistor Prolects $\mathrm{E1}$
How to Design and Mathe Your Own PCBs
Fun with Electronics
How to Make Walkie-Tolkies
Projects In Opro-Electronics
Moblle Discotheque Handbook
Electronic Projects for Beginners
Popularic Electronic Projects
Electronic Security Devices
Electronic Security Devices
50 Clrculis Using 7400 Series IC
Beginners Guide to Digitel Techniq
Trinsistor Radio Faulf-Finding Chart
Electronic Household Projects Electronic Test Equipment Construction 11.75 Aadio Control for Beginners Popular Electronic Circuits Electronic Synthesiser Projects
Electronic Projects Using Solar Electronic Projects Using Solar Cells
International Transistor Equivatents Guid

Electronic Projects for Cars and Boats $£ 1.95$ Popular Electronic Circuits - Book 2 Multi-Circuit Board Projects
 Handbook of Integrated Circuits
Solid Stat s) Equiv. \& Substitut Solid State Short Wave Recelvers for Beginners
Beginners Guide to Building Electronic Projects Beginners Guide to Building Electronic Projects
First Book of Trensistor Equivients and Substitutes
Second Book of Trassistor Equivalents Second Book of Transistor Equivalents and Substitutes Charr of Radio, Electronic. Semi-conductor and Logic Symber
How to Build Youn 50 Circuits Using Germanium, Silicon and Zener Diodes 50 Projects Using Relays, SLR's and TRIACS Electronic Music and Creative Tape Recordings Practical Electromics Calculations and Formulae
How to Buld Your Own Solid Siate Oscillosco Practical Construction of Pre-amps. Tone Controls, Fitters \& Att Beginners Gulde to Microprocessors and Computing Counter, Driver and Numeral Display Projects
An Imroduction To BASIC Programming Techiques 30 Solderless Breadboard Prolects - Book ?
How to Get Vour Electronic Projects Working How to Get Your Electronic Projects Workin
Practical Electronic Buldding Slocks - Book 1 Practical Electronic Building Slocks - Book 1
Practical Electronic Building Blocks - Book 2
Elementary Electronics, Sladdin. Excellent theory and
propects. Uses S.Dec First steps to CSE level.
Intertacing to Microprocessors and Microcomputera The Art of Prog the ZX Spectrum Besic Electronics. Theory and practic Burglar Alarm Systerns Electronics, Build and Learn Electronic Projects in Music
Electronic Project in Phot Electronic Projects in Photography Electronic Projects for Home Securi
Ouestions and Answers Electronics Electronic Projects in the Car
20 Solid State Projects Car 20 Solid State Projects Car and Garage
110 Electronic Alarm Projects Computing is Easy

2×81 Users Handbook 2X81 Users Handbook | 2×81 Besic Book |
| :--- |
| $50 \mathrm{Cmos} J C$ | 50 Prose JC Proiects

52 Projects using IC741
IC555 proie 52 Projects
IC555 Proie.
IC $\underset{\text { Single IC Projects }}{ }$ Single IC Project
Electronic Gome A Microprocessor Primer
Remote Control Proiects. Remote Control Projects
Electronic Music Projects Electronic Music Projects
Power Supply Projects Vowes Supply Pr
VMOS Projects Digital ic Projects
How to use Op.Amps How to use Op-Amps
Audio Projects
Electronic Timer Projects Electronic Timer Projects
Model Railway Projects Model Railway Projects
IC Pro jects for Beginners
Mini Matrix Board Projec 1C Projects for Beginners
Mini Matrix Board Projects
Aerial Projects
Modern Op-Amp Projects
The Pre Computer Book
Electren
More books in our price lis

CHRISTMAS DECORATIONS THREE Project kits
Same sty as insual E.E. Carne sty as usuar E.E. print incluoded m pro Drice. Please use CM1. TWINKLING STAR DECORATION f6 98
exite 5389
CM2. TABLE
CM3. TAEE LIG.GTS CM3. TAEE LIGHTS
FLASHER E12.54

INTRODUCING

 ELECTRONICSINTRODUCING ELECTRONICS
6 part series E.E. Oct. 82-Mar No soldering. Connections via screv terminal blocks. Very clear drawings
showing how to connect components. Covers the basis of electronics f6.98. Reprints 50p each extra

30 SOLDERLESS BREADGOARD PROJECTS Clear verobloc layouls and circuit diagrams.
Includes fuzz box, radio, metronomes, timers. transistor checker, radio, metronomes, timers, ing resistors, capachors, I. comp, transistitors, inclu ngoll
tooells etc. Ideal for beginners as well as tho With some experience

ADVENTURES WITH

 dIGITAL ELECTRONICSADVENTURES WITH MICROELECTRONICS

Entertaining and instructive Includes details of
some digrat IC's and 8 profects: shooting gal lery, 2 way traffic lights. electronic adder, com
puter space invaders game etc. No soldering Adventures with Digital Electronles Book $\mathbf{E 3} .25$
Componem pack including Breadboards
$\mathbf{E} 4250$ less batteries

ADVENTURES WITH ELEOTRONIGS By Tom

An easy to follow book suitable for all ages. Ideal for beginners. No soldering, uses an S Dec Breadboard. Gives clear instructions with lots of pictures, 16 projects - including electronic components and how clrcuits work. Component pack includes about breadboard and all the components for the projects.
Adventures with Electronics $£ 2.85$. Component pack $£ 18.98$ less batte

Miscellaneous

DOUBLE REGINNER'S KIT. A light-activated switch plus a lamp dimmer/d.c. motor speed controller. Two P.C.B.'s plus components, diagrams, useful applications. $£ 7.50$ inclusive. E.I.D. \& C. (J.F. Gregory), Loweswater Road, Burlish Park Estate, Stourpor, DY13 8LL

PCB's MANUFACTURED TO YOUR DESIGN, any quantity. Write for free quote. 6 Birchwood Drive, Heathfarm, Shrewsbury, SY1 3DX.

BARGAIN PACKS. PCB's, components, pots, presets, toggle switches, terminals, heatsinks and much more. $£ 5.00$ incl. or bumper pack $£ 10.00$ incl. Send Chqs, PO's, BC/AC to: BIEM Limited, 28 St . Benedict Street, Norwich, Norfolk, NR2 4OA. Tel: 614254.

ELECTRONICS WITHOUT SOLDER

Build electronic circuits without solder on a Roden S-Dec
This has built-in
contacts and holes into
which you plug your components Sultable for all ages. Can be used time after time. Ideal gitt for students or experimenters. Full Instructions and 2 circuit diagrams with each Seno ctieque or P. O. to naty Masch Deventry Morthanls. MWII $40 E$

Courses

CONQUER THE CHIP-master modern electronics the practical way by seeing and doing in your own home. Write for your free colour brochure now to BRITISH NATIONAL RADIO \& ELECTRON ICS SCHOOL, Dept C3, Reading, Berks RG1 1BR.

EVERYDAY and computer Projects

Reach effectively and economically to-days enthusiasts anxious to know of your products and services through our semi-display and classified pages. Semi-display spaces may be booked at $\{7.80$ per single column centimetre (minimum 2.5 cm). The prepaid rate for classified advertisements is 33 pence per word (minimum 12 words), box number $60 p$ extra. All cheques, postal orders, etc., to be made payable to

Receivers \& Components

300 SMALL COMPONENTS, including transistors, diodes $£ 2 \cdot 20 ; 7 \mathrm{lbs}$ assorted components $£ 6 \cdot 00$; fifty 74 series I.Cs on panel $£ 2 \cdot 20$; post paid. List 25 p refundable. J.W.B. RADIO, 2 Barnfield Crescent, Sale, Cheshire, M33 1NL.

BUMPER BOX OF BITS

wowl!! We've got so many components in stock we can't possibly list them all! - So buy a box, in it you'll find resistors, capacitors, displays, switches panels with transistors, diodes, IC's etc, coils, pots.. and so on. All modern parts - guaranteed at least
1000 ltems, minimum weight 101 bs . ONLY 88.50 inc.
"JUST OUTI 40 page catalogue ONLY 50 p." ELECTRONICS WORLD
1d Dews Road, Salisbury, Wilts, SP2 7SN (Prop: Westbrough Ltd)

ELECTRONIC COMPONENTS MERSEYSIDE, Myca Electronics, 2 Victoria Place, Seacombe Ferry Wallasey, L44 6NR. 051-638 8647.

> NOW OPEN IN NEWCASTLE For the best in Electronic Components, Test Equipment and Accessories. MARLBOROUGH ELECTRONIC COMPONENTS 15 Waterloo Street. Newcestle NE1 4DE Tel. 61837 Open 9am-6pm Mon-Sat. Easy Parking Stockisss of: Transistors, Resistors, Capacitors, I.C. Diodes, Electronic Books, Etc.

Abstract

AERIAL BOOSTERS Noxt to the set fitting B45H/G-UHF TV, gan about 20dbs, Tunsble over the complete UHF TV bend. PRICE £8.70. BII-VHF/FM RADIO, gain about ladbs, when on the of pasition connects the aerial direct to the radio. $\mathbf{~ 7 7 . 7 0}$. All Boostars we make work of a PP3/006p/GF22 type batten or \&V to 18V DC. P\&P 30p PER ORDER. ELECTRONIC MALL OROER LTD, 62 Bridge St, Ramsbottom Lancs 8LO 9AG. TEl (070682) 3036

TURN YOUR SURPLUS capacitors, transistors ctc into cash. Contact Coles Harding \& Co., 103 South into cash. Contact Coles Harding \& Co., 103 South
Brink Wisbech, Cambs. 0945-584188. Immediate Brink Wisb
settlement.

RESISTOR PACKS FOR ALL PROJECTS

t watt carbon film resistors $5 \% 1$ ohm to 10 M E24 series. Packs of 10 each value (1690 resistors) $£ 12.50$. Your choice of quantities/ values 100 for $£ 1.00$. VAT and Post Free.
GORDON HALLETT

20 Bull Lane, Maiden Newton,
Dorchester, Dorset DT2 0BO.
MERCURY TILT SWITCHES. Suitable for 'Distress Beacon' (E.E. Sept. '83) and many other projects. Supplied with free leaflet detailing use as normally-open, normally-closed, changeover or omnidirectional switch with information for use as 'Audio Spirit Level,' Car Brake Efficiency tester, Automatic Car Boot Light, Intruder Alarm etc, $£ 1.50$ ea., 3 for $£ 4,10$ for $£ 10$ P\&P free. MODULUS, (B. J. McNaughton), 45 Camplin Cres cent, Handsworth Wood, Birmingham, B20 1LT

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS

Please insert the advertisement below in the next available issue of Everyday Electronics for Insertions. I enclose Cheque/P. 0 for $£$ (Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Everyday Electronics)

NAME ADDRESS

EVERYDAY ELECTRONICS

Classified Advertisement Dept., Room 2612
King's Reach Tower, Stamford Street, London SE1 SLS Telephone 01-261 5942

Rate:

33p per word, minimum 12 words. Box No. 60p extra.
Company registered in England. Registered No. 53626. Registered Office: King's Reach Tower, Stamford Street, London SE1 9LS.

AT YOUR SERVICE

Everyday Electronics and Computer Projects and crossed "Loyds Bank Lid." Treasury notes should always be sent registered post Advertisements, together with remittance, should be sent to the Classified Advertisement Department, Everyday Electronics and Computer Projects, Room 2612, IPC Magazines Limited, King's Reach Tower, Stamford St, London SE1 9LS. (Telephone 01-261 5942).

Security

burglar alarm equipment. Free calalogue. C.W.A.S. Ldd., 0274-308920, showrooms open 9-5, Mon-Sat.

> SECU-ITY
> Alarm Systems
> free compremensive cataloguei
> - LOWEST DISCOUNT PRICES - HIGHEST OUALITY EOUIPMENT
> - FREE diY design guide
> - fully illustrated
> - MICROCHIP CIRCUITRY
> - quick despatch Service
> - full instructions SEND SAE OR PHONE
> C-TEC SECURITY, Dept EE
> 60 Market St. Wigan WW
Telephone (0942) 42444

Service Sheets

BELL'S TELEVISION SERVICE for service sheets on Radio, TV etc. $£ 1.50$ plus SAE. Service Manuals on Colour TV and Video Recorders, prices on request. SAE with enquiries to: BTS, 190 King's Road, Harrogate, N. Yorkshire. Tel: 042355885.
COMPLETE, FULL SZE SETS ANY PUBLISHED service sheets $£ 2$ \& Isae, except CTV s/Music Centres
from $£ 3$ \& Isae . Manuals from 1930 to latest O from $£ 3$ \& Isae. Manuals from 1930 to latest. Quotations, free 50 p magazine, price lists, unique technical publications for Isae. Repair data/circs almost any named TV/VCR $£ 8.50$ by retum. T.I.S.E.E., 76 Church Street, Larkhall, Lanarks, ML9 IHE, Phone (0698) 883334

TO ADVERTISE

 ON THESE PAGES ring SUE PALMER on 01-261 5942

SUPERKITS! FOR BETTER MUSIC \& EFFECTS

Sets include PCBS, Electronic Parts, Instructions, Boxes, Wire, Solder. Batteries no included, but mosi will run from 9V to 15V DC supplies. Fuller details in list CHORUS UNIT: A solo vaice or instrument sounds like morel .KIT162 COMPRESSOR: Limits \& levels maximum signal strength KIT 133 COMPUTER RHYTHM GEN: 9 drums for digital controlKIT 185 COMPUTER-SYNTH INTERFACE: Sequencing \& composing aid KTI 184
ECHO UNIT. With di...
 FREQUENCY DOUBLER: Raises guitar frequency by 1 octave ...KIT98
FREOUENCY CHANGER \& WAVEFORM MODIFIER . Tunable ...KT172 FLANGER: Fascinating effects plus phasingKKT153 FUZZ: Smooth distortion whilst keeping na c..... KIT153 GUITAR EFFECTS: Multiple variation of level \& fitter modulation KIT42 GUITAR OVERDRIVE: Fuzz plus variable filter quality GUITAR SUSTAIN: Extends effective note duration GUITAR TO SYNTH INTERFACE. With wain JABBERVOX: Voice disquiser with rever \& MAD ROJ: Variable sirens, incl. police, galaxy, machine guns MCROPHONE WRE audible a visual beat a down-beat MICROPHONE PRE=AMP; with base \& treble switching
NOISE LIMITER: reduces tape \& system hiss PHASER: with automatic \& manual depth \& REVERB: with variable delay \& depth controls RHYTHM GENERATOR: 15 switchable thythms RING MODULATOR: with integral oscillator contro ROBOVOX: versatile robot type voice modifier ROGER 2-GONG: 2 gongs sounded at end of transmissio SCRAMBLEA: Codes \& decodes authorised chans STORM EFFECTS: Automatic \& manual, wind, rain, surf TREMOLO: deep tremelo with depth \& rate control VOCODAVOX: modular vocoder
VODALEK: Robot type voice modulator VOICE OP-SWITCH; with variable sensitivity \& delay WAH-WAH: with auto-trigger, manual \& oscillator control
 MANY OTHER GREAT KITS IN CATALOGUE such as Aut KI sign, comparator, frequency generator, Funky-wobulo!, hamonola, hum-cut, mixvoice operated fader, Wheeby-ieeby!, synthesiser, envelope shapers, D-A converter, multiwaveiorm VCO, Keyboards, contacts, etc. - Send S.A.E. for comprehensive catalogue (overseas send E1).

YES - WE ALSO HAVE A KIT MAINTENANCE \& REPAIR SERVICEI
Add f1 P\&P \& 15\% VAT to all orders. (Overseas post details stated in cat). Payment CWO. Chq, PO, Access, Barclay, or pre-arranged collection. Despatch usually 10-1 days. Details correct at press, E\&OE.
PHONOSONICS, DEPT. EE3D, 8 Finucane Drive, Orpington, Kent, BR5 4ED Tel: Orpington (STD 0689) 37821. Mon-Fri 10-7. Calleis by appointment.

you have trouble understanding chopper circuits and protection arrangements, want to know about flywheel line sync, are deeply interested in all things from pattern generators to satellite TV receiving techniques-well, have we got the magazine for you.
What would you say to a unique specialist magazine which offers guidance to enthusiasts as well as electronics technicians on all aspects of TV and Video, including servicing, news and developments?

It's well worth a closer look... December issue on sale NOW SWITCH ON TO...

INDEX TO ADVERTISERS

Alcon Instruments833
Ambit International 852
Bicc Vero 848
Bimsales 848
Bi-Pak 786
BK Electronics Cover III
B.N.R.E.S. 782
Bull J. 847
C-Scope 784
Cricklewood Electronics 783 783
C-Tec Security 851
Electronics Mail Order L.td. 850
Electronics World 850
Electronize Design Cover II
Electrovalue 846
Enfield Electronics
850
850
Experimental Electronics
784
784
Gardners Precision
Gardners Precision
845
845
Global Specialties
850
850
Greenweld Electronics 846
ICS Intertext 846
Jee Distribution 851
Magenta Electronics 848, 849
Maplin. Electronics Cover IV
Marco Trading 851
Marlborough Electronic Components 850
Phonosonics 851
Radio Components Specialties 851
Riscomp Ltd 833
R \& TVC 787
Roden Products 850
Sparkrite 785
T.K. Electronics 784

MULLARD SPEAKER KITS Purposofully deaigned 40 watt R.M.S. and 30
watt R.M.S. B ohm aposker aystema racantly watt R.M.S. \& ohm apeoker aysteme recantly Belgium. Kits comprise Mullard woofer (18" o $8 \% 1$ gith foam surround and aluminium voice coil,
5 , Mullard 3° high pawer domed tweeter. B.K.E. buith and fested crossover based on Mullard
circuir, combining low loss companents, glass circur, combining low loss components, glass
fibre board and recessed loudspeaker terminals fibre board and recessed loudspenker terminals
-SUPERB SOUNDS AT LOW COST. Kits supplien
in polvstyrene packs complete with instructions in polystylene packs complete with instructions.
8.40 W system - recommended cabinet size 240 $\times 216 \times 445 \mathrm{~mm}$
Price $\mathrm{fl4.90}$ atech $+\mathbf{R} .00 \mathrm{P}$ \& P . $160 \times 175 \times 295 m$
Q.00PGP.

Price $\mathbf{E 1 3 . 9 0}$ each $+\mathbf{C 1 . 5 0 P 8 P}$
Designer approved flat pack cabinet kirs, including grad fabric. Can be finished with iron on

STEREO CASSETTE TAPE

 DECK MODULErecord/play back printed board assembly. Supplied as necord/play back printed board assembly. Supplied as console of own choice. These units are brand new, ready buitt and tested.
Features: Three digit tape counter. Autostop. Six piano rype keys, record, rewind, tast fonward, play, stop and
eject. Automatic record level control. Main inputs plus secondary inputs for stereo miciophones. Input
Sensitiviy: 100 mV to 2 V , Inout Impendance: 68 K Sensitivity: 100 mV to 2 V . Input Impesdsnce: 68 K .
Output leval: 400 mV to both leth and right hand channels. Output Impedance: 10 K . Signal to noise requirememts: 19 VC a 300 mA . Connoctions: The
left and right hand stereo inouts and outputs are via left and right hand stereo inputs and outputs are via (onono sockets provided). Dimonaions: Top panel 5 fin
$x \quad 11$ tin. Clearance required under top panel 2 in Supplied complete with circuit diagram and connecting. diagram. Attractive black and silver finish.
Price $28.20+$ Q2.50 postage and packing.
Supplementary parts for $18 V$ D.C. power supoly
(transtormer, bridge rectifier and smoothing capacitor)

LOUDSPEAKERS POWER RANGE THREE QUALITY POWER LOUD Ideal for both Hi-Fi and Disco apolica: tions. All units have attractive cast alu nunium (ground tinish) lixing escutcheons Specification and Prices.
15100 watt R.M.S. Impedance 8 ohms 5002 . magnet. 2 aluminium voice coll. Res
Frea 20 Hz . Freq. Resp. 1025 KHz Sens Frea 20 Hz Frea Resp 10 2.5kHz Sens
$97 d \mathrm{P}$ Price $£ 34.00$ each $+£ 3.00$ P8P 12.100 watt R.M.S. Impedance 8 ohms 50 or. magnet. 2 aluminium voicecoil. Res Freq 25 Hz Frea Resp to 4 KHz . Sens
95ab Price $£ 24.50$ each $+\$ 3.00 \mathrm{PsP}$
 8" 50 watt R.M. S . Impedance 8 ohms. 20
oz. magnet. 1 I. aluminum voice coil. Res
ar
 araiable with nlach proteclive grille Price

 aluminlum voice coil, aluminium centre dome, 8 ohm imp., Res. Freq. 45 Hz ., Frea Resp 1065 KHz . Sens 98 dB . Price: $\mathrm{E} 23.00+£ 3$ carriage 12" B5 watt R.M.S. McKENZIE C1285TC (P.A., DISCOI 2" aluminium voice coll. Twin cone. 80 hm mp . Res Freq. 45 Hz . Freq Resp. to 14 KHz . Price $£ 23+£ 3$ carriage $15^{\prime \prime} 150$ watt A.M.S. McKENzIE C15 (BASS GUITAR. P.A.) $3^{\prime \prime}$ aluminium voice coil.
Die cast chassis. 8 ohm imp., Res. Freq. 40 Hz ., Freq. Resp. to 4 KHz . Price: $£ 47+£ 4$
carriage.
PIEZO ELECTRIC TWEETERS MOTOROLA
Join the Piezo revolution. The low dynamic mass (no voice coil) of a Piezo tweeter produces an improved transient response with a lower distortion level than ordinary dynamic tweeters. As a crossover is not required these units can be added to exising Spealerory LEAFLETS 10100 walts (more if 2 put in series)
SUPPLIED WITH EACH TWEETER.

TYPE 'A' IKSN2036A) 3 wire mesh, ideal tor bookshell and med
sized Hi-fi speakers Price $£ 4.29$ each. TYPE 'B' IKSN1005AI 3', super ham. Fo general purpose speakers disco and $P A$ systems etc Price $£ 4.99$ each. TYPE 'C' (KSN6016A) ${ }^{2}=5$ " wide dispersion morn. For quality Hi.fi systems and quahty discosetc. Price $\mathbf{E} 5.99$ each.
TYPE 'D' IKSN1025A12 * 6 wide dispersion horn Upper frequency response retained
extending down to mid range $(2 \mathrm{KHz})$. Suitable for high quality Hi fi systems and quality discos. Price $£ 7.99$ each. TYPE 'E' (KSN1038A) 3% " horn tweeter with atrractive stiver tinish trim Suitable for Hi-1 monitor systems etc. Price $£ 4.99$ each. TYPE F• IKSN 1057A) Cased version of type
'E. Free standing satellite wweeter. Perfect E Free standing satellite weeter. Perfect
add on tweeter for conventional loudspeaker PGP 20p ea. (or SAE for Piezo loaflets).

BK ELECTRONICS
Prompt Deliveries and value. Ported tuned cabinet in hardwearing black vynide with protective corners and carry handle. Built and tested, employing 10 in British driver and Piezo tweeter. Spec: 80 watts RMS; 8 ohms: $45 \mathrm{~Hz}-20 \mathrm{KHz}$ Size: 20 in $\times 15$ in $\times 12$ in; Welght: 30 pounds.

PaNFIE

HOBBY KITS. Proven designs including glass ibre printed circuit board and high quality components complete with instructions
FM MICROTRANSMITTER (BUG) 90/105MHz with very sensitive microphone. Range $100 / 300$ metres $57 \times 46 \times 14 \mathrm{~mm}$ (9 voll) Price: £7.99p
DIGITAL THERMOMETER-9.9 C to +99.9 C. LED display Com-
plete with sensor. $70 \times 70 \mathrm{~mm}$ (9 volt) Price: $£ 27.60 \mathrm{p}$
3 WATT FM TRANSMITTER 3 WATT $85 / 115 \mathrm{MHz}$ varicap controlled. professional pertormance. Range up to 3 miles $35 \times 84 \times 12$ mm (12 volt) Price: E12.490
SINGLE CHANNEL RADIO CONTROLLED TRANSMITTER/ RECEIVER 27 MHZ Range up to 500 metres. Double coded mod ulation. Receiver output operates relay with $2 \mathrm{mp} / 240$ volt contacts. Ideal for many applications. Receiver $90 \times 70 \times 22 \mathrm{~mm} 9 /$ 12 volt) Price: $£ 16.49$ Transmitter $80 \times 50 \times 15 \mathrm{~mm}$ ($9 / 12$ voll) Price E10.29 P\&PAil Kits +50 p . S. AE. for complete list.

BSR P256 TURNTABLE
P256 rurmable chassis S shaped rone arm - Belt driven - Aluminium platter. skate (bias devicel - Damped cueing lever - 240 volt AC operation (Hz) - Cul out This deck has a completely manual arm and is designed primarily for disco and studio use
where all the advantages of a manual arm are he all

Price £31 35 esch C1 50 PGP

IV'p POWER AMPLIFIER
 \section*{MODULE}

New model.
Improved specification

NEW OMPIOO MK.II POWER AMPLIFIER MODULE Power Amplitier Module complete with integral heat sink. toroidal transformer power supply and glass tibre p.c.b assembly
Incorporates drive circuit to power a compatible Incorporates druve circuir to power a compatible
LED Vu meter New improved specification makes this amplifier ideal for PA., Insirumental and Hi-Fi applications. SPECIFICATION Output Power:- 110 watts R,M.S. Loads:- Open and short circult proot 4/16 Frequency Response: $-15 \mathrm{~Hz} \cdot 30 \mathrm{KHz} \cdot \mathbf{3 d B}$. T.M.D.: -0.01%.
S.N.R.
(Unweighted) $:-118 \mathrm{~dB} \pm 3.5 \mathrm{~dB}$ Sensitivity for Max Output:-500mV @ 10K
Size: $360 \times 115 \times 72 \mathrm{~mm}$ Price:- £31.99 + MOSFET versions available up to 300W. R.M.S.

HOME PROTECTION SYSTEM

Better to be 'Alarmed' then terfiried
Thandar's famous 'Minder' Burglar Alarm System. Superior microwave princiole. Supplied as three units.
complete with interconnection cable FULLY GUARANTEED.
Control Unit - Houses microwave radar unit. range
up to 15 metres adjustable by sensitivity conirol Three position, key operated tacia switch - oft - tesi - armed 30 second extt and entry delay Indoor alarm - Electronic swedt it 1040 B output
Outdoor Alarm - Electronic swept frea siren 980 B
Output Housed
Output. Housed in a tamper-prool neavy duty meta
Both the control unit and outdoor alarm contain re.
during mains failure. Power requirement $200 / 260 \mathrm{~V}$ volt
SAVE
SAVE £128
BKE's PRICE £99.p\&p\&4

8

MIXERS ${ }^{\text {oisco }}$
OMP PRO MIX MONO
OMP PROMIX MONO DISCO MIXER (As illustrated). 4 Inputs -2 Mag. Disc. Iaut. plus Mic withoverride. Active bass and ireble tone cont's. Individual level
controls plus master volume. Monitor contpul ${ }^{\text {neadphonel for all inputs }}$
Output 775 mV Supply 240 Vac .

ALSO

B.K. ELECTRONICS

THE NEW MAPLIN CATALOGUE FOR 84!

NOW WITH PRICES

 ON THE PAGEMore data, more circuits, more pictures, in the brand new 480 page Maplin catalogue. Take a look at the completely revised Semiconductor section or the new Heathkit section with descriptions and pictures of dozens of kits and educational products from digital clocks to 16 -bit business computers. The much expanded computer section itself, gives details of hundreds of pieces of software for Atari, BBC, Commodore 64, Dragon, Spectrum and VIC20. In addition to all this you'll find hundreds of fascinating new items spread through the rest of the catalogue.

As always, the Maplin catalogue is tremendous value for money and now has prices on the page!

Pick up a copy at any branch of

 W.H.Smith or in one of our shops for just $£ 1.35$ or send $£ 1.65$ including postage to our Rayleigh address. On sale from Ist Nov 1983
PROJEGTS FOR THE HOME CONSTRUCTOR

Choose from our huge
range of value-formoney projects. Projects like our Modem, Mosfet Stereo Amplifier, Home Security System, Frequency Counter and Home Computer add-
 on kits. Full construction details in our Project Books and brief specifications in our new catalogue. Dozens of fascinating new projects coming soon including a Keyboard for the ZX Spectrum with electronics to make all shifts, single-key operations. Full details in Project Book 9 on sale 11 th November 1983. Order As XA09K. Price 70p.

NEW MAPLIN STORE IN SOUTHAMPTON

Opening on 1st November 1983, our new
south coast store is at $46-48$ Bevois Valley 1 in $/$ plin
 will find our full range of components, projects and computers on sale. We are within easy reach of the city centre with good parking close by. Call in and see us soon.

Post this coupon now for your copy of the 1984 catalogue. Price $£ 1.35+30$ p post and packing. If you live outside the U.K. send $£ 2.20$ or 11 International Reply Coupons.

I enclose £1.65.

Name

Address.

ELECTRONIC SUPPLIES LTD

Mail Order: P.O. Box 3, Rayleigh, Essex SS6 8LR. Tel: Southend (0702) 552911 Shops at: 159-161 King Street, Hammersmlth London W6. Tel: 01-748-0926-8 Oxford Road, Manchester. Tel: 061-236-0281 Lynton Square, Perry Barr, Birmingham Tel: 021-356-7292-282-284 London Road, Westcliff-on-Sea Essex. Tel: 0702554000 *46-48 Bevois Valley Road, Southampton. Tel: 070325831
All prices include VAT and carriage. Please add 50p Mondays All prices include VAT and carriage. Please add 50 p handling charge to orders under $£ 5$ total value (except catalogue).

[^0]: 19 MULBERAY WALK LONDON SW3 6DZ TEL: 01-352 1897 TELEX: 918867

