Easy to build projects for ejeryone

 y $=$ cita
elcarombe ELECTRONIC IGNITION KIS OR READY BUIT

IS YOUR CAR AS GOOD AS IT COULD BE?

K Is it EASY TO START in the cold and the damp? Total Energy Discharge will give the most powerful spark and maintain full output even with a near flat battery.

* Is it ECONOMICAL or does it "go off" between services as the ignition performance deteriorates? Total Energy Discharge gives much more output and maintains it from service to service.
* Has it PEAK PERFORMANCE or is it flat at high and low revs. where the ignition output is marginal? Total Energy Discharge gives a more powerful spark from idle to the engines max. (even with $\overline{3}$ cylinders).
t Is the PERFORMANCE SMOOTH. The more powerful spark of Total Energy Discharge eliminates the 'near misfires'whilst an electronic filter smooths out the effects of contact bounce etc.
* Do the PLUGS and POINTS always need changing to bring the engine back to its best. Total Energy Discharge eliminates contact-arcing and erosion by removing the heavy electrical load. The timing stays "spot on" and the contact condition doesn't affect the performance either. Larger plug gaps can be used, even wet or badly fouled plugs can be fired with this system.
Most NEW CARS already have ELECTRONIC IGNITION Update YOUR CAR with the most powerful system on the market - $31 / 2$ times more spark power than inductive systems $31 / 2$ times the spark power of ordinary capacitive systems, 3 times the spark duration

Total Energy Discharge also features:
EASY FITTING, STANDARD/ELECTRONIC CHANGEOVER SWITCH, LED STATIC TIMING LIGHT, LOW RADIO INTERFERENCE, CORRECT SPARK POLARITY and DESIGNED IN RELIABILITY.

* IN KIT FORM it provides a top performance system at less than half the price of competing ready built units. The kit includes: pre-drilled fibreglass PCB, pre-wound and varnished ferrite transformer, high quality 2 uF discharge capacitor, case, easy to follow instructions, solder and everything needed to build and fit to your car. All you need is a soldering iron and a few basic tools.

FITS ALL NEGATIVE EARTH VEHICLES
6 or 12 volt, with or without ballast.
OPERATES ALL VOLTAGE IMPULSE TACHOMETERS:
(Older current impulse types need an adaptor).

STANDARD CAR KIT	£15.90	PL
Assembled and Tested	£26.70	$\stackrel{\text { P. \& P. }}{\text { fl }}$
TWIN OUTPUT KIT	£24.55	Prices
For Motor Cycles and Cars with twin	on systems	include
Assembled and Tested	£36.45	VAT

tel: 0827281000

The basic function of a spark ignition system is often lost among claims for longer "burn times" and other marketing fantasies. It is only necessary to consider that, even in a small engine, the burning fuel releases over 5000 times the energy of the spark, to realise that the spark is only a trigger for the combustion. Once the fuel is ignited the spark is insignificant and has no effect on the rate of combustion. The essential function of the spark is to start that combustion as quickly as possible and that requires a high power spark.
The traditional capacitive discharge system has this high power spark but, due to it's very short spark duration and consequential low spark energy, is incompatible with the weak air/fuel mixtures used in modern cars. Because of this most manufacturers have abandoned capacitive discharge in favour of the cheaper inductive system with it's low power but very long duration spark which guarantees that sooner or later the fuel will ignite. However, a spark lasting $2000 \mu \mathrm{~S}$ at 2000 $\mathrm{rev} / \mathrm{min}$. spans 24 degrees and 'later' could mean the actual fuel ignition point is retarded by this amount.
The solution is a very high power, medium. duration, spark generated by the TOTAL ENERGY DISCHARGE system. This gives ignition of the weakest mixtures with the minimum of timing delay and variation for a smooth efficient engine.

* SUPER POWER DISCHARGE CIRCUIT A brand new technique prevents energy being reflected back to the storage capacitor, giving $31 / 2$ times the spark energy and 3 times the spark duration of ordinar; C.D. systems, generating a spark powerful enough to cause rapid ignition of event the weakest fuel mixtures without the ignition delay associated with lower power 'long burn' inductive systems.
\star HIGH EFFICIENCY INVERTER A high power, regulated inverter provides a 370 volt energy source - powerful enough to store twice the energy of other designs and regulated to provide sufficient output even with a battery down to 4 volts.
- PRECISION SPARK TIMING CIRCUIT This circuit remóves all unwanted signals caused by contact volt drop, contact shuffle, contact bounce, and extérnal transients which, in many designs, can cause timing errors or damaging un-timed sparks. Only at the correct and precise contact opening is a spark produced. Cortact wear is almost eliminated by reducing the contact breaker current to a low level - just sufficient to keep the contacts clean.

TYPICAL SPECIFICATION	Total Energy Discharge	Ordinary Capacitive Discharge
SPARK POWER (Peak)	140W	90 W
SPARK ENERGY	36 mJ	10 mJ
STORED ENERGY	135 mJ	65 mJ
SPARK DURATION	500 us	$160 \mu \mathrm{~S}$
OUTPUT VOLTAGE (Load 50pF, equivalent to clean plugs)	38 kV	26 kV
OUTPUT VOLTAGE (Load 50pF		
+500k, equivalent to dirty plugs)	26 kV	17 kV
VOLTAGE RISE TIME TO 20kV		
(Load 50pF)	25uS	304S

TOTAL ENERGY DISCHARGE should not be confused with low power inductive systems or hybrid so called reactive systems.

(c) IPC Magazines Limited 1983. Copyright in all drawings, photographs and articles published in EVERYDAY ELECTRONICS is fully protected, and reproduction or imitations in whole or in part are expressly forbidden.
PROJECTS
ALARMS FOR PUSHBIKE OR MOTORBIKE by J. Duffy 74
Safeguard your machine
ZX81 SPEED COMPUTING SYSTEM 78
by D. Wilkes and A. Williams
by D. Wilkes and A. Williams
Velocity measurements using ultrasonics and home computer
BEEHIVE TEMPERATURE METER 82
by D. Allewell, A. Green, J. Green and A. Smith
Monitors movement of bees
SHORT INTERVAL TIMER by A. P. Donleavy 90
Registers intervals of up to one second
Registers intervals of up to one second 106
SPEECH PROCESSOR by R. A. Penfold
Audio booster for transceiver or PA Amplifier
Audio booster for transceiver or PA Amplifier113EPROM PROGRAMMER FOR THE ACORN ATOM
by D. C. Grindrod
Program and Read EPROMS
SERIES
INTRODUCING ELECTRONICS by George Hylton 86
Part 5: Radio Receivers
THE ELECTRONICS OF INFORMATION 100
Part 4: Time Division Multiplex (t.d.m.)
FEATURES
EDITORIAL 73
The Computer as Ally
JACK PLUG AND FAMILY by Doug Baker ${ }_{4}$ 77
Cartoon81, 110
BOOK REVIEWS
A selection of recent releases
85
SHOPTALK by Dave Barrington
SHOPTALK by Dave Barrington
Product news and component buying
COUNTER INTELLIGENCE by Paul Young 89
A retailer comments
94
ELECTRONIC HOBBIES FAIR
Show report
97
FOR YOUR ENTERTAINMENT by Barry Fox
Mysteries of hi fi, Shopping in Tokyo
RADIO WORLD by Pat Hawker, G3VA 98
Exit the Pirates, Telecommunications Bill
EVERYDAY NEWS 104
What's happening in the world of electronics
CIRCUIT EXCHANGE115, 118
A forum for readers ideasSQUARE ONE116
Beginners Page: Earphones

[^0]
AUDIO ELECTROAITS SAMBSADBSA EXCLUSIVE OFFERS! $>$ phe $\begin{aligned} & \text { bonus for all orders } \\ & \text { received by }\end{aligned}$ MULTIMELERS
 $720620 \mathrm{~K} / \mathrm{Volt}, 19$ ranges.
 FREE $\begin{aligned} & \text { with } S 640 \\ & \text { below. }\end{aligned}$

 7081 50K/Volt. range doubler

 TRIO 20 MHZ DUAL TRACE SCOPES
 140mm Tube: OC to 20 MHz : 5 mV sensitivity: CH2 Invert CS 1820 Delayed sweep: 0.2 usec 100.5 ADO. List Price £539.00 inc.. VAT. Sur Price: $\mathbf{E 4 2 0}$ inc. Vat (UK c/p £4) CS1566A MOR. AUTO. VIOEO: 0.5 usec §weep: Modes CH1, CH2 ALT. CHOP and ADO. List price £368.00 inc. VAT.
 Our Price $£ 299$ inc. Vat $\mathbf{j U K} \mathrm{c} / \mathrm{D£4}$

 SPEAKERS \& TWEETERS

 HIF20ESM 8 ohm 30/50 watt Bass/ Midrange 8 " 25.95 (UK c/oE1.20)
 HT25 $21 / 4$ " 8 ohm 15 watt tweeter
 $£ 1.95$

 HIF2DESM 4 ohm version 8^{\prime} £4.95 (UK c/D $£ 1.20$)
 CN38-6. ${ }_{3}$ way 8 ohm 15 watt
 crossover £1.25
 (Optional arobe $\times 10$ £9.45)
 UK c/o Tweeters \& Crossovers 650 per 1.3 item

BRAND NEW

VEROBLOC KITI!!

 Just publisted by Babani, Mr. R A. Penfoids new book, "30 SOLDERIESS BREADBOARDPROJECTS" - this book features 30 different PROJECTS - this book-features 30 different projectstains all partss necessary to make:

Audio Amplifiers
Light \& Dark Activited Switches
${ }_{8}{ }^{2}$ Alarim
Timers
Metronome
Oscillators \& Tone Generators
Warbling Door Buzzer
Two-tone Train Hom
Touch Switch
Sound Activated Switch
Radio Receivers
Radio Rece
Fuzz Unit.
The introdurit ... + lots more The introduction shows all the different comboard. The verobloc layout is shown for every project together with the circuit diagram and an explanation of how it works. Ideal for beginners in electronics, but also suitable for more advanced students.
The complete kit is contained in an attractive plastic case, which can be divided up into is compartments in which your components may be stored.
Complete Kit, including book, Verobloc \& all parts $£ 24.95$; Book only $\mathbf{£ 2 . 2 5 \text { ; Kit withour }}$ erobloc $\mathbf{1 2 0 . 4 5}$.

1982/3 CATALOGUE

Biaper! Better!! Buy onel!!
Only 75 p inc. post - Look what you get!!! * Vouchers worth 60p.

* Ist class reply paid envelope.
* Wholesale list for bulk buyers
* Bargain List with hundreds of surphus lines. * Huge range of components.

Low, Jow prices.

IN4007 1000V IA RECTS

 Motorola bandoliered-towest ever price!! 100〔2.95; 300 C8.50; Ik £27; 3k £72; lok $\mathbf{E 2 2 0}$

LIE DETECTOR
Not a toy, this precision instrument was orig nally part of an "Open University" course, used to measure a change in emotional balance, or as given, and a circuit diagram. Supplied complete given, and a circuit dagram. Supplie elly. Needs 2 with probes, leads and conductive jelly. Needs Only $\mathbf{6 9 . 9 5}$-worth that for the case and meter alone! !

COMPONENT PACKS

$K 503150$ wirewound resistors from IW 12 W , with a good range of values. $£ 1.75$. K505 20 assorted potentionteters, ail types including single, ganged, rotary and slider. K 1.70 .
$K 514100$ silver mica caps from 5 pF to a few thousand pF. Tolerances from 1\% to 10%. 62.00 .

520 Switch pack-20 different rocker, slide. rotary, toggle, push, micro, etc. Only $\mathbf{E 2 . 0 0}$. Pack of disc ceramics, assorted values and vol-
501 Approx 300 lon
Sol Approx 300 long leaded $\frac{1}{4} \& \frac{1}{2} \mathrm{~W}$ carbon

STARBIRD

Gives realistic engine sounds and flashing laser blasts - accelerating engine noise when module is pointed up, decelerating noise when pointed down. Press contact to see flash and hear blast of lasers shooting. PCB tested and working complete with speaker and batt clip. (needs PP3). PCB size $130 \times 60 \mathrm{~mm}$. Only $\mathbf{4 2 . 9 5}$

1000 RESISTORS 2.50 We've just purchased another 5 million preformed resistors, and can make a similar offer to that made two years ago, at the same
price!!! K523-1000 mixed \& to $1 \mathrm{iW} 5 \%$ carbon pricel! Kilm resistors, preformed for PCB mintg. Enormous range of preferred values. 1000 for £2.50; 5000 £ $10 ; 20 \mathrm{k} £ 36$.

SWITCH BARGAIN

Push-on, push-off "table lamp" type, rated 2A 250 V ac . 10 p ea, 15 for $\$ 1$, 100 for $\$ 5$.

ORDER BY POST OR PHONE OR CALL IN AND SEE FOR YOURSELF
WELL WORTH A VISIT! ALL OFFERS LIMITED QUANTITIES E \& OE
AUDIO ELECTRONICS cimeatic
301 EDCWARE ROAD. LONDON W2 1BN. TEL: 01-7243564 ALSO AT HENRYS RAOIO.
404/40G EOGWARE ROAD. LONDON W2

TRIACS - PLASTIC

 SLIDER ALL AT POTENTIOMETERS SX64 $5 \times 1 \mathrm{kLin}$ Lin $\$ \times 675 \times 47 \mathrm{kLin}$ SX65 5 $\times 22 \mathrm{k}$ Lin \quad SX68 $5 \times 4 \mathrm{kk}$ Log SX $655 \times 22 \mathrm{~K} \log \quad 5 \times 705 \times 1$ meg Lin

Sx40 250 Silicon Dlodes-Switching inike IN4i48 00. 35 All good-uncoded worth doubleour pice $45 v 75 \mathrm{~mA} \quad \$ 1.25$
Sx41 250 Salicon Dindes-General Puipose tive OA200/202 BAX13/16 Uncoded $30.100 v 200 \mathrm{~mA} 00.7$

SXA4 105 F SER S $70643 \times 50 \mathrm{y} 3 \times 100 \mathrm{v} 2$ 200v 2×400 Super value less than
 200v $2 \times 400 \mathrm{v}$ Al coded Brand new. a - giveawayat
min

MINIATURE TOOLS FOR HQBBYISTS

fiexey oriver
A flexible shath Screwdriver tor those awhward to get at screws. Overal lengith Bfinch Order No:fS-1 Flat blate 4 mm FS-2 Crass paint mo. 1 fl .16 uech
,
Maniature end nippers - msula
inch lengith. Order No Yo

Miniature snipe nose pliers with sice
cotler and serrated laws - insulated
handles 5inch lergith, Ordee No Yo42.
All with insulated handies
1.25

Plastic Boxes

Coloured Black Close fitting
Flanged tid, frumg screws into brass busties SIZE "L W H Order No Prass
\qquad
Price
83p
3p

(x)

a

GRIP-DAIVER
6inch long screwulfiver with spring loaded grig on end to hold screws in position while reaching into those ifificull dabes. Onter Na-SD-1 Flat bede 4 mm SD. 2 Cross point no. 0 . 95 p ench
imexpensive tools of inmense value Condeined wire strippel, cutter, crimper inel. 25 asst
terminals for crumping Ordel No. W\$2. Our Iow price fin

BA NUT DRIVER SET
Set of 5 BA spanner shafts plus universal handle in roll-up wallet. Sizes OBA 24.4 -8BA Order no: T192
£2. 75 set
neon screwdriver
7 fin blate order no: NS 1 C 0.65 p ouch

always been BI.PAK's GUARANTEE and it sull is All these Sale items are in stock, in quantity and wall despatch the same day as your order is received

IC SOCKETS

The lowest price ever.
The more you buy the cheaper they cr

- 0.01 off 1000

14 pin $90 p_{p} \quad £ 3.75 \quad f 6.50$

VOLTAGE REGULATORS
$T 0220 \begin{aligned} & \text { Positive }+ \\ & 7805-50 \mathrm{Negatve}+ \\ & 7905-55\end{aligned}$ $\begin{array}{ll}7805-50 p & 7905-55 p \\ 7812-50 p & 7912-550\end{array}$ $\begin{array}{cc}7812-50 p & 7912-55 p \\ 7815-50 p & 7915-55 p\end{array}$ $824-50 p 7924-55 p$

BI-PAK'S OPTO 83 SPECIAL
A selection of Large G Smail size IED's in Red Green, Yellow and Clear, plus shaped devices of different types 7 Segiment displays, photo transistors. emutters and detectors. Types like MEL11, FPT100 etc. Plus Cadmium Cell ORP12 and germ. photo transistor OCP71. TOTAL OF 25 pieces. * Valued Noornal Hetal 120 $+6$ $£ 5.00$

1 Amp SILICON RECTIFIERS Glass Iype simiaz inamoo serile in 4001 -in 0004 50 - 500% - uncoo.s - you select tor VLTS ALL bericel dences - NO duas Min SOr 50 for 51.00 - worth coudie ORDEA NO SKP6 Silcon Generat Purpose NPN Transiors to-18 Case lock in leads - coded Cvis64 SImula to BC:14 BC107- 2 T89 ALL NEW' VCE 70 V IC500mA He 75.250 so of 100 of 500 ot 1000 o4 : Paice £2.00 £3.80 $17.50 £ 30.00$ 䓂 Sticon General Puidose PNP Transistios T0-5 Case Lock theads coobed CV9507 simitar 2N2905A to BFx30 VC 60 IC 600 man Min we 50 ALL NeW 50 or 100 ot 500 of 1000 ot PAICE $£ 2.50<4.00<19.00<35.00$

Oider as Cv9507

N398 NI-CAD CRARGER Universal Ni-Cad battery Charger Ail plastic Case win litt uplid Charge / Test swich iED cators at each of the five charging points Charges - Power PP3/9V) 220.240V AC U12 (15V penite) Dims (11115V C) $\quad 210 \times 100 \times 50 \mathrm{~mm}$ CO.e5 POWER SUPPLY OUR PRICE $£ 3.25$ Power suppiy hits difectly into 13 amp socket Fused tor salety Polarity reversing socket Voltage switch Lead with mult plug tnput - 240 VAC 50 Hz Oulput

Silicon NPN'L'TypeTransitors
 3×7 vet metea modevi

 10-92 Plastic centre coliectorLike BC182L $-183 \mathrm{~L}-184 \mathrm{~L}$
LIKE BC182L-183L-184L VCBO 45 VCEO 30 ICROOTA HRe 100-400 ALL pertect devices - uncoded OROER AS SX183 50 oth 100 oft 500 on 1000 - OH $\sum 1.50 \quad £ 2.50 \quad £ 10.00 \quad £ 17.00$ PNP SILICON TRANSISTORS Similar ZTX500 - ZTX214 -- E-Line VCEO 40 VCBO 35 k 300mA He $50-400$ Brand New - Uncoded - Pefect Devices 50 off 100 ofl 500 oft 1000 ot $\mathbf{£ 2 . 0 0} \quad £ 3.50 \quad £ 15.00 \quad £ 25.00$
 $3-2 \mathrm{~V} \pm$ instructions extend voitacions provided to pperating voltage $9 / 12 v$ Typ. Power Consumption 50 mA 0/NO:SX99 Once only price

ELLCTRONIC SIREM Izy dC

 Our Price:
£5.50

MULTITESTERS

30,000 opy Ineluding lest leads and case AC volts'- 02.5-30-25-100-250-500-1,000 X volts - $0 \cdot 0.25-1-25-10-25-100-250-1,000$ OC current - 0-50ua $0-5 \mathrm{ma}-50 \mathrm{ma} 0-12 \mathrm{amps}$. Hestrance: 0.6 K ohms 70 K ohms-6meg ohms 50 meg ohms
Decibefs - 20 db 10 plus 5 fodt Short test - Internal buzzer Dams $-160 \times 110 \times 50 \mathrm{~mm}$ 0/No. 1315. OUR PRICE ONLY £24.75

8 Bit MICROPROCESSOR Nationai INS $8080 A N 40$ Pin OH N Channei Silico N8080 Micro Computer Family Instruction Cycle Time 2 US Supplied with tunctionat Block Diagram

1.000 opy Including rest leads to Eattery AC volis - 0-15-150-500-1,000 C volis- 0-15-150-500-1,080 OC currenls:- © $0-1 \mathrm{ma}-150 \mathrm{ma}$ Resistance: 0.2 .5 K ohms 100 K ohms Oims. $90 \times 61 \times 30 \mathrm{~mm}$.

0/No.1322.0UR PRICE f6. 50 onty

BRAND NEW
BRAND NEW -
NOT seconds or reclams
100% pertect ORDER NO $\$ \times 8080$ nn o pertect ORDER NO SX8080 OIII
Normal Sell price i 450 each Our Bi-pak Special Price $\mathbf{2} \mathbf{0} 0$ SO HURRY - LIMITED STOCKS
40 Pin ic Socket to fil Sx8080 OHer price

SILICON BRIDGE

 RECTIFIERS Comprising $4 \times 1 \frac{1}{2}$ amp rectifiers mounted on PCB $\dot{V} R M-150$ vits IFM - 1.5 Amps Size: 1 inch square 10 off 51.00 50 of $£ 4.50$ 100 off $₹ 7.50$ Order No. As:4RI BRect.
BHRK

 Send your orders 10 Depl EER BI-PAX PD B OX 6 WARE HERTS.SHOP AT 3 BALDOCK ST WAE HERS SHOP AT 3 BALDOCK ST. WARE HERTS
TERMS. CASH WITH DRER. SAME DAY DESPATCH. ACCESS,
BARCAYCARD AA SO ACGPTED. TEI (OSZO) 3182 GIRO 389701 BARCLAYCABD ALSO ACCEPTED. TEL COSZOI 3182 GRO 389700
ADD 15% VAT AND 75p PER OROER POSTAGE ANO PACKING

REGULATED

VARIABLE
Stabilised

POWER SUPPLY

Variable from $2-30$ voits and $0-2$ Amps. Kit ineludes VPS30 Mo $0-50 \vee 2^{\prime \prime}$ Panel Meter, $1-0-2$ amp $2^{\prime \prime}$ Panel Mete wirahsund potentiometer. Wiring Diagram
included. Order No. VPS 30 KIT
MINIATURE FM TRANSMITTER Freq: $95-106 \mathrm{MHz}$. Range: $\frac{1}{1}$ mile Size: $45 \times 20 \mathrm{~mm}$. Add: $9 v$ batt. ONLY Not licenced in U.K
£5.50
Ideal for: 007-MI5-FBI-CIA-KGB etc

Use your credit card Ring us on Waie 3182 NDW and Use your credt card hing uc on ware 3182 Now and

get your order even taster Coods' normally sent ind | get your urd |
| :--- |
| Class Mat |

Remember you must add VAI al 15% to your order Total Poslage add 50p per Totai order
EHPAK BARGANS

 SCREWDRIVER SET

asecision screwarivers in finged plasin.

29and 38 mm =1.7

NUT DRIVER SET
precision nut drivers in ninged plastic case
Win lurning rod

TOOL SET

ocision instruments in tunged plastic case
Crosspoint |Phillips' screwdrivers
40 ano 1 1 Hex key wrenches
WRENCH SET
S piecision wrenches in hingeo plastre case
Sues - 445 b 5 Sand $6 \mathrm{~mm} £ 1.75$
BUY ALL FOUR SETS
I ORE
Sizes 152253
4555 and 6 mm
Made ol haroenea steel
£1.25

IJARESISTABLE AESISTOR BARGAINB"
Pal Ma. (fy. Description Price
$\begin{array}{llll}\text { SXIO } & 400 & \text { Mixed "All Iype Resistors II } \\ \text { SXII } & 400 & \text { Pie toimed }\end{array}$ SXII 400 Pieformed is $/$ /a wati Carbon Resistors I watt Carbon Resistors
4. watt Carbon Resistos 4 watt Carbon Resistors 4 watt Resistors 22 ohm
2 m 2 Mixedt ohm -2 m 2 Muxed Paks 5×12.15 containa range of Carbon film Resistors ol assorted values from 22 ohms to 22 meg Save pounds on these tesistor paks and have a full range to cover your projects
"Quantites appron

GUARANTEED TO SAVEYOU

 MONEY SX27A 60 Assorted Polystyrene Bead Capacitors sxz8a 50 Assorted Silver Mica Caps $5.6 \mathrm{pF}-150 \mathrm{pF}$£1.00 Sx29A 50 Assorted Silver Mica Caps 180pF-4700pF Sx $30 A 50$ High Voltage Disc Ceramics 750 V min SX31A 50 Wirewound 9 watt (arg) Resistors. Assorted values $10 \mathrm{hm}-12 \mathrm{~K} \quad \mathbf{1 . 0 0}$ AUTO SCREWDRIVERIDR/LL Automatic spiral ratchet. Complete with screworiver blades, 5 \& 65 mm 1 screwedriver 3.65 mm - A MUST FOR ALL HOBBY-BUILDERS \& CONSTRUCTORS. Order No. ASO/1 $\mathbf{E} .50$ each

*The Third and
 The Third and Fourth Hand...

SIREN ALARM MODULE

 merican Police type screamer powered from any 12 voll supply into 4 or B ohmspeaker
Id speaker. Ideal for car burglar aliam,
treezer breakdown and other security treezer breakdown and
purposes. 5 watt, 22 v max.
but have youer gol ways need
but have riever gol until now
This helptul unil with Rod mounled zontally on Heavy Base Crocodile clips
 attachea to rod ends Six ball \& socket foints give intinite variation and positions throug 360° also avallable attached 10 Rod a $21 / 2$ diam
magnitier giving $25 \times$ magnitication Helping hand unit avalable with or without magnifier Our Price with magnifier as nustrated ORDER NO T402 £5.50
Without magnifier ORDER NO I400 £4.75

BARGA/NE

SX9] $20 \times$ Large 2 " RED LED 5x42 20 small 125 Red LED 5×4310 Rectangular Gireen LED's X46 30 Assorted Zener Drodes $250 \mathrm{mw}-2$ wat mixed yotages all coded. New
$5 x 41$ Black Instrumen
Knobs-winged with pointes 3,4 Standard screw fit suze $29 \times$ 20 mm
sk4 20 Assomted Slider Knobs
Blach/Chrome elc

SH5O

12 Neons and Filament Lamps Low
roltage and maiss - vacious types.
and colours - some panel mounting

BRAND NEW LCD DISPLAY MULTITESTER.

CD 10 MEGOHM INPUT IMPEDANCE * $3 / / \operatorname{dignt}^{*} 16$ ranges plus RFE tesi facilty to PNP and NPN tiansistors *Auto zero auto polarty "Singte-handed pushoutton operation *Over range madication ' 12 smm (\% inch) large iCD readout 'Doue check - Fust cricurt protection *Test leads batiery and instructions included
Maxinoicasion $19990^{\text {r }}-1999$
Poldity indication Negative only
Posilive readings appea: winoul + Sig
input impeaance 10 Megonims Zeroadjust Automatic Sampling time 250 milliseconds Temperature range $-5^{\circ} \mathrm{C} 1050^{\circ} \mathrm{C}$ Power Supply : x PP3 or equisatent gy Consumplion 20 mw $\begin{aligned} & \text { SIze } \\ & \text { RANGES }\end{aligned} 155 \times 88 \times 31 \mathrm{~mm}$ DC Vottage 0.203 mv
$0 \cdot 2 \cdot 20 \cdot 200 \cdot 1000 \mathrm{~V}$ Acc 08% AC Voltage $0.200 \cdot 1000 \mathrm{~V}$ Acc : 2% DC Current 0 200uA $0-2-20.200 \mathrm{~mA} 0.10 \mathrm{~A} \mathrm{Acc}$ Resistance $0 \cdot 2 \cdot 20-200 \mathrm{~K}$ ohms Bl-PAK VERY LOWES! POSS PRICE
§35.00 ed

\section*{SINGLE SIDED FIBREGLASS BOARD
 | Order Mo. | Pieces | Size | Sq. Ins. | Pince |
| :---: | :---: | :---: | :---: | :---: |
| FBI | 4 | $9 \times 23{ }^{\text {a }}$ | 100 | f1.50 |
| 582 | 3 | $11 \times 3^{\prime \prime}$ | 100 | $\underline{11.50}$ |
| 583 | 4 | 13×3 " | 156 | 12.0 |
| DOUBLE SIDED FIBREGLASSBOARD | | | | |
| 584 | 2 | $14 \times 4^{\prime \prime}$ | 110 | 42. |
 S/LICON POWER TRANSISTORS - T03}

NPN like 2N3055 - but not full spec. 100 watts 50 Vmin . 10 for $£ 1.50$ - Very Good Value loos of uses - no duds Order No. SX90

5 watt (RMS) Audio Amp

Hugh Quality audio amplifier Modute ideal for use in record. players. tape recorders, stereo amps and cassette piayers, etc full data and bach up ciagams Wpecitication mode
Specitication

- Max Power Supply 30ve Power Output 5 watts RMS - Load impedance 8-16 ohms - Frequency response 50 Hz to $25 \mathrm{KHz}-3 \mathrm{db}$ - Sensitivity 70 mv for full output - Input impedance 50 k ohms - Size $85 \times 64 \times 30 \mathrm{~mm} \cdot$ Total Harmonic
distortion less than 5
£2. 25
You could not Build one
lor thin pace

BI-PAK SOLDER
DESOLDERKIT
1 Migh Ouality 40 wall Generat Purpos
Lightweight Soldering Iron 240 v marns
3
automatic eiection Knurled anti-corrosive casing and tetion nozzle
i 5 metres of De-soldering praid on piastic dispense
2 yos (183 m) Resin Coreo Solder on Cara 1 Heat Shunt tool tweezer lype UUR SPFCIAL KIT PRICE $\mathbf{\varepsilon 8 . 9}$

BI-PAK PCB ETCHANT
AND DRILL KIT
Complete PCB Kil comprises
1 Expo Mini Drill 10000 RPM i2v 0 C inci
collets \& $1 \times 1 \mathrm{~mm}$ Twist bit
1 Sheet PCB Trans
hIo pack FERRIC CHL ORIDE crystals
3 sheets copper clad doard
2 stieets Fibreglass copper c!ad board Doaras
Retail Value peer $£ 15.00$
OUR BI-PAK SPECIAL KIT PRICE $\mathbf{8 9 . 7 5}$ ORDER NO $S \times 81$

MORE BARGAINS!

SX51 60 metres PVC covered Hook-up wire single and stranded. Mixed
$\times 58$ colours
Sx58-25 Assorted TIL Gates 7400
SX59 10 Assorted flip Floos and MSL
20 Assorted Sidet
Patentiometers
Sx62 40 Assorted Pre. Sets Hol Vert
SX79 10 Reed Switches - glass type
Micro Switches - with lever

Us prour cifint coro hing us on mare 3 isz how ano gel pout adefieren fester Goods nomaty sent 7nd Class Mad

Tout Peshage tad 75 per Toul or de

In the cut-throat world of consumer electronics, one of the

 questions designers apparently ponder over is "Will anyone notice if we save money by chopping this out?" In the domestic TV set, one of the first casualties seems to be the sound quality. Small speakers and no tone controls are common and all this is really quite sad, as the TV compan ies do their best to transmit the highest quality sound. Given this background a compact and independent TV tuner that connects direct to your Hi-Fi is a must for quality reproduction. The unit is mains operatedThis TV SOUND TUNER offers full UHF coverage with 5 pre-selected tuning controls. It can also be used in conjunction with your video recorder. Dimensions: $11 \frac{3 / 4^{\prime \prime}}{} \times 8 \frac{1}{2} 2^{\prime \prime} \times 314^{\prime \prime}$.

PRACTICALELECTRONICS STEREO CASSETTE RECORDER

$£ 32.95+£ 2.75 \mathrm{p} \& \mathrm{p}$.

* NOISE REDUCTION SYSTEM * AUTO STOP * TAPE COUNTER * SWITCHABLE E.Q. * INDEPENDENT LEVEL CONTROLS * TWIN V U. METER * WOW \& FLUTTER 0.1% * RECORD/PLAYBACK I.C. WITH ELEC TRONIC SWITCHING * FULLYVARIABLE RECORDING BIAS FOR ACCURATE MATCHING OF ALL TAPES Kit includes tape transport mechanism, ready punched and back printed quality circuit board and all electronic parts cover, printed scale and mains transformer. You only supply cover, printed scale and
solder and hook-up wire. Featured in Aprit issue P.E. Reprint 50 p . Free with kit. Self assembiy simulated wood

SPECIAL OFFER! $£ 31.00$ plus $£ 2.75$ p\&p cabinet - $£ 4.50+£ 1.50 \mathrm{p} \& \mathrm{p}$.
$£ 31.00$ plus $£ 2.75$ p\&p
Complete with case.

BSR RECORD DECK

Manual single play record deck with auto
return and cueing lever. Fitted with stereo ceramic cartridge 2 speeds with 45 rpm spindle adaptor ideally suited for home or
disco. $13^{\prime \prime} \times 1{ }^{\prime \prime}$ approx. $£ 12.95+£ 1.75$ p\&p.

SPECIAL OFFER! Replacement stereo cassette tape heads $£ 1.80$ ea. Mono $£ 1.50$ ea. Erase 70 p ea. Add 50 p p\&p to order

PRACTICAL ELECTRONICS CAR RADIO KIT
 series II

2 WAVE

BAND
MW - LW

* Easy to build
tuning * Modern design
* 6 watt output * Ready etched
and punched PCB * Incorporates suppression circuits.
All the efectronic components to build the radio, you supply only the wire and the solder, featured in Practical Electronics March issue. Features: pre-set tuning with 5 push button options, black illuminated tuning scale. The P.E. Traveller has a 6 watt output neg. ground and incorporates an integrated circuit output stage, a Multard IF Module LP1 181 ceramic filter type pre-aligned and assembled, and a Bird prealigned push button tuning unit. BIRD AUDIO STEREO CAR RADIO BOOSTER To boost your car radio or radio To boost your car radio or radio
cassette to 15 W rms per channel. $£ 9.95+£ 1.50$ p\&p

All mail to
21A HIGH STREET, ACTON, W3 6NG.
Note: Goods despatched to U.K. postal addresses only All items subject to availability. Prices correct at 30/10/82 and subject to change without notice. Please allow 7 working days from receipt of order for despatch. RTVC Limited reserve the right to up-

PERSONAL LS AMP KIT

Amplifier for your personal stereo cassette player as featured in January issue of Everyday Electronics. Turn your personal stere into a mains power ed home unit.

Parts: Stereo power amp PCB with all components, $£ 3.50+$ 75 p p\&p. Power supply unit, $£ 1.95+£ 1.50$ p\&p. Pair of $41 / 2^{\prime \prime}$ eliptical speakers, $£ 1.50$ the pair, $+£ 1.00$ p\&p. Input \& output sockets \& plugs, $£ 1.50$. Recommended case (for the power supply and amp only). $£ 2.95+80$ p p\&p.
P\&P inclusive price of $£ 1.75$ for two or more articles.

P.E. STEREO TUNER KIT

This easy to build 3 band stereo AM/FM tuner kit is designed in conjunction with Practical Electronics (July ' 81 issue). For ease of construction and alignment it incorporates thre Muilard modules and an I.C. IF. System.
FEATURES: VHF, MW, LW Bands, interstation muting and AFC on VHF. Tuning meter. Two back printed PCB's. Ready made chassis and scale. Aerial: AM - ferrite rod, FM - 75 or 300 ohms. Stabalised power supply with ' C ' core mains transformer. All components supplied are to P.E. strict specification Front scale size: $101^{\prime \prime} \times 21^{\prime \prime}$ approx. Complete with diagram and instructions.
$£ 17.95$
Plus $£ 2.50$ p\&p
Self assembly simulated wood cabinet sleeve to suit tuner only Finish size: $1114^{\prime \prime} \times 81 / 2^{\prime \prime} \times 3$ £3.50 Plus £ 1.50 p\&p.

SPEAKER KIT

2 WAY 10 WATT $8^{\prime \prime}$ bass/mid range and $31 / 4^{\prime \prime}$ tweeter. Complete with screws wire, crossover components and cabinet. All wood precut - no cutting required. Finish-chipboard covered wood simulate, size $141 / 2^{\prime \prime} x$ $8^{3 / 4^{\prime \prime} \times 4^{\prime \prime} \text {. PAIR for ONLY }}$
£12.50 plus £1.75 p\&p

125W HIGH POWER AMP MODULES
 $£ 10.50$
 £14.25

\author{

+ E1.15 p\&p
}
+ £1. 15 p\&
The power amp kit is a module for high power applications - disco units, guitar amplifiers, public address systems and even high power domestic systems. The unit is protected against short circuiting of the load and is safe in an open cir cuit condition. A large safety margin exists by use of gener ously rated components, result, a high powered rugged uni The PC board is back printed, eluminium chassis is dreformed ease of construction and the aluminium chassis is preformed and ready to use.
Supplied with all parts, circuit diagrams and instructions. ACCESSORIES: Suitable mains power supply kit with transformer: $£ 8.50$ plus $£ 2.00$ p\&p
Suitable LS coupling electrolytic. £1.00 plus 25 p p\&p.

SPECIFICATIONS
Max, output power (RMS): 125 W . Operating voltage (DC): 50-80 max Loads 4-16 ohms Frequency response measured @ 100 watts: $25 \mathrm{~Hz}-20 \mathrm{KHz}$ Sensitivity for 100 watts: $400 \mathrm{mV} @ 47 \mathrm{~K}$. Typical T.H.D. @ 50 watts, 4 ohms: 0.1% Dimensions: 205×90 and $190 \times 36 \mathrm{~mm}$.

HI-FI SPEAKERS AT BARGAIN PRICES

GOODMANS TWEETERS ${ }^{\text {a }}$
8 ohm soft dome radiator tweeter ($33 / 4$ "sq.) for use in up to 40 W £3.95 each ($p \& p £ 1$) or £6.95 pair ($p \& p \in 1.50$)

35 WATT MICRO 2-WAY SPEAKER SYSTEM Unit comprises one 50w (4'app.) Audax soft dome tweeter HD100. And one $5^{\prime \prime}$ Audax bass/midrange 35w driver HIFIIJSM. driver HIFIIJSM.
Complete with? 2 element crossover. of system 4 ohms

£8.95

PER SET + £2. 70 p\& p .

MONO MIXER AMP

Ideal for Church halls \& Clubhouses
$£ 45.00$

50 WATT Six individually mixed inputs for two pick ups (Cer, or mag.), two moving coil microphones and two auxiliary for tape tuner organs, etc. Eight slider controls - six for level and two for master bass and treble, four extra treble controls for mic, and aux. inputs. Size $131 / 4^{\prime \prime} \times 66^{1 / 2} /^{\prime} \times 33 /{ }^{\prime \prime}$ ' app. Power output 50 watts R.M.S. (cont.) for use with 4 to 8 ohm speak ers. Attractive black vinyl case with matching th matching

Matching AKG Microphone to suit (with speech and musi filter). Complete with lead. ONLY $£ 9.95$ plus $75 p$ p\&p. Telephone or mail orders by ACCESS welcome.

Editor

F. E. BENNETT

Assistant Editor
B. W. TERRELL B.Sc.

Production and News Editor

D. G. BARRINGTON

Projects Editor
G. P. HODGSON

Art Editor

R. F. PALMER

Assistant Art Editor
P.A. LOATES

Technical Illustrator
D. J. GOODING Tech. (CEI)

Secretary

JACQUELINE DOIDGE
Editorial Offices
KING'S REACH TOWER
STAMFORD STREET
LONDON SE 1 9LS
Phone: 01-2616873

Advertisement Manager

R. SMITH

Phone: 01-2616671

Representative

R. WILLETT

Phone: 01-2616865
Classified Supervisor
B. BLAKE

Phone: 01-2615897
Make-Up and Copy Department
Phone: 01-2616615
Advertisement Offices
KING'S REACH TOWER
STAMFORD STREET
LONDON SE 1 9LS

THE COMPUTER AS ALLY

NThout doubt, 1982 was the year of the home computer. The only other innovatory electronic consumer product in a similar price bracket likely to have equalled it in popularity was the video-recorder; but the latter is more rightly considered as an extension of home entertainment, and not an inter-active device opening up an entirely new field like a computer.

The sales of home computers must have gladdened the hearts of manufacturers and retailers alike, providing (as they did) welcomed bright spots in an otherwise dull scene. It speaks volumes for the fascination of computers that in a time of recession thousands of customers have emerged to buy a piece of equipment they can have initially little understanding about and are prepared to venture upon a journey into the unknown, seeking-what? For many new computer owners, the destination will be simply "games". Just how many will persevere with the writing of programs for personal needs and thereby justify the considerable financial outlay is a matter for conjecture.

Be that as it may, what is now happening on a grand scale is the development of computer consciousness and "hands on" experience amongst a broad selection of the general public. For the younger generation in particular, all this can be extremely valuable since many of the jobs likely to be on offer in the future will require familiarity with computers and computing.

While there is bustle in the computer field, the home construction scene appears to be a trifle stagnant. One cannot be too sure and claim that the one is a consequence of the other. But even if so, it is likely to be but a transitory fall-off; in the longer term some of the interest now developing in computers will percolate into electronic technology itself, and produce new recruits for the hobby of circuit construction. Curiosity in the technology behind the keyboard could encourage a wish for practical involvement with electronics in general.

Support for this view was to be found at the Electronic Hobbies Fair last November (see review in this issue). It seemed that a very considerable proportion of visitors were interested in electronics, but indirectly. That is to say they were interested in (or attracted by) the ends, rather than the means-computers, of course, providing the chief and most striking example. But during their tour of the Fair awareness of the scope and possibilities of electronic construction must have been created in the minds of many non-technical visitors. Proof that converts were made is found in the large sales of educational kits reported by exhibitors. Similarly, much interest was shown in the Introducing Electronics series as featured on the EE stand. The solderless technique employed was favourably commented on and seems likely to win quite a few new recruits to our hobby.

The coming of the home computer and the new field of interest it creates should in no way detract followers of electronics from the practical business of designing and building circuits. In fact, the computer can become a valuable aid and ally to the electronics experimenter, by testing ideas and solving problems-as well as to the practically inclined at large, by controlling small machines such as the wood-turning lathe demonstrated on the EE stand.

Readers' Enquiries

We cannot undertake to answer readers' letters requesting modifications, designs or information on commercial equipment or subjects not published by us. All letters requiring a personal reply should be accompanied by a stamped self-addressed envelope.

We cannot undertake to engage in discussions on the telephone.
Component Supplies
Readers should note that we do not supply electronic components for building the projects featured in EVERYDAY ELECTRONICS, but these requirements can be met by our advertisers.

All reasonable precautions are taken to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

Back Issues

Certain back issues of EVERYDAY ELECTRONICS are available worldwide price $£ 1.00$ inclusive of postage and packing per copy. Enquiries with remittance should be sent to Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. In the event of non-availability remittances will be returned.

Binders

Binders to hold one volume (12 issues) are available from the above address for $£ 4.60$ inclusive of postage and packing worldwide.

Please state which Volume.

Subscriptions

Annual subscription for delivery direct to any address in the UK: $£ 12 \cdot 00$. Overseas: $£ 13.00$. Cheques should be made payable to IPC Magazines Ltd., and sent to Room 2613, King's Reach Tower, Stamford Street, London SE1 9LS.

BY J. DUFFY

TODAY, when enough money has been saved to buy and insure a bike the last thing on the owner's mind is theft. Unfortunately, it is all too common but this project should set the minds of some readers at rest.

Two bike alarms are described-one for a motorbike and the other for a pushbike. They both use the same circuit employing a mercury tilt-switch, which triggers the horn and lights of the motorbike version, or an integral alarm unit on the pushbike version.

The motorbike unit also has an external trigger facility from a microswitch for further protection.

A pulsed output is more effective than a steady output and, apart from being easier to locate, reduces battery consumption.

CIRCUIT DESCRIPTION

The circuit diagram of the two versions of the Bike Alarm is shown in Fig. 1. The system has three basic sections: the trigger; low frequency oscillator; and the alarm output.

The first section consists of a monostable multivibrator which is triggered by the mercury switch, S2 (and in the case of the motorbike version, microswitch S3 will also trigger it). The time constant of this monostable circuit is governed by R3 and C2 and it functions as follows:

The monostable consists of two cmos 2 -input NOR gates and in the quiesent state, the output of IC1a (pin 3) is at logic 1 as both inputs (pins 1 and 2) are at logic 0 . As a result, the output of IC 1 b (pin 4) is held low as both its inputs (pins 5 and 6) are high (this gate is acting as an inverter).

Upon receipt of a positive pulse to pin 1 from the mercury switch, the output of ICla will go low causing the output of IClb to go high. The low on pin 1 provides a charge path for C2 via R3 and when this capacitor has charged to a sufficiently high voltage, the input of IC 1b reads this as a logic 1 and the output (pin 4) of this inverter is therefore returned to a logic 0 .

With the values given, the period of this monostable is in the region of one minute.

OSCILLATOR

When the output of the monostable is high, it enables a low frequency oscillator consisting of NOR gates IC Ic and IC id. The output of this section is a squarewave of approximately one hertz. This frequency is controlled by R4 and C3.

When the output of the monostable is low, the oscillator cannot function since the time constant capacitor C3, will not charge up as current flows through D1 to the low (effective earth) on pin 4 of IC Ib.

ALARM OUTPUT

On the motorbike version, the alarm output is in the form of a relay, activated by a high pulse from the oscillator and
driven by TR1. D3 protects the transistor from the back e.m.f. from the coil.

The contacts of this relay are used to control the horn and headlight from the host motorbike. Note that the positive supply to the light and horn is taken to the relay before the Alarm unit on/off switch.

COMPONENTS

MOTORBIKE

Resistors

R1,2 $100 \mathrm{k} \Omega$ (2 off)
R3,4 $10 \mathrm{M} \Omega$ (2 off)
R5 $10 \mathrm{k} \Omega$
All $\frac{1}{2}$ W carbon $\pm 5 \%$

Capacitors

C1 $\quad 100 \mu \mathrm{~F} 16 \mathrm{~V}$ elect. axial lead
C2 $\quad 15 \mu \mathrm{~F} 16 \mathrm{~V}$ elect. axial lead
C3 $\quad 0.1 \mu \mathrm{~F}$ polyester
Semiconductors
D1 1N4148
D2,3 1 N 4001 (2 off)
TR1 BC107 npn silicon
IC1 4001UB cmos quad
2 -input NOR gate

Miscelianeous

$\begin{array}{ll}\text { S1 } & \text { s.p.s.t. key-switch } \\ \text { S2 } & \text { mercury tilt-switch } \\ \text { S3 } & \text { microswitch } \\ \text { RLA } & \text { miniature relay, } 12 \mathrm{~V}, \\ & 130 \Omega \text { coil with } 30 \mathrm{~A}\end{array}$ rated contacts
0.1 inch matrix stripboard 11 strips by 28 holes; plastic case; $100 \times 76 \times 41 \mathrm{~mm}$ (ABS case type MB2); M2 mounting screws 13 mm long; 14 -pin d.i.l. i.c. holder; terminal block 6-way; $7 / 0.2 \mathrm{~mm}$ connecting wire; 24/0. 2 mm wire.

Approx. cost Guidance only
$\mathbf{E 1 2}$

Completed alarm for a pushbike with the key-operated switch mounted on the side.

The pushbike version of the alarm has its own integral buzzer (WD1), and this is driven, again on a high pulse from the oscillator, by Darlington pair, TR1 and TR2. This is shown on the additional section of the circuit diagram, Fig. 1.

This unit has its own supply, a 9V PP3 type battery.

Capacitors

C1 $\quad 100 \mu \mathrm{~F} 16 \mathrm{~V}$ elect. axial lead
C2 $\quad 15 \mu \mathrm{~F} 16 \mathrm{~V}$ elect. axial lead
C3 $\quad 0.1 \mu \mathrm{~F}$ polyester

Semiconductors

D1	1N4148
D2	1N4001
TR1	BC441 npn silicon
TR2	BC107 npn silicon
IC1	4001UB CMOS quad
	2-input NOR gate

Miscellaneous

S 1 s.p.s.t. key-switch
S2 mercury tilt-switch
WD1 9V buzzer
B1 9V PP3 battery
0.1 inch matrix stripboard, 11 strips by 28 holes; battery clip; plastic case, $100 \times 76 \times 41 \mathrm{~mm}$ (ABS case type MB2); M2 mounting screws 13 mm long; 14 -pin d.i.l. i.c. holder; $7 / 0.2 \mathrm{~mm}$ connecting wire.

Approx. cost

Guidance only
$£ 10$

CIRCUIT BOARD

A plastic case measuring about $100 \times$ $75 \times 41 \mathrm{~mm}$ is used for both tbe motorbike and pushbike projects. Although any plastic or metal boxes around this size should be acceptable.

The component panel for both versions is a 0.1 inch matrix stripboard having 28 holes by 11 strips, and these are shown in Figs. 2 and 3. Construction of the board follows the normal pattern with the breaks in the copper strips being made first. Next, solder in all the links and the i.c. socket, after which the components

The motorbike alarm with lid removed to show positioning of the terminal block, circuit board and key-switch. The mercury "trip" switch is mounted in the bottom right corner.
may be soldered into place and Veropins fitted where connections to off-board components are to be made. Take care with the cmos i.c. since it may be destroyed by static.

In both units the board fits easily into the slots in the plastic case. In the motorbike version the holes for the key-switch, grommet, and the mounting holes for the terminal block should be made first. In the pushbike version only sound holes for WD1 and a key-switch hole are required. Care must be taken not to let the metal case of the buzzer touch any connections or switch terminals.

MERCURY SWITCH

The mercury switch, S1, should be soldered to the component board on leads approximately 100 mm long and temporarily attached to the side of the box with a small piece of Plasticine or BluTak.

This is necessary, as the final position of this switch can only be determined after the Alarm unit has been mounted on

Layout of components inside the case of the pushbike alarm. The siren is temporarily held in position by Blu-Tak. The leads to the mercury switch can be seen top right.

Fig. 1. Circuit diagram of the two versions of the Bike Alarm. The siren circuit for
the pushbike is shown on the right. the pushbike is shown on the right.

Fig. 2 (Right). Component layout, underside, showing breaks in the copper strips and interwiring details for the Pushbike Alarm.

Finished circuit board for the Pushbike Alarm. The leads to the mercury switch, shown left, should be approximately 100 mm long.

The completed Motorbike Alarm circuit board.
the bike frame. A certain amount of experimentation will be required in order to achieve the optimum switch position to trigger the alarm when the bike is moved by an unauthorised rider.

The final location of the mercury switch is largely dependant on two factors, whether the alarm is to be triggered by a side-to-side movement or a forward and backward motion. Bearing in mind that a bicycle (or motorbike) is often left in an inclined position, for example against a wall or on a kick-stand, the former consideration can be utilised so that the alarm triggers when the bike is returned to the upright position.

Mercury switches of this type activate at around 10 degrees from the horizontal (that is, at this angle the mercury blob will roll to the end of the device and short out the contacts) so it will need to be mounted at something like this angle inside the case.

This type of triggering does mean that the bike will always have to be inclined to the same side.

MOUNTING

When locating the Alarm unit on the bike, it is important to keep it as discrete as possible; a box that looks like an alarm could be removed and rendered inoperational by the prospective thief.

Fig. 4. Two suggested mounting positions for the completed Pushbike unit. Final arrangement will be governed by placement of the mercury switch.

For this reason, the lock of the keyswitch should not be visible but it must be accessible. The ideal orientation of the key-switch is downward facing.

The finished Alarm unit should be securely fixed to a frame member with a fixing bracket obtained from the local
bicycle shop. A suitable position is on the down tube just below the saddle or under the cross-bar as shown in Fig. 4.

For additional reliability, the Alarm unit can be water-proofed. The simplest way to do this is with a plastic bag or "Clingfilm" wrapped around the case. Another alternative would be to use a more expensive enclosure with a sealing gasket or to use a commercially available sealing compound.

MICROSWITCH

The motorbike version of the Alarm has the option of an additional microswitch to trigger the circuit and this is connected in parallel with the mercury switch (via TB1 terminals 1 and 2).

The normally open contacts are used and the switch is placed where it will be activated when the motorbike is moved. One position could be under the seat so that when someone sits on it, the lever of the microswitch is depressed.

The additional wiring required for this version, that is the wires to the headlight and horn and to the 12 V supply, must be carried out with a stranded wire of sufficient current rating. A $24 / 0.2 \mathrm{~mm}$ wire is suitable and should be fitted with the correct type of connector to mate with the terminals on the electrical system of the bike.

JACK FIUA \& FWMMY...

BASIC THEORY

The trolley provides the information with which the ZX81 will perform the calculations to determine velocity and acceleration.

The basic formulae of motion are as follows:

$$
\begin{aligned}
\text { velocity } & =\frac{\text { distance travelled }}{\text { time taken }} \\
\text { acceleration } & =\frac{\text { change in velocity }}{\text { time taken }}
\end{aligned}
$$

So, to calculate the velocity, the computer needs to know the distance travelled (this will be constant) and the time taken to travel that distance. In order to do this, the trolley will send 30 ultrasonic pulses and the computer measures the time taken for them to arrive. As previously stated, the distance the trolley moves to generate 30 pulses is always constant.

For the acceleration calculation, as the trolley starts from standstill, that is $0 \mathrm{~m} / \mathrm{s}$, the change in velocity will equal the total velocity and since this has already been calculated by the computer it can now calculate the maximum acceleration.

However, computers can be programmed to do much cleverer things so in this circuit, on obtaining the set number of pulses, it can time each individual pulse and provide acceleration figures for any point during the trolleys voyage, thus enabling a pupil to plot a graph from selected notational information; which is neatly displayed on the digital display.

THE TROLLEY

As already mentioned, the microcomputer relies on a set number of pulses which are linked directly to the distance the trolley moves.

The trolley produces pulses whose rate of production is proportional to the speed of the trolley, that is, the faster the trolley moves, the more pulses are produced per second. It achieves these linked pulses by utilising its back wheel. First, however, the basic circuit of the pulse producer and ultrasonic transmitter will be explained. See Fig. 2.

Ultrasonics are a range of frequencies just beyond the limit of human hearing, normally about 30 to 50 kHz . This circuit transmits 40 kHz pulses to the receiver.

The 555 -timer IC1, is connected in an astable mode, oscillating at approxi-

Fig. 2 (Above). Circuit diagram of the trolley mounted ultrasonic transmitter. D1, D2, TR1 and associated components form an infra-red light activated switch to enable IC1.
Photograph (left) shows a close up of the rear wheel of the trolley. The infra-red emitter and receiver D1 and D2 can be seen set into the wooden body of the trolley either side of wheel.
(Below). The main unit and trolley showing the mounting of the ultrasonic transducer X 1 and X 2 . Note how SK1 is soldered to a length of 14 -way ribbon cable.

mately 40 kHz . An infra-red l.e.d. and an infra-red photodiode (D1 and D2) are positioned either side of the back wheel. The wheel itself has a hole bored through it. D2 is designed so that when infra-red light reaches it, it switches on allowing current to flow through it. In this circuit the light comes from D 1 .

As both D1 and D2 are on either side of an opaque material (in this case the rear wheel), the only time D2 conducts is when the hole in the rear wheel aligns itself between them. When this takes place, TR1 switches on generating a negative pulse. It is only a pulse since the light is cut off by the wheel's rotation.

This negative pulse gates the 555 off,
stopping momentarily the 40 kHz transmission. Thus, as the wheel rotates the hole aligns and dis-aligns, the 555 astable switches on and off. An ultrasonic transducer X1 is used to transmit the pulses.

The ultrasonic transducer is mounted, forward facing, on the front of the trolley as shown in the photographs. A compartment can be made for the electronics in the wooden body of the trolley.

When mounting D1 and D2, the single rear wheel of the trolley is drilled and the hole elongated (so as to produce a longer pulse) and the infra-red devices are mounted in the trolley body so as to align with the hole.

Resistors

R1,13-19	330Ω (8 off)
R2	$1.5 \mathrm{k} \Omega$
R3	$56 \mathrm{k} \Omega$
R4	$2 \mathrm{k} \Omega$
R5,10	$15 \mathrm{k} \Omega$ (2 off)
R6	$4.7 \mathrm{k} \Omega$
R7	$1 \mathrm{M} \Omega$
R8,9	560Ω (2 off)
R11	$10 \mathrm{k} \Omega$
R12	470Ω
All W carbon $+5 \%$	

Capacitors

C 1	1 nF polystyrene
C 2	$47 \mu \mathrm{~F} 16 \mathrm{~V}$ tantalum
$\mathrm{C} 3,7$	22 pF ceramic (2 off)
$\mathrm{C4}, 6,8$	10 nF polyester (3 off)
$\mathrm{C} 5,8$	10 pF ceramic
C 9	$0.1 \mu \mathrm{~F}$ polyester

Semiconductors

D1	Infra-red emitter
D2	Infra-red receiver
D3-5	BAX13 silicon (3 off)
TR1-3	BC108 silicon non (3 off)
IC1	555 timer
IC2	TAA960 triple amplifier
IC3	74LS132 TL Low power Schottky quad
	2 -imput NAND
	Schmitt gate
IC4	74LSO4 TLL low power Schottky hex inverter/buffer
IC5	74LS08 TTL low power Schottky quad
	2 -input AND gate
IC6	74LS 10 THL low power Schottky triple
	3 -input NAND gate
IC7,8	74LS373 TLLIOW power Schottky octal
	latch (2 off)
LED1	
	common cathode display (R.S.
X 1	40 kHz ultrasonic
	transmitter transducer
X2	40 kHz ultrasonic

Miscellaneous

VR1	$10 \mathrm{k} \Omega$ miniature preset
VR2	$1 \mathrm{M} \Omega$ miniature preset
VR3	$100 \mathrm{k} \Omega$ miniature preset
B1	9 V PP3 battery
SK1	$23+23$-way double sided 0.1 in . pitch edge connector (to suit finger set on ZX81)

Fig. 3. Circuit diagram of the receiver, computer interface and display sections of the ZX81 Speed Computing System.

THE RECEIVER

The complete circuit diagram of the receiver unit and the ZX 81 interface is shown in Fig. 3. The Ultrasonic pulses from the trolley-mounted transmitter are received by a second transducer, X2, and this is coupled to the first stage of IC2, a triple amplifier. This i.c., the TAA960, is specially designed for use with high impedance receivers.

The input impedance is high to ensure that the transducer has peak response at its anti-resonant frequency.

The combined three stages and sup-
porting circuit gives the amplifier a gain of about 100 dB , and the receiver is efficient up to a range of 8 metres.

The power supply for this circuit and for the interface circuitry is taken from the ZX81 finger set at the back of the computer. The +5 V and 0 V come from pins $1 B$ and 4 B , respectively.

The output from the receiver amplifier is fed to TR2 and TR3 and the resulting pulses are fed to a Schmitt trigger nand gate, IC3. This gate produces a clean 5 V pulse to be fed to the ZX81 to be processed. Fig. 1 (block diagram) shows the resulting waveform.

COMPUTER INTERFACE

The G.E.m.N.I.F. unit is connected to the ZX 81 computer via the $23+23$-way finger set on the printed circuit board at the back of the computer.

A program, written in machine code, instructs the computer to read the data being inputed from the ultrasonic receiver and calculate the troliey velocity. The computer will only accept a set number of pulses (in this case, 30) as the number of pulses corresponds to the distance travelled and this must be constant in order to perform the calculations.

Main unit plus Sinclair ZX81 computer.

View inside prototype showing circuit board and ribbon cable connections.

When the 30 pulses have been received, the counting procedure stops and the display routine commences operation.

Six values of velocity of the trolley are taken at intervals of multiples of five pulses. So, for example, after five pulses the first velocity is calculated, again after 10 pulses, after 15 pulses and so on up to 30 pulses.

Once received, the stored values are used to provide the outputs to the display. They are both on screen (if a TV is being used) and on the integral 4 -digit display on the main unit (LED I).

DISPLAY

Initially the display reads four flashing "eights". Whilst the trolley is actually rolling down the track and the computer is receiving data, the display will automatically blank. When all 30 pulses have been received, the display will read "VEL1", whereupon it will-go on to dis-
play the velocity calculated from the first five pulses. It will proceed to display the next five values under the headings of "VEL2", "VEL3" and so on up to "VEL6".

It continues in a loop displaying these values of velocity until the unit is reset. It will then show flashing "eights" until the trolley starts sending pulses once again.

The gates IC4, IC5 and IC6 and the octal latches IC7 and IC8 are used to decode and display the information received from the ZX 81 on the multiplexed display.

PROGRAM

As previously stated, the computer program for use on the $Z X 81$ in conjunction with the G.E.m.N.I.F. Speed Computing System is written in machine code but unfortunately space does not permit the reproduction of it here.

However, interested parties can contact the editorial offices of Everyday

Electronics and arrangements can be made to supply a transcript or tape copy of the program along with more detailed instructions.

CONSTRUCTION

No detailed constructional information is given for the building of the Speed Computing System as it was felt that, armed with the circuit diagram and background information, it should not prove too difficult to complete.

The original prototype was assembled in a plastic case $190 \times 110 \times 60 \mathrm{~mm}$ housing a single stripboard circuit panel. The transducer was mounted in one side and the $23+23$-way edge connector was soldered to a length of 14 -way ribbon cable.

The trolley was converted from a standard three-wheel trolley of the type found in the physics laboratory and runs on any flat track of minimum length two metres.

BOOK REVIEWS

TELEVISION AND RADIO 1983

Editor Eric Crostton
Price \quad f3.50 limp
Size $\quad 190 \times 230 \mathrm{~mm} .224$ pages
Publisher Independent Broadcasting Authority
ISBN 0900485433

WITH our television viewing habits about to be changed beyond recognition with the advent of the fourth channel, breakfast viewing, satellite broadcasting and cable TV, this annually produced volume makes interesting reading.

1982 saw the birth of the first new national television service for 20 years-Channel 4 -and 1983 will be the year of TV-am, an additional three hours of programmes to wake-up to. This handbook discusses both these new services as well as the established ITV companies and sets out to illustrate the function of a nation-wide broadcasting network.

Many pages are dedicated to the programmes themselves, with sections on sport, drama, science, the arts and of course, news coverage, to name but a few. With over 400 illustrations,
many in full colour, the scope and quality of Independent Television can be seen.

Not to be forgotten is the constantly expanding independent local radio coverage, currently at 47 stations and new contracts are being granted all the time. Other chapters in this compulsive coffeetable book include advertising, finance, Oracle (teletext) and working in broadcasting.
G.P.H.

ELEECTRONICS
 FEBRUARY 1983

PROJECTS
12 V to 240 V Inverter
Twilight Warning
Radio Booster
Ultimum Computer Interface Part 4
FEATURES
Into The Real Worldinterfacing micros
Programmable Unijunction Transistors-a few PUTs are a useful investment
PLUS
Micro-File-Pull-out data on the 6502 Microprocessor

ON SALE NOW

Completed prototype of the Beehive Temperature Meter. The frame selector switch is on the right and the remote sensor input socket can be seen on the side of the case.

REFERENCE VOLTAGE

Resistor R1 and IC 1, a programmable Zener diode, provide the reference voltage for the main circuitry. VR1 is set (programmed) to provide a stabilised voltage across IC1. R2 and R3 are padding resistors for VR1 to give finer sensitivity to VR1 wiper variation.

The potential divide effect of R4 and R5 across IC1 produces a value of 2.73 volts at their junction. This feeds the negative input of ME1, a 3-digit, 999 mV full-scale digital voltmeter. The significance of 2.73 volts will become-apparent later.

SENSOR CIRCUIT

The other side of ME1, the + ve input, is fed by the outputs (one at a time) from each temperature sensor circuit. Each sensor is wired as seen in Fig. 2. The output at X varies linearly with temperature,
and increases by 10 mV per degree Celsius. So at $0^{\circ} \mathrm{C}$, the output would be 2.73 V . Each output needs to be trimmed in using its associated preset, VR2 to VR11. All X 's are commoned at the negative end of R6, but only one sensor is "on" at one time; which one is on, is determined by the setting of S1, which connects the sensor V^{-}terminal to OV .

The sensors should be set up after the monitoring unit and remote sensors are in

Fig. 2. Temperature sensor circuit. The output at X varies $10 \mathrm{mV} /{ }^{\circ} \mathrm{K}$.

COMPONENTS

Potentiometers

VR1 $\quad 2 \cdot 2 \mathrm{k} \Omega$ miniature	
	horizontal preset

VR2-11 $10 \mathrm{k} \Omega$ miniature horizontal presets (10 off)

Semiconductors

| IC1 | TL430C programmable
 Zener diode |
| :--- | :--- | Zener diode

IC2-11 LM335Z precision temperature sensor (10 off)

Miscellaneous

ME1	1V d.c. digital (Digitron
	model 8000)
SK1	21 -way socket
PL1	21 -way plug
S1	1 -pole 10 -way rotary
S2	miniature on-off toggle
B1 $\quad 6 \mathrm{~V}, 4 \times 1.5 \mathrm{~V}(\mathrm{HP} 11$)	
Pointer knob for S1; 21 -way	
cable; battery holder for $4 \times \mathrm{HP} 11$	
cells.	

Guidance only Approx. cost
 £15
 excluding coninectors and meter

Fig. 1. Complete circuit diagram for the Beehive Temperature Meter. The circuit is drawn to include ten temperature sensors, but this number may be reduced or increased as required.

The "baseboard" removed from the case to show positioning of the main components. Four HP11 batteries are located in a holder which is sited across the rear of the baseboard.
their final positions. The sensor temperatures should be given time to stabilise. Place a thermometer beside a sensor when it is being calibrated, and adjust its preset until the readout on ME1 equals the thermometer reading. Repeat for all other sensors. Leave for a while and repeat the operation.

To read the temperature of each sensor, set S1 to the appropriate position. In the prototype, the reading was given directly in degrees Celsius, where the position of the decimal point could be selected on the rear of the specified meter.

Any digital voltmeter could be used here which is capable of displaying up to 1 V in 10 mV steps. Sockets could be fitted in place of ME1 to allow any suitable meter to be plugged in when required.

USES

By monitoring the temperature in the hive, it is expected to be able to determine cluster movement (if any) during cold winter conditions. In such environments bees must cluster to keep alive. Disturbances, such as those from a nearby busy woodpecker could easily upset the bees
and cause them to disperse and so lose the heat generated by clustering.

Regular monitoring of the hive temperature in various positions within the hive would alert the keeper who could then take early measures to remove the disturbance and pacify the bees.

An interesting plan now being considered by the team who produced this unit is to connect it directly to a personal computer. With suitably developed software there are many possibilities including a display of the hive spatial density.

By Dave Barrington

Sounds of ZON

All the latest reports indicate that probably the most popular gift this festive season will have been one of the 2×81 or Spectrum home computers. It is equally likely that thousands of people spent most of their holiday period mastering the wonders of their new acquisitions.

Having been hooked on their possible capabilities, owners will, by now, have soon spot-lighted any limitations and are eagerly seeking the add-on units available to expand their system. These will include printers and increased memory or RAM packs.

Although it does not expand the system, a wide range of sound effects can be added with the ZON X-81 Sound Box from Bi-Pak Semiconductors.

The unit is based on a three-channel-plus-noise sound chip and is so designed that the pitches and volumes of the three channels and overall attack/decay envelope can be controlled by simple BASIC instructions to the computer.

This means that piano, organ, bells, helicopters, lasers, explosions, space invaders, and so on, can be simulated and easily added to existing programs.

The circuit board is housed in a black plastics case with loudspeaker and manual volume control (in addition to programmed volume) and simply plugs in between the rear ZX81 "finger"' set and its RAM pack and/or printer. The power supply for the unit is taken from the internal power supplies of the computer, via the computers bus outlet or finger set.

For use with the ZX Spectrum a special adaptor is required. This is available for the sum of $£ 5.50$ plus VAT.

Included with the ZON X-81 are operating details which take the user through its operation step-by-step and also contain a number of example programs of useful sound effects.

The ZON X-81 Sound Unit costs £25.95 including postage and VAT. For more details, readers should contact: Bi-Pak Semiconductors, Dept. EE, P.O. Box 6, Ware, Herts.

Drilling Machine

With the increase in designs built on printed circuit boards (p.c.b.), many readers must have tried their hand at making their own p.c.b.s and encountered particular problems. From the letters received, the most common and annoying of these would appear to be the accurate and time consuming task of drilling the component holes in the board.

This can now easily be accomplished with the latest addition to the Toolrange stocks. It is the ORYX Model B10 drilling machine designed for small-scale production work on p.c.b.s.

A feature of the drill is a built-in mains power supply which provides a low voltage source to an illumination "torch" for the work surface. The power supply also feeds the 24 V motor, which direct drives a quill spindle at a speed of 14,500 r.p.m.

An adjustable magnifier enables accurate location of the workpiece to drill point and there are adjustable depth stops for hand feeding. The maximum chuck-to-table distance is $1 \frac{1}{2}$ in (32 mm).

Drills of up to $\frac{1}{8}$ in shank diameter can be held in the interchangeable collet chucks. Three collets are supplied as standard, allowing drills from 0.6 mm to 2 mm shank to be used.

More details and price can be obtained from Toolrange Ltd., Dept EE, Upton Road, Reading RG3 4JA.

CONSTRUCTIONALPROJECTS

Alarms for Push-Bike and Motor Bike
When ordering the 4001 i.c. for the Alarms for Push-Bike and Motor Bike project, be sure to ask for the "unbuffered outputs" type. This will have the suffix UBE or UB after the type number. This device should be stocked by most advertisers but in case of difficulty it is listed by Maplin.

The mercury switch used in our models are available from Magenta Electronics. This switch is also available from Tandy shops (order code 275-025).

Note that mercury is a toxic substance, therefore be careful not to break the glass encapsulation when installing in the case.

The 9 V buzzer used in the prototype was purchased from Tandy and is listed as D.C. Buzzer 273-052. Other suitable mechanical sirens are stocked by Electrovalue, Magenta, TK Electronics and J. Bull.

The 12 V 30 A miniature relay is available from Maplin and listed as $\mathrm{YX99H}(12 \mathrm{~V} 30 \mathrm{~A}$

Relay). This relay is listed for use in automotive applications.

The type of case used is not critical, but should be made weather-proof from the elements. An old cycle lamp could be adapted and the bulb reflector area used to house the siren; the glass being replaced by some gauze.

Interval Timer

The 4-digit common cathode multiplex display, Type DL340M, used in the Interval Timer is available from TK Electronics.

They also supply a 9 -digit Bowmar display that could be used in this project for the sum of 55 p plus VAT. However, the pinning for this device is different and will have to be "hard-wired" to the board.

ZX81 Speed Computer System

The ultrasonic transducers for the ZX81 Speed Computer System are available from Electrovalue, Magenta, Maptin and Rapid Electronics. When ordering ask for transmitter and receiver transducers with pin terminations.

The 4-digit 7-segment common cathode display is a RS Components device, stock code 587-507. The diodes D3 to D5, Type BAX13, are stocked by Cricklewood Electronics.

The $23+23$-way 2×81 edge connector is available from Maplin.

Beehive Temperature Meter

The "programmable" Zener diode called for in the Beehive Temperature Meter is likely to cause purchasing problems. This is a three-terminal type with excellent temperature stability. Two external resistors set the Zener voltage to any desired value in the range 3 to 30 V .

The only source we have been able to locate for the TL430C is Maplin Electronic Supplies: Order code YY77J. However, RS Components stock an equivalent to this device which is listed as a programmable Zener diode arid should be ordered as RS 283-227.

Once again, we would point out that RS Components will only supply to bona fide traders and readers should order this item through their component supplier.

The temperature sensor Type LM335Z is available from Europa, Maplin and Rapid Electronics.

A 12 -way rotary switch with an adjustable end-stop will need to be used to make up the single-pole 10-way switch S1. Alternatively, a single-pole 12 -way switch can be used with two tags of the switch left unconnected or joined to the tenth position.

EPROM Programmer for the Acorn Atom

It is not essential to use a zero insertion force (z.i.f.) socket for the EPROM Programmer for the Acorn Atom "Program" socket. This socket plugs into the low profile socket mounted on the circuit board and protrudes through the top of the case. The Vero 24pin Miniwrap i.c. socket, type 200-2133B, has been found to have a low insertion and withdrawal force and could be used as a cheaper replacement for "expensive" .z.i.f. sockets.

AST month we built amplifiers and oscillators. This time we'll extend our experiments from audio to radio frequencies and make a rather crude but reasonably effective a.m. receiver.

DISTORTION

To make it work we'll turn to good account something which is usually regarded as an unmitigated nuisance: distortion. Distortion, in amplifiers, means a departure from perfection. In a perfect amplifier the output would be an exact reproduction, in enlarged form, of the input.

Let's take a closer look at what this means. The "signals" which most amplifiers have to deal with are mixtures. They' contain many different frequencies (in a hi fi music signal, from about 20 Hz to 20 kHz). They contain mixtures of intensities (from pianissimo to fortissimo). There are all sorts of time relationships between components of the mixture and these may be important for stereo reproduction, for example. All these characteristics would be preserved in an ideal amplifier.

No real-life amplifier is perfect. It may not amplify all frequencies equally well. It may not preserve the original time
("phase") relationships between components of the mixture. Above all, it may not reproduce the intensities faithfully.

In electronic terms this means that the shapes of the signal waveforms may be distorted. For hi fi, this amplitude distortion is by far the most serious kind.

OVERLOAD

When we turned amplifiers into oscillators by feeding back the output to the input positively we saw how oscillations

Fig. 5.1. A low value for R1 allows the transistor to be driven into overload.
can build up rapidly, starting with only the tiny amount of "noise" present in all circuits. This is amplified, fed back, amplified again, and so on, getting bigger and bigger.

Why doesn't this process of magnification go on for ever, eventually producing infinitely large voltages and currents? Because a point is soon reached where the transistors just can't handle larger signals. They overload. They can't deliver the output demanded of them.

If you repeat (in thought, at least) an earlier experiment (Fig. 5.1) you'll see why. Suppose we give R1 a lowish value, say $1 \mathrm{k} \Omega$. Then with VR1 slider at the positive end, several milliamps of current flow into TR1 base. TR 1 will try to pass several hundred milliamps of collector current. It can't, because at a mere 20 mA or so all the battery voltage is used up in the Indicator, leaving nothing for the transistor. So as you turn up VR1 the lamp reaches full brightness and gets no brighter as VR1 is turned up further. TR1 is no longer following the input signal (the base current).

LOW DISTORTION AMPS

In low-distortion amplifiers the transistors are given enough steady (d.c.) bias to turn them part-way on. The a.c. signals are added to the bias and as they swing positive or negative the transistors are turned on further or the reverse. Provided they don't get too large the output current and voltage can follow the input as required.

Figure 5.2 shows how the collector current and voltage of a transistor with a resistance load ($1 \mathrm{k} \Omega$) vary as the d.c. base-to-emitter voltage is varied. With no input there is no collector current, hence no voltage drop across Rl so the collector voltage is the same as the battery voltage. As the collector current approaches 6 mA nearly all the battery voltage is dropped by R1 and the collector voltage falls to zero, nearly. It can go no further, whatever you do to the base.

Fig. 5.2. How collector current and voltage change as the base voltage changes.

For minimum distortion the transistor is biased to say 700 mV and a.c. signals added to the d.c. bias. So long as they are not too large the collector current never gets increased to its maximum (here 6 mA) or reduced to zero and distortion is minimised (as shown in Fig. 5.3).

DETECTION

In amplitude-modulated radio there is a high-frequency "carrier wave" whose strength (amplitude) is made to vary in sympathy with the audio (programme) signals (Fig. 5.4 a and b). (For clarity, far fewer cycles of carrier are shown than with real radio signals.)

To recover the audio from the modulated carrier, two steps are taken. First all the negative half-cycles of the carrier are suppressed (c). This leaves a train of pulses whose amplitudes are in step with the original audio. They form a sequence of samples of the audio.

To re-form the audio the gaps between samples must be filled in. This is done with the help of a capacitor which is charged by the pulses and retains charge when a pulse has ended.

There's a snag. A perfect capacitor will charge to the biggest pulse amplitude and stay like that, ignoring any smaller ones which follow. Goodbye, audio. To avoid this a resistance is connected across the capacitor, to allow it to discharge slowly. This gives it enough "memory" to bridge the very short time gaps between sample pulses while allowing the slow audio changes to be followed.

TRANSISTOR DETECTOR

To use a transistor as a detector it is biased to a point such as X in Fig. 5.3. Negative carrier half-cycles then reduce the collector current towards zero but positive ones increase it according to their size. The collector current is a train of sample pulses like Fig. 5.4c.

In our receiver (Fig. 5.5a) TR1 is the detector. Its collector current is low (about $20 \mu \mathrm{~A}$). Gap-filling is done by C3. This is normally charged to about 1.3 V in this circuit. If this voltage changes it can restore itself slowly by charging more via R1 or discharging via TR1 collector and TR2 base.

The incoming signal appears across L1. TR2 amplifies the programme audio.

CONSTRUCTION

The terminal-block connections (Fig. 5.5 b) are similar to last month's amplifiers. You need resistors of $33 \mathrm{k} \Omega$ and $220 \mathrm{k} \Omega$ and polystyrene capacitors of $39 \mathrm{pF}, 390 \mathrm{pF}$ and $1 \mathrm{nF}(1000 \mathrm{pF})$. The other components you should have from before, except L1, which you make. For this you need a rather long piece of insulated hook-up wire (4 metres) but it can be re-used later if need be.

Another new component is a ferrite aerial rod. Get a blank (unwound) rod 100 mm long (or longer). (If you have two shorter rods tape them end to end.)

Fig. 5.3. Biasing the transistor to a partly-on state enables small a.c. signals to be amplified with low distortion, but large ones get "clipped".

The coil Ll is wound on a hollow cardboard or plastic tube wide enough for the ferrite rod to slide easily inside. I used an empty Smarties tube. Most ferrite aerial rods are 6 mm or 9 mm diameter, which is a lot less than my tube but that doesn't matter.

To wind L1, fix one end of your wire to your tube, leaving about 100 mm free for connecting. Wind, spacing the turns to cover about 100 mm . My coil has 42 turns but anything between 30 and 60 will do. Tape the loose end to the tube, again leaving enough spare for connecting to your terminal block.

If the rod goes right inside the tube tape a handle to it: I used the barrel of an old ball pen. Wood can also be used, but not metal.

OPERATING

Turn VR 1 spindle fully clockwise. This puts the full $10 \mathrm{k} \Omega$ in circuit and TR1 oscillates. Moving the ferrite rod slowly into the coil should produce a sequence of whistles. Each whistle results from the

Fig. 5.4. Amplitude modulation of a radio transmission. (a) Audio (programme) signal; (b) Amplitudemodulated carrier frequency waveform; (c) First step in recovering the audio: the negative half-cycles of the a.m. waveform are suppressed; (d) Second step: The gaps are filled in, leaving the original audio plus d.c.
oscillation interacting with an incoming carrier frequency. This produces a beat tone whose frequency is the difference between the carrier frequency and the local oscillation.

Tune in a strong beat then turn down VR1 until oscillation just stops. Slight retuning should then give you the station.

TUNING RANGE

My coil tunes from 1.2 MHz to 2.5 MHz , which embraces the high frequency end of the medium-wave band of 0.52 MHz to $1.65 \mathrm{MHz}(550 \mathrm{kHz}$ to 1650 kHz) where (in Britain) many of the local radio stations are to be found. After dark more distant ones can be heard.

You may be able to pick up a few more with the aid of atmetre of wire connected as a vertical aerial (dotted in Fig. 5.5). Have fun!

Fig. 5.5. An a.m. receiver circuit.

The a.m. receiver wired up on the screw terminal block with the ferrite rod taped to a plastic pen case. Moving the rod in and out of the coil which is wound on an empty "Smartie" tube, tunes the receiver.

TUNED CIRCUIT

L 1 and C 1 form a tuned circuit. Earlier we saw how inductors and capacitors can store energy as fields and charges. We learned that when combined with resistors these energy-storage devices can give time delays. Here, however, an inductor and capacitor are connected to one another. This has a striking effect on the time behaviour.

If Cl is charged, it discharges through L 1 , and a magnetic field is set up. When C 1 is empty the field collapses, inducing a voltage which drives current from L1 into C1 (in the opposite direction from before). This to-and-fro oscillation of current goes on, gradually dying away because part of the energy is lost in the resistance of L 1 each time current flows.

This damped (dying) oscillation occurs at one special frequency, the natural frequency of the tuned circuit. If the circuit is energised from outside, by a signal whose frequency matches the natural frequency the oscillation keeps on getting little pushes which keep it going. Just as somebody on a swing can go higher and higher by moving in step with the natural motion of the swing so small input signals can produce large voltages and currents in the tuned circuit.

As the signal frequency is removed from the natural frequency the effect diminishes. Only signals close to the natural frequency get built up. Hence a tuned circuit is frequency-selective. In our receiver we enhance the selectivity (and the sensitivity) by positive feedback (also called "reaction" or "regeneration").

SIDEBANDS

When a carrier frequency is modulated by an audio frequency extra frequencies on each side (above and below) the carrier frequency are created. These "side frequencies" are known collectively as sidebands and in an amplitude-modulated (a.m.) transmission they extend to each side of the carrier by the same amount as the audio frequency.

To transmit the full audio band, calls for some 20 kHz of space on each side of the a.m. carrier. Tough, as the stations are spaced only 9 kHz apart in the medium-wave band. Their sidebands overlap.

The only thing to do about it is to keep adjacent-frequency stations apart geographically and remove the higher audio frequencies before transmitting, to restrict the sideways spread to, say, 10 kHz , which still gives reasonable music quality.

The carrier frequency itself contains no programme information. It is needed merely to "decode" the sidebands. Moreover, the sidebands duplicate the programme. Each one contains all the audio "information."

The carrier and one sideband can be removed before transmission leaving only a single-sideband. This halves the bandwidth of the transmission and avoids the "waste" of carrier frequency energy. The price is that special and at present expensive techniques are needed to get back the audio at the receiver. Ordinary detection doesn't work.

At very high frequencies (v.h.f.)
transmitters have a short range so if spaced well apart don't interfere with one another. It is then feasible to use a bandwidth-hungry but high quality form of transmission based on frequency modulation. The carrier has a constant amplitude but its frequency is made to vary in sympathy with the intensity of the audio signal. Again, ordinary detectors won't work but the solution is less expensive than for single-sideband (s.s.b.) modulation.

INVISIBLE COMPONENTS

There is a mystery about your receiver. Since it can be made to oscillate, positive feedback must be occurring. But how? Why should varying VR1 cause signals to be fed back from output to input?

Only TR1 is involved. The feedback is at radio frequencies. It is not from collector to base but from emitter to base. How? Through an invisible connection, formed by the internal impedance of the transistor between emitter and base.

Voltages across VR1 and C2 are fed back through this impedance to the tuned circuit. They get increased by a sort of transformer step-up property of the tuned circuit, which is just as well since the voltage at the emitter is less than the voltage at the base. This sustains the oscillation.

If the inductance of L 1 is too large oscillation may only be obtained at the high-frequency end of the tuning range. The remedy is to reduce the number of turns or to reduce C 1 (to, say, 150 pF).

To be continued

The Future . . .

This is the time of year when Old Moore Young attempts to see the future. The delightful thing about forecasting the future is that you can go as far ahead as you wish.

I can imagine that no-one goes to work and we all sit at home and tap out instructions on our computer, with all the manual work being carried out by robots. A start has even been made in the manufacture of cars.

Would the home constructor be able to tap out his requirements on his computer, and would we ever reach the stage where it could all be beamed down and land immediately on his bench, a la "Star Trek"? Then again with the progress of Physcokinetics he would not even have to press the buttons, only to think of the items he required. In time his arms and legs would atrophy, and he would move around in a programmed wheelchair, finally becoming a blob of jelly.

There are a few simple souls that worry about the computer taking us over completely, but just imagine the scientist programming his computer to carry out some original thinking, like discovering penicillin or cracking the D.N.A. code, the double helix, or the composer commanding it to compose a fugue that will excell all J. S. Bach's famous 48 .

I will conclude by quoting a few words by Christopher Booker in a recent edition of the Daily Mail, talking about a friend. "Until a few years ago he was a brilliant computer expert. Financially, and in terms of job prospects he had the world of electronics at his feet. But he has thrown it all up to spend his time as a builder, as a potterand looking after his children-for no other reason that he eventually found the glittering world of electronics utterly dead and boring.'

Now I don't subscribe to his view and neither, I am sure, do our readers but I do agree with the Irishman who said, "All predictions are unreliable, particularly those dealing with the future," but in case I have depressed our reader's, I decided I would cheer them up by looking backwards instead of forward.

The Past

Looking for a "spark" from the past with an electronics connection that might interest readers is very difficult. But suddenly I have an inspiration, Russian Ambassador I. M. Maisky.

He is particularly appropriate if only for the following reason. Ask any British schoolboy who invented radio and the answer will come back, "Marconi". Ask a Russian schoolboy the same question and he will answer with equal speed, "Popoff"

Now although the Russians may claim to have invented the aeroplane, the internal combustion engine and the telephone, their claim to the invention of radio has considerable substance. Alexander Stepanovich Popoff was transmitting radio messages up to 30 miles in 1898 , and it was used by the Russian navy for communications between ships, and ship to shore . The Marchese Guglielmo Marconi established radio communication between France and England in 1899 and in 1901 succeeded in spanning the Atlantic.

In 1936 my father worked for a short time as a humble clerk in the Russian Trading Mission at Bush House, London. Perhaps the O.G.P.U. had a file on him, and noted that he had a son who was a radio technician at Philips. Now their ambassador in London his Excellency Ivan Mikhailovich Maisky had a Philips radio at the embassy and was getting bad interference on his reception from electrical apparatus in the vicinity. I was asked to provide a cure

So one afternoon in the autumn of 1936 saw me clambering on the embassy roof in Kensington Palace Gardens armed with a long coil of screened cable. Fortunately was able to greatly improve reception by cutting out the noise and I was asked to demonstrate this to his Excellency who thanked me warmly for my trouble.

SHORT INTERVAL TIMER

This instrument has been designed to measure time intervals of up to one second with a resolution of 0.0001 seconds, and with an accuracy of better than one per cent.

The stop/start can be activated by mechanical, electronic, or photoelectronic means, enabling the instrument to measure pulse widths, the time between two pulses of either polarity (the period), passage times of moving objects, and so on. The display is a 4-digit calculator type l.e.d. display.

CIRCUIT DESCRIPTION

A block diagram of the system is shown in Fig. 1. The incoming pulses are gated to produce the required polarity. Where the interval between two pulses is to be measured, the pulses are fed through a flip-flop. The resulting waveform is shown.

The rising edge of this pulse triggers a reset pulse which zeros the counter. The falling edge of the pulse (the end of the period to be timed) sends a pulse to the latch which then transfers the information in the counter to the display.

The clock oscillator, nominally at $9,999 \mathrm{~Hz}$, continuously feeds timing pulses to the counter. Thus the display at the end of the period shows the number of clock pulses counted during the timing pulse. For a 4 -digit display, this will be a direct reading of the time in microseconds. The decimal point is to be before the most significant digit.

The reset and latch pulses are of microseconds duration, and therefore do not encroach significantly into the period to be timed.

POLARITY

Fig. 2 gives the circuit diagram. IC1 is a cmos quad 2 -input Schmitt trigger nand gate. The input is fed in via ICld and any effect of switch bounce or input signal jitter will be minimised by the switching characteristics of this type of
gate. S 1 is set for the appropriate signal polarity, this switch brings in an additional Schmitt gate, IC1c, for the negative input pulse position.

The signal is then fed either through IC2 or direct to IC3 depending on the position of S2. IC2 is a dual D-type flipflop, only one of which is used in this circuit. This flip-flop changes output state every time a rising edge signal is applied to pin 3. So if the time interval between two successive pulses is to be measured, the first pulse will switch the output to high, and the second pulse will switch it to low again, thereby activating the RESET and latch pulses in sequence.

RESET

The circuitry associated with S2a (C1 and R2) is designed to put the flip-flop into the right state when initially switched into this mode, by applying a momentary positive pulse to the RESET input pin 4.

The leading edge of the timing pulse is coupled via C3 and R3 to pin 12 of IC4 to produce a momentary RESET pulse. The trailing edge is fed to pins 11 and 5 of IC3, a CMOS dual monostable multivibrator, to produce the LATCH pulse from one of the monostables.

The other monostable has an l.e.d. connected to the output which illuminates when a new reading is made. The l.e.d. remains alight for a period determined by the values of R 4 and C 4 , which for the
given values is a few tenths of a second.
IC1a and IC1b form the clock oscillator to provide the timing pulses. The frequency is set byVR1 and should be $9,999 \mathrm{~Hz}$.

The counting, latch and display drive functions are all done by IC4, a 74 C 925. IC5 contains five individual transistors, four of which are used as current sources for the digits of the display. The display is a dual-in-line (d.i.l.) 4-digit common cathode display for a calculator. The decimal points are not used, since extra circuitry would be required to drive them.

Finally, a stablised power supply of 5 V is obtained using a voltage regulator, IC6. This is necessary to stablise the frequency of the oscillator and for IC4, which requires a +5 V supply. The instrument is driven using a 9 V PP3 battery. It can also be driven using a 9 V mains adaptor via a suitable socket. The power supply circuit diagram is shown in Fig. 3.

COMPONENTS

IC5 may be replaced by an LM3086, a pin-for-pin equivalent of the CA3046. VR1 should be a multiturn preset potentiometer.

The display used on the prototype is a DL-340M common cathode calculator display. This is a d.i.l. display with four digits, all of which were used in this project. Other displays may be used, the best being d.i.l. for easy mounting. The p.c.b. layout may need to be modified to accommodate different pin configurations. Individual common cathode displays may also be used.

With the exception of C 2 , the values of the resistors and capacitors used are not at all critical, and the other values may be used. R7 to R13 affect the brightness of the display. Increasing the value will decrease the brightness by reducing the current, but will increase the battery life.

Rear view with top cover removed.

Fig. 2. Main circuit diagram of the Short Interval Timer.

CIRCUIT BOARD

The unit is built on a single sided p.c.b. $138 \times 75 \mathrm{~mm}$, the layout of which is shown in Fig. 4. Holders are used for the i.c.s as this prevents any soldering damage and facilitates any necessary debugging.

The display is mounted using a special 14-pin d.i.l. holder with both sets of pins bent at 90 degrees to allow the socket to sit at right angles to the board. As previously mentioned, if a different display is used, the p.c.b. connections may need to be altered. This should not be beyond the capabilities of the constructor.

If a multi-digit display is used, for example, from a calculator, this can be mounted behind the front panel of the instrument case and hard wired to the p.c.b. This type of display can have anything up to ten digits of which only four will be used.

CASE

The unit is housed in an aluminium instrument case, $45 \times 105 \times 150 \mathrm{~mm}$, with a vinyl covered lid, a type readily available. The p.c.b. is mounted using

Fig. 3. Power supply circuit diagram. Optional external power socket not shown.
three spacers approximately 13 mm long. Holes for the three switches and l.e.d. are drilled on the front panel, and a window for the display approximately $13 \times$ 34 mm must also be cut. Ensure that the position of this window is such that the display appears to be central.

The input terminals are two 4 mm banana sockets located at the rear of the instrument. If the instrument is also to be powered using a 9 V calculator adaptor, a hole for a 2.5 mm jack socket will also be required.

The battery is secured to the box by a double-sided adhesive tab. D1 is mounted with the standard black bezel clip.

A red filter is glued to the inside of the front panel to increase the display contrast. The switches are labelled using "Letraset" or similar dry print transfers and secured with a clear varnish to make them more durable.

If a mains adaptor jack socket is used, ensure that the terminals are wired so that
the battery is disconnected when the jack plug is in place and that the polarity is correct.

A diagram showing all interwiring is given in Fig. 4.

CALIBRATION

If a calibrated frequency source is available, with an $0-10 \mathrm{~Hz}$ range, then this can be used for calibrating the instrument. With S2 set to measure the time between two pulses, the period is measured. This period is the reciprocal of the input frequency.

So, for example, a known 2 Hz signal is applied to the input and VR1 is adjusted until the display reads 5000 (0.5 seconds).

In the absence of a calibrated source, it is possible to use the 50 Hz mains frequency. Using the unrectified secondary output of a low voltage mains transformer in the range 5 to 12 V fed into the input via a 10 kilohm resistor, adjust VR1 until the display reads 0200 (0.02 seconds).

When using this latter method, the instrument is taking 50 readings per second, and the last digit may appear to change rapidly.

Front view clearly showing the labetling of the three switches.

SHORT INTERVAL TIMER

Fig. 4. Full size printed circuit board artwork and component layout. Topside also shows interwiring details. Note that switches are shown as if the front panel had been folded flat.

Resistors	Se
R1	100k Ω
R2	18 k ת
R3	$6.8 \mathrm{k} \Omega$
R4	$1 \mathrm{M} \Omega$
R5	$4.7 \mathrm{k} \Omega$
R6-13	220Ω (8 off)
All $\frac{1}{4} \mathrm{~W}$ ca	bon $\pm 5 \%$
Capacitor	
C1,3,5	$\begin{aligned} & \text { 680pF polystyrene } \\ & (3 \text { off) } \end{aligned}$
C2	4.7 nF polyester
C4	$1 \mu \mathrm{~F} 6.3 \mathrm{~V}$ tantalum
C6,7	$47 \mu \mathrm{~F} 10 \mathrm{~V}$ tantalum or electrolytic (2 off)

Semiconductors

$\begin{aligned} & \text { D1 } \\ & \text { IC1 } \end{aligned}$	TIL209 red l.e.d.
	4093B смоs quad
	2-input Schmitt triggered
	NAND gate
IC2	4013B cmos dual
	D-type flip-flop
IC3	4098B cmos dual
	monostable
1 C 4	74C925 cmos 4-decade
	counter/driver with
	multiplexed 7-segment
	outputs
IC5	CA3046 or LM3085
	silicon npn transistor
	array
IC6	$78 \mathrm{~L} 05+5 \mathrm{~V}, 100 \mathrm{~mA}$
	regulator
$\times 1$	DL-340M 4-digit
	common cathode
	multiplexed display in
	d.i.l. package (see text)

Miscellaneous

S1.3 s.p.d.t. miniature toggle (2 off)
S2 d.p.d.t. miniature toggle VR1 $50 \mathrm{k} \Omega$ multiturn preset
SK1 $\quad 4 \mathrm{~mm}$ bañana socket red
SK2 4 mm banana socket black
B1 9V PP3 battery
Aluminium instrument case, 150 $\times 105 \times 45 \mathrm{~mm}$; single sided p.c.b. $140 \times 76 \mathrm{~mm}$; red display filter approx. $50 \times 30 \mathrm{~mm}$; battery clip; 16-pin d.i.l. holder (2 off); 14-pin d.i.t. holder (3 off); vertical mounting 14 -pin dii.l. holder (for X1); $7 / 0.2 \mathrm{~mm}$ wire; rubber feet (4 off); mounting hardware

Approx. cost
Guidance only

CIRCUIT OPTIONS

The constructor may wish to extend the time range, for example, 0 to 10 seconds. This can be achieved by either changing VR1 or C2. The oscillator frequency is inversely proportional to the resistance and capacitance, so to have a maximum period of 9.999 seconds, Cl would have to be 0.047 microfarads or VRI would have to be 500 kilohms.

Should more than one range be required, the appropriate number of preset potentiometers will need to be added, and another switch to select the range.

TROUBLE SHOOTING

The following should be of use to identify any problems which may occur when the instrument is first switched on.

The four digits should light, or possibly a random number appear, when first switched on. Any missing digit or segment will be either a wiring error or a fault in IC 4 or IC 5 .

A momentary short of the input terminals should cause D1 to flash (S1 in NEGATIVE position, $S 2$ in PULSE wIDTH position). The new display reading should coincide with this flash. If this does not occur and the oscillator is known to be working, the function of IC4 may be checked by putting pin 5 (LATCH input) of IC4 to $V_{D D}$.

However it will be necessary to disconnect pins 10 and 12 of IC3. Do this by putting IC4 in another d.i.l. holder and bend pin 5 of this holder out so that it protrudes from the side, and plug into the board socket.

When the new protruding pin 5 is connected to V_{DD} the display will count continuously. If it does not, and assuming the RESET pin 12 of IC 4 is at 0 V , the i.c. may be considered faulty.

If the timer gives completely wrong readings, then it is likely that there is a wiring error to one or both of $S 1$ and $S 2$.

USING THE TIMER

The polarity of the pulse to be measured must be known before the measurement is taken.

The switches can now be set to the appropriate mode. These are as follows:

To measure the duration (pulse width) of a positive pulse, S1 is in the positive position (up) and S 2 must be down, pointing to the pulse symbol.

To measure the duration (pulse width) of a negative pulse, $S 1$ is switched to the NEGATIVE position (down). S 2 is unchanged.

To measure the interval between two positive pulses (the period), S 1 is set to the positive position (up) and S 2 is switched to the up position, pointing to the symbol representing two pulses.

To measure the interval between two negative pulses (the period), S 1 is simply switched to the NEGATIVE position (down) and $S 2$ is unchanged.

SOURCE IMPEDANCE

If a measurement is being taken from a circuit or piece of equipment with an output impedance of greater than 33 kilohms, then R1 will have to be sub stituted with a higher value, for example one megohm.

The Short Interval Timer has been designed for pulses of 5 V peak and signals of greater amplitude require an additional resistor in series with the input. A 10 kilohm resistor is sufficient, and the reason that it is required is that the input protection diodes on IC1d will start to conduct at voltages greater than the positive supply rail.

PHOTOCELL

If a phototransistor is to be used to trigger the timer, for example a TIL81, then all that is required is to connect the collector to the positive input terminal (SK 1) and the emitter to the negative input terminal (SK2). R1 acts as the load resistor for this device and may need adjustment to suit the transistor used.

If the time interval to be measured is the interruption of incident light falling on the phototransistor then the Timer must be set up for the measurement of a positive pulse width.

To measure the time interval of light actually falling on the phototransistor, the Timer is set to measure a negative pulse width.

A microswitch can also be used to trigger the timer. In this case the Timer would be measuring the interval of a mechanically moving object which activates the switch. Using the normally open contacts, put in the NEGATIVE position; and for the normally closed contacts, in the positive position.

APPLICATIONS

An example is to use a phototransistor to measure the shutter speed of a nonautomatic camera. With a light in front of the lens and the phototransistor behind the lens, the shutter speed can be checked for accuracy. The waveform seen by the input would correspond to measuring a negative pulse width.

The Timer can also be used to measure the r.p.m. of a rotating object. For example, a white strip painted or stuck on the rotating object will reflect light to the photocell (held in close proximity) with every revolution, and thus giving a continuously up-dated display of the time between each revolution, which for a constant speed calr be converted to r.p.m. by dividing 60 by the time displayed. \square

The finished prototype p.c.b. assembly mounted in the case. This layout differs slightly from that given in Fig. 4.

FROM the opening of the doors on Thursday, 18th November, the Alex andra Pavilion in North London became a bustling scene with visitors of all ages circulating among the stands which of fered a wide range of products from com ponents of all descriptions to complete units and instruments representative of all branches of electronic technology.

SPECIAL ATTRACTIONS

The crowds swelled appreciably on the Saturday and Sunday when the family presence was particularly noticeable. Non-technical members of visiting families soon discovered plenty to amuse and interest themselves amongst the special attractions. Handel's Water Music, Bach's Toccata and Fugue and Jeremiah Clarke's Trumpet Voluntary issued forth at regular intervals from the mighty four manual electronic organ built
by a member of the Electronic Organ Constructors' Society. There was no dearth of volunteer players hence the nearly continual flow of music from this example of the king of instruments.

Ham radio and holography may seem poles apart but they occupied adjoining stands as if to demonstrate how wide and divergent are the activities to be found within the sphere of electronics. Holographic Developments demonstrated 3D holograms and offered for sale products related to this the very latest field for the hobbyist to explore.

Radio is as old as electronics, and the Radio Society of Great Britain carried the banner for this most popular hobby, aided and abetted by two other satellite organisations, the British Amateur Radio Teleprinter Group and the North London Raynet Association. The latter participated actively in guiding fellow hams to the Fair via VHF and UHF links.

ELECTRONIC MILESTONES

Approaching the entrance to the Alexandra Pavilion visitors passed between two metaliic objects each highly significant in technology terms. On the left, rising from the East Tower of the old Alexandra Palace, is the mast that radiated the world's first TV service. On the right, on the ground just before the entrance to the Pavilion, stands a 2-metre diameter dish aerial designed to receive Russian national TV programmes from a satellite hovering over the USSR.

Forty-four years of electronic history neatly symbolised by two aerials standing less than 100 yards apart in the grounds of Alexandra Palace North London

Nearby the Army had a display of its own very special kind of radio equipment and this was demonstrated by young members of the Royal Signals from the Army Apprentice College. Exhibits in cluded an operational radio station, teleprinter and a "rolling road" on which visitors were invited to ride a bicycle and try their luck at beating the speed record.

Just across the way in a railed off arena, radio was being put to another use by Model Land. Model cars, buggies, helicopters and planes were put through their paces and demonstrated their manoeuvrability at high speed when under the control of a skilful operator.

On the first day Leonard Bliss of Model Land, reported a near disaster when his radio-controlled helicopter went out of control and "crash landed", by providence, on his stand. Damage to the stand was minimal and fortunately they had a standby helicopter to hand.

ROBOTS

Not far away stood a family of life size robots belonging to Advanced Robotics. Now and again the father of the quartet felt the urge to take a wander around the neighbouring area of the Pavilion, and in one instance even ventured outside to greet visitors to the show. During the course of these perambulations he chatted up visitors much to their amazement.

These robots were featured in the ITV programme, "The Six O'clock Show" on the Friday evening. The activities of the outside broadcast unit supplied an added attraction to visitors who stayed on to watch this live telecast from the Fair.

Over on "the other channel" the BBC's important role in education was illustrated by displays of the BBC Computer, electronic teaching modules and other items featured in BBC sound and TV programmes. The stand was crowded most of the time with visitors glued to the demonstration video film monitors.

BBC representative Robin Gwyn said the numbers of visitors and the interesting enquiries concerning the BBC's activities in education was, in his experience, unprecedented. Many parents wanted guidance about computers, often because they felt the need to keep up with their children. Others involved in teacher/parent associations wanted advice regarding suitable computers for schools.

This general view of a thronged aisle indicates the popular appeal of the Fair

(Top left). Skulduggery by Holographic Developments. Holographer Ken Harris is pictured beside a dramatically realistic 3-D hologram.
(Top right). The family of robots being interviewed during the ITV telecast from the Fair.
(Left). An Army P.E. instructor advises a visitor before she attempts to break the speed record! This racing cycle was linked to a microprocessor to record the rider's speed.
(Above). All is perfectly clear through this magnifier, one of the attachments available for the Absoglen Minibench.

COMPUTERS

Talking of computers, the visitor could scarcely step in any direction without soon encountering the screen of a VDU alive with readout from one of the wellknown personal computers.

There was no shortage of eager fingers to manipulate the keyboards, whether a game or a more professional problem was being tackled. It was not uncommon to see a youngster clutching his own hand written program eagerly awaiting the chance to try it out.

Maplin had a particularly impressive array of computers, including Atari, Vic and Dragon modules, and these attracted crowds. Roger Allen of Maplin reported a brisk trade in computers, software and publications.

Amongst other exhibitors featuring personal computers were Electrovalue, Chromasonic Electronics, Midwich, Kansas City Systems, SEDAC and Army Apprentice College, with some selling software and computer accessories.

COMPONENTS AND KITS

The constructor and practising designer or engineer alike had much to feast their eyes on. The whole gamut of electronic components was on display, as well as tools and instruments, materials and cases. If it was a new soldering iron you were after then a visit to the Light Soldering Developments stand was the place to call.

Bargain packs were offered by many components firms.

Calling in on the Bi Pak stand, Bill Baines informed us that apart from component packs, cases and their new ZON X-81 Sound Unit were in big demand.

The ZON X-81 is a sound effects box that plugs directly into the back of the ZX81 home computer. This allows the user to produce such sounds as: helicopters, lasers, explosions, space invaders, and so on.

Electronic kits provide a convenient alternative for the constructor in a hurry as well as for the less experienced to assemble. Some fine collections of kits were on display covering electronic gadgets such as musical doorbells to hi fi

Bargains galore! Brisk business in the market place area.
(Left). The Roadrunner wiring system being demonstrated.
equipment. Vellerman, for example, offered a good selection of kits and furthermore had a working model of each on display so that the intending purchaser could see and try for himself the operation of a completed assembly.

Electronic ignition is still extremely popular judging by the sales reported by Peter Biddle of Sparkrite. Apart from an ignition system, they also market a comprehensive anti-theft device.

CATALOGUES

Apart from cash sales, most retailers disposed of considerable numbers of their catalogues. Taken away by visitors, these will be consulted time and time again in the coming months and many an order will be placed by this means. Indeed, some firms have already reported a large amount of business subsequent to the Fair that must be directly attributed to the selling power of the catalogue.

Maplin inform us they sold a few thousand copies of their mammoth opus. Another household name, Vero Electronics, gave away several thousand copies of their catalogue. Mrs Mary Pearce, who was in charge of their stand, told us they have high hopes of extending the uses of their well-known products as a result.

Talking of follow-ups, Global Specialities were delighted with the large proportion of professional enquiries and business buyers amongst visitors to the Fair. Managing director Tina Knight told us they are confident that large amounts of business will materialise from the nature of the enquiries at their stand.

Global's breadboard system, for one, attracted the attention of the professional and looks like being introduced into more than one industrial R\&D department as a result. Global also report lively business in their educational kits. Dads were much in evidence buying these kits for their sons (a likely story!).

Global seized the opportunity (and challenge) offered by their commanding site at the front of the house: a warm introduction to the Fair was induced by the carefully arranged and festively decorated stand.

MARKET PLACE

One corner of the Pavilion was reserved for "small holders" of the electronic retail trade. Trestle tables laden with component goodies of all shapes and forms, and enticing bargain bags of capacitors and the like, attracted crowds.

Everyone likes a rummage, it seems! Except perhaps certain component retailers who felt that business on their stands had suffered as a consequence of the market trading area. The more typical view, however, was that the market area added a desirable touch to the whole scene, and since no-one can obtain all his requirements from these less orthodox trading pitches, the retailer with a wide selection of first class components will always be sought out.

WE THREE

The centre piece in the Pavilion was a large circular stand shared by the three sponsoring magazines, PE, PW and EE. The EE stand featured, the Introducing Electronics series for the beginner using solderless techniques, and this attracted considerable attention.

Another focal point was a smali lathe under the control of the BBC Computer. Here visitors could see a length of plain wooden dowel being machined to a complex shape-the pattern being displayed on the VDU.

The fiye-digit combination lock provided a source of frustration to countless visitors as they strived to "crack the safe". However, we must congratulate Miss R. Mitchell of Gidea Park, Essex on showing her brother, and others on how it is done.

A new collection of test instruments for the hobbyist, musical effects units, computer add-ons and a variety of miscellaneous pieces of equipment were also on show.

Winning projects were demonstrated on the SEDAC stand by students from the successful schools in last year's competition. Considerable interest was aroused in this national competition for secondary schools sponsored by Mullard Ltd and Everyday Electronics, and requests for entry forms for the 1983 contest were frequent.

By BARRY FOX

Mysteries Of Hi Fi

A fascinating gadget is being demonstrated by Sony at hi fi shows and trade exhibitions around Europe.

A transparent plastic case stands on a tape-recorder. Inside the case an ordinary audic cassette hangs suspended by a couple of thin black threads.

There's no visible drive for the suspended cassette, no playback heads and no electronic circuitry. But as you operate the controls of the tape-recorder underneath, the floating cassette runs, re-winds, fast winds and produces music through an unseen amplifier and loudspeaker. It's all very eerie.

In fact the demonstration is intended to show off the extraordinary small size of the tape drive mechanism used in a Walkman portable stereo. The two black threads suspending the cassette are electric wires which feed power to a Walkman drive motor attached to the underside of the suspended cassette. You can just see it if you peer underneath and up at the right angie.

The controls of the recorder underneath operate not only the main recorder drive, but also (via the threads) the unseen motor underneath the suspended cassette. So, as the main recorder re-winds, so does the suspended cassette, and so on.

The sound you hear is actually coming from the recorder, not the suspended cassette. So in some respects the demonstration is a phoney. But it's an interesting talking point, and it does prove the point that tape drive mechanisms are now incredibly small.

Jargon Generator

A few years ago \mid wrote about a computer jargon generator. Now there's a hi fi jargon generator. It's published, but so far only for the benefit of the trade, by Celestion Loudspeakers.

Like all jargon generators it's simple to use. There are three columns of technical terms, each with a number. At random you take one phrase from each column and drop it casually into a sentence.

Celestion reckon that any one of the 9000 permutations of hi fi expertise offered by their generator is enough to silence a hi fi salesman, confuse a friend, or serve as a basis for an impressive letter to a hi fi magazine. Here are a few examples:
' 1 am having trouble with my (1) transient (2) mosfet (3) bucket brigade". If that doesn't work you could try. 'I've now got doubts about (12) digitally processed (16) comb filtered (7) linear interpolation.

Hot Shot

Pooled information will often solve problems you hadn't yet recognised.

Recently a chance remark by a studio engineer raised an interesting question. The studio had built a digital timer and clock from a package of chips. One day one of the junior engineers was idly playing with an anti-static pistol that's kept in the studio to clear the static from gramophone records after they have been wiped clean. He was "playing guns" with the pistol, pointing it close to the clock and squeezing the trigger. Soon afterwards the studio found that the clock wasn't working. All the chips had blown.

No-one will ever know for sure whether it was the ion stream from the pistol that blew the chips or whether there was some quite unrelated fault, like, for instance, a power supply failure. Since then I've tried gunning an old calculator with an anti-static pistol and it's done no damage. But there's a lingering doubt.

Have any readers ever encountered blown chips after using an anti-static pistol near them? If so, let's hear about it and pool information.

It's obviously important because more and more gramophone turntables now incorporate integrated circuits and microprocessors, and many people use anti-static pistols to clear the charge from a disc while it is sitting on a turntable.

Shopping In Tok yol

Digital Audio

I spent a few hours shopping in Tokyo recently, which is always an interesting experience.

Digital audio Compact Discs and players went on sale in early October. It's too early yet to say whether any are actually being bought. The price is low compared to that expected in Britain when Compact Discs go on sale in March 1983.

In Japan the price of a player is under $£ 400$ and discs around $£ 7$ each. It's likely that players will cost between $£ 500$ and $£ 600$ in Britain and the discs $£ 10$ each.

This is why many people feel that Compact Discs will take longer to take off here than the trade originally expected. It will be too expensive for all but the most dedicated hi fi enthusiast.

Video Disc

The Philips LaserVision video disc system has been on sale in Japan since October 1982. But it is backed over there only by Pioneer and it's very hard for any one company to do anything alone in Japan.

As a result LaserVision hasn't been selling well. This is also one reason why the rival VHD system, developed by JVC and backed by twelve Japanese companies, hasn't yet been launched.

Although many hi fi and video shops in Japan still have Pioneer LaserVision players on working demonstration, they don't seem to attract much interest. Neither, incidentally, did the Compact

Disc demonstrations I saw. But this is probably because many customers in department stores and record shops where Compact Disc is being demonstrated, didn't really recognise the significance of what they were seeing and hearing.

Solar Power

The most interesting gadget I saw was a solar power pack, costing around $£ 25$. It's a panel of solar cells, with rechargeable Nickel Cadmium batteries, and in sunshine it delivers enough power to drive a portable radio or cassette player.

One shop was demonstrating it with one of the new portable Sony flat screen televisions. These cost a little over $£ 100$ and use a flat, squashed cathode ray tube similar to the type originally proposed by Sinclair of Britain. The rechargeable NiCads keep the set running while the sun goes behind a cloud.

In-Car TV

Probably the daftest new development in Japan, is the craze for in-car television. I saw several electronics shops showing in-car TV systems. One even had a mockup of a car with a hi-fi stereo and TV installed alongside the driver's seat.

I've always thought that pocketportable TV's were a pointless extravagance. After, all who wants to watch TV while they are walking down a road. But the idea of anyone watching TV while they drive is really ridiculous:

By Pat Hawker, gзva

Exit The Pirates?

In Radio World-November 1982, in discussing the complex legal maze surrounding so much of our use of modern electronics technology, I observed that the Wireless Telegraphy Acts had fallen into disarray although new legislation was threatened.

Over recent years "pirate" (unlicensed) use of radio transmitters has multiplied many times over. Although there have been a number of successful prosecutions brought by the authorities, these have been rendered very difficult by what amounts to the need to catch offenders "microphonehanded" so to speak.

The 1967 Act, for example, made it illegal to import certain types of 27 MHz CB equipment, but there proved to be glaring loopholes in the legislation and there was nothing to prevent the open sale and advertising of equipment that would have been illegal to import in working order or manufacture. Then again the fines imposed on "pirates" have often made it hardly worth the bother of bringing prosecutions.

Piracy

Apart from the continued sale and use of amplitude-modulated CB equipment, and equipment capable of operating outside the 40 UK 27 MHz CB channels, there are many other forms of "piracy" including illegal operation that causes interference to broadcast services or other licensed users of radio frequencies.
These include the many "broadcast" stations on both medium-wave and v.h.f./f.m. that can be heard most weekends and evenings in many cities. In London some have been active for many years despite occasional prosecutions and seizure of equipment, often using tapes which are produced openly.
There are also a number of so-called 'international CBers' using modern h.f. s.s.b. transceivers on frequencies between $6600-6700 \mathrm{kHz}$. Then again there are the pirate or "bootlegger" stations who operate inside the amateur bands using the callsigns of licensed radio amateurs. (I have had the experience of listening to someone calling CQ de G3VA in execrable morse !)

There are the CBers who have been infesting the 28 to 29.7 MHz amateur band using equipment designed originally for both amateur and CB use, or else modified for this band. There are also a number of misguided individuals who for some five years or so have taken a delight in interfering with and abusing the use of amateur 144 MHz "'repeaters'

All such pirates may soon be contronted with altogether tougher opposition.

Telecommunications Bill

In November 1982, terms of a new "Telecommunications Bill" were published. This is an extremely long and complex Parliamentary Bill aimed primarily at preparing the way for the "privatisation" of British Telecommunications, abolishing many of its monopoly powers and setting up a Director General of Telecommunications to license firms wishing to provide telecommunications services. But one part of this Bill-Part V, which runs to 150 pages is concerned with amendments to the Wireless Telegraphy Acts 1949 to 1967 "and to make further provision for facilitating enforcement of these Acts"

While, of course, the Act may be modified during its passage through Parliament, the Bill as published promises to be very tough indeed on pirates and those causing interference to other services. in particular it proposes that the restrictions on specified apparatus should be extended to cover not only use and importation but also:

Manufacture (whether or not for sale). Manufacture is defined as including "construction by any method and the assembly of component parts"

Selling or offering for sale, letting on hire or offering to let on hire, or indicating (whether by display of the apparatus or by any form of advertisement) one's willingness to sell or let on hire.

Having in one's custody or control. This is thus far more wide ranging than Section 7 of the existing 1967 Act and creates entirely new offences.
It is clearly aimed not only at stopping the sale of equipment which it would be illegal to use-but also at making "possession" of such equipment a breach of the law. It will also be possible to specify equipment by the use to which it is put, rather than the frequencies on which it can operate.

There are clauses relating to seizure and disposal of equipment; arrest without warrant; a clause making it an offence to obstruct intentionally the seizure of equipment.

There is little doubt that if Part V of the Telecommunications Bill becomes law in a few months time it will immensely strengthen the power of the authorities to clamp down on radio pirates and the use of unauthorised frequencies. This is long overdue, although in giving the State so much more power it does, or should, impose on the authorities an equal obligation that the licensing process should be reasonable and fair.

It also strengthens the case for amateur radio "novice" licences and legal low-cost "community" radio broadcasting.

Simple Radio-Costly TV

The advent of video cassette machines combined with rental of tapes (whether "pirated" or genuine) has tended to make viewers forget the very high cost of producing high-quality TV programmes. With VCR it may appear to cost only one or two pounds an hour to have your own programme.

In the talk about 30-channel cable TV networks, and whether these should be based on co-axial cable or optical fibres, most of the debate has been concerned with the cost of the network. Less attention has been given to the cost of worth while programmes and how much greater these would be than, for example, the making of radio programmes for local stations or national networks.

Production costs for cinema films can amount to millions of pounds for each hour of material; network television drama is costing $£ 100,000$ to $£ 200,000$ per hour or even more, while production costs of some TV commercials can reach $£ 100,000$ for 30 -seconds, not including the cost of airtime. By comparison programme budgets for radio are usually modest in the extreme.

One reason is that radio programmes are produced much faster with far smaller production teams and far less hassle.

Recently I had personal experience of this while taking part in various TV and radio programmes. In each case what was required was a brief one-or-two minute session of off-the-cuff replies to questions.
The prime-time TV current affairs programme took up two mornings, including one morning with the full film production crew of eight people. The network radio spot, on the other hand, required a ten-minute visit to my office from a presenter/researcher with his own portable recorder. The local radio recording was a matter of an interview conducted over a noisy telephone line.

With the artival of the integrated TV camera/recorders such as the RCA "Hawkeye" and the Sony "Betacam" it would in theory be possible to produce TV news and current affairs almost as simply as with radio's portable audio recorder. But there are many reasons why, even with such equipment, production costs are likely to remain far, far higher for TV than radio.

This is one reason why truly local TV is never likely to be possible to full broadcastquality standards-even a tightly-budgeted TV national programme channel represents £100-million-plus per year in programme costs.

MARCH 1983 ISSUE ON SALE FRIDAY，FEBRUARY 18

INTRODUCING

An easy and economical way to equip your workshop．Start ＂collecting＂these useful instruments．Full details will be published over the next six months．The first unit appears in the March issue and is a LABORATORY POWER SUPPLY． This provides dual outputs to cater for most needs of the hobbyist and experimenter．
1）Variable Supply： $0-20 \mathrm{~V}$ constant current overload protection within range $0-1.2 \mathrm{~A}$
2）Fixed Supply：5V 1A specifically designed for powering TLL circuitry．

MULTI－CHANNEL INTERCOM CAR THERMOMETER EXPANDED KEYBOARD FOR THE ZX81

ALSO

PLUS

THE ELECTRONICS OF

ONE method of sending a number of different signals through a single common medium without mixing them up was described in last month's article on carriers. Frequency division multiplex (f.d.m.) makes use of the time of occurrence of electrical events (Part 1), as manifested in the different periods of the various oscillation frequencies.

Another technique for achieving the same result-putting byways on to highways, so to speak-uses time inter vals more directly. Called time division multiplex (t.d.m.), it is now taking over from f.d.m. in trunk telecommunications and becoming increasingly important in local data transmission.

The whole purpose of multiplexing is to keep line and cable installations fully loaded with information so that they are utilised economically. In this way we save space, materials and money. But first a small digression on the subject of timing.

IMPORTANCE OF TIMING

In your bank account the presence or absence of a mere " 0 " at a particular position on paper can make a lot of difference to the size of your balance or your overdraft. All digitally represented information is sensitive in this way. When such information is electrically transmitted from place to place, what then becomes significant is the occurrence or non-occurrence of an electrical symbol (for example, voltage or current value) at a particular time. Small variations in the value of the electrical quantity itself make no difference at all to the situation: what matters is whether the symbol is there or not there.

So in the digital electronics of IT systems the timing of electrical events is all-important. Indeed it is only through the relative timing of the electrical events that digital signals carry any meaning at all. Some of these relationships are internal to a given item of information. For example, in transmitting sequentially the group of binary digits 1101 , the whole
meaning of the group could depend on whether you start with the least significant digit or with the most significant digit.

The timing of the electrical events can also be in relation to some outside time reference such as an electronic clock.

The electronic clock is, in fact, a prominent feature of many digital IT systems. Often in the form of a crystal controlled pulse generator, it measures out the precise intervals of time in which the electrical values representing digits are permitted to occur. It's rather like an orchestral conductor-or more prosaically a metronome-defining the beat of a piece of music and hence the duration of its bars. Into the intervals so defined the performers insert notes and rests (the information) to produce sounds with a formal rhythmical structure and therefore a meaning as music.

BY T.E. IVALL C.Eng., M.I.E.R.E.
Place your two hands together so that the fingers of one hand are positioned between the fingers of the other. The finger time slots are now interleaved and so provide the timing conditions for multiplexing signals L and R.

INTERLEAVING

A rather more advanced analogy will show the interleaving of more than just two signals. Imagine the heads of several garden rakes laid on a table with the prongs pointing upwards. Line them up one behind the other so that the sets of prongs are staggered with respect to each other, as shown in Fig. 4.2(a). If you now view all the prongs from the side at table level they will appear interleaved as shown in (b).

What emerges clearly from (b) is that the time slots available for each individual signal are spaced some distance apart on

Multiplexer for data communications made by Racal-Milgo. This is a statistical multiplexer (see text) which takes data from up to 32 sources and issues the interleaved information sequentially on a single line at speeds up to 19,200 binary digits per second.

TIME SLOTS

A t.d.m. transmission system, as sketched in Fig. 4.1, makes use of these "time slots". It assigns the common path successively to the different signals by allocating different time slots to pieces of these signals. You have a simple mechanical analogy right in front of you. Spread out the fingers of your two hands. The left-hand fingers represent time slots available for signal L (imagine a line across the base of the fingers as the time scale) and similarly the right-hand fingers represent time slots for signal R.

Fig. 4.1. Outtine of a multiplex transmission system, for sending a group of separate signals (A to E) along a common path without mixing them up. In time division multiplex, portions of the separate signals are taken in turn, interleaved and transmitted in a continuous sequence along the common path.
the analogue of the time scale. How, then, can they be used to convey the information in the signal?

If we want to send an analogue signal like a speech waveform, it can be sampled at intervals corresponding to the occurrence of the time slots for that signal (see discussion on pulse code modulation in Part 2). But the t.d.m. system must be designed so that for each signal the intervals between time slots, and hence the sampling rate, will convey all the information we require (see relevant footnote in Part 2).

If, however, the signal consists of discrete binary digits, as in data transmission, this digital data can be generated at a rate that fits into the time slots available in the t.d.m. system (for example, eight digits per slot).

Figure 4.2 is only a rough analogy. In using the rake prongs to represent the time slots it suggests, wrongly, that there are gaps between the t.d.m. time slots. In reality the time slots follow directly after each other. In Fig. 4.2 you could convey this continuity by imagining the gaps to

Fig. 4.2. Mechanical analogy of interleaved time slots: (a) a view looking down on a group of five garden rake heads with the prongs pointing upwards; (b) a side view through all the rakes showing the interleaving of the five sets of prongs. Distance along the rakes is an analogue of time. Each set of prongs represents a sequence of time slots for conveying one signal.
be completely closed up by fatter prongs-or more rakes. The actual electrical conditions on the common path of a t.d.m. transmission system are something like Fig. 4.3 --though the voltage steps will not be so sharp, for reasons to be explained later in the series.

ELECTRONIC HARDWARE

But how are the time slots shown in Fig. 4.3 actually established in the electronic hardware? It is simply a matter of switching the common path in Fig. 4.1whether twin-wire circuit, coaxial cable or optical fibre-to carry a piece of each signal in turn. The highway scans the byways, accepting their offerings one by one.

The principle can be illustrated by the analogy of a railway with a single-track section which takes trains coming from the "up" and "down" pairs of lines. This is operated by points, shown as selector switches in Fig. 4.4. Imagine, however, that the arrangement is not being used normally for trains going in opposite directions (trains P and X) but for trains going in the same direction (trains P and Q).

For the time that the points are switched to line 1 as shown, train P, representing an encoded signal sample, can travel from one end of line 1 to the other. This is one time slot. When train P has completed the single track part of its journey, both sets of points are switched over to line 2 . For the time they are in this position, train Q-representing a piece of

Fig. 4.3. Successive time slots for portions of the five signals A to E in Fig. 4.1, with one extra slot per group to carry synchronising information. Each signal's time slot contains a group of binary digits formed from two voltage levels. These groups are binary coded samples of analogue signais (for example voice) or codes for alpha-numeric characters (for example data transmission).
another signal-can travel along the common track in a similar way. This is another time slot.

And this imaginary railway could of course be extended to allow the common single track to take trains from further lines, as indicated by the chain lines in the diagram. The right-hand set of points acts like the de-multiplexer in Fig. 4.1.

So the time slots are defined by the actions of the points at each end of the single-track section. In the real t.d.m. system the time slots are similarly defined by electronic switches at both ends of the common highway in Fig, 4.1. But to
make sure that all the pieces of signals go to their right destinations (for example, that train P goes back on to line 1 and is not switched to line 2) the two electronic switches must work in exact synchronism.

SYNCHRONISING

In Fig. 4.4 the two sets of points could be automatically operated together, at regular intervals, by a common electrical equipment controlled by a clock, as shown at the bottom of the diagram. The t.d.m. system in fact uses its elcctronic

Fig. 4.4. Railway analogue showing how coded samples from several different signals are interleaved into successive time slots by electronic switching. The lefthand set of points corresponds to the multiplexer in Fig. 4.1 while the right-hand set corresponds to the demultiplexer.
clock to synchronise the switches. This process takes the form of synchronising pulses sent along the common path by time division multiplexing just as if they were portions of actual signals, as shown in Fig. 4.3.

In telecommunications this t.d.m. principle is employed throughout the world for pulse code modulation trunk transmission systems (see Part 2). More locally it is being used to allow a number of terminals to work into a remote com puter via a single telephone line. A "statistical multiplexer" is one that takes advantage of any inactivity in signals to fill up the otherwise empty time slots with information from other, active signals, thereby increasing the number of signals that can be multiplexed for a given rate of transmission along the common path.

BUSES AND INTERFACES

To transmit information between electronic units we must make sure that what comes from the output of one unit is effective as an input for another unit. It is not only a matter of getting the wires, plugs and sockets right but ensuring that
the electrical representation of the information on these conductors is compatible with the functioning of the units connected. If communication is to be achieved the "talker" must first make himself heard to the "listener". Then he must use a language that the listener can understand.

If a single manufacturer designed and produced all the units concerned he could make sure of these requirements himself. But because IT equipment is introduced by different firms at different times in the development of the technology there is a real problem to deal with. For example, we might need to connect together a computer, modems (Part 3), a multiplexer and several terminals of different kinds-all of which could come from different makers.

STANDARD

INTERFACE AND BUS

A sensible way of dealing with this problem is to have a standardised method of connection and information transmission that will cover all eventualities. This is the reason for the emergence of the

Videotex systems (formerly called Viewdata in the UK) send digitally-encoded information along telephone lines using the serial method shown in Fig. 4.5(a). This videotex business terminal made by Pye TMC can be used with the public Prestel service or in private information retrieval systems. (In Prestel, digital informa tion is sent from the computer data base to the terminal at a rate of 1200 binary digits per second; from terminal to data base at 75 binary digits per second.)
standard interface, as it is called, for connecting separate units, and the standard bus*, for connecting internally the different parts of a single equipment.

Typically, the interface is used for connecting terminals to a computer, while the bus is used inside a computer to transfer information between its central processor, its memory and its input and output devices. (The distinction between them is not rigid, however. One widely used connecting system, for example, is called the General Purpose Interface Bus.)

But because technology develops as an historical process influenced by commercial pressures, there is no single standardised interface and no single standardised bus. Instead we have a number of "standard" interfaces and buses, most of them originated by manufacturers or their trade associations. Nevertheless a few of them have been accepted world-wide and ratified by international bodies-which helps to avoid the utter confusion that would otherwise occur.

Although buses and interfaces can be very complicated in their electrical and mechanical detail they are simple in principle. They all depend on the three aspects of an electrical quantitymagnitude, position and time of occur-rence--that are used throughout IT to represent and convey information (see Part 1). The position of the electrical quantity is, of course, the particular conductor on which it occurs; the magnitude is, typically, a voltage or current; and the time of occurrence is when that voltage or current acts as an electrical symbol.

In this article we are mainly concerned with digital information. For analogue signals it certainly helps to standardise your system of connection between units, but the magnitude and time aspects of the electrical quantity are not so critical. One need only specify rąnges of, say, amplitude and frequency to transmit information successfully between units.

SERIAL AND

PARALLEL SYSTEMS

So in digital systems, magnitude, position and time are manipulated by engineers to produce different kinds of "standard"" buses and interfaces. For practical and economic reasons two main groups have emerged: serial and parallel. In serial systems the different magnitudes of the electrical quantity are sent one after the other. In parallel systems the different magnitudes are sent simultaneously.

As an analogy, consider the process of reading this magazine. The individual words (or perhaps small groups of words) forming a sentence enter the eye and brain serially. When one looks at a diagram, however, the component parts of its two-dimensional pattern are perceived simultaneously-in "parallel".

[^1]For serial transmission only one electrical circuit is needed to connect electronic units--the type of simple information path discussed in Part 3. For parallel transmission there have to be several such circuits between the units. Fig. 4.5 is a comparison between these serial and parallel methods of representing and conveying an item of information-here a number, or other character, encoded as the binary digits 1011.

In the serial case (a) the electrical magnitudes representing these four digits can only be sent one after the other through the single circuit connecting Units A and B. In the parallel case (b), however, all four electrical magnitudes representing the digits can be sent simultaneously on the four circuits (which share a common return conductor) between Units C and D.

So if each of the successive electrical symbols for the digits has a duration of 1 microsecond, the serial system (a) will take 4 microseconds to send the whole character while the parallel system (b) will take only 1 microsecond to send it.

This illustrates the general point that serial systems are slower in transmitting information than parallel systems. But in practice the single circuits of serial systems are extremely useful as interfaces because our existing telephone networks, both public and private, usually end up in simple pairs of wires running to individual instruments in homes, offices and factories. These single pairs are used in IT, for example, to connect terminals to distant computers or to connect facsimile machines to each other.

SHORT DISTANCES

Where the distances between units are short and the cost of installing many parallel circuits is not very high, the system in (b) can be utilised, to take advantage of the high speed of information transmission it allows. In practice this means connections within a machine (for example, a computer) or within a room (example, test instruments working automatically together). The multiple conductors required are sometimes on printed circuit boards, sometimes in flat flexible cables.

Associated with these interfaces and buses one finds electronic devices which allow serial information to be converted to parallel information and vice-versa. An integrated circuit commonly used for this purpose is the "universal asynchronous receiver-transmitter (u.a.r.t.)".

Figure 4.5(b) could be an elementary bus. Practical buses in IT are, however, extremely complicated devices. One commonly used in microcomputers, for example, has 100 conductors altogether. Some of its circuits carry encoded characters (data), some convey encoded information on the storage locations of characters (addresses) and others carry control signals.

A bus provides a means for several different units to be connected to a common

Fig. 4.5. Two ways of transmitting the group of binary digits 1011 between units: (a) serial transmission on a single circuit, the electrical values representing digits following one after the other; (b) parallel transmission, with the four electrical values sent simultaneously on four separate circuits. Assuming equal durations of digit signals, (b) is much faster than (a). Note in (a) that the least significant digit (1.s.d.) is sent first and the most significant digit (m.s.d.) last.

Fig. 4.6. Parallel connections between Units C and D in Fig. 4.5(b) are here extended to a further electronic unit, Unit E. The connections become a bus, or common highway, which, by suitable time-sharing arrangements, can carry parallel information in either direction between any of the units. More units could be connected to the bus on the same principle.
highway, as shown in Fig. 4.6, allowing two-way transfers of parallel information (in Fig. 4.5(b) form) between the various units. But electrically only one transfer can take place at a time, so there have to be careful arrangements for time sharing using clock-defined "time slots" as described earlier.

MICROPROCESSORS

Within a microprocessor, for example, where parallel information is continually being transferred between storage registers, a bus is electronically switched, in each time slot, to connect the output of one register to the input of another register. Buses are essential to IT systems using microprocessors, partly because these devices are designed to work with parallel information and partly because
the small physical size of integrated circuits limits the number of pins that can be put on them and so makes the time sharing of a common set of conductors absolutely necessary.

Even a standard interface based on the serial principle in Fig. 4.5(a) can be quite complicated in practice, as conductors for sending characters are not sufficient in themselves. Other circuits, carrying monitoring and control signals, are needed to ensure that the units at each end-say teleprinters-are in proper electrical contact and operating in synchronism (compare with time division multiplex). As an example, the V. 24 international standard serial interface (known also as RS232C in the USA) provides 25 conductors to cope with all the functions that may be required.

To be continued

HEADACHE CURE

A unique new instrument from Canada promises to assist sufferers from tension headaches and is now being marketed in the UK.

Working on biofeedback principles, the Antache instrument has been developed for research, clinical and home use. It consists of a pair of headphones and electronic circuitry to which is attached an elasticised headband and electrodes.

In operation, the Antache continuously monitors and averages the wearer's electromyogram (EMG) and converts it into a pleasantly modulated tone. Using the pitch of this tone as a guide, it is claimed that the user soon learns how to relax the muscles in the scalp, face and neck which, when they become too tense, bring on the symptoms of tension headaches.

Providing the headache condition has first been diagnosed by a medical doctor and provided, too, that the doctor has approved the use of the device for the patient concerned, the Antache is quite safe for use in the home.

The major advantage of using biofeedback principles for the treatment of headaches is that, unlike drugs, there are no side effects and the user is not restricted in his activities immediately following treatment.

For more details of the Antache, readers should contact: Beam Components Ltd., Dept. EE, 108 High Street, Strood, Rochester, Kent ME2 4TR.

Video games Shock

Video games help kids co-ordinate manual and visual skills. No doubt. But games manufacturers in the USA are reeling after a shock attack by opponents who claim on psychiatric grounds that as most kids prefer violent rather than educational games; they breed acceptance of violence as the norm.

OVERTAKEN

Cars, until now the largest in money terms of Japanese imports into the UK, have been overtaken by video-cassette recorders. But discussions between the UK Department of Industry and Japan's Ministry of International Trade and Industry may result in establishment of manufacturing plants in the UK, possibly as joint ventures with UK companies, in the hope of stemming the import flood.

LASER-FI

Playing your favourite pop or classical disc takes on a new meaning with the announcement from Pioneer of the introduction of the LaserDisc LD1 100 player.

Launched just in time for Christmas, the new player uses a laser beam to read a special disc and reproduce both hi fi stereo sound and "action" video pictures. It is claimed that the sound reproduction is on par with, or better than, f.m. radio and that picture quality is equal to "off-air" broadcasts.
Over 54,000 individual video frames are contained on each side of the acrylic encased disc and a random access facility enables the user to locate and "freeze" any individual frame. Slow motion operation is also possible.
Unlike the audio stylus the optical laser system makes no physical contact with the disc so there is no deterioration in sound or visual quality, no matter how many times the disc is played.
Additional user benefits claimed for the player include a CX noise reduction system and the facility to link with teletex and interface with computers.

Cash Mountains

Leading British electronics manufacturers continue to beat the recession with growing order books and even money in the bank. Biggest cash mountain is at GEC with more than $£ 1$ billion. In comparison Plessey's liquidity is more like a molehill at $£ 180$ million following a 30 per cent rise in profits.

Cash in hand means takeover possibilities such as Plessey's recent acquisition of Stromberg Carlson in the USA.

Solar Flight

Lockheed Missiles and Space is reported to have developed an aircraft powered entirely by solar cells.

With a wing span of up to $300 f t$ with the upper surface covered with solar cells it is claimed to fly non-stop for months at an altitude of $70,000 f$. Payload is only 1001b, sufficient for a spy-in-the-sky camera and associated radio telemetry and control equipment.
st -by-step fully illustrated assembly and fitting instructions with circuit descriptions.

BRANDLEADING ELECTRONICS NOW AVAILABLE IN KIT FORM

AT-80

Electronic Car Security System

- Arms doors, boot, bonnet and has security loop to protect fog/spot lamps, radio/tape, CB equipment - Programmable personal code entry system
- Armed and disarmed from outside vehicle using a special magnetic key fob against a windscreen sensor pad adhered to the inside of the screen. Fits all 12 V neg earth vehicles - Over 250 components to assemble

VOYAGER Car Drive Computer

- A most sophisticated accessory. Utilises a single chip mask programmed microprocessor incorporating a unique programme designed by EDA Sparkrite Lid. Affords 12 functions cenired on Fuel, Speed. Distance and Time. Visual and Audible alarms warning of Excess Speed, Frost/Ice, Lights-left-on. Facility to operate LOG and TRIP functions independently or synchronously - Large 10 mm high $400 f t-t$ fluorescent display with auto intensity Unique speed and fuel transducers giving a programmed accuracy of + or -1% Large LOG \& TRIP memories. 2.000 miles. 180 gallons 100 hours. Full Imperial and Metric calibrations. Over 300 components to assemble A real challenge for the electronics enthustast!

S×1000

Electronic Ignition

- Inductive Discharge
- Extended coil energy
storage circuit
- Contaci breaker driven
- Three position changeover switch - Over 65 components to assemble - Patented clip-to-coil fitting - Fits all 12 v neg. earth vehicles

SX2000

Electronic Ignition

- The brandleading system on the market today - Unique Reactive Discharge
- Combined Inductive and

Capacitive Discharge

* Contact breaker driven
- Three position changeover switch - Over 130 components to assemble - Patented clip-to-coil fitting

TX1002

Electronic Ignition

- Contactless or contact triggered - Extended coil energy storage circuit - Inductive Discharge Three position changeover switch Distributor triggerhead adaptors included Die cast weatherproof case - Clip-to-coil or remote mounting facility Fits majority of 4 G 6 cyl . 12V. neg. earth vehicles Over 145 components to assemble.

Electronic Ignition

TX2002

- The ultimate system - Switchable contactless Three position switch with Auxiliary back-up inductive circuit - Reactive Discharge. Combined capacitive and inductive. Extended coil energy storage circuit Magnetic contactless distributortrigger head - Distributor triggerhead adaptors included - Can also be triggered by existing contact breakers - Die cast waterproof case with clip-to-coil fitting 0 Fits majority of 4 and 6 cylinder 12 v neg. earth vehicles - Over 150 components to assemble
- Fits all $12 v$ neg. earth vehicles

SPECIAL OFFER

"FREE" MAGIDICE KIT WITH ALL ORDERS OVER $£ 45 \cdot 00$

MAGIDICE

Electronic Dice

- Not an auto item but great fun

Toral random selection

- Triggered by waving of hand
- Bleeps and flashes during a 4 second

Throw dispiayed for 10 seconds

- Auto display of last throw 1 second in 5 - Muting and Off switch on base Hours of continuous use from Pp7 battery
Over 100 components to assemble

ENCLOSE CHEQUE(S)/POSTAL ORDERS FOR
£ _ KIT REF
CHEQUE NO

BOOSTS AVERA GE LEVEL OF SOUND WITHOUT INCREASING PEAK LEVEL
SUITABLE FOR CONNEGTION BETWEEN MICROPHONE AND AMPLIFIER

ASPEECH processor is a device which is used to process a speech signal in such a way that the strength of the signal is effectively boosted without any increase in the peak level of the signal.

Units of this type rely on the fact that a speech signal has a rather high peak level when compared to the average level, and the increase in "talk power" can be obtained by boosting the signal but clipping the peaks so that there is no increase in the peak level. Thus the peak level remains unchanged, but the average signal level is greatly boosted, and the volume of the signal is effectively boosted by a substantial amount.

Speech processors are mainly úsed in communications equipment; sometimes as an integral part of a transceiver, and sometimes as an add-on unit which connects between the microphone and the transceiver. Speech processors can also be used to good effect in other types of equipment, such as a public address system.

The unit described here is a reasonably simple but effective device which is battery powered, and is simply connected between the microphone and the transceiver or other equipment. It is intended for use with a high impedance dynamic microphone or an electret type, having a built-in step-up transformer, and this should present no problems since most communications and PA microphones are the high impedance dynamic type.

PROCESSOR SYSTEMS

There is more than one way of obtaining the limiting of signal peaks, and one method is to use a form of automatic gain control circuit. Here the processor adjusts the level of gain so that it is automatically reduced during periods of high dynamic level and increased during periods of low dynamic level.

This obviously gives the required narrowing of the difference between the peak and average signal amplitudes, but the circuit must be designed to respond very rapidly to changes in signal level if it is to be of real benefit. This can easily result in the signal waveform being seriously distorted with a lot of distortion being evident on the output signal.

Slower response times give reduced distortion, but also give a reduction in effectiveness. Of course, a certain amount of distortion is quite acceptable in this application, but more than several per cent distortion would impair the intelligibility of the processed signal and obviously reduce the benefit of the unit.

DISTORTION REDUCTION

A very simple method of speech processing is to use a clipping circuit which prevents the output signal voltage from exceeding a certain level. The circuit is adjusted so that most of the signal is below the clipping level and is unaffected by the unit, but so that the high signal peaks are held down and kept well below their normal level.

This system has the advantage of simplicity plus instant attack and decay
Upper Trace: Soft-limited sinewave, Lower Trace: 800 Hz sinewave input signal.

times, but in this basic form it produces quite high levels of distortion. The distortion products produced consist mainly of harmonics, and harmonics are simply multiples of the frequencies in the clipped signals.

In order to obtain really good results from a clipping circuit it is necessary to include additional circuitry to minimise the distortion generated. The most sophisticated method of achieving this is to use an r.f. clipping circuit, and with this system the input signal is first processed to raise all the input frequencies by a substantial amount so that they are increased into the radio frequency (r.f.) range.

For example, the input frequencies could be raised by 100 kHz , and then they would be at frequencies from just over 100 kHz to about 120 kHz . After clipping, harmonics would still be generated, but these would be at frequencies of about 200 to $240 \mathrm{kHz}, 300$ to $360 \mathrm{kHz}, 400$ to 480 kHz , and so on. These are well clear of the input frequency range, and can be filtered from the output to leave a distortion-free signal which is then processed to restore the original audio frequencies.

The severe drawback of this system is
Upper Trace: Hard-limited sinewave. Lower Trace: 800 Hz sinewave input.

the cost and complexity, unless it is an internal part of an s.s.b. transmitter. For use with other types of equipment an addon processor of this type could cost more than the main item of equipment!

SIMPLIFIED DESIGN

What is needed is a simpler method of obtaining a similar effect, and a system of this type is used in the processor described here. Fig. I shows the arrangement used in this processor in block diagram form.

The microphone signal is first amplified and then fed to a further stage of amplification by way of a variable gain control. This amplification is needed because the output of a microphone is at a fairly low amplitude, and it is not easy to produce a clipping circuit which operates at such low signal levels.

The signal is therefore boosted to a level where clipping can be achieved more readily. The gain control enables the unit to be adjusted to give the desired degree of clipping.

The next stage is a high pass filter, and this removes the lower frequencies in the signal. Frequencies below about 300 hertz contribute nothing to intelligibility, and can even impede it. These frequencies would be most troublesome if not removed as they would produce numerous harmonics right through the middle and upper audio range when the clipping was applied, and the removal of these frequencies substantially reduces the distortion level at the output.

SOFT CLIPPING

Distortion can be further reduced by using a soft clipping circuit rather than a normal hard clipping type, and so a soft limiter is used here.

The difference between the two is that a hard limiter permits no significant increase in the output level once the clipping level has been reached, no matter how large the input signal is made, whereas a soft limiter permits a slight increase in the output ampitude as the impue is incieased above the clipping threshold.

The use of soft limiting gives only a very marginal reduction in efficiency, and the fundamental signal is significantly stronger and the harmonics significantly weaker when compared to results using a hard limiter.

A l.e.d. indicator is switched on while the limiter is driven beyond the clipping threshold, and this makes it much easier to adjust the gain control correctly.

Most of the harmonics on the output signal will be at frequencies of about 3 kHz and above, and frequencies in this range aid the intelligibility of a speech signal very little. A low-pass filter at the output of the unit is therefore used to severely attenuate signails at these frequencies, thereby greatly reducing the level of distortion on the output.

The final section of the unit is simply an attenuator which reduces the output level to one that is comparable to the

Fig. 1. Block diagram of Speech Processor.

input signal level. This enables the processor to be connected between the microphone and the main equipment without introducing any compatibility probiems.

This system does not completely eliminate distortion from the output since some input frequencies (those at about

300 Hz to about 1.5 kHz) will be fed to the limiter and will produce at least one distortion product that will not be removed by the low-pass filtering at the output. However, the distortion is kept down to acceptable levels provided an excessive amount of clipping is not employed, and the unit certainly seems to make a very

COMPONENTS Wiat

Resistors	
R1	$47 \mathrm{k} \Omega$
R2	$15 \mathrm{k} \Omega$
R3	$15 \mathrm{k} \Omega$
R4	$270 \mathrm{k} \Omega$
R5	$2.7 \mathrm{M} \Omega$
R6	$6.8 \mathrm{k} \Omega$
R7	$22 \mathrm{k} \Omega$
R8	$220 \mathrm{k} \Omega$
R9	$220 \mathrm{k} \Omega$
R10	$4.7 \mathrm{k} \Omega$
R11	$4.7 \mathrm{k} \Omega$
All $\frac{1}{3}$ watt carbon $\pm 5 \%$	

R 12	560Ω
$R 13$	$180 \mathrm{k} \Omega$
$R 14$	$1 \mathrm{k} \Omega$
$R 15$	$100 \mathrm{k} \Omega$
$R 16$	$100 \mathrm{k} \Omega$
$R 17$	$3.9 \mathrm{k} \Omega$
$R 17$	$3.9 \mathrm{k} \Omega$
$R 18$	$3.9 \mathrm{k} \Omega$
$R 19$	$3.9 \mathrm{k} \Omega$
$R 20$	$4.7 \mathrm{k} \Omega$
$R 21$	$470 \mathrm{k} \Omega$

All $\frac{1}{3}$ watt carbon $\pm 5 \%$

100nF polyester (C280)
$\begin{array}{ll}\text { C3 } & \text { 47nF polyester (C280) } \\ \text { 330pF ceramic plate }\end{array}$
C4 $\quad 1 \mu \mathrm{~F} 16 \mathrm{~V}$ elect.
C5 $\quad 0.47 \mu \mathrm{~F} 10 \mathrm{~V}$ elect. radial leads
C6 220nF polyester (C280)
C7 $\quad 10 \mathrm{nF}$ polyester (C280)
C8 $\quad 10 \mathrm{nF}$ polyester (C280)
C9 $\quad 0.47 \mu \mathrm{~F}$ iov elect. radial leads
Clo 47 pF cenamic plave
C11 100nF polyester (C280)
C12 22 nF polyester (C280)
C13 $\quad 3.3 \mathrm{nF}$ ceramic plate
C14 $\quad 10 \mathrm{nF}$ polyester (C280)
C15 $2 \cdot 2 \mathrm{nF}$ polystyrene
C16 120 pF ceramic plate
C17 22 nF polyester (C280)

Semiconductors

worthwhile improvement when used with communications equipment under adverse operating conditions.

Of course, if conditions are such that proper contact is easily achieved with no interference and good signal strengths, there is little room for improvement and a speech processor can be of little help. It is only when conditions are poor that the effect of a speech processor will become apparent.

THE CIRCUIT

Fig. 2 shows the complete circuit diagram of the Speech Processor.

ICl is an operational amplifier used in the inverting mode and this acts as the microphone pre-amplifier. This stage has its voltage gain set at a modest level of about six times by R1 and R4, and R1 also sets the input impedance at a suitable level of about $47 \mathrm{k} \Omega$.

C3 is an r.f. filter capacitor and helps to prevent problems with r.f. breakthrough and consequent instability if the unit is used in a strong r.f. field.

IC1 is a low noise device having a j.f.e.t. input stage and this gives the unit a good signal to-noise ratio.

VRI is used to control the degree of clipping and the output from its wiper is fed to a high gain common emitter amplifier which uses TRI in the standard configuration. The gain of IC1 together with the gain provided by TR1 enables the microphone signal to be readily boosted to a level of several volts peak-topeak, and this is sufficient to drive the clipping circuit.

SIGNAL CONTROL

The high-pass filter is an active type which uses the Sallen and Key configuration and has a nominal attenuation rate of 12 dB per octave below the 300 Hz cut off frequency. There is unity gain through this stage at frequencies of 300 Hz and above.

Fig. 2. Complete circuit diagram of Speech Processor.

Fig. 3(a). Topside of stripboard showing component layout.

Fig. 3(b). Underside of stripboard showing breaks in copper strips.

Fig. 4. Exploded view of unit showing interwiring for off-board components.

D1 and D2 are used as the basis of the clipping circuit, D1 processing negative half-cycles and D2 processing positive ones. If the input signal level is less than about $\pm 0 \cdot 5$ volts neither D1 or D2 will conduct and the signal can pass straight through R11 to the next stage of the unit.

If the signal level should exceed about 0.5 volts, either D1 or D2 (depending on the polarity of the signal) will be biased past its forward threshold voltage and will conduct heavily. This produces a voltage drop through R 11 which tends to hold the signal voltage at little more than 0.5 volts even if the input level should be much more than this.

R12 introduces the softening of the clipping action since a current flowing through D1 or D2 must also flow through R12 as well, producing a small voltage across R12, which is proportional to the current flow. Thus the output signal at the junction of R11 and R12 can go slightly above the clipping threshold and the soft clipping is obtained.

CLIPPING INDICATOR

IC2 is used as the 1.e.d. driver, and in this application IC2 is a comparator rather than an operational amplifier. R13 and D3 form a simple voltage regulator circuit which biases the inverting input to about ± 0.5 volts. The non-inverting input will normally be at a lower potential than this so that the output will be at zero volts and l.e.d. indicator D4 will be switched off.

During positive signal peaks if the clipping level is exceeded, the non-inverting input will be taken above 0.5 volts so that the output of IC 2 switches to virtually the full positive supply voltage and D4 is pulsed on to indicate that clipping is occurring.

The output filter is another Sallen and Key active filter, but this time a four section circuit has been used so that a nominal attenuation rate of 24 dB per octave is achieved. It is of course a low-pass filter that is used here, and the cut off frequency is about 3 kHz . Further low-pass filtering is provided by R22 and C16.

C17 is the output d.c. blocking capacitor and VR2 is the pre-set output attenuator.

As the circuit has a current consumption of only about 4.5 mA a small (PP3 size) 9 -volt battery will give many hours of use before needing replacement.

CASE

An aluminium box having approximate outside dimensions of $133 \times 102 \times$ 38 mm makes a suitable housing for the processor, and this is about the smallest case that will comfortably accommodate all the components. SK 1, D4, VR1 and S1 are fitted on the front panel, and SK2 is mounted on the rear panel. SK 1 and SK2 are both standard ($\frac{1}{4}$ inch jack sockets).

Plan view showing component layout inside case.

Rear view showing front panel component wiring.

CIRCUIT BOARD

The component panel is a 0.1 inch matrix stripboard having 24 strips by 36 holes, and this can conveniently be a standard 37 holes by 24 strips board with one row of holes trimmed off or just ignored. Drill the two 3.3 mm diameter mounting holes (which accept M3 or 6BA fixings) and make the numerous breaks in the copper strips before fitting the components on to the board. There are also six link wires to be soldered in place on the board. Use pins at the points where connections are to be made to the off-board components. Fig. 3 gives full details of the component board.

The completed component panel is mounted on the base panel of the case leaving sufficient space for the battery between the board and the components on the front panel. Use 6 mm spacers over
the mounting screws to keep the connections on the underside of the board well separated from the metal case. The remaining wiring is then completed using ordinary p.v.c. insulated connecting wire, and finally the battery clip is wired in place. All this wiring is illustrated in Fig. 4.

ADJUSTMENT

Only one internal adjustment is necessary before the unit is ready for use, and that is to set VR2 to give an output level which is comparable to the output of the microphone used with the unit.

If suitable measuring equipment to assist with this is not available, then it is really a matter of connecting the processor to the main unit using a suitable lead, plugging the microphone into the processor, and then adjusting VR2 by trial and error to a setting which
gives results similar to those obtained without using the processor. While doing this VR1 should have a setting that is just high enough to cause clipping, which will be indicated by D4 just flashing briefly on signal peaks.

In normal use VR1 would be advanced somewhat further than this so that D4 lights up quite brightly whenever an input signal is present. It is probably best to monitor the output signal using an amplifier and headphones, or using a taperecorder perhaps, when initially experimenting with various settings of VR1. This soon shows the benefit in apparent volume increase as VR1 is taken above the clipping threshold, and how excessive clipping simply gives increased distortion and no further increase in volume. Best results are obtained with VRI advanced, just far enough to give a well clipped signal.

BOOK REVIEWS

PRACTICAL ELECTRONICS FOR
RAILWAY MODELLERS
Author Roger Amos
Price $\quad € 7.95$
Size $\quad 240 \times 156 \mathrm{~mm} .160$ pages. Hardback
Publisher Patrick Stephens Ltd
ISBN O-85059-555-X

ANYONE who has watched the operation of a modern model railway will realise that there is ample scope for using electronics in the control system. But as this excellent book shows, the railway modeller can make good use of electronic circuitry in many other ways. There is for example a chapter on Sound Effects, with circuits for simulating a steam whistle, the "chuffing" of steam engines, and so on.

The reader is assumed to be familiar with switches and volts but not with electronic devices. These are briefly explained as
they are introduced in specific projects. A section of Practical Information near the end of the book gives more general information.

Topics covered include controllers, train detection systems, automatic signalling and points controls, and lighting systems, including high-frequency supplies. The only conspicuous lack is of detailed constructional information.
G.S.

BEGINNER'S GUIDE TO BASIC PROGRAMMING

Author	A. P. Stephenson
Price	£ 3.95
Size	$186 \times 120 \mathrm{~mm}$. 192 pages
Publisher	Newnes Technical Books
ISBN	$040801184 X$

THIS paperback is an introduction to newcomers to computer programming. It is aimed at teaching the use of BASIC computer language as used on microcomputers, rather than large mainframe computers. It should therefore be of use to the newcomer who wants to take up computing as a hobby and to do more than just slavishly copy other people's programs.

The explanations are clear and no previous experience of programming or knowledge of BASIC is required.
G.S.

NEW AND FREE FROM GSC.

NEW an exciting range of projects to build on the EXP300 breadboards.
NOW anybody can build electronic projects using "Electronics-by-numbers", its as "Easy as A, B, C with G.S.C!"
FREE project
MUSICAL DOOREELL OF THE 3RD KIND
You've seen the film, now haunt your visitors with the tune!
Each time the doorbell is pushed the eerie tune plays out, then switches off to conserve battery power.
HOW DO YOU MAKE IT.
Our FREE project gives you clear "step-bystep" instructions. For example "take Resistor No. 1 and plug it into hole numbers B45 and B47"
"Take IC No. 1 and plug it into hole numbers E35 to E42 and F35 to F42, (pin 1 on the IC goes into F35)'
"Take. . "Well! why not "clip-the-coupon" and get your FREE step-by-step instruction sheet and your FREE 12 projects with each EXP300 bought and your FREE catalogue and

EXPERIMENTOR BREADBOARDS

The largest rance of breadboards from GSC.
The largest range of breadboards from GSC.
EACH NICKEL SILVER CONT ACT CARRIES A LIFE.TIME GUARANTEE
Alf modular construction means that any Experimentor breadboard can be 'snap-locked' together to build breädboards of any size.

EXP350

The 'beginners breadboard For limited period you can have FREE 12 'Electronics by Numbers' PROJECTS

Exp300

The most 'widely-bought' breadboard Don't miss ơut on our 'NEW AND FREE' projects Ther can be built on the EXP300

EXP600

The Hobbyist microprocessor' board Exp650
The 'one chip microprocessor' board
EXP48
'Snaps-on four extra bus bars
P86
The ultimate breadboard kit
P8100
8100
The most kit for the least money

NEW AND FREE FROMG.S.C. 24 HOUR SERVICE.

Tel (0799) 21682 with your Access. American Express. Barclaycard number and your order will be put in the post immediately.

TO ORDER JUST CLIP THE COUPON.

global specialties corporation ${ }^{\text {St }}$ GSC Unit 1, Shire Hill Ind. Estate $\because \quad \begin{aligned} & \text { Saffron Walden, Essex. C } \\ & \text { Telephone (0799) } 21682 \\ & \text { Telex 817477. Dept. } 6 \mathrm{P}\end{aligned}$

ambit's new autumn/winter catalogue

ALL THE ‘USUAL’ BITS (Rs, Cs, Tr's, ICs etc)

+ ALL THE
TRICKY BITS at all good newsagents or direct
* TOKO COILS, INDUCTORS, LC FILTERS
* PCM FILTERS, VHF/UHF HELICAL FILTERS
* UNELCO CAPACITORS
* PCI INTELLIGENT LCD MODULES
* TOKO SWITCHES : F SERIES/R7000 SERIES
* ALPS POTENTIOMETERS AND KEYSWITCHES
* TOYO-TSUSHO COAX RELAYS FOR TX/RX
* CRYSTAL FILTERS, CERAMIC FILTERS
* WELLER SOLDERING IRONS
* COOPER TOOLS
* TEST EQUIPMENT
* BOOKS, MANUFACTURERS' HANDBOOKS
* HARDWARE, CASES, PANELWARE, ETC.
* MODULES, R\&EW KITS
* RF POWER DEVICES

ORDERS SUBMITTED USING STOCKCODES DESPATCHED
WITHIN 8 WORKING HOURS FOR EX-STOCK ITEMS

* PHONE ORDER SERVICE - (NO MACHINES!)
please note our new phone system automatic ally stacks calls in order of arrival so please wait if not answered immediately

$$
\begin{gathered}
8 \mathrm{AM}-7 \mathrm{PM} \quad \mathrm{MON} \rightarrow \mathrm{SAT} \\
0277230909
\end{gathered}
$$

* COMPUTER ORDER SERVICE - 'REWTEL'

6 PM - 9 AM 300 BAUD/RS232 (IT MAY BE 24 HRS BY THE TIME YOU READ THIS) 0277230959

EPROM PROGRammer FOR THE ACORI ATOM

BY D. C. GRINDROD

THE device to be described here will provide a simple, fast and relatively inexpensive method of programming and reading 2 K and 4 K byte single supply rail (+5 V) erroms (Erasable and Programmable Read Only Memory) using the Acorn Atom computer.

It is able to program the following EPROMS (1) TMS2516, 2716 and other manufacturers' pin compatible types; (2) TMS2532 and other manufacturers' pin compatible types. It is not suitable for use with Intel 2732 type EPROMS or other manufacturers' compatible types.

Fig. 1. Pin-out diagram for the 2716 and 2532 EPROMS. Note the different functions for pins 18 and 20 for the two types.

Although specifically designed for use with the Acorn Atom (for which it was developed to overcome loading of frequently used long programs from cassette), it could also be used with other computers with modifications to connecting cables and suitably developed software.

The software controls all pulses and addressing, leaving the user to select only MODE (READ/PROG) and SIZE ($2 \mathrm{~K} / 4 \mathrm{~K}$).

To be able to address up to 4096 bytes (4K) address lines A 0 to A 11 are required. A0 to A7 are provided by port A (£B801) of the VIA and A8 to A11 by the four lowest bits of port C ($£ \mathrm{~B} 002$) of the 8255 . This break is not as awkward as would first be thought, as it occurs on a 255 byte boundary. The maximum number held in a single byte is 255 , hence a carry procedure would be needed anyway.

Figure 1 and Table 1 show the pinning, programming and reading requirements of the two types of EPROMS catered for by this programmer from which we can see that they differ in the following respects:
(1) $\overline{\mathrm{CE}} / \mathrm{PGM}$ is a different pin
(2) 2532 has an extra address line
(3) The pulse required for programming is -ve going for the 2532 and + ve going for the 2716
The first two differences are overcome by a d.p.d.t. switch, S 1 , while the third is dealt with by the software.

PROGRAMS

The original idea was to use EPROMS as a semi-permanent storage medium for long programs that were used often and hence reduce the time needed for loading from cassette.

Since each byte programmed needs a 50 ms pulse the programming time is not greatly affected by the language used, thus, it was decided to use a Basic progam to control programming of the EPROM.

Table 1 : Mode selection for the 2716 and 2532 Eproms

TYPE	2716 (2K)					2532 (4K)			
	CE/PGM (18)	$\begin{aligned} & \overline{0 E} \\ & (20) \end{aligned}$	$\begin{aligned} & V_{p p} \\ & (21) \end{aligned}$	$\begin{aligned} & V_{C C} \\ & (24) \end{aligned}$	$\begin{aligned} & \text { Outputs } \\ & (9-11, \\ & 13-17) \end{aligned}$	$\begin{aligned} & \overline{C E} / \mathrm{PGM} \\ & (20) \end{aligned}$	$\begin{aligned} & V_{p p} \\ & (21) \end{aligned}$	$\begin{aligned} & V_{C C} \\ & (24) \end{aligned}$	$\begin{aligned} & \text { Dutputs } \\ & (9-11, \\ & 13-17) \end{aligned}$
Read	$V_{1 L}$	$V_{1 L}$	+5	+5	$\mathrm{D}_{\text {OUT }}$	V 11	$+5 \mathrm{~V}$	+ 5	$\mathrm{D}_{\text {OUT }}$
Standby	V_{HH}	Don't Care	+5	+5	High 2	$V_{\text {H }}$	$+5 \mathrm{~V}$	+ 5	High Z
Program	$\begin{aligned} & \text { Pulsed } \\ & V_{I L} \text { to } V_{I H} \end{aligned}$	$\mathrm{V}_{\text {IH }}$	+25	+5	$\mathrm{D}_{\text {IN }}$	$\begin{gathered} \text { Puised } \\ V_{\text {IH }} \text { to } \\ V_{\text {II }} \end{gathered}$	$+25 \mathrm{~V}$	+ 5	D_{N}
Program Venty	VIL	V_{1}	+25	+ 5	$\mathrm{D}_{0 \text { OT }}$	-	-	-	-
Program Inhibit	VIL	$V_{\text {IH }}$	$+25$	+ 5	High 2	$\mathrm{V}_{\text {IH }}$	+25V	+5	High Z

[^2]

When reading the EPROM however, the time taken is determined by the language, therefore a fully re-locatable machine code program was developed which is small enough (79 bytes) to fit above the floating point variables at $£ 2890$. EPROM/RAM start and EPROM end addresses are stored in the two lowest bytes of the integer variables A, B and C , respectively.

CIRCUIT DESCRIPTION

The complete circuit diagram for the Eprom Programmer is shown in Fig. 2. Nearly all the circuitry is for the generation from the mains supply of the +5 and +25 volt supply lines. We shall discuss this section first.
A.c. mains voltage enters the unit and reaches T1 primary winding via the onoff switch S3 and fuse FS1. T1 is a stepdown transformer having two independent secondaries, each developing 20 V a.c. across their windings.

The diode bridge D3-D6 provides fullwave rectification of the upper secondary voltage. The resulting pulsed d.c. is smoothed by C3 to reach the input of IC1. The latter is a monolithic voltage regulator i.c. which normally provides a stabilised 15 V output. However, in this circuit the output voltage is stepped-up to 25 V by the action of VR2 in series with the common connection.

Resistors		$\begin{aligned} & \text { SK3,4 } \\ & \text { SK5 } \end{aligned}$	16-pin d.i.l. (2 off) 24-pin d.i.l. +24 -pin zero insertion force socket		
R1	$1 \mathrm{k} \Omega$$390 \Omega$				
R2					
R3	$4.7 \mathrm{k} \Omega$				
All $\frac{1}{4}$ W ca	rbon $\pm 5 \%$	SK6	4-way inter-p.c.b.		
Capacitors page 85			${ }_{7}$ connector		
C1,4	$0.047 \mu \mathrm{~F} 35 \mathrm{~V}$ tantalum (2 off)		$5-w a y 270^{\circ}$ DIN		
		$\begin{aligned} & \mathrm{PL2} \\ & \mathrm{PL} 3,4 \end{aligned}$	16 -pin d.i.l. header		
C2,5	$0.022 \mu \mathrm{~F} \mathrm{35V}$ tantalum(20ff)	PL6	(2 off)		
			4-way inter-p.c.b.		
C3,6	$100 \mu \mathrm{~F} 35 \mathrm{~V}$ elect. (2 off)	$\begin{aligned} & \text { VR1 } \\ & \text { VR2 } \end{aligned}$	connector $5 \mathrm{k} \Omega$ multiturn preset		
			$1 \mathrm{k} \Omega$ miniature		
Semiconductors		FS1	horizontal skeleton		
D1	bi-coloured (red/green)		preset		
	l.e.d.		mounting fuseholder		
D2	TIL220 red l.e.d.	T1	mains primary/ $/ 0-20 \mathrm{~V}$,		
D3-6 ?	VM18 1A 50V bridge		$0-20 \mathrm{~V} 6 \mathrm{VA}$		
D7-10)	rectifier d.i.l. (2 off)		secondaries p.c.b.		
	7815 15V 1 A voltage		mounting-see text		
IC2	7805 5V 1 A voltage regulator (TO-220)	Stripboard, 0.1 inch matrix; 17			
		strips $\times 51$ holes, 25 strips $\times 25$ holes; 6BA mounting hardware for			
Miscellaneous		circuit boards; Speedbloc cable or other: case, plastic size $190 \times$			
S1,2,3	d.p.d.t. miniaturetoggle (3 off)	or other; case, plastic, size $190 \times$ $110 \times 60 \mathrm{~mm}$ (Tandy 270-224):			
		2-core mains cable; clips and bushes for l.e.d.s.; self-adhesive			
SK1	toggle (3 off) 64 -way ($\mathrm{a}+\mathrm{b}$) in-line				
	indirect connector 5 -way 270° DIN	rubber feet for case (4 off); sleeving.			
SK2					
Guidance only. Appox. cost					

Fig. 2. Complete circuit diagram of the EPROM Programmer. The power supply section is shown above and the circuit (left) gives the interconnections from the 24pin d.i.l. socket to the Acorn Atom computer.

Cl and C 2 are included for reasons of stability. Similarly, a smooth voltage level of about 28 V reaches the input of IC2 to provide a +5 V output stabilised. C4 and C5 are included for reasons of stability. R3 acts as a bleed resistor for IC2.

The power supply is more than adequate, the maximum requirements being for the 4 K EPROM: 5 V at $150 \mathrm{~mA}, 25 \mathrm{~V}$ at 30 mA .

The power supply is built on a circuit board separate from the remainder and
connects to it by means of p.c.b. inter sockets/plugs (SK 6/PL6).

The +5 V and 0 V rails reach pins 24 and 12 , respectively, of the EPROM socket SK 5.

The bi-coloured l.e.d. D1 is an optional extra which was included to show the mode of operation. This was also marked around $S 2$ on the top panel. In the prototype it was orientated so that it lights up red for PROGramming mode, and green in the READ mode. VRI needs to be set to give equal brightness of the two colours, this will be described later.

The address and data for the EProm are made available by the software at various pins on PL6 on the Atom and the cassette port. These signals are under full software control.

The 25 V supply is only needed for programming and therefore only reaches pin 21 of the eprom when $S 2$ is in the PROGramming mode. In the READ mode $V_{\text {pp }}$ should be at +5 V .

The only other control is S1, the R $\mathbf{R} 0 \mathrm{~m}$ SIZE switch. This routes the program signal to the appropriate pin according to Fig. 1, and brings in A 11 as required.

Next Month: Construction and Testing

IC2 forms a slow-running astable multivibrator the output of which is fed to the reset pin of IC1. The chirping will be switched on and off because IC1 can only oscillate when pin 4 is positive. VR1 alters the time between each burst of
"chirps". The component values are by no means critical and may be experimented with.

> Mark Robinson, Winsford, Cheshire.

CHIRPING BIRD

This circuit produces a sound similar to a chirping bird. TR1 and associated components form a sine-wave oscillator which runs fairly quickly. Increasing the values of C1, C2 and C3 would slow down the chirp rate, but they must all be the same value to produce the required phase shift.

The output of this oscillator is fed to the control pin (pin 5) of a 555 astable multivibrator IC1 which produces a high frequency square-wave at pin 3. R7 may be increased to lower the volume but the sum of R7 and the speaker resistance must not be less than 100 ohms, otherwise the current drawn by LSI could damage IC1.

The output, therefore, is a square-wave modulated by the sine-wave which produces the characteristic "chirp" sound.

MORE ON PAGE 118

THE trouble with earphones, head phones and allied devices is that it is only too easy to take them for granted. You make your miniature personal radio, say, and then you think: Ah, yes; it'll need an earphone. The chances are that you try some old earphone salvaged from a defunct radio and plug it in, hoping for the best.

IMPEDANCE

Quite often, it doesn't work, or at least doesn't work well. The most frequent explanation is that its impedance is too low or too high to suit the circuit to which you attach it. Most of the little plastic earphones which come with pocket radios have low impedance, often 8 ohms. This

A common arrangement was to have two earpieces each of whose impedances was 1000 or 2000 ohms. These could be connected in series to give 2000 or 4000 ohms or in parallel for 500 or 1000 ohms. They were extremely sensitive: they had to be to give any volume from a crystal set whose only power was what the aerial picked up. They were-usually poor quality sound reproducers with a huge resonance at about 1 kHz .

Today's two-earpiece headphones are usually very different. A typical pair of low-cost "stereo phones" contains in its rather large and comfortably padded earpieces a couple of small loudspeakers. These are usually of 8 ohms impedance and they are connected as shown in Fig. 1a. The connections are often brought out to a jack plug with three contact segments.

For stereo listening (b) the "live" sides of the two audio channels are connected to points 1 and 3 ; point 2 is the common or earthy connection.

For non-stereo use you have the option of using the two in series (c) to give an impedance of 16 ohms or in parallel (d) for 4 ohms. It is possible to obtain stereo phones of other impedances. Sound engineers may use 600 -ohm phones for instance. But $2 \times 8 \mathrm{ohms}$ is by far the commonest impedance. Actually this too

The low-impedance earphones contain a little coil of fine wire, a magnet, and some sort of diaphragm which is moved either by the magnetic field or by movement of the coil in the field.

The crystal types contain a thin piece of special material (an insulator) metallised on both sides to form a capacitor. The material bends under the influence of an audio voltage, to produce the sound. Being a capacitor, a crystal earphone does not pass d.c. Its resistance is infinite. But it offers an impedance to a.c. which falls as the frequency rises. This tends to make it accentuate treble notes.

In circuits like Fig. 2, where the audio is developed across a fairly high resistance (here $10 \mathrm{k} \Omega$) a crystal earphone is the natural choice. Since it passes no d.c. it may also be connected as shown dotted, no coupling capacitor being needed.

TRANSFORMER MATCHING

There are times when it is necessary to match a low impedance earphone to a high impedance audio source. This is a job for a transformer (Fig. 3).

Transformers need to be specified with care since many factors affect their performance. But when correctly designed

Fig. 1. The wiring configuration for stereo headphones is shown in (a) with the audio channels connected at points 1 and 3 (b) and earth at point 2. For mono use the headphones may be connected in series (c) or parallel (d).

Fig. 2. In this circuit the audio is produced across a high resistance, so a crystal earphone is used since it passes no d.c.
is fine if they are connected so as to replace an 8 -ohm loudspeaker. But many home-built radios are designed to work into earphones of very much higher impedance.

In the old days of radio, the crystal set era, people listened on headphones whose two earphones were magnetic devices with an impedance of as much as 4000 ohms. In fact that was the d.c. resistance; the impedance to audio frequencies was very much higher.
is really the d.c. resistance but the a.c. impedance at most audio frequencies is about the same.

CRYSTAL EARPHONES

For really high impedance nowadays you must use crystal earphones. The single type looks just like one of the lowimpedance magnetic earphones, and beginners sometimes come to grief by mistaking one for the other. But inside they are totally different.
and used they multiply the impedance of the earphone by the square of the ratio of turns on the primary to turns on the secondary. Thus a turns ratio of 10 multiplies 8 ohms to 800 ohms.

The current is multiplied by the same number which is why the use of a matching transformer can produce a big increase in volume, though only when conditions allow this. A transformer can't make energy, it can only enable you to make the best use of the available energy.

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory

You learn the practical way in easy steps mastering all the essentials of your hobby or to start or further à career in electronics or as a self. employed servicing engineer.
All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write personally at any time, for advice or help during your work. A Certificate is given at the end of every course
You will do the following
Build a modern oscilloscope
Recognise and handie current electronic components

- Read, draw and understand circuit diagrams
- Carry out 40 experiments on basic electronic circuits used in modern cquipment
- Build and use digital electronic circuits and current solid state 'chips'
Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V. Hi-Fi and microprocessor/computer
 equipment.

Newdob?NewCareer?NewHobby?Getinto Filectronics Now!

COURSE IN ELECTRONICS as described above RADIO AMATEUR LICENCE MICROPROCESSORS LOGIC COURSE

OTHER SUBJECTS POST NOW TO:

British National Radio\& Flectronics School Reading,Berks.RG11RR

This is the spot where readers pass on to fellow enthusiasts useful and interesting circuits they have themselves devised.

Payment is made for all circuits published in this feature.
Contributions should be accompanied by a letter stating that the circuit idea offered is wholly or in significant part the original work of the sender and that it has not been offered for publication elsewhere.

JOGGER'S PACEMAKER

This circuit produces a pulsing tone that can be used to heip joggers keep a constant pace and, by increasing the pulse rate, improve their running.

By counting the number of steps the jogger takes it is also possible to calculate the approximate distance that has been run. This is achieved by changing the frequency of the puising tone every 500 or 1000 steps.

ICla and ICIb form an oscillator that generates a tone of about 1000 Hz . A second oscillator is formed by IC 1c and ICId and this controls the running pace by switching the first oscillator on and off. The pulse rate is set by potentiometer VRI.

To count the steps, the puises from the slower oscillator are fed into a 14 -stage binary counter IC2. When approximately 500 (exactly 512) pulses havę been counted by IC2, pin 14 goes high and changes the frequency of the tone produced by ICla-IClb. After a furtier 512 puises pin 14 goes low again and the tone changes back to the first frequency. If the

tone is to change every 1024 steps switch S1 should be set to pin 15 of IC2.

To calculate the distance you have run simply multiply the number of steps with
the length of your steps. For example: 1500×1 metre $=1.5 \mathrm{~km}$.

Joachim Ramkull,
Lund, Sweden.

DISCO TRAFFIC ilGHTS

During the past few years many sound-to-light units have become
available. A variation on the normal light sequencer is presented here, which provides a traffic light sequence. The operation of the circuit is as follows:

An audio input of greater than 200 mV is amplified, and high frequency components of the signal are reduced by the inclusion of a low-pass filter. The signal then enters IC2a, a Schmitt trigger, which is included to reduce spurious pulses entering IC3. IC 3 is a 4 -bit binary counter, though this application utilises only two of its four outputs.

IC2b causes high level signals entering IC4a. IC4b and IC4d to be modulated at around 1 kHz . This is required for the operation of the transformers. The triacs should be chosen to suit the power rating of the bulbs.

The sequence is as shown below:

Q0	Q1	Output
0	0	Green
1	0	Amber
0	1	Red
1	1	Red and Amber

Since this cycle repeats, the standard traffic light sequence (Red, Red and Amber, Green, Amber and back to Red) is followed.
A. Marshall, Old Basford, Nottingham.

MINI-MULTI TESTER Deluxe pocket size precision mov-
ing coll instrument, Jewelled bearings - 20000 .p.v. mirrored sc
11 instant range measures: DC volts $10,50,250,1000$. DC volts $10,50,250,1000$.
$A C$ volts $10,50,250,1000$. AC volts $10,50.250 .100$
DC amps $0=100 \mathrm{~mA}$.

Continuity and resistance 0-1 meg ohms in two ranges. Complete with test prods and instruction book showing how to measure capacity and inductance as well
Unbelievable value as only $£ 6.75+60$ 。 post and insurance. FREE Amps range kit to enable You to read DC current from 0 -
10 amps, directly on the $0-10$ You amps. directiv on the $0-10$
scale. It's free if you purchase. quickly, but if you already own
Minit - sester and would like one Min- Tester and would like one,
send $£ 2.50$.

SUPER HI-FI SPEAKER CABINETS
Made for an expensive Hi.Fi ourtit free. Cut-outs for $6 \% /{ }^{\prime \prime}$, Resonance $21 /{ }^{\prime \prime}$ tweeter. The front material is Dacron. The completed unitit is most pleasing. Suppled in pairs, price than ther pair (this is probably less than the original cost of one
cabinet) carriage $£ 3.00$ the pair. GOODMANS SPEAKERS $6 \% /{ }^{\prime \prime} 8$ ohm 25 watt $£ 4.50$. $21_{2}^{\prime \prime} 80$ tweeter. $£ 2.50$. No extra for postage
ordered with cabinets. Xover $£ 1.50$. DITTO but for $8^{\prime \prime}$ speaker and 4

VENNER TIME SWITCH Mains operated with 20 amp switch, one
on and one off per 24 hrs. repeats daily on and one off per 24 hrs. repeats daily
automatically correcting for the lengthen ing or shortening day. An expensive time switch but you can have it for only $£ 2.95$,
These are without case but we can suoply These are without case but we can suppl
a plastic base $£ 1.75$ or metal case $£ 2.95$. a plastic base $£ 1.75$ or metal case $£ 2.95$.
Also availabie is adaptor kit to convert this into a normal 24 hr . time switch but with the added advantage of up to 12 on/offs per 24 hrs. This makes an

THERMOSTAT ASSORTMENT
There are the current stats which will topen the 3 liquid types. There are the current stats which will open the switch to protec devicesadatinst overioad, short circuits, etc., or when fitted say in front of the element of a blow heater, the heat would trip eratures, others adjustable over a range of temperatures which could include $0-100^{\circ} \mathrm{C}$. There is also a thermostatic pod which can be immersed, an oven stat, a calibrated boiler stat, finally an ice stat which, fitted to our waterproof heater eiement, up in the
loft could protect your pipes from freezing. Separately, hese thermostats could cost around $£ 15.00$ - however, you can have

50 THINGS YOU CAN MAKE

or do and still have hundreds of parts for tuture jobs. LEARN the practical way with our 10 kilo parcel of use
ful parts. Minimum $\dagger 000$ items includes timers, thermal trips, relavs, switches, motors, drills, taps and dies, tools, thermostats, coils, condensers, resistors, YOURS FOR ONLY $£ 11.50$ plus $£ 3.00$ post.

EXTRACTOR FAN

Mains operated - ex-computer

SEAT BELT REMINDER
 Buzzer sounds when you switch on ign handle seat belt - Complete kit $£ 3.00$.

200 OHM EARPIECE
If you are a user of earohones then you really must try these, they do give far superior resuts to the usual 4 ohm
to very superior construction. Price $65 p$ each.
RECHARGABLE NICAD BATTERY
By Deac, their reference number 150 DK. Made up as a battery of 4 celis with a nominal total voltage of 4.88 . Two types: trye one
has pp3 battery clip at each end, price $£ 1.75$. Type two without has po3 battery clip at each end, price $£ 1.75$. Type two
the snap connectors price $f 1.50$. All new and unused.

PROJECT CASE
All metai construction. Tubutar body, size approx $7 \times 3 \times 5 \times$ long
with removable ends, blue hammer paint finish, $£ 1,75$ each +60 p for
postage.

MINI MONO AMP

MNO AMP on p.c.b., size 4^{*} approx. Fitted volume control and a hol
for a tone control should you require it. The amplififer has three transistors and we est imate
the output to be $3 V \mathrm{~V}$ rms. the output to be $3 V \mathrm{~V}$ rms.
More technical data will be included with the amplifier Brand new, perfect condition, offered at the very tow price of

THIS MONTH'S NEW KITS:
MULTI-CHANNEL or ROBOT CONTROLLER This is two kits. The 8 channel transmitter kit and the 8 channet receiver kit. Each kit comes with diagrams and notes,
but no circuit boards, the component layout being left to you but no circuit boarcs, the component layout being left to you The data shows how to drive, reverse and steer two or more ¢9.50 for both kits.

BIG EAR'
As in December Hobby Electronics. Designed originally for wails or from long distances. Complete kit including the case f $f 950$
I.T.V. 4 PRE-AMP

Experiencing difficulties in getting a good picture on the new ITV Channel 4 PA Aerial pre-amp may be the answer. Uses 2 speciai transistors and has its own internal power supply. All
you have to do is tit this into the TV down lead and plug in to the mains. Complete kit including the case at $\mathrm{E9}$. 50 .

THE HE MICROLOG

This is a biggish project but you build a complete computer!
Full constructional details appear in December Hobby Electron ics. We will suoply the complete kit less the rathor expensive case for 178.50 . We feet sure y as efficientiv and save most of the cost

3 CHANNEL SOUND TO LIGHT KIT

Complete kit of parts for a three channel sound to light unit wish but it is plenty rugged enough for disco work. The unit is housed in an attractive two tone metal case and has controls for each channel, and a master on/off. The audio input and output
are by $14^{\prime \prime}$ sockets and three panel mounting fuse holders provid are sockets and hree panel mounting fuse holde rs provide connecting lamps. Special price is $£ 14.95$ in kit form or $£ 25.00$ assembled and tested.
TANGENTIAL BLOW HEATER
${ }_{\text {ef }}^{2.5 \mathrm{Kw} \text { ficient instant }}$
heating from $230 / 240$ volt mains. Kit co
of blower as
illustrated, 2.5 Kw

CAR STARTER AND CHARGER KIT

In an emergency you can start car off mains or bring your battery up to full charge in a couple of hours. The kit comstart/charge switch hand full instructions. You can assemble this in the evening, box it up of leave it on the sheff in the garage, whichever suits you best. Price $£ 12.50+£ 3.00$ post.

TRANSMITTER SURVEILLANCE

Tiny, easily hidden but which will enable conversation to be electronic parts and circuit. $£ 2.30$. inot licenceable in the $U . K$) RADIO MIKE
Ideal for discos and garden parties, allows complete freedom oi movernent. Play through FM radio or tuner amp. $\mathbf{£ 6 . 9 0} \mathbf{~ c o m p}$.

FM RECEIVER

Made up and working, complete with scale and pointer needs oniy headphones, ideai for use with our survellance transmitt
$3 \cdot 30 v$ VARIABLE VOLTAGE POWER SUPPLY UNIT
With 1 amp DC output, for use on the bench, students,
and overioad protection. In case with a volt meter on the front panel. Complete kit $£ 13.80$
INTERRUPTED BEAM
This kit enables you to make a switch that will trigger when a steady beam of infra red or ordinary light is broken. Main components - relay, photo transistor, resisto
Circuit diagram but no case. Price $£ 2.30$

IONISER KIT

Refresh your home, office, shop, work room, etc. with a work harder - complete mains operated kit. case included $£ 11.95$ plus $£ 2.00$ post

RADIO STETHOSCOPE

Easy to fautt find start at the aerial and work towards the speaker - when signal stops you have found the fault. Complet
kit $£ 4.95$.

INVISIBLE AND SILENT SENTINEL

Ultra sonic beam when broken couid warn you of visitor - \mathbf{t} wo
complete kits - transmitter $\&$ receiver $\&$ relay, to operate light or bell $\mathrm{E9} .50$.
BURGLAR ALARM
Complete kit includes $6^{\prime \prime}$ external alarm bell, mains power unit,

JBULL (Electrical) Ltd. (Dept EE), 34 - 36-AMERICA LANE, HAYWAROS HEATH SUSSEX RH16 3OU. Established

 MAIL ORDER TERMS: Cash, P.O. or cheque with order. Orders und E 10 add 60 p service charge. Monthly account orders accep ted fromschools and public companies. Access $\& B /$ /card orders accepted day hight. Hay wards Heath (0444) 454563. Bulk orders: write for quote. Delivery by return. Shop open $9.00-5.30$, mon to Fsi, not Saturday.

STEREO HEADPHONES Very good quatity, 8 ohm, padded
terminating with standard
\%/4. iack plug. $\mathbf{E 2}$. 99 plus 60 p post.

TIME SWITCH BARGAIN Large clear mains frequency controlled clock,
which will always show you the correct time + start and stop switches with dials. Com

MUSICAL BOX MOVEMENT Swiss made normal square shank key wound, (key not supplied). TINIEST MICROPHONE Latest condenser type. Not much bigger than a pea, 600 Ohm,
ideal for bugging and simitar applications. 50 each, 10 for $£ 4,50$, ZX81 OWNERS
Make yourself a tull
size keyboard! Key
switches complete with plain caps. 6 for
Easily divis ble.
WATERPROOF HEATING WIRE
60 ohms per vard, this is a heating element wound on a fibre glass coil and then covered with p.v.c. Dozens of uses - around water es, under grow boxes in gioves and socks. 23p a metre.
COMPUTER PRINTER, ONLY £4.95 YOUR LAST CHANCE
Japanese made Epson 310 - has a self starting brushless drive motor Complete with electronics - uses plain paper. Brand new with data.
ONLY $£ 4.95$ plus $£ 1.25$ Post.

ROTARY WAFER SWITCHES
5 amp siliver plated contacts. $1 / 4$ " shaft. 1 " dia. wafer
$\begin{array}{lrl}\text { Single wafer types, } 29 \text { each, as follows: } & \\ 1 \text { pole } 12 \text { way } & 2 \text { pole } 6 \text { way } & 3 \text { pole } 4 \text { way } \\ 4 \text { pole } 3 \text { way } & 6 \text { pole } 2 \text { way } & 4 \text { pole } 3 \text { way }\end{array}$ 6 pole 2 way 2 pole 12 way 6 pole 2 way 4 pole 5 way 3 wafer types 99p each, 8 pole 3 way

6 pole 5 way
4 pole 6 way
12 pole 2 way
6 pole 6 way
18 p 2 way

POCKET AUDIO

COMPONENT TESTER
With it you can quickiy test diodes, rectifiers, transistors, cap. anode and cathode of a diode or rectifier and whether a transisto is PNP or NPN, which are the base collector and emitter connections. Condensers, if bad give a continuous signal tut if good, give The test current is very varying length depending on their value. The test current is very Iow (2uA) and the voltage only 1.4 v , so transistors with out fear of damaging them. The unit is supplied complete with internal battery, which should last many months.

8 POWERFUL
BATTERY MOTORS
(all different)
For models, maccanos, drills, remote control planes, boats,
etc. $£ 2.95$.

12v MOTOR BY SMITHS Made for use in cars, these are series wound and they become more $31 / 2^{\prime \prime}$ iong by $3^{\prime \prime}$ dia. These have a good length of $1 / 2$ " spindle price $£ 3.45$.
 Ditto, but permanent magnet, $\mathbf{£ 3} .75$.

EXTRA POWERFUL 12 v MOTOR

\%h.p., so it could be used to power a go
compressor, etc. etc. $£ 6.90+£ 1.50$ post

GO KART MOTOR

24
Price $£ 9.50+\mathbf{E} 1.50$ post.
SPIT MOTORS

These are powerful mains operated induction motors with gear box
attached. The final shaft is a $1 / s^{\prime \prime}$ with square hole, so you have alternative couplingmethods - final speed
is apporox 5 revs/min is approx. 5 revs/min, price $£ 5.50$. Simiar motors with final speeds of
$80,100,160 \& 200 r$.om, same pric

REVERSIBLE MOTOR WITH CONTROL GEAR Tremendousiv powerful motor, almost impossible to stop. Ideal for doors if adequately counter-baianced. We offer the motor complete
with controi gear as follows:
1 Framco motor with gear box
1 manual reversing and on $/$ off switch 2×100 wauto transfor
2 limit stop switches
1 manual reversing and on/off switch
12 limit stoo switches
1 circuit diag. of connections. 1 push to start switch
$£ 19.50$ plus postage $£ 2.50$.
DISC OR TAPE DRIVE MOTOR
Precision made with balanced rotor. This is reversible, has a speed of $1,500 \mathrm{rpm}$ and is approximatelv. $2 \%{ }^{\prime \prime \prime}$ long by $3^{\prime \prime \prime}$ diameter. Made by famous Japanese Company (NIPPON DENSAN). The original rrp was over $£ 20$ each, our price, however, is $£ 4.60+£ 1$-postage.
Quantity orders invited.
FRE OUR CURRENT BARGAIN LIST WILL

Sinclair ZX
 S

16K or 48K RAM... full-size movingkey keyboard... colour and sound... high-resolution graphics... From only £125!

First, there was the world-beating Sinclair $Z \times 80$. The first personal computer for under $£ 100$.

Then, the ZX81. With up to 16K RAM available, and the ZX Printer. Giving more power and more flexibility. Together, they've sold over 500,000 so far, to make Sínclair world leaders in personal computing. And the ZX 81 remains the ideal low-cost introduction to computing.

Now there's the ZX Spectrum! With up to 48 K of RAM. A full-size moving-key keyboard. Vivid colour and sound. Highresolution graphics. And a low price that's unrivalled.

Professional powerpersonal computer price!

The ZX Spectrum incorporates all the proven features of the ZX 81 . But its new 16K BASIC ROM dramatically increases your computing power.

You have access to a range of 8 colours for foreground, background and border, together with a sound generator and high-resolution graphics.

You have the facility to support separate data files.

You have a choice of storage capacities (governed by the amount of RAM). 16K of RAM (which you can uprate later to 48 K of RAM) or a massive 48 K of RAM.

Yet the price of the Spectrum 16K is an amazing $£ 125$! Even the popular 48 K version costs only $£ 175$!

You may decide to begin with the 16 K version. If so, you can still return it later for an upgrade. The cost? Around $£ 60$.

Ready to use today, easy to expand tomorrow

Your ZX Spectrum comes with a mains adaptor and all the necessary leads to connect to most cassette recorders and TVs (colour or black and white).

Employing Sinclair BASIC (now used in over 500,000 computers worldwide) the ZX Spectrum comes complete with two manuals which together represent a detailed course in BASIC programming. Whether you're a beginner or a competent programmer, you'll find them both of immense help. Depending on your computer experience, you'll quickly be moving into the colourful world of ZX Spectrum professional-level computing.

There's no need to stop there. The ZX Printer-available now-is fully compatible with the ZX Spectrum. And later this year there will be Microdrives for massive amounts of extra on-line storage, plus an RS232/network interface board.

Key features of the Sinclair ZX Spectrum

- Full colour-8 colours each for foreground, background and border, plus flashing and brightness-intensity control.
- Sound-BEEP command with variable pitch and duration.
- Massive RAM-16K or 48 K .
- Full-size moving-key keyboard - all - keys at normal typewriter pitch, with repeat facility on each key.
- High-resolution-256 dots horizontally $\times 192$ vertically, each individually addressable for true highresolution graphics.
- ASCII character set - with upper- and lower-case characters.
* Teletext-compatible-user software can generate 40 characters per line or other settings.
- High speed LOAD \& SAVE-16K in 100 seconds via cassette, with VERIFY \& MERGE for programs and separate data files.
- Sinclair 16K extended BASICincorporating unique 'one-touch' keyword entry, syntax check, and report codes.

The ZX Printeravailable now

Designed exclusively for use with the Sinclair ZX range of computers, the printer offers ZX Spectrum owners the full ASCII character set-including lower-case characters and high-resolution graphics.

A special feature is COPY which prints out exactly what is on the whole TV screen without the need for further instructions. Printing speed is 50 characters per second, with 32 characters per line and 9 lines per vertical inch.

The ZX Printer connects to the rear of your ZX Spectrum. A roll of paper (65 ft long and 4 in wide) is supplied, along with full instructions. Further supplies of paper are available in packs of five rolls.

The ZX Microdrivecoming soon

The new Microdrives, designed especially for the $Z X$ Spectrum, are set to change the face of personal computing by providing mass on-line storage.

Each Microdrive can hold up to 100 K bytes using a single interchangeable storage medium.

The transfer rate is 16 K bytes per second, with an average access time of 3.5 seconds. And you'll be able to connect up to 8 Microdrives to your Spectrum via the ZX Expansion Module.

A remarkable breakthrough at a remarkable price. The Microdrives will be available in the early part of 1983 for around £50.

How to order your ZX Spectrum

BY PHONE-Access, Barclaycard or Trustcard holders can call 01-200 0200 for personal attention 24 hours a day, every day. BY FREEPOST-use the no-stamp needed coupon below. You can pay by cheque, postal order, Access,

Barclaycard or Trustcard.
EITHER WAY-please allow up to 28 days for delivery. And there's a 14-day money-back option, of course. We want you to be satisfied beyond doubt - and we have no doubt that you will be.

To: Sinclair Research, FREEPOST, Camberley, Surrey, GUI5 3BR.

Qty	Item	Code	Item Price
	Totai		
Sinclair ZX Spectrum - 16K RAM version	100	125.00	
Sinclair ZX Spectrum - 48K RAM version	101	175.00	
Sinclair ZX Printer	27	59.95	
Printer paper (pack of 5 rolls)	16	11.95	
Postage and packing: orders under $£ 100$	28	2.95	
orders over $£ 100$	29	4.95	
		Total $£$	

Please tick if you require a VAT receipt \square

* enclose a cheque/postal order payable to Sinclair Research Ltd for £
*Please charge to my Access/Barclaycard/Trustcard account no.
*Please delete/complete
as applicable
Signature
PLEASE PRINT

Address

FREEPOST-no stamp needed. Prices apply to UK only. Export prices on application.

Sinclair Research Ltd, Stanhope Road, Camberiey, Surrey GU15 3PS.
Tel: Camberley (0276) 685311.

ELECTRONICS IS A FINE HOBBY VELLEMAN KIT

Kit No.

K607
K610
K611
K612
K613
K615
K1682
K1716
K1771
K1798
$K 1798$
K1803
K1804
K1823
K1861
K1874
K2032
K2542
K2543
K2544
K2545
K2547
K2548
K2549
K2550
K2551
K2553
K2554
K2554
K2555
K2556
K2557
K2558
K2559
K2560
K2565
K2566
K2567
K2568
K2569
K2570
K2571
K2572
K2572
K2573
K2574
K2575
K2576
K2577
K2578
K2578
K2579
K2580
K2581
K2582

The Velleman Kit Range

Description 2.2 Watt Mini amplifier ..
Mono VU using L.E.D.'s.
s...

Watt Amplifier
\qquad
000 Watt Dimmer
000 Watt Dimmer
000 Watt Dimmer (Suppressed version)
High Precision Stopwatch
Timer \qquad
0 Watt Mono amplifier \qquad
M Oscillator \qquad
tereo VU usi
Universal Mono Pre-amplifier \qquad 60 Watt Power Amplifier \qquad
Power supply for Stereo 60 Watt amplifier. Running light
Digital Panel Meter. \qquad Single Digit Counter
Transistor lgnition \qquad
Complex Sound Generator \qquad
0 Hz Crystal Timebase \qquad 4 Channel Infra-Red Remote Control (Transmitter) 4 Channel Infra-Red Remote Control (Receiver) ... Infra-Red Detection System (Transmitter) \qquad Central Alarm Unit M Stereo Decoder
... High Quality FM Tuner \qquad
\qquad
\qquad Digital Frequency Counter for Receivers \qquad CB Power Supply 3.5 amp 12V Digital Thermometer*.
FM Stereo Receiver (19" rack-mounting \qquad
2 Channel Infra-Red Remote Control Light
Dimmer (Transmitter)
Channel Infra-Red Remote Control Light Dimmer (Receiver) . Tape/Slide synchronizer 9.66

3 Channel coloured light organ \qquad 9.66

0 cm . isplay (Comm m Anode 15.53
\qquad 21.05 Three tone chime 6.56

5-14V DC 1 amp universal power supply
Light Computer with Eprom 36.23

Universal Stereo Pre-Amplifier 6.56

Stereo RIAA Corrector Amplifier 6.56

Universal 4 digit UP/Down Counter with memory 34.16 Microprocessor doorbell with 25 tunes 15.53 40 Watt Audio Amplifier
Electric Motor Speed Control 7.59

Eprom programmer (Kit Form) 207.00
 207.00 Universal Start/Stop Timer ... 310.50 Electronic powerswitch dimmer 6.21 Stereo Volume and tone contro 10.00

Stereo audio input selector 12.08

Heating controller 12.08 prices all include VAT

WHILE STOCKS LAST
 Miniature soldering iron SRB Type 1 -16-18 Watts
 only $£ 4.00$ with every Velleman kit order. FREE with orders of $\mathbf{£ 2 5}$.

Velleman kits can be purchased from:

Baxol Tele Exports Ltd., Ballinaclash, Co. Wicklow, Rep. of Ireland
Bradley Marshall Ltd., 325 Edgware Road, London W2
S \& R Brewster Ltd., 86-88 Union Street, Plymouth, Devon
Marshals Electronics, 85 West Regent Street, Glasgow or send cheque/postal order/debit Barclaycard to:

VELLEMAN (U.K.) LIMITED,

 P.O. Box 30, St Leonards on Sea, East Sussex, TN37 7NL.FREE Illustrated catalogue available on request:
Tel: 0424753246.
5.00 8.18
5.14 5.59 43.13

MULTI-METER
$7 \mathrm{~N} \quad 360 \mathrm{TR}$ 20,000 ohm/volt DC Volts: 0.1, $0 \cdot 5,2 \cdot 5,10-150$ -250-1,000v.
AC Volts: $10-50$, 250-1,000
RESISTANCE
RANGES
$\times 1, \times 10, \times 1 \mathrm{~K}$,
X10K
£14.10
P.\&P. 87p

TRANSFORMERS

240v Primary

$3-0-3 v$	100 mA	$82 p$
$6-0-6 v$	100 mA	$87 p$
$6-0-6 v$	250 mA	$£ 1 \cdot 22$
$12-0-12 v$	50 mA	$92 p$
$12-0-12 v$	100 mA	$£ 1 \cdot 15$

Post on above transformers 48p
Silicone grease 50g £1-32 Post 14p.

NI-CAD BATTERY

CHARGER

Led indicators charge-test switch. For PP3, HP7, HP11 \& HP2 size batteries.
Price 65.85 Post 94 p.

HETERS: $45 \times 30 \times 34 \mathrm{~mm}$ $50 \mu \mathrm{~A}, 100 \mu \mathrm{~A}, 1 \mathrm{~mA}, 5 \mathrm{~mA}, 10 \mathrm{~mA}$ $25 v, 1 \mathrm{~A}, 2 \mathrm{~A}, 5 \mathrm{~A} 25 \mathrm{~V}$.
62.90. Post 30p.

METERS: $60 \times 47 \times 33 \mathrm{~mm}$
$50 \mu \mathrm{~A}, 100 \mu \mathrm{~A}, 1 \mathrm{~mA}, 5 \mathrm{~mA}, 10 \mathrm{~mA}$, $100 \mathrm{~mA}, 1 \mathrm{~A}, 2 \mathrm{~A}, 25 \mathrm{v}, 50 \mathrm{v}$, 50-0-50 $\mu \mathrm{A}, 100-0-100 \mu$ A. ©4. 76 . VU meters. ©S.32.
Post on above meters 30 p

$9-0-9 v$	$1 A$	$£ 1 \cdot 80$
$12-0-12 v$	$1 A$	$£ 2 \cdot 40$
$15-0-15 c$	$1 A$	$£ 2 \cdot 60$
$6 \cdot 3 v$	$1 \frac{1}{2} A$	$£ 1 \cdot 80$
$6-0-6 v$	$1 \frac{1}{2} A$	$£ 2 \cdot 10$

Post on above transformers 87p.
METERS: $110 \times 82 \times 35 \mathrm{~mm}$ $\quad 30 \mu \mathrm{~A}, \quad 50 \mu \mathrm{~A}, \quad 100 \mu \mathrm{~A} . \quad \mathbf{~} 5 \cdot \mathbf{9 0}$. Post 50p.

All above prices include V.A.T. Send 80 p for new 1982 fully lllustrated catalogue, S.A.E. with all enquiries. Special prices for quantity quoted on request.

All goods despatched within 3 days from receipt of the order.

M. DZIUBAS

158 Bradshawgate, Bolton Lancs. BL2 1BA

Bigger and Better

the colourful Wilmslow Audio brochure - the definitive loudspeaker catalogue!

Everything for the speaker constructor - kits, drive units, components for HiFi and PA.
50 DIY HiFi speaker designs including the exciting new dB Total Concept speaker kits, the Kef Constructor range, Wharfedale Speakerciraft, etc.
Flatpack cabinet kits for Kef, Wharfedale and many others.
\star Lowest prices — Largest stocks \star
\star Expert staff - Sound advice \star
\star Choose your DIY HiFi Speakers in the comfort of our * two listening lounges
(Customer operated demonstration facilities) * Ample parking *

Send $£ 1.50$ for catalogue
(cheque, M.O. or stamps-or phone with your creditcard number)
\star Access - Visa - American Express accepted \star
also Hifi Markets Budget Card.

35/39 Church Street, Wilmslow, Cheshire SK9 1AS

Lightning service on telephoned credit card orders! Please allow 7 days for delivery

E．E．PROJECT KITS

Make us your No． 1 SUPPLIER OF KITS and COMP ONENTS for E．E．Projects．We supply carefully selected sets of parts to enable you to construct E．E．projects．Xits incluue ALL
THE ELECTRONICS AND HARDWARE NEEDED．Printed circuit boards fully etchad THE ELECTRONICS AND HARDWARE NEEDED．Printed circuit boardis（fully etchad，
drilled and roller tinned）or Yerobeard are，of course，included as specifled in the origina） drilied and roller tinned）or Veroboard are，of course，included as specifled in the original
article，we even include nuts，screws and i．C．sockets．PRICES INCLUDE CASES unless article，we even include nets，screws and iC．sockets．PRICES INCLUDE CASES unfess
otherwise statd．BATTERISS ARE NOT INCLUDED．COMPONENT SHEET INCLDDED． if you do not have the issue of E．E．which includes the project－you will need to order the instruction reorint at an extra 45p each．
Reprints available separately 45 p asch $+\mathrm{p} . \mathrm{s}^{\mathrm{s}} \mathrm{p} .45 \mathrm{p}$ ．
ZX TAPE CONTROL Nov 82. PHOTO FINISH Nov 82.
SINE WAVE GEN Oct． 82.
G．P．PRE－AMP Oct． 82.
LIGH PREAMPLOCt． 82.
CONTNUTY CHECKER Se SOUND SPLTTER Sept 82. SOUND RECOMBINER Sept 82． $\begin{gathered}\text { E15－7 } \\ \text { E3．7 }\end{gathered}$ SCREEN WASH GELAY Sept 82．E4－ 8 INSTRUMENT PRE AMP Aug．8． 8 ． 7 ． TWO TONE DOOREELL ALARM AUG $\begin{array}{ll}82 \text { less case and bell transformer．} & \text { Es } 82 \\ \text { CB ROGER BLEEPER Aug } 82 \\ \text { E8：47 }\end{array}$ BRAKELIGHT RELAY JUI） 82 ． 2．WAYIMTERGOM JUHY8， REFLEXTESTEF Julv
 GGG TIMER dune 82 ． TWO TONE TRAIN HORN WITH REMOTE TRIGGER OPTION May $82 .{ }^{2} 11 \cdot 26$ CAR LED VOLTMETER less case． LIGHTNING CHESS BUZZER．May 82
 CAMERA OR FLASH GUN TRIGGE？ Mar 82. E12． 41 less tripod bushes． GUITAR TUNER Mar $82 .{ }^{2} 15$ ． 6
CAR OVERHEATING ALAR W．FEb． 82. ${ }^{\text {E9．6．}} \mathbf{6 1}$
SIMPLE STABILISED POWER SUPPLY．Jan． $82 . E 24.58$ MINEGG TIMER．Jan．82．£3．94 E557．MODULE．Jan． 22 ．Tess speaker， $\underset{\substack{\text { MODEL } \\ \text { ER } 27}}{ }$ E8－22．
SOURE SIX．Dec． $81 . ~ E 4.70$.
GUITAR REACTION METER．Dec．81．E3． 86 ELECTRONIC IGNITIOW．NoV， 81 E25：98．
SIMPLEINFRA RED REMOTE CON－ PRESSURE MAT TRIGGER ALARW． Nov． 81. E6．27 less mais．
EXPERIMENTER CRYTAL SET． Nov． 81 ．Less aertial．£5．ss．
Headphones．Ez．ge extra．
GAPACITANCEMETER．OCE．81，£23－51． PPOPULAR DESIGNS＇．Oct． 81 ．
TAPE NOISE LIMITOR．Et 5 ． 57.
HEAOS AND TAILS GAME．玉2－52．
CONTINUITY TESTER，£3． 95.
PHOTO FLASH SLAVE．$£ 3 \cdot 6$.
PHOTO FLASH SLAVE．E3． 6 ．
FUZZ BOX E7．29．
FUZZ BOX．E7． 29.
OPTO ALARM． 8.73.
OPIL MOISTURE UNIT． 55 ． $\mathbf{5 1}$ ．
 CMOS CAR SECLYITY REARM Sept．81．£5．08
 COMOS METRONOME．Aug．81．EEE 23. case． 19.58.
BURGLAR ALARM SYSTEM．JUNe 81 less bell，loor A MiC＇s． 40 ． 88 ． TAPE AUTO START．JUne BY．EIz．79． LIGHAS REMINDER AND IGAITION SOIL MOISTURE INDICATOR E．E．

GUITAR HEADPHONE AMPLIFIER E．E．May 81．天4． 23.
ALARM E．E．May R1 \＆5 $5 \in$ TER／BABY ANARME．E．May $81 . £ 566$.
STMPLE TRANSISTOR E22．DIODE TESTERS．Mar．81．Ohmeter version E2．02．Led version 82.73

MINI SIREP．Mar．81．EA．OM．
LED FLASHER．Mar．81．E4． 23. MODULATED TONE DOOREELL MENCH POWER SUPPLY．Mar． 81 E53：47．
ThREE CHAMNEL STEREO mixRR Feb．81．©ft 69.
SIGNAL TRACER．Feb．81． 18.17 less probe．
Mi．Cd BATTERY CHARGER．Feb． 81. E13． 51.
 TOR．dan． 81 less case． $553-67$.
2 NOTE DOOR CHIME．Dec．BO． 510.32.
 Guitrat Prisctics Amplafien．
 ESOUAD TO LIGHT．Now Bo．
SOUHD TO LIGHT．Nov． 80.3 channet．
TRANSISTOR TESTER，NOV． 80. Cif－ 3 inc．test leads．
AUDIO EFFECTS UNIT FOR YGEIRD BICYCLEE AI ARM．Oct． 80 ．ह10．36 less molinting brackets．
IRON HEAT CONTROL．Oct．BO． 55 － tE ． TTL LOGIC PROBE．Sept．80．E5－1E． ZENER DIODE TESTER．JUN ©0．Ef © 6 ． ISTATION RADIO．May BC．E16： 23 lass
 A． 6 ．
EATTEEY VOLTAGE MONITOR．Hay 0． 5.5
CABLE \＆PIPE LOCATOR．Mar． 20. E． 11 less coll hormer．
KITChen ther．Mar．80．E14． 65 ．
STEREO HEADPHOHE AHPLIFIER． Mar．B0．± 18.15.
MiCRO wUSIC BOX．Feb．\＄0．£46．z SIMPLE SHORT WAVE RECEIYER． Feb． 86. E25 SLBDE／TAPE SYNCHRONIEER．FOb 80． $512 \cdot 30$ ．
MORSE PRACTICE OSCILLATOR Feb， 90 ．it． 62 ．
SPRING LINE TEVERB．UNIT．JAN， 80 25． 85
UNIBOARD BURGLAR ALARM．Dec 3．E4．03．

SIPMPLE TRANSISTOR TESTER．
ept．7s． $\mathbf{E T}$ TRA
ARRKROOM TIMER，July 79．E2 B ． ELECTRONIC CAMATY．JURe 79． $\mathbf{2 5}$－ MICROCHME DOOFRELL．Feb． 79. HYR
THYRISTOR TESTER．FEb．79．E3．TE FUSE CHECKER．Oct．78．E2 71． SOUND TO EGHT．Sept．78，E：4： car battery stateingicaton．

R．F．SIGNAL GEMERATOR．Sept． $7 B$ E維 72.
SITU TRANHSASTOR TESTER UELRD SOUND EFFECTS GENTRA． TOR．Mar． 78.55 .55
AUDIO YISUAL METRO HOME．Jan． 78 E5．92．
LEGTRONIC TOUCH SWITCH Jan RAPID DIODECHECr Jan 78.52 .74 PYONE／DOORBELL REPEATER．July 77． 87.48.

SOLDERING／TOOLS

ANTEX X5 SOLDERING IRON 25W SOLDERING IRON STAND SPARE BITS．Small，standard， large， 65 p each．For X5＋X25 SOLDER．Handy size SOLDER CARTON
DESOLDER BRAID．
HEAT SINK TWEEZERS
DESOLDER PUMP
HOW TO SOLDER LEAFLET LOW COST CUTTERS LOW COST LONG NOSE PLIERS
WIRE STRIPPERS \＆

CuTtEAS

MULTHEYER TYPE 2．（YN36OTR） ILLUMINATED HAGNIFIERS aliow infinite vatiation of clips through Smail $2^{\prime \prime}$ dia．（ $5 \times \mathrm{mag}$ ．）．．．\quad £1．14
 aftached），used and recommended by our staff．
VERO SPOT FACE CUTTER ．．．． 11.49 VEROPSERTION TOOL． CAST IRON VICE SCREWDRIVER SET．．．．．．．．．．．．．．．．．．．．． $\mathbf{\varepsilon 1}$ st E3．40
£2．38 POCKET TOOL SET ．．．．．．．．．．．．．．．．．． 5 se
DENTISTS INSPECTION MIRROR UEWELLERS EYEGLASS ．．．．．．．． 1 ．se
 RESISTORCOLOUR CODE PAIR OF FROBES WITH LEADS （cc） $77 p$

MAGENTA givez you FAST DELIVERY OF QUALITY COMPOMENTS a MITE Al products are stock lines and are newA fell specification We
quality products to all our cuatomers－HAVE YOU TRIED US？

MAGENTA ELECTRONICS LTD． EG47， 135 HUNTER ST．BURTON－ON－TRENT，STAFFS．． DE14 2ST． 0283 65435．WON．－FRI．9－5．MAEL ORDER ONLY． ADD 45p P，\＆P．TO ALL ORDERS．PRICES INC．VAT

Normal despaich by return of most．
OFFICIAL ORDERS WELCOME．
OVEREAS．Payment must be in sterling．
IRISH REPUBLIC and BFPO：UK PRICES． EUROPE：UK PRICES plus 10% ．
ELSEWHERE：WTite for quote．

TEACHIN 82

All top quality components as specified by Everyday Electronics．Our kit comes
complete with FREE COMPONENT IDENTIFICATION SHEET．Foliow this educa tionai series ande COMPONENT DENTIFICATON LiST 1 and LIST 2 together ent．98．LIST 3 f．5．98．
$t *$ SPECIAR OFFER $t *$
YOODEN CASE KIT also available £f1 98－wood，formica，glue，berews etc．Cut to size．
12 part

LISTS 2 A AD 3 ALL AVAILABL ALSO WOODEN CASE KIT．

An easy to follow book suitable tor all ages．Ideal for beginnerm． No soldering，uses an S－Dec breadboard．Gives clear instructions with lots of pictures． 16 projecis－including three radios，siren， metronome，organ，intercom，timer，etc．Helps you learn about electronic componenis and how circuits work．Component pack includes an S－Dec breadboard and all ths components for the projects．
Adventures with Electronics $\mathbf{E 2} \cdot \mathbf{4 0}$ ．Component pack $\mathbf{~} 18 \cdot 8$ legs battery．

Rew book by Tom Duncan in the popular＇Adventures＇series． This book of entertaining and instructive projects is designed for hobbyists and students．It provides a stepping stone to the microprocessor．
The first part deals with the properties of some basic ICs used in digital electronics．
The second part gives details of how to buiid eight devices－ shooting gallery， 2 －way traffic lights，electronic adder，computer space invaders game，etc．
For each project there is an explanation of＇how it works＇and also suggestions for＂things to try＂
No soldering－all circuits built on 2 Bimboard 1 breadboards．
Adventures with Digital Electronics book E3－25．Component pack E42．50，ref．EEDC．All the components neexed including 2 breadboards and hexadecimal keyboard．Avaifable less breadboards £29．98；ref．EEDF．Both less sattery．

Enter the fascinating world of wood at the Woodworking event of the year . . .

Wembley Conference Centre February 10-13, 1983
February 10-12, 10am-7pm February 13 (Sunday) 10am-6pm.

For anyone with an interest in wood the Wembley Conference Centre between February 10 and 13 must be the place to be. More exhibitors than ever before will be showing a vast range of woodworking materials, tools and accessories. Whatever your degree of skill or ambition in the craft, you will find plenty to absorb you for hours. You'll be able to see the tools and machinery in use; study and compare all the different materials and accessories available; meet the manufacturers and the experts who specialise in producing the tools of your craft; see craftsmen at work; and displays from colleges and schools.

Woodcraft MarketiPlace

is an area
exclusively set aside for displaying ail kinds of craft-made items produced by just some of the followers of the woodworking craft. So why not treat yourself to a gift - they're all for sale - which goes to show how profitable this hobby can be.

Oncessionary rail fares are available including admission (on full price tickets only) to the exhibition. The special fares permit travel to any of the main line termini in London. Further details are available from principal stations or direct from: Travel Centre, King's Cross Station, London Ni. Tel: 01-837 4200 Extn. 4277

Train, tube and bus services to Wembley Conference Centre are as follows:-

By Train

Underground to Wembley Park by Metropolitan Line 12 min from Baker Street) or Jubilee Line. Underground to Wembley Central by Bakerloo (Warford) Line. British Rail to Wembley Central from Euston or Broad Street.

83,92 and 182 direct to Wembley Arena (formerly the Empire Pool). The 18 bus, alight at Triangle (five mins walk). Other useful buses are the 297 (alight at Wembley Park Stationf and 245 (alight at Bridge Road). Also 734 Green Line Service--East/West link from Addlestone to Hertford via Ealing, Brent Cross, Muswell Hill, Enfield etc. passes Wembley Park and Complex stations.

Admission prices: Adults $\mathbf{£ 2 . 0 0}$ Children under 16 and Senior Citizens $\mathbf{E 1 . 5 0}$ Party rates: (Groups of 20 or more \star Plus 1 free ticket for teacher or organiser.)

Adults $\mathbf{5 1 . 5 0}$ children $\mathbf{5 1 . 0 0}$

[^3]

Dept 3B, High March, Daventry, Northants NN1 1 4HQ Tel: 032725523 Telex: 311245 GRENELG.

Please allow 21 days for delivery
Please add 50 p per order postage and packing plus 15% VAT on total . No VAT on overseas orders, postage at cost. Cheques and postal orders made payable to Emos Limited. Send Large S.A.E. for comprehensive catalogue.

BAKER 50 WATT
 AMPLIFIER

Buperior quality ideal for thatisita sybluis. Discu't and Groups. Two inputs with Mixer Volume Controls. Master Basa,
Treble and Gain Controls. 50 watta RMS. Three loudapeaker 16 AC 240 V (120 V available).
BAKER 150 Watt AMPLIFIER 4 Inputs 189 Mono Slave $1 \overline{0} 0 \mathrm{~W} £ 75$. post $£ 2$ Stereo Slave £125. post $£ 4$
DRILL SPEED CONTROLLER LIGHT DIMMER KIT DRILL SPEED CONTROLLER LIGHT DIMMER K Easy to build kit. Controls up to 480 watt $A C$ in
DELUXE MODEL Ready Built. 800 watts. 85
STEREO PRF-AMP KIT. AUl parts to build this pre-amp. 3 inputs for high, medium or low gain per channel, with multi-way stereo mixers. $£ 2 \cdot 95$

SOUND TO LIGHT CONTROL KIT MK II
Complete kit of parts, printed circuit. Mains transformer.
3 channels. Up to 1,000 watts each. Will operate from 200 MV to 100 watts signal source. Suitable for home $\mathrm{Hi} \cdot \mathrm{Fi} \quad 818$ OR COMPLETE READY BUILTIN CABINET \&27. 200 Watt Rear Reflecting White Light Bulbe. Ideal for Disco Lights. Edison Screw 7 ©p each or 6 for $£ 4$ or 12 for $£ 7 \cdot 50$. MAING TRANSFORMERS Primary 240V A.C. POST $350-0-350 \mathrm{~V} 250 \mathrm{~mA} .6 \cdot 3 \mathrm{~V} 6 \mathrm{Amp}$ C.T..
 General purpose tapped outputs voltages available
\qquad54 .50
... .56 .00 2 amps $3,4,5,6.8,9,10,12,15,18.25$ and $30 V, \ldots56 .00$ $2 \mathrm{amp} 6,8,10,12,16,18,20,24,30,36,40,48,60 \ldots . . \mathrm{fl0.50}$
$3 \mathrm{amp} 6,8,10.12,16,18,20,24,30,36,40,48,60 \ldots £ 12.50$ $5 \mathrm{amp} 6,8,10,12.16,18,20,24,30,36,40,48,60 \ldots \ldots 16.00$
$5 \operatorname{amp} 6,8,10$,
$6 \mathrm{~V} \frac{1}{2} \mathrm{a}$
$6.0-6 \mathrm{~V}$
9 V 250 ma .
$9-0-9 \mathrm{~V} 50 \mathrm{ma}$.
$10-0-10 V^{2 a}$
$10-30-40 \mathrm{~V} 2 \mathrm{a}$
12 V 100 ma ...
12 V 75
12 V 3 a

 R.C.S. LOUDSPEAKER BARGAINS Bin. 54.50 .10 in .85 .00 .8 ohm $3 \mathrm{in} ., 5 \times 3 \mathrm{in} . \mathrm{5}$ in. 22.50 .8 in .44 .50 . $10 \mathrm{in} .25 \cdot 00$. 12 in . 88.00 . $6 \mathrm{ohm} .3 \mathrm{i} \mathrm{in} .6 \times 4 \mathrm{in}$. 5 in . $22 \cdot 60.81 \mathrm{n} .84 .50 .10 \times 6 \mathrm{in} .84 \cdot 00$ $250 h m .3$ in. 350 ohm. 3 in . $£ 2 \cdot 50$. Many others in
Speaker Covering Material Samples 31p. stamps.
R.C.S. LOW VOLTAGE STABILISED

All parts and instructions with Zener diode pr
63.95 ectifers and double wound mains tranaformer input circult, a.c. Output voltages available A or $7 \cdot 5$ or 9 or 12 V d.c, up to PP BATTERY ELIMINATOR, BRITISH MADE Mains Transformer Rectifier 9 volt 400 ma . Post. 75 y tabilised, with overload cutout. Plastic case size is x
 THE "INSTANT" BULK TAPE ERASER A.C. mains $200 / 240 \mathrm{~V}$. deal all Computer.
Tapes. Discs, Cassetter.
HEAD DEMAGNETISER PROBE $\mathbf{4 5} \cdot \mathbf{0 0}$.

B.S.R. Mutors \&4, Grarrard Motors £5
 corners: $6 \times 4 \times 2 \frac{1}{2}$ in. $£ 1-75 ; 8 \times 6 \times 2 \frac{1}{2} \mathrm{in}$. $£ 2$ 2 $20 ; 10 \times 7 \times 2$ tin. $22.75 ; 14 \times 9 \times 2 \frac{1}{1}$ in. $£ 3.60 ; 16 \times 6 \times 2 \frac{1}{3} \mathrm{in}, £ 2 \cdot 50 ; 12 \times 3 \times 2 \frac{1}{2} \mathrm{in}$. ALIANGLE BRACKET $6 \times 3 \times 3$ in 25
ALUMINIUM PANELS $18 \mathrm{s.w.g} .12 \times 12 \mathrm{in}$. $51.80: 14 \times 9 \mathrm{i}$ $£ 1.75: 6 \times 4 \mathrm{in} .55 \mathrm{p}: 12 \times 8 \mathrm{in} . \mathrm{£1} .30 ; 10 \times 7 \mathrm{in}$. $96 \mathrm{p} ; 8 \times 6 \mathrm{in} .90 \mathrm{p}$; 14×3 in. $72 \mathrm{p} ; 12 \times 5 \mathrm{in} .90 \mathrm{p} ; 16 \times 10 \mathrm{in}$. $22 \cdot 10 ; 16 \times 6$ in. $£ 1 \cdot 30$. $4 \times 2 \frac{1}{2} \times 2 \mathrm{in}$. $£ 1 \cdot 00: 3 \times 2 \times 1 \mathrm{in}, 80 \mathrm{p} ; 6 \times 4 \times 2 \mathrm{in}$. $£ 1 \cdot 60 ; 8 \times 6 \times$
 $8 / 450 \mathrm{~V} \ldots .45 \mathrm{p} \quad 50 / 450 \mathrm{~V} \quad \ldots . .95 \mathrm{p} \quad 32+32 / 500 \mathrm{~V}$ $\begin{array}{lll}32 / 350 \mathrm{~V} & \cdots .45 \mathrm{p} & 220 / 450 \mathrm{~V} \\ 820\end{array}$

BSR HI-FI AJTOCHANGER

Stereo Ceramic Cartridge
Plays 12in.. 10in., or 7 in ecords Auto or Manual Quality unit 240 V
Size $13, ~ \times 11 \frac{1}{2}$.

618

PO
22
BSA Single Player P204 cueing device Ceramic 515 or with ADC OLM $20 / 3$ Magnetic cartridge. $£ 20$ poit $\& 2$ BSR PI84 QUALITY DECK. BELT DRIVE
ARI BLE SPEEDS 12in Turntable with
Strobe Markings. Balanced Arm with Magnetic Cartridge. ADC.QLM 30/3.

Radio Component Specialists Dept 4
337 WHITEHORSE ROAD, CROYDON,
SURREY, U.K. TEL: 01-684 1665
Post 65p Minimum. Cal! ars Welcome. Closed Wed.
Same day despatch. Access-Barclay-Visa. Liste 31 p .

Receivers \& Components

NEW SURPLUS RELEASE

Ex GOVT LEAO ACIO ACCUMULATORS. Brand new 10 V 5ah famous manufacture. Easily tapped in 2 v stages. Size onty $7^{\prime \prime} \times 5^{\prime \prime} \times 2^{\prime \prime}$. Ideal for emergency lighting and power supplies. Burglar alarms etc. Must have cost Govt. over $£ 20$ each. Our price $£ 5.50$ each, carriage $£ \mathbf{£} .50$. 2 for $£ 10$ tarriage $£ .50 .4$ for $£ 18$ carriage $\mathrm{f6}, 8$ for $£ 32$ carriage $£ 10$. All despatched unfiled Robust wooden tray with carrying handles. Holds 8 accumula tors $£ 5$.
COROLESS INOUCTIVE LOOP HEAOPHONES. Self powered. input via loop or external min BNC socket. Contains transistorised high gain amplifer. Dperates from internal batteries. Noise excluding muffs. Switch on when placed on head. Special offer while stocks last $£ 6$ p.p. £2 2 pairs for $£ 12$ post

LIGHTWEIGHT HEADSETS (Govt. release). Brand new 600 ohms impedance. A bargain at $\mathbf{£ 3} .50$ p.p. $\mathbf{£ 1} 2$ pairs for $£ 7$ post free.
RIOICULOUS RESISTOR SALE. Brand new $\frac{1}{2}$ watt carbon film resistors. 5% tol. High quality resistors made to exacting specifications' by automatic machines. E12 Range IRO to 10M in lots of 1000 (25 per value). Only 88 per 1000 . Lots of 5000 for f35. 1 RO to 10 M . 1000 PCB type resistors $£ 2.50$. Bulk purchase enables us to after 1000 mixed pre-formed carbon film resistors. 5% tol. for PCB mounting, Huge range of preferred yalues. 92.50 per 1000.4000 for 89 . Fostage 150 vif1. GENUINE AFY TANK HEADSETS AND MIKE $\mathbb{Z} .50$ per pair p.p. $£ 1.2$ pairs $£ 7$ post free. All headphones fitted with EXministry plug. Standard jack plugs available 25 p each. 2 for 40 p. Headphone extension sockets available at $25 p$ each. 2 for 40 p . Impedance of first two items 600 ohms. All headphones in good condition.

SCOOP PURCHASE

PYE POCKET PHONE RECEIVERS Type PF1 normal freq. 450 mHz . Supplied in used condition less battery $\mathbf{~} \mathbf{4} .50$ each Cariage ft. 2 pairs $\mathrm{f9.00}$ post free 4 pairs f16.00 post free THE GOVT. SURPLUS WIRELESS EOUIPMENT HANBBOOK. Gives detailed information and circuit diagrams for British and American Government Surplus Receivers. Transmitters and American Government Surpus Receivers. Transmitters and improvemenis for surplus equipment. Incorporated is a Surplus/Commercial cross referenced valve and transistors guide. The standard reference work in this field. Only $£ 7.50$ p.p. $£ 1.50$. No VAT on books.
New release of MOOERN DYNAMIC MOVING COIL MICROPHONES. 200 ohms impedance. Switch incorporated. Most with lead and DIN plug. Used but nice candition. 3 designs of case housing. Price one mike our choice $\mathbf{C 2}$ plus 50 p p.pr Bargain otter all 3 mikes $£ 4.50$ p.p. f i
GENUINE EX-GOVT COLLAPSIBLE AERIALS. A fully adjustable highly efficient whip aerial in 5 sections. Length $1 \frac{1}{2}$ metres. Closed $300 \mathrm{~m} / \mathrm{m}$. Copper plated sections. As used on Ex Govt Manpacks. Brand new in makers boxes $£ 2.50$ each, p.p. 75 p. 2 for $\mathfrak{f 5}$ post free
have you seen Jhe green cat. $1000 \times$ of new components, radio, electronic, audio at unbelievably low prices. Send 50 p and receive catalogue and FREE RECORO SPEED
INOICATOR INOICATOR.

Reach effectively and economically to-days enthusiasts anxious to know of your products and services through our semi-display and classified pages. Semi-display spaces may be booked at $£ 7.24$ per single column centimetre (minimum 2.5 cm). The prepaid rate for classified advertisements is 31 pence per word (minimum 12 words), box number 60p extra. All cheques, postal orders,

Receivers \& Components

300 SMALL COMPONENTS, including transistors, diodes $£ 2.20,7 \mathrm{lbs}$ assorted components $£ 5.00$, 10 lbs £6.50. 500 capacitors $£ 4.00$. Forty series I.Cs on panel $£ 2.10$ post paid. List 25 p refundable. J.W.B. RADIO, 2 Barnfield Crescent, Sale, Cheshire, M33 1NL.
AERIAL BOOSTERS trebles incoming signal, price £7.00. SAE leaflets. VELCO ELECTRONICS, Ramsbottom, Lancashire BL0 9AG

BUMPER BOX OF BITS

WOW!!! We've got so many components in stock, we can't possibly list them all!! - So buy a box, in it' you'll find resistors, capacitors, displays, switches, panels with transistors, diodes, IC's etc, coils, pots. and so on. All modern parts - guaranteed at least 1000 items, minimum weight 101 bs . ONLY $£ 8.50$ inc.

ELECTRONICS WORLD

1d Dews Road, Salisbury, Wilts, SP2 7SN
(Prop: Westbrough Ltd)
TURN YOUR SURPLUS capacitors, transistors etc., into cash. Contact Coles Harding \& Co., 103 South Brink Wisbech, Cambs. 0945-584188. Immediate settlement.

BIG BARGAIN BOX

Our Big Bargain Box contains over a thousand com-ponents-resistors, capacitors, pots, switches, diodes ransistors, panels, bits and pieces, odds and ends. Alt useful stuff-would cost many times the price we are asking if bought separately. Approx weight 4ibs, ONLY $\mathbf{£ 5} \cdot \mathbf{0 0}$ inc. post-your'e bound to come back for another!
ESP, 147D Foundry Lane, Southampton, SO1 3LS Lots of surplus bargains on our latest list-send an s.a.e. for your Ropy now.

ELECTRONIC COMPONENTS MERSEYSIDE, Myca Electronics, 2 Victoria Place, Seasombe Ferry, Wallasey, L44 6NR. Mail order. Send 50 p for price list refundable off first order. 051-638-8647.

VERO BOARD 0.1 PITCH, $95 \times 292 \mathrm{~mm} £ 3.50$ each, $112 \times 177 \mathrm{~mm} £ 2.95$ each. Prices inclusive of VAT, p\&p 30p. Send cheque or PO with order to: Coxon Electronics, 47 Steeptumpike, Matlock, Derbyshire, DE4 3DP.

Service Sheets

BELL'S TELEVISION SERVICE for service sheets on Radio, TV etc. $£ 1.25$ plus SAE. Colour TV Service Manuals on request. SAE with enquiries to BTS, 190 King's Rd., Harrogate, N. Yorkshire. Tel: 042355885.

ANY PUBLISHED, FULL-SIZE SERVICE SHEET by return $£ 2+$ LSAE. CTV/music centres $£ 3$. Repair data with all circuits, layouts, etc, your named TV or Video $£ 8.50$. Free 50 p mag. All orders, queriesT.I.S. (E.E.), 76 Churches, Larkhall, Lanarkshire.

Courses

CONQUER THE CHIP-master modern electronics the practical way by seeing and doing in your own home. Write for your free colour brochure now to BRITISH NATIONAL RADIO \& ELECTRONICS SCHOOL, Dept C3, Reading, Berks RG1 1BR.

ORDER FORM please write in block capitals

Please insert the advertisement below in the next available issue of Everyday Electronics for
Insertions. I enclose Cheque/P.O. for $£$
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Everyday Electronics)

NAME

ADDRESS

EVERYDAY ELECTRONICS

Classified Advertisement Dept., Room 2612 King's Reach Tower, Stamford Street, London SE19LS Telephone 01-2615942
Rate
$31 p$ per word, minimum 12 words. Box No. 60p extra.

at YOUR SERDICE

etc., to be made payable to Everyday Electronics and crossed "Lloyds Bank Ltd." Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Department, Everyday Electronics, Room 2612, IPC Magazines Limited, King's Reach Tower, Stamford St., London SE1 9LS. (Telephone 01-261 5942).

Miscellaneous

KIRLIAN CAMERA circuit diagram, instructions: $£ 1$ plus SAE $7 \times 10^{\prime \prime}:-$ Paralab, Downton, Wilts.

SILVER OXIDE BATTERIES

Save pounds on silver oxide and alkaline button cells. Fully guaranteed. e.g.: LR44 for Pentax ME Super camera only $42 p$ each post free.
For FREE EQUIVALENTS CHART and price list send s.a.e. to:
H. M. WHEELER \& CO.,
(Unit 1), 15 Hawthorn Crescent,
Bewdiley, Worcs. DY12 2JE.

Flash slave, built and tested: including case, and 3 mm CO-AX socket. $£ 4.30$. Post Free. SHILLINGFORDS, 79 Trevor Drive, Maidstone, Kent.

QUARTZ CLOCKS. L.C.D. only $1{\frac{1}{}{ }^{\prime \prime}}^{\prime \prime}$ dia. sticky backed. Only $£ 3.20$, spare battery 75 p. Taits Mail Crder, 31 Lime Grove, Addlestone, Surrey.

DIGITAL WATCH REPLACEMENT PARTS. Batteries, displays, backlights, etc. Also reports, publications, charts. SAE for full list. PROFORDS, Copners Drive, Holmer Green, Bucks HP15 6SGA.

HOW DARE THEY!

If you see an advertisement in the press, in print, on posters or a cinema commercial which makes you angry, write to us at the address below. (TV and radio commercials are dealt with by the I.B.A.)

The Advertising Standards Authority. If an advertisement is wrong, we're here to put it right. ASA Ltd,, Brook House, Forington Place, London WCIE 7HN.

Ambit 112
Audio Electronics 66
Bi-Pak 70-71
B.K. Electronics Cover III
B.N.R. \& E.S. 117

Bull J. 119
Cricklewood
Electronics 67
Dziubas M. 122
ESP 126
Electrains 112
Electronics World 126
Electronize Design Cover II
Electrovalue 68
Enfield Electronics 128
G.S.C. 111

Greenweld Electronics 66
Grenson/Emos 125
I.C.S. 128 The modern way of instant 2-way communications Just plug into power socket. Ready for use. Crystal clear communications from room to room. Range t-mile on the same mains, phase. On/off switch. Volume control, with 'buzzer' call and light indicator. Useful as inter-office intercom, between offce and Warehouse. in surgery and in homes. Also av

£18.95

Latest transistorised Telephone Amplifier. with detached plug-in speaker. Placing the receiver on to the cradle activates a switch for immediate two-way conversation without holding the handset. Many people can listen at a time. Increase efficiency in office. shoD, workshod. Perfect for "conference" calls: leaves the user's hands free to make notes, distance calls. On/off switch, volume control.

DOOR ENTRY SYSTEM

No house / business / surgery should be without a DOOR ENIRY SYSTEM in this day and age. The modern way to answer the door in safety. Talk twoway to the caller and admit him only if satisfied by pressing a remote control button which will open the door electronically. A boon for the invalid, the aged, and busy housewife. Supplied complete di.i.y. kit with one internal Telephone, outside Speaker panel, electric door lock release (or Yale type cable 50ft and wiring diagram. Price 859.95 including VAT \& P \& P. Extra phone f9.95.
PLEASE ALLOW 10-15 DAYS FOR DELIVERY
10-day price refund guarantee on all tiems
Access and Barclay Visa Card welcome. Personal Callers Welcome
WEST LONDON DIRECT SUPPLIES (EE2)

LONDON W3 7RQ Tel, 017409760

INDEX TO ADVERTISERS

Magenta Electronics 123MaplinElectronicsCover IV
Myers Electronics 126
Pops Components 112
R. \& T.V.C. 72
Radio Component
Specialists 125
Rapid Electronics 69
Roden Products 127
Scientific Wire Co. 127
Sinclair Products 120-121
Sparkrite 105
T.K. Electronics 122
Velleman U.K. 115
West London Direct Supplies 127
Wheeler, H.M. 127
Wilmslow Audio 122

Make the connection with Access

and receive a regular postal delivery of Everyday Electronics. It's easy, it's straightforward and it's quick. Just use the subscription order form to get your Access card account charged with the price of a subscription or order your subscription through Access on the phone: (01) 886 6433. If you pay by cheque or postal order, use

Subscription Rates:
UK, Isle of Man, Channel Islands and Irish Republic £11
Qverseas £12
Unlesšyou are phoning your order, complete and post this order form to:
Everyday Electronics, 2613 King's Reach Tower, Stamford Street, London SE1 9LS

TECHNICAL TRAINING IN ELECTRONICS, TELEVISION AND AUDIO

IN YOUR OWN HOME-AT YOUR PACE
ICS can provide the technical knowiedge that is so essential to your success, knowledge that will enable you to take advantage of the many opportunities open to the trained man. You study in your own home, in your own time and at your own pace and if you are studying for an examination ICS quarantee coaching until you are successful.

City $\&$ Guilds Certificates

Radio Amateurs
Básic Electronic Engineering (Joint C\&G/ICS) Certificate Courses
TV and Audio Servicing
Radio \& Amplfier Construction
Electronic Engineering* and Maintenance
Computer Engineering* and Programming
Microprocessor Engineering*
TV, Radio and Audio Engineering
Electrical Engineering,* Installation
and Contracting *Qualify for IET Associate Membership
CACC Approved by CACC
Member of $A B C C$
POST OR PHONE TODAY FOR FREE BOOXLET

ENFIELD Ch ECTRONICS ${ }^{2088}$ BAKER ST, ENFIELD

PLEASE MENTION
 EVERYDAY ELECTRONICS WHEN REPLYING TO ADVERTISEMENTS

,
 , mar B.K. ELECTRONICS A SOUND CHOICE

\star PROMPT DELIVERY \star PRICES INCLUDE V.A.T. \star AMPLE STOCKS A PERSONAL SERVICE FROM A SMALL EXPANDING COMPANY

STEREO CASSETTE TAPE DECK MODULE Comprising of a top panel and tape mechan ism coupled to a record/play back printed board assembly. Supplied as one complete unit for horizontal installation into cabinet or console of own choice. These units are brand new, ready built and tested.
Features: Three digit tape counter. Auto stop. Six piano type keys. record, rewind fast forward, play, stop and eject. Automatic record level control. Main inputs plus secondary inputs for stereo micróphones Input Sensitivity: 100 mV to 2 V Input Im . pedance: 68 K . Output level: 400 mV to both left and right hand channels. Output Impedance: 10 K . Signal to noise ratio: 45 dB Wow and flutter: 0.1%. Power Supply re quirements: 18 V DC at 300 mA . Connections The left and right hand stereo inputs and outputs are via individual screened leads. ali terminated with phono plugs (phono sockets provided). Dimensions: Top panel $51 / 2$ in x $11 / / 4 \mathrm{in}$. Clearance required under top panel $21 / 4 i n$. Supplied complete with circuit diagram and connecting diagram. Attractive black and silver finish.
Price $\mathbf{£ 2 6 . 7 0}+\mathbf{£ 2 . 5 0}$ postage and packıng
Supplementary parts for 18 V D.C. power supply (transformer, bridge rectifier and smoothing capacitor) $£ 3$.

NEW RANGE QUALITY POWER LOUDSPEAKERS (15", 12" and $8^{\prime \prime}$). These loudspeakers are ideal for both hi-ti, and disco applications. Both the $12^{\prime \prime}$ and 15° units have heavy duty die-cast chassis and aluminium centre domes. All three units have white speaker cones and are fitted with attractive cast aluminium (ground finish) fixing escutcheons Specification and Price

15" 100 watt R.M.S. Impedance 80 hm 59 oz. magnet, 2" alumintum voice coil. Resonant Frequency 20 Hz . Frequency Response to 2.5 KHz . Sensitivity 97 dB Price $£ 32$ each. $£ 3.00$ Packing and Car riage each

12" 100 watt R.M.S. Impedance $8 \mathrm{ohm}, 50 \mathrm{oz}$. magnet. 2 " aluminium voice coll. Resonant Frequency 25 Hz . Frequency Response to 4 KHz . Sensitivity 95 dB . Price E23.70 each. $£ 3.00$ Packing and Carriage each
$8^{\prime \prime} 50$ watt R.M.S. Impedance 8 ohm. 20 oz magnet. $1 \frac{1}{2}^{\prime \prime}$ aluminium voice coil, Resonant Frequency 40 Hz , Frequency Response to 6 KHz , Sensitivity 92 dB . Also available with black cone fitted with black metal protective grill. Price: White cone $£ 8.90$ each. Black cone/grill £9-50 each. P. \& P. £1-25.
PIEZO ELECTRIC TWEETERS - MOTOROLA
Join the Piezo revolution. The low dynamic mass (no voice coill of a Piezo tweeter produces an improved transient response with a lower distortion level than ordinary dynamic tweeters. As a crossover is not required these units can be added to existing speaker systems of up to 100 watts (more if 2 put in series). FREE EXPLANATORY LEAFLETS SUPPLIED WITH EACH TWEETER.

TYPE

TYPE 'A' (KSN1036A) 3" round with protective wire mesh, ideal for bookshelf and medium Price $£ 3.45$ each.
TYPE 'B' (KSN1005A) $3 \frac{1}{2}$ " super horn. For general purpose speakers, disco and P.A
systems, etc. Price ef-35 each.
TYPE 'C' (KSN6016A) $2^{\prime \prime} \times 5^{\prime \prime}$ wide dispersion horn. For $\mathrm{Hi}-\mathrm{Fi}$ systems and quality discos etc. Price $£ 5.45$ each
TYPE 'D' (KSN1025A) 2" $\times 6^{\prime \prime}$ wide dispersion horn. Upper frequency response, retained extending down to mid range ($2,000 \mathrm{c} / \mathrm{s}$) Suitable for $\mathrm{Hi}-\mathrm{Fi}$ systems and quality discos

TYPE 'E' (KSN1038A) 33" horn tweeter with attractive silver finish trim. Suitable for $\mathrm{Hi}-\mathrm{F}$ monitor systems, etc. Price 84.35 each
TYPE 'F' (KSN1057A) Cased version of type ' E '. Free standing satellite tweeter. Perfect add on tweeter for conventional loudspeaker systems. Price $\mathbf{E 1 0} 75$ each.
U.K. post free (or SAE for Piezo leaflets).

1 K-WATT SLIDE DIMMER
\star Controls loads up to 1 KW .
\star Compact Size $4 \frac{3}{4}{ }^{\prime \prime} \times 1 \frac{3}{16^{\prime \prime}} \times 2 \frac{1}{2}{ }^{\prime \prime}$.

* Easy snap in fixing through panel/cabinet cut out. * Insulated plastic case.
- Full wave control using 8 amp triac
* Conforms to BS800.
* Suitable for both resistance and inductive loads. Innumerable applications in industry, the home, and disco's/theatres, etc.
Price $£ 11 \cdot 70$ each $+50 p$ P\&P. (Any quantity.)

Two turntable inputs (ceramic) plus aux. (tape) and mic. inputs. Headphone monitor socket. Compatible with OMP100 Power Controls: Microphone taik over switch with separate volume, treble and bass.

Three main fader (level) controls with master volume, treble and bass.
Monitor selector switch with monitor level control. Mains On/Off switch. Smart black finish Size: $535 \times 110 \times 60 \mathrm{~mm}$. Power requirements: 240 V A.C. Smart black finish. Size: $535 \times 110 \times 60 \mathrm{~mm}$. Po.
Price: $£ 39 \mathbf{9 9}+£ 2.25 \mathrm{P}$.

MULLARD SPEAKER KITS

12" 80 watt R.M.S. loudspeaker.
A süperb general purpose twin cone loudspeaker. 50 oz. magriet. 2^{*} aluminium voice coil. Rolled surround Resonant fre quency 25 Hz . Frequency response to 13 KHz . Sensitivity 95 dB . Impedance 80 hm Attractive blue cone with eluminium centre dome.
Price $£ 17 \cdot 5$ ea +83.00 P \& P

B.K. ELECTRONICS

B.S.R. P232 TURNTABLE

P232 Turntable \star ' S ' shaped tone arm

* Belt driven \star Aluminium platter
\star Cueing lever $\star 240$ volt AC operation (50 Hz) \star Cut-out template supplied
* Used as standard by Hi-Fi and Disco manufacturers
\star Fitted with either a magnetic or ceramic cartridge, please state cartridge required Price £22.50 + £2 50 P \& P

POWER AMPLIFIER MODULES

100 WATT R.M.S. AND 300 WATT R.M
Power Amplifier Modules with integral toroidal transformer power supply, and heat sink. Supplied as one complete buist and tested unit. Can be fitted in minutes. An LED Vu meter is available as an optional extra.
Max Output Powe:
110 watts R.M.S. (OMP 100)
310 watts R.M.S. (OMP 300)
Loads: Open and short circuit proof. 4-16 ohms Frequency Response: $20 \mathrm{~Hz}-25 \mathrm{KHz} \pm 3 \mathrm{~dB}$ Sensitivity for Max. Output:
500 mV at 10 K (OMP 100) iV at 10 K (OMP 300) T.H.D.: Less than 0.1%

Sizes: OMP $100360 \times 115 \times 72 \mathrm{~mm}$ Prices: OMP $100 £ 31 \cdot 50$ each $+£ 2.00 \mathrm{P} \mathrm{\& P}$ OMP 300 £89.00 each + £3.00 P\&P Purposefully designed 40 watt R.M.S. and recently developed by MULLARD'S specialist team in Belgium. Kits comprise Mullard woofer ($8^{\prime \prime}$ or $5^{\prime \prime}$) with foam surround and aluminium voice coil. Mubliard $3^{\prime \prime}$ high power domed tweeter. E.K.E. built and tested crossover based on Muilard circuit, combining low loss components, glass fibre board and SOUNDS AT LOW COST. Kits supplied in polystyrene packs complete with instructions. $8^{\prime \prime} 40 \mathrm{~W}$ system-recommended cabinet size $240 \times 216 \times 445 \mathrm{~mm}$
Price $£ 14 \cdot 90$ each $+£ 2.00 \mathrm{PAP}$
$5^{\prime \prime} 30 \mathrm{~W}$ system-recommended cabinet size $160 \times 175 \times 295 \mathrm{~mm}$.
Price £13.90 each $+\mathbf{£ 1} \cdot 50 \mathrm{P} \mathrm{\& P}$
Designer approved flat pack cabinet kits. including grill fabric. Can be finished with iron on veneer or self adhesive vynit etc. $\mathbf{8}^{\prime \prime}$ " system cabinet kit. $\mathbf{\Sigma 8} \cdot 00$ each $+£ 2 \cdot 50$ P\&P $5^{\prime \prime}$ system cabinet kit. $\mathbf{\Sigma} 7.00$ each $+\mathbf{x 2} \cdot 00 \mathrm{P} \mathrm{\&} P$

\star SAE for current lists. * Official orders welcome. \star All prices include VAT. * Mail order only. * All items packed (where applicable) in special energy absorbing PU foam. Callers welcome by prior appointment, please phone 0702-527.572.

Nearly 400 pages of all the most useful components and a whole big new section devoted to home computers and personal software. As always the catalogue keeps you up-to-date with the latest technology - even our ordinary miniature resistors are now superb quality 1% tolerance metal film, yet they're still only $2 p$ each. As wel! as our usual quality products at low prices, now we're offering quantity discounts too. So pick up a copy of our catalogue now - it's the biggest and the best!

ON SALE IN ALL FROM 18th N OF WHSMITH PRICE $£ 1.25$

Send now for an
application form - then buy it with MAPCARD MAPCARD gives you real spending power - up to 24 times your monthly payments, instantly.

Post this coupon now for your copy of our 1983 catalogue, price $f 1.25+25$ p p\&p. If you live outside the UK send $£ 1.90$ or 10 International Reply Coupons. I enclose $£ 1.50$.

Name
Address

P.O. Box 3, Rayleigh, Essex SS6 8LR.

Telephone: Southend (0702) 552911/554155
Shops at:
159-161 King Street, Hammersmith, London W6 Tel: (01) 7480926 Lynton Square, Perry Barr, Birmingham. Telephone: (021) 3567292 284 London Road, Westcliff-on-Sea, Essex. Tel: (0702) 554000 All shops closed Mondays

[^0]: Our March 1983 issue will be published on Friday, February 18. See page 99 for details.

[^1]: * The term "bus" is of course an abbreviated form of the Latin omnibus, meaning "for all" (cf. "busbar" in electrical engineering).

[^2]: $V_{I L}$ logic low, $V_{I H}$ logic high

[^3]: To get your party rate tickets In sdvance contact the Exhibition Manager, Practica! Woodworking Exhibition, IPC Exhibltions Ltel, Surrey House, 1 Throwiey Way, Sutton, Surrey SM1400.

