Easy to build projects for everyone

 SEPT. 82

 FORMUSICAL INSTRUMENTSsemools Electronic Destgn Award conpizul Full Report inside

THONTHIV PLANUER Bi matidivi

Sblitn wisule dilit

ELECTRONIC IGNITION KIT

TOTAL ENERGY DISCHARGE electronic
ignition gives all the well known advantages of the best capacitive discharge systems.
PEAK PERFORMANCE \quad higher output voltage under all conditions.
IMPROVED ECONOMY —— no loss of ignition performance between services.
FIRES FOULED SPARK PLUGS no other system can better the capacitive discharge system's ability to fire fouled plugs.

ACCURATE TIMING - prevents contact wear and arcing by reducing load to a few volts and a fraction of an amp.
SMOOTH PERFORMANCE _ immune to contact bounce and similar effects which can cause loss of power and roughness.

PLUS

SUPER POWER SPARK $\longrightarrow 31 / 2$ times the energy of ordinary capacitive systems $-31 / 2$ times the power of inductive systems.
OPTIMUM SPARK DURATION 3 times the duration of ordinary capacitive systems - essential for use on modern cars with weak fuel mixtures.
BETTER STARTING _ full spark power even with low battery.
CORRECT SPARK POLARITY unlike most ordinary C.D. systems the correct output polarity is maintained to avoid increased stress on the H.T. system and operate all voltage triggered tachometers.
L.E.D. STATIC TIMING LIGHT for accurate setting of the engine's most important adjustment.
LOW RADIO INTERFERENCE fully suppressed supply and absence of inverter 'spikes' on the output reduces interference to a minimal level.
DESIGNED IN RELIABILITY an inherently more reliable circuit combined with top quality components - plus the 'ultimate insurance' of a changeover switch to revert instantly back to standard ignition.

IN KIT FORM

it provides a top performance electronic ignition system at less than half the price of competing readybuilt systerns. The kit includes everything needed, even a length of solder and a tiny tube of heatsink compound. Detailed easy-to-follow instructions, complete with circuit diagram, are provided - all you need is a small soldering iron and a few basic tools.
AS REVIEWEDIN
ELECTRONICS TODAY INTERNATIONAL JUNE ' 81 ISSUE and EVERYDAY ELECTRONICS DECEMBER '81 ISSUE

FITS ALL NEGATIVE EARTH VEHICLES,
6 or 12 volt, with or without ballast
OPERATES ALL VOLTAGE IMPULSE TACHOMETERS Some older current impulse types (Smiths pre '74) require an adaptor PRICE £2.95
STANDARD CAR KIT $\underset{\text { ASSEMBLED AND TESTED }}{ } \mathbf{1 4 . 8 5}$ £24.95
TWIN OUTPUT KIT £ 22.94
For MOTOR CYCLES and CARS with twin ignition systems
ASSEMBLED AND TESTED £34.70
PLUS £ 1
U.K. P. \& P.

ELECTRONIZE DESIGN Dept. C
Goods normally despatched within 7 days

SUPER POWER DISCHARGE CIRCUIT A brand new technique prevents energy being reflected back to the storage capacitor, giving $31 / 2$ times the spark energy and 3 times the spark duration of ordinary C.D. systems, generating a spark powerful enough to cause rapid ignition of even the weakest fuel mixtures without the ignition delay associated with lower power 'long burn' inductive systems.

HIGH EFFICIENCY INVERTER A high power, regulated inverter provides a 370 volt energy source - powerful enough to store twice the energy of other designs and regulated to provide sufficient output even with a battery down to 4 volts.
PRECISION SPARK TIMING CIRCUIT This circuit removes all unwanted signals caused by contact volt drop, contact shuffle, contact bounce, and external transients which, in many designs, can cause timing errors or damaging un.timed sparks. Only at the correct and precise contact opening is a spark produced. Contact wear is almost eliminated by reducing the contact breaker current to a low level - just sufficient to keep the contacts clean.

TYPICAL SPECIFICATION

SPARK POWER (PEAK)	140 W	90 W
SPARK ENERGY	36 mJ	10 mJ
(STORED ENERGY)	135 mJ	65 mJ
SPARK DURATION	$500 \mu \mathrm{~S}$	$160 \mu \mathrm{~S}$
OUTPUT VOLTAGE (LOAD 50pF \quad EQUIVALENT TO CLEAN PLUGS)	38 KV	26 KV
OUTPUT VOLTAGE (LOAD 50pF + 500 KR \quad EQUIVALENT TO DIRTY PLUGS)	26 KV	17 KV
VOLTAGE RISE TIME TO 20 KV \quad (Load 50pF)	$25 \mu \mathrm{~S}$	$30 \mu \mathrm{~S}$

TOTAL ENERGY DISCHARGE should not be confused with low power inductive systems or hybrid so called reactive systems.
PROJECTS . . . THEORY . . . NEWS . . .
COMMENT . . POPULAR FEATURES . .

A full report appears on page 590.
(C) IPC Magazines Limited 1982. Copyright in all drawings, photographs and articles published in EVERYDAY ELECTRONICS is fully protected, and reproduction or imitations in whole or in part are expressly forbidden.

PROJECTS

SOUND SPLITTER by J. D. Rogers 560
A multi-effects unit for the musician
CB BATTERY CHARGER by A. Flind 568
Constant current charger for NiCad cells
SCREEN WASHER DELAY by G. L. Stoneman 576
Single operation extended wash time
MONTHLY PLANNER by A. P. Donleavy 581
Electronic calendar with event memory
TEMPERATURE INTERFACE FOR THE TRS80 599
by O. N. Bishop
Construction and software
CONTINUITY TESTER by J. Moulder 604
Audible circuit checker
SERIES
TEACH-IN 82 by O. N. Bishop 571
Part 12: Computing circuits
A.C. MAINS by A. Kenyon 596
Part 3: Phase relationships; Power factor
FEATURES
EDITORIAL 559
The Young Generation; New Season Is A^{\prime} Coming
JACK PLUG AND FAMILY by Doug Baker 566
Cartoon
SHOP TALK by Dave Barrington 567
Product news and component buying
COUNTER INTELLIGENCE by Paul Young 570
A retailer comments
EVERYDAY NEWS577, 590
What's happening in the world of electronics
PLEASE TAKE NOTE 577
Circuit Exchange-Invader Landing Game
FOR YOUR ENTERTAINMENT by Barry Fox 578
Resistance to Space, Junk Mail, Car StaticsRADIO WORLD by Pat Hawker G3VA580
A Better Picture, The Sting
CONSUMER ELECTRONICS SHOW by Barry Fox 588
Report from America
READERS LETTERS 589
Your news and viewsSEDAC592The Twelve winning designsSQUARE ONE607
Beginner's Page: Ohm's law

8 Bit MICROPROCESSOR National INSSOBOAN 40 Pin DIL N. Channei Slicicon
GATE MOS TECHNOLOGY AS USEd in Nationals N8080 Micro Computer Family
Inslruction Cycle Time 2 us Insiruction Cycte fime 2
Supplied with functional Supplied with fu
Biock Diagram BRAND NEW -

NOT seconds or rectaims
100% perfect ORDER NO. SX8080 Only
Normal Sell price $£ 4.50$ eachOur BI-PAK Special Price E?. 10 SO HURRY - LIMITED STOCKS

40 Pin tC Sockel 10 fit 5×8080 Otter price ORDER NO. 1609 30p

5T21 SGREWDRIVER SET 6 precision screwdrivers in hinged plastic case. Sizes: $-0.8,1.4,2,2.4$. 2.9 and $3.8 \mathrm{~mm} \quad$ £1.75

5 531 NUT DRIVER SET
5 precision nut drivers in hinged plastic case. with turning rod.
Sizes: $-3,3.5 .4,4.5$ and 5 mm . $£ 1.75$

5T41 TOOL SET

5 precision instruments in ninged plastlc case. Crosspoint (Phillips) screworivers:
HO and H 1 Hex key wrenches:-
1.5 .2 and 2.5 mm £ 1.75

5 551 WRENCH SET

5 precision wrenches in hinged plastic case. Sizes: - 4. 4.5, 5. 5.5 and 6 mm . $£ 1.75$
BUY ALL FOUR SETS: 5 T21.5T5 1 and get HEX KEY SET FREE HEX KEY SET ON RING. Sizes: 1.5, 2, 2.5. 3 4.5, 5.5 and 6 mm . Made of hardened steel HX/1. £1.25

5 watt (RMs) Audio Amp

High Quatity audio amplifier Module. Ideal for use in record players, tape recorders, stereo amps and cassette players, etc. Full data and bach-up diagrams
with each module. with each module.

Specification:

- Power Output 5 waths RMS Load Impedance $\& 16$ ohms - Frequency response 50 Hz to $25 \mathrm{KHz}-3 \mathrm{db}$ Sensitivity 70 mv for full output © Input Impedance 50 k ohms Size $85 \times 64 \times 30 \mathrm{~mm} \oplus$ Iotal Harmonic distortion tess than. 5%
82.25

You could nol Build one
for this prise.
MW39B NI-CAD CHAROER
Universal Ni-Cad battery charger. All plastic case with lift up lid. Charge/Test switch. LED indicators at each of the five charging points. Charges:-Power:-
PP3 (9V) 220-240V AC
U12 (1.5V penlite) Dims: -
U11(1.5V "C") $210 \times 100 \times 50 \mathrm{~mm}$ U2 (1.5V " $\mathrm{D}^{\prime \prime}$) s6.95
POWER SUPPLY OUR PAICE E3.25 Power supply fits directly into 13 amp socket. Fused for safety. Polarity reversing socket. Voltage switch. Lead with multi plug. Input:- 240 V AC. 50 Hz Output: $-3,4.5,6$, 7.5. 9 \& 12 VDC Rating: -300 ma MW88

TRIACS - PLASTIC

 £50.00
2 2n3055 The best known Power Iransistors in the World -2 N3055 NPN 115 w . Our BI-PAK Special Otter Price.

80312 COMPLIMENTARY PNP POWER TRANSISTORS: TO 2NBOSS. uvalent M12955-80312 - T03 SPECIML PRICE $£ 0.70$ each 10 off 56.50

TECASBOTY

The Electronic Componenls and Semiconductor Bargain of the Year. A host of Electronic components including potentiometers - rotary and slider, presels - horizontal and vertical Resistors of mixe values 220 hms to $2 \mathrm{M} 2-1 / 8102$ Watt. A comprehensive range of capacitors including electrolytic and polyester types plus disc ceramics etcetera. Audio plugs and sockets of various types plus switches. fuses, healsinks, wire. nuls/oolts. gromets. cable clips and tyes, knobs and P.C. 8oard. Then add to that 100 Semiconductors 10 include lransistors, diodes. SCR's oplo's, all of which are current everyday usable devices In all a fantastic Parcel. No rubbish all identiliable and valued in current catalogues at well over $£ 25.00$. Our Fight Against Inflation Price -

- Bown with Depression

JUST £6.50.
O/no $\$ \times 85$

Use pour credt cird. Ring us on Ware 3182 NOW and get your ader ewen faster. Gocots normally sent 2nd Cless Mal.
Remember you must add VaT of 158 to poul arder

Bradley Marshall Ltd OF EDGWARE ROAD
 SPECIALIST ELECTRONIC COMPONENT DISTRIBUTORS

Tel: 723-4242
PROBABLYTHE
LARGEST STOCK
OFICs $\&$
TRANSISTORS IN THE SOUTH
TRY USFIRST
LARGE RANGE OF
ACCESSORIES Plugs
Sockets
Audio Connectors
Veroboards
IC Sockets
Soldering equipment Screw drivers
(BAHCO)
Sifam
LARGE RANGE OF
iCs
Transistors
Capacitors
Diodes
Triacs
Thyristors
Opto
Resistors
Potentiometers
Fuses
Bridges
Pleas
list.

SPECIAL OFFER	BAHCO TOOLS SIDE CUTTERS
STEINAL	2132 E710
	2112 £9.40
£7.50	
+ VAT	
Normal price £10.26	
	2415 £6.78
ACCESS	ICE MULTIMETERS Microtest $80 \quad £ 16 \cdot 60$ Supertest 680 R £32. 00 Supertest 680E £24.50
BARCLAYCARD	
A/EXPRESS	
DINERS	
st phone we do the rest	EXPERIMENTER BREADBOARD'S
MAIL	EXP 325 EXP 600
ORDER	EXP 350 EXP 650
FASTER	EXP 300 EXP 4B
SERVICE	LOGIC PROBES
PHONE	LP1 £31.00
723-4242	LP2 £18.00
16, 24, 40 WAY RIBBON CABLE	EXPERIMENTER KITS
£1.10; £1.40; £2.20	PB6 K9.20 PB100 $£ 11 \cdot 80$
Header plugs 14 way, 16 wày, 24 way, 40 way	PLEASE REMEMBER To ADD 15% VAT

bradley MARSHALL ltd FOR

Crimson Elektrik

PROFESSIONAL AMPLIFIER MODULES
PRICE LIST -
ELECTRONIC MODULES \& ASSEMBLIES - APRIL 1981
CODE DESCRIPTION

CE 608
CE 1004
CE 1008
CE 1704
CE 1708
CE 3004
BD 1
TR 80
TR 150
TR 250
TR 2500
B 6
B12
C4700/40 C4700/63 4700/63 C4300/63 Reservoir Capacitor and Clip
CPS 80 Reservair Capacitor and Clip
ower Supply
PS 150 Dual Power Supply
CPS 150D Dual Power Supply
CPS 250 Power Supply
CPS 2500 Dual Power Supply
is $70 \quad$ Thermal Switch $70^{\circ} \mathrm{C}$
HS $50 \quad 50 \mathrm{~mm}$ Heatsink
HS $100 \quad 100 \mathrm{~mm}$ Heatsink
HS $150 \quad 150 \mathrm{~mm}$ Heatsink
FM 1
FM 2
CPR $1 \times$
MC 2
REG 1
REG 1
TR 6
XO 2
$\times 03$
XO 3
MU 1
CK 1010
Complete Pre-Amplifier Kit
CK 1040 Complete 40 Watt Power Amplifier Kit
CK 1100 Complete 100 Watt Power Amplifier Kit 129.56 19.52 119.00 \$7.30
$\begin{array}{lllllll}\text { MC } 2 K & \text { Add On Moving Coil Kit } & 21.74 & 3.26 & 25.00 & 0.12\end{array}$
SOLE DISTRIBUTION BRADLEY MARSHALL LTD OF EDGWARE RD 325 EDGWARE RD. LONDON W21 BN TEL: 01-723 4242

E．E．PROJECT KITS ${ }_{\text {Thansistors }}^{\text {I．}}$

Make us your No． 1 SUPPLIER OF KITS and CDMP ONENTS for E．E．Prolects，Wo supply Carefully selected sets of parts to enable you to construct E．E．prolects．KIts include ALL THE ELECTRONICS AND MARDWARE NEEDED．PiInted clrcult boards（fully etched， article，we even Include nuts，screws and i．C．sockeis．PRICES INCLUDE CASES unless arther，we even include nuts，screws and INCLUDED．CDMPONENT SHEET INCLUDED． If you do not have the lssue of E．E．Which includes the project－you will need to order
the instruction reprint at an extra 45 p each．
Reprints avallable separately $45 p$ each + p．\＆p． 40 p ．
INSTRUMENT PRE AMP AUg． 82. TWO TONE DOORBELL ALARM AUg $\begin{array}{ll}82 \text { ，less case and bell transtormer．} & \text { \＆8．25 } \\ \text { CE ROGER BLEEPER Aug } 82 \\ \text { \＆7．92 }\end{array}$ BRAKELIGHTRELAY JUly 82. 2－WAYINTERCOM July 82． REFLEX TESTER JUly 82 SEATBELT REMINDER EGG TIMER June 82. TWO TONE TRA． REMOTE TRIGGER OPTION May 82 ． CAR LED VOLTMETER less case． LIGHTNING CHESS BUZZER，May 82 2 k RAM PACK Apr 82 less case $\begin{array}{r}25.80 \\ \mathbf{1 2} .89\end{array}$ V．C．O．SOUND EFFECTS UNIT Apr 82 CAMERA OR FLASH GUN TRIGGER Mar 82．£11－60 less tripod bushes．
POCKET TIMER Mar 82．$£ 3-47$ ．
POCKET TIMER Mar 82．£3．47．
GUITAR TUNER Mar $82, ~ £ 14.65$.
CAR OVERHEATING ALARM．FEb． 82.
SIMPLE STABILISED POWER SUPPLY．Jan．82，£22．98
MINIEGG TIMER．Jan． $82 . \mathbf{£ 3} \cdot 69$
SIREN MODULE．Jan．82．less speaker．
C5．21．
MODEL TRAIN CHUFFER．Jan． 82.
57．73．
8OUARE SIX．Dec．81．£4．40
SQUARE SIX．Dec． $81 . £ 4.40$,
GUITARADAPTOR．Dec． $81, ~ £ 3.52$ ．
REACTION METER，Dec．81．E16－41，
LLECTRONIC IGNITION．NOV． 81. C24． 33.
SIMPL
STMPLE INFRA RED REMOTE CON－ TROL，NOV 81．E15－99， Nov．81，£5－4 less mats．
EXPERIMENTER CRYSTAL SET． Nov，81．Less a⿱日⿰㇒⿻土一𧘇
Headphones．£2．98 extra．Oct．81． $\mathbf{2 1 1 - 9 8 .}$ SUSTAIN UNIT．Oct．81．£15 93. ＇POPULAR DESIGNS＇．Oct． 81. TAPE NOISE LIMITOR，\＆A－28．
HEADS AND TAILS GAME，\＆2． 36 HEADS AND TAILS GAME， 52.36
CONTINUITY TESTER，C3． 70. CONTINUITY TESTER，E3．70． FUZZ BOX．EE－22．
OPTO ALARM，\＆6．34
SOIL MOISTURE UNIT．£5．43．
ICE ALARM，£7．38；
$0-12 Y$ POWER SUPPL
0－12V POWER SUPPLY．Sept．81．£16．84 CMOS CAR SECURITY ALARM． CMOS DIE．Sept．81，\＆7．47．
LED SANDOLASS．Aug．81．\＆7．98． CMOS METRONOME．Aug．81．©7－70． COMBINATION LOCK．July 81．Less case．©13－30．
BURGLAR ALARM SYSTEM．Juné $8 t$ less bell，loop \＆Mic＇s．\＆3t－30．
TAPE AUTO START．June 81．£95－96． LICHTS REMINDER AND IGNITION
LOCATORE．E．May $81.85 \cdot 29$ ． LOCATOR E．E．May 81．E5：29．
SOIL MOISTURE INDICATOR E．E． May 81． $\mathrm{E3}$ ． 33
GUITAR HEADPHONE AMPLIFIER PHO May 81，E3－86．
PHONE BELL REPEATER／BABY ALARM E．E．May 81．£5－29． INTERCOM．AprII 81，£20－74． SIMPLE TRANSISTOR \＆DIODE TESTERS．Mar．${ }^{81}$ ．Ohmeter verslon Es－38．Led verston $\mathrm{E} 2 \cdot 56$ ．
MINI SIREN．Mar．81，£7． 52.
LED DICE．Mar，81，\＆7．89．
LED DICE．Mar，81，\＆7．89．
LED FLASHER，Mar，B1．\＆4－01．

MODULATED TONE DOORBELL． Mar． $81 . £ 6 \cdot 21$
BENCH POWER SUPPLY．Mar．B1． E49．98．
THREE CHANNEL STEREO MIXER． eb． $81 . £ 17 \cdot 47$ ．
SIGNAL TRACER．Feb．81，£7．64 less probe．BAT－Cd BATERY CHARGER．Feb． 81. c12．72．
ULTRASONIC INTRUDER DETEC． TOR．Jan． 81 less case．£49．98．
2 NOTE DOOR CHIME．Dec．80．\＆9．65． LIVE WIRE GAME．Dec．80．£10．－94． GUITAR PRACTICE AMPLIFIER． Nov，80．£11－99 less case．Standard case £3．18．High quallty case हill． 33 ．
SOUND TO LIGHT．Nov． 80.3 channel．
TRANSISTOR TESTER，Nov 80 \＆10－37 inc．tesi leads．
AUDIO EFFECTS UNIT FOR WEIRD SOUNDS．Oct．80．\＆12－26．
BICYCRE ALARM．Oct．80．ce－se lest mounting brackets．
IRON HEAT CONTROL．Oct．80．e5．48． TTL LOGIC PROBE．Sept．80．\＆4－85． ZENER DIODE TESTER．JUne 80．Ls 23. 4 STATION RADIO．May $80.815 \cdot 33$ less case．LIGHS WARNING SYSTEM．May 80.

£4．38．

BATTERY VOLTAGE MONITOR．MAY CABLE A PIPE LOCATOR．Mar． 80. \＆3． 85 less coll former．
KITCHEN TIMER．Mar．80．£13．70．
STEREO HEADPHONE AMPLIFIER． Mar．80．£16－97．
MICRO MUSIC BOX．Feb．80．£15．20． Grey Case £3．99 extra．
SIMPLE SHORT WAVE RECEIVER．
FOb． $80 . £ 24 \cdot 17$ ．Headphones Feb．80．£24．17．Headphones $22 \cdot 98$.
SLIDE／TAPE SYNCHRONISER．Feb． 80．E91－50．
MORSE PRACTICE OSCILLATOR， Feb．80．c4－32
SPRING LINE REVERB，UNIT．Jan． 80.
UNIBOARD BURGLAR ALARM．Dec．

79．E5． 64 ．

BABY ALARM，Nov，79，EB－94．
CHASER LIGHTS．Sept．79．£21－97． SIMPLE TRANSISTOR TESTER． Sept．79．es－ 8 ．
DARKROOM TIMER．July 79．£2．71． ELECTRONIC CANARY．June 79．©5－48． MICROCHIME DOORBELL．FEb． 79. E14．82．
THYRISTOR TESTER，Feb．79．\＆3．54． FUSE CHECKER．Oct．78．£2－15．
SOUND TO LIGHT．Sept．78，©7．57．
CAR BATTERY STATE INDICATOR． Sept．78．Less case．es．96．
R．F．SIGNAL GENERATOR．Sept． 78. IN 81
IN SITU TRANSISTOR TESTER． June 78．© 33.
WEIRD SOUND EFFECTS GENERA－ AUDIO VISUAL METRONOME．Jan． 78 ©5－83．
ELECTRONIC TOUCH SWITCH．Jan． 78．£2． 58 less case．
RAPID DIODE CHECK，Jan．78．£2．57． PHONE／DOORBELL REPEATER．July 77．EE－98．
ELECTRONIC DICE．Mar，77，£5 11.

MAGENTA give you FAST DELIVERY OF QUALITY COMPONENTB KITS． All products are stock lines and are new a full speclifatlon．We
quallty producte to all our customere－HAVE YOU TRIED U8？

MAGENTA ELECTRONICS LTD．
EB43， 135 HUNTER ST．BURTON－ON－TRENT，STAFFS．， DE14 28T． 0283 65435．MON．－FRI．9－5．MAIL ORDER ONLY．
ADD 45p P．\＆P．TO ALL ORDERE．PRICES INC．VAT
 OFFICIAL ORDERS WELCOME．
OVERSEAS．Payment must be In sterling， IRISH REPUBLIC and BFPO：UK PRICES．
EUROPE：UK PRICES plus io ELSEWHERE：Write for quote．

SOLDERING／TOOLS

ANTEX $\times 5$ SOLDERING IRON
25W
SOLDERING IROM STAMÖ
$£ 5.48$
$£ 2.40$
SPARE BITS．Small，standard large， 65 p each．For X $5+\mathrm{X} 25$ SOLDER．Handy size
SOLDER CARTON DESOLDER BRAID HEAT SINK T WEEZERS DESOLDER PUMP
HOW TO SOLDER LEAFLET LOW COST CUTTERS

COST LONG NOSE PLIERS．
WIRE STRIPPERS \＆
CUTTERS
HELPING HANDS JIG ع6． 30

Hawy base six ball an

Heavy base．Six ball and socket joints CONNECTING WIRE PACK TYPE
allow inflite variation of cilps through
allow Infintie variation of cilps through 360° ．Has $21^{\prime \prime}$ diameter（ 25×1 magniffer attached）．
our staf．
VERO SPOT FACE CUTTER PINTNSERTION TOOL． VEROPINS（pk of 100）0． 1 ＂．．．．．．． MULTMETER TYPE $2(20,000 \mathrm{ODV})$ with transistor tester， 2 Very good 12000 opl 146 CROCODILE CLIP TEST LEAD SET． 10 leads with 20 clips．
RESTOR COLOUR CODE CALCULATOR …．．．．．．．．．．．．．21p ED． 11 colours ILLUMMINATED MAGNIFIERS Large $3^{\prime \prime}$ dla．（ $5 \times$ mag．） Large $3^{\prime \prime}$ dla．（4x mag．） SCREWDRIVER SET SCREWDRIVER SET DENTISTS INSPECTION MIRROR
JEWELLERS EYEGLASS ．．．．．．．．． 81.50 PLASTIC TWEEERS ．．．．．．．．．． 69 PAIR OF PROBES WITH LEADS
（Cc） 77p

TEACH IN 82

Ali top qualify components as specified by Everyday Electronics．Our kit comes complete with UST 1 and UST 2 together E27．98．UsT 3 e5．98．

$$
\star \text { t } * \text { SPECIAL OFFER } * \text { t } t
$$

WOODEN C，ASE KIT also avallable C11－98－wood，formica，glue，screws etc．Cut to size．
12 part

LISTS 1，2，AND 3 ALL AVAILABLE NOW． ALSO WOODEN CASE KIT．

30013	ADVENTURES WITH MICROELECTRONICS
SEMICONDUCTOR DATA BOOK	Similar to＇Electronics＇below．
Newnes	Uses I．C．s．Includes dice，elec－
ELECTRONIC PROJECTS FOR HOME	tronic organ，doorbell，reaction
ELECT．PROJECTS IN PHOTOGRAPHY	timer，radio etc．Based on Bim－
110 ELECT．ALARM PROJECTS $\quad \begin{aligned} & \text { E．3．35 } \\ & 85.35\end{aligned}$	board 1 bread board．
	Adventures with Microelectronics
BASIC ELECTRONICS．Theory and	£2．55
practice BEGINNERS GUIDE To BUILDING E7．98	Component pack $£ 29 \cdot 64$ less

ADVENTURES WITH ELECTRONIOS BuTom

An easy to follow book suitable for all ages．Ideal for beginners． No soldering，uses an S－Dec breadboard．Gives clear instructlons with lots of pictures． 16 projects－including three radios，siren， metronome，grgan，intercom，timer，etc．Helps you learn about electronic components and how circuits work．Component pack includes an S－Dec breadboard and all the components for the projects．
Adventures with Electronics $£ 2 \cdot 40$ ．Component pack £17•98 less battery．

ADVENTURES WITH DIGITAL ELEOTONIOS

New book by Tom Duncan in the popular＇Adventures＇series． This book of entertaining and instructuve projects is designed for hobbyists and students．It provides a stepping stone to the microprocessor．
The first part deals with the properties of some basic ICs used in digital electronics．
The second part gives details of how to build eight devices－ shooting gallery，2－way traffic lights，electronic adder，computer space invaders game，etc．
For each project there is an explanation of＇how it works＇and also suggestions for＇things to try＇．
No soldering－all circuits built on 2 Bimboard 1 breadboards．
Adventures with Dlgital Electronics book $\mathbf{£ 3} \cdot \mathbf{2 5}$ ．Component pack £42－50，ref．EEDC．All the components needed including 2 breadboards and hexadecimal keyboard．Available less breadboards £29•98，ref．EEDF．Both less battery．

ENFTERD ERECUD(1NUCS

YOUR NEEDS-WE STOCK EYERYPREVIO SOADVERTISEMENTS, WE STOCK A VAST RANGE OF PRODUCTS-GIVE US A RING FOR (

208 Baker Street, Enfield, Middlesex. 01-366 1873.

METERS: $110 \times 82 \times 35 \mathrm{~mm}$ $30 \mu \mathrm{~A}, \quad 50 \mu \mathrm{~A}, \quad 100 \mu \mathrm{~A} . \quad £ 5 \cdot 90$, Post 50p.

METERS : $45 \times 50 \times 34 \mathrm{~mm}$ $50 \mu \mathrm{~A}, 100 \mu \mathrm{~A}, 1 \mathrm{~mA}, 5 \mathrm{~mA}, 10 \mathrm{~mA}$, $25 \mathrm{~V}, 1 \mathrm{~A}, 2 \mathrm{~A}, 5 \mathrm{~A} .25 \mathrm{~V}$
E2-90. Post 30 p.
METERS: $60 \times 47 \times 33 \mathrm{~mm}$ $50 \mu \mathrm{~A}, 100 \mu \mathrm{~A}, 1 \mathrm{~mA}, 5 \mathrm{~mA}, 10 \mathrm{~mA}$, $100 \mathrm{~mA}, 1 \mathrm{~A}, 2 \mathrm{~A}, 25 \mathrm{v}, 50 \mathrm{v}$, $50-0-50 \mu A, 100-0-100 \mu$ A. £4.76.
VU meters. £5-32.
Post on above meters 30 p.
Silicone grease $50 \mathrm{~g} £ 1.32$ Post $14 p$.

NH-CAD BATTERY

CHARGER

Led indicators charge-test switch. For PP3, HP7, HP11 \& HP2 size batteries.
Price 55.85 Post 94 p.

All above prices include V.A.T. Send 80p for new 1982 fully illustrated catalogue, S.A.E. with all enquiries. Speclal prices for quantity quoted on request.

All goods despatched within 3 days from receipt of the order.
M. DZIUBAS

158 Bradshawgate, Bolton Lancs. BL2 1BA

MULTI-METER
$7 \mathrm{~N} \quad 360 \mathrm{TR}$ 20,000 ohm/volt DC Volts: $0 \cdot 1$, $0.5,2 \cdot 5,10-150$ -250-1,000v.
AC Volts: $10-50$, 250-1,000 RESISTANCE
RANGES
X1, X10, X1K,
X10K
£14-10
P.\&P. 87p

TRANSFORMERS

240v Primary

$3-0-3 v$	100 mA	$82 p$
$6-0-6 v$	100 mA	$87 p$
$6-0-6 \mathrm{v}$	250 mA	$£ 1 \cdot 22$
$12-0-12 v$	50 mA	$92 p$
$12-0-12 v$	100 mA	$£ 1 \cdot 15$
Post on above transformers $48 p$		
$9-0-9 v$	$1 A$	$£ 1 \cdot 80$
$12-0-12 v$	$1 A$	$£ 2 \cdot 40$
$15-0-15 c$	$1 A$	$£ 2 \cdot 60$
$6 \cdot 3 v$	$1 \frac{1}{2} \mathrm{~A}$	$£ 1 \cdot 80$
$6-0-6 v$	$1 \frac{1}{2} \mathrm{~A}$	$£ 2 \cdot 10$

Post on above transformers 87p.

ConstructorSeriesSpeakers

Have fun save money, building a Kef design with a Wilmslow Audio CS Total kit. No electronic or woodworking knowledge necessary and the end result is
 a proven topquality design that you'll be proud of. Each kit contains all cabinet components, accurately machined for easy assembly, speaker drive units, crossovers, wadding, grille fabric, terminals, nuts, bolts, etc.
The cabinets can be painted or stained or finished with iron-on veneer or self adhesive woodgrain vynil.
Easy foolproof assembly instructions supplied. Set of constructor leaflets sent free on receipt of large S.A.E.

Prices: CS1 (As 101) $\mathbf{£ 1 1 0}$ pr. inc. VAT, plus carr./ins. $£ 5.50$
CS1A (simplified LS3/5A) £103 pr. inc. VAT, plus carr./ins. $£ 5.50$
CS3 (as 103.2)
CS5 (as Carlton II)
$\mathbf{£ 1 2 9} \mathbf{p r}$. inc. VAT, plus carr./ins. $£ 10.00$
CS7 (as Cantata)
$\mathbf{£ 1 9 2}$ pr. inc. VAT, plus carr./ins. $£ 15.00$
$\mathbf{£ 2 5 0}$ pr. inc. VAT, plus carr./ins. $£ 18.00$

```
8
0625529599
```

35/39 Church Street, Wilmslow, Cheshire SK9 1AS 1982 Catalogue - 1.50 post free
Lightning service on telephoned credit card orders!

Biapid
 Tel: 020636412
 Hill Farm Industrial Estate
 Boxfed
 Colchester Essex CO4 5RD

CONNECTORS DIN

 UHF (CB) Connectors
PL259 Plug 40 p Reducer 14p SO 239S round chassls socket IEC 3 Din $250 \mathrm{~V} / 6 \mathrm{~A}$ sis mounting Socket with 2 m lead

35 p

SWITCHES

Subminiature togg
SPST 55 p . SPDT 60 p . DPDT 65 p . MIIiature toggle
SPDT 80 . SPDT centre off 90 p . DPDT 90 p . DPDT centre off 100 p .
Standard toggle SPST 35 p . DPDT 48 p . Standard toggle SPST 35p. DPD 48 p .
Miniature DPDT slide switch 12 p .
Push to mate 12 p . Push to break 22 p . Rolary type adjustable stop 1P12W 2P6W 3P4W 4P3W all 55p each
DIL switches 4 SPST 80p. 6 SPST 80p. 8SPST 100p CAPACITORS
Polyester. Radial leads, $250 \mathrm{~V}, \mathrm{C} 280$ type.
$0.01,0.015,0.022,0.033,6 \mathrm{p}, 0.047$,
0.088 $0.01,0.015,0.022,0.033,6 p ; 0.047,0.068$,
$0.1,7 p ; 0.15,0.22,9 p ; 0.33,0.47,13 \mathrm{p} ; 0.68$ 20p; - $1 / 123 \mathrm{l}$.
Electrolytip. Radtal or axial leads. $0 \cdot 47 / 63 \mathrm{~V}, 1 / 63 \mathrm{~V}, 2 \cdot 2 / 63 \mathrm{~V}, 4 \cdot 7 / 63 \mathrm{~V}, 10 / 25 \mathrm{~V}$,
$7 \mathrm{p} ; 22 / 25 \mathrm{~V}, 47 / 25 \mathrm{~V}, 8 \mathrm{p} ; 100 / 25 \mathrm{~V} 9 \mathrm{p} ; 220 / 25 \mathrm{~V}$, 14p;
50p.
50p. and Power Supply Electrolytles.
2200/40V $110 \mathrm{p} ; 4700 / 40 \mathrm{~V}$ 160p; 2200/63V 140p; $2200 / 40 \mathrm{~V} 110 \mathrm{p}$;
$4700 / 63 \mathrm{~V} 230 \mathrm{p}$.
Polyester. Minlature Slemens PCB,
$1 \mathrm{n}, 2 \mathrm{n2}, 3 \mathrm{n} 3,4 \mathrm{n7}, 6 \mathrm{n} 8,10 \mathrm{n}, 15 \mathrm{n}, 7 \mathrm{p} ; 22 \mathrm{n}, 33 \mathrm{n}$,
$47 \mathrm{n}, 68 \mathrm{n}, 4 \mathrm{p} ; 100 \mathrm{n}, 3 \mathrm{p} ; 150 \mathrm{n}, 1 \mathrm{p} ; 220 \mathrm{n}, 13 \mathrm{p}$ $47 \mathrm{n}, 68 \mathrm{n}, 1 \mathrm{p} ; 100 \mathrm{n}, 9 \mathrm{p} ; 150 \mathrm{n}_{1} 11 \mathrm{p} ; 220 \mathrm{n}, 13 \mathrm{p}:$
$330 \mathrm{n}, 20 \mathrm{p} ; 470 \mathrm{n}, 26 \mathrm{p} ; 680 \mathrm{n}, 29 \mathrm{p}: 1 \mu, 33 \mathrm{p} ; 2 \mu 2$,
 40 p t too/10V, 90 p .
Ceramic disc. 22 p
Ceramic disc. $22 \mathrm{p}-0-01 \mu 50 \mathrm{~V}$, 3 p each.
Mullard miniature ceramic plate.
Mullard miniature ceramic plate.
1.8 pF to $.100 \mathrm{pF} \mathrm{8p}$ each.
1-8pF 10.100 pF 8 p each.
10p-1000p 6p. $1500-4700 \mathrm{p} 8 \mathrm{p}, 6800-0.012 \mu 10 \mathrm{p}$.
Trimmers. Mullard 808 Serles.
2-10pF 22p. 2-22pF 30 p. $5 \cdot 5-65 \mathrm{pF} 35 \mathrm{p}$.

POTENTIOMETERS

Rotary. Carbon track Log or LIn 1K-2M2. Single 32p. Stereo 85 p . Single switched 80 p .
Silde 60 mm travel single Log or Lin $5 \mathrm{~K}-500 \mathrm{~K}$. 63p each.
Preset. Submin, hor. 100 ohms $-1 \mathrm{M}, 7 \mathrm{p}$ each,
Cermet preclsion multiturn, $0.75 \mathrm{~W} \quad 3 / 4 \mathrm{ln}$. 100 ohms to 100 K . 88 p each.
TRANSFORMERS $\begin{aligned} & \text { Please add carriage } \\ & \text { charges to our normal }\end{aligned}$ Miniature mains.
$600 \mathrm{~V}, 909 \mathrm{~V}, 12012 \mathrm{~V}$ all $@ 100 \mathrm{~mA} 100 \mathrm{p}$ each.
PCB mounting. MInlature PCB mounting. MInlature.
3 VA $0-6,0-6 @ 0-25 A ; 0-9$, $0-12 @ 0.12 A, 200 p$ each.
$6 \mathrm{VA} 0-6,0-6 @ 0.5 A ; 0-9$ 0-12 @ 0.25A, 270p each

\qquad
\qquad

each (plus 60 p carriage)

PCE MATERIALS

Alfac transfer sheets-please state type (e.g. Dalo etch resist pen
Flbre glass board $3.75^{\prime \prime} \times 8^{\prime \prime}$
FerricChlorlde 250 ml bottle CABLES

20 metre pack single cor |HARDWARE connectong cable ten differ- Red or Black crocodile cllps 6 p | | | |
| :--- | :--- | :--- |
| Speaker cable | $10 \mathrm{p} / \mathrm{m}$ | Pr Ultrasonte transducers 350 p | Standard screened $16 \mathrm{p} / \mathrm{m} \neq 6 \mathrm{~V}$ Electronic buzzer 60 p Twin screened $\quad 24 \mathrm{p} / \mathrm{m}$ 12V Electronlc buzzer 2.5 A 3 core malns $23 \mathrm{p} / \mathrm{m}$

10 way rainbow ribbon $55 \mathrm{p} / \mathrm{m}$ P82720 Plezo transduce 20 way ralnbow ribbon

NEW CATALOGUE
 OUr latest catalogue has just bee released containing - backed by Raplds return of fopst service, Stocks include Denco colls, tools, Verocases, data sheets etc. etc. - Send 45 f for your copy now (sent free of charoe with ali

Simply phone 020636412 with your order

\qquad t3mm yellow Clips to sult 3
Rectangular p
p
tred
green
yellow green

yellow \begin{tabular}{ll|l}
R1L \& 17 \& TLL111

ON5777 \& 17 \& ORP12

TR100

\& 45 \& TL10i

Dual

 Seven segment displays Com cathode

DL704 $0.33^{\prime \prime}$ \& Com anode

+FND500 $0.5^{\prime \prime}$ \& 95 \& DL707 $0.3^{\prime \prime}$
\end{tabular}

12	TIL32	40
17	TIL111	40
17	80	
40	ORP12	85
TIL100	90	

> 95.
180
180
LM $L M 377$
LM 381
\qquad
\qquad
\qquad 120
150
68
135
400 NE570
NE571
※RC4136
XRC4558
SL480
SL490
SL4
SN76018
SN76477
SP8629
SP8
TBA120S
TBA800
TBA
TBA810
TBA820
0
 TL071
TL072
TL074
t TL081
XTL082
+TL034
TL170
+UA224
ULN2003
ULN2004
XXR220
ZN414
ZN423
ZN424
ZN425E
ZN426E
ZN427E
ZN428E
ZN459
ZN1034E

 ${ }_{25}^{23}{ }^{25}{ }^{\text {TIP29A }}$ | 40 | ※ZTX4 |
| :--- | :--- |
| 55 | Z ZTX1 |
| 60 | ZTX109 |
| 45 | ZTX300 |
| 50 | | $\begin{array}{rl}07 & 2 N 3053 \\ 08 & \text { 2N } \\ \text { 2N3054 } \\ 12 & \text { 2N3055 } \\ 14 & \text { 2N3442 } \\ 16 & \pm 2 N 37 \\ 15 & 2 N 3703\end{array}$ जinco

Nut and Bolt KIt. Toial 300 items VERO WIRING 180p.

 $256 \mathrm{BA} \frac{1^{\prime \prime}}{}$ bolts $254 \mathrm{BA} \frac{1}{\frac{1}{2}^{\prime \prime}}$ bolts$256 \mathrm{BA} \frac{1}{\frac{1}{2} \prime \prime}$ bolts $256 \mathrm{BA} \frac{1}{\frac{1}{2}}$ bolts VERO
PEN

Pen + s $\begin{array}{llll}5068 A & \text { nuts } & 506 \mathrm{BA} & \text { nuts } \\ 506 \mathrm{BA} & \text { Pen }+\mathrm{spool} & \text { 310p } \\ \text { Spare spool } & 75 \mathrm{p}\end{array}$ SOLDERINGIRONS \begin{tabular}{l|l|l|}
Antex CS 17W Soldering iron \& 450 p \& TRIACS

2.3 and 4.7 mm bits

$2 \cdot 3$ and 4.7 mm blts to sult \& 65 p \& 400 V 8 A

\hline 65

CS 17 W Element \& 400 V 16 A \& 95

Antex XS 25 W

3.3 \& Soldering iron \& 210p \& BR100

\hline
\end{tabular} A. 3 and 4.7 mm bits 10 sult Solder pump Desoldering

Spare nozzle for above 10 metres 22 swg solder RESISTORS

\section*{	LW 5% Carbon film E12	PANEL METERS
Serles $4.7 \Omega-10 M$		} serles $4 \cdot 7 \Omega-10 M$ 1p each.

IW 5% Carbon fim E12 W $\mathrm{W} \%$ Metal fim, E24 serie: 10R-1M, 6p each.

BRIDGE RECTIFIERS | $1 A$ | 50 V 22 | 6 A 100 V 80 | $0-10 \mathrm{~mA}$ |
| :--- | :--- | :--- | :--- |
| 1 A 400 V 35 | 6 A 400 V | $0-50 \mathrm{~mA}$ | |

2A 200 V 40	VM18 DIL	$0-100 \mathrm{~mA}$	$0-25 \mathrm{~V}$
2A 400 V 45	$0.9 A 200 \mathrm{~V} 50$	$495 p$ each	$0-30 \mathrm{~V}$ DC

\section*{RAPID $|$| Aluminium |
| :--- | :--- |} OFFER YOU $\left.\begin{aligned} & \text { Aluminium } \\ & 3 \times 2 \times 1 \text { in } \\ & 40 p\end{aligned} \right\rvert\, \begin{aligned} & \text { Plastic } \\ & \text { With IId }\end{aligned}+$ scraws

 DEAL
 VERO Vizerobloc 350
Size 0.1 matrix
2.5×1.

WATFORD ELECTRONICS
35 CARDIFF ROAD，WATFORD，HERTS．，ENGLAND MAIL ORDER，CALLERS WELCOME．Tel．Watford 40588／9
ALL DEVICES BRAND NEW，FULL SPEC．AND FULLY OUARANTEED ORDERS
DE PATCHED BY RETURN OF POST．TERMS OF BUBINESB：CASHICHERUE P．O．S OR BANKERS DRAFT WITH ORDER．GOVERNMENT AND EDUCATIONAL IMSTITUTIONS＇OFFICIAL ORDERS ACCEPTED．TRADE AND EXPORTINQUIRY WILCOME．P\＆P ADD 50p TO ALL CASH ORDERS，OVERSEAS ORDERS
AGE AT COST．AIR／SURFACE．（ACCESS orders by telephone wolcome）
VAT
Export orders no V．A．T．Appllcable to U．K．Customers only．Unless stated otherwiee
all prlces are exclusive of V．A．T．Please add 15% to total cost including \＆P．
Wo mock many more Items．It pays to vielt us．Wo are situated bohlnd Watford Football Eafurday $9.00 \mathrm{am}-6.00 \mathrm{pm}$ ．Ample Froe Car ParkIng epace avallable
POLYESTER CAPACITORS：Axlal lead type（Values are in nF）
$400 \mathrm{~V}: 1 \mathrm{nF}, 1 \mathrm{~ns}, 2 \mathrm{n} 2,3 \mathrm{n} 3,4 \mathrm{nT}, 6 \mathrm{n} 811 \mathrm{p} ; 10 \mathrm{n}, 15 \mathrm{n}, 18 \mathrm{n}, 22 \mathrm{n} 12 \mathrm{p} ; 33 \mathrm{n}, 47 \mathrm{n}, 68 \mathrm{n} 16 \mathrm{p}: 100 \mathrm{n}, 150 \mathrm{n}$
 48p；4 47 58p． $1000 \mathrm{~V}: 1 \mathrm{nF} 17 \mathrm{p} ; 10 \mathrm{nF} 30 \mathrm{p} ; 15 \mathrm{nF} 40 \mathrm{p} ; 22 \mathrm{n} 36 \mathrm{p} ; 33 \mathrm{n} 42 \mathrm{p} ; 47 \mathrm{n}$ ， 100 n 55 p.
POLYESTER RAOIAL LEAD CAPACITORS（250V）
$10 \mathrm{nF}, 15 \mathrm{n}, 22 \mathrm{n}, 27 \mathrm{n} 6 \mathrm{p}$ i $33 \mathrm{n}, 47 \mathrm{n}$ ，68n， $100 \mathrm{n} 7 \mathrm{p} ; 150 \mathrm{n}, 220 \mathrm{n} 10 \mathrm{p} ; 330 \mathrm{n}$ ，Teach－in 81 all parts ；680n 19p； 1μ 23p；
ELECTROLYTIC CAPACITORS：（Values in $\mu \mathrm{F}$ ）S00V ： $10 \mu \mathrm{~F} 52 \mathrm{p} ; 4778 \mathrm{p} ; 63 \mathrm{~V} ; 0.47,1 \cdot 0$

TANTALUM Bead Capacltors POTENTIOMETER8：（ROTARY）OPTO

ZX81 16K RAM pack，
16K RAM Pack，Fully bult \＆tested，
Plugs straight on to your 2×81 Only $£ 16.99$
We stock a wide selection of Com－
puter 1 Cs ，Printers，Floppy Disc puter ICs，Printers，Floppy Disc
Drives，BBC Micro upgrade Kits，
Micro peripherals，Books etc．at Micro peripherals，B
very competitlveprices．

DIODES	ZENERE
AA129 22	Range $2 V 7$ to
BA100 15	
8 Y120 12	80 ameh
8 Y127 12	ange 3 V 3 to
CRO33 250	1．3W
04940	15p axh
OA47 12	
OA70 12	
OA79 18	NOISE
OA61 1t	Diode 195
OAB5 15	
OAPO	BRIOGE
OA日1	RECTIFIERS
OA200	1A／50V 18
OA202	$1 \mathrm{~A} / 100 \mathrm{~V} 20$
INP14	$1 \mathrm{~A} / 200 \mathrm{~V} 25$
IN4001／2	$1 \mathrm{~A} / 400 \mathrm{~V} 28$
IN4003	$1 \mathrm{~A} / 800 \mathrm{~V} 14$
IN4004／5	2A／50V
IN4008／7 7	$2 \mathrm{~A} / 200 \mathrm{~V} 40$
ind14B	$2 \mathrm{~A} / 400 \mathrm{~V}$
$3 \mathrm{~A} / 100 \mathrm{~V} 18$	2A／b00V
$3 \mathrm{~A} / 400 \mathrm{~V} 16$	8A／100V 3
$3 \mathrm{~A} / 600 \mathrm{~V} 17$	SA／400V
$3 \mathrm{~A} / 1000 \mathrm{~V} 30$	10A／200V 215
6A／400V50p	10A／600V 298
	25A／200V 215
	25A／600V 305
	BYist 88
wid selection of Electronic Booke and	VM18 DIL 55
Magazines	ST2

 DENCO COILS RDT2
DP＇VALVETYPE RFC 5
Range it to 5 8l．，RFC $7(19 \mathrm{mH}) 160 \mathrm{p}$ Range 1 to 5 gl．，RFC $7(19 \mathrm{mH}) 160 \mathrm{p}$
Rd．YI．Wht．122p IFT $13 ; 14 ; 15$ ； $\begin{array}{llll}\text { G－7B．Y．R．} & 110 \mathrm{p} & 16 ; 17 & \text { 120p } \\ \text { 1．8 Groen } & 150 \mathrm{p} \text { IFT } 18 / 1.6 & 135 \mathrm{p}\end{array}$ $\begin{array}{lll}\text { Rd．，Wht．} & 150 \mathrm{p} & \text { TOC } 1 \\ \text { B9A Valve Holder } & \text { MW } 5 F R & 12 \mathrm{p} \\ \text { 60p } & \text { MW／LW } 5 F R 154 \mathrm{p}\end{array}$

$$
\begin{aligned}
& \text { Tranolstor } \\
& A C 12 E / 6
\end{aligned}
$$

${ }^{\text {BCRE }}$

1A／100V $5 A / 600 \mathrm{~V}$
A／S00V $12 A$ $12 \mathrm{~A} /$
$18 \mathrm{~N} /$
2 l合动

Editor

F. E. BENNETT

Asslstant Editor
B. W. TERRELL B.Sc.

Production and News Editor
D. G. BARRINGTON

Projects Editor

G. P. HODGSON

Art Editor
R. F. PALMER

Assistant Art Editor

P. A. LOATES

Technleal illustrator
D. J. GOODING Tech. (CEI)

Secretary
JACQUELINE DOIDGE
Editorial Offices
KINGS REACH TOWER
STAMFORD STREET
LONDON SE1 9LS
Phone: 01-261 6873

Advertisement Manager
R. SMITH
Phone: 01-261 6671

Representative

R. WILLETT

Phone: 01-261 6865
Classifled Supervisor

B. BLAKE

Phone: 01-261 5897
Make-Up and Copy Department
Phone: 01-261 6615

Advertisement Offices

KINGS REACH TOWER
STAMFORD STREET
LONDON SE1 9LS

THE YOUNG GENERATION

Electronics casts its spell at an early age and younger members of our society are readily attracted to this technology. Whilst at school many children become actively involved in experimenting and building projects to meet actual needs or perhaps just to satisfy inquisitive minds.

If given but a modicum of encouragement by members of teaching staff, this youthful enthusiasm is likely to be self-sustained throughout the final and formative years at school. Even more fortunate are those children who have a teacher with a similar interest in electronics. With such a mentor to guide and advise them in these (usually extracurricular) activities, young minds will develop their appetite for electronics in the best and most logical manner.
Schools, themselves, can gain materially from the practical work of their electronically inclined pupils, a fact most clearly demonstrated by the Schools Electronic Design Award Competition (SEDAC), sponsored by Mullard Ltd and this magazine. The culmination of this competition was the presentation of prizes by the Parliamentary Under-Secretary of State, Department of Education and Science. The Minister praised the endeavours and inventiveness of the young entrants and the excellence of their working models: he was particularly pleased by the practical aspect of the competition and welcomed this encouragement of interest in electronics and computers amongst the young. The Minister voiced one regret: that was concerning the absence of girls amongst the finalists. We agree with him that this cannot be because of lack of interest in electronics among schoolgirls-our own evidence points to the contrary. So come on girls, don't let the fellows get away with it at next year's SEDAC.
The success of our first national schools competition has been well noted. We are delighted to announce that Mullard Ltd have agreed to join us in sponsorship of a second Schools Competition, to be launched this autumn. Full details will appear in next months Everyday Electronics.

NEW SEASON IS A'COMING

October is always a notable month on account of the renewed activity amongst constructors after a summer lull. It is also the optimum time for newcomers to make a start in this stimulating and useful leisure pursuit.
Next month we will give a pair of transistors with every copy and inside will be suitable designs for their use. For those hovering on the edge there's encouragement to take the plunge in the first of a six-part series, Introducing Electronics.
Finally, to something over which we have little control. Economic facts of life make it necessary for the price of Everyday Electronics to be increased to 80 p as from next month. But it will be well worth every penny.

Readers' Enquiries

We cannot undertake to answer readers' letters requesting modifications, designs or information on commercial equipment or subjects not published by us. All letters requiring a personal reply should be accompanied by a stamped self-addressed envelope.
We cannot undertake to engage in discussions on the telephone.

Component Supplies

Readers should note that we do not supply electronic components for building the projects featured in EVERYDAY ELECTRONICS, but these requirements can be met by our advertisers.

[^0]
Back Issues

Certain back issues of EVERYDAY ELECTRONICS are avallable worldwide price 80p inclusive of postage and packing per copy. Enquirles with remittance should be sent to Post Sales Department, IPC MagazInes Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. In the event of non-avallability remittances will be returned.

Binders

Binders to hold one volume (12 issues) are available from the above address for $£ 4.60$ inclusive of postage and packing worldwide. Please state which Volume.

Subscriptions

Annual subscription for delivery direct to any address in the UK: $£ 11 \cdot 00$. Overseas: £12-00. Cheques should be made payable to IPC Magazines Lid., and sent to Room 2613, Kings Reach Tower, Stamford Street, London SE1 9LS.

Circuits to give a stereo simulation from a mono input have been published before but these are normally for hi fi use and are not suitable for the musician. It might also be said that a "stereo" splitter would be of little value to the average musician with only one amplifier. In this unit however, the stereo splitter circuitry is modified so as to be useful with even a small, single input amplifier.
The unit combines an improved pseudo-stereo effect with two other useful functions, described later, to give a device which has a wide range of applications.
The unit is simple to use and easy to construct, no test equipment is needed and no setting up or adjustments are required. The circuit contains only two i.c.s, both common types, there are no unusual components and it uses a standard size Veroboard and ready made case.

To describe the unit itself and describe its applications it is best to consider both of these together, and this is done later, under a separate heading for each of the three modes of operation. These modes are

[^1]
selected by a small toggle switch on the side of the unit and are: SWITCHER MODE, FREQUENCY SPLIT MODE and crossmix mode. Regardless of which of these modes is set, selecting normal on the footswitch will always give a "straight" signal at the main output.

All effect/normal signal routing is performed by electronic (f.e.t.) switches, as this is superior to normal switching and does away with the need to use a d.p.d.t. footswitch. A wider choice of footswitch is made available since a s.p.s.t. or indeed any type of footswitch can be used, and yet always give smooth and reliable switching. This is because the footswitch itself only has to carry a d.c. command voltage while the actual audio signal switching takes place on the circuit board.

CIRCUIT OPERATION

The circuit diagram for the Sound Splitter is shown in Fig. 1.

Although the circuit uses six opamps, these are contained in just two packages, ICl and IC2 one dual and one quad. ICla acts as a input buffer and a preamplifier. At its input is a network which adds a treble preemphasis.

When footswitch Sl is set to normal (contacts open) a negative voltage is fed to the gates of the two f.e.t.s. (TR1, TR2) and this switches them both off. ICIb therefore has only R11 in its negative feedback loop and so it acts simply as a unity gain inverting amplifier stage.

Its signal passes via R17 to the output (TR2 has no effect as it is off) where C9 and R19 form a treble cut (de-emphasis) filter to cancel out the effect of the pre-emphasis that was added at the input. This restores a virtually flat response overall and the net result is noise (hiss) reduction, since any noise arising from any source within the unit is reduced by being attenuated at the last possible point, the output. The circuitry is low noise anyway, but this gives a further improvement.

EFFECT SWITCHING

Now consider the same parts of the circuit when EFFECT is selected. Now Sl is closed so the voltage sent to the f.e.t. gates is positive, which switches them both on. ICle and d form two bandpass filters and so will only pass certain sections of the audio spectrum, in this case centred at
approximately 300 Hz and 3 kHz . These banids are now added (via TR1, now on) to IClb where, being in antiphase to the main signal (via R10), they cancel out parts of the response. The output of IC1b therefore becomes notched.

C7 is also brought into circuit when TR1 comes on, increasing the negative feedback around IClb so reducing the gain, but only at high frequencies. The result is that frequency response above 7 kHz is re moved. Fig. 3a shows the final response.

COMPENSATION

Since three bands have now been removed from the response, a noticeable drop in overall sound level would be heard upon switching between NORMAL and EFFECT, so TR2 has been included to compensate for this by bringing R16 into circuit whenever effect is selected. This gives a general level boost and also reduces the treble de-emphasis at the output, so even though response around 3 kHz and above 7 kHz has been removed, the overall "brightness" is preserved. The final result is a unique change of timbre without any volume loss.

The other, more important, reason for including TR2 is to ensure that when nORMAL is selected the main output is isolated from the other channel crossmix network (C10, Cl1, R26).

So much for the main signal path, now consider the secondary channel, which consists of IC2a and b and associated components. Normally the signal from the preamp (via R20) plus an identical but inverted signal from IC1b (via R21) are fed to IC2b and these cancel to give zero output.

When effect is selected however, parts of the main signal are removed, as described earlier, and where this takes place the two inputs to IC2b can no longer cancel out and so there is now an output at these frequencies, that is around $300 \mathrm{~Hz}, 3 \mathrm{kHz}$ and above 7 kHz . See Fig. 2b.

This can be summarised as "whatever is removed from the main channel appears in the secondary channel".

The secondary path continues to IC2a, which, with VR1 forms a centre zero volume and phase control. When VR1 is at zero resistance IC2a is an inverting amp; when VR1 is at full resistance IC2a is a non-inverting

Fig. 2. Frequency response in the FREQUENCY SPLIT mode.
amp; when VR1 is at $10 \mathrm{k} \Omega$ resistance then there is no output at all since IC2a is equally inverting and noninverting.

Finally, the signal is fed via C10, C11, R26, R27 to the secondary output jack SK3. R26, C10, C11 only have effect when crossmix mode is selected. $\mathrm{Cl1}$ is inoluded so as not to lose, in crossmixing mode, the feature whereby a second amp does not have to handle low frequencies. It forms a highpass filter with R26 whenever

Fig. 1. The complete circuit diagram of the Sound Splitter.

Crossmix mode is selected thus pre venting bass signals from the main output getting into the secondary output. R27 is included to isolate the output of the op-amp from cable capacitance which could otherwise cause instability.
$\mathbf{R} 28$ is placed across $\mathbf{S} 2$ to prevent switch clicks by equalising any small d.c. offsets that could otherwise accumulate, but it is of sufficiently large value as to have negligible effect on the actual audio signals.

SWITCHER MODE

In switcher mode pressing the footswitch routes the signal alternately to the two outputs (MAIN and SECONDARY). SWITCHER mode allows better use to be made of any amp with two or more inputs or channels, that is most amps. Each channel can be set up for a different sound and then selected remotely and instantly by the footswitch. It also allows any
other effects unit (or combinations of effects units), placed in either the main or the secondary path(s) to be switched, see Fig. 3b and c.

So as to allow improvement of other effects units, the level of the secondary output has been made variable, by means of VR1. Designers of effects circuits can only have an average input level in mind, so it is likely that any real instrument output is either too low (so you don't get the best signal-to-noise ratio from the effect) or too high (so it overloads). This control allows the "drive level" to any effect unit to be boosted (up to $\times 3$) or reduced compared to the instruments original level. To find the best level, turn the control until maximum output is obtained without distortion occurring.

If you do not have two inputs on your amp, then the simple and inexpensive "Two-way Remixer" box (described later) can be used instead.

Fig. 3. A few applications of the Sound Splitter from the simple to the more complex. Set the footswitch to EFFECT for the stated effect in each case.

SPLIT MODE

This accepts any two inputs and combines them into one output.

SPLIT MODE

When set to normal, there is a "straight" signal from the Main output, but upon pressing the footswitch certain bands of frequencies are removed from it, thus altering the response.

To keep the overall volume constant a general boost is automatically applied, enough to make up for the removed bands. So, just by using the Main output on its own, this mode provides a footswitchable tonal change effect, from normal to a lighter, coloured, sound not possible using normal tone controls. See Fig. 3 a.

The missing bands of frequencies are not lost, but are transferred to the previously "dead" secondary output. All of the audio frequency spectrum is therefore still passed but is split into two complementary outputs, whatever is absent from one will be present in the other, see Fig. 2.

Having generated these two outputs, what to do with them is up to the user, but some tried suggestions are:
(1) To a simple passive remixer (see Fig. 7). This then allows you pan between two entirely opposite tonal responses. The relative volumes of these can be balanced by using VR1 to preset the level of the secondary output.
(2) To two channels of the same amp. Each channel now handles different parts of the signal, so tone controls and any built-in effects (such as reverb or tremolo) can be applied to some frequencies and not to others, with some uniusual results. The footswitch can be used to return to normal single channel operation of the amp at any time.
(3) To two separate amps (or to two sides of a P.A. system). This produces a pseudo-stereo effect which gives a spatial enhancement or "spread" of the sound.
Two useful features are that (i) it is possible to use a much smaller amp/speaker for the secondary channel since its output signal consists only of certain bands of the audio spectrum, the lowest of which is centred around 300 Hz , so there is no deep bass present which would require a more substantial amp/speaker to handle it. And (ii) the second amp can be positioned any distance away and its volume conveniently "remote controlled" by VR1 on this unit. See Fig. 3 f.
(4) One output via effects unit(s), the other straight. Then as in (1), (2) or (3) above.
(5) Both outputs via effects unit(s). Then as (1), (2) or (3) above.

Prototype Sound Splitter and Two-Way Remixer.

COMPONENT ASSEMBLY

Construction is straightforward, but is most convenient if carried out int a certain order. If you follow the stage-by-stage instructions given here, and tick off each part as you proceed it will ensure that everything gets done with the least possible effort and that nothing is forgotten.

The majority of the components are mounted on a piece of 0.1 inch

With the latter two methods, novel variations on existing effects are possible by feeding the effect with certain frequencies only and allowing the others to bypass it or even to go via another effects unit. Here then are hundreds of possibilities to be explored, just a few examples are given in Figs. 3d, e and g.

All of the effects using the frequency split mode have been found to sound better or worse depending on the relative phases of the final signals appearing at the speaker(s). There is no way of predicting whether a signal via any particular route will end up being inverted as this depends on many stages in the circuits within the $\mathrm{amp}(\mathrm{s})$ and any effects unit(s) used, as well as on which way the speakers are wired.

To take all possible situations into account, the Sound Splitter secondary output has been given the facility whereby it can be of either phase relative to the other output. It is controlled by VR1, which has a centre zero arrangement. Volume increases towards either side of centre but the phase of the output is different depending on whether it is in the + ve or the -ve half of its rotation, as marked on the panel.

CROSSMIX MODE

In the crossmix mode there is normally "straight" signal from the main output and upon pressing the footswitch the frequency splitting as described above occurs, but in this mode the two channels are internally cross-mixed in such a way as to produce new tonal colours.

These are available from either one of the outputs and can be varied by using VRI to alter the percentage of the mix coming from the secondary channel. In this mode then, VR1 effectively becomes an unusual tone control.

Resistors

Resi	$470 \mathrm{k} \Omega$
R2	$380 \mathrm{k} \Omega$
R3	$1 \mathrm{M} \Omega$
R4	$22 \mathrm{k} \Omega$
R5	$1 \cdot 5 \mathrm{k} \Omega$
R6	$82 \mathrm{k} \Omega$
R7	$5 \cdot 6 \mathrm{k} \Omega$
R8	$330 \mathrm{k} \Omega$
R9	$330 \mathrm{k} \Omega$
R10	$47 \mathrm{k} \Omega$
R11	$47 \mathrm{k} \Omega$
R12	$1 \mathrm{M} \Omega$
R13	$10 \mathrm{k} \Omega$
R14	$68 \mathrm{k} \Omega$
All $\frac{1}{4}$ watt carbon film $\pm 5 \%$	

Capacitors
C1 100 nF polyester type C280
C2 2200F polystyrene
C3 10nF polyester type C280
C4 10nF polyester type C280
C5 22nF polyester type C280
C6 $22 n \mathrm{~F}$ polyester type C280
C7 470pF polystyrene

Semiconductors

$$
\begin{aligned}
& \text { emiconductors } \\
& \text { TR1, } 2 \text { BF24 } n \text {-channel f.e.t. (2-off) } \\
& \text { IC1 } \text { LF347 quad j.f.e.t. op-amp }
\end{aligned}
$$

IC2 LF353 dual j.f.e.t. op-amp
Miscellaneous

Two-Way Remixer
R1, R2 $150 \mathrm{k} \Omega \frac{1}{4} \mathrm{~W}$ carbon (2-of)
VR. $1 \quad 47 \mathrm{k} \Omega$ carbon linear potentiometer
SK1, 3 standard jack socket (2-off)
SK2 standard jack socket with break contacts
Case: $100 \times 50 \times 25 \mathrm{~mm}$ enamel finish aluminium diecast box (Maplin DCM5002).

Fig. 5. Complete interwiring details.

Fig. 4. Layout of the components on the topside of the stripboard and the breaks to be made in the tracks on the underside

Veroboard size 24 strips $\times 37$ holes as shown in Fig. 4. Cut the board to size and then make all the necessary breaks in the copper tracks using a spot face cutter or a small drill bit (about 3 mm diameter). Drill the board fixing hole where shown in Fig. 4. The other three corners of the board should be supported by pieces of plastic foam stuck to the bottom of the case. In fact, separated Veromounts are ideal for this, just stick squares of either type of the velcro material where the three other corners of the board will rest.

By having just one bolt point and three resilient mounts the board is well anchored and is insulated from the metal case but is not held too rigidly, so accidental knocks to the case are less likely to be transmitted through and damage the board.

CIRCUIT BOARD

Begin board construction by soldering in all of the flat-lying resistors, then the 220 pF and 470 pF capacitors.

Solder in the six larger of the links. Use insulated wire for these so as to prevent any shorts should the links flex and touch other components.

Solder in the two smaller links, using bare wire.

Insert and solder in the two i.c. sockets, then the eight vertically mounted resistors and finally the rest of the capacitors. Next solder sufficient lengths of insulated stranded wire to the board to reach the appropriate case mounted components.

Position and solder in place the two transistors and then insert the i.c.s into their sockets, carefully checking their orientation.

CASE DETAILS

Drill out holes in the case, for the footswitch, the potentiometer, the toggle switch and the three jack sockets, following the dimensions given in Fig. 6 (unless of course a different case is used). A small hole is also required in the bottom of the case to put a small bolt through to hold the circuit board in place. The two jack sockets at the lower end have been placed so as to act as battery retainers. A strip of plastic foam across the bottom can be added to keep the batteries firmly in place.

Clean the case before proceeding to letter it. Letraset or similar rubdown transfers will give a professional finish. Either the panel design shown on the prototype can be followed or the constructor can make up a design to suit himself.
Fix the lettering for protection with a clear varnish. Letraset 101 aerosol is most convenient and gives a tough enough finish. When the varnish has

Fig. 6. Case drilling details.
dried, mount the sockets, potentiometer and two switches. Put four stick-on rubber feet on the case underside. See Fig. 5.

Interwire just the case mounted components, as shown, using the usual multi-strand hook-up wire, neatly routing all leads around the bottom of the case out of the way. Next interwire the circuit board to the case mounted components, keeping the wiring neat as before. After checking all connections, bolt the board into the case.

REMIXER BOX

Apart from its intended use with the Sound Splitter, the remixer box is a generally useful unit to have around, and being purely passive it needs no batteries.
The circuit for the Two-Way Remixer is shown in Fig. 7. The two
input signals to A and B are "mixed" across VR2, the amount of each appearing at the output depending on the resistance between VR2 wiper and the input socket. With the wiper in its mid-position, the output contains equal amounts of signals at A and B.

The two $150 \mathrm{k} \Omega$ resistors Rl and R 2 ensure that there is always a d.c. reference path for any connection to the box, these resistors are placed prior to the potentiometer VR2 where they do not cause unnecessary reduction of the signals.

Construction is very simple, any metal box can be used as long as it is big enough to contain three plastic jack sockets and a potentiometer, see Fig. 8.
A Maplin type DCM5002 diecast box was used for the prototype. The jack sockets had to have their con-

Fig. 7. Circuit diagram for the TwoWay Remixer.

Interior view of the completed prototype
Remixer. Remixer.

Fig. 8. Layout and wiring of the Remixer components in the diecast aluminium box.

The completed Sound Splitter unit with lid removed showing batteries in position.

Left. Close-up view of the Sound Splitter component board.
tacts folded down flat to fit into this particular box and a few strips of insulation tape were stuck on the inside of the case lid to prevent the contacts shorting to the metal case.
The earth contacts of the three sockets are wired together and, since they are all plastic types, the metal case must be earthed via the potentiometer, by soldering an "earth lead" to the back of its case.

When there is no jack inserted in B then the unit is still usable simply as a volume control for the A input, because the B input is automatically earthed by the normally closed contact on the socket itself.

EARTHING CONSIDERATIONS

Problems can occur whenever two separate signal paths are in use from a common source, because of the formation of earth loops, which invariably give rise to unacceptable mains hum.

However, these situations are auto-
matically prevented in the Splitter by means of a break contact on the main output jack SK2 which, when a plug is inserted, disconnects the earth to the secondary output jack. So, whenever both outputs are in use, only the lead from the main output will be directly earthed (the other lead will still be earthed, but from the "other end" via the amp.).

If ondy the secondary output is being used, then its earth will remain connected, thus all situations are catered for.

CONCLUSION

The unit will accept an input from any instrument or other audio source, and the input jack switches on the batteries when a plug is inserted. Battery drain is low (about 10 mA) so two PP3 batteries should last a long time.
The Sound Splitter is an effects unit in its own right, and of course can be used as such, however, its
real versatility lies in the many interesting ways in which it can be used in conjunction with any other effects unit and the Two-Way Remixer. Used in this way it can help in the musicians constant search for different sounds by squeezing a few more variations out of existing types of effects.
As mentioned earlier there are so many combinations possible, simple and complex, that it is pointless to try and list them here, it is really up to the user to discover uses to suit his own equipment, taste and style of playing.

Finally, for anyone who wishes to experiment with further effects, a useful control to add is a $47 \mathrm{k} \Omega \log$. potentiometer connected between the "capacitor ends" of R5 and R7. This allows the peaks of both the band pass filters in the unit to be swept to different frequencies, eventually forming into a single peak when the potentiometer is at zero ohms.

Mastering PCBs

Making printed circuit boards is a highly skilled profession and an art. So any news of a product that makes it easier for the non-professional to produce boards of a high quality is most welcome.
One such system is the new CM100 Circuit Maker kit from Electrolube. Due to space considerations, it is not possible to evaluate the kit from a "hands-on" viewpoint but the problems of making p.c.b.s will be the subject that we will return to at a later date.
The kit provides all the necessary hardware and chemicals to produce positive photographic film masters from published layout diagrams and a final definitive circuit board.
The kit can be broken down into two groups or packs consisting of equipment and chemicals for making the film positive masters and one for making the final printed circuit board. Amongst the film processing equipment is a photoflood bulb used for activating the sensitised film when placed over the published master diagram.
We like the idea of a special "jig" which can be used as an exposure frame for the photographic part of the process, as well as a component assembly frame. A foambacked plate, which forms part of the frame, is ideal for holding components in place whilst any excess leads protruding on the underside of the board can be trimmed prior to soldering. It is also claimed that the foam backing is heatresistant which allows the components to be held firmly during the soldering operation.
It is obvious that a great deal of thought and attention to detail has gone into making the CM100 kit as extensive as possible. As well as containing six double-sided copper-clad fibreglass circuit boards (no single-sidedl), plus such items as rubber gloves, retouching pen, photographic dishes, thermometer, etchant and drills, there are workbench charts and an instruction manual.
Selling for about £70, first impressions would seem to indicate that the kit is rather an expensive outlay, but when weighed against the cost of purchasing finished boards it appears to be a reasonable investment.
For more details of prices and local
stockists of the CM100 Circuit Marker contact Electrolube Ltd., at Dept EE, Blakes Road, Wargrave, Berks, RG108AW.

Catalogues Received

A. new 21 -page components catalogue has just been received from Rapid Electronics. The Autumn ' 82 Catalogue includes a wider range of Linear devices, plus data sheets, an extended range of capacitors and p.c.b. mounting transformers.
Copies of the Rapid Components Catalogue can be obtained by sending 45 p to Rapid Electronics, Hill Farm Industrial Estate, Boxted, Colchester, Essex, CO4 5RD. The catalogue will be sent free to customers who place orders for goods totalling over $£ 10$.
A Shortform catalogue just published by Keyswitch Varley contains abbreviated data on their range of relays, solenoids, controllers, timers and switches.
New products described in the 12-page catalogue include a range of 1 -, 2-, 3- and 4 -pole reed relays, 30 A power relays and a solid state relay. Recent additions are a range of DIP slide switches and a double wound solenoid with integral solid state switch.
Copies of the Shortform catalogue are available from Keyswitch Varley Ltd., Dept EE, Tom Cribb Road, Thamesmead, London SE28 OBH.

The CM100 Circuit Maker from Electrolube

Booklet

A 20 -page pocket guide entitled "The 100 Most Asked Questions and Answers" has just been released by the Ferguson Video Advisory Service to show the capability of the Videostar range.
Aimed at both the customer and trade staff, the booklet covers all aspects of their video equipment and accessory range, plus a section devoted to cross compatibility with other makes. It also contains some general information on lighting, sound recording and connecting leads.
Copies of the booklet are available free from Thorn EMI Ferguson Ltd., Dept EE, Cambridge House, Great Cambridge Road, Enfield, Middlesex, EN1 1UL. A stamped addressed envelope would be appreciated.

Public Address Amplifier

We have been informed that all semiconductors used in the P.A. amplifier (May/Aug) can be supplied by Hart Electronic Kits, Pennyland Mill, Oswestry, Shropshire.

CONSTRUCTIONAL PROJECTS

Monthly Planner

A source of supply for the 1-bit clock timer, IC1, which forms the heart of the

Monthly Planner project has proved the most difficult item to locate.
The E 050-16 clock chip is not normally available in the UK but the author, Mr Donleavy has made special arrangements with the Swiss manufacturers to supply them to E.E. readers.
The E 050-16 costs $£ 6.50$ and the crystal 90 p from A. P. Donleavy, 13 Wasdale Road, Liverpool 9. Add 20p postage and packing for all orders.
The clock chip is available separately, but the crystal can only be supplied together with the E 050-16 device. However, other crystals can be used in the circuit.
The rest of the semiconductor devices should be available from Ambit, Enfield, Electrovalue, Magenta and Watford Electronics.
The miniature keyboard push switches are now generally available and is left to individual choice on the type of switch used here.

Continuity Tester

Practically any of the low-voltage piezoelectiic transducers, available from most of our advertisers, should be suitable for the Continuity Tester. The device used in our model was the PB2720 (with case) obtainable from Ambit.

The size of plastics case is not critical and any type may be used

Screen Washer Delay

The relay used in the Screen Washer Delay is a low-profile encapsulated type with a 1000 ohm coil. This is a RS encapsulated reed relay and is coded Blue, stock number 348-986. Any RS component supplier will be able to obtain this item.
Note that the casing of capacitor C1 must be completely isolated from any metal when installed in a vehicle. This can be accomplished by wrapping in insulating tape or rolled in a strip of polythene sheet.

Temperature Interface for TRS-80

A couple of special i.c.s are required for the TRS-80 Interface project. The LM334Z, adjustable current source used as a remcte temperature sensor, is available from Maplin Electronic Supplies; order No. WQ32K. The TL507C, single slope analogue to digital converter, may be obtained from most Tandy shops; stock No. 276-1789.
The printed circuit board has been designed to accommodate a specific RS transformer, stock No. 207-829. This transformer is available through any RS component dealer. Other suitably rated transformers may be fitted to the case and wired to the appropriate p.c.b. locations.
The double-sided ($20+20$ way) wirewrap edge connector may prove difficult to locate and may need to be cut from a larger version. One such item is the $2 \times$ 22-way strip from Watford Electronics which will allow alignment guides to be fitted.

Sound Splitter

There should be no component buying problems for the Sound Splitter or the add-on mixer unit.
A suitable jack socket for SK1 is the "stereo phone jack" from Tandy stores, stock number 274-277.
On its own, a useful application for the Two-Way Remixer box is to couple two instruments to a single input amplifier.

BY A.FLIND

Since the long-awaited advent of S legal CB radio, several types of 40-Channel hand-held portable rigs have become available and are growing increasingly popular. Most of these use HP7 type batteries, but with a current drain of 0.5 A or more when transmitting, the cost of ordinary dry batteries quickly leads most users to invest in a set of rechargeable ni-cads.

The problem of supplying a suitable charger for these arises. Commercial chargers often cost as much as the batteries themselves and few incorporate any kind of automatic "full-charge" sensing feature. The
charger described here is the author's answer to this problem, at around half the cost of most units.

It provides fully automatic, troublefree performance and is simple to construct. It was designed to charge the complement of ten AA sized (HP7) ni-cads in the Marvard 410T rig, however, the Dixons' Harrier WT2 40 -channel handheld appears to be identical to the Harvard, and the Tandy Realistic 1001 also uses the same battery complement. Possibly other portables such as the DNT and Alba are similarly powered, so this charger design may prove useful to many readers.

RECHARGEABLE NI-CADS

A few facts about the ni-cad cells themselves may be of interest before continuing. Most readers will probably be aware that these are available as direct replacements for the common sizes of 1.5 V dry cell, and that they can be recharged up to 1,000 times.

In general they should be charged by a constant current, the value of which is normally quoted as being about a tenth of the cell's capacity in ampere-hours (Ah). The AA size has a capacity of 0.5 Ah so the charge rate should be around 50 mA . It is also stated that they cannot be damaged by long term continuous overcharging at this rate, however, it cannot be seen to do them much good either.

Since the cell voltage rises quite steeply when the fully charged condition is reached, it is a fairly simple matter to detect this and reduce the charge rate accordingly. An advantage of this type of charger is that the battery can be connected at any time for "topping-up", regardless of it's initial state of charge.

It is unwise to let batteries of ni-cad cells become completely exhausted as one cell will inevitably run down before the others, which then "reverse-charge" the flat cell and cause permanent damage to it. So topping-up whenever the equipment is not in use will greatly reduce the risk of this occurring.

CIRCUIT DESCRIPTION

Fig. I shows the complete circuit of the CB. Battery Charger. Transformer TI, bridge rectifier D1 to D4

Fig. 1. Circuit diagram of the CB Battery Charger.

and capacitor Cl provide a smoothed d.c. supply of about 20 V . The circuit has to charge the battery on a fixed current until a pre-set full-charge voltage is reached and then maintain this voltage by reducing the current.
The LM723 regulator i.c. was chosen for the circuit as it contains a stable reference voltage source and an amplifier for comparing this reference with the battery voltage. The reference voltage of about 7 V appears at pin 6 and any noise present is decoupled by C2 before it is connected to the non-inverting amplifier input on pin 5. The inverting amplifier input, pin 4, is connected to the potential divider R4, R5 and VR1 placed across the circuit's output.

The chip also has provision for current limiting, but the operation of this is not really sharp enough for the present purpose so a constant current generator circuit based on TR1 and TR3 has been incorporated.
The action of this configuration is quite simple. A silicon transistor begins to conduct when it's base-toemitter voltage exceeds about $0 \cdot 6 \mathrm{~V}$. The bias current supplied by TR2 to TR3 causes TR3 to conduct until the voltage across R 6 reaches $0 \cdot 6 \mathrm{~V}$, at which point TR1 starts to conduct away surplus bias current to progressively limit the conduction of TR3. Thus the current through TR3 can be calculated from Ohm's law as being $0.6 \mathrm{~V} / \mathrm{R} 6$, and it will remain virtually constant regardless of load and voltage conditions.

So provided the voltage fed back from the output potential divider is lower than the reference voltage, the output of ICl will be fully positive, causing TR2 to supply about 10 mA of bias to the constant current generator. This bias passes through the l.e.d. D2 which indicates that charging is in progress.

Once the feedback voltage reaches the reference value however, the drive to TR2, and hence the bias is rapidly reduced, so the output current drops to a value just sufficient to maintain the output voltage at the desired level and the l.e.d. virtually extinguishes, indicating that charging is complete.

CIRCUIT BOARD

Construction, using the simple p.c.b. shown in Fig. 2 is quite straightforward. This diagram also shows the layout of all components. It's a sensible precaution to mount the transformer T1, D1-D4 and Cl first, and then to carefully apply power and check that the voltage across Cl is around 20 to 25 V d.c. Remember that

COMPONENTS

Resistors	See	
R1	$22 \mathrm{k} \Omega$	
R2	$10 \mathrm{k} \Omega$	
R3	680Ω	
R4, 5	$18 \mathrm{k} \Omega$ (2 off)	
R6	12Ω	
All 7 W carbon $\pm 5 \%$	page 567	

Capacitors
C1 $470 \mu \mathrm{~F} 63 \mathrm{~V}$ elect.
C2 $1 \mu \mathrm{~F} 35 \mathrm{~V}$ tantalum
C3 1000 pF ceramic
C4 $1 \mu \mathrm{~F} 63 \mathrm{~V}$ elect.
Semiconductors
D1-4 W005 50V, 1 A rectifier
D5 TIL209 miniature red I.e.d.
D6 1 N4001 silicon
TR1 BC214L silicon pnp
TR2 BC184L silicon non
TR3 BD136 silicon pno
IC1 LM723 adjustable voltage regulator

Miscellaneous
T1 Miniature mains transformer, 9V-0-9V secondary
VR1 $10 \mathrm{k} \Omega$ miniature horizontal preset
PL1 Plug to suit host CB equipment (the prototype uses a 2.5 mm jack plug)

Single sided glass fibre p.c.b., 116 $\times 36 \mathrm{~mm}$; plastic case, $120 \times 65 \times$ 40 mm (type BIM 2004); mains lead; twin cored lead; $7 / 0 \cdot 2 \mathrm{~mm}$ wire; l.e.d mounting clip; mounthardware for T1 (4BA).

Approx. cost \mathbf{A} E13.00

Fig. 2. Actual size p.c.b. artwork and component layout. T1 mounting holes may require slight adjustment to suit individual transformers. The photograph shows the authors hand-held CB rig being charged by the prototype unit.
some parts of the p.c.b. will be live at 240 V mains whilst testing, so take adequate precautions when doing this.

The transformer is an inexpensive $9-0-9 \mathrm{~V}$ miniature type, the centre-tap of which is unused so that it provides an 18 V output. It is fastened to the board with a couple of 4BA screws.

After assembling the rest of the circuit, check with an ammeter that the output of the unit into a resistance of 100 ohms is around 50 to 60 mA . Setting the output voltage requires a little more care.

The voltage of a ni-cad cell when approaching the fully charged condition is about 1.45 V , so the unit should be set to supply this value multiplied by the number of cells in the battery. The author's CB rig is the Harvard model 410T, which contains ten cells but also incorporates an internal silicon diode in series with the batteries in it's charging circuit, so an extra 0.6 V has to be added to compensate for
this, bringing the total to $14 \cdot 5 \mathrm{~V}+$ $0 \cdot 6 \mathrm{~V}=15 \cdot 2 \mathrm{~V}$.

A check of the circuit diagram of your rig will show whether it contains a similar internal diode. Note that the voltage setting must be made with the charger supplying some current, so a resistance of 1 kilohm should be placed across the output before carefully adjusting VR1 for the correct output voltage.

The finished board is designed to slip into the moulded mounting slots provided in the specified case, and on the author's prototype, the cable strain relief clamps are simply a few turns of insulating tape around the input and output leads. A small hole is drilled for the l.e.d. which is then secured by means of a mounting clip.

FAST CHARGER

Experimenters might like to note that this circuit can be adapted quite simply for other output voltages and currents. A further interesting ap-
plication would lie in the construction of a "fast" charger. The ten-hour charge rate usually quoted for ni-cads is the maximum at which they will withstand indefinite overcharging; if provision is made to reduce the supply current when the charge is complete they can be charged in far shorter times, down in fact to as little as fifteen minutes.

A charge rate of 1 A , completing the charge in 30 minutes is appar ently quite feasible for the AA size. Note that if they are overcharged at these higher currents gas will form and they will vent, thereby losing electrolyte. The "button" types of cell have no provision for pressure venting and under similar conditions may explode, so don't try it with these!

However, with an up-rated transformer and some heatsinking for TR3 this design could be modified into an efficient high speed charging system.
sed, paints the picture for me. "Can't you Imagine it?" he says, "This poor chap goes into the surgery with an ingrowing toenail, sits down at the computer and presses all the relevant buttons.
*Unfortunately unknown to him, this machine is malfunctioning due to a couple of dry joints on one of the circuits and having put him out cold with a smart tap on his 'noggin' with a Black Jack, proceeds to operate. When the poor man regains consciousness he finds either he has had a vasectomy or is minus an earl!"

While reluctantly agreeing with my 1 mp , I have an answer, which is this, that even real flesh and blood doctors make similar mistakes, usually by getting their patients mixed up !

Ship's Doctor

I must confess this method of treating patients, is rather like the method used in small ships. On a ship of less than 5,000 tons, a Doctor need not be carried. This chore being carried out by the Captain or Mate.

To assist them they have a Board of Trade Medicine Chest, which contains all the medicants likely to be required on the voyage. These are numbered and there is a book of instructions.

If, for example, a sick sailor complains of headaches, the book would instruct the Locum to give him one tablet number 6 . On returning to port, the skipper would report to the port Medical Officer, who would question him about any sickness on the voyage.

I must conclude with the story of the skipper reporting to the Medical Officer, which goes as follows: M.O. "Well Captain, did you have a good voyage?" Captain. "Splendid, thank you." M.O. "Any medical problems?" Captain, "Not really, I did have one of the crew who had stomach pains and I had run out of pill number 12.'
M:O. "OhI What did you do?" Captain, "Ohl it was quite simple really, I gave him one number 7 and one number $51 I^{\prime \prime}$
I am confident that computerised medicine will do better than that.

BASIC ELECTRONIC THEORY
 WITH EXPERIMENTS COMPUTING CIRCUITS

N THIs final instalment of the series we bring our study of electronics up to date. We see how some of the simple circuits we have already studied can be put together to make more elaborate systems capable of performing calculations and logic.
The term "computer" is taken to refer to the digital computer nowadays, since most of the computers we use are of this type. Analogue computers operate in a different way and, although they have been replaced by the digital computer as a calculating or logical tool, they still have important applications.
They are usually based on the operational amplifier (see Part 7, EE April 1982). Indeed it was the need for high-performance amplifiers for use in analogue computers which gave rise to the 741 and other opamps which are still so widely used today. Before we see how op-amps are used for calculating, we must study one more amplifying circuit.

INVERTING AMPLIFIER

The circuit configuration in Fig. 12.1 is different from the other op-amp circuits we have studied in that the input voltage is fed to the inverting input (-) of the amp-
lifier. Consequently, an increase of $V_{\text {IV }}$ produces a decrease of $V_{\text {OUT }}$, and the other way about.
Since the output signal is fed back through R24 to the negative input, this amplifier has negative feedback. The amplifier is stable only when both of its inputs are at the same voltage. Since the non-inverting input is at 0 V , the amplifier can be stable only when the inverting input too is at 0 V .
We can think of R23 and R24 as a potential divider (Fig. 12.2). For any given value of V_{IN}, the amplifier adjusts $V_{\text {OUT }}$ until the voltage at the inverting input (-) is exactly 0 V . In effect, if V_{IN} is a positive voltage, a current flows from the input of VR1, through R23, R24, and into the output of ICl. If this current is I, and knowing that the p.d.s. are as shown in Fig. 12.2, we can calculate that:

$$
I=\frac{V_{\mathrm{IN}}}{\mathrm{R} 23}=\frac{-V_{\mathrm{OUT}}}{\mathrm{R} 24}
$$

The negative sign is needed because $V_{\text {in }}$ and $V_{\text {out }}$ have opposite signs. Rearranging this equation we get:
Amplification $=\frac{V_{\text {OUT }}}{V_{\text {IN }}}=\frac{-\mathbf{R} 24}{\mathbf{R 2 3}}$

Fig. 12.1. Using an op-amp as an inverting amplifier. Offset null compensation is not essential and is omitted. You could connect up this circuit on Minilab and test its action. For positive input voltages from VR1, reverse the connections to the meter.

With the values given in Fig. 12.1, the amplification is $\times(-10)$. Note that the amplification depends only on the ratio between R23 and R24. It does not depend upon the gain of the op-amp circuit, or variations in the manufacture of the opamp , or the temperature in which it is operating.
If we use two high-precision resistors with high temperature stability, amplification is precisely determined and is stable. This is essential if we are to use the circuit for computing.

Note that the calculation above does not include any current flowing into or out of the inputs of the op-amps. A small current (about 100 nA for the 741) flows to the base of each of the input transistors. These currents should be equal, otherwise an offset p.d. will appear between the inputs, causing errors in operation.
In Fig. 12.3, R26 is roughly equal to R23, R24 and, R25 in parallel. These are effectively in parallel since one end of each is at 0 V under stable conditions. Since the current through R26 is only 100 nA , the p.d. across it is only 0.0034 V . We can consider the input voltage to be almost 0 V , and the description above still holds good.

Fig. 12.2. The resistors of the inverting amplifier re-drawn as a potential divider. The current flowing to the $(-)$ input can be ignored as it is very small.

EXPERIMENT 12.1

Op-amp adder

The circuit in Fig. 12.3 is recognisable as an inverting amplifier, but it has two inputs, via R23 and R25. Since R23, R24 and R25 all have the same value, the gain of the amplifier is 1 . We will be using only positive inputs, so outputs will be negative and the meter connections are reversed accordingly.
R27/R28 and R29/R30 are potential dividers used for providing known input voltage:
$V_{A}=(12 \times 270 /(150+270)-6) \mathrm{V}=1.7 \mathrm{~V}$
$V_{\mathrm{B}}=(12 \times 270 /(180+270)-6) \mathrm{V}=1.2 \mathrm{~V}$ The exact voltages at A and B depend upon the actual values of the resistors; use the meter to check that they are near to the expected values. Then reconnect the meter to the output of the op-amp.
Connect flying lead X to point A. With a gain of I the output should be $-V_{\text {IN }}$, so the meter should read $1 \cdot 7 \mathrm{~V}$. Connect X to B; the meter should read $1 \cdot 2 \mathrm{~V}$. Input Y is identical to input X, so you should obtain the same pair of results by using lead Y instead and connecting it to A and B in turn.

Fig. 12.5. Potentials and currents in the adder when inputs are 1.2 V and $1 \cdot 7 \mathrm{~V}$.

Now connect lead X to A and lead Y to B. Does the meter read 2.9 V ? The op-amp acts to bring its inverting input to 0 V . The currents which are flowing through R24 and R25 (Fig. 12.5) combine and flow through R26. Thus the output voltage must be $-100000 \times 29 \times 10^{-6}=-2.9 \mathrm{~V}$, which appears on the meter as 2.9 V . The currents are added, so the output voitage is the sum of the two input voltages.

Answers to Part II

11.1. Its voltage is easily transformed.
11.2. So that current is relatively small and little power is lost from heating the cables.
11.3. OV.
11.4. +339 V .
11.5. 114V,
11.6. 6. 25 mA .
11.7. 1.11A, r.m.s.
11.8. $8 \cdot 4 \mathrm{~V}$.
11.9. $10 \cdot 6 \mathrm{~V}$.
11.10. It increases in amplitude.

EXPERIMENT 12.1

Fig. 12.4. The layout of the components on the Verobloc for the circuit in Fig. 12.3.

Make the connections needed to find the sum of $1 \cdot 2$ and $1 \cdot 2$, and read the result. Now find the sum of 1.7 and 1.7 . You could experiment with other resistors in the potential divider to get different sets of input voltages and add them. If R29 is changed to $330 \Omega, \mathrm{~V}_{\mathrm{IN}}$ is -0.6 V . Now you can find the sum of 1.7 and -0.6 , in other words, subtract 0.6 from 1.7 . Read the meter to find the answer to ($1.7-0.6$).

EXPERIMENT 12.2
 An op-amp differentiator

The mathematical operation of differentiation is a way of calculating a rate of change. In Part 9 (EE June 1982) it was explained that the current flowing into or out of a capacitor depends on the rate of change of voltage. In this circuit (Fig. 12.6) we change the voltage on one side of a capacitor. The current flowing out of the other side goes to an op-amp.

The layout for this Experiment is shown in Fig. 12.7. To begin with, the capacitor is charged to +6 V . Now press and hold S1 to discharge C9 through R23. Note the maximum value reached by the needle of the meter. It kicks up, showing that voltage is falling, but quickly returns to 0 V as the capacitor discharges and the rate of fall of $V_{\text {IN }}$ decreases to zero (see Fig. 9.5).
Release SI: the meter kicks down, as the voltage increases.
Now replace R23 by a wire link, so that C9 may be discharged more rapidly. Press and hold SI. The rate of change of $V_{I N}$ is much greater now, and the needle moves much further up the scale.

This is only a simple demonstration, but it shows how an op-amp can be used to calculate rate of change of voltage. Such a circuit could be used in real-time computing. for example, when we want to measure a rate of change of a quantity such as velocity, to calculate acceleration.

Fig. 12.7. The layout of the components on the Verobloc for the circuit in Fig. 12.6.

QUESTION TIME

12.1. Which of the quantities in this list is not an analogue quantity: velocity of a car, engine temperature, the number of wheels on the car, the amount of fuel in the tank.
12.2. If R24 in Fig. 12.1 is replaced by a $1 \cdot 2 \mathrm{M} \Omega$ resistor, what will be the gain of the circuit?
12.3. If the circuit of Fig. 12.1 has VIN $=-20 \mathrm{mV}$, what is its output?
12.4. If a circuit is set up as in Fig. 12.2, but with three inputs, and the input voltages are $1 \cdot 2 \mathrm{~V}$, 0.4 V and -1.1 V , what is the output voltage?
12.5. If in Fig. 12.6, C9 was connected to +3 V instead of +6 V , and S 1 was NOT pressed, what would be the reading on the meter?

Suppose that the counter has 8 flip-fiops in series (Part 4, EE January 1982), then the greatest binary number the counter can register is 11111111 , or 255 in decimal. The velocity may range smoothly from 0 to 100 metres per second, but the count can take only 256 distinct values in the range 0000 0000 to 11111111 . We can have a count of 134 , or one of 135 , but we can not have anything in between. Instead of having a single meter to indicate the quantity, we need several lamps or other devices, one to indicate the state of each digit.
The great advantage of representing values in digital form is that it is so much easier to deal with them at high speed with relatively simple and reliable circuits. We have already seen in Part 4, how the two kinds of binary digit are represented by $0 \mathbf{v}$ and +5 V respectively, and how gates can be built which will perform logical operations. Now we will see how these gates can be used for performing calculations.

ANALOGUE AND DIGITAL

It is implied in the previous sentence that we can represent velocity by a voltage. Both are analogue quantities in that they can vary smoothly over a given range and be represented by the position of a pointer on a scale.
The velocity of a vehicle over the range 0 to 100 metres per second can be represented in an electronic speedometer by voltages in the range 0 V to +5 V (Fig. 12.8a). Then a voltage of 3.524 V , represents a velocity of 70.48 metres per second. For each possible value in the range of velocities there is a corresponding voltage. As the velocity changes and hence the voltage changes, an op-amp differentiator could compute acceleration in metres per second per second.
We can also represent velocity as a binary digital number, as in Fig. 12.8b. The voltage is fed to a voltage-controlled oscillator, and the number of pulses per second is counted.

Fig. 12.8. Analogue and digital quantities. (a) a wholly analogue system using an analogue computer (b) analogue input converted to digital form. The digital output can be fed to a digital computer to calculate other quantities (for example, acceleration).

EXPERIMENT 12.3

A Half-Adder

The circuit in Fig. 12.9 (Verobloc layout in Fig. 12.10) includes a logic gate which we have not used before, an EXCLUSIVE-OR gate. The arrangement of the four gates within the 4070 i.c. is just the same as that of the 4011 (see Fig. 4.10), but their action is different. The exclusive-or gate has two inputs. Its output is high when either one input or the other input, (but not both), inputs is high. Table 12.1 is its truth table, and Table 12.2 reminds us of the truth table for nand gates.

The half-adder circuit has two inputs, which are normally held low by R23 and R24. When the buttons are pressed, the corresponding inputs are made high. The state of the outputs is shown by the l.e.d.s; a " 0 " is represented by the l.e.d. being off, a " 1 " by it being on.
Try the combinations of inputs listed in Table 12.3, by pressing the corresponding buttons and note the state of the outputs. Use the truth tables to work out how the circuit operates.

We think of this circuit as having two inputs, representing two numbers which are to be added together. Each number has only 1 digit, so the numbers to be added can be either 0 or 1 . If you press neither button, this is equivalent to adding $0+0$. Their sum is indicated by the state of D3 (column $Z S$ in the table). You will have found that $0+0=0,0+1=1$, and $1+0=1$.

When we sum 1 and 1 in binary arithmetic, the result is 10 ($=2$ in decimal). In

Table 12.1: EXCLUSIVE-OR.

Inputs		Output
A	B	
0	0	0
0	1	1
1	0	1
1	1	0

Table 12.2: NAND.

Inputs		Output
A^{2}	Z	
0	0	1
0	1	1
1	0	1
1	1	0

Table 3: Results of testing HalfAdder.

Inputs		Outputs	
$A(S 1)$	$B(S 1)$	ZC(D2)	ZS(D3)
0	0		
0	1		
1	0		
1	1		

Fig. 12.9. Circuit of a half-adder.

Fig. 12.10. The layout of the components on the Verobloc for the circuit in Fig. 12.9. Unused inputs are connected to 0 V or +6 V so that the i.c.s operate correctly.
effect we say " 1 plus 1 gives 0 , carry 1 ". The I is carried over into the next column on the left, and we write down the answer, 10. In this circuit the carry digit is represented by D2 (column ZC).

FULL ADDER

The half-adder can perform only the most basic of summing operations. It sums two 1 -digit numbers and produces a 1 -digit answer, with a carry digit.

When we add numbers on paper we sum one column at a time and take the carry digit over to be added in the next column to the left. Similarly, we could have several half-adders, each dealing with the corresponding digits from two multi-digit numbers, and passing the carry digit to the next half-adder to the left. This gives a fulladder, which can consist of enough halfadders to allow it to sum two numbers of any given number of digits.

EXPERIMENT 12.4

Full Adder
Fig. 12.11 shows a 2 -digit full adder. It can add a number $A^{1} A$ (where A is the least significant digit), to a number $B^{1} B$, giving the sum as a 2 -digit number $Z^{1} Z$. with a third carry digit, ZC.
It is clear from Fig. 12.11 that this circuit consists of two half-adders. Digits A and B go to the first half-adder (IC3a, IC4a and IC4b), and digits A^{1} and B^{1} go to the second (IC3b, IC4c and IC4d). The carry digit from the first half-adder is added to the sum digit of the second halfadder by the EXCLUSIVE-Or gate (IC3c), just as we add in the carry digit in ordinary arithmetic.

The suggested Verobloc layout for Expt. 12.4 is shown in Fig. 12.12.

The A^{1} and B^{1} digits are given the value " 1 " by pushing the flying leads A^{1} and B^{2} into sockets $A 20$ and $A 22$.

EXPERIMENT 12.4

Fig. 12.11. Logic diagram of a 2-digit full adder.

Fig. 12.12. The layout of the components on the Verobloc for the circuit of Fig. 12.11.

As an example of how to use the circuit, try the addition, $1+3 . A^{1} A$ is $01, B^{1} B$ is 11 (the binary equivalent of decimal 3). A^{1} is to be 0 so lead A^{1} can be left loose; \boldsymbol{B}^{1} is to be 1 , so push lead B^{1} into socket $A 22$. Then press S1 and S2 to make both A and B represent 1. You should find that D3 and D2 do not light, but D1 does. This indicates the sum 100 (equivalent to decimal 4).

Answers to Part 12

12.1. Number of wheels.
12.2. 120 times.
12.3. $+2 \cdot 4 \mathrm{~V}$.
12.4. $(1.2+0.4-1.1) \mathrm{V}=0.5 \mathrm{~V}$.
12.5. $C 9$ is charged to $+3 V$ so $V_{I N}$ is not changing. Its rate of change is zero, so $V_{\text {out }}$ is zero.

Try adding other pairs of numbers, such as $1+2,2+2,2+3$, and $3+3$.

The readout can be made much clearer by using the Minilab display module. Remove the connections to D1, D2 and D3. Now make these connections to the DISPLAY MODULE:

Digit Z-from $J 24$ to display a
Digit Z^{1}-from B22 to display b
Digit ZC-from B9 to display c
Connect display d and L inputs to the 0 V rail (strip M of the Verobloc). Switch on the module (S8), and you can now read the answers directly in decimal; the display module does the binary-to decimal decoding for you. Run through all the sixteen different sums that the adder can do, from $0+0$ to $3+3$, and check that it gives the right answers.

OTHER CALCULATIONS

Readers who are proficient in binary arithmetic will know that binary subtraction can be performed by a routine which essentially consists of addition. We can multiply two numbers together by a series of additions.

For example, to find 3×5, we add three fives together. First we add $5+5=10$, then we add a third 5 to that sum to get 15 . All we need is a full adder, and a way of counting how many times the addition has been performed. This is just what happens in a microprocessor when it has been programmed to multiply.

Division can be done by repeated subtraction. To divide 15 by 5 we subtract 5 from 15 , leaving 10 . We continue subtracting 5 from the remainder until the result is zero. Zero is reached on the third subtraction, so $(15 \div 5)=3$. This is how logic circuits are able to perform the four basic operations of arthmetic.

MICROPROCESSOR

To perform other mathematical operations we simply have to arrange for a sequence of such operations to be performed. A microprocessor, the heart of the microcomputer, can be programmed to perform such sequences and thus can be made to carry out all kinds of mathematical operation.
The circuits which are used in a computer are basically very simple ones, concerned with elementary logical operations such as NAND and NOR, and the simple addition of two binary digits. The reason that computers seem to have almost human powers is that they can be programmed to perform a sequence of tens of thousands of such simple operations in a single second without making mistakes.
It is hoped that readers who have followed this series will have gained some insight into the inner workings of many of the electrical appliances such as thermostats, radio sets, and amplifiers, which are so common in our homes today. It is also hoped that this final part of the series will have helped take some of the mystery out of the mighty microcomputer.

WITh all the rain, sleet and snow that seems to deluge our cars every year, windscreens tend to become soiled very quickly, leading to a reduction in the driver's visibility.
To overcome this problem, the driver must regularly operate the windscreen washers. This results in the driver removing his hand from the steering wheel and interrupting concentration on the road ahead.
This article describes the construction of a simple but effective device that operates the electric screen washers for a period up to about 10 seconds or so after a single press of a switch, thereby ensuring that one hand does not have to leave the steering wheel for more than a second or two allowing the driver to concentrate more on driving.
The circuit is designed for operation in cars with a negative earth but details are also provided for modifications to allow it to be fitted and used on positive earth vehicles.

CIRCUIT DESCRIPTION

The complete circuit diagram of the Screen Washer Delay is shown
in fig. I. It can be seen that only a few components are required.
When the washer switch is pressed, Cl is immediately charged up to 12 V and the relay contacts close. When SI is released, Cl slowly discharges through the coil of RLA. During this time, the relay contacts RLAl stay closed and supply power to the windscreen washer motor, resulting in a stream of water to the screen.
As Cl discharges through the relay coil, the current through the relay decreases and eventually a point is reached where this current is insufficient to operate the relay. The contacts then open resulting in the pump motor turning off. VR1 is used to set the operating time of the pump motor.

COMPONENTS

The relay used on the prototype was a low-profile p.c.b. encapsulated reed type with a 1,000 ohm $9-12 \mathrm{~V}$ coil. This is colour coded blue. If a different type of relay is used, one that has two pairs of contacts, combined wash and wipe with one-shot operation could be achieved.

Fig. 1. The complete circuit diagram of the Screen Washer Delay

BY G.L.STONEMAN

Capacitor Cl should be one with axial leads (one from each end) rated 16 V or more. The can should be completely insulated before mounting using p.v.c. tape or tubing.

CIRCUIT BOARD

Construction is straightforward with the components being mounted on a piece of $0 \cdot 1$ inch pitch stripboard measuring 13 strips by 24 holes.

Begin by drilling the two 6BA clearance holes in the board for mounting purposes. Use the 4 -way terminal block as a template for this using the two outermost holes. The board is to be secured using the terminal block fixings through the case.

COMPONENTS

R1 $100 \Omega \frac{1}{2} W$ carbon $\pm 5 \%$
C1 $1,000 \mu \mathrm{~F} 16 \mathrm{~V}$ elect. axial leads
VR1 470 ohm miniature horizontal preset
RLA encapsulated reed type relay, 1,000 ohm coil. 9 to 12 V operating voltage
FS1 5A with in-line fuseholder
Stripboard: 0.1 inch matrix, 13 strips x 24 holes; 5A screw terminal block, 4 -way; 6BA fixings: 25 mm long screw, nuts (2 off), 5 mm long spacer; plastics case. Vero 202-21025K; rubber grommet; 54 auto connecting wire.

Approx, cost
Guldance only
£3.20

Fig. 2. Layout of the components on the stripboard, breaks to be made on the underside and wiring details to the existing car electrics.

Also use the terminal block as a template for drilling the holes in the case.
Make the necessary breaks in the copper tracks using a spot-face cutter or small drill bit. These are necessary to isolate the fixings from the components soldered to the tracks.

Position and solder the components and flying leads to the board according to the layout in Fig. 2. A suitable case for this project is the General Purpose Plastic Box from Vero, size $72 \times 50 \times 25 \mathrm{~mm}$. Drill a hole of size suitable for a grommet to be fitted to carry the wires from the board to the terminal block fitted to the case top.
Fit the board and terminal block to the case and wire the flying leads to TB1. Fig. 3 shows the suggested way of mounting the board using a
lock-nut arrangement. This is necessary as the unit will be subjected to vibration in the car.

INSTALLATION

Wiring to the existing car electrics is also shown in Fig. 2. Do not use single-core wiring for this. Use 5 A wire intended for use on a car, readily available from car spares shops. Fig. 2 shows wiring for a negative earth system. For positive
earth cars, simply reverse the capacitor, Cl , and the connections to the pump motor. In either case make sure that a 5A fuse is fitted, connected to the "live whem on" terminal on the ignition switch, (or a suitable terminal in the fuse box).

The unit should be mounted in a dry place away from exhaust fumes and extreme temperatures. It could be fitted to a suitable position inside the car, on the parcel shelf perhaps using self adhesive foam pads.

NEWS

GIRL GRANTS

Only two per cent of engineering technicians in British industry are female. To encourage more girls into technician employment the Engineering Industry Training Board is offering 250 grants to firms willing to recruit girls over and above their normal planned technician intake.

Each grant is worth $£ 6,000$ and the scheme starts in September 1982.

Fibrevision

Eighteen lucky families in Milton Keynes are having a free trial of British Telecom's Fibrevision, the "wired city" of the future. Through optical cable they get five TV channels, pay-TV, Prestel and FM radio selected by hand-held infra-red control.

Sir Michael Edwardes, of British Leyland fame, is to be a part-time director of Project Mercury, private industries answer to British Telecom.

Intelpost, the Royal Mail's high-speed public facsimile transmission service, is now extended to cover the whole of Holland.

SPEAKING BOOK

Following on from TI's educational "Speak and Spell" for children, the company has developed a logical follow-on in the form of a talking book. The text has a bar-code which is scanned manually with a lightpen by the child to produce the spoken sound.

It will be available in the USA by Christmas and in the UK next year.

PLEASE TAKE NOTE
 CIRCUIT EXCHANGEINVADER LANDING GAME (August 1982)

The circuit diagram incorrectly shows the cathodes (k) of the l.e.d.s D3 to D12 connected to the positive supply rafl ($\mathrm{B} 1+$). This link must be removed, leaving these l.e.d.s connected to the negative supply via the 470 ohm resistor, R8 (as shown).

Resistance to Space

Everything electronic and mechanical goes wrong in the end. And it isn't just domestic equipment that fails. This is why satellites, which are beyond the reach of a repair engineer, must be made to the highest possible standard of reliability. But Meteosat-1, the European weather satellite which was launched in November 1977, failed almost exactly two years later. The power supply just shut down. So a replacement, Meteosat-2 had to be bullt and launched in June 1981. So what went wrong with Meteosat-1?
The answer is to be found in the April 1982 issue of the journal of the Institution of Electronic and Radio Engineers, albeit in very obscure wording. After the failure a team of aerospace experts met at the European Space Agency Research Centre in Darmstadt, West Germany, and built a breadboard replica of the circuit that had failed in space. With this circuit they then tried to simulate the fault.
To quote the IERE journal "It appeared that a digital circuit, which was designed to be triggered only in the case of overcurrent, was able to oscillate depending on the value of a resistor. Technological studies showed in fact that a degradation mode specific to this resistor caused its resistance value to be equal to this critical value".
When you translate this technical "gobbledegook" into plain words, it means that a single resistor in the power supply changed value as it aged. This tripped a safety circuit breaker like a fuse, in the satellite power supply.
Thankfully Meteosat-2 has different resistors. It also has relays which can bypass the protection devices if they go haywire.
So far Meteosat-2 has been working without problems. But when you get down to the nitty gritty, the stark truth is that a meteorological satellite which costs tens of millions of pounds to put into orbit failed because a single resistor developed a fault.

Domestic Facsimiles

There's a lot of talk these days about document transmission systems, for use
in homes and small offices. Already of course large offices have facsimile equipment which can transmit pictures over the telephone line.

This is possible, despite the small bandwidth of a phone line, because the transmitting machine scans the source picture slowly, to produce a slow or low frequency stream of information. This is sent down the phone line to control a receiver which prints out a copy picture at equally slow rate, for instance onto heat sensitive paper.

There are obvious advantages in having a facsimile machine in the home, hooked up to a telephone. Where it's impossible to describe something by spoken word, you can send pictures or graphs down the line. Where there are strings of facts and numbers to be communicated, it's safer to send them as a written page.

Car Statics

A tip on static. Modern cars have nylon or similar man-made fibre upholstery. This wears well but can generate very high voltages of static electricity when rubbed, for instance when the driver or passenger slides across a seat. Then when you get out of the car and put a key in the door to lock it, you get a very unpleasant jolt as a spark jumps across.

Car owners try all kinds of cures. Often you'll see a length of chain or conductive fibre trailing from the rear bumper. This is intended to keep the car at earth potential. But static is an unpredictable beast and you'll often still get just the same belt from an earthed car.

The reason is that your body picks up the high voltage charge as you get out of the car and separate yourself from the nylon upholstery. This leaves two oppositely

Domestic facsimile reception could eventually replace the postman. Transmission and delivery take only as long as the machines take to scan a page. You don't even have to be at home to receive the transmission. If a message comes in while you are out, it's there waiting for you on your return, like a spoken message on an answering machine.

Japanese Line

Needless to say the Japanese are already excited about domestic facsimile systems. The Japanese Post Office, Nippon Telegraph and Telephone (NTT) is hard selling Minifax. Even by the end of last year NTT had installed nearly 4,000 Minifax units in Japanese homes, for a connection fee of around $£ 12$ and a monthly rental of $£ 8$.

The NTT sales campaign was based on the idea of using Minifax instead of telephone answering machines. But now the practical problems have started to emerge.

Junk Mail

The Minifax receiver cannot distinguish between messages which the subscriber wants to receive, and those which are unwelcome. So obscene callers can send lewd pictures and text down the phone line to unsuspecting victims.
Perhaps even worse, advertising firms can deluge subscribers with unwanted material. This isn't just inconvenient to the recipient, it is also very expensive. The subscriber has to pay for all the paper used by his Minifax machine to receive whatever comes down the line.

At the moment junk mail sent through the post doesn't cost the recipient anything. You can even get your own back on anyone who sends you too much junk mail, by simply returning it to sender without a postage stamp. The originator of the junk mail then has to pay twice the normal postage and very soon strikes your name off their mailing list. But the owner of a Minifax has no choice but to pay for all junk mail.
charged objects, the car and your body or your highly charged body and an earthed car. Either way you'll get a shock when you touch the car again-unless the weather is damp so that the charge leaks away naturally, very quickly.

The trick
The trick for dry weather, which took me an infuriatingly long time to learn, is to get out of the car in a special way. As you lift off the car seat you make sure you are holding the car metal work with a wide firm grip. So as you leave the car seat any static equalises or discharges through the wide contact area of your hand.

Usually you won't feel a thing. And you won't get a shock when you touch the car door with a key because there's no longer any charge to jump across.

Alexandra Pavilion November 18-211982

Launched in response to demand for a major national'show of the highest quality, EVERYDAY ELECTRONICS, PRACTICAL ELECTRONICS and PRACTICAL WIRELESS are presenting the biggest and best event ever to be staged for the electronic hobbies enthusiast.
If your company is involved in the manufacture of electronic components, equipment, ancillary systems for
electronic projects, home computers, amateur radio, citizens band, video games, musical instruments - you should be there!
For fur ther information about exhibiting contact: The Exhibition Manager, Electronic Hobbies Fair, IPC Exhibitions Ltd., Surrey House, 1 Throwley Way, Sutton, Surrey SM1 4QQ. Tel: 01-643 8040. Extn. 4873.
Please send me detalls about exhibiting at the \qquad
Name
Position In Company
Company \qquad
Address \qquad
Tel \qquad

Send to: The Exhibitlon Manager, Electronic Hobbles Fair, IPC Exhibitions Ltd., Surrey House, 1 Throwley Way, Sutton, Surrey SM1400.

By Pat Hawker, gзva

A Better Picture?

NEW and developing technology makes interesting reading and journalists not unnaturally tend to play up the importance of each and every advance. On the other hand, a considerable number of last year's "exciting new breakthroughs" gradually sink unsung out of sight. "In five years time everybody will be ..." is an attractive cliche since the writer is usually well aware that in five years time nobody, except posisibly himself, will remember that over-confldent forecast and hold it against him.

The number of financially successful inventors (or nowadays the more usual research and development teams) is relatively small: "Pioneerin" don't pay" was a classic belief of Andrew Carnegie. But the consumer electronics industry keeps on hoping: video discs, digital audio, large-screen projection television, direct-broadcast satellites, the electronically wired city, high definition television and of course home computers are all seen as growth areas.

However, the industry does display some worries about all-digital audio that has to compete with high-quality analogue audio, a branch of the industry that is currently feeling the effects of the long industrial recession. Similarly with video discs that have arrived on the scene rather later than expected and without the record as well as playback facility of the video cassette recorders which have proved one of the few really popular new products of recent years.

Surprisingly VCRs have been in greater demand in Europe than in either the USA or Japan.

Cinema Quality

What about high-definition television (HDTV)? Japanese, American and Irish broadcasting organisations (NHK, CBS and RTE) recently co-operated in demonstrating the remarkable NHK 1125-line system with wide-screen (1-85:1 aspect ratio) and separation of the chrominance and luminance components.

All who saw the demonstration agree that the system provides a superb picture, virtually the equivalent of good cinema film. You can sit very close to the screen without being worried by the line structure. Several forms of display device, including a widescreen picture tube and highresolution projection systems, have been successfully developed.

But there are problems. The 27 MHz of basic video bandwidth cannot be accommodated in our broadcast bands, not even the European 12 GHz satellite band although CBS wants to try using two adjacent DBS channels in the United States, when that country begins directbroadcast satellite services.

To obtain real benefit it needs a large screen. We still seem some way off from a high-resolution, large-screen display system within reach of many viewers.

Solar Storms

The month of June witnessed some severe solar flares and other disturbances that had the effect of upsetting h.f. propagation conditions. These included

HDTV does offer the possibility of allvideo cinema presentations or for the dubbing of electronic video on to film. The idea of using 1000 line television to make cinema films is an old one.

In 1951-52 a British company, High Definition Films, had a black-and-white 1000 -plus line system and showed that with such a system the very high cost of film making could be reduced. But I do not think they ever overcame the problem that film-makers, particularly the production teams, much prefer the techniques used in film (short sequences, single camera, post-production editing) to those of the large multi-camera electronic studio. Paradoxically, electronic production can today closely resemble that of filmthough this then tends to put the cost of video up because of the high cost of machine-time for inten sive editing.

The old question "how good is good enough ?" may well be asked, and certainly I suspect it will be some time before many viewers in their own homes will be watching pictures of the quality shown in Killarney. Though all credit to the Japanese engineers who began work on the system in 1970 and have since made remarkable progress.

The Sting

Did they fall or were they pushed? That seems to be the question that can be resolved only in the American courts.

I refer to the astonishing "Japscam" operation in which major Japanese electronics firms admit they parted with $\$ 648,000$ for secret information that they thought would allow them to market computers plug-compatible to those of the giant IBM firm. The money was paid to a Silicon Valley consultancy firm Glenmar. But Glenmar happened to be a "front" for an FBI operation "Pengem" (Penetrating the Grey Electronics Market).

The Japanese firms claim they had no knowledge that the secret data was "stolen". Indeed, since it was material fed by IBM to the FBI for this operation it was arguably not "unlawfully" obtained by Glenmarand indeed this type of sting aperation does appear to have more than an element of "agent provocateur" about it.

The Americans are clearly worried about the continued flow of information and high-technology to East Europe, and competitive "know how"
at least one almost total "blackout" during which it is possible to spin the dials of a powerful shortwave receiver and yet hear no signals except those within groundwave distances.

It is a strange experience to find usually crowded frequencies devoid of all activity. Total blackouts occur only during day. light and often seem most severe between about 5 and 10 MHz .

More complaints

The Home Office report on the investigation by British Telecom engineers of complaints about interference to television and radio reception for 1981 shows very substantial increases both in complaints received (70,452 , up $96 \cdot 85$ per cent) and completed investigations (60,571 up 47.42 per cent). Much (but not all) of the increase is due to interference from the 27 MHz amplitude-modulated CB rigs before the issue of licences for 27 MHz f.m.

It is also clear that much of this interference was not due to spurious or harmonic radiation from the CB transmitters but reflects the vulnerability of so much domestic electronic equipment to strong local signals, in other words poor "electromagnetic compatibility" (emc). Domestic equipment is much less affected by f.m. signals but the report does further dent the original Home Office case for advocating 934 MHz for CB on the grounds that lower frequencies would cause interference due to harmonics.

The investigators found 14,359 cases where complaints were due to $C B$ rigs, considerably more than the usual worst offender-the thermostats in central heating systems etc. which accounted in 1981 for 8,318 complaints. A large proportion of the CB interference was found to be due to direct breakthrough into the audio stages of solidstate domestic equipment and a lot could be prevented if manufacturers added some bypass capacitors and ferrite-bead chokes.
also to Japan. FBI have recently been briefing American elecronics firms about techniques of industrial espionage that are far more sophisticated than the usual stories of bugging the boardroom.

In the UK, one gains the impression that inter-firm competition does include a certain amount of trickery. For example there appear to be firms that advertise non-existent jobs and then pump applicants about what their present firms are up to. But in-depth acquisition of design data is probably a good deal less commonpartly I suspect because so many British firms and engineers are firmly convinced that if an idea is "not invented here" (NIH) it must be worthless!

Perhaps the most surprising feature of the incident is the lavish amount that the Japanese firms admit paying. By any standard, $£ 350,000$ is a fantastic sum to pay for information received, whether acquired legilly or illegally, and shows the scale on which the computer industry now operates.

BY A. P. DONL.EAVY

THIS project describes the construction, of a calendar, which displays the date and a particular event which is to occur on that day, for example, a visit to the dentist or perhaps a binthday. There are nine possible events, one of which can be selected for a particular day.

The design uses two simple 64-bit ram memories to store the events for the month. These memories are easily pnogrammed using d.i.l. switches and the information for any panticular day can be changed at any time.

SYSTEM OPERATION

Fig. 1 gives a block diagram of the system illustrating the various functions. The crystal controlled clock produces one negative going pulse every 24 hours. This is fed to a deoimal counter which displays the date information and also to a binary counter.

The outputs from the binary counter are oonnected to the address inputs of the memory. Each binary number from the counter represents a day of the month. The information in the memory store for that day is then displayed in the EVENT display.

Thus there are then two counters which operate in parallel, the decimal counter for the date and the binary for the memory address. The binary counter resets itself and the decimal counter on the 32nd pulse.

CIRCUIT DESCRIPTION

The circuit is shown in Fig. 2. IC1 an EO50-16, provides the clock pulses. A brief description of the function of this i.c. may be of interest. It is made by MEM, part of a Swiss watch making concern, and is primarily intended for industrial timekeeping uses. The ohip uses $32,768 \mathrm{~Hz}$ crystal and an internal dividing circuit to provide negative going pulses at intervals of seconds, minutes, hours and days at pins 12 , 11, 10 and 7 respectively.

The crystal XTALI aots as the time base for ICl. For correct functioning there should be a 1.5 V difference between pins 16 and 1 of ICl and this is provided by D1 and R1, using the forward volt drop of the l.e.d.

The daily output pulses from pin 7, IC1, are fed via R2 to input pins

9 of IC3 and 2 of IC4a. IC2 and 3 are both cmos 40110 counter/latch and drivers for a seven segment display.

These two i.c.s count the daily pulses and display the date. When the count of IC2 goes from 9 to 0 , a pulse appears at the CARRY output, pin 10, which is connected to the clock up input of IC3. The clock Down facility of these i.c.s is not used, nor the latch and toggle facilities. Hence, pins 7, 6 and 4 are tied to earth.

The two MAN3740 displays are common cathode types with their cathodes connected to the collector of TR1 for a reason which will be explained later.

BINARY COUNTERS

IC4, is a 4520 cmos dual four-bit binary counter. The two counters are conneoted together to form an eightbit binary counter and this is done by conneoting the Q4 output (most significant bit) of one counter, pin 6, to the enable input of the other counter. The enable and clock inputs of this i.c. can be reversed causing it to increment on a different polarity pulse transition.

Since one count is required for each day of the month, a maximum of 31 counts are required, so that the counter is arringed to reset itself at a count of 32 . This represents a binary output of 00100000 , the 1 being on pin 12. The reset inputs of IC4 are 7, 15, and for the decimal counters, IC2, IC3 it is pin 5.

IC7 and IC6 are two cmos 64-bit random access memories (RAM) with a 16×4 arrangement. That is 16 locations with a 4 -bit word. The two memories together provide 32 locations, of which a maximum of 31 will be used for the days of the month.

The information stored in a location is essentially a number from 0 to 9 written in b.c.d. (binary coded decimal). The outputs from the memories are from pins $5,7,9,11$, and are fed to the imputs of IC8, a cmos b.c.d. to decimal decoder, the 74C42. Thus the four-bit word written in the selected memory location is displayed direotly as a

Fig. 1. Block diagram of the Monthly Planner.
number 0 to 9 by the l.e.d.'s conneoted to the outputs of IC8. The outputs of IC8 are normally high, and go low when seleoted.

As previously stated, each memory has 16 locations numbered from $!0000$ to 1111. So for example, on the third day of the month the binary
counter will be at 0010 since the first location is at zero (0000) and not at 1 (0001). The corresponding address (location) inputs (pins 13, 14,15 and 1) of the two memories are connected to each other, as are the data inputs (pins $4,6,10$ and 12) and outputs (5, 7, 9 and 11).

Memory enable, me, inputs are arranged so that if IC6, for example, is at logic 1 , then IC7 is at logic zero and vice versa. This is achieved with the arrangement of the four NAND gates of IC5. When the me pin is at 1, the outputs of the i.c. have a high impedence; and give out no informa-

Fig. 2. Monthly Planner circuit diagram. Note that $S X$ need not be an actual switch as this is only required to ground pin 5 of IC1 at midnight

tion (having tri-state or three-state outputs). Also the inputs will not accept new information. Hence the i.c. is ineffective in the circuit.

Between the counts of 0 and 15, pin 11 of IC4 is at 0, so IC6 we is at 0 and IC7 ME is at 1. Thus IC6 is the active memory. Between the counts

Fig. 3. Power supply circuit. Note that some 9 V adaptors drop below 9 V under load so an extra diode in series with D13 may be necessary to prevent B1 discharging.
on the first day of the month. S3 to S6 input data to the memory.

of 16 and 31 , pin II of IC4 is at 1 , thus IC6 ME is at 1 and the IC7 ME is alt 0 . IC7 is now the active memory.

To read information from the memory, the write enable we input must be at 1. A read cycle is accomplished by causing a 1 to 0 transition of the me pin while the we remains high. This happens as follows. The output of IC1 is a negative pulse of about $32 \mu \mathrm{~s}$. The falling edge of this pulse increments the binary counter (IC4), thus establishing the address. This pulse is also applied to pins 8 and 1 of IC5 via D2, causing the ME pin of whichever memory i.c. is active to go high.
The rising edge of the time pulse will then cause the me of the active chip to go low again, thus fulfilling the requirements for the information in the memory to be transferred to the outputs. This sequence of events happens automatically as the timing pulses arrive from IC1, since the WE (pin 3) are held high by R5, as S2 is normally open.

MEMORY INPUT

To write information into the chip the we input must be low, and the me input must see a 1 to 0 transition. To do this, when S1 is pressed the counters will increment one count every second until the required date is reached. On pressing S2, the we input goes low, and the ME input also sees a 1 to 0 transition from the negative pulse transmitted via C2 and R5. D2 is included to stop this WRITE pulse from being transmitted to the inputs of IC3 and IC4 and incrementing the counters.

On receiving this 1 to 0 transition, the data at the inputs of the i.c. is written into the memory at the selected location. The data inputs are pins $4,6,10$ and 12 , and in this design represent the range from the LSB (least significant bit) to the MSB (most significant-bit) in that order. Pins 4, 6, 10 and 12 are tied to V_{DD} by R9 R8 R7 and R6 respectively.

By switching in any of S3 to S6, the information can be set. For example, if S3 and S4 are closed, the information presented to the data
inputs is 0011 (3). However, the information at the outputs is the complement of the inputs. So if 0011 is set at the input, the outputs would give 1100 .

This difficulty is easily overcome merely by relabelling the switch positions 1 instead of 0 , and 0 instead of 1. Having set the switches to the desired information, pressing S2 will write the information into the memory.

POWER SUPPLY

Almost all the current in the circuit is consumed by the displays and the l.e.d.s. The unit is therefore intended to be powered by a 9 v callculator adaptor, which allows a permanent display of the date and event. However ICI is only specified to a maximum of $5 \cdot 5 \mathrm{~V}$. So a 5 V regulator, IC9, is used to provide the $V_{D D}$ voltage.

However, should for any reason the power supply be cut off, then all the stored information will be lost. To avoid this, a back up battery is used. The circuit in Fig. 3 shows the
arrangement. When the power is coming from the adaptor and is cut, the base current supply to TR1, and allso the supply to D3 to D12, is cut. Hence, the displays are disconnected, but the back up battery supplies current to the i.c.s and the information is retained.

The current supply in this case is about 2 mA so a PP3 battery can supply enough current for many hours. Diodes D13 and D14 stop one supply feeding current into another.

Fig. 4. Optional battery only power supply. The display is enabled with $\$ 7$.

Resistors

R1, $218 \mathrm{k} \Omega$ (2 off)	R4-9 $100 \mathrm{k} \Omega$ (6 off)
R3 $10 \mathrm{k} \Omega$	R10 $1 \mathrm{k} \Omega$
All + W carbon $\pm 5 \%$	

Capacitors

$4 \cdot 7 \mathrm{pF}$ sub-miniature ceramic plate $0 \cdot 0047 \mu \mathrm{~F}$ polyester, axial lead $47 \mu \mathrm{~F} 16 \mathrm{~V}$ tantalum bead

Semiconductors

Miscellaneous
S1,2 Push-to-make miniature keyboard switch (2 off) S3-6 4-s.p.s.t. 8-pin d.i.l. switch
S7* Push-to-make miniature push button
SK1 P.C.B. mounting power socket to suit plug on 9 V mains adaptor B1 $9 V$ PP3 battery
B2.4* $\quad 1.5 \mathrm{~V}$ size AA batteries (3 off)
0.1 in stripboard, 62 holes by 39 strips; single sided copper clad Paxolin or s.r.b.p. sheet, $175 \times 125 \mathrm{~mm}$ (front piece); wooden picture frame, internal dimensions $175 \times 125 \mathrm{~mm}$; red plastic display filter, $65 \times 35 \mathrm{~mm}$; 9 V mains adaptor; PP3 battery clip; 3 mm l.e.d. mounting clip (9 off); 16 pin d.i.I. holder (7 off); 14 pin d.i.l. holder (3 off); $1 / 0.6 \mathrm{~mm}$ sleeved wire for board links; $7 / 0.2 \mathrm{~mm}$ wire for interconnections; 6BA or M2.5 spacers, 13 mm long (4 off); 6BA or M2. 5 screws, 6 mm long (8 off); 6BA or M2.5 nuts (3 off); 6BA or M2.5 nylon screw, 6 mm long.

* Components marked thus are only required for battery only operation.

If the 9 V adaptor voltage drops below 9 V on load, a 1N4001 diode must be added in series with D13, effectively reducing the voltage at which the back-up battery is brought in.

Therefore, the output of the adaptor must be measured, on load, to determine if this diode is required.
For flexibility in positioning, the supply circuit shown in Fig. 4 can be used. Using 31.5 V cells, the display will only light when the additional switch, S7, is pressed. With the low consumption the battery life should be over a year.

COMPONENTS

Dl may be any red l.e.d. but a 3 mm is advised for size consideration. Use good quality l.e.d.s for D8 to D11 since the current drive from the output of IC8 is not high. Any colour or size may be chosen, the prototype used a 3 mm with a mixture of colours. D12 should be a green l.e.d. since the circuit is employing the forward voltage drop to prevent the diodes from passing current into the outputs, which are off.
The seven segment displays may be any one of the following: TIL313, DL304, HP5082 as they are pin for pin equivalents of the MAN3740.
The two 40114 memories given in the components list are pin for pin equivalents for 74 C 89 i.c.s. It would be possible to use a 74LS42 (TTL) for IC8, but the overall current would increase by about 8 mA which would slightly reduce the back-up battery life in the situation where the mains adaptor is frequenitly disconnected.

Switches S1 and S2 are push-tomake circuit board mounted types, designed for making up keyboards.

CIRCUIT BOARD

All components except for D3 to D11 are mounted on a piece of 0.1 inch matrix stripboard, 62 holes x 39 strips. Fig. 5 shows the layout. This diagram also shows the breaks made in the copper tracks.

Use of i.c. sockets is recommended since the removal of i.c.s is often necessary when debugging circuits.

There are many wiring connections to be made, and many breaks to be made in the tracks, so some constructional errors may occur, so take care.

The 8 -pin d.i.l. switch is mounted on the copper side of the board, using small pieces of wire soldered to the tracks and soldered to the di.i.l tags on the other side of the board. Dis: carded leads are useful for this.

Solder the capacitors, transistors, and diodes as close to the board as possible so that they do not stand proud of the mounted ICs. Use veropins for making the connections from the board to l.e.d.s D3 to D11.

MONTILIV PLANINER

Fig. 5. Stripboard component layout. Note that the 8-pin d.i.f. switch (S 3 to S 6) is mounted on the copper track side of the board The underside view shows the positions of the track breaks but omits the dii.l. switch for clarity.

FRAME

Owing to the nature of the project, the unit should ideally be housed in something more attractive than the usuad plastic box. To this end, the prototype was housed in a commer. cially available photograph frame of internal dimensions $125 \times 175 \mathrm{~mm}$, the glass is replaced by a piece of p.c.b. of the same size. Use metal polish to polish the copper to a bright finish. Copper board with a paxolin base, besides being much cheaper, is also better than glass fibre for this purpose, since the woven texture of glass fibre tends to come through the copper.

Drill the holes for the diodes D3 to D11, the holes for S1 and S2, and cut out a reotangle $43 \times 25 \mathrm{~mm}$ for the display window. Repolish the board if necessary. Also drill the pillar support holes using the p.c.b. as a template and finally spray a clear varnish on the board to stop the copper from tarnishing. The use of copper board as a frontpiece can be made to look very effective.

On the prototype model, two white panels of self-adhesive p.v.c. sheet were stuck in the position shown in the accompanying photographs. On this, the functions of each event l.e.d. can be wrilten in felt pen (although we used Letnaset on the model) and wiped off should the event change.

Ancther possibility, if the picture frame system is used, is to use a card over the frontpiece with suitable cutouts for the displays and l.e.d.s, and to replace this every month with a fresh set of events wristen in.
The strip board is held to the frontpiece using four 0.5 in long 6BA spacers. The switches S1 and S2 should just protrude through the holes drilled in the frontpiece. Use a red plastic filter to cover the window for the display The l.e.d.s are held in place on the frontpiece using bezel clips.

The back up battery can be tied to the stripboard using wire threaded through the holes.

SETTING UP

No calibration is required since the timing depends on the crystal freauency and any minor trimming of this crystal would be beyond the means of most constructors.
So assuming the unit is debugged and working, the first thing to be done is to synchronise the binary and decimal counters. Do this by pressing S1 (SET) and waiting until the date display resets to 1 . This may take a long time depending on the random number in the binary counter when first switched on. A quicker way is to momentarily short pin 5 of IC2 or IC3 to $V_{\text {DD }}$. The display will zero.

Rear view of the framed Monthly Planner showing the position of d.i.I. switches S3 to S6. An additional board was fixed to the rear of the prototype unit to show the codes for each event (given here as a decimal number). Note the use of the nylon screw in hole $/ / 26$.

Note the date, when automatically reset by the binary counter, will. reset itself to 01 and not 00 , for the following reason. The binary counter increments on the leading edge of the pulse so on the 32 nd pulse bath counters are reset by the leading edge, a process which takes less than $1 \mu \mathrm{~s}$, and $32 \mu \mathrm{~s}$ later the trailing edge of the timing pulse increments the date (decimal) counter. The difference in count will always be the same and therefore is of no consequence for the working of the unit.

Table 1. Event input codes. Note switch open $=0$ and switch closed $=1$.

EVENT		BINARY CODE			
		S6	S5	S4	S3
No event		0	0	0	0
Doctor	(D3)	0	0	0	1
Dentist	(D4)	0	0	1	0
Bridge	(D5)	0	0	1	1
Birthday	(D6)	0	1	0	0
Start holiday	(D7)	0	1	0	1
End holiday	(D8)	0	1	1	0
Cinema	(D9)	0	1	1	1
Aux.2	(D10)	1	0	0	0
Aux.3	(D11)	1	0	0	1

The unit can now be programmed. When the programming switches S3 to S6 are open then the information at the programming inputs are 1111, and 0000 when all these switches are closed. However, because the information of the outpuit is the comple ment of that of the input, it will be necessary to label the open position as an " 0 " and closed position as " 1 " S3, S4, S5 and S6 represent the LSB to the MSB respectively.
To aid the setting up procedure, a small plate was screwed to the back of the stripboard and labelled with the event codes and the " 1 " and "0" positions of switches S3 to S6.

EVENT INPUT

To write the events for each day of the month into the memory, the procedure is as follows:

Suppose that, for example, the bridge club meet on the first day of the month, then ensure that the date reads 01 and set up the code for bridge on switches S3 to S6. From Table 1, that code is 0011 (switches S3 and S4 closed and S5 and S6 open) and when set, press S2 (Write) and the information is put into the memory.

Proceed to day 02 by pressing S1 (SET) and enter the code for the event planned for this day. If nothing is planned, the memory must be told by writing in the no event code, 0000 (all switches open) and pressing S2 (wRite).

Continue through all the days in the month, inserting the relevant event code for each with S3 to S6.
Remember that no event must be entered on all days on which nothing is scheduled. It is not necessary to use all nine event codes and events can be duplicated on different days should, for example, the dentist need be visited twice in the same month.
To make the timer send out its daily pulse at midnight to change the date, it will be necessary to stay up once until midnight and momentarily short pin 5 of IC1 to 0 V ("sx" on fig. 2). This resets all the internal connters. This operation will need to be performed again if the power from both the supplies it cut.
The information written into the memory can be read non destructively any amount of times merely by pressing S1 until the required date is reached. Finally, when the monthly information has been written, the correct date is set with S1.

zueryan

For use with these Deslghicer

 -1. 1 ISSUE ON SALE
 FRIDAY, SEPT 17

For Beginners - New 6 Part Series

An easy treatment of the basic theory from d.c. circuits through to analogue and digital systems. Illustrated with simple experiments using standard components connected up with 2 -amp terminal blocks. The solderless technique employed makes this the ideal series for newcomers.

A motherboard for the ZX81 Computer containing $4 K$ bytes of static RAM. Plugs into the back of the $Z \times 81$ to provide unique address decoding signals for a further eleven 1 K blocks, and these with buffered address and control lines and data bus are available at three parallel single-sided sockets for user defined expansion. Equipped with RESET and assisted +5 V supply.

-PTIGAL TACHOMETER GARLIGMTS ALERT SIMPLE SHORT WAME RADIO

Gonsumer Electronics Show

N America, interest in hi fi and audio is still declining; the video cassette market is stabilising; videodiscs are not selling as well as expected and the video games market is booming so fast it could soon produce a glut of outmoded games cartridges on the market and commercial casualties among firms selling them. These are the clear signs which emerge from the 1982 Summer Consumer Electronics Show, held in Chicago, in June.

CES is now acknowledged as the largest, and most important, exhibition of its kind in the world. It is also the most influential. Around 70,000 wholesalers, retailers and journalists from all round the world congregate for four days to look at new products from over a thousand companies. What they see, think, order for their shops and write about in print can have a decisive effect on what the public buys over the next year.

HI-FI AND COMPUTERS

In America, as in Europe, the audio and hi fi trade is suffering badly both from the recession and widespread interest in video. The large manufacturers hope that things will pick
up again when the Compact digital audio disc is launched. But lack of interest amongst American record companies has put back the digital disc launch until at least this time next year, or six months after the launch scheduled for Europe and Japan.

Home computer sales are clearly on the rise and it was good to see Britain's own Sinclair system attracting much attention on the Timex stand. It sells in the USA for just under one hundred dollars.

VIDEO MARKET

The video cassette market in America has now stabilised, with a split of around two-to-one between VHS and Beta formats. Plans to launch the European V2000 format have now been shelved.

JVC has now shown a miniature VHS portable recorder, called VHS.C. This is smaller and lighter than any other portable recorder using half inch tape, because it uses a scaled down version of the standard VHS cassette. The tape can be replayed either in the portable, or in a standard domestic VHS recorder using a dummy VHS cassette in which the mini cassette is temporarily housed.

Stereo VHS recorders, with Dolby B noise reduction, are now available, along with pre-recorded stereo VHS software. So far there has not been a stereo Beta machine on sale in the USA, although they are available in Japan. Sound quality is always a problem with stereo on a domestic video format, because the slow running tape has only a narrow audio track, and splitting it in half for stereo degrades the already poor signal-to-noise ratio.

Sony has now developed a system for encoding stereo sound inside the video waveform. Although the company refuses to explain how this is done, it seems that the waveform coding is in addition to a conventional linear track in mono or stereo. This preserves compatibility with existing Beta machines and tapes.

LASERS AND DISCS

Laservision players and videodiscs have been on sale in the USA since December 1978 and the cheaper RCA Selectavision disc system has been sold since March 1981. Both formats were on show at Chicago, with much puff and publicity. But the retail sales of both formats have been disappointing. This has caused JVC and

Thorn-EMI to pull the plug on VHD, the third videodisc system which was scheduled for launch around the world this summer. No firm date for a VHD launch has been set.

The US trade breathed an audible sigh of relief at the delay on VHD because shop keepers already have difficulty in explaining to customers the difference between the two incompatible disc formats. They do not welcome the added confusion of a third, and again, incompatible format.

VIDEO GAMES

The video games market is booming, largely because several companies are now making games carttridges for consoles sold by other companies. It is, for instance, now possible to buy a games cartridge
for an Atari video game from nearly a dozen different software companies.

Even Mattel, makers of the rival Intellivision system, now offer Atari cartridges. But to confuse the issue even further Atari has now announced the launch of another games console which is incompatible with the Atari units and cartridges already on the market.

As most of the games available are either banal, boring or pander to our baser violent instincts, the video games explosion is not altogether welcome. Also, because of competition, ever-more complex games appear every day. So some manufacturers may soon go out of business and suffer the same fate as the video graphic blips which their game players must strive to eliminate.

TELEVISION

The USA has not yet agreed on a standard for the transmission of stereo sound with TV. Three different multiplex systems have been proposed, none the same as that being recommended as the European standard. There is also no agreement on a.m. stereo, with six competitive systems trying to win support on the open marketplace. There is no agreement yet on direct broadcasting by satellite. But many video buffs now own three metre wide dishes which enable them to tap into the satellite links between cable stations. In this way they can watch pay TV programmes free of charge-at least until the stations start electronic scrambling.

LETTERS

Everyone needs a Woolies

Dear Mr. Fox,
I am writing to you to defend the vicious attack you made on Woolworth's employees in your article for Your Entertainment on MFP (Music for Pleasure) records in the July issue of Everyday Electronics.
First of all I don't understand what you mean by "shops like Woolworths". Firstly you should have written "shops like Woolworth", and secondly there is no other shop like Woolworth. The reason for this is that Woolworth is a general store stocking a lot of different items, and not specialising in any fields whatsoever.
When you say "shops like Woolworths" | suppose you mean shops such as Boots and Tesco whose names are mentioned at the end of many adveits with Woolworth in the "and other leading stores" category. Well these stores specialise in toiletries and food respectively. Other "general stores" are usually very big, for example, Bentalls, Chiesmans, like their pricesi So you see there is no other shop like Woolworth. Anyway I digress.
As for the "assistants often know next to nothing about what's available", firstly it's very difficult to keep track of what
albums are sold as the stock is very large, and there is usually more than one helper in the record department, so that one rarely knows what has and has not been sold, and thus what is and what is not in stock. After all the assistants are only human and not computers as most customers would want them to be.
Secondly, with regard to actual MFP records, do you know how difficult it is to stock them? Obviously not if what you write is anything to go by. I can tell you that Woolworth only sells them as a service and not as a profit making item. This must be true for all the stores that sell MFP records. This therefore is bound to get the albums neglected and put to the back "out of the way". Also the suppliers of these albums don't go out of their way to help the retailers. All they do is give the retailer an MFP turnstile rack and a batch of records to fill it up with and that's it.
Only when one particular album has sold an obvious greater amount than the others can a retailer order a set of that particular record. That is a very rare occurrence and more often than not what happens is that when the stocks in the MFP rack have become low, the suppliers are informed and another batch of assorted records is sent up. You'd be very lucky to get one of the more popular albums!

So you see it's very difficult for a retailer to keep track of what's in the rack. This explains both the knowing "next to nothing" and why other specialist shops do not stock MFP records: they're just too much bother!
have worked on and off for Woolworth for two and a half years now, and am fed up with people "slanging them off" at every opportunity. It is a good general store with the items sold being of good quality. Any item which is not will automatically be exchanged since the aftersales service is on the whole very efficient. Most important is the fact that the prices are kept as low as possible.
I hope you publish this letter so that the readers of your article will be able to hear both sides of the story. It's rotten to take the poor service of the suppliers of MFP records out on Woolworth, it's not Woolworth's faultI

Martin Gosling,
Chessington,
Surrey.
I am quite happy for the editor to publish your letter in its entirety.

I am sorry you think I made a vicious attack on Woolworth. I can only say I have watched what I regard to be the decline of British Woolworth with disappointment.

Two stores near my home in North London have recently closed and I can't say I am surprised. Prices were high compared to other shops. The range of goods was very poor.
In America the story is very different. Frankly I would not be surprised if Woolworth finally go out of business in Britain, although I would be sorry because we need a general store of this type.
I note your comments on MFP with interest.

Barry Fox.

TOP MARKS FOR SCHOOLS

Minister applauds budding engineers at SEDAC prizegiving ceremony

The first Schools Electronic Design Award Competition (SEDAC), sponsored jointly by Mullard Ltd, and Everyday Electronics, reached a splendid and exciting climax on June 29 when the final judging and presentation of prizes took place in Mullard House, London.

The fmalists- 12 in all-came from schools all over the country. From Durham, Middlesex, Dorset, Surrey, Leicester, West Midlands, Lanoashire, Cornwall and Yorkshire. It said something for the determination of the contestants that, in spite of a crippling rail strike, there was a 100 per cent turn out.
Opening the prizegiving ceremony, Ivor Cohen, managing director of Mullard Ltd., stressed the importance of technology to the future of the country and praised the enthusiasm and hard work that schools had obviously put into their projects.
Pat Barnes, managing director of the Youth \& Practical Group, IPC Magazines Ltd., endorsing Mr. Cohen's remarks, said: "If SEDAC has helped concentrate attention on the importance of encouraging an interest in technology among our youngsters-all of whom are growing up in an age of increasing technological development-the efforts of all those concerned, with organising the competition have been amply rewarded."
The prizewinners, who received their awards from William Shelton, MP, Parliamentary Under-Secretary of State, Department of Education \& Science, were as follows:
1st: Peel Sixth Form College, Bury, Lancs. £150 The SEDAC Trophy and components to the value of $£ 100$.
2nd: Burscough Priory High School, Burscough, Lancs. $£ 100$ and components to the value of $£ 100$.
3rd: Mellow Lane Comprehensive School, Hayes, Middlesex. $£ 50$ and components to the value of $£ 100$.
The runners-up were Belmont Comprehensive School, Durham; Queen Elizabeth's School, Wimborne, Dorset; St. Peter's \& Merrow Grange Comprehensive School, Guildford, Surrey; Lutterworth Grammar School, Leics; High Park School, Stourbridge, W. Midlands; Richard Lander School, Truro, Cornwall; Aireborough Grammar School, Leeds, Yorks; Tettenhall' College, Wolverhampton, W. Midlands; and Hollins High School, Accrington, Lancs. All received components to the value of $£ 50$.

The proud winners of the 1982 SEDAC Trophy, Anthony Hudson and Martin Lysejko of Peel Sixth Form College show off the trophy to the Minister William Shelton, MP, fvor Cohen of Mullard and Pat Barnes of IPC Magazines Ltd.
The top prizewinners' project was a ZX81 Microcomputer Expansion System. Burscough Priory High School's entry was an Oscilloscope Companion. And a Velocity Measurer won third prize for Mellow Lane Comprehensive.

In his address the Minister congratulated all concerned and said he was impressed especially by the practical aspect of the competition-for in addition to preparing a written paper the contestants had to produce a working model for final assessment. Mr Shelton emphasised the government concern that involvement in technical subjects such as electronics be fully encouraged amongst our school children.
Registering some surprise that there were no girls amongst the finalists, Mr. Shelton hoped the fair sex would demonstrate their interest in technology by coming forth in strength in next year's competition.
Winding up the ceremony, Mr aBrnes made the announcement that the competition would be run again in 1983.

SEDAC TROPHY

A specially designed trophy was awarded to the winner of the Schools Electronic Design Award Competition.
As a fitting symbol of contemporary electronics this trophy is in the form of a high grade glass fibre printed circuit board. The copper tracks are gold plated.
The p.c.b. is mounted on a polished wooden base and this carries a small brass plate engraved with the name of the school and title of the winning project.

> JUDGING PANEL
> Scrutiny of Papers (Stage 1) and evaluation of working models (Stage 2) was performed by a panel of four judges representing the two sponsoring parties. The panel members were:

> Gerald Crowther Head of Application Laboratory, Mullard Limited
> John Warren Technical Manager, Consumer Elec-
> Fred Bennett tronics Division, Mullard Ltd. Editor, EvERYDAY ELECTRONICS.
> Assistant Editor, EVERYDAY ElecTRONICS.
> The judges' task was difficult and exacting. After long and careful deliberation-with the objects of the Competition always in mind-the declared results were agreed unanimously.
> The judges wish to record their admiration for the generally high standard throughout, both in the presentation of written work and in the practical realisation of the designs. All students participating deserve the highest commendation. Those who, in several instances, worked entirely alone merit additional praise. All did honour to their schools, a fact that will surely be recognised by these establishments. Their efforts provide a modei for members of other schools to emulate in future contests.

(far left) Simon Rainey of Eurscough High describes the merits of his Oscilloscope Companion project to the Minister. This won Simon second prize in the competition.
(centre) Balijinder Dhanda, Michael Finnemore and Michael Stallery, from Mellow Lane Comprehensive, look anxiously as judges inspect their Velocity Measurer. This project was eventually placed third.
(below) Putting the Minister to the test on his Digital Readout Ergometer is Mark Vaughan of Richard Lander School.

A VISITOR'S VIEW

On June 29, the 12 finalists for the 1982. Schools Electronic Design Award Compe. tition all gathered together at Mullard House in London to meet the judges and the press to demonstrate and discuss the end result of the past few months labours. As the final decision as to who was the overall winner of SEDAC 82 was not to be made until the judging panel had seen all the finalists involved and chatted to the pupils, the atmosphere was one of tense excitement.

And indeed it was a close run event, for the quality of the entries was very high.

It is interesting to note that out of the 12 finalists, no fewer than five had utilised computers in their entries (four of these the ubiquitous Sinclair ZX81!) thus illustrating the mating of these two branches of technology-electronics and computing.

But perhaps the most important factor to emerge was the sheer usefulness of all the entries; all had been designed with a specific application in mind, Ranging from the Bee Hive Temperature Meter from Aireborough Grammar School which evolved from a liaison between the school's beekeeping club and electronics club, to the sophisticated ZX81 Microcomputer Expansion System from Peel Sixthform College.

This was the eventual winner and consists of an ingenious system to extend the application of the ZX81 to enable it to be used as a teaching aid. By means of a motherboard plugged into the back of the Sinclair unit, additional daughterboards are incorporated into the system, each with a specific function or task. The example on show at the judging ceremony analysed the classic physics experiment of determining the acceleration due to gravity and displayed the result graphically on the screen.

This project was developed by two sixthformers, in what proved to be a most successful team of one hardware man and one software man.
The second prize, a solo
effort from Burscough High School, went to the Oscilloscope Companion. This equipment will also perform a very valuable function within the school, for it is, as its name suggests, a unit to expand the facilities avail. able on a simple single beam oscilloscope.

The third prize winner also has its application rooted in the school's physics laboratory, for Mellow Lane Camprehensive School's Velocity Measurer supersedes the old "ticker tape timer" in performing velocity measurements even on objects as diverse as parachutes and rolling footballs!

However, it was not necessary to be at "the state of the art" to be considered as a winner. Provided that the idea was good and the execution of that idea practical, the entries did not have to be too sophisticated circuitwise. This was illustrated by some of the runners up and in particular St Peters and Merrow Grange Comprehensive School with their Logic Demonstrator, a console type unit to teach the principles of Boolean algebra.

Although the complete list of all the other runners up is too long to describe in detail, another one does deserve a mention as it proved quite popular with those attending the prizegiving, and that is The Elec. tronic Pressure Gauge from The Hollins County High School.

This project measures lung pressure and displays the result on a graph of pressure vs. time and also calculates and records maximum level attained. Quite entertaining when invited to blow into a piece of plastic pipe and have the results appear before your eyes!

The overall impression was one of competence and confi. dence amongst the pupils in an event thoroughly enjoyed by all those who took part. Which brings us back to the purpose of SEDAC; if these are the electronics engineers of tomorrow then the future certainly looks good. Congratulations to students and staff alike.

Bee Hive Temperature Meter

THE beekeeping club at the school wanted to follow movement of the bee cluster in a hive during the winter months, and analyse the movement with respect to external factors and conditions. It was decided to use a temperature sensor to determine the cluster position from the body heat of the bees. The information was gathered from ten sensors at known positions in the hive.
A digital voltmeter was used in the project in a novel way to allow the display reading to be interpreted directly as degrees Celsius.
Ten precision temperature sensors are used to monitor the temperature at the top of each frame in the hive. These sensors operate in a similar manner to a Zener diode, and have a breakdown

Aireborough Grammar
Mr. B. Thorp (teacher), Andrew Smith (12),
Jonathan Green (12), David Allewell (13),
Andrew Green (13)

Computer Control Interface

ACOMPUTER interface unit allows a computer access to the "real world". This project has been designed to provide such access for the very popular ZX81 Personal Computer. It plugs into the $\mathrm{ZX81}$ bus and is constructed to show how software may be used to control external devices, in this case two filament lamps. The lamps may be replaced by other electronic devices such as relays, thyristors, motors, electric valves to control complex circuitry and machinery.
The control information reaches the various extrnal devices along the computer data bus (8 -bits wide) and is routed to the appropriate device by decoding the information appearing on the address lines at this time.

voltage directly proportional to the absolute temperature (${ }^{\circ} \mathrm{K}$). The output voltage obeys a linear relationship with temperature and is equal to $10 \mathrm{mV} /{ }^{\circ} \mathrm{K}$. On board calibration circuitry provides an accuracy of $1{ }^{\circ} \mathrm{K}$.
\longrightarrow

Oscilloscope Companion

Belmont Comprehensive
Mr. S. Duncan (teacher), David Morton (14), David Williamson (14)

Burscough Priory High

THIS inexpensive unit will convert a single beam 'scope with ext. sync. input to a dual beam version, expand the Y-amp volts/cm in both directions, allow current measurements to be taken from the screen display, display peak levels for easy reading from screen and has a time base delay. A precision rectifier/buffer is incorporated to allow a voltmeter to be connected for more accurate measurements of voltage and current.
The unit plugs directly into the oscilloscope Y-amp input set to $1 \mathrm{~V} / \mathrm{cm}$ and signals to be investigated fed to left and/or right channel inputs on the unit. By means of a number of switches, the input signals may be routed through to any of the Companion's function blocks.
Input impedance is in the order of

10,000 megohms which makes special measurements possible such as those associated with bio-activity and pH values. Input voltages from 1 mV to 50 V in 15 ranges may be measured.
The Beam Splitter facility permits two waveforms to be displayed simul-
taneously, one above the other readily allowing frequency and phase shift comparisons to be made. Either waveform may be used for synchronisation. The Peak Voltage Detector detects the highest positive input voltage and remembers it for about 10 seconds.

Mr. A. J. Merrett (teacher), David Wilkes (16), Andrew Williams (16)

This project was devised to overcome the inaccuracies associated with the ticker tape method of determining the velocity and equations of motion of a moving object using a ZX81 computer for data processing.

Velocity measurement experiments conducted in the school laboratory usually employ a "standard" threewheel trolley and this has been retained in this project with no external connections. Ultrasonic soundwaves are used to transmit the data obtained on the moving trolley to an u / s receiver on the mains unit. This data is fed to the ZX81, processed and returned to the main unit display circuitry after completion of the experimental "run"

One of the trolley wheels is drilled with two small holes diametrically opposite. These act as windows to open or close an optical link, an l.e.d. light

source on one side of the wheel and a light activated switch on the other. As the trolley moves, the light activated switch operates and turns the ultrasonic oscillator on. The on-to-off rate of the ultrasonic transmitter is therefore proportional to the velocity of the trolley The transmitter on and off periods are

converted to logic 1 's and 0's respectively. The software instructs the 2X81 to periodically read in this data to compute and store the trolley velocity. At the end of the "run" after a set number of readings, the ZX 81 outputs the calculated velocity to the display and TV screen in chronological order.

Electronic Pressure Gauge

This project was designed and developed for use in the school science laboratories where lung pressure was required to be measured. It replaces the previous difficult to control water manometer method. It also has other applications in the laboratory where pressure measurements are to be taken, and with suitable software could be employed as a fluid flowmeter with results displayed on a TV screen.

A ZX8I Microcomputer is interfaced to the Gauge hardware which reads in data processed by the on-board circuitry to plot a graph of pressure vs time, and calculate and display the maximum pressure level attained

The pressure produced by a person blowing down the plastic tube feeding the flowmeter sensor causes a paddle in the sensor to rotate at a speed pro-

Hollins County High
portional to the applied pressure. Internal Hall effect switches in the sensor produce a train of pulses at its output. The pulse rate is thus proportional to the applied pressure.
These pulses are fed to a synchroniser circuit and then reach an eight-bit

Mr. J. S. Hagan (teacher), Darryl Grimshaw (16), Michael Howarth (16)

counter. The software previously loaded into the ZX81 from cassette tape periodically reads the data in the counters, and then causes them to be reset for the next count sample while using the read information to plot the graph and compute maximum value.

Digital Results Storage System
Lutterworth Grammar
Mr. H. Rigby (teacher), Richard Moulds (18)

THIS system has been designed to automatically collect and store the results obtained from experiments, into a solid state memory device. After the experiment, the memory may be repeatedly scanned and the retrieved data processed to make it suitable for inputting to an oscilloscope or X-Y plotter, to obtain a quick graphical representation of the results. It is suited to those experiments where the results are in the form of a varying frequency (a train of pulses) or can be converted to this form

The system can therefore condense the results of long duration experi-ments-possibly taking days to complete and display them over any time period (a few seconds for example) which is determined by the memory scanning rate. Also, very short duration experiments, say in the order of a few hundreths of a second, may be expanded by suitable setting of the memory scan rate control.

The system works by counting pulses over a preset period or over a period automatically determined by the time taken to fill the data input counter. The counting can take place continuously or at a predetermined count rate.

Basic operation is as follows: pulses arriving from the experimental output being monitored are gated to a counter. The counter outputs form the data to be written to memory. Internal address coding selects memory location and a
control signal is generated to write the data into the location. The address is caused to advance by one, ready for the next data word. In this way the memory is filled with the experimental result in digital form.

To output this data to a 'scope, internal circuitry repeatedly scans all relevant memory locations in sequence. The information is fed to an 8-bit D to A converter and its output scaled before reaching the 'scope for display.

The Velocity Measurer can be used in the laboratory with greater case and accuracy than with conventional methods of taking velocity measurements, such as with the electromechanical ticker timer. It is capable of measuring small changes in velocity at selectable sampling rates, and to store this data in a semiconductor memory. After the experiment, the data may be read out in single steps to allow a velocity-time graph for any moving object to be plotted.
The project uses ultrasonics for determining velocity of the object based on the Doppler effect. The unit emits a constant frequency 40 kHz sound wave. This reaches the object and is reflected back to an ultrasonic transducer mounted on the unit. The moving object causes the reflected sound waves to apparently increase in frequency in proportion to its velocity.

The circuitry computes the difference in transmitted and reflected frequencies to calculate the speed of the object.

Sixteen spot velocity measurements are made during the motion of the object on release of the START switch, 5 per second, 10 per second or 50 per second depending on the setting of the Speed Selector Control Switch.

Outputs exist on the unit (1) to allow connection to a proprietary memory bank to store the results of many experiments which is able to feed a chart reader to automatically produce velocity-time graphs; (2) for connection to an oscilloscope to display velocity directly.

ZX81 Expansion System

LuGging this expansion system into the back of a ZX81 computer immediately adds another 4 K bytes to the existing 1 K bytes of RAM on board.
The system has its own regulator which helps share the load with the ZX81 resident regulator, and three 37 pin expansion sockets.
Signal lines A0 to A9, $\overline{\mathrm{RD}} \overline{\mathrm{WR}}$ and \emptyset from the ZX81 bus are buffered. High order address decoding generates 16 enable lines, with the lower 5 lines enabling RAM and the upper 11 lines reaching the expansion sockets.
RAM consists of $8 \times 2,114$ static RAMS (each 4 bits $\times 1,024$) configured to realise 8 bits $\times 4,096$. It is kept low in the memory map to ensure continuous RAM for Basic.
The expansion socket bus reaches the 3 sockets wired in parallel and consists of the following. $0 \mathrm{~V},+5 \mathrm{~V}, \quad \mathrm{~A}) \mathrm{A} 9$ (buffered), D ϕ-D7, $\emptyset \overline{W R}, \frac{5}{\text { RD }}, \frac{\text { RESET, }}{}$ WAIT and 11 enable lines labelled E0-

Coulomb Meter
$\|^{\mathrm{N}}$ the school science laboratory, experiments are often carried out which require the calculation of the electric charge which has flowed in the circuit during the experiment. If the current is constant, this is easily done using an ammeter and a timepiece. In some electrolysis experiments the current can change considerably during the process. This makes continuous monitoring necessary with regular adjustments to maintain constant current.
A more accurate, reliable and easier to use system was sought and resulted in the design and development of the. Coulomb Meter.
The meter is able to read up to 1,000 coulombs and has a sensitivity from $1 \mu \mathrm{C} / \mathrm{sec}$ to $10-4 \mathrm{C} / \mathrm{sec}$ in five switched ranges. The large l.e.d. display which indicates charge flow is capable of being set in a count-up or count-down mode

Peel Sixth Form College $1 s t$ Mr. H. Meredith (teacher), Martin Lysejko (18),

E10. The latter are active low and enable blocks of 1,024 memory locations. These can be used to enable RAM, EPROM, I/O and any other device which is capable of supporting a bus.
The particular value of this piece of equipment (Motherboard) is its ability to allow inexpensive ZX81 computers to be used for acquiring data from inprogress experiments and display the processed results on a t.v. screen. Addi-
tional hardware (daughter boards plugged into the sockets) and software are needed to accomplish this.
Some ideas in mind for daughter boards and software are: measurement and graphical display of radioactive decoy; a spectrum analyser; an I/O board for digital control applications; a serial I/O port for communication to RS232 devices such as printers/ terminals.

Queen Elizabeth
Mr. C. E. Saunders (teacher), G. Rafferty (17),
M. Shillabeer (16), S. Melhuish (15)

The output frequency is thus proportional to the current flowing.
The high frequency oscillator output reaches divider circuitry to produce a 10 Hz display counter input for 1 A experimental current to $0 \cdot 1 \mathrm{C}$.
Presettable inputs to the counter are set by means of b.c.d. thumbwheel switches. When the set value is reached, a control signal is produced that switches off experimental current flow.

> AN ergometer is a piece of machinery designed to allow the work input for a particular task to be determined The machine to be used with this project consists of a wheel attached to a set of pedals by means of a chain. A piece of rope is hung over the wheel rim held taught by mass at one end. As the wheel is turned via the pedals, a force due to friction is transferred to the rope to lift the mass.
> This force multiplied by the revs/sec of the wheel enables the applied work to be determined.

> It was originally intended that the work done would be displayed on a 7 segment read-out. However, difficulties were encountered in the realisation of this and the circuitry modified to produce two analogue signal read-outs on scaled meters.

> The force due to friction was deter-

mined using an optical method. An l.e.d. was situated on one side of a photographically produced and calibrated clear wedge on black film. On the other side of the film was a light dependent resistor. The assembly was mounted in a light-tight box. The film was attached to the rope. As the rope was made to lift the mass, the film

moved to allow more light from the l.e.d. to reach the l.d.r. and provide a reading proportional to the force.

The rotational speed of the wheel was measured using a reflective optical switch. An analogue signal was produced from this to appear on a second voltmeter. Multiplying the two readings gives the applied work.

Logic Demonstrator

St Peters and Merrow Grange
Sister M. Clement (teacher), Jonathan Page (14)

E Logic Demonstrator is intended for the student and others wishing to gain hands-on experience in investigating the functions of various logic gates and to assist one in understanding the basic concepts of Boolean algebra. It will also provide a useful "breadboard" for checking out project designs using NAND, AND, NOR, OR, EXNOR, EXOR and NOT gates. Logic circuits may be quickly "assembled" using only linked-plugs (wire with a plug at each end) before committing the design to permanent form.

A useful feature is the logical expression, circuit symbols and truth table displays for the six basic gates.
An array of 42 logic gates (six of each of the seven types mentioned above) is available to the user. Each input and output is accessible to the

user via sockets on the top panel. A set of jumper leads allow these to be easily interconnected as required. Two pulse generator outputs are provided in the design at similar sockets for feeding clock driven logic circuits, as are
$\begin{array}{ll}\text { Tettenhall College } & \begin{array}{l}\text { Mr. G. M. Feather (teacher), Lee Chapman (16) } \\ \text { Simon Monk (16), John Adlington (16) }\end{array}\end{array}$

Analogue to Digital Converter

THIS project illustrates how a microcomputer may, with suitable interface techniques, access, process and display analogue data from measurement transducers obtained during the course of experiments. Many existing laboratory experiments and equipment for measuring physical parameters provide an analogue output such as electronic thermometers, pH meters, sound level meters, radiation detectors and so on

This piece of equipment will process analogue signals and convert them into digital data (8-bits wide) which can be recognised and used by the microcomputer. Although designed for use through the PET User Port, it could be easily adapted for use with other computers with suitable software.
Most of the electronics is contained in a single integrated circuit package known as an analogue-to-digital converter. An analogue signal (within a specific voltage range) is inputted to the converter i.c. analogue input and is

clocked into the chip to provide a digital representation of the input voltage level in the form of an 8 -bit word (eight binary bits). The number of samples taken is dependent on the clock rate which has been selected to give a conversion rate of $28,000 / \mathrm{sec}$. The 8 -bit wide information reaches the microcomputer data bus when enabled by a command from the software.

On board scaling circuitry is included in the design to allow input voltage signals of up to 10 V peak to be processed. Two input modules were provided for demonstration: (1) a direct input module with 100 ohm switchable shunt. This simulates a load provided by a $\operatorname{ImA}, 100$ ohm meter and (2) a temperature module for displaying the temperature of the remote probe.

IN ORDER to explain the differences between true power and apparent power in the examples discussed last month, it is necessary to examine the relationship between the alternating current waveform and the alternating voltage waveform in a reactive circuit.

PHASE SHIFT

In a purely resistive a.c. system, the current through a resistor rises and falls together with the voltage across it and as such, is said to be in phase with it.

However, in a capacitive a.c. system, the current through a capacitor "leads" the voltage across it by a quarter of a cycle. That is, when the voltage waveform is at zero, the current waveform is at its peak, so it is said to have a phase difference of a quarter of a cycle (or 90 degrees, as one complete cycle is equal to 360 degrees).

In the third case, the inductive a.c. system, the current through an inductor "lags" behind the voltage across it by a quarter of a cycle. Again, the phase shift is 90 degrees but this time in the opposite direction.

The waveform diagrams in Fig. 3.1 illustrate these three cases and also show the conventional method of representing the phase relationship by means of a phasor diagram. The phasor diagram shows both the voltage and current as vector quantities (a line with both magnitude and direction), which are imagined to revolve anticlockwise about a fixed point. 0.

By convention, the current phasor is taken as the reference phase and is drawn horizontally.

A useful mnemonic to help remember the phase relationship in reactive circuits is the word CIVIL, to be read as follows:
In a capacitor (C), the current (I) leads the voltage (V), but the voltage (V) leads the current (I) in an inductor (L).

POWER IN A.C. CIRCUITS
If a 24 ohm resistor is connected across the $240 \mathrm{~V}, 50 \mathrm{~Hz}$ supply, the current through it would be 10 A . Now, as the voltage and current are in phase in a purely resistive system, the power consumed by the resistor is equal to $V \times I$, that is, $240 \mathrm{~V} \times 10 \mathrm{~A}$ $=2,400 \mathrm{~W}$. It follows that if the circuit was left on for one hour, the electricity meter would register 2.4 units used (as one unit equals on kilowatthour).
If the 76 mH inductor is connected in parallel with this resistor, the current through each branch of the circuit would be measured as 10A (remember that the inductor also has an impedance of 24 ohms at 50 Hz) but the current drawn from the supply would be $14 \cdot 14 \mathrm{~A}$. This is shown in Fig. 3.2.
Furthermore, if the circuit was again left on for one hour, the electricity meter would still only register $2 \cdot 4$ units, indicating that $2,400 \mathrm{~W}$ (the true power) was being used. The apparent power is $14 \cdot 14 \mathrm{~A} \times 240 \mathrm{~V}=$ 3,394W.
The phasor diagram in Fig 3.2 shows why the current flowing from the supply is $14 \cdot 14 \mathrm{~A}$. Note that I_{R} is in phase with V_{S} (the supply voltage) whereas I_{L} is lagging by 90 degrees, so that the resultant current $\left(I_{z}\right)$ is the vector sum of these two, that is 14-14A.
This resultant current can also be calculated by the application of Pythagoras' theorem, which states that for a right angled triangle, the square of the hypotenuse equals the

sum of the squares of the other two sides. So the resultant current,

POWER FACTOR

So far, it has been established that the product of the supply voltage and the measured current is the apparent power (equal to $3,394 \mathrm{~W}$) and that registered on the electricity meter is the true power (equal to $2,400 \mathrm{~W}$). The ratio of true power to apparent power is known as the power factor.
So for the circuit shown in Fig. 3.2, the power faotor is $2,400 / 3,394=$ 0.707 (note that the power factor cannot exceed one).

From the phasor diagram in Fig. 3.2 , it can be seen that the angle ϕ (greek symbol phi) is the angle at which the resultant current lags behind the applied voltage, and in this case it is 45 degrees. The cosine (abbreviated to cos) of this angle is equal to the ratio of the in phase current to the resultant current which equals $10 / 14 \cdot 14=0.707$.

This shows that the cosine of the phase angle $(\cos \phi)$ equals the power factor.

The lagging (out of phase) current component in a reactive system does no work and therefore does not register on the elecricity meter. For this reason it is known as the wattless component of the current. It is the in phase current which actually does the work in registering the true power.

Therefore, in order to calculate the in phase current, multiply the resultant current (I_{z}) by the power factor ($\cos \phi$), remembering that, in a prac-

QUESTION TIME

3.1. The information plate on a piece of electrical equipment reads as follows: $240 \mathrm{~V}-1 \mathrm{ph}-15 \mathrm{~A}-\mathrm{cos}$ $\emptyset=0.8$.
How many units wlll the equipment use per hour?
3.2. What are the in phase and wattless components of the equipment in $3 \cdot 1$?

PART 2 ANSWERS

2.1. (a) $X_{C}=$
$2 \times 3.142 \times 2,000 \times 0.00004$
(b) $x_{c}=$
$1=80 \Omega$
$2 \times 3,142 \times 50 \times 0.00004$
therefore current, $I=V / X_{c}=$ $240 \mathrm{~V} / 80 \Omega=3 \mathrm{~A}$
2.2. An inductive reactance is causing the current to flow giving rise to apparent power. However, as no true power is being consumed, the disc on the electricity meter would be stationary.

tical circuit, the resultant current is the easiest to measure with an ammeter. In our example, $I_{R}=I_{Z} \times$ $\cos \phi=14 \cdot 14 \mathrm{~A} \times \cos 45^{\circ}=14 \cdot 14 \times$ $0 \cdot 707=10 \mathrm{~A}$.
Similarly, the true power is the product of the apparent power and the power factor $=240 \mathrm{~V} \times 14 \cdot 14 \mathrm{~A} \times$ $0 \cdot 707=2,400 \mathrm{~W}$. This is the figure originally registered on the kWh service meter.

POWER FACTOR CORRECTION

Industrial electrical equipment and transformers contain coils and windings and will therefore have inductance properties and lagging, out of phase current components. This type of equipment will also carry wattless current, sometimes called reactive volt-amperes.
Take for example, a 500 kVA transformer supplying a works having many electric motors to drive production machinery, the total power factor of which adds up to $0 \cdot 76$. This transformer on full load at unity power factor could supply 500 kW , but because the power factor is $0 \cdot 76$, the true power on full load is only $500 \times 0 \cdot 76=380 \mathrm{~kW}$.
If the power factor could be improved to say, 0.92 at 380 kW , the transformer loading would be reduced to only 413 kVA , which would leave an additional 87 kVA to supply an extra load.
In order to improve the power factor, it is necessary to reduce the phase angle, (ϕ), the net result of this being that $\cos \phi$ (the power factor) will increase. This is achieved by adding a capacitor in parallel with the inductive load. Fig. 3.3 shows this done to the original example.

As the $132 \cdot 6 \mu \mathrm{~F}$ capacitor has an impedance of 24 ohms at 50 Hz , the current through it (I_{c}) will also be 10A. However, the current drawn from the supply is reduced to 10 A from the $14 \cdot 14 \mathrm{~A}$ in the example shown in Fig. 3.2.

So the capacitive current has cancelled the effect of the inductive
current and this can be illustrated by removing the resistive element from the circuit. The supply current will drop to zero but the current through both the reactive branches remains at 10 A each.

PARALLEL RESONANCE

This effect is known as parallel resonance and occurs when the inductive reactance equals the capacitive reactance. The impedance of a parallel resonant circuit is infinity at its resonant frequency. The formula for calculating the frequency at which a parallel $L C$ circuit resonates (the same formula, incidently, as used in radio transmission and reception) is:

$$
\text { frequency }(f)=\frac{1}{2 \pi \sqrt{L C}}
$$

where $L=$ inductance in henries

$$
C=\text { capacitance in farads }
$$ $\pi=3 \cdot 142$ (pi)

The phasor diagram shown in Fig. 3.3 gives the phase relationship between the respective current components in the circuit. Note that I_{c} leads the supply voltage ($V_{\mathbf{s}}$) by 90 degrees and is therefore acting in the opposite direction to I_{L} meaning the resultant current will be equal in magnetude and direction to I_{R}.

So the true power and the apparent power are equal in this case giving a power factor of one. This is verified by observing that the resultant current is neither leading nor lagging, therefore angle $\phi=z e r o$ and \cos $\phi=1$.

The power factor can therefore be improved by adding capacitance in parallel with the inductive load. In reality it is not practical to increase the power factor to more than 0.92 since when the equipment is switched off (assuming a unity power factor), the high voltages induced upon the change from parallel to series resonance could damage the windings of the electrical equipment.

To be continued

TEMPERATURE INTERFACE FOR THE TANIDY TRS-80

AST month dealt with the circuit for this Interface describing in detail how it works. In this second and final part, details are given for the assembly and testing, together with the necessary software to run the system.

PRINTED CIRCUIT BOARD

The components are to be assembled on a single-sided p.c.b. The full size pattern to be etched is shown in Fig. 5.

The layout of the components on the board, and wiring to case mounted components are shown in Fig. 6. First of all drill the four fixing holes in each corner. The specified plastic snap-fixing stand-off pillars used in the prototype require a hole diameter in the board of 3.2 mm . The hole size to fit these to the case needs to be 5 mm diameter. Use the p.c.b. as a template when drilling the case and then enlarge case holes to 5 mm .

Begin assembly by soldering in all the link wires, 22 s.w.g. tinned copper wire was used on the prototype. Next fit and solder the i.c. sockets and resistors and voltage regulator followed by the capacitors and bridge rectifier.

Do not fit Tl or insert the i.c.s. net.
The reason for the suggested order of assembly will become apparent as
you proceed.
Attach sufficient lengths of stranded insulated wire to reach the case mounted components, including a suitable length of 3 -core mains cable.

20 -way ribbon cable fitted with an edge connector attached is required to connect to the TRS-80. Separate one end of the 30 cm long ribbon cable into 20 separate wires, each about 4 cm long. Strip about 5 mm from each end and tin. Solder these ends into the board in a regular order, see photographs. T1 may now be soldered in place.

If you contemplate expanding the interface sometime, it may be a good idea to carry out the preliminary wiring for this now. The remaining seven decoded address lines, Q1 to Q7 from IC9, data lines D1 to D7, $\overline{\mathrm{RD}}$, $\overline{\mathrm{WR}},+5 \mathrm{~V}$ and 0 V may be picked up from the underside of the p.c.b. and connected to an 18 -pin d.i.l. socket for example mounted on the case. This allows connection to other interfaces using similar circuitry to IC3a/ICAa in the main unit.
Prepare the case to suit the case mounted components, D1, Sl, SK1 and a 13 mm diameter hole for mains cable bush and fit these, with exception of the bush, in place.

With the plastic stand-off pillars in position in the case, the board can then be aligned with these pillars and firmly pushed onto them to hold the board secure. Feed the mains cable through its entry hole in the case (do not fit the strain relief bush yet). Wire the board to the case mounted components, with sleeving fitted over D1 leads and S1 tags.

EDGE CONNECTOR

The connections to the computer are by way of a 20 -way ribbon cable

Fig. 5. P.C.B. pattern viewed from the copper track side.

Fig. 8. Wiring and connection details to the stripboard holding the $22+22$ way edge connector. The labelling of the wires assumes that two 10 -way ribbon cables have been used, called 1 and 2 .

Fig. 6. Layout of the components on the p.c.b. topside with complete interwiring information.

Fig. 7. The TRS-80 expansion outlet viewed from the rear. Only the
relevant tracks have been labelled.
(or two 10 -way ribbons). The cable is already connected at the p.c.b. end and now requires a $20+20$ way edge connector to be fitted to the other. Fig. 7 shows the arrangement of the signals viewed from the rear of the TRS-80 Level I and Level Π. The top set of "fingers" are labelled as odd numbers, 1 to 39 , with 1 at top left. The lower finger set is labelled using the even numbers between 2 and 40, 2 being immediately below 1. The circuit diagram has been labelled accordingly.
The TRS -80 needs a $20+20$ way socket but this is not easy to obtain. You can use a more readily available $22+22$ type and not use the positions at either end. The end pins should be removed and small pieces of s.r.b.p. slotted in their place. These will act as position guides since the TRS-80 does not have a polarising slot. This arrangement was adopted on the prototype. Mark the top of the socket with a label or paint to avoid the risk of plugging it on the TRS-80 board upside down. (If you are using a different computer, you will need to obtain a diagram of the edge connector, plug or socket and make connections accordingly.)

The colours shown in Figs. 6 and 8 are those found on most kinds of ribbon cable. If you keep to this system of colours, it will help to reduce wiring errors. For convenience in wiring up, the edge connector and ribbon cable are joined on a short length of stripboard. The socket is mounted on the copper track side and the wires brought in from the plain side to the appropriate track. This can be seen in Fig. 8 and the photographs. Take special care that the connections are made to the correct locations. The wires ends should be stripped and tinned before soldering to the stripboard. Check out each connection thoroughly after you have finished soldering the wires in place, using a magnifying glass to discover any solder bridges that may have occurred.

It is worth while to use a multimeter to test for short circuits between each line and adjacent lines, and eliminate these before going any further.

The $\overline{\mathrm{WR}}$ line is not used in this project, but since there is one spare wire in the cable and $\overline{W R}$ could be used for any user designed interface projects, it might as well be wired in now.

THERMOMETER PROBE

The construction of the probe is shown in Fig 9. A twin screened cable terminated in a 3 -pin diN plug connect the probe to the rest of the circuit via SK1. The cable can be several metres or even tens of metres long. In the prototype, the lead was about 1 metre long. There was evidence that unshielded lead

The stripboard/edge connector fully wired. The two outermost connector positions should be fitted with inserts to act as alignment guides.
picked up electromagnetic interference which, by causing short voltage spikes across R3, resulted in spurious triggering of the converter, IC2. It was found that this could be reduced by wiring C6 to the output of IC2. For this reason it is strongly recommended that shielded cable is used for the probe. However, do not run the lead close to sources of electromagnetic interference. The magnetic field from the coil of the tube of a video monitor can give rise to serious interference. For the same reason, keep the leads and the probe well away from TV sets, loudspeakers, and electric bells or buzzers.

Slip a short length of sleeving over one wire before soldering it to the V^{+}wire of the i.c. An overlap joint is sufficient. It is advisable to use a heat shunt while soldering. Slide the sleeving over the joint. Next twist the wires of a 270Ω resistor to the \mathbf{R} and V - wires of the i.c. Make sure
that the resistor wires are not short circuiting the wires of the i.c. Solder the resistor in place. Although a 0.25 W resistor can be used, a smaller $(0 \cdot 125 \mathrm{~W})$ resistor is to be preferred. Now slip a short length of sleeving on to the lead. Solder the wire to the V - lead, and slide the sleeving over the joint. Finally, slide a piece of wide-bore sleeving or 5 mm plastic tube over the whole assembly except for the body of the i.c. Note that the screen is not connected at the sensor end of the cable.

Strip the free end of the cable and separate and trim the three conductors. Make sure that these do not touch each other when soldered to PLl as shown in Fig. 9. Sleeving may be required over the connections.

TESTING

Before plugging the i.c.s. into their sockets, the power supply section should be checked. First check for

Fig. 9 Construction of the sensor assembly. The sleeving should be pushed over the soldered connections on IC1. It is important that the screening is not connected or in contact with the leads of IC1.
continuity between all the 0 V line connections.
With one lead from an ohmeter connected to the mains earth lead, work through the board using the circuit diagram to check that all the connections to the 0 V rail are made. Check the +5 V likewise with one ohmeter lead connected to the + ve end of R4.
If these checks prove satisfactory, the unit may be plugged into the mains and switched on. A spot check across the power supply rails using a voltmeter set to 10 V or more should give a reading of 5 V . If so, switch off and insert the i.c.s.
The decoding may now be tested by connecting the appropriate inputs of IC7 and IC9 to the 0V line. This is easier done at the edge connector using short lengths of -wire temporarily soldered to the appropriate wire-wrap pins.
Unconnected inputs of TTL i.c.s. act as if they were high, so this in effect provides the address 60,000 . The output A from pin 15 of IC9 should be low. If you make any one or more of the inputs to IC6 low, or disconnect any one or more of the inputs to IC3 or IC5, A should go high. Switch off.

Plug the edge-connector on to the computer board, taking care that the contacts on the connector are exactly aligned with the contacts on the board. Switch on the computer. If you fail to obtain the usual display (MEMORY SIZE?, on TRS-80) switch off. It is likely that one or more of the cable connections is wrong, or that there is still a short circuit between lines. If all is in order, switch on the power to the interface. Again, if the display changes, switch off both the interface and the computer and check for wiring errors.

The simplest test is to read the state of the output of IC2, using the PEEK command, as in Program A. With TRS-80, high memory addresses are differently coded, so that, instead of PEEK (60000), we use PEEK (-5536). The result of PEEKing depends on the computer. With the TRS-80, an open data line is read as high (1), so when the output of IC2 is high, all lines are high (1111 1111) giving the equivalent of 255 in decimal.

When the output is low, the data lines hold 1111 1110, which is equivalent to 254. As the program runs, a rapid succession of 255 's or 254 's should scroll up the screen, changing from 255 to 254 and back to 255 , about once every 2.5 seconds.
Other computers, such as the ZX81, return " 0 " for each open data line. The display will thus show alternating series of 0 's and l's, changing from 0 to 1 and back to 0 about once every 2.5 seconds.

Should the programproduce
nothing but 255 or 0 , switch off and check the circuit for wiring errors. It may be that you have two addresslines crossed, giving an address outside the range of the decoder. Another possible fault is a dry joint on one or more of the lines of the ribbon cable.

CALIBRATING

The simplest way of using the thermometer is to use a BASIC program such as Program B. This reads the output from IC2 over and over again, waiting for it to go low (line 40). As soon as it goes low it begins to count how many times it reads a low output (line 50). It continues to do this until it goes high again. The number N is proportional to the time spent in the low condition. All that is then needed is to multiply N by a constant factor to convert it to a temperature expressed in degrees.
It was found in trials that when the probe was immersed in water containing melting ice (0 degrees C), the count N was 111. The count increased to 119 when the probe was allowed to warm up to room temperature (20 degrees C). This is as expected, since the count is proportional to absolute temperature and 20 degrees C is 293 K degrees.
The effect of an increase of temperature of 20 degrees is an increase of only 8 counts. There can be only eight different readings between 0 and 20 degrees C , giving a resolution of less than 2 degrees. This may be sufficient precision for triggering alarm systems, but is not good enough when temperature is to be precisely known. To obtain maximum counts the program has been written so as to run as fast as possible.

Variables A to Y are defined as integers and it uses variables instead of constants (line 20). Even so, resolution needs to be improved.

The simplest way to do this is that adopted in the program. The reading operation is repeated six times, the first being ignored, for it might have been begun during a low pulse. The total of the five remaining counts is M (line 70). Tests showed this total to be 555 at 0 degrees C, so that the temperature, \times, in degrees Celsius is given by:

$$
x=\left(\frac{273 \times \mathrm{M}}{555}\right)-273
$$

This is the basis of the calculation in line 100, in which the result is rounded to the nearest whole degree.
To calibrate the Interface, a means of taking a spot temperature reading of the sensor is required. In the absence of a thermometer, a beaker of melting ice and salt could be used. This is at a temperature of $273^{\circ} \mathrm{K}\left(0^{\circ} \mathrm{C}\right)$. With this and any other liquid bath method, the sensor must be isolated from the liquid, see Fig. 9. Run program B.

The total count will be displayed with the calculated temperature. Allow the sensor temperature to stabrlise. This will be evident from the display. Mentally note the constant total count and run program B from line 200. After typing in new value for Z, run the program to read the sensor temperature in degrees C . Line 95 may be deleted if not required.

HIGHER RESOLUTION

To achieve even higher resolution we need read the output of IC2 many more times during each low pulse. This can readily be done by using the machine-code routine of Program C. The program waits until output goes low, then reads and counts until it goes high again. This routine is extremely fast, giving a count in the region of 44000 at 0 degrees C. The program is written in $Z 80$ machine code and can be accessed by the USR (0) command in the TRS-80. Program D shows how this may be done. A count of 44000 at 0 degrees C in creases to 47223 at 20 degrees C, an increase of 161 counts per degree. Thus it is possible to resolve temperatures to the nearest 0.01 degrees. At this speed it becomes possible to detect occasional spikes on the output, which give rise to very low counts. Such counts are excluded by line 80 of program D.
A complication arises because the value returned from the routine is treated as a "signed number". Being greater than 32767 (011111111111 1111), its most significant digit is ' 1 ', and it is taken to be a negative number. The remaining 15 digits are evaluated as if it were positive, and a negative sign is placed in front of the result. To obtain its true value as a 16 -digit number, we subtract it from 65536 (line 90). The calculation of temperature, rounded to the nearest hundredth of a degree, is done on the same line. The equation on which this is based is:

$$
\begin{gathered}
\text { Temp. }=\frac{273 \times \mathrm{X}}{44000}-273 \\
=(0.06245 \times-273) \text { degrees } \mathrm{K}
\end{gathered}
$$

Derive and insert the calibration factor as described in the previous section. The routine from line 200 calculates Z .
With this established, other temperatures are obtained by the calculation in the program. It is important to allow the sensor several minutes to come to a steady temperature before attempting to calibrate it. The output of the i.c. is upset by sudden changes of temperature, presumably because some parts of the i.c. acquire the new temperature before other parts and the balance of the circuit is disturbed.

TEMPERATURE INTERFACE SOFTWARE

Program A: Testing
 10 PRINT PEEK (-5536) 20 GOTO 10

```
Program B: Reading Temperature
    CLS
    \(Z=1\)
    DEFINT A - Y
    \(X=-5536: Y=255\)
    FOR \(K=1\) TO 6
    IF PEEK \((X)=Y\) THEN 40
    IF PEEK \((X)<>Y\) THEN \(N=N+1\) : GOTO 50
    IF \(K=1\) THEN 80
    \(M=M+N\)
    \(\mathrm{N}=0\)
    NEXT K
    PRINT M; " ";
    PRINT "TEMPERATURE \(={ }^{\prime}\); INT (Z*M - 272.5)
    \(M=0\)
    GOTO 30
    CLS
    PRINT "TO CALCULATE CALIBRATION FACTOR, \(Z\) "
    PRINT "TEMP. IN DEGREES \(K=" ;\)
    INPUT A
    PRINT "COUNT \(=\) ";
    INPUT B
    PRINT \(" Z=" ; A / B\)
    PRINT "ENTER THIS VALUE FOR Z IN LINE 5"
```

Program C


```
Program D: Reading Temperatures to 0.01 degrees
1 CLS
\(5 \quad Z=1\)
10 DATA \(33,0,0,58,96,234,254,255,202,3,125,58,96,234,254,254,194,154,10,35,195,11,125\) : \(^{\prime}\) Program in decimal
20 FOR \(\mathrm{J}=0\) to 22: ' Putting program into memory
30 READ D
40 POKE \(32000+J, D\)
50 NEXT J
60 POKE 16526, 0: POKE 16527, 125: 'Starting address of program
\(70 \quad \mathrm{X}=\mathrm{USR}(0)\) : ' Go to program
80 IF \(X<50\) AND \(X>0\) THEN 70: ' Reject small counts
85 PRINT \((65536+X)\); " \(" ;\)
90 PRINT '"TEMPERATURE \(={ }^{\prime}\) ' ; INT \(\left(Z^{*}(65536+X)-27299 \cdot 5\right) / 100\)
100 GOTO 70: ' To take next reading
    CLS
210 PRINT "TO CALCULATE CALIBRATION FACTOR, \(Z\) "
220 PRINT "TEMP. IN DEGREES \(K=\) ";
230 INPUT A
240 PRINT "COUNT \(=\) ";
250 INPUT B
260 PRINT " \(Z=\) ='; (100*A)/B
270 PRINT "ENTER THIS VALUE FOR \(Z\) IN LINE 5 "
```


CONTINUITY TESTER

Acontinuity tester is a valuable piece of equipment used to determine whether a component or circuit has a broken connection. That is, it tests for the continuity of current flowing.

It can also be used to check fuses, bulbs, wires and certain semiconductors, including diodes and transistors.

DESIGN CONSIDERATIONS

This circuit has been designed to overcome difficulties often associated with basic continuity testers. These are:

1. Difficulty in establishing if continuity has been made.
2. High probe current damaging semiconductor junctions.
3. Inability to pre-determine the maximum resistance that the tester "sees" as continuity.
4. Variation in the tone produced by the tester according to the resistance being checked.
5. High stand-by current.

The first problem was simply overcome by giving the Continuity Tester an audio output, not a visual indication, thus allowing the user to concentrate on the component under test, and with a probe current of less
than 1 mA , the second problem was also removed.

Provision of a potentiometer in the tester input circuit permits the user to programme the resistance at which the unit registers continuity and by incorporating an oscillator with a tone frequency independent of test resistance, difficulties 3 and 4 were erased.

The stand-by current was reduced to an almost negligible level by using ultra-low power cmos circuitry thus overcoming the last problem.

CIRCUIT DESCRIPTION

The tester employs a cmos 4011 i.c, consisting of four NAND gates, three of which form an oscillator, the remaining gate acts as an inverter to enable the oscillator. See Fig 1.

IC1b, c and d form the "ring of three" oscillator, the frequency of which can be calculated with the formula:

$$
\text { frequency }(f)=\frac{1}{\mathbf{R} 2 \times \mathrm{Cl}} \mathrm{~Hz}
$$

where $R 2=$ resistance in ohms

$$
\mathrm{Cl}=\text { capacitance in farads }
$$

With the components used in this circuit, the frequency will be approximately 1 kHz .

The last nand gate, ICla, is made into an inverter by wiring its two inputs together. Its output is connected to the oscillator which will only oscillate when the output of ICla is high (logic 1). This will only occur when a low resistance path is connected between SK1 and SK2, thus forming a potential divider along with R1 and VR1.

TRANSDUCER

The oscillator drives WD1, a piezo ceramic transducer. This type of devioe consists of a piece of ceramic material deposited on a circular brass "resonator" and it produces a very high output when energised. This makes it more efficient for this application than a traditional speaker, particularly considering its low power consumption and diminutive size.

CIRCUIT BOARD

Fig. 2 shows the construction of the circuit board on 0.1 inch stripboard, 12 strips by 19 holes. It is best to start with the i.c. holder for IC1 and then solder in the wire links (9 in all), VR1, the resistors and the capacitor.

Fig. 1. The complete circuit diagram for the Continuity Tester.

Next, the flying leads of $7 / 0.2 \mathrm{~mm}$ equipment wire should be added, and these should be about 100 mm long. Finally solder the leads from the piezo ceramic transducer into position, taking great care as these tend to be a little fragile, andi to complete this stage of construction, add the battery clip (remember that the red lead goes to switch Sl).

THE CASE

The tester is now ready to go into its case, and the prototype was fitted into a plastic box, $75 \times 55 \times 35 \mathrm{~mm}$. The red and black banana sockets and the rocker switch are mounted on the outside of this case as shown.

The piezo ceramic transducer (WD1) is glued onto the inside of the case with a contact adhesive (such as "Evostick") and the battery B1 is taped to the inside of the lid. When all the flying leads have been soldered in place, the unit can be completed by slotting the board into the space between the battery and the plastic body of the rocker switch.

SETTING UP

To set up the Continuity Tester, a small screwdriver and 1.5 kilohm resistor are required.

With the unit open so as to give access to VR1, switch on and connect the 1.5 kilohm resistor between the two probes. A 1 kHz tone may be heard but don't worry if it is not at this stage.

Adjust VR1 until the tone just ceases and if the unit was not initially making the tone, VRI must be rotated until it does and then adjusted to the point where it ceases. It is important that this adjustment is exact so that the tester is sensitive to this resistance.

The value 1.5 kilohm was chosen as the maximum resistance at which the Continuity Tester "sees" as continuity for the prototype as it is a practical value. However, the constructor may wish to substitute a different value here.

The unit is now ready to test components and circuits, and Fig. 3 and 4 show how it can be used to check diodes and transistors

Resistors

$$
\begin{aligned}
& R 14 \cdot 7 \mathrm{k} \Omega \\
& \text { All } \ddagger \mathrm{W} \text { carbon } \pm 5 \%
\end{aligned}
$$

Capacitors
C1 $0.1 \mu \mathrm{~F}$ polycarbonate
Semiconductors
IC1 40118 CMOS quad 2 -input NAND gate

Miscellaneous

RV1 $10 \mathrm{k} \Omega$ miniature horizontal preset
S1 on/off rocker switch
B1 9V PP3 battery
SK1 4 mm banana socket, red
SK2 4 mm banana socket, black
WD1 PB2720 piezo ceramic transducer
Stripboard, 0.1 inch matrix, 12 strips by 19 holes; plastic case $75 \times 55 \times 35 \mathrm{~mm} ; 14$ pin d.i.l. holder; battery clip; $7 / 0.2 \mathrm{~mm}$ equipment wire: probes (2 off . one red, one black) on 4 mm banana plugs.

Fig. 2. Stripboard layout and inter-wiring diagram.

SEMICONDUCTOR TESTING

Fig. 3. Method of testing a diode with the Continuity Tester unit. If the cathode (k) is f_{1}. st connected to the positive (red) terminal as shown, the diode should not conduct. By reversing the diode across the terminals as shown in the right hand diagram, the tone should sound, indicating conduction. If the tone sounds for both tests or does not sound at all, then the diode is defective.

Fig. 4. When testing a transistor with the Continuity Tester, the device must be thought of in terms of the equivalent circuits shown. For example, an non transistor is equivalent to two diodes, connected in series by their anodes (a), the base (b) being at this junction. Then by testing each "diode" in turn using the procedure given in Fig. 3, that is the base-collector junction and then the base-emitter junction, thus checking the function of the transistor. The pnp transistor is tested in a similar manner, remembering that the diodes in the equivalent circuit are reversed.

[^2]

Bigger and Better for 1982

the colourful Wilmslow Audio brochure - the definitive loudspeaker catalogue!

Everything for the speaker constructor - kits, drive units, components for HiFi and PA.
50 DIY HiFi speaker designs including the exciting new dB Total Concept speaker kits, the Kef Constructor range, Wharfedale Speakercraft, etc.
Flatpack cabinet kits for Kef, Wharfedale and many others.

$$
\star \text { Lowest prices — Largest stocks } \star
$$

* Choose your DIY HiFi Speakers in the comfort of our * two listening lounges
(Customer operated demonstration facilities)
\star Ample parking *
Send $£ 1.50$ for catalogue
(cheque, M.O. or stamps-orphone with your credit card number)
- Access - Visa - American Express accepted * also HiFi Markets Budget Card.

0625529599
35/39 Church Street, Wilmslow, Cheshire SK9 1AS

Lightning service on telephoned credit card orders!

So what is this mysterious form of energy called electricity?
It's not mysterious at all, and the voltage and current of an electricity supply can be explained quite simply if we use the example of water flowing in a pipe, for instance in a basic central heating system.
In our central heating system, three points must be remembered. Firstly, if water is to flow in the pipes, they must be connected into a complete loop or "circuit". Secondly, the water must be pumped around the system to maintain the flow, and lastly, the same water must be moving round all the time; no water is added or removed.

VOLTAGE AND CURRENT

The voltage in an electric circuit can be thought of as the pressure at which the water is pumped around the system and the current is the amount of water actually flowing through it.

Note that if you were to cut the water pipe and block off the two exposed ends (in effect, break the circuit), no water could flow. Similarly, in an electric circuit, if the circuit is broken, no current would flow.

However, in the water system, the pump could still be operating at the same pressure even though no water is actually moving. Again, in our electric circuit, the voltage can still be present even if the current flow is interrupted.

Fig. 1. Demonstration of current flow.
This is illustrated in a simple circuit consisting of a battery (a voltage soúrce), a small light bulb (to indicate the flow of a current) and two wires to make the "circuit".

When these components are connected as shown in Fig. 1a, a current flows and lights the bulb. It is the battery that provides the voltage (or pressure) for this current to flow.

If one wire is now removed from the battery as shown in Fig. 1b, no current can flow and the bulb goes "out". However, the voltage is still present on the battery.

UNITS OF ELECTRICITY

The voltage (V) is measured in volts (V). As a voltage is a "pressure" or force, it is also referred to as an electro-motive force (e.m.f.)

To give an idea of various voltages, the cylindrical torch light battery (say an SP11) produces $1_{2} \mathrm{~V}$, the PP3 transistor radio type battery can supply 9 V and the mains voltage is 240 V

These high voltages are potentially very dangerous and must be treated with great care.

The current (I) flowing in a circuit is measured in amperes (A). The abbreviation for amperes is not amps as this could cause confusion with the abbreviation for an amplifier.

Again to give some idea of practical current values, a torch bulb may require as little as one twentieth of an ampere $(0.05 \mathrm{~A})$, whereas a two bar electric fire uses as much as 12A!

RESISTANCE

Having established the basic concepts of voltage and current, we can look at another property affecting the electric.circuit; that of resistance (R). Resistance in a circuit literally "resists" the flow of current through the circuit and if we return to the central heating system comparison, resistance can be thought of as the bore (the inside diameter) of the pipes.

So a small bore pipe restricts the flow of water, meaning it has a high resistance, and a large bore pipe permits a lot of water to flow as it has a low resistance. Similarly in the electric circuit, a high resistance limits the current flow and a low resistance allows more current to flow.
The unit of resistance is the ohm (given the greek symbol omega, Ω) and a resistor is a component that has a definite known value of resistance. It is the most widely-used type of component and is commonly available in resistance values ranging from one ohm to ten million ohms.

OHM'S LAW

The most important fundamental law governing all electric and electronic circuit theory is Ohm's law. This concerns the relationship between voltage, current and resistance in a circuit and states that the current flowing through a circuit is proportional to the voltage applied to that circuit and inversely proportional to the resistance in that circuit.

What this means in real terms is that voltage, current and resistance are governed by the formula:
voltage $(V)=$ current $(I) \times$ resistance (R)
It also follows that:

$$
I=V \div R \text { and } R=V \div I
$$

These three formulae derived from Ohm's law allow us to calculate an unknown quantity in a circuit if we know the other two quantities. For example, if a 10 ohm resistor is con nected across a 12 V car battery, the current through it can be calculated from $I=V / R$. Therefore $I=12 / 10=$ $1 \cdot 2 \mathrm{~A}$.

A simple way to remember this relationship between V, I and R is to draw a triangle as shown in Fig. 2.
Then by covering the unknown quantity with a finger, the relation ship between the other two quantities will be exposed in the triangle.

Fig. 2. Ohm's law triangle.

POWER

The power (P) developed in a circuit is the product of the voltage and the current and is measured in watts (W). So in our previous example, the power developed in the 10 ohm resistor is equal to $12 \mathrm{~V} \times$ $1 \cdot 2 \mathrm{~A}=14 \cdot 4 \mathrm{~W}$.
A similar triangle can be constructed to remember the relationship between P, V and I and this is shown in Fig. 3.

Fig. 3. Power equation triangle.

MULTIPLES AND SUB-MULTIPLES

When dealing with voltages, currents, wattages and resistances, sometimes the values are very large or very small numbers and to make these numbers a little easier to understand they are expressed as multiples and sub-multiples.
The following are the most commonly used:
micro $(\mu)=$ one millionth of
($\times 0.000001$ or $\times 10^{-6}$)
milli $(m)=$ one thousandth of
($\times 0.001$ or 10^{-3})
kilo $(k)=$ one thousand times ($\times 1,000$ or $\times 10^{3}$)
mega $(M)=$ one million times ($\times 1,000,000$ or $\times 10^{6}$)
For example:
one microvolt $(1 \mu \mathrm{~V})=0 \cdot 000001 \mathrm{~V}$
four milliamperes $(4 \mathrm{~mA})=0.004 \mathrm{~A}$
six kilowatts $(6 \mathrm{~kW})=6,000 \mathrm{~W}$
two megohms $(2 \mathrm{M} \Omega)=2,000,000 \Omega$

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to start or further a career in electronics or as a selfemployed servicing engineer
All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write personally at any time, for advice or help during your work. A Certificate is given at the end of every course.

You will do the following Build a modern oscilloscope

- Recognise and handle current electronic components
Read, draw and understand circuit diagrams
Carry out 40 experiments on basic electronic circuits used in modern cquipment
- Build and use digital electronic circuits and current solid state 'chips'
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V., Hi-Fi and microprocessor/computer
 equipment.

NewJob?NewCareer?NewHobby?Getinto Tlectronics Now!

Minflagerfe makes soldering easy fast \& reliable

Ersin Multicore

Ersin Multicore, solder contains 5 cores of noncorrosive flux, instantly cleaning heavily oxidised surfaces. No extra flux is required.
Comes in handy dispensers and tool box reels in two different alloys $40 / 60 \mathrm{tin}$ /lead for general purpose electrical soldering and 60/40 tin/lead ideal for small components and fine wire soldering.

Size PC115 60/40 tin/lead
£1.38 Handy pack 0.028 mm dio

Multicore Savbit

Size 3 40/60 tin/lead £4.37 Per reel 1.6 mm dio
Size 10 60/40 tin/lead £4.37 Per reel 0.71 mm dio

Size 19A 60/40 tin/lead £1.15 Handy pack ${ }^{1.22 \mathrm{~mm} \text { dw }}$

Multicore Savbit, solder increases the life of your soldering bit by 10 times, for better soldering efficiency and economy.
Comes in two handy dispensers and tool box reels.

£1.15 Per pack 1.2 mm dio
Size SV1 30 Saubit £1.73 Per pack 0.048 mm dio

Multicore Alu-Sol

Multicore Alu-Sol, solder contains 4 cores of flux, suitable for most metals especially aluminium. Comes in handy dispensers on tool box reels.

Síze AL150 Alu-Sol £2.07 Per pack . 048 mm dia

Size 4 Alu-Sol
£7.82 Per reel 1.6 mm dio
All prices inclusive of VAT.
Available from most electrical and DIYs stores. If you have difficulty in obtaining any of these products send direct with 50 p for postage and packing. For free colour brochure send S.A.E

Multicore Solder Wick

Multicore Solder Wick, absorbs solder instantly from tags and printed circuits with the use of a 40 to 50 watt soldering iron.
Quick and easy to use, desolders in seconds.
Size AB10 Solder Wick
£1.43 Per pack

Multicore Tip Kleen

Multicore Tip Kleen, soldering iron tip wiping pad. Replaces wet sponges.

Bib Wire strippers and cutters
Wire strippers and cutters, with precision ground and hardened steel jaws. Adjustable to most wire sizes. With handle locking-catch and easy-grip plastic covered handles.

Sinclair ZX Spectrum 16K RAM $£ 125,48 K$ RAM $£ 175$.

This is the astonishing new $Z \times$ Spectrum - a powerful professional's computer in everything but price!

There are two versions -16 K or a really powerful 48 K . Both have a full 8 colours, sound generation, a full-size moving-key keyboard and high-resolution graphics. Plus established Sinclair features such as 'one-touch' keyword entry, syntax check and report codes!

Key features of the Sinclair

ZX Spectrum

Full colour - 8 colours plus flashing and brightness-intensity control.

Sound - BEEP command with variable pitch and duration.

Massive RAM - 16 K or 48 K .
Full-size moving-key keyboard - all keys at normal typewriter pitch, with repeat facility on each key.

High resolution-256dots horizontally $x 192$ vertically, each individually addressable for true high-resolution graphics.

ASCll character set - with upper- and lower-case characters

High speed LOAD \& SAVE - 16K in 100 seconds via cassette, with VERIFY and MERGE for programs and separate data files.

The ZX Printer - available now
The printer offers ZX Spectrum owners the full ASClI character set including lower-case characters and high-resolution graphics.

Printing speed is 50 characters per second, with 32 characters per line and 9 lines per vertical inch.

ZX Microdrive - coming soon

Each Microdrive will hold up to 100 K bytes on a single interchangeable microfloppy - with a transfer rate of 16 K bytes per second. And you'll be able to connect up to 8 ZX Microdrives to your ZX Spectrum - they're available later this year, for around $£ 50$.

How to order your $Z \times$ Spectrum

BY PHONE - Access, Barclaycard or Trustcard holders can call 01-200 0200 for personal attention 24 hours a day, every day.

BY FREEPOST - use the coupon below. You can pay by cheque, postal order, Access, Barclaycard or Trustcard. EITHER WAY - please allow up to 28 days for delivery. And there's a 14-day money-back option, of course. We want you to be satisfied beyond doubt - and we have no doubt that you will be.

sir디린 ZX Spectrum

Sinclair Research Ltd,
Stanhope Road, Camberley, Surrey, GU15 3PS. Tel: Camberley (0276) 685311

HOME LIGHTING KITS
These kits contain all nocies sorv components and full
instructions \mathbb{A} are designed to ioploce es standerd wall which and controf up 10300 w . of lighting.

TDR300K Remote Control $\mathbb{E 1 4 . 3 0}$ MK6 Tranamitterfor above $\mathbf{\$ 4 . 2 0}$

DEK $\begin{aligned} & \text { Extention kir for 2-way } \\ & \text { switching for } \mathrm{TO} 300 \mathrm{~K}\end{aligned} \leq 2.00$ LD300K Rotary Controlled $£ 3.50$ Dimmer

3-NOTE DOOR CHIME \downarrow Based on the SAB0600 IC the kh is suppied with all compononts, including loudspeaker, printed circuit boand, a pre-drilled box $(95 \times 71 \times 35 \mathrm{~mm})$ and full instructions. Requires only o PP3 9 V battery and push-swith to complete. AN IDEAL PFOJECT FOR BEGINNERS. Order as XK102.

DISCO LIGHTING KITS DL 1000K This value-for-monay kit features a bi-directional sequence, speed of sequence and frequency of direction change, being variable by means of potentiometers and incorporates a master ${ }^{\text {dimmining control. }}$ Only $£ 14.60$ A lower cost version of the above, featuring undirectional channel sequence with speed variable by means of a pre-set pot. Outputs switched only at mains zero crossing points to raduce radio interference to a minimum.	
onsl opto input DLA1 wing sudio ("beat") light response.	Only $£ 8.00$ 60p

DISPLAYS

Coxe7A 0.5 dual, c.a. Hed 51.8 ol $340 \mathrm{M} 0.1^{-4} 4$ Digitit.c. . 4.50 . FND 5000.5° c.c. 85 s FND 5070.5° c.a. 2 . 8 DP MP469 4-digit 0.5^{*} MP464 4 aigit 0.5
multiplexed C.c. multiplexed c.c.
LED Clock Display 2.20 Liguid Crrssal Disolay, $3^{1 / 2}$ digitit, 05^{-} digits, d.I.1. packege -.............. KL901 9-digit, 7-seg. 0.1^{1} c.e. LED calculator display with red filter 550

LCD $31 / 2$ DIGIT MULTIMETER 16 ranges including DC and AC voltage. DC current and resistance + NPN \& PNP transistor Size $155 \times 88 \times 31 \mathrm{~mm}$. Hequires PP3 ov batlery. ONLY E31.00

TRANSISTORS

VMOS POWER FETS VN10KM 0.5A60v 52p
VN6SAF 2AG60v 88p (Ready Built)

REMOTE CONTROL Published remote control
systems tend to be quite systems land to be quite
complex
diticult ditficult-to-get components and woith equipped lab to get them to work. If this has put vou of making your own system wo
have just the kits for you. Using infra-red, our KITS range trom simple onvoff controllers to coded transmitterirccoivera with 16 on/off outputs or three snslogue outputs for contr.
olling e.g. TV ar Hi Fi olling, o.g., TV or Hi Fi wystoms. The kirs are
sasy to build and simple to sat up-and they asgy to build and simple to sut up-and they
are extremely versatile, controlling anything from garage doors to room lighting just by soding the required output circults. i.e. relays, triacs, etc. $1 /$ you can dasign your own
syatem wa stock a wide range of remate con. trot components at Very compatitue prices. We have campiled a booklet on remote control, containing circuits. hims. data shasts and details of our remote control kits and components. So dan't control yoursethonvelope for your copy TODAYI

24 HOUR CLOCK/APPLIANCE TIMER KIT

Switctes any appliance up to 1 kW on and off at preset times once per day. Kit contains: AY-5-1230 IC
0.5° LED display, mains supply display drivers, switches, LEOs, triacs, PCBs and full finstructions

CT1000K Basic Kit ... $\mathbf{1 4 . 9 0}$ CT 1000 K with white box $(56 / 131 \times 71 \mathrm{~mm})$................................

SHORT FORM CATALOGUE - send SAE $\left(6^{\prime \prime} \times 9^{\prime \prime}\right)$. We also stock Vero, Books, Resistors, Capacitors, Semi-Conductors etc.

Add 55 p postage \& procking $+15 \%$ Oversoas Customers; Add $\mathrm{E1.75}$ (Europe), $\mathrm{Ea.50}$ (elsowhere) for plip. Sond SA.E. for further STOCK DETAILS. Goods by return iubject to avalla bility. OPEN $\begin{aligned} & \text { 9am to } 5 \mathrm{pm} \text { (Mon to Fril } \\ & 10 \mathrm{am} \text { to } 4 \mathrm{pm} \text { (Sot) }\end{aligned}$

fils sivile-TOP Qunlity - IWW IOW PRICE8
 ALL PRICES EXCLUDE VAT No circuit is complete without a call to

ヨ4 = , RON CS EE

DVM/ULTRA SENSITIVE THERMOMETER KIT This new design is based on the ICL7126 (a lower power version of the ICL7106 chip) and a ${ }^{31 / 2}$ digit - 994 :
liquid crystal display. This kit will form the basis of a digital multi-

H94: meter (only a few additional resistors and
switches are required-details supplied ar switches are required-details supplied), or a sansitive digital thermomater $\left(-50^{\circ} \mathrm{C}\right.$ to $+150^{\circ} \mathrm{C}$ reading to $0.1^{\circ} \mathrm{C}$. The basic kit has a sensitivity of 200 mV for a full scale reading. power requirement-giving a 2 yesr typical battery life from a standard 9V PP3 when usad 8 hours a day, 7 days a week.

Price $£ 15.50$

Guess who builds this great

Logic Probe...YOU!tin $\mathbb{E 1 2 . 5 0}$
 With this easy-to-build Logic Probe Kit from GSC and just a

 few hours of easy assembly - thanks to our very descriptive step-by-step manual - you have a full performance logic probe.With it, the logic level in a digital circuit is indicated by light from the Hi or Lo LED; pulses as narrow as 300 nanoseconds are stretched into blinks of the Pulse LED, triggered from either leading edge. You'll be able to probe deeper into logic with the LPK-1, one of the better tools from GSC.

Complete, easy-to-follow instructions help make this a one-night project.

GLOBAL SPECIALTIES CORPORATION

G.S.C. (UK) Limited. Dept. 42 Unit 1. Shire Hill Industrial Estate. Saffron Walden, Essex, CB 11 3AQ. Telephone: Saffron Walden (0799) 21682 Telex: 817477

\section*{| Inc P\&P and 15% VAT |
| :--- |
| LPK-1 $£ 15.52$ |}

I enclose cheque/
PO for E
FREE Catalogue

Phone your order with Access. Barclaycard
or American Express
Card No.
GLOBAL SPECIALITIES CORPORATION. DEPT 42 Unit 1, Shire Hill industrial Estate, Saffron Waiden, Essex.

With Heathkit, you're all set for a great deal. And not just big savings.

Whichever kit you choose, you'll find it easy to build. Simple, but detailed instructions take you through every stage. Everything is included. Even the solder you need Digital Clock is there.

Follow the steps and you'll end up with a handcrafted, well-designed piece of equipment. One you'll be proud of. Because you built it yourself. There are 10 great kits to start you off. An interesting choice of a digital clock to a metal locator, including a short wave listener's receiver, windspeed and direction indicator, digital readout electronic scale and five more useful kits.

All at 30\% off to first-timers. Send for your catalogue right now

To Heath Electronics
(UK) Limited, Dept (EE 9), Bristol Road, Gloucester GL2 6EE.

To start me off, please send me a copy of the Heathkit catalogue. I enclose 28p in stamps.

Metal Locator

Windspeed and Direction Indicator

 HEATHKIT

C.B. EXTRA! FABULOUS FRONTS

FRONT-END ADD-ON DIY KITS

 FOR GREATER FUN FROM YOUR RIGThese are sultable for CB or standard audio use depending on socket type chosen (you will need two sockets-see below).
COMPRESSOR. Really helps avoid blasting your mods and adjacent channels! Preset it for the maximum that your rig
will like and your signal stren top lt.
SET-13a-LS 512.37 FUNNY TALKER MK2. Modifled ring modulator for fascinating metailic and new high-gain pre-amp, voltage stabiliser, and output level control. Add-on kit for MK1 users to convert to the MK2 (box not required). SET-99ADN £3-39 MULTIPLEXER. Are you using several microphone slgnal in up to 6 directions for feeding various extras, and also contains a six-input mixer for recombining the addon signals onto one line. An extra two skts reqd for each to-from direction. MUSICALCALL SIGN. Programme your own Individual 8 -note call sign. Push
button operated for use when you want.
ROGER TWO-GONG SET-121-LS £14•23 ROGER TWO-GONG. Two-tone gonglike sound automatlcally actlvated at the
end of transmission SET-126-LS $£ 12 \cdot 31$ SIGNAL COMPARATOR. Uses special three-colour LEDS to give a visual indication of speech level. Also compares microphone level with levels from other unlts such as Roger Bleeps, efc. Helps avold overmodulation and cross-channel
break-through. SIMPLE REVERB. Enhances the spaclous quality of your transmission, and at full control can produce that 'Monster-from-the-Deep' effect. With control over balance, echo and durallon. The response from listeners is astonishing

SET-122-LS $£ 20.39$

SINGLE ROGER. GIves a single bleep of a preset duration and pltch when the microphone switch is released at the end OPEECH PROEESSOR. Drat SPEECH PROCESSOR. Dramatically mproves the intelngibility of speech slo
nals. We are making many saies on this directly because people have heard it on the airl SET-110-LS $£ 11.77$
VOICE FILTER. For limiting the frequency band-wldth that reaches the rlo from the mlcrophone, he! plng to reduce background noise. Six selectable ranges plus by-pass. SET-131-LS $£ 12.75$ VOICE OPERATED SWITCH. AvoId the danger and inconvenlence of hand-held mobile transmission and let your voice do
the switching for youl SET-123-LS $£ 13.80$ CB POWER SUPPLY. From CB POWER SUPPLY. From the midrange of 13.8 volts, can be set anywhere
between about 10 v and 15 v at approx. 300 mA . Ideal for driving all these various CB add-onsl (Mic skts not regd). SET-130-LS £13.85
CONNECTORS'AVAILABLE

4-pin chas skt	SKT-SC4
4-pin line skt	SKT-LS4
40	

4-pIn chas plug
4-pin ilne plug
5 -pin DIN 180°
5-pIn DIN 180° skt
5 -pin OIN 180° plg
5-pin OIN 180° plg
Std jack skt mono
Std jack plg mono
If connectors ord PKT-US charge, else add 60 p to total.
Sets Include electronle component, PCB instructions electronic components, PCB instructions, box. Prices incl. UK P\&P,
15% VAT. E.\&O.E. Subject to stock, Terms C.W.O. mail order or collection by appointment. Access \& Barclay accepted. Send S.A.E. (9×4 or blgger) for further detalls. Despatch usually 7 days on most
Items. Otherkits in prep. Exports welcome Items. Otherkits in prep. Exporis welcome,
send $£ 1$ for Export list.

PHONOSONICS

DEPT EE29, 22 HIGH STREET, SIDCUP
KENT DA14 6EH. 01-302-6184 MON-FR!
FOUNDED 1972. A DECADE OF DESIGN AND DELIVERY!

(DUE TO POPULAR DEMAND) EXTENDED OFFER!

As an introduction to CRICKLEWOOD ELECTRONICS LTD. (Marshall's Old Shop), 40 Cricklewood Broadway, London NW2 3ET tel: 014520161 Whilst stocks last and only if accompanied by this Ad.
DESOLDERING TOOL

Now every one can afford one of these superb, anodised aluminium high pressure hand desoldering tools at nearly half our normal price.
pressure hand desoldering tools at nearly half our norm
Spare Teflon screw-in noses $75 p+$ VAT.
JAPANESE TRANSISTORS May not be as hard to replace as you think. Phone our equivalent service on 014520161 (everyday except Wednesdays) or write. We have thousands of Transistors, ICs, LEDS in stock, as well as every conceivable type of component- Why not make CRICKLEWOOD ELEC. TRONICS your personal ELECTRONICS HOBBY CENTRE? We have the goods! Now you need no longer grope in the
dark. For a miniature price you can
watch those volts move! See those
resistors jump to life!
THE MIGHTY MINI MULTITESTER 2,000 ohms per volt. DC \& AC Voltage ranges: $10 \mathrm{v}, 50 \mathrm{v}, 250 \mathrm{v}$
Resistance current ranges 100 mA
Resistance ohms $\times 10$, ohms $\times 100 \mathrm{db}$

stale, overload protected, complete with battery, test leads \& instructions. scale, overload protected, complete with battery, test
Usual price $£ 8.65+$ VAT; with this Ad: $£ 4.95+$ VAT.

ORDER FORM

Name.
Address

> Desoldering tools @ $£ 3.85$ Soare Teflon noses $@ .75$

Spare Teflon noses@.75
\ldots. Mighty Mini Testers @ $£ 4.95$
Postage, packing
device 25 p for each additional device
Add Sub tota
enclose cheque no/P.O. no Add 5% VAT
Alternatively please credit my VISA/ACCESS no.
Signature
This offer applies to UK only. Please allow 7 -10 days delivery Overseas customers please do not add VAT but allow enough to cover postage.
TRADE ENQUIRIES WELCOME.
CRICKLEWOOD ELECTRONICS LTD.
40 Cricklewood Broadway, London NW2 3ET tel 014520161

Make the connection with Access

I wish to become a subscriber to Everyday Electronics for one year and enclose cheque/ postal order value.
and receive a regular postal delivery of Everyday Electronics. It's easy, it's straightforward and it's quick. Just use the subscription order form to get your Access card account charged with the price of a subscription or order your subscription through Access on the phone: (01) 8866433 . If you pay by cheque or postal order, use

Complete this portion if you are using your Access card account. I authorise you to debit my Access card account with the above amount.

My Access no. is \square (Block letters please)

Name

Subscription Rates:

UK, Isle of Man, Channel Islands and Irish Republic £11

Overseas £12
Unless you are phoning your order, complete and post this order form to:
Everyday Electronics, 2613 King's Reach Tower, Stamford Street, London SE1 9LS.

TECHNICAL TRAINING IN ELECTRONICS, TELEVISION AND AUDIO

IN YOUR OWN HOME-AT YOUR PACE

ICS can provide the technical knowledge that is so essential to your success, knowledge that will enable you to take advantage of the many opportunities open to the trained man. You study in your own home, in your own time and at your own pace and if you are studying for an examination ICS guarantee coaching until you are successful

City \& Guilds Certificates
Radio Âmateurs
Basic Electronic Engineering (Joint C\&G/ICS)
Certificate Courses
TV and Audio Servicing
Radio \& Amplfier Construction
Electronic Engineering* and Maintenance
Computer Engineering* and Programming Microprocessor Engineering*
TV, Radio and Audio Engineering
Electrical Engineering,* Installation
and Contracting *Quality for IET Associate Membership

Approved by CACC
Member of $A B C C$

POST OR PHONE TODAY FOR FREE BOOKLET

Please send me your FREE School of Electronics Prospectus
Subject of Interest
Name
Âddress

Post to: Dept 268 Y
ICS School of Electronics
160 Stewarts Road
London SW8 4UJ

JOIN UP WITH: HTHFSOTD

Litesold's new 'L' Series soldering fron - now at a bargain price.
Outstanding performance. Lightweight. Easy to maintain.
Elements are enclosed in Stainless Steel shafts,
insulated with mica and ceramic. Non-seize interchangeable bits, choose from 'copper' or 'long life'. A very special tool at a very special 'direct' price. Just $£ 5.58$ for iron fitted with 3.2 mm copper bit. Just $\mathrm{f}_{2} .40$ for 3 spare copper bits (1.6; 2.4: 4.7). A mere \& 4.38 for professional spring standl or buy the lot for $\& 11.12$! and save 10%. All prices inc. VAT P. \& P P.

GuM जr (0) GI
LIGHT SOLDERING LIGHT SOLDERING Please allow 14 days delivery
Write today. Send Cheque/P.O. to Litesold, 97.99 Gloucester Road. Croydon CRO 2DN or phone 01-689 0574 for Barclay card/Access sales.

TITAN TRANSFORMERS AND COMPONENTS

 CENTRAL HALL CHAMBERS, GRIMSBY DN32 TEGMail Order only - Prices include 15% VAT
Inverters-high quality frequency stable 12 volts DC. 240 $\mathrm{AC} / 50 \mathrm{~Hz} / 100,250$ and 300 watt. 24 volts DC/240 AC/ $50 \mathrm{~Hz} / 500$ watt.
Voltage Stabilisers-Coarse or fine regulation. High speed Null switching $170 / 260 \mathrm{~V} / 50 \mathrm{~Hz}$. 100VA to 5 KVA plus other sizes.
Adaptors-Switchable 6-7.5-9V 300MA unregulated 6-7-5-9V 250 MA regulated.
Battery chargers -2 volts \& 6 volts, power supplies and a full range of transformers. Send S.A.E. for details of product you are interested in.

CLASSIFIED

The prepaid rate for classified advertisements is 31 pence per word (minimum 12 words), box number 60 p extra. Semi-display setting £7. 24 per single column centimetre (minimum 2.5 cm). All cheques, postal orders, etc., to be made payable to Everyday Electronics and crossed "Lloyds Bank Ltd.' Treasury
notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Department, Everyday Electronics, Room 2612. IPC Magazines Limited, King's Reach Tower, Stamford St., London SE1 9LS. ITelephone 01-261 5942).

Receivers and Components

P.C. BOARD S.S. $12 \mathrm{in} \times 12 \mathrm{in} 3$ for $£ 2 \cdot 00$, glass fibre P.C board S.S. or D.S. $12 \mathrm{in} \times 12 \mathrm{in}$ $£ 1.00$ each. Add 60 p P\&P any quantity. COOPER, 16 Lodge Road, Hockley, Birmingham B185PN.
POWER SUPPLIES, chassis mounted (unboxed). Output fully variable between 5 Volts and 27 Volts. Maximum current 1 Amp between 11 and 15 Volts. $£ 8$ post paid. RUSSELL, 33 Longridge Avenue, Stalybridge, Cheshire.
BUILD YOURSELF a Valve Radio or Amplifier! We can supply most parts and data Lists 65p or SAE enquiries. New Valyes! ECH81/80 ${ }_{2}$ p, EF80/67p, EF85/69p, EF86/83p, ECC83/86p, EL34/£2 $18^{1_{2}}$ p, EL84/80 ${ }^{2}$ p, EZ80/75p. P\&P/75p. Holders (B7G/PCB, 23p), Transformers, Capacitors, Resistors, etc. Callers welcome. Letchworth Electronic Components, Spirella Building, Bridge Road, Letchworth, Herts SG6 4ET. Tel: (04626) 70354.

SCOOP PURCHASE! TELEPHONES

Black GPO type for extension use. As new only EA .75 each. Carriage $£ 1.75 .2$ for $£ 12$ including carrlage components, padio, electronic CAT? 1000s of new low prices. Send 40 , and receive llst and FREE RECORD SPEED INDICATOR. Try a JUMBO PACK. Contains transistors, caps, resistors, pots, switches and radio and elecironic devices. Over $\boldsymbol{5 0} 5$ for $£ 11$. Carriage $£ 2-50$. MYERS ELECTRONICS. Dept E.E., 12/14 Harper Street, Leeds LS2 7EA. Tel: 452045. Open 9 to 5 . Mon to Sat. Callers welcome.

300 SMALL COMPONENTS, transistors diodes. $£ 1.7071$ bs assorted components $£ 4-25$ lolbs $£ 5 \cdot 75$. Forty assorted 74 series ICs on panel $£ 1 \cdot 70.500$ capacitors $£ 3 \cdot 20$. List 20p refundable. Post 60p. Optionable insurance 20p. J. W. B. RADIO, 2 Barnfield Crescent Sale, Cheshire M33 INL.

Receivers and Components

TURN YOUR SURPLUS capacitors, tran sistors etc., into cash. Contact Coles Harding \& Co., 103 South Brink, Wisbech, Cambs. 0945-584188. Immediate settlement. AERIAL BOOSTERS trebles incoming signal, price $£ 7 \cdot 00$. SAE leaflets. VELCO ELECTRONICS, Ramsbottom, Lancashire BL0 9AG.
CHEAP COMPONENTS SUPPLIED, telephone J. G. Electronics day or evening Medway 250271 for prices and details.

For Sale

NEW BACK ISSUES OF "EVERYDAY ELECTRONICS". Available 85p each Pont Free, cheque or uncrossed PO returned if not in stock. BELL'S TELEVISION SERVICES, 190 Kings Road, Harrogate, Yorkshire. Tel: (0423) 55885.

Veteran \& Vintage
"Sounds VINTAGE"
The only magazine for all vintage sound
enthusiasts, packed with articles by top
writers, covering gramophones, phono-
graphs, 78s, wireless, news, history, re-
vews, etc.
Bi-monthly. Annual subscription £8. 75
(airmail extra). Send 75 p for sample copy.
$\mathbf{2 1 2}$ Lower High St., Watford, Herts.

Educational

COURSES-RADIO AMATEURS EXAMINATION. City and Guilds. Pass this important examination and obtain your licence, with an RRC Home Study Course. For details of this and other courses (GCE, profes sional examinations, etc) write or phoneTHE RAPID RESULTS COLLEGE, DEPT JR2, Tuition House, London SW19 4DS. Tel: 01-947 7272 ($9 \mathrm{am}-5 \mathrm{pm}$) or use our 24 hour Recordacall Service: 01-946.1102 quoting Dept JR2.

Courses

SOUND ENGINEERS

If you're following a career in Sound Engineering or interested in learning all aspects of recording studios you should attend one of weekend studio courses. Topics covered include
A. The basics of studio construction, wiring and materials used.
B. Types of microphone uses, techniques, and limitations.
C. Use of $2^{\prime \prime} 16$ track machine, lining up, remotes, etc.
D. Use of 24 Channel Desk and all controls.
E. Effect equipment, ADT, reverb, Echo, etc.
F. Ancilliary equipment.
G. Mixing and Editing.

There are a maximum number of 8 students on each course and every one is tutored to their own level of knowledge with regard to their needs and interest. The cost is $£ 98$ for the weekend including hotel accommodation overnight. Details: please phone 01-580 4720 or 01-636 5308 during office hours.

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS

Please insert the advertisement below in the next avallable issue of Everyday Electronics for. insertions. I enclose Cheque/P.O. for $£$
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Everyday Electronics)

		-	-
	,	\square	
			-
			\square

NAME

EVERYDAY ELECTRONICS

ADDRESS
Classîfied Advertisements Dept., Room 2612,
King's Reach Tower, Stamford Street, London SE1 BLS
Telephone 11-261 5942
Rate:
31p per word, minimum 12 words. Box No. 5 pextra

Service Sheets

BELL'S TELEVISION SERVICE for service sheets on Radio, TV etc. $£ 1 \cdot 25$ plus SAE Colour TV Service Manuals on request SAE with enquiries to BTS, 190 King's Rd. Harrogate, N. Yorkshire. Tel: 042355885.

Full size Service Sheets by return $£ 2$ each plus L. S.A.E. except C.T.V./ Music Centres from £3. Repair data with circuits named T.V.s or early VHSS/ Phillips Video Recorders $£ 8.50$. L S.A.E. for free 50 p magazine/quotations/etc.

$$
\text { T.I.S. (E.E.), } 76 \text { Churches, Larkhall, }
$$

0698-883334.
Lanarks ML9 1HE.

Books and Puhlications seven precise practical reference books, advance your Electronics Knowledge, $£ 2.00$ each plus $£ 1-50$ P\&P. Microledge, $\mathbf{~ p r o c e s s o r s , ~ M e m o r y , ~ T r a n s i s t o r ~ L o g i c , ~}$ Linear, Fets, C/Mos, Interface Circuits. E. R. Books, West Haven, Marldon TQ3 1SJ.

 Offer open three months only.
Miscellaneous

FIBRE OPTIC GLASS LIGHT GUIDE. $0.064^{\prime \prime}$ distal diameter, $£ 1.50$ metre $0.031^{\prime \prime}$, £1.00 metre. Minimum order $£ 3.00$. Nyewood Equipment, 91 Tilmore Gardens, Petersfield, Hampshire.
BEGINNERS KIT covers RADIO, DIGITAL, OSCILLATORS, TIMERS. Instructions and parts for fifteen projects (except 3 volt battery), £9-50. VYTRON (EE-27), 5 Mariners Drive, Portishead, Bristol BS20 8ET.
FREE MULTTMETER (Brand new)! When you order over $£ 25$ worth of our secondhand Test Gear. For details large SAE to: S.H.E., 5 St Joseph's Park, Ballycruttle, Downpatrick.

THE SCIENTIFIC WIRE COMPANY
 PO Box 30, London E.4. 015311568 EMAMELLED COPPER WIRE

10×10 mtr reels 3 amp PVC cable mixed colours 5.00
Prices include P \& P vat. Orders under $£ 2$ ada 20 p . Prices include P \& P vat. Orders under $£ 2$ add $20 p$.
SAE for list of copper and reslstance wire. Dealer enquirles welcome.

TELETEXT (Oracle/Ceefax) add-on adaptors for your existing television. Only £149.95 inclusive. Also Prestel. Fantastic colour graphics for microcomputers. Avon Office Services (EE), FREEPOST, Bristol BS 10 6BR (0272) 502008 anytime.
ELECTRONIC GAMES. Build your own microchip games from our detailed circuits. SAE for details. GHT Ltd, PO Box DR95, Dover, Kent CT16 1UL
DIGITAL WATCH REPLACEMENT PARTS.
Batteries, displays, backlights, etc. Also reports publications charts. SAE for full list. PROFORDS, Copners Drive, Holmer Green, Bucks HP15 6SGA.

MIGHTY NINETY PACKS

SUPER VALUE PACKS ALL AT 90p each BUY SIX PACKS AND GET A SEVENTH FREE

Please add 20p per pack postage Please allow 7 days delivery.

MN2. 200 \& d-watt Resis. tors.	MN36. 10 sub-min SP. C/O sllde switich.
MN3. 100 \& 2-watt Resls. tors.	MM37. 10 assid audlo conneclors. Din phono etc.
MM4. 50 Wirewound Resls. tors.	MN40. 50 Polystyrene capacltors.
MM5, 100 metal oxide Resl'stors. $1 \%, 2 \%$ and 5%.	
MNS. 12 asstd potentiomotera.	MN45. 35 asstd dlodes Zener, rect, slgnal, swlichIng.
MN7. 25 assid skeleton preset Reslistors.	MN46. 15 asstd Zener diodes.
MNE. 50 asstd Electrolytic Capactiors.	
MNS. 100 asstd Caramic washers, Capacitors Plte. disc, tub	
	MM4. 200 Items 6BA asstd length scraws nuts
Polyester, Polystyrene. Metallised, Radial and Axlal types.	washers.
	MN50. 3 pleces of veroboard useful slzes, min total 35 sq
MN11, 20 asstd Silver MICa Capacitors.	Ineh
	MN51. $10 \times 0.2^{\prime \prime}$ red LED.
MN12. 8 Tantalum Bead Capacltors (useful values).	MN52. $10 \times 0.125^{\prime \prime}$ red LED.
MN13. 20 asatd Transistors. 8C, 2 N Serles + Power otc.	MN53. $20 \times 0.1 \mathrm{mfd} 25 \mathrm{v}$ ceramic dise caps.
MN14.40	
NNIS. 20 min , wire-ended Neans.	MN54. $20 \times 0.01 \mathrm{mfd} 25 \mathrm{v}$ ceramic disc eaps.
MM17. 2 12-volf Relays. Ex nearly new equip.	MN55. 10 watt audlo amp board wheltheult.
MMI9. 15 P.C.B. mounting M.E.S lampholders.	MN58. 1014 pln low profile IC skt DIL.
MN20. 1 240-110 to 12 -volf. 100ma Transformer.	MN57. 1016 pln low profle IC skIt DIL.
MN21, 1 240-110 to 24 -volt 100ma Transformer.	MN60. 10 asstd TTLIC's.
Min22. $82^{\prime \prime}$ Led's with clips, 4 red, 2 yellow, 2 green.	MN83. 50 mixed polyenter eaps C280, Selmens ete.
MM23. 300 assid screws. nuts, washers, self-tappers etc.	MMSA. 5 Preas to make min switches.
MN25. 80 Assoc. rubber grommets.	MNEs. 200 assid veropina, turrettags, PCB pins elc.
MN2s. 75 mts equipment. wire, asstd colours and sizes.	MM69, 4 min push to break swlich.
MN30. $3 \times 2 \mathrm{~m}$ length, 3 core. mains cable.	MN70. PCB with push SW with attractive chrome plastic knobs
MN32. 15 30pF Beehlve trImmers.	$\begin{array}{llllll}\text { BC300, } & 2 & x & \text { BC237, } & 1 & x \\ \text { BC204, } & 4 & x & \text { 1N4002, } & 2 & x\end{array}$
MN34. 25 min glass reed switch.	CMOS 4025, 200 mm fuse holder +22 resistors, capacitors, diodes etc.
Mn35. 10 asstd switches, toggle, slide, micro etc.	MN71. IZN414 RADIO IC.

CHORDGATE LIMITED
 RETAILER SHOPS AT 75 FARRINGDON ROAD. SWINDON, WILTS. Tel. (0793) 33877
 21 DEPTFORD BROADWAY LONDON SE8

BAKER SOW WAITIER AMPLIFIER

 outlets 4, 8, 16 ohm. AC 240 (120 available).
BAKER 150 Watt AMPLIFIER 4 Inputs $\& 89$ Mono Slase 150W \&76. post 22 . Stereo Slave 2185. post 23 DRILL GPEED CONTROLLER LIGHT DIMMER KIT. Easy to build kit. Controis up to 480 wafts AC mains. 23 DELUXE MODEL Ready Buitt, 800 watts. es GTEREO PRE-AMP KIT, All parta to build thla pre-amp. 3 inputs for high, medium or low gain per channel, with volume control and P.C. Boar
multt-way stereo mixers. $\mathbf{2} .95$

SOUND TO LIGHT CONTROL KIT MK II
Complete kit of parts, printed circuit. Mains transformer 3 channels. Up to 1,000 watts each. Whil operate from 200 MV to 100 watta signal source. Sultable for home Hi-Fi 215 200 Watt Rear Reflecticg White Light Bulbs. Ideal Port Disco Lighte. Edison Screw 75 p each or 8 for E 4 or 12 for $E 7 \cdot 60$. MAINA TRANSFORMERS Primary 240 V A.C.
 CHARGER TRANBFORMERS RECTIFIER
 R.C.S. LOUDSPEAKER BARGAINS
$\times 4 \operatorname{in}$. Sin. $7 \times 4 \operatorname{in.~} £ 2 \cdot 50.8 \times$ Sin. $£ 3.00$.

 250 hm . 3 in. 35 ohm. $3 i n .22 \cdot 50$, Many others in stock. Speaker Covering Material Samples 31p. stamps. R.C.S. LOW YOLTAGE STABILISED

POWER PAGE KTT8 $90-100 \mathrm{~mA}$ Post 75p $\mathbf{~} 3.95$ All parta and instructions with Zener dlode printed circuit, a.c. Output voltages available 6 or 7.5 or 9 or 12 V d.c. up to 100 mA . State voltage.
PP BATTERY ELIMINATOR. BRITIBH MADE $\mathbf{~ M} 4.50$ Mains Trantiormer Rectiffer 9 volt 400 man . Post 75 p ,
stablised, with overload cutout. Plastic case slze 5 x 44.50 Sultable Radio/Cassettes. Fully Irolated and Smoothed. DELUXE 8 witched Model $3-6-74+9 \mathrm{~V} 400 \mathrm{ma}$. $87 \cdot 50$. post THE "INBTANT" BULK TAPE ERABER Suitabie for cassettes and all sizes of tape reelk
A.C. mains 200/240V. $\$ 9.50$ Pont A.C. mains 200/240

Tapes, Dises Caseet
HEAD DEMAGNETISER PROBE \&5-00.
A.C. ELECTRIC MOTORS POST 75 p
2 Pole, $240 \mathrm{~V}, 0 \cdot 2$ Amp. Spindle-

2 Pole, $240 \mathrm{~V}, 0.2$ Amp. Spindle-
$1.43 \times 0.212 \mathrm{in}$. \&1.75. 2 Pole
$240 \mathrm{~V}, 0.15$ $240 \mathrm{~V}, 0.15 \mathrm{Amp}$ Double spindle,
$1.75 \times 0.16 \mathrm{in}$. Each El .2 Pole. $1.75, \times 0.16 \mathrm{inp}$. Each 51.2 Pole.
$120 \mathrm{~V}, \mathrm{~S}^{2} \mathrm{Amp}$ Splnule $-0.75 \times$ 0.2 in . Two in series - 240 V . 50 ;
each. Brush Motor. From each. Brush Motor. From a Fooi
Miser $240 \mathrm{~V},-3$ Amp High Speel Mixer $240 \mathrm{~V}, 3$ Anup High Spee
and Powerful Bpindle- 0.5 0.251 n . $£ 2.95$. Good Selectlon.
B.8.R. Motors E4. Garrard Motory 25.

ALUMMIUM CHASSIS 18 2.W.g. Undrilled, 4 glden, riveted corners: $6 \times 4 \times 2 \mathrm{in} . \ell 1 \cdot 48 ; 8 \times 6 \times 2 \mathrm{in} . £ 1 \cdot 80 ; 10 \times 7 \times 2 \mathrm{fin}$.
$£ 2 \cdot 30 ; 14 \times 9 \times 2 \mathrm{ln} . ~ £ 3 \cdot 00 ; 16 \times 6 \times 2 \mathrm{in} . £ 2 \cdot 90 ; 12 \times 3 \times 2 \mathrm{in}$. $11 \cdot 80 ; 12 \times 8 \times 2 t \mathrm{in}$. $22 \cdot 60 ; 16 \times 10 \times 21 \mathrm{in} .23 \cdot 20$. ALI ARGLE BRAOKET $6 \times \pm \times$ Iin. 25 p .
 $\ell 1 \cdot 45 ; 6 \times 4 \mathrm{in} .43 \mathrm{p} ; 12 \times 8 \mathrm{in}$. $81 \cdot 10 ; 10 \times 7 \mathrm{in} .96 \mathrm{p} ; 8 \times 8 \mathrm{in} .72 \mathrm{p}$.
$14 \times 3 \mathrm{in} .72 \mathrm{p} ; 12 \times 5 \mathrm{in} .72 \mathrm{p} ; 16 \times 10 \mathrm{in}$. $81 \cdot 68 ; 16 \times 8 \mathrm{in} .41 \cdot 10$. $14 \times 3 \mathrm{in}$. $2 \mathrm{p} ; 12 \times 5 \mathrm{in}$. $72 \mathrm{p} ; 18 \times 10 \mathrm{in}$. $21 \cdot 68 ; 16 \times 6 \mathrm{in}$. $\mathrm{EL} \cdot 10$;

ALUMINIUM BOXE. MANY OTHER SIZES IN STOCK. $4 \times 21 \times 2 \mathrm{in}$. $21 \cdot 00 ; 8 \times 2 \times 1 \mathrm{in}$. $80 \mathrm{p} ; 6 \times 4 \times 2 \mathrm{in}$. $£ 1.60 ; 8 \times 6 \times$ $3 \operatorname{in} £ 2 \cdot 50 ; 12 \times 5 \times 3$ in $£ 2 \cdot 75: \beta \times 4 \times 3 \operatorname{in} £ 1 \cdot 80 ; 10 \times 7 \times 3 \operatorname{lin} \mathrm{E} 3$. | HIGK VOLTAGE GLECTROLYTICS | $32+32 / 350 \mathrm{~V}$ | $\ldots .50 \mathrm{p}$ | | |
| :---: | :---: | :---: | :---: | :---: |
| $8 / 450 \mathrm{~V}$ | $\ldots .45 \mathrm{p}$ | $50 / 450 \mathrm{~V}$ | $\ldots . .95 \mathrm{p}$ | $32+32 / 500 \mathrm{~V}$ |

 DE LUXE BSR HI-FI AUTOCHANGER 8teren Ceramic Cartridge
Playz 121n.. 10 m. or ecords Auto or Mnnusl A high gize $13 \mathrm{l} \frac{1}{} \times 11$ titn. Above motor board 3ifin.
Below motor board 2 tin.
 P20
Post on
Au
Decks B8R Single Player P204 cueing dence, cerratulc $£ 15$ post $£ 2$
or with ADC. OLM $30 / 3$ Magetic cartride OF with ADC. QLM $30 / 3$ Magnetic cartriage $£ 20$ poat \&

 Ceramic cartridge. Cueing device. Auto stop. $\quad \mathbf{2 0}$ post $£ 2$
B.s. \mathbf{R}. P232. Belt drive, niagnetic cartridge. B.S.R. P232. Belt drive, niagnetic cartridge.
anake arm, cueing device. 12 volt D.C. B.g.R. Single Player. 9 volt D.C. motor, rinn B.S.R. Single Player. 9 £ 18 post $\varepsilon 2$

Radio Component Specialists

 337, WHITEHORSE ROAD, CROYDON, SURREY, U.K. TEL: 01-684 1665

INDEX TO ADVERTISERS

Ambit 598
Bib-Audio 609
Bi-Pak 554
B.K. Electronics Cov. III
B.N.R.E.S. 608
Bradley Marshall 554
Chordgate 615
Cricklewood Electronics.. 612
Dziubas, M... 556
Electronic Hobbies Fair 579
Electronize Design Cov. 11
Electrovalue 606
Enfield Electronics 556
Global Specialties 611
Greenweld 616
Heath-kit 612
Intertext-ICS 613
Lightning Components 616
Literacy 616
Litesold 613
Magenta Electronic Supplies Ltd. 555
Maplin Electronics Cov. IV
Phonosonics 612
R \& T.V. Components 606
Radio Component Specialists 615
Rapid Electronics 557
Sinclair Research 610
Titan Transformers 613
T.K. Electronics 611
Watford Electronics 558
Wilmslow Audio 556, 606

SUMMERTIME SALE!!

All prices include VAT from thls advert (except 5 mm red LFD SCOOP) 1982/3 CATALOGUE Biggerl Betterll Buy onell! Only 75pinc. post-Look what you get! Vouchers worth 60p
1st class reply paid envelope

- Bargaln List with hundreds of surplus
lines
- Huge range of components
- Low, low prices
schools, colleges etc
COMPONENTS
2200 uF 100 V
10 for $£ 5.50$
10 for $£ 5 \cdot 50$
MK 4027 shift register 8 for $£ 6$
MK 4027 shift regist
2708 EPROM £ 50
MIR50 infra red 5 mm LED 30 p
MIR50 infra red 5 mm LED 30
DM160 tuning indicator 50 p
DM160 tuning indicator 50p
AY-5-4007D 24 DIL chip counter/. 4 decade supply £1 seg oip 0.6 MHz . $-12,-5 \mathrm{~V}$ FND501 +
cathode 25p cathode 25p
MAN67io Dual digit Red 0.56 in 7 seg
display. Supplied with pin-out and data fl display. Supplied with pin-out and data $£$
Murata ceramic filter 5.5 MHz 40 p Murata ceramic fir 5 SMHz 40 p 200 for $£ 1$

COMPONENT PACKS
$K 503150$ wirewound resistors, 1 W -12W
Wide range of values, £2 values and voltages £

DISC CERAMICS
0.22 uF 12 V 9 mm dia. Ideal for decoupling 0.5 uF 12 V 15 mm dia. 100 £ $1 \cdot 50 ; 1000$ £12

SWITCH BARGAIN

Push-on, push-off "table lamp" type, rated 2 A 250 V ac. 10 p each, 15 for $£ 1,100$
tor
$£ 5$ for $£ 5$

741 OP-AMP-12 for £1 A recent purchase of Raytheon IC's inamrs, so take advantage while stock last 12 74i's \&1

This beautifuliy made precision instrument is not a toy Or gimmick, it was originally on an Open University course to measure changes in emotlonal balance by detecting small changes in skin reslstance. Full gether with a circult diagram. Supplied complete with probes, leads and conductive jelly. Needs $2 \times 4 \frac{1}{2} V$ batteries. Overall size $155 \times 100 \times 100 \mathrm{~mm}$. The $100-0-100 \mathrm{uA}$ $4^{\text {" }}$ panel neter is worth more than we're asking for the whole unit!! $£ 7.95$
'STARBIRD'
Gives reallstic engine sounds and flashing laser blasts-accelerating engine noise noise when pointed down. Press contact to see flash and hear blast of lasers shooting. PCB tested and worklng complete with speaker and batt. clip (needs PP3)
PCB size $130 \times 600 \mathrm{~m}$. Only $£ 2.95$

1000 RESISTORS $£ 2 \cdot 50$ We've iust purchased another 5 million preformed reslstors, and can make a simitar offer to that made two years ago, at the same pricel!! K523-1000 mixed and 1 W 5% carbon film resistors, pre-
formed for PCB mnto. Enormous range of preferred values 100 for $£ 2.50$; $5000 £ 10$; $20 \mathrm{k} £ 36$
5 mm red LED SCOOP G1 type
25 £1.95 1K £39.50 $\begin{array}{rr}100 & £ 6 \cdot 00 \\ 250 \\ £ 13 \cdot 50\end{array}$ $\begin{array}{lr}\text { 1K } & \text { £39• } \\ \text { 5K } \\ \text { £ } 185 \cdot 00\end{array}$

GREENWELD
 443D Millbrook Road, Southampton, SO1 OHX

为
 LIGHTNING

DO YOU NEED :- Electronic components, Tools, Test Equipment, Cases, Cabinets and Hardware etc. IN A HURRY? THEN YOU NEED:-

LIGHTNING Electronic Components.
WHY?
Because LIGHTNING Strikes out where others fail:-
Express Despatch All Low Prices In Depth Stock All New Guaranteed Goods from Leading Manufacturers With all that going for us, going to you can you really afford to be without a copy of our brand new exciting CATALOGUE? Many Prices Reduced - Many More Stock Lines Send for YOUR Copy Now, ONLY 70p Post Paid
LIGHTNING ELECTRONIC COMPONENTS
84 Birchmoor Road, Birchmoor, Tamworth, Staffs. B78 1AB. (NOTE New Address) Bryand Amen

[^3]
Nor B.K. ELECTRONICS thasime A SOUND CHOICE

PROMPT DELIVERY \star PRICES INCLUDE V.A:T. \star AMPLE STOCKS A PERSONAL SERVICE FROM A SMALL EXPANDING COMPANY

6 piano type keys

STEREO CASSETTE TAPE DECK MODULE Comprising of a top panel and tape mechan ism coupled to a record/play back printed board assembly. Supplied as one complete unit for horizontat installation into cabinet or console of owit and tested units are brand new, ready buitt and tested Features: Three digit tape counter. Auto stop. Six piano type keys, record, rewind, fast forward, play, stop and eject. Automatic ecord level control. Main inputs plus secondary inputs for stereo microphones pede 68 K Output level. 400 mV io both pedt and right hand channels Output eft and 10 K hand thannels. Outpur 1 m wow and flut. 1% Power Supply Wow and 18 V DC 1300 mA Connections quirements. The left and right hand stereo inputs and outputs are via individual scrtened leads, all lerminat with phono plugs phono socket provin Clearance required under 1 pap 1/4in. Supplied requlete with circuit dia 2l/4in. Supplinderting diagram Attractive rack and siluer finish Price $90.70+£ 2.50$
rice $26.10+$ E2.50 postage and packing Supplementary parts for 18 V D.C. powe supply (transformer, bridge rectifier and
smoothing capacitor) 3 .

NEW RANGE QUALITY POWER LOUD SPEAKERS (15", $12^{\prime \prime}$ and $8^{\prime \prime}$). These loudspeakers are ideal for both hi-fi and disco applications. Both the $12^{\prime \prime}$ and 15" units have heavy duty die-cast chassis and aluminium centre domes. All three units have white speaker cones and are fitted with attractive cast aluminium (ground finish) fixing escutcheons. Specification and Price:
15' 100 watt R.M.S. Impedance 8ohm 59 oz . magnet, 2^{\prime} aluminium voice coil. Resonant Frequency 20 Hz , Frequency Response to 2.5 KHz . Sensitivity 97 dB Price $£ 32$ each. £2.50 Packing and Carriage each.

12' 100 watt R.M.S. Impedance 8 ohm, 50 oz . magnet. $2^{\prime \prime}$ aluminium voice coul. Resonant Frequency 25 Hz . Frequency Response to 4 KHz . Sensitivity 95dB. Price £23.70 each. £2.50 Packing and Carriage each
$8^{\prime \prime} 50$ watt R.M.S. Impedance 8 ohm. 20 oz magnet. $1 \frac{1}{\frac{1}{2}}$ aluminium voice coil, Resonant Frequency 40 Hz , Frequency Response to 6 KHz Sensitivity 92 dB . Also available with black cone fitted with black metal protective grill. Price: White cone $\mathbf{8} \mathbf{8} 90$ each. Black cone/grill £9.50 each. P. \& P. £1.25.

PIEZO ELECTRIC TWEETERS - MOTOROLA

Join the Piezo revolution. The low dynamic mass (no voice coil) of a Piezo tweeter produces an improved transient response with a lower distortion level than ordinary dynamic tweeters. As a crossover is not required these units can be added to existing speaker systems of up to 100 watts (more if 2 put in series). FREE EXPLANATORY LEAFLETS SUPPLIED WITH EACH TWEETER.

TYPE 'A' (KSN1036A) 3" round with protec tive wire mesh, ideal for bookshelf and medium sized Hi-Fi speakers. Price $£ 3 \cdot 45$ each.
TYPE 'B' (KSN1005A) 3 $\frac{1}{2}$ " super horn. For general purpose speakers, disco and P.A systems, etc. Price $£ 4 \cdot 35$ each.
TYPE 'C' (KSN6016A) 2" $\times \mathbf{5}^{\prime \prime}$ wide dispersiòn horn. For HI-Fi systems and quality discos, etc. Price $£ 5 \cdot 45$ each.
TYPE 'D' $\left(\right.$ KSN1025A) $2^{\prime \prime} \times 6^{\prime \prime}$ wide dispersion horn. Upper frequency response retained extending down to mid range ($2,000 \mathrm{c} / \mathrm{s}$).
Suitable for Hi .Fi systems and quality discos Price £6.90 each.

TYPE 'E' (KSN1038A) 3z" horn tweeter with attractive siver finish (rim, Suitable monitor systems
TYPE 'F' (KSN1057A) Cased version of type E'. Free standing satellite tweeter. Perfect add on tweeter for conventional loudspeaker systems. Price $£ 10.75$ each.
U.K. post free (or SAE for Piezo leaflets).

1 K-WATT SLIDE DIMMER * Controls loads up to 1 KW . * Compact Size $4 \frac{32^{\prime \prime}}{} \times 1 \frac{3}{16^{\prime \prime}} \times 2 \frac{1}{2}$ ". * Easy snap in fixing through panel/cabinet cut out. * Insulated plastic case.

* Full wave control using 8 amp triac.
* Conforms to BS800.
* Suitable for both resistance and inductive loads. Innumerable applications in industry, the home, and disco's/theatres, etc.
Price $£ 11 \cdot 70$ each +50 p P\&P. (Any quantity)

$$
\begin{aligned}
& 1000 \text { MONO DISCO MIXER- } \\
& \text { compietely built and tested } \\
& \text { employing modern l.C. circuitry. } \\
& \text { Can be mounted vertical or hori- }
\end{aligned}
$$ cabinet, console, etc.

Two turntable inputs (ceramic) plus aux. (tape) and mic. inputs. Headphone monitor socket. Compatible with OMP100 Power Amp. (500 mV O/P) Controls: Microphone falk over switch with separate volume, treble and bass.

Three main fader (level) controls with master volume, treble and bass. Smart black finish. Slze: $535 \times 110 \times 60 \mathrm{~mm}$. Power requirements: 240 V A.C.

B.S.R. P232 TURNTABLE

P232 Turntable $*$ ' S ' shaped tone arm
\star Belt driven \star Aluminium platier
\star Cueing lever $\star 240$ volt AC operation $\left(50 \mathrm{~Hz}_{z}\right)$ \star Cut-out template supplied
*. Used as standard by Hi-Fi and Disco manufacturers
\star Fitted with either a magnetic or ceramic cartridge, please state cartridgerrequired Price $£ 22 \cdot 50+£ 2.50 \mathrm{P} \& \mathrm{P}$.

POWER AMPLIFIER MODULES 100 WATTS R.M.S

Power Amplifier Modules with integral toroidal transformer power supply and hear sink. Sup plied as one complete built and tested uni supply and drive circuit incorporated to power an L.E.D. Vu meter available as an optional extra. SPECIFICATION:
Max. output power 100 watts R.M.S. (OMP 100)
Loads: (Open and short circuit proof) 4-16 ohms Frequency Response: $20 \mathrm{~Hz}-25 \mathrm{KHz} \pm 3 \mathrm{~dB}$ Sensitivity: for 100 watts 500 mV at 10 K
T.H.D.
Size: $360 \times 115 \times 80 \mathrm{~mm}$

Size: $360 \times 11.5 \times 80 \mathrm{~mm}$
Prices: OMP $100 \quad £ 29.99$ P\&P $£ 2.00$
V.u, Meter $\mathbf{£ 6} \mathbf{6} 50$

A PURPOSELY DESIGNED 40 WATT R.M.S. 8 OHM SPEAKER SYSTEM RECENTLY DEVELBELGIUM. Kit comprises a Mullard $8^{\prime \prime}$ Woofer with foam surround and aluminium voice coll. Mullard $3^{\prime \prime}$ high power dome tweeter. B.K.E. bult and rested erossover, based on Mullard circuit combin ing low loss components, glass fibre board and Recommended cabinet size $240 \times 216 \times 445 \mathrm{~mm}$. A superb sound at a relatively low cost
Price $£ 14 \cdot 90+£ 1 \cdot 50$ p \& p per kit.
New 5 " 30 watt mini version of above now avallable Recommended cabinet size $180 \times 155 \times 295 \mathrm{~mm}$ Price $£ 13 \cdot 90+£ 1 \cdot 00$ p \& p perkit.

12" 80 watt R.M.S. loudspeaker
A superb general purpose twin cone loud speaker. 50 oz. magnet. $2^{\prime \prime}$ aluminium voice coil. Rolled surround. Resonant frequency 25 Hz . Frequency response to 13 KHz . Sensitivity 95 dB . Impedance 8 ohm Attractive blue cone with aluminium centre dpme.
Price $£ 17.99$ ea + f2 $50 \mathrm{P} \& \mathrm{P}$

weer B.K. ELECTRONICS

37 Whitehouse Meadows, Eastwood, Leigh-on-Sea, Essex SS9 5TY

Make it with กniapulin

KEYBOARD KIT WITH ELECTRONICS FOR ZX81

* A full size, full travel 43-key keyboard that's simple to add to your $\mathrm{ZX81}$ (no soldering in 2X81).
* Complete with the electronics to make "Shift Lock". "Function" and "Graphics 2 " single key selections making entry far easier.
* Powered from ZX81's own standard power supply - with special adaptor supplied.
* Two colour print for key caps.
* Amazing low price.

Full details in our projects book. Price 60p. Order As XAO3D.
Complete kit for only $£ 19.95$ incl. VAT and carriage. Order As LW72P.

25W STEREO MOSFET AMPLIFIER
A superb new amplifier at a remarkably low price.

* Over 26 W per channel into 8Ω at 1 kHz both channels driven.
* Frequency response 20 Hz to $40 \mathrm{kHz} \pm 1 \mathrm{~dB}$.
* Low distortion, low noise and high reliability power MOSFET output stage.
* Extremely easy to build. Almost everything fits on main pcb, cutting interwiring to just 7 wires Iplus toroidal transtormer and mains lead terminationsl.
* Complete kit contains everything you need including pre drilled and printed chassis and wooden cabinet.
Full details in our projects book. Price 60p. Order As XA03D
Complete kit for only $£ 49.95$ incl. VAT and carriage. Order As LW71N

MAPLIN'S FANTASTIC PROJECTS

Full details in our project books only 60p each.
In Book 1 (XAO1B) 120W rms MOSFET Combo-Amplitier - Universal Timer with 18 program times and 4 outputs • Temperature Gauge - Six Vero Projects
In Book 2 (XA02C) Home Security System - Train Controller for 14 trains on one circuit Stopwatch with multiple modes - Miles per Gallon Meter
In Book 3 (XA03D) ZX81 Keyboard with electronics - Stereo 25W MOSFET Amplifier Doppler Radar Intruder Detector - Remote Control for Train Controller
In Book 4 (XAO4E)* Telephone Exchange expandable up to 32 extensions - Ultrasonic Intruder Detector - Frequency Counter 10 Hz to 650 MHz - Remote Control for 25W Stereo Amplifier
-Projects for book 4 were in an advanced state at the time of writing, but contents may change prior to publication (due 14th Aug 1982).

MORE GREAT KITS FROM MAPLIN

Matinée Organ (see box above)
Spectrum Synthesiser. Full details in book XH56L. Price $\mathbf{£ 1 . 0 0}$
3800 Synthesiser
5600S Synthesiser $\}$ Full details in book XF11M. Price $£ 2.00$
150W Power Amp Kit LW32K. Price £17.95*
75W MOSFET Power Amp Kit LW51F. Price £11.49*
50W Power Amp Kit LW350. Price £14.95*
15W Power Amp Kit YQ43W. Price £6.45*
8W Power Amp Kit LW36P. Price $£ 4.45^{*}$
-Construction details with kit. (Power supply not included - details with kitl.

All mail to:
P.O. Box 3, Rayleigh, Essex SS6 8LR

Tef: Sales (0702) 552911 General (0702) 554155
Shopsat:
159 King St., Hammersmith, London W6. Tel: 01-748 092E 284 London Rd., Westcliff on-Sea, Essex. Tel: (0702) 554000 Lynton Square, Perry Barr, Birmingham. Tel: (021) 3567292 Note: Shops çlosed Mondays

ELECTRONIC SUPPLIES LTD

[^0]: All reasonable precautions are taken to ensure that the advice and data given to readers are reliable. We cannot however guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]: Front cover: courtesy Bert Kempster, Riverside Organ Studios Ltd, Crawley.

[^2]: EIECTROVALUE

 Send for EV Catalogue 82 before Aug. 31 (60 pages A4 - 70p post paid) and we give YOu THREE 70p. REFUND VOUCHERS FREEI Each is valid at any time for spending singly on any one C.W.O. order minimum list value $£ 10$ to quickly represent a useful saving for you. Send 70 p now for your

 ## + USUAL DISCOUNTS + FREE POSTAGE

 ## DISCOUNTS

 5% on orders over $£ 23$ (inc V.A.T)
 10% on orders over 257.50 (inc V.A.T.) on most catalogue items, but not on payments by credit cards. POSTAGE
 Not charged on U.K. C.W.O. orders over £5. 75 inc V.A.T. If less, add 40p handling charge.

[^3]:

 any unanthorlsed cower by wav of Trade, or affed to or as part of any publieation or odvertising, literary or photorial matier whatoonver.

