Easy to build projects for everyone

 unctionks
IDi 3
 (IIT M M CTI I I ASH GUI TRIGEE
 Batd Fature / GB EQUPPIEAT SURVEV

GIECTRONIC IGNITION KII

TOTAL ENERGY DISCHARGE electronic ignition gives all the well known advantages of the best capacitive discharge systems.
PEAK PERFORMANCE — higher output voltage under all conditions.
IMPROVED ECONOMY —, no loss of ignition performance between services.
FIRES FOULED SPARK PLUGS no other system can better the capacitive discharge system's ability to fire fouled plugs.
ACCURATE TIMING —_ prevents contact wear and arcing by reducing load to a few volts and a fraction of an amp.
SMOOTH PERFORMANCE _- immune to contact bounce and similar effects which can cause loss of power and roughness.

PLUS

SUPER POWER SPARK — $3^{1} / 2$ times the energy of ordinary capacitive systems $-31 / 2$ times the power of inductive systems.
OPTIMUM SPARK DURATION 3 times the duration of ordinary capacitive systems - essential for use on modern cars with weak fuel mixtures.
BETTER STARTING _ full spark power even with low battery.
CORRECT SPARK POLARITY unlike most ordinary C.D. systems the correct output polarity is maintained to avoid increased stress on the H.T. system and operate all voltage triggered tachometers.
L.E.D. STATIC TIMING LIGHT for accurate setting of the engine's most important adjustment.
LOW RADIO INTERFERENCE fully suppressed supply and absence of inverter 'spikes' on the output reduces interference to a minimal level.

DESIGNED IN RELIABILITY an inherently more reliable circuit combined with top quality components - plus the 'ultimate insurance' of a changeover switch to revert instantly back to standard ignition.

IN KIT FORM

 it provides a top performance electronic ignition system at less than half the price of competing ready. built systems. The kit includes everything needed, even a length of solder and a tiny tube of heatsink compound. Detailed easy-to follow instructions, complete with circuit diagram, are provided - all you need is a small soldering iron and a few basic tools.
AS REVIEWEDIN

 ELECTRONICS TODAY INTERNATIONAL JUNE ' 81 ISSUE and EVERYDAY ELECTRONICS DECEMBER ' 81 ISSUEFITS ALL NEGATIVE EARTH VEHICLES.

6 or 12 volt, with or without ballast

OPERATES ALL VOLTAGE IMPULSE TACHOMETERS Some older current impulse types (Smiths pre '74) require an adaptor PRICE £2.95

STANDARD CAR KIT £ 14.85
 ASSEMBLED AND TESTED £24.95

TWIN OUTPUT KIT £ 22.94
For MOTOR CYCLES and CARS with iwin ignition systems ASSEMBLED AND TESTED £34.70

TECHNICAL DETAILS

The basic function of a spark ignition system is often lost among claims for longer 'burn times' and other marketing fantasies. It is only necessary to consider that, even in a small engine, the burning fuel releases over 5000 times the energy of the spark, to realise that the spark is only a trigger for the combustion. Once the fuel is ignited the spark is insignificant and has no effect on the rate of combustion. The essential function of the spark is to start that combustion as quickly as possible and that requires a high power spark.

The traditional capacitive discharge system has this high power spark but, due to it's very short spark duration and consequential low spark energy, is incompatible with the weak air/fuel mixtures used in modern cars. Because of this most manufacturers have abandoned capacitive discharge in favour of the cheaper inductive system with it's low power but very long duration spark which guarantees that sooner or later the fuel will ignite. However, a spark lasting $2000 \mu \mathrm{~S}$ at $2000 \mathrm{rev} / \mathrm{min}$. spans 24 degrees and 'later' could mean the actual fuel ignition point is retarded by this amount.

The solution is a very high power, medium duration, spark generated by the TOTAL ENERGY DISCHARGE system. This gives ignition of the weakest mixtures with the minimum of timing delay and variation for a smooth efficient engine.

SUPER POWER DISCHARGE CIRCUIT Abrand new technique prevents energy being reflected back to the storage capacitor, giving $31 / 2$ times the spark energy and 3 times the spark duration of ordinary C.D. systems, generating a spark powerful enough to cause rapid ignition of even the weakest fuel mixtures without the ignition delay as sociated with lower power 'long burn' inductive systems.

HIGH EFFICIENCY INVERTER A high power, regulated inverter provides a 370 volt energy source - powerful enough to store twice the energy of other designs and regulated to provide sufficient output even with a battery down to 4 volts.
PRECISION SPARK TIMING CIRCUIT This circuit removes all unwanted signals caused by contact volt drop, contact shuffle, contact bounce, and external transients which, in many designs, can cause timing errors or damaging un-timed sparks. Only at the correct and precise contact opening is a spark produced. Contact wear is almost eliminated by reducing the contact breaker current to a low level - just sufficient to keep the contacts clean.

TYPICAL SPECIFICATION

	total ENERGY DISCHARGE	ORDINARY CAPACITIVE discharge
SPARK POWER (PEAK)	140 W	90 W
SPARK ENERGY (STORED ENERGY)	36 mJ 135 mJ	10 mJ 65 mJ
SPARK DURATION	$500 \mu \mathrm{~S}$	$160 \mu \mathrm{~S}$
OUTPUT VOLTAGE ILOAD 50pF EQUIVALENT TO CLEAN PLUGS)	38 KV	26 KV
OUTPUT VOLTAGE (LOAD 50pF + $500 \mathrm{~K} \Omega$ EOUIVALENT TO DIRTY PLUGS)	26 KV	17 KV
VOLTAGE RISE TIME TO 20 KV (Load 50pF)	$25 \mu \mathrm{~S}$	$30 \mu \mathrm{~S}$

TOTAL ENERGY 'DISCHARGE should not be confused with low power inductive systems or hybrid so called reactive systems.

PROJECTS
THEORY
NEWS
COMMENT ... POPULAR FEATURES

Guitar Tuner
We are grateful to Sounds Musical Instruments of 124 Shaftesbury Avenue, London W1V 7DJ for the use of their shop and instruments featured on our front cover. The picture shows Chris Paschalides tuning a guitar.

[^0]
PROJECTS

CAMERA OR FLASHGUN TRIGGER by R. A. Penfold 156
Infra-red beam device actuated by moving objects
POCKET TIMER162
Presetta:':le from seconds to hours
GUITAR TUNER by A. P. Donleavy 174
Accurate generation of the six open string notes
ICE WARNING FOR CARS178
Danger alert for the motorist
CAR PROBE by L. A. Privett 184
Invaluable aid for servicing car electrics
HOUSE REGISTER by P. Barber194
For monitoring comings and goings of residents
SERIES
TEACH-IN 82 by O. N. Bishop 164
Part 6: Capacitors and pulse generators
INTRODUCTION TO LOGIC by J. Crowther 180
Part 11: Making other gate functions from N AND and NOR
FEATURES
EDITORIAL155
A Matter of Interest
PLEASE TAKE NOTE 163
Capacitance Meter; Cine Interval Timer \& Frame Counter
SHOP TALK by Dave Barrington171
Product news and component buying
JACK PLUG AND FAMILY by Doug Baker 171
Cartoon 172
A retailer comments
BOOK REVIEWS 172
A selection of recent releases
EVERYDAY NEWS 182
What's happening in the world of electronics
RADIO WORLD by Pat Hawker G3VA 186
Gas Radio, Rechargeable Batteries, Picture Quality
CITIZENS' BAND RADIO IN THE UK by G. Baskerville 188
Guide to legal rigs
SQUARE ONE 198
Beginners' Page: Using Veroboard (stripboard)
NEW PRODUCTS 200
Facts and photos of instruments, equipments and tools
CIRCUIT EXCHANGE201
A forum for readers' ideas

KITS,GOMPONENTS,MIGROS \& PARTS

DISCO LIGHTING KITS

REMOTE CONTROL Published remote control
systems tend to be quite complex, requiring difficult-tooget componen equippediab to cot them io work. If this has pul you off making your own system we have just
the kits for you. Using infra-red, our kits range from simple on/ofl controllers 10 coded Iransmitter/receivers with 16 on/ofl outputs or three analogue outputs for controlling. e. Vor Hi-Fisystems. The hits are casy to build
and simple to set up-and thay are extremely versatile, controlling anything from oaraop doors to room lighting just by adding the required outputcircuits, i, e. relays, triacs, atc. If you can design your own systam we stock a very compelitive prices very compethive prices
control. containing circuite on remote aheets and details of our remote control kits and components. So don't control yourselt orvelope for your copy TODAY!

FIST SERVICE-TQP QUALITY-LOW LOW PRICES

,

THE PERFECT AID FOR "LAZYITIS"
 time but it has also been estimated
that the savings in shoe leather and That the savings in shoe leather and
carpel wear alone would pay for this unil in approximately 1.3697 years or more!

This unit has considerable practical

 uste betecially for the old intim and disabled. It works the conventional dimmer, enabling you do switch the lights on or off. or to you require, by touch or using the hand-held infra red or using the When assembled. it fits into plaster depth box to replace you conventional switch or dimmer TDR300K Dimmer Kit $£ 14.30$ MK6 Transmitter kit $\mathbf{C A} .20$ TO 300 K Touen Dimmer Kif at 8700 and the LD300K rotary controlled Dimmer Kit at onty $£ 3.50$ All kits contain all necessary components and full instructions. You only need a soldering tronand cutters.

24 HOUR CLOCK/APPLIANCE TIMER KIT Switches any appliance up to 1 kW CT1000k. Basic Kit on and off at present times once per CT1000k whth white box ($56 / 131 \times 71 \mathrm{~mm}$) $0.5^{\text {º }}$ LED display. mains supply. Ready Built).
$£ 14.00$
817.40 817.40
822.50 display drivers, switches. LEDs
itiacs, PCBs and full inatructions.

TRIACS

a00V Plastic Cass (tionas) 3A Ticzoso

6 A with trigger 0400sLT 8A isolated tab TXAL228E Dise. 25A TIC263D

DO YOU LONG TO HEAR YOUR DOORBELL RING? You apipasising thrioe ELECTRONIC DOOR J CHIME (not a microprocessor controlied buzz or the
same old ding dong) at a touch of a button This kit, based on a ne integrated circuit, is supplied complete with a printed circuit board. box and requires only box and requires only
9 V battery and push button
common to most households
It may also be switched by logic in such P.A. systems, etc. The unit produces a 150 mW output and draws less than one 1 u from a PP3 battery when the tone ceases Supplied complete with circuit and IDEAL PAOSET FOR

DVM/ULTRA SENSITIVE

 THERMOMETER KITICL713z (alowar power version of
the ICLPIOs chip) and a 3 Kk digit
liguld crystal diaplay. This kit will
form the beals of a digital multiEFLF meter (only a fow additional reaistors and switches are required-detells supplied), or a $+150^{\circ} \mathrm{C}$) digitial thermometer $\left(-50^{\circ} \mathrm{C}\right.$ to $+150{ }^{\circ} \mathrm{C}$) reseding to $0.1^{\circ} \mathrm{C}$. The basic kit has o automatic polarity indication and an ultrang. power requirement-gling a 2 year typlical Gathery lite from a standard ov PPJ when used
8 hours a doy. 7 dars a woek. . . Price $\mathrm{E15.50}$

Just 50 p will bring you the latest Wilmslow Audio 80 page catalogue packed with pictures and specifications of HiFi and PA Speaker Drive Units, Speaker Kits, Cabinet Kits

1000 items for the constructor.

CROSSOVER NETWORKS AND COMPONENTS.

 GRILLES, GRILL FABRICS AND FOAM. PA, GROUP DISCO CABINETS - PLUS MICROPHONES AMPLIFIERS - MIXERS - COMBOS - EFFECTS SPEAKER STANDS AND BRACKETS - IN-CAR SPEAKERS AND BOOSTERS ETC. ETC.* Lowest prices - Largest stocks *
* Expert staff - Sound advice *
* Choose your DIY HiFi Speakers in the comfort * of our listening lounge.
(Customer operated demonstration facilities)
* Ample parking *
* Access . Visa . American Express accepted *

R
0625529599

35/39 Church Street. Wilmlsow, Cheshire SK9 1AS
\rightarrow
Lightning service on telephoned credit card orders!

MUSIO KITS
ALL WITH PRINTED CIRCUIT BOARDS

10\% OFF
10% off U.K. CWO. orders over £20. From this advert until end of month. (5% off for credit cards). This coupon. must accompany order

Noise Limiter	SET97	15.m	Split-Phase Tramolo	SETICe	4
P.E. Minisonic Synth	SET38	181.54	Swithed Treble B	SETE9	
Phager a Vibrato	SETsis	${ }_{36.85}^{21.4}$	Synthesisor Interface	SETH	${ }_{10} 8.8$
Practios Ampliner	SETICE	22.15	Tramolo	SET116	13.47
Rhythm Generator	SET 103 See	- Liste	Tuning Fort	SET46	37.64
Slonal Tracer	SET100	17.54	Voice Oparated Fader	SET30	${ }^{8.85}$
Simple Phase Unit	SET\%	${ }^{10.54}$	Voico-scramb	SET117	
nooth Fuzz	SET91	11.20	Wah-Wah	SET ${ }_{\text {S }}^{\text {SEs }}$	11.80

Sots incluce PCBe, U.K, P. \& P., 13 VAT, Rea, Caps., S'C.s, Pots, Knobs, SW's, Skts., Wira, soldar, Box, Photocopy of Orig. Toxt. Fullor dotalls and more groat kite in our ree Catalogue.
Pricos correct at press, E. A O.E., subject to stock. Dellivery freguently by return but ploase dllow 14 daye.

PHONOSONICS

DEPT EE23, 22 HIGH STREET, SIDCUP, KENT, DA14 6EH 01-302-6184

WATFORD ELECTRONICS
 35 CARDIFF ROAD，WATFORD，HERTS．，ENGLAND MAIL ORDER，CALLERS WELCOME．Tel．Watford $40588 / 9$

ALL DEVICES BRAND NEW，FULL BPEC．ANO FULLY OUARANTEED DRDEAE O．ORCHED BY RETURN OF POST．TERM8 OF DUSINEE B ：CABH／CHIGUE NBTITUTIONS＇DFFICIAL OADERS ACCEPTED．TRADE ANO EXPORT INQUIR
VAT
\qquad

Tranalato
AC125 $\rightarrow \ggg \gg 1$
 $\begin{array}{lllll}\text { CA3085 } & \text { 15 } & \text { LM326N } & 240 & 78 H 05+5 V / 5 A \\ \text { LM300H } & 170 & \text { LM327N } & 270 & \\ \text { LM305H } & 140 & \text { LM } 223 & 35 & 78 H G 5 A+5 V\end{array}$

 JACK8ONS VARIABLE CAPACITORS

 స్オ゙

荡
 fondion
宸酎

GREENWELD

443D MILLBROOK ROAD, SOUTHAMPTON SOI OHX All prices Include VAT-just add 50p post. Tel (0703) 77201

AMAZING! COMPUTER GAMES PCB's FOR PEA. NUTSII
A bulk purchase of PCB's from soveral well known computor games inclucing Eattleahipa, Simon. Logic 8 and Starbirc onable us to offier these of incredibly low prices:

'STARBIRD'

Glves roalistic engine sounde and fiashing Ther module ita pointed uo docine nolas nolse when pointod down, preces contici to cee faeh and hear blate of lasors shooting. PCB lestod and working com

'SIMON'

The object of this geme te to repent correctiy a longer and longer sequence of Includeo) PCB contains chips, switches lampholdors and lampa, and la tosted working, complofe with speeker. Need Proand $\mathrm{f} \times \mathrm{HP11}$, PCB $\mathrm{Al}_{20} 130 \times 130 \mathrm{~mm}$ Only Es.se.

BATTLESHIPS'
Probably one of the most popular elec. tronic comes on the markec. Unfortunataly The doaign makes it improclical to toet the woll function perfeclly. Inatead wo havo toated the sound chip, and sell the board lor its component value only (PCB may be chipped or cractiod): SN7477 sound IC; TMs 1000 u-procasior; balt clipsi R'E. C.
 LOGIC 5 PANEL
Tostod Logic 5 now soid out-but we have but no keybourd. Not tested. Stp. 'MICROVISION'

Cartridges

Thase are amall PCB with microproceszor chlp, designod to plug in to wo den't have any consolesll However. they can be used as an oscillator with i different lireq. outputs Bimply by connoct. Ing battiory and spacker. Tested and working (08 on onc) with pin out

RELAY/TRIAC PANEL

 ately, parta would eost around Esell. aur orice for the pandol, Jut Es.
200 ELECTROLYTICS $84 \cdot 00$ K524 Large variety of valueskoltages.
 ponents, not chuck-outell 200 ê, 1000 17. 5

COMPONENT PACKS
 Ksco 20 asiorted potentiomotore, all types illider. Af 78.
K511 200 small value poly, mica. coramic cape from tow of to opeff. Excellont verraty E1. 20. fow thousend DF. Tol larances from 1% to
 $K 500$
Switch pack-20 dimoront, rocker,
silde, rotary, toggle, puah, miero, ette.
 200 mm . Epp.
1000 RESISTORS $£ 2 \cdot 50$
We've just purchased another 5 million protiormed resistore, and can makio.
oimiles offer to that mado wo yeara ngo, at the eame Ericelli kse3- 1000 mixed t and IW 5% carbon inm reazetors. proformod for PCS mnto. Enormoue range
of proforred values. 1000 lor ES : 5 ; 5000 E10; 20rked.

PANELS

Zsed Panel with 1cese (2N34Y) on amall diodes, capa, resistors, otc. ©p:
2387 Reed relmy panel-contain! $2 \times$ oV reoctis. ${ }^{6} \times 25030$ or 25230 . © $\times 400 \mathrm{~V}$ recte + Re. Sop.
ing 74 series ICs. Lots of difierent gates and complox logic. All ics aro marked with type no. or code for which an
 A504 Elack caia $50 \times 50 \times 7 \mathrm{~mm}$ with octial blate PCB inalide has 24 V reed
relay 200 VA SCR, $4 \times \mathrm{SA}$ 200V recte. rolay, 200
alc. ©ip.

SWITCH BARGAIN
Pueh-on, puash-on "table 1amp" typo,

ratod 2A 250 V ac. 10 p esch, 15 for $\mathrm{El}, 100$ | ratod 2 |
| :--- |
| ior |

PCB HOLDERS

-PCB's may be rotated through 360 degrees and locked at any angle

- simple adjustment for different board sizes
foam pad available enabling a number of components to be inserted prior to soldering

CNC 6

PCB Capacity: $1^{\prime \prime} \times 7^{\prime \prime}$
PCB's held by spring clips which also allow the holder to be used as a small soldering jig.
PRICE E13. 60 INC. VAT

CNC 9

PCB Capacity: $8^{\prime \prime} \times 8^{\prime \prime}$
PCB's held by adjustable Vee Clamps which eliminate the risk of damage to the faca sides of the PCB and allow a high degree of accessibility.
PRICE £15.\% INC, VAT

FOAM PAD

Size: $8^{\prime \prime} \times 8^{\prime \prime}$ Clips onto Holder. PRICE ©5.50 INC. VAT
available direct from the manufacturer. please aod EI 50 TO COVER POST AND PACKING.

PLEASE ALLOW 14 DAYS FOR DELIVERY
CARLTON NICHOL \& CO. LTD.,

LIMITED OFFER!

As an introduction to CRICKLEWOOD ELECTRONICS LTD., (Marthall: Old Shop), 40 Cricklowood Broadway, London NWZ 3ET tel: 014520161 Whilst stocks last and only if accompanied by this Ad.

DESOLDERING TOOL

Now every one can afford one of thase superb, blue anodised aluminium high pressure hand desoldering tools at nearly half our normal price. Normal Price $66 \cdot 50+$ VAT with this ad $\mathbb{2} 3 \cdot 85+$ VAT.
5pare Teflon screw-in noses 75p + VAT.
JAPANESE TRANSISTORS May not be as hard to replace as you think. Phone our equivalent servies on O1 4520161 (everyday except Wednesdeys) or write. We have thousands of Transistors, ICs, LEDS in stock, ss well as every conceiveble type of component-Why not make CRICKLEWOOD ELEC. TRONICS your personal ELECTRONICS HOBBY CENTRE? We have the goods!
Now you need no longer grope in the dark. For a miniature price you can resistors jump to life!
THE MIGHTY MINI MULTI. TESTER 2,000 ohms per volt. DC a AC Voleage ranses: $10 \mathrm{v}, 50 \mathrm{v}, 250 \mathrm{v}$, 1000 . DC current ranges 100 mA Resistance ohms $\times 10$, ohms $\times 100 \mathrm{db}$
from -10 db to +22 db . Mirror arc from - lodb to +22 db . Mirror arc scale, overload protected, complete with batery, rest leads a instructions.
Usual price $\mathbf{t 8} \cdot 65+V A T$, with this Ad: $4.95+$ VAT Usual price $\mathbf{2 8} \cdot \mathbf{6 S}$ + VAT: with this Ad: $\mathbf{6 4} \cdot 95$ +VAT

ORDER FORM

78477 Sound IC $51 \cdot 25$.
2108A RAM \& for 53.
w 4 Tam $6+$ volit reg iti. 6 . UATOMG - volt reg it - 2 T .

ELECTRO-DIAL
Eloctrical combination loch-for maximum security-pick proaf. It milion combinanumber. lett to a second number, then rlght agaln to - third number. Only when this has been compleled in the correct Thesuse can be used to operate a rolay or solenold. Overall dia. $63 \mathrm{~mm} \times 30 \mathrm{~mm}$ deep

Name.
Desoldaring cools e $83 \cdot 85$
5pare Teflon noses $8 \cdot 75$
Mighty Mini Testers © $\mathbf{C 4 . 9 5}$
Postage, packing and Insurance 68 60p per one
device 25 p for each additional device
5ub total
Add 15% VAT

\square

I enclose cheque no/P.O. no.
Alternativel
This offer applies to UK only. Plase.. ers please don ar allow enough to cover postage.

CRICKLEWOOD ELECTRONICS LTD.
40 Cricklowood Eroadway, London NW2 3ET tel 014520161

Fiapid
 Tel: 0322863494
 Hillcroft House
 Station Road
 Eynsford Kent DA4 OEJ

OPTO t 3 mm

Cllos to sult
Rectan
$\begin{aligned} & \text { tred } \\ & \text { Green }\end{aligned}$
\mathbf{Y}
Green
Yellow
Yen 12 p
17 p
170

 $\star 5 \mathrm{~mm}$
+5 mm
TIL32
TILT ${ }_{i}^{17 \mathrm{D}} \mathrm{D}$
Seven Seamen
Com. cathode

Allseven segment displays are supplied with
connection details.

CAPACITORS

 9p; 0.33 130; 0.413 p; $0.6820 \mathrm{p} ; 1$.
Eiectrolytic. Radial or Axial leads.
$0.41 / 63 \mathrm{~V}, 1 / 6 \mathrm{~V}, 2 \cdot 2 / 63 \mathrm{~V}, 7 / 73 \mathrm{~V}, 10 / 2$

Polyester, Siemens PCB
 1u, $33 \mathrm{p}: 2 \mathrm{iv2} 50 \mathrm{p}$.
 S8/6V, $40 \mathrm{p} ; 100 / 10 \mathrm{~V}, 90 \mathrm{p}$.
${ }_{220}$ ce-0.01u. sov type. $3 p$ each.
Polystyrene. 5% tolerance.
$10 \mathrm{p}-1000 \mathrm{p} 6 \mathrm{p} .1500 \mathrm{p}-4700 \mathrm{p}$ ip. $6800 \mathrm{p}-0.01210 \mathrm{D}$
Trimmers. Mulard 808 serles.
$2-10 \mathrm{DF}$ 22p. 2-22 DF 30 p . 5 -5-6

TRANSFORMERS

Please add carriage charges to our normal postage charge Minlature mains.
$606 \mathrm{~V}, 909 \mathrm{~V}, 12012$
$606 \mathrm{~V}, 909 \mathrm{~V}, 12012 \mathrm{~V}$ all 100 mA 100 p each
High quality, Spill bobbin cons truc 10 l
$6 \mathrm{VA} \quad 0-6,0-6 \Leftrightarrow 0.5 \mathrm{~A} ; 0-9,0-9 \mathrm{~V}$ (4) $0.4 \mathrm{~A} 0-12,0-12 \mathrm{~V}$ (mis) 0.3 AA .

 $50 \mathrm{VA} 0-12,0-12 \mathrm{~V}$ in 2A: $0-15,0-15 \mathrm{~V}$ (1.5A; 400 D each

SWITCHES Submin. Togale
 CRYSTALS

Submin. Toggle
SPST $55 p$ SPOT 60p
Miniture
Miniature togole
$\begin{array}{ll}\text { SPDT 10D SPDT centre off } & 00 \mathrm{p} \\ \text { OPDT }\end{array}$
Standard togole DPDT 48 p
Miniature DPDT slide 12p
\& Puin to make 12p Pue
break 22p
Rotary type adjustable stop
1P12W, 2P6W, 3P4W, 4P3W
DIL switches
4 SPST BOD
SPST
CABLES
20 metre pack single core ent coloura
Speaker cable
$\begin{array}{ll}\text { Speaker cable } & 10 \mathrm{p} / \mathrm{m} \\ \text { Standard screened } & \\ \text { 15p/m }\end{array}$
Twinscreened $\quad 15 \mathrm{p} / \mathrm{m}$
$\begin{array}{ll}2.5 \mathrm{~A} 3 \text { core malns } & \begin{array}{ll}23 \mathrm{p} / \mathrm{m} \\ 10 \text { way rlbbon } & 55 \mathrm{p} / \mathrm{m}\end{array} \\ \begin{array}{ll}20\end{array}\end{array}$
10 way ribbon
20 way ribbon
$120 \mathrm{p} / \mathrm{m}$
8 SPST 100p

PCB MATERIALS
Alfac tranafer sheete
Dalo etch resiet
Flbre glase board $3 \cdot 75 \times 8^{\prime \prime}$
Ferric Chloride 250 ml bottle
BY127
OA477
OA90
OA91
OAR20
OA202
IN14
NIN4

\section*{ES} $\begin{array}{ll}127 & 12 p \\ 470 & 10 p\end{array}$ A91 | $8 p$ | |
| :--- | :--- |
| 700 | $7 p$ | 202 ip (NATAB ${ }_{2 \mathrm{D}}^{4 \mathrm{D}}$

CRYSTALS			
100 KHz	290 p	6.144 M	180 p
200 KHz	370 p	7.00 M	250 p
1 MHz	300 p	8.0 M	170 p
1.00 M	370 p	10.0 M	180 p
1.8432 M	300 p	12.0 M	281 p
2.0 M	270 p	16.0 M	240 p
2.4576 M	220 p	18.0 M	240 p
3.276 M	240 p	18.432 M	220 p
3.579 M	120 p	19.968 M	300 p
4.0 M	150 p	26.69 M	300 p
4.194 M	150 p	27.145 M	240 p
4.43 M	125 p	38.667 M	320 p
5.0 M	200 p	48.0 M	220 p
6.0 M	200 p	116 M	300 p

Boxes

Oimensions in inches. Aluminium

BRIDGE RECTIFIERS

1A $50 V$	22	4A 400 V	35		
1A	$400 V$	35	$6 A$	$100 V$	30
$2 A$	$200 V$	40	$6 A$	$200 V$	80
$2 A$	$00 V$	45	$6 A A$	$400 V$	55

ORDERING INFORMATION
All prices exclude VAT. Please add to total order. Please add 50 p carrlage on all orders
under cio in value. Send cash/cheque/PO or Accesse/Visa number with your order. Our entarged catalogue costs Just 42 p (free with orders over £5). Send SAE for discounts Ilst. Official orders welcome from colleges, HARDWARE
PP3 Battery clips
Red or bointer crocodife cllps Pair Ultrasonles
TO280 twlisted vane he atsink
20 mm panel fuseholder
20 mm panel fustholder
TOIs trantistor sochet
84 mm os ohm speaker
6 mm 8 ohm speaker

VERO Verobloc 350p Size 0.1 matrix
$\begin{array}{ll}5 \times 1{ }^{11} & 22 p \\ 5 \times 3.75^{\prime \prime} & 75 p\end{array}$
$\begin{array}{ll}2.5 \times 3.75^{\prime \prime} & 75 p \\ 2.5 \times 5^{\prime \prime} & \text { 150 } \\ & \end{array}$
$3.75 \times 5^{n} \quad 15 p$
$\checkmark 18$ board 140p
eropln der 100 Oingle sided 500

LS20

COMPONENT KITS

An ideal opportunity for the beginner or the experlenced constructor to obtain a wide range of components at reduced prices.
iW 5% Resistor Kit. Contains 10 of each value form 4.7 (650 resistors) 480 p . Conlains 10 to 1 M Ceramic Capacltor KIt . Contalins 5 of each value from 22p to 0.01 (135 capa). 370 p .
Polyester Capachtor Kit. Contains 5 of each value from 0.01 to luf (65 caps, $575 p$ each.
presels). 425 each. 130 Items. 140 p
$256 \mathrm{BA} \mathrm{t}^{\prime \prime}$ bolts

$2568 A t "$ bolts	$254 \mathrm{BA} 1 "$ bo
506 BA nuts	506 BA nuts
506 BA wheners	506 BA wesh

$$
\begin{array}{l|l|l}
\star & \text { VNIOKMM } & \text { 2N2906A } \\
\text { VN45AF } & \text { 75 } & 2 N 2907 \\
\text { 2N2907A }
\end{array}
$$

SOLDERING IRONS
Antex CX $17 W$ Soldering Iron 420 p
2.3 mm and 4.7 mm bils to 2.3 mm and 4.7 mm bits to sult 55 p
CX 17 W element
180 p CX 17 W element
Antex $\times 25$ Soldering Iron Antex $\times 25$ Soldering iron
3.3 mm and 4.7 mm bits to sult
$\times 2525 \mathrm{~W}$ element Solder pump desoldering too Spare nozzie for above
10 metres 22 swo solde

CAMBRIDGE LEARNING SELF-INSTRUCTION COURSES

A PRACTICAL DIGITAL ELECTRONIC KIT FOR设 LESS THAN $£ 20$ 號

SUITABLE FOR BEGINNERS

Learn the wonders of digital electronics and see how quickly you are designing your own circuits. The kit contains: seven $L S$ TTL integrated circuits, breadboard, LEDs, and all the apacitors, and uther components to OIL switches, resistors, eapaits, plus a very componems to build interesting digital circuits, plus and horoughly tested instruction manual (also available sepaonly fig-90p inc VAT and p\&p. This course is for true beginners:
needs no soldering iron

asks plenty of questions

helpless

subsystem checking.
the only extra you need is a $4 t \mathrm{~V}$ battery (Ever Ready 1289, or similar). or a siabilised 5 V power supply. millions of differen circuits. This course teaches boolean logic, gating, R-S and J-K Look oup for our supplementary kits which will demonstrate advanced arithmetic circuits. opto-electronics. 7-segment Other self-instruction courses from Cambridge Learning Lid nelude
COMPUTER PROGRAMMING IN BASIC C10.50
DIGITAL COMPUTER LOGIC AND ELECTRONICS \& 8.50
DESIGN OF DIGITAL SYSTEMS
ع14.00
Please send for full detalls (see coupon below)

gUARANTEE

alisfied. vour monev will be refunded upon refurn of the
CAMBRIDGE LEARNING LIMITED, UNIT 103, RIVERMILL SITE FREEPOST, ST IVES, CAMBS, PE17 4BR, ENGLANL.
TELEPHONE: ST IVES (0480) 67446 VAT No. 313026022
please ask for prepayment invoicel. Giro A/6 No 2789159.

SUPERKIT(S) ¢19.90
Free detalls of your other self-instruction courses.
1 enclose a cheque/PO payable to Cambridge Learning Lid for \mathbb{E}. . (*delete where applicable)
Please charge my
Access / American Express / Barclaycard / Diners Club Eurocard / Visa / Mastercharge / Trusicard Expiry Date............ Credit Card No

Signature.

Telephone orders from card holders accepted on 048067666 Overseas customers (including Eire) should send a bank draft in sterling drawn on a London bank, or quote credit card number. Address

Cambridge Learning Limited, UNIT 103, Rivermill Site, FREEPOST, St Ives. Huntingdon, Cambs, PE17 4BR, England. (Registered in England No. 1328762)

BHPAK

CB users. Home base POWER SUPPLY 3A Rugged Powerful British Made fearures - Sate 3 Amp oderation - 13.8V Full epultated Electionic shorl crucuit \& overtos prolected Latest rechnology IC desion - Alractive compact case Competitively priceo SPECIFICATIONS input vollage-240 Vac. 50 Hz - Outor vollage - 138 V dc. 51% Maximum wilt mains ingu: varation $=10 \% 10200.2 .5 A$. Ounput curtent - 0-3Amp. Riocle - less than 2 mV up to

8 Bit MICROPROCESSOR National INSSO88OAN to Pin DIL N. Channel Silicon GATE MOS TECHNOLOGY As used in Nationals N8080 Micro Computer Family instruction Cycle Time 2 uS Supplied with functiona Block Diagram BRAND NEW :
NOT seconds or reclaims
 OUR PRICE ONIYE 15.00 OROER nO $3 G A$ B Rigs end Accessortes in stock. Send

TECASBOTY

The Electronic Components and Semiconductor Bargain of the Year. A host ol Electronic components including potentiometers - rotary and slider, presels - horizontal and verfical Resistors of mixed values 220hms $102 \mathrm{ML}-1 / 8102$ Wath A comprehensive range of capacitors including electrolytic and polyester types plus disc ceramics etcetera. Audio plugs and sockels of various types plus switches, fuses, heatsinks, wire, nuts/bolls gromets. cable clips and lyes. knobs and P.C. Board. Then add to that 100 Semiconductors o include transislors. diodes. SCR's opto's. all of which are current everyday usable device In all a Fantastic Parcel No rubbish all identiliabie and valued in current catalogues al well r Fight Against Inflation

- Beat the Budget
Down wilh Deoression

JUST £6.50

Fantastic Audio Bargains

COMPLETE

AUDIO CHASSIS
STEREO 30 Complete 7 watt per channet Ster eo amp board = includes amps preamp. power supphy, fromt anows ind irmsiarmer

Almost1/2 PRICE

£12.50

MONO PRE-AMPLIFIERS MM100 suntabie for disco mixe. MM1006 suitade fol gutar preamp mixet.
The MMIOG and MM100G mono pre armifiers are compatiole with the AL GO A 80 AL 120 and AL 250 powe mollifiers and their associated power supplese MM1co Suppiy vortoge $40-65 \mathrm{v}$ inputs. lave Mag P.U. Microphone Mar outpur 500 m giver muluoc Supply votage 40.65w inpuas 2 Guitias. Micraphones Max output 500 mm

112.15 £10

1 Amp SILICON RECTIFIERS Glass Type similar IN 4000 SERIES IN4007-IN4004 50 - 500 v - unceded - you select tor vi IS All dertect devices - NO duos Min Sov 50 for $£ 1.00$ - worn wouble ORDER NO SX76
 Lock tit leads- caded CV76w Smilar 10 BC 147 - BC107-ZT89 NLL NEW VCE TON IC500m

Silicon General Purpose PWP Transislors T0-5 Case Lock tif leads coded CV9507 sumiar 2N2905A io BFX30 VC 60 IC 600 m A Min He 50 ALL NEW' PRICE 82.50 ©4 00 51900 क35.00 Order as cveso?

Silicon NPN'L'TypeTransitors TO-92 Plastic centre collector Like BC182L - 183L - 184L
Like BC182L $-183 \mathrm{~L}-184 \mathrm{~L}$
VCBO 45 VCEO 30 IC 200 mA He $100-400$
ALL perifect devices - uncodec OROER AS SXIB3L
$\begin{array}{llll} & £ 1.50 & £ 2.50 & £ 10.00\end{array} \quad £ 17.00$
PNP SILICON TRANSISTORS Similat TK $\times 500$ - ZTX214 - E-LLine
VCEO 40 VCBO 35 Ic 300 mA Hie $50-400$ Brand New - Uncoded - Pelect Devices 50 off 100 on 500 of 1000 of $\begin{array}{lllll} & £ 2.00 & £ 3.50 & £ 15.00 & £ 25.00\end{array}$ Order as ZXXPNP

Ine cour cedit catd. Ring us on ware 3182 now and ret rour acei men laster. Goocts namalh sent 2 nd Cles man
 Toul Posuge sed 500 per Toul accer

EHFAK EARCANS

T21 SCRE W DRIVER SET
6 precision screworivers in hingee Diastic
case sizes -08142.24 . ${ }_{5}$ 53 1 NUT DRIVER SET
5precision nu1 Oivivers in thinged plastic case
Wilt lurning rod
E1.75
Sires -335445 and 5 mm
ST41 TOOL SET
5 precision insirunients in lunged plasic case Crosspoint (Phillips) screwdivers
152 and 25 mm © 1.75

5\%5 WRENCH SET

5 precision wrenches in hinged dasasic case BUY ALL FOUR SETS 5
HEX KEY SET FREE HEX KEY SET ON RING Sizes 15.2 .25 .3
4.5 .55 and 6 mm Made of hargened steel HX/1 $£ 1.25$

mini vice

This small cast rion quality made vice will clamp on to any bench or table having a max thickness of $1 / \frac{1}{2}$ - The 2% " laws open to of 1\%. Approx size $80 \times 120 \times 66 \mathrm{~mm}$
Bi. Pak 's Mini Vice at

BI-PAK SOLDER DESOLDER KIT

Kif comprises OROER NO SX80
I High Ouallity 40 watl General Purpos I High Oualify 40 watt General Purpose Lighlweight Soldering
$\left.3 / 16^{\circ} 147 \mathrm{~mm}\right)$ bit
Oualty Oesoldiering pump High Suction wit
autiomatic ejection Knutieo anti- corrosive automatic efeccion Knutiz
Casing and lellion nozzte
15 metres of De-soldering braic on plastic oispenser
2 yos (1 83m) Resin Cored Solder on Card 1 Heal Shunl 100 t tweezer Type Tolar Retan value over $\mathbf{E} 12.00$ OUR SPECIAL KIT PRICE E 0.95

The Third and Fourth Hand...

but have never got This helplul unit with hoo mounteo horizontatiy on Heavy Base. Crocodile clips
Hlached to rod ends Six Dall \& sockel yonts altached to rod ends Six ball \& sockel joints give infinite variation and positions through 360° aiso avallable athached to Roc a $2^{1 / / 2}$ diam magnifier giving 25 x magnificato magniliet Our Price with magnitier as illustrated OROER NO T402 5.50 Nithout magnilier OROER NO 1400 ¢4.75

BRAND NEW LCD DISPLAY MULTITESTER.

 RE 188 mLCO 10 MEGOHM INPUT IMPE OANCE - 3 /h digit * 16 ranges plus MFE test lacility PNP and NPN Iransistors 'Aulo zero. au polarily ${ }^{\circ}$ Single handed pushbutton operation * Over range indication * 125 mm ($\%$-inchilarge LCO readout •Grode check - Fusicircuit protection - Test leads battery and instructions included
Max indication 1999 or - 1999
Polarily indication Negative only Positive readings appea: withoul + sign
Input impedance in Megotms
Zeroadjusi Automatic
Sampling time $\quad 250$ milliseconds
Temperature range $-5^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
Temperature range $-5^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
Hower Supply $\quad 1 \times \mathrm{PP} 3$ or equivatent 9 v

| | battery
 Consumption
 20 mW
 Size

 RivGS
 $\quad 155 \times 88 \times 31 \mathrm{~mm}$ |
| :--- | :--- | RANGES

DC Voltage 0.20 JmV
$0.2 \cdot 20-200 \cdot 1000 \mathrm{~V}$ Acc
Acc 12% OC Current $0.2-20-200 \mathrm{~mA} 0.10$ A AcC Resistance 0.2.20-200K ohms 0.2 Megonms Acc 1% BI. PAK VERY LOWEST POSS PRICE \&35.00

EXPERIMENTOR BOXES - ALUMINIUM PLASTIC ALUMINIUM BOXES
Made with Bright Aluminuum folded consifuction with deep tid and screws SI2E "L W H OrderNo

Plastic Boxes

Flanged lid fixing screws into orass bushes
SIZE ${ }^{\circ} \mathrm{L} \quad \mathrm{W}$ H Order No Price $\begin{array}{ccccc}\text { SIZE }{ }^{\circ} \mathrm{L} & \mathrm{W} & \text { H } & \text { Order No } & \text { Price } \\ 4 & 2 & -1 & 141 & \mathbf{~} 1.00\end{array}$

MW398 NI-CAD CHAROER
Universal Ni. Cad battery charger All plasic case with litt up hid Charge/ Test Switch LEO indicators at each of the five charging points

$\begin{array}{ll}\text { Charges - } & \text { Power - } \\ \text { PP3 (9V) } & 220.240 \mathrm{VAC}\end{array}$
U12 (1 SV penlite) 0 ms
$U 11\left(15 V^{\circ} C^{-1}\right) \quad 210 \times 100 \times 50 \mathrm{~mm}$
ع. 6.95
POWER SUPPLY OUR PRICE E 3.25 Power supply fits directly inio 13 amp socket Fused for satety Polarity reversing socket Voltage swich Lead with multi plug Input - 240V AC 50 Hz Output $75.9 \& 12 \mathrm{VDC}$ Rating -300 ma MW88

With Heathkit, you're all set for a great deal. And not just big savings.

Whichever kit you choose, you'll find it easy to build. Simple, but detailed instructions take you through every stage. Everything is included. Even the solder you need Digital Clock
is there.
Follow the steps and you'llend up with a handcrafted, well-designed piece of equipment. One you'll be proud of. Because you built it yourself. There are 10 great kits to start you off. An interesting choice of a digital clock to a metal locator, including a short wave listener's receiver, windspeed and direction indicator, digital readout electronic scale and five more useful kits.

All at 30\% off to first-timers. Send for your catalogue right now

(UK) Limited, Dept (EE 3), Bristol Road, Gloucester GL2 6EE.

EE 3
To start me off, please send me a copy of the Heathkit catalogue. 1 enclose 28p in stamps.

Metal Locator

Windspeed and Direction Indicator

Hexily Youbuildonourexperience HEATHKIT

E.E. PROJECT KITS

Make us your No. 1 SUPPLIER OF KITS and COMPONENTS for E.E. Projects. We supply caretully selected sets of parts to enable you to construct E.E. projects. Kits Include ALL drlifed and roller tinned) or Veroboard are, of course. Included as specified in the original article, we even Include nuts, acrews and I.C. sockets. PRICES INCLUDE CASES Unless other wise siated. BATTERIES ARE NOT INCLUDED. COMPONENT SHEET INCLUDED. Il you do not have the issue of E.E. which Includes the prolect-you will need to order

SIMPLE STABILISED POWER SUPPLY, Jan. 82. E.22.98
SIREN MODULE. Jan. 8 g. £5.21.
MODEL TRAIN CHUFFER. Jan. 82 E7.73
PEGBOARD GAME. Dec. 81. I ses nails S6. ${ }^{36}$ SARE SIX. DeC. 81. E4-40.
RACETRACK SPEEDO. Dec. 81 . £25-40 GUITARADAPTOR. Dec. 81. 1.532 HEADS OR TAILS GAME. Dec. 81 ELEC
ELECTRONIC IGNITION. Nov. 81,
SIMPLEINFRA RED REMOTE CON SROL. Nov. 81. E1599.
LOUDHAILER. Nov. 81. less handle. \&11-93.
HORN SPEAKER. £6. 75 extra
PRESSURE MAT TRIGGER ALARM Nov. 81. ©5-16 less mats. EXPERIMENTER CRYSTAL SET Nov. 81. Less aerial, es•60
Headphones. $22 \cdot 98$ extra
CAPACITANCEMETER. Oct. 81. \&21-98 -POPULAR DESIGNS. Ott
SOPULAR DESIGNS. Oct. SNAMP LOCATOR E1-51 OAMP MOISE HMITOR TAPE NOISE LMMITOR. E4.28.
HEADS AND TAILS GAME. E2. 36 CONTINUITY TESTER. ES.70. PHOTO FLASH SLAVE, E3.24 FUZZ BOX. E6.82.
OPTO ALARM. EE 34
SOIL MOISTURE UNIT, £5.43.
ICE ALARM. E7.36.
MODEL RAILWAY SPEED CON. TROLLER. Sept. 81. E13-46.
O.12V POWERSUPPLY.Sept. $81, ~ £ 18.34$ CMOS CAR SECURITY ALARM CMOS CAR SECURITY ALARM CMOS DIE S
LEO SANDGLASS. AUg. 81, £7-9t. WHEEL OF FORTUNE. Aug. 81, lesi wire, panal and case. E.39-98
CMOS METRONOME. Aug. 81, £7-70. COMBINATION LOCK. July 81. Less case. kis 30 .
BURGLAR ALARM SYSTEM. June 81 less bell, loop \& Mic'e. £.35-30.
TAPE AUTO START. June 81. E11. 96 LOOP AERIALCRYSTAL. SET. June 81 55.47.

LIGHTS REMINDER AND IGNITION LOCATOR E.E. May 81 . £5-24. Sol MoIs
T.V. INTERFERENCE FILTERS E.E. May 8\%. LOW PASS less tinplate $\mathbf{E 2}$. 1 . HIGHPASS $\mathrm{El}^{1.56}$.
GUITAR HEADPHONE AMPLIFIER E.E. May 81, £3-96.

PHONE BELL REPEATER/BABY ALARM E.E. May B1. E5-24.
DIGITAL RULE (ultrasonic) April 81 I 30 -20
INTERCOM. ApIII 81. E.20.76. DIODE
SIMPLE TRANSISTOR \& TESTERS. Mar. 81 . Ohmeter version E1.89. Led version E2.56,
MINI SIREN. Mar. $81 . £ 7.52$
IED FLASHER. Mar. 81. E4.01
MODULATED TONE DOORBELL
Mar. 81. E6.21. BENCH
E45-98.
TREBLE BOOST. Mar. 81. EE-84.
CARACTUATED DRIVEWAV HGHT. Feb. 81 less socket. ©23. ©0.
THREE CHANNEL STEREO MIXER.
Feb.81. C17.47. SIGNA
probe. FOUR BAND RADIO. Feb. 81. c39.98. FOUR BAND RADIO. Feb. 81. C33.98.
NI.Cd BATTERY CHARGER. Feb. 81. NI.Cd BATTERY CHARGER. FEb. B1.
£12.72. ULTRASONIC INTRUDER
TOR. Jan. Bi less case. E4y.ge.

AUTO SLIDE CHANGER. Jan. 81. es-2 2.
LOGIC PULSE GENERATOR. Jan. 81. 27.48. IVE WIRE GAME. Dec, 80. £10-94. GUITAR PRACTICE AMPLIFIER, Nov. 80 . £11-99 less case. Standard case 5.81. Hioh quality case es 33 .
v. 80. 3 channel TRANSISTOR TESTER. NOV. 80. AUDIO EFFECTS UNIT FOR WEIRD SOUNDS. Oct. B0. E12-26. JOGGER PHONE CALL CHARGE JOGGER.
 mounting brackets. 1 HON HEAT CONTROL. Oct. 80. £5.48. IRON HEAT CONTROL. Oct. 80. £5.48. BEDSIDE RADIO. Sept. B0. E17.57. COURTESY LIGHT OELAY. JUNe bo. E6. 69.
SIGNAL TRACER. June 80. £5-92. ZENER DIODE TESTER. June 80. Ce 23. STATIONRADIO MaY 80 Ei5 3HeBE CIGEHTS WARNING SVSTEM. May 80 . BATTERY VOLTAGE MONITOR. May 0. £GiE PIPE LOCATOR. Mar 80 E.3.85 Iess Coll former.

STEREO HEADPHONE AMPLIFIER. Mar. 80. £14.97. Grey Case $£ 3.99$ extra.
GIMPLE SHORT WAVE RECEIVER. Feb. $80 . £ 24 \cdot 17$. Headphones $£ 2$-te.
SLIDE/TAPE SYNCHRONISER. Feb. 80 . 111.50 .
MORSE PRACTICE OSCILLATOR. Feb. 80. EA-32.
SPRING LINE REVERB, UNIT, JAR 80 E24:17. UNIBOA
70. $\mathrm{E} 5 \cdot 64$.

BABY ALARM. NoV. 79. EA•R.
ONE ARMED BANDIT. OCL, 79. £24.60. HIGH IMPEDANCE VOLTMETER. Oct. CHASER LIGHTS. Sept. 79. £21-07. SIMPLE TRANSISTOR TESTER. Sept. 79. Es- 18.
ELECTRONIC TUNING FORK. Aug. 79. c9-99. Suttable microphone \& plug Ei-79 EXtraikROOM TIMER. July 79. £2-71. ELECTRONIC CANARY. JUne 79.E9.48. TRANSISTORTESTER. April 79.14. ONE TRANSISTOR RADIO. MAF. 79 less case E7.62. DOORBELL. Feb. 79. MICROCHIME DOOREELL. FED. 79. C14.ERISTOR TESTER. Feb. 79. $\mathbf{6 3 . 5 4}$ ADJUSTABLE PSU. Feb. 79. £31-17. HEADPHONE ENHANC
MIC. AMP. Dec. 78. E3.08.
AUDIBLE FLASHER. DeC. $78.61 \cdot 33$. VEHICLE IMMOBILISER. INC. PCB Dec. 78. EO 31 .
FUSE CHECKER. Oct. 78. E.2.18
TREASURE HUNTER. Oct. 78. £19-64 less handle \& coll former.
SOUND TO LIGHT. Sept, 78 . 17.67
CAR BATTERY STATE INDICATOR. Sept. 78. Leas case. £1.96.
R.F. SIGNAL GENERATOR. Sept. 78. £24.98.
SLAVE FL.ASH. AUO. 78. ©3. 52 lese SKI. IN SITU TRANSISTOR TESTER. June 78. fe 33.
POCKET TIMER. APFII 78. \&3.27
WEIRD SOUND EFFECTS GENERA. TOR. Mar. 78. ES. 28.
AUDIO VISUAL. METRONOME. JAR. 78 E5. 6.
ELECTRONIC TOUCH SWITCH. Jan. 78. £2.56 less cate. RAPIO DIOLE CHECK. Jan. . DUC. 71 . EUTOMATIC PH
PHONE/DOORBELL REPEATER. JUIY 77. E8-91. ELECTRONIC DICE. Mar. 77. 5.5.31.

LATEST KITS: S.A.E. OR 'PHONE FOR PRICES

GUITAR TUNER-SUPERB PROJECT

Eatured by us in ET I Jan. 82. Highly stable internal reference. Microprocessor generates tundamental trequencles. Spectal synchronous rectinier circult compares Input trequency trom oultar pickup or microphone with internally generated plich. Beat frequency is displayed on a lerge moving coll panel meter. Also operates with bass gultar, or acoustic instruments via a hioh impedance
Comple
Complete hit Includes emart caze, pcbs, pane
extra 45p. Availeble separately $45 \mathrm{p}+40 \mathrm{D}$. \& D .

$\begin{aligned} & \text { C1060 } \\ & \text { T1C48 } \\ & \text { OA47 } \end{aligned}$						${ }_{555}^{\text {LINEAR I.C. }}$ 2fo		SN764	¢2.89						
		2 N	$0 \cdot$												
	OA47	40673	\%	8Fx	32D										
		A	29.			74		TLO							
OA202			330												
					[1.16										
		${ }^{\text {ACL176 }}$	$37{ }^{\circ}$	TIP31A	52 p		3.20	TL3							
253		BC182		tip 32A		ICL78	88 p	U23	180						
IN4001		BC182	11p	TIP33A		ACm75		U26							
in4005		BC18		TIP3		LF351	S60	ULN2							
[N 114		BC1		TiP		LF35									
		BC		T1P2955	C90										
IN5408	190	ВС212	110	T1P3055	69p	LF3	51.15								
	80	8C212	11.	TIS43	38	LM301		74							
MPrioz		BC213		TPSA	35 D	LM317	E3. 20	74	Ssp						
VNG7AF		BC21	110	SN3053		LM335	15.18								
		${ }^{\text {BC21 }}$		2N305		LM380									
2N3819		B0		2 N 3702			$2{ }^{10}$								
2N3820		BF		2N3704	$11 p$										
iW CARBON FILM															
							${ }^{21}$	4020							
E12 SERIES. 1 R-10M						LM3	E2.99	4							
MIDGETPOTS. LINEAR. 470 R -4M7 37 D							c. ${ }^{\text {es }}$	4069							
						C33	E2.15								
POLYESTER (C2A0) CAPACITORS, 250 V 						335	ct 98								
						-									
sub miniature plate ceramics, b3V Value: in pF; 2.2; 3.3;4.7; 5-6; 6.8; 8-2; 10 ; 15; $1000 \mathrm{pF} 5_{p}$ each. 2200 pF ©p each. 3300 pF . 4700 p F															
						T1L78 with cioc.									
						3 mm . Red 13 p . Green isp. Yellow									
					$7 \mathrm{pesch}, 10 \mathrm{nF} 13 \mathrm{p}$. 100 nF 22 p .47 nF 14 p .	5 mm . Red 16 p . Green 23p. Yellow 29p									
ELECTROLYTIC CAPACITORS AXIAL Leads: $1 \mu \mathrm{~F} / 16 \mathrm{~V} 11 \mathrm{D}$; $1 \mu \mathrm{~F} / \mathrm{B3V}, 1 \mu \mathrm{~F} / 100 \mathrm{~V}$ 						FLASHING LED,78p MAINS PANEL. Neon32									
						ZENERBZYB8. Range$2 V 7$ to33V.									
$\mu \mathrm{F} / 10 \mathrm{~V}$ 15p; $220 \mu \mathrm{~F} / 25 \mathrm{~V}$ 12p; 470رF/16V 29p															
$470 \mu F / 25 \mathrm{~V}$ 34p: $470 \mu \mathrm{~F} / 40 \mathrm{~V}$ 55p: $680 \mu \mathrm{~F} / 16 \mathrm{~V}$ 32p:$1033 \mu \mathrm{~F} / 10 \mathrm{~V} 30 \mathrm{p} ; 1000 \mu \mathrm{~F} / 16 \mathrm{~V}$ 33p: $1000 \mu \mathrm{~F} / 25 \mathrm{~V}$ 43p: $1009 \mu \mathrm{~F} / 40 \mathrm{~V}$ s8p; $1000 \mu \mathrm{~F} / 63 \mathrm{~V} 7 \mathrm{p} ; 2200 \mu \mathrm{~F} / 10 \mathrm{~V}$ 39p: $2200 \mu \mathrm{~F} / 25 \mathrm{~V}$ 64D; $2200 \mu \mathrm{~F} / 63 \mathrm{~V} \mathrm{E} 1 \cdot 10$.						c. SOCKET									
						$22000 \mathrm{~F} / 25 \mathrm{~V}$ C4D: $2200 \mu \mathrm{~F} / 33 \mathrm{VV}$ £1.10.									
SWITCHES MIN. TOGGLE spat sip ; spdt enp; dpdt 7ep. MIN. PUSH ON. 11 P . PUSH OFF, 22p. FOOTSWITCH \& ALT. ACTION spCO Ei-39; dpco El . 8 E . ROTARY SWITCHES. 1p 12 Way, 2p 8w, 3p 4w, 4 C 3 m I2V IESR DPCO RELAY 19p each						JACKSON C304 Ver. Capac. : 10 pF E2. 28, '02' 208 + 17 DDF $\{3 \cdot 98$.									
PP3 CLIP8 VEROSOARD \&. 1 " COPPER, 10 :trips. 24 holes.................................... E1. 20 per 5 TGRMINAL PINS PIN INBERTION TOOL FACE Cu $48 \mathrm{P} / 100$															
MULTIMETER TYPE 1. 1,000 opv with probe: MULTIMETER TYPE 2. $\mathbf{2 0 , 0 0 0} \mathrm{oDv}$ with translator tester CROC CLIP TEST LEAD SET. 10 leade with 20 cllpe CONNECTING WIRE PACK. 5 X 5 SYd COIllRESISTOR COLOUR CODE CALCULATOR															

TRAIN SET ACCESSORIES
MODEL RAILWAY SPEED CONTROLLER From E.E. Sept. Fentures fully varlable speed control-from zero to full apeed Forwardreverse switch. Auto start and stop for realism. Brake and speed boost.
Emergency stop. Use with the simple controller supplied with mosp train sets Housed In an attractive 2 tone sloping tront case. Bulliton a printed clicult board. All parts Included. Kit E13.44. Reprint/Inetructions extra 45p.

TRAIN SOUNDS—from H.E.
STEAM LOCO WHISTLE Mar 81 .
TWO TONE TRAIN HORN FEB Bi
c12. 26 inc case
TWO TONE TRA
CHUFFER Jan 81.
c5 24 less case

BOOK—MODEL RAILWAY PROJECTS

 by Penfold ci-s. Published Sept 81
MORE KITS AND

 COMPONENTS IN OUR LISTS FREE PRICE LIST CNTANS LOTS MORE COMPONENTS

1982 ELECTRONICS CATALOGUE
Illustrations, product descriptions, circuits all in. cluded. Up-io-date price list enc
are stock Ines for fast dellivery Send 70p in stamps or add 70p fo order. MORE E.E. KITS PLUS H.E. And E.T.I. PRO.

Onow BRANDLEADING ELECTRONICS

 INOW AVAILABLE IN KIT FORM
MAGIDICE
 Electronic Dice

- Not an auto item but great fun for the family
- Total random selection
- Triggered by waving of hand over dice
- Bleeps and flashes during a 4 second tumble sequence
- Throw displayed for 10 seconds
- Auto display of last throw 1 second in 5
- Muting and Oft switch on base
- Hours of continuous use from PP7 battery - Over 100 components to assemble
- Arms doors, boot, bonnet and has security loop 10 protect fog/spot lamps, radio/tape, CB equipment - Programmable personal code entry system
- Armed and disarmed from outside vehicle using a special magnetic key fob against a windscreen sensor pad adhered to the inside of the screen - Fits all 12 V neg earth vehicles - Over 250 components to assemble

AII EDA-SPARKRITE products and de

VOYAGER Car Drive Computer

- A most sophisticated accessory. Utilises a single chip mask programmed microprocessor incorporating a unique programme designed by EDA Sparkrite Lid. Affords 12 functions centred on Fuel, Speed, Distance and Time - Visual and Audible alarms warning of Excess Speed, Frost/Ice, Lights-left-on. Facility to operate LOG and TRIP functions independently or synchronously. - Large 10 mm high $400 \mathrm{ft} \cdot \mathrm{L}$ fluorescent display with auto intensity. Unique speed and fuel transducers giving a programmed accuracy of + or -1%. Large LOG \& TRIP memories. 2,000 miles. 180 gallons. 100 hours. Full Imperia and Metric calibrations. Over 300 components to assemble A real challenge for the electronics enthusiast!
EDA SPARKRITE LIMITED 82 Bath Street. Walsall. West Midlands. WS 1 3DE England. Tel: (0922) 614791

	SELF ASSEM KIT	READY BUILT UNITS
SX 1000	$£ 12.95$	$£ 25.90$
SX 2000	$£ 19.95$	$£ 39 \cdot 90$
TX 2002	$£ 29.95$	$£ 59 \cdot 90$
AT. 80	$£ 29.95$	$£ 59.90$
VOYAGER	$£ 59.95$	$£ 119.90$
MAGIDICE	$£ 9.95$	$£ 19 \cdot 90$

PRICES INC. VAT, POSTAGE \& PACKING

Please allow 28 days for delivery
NAME ADDRESS

Editor

F. E. BENNETT

Assistant Editor
B. W. TERRELL B.Sc.

Production Editor
D. G. BARRINGTON

Technical Sub-Editor G. P. HODGSON

Art Editor

R. F. PALMER

Assistant Art Editor

P. A. LOATES

Technical lllustrator D. J. GOODING Tech. (CEI)

Secretary

JACQUELINE DOIDGE

Editorial Offices

KINGS REACH TOWER
STAMFORD STREET
LONDON SE1 9LS
Phone: 01-2616873

Advertisement Manager

R. SMITH

Phone: 01-281 6071

Representative

R. WILLETT

Phone: 01-281 6885
Classified Supervisor
B. BLAKE

Phone: 01-281 5897
Make-Up and Copy Department
Phone: 01-261 6615
Advertisement Offices
KINGS REACH TOWER
STAMFORD STREET
LONDON SE1 9LS

A MATTER OF INTEREST

Popular interest in electronics has grown steadily over the past years. It's a true, if trite, expression-but what do we mean by interest? Well, there is the superficial interest arising from a general awareness that electronics is responsible somehow or another for much of the improved standard of life now enjoyed by most people. Then there is the more profound interest that extends beyond the fascia and the user controls, and involves a technical appreciation of the circuitry and components that make the whole thing tick. Finally there is the really dedicated interest that manifests itself through active participation in designing and building electronic units and equipment.

A noteworthy point is that, of the many thousands of people who come within the second and third categories just defined, the greater number will be largely self-taught in electronic matters and will have no professional involvement with this technology.

To readers of this magazine this is not likely to be a startling revela. tion. Yet these facts are worth advertising, especially today when hobbies assume greater importance than perhaps ever before, because of social/economic changes affecting people in all kinds of industry and business. Unwished-for leisure unfortunately is in abundance for three million fellow citizens. There are others also with time on their hands, including disabled persons and those in retirement, to consider.

It is clear that hobbies like electronics are no longer to be seen merely as pleasurable pastimes to while away spare time; they now also serve an essential and more serious purpose in keeping minds and hands occupied in the absence of full time employment. (There are gloomy predictions that the shortage of jobs will become a permanent feature of our society in the years ahead.)

Considered in this context, the attractiveness of electronics soon be. comes obvious: convenient and not unduly demanding in outlay (electronic components must represent one of the best values for money these days), with an endless variety of useful projects that can be built. But most important of all for some of those victims of current economic policies will be the basic training for a new career that can be derived from a "pastime" such as this.

ON THE WING

came OR flest trigger

BY R.A.PENFOLD

WITH some types of action photography it is impossible for a human operator to act fast enough to take a satisfactory photograph. It is then necessary to use some form of automatic triggering of the camera or a flashgun in order to obtain a fast enough response time to take the photograph before the subject moves out of frame.
A sound triggered flash unit is a common example of an automatic triggering device of this type, and a number of designs have been published in the technical press in the past. This is not the only type of automatic trigger though, and sound triggered flash units are unsuitable for certain types of action photography.
For example, a sound triggered flash is unlikely to be usable for photographs of insects or birds in flight. This type of action photograph is normally taken with the aid of a broken light beam trigger unit, and a trigger of this type can also be used for other types of action photography.

BROKEN LIGHT BEAM

The trigger unit described in this article is of the broken light beam type, and it can be used to operate either a flashgun or a camera. Of course, the camera can only be trig. gered by the unit if it is a type having an electro-magnetic shutter release for which a suitable trigger cord is available, or if the camera is equipped with an automatic winder or motor drive which has a remote control socket.

The prototype has been tested with a Minolta XD7 (which is triggered directly) and with a Pentax LX (which is operated via the autowinder) and worked perfectly with both of these. Automatic operation is possible with most modern S.L.R. cameras, and the unit should function properly with any that have this facility. It should also work properly with any normal electronic flashgun.

The accompanying photographs give some examples of the type of shot that can be taken with the aid of this unit.

BLOCK DIAGRAM

Fig. 1 shows the basic arrangement of the trigger unit in block diagram form, and as can be seen from this there are actually two units in the system; the transmitter and the receiver. The unit uses a pulsed infrared beam rather than a steady visible light beam, and the only reason for employing this system is that it gives improved reliability.

A d.c. coupled visible light system would be susceptible to spurious triggering due to changes in ambient light level and shadows falling on the sensor, even if precautions were taken against this. A steady beam with an a.c. coupled receiver seems to be just as susceptible to spurious operation as a simple d.c. circuit.

TRANSMITTER OSCILLATOR

The system finally adopted has proved to be 100 per cent reliable, and attempts to induce spurious operation proved to be fruitless. The

Fig. 1. Block diagram of the Camera/Flash Trigger.
transmitter is just an oscillator operating at a frequency of a few kilohertz and driving an infra-red l.e.d. so that the beam of light from the transmitter is actually a series of brief infra-red pulses.

Although of no practical significance, it should perhaps be pointed out that there is no visible light output from the l.e.d. because infra-red radiation cannot be seen by human vision, and there is no significant output from an infra-red l.e.d. at the shorter wavelengths of the visible light spectrum.

RECEIVER

The receiver uses an infra-red photodiode to detect the infra-red pulses, and as the diode has a built-in infra-red filter it does not respond to other types of light.

The voltage pulses produced by the photodiode circuit are quite small, being probably no more than a few millivolts even if the system is used at short range. A high gain audio amplifier is therefore used to boost these pulses to a few volts peak to peak, and they are then fed to a rectifier and smoothing circuit which produces a strong d.c. signal.

This signal is used to operate a monostable multivibrator via a d.c. amplifier stage, and the monostable is normally held in the off state.

If the beam is momentarily broken a number of pulses will be prevented from reaching the receiver, causing the d.c. output of the smoothing circuit to rapidly decay and trigger the monostable. The monostable then produces an output pulse of a little over one second in duration which is used to switch on a high voltage power transistor which operates the camera or flashgun.

POWER TRANSISTOR

It is necessary to use a high voltage power device at the output since the unit will need to handle a high voltage when used with an electronic flashgun, and fairly high currents when operating a camera via an autowinder or motor drive. The output pulse of the monostable is longer than is absolutely necessary, but the relatively long output pulse length helps to avoid unwanted multiple operations of the flashgun or camera (especially when photographing insects which sometimes fly along the beam).

A gain control is fitted in the amplifier section of the receiver, and this is adjusted so that the infra-red beam produces a signal which only just prevents the unit from triggering under normal conditions. This helps to give the unit a fast response time and enables quite small and fastmoving objects to trigger the receiver.

The transmitter merely consists of an oscillator driving an infra-red l.e.d. so that a rapid series of brief infra-pulses are produced. These pulses are normally picked-up by a detector diode at the receiver which converts the received infra-red pulses into minute voltage pulses. An amplifier and rectifier circuit processes this signal to produce a strong d.c. bias which normally holds a monostable circuit in the off state.

If the infra-red beam is momentarily broken (as by a passing object) the pulse signal is briefly lost, and the d.c. bias rapidly subsides so that the receiver monostable is triggered. This operates the flashgun (or camera) via a switching transistor, and automatically takes a photograph of the object which broke the beam.

TRANSMITTER CIRCUIT

The circuit of the transmitter is shown in Fig. 2, and this part of the unit is based on the popular 555 timer device used in the astable mode. This device is ideal for this application since it has a fairly high output current capability and can provide the required rectangular pulse output waveform.

The values of R1 and R2 set the mark space ratio of the output signal at about $5 \cdot 5$ to one, so that infra-red l.e.d. Dl is switched off for more than 80 per cent of the time, and switched
on for less than 20 per cent of the time. This enables strong pulses of current to be applied to D1 but keeps the current consumption of the circuit down to a reasonable level.

HIGH/LOW POWER

Sl is the on/off switch, and it additionally enables two output powers to be obtained. In the "high" position R4 is switched in as the current limiting resistor for D1, and this gives an l.e.d. current of over 100 mA and an average current consumption of

The completed transmitter and receiver.
The mounting adaptor can be seen on the side of the transmitter.

INFRA-RED TRANSMITTER

Fig. 2. Camera/Flash Trigger: transmitter circuit.

COMPONENTS

01 TIL 38

Resistors		See
R1	120ks	
R2	$27 \mathrm{k} \Omega$	
R3	39Ω	
R4	3.9Ω	
All	+W carbo	

Capacitors

$\begin{array}{ll}\text { C1 } & 100 \mu \mathrm{~F} 10 \mathrm{~V} \text { elect. } \\ \mathrm{C} 2 & 2 \cdot 2 \mathrm{FF} \text { ceramic plate }\end{array}$

Semiconductors

IC1 555 timer i.c.
D1 TIL38 infra-red I.e.d.
Battery
B1 Four AA (HP7) size batteries and plastic holder to suit PP3 type battery connector

Switch
S1 3-way 4-pole rotary

Miscellaneous

Plastic box about $114 \times 76 \times$ 38 mm (type PB1 or similar); 0.1 in . matrix stripboard, 13 strips $\times 15$ holes; control knob; panel holder for D1; tripod bush; wire, solder.

approximately 38 mA . This produces a maximum operating range of about 2 metres which is often far greater than is needed. In such cases S1 is switched to the "low" position and this gives a maximum range of a little under one metre with an l.e.d. current and average current consumption of about 11 mA .

C2 sets the operating frequency of IC1 at around 5 to 6 kHz , and Cl is the supply decoupling capacitor. Power is obtained from four AA (HP7) size batteries which gives a nominal 6 volt supply.

TRANSMITTER
 CONSTRUCTION

The transmitter components can be housed in a plastic box measuring about $114 \times 76 \times 38 \mathrm{~mm}$. S1 is mounted on the removable lid of the case, at one end, leaving space for the batteries and the component panel at the other end of the case.

The component panel is a $0 \cdot 1$ in matrix stripboard which has 13 copper strips by 15 holes, and Fig. 3 provides details of this board and the wiring of the transmitter.

The board is constructed in the usual manner. Start by cutting out a board of the specified size, drill the two 6BA clearance ($3 \cdot 2 \mathrm{~mm}$ diameter) mounting holes, make the four breaks in the copper strips, and finally solder in the components and link wires leaving ICl and D1 until last.

The leadout wires of Dl are not trimmed, so that with the component board bolted to the base panel of the case Dl can be fitted into a panel holder mounted in one end panel of the case.

Complete the wiring to Sl and the battery clip before finally installing the component panel.

The battery clip is a PP3 type, and this connects to the output terminals of a plastic battery holder which is used to connect the four AA size batteries in series. The prototype is powered from NiCad cells which are almost certain to be the most economical power source in the long term, but the circuit can be powered from ordinary HP7 cells if preferred.

MOUNTING BUSH

It is useful to fit the case with a tripod mounting bush, and a suitable bush can be taken from a flash
adaptor of the type used to fit a flash. gun on a tripod.

The two rivets are drilled out so that the top and bottom sections of the adaptor can be separated, and the base section is then bolted to the case by fitting the bolts through the holes which were formerly occupied by the rivets. The unit can then be mounted on an accessory shoe or on a tripod since the adaptor has an accessory foot as well as a standard ${ }_{4}$ in tripod bush.

RECEIVER CIRCUIT

The circuit diagram of the receiver is given in Fig. 4.

Dl is the photodiode and it is reverse biased by R1. The infra-red pulses from the transmitter produce an increase in the leakage current of Dl, giving a series of small negative pulses at the junction of R1 and Dl. These pulses are coupled by C2 to a straight forward common emitter amplifier based on TR1, and the output of TR1 is coupled by C3 to a volume control type variable attenuator, VR1.
The signal is then taken to a second common emitter amplifier TR2 by C4. C5 attenuates the high frequency response of the second common emitter stage slightly, and this is done in order to prevent instability.

C6 couples the output of TR2 to a rectifier and smoothing circuit which is comprised of D2, D3 and C7. Under normal conditions this produces a negative bias which is strong enough to bias TR3 into conduction so that its collector terminal is at virtually the positive supply potential.

MONOSTABLE

The monostable is a conventional 555 i.c. type, and R7 plus C8 set the output pulse duration at a nominal $1 \cdot 1$ seconds.

In order to trigger ICl its input at pin 2 must be taken below one third of the supply voltage, and this will happen if the input to the unit ceases even briefly as the charge on C7 will then rapidly decay and TR3 will switch off.

R8 then takes pin 2 of ICl to the negative supply voltage, and the positive output pulse is produced at pin 3 of ICl. This switches on TR4 as it receives a heavy base current via R9; the large base current being necessary to ensure a low voltage drop across the collector-emitter terminals of TR4.
Indicator D4 is also switched on when ICl is triggered, and this is helpful when setting the unit up ready for use.

The current consumption of the unit is about 9 mA under stand-by conditions, and around 55 mA during the

The transmitter-exterior and interior views.
output pulses from ICl. A NiCad PP3 is used to power the prototype, but an ordinary PP3 is also a suitable power source.

RECEIVER CONSTRUCTION

The receiver uses the same type of case as the transmitter, and the general layout of the unit can be seen from the accompanying photographs. VR1, D4, Sl, and SKl are mounted on one of the $114 \times 38 \mathrm{~mm}$ sides of the case which then becomes
the top panel of the unit. A tripod bush is fitted on the base panel of the case.
Fig. 5 shows the component layout of the $0 \cdot$ lin matrix stripboard panel which accommodates the other components except the battery. The board has 15 strips by 30 holes and it is constructed using the normal techniques.

The leadouts wires of Dl are left long so that with the board mounted in the case, Dl can be positioned with its sensitive surface behind a hole about 6 or 7 mm in diameter drilled in the case. The sensitive surface is the large one which does not carry the type number of the device.

Fig. 5 shows the wiring to the off. board components, and this is all perfectly straight forward apart from the connections to SKl which must have the correct polarity if the unit is to function properly.

The receiver-exterior and interior views.

INFRA-RED RECEIVER

COMPONENTS

Fig. 4. Camera/Flash Trigger: receiver circuit.

Resistors
R1 $10 \mathrm{k} \Omega$ R5 $1.5 \mathrm{M} \Omega$ R9 15012
R2 $2 \cdot 2 \mathrm{M} \Omega$ R6 $4 \cdot 7 \mathrm{k} \Omega$ R10 $1 \mathrm{k} \Omega$
R3 $10 \mathrm{k} \Omega$ R7 $10 \mathrm{M} \Omega$
R4 820 (R8 22k
All $\frac{1}{}$ W carbon $\pm 5 \%$
Potentiometer
VR1 $47 \mathrm{k} \Omega \log$. carbon

Capacitors

C1 $100 \mu \mathrm{~F} 10 \mathrm{~V}$ elect.
C2 $3 \cdot 3 n F$ ceramic plate C3 10nF polyester (C280) 10nF polyester (C280) 22 pF ceramic plate 220nF polyester (C280) $1 \mu \mathrm{~F} 63 \mathrm{~V}$ elect.
100nF polyester (C280)
C9 $100 \mu \mathrm{~F} 10 \mathrm{~V}$ elect.
Semiconductors

1 C 1	555 timet i.c.
TR1	BC179 pno silicon
TR2	BC109C npn silicon
TR3	BC179 pno silicon
TR4	MJE340 non silicon plastic power transistor
D1	TIL100 infra-red photo. diode
D2	O A90 germanium diode
D3	O A90 germanium diode
D4	TIL220 $0 \cdot 2 \mathrm{in}$, red l.e.d.

Battery

B1 PP3 battery and connector to suit

Switch

S1 S.P.S.T. miniature toggle type

Miscellaneous

Plastlc box about $114 \times 76 \times$ 38 mm (type PB1 or similar); 0.1in. matrix stripboard, 15 strips $\times 30$ holes; control knob; Panel holder for D4; output lead; tripod bush: wire, solder; 2.5 mm jack socket (SK1).

Fig. 5. Constructional details of the receiver.

(a) The dropped ball photographed by triggering the flashgun.
(b) There is a small delay if the camera is triggered and the mirror lock-up is used. (c) A longer delay is evident if the mirror lock-up is not used.

FLASHGUN CONNECTION

If the unit is to be used with a flashgun this can be connected to the receiver via a flash extension lead having the normal plug removed, and a 2.5 mm jack plug fitted instead. With this plug connected to SK1 and the flashgun switched on, a voltmeter set to read 250 volts or more at full scale deflection can be used to check the polarity of the voltage across SK1. With the plug removed, the two leads from the component panel are connected to SKl accordingly.

If the unit is to be used to operate a camera or winder, a remote control lead of the appropriate type can be used to make the connections to the receiver. The push-button switch is removed from the lead and replaced with a 2.5 mm plug which connects with SK1. As before, a multimeter (set to the 10 volt d.c. range in this case) is used to check the polarity of the voltage across SK1 so that the leads from the component panel can be connected with the correct polarity.
An alternative method of making the connections from the camera or winder to the receiver is to use the appropriate lead for the "Kenlock Beacon" remote control device. These leads are ready-fitted with a 2.5 mm jack plug.

If the unit is to be used with a flashgun and a camera or winder, make sure that all the leads are connected with the right polarity.

USING THE SYSTEM

The exact set-up used must obviously depend upon the type of shot being taken, but the transmitter and receiver must be carefully arranged so that the object to be photographed breaks the beam at the correct point in the frame, and in the plane of perfect focus.

With many shots it is possible to simply have the beam running straight across in front of the camera with transmitter and receiver units just out of frame. In other cases it may be better to have the receiver
unit mounted on a flash bracket at the side of the camera and angled across in front of the lens, with the transmitter mounted on a tripod and sited on the other side of the camera just out of frame.

When dropping objects through the beam it is usually quite easy to ensure that they break the beam at the correct point, but with insects the standard method is to use a simple tapering flight tunnel to guide the insect to the correct point.

The beam from the transmitter should be reasonably accurately aimed towards the detector at the receiver, and Sl of the transmitter should only be set to the "high" position if inadequate range is obtained with it set to the "low" position.
The l.e.d. indicator on the receiver switches on each time the unit is triggered, and glows continuously if the two units are too far apart or VRI of the receiver is backed-off too far. Do not be tempted to back-off VR1 to the point where the unit barely has sufficient range as this will give poor reliability by making the unit prone to spurious triggering. Advancing VR1 slightly from this point will not seriously reduce sensitivity and will give good reliability.

FLASHGUN OPERATION

As the accompanying test shots show, the system has a virtually instant response time if it is used to trigger the flashgun. The disadvantage of this system is that it is necessary to open the shutter (using the "B" or "T" setting), activate the system, and then close the shutter. The photograph must be taken under fairly dark conditions so that the ambient light does not ruin the shot.

CAMERA OPERATION

Using the unit to operate the camera or winder is more convenient since the ambient light level is no more of a problem than with normal flash photography. There is typically

a delay of about a tenth of a second before the flash fires which can sometimes be awkward, but is often of no real consequence and can even be used to advantage with some types of shot. The delay can be substantially reduced using the "mirror lock-up" on cameras that have this feature.

Most electronic flashguns give a flash duration of about 0.5 to 1 millisecond, which is short enough to "freeze" most action. Sometimes a shorter flash duration is needed, and this can be obtained using an automatic flashgun close to the subject, or using a manual flashgun having a variable power control which is set well back. This typically gives a flash duration of only about 0.05 to 0.1 milliseconds which is short enough to "freeze" virtually any action.

One final point is that it is advisable not to connect the receiver to the camera or auto-winder (if this method is used) before switching on the receiver and transmitter as this could lead to unwanted triggering of the system. Similarly, switching off the transmitter and receiver before disconnecting the lead to the camera or auto-winder could produce an unwanted triggering.

A project for your FREE piece of stripboard

THIS pocketable fixed-period timer employs only two active semiconductor devices yet, by a suitable choice of timing capacitor, can be made to cover periods ranging from a few seconds to several hours.

It has many applications such as timing moves in games, an egg timer or a parking-meter reminder.
Tucked in the top pocket of a jacket or shirt, it is inconspicuous, yet the warning lamp is easily visible in that particularly sensitive region at the edge of your field of vision.

CIRCUIT DESCRIPTION

The circuit diagram for the Pocket Timer is shown in Fig. 1 and uses a field effect transistor, TR1, and silicon controlled switch, CSR1.

From the moment the circuit is switched on, the f.e.t. generates a slowly rising potential at its source terminal. When this potential reaches a predetermined value it triggers CSR1, which switches on the warning light, Dl.

The slowly rising potential is a consequence of the slow rise of gate potential. This rises slowly because of the extremely small current that flows into the gate of an f.e.t. The smallness of the gate current also has the important consequence that we can use a timing capacitor of relatively low value.

TIMING CAPACITOR

The value of the timing capacitor is less than $l \mu \mathrm{~F}$, so we can use silver mica, polycarbonate, tantalum bead or other types of capacitors; these are small in size and stable in value.

The effective drain to-source resistance of the f.e.t. falls from a few kilohms at switch-on to a few hundred ohms in a number of seconds, minutes or hours, depending on the value of capacitor Cl. With the f.e.t. connected as shown, the potential at the source is about 3.5 V at switch-on when the resistance of the f.e.t. is somewhat greater than that of R1. As the resistance of the f.e.t. falls, the potential across it falls in proportion, giving a correspondingly greater potential-drop across resistor R1. In short, the potential of the source gradually rises from around 3.5 V towards 9 V . The exact values obtained depend on the characteristics of the individual f.e.t. used.
The potential at the source is too high for triggering CSR1, which needs only about 0.4 V at its $g k$ terminal. The variable resistor VR1 thus acts as a variable attenuator and sufficient current can be drawn from this to trigger CSR1.
By varying the setting of VR1 we can adjust the time at which triggering occurs, over a limited range, see Table 1 for Cl value.

ASSEMBLY

The recommended layout of the components on the stripboard is shown in Fig. 2. The piece of stripboard given free with this issue will need to have two tracks cut from it to allow it to fit inside the specified case with the PP3 battery.
Drill the case end to accommodate D1 and Sl. Fit the latter. The wires

Fig. 1. Circuit diagram for the Pocket Timer.

on D1 will need to be extended by soldering on about 25 mm of insulated stranded wire. Use sleeving to cover the connection. Make the necessary breaks along the tracks on the underside of the board using a spot face cutter or small drill bit.

Assemble the components according to Fig. 2 leaving the semiconductors until last. Wire up the battery connector and switch. The l.e.d. can now be fitted in its clip on the case and wired to the board. A little foam sponge either side of the board in the case will hold it steady alongside the PP3 battery.

TESTING AND ADJUSTING

Set VR1 fully anticlockwise and switch on. With $g k$ of CSR1 thus grounded, the l.e.d. should not light. Switch off and set VR1 fully clockwise and switch on. With the potential at the wiper at $3 \cdot 5$ volts, the l.e.d. should light immediately.

Switch on and off, gradually moving the wiper of VR1 anticlockwise. After switching off after each test allow about 10 seconds before switching on again, as charge stored on the capacitors may cause unwanted and premature triggering of CSR1. This delay between switching off and on
Resistors
R1 $10 \mathrm{k} \Omega$
R2 $180 \mathrm{k} \Omega$
R3 $100 \mathrm{k} \Omega$
R4 330Ω
All 4 W carbon $\pm 10 \%$
page 171
Potentiometer
VR1 $100 \mathrm{k} \Omega$ sub-miniature horizontal preset

Capacitors

C1 See Table 1 C2 $0.47 \mu \mathrm{~F}$ polyester
C3 $0.1 \mu \mathrm{~F}$ polyester

Semiconductors

TR1 2N3819 n-channel f.e.t
CSR1 BRY39 silicon controlled switch
D1 TIL209 red light emitting diode

Miscellaneous

B1 9V PP3 battery
S1 s.p.s.t. toggle switch Stripboard 0.1 inch matrix, 8 strips by 24 holes; battery clip: Veropins as required; Vero General Purpose plastic box type 202. 21025 K or similar size, $70 \times 50 \times$ 25 mm ; connecting wire; solder.

CAPACITORS AND PULSE GENERATORS

B
EFORE we go on ta discuss this month's main topic, we shall consider the subject of capacitors.

CAPACITORS

A capacitor consists of two plates of metal with an insulating layer (the dielectric) between them, see Fig. 6.1. Dielectrics include plastic film, mica. waxed paper and air.
In Fig. 6.2a the positive terminal of the cell attracts electrons from one plate, leaving it positively charged. The positive charge attracts electrons from the negative terminal. Currents flow until the p.d. between the plates is equal to the e.m.f. of the cell (Fig. 6.2b). The capacitor is now charged.
Note that a current flows out of one plate and an equal current flows into the other plate. In effect, a current has passed around the circuit even though there is a layer of insulating material in it.
The cell may now be removed from the capacitor (Fig. 6.2c). Capacitors store electrical charge. Though the charge may be conducted away slowly through the air or through the dielectric, a capacitor stores charge for several hours.

In Fig. 6.3a plate X is at $4.7 \mathrm{~V}, Y$ is 3.3 V . There is a p.d. of 1.4 V between them. This circuit is perfectly stable. Suppose that for an instant point A is connected to the 6 V line (Fig. 6.3b). The increased potential at A attracts electrons from X, giving it a potential of $6 \mathrm{~V} . X$ attracts more electrons into Y. The capacitor maintains the 1.4 V p.d. between its plates.

An increase of 1.3 V at X brings about an increase of 1.3 V at Y. Its potential increases to $3 \cdot 3+1 \cdot 3=4.6 \mathrm{~V}$. This attracts electrons from B to plate Y. By the time this has happened the brief pulse at A will probably have ended. Potential at A returns to $4 \cdot 7 \mathrm{~V}$, electrons flow from X to A, potential at Y returns to $3 \cdot 3 \mathrm{~V}$, electrons flow from B to Y. Everything is now as it was before.
The effect of these events is that a brief high pulse at A has appeared as a brief

Fig. 6.1. A simple parallel plate capacitor

Fig. 6.2. Charging and discharging a capacitor; / shows direction of conventional current flow.
high pulse at B, just as if A and B were connected by a wire. In effect, the capacitor might just as well not be there so far as a pulse is concerned.

COUPLING WITH CAPACITORS

In Fig. 6.4 the microphone produces an e.m.f. of only a few tens of millivolts. The potential at terminal A alternates between about +100 mV and -100 mV and its average is 0 V .

Fig. 6.3. Using a capacitor to couple two parts of a circuit: (a) steady d.c. conditions (b) pulse applied at A passes to B (c) after pulse passes. Arrows indicates direction of conventional current flow.

The transistor is biased by R4 and its base is at 0.6 V , as is plate Y. With no sound there is a p.d. of 0.6 V between X and Y. This is just the same as in Fig. 6.3: we have a steady p.d. across the capacitor. As before, the capacitor acts to maintain this p.d. For example, an increase of 20 mV at X (from 0 V to 0.02 V), causes an equal increase at Y (from 0.6 V to 0.62 V). The capacitor is used to couple the microphone to the transistor.

It has a steady but different potential on either plate, yet transmits a varying or alternating potential from one place to the other. In other words, it does not pass d.c. potentials but readily passes a.c. potentials. The loudspeaker in Fig. 6.4 is another example of capacitive coupling.

The by-pass capacitor in last month's stabilised amplifier is used to maintain a steady potential at the emitter. Any attempt to change the p.d. between emitter and the OV rail is resisted. Alternating voltages at the emitter are readily passed through the capacitor to the 0 V line, where they are lost.

CAPACITANCE

If a capacitor stores Q coulombs of charge when the p.d. between its plates is V volts, its capacitance is defined as:

Capacitance, $C=Q / V$ coulombs per volt
The unit for "coulombs per volt" is called the farad (symbol F). This unit is too large for practical purposes. We use its submultiples, such as the microfarad ($1 \mu \mathrm{~F}=$ $10^{-6} \mathrm{~F}$), the nanofarad ($\mathrm{InF}=10^{-9} \mathrm{~F}$) and the picofarad ($1 \mathrm{pF}=10^{-12} \mathrm{~F}$).

Capacitance depends on various factors, such as the area of the plates (larger area gives greater C), the distance between them (closer together gives greater C), and the
kind of material used as dielectric. Most types of capacitor have several interleaving plates, giving a large area in a compact form, see Fig. 6.5a. Some have the plates rolled with a sheet of plastic between them as shown in Fig. 6.5b.
The aluminium electrolytic capacitors, Fig. $6 \cdot 5 \mathrm{c}$, have relatively large capacity. They are physically larger than most other
types and have rolled plates. The surfaces of the plates are roughened to increase the surface area even more.

The plates are separated by a sheet of paper soaked in an electrolyte paste. This layer is conductive. It is not a dielectric but is effectively part of a plate. In manufacture a p.d. is applied to the plates causing a very thin layer of aluminium

Fig. 6.4. Showing how capacitors are used to couple parts of a circuit while allowing different d.c. levels in each part.

Fig. 6.5. Types of capacitor: (a) parallel plates as in polyester capacitors (b) rolled plates as in polystyrene capacitors (c) aluminium electrolytic polarised capacitor and its circuit symbol.

Fig. 6.6. Capacitors connected "in parallel' ${ }^{\text {. }}$
oxide to be built up on one plate. This is the dielectric and being very thin it gives high capacitance.
If such capacitors are connected in a circuit in the reverse direction this layer is destroyed. This is why an electrolytic capacitor is marked to show its polarity.

Variable capacitors are used in tuning circuits of radio sets. In the rotating vane type (Cl in Minilab), the plates are in two alternating sets. One set can be turned so that the amount by which it overlaps the other can be varied between no overlap and full overlap. The greater the overlap the greater the capacitance.
In compression types, the plates are separated by films of plastic. The pressure on the pile of plates and plastic can be varied to alter the distance between the plates. The greater the pressure, the closer the plates and the higher the capacitance.

CAPACITORS IN PARALLEL

When capacitors are joined in parallel, that is, connected as in Fig. 6.6, their total capacitance is the sum of their individual capacitances. This is a useful way of making up capacitance of a value which is not available in the standard range.

PULSE GENERATORS

Last month we saw how two transistors can be cross-connected by resistors, switching each other on or off. The circuit was called a flip-flop. It is also called a bistable because it is stable in one of two states. What happens if we add a capacitor or two to this circuit?

EXPERIMENT 6.1

Monostable circuit
In Fig. 6.7 a capacitor couples the collector of TR1 to the base of TR2. To begin with, TR1 is off, giving 6 V at its collector, so D1 is out. Plate A of C 2 is at 6 V , plate B is at 0.6 V , and TR2 is on. This gives 0.6 V at the collector, so a current flows through D2, making it light.

Press S1 for an instant. This turns off TR2, so D2 goes out. The collector voltage of TR2 goes to 6 V , turning TR1 on. D1 lights. Now wait. After about 2 seconds, D2 comes on again and D1 goes out.

What has happened is that when TRI was turned on, the potential at its collector fell sharply to 0.6 V . A drop at plate A of C2 means an equal drop at plate B. This holds TR2 off, even though you have stopped pressing S1. However, a current flows through R5, gradually charging plate B. Its potential rises at a rate depending on the value of R5 and the capacitance of C2. After about 3 seconds, when the potential reaches 0.6 V . TR2 is turned on. Its collector potential rises and turns TRI off.

This circuit is stable in only one of its states (TR1 off, TR2 on), so we call it a monostable circuit.

Put capacitors of other values in place of C2. See what effect they have on the length of time D2 stays off. Circuits such as this are useful for generating single pulses of fixed length.

EXPERIMENT 6.2
 Astable circuit.

Now we modify the circuit still further so that the transistors are coupled both ways by capacitors, see Fig. 6.9. Set the layout on the Verobloc according to Fig. 6.10. There is no need for you to do anything after connecting the battery. As one transistor is turned off (l.e.d. out), its collector potential rises turning on the other transistor. The falling potential at the collector of the other transistor is passed by the capacitor to the base of the first transistor, holding it off. As the capacitor charges, the potential at the base of the first transistor rises. Eventually it reaches 0.6 V and the transistor is turned on again.

The process is repeated the other way about and so on, indefinitely. The transistors turn each other on and off at a regular rate. The circuit is not stable in either state -it is astable.
With $220 \mu \mathrm{~F}$ capacitors the circuit changes state about eight times a second, giving four complete cycles per second, a frequency of 4 Hz . Try replacing one or both of the capacitors with other values.

EXPERIMENT 6.3

Using the 555 I.C.
The 555 timer i.c. is used here to build a monostable circuit. It needs far fewer components than the previous circuit, see Fig. 6.11. We begin with C2 charged to a p.d. of one-third of the supply voltage (that is charged to 2 V in this instance). Current passing through R6 flows into the i.c. at pin 7, so $\mathbf{C} 2$ remains at one-third of the supply voltage.

A low pulse to the trigger input (S1 pushed briefly) causes pin 7 not to accept current. The current passing through R6 now increases the charge on C2. The potential at pin 6 rises until it reaches twothirds of the supply voltage that is (4 V).

Pin 6 is connected internally to a circuit which senses when this level has been reached. When reached, the capacitor is immediately discharged through pin 7 returning very rapidly to a charge of onethird of supply voltage again.

The output at pin 3 is normally 0 V , but rises sharply to the supply voltage level when the i.c. is triggered.

It stays high until C2 is discharged after charging up to two-thirds supply voltage. We get a single high output pulse, the length of which is determined by the values of R6 and C2.

Wire up the Verobloc for this experiment as shown in Fig. 6.12. With the values shown, the output pulse should last about 24 seconds. Try the effect of altering th values of R6 and C2.

EXPERIMENT 6.1

Fig. 6.7. Circuit diagram of the monostable to be investigated in Expt. 6.1. Another circuit could be coupled to this by a capacitor connected to point C.

Fig. 6.8. The layout and interwiring for the circuit in Fig. 6.7.

Fig. 6.9. The circuit of an astable multivibrator to be investigated in Expt. 6.2.

Fig. 6.10. The layout and interwiring on the Verobloc for the circuit in Fig. 6.9.

EXPERIMENT 6.3

Fig. 6.11. A monostable circuit based on the 555 timer i.c.

Fig. 6.12. The layout and interwiring of the circuit in Fig. 6.11.

In Expt. 6.1 a higher supply voltage gives a shorter period. The 555 timer is independent of this. It charges C 2 from $\mathrm{V} / 3$ to $2 \mathrm{~V} / 3$, an increase of $\mathrm{V} / 3$. The charging current is proportional to V , but the amount by which the charge has to be increased is also proportional to V , so the time taken is the same.

Confirm this by connecting the circuit to $4.5 \mathrm{~V}, 9 \mathrm{~V}$ and 12 V . Replace R6 with a 470Ω resistor. For the latter two voltages, measure the pulse length at each voltage.

EXPERIMENT 6.4
 An astable $\mathbf{5 5 5}$ circuit

In this circuit the trigger input is connected to the threshold pin, see Fig. 6.13, so the i.c. is triggered again at the end of every pulse and produces pulses indefinitely. C2 charges through R5 and R6, but discharges through R6 only, so the time of charging (high output) is longer than the time of discharging (low output).
With the values given, the circuit produces pulses at about 1.6 Hz and the I.e.d, flickers steadily. Carry out the experiment using the Verobloc layout in Fig. 6.14.
Now replace components as follows:
C2-replace with a 47 nF capacitor.
D1-replace with a $10 \mu \mathrm{~F}$ capacitor. + ve lead to J25, -ve lead to G15
R4-replace with wires going to the loudspeaker.
Connect the battery and listen. The fact that C2 now has smaller capacitance increases the frequency to about 1012 Hz ($\mathrm{C}^{\prime \prime}$ on the piano). The $10 \mu \mathrm{~F}$ capacitor couples the output of the i.c. to the loudspeaker and you hear a high-pitched note.

Answers to Part 5

5.1. One which involves two types of charge carrier, electrons and holes.
5.2. One which depends on an pn junction for its action.
5.3. The l.e.d. could be made to turn on when PCC1 is covered.
5.4. $4500 \mu \mathrm{~A}=4.5 \mathrm{~mA}$.
5.5. hFE is concerned with steady currents, hFE is concerned with changes in currents.
5.6. 0.1V (base-emitter p.d. remains constant).
5.7. Base draws only a small current; emitter current can be large; that is it has high input impedance and low output impedance, just as an f.e.t. does. Useful for getting a lowimpedance output when we do not need to amplify the voltage.
5.8. Increase in $/ \mathrm{c}=200 \mu \mathrm{~A}$, so /C becomes $1 \cdot 2 \mathrm{~mA}$.
5.9. The l.e.d.s light alternately. When Y is touched, D1 comes on, D2 goes out. When Z is touched, the reverse happens.
5.10. A flip-flop or bistable (works rather like Fig. 4.17, the transistors acting as NOT gates).

Astables can be used for flashing l.e.d.s, producing audio frequency notes and for many other purposes. Try wiring VRI ($10 \mathrm{k} \Omega$)-use centre tag and one otherin place of R5 or R6 and listen to the effect as you alter its resistance (turning its control knobs).

ASTABLE MODULE

The first of the modules to be added to the Minilab is the astable module. This is a square wave generator or oscillator. You will need it for experiments in Part 8, and it is useful in many other ways too

The circuit for this module is almost the same as that of Fig. 6.13, except that C2 has been replaced by a bank of four capacitors selected by a rotary switch, see Fig. 6.15. The output frequencies are approximately 0.1 Hz (with C2), $1 \mathrm{~Hz}(\mathrm{C} 3) 100 \mathrm{~Hz}$ (C4) and 10 kHz (C5). To obtain other frequencies you can add two more capacitors to this circuit as the specified rotary switch has six positions. Room exists on the board for these additional components. In fact there is enough room for at least one other module should you wish to add to your Minilab facilities.

EXPERIMENT 6.4

ADDITIONAL CAPACITOR

 You will need to obtain a $4.7 \mu \mathrm{~F} 6 \mathrm{~V}$ electrolytic or tantalum capacitor to complete the ASTABLE module. We used a tantalum type in our module as can be seen in the photo and Fig. 6.16. The capacitor did not appear in LIST 2 in the October 1981 issue.Fig. 6.16. The layout of the components on the Verostrip for the ASTABLE module and wiring to the Minilab. This Vero-

Fig. 6.15. The complete circuit diagram for the ASTABLE module to be fitted in the Minilab
 Three sets of 6BA nuts bolts (25 mm) and washers are needed to fix the terminal strip.

Section of the Minilab front panel showing Astable controls and space for two future additions.

Astable components mounted on one end of the Verostrip.

COMPONENTS required for Experiments during Parts 7 to 12. Complete kits of these (LIST 3) may be obtained from the retailers listed on page 171.

Resistors	
Quantity	Value
1	56 ohm
1	82 ohm
1	150 ohm
1	220 ohm
2	270 ohm
8	390 ohm
1	1 kilohm
1	1.5 kilohm
1	$3 \cdot 3$ kilohm
2	10 kilohm
1	12 kilohm
1	18 kilohm
1	56 kilohm
4	100 kilohm
1	330 kilohm
1	470 kilohm
1	820 kilohm
2	1 megohm
All	or +W carbon

$14 \cdot 7 \mu \mathrm{~F}$ electrolytic 16 V type preferred, radial or axial leads. Short lead types should not be supplied.
All to be suitable for working at 12 V Very large types should not be obtained.

Semiconductors
Quantity Type

$$
\begin{array}{ll}
1 & \text { Til38 infra•red light } \\
\text { emitting diode. } \\
2 & \text { ZTX300 silicon npn tran- } \\
\text { sistor. } \\
1 & \text { OA91 germanium diode. } \\
1 & \text { BZY88C5V15.1V 400mW } \\
\text { Zener diode. }
\end{array}
$$

All $\ddagger W$ or $\ddagger W$ carbon $\pm 5 \%$ tolerance.
Types prepared for p.c.b.s with short preformed leads are not suitable.
All leads on components to be between 0.5 and 0.8 mm diameter to fit specified breadboard (Verobloc).

Potentiometer

Quantity Value
$1 \quad 100$ ohm horizontal mounting sub-minia. ture carbon preset.
Must be suitable for mounting directly on 0.1 inch matrix breadboard.

Capacitors

Quantity Value
$16 \cdot 8 \mathrm{pF}$ ceramic plate or disc.
$1 \quad 180 \mathrm{pF}$ silvered mica.
2 4.7nF ceramic plate or disc.
$5 \quad 0.1 \mu \mathrm{~F}$ metallised polyes ter, Mullard C280, IT T PMT2R or similar.

QUESTION TIME

6.1. A $4 \cdot 7 \mathrm{nF}$ capacitor is wired in parallel with a 1000 pF capacitor. What is their combined capacitance?
6.2. Name some of the uses of capacitors.
6.3. A $2 \cdot 2 \mu \mathrm{~F}$ capacitor is charged from 3 V to $4 \cdot 5 \mathrm{~V}$. How much extra charge becomes stored in it?
6.4. Here is a list of materials used as dielectrics, but there is one which should not be there. Which is the odd one out? List: polystyrene, aluminium oxide, mica, carbon, waxed paper, air.
6.5. A 555 i.c. is connected as an astable (Fig. 6.13); R5 $=100 \mathrm{k} \Omega$, $R 6=47 \mathrm{k} \Omega, \mathrm{C} 2-100 \mathrm{nF}$. What is the frequency of oscillation produced?

The astable module is to be built at one end of the length of Verostrip with the amplifier module (described in Part 7) in the centre. Drill holes at each end to accept 4BA bolts.

The third module (7-segment display) is to be constructed on a small piece of Veroboard. It will in fact be the piece given free with this issue; add it to your stock of Teach-In components for use later.

Follow the layout of the components according to Fig. 6.16. Connection of flying leads to the board are made using Veropins, so the assembled board may now be screwed to the internal face of the Minilab rear panel.

Fit the required switches and terminal strip to the Minilab Control Panel. The toggle switch at the top right hand corner and its reference is S5. The rotary switch fits between Cl and VR2 and its reference is S6. The terminal block sits below S5

Next make the interconnection between module strip and Minilab components. Finally replace the rear and control panels to complete the installation

TESTING THE MODULE

To test the module for satisfactory operation, wire up according to Fig. 6.17. with S6 set to " $0 \cdot 1$ ". Switch on at S5. Clicks should be heard from the loudspeaker at a rate of approximately one per 5 seconds. Rotate S 6 clockwise to hear clicks at a rate of one per half-second. The next two positions of S6 will cause a buzzing tone and a high pitched tone to be heard. If this occurs your module is functioning satisfactorily. Turn off at S5.

The remaining two unconnected positions on the rotary switch may also produce high pitched tones even though there are no capacitors actually connected. There is stray (small value) capacitance between the leads to the switch which in effect is placed across ICI pin 6 and 0 V . The value may be low enough to produce an audible frequency output.

To be continued

By Dave Barrington

Catalogues Received

One of the first of this year's mail order components catalogues to be received is the Ace Mailtronix 1982 edition.

Although containing only 12 pages, they have been fairly selective and included most items that the constiuctor is likely to want. As they say in the catalogue "You will certainly not find every component you seek in any catalogue", but they are prepared to try and find those special items on receipt of a sae.
New additions include low leakage electrolytics, more cases and considerable expansion of the l.e.d. range to include rectangular, triangulaı and bargraph types. The switch range now includes keyboard switches and complete keyboards.
For those readers who like to make their own printed circuit boards they stock a full range of Alfac etch resistant transfers.

Copies of the Ace 1982 Mail Order catalogue are available from Ace Mailtronix Ltd., Dept EE, 3a Commercial Street, Batley, West Yorks WF17 5HJ, price 30p.

New Address

We have been informed that Tempus have moved premises and their new address is: Tempus, 38 Burleigh Street, Cambridge, CB1 1DG.

CONSTRUCTIONAL PROJECTS

Camera or Flashgun Trigger

The only component problems likely to be encountered when building the Camera or Flashgun Trigger is the supply of the infra red emitter and detector devices.

The only stockist we have been able to locate for the supply of both the TIL100 and the TIL38 "matched" infra-red detector and emitter is Maplin Electronic Sup. plies. These are listed as stock numbers YH70M and YH71N. Some advertisers stock the TIL100 photodiode but do not seem to carry the TIL38 device.

Guitar Tuner

The tone generator integrated circuit used in the Guitar Tuner project could cause readers purchasing problems. This is the MO83 i.c. and seems to be only available from Maplin. The miniature out. put transformer is also stocked by them.

Ice Warning

The thermistor used in the original circuit for the ice Warning was a THB11 type. We have been unable to locate a source for this device and have sub. stituted it with a suitable equivalent.

This is the bead thermistor type GL16 which has a typical resistance of 1 Meg. ohm at $20^{\circ} \mathrm{C}$.

The GL16 thermistor should be stocked by numerous component suppliers, but if difficulties are experienced then it is available from Maplin as the G16; stock number WH23A.

Pocket Timer

The silicon controlled switch type BRY39 used in the Pocket Timer should be available from most suppliers. It is certainly listed by Bi-Pak, Electrovalue, Watford and Rapid Electronics.

Car Probe

The only unusual component in the Car Probe is the bi-state l.e.d. Although this is a fairly new device it seems to be stocked by several dealers. It is also available from RS Components suppliers and is listed as RS type 586-728.

The housing for the prototype Car Probe was an old pocket penlight and was chosen for ease of mounting the bulb and probe tip. Any similar casing, such as an old torch of solder dispenser, would suffice.

House Register

We have been unable to find a supply of the red, green and white miniature push-to-make release-to-break switches S1 to S9. However, any one of the many minia. ture push-button switches can be used and the bush-button capped with a coloured disc or "hat" for identification.

TEACH-IN 82 KIT SUPPLIERS

Supplier	LIST 1	LIST 2	LIST 3	LISTS 1, 2 \& 3
Bi-Pak (p. 151)	£15.65	18.94	NR	NR
Electrovalue (p. 206)	£16.56	£6. 32	£5.70	£27.49
Greenweld (0.148)	£18.50	£8.10	£4.40	£29.00
Magenta Electronics (p.152)	$£ 16.40$	£9.34	£6.48	£30.98
A. Marshall Lid	£17.00	$£ 12.50$	NR	NR
T. Powell (p.208)	£19.75	$£ 10.50$	£6. 35	£27.50
T.K. Electronics ($\rho .146$)	£15.52	£8.62	¢5.63	£27.02
Watford Electronics (p.147)	£18.08	£9.33	NR	NR

All prices are inclusive of VAT, postage and packing. NR = Not Received. For suppliers full address refer to page number following company name.

Hot Air

The sudden cold spells always show up the weaknesses in the internal combus. tion engine, and I expect many readers have found themselves in the same position as I was two Sundays ago, with two cars and not a sign of life in either of them. I hate to say it, but what do we always suspect first, the electrics, and with good reason. The spark is the weakest link in the chain.
Now here's a tip for fellow motorists. Most of the trouble connected with nonstarting is due to damp in the distributor cap. There are one or two firms which sell inexpensive de-frosting guns, designed to get ice off windows.
If you experience the touble mentioned above, plug in your gun, push back the two spring clips holding the distributor cap, lift the cap clear of the rotor arm. squirt the hot air into the cap for about two minutes, and you're away. If you hold the cap over the gas as I used to, there is a danger of it melting.

Graham Farish

Glancing quickly through the pages of "Practical Wireless". I suddenly thought I was caught up in a time warp. There on page fifty was an advert of an h.f. choke covering the Medium and Longwave band, price two shillings, and something called an "Ohmite" resistor, with the words underneath it "Better than wire wound", price one shilling and sixpence. Looking at the top of the page I realised it was part of an obituary notice for the late Graham Farish and the advert was a reproduction of one of his advertisements of 1932. His was a name in the components market well known to the older generation. Later he went into model railways.

Just a word

What a difference a word can makel A customer recently wrote and asked me to quote him for a mains transformer giving an output of $12 \cdot 0 \cdot 12$ volts because
he wanted to make a battery charger. I wrote and asked what current he wanted to draw from it and back came the answer 4 amps.

Naturally । assumed he wanted to charge up two 12 volt car batteries. Once more I had to write and say, that if this was his intention, he would need a trans former that gave 4 amps at an off load voltage of around $17.0-17$ volts.

When he replied he sent me the circuit, taken from one of the magazines. It was a circuit for a Battery Eliminator to replace a PP9II

Crystal Gazing

In spite of the myriad of the most sophisticated electronic toys imagineable the sales of them were greatly exceeded by a non-electronic toy, the infuriating Rubrik Cube. I was also pleased to note that we sold over five hundred of the humble crystal sets. It never fails to please the youngsters and is a good stepping stone to more serious projects.
I do hope that many readers spotted the series of lectures by The Royal Institution on BBC Television. They are always first rate. This year the lecturer was Professor R. V. Jones, F.R.S., and he called his series "From Magna Carta to Micro-chips".
Some of the facts he told us were astonishing, for example, did you know that Wheatstone (the bridge man) invented the mouth organ? The good Professor not only told us about it but produced one and proceeded to play it very competently. What an all rounderl! Larry Adler had better look to his laurels!

BOOK REVIEWS

PUBLIC ADDRESS HANDBOOK (2nd edition)

Author Vivian Capel
Price $£ 7.95$
Size $220 \times 140 \mathrm{~mm}, 238$ pages
Publisher Keith Dickson Publishing Ltd
ISBN 0907266029

F^{0}FOR anyone involved with public address amplification, this book is a must. Written in an easy to understand style it is full of good practical information much of it only obtained after years of experience in the trade. It ranges from basic principles through microphones and amplifier systems, indoor and outdoor installations, practical problems, testing and fault finding, and special equipment. And to finish, a section on practical installations with worked examples.

A few basic circuits are described but the book mainly concentrates on the practical aspects of public address installations, for example, the correct type of microphone and/or polar diagram required for a particular installation, and loudspeakers, and their location avoiding feedback. Examples of actual systems for from about 100 people up to a stadium of 15,000 with requirements for speeches, interviews, forums as well as community singing led by taped music are given. A section on the legal aspects is also included.
The section on loudspeakers covers the 100 line system in detail with sections on matching, phasing, power tapering, frequency tapering and weatherproofing.

PRACTICAL OSCILLOSCOPE HANDBOOK (Second edition)

Authors	Howard Bierman, Paul Bierman and Rufus Drew. $£ 7.00$
Price	$320 \times 150 \mathrm{~mm}$, 170 pages
Size	$320 \times$
Publisher	John Wiley \& Son Ltd
ISBN	0810408511

This book should prove to be an ideal companion for all users of oscilloscopes. It covers the subject from first principles and the operation of the various types of controls found on modern scopes right through to the more advanced type of measurement. Only the minimum of calculation and theory are given where these are relevant to the practical use being described. The whole aspect of this book is on the practical and the drawings given are among the clearest this reviewer has seen for some time.
The many drawings show not only the method of connecting the oscilloscope up into practical circuits but also the types of waveform to expect. Typical control settings are also given for many of the measurements shown. In the section on audio measurements for example, there are no less than fourteen examples of square waves obtained during the testing of an amplifier showing the effects of poor frequency response, phase shift, and miscellaneous effects. Receiver alignment curves are also shown for both TV (American system) and radio and there are diagrams showing how to check transmitter modulation.

Written in plain English this book will enable the reader to understand not only how oscilloscopes work but how to put them to practical use. Anyone contemplating building or buying as well as using an oscilloscope should have a copy. Highly recommended.
E.A.R.

GUITAR TUNER

For all those guitar owners who do not possess a piano, organ or the innate ability to help in the tuning of it, this instrument will be of use. All six notes of the guitar strings are reproduced by the circuit described in this project.

No precision calibration or taning is necessary, though it can be tuned to another instrument if this is desired.

CIRCUIT DESCRIPTION

The full circuit diagram is shown in Fig. 1. The heart of the instrument is IC2, an M083. This i.c. divides an input signal into thirteen different frequencies representing all the notes in an octave from \mathbf{c} to c .

The six notes of the guitar strings are as follows: E $(82.5 \mathrm{~Hz})$; A ($110 \cdot 0 \mathrm{~Hz}$); d $(146 \cdot 7 \mathrm{~Hz})$; G $(195 \cdot 9 \mathrm{~Hz})$; в ($247 \cdot 0 \mathrm{~Hz}$); е ($329 \cdot 8 \mathrm{~Hz}$). The nominal frequencies of the notes are shown in
brackets. As this range of frequencies spans two octaves, further frequency division of the output frequencies from IC2 must be done.
Dividing the frequency of a note by two, causes a drop in pitch of one octave. So, for example, as the highest E string is two octaves above the lowest E string, it has a frequency four times greater. It will be seen from Fig. 2 that a nominal clock frequency of $124994 \cdot 2 \mathrm{~Hz}$ is needed to produce the required output frequencies.

CLOCK OSCILLATOR

This clock frequency is generated by ICla, b, and c, three quarters of a cmos quad 2 -input nand gate, the 4011. These three nand gates are connected together as an oscillator, the frequency of which can be adjusted by VR1. This potentiometer, along
with Rl and Cl , form the timing components of the oscillator. The signal is fed into the clock input of IC2, pin 2.

From pin 7 of IC2 comes top E, which on depressing $S 6$, is fed to the audio amplifier section. Notes b, G and D come from pins 14,10 and 5 respectively by pressing S1, S2 and S3. However, as these three notes lie in the octave below top E , it is necessary to divide the frequencies by two.

This is done with IC 3 , half a смоs 4013 dual D type flip-flop. By connecting the Q output to the D input, that is connecting pin 5 to pin 2, the flipflop will divide by two.

Notes a and воттом e are obtained from pins 12 and 7 respectively. However, these lie in the octave below that of notes B, G and D, and two octaves below TOP E, and hence must be divided by four. This is achieved by passing the signal through and additional flip-flop, IC3a, also connected as a divide-by-two.

COMPONENTS

 All $\ddagger W$ carbon $+5 \%$

page 171
Capacitors
C1 $270 \mathrm{pF} \pm 2 \%$ polystrene
C2, 3,5 680pF polystyrene (30 off)
$\mathrm{C} 4 \quad 0.022 \mu \mathrm{~F}$ polyester
Semiconductors
IC1 4011 CMOS quad 2 -input NAND gate
IC2 M083 MOS tone generator
IC3 4013 CMOS dual D-type flip.flop
TR1 BC109 silicon npn
Switches
S1-6 push-to-make non-latching (6 off)
S7 s.p.s.t. miniature toggle
Miscellaneous
B1 9V PP3 battery
LS1 miniature 4Ω speaker, 57 mm dia
T1 miniature output transfor. mer, $1 \cdot 2 \mathrm{k} \Omega$ primary, $3 \cdot 2 \Omega$ secondary
VR1 15k miniature vertical preset (see text)
Stripboard: $\mathbf{0 . 1} \mathbf{1}$ matrix, 25 strips $\times 33$ holes; case, $120 \times 80 \times$ 35 mm (Vero type 202-21390D); 16 pin d.i.i. holder; 14 pin d.i.. holder (2 off); p.v.c. sleeved 7/0•2 equipment wire; battery clip: Veropins (12 off); epoxy resin adhesive; mounting hardware (M2.5 or 6BA); tinned copper wile (for links).

Fig. 1. Circuit diagram of the Guitar Tuner, the function of each section of the circuit clearly labelled.
$\mathrm{C} 2, \mathrm{C} 3, \mathrm{R} 2$ and R3 are included to fulfil the output loading requirements of IC2 and R3 also acts as a buffer between output pins 14,10 and 5 of

IC2 and the Q output, pin 13, of IC3. The signals are then fed into pins 5 and 6 of nand gate ICld as shown. C4 prevents any unwanted d.c. bias from

IC3b keeping the output of ICld (pin 4) at zero, and thus preventing the passage of signals from pin 6. This would occur if the output of IC3b was in a low state. TR1 is an amplifier driving the speaker via the miniature transformer, Tl .

Although IC2 is specified to run off of 10 to 12 volts, the most convenient power source is a 9 volt PP3 battery, and the i.c. functions well at this voltage. S 7 is the main on/off switch.

CIRCUIT BOARD

The original prototype circuit board was built on Vero V-Q board but due to the ready availability and simplicity of use of standard stripboard, we have transferred the layout to 0.1 in matrix Veroboard, 25 strips by 33 holes (shown in Fig. 3). The design requires the use of quite a large number of track breaks, 38 in all, and these must be positioned with great care.
Proceed to assemble the components onto the board, using i.c. holders for all i.c.s, especially IC2 which is quite an expensive device. None of the capacitors are polarity concious but the orientation of TR1 and miniature output transformer, Tl must be observed.
22 wire links are required and the longer ones, spanning say four holes or more, should be sleeved or made from insulated wire to prevent them flexing and shorting out against one another. Finally all connections from the board to the switches etc, should be made to Veropins as the continuous flexing of these wires which inevitably occurs during construction often leads to wires breaking, and repairs are easier to effect when pins are used.

CASE

The unit is built into a plastic moulded box, approximately 120×80 x 35 mm with a removeable lid.

All seven switches are mounted into the base of the case as shown in Fig. 4. Sl to 6, the push-button switches, are equally spaced along one side of the case, fixed into 7.4 mm diameter holes (for the switches we used, yours may be different) and S7 the on/orf toggle switch is mounted in a 6.4 mm diameter hole in the position shown.
The speaker is glued into position in the base with epoxy resin adhesive, after first drilling a pattern of holes beneath it to form a "grille" (see photo).

The circuit board is secured to the lid of the case with two M2.5 (or 6BA) screws approximately 13 mm long. To space the board away from the lid, two extra nuts, one on each screw, should be screwed on first.

When positioning the board on the lid, bear in mind the relative position of T1, the highest component, and

the magnet of LSI and ensure they do not foul each other. It is best to do this before glueing down the speaker.

The battery is held in place with a double sided sticky tab or alternatively by using foam rubber "sponge" to fill the space.

FINAL ASSEMBLY

Wire the board to the case mounted components with the $7 / 0 \cdot 2$ p.v.c. sleeved wire as shown in Fig. 4. Wire numbers refer to a strip/hole reference from Fig. 3, the stripboard layout diagram.

Having completed this assembly stage, it is a good idea to mark switches $\mathrm{S} 5,4,3,2,1$ and 6 with E, A, D, G, B, and E respectively, using dry print "rub-down" transfers. The words воттом and top, used to differentiate between the two E's were not thought necessary, since pressing the buttons will immediately determine this!

USING THE TUNER

As previously discussed, ICl will divide the input frequency into all the notes of an octave, irrespective of the input frequency. So, if for exable, the frequency of top E is not exactly 329.8 Hz then this is not too critical, since the other frequencies will still be in the correct ratio relative to each other to enable the guitar to be tuned. However, adjusting VRI will alter the oscillator frequency and enable the instrument to be calibrated against another instrument, for example, a piano. However, if no calibration source is available, replacing VR1 with a 12 kilohm resistor will give approximately the right pitch for the notes. If doing this, this resistor along with R1 should be ± 2 per cent types.

Finally, do not sound two notes at the same time, since, if for example, S1 and S2 were pressed, the output of

B would be feeding directly into that of G .

ALTERNATIVE CALIBRATION

In the event of no musical instrument or trained ear being available to the constructor, and he still wishes to set the tuner to a reasonably accurate standard, an alternative method of calibration is to use a test transmission tone from a television set.

During test card transmissions on BBC 2 , a 440 Hz signal (middle A) is broadcast for a period of four minutes on the hour. Although the BBC cannot guarantee this signal to be absolutely accurate, it will be sufficiently close to middle a for our purpose.

However as the a string on the guitar is at 110 Hz , that is two octaves below the transmission signal, on our tuner we must take the output directly from pin 12 of IC2 into the audio amplifier section, thus by-passing the two divide-by-two stages, IC3a and b.

To achieve this, a temporary link must be made between pin 11 of IC3a and pin 6 of ICld (point X, ref M15 and point Y, ref $T 12$ respectively on Fig. 3) resulting in a 440 Hz output from the speaker when S 4 is pressed.

Now the clock oscillator can be tuned by adjusting VRI until the output signal matches the test transmission signal. All other notes will automatically be in tune. Remove the link on completion.

TONE GENERATOR CHIP

It may be apparent to the constructor that the full potential of the M083 has not been exploited in this project. In fact it could be adapted to give the appropriate pitches for any instrument which requires tuning. So with the aid of Fig. 5, a brief data sheet, the constructor should be able to modify the circuit to suit his own needs and musical instruments.

$(\div 478)(\div 239)(\div 253)(\div 268)(\div 284)(\leftarrow 301)(\sim 319)(\div 338)$

Fig. 5. Pin function diagram of the M083 tone generator i.c.

View of the unit with lid removed showing interwiring. Note that the prototype is built on Vero V-Q board and therefore differs from the layout shown in Fig. 3.

Fig. 3. Stripboard layout of the Tuner with the track view (top) showing all the necessary breaks.
£15.50

ICE WARNING for CARS

This article describes how to use a thermistor as a transducer in a circuit which repeatedly flashes a lamp when the temperature of the thermistor has fallen to a preset temperature -in this case 0 degrees Celsius. Thus the circuit can be used to warn the driver of a car that icy roads are likely.
The thermistor is a glass-encapsulated negative-temperature-coefficient (n.t.c.) bead type. Its small size enables it to respond rapidly to temperature changes. Note that an n.t.c. thermistor has an electrical resistance which increases with temperature fall.

THE CIRCUIT

The complete circuit diagram of the alarm is shown in Fig. 1. The design shown is powered by a 12 V car battery, although should the circuit be used for other applications a 9 V battery could be used.

The circuit consists of two distinct parts: (1) a temperature-sensitive Wheatstone bridge, the output from which is sensed by the op-amp acting as a differential amplifier and (2) a two-transistor oscillator which flashes the l.e.d. when the thermistor reaches a predetermined temperature.

WHEATSTONE BRIDGE

The Wheatstone bridge consists of resistors R1 and R2 which set the voltage at the inverting terminal of the op-amp. ICl , at about 8 V with respect to the negative line (for a 12 V supply). The preset resistor VR1 and the thermistor RTHl form the other arms of the bridge.

Since the thermistor is an n.t.c. type, as its temperature falls its resistance increases, and the voltage at pin 3 rises. When this voltage just exceeds that at pin 2, the voltage at the output of the op-amp goes from near-zero to

Fig. 1. The circuit diagram of the Ice Warning alarm.

near +12 V . The temperature at which the output goes sharply positive can be selected by adjustment of the preset resistor VR1.
The high voltage at the output of the op-amp switches on the oscillator by coupling the "high" voltage to the base of TR1 through R3. The capacitor Cl provides the positive feedback which is necessary to maintain the low-frequency oscillations.

TR2 has the l.e.d. in its collector circuit with series resistor R5 which limits the current passing through the l.e.d. to a safe value.

The frequency of the flashes of the l.e.d. are determined partly by its own resistance and Cl value.

Transistors TR1 and TR2 should be a complementary pair if the circuit is to work satisfactorily. The pairs 2N2926/2N3702 and BC182L/BC212L are suggested alternatives to the types specified in the component list

COMPONENT ASSEMBLY

All the components, except battery, switch and l.e.d., can be mounted on a piece of 0.1 inch stripboard size 10 strips by 24 holes as shown in Fig. 2.
Make the necessary breaks on the underside of the stripboard as shown in Fig. 2. Use a spot face cutter or a small (3 mm) drill bit. Position and solder the components to the topside of the board leaving the semiconductors until last. Attach sufficient

COMPONENTS

Resistors

Capacitor

C1 10μ F elect. 15 b
Semiconductors

IC1	741 Op
TR1	ZTX300, 2 N 2926, or
TR2	
	BC212L silicon pno $\}$ text
D1	TIL220 red light emitting
	diode
RTH1	GL16 glass bead

Miscellaneous
S1 s.p.s.t. switch or car ignition switch
Stripboard 0.1 inch matrix, 10 strips $\times 24$ holes; insulated stranded connecting wire; suitable small plastic case, approx. $75 \times 30 \times 30 \mathrm{~mm}$-Verobox type 202 -2102K of similar; 6 -way (2A screw) terminal strip.

Approx. cost
Approx. cost
Guidance only

lengths of flying leads to the board to reach the screw terminal block fitted on the outside of the case. The wire feed hole on the case should be fitted with a rubber grommet for protection. The board may be held in place in the case by wrapping it in foam sponge after calibration. This will dampen any vibration resulting from the running of the car. Wire up the switch and terminal block to the board and then calibrate as instructed below.

CALIBRATION

Before fixing the unit to the car, it must be set to respond to an air temperature of 0 degree Celsius.

Crush some ice in a container until it is "slush". Ensure that the ice is melting, for then it is at 0 degree Celsius (the ice point) but check the temperature with a thermometer if you have one available. Immerse the thermistor in the melting ice and adjust the preset resistor until the l.e.d. just begins flashing. Take the thermistor out of the iced water and as it warms up the l.e.d. will cease to flash.

THERMISTOR POSITION

The thermistor must be sited in a position where it cannot receive heat from the engine. It must be close to the ground since the conditions for ground frost, giving icy patches on roads, cannot be predicted a few feet above the ground.

The thermistor must also be protected from contact with water splashes and rain, for the cooling produced by water evaporating from the thermistor will cause it to fall to a temperature below the true air temperature. A good position for the thermistor may be behind the front bumper although the best position will be determined by the type of car it is to be used with.

Having decided on the best position for the thermistor, you will need to estimate the length of flex required between the thermistor and the circuit. Care should be exercised in soldering the flex to the thermistor since the soldered joints should be insulated with sleeving to prevent them coming into contact with water or the car body; heat-shrinkable sleeving is ideal for this purpose.

The thermistor should then be glued into the end of a short length of plastic tubing so that although air can circulate round it, it is protected from water splashes.
Any small plastics box may be used to house the circuit board which can then be mounted unobtrusively behind the dashboard of the car, in the glove compartment or even fitted to the parcel shelf using double sided foam pads. Choose a position on the dashboard where it is easy to see the flashing l.e.d.. Drill a hole to take the l.e.d. so that it can be fixed by pushing it into its plastic fixing clip. If this is unacceptable, the l.e.d. may be attached directly to the terminal strip and the assembly positioned in easy view of the driver.

IN USE

In use it is interesting to note, as one drives along during a frosty evening, the indication given by the device. The likely conditions for ice to form on the roads is clearly indicated -under trees or other sheltered places, in hollows where cold air collects and even a change from cloudy to clear sky.

PART 11 BY J.CROWTHER

APPLICATION OF LOGIC TECHNIQUES

(3) The Half Adder

The purpose of a Half Adder is to add together two binary digits of a binary number.
Suppose we call the two binary digits to be added A and B. the Truth Table will be:

\boldsymbol{A}	\boldsymbol{B}	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

From the Truth Table it can be seen that the module must have two outputs, a sum which goes into the register, and a carry which is passed on to the next column.

We only require a carry if A and B are 1, the Boolean Equation for this is:
$A B=S$
This is given by an and gate as shown in Fig. 11.1.
If we take the case where the sum $=1$, the Boolean Equation for the sum output becomes:
$A B+A B=S$
In Boolean Algebra we can add any Identity which is equal to 0 , to an equation without altering its value.

Add $A \bar{A}$ and $B \bar{B}$ to the above equation and we get:
$A \bar{A}+\overline{A B}+B \bar{B}+A B=S$
$\bar{A}(A+B)+\bar{B}(A+B)=S$
$(\bar{A}+B)(A+B)=S$
$A B(A+B)=S$
This represents an AND gate fed with $(A+B)$ and $\overline{A B}$ as shown in Fig. 11.2.
$(A+B)$ is obtained from an or gate.
It will be noticed that $\overline{A B}$ is the inverse of the carry, and can be obtained by passing the carry through a NOT gate, so the complete module for the half adder becomes as seen in Fig. 11.3.

(4) The Full Adder

Since the half adder has no provision for a carry from a previous stage it can only add the first column of a binary number where there is no carry from a previous stage. To add
any other column except the first we must use a Full Adder. This consists of two half adders; the first adds the two binary digits and the second adds the carry from the previous stage to the sum from the first half adder. This arrangement would give two carries, one from each half adder, but there can only be a carry if the two inputs are 1 , in which case there would be no sum, therefore there can only be a carry from the first or second stage but not from both. Because of this we can pass the two carries through an OR gate, and so obtain one carry as shown in Fig. 11.4.

Fig. 11.1. Producing a "carry" in binary addition of A and B .

Fig. 11.2. Deriving the "sum" in binary addition of A and B .

Fig. 11.3. Complete logic module for a half-adder.

Fig. 11.4. Logic module of a full-adder.

OTHER GATES FROM NAND GATES

(1) The NOT gate

Suppose the two inputs of a NAND gate were strapped together. Both inputs would be fed with A, and the output S would be given by:

$$
\overline{A A}=S
$$

Since $A A=A($ Boolean Identity I) we get

$$
\overrightarrow{A A}=\bar{A}=S
$$

This is the equation for a not gate. Therefore we can make a NOT by strapping the inputs of a NAND gate together as shown in Fig. 11.5

A NOT gate may also be made from a 2 -input NAND gate by strapping one input to logic 1.

(2) The OR gate

Suppose we fed \bar{A} and \bar{B} into a wand gate, the output S would be given by:

$$
\overline{A B}=S
$$

Fig. 11.6. An OR gate using NAND gates.

Fig. 11.5. A NOT gate using - NAND gate.

Fig. 11.7. An AND gate using NAND gates.

Fig. 11.8. A NOR gate using NAND gates.

Fig. 11.10. An AND gate using NOR gates.

Fig. 11.9. A NOT gate using NOR gate.

Fig. 11.11. An OR gate using NOR gates.

Fig. 11.12. A NAND gate using NOR gates.

If we now apply Demorgan's theorem to this equation we get:

$$
\overrightarrow{A B}=\bar{A}+\bar{B}=A+B=(A \text { OR } B)
$$

\bar{A} and \bar{B} can be obtained by passing A and B each through a NOT gate, and using NAND gates to form NOT gates we obtain the logic module shown in Fig. 11.6.

(3) The AND gate

NAND means NOT AND, that is, the inverse of AND. Therefore it follows that and is the inverse of nand. So an and gate is a NAND gate followed by a NOT gate. If we use a nand gate for NOT gate we arrive at the logic module shown in Fig. 11.7.

(4) The NOR gate

The NOR gate is the inverse of the or gate, so if we pass the output of an or gate through a NOT gate we get a NOR gate. By combining the or gate in Fig. 11.6 with the NOT gate in Fig. 11.5 we get the arrangement shown in Fig. 11.8.

OTHER GATES FROM NOR GATES

(1) The NOT gate

Consider the NOR Truth Table shown below left.

A	B	S
0	0	1
0	1	0
1	0	0
1	1	0

Suppose that the B input was permanently connected to logic 0 , then lines 2 and 4 in the truth table left would not exist. The truth table thus becomes:

A	B	S
0	0	1
1	0	0

It can be seen now that if A is $0, S$ is 1 , and if A is $1, S$ is 0 . So it is inverting A and acting as a NOT gate. Therefore a NOR gate connected as in Fig. 11.9 will act as a NOT gate.
A NOR gate with both inputs strapped together will also act as a NOT gate, see lines 1 and 4 in the NOR Truth Table above.

(2) The AND gate

Suppose we fed \bar{A} and \bar{B} into a nor gate, the output would be given by:

$$
\overline{A+\bar{B}}=S
$$

If we apply Demorgan's theorem to this equation we get: $\overline{\boldsymbol{A}}+\bar{B}=\overline{\boldsymbol{J}}=A B=(\mathbf{A}$ AND $B)$
\bar{A} and \bar{B} can be obtained by passing A and B each through a NOT gate, and using NOR gates as NOT gates we obtain the logic module shown in Fig. 11.10.

(3) The OR gate

NOR means NOT OR, that is, the inverse of or. Therefore it follows that or is the inverse of Nor, so an or gate is a NOR gate followed by a NOT gate. If the latter is constructed using Nor gates, we obtain the logic module shown in Fig. 11.11.

(4) The NAND gate

The NAND gate is the inverse of the AND gate so if we pass the output of an AND gate through a NOT gate, we get a NAND gate. By combining the AND gate of Fig. 11.10 , with the NOT gate of Fig. 11.9, we get a NAND gate using NOR gates only. See Fig. 11.12.

Everyday News

$₹$ THE AGE OF THE TRAIN

British Rail takes on the airlines with a less than 4_{2} hours travelling time from London to Scotland

BR "zooms into the 80 's" with the APT (their words not ours) \star Speeds in excess of 125 mph cut journey time by 15 to 20 per cent
\star Glasgow to London in 4 hours 15 minutes. Amid all the ballyhoo about locked tilt mechanisms, "sea sickness" from sway and sensor malfunctions due to extreme cold, it must be remembered that the new APT high-speed tilting train, which covered the Glasgow to London run in 4 hours 14 minutes (including stops at Motherwell and Preston), is still a pre-production prototype built to evaluate the new design.
The Advanced Passenger Train is a high-performance, electric powered train with tilting coaches for passenger comfort when the train traverses curves at speed. First conceived in 1969, it was designed by BR engineers and built by British Rail Engineering Ltd to operate at speeds up to 125 mph and more on existing tracks and within the present system.

Why APT?

Nearly 50 per cent of the major rail network is on curves so average speeds and point-to-point journey times are primarily governed by permanent speed restrictions at these points.
To enable conventional trains to go round curves
faster tracks are canted, the outer rail raised above the level of the inner. Even with this arrangement only comparatively low speeds are possible.

Instead of the costly exercise of straightening out the most severe curves, BR's answer is the APT.

How It Works
Using an entirely new suspension design it allows the train to take curves 20 to 40 per cent faster than conventional rolling stock. Tilting the coach bodies by as much as 9 degrees passenger comfort is maintained.

Also, test running had
shown that a tilt failure would be rare, it was decided to fit a device to lock a coach in the upright position in the event of a failure.

BR would not divulge all the technical details, but we understand that electronic monitoring of the various systems is used extensively.

The APT instrument and control panel layout of the driving cab. Surprisingly, no tilt angle dial or indicator could be seen.

The APT taking a curve at high speed.

The prototype 4000 hp Power Car contains most of the monitoring equipment, power equipment and braking and tilt sensing equipment. It is hoped to fit this into a driving power car including the driving cab.

Hot Camera

An experimental solid state infra red camera that detects small variations in heat and creates recognizable television pictures of warm objects in a room totally dark to the human eye was demonstrated by RCA researchers recently.

During the demonstration, the camera was able to discriminate veins in a human hand and detect residual thermal prints on objects that had been touched by a hand for a second or less.

The heart of the camera is a high performance imager, about the size of a "dime" or half-pence, containing over 8,000 infra red sensitive elements. While picture quality is less than commercial TV standards, present progress indicates that the technology has the potential for full-television resolution.

_ANALYSIS

ON THE RECORD

When, one hundred and five years ago. Thomas Alva Edison made the first ever recording of sound he could hardly have foreseen what was to follow. His crude but highly original tin-foil phonograph signalled the start of a whole new industry although some fifty years were to elapse before sound recording and reproduction started to approach the levels of realism and fidelity now taken for granted.
For the real enthusiast, however, the search for perfection continues in pickups, turntables. amplifiers and speakers. Who a few years ago would have imagined that the domestic user would be offered a player unit in which the record is firmly attached to the turntable by suction, or another in which a turntable weighing 20 kg runs on a cushion of air supplied from an external pump: Or that keen types could be found willing to fork out $£ 10,000$ for a pair of speakers?

The hi-fi industry is awash with gadgets and gimmicks. One of the latest is digital time-lag to give the illusion of altering the size of your living room to suit the sound, from an intimate night club to a full-sized auditorium.

It is surprising that the classical disc record has lasted so long with its spiral groove impressed with an anlogue recording track mechanically in contact with the pickup stylus. Much of the technology has been devoted to overcoming the inherent problems in such a system.
Digital recording on compact discs will dispense with the delicate mechanical intricacies of conventional pickups and the heavy engineering of turntables, both very expensive. By using laser scanning of stored digital codes on a sealed disc there is no physical contact and therefore no wear on the record or laser "pick-up", no rumbles or crackles and an hour of hi-fi can be packed into a disc smaller than today's single.

Should we therefore pause before buying "old-fashioned" records, turntables and pickups and wait, perhaps for only a year or so, for digital discs and laser scanning? Not really says the hi-fi industry. Analogue systems, they say, are still being improved and the weakest link now in the hi-fi chain is the speaker which digital technology can not alter.

Brian G. Peck

RADIO SURVEY

The British National Oil Corporation is conducting a survey of microwave radio reception over the North Sea with a view to pinpointing periodic deterioration of signals.

A Microdata M1600L portable data logger is being installed on a drilling platform in the Beatrice oil field. It will automatically record field strength, date, time of day and other relevant information for subsequent computer analysis on-shore.

Nearly all oil platforms in the North Sea depend for telecommunication either on line-of-sight microwave links or tropospheric scatter links for contact beyond the horizon.

The BBC has produced its first Disital SECAM to PAL transcoder, using the CCIR recommended disital samp. ling standard.

Tandy Corporation (Branch) UK have announced the signing of the world famous science writer Isaac Asimov for extensive adver. tising and product promotion.

WIN $£ 1000$

British Telecom's Prestel world viewdata service is offering a $£ 1,000$ prize to the designer of the best Prestel adaptor for the Sinclair 2X81 personal computer.

The prize will be awarded to the adaptor which best combines low price, elegant design and practical robustness. The working design submitted must be capable of being modified to receive approval for attachment to the telephone network.

Closing date is March 14 and details, specification and entry forms are available from Prestel Headquarters, Telephone House, Temple Avenue, London EC4 OHL.

British Telecom's suggestions box led to a $\mathbf{i 6 , 0 0 0}$ award divided between David Atkins and Tim Walker for their idea of an automatic scanner for testing electronic telephone exchanges.

It does the work in a single night which formerly occupled a skilled engineer for a week. Known as WAM-the Walker Atkins Multitester-it is now being used at exchanges throughout the UK.

BETTER VHF RADIO RECEPTION IN SOUTH-EAST

Vertical Polarised Transmissions give improved VHF service for motorists and users of portables.

THREE new high power VHF transmitters came operational at Wrotham, Kent, early last December. The new transmitters radiate BBC Radio 1 and 2, Radio 3, and Radio 4 including some educational programmes. This station serves nearly 13 million people in London and South East England.

A new mast has been built alongside the old one which was originally used for early experiments in VHF broadcasting thirty years ago. The new mast is 177 metres high and carries aerials specially designed to radiate both horizontal and vertical polarisations. The total power radiated has been doubled.

Vertically polarised signals are required for good reception with portables and car radios.

Listeners with fixed roof or loft horizontal aerials for receiving Wrotham stereo transmissions will be unaffected by the addition of the vertical radiation.

This new system should help the BBC's campaign to encourage wider use of VHF. Medium wave reception is already poor in some areas and deteriorates at night; this situation will get worse with additional European stations coming into operation. The answer, the BBC says, is VHF-which provides interference-free reception and permits higher quality and stereo transmissions.

- Wrotham is the first high-power VHF radio station in the country to radiate both horizontal and vertical polarisations.

Improved reception for v.h.f. portables using vertical whip aerials and v.h.f. car radios is promised from the re-equipped v.h.f. sound radio transmitters at Wrotham, Kent. As well as six new 20 kW Marconi transmitters the radiating elements now have vertical as well as horizontal polarisation.

Other v.h.f. stations will have vertical polarisation added as they take their turn in the modernisation programme.

When the probe tip is placed on a connection with a positive potential, a current (conventional) will flow through the red half of D1, a RED/ Green bi-colour l.e.d., then through D3, R2 being the current limiting resistor. D2 prevents any current flowing into the other branch of the circuit. See Fig. 2a.

Fig. 2b shows the direction of current flow (conventional) when the probe tip is placed on a negative or 0 V connection. That is, from the +12 V terminal of PL1, through D2 and current limiting resistor Rl then through the Green half of Dl.

A.C. VOLTAGES

Should the probe tip be placed on a connection with an alternating voltage the two halves of Dl would each turn on and off in rapid succession thus resulting in an amber colour, enabling the probe to indicate a further state, that of an a.c. signal being present.

The 12V lamp LP1 has been incorporated to indicate that the probe is connected to the car battery supply and also, perhaps more importantly, to illuminate those dark corners

WHEN testing the electrics, tracing cables or simply adding new accessories to the car, it is often desirable to know the polarity of a wire or connector at a point where it is impossible to determine this by the colour or destination of that wire.

It was for these reasons that this probe was designed to give an instant indication of the unknown polarity with the use of a bi-colour l.e.d. If it glows red, the potential is positive and green indicates 0 V (chassis on negative earth cars)

CIRCUIT OPERATION

The principle of operation of the probe is really quite simple, using only six discrete components and the circuit diagram is shown in Fig. 1.

The probe is powered from the car battery circuit via PL1, which in the authors case was an accessory plug of the type which fits the cigar lighter socket.
Finished probe with the car accessory plug, PL1, alongside it. A coloured band was added around the case to enhance the appearance.

Fig. 1. Complete circuit diagram of the Car Probe. Note that SK1 is the cigar lighter socket.

Fig. 2. (a) shows the conventional current flow when testing a positive potential and (b) gives the flow of current when the probe tip is on the 0 V side of the supply.
under the bonnet and beneath the dashboard when looking for the right wire.

PROBE ASSEMBLY

Finding a case for the probe requires careful consideration, as it has to be both hand held and fairly robust for the kind of environment in which it will be used. The prototype was built into an empty "light pen" holder which fortunately had a screwin bezel to hold LP1 and the tip.

However, many tubular containers such as a large cigar tube or small torch housing could be adapted. A further alternative would be to build it into a hand held control box (such as the Vero 202 21026G) with the probe tip protruding from one end.

Resistors	
R1 680Ω	
R2 $1 \mathrm{k} \Omega$	
All 4 W carbon $\pm 5 \%$	
Semiconductors	page 171

D1	bi-colour l.e.d. red/green
D2,3	1N4001 1A
	similar (2 off)

Miscellaneous

LP1 miniature 12 V bulb, L.E.S. or flange
PL1 car accessory plug. for cigar lighter socket
Probe case (see text); brass rod 45 mm long, 1.2 mm diameter (for probe); sleeved grommet; epoxy resin adhesive; p.v.c. sleeved wire; 3.5 m twin cored cable; heat shrink sleeving (or electrical tape).

WIRING

The twin-cored cable is fed into the probe housing through a sleeved grommet and soldered directly to the leads of R1 and R2. As the components are all soldered together in a "spider's web" fashion it is important to make a good mechanical joint before soldering. All joints and bare metal component leads must be insulated preferably with heat-shrink sleeving but electrical insulating tape will suffice, particularly if the probe is to be in a metal housing.
The wiring of the components is shown in Fig. 3.
The probe tip itself was made from a brass rod, approximately 1.5 mm diameter and this was glued with epoxy resin adhesive into a hole drilled into the bezel. The end was fashioned into a point and a sleeve was slipped over the protruding length to prevent an accidental short circuit.

D1 was also glued into a hole in the probe body and LP1, an L.E.S. or flange type bulb was soldered directly to two wires from R1 and R2. The base of the bulb was then bound with tape to form a large enough ferrule to remain captive in the probe bezel.

PLUG

The power for the probe is picked up via PL1 and as discussed before, this is a plug designed to fit a cigar lighter socket. This was found to be
the most convenient method for use on a car as it is fused and controlled by the ignition switch but an alternative method of connection may be used.

When wiring PLl, remember that the positive connection on negative earth wired vehicles will be the spring loaded tip of the plug and the chassis or negative connection is the spring on the side of PLl. These connections must be reversed for positive earth wired automobiles.

IN USE

To test the probe, simply insert it into the cigar lighter and try it on connections of known polarity, the most obvious being the battery itself! The positive terminal should result in Dl glowing red and the negative terminal resulting in D1 showing green.

If these results are reversed, D1 may be soldered in incorrectly; remember that the anode (a) of the red l.e.d. within D1 is indicated by a "flat" on the body and it is this lead which is connected directly to the brass probe tip. Another possibility is the terminals of PLl have been reversed.

The probe can also be used to examine power supply conditions on both digital and analogue circuits, provided that the probe power is taken from the board under test.
It must not, however, be used for high voltages or mains.

By Pat Hawker, gзva

Gas Radio

MR. W. E. CAUGHEY, G12DZG of Belfast recently drew to my attention some fascinating correspondence in The Sunday Telegraph about the way in which radio listeners used to run their radio sets from gas using thermoelectric techniques. It seems worth adding a little background information. Such systems, still used for some specialised purposes, make use of the fundamental principle that when the junctions between two dissimilar metals are at different temperatures a small amount of electricity is generated, the socalled Peltier effect which is, in practice, more often used for refrigeration than for electrical generation.
In the late 1920 s and early 1930 s the "national grid" electricity supply mains still did not reach very many homes, and of the homes that did have electricity quite a few were supplied with directcurrent (it was not until after World War II that d.c. disappeared from some London districts). Most early domestic radio sets, other than crystal sets, were intended for use with "high-tension" (h.t.) batteries, which were typically 90 or 120 volts with round Leclanché cells (it was not until the 1940s that layer-type batteries came into wide use), and "low-tension" flaments were powered from 2 V lead-acid rechargeable "accumulators" which when discharged were taken along to a local radio shop or garage for recharging.
Many sets also needed a 9 V grid-bias battery although very little current was drawn from this. The h.t. batteries were not particularly cheap and mains-operated "battery eliminators" were popular in the late 1920 s using metal rectiflers but often with poor ripple filtering.
An early gas-powered unit was the Thermattaix introduced in 1927 as a substitute for the l.t. accumulators and contained thermocouples heated by small gas jets. An example can still be seen in the Science Museum in Kensington, London. Later Milnes Radio Co Ltd. of Bingley marketed a complete radio incorporating a thermo-electric generator and published a booklet "radio for the gas user".
In the 1950s, Philips of Eindhoven developed a thermo-electric generator for homes without either electricity of gas supplies. This was powered by an oil lamp and may have been the inspiration for an even later unit of Chinese manufacture that supplied 60 volts h.t. and 1.5 volts l.t. when placed on top of a hurricane lamp: an example of this device can also be seen in the Science Museum.

Rechargeable h.t. batteries

Thermo-electricity was by no means the only technique used in the early days to lower the cost of listening. The same Bingley firm, Milnes Radio, also marketed a rechargeable h.t. unit which they recommended particularly for use with sensitive
short-wave receivers as a virtually "silent" source of energy, without mains hum. This consisted of a battery of alkaline cells with nickel-cadmium plates.

The unit had an internal switch that changed the cells from being series connected into banks of four cells in series. parallei so that the battery could then be recharged from a large 6 V accumulator. Such units were available up to 200 volts though I am not sure if they were ever widely used.
It was once my experience to work for a while in a radio station where about a dozen powerful receivers, mostly the famous National HRO type, were all operated entirely from a large bank of batteries as no mains supplies were available. At the other end of the scale I remember obtaining in 1945 one of the small hand torches made by Philips that incorporated a small rotary generator that was turned by squeezing a paddle with the palm of one's hand-though mine soon stripped its gear. Perhaps it was one of the products made in the Eindhoven factory during the occupation of Holland that were deliberately made none too reliable since they were mostly destined for the "grey mice"' occupation forces.
As a final note on this subject, modern thermo-electric generators run from propane gas have been quite widely used for

Picture quality

In the latter part of 1981, the Royal Television Society held a discussion meeting that turned out to be of unusual interest. Entitled "Picture Quality-the Aesthetic and Technical Arguments ${ }^{\prime \prime}$ it succeeded in bringing together two very different strands of television broad. casting: famous drama producers and the engineers who are concerned with the technical quality of the transmitted pictures. It soon became clear that these two aides look at things very differently and often use the same words to mean different things.
Producers tend to like working with film because they believe it is more suitable for capturing "moods"-engineers often dislike film because of the scratches, blemishes and colour tints that can often be seen. They find it inconceivable that producers sometimes shoot a whole production with a gauze placed in front of an electronic camera when they could get the same effect (if really needed) by narrowing the depth of focus.
What really seems to be needed is for producers to discover how to use electronic systems to best advantage and for engineers to recognise, perhaps rather more, the seething resentment of producers when they find their carefully composed shots are graded "poor". Both sides seek the same thing-good television; both sides need to learn to speak the same language.
communications equipment, particularly on some American railroads: unfortunately the economics generally make them unattractive where other types of supply can be used.

Getting on 10.1 MHz

The changing pattern of amateur radio equipment over the past decade or so has, rather regretfully, brought it casualties. One of these has been the virtual dis. appearance of the "junk-box" transmitter built in a couple of evenings on the kitchen table. There are a few exceptions. The very low-power (QRP) enthusiasts still tend to roll their own-and those who venture up into the microwave bands seldom have any alternative.
Then again there are still relatively simple transmitters covering a limited number of h.f. bands, or those constructed from kits or with the help of bought-in printed circuit boards (although a p.c.b. is often unsuitable for random junk-box components). But most amateurs, today, at least when first licensed, tend to buy a factory-made 144 MHz or h.f. transceiver. It would indeed be irresponsible to suggest that many newcomers could hope to design or build units as complex or as compact as many of those now on the market.

But the small black boxes can be rather inflexible. The opening on January 1, 1982 of the new 10.1 to 10.15 MHz band (permission for British amateurs to use the new 18 and 24 MHz bands has been deferred) brought a problem to amateurs other than those who have recently bought the new "9-band" models. Fortunately some older models can be adapted quite simply by those prepared to delve inside the black boxes. The popular FT101. series, for instance, already have a 10 MHz standard-frequency (WWV) reception facility and it is not difficult to make the equipment transmit in the new band. The American Drake models also seem relatively easy to adapt and a friend tells me that he has successfully converted an oldish Heathkit HW101.
My own (temporary) solution was to dust off a very old home-made transmitter complete with 40 -year-old 807 valve and modify this for $10 \cdot 1 \mathrm{MHz}$ instead of $7 / 14$. MHz . In a matter of hours the old blooper was in action on morse c.w. with about 20 watts input on the new band-for which in any case European amateurs have been asked not to use telephony in view of the limited frequency space.
Certainly in early January many hun. dreds of amateurs were active on the new band and finding it useful for local, medium-distance and long-distance contacts. As for the nearby 31 -metre broadcast band there is every reason to believe that this will be an excellent frequency for working ("via long path") stations in Australia and New Zealand. A very valuable acquisition even though only 50 kHz wide!

MASTHM आतGGHIONICS NOW! The PRAGHICAT WRY!

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to start or further a career in electronics or as a self. employed servicing engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write personally at any time, for advice or help during your work. A Certificate is given at the end of every course.
You will do the following
Build a modern oscilloscope
Recognise and handle current electronic components
Read. draw and understand circuit diagrams - Carry out 40 experiments on basic electronic circuits used in modern
cquipment
Build and use digital electronic circuits and current solid state 'chips' - Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio. T.V. Hi.Fi and microprocessor/computer
 quipment

Newdob? NewCareer?NewHobby?GetintoElectronicsNow!

POST NOW TO:

Please send your brochure without any obligation to 1 am interested in

NAME

ADDRESS

\square COURSE IN ELECTRONICS as described above RADIO AMATEUR LICENCE MICROPROCESSORS logic course

THER SUBJECTS

CITIZENS'BAND RADID IN THE UK

According to the world's first Citizen Band user and manufacturer, one Al Gross from the East Coast of America, CB or Open Channel radio has its origins in the UK. This startling revelation came during a meeting with this revered sexagenarian on the day that CB radio became legal in this country, November 2, 1981.

Apparently Al was working for the British Government during World War 2 and was the instigator of a limited range transceiver for the use of the ground resistance forces on the continent to contact the pilots of the famous Mosquito fighter/bombers.

Be this as it may, nothing further was done in this country about this simple two-way communication idea until the oil crisis eight years ago. Not that this brought CB into use. It is just that with all the media coverage of American truckers communicating with each other to find the petrol they so badly needed to maintain their business, interest was aroused in the UK in this novel form of person to person communication.

What happened in the USA is well documented-the biggest CB boom the world has ever seen, with endless films and songs featuring this communications medium. Concurrent with this craze the governing body of the American airwaves, the Federal Communications Commission (FCC), changed the number of available channels from 23 to 40 , due to the overcrowding of the air in the more densely populated areas.
Little happened in the UK during the following five years . .

ILLEGAL
 ENTRY INTO BRITAIN

The year was 1978 and large quantities of the new 40 -channel AM rigs went on sale in the USA. Unfortunately with the effects of the aforementioned channel crowding the craze had by then passed and the market had all but collapsed. Over supply then led for a search of an Englishspeaking nation that knew all about the $C B$ folklore, and was a willing marketplace.
So from 1978 onwards the FCC type CB equipment came into the UK in their illegal thousands. Informed

By G. Baskerville

opinion put the number of operating illegal transceivers to be almost a million at the peak of the under-thecounter trade. However illegal it was, no Government can ignore that number of voters who are willing to defy the then law of the land.

CB BECOMES LEGAL

The government was forced into action and a Green Paper published in August 1980 outlined the basis of a British "Open Channel" service. It came to the conclusion (not, unnaturally) that there was a strong case for CB radio and favoured a much higher operating frequency around 928 MHz , and seemed to favour FM modulation, along with our European cousins.

This created fairly considerable political activity from many vested interests, in the main opposed to the higher frequency. But in spite of all this the Home Office Radio Regulatory Department produced two performance specifications in April 1981. They were MPT1320 and MPT1321 and specified equipment for use on 27 MHz and 934 MHz respectively. The fact that the specifications were for angle modulated equipment brought uproar from the more responsible AM users who after all had lobbied for a British CB service and quite naturally had wanted their American AM FCC sets legalised.

In reality the Home Office had to choose a system that would not interfere with either broadcast or emer. gency service frequencies, and by making the specifications very "tight" would make for better quality.

The Home Office was able to draw on the experience gained with Private Mobile Users and knew that the better voice quality and range of FM equipment would meet all the basic requirements of a British CB system.

October 1981 saw the change to the Wireless and Telegraphy Act to allow the use of this new equipment with the appropriate licence as from November 2, 1981.

CB EQUIPMENT

Transmitting/receiving equipment for Citizens Band divides into three main groups: mobile, handheld and base station. A variety of mobile equipments are available and as this is the type of equipment most in demand, at least initially, by newcomers to CB we have concentrated on mobile transceivers in the following introductory survey of commercial equipments.
Mobile transceivers now on the market fall broadly into two classes: the less expensive basic models costing around $£ 70$ and the more sophisticated models costing $£ 90$ and upwards. We have tried out a model from each class and hope our comments will assist those who are about to make their choice from the bewildering range of models on offer.
The accompanying table sets out the most important features of CB equipment currently available, and covers mobile, handheld and base station models. As this table shows, only a limited number of base station equipments are at present available, although several firms have indicated their intention to market models.
A similar situation exists with handheld equipments. There is potentially a large market for such "walkietalkies", but early reports indicate that some of the cheaper handheld transceivers are disappointing in their performance. Technical improvements are to be expected in this area -and we at present withhold detailed comment on this type of instrument.
What can be said is that almost all CB equipment listed is designed and produced in the Far East. Many undoubtedly share a common circuit technique and, whatever their Brand name, will differ principally in the more superficial matters and in external details and presentation.

MAKING A CHOICE

Assuming that you require a transceiver for mobile use what do you look for? All the legal 27 MHz units are stamped with CB 27/81 on the front facia; any unit that does not have this is either an illegal AM unit or a continental FM set that operates on totally differing frequencies.

Basic units such as the Fidelity CB1000, Amsrad CB900, Binatone Speedway and Audioline PT340 are all imported by reputable companies and sell for around $£ 70$. For this outlay you obtain the transceiver, a PTT (push to talk) microphone, wiring, and installation brackets and instructions.

As an example of this kind of basic transceiver we tested the M2 unit from CB radio specialists John Woolfe Racing. This transceiver has, in common with all units in this price sector, a rotary 40 channel selection switch with l.e.d. readout, an on/off volume
switch and squelch control, and a signal strength and power meter.

The first two controls are self explanatory, however the squelch control may be a little unfamiliar. Basically the squelch control allows the user to cut out atmospherics and weak signal noise thus only hearing the stronger and more local transmissions. Best position for this control is just past the point where the worst of the interference is blanked out.

The signal strength and power meter allow you to monitor the power you are transmitting and the strength of the incoming signal. You can find
out how much power you are transmitting by asking another CB user what the reading is on his meter. Experience will tell you whether it is adequate allowing for the range required.

INSTALLATION

If you are installing the unit yourself then a few rules must be adhered to. First, never try and transmit with the antenna disconnected. Secondly, always match the set to the antenna.
Power source is taken directly from the car battery.
Having got power to the unit the

next job is to match your antenna. This is simply done by using a Voltage Standing Wave Ratio meter (SWR meter for short) connected between the set and its antenna. By pressing the microphone lever you will obtain
a reading on the meter. This must be lower than $2: 1$ (and preferably less than $1 \cdot 5: 1$) and is obtained by altering the length of the antenna whip following the manufacturers instructions.

If your antenna is not matched with the unit you will (a) have a poor transmission range and (b) harm the unit as power is "reflected" back into the transceiver as heat.

LEGAL CB TRANSCEIVERS AND THEIR FEATURES

OPERATING

Having correctly installed your unit, switched on and set the squelch control, what then?
Although there are 40 channels three of these have specific functions.

Channel 9 is for emergencies only, designated for use where life or property are considered to be at risk.

Channel 14 is the communication or "breaking" channel.

Channel 19 is the mobile or
"truckers" channel where motorists can obtain up to the minute traffic reports from other road users.
After selecting channel 14 what usually happens is that people become "mic shy" and literally can't

LEGAL CB TRANSCEIVERS AND THEIR FEATURES (continued)

speak. We recommend installing the unit and listening to other CB users for a couple of days before engaging anyone in conversation. Calling up on channel 14 can be done by saying either "breaker $1-4$ for a copy" or "is the channel free/anyone listening"the preference is yours.

After making contact with another "breaker" or CB user you mutually pick another channel, say 27 and move off the breaking channel to continue your conversation.

TEST REPORTS

Our first FM tranmsmission using the John Woolfe M2 transceiver made us realise that the voice quality and distance of transmission were greater than expectations and we feel that no one will be disappointed by the performance of their unit. Contrary to what is said by the diehards of the illegal AM sets, FM units work better and their transmission go further. As regards the John Woolfe M2 unit we feel this is a good value-for-money transceiver and ideal for the "first time" buyer.

The second set tested was the Transcom GBX4000 which sells for around 990 . This set has a pleasant brushed alumininum finish facia which makes a change from some of the bright chrome that is featured on so may units.

As you would expect for the price the Transcom GBX4000 has several useful "extra" features, such as channel nine priority switching, and a PA switch that allows the use of an externally mounted speaker thus turning the transceiver into a mini Public Address system (not such a good idea). Rotary controls are provided for tone (rather more use with an extension speaker) and for r.f. gain control which alters the sensitivity of the receiver. This can be extremely useful when the calling channel becomes conjested, as turning down the sensitivity will cut out all the weaker transmissions in the area.

The Transcom unit is also fitted with a "Roger Bleep", a noise known to thousands as the astronauts handover signal when talking to Mission Control. The "bleep" is emitted when the mic lever is released, thus letting everyone know that the transmission has been handed over. We have noticed that some units have a bleep override switch in case the "bleep" is not to the user's taste; however we like it as it has a definite use.

Not fitted to the Transcom unit but to be found on a lot of sets of this price is a mic gain control. This allows users to set the sensitivity of the microphone to suit their own voice level. Well that's the theoryin practise everyone turns the gain on to full and leaves it there, and our experiments have shown that when
using a CB rig people tend to speak more loudly anyway.
To sum up, if you are looking for a unit that gives you more flexibility and a better transmission, then units like the GBX4000 will suit you. As with all consumer electrical products quality is usually equated to price. Other units that are in this price range are the Fidelity CB2000, Binatone Five Star, Rotel RVC240 and the Radiomobile CB202.

Two points that are worth mentioning are the use of the attenuator switch fitted to each set by law, and the use of extension speakers.

ATTENUATOR SWITCH

The -10 dB attenuator drops the output of the transceiver from 4 to 0.4 watts, and is required if the unit is used with an antenna more than 7 metres off the ground. It can however be used to cut down your transmitting power when talking to other local CB users, say up to two miles way.
By decreasing the power you will get just as good a transmission whilst allowing the use of that channel for another user on the fringe of your transmission. This use of the attenuator saves power and makes for good RT practice.

EXTENSION SPEAKER

As we have already said that each CB unit has an integral speaker it might seem rather strange to advise fitting a second extension speaker.
The fact is however, that the quality of sound obtained from the built-in speaker is not exactly high. An improvement can usually be obtained through the use of a special CB boxed speaker or by mounting an 8 ohm chassis speaker in the dashboard, using the manufacturers recommended position if possible. Voice quality is likely to be instantly improved: a definite benefit with FM as it has inherently a wider frequency range than the older $A M$ sets.

ANTENNA

Having chosen the transceiver or "rig" one further item that will dictate how well your unit will perform is the antenna. Many importers of rigs have a reasonably priced antenna that they sell along with SWR meters and extension speakers; however, many will recommend a range of antennas to suit their equipment.
In theory an antenna is best at radiating energy when its length is just one half of the wavelength of the signal fed into it. One wavelength at 27 MHz measures over 36 ft , so an ideal antenna length would be 18 ft . As this is impracticable for mobile use a quarter wave antenna of 9 ft is used.

However the Home Office specification calls for a "single element rod or wire antenna with a base mounted loading coil, overall length shall not exceed $1 \cdot 5 \mathrm{~m}^{\prime}$. How then can anything like ideal performance be obtained from an antenna of 59 in in length?

LOADING COIL

Fortunately an antenna of this length can have some of its length made up of wire wound into a coil at the base, called loading a short whip. To give the full effect of a full quarter wave the whip relies on the ground plane, usually the reflected metal of the car body.

A lot of energy can be absorbed by the wire winding in the antenna so the better the design and manufacture the more power it will transmit. A cheap base load antenna with an anti-shock coil spring will cut down the effective radiated power by as much as 50 per cent. Most antenna of this type are copies of car radiophone antenna and are usually called "telecom type".

ANTENNA TESTS

With our set reviews we have tried two types of antenna, the American Antenna K40 and Antenna Incorporated Persuader, both from over the Atlantic and priced between $£ 30$ and $£ 40$ depending on the type of fixing used. We chose a magnetic mount as it helped in our tests in terms of easy removal. There are usually two further fixings available: the clamp or clip-on type that can be fitted on the boot or hatchback rear door, and the wing fitting type that requires drilling of the bodywork.

Both the K40 and the Persuader antenna come from companies very experienced in producing $C B$ and professional communications equip. ment and should give close to a $1 \cdot 2: 1$ reading on a SWR meter with some small adjustment of the wire whip as per their own individual manufacturers instructions. It has been calculated these types of antenna give an effective radiated power of around 3W which is as near the theoretical limit as you can get with such a short 1.5 m whip.

Two further antenna we have tested (although not as fully as the ones already mentioned) and seem to work well are the Antenna Specialists MR125 and the British Panorama CB27.

Well that covers the major points in the selection, fitting and use of CB equipment.

It just remains for us to say that using CB is both fun and informative and we have tabulated all the known legal transceivers and their features to enable prospective users to see what is available and at what price. \square

HIGH POWER AMPLIFIER MODULES

READY BUILT OR IN KIT FORM KIT
£10.50 BUILT Plus 11.15 p\&p Plus $£ 1.15$ p\&p. £14.95 £18.95 Plus £1.15p\& Plus£1.15p\&p. SPECIFICATIONS 125 W Model 200 W Mod 200 watts $\begin{array}{lll}\text { Max. output power (RMS) } & 125 \text { watts } & 200 \text { watts } \\ \text { Operating voltage (DC) } & 50.80 \text { max. } & 70.95 \text { max. }\end{array}$ Operating voltage (DC) $\quad 50.80$ max. $\quad 70.95 \mathrm{max}$
Frequency response measured@100watrs Sensitivity for 100 watts - 16 $25 \mathrm{~Hz} \cdot 20 \mathrm{KHz}$ $25 \mathrm{~Hz} \cdot 20 \mathrm{KHz}$ Trpical T.H.D.@

50 watts. 4 ohms $\quad 0.1 \%$

50 watts. 4 ohms	0.1%	0.1%
205×90		
$190 \times 36 \mathrm{~m}$		

$30+30$ WATT STEREO AMPLIFIER
Viscount IV unit in teak simulate cabinet, silver finished rotary controls and pushbuttons with matching fascia, mains indicator and stereo jack socket. Functions switch for mit magnetic and crystal pickups, tape and auxiliary
Rear panet features fuse holder. DHN speaker and input Rear panel features fuse holder. DIN speaker and input ocket $30+30$ watts RMS, $60+60$ watts peak. For use with 40 8 ohm speakers.
$£ 32.90$
BUILT AND TESTED.
Plus 83.80 p\&p.
TV SOUND TUNER KIT
as teatured in E.T.I. December ' 81 issue. Kıt of parts including PCB. UHF suner, I.C.'s, all componen
excluding case, and selecior swith. $£ 11.45+£ 1.50$ p\&p

- Transtormer $£ 1.50+£ 1.50 \mathrm{p} \& \mathrm{p}\{\mathrm{p} \& \mathrm{p}$ free on trans. former if ordered with kit). Ready built LP1183 Module for simulated stereo operation $£ 1.95+75 p$ p\&p
ALIERS ONL
323 Edgware Rd, London W2. Tel: 01.7238432. Open $9.30 \mathrm{am} \cdot 5.30 \mathrm{pm}$. Closed all day Thursday, Persons under 16 not served without parents authorisation
ALL PRICES INCLUDE VAT AT 15\%.
generously rated components, result, a high powered rugged unit. The PC Board is back printed, etched and ready to drill for ease of construction and the aluminium chassis is preformed and ready to use. Supplied with all parts, circuit diagrams and instructions.
ACCESSORIES:
Suirable LS coupling electrolytic
for 125 W model
suitable LS coupling electrolytic
uitable LS coupling electrolytic
for 200 W model for 200W model
Suitable mains power supply unit for 125 W model
rable Twin transformer supply for 200 W model
$£ 1.00$ plus 25 p p\&p. £1.25 plus 250 p\&p. £7.50 plus E3.15 p8op £ 13.95 plus $£ 4.00$ pep.

MONO MIXER AMPLIFIERS

50 WATT Six individually mixed inputs for two pick ups (Cer. or Mag.), iwo moving coil microphones and two aux. iliary for tape, tuner, organs, etc. Eight stider controls - six for level and iwo for master hass and treble, four extra treble controls for mic and aux inputs. Size: $13 \% \times 6 \% \times 3 \%$ app. Power butput 50 watis R.
8 ohm speakers. Attractive 8 ohm speakers. Attractive black vinyl case with matching \quad §39.95 fascia and knobs. Ready to use

Plus $£ 3.70$ p\&p.

100 WATT
Brushed Aluminium ascia controls. Size: approx. $14^{\prime \prime} \times 4^{\prime \prime} \times 10 y^{\prime \prime}$ Five vertical slitjer controls, master volume, tape level, mic level, deck levet, P LUS INTEROECK FADER for perfect graduated change from record deck No. 1 to No. 2, or vice
versa. Pre fade level controls (PFL) lets YOU hear the nex disc before fading it in VU meter monitors outpu £76.00 100w RMS output (200w peak)

Plus E4.60 p\&e.

MAIL ORDER ONLY

21A HIGH STREET, ACTON, W3 6NG
Note: Goods despatched to UK postal addresses only For further information send for instructions 20p plus stamped addressed envelope.
All goods dellivered within 14 days of recelpt of order.

House

 RegistenTHE idea of a "register" was originally conceived because of the protlem of keeping track of people who were in the author's house at ary one time. This was especially so late at night, when various members of the household found themselves locked out following trips to the pub!

At first the problem was solved by having a notice board by the back door, and people "signed" themselves in or out-the last one in at night lacking the door. The circuit to be described here provides the same facilities in a smaller, neater way.

The project can be built to cater for any number of people and it is envisaged that it could be adapted for use in an office or a block of flats!

The House Register was designed using cmos logic gates for simplicity and economy, the latter reason arising from the fact that the circuit would have to be switched on at all times, thus the low power consumption of cmos was ideal. While the project is fairly straightforward both to build and understand, it also provides a good example of using simple binary logic.

SYSTEM DESIGN

Each person is allocated their own individual switch "Name" switch. In addition to these switches there are three further ones: "Master In", "Master Out", and "Master Display". Each person is provided with a small light beside their Name switch.

In order to assertain whether a person is in, his or her name switch is pressed. If the light goes on it indicates that he or she is in. It would be extremely uneconomical to allow the light to remain on at all times, hence the need to press the switch. A further feature is the master Display switch, which allows an inquiry on the complete household by switching on the lights of everyone who is in.

For this device to be effective, however, it is necessary for each person to remember to "clock in" and "clock out". This is carried out as follows: To clock in, a person presses his or her Name switch and at the same time presses the master In switch. The person's light will go on until the name switch is released. To clock out the procedure is the same, except that the master Out switch is used instead of the master In switch.

It does require some practice to get used to clocking in or out, but once it has become almost second nature this device is simple and useful.

CIRCUIT DESCRIPTION

The circuit diagram is shown in Fig. 1. There are six "logic modules" on the prototype (as the circuit shows) and allows up to six people's comings and goings to be monitored. All modules are identical in operation and the full circuit for each is shown in the first module, labelled miкe.

MEMORY LOGIC

IC3b and IC3a form a binary memory (bistable latch), the state of which is controlled by gates ICIb and IC2c. The latter can switch the memory on (logic 1 at its output), and IClb can switch it off (logic 0 at its output). Note that neither can perform the reverse function.
If S 7 (the in switch) and in this case Sl (the NAME switch) are pressed simultaneously, the output of IC2c goes high and sets the memory on (IC3b at logic high). This is the "clocking in" procedure.

If S8 (the out switch) and S1 are pressed together, both inputs to gate IClb go high and therefore the output goes low and resets the memory through D1 (IC3b at logic low).
The output from the memory goes to one input of the l.e.d. enabling gate, ICla. D4 will only turn on if the output of ICla is low. As ICla is a NAND gate, both inputs must be high for this to occur. D2 and D3 effectively form an or gate to the second input of ICla. Therefore D4 will only light if the output from the memory is high (it has been set) and either S1 or S9 (the display all switch) is pressed. Resistors R2, R19 and R20 keep the inputs to gates ICIb, IC2a and ICla normally low.

Fig. 1. The circuit diagram for the House Register. This circuit caters for six persons.

COMPONENT ASSEMBLY

The prototype was built on a printed circuit board size $137 \times 75 \mathrm{~mm}$ which fits comfortably inside the specified case. There are pillars on the base of the case which align with the fixing hole positions on the p.c.b.
The board has been designed to cater for six people, but there is no theoretical limit to the number of people who can be catered for. However, it is left to the constructor to extend the existing board or produce another for more than six people.
The full-size master of the p.c.b. pattern is shown in Fig. 2. The black areas represent the copper to remain after etching.
The author did not use i.c. sockets for mounting the cmos i.c.s. but we recommend that they be used as these devices are easily damaged during soldering.

Inside the prototype unit with the front panel hinged back. The position of a few components and the number of link wires will differ from the layout in Fig. 3. This has been carried out to aid construction.

Fig. 2. The full-size master p.c.b. pattern viewed from the copper side. Black regions represent the copper tracks to remain after etching.

Pinning details for the three types of CMOS gates used in this design.

COMPONENTS

Resistors
R1, R2, R4, R5, R7, R8, $1 \mathrm{M} \Omega$ R10, R11, R13, R14, R16, (140 ff) R17, R19, R20
R3, R6, R9, R12, R15, $1.5 \mathrm{k} \Omega$
R18,
(6 off)
All $\frac{1}{2} \mathrm{~W}$ carbon $\pm 5 \%$ See
Capacitors
C1 $47 \mu \mathrm{~F} 10 \mathrm{~V}$ elect
C 215 nF ceramic plate
Semiconductors
D1, D2, D3, D5, D6, D7,) IN4148
D9. D10, D11, D13, D14, (18 off)
D15. D17, D18, D19,
D21, D22, D23
D4, D8, D12, D16, D20, TIL220
D24
$\int(6 \mathrm{off})$
IC1,4,6 4011 CMOS Quad 2 input NAND (3 off)
IC2. 74081 CMOS Quad 2 input AND (2 off)
IC3, 5, 84001 CMOS Quad 2-input NOR (3 off)

Miscellaneous
S1.S9 miniature push-to-make release-to-break (6 red, 2 green, 1 white) (9 off)
B1 $\quad 9 \mathrm{~V}$ type PP3
Printed circuit board, single sided size 135×75; insulated stranded connecting wire, 7/0.2 or $10 / 0 \cdot 1 \mathrm{~mm}$ selection of in sulation colours; case, sloping panel plastic case with metal top panel, size $160 \times 100 \times 60(40) \mathrm{mm}$ type BIM1005; PP3 battery clip; clips and bushes to suit I.e.d.s (6 off); 14-pin d.i.l.; i.c. sockets (6 off).

Approx. cost
 Guidance only

£9-50

Assuming you have at this stage obtained the etched and drilled board, insert and solder all the resistors, Veropins and link wires followed by the two capacitors according to the layout in Fig 3. All flying leads to the front panel are to be made via the Veropins.

Next position and solder in place all the diodes paying attention to their polarity. Care should be exercised when soldering these devices and you are advised to use a heatshunt on their leads when carrying out soldering to reduce the possibility of thermal damage. All the i.c. sockets may now be inserted and soldered in place. Do not plug in the i.c.s at this stage.

The front panel should next be prepared to accept the switches and l.e.d.s. It would be a good idea and easier now to apply the Letraset (or other) labels. Protect with a coat of clear laquer.

INTERWIRING

Identify and label the l.e.d. leadouts and then with reference to Fig. 4 make all the interconnections between board and front panel components using insulated multistrand wire. A selection of different insulation colours would ease identification should this prove necessary at any stage.

It only remains now to insert the i.c.s in their sockets. Pay special attention when doing this to ensure that the i.c.s are in the right socket and the right way round. Double check before connecting the battery. Note that the board has been laid out
so that pin 1 on all i.c.s. points in the same direction.

TESTING

Plug in the battery. Hold down the IN switch and then successively press each name button. Each associated l.e.d. should light up for as long as the name switch is pressed, and go off when it is released. Release in and press display all. All l.e.d.s should light up while this switch is pressed. Now hold down out and successively press all the name switches. Release out. Press display all. No l.e.d.s should light up.

If the above checks have been successful then the unit is functioning satisfactorily and is now ready for installation.
Current consumption in normal quiescent conditions was less than $0.8 \mu \mathrm{~A}$ rising to 40 mA with all the I.e.d.s on. Therefore, provided the l.e.d.s are not kept on for long periods of time, battery life should be considerable.

Fig. 4. The layout and interwiring of the panel mounted switches and l.e.d.s.

Fig. 3. The layout of the components on the topside of the p.c.b. and wiring details to the panel mounted components. Note that i.c. sockets are not shown, but their use is advised.

WHEN the newcomer to electronics builds his first-circuit, it will probably be constructed on Veroboard, a unique and very versatile prototype circuit board. Presented free with this month's Everyday Electronics is a piece of Veroboard (or "stripboard" as it is often referred to) 10 strips by 24 holes and to help you on your way, we have dedicated this month's Square One to laying down some basic guide lines as to its use.

A. The board itself is made from s.r.b.p. and is drilled with a matrix of holes on a 0.1 inch (2.54 mm) grid. Running horizontally along the back of the board are strips of copper linking up the rows of holes thus enabling electrical connections to be made. The 0.1 inch grid spacing of the holes permits the insertion of integrated circuits, edge connectors and other components with their leads preformed on this internationally agreed lead spacing.

B. Before constructing a circuit, carefully study the component layout and circuit
diagram of the intended project, of which incidentally, there are two, printed in this issue, and have all components to hand. You may have noticed that in EE articles, all holes are coded with a letter (the copper strip) and a number (the hole), starting from the top left hand corner. This greatly assists in locating a single point on the board. You will also have noticed that it is often necessary to make breaks in the copper strips in order to fit the circuit on the board, for example, beneath an i.c.

To make these breaks, a special tool is available but they can be just as easily made with a hand held twist drill, some 3 to 5 mm in diameter gripped between the thumb and forefinger in a similar fashion to that shown in the photo. Insert the tool or drill into the hole at the correct location with the board supported on a flat surface and twist back and forth whilst at the same time applying light pressure. It is not necessary to drill very far into the board and care should be taken to prevent breaking into adjacent tracks. When the break has been made, it must be closely examined for any "whiskers" of copper.

C. Having made all the required breaks, the components can be inserted from the plain side and in many cases they will slot in position without modification, however axial lead components such as resistors and diodes will require their legs to be preformed. This can be done with a special gauge or simply achieved by making a neat right angled bend with a pair of long nosed pliers as shown.

D. To hold the components in place after insertion, spread their leads out at approximately 45 degrees but do not put any undue stress on the body of the component. The board can now be soldered.
E. When it comes to soldering the components, the constructor may wish to insert all parts and then perform a single soldering operation or indeed he may prefer to solder each component as it is

inserted. This is entirely a matter of personal choice.
To make the actual joint, a small soldering iron bit must be used and it is strongly recommended that the inexperienced constructor practices on a piece of scrap board. Before each joint, wipe the "dross" from the tip of the iron with a damp sponge and liberally "wet" the bit with solder. Bring the iron to the joint and touch both the copper strip and the component lead and then two or three seconds later feed the solder to the joint. A smooth and shiny fillet of solder should form around the joint. If the solder looks dull or crystallised it is very likely to be "dry" and the joint will have to be remade.

Never hold an iron on the joint for more than five seconds and always use a heatsink when soldering semiconductors.

F. A successful joint having been made, the excess lead must be cropped off with a pair of side cutters. It should be neatly clipped off just above the joint but take care as some cutters have a habit of firing the cropped lead away at incredible speed!
A final point. If the board layout requires wires to be soldered in to go to front panel mounted components it is advisable to attach these to Veropins as this both relieves stress on the copper strips and facilitates modification and repair.

G. This photograph shows just some of the types of components that can easily be accommodated in the Veroboard. It is always advisable to use i.c. holders for integrated circuits as this not only removes the danger of damage by soldering but also means the i.c. can readily be used in another project.

Youcant beat The System

The Experimentor System ${ }^{\text {™ }}$-a quicker transition from imagination through experimentation to realization.

When you have a circuit idea that you want to make happen, we have a system to make it happen quicker and easier than ever before: The Experimentor System.

You already know how big a help our Experimentor solderless breadboards can be. Now we've taken our good idea two steps further.

We've added Experimentor Scratchboard workpads, with our breadboard hole-and-connection pattern printed in light blue ink. To let you sketch up a layout you already have working so you can reproduce it later.

With Experimentor Matchboard you can go from breadboard to the finished product nonstop! We've matched our breadboard pattern again, this time on a printed circuit board, finished and ready to build on. All for about $£ 1.20$
There's even a letter-and-number index for each hole, so you can move from breadboard (where they're moulded) to Scratchboardim (where they're printed) to Matchboardim (where they're silkscreened onto the component sidel and always know where you are.

When you want to save time and energy, you can't beat The Experimentor System.

1. EXP-300PC, which includes one item. - A Matchboard pre-drillad PCB $£ 1.20$	2. EXP-302, which includes thres items. Three 50-sheet Scratchboard workpads

3. EXP-303, Two Mat solderless	ch includes ards and an aadboard	items. 300 $£ 7.60$		EXP-304, which includes four iten Two Matchboards, an EXP-300 breadboard and a Scratchboard workpad	s. 58.70
GLOBAL Unı	PECIALIT ,re Hill Indu	CORP Essate,	RA	ATION DEPT. 4W Walden. Essex	
15\% VAT				FREE Catalogue tick box \square I enclose cheque PO for	
Ontr.Regd	$\begin{array}{r} 2 . E \times ค 302 \\ £ 2.58 \end{array}$	Onty. Requ			
Onty.Reqd	$\begin{array}{r} \text { 4. EXP } 304 \\ £ 11.15 \\ \hline \end{array}$	Ontr.Read		$£$	
Phone your order with Access. Barclaycard or Amencan Exprest					

HIGH-SPEED PROBE

The LP- 4 logic probe from Global Specialties Corp., is a high-speed device specifically designed to detect and indicate logic levels at the high speeds and narrow threshold differentials encountered in emitter-coup-led-logic (ECL) circuitry.

The probe responds to single pulses as short as 3 ns in duration and to pulse trains with repetition rates of more than 100 MHz , and also incorporates a memory mode for storing pulse events and detecting spurious signals. With memory selected, a single one-shot pulse will be stored, and the pulse indicator will remain on until it is reset by the selector switch.

The LPA is a portable, circuit-powered instrument that detects and indicates valid ect logic levels using light emitting diode indicators for "high" (logic 1) and "low" (logic 0) levels. A third "pulse" indicator shows the presence of single pulses or pulse trains, and when this indicator is on, the other light emitting diodes indicate positive or negative pulse polarity.

Global Specialties Corporation, Dept EE, Shire Fill Industrial Estate, Safiron Walden, Essex CB11 3AQ.

BUDGET TOROIDS

A "budget range" of toroidal transformers, rated at $30,60,100,160,230,330$ and 530 VA can now be supplied by Barrie Electronics. With 110,220 or 240 V prim. ary windings and dual secondaries ranging from $6+6$ to $50+50 \mathrm{~V}$, they have been selected to fulfil the requirements of both the professional and amateur electronic engineer.

The toroidal transformers, from the Cotswold Electronics "budget range", will complement the 150 laminated types already held by Barrie Electronics on an off-the-shelf basis. Each transformer is supplied with a data sheet giving technical details on the operation and installaion of the toroids, which are manufactured to the same materials standards as used in avionics, telecommunications and electromedical applications.

Denrie Electronics Ltd.,
Dept EL, 3 The Minories,
London ECZN 1BJ.

AUTORANGING MULTIMETER

The D350 is an autorang. ing digital multimeter, small enough to fit into a shirt pocket, from Micro-Data Systems.

The $3^{1}{ }_{2}$ digit liquid crystal display has both unit and function annunciators and the meter has the usual com. plement of functions for a.c. or d.c. current measurements to over 20A. An added feature is an audible con tinuity tester facility.

The multimeter is built around a single 64-pin cmos integrated circuit. This not only performs the analogue to ditigal conversion and drives the display, but also contains the autorange switches, the a.c. to d.c. con verter amplifier and the resistance measurement source.

The D350 measures 127 mm $x 64 \mathrm{~mm}$ and is only 20 mm thick. The price, including accessories, is $£ 69$ plus VAT.

Micro-Data Systems, Dept
EE, Conch Mews, St Ives, Huntingdon, Cambridgeshire PE17 4BN.

DOWN TO EARTH

An unusual but useful item from the OK range of products is the WRS.l personal grounding strap.

Designed to safeguard work stations against static charges, the strap is attached to the user's wrist by a bead chain and to an antistatic work surface by a clip, thus protecting sensitive components from any static charge generated by the operator. A 1 megohm re. sistor built into the flexible wire strap protects operators from possible shocks.

OK Machine \& Tool (UK)
Ltd., Dept EE, Dutton
Lane, Eastleigh, Fants SO5 4AA.

BENCH POWER

With outputs from $8 \mathrm{~V} 2 \cdot 5 \mathrm{~A}$ to $350 \mathrm{~V} 0 \cdot 2 \mathrm{~A}$, the 22 models in the new Kikusui PAB series d.c. bench power supplies from Telonic Berkeley UK offer a wide range of output options.

Output voltage may be varied continuously from 0 V by the use of "coarse" and "fine" adjustment controls. Continuous control of cur rent is available from 10 per cent to 100 per cent of rated value, so the units may be operated in the constant
voltage or constant current mode. Voltage and current are displayed simultaneoushy on separate meters. Overload protection is by constant current transfer.

Multiple units may be used in series to obtain a higher output voltage and two of the same model may be connected in parallel to double the available current.

Telonic Berkeley UX Lid.,
Dept EE, 2 Castle Huli
Terrace, Maidenhead,
Berkshire.

This is the spot where readers pass on to fellow enthusiasts useful and interesting circuits they have them－ selves devised．
Payment is made for all circuits published in this feoture．

Contributions should be accom－ panied by a letter stating that the circuit idea offered is wholly or in significant part the original work of the sender and that it has not been offered for publication elsewhere．

MINI ORGAN

The main part of this circuit is the unijunction transistor oscillator TR1 with a transistor amplifier TR2．With the supply connected， Cl will charge up via VR1，R1，the probe and one of the presets．When the transistor switches over， Cl discharges itself into the emitter of TRI．When TRI has switched back，C1 will charge up again．The same thing happens again and these pulses are emitted by base 1 ，and then amplified by TR2 and fed into LSI．C1 makes sure that the peak current requirements can be met．

The preset potentiometers are con－ nected to wood screws fitted to the front panel of the instrument．The probe is applied to these screw heads to produce the required sounds．

An on／off switch can be mounted in the supply if required．It is advised to fit TR2 with a small heatsink．The highest note is about \mathbf{A} before middle

C．Rl can be reduced if this is found a little low．The unit is tuned by turn－ ing the presets and comparing the output frequency with a piano or other conventional instrument．

A．Clark，
Lichfield，
Staffs．

HIGH VOLTAGE PULSER

Recently I acquired an old desk top calculator in which I found some old＂Nixie＂display tubes．In order to
experiment with these safely， 1 de－ vised the enclosed novel circuit for a high voltage pulser which may also interest your readers．

The＂buzzer＂，made from a 4 in nail and coil，supplies a broken－up d．c． voltage to a mains transformer con－ nected the opposite way round to normal．The primary or mains input terminals forming the high voltage output or＂secondary＂winding．
The transformer steps up the broken d．c．and produces a series of high voltage spikes at the output terminals．

The wire for the buzzer coil was obtained from a heater winding of an old transformer．It was found that a PP9 battery provides an adequate power supply．

Warning：Avoid any contact with the output terminals of the trans－ former since it gives quite a kick．

H．Karmazyn， Handsworth， Birmingham．

Sinclair 2X81 Personal Comp the heart of a system that grows with you．

1980 saw a genuine breakthrough－ the Sinclair ZX80，world＇s first com－ plete personal computer for under $£ 100$ ．Not surprisingly，over 50，000 were sold．

In March 1981，the Sinclair lead increased dramatically．For just $£ 69.95$ the Sinclair ZX81 offers even more advanced facilities at an even lower price．Initially，even we were surprised by the demand－over 50,000 in the first 3 months！

Today，the Sinclair ZX81 is the heart of a computer system．You can add 16－times more memory with the ZX RAM pack．The ZX Printer offers an unbeatable combination of performance and price．And the ZX Software library is growing every day．

Lower price：higher capability

With the ZX81，it＇s still very simple to teach yourself computing，but the ZX81 packs even greater working capability than the ZX80．

It uses the same micro－processor， but incorporates a new，more power－ ful 8K BASIC ROM－the＇trained intelligence＇of the computer．This chip works in decimals，handles logs and trig，allows you to plot graphs， and builds up animated displays．

And the ZX81 incorporates other operation refinements－the facility to load and save named programs on cassette，for example，and to drive the new ZX Printer

Every 2×81 comes with a comprefiensive specially－wmiten manual－a complete course in BASIC programming．from first principles to complex programs．

Higher specification，lower price－ how＇s it done？
Quite simply，by design．The ZX80 reduced the chips in a working computer from 40 or so，to 21．The ZX81 reduces the 21 to 4 ！

The secret lies in a totally new master chip．Designed by Sinclair and custom－built in Britain，this unique chip replaces 18 chips from the ZX 80 ！

New，improved specification

 －Z80A micro－processor－new faster version of the famous Z80 chip，widely recognised as the best ever made．－Unique＇one－touch＇key word entry：the ZX81 eliminates a great deal of tiresome typing．Key words （RUN，LIST，PRINT，etc．）have their own single－key entry．
－Unique syntax－check and report codes identify programming errors immediately．
－Full range of mathematical and scientific functions accurate to eight decimal places．
－Graph－drawing and animated－ display facilities．
－Multi－dimensional string and numerical arrays．
－Up to 26 FOR／NEXT loops．
－Randomise function－useful for games as well as serious applications． －Cassette LOAD and SAVE with named programs．
－1K－byte RAM expandable to 16 K bytes with Sinclair RAM pack． －Able to drive the new Sinclair printer．
－Advanced 4－chip design：micro－ processor，ROM，RAM，plus master chip－unique，custom－built chip replacing 18 ZX80 chips．

\because •同回有 46

Kit or built－it＇s up to you！

 You＇ll be surprised how easy the ZX81 kit is to build：just four chips to assemble（plus，of course the other discrete components）－a few hours＇ work with a fine－tipped soldering iron． And you may already have a suitable mains adaptor -600 mA at 9 VDC nominal unregulated（supplied with built version）．Kit and built versions come com－ plete with all leads to connect to your TV（colour or black and white） and cassette recorder．

Ifer-
 Available nowthe IX Printer for only $£ 49 .{ }^{\text {.5 }}$

Designed exclusively for use with the $Z X 81$ (and $Z \times 80$ with $8 K$ BASIC ROM), the printer offers full alphanumerics and highly sophisticated graphics.

A special feature is COPY, which prints out exactly what is on the whole TV screen without the need for further intructions.

At last you can have a hard copy of your program listings - particularly

How to order your ZX81

BY PHONE - Access, Barclaycard or Trustcard holders can call
01-200 0200 for personal attention 24 hours a day, every day.
BY FREEPOST - use the no-stampneeded coupon below. You can pay
useful when writing or editing programs.

And of course you can print out your results for permanent records or sending to a friend.

Printing speed is 50 characters per second, with 32 characters per line and 9 lines per vertical inch.

The ZXPrinter connects to the rear of your computer - using a stackable connector so you can plug in a RAM pack as well. A roll of paper (65 ft long $x 4$ in wide) is supplied, along with full instructions.
by cheque, postal order, Access, Barclaycard or Trustcard. EITHER WAY - please allow up to 28 days for delivery. And there's a 14-day money-back option. We want you to be satisfied beyond doubt and we have no doubt that you will be.

Designed as a complete module to fit your Sinclair ZX80 or ZX81, the RAM pack simply plugs into the existing expansion port at the rear of the computer to multiply your data/program storage by 16 !

Use it for long and complex programs or as a personal database. Yet it costs as little as half the price of competitive additional memory.

With the RAM pack, you can also run some of the more sophisticated \bar{Z} X Software - the Business \& Household management systems for example.

Oty	Item	Code	Item price E	Total ε
	Sinclair ZX81 Per ZX81 BASIC man	12	49.95	
	Ready-assemble Price includes ZX	11	69.95	
	Mains Adaptor(s)	10	8.95	
	16K-BYTE RAM p	18	49.95	
	Sinclair $2 \times$ Printe	27	49.95	
	8K BASIC ROM to	17	19.95	
	Post and Packing			2.95
\square Please tick if you require a VAT recelpt			TOTAL £	
*I enclose a cheque/postal order payable to Sinclair Research Lid, for $£$ *Please charge to my Access/Barclaycard/Trustcard account no.				
- Please delete/complete as				$1 \underset{\text { l }}{1}$
Address:				
FRE	POST - no stam			Eve 03

UNIVAC KEYBOARD BARGAIN
Ideal for use with 2 X80/81. Has 50 keys and many other parts or your spares box. Probably cost in excess of $£ 100$. In very
9000 used condition - $£ 13.50+£ 2.00$ poss. Diagram showing how to connect to $\mathbf{Z} \times 80 / 81-\mathbf{\$ 2} .00$ extre.
COMPUTER DESK

Size approx. $4^{\prime} \times 2^{\prime} \times 2^{\prime} 6^{\prime \prime}$ high. These were made for hard work, the 100 being formica covered. Suitable for housing instruments of for use as office desks. Beautifully made, these
cost over $£ 100$ each, our price only $£ 11.50$ each, homever, you EXTRACTOR FANS Mains operated - ex. Computer 5^{\prime} Woods extrector

E5.75 Pont E1
$\mathbf{8 6 . 9 0}$ Porit 1.25
6 ' Plannair extractor
E. $\mathbf{E 7 . 5 0}$ Pont E1.00

4" $\times 4$ "Musfin 115 v .
$4^{\prime \prime} \times 4^{\prime \prime}$ Multin 230 v

INTERRUPTED BEAM
 This kit enables you to make a switch that will trigger when a ponents - relay, photo transistor, resistors and caps, *tc

INSTRUMENT BOX WITH KEY

Very strongly made (ply wood sides with hard board top and bottom). This is black grained effect, vinyl covered, very pleasing
appearance. Internal dimensions $12 \%^{\prime \prime \prime}$ long, $44^{\circ "}$ wide, 6° deep. Ideal for carrying your multif range meter and small tools and fo keeping them in ss sale place. E2.30. Post paid if ordered with other goods, otherwise $£ 1.00$.
ROPE LIGHT
4 sets of coloured lamps in translucent plastic tube arranged to give the sopearance of a running or travelling light. With varisble Complete, made up, ready to plug into mains. $\mathbf{£ 3 6 . 0 0}+\mathbb{C}$ post.

COMPUTER KEY SWITCHES (make your own keyboard) These are for making up on a p.c.b. and consist of a vertical moun passes over it. The magnet is located in
the plastic plunger which in turn is the plastic plunger which in turn is ch the legended top in
fixed. These are made these are made
up in banks of up in banks of price 22.30 6, price 22.30
per bonk of 6
(including tops

OUR CAR STARTER AND CHARGER KIT has no doubt saved many motorists from embarressment in an emergency you can stan hours. The kit comprises: 250w mains iransformer, iwo 10 amp bridge rectiliers, start/charge switch and full instructions, You can assemble this in the evening, box it up or leave it on the shell in the

GPO HIGH GAIN AMP/SIGNAL TRACER. In case measuring only 5 \%in $x 3$ Xin $x 1$ Kin is an extremely high gein (70 dB) solid state amplifier designed for use as a signal tracer on GPO cables, etc.
With a redio it functions very well as a signal tracer. By connecting a simple coil to the input socket a usaful mains coble tracer can be made. Runs on standard 4 \%v batiery and has input, output sockets and on-olt volume control, mounted flush on the top. Many other uses include general purposeamp, cueing amp, etc. An abwolute

515 OUR CURRENT BARGAIN LIST WILL BE ENCLOSED WITH ALL ORDERS.
 unit controll-
Ing over 2000
watts of ligh. ing. Use this at home if you wish but
is plenty rugged enough for disco work. The unit is housed in an
attractive two tone metal case and has controls for each channel attractive two-tone metal case and has controls for each channel,
and a master onfolf. The audio input and output are by $\mathrm{K}^{\circ \prime}$ sockets and three panel mounting fuse holders provide thyristor protection. A four-pin plug and socker facilitate ease of connection
ing lamps. Special snip price is $£ 14.95$ in kit form or $£ 25.00$ assembled and rested.

MULLARD UNILEX A mains operated $4+4$ ster
system. Rated one of the finest performers in the stereo field this would
make a wonderful gift fo
 almost anyone. In easy to assemble modular form thls should sell at about E30 - but due to a special bulk buy and as an in.
centive for you to buy this month we offer the tem complete at only $£ 16.75$ including VAT and port tem complete at only 16.75 including VAT and post.
THIS MONTH'S SNIP
POCKET AUDIO COMPONENT TESTER

With it you can quickly rest diodes, rectifiers, transistors. capacitors, check wiring and p.c. boards for op circults, find the anode and cathode of a diode or
rectifier and whether a vansistor is PNP or NPN, which rectitier and whether a fransistor is PNP or NPN, which densers, II bad, give a continuous signal, bui if good, give intermittent signals of varying length depending on voltage only 1.4 v , so it is also possible to check MOS devices, as well as sensitive transistors without fear of damaging them. The unit is supplied complete with
internal battery, which should last many months. Internal batte
Price $£ 3.45 \mathrm{p}$

THERMOSTAT ASSORTMENT

10 different thermostats. 7 bi-metal types and 3 liquid types. There are the current stats which will open the switch to protec in front of the element of a blow haster, the heat would trip the stat If the blower fuses; applisnce stats, one for high temp eraturest, others adjustable over a range of tempergtures which could include $0-100^{\circ} \mathrm{C}$. There is also athermostatic pod which can be immersed, an oven stat, a calibrated boiler stat, finally an ice stan which, fitted to our waterproof heater element, up in the loft could protect your pipes from freezing. Separatily, these the parcel for $\mathbf{E 2} .50$.

6 WAVEBAND SHORTWAVE RADIO KIT Bendspread covering 13.5 to 32 metres. Based on clicuit which appeared in a recent issue of Radio Constructor. Completa kit includes case materials, six 1 ransistors and diodes, condensers, resist
ors, inductors, switches, etc. Nothing eise to buy if you have an ors, inductors, switchas, ete. Nothing else to buy if you have an
amplifier to connect it to or a pair of high resistance hesctphones. emplifier to
MEDIUM \& 2 SHORT WAVE CRYSTAL RADIO Alf the parts to make up the beginner's model. Price $\mathrm{C2} .30$. Crystal oarpiece 65 p . High resistance headphones (gives best resultal C3. 75.

TRANSMITTER SURVEILLANCE

Tiny, easily hidden but which will enable conversation to be picked up with FM radio. Can bay mode in a matchbox-all alectronic parts and circult. E2.30. (Not licenceable in the U.K.). RAOIO MIKE
Ideal for discos and garden parties, Hows complere freedom of movement. Pasy through FM radio or tuner amp. $\mathbf{5 6 . 9 0}$ comp, kit (Not licenceable in th.K.

RADIO STETHOSCOPE

Essy to fauls find \rightarrow stert at the serisl and work towards the speak

- when signal stops you have found the feult. Complete klt $£ 4.95$.
MUGGER DETERRENT
A high-note bleeper, push larching switch, plastic case and baitery connector. Will scare away anv villain and bring help, $\mathbf{E 2 . 5 0} \mathrm{com}$. POPULAR SNIP - STILL AVAILABLE

And it still carries a fiee girt of a desol dering pump, which we are currently selling at $\mathbf{6 6 . 3 5 p}$. The snip is perhops the most useful braskdowi parcel we have ever offered. It is a parcel of 50 nearly all different computer panels containing parts which muss have over 300 diodes, Over 200 bencistors end several thousend other parts, resistors, condensors, multi-turn pots, recifiers, SCR etc efc. If you act promptly, you can have this parcel for only $\mathbf{2 8 . 5 0}$, which when you deduct the value of the desolderlig pump. works out to just tlittle over 4p per panal. Surely this is a bargain you
should not miss! hould not missl

BURGLAR ALARM CONTROL PANEL Conthins labefled connection block, latching relay, test switch and all you have to do is to take wires to pressure pads and to alarm bell. Price $£ 7.95$, with complete diagram
MINI MONO AMP
approx. Fitted volume control and a hol it. The amplifier has three cansistors and we estimate More technical data will be included with the amplifier. Brand new, perfect condition. offered at the very low price o
E 1.15 each, or 10 for $£ 10.00$.
 DELAY SWITCH Mains operated - delay can be accurately set with pointers knob for periods of up
102% hrs. 2 contacts suitable 10 switch 10 amps - second coniacr nopens a few min. uses after last contact. ©1.95.

$\left(\begin{array}{c} 12 \\ 9 \\ 6 \\ 0 \end{array}\right.$	

TIME SWITCH BARGAIN
Large clear mains frequency controlled clock, which will always show you the correct time + slart and thop sw
es with dials. Complete with knots. es with
E .50.

LEVEL METER

Size approximately "4" square, scaled signal and power but cover easily removable
rescaling. Sensitivity 200 u A. 75 p.
WATERPRDOF MEATING WIRE
60 ohms per yard, thls is a heating element wound on a fibre olass 60 ohms per vard, this is a heating element wound on a fibre plass
coil and shen covered with p.v.c. Dozens of uses - around water coil and then covered with D.v.c. Dozens of

TANGENTIAL BLOW HEATER

2.5 Km quies.
efficient instant efricient insta
heating from
$230 / 240$ vols
mains. Kit consis ts
of blower as
illustrared, 2.5 Kw

12 V SUBMERSIBLE PUMP
Just join it to your battery, drap it into the liquid to be moved and up it comes, no messing about, no priming, atc. and you get a very good heed. Suitable for water, paraflin and any non e eplosive non-corrosive liculd. One
a shower.
Price: $\mathbf{c s} .50$.

VENNER TIME SWITCH Mains operated with 20 amp switch, one on and one off per 24 hrs. repeats daly
sutomatically correcting for the lengthen automatically correcting for the lengthen ing or shortening day. An expensive time
switch but you can have it for only $\mathbf{Z 2 . 9 5}$ These are without case, but we can supply These are without case, but we
metal case with window $£ 295$.
Also mailable is adaptor kit to convert this into a normal 24 hro time switch but With the added actvantage of up to 12 on offs per 24 hrs . This makes an ideal con troller for the immersion haster, Price of
daptor kit is $£ 2.30$. Post any or all items $£ 1$

12V FLUORESCENT LIGHTING For camplng-car repairing - emergeny lighting
from a $12 v$ baltery you can't bat fluorescent from a iv baltery you can't batat llu
lighting. It will offer plenty of well lighting. It wilt of end
distriburad light
econamical. We
distributed
economical. We
offer an inverter
offer an Inverter
for 21 " 13 wott
minioture fluores
ministure fluores
cent tube.
f 3.45.
cent tube. E 3.45 .
(tube not supplied)
FIVE UNUSUAL SWITCHES
For Inventors, experimenters, service engineers, students or in fact anyone interested in making electrical gadgets. The parcel contains: - delay switeh - motor driven switet - two-way and off switch - polarity changing switch - and humidity switch. Our
regular price for these switches bought separately iover \&10, but regular price for these switches bought sop
SPIT MOTORS

These are powerfut mains operate induction motors with gesr box
atteched. The final shaft in a $\%$ " sttached. The final shaft in a $\%$ " $"$ rod with square hole, so you have alternative couplingmethods - final speed is soprox. $5 \mathrm{revs} / \mathrm{min}$, price 65.50 . Sumils motoris with linal speods of
$80,100,160$ \& $200 \mathrm{r} . \mathrm{p} . \mathrm{m}$. seme price

COMPONENT BOARD

Ref. WO998

This is a modern fibreglass board which contsins a multitude of ond rectifiers including 43 amp 400 v types are: 35 essorted diodes transistors type BC 107 and 2 type BFY 51 electrolytic condensers. SCR ref 2N 5062, 25 Ouf 100v DC and yo0uf 25v DC and over 100 other parts including variable, fixed and mire wound resistors.
(Dept. EE), 34-36 AMERICA LANE HAYWARDS HEATH, SUSSEX RH16 3QU. 30 YEARS

MAIL ORDER TERMS: Cash, P.O. or cheque with order. Orders under $£ 10.00$, add 60 p service charge. Monthly account orders accepted from schools and public companies Access \& Barclaycard orders phone Haywards Heath (0444) 54563. CALLERS: to Haywards Heath (closed Sat.), or 2, Bentham Road, Off Eim Grove, Brighton (closed Wed.). BULK ORDERS: Write for special quotation. Normally delivery is by return.

ANNDUNRCNG A NWEW SIENII DMF MBASIMC MEMEICITIRN NHIC

This 5 volume set contains over 500 pages. Bound in stiff linen. Cover size $81 / 3 \mathrm{in} \times 5 \mathrm{Sin}$ Price $\mathbf{£ 1 0 . 0 0}$ per set (we pay the postage)
Book 1. Introducing Electronics Book 4. Meters/Voltage-dividers Book 2. Resistors/Capacitors Book 5. Transistor Project Circuitry Book 3. Inductors/Diodes
The manuals are unquestionaby the finest and most up-to-date available and represent exceptional value.
This series has been written in a fascinating, absorbing and exciting way, providing an approach to acquiring knowledge that is a very enjoyable experience. Suitable for industrial trainees, City and Guilds students, DIY enthusiasts and readers of electronic journals.
Each part explains electronics in an easy-to-follow way, and contains numerous diagrams and half tone blocks with construction details and circuit diagrams far making the following transistor projects: Lamp Flasher, Metronome, Wailer, Photographic/Monostable Timer, Metal Locator, Geiger Counter, Radio Receiver, Intercom., Intruder Alarm Electronic Organ, Battery Eliminator, Anemometer, Sound Switch, Light and Water-operated Switches, Pressure-operated Switches, Light meter, Radio Thermometer, Ice Alarm,

Order now:
Selray Book Company
11. Aspen Copse,

Bromiey.
Kent. BR1 2NZ

Amount enclosed: $£$

Name:

Address:

JOIN UP WIM: HTMISOHD

Litesold's new ' L ' Semes soldeming Iron - now at a bargaln price
Outstanding performance. Lightweight. Easy to maintain.
Elements are enclosed in Stainless Steel shafts. insulated with mica and ceramic. Non-seize interchangeable bits. choose from "copper' or 'long life: A very special tool at a very special 'direct' price. Just 55.22 for Iron fitted with 3.2 mm copper bit. dust 2.27 for 3 spare copper bits (1.6: 2.4:4.7) A mere 54 for A mere $\mathbf{a y s}$ for
professional spring stand! Or buy the lot for $£ 10.34$ and save 10%

All pricos inc, Yat P dep

Mry $99(0) G$ DEVELOPMENTS LTD

Write today. Send Cheque/P. 0. to Litesold. 97.99 Gloucester Road, Croydon CRO 2DN or phone $01-6890574$ for Barclaycard/Access sales

THE SENSATION OF THE JAPANESE MUSIC FAIR

Designed by a genius. Controlled by a computer. Programmed by a laser. Played by amateurs professionally and by professionals superbly.

THE NEW CASIOTONE 701

what is going to become THE instrument of 1982 . . Drobably the best instructive keyboard 1 have come across. But it is also a top line musical instrument capable o (Keyboard \& Music Player). (". opens up home music making for all the family... one of the most advanced biggest sellers of 1082." (Electronles of Music Maker).

$-=1-=\frac{1 \pi}{2}$ IIIIIIIIIIIIIIIIIIIIIIIIIII

Complete Programmable Polyphonic Keyboard (RRP £555)

ONLY $£ 495$

- Input an entire piece of music, specially scored in bar code and read by a ligh Den attached to the instrument
* Alternatively, program your own melodies (max. 345 steps), chords (max. 201 steps) and tempo, via the keyboard, into the extenslve memory, (up to 5 minutes playing or more) with full editing facilities
* 3-WAY PLAYBACK.

Automatic playback of the entire picce; melody, chord, bass and rhythm with arpeggio.
Manual melody' playing. suided by the keyboard lamps, with automatic bass and ONE KEY PLAY facili
ean, allows the melody line to be played. simply by strokin * The $\$$ octave, \& note polyphonic keyboard can be split into $2 \& 3$ octaves and a different voice can be selected for the accompaniment.

* 20 "breathtakingly clear and bright" pre-set instruments and voices
* 3-way chord section:-Fingered, Memory and Casiochord auto accompaniment * 16 rhythm accompaniments with "flll in" variation and two percussion effec outions. Dims: $5 \times 374 \times 13-7 / 16^{\circ}$. Optional extras: Foot pedals. Hard case.

FREE CREDIT. 0\% interest, deposit, 12 monthly repayments. (Not MT-31, MT-40, or VL-1), or reduced rates for longer period. MOEREST 0% on ACCESS. B'CARD

NEW PORTABLE KEYBOARDS

 CASIOTONE MT-40IIIIIIII!
-Tー
(RRP £125) AN INCREDIBLE $£ 99$

* 8-note polyphonic playing of this 37 key, 3 octave heyboard.
* 15 key bass keyboard with automatic synchronised bass function. * 22 lively and reallstic built-in instrument sounds and voices.
* Sustain, Vibrato and Pitch controls. Line out and Headphone jack.

Integral amplifier and speaker. Battery powered, or optional AC adaptor. Dims $61.6 \times 584 \times 178 \mathrm{~mm}(2-7 / 16 \times 23 \times 7$) . Weight: $22 \mathrm{~kg}(4.91 \mathrm{~b})$.

CASIOTONE MT-31

IIIIIIIII

(RRP £79)
ONLY $£ 69$
basically a revision of the MT- 30 (one of my all time favourite electronic keyboards)." Electronics \& Music Maker
Similar to the MT-40 but without the rhythm box, bass and auto functions Dimenslons: As MT-40. Weight: $2.0 \mathrm{~kg}(4 \cdot 41 \mathrm{~b}$) Including batteries
CT-101 £195. CT-202 2275 . CT-403 £275. VL-TONE $£ 35-95$. Lists on request.

£120 COMPUTER

"Can do the job of a micro costing four times as much'? Personal Computer World

CASIO FX-702P POCKET COMPUTER

ONLY £119.95

Plus FRee microl Professional Programminy Pack (RRP 99.95) Or we will beat any lower advertised price by 5°

Eat your hearts out, H-P, Sharp and Texas!
The Casio FX-702P features: The biggest program storage capacity (up to 1680 steps), the biggest data storage capactiy (up to 226 memories), the widest range of math, science and statistics functions (55 in all, including Regression and Correlation). the most powerful English-like BASIC program-writing language and the fastest oderation. for results without waiting! Subroutines; 10 levels, FOR: NEXT looping: 8 levels. Comprehensive edit, debus and trace modes. 240 hours battery life. $17 \times$ $65 \times 82 \mathrm{~mm}$
FA-2. Cassette adaptor for bulk storage of programs and data, with powerful file name and remote control options. ONLY $£ 19 \cdot 95$.
FP-10. Permanent hard copy printer: full 20 character Itne width, fast 40 character per second primt speed. 2.600 lines der roll. (Low cost replacement rolls, $£ 2 \cdot 50$ for five) 6.000 to 9,600 lines battery life. Rechargeable battery pack. NP-4M, prints 13,000 ilnes ($(6 \cdot 90$), Mains adaptor, AD-4150, 5 .
FP-10 Printer ONLY $£ 44$-95
-

$$
\text { SYSTEM PRICES-Save ud to } 550 \text { on RRP }
$$

PACK A: FX-702P + MiCROL Professional Programming Pack
1119.95 PACK B: FX-702P + FA-2 cassette interface + PPP + PROCOS $1155 \cdot 00$ PACK C: FX-702P + FP-10 Printer + FA-2 + PPP + PROCSO

5194•50
MiCROL PROCOS for the 702P. Exclusive to TEMPUS.
Now you can create powerful, rellable programs in just minutes with this advanced integrated operating system, even if you have never programmed a computer before! "Visicalc-lype" system answers "what if" questions and analyses trends. On ready-to-run cassette, with user manual.
CASIO FX-602P The World's Fastest Programmable? Alpha/numeric scrolling display. From 32 program steps with 88 memories, to 512 FA-2 £19.95. FP-10 \&44-94. (Also compatible with FX-501/2P. and FX-601P).
CASIO FX-3600P low cost programmable.
38 program steps, 7 memortes, INTEGRALS AND REGRESSION,
$£ 22.95$
50M WATER RESISTANT ANALOG/DIGITAL
Alarm chronograph with coundown alarm CASIO AA-92W

ONLY $£ 25.95$
Analop. Independent hours \& minutes, with syme digital seconds. Dual time ability Digital Hours, minutes, seconds. day \& date. $1 / 100$ second stopwatch to 12 hours. Net, lap \& 1st/2nd place. Start $/$ stop \& 10 min . signals. Alarm. For 30 seconds with carousel display. Countdown Alarm. Normal and net times to 1 hr . with a mazing "Star Burst" fashing displery Stainless Steel W/R Case. Mineral
batiery. Stainless Steel W/R Case. Mineral
glass face. klass face

CATALOGUE ON REQUEST

14p stamp
appreciated

TECHNICAL TRAINING IN ELECTRONICS AND TELECOMMUNICATIONS

ICS can provide the technical knowledte that is so essential to your succesas; knowled ge that will enable you to take advantage of the many opportunities open to you. Study in your own home, in your own time and at your own pace and if you are studying for an examination ICS guarantee coaching 1 you are succestinl.

> City and Guilds Certificates:
> Telecommunications Technicians
> Radio, TV, Electronics Technicians
> Technical Communications
> Radio Servicing Theory
> Radio Amateurs
> Electrical Installation Work
> MPT Radio Communications Certificate
> Diploma Courses:
> Colour TV Servicing
> Electronic Engineering and Maintenance Computer Engineering and Programming Radio, TV, Audio Engineering and Servicing Electrical Engineering, Installation and Contracting

POST OR PHONE TODAY FOR FREE BOOKLET

fast \& reliable

Ersin Multicore

Ersin Multicore, solder contains 5 cores of noncorrosive flux, instantly cleaning heavily oxidised surfaces. No extra flux is required.
Comes in handy dispensers and tool box reels in two different alloys $40 / 60 \mathrm{tin}$ lead for general purpose electrical soldering and $60 / 40 \mathrm{tin}$ /lead ideal for small components and fine wire soldering.

Size PC115 60/40 tin/lead
£1.38 Handy pack 0 orzmm dis

Multicore Savbit

Size 3 40/60 tin/lead $\mathbf{\$ 4 . 3 7}$ Per reel ${ }^{16 m m d o}$
Size $1060 / 40$ tin/lead £4.37 Per reel 071 mm dio

Size 19A 60/40 tin/lead £1.15 Handy pack 122 mm dia
Multicore Saubit, solder increases the life of your soldering bit by 10 times, for better soldering efficiency and economy.
Comes in two handy dispensers and tool box reels.

£1.15 Per pack ${ }^{2 m m d a}$
Size SV130 Saubit £1.73 Per pack 0 oasmm do

Multicore Alu-Sol

Multicore Alu-Sol., solder contains 4 cores of flux, suitable for most metals especially aluminium. Comes in handy dispensers on tool box reels.

Slze AL150 Alu-Sol £2.07 Per pack 048 mm du

Size 4 Alur Sol
£7.82 Per reel 16 mm do
All prices inclusive of VAT.
Available from most electrical and DIYs stores. If you have difficulty in obtaining any of these products send direct with 50 p for postage and packing. For free colour brochure send S.A.E.

Multicore Solder Wick

Multicore Solder Wick, absorbs solder instantly from tags and printed circuits with the use of a 40 to 50 watt soldering iron.
Quick and easy to use, desolders in seconds.
Size AB10 Solder Wick
£1.43 Per pack

Multicore Tip Kleen

Multicore Tip Kleen, soldering iron tip wiping pad. Replaces wet sponges.

Bib Wire strippers and cutters
Wire strippers and cutters, with precision ground and hardened steel jaws. Adjustable to most wire sizes. With handle locking-catch and easy-grip plastic covered handles.

Bib Audio/Video Products Limited (Solder Division), Kelsey House, Wood Lane End, Hemel Hempstead, Hertfordshire, HP2 4RQ.
Telephone: (0442) 61291
Telex 826437

ALCoM

The Mini 20 is an ideal instrument for the constructor.
This special offer is a wonderful opportunity to acquire an essential piece of test gear with a saving of nearly $£ 10$ on the normal retail price.

The 28 ranges cover all likely requirements. Operation is straight-forward, just turn the selection switch to the required range position.

RANGES

d.c. $V: 100 \mathrm{mV}, \mathbf{3 V}, 10 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 600 \mathrm{~V}$.
a.c. V: 15V, 50V, 150V, $500 \mathrm{~V}, 1500 \mathrm{~V}$.
d.c. I: $50 \mu \mathrm{~A}, 600 \mu \mathrm{~A}, 6 \mathrm{~mA}, 60 \mathrm{~mA}, 600 \mathrm{~mA}$.
a.c. $1: 30 \mathrm{~mA}, 300 \mathrm{~mA}, 3 \mathrm{~A}$.

Ohms: $2 \mathrm{k} \Omega, 2 \mathrm{~m} \Omega$.
Movement protected by internal diode and fuse.

For details of this and the many other exciting instruments in the Alcon range, including multimeters, component measuring and electronic instruments $\frac{\text { Supplied complete }}{\text { with case, leads and }}$
instructions.
INCLUSIVE OF POST
PACKAGE-V.A.T.

A TGOTN
Instruments Ltd.
19 MULBERRY WALK . LONDON SW3 60Z • TEL: 01-352 1897 • TELEX. 918867

NOW A PACKAQE THAT OFFER YOU A 106uf/1EV BEAD TANT FOR special offer, popular value tantalum aead package ti.
 $3 \cdot 315,3$ of $3-3 / 3,4$ of $4 \cdot 7 / 4,2$ on $4 \cdot 7 / 38,3$ on $6 \cdot 3 / 20,1$ on $10 / 25,2$ on $22 / 6 \cdot 3,2$ on $2 / 10$. 2 oा $22 / 16,2$ of $47 / 10,1$ of141/16, 1 of $100 / 10$
ALL THE ABOVE TI PACKAGE NORMALLY 5 EA. 50 TO $\$ 10$ SPECIAL OFFER 61 TANTS
TANTALUM BEAD CAPACITO 9 , 1 of price (10 ofi) price.

 2/15..2pp (24p). 47/10..25p (2p). 47/16...40p (14p). 100/10..50p (67p), 100/16..25p (20p).

RETAIN TMIS AD. FOR ALL YOUR IMMEDIATE ANO FUTURE TANTALUM
SUBMINIATURE VER. MOUNTIME 2SV CER. DIECS Values in PF.

AXIAL LEAD CAPACITOR'O゙. POLYESTER. Olul/icov. 4p. 1/100.. 1p. i/600..12p.

 weicome. Schoole etc. Send oficial order. Calters by appointmant. Goods by return.

C.H.J. SUPPLIES,

4, STATION ROAD, CUFFLEY, HERTS. TEL: OT-440-805

NAMAL ELECTRONICS

No. 1 Claygate Road, Cambridge CB1 4.32. Tel:0223 248257 Telex: 81744

2532	2732	2114	6116	4116
	ย150\%	smonis		
E3.75	E. 10	20.99	E5.75	

NEW!
ALL PRICES SUBJECT TO

INTRODUCTORY OFFER E30

16K Ram expansion board for $\mathbf{Z X}$ 31. Simply plugs into the existing expansion port of your computer to increase programme atorage.

Introducing our new CHIP SHOP KITS

Each CHIP SHOP KIT is complete in every way and contains all the components necessary to build and operate the project described. All you need is a Soldering Iron (see Kit No. 2) and a 9 v battery. Each kit includes step-by-step instructions on construction and detailed educational notes about the individual circuit, together with advice about soldering techniques.

Kit No. 2-SOLDERING IRON-contains a high quality British soldering iron, a 1 Amp fuse and solder together with straightforward instructions upon how to handle your soldering iron and the best techniques for its use and maintenance.
Kit No. 3-ELECTRONICS TOOLS-contains a selection of useful tools for anyone starting in electronics, together with instructions about the use and care of your equipment.
SOLDER is included with every kit.

Kit No.		Price
1(a)	Morning Call plus	¢55.50
1(b)	Transistor Tester	
5	Soldering Iron	£5.50
3	Electronics Tools	£5.00
4	Electronic Organ	£4.00
5	Morse Code Trainer and Siren Oscillator	£4.50
6.	Light Operated Burglar Alarm	£4.50
7	Buzzer-Aircraft	£3.50
8	Light and Sound Alarm	£3.50
9	Lie Detector	£3.50
10(a)	Lamp Flasher plus	¢ £5.00
10(b)	Sleep Inducer	
11(a)	Cat Sound plus	55.00
11(b)	Night Light Reminder	
12(a)	Bicycle Horn plus	£5.50
12(b)	Electronic Shocker	
13(a)	Light Sensitive Alarm plus	£5.50
13(b)	Electronic Lamp	
14	2-Transistor Radio	£4.50
15	Morning Alarm	£4.50
16	American Police Siren	£4.50
17	Flashing Dual-tone Horn	£4.00
18	Two-Way Interphone	£5.50
19	4-Transistor Radio	£5-50
20	Clicker-Helicopter Oscillator	£3-50

All kits packed individually in attractive boxes. Loudspeakers are included with each kit (except nos. 2, 3, 14 where they are not required).
Kit nos, 1, 10, 11, 12, 13 contain two separate projects.

These kits are becoming available in Hobby and Electronics Stores all over the Country-look out for the CHIP SHOP DISPLAY in your local store.
If you cannot locate a stockist please order direct from Electroni-Kit Ltd. Please add 50p per kit for postage and packing.
Trade and Educational Enquiries welcomed.
Cheque/P.O./Access/Barclaycard (or 23p for full-colour illustrated literature) to DEPT. EECS.

ELECTRONI-KIT LTD.

BATTERIES

 BOXES BDAROS CAPACITORS RESISTORS CONHECTORS CABLESCOAX
FLAT RIBBON POTS SWITCHES RELAY8 CMOS TTL L8 TTL MEMORIES SUPPORT CHIPS LINEAR OP AMPS COMPARA. TOR8 a.D D-A OPTO
LEDE DISPLAYS LCD's TRANBISTORE THYRISTORE TRIACS DIODES RRIOGES METERS ZENERS SOLDERING C BOCKET

FROM A NEW COMPANY WITH NEW IDEAS

SOMETHING SPECIAL

AIRWAVES ELECTRONICS INVITE YOU TO OPEN YOUR OWN PERSONAL ACCOUNT.
there couldn't be an easier way to BUY COMPONENTS, ONCE YOU HAVE OPENED YOUR ACCOUNT, JUST PHONE OR WRITE YOUR ORDER THROUGH, STATING YOUR ACCOUNT NUMBER TOGETHER WITH YOUR OWN SECURITY CODE NUMBER AND GOODS WILL BE DESPATCHED SAME DAY AND YOUR ACCOUNT DEBITED WITH THE COSTS.

MAYBE. YOUR THINKING-YOU'LL HAVE TO PAY OVER THE ODDS FOR THIS, BUT YOU WILL BE WRONG, ACCOUNT CUSTOMERS WILL RECEIVE OUR PRODUCT PACKED CATALOGUE SHOWING VAT inclusive prices, Which we believe TO BE VERY COMPETITIVE. AFTER ALL YOU'RE THE BEST JUDGE AND WE DO OFFER SOMETHING SPECIAL.
IF YOU WOULD LIKE TO OPEN YOUR ACCOUNT, THEN PLEASE CONTACT US FOR APPLICATION DETAILS ENCLOSING JUST A STAMP TO COVER POSTAGE.

CALL AND SEE US AT OUR RETAIL SHOP.

AIRWAVES ELECTRONICS
151 LONDON ROAD, CAMBERLEY, SURREY GU15 3JY.

TEL. (0276) 62949

It's easy to complain about advertisements.

The Advertising Standards Authority. If an advertisement is wrong, we're here to put it right.

ASA Lid. Brook House. Tormngton Place, London WCIE THN.

Vero has countess reasons to celebrate 20 years of Veroboard.

That's how Vero began

 and many of you started.Twenty years ago Vero introduced Veroboard to the designer and hobby st market.

It was then unique in its concept and is still one of the basic boards for the electronics industry. Such is the influence that Veroboard has had, and is still heving, that the very name has become part of general vocabulary. Twenty years is a long time in a new industry and Vero have teen in the forefront with their standards, quality control and customer service throughout that time.

From Veroboard through Cand Frames to Vero Cases, we are proud to be of service and hope that you will agree that sales of millions of Veroboards is a suitable cause to celebrate our twentieth birt tday.

Please Telephone for further information about Veroboard and our other products.

Phone: Chandler's Ford (04215) 62829

Vero Electronics Ltd., Retall Department, hdustrial Estate, Chandler's Ford, Hampshire. SO5 3ZR.

When replying to Classified Advertisements please ensure:
(A) That you have clesrly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is writcen in block capitals, and
(D) That your lecter is correctly addressed to the advertiser.
This will assiat advertisers in processing and despatching orders with the minimum of delay.

Receivers and Components

300 SMALL COMPONENTS, transistors, diodes. $£ 1 \cdot 707 \mathrm{lbs}$ assorted components $£ 4 \cdot 25$ l01bs $£ 5 \cdot 75$. Forty assorted 74 series ICs on panel £1.70. 500 capacitors $£ 3 \cdot 20$. List 20 p refundable. Post $60 p$. Optionable insurance 20p. J. W. B. RADIO, 2 Barnfield Crescent, Sale, Cheshire M33 1NL.

TURN YOUR SURPLUS capacitors, transistors etc., into cash. Contact Coles Harding : Co., 103 South Brink, Wisbech, Cambs. 0945 4188. Immediate settlement.

NEW 1982 ACE COMPONENT CATALOGUE. Let your problems be our business. Be certain; have your components delivered quickly and efficiently and get that project working. Send 30 p now for the easy to use 1982 catalogue to: ACE MAILTRONIX, Dept EE, 3A Commercial Street, Batley, West Yorkshire WF 17 5HJ.

CLASSIFIED

The prepaid rate for classified advertisements is 28 pence per word (minimum 12 words), box number 60p extra. Semi-display setting £7.24 per single column centimetre (minimum 2.5 cm). All cheques, postal orders, etc., to be made payable to Everyday Electronics and crossed "Lloyds Bank Ltd." Treasury
notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Everyday Electronics, Room 2612, IPC Magazines Limited, King's Reach Tower, Stamford St., London SE1 9LS. (Telephone 01-261 5942).

Courses

SOUNDENGINEERS

If you're following a career in Sound Engineering or interested in learning all aspects of recording studios you should attend one of our weekend studio courses. Topics covered include:
A. The basics of studio construction, wiring and materials used.
B. Types of microphone uses, techniques, and limitations.
C. Use of $2^{\prime \prime} 16$ track machine, lining up, remotes, etc.
D. Use of 24 Channel Desk and all controls.
E. Effect equipment, ADT, reverb, Echo, etc.
F. Ancilliary equipment.
G. Mixing and Editing.

There are a maximum number of 8 students on each course and every one is tutored to their own level of knowledge with regard to their needs and interest. The cost is $\mathbf{c} 98$ for the weekend including hotel accommodation overnight. Details: please phone 01-530 4721 or 01-638 5308 during office hours.

Service Sheets
 RELL'S TELEVISION SERVICE for service sheets on Radio, TV etc. $£ 1.25$ plus SAE. Colour TV Service Manuals on request. SAE with enquiries to BTS, 190 King's Rd. Harrogate, N. Yorkshire. Tel: 042355885.

Any single service sheet $£ 1 / L . S . A . E$. Thousands different Repalr/Service Manuals/Sheets in stock. Repair data your named T.V. £6.50) with circuits £8.50). S.A.E. Newsletter, Price Lists. Quotations.

AUSEE, 76 CHURCHES,

LARKHALL, LANARKSHIRE

(0898 883334).

Software

SEVENTY ZX81 PROGRAMS. Listings only £4.95, Barclaycard accepted. Includes many games, utility, machine code loader, home finance, maths, chequebook, etc. Includes hints ' n ' tips. SUSSEX SOFTWARE, Wallsend House, Pevensey Bay, Sussex.

Veteran \& Vintage
"SOUNDS VINTAG
The only magazine for all vintage sound enthusiasts, packed with articles by top writers, covering gramophones, phonographs, 78s, wireless, news, history, reviews, etc. Bi-monthly. Annual subscription $\mathbf{£ 8 . 7 5}$ (airmail extra). Send 75p for sample copy. 28 Chestwood Close, Billericay, Essex

ORDER FORM please write in block capitals

Please insert the advertisement below in the next available issue of Everyday Electronics for ... insertions. I enclose Cheque/P.O. for £...................................... . .
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Everyday Electronics)

Company registered in Englend. Regiatered No, 53ers. Regletered Omee; King'a Reach Towof, Stamiord Street, London sei ols.

Personal

CHRISTIAN SINGLES. Holidays, tours, weekend houseparties. Friendship contacts -CFF Dept/N42, Edenthorpe, Doncaster.

For Sale

EVERYDAY ELECTRONICS, the first ten volumes, buyer collects. Offers to Upminster 23582.

NEW BACK ISSUES OF "EVERYDAT ELECTRONICS". Available 85p each Post Free, cheque or uncrossed PO returned if not in stock. BELL'S TELEVISION SERVICES, 190 Kings Road, Harrogate, Yorkshire. Tel: (0423) 55885.

Miscellaneous

THE SCIENTIFIC WIRE COMPANY
PO Box 23. London E.4. 01 s31 18se

-10 20	2.76	1.80	$0 \cdot 00$	- 6
20 to 34	3.80	1-00	$0 \cdot 0$	0.70
35 to 36	3. 40	$2 \cdot 00$	1.10	- 0
401043	4.78	2.60	$8 \cdot 0$	1.42
441047	5-60	$3 \cdot 40$	2.38	2.
48104	$15 \cdot 6$	-88	- 28	3.

GILVER PLATEO COPPER WIRE
14 to $50 \quad 6.50 \quad 3.78 \quad 2.50 \quad 1.40$
TINNED COPPER WIRE
14 to $30 \quad 3.83 \begin{array}{llll}15 & 2.36 & 1.34 & 0.80\end{array}$
Prices Incl. P \& P vat. Orders und ir Ez add $20 p$. SAE for List of Copper/heslatance wire. Dealer enquirtes weleeme.

Rogistered Once 12 Coninguby Gardens.

DIGITAL WATCH BATTERY REPLACEMENT KIT

These warches all require battery (power cell) replace ment at regular intervals. This kit provides the means. We supply eyeglass, nonmagnetic eweezers, watch screwdriver, case knife and screwback case opener. Also one doz. assort. push-pieces, full instructions and bactery idencification charc. We chen supply replacement batceries -you fit them. Begin now. Send 19 for complece kit and zet into a fase growing
business. Prompt despacch. business. Prompt despatch.
BOLSTERINSTRUMENT CO. (EE35) II Percy Avenue, Ashford, Middx., TW15 2PB

SPARE PARTS FOR ALL DIGITAL WATCHES. Batteries 65p; pins; display; back lights etc. Plus reports, publications charts, send SAE for full list. PROFORDS, Copners Drive, Holmer Green, Bucks HP15 6SG.
CENTURION BURGLAR ALARM equipment, send SAE for free list or a cheque/ PO for $£ 11.50$ for our special offer of a full sized signwritten bell cover to: Cen turion, Dept EE, 265 Wakefield Road Huddersfield, W. Yorkshire. Acoess : Barclaycard. Telephone orders on 0484 3527.

PARAPHYSICALS JOURNAL (Russian translations): psychotronic generators, Kirlianography, gravity lasers, telekinesis. Details: SAE $4 \times$ 9in, Paralab, Downtown. Wilts.

DIGITAL WATCH BATTERIES any type E1. 20 each. Send SAE or 15 p with number or old battery to, DISCLEC Y, 511 Fulbridge Road, Werrington, Peterborough.

OSCILLOSCOPE repair and calibration. Quick service, competitive rates, W, I. R. Electronics, 01-367 6816.

ENAMELLED COPPER WIRE. 10 swg to 45 swg. S.A.E. for quotation by return, cheapest prices. 102 Parrawood Road, Manchester 20.

DOUBLE SIDED COPPER CLAD FIBREGLASS, $12 \mathrm{in} \times 8 \mathrm{in}, 5$ sheets $£ 4$; 10 sheets £6; 20 sheets $£ 10$ inc p\&p. DAVRON TRADING, I Bankside, New Street, Chelms ford, Essex.

LEARN ELECTRONICS WITHOUT SOLDER

Build electronic circuits without solde on a Roden S•Dec This has built-in contacts and holes into which you plug your components. Suitable for all ages. Can be used time after time. Ideal gift for students or experimenters. Full instructions and 2 circuit diagrams with each S-Dec. Sand cheque or P P 0 to Fiver Rolucts, Dep EE Migh March, Owentry.
Northanis. NM Bi 40: c - $\quad 10$

Make the connection with Access

I wish to become a subscriber to Everyday Electronics for one year and enclose cheque/ postal order value. \qquad no made payable to IPC Magazines Ltd

Complete this portion if you are using your Access card account. I authorise you to debit my Access card account with the above amount.

My Access no. is \square Brock letsers please)

Subscription Rates:
UK, Isle of Man, ChanneI Islands and Irish
Republic £11
Overseas £12
Unless you are phoning your order, complete and post this order form to:
Everyday Electronics, 2613 King's Reach Tower, Stamford Street, London SE1 9LS.

MIGHTY NINETY PACKS

SUPER VALUE PACKS ALL AT 90p each BUY SIX PACKS AND GET A SEVENTH FREE
Please add 15p per pack postage
Please allow 7 days delivery

CHORDGATE LIMITED

75 FARINGDON ROAD
SWINDON, WILTS. Tel. (0793) 33877 Refail shop at above address

BAKER 50 WATT AMPLIFIER	$\underset{\text { Port E2 }}{£_{2}}$	00^{3000}

Guperior quallty ideal for Halla/PA syatema. Disco's and
Groupe Two inpula with Mixer Volume Oontrole Mater Bane Treble and Gapa Controle. 50 watin RMg. Three loudrpenker outlete $4,8,16 \mathrm{ohm}$.
AC 240V (120V avalabie). Bloe wordtns on black cabinet.
BAKER 150 Watt AMPLIFIER 4 Inputs $\$ 89$ DRILL BPEED CONTROLLER LIGHT DIMMER KIT. Rasy to build kit. Controls up to 480 watto AC mains. Printed
DRLU XE MODEL Ready Built. 800 watte. A5
STEREO PRE.AMP KIT. All parto to build this preoamp. 3 inpute for high. modium or low gain per channel, with
volume control and P.C. Board. Can be ganged to make
multh-way stereo mikers.

SOUND TO LIGHT CONTROL KIT MK II

Complete kit of parta, printed clicult. Mains transformer. 3 channela. Up 21,000 wath eacb. Who operrlo irom 20015 and all Disco Amplitiers. Cablinet extra $44 \cdot 50$. Pont 95 p 200 Watt Bear Reflecting Whit Light Bulb. Ideal for Disco Hegtata. Edbeon Screw 75p each or 6 for it or 12 for $\$ 7 \cdot 50$. MAINATRANBFORMERS Primmery 240V A.C. $24-50$ POwt $250-0-250 \mathrm{~V} 70 \mathrm{~mA} .6 \cdot \mathrm{BV} .2 \mathrm{~A}$
 $300-0-300 \mathrm{~V} 120 \mathrm{~mA} .{ }^{2}$
GENERAL PURPORE LOW VOLTAGE
Tapped outputa arailable
2 amp 8. 4, 5, $6,8,9,10,12,15,1 \mathrm{~A}, 25$ and 30 V

 amp 6, 8.10, 12.16, 18, 20, 24, 30, 36, 40, 48, 50 112.50 22 $6.0-2$
8 O 2 OV 8
g 8
$\mathrm{~g}-0.9$ $9-0-9 \mathrm{~V}$ 80ma $10-0-10 \mathrm{~V} 2 \mathrm{a}$
$10-50-40 \mathrm{~V} 2 \mathrm{a}$ 12 V 100 m 12v 750ra 18 V 3a
12 V 2a \qquad .23 .50
$-0-30 \mathrm{~V}$
ANSFO TORODIAL 80-6

 ohm. R.C.S. LOUDSPEAKER BAROAINS

 2.0. LOW VOLYAGE ESABILISED
\qquad
 recticers avd doobie wound maine transformer taput 200-200 c. Ontput voltages avalable 6 or 7.5 or 9 or 12 V d.c. up to
 tablilied, with overloed

$$
\begin{aligned}
& \text { tablibed, with overloed } \\
& \text { Buitable Rydio/Capettes. }
\end{aligned}
$$

DELUX E B witched Model $8-6-76 \cdot 9 \mathrm{~V} 400 \mathrm{ma}$. $87 \cdot 60$. THE "INSTANT" BULK TAPE ERABER Balcable for carmetten and all aives of tape reel Leatet B.A.E. $\mathbf{~ Y . 5 0 ~ 9 5 p ~}$
HEAD DEMAGNE TIBER PROBE $\mathbf{5 5} \cdot 00$.
A.C. ELECTRIC MOTORS POST 76p. 2 Pole, $240 \mathrm{~V}, 2$ Amp. Spindie-
$1.45 \times 0.212 \mathrm{~m} .41 .75 .2$ Pole. $1.45 \times 0.212 \mathrm{~m} .1 .75$. 2 Pole.
240 V . 15 Amp Doobi spindle-
 0.2 hm . Two in werles - 240 V . 30 p
enoh. Brud M Motor. From a Food Mixer $240 \mathrm{~V}, 3$ Amp High Ippeed and Powertul
0.2319 .52 .95.

B.s.R. Motor ©s. (larrard Motor es.

 $51-80 ; 12 \times 8 \times 2$ tha. $52.60 ; 16 \times 10 \times 2 \mathrm{tin}$. $8 S .20$.

 $51.46 ; 6 \times 4 \mathrm{~mm}$. $48 \mathrm{p} ; 12 \times 8 \mathrm{~mm} .41 \cdot 10 ; 10 \times 7 \mathrm{~mm} .9 \mathrm{p} ; 8 \times 6 \mathrm{~mm} .72 \mathrm{p}$.
 $4 \times 21 \times 2$ in. $81 \cdot 00 ; 3 \times 2 \times 11 \mathrm{n} .80 \mathrm{p} ; 6 \times 4 \times 2$ th. $81 \cdot 60 ; 8 \times 6 \times$

 DE LUXE BSR HI-FI AUTOCHANGER

INDEX TO ADVERTISERS

Ambit		.	\cdots	204
Absonglen	\cdots	.	.	208
Airwaves		-	.	212
Alcon		.	.	. 210
Bib Audio	.	.	.	209
Bi-Pak		.	.	150-151
BK Electronic		.	.	Cover iii
B.N.R.E.S.		-	.	187
Bull J.	\cdots	-	-	205
Cambridge Learning			-	150
Carlton Nich		.	.	148
CHJ Supplie		\cdots	-	210
Chordgate		.	-	216
Cricklewood Electronics			-	148
Oziubas M.		\cdots	.	204
E.D.A. . . Electroni-Kit	.	.	.	154
		\cdots	-	212
Electronize Design		.	.	Cover ii
Electrovalue		.	-	206
Global Specialist		.	.	199
Greenweld	-	-	-	148
Heath-Kit	.	.	.	152
Home Radio		\cdots	\cdots	206
Intertext (ICS)		.	-	208
Litesold		.	-	206
Magenta Electronics			.	152, 153
Maplin Electronic Supplies Ltd.				

Namel Electronics 210

Phonosonics 146
Powell T. 208

Radio Component Specialists .. 216
Radio TV Components 197
Rapid Electronics 149

Science of Cambridge	..	202-203	
Selray Book
206			
Silica Shop			
211			

Tempus 207
Titan Transformers 210
T.K. Electronics 146

Vero Electronics 213

Watford Electronics 147
Wilmslow Audio 146

37 Whitehouse Meadows, Eastwood, Leigh-on-Sea, Essex SS9 5TY

\& SAE for current lists. \quad Official orders welcome. All prices include VAT. Mail order only. A All items packed (where applicable) in special energy absorbing PU foam. Callers welcome by prior appointment, please phone 0702.527572

mappunthepeopleforAtari

Atari 400 with 16K RAM(AF36P) £345 Atari 400 with 32K RAM(AF37S)£395 Atari 800 with 16K RAM (AF02C) £645

Lots of other hardware
Cassette Recorder (AF28F) $£ 5000$ Disk Drive Thermal Printer Printer Interface for 400 Printer Interface for 800 Interface Module Versawriter
(AF06G) $£ 34500$ (AF04E) $£ 26500$ (AF41U) $£ 4995$ (AF42V) $\$ 49.95$ (AF29G) $£ 135.00$

16K RAM Module 32K RAM Module 32 K Upgrade for 400 Floppy Disk Le Stick Joystick Controllers Jor full Cotaler For full detalls ask for ou

(AF08J) \quad E64.00 (AF44X) $\quad\{125.35$ $\begin{array}{lr}\text { (AF45Y) } & £ 75.00\end{array}$ | (YX87U) | $\boxed{25.75}$ |
| :--- | ---: |
| (Y) | | $\begin{array}{lr}\text { (YX87U) } & \$ 2.75 \\ \text { (AC45Y) } & \{24.95\end{array}$ (AC37S) £13.95

(XH54J) SAE appreciated

NOW YOU CAN JOIN THE U.K. ATARI COMPUTER OWNER's CLUB. An independent user's group.
Four issues of the club magazine for only $£ 1.60$! Address your subscription to Graham.

THE CHOICEST GEMS OF ATARI SOFTWARE FROM MAPLIN

Adventure Cemes

Rescue A! Rig nvasion Drion Galaclic Empire hi-Res Adventure // ? Analog Adventure Adventure Land Mission Impossible Voodoo Castle Strange Odyssey Mystery Fun House Ghost Town avage ISland Golden Voyage Energy Czar (ingdom

Tomen-Yourself Progrem
Conversational French - $5 \mathrm{C} \cdot 16 \mathrm{~K} \cdot(\mathrm{YG} 44 \mathrm{X}$) $£ 3250$ Conversational German Conversationai Spanish Conversational italian Touch Typing
Siates \& Capitals States \& Capitals Capitals

Learn Programming

 nvilation to Programming Basics of Anmation Basics ol Anumation Mayer Missile Graphics layer MissileGraphics Display Lists Moriz Mertica Serol Horiz/Vertical ScrollC. $32 \mathrm{~K} \cdot(80248)$ § 2895 C. $32 \mathrm{~K} \cdot(\mathrm{BO21K})$ §22 45 $C-32 \mathrm{~K} \cdot(\mathrm{BO} 23 \mathrm{~A})$
$\mathrm{C} \cdot 32 \mathrm{~K}-(\mathrm{BO} 22 \mathrm{Y})$

C 1495 C- 32 K -(BO22Y) $£ 1495$ -48K-(BO25C) 12495 0. 32k-(B033L) 22495 C-24k-(B000A) §14 95 - 24k-(B0018) §1495 C. 24K-(B002C) §1495 C. 24K-(80030) $\$ 1495$ C-24K•(B004E) $\$ 1495$ C. $24 \mathrm{k} \cdot(\mathrm{BOO5F}) \mathbf{\$ 1 4 9 5}$ C. 24K-(BOOGG) $\$ 1495$ C. $24 \mathrm{~K} \cdot(\mathrm{BOOFH}) \quad$ §14 95 C. $24 \mathrm{~K} \cdot(8008 \mathrm{~J})$ §14 95 - $24 \mathrm{~K} \cdot(8009 \mathrm{~K}) \mathrm{C} 1495$ C-24K•(BO10L) $\{1495$ 24K.(8011M) $£ 1495$ | C. $8 \mathrm{~K} \cdot(\mathrm{YGS5K})$ | 8895 |
| :--- | :--- |

 SC 16K (YG478) $£ 3250$ C-16K-(YG490) £14 95
C. 16 K -(YG57M) 8895
\qquad
C. 8 K (YG43W) $£ 1195$

C $32 \mathrm{~K}-(8057 \mathrm{M}) \quad 1995$ D-32K-(B058N) 1095 C-16K-(B059P) $£ 1895$ D-24K - (80600) $\Psi 1995$ C. 16K-(B051F) 1995 D-24K-(8052G) 1095 C. $16 \mathrm{~K} \cdot(8053 \mathrm{H}) \quad \$ 995$

Page Flipping

$\begin{array}{cc}\text { C } 16 \mathrm{~K}-(8055 \mathrm{~K}) & \Upsilon 995 \\ 0-24 \mathrm{~K}-(\mathrm{BO56}) & £ 1095\end{array}$
 Business Programs Visicalc Word Processon Calculator Graph-a Siatistus

Arcate Cames

Acterods

Spaca Invaders
Spaca Invaders
Super Breakou!
Tari Trek
Tan Trek
Star Trelk 35
Race InSpace
Shooting Gallery
Mountan Sinoot
MountainShoo
Jaworeaker
Tank Trap
Tank Trap
Tank Trap
Mome Came Progrs

Scram Cypher Bowl

hunder island
Rotating Titt
Jumbo Jet Lander

Submarine Commander

 Sunday GollTournament Pool Srooker \& Billiards Chess Microchess
Checker king

D-32K-(YL 39N) 11995 D. 32 K - (YG42V) 88500 - 24 K ((VG50E) $£ 1695$ - 16K - YGS1F) £1195
-
E-8K. (YG66W) £29 95
E-8K (YG600) $\$ 2995$
E-8K•(YG70W) $£ 2450$
E 8K-(YG64U) $\mathbf{E 2 9} 95$

C. 24 K (YL36P) 8895

- 32K-(YL37S) 51195 C. 32 K - (BO15P) $\mathrm{C14} 95$
C. $16 \mathrm{~K}-(80350)$

C 1495 -16K-(80350) 1495 -16K-(BO36P) $£ 1495$ - $16 \mathrm{~K} \cdot(8012 \mathrm{~K}) \mathrm{£} 1095$ - 48K-(BO26D) $\mathrm{C22} 95$ | $-16 \mathrm{~K} \cdot(\mathrm{YL.34M})$ | $\mathbf{Y} 995$ |
| :--- | :--- |
| 8 | |

(6/24K-(YGS8N) \{12 95

$-16 \mathrm{~K} \cdot(\mathrm{BO} 037 \mathrm{~S})$
$16 \mathrm{~K}-(\mathrm{BO48C})$
F 1495

 -16K•(B046A) \&29 95 $16 \mathrm{~K} \cdot(80478)$ §24 50 | $16 \mathrm{~K} \cdot(8013 \mathrm{P})$ \& 1045 |
| :--- |
| 105 |

 - $6 \mathrm{KK} \cdot(8042 \mathrm{~V}) \quad 1995$ | $16 \mathrm{~K} \cdot(\mathrm{BO44X}$ | $\$ 1995$ |
| :---: | :---: | E• 8K (YG63T) $\$ 2995$ C. 16K - (YL40T) 11595 C. 16 K (YL4YU) $£ 1595$

C. 16 K (B043W) $£ 1495$

Poker Sontare

Blackjack $\begin{array}{lll}\text { Blackjack } & \text { C.8K-(YG62S) } & \text { I8 } 95 \\ \text { FastGammon } & \text { C. } 8 \mathrm{~K} \cdot(\mathrm{YL} 33 \mathrm{~L}) & \$ 9 \\ & 95\end{array}$ Reversi(Othelloryme C.8K.(YL33L) $\$ 995$ Gomplonelo-type) C. $16 \mathrm{~K} \cdot(\mathrm{BO19V}$) $£ 1495$ Gomoko -16K•(80t8U) $\begin{aligned} & 1495\end{aligned}$

\section*{Hangman} C. 8 K (YG54J) | (895 |
| :--- |
| 145 | Humpaty Dumply \& Jack \& Jill - C. $16 \mathrm{~K} \cdot$ (B0388) 11995 Hickory Dickory Doc

Brinsh Keritage British Keritage European Scene Eurgpean Scene Atarisalaril 25 Programs C. 16K•(8041u) £19 95 AlariSatan (25 Programs) C. $16 \mathrm{~K}-(8050 \mathrm{E}$) $£ 1895$ Alari Satan(25 Programs) $-0 \cdot 16 \mathrm{~K} \cdot(8050 \mathrm{E})$ §24 95 Musle Programs Music Composer
Move Themes (use with Music Composer)
Computer Languages
(B. $48 \mathrm{~K} \cdot($ B031 J) $£ 5250$ Operating System A + $\quad \cdot \mathrm{D} \cdot 48 \mathrm{~K} \cdot(\mathrm{BO} 30 \mathrm{H}) \$ 5250$ Basic A +8
OperatingSysiemA $+\quad$ D.48K (B032K) $\$ 9950$ Piot - D. $24 \mathrm{~K} \cdot(\mathrm{YL} 29 \mathrm{G}) \mathrm{K} 4490$

Utilties

30. Super Oraphics \quad D. 48 K (B028F) $£ 2995$ 3D-Super Graphics \quad C-48K (B0296) $£ 299$ Alar World (Graphics) - D.48K-(B027E) $£ 4395$ Assembler Editor Assemble 6502 Disassembier 6502 Disassembie C. $8 \mathrm{~K} \cdot(\mathrm{YL} 30 \mathrm{H}) \$ 89$ | Character Generator | -C $16 \mathrm{~K} \cdot(\mathrm{YL} 27 \mathrm{E})$ |
| :--- | :--- |
| 1997 | | Telelunk Generator -D $16 \mathrm{~K} \cdot(\mathrm{YL} 28 \mathrm{~F}) ~ £ 1250$

Key $\mathrm{C}=$ Cassette. $\mathrm{D}=$ Disk $\mathrm{E}=$ Caritrige $2 C=2$ Cassettes etc 8 K . 16 K etc shows monumum memory requiroment

Send sae now for our new software leaflet with details of all the above programs. Order As XH52G - Issue 2.
Lots of exciting new software titles available soon. Keep in touch with Maplin!
Subscribe now to America's leading Atari only magazine - Analog - 6 issues per year for just £9.00. Order as GG24B.

[^0]: () IPC Magazines Limited 1982. Copyright in alf drawings, photographs and articles pubished in EVERYDAY ELECTRONICS is fully protected, and reproduction or imitations in whole or in part are expresely forbidden.

