Easy to build projects for everyone

 atergioncs

GARMutantank

VOL. 11 NO. 2

FEBRUARY 1982

```
PROJECTS ... THEORY ... NEWS ... COMMENT... POPULAR FEATURES...
```


Electronic Design Award

To allow for the Christmas holiday period and seasonal postal delays, the SEDAC organisers have agreed that Registration Forms (Part A) retuined by January 31, 1982 will be accepted.
The final date for submission of Papers is unaltered, i.e. February 16, 1982.
(C) IPC Magazines Limited 1882. Copyright in all drawings, photographs and articles published in EVERYDAY ELECTRONICS is fully protected, and reproduction or imitations in whole or in part are expressly forbidden.

PROJECTS

STEREO RECORD PLAYER by V. Terrell 84
Portable unit with separate loudspeakers
CAR OVERHEATING ALARM by T. R. de Vaux-Balbirnie 92
Audible warning prevents possible disaster
M.W. RADIO by F. G. Rayer 102
Three preset stations plus manual tuningAUTOMATIC GARAGE DOOR by P. Horsey112
Part 2: Logic control circuitry and door operating mechanics
CINE INTERVAL TIMER \& FRAME COUNTER 122
by L. A. PrivettTwo circuits that aid special effects with cine cameras
SERIES
TEACH-IN 82 by O. N. Bishop 96
Part 5: Bipolar transistors
INTRODUCTION TO LOGIC by J. Crowther108
Part 10: Truth Tables, applications of Logic Techniques
FEATURES
EDITORIAL83
Not In Isolation
JACK PLUG AND FAMILY by Doug Baker 91
Cartoon
94
COUNTER INTELLIGENCE by Paul Young
A retailer comments
SHOP TALK by Dave Barrington 95
Product news and component buying
READERS' LETTERS 106
Comments from Australia
FOR YOUR ENTERTAINMENT by Barrie Fox 107
From Post Office to British Telecom-big changes in the air
EVERYDAY NEWS110
What's happening in the world of electronics
RADIO WORLD by Pat Hawker G3VA 121
News Gathering, Slow-Scan TV, Satellite TV, First Post- War contacts
SQUARE ONE 126
Beginners' Page: Transformers
NEW PRODUCTS129
Facts and photos of instruments, equipments and tools
CIRCUIT EXCHANGE130
A forum for readers' ideas

KITS,COMPONENTS,MICROS \& PARTS

DISCO LIGHTING KITS

 OL 1000 K . This value-for-moneyk ht features a bi-divectional kit reatures a br-dyectiona and requency ol meters, bing variable by means of potentio-
 DL21000K. A lower cost version of the above, featuring undirectional channel sequence Outputs 5 witched only at mains zero crossing points to reduce radio interference to a minimum. Optional opto input DLA160p Allowing audio ("beal")-ilght response.

REMOTE CONTROL

Published remote control systems tend to be quite complen, requiring cis

 equipped lab to get them to work. If this has pu you olf making your own system we have just the kits for you. Using Infra-rec, our KTTS range from simple on/olt controliers to codedtransmilter/receivers with 16 on/ oft outputs orthree analogue outputs for controlling, e. or inree analague outputs for controlling, e. 9 ig
V or HI-Fi systems. The kits are easy to bulid and simple to sel up-and they are extremely versatile, controlling anything trom garage doors to room lighting just by adding the required outputiccuits, i.e. relays, triacs, elc.
If you can design your own system we slock a wide range of remote control components at very competitive prices. We have compiled a booklet on remote control, containing circults. hints, data and components. So don't control yourselfSEND US 30 p and a stamped addrossed

FAST SERVICE-TOP QUALITY-LOW LOW PRICES

No circuit is complete without a call to

 ELECTRONICS 11 Boston Road London W7 35Jcarpet wear alone would pay for this unit in approximately 1.3697 years
or more! or more!

THE PERFECT AID FOR "LAZYITIS"
 set the brightness, at a push and set the brightness, at a push of a water-bed, etc. Not only will you savè time but it has also been estimated That the savings in shoe leather and

Tis unil has considerable practical uses, especially for the old, infirm
and disabled. It works like a conventional dimmer, enabling you to switch the lights on or off, or to
dim them to whatever brightnes you require, by touch or using the hand-held infra red transmitter. When assembled, it fits into a plaster depin box to replace your conventional swilch or dimmer

TOR 300K Dimmer Kit $\quad \$ 14.30$ MK6 Transmitter Kit \quad \&s.20

24 HOUR CLOCK/APPLIANCE TIMER KIT Swiches any appliance up to 1 kW CT1000K Basic Kit on and off at present times once per CT1000K with white box ($56 / 131 \times 71 \mathrm{~mm}$) day. Klt conteins: AY-5-1230 IC. (Ready Built). display divers sy, mains supply. display divivers, switches, LEDs triacs. PCBs and full instructions.

we also silil sell our highly popular TO300K Touch Dimmer Kit a! $£ 7.00$ and the LD300K rotary controlled Dimmer Kit at only $£ 3.50$ All kits contain all necessary components and full instructions. You only need a soldering iron
and cutters.

$\$ 14.90$

$\begin{array}{r}\$ 17.40 \\ . \\ \hline 22.50\end{array}$

DO YOU LONG TO HEAR YOUR DOORBELL RING?
Our latest hil gives
you a pleasing three-ELECTROWIC DOOR: note harmonically
related tone sequence \square CHIME $\left.\begin{array}{l}\text { related tone sequence } \\ \text { not a microprocessor } \\ \text { controlled buz or the }\end{array}\right] \square$ CHIME controlled buzz or the
same old ding dong) at a touch of a button. This kit, based on a new integrated circuit, is supplied complete with a printed circult board. bor and iequires only 9V battery and push button common to most households
It may also be swithed by logic in sueh applications as car alarms, clocks, toys. A. systems, etc. The unit produces a 150 mW output and drawa less than one 1 from a PP3 batiery when the tone ceases
Supolled complete with circuit and assombly instructions.
IOEAL PROJECT FOR BEGINNERS-Only £ 5
DVM/ULTRA SENSITIVE THERMOMETER KIT
This new design is based on the
ICLJTi26 (a lower power version of The ICL 7106 chip) and a $31 / 2$ digit
liquid crystal display. This $k i t ~ w i l l ~$ form the basis of a digital multtmeter (only a lew additional resistors and switches are requited-details supplied), or a
sensitive digltal tharmometer $\left(-50^{\circ} \mathrm{C}\right.$ io sensitive digltal thermometer ($-50^{\circ} \mathrm{C}$ to
$+150^{\circ} \mathrm{C}$) reading to $0.1^{\circ} \mathrm{C}$. The basic kit has a sensitivity of 200 mv for a full scale reading. automatic polarity indication and an ultra low power requirement-giving a 2 year typical
caltery lite from a standard gV PP3 when used battery lite from a standard OV PP3 when used
8 hours a day. 7 days a week.... Price $\$ 15.50$

n

Build a pair of DALESFORD D speakers

The Dalesford D has enjoyed consistently good reviews and is acknowledged to be one of the best compact loudspeakers available. It is now offered in kit form at a considerable saving over the assembled speaker.

The kit includes complete and finished cabinets, grille foam, wadding, drive units, crossovers, etc. - everything, in fact, to make a pair of excellent compact loudspeakers.

Suitable for amplifiers of $20-70$ watts
Size: $340 \times 220 \times 265 \mathrm{~mm}$. Finish: Walnut/black foam.

8
 0625529599

35/39 Church Street. Wilmslow, Cheshire SK9 1AS
1
Lightning service on telephoned credit card orders!
Please allow 7 days for delivery

mUSIO KITS
 ALL WITH PRINTED CIRCUIT BOARDS

128-Note Sequencer 10-Note Sequencer 3-Channel Mixer 6.Microphone Mixer A Chalogue Riverb Audio Effects Chorosynth Compressor Dtoltal Reverb
Oiscostrobe

> SET7 SET
SEET
SET
SEET
SET $\begin{array}{ll}\text { SETYO } & 12.99 \\ \text { SET } 83 & 96.67 \\ & \end{array}$ $\begin{array}{ll}\text { SET83 } & \text { 45.92 } \\ \text { SET105 } & 15.92 \\ & \\ \text { SET }\end{array}$ SET100 125.04 SEET120 25.03 $\begin{array}{ll}\text { SETT8 } & 75.50 \\ \text { SET57 } & 3978\end{array}$

Orum-Synthesis Enlarger Timer Frequency Ooubler Funny Talker
Guitar Effects Gultar Multiprocesso Guitar Overdrive Guitar Sustain Headphone Amplifier Metronome

SET119
SET93
SET98
SET99
SET42
SET85
SET56
SET75
SET104
SET118 $50 \quad 11$
39.22
11.75
16.55
15.92
79.15
21.17
11.77
21.15
10
198
11

SEND S.A.E. FOR FREE COPY
Noise Limiter
P.E. Minisonle Synth
Phaser
Phasing a Vibrato
Practise Amplifer
Rhythm Generator
SIgnal Tracer
Simple Phase Unit
Smooth Fuzz
Speech Proces sor

Nolse Limiter Phaser Practise Amplifier Signal Tracer SImple Phase Uni $\begin{array}{cr} & \\ \text { SET97 } & 15.96 \\ \text { SET38 } & 181.56 \\ \text { SETB8 } & 21.08 \\ \text { SET70 } & 36.25 \\ \text { SET106 } & 22.15 \\ \text { SET } & \text { See Lists } \\ \text { SET109 } & 17.50 \\ \text { SET25 } & 10.54 \\ \text { SET91 } & 11.68 \\ \text { SET110 } & 12.18\end{array}$

Split-Phase Tremolo Switched Treble Boost Transient Generator Tremolo
Tuning Fork
Volce Operated Fade
Wah-Wah
Winh-Wah and Rain Unit

SET102 29.98 SET102 SET89
SET81 SET81 SET116 SET46
SET30 SET117 $\begin{array}{ll}\text { SET58 } & 14.01 \\ \text { SET28 } & 11.39\end{array}$

[^0] Free Catalogue.
Prices correct at press, E. \& O.E., subject to stock. Oelivery frequently by return but please allow is doys.

PHONOSONICS

DEPT EE22, 22 HIGH STREET, SIDCUP, KENT, DA14 6EH 01-302-3184

WATFORD ELECTRONICS

ALL DEVICES BRAND NEW, FULL SPEC. AND FULLY GUARANTEED OADERE DESPATCHED BY RETURN OF POST. TERMS OF BUSNEES: CASH/CHEQUE/

 PO. OR BANKERS DRAFT WITH ORDER, OOVERNMENT AND EDUCATIDNALPNSTUTIONS OFFICIAL ORDERS ACCEPTED. TRADE AND EXPORT INQUIRY INETITUTIONS OFFICIALORDERS ACCEPTED. TRADL OM OVERSEAS ORDERS

VAT

Export orders no V.A.T. Applicable to U.K. Cuytomers only. Unless atated otherwies
all price are excluslva of V.A.T. Please add 15% to total cont Including P \& P. We stock many more Homa. It peys to visit us. We are sltuated behlnd Watlord Football Brounday $8.00 \mathrm{~mm}-4.00 \mathrm{pm}$. Ample Free Car Parking ipace avallable.

 160 V : 10 nF , 12 n
41 p ; 4 m 7 ssp .
POLYESTER RADIAL LEAD CAPACITORS (250V)

ELECTROLYTIC CAPACITORS: (Values are in $\mu \mathrm{FF}$) 500 V : $1052 \mathrm{p} ; 4778 \mathrm{p} ; 63 \mathrm{~V}: 0.47 .1 \cdot 0$

 2200 38p; $330074 \mathrm{p}: 470073 \mathrm{p}$.
TAG-END TYPE:
 V.

 MYLAR FILM CAPACITORS
$100 \mathrm{~V}: 1 \mathrm{nF}, 2 \mathrm{n}, 4 \mathrm{n}, 4 \mathrm{nT}, 10 \mathrm{n}$
6 p $100 \mathrm{~V}: 1 \mathrm{nF}, 2 \mathrm{n}, 4 \mathrm{n}, 4 \mathrm{n7}, 10 \mathrm{n}$
$15 \mathrm{p} ;$
$10 \mathrm{nF}, 22 \mathrm{n}, 30 \mathrm{n}, 40 \mathrm{n}, 47 \mathrm{n}$ 7D: 56 n $15 \mathrm{nk}, 22 \mathrm{n}, 30 \mathrm{n}, 40 \mathrm{n} / 47 \mathrm{n} 1 \mathrm{p}$
MINIATURE TYPE TRIMMERS 4-6pF; ${ }^{2-10 \mathrm{pF}} 22 \mathrm{p}$.
$30 \mathrm{p}: 10-88 \mathrm{pF} 3 \mathrm{p}$.
COMPRESSION TRIMMERS

POLYSTYRENE CAPACITORS SILVER MICA: 2pF, 3-3,

$30,47,50,56,68,75,82,85,100$,
$120,150,18015 p .200,220,250$,
$70,300,330,360,300,470,600$,
8,

CERAMIC CAPACITORS: 30 V
0.6 DF to $10 \mathrm{OFF} 4 \mathrm{D}: 22 \mathrm{n}$ 10 100 n 7p. EURO BREADBOARD E5-20.

[^1]
GREENWNELロ

43D MILLBROOK ROAD, SOUTHAMPTON SO1 OHX All prices Include VAT-Just add 40p post. Tel (0703) 772504

Coode mormally
AMAZINGI COMPUTER GAMES PCB's FOR PEA.
NUTS!!
A bulk purchase of PCS's from several well known computer pames Ineluding onoble uat to offor thene at Incredibly low prlces:

'STARBIRD'

Gives realistic engine sounds and Mashing leaer blasts-accelerating ongino nolso when module Is pointed up docel erating noles when pointed down. Presse contact to see hash and hoar blast of fasers plete with eseeker end batt clip. (noods PPI . PCE size $180 \times 0 \mathrm{~mm}$. Only Ez . 'SIMON'
The oblect of thle gatme is to ropeat cordecnale in 3 different games. (Indtruction Ineluded) PCE contilins chipe, switchee lampholdore and lamps. and is tested worting complote with spoaker. Noeds Only
'COMPUTER

BATTLESHIPS'

Probably one of the moat popular sioc. tronic gamee on the martat. Unfortunately PCB as in working model, although is may well function perfectly. Inatead wo have teated the sound chlp, and sall the board for lits componnent value only (PCB may be chippod or cracked): SN74777 eound lC;
 Insitruction book and circult 30p oxtra.
'LOGIC 5'
The oblect is to find the number hold in iblo. PCB contine u-processor chip and 10 leds, and Ia linked io a membrane type koyboard, Overlay for koya and Inatruction provided. PCEsizos: $85 \times 80485 \times 70 \mathrm{~mm}$. aulrod. Only E2: BR .

'MICROVISION'

Cartridges
These are a small PCB with a microprocesser chlo. deslened to plug in to we don't have nny consoleall However. they can be used as an obcillotor with i dineront frea, outputs simply by connecting ink bring and Working (as an ose) with pin out data.
RELAY/TRIACPANEL

2337 PCB $100 \times 78 \mathrm{~mm}$ eontalining
woulth of component: $2 \times t 2 \mathrm{DPCO}$ min rolaye. $2 \times 474 \mathrm{~F}$ isV tants SCco $10 \mathrm{~A} s 00 \mathrm{~V}$ 'triac. C1z20 8 CA 400 V SCN.
 ${ }^{4}$ C's-Amazing velue-1t bought soperOur price for the panal, duat Ez . $\mathrm{\omega}$.
200 ELECTROLYTICS E4.00 KS84 Laro varioty of values/voitages.
 E17.go, not chuck-outell $200 \mathrm{EA}, 1000$ 17.50

COMPONENT PACKS

 KSOOG 20 anseorted potentiometers, ill type Including zinglo. ganged, rotary and
KS11 200 amall value poly, mica, coramic caps from tow DF to ©Oe $\mu \mathrm{F}$. Excollont Varloty ar 2.
KS14 ioo allver mica cape from SpF to at row thosisand DF. Tolorancee from 1\% 10 K10. Switch pack-20 different, rocker, sllide, rotary, togole, push, miero, ote. Knily Hatahsink pack-s dir. slzes, oech 100 mm . HP.
1000 RESISTORS $£ 2 \cdot 50$ Woivo fuat purchased another s million protormed rasistors, and can make a at the aame pricelli K52\%-1000 mixed t and $\$ W 5$. carbon nim resistors, proformed for PCB ming. Enormous range of proforred valuec. 1000 for $\mathbf{c e}$. 5 ; 8000

PANELS

2ser Panol with 10230 (zNSH2) on amall heat Bink, 2 Nazes dual transletor, 2 eClos Zas7 Reed relay panol-contianis $2 \times$ oy
 recte + Res. Sop.
ZSise Pack of ox-computer panole containand complox logic. All ics ars marked with type no. of codo for whileh Idontinction sheat is supolled. 20 ICs 51.0100 IC. E4. 4. Asou bieck case $80 \times 50 \times 7 \mathrm{~mm}$ with rolay, 200 VA SCM, $4 \times \mathrm{BA}$ 8oov roct. tte. ©op.

THAGHIN 82

Full set of parts as specified by "EE". All now goods, despatched by return of poit. E All parte for the "MINILAB" only * All components for Aret 8 parts BUY BOTH SETS FOR sed + el post I FREE component Identificalion Chart 11 FREE plece of Veroboand II
Reprinte of artlcles: 3ep per part $+30 p$ for Tutor Deck info. (only suppliod with ordere for Temeh-ln).

CAPACITOR BARGAINS

 1000 E10: $400+100 \mu \mathrm{~F} 27 \mathrm{VV} 102 \times 44 \mathrm{~mm}$ dle Thpi $1025 \cdot \mathrm{~F}, 200 \mathrm{FF} 350 \mathrm{~V}, 100+100+$ $50 \mu \mathrm{~F} 900 \mathrm{~V}$ can $75 \times 48 \mathrm{~mm}$ dia 40p; 10/E3: 0.831 F SOV rad. 1 0.47uF S0V rad. © $1.2 / 100$, $12 / 1000$. quF sov rad emitoo, tentioco.

IW AMP PANELS A011 Compact audlo amp Intended for ing vol. centrol and switeh, complete with knobe. Apart from amp circultry built around LMseow or Tia Aepom, there is a ey oped control clrculf using 8 transletors ONLY EI H.

VU METERE

Voos Very attractive $58 \times 48 \mathrm{~mm}$ scaled

OP-AMP PSU KIT

$\operatorname{comA}+150$ parts + Inetructions to make boma +16 , 0, $-15 V$ supply from malns

COPPER CLAD BOARD Kote All plecee too emall for our otching Mite. Mostly double sidad fibregiase

MIXED LED PACK

 All now full spac by Micro, Falrchlld, otc. FILAMENT DISPLAYS Zess 7 seg display $12 \cdot \mathrm{gmm}$ migh. Ideal for Std 14 DIL package. Only Et each, 4 fo es.ev. Data eupplied.
TOROIDAL
TRANSFORMER
110mm dia. $\times 40 \mathrm{~mm}$ deap; $110 / 240 \mathrm{~V}$ prlo Sec. 1eV 4A, $6 \cdot 3 V 14$, g40V 0.3A. Idea for ecopes, monitors, VDU's, ete. Reduce
to ES .es.
VEROBLOC BREADBOARD Now from Yoro, this versatile sld fo modate any size of IC. Bloce and be jolne together. Aue stripe on $X \& Y$ exle-tota 30 connexion points for just EA.1s. Pholo shows 2 blocs)

CHEAP CHIPS 7647 Sound IC E1. 25 .
MK4007 shilt ree ${ }^{2}$ for

UATMMG - volt reg Ei. 2 .

ELECTRO-DIAL
Electrical combination loctufor maximum tlonsll Dial is proof. 1 milition combinanumber, loft to a second number, then rioht agaln to a third number. Only when this has been completed in the correct Thesuance willtheelectrlcal contacte close. solenold, Overalldie. $68 \mathrm{~mm} \times 60 \mathrm{~mm}$ deop. Only ed.

PCB HOLDERS

- PCB's may be rotated through 360 degrees and locked at any angle
- simple adjustment for different board sizes
- anti-static foam pad available enabling a number of components to be inserted prior to soldering

CNC 6

PCB Capacity: $10^{\prime \prime} \times 7^{\prime \prime}$
PCB's held by spring elips which also allow the holder to be used as a small soldering jig.
PRICE \& 13.60 INC. VAT

CNC 9

PCB Capacity: $8^{\prime \prime} \times 8^{\prime \prime}$
PCB's held by adjustable Vee Clamps which eliminate the risk of damage to the face sides of the PCB and allow a high degree of accessibility.
PRICE \&15-83 INC. VAT

ANTI-STATIC FOAM PAD

Size: 8" $\times 8^{\prime \prime}$ Clips onto Holder. PRICE es 20 INC. VAT
aVallable direct from the manufacturer. please ado £1 50 TO COVER POST AND PACKING.

CARLTON NICHOL \& CO. LTD., GOLDKEY INDUSTRIAL ESTATE, KELVEDON, ESSEX

LIMITED OFFER!

As an introduction to CRICKLEWOOD ELECTRONICS LTD. tel: 014520161 Whilst stocks last and only if accompanied by this Ad.

DESOLDERING TOOL

Now every one can afford ons of these superb, blue anodised aluminium high presture hand desoldering tools at nearly half our normal price. ad $£ 3.85$ + VAT
Spare Teflon screw-in noses 75p + VAT
JAPANESE TRANSISTORS May not be as hard so replace as you shink. Phone our equivalent service on 014520161 (everyday except Wednesdays) or write. We have thoustands of Transistors, ICs, LEDS in stock, as well as every conceivable type of component-Why not make CRICKLEWOOD ELEC. TRONICS your personal ELECTRONICS HOBBY CENTRE? We have the soods!
Now you need no longer grope in the dark. For a miniature price you can resistors jump to life!
THE MIGHTY MINI MULTI. TESTER 2,000 ohms per volt. DC AC Voltage ranges: $10 \mathrm{v}, 50 \mathrm{v}, 250 \mathrm{v}$. 1000 v . DC current ranges 100 mA Resistance ohms $\times 10$, ohms $\times 100 \mathrm{db}$ from -10 db so +22 db . Mirror arc scale, overioad protected, complete with batrery, test leads \& instructions. Usual price $£ 8.65$ + VAT; with this Ad: $\mathbf{~} 4.95$ + VAT.

ORDER FORM

Address

Desoldering tools @ $£ 3.85$

Spare Teflon noses @. 75 Spare Teflon noses © $\cdot 75$
Mighty Mini Testers © $£ 4.95$
Postage, packing and Insurance © 60p per one
device 25p for each additional device

> Sub total Add 15% VAT

I enclose cheque no/P.O. no.
This offer
This offer applies to UK only, Please allow $7-10$ days delivery. Oversas custom ers please do not add VAT but allow enoush to cover postage.
TRADE ENQUIRIES WELCOME.

CRICKLEWOOD ELECTRONICS LTD.
40 Crjcklewood Brosdway, London NW2 3ET tel 014520161

FRapid

Tel: 0322863494
Hillcroft House Station Road
Eynsford Kent DA4 OEJ

SOLDERING IRONS

 Antex Cx 17 W Soldering Iron2.3 mm and 4.7 mm bits to sult Cx 17 welement Antex $\times 2525 \mathrm{~W}$ Soldering Iron
3.3 mm and 4.7 mm bits to suit X2s $25 W$ element
Solder pump desoldering tool Spare nozzle for above
10 metres 22 awg solder CRYSTALS

100 KHz	290p	6.144 M	1900
200 KHz	370p	7.00 M	250p
1 MHz	300 p	8.0 M	170p
1.008 M	370p	10.0 M	180p
1.8432M	300 D	12.0 M	290 p
2.0 M	270p	16.0 M	240p
2.4576 M	220p	18.0 M	240p
3.276M	240p	18.432M	220p
3.579 M	120p	19.968M	300p
4.0 M	150p	26.69M	300p
4.194M	150p	27-145M	240p
4.43M	125p	38.6667 M	320D
5.0 M	240p	48.0 M	220p
6.0 M	200p	116M	3000
PCB MATERIALS			
Allac transfer sheet. 45p			
Dalo eteh resist penFibre glass board $3.75 \times 8 /$			100 p
			70p
Ferric Chioride 250 ml bottle			100p

SOCKETS

* 8 pin $7 p$

0 pin 18 p

oldercon pins 60p/400.

DIODES

 0447
0 OA90
OA
OA 200
0
OA 202

INP144
$\star+1 N 414$

REGULATORS

Positive
\star 78L0525p

| $78 L 12$ | 30 p |
| :--- | :--- | :--- |
| 78 LH | 30 p |

78 L 15

LM309K

- LM315T

Negative

CABLES

20 metre pack single core ent colours
Speaker cable
Standard screen
Twin sereened
$2.5 A 3$ core main $10 \mathrm{p} / \mathrm{m}$ 10 way ribbon $24 \mathrm{p} / \mathrm{m}$
$23 \mathrm{p} / \mathrm{m}$ 10 way ribbon
20 way rlbbon $120 \mathrm{p} / \mathrm{m}$

PANEL METERS
Size $60 \times 46 \times 35 \mathrm{~mm}$.
$0.50,4 \mathrm{~A}$.
$0-500 \mathrm{~mA}$ $0-50,1$
$0-100 \mu$
0
$0-50 \mathrm{~mA}$
$0-100 \mathrm{~mA}$

- 100 mA
$0-500 \mathrm{~m} A$ $0-1 A$
$0-50 V$

0 VU
$0-300 \mathrm{~V} \mathrm{AC}$ $0-300 V$
$0-25 V$
$0-30 V$

RESISTORS

IW 5% Carbon film E12 series. 4-70-10M. 1p each
iW 5% Carbon fim E12
 series $10 \Omega-1 \mathrm{M} 6 \mathrm{p}$ each

VERO Verobloc 350p Size 0.1 matrlx $\begin{array}{ll}\text { 2.5 } & \text { 22p } \\ 2.1 & \text { 22p } \\ 2.5 \times 3.75^{\prime \prime} & 75 p \\ 2.5 \times 5^{\prime \prime} & 6 p \\ 3.75 \times 5^{\prime \prime} & 95 p \\ \text { Voboard } & 160 \mathrm{p}\end{array}$ Veropins per
Single sided Single sided 50 p
Double sided 60 p
Spot face cutter 105

\section*{BRIDGE RECTIFIERS} | 1A $50 V$ | 22 | $4 A$ | $400 V$ | 95 |
| :--- | :--- | :--- | :--- | :--- |
| 1A $400 V$ | 35 | $6 A$ | 100 V | 80 |
| $2 A$ | $200 V$ | 40 | $6 A$ | 200 V |
| 90 | | | | |
| $2 A$ | 400 V | 45 | $6 A$ | 400 V |

TRANSFORMERS

Miniature mains. 100 p each
H06V, $909 \mathrm{~V}, 12012 \mathrm{~V}$ all@ 100 m
1000 each
$6 \mathrm{VA} 0.6,0.6 \mathrm{~V} @ 0.5 \mathrm{~A} ; 0.9,0-9 \mathrm{~V} @ 0.4 \mathrm{~A}$
\qquad
$\begin{array}{ll}12 V A & 0-6,0-6 V @ 1 A ; 0-9,0.9 V @ 1.2 A ; \\ 0.12,0.12 V ® 0.5 A ; & 0.15,0.15 V @ 0.4 A\end{array}$
275 peach (plus 400 carriage)
$\begin{array}{ll}24 V A & 0-6,0-6 V @ 15 A: 0-9,0-9 V @ 1 \cdot 2 A ; \\ 0-12,0-12 V @ 1 A ; 0-15,0-15 V @ 0-8 A\end{array}$

100VA $0-30,0-30 \mathrm{~V}$ @ 18 A 920 p each (plus 80p carriage)

CAPACITORS

Polyester. Radial leads. 250 V C280 type.
$0.01,0.015,0.022,0.033,6 p ; 0.047,0.068,0.1,7 \mathrm{p} ; 0.22,9 \mathrm{p}:$

Electrolytic. Radial or Axial leads. $0.47 / 63 \mathrm{~V}, 1 / 63 \mathrm{~V}, 2-2 / 63 \mathrm{~V}, 4 \cdot 7 / 63 \mathrm{~V}, 10 / 25 \mathrm{~V}, 7 \mathrm{p} ; 22 / 25 \mathrm{~V}, 47 / 25 \mathrm{~V}, 8 \mathrm{p}$

Tantalum bead.
$0.9,0.22,0.33,0.47,1.0 @ 35 \mathrm{~V}, 12 \mathrm{p} ; 2.2,4.7,10 @ 25 \mathrm{~V}, 20 \mathrm{p}:$
$15 / 16 \mathrm{~V}, 30 \mathrm{p} ; 22 / 18 \mathrm{~V}, 27 \mathrm{p} ; 33 / 16 \mathrm{~V}, 45 \mathrm{p} ; 47 / 6 \mathrm{~V}, 27 \mathrm{p}: 47 / 16 \mathrm{~V}, 70 \mathrm{p}$ 15/16V, 30p; 22/16V, 27p; 33
$68 / 6 \mathrm{~V}, 40 \mathrm{p} ; 100 / 10 \mathrm{~V}, 90 \mathrm{p}$.

Polystyrene. 5% tolerance.
$10 \mathrm{p}-1000 \mathrm{p} .6 \mathrm{p} .1500 \mathrm{p}-4700 \mathrm{p}$. $6800 \mathrm{p}-0.012$ 10p
Ceramic
. 50V lype. 3p each.
Trimmers. Mulfard 808 serles.
$2-10 \mathrm{pF} 22 \mathrm{p} .2-22 \mathrm{pF} 30 \mathrm{p}$. $5 \cdot 5-65 \mathrm{pF}$ 35p.

* ordering information
 All starred items are at Special Low Prices-just compare wlth other suppllers. All prices exclude VAT Plebse add to total order. Please add 50 p carriage on Please add to total order. Please add 50 p carriage on all orders under $£ 10$ in value. Send 42 for our catalogue (lree with orders over $£ 5$). Officlal order

HARDWARE

PP3 Eattery clip
Red or black crocodile ellps
Black polnter con
Pair Ultrasonics
O220 twisted vane heatsink
20 mm panel fuseholder
mm terminals (var, colours)
TO18 transistor socket
64 mm 64 ohm speaker

IT PAYS TO BUY FROM RAPID

Wheel of Fortune	2B164	Aug. 81	¢27.50
Simple P.H. Meter	2B165	Aug. 81	£22.00
LED Sand Glass	2B162	Aug. 81	¢5.00
Morse Practice Oscillator	2B163	Aug. 81	£10.95
Door Alarm	2B166	Aug. 81	¢6.00
CMOS Metronome	ZB167	Aug. 81	£6. 25
Xenon Strobe Lamp	2B161	July 81	£18.50
Combination Lock	ZB160	July 81	£13.75
Electronic Multimeter	2B159	July 81	£ 32.50
"Tremolo Unit	2B157	June 81	¢8.25
Loop Aerial Crystal Set	2B158	June 81	¢5-25
Darkroom Timer	ZB155	June 81	¢4.00
Tape Auto Start	2B156	June 81	£10.25
Audio Test Set	ZB152	May 81	¢ 46.00
Soil Molsture Indicator	2B154	May 81	E3.95
Phone Bell Repeater or Baby Alarm	2B153	May 81	£5-25
Gultar Headphone Amplifier	ZB151	May 81	£4.00
Lights Reminder or Ignition Locator	2B150	May 81	¢5. 20
Intercom	ZB149	April 81	£19.25
Digital Rule	ZB148	April 81	£28.00
Freezer Alarm	ZB147	April 81	£11.75
LED Dice	2B146	March 81	£7.50
Mini SIren	2B145	March 81	£7. 25
Modulated Tone Doorbell	2B144	March 81	¢6. 25
Bench Power Supply	2B143	March 81	¢ 48.50
Car Actuated Driveway Light	ZB142	March 81	£22.00
3 Channel Stereo Mixer	ZB141	Feb. 81	£16.25
Signal Tracer	ZB140	Feb. 81	£7.50
Nicad Battery Charger	2B139	Feb. 81	£12.00
Auto Slide Charger	2B138	Jan. 81	£9.00
Ice Alarm	ZB137	Jan. 81	¢7. 25
Phaser Sound Effects	2B136	Jan. 81	¢23.30
Mini I.C. Radio	ZB126	Nov. 80	\&10.35
Sound to Light	ZB127	Nov. 80	¢19.00
Guitar Practice Amplifler	2B128	Nov. 80	£16.85
Transistor Tester	2B131	Nov. 80	¢9.09
Soil Moisture Monitor	ZB132	Nov. 80	¢5.00
Audio Effects Unit	ZB122	Oct. 80	£12.25
Phone Call Charge Jogger	2B121	Oct. 80	ع6.00
Darkroom Controller	ZB123	Oct. 80	£18.25
Bicycle Alarm	2B124	Oct. 80	¢9. 25
TTL Power Supply Unit	ZB78	Sept. 80	¢9.50
*TTL Logic Probe	2B76	Sept. 80	£3.75
Bedside Radio	2B74	Sept. 80	£14.75
Signal Tracer	ZB80	July 80	£5.50
Autowaa	2B83	July 80	£19.75
A.F. Signal Generator	7B84	July 80	¢20.50
Auto Phase	7B86	July 80	£19.75
Lights Warning System	ZB63	May 80	£4.00
Autofade	ZB66	May 80	£ 10.25
Cable and Pipe Locator	2B54	March 80	£4.00
Micro Music Box	7B45	Feb. 80	¢17.50
Simple Short Wave Receiver	2B44	Feb. 80	£19.50
Morse Practice Oscillator	2B43	Feb. 80	£6.00
Slide/Tape Synchroniser	ZB42	Feb. 80	£11.50
Burglar Alarm	2B51	Dec. 79	¢5.50
Baby Alarm	ZB40	Nov. 79	¢8.50
Chaser Light	ZB4	Sept. 79	£18.50
Simple Transistor Tester	ZB2	Sept. 79	E6.00
Varicap MW Radio	ZB1	Sept. 79	£8.50
Electronic Tuning Fork	2B7	Aug. 79	¢9.50
Warbling Timer	ZB5	Aug. 79	¢6.30
Electronic Canary	ZB19	June 79	£5.00
Tremolo Unit	ZB18	June 79	£10.50
One Transistor Radlo MW/LW	2B104	March 79	£7.25
Micro Chime	2B96	Feb. 79	£13-00
Lights Reminder for Car	2B32	Jan. 79	£5.00
Fuzz Box	2B106	Dec. 78	¢6.75
Sound to Light	2B112	Sept. 78	¢ 8.00
Weird Sounds Effect Generator	ZB113	March 78	£6.00
TEACH-IN 82			
All parts in stock.			
List (2)		$10 \cdot 50$	
Special Price List 1 and $2 \quad £ 25 \cdot 50$			
All Prices include Post \& VAT Callers Please Ring To Check Avallablllty Of Kits			
MAINS IONISER KIT zO13			
This negative ion oenerator olves you power to saturate your home or offce with millions of retreshing lons. Without fans or moving parta it puts out a pleasant breaze. A pure flow of lons pours out like water from a fountain. filling your room. The result? Your air feela like fresh ocean air, pure crisp and wondertully refreshing. All parts PCB and full instructions $\mathbf{8 1 2} \cdot 50$. A suitable case Including tront panel, neon switch, etc. Avaliable at $\Sigma 6.50$.	T. POWELL AOVANCE WORKS, 4 WALLACE ROAO. LONOON N1 Tel: 01-226 1489 HOURS: Mon-Frl 9-5.30p.m. Sat 9-4.30p.m		
	HOURS: Mon-Fri 9-5.30p.m. Sat 9-4.30p.m.		
	Minimum Telephone Orders $55 \cdot 00$ Minimum Mail Order $£ 1 \cdot 00$		

1 Amp SILICON RECTIFIERS Giass Tyoe similar INacoo SERELES in4001-ma004 50 - 500 V - uncooed - rou select for VITS. NL perrect devices - NO duads Min 50 v 50 tor $£ 1.00$ - worn Souble ORDER NO 5×76 Siricon General Purpose MPN Transitors $\mathrm{TO}-18$ Case Loct fir leads - cosed CV764 Simida to BCIM - BC107- TT89 ALL NEW VCE 7O IC500mA | PRICE |
| :--- | :--- | :--- | :--- |

Silicon Geteral Purpose PNP Transisitors T0-5 Case
Lock in leass coceed Cv9507 simima: 2Nrge5s to BFF30 VC 60 IC 600 mA MO HHE 50 NLL NEW: PAICE $£ 2.50 \quad 54.00 ~ £ 19.00 ~ £ 35.00$

Orde as cris50?

Sllicon NPN'L'TypeTransitors
T0-92 Plastic centre collector Like BC182L - 183L - 184 L
VCBO 45 VCEO 30 IC200mA He 100-400 -c
ALL pertect devices - uncoded ORDER AS SX183L 50 off 100 off 500 of 1000 off
$\begin{array}{cccc}£ 1.50 & \text { E2.50 } & \text { £10.00 } & £ 17.00\end{array}$
PNP SILICON TRANSISTORS:
Similar TXX500 - TXX214 - E-Line
VCEO 40 VCBO 35 IC 300 mA He $50-400$
Brand New - Uncoded - Pefect Devices
50 oft 100 off 500 off 1000 off
$\begin{array}{cccc}£ 2.00 & £ 3.50 & £ 15.00 & £ 25.00\end{array}$
Onder as ITXPNP

Use rout creote card Aing us on Ware 3182 Now and
 Clas Mail.
Remember rou must add val al 15°, to roul crote Total Pastre ado 50p pel Toul orde.

BrAT BARGAiNS

'IJRESISTABLE

RESISTOR BARGAINS'

Pa Mo Qts Dexcrigion

Sx10 400 Maxed "All Type" Resistors El 5×11400 Preformed 1 k - $1 / 2$ wall Carbon $5 \times 12 \quad 200 \quad$ Resistors watt Carbon Resistors $5 \times 13200 \quad$ Ya th Carbon Resistors Sx14 150 Y watt Resistors 22 ohm 2m2 Mired
$5 \times 15 \quad 100 \quad 1$ and 2 watt Resistors 22 ohm- 2 m 2 Mixed
Pals $5 \times 12-15$ contain a range of Carbon Film Resistors of assorted values from 22 ohms 1022 meg Save pounds on these resistor oasis and have a full range to cover your projects.
*Quantities approximate. count by weigh

TRIACS - PLASTIC

Everyday Electronics

Teach - An ' 81
Kit 1 15. 65 (Kits 1 \& 2 combined Allude $\mathrm{M}_{\mathrm{t}} 2$ f 494 price C 23.00
SH40 250 Silicon Diodes-Switchung lite
IN4148 DO-35 All suod-uncoded. Worth
double our price $45 \mathrm{v} 75 \mathrm{~mA} \quad £ 1.25$
$\begin{aligned} & 250 \text { Silicon Drodes-General Purpose } \\ & \text { 0A200/202 bax 13/16. encoded. }\end{aligned}$
30100 v 200 mA 00.7
\bar{T}
5×4 10 SA SCR's T064 $3 \times 50 \mathrm{v}, 3 \times 100 \mathrm{v} .2 \pi$ 200v. $2 \times 400 \mathrm{y}$ Super value less than in

5x45 10 200v, 2×400. All coded Brand new. a ${ }^{8}$

BARGAINS

514220 small 125 Red te's so's Sx43 10 Rectangular Green Leos 514030 Assorted liner diode voltages. $250 \mathrm{mw} \cdot 2$ *at
all coded New
s141 Biackinstrumed with pointer Knobs-wing screw. Fit site 29 a 20 mm .
Sx49 20 Assorted Slide Knobs
susa 12 Me ans and filament Lamps Low suse 12 Means and rime furious types and colours - some panel mont.
"CAPABLE CAPACITOR PARS*

[^2]
AUDIO PLUGS, SOCKETS

 AND ACCESSORIES25 pieces of Audio Plugs. Sockets and Connect Speakers. Phonon. Jack. Stereo and Mono etc etc Valued al well over $£ 3$ normal. Order No $\$ \times 25$. Our Price $£ 1.50$ per path. Guaranteed to save you money.
5×263 Prs. of 6 pin 240° Din Plugs and Chassis $5 \times 271 \times$ Right Angle Stereo lack Plug 6.3 mm plus matching metal chassis mounting socket. $x 281$ Promo plugs and 2 dual phono connectors seas 1225 mm Plug to 3.5 mm Socket adaptor 5311 35 PI U 10 Pion Sock el

500
300
300
200
200
$\mathbf{x} 311 \times 35 \mathrm{~mm}$ Plug to Phone Socket adaptor

SEMICONDUCTORS FROM AROUND THE WORLD
 which are current everyday usable devices

Guaranteed Value over £10 at Normal RetaIl Price

$\underset{\substack{\text { yours } \\ \text { on ty } \\ \text { ont }}}{\substack{2}} 000$
 Oats eli. every pat and
 | every park |
| :--- |
| Order Mo. 5156 |

8

? 0
\rightarrow
A.

显 $=$

BI.PAK'S OPTO BARGAIN OF THE YEAR
Valued at over \{1 0-Nor wal Retan-we offer you a pack of 250 pto devices to include LED's Large and Small in Rec. Green. Yellow and Clear. 1 Segment Displays both Common Cathode and Common Anode PLUS bubble type dispiays-line 01.33. Photo Transistars-sim
OcP1I Photo Detectors-llite ME111-12. This whole pact of 25

ANO we guarantee your money bach if you are not Order No. BX 57.

MORE BARGAINSI wire single and sure clowns an de and stranded. Mined SIS 25 Also
Sens. Sores 7401.7460 ares 7400
sx59 10 Assorted 1460 TI Assorted flip flops and mst 20 Assorted Side ${ }^{2} 25$ atentiomelers
Su61 25 Assorted Pot
5×62 Rotary, Dual, etc.
062 io Assorted Pres Sets etc
10 Reed 10 Reed Switches - glass trope

STILL MOREL

EIDER POTENTIOMETERS CIDER PO TR AC 10 mm Travel Mono

 $5 \times 665 \times 22 \mathrm{n}$ Lo 8
$5 \times 71{ }^{20} \mathrm{BCC} 108$ Fallout Man
san
A mired bundle of Copper clad board. Fibre a A mused bundle or Single and 0
lantasictbatpann
707 Genuine MULLARD OC71 Germ

BI-PAK'S COMPLETELY NEW CATALOGUE

Comely redesigned. Foul it the the at compare very interesting ones you will soon be using and of course, the largest range of semiconductors for the Amateur and Professional you could hope to find There are no wasted pages of useless information so oren included in Catalogues published nowadays lust solid facts ie. price, description and individual features of what we have available But remember. Bi. Pal' s policy has always been to sell quality components at competitive prices and rim WE STU DO.
BI-PAK'S COMPLETELY MEW CATALOGUE is now available to You You will be amazed how much you can save when you shop tor Electronic Components w. a B. Pall Catalogue. Have one by you all the time - 11 pars to buy Bl. Pax

To receiver your copy send $\mathbf{7 5 p}$ plus 25 p ps
屋

2

$5 \times 321 \times 5$ Inc
Ex $331 \times$ Pdopeqie Switch SPST Miniature. $125 \times 10 \mathrm{~A}$ Ex 1alogre Switch SPDT Miniature : 25 vv 10 A SEaS II Rocker Switch SPOTMinature 240 VA 5×36 ix Right Angie Mono Jack Plur
5×3720 pieces 1.2 d 4 mm plugs and sockets (Banana) Matching colours and sites
10 Assorted Switches Toggle. Slide. Roche Push button.
517725 mu ed cable chis ane ties round ri mine plastic feet. Always sought by the project builder

£1FREE ${ }_{\text {PAX }}$

Get a $£ 1$ FREE PaCK Orders over $£ 10$ excluding VaT Choose if Pack free $(0$: 2×50 o) add it to pour order and Guv even more money
This offer ont apples to this acterissamem

Saneanter always been BI.PAK's GUARANIEE and it still is Al these Sale hems are in stock in quantity and we will despatch the same day as your order is received

IC SOCKETS

The lowest price ever.
The more you buy the cheaper the
Pin 10 off 50 off 100 off
$\begin{array}{llll}\text { Pin } & 100 \mathrm{ff} & 50 \text { off } & 100 \\ 8 & 75 p & 63.00 & 65 \\ 1 & 50 & 53.25 & 555\end{array}$

VOLTAGE REGULATORS
$\mathrm{T} 0220 \begin{gathered}\text { Positive }+ \\ 7005-500 \\ \text { Negative } \\ 7905-55_{0}\end{gathered}$ $7805-5007905-550$
$7812-500$
$7912-55$ $7815-500$
$7912-550$ $\begin{array}{llll}7815-50 p & 7915-550 & \text { require } \\ 7824-50 p & 9924-55 p\end{array}$ Other types (m340M - 5 wit - 18 vol - 24 mit TO - 40 O . Un 723 - 14 pINDIL - 40 D

(1) 5152

$1=1$
Slack Heatsunh will fin TO -3 and 10-220. Ready drilled. Half price value.
suss | Power tinned Heating This heating gives the greatest possible heat dissipation in the smallest space owing to its unique staggered fin design. pred drilled
TO-3 Sue e 45 mm squarer 20 mm high 40.

SUSS 1 Heat Eficicrency Power Finned Heatsinh $90 \mathrm{~mm} \times 80 \mathrm{~mm} \times 35 \mathrm{~mm}$ High Orllited 10 take up to 4A 1.50 each

5 watt (RMS) Audio Amp High Quality audio amplifier Module Ideal for use in record players tape recorders. stereo amps and cassette players, etc. Full data and bach -up diagrams with each module
Specification:

- Power Output 5 watts RMS Lava Impedance 8.16 ohms - Frequency response $5 \mathrm{SH}_{2}$ to $25 \mathrm{MHz}_{2}-300$ Sensitinty 70 mw los full output Input Impedance So h ohms Size $85=54 \times 30 \mathrm{~mm}$ Total Harmonic distortion less than. 5%

BI. PAK'\$ give away price
± 2.25
You could not Build one

SX38 100 Silicon NPN Transistors-all perfect Coded mia ed types with data and eau sheet No rejects Real value $\quad \$ 2.50$
\$339 100 Silicon PNP Transistars-all perfect coded mired types with data and equt.

20305 St he best known Power Transistors in the World - 2M3055 NPN 115 Our B1.PAK Social Other Price: 10 et 50 At 100 at

BOO 12 COMPLIMENTARY PNP POWER TRANSISTORS: TO 2N3055
Quivalent M12955 - 80312-103 SPECIE PRICE LO. 10 ext

the four credit card Ring us on mare 3182 now and get raul oc der own tater. Goods nomesli sent 2 nd Class max
Remember tau must ada vat a 15° o to pew r cries
lowe Pasture add 50 p per lout core:

If you've never built a kit before, Heathkit have some very pleasant surprises for you. Their kits are easy to build. Simple, but detailed instructions take you through every stage. Everything is included. Even the solder you need is there.

Follow the steps and you'll end up with a hand-crafted, well designed piece of equipment. Much better than shop bought, massproduced. Because you built it yourself.

Digital Clock
There's a great range of kits to start you off. From a buzzer alarm to a digital electronic clock, or a portable rechargeable fluorescent light to a portable VOM.

With all this going for you, you can count yourself very lucky you started off with Heathkit. Because all first time kit builders will get a free soldering iron and 10% discount off ten selected kits.
Buzzer Alarm

To: Heath Electronics (UK) Limited, Dept (EE 2), Bristol Road. Gloucester GL2 6EE.
To start me off, please send me a copy of the Heathkit catalogue. 1 enclose 28p in stamps.

> Youbuild onourexperience HEATHK를

E.E. PROJECT KITS

Make uE your No. 1 SUPPLIER OF KITS and COMPONENTS Ior E.E. Projects. We supply carefuliy selected sets of parts to enable you to construct E.E. projects. KIts include ALL drilled and roller tinned) or Veroboard are, of course, included as specined in the orloinal apticle, we even include nuts, screws and I.C. socheits. PRICES INCLUDE CASES unless otherwise stated. BATTERIES ARE NOT INCLUDED. COMPONENT SHEET INCLUDED. If you do not have the issue of E.E. Which includes the project-you will need to order the instruction reprint at an extra 450 each
Reprinte available separately 45 p each + p. p. 40 D .

PEGBOARD GAME Dec. 81 less nails E6.51.
SQUARE SIX Dec. 81. ©4.40. RACETRACK SPEEDODec. $81, \ldots 25 \cdot 40$ GUITAR ADAPTOR Dec. 81. £.3.52. HEADS OR TAILS GAME Dec. 81 ELECTRRONIC IGNITION. NOV. 81 E24.33. SIMPLE INFRA RED REMOTE CON SRMPLE NOVFRA RED
LOUDHAILER. Nov. 81. less handle. COUDHA.
HORN SPEAKER. £6 75 ertra.
PRESSURE MAT TRIGGER ALARM Nov, 81, £5-86 less mats. EXPERIMENTER CRYSTAL SET Nov. 81. Less aerial. £5-60.
Headphones. 22 -9t extra.
CAPACITANCE METER. Oet. 81, 221 -98 SUSTAIN UNIT. Oct. 81, E11-93
'POPULAR DESIGNS'. Oct. 81.
DAMP LOCATOR. £1-51.
DAMP LOCATOR. E1-51.
TAPE NOISE LMMITOR. E4.28.
HEADS AND TAILS GAME. E2. 36,
CONTINUITY TESTER, £3.70. CONTINUITY TESTER, E3.70. FUZZ BOX. EEB2.
OPTO ALARM. E.E 34.
SOIL MOISTURE UNIT. ©5-43.
ICE ALARM. E7. 38.
MODEL RAILWAY SPEED CON. TROLLER. Sept. B1. E13-46.
O-12VPOWERSUPPLY, Sept, 81 . £14. 14 CMOS CAR SECURITY ALARM Sept. 81 . C8. 49.
CMOS DIE, Sept. 81. ©7.47,
LED SANOGLASSS
LED SANOGLASS. Aug. B1. £7.et. WHEEL OF FORTUNE. Aug. 81, less wire. panel and case. £39-91. CMOS METRONOME. Aug. 81. E7.70. COMBINATION LOCK. July 81. Less Case. cis. 30 . less bell, IOOD \& Mic's. E.30-30.
TAPE AUTO START. June 81, £.11-96 TREMELO. June 81 Iess case. $£ 10-46$. LOOP AERIALCRYSTALSET. JUne 81 65.47.

LIGHTS REMINDER ANDIGNITION LOCATORE,E, MAY 81, £5.29.
SOIL MOISTURE INDICATOR E.E May 81, E3.13.
T.V. INTERFERENCE FILTERS E.E.
May 81. LOW PASS less tindate E.2.ii. May 81. LOW PASS les tindate £2.il HIGH PASS £1-56.
GUITAR HEADPHONE AMPLIFIER E.E. May 81. E3-96.

PHONE BELL REPEATER/BABY ALARM E.E. May 81. ©5-29.
DIGITAL RULE (ultrasonic) April 81 E. 30.20

INTERCOM. ADIII 81. E20.76.
SIMPLE TRANSISTOR \& DIODE TESTERS. Mar. 81. Ohmeter version E1. 69. Led version E.2.56.
MINI SIREN, Mar, 81 , £7.52
LED DICE, Mar. 81. \&7.85.
LED FLASHER. Mar, 81. E4.01.
MODULATED TONE DOORBELL.
Mar. 81. C8.26. EA9-9!
TREBLE BOOST. Mar. 81. E6-34.
CARACTUATED DRIVEWAY LIGHT Feb. 81 less socket. £23-90.
THREE CHANNEL STEREO MIXER. Feb. $81 . £_{17} 47$.
SIGNAL TRACER. teb. 81. E7.64 less
FOUR BAND RADIO. Feb, 81, £39-98 NI-Cd BATTERY CHARGER. FED, BI C12.72.
ULTRASONIC INTRUDER DETEC.
TOR. Jan. 81 less case, £49.9
AUTO SLIDE CHANGER. Jan. 81. E9.24. LOGIC PULSE GENERATOR. JAN. 81. E7.4..
2 NOTE DOOR CHIME. Dec. $80 . ~ £ 9.65 . ~$

LIVE WIRE GAME. Dec. 80. £10.94 GUITAR PRACTICE AMPLIFIER. c3-88. High quality case Es-33 SOUND TO LIGHT, Nov, 80
SOUND TO LIGHT. Nov, 80,3 channel.
TRANSISTOR TESTER. NOV. 80. $10 \cdot 87$ inc. restleads. AUDIO EFFECTS UNIT FOR WEIRD SOUNDS. OCI, BO. £12.26. Oct. 80 . 66 Bo.
BICYCLE ALARM, OcI. 80, c9- It les: mounting brackets
IRON HEAT CONTROL. Oct. 80. £5.41. BEDSIDE RADIO. Sept. 80, E17:57. COURTESY LIGHT DELAY. JUNe 80 cis. 69.
SIGNAL TRACER. June 80. es.98.
EENER DIODE TESTER. June 80. E.E-23. STATION RADIO. May $80 . £ 15$-33 les Casénts WARNING SYSTEM, May 80. BATTERY VOLTAGE MONITOR. MAY CABLE \& PIPE LOCATOR. Mar. 80 C3-Es less coll former. STEREO HEADPHONE AMPLIFIER. Mar. 80 . 116 -97.
MICRO MUSIC BOX. Feb. 80. © $615 \cdot 20$, Grey Case e.3-90 exira.
SIMPLE SHORT WAVE RECEIVER SLIDE/TAPE SYNGhones E2.98. SO. £11.50. SYNCHRONISER. FEb. MORSE PRACTICE OSCILLATOR. Fb. 80 , £4 J2, SPRING LI UNIBOARD BURGLAR ALARM. DEC. 79. C5.64.

BABY ALARM. Nov. 79. CE-98.
ONE ARMED BANDIT. Oct. 79. E24. 60 . HIGH IMPEDANCE VOLTMETER. Oct. 79. 1.17 -45.

SIMPLE TRAN. Sept. 79. ©21-97. SIMPLE TRANSISTOR TESTER.
ELECTRONIC TUNING FORK. Aug. 79 E.99. Sultable microphone \& plug Ei 7 DARKROOM TIMER. July 79. £2-71 ELECTRONIC CANARY. JUne $79 .[5.44$. TRANSISTOR TESTER. AprII 79. £4.55 ONE TRAMSISTOR RADIO. Mar, 79 Mess case £7.62.
MICROCHIME DOORBELL. Feb. 79. MICROCHIME DOORBELL. Feb. 79. C14.E2. THYRISTOR TESTER. Feb, 5. 1 \&J.87. HEADPHONE ENHANCER. Jan. 79. MIC. AMP, Dec, 78. E3. 08.
AUDIBLE FLASHER. Dec. 78. ©1.33. VEHICLE IMMOBILISER. Inc. PCB. Dec. 78. ES-31.
FUSE CHECKER. Oct. 78. E.2-16.
TREASURE HUNTER. Oct. 78. E18.64 SOUND TO LIGHT. Sept. 78. E7.67.
CAR BATTERY STATEINDICATOR Sept. 78. Less case, E1-96. R.F. SIGNAL GENERATOR. Sept. 78. ع24.91.
SLAVEFLASH. Aug. 78, C3. 52 less SK1. IN SITU TRANSISTOR TESTER. June 78. Es 33.
POCKET TIMER. APrII 78. ©3-27.
HORD SOUND TOR
AUDIO VISUAL METRONOME. Jan. 78 ELECTRONIC TOUCH SWITCH. Jan 78. ©2.56 less case. AUTOMATIC PHASE BOX. Dec. 17 . E11. 50 inc. p.c.b.
PHONE/DOORBELL REPEATER. JUIY

LATEST KITS: S.A.E. OR 'PHONE FOR PRICES

MEMORY BANK SYNTHESISER £26.61

Miniature synthesiser featuring vibrato, envelope, tempo, volume + pitch controls. Uses 24 push burton switches in a keyboard style layout. Based on a custom designed L.c. The accessible memory stores a 32 beat length sequence of notes t spaces. and external amplifler if whed.

PCBs
for
E.E.

ELECTRONIC IGNITION. NoV. 81 CONOLLER. SeDL. 81
MODEL RAILWAY S
WHEEL OF FORTUNE
WHEEL OF FORTUNE. AUg. 81 (pair)
COMBINATION LOCK. July $81 .$.
MODEL RAILWAY POINTS CONTROLLER. Mar. 81 SOUND TOLIGHT. Nov. 80
GAS SENTINEL. ADr. $80 . .$.

TRAIN SET ACCESSORIES

MODEL RAILWAY SPEED CONTROLLER

From E.E. Sept. Features fully varlable speed control-from zero to full speed,
Forwardireverse switch. Auto start and stop for realism. Brake and speed boos Forwardireverse switch. Auto start and stop for realism. Brake and speed boost.
Emergency stop. Use with the simple controller supplied with most train sets. Housed in an attractive 2 tone sloping front case. Bullt on a printed circult board Al parts Included. Kit fili.44. Reprintlinstructions extre 49p.

TRAIN SOUNDS-from H.E.
STEAM LOCO WHISTLE Mar 81
TWO TONE TRAIN HORN F
Bi
CHUFFER Jan 81
E12.26 Inc case

All 3 can be bullitnto the whistle project case-or bulit as separale units.
by Penfold 5.1-95. Published Sept. $81=$

MORE KITS AND COMPONENTS

 IN OUR LISTS FREE PRICE LIST Price ist included with Cons ins Lois Moke COMPONENTS1982 ELECTRONICS CATALOGUE
Mustrations, product descriptions, circuits all included. Up-to-date price list enclosed. All product send 70 D in stap or 170 D
-
MORE E.E. KITS PLUS H.E. And

TEACH IN 82

NEW SERIES-ALL COMPONENTS IN STOCK NOW FOR FAST DELIVERY. All top quality components as specifled by Every day Electronics. Our kit comes complete with FREE COMPONENT IDENTIFICATION SHEET. Follow this educational serles and learn about electronics-Start today.
Send £24.98 for List 1, 2. VERO/E.E. £1.00 vouchers accepted WOODEN CASE KIT also available, £11 68 --wood, formica, olue, screws etc. Cut to size.
IDEAL SOLDERING EQUIPMENT FOR THE TEACH IN AND ELECTRONICS

ANTEX X5 SOLDERING IRON 25W 25.48
SOLDERING IRON STAND
£2.40
SPARE BITS. Small standard, large. 65p each. For X5 X 25 . SOLDER. Handy size 99p. HOW TO SOLDER LEAFLET

12p

DESOLDER BRAID 69p
HEAT SINK TWEEZERS 29p DESOLDER PUMP £6.48 SOLDER CARTON E1•84 LOW COST CUTTERS $£ 1$ - 69 LOW COST LONG NOSE PLIERS $£ 1.68$ WIRE STRIPPERS \& CUTTERS
£2. 69

Books
 SEMICONDUCTOR DATA BOOK. Newnes MICROPROCESSORS FOR HOBBYISTS
 MICROPROCESSORS FOR HOBBYISTS, R, Coles CONSTRUCTOR'S PROJECTBOOKS
 ELECTRONIC GAME PROJECTS RAY
 ELECTRONIC PROJECTS FOR HOME SECURITY, BISTOD
 ELECTRONIC PROJECTS IN AUDIO. Penfold
 ELECTRONIE PROJECTS IN MUSIC, FIINd...
 ELECTRONIC PROJECTS IN PHOTOGRAPHY ELECTRONIC PROJECTS IN THE CAR. GEORG
 PROJECTS IN AMATEURRADIO S SHORT WAVELISTENING. Raye
 PROJECTS IN RADIO AND ELECTRONICS. Sínclair
 ELECTRONIC PROJECTS IN HOBBIES. Rayer ...
 ELECTRONIC PROJECTS IN THE HOME. BIShOp...........
 ELE CTRONIC TEST EQUIPMENT PROJECTS. AIns/le MORE ELECTRONIC PROJECTS IN THE HOME, FIINd
 T10 ELECTRONIC ALARM PROJECTS FOR THE HOME CONSTRUCTOR
 ELECTRONIC PROJECTB-PAPERMAC
 C̄ठSTEFFECTIVEPROJFCTS AROUND THE HOME. Watson
 PROJECTS FOR THE CAR AND GARAGE. BIShOp
 AUDIO CIRCUITS ANDPROJE
 ELECTRONIC CIRCUITS FOR MODEL RAILWAYS PEDIOI
 SOLID STATE SHORT WAVE RECEIVERS FOR EEGINNERS. Penfol BEGINNERS GUIDE TO BUILDING ELECTRONIC PROJECTS, Penfold ELECTRONIC MUSIC AND CREATIVE TAPE RECORDING. BEITY
 BASIC ELECTRONICS BOOKS I.S.
 Superb set of booke covering theory and practice. Educatlonal. Sult age 14 upwards. Lote
 ADVENTURES WITH
 bywd MICROELECTRONICS

An easy to follow book sultable for all ages. Ideal for beginners No soldering. Uses a Bimboard 1 breadboard, gives clear Instruc tlons with lots of pictures. 11 projects based on integrated circuits -includes dice, two-tone doorbell, electronic organ. MW/LW radio, reaction timer, etc. Component pack Includes a Bimboard breadboard and all the components for the projects
Adventures with Microelectronics £2.55. Component pack £29.64 less battery

ADVENTURES WITH ELEGTRONIGS Bytom

An easy to follow book sultable for all ages. Ideal for beginners No soldering, uses an S-Dec breadboard. Gives clear instructions with lots of pictures. 16 projects-including three radlos, siren. metronome, organ, Intercom, tImer, etc. Helps you learn about electronic components and how circuits work. Component pack includes an S-Dec breadboard and all the components for the projects.
Adventures with Electronics $£ 2 \cdot \mathbf{4 0}$. Component pack $£ 17 \cdot 98$ less battery.

MAGENTA GIVEs yOu FAST DELIVERY OF QUALITY COMPONENTS a KITS All products are stock lines and are new d full specificatlon. Wh
qualty producte to all our customers-HAVE YOU TRIED US ?

MAGENTA ELECTRONICS LTD.

ET36, 135 HUNTER ST. BURTON-ON-TRENT, STAFFS. DE14 2ST. 0283 65435. MON,-FRI. 9-5. MAIL ORDER ONLY. ADD 40p P. \& P. TO ALL ORDERS. Normal despatch by return of pose ALL PRICES INCLUDE 15% V.A.T.
anciancoro IRISH REPUBLIC \& B,F,P,O. EUROPE: Ooduct 10% from prices shown Payment
 SOST. ALL ENQUIRES

5 par hita BRANDLEADING ELECTRONICS

NOW AVAILABLE IN KIT FORM

MAGIDICE

Electronic Dice

- Not an auto item but great fun for the family
Total random selection
Triggered by waving of hand over dice
- Bleeps and flashes during a 4 second tumble sequence
- Throw displayed for 10 seconds

Auto display of last throw 1 second in 5 Muting and Off switch on base

- Hours of continuous use from PP7 battery
- Over 100 components to assemble
- Supplied in superb presentation gift box

Electronic Car Security System Arms doors, boot, bonnet and has security loop to protect fog/spot lamps, radio/tape. CB equipment - Programmable personal code entry system

- Armed and disarmed from outside vehicle using a special magnetic key fob against a windscreen sensor pad adhered the inside of the screen - Fits all 12 V neg earth vehicies - Over 250 components to assemble

TX2002

Electronic Ignition

- The ultimate system - Switchable contactless. Three position switch with Auxiliary back-up inductive circuit - Reactive Discharge Combined capacitive and inductive Extended coil energy storage circuit. Magnetic contactless distributor triggerhead. Distributor triggerhead adaptors included. - Can also be triggered by existing contact breakers. - Die cast waterproof case with clip-to-coil fitting - Fits majority of 4 and 6 cylinder 12 v neg. earth vehicles. - Over 150 components to assemble

VOYAGER Car Drive Computer

- A most sophisficated accessory. Utilises a single chip mask programmed microprocessor incorporating a unique programme designed by EDA Sparkrite Ltd. Affords 12 functions centred on Fuel, Speed. Distance and Time Visual and Audible alarms warning of Excess Speed, Frost/Ice, Lights-left-on. Facility to operate LOG and TRIP functions independently or synchronously - Large 10 mm high $400 \mathrm{ft}-\mathrm{L}$ fluorescent display with auto intensity. Unique speed and fuel transducers giving a programmed accuracy of + or -1%. Large LOG \& TRIP memories. 2,000 miles. 180 gallons. 100 hours. Full Imperial and Metric calibrations. Over 300 components to assemble

82 Bath Street, Walsall. West Midlands, WS 1 3DE England. Tel: (0922) 614791

	SELF ASSEMBLY KIT	READY BUILT UNITS
SX 1000	$£ 12.75$	$£ 27.95$
SX 2000	$£ 19.95$	$£ 43.75$
TX 2002	$£ 29.95$	$£ 62.95$
AT. 80	$£ 24.95$	$£ 49.75$
VOYAGER	$£ 49.95$	$£ 84.75$
MAGIDICE	$£ 12.95$	$£ 19.95$

PRICES INC. VAT.POSTAGE \& PACKING

Please allow 28 days for delivery
NAME
ADDRESS

VOL. 11 NO. 2 FEBRUARY 1982

Editor

F. E. BENNETT

Asslstant Editor

B. W. TERRELL B.Sc.

Production Editor
D. G. BARRINGTON

Technical Sub-Editor

G. P. HODGSON

Ant Editor

R. F. PALMER

Assistant Art Editor
P. A. LOATES

Technical Illustrator
D. J. GOODING Tech. (CEI)

Secretary

JACQUELINE DOIDGE
Editorial Offices
KINGS REACH TOWER
STAMFORD STREET
LONDON SE1 gLS
Phone: 01-261 6873

NOT IN ISOLATION

A stranger to electronics flipping through the pages of this month's Everyday Electronics might be forgiven for imagining that carpentry and mechanical engineering are essential parts of this hobby. Yet upon reflection, our browser might be nearer the truth than we perhaps realise.

Evidence of the intrusion of "foreign technology" is to be found in two of this month's projects. The second and final part of the Automatic Garage Door article includes details of the electro-mechanical arrangements. No avoiding this-all the electronic wizardry comes to nought if the mechanics are not properly organised.

Carpentry? The Stereo Record Player entails the construction of a wooden cabinet and a pair of loudspeaker enclosures. Although the latter are purely acoustic devices they are integral parts of any sound reproducing system and their design and construction is reckoned to come tairly within the jurisdiction of electronics.

These two projects are different in that most of our designs begin and end with the electronics. In practical terms this usually means simply a circuit board assembly neatly stowed in a readily available plastic case. Rarely are tools other than screwdriver, pliers and soldering iron required. This is fine, generally speaking, and it makes the building of useful electronic gadgets and equipments a beautifully uncomplicated occupation.

Yet the appearance of projects such as the Automatic Garage Doors and the Stereo Record Player is rather important for-apart from their intrinsic functional value-they illustrate the fact that electronics does not have to be separate, self-contained and isolated. Quite the opposite in reality. The interface of electronic circuitry with non-electronic devices and mechanisms is important and upon this progress in technology is largely dependent.

No true enthusiast of electronics should be put out or disturbed by the appearance of any supposedly alien art, craft or technology in our pages, if it makes for overall completeness of the project in question. Obviously there are limits to how far we can or should go in these nonelectronic areas; but it is important to recognise that in its everyday usage, electronc technology has no real bounds. We cannot therefore logically draw lines around our favourite subject and ignore what lies beyond.

To paraphrase John Donne, "No technology is an Island, entire of itself . . ." . Most certainly not electronics.

Advertisement Manager
R. SMITH

Phone: 01-261 6371

Representative

R. WILLETT

Phone: 01-2t1 6855
Classified Supervisor
B. BLAKE

Phone: 01-2815897
Make-Up and Copy Department
Phone: 01-261 6815
Advertisement Oflices
KINGS REACH TOWER
STAMFORD STREET
LONDON SE1 9LS

Readers' Enquiries

We cannot undertake to answer readers' letters requeating modifications, designs or information on commercial equipment or subjects not published by us. All letters requiring a personal reply should be accompanied by a stamped self-addressed envelope.

We cannot undertake to engage in discussions on the telephone.

Component Supplies

Readers should note that we do not supply electronic components for building the projects featured in EVERYDAY ELECTRONICS, but these requirements can be met by our advertisers.
All reasonable precautions are taken to ensure that the advice and data given to readers are reliable. We cannot however guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to preses.

Back Issuas
Certain back issues of EVERYDAY ELECTRONICS are available worldwide price 80p inclusive of postage and packing per copy. Enquiries with remittance should be sent to Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street. London SE1 OPF. In the event of non-availability remittances will be returned.

Binders

Binders to hold one volume (12 issues) are available from the above address for $£ 4.30$ (home) $£ 4.55$ (overseas) inclusive of postage and packing. Please state which Volume.
Subscriptions
Annual subscription for delivery direct to any address in the UK: £11.00. Overseas: £12.00. Cheques should be made payable to IPC Magazines Ltd., and sent to Room 2613, Kings Reach Tower, Stamford Street. London SE1 9LS.

stereo Record Player

Going back about 15 years or so "record players" were commonplace in many homes, but since the arrival of the music centre and portable cassette player, the availability and choice one has for this type of separate unit is now limited.

This was highlighted recently when the author was looking for a suitable unit for his son to use at home. The unit needed to be compact and portable so that it could be easily moved from one room to another and on occasions carried to a friend's house.

It was therefore decided to design and build a stereo record player which was inexpensive, simple to construct and yet robust enough to be carried around.

The unit was designed around a dual amplifier i.c. which requires few external components, a simple power supply, and when fed directly from a high output ceramic cartridge produces about 2 watts per channel into 8 ohm speakers.

RECORD DECK

There are many types of "deck" on the market that could be used for this project. The use of a top quality deck is not really justified. In fact a deck from an older type of "mono
player" could be used providing a stereo ceramic cartridge could be fitted. Obviously the base board "cutout" for another deck must be made to suit.

The unit described here uses the inexpensive BSRP207 record deck fitted with a SCl2H high output ceramic cartridge. It is a single play semi-automatic deck, that is, the arm is placed manually onto the record and after playing returns automatically and switches off. Use is also made of this on/off switch to switch the amplifier on and off, thus saving the need for an extra mains switch.

THE CIRCUIT

The complete circuit diagram of the Stereo Record Player amplifier is shown in Fig. 1. Right channel components have component references of corresponding left channel references preceded by 100 .

ICl is a dual 2 watt amplifier for 8 ohm loads. It has internal current limiting short circuit protection and internal thermal shutdown, thus making it a very robust device.
The ceramic cartridge used in the prototype produced an average output when measured on an oscilloscope of approximately 1 volt peak-to-peak.

The cartridge outputs are fed directly across the left- and rightchannel volume controls VR1, VR101.

As both channels operate identically only the left channel will be described.

Capacitor C2 couples signals from VR1 to pin 6 of ICl, the input to the amplifier which here is being used in the non-inverting mode. Resistor R1 sets pin 6 at half the supply voltage via pin 1 the internal bias pin. Any mains ripple on this pin is decoupled to earth via C3.

The resulting amplified output signal at pin 2 varies about half supply rail voltage. Part of this out put voltage is fed back (via a resistorcapacitor network) to the inverting input, pin 7 , to affect the gain of the amplifier as required.

GAIN

The gain of an LM377 operating in the non-inverting mode may be set by two external resistors R1, R2 as shown in Fig. 2, where part of the output is fed back to the inverting input.

This (purely resistive) arrangement should theoretically produce equal gain at all frequencies within the amplifier bandwidth.

In Fig. 1, you will see that the feedback circuitry is much more complex than the simple resistor circuit, but this can be reduced to just two "impedance" elements Z1 and Z2 to replace R1 and R2 in Fig. 2.

To make the gain frequency dependent, capacitors are introduced into the feedback network.

Fig. 2. Calculating the gain of the LM377 wired in the non-inverting mode.

Capacitors have reactance (resistance to a.c., where this resistance is inversely proportional to frequency) By incorporating these in the feedback circuitry, increase or decrease in the gain of the amplifier will occur within a specified frequency range.

In the prototype this method of varying the gain for particular frequencies is provided for by the adjustment of a single potentiometer, VR2. Together with its associated capacitors and resistors it has been designed to provide bass boost and bass cut.

BASS TONE CONTROL

The components R2 to R5, C4, C5 in the feedback network were chosen to give the amplifier a gain of about $23 \mathrm{~dB}(\times 14)$ at all frequencies when the tone control VR2 is set mid-way.

Potentiometer VR2 is a log. type and so when set to the mid-way position, the slider splits the resistive element into two portions equal to $90 \mathrm{k} \Omega$ and $10 \mathrm{k} \Omega$ with C 4 and C5 respectively across each section.

Full bass boost occurs when the wiper is set at the C4 end of its travel, and full cut occurs when the wiper is set at the C5 end of its travel. Varying degrees of cut and boost occur between these two extremes.

OUTPUT

The two components R6 and C6 form what is known as a Zobel network. This has been included for reasons of stability when feeding reactive loads. Capacitor C 8 couples the output signal to the speaker via the headphone socket internal contacts.

When the headphone plug is inserted contacts 2 and 3 open and are themselves isolated from the plug. Contact 4 meets with the tip of the plug while the body connects to earth. Resistor R7 (100 ohms) is thereby placed in series with the headphones (8 ohms) reducing the speaker output level by a factor of about $1 / 13$.

Fig. 1. The complete circuit diagram of the Stereo Record Player.

COMPONENTS
 (11) $\frac{1}{6}\left(\frac{311)}{2}\right.$

Resistors
R1, R101 $1 \mathrm{M} \Omega$ (2 off) R4, R104 $10 \mathrm{k} \Omega$ (2 off) R7, R107 $100 \Omega \frac{1}{2} \mathrm{~W}$ (2 off) R2, R102 $47 \mathrm{k} \Omega$ (2 off) R5, R105 $10 \mathrm{k} \Omega$ (2 off) R8 $2 \cdot 2 \mathrm{k} \Omega$ R3, R103 1k (2 off) R6, R106 $2 \cdot 7 \Omega$ (2 off)
All \ddagger W carbon $\pm 5 \%$ except where stated otherwise
Potentiometers
VR1, VR101 $1 \mathrm{M} \Omega$ carbon log. law (2 off)
VR2 100k carbon log. law dual ganged
Capacitors
C1, C101 $47 \mu \mathrm{~F} 16 \mathrm{~V}$ elect. radial leads (2 off)
$\mathrm{C} 2, \mathrm{C} 102 \quad 0 \cdot 1 \mu \mathrm{~F}$ polyester (2 off)
$\mathrm{C} 3447 \mu \mathrm{~F}$ elect. 16 V radial leads
C4, C104 $0.33 \mu \mathrm{~F}$ polyester (2 off)
C5, C105 $0.033 \mu \mathrm{~F}$ polyester (2 off)
C6, C106 $\quad 0.1 \mu \mathrm{~F}$ polyester (2 off)
C7, C107 $470 \mu \mathrm{~F} 25 \mathrm{~V}$ elect. (2 off)
$\mathrm{C} 8 \quad 2200 \mu \mathrm{~F} 25 \mathrm{~V}$ elect.

Semiconductors

IC1 LM377 dual 2 watt audio amplifier i.c.
D1 TIL220 l.e.d. panel mounting bezel type
D2-D5 1N4001 1A 50V silicon rectiffer diodes (4 off)
Miscellaneous
T1 mains primary/15V 1 A secondary transformer
FS1 1A 20 mm
FS2 315 m A 20 mm
SK1 enclosed 6.3 mm stereo switched jack socket (Tandy 274-277)
page 95 SK2, SK102 DIN chassis mounted loudspeaker sockets (and plugs) (2 off) Stripboard: 0.1 inch matrix size 24 strips $\times 37$ holes; Veropins, single-sided (16 off); control knobs (3 off); 7-way 1A screw terminal block; self-adhesive rubber feet (16 off); 3 -core mains cable, length to suit; screened cable, approx. 50 cm ; speaker cable, length to suit; 14 -pin d.i.I. socket for IC1; cable sleeving: 4BA fixings for T1; 20mm chassis mounting fuseholders for FS1 and FS2 (2 off); heatsink for 14 -pin d.i.I. i.c. (Tandy 276-9180)
case: cabinet catches (2 off), attache case type hinges (2 off), chrome screw cups, see cutting list for wood sizes; speaker cabinets: speaker grille cloth; metal. lized self-adhesive angle, see cutting list for wood sizes.
Record Deck BSR P207
Cartridge SC12H stereo ceramic
Loudspeakers $80 \mathrm{hm} 8 \times 5$ inch elliptical type rated at 2 watts or greater (2 off)

Stereo Record Player

Fig. 3. The layout of the components on the topside of the stripboard and the breaks to be made on the underside (trackside) of the board. Note that all flying leads from this board are via Veropins. The screen on the cable from VR1 is not connected at the board end,

POWER SUPPLY

The power supply and amplifier are switched "on" and "off" as mentioned previously by the on-board motor switch.

Tl secondary provides 15 volt a.c. at 1 amp. Full-wave rectification is accomplished by diode bridge D2-D5. Its output is smoothed by reservoir capacitor C8 producing a d.c. supply voltage of 20 volts.

Resistor R8 limits the current through l.e.d. Dl which functions as a POWER ON indicator and is located on the control panel.

AMPLIFIER BOARD

The layout of the components on the stripboard (24 strips $\times 37$ holes \times $0 \cdot 1$ inch matrix) is shown in Fig. 3. All flying leads are soldered on the board topside via Veropins.

Start by drilling the four fixing holes and cut the strips where shown. Next fit and solder the Veropins and link wires into position. After locating and soldering the i.c. socket into position, the rest of the components can then be soldered in place, starting with the smallest components first.

Glue the heatsink to the i.c. using "Araldite" and mark the position of pin 1 on the sink for future reference, and then leave to one side to set. All lead-out wires are to be connected when the board is in position. The next stage recommended is to prepare the deck baseboard.

DECK BASEBOARD

The baseboard was made from 8 mm thick plywood. A scaled template for this is shown in Fig. 4. The cut-out

Fig. 4. Scaled template for the cut-out in the deck baseboard to suit the BSRP207 and chassis mounted transformer. Viewed from underside.
was made using a Stanley trimming knife fitted with a type 1275B saw blade. If using a deck other than the BSRP207, a different cut-out contour will need to be originated.

Simply drill a hole to clear the blade and saw around the line finishing off with a woodfile and sandpaper. Next drill all holes, cut the three slots with a small chisel and fit the two
wooden blocks that support the control panel. Now press into place the deck "spring cups", and check that the deck sits in these correctly.

SECURING TRANSFORMER

With the deck fitted to the baseboard unscrew the transit screws to tighten the deck against the base.

The fully wired prototype with deck baseboard raised to show component assembly on underside.

Lower left: Close up view of the prototype component board.

Shows the fully wired up component board and control panel. You can also see the headphone socket and speaker terminal block.

Then position the transformer so that its fixing bolts (when fitted) will be hidden by the turntable. Remove the turntable by easing out the spring clip attached to the centre spindle and lift off. Drill 4BA clearance holes, secure the transformer and replace the turntable.
The deck support spring nearest the transformer may have to be stretched a little to compensate for the extra weight, thereby keeping the deck level. The baseboard is now ready for covering or painting as required.

The mains and motor wiring of the prototype unit. The pick-up tag strip can be seen lower right.

fig. 5. Drilling and mounting detalis for the control and facia panels.

Before proceeding to the wiring stage the control and facia panels are cut and drilled as shown in Fig. 5.

WIRING UP
The complete wiring-up details are shown in Fig. 6. Unscrew the transit screws and support the upturned baseboard with two wooden bearers. Locate the mains wire that goes from the microswitch to the motor (lead "X"). Cut this wire and insert the single terminal block into position. Now fit the mains and speaker terminal blocks in place followed by the two fuseholders.

Fix the three potentiometers to the control panel and then screw this assembly into the small wooden supports. Fix the bezelled l.e.d. and headphone socket to the facia panel feeding the l.e.d. wires through the baseboard.

The amplifier board can next be screwed down to the baseboard on spacers. Small lengths (5 mm) of plastic sleeving make suitable spacers.

In the prototype there were two additional (white) leads from the motor. These are not required and should be adequately insulated after cutting back close to the fitted motor wiring clamp. Wiring between pick-up and 5-way tag-strip is carried out by the deck manufacturers.
With reference to Fig. 6, carry out the wiring up, keeping all leads as short as possible. Note that the contact numbers for SK1 are printed on the socket body. Use screened lead where appropriate.

INITIAL TESTING

The first test is to make sure the deck functions correctly. Insert the mains fuse FS2 leaving FS1 out for the moment.
Now with the deck and baseboard supported by the wooden bearers, release the transit screws and switch on. Put a record on and check that the deck works satisfactorily.
Next test the power supply. Lock the arm and tighten the transit screws and turn the deck upside down. In this position the motor must be disconnected from the supply otherwise its bearings may be damaged. Unscrew the motor lead from the single terminal block and insulate it with tape. At this stage do not have the i.c. in its socket. Insert FS1 and switch on. Measure the voltage at pin 14 of the i.c. socket, this should read 20 volts or be close to this. Check also that D1 lights up.

Once this has been confirmed, switch off and insert the i.c. in its socket making sure it is the correct way round, otherwise it will certainly be destroyed. Turn both volume controls fully down and without speakers or headphone connected, switch on and measure the voltage at pins 2 and 13. Both should read 10 volts (or half the measured pin 14 voltage). If any of these tests fail, thoroughly check all the wiring around each stage to locate the fault before proceeding.

FINAL TESTING

Assuming all voltages are correct, solder a short length of cable to each

speaker and connect up to the speaker terminal block. With both volume controls fully down and the deck still upside down, switch on. A faint hiss should be heard in both speakers, move each volume control about a quarter of a turn, hold a screwdriver by the blade and touch each amplifier input at the small tag strip on the deck. A loud buzz should be heard. Leave the unit switched on for a while and check that the heatsink stays cool.

Once satisfied switch off and reconnect the motor lead and set the
deck up to play a record. Make sure both channels give equal volume without distortion and that the tone control functions satisfactorily: anticlockwise for cut, clockwise for boost, from centre position. Carry out the same check with the headphones connected.

Once again if problems arise check all wiring for possible mistakes and bad joints. If mains hum is present check that there is a good earth to the deck, and the two screened cables to the board. Only one of the screens should go to the board earth pin.

If the unit so far built gives satisfactory performance, the case and speaker enclosures may now be prepared.

THE CASE

Plywood was chosen for making the cabinet, the main structure being 8 mm thick with the base and lid 5 mm thick. For details see Fig. 7.

The cabinet was first made as a complete box all joints being glued and pinned. Then using a woodworkers marking gauge set to the

Stereo Record Player

Fig. 7. Case and speaker enclosure construction details of the prototype. See text for construction technique of the case. The battens in the case require careful positioning to allow sufficient clearance for the mechanics on the deck underside, and may be other than that shown for different decks. The lid may need to be made deeper for other decks to allow the lid to be closed whilst a record is playing.
The battens in the speaker enclosures should be positioned so that the baffle board and rear panel are flush with the box edges. The cut-out in the baffle board should be made to sult the speaker chosen. The speaker cloth is stapled to the front edges which are later masked with 5 mm silvered plastic angle.

CUTTING LIST

Case (Plywood)
Deck Baseboard
Top/Bottom panels
Front and Rear panels
Upper
Lower
Sides Upper
Lower
Battens (Softwood)
Speaker Enclosures (Chipboard)
Baffle Board
Sides
Top/Bottom
Rear Panel (Hardboard)
Battens (Softwood)
$246 \times 146 \times 13$
$246 \times 130 \times 13$
$172 \times 130 \times 13$ (2 off)
$246 \times 146 \times 3$
$226 \times 10 \times 10(4 \mathrm{off})$
$146 \times 10 \times 10(4 \mathrm{off})$
Quantities for one enclosure only. All dimen-
sions in mm.
correct lid depth mark around the box and cut with a small tenon saw. This method ensures the lid fits the base perfectly.

Next glue and pin the baseboard supporting battens and cut the slots at the rear of the cabinet to accommodate the mains and headphone cables. Drill 15 mm holes for the speaker sockets and temporarily screw them into place.
The hinges and catches are fitted with 9 mm No. 6 round head screws. Drill the two holes and fit the carrying handle which comes complete with fixing nuts and bolts. These bolts need to be cut flush with the nuts to allow the deck baseboard to slot into place.

All these items must be removed before the final finish is applied to the cabinet.

Finally, the self-adhesive rubber feet are stuck into position on rear and underside. The rear feet are necessary to protect the hinges and speaker sockets should the unit be put down whilst it is being carried around.

SPEAKER CABINETS

The speaker cabinets are made from 13 mm chipboard the rear panel being hardboard, see Fig. 7 for details.

The speaker cut-outs accept 8×5 in elliptioal speakers and are made using the same technique as described for the deck baseboard. All joints are glued and pinned, the rear panel being pinned only, to allow access. Once the baffle has been fixed, countersink and fill-in all holes.

Because some grille cloth is an open weave its a good idea to paint the front of the enclosure with a similar matt colour as the cloth.

At this stage the outer finish can be applied to the cabinets; the prototype was given several coats of matt black paint.

The grille cloth should be cut about 25 mm or so larger than the front of the enclosure, then stretched across and temporarily held down at the edges with drawing pins. The cloth can be permanently fixed down using a small staple gun. To mask the staples and edges of the cloth a length of right angled metallised self-
adhesive edging was fitted all round, mitreing the corners to give a neat appearance.
The speaker is fixed into place with $4 \times 15 \mathrm{~mm}$ long No. 8 round head wood screws. Solder the speaker leads on, and fit a cable staple to prevent any stress being applied to the speaker terminals. Cut a small slot at the bottom of the rear panel to allow the cable to come through, and secure the panel with short panel pins.
The enclosures may now be completed by fitting self-adhesive rubber feet.

FINISHING OFF

Prior to cleaning and lettering, the facia panel is removed by unsoldering the panel indicator wires and removing the headphone fixing nut and washer. Once off it can be rubbed down lightly with steel wool to give a brushed aluminium effect, then thoroughly washed with hot soapy water before lettering.
"Magic letters" sold by W. H. Smith were used on the prototype. They are simply rubbed down onto the aluminium, then the whole panel sprayed with clear lacquer for protection.

Finally, the deck baseboard is secured down with chrome finished screws and cups. I

JACK PIUA \& FANILY...

This circuit has been designed to give an audible warning when a car engine reaches a predetermined temperature. It was originally intended for use as an overheating alarm when towing a caravan but has proven equally useful in a number of other situations where overheating could occur. Trips at high speed, touring in hot countries and high altitude driving can also cause overheating in cars normally quite free from this problem.

If warned in time, the driver may simply ease off a little or stop for a short while to allow the engine to cool. Without such warning, water will be lost and the situation can become more serious.

Although most cars are fitted with a water temperature gauge, they do not give a positive signal in the event of overheating, so it is quite possible to miss the pointer creeping slowly into the red. An audible warning provides the answer; being high pitched rather than loud, it easily "carries" above engine noise.

The driver must always check that there is no actual reason for overheating such as a blocked radiator, leak or broken pump. This project has not been designed to cover-up poor maintenance!

POSITIVE OR NEGATIVE EARTH

The circuit is suitable for both positive and negative earth cars without modification.

The overheating alert is simple to construct, being designed around two cheap and readily available integrated circuits, IC1, a 741 Operational Amplifier and IC2, a 555 Timer. An enginemounted thermistor RTH1, "senses" the temperature.

The circuit is connected to the car's electrical system such that it will only operate with the ignition switched on so there is no drain from the battery when the car is at rest. Sounding or not, the current requirement is very low, around 5 mA .

CIRCUIT DESCRIPTION

The circuit works in the following way (see Fig. 1). As the temperature of the engine rises, the resistance of the RTHl falls. This component, together with R1, from a potential divider across the supply resulting in a voltage appearing at Pin 2 of the opamp ICl. This voltage will therefore fall as the temperature rises. VR1 forms a second potential divider which gives a reference voltage at Pin 3 of the ICl , this voltage dependant upon the setting of VR1. When the voltage at Pin 2 falls below that at Pin 3, ICl switches 'on' and the supply voltage appears at the output, Pin 6. This enables IC2, the 555 timer, wired as an astable multivibrator, which results in an audible tone from the loud-
speaker LS1. The temperature at which this happens is preset by suitable adjustment of VR1. The frequency of the alarm note is determined by the setting of VR2 and this may be adjusted for best effect at the end.

If the thermistor is not as specified, that is with a room temperature $\left(20^{\circ} \mathrm{C}\right)$ resistance of about $1 \mathrm{M} \Omega$ and about $50 \mathrm{k} \Omega$ at $100^{\circ} \mathrm{C}$, then R1 may need changing and the value should be approximately the thermistor resistance at $100^{\circ} \mathrm{C}$.

Slight variations in battery voltage will occur but these have no effect on the operation of the circuit. Rapid fluctuations from the charging circuit may result in a "warbling" note from the loudspeaker but this is of no consequence.

CIRCUIT BOARD

The circuit panel is built on a small piece of 0.1 inch matrix stripboard, 12 strips by 31 holes (see Fig. 2). In the prototype, the i.c.s. were soldered direct to the panel. This is acceptable where the constructor has confidence in the quality and speed of his soldering, but if there is some doubt 8 pin d.i.l. sockets should be used. Note that ICl is upside down with respect to IC2. This made for simpler construction in the prototype.

There are several places where the copper strips have to be cut and it is important not to miss the track breaks between the pins of the i.c.s. The best tool to use is a proper stripboard cutter but a small hand held twist drill makes a good substitute. Several wire links are required and these should be on the component side of the panel as shown.

Add the resistors, capacitors and potentiometers and finally wire the loudspeaker in with two flexible wires approximately 100 mm long.

Fig. 1. Circuit diagram of the Car Overheating Alarm.

Fig. 2. Layout of components on the stripboard and positions of track breaks on the underside view. Note that the ther mistor is connected remotely across RTH1 and OV wires.

View inside case showing the board assembly and speaker positions.

BENCH TESTING

When the circuit is complete and has been checked visually, it may be tested using a 9 volt battery. To do this, VR1 should be set fully anticlockwise and VR2 to approximately the mid-position. The thermistor and a 9 V battery should then be temporarily connected. A note may be heard from the loudspeaker, and if not, VR2 should be adjusted to the position where a shrill note is emitted. VR1 is then backed off to the point where the note is just silenced.

If the thermistor is now warmed slightly by holding it between the fingers or dipping the end in warm water, the tone should be heard once again. When the temperature falls it should switch off. These tests will confirm that all is well with the cir-
cuit and the panel may now be built into a suitable box.

CASE

Although a tobacco tin was used for the prototype, care must be taken when using a metal box to prevent short circuits. However, any suitably sized case of any material can be used.

A series of small holes, drilled in the base, form a "grill" for the loudspeaker which may then be secured in place using epoxy resin adhesive applied thinly around the rim. A hole should be drilled for a grommet through which the connections to the circuit board will pass. A 3-way terminal block should be secured to the underside for these wires (see Fig. 3).

COMPONENTS

Resistors R1 $47 \mathrm{k} \Omega$ R2 $22 \mathrm{k} \Omega$
All \ddagger W carbon $\pm 5 \%$
Capacitors See
C1, $20.01 \mu \mathrm{~F}$ polyester (2 off)
C3 $0.1 \mu \mathrm{~F}$ polyester

Semiconductors

IC1 741 operational amplifier IC2 555 timer

Miscellaneous

RTH1 GL16 bead thermistor, negative temperature coefficient, $1 \mathrm{M} \Omega @ 20^{\circ} \mathrm{C}$ and $50 \mathrm{k} \Omega$ @ $100^{\circ} \mathrm{C}$
VR1, 2 100k miniature horizontal preset (2 off)
LS1 $\quad 70-80 \Omega$ minature speaker, 57 mm dia.
0.1 inch matrix stripboard, 12 strips by 31 holes; case to suit: 3 way 5 A terminal block; 2 way 5A terminal block; 8 pin d.i.I. i.c. holder (2 off); grommet; 7/0•2 connecting wire; thin copper sheet approx $20 \times 60 \mathrm{~mm}$; epoxy resin adhesive: automotive type spade connectors; mounting hardware; 8BA screws, nuts and insulating stand-offs (2 off); p.t.f.e. sleeving for thermistor leads (approx 100 mm)

Approx cost Guidance only
£7
excluding

Two holes should be drilled very carefully in the circuit board and corresponding holes drilled in the case. These are to secure the panel using short stand-off insulators and $8 B A$ nuts and screws. The three wires from the circuit board should be passed through the grommet and connected to the terminal block and labelled $+12 \mathrm{~V}, 0 \mathrm{~V}$ and "RTH1" as shown in Fig. 3.

THERMISTOR

Next, the thermistor unit should be prepared. Thermistors are extremely delicate components and could not possibly be used in an unprotected state. Although some form of protection is essential, heat must readily pass to the thermistor.

The method shown in Fig. 4 proved effective in the prototype. A piece of thin copper sheet was cut and bent into the form of a "P" clip, the cavity for the thermistor was formed by rolling the sheet around a thick nail. The thermistor leads must then be sleeved with p.t.f.e. insulation and the thermistor encapsulated in epoxy resin adhesive in the cavity. A 2 -way terminal block should be glued on top of the clip and the thermistor connections made to it.

Fig. 3. Underside view of case showing speaker "grill" and terminal block.

The prototype thermistor assembly unit was secured to the engine using epoxy resin adhesive. A flat, horizontal surface is ideal and very thorough cleaning of the contaot area is essential and slight roughening of the surfaces helps.

The clip must make good contact with the engine for efficient transfer of heat and it must be situated away from direct sources of heat like the exhaust manifold and also away from cool, moving air. It may require several experiments to find the best position. (A clip attached with adhesive may be removed by careful use of a penknife blade.) Obstinate cases will demand a thermistor unit which is "boxed in" over the top surface with fibreglass insulation. It is also necessary to keep the thermistor unit dry.

INSTALLATION

With the thermistor in position, temporarily at least, two lengths of stranded wire should be run from it to the main unit inside the car. For the time being, the main unit should be placed in a temporary position so that a passenger can adjust VR1 and VR2 whilst driving along. The positive $(+12 \mathrm{~V})$ connection on the main unit should be taken to a fuse which is "live" only when the ignition is switched on. For cars having a positive earth system this will be the negative (0 V) connection.
A 12 V test lamp with one side to chassis will locate a suitable fuse. Ensure that the light goes "off" when the fuse is removed thus confirming that the correct side of the fuse is being used. The negative connection on the unit should be run to an "earth" point (the positive connection

Fig. 4. Thermistor mounting assembly.
on positive earth cars). The leads from the thermistor unit will be connected across RTH1 and the negative (OV) connection regardless of the polarity of the cars electrical system.

IN-CAR TESTING

To test the circuit, the ignition should be switched on and VR1 set fully anticlockwise. A tone should be heard and VR2 adjusted as necessary to give a high-pitched whistle. VR1 should now be adjusted clockwise to silence the alarm and the car driven to bring the engine up to full operating temperature.. VRl should be advanced at intervals to keep the alarm just "off".

If the sound has a tendency to cut out when the engine is revved up this is usually cured by raising the pitch of the note by means of VR2. If the operation of the circuit is erratic and seems to depend on the speed of the car rather than the temperature this indicates that the siting of the thermistor unit is not good enough and more attention must be given to prevent the unit from being cooled by the car slipstream.

The final settings for VR1 and VR2 can only be found after a proper trial run. VR1 should then be adjusted so that the tone is just "off". Remember, DO NOT attempt to adjust VR1 and VR2 whilst driving along. Get a passenger to assist you.

Electroneer

Here we are again at the start of a new year and with our eternal optimism expecting it to be better than the last. I go along with that sentiment, as Robert Louis Stevenson said, "It is better to travel hopefully than to arrive", and although he was talking about a journey, I don't see why it should not equally apply to time.

I would like to thank all those kind readers who wrote to me suggesting a word for an Electronic Engineer. The consensus seems to be "Electroneer" but while it seems a logical conclusion, to my rather whimsical way of viewing things it conjures up a vision of a man with ears made of electronsl-They probably are anyway.

1 do agree it is difficult to think of something that rolls off the tongue and I haven't come up with anything better. Here are some of the suggested words:
From Mrs. Doreen Tomlin of Bracknell. Berks., "Dynamician", Mr. Stephen J. Parker of Glossop. Derbyshire, "Electronist", Mr. W. C. Hobson of Humberside and Mr. Albert H. Scott of Jersey, "Elec. troneer".

Anxious to Please

"He who pays the Piper calls the tune". and never has that been so true as today. I think the day of the vast Electronic store,
run by a Tycoon who changes his Rolls everytime the ashtrays are full, is disappearing, and this has been replaced by a larger number of smaller outfits.

From the customers point of view this may be a step in the right direction. In case of complaints it is easier to get to the man at the top and be certain of getting some speedy action.
Most of us are enthusiasts and anxious to please, but we would ask that you help us to help you, by being clear in your requests. Remember that unless you are ordering a specific item from a catalogue, where it has an identifying number, there are ceitain data we must know, such as voltage, current, wattage, capacity, inductance, impedance, according to what the item is you are ordering.

You may also required the item not to exceed a certain physical size. If that is the case, please tell us. Only today I had a letter from a customer asking me to send him a mains transformer, without telling me what output current he required, an electrolytic capacitor, without stating the voltage, and would I also send him two general purpose transistors with a medium gain. It must also be said that when a customer sends in a long list of miscel. laneous items which he wants us to work out and price, there is always the sneaking suspicion that he is giving us half an hours work, when we are already over-
loaded, in order to save himself the cost of a catalogue.

Match This

My last little grumble, is an error of which 1 am sure the true electronic con. structor is not guilty. It is the chap who walks in with some odd part of a foreign set, which is broken and asks us if we have one like it. It is almost like going into an ironmongers when you want some spare part for your car. Having said that, I must redress the balance by saying (and I know all my colleagues would agree with me) that our customers are among the very best and always appreciative of any help we are able to give them.

In Brief

Citizen Band Radio is officially with us, and although I haven't dabbled in it yet, i think it will do much good, pa, ticularly in bringing companionship and comfort to the old, the sick and the lonely, and more important still, help if they are in trouble.

I was very sorry to have missed the Breadboard Exhibition this year, but I don't think I was entirely to blame. I expected to see some publicity for it a few weeks before it was scheduled, but none appeared.

By Dave Barrington

Circuit Board Holder

We are always on the look out for any "gadgets" or items that help to make the task of construction that much easier.

In this respect, we have already drawn readers attention to the excellent Minibench work holder with flexible arms from Absonglen. This is now joined by another form of circuit board holder manufactured by Carlton Nichol.

Two models are available. The CNC6, which is probably more suited to our kind of work, and the CNC9, able to accept Euroboard size boards. Both are constructed in aluminium and plated steel and allow rotation of circuit boards through 360 degrees, with locking in any position.

The CNC6 will take boards up to $254 \mathrm{~mm} \times 178 \mathrm{~mm}(10 \times 7 \mathrm{in})$. The boards are held by spring loaded "jaws" and width adjustment is by lockable metal rods. The CNC9 will take boards up to $203 \mathrm{~mm} \times 203 \mathrm{~mm}$ (8in $\times 8 \mathrm{in}$) and are held in position by sliding Vee clamps.

An anti-static foam pad is also available as an optional extra to allow the insertion of a number of components before rotating the p.c.b. for soldering. The pad, which is on a backing plate, clips onto the rotating arms of the board holder.
The CNC6 costs $£ 13 \cdot 80$ and the CNC9 £15.95. Whilst the anti-static foam pad

The CNC6 Circuit board holder from Carlton Nichol
costs £9.20. For more details contact Carlton Nichol \& Co. Ltd., Dept EE, Goldkey Industrial Estate, Kelvedon, Essex.

Microboard

We are sure that no one doubts the versatility of stripboard, but there are times when another form of component mounting board would be most welcome. This is particularly evident when dealing with multi-pin i.c. devices.
Recognising this possible gap, Vero Electronics have taken a leaf out of the industrial market and decided to launch their first Euroboard size Microboard onto the retail and amateur constructor markets.

Made from s.r.b.p. material, the Microboards are available in two sizes, $160 \mathrm{~mm} \times 100 \mathrm{~mm}$ and $160 \mathrm{~mm} \times 233 \mathrm{~mm}$; priced $£ 3.47$ and $£ 5.47$ respectively. The boards are also compatible with indirect connectors and international card frame systems.

It is claimed that the boards will accept any integrated circuit package, and allow high component packing density. On the component side, each board is printed with an "island" pattern for ease of wiring and is suitable for both solder and wire wrap applications.

According to Mike Humphrey, Vero's Retail Sales Manager, "the development of a board specifically for the hobby market is an important step for the company. More and more, industry has been moving towards the use of Eurocard sized microboards."
"For the hobbyist, the availability of this microboard pattern in Eurocard format increases still further access to our wide range of industrial quality products."

The Microboards are available from Vero's usual retail outlets, or direct from Vero Electronics Ltd., Dept EE, Industrial Estate, Chandler's Ford, Hants, SO5 3ZR.

CONSTRUCTIONAL PROJECTS

Stereo Record Player

The record deck chosen for the Stereo Record Player is the BSR P207 with a SC12H ceramic cartridge. This was selected because of its high output, typically 1 V peak-to-peak in the authors model.

The system has been designed around this cartridge and to obtain similar performance readers are advised to keep to the components specified. To date, the only source we have been able to locate for the deck and cartridge is from Radio

Components Specialists. We understand that some local hi fi shops may be able to help.

The stereo jack socket for the head phone input is a multi-contact type, with internal switch, and may be difficult to locate. The one used in our unit was obtained from a Tandy store and is listed as order number 274-277.

Practically any general purpose 8 ohm speakers will suffice for the enclosures. The cut-out for the speaker used will have to be tailored to suit. Of course, one of the better quality speaker kits and readymade enclosures, from such advertisers as RT-VC and B.K. Electronics would enhance the final result.

For those constructing their own en closures, the speaker grille cloth may be obtained from Home Radio. The plastic angled edging for the cabinet should be available from the local hardware or DIY shop.

Cine Interval Timer \& Frame Counter

Only a couple of items need further comment when purchasing components for the Cine Interval Timer and Frame Counter.

The prototype unit uses 500 m A general purpose plastic encapsulated transistors. However, we feel the BFY50's would be better suited here.
The designation " E " in the type number for the integrated circuits refers to a "buffered" output and this type should be used. It is quite possible that other equivalent i.c.s will work in this circuit, but we have not tested them in the prototype and cannot vouch that they will work.
Provision for a relay option has been included for a remote single-frame opera. tion. Almost any 9 V relay with a coil resistance from approximately 185 ohms and a set of normal open contacts will be suitable. The author used a 9V 4100hm type.

Medium Wave Radio

The coils called for in the Medium Wave Radio are Denco types and these are available direct from Denco Ltd, Dept EE, 355 Old Road, Clacton-on-Sea, Essex CO15 3RH.
The Jackson 00 gang 208/176pF tuning capacitor is available from Home Radio for the sum of $£ 4.40$ plus VAT. They also supply suitable trimmer capacitors and the MT31A/3 or the MT31A/12 can be used.
We understand that Watford Electronics are able to supply all the Denco coils, compression trimmers and the Jackson tuning capacitor.

Automatic Garage Door

The final article for the Automatic Garage Door deals with the mechanical arrangements and setting-up.

The motor used in the designer's set-up was a Fracmo type, currently stocked by Service Trading Co, (Dept EE, 57, Bridgman Road, Chiswick, London W4 5BB), with an output shaft running at approximately 56 r.p.m. and a more than adequate torque of $50 \mathrm{lbs} / \mathrm{in}$. We have been informed that they have only a limited supply, but are able to supply a near equivalent type in their Parvalux range with 42 or 30 r.p.m. at 50lbs/in. torque.
Most of the hardware for the door gear should be available from local builders merchants or hardware stores.

W/hen people speak of "a transistor", the bipolar junction transistor is the sort they usually mean. This is the kind which is used in most circuits, except in integrated circuits where the mOSFET is the dominant type.

It is easy to understand how f.e.t.s work, which is why we began this course by studying them. Bipolar transistors are harder to understand, but they are much easier to manufacture, so they have been the most widely used type until recently.

Fig. 5.1. Circuit symbols for the two types of bipolar transistors.

Field effect transistors belong to the group of transistors known as unipolar transistors. This name means that only one kind of charge carrier occurs in it. We have n-channel f.e.t.s in which charge is carried by electrons. In p-channel f.e.t.s charge is carried by holes.
Bipolar transistors use both holes and electrons in the same transistor. The action of a f.e.t. depends on the effect of an electrical field. The bipolar junction transistor depends on the action of a

Fig. 5.2. Structure of an npn transistor (diagrammatic and not to scale).

$p n$-junction. The $p n$-junction was described in Part 3

From now on we will use the word "transistor" to mean "bipolar junction transistor", so saving a lot of space. You will already have noticed the symbol for the transistor appearing in circuit diagrams on the pages of this magazine. You may have noticed that there are two types, npn and $p n p$, see Fig. 5.1.

Transistors can be made from silicon or germanium, though the silicon ones are far more popular today.

A transistor is a three-layered device. An npn silicon transistor consists of a layer of p-type silicon sandwiched between two layers of n-type silicon. The layers are named as shown in Fig. 5.2.

HOW AN NPN TRANSISTOR WORKS

The transistor has two pn-junctions. If the transistor is connected as in Fig. 5.3a, the collector-base (c/b) junction is reversebiased, so we would expect that it is impossible for a current to flow from collector to base and on to the emitter. If we apply a slight positive potential to the base, the base-emitter junction (b/e) becomes forward-biased (Fig. 5.3b). If the potential is greater than the forward voltage drop (0.6 V), a current flows from base to emitter.
Let us look at this current more closely, for it is the b/e junction which is the important one. In Fig. 5.4 we see that the current consists of:
(1) electrons flowing out of the base, creating
(2) holes which flow to the b/e junction, where they are filled by
(3) electrons arriving from the external circuit and flowing through the emitter to the b/e junction.
Now we can see the reason for the calling them bipolar transistors.

The second important point is that the base layer is exceedingly thin (much thinner than shown in the diagrams. As electrons flow through the emitter to the base they come very close to the collector.

Fig. 5.5. Circuit for demonstrating a light operated transistor switch.

The potential of the collector region is more str ongly positive than that of the base. It attrac ts electrons so strongly that they are pulle d across the depletion region at the c / b junc tion, in spite of the fact that it is reverse-biased.

Fig. 5.4. The happenings in the base region of a transistor.

Only about I per cent of the electrons are used to combine with holes in the base. The remaining 99 per cent pass into the collector and then flow out of the transistor. In other words, the collector current (I_{c}) is around 99 times greater than the base current (I_{B})
I_{C} depends on I_{B} bringing electrons to the base layer, so I_{c} flows only when I_{B} is flowing. By turning the small J_{B} on or off we can control the much larger I_{c}. The transistor can be used as a switch.
Secondly, by varying the amount of the small I_{B} we can vary the amount of the large $/{ }_{c}$. The transistor can be used as an amplifier.
A pnp transistor works in a similar way except that polarities are reversed.

EXPERIMENT 5.1

A transistor switch
In Fig. 5.5, PCCI is a light-dependent resistor (l.d.r.). This is a piece of semiconducting material such as cadmium sulphide. When light falls on it, electrons in the atoms become excited and some escape from their orbits. They become charge carriers, allowing current to flow more easily through the material. The resistance of PCCl decreases when the amount of light falling on it is increased.

Here, PCCI and VRI act as a potential divider. In the dark, the resistance of PCCI is high, so the potential at X (and at the base of TR1) is very low. In the light, the resistance of PCCI is reduced so the potential at X rises. We can adjust VR1 so that the potential at X is $j u s t$ less than 0.6 V . This is just not enough to switch TRI on.

Set up the components on the Verobloc as shown in Fig. 5.6. Make sure that PCCI is not shaded. Turn VRI until D1 goes out; then turn VRI slowly back until DI just comes on again. The potential at X is now a little over 0.6 V . Place your hand or a thick cloth over the I.d.r. What happens to DI? TRI switches DI on or off according to the potential applied to its base.

EXPERIMENT 5.2
 A current amplifier

This experiment illustrates the action of the transistor as a current amplifier, see the circuit in Fig. 5.7. I_{B} flows through the high-value resistor, R4. We use a meter to measure the corresponding $/{ }_{c}$.
The meter belonging to Minilab has a f.s.d. of $100 \mu \mathrm{~A}$. To let it measure larger currents we put a resistor in parallel with

Fig. 5.7. The circuit for investigating the action of a current amplifier.

Fig. 5.8. Layout and interwiring details for the circuit in Fig. 5.7.

it (R5 in Fig. 5.7). The majority of the current by-passes the meter. If the resistance of the coil of the meter is $4 \mathrm{k} \Omega$ (as in the recommended meter), the p.d. across the coil is $\left(4 \times 10 \Omega^{2}\right) \times\left(100 \times 10^{-6} \mu \mathrm{~N}\right)=$ 0.4 V , when the current is $100 \mu \mathrm{~A}$.

When a 50Ω resistor has a p.d. of 0.4 V put across it, the current through it is $0.4 \mathrm{~V} / 50 \Omega=8 \times 10^{-3} \mathrm{~A}=8000 \mu \mathrm{~A}$. So the current flowing through both meter and resistor is $8000+100=8100 \mu \mathrm{~A}$. (To round it down to $8000 \mu \mathrm{~A}$ is near enough.)

This means that a reading of $100 \mu \mathrm{~A}$ on the meter indicates a total current of $8000 \mu \mathrm{~A}$. To measure the total current, take the scale reading and multiply it by 80 .

For those readers having a meter other than the $4 \mathrm{k} \Omega$ type, a suitable value needs to be derived for R5.

To give approximately the same multiplication factor as above, divide the internal resistance of your meter by 80 . Choose the nearest preferred value to this. Next divide the meter internal resistance by the preferred value to give the required factor.

For example, if the internal resistance is 1100 ohms, dividing by 80 gives 13.75 . Nearest preferred value is 15 . Divide 1100 by 15 to give the factor which here is $73 \cdot 3$. Thus all meter readings must be multiplied by 73.3 to give I_{C}.

In the experimental layout shown in Fig. 5.8 we use two 100Ω resistors in parallel to give the equivalent of 50Ω. Start with a $1 \mathrm{M} \Omega$ resistor for R4.

The base of TR1 is at $0.6 \mathrm{~V}(=$ forward voltage drop), so there is a p.d. of 5.4 V across R4. We can calculate I_{B} as 5.4 V / $\left(1 \times 10^{6} \Omega\right)=5.4 \mu \mathrm{~A}$. What is the collector current? Maybe it is too small to read.

Try various resistor values for R4, calculate I_{B} and measure I_{c}. To help you, Table 5.1 has two sets of figures filled in, though yours may be different depending on the transistor used.

Table 5.1: Results of Experiment 5.2

$\mathbf{R 4}$ (ohms)	$I_{s} /(\Omega A)$	$I_{c} /(\Omega A)$	$I_{c} / /_{8}$
1 M			
470 k			
20 k			
220 k	25	3500	140
150 k			
100 k	54	7700	143

We work out the figures in the last column to tell us how many times $I_{\mathbf{c}}$ is greater than J_{B}. This is called the d.c. current gain of the transistor, symbol $h_{\text {pe }}$.

$$
\text { d.c. current gain, } h_{\mathrm{Fz}}=\frac{I_{\mathrm{c}}}{I_{\mathrm{B}}}
$$

The d.c. current gain of the author's transistor was about 140 . What is the gain of yours?
Gain can be measured in another way which is slightly different. As I_{B} is increased from $25 \mu \mathrm{~A}$ to $54 \mu \mathrm{~A}$, I_{c} increases from $3500 \mu \mathrm{~A}$ to $7700 \mu \mathrm{~A}$. Increasing I_{B} by $29 \mu \mathrm{~A}$ brings about an increase of $4200 \mu \mathrm{~A}$ in I_{C}. We calculate:
Small signal current gain, $h_{\text {le }}=\frac{\text { change in } I_{\mathrm{C}}}{\text { change in } I_{\mathrm{B}}}$
For the author's transistor, $h_{\text {te }}=$ $4200 / 29=145$. What was $h_{\text {pe }}$ for your transistor.

Transistors of the same type may vary in gain. Transistors of different types vary even more widely (from 15 to 1000 or more), depending on their design.

EXPERIMENT 5.3
 A simple audio amplifier

In Fig. 5.9, I_{c} flows through R5. As I_{c} varies, the p.d. across R5 varies in proportion. Variations in I_{B} result in large variation of voltage at point X.

A steady base current of $20 \mu \mathrm{~A}$ flows through R4. This is the bias current. If $h_{\text {PE }}$ is $100, I_{\mathrm{C}}$ is $2000 \mu \mathrm{~A}$. The potential across R5 is $1500 \Omega \times 2000 \mu \mathrm{~A}=3000000 \mu \mathrm{~V}=$ 3V. The potential at X is exactly midway between 0 V and 6 V , allowing it to swing by equal amounts in either direction.

The crystal microphone generates varying small voltages when energised by sound. This causes a varying potential to appear at capacitor C2 (more about capacitors next month).

A small additional base current flows to or from C2. It varies in size and direction according to the waveform of sound received by the microphone. It adds to or subtracts varying amounts from the bias current.

The resulting I_{B} models the waveform of the original sound. Consequently, the changes of voltage at X also model the original sound, but the changes are large enough to power the loudspeaker, making it emit a sound loud enough to be heard.

Set up the circuit on the Verobloc as in Fig. 5.10, but do not put in the capacitors yet. Use the meter to measure the voltage at X (location $L 15$). If necessary change R 4 for a resistor of lower or higher value to make the voltage as close as possible to 3 V , for if the voltage is too high or too low, it will not be able to swing equally in either direction and the resulting waveform will be distorted.

Now insert the capacitors to couple the microphone, MICl and loudspeaker, LSI to the amplifier. Put your ear close to LSI and tap the microphone with a pencil. You should be able to hear the sound distinctly.

To get a better effect, you can use a pair of long wires (ordinary lighting flex will do) and place the microphone in another room. Ask a friend to speak into the microphone while you listen at the loudspeaker. The amount of sound energy actually striking the microphone is not large so, even with a gain of 100 , we would not expect a large output. A more powerful amplifier will be described later in the series.

The amplification of this circuit depends entirely on the value of $h_{\text {lee }}$ which varies a lot from transistor to transistor. If $h_{\text {te }}$ is very high, I_{c} will be high, making the voltage at X swing far too close to 0 V , causing great distortion. A way around this is to connect the bias resistor between point X and point Y. Since X should normally be at 3 V , we reduce R4 to half its normal value. Alter your circuit to bias the amplifier in this way. (Remove the $270 \mathrm{k} \Omega$ resistor and place $150 \mathrm{k} \Omega$ between X and Y $G 16$ to $L 15$.)

TEACH-IN 82

COMPONENTS IDENTIFIED

LOUDSPEAKER

EXPERIMENT 5.4

Fig. 5.11. A stabilised audio amplifier.

Fig. 5.12. The layout and interwiring for the circuit in Fig. 5.11.

EXPERIMENT 5.4
 A stabilised amplifier

Fig. 5.11 shows another way of biasing the transistor. R4 and R5 form a potential divider, providing a fixed potential of 1.875 V at the base of TR1. The emitter must therefore be at $(1.875-0.6) \mathrm{V}=$ $1 \cdot 275 \mathrm{~V}$. The emitter current $\left(I_{\mathrm{B}}\right)$ through R7 must therefore be $1 \cdot 275 \mathrm{~V} / 560 \Omega=$ $0.0023 \mathrm{~A}=2300 \mu \mathrm{~A}$.
Since I_{B} is so small compared with I_{C} we can say that $I_{\mathrm{C}}=I_{\mathrm{E}}=2300 \mu \mathrm{~A}$. This makes the voltage drop across R5 equal to 3.45 V , which is much the same as in the previous amplifier. We could make it 3 V by varying the ratio between R4 and R5.
Note that we have calculated I_{C} without $u s i n g h_{\mathrm{FE}}$. Gain does not depend on h_{FE} in this circuit. It depends only on R4, R5 and R7. Amplification is independent of
variations between transistors, or the effects of changes of temperature which also affect h_{FE} considerably.

Build this amplifier up on the Verobloc as shown in Fig. 5.12. Measure the voltages at the three terminals of TR1.

This amplifier has a capacitor (C4) which was not present in the previous one. Remove C4; does the amplifier work now? Obviously C4 is very important. It is known as the by-pass capacitor. As the voltage from the microphone rises, base potential rises and I_{B} is increased. Increasing I_{B} means increasing I_{C} and I_{E}. If I_{E} increases, this increases the p.d. across R7. The emitter potential rises.

If a rise in base potential causes a rise in emitter potential, the two rises tend to cancel out. There is less increase in I_{B} than might be expected. The change in I_{C} is correspondingly reduced, so little sound comes from the speaker.

QUESTION TIME

5.1. What do we mean by a bipolar transistor?
5.2. What do we mean by a junction transistor?
5.3. How would the circuit of Fig. 5.5 act if you interchanged PCC1 with VR1?
5.4. If a transistor is receiving base current of $30 \mu \mathrm{~A}$ and its d.c. current gain is 150 , what is its collector current?
5.5. $h_{\text {fe }}$ and $h_{\text {f }}$ measure different things. What is the essential difference between them?
5.6. Fig. 5.13 shows a single stage amplifier. If the base potential is increased by 0.1 V . what is the change in emitter potential?

Fig. 5.13
5.7. Can you think how the circuit above could be useful? (Hint: remember f.e.t.s?)
5.8. A transistor in the circuit of Fig. 5.7 has $h_{10}=50$. When $I_{B}=20 \mu \mathrm{~A}, \mathrm{c}=1 \mathrm{~mA}$. If $/ \mathrm{B}$ is increased to $24 \mu \mathrm{~A}$, what does Ic become?
5.9. Fig. 5.14 shows a circuit using transistors as switches. Wire X can be touched to points Y or Z. Can you work out what happens if X is touched to Y. to Z_{1} to Y_{1} to Z_{1}, and so on, alternately? (Hint: you could try setting it out on Minilab to see what it does.)

Fig. 5.14
5.10. What is the circuit in Fig. 5.13 called? (Hint: see Part 4.)

C4 prevents rapid changes of potential at the emitter. As emitter potential tries to rise or fall, a large amount of current is required to alter the charge on the capacitor, so the change of potential is much less than it might have been without the capacitor. To put it another way, C4 holds the emitter potential steady. The alternating potentials due to the audio signals are filtered out, or "by-passed" to the OV line. You could try the effect of using capacitors of other values for C 4 .

To be continued

II IIERT TOONTHS I5SUE

AND FULL DETAILS OF TWO USEFUL
INSTRUMENTS TAILOR-MADE FOR THIS
BOARD

A logical way to keep tabs on people. For the larger family, or any residential premises with multi occupants.

CITIZEN5' BRIDD RRDIO

A special feature including a survey of equipment on the U.K. market.

cuItar tuner

This handy self-contained unit reproduces the six notes of guitar strings.

MEDIUM WAVE RADIO WITH PRESETTUNING FOR THREE STATIONS

BY F.G.RAYER

This unit provides pre-set tuning for three stations, plus manual tuning of the MW band, and is for personal headphone reception when used alone, or will feed an audio amplifier for loudspeaker listening. A simplified superhet circuit is employed, and this gives greater selectivity and sensitivity than t.r.f. type circuits. Illuminated l.e.d.s indicate selection of preset or manual tuning.

TUNING ARRANGEMENTS

Signals are picked up by the ferrite rod aerial. This has a coil L1 which is tuned by the selected capacitor.

Switch Slb selects the required means of tuning the ferrite rod winding L1. With manual tuning, Cl is in use. Position 2 of S1b selects the combination C3 and C4. Position 3 selects C 5 and C6, while position 4 brings into use C 7 and C 8 .

Mounted over L1 is a smaller coil L2. This is the base coupling winding for TR1, the mixer-oscillator.

L3 is the oscillator coil. Associated with it are two smaller coils which couple L3 to the emitter and collector circuits of TR1, respectively.

Switch S1c selects the required tuning capacitors for $\mathrm{L3}$ as follows: manual tuning: Cl2 (ganged with C1); Position 2: C14, C15; Position 3: C16, C17; Position 4: C18, C19. Fine tuning or circuit alignment is provided by the trimmer capacitors connected across each main tuning capacitor.

The capacitor values used provide for normal MW coverage with manual tuning, and three pre-set stations: Radio 2693 kHz ; Radio 31215 kHz ; and Radio 4200 kHz programmes.
If $\mathrm{Cl}, \mathrm{C} 12$ is left tuned to Radio 1, this allows instant selection of Radio $1,2,3$ or 4 at the turn of the switch

Sl. An l.e.d. above the tuning control indicates manual tuning, with red, yellow and green l.e.d.s for 2, 3 and 4. These l.e.d.s are selected by Sla.

Other frequencies can be provided for as described later.

I.F. AMPLIFIER

The intermediate frequency (i.f.) amplifier uses the double-tuned transformer IFT1, and integrated circuit ICl. The latter incorporates amplifier, automatic volume control and detec-

COMPONENTS

Resistors

R1	680Ω	
R2	$18 \mathrm{k} \Omega$	Se
R3	$15 \mathrm{k} \Omega$	
R4	$2 \cdot 7 \mathrm{k} \Omega$	
R5	$100 \mathrm{k} \Omega$	
R6	470Ω	
R7	680Ω	
R8	$1.8 \mathrm{k} \Omega$	
R9	$1.8 \mathrm{M} \Omega$	
R10	$5 \cdot 6 \mathrm{k} \Omega$	

Potentiometers
VR1 $22 \mathrm{k} \Omega \mathrm{log}$. with switch (S2)
VR2 $1 \mathrm{k} \Omega$ miniature vertical preset
Capacitors
C1 208 pF air spaced variable
C12 176pF air spaced variable
C2 30pF trimmer
C13 30pF trimmer
Jackson 00 gang., 208/176 slow motion with trimmers
C3 160 pF silvered micro
C4 60pF trimmer*
C5 60 pF trimmer*
C6 22 pF silvered micro
C7 2 nF silvered micro
C8 60pF trimmer*
C9 $10 \mu \mathrm{~F}$ ceramic or polyester
C10 $20 \mu \mathrm{~F}$ ceramic or polyester
C11 180pF polystyrene
C14 47pF polystyrene
C15 60p F trimmer*
C16 60pF trimmer*
C17 12pF polystyrene
C18 220pF polystyrene

C19 60pF trimmer*
C20 $10 \mu \mathrm{~F}$ ceramic or polyester
C21 $0.1 \mu \mathrm{~F}$ polyester
C22 $0.47 \mu \mathrm{~F}$ polyester
C23 $0.47 \mu \mathrm{~F}$ polyester
C24 $10 \mu \mathrm{~F} 10 \mathrm{~V}$ elect.
C25 $1 \mu \mathrm{~F} 10 \mathrm{~V}$ elect.
C26 $100 \mu \mathrm{~F} 10 \mathrm{~V}$ elect.

* compression type; 30p F, 40p F, or 50 pF (max.) will suit.
Inductors
L1, L2 5 in medium wave ferrite rod (Denco MW5 FR)
L3 M.W. oscillator coil (Denco TOC1)
1 FT1 i.f. transformer (Denco IFT18/465)
Semiconductors
TR1 BF195 silicon n.p.n.
TR2 BC147 silicon n.p.n.
IC1 ZN414 i.f. amplifier and detector
D1.4 l.e.d. 5 mm dia. (4 off-red, green, yellow)
Miscellaneous
B1.4 1.5 V cell HP7 (4 off)
S1 3 pole 4 way rotary switch
S2 single pole on/off switch (part of VR1)
SK1 jack socket, 3.5 mm
Verobon $75 \cdot 3009 \mathrm{D}$ or similar case, aluminium 5×3 3in. Perforated s.r.p.b. 13×26 holes 0.15 in matrix. 3 knobs. Battery holder (for $4 \times$ HP7) and connector.
 good results.

A.F. SECTION

Audio signals are fed via C22 to the audio gain control VR1, and so to the single transistor amplifier TR2. The collector of TR2 is coupled via C25 to an output socket SK1. This stage provides more than adequate volume for headphones. Alternatively the output may be fed to an external audio amplifier via a screened lead.

POWER SUPPLY

Total current drain of the receiver is about 7 mA from a 6 V supply. This is readily provided by four HP7 type cells series connected in a holder. These will have a very long life.

If the receiver is always going to be used as a tuner, the supply may if wished be drawn from the amplifier. It is then necessary to connect a

6.1V Zener diode across C26 and to place a series resistor in the positive supply line. With a 400 mW Zener, this resistor may be 150 ohm for 9 V , 270 ohm for 12 V , and 390 ohm for 15 V to 16 V . A negative power connection must also be provided of course.

HOW IT WORKS

The principle of superhet reception is explained here in simple terms. Reference should be made to the block diagram above, and also to the main circuit diagram given in Fig. 1.

Transistor TR1 is a self-oscillating mixer, or frequency changer. Its purpose is to change the carrier frequency of any station selected by the aerial circuit, to a fixed frequency. The latter frequency can then pass to the section of the receiver having fixed tuning, which is called the intermediate frequency (i.f.) amplifier.
When two different frequencies are present at a mixer or frequency changer, other frequencies are produced. Here, one frequency is that of the wanted signal, obtained from the ferrite aerial L1. The other frequency is produced by the oscillator coil L3, coupled to TR1 emitter and collector by windings provided for this purpose. In the present receiver, the important new frequency obtained from TR1 collector corresponds to the difference in frequency between aerial and oscillator. Examples will make this clear.
Suppose the aerial circuit is tuned to 200 kHz , and the oscillator circuit to 665 kHz . The difference is 465 kHz . So output at 465 kHz is obtained from TR1 collector. If now the aerial circuit were tuned to, say, $1,000 \mathrm{kHz}$, and the oscillator circuit tuned to $1,465 \mathrm{kHz}$, the difference is still 465 kHz , and the output from TR1 is still at 465 kHz . In the same way, the aerial circuit can be tuned to any wanted frequency, and provided the oscillator is always tuned 465 kHz higher, the output of TR1 will always be at 465 kHz .

With manual tuning, using a two-gang variable capacitor, if the aerial circuit tunes $1,500 \mathrm{kHz}$ to 600 kHz , then the oscillator circuit needs to tune $1,965 \mathrm{kHz}$ to $1,065 \mathrm{kHz}$. That is, 465 kHz higher, through the band. This is arranged as accurately as possible by a suitable choice of inductance and capacitor values.
So when all signals tuned in are changed to 465 kHz , they can pass to the intermediate frequency amplifier. This does not need to have variable tuning, as it is permanently adjusted to operate at 465 kHz . This allows additional tuned circuits, for better selectivity, without the difficulties which would be present if several variably tuned circuits were to be used instead.

All stations received are amplified at 465 kHz , and the detector or demodulator follows, to make available the audio signal or programme.

CIRCUIT BOARD

Components are assembled on a piece of perforated s.r.p.b. On the prototype this has 13×26 holes, $0 \cdot 15$ in matrix, see Fig. 2. Make sure the board is large enough for the trimmers and other parts actually used.

Drill holes for L3 and IFT1. Note that pins 1-2 and 5-6 are slightly closer to each other. This arrangement identifies the connections. Also drill holes for the can tags, and under the middle of IFTl, to give access to the bottom core.

Fig. 3 shows point to point wiring under the board. Two tags MC are fitted with 1_{2} in 6BA bolts at the corners of the board. These bolts eventually secure the board to the flange of the panel bracket.

Earth the metal cans, top plate tags of trimmers, and other components as shown, to a wire run between the tags. In most places the wire ends of components will be long enough to reach the various points. Elsewhere, use thin wire, with sleeving where needed.

The ferrite rod fits about $1_{2}{ }_{2}$ in above the board. It passes through holes in Paxolin (s.r.b.p.) strips, which are bolted to small angle brackets, see Fig. 2.

Position VR2 so that it can be adjusted from the back.

BEHIND THE PANEL

The front panel is metal, $6_{4}^{3} \times 3^{1}{ }_{8}$ in ($172 \times 80 \mathrm{~mm}$) for the case used.

A bracket has to be made from a piece of aluminium about $5 \times 3^{3}{ }_{4} \mathrm{in}$. This is bent at $1^{3} 4$ in along one long edge, to take VR1, C1, C12 and S1, as in Fig. 4. The bush nuts and screws for $\mathrm{Cl}, \mathrm{Cl} 2$ hold the front panel and bracket together, and the circuit board is mounted on the horizontal flange, as previously described, clear of $\mathrm{Cl}, \mathrm{Cl} 2$.

The remaining wiring can then be carried out. Take a lead from $\mathrm{Cl}, \mathrm{Cl2}$ frame tag down to the board MC line wire. This lead supports C14, C17 and C18, see Fig. 4. The aerial section of the switch SIA can be wired, and then the oscillator section S1B, followed by the l.e.d. section S1C. Cl is the variable section nearer the panel, with most plates.

Fig. 3. Underside of the circuit board. Bare wire may be used for the links, except where wires cross, then insulated wire must be used as illustrated.

Fig. 4. Rear view of the front panel. The circuit board is secured to the flange of the bracket by two 6BA bolts (these are shown in Fig. 2 and Fig. 3).

The specified ganged tuning capacitor is provided with trimmers. These are designated C2 and C13. If a ganged tuning capacitor without trimmers is used, separate trimmers should be fitted.

Connections to VRI and the output socket are made as shown. Check the socket is not wired so that output is shorted.

VR2 ADJUSTMENT

Initially, VR2 can be set so that a high resistance meter shows about 1.3 V at the side of positive C24. Subsequently, set VR2 for best results. Too low a voltage will reduce sensitivity, while too high a voltage will cause whistles or oscillation. The setting is not very critical.

LETTERS

Something for Everyone

Looking back in previous issues of Everyday Electronics, I happened to read Letters on page 130 of February 1981 issue.

The first two letters were from fellow Aussies. I am ashamed for them and hope you "Poms" don't think we are all as helpless as those two. They will be wanting printed circuit boards for crystal sets next.
The trouble is they are "spoon fed" over here by some Australian electronic journals and, of course, the trade, both of which seems to cater for the lowest common denominator in intellect. I must assure you that there are many over here who can construct without p.c. boards, matrix boards or Veroboard. All of which are pretty useless at h.f. or v.h.f. anyway.
Also interesting was the letter from F. W. Blakeley of Wrexham. I am not quite as old as your Mr. Blakeley, being a mere

I.F. ALIGNMENT

IFT1 cores are pre-aligned, and should not be touched until a station has been correctly tuned in. Choose a weak signal, correctly tuned in, or rotate the unit for minimum signal pick-up, and adjust top and bottom cores of IFTl, very slightly, for maximum volume.

MANUAL TUNING

Initially position the coil Ll about level with the end of the rod, with C2 and C13 about half closed. Tune in a weak signal correctly with the ganged capacitor $\mathrm{Cl}, \mathrm{C} 12$ nearly open, and adjust trimmers C2 and C13 for best volume.

73 years of age, and my experience only goes back, in radio, to 1923. I am probably a "Johnny come lately" to him.
l consider Everyday Electronics an excellent paper for the electronic enthusiast, and although it does dwell a little too much on "gadgets" sometimes; on the whole there seems to be something for everyone. Your "Home Sentinel Unit" in Volume 1 No. 1 was constructed and worked first time. Happily however, apart from testing when first installed, it was never called upon to deter burglars, we did not have any of these light fingered gentlemen around at the time.

On my retirement from the "hassle" of a working life some years ago, the business, and of course all the instruments, was sold, however as is usually the case, a need was found for a few items of test gear.

The first item to be constructed was Mr. Rayner's "Signal Generator" as featured in your September '78 issue. As usual, with most of your projects, it worked first time off.

However, due to small wiring differences the calibrated scale was out, and the only way to correct this fault was by fitting trimmers to the coils. Adjusting the coil slugs at the I.f. ends of each band, and the trimmers at the h.f. ends, brought the

Now tune in a weak signal with Cl, C12 nearly closed, and modify the position of Ll on the rod, for best volume.

Repeat these adjustments a few times, to obtain full sensitivity over the whole manual tuning range.

If it is necessary to change frequency coverage by altering the core of the oscillator coil L3, rotate this only slightly. Use a properly shaped tool here and for IFTl, to avoid breaking the cores.

PRE-SET TUNING

After correct operation and alignment for manual tuning, the pre-set tuning adjustments can be made. Proceed as follows: adjust C4 for aerial tuning and $\mathrm{C15}$ for oscillator tuning, at switch position 2, to receive Radio 2. At position 3, adjust C5 and C16 for Radio 3. At position 4, set C8 and Cl 9 for 200 kHz long wave, Radio 4.

In some parts of the country LW is not required for Radio 4. The large values at C7 and C18 are then unnecessary, and values up to about 200 pF may be used in the aerial position, and up to 100 pF in the oscillator circuit, a further MW station.
With the capacitor values given, coverage is around the frequencies listed earlier. There is considerable latitude in both trimmer values and fixed capacitor values. Small values move tuning towards the high frequency end of the band, and larger values allow tuning towards lower frequencies.

For personal listening, medium or high impedance phones (say 500 ohm to 2 kilohm) will allow excellent results.
readings somewhere near. A crystal calibrator was used, together with an allband radio for setting up. A switch was also fitted to cut out the a.f. modulator when not needed.

Many "old timers" seem to complain about over sophistication of some articles which are published in electronic journals. They are right in this opinion in some respects, as many modern projects are updated versions of previously featured projects. They don't work any better, have more parts which can develop faults, and, their only advantage seems to be in reduced physical dimensions.

A typical example being your "Continuity Tester' featured in your June ' 78 issue. A better continuity tester was constructed 9 years ago, the components being two surplus transistors and one $6.3 \mathrm{~V}, 0.04 \mathrm{amp}$ flashlight bulb. There are 3 ranges and useful indications can be obtained up to $2 M \Omega$. Four of these were installed at a local transformer factory and have been in constant use for years.

Presumably careful selection of the transistors would result in a performance equal to the unit described in the June 78 issue.
J. Ratcliffe, Australia.

This month Barry Fox continues his saga of the "commercialisation" of the Post Office and calls for an amnesty for illicit telephones.

The Beginning

For the Post Office the end of an era, and for the British public the beginning of an era, came on September 12, 1979 when Sir Keith Joseph, Secretary of State for Industry, announced the government's intention of splitting the Post Office into separate sections for posts and telecommunications. He promised consultations "with a view to early relaxation of the Post Office's telecommunications monopoly"

On July 21, 1980 Sir Keith Joseph carried through his promise and told Parliament that legislation was being enacted to let private firms to compete with the Post Office Telecommunication Division (to be called British Telecom) for the supply of telephone equipment. After a transitional period of about three years the Post Office, he said, would retain a monopoly only on the main telephone network and the installation and maintenance of the first telephone in each home and business. "I am sure that one of the reasons for America's greater success has been the freedom available there to entrepreneurs to develop new services and a wide range of equipment associated with tele-communications" Sir Keith told Parliament.
This was the water-shed speech. But even by then the Post Office had been forced to liberalise its attitudes on answering machines. A certification scheme was inaugurated on April 2, 1980. Any person wanting to sell an answering machine on the British market has since that date been able to submit it to the Post Office for official approval. In what some would call a face saving operation the Post Office claimed that this liberalisation followed "in the light of advances in the functioning of the public switched telephone network itself and with improved manufacturing standards' ${ }^{\text {I }}$
Announcement of the answering machine certification scheme was one of the last statements made by the Post Office, because British Telecom was born on May 21, 1980
The Telecommunications Bill is likely to become law any moment now, a year after it was first introduced in Parliament (November 1980). When this happens

British Telecom will hand over responsibility for certifying all telephone equip. ment (including the answering machines which it currently certifies) to a neutral third party, almost certainly The British Standards Institution. In the meantime it's rewarding to catalogue some of the statements made by BT since its May 1980 birth.
On the very same day as the name change was announced, Peter Benton, then Managing Director, said that the new name was being adopted to "reinforce staff pride and make clear to our customers that this is a rejuvenated business". This followed a promise made by Mr Benton of what three weeks earlier was still the Post Office that "we are attacking our problems at the roots; we intend to improve the service perma. nently".

Accepting the Challenge

On July 21, the day Sir Keith Joseph committed the British government to the break-up of the Post Office, Sir William Barlow, Chairman of the PO proclaimed "We are not afraid of the new challenge". Nevertheless on July 31. British Telecom announced they would have to put up the prices of local calls.

This is one area in which we are certainly not being brought in line with the North American Continent. Over there local calls are either free or very cheap. Most long distance calls are also far cheaper than in Britain. Even stripped of their monopoly, the Bell company are still able to offer far cheaper call rates than the British Post Office.

In November 1980 publication of the Telecommunications Bill caused the Post Office to say it "accepted the challenge" of free competition. But within just six days there was the tell tale sign of an escape route being prepared. "Neglect of investment and determination in previous years will inevitably leave us with difficulties in some places for a while yet" said Mr. George Jefferson, then Chairman of British Telecom.
In February 1981 British Telecom was forced, by an article in The Daily Mail, to acknowledge that Telecom engineers had been taking cash back-handers to install business telephones ahead of others in the queue. BT asked for in-
formation "which could help us stamp out these activities". There was, of course, one very simple answer; speed up legitimate installation to eliminate the queuel

Time Wasting

In April 1981 British Telecom finally acknowledged what everyone who made international calls already knew-it is absurdly time-wasting for anyone making an international directory enquiry to have to go through the international operator. So separate directory service was promised for May 1982.
In May 1981 British Telecom again pledged "to improve service" and claimed that the waiting list for telephones had been halved by speedier connection. In June 1981 the Chairman Sir George Jefferson again acknowledged past errors. "We must be more market responsive than we have been in the past" he said. A few days later he announced the creation of a sales force to do something wholly novel for the British Post Office-sell telephones. "Until now we have sometimes been hard to find" he admitted.
The signs for the future are good. This year British Telecom will extend its inhouse certification scheme from answering machines to other attachments such as facsimile machines and intruder alarms. Within the three years promised by Sir Keith Joseph, the scheme moves on to privately supplied telephones. The only tragedy is that it has taken government pressure to convert our complacent Post Office into something approaching a business enterprise.

Call for Amnesty

One problem remains. This is the plethora of illicit telephones already In use, many of them incorrectly connected by subscribers who have had no where to go for engineering advice.
British Telecom is now sending out a leafiet with all quarterly telephone bills which warn of the dangers to the network, to the service and to individuals. This leaflet repeats the previous threat that British Telecom "will disconnect the telephone service of customers who breach the conditions under which telephone service is provided".
So anyone with an illicit telephone will still not dare ask for help from a British Telecom engineer. When a fault develops on the line they will have to rip out all their illicit phones before calling for service. As often as not this will waste the engineer's time because the fault will usually be on the equipment which has been disconnected.
By the time the certification scheme extends to privately supplied telephones, there could be a million unauthorised connections in Britain. Now, more than ever before, we need an amnesty.
"We must be market responsive" said Sir George Jefferson when addressing the annual conference of the Post Office Engineering Union on June 2, 1981. 'Competition will provide many opportunities for us but we must adapt the way we work to make the most of these opportunities" ${ }^{\text {". }}$
If Sir George is serious about adaptation, British Telecom must offer an amnesty of technical aid to anyone with an illicit phone connected to the British network.

PART 10
 BY J.CROWTHER

USE OF TRUTH TABLES

Truth Tables are the easiest method of conveying information, or the whole truth, about a gate, or Logic Circuit requirement. Suppose we were told to design a Logic Module which would give a "l" output if:
" A, B, and C were 0 , or if C was 1 , or if A was 1 , or if A and C were I or if A and B were 1 , or if A, B and C were $1 . "$

This statement tends to be confusing and could be easily misunderstood. It would be less liable to be misunderstood if it were written in the form of a truth table, Table 10.1;

Table 10.1

Inputs			Output
A	B	C	S
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Table 10.1 shows at a glance what combinations of the inputs are required to give an output at S. A Boolean Equation can be derived from the information given in the truth table, this equation can then be simplified and converted into gates as shown previously.

Note

When writing Boolean Equations from truth tables, where $A=0$ in the Truth Table, this is written as A in the equation, and if $A=1$ in the Truth Table it is written as A in the equation. example
$\vec{A} \vec{B} C$ means A AND B AND $C=0$
$\bar{A} \bar{B} C$ means A and $B=0$ and $C=1$.
Two methods can be used:

Deriving a logic module circuit from a truth table-method 1

Taking the condition when an output is present, that is when $S=1$. The Boolean Equation for Table 9.1 then becomes:
$\bar{A} \bar{B} \bar{C}+\bar{A} \bar{B} C+A \bar{B} \bar{C}+A \bar{B} C+A B \bar{C}+A B C=S$

Simplifying we get:

```
    \(\vec{A} \bar{B}(\bar{C}+C)+A \bar{B}(\bar{C}+C)+A B(\bar{C}+C)=S\)
    \(\bar{A} \bar{B} 1+A \bar{B} 1+A B \mid=S\)
    \(\bar{A} \bar{B}+A \bar{B}+A B=S\)
    \(\bar{A} \bar{B}+A(\bar{B}+B)=S\)
    \(\bar{A} \bar{B}+A 1=S\)
    \(A \bar{B}+A=S\)
    \(\bar{B}+A=S\)
```

This represents an $O R$ gate fed with A and B, B being obtained by passing B through a NOT gate.
Therefore the final module is as seen in Fig. 10.1
This shows that C is not needed to obtain the required result, and that the original requirement was unnecessarily complicated.

Fig. 10.1. Logic module to realise the truth table above. Shows that C is not required to obtain the required result.

Method 2
Taking the condition when there is no output, that is when $\mathbf{S}=0$, or the output is \bar{S}.

```
\(\bar{A} B \bar{C}+\bar{A} B C=\bar{S}\)
\(\bar{A} B(\bar{C}+C)=\bar{S}\)
\(\bar{A} B 1=\bar{S}\)
```

$\bar{A} B=\bar{S}$

In order to make the equation so that the output is S , add a bar to both sides (see Rule 5 in Part 5).

$$
\begin{aligned}
& \overline{A B}=\bar{S} \\
& \bar{A}+\bar{B}=S \\
& A+\bar{B}=S
\end{aligned}
$$

This gives the same result as Method I as would be expected.
In practice the easiest method would be used, that is the second method in this case, as it involves the least number of terms.

APPLICATION OF LOGIC TECHNIQUES (1) The Equivalent Module, or Exclusive NOR

Symbol

Fig. 10.2. Two common symbols for the EXCLUSIVE NOR gate.

Result

There is an output if A and B are the same.
Truth Table

	Inputs	
\boldsymbol{A}	\boldsymbol{B}	Output
0	0	S
0	1	1
1	0	0
1	1	0

Boolean Equation

Take the case when $\mathrm{S}=1$.
$\overline{A B}+A B=S$.
This equation represents the logic circuit, shown in Fig. 10.3. containing five gates.

By applying Demorgan's Law we can reduce the number of gates to three:
$\bar{A} \bar{B}+A B=(\overline{A+B})+A B=S$.
This represents the logic circuit shown in Fig. 10.4.

Fig. 10.3. The logic circuit for the above Boolean expression.

Fig. 10.4. Logic circuit of Fig. 10.3 after applying Demorgan's laws.

(2) The NOT Equivalent Module, or Exclusive

 ORSymbol

Fig. 10.5. Two common symbols for the OR gate.

Result

There is an output if A and B are not the same.

Truth Table

角 Inputs	Output	
A	B	S
0	0	0
0	1	1
1	0	1
1	1	0

Boolean Equation

Taking the case where $S=0$
$\bar{A} \bar{B}+A B=\bar{S}$
$\bar{A} \bar{B}+A B=S$
This represents the logic circuit in Fig. 10.6 which contains five gates.

By applying Demorgan's theorem we can reduce the number of gates to three:

$$
\overline{\bar{A}} \bar{B}+A B=\bar{A} \bar{B}(\overline{A \bar{B}})=(\overline{\bar{A}}+\overline{\bar{B}}) \overline{A B}=(A+B) \overline{A B}
$$

This represents the logic circuit in Fig. 10.7.
An alternative arrangement of logic gates to give the NOT
Equivalent Module could be obtained as follows:
Boolean Equation $\overline{\bar{S}}$

$$
\begin{aligned}
& \bar{A} \bar{B}+A B=\bar{S} \\
& \bar{A} \bar{B}+A B=S \\
& \overline{(A+B}+A B
\end{aligned}
$$

$$
\text { This represents the logic circuit in Fig. } 10.8
$$

Fig. 10.6. The logic circuit for the above equation and truth table.

Fig. 10.7. The reduced logic circuit after applying Demorgan's laws.

Fig. 10.8. Logic circuit for the above Boolean expression.
It can be seen that this circuit is the same as the Equivalent Module followed by a Not gate, showing that the not Equivalent Module is the inverse of the Equivalent Module.

Because of this there is no need for manufacturers to make both exclusive or and exclusive nor modules. In practice manufacturers rarely made exclusive nor modules, but tend to make exclusive or and follow it by a not gate if an exclusive nor is required.

Everyday News

Ellectronic postt = a Royal Maill Service

To underline its position as a world leader in postal communications, The Royal Mail has started "field" trials on a computer-based service which can send mass mailings by wire, to be printed and enveloped in a distant centre for delivery through the mail the next morning.

Anyone who has read some of those old postcards found in Antique shops will have admired the postal service of that era. It was quite common to see comments like "I will be around this afternoon at 4 o'clock."-Such was the confidence in the local delivery service.
The sole reason for mentioning the above is to high. light the latest technological development that brings the 80 's system that much nearer the 20's and 30's "same day" delivery.
Called Electronic Post, this latest advance for Britain's postal service is the first system of its kind to use a combination of computer transmission, laser printing and postal delivery to transmit, print and prepare items for delivery to many thousands of addresses. The service is potentially capable of handling any kind of multiple items, such as statements, bills and invoices.

A London operator keys in customer's identification to be transmitted to the computer in Manchester. Meanwhile, magnetic tape containing the customer's mailing list is loaded into the computer prior to transmission

At London's Electronic Post Centre at Mount Pleasant, postmen oversee printing, folding and enveloping of letters transmitted from the Manchester computer centre.

London and Manchester are the two centres chosen for the first trial service and will cover about seven million addresses. This represents about a third of all the 22 million delivery points in the UK.

Mr. Kenneth Baker, Minis ter of State for Industry and Information

Technology joined with Mr. Ron Dearing, Post Office Chairman, to watch the first transmission of a letter from a major commercial mailer being reproduced in bulk, enveloped and addressed ready for delivery the following morning to addresses in London and Manchester.

The System

The system was developed by the Post Office and GEC Mechanical Handling with help from GEC-Marconi Electronic.
A company produces let. ters, statements or invoices on a magnetic tape, complete with address and postcode. A computer processes the information and transmits it to the appropriate distant centre.
At the receiving end the items are printed by a laser printer. The letters are then automatically addressed, enveloped and delivered using the normal delivery service.

To counter violence and vandalism the whole fleet of London's 5,500 buses are to be equipped with two.way radio in the driver's cab.

CLASSIC

Covert Local Area Sensor Systems for Intruder Classi. fication (CLASSIC) is a new intruder alarm system for front line use by the British Army. Detection is by seis. mic or other sensors radiolinked to a monitoring point.

Developed as a private venture by Racal-SES Ltd, CLASSIC is already the sub. ject of negotiations with overseas customers as well as having been purchased by the British Ministry of De. fence.

COAL RADAR

A novel application of radar is determination of the level of coal in underground vertical storage bunkers. The radar system only suitcasesized will measure the level of coal within five per cent.

The system has been developed by Marconi Avionics in conjunction with the National Coal Board's Mining Research and Development Establishment.

UK Computers for USA

The United States Air Force and Navy have standardised on a British range of air data computers for re-equipping 27 variants of 10 types of aircraft from jet fighters to large military transports.
Marconi Avionics won the design and prototype contract, worth five million dollars, against fierce competition from US suppliers.

ATE Winner

The newest COMPACT automatic test equipment (ATE) from Marconi Avionics had clocked up over £1 million of orders before its first public demonstration just before Christmas.

It is just half the size of the original COMPACT system developed in 1973.

Government funding of £77 million is promised as the British share in the European Space Agency's Large Satellite due for launch in 1986.

Prime contractor is British Aerospace with Marconl as one of the British subcontrac. tors.

ANALYSIS

NOTHING NEW

Technological advance means better, cheaper or easier ways of doing things, often all three. In the process it is inevitable that some people experience damage to their interests but the majority benefit. This has been true throughout history. It is still true today.
The invention of the power loom put the cottage weavers out of business. Transatlantic flight killed the passenger steamship. Mass-produced cars injured the classical craft of coach building. The home washing machine led to the disappearance of the steam laundry. Radio and TV shut down the music halls. These are just a few of hundreds of examples.
Man is distinguished in his power of reason and invention and every invention has led to change but never more so than in this age of the electronics revolution. In principle this is no different, say, than the innovation of steam power in the last century. What is different, however, is the speed of change. Whereas in the past we have more or less successfully adapted to change over a period of years, today we seem to have been overtaken by it.
Speaking only of the United Kingdom this is partly our own fault. We have been inventive enough but slow to exploit technological advances in general industry. We preferred old work practices and resisted the new.
An exception is the electronics industry itself, the cradle of invention and unafraid in exploiting every means of improving its own performance. The result is that leading companies like GEC-Marconi, Plessey, Ferranti and Raca have all done well in world markets throughout the recession and have full order books.
The industrial robot, the electronic office, computer-aided-design, automatic draughting machines are all aids to efficiency and economy in the supply of goods and services. They may not always be welcome but to fail to embrace these and other innovations is to eventually put ourselves out of business altogether.

Brian G. Peck

X-Stream

Preliminary orders worth £750,000 a year in rental have already been received for advanced new digital communication services which British Telecom is to launch during the year, as part of its contribution to promoting information technology in the UK.

The new services, to be marketed under the general title "X-Stream", are made possible by the steady spread of digital transmission through Britain's cable, microwave and optical fibre network.

Digital techniques are now being increasingly used instead of traditional analogue transmission as part of Telecom's $£ 2$ billion a year modernisation programme.

BBC Radio Birmingham is now to be known as BBC Radio WM, the local radio service for the West Midlands.

WORLD FIRST

Britain achieved a world Grst recently when the Duke of Kent inaugurated a fully computerised cargo system at Harmondsworth near Heathrow.

Called ACP80, air cargo processing in the 80s, it serves Heathrow and Gat wick airport and is claimed to be the world's most sophisticated alrport system handling both exports and imports.

Robots Make Robots

The Department of Indus try is reported as examining a $£ 20$ million project for a robot factory with robots building robots,

Participation by private industry is anticipated and the factory, if it comes to fruition, will be a working demonstration of the changing nature of production engineering as well as producing urgently needed robots.

BASICally Sinclair

Coinciding with ICL's announcement of major new developments employing Sinclair technology and Sinclair BASIC, Sinclair Research reports that worldwide sales of the ZXBl computer now exceeds 250,000 .
With ZX81 monthly production running at 50,000 units, over 60 per cent for export, Sinclair claims to have more units installed than any other personal computer manufacturer worldwide, firmly establishing Sinclair BASIC as the most widely used microcomputer programming language.
Commented Clive Sinclair, "With so many units in the field, supported by a large number of new projects using Sinclair BASIC, we believe our language now merits serious consideration by the industry as the 'standard', if confusion, particularly in the educational field, is to be avoided in the future."
ICL has announced a new range of ZX 81 software with orders for more than 100,000 packages already received from W. H. Smith's, the only licensed ZXB1 retailer, and is to develop further soft ware in support of both the ZX81 and future products using Sinclair BASIC.
ICL is also in advanced discussion with Sinclair to develop an ultra low cost integrated terminal/digital phone work-station employing Sinclairs' flat tube tech nology and Sinclair BASIC.

Prestel Delivers the Goods

A new information service for freight forwarders and exporters, entitled "Mini Cargo Tariff", has been launched by British Airways Cargo on Prestel, British Telecom's viewdata service. Radio Rentals Contracts are supplying approximately 150 colour viewdata terminals for the system.

British Airways have invested substantial sums in producing a 2,000 page database which provides freight forwarders with up-to-theminute details of rates, dates, loads, restrictions and class for the shipment of goods. The information is available to BA agents on a "Closed User Group" basis to ensure system security.

Agreement in principle has been reached between Gould Advance Ltd, and Ashcroft Electronics Ltd, for the acquisition of Gould Components Ltd by Ashcroft.

All-Digital Desk

The BBC is to order an all-digital 48 -channel sounds mixing desk from Neve Electronics International of Royston. A prototype desk has been installed at the BBC in Broadcasting House.
When the production version of the desk is delivered it is believed that it will become the world's first comprehensive all-digital sound mixing desk to enter operational service in broadcasting.

STICKY BREAKERS

Watch out for illegal CB rigs carrying stickers claiming immunity from prosecation.
The Home Office have just issued this advice to the CB trade and prospective buyers.
"Don't be misled by unfounded rumours claiming that the use of illicit 27 MHz AM sets will be legalised; the Government has no intention of making any changes to the new legal 27 MHz FM CB service".

The warning to traders and CB users follows a large number of inquiries to the Home Office concerning rumours of AM legalisation, and reports of AM sets carrying labels stating that the apparatus cannot be used "until April 1982" or similar wording.
Any such stickers or labels which imply pending changes in the UK CB service are quite simply hoaxes.

AปTOMATIC

GARAGE

 PART TWO
BY P. HORSEY

Ast month having discussed the suitability of converting an up-and-over type garage door and described the Ultrasonic Remote Control system (Transmitter and Receiver), we now move on to the Control Logic/Power Supply unit and installing the mechanics.

POWER SUPPLY

The Control Logic and Receiver units are powered from the same p.s.u., a rectified and smoothed 12 V supply, built into the Control Logic case. For the circuit diagram see Fig. 7. The mains supply is connected via switch S1 and fuse F1 to the transformer, Tl. The live line is supplied via switch S2 to the relay contacts RLA1 and RLB1 (shown in Fig. 8), the neutral line also being connected to TB2/5, then to the appropriate point on the motor. A neon indicator with integral resistor, LP1, is connected across the transformer primary.

TRANSFORMER

The transformer used in the prototype was a 6VA type, with two 4.5 volt secondary windings wired in series to provide 9 volts. The 600 mA output was more than required and 300 mA would be sufficient.

The nominal 9 V a.c. output from the transformer is rectified by bridge rectifier D1 to D4. The voltage developed across smoothing capacitor Cl is about 12.7 volts, but in practice may be higher according to the regulation of the transformer. The exact working voltage of the circuit is unimportant, hence no regulating components are employed. Capacitor C2 provides high frequency de-coupling, and switches S3 and S4 form the safety cut-out elements, S 3 being the microswitch at the base of the door and S4 the tension cut-out switch, discussed later.

CONTROL LOGIC CIRCUIT DESCRIPTION

The logic circuit is based on a смоs integrated circuit type 4081, a quad 2 input and gate, see circuit diagram Fig. 8.
The input from the receiver circuit is connected via diode D5 to the input of gate ICla, capacitor C3 suppressing unwanted noise. As the voltage at the input of ICla rises, the output will go high, with feedback occurring via R3. Thus a Schmitt trigger is formed, the output from ICla rising very quickly to full potential. R2 will reduce the input to zero, when no signal from the Ultrasonic Receiver is present. ICla may also be triggered by push-button switches S5 and S6. These switches are the manual door OPEN/CLOSE controls.
The output from gate ICla is coup. led by C4 to the next stage. This capacitor along with R4 forms an integrator to reduce the output to a single pulse, otherwise a confused state of retriggering would occur in the next stage of the circuit.

The finished electronic control units. The Power Supply is built into the Control Logic case.

OPEN DOOR

Assuming the garage door is at present closed, the normally closed contacts of 57 are now open, and 58 is closed. Hence pin 6 of gate IClb is at logic 1 (high) and pin 12 of gate ICld is low. Thus gate ICld cannot switch on, and we will not consider its associated circuit at this point.

Fig. 7. Circuit diagram of the Power Supply section of the Control Unit.

IClb produces a high output upon receiving the pulse from D6. Feedback occurs via R9, and gate IClb stays on. This will turn transistor TR1 on thus illuminating the SYSTEM ON indicator, an l.e.d., D14.

Current also passes through R15 to C7. This charges in about two to three seconds, turning on TR3. As will be apparent later, the circuit is arranged so that the motor may be instantly reversed when closing the door. The delay provided by C7 charging prevents any damage to the motor by allowing a "pausing time" before reversing.

Transistor TR3 activates the relay RLA with D12 providing protection against the back e.m.f. Relay RLA switches on the "open door" connection to the motor.

When the door is fully open, it operates microswitch S8, which now opens. Thus gate IClb is turned off and diode D10 ensures that the base of TR3 is rapidly returned to zero volts, thus quickly stopping the motor.

CLOSE DOOR

Microswitch S7 is now closed, and S8 open. A pulse from C4 will now trigger gate ICld and this channel operates exactly as described above.

The delay provided by C8 may not seem necessary, but there are certain circumstances where the motor may be required to suddenly change from "open door" to "close door", and C8 provides a suitable margin of safety.

When the door is fully closed, microswitch S7 opens, and gate ICld is turned off thus stopping the motor.

PRIORITY OPEN

It can be seen that whilst the door is in motion, both microswitches are closed and thus both gates IClb and ICld are able to trigger if another pulse is received from C4. Thus both relays could operate together, causing problems (to say the least!) for the motor.
This arrangement is deliberate, since it offers the opportunity to instantly reverse the door whilst closing, and also enables the door to be set in motion from a mid way position, if it has stopped for some reason.

In order to prevent TR3 and TR4 switching on together, IClc has each input connected to the output of IClb and ICld respectively. If both these gates turn on together, IClc goes high, turning on TR2. This reduces the feedback voltage via R13 to zero, thus switching off ICld. Resistor R12 limits the flow of current from ICla into TR2, without affecting the rest of the circuit.

All this happens so quickly that the relay RLB does not operate, leaving relay RLA to safely open the door.

If the door is already closing, and a pulse is received from C 4 , the same action will follow, with ICld turning off, whilst IClb switches on. Diode Dll will ensure that the motor
switches off rapidly, whilst C7 will delay the switching-on process. Thus the closing door stops, pauses, then re-opens.

It will be apparent that a pulse received whilst the door is opening will have no effect on the operation of the door.

Capacitors C5 and C6 suppress noise picked up from the microswitches.

TRIGGERING THE CIRCUIT

The logic circuit may be triggered from the car, with the ultrasonic link as previously described, or alternatively a positive triggering pulse may be generated by 55 or $S 6$ and any number of push button switches may be wired in parallel to these for additional control.

One push switch, S5, should be mounted near the door, inside the garage, and is used to close the door after parking the car inside. Another push switch, S6, may be mounted inside the house to open the door, or if too inconvenient regarding the necessary wiring, it could be mounted outside the garage. However, this may be considered an unacceptable security risk, whereby a key switch or electronic combination switch could be used.

Note that both these switches will open or close the door as will the ultrasonic remote control system.

Fig: 8. Circuit diagram of the Control Logic Unit (Power supply shown in Fig. 7).

CONSTRUCTING THE POWER UNIT AND CONTROL LOGIC

The circuit requires a piece of stripboard measuring a minimum of 46 holes by 22 strips, however a larger piece measuring 50 holes by 34 strips was found to be more convenient in the prototype. It must be securely mounted bearing in mind the various mains connections in close proximity.

A rebate in the stripboard is cut out as shown in Fig. 9 to provide access to one of the case mounting
screws. Drill the three stripboard mounting holes where shown, and break the tracks (20 in all) as indicated in the second part of Fig. 9.

Mount the i.c. holder, wire links, resistors and fuse clips where indicated, followed by the non electroly. tic capacitors. Take care to fit the diodes, transistors, bridge rectifier and electrolytic capacitors the correct way round. Finally, connect the flexible leads and fit the cmos i.c. taking great care not to touch the pins during fitting, as it is static sensitive.

THE CASE

An aluminium case measuring 205 $\times 100 \times 50 \mathrm{~mm}$ was chosen, and this provided sufficient space for the stripboard, transformer, relays, neon mains indicator LP1 and switches Sl and S2. Carefully arrange these items before drilling, to ensure that adequate space is left especially in the region of the neon and switches.

Resistors
R1, 12

R1, 12	1k
R2	$2 \cdot 2 \mathrm{M} \Omega$
R3	10M Ω
R4, 9, 13	$1 \mathrm{M} \Omega$ (3 off)
R5, 7, 10	10 k (3 off)
R6, 8	$100 \mathrm{k} \Omega$ (2
R11	$4 \cdot 7 \mathrm{k} \Omega$
14	510Ω
R15, 16	$15 \mathrm{k} \Omega$ (2 off)
R17, 19	$27 \mathrm{k} \Omega$ (2 off)
R18, 20	

R18, $20 \quad 5 \cdot 6 \Omega$ (2 off)
All $\pm W$ carbon $\pm 5 \%$ except where stated
Capacitors

C 1	$2200 \mu \mathrm{~F} 25 \mathrm{~V}$ elect
$\mathrm{C} 2 . \mathrm{C} 6$	$0.1 \mu \mathrm{~F}$ polyester (5 off)
$\mathrm{C} 7,8$	$220 \mu \mathrm{~F} 25 \mathrm{~V}$ elect (2 off)

Semiconductors
D1.D4 $\quad 1 \mathrm{~A}, 50 \mathrm{~V}$ bridge rectifier
O5-D13 $\quad 1 \mathrm{~N} 4148$ small signal silicon (9 off)
$014 \quad 0.2$ inch red I.e.d. high brightness, wide angle IC1 4081 CMOS quad 2 input AND gate
TR1-TR4 BC184L silicon npn (4 off)

Switches
S1
S2
d.p.d.t. miniature toggle

S3, 7, $8 \quad \begin{aligned} & \text { s.p.p.t. lever actuated heavy duty microswitch (3 off) } \\ & \text { S4 }\end{aligned}$
S4 See text
S5, 6 Push-to-make, non-latching (2 off)
Miscellaneous
T1 Mains transformer, 9V, 0.6A secondary
LP1 Mains neon indicator with integral series resistor
F1 $\quad 20 \mathrm{~mm}$ anti-surge, $1 \cdot 25 \mathrm{~A}$ (for the motor specified) F2 $\quad 20 \mathrm{~mm} 250 \mathrm{~mA}$
RLA, RLB Relay, $180 \Omega 12 \mathrm{~V}$ coil, 2 normally open contracts rated at 240 V , chassis mounting (2 off)
TB1 Terminal block, 12 way, 2 A
TB2 Terminal block, 6 way, 2 A
Stripboard, 0.1 inch matrix, 50 holes by 34 strips; aluminium case size $201 \times$ $100 \times 50 \mathrm{~mm}$; case size $72 \times 50 \times 25 \mathrm{~mm}$ (2 off, for $\mathrm{S} 5,6$); fuse holder, 20 mm chassis mounting (for F1); fuse clips, p.c.b. mounting (2 off, for F2); 14 pin d.i.I. i.c. holder; small grommets (5 off); equipment wire; rubber sleeving; solder tags; board mounting hardware (M3 or 6BA); heavy duty wire, 16/0.2 (for mains wiring).

View inside the Control Logic case.

The relays need to be securely fixed in position and it may be necessary to fabricate a small bracket to do this.

Mark the hole positions for the stripboard (3 off), case mounting holes (2 off), transformer (2 off), neon, switches (2 off), leads (at least 4 holes), and terminal blocks. Drill the holes and fit rubber grommets to all holes requiring leads to pass through.

The positions shown for the main components given in Fig. 10 are intended as a guide, in practice great care must be taken in ensuring that there is no danger of any components breaking loose and shorting out. REMEMBER THAT THERE IS LIVE MAINS PRESENT IN THIS EN. CLOSURE.

Mount the transformer, switches, neon, terminal blocks and circuit board, passing the appropriate leads neatly through a grommet. Note that the mains fuse is mounted on an insulated 20 mm board mounted fuse holder, secured with a fixing screw. On the prototype, rubber grommets were fitted over the screws securing the circuit board, between the board and the aluminium case, to prevent the circuit board being short circuited by the case.
Fit the relays, and wire up the mains circuit as indicated in Fig. 10. The mains and motor terminal strip may be mounted outside the case as shown, in which case a protective cover should be fitted, or inside for extra security against an electric shock. It is extremely advisable to sleeve all solder joints on the mains side of the circuit.

Finally, complete the low voltage connections. Ensure the mains EARTH lead is securely fixed to the case, using a tag on a transformer mounting screw.
 000

Fig. 9. Component board layout and track breaks for the Control Logic Unit.
 diagram, Fig. 10.

TESTING THE LOGIC

Connect a voltmeter set to the 20 V d.c. range across $\mathrm{TB} 1 / 4$, the positive output from the rectifier and TB1/2, 0 V . Connect the mains, and switch on. The meter should read 12 to 16 volts.

Now wire D14, an l.e.d. actoss TB1/5 and TB1/6 ensuring correct polarity, the cathode, k, to $T B 1 / 5$.

Connect a short wire to joint TB1/3 and TB1/4 and then join TB1/7 with TB1/8 (to represent the DOOR FULLY closed switch, S7).
Using a piece of flexible wire, join TB1/10 to TB1/11 for a moment. This represents the manual open pushbutton switch, S5, being activated and the l.e.d. should light. About two to three seconds later, the open door relay, RLA, should activate

Remove the link from TB1/7. The l.e.d. and relay should instantly

Control Logic Unit with lid removed to show component board, power supply and relays. Note that this prototype has the non-preferred mounting of TB2 on the outside of the case.

switch off. Join block TB1/8 to TB1/9 and re-join TB1/10 to TB1/11 for a moment. The l.e.d. should again light and three seconds later the 'close door' relay, RLB, should activate.

Remove the link from TB1/7 and the l.e.d. and relay RLB should switch off. Now join TB1/8 with both TB1/7 and TB1/9 (representing the door half open). Again join TB1/10 with TB1/11 for an instant. The l.e.d. should light, but only relay RLA should activate, NOT both relays.

Repeat one or more of these tests, activating the circuit by connecting TB1/11 to TB1/1, input instead of TB1/10 (this will represent the Ultrasonic Control system activating the Control Logic).

If the circuit does not perform correctly, take voltage measurements throughout the circuit, using the circuit description as a guide. Note that a logic one (high) should produce a voltage nearly equal to the supply, and a logic 0 (low) should read nearly zero volts. Check that the components are fitted the correct way where applicable, and that the BC184L transistors are not confused with BC184 types, which have a different lead arrangement.

Assuming all is well, connect the ultrasonic receiver positive power lead, 0 volts and output wire to TB1/3, TB1/2 and TB1/1 respectively. It should now be possible to trigger the circuit with the Ultrasonic Transmitter.

MECHANICAL ASSEMBLY

The system works as follows: (note that all item numbers referred to are given in Fig. 11). With the door closed, the electronic control system receives the command to open from either the Ultrasonic Remote Control (item 4) or the push-button switches (item 9). The solenoid (item 8) will then activate to release the lock mechanism and the motor (item 1) will unwind the cord thus raising the door since it is counterbalanced towards opening.
To achieve this bias towards opening, a system of pulleys and weights (item 10, see also Fig. 2(d) last month) is attached to the door and to overcome the initial inertia (that is, reluctance to move) when raising the door, a cord secured to the roof joists by springs (item 5) "catapults" the door backwards by means of a bracket (item 9) fixed at the top of the door. This is providing a force in direction A shown in Fig. 2(a), discussed last month

Fig. 12. Method of constructing tension cut-out switch, S 4 (item 11, Fig. 11).
A microswitch, S 8 , not shown in Fig. 11 but mounted outside so as to activate when the door is fully raised, signals for the motor to stop.

CLOSING

Upon receipt of the command to close the door, the motor will reverse, hence winding up the cord and lowering the door.
Microswitch S7 (item 7) will stop the motor when the door is fully shut.

FAIL-SAFE SWITCHES

A large microswitch, S3 (item 12), is fixed in position at the base of the door, such that it activates if it touches any object during the descent of the door. A piece of rubber or plastic sleeving may be slipped over the lever to protect the car, and the switch should be carefully positioned to ensure that it operates correctly.

Should any other fault occur which would prevent the motor switching off when the door is closing or fully closed, the tension cut-out switch, S4 (item 11), comes into being. This is made with a pair of thin insulated wires pushed through the spring which connects the main driving cord with the door. One wire is "loose"
(that is, not fixed firmly at the garage door end) with its other end fixed to the cord. The other wire is secured to the door, allowing enough slack in the wires to enable the spring to expand in normal use. The other end of the secured wire is twisted around the wire attached to the cord, with the two ends stripped, twisted, and then insulated with tape. See Fig. 12.

As the spring stretches in normal use, the join should hold. Under fault conditions the spring will stretch well beyond its normal limit, and the fixed wire will disconnect at the twisted join, thus disabling the system.

MICROSWITCHES

A small lever microswitch, S7, must be fixed to signal the logic control circuit when the door is fully closed. It should be screwed to the wooden frame about 500 mm from floor level such that when the door is fully closed, it is activated.

A similar microswitch, S8, is also used to signal the fully open position. It must be mounted outside the garage, near the top of the frame, and be activated when the door reaches the end of its travel. A small piece of plastic may be used to protect the switch from direct rain, or preferably it should be encased with only the lever protruding.

A certain amount of experimentation will be required to find the ideal locations of these switches so this is largely left up to the constructor.

OPENING MECHANISMS

To initially open the door, arrange two large nails or screws in the
garage roof joists sufficiently high to clear the door. Fit two springs and a piece of cord tightly between the nails as shown in Fig. 11. Attach a metal bracket to the inside of the door, so that as it closes, it presses against the cord. The tension in the cord should initially open the door sufficiently to allow it to slowly rise. The nails should be fixed at about 250 mm back from the door frame, but the exact position must again be located by trial and error.

WEIGHT AND PULLEYS

To raise the door to the fully open position, a system of pulleys are employed whereby the point on the door which runs vertically in a "track" up the side of the frame is linked, via a cord, to a weight. This is illustrated in Fig. 2(d) and Fig. 11.
It is possible that the door may already be fitted with a counterweight or powerful spring in which case no further weights need be added. If not then fix the two pulleys to a roof joist as shown at one edge of the door, feed the cord through and attach a weight (we found 4 kg to be sufficient) to one end, the other end fixed to the door at the aforementioned point, as shown.
The length of cord, optimum weight and best suited mounting positions are ideally established by experimentation.

ELECTRIC MOTOR

At the heart of the system is the electric motor, and this will probably be the most expensive item. The motor used in the prototype was a reversible mains motor, complete with gearbox.

COMPONENTS

Mechanical Components
Springs Type 1 -Extension, approx. 300 mm long, 15 mm dia, with looped ends to attach cords (used fol closing the door).
Type 2-Extension, approx. 100 mm long, of the type used in spring balance scales (for the counter balance weights).
Type 3-Extension, approx. 100 mm long, about half the strength of type 2 (two required, for the initial opening mechanism).
Weight $\quad 4 \mathrm{~kg}$ counterwight (8 to 91 bs) however this may vary and in practise will need to be adjusted to suit.
Pulleys 2 required, of the type available at most builders yards.
Brackets Type 1-mild steel strip approx, $200 \times 20 \times 1 \cdot 6 \mathrm{~mm}$ (for initial opening mechanism.
Type 2-approx. $100 \times 100 \times 1.6 \mathrm{~mm}$ (2 off required for mounting baseboard to garage wall).
Base $\quad 400 \times 300 \times 25 \mathrm{~mm}$ chipboard or plywood sheet.
Electro-mechanical Components
Motor Fracmo 240 Va.c. reversible motor and gearbox, output speed $56 \mathrm{r} . \mathrm{p} . \mathrm{m} .$, output torque $50 \mathrm{lbs} / \mathrm{in}$.
Solenoid $240 \mathrm{Va} . \mathrm{c}$, type, optional if lock is required.

Miscellaneous

Nylon cord, approx, 10 kg minimum breaking strain, about 10 m required; metal disc to prevent cord slipping off gearbox spindle; 2 large nails or screws; assorted nuts, bolts, washers and screws for installation.

This list is intended primarily as a guide and due to the nature of the system and the enormous variation in design of garage doors, it is quite likely that the project will have to be tailored to suit individual needs.

The motor employed was a Fracmo type, with an output shaft running at 56 rpm and a more than adequate torque of $501 \mathrm{~b} / \mathrm{in}$.

A piece of wood measuring $400 \times$ 300 mm may be used to mount the motor and the Control Logic circuit. The motor is bolted to this wooden base, which can then be fixed vertically to the wall at the correct angle. See photograph for layout.

Ensure that the motor winding shaft has no rough edges to cut the cord and drill a small hole in the end of the shaft to take a self-tapping screw to secure a circular disc of metal. This will prevent the cord slipping off the end of the shaft.

Drill and de-burr a hole in the metal disc, so that the cord may be pushed through and fastened. The other end of the cord should be fixed to the door via a spring to even the tension. Leave the cord slightly slack, in the fully open position to enable a few turns to be wound on the shaft.

Fix the wooden base vertically to the garage wall near floor level, and at the correct angle so as to allow the cord to wind neatly onto the shaft.

SOLENOID DOOR LOCK

Lock designs vary even more than garage doors, and again it is impossible to give exact details. A 240 V
mains solenoid is used to unlock the door, and ideally it is to be linked to the existing lock, so that the door may still be unlocked by key in the event of a mains or system failure.
The solenoid used in the prototype was wired across the "door open" motor connections. It was bolted to the garage door in the centre below the lock release plunger. A piece of strong, heavy gauge steel wire linked the solenoid plunger with the lock release mechanism, so that the lock was released as the solenoid energised.

HIGH BRIGHTNESS L.E.D.

A hole should be drilled right through the door frame just below the microswitch, $\mathrm{S8}$, to house the high brightness l.e.d., D14. Insulate the long wires joining the l.e.d. to the Control Logic, before pushing the device fully into the hole, with the wires emerging inside the garage.
A piece of red transparent gel glued in front of the l.e.d. will greatly improve visibility in strong light, or alternatively a complete l.e.d. indicator with lens etc may be purchased.

RECEIVING TRANSDUCER

Park the car in front of the garage, and drill a hole into the garage door frame for the receiving transducer,

Fig. 11. Cut-away drawing of the garage showing the locations of the major mechanical components and electronic units.

ITEMS LIST FOR FIG. 11
1 240V mains reversible electric motor
2 Gearbox and winch
3 Control Logic unit
4 Ultrasonic Receiver unit (transducer is mounted in the door frame)
5 Initial opening mechanism
6 Top bracket
7 Door fully closed switch, S7 (the door fully open switch, S8 is mounted outside the garage at the top of the frame)
8 Lock solenoid
9 Manual open/close pushbutton switch, S5
10 Pulley/weight counterbalance system
11 Wind-up cord/spring incorporating the safety cut-out switch, 54
12 Obstruction safety cut-out switch, S3

Motor, gearbox and Logic unit (items 1, 2 and 3) on baseboard.

Ultrasonic Receiver (item 4) mounted on inside wall.

Receiving transducer (part of item 4) mounted outside in the door trame.

Part of the initial opening mechanism (item 5).

Top bracket (item 6).

Door fully closed switch, S7 (item 7).

Door fully open switch, S8 (not shown in Fig. 11).

Solenoid unlocking mechanism (item 8).

Manual open/ciose switch, S5 (item 9) mounted on inside wall.

Obstruction safety cut-out switch, S3 (item 12) shown actuating on bonnet.

X1, so that it will line up with the transmitter. This hole should be wide and deep enough to flush mount the transducer, and a small hole should be continued into the garage for its lead. A small piece of stiff plastic may be fixed just above the transducer as a rain shield.

Mount the receiver unit on the garage wall near the transducer, and wire it in with the screened cable.

TRANSMITTING TRANSDUCER

The transmitter unit and transducer must be securely mounted inside the engine compartment of the car, such that the transducer has a direct line of sight through the front grille. Note that ultrasonic transducers are fairly directional, and mount the unit at a suitable angle to align with the receiving transducer embedded in the door frame.

A piece of very thin plastic (for example Cling Film) may be used to protect the transmitting transducer from dirt and water. It will reduce the output slightly, but is virtually essential bearing in mind the adverse conditions with which it must contend.

Pulley and weight system (item 10). Note that the front most pulley is mounted in the roof as close as possible to the door frame without fouling the hinge struts, the rear pulley clearing the moving weights away from the corner support.

Fig. 13. System wiring diagram giving all interconnections for installing the Automatic Garage Door. Note that it is not to scale (see Fig. 11 for layout).

Having fixed the transducer and transmitter unit, mount the push button inside the car, and connect it with the transmitter.

Alternatively, the transmitter can be built as a hand held unit with the transducer and switch mounted into the same case as the circuit board and therefore can be used from any vehicle.

POWER CUTS

Unless the garage is accessible through a rear door, some provision should be made in case of a mains power failure, which would, to say the least, be inconvenient! Depending upon the type of spring used, it may be possible to simply inch the door open just enough to allow the spring to be unhooked. Alternatively the spring could be fixed to the door by
means of a bolt which may be un screwed, if necessary, from the outside.

WIRING

Having fitted all the various components, the wiring can commence. The wiring diagram, Fig. 13, used in conjunction with Fig. 11, shows all connections.
Start with the Ultrasonic Receiver, the output, 0 V and 12 V rails going to terminals 1, 2 and 3 respectively, on TB1, Control Logic.
Continue by wiring the microswitches S7 and S8, the l.e.d. D14 and the manual open/close pushbutton switches S5 and S6. As these connections are all in pairs, twin cored cable of the type used for doorbell installation is ideal.

Where possible, run all wires along the same route to assist in lacing
them together when completed. Al joints to be sleeved after soldering.

Now we move on to the emergency cut-out switches S3 and S4, wired from terminals TB1/3 and 4. As both these switches are mounted on the moving door, the wires must be carefully routed via the hinge struts and great care taken to prevent the wires being severed by any moving parts.

MAINS WIRING

When wiring the mains side of the circuit, exercise extreme caution when dealing with the potentially lethal voltages involved. Remember that a garage is a damp environment with a large amount of exposed metal, so on no account at all should any mains terminations be exposed to the elements or enquiring young fingers! The importance of this cannot be overstressed.

For these reasons, TB2 must either be a completely insulated type or mounted inside the Control Logic case with all wires fed through grommeted holes. Also all metalwork, the door, solenoid frame and the motor housing must be properly earthed (by a firmly bolted connection).

For the solenoid wiring, the same precautions must be taken when routing the leads as for the fail-safe switches, as this too is mounted onto the door.

When it comes to the motor connections, follow the manufacturers instructions supplied, remembering that the neutral connection is common, the UP (or "open") will be forward and the DOWN (or "close") will be reverse.

When all wiring is complete, form the wires into a neat bundle and secure them to the door frame or masonry where necessary. Then vigorously check all wires and terminals both visually and with the aid of a continuity tester before applying any power to the circuit. If all is well, the system is ready for a trial run.

IN CONCLUSION

As may have become evident in the description of the automatic garage door, it is extremely difficult to give exact details and dimensions due to the enormous variety of door types and hinge design. However, we hope to have given you enough inspiration to develop the idea to suit your own particular needs, having shown how it can be done

The system illustrated is very much a prototype and has room for improvement, but it does work and very well too. So come on all you budding Heath-Robinsons, armed with the necessary electronics, I am sure even a shuttered type door could be adapted!

RADIO WORLD

By Pat Hawker, gzva

News Gathering

In television broadcasting one of the continuing problems is that of providing "links" back to the studios for pictures of news events from places to which there are no permanent broadband circuits. This can be accomplished today by means of transportable satellite terminals, such as the one built by the 1 BA in 1978 or the more recent BBC unit.
But, at least in Europe, these are still experimental systems, although used from time to time for operational broad. casts from the Channel Islands, a North Sea oil rig and as a temporary link between Madeira and Portugal. There is still no European "domestic" satellite system that includes transponders dedicated to this type of work, and even when this does happen the equipment and satellite costs seem likely to remain quite high.

One of the unanticipated "hazards" of electronic news gathering (ENG) stems directly from the compact size and light weight of the expensive equipment. In the turmoil of news gathering it is sometimes difficult to keep an eye on equipment costing many thousands of pounds. One team recently lost its small colour camera and portable tape recorder and is beginning to believe that ENG stands for 'easily nicked gear'

Slow-Scan

It has always seemed surprising to me that more use has not been made by the broadcasters of high-quality "slow-scan" television systems capable of providing a succession of still pictures over narrowband radio links or even the public switched telephone system. In the 1950s, various "cable TV" systems were devel oped both by the BBC and ITV for sending rather jerky black-and-white film across the atlantic, but with the coming of Intelsat 1 ("Early Bird") these were thankfully abandoned. But even today, with the worldwide satellite system, quite a lot of news reports, for example, consist of a telephone voice set against a "library" photograph of the correspondent or the city concerned.

Yet the development of digital frame stores and digital synchronisers during the past few years could result in much improved slow-scan systems, and this type of approach is now being used in Germany. Brunswick Technical University has developed a process for transmitting colour photographs via the public switch. ed telephone network to allow weather maps to be sent to the Frankfurt television production centre.

The picture is viewed with an ordinary television camera and is displayed on a domestic receiver. The colour image from the camera is stored in a digital memory and then transmitted slowly over the telephone network. Each picture takes 20 . 100 seconds, depending on the quality required, although only 5 seconds are
needed for a less clear picture for recog nition purposes.

British Telecom at their Martlesham research centre are also developing various forms of "narrow-band" television. Radio amateurs have used both black-and-white and colour slow-scan television for a considerable time, but are satisfied with results rather different from the high-quality pictures sought by broadcasters.

Military ingenuity

The very first contact entered in my post-war log was with SVIEC in Athens on February 27, 1946. In the current issue of Mercury the journal of the Royal Signals Amateur Radio Society, vice-president Major General (retd) Eric Cole, CB, CBE, former Director of Telecommunications, War Office, SUIEC and G2EC, tells the story of how SVIEC came on the air.

As Chief Signals Officer, Land Forces, Greece in 1945-46 he arranged, after the German evacuation of Crete, for a large consignment of their signals equipment to be sent to Athens. But while looking it over a 301b generator fell on his foot, resulting in a stay in Hassani Military Hospital.

To while away the time he had an HRO communications receiver installed beside his bed and found to his surprise that. although the amateur bands were still nominally closed, a lot of stations were already jumping the gun on 7 MHz . The Corps transmitters, some miles from the hospital, included a number of much. prized American BC610 transmitters 'the military version of a Hallicrafters pre-war amateur transmitter). An "order-wire" and keying line were soon in stalled.
In his capacity as a national telecommunication authority he allotted himself
the call SVIEC and was soon working stations all over the world. British amateurs were re-licensed for 1.8 and 28 MHz only from January 1, 1946 and soon afterwards British Service personnel in the Mediterranean area were permitted to use four letter callsigns, beginning $\times A$, on the amateur bands.

On the Beam

A few years later, General Cole, while living in a black of flats in Mayfair showed similar ingenuity and determination when objection was taken to his roof-top aerials. He devised a system of three aerials, including a 28 MHz rotary beam, that could all be erected and dismantled at short notice, during darkness or when they were unlikely to be observed by censorous eyes.

At other times all poles and wires were dismantled and could not be seen from the ground 80ft below.

New Emissions

For many years the various types of radio emissions have been classified internationally as part of ITU's Radio Regulations: A1 for CW, A3 for a.m telephony; A3J for s.s.b. with fully suppressed carrier; A5 for television, and so on. But now the old order changeth and is giving place to new.

As a result of the 1979 World Admin istrative Radio Conference a revised list officially came into operation on January 1. What was $A 1$ now becomes $A 1 A ; A 3$ becomes A3E; F1 for r.t.t.y. becomes F1B. In a rather more radical change s.s.b. becomes J3E: f.m. telephony becomes F3A; vestigial-sideband, amplitude-modulated television is C3F.

In front of these basic classifications a further set of hieroglyphics can, when required, be used to indicate the bandwidth of the emission. This is now written according to a code in which the frequency designation is used as a "decimal point"; thus 0.1 Hz becomes $\mathrm{H} 100 ; 400 \mathrm{~Hz}$ is written 400 H ; 2.4 kHz becomes 2 K 4 $1 \cdot 25 \mathrm{MHz}$ is 1 M 25 ; while $5 \cdot 5 \mathrm{GHz}$ would be written 5G5.

Satellite TV

Despite much talk, the outlook for
JK direct-broadcast satellites (DBS) UK direct-broadcast satellites (DBS) one-third share ($£ 77$ million) towards the $£ 230$ million cost of the European Space Agency's L-Sat project which plans to put a large satellite capable of carrying a high-power DBS transponder into geostationary orbit in 1986. But this will be at 19 degrees West, and not the allotted position for a fully operational UK DBS satellite at 31 degrees West.

The L-Sat transponder may in fact be used for a Pan-European system under the aegis of the European Broadcasting Union which has been offered experimental use of a DBS transponder on L-Sat free of charge.
With the support of broadcasters in the UK, Austria, Belgium, Greece, Ireland, Israel, Italy, Malta, The Netherlands, Spain, Switzerland, Turkey and Yugoslavia, EBU are to
make feasibility studies this year (1982) using lower-power distribution satellites. But although these will include transmission of many TV programmes it is not intended that these should be available to the public.

In the meantime there is a growing feeling that before DBS can flourish some way must be found of overcoming at least some of the barriers that make it difficult to provide tele vision programmes across frontiers. This applies particularly to the vital differences in transmission standards and particularly those between the PAL and SECAM colour systems.

One proposal for overcoming this problem has come from IBA engineers, an ingenious system called MAC (Multiplexed Analogue Component). This system, if used for satellite transmission, would provide highquality pictures, in a universal form more suited to the characteristics of satellite transmission.

Producing special effects with a cine camera can be aided by using one or both of the circuits in this article. These are not normally found on medium priced cine cameras.
The obvious use for the Interval Timer would be in time lapse cine, for example, the opening of flowers, fast moving clouds or simulation of early black and white comedy films.

The Frame Counter has rather a different use in as much as mode of operation is shonter but it is still very useful, for example, the inclusion of a Matte, such as a laser shot from a spaceship could be fired on the film where you want it. Using the Frame Counter at the beginning of the first exposure it will tell you the number of frames that have been taken. A backwinder may then be used to rewind the film to the precise position where the second exposure is to take place.

CINE SOCKETS

It should be noted now that not all cine cameras will have the facility to use both circuits. For using the Frame Counter the camera must be equipped with a flash or sync. socket.

This will have a pair of internal contacts that make as each frame is taken.

The Interval Timer can only be used with a cine that has a single frame switch, that is for taking one frame at a time. It must also be of the type which uses an electro mechanical solenoid as the trigger and be connected to an output socket for remote control. This will normally be a 2.5 mm or 3.5 mm jack socket. If in any doubt about either of these sockets, contact your local photographic dealer who should be able to help.

CIRCUIT DESCRIPTION

The complete circuit diagram is shown in Fig. 1. There are two distinct sections, the Interval Timer and the Frame Counter, and could if required be built separately. It must be remembered, however, that IC2 is shared by both sections and so if only building one section, the gates not used should have their inputs connected to the positive supply rail.

ICl forms the basis of the Interval Timer, the 555 device being wired in the astable mode, to provide a very
low frequency square wave oscillator. The speed of this is controlled by VR1.

The pulse from the output, pin 3, is inverted by IC2a and fed to the base of TR1 via R5. Pulses from ICl cause TR1 collector/emitter resistance to rise and fall in sympathy; when low it acts like a switch being closed across SK1 to reach the remote socket on the camera.

The frequency of the output pulses ranges from approximately 1 a second to 1 a minute. To indicate that the timer is working, for setting up purposes, an l.e.d. is connected across ICl output. The l.e.d. in fact is the d.p. pin on Xl.

RELAY OPTION

TR1 can be connected to the camera using the collector and emitter as described above, or alternatively if this method is not favourable then a relay could be in. corporated as shown in Fig. 2. This would of course consume more current so a larger battery or a small 9 volt power pack would be advisable for prolonged use. Each pulse is fed to transistor TR1 which activates the relay and closes its contacts to complete the circuit to the solenoid and so take one frame of film.
IC3 and IC4 are decade counters with 7 -segment display outputs. These are wired together to form a counter from 0 to 99.
The pulses to the clock input to IC4 are derived from the sync. contacts on the cine camera via SK2, switching positive to pin one IC3. So the number of pulses received at SK2 are counted by IC3 and IC4 and displayed on X1 and X2.
R6 and C2 eliminate contact bounce from camera sync. output. R7 holds pin 15 on both IC3 and IC4 to ground (count condition) until Sl is depressed when pin 15 is taken "high" and resets both i.c.s to 00 .

DISPLAYS

The outputs from IC3 and IC4 directly feed displays X1 and X2 whose cathodes are connected to the collectors on TR2 and TR3. Gates IC2a and IC2b and their surrounding components form a square wave oscillator whose output is fed via R11 to the base of TR3 and also to the input of gate IC2d wired as an in. verter feeding the base of TR2 via R10. This circuit grounds each display alternately to function as a simple multiplexer. This keeps the current consumption down, as does the use of cmos i.c.s.

Once the counter reaches 99 the next pulse will reset the display to zero and continue counting.

COMPONENTS

Resistors

R1 470Ω	R4	680Ω	$R 7$	$10 \mathrm{k} \Omega$	R10	$6.8 \mathrm{k} \Omega$
R2	$18 \mathrm{k} \Omega$	R5	$2 \cdot 7 \mathrm{k} \Omega$	R8	$16 \mathrm{k} \Omega$	R11
R3	$1 \mathrm{k} \Omega$	R6	$470 \mathrm{k} \Omega$	R9	$16 \mathrm{k} \Omega$	
All $\ddagger \mathrm{W}$ carbon $\pm 5 \%$						

All \pm W carbon $\pm 5 \%$

Capacitors

C1 $\quad 47 \mu \mathrm{~F} 10 \mathrm{~V}$ tantalum bead
C2, C3 $\quad 0.047 \mu \mathrm{~F}$ miniature sleeved polyester (2 off)

Semiconductors

TCi 555 timer i.c.
IC2 CD4011 CMOS Quad 2-input NAND gates
IC3, 4 CD4033 CMOS decade counter/7-segmeni outputs
TR1 BC109 silicon npn
TR2, 3 BFY50 silicon npn (2 off)
X1, X2 DL704 common cathode 7 -segment displays

Miscellaneous

VR1 $2 \cdot 2 \mathrm{M} \Omega \log$. law carbon potentiometer
S1 momentary action push-to-make switch
S2 miniature single pole on/off switch
SK1 2.5 mm jack socket
SK2 3.5 mm jack socket
B1 9 V type PP3 battery
Stripboard: 0.1 inch matrix size 34 strips $\times 29$ holes; di.i. i.c. sockets: 16 -pin (2 off), 14-pin (1 off), 8-pin (1 off); PP3 battery clip; 22 s.w.g. tinned copper wire (for links); general purpose miniature stranded connecting wire (or ribbon cable-see text); control knob; case, sloping front panelfsize $160 \times 100 \times 60 \mathrm{~mm}$ approx., West Hyde TEK 362 or similar.
REMOTE Option-see text, Fig. 2.
RLA 9 V 410 ohm coil with 1 set of normally open contacts.

Fig. 1. Complete circuit diagram for the Cine Interval Timer and Frame Counter.

Fig. 3. Component layout on the topside of the stripboard.

Fig. 4. Underside details for the circuit board showing breaks in the copper strips Also note the small links across strips

Fig. 5. Wiring to the rear of the front panel. The letters and numbers at the ends of the wires refer to locations on the topside of the circuit board.

ASSEMBLY

The prototype was constructed on a single piece of stripboard, size $87 \times 75 \mathrm{~mm}$ as shown in Fig. 3. First, make all the breaks required on the underside and then mount the i.c. sockets followed by the resistors, link
wires, capacitors and transistors. Do not insert the i.c.s. at this stage. Note that these are cmos devices and the usual precautions should be taken.

In the prototype the flying leads from the board to other case mounted components used ribbon cable for this to keep wiring together and neat. General purpose "separate" hook-up wire can be used here if preferred.

The two displays were glued to a red diffuser (Perspex) using Araldite and this assembly when set glued to the underside of the front panel behind a previously made rectangular cut-out.

If preferred a separate l.e.d. (TIL. 209 for example) could be used in place of the d.p. l.e.d. on Xl
as was used on the prototype. The power supply is a 9 V PP3 battery, but if desired, a socket could be wired in place of the battery clip to allow an external power source to be used.

Finally check all wiring, especially to the cmos i.c. power lines and the displays. If satisfied, insert the i.c.s into their sockets paying special attention to their orientation.

TESTING

Connect up to your camera using suitable leads. With the interval timer first check the polarity of the REMOTE socket and connect SKl so that the more positive lead goes to the collector of TR1. Operate the single frame switch on the cine camera, turn VRl to minimum resistance (fully anticlockwise), switch on and the "monitor" l.e.d. (d.p. or X1) should flash on and off at approximately one second intervals and if connected correctly to your cine camera, the camera should take 1 frame per second.

A stop-watch or other means will be needed to calibrate the scale around VR1.

Connect the Frame Counter to the sync. or flash socket, press reset and manually take 1 frame at a time to check that the counter is counting properly and not jumping. If contact bounce is affecting counting then some experimenting with the values R6 and C2 will be necessary to cure this.

Using both facilities of this unit will be advantageous in time lapse cine as the Frame Counter will show the number of shots taken by the Interval Timer and also allow the "run time" of the film to be calculated.

For example: 96 frames at 24 frame per second=4 seconds. 90 frames at 18 frames per second $=5$ seconds.

Components mounted inside the case and interwired with ribbon cable.

Completed prototype board. The two transist ors in the bottom right have been replaced with more common types.

THE transformer is often regarded in awe as a seemingly complicated and confusing device but in reality, it is a very useful and efficient component.
The first encounter newcomers to electronics are likely to have with transformers will probably be in power supply circuits, but in fact they have applications in many aspects of electronics, including radio, high frequency work and audio circuits. However, here we shall concern ourselves only with the mains power supply.

STEP-UP AND STEP-DOWN

Basically, a transformer is a device for converting one a.c. voltage to another a.c. voltage (note that they will not work with d.c. voltages) and and it can be either converting a low voltage to a high voltage (step-up) or converting a high voltage to a lower one (step-down). It is this latter type which feature mainly in Everyday Electronics as it includes transformers used for stepping down the mains to low voltages.

PRIMARY AND SECONDARY

The input of the transformer is known as the primary winding and the output as the secondary winding ("winding" because the transformer consists of coils of wire wound onto a bobbin).

It is not uncommon for a transformer to have two or more primary or secondary windings and this is best illustrated on mains transformers with two 120 V primary windings. The reason for this being that the transformer can be used on 120 V mains (in Europe for example) or by connecting the two primaries in series, the transformer will work on 240 V (the UK standard).
It is also permissible to join secondary windings together in series, so for example, two 4.5 V secondaries in series will result in a 9 V output.
It is not correct, however, to connect the primary to the secondary, except under exceptional circumstances.

PARALLEL WINDINGS

When considering connecting primary or secondary windings in parallel, you have to look at the current rating of the transformer and this is usually governed by the size of the component and the gauge (thickness) of the wire used.

So for example, if a circuit requiries 12 V at 2 A and the available transformer has two 12 V secondaries rated at 1 A each, these can be wired in parallel to supply the 2 A .

Fig. 1. Circuit diagram of a step-down transformer with two 120 V primary windings connected in series for 240 V mains operation, a centre-tapped 20 V secondary and two 4.5 V secondaries wired in parallel.
Note the two lines down the centre of the symbol representing the metalwork or "laminations" of the transformer. It is also customary to draw fewer "coils" on the low voltage windings.

Fig. 2. Various types of mains transformer. From the front: a $1 \cdot 2 \mathrm{VA}$ sub-miniature with p.c.b. mounting pins; 12VA p.c.b. mounting; 20VA chassis mounting with solder tag connections; 100VA chassis mounting with screw terminals.

Two very important points must be remembered when connecting windings in parallel: (1) they must be of the same voltage, that is, you cannot wire a 9 V winding in parallel with a 12V winding, and; (2) the starts of the windings must be joined together and likewise the two finishes must be connected. If this rule is not observed and the windings are reversed, there will be no output, as the voltages cancel each other, and one very hot transformer!

The same applies to primary windings in parallel.

CENTRE TAPPING

Another form of winding is the centre tapped winding, and this simply means that an extra output voltage can be achieved by literally "tapping" off from a winding without breaking the continuity of the coils. For instance, if a tapping is made half-way up a 20 V winding, 10 V will result at this point.

VA RATING

The power capacity of a transformer is often quoted as a VA rating. This is the total output voltage multiplied by the maximum output current. For example, a transformer with a single 12 V secondary rated at 0.5 A is a 6 VA transformer.
$12 \mathrm{~V} \times 0.5 \mathrm{~A}=6 \mathrm{VA}$
Equally, by knowing the VA rating of a transformer, the maximum current can be calculated by dividing the VA rating by the output voltage. For example, a 20VA transformer with a single 10 V secondary can supply 2 A . $20 \mathrm{VA} \div 10 \mathrm{~V}=2 \mathrm{~A}$
Incidentally, the VA rating is also true of the primary windings, so to calculate the current drawn from the supply on maximum load, simply divide the VA rating for the trans former by the primary (input) voltage. For example, a $12 \mathrm{~A}, 240 \mathrm{~V}$ mains transformer will draw 50 mA from the supply.
$12 \mathrm{VA} \div 240 \mathrm{~V}=0.05 \mathrm{~A}$ or 50 mA

TERMINATIONS

To a large extent, the VA rating will determine the physical size of a transformer, the higher the rating, the bigger the component.

A variety of shapes and methods are available, some of which are illustrated in Fig. 2. Transformers up to about 12VA can be supplied with solder tags or p.c.b. mounting, from 20 VA to 100 VA will almost certainly be too heavy for p.c.b. mounting so therefore they are only available with solder tags and integral fixing bracket. Greater than 100VA will be quite a substantial assembly with mounting frame and terminal block connections.

Micro-processor

 universal TimerThis incredibly versatile programmable timer can control up to 20 functions at accurately timed intervals over a period of a week. Originally developed for industrial and laboratory use it offers many interesting and exciting possibilities for the amateur constructor. Based on a pre-programmed TMS 1000 Microprocessor, the unit provides a 24 hour clock with four independent relay
 controlled outputs with
a programmable period of one week. Up to 20 daily or weekly programmable functions can be set via a keyboard. Any of the timer functions can be assigned to control any one of the four relay outputs thus providing almost unlimited programming possibilities.
No previous experience of microprocessor programming is necessary since the manual explains all the possible operations, clearly and simply. enabling the inexperienced user to be fully conversant within one hour. Completed programme steps are indicated by LED's
The kit comes complete with printed panel and may be installed either as a 'built-in' or a 'free-standing' unit. A stabilised power supply mounted on a separate printed circuit board is supplied with the unit. It requires the addition of a $12 \mathrm{~V}, 1 \mathrm{~A}$ transformer. There is space on the board for up to four output control relays. One is supplied with the kit. Further relays maybe ordered separately as required. Price: lexcluding wooden housing as illustrated) $\mathbf{£ 4 8 . 3 7 \text { inclusive of VAT and DELIVERED FREE on U.K. mainland. }}$
APPLICATIONS
The programmable timer can provide central control of domestic electrical cooking, heating and entertainment equipment.
The possibilities are limited only by the imagination of the user. Control of house lighting to discourage intruders; control of TV or audio equipment; sound or video recording control; automatic plant watering; automatic pet doors or feeding - are a few simple examples. For the professional or industrial user many uses in this area of process control will be found.

TECHNICAL DATA:
Power supply:
Mounted on separate pcb with space for up to four output control relays. Requires 12V/1A transformer.
CONTROL SWITCHING:
Standard relays (one supplied with kit) will switch 2A
Additional relays may be ordered separately.
National relay, order no. HT 12V.
Siemans relay, order no. R1 INV12

MICROPROCESSOR: TMS 1000 DISPLAYS:
12 mm 7 segment LED numerical display. LEO programme function indicators. DIFFICULTY GRADE: 3 KIT NUMBER: K1682

THE VELLEMAN KIT RANGE

2.2 Watt mini amplifier

Mono VU using LED's
7 Watt amplifier
Dimmer 1000 W att
Dimmer 1000 Wart(deparasite)
High precision stopwatch
Microprocessor Universal timer
20 Watt monolithic amplifier
FM oscillator
Stereo VU using LED's
Universal mono pre-amplifier
60 Watt power amplifier
Power supply 1 Amp
Power supply for stereo 60 Watt amplifier
Running light
Digital panel meter
Single digit counter
Transistor ignition
Complex sound generator
50 Hz crystal base
4 channel infra-red remote control (transmitter or receiver)
Infra-red detection system (transmitier or receiver)
Central alarm unit
FM stereo decoder
High quality FM tuner
Digital frequency counter for receivers
CB power supply 3.5 Amp 12 V
Digital thermometer
FM stereo receiver (19 in. rack-mounting)
2 channel infra-red remote control light
dimmer (transmitter or receiver)
Infra-red receiver for tuner K2558
infra-red transmitter for tuner K2558
Tape/slide synchronizer
3 channel coloured light organ
20 cm display (common anode)
20 cm display (common cathode)
Three tone bell
5-14V DC 1 Amp Universal power supply Light computer
Universal stereo pre-amplifier
Stereo RIAA corrector amplifier
Universal 4 digit up/down counter with comparator
Microprocessor doorbell with 25 tunes
40 Watt audio amplifier
Electric drill speed control
Microprocessor-controlled EPROM programmer (kit form)
Microprocessor-controlled EPROM programmer (built and tested)
Universal start/stop timer

Repair Service avallable (for a nominal charge) if your soldering technique is not quite what it should be!

Any technical enquiries welcomed -in writing-and will be answered promptly by letter.

TRADE ENQUIRIES WELCOME

STEREO AMPLIFIER KIT

Featuring latest SGSIA TES TDA 200610 w

 with in-built thermal and short circuit protection- Mullard Stereo Preamplifier Module.
- Attractive black vinyl finish cabinet, $9^{\prime \prime} \times 8 \%^{\prime \prime} \times 3 \%^{\prime \prime}$ (approx) - $\mathbf{1 0 + 1 0}$ Stereo converts to a 20 watt Disco amplifie

Features include just supply connecting wire and solder rophone include din input sockets for ceramic cartridge, mic phones, tape or tuner. Outputs - tape, speakers and headmono disco amplifier with twin deck mixing The a 20 wat orates a Mullard LP1183 pre-amp module, plus power amp assembly kit and mains power supply. Also features 4 slider level controls, rotary hass and trette controls and 6 push button switches. Silver finish fascia with matching knobs and contrasting cabinet. Instructions available, price 50 p. Supplied £14.95 FREE with the kit. Plus $£ 2.90$ p\&p.
SPECIFICATIONS: Suitable for 4 to 8 ohm speakers. Frequency response $\quad 40 \mathrm{~Hz}_{2} \cdot 20 \mathrm{~K} \mathrm{~Hz}_{2}$
$\begin{array}{ll}\text { Input sensitivity } & \text { P.U. } 150 \mathrm{mV} \text {. Aux. } 200 \mathrm{mV}\end{array}$
Tone controls
0.1% typically @ 8 watt
STEREO MAGNETIC PRE.AMP CONVERSION KIT Includes FREE Magnetic cartridge with diamond styli. All components including p.c.b. to convert your ceramic in
Out on the $10+10$ to magnetic, $\mathbf{O} \mathbf{~ O n l y}$ available with $10+10$ amp, $\mathbf{~} 2.00$ includes p\&p.
8" SPEAKER KIT Two 8" iwin cone domestic speakers $£ 4.75$ per stereo pair plus $£ 1.70$ p\&p, when purchased with

PRACTICAL ELECTRONICS CAR RADIO KIT
 -

2 WAVE
 BAND
 $M W$ - LW
 Easy to build
 - 5 push button
 tuning * Modern design
 - 6 watr output - Ready eiched
 and punched PCB. Incorporates suppression circuits
 All the elect - - ic components to build the radio, you supply only the wire and the solder, featured in Practical Electronics March issue. Features: pre-set tuning with 5 push button options, black illuminated tuning scale, The P.E. Travelter h a 6 watt output neg. ground and incorporates an integrated circuit output stage, a Mullard IF Module LP1 181 ceramic litter rype pre-aligned and assembled, and a Bird pre. £10.50 aligned push button tuning unit. Plus $£ 2.00$ p\& Suitable stainless steel fully retractable aerial (locking) and
 speaker (6 " x 4"app.). avaitable as a kit complete. $£ 1.95$ /pack. Plus $£ 1.15$ p \& p

回
 TV

HIGH POWER AMPLIFIER MODULES
 READY BUILT ORINEIT

125 WATT MODEL $£ 10.50$
£14.25
200 WATT MODEL £14.95 £18.95
SPECIFICATIONS: Plus E1.15p\&p Plus £1.15p\&p Max. Output power (RMS) 125 wat 200 W Mor Operating voltage (DC) $\quad 50.80$ max. $\quad 70.95$ max Loads
$\begin{array}{lll}\text { Frequency response } \\ \text { measured @ } @ 100 \text { walts } & 25 \mathrm{~Hz} \cdot 20 \mathrm{KHz} & 25 \mathrm{~Hz} \cdot 20 \mathrm{KHz}\end{array}$ Sensitivity for 100 watts $400 \mathrm{mV} @ 47 \mathrm{~K} 400 \mathrm{mV} @ 47 \mathrm{~K}$ Typical T.H.D.@
50 watts, 4 ohms $0.1 \% \quad 0.1 \%$ Dimensions (both models) 205×90 and $190 \times 36 \mathrm{~mm}$ The power amp kit is a module for high power applica ions - disco units, guitar amplifiers, public address systems and even high power domestic svstems. The unit is protected against short circuiting of the load and is safe in an open

$30+30$ WATT STEREO AMPLIFIER Viscount IV unit in teak simulate cabinet, silver tinished rotary controls and pusthbuttons with matching fascia, mains indicator and stereo lack socket. Functions switch for mic magnetic and crystal pickups, tape and auxiliary. socket $30+30$ watts RMS $60+60$ watts peat and input socket $30+30$ watts RMS, $60+60$ watts peak. For use with Size $14 \psi^{\prime \prime} x 10^{\prime}$ " BUILT AND TESTED.
f32.90
plus $\mathbf{C 3} .80$ p\&p.
TV SOUND TUNER KIT
as featured in E.T.I. December ' 81 issue Kit_{1} of parts including PCB. UHF iuner, I.C. s , all components
excluding case, and selector swith. $£ 11.45+£ 1.50$ p\&op

- Transformer $£ 1.50+\mathbf{£ 1 . 5 0 \rho \& p}$ (p\&p free on rans. ormer if ordered with kit). Ready built LP1 183 Module or simulated stereo operation $£ 1.95+75 p$ p\&p.

CALLERS ONLY

323 Edgware Rd, London W2. Tel: 01-723 8432 Open $9.30 \mathrm{am}-5.30 \mathrm{pm}$. Closed all day Thursday. Persons under 16 not served without parents authorisation
ALL PRICES INCLUDE VAT AT 15\%.

generously rated componenis, result, a high powered rugged unit. The PC Board is back printed, etched and ready to drill for ease of construction and the aluminium chassis is preformed and ready to use. Supplied with all parts, circuit diagrams and instructions.
ACCESSORIES:
Suitable LS coupling electrolytic
for 125 W model f 1.00 plus $25 p$ p \&p
Suitable LS coupling electrolytic $\mathbf{£ 1 . 2 5}$ plus 25 p p\&p
Suitable maine power supply unit for 125 W model
uitable Twin iransformer power
£7.50-plus $£ 3.15$ p\&p
£ 13.95 plus $£ 4.00$ p\&

MONO MIXER AMPLIFIERS

50 WATT six individually mixed inputs for two pick ups (Cer. or Mag.), iwo moving coil microphones and two aux. liary for tape, tuner, organs, etc. Eight slider controls - six or level and two for master bass and treble, four extra treble controls for mic and aux inputs. Size: $13 \frac{1}{2}{ }^{\prime \prime} \times 61 /{ }^{\prime \prime} \times 3 \frac{1}{4}{ }^{\prime \prime}$ app. Power butput 50 watts R.M.S. (continuous) for use with 4 io 8 onm speakers. Attractive
black vinyl case with matching
f39.95 fascia ahd knobs. Ready to use

Plus 13.70 p\&

100 WATT
Brushed
Aluminium
fascia and rot ary controls. Five vertical sliter controls, master volume, tape level, mic level. deck level, PLUS INTERDECK FADER for perfect graduated change from record deck No. 1 to No. 2, or vice versa. Pre fade level controls (PFL) lets YOU hear the nex VU meter monitors in.
100w RMS output (200w peak).
£76.00
MAIL ORDER ONLY
21A HIGH STREET, ACTON, W3 6NG
Note: Goods despatched to UK postal addresses only. For further information send for instructions 20p plus stamped addressed envelope.

ZX PRINTER
Sinclair Research has introduced a new Printer to complement its existing ZX range of personal computers and software. The ZXPrinter is only available direct from Sinclair, mail order, for the sum of $£ 49.95$ including VAT.

Designed by Sinclair exclusively for use with the ZX81

POWER MODULES

One of the leading British designers and manufacturers of encapsulated audio amplifiers, pre-amplifiers and power supplies, ILP Electronics of Canterbury, is in the process of launching a major range of new modular products for home hi-fi and disco constructors. The new audio modules, like the existing range, are all totally compatible with each other and can be combined to create a "tailored" system.
The HD Power Amp modules are a new range of heavy duty Bipolar power amplifiers, specially designed to withstand the heavy usage and potential misuse of disco and guitar amplifier work. Available in a choice of three outputs; 60W, 120W or 240 W per channel (each with or without heatsink), the prices range from just under £20 plus VAT to approximately $£ 39$ plus VAT.
The HY7 mono mixer is an encapsulated unit capable of mixing up to eight signals into one. The HY7 cost £5•15 plus VAT

Other new mixer modules are the HY11 mono mixer, which mixes five signals into one and has provision for bass and treble controls, and the HY69 mono preamplifier with two input channels for magnetic cartridge or microphone with mixing volume, treble and bass control facilities. Price $£ 10.45$ plus VAT

IIP Electronics Ltd, Dept EE, Graham Bell House, Roper Close, Can. terbury, Kent CT2 7EP.

DIGITAL MULTIMETERS

Two new liquid crystal display (LCD) multimeters just introduced onto the market by Lascar Electronics are claimed to be nearly half the price of competing instruments.

The six function, including a diode check facility, in struments have 21 ranges

CHARGE IT

Appearing in the shops now, under the brand name of X-Cell, is a new rechargeable battery designed to replace the existing, fairly expensive 6 V , type 996 , lantern battery.

Developed by NiTech Ltd., a British Company, the bat tery features a "built-in" charging unit, which means that you need no other adaptor or recharging device; you simply plug into the nearest power supply with the leads provided. The units can be directly recharged from almost any mains supply worldwide, or from vehicle, boat or aircraft batteries.

The manufacturers claim that tests have proved that the X-Cell will give a mini mum of 300 and as many as 3,000 charge/discharge cycles at a cost of less than $1 / 10$ of a penny per charge. It is claimed that they cannot be overcharged and connection polarity makes no difference.

Two versions are available, the X-Cell Plus with continuous operation times be tween charges of $\mathbf{3 1}_{2}$ hours
and can resolve voltages to 1 mV , current to $1 \mu \mathrm{~A}$ and resistance to 1 ohm. Autopolarity and auto-zero are standard. The 4 mm input terminals are protected against overloads and transients.
Housed in identical moulded cases, the DP200 model claims a 0.5 per cent accuracy and is available at $£ 27.95$ plus VAT, while the DP2010 model costs $£ 23.95$ plus VAT and claims an accuracy of 1 per cent.

Both types feature a 0.5 in LCD readout with a 200 hour battery life and an indication on the display when the battery needs replacing.

Lascar Electronics Ltd.,
Dept EE, Unit 1, Thoma-
\sin Road, Burnt Mills,
Basildon, Essex SS13
1 LH .

and a retail price of $£ 19 \cdot 95$, and the X-Cell Regular, a light duty household version, at 11_{2} hours and a retail price of $£ 14 \cdot 95$. The X-Cell is guaranteed for three years.

NiTech Ltd, Dept EE, 4 Castle Street, Hastings, East Sussex TN34 3DY.

personal computer, and the ZX80 with retrofit 8 KK ROM the new printer features full alphanumerics and high resolution graphics. A special feature is a Copy command, which prints out exactly what is on the TV screen without further instructions.

Sinclair Research Ltd
Dept EE, 6 Eing's
Parade, Cambridge CB2
1SN.

CALCULATOR WITH PUNCH

A novel design pocket calculator, type BG15, combining the extra functions of a quartz clock with alarm and a realistic electronic boxing game is the latest offering from Casio and available through Tempus.

When switched to the boxing game, the display shows a couple of pugilists in action, throwing and blocking punches to the head and body, swaying to avoid blows, reeling when struck retreating to the ropes, and so on in imitation of a real bout.

One boxer is under control of the player, the other a programmed hitter and de fender. As the player's skill progresses, successive opponents become more robust and competent, as "weight" divisions and handicaps increase.

The calculator automatically keeps score of rounds, points and verdicts.

The Casio BG15 is avail able from Tempus and costs £16. 95.

Tempus, Dept EE, 164/167
East Road, Cambridge CB1 1DB.

Clircuir BECMiMd

MICROPROCESSOR-
 CONTROLLED MUSIC BOXES

This is a modification that can be applied to the Microchime (February 1979) and the Micro Music Box (February 1980).

The TM1000N, MP0027A musical integrated circuit has two switching functions: one to select the tune and the other to select the bank of tunes to be played. Instead of using a three-
position switch for the former I designed a push button unit which gives the project a little more style! The operation of the circuit can be considered as follows:
IC1 is used to "clean up" the pulses made available from S1 to feed IC2. IC2 is a decade counter wired to count from 0 to 2 giving three outputs which are used to control IC3. The bilateral switches in this integrated circuit are operated by these outputs to cause either select 1,2 or 3 lines to be activated. Therefore, together with the common line this part of the circuit functions as a three-way switch.
The unit can be fitted into the existing case taking its power from one or both batteries.
D. Butler, Lexden, Colchester, Essex.

DARKROOM TIMER

This circuit was designed around two timer i.c.s. The 555 is wired as a monostable and the 556 is wired as two astables. The timing period is determined by adjusting VR1. The 556 forms the audio alarm section of the timer, and the 555 does all the timing.

On closing S1, the output (pin 3) of IC2 goes high, thus preventing the 556 from turning on. The l.e.d. will be on, indicating that timing has begun.

When the timing period is over, the l.e.d. will go off as pin 3 (IC2) goes low. At the same time that the l.e.d. goes off, ICla, b switch on and the alarm sounds. The alarm will be short bleeps caused by the switching on and off high frequency oscillator ICla. This is achieved by connecting the output of IClb to the reset pin (4) of 1 Cl a. 1 Clb is oscillating at about 1 Hz . VR1 is 220 kilohm linear.
R. T. Nkambule, Mbabane, Swaziland

COIN FLIP

This is a cheap and novel way of producing an electronic "heads and tails". Not only does it use only one i.c., it is touch sensitive as well. The resistance of one's finger forms the timing resistance and, in fact, if only a very light touch is applied the l.e.d.s can be seen to flip between states. Taking the finger of the touch plate (which can be Veroboard with alternate stips joined) will end the "throw". One l.e.d. has to be labelled "Heads" and the other "Tails"
A. J. Boulton,

Stoney Stanton Leics

ELECTRONIC CHICKENS

Now I know there are kits on the market for electronic chickens, but this one is different! The circuit is a simple multivibrator using common components, is simple to build, and is unique! It is light controlled. So what you say. The ORP12 used has black tape over the window, the circuit is that sensitive!

How to use it: Put it in a box with the PCCl on the outside of the lid, and black tape on the window. Carry the box about in the room to obtain random clucking as it goes in and out of the shadows. It also does the long baaachackle in brightish daylight, near a window. It clucks slowly in the dark, faster in medium dark.

Brian S. Craigie, Edinburgh Scotland

No more wilting houseplants with this soil moisture test. Just place the probes into the soil and it will light up to tell you whether the soil is "too wet" or "too dry". You don't even need green fingers.
No. 11 DIGITAL ROULETTE
The suspense and excitement of the casino in your own home. Just press the button. the circle of lights go round and there is the sound of the roulette wheel as well, both gradually slowing down to reveal the winning number.
No. 12 EGG TIMER
How do you like your eggs done, hard or soft, just set the timer and it will sound when the egg is done to your liking. Long battery life because it switches itself off automatically. So get cracking now! Want to get started on building exciting projects, but don't know how? Now using EXPERIMENTOR BREADBOARDS and following the instructions in our FREE 'Electronics By Numbers' leaflets. ANYBODY can build electronic projects. For example, take one of our earlier projects, a L.E.D. Bar Graph:

You will need. One EXP 300 or EXP 350 breadboard 15 silicon diodes 6 resistors 6 Light Emitting Diodes Just look at the diagram, Select R1, plug it into the lettered and numbered holes on the EXPERIMENTOR BREADBOARD, do the same with all the other components, connect to the battery, and your project's inishea. All you have to do is tollow the large, clear layouts on the 'Electronics by Numbers" leaflets, and ANYBODY can build a perfect working project.

For full detailed instructions and layouts of Projects 10. 11 and 12, simply take the coupon to your nearest GSC stockist, or send direct to us: and you will receive the latest 'ELECTRONICS BY NUMBERS' leaflet.

If you have missed projects, 1, 2 and 3, or 4,5 and 6 , or 7,8 and 9 , please tick the appropriate box in the coupon.

PROTO-BOARDS

The ultimate in breadboards for the minimum of cost Two easily assembled kits.

PB6 Kit, 630 contacts, four 5 -way binding posts accepts up to \$1x 14-pin Dips
PROTO-BOARD 8 KIT $\$ 9.20$

PH 100 Ku complete with 760 contacts accepts up to ten 14-pin Dips, with two binding posts and sturdy base Large capacity with Kit economy
PROTO-BOARD 100 KIT £11.80

EXP 4B E2.30 Four
more bus bars in
"snap-on" unit

The above prices are exclusive of P\&P and 15% VAT

THE GSC 24 HOUR SERVICE TELEPHONE (0799) 21682

With your Access, American Express, Barclaycard number and your order will be in the post immediately GLOBAL SPECIALTIES CORPORATION \square Co
G.S.C. (UK) Led, Dept. 4TT

Unit 1, Shire Hill Industrıal Estete, Saffron Walden, Essex CB11 3AQ.
Tel: Saffron Walden (0799) 21682
Telex: 817477

Sinclair ZX81 Personal Comp

 the heart of a system that grows with you.1980 saw a genuine breakthrough the Sinclair ZX80, world's first complete personal computer for under $£ 100$. Not surprisingly, over 50,000 were sold.

In March 1981, the Sinclair lead increased dramatically. For just $£ 69.95$ the Sinclair ZX81 offers even more advanced facilities at an even lower price. Initially, even we were surprised by the demand - over 50,000 in the first 3 months!

Today, the Sinclair ZX81 is the heart of a computer system. You can add 16 -times more memory with the ZXRAM pack. The ZX Printer offers an unbeatable combination of performance and price. And the ZX Software library is growing every day
Lower price: higher capability With the ZX 81 , it's still very simple to teach yourself computing, but the ZX81 packs even greater working capability than the ZX 80 .

It uses the same micro-processor, but incorporates a new, more powerful 8K BASIC ROM - the 'trained intelligence' of the computer. This chip works in decimals, handles logs and trig, allows you to plot graphs, and builds up animated displays.

And the ZX81 incorporates other operation refinements - the facility to load and save named programs on cassette, for example, and to drive the new ZX Printer

Every 7×91 comes with a comprehensive specially-writen manual - a complete course in BASIC programming, from first principles to complex programs.

Higher specification, lower price -

 how's it done?Quite simply, by design. The ZX80 reduced the chips in a working computer from 40 or so, to 21 . The ZX81 reduces the 21 to 4 !

The secret lies in a totally new master chip. Designed by Sinclair and custom-built in Britain, this unique chip replaces 18 chips from the ZX 80 !

New, improved specification

 - 280A micro-processor - new faster version of the famous $\mathbf{Z 8 0}$ chip, widely recognised as the best ever made.- Unique 'one-touch' key word entry: the ZX 81 eliminates a great deal of tiresome typing. Key words (RUN, LIST, PRINT, etc.) have their own single-key entry.
- Unique syntax-check and report codes identify programming errors immediately.
- Full range of mathematical and scientific functions accurate to eight decimal places.
- Graph-drawing and animateddisplay facilities.
- Multi-dimensional string and numerical arrays.
- Up to 26 FOR/NEXT loops.
- Randomise function - useful for games as well as serious applications. - Cassette LOAD and SAVE with named programs.
- 1K-byte RAM expandable to 16K bytes with Sinclair RAM pack - Able to drive the new Sinclair printer.
- Advanced 4-chip design: microprocessor, ROM, RAM, plus master chip - unique, custom-built chip replacing 18 ZX80 chips.

Built: £69.95

Kit or built -it's up to you!

 You'll be surprised how easy the ZX81 kit is to build: just four chips to assemble (plus, of course the other discrete components) - a few hours' work with a fine-tipped soldering iron. And you may already have a suitable mains adaptor -600 mA at 9 VDC nominal unregulated (supplied with built version).Kit and built versions come complete with all leads to connect to your TV (colour or black and white) and cassette recorder.

16K-byte RAM pack for massive add-on memory.

Designed as a complete module to fit your Sinclair ZX80 or ZX81, the RAM pack simply plugs into the existing expansion port at the rear of the computer to multiply your data/program storage by 16 !

Use it for long and complex programs or as a personal database. Yet it costs as little as half the price of competitive additional memory.

With the RAM pack, you can also run some of the more sophisticated ZX Software - the Business \& Household management systems for example.

6 Kings Parade, Cambridge, Cambe., CB2 1SN. Tㅔ: (0278) $88104 \& 21282$.

Available nowthe $\mathbf{Z X}$ Printer for only £49..

Designed exclusively for use with the ZX81 (and ZX80 with 8K BASIC ROM), the printer offers full alphanumerics and highly sophisticated graphics.

A special feature is COPY, which prints out exactly what is on the whole TV screen without the need for further intructions.

At last you can have a hard copy of your program listings - particularly
useful when writing or editing programs.

And of course you can print out your results for permanent records or sending to a friend.

Printing speed is 50 characters per second, with 32 characters per line and 9 lines per vertical inch.

The ZXPrinter connects to the rear of your computer - using a stackable connector so you can plug in a RAM pack as well. A roll of paper (65 ft long $x 4$ in wide) is supplied, along with full instructions.

How to order your ZX81

BY PHONE - Access, Barclaycard or Trustcard holders can call
01-200 0200 for personal attention 24 hours a day, every day.
BY FREEPOST - use the no-stampneeded coupon below. You can pay
by cheque, postal order, Access, Barclaycard or Trustcard. EITHER WAY - please allow up to 28 days for delivery. And there's a 14-day money-back option. We want you to be satisfied beyond doubt and we have no doubt that you will be.

BUY BRITISH—BUY DOUGLAS TRANSFORMERS MAIL ORDER FROM TITAN TRANSFORMERS \& COMPONENTS

CENTRAL HALL CHAMBERS, DUNCOMBE STREET, GRIMSBY, SOUTH HUMBERSIDE DN32 7EG DEPT. EE PRICES INCLUDE 15% V.A.t. SEND FOR OUR CATALOGUE

METERS: $110 \times 82 \times 35 \mathrm{~mm}$ $30 \mu \mathrm{~A}, \quad 50 \mu \mathrm{~A}, \quad 100 \mu \mathrm{~A}, \quad £ 5 \cdot 90$.
Post 50p.
METERS: $45 \times 50 \times 34 \mathrm{~mm}$ $50 \mu A, 100 \mu A, 1 m A, 5 m A, 10 m A$, $25 \mathrm{v}, 1 \mathrm{~A}, 2 \mathrm{~A}, 5 \mathrm{~A}$
5A. 25 V £2.90. Post 30 p.
METERS: $60 \times 47 \times 33 \mathrm{~mm}$ $50 \mu \mathrm{~A}, 100 \mu \mathrm{~A}, 1 \mathrm{~mA}, 5 \mathrm{~mA}, 10 \mathrm{~mA}$. $100 \mathrm{~mA}, \quad 1 \mathrm{~A}, \quad 2 \mathrm{~A}, \quad 25 \mathrm{v}$, 50 v $50-0-50 \mu \mathrm{~A}, 100-0-100 \mu \mathrm{~A}$. 乏4. 76 . VU meters. ©5-32.
Post on above meters 30p.
Silicone grease 50 q £1.32 Post 14p.

MULTI-METER $7 \mathrm{~N} \quad 360$ TR 20, 2000 ohm/volt DC Volts: $0-1$, $0.5,2 \cdot 5,10-150-$ $250-1,000 \mathrm{~V}$. ACVolts: $10-50$, 250-1,000 RESISTANCE RANGES X1, X10, X1K, X10K

E14.10
P.\&P. 87p

TRANSFORMERS		
240v Primary		
3-0-3v	100 mA	82p
6-0-6v	100 mA	87p
6-0-6v	250 mA	£1-22
12-0-12v	50 mA	92p
12-0-12v	100 mA	E1-15
Post on above transformers 48p.		
9-0-9v	1 A	£1-80
12-0-12v	1 A	£2.40
15-0-15c	1 A	¢2. 60
$6 \cdot 3 \mathrm{v}$	11/A	£1.80
6-0-6v	119 ${ }^{\text {A }}$	¢2. 10

Post on above transformers 87p.

All above prices include V.A.T. Send 80 p for new 1982 fully illustrated catalogue, S.A.E. with all enquiries. Special prices for quantity quoted on request.

All goods despatched within 3 days from recelpt of the order.

158 Bradshawgate, Bolton Lancs. BL2 1BA

UNIVAC KEYBOARD BARGAIN
heral for use with $2 \times 80 / 81$. Has 50 kevs and many other parts
lor vour spares box. Probably cost in excess of $£ 100$. In very lor vour sporss box. Probably cost in excess of $£ 100$. In very
onod used condition $-£ 13.50+£ 2.00$ post. Disgram showing how to connect to $\mathbf{2 X 8 0 / 8 1}$ - $£ 2.00$ extro
COMPUTER DESK

Size approx. $4^{\circ} \times 2^{\circ} \times 26^{\prime \prime}$ high. These were made for hard work, the top being formica covered. Suitable for housing instruments or for use as offike desks. Eeaytifully made, these
cost over E100 each, our price only $£ 11.50$ esch, however, vou cost over Eloo each, ou
must arrange to collect. EXTRACTOR FANS
Mains opersted - ex
$5^{\prime \prime}$ Woods extrector
E5.75 Post E1
Wooks mity
E6. 90 Post $£ 1$
6" Plannair extractor
$4^{\prime \prime} \times 4^{\prime \prime}$ Muffin 115v.
E4.50 Posst 50 p
Mulfin 2300 .

interrupteo beam

 This kit enables you to make a switch that will trigger when a seay beam of in ira red or ordinary light is broken. Moin com.
ponemts- relay. photo transistor, resistors and caps, eft. Donents - relay, photo transistop, resistis
Circult diagram but no coses. Price $£ 2.30$
INSTRUMENT BOX WITH KEY
Very strongly made ©ply. wood sides with hard hoard rop and

 keeping them in s stef place. $E 2.30$. Post paid if ordered with
other goods, otherwise E 1.00 .

ROPE LIGHT

A sets of coloured lamps in t ransiucent plastic fube arranged to
give the sppearance of a running or travelling light. With variable

COMPUTER KEY SWITCHES (make your own keyboard) These ate for making up on op.c.b. and consist of a vertical mount.
ing eomputer fave reed switch, which makec circuit when magnet

 fixed legended ioD in xed. These are made 40 in banks of
6 , price $£ 2.30$ 6, price $\mathfrak{e z . 3 0}$
or berk of 6
(including fops

OUR CAR STARTER ANO CHARGER KIT has no doubt saved many motorists from embarrassment in an emergency you can stan
car off mains or bring your batterv up to full charge in scouple of hours. The kit comprises: 250 w mans tronsformer, iwo 10 amp bridge rectifiers, start/tharge switch and full instructions. You con
assembie this in the evening, box it up or leave it on the shelf in the assembe this in the evening, box it up or leave it on the shelf in the
garage, whichever suits you best Price $E 11.50+E 2.50$ post.
GPO HIGH GAIN AMP/SIGNAL TRACER. In case measuring only 5 Kin $x 3$ \% in $\times 1$ Xin is on extremely high gein (70 d8) solid state amplifier desioned for use as a signal tracer on GPO cabies, etc. Weth a radio it functions very well as a signal trazer, By connecting
a simple coil to the input socket a useful mains cable trecer can be made. Runs on standard 4 \%̌v battery and has input, oulput sockets and on-olt volume control, mounted flush on the top. Many other uses include genersi purpose amp, cueing amp, etc. An absolute
bergain ut only $£ 1.85$. Suitable 80 ohm earpice 69 p .
FREE
OUR CURRENT BARGAIN LIST WILL be Enclosed with All orders.

3 CHANNEL SOUND TO LIGHT KIT
complete kit
parts for a
threechannel
sound rolight
unit controll-
ing over 2000 ing over 2000
watts of light. ing. Use this

you wish but
is plenty rugged enough for disco work. The unit is housed in an attractive two-tone metal case and has controls for each channel, and a master on/off. The sudfo input and output are by $1 / 3^{24}$ sockets and three panel mounting fuse holders provide thyristor ing lamps. Special snip price is $£ 14.95$ in kir form or $£ 25.00$ assembled and rested.

MULLARD UNILEX A mains operated $4+4$ ster
system. Rated one of the tinest performers in the stereo field this would
 almost anyone. In easy to assemble mudular form this should sell at about $£ 30$ - but due to a special bulk buy and as an in. tem complete at only $£ 16.75$ including VAT and posi FREE GIFT - buv this month and you will receive a pair of
Goodman's eliptical $8^{\prime \prime} \times 5^{\circ}$ speakers to match this amplifier.

ITHIS MONTH'S SNIP
 POCKET AUDIO COMPONENT TESTER

THERMOSTAT ASSORTMENT
10 different the mostats. 7 bi metal tvpes and 3 liquid types There are the current stats which will open the switch to protect devices against overload, short circuits, etc.. Or when fitted say
in front of the element of a blow heater, the heat would trip the stot if the blower fuses; appliance siats, one for high temp the stet if the blower fuses; appliance siats, one for high temp.
erstures, others adjurtable over a range of temperatures which ersuld include $0-100^{\circ} \mathrm{C}$. There is also a thermostatic pod which
cold can bo immersed, an oven stat, a calibrated boiler stat, finally an ice stat which, fitted to our waterproot heater element, up in the loft could protect your pipes from freezing. Separately, these
thermosiats could cost around $£ 15.00$. however, you can have thermostars could cost around $£ 15.00$ - however, you can hav the parcel for $\mathbf{E 2 . 5 0}$.

6 WAVEBANO SHORTWAVE RADIO KIT Bandkpread covering 13.5 to 32 metres. Based on circule which cludes case materlals, six transistors and diodes, condensers, resist ors, inductors, switches, etc. Nothing else to buy If you have an amplifler to connect it to or a pair or high resistance heacophones Price £11.95.
MEDIUM \& 2 SHORT WAVE CRYSTAL RADIO
All the parts 10 make up the beginner"s mordel. Price E2.30. Crystel earplece 65 p . High resiarance headnhones (gives best results) e3. 75.
Kit includes chassis and froni bur nor case.

TRANSMITTER SURVEILLANCE
Tiny, easlly hidden but which will enable conver sation to be plcke up with FM radio. Can be made in a matchbor- all olectronic
parts and circuit. $£ 2.30$. (Not licenceable in the U.K.). RAOIO MIKE
Ideal for discos and garden parties, allows complete freedom of movement. Play through FM radio or tuner amp. $\mathbf{E 6 . 9 0}$ comp. kit
(Not licenceable in the (Not licenceable in the U.K.)
RADIO STETHOSCOPE
Easy to fault find - start at the aerial and work towards the speaka
MUGGER DETERRENT
A high-note bleeper, push tatching switch, plastic case and bottery connector. Will scare away any villain and bring help. $\mathbf{E 2 . 5 0} \mathrm{com}$. POPULAR SNIP - STILL AVAILABLE

And it still carries a free gift of a desoldering pump, which we are currantly selling at $\mathrm{E6} .35 \mathrm{~F}$. The snip is perhaps the most useful
breakdown percel we have ever offered. It is a parcel of 50 nearly aff different computer panels containing parts which must have cost is least E500. On these boards you will find over 300 ICs. Over 300 diodes, over 200 transistors and se ver al thousand other paris, resistors, condensors, multi-turn pots, recifiers, SCR, etc.
etc, If you aci promptly, you can have this parcel for onty $\mathbf{E 8 . 5 0}$, which when you deduct the velue of the desoldering Dump, works out to just a litite over 4p per panel. Surely this is a bargain you should not miss!

BURGLAR ALARM CONTROL PANEL Contains labelled connection block, latching relay, test switch and removable key control switch. Simplifies the whole instalation, bell. Price 57.95 , with complete diagram.
MINI MONO AMP on p.c.b. size 4 " n for a tone control should you require ior a thene control should vou
it. The amplifier has three the output to be $3 W \mathrm{rms}$. More technical data will be included with the amplifier Brand new, perfect condition Offered at the very low price:
$£ 1.15$ each, or 10 for $£ 10.00$.
 DELAY SWITCH Mains operated - delay can be accurately set with pointers knob for periods of up
to 2% hrs. 2 contacts suirable to switch 10 amps - second contact opens a few min. utes after 1 si contact. E1.95.

TIME SWITCH BARGAIN
Large elear mains rrequency controlled clock, which will always show you
the correct time $\&$ start and stop switch. es with dials. Complete with knots. £2.50.

LEVEL METER

Size approximateiv \%" square, scaled signal and power but cover easily removable for
rescaling. Sensitivity 200 uA. 750 .

WATERPROOF HEATING WIRE
60 ohms per vard, this is a heating element wound on a fibre glas coil and then covered with p.v.c. Dozens of
pipes, under grow boxes in gloves and socks.
TANGENTIAL BLOW HEATER 2.5 Kw quiet,
efficient instant heating from
$230 / 240$ volt
mains. Kit co of blower as
illuatrated, 2.5 Kw

12V SUBMERSIBLE PUMP
Wust join it to your car battery, drop it into the licuuid to be moved and up it comes, no messing about, no priming, etc, and you get a and up it comes, no messing about, no pritming, eic, and you gei noncorrosive liquid. One use
a shower. Price: $\mathbf{8 8 , 5 0}$

VENNER TIME SWITCH

Mains operated with 20 amp switch, one
on and one off per 24 hrs. repeats daily on and one off per 24 hrs, repeats daily ing or shortening day. An expensive time switch but vou can have it for only $\mathbf{E} 2.95$. These are withour case, but we can supply
metal case with window $\mathbf{2 . 9 5}$. Also available is adaptor kir 10 . Also available is adaptor kit to convert This into a normal 2athr. time switch bul
with the added advantage of up to 12 on
offs per 24 hrs. This methe olfs per 24 hrs . This makes an ideal controller for the immersion heater. Price of
adaptor kit is $£ 2.30$. Post any or all items $£ 1$.
12V FLUORESCENT LIGHTING

FIVE UNUSUAL SWITCHES
For inventors, experimenters, service engineers, students or in contains: - delay switch - motor driven switch - two way and off switch - polarity changing switch - and humidity switeh. Our regular price for these switches bought separately is over $£ 10$, but this month you can have the $\mathbf{5}$ for $\mathbb{E} .50$.
SPIT MOTORS

These are powerful mains operated induction motors with gear box
attached. The final shaft is a with square hole, so you have alternative couplingmethods - tinal speed is approx. 5 revs $/ \mathrm{min}$, price est.50. -
Similar motors with final peeds of Simliar motors with final speeds of $80,100,160 \& 200 \mathrm{r}$.p.m. same price.

COMPONENT BOARD

Ref. WO998
This is a modern fibreglass board which contains a multitude of very useful parts, most important of which are: 35 assorted diodes
and rectliers including 4 3amp 400 types (made up in bridge) 8 transistors type BC 107 and 2 type BFY 51 eiectrolytic concensers SCR ref 2N 5062, 25 Ouf 100v DC and 100uf 25v DC and over 100 other parts including variable, fixed and wire wound res
electrotytic and other condensers. A real snip at $£ 1,15$.
J. BULL (Eilectrical) Ltd.
(Dept. EE), 34 - 36 AMERICA LANE, HAYWARDS HEATH, SUSSEX RH16 3OU. 30 YEARS

EleGrionale

CATALOGUE ' 82
 ESSENTIAL READING FOR: THE ELECTRONICS ENTHUSIAST
 THE COMPUTING FREAK THE EQUIPMENT MANUFACTURER
 PACKED WITH INFORMATION ON MORE THAN 6,000 STOCK ITEMS: ACTIVE AND PASSIVE COMPONENTS,BOXES,CASES, COMPUTER HOUSINGS KNOBS, POTS, SWITCHES, RELAYS.
 EVERYTHING FROM RDS AND C's TO COMPUTING SYSTEMS
 FOR YOUR COPY OF CATE. LOGE 82 please send 700 (includes 70 p voucher to be reclaimed against orders valued $£ 10 \cdot 00$ or over).
 ALL ITEMS BRAND NEW AND GUARANTEED SPEEDY MAIL ORDER service
 No P/P charges on U.K. C.W.O. (add 40 p handling charge if under).
 PLEASE ADD 15% V.A.T. TO TOTAL VALUE OF ALL ORDERS
 FOR EV BARGAINS LIST and

4007
4008
400
4010
40
40
40
40
40
40
40
40
40
40
40
40 4008 BE
4009 BE
4010 BE
4011 BE 4011 BE 40138 E
4014 BE 40158E
016 BE 4017BE 0188E 020 BE
021 BE 4022 40248 E 402 40278E
4028 BE 40298E
4030 BE $40418 E$
4042 BE 404 $40448 E$
4046 BE 4046
4049

 | $4060 B E$ | $133 p$ | $74 L S 145$ | $120 p$ | $79 L 0(14 / 15 / 24$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $4069 B E$ | $23 p$ | $74 L S 148$ | $165 p$ | 723 (14 p ln) | $40708 E$ 40938 E

45108 E 4511 BE
4514 BE 45168E
4518BE 4520 BE
4543 BE SHOP HOURS 9-5. 30 D.m. (1 pm. when writing or ordering by pos:

ELECTROVALUE

ANADNTCNTIS A NE TV SIETIT

This 5 volume set contains over 500 pages

Bound in stiff linen. Cover size $8 \mathrm{Kin} \times 5$ in
Price £ 10.00 per set (we pay the postage).
Book 1. Introducing Electronics Book 4. Mesers/Voltage-dividers Book 2. Resistors/Capacitors Book 5. Transistor Project Circuitry Book 3. Inductars/Diodes
The manuals are unquestionably the finest and most up-to-date available and represent exceptional value
This series has been written in a fascinating, absorbing and exciting way, providing an approach to acquiring knowledge that is a very enjoyable experience. Suitable for industrial trainees, City and Guilds students, DIY enthusiasts and readers of electronic journals.
Each part explains electronics in an easy-to-follow way, and contains numerous diagrams and half tone blocks with construction details and circuit diagrams for making the following transistor projects: Lamp Flasher, Metronome, Wailer, Photographic/Monostable Timer, Metal Locator, Geiger Counter, Radio Receiver, Intercom., Intruder Alarm, Electronic Organ, Battery Eliminator, Anemometer Sound Switch, Light and Water-operated Switches, Pressure-operated Switches, Light meter, Radio Thermometer, Ice Alarm.

Order now:
Selray Book Company
11, Aspen Copse,
Bromley
Bromley,
Kent, BR1 2 NZ

Amount enclosed: $£$
Name:
Please allow 14 DAYS' Delivery

Address:

JONI UP WITH: HYYFSOTD

Litesold 's new 'L' Series soldering iron - now at a bargain price
Outstanding performance. Lightweight. Easy to maintain.
Elements are enclosed in Stainless Steel shafts. insulated with mica and ceramic. Non-selze interchangeable bits. choose from "copper' or 'long life: A very special tool al a very special 'direct' price. Just $£ 5.22$ for iron fitted with 3.2 mm copper bit. Just \&2. 27 for 3 spare copper bits ($1.6: 2.4 ; 4.7$).
A mere 54 for professional spring stand! or buy the lot for 510.34 and save 10%.

LIGHT SOLDERING DEVELOPMENTS LTD
All prices inc. VaT P seP.
.
 ester Road. Croydon CRO 2DN or phone 016890574 for Barclaycard/Access sales.

THE NEW 1982 CASID world BEATERS

WE WILL BEAT ANY LOWER ADVERTISED PRICE BY 5% providing the advertiser has stocks

AVAILABLE SOON - THE SENSATION OF THE JAPANESE MUSIC SHOW

Designed by a genius, controlled by computer, programmed by a laser Played by amatours professionally and by professionals superbly.

THE NEW CASIOTONE 701

The complete programmable polyphonic keyboard for around $\mathbf{5 5 0 0}$ Price and dellvery on application. (Available very earty 1982
Provisional specification
Input an entive pieca of music, specualy scored in bar code and read by a light pen atrached to the instrument.
Alternatively, program your own melodies, chords and timing into the extensive mernory, (up to 5 minutes or more) with full editing
-WAY PLAYBACK
1/Auto playback of the entire piece; melody, chord, bass and thythm with arpeggio; following the music via lamps above the keys.
$2 /$ Auto accompaniment only, with manual melody playing guided by the keyboard lamps 3/ONE Kht up to indicate ine next note to be played.
3IONE KEY PLAY facility: allows the melody line to be played. simply by siroking one
The 5 octave polyphonic keyboard can be split into 2 and 3 octaves and a different voice can be used for the accompaniment
20 breathtaking, clear and bright pre-ser instruments and voices

* Easy play Casio Auto Chord with chords and auto bass. Major, minor, 7th or minor 7th chords - fingered or auto memory facility.
16 superb rhythm accompaniments with fill-in variation by touch sensitive strip and 2 different percussion effect buttons.
NEW MT-31. 3 ocraves, 22 instruments and voices. (RRP f79)

NEWMT-40. As MT-31 plus rhythms and suto chords/bass. (E125)
Other Cesiotones: CT-101 f225. CT-202 E275. CT-403 £275. VL-1 335.95.
NEW CASIO FP-10 PRINTER

(RRP £49.95)
AN INCREDIBLE 844.95
Compatible with the FX-601P, FX-602P, FX-601P, FX-602P and FX-702P Manusl and program results printout. Memory and program listing. FP- 10 electric discharge mini printer. A remarkably claar 5×7 dot matrix printout of 20 characters per line. Up to 30 chsracters store/printout over 1 k lines, with overload symbol. Fast 2 lines/second print speed. Aluminisad paper rolts are approx 2,500 lines/30 feet long. Connects directly to the calculator, or vie FA-2 casserte interface. Four AA batteries will print approx. 6,000-9,000 lines. Rechargeable pack NP-4M, 13,000 lines. (E6.90) AC adaptor AD4150 will recharge NP.4M, in situ. (E5). Printer rolls $£ 2.50$ per pack of five. Dims: $43.5 \mathrm{H} x$ $157.5 \mathrm{~W} \times 82.50\left(1 \%^{\prime \prime} \times 6 \%^{\prime \prime} \times 3 \%^{\prime \prime}\right)$ weight $372 \mathrm{~g}(13.102)$.
FX 602P. 512 program steps. With FREE MICROL PP (E9.95) $\mathbf{6 7 4 . 9 6}$ FX-702P. Basic pocket computer. 1660 to 80 program stops, 26 to 226 memories, volatile. FREE MICROL PPP.

DISCOUNTS ON SOFTWARE WHEN YOU BUY YOUR HARDWARE FROM US MOST OTHER CASIO CALCULATORS - LOWEST UK PRICES

CASIO'S INCREDIBLE BOXING GAME BG-15 Calculating Alarm Clock

ONLY £16.95 Display

Fight up to 100 challengers of 10 different weights and increasung speed and technique. All the realism of the ring with eight 30 -second rounds per bout, with points scoring. You must win every bout on points or by KO to continue the game - scores are incremental. Raise or ower your guard in defence and attack, sway back to avoid a blow, or forward for maximum power. Throw stamina sapping combination punches (with digital display of stamina rating), high scoring counterpunches, knock-down and knock-out blows and lucky punches. You can ven be saved by the bell! Digital display of hours, minutes and seconds. 24 hour alarm est approximately 18 months $7.3 \times 68.5 \times 113.7 \mathrm{~mm}\left(5 / 16 \times 25 / 8 \times 43 / 2^{\prime \prime}\right)$. $66 \mathrm{~g}(2.3 \mathrm{oz})$ With wallet.

NEW SPACE INTERCEPTOR WATCH

GM-10 Alarm Chronograph (RRP £22.95) £19.95
LCD readout of hours, minutes and seconds, with continuous display of Space Interceptor graphics. Automatic day, date and month calendar function. Daily alarm mode. with hourly time signal option. 1/100 second stopwarch measuring net, lap and ist and 2 nd place times to 1 hour

INTERCEPTOR GAME
The UFO beams, travelling from left to right, heve to be intercepted by changing the altitude of your defences and firing an interceptor along the beam. A number will light up in the zone of the hit and when 4 zones are lit up a high bonus game starts. Shoot down 16 UFOs Withour losing 3 missiles and the next, speeded up, round starts
Sound effects are incorporated.
Sound elfect are incorporated
One lithium battery lasts approx 15 months. Black resun case/strap. Metal berel. Mineral glass tace.

World's Most Versatile Alarm Chronograph Watch AX-210

10 Alternative disploys: over 60 functions. LCD ANALOG display of tume, plus: DIGITAL display of: Time 112 or 24 hour); Calendar; Fuh monit calendar (this month and next month); Dual time 112 or 24 otc. Hourly ime; Professional $1 / 100$ second stopwaten with laps melodies. Rapid fonward/backward setting. $9.4 \times 35.4 \times 36 \mathrm{~mm}$.
(RRP £34.95) ONLY £29.95

CASIO'S NEW JOGGING WATCH J-100 PACE RUNNER

Sets the pace for 1982

Displays hours, minutes and seconds (12 or 24 hours system), day and date. Auto calendar; calculator: professional $1 / 100$ second stopwatch measuring net, laps and 1 st and 2nd place times; Pacer moda. Can be used as a metronome to pace your running, or any other event inpur data: Length of stride. Pacer signals, from 394 pips per minute to 63 pips per minute
Outpur data: Elapsed
of strides, and speed.
(RRP £22.95) ONLY £19.95

OTHER CASIO WATCHES

F-82£10.95 A-851 14.95 W-200£17.95 W. $100 〔 19.95$ CA-90 £19.95 W150C $£ 21.95$ W-51 222.95 W150 24.95 AN-8GLE24.95 CA-901 29.95

SHORT FORM CATALOGUE of latest calculators, key

 boards and watches available on request. I4p stamp appreciated.
Make the connection with Access

and receive a regular postal delivery of Everyday Electronics．It＇s easy，it＇s straightforward and it＇s quick． Just use the subscription order form to get your Access card account charged with the price of a subscription or order your subscription through Access on the phone （01） 8866433 ．If you pay by cheque or postal order，use the subscription order form in the usual way．

SUBSCRIPTION ORDER FORM

I wish to become a subscriber to Everyday Electronics for one year and enclose cheque／ postal order value
no．． made payable to IPC Magazines Ltd

Complete this portion if you are using your Access card account．I authorise you to debit my Access card account with the above amount．

My Access no．is \square （Block letters please） \qquad

Subscription Rates：

UK，Isle of Man，Channel Islands and Irish
Republic £11

Overseas £12

Unless you are phoning your order，complete and post this order form to：
Everyday Electronics， 2613 King＇s Reach Tower， Stamford Street， London SE1 9LS

TECHNICAL TRAINING IN ELECTRONICS AND TELECOMMUNICATIONS

ICS can provide the technical knowledge that is so essentlal to your success： knowledge that will enable you to take advantage of the many opportunitie open to you．Study in your own home，in your own time and at your own pace and if you are studying for an examination ICS guarantee coachin：

City and Guilds Certificates： Telecommunications Technicians Radio，TV，Electronics Technicians Technical Communications Radio Servicing Theory Radio Amateurs
Electrical Installation Work MPT Radio Communications Certificate

Diploma Courses：

Colour TV Servicing
Electronic Engineering and Maintenance Computer Engineering and Programming Radio，TV，Audio Engineering and Servicing Electrical Engineering，Installation and Contracting

POST OR PHONE TODAY FOR FREE DOOKLET

To：International Correspondence Schools

Dept 268R Intertext House，London
SW8 4UJ or teiephone 6229911
Subject of Interest
Name
Address
Age：．

ELECTRONIC IGNITION KIT

TOTAL ENERGY DISCHARGE seectronic
ignition gives all the well known advantages of the best capacitive discharge systems.

PEAK PERFORMANCE —— higher output voltage under all conditions.

IMPROVED ECONOMY no loss of ignition performance between services.

FIRES FDULED SPARK PLUGS no other system can better the capacitive discharge system's ability to fire fouled plugs.

ACCURATE TIMING ——_ prevents contact wear and arcing by reducing load to a few volts and a fraction of an amp.

SMOOTH PERFORMANCE _- immune to contact bounce and similar effects which can cause loss of power and roughness.

PLUS

SUPER POWER SPARK $31 / 2$ times the energy of ordinary capacitive systems $-31 / 2$ times the power of inductive systems.
OPTIMUM SPARK DURATION 3 times the duration of ordinary capacitive systems - essential for use on modern cars with weak fuel mixtures.

BETTER STARTING _ full spark power even with low battery.
CORRECT SPARK PDLARITY unlike most ordinary C.D. systems the correct output polarity is maintained to avoid increased stress on the H. T. system and operate all voltage triggered tachometers.
L.E.D. STATIC TIMING LIGHT for accurate setting of the engine's most important adjustment.
LOW RADIO INTERFERENCE fully suppressed supply and absence of inverter "spikes' on the output reduces interference to a minimal level.

DESIGNED IN RELIABILITY an inherently more reliable circuit combined with top quality components - plus the "ultimate insurance" of a changeover switch to revert instantly back to standard ignition.

IN KIT FORM
it provides a top performance
electronic ignition system at less than half the price of competing readybuilt systems. The kit includes everything needed, even a length of solder and a tiny tube of heatsink compound. Detailed easy-to-follow instructions, complete with circult diagram, are provided - all you need is a small soldering iron and a few basic tools.

AS REVIEWED IN ELECTRONICS TODAY MAGAZINE JUNE ' 81 ISSUE
Quote "the kit is very impressive"
"well written instructions and a good performance" "Exellent value for money. Highly recommended".

FITS ALL VEHICLES, 6 or 12 volt, with or without ballast NEGATIVE EARTH ONLY

OPERATES ALL VOLTAGE IMPULSE TACHOMETERS Some older current impulse types (Smiths pre '74) require an adaptor PRICE $£ 2.95$

STANDARD CAR KIT £14.85
 PLUS £1 TWIN OUTPUT KIT £22.94

For MOTOR CYCLES and CARS with twin ignition systems
BARCIAKCARD
Prices inctude V.A.T
ELECTRONIZE DESIGN
Magnus Road, Wilnecote,

DIMENSIONS:

Length $\quad 12.5 \mathrm{~cm}$
Width $\quad 8.9 \mathrm{~cm}$
Height $\quad 4.3 \mathrm{~cm}$
Lead length 100.0 cm

TECHNICAL DETAILS

The basic function of a spark ignition system is often lost among claims for longer "burn times" and other marketing fantasies. It is only necessary to consider that, even in a small engine, the burning fuel releases over 5000 times the energy of the spark, to realise that the spark is only a trigger for the combustion. Once the fuel is ignited the spark is insignificant and has no effect on the rate of combustion. The essential function of the spark is to start that combustion as quickly as possible and that requires a high power spark

The traditional capacitive discharge system has this high power spark but, due to it's very short spark duration and consequential low spark energy, is incompatible with the weak air/fuel mixtures used in modern cars. Because of this most manufacturers have abandoned capacitive discharge in favour of the cheaper inductive system with it's low power but very long duration spark which guarantees that sooner or later the fuel will ignite. However, a spark lasting $2000 \mu \mathrm{~S}$ at $2000 \mathrm{rev} / \mathrm{min}$. spans 24 degrees and 'later' could mean the actual fuel ignition point is retarded by this amount.

The solution is a very high power, medium duration, spark generated by the TOTAL ENERGY DISCHARGE system. This gives ignition of the weakest mixtures with the minimum of timing delay and variation for a smooth efficient engine.

SUPER POWER DISCHARGE CIRCUIT A brand new technique prevents energy being reflected back to the storage capacitor, giving $3 / 2$ times the spark energy and 3 times the spark duration of ordinary C.D. systems, generating a spark powerful enough to cause rapid ignition of even the weakest fuel mixtures without the ignition delay associated with lower power 'long burn' inductive systems.

HIGH EFFICIENCY INVERTER A high power, regulated inverter provides a 370 volt energy source - powerful enough to store twice the energy of other designs and regulated to provide sufficient output even with a battery down to 4 volts.
PRECISION SPARK TIMING CIRCUIT This circuit removes all unwanted signals caused by contact volt drop, contact shuffle, contact bounce, and external transients which, in many designs, can cause timing errors or damaging un-timed sparks. Only at the correct and precise contact opening is a spark produced. Contact wear is atmost efiminated by reducing the contact breaker current to a low level - just sufficient to keep the contacts clean.

TYPICAL SPECIFICATION

SPARK POWER (PEAK)	140 W	90 W
SPARK ENERGY	36 mJ	10 mJ
(STORED ENERGY)	135 mJ	65 mJ
SPARK DURATION	$500 \mu \mathrm{~S}$	$160 \mu \mathrm{~S}$
OUTPUT VOLTAGE (LOAD 50pF \quad EQUIVALENT TO CLEAN PLUGS)	38 KV	26 KV
OUTPUT VOLTAGE (LOAD 50pF + 500 KR \quad EQUIVALENT TO DIRTY	26 KV	17 KV
VOLTAGE RISE TIME TO 20 KV (Load 50pF)	$25 \mu \mathrm{~S}$	$30 \mu \mathrm{~S}$

TOTAL ENERGY DISCHARGE should not be confused with low power inductive systems or hybrid so called reactive systems.

Whatever your interest, skill or ambition in this traditional craft, you will find every facet of working in wood reflected here. Timber and tools, machinery and materials, plans and planes, clocks and clamps, dowels and drills, fittings and furniture, abrasives and adhesives - everything for everybody who ever works with wood.

THE CRAFT MARKET PLACE is the unique centrepiece of this exhibition. Here, you can see - and buy if you wish - a wide range of beautiful items in wood showing what has been achieved by just some of the followers of the craft of woodworking. See for yourself how this absorbing hobby can also be profitable!

WEMBLEY CONFERENCE CENTRE February 4-7, 1982

February 4-6, 10am-7pm February 7 (Sunday), 10am-6pm
PRACTICALMOOD
 Children under 16 and Senior

To get your party rate tickets phone in advance to: The Exhibition Manager, Practical Party rates: (groups of 20 or more) Woodworking Exhibition on Adults- $£ 1.30$ Children-80p (01)-643 8040. (plus one free ticket per 20 tickets sold or apply at the door. for the organiser or teacher)

Bring yourself-and the family - and join in all the action!

It's easy
 to complain about advertisements.

COMPONENTS AT REALISTIC PRICES

 DIODESAA1207p. BA102 13p. BA154 10p. BA155 12p. BY 128 \%p. BY127 11p. BY133 13p. BY 178 esp.
 BILICDNRECTIFIERS
$200 m$ A $50 \mathrm{~V} 15920 \mathrm{Sp} .100 \mathrm{~V} 15921 \mathrm{cp} .200 \mathrm{~V} 15023 \mathrm{IP}_{\mathrm{D} .} 1$ AMP. 50 V IN 40014 P . 100 V IN4002 4p.
 200 V INS402 12P. (BARGAIN PACK OF 23 IN40ce Unmarked \& Preformed $12 \cdot 5 \mathrm{~mm} 5 \mathrm{sin}^{2}$). TRANEISTORE
AC12s 10p. AC12sK 23p. AC153K 35p. AC178K 35p. AD149 64p. AD161 25p. AD1e2 3p.

20 mm Glmes Reod Swithes (Gold Plated) 10 for S0p, e30 per 1,000.
TANT BEADS, Price 10 Of (10 Off)
 $12 p$ (19p). 3.3/16 12p (10p). 4-7/6 12p (10p). $4.7 / 3515 p$ (14p).6.8/2s 14p (12p). 6-8/35 15p (14p). $10 / 1610 p(15 p) .22 / 6310 p(14 p) .22 / 102 p(17 p) 22 / 1625 p(22 p) .33 / 1025 p(24 p) .47 / 6.325 p$
 Value fe. ©.
P. $A P$. Add
P. AP. Add SOp PEP
(MAIL ORDER ONLY
C. H. J. SUPPLIES

4, STATION RD., CUFFLEY, HERTS. 01-440-8059.

NAMAL ELECTRONICS

No. 1 Claygate Road, Cambridge CB1 4J2.
Tel: 0223 248257 Telex: 817445

2716	2732	21				

NEW!

INTRODUCTORY OFFER $\mathbf{£ 3 0}$

 16K Ram expansion bowd for 2 X 81. Simply pluge into the exlsting expansion port of your computer to increase programme storage.
MASHMFR THFGMPIONICS NOW! The PRACHICAT way!

This new style course will enable anyone to have a real understanding of electronics by a modern, practica and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to start or further a career in electronics or as a self employed servicing engineer.
All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write personally at any time, for advice or help during your work. A Certificate is given at the end of every course.
You will do the following

-Build a modern oscilloscope

- Recognise and handle current electronic
components
Read,draw andunderstand circuit diagrams
- Carry out 40 experiments on basic electronic circuits used in modern
cquipment
- Build and use digital electronic circuits and current solid state 'chips'
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V Hi -Fi and microprocessor/computer equipment.

NewdOb?NewCareer?NewHobby?Getinto Electronics Now!

CLASSIFIED

The prepaid rate for classified advertisements is 28 pence per word (minimum 12 words), box number 60p extra. Semi-display setting £7.24 per single column centimetre (minimum 2.5 cm). All cheques, postal orders, etc., to be made payable to Everyday Electronics and crossed "Lloyds Bank Ltd." Treasury
notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Everyday Electronics, Room 2337, IPC Magazines Limited King's Reach Tower, Stamford St. London SE1 9LS. (Telephone 01-261 5942).

When replying to Classified Advertisements please ensure:
(A) That you have claaply stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is writeen in block capitals, and
(D) That your letter is correctly addressed to the advertiser.
This will assist advertisers ${ }^{\text {o }}$ in processing and despatching orders with the minimum of delay.

Receivers and Components

TURN YOUR SURPLUS capacitors, transistors etc., into cash. Contact Coles Harding \& Co., 103 South Brink, Wisbech, Cambs. 0945 4188. Immediate settlement.
ZZZHI! LEDs-green, yellow, amber, 5 mm , 12p. Capàcitors- $100 \mu \mathrm{~F}, 40 \mathrm{~V}, 11 \cdot 5$ p. Plus 30 p P\&P. STRAIGHTMAN ELECTRONICS, 35 Melbourne Road, Ilford, Essex.
NEW 1982 ACE COMPONENT CATALOGUE. Let your problems be our business. Be certain; have your components delivered quickly and efficiently and get that project working. Send 30p now for the easy to use 1982 catalogue to: ACE MAILTRONIX, Dept EE, 3A Commercial Street, Batley, West Yorkshire WF17 5HJ.

300 SMALL COMPONENTS, transistors, diodes. $£ 1 \cdot 7071 b s$ assorted components $£ 4 \cdot 25$ lolbs $£ 5 \cdot 75$. Forty assorted 74 series ICs on panel £1-70. 500 capacitors $£ 3 \cdot 20$. List 20p refundable. Post 60p. Optionable insurance 20p. J. W. B. RADIO, 2 Barnfield Crescent, Sale, Cheshire M33 1NL.

Courses

SOUNDENGINEERS

If you're following a career in Sound Engineering or interested in learning all aspects of recording studios you should attend one of our weekend studio courses. Topics covered include:
A. The basics of studio construction, wiring and materials used.
B. Types of microphone uses, techniques, and limitations.
C. Use of $2^{* \prime} 16$ track machine, lining up, remotes, etc.
D. Use of 24 Channel Desk and all controls.
E. Effect equipment, ADT, reverb, Echo, etc.
F. Ancilliary equipment.
G. Mixing and Editing.

There are a maximum number of 8 students on each course and every one is tutored to their own level of knowledge with regard to their needs and interest. The cost is $£ 98$ lor the weekend including hotel accommodation overnight. Details: please phone $01-5804720$ or $01-6365308$ including hotel accom
during office hours.

Abstract

\section*{For Sale}

NEW BACK ISSUES OF "EVERYDAY ELECTRONICS". Available 85p each Post Free, cheque or uncrossed PO returned if not in stock. BELL'S TELEVISION SERVICES, 190 Kings Road, Harrogate Yorkshire. Tel: (0423) 55885.

SECONDHAND ELECTRONIC TEST equipment including oscilloscopes, generators, psu's. NORFAB PLANT AND MACHINERY. Telephone Potter Heigham (069-27) 721.

EVERYDAY ELECTRONICS 10 volumes No. 1 to date unbound and BNRES. Corres pondence course and oscilloscope offers. R. ABBOTT, 10 Blakemore Road, Streatham, London SWl6 1NH.

Books and Publications

MUSIC MAKER. Typewriter keyboard replaces piano type. Amateur organ builders send $£ 1.00$ for your copy-post free"QWERTONIC MUSICAL KEYBOARD" a new book by P. G. Roche, to 71 Elmfield Avenue, Teddington, Middlesex TW11 8BX.

Service Sheets

Any single service sheet £1/L.S.A.E. Thousands different Repair/Service Manuals/Sheets in stock. Repair data your named T.V. ©6.50) with circuits £8-50). S.A.E. Newsletter, Price Llists. Quotations.

AUSEE, 76 CHURCHES, LARKHALL, LANARKSHIRE (0898 883334).

ORDER FORM please write in block capitals

Please insert the advertisement below in the next available issue of Everyday Electronics for
insertions. I enclose Cheque/P.O. for £..................................... . . .
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Everyday Electronics)

-			
		-	
			\qquad

NAME
ADDRESS

Send to: Claselfied Advertisement Manager
EYERYOAY ELECTRONICS
Classifed Advertisements Dept., Room 2387.
 Telephone (1-201 S01E
Rate:
2tp per word, minimum 12worde. Box No, enp extra.

[^3]BELL'S TELEVISION SERVICE for service sheets on Radio, TV etc. $£ 1 \cdot 25$ plus SAE. Colour TV Service Manuals on request. SAE with enquiries to BTS, 190 King's Rd. Harrogate, N. Yorkshire. Tel: 042355885.

Software

SEVENTY 2X81 PROGRAMS. Listings only £4.95, Barclaycard accepted. Includes many games, utility, machine code loader, home finance, maths, chequebook, etc. Includes hints ' n ' tips. SUSSEX SOFTWARE, Wallsend House, Pevensey Bay, Sussex.

Veteran \& Vintage

"SOUNDS VINTAGE"
The only magazine for all vintage sound
enthusiasts, packed with articles by top
writers, covering gramophones, phono-
graphs, 78s, wireless, news, history, re-
views, etc.
Bi-monthly. Annual subscription £6.60
(airmail extra). Send 75 for sample copy.
28 Chestwood Close, Billericay, Essex

Miscellaneous

BALLARD'S OF TUNBRIDGE WELLS have moved to 54 Grosvenor Road. No lists. SAE. All enquiries phone T/Wells 31803.
DIGITAL WATCH SPECIALIST repairs private trade batteries all types. Certificated member ETIC International. COLIN WALKDEN, 126 Park Road, Cowes, IOW.
SPARE PARTS FOR ALL DIGITAL WATCHES. Batteries 65p; pins; display; back lights etc. Plus reports, publications charts, send SAE for full list. PROFORDS. Copners Drive, Holmer Green, Bucks HP15 6SG.

Earn
 ELECTRONICS WITHOUT SOLDER

Bulld electronic circults without solder on a Roden S-Dec
This has built-in contacts and holes in contacts and holes into
which you plug your components. which you plug your components.
Suitable for all ages. Can bo used time atter time. Ideal gitt for students or experimenters. Full instructions and 2 circuit diagrams with each S. Dec.
Send croqua or P O. ©o Send chaque or Po. Dio 15
 Mornments. WM11 40t cti 14

ENAMELLED COPPER WIRE. 10 swg to 45 swg. S.A.E. for quotation by return, cheapest prices. 102 Parrswood Road, Mancheater 20.

DIGITAL WATCH BATTERY REPLACEMENT KIT

These watches all require battery (power cell) replace ment at regular intervals. This kit provides the means. We supply eyeglass, nonmagnetic. tweezers, watch screwdriver, case knife and screwback case opener, Also one doz, assort. push-pieces full instructions and battery identification chart. We then supply replacement batteries -you fit them. Begin now. Send 69 for complece kit and get into a fass growing business. Prompt despatch.
BOLSTER INSTRUMENT CO. (EE34) I/ Percy Avenue, Ashford, Middx., TWI5 2PB

PRE-PACKED. Screws, nuts, washers, solder tags, studding. Send for price list. Al SALES (EE), PO Box 402, London SW6 6LU.

CENTURION BURGLAR ALARM equipment, send SAE for free list or a cheque/ PO for 811.50 for our special offer of a full sized signwritten bell cover to: Centurion, Dept EE, 265 Wakefield Road, Huddersfield, W. Yorkshire. Access \& Barclaycard. Telephone orders on 0484 35527.

WE STOCK THE FULL RANGE of electronic kits from Electroware. Send a SAE for our competitive price list to: GUIDELINE ELECTRONICS, 50 Jubilee Drive, South Ruislip, Middlesex.

PARAPHYSICALS JOURNAL (Russian translations): psychotronic generators, kirlianography, gravity lazers, telekinesis. Details: SAE 49X" PARALAB, Downton, Wilts.

THE SCIENTIFIC WIRE

 COMPANYPO Eox 30. London E.4. et sti 18 ses .

ENAMELLED COPPER WIRE				
SWG	1 lb	${ }^{8} \mathrm{OL}$	408	
8 to 29	2.76		$0 \cdot 80$	$0 \cdot 0$
30 to 3	3. 80	1.00	0.00	$0 \cdot 70$
${ }^{38}$ to 30	3.40	2.00	$1 \cdot 10$	0.0
401043	8.76	2. $\times 0$	2-0	1.42
44 to 47	5.50	3.40	$2 \cdot 30$	2.00
48 to 49	15.96	- 58		

SILVER PLATED COPPER WIRE
14 to $30 \quad 6.50 \quad 3.76 \quad 2.20 \quad 1.40$
TINNED COPP童R WIRE

$$
\begin{array}{lllll}
14 & 10 & 30 & 3.85 & 2.36 \\
\hline
\end{array}
$$

Prices incl. P A P vat. Orders under ez add 20p, SAE for Llet of Copper/Resietance wire. Dealer enquiries walcome.

Pegletered Office 22 Coningsby Gerdens.

INDEX TO ADVERTISERS

MIGHTY NINETY PACKS

SUPER VALUE PACKS ALL AT sop each BUY SIX PACKS AND GET A SEVENTH FREE
Please add 15p per pack postage
Please allow 7 days delivery.

MN2. 200 ; \& b-watt Resistors.	MN37. 10 astid audio connectors. Din phono ete.
MN3. 1001 4-watt Resistors.	MN3. 1 PCB with triec control IC data inc.
MN4. 50 Wirewound Resistors.	MN39. 1 oscillator PCB loads of components (no
MNS. 100 metal oxide Resistors. $1 \%, 2 \%$ and 5%.	
MN1. 12 asstd potentio-	
$\text { MNNT. } 25$	MN41. 12 BC549C (plastic BC109C) transistors.
	MM42. 108Ci07 Transistors.
MNE. 50 asstd Electrolylic Capacitora.	M N43. 10 BC108 Transistors.
MNE. 100 asstd Ceramic Capacitors Plte. disc. Iub	MN44. 10 Screwfix S.P.C.O. min. slide awitches.
and monolythic eit.	8
MN1E. 100 mixed capacilors, Polyester, Polystyrene,	Zener, rect. signal, swithing.
Metallised, Radial and Axial types.	MMCS. 15 assid Zener diodes.
MMII. 20 asetd Silver Mica Capacitors.	MN47. 3 - 88 mid 16 v tantaIum bead capacitors.
MN12. 8 Tanfalum gead Capacitors (useful valuea).	MNAE. 200 items 4BA assetd length acrews, nuts
Mni3. 20 asstd Transistors. BC, 2N Series + Power etc.	washers.
M M14. 40 IN4148 Diodes.	length 200 items BBA asstd washers.
MNIC. 20 min. wire-ended Neons.	MNSP. 3 pieces of veroboard usetul sires. min total 35 sa
MM17. 2 12-volt Relays. Ex	
	MN51. $10 \times 02^{\prime \prime}$ red LED.
MN1S. 3 Encapsulnted Reed Relays 9-12v coil. d-pole and i-pole.	MNS5. $10 \times 0.125^{\prime \prime}$ red LED.
MN1s. 2 2a-volt Relays. Ex nearly new equip.	ic dise
MN24. 1 240-110 to $\mathbf{1 2 - v o l l . ~}$ 100 ma Transformer.	MN55. 10 watt audio amp
MN21. 1 240-110 to 24 -volt 100ma Transformer.	board with circuit.
M N22.82"Lents	IC
4 red, 2 yellow, 2 grmen MN23. 300 nssid sere	MN57. 1016 pin low profle IC aht DIL.
nuts, washers, sell-tappers etc.	MNSA. $2 \times$ CA 723 Voltage Regulator.
MN24. 100 asald small sorings.	MN5. $1 \times$ LM380 2 wall audio amp IC + 555 timer IC.
MN25. 50 astid pop rivets.	MMEC. 10 asstd TTL IC'
MN2F. 50 assid insulated crimps.	MNBS. 3 - TIP 32 Transistor.
MN27. 200 item © , grommets. soacers, cable markers. plastic screws, sleeving, tie	MN22.3 - TIP 31 Transistor.
wraps etc.	caps C230, Seimens eic.
MN2I. 20 asstd fuses, 12 " 20 mm etc.	M MSU. 5 Press 10 make min switches.
MN2\%. 75 mis equipment, wire. assid colourt and sizes.	MNBS, 3 BF245 FETS.
manse. $3 \times 2 \mathrm{~m}$ length, 3 core. mains cable.	awhehes 4 interlocked, 4 latch. 3 momentary.
MNSI. 12 assid trimmer capacitors. compression film. Air-spaced etc.	MMEs. 200 asstd veropins, turret tags. PCB pins efc.
MN32. 1530 pF Beehive trimmers.	MNST. 4 min push to break witch.
© N34. 20 coll formers, cera. mic, plastic, reed relay efc.	MN7. PCB with $3 \times 250 \mathrm{v}$ AC 4 amp push SW with attractive chrome plastic
MM3C. 25 min glase reed switch.	
MM35. 10 asstd awitches. logple, slide, micro etc.	CMOS 4025. 200 mm fuse holder +22 resistors, capa-
MM38. 10 sub-min SP. C/O slide switch.	citors, diodel elc. MN7I. IZN414 RADIO IC.

CHORDGATE LIMITED
 75 FARINGDON ROAD
 SWINDON, WILTS. Tel. (0793) 33877

 Retail shop at above address
MAINS INTERCOM

 BATTERIES NO WIRES £29.95 PER PIIR PATEA.50The modern way of instant 2-way communacations Jubt plug into power socket. Ready to use. Crystal clear communications from room to room. Range t-mile on the same mains, phase. On/ofi switch. Useful as inter-otice intercom. between onice and warenouse, in surnery and in homes. Also available
M. model

NEW AMERICAN TYPE CRADLE
TELEPHONE AMPLIFIER

Latest traminorised Telephone Amplifer, with detached phus-in speaker. Placing the receiver on to Ine cradle activales a switch for immediate iwo-way
conversation without holdins the handset. Many people can listen at time, Increase efinciency in oulce. shop, workshop. Perfect for "conference" calls: leaves the user's hands free to make notes. consult fles. No lons waiting, seves time with longdistance calls. On/ofl switch, volume control, Conversation recording, model at $\mathbf{~} 20 \cdot 95+$ VAT $£ 3 \cdot 15$.
P \& $\& 1 \cdot 65$. P\&P $\& 1.65$.

DOOR ENTRY SYSTEM

No house / buainess / surgery should be without a DOOR ENTRY SYSTEM in this day and age. The wanted callers. Talk to the caller and edmit him only if satistied by pressins a remote conirol button which will open the door electronically. A boon for the invalid, the aged, and busy housewife. Supplied complete d.i.y. kit with one internal Telephone, outside Speaker panel, electric door lock release (for Yale type surface latch lock): maing power unit,
cable (4 pairs) 50 and wiring diagram. Price $\mathbf{E 5 9 \cdot 9 5}+$ VAT $£ 9 \cdot 00+\mathrm{P} \mathrm{\& P} £ 2.58$. Kit with two phones $869.95+$ VAT $£ 10 \cdot 50$ + P\&P $£ 2.81$.
PLEASE ALLOW 8-12 DAYS FOR DELIVERY
0-day price refund buaramice on all fiem
Access and Barclaycard welcome.
LONDON DIRECT SUPPLIES
LONDON, W8 Tel: 01-937 5548

BAKER 50 WATT AMPLIFIER

$£ 69$

 Groapa. Two inpais with Mixer Volame chatrola, Moter Baen ontlote $4,8,16$ ohto.
BAKER 150 Watt AMPLIFIER 4 Inputs 189 DRILL SPEED CONTROLLER LIGHT DIMMER KIT. Eng to baild kdt. Controle op to 480 watts AC maina. Printed DIELUXE MODEL Ready Bullt. 800 watte. 5 STBREO PRE-AMP KIT. All parto to boild thls yee-amp. 8 hypate for high, medium or low gain per channel, with

SOUND TO LIGHT CONTROL KIT MK II
Complote lit of parts printed chrealt, Matn tramformer.

 300 Watt Reur Rearetho White Luth Bulbe. Ideal for Dieco Lights. Edison Berew 75p each or 6 for 61 or 12 for $47 \cdot 50$. MAINR TRANBFORMERS Primary 240 V A.C. $250-0-250 \mathrm{~V} 7 \mathrm{~mA} .8 \cdot 5 \mathrm{~V} .2 \mathrm{~A} . \ldots ~$ $380-0-360 \mathrm{~V} 260 \mathrm{~mA}$. $6 \cdot 8 \mathrm{~V}$ 8Amp C.T.

Tapped outpute avallab
2 amp 3, $4,5,6,8,9,10,12,15,1 \neq 25$ and 20 V
$1 \mathrm{amp} 6,8,10,12,16,18,20,24,30,36,40,48,60$
$2 \mathrm{amp} 8,8,10,12,16,16,20,24,30,36$, $2 \min 8,8,10,12,16,18,30,24,30,36,40,48,60$
$3 \operatorname{amp} 8,8,10,12,10,18,20,24,30,36,40,48,60$ 5 amp $8,8,10,12$
$8-8-10-10 \mathrm{~V}$
IS
ov ta
$9 V^{250 m}$
9 V
20
9V 8e
10-0-10V 2 a
$10-30-10 \mathrm{~V} 2 \mathrm{~m}$
12V 10 mm .
12 V \&
$12-0-12 \mathrm{~V} 2$
 CHARGER TRANHFORMERE-RBCTIFTBE
 2 ohm. R.C.S. LOUD\$PEAKER BARGAIME

 E.C.E. LOW VOLTAGE ETABILISED \qquad
411 parts and inntructions with Zaner Poilode pr roctitars and doable wound mains tranaformer tnput $200-200$
 100ma. Alate volcar.

Whis powe pook 9 roit 400 mi Pont 75p
DELUXE Ew itched Model 3-6.71-9V 400ma. 87.80. TH\& "LIfBTANT" BULK TAPK BRABER A.C. malna $200 / 240 \mathrm{~V}$. $\mathbf{E 9 . 5 0}$ Pout Lenfet B.A.E. PROBZ 95.00
AC. ELECTRIC MOTORS POBT 78p.
 $240 \mathrm{~V}, 15 \mathrm{Amp}$ Doubl eqpindie-
$1.75 \times 0.16 \mathrm{in}$. Kacb 41.2 Pole,

 and Powertul Aplindle-0.5 F

B.E.R. Motor e4. Garrard Motor es

 $81 \cdot 80 ; 12 \times 8 \times 2 \mathrm{fm}, ~ 22 \cdot 60 ; 16 \times 10 \times 2 \mathrm{jm} .28 \cdot 20$

 $82 / 600 \mathrm{~V} \ldots \ldots .750+16 / 450 \mathrm{~V} \ldots 76 \mathrm{~F} \quad 16+82+82 / 500 \mathrm{~V}$

DE LUXE BSR HI-FI AUTOCHANGER

 quarity unlt 240 V
Sbe $13 \mathrm{f} \times 11 \mathrm{fh}$. Above motor bourd 31 in .
Delow motor board 2 in R8R Slogio Plajer P207 cuatng vev ne
 Reramiagio FLajer
 Hor C172 Sllm arm. Metal Turatable. $\quad \mathrm{C20}$ post ε ? Bell Avto Changer. 11 in, Turntable. Bedget $£ \mathbf{~} \mathbf{1 7 . 5 0}$ post 2 :
 Baker Disco Amplifier, 4 inputa, 150 watt.

Radio Component Specialists 337. WHITEHORSE ROAD, CROYDON, SURREY, U.K. TEL: 01-64 1 Csg Post ESp Minimum. Callers Welcome. Closed Wed.

[^4]

SAE for current lists. Official orders welcome All prices include VAT. Mail order only. All items packed (where applicable) in special energy absorbing PU foam. Callers welcome by prior appointment. please phone 0702-527572

Our new store at Hammersmith is conveniently situated near the end of the M4 and the North and South Circular Roads.
There is excellent street parking on meters a few steps away and
Hammersmith Underground Station is nearby. Call in and see us soon.

Over 100,000 copies sold already! Don't miss out on your copy. On sale now in all branches WH Smith or price £1.
In case of difficulty check the coupon below.

[^0]: Sets include PCBs, U.K.P. dP., 15%.
 Wire. Solder, Box, Photocopy of Orlg. Text. Fuller detalls and more great kits in our

[^1]: F"

 \qquad
 LM1
 LM2
 LM3
 LM3
 LM3 2958
 3800
 3900 N
 3911

 #### Abstract

 NNN NNM \lll \lll

 \qquad

[^2]: Pa Mo O4. Description
 $\begin{array}{lll}5 \times 16 & 250 & \text { Capacitors Mixed Types } \\ 5 \times 17 & 200 & \text { Ceramic Capacitors Minna }\end{array}$ Ceramic Capacitors Miniature Mined
 Mused Ceramics Io p. 56 of Mixed Ceramics 6801 - 0.5 mi Assorted Polyester/Polyshren Mixed C280 type capacitors metal fol Electrolytics. all sorts Quality Electroiytics 501000 mf
 Tantalum Beads. mare

[^3]: Company reglatered In England. Regiatered No. 3382s. Reglatered Omee; King's Reach Tower, Stamford Street, Landon 8E1 gLs.

[^4]:

