Easy to bulld projects for everyone andioncs

MODEL TRAIN GIUFHE
 REEULITED POWER SUPDT?

 MINIER TIMER
CROTECH OSCILLOSCOPES

Range of Portable Scopes mains and battery operated Plus special features (UK c/p £3.00)
3030 Single trace 15 MHZ .5 mV . 0.5 micro secs Plus built in component tester. 95 mm tube 3131 Dual trace 15 MHZ . trig to 35 MHZ .5 mV . 05 micro 130 mm tube. plus component tester 3034 Battery-mains dual trace 15 MHz . trig 1020 MHZ . built in Nicads. 5 mV .05 microsecs (Eliminator charger optional $£ 28.75$) Also Available 3033 . single trace 3034 STOP PRESS ${ }^{3337}$. dual 30 MHZ .130 mm

RF AND AUDIO SIGNAL GENERATORS Marns operated UK c/p £1.00)
Audio $20 \mathrm{HZ}-200 \mathrm{KHZ} 4$ band. Sine/Square o/p
TE220 Distortion max 1\%
aga6 Distortion 0 5-1\% leader AG202A Distortion 0.5-1\% Trio AG203 10 HZ-1 MH2 5 -band max distortion 0 1\% Trio af All feature int/ExI MDD. Varlable outpul E200 $100 \mathrm{KHZ}-100 \mathrm{MHZ} 6$ band (300 MHZ har monics) SG16 100 KHZ-100 MH2 6 band (300 MHZ harmonics) Leader GG402 $100 \mathrm{KHZ}-30 \mathrm{MHZ} 2$ band professional trio
63.00
£73.70
£78.20
£126.50
52.00

E63.25
£68.00

THANDAR - SINCLAIR
Reliable low cost portable instruments, bench modets all $255 \times 15 \times 5 \mathrm{~cm}$ Generators mains operated rest battery (Supplied). UK c/p Hand models 65p. bench £1.15)
DIGITAL MUL TIMETERS ($3 / 1 / 2$ digit LCD)
TM354 Hand held. DC 2A. 2 m ohm. $1 \mathrm{mV}-1000 \mathrm{v}$ DC. 500 v AC
TM352 Hand held. DC 10A. Hie test Contınuity test TM353 Bench. 2A AC/DC. 1000 V AC/DC 20 M ohm
£45.94 TM351 Bench. 10A ACIOC 1000 V ACIDC 20 M ohm Typical 01%
frequency counters (8 Digit)
PfM200 A Hand held LED $200 \mathrm{MHZ} 10 \mathrm{mV}(600 \mathrm{MHZ}$ with TP600)
New model fitted B.N.C. sockets. $\mathbf{6 7 7 . 5 0}$
Tf 040 Bench LCD $40 \mathrm{MHZ}, 40 \mathrm{mV}(400 \mathrm{MHZ}$ with TP600) $£ 126.50$ TF200 Bench LCD $200 \mathrm{MHZ} .10-30 \mathrm{mV}$ (600 MHZ with (TP600)
TP600 $600 \mathrm{MHZ} * 10$ Prescaler $10 \mathrm{mV} \quad £ 43.13$ GEMERATOAS (All bench models) mains operated TGI00 Function $1 \mathrm{HZ}-100 \mathrm{KHZ}$ Sine/SO/Triangle/TTL $\quad \mathbf{~} 90.85$ TGI02 Function $02 \mathrm{HZ}-2 \mathrm{MHZ}$ Sine/SO/Triangle/TTL £ 166.75 TG105 Pulse SMHZ-5H2 (200nS-200mS) various outputs $\mathbf{g} 7.75$ OSCILLOSCOPE (Bench model low power portable)
10 MHZ 2 trace 10 mV 01 microsec All facilities Model SC 110 (Rechargable battery pack $£ 8.63$. AC adaptor/charger $£ 5.6$ DPTIOMAL ITEMS
Carry case (bench only) $£ 6.84 \mathrm{AC}$ Adaptors (state model) $£ 5.69$

LCD DIGITAL MULTIMETERS
SPECIAL PURCHASE - LIMITED PERIOD ONLY
6220 Reliable 22 range hand held $31 / 2$ digit LCD with volt /ohms auto range. unt and range signs 10 amp AC/DC battery warning lower power ohms range Model 6110 Also has range hold. Contınuity buzzer and improved accuracy Al models high quality rotary operation Resolution 01 milli volt 10 -Micro amp
$62201000 \mathrm{vDC} 02 / 10 \mathrm{~A}$ AC/DC 600 v AC 2 meg ohm Was $£ 55.95$
NOW $£ 42.95$

6110 As above plus $20 \mathrm{~mA} A \mathrm{AC} / \mathrm{DC}$ and improved accuracy Was $£ 85.95$ NOW £59.95
THIS SPECIAL OFFER IS QUALITY WITH VALUE

D0601 27 range oushbution 2A ACIDC 639.95 188 m 16 range with Hfe checker 10 amp DC
189 m 30 range with Hfe checker $10 \mathrm{amp} A C / D C \mathbf{4 3 . 5 0}$
$\mathbf{6 9 . 9 5}$

MULTIMETERS IUK C/D 650 or $£ 100$ for 1 wol ChDOSE FROM UKS Largest range KRT101 10 range pocket 1K/Volt KRTIOO 12 range pocket IK/Volt NH55 10 range pocket 2K/Voll All 12 range pock et Deluxe 2K /Volt ST5 11 range pocket $4 \mathrm{~K} / \mathrm{V}$ olt
NH56 22 range pockel 20K / Vol
YM360TR 19 range plus Hte Test $20 \mathrm{~K} /$ Voll ST303Th 21 range plus He Test $20 \mathrm{~K} /$ Volt KRT5001 16 range - range double $50 \mathrm{~K} /$ Volt 1102019 range Deluxe plus Hte Test 20 K ETC 5000 As KRT5001 70118 A TMK500 23 range Plus 12A OC Plus Cont Buzzer 30 K Voll $1 T 20521$ range Deluxe $10 A$ OC 50KIVOlt C7080 26 range large scale 10A DC 5KV ACIDC 20k Voll 168 m
volt 36 range large scale 10 A ACIDC 50 K AT21023 range Deluxe 12A AC/DC 100k Voll $\mathbb{Z 1 . 0 0}$ 60Th 23 range Large scale 10 A AC/DC He iest 50 Meg

DIRECT READ HV PROBE

$0 / 40 \mathrm{KV} 20 \mathrm{~K}$ Voli $£ 18.40$

DISCOUNTS

Available for UK and Export for small and large quantities for

OSCILIOSCOPE

PROBE KITS (UK c/p 50p per 1 to 3) Avallable BNC plug or Banana $\times 1 \subset 7.95 \times 10$ $6945 \times 1-\times 10 \subset 10.50$ Also x 100 (BNC only) $£ 16.95$

SAFGAN PORTABLE OSCILLOSCOPES

Range of low cost Dual Trace Scopes mans operated Made in UK to exacting standards Avallable as 10 MHZ 15 MHZ or 20 MHZ All feature 5 mV sensitivity. 05 micro sec $64 \times 8 \mathrm{~cm}$ display (UK c/p $£ 2.50$)
07410 Dual 10 MHZ
0T415 Dual 15 MHZ
OT420 Dual 20 MHZ
Dual 20 MHZ

LOGIC PROBES/MONITORS/PULSERS circuit

 powered (ukc/p 60p)LPI DTLITTL/CMOS 10 MHZ Pulse Memory LP2 DTL/TTL/CMOS 15 MHZ Pulse
LP3 DTL/TILICMDS 50 MHZ Pulse Memory
(milogic monitor for 8 to 16 pinic's
Dpl Digital pulser single or 100pps
LOP07650 MH2 10Meg ohm Logic Probe with case 25.50 AUDOEAECTRONTCS Climeate
301 EDGWARE ROAD, LONDON, W2 1BN, ENGLAND. TELEPHONE 01.7243564 ALSO AT HENRYS RADIO, 404/406 EDGWARE ROAD. LONDON W2
PROJECTS . . . THEORY . . . NEWS
COMMENT . . POPULAR FEATURES

© IPC Magazines Limited 1932. Copyright in all drawings, photographs and articles published in EVERYDAY ELECTRONICS is fully protected, and reproduction or imitations in whole or in part and reproduction or imitatide forbiden.

PROJECTS

AUTOMATIC GARAGE DOOR by P. Horsey 12
Part 1: The ultrasonic transmitter and receiver
MODEL TRAIN CHUFFER by R. A. Penfold 18
Realistic sound effect for "steam" locomotives
SIMPLE STABILISED POWER SUPPLY by F. G. Rayer 31
Variable output up to 18 volts 1 amp
MINI EGG TIMER by D. G. Clarke 44
A pocket-sized bleeper with presettable timing
SIREN MODULE by A. R. Winstanley
Multi-purpose audible alarm

SERIES

TEACH-IN 82 by O. N. Bishop
Part 4: Switching circuits using transistors and i.c.s
INTRODUCTION TO LOGIC by J. Crowther
Part 9: Boolean Identities

FEATURES

EDITORIAL11
Information Year
JACK PLUG AND FAMILY by Doug Baker 21
Cartoon
SHOP TALK by Dave Barrington 30
Product news and component buying 33
A retailer commentsFOR YOUR ENTERTAINMENT by Barry Fox34
Changes at the Post Office, more Freedom for Phone Subscribers
SCHOOLS COMPETITION35
Closing date for Registration is December 31
EVERYDAY NEWS 38
What's happening in the world of electronics
VOYAGER 2 ENCOUNTERS SATURN by J. B. Dance 40
An account of data and pictures received from spaceRADIO WORLD by Pat Hawker G3VA42
Narrow band F.M. and S.S.B., C.B. Licences, Brass Pounders
Electroplating by R. M. Henderson 50
A technique for non-conducting objects
BRIGHT IDEAS 51
Readers' hints and tips
SQUARE ONE 52
Beginners' Page: Transistor data and outlines
NEW PRODUCTS 54
Facts and photos of instruments, equipments and tools
IN MY CLASS by T. R. de Vaux-Balbirnie 57
Sir explains
CIRCUIT EXCHANGE 58
A forum for readers' ideas

Our February issue will be published on Friday,
January 15 . See page 43 for detalls.

ELEETRDNIOKIT DENSHI KITS-

Final offer on kit type SR-3A

". . . . fun and entertainment as well as education" -

(EVERYDAY ELECTRONICS mag.)

This Is the final opportunity to obtain this first-class muiti-project kit at little more than its 1977 pricel (Current value over $£ 40$).
Circuits are constructed by plugging the encapsulated components into the boards provided, following the instruction manual. Technical details are also given concerning each project. The components are used over and over again and you can design your own clrcuits too, or use the kit as a useful testing board. No previous experience of electronics is required but you learn as you build-and have a lot of fun too. The kits are safe for anyone.

SR-3A KIT (162" $\left.10^{\prime \prime} 2 \frac{1}{2}{ }^{\prime \prime}\right)$

£29-95
Build over 100 prolects including 3.TR reflen radio recelver, 3-TR radio receiver with RF amplifier, $2-T R$ reflek radio recelver, 3 -TR ampilifier for
crystal milke, 3-TR amplifier for speaker/mike, $3-$ TR signal tracer, Morse Code trainer, 2-TR electronic organ, electronic metronome, electronic bird electronic cat, electronic siren, electronic gun, 2-YR sleeptno ald, high voltage generator, discontinulty warning device, water supply worning device, photoelectric alarming device, 3-TR burglar alarm, 3 -TR water
supply warning device, 3 -TR water level warning device, 3 -TR photoelectric alarming device, Morse Code tralner with sound a light, discontin. uity warning device with sound \& light, water isvel warning device with sound \& light, electronic metronome with sound \& lloht, buzzer with sound \& light, wireless mike, wireless telegraph set, wireless discontinulty warning device, wireless water level warning device, wireless
warning device, wireless photoelectric warning device, etc.
All kits are guaranteed and supplled complete with extensive construction manual PLUS Hamlyn's "All Colour" 160 page book "Electronics" (free of charge whilst stocks last).
Prices include educational manual, free book, VAT, p \& p (in the UK), free introduction to the British Amateur Electronics Club.
PLEASE NOTE OUR NEW ADDRESS.
PERSONAL CALLERS WELCOME.
Delivery frequently by return but please allow 14 DAYS Cheque/P.O./Access/Barclaycard (or23p for illustrated lietrature) to ELECTRONI-KIT LTD., Dept. EE.

ELECTRONI-KIT LTD. 388 ST. JOHN STREET
LONDON, EC1V 4NN (01-278 0109)

Just 50 p will bring you the latest Wilmslow Audio 80 page catalogue packed with pictures and specifications of HiFi and PA Speaker Drive Units, Speaker Kits, Cabinet Kits

1000 items for the constructor.
CROSSOVER NETWORKS AND COMPONENTS. GRILLES, GRILL FABRICS AND FOAM. PA, GROUP DISCO CABINETS - PLUS MICROPHONES AMPLIFIERS - MIXERS - COMBOS - EFFECTS SPEAKER STANDS AND BRACKETS - IN-CAR SPEAKERS AND BOOSTERS ETC. ETC.

* Lowest prices - Largest stocks *
* Expert staff - Sound advice *
* Choose your DIY Hifi Speakers in the comfort * of our listening lounge.
(Customer operated demonstration facilities)
* Ample parking *
* Access . Visa . American Express accepted *

8
0625529599
35/39 Church Street, Wilmlsow, Cheshire SK9 1AS
\square Lightning service on telephoned credit card orders!

TECHNICAL TRAINING IN ELECTRONICS AND TELECOMMUNICATIONS

ICS can provide the technical knowledge that is so essential to your success: knowledge that will cnable you to take advantage of the many opportunities open to you. Study in your own home, in your own time and at your own pace and if you are studying for an examination ICS guarantee coaching
until you are successful.

City and Guilds Certificates:
Telecommunications Technicians
Radio, TV, Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
MPT Radio Communications Certificate
Diploma Courses:
Colour TV Servicing
Electronic Engineering and Maintenance
Computer Engineering and Programming
Radio, TV, Audio Engineering and Servicing
Electrical Engineering, Installation
and Contracting
post or phone today for free booklet

WATFORD ELECTRONICS ach MAIL ORDER, CALLERS WELCOME. Tel. Watford 40588/9

ALL DEVICES BRAND NEW, FULL BPEC. AND FULLY OUARANTEED ORDERE
DESPATCHEO BY RETURN OF POST. TERMS OF BUEINESB: CABH/CHEOUE
 WILCOME, PAP ADESOD TO ALL ORDERS UNDER E10 OO. OVEREEA ORDERS VAT Export ordera no V.A.T. Appllcable 10 U.K. Customars only. Unless staled otherwle We etock many more Items. It pays to visti us. Weare alluated behind Wettord Football Ground. Nearoat Undorground/BR Station: Watford High Streat.
POLYESTER CAPACITORS: Axisl lead tyDe (Values are in nf)

 $40 \mathrm{p} 4 \mathrm{u}^{7} 7 \mathrm{sid}$.

POLYESTER RADIALLEAD CAPACITORS (250V) 10 p ; 330n, Teach-in ti all part

ELECTROLYTIC CAPACITORS: (Values are in μ F) $500 \mathrm{~V}: 10$ S2p: 47 73p; ${ }^{33 \mathrm{~V}: 0.47 .1 \cdot 0}$ $1 \cdot 5.2 \cdot 2,3 \cdot 38 \mathrm{p} ; 4 \cdot 7 \mathrm{p} ; 6 \cdot 8,1010 \mathrm{p} ; 15$.
$6820 \mathrm{p} ; 22024 \mathrm{p} ; 47032 \mathrm{p} ; 220090 \mathrm{p}, 40 \mathrm{~V}$
 $320074 \mathrm{p}: 430092 \mathrm{p} .18 \mathrm{~V}$; $40,47 \mathrm{p}$

TANTALUM Bead Capacitors

 MINIA TURE TYPE TRIMMERS 4-6pF; 2 2-10pF 22 p
30 p : $10-88 \mathrm{pF} 3 \mathrm{p}$.
COMPRESSION TRIMMERS $3-40 \mathrm{pFF}, 10-800 \mathrm{~F} 20 \mathrm{p}: 20-2500 \mathrm{~F} 22$
$100-580 \mathrm{pF} 38 \mathrm{p}: 400-1250 \mathrm{pF} 48 \mathrm{D}$. POLYSTYRENE CAPACITORS
10DF to 1 nF ID: $1 \cdot \mathrm{snF}$ to 12 nF 10D.

8LIOER POTENTIOME		2"Yollow Graen	
0.25 W log nad IInear valuee	mm	Square LED	20
$8 \mathrm{~K} \Omega$-500K Ω single gang	70p	OCP71	20
10k Ω-500k Ω dual gang	110p	ORP12	10
Solf Slick Graduated Berels	40 p	ORP61	

PREBET POTENTIOMETERS 7 Seo Dleplaye

 \begin{tabular}{ll}$0-28 W$

$0.25 W$ \& $00 \Omega-3.3 \mathrm{M} \Omega$ Horlz

$0-4 \mathrm{M} \Omega$ Vert \& 10 p

\hline
\end{tabular} RESIBTORS: Carbon FIIm, HIgh

Stablity. Low Nolse, Minlature SILVER MICA: 2pF, 3.3. 4 , 7.

Rang.	Val.	1-09		00
W 1 102-4M7	E24	2p		
IW :02-4M7	E12	2p	1 p	
1W 2n2-10M	E12	S0	4 D	
2\% Metal Fllm	10n-1M	1 p	4	
1\% Metal Fllm	310-1M			
$100+$ price appllee to Resistore of				

Gre9n
\qquad TIL78 detec Bargraph R LCD DISPLAYS 31DIolt
4 Digit -

호웅

 \square 75
42
29
76 \square LM2
LM3
LM3
LM3 M3900
M3000N LM391
LM391
LM391 LINEAR IC:
702 C
70 Cin
$710^{\circ} 8 \mathrm{pin}$

 733
7418
747 C
748 C
743
7810
810
$2114 \mathrm{~L}-3$
$2114 \mathrm{~L}-20$
2708
$2716-5 \mathrm{~V}$ L-200
$6-5 V$
16.200 N 0400CJ
$A Y-1-1313$
$A Y-1-1320$
$A Y-1.5051$
$A Y-3.8500$ AY-1.501
AY-3.8500
AY-3.8010
AY-5-1224A
A $Y-5.1230$ AY
CA $A 011$
CA 3019
CA 3014
CA UUUU CA 3023
CA 3028 A
CA 3035
CA 3036
CA 3043
CA 3045 UUUUUU CA30
CA30
CA30
CA30 Nu We CA31
CA31
CA UUUU
 ICMI216A
ICM7217A
ICM7224 \mid ICM721
ICM722
ICM755 LCM
LA 413
LC712
LC71
LF3
LF3
LF3
LM
LM
LM
LM
LM
LM
LM3
LM3
LM3
LM
LM3
LM
LM
LM3
LM
LM3

 2 N 4058
$2 \mathrm{~N} 4061 / 2$
2 N 4427 2N3850
2N4871
2N5172
2N5170 2N51
2N518
2NS30
$2 N 54$ 2N5305
2N547/
2N5485 2N5485
2N5642
2N 877
$2 N 6027$

GREENWELD

43D MILLBROOK ROAD, SOUTHAMPTON SOI OHX All prices include VAT-just add 40p post. Tel (0703) 772504

AMAZING! COMPUTER

 GAMES PCB's FOR PEA. NUTS!!A bulk purchase of PCE's from several Well known computer games including enable us to offer these at incredibly low prices:

STARBIRD

Gives realistic enpine sounds end flashing aser blasts-accelerating engine nolse when module is pointed up, decelerating to tee flash and hear blegt of lesers shooting. PCB tested and worting comPlete with speaker and baft clip. (needs
'SIMON'
me object or this game is to pepest cor rectly a longer and longer sequence of included) 3 dirs rent games. (Instructions included) PCB contains chips, switches wompholdere and lemps, and is tested PP3 and $2 \times$ HP11, PCB size $130 \times 150 \mathrm{~mm}$ Only \&3-85.

- COMPUTER

BATTLESHIPS

Probably one of the mosi popular electhe design makes It impractical to toat the PCB as a working model, although It may well function perfectiy. Inetead we hav ested the sound chip, and cell the bonrd or 'TMSicom ueprocesiof; bett clipe R's C's etc. Slze $100 \times 140 \mathrm{~mm}$. Only \&i 50 . instruction book and ctrcuil sep oxtra.

LOGIC 5

The object is to find the number held in the mamory with as few entrias as poas ble. PCB contalns u-processor chiv and 10 leds, and is linked to a membrane type
 provided. PCB ares: $85 \times 80 \& 85 \times 70 \mathrm{~mm}$ quired. Only \&a.se.

MICROVISION'
Cartridoes
These are amall PCB with micro processor chip, dessigned to plug in to we don't have any consolestl However they can be ueed as an osclllator with diferent frea. outputs simply by connectno a battery and spoakior. Teeted and worting (as an ose) with pin out data

RELAY/TRIACPANEL 2537 PCB $100 \times 75 \mathrm{~mm}$ containing min relays, $2 \times 47 \mu \mathrm{~F}$ fov tants SC148E 10 A 500 V 'triac, C129D $84 \mathrm{400V}$ SCR $38 \mathrm{Hmer}, 10 \times 1 \mathrm{~N} 4001$ diodes, 2 Nseg SCR, $2 \times 3 \mathrm{~mm}$ LEO'S $3 \times 2 N 3704$, R' ${ }^{4}$ C'e-Amazing value-it bought soper Our órice for the penel, just eas. 0 .
200 ELECTROLYTICS f4.00 K524 Large vaplaty of valuesivoltegete mostly cropped leads for PCB mnto ponents. not chuck-outell 200 ह4, 1000 17.50

COMPONENT PACKS

Ksas 150 wirewound reslators from 1W to 12 W , with a good range of values. \&1.75. ncluding orted potentiomaters, all types lider. El-70.
$K 511200$ amall value poly mien caramic capa from a fow of to :opuF. Excellent Ks14 100 allver mica caps from 5 pF to ow thousand DF. Tolerances from 1\% to
ke0 Swith peck-20 different, rocker allde, rotary, toggle, push. micro, etc. KSO Hoatshrink pack- 5 dif. sizes, each

1000 RESISTORS £2.50

We've lust purchased another 5 million proformed resistors, and can make similiar offer to that made two years ago. t and $+W 5 \%$ carbon film reaitors oreformed for PCB mnto. Enormous range of preferred values. 1000 for fz .50 ; 5000 E10: 20 £

PANELS

eat slink with 10230 (2N342) on smal diodes. caps, resietore, atc. ©tp
2527 Reed relay panol-containe 2 . 8 V rects + Re. Sop.
2329 Pack of ex-computer panele contein Ing 74 series ICe. Lote of different gate and complex logic. All ics are marked with type no. or code for which an
identification sheet is supolied. 20 IC
 Asoy Block cata $50 \times 50 \Rightarrow 78 \mathrm{~mm}$ with
octal base. PCB inalde has 24 V reed octal baee. PCB inalde has 24 V reed
relay 200 V TA $S C R, 4 \approx 5 A 200 \mathrm{~V}$ recte.

TEACHEN 82

Full sul ol parts es somectied by "EE". All * All parts for the "MINILAB" only K17.50 + 21 pos

- All compononte for first parts of BUY BOTH SETS FOR $24+$ BUY BOTH SETS FOR \&24 + E1 posit PRE calalogue with all orders 1 ! FREE Component Identifation Chert ! ! FREE piece of Veroboard II

CAPACITOR BARGAINS
200 uF 100 V cans $77=35 \mathrm{~mm}$ dia. 750 olen se; 200uF 10V axiel sp; $100 \mathrm{cz} \cdot$. 10 $50: 1085 \cdot 5+$ monef $350 \mathrm{~V} 100+100$ $0 \mu \mathrm{~F} 300 \mathrm{~V} \operatorname{can} 75 \times 44 \mathrm{~mm}$ die 4p; 10/ES oof ted 100uF $25 V$ Axial s3/100.

4 TERMINAL RECS

ATBMG in power mini-dip csee s-30 Y

 HARANG in power mini-dip ciee s-30va © 828.Only 4 extra componente required (Sop stra) to make ofully variable cupolyil ate supolled.

1W AMP PANELS
4011 Compmet audio amp intonded for record player on panel 95 68mm Includwith innobs. Apert from amo circuitry bullt round LMEsen or TBAB2OM, there is a peed control clrcult using 5 tranaistors. \checkmark operation, connezion date supplied ONLY 51 B.

VU METERS

 1.75, or $53 \cdot 0$ palr.

OP-AMP PSU KIT

 A190 All parts + instructions to make a input. Only \&i-es.COPPER CLAD BOARD KER8 All ploces too small for our otching uti. Mostly double ilded fibreglage.

JOB LOT OF

 COMPONENTS0500 1N4008: 10000 083/80: 22000 100F/80;
 30000 variout resiators. Total 112,500

GAS DISCHARGE

DISPLAYS
7 seg diaplays available in 3 styles.
Char. helight 12.5 mm . with 16 way ribben cable torminafed in 16 DIL header olug, giving multiplexed output. \&1-2t 8813 digit at above 81.7
$0323+2$ digil as above \&2.s Data supplied.

MK4027 SHIFT REGISTER

2048 bit dynamic shff regiater, 6 MHz , Ideel for CRT displaye bulter momories FILAMENT DISPLAYS 26837 seg dieplay 12.5 mm high. Ideal for TTL oporation, taking 5 V ema per seg. std 14 DIL package. Only \&1 each, 4 for *. Date supplied

TOROIDAL

TRANSFORMER
110 mm dia. $\times 40 \mathrm{~mm}$ deep. $110 / 240 \mathrm{~V}$ prl. oc. ow price et.
VEROBLOC BREADBOARD Now from Voro, this versetlle ald for modeto any size oflic, Bloce and be lolned ogether. Bue strips on X\& Yaxie-total 360 connexion oolints for just if 15 . (Photo shows 2 blocs)

SAVE EIIt
owly es. 15
NITH VERO
VOUCHER
(In Oct.
Issue)

BATTERIES BoxEs BOARDS CAPACITORE WEsistons CONNECTORS CABLE coax
FLAT RIBEON
POT8 © WITCHES
 CMOS TTL L8 TTL sUPPORT CHIP LINEAR OP AMPS COMPARATORs OPTO LEDS DISPLAYS LCD'8 TRANBIBTORS THYRISTORE TRIACS DIODES BRIDGES METERS ZENERS SOLDERING IC BOCKETS

FROM A NEW COMPANY WITH NEW IDEAS

SOMETHING SPECIAL

'AIRWAVES ELECTRONICS INVITE YOU TO OPEN YOUR OWN PERSONAL ACCOUNT. THERE COULDN'T BE AN EASIER WAY TO BUY COMPONENTS, ONCE YOU HAVE OPENED YOUR ACCOUNT, JUST PHONE OR WRITE YOUR ORDER THROUGH, STATING YOUR ACCOUNT NUMBER TOGETHER WITH YOUR OWN SECURITY CODE NUMBER AND GOODS WILL BE DESPATCHED SAME DAY AND YOUR ACCOUNT DEBITED WITH THE COSTS.

MAYBE YOUR THINKING-YOU'LL HAVE TO PAY OVER THE ODDS FOR THIS, BUT YOU WILL BE WRONG, ACCOUNT CUSTOMERS WILL RECEIVE OUR PRODUCT PACKED CATALOGUE SHOWING VAT inclusive prices, Which we believe TO BE VERY COMPETITIVE. AFTER ALL YOU'RE THE BEST JUDGE AND WE DO OFFER SOMETHING SPECIAL

IF YOU WOULD LIKE TO OPEN YOUR ACCOUNT, THEN PLEASE CONTACT US FOR APPLICATION DETAILS ENCLOSING JUST A STAMP TO COVER POSTAGE.

CALL AND SEE US AT OUR RETAIL SHOP.

AIRWAVES ELECTRONICS

151 LONDON ROAD, CAMBERLEY, SURREY GU15 3JY.

TEL. (0276) 62949

MUSIC KITS
 ALL WITH PRINTED CIRCUIT BOARDS

```
128-Note Sequance
10-Note Sequancer
3-Microphono Mixe
-Channel Mixer
Analogue Roverb
Audlo Effecte
Chorosynth
Digital Reverb
Oiscostrobe
```

SET76	120	45
SETB6	64.63	Drum-Synthesise
Enlarger Timer		

Enlerger Timer
funny Talher
Gultar Enoct
Gultar Multiprocessor
Guitar Overdrive
Guitar Suatain
Guitar Shotain
Metronome
Microphone Pre-amp

SEND S.A.E. FOR FREE COPY

Nolse Limiter
P.E. Minitonic Synth

Phaser
Phasing \& Vibrato Practice Amplifier Slanal Tracer Simple Phase Unit Smooth Fuzz
 Solit-Phase Tremolo
Switched Treble Boos
Synthealser Interface
Tranalent Generator
Tremolo
Tuning Fork
Volce Operated Fader
Volce-Scrambler
Wah-Wanh
Wind and Rein Unit

Sote include PCBs, U.K. P. \& P., 15\% VAT, Ret., Caps., S'C.s, Pote, Knobs, SW's, Shts. Wire, Solder.
Prices correct at press, E. \& O.E., subject to stock. Dellvery frequently by refurn but please allow 14 doy

PHONOSONICS

DEPT EE21, 22 HIGH STREET, SIDCUP, KENT, DA14 GEH 01-302-6184

Fiapid
 Tel: 0322863494
 Hillcroft House Station Road Eynsford Kent DA4 OEJ

COMPONENT KITS An ideal opportunity for the beginner of the more experienced constructor 10 obtain a wide range of components at reduced prices. IW 5% Reslstor Kit. Contains 10 ol each value form 4-7 Ω 101 M (650 resistors) 480 p. Ceramic Capacitor KIt. Contains 5 pf each value from 22p 100.01 (135 caps.) 370 Polyester Capacltor Kt. Contains 5 of each value from 0.01 to 1uF (65 caps.) Preset Kit. Contalns 5 of each hor velue (total 65 preats) Nut and Bolt Kit. Total 300 items	PANEL METERS	
	An ideal opportunity for the beginner of the more experienced constructor 10 obtain a wide range of com- $0-50 \mu \mathrm{~A}$ $0-100 \mu \mathrm{~A}$ $0-500 \mathrm{~mA}$ 0-1A	
	$0-500 \mu \mathrm{~A}$ - $0-50 \mathrm{~V}$ AC	
	t $\ddagger W 5 \%$ Resistor Kit. Contains 10 ol each valueform 4.7Ω VU	
	$0-10 \mathrm{~mA}$ - $0-300 \mathrm{~V}$ AC	
	VERO Verobloc 350p	
	SIze 0.1 matrix	
	2.5×10 22p	
25 6BA i"bolts 25 4BA i" bolt	$2.5 \times 3.75{ }^{\prime \prime}$ 750	
5068 A washers $\quad 50$ 48A washe	$2.5 \times 5{ }^{\prime \prime}{ }^{\prime \prime} \quad 85 p$	
50 6BA nuts 50 4BA nuts	3.75 \times 5" 95p	
TRANSFORMERS Veropins per 100		
Min iature mains. $606 \mathrm{~V}, 909 \mathrm{~V}, 12022 \mathrm{~V}$ all@100mA High quality. Spllt bobbin construction. 100p each		
$\text { BVA } 0-6,0-6 V @ 0.5 A ; 0-9,0.9 V @ 04 A$	CABLES	
$0-6,0-6 V @ 1 A ; 0-9,0-9 V @ 0.6 A$		
$0-12,0-12 \mathrm{~V} @ 0.5 \mathrm{~A} ; 0-15,0-15 \mathrm{~V}$ @ $\mathrm{zF}^{2} \mathrm{p}$ each (plus	20 metre pack single core connecting cable, ten differ-	
$24 \mathrm{VA} 0-6,0-6 \mathrm{~V}$ @ $1 \cdot 5 \mathrm{~A} ; 0-9,0-9 \mathrm{~V}$ ¢ $1 \cdot 2 \mathrm{~A}$;	ent colours 6 6p	
	Speaker cable 10p/m	
330p each (plus 60p carriage)	Standard screened 16p/m	
$50 \vee A \quad 0-12,0-12$ @ 2A; 0-15, 0.15@1.6A	Twin screened 24p/m	
	2.5A 3 core mains $\quad 23 \mathrm{p} / \mathrm{m}$	
100VA 0-30, 0-30V © 1-6A 9200 each (plus 80p carriage)	10 way ribbon $\quad 65 \mathrm{p} / \mathrm{m}$	
ase add carriage charges to our normal postage charg	20 way rlbbon 120p/m	

OPTO			
* 3 mm red	7 p	* 5 mm red	8 p
* 3 mm green	12p	$\star 5 \mathrm{~mm}$ green	12p
¢ 3mm yellow	120	, 5mm yellow	12p
Cllps to sult 3p each.			
Rectangular		TIL32	40 p
* Red	12p	TIL78	40p
Green	17p	TIL111	60p
Yellow	17p	ORP12	850
Seven Segment Displays			
DL704 0.31n		OL707 0.3in	95p
+FNO500 0.51n		FNO507 0.51n	90p
TIL313 0.3in	105p	TIL312 0.3in	105p
TIL322 0.5in	115p	TIL321 0.5in	115p
All seven seoment displays are supplied with			
2N5777 45p	Dua	colour LED	65p

PCB MATERIALS	
Alfac transler sheets	45
Dalo etch resist pen	100
Fibre qlass board $3.75 \times 8^{\prime \prime}$	70
Ferric Chloride 250 ml bottle	100

SOLDERING IRONS		DIODES			POTENTIOMETERS
Antex CX 17W Soldering iron	420 D	BY127	12p	+1N4001 3p	y. Carbon Log or
2.3 mm and 47 mm bits to suit	55p	O447	10 p	1N4002 5p	LIn 5K-1M. Singl
CX 17W element	190 D	OA90	8 p	IN4006 7p	Stereo 85p.
Antex $\times 25$ 25W soldering iron	440 p	OA91	7 p	IN4007 7p	Slide. 60 mm travel
3.3 mm and 4.7 mm blte to sult	550	OA200	8 p	IN5401 15p	single Loo or LIn.
${ }^{\text {X2 }} 25 \mathrm{~W}$ - element	1900	OA202	8 p	1N5404 16p	V ales 5K-500K 63 p .
Solder pump desoldering tool	480 p	1N914	4 p	IN5406 17p	Preset. Submin. horl-
Spare nozzle for above 10 metres 22 swg . solder	700 100 p	- 1N4148	$2 p$	400mW ren.6p	zontal values 100Ω

10 metres 22 swg . solde

SOCKETS

18 pin 18 p
20
Soldercon phas 60 p/ 100 .

Posifive	Negative
* 78L05250	79LO5 65p
78L12 30p	79L12 65p
78L15 30p	79L15 65p
, 7805 45p	* 7905 45p
+ 7812 43p	+7912 45p
$7815{ }^{60} \mathrm{p}$	7915 60p
LM309K	- LM323K
130p	$350 p$
* LM317T	LM723 40p

CAPACITORS
Polyester. Radlal leads. 250 V C280 type.
$0.01,0.015,0.0220 .033,6 p ; 0.047,0.068,0.1,7 p ; 0.22,9 p:$
$02213 p ; 0.4713 \mathrm{p} ; 0.6820 \mathrm{p} ; 1.023 \mathrm{p}$. $02213 \mathrm{p} ; 0.4713 \mathrm{p} ; 0.6820 \mathrm{p} ; 1023 \mathrm{p}$.
Electroytic. Radial leads or Ax/al leads.
$0.47 / 63 \mathrm{~V}, 1 / 63 \mathrm{~V}, 2.263 \mathrm{~V}, 4 \cdot 763 \mathrm{~V}, 10 / 25 \mathrm{~V}, 7 \mathrm{p} ; 22 / 25 \mathrm{~V}, 27 / 25 \mathrm{~V}, 8 \mathrm{p}:$
$100 / 25 \mathrm{~V}, 9 \mathrm{p} ; 220 / 25 \mathrm{~V}, 14 \mathrm{p} ; 470 / 25 \mathrm{~V}, 20 \mathrm{p} ; 100 / 25 \mathrm{~V}, 30 \mathrm{p}$.
Tantalum bead.
$0.1,0 \cdot 22,0.33,0 \cdot 47,1 \cdot 0 @ 35 \mathrm{~V}, 2 \mathrm{p}: 2 \cdot 2,4.7,10 @ 25 \mathrm{~V}, 20 \mathrm{p}:$
$15 / 16 \mathrm{~V}, 30 \mathrm{p} ; 22 / 16 \mathrm{~V}, 27 \mathrm{p} ; 33 / 16 \mathrm{~V}, 45 \mathrm{p} ; 47 / 6 \mathrm{~V}, 27 \mathrm{p} ; 47 / 16 \mathrm{~V}, 70 \mathrm{p} ;$ $158 / 6 \mathrm{~V}, 40 \mathrm{p} ; 100 / 10 \mathrm{~V}, 90 \mathrm{p}$.
Polystyrene. 5% tolerance.
10p-1000p 6p. $1500 \mathrm{p}-4700 \mathrm{p}$ 8p. $6800 \mathrm{p}-0.012$ 10p.

Ceramic.
$220-0.01$

Trimmers. Mullard 808 serles.
$2-10 \mathrm{pFF}$
22 $\mathrm{p} .2-22 \mathrm{pFF} 30 \mathrm{p} .5 \cdot 5-65 \mathrm{pF} 35 \mathrm{p}$.

* Same day despatch
* Top quality components * In-depth stock

HOW TO SUCCEED IN THE ELECTRONICS BUSINESS:

All above prices include V.A.T. Send 80p for new 1982 fully lllustrated catalogue, S.A.E, with all enquiries. Special prices for quantity quoted on request.

M. DZIUBAS
 158 Bradshawgate, Bolton Lancs. BL2 1BA

THIS Christmas treat yourself to a HOME RADIO CATALOGUE

- About 2,000 Items clearly listed. - Profusely illustrated throughout. - Large A-f size pages.
- Bargain list, order form and 2 coupons each worth 25p if used as directed, all supplied frea.
Price £i, plus 50 p for post, packing and Insurance.
Send cheque or P.O. for $£ 1$ - 50
HOME RADIO Components Ltd Doph EEE, P.O. Box Re, zis London hend

AIGGON

CONTINUE THEIR SPECIAL OFFER mini 20 $20 \mathrm{k} \Omega / \mathrm{V}$ d.c. $\quad 6 \cdot 6 \mathrm{k} \Omega / \mathrm{V}$ a.c. multimeter only $£ 19.50$
INCLUSIVE OF POST PACKAGE-V.A.T.

The Mini 20 is an ideal instrument for the constructor. This special offer is a wonderful opportunity to acquire an essential piece of test gear with a saving of nearly £10 on the normal retail price.
The 26 ranges cover all likely requirements. Operation is straight-forward, just turn the selection switch to the required range.

RANGES:

d.c.V: $100 \mathrm{mV}, 1 \mathrm{~V}, 10 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$.
a.c.V: $10 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$.
d.c.l: $50 \mathrm{uA}, 1 \mathrm{~mA}, 10 \mathrm{~mA}, 100 \mathrm{~mA}, 1 \mathrm{~A}, 3 \mathrm{~A}$.
a.c.I: $3 \mathrm{~mA}, 30 \mathrm{~mA}, 300 \mathrm{~mA}, 3 \mathrm{~A}$.

Ohms: $0-1 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 100 \mathrm{k} \Omega, 1 \mathrm{M} \Omega$.
Accuracy: 2\%d.c. \& resistance, 3\% a.c.
Dimensions: $105 \times 130 \times 40 \mathrm{~mm}$
Movement protected by internal diode and fuse.
The instrument is supplied complete with case, leads and instructions.

For details of this and the many other exciting instru. ments in the Alcon range, including multimeters, component measuring and electronic instruments please write or telephone:

[^0]
E.E. PROJECT KITS

Make us your No. 1 SUPPLIER OF KITS and COMPONENTS for E.E. Projecte. We supply carofully selocted sete of parto to onable You to contiruct E.E, projecta. Kita include ALL
THE ELECTRONICS ANO HARDWARE NEEDED. Printed ciecult boards (hully THE ELECTRONICS ANO HARDWARE NEEDED. Printed ciecuit boards (tully etchod, article, wo even Includo nuts, screwe and I.C. sockets. PRICES INCLUDE CASE otherwise stated. BATTERIES ARE NOT INCLUDED. COMPONENT SHEET INCLUDED. If you do not have the issue of E.E. which includes the project-you will need to order the Instruction reprint at an oxtra 45 pach .
Repointe avaliable separately 45p each + p. ip. 40.

ELECTRONIC IBMITION. Nov. 81. 2es 38.
©IMPLE INFRA RED REMOTE CON. ThOL. Nov. st. Eis. 50
LOUDMAILER. Nov. B1. Iese handle. $11 \cdot{ }^{1}$
HORM 8 PEAKER. EA. 75 ertra.
PRLSBURE MAT TRIGOER ALAMM. NOV. 81. ESARIEER MatE. Nov. 81. Lete merlal. Es. 6 .
Headphonen. E2-50 extra.
 SUSTAIN UNIT, Oct. \%1. E11-\%3, - Popular desiones. Oct. 81. BNAP INDICATOR. E3.18. DAMP LOCATOR, EI-51. TAPE MOIBE LIMITOR. RA.24. 2. CONTINUITY TESTER. Es.70. CONTINUITY TESTER. ${ }^{\text {E. }} 7.70$.

OPTO ALARM. EA.
\%OIL MOISTUPRE UNIT. ES. 43.
TCE ALARM. E7. 34.
MODEL RAILWAY BPEED CONTROLLER. Sept. S1. E13-4.4. -12V POWM SAR CMOB CAR EECURITY ALARM. Smpt. B1. Es-4.
CMOS DIE. Sapt. 84. E7.47. WHEEL OF FORTUNE. Aug. 81. Iose
 COMBINATION LOCK. July 11. LeBs cas. 1 13-30.
EURCLARALARM BYETEM. June B -ss bell, loop \& MIc's. EJP'30.
TAPE AUTO 8TART. June A1. Eil.se. LOOP AERIAL CRY BTAL BET. June B1. 5547.

LIOHTS REMINDER AND IGMITION LOCATOREEE MAY B1. ES.23. May 81. \&3. 3 .
T.V. INTERFERENCE FILTERE EEE. May 81. LOW PASS lese tinplate ceren. HICH PASS EI.56.
GUITAR HEADPHONE AMPLIFIER E.E. May 81. E3.

PHONE BELL REPEATEM / EABY Ala
DIGITAL RULE (ultrasonic) April 81 EME 20
 TEsTERs. Mar. s1. Ohmeter version C1.05. Led verslon ex. 5 S.
MINI SIREN. Mar, 81. ©7-52.
LED DICE. Mar. I1. E7.es.
LED FLAEMER. MAR. A1. EA. O1.
MODULATED TONE DOOREELL. MODULATED TONE DOOREELL.
MAP. SL, RE•Z1. E4REALE BOOET. Mar. s1. se.E4.
CARACTUATED DRIVEWAY LIOMT. Feb. Al less socket. ©23.st.
THREE CHANMEL STEREO MIXER Feb. si. E17.47. probe.
FOUR EAND RADIO. Feb, E1. E3t. To. MICC BATTERY CHARGER. Feb. 1 $E 1272$.
ULTRABONIC INTRUDER DETEC.
AUTOBLIDE CHANGER. Jan.81. E8-25. LOGIC PULEE OENERATOR. Jan. 81 744
2 NOTE DOOR CHIAE, Dec. 80. 20-65. GUITAR PRACTICE AMPIFIER Nov. 80 . E11-vis less case. Standard case M3. Be. High quality case ei-38.

BOUND TO LICHT. Nov. 80. 3 channel ERAMASISTOR TESTER. Nov. 80 EU. ©Tinc. teat leads. SOUNOS. Oct. E0. EH2.2.E JOGBER.
 EICYCLE ALARA. Oct. ©0. fere less mounting brackots. 1 RON HERTCONTROL. Oct. 00 . s5. 4 . EDOADE KADIO. Sept. $80,117.57$.
 COURTESY LIEHT DELAY. Jun* ©0. EA ENA
Bichal TRACER. June so. es.os.

 E4,3TTERY VOLTAOE MONITOR. Mmy CARLE E PIPE LOCATOR. Mar. 50 Kitchen coll formor. KITCMEM TIMER. Mar Bo. E13.73.
STEREO HEADPHONE AMPLIFIER.

Grey Case es. 90 extra.
BIMPLE SHORT WAVE RECEIVER. Fob. ©0. c.24.17. Meadphones E2.83. SLIDE/TAPE EYNCHRONISER. FAb 80 . E17. 58
MOREE. PACTICE OBCILLATO Feb, 00. ch-R. SPRING LINE REVERE. UNIT. JAN. 80 . UNI OLAND EUROLAR ALARM. Dec 70. ع5.6.

BABY ALARM. Nov. 79. As.
ONE ARMED BANDIT. Oct. 79. E24.E HIGH IMPEDANCE VOLTMETER. Oct
 SIMPLE TRANSIBTOR TESTER. Sept. 79. E4 6s.
ELECTRONIC TUNIMO FORK. Aug. 79. Es.è. \$uitable microphone íplud ini-T OXtra. ELECTRONIC CAMARY. June 79. ES.4 TRAMBISTORTEETER.AprIIT. CA-S TOUCH BLEEPER. Aprii 79. EJ.E7. ONE TRAMSIBTOR RADIO. Mar. 74 less case ki.e. DOOREELL. Feb. 70. E14.02. THYRUSTARLE PBU. Feb, 70. Ej1 $\cdot 17$. HEADPHONE EMHANCER. Jan. 7. ces
MIC, AMP. Dec, 78. es. We.
GUDIELE FLABHER. Dec. 78. A1-33. Dec. 78. \&s. Fl .
FUSE CHECKER. Oct. 78. CA. IS
TREABURE HUNTER. Oct. 78. E19.H loes handle 4 coll former.
sOUND TO LIGHT. Sept. 78. £7. 17 . CAR BATTERY BTATEINDICATON. Sept. 78. Lese case. EI W
R.F. 婁IGNAL GEMERATOR. Sepi. 7t. E24.CVE FLASH. Aug, 73. C3-52loes SK1 IN SITU TRANBISTOR TESTER. IN 81TU TR.
POCKET TIMER. April 78. 63.87 .
POCKET TINER. April 3. TOR. Mar. 78. ES-23.
AUDIO VIBUAL METRONOME. Jan. 78
ES E3.
 AUTOMATIC PHABE BOX. Dec. 77. EII.se inc. p.c.b.
7. SO HOOORELL REPEATER. JUIY

ELECTROMIC DICE. Mar. 77, es.31.

LATEST KITS: S.A.E. OR 'PHONE FOR PRICES

TRAIN SET ACCESSORIES

MODEL RAILWAY BPEED CONTROLLER
From E.E. Sept at. Features fully varlable speed control-from zero to full epsed. Forward/ reverse switch, Auto start and stop for reallam. Brate and speed boot. Emergency atop. Use with the simple controller aupplied with moat train sets. Housed in an attractlve ${ }^{2}$ tone sloping tront case. Buit
TRAIM BOUND8-Irom H.
TRAIN BOUNOBHITRM H.E, 12.23 inc. case
TWO TONETRAN HONW Feb, 81. ES-24less caso.
CHUFFER Jan, 81 e7. 4 less case.
All 3 can be builtinto the whislle project caso-or built as separate units
EOOK-MODEL RAILWAY PROJECTS by Penfold El'ss. Publiahed Sept. al

> PCBs
> for
> E.E.

ELECTRONIC IONITION. Nov. 81
MODEL RAILWAY SPEEO CONTROLLER. Sept. 81
WHEEL OF FORTUNE. Aug. 81 (pair)
COMBLNATION LOCK, July B1
MODEL RAILWAY POINTS CONTROLLER. Mar. 81
SOUMD TO LIOHT. Nov. 60
E3. 45
ce .98
$\mathrm{E1} .99$

C1	58 p	2N5457	58 p		24p			LM3917N	c2. 27				
TIC4	410	2N548	63 p	BFY52	23 p	555	32 p	M3900 W	D				
OA47	110	40673	980	BFX88	32D	556	79p	LM3909N	p				
OA9	9 p	AC128	29p	BRY3	48	741	${ }^{28} \mathrm{p}$	LM3911	E1. 55				
OA202	110	AC141	34 p	MPSA65	39p	748	55p	LM3814N	¢2. 31				
W005	33 p	${ }_{\text {AC1 }}{ }^{\text {a }}$	39p	RPY58A	5.1 .16	CA3080	E.1.21	LM3915N	C2.98				
W06	470	AC176	370	TIP31A	52p	CA 3085A	E1.32	M C3340	c.2.13				
25J	52.92	BC182	110	TIP32A	83 p	CA3130T	$\underline{51-12}$	TBA820	c.1. 05				
IN400	$5{ }_{4} \mathrm{p}$	BC182L	11 p	TIP33A	94 p	CA3140E	57p	TLO6	c.2 59				
IN4005	p	BC183	110	TIP34A	99 p	HA1388	E.2. 5	U2	c.1. 69				
JN4148	5 p	BC184	$11 p$	TIP121	C1.12	ICL7811	$\underline{51.04}$	ULN2283	6.1 .47				
iN5404	180	BC184L	11p	TIP2955	99p	ICL8038CC	cs 32	ZNIOSAE	c.2.19				
IN5408	19p	BC212	110	TIP3055	69p	ICM 7555	81.19	ZN41	c1.09				
BF244	870	BC212L	110	TIS43	38p	LF351	56 p	ZN419C	c.2.38				
MPF102	69p	BC213	110	TPSA13	35p	LF353	96 p	ZN424E	c.2.14				
TIS88A	57p	BC244	$11 p$	SN3053	25 p	LF356	99p	ZN425	c.5.9t				
VN67AF	E1-21	BC214L	11 p	2N3055	59	LM301AN	38p	CMO					
2N3819	23 p	BD131	48	2N3702	11p	LM309K	c. 2.99	4001	D				
2N3820	71p	BFY50	25 p	2N3704	$11 p$	LM317	E3.56	401	23 p				
							c2.55	4013					
						LM ${ }^{\text {LM }}$	79p	4017	1.20				
WW CARBON FILM RESISTORSE12 SERIES. 1 R-10M						LM381N	ع 81.98	4024	780				
MIN. HORIZ. PRESETS. ${ }^{\text {c }}$ (00R-4M7.: 12p each						LM382N	E. 1.12	4068	31 p				
LOO. 4K7-2M3 SWITCHED POTS. AK7-1M. LIN. 75 p . LOG 78p						LM386N	E1.04	4081	290				
						LM387N	E. 1.38	4093	319				
						LM389N	E1.29	4522	79				
						1830	¢2. 32	40174	c1. 30				
POLYESTER (C230) CAPACITORS, 250V 10nF: 15nF: 22 nF : 33nF; 47 nF 7p each. 68 nF : 100nF $3 \mathrm{p} .150 \mathrm{nF} ; 220 \mathrm{nF}$ 12p. 330nF 15p. 470 nF 20 p 						OPTO							
						8PX25							
						2N5777							
SUB MINIATURE PLATE CERAMICS, GIV Valuen In pF; $2 \cdot 2 ; 3 \cdot 3 ; 4 \cdot 7 ; 5 \cdot 6 ; 6 \cdot 8 ; 8 \cdot 2 ; 10 ; 15$; 22; 33; 47 \& 50pF 7p each. 68pF; 100pF 7p each. 150pF: 220pF: 330pF 11p each. 390pF. 470pF, 1000 pF 5 p each, 2200 pF Ip each. $3300 \mathrm{pF}, 4700 \mathrm{pF}$ 1p each. $10 n F$ 13p. 100 nF 22 p .4 nF 14p.						TIL32							
						LEDS WITH CLIPS							
						3 mm . Red 15 p . Green 18 p . Yellow 20 p.							
ELECTROLYTIC						FLASHING LED78p							
						RECTANGULAR. Red58p MAINS PANEL. Neon32p							
$12 \mathrm{p}: 2 \mathrm{2}$		3. 3 [F/63	. $7 \mu \mathrm{~F} /$	63V 12p; 1									
$16 \mathrm{~V} 11 \mathrm{p} ; 10 \mu \mathrm{~F} / 25 \mathrm{~V}, 10 \mu \mathrm{~F} / 63 \mathrm{~V} 12 \mathrm{p}$; $22 \mu \mathrm{~F} / 10 \mathrm{~V}, 22 \mu \mathrm{~F}$) $25 \mathrm{~V} 12 \mathrm{p} ; 22 \mu \mathrm{~F} / 63 \mathrm{~V} 15 \mathrm{p} ; 33 \mu \mathrm{~F} / 40 \mathrm{~V}$, $47 \mu \mathrm{~F} / 25 \mathrm{~V} 12 \mathrm{p}$;													
						BZY88. Range 2V7 to 33V. 12p each.							
$47 \mu \mathrm{~F} / 40 \mathrm{~V}$	15p;	$47 \mu \mathrm{~F} / 83 \mathrm{~V}$	p; 1	$100 / 4 F / 16 \mathrm{~V}$	12p:								
$100 \mu F / 25$	${ }^{15 p}$;	$100 \mu \mathrm{~F} / 40 \mathrm{~V}$	$\mathrm{BP}^{\text {P }} 1$	100 $\mu \mathrm{F} / 6 \mathrm{~V} 3 \mathrm{~V}$	290:								
2204F/10	15p;	$220 \mu \mathrm{~F} / 25$	D;	$470 \mu \mathrm{~F} / 16 \mathrm{~V}$		I.C. SOCKETS							
470 $\mu \mathrm{F} / 25$	${ }^{36} \mathrm{p}$;	470 $\mu \mathrm{F} / 40 \mathrm{~V}$	5p; 6	$680 \mu \mathrm{~F} / 16 \mathrm{~V}$									
1000 $\mu \mathrm{F} / 1$	\checkmark 30p;	1000μ F/16	33p; 1	$1000 \mu \mathrm{~F} / 25 \mathrm{~V}$	48 p	$8 \mathrm{pln} \ldots .{ }^{18} \mathrm{p}$. 18 pin.... ${ }^{22} \mathrm{p}$							
1009 μ	58p	$1000 \mu \mathrm{~F} / 63$		2200 / F/10		14 pin.... 17p 24 pin.... 48p 16 pln.... 18 p 28 pin.... 45 p							
$2200 \mu \mathrm{~F} / 2$	\checkmark \%p;	$2200 \mu \mathrm{~F} / \mathrm{G}$											
SWITCHES MIN. TOGGLE spst 59p; spdt 63p; dpdt 73p. MIN. PUSH ON. 1Ip. PUSH OFF. 22p. FOOTSWITCH \& ALT. ACTION BpCo E1-39; dpco EA_{1} at. ROTARY SWITCHES. $1 p 12$ way, $2 p 6 w, 3 p 4 w$. 4 p 3 w 69p each 12V 13SR DPCO RELAY C2.98													
MULTIMETER TYPE 1. 1,000 opv with probes Ef. Be MULTIMETER TYPE 2. 20.000 opy with transistor tester £14.75 CROC CLIP TEST LEAD SET. 10 leads with 20 clips. 99p CONNECTING WIRE PACK. $5 \times 5 y d$ colls. RESISTOR COLOUR CODE CALCULATOR													

\section*{L00K!
 FROM NOW UNTIL END OF JANUARY A SPECIAL PUR. CHASE ALLOWS US TO GIVE YOU A SPECIAL CHRISTMAS OFFER. MINIMUM ORDER FROM THIS BOX (ANY MIX) $£ 2+$ P. \& P.

MORE KITS AND

 COMPONENTS IN OUR LISTS FREE PRICE LISTPrice lil inneluded
 KITS, PCBs
COMPONENTS

1982 ELECTRONICS

 CATALOGUEIllustrations, product descriptlons, circuits all inare atock lines for fast deHvery. Send 70 D in stamps or add 70 D to order.

MORE E.E. KITS PLUS H.E. and E.T.I. PRO.
JECT KITS IN THE PRICE LIST. -

TEACH IN 82

NEW SERIES-ALL COMPONENTS IN STOCK NOW FOR FAST DELIVERY. All top quality components as specified by Every day Electronics. Our kit comes complete with FREE COMPONENT IDENTIFICATION SHEET, Follow this educational series and learn about electronics-Start today.
Send £24.98 for List 1, 2. VERO/E.E. £1.00 vouchers accepted WOODEN CASE KIT also available. £11.68-wood, formica, glue screws etc. Cut to size
IDEAL SOLDERING EQUIPMENT FOR THE TEACH IN AND ELECTRONICS

ANTEX X5 SOLDERING IRON 25W £5.48
SOLDERING IRON STAND
£.2.40
SPARE BITS. Small standard, large. 65p each. For $\mathrm{X} 5+\mathrm{X} 25$ SOLDER. Handy size 99p. HOW TO SOLDER LEAFLET

DESOLDER BRAID 69p
HEAT SINK TWEEZERS 29p DESOLDER PUMP £6.48 SOLDER CARTON £1•84 LOW COST CUTTERS $£ 1 \cdot 69$ LOW COST LONG NOSE PLIERS £1-68 WIRE STRIPPERS \& CUTTERS
EOOQKS

ADVENTURES WITH
 Bytom MICROELECTRONICS

An easy to follow book sultable for all ages. Ideal for beginners No soldering. Uses a Bimboard 1 breadboard, glves clear instruc tions with lots of pictures. 11 projects based on Integrated circults -includes dice, two-tone doorbell, electronic organ, MW/LW radio, reactlon timer, etc. Component pack includes a Bimboard 1 breadboard and all the components for the projects
Adventures with Microelectronics £2.55. Component pack £29•64 less battery

ADVENTURES WITH ELEGTRONIGS Bytom

An easy to follow book sultable for all ages. Ideal for beginners No soldering, uses an S-Dec breadboard. Gives clear instructions with lots of pictures. 16 projects-including three radios, siren metronome, organ, intercom, timer, etc. Helps you learn about electronic components and how circuits work. Component pack includes an S-Dec breadboard and all the components for the projects.
Adventures with Electronics $\mathbf{£ 2} \mathbf{2 0}$. Component pack £.17.98 less battery.

MAGENTA glves you FAST DELIVERY OF QUALITY COMPONENTS \& KITS qually products to all our customers-HAVE YOU TRIED US?

[^1]

Editor

F. E. BENNETT

Assistant Editor
B. W. TERRELL B.Sc.

Production Editor
D. G. BARRINGTON

Technical 8ub-Editor
G. P. HODGSON

Art Editor
R. F. PALMER

Assistant Art Edltor
P. A. LOATES

Technical llustrator
D. J. GOODING Tech. (CEI)

Secretary
JacQueline doidge
Editorial Offices
KINGS REACH TOWER
STAMFORD STREET
LONDON SE1 9LS
Phone: 01-2816873

INFORMATION YEAR

The start of a new year offers an excuse for recalling the past and anticipating the future. When our ruminations involve electronics we quickly come to realise that much has happened to justify earlier predictions and that today we live in a society very dependent both for work and pleasure upon the products created by this technology. A world without electronics is simply not imaginable to anyone under around forty. And it is a fair bet that even those whose memories can take them back to the days before electronics entered the vocabulary would be reluctant to do without their TV or hi-fi, or maybe personal computer, to say nothing of the countless less obvious but very important electronic appurtenances that contribute "behind the scenes" to the higher standard of living we enjoy today.

A notable development over the past few years has been the bringing together of different branches of applied electronics to form comprehensive systems where, for example, vision and sound are complementary to computing, and where distance between equipments has become no object thanks to flexible telecommunications networks, which may include space satellites.

This kind of integration of electronic functions is well illustrated by Information Technology. The purpose of this newly created, or rather newly labelled, technology is to exploit computing and other data processing techniques by co-ordinating them with the latest methods for communicating and interfacing with people or other machines. The ability to have immediate access to vast stores of facts and figures with computing capabilities also on hand is bound to transform the running of businesses, industries and large administration centres like governmental departments. Eventually similar facilities will be available in the home, Prestel viewdata and Teletext being a taste of what is to come.
There are, of course, social as well as economic implications in the large scale use of Information Technology. Will we be able to make sensible use of all the data and information likely to be instantly available? How secure will these information sources be; will it be possible to ensure that private and confidential information does not get into the wrong hands-or onto the wrong VDU screen?

But whatever forebodings there may be, there can be no doubt about the coming of the "information revolution." For vested commercial interests have a powerful ally in the Government. Information has become the in-thing, a vital aid to economic recovery, no less. To ram this fact home, the Minister of State appointed to watch over this young technology announced recently that 1982 has been designated Information Technology Year. So everyone should get the message during the coming months, even though it's via the old fashioned printed word in newspaper or magazine.

Advertisement Manager
R. SMITH

Phone: 01-261 6671
Representative
R. WILLETT

Phone: 01-261 6865
Classified Supervisor
B. BLAKE

Phone: 01-261 5897
Make-Up and Copy Department
Phone: 01-261 6615
Advertisement Ofices
KINGS REACH TOWER
STAMFORD STREET
LONDON SE1 9LS

Readers' Enquiries

We cannot undertake to anewer readers' letters requesting modiflcations, designs or information on commercial equipment or subjects not published by us. All letters requiring a personal reply should be accompanied by a stamped self-addressed envelope.
We cannot undertake to engage in discusslons on the telephone.

Component Supplies

Readers should note that we do not supply electronic components for building the projects featured in EVERYDAY ELECTRONICS, but these requirements can be met by our advertisers.

All reasonable precautions are taken to ensure that the advice and data given to readers are reliable. We cannot however guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

Back lssues

Certain back issues of EVERYDAY ELECTRONICS are available worldwide price 80p inclusive of postage and packing per copy. Enquirles with remittance should be sent to Post Sales Department, IPC Magazines Ltd., Lavington Houre, 25 Lavington Street, London SE1 OPF. In the event of non-availability remittances will be returned.

Binders

Binders to hold one volume (12 issues) are available from the above address for $£ 4 \cdot 30$ (home) $£ 4 \cdot 55$ (overseas) inclusive of postage and packing. Please state which Volume.

Subscriptions

Annuat subscription for delivery direct to any address in the UK: £11 00 . Overseas: $£ 12 \cdot 00$. Cheques should be made payable to IPC Magazines Ltd., and sent to Room 2813, Kings Reach Tower, Stamford Street, London SE1 9LS.

${ }^{\mathrm{N}}$ THIS age of automation surprisingly few people are able to enjoy the benefits of an automatic garage door. Yet what could be more luxurious, on those cold, wet and windy days, than driving towards a door which obediently opens before you at the press of a button.

Commercially available automatic doors can be very expensive, so it was decided to design a system which would operate on an existing up-andover door. The result may not be as neat as a professional assembly, but the cost can be reduced by a substantial amount depending upon the type of motor selected.

To the electronics enthusiast, the circuits required to receive the ultrasonic signals from the car, process them, and start and stop the motor at the correct times are reasonably straightforward. The mechanics involved may seem complicated at first sight, but in fact, little specialised skill is required, and any person who is capable of fixing a shelf could tackle this project with confidence.

ULTRASONIC REMOTE CONTROL

The system to be described is intended for use on the rigid up-andover type garage door and is based on having the door counterbalanced so as to be slightly biased towards opening.

An electric motor and gearbox combination then either permits the door to open by gradually releasing a cord or closes the door by winding the cord up again.

A solenoid is also incorporated to unlock the door.
The door can now be remotely operated from the driving seat of the approaching car with the use of an ultrasonic transmitter, the receiver mounted into the garage door frame. A push-button switch on the inside of the garage will close the door (or open it, should the motorist be taking the car out from the garage) once the car has been put away.

Various fail-safe mechanisms are included to prevent damage to the

BY P. HORSEY

car should the door close prematurely and to protect the motor in the event of the door being unable to close fully.

A block diagram of the electronic. control is shown in Fig. 1.

SUITABILITY

The basic mechanics of automating a garage door are to be outlined first. since it is essential to establish the feasibility of the project, before building the circuits required. The whole project comprises of four main sections; the ultrasonic transmitter (fitted into the car); the ultrasonic receiver; the logic control circuit and the mechanics, including the door micro-switches and "safety cut-out circuit".
Each section is complete in itself, and some readers may find other applications for parts of the project. The logic circuit for example, is appropriate for any open/close, or up/ down system from lifts to automated curtains!

GARAGE DOOR

It is essential at this stage to check that the garage door can be closed and opened in the following way: (see Fig. 2). Unlock the door and pull gently in direction A. The door should begin to open, and it may rise under its counterbalance weights or springs. If it tends to stick, a vertical force in direction B should open it fully.

Now fix a cord to point P (to one side of the door) and pull down towards C , in direction of arrow. It should be possible to close the door fully, pulling only from point C .

If the door works in this way, it will be noted that only three forces are required to open and close the door. Force C is provided by the motor winding up a cord, force \mathbf{A} is provided by a spring, and force B (if

(c)

(d)

Fig. 2. (a), (b) and (c) show the forces required, and the directions in which they act, to open and close an up-and-over garage door (d) Shows the way in which two of these forces are achieved.
necessary) by a weight and two pulleys as shown in Fig. 2(d).

The actual arrangement will vary according to the geometry of the garage, and detailed measurements will not therefore be provided. Before starting work, check that the door operates freely, and does not stick at any point. The importance of this cannot be over stressed.

MECHANICAL ASSEMBLY

The actual construction and installation of the mechanics involved will be discussed in depth in Part Two of this article next month. The majority of the mechanical components, with perhaps the exception of the motor, should be readily available from builders merchants or hardware stores, or even scrounged from old scrap.

The ultrasonic receiver and transmitter circuits will be detailed first, each being treated as a separate unit. Part Two will deal with the Control Logic circuit construction, the mechanical modification and, finally, the fitting of the system as a whole to fully automate the up-and-over type garage door.

The finished Ultrasonic Transmitter with remotely wired transducer and switch.
$H^{\text {aving experimented with optical }}$ and infra red systems, an ultrasonic remote control system operating at 40 kHz was chosen for its overall effectiveness regarding cost and
operating distance. Ultrasonic transducers are available in pairs (which in most cases means that either unit may be the transmitter or receiver) or sold as individual units, where the transmitting and receiving units are different.

Both combinations of these devices have been tilied in the transmitter and the receiver, and little difference in performance was observed.

CIRCUIT DESCRIPTION

The circuit (see Fig. 3) is designed for operation from a nine volt battery. While the car battery supply could be used, the saving made hardly justifies the extra components required, especially when the life of the battery will probably approach the life of the car battery!

The transmitter is activated by pressing push button switch. Sl, which must be held down for a lew

ULTRASONIC TRANSMITTER

Fig. 3. Circult diagram of the Ultrasonic Transmitter.

Transmitter with lid removed to show the way in which the board and PP3 battery are mounted.

COMPONENTS

TRANSMITTER
Resistors

R1 tW carbon	$\begin{aligned} & 10 \mathrm{k} \Omega \\ & \pm 5 \% \end{aligned}$
Capacitors	
C1	1000pF polystyrene
C2	$0.01 \mu \mathrm{~F}$ polyester
С3	$100 \mu \mathrm{~F} 25 \mathrm{~V}$ elect.
	See
Semiconductors	
D1	1N4001 page

Miscellaneous
B1 9 V battery (PP3) S1 push-to-make, non-latching $10 \mathrm{k} \Omega$ miniature horizontal preset 40 kHz ultrasonic
transducer
Stripboard, 0.1 inch matrix, 8 strips by 23 holes; case size $72 \times$ $50 \times 25 \mathrm{~mm}$ (Vero type $75-1469 \mathrm{~L}$); wire; battery clip; 8 pin d.i.I. i.c. holder.

Fig. 4. Stripboard layout of the Transmitter, showing track breaks on the underside.

seconds (as determined by the preset VR2 in the receiver). The 40 kIIz signal required to drive the transducer, Xl , is obtained from ICl , the popular 555 timer, in the astable multivibrator configuration functioning as an oscillator. The values of Cl, R1 and VRl are chosen to provide this frequency, VR1 being adjusted to ensure the maximum output is obtained from the transducer. Capacitor C2 also aids decoupling, and enhances stability. Capacitor C3 decouples the supply.

CONSTRUCTION

A piece of $0 \cdot 1$ inch stripboard measuring 8 strips by 23 holes is used. In practice the size should be chosen to achieve a good fit in the case. See Fig. 4.

Break the tracks as shown (seven breaks altogether) and assemble the components, starting with the i.c. socket, wire links, and preset VR1. The other components should be added, checking the polarity of C3 and Dl.

Decide at this stage where and how the device will fit inside the engine compartment of the car, and whether the transducer will be fixed by itself, or attached to the case of the transmitter unit. The transducer should be mounted in a position where it can directly face the receiver, DO ivOT fit the device to the car at THIS STAGE, but establish the lengths of wire required to link the stripboard with the transducer and the push-button switch, Sl.

Remember that this switch will be fitted below the dashboard and the wires must be long enough to reach the transmitter unit inside the car. Finally insert ICl into its holder observing the correct orientation.

TRANSMITTER CASE

A small plastic case $72 \times 50 \times$ 25 mm was used. Two holes, one for the transducer wires and the other for the push-button switch wires were drilled. The stripboard may be secured by means of self-adhesive foam rubber pads, and likewise the PP3 battery may be fitted. Holes for mounting the completed transmitter must also be drilled in the case.

The transmitter should be kept on the workbench ready for testing and tuning when the receiver has been constructed.

The ultrasonic receiver is housed in a separate case to the power supply and control logic circuits. This reduces the chance of noise being picked up from the transformer, relays and motor, and allows the receiver to be placed near the receiving transducer thus avoiding the use of long connecting wires in this very sensitive area.

RECEIVER CIRCUIT DESCRIPTION

This circuit is based on an operational amplifier type 748, see Fig. 5. This is similar to the popular 741, but offers external frequency compensation, so with a suitable capacitor (C4) across pins 1 and 8, provides improved high frequency gain.

The signal from the transmitter is received by the transducer $\mathrm{X1}$, is amplified by transistor TR1, and then
the output is applied to ICl via coupling capacitor C 2 , the gain control pot, VR1, and capacitor C3. Resistors R5 and R6, and capacitors C5 and C6 form a filter which produces maximum gain at about 40 kHz . This, together with the low values of C2 and C3 limits the sensitivity of the circuit at audio frequencies.
The output from IC1 is coupled via d.c. blocking capacitor C7 to the voltage doubler and detector diodes D1 and D2. When a 40 kHz signal is received by the transducer, a steady voltage develops across capacitor CB. Resistor R8 is for discharging C8 under a no-signal condition.

When the signal is received, trans istor TR2 switches on, fts collector voltage falling almost to zero. Transistor TR3 is turned off, and the current flowing through VR2 and R10 flows via Rll to charge up capacitor C9.

RECEIVER

Resistors		
R1	$6 \cdot 2 \mathrm{M} \Omega$	
R2	$100 \mathrm{k} \Omega$	
R3, 4.5	$1 \mathrm{M} \Omega(3$ off $)$	
R6, 7	$1 \mathrm{k} \Omega(2$ off $)$	
R8	$82 \mathrm{k} \Omega$	
R9	$4 \cdot 7 \mathrm{M} \Omega$	
R10, 11	$22 \mathrm{k} \Omega$ (2 off)	

All $t W$ carbon $\pm 5 \%$

Capacitors

C1	$100 \mu \mathrm{~F} 25 \mathrm{~V}$ elect.
$\mathrm{C} 2,3,5,6$	100 pF ceramic (4 off)
C 4	$3 \cdot 3 \mathrm{p}$ ceramic
C7, 8, 10	$0.1 \mu \mathrm{~F}$ polystyrene (3 off)
C9	$22 \mu \mathrm{~F} 25 \mathrm{~V}$ elect.

Semiconductors

Semiconductors

IC1	748 operational amplifier 8 pin d.i.l.
D1,2	OA91 germanium signal (2 off)
TR1,2,3	BC184L silicon npn (3 off)

Miscellaneous

VR2 $\quad 100 \mathrm{k} \Omega$ miniature horizontal preset

X1 $\quad 40 \mathrm{kHz}$ ultrasonic transducer
Stripboard, 0.1 inch matrix, 14 strips by 42 holes; diecast box size $113 \times 63 \times$ 31 mm ; small grommets (2 off); wire; screened cable; 8 pin d.i.l. i.c. holder; board mounting hardware.

Hence the voltage on C3 slowly rises, its charge rate determined to a large extent by VR2. Thus a steady signal lasting for a preset time must be received before the logic circuit of the next stage is triggered. This, together with the narrow band frequency selectivity of the amplifying stage makes the unit very insensitive to stray noise.

Under no signal conditions transistor TR2 is cut off, and enough current flows via resistor R9 into the base of TR3, turning it on, maintaining its collector at nearly zero volts, hence the current flowing via preset VR2 and R10 now sinks through TRU.

C9 will also be discharged through TR3, therefore no output is present under these conditions. Decoupling is provided by capacitors Cl and C 10 .

CONSTRUCTING THE
 RECEIVER

The receiver is constructed on $0 \cdot 1$ inch matrix stripboard measuring 42 holes by 14 strips (see Fig. 6).

Break the tracks where shown (15 in all) and solder in the wire links, i.c. socket, presets VR1 and VR2, and resistors. The diodes, electrolytic capacitors and transistors must be fitted the correct way round, the non-polarised capacitors can be fitted either way. The i.c. may now be inserted, again observing the correct orientation.

Finally solder the connecting wires and screened cable to the ultrasonic
detector, ensuring that the screen connects the case pin of the detector with the OV track on the circuit board. Note also that this lead will have to be threaded through the case of the receiver, and through the hole in the garage door frame (yet to be drilled).

DIECAST CASE

In order to provide electrical screening, a diecast box should be used to house the receiver circuit. The box used in the prototype measured $113 \times 63 \times 31 \mathrm{~mm}$.

Begin by drilling holes for the earthing screw, securing screws, transducer lead and output/power leads. Rubber grommets should be fitted where any leads pass through

Connect a voltmeter set to read about 5 volts between the test point at D2 " k " and 0 volts on the receiver. Set up the transmitter and the receiver with the two transducers facing each other, a few centimetres apart.

Adjust the transmitter preset, VR1, to about the half way point, and set the receiver preset VR1, gain control, to full gain, that is fully clockwise.

Switch on the receiver 12 V power supply, and observe the voltmeter. It should read zero. Connect the transmitter power supply (PP3 battery) and check that the voltmeter now gives a reading when transmitter switch, S1, is made. Adjust the transmitter preset, VR1, if necessary to obtain a maximum reading.

Finished Receiver board assembly.
the case, and the stripboard may be mounted by any convenient method, taking care not to allow the case to cause a short circuit.

Finally the lead from the 0 V track (marked chassis on Fig. 6) should be fixed to the case by means of a solder tag connection.

TESTING THE ULTRASONIC SYSTEM

A 12V power source is necessary to test the receiver as the power supply on the control logic circuit has yet to be built.

Move the transducers much further apart (up to 10 metres), and again adjust the transmitter preset for a maximum reading.
Reset the voltmeter to read 12 V , equal to the power supply, and connect the positive meter terminal to the "output" lead from the receiver. Set VR2, RISE TIME control, to a midway position, and switch on the transmitter. The voltmeter reading should slowly rise to nearly the supply voltage, and fall to zero when the transmitter is turned off. Adjusting VR2, will alter the time taken for the voltage to rise, thus setting the delay time before the control logic is activated.

View inside the Receiver case showing the component board with screened cable to the transducer.

NEXT LOGIC CONTROL AND

 MONTH: MECHANICAL ASSEMBLY

Model railway layouts can be fitted with numerous accessories to give greater realism, and this does not just include items which give improved realism visually. Various sound effects units for model railways can be produced, and the "chuffer" unit described here is an example of such a unit.

When the model train is stationary the unit produces a "hissing" sound (to feed on amp/speaker) which simulates the sound of a steady stream of steam escaping from a stationary locomotive. When the train starts to move, the "chuffing" sounds are produced, and the unit responds to the track voltage so that as the speed of the train increases and decreases, so does the "chuffing" rate.
The unit can be adjusted so that the "chuff" sounds commence as the train starts to move.

The unit does not have an integral amplifier or loudspeaker, and is intended to feed into a hi fi system, record player, or any suitable amplifier. Best results seem to be obtained with a fairly high power amplifier and a large speaker, but quite good results can be obtained using a simple battery powered amplifier having an internal miniature speaker if preferred.

This chuffer unit should work with any normal type of train controller without any modifications being required. It will operate with types that have an unsmoothed or pulsed output just as well as with types having a smoothed output.

SYSTEM PRINCIPLES

Consider the block diagram of Fig. 1.
The voltage across the track is fed to the control input of a voltage controlled oscillator, and the latter is de-
signed so that it fails to operate with a low input voltage, and has an operating frequency that rises steadily as the input voltage is increased above a certain threshold level. It is this oscillator that sets the "chuff" rate.

With many controllers the voltage on the track is not a steady d.c. but is simply a rectified a.c. signal, or a series of pulses. In either case the motor responds to the average d.c. potential across the tracks, and the voltage controlled oscillator must also be designed to respond to the average level, rather than the level present from one instant to the next.

This is achieved simply by adding a low pass filter at the input to integrate the pulses and give a reasonably smooth d.c. output. This also filters out any noise spikes placed on the track supply by the electric motor in the locomotive.

BRIDGE CIRCUIT

The voltage controlled oscillator must also respond properly to an input voltage of either polarity since the direction of the train is controlled by switching the polarity of the track supply, and both polarities will be used. This problem is easily overcome by adding a bridge rectifier at the input so that the polarity of the signal fed to the control input of the voltage controlled input is always the same, regardless of the track supply polarity.

A white noise generator produces a "hissing" sound which is very similar to the sound of escaping steam, and a noise generator is therefore used to produce the basic signal of the chuffer. The output of the noise generator is quite weak and it is therefore amplified before being applied to a voltage controlled attenuator. From here the signal is fed to the output.

HISS AND CHUFF

The voltage controlled attenuator is controlled by the output signal of the voltage controlled oscillator. The circuit is arranged so that with the voltage controlled oscillator not operating, the noise signal is moderately attenuated, and produces a reasonably strong output signal. This is the required steady "hissing" sound of a stationary steam locomotive. When the voltage controlled oscillator starts to operate it switches the voltage controlled attenuator between full output and zero output, so that bursts of noise are produced at the output and the desired "chuffing" sound is generated.

CIRCUIT DESCRIPTION

Now consider the circuit diagram. Fig. 2. Rl and Cl form the low pass filter at the input and D1 to D4 form the bridge rectifier. The voltage con trolled oscillator is based on TR1 and ICl, the latter being a cmos 555 timer i.c. (the ICM7555) used in the astable mode. The cmos version is used here merely because it gives the circuit a much lower current consumption (around 2 mA instead of 10 mA).

Fig. 1. Block diagram of the Model Train Chuffer showing principle of operation.

With no input voltage to the unit TR1 will be switched off and there is no charge path for timing capacitor C3. The oscillator therefore fails to operate. With a track voltage of reasonable proportions present, TRI is biased into conduction by way of R2 and oscillations are produced. The higher the track voltage, the more heavily TR1 conducts, and the higher the frequency of oscillation. VR1 is adjusted so that oscillation commences at the appropriate track voltage.
R5 is included in the circuit to prevent the oscillator from operating at a very low frequency due to possible leakage through TR1, which could produce the occasional "chuff" while the train was stationary.

Fig. 2. The circuit diagram of the Model Train Chuffer. An amplifier/speaker is required

The prototype Chuffer before labelling of control panel functions.

WHITE NOISE

The noise signal is generated by R9 and TR4. The base-emitter junction of TR4 is reverse biased and acts rather like a low voltage Zener diode. Like a Zener diode it produces noise spikes which collectively give the required white noise signal, but this signal is only a few millivolts r.m.s. in amplitude and must be considerably amplified in order to give a high enough output level to drive most amplifiers. The necessary amplification is provided by TR3 which is used as a straightforward high gain common emitter amplifier. C6 rolls off the upper audio response of this stage slightly. This is necessary because the pitch of the noise signal is slightly too high to give a realistic effect. C5 couples the amplified noise signal to the output socket.

TR2 has its collector to emitter impedance shunted across the output of the unit, and the output signal level can be controlled by means of a signal to the base of TR2. With zero base current, TR2 is switched off and has such a high collector to emitter impedance that it has no significant effect

If it is steadily biased more heavily into conduction it gradually loads the output more heavily, thus reducing
the output level. When biased hard into conduction the output level is insignificant.

Of course, a simple voltage controlled attenuator of this type would not be acceptable in most applications as it generates significant amounts of distortion, but here it is only being used to control a noise signal and quite high levels of distortion are of no consequence.

When ICl is not oscillating, its out put assumes the high state. TR2 is then biased into conduction from the output of ICl via R6, but it does not conduct very heavily and there is a reasonably strong noise signal at the output.

When ICl is oscillating, on positive output pulses a strong base signal is applied to TR2 by way of C4, D5, and D6. This reduces the amplitude of the output signal to practically zero.
When the output is negative, TR2 does not receive any significant bias current through R6, or C4, D5, and D6, so that it switches off and the output is at full amplitude. Thus the required modulation of the output sig. nal and the "chuffing" sound is produced.
The circuit gives an output signal level of sound around 1 volt r.m.s. from a $3 \cdot 9 \mathrm{k} \Omega$ source impedance, and this is sufficient to drive any normal audio amplifier.

A voltage controlled oscillator (v.c.o.) receives its control voltage from the track, and has a frequency of operation that varies from zero with a low track voltage to several pulses per second at maximum track voltage.

A noise generator has its output fed to a voltage controlled attenuator (v.c.a.) and then to an external amplifier and speaker. With the oscillator not operating this gives a steady, steam-like "hissing" sound from the speaker. When the oscillator operates, via the v.c.a., it gives bursts of noise signal that produce the "chuffing" sound.
The "chuff" rate is controlled by the frequency of the v.c.o. which is in turn controlled by the track voltage (and the speed of the train), so that the train speed and "chuff" rate match one another

Fig. 3. Layout of the components on the stripboard with breaks to be made on the underside. Also shows wiring between board and case mounted components.

View of the Chuffer with lid raised show ing board mounted on rear of case.

COMPONENTS

Resistors
R1 $22 \mathrm{k} \Omega$
R2 $1 \cdot 2 \mathrm{M} \Omega$
R3 $2 \cdot 7 \mathrm{k} \Omega$
R4 $27 \mathrm{k} \Omega$
R5 $2 \cdot 2 \mathrm{M} \Omega$
R6 $1 \cdot 2 \mathrm{M} \Omega$
R7 $3.9 \mathrm{k} \Omega$
R8 $1 \cdot 8 \mathrm{M} \Omega$
R9 $68 \mathrm{k} \Omega$
All \ddagger watt carbon $\pm 5 \%$

Capacitors

C1 $22 n \mathrm{~F}$ polyester (C280)
C2 100 nF polycarbonate
C3 $1 \mu \mathrm{~F} 25 \mathrm{~V}$ elect.
C4 $4 \cdot 7 \mu \mathrm{~F} 25 \mathrm{~V}$ elect
C5 $4.7 \mu \mathrm{~F} 25 \mathrm{~V}$ elect.
C6 $4 \cdot 7 n \mathrm{~F}$ ceramic plate
C7 150nF polyester (C280)
C8 $100 \mu \mathrm{~F} 10 \mathrm{~V}$ elect.

Semiconductors

IC1 ICM 7555 CMOS timer i.c.
TR1 BC179 silicon pnp
TR2, 3 BC109C silic on npn (2 off)
TR4 2N2926 silicon non (see text)
D1 to D6 1 N4148 small signal silicon (6 off)

Miscellaneous
VR1 $47 \mathrm{k} \Omega$ carbon lin. law potentiometer
S1 s.p.s.t. miniature toggle SK1, 2 Wander sockets (2 off) SK3 3.5 mm jack socket B1 9 V type PP3
Stripboard: 0.1in matrix, 15 strips $\times 36$ holes; case type BIM 4004 or similar; control knob; p.v.c. covered stranded wire; output leads, 3.5 mm jack plug to connectors to suit amplifler.

Approx. cost Guidance only

STRIPBOARD LAYOUT

The chuffer unit can be made quite compact and it will readily fit into a case measuring about $110 \times 70 \times 50 \mathrm{~mm}$. The controls and sockets are mounted on the front panel, and any sensible layout can be employed as the layout is not critical from the electronic point of view.

The stripboard layout for the circuit is shown in Fig. 3. and uses $0 \cdot 1$ inch matrix board having 15 strips by 36 holes. There are thirteen breaks in the copper strips plus the two 6BA or M3 clearance mounting holes to be made before soldering in the components and link wires.

ICl is a cmos device, but it has an internal protection circuit that eliminates the need for any of the usual cmos handling precautions. It can therefore be soldered direct to the board and it is by no means essential to use an i.c. socket.
TR4 is a 2 N 2926 device in the prototype, but any silicon $n p n$ device having a low base/emitter reverse breakdown voltage should work just as well. Devices such as a 2N2924, 2N3711, 2N3708, BC184, and a BC238 all worked well in the circuit, and it is likely that most constructors will be able to find a suitable device in their spares box.

Close up of the prototype Chuffer circuit board

Devices having a comparatively high reverse base/emitter breakdown voltage will not work properly in the circuit as the battery voltage might be inadequate to produce breakdown and generate the noise spikes, especially as the battery voltage starts to fall.
The completed component board is wired to the rest of the components once fitted on the front panel using ordinary multistrand p.v.c. insulated wire, and the board is then mounted on the rear panel of the case, towards the top, using M3 or 6BA fixings. This will leave ample space for a PP3 size 9 volt battery on the base of the case, and a piece of foam material can be used to keep the battery in position here.

USING THE UNIT

A screened lead fitted with plugs of the appropriate type is used to connect the output of the chuffer unit to the input of the amplifier. An or-
dinary twin lead is used to take the voltage from the track to SK1 and SK2, and an extra power rail can be included in the layout to provide a convenient take-off point for the track voltage.

Probably the easiest way of giving VR1 the correct setting is to adjust the train controller so that the train is moving as slowly as possible, and then adjust VRl for the lowest possible "chuff" rate. After using the unit for a while, any fine trimming of VR1 can then be carried out if it should prove necessary.

VR1 has been made a panel control rather than an internal preset component so that it can easily be readjusted to suit a different locomotive.

If the amplifier has tone controls it is worthwhile experimenting a little with the settings of these to try to obtain optimum realism. A certain amount of bass boost, for example, can give a very good effect.

So far we have studied the action of three kinds of electronic component:
(I) Resistors reduce the flow of electric current by a greater or lesser amount. depending on their resistance.
(2) Diodes allow current to flow freely in one direction but allow virtually no current to flow in the opposite direction.
(3) Transistors have two actions: (i) they act as switches, allowing a current to flow or not to flow, (ii) they act as variable resistors allowing different amounts of current to flow. The varying flow of current is itself controlled by a much smaller current, so transistors acting in the second way are amplifiers.

Components such as transistors and diodes, which give a gain in current or voltage, or which have directional properties, are called active components. Components such as resistors, which do not have these effects, are called passive components.

This month we shall follow one important way of using the switching property of transistors.

EXPERIMENT 4.1

The action of a switching transistor

Fig. 4.1 shows a transistor (TR1) connected so as to switch an l.e.d. (D1) on or off. The Verobloc layout for this Experiment is shown in Fig. 4.2.

Touch flying lead X to strip $A(+6 \mathrm{~V})$. This turns TRI on. It now has very low resistance between d and s (about 5Ω). If we think of TR1 and R4 as parts of a potential divider, we can calculate that the voltage at point Z is about $6 \times(5 / 185)=$ $0 \cdot 16 \mathrm{~V}$. This is close to 0 V , and certainly not high enough to cause a current to flow through the l.e.d. and light it.

Touch X to strip $M(0 \mathrm{~V})$. This turns TR1 off and its resistance is several million ohms. The voltage at Z becomes almost +6 V . A current can now flow through D1

Check the truth of the statements above by connecting the meter to Z (location F18).

EXPERIMENT 4.1

Fig. 4.1. Circuit diagram for investigating the switching action of a VMOS transistor.

Fig. 4.2. The layout of Fig. 4.1 on the Verobloc. The dotted leads show the connections for measuring the voltage at Z.

TRUTH TABLES

We can summarise the results of Experiment 4.1 in a table. In this table (Table 4.1) the word "low" means 0 V or as close to 0 V as makes no difference. The word "high" means the supply voltage $(+6 \mathrm{~V}$ in this experiment) or close to it. The second column shows the voltage at Z that corresponds to any given voltage at X. This table is a truth table because it tells us what is true about the logic of the circuit.

Table 4.2

X	Z
0	1
1	0

Table 4.2 shows exactly the same thing. but represents low by " 0 " and high by " 1 ". It is a little quicker to write Table 4.2 and to read from it.

Notice that X and Z can have only two states-low or high, 0 or 1 respectively. This is because the transistor is either on or off. We do not allow in-between states.

If X is $0, Z$ is 1 . We could also say that if X is $0, Z$ is not 0 . Or if X is $1, Z$ is not 1 . This circuit performs a simple logical operation. Z is always the opposite of X. Z is not X. The logical operation is therefore called NOT. Sometimes it is called INVERT.

A circuit which performs a logical operation is called a logic gate. Note that this use of the word "gate" is different from its use for the gate electrode of an f.e.t.

Fig. 4.1 thus shows the circuit of a not gate, with input X and output Z. The l.e.d. is not part of the gate; it is there simply to show the state of the output of the gate.

EXPERIMENT 4.2

Diode gates investigated

Two diodes are used in the logic gate shown in Fig. 4.3. As before, the l.e.d. (D1) indicates the state of the output (Z). Inputs X and Y can each be made $1(=6 \mathrm{~V})$ or 0 $(=0 \mathrm{~V})$. Since there are two inputs, each with two possible states, there are four possible combinations of inputs. The truth table for this gate needs four lines:

Table 4.3

- Inputs		Output
X	Y	Z
0	0	
0	1	
1	0	
1	1	

The output column has been left blank, for you to fill in the results of your experiment. The layout for this is shown in Fig. 4.4. The results appear on p.29.

When you have finished the above test, work out the behaviour of the gate in Fig. 4.5, Verobloc layout Fig. 4.6.

The input columns of the truth table are the same as in Table 4.3, but the outputs are different (see p. 29 for answer).

AND and OR

The output of the gate in Fig. 4.3 can be high only if both X and Y are connected to 6 V . If either X or Y are connected to the OV rail, current flows through D4 or D5, which act as resistors of low value. The voltage at Z becomes close to 0 V .

Since both X and Y must be 1 to obtain an output of 1 , we call this an AND gate. Z is true $(Z=1)$ only when X is true $(X=1)$ and Y is true $(Y=1)$.
In Fig. 4.5 the output is 1 whenever X OR Y are connected to +6 V . Connecting either to 0 V has no effect, since the diodes do not allow current to flow from Z to the

OV line. Since Z is true $(Z=1)$ when X is true ($X=1$) OR when Y is true ($Y=1$), or when both are true, we call this an or gate.

EXPERIMENT 4.3
 Combining two logic gates

Fig. 4.7 shows the AND gate with its output fed to the not gate. Wire up this gate according to Fig. 4.8 and work out its truth table.

As might be expected, column Z of this table has the opposite values to column Z of the and truth table. Since this gate performs a NOT-AND operation, we call it a nand gate.

Wire up the or gate again (Fig. 4.5) and feed its output to the not gate (Fig. 4.1). This makes up a NOT-OR gate, or NOR gate as it is known. Use it to find the NOR truth table. You will need to devise a Verobloc layout for this.

Fig. 4.3. Circuit diagram for investigating diode gates.

EXPERIMENT 4.2

Fig. 4.5. Another circuit for investigating diode gates. Compare orientation of D4 and D5 with those in Fig. 4.3.

Fig. 4.6. The layout of Fig. 4.5 on the Verobloc. Take care to orien'ate the diodes correctly.

EXPERIMENT 4.3

Fig. 4.7. Circuit in which a ANO gate and a NOT gate are cascaded to form a third type of logic gate.

Fig. 4.8. The circuit of Fig. 4.7 wired up on the Verobloc.

Fig. 4.9. Making a NAND gate from four mosfets.

INTEGRATED CIRCUITS

Another way of making a NAND gate is shown in Fig. 4.9. It is made from four mosfets. Two of these are n-channel mosfets, such as we described in Part 2. They are switched on when their gate electrodes are made high. The other two transistors are p-channel mosfets, which are switched off by a high input, but turned on by a low one.
To give a low output at Z we need to turn both n-channel transistors on (connecting Z to the $O V$ rail), and turn both p channel transistors off (isolating Z from the +6 V rail). In other words, inputs X and Y must both be high. With any other combination of inputs, Z is connected to the 6 V rail through one or both of the p channel transistors: also, one of the n channel transistors is off, disconnecting Z from the OV rail. In all these cases, output is 0 .
Such a gate has a much faster and more reliable action than the simple gates used in the experiments. We could make such a gate by wiring up four mosfets on the breadboard, but there is no need to go to this trouble and expense, for the gates can be bought ready-made.
When manufacturing mosfets it is easy to produce several on a single slice of silicon complete with the connections needed make up the logic gate. This is what is called an integrated circuit.

In this example, we find four nand gates on a single chip, as shown in Fig. 4.10. Each gate has two input terminals and one output terminal. They share a common power supply. The package is described as a quad 2 -input nand.
When we are building logic circuits it is not necessary to know exactly how each gate is constructed. All we need to know is what it does. Consequently it is much simpler and a good deal more informative if we represent gates by special symbols, see Fig. 4.11.

Fig. 4.11. Symbols for logic gates.
the other gates are connected to +6 V ; if this is not done the i.c. does not work properly. Run through the input combinations of Table 4.3 and check that the gate performs the nand function properly. The layout for this experiment is shown in Fig. 4.13.

Next wire both inputs of the gate together (connect Y to $J 20$). This makes the gate into a one-input gate. What logical
operation does it perform now? (see p29). gate into a one-input gate. What logical
operation does it perform now? (see p29).
Wire up the circuits of Fig. 4.14a and b. The numbers indicate the pins to be used, the pins being numbered as in Fig. 4.10. Run through the usual four input combinations for each circuit. What logical operations do these circuits perform? It appears that NAND gates can be made to do many different jobs.
Remove the +6 V battery lead from the Verobloc, and replace the 4011 by the 4070 i.c. and then re-connect the +6 V supply

Fig. 4.10. Pinning details for the CMOS Quad-2-input NAND gate i.c., 4011. Viewed from above.

Note that some kinds of gate may have more than two inputs; NOT gates always have one input and exclusive-or gates always have two.

EXPERIMENT 4.4

Logic with integrated circuits
Fig. 4.12 shows how to test one of the gates of the 4011 i.c. The unused inputs of

[^2]

 -un

EXPERIMENT 4.4

Fig. 4.12. Circuit for investigating the action of a 2 -input NAND gate,

Fig. 4.13. The layout of Fig. 4.12 on the Verobloc. Note that unused inputs are strapped to +6 V .

Fig. 4.14 (a) and (b) (right). Making logic modules from NAND gates.

EXPERIMENT 4.5

Fig. 4.15. Making up a bistable from two NAND gates. The other two gates are used as buffers.

Fig. 4.16 (below) The Verobioc layout for the clircult in Fig. 4.15.

lead. This i.c. has four exculsive-or gates. Each has two inputs, the pin connections are the same as those of the 4011, but the logic function is different. Find its truth table (see p29 for answer).

COMPUTER LOGIC

Logic gates are the basis of the action of many kinds of device, from the pocket calculator and electronic door-chime to the most elaborate of mainframe computers. Mathematics operates by logical rules so we use logic circuits for all kinds of calculations. There is more to say about this in Part 12 of the Series.

EXPERIMENT 4.5

A memory circuit

Two nand gates can be cross-connected (Fig. 4.15) to form a bistable circuit. It gets its name because it has two stable states. We cannot connect l.e.d.s directly to the outputs of this circuit for they take so much current that the bistable does not operate. So we feed the outputs to two Not gates and use these to drive the l.e.d.s, D1 and D2. The inputs are normally held high by the pull-up resistors R4 and R5. They can be made low by pressing S1 or S2.

The layout of the components on the Verobloc for this experiment is seen in Fig. 4.16. When the battery is first connected, one, but not both, of D1 and D2 will light. Find out which button you have to press to make the bistable change state. How do you make it change back again? If you press the same button again, what happens? Figs. $4.17 \mathrm{a}, \mathrm{b}$ and cexplain this.

If the buttons are pressed alternately the bistable repeatedly changes from one state to the other and back again. On a low input at X it flips from one state to the other, then on the next low input at Y it flops back again. This type of bistable is often called a flip-flop.

The state it is in at any moment is determined solely by which input was the last one to be made low. It can "remember" what has happened to it in the past. The flip-flop is used in calculators and computers as a way of storing information-a unit of memory.

Fig. 4.17 (a) (b) and (c). Stages of action when a bistable changes state. Check the logic using your NAND truth table.

THE J-K FLIP-FLOP

The 4027 i.c. gives you the convenience of two ready-made flips-flops without the need to assemble them from individual gates. Each has a clock input. The flip-flop changes state whenever the clock input changes from low to high. A change from high to low has no effect. See Fig. 4.18.

There are two more inputs, called J and K. These control what happens when the clock input changes. If J and K are both low, nothing happens. If one of the J-K inputs is high and the other is low. the Q output takes up the state of the J input and the Q output takes up the state of the K input.

If both J and K are high, the outputs change state every time the clock input goes high.
The Set and Reset inputs are normally held low. If Set is made high, the Q output goes high (\bar{Q} goes low) immediately, without waiting for a change of clock input. Reset has the opposite effect.

EXPERIMENT 4.6
 Using the J-K flip-flop

Fig. 4.19 shows two flip-flops with their $J-K$ inputs high. They change state every

Fig. 4.18. The pinning details for the 4027 i.c. viewed from above. This is used in the next experiment.
time their clock inputs go high. We can not simply use a push-button at the clock input. When you press a button, it does not make a good contact at first. Contact is made and broken a dozen or more times before final good contact is made. The flipflop would respond as if its input had changed many times and its final state is unpredictable. Here we use our earlier flip-flop to provide a clean change-over from high to low or low to high. Wire up the components on the Verobloc according to Fig. 4.20.

Press S1 to give a high-to-low change at point X (does not affect the $J-K$ flip-flop) or

EXPERIMENT 4.6

Fig. 4.19. A counting circuit using two J-K flip-flops, a bistable and two NOT gates.

Fig. 4.20. The layout of Fig. 4.19 on the Verobloc.

a circuit to count the cars, and to trip a flip-flop to switch on a 'Park Full' sign when the maximum number is reached. Counting circuits are widely used in all kinds of situations and most of them are based on chains of flip-flops.
Since there have been so many questions in the Experiments there is no Question Time this month. Next month we look at some other kinds of transistor and see what they can do.

Answers to this month's Experimental Exercises.

EXPERIMENT 4.2

Truth table for AND

Inputs	
X	Y
Z	
0	0
0	1
1	0
1	1

Truth table for OR

Inputs	Output	
X	Y	Z
0	0	0
0	1	0
1	0	0
1	1	1

EXPERIMENT 4.4

When the two inputs of a NAND gate are wired together, it functions as a NOT gate (see 1 st and 4th lines of your NaND table).

Fig. 4.14a. Inverting the output from a NAND gives NOT-NOT-AND, which gives AND.

Fig. 4.14b. Inverting the inputs to a NAND gives OR.

Truth table for EXCLUSIVE-OR

Inputs	
X	Y
0	O
0	0
1	0
1	0
1	0

Z is high when one of X or Y (but not both) are high.

EXPERIMENT 4.6

The remaining stages are:

Step No.	Press	D3	D2	D1
5	S1	1	0	1
6	S2	1	1	0
7	S1	1	1	1
$8(=0)$	S2	0	0	0

ERRATA

Further to the correction last month concerning Fig. 1.3, on p660 lines 13 and 21: change X to Y.
In Question 1.10, "R1 = 150k 2 and R2 = 150Ω " should read "R4 $=150 \Omega$ and $R 5=15 \Omega$.

PART 3 ANSWERS

3.1. n-type.
3.2. Cathode.
3.3. Holes (and positive ions in solution).
$3.4 .0 \cdot 6 \mathrm{~V}$.
3.5. No.
3.6. By the depletion region.
3.7. Out.
3.8. It draws virtually no current from the circuit under test.
3.9. $2 \cdot 7 \mathrm{~V}$.
3.10.1-72V.

By Dave Barrington

Component Packs

The recommendation of bargain packs of components is very subjective and really a case of ones own personal experience as to whether they are "value for money". Our own experience has been that certainly for such items as resistors, capacitors, diodes and mixed semiconductors buying packs is cost saving and to be recommended.
When you consider that resistors can cost from 1 to $3 p$ each and that you can purchase packs of 100 to 600 resistors, of varied values, from the sum of 90 p to under $£ 6$ this is quite a saving. On the other hand, the purchase of a mixed selection of "untested" semiconductors has been known to show a 30 per cent failure rate.

Two kits worthy of closer investigation are the E12 series of resistor packs from Home Radio and Rapid Electronics.
A feature of the Home Radio SP22 Re. sistor Pack is the method of packing the resistors in compartmented cardboard trays with their values indicated on label strips. This makes for easy selection.
With 10 each of the popular values and 5 each of the less popular, the pack contains approximately 400 resistors and costs $£ 5$ including VAT and postage.
The Rapid kit contains $650+\mathrm{W} 5$ per cent carbon film resistors banded together in groups of ten. The values range from $4 \cdot 7$ ohms to 1 megohm.
The cost of the Rapid Electronics kit is $£ 4 \cdot 80$ plus VAT and 50 p postage and packing.

Pocket Music Tutor

Of the thousands of electronic organs and pianos sold every year, it is claimed that three quarters are bought by people with no knowledge of music. However, they've all got something in common: they all want to get recognisable tunes out of their instruments as soon as possible.
Budding organists and pianists strug. gling through the first stages of learning
to play will welcome the pocket electronic chord and scale tutor from Speedyplain.
Called Prelude, it gives an instant visual guide to more than 600 chords as well as all major and minor scales. It's a handheld device, similar to a pocket calculator, with keys for the musical notes, chords and inversions, and a liquid crystal keyboard display.
The unit is designed to help tutored or self-taught students learn the basic "alphabet" of music; to teach classically trained musicians modern harmony and to help string or wind players to convert to keyboards.

Two professional organ teachers who helped in Prelude's design claim it is far easier and quicker to use than a printed tutor. Not only does it show notes making up the basic chord, but the user can add progressively more complex components, such as sixths, sevenths, ninths, minors and diminisheds.
The Prelude tutor is available direct from Speedyplain Ltd., Dept EE, 120 Marsh Lane, Longton. Preston, PR4 5YL, and cost $£ 19.95$ including VAT (without batteries), plus 40 pence post and packing.

The Prelude electronic chord and scale tutor from Speedyplain.

Project Kits

After a successful campaign in Europe, Velleman electronic kits are now available in this country through Velleman UK Ltd.
Ranging in price from $£ 4$ to about $£ 250$, a fairly wide selection of kits are offered to satisfy the beginner and the advanced constructor. They range from a simple three-tone bell to a microprocessor controlled Eprom programmer.
Each kit is given a "degree of difficulty" grading to help would-be constructors to select kits within their capability. All kits are built on printed circuit boards with component designations printed on the topside.
Copies of a free illustrated catalogue containing details of the range of Velle. man electronic kits is obtainable from Velleman UK Ltd., Dept EE, P.O. Box 30 , St Leonards on Sea, East Sussex, TN37 7NL. A stamped addressed envelope would be appreciated.

Catalogue

The new Tandy 1981/2 catalogue is now available in all 300 Tandy stores throughout Britain. Issued free to all Tandy customers, the 140 page catalogue contains over 2200 exclusive own brand products.

The catalogue also includes a ten page section on all hardware, software, peripherals and for the TRS-80 microcomputer, Models I, II and III, the TRS-80 pocket computer and the very latest Colour Computer.

CONSTRUCTIONAL PROJECTS

Automatic Garage Doors

The 40 kHz transducers used in the transmitter and receiver units for the Automatic Garage Door are fairly common items and now stocked by most component suppliers. These are usually sold in pairs and may be supplied with two-pin or phono plug connections. Either type may be used but the latter will require altering the wiring to the transducers.

The motor used in the designers set-up was a Fracmo type, currently stocked by Service Trading Co, Dept EE, of 57 Bridg man Road, Chiswick, London, W4 5BB, with an output shaft running at approximately $56 \mathrm{r} . \mathrm{p} . \mathrm{m}$. and a more than adequate torque of $50 \mathrm{lbs} / \mathrm{in}$. We understand that they have only a limited stock, but are able to supply a near equivalent type in their Parvalux range with 42 or 30 r.p.m. at $501 b s / i n$. torque.

The author informs us that a cheaper alternative would be two one-way motors fixed together in such a way as to enable reverse operation.
Most of the hardware for the door gear should be available from local builders merchants or hardware stores.

Mini Egg Timer

Because of the close packing of components within the small case for the Mini Egg Timer, the audible warning device WD1 specified should be used.

This is available from Ambit International as stock number 43-27201. However, any low voltage (6 V) solid state buzzer could be used here but would necessitate a larger case or be mounted on the exterior of the case.

Model Train Chuffer
The Model Train Chuffer uses a CMOS equivalent to the renowned 555 timer i.c. This is designated ICM7555 and appears to be available from most advertisers, at a price varying from 80 p to just over $£ 1$.

Siren Module

Once again it may be wise to browse through the advertisements when looking for a particular component for the Siren Module. The transistor type TIP31A is listed from 40p to 52 peach.
Simple Stabilised P.S.U.
No problems should be encountered when purchasing components for the Simple Stabilised P.S.U. The bolt together Universal Chassis appears to be only available from Home Radio.

Electroplating

Any readers who are contemplating building or attempting to undertake their own electroplating should pay heed to the warning contained in the Electroplating article. This applies particularly to the handling of chemicals.

THERE is no doubt that a regulated and adjustable power supply unit is of immense utility to the constructor and experimenter of electronic projects. Some thought has been given to easing constructional work to make this project suitable for the beginner. Regulation is so good that if wished the cost can be reduced by omitting the meter-but more about this later. Output voltage is $1 \cdot 2 \mathrm{~V}$ to 20 V at currents up to l ampere, adequate for very many purposes.

CIRCUIT DESCRIPTION

The mains transformer Tl has a $20-0-20 \mathrm{~V}$ 1A secondary, wit. fullwave rectification by silicon diodes D1 and D2. The peak voltage across the reservoir capacitor Cl is about 28 V , and this is the input to the LM317K regulator.

The LM317K has internal stabilising, feedback, regulating and current passing devices. The output voltage is a function of VR1 value between 0 V and adjust and is given by:

Output voltage $=1 \cdot 2(1+$ VR1/R1)
The LM317K can handle 1.5 amps but Tl rating limits the p.s.u. output to 1 amp. C2 and C3 effectively suppress transients, or instantaneous
mains voltage spikes which would otherwise reach the output.

To use the unit, it is only necessary to switch on by S1, set VR1 so that the voltmeter MEl shows the wanted voltage, and plug in the apparatus to be operated, not forgetting to observe the correct polarity.

If the p.s.u. output leads are shorted, the end of R1 normally at positive potential becomes negative, and thus also the adjust input of the i.c. This protects the circuit, though naturally one would not leave the p.s.u. output shorted in this way.

NO METER

Changes in input voltage to the LM317K, or to output load current (within the normal limits) results in no visible change to the reading shown by the panel meter MEI. It is of course useful to have this meter to show the voltage at all times.
It can, however, be eliminated by fitting a pointer knob to VR1, with a scale glued to the panel behind this control. Connect a general purpose test meter set to its $0-20 \mathrm{~V}$ or similar d c. range, to the p.s.u. output sockets. The scale for VR1 can then be calibrated at $1 \cdot 5,2,2 \cdot 5,3 \mathrm{~V}$ and so on.

Subsequently you simply set VR1 to the wanted voltage before connecting any item of equipment to be run from the unit.

CASE

The case is built up from Universal Chassis members and is based upon $101 \times 101 \mathrm{~mm}$ flanged members for back and front, with a $152 \times 101 \mathrm{~mm}$ flanged member for the bottom, see Fig. 2. The top/side section is made from a piece of thin sheet metal or perforated metal $152 \times 304 \mathrm{~mm}$, bent into a $101 \times 101 \times 152 \mathrm{~mm}$ open box.

BACK PANEL

Prepare the back panel by drilling the four holes for mounting the LM317K. You must use a TO-3 power transistor type insulation set (mica washer and two plastic bushes).

The mica can be used as a template to mark out the drilling positions for the required holes. Take care not to distort the back, and remove any

Fig. 1. The complete circuit diagram of the Simple Stabilised P.S.U.

SIMPLE SiAblilicil R.i.U.

Interlor view of the finished prototype showing how the case is constructed from Universal Chassis parts

COMPONENTS

Resistors
R1 180S $\quad=W$ carbon $\pm 5 \%$
R2 $820 \Omega 1$ carbon $\pm 5 \%$
Capacitors
C1 $3300 \mu \mathrm{~F} 30 \mathrm{~V}$ elect
C2 $4 \cdot 7 \mu \mathrm{~F} 30 \mathrm{~V}$ elect.
C3 $47 \mu \mathrm{~F} 30 \mathrm{~V}$ elect

See

Semiconductors

IC1 LM317K adjustable voltage regulator i.c.
D1. D2 1 N 4001 1A 50 V silicon rectifier (2 off)

Miscellaneous

VR1 $2.5 \mathrm{k} \Omega$ carbon or wire wound linear potentio. meter
S1 s.p. on/off toggle mains ME1 20 V or 25 V d.c. panel meter
SK1, SK2 4 mm insulated sockets (1 red, 1 black)
T1 mains primary/
$20-0-20 \mathrm{~V} 1 \mathrm{~A}$ secondary
Standard tagstrip. 13 -way and 3-way; Universal Chassis mem. bers: $101 \times 101 \mathrm{~mm}$ flanged members (2 off), $152 \times 101 \mathrm{~mm}$ flanged member; sheet alumi. nium or perforated metal size $152 \times 304 \mathrm{~mm}$ (case lid); insulation set (mica washer and 2 insulating bushes) for IC1; rubber grommet for mains cable; suitable length of 3 -core mains cable; rubber feet (4 off); flxing hardware for transformer, IC1, case and tag. strips; 1 A insulated connecting wire.

Fig. 2. Recommended layout of the components on the Universal Chassis members with full interwiring details. Also shown top right are the mounting details for IC1 and its insulation set.
burrs from around the holes. Fit the mica washer between i.c. and back, with the insulated bushes in the holes in the latter, and fit a solder tag for the outpur connection. One of the thermal greases can be smeared on the meeting surfaces before fitting the i.c. to ensure good thermal contact. Check that case and pins are all isolated from the metal back panel.

FRONT PANEL

Drill fixing holes for Sl, VRl, and the two output sockets, as shown. An

Shows the back panel with the i.c. mounted and ventilation holes.
opening for the meter can be made with an adjustable tank cutter, or with one of the screw-up type punches, or by drilling a ring of small holes closely together, so that a piece can be removed and the hole completed with half-round file.

VENTILATION

Several 9 mm or similar holes should be punched or drilled in the bottom panel (which is raised by the feet) and also low down and high up on the back panel. If the cover is sheet metal, a row of holes can also be punched in each side of this.

BOTTOM PANEL

Drill fixing holes for the transformer and long tag strip. When front, back and bottom are assembled, secure four rubber feet with bolts and nuts, using the holes already present.

WIRING

With all parts fitted as in Fig. 2, wiring should now be carried out as shown. In the prototype blue was used for i.c. INPUT, green for ADJUST, and
red for output and positive, for ease of identification.
Note how Live, Neutral and Earth of the mains cord are anchored. Fit a 3 -pin mains plug correctly, with 2A or 3A fuse. Those points marked mC are firmly bolted to the metal chassis or box.

TESTING

You should measure nearly 29 V across Cl , but this will fall as current is drawn, though this does not influence the output voltage.

It is essential D1 and D2, and electrolytic capacitors, are wired with correct polarity. Check these before switching on.

Output should be absolutely stable, free of hum, and remain unchanged despite any changes in current drawn with in the p.s.u. rating.

Check the short-circuit protection network by placing a heavy gauge wire link across the output sockets for a short time. MEl reading should drop to 0 V , but return to previous level when link is removed.

Finally fix the cover in place with self-tapping screws which run into the flanges of back, bottom and front panels.

I am greatly cheered by the large number of youngsters who take up electronics as a hobby, and undoubtedly many will want to adopt it as a career. Although these are hard pressed times, I think they have made a good choice, because there are openings at all levels with the really brilliant ones finishing up as designers.

At a slightly less elevated echelon, there are vacancies for electronic engineers on board ships. On a modern tanker or container vessel, the electronic engin eering officer is almost as important as the captain.

In the next flve years every garage worth its name will need an electronics expert Those of you who saw "Tomorrow's World" recently probably were intrigued by the new cars coming on the market shortly, where the computer works out the exact speed at which the gear should be changed, and then proceeds to do it. Needless to say I know instinctively what would happen if I owned one. Going downhill it
would decide to change into bottom and the engine would race away sounding like an angry hornet, and going uphill it would change into top and promptly stall.

Mind you it is hard to think of anything today from washing machines to cookers that doesn't rely heavily on electronics, so in the service industries there must always be a demand for recruits, even though the time may come when they invent machines that service themselves. I don't object to any of this, provided that complication is not introduced without noticeable advan. tage.

Safety in Simplicity

James Watt had the problem of converting a reciprocating motion into a rotary one and he solved it very neatly by inventthe crank. One of his workmen pinched the idea and patented it, preventing Watt from using it. Watt then invented a dozen different ways of obtaining the same
result, but none so simple or effective as his original. The simpler a thing is the less likelihood of failure. As the late E. F. Schumacher said, "Any third rate engineer can make a complicated apparatus more complicated but it takes a touch of genius to find one's way back to basic principles. The more complex a thing is, the more it tends to break down and you can't repair it yourself."

If you take a simple thing like a spade, it can't go wrong! Make it mechanical and up go the chances of failure. Put an engine on it, the failure rate increases, and finally put an electr8nic contiol on it and it's a wonder if it ever works at all! And yet having said all that, take a piece of appara tus as complicated as a colour television set and they work for years without any trouble. Come to think, the handle of my spade broke in haff this morning!

I suppose one day a mains plug and socket that is standard all over the world will be in general use and what a boon that will be to travellers. I expect many of you use electric razors and if you go abroad you are confionted with continental sockets which will only accept a contin. ental plug. It is no good switching to a safety razor temporarily, because the electric shaver's beard is too soft

I get round this problem by taking my clockwork razor with me when travelling. (Looks of incredulity on the faces of my readersl) No really, the one used by the man in the moon. (Ahl now we know old Young is pulling our legI) Let me explain, this type of razor was used by the astronauts to conserve their battery supply. It has a small rotary head rather likea Philips, and with three complete winds I can get a perfect shave.

Break Up

It has been fascinating to watch the British Post Office react over the last year or so to the reality of commercial competition. The PO's original attitude clearly reflected its position of total security, with a monopoly on everything connected with and to the British telephone system. Arrogant would not be too strong a word to use.

Now, progressive break up of the PO's power and demonopolisation by the Telecommunications Bill has brought a corresponding change of face by the Post Office. There's even been a change of name, to British Telecom.

Time Delay

British subscribers don't need reminding how bad it used to be just a couple of years ago. Long delays in installing new lines, a pathetically small choice of ancient technology dial phones and the compulsion to rent everything at high prices from either the Post Office or Post Officeapproved suppliers. The Area offices, responsible for "selling" extra telephones knew little or nothing about what was available, and appeared to care even less.

Long distance phone calls were all too often hampered by the dreaded "all lines are engaged, please try later" and anyone trying to route a Trans-Atlantic call through a British operator had to wait an inordinate length of time. Worse still you had to join the same long queue for an operator even if you only wanted foreign directory help. And long distance multi-digit calls that failed had to be laboriously re-dialled because the Post Office didn"t offer push button 'phones with the last number recall facility, whereby an entire string of digits can be recalled by the push of a single button.

Liberation

But meanwhile, in America, libralisation of the similar monopoly held by the Bell Telephone Company filled the shops with exciting telephone equipment. Push button phones, answering machines, recorders; all could be bought outright for private installation.

Inevitably some of this equipment started to reach Britain, either as private imports in the suitcases of those who had taken their holidays abroad, or as bulk imports from Far Eastern manufacturers. Magazines and newspapers started to publish articles about what British sub. scribers were missing.

Dissatisfaction

Dissatisfaction grew and the Post Office added fuel to the fire by condemning foreign equipment out of hand and threatening to diconnect the phone lines of any British subscriber who dared to install it. Some of this criticism was in fact wholly justified.

Equipment designed for foreign use is often unsuitable for Britain. The US telephone network is for instance "gainy". Most lines are amplified whereas in the UK lines are often passive because we have a tradition of using low-loss copper.

Phone-In

At the end of June the London radio station, LBC, held an hour-long Phone-In on "What kind of telephone service does the public want"

Calls poured in from listeners who wanted to know what kind of special phones and services are available, and what we are likely to see in the future. There was a clear groundswell of resentment and confusion over what British Telecom does and does not have to offer a subscriber. (Incidentally it's clear that everyone still calls The Post Office "the Post Office"; the title British Telecom certainly hasn't yet stuck).

I was in the studio and did my best to answer the questions that came through from listeners. Why, you may well ask, should a journalist be speaking on behalf of the Post Office The answer is quite simply that although the Post Office were asked, literally days in advance, to send

So a telephone that produces acceptable levels of sound in the US may well be unusable in some parts of Britain. Also the ringer circuits of foreign phones may not match the Bitish network. You can install an imported telephone and then find that some incoming calls don't ring your bell.

In Britain, where two extension phones are connected to the same line, the sound and ringer circuits are connected in a hybrid series/parallel circuit. This ensures a standard impedance across the line and prevents the bell of one phone from jangling while calls are made on the other. Many foreign phones don't offer the option of series/parallel connection.

Guidance Needed

Most important of all, anyone buying an unauthorised telephone, and trying to install it themselves, can't seek guidance and help from the Post Office engineers to get it right. This has dangerous implications. Any amateur trying to install a mains-powered gadget, for instance a memory telephone or automatic answering machine, couid end up putting mains voltage on the phone lines if they get the connections wrong or have bought a cheap unit without adequate isolation.

The idea of an anmesty, whereby owners of unauthorised 'phones could pay the Post Office to help then get it properly installed, was poo-pood. But the Post Office has already encountered a case where someone bought a mains. powered cordless telephone, which uses the mains wiring as aerial, and connected it up incorrectly so that mains power burned out his entire home 'phone system.
Incidentally, (and it's a topic we'll return to in future months), do bear in mind that liberalisation of the phone system will not affect the question of cordless phones. They use a radio link between a base station and hand set and they will remain illegal because they contravene the Wireless Telegraphy Act. Anyone caught using one is liable for heavy fines and/or imprisonment.
someone along to the studio they thought it wasn't necessary.

This decision was doubtless not unconnected with the fact that the LBC programme went out late on a Saturday night, rather than during weekday working hours. If British Telocom, nee The Post Office, can't muster a spokesman for an hour long live radio phone-in programme on a Saturday night in London, then what price Sir George Jefferson's brave promise that "We must be market responsive when we are competing with others".

The sad irony is that several Post Office engineers, and ex-Post Office engineers, had sufficient loyalty to their employer to phone in and try and defend the Post Office against callers' attacks. But there were no calls from Post Office management. They should be thoroughly ashamed of themselves. Do you suppose they are?

design a piece of electronic equipment HAVING A DIRECT PRACTICAL APPLICATION IN A SCHOOLS SCIENCE LABORATORY

This competition is open to any United Kingdom Secondary School, State or Independent. Pupils of either sex in the age group $11-18$ are eligible to participate in a team representing their school.
The competition will be conducted in two stages.

STAGE 1

Submission of Papers describing the proposed project with full circuit details.
Papers will be judged for novelty, ingenuity and viability. Particular attention will be given to originality and good circuit design technique.
Schools whose designs are adjudged to be the most promising will be asked to produce a working model of their designs.

STAGE 2

Models will be examined and prize winners selected on the basis of mechanical design, neatness of wiring and general assembly, plus operational performance.

All models will be exhibited at Mullard House, London, where the official presentation of prizes will be made.

NINE RUNNERS UP a selection of components valued at £50

Science teachers of Secondary Schools are invited to apply for a Registration Form which contains full details of this competition.

Write to: Schools Competition
Room 2130
Kings Reach Tower Stamford Street London SE1 9LS

Secondary School Pupils-make sure your school accepts this challenge and enters this inaugural contest. So bring this announcement to the attention of your science teacher or the head of your school.

Closing date for Registration:
December 311981
Closing date for submission of Papers: February 161982

PART 8 BY J.CROWTHER

LOGIC MODULES (continued)

Example
To derive the Boolean expression and switching circuit for the module shown in Fig. 9.1.

Fig. 9.1. Logic module to be translated to a switch arrangement.

The output from the NAND gate is of the form $\overline{A B}$, and this is fed to the input of an and gate, with C to the other input. As the output of an AND gate is the product of the inputs:

$$
\overline{A B C}=S
$$

In order to convert this equation into one representing switching arrangements, we must apply Demorgan's Theorem, and get the "bars" over a single letter to represent normally closed switches.

$$
\overline{A B} C=(\bar{A}+\bar{B}) C=S
$$

The equation $(\bar{A}+\bar{B}) C=S$, represents the switch arrangement in Fig. 9.2.

Truth Table

The truth table for the module in Fig. 9.1 is shown below:

Input to element 1		Input to element 2		Output
A	B	C	$\overline{A B}$	$\overline{A B C}=\boldsymbol{S}$
0	0	0	1	0
0	0	1	1	1
0	1	0	1	0
0	1	1	1	1
1	0	0	1	0
1	0	1	1	1
1	1	0	0	0
1	1	1	0	0

$=$
Fig. 9.2. Switch version of the module in Fig. 9.1.
FINDING GATES FROM EQUATIONS AND SWITCH ARRANGEMENTS

Example

Design a Logic Module to represent the switch arrangement in Fig. 9.3.

Fig. 9.3. Switch arrangement to be converted to a logic gate module.

Equation

$A(B+C)=S$

Since this equation is A, times $(B+C)$, and the output from an and gate is the product of the two inputs, the last gate must be an and gate fed with A and $(B+C)$, as shown in Fig. 9.4.

To get ($B+C$), we must have an or gate fed with B, and C, so the final module is as seen in Fig. 9.5.

Fig. 9.4. First stage of conversion for Fig. 9.3.

Fig. 9.5. Logic module for Fig. 9.3.

Example

Design a Logic Module to represent the switch arrangement in Fig. 9.6.

Fig. 9.6. Switch arrangement to be translated to a logic gate module.

Equation

$\bar{A}(\bar{B}+\bar{C})=S$

Apply Demorgan's Theorem to convert the above equation into an expression representing gates, that is, join the "bars" to form a complete "bar" as shown: $\bar{A}(\bar{B}+\bar{C})=\bar{A}(\overline{B C})=\overline{A+B C}=S$
$\overline{A+B C}$ is the equation for a NOR gate fed with A, and $B C$, as shown in Fig. 9.7.

To obtain $B C$, we require an And gate fed with B, and C, so the final module would be as seen in Fig. 9.8.

Fig. 9.7. First stage of translation for Fig. 9.6.

Fig. 9.8. Logic module for Fig. 9.6.

BOOLEAN IDENTITIES

In algebra and trignometry, identities are used to simplify equations.

For example, in trignometry $\sin ^{2} \theta+\cos ^{2} \theta=1$
The same applies to Boolean Algebra where identities are used to simplify equations to see if it is possible to reduce the number of switches required.

Boolean Identities

(1) $A A=A \quad$ also $X A=A$
(2) $A T=0$
(3) $A 1=A \quad$ also $\overline{A 1}=\bar{A}$.
(4) $A 0=0 \quad$ also $\overline{A 0}=\underline{0}$
(5) $A+A=A \quad$ also $\bar{A}+\bar{A}=\bar{A}$
(6) $A+1=1 \quad$ also $A+1=1$
(7) $A+0=A \quad$ also $\bar{A}+0=\bar{A}$
(8) $A+\bar{A}=1$
(9) $A+\bar{A} B=A+B$
$\bar{A}+A B=\bar{A}+B$
$A+\bar{A} \bar{B}=A+\bar{B}$
$\bar{A}+\bar{A}=\bar{A}+\bar{B}$

Fig. 9.9. Switching arrangement to be investigated by Boolean rules and identities.
example
$A B C+A B C+A \bar{B} C=S$
This equation represents the circuit in Fig. 9.9, containing nine switch contacts.

Use the Boolean Rules and Identities, to simplify this equation and reduce the number of switches.

First of all, simplify the equation.
C is common to all terms, and can be put outside the bracket (see Rule 3 in Part S):
$C(\bar{A} \bar{B}+\bar{A} B+A \bar{B})=S$
A is common to the first two terms in the bracket, and can be brought outside using the same rule:
$C[\bar{A}(\bar{B}+B)+A \bar{B}]=S$
But $(\bar{B} \pm B)=1$ (Identity 8)
$\therefore C(\bar{A} 1+A \bar{B})=S$
But $\bar{A} 1=\bar{A}$ (Identity 3)
$\therefore C(\bar{A}+A \bar{B})=S$
But $(\bar{A}+A \bar{B})=\bar{A}+\bar{B}$ (Identity 9)
$\therefore C(\bar{A}+\bar{B})=S$
This last equation represents the switch circuit in Fig. 9.10.
It can be seen that the original circuit has been reduced from nine to three switch contacts to give the same result.

Fig. 9.10. Simplification of Fig. 9.9 after applying Boolean rules and identities.

Everyday News

AN EXCITING ERA

A nation-wide campaign has been launched to make everyone aware of the information revolution and 1982 has been designated "Information Technology Year" by the Government.

A full programme has been planned for 1982 to help improve understanding amongst the general public, as well as in business and public administration. Leading figures from the fields of health, education, the arts, leisure, industry and commerce, the media, finance, Government and the Information Technology industry itself, are promoting IT in their own particular sphere.

Speaking at the launch of IT 82, Kenneth Baker MP Minister for Information Technology said "we are entering an exciting era, ue are seeing the home of the future, the office of the future and the factory of the future emerge from the realms of science fiction and become reality. This is happening through the application of microelectronics to control of machines, to computing, to communications and to entertainment."

University Chips

University research departments throughout the UK are now able to design their own silicon microcircuits using the Racal silicon gate CMOS uncommitted logic array (ULA) system.

The scheme, under the auspices of the Science and Engineering Research Council (SERC), is being coordinated by the Department of Electrical Engineering at Edinburgh University which has a $£ 1$ million silicon fabrication facility.

Contracts worth more than 8700,000 have been placed with Sony Broadcast for Electronic News Gathering (ENG) equipment to be used in both East and West Germany.

Distance Links

Despite world recession international telecommunication links are scheduled for major expansion. In ocean cables a new 8,000 mile route will link Australia, New Zealand, Fiji, Hawaii and Canada.

Called ANZCAN, it comes into service in 1984, will carry twenty times the traffic of the existing COMPAC system and will cost $£ 200$ million.

As well as a new EuropeAmerica cable planned for service in 1983 an additional link is now planned for 1988. The latter is expected to be engineered with optical fibres.

Aids for Disabled

Among the special equipment for the disabled demonstrated recently by British Telecom were a talking switchboard for blind telephone operators, and com munications terminals for deaf people with moving strip visual display.

One of Britain's leading exhibitions organisers in the computer field, IPC Exhibitions, is to run a show cover. ing the field of personal computers, home computing, small business systems and associated software.

The "Computer Fair," as the show will be named, will be held at Earls Court from April 23 to April 25, 1982.

Also demonstrated was a Prestel model for the blind or deaf, the former using a braille character generator in place of the TV screen, the latter using the moving strip visual display terminal and keyboard as used for deaf conversations.

Plessey Avionics and Com. munications have announced a f750,000 improvement pro- 2 gramme for the restructuring of manufactoring facillties at their Vicarage Lane, Mford, site.

This new and sophisticated area will be used to manufacture part of the Ptarmigan battiefield trunk communications system for the British Army.

BBC DESIGN SATELLITE TERMINAL

The BBC demonstrated its new mobile satellite link terminal to BBC Management and Senior Engineers at a recent Conference at the Institute of Electrical Engineers in London. The mobile setellite link terminal commissioned for Television Outside Broadcasts has just been completed by the BBC Engineering Research Department, and is undergoing pre-operational trials.
The first field trials included a "Morning Service" programme on BBC1, a contribution to the South West "Opt-Out" in the "Nationwide" programme and an edition of "Multicoloured Swap Shop". All these programmes originated in Guernsey in the Channel Islands and used the new satellite link.
Under normal conditions it is intended that the satellite link will be used over difficult transmission paths and not where conventional radio link circuits can be used.
The transmitter is very fiexible and may operate on any of the available channels through the Orbital Test Satellite (OTS) or future European Communications Satellites.

Incredible as it sounds, French scientists have developed an ordinary standard sized credit card which houses a microprocessor and memory.
The user can use it in place of a cheque book, cash credit being inserted at the bank and purchases at shops deducted by placing the card in a counter-top terminal at which the user can also see how much cash balance remains.

Enhanced Teletext

In a programme of work supported by the UK Department of Industry, BBC Research Department has pro. cuced equipment to be used to study enhancement to the British teletext system.

One of the early uses of this equipment has been to produce a teletext decoder capable of displaying the normal pages as broadcast now, but with a much better quality of character generation than is found in the first generation mass-produced teletext decoder designs.

Fly-by-TV

The mass of instruments in airliner cockpits could soon largely be replaced by colour TV screens.

The idea is to call up on the screen only the data required for any particular phase of flight in respect of management and safety. A prototype system is now flying in a Royal Aircraft Establishment One-eleven aircraft

Demonstration flights have been made in Europe and the United States in the expectation that such systems will be used in the next generation of airliners still at the drawing-board stage of design.

WORLD VIEW

A world-wide viewdata service is rapidly becoming a reality following a series of recent agreements announced by European and other countries to take the initial steps towards the interconnection of their national viewdata systems in 1982/83.

Following its success in West Germany, the gateway facility (which allows viewdata customers to get easy access to a wide range of existing, non-viewdata computers) is to be implemented in the Netherlands and Italy, as well as the UK.

In addition to allowing the connection of non-viewdata computer systems, gateway will result in the interconnection of national viewdata systems. This means, for example, that a Prestel user in the UK will be able to access the Bildschirmtext service in Germany and vice versa.

The Department of Trangport is taking no chances in the event of a decline in petrol supply. It has commissioned the consultancy firm EASAMS to study all the requirements of a nationwide network of battery recharging points for electric vehicles. These could be at conventional garages, in parking lots or on the kerb side.

Custom Metalworking

The Card Frames Division of Vero Electronics has issued a new colour brochure detailing the comprehensive custom metalworking service offered by the company.
Using the latest machinery, the Card Frame Division is able to undertake DNC punching, forming, guillotining, engraving, component printing, anodising, painting and assembly work.

The Scottish Development Agency is to seek planning permission to set up a Science Park in Glasgow.

Hazard-proof Radar

The remarkable ability of lifeboats to capsize in mountainous seas and survive still has the handicap that the radar goes out of action after the rotating scanner has been immersed in sea water.
The problem has now been overcome with the development of a completely waterproof radar by Racal-Decca in consultation with the Royal National Lifeboat Institution.
All radars in RNLI lifeboats are now being modified to waterproof standard, including those with open cockpits or wheelhouses.

In Agreement

The Scottish Development Agency have just revealed details of the financial assistance it has given to Inmap, the joint venture by Edin. burgh and Herriot Watt Universities to promote the industrial application of microelectronics.

The Agency has reached an agreement with Inmap under which it will provide up to $£ 380,000$ over the next three years to encourage the introduction of microelectronics technology into small and medium-scale companies.

[^3]
—ANALYSIS

THE ELECTRONIC CHURCH

On first thought, religious institutions founded on ancient tradition would seem to have little need or use for electronics. Yet, if we accept that a principal activity of all religions is to propagate the Word it is clearly their duty that it should reach all peoples.
Facing such logic the normally ultra-conservative Roman Catholic Church was first in the field with high-powered world-wide broadcasts from Vatican Radio. The example was quickly followed by other denominations and sects and today there are scores of radio and TV stations round the world devoted entirely to religious worship and instruction and many organisations generating multi-lingual religious programmes.
At local level most religious buildings have electronic sound reinforcement and ancient cathedrals have inductive-loop-audio guided tours for pilgrims and tourists. The traditional harmonium in the chapel has long since been ousted by the electronic organ.
Loudspeakers in the belfry, tape-activated, are less expensive than bells and bell-ringers and, in Islam, the muezzin calling the faithful to prayer from the minaret is likewise tape-recorded. Along the Via Dolorosa in Jerusalem no self-repecting monk guiding pilgrims is now properly equipped without his shoulder-slung portable public address system.

The Mormon Church. whose faith embraces retroactive baptism, operates one of the largest computer systems in the world. Its giant data bank, protected from all hazards including nuclear war, records all traceable ancestors of today's three million living Mormons.

But while electronics is a powerful tool in promoting and aiding religious practices and, on a wider front, has enabled us to explore in detail physical quantities and qualities from the smallest atom to the immensities of outer space, no electronic instrumentation, however sensitive, has yet been able to measure or explain any spiritual, psychic or other paranormal phenomena. They remain eternal mysteries and perhaps better so.

Brian G. Peck.

oNE of man's greatest achievements in the last decade has been the sending of highly instrumented electronic robots to explore the more distant parts of the solar system. These spacecraft not only transmit signals back to earth from which high resolution photographs can be re-constituted, but also send us a great deal of other data which will keep scientists busy for years to come.

Sometime ago the Pioneer spacecraft sent us useful images of the enormous planet Jupiter and one of these craft returned images of Saturn, but these images were much inferior to those returned by the later Voy. ager craft. These craft were launched in August and September 1977. Voyager 1 reached Jupiter on March 5, 1979, Saturn on November 12, 1980 and is continuing to return highly valuable data as it moves out of the solar system without making any further planetary encounters.
The Voyager 2 spacecraft passed by Jupiter during July 1979 and reached the region of Saturn in late August/early September 1981. It is this Voyager 2 encounter with Saturn which is the subject of this article, but it is interesting to note that the huge gravitational field of Saturn has been used to sling the spacectaft on towards an encounter with Uranus in January 1986 and hopefully with Neptune in August 1989.

Rings of Saturn

Saturn is one of the most beautiful objects in the heavens which can be seen by a telesoope, but earth. based telescopes can capture only a little of the wealth of detail revealed by the Voyager spacecraft's imaging systems. Voyager 2 came closer to Saturn than Voyager 1 and carried better Vidicon camera tubes, so it provided rather better images.

Two rings are easily observed from the earth around Saturn separated by the well-known Cassini Division. Voyager 1 showed that there are hundreds of rings around the planet, whilst Voyager 2 (with its electronic memories specially programmed using the results of the Voyager 1 encounter) has shown that the number rings amounts to thousands or perhaps tens of thousands. Even the divisions between the rings themselves contain fairly faint rings, yet the thickness of the ring system is only about 2 km !

VOYAGER 2 ENCOUNTERS SATURN

It is believed that the rings consist essentially of small lumps of ice and rock individually orbiting the planet like tiny moons. The ring systems casts clear shadows on the surface of the planet itself.

Markings radiating outwards rather like the spokes of a wheel were detected in the B-ring by Voyager 1. One theory proposed that the spakes consist of dust par. ticles levitated by the electric fields of the planet, but careful experiments with Voyager 2 did not find evidence to support this.

Further work with Voyager 2 examined the light of a star which had to pass through the rings before reaching the spacecraft. As Voyager 2 passed behind the rings, the effect of the rings on its radio transmissions enabled some estimate to be made of the size of the par. ticles of the rings.

Lightning discharges in the vicinity of the planet which appeared to come from within the B-ring were detected. Measurements indicated that these lightning flashes were thousands of times more powerful than the lightning we experience on earth.

Scientists are very puzzled as to how the rings maintain their mechanical stability. It may be that moons of the planet help to keep the system stable, but there is still much to be discovered even though the spacecraft have sent us far more information than we had previously accumulated through centuries of viewing the planet.

Sphere of Gas

Saturn itself is believed to be mainly a huge sphere of gas kept together by gravitational attraction. Its mark. ings are similar but less prominent than those on Jupiter. Very high wind speeds of more than 1,000 miles per hour have been found above Saturn.
Saturn consists mainly of hydrogen and helium gases and has a very low density. The temperature of its clouds is of the order of $-190^{\circ} \mathrm{C}$ and it is not known whether there is any surface to the planet, as no light can penetrate the thick clouds.

Moons of Saturn

Apart from Saturn itself and its ring system, one of the main objectives of the Saturn encounters was an

Our heading photo shows an image of Saturn and its rings returned by Voyager 2 from a distance of 19.9 million km from the planet. Note the shadow of the rings on Saturn and the banding marks on the surface.
investigation of the numerous moons which circle the planet.

Titan

Titan is not only the largest, but also the most interesting of these moons and was viewed by Voyager l; unfortunately nothing could be seen through the dense cloud cover of the surface of the satellite.

Voyager 1 passed a hundred times closer to Titan than Voyager 2, since the trajectory of the latter was programmed to enable it to travel on to Uranus and Neptune and this would not have been possible if it had passed close to Titan. Indeed, Titan is of such importance that had Voyager 1 failed to return data on this moon, Voyager 2 would have been sent to encounter it and the future Uranus and Neptune encounters would have been lost.

Nevertheless, Voyager 2 returned valuable data on Titan and showed that some considerable changes had occurred since the first encounter. In particular, an instrument on board Voyager 2 looked at the polarised light scattered by particles in the atmosphere of Titan; this could not be done by Voyager 1, since its instruments had failed.

Titan is of particular interest, since it has a dense atmosphere (82 per cent nitrogen, 6 per cent methane and other gases) and molecules detected in this atmosphere are those which could give rise to life.

Other Moons

Apart from Titan, Voyager 2 came closer to the moons Enceladus, Tethys, Hyperion, lapetus and Phoebe than the first mission. Enceladus has a surface which shows a great deal of past geological activity. Part of its surface is heavily cratered by bombardments a very long time ago, but other parts are re latively smooth, indicating that material has been ejected (possibly by volcanic activity) and has settled onto the original cratered surface. Strangely enough any volcanoes would be water volcanoes, since Enceladus is mainly ice!

The moon Tethys has a chasm groove several kilometers deep around nearly three-quarters of its circum. ference; it is 100 km wide and some $2,000 \mathrm{~km}$ in length. Voyager 2 also found a crater 400 km in diameter with a central peak and some concentric rings. The
surface of this moon is heavily cratered.

Hyperion is a strange moon, a disk-shaped elongated object of dimensions about $400 \times 250 \times 200 \mathrm{~km}$, which is battered and scarred with craters. Iapetus is another strange moon, since it has a dark side facing forward in its orbit around Saturn and a bright side facing backward.

The dark side is as black as asphalt and has given rise to much speculation as to its composition, since it has one of the darkest surfaces in the solar system.

The first images of the outermost satellite, Phoebe, were captured by Voyager 2. This orbits in the opposite direction to the other moons and may possibly be a captured asteroid rather than a normal Saturnian moon.

Radio Signals

All of this work (and many other projects) would not have been possible with. out the US Deep Space Network for receiving the extremely weak radio signals from the spacecraft. The Deep Space Network has stations in Goldstone, California, near Madrid, Spain and near Canberra, Australia. These stations have been deliberately spread out around the surface of the earth so that no spacecraft can be out of sight of all three of the stations at any time unless the craft is in the radio shadow of a huge object such as Saturn.

Spacecraft going towards the Sun can use solar panels to convert the energy of the Sun into the electric power they need. However, Voyager was designed to travel to the outermost parts of the solar system where the intensity of sunlight is very small, so it had to be provided with radiosotope thermoelectric generators to provide the power required by the radio transmitters and instru. ments.

Both Voyager craft receive signals from earth at a frequency in the S band lover $2,000 \mathrm{MHz}$. Signals sent from earth programme their onboard memories so that they make the desired observations at the right time and so that their small gas jets put them into the required trajectory and enable course correcting trajectory changes to be made. Voyager 2 had its main receiver fail, so it has operated on a duplicate receiver.

The spacecraft transmits at a maximum power of just over 28 W in the S.band

A serles of views of the moon Tethys taken at 4 hour intervals shows its 400 km crater rotating towards the limb of this satellite. Note the central peak and the circles around the crater.
(about $2,300 \mathrm{MHz}$), but can also transmit in the X-band at about $8,400 \mathrm{MHz}$ at a power level of up to about 21 W .
The Voyager craft have a 3.7 m diame:er reflector dish which can be pointed towards the earth to provide good communications facili. ties with high data return rates at the great distance of Saturn. However, a lowgain antenna is also incorporated in the craft so that if the high gain dish antenna happens to be facing away from the earth, a command signal can be sent to the low.gain antenna to cause the large dish to face the earth again.

The signals reaching the earth are so weak that the Deep Space Network stations have 64 m diameter dish aerials to receive them together with smaller 34 m and 26 m diameter dish aerials for reception when condilions are not so critical. In addition, the smaller aerials can provide signals which can be fed to a computer together with the signals from the larger aerials to provide optimum reception.

Bad weather conditions (such as heavy rain or snow) at an earth receiving station can cause loss of the X-band signal. Some of the most important data was therefore recorded on the spacecraft's instruments and re-transmitted later to other earth
stations to provide a form of insurance against partial loss of the information which has been so costly to obtain.

Jammed Platform

When Voyager 2 was in the shadow of Saturn and out of radio communication with the earth stations, a moving platform which carries the cameras and certain other instruments became jammed in position. Although it could still be moved in the vertical direction, it could not be moved horizontally.

Engineers immediately set about investigating the prob. lem, but any command signal they sent to the craft took about 1 hour 25 minutes to reach the craft and a similar time had to pass before the engineers could receive a signal back from the craft to ascertain whether the command had been effective. This long delay, due to the immense distance involved, made the investigations far more difficult.

The platform mechanism was finally freed after a few days and, although initially stiff, the performance of the movement has steadily improved. Thus the workers are anticipating there will be no problem at Uranus en counter.

As the sticking of the platform occurred shortly after the spacecraft had passed through the plane of the rings of Saturn, it was initially thought that the problem could have been due to particle bombardment of the mechanism with minute, very high velocity particles. Further investigation has shown that the problem was apparently caused by worn gear mechanisms, close clearances between gears and lubrication problems in the low temperature, high vacuum conditions near Saturn.

Conclusions

The Voyager craft (and other planetary missions) are one of the marvels of modern electronics which has been able to answer quesions over which man has pon dered for centuries. Unfor tunately even the USA is having to cut its expenditure on its space programme, but some projects will be going ahead during the early 1980's.

The writer is indebted to Don Bane, Jet Propulsion Laboratory, California for providing information and photographs used in this article.

ASELILH:
 Quick, neat and easy!

It's so easy and tidy with the Easibind binder to file your copies away. Each binder is designed to hold 12 issues and is attractively bound and blocked with the EveryDay Electronics logo.

Price U.K. £4.30 including postage, packing and V.A.T. Overseas orders add 25p.

Please allow $3 / 4$ weeks for fulfilment of order. Why not place your order now? Send the com pleted coupon below with remittance payable to: IPC Magazines Ltd., Post Sales Dept., Lavington House, 25 Lavington Street, London, SE1 OPF.

Order Form

 I enclose P.O./cheque value binders. Years required block letters pleaseName
Address

RADIO WORLD

By Pat Hawker, gzva

FM or SSB

In the political rather than technological arguments about $F M$ and $A M$ for $C B$ operation, there has been a tendency to knock unduly the performance that can be achieved with narrow-band FM. But it was a little surprising to find Dr. William Gos. ling, technical director of Plessey Elec. tronic Systems Ltd, writing in "The Guardian" newspaper: "I am well-known as an opponent of the use of f.m.-for any. thing-on the grounds that it wastes valuable space in the radio bands. For CB radio I would have preferred the UK to adopt the more advanced s.s.b. system. now rapidly becoming dominant in the US'

Apart from the fact that use was being made of s.s.b. techniques as early as 1915 whereas we owe practical f.m. to Howard Armstrong's work in the 1930s, there iemains many doubts about the effective. ness of s.s.b. for mobile operation; none about f.m.

Even Dr. Gosling's strong support for s.s.b. was less evident only a few years ago when he strongly advocated the alternative system of double-sideband a.m. with diminished carrier for private mobile radio. A system which indeed can be shown to have considerable advantages over s.s.b. for many applications but requires the use of fully synchronous detectors in the receivers.

Inconclusive trials

More recently the Home Office and Pye Telecommunications have carried out many tests on the use of s.s.b. systems (to which Dr. Gosling later turned) but these have proved far from conclusive. Indeed at distances оा more than a very few miles, 25 kHz channelling f.m. appears to have consistently outperformed s.s.b. (though it must be added that s.s.b. might permit 5 kHz channelling)

For mobile operation to make full use of the narrow channels calls for a very high standard of sideband suppression and extremely good and complex automatic gain control in receivers. Also, there is an increasing problem of Doppler frequency shift when vehicles are travelling at speed when using the higher frequencies
Broadcasters use wideband f.m. with around 200 kHz channel spacing but can claim that for national coverage this is actually less extravagant in radio spectrum utilization than a.m. This is because the "capture effect" of $\mathrm{f} . \mathrm{m}$. permits the same frequency to be used many times over even in a relatively small area such as the UK whereas a.m. or s.s.b. require a much greater "protection ratio", that is to say an interfering signal has to be much stronger with wideband $\mathrm{f} . \mathrm{m}$. before it becomes objectionable.
So although for some purposes s.s.b. is definitely superior to FM or AM, it would not only result in unnecessarily complex
(and more costly) equipment for $C B$ it is doubtful whether it would have any significant advantage.

CB licences

The actual conditions of the CB licence seem an odd mixture of an easy-going approach interspersed with tough technical conditions. For example there is not much that you cannot do, except to make grossly offensive or obscene remarks or speak in code. Likewise it is possible to use selective calling systems which are apparently not permitted by the amateur radio licence.

On the other hand, it is a condition of the licence that the aerial should not be more than 1.4 metre long with base loading, which is less efficient than a loading coil two-thirds of the way up or with top capacitance loading. On 27 MHz unloaded quarter-wave ground planes, monopoles or half wave dipoles are all well over 1.4 metres long and thus illegal.

One can see reasons for limiting the length of the aerial on a mobile unit, but one would have expected that for base stations at least the classic ground-plane aerial (originally devised in the 1930s by Dr George Brown of RCA for American police communications) would have been permitted. Perhaps it is all just to make it easier to spot "illegal" operators, though that may prove unfortunate for licensed amateurs with full size aerials!

Brass pounders

For many years Morse operators have been called "brass pounders" although very few modern Morse keys are made of brass-more's the pity. Recently I spotted a collector offering (for about £60) an 1898 brass key claimed to be in vintage condi. tion.

This caught my eye since for many years I have used one of the classic double-current brass keys made by Griffin. London (No. 432 Mk. III 1914) with its massive brass terminals and gleaming "send/receive" switch. I have to admit that mine is not in "vintage" condition, cost me a princely half-a-crown in 1938, and is much more of a working tool than a collec. tor's item.

In the interim period I have learned to use and tried out many other forms of

Morse key: the sideswiper, the semiautomatic "bug" key, the popular elec. tronic keyer and the modern dual-paddle "squeeze" keyer. My conclusion is that there is no single "best" type of key but that individual operators gravitate towards the type that suits them best: in my case the large but elegant double-current brass key.

I also suspect that this once popular type of key has an advantage in that unlike most up-and-down manual keys the downward motion is not suddenly halted by the silvered electric contacts which are on springy metal but against a pliable washer. But also because, with the aid of metal polish and a rag, they become laboratory instruments with all the aesthetic appeal of gleaming brass-vintage Bentley's of an almost bygone era of telegraphy.

This feeling is clearly shared by others and I note that in New Zealand replica keys based on a once standard British Post Office key are now on the market.

Manual speed

According to the Guinness Book of World Records, Harry Turner, W9YZE is credited as holding the record for fast sending on a purely manual key, having clocked up 175 characters per minute (35 words per minute) in November 1942 at the US Army Signal Corps School at Camp Crowder, Missouri-and he still pounds brass on the amateur bands.
To reach 35 wpm is no mean achieve. ment although I have come across operators capable of reaching about 30 wpm on good straight keys. The real beauty of such sending is not usually the speed but good letter formation and the absence of errors that tend to mar the "perfect" sending of electronic keyers.

Reliability

The strong emphasis put by consumers on "reliability" as the most desirable characteristic of any complex electronic equipment is increasingly recognized by industry in Europe and North America and has long been exploited by Japanese industry.

A recent special issue of the profes. sional IEEE "Spectrum" journal is largely devoted to reliability and also sheds some light on the rising cost of repairs. It is pointed out that a good 19-inch colour television set in the USA retails for about $\$ 400$ while a typical service call to the home costs from $\$ 35$ to $\$ 100$ for labour and replacement parts.
If only one in a hundred receivers requires a service call during the warranty period, and taking an average of $\$ 50$ per call, the cost of unreliability to the manu. facturer is 50 -cents per set. But if one in ten sets requires servicing it amounts to $\$ 5$ per set.

Whilst electronic timers are by no means uncommon as constructional projects, this design has the merits of being compact, economical on batteries and cheap to build. Operation of the device could not be simpler, being activated by means of a solitary on/off slide switch and commences to bleep at the expiration of the preset timing period. Switching off the unit also resets the timer in readiness for a further cycle.

The prototype has amply repaid its construction in use not only as an egg timer but also for timing telephone

COMPONENTS

Resistors
R1 $10 \mathrm{k} \Omega$
R2 $120 \mathrm{k} \Omega$
R3 $1 \mathrm{k} \Omega$
R4 $120 \mathrm{k} \Omega$ (see text) See
R5 $1 \cdot 2 \mathrm{M} \Omega$
R6 $120 \mathrm{k} \Omega$
page 30
All $7 W$ carbon $\pm 5 \%$

Capacitors

C1 $2 \cdot 2 \mu \mathrm{~F} 10 \mathrm{~V}$ tantalum or elect.
C2 $47 \mu \mathrm{~F} 10 \mathrm{~V}$ tantalum or elect.
C3 120pF min. ceramic
Semiconductors
D1, 2 1N4148 (2 off)
ICl, 2555 timer (2 off)

Miscellaneous

VR1 $220 \mathrm{k} \Omega$ sub-miniature veitical preset
S1 Sub-miniature d.p.d.t. slide WD1 PB2720 Piezo-ceramic transducer
319 V battery (PP3)
Stripboard, 0.1 inch matrix, 24 holes by 7 strips; battery clip; Verobox type 202-21025K, $72 \times 50 \times$ 25 mm ; Veropins (5 off); equipment wire.
of a little more current consumption, is more compelling as an alarm.

The operating cycles of both i.c.s are governed by the time taken to charge a capacitor via a resistor chain. In the case of ICl, the relative timing components are R1, R2 and Cl which produce a bleep modulation frequency of about $2 \cdot 5 \mathrm{~Hz}$.

IC2 functions in a similar fashion, although with a significant difference. In this instance C 2 forms the initial charging capacitor (C3 being neg ligible by comparison), the rate of charge being governed by R4, R5, R6 and VR1. At switch on, C2 begins to charge and after 3 minutes (using the components specified) IC2 would normally initiate a discharge cycle. However, the inclusion of D2 prevents C2 from discharging and it effectively drops out of circuit. C3, which is al ready charged, is nevertheless free to discharge and it therefore controls the timing cycle, continuing to charge and discharge at an audible frequency of around 2 kHz .

When the device is switched off, the spare contacts on Sl are used to ensure that C 2 is fully discharged through R3, thereby eliminating any risk of variations in the timing cycle.

CASE

Start by cutting an aperture in the case to house the slide-switch, S1. As indicated in the photograph, the switch is mounted as close as possible to the corner of the case on one of its short sides. Drill two adjacent holes about 5 mm diameter and open these out with a needle file to a suitably sized rectangle. After checking that the switch can be freely operated within

Fig. 1, Circuit diagram of the Mini Egg Timer.

Fig. 2. Stripboard layout of the egg timer showing the track breaks on the underside of the board.
the aperture, two small holes can be drilled for the fixing screws.
Finally drill a 3 mm hole in the centre of the case lid for the sound from the transducer.

CIRCUIT BOARD

First, cut the Veroboard to the size indicated in Fig. 2 noting the rebate required to fit round the corner pillar of the case. Then, using a hand-held 3 mm drill or Vero track cutting tool, cut the copper strips in the positions shown.

Soldering should commence with the wire links indicated in Fig. 2. Note the two small diagonal links positioned under each of the i.c.s. Check the position of these links carefully; mistakes will be difficult to rectify once the i.c.s have been soldered into position.

Normal practice is to leave the installation of "active" components such as the i.c.s until last but in this instance there is some merit in reversing the procedure to assist the physical location of other components. Start, therefore, with IC2 taking care to ensure that it is correctly orientated by referring to Fig. 2. Continue by installing R3, 5 and 6, preset VR1, Cl and D2 (observing the polarity of the latter two components). Clip off surplus leads close to the soldered joint.

The value of R4 depends on the tolerance of the other timing components and may need to be changed to achieve the desired preset time period. At this stage temporarily fit a $120 \mathrm{k} \Omega$ resistor.

Now wire the piezo-ceramic transducer, the slide switch and the battery clip taking great care in the case of

The sound transducer mounted on the lid and the close packing of the circult board and battery.
the last two items to observe correct orientation. Connect a PP3 battery and switch on whereby a continuous note should be emit-
ted.

If all is well, disconnect the battery and proceed with the installation of ICl and all remaining components except C2. Reconnect the battery when this time a modulated bleep should be produced.

The final step is to install the main timing capacitor, C2. The preferred choice here is a tantalum capacitor which is less likely than an electrolytic capacitor to deteriorate with age thereby affecting the timing cycle but a small electrolytic capacitor (10 V working) can be physically accommodated, however, and will give acceptable results with probably some saving in cost.

ADJUSTMENT

The final, if somewhat tedious, operation is to adjust the preset resistor VR1 to give an accurate timing period, the duration of which depends on the constructor's personal preferences as to the consistency of their boiled eggs! The author enjoys a three-minute egg, so we shall describe the setting up procdure for such. Rotate the preset to its mid-point position, reconnect the battery and switch on, timing the period before the alarm sounds and repeat this process as
necessary, each time adjusting VR1 to obtain a duration of exactly three minutes.

If it transpires that this interval is not within the range of VR1 it will be necessary to increase R4 for longer intervals or reduce its value to shorten the period.

It may be, of course, that the constructor prefers his eggs cooked for four minutes or wishes to set up for some other timing function. In that event it would be desirable to vary R5 at the outset and a four minute timer would require about $1.5 \mathrm{M} \Omega$ in this position.

FINAL ASSEMBLY

When all adjustments have been completed, wire in R4 permanently and attach the transducer to the underside of the lid with a couple of dabs of adhesive, taking care to line up its centre hole with that drilled in the lid. Insert the circuit board in its case and screw the slide switch into position. No other fixing is necessary as the battery will hold the board neatly in place.

Screw the lid to the case, and finally, attach a label indicating the preset timing period of the unit.

The device described in this article generates a US police-car type "whooping" tone and is suitable for many medium-power alarm applications. The tone is sounded over a 5 watt loudspeaker and in fact the level of output available is quite startling. The module can be used with burglar alarms, fire alarms or in fact in any unit requiring a distinctive audible alarm and which is capable of supplying 12 volts at about 500 mA .
It is possible to incorporate a small modification which permits the module to imitate the familiar twotone sequence of many British police cars.

THE 555 TIMER I.C.

The circuit employs two 555 timer i.c.s, both of which are operated in the astable mode. This is illustrated in Fig. 1.
An astable multivibrator possesses no stable state, and continues to offer a steady stream of pulses at its output without the need for triggering. In the case of a 555 astable, a constant square wave (Fig. 2) appears at the output terminal. The frequency, or number of pulses per second (measured in hertz), is dependent
upon the values of three external timing components, namely $R_{\mathrm{s}}, R_{\mathrm{b}}$ and C. Fig. 2 illustrates how the frequency is controlled by these three components.

The other interesting features depicted in Fig. 1 are the "reset" and "control voltage" facilities. The reset pin, if grounded, will halt the output, that is the output will go low and remain like this until the reset signal is removed. It is customary to connect the reset pin to $+V_{\infty}$ (the positive supply rail) if it is not required.

CONTROL VOLTAGE

The "control voltage" pin provides another means of adjusting the frequency of the output. Apart from altering the values of $R_{\mathrm{a}}, R_{\mathrm{b}}$ and C, a control voltage may be applied to pin 5 to vary the output frequency independently of the " $R C$ network".

By applying a voltage to pin 5 , it is possible to modulate the frequency of the square wave output in sympathy with the amplitude of the control voltage. This method is employed in the Siren Module where the applied voltage has a sawtooth waveform.

If the control voltage terminal is unused, normally it is connected to

0 V via a $0.01 \mu \mathrm{~F}$ capacitor, although for a minimum component count it can be left entirely unconnected.

CIRCUIT DESCRIPTION

The circuit diagram of the Siren Module is shown in Fig. 3. It can be seen that two 555 astable circuits are employed, ICl and IC2 with associated timing components. ICl produces a square wave operating at a nominal frequency of about 500 Hz ; this forms the basic "tone" of the system.
IC2 produces another square wave of a much lower frequency, about 3 Hz . Note however that a variable resistor VR1 is incorporated so this frequency is adjustable to a certain extent. VR1 was in fact eventually incorporated in the design to compensate for large tolerances which affect the value of C3.
The output of IC2 is coupled through R4 and R5 to the control voltage terminal of IC1. C2 is a largevalue electrolytic capacitor whose presence converts the square wave produced by IC2 into a sawtooth waveform.

The square wave from IC2 causes C2 to constantly charge up and discharge, and so the smooth sawtooth waveform produced by this is used to modulate the output of ICl ; the frequency of operation of ICl is altered rhythmically to produce a "whooping" tone instead of a continuous 500 Hz note.

As a basis for experimentation, readers may wish to note that by omitting C2, a "two-tone" effect will

Fig. 1. Basic arrangement of a 555 timer i.c. to function as an astable multivibrator.

Fig. 2. Output waveform and frequency calculation for 555 astable.

Fig. 3. The complete circuit diagram for the Siren Module.

COMPONENTS

Resistors

R1 $100 \mathrm{k} \Omega$		
R2	$100 \mathrm{k} \Omega$	See
R3	470Ω	
R4	$1 \mathrm{k} \Omega$	
R5	$2 \cdot 2 \mathrm{k} \Omega$	
R6	$1 \mathrm{k} \Omega$	
R7	$22 \mathrm{k} \Omega$	
R8 680Ω		
All t watt carbon $\pm 5 \%$		

Capacitors
C1 $0.01 \mu \mathrm{~F}$ polyestep (C280)
C2 $47 \mu \mathrm{~F} 12 \mathrm{~V}$ elect. radial leads
C3 $10 \mu \mathrm{~F} 12 \mathrm{~V}$ elec. radial leads
C4 $150 \mu \mathrm{~F} 12 \mathrm{~V}$ elect.
Semiconductors
IC1, 2555 timer i.c. 8-pin d.i.l.
TR1 TIP31A non silicon
D1 TIL220 0.2 inch red l.e.d.
D2 1 N4001 1 A silicon
Miscellaneous
VR1 $22 \mathrm{k} \Omega$ sub-miniature
horizontal preset
TB1 3-way 2 A screw terminal strip
Stripboard: 0.1 inch matrix 18 strips $\times 37$ holes; 8-pin d.i.l. sockets (2 off); clip/bush for D1; TO. 220 insulating kit for TR1; rubber grommet; metal case size $100 \times 70 \times 40 \mathrm{~mm}$; Veropins (5 off); P.v.c. covered stranded wire; 6BA fixing hardware; 2 mm diameter sleeving; 22 s.w.g. tinned copper wire; Loudspeaker and enclosure-see text.
be produced. This is because a square wave is being used directly as a modulating signal for IC1, so that the 500 Hz tone is suddenly increased and then decreased again, producing two separate notes.

The final "whooping" tone is available at pin 3 of ICl, but the maximum current that can be supplied is only 200 mA . This is insufficient for the required 5 watts power output. TRl functions as a current amplifier to realise 5 watts into an 8 ohm speaker.

An 8 -ohm loudspeaker (minimum) should be used, with a minimum power rating of 5 watts r.m.s. An ex-music-centre loudspeaker mounted in an enclosure has been used with the
prototype with very great effect. Note however that the loudspeaker is connected to the Siren Module through a terminal block, but it will be possible to mount an unhoused Siren Module in the loudspeaker enclosure itself.

The circuit requires a 12 V supply maximum at 500 mA maximum, 300 mA minimum. D2 protects the circuit from damage which could occur if the power supply happened to be accidentally reversed upon initial switching on. Finally, Dl is a lightemitting diode which glows when the power is on, and C4 serves to decouple the power supply and prevents unwanted interaction between the two oscillators.

HOW IT WORKS

A low frequency oscillator has its output "shaped" to provide a sawtooth waveform. The second audio frequency oscillator, without any signal fed to its control input produces a tone of about 500 Hz . The effect of the sawtooth voltage is to cause this tone to vary in pitch about 500 Hz , the shape of the sawtooth producing a "whooping" tone. This is heard in a loudspeaker via a current booster amplifier (not shown).

SIREN
 MTOULLE

Fig. 4. Layout of the components on the stripboard and breaks to be made in the tracks on the underside. Veropins are used as anchorage points for wiring the remote components to the circuit board. Sockets are advised for both i.c.s.

The completed siren showing the mounting of the supply and loudspeaker connecting terminal block on the side of the case.

CASE

The Siren Module can be built into a standard aluminium box measuring $100 \times 70 \times 40 \mathrm{~mm}$ and the circuit it-self-with the exception of TR1-can be constructed on 0 linch stripboard, 18 strips $\times 37$ holes.

Any other metal case can be used providing that it is of a size suitable for carrying the completed circuit board.

CIRCUIT BOARD

Fig. 4 illustrates the suggested stripboard layout. Having cut the stripboard to size, drill four 6BA clearance holes in each corner as shown to take the necessary mounting hardware. Take care when drilling to make sure that the circuit board is not fractured due to excess pressure.

Then all the breaks in the copper strips are made, using either a handheld twist drill or the proper spot face cutter. The Veropins may then be inserted and soldered in the positions indicated.
At this stage it may be best to solder in the two 8 -pin di.i.l. sockets which carry the i.c.s. These serve as a good reference when locating and soldering the 22 s.w.g. tinned copper link wires.
The recommended order of construction continues with the soldering in of the miniature resistors and the electrolytic capacitors.

The completed circuit board mounted in position on the base of the case. The cutaway in the lip to avoid obstructing the terminal block can be seen top right.

HEATSINK FOR TRANSISTOR

During normal operation, the temperature of TR1 will rise noticeably, and so the aluminium box is used as a heatsink to dissipate some of this heat, the reason for specifying a metal box to house this project.

TR1 is mounted on one wall of the aluminium box with 6BA hardware, using a TO-220 mica washer and insulating bush to isolate the transistor tab (which is internally connected to the collector) from the box. A smear of silicon grease or similar heatsink compound on both sides of the mica washer will assist in heat transfer from the transistor to the heatsink.

Note that it will be easier to solder a flying lead to each of the terminals before fixing in place.

TERMINAL BLOCK

Mounted externally on the case is a 3-way screw terminal block which carries the connections for the positive supply rail and also one terminal of the loudspeaker; the third screw terminal forms a combined connector both the 0 V and remaining loudspeaker terminal. Bear in mind that the lip of the lid overlaps about 6 mm when positioning the terminal block on the outside of the case.

A small hole must be drilled next to the terminal block and this hole should be fitted with a small grommet. Flying leads are then taken from the appropriate Veropins on the circuit board, through the hole to the terminal block as shown.

The light-emitting diode can be mounted on the front of the box using and l.e.d. bush-clip. The l.e.d. must be positioned such that its leadouts will not interfere with the circuit board
inside once the completed module is closed up-in fact the leads will probably need cutting back a little. Cut the anode shorter than the cathode
so that you can easily identify the leadouts.

Standard multicored hook-up wire can be used throughout as flying leads, with 2 mm diameter p.v.c. sleeving pushed over the leads of the l.e.d. and TR1 to ensure that shortcircuiting will not occur.

TESTING AND SETTING UP

Once construction is complete, check out the finished unit carefully. In particular inspect the circuit board closely, and fit the i.c.s correctly into their sockets if you have not already done so. Set VRI to middle position.

Connect a suitable loudspeaker to the $0 v$ and $L s$ terminals of the module, and then apply $12 \mathrm{~V}(500 \mathrm{~mA}$ maximum) to the +12 v and 0 v terminals.

Switch the power on: the l.e.d. should illuminate and the Siren Module should drive the speaker, but the "whooping" tones may not be perfectly formed. By adjusting VR1 it should be possible to produce the desired effect.

The "lid" or base of the siren removed showing clearly how the circuit board is mounted on spacers. The l.e.d. is seen on the right of the case with insulating sleeving over the pins. Take care that the l.e.d. does not foul on the circuit board.

THERE ARE many objects whose appearance can be enhanced by electroplating. The drawback is that many of them are non-conductors; for example, leaves and leaf skeletons and plastic models.
The methods involved are quite easy to follow and require no specialist equipment.

FIRST STEPS

The first step is to obtain a bottle of "Aquadag". This is a colloidal suspension of graphite and may be bought at a good chemist or photographic dealer. If any difficulty arises then you may have to resort to a scientific equipment dealer (look in Yellow Pages).
The object to be plated must be perfectly clean, dry and free from grease. A good wash in detergent followed by a rinse in distilled water will ensure this. Handle with tongs or tweezers at this stage as fingers are naturally greasy.
The object is then left to dry and then painted all over with Aquadag using a soft brush to ensure that all the detail of the object shows through the coating. A second coat is applied when the first is dry.

THE CELL

An electroplating cell must now be constructed. This consists basically of two electrodes, one formed by the object to be plated and the other formed from the material that is going to be deposited onto our object, and an electrolyte, or solution in which the two electrodes are immersed. The whole system is, of course, contained in a tank or vessel of some sort.

The ideal vessel would be a rec. tangular glass tank. However, any large container such as a plastic bucket or bowl would do just as well.

For obvious reasons, a metal tank would not be suitable as it would bypass the action of the cell.
An electrical connection is made to a part of the object which will not show or may be cut off when finished and this connection is taken to the negative side of the battery or power supply. This should be well smoothed and give at least 6 V d.c. The object becomes the negative electrode or cathode.
A positive electrode or anode should also be constructed and this should consist of a thick rod or
preferably plate of the metal to be deposited onto the cathode. Needless to say this is connected to the positive terminal of the battery.

The anode should, if at all possible, be of greater surface area than the cathode and if metal plate or foil is not available, rod or wire can be heated and beaten flat. Several interconnected pieces may be needed.

PLATING CURRENT

The best plating is done when the current is 10 mA per square centimetre of cathode, although areas need not be exact. If you were plating plastic chessmen for example, you could regard them as cylinders and calculate the surface area from the usual formula; Area equals $2 \pi r h+$ $2 \pi r^{2}$, where h is the height and r the radius in centimetres.

The area of a leaf can be found by drawing round it on centimetre graph paper and counting complete centimetre squares then adding half the number of incomplete squares before doubling.
Ideally the cathode should revolve slowly all the time (the method is outside the scope of this article), but a turn through ninety degrees each quarter of the total plating time will do. In fact this can take up to 48 hours depending on "plate" thickness.
Do not try to hurry the plating by increasing the current as this causes the result to be very granular and the plated metal does not adhere properly to the object.
The choice of electrolyte and operating temperature depend on the metal being plated and Table 1 summarises the best solutions and working temperatures.

Fig. 1. A practical electroplating set-up.
Table 1: Electrolytes for different metals
Metal to be
plated

Copper

Electrolyte details
12.5 g copper sulphate crystals and 12 drops of battery acid in one litre of water.

Zinc $\quad 50 \mathrm{ml}$ of saturated zinc sulphate solution with an equal volume of water. Add 4 drops of battery acid and a teaspoon of Borax.

> Nickel 50 g of nickel ammonium sulphate in one litre of water.

Comments

Strong coat of copper at $38^{\circ} \mathrm{C}$; softer coat which polishes easily at $50^{\circ} \mathrm{C}$; adequate plating at room temperature.
Temperature makes little difference.

Temperature makes little difference.

Note that a saturated solution is made by warming water and dissolving as many crystals as possible. When allowed to cool to room temperature, crystals appear at the bottom of the vessel and the liquid above these crystals is the saturated solution.

FINISHING OFF

If a leaf or other organic object is plated, a small hole must be made through the plating in an inconspicuous place or the stem cut off revealing the interior. The leaf is then gently warmed at first and then more strongly until it carbonises leaving an empty shell of plated metal.

The melting points of copper, zinc and nickel are 1083, 420 and 1453 degrees Celsius respectively, so a little care is necessary here, especially with zinc. Any discolouration due to the heating can be removed with metal polish. If the leaf is not totally destroyed, gases from its decomposition may damage the plating.

This small hole can be sealed when the heating process is completed using Araldite mixed with filings of the appropriate metal and carefully ground level with carborundum paper.

SOME PRACTICALITIES

A suitable practical set-up for electroplating is shown in Fig. 1. The stands are made from half-inch dowel inserted and glued into pre-drilled
holes in a wooden base approximately $100 \times 150 \mathrm{~mm}$ in size. A clothes peg is then glued onto the rod in the position shown in the diagram. Two of these are required.

A weight placed on the base of the stand may be necessary to prevent it overbalancing.

The tank containing the solution (electrolyte) rests on an asbestos mat. If an electric heater is available so much the better. However only use heaters that have been specifically designed for this sort of work (for example photographic tray heaters) as a mixture of water and electricity can be very dangerous. This rules out home-made contraptions.

The electrical circuit consists of a battery, meter and variable resistor or rheostat. The rating of these particular items will depend on the job in hand but, bearing in mind that you require 10 mA per square centimetre you should plan for about a maximum of 100 to 150 square centimetres. This means that your ammeter should be capable of measuring 1.5 A and the battery should be capable of delivering a continuous current of
1.5A for an appreciable time. In practice this will mean using an accumulator such as a car battery.

The rheostat should again be adequately rated so you will probably need a wire-wound type rated at 20 W for 12 V working or 10 W for 6 V work. ing.

The time taken to plate an object can vary and the surest way of working this out is by experience and a sharp eye. Although the time required depends largely on how thick the coating is going to be, you are going to need several hours to complete the process.

MAINS POWER

As an alternative to using a battery, you could try using a mains power supply. This has several advantages especially if you have access to a stabilised supply where all the control is built in. This would enable you to dispense with the rheostat and separate meter.
The main requirement is that the supply is well regulated and smoothed and once again able to supply the current demanded for the process. ロ

Readers' Bright Ideas; any idea that is published will be awarded payment according to its merit. The ideas have not been proved by us.

SWITCHES FOR SLIDER POTS

It is possible to obtain rotary potentiometers with a switch incorporated which turns off at one end of the travel. However, slider pots never have this. Therefore I have thought up a simple method of adding a switch.

A lever operated microswitch is mounted at one end of the slider so that at the extreme end of its travel, the shaft presses against the lever and opens the normally closed contacts.

BALANCING AMPLIFIER CHANNELS

The balancing of the output of multiple channel audio amplifiers can be performed by connecting a speaker across the two non-common terminals (sometimes marked "output" or "+", in other words those not connected to earth or the chassis) of the channels to be balanced. With the same signal to both inputs of the amplifier channels (or the amp switched to mono) and the volume or gain turned up, the balance and/or tone controls are adjusted until there is as near to no volume as is possible. The amplifier is now balanced.

This method may be used for balancing low output a.f. amps or r.f. amps provided an a.c. voltmeter or oscilloscope is connected in place of the speaker.
C. M. Rogers,

Wooton-under-Edge, Glos

CHEAP AERIAL INSULATOR

Porcelain or glass aerial insulators can often be costly items to buy in the shops but there is a simple and cheap alternative (see diagram).

First of all take a cork and put a small screw eye in both ends. No holes need to be drilled because the cork is soft and they can just be screwed straight in.

The supporting wire is attached to one screw eye and the aerial to the other. Before it can be used it must be water-proofed with paint or varnish.

If a heavier duty or better quality insulator is required then the cork can be replaced by a piece of pine.

John Hickson, Bexley, Kent

TRANSISTORS come in a variety of shapes and sizes, the type of encapsulation often depending on the function it performs in a circuit. For example, a power transistor needs to be fairly substantial to dissipate unwanted heat whereas a high frequency device will require a metal can for screening.

Detailed here are the physical outlines and lead configurations, along with important electrical parameters

TRANSISTOR PARAMETERS

I_{C} (max): maximum collector current. $v_{\text {ce }}$ (max): maximum voltage allowed across the emitter and collector terminals.
$h_{\text {FE }}$: d.c. current gain (large signal gain).
$p_{\text {TOт: }}$: maximum permissible power dissipation in the device.
f_{T} : the frequency at which the current gain (h_{Fs}) drops to unity.

The circuit symbols representing the two types of bipolar transistor.

BIPOLAR TRANSISTORS

Device	Case	Material	$\begin{aligned} & V_{C E}(\max) \\ & (V) \end{aligned}$	IC (max) (mA)	$h_{\text {FE }}$) (\min / \max)	$\begin{aligned} & P_{\mathrm{TOT}} \\ & \text { (mW) } \end{aligned}$	${ }^{\dagger} \uparrow$ (MHz)
AC127	TO. 1	nG	12	500	50	340	2.5
AC128	TO-1	DG	16	1 A	60/175	700	1.5
AD142	TO-3	nG	50	10A	30/-	30 W	0.5
AD149	TO-3	pG	50	3.5 A	30/100	22w	0.5
AD161	SO-55	ng	20	3 A	80/320	4 W	3
AD162	SO-55	pG	20	3 A	80/320	4W	1.5
BC107	TO-18(a)	nS	45	100	110/450	360	250
BC108	TO-18(a)	nS	20	100	110/800	360	250
BC109	TO-18(a)	$n \mathrm{~S}$	20	100	200/800	360	250
BC147	LOCKFIT	nS	45	100	110/450	350	300
BC148	LOCKFIT	nS	20	100	110/800	350	300
BC149	LOCKFIT	nS	20	100	200/800	350	300
BC182L	TO-9211	nS	50	200	100/480	300	150
BC184L	TO-92(1)	nS	30	200	250/-	300	150
BC212L	TO-92(1)	DS	50	200	60/300	300	200
BC214L	TO-92(1)	DS	30	200	140/600	300	200
BC477	TO-18(a)	DS	80	150	110/950	360	150
BC478	TO-18(a)	DS	40	150	110/800	260	150
BC479	TO-18(a)	DS	40	150	110/800	360	150
BD131	TO-126	nS	45	3A	20/-	15W	60
BD132	TO-126	DS	45	3A	20/-	15W	60
BD237	TO-126	nS	100	2A	25/-	25W	3
BD238	TO-126	DS	100	2 A	25/-	25W	3
BFY50	TO-5	nS	35	1A	30 typ.	800	60
BFY51	TO-5	nS	30	1A	40 typ.	800	50
BFY52	TO-5	nS	20	1A	60 typ.	800	50
TIP31A	TO-66P	nS	60	3A	10/60	40W	8
TIP32A	TO-66P	DS	60	3A	10/40	40w	8
TIP41A	TO-66P	nS	60	6A	15/-	65W	3
TIP42A TIP2955	TO-66P	pS	60	6 A	15/-	65W	3
TIP2955	TO-3P	DS	60	15A	5/30	90W	8
TIP 3055	TO-3P	nS	60	15A	5/30	90w	8
ZTX300	E-LINE	nS	2.5	500	50/500	300	150
ZTX500	E-LINE	pS	25	500	50/300	300	150
$\begin{aligned} & \text { 2N697 } \\ & \text { 2N2926G } \end{aligned}$	TO-5	ns	40	1 A	40/120	600	50
2N2926G	TO-98	ns	25	100	235	360	100
2N3054	TO-39 TO-66	nS	40	1 A	50/250	800	100
2N3055	TO-3	nS	55 60	$4 A$ 15	25/100	25W	1
2N3702	TO-92(1)	DS	25	200	60/-	360	100
2N3704	TO-92(1)	nS	30	800	100/-	360	100
2N3904	TO-92(5)	nS	40	200	100/300	310	300
2N3906	TO-92(5)	pS	40	200	100/300	310	250

p-pnp, n-npn, G-germanium. S-silicon

DO YOU EVER NEED A FEW MORE HANDS? . . IF SO

The new and improved MINIBENCH*

System will add a new dimension to your hobby

PRICE LIST

Minibench Standard model

Delux model with powder coated finish and whisper smooth action
Delur model with rotatung 'urn table base on
froe-standing mount (as iluspatedt free-standing mount (as illusirated).
Flexi Arm - 12
$-18^{\prime \prime}$
Lens Attachment - 50 mm lens
75 mm lens
100 mm lens
Clip Attachment - Large Small.
Light Firting with $18{ }^{\circ}$ F/Arm
Transformer Unit mains to 12V IA Complete with switch
Foot Pedal with cabte Assy for independent jaw operation
Quantity discounis available for orders of $10 \mathrm{M} \quad 12.001 .75$ more: please enquire
We do endeavour to keep prices stable and absorb increases by outside suppliers where we can but since this is not possible in every case. the prices quoted are subject to alteration without nouce.
PIFASF ADDRFSS AII ORDFRS TO Pleese allow 14 days for delluery.

SALES DEPT., ABSONGLEN LTD., PO BOX 13, HEREFORD HR1 1EA

OPTO-ELECTRONICS

Seven segment displays designed for viewing up to 30 feet away are now available from Litronix. These 20 mm displays, the DM-3400 series, are pin for pin compatible with the HP 50823400 series and are designed for use in such applications as clocks, point of sale equipment, and other similar sys tems.
The latest idea in seven segment display counter-de-coder-drivers has just been introduced by Intersil. This is the ICM7208 and is manufactured using a low voltage metal gate cmos process.

The most interesting feature of this new devioe is the fact that not only does it feature low power consumption (10 mW maximum) and combine counting, decoding, and display driving cincuits, but it also runs no less than seven separate seven segment displays. This means that such functions as multiplexing, display blanking, reset, input inhibit and so on are also included on

the chip.

For simple counter unit applications the chip reappires only the addition of quires only the addition of resistors and capacitors to build a fully operational sys tem.
A new departure in panel lamps has just been introduced by Hewlett-Packard and consists of an l.e.d. with a reverse current protection diode and series resistor contained in a single package.

Two versions are available -the HLMP3105 designed for 5 V operation and EILP. 3112 designed for 12 V operation.

Both lamps use l.e.d. chips made from Gallimm Arsenic Phosphide on a Gallium Phosphide substrate and emit red light (yellow and green devices are also available) and the wide 90 degree viewing angle allows them to be used in many display and control panels without the operator position relative to the panel being too critical.

CRYSTAL DATA

A M-Tron data sheet which includes a cross reference chart for Microprocessor Quartz Crystals is available from MCP Electronics Ltd. Dept EE, 38 Rosemont Road, Alperton, Wembley, Middlesex, HA0 4PE.

MCP is sole UK agent for the M-Tron range of quartz crystals which encompasses a group of commonly used microprocessor clock crys tals, as well as the facility to produce to specification any crystal within the range 1 to 170 MHz .

DYNAMIC MEMORY

Another new chip from Intel is the 2164, a 64 K by 1-bit dynamic RAM. It is manufactured using the company's well proven HMOS process and comes in an industry standard $16-\mathrm{pin}$ d.i.l. package. Maximum access time is 200 ns and the device is pin compatible with the earlier 2118 16K bit RaM.

SERVO AMPLIFIER

Electronic control in industry is an expanding market and Ferranti Electronics have just extended their product range with a new low cost servo amplifier i.c.

This is the ZN409CE and is offered in a standard 14-pin d.i.l. package. The company already manufactures the well known 2N419 but this suffers from "over the odds" pricing because of its nonstandard miniature packaging. The new i.c. is identical in specification to the ZN419 but 25 per cent cheaper.

This allows memory upgrade to 64 K merely by substituting the new chip and adding one additional multiplexed address line.
Aocording to Intel, "The advent of the 64 K dynamic RAM device will allow sys tem designers to incorporate more memory into a system without increasing its physical size"

SERVICE WALLET

The new service walle from Toolmail is designed for work on all electronic equipment including computers, video and audio units.
The zipper wallet contains 25 branded miniature tools made up of: miniature soldering iron, desolder braid, solder, soldering tools, range of screwdrivers, pliers, cutters, wire stripper, i.c. extractor and scissors.

The kit costs $£ 39 \cdot 50$ including VAT with free postage anywhere in the UK

Toolmail Ltd, Dept EE,
Parkwood Industrial
Estate, Sutton Road,
Maidstone, Kent ME15
$3 L 2$.

STEREO FM TUNER

The latest Bi-Kit Stereo FM Tuner module board from Bi-Pak Semiconductors comprises varicap tuning and a phase locked loop de coder for the reception of mono or etereo broadcasts.

Pushbutton switches enable the selection of four pretuned frequencies or stations, the selected frequencies being tuned by multiturn potentiometers. Provision exists for the addition of an l.e.d. stereo indicator, a centre zero tuning meter and a mono/stereo switch.

The ready built S .453 module is supplied complete with installation instructions and costs $£ 22.35$ including VAT and post and packing

Bi.Pak Semiconductors,
Dept EE, PO Box 6,
Ware, Herts SG12 9AG.

Available in several versions, The Electronic Doorman entry phone from Barkway Electronics is an ideal security system for offices, flats, houses and other buildings.

For flats and offices the equipment can operate via a porter's or receptionist's control panel, catering for an unlimited number of units. At the other end of the scale there is a "mini" system specially designed for houses. It is supplied as a complete individual kit which, it is claimed, is easy to install and operate.

Barkway Electronics Ltd,
Dept Ee, Barkway, Roys-
ton. Herts SG8 8EE.

GETTING A GRIP

A set of three small handtools fitted with cushion-grip handles have been added to the range of tools offered by Tele-Production Tools.

The set consists of a flush cutting side cutter, with the cutting head angled at 45 degrees, and two fine nosed pliers. The tools are available at a cost of $£ 10$ per set or $£ 3.75$ each, inclusive of post and packing and VAT.

Tele-Production Tools Ltd, Dept Ee, Stiron Honse, Electric Avenue, Westcliff on-Sea, Essex SS0 9NW.

CHARGE-UP COST DOWN

Now available in the UK is the Gould "Again \& Again" rechargeable battery system, claimed to offer a low cost, re-usable alterna tive to expensive alkaline batteries.

The Gould nickel cadmium battery system includes all the popular battery sizes and an easy-to-use battery
charger. The charger will take all the batteries in the "Again \& Again" range, including the PP3 type.

It is claimed that for an outlay of around $£ 15$, a consumer can buy a set of batteries and a charger which will typically provide power for up to five years.

Gould Battery Division,
IJept EE, Raynham Road,
Bishop's Stortford, Herts
CM23 5PF.

TMnngotente makes soldering easy \because
 Ersin Multicore
 Multicore Solder Wick

Ersin Multicore, solder contains 5 cores of noncorrosive flux, instantly cleaning heavily oxidised surfaces. No extra flux is required.
Comes in handy dispensers and tool box reels in two different alloys $40 / 60 \mathrm{tin} /$ lead for general purpose electrical soldering and 60/40 tin/lead ideal for small components and fine wire soldering.

Size PC115 60/40 tin/lead £1.38 Handy pack 0028 mm do

Multicore Savbit

Multicore Savbit, solder contains 5 cores of copper erosion reducing flux, increases the life of your soldering bit by 10 times, for better soldering efficiency and economy.
Comes in two handy dispensers and tool box reels.

£1.15 Per pack 12 mm de
Size SV130 Saubit
£1.73 Per pack ounkmm do

Multicore Alu-Sol

Multicore Solder Wick, absorbs solder instantly from tags and printed circuits with the use of a 40 to 50 watt soldering iron.
Quick and easy to use, desolders in seconds.
Size AB10 Solder Wick
£1.43 Per pack

Multicore Tip Kleen

Multicore Tip Kleen, soldering iron tip wiping pad. Replaces wet sponges.

Bib Wire strippers and cutters
Wire strippers and cutters, with precision ground and hardened steel jaws. Adjustable to most wire sizes. With handle locking-catch and easy-grip plastic covered handles.

Multicore Alu-Sol, solder contains 4 cores of flux, suitable for most metals especially aluminium. Comes in handy dispensers on tool box reels.

Size Al150 Alu-Sol
£2.07 Per pack 048 mm din

Size 4 Alu-Sol
£7.82 Per reel 16 mm do
All prices inclusive of VAT.
Available from most electrical and DIYs stores. If you have difficulty in obtaining any of these products send direct with 50 p for postage and packing. For

MASHMR THFGMPIONICS NOW! The Pi:AGHCAT way!

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to start or further a career in electronics or as a selfemployed servicing engineer
All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write personally at any time, for advice or help during your work. A Certificate is given at the end of every course.

You will do the following.

- Build a modern oscilloscope
- Recognise and handle current electronic components
- Read,draw and understand circuit diagrams
- Carry out 40 experiments on basic electronic circuits used in modern cquipment
- Build and use digital electronic circuits and current solid state 'chips
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V. $\mathrm{Hi}-\mathrm{Fi}$ and microprocessor/computer
 equipment

NewdOb? NewCareer?NewHobby?GetintoElectronics Now!

TRULY PORTABLE

Hitachi claim, that never before have so many advances been made in a new video model than with the Hitachi VT6500 portable video system. "It's portable video, that's truly portable." The new model will appeal to the enthusiastic cine user as now it is possible to electronically edit a recorded video tape. It has pulse control editing that ensures that scene changes and overlays are clean and in sync with no distortion or electronic "snow" at the critical points.

Besides clean picture editing, the sound can be varied

PERSONAL COMPUTER

The new Atari 400 and Atari 800 personal computers are now on sale in the UK, under an exclusive franchise with Ingersoll Electronics.

It is claimed that even those who are hesitant about owning a home computer can have these machines "humming" in minutes.

The suggested retail price for the Atari 800 is $£ 645$ including VAT and the Atari $400 £ 345$, including VAT.

Ingersoll Electronics Ltd,
Dept EE, 202 New North Road, London N1 7BL.

too. Most video recorders provide an audio dub facility which replaces the original sound track with new sound, but the VT6500 goes a stage better by enabling the user to blend new sound material with the original sound track and not replace it, although this is still possible.

The VT6500 is supplied with remote control unit, r.f. cable, earphone, cassette tape, shoulder bag and battery for the sum of $£ 677$ including VAT.

Hitachi Sales (UK) Ltd,
Dept EE, Hitachi House,
Station Road, Hayes, Middlesex UB3 4DR.

TV SCOPE
A 30 MHz dual trace, TV monitoring oscilloscope, made under licence by Gould, incorporates a BBCdesigned timebase module to

provide a wide range of video triggering and display modes for the monitoring and measurement of broadcast television signals.

The OS3351 oscilloscope has a 16 kV cathode ray tube to give a bright display of video waveforms, and the timebase generator allows the instrument to be used for the line-by-line examination of 625-line television waveforms or to display a complete TV picture. The line number selected for display is indicated on a 3 -digit l.e.d. display on the front panel.

Gould Instruments Divi-
sion, Dept EE, Roebuck
Road, Hainault, Essex
1 G6 3UE.

We use a lot of single-strand connecting wire with p.v.c. insulation for circuit building. Gerald
had an unhappy knack of breaking the core. On this occasion he was securing it under the terminal of a lampholder when the end fell off.
I decided to find out what he was doing wrong and discovered that he was stripping the insulation with ordinary side cutters. I must admit that I do this myself and he must have picked up the habit. I explained that when I do it I am careful to squeeze the handles only enough to cut the insulation and no more.

With experience this is possible. If any greater pressure is applied then a "nick" will be made in the core. If this is at all deep then the wire will break soon afterwards. If only slightly scored, the core will break later, probably at a very inconvenient time.

I told the whole class that it was far safer to use the special wire strippers which are adjustable for the type of wire. When correctly "set" they will cut the insulation but not the core.

I decided always to use the strippers myself when demonstrating to the class and to avoid also the habit of using my teeth!

I explained to the class that one rather thick single core was very fragile and that stranded wire should always be used when the wire was subject to much bending. Wire made from many thin strands was flexible and could be used for headphone leads and the like where bending could be expected. On the other hand, stranded wire was very difficult to push into the holes of circuit boards unless twisted and tinned.

©Recuir BKCMM Ma

DIGITAL DIE

This die circuit provides a variation on a theme in that it uses a seven segment numeric display instead of a seven dot array to present its result.

The design is based around a decade counter i.c. which is clocked by a 20 kHz oscillator consisting of two nor gates and an R-C network. The counter output state when the "throw" switch is released is encoded into a binary input by the diode matrix D1-9 which is then converted to the seven segment display by the decoder/driver i.c., the 4511 .

AM/FM VARICAP RADIO

The circuit shown here is for a basic varicap diode AM/FM tuner. Instead of using a variable capacitor in parallel with the tuning coils to pick up the radio signal, a capacitive semiconductor device known as a varicap diode is used in conjunction with a potentiometer.
The audio frequency end of the receiver utilises an LM380 i.c. amplifier and power is from a 9 V battery.
This type of radio is simple to build as there are no complicated setting up procedures and tuning is easy and quite accurate.
R. Creed, Ruislip, Middlesex.

LIGHT OPERATED CURTAINS

Readers may be interested in my idea for a circuit for the use of opening and closing curtains when no one is at home.

The circuit is a light activated switch which operates a relay which switches on the curtain motors via reed switches S1, S2. The light dependent resistor PCCI and VRI provide the bias for the base of TRI which triggers the transistor TRI on at a predetermined level set by VR1. TR2 is switched on by the operation of TRI and activates the relay RLAI.

The light dependent resistor should be placed close to the window glass, or even on an outside wall, so when darkness falls the relay can be operated. The motors are placed at the left and right of the curtain using fishing line and pulleys attached to the curtains. See sketch.

The brightness of the display may be varied by adjusting the value of R3 slightly.

When the "throw" button is depressed the display will appear as an
" 8 " as the numbers change in rapid succession.
D. Butler, Colchester,

Essex.

The reed switches S1, S2, and magnets are used to cut off the motors when the curtains are fully drawn back. The reed switches should be the changeover type wired in a normally clased position.
If mains is used, then the motors and switches must be changed to suit. A mains 12 V transformer is advisable for prolonged use.

Michael Johnson, Wilmslow, Cheshire

PRACTICAL ELECTRONICS－STEREO
 This easy to build 3 band stereo AM／FM tuner kit is designed in conjunction with Practica！Electronics（July issue）．For ease of construction and alignment it incorporates three Mullard modules and an I．C．IF．System．
 FEATURES：VHF，MW，LW Bands，interstation muting and AFC on VHF．Tuning meter．Two back printed PCB＇s．Ready made chassis and scale．Aerial AM－ferrite rod，FM－ 75 or 300 ohms．Stabilised power supply with＇C＇core mains transformer．All components supplied are to P．E．strict specification．Front scale size $101_{2}^{\prime \prime} \times 21^{\prime \prime}$ approx．Complete with diagrams and instructions
 SPECIAL OFFER！
 －Marching I．C． $10+10$ Stereo Power amplifier kir（usually $£ 3.95+£ 1.15 p \& p$ ） －Mullard LP1183 built preamp，sultable －Mullard LP1 183 built pr inputs（usually $\mathrm{£} 1.95 \div 70 \mathrm{p} \mathrm{p} \mathrm{p} \mathrm{p}$ ） －Matching power supply－kit with trans－ former（usually $£ 3.00+£ 1.95 \mathrm{p} \& \mathrm{p}$ ）
 －Marching set of 4 stider controls complete with knobs for bass，treble （usually $£ 1.70+80 \mathrm{p}$ p\＆p）
 $\Sigma 21.95$
 plus £3．80

HIGH POWER AMPLIFIER MODULES
 READY BUILT OR IN KIT FORM

STEREO AMPLIFIER KIT

－Featuring latest SGS／ATES TDA 200610 watt output IC＇s with in built thermal and shore circuit protection．
－Mullard Stareo Preamplifier Module．
－Attractive black vinyl finish cabinet， $9^{\prime \prime} \times 8 \%^{\prime \prime} \times 3 x^{\prime \prime}$（approx）
－ $10+10$ Stereo converts to a 20 watt Disco amplifier．
To complete you just supply connecring wire and salder． Features include din input sockets for ceramic cartridge，mic rophone，tape or tuner，Outputs－tape，speakers and head－ phones．By the press af a button it transforms into a 20 watt mono disco amplifier with iwin deck mixing．The kit incorp－ orates a Multard LP11 83 pre－amp module，plus power amp assembly kit and mains power supply．Also features 4 slider level controls，rotary bass and treble controls and 6 push button switches．Silver finish fascia with matching knobs and contrasting cabiner．Instructions
available，price 50p．Supolied $\quad £ 14.95$ FREE with the kit．
SPECIFICATIONS：Suitable for 4 to B ohm speakers．
Frequency response $\quad 40 \mathrm{~Hz}=20 \mathrm{KHz}$ ．
Input sensitivity P．U． 150 mV ．Aux， 200 mV
Tone controls Mic． 1.5 mV ． $\begin{array}{ll}\text { Mains supply } & 0.1 \% \text { iypically＠8 wat } \\ & 220.250 \text { volis } 50 \mathrm{~Hz} .\end{array}$
STEREOMAGNETIC PRE．AMP CONVERSION KIT Includes FREE Magnetic cartridge with diamond styli． All componenis including p．c．b．to convert your ceramic in Only available with $10+10 \mathrm{amp}$ ． $\mathbf{£ 2 . 0 0}$ includes p\＆p． 8＂SPEAKER KIT Two $8^{\prime \prime}$ iwin cone domestic speaker $£ 4.75$ per stereo pair plus $£ 1.70$ p 89 ．When purchased with

PRACTICAL ELECTRONICS CAR RADIO KIT
 series II

2 WAVE

BAND
MW－LW
－Easy to build
－ 5 push button
tuning－Modern design
－ 6 weit output Ready etched
All punched PCB－incorporates suppression circuits． only the wire and the solder，featured in Practical Electronics March issue．Features：pre－set tuning with 5 push button options，black illuminated tuning scale．The P．E．Traveller has a 6 watt output neg．ground and incorporates an integrated circuit output stage，a Mullard IF Module LP 1181 ceramic filier type pre－aligned and assembled，and a Bird pre． £10．50 aligned push button tuning unit． Plus E 2.00 ps p Suitable stainless steel fully retractable aerial（locking）and speaker（ $6^{\prime \prime} \times 4^{\prime \prime a p p}$ ．）
available as on kit complete．£1．95／pack．Plus $£ 1.15 \mathrm{p} \& \mathrm{p}$ ．

125 WATT MODEL

200 WATT MODEL £10．50
f £14．25 £14．95 £18．95 Plus£1．15p\＆Plus E1．15p\＆ SPECIFICATIONS： 125 W Model 200 W Model Max．output power（RMS） 125 watts 200 watts Operating voltage（DC）$\quad 50-80$ max，$\quad 70.95$ max Loads Frequency response measured $@ 100$ watts
$25 \mathrm{~Hz} \cdot 20 \mathrm{KHz}$ 400 mv ＠ 47
$25 \mathrm{~Hz} \cdot 20 \mathrm{KHz}$ Typical T．H．D．
50 watts， 4 ohms $\quad 0.1 \% \quad 0.1 \%$ Dimensions（both models） 205×90 and $190 \times 36 \mathrm{~mm}$ The power amp kit is a module for high power apolicat ions－disco units，guitar amplifiers，public address systems and even high power domestic systems．The unit is protected against short circuiting of the load and is safe in an open

$30+30$ WATT STEREO AMPLIFIER
Viscount IV unit in teak simulate cabinet，silver finished rotary controls and pushbuttons with matching fascia， mains indicator and stereo jack socket．Funcrions switch for mic magnetic and crystal pickups，tape and auxiliary Rear panet $30+30$ watis RMS $60+60$ warts peak．For use with 4 to 8 ohm speakers．$£ 32.90$ BUILT AND TESTED Plus $£ 3.80$ p8id

TV SOUND TUNER KIT
as teatured in E．T．I．Decernber＇B1 issue．Kit of parts
excluding case，and selector switch．$£ 11.45-£ 1.50$ p $8 p$

－Transtormer $£ 1.50+£ 1.50$ p\＆p（p\＆p iree on trans－ former if ordered with kit）．Ready built LP1183 Module tor simulated stereo operation $£ 1.95+75 p$ p\＆p

enerously rated components，result，a high powered rugged unit．The PC Board is back printed，etched and ready to drill for ease of construction and the aluminium chassis is preformed and raady to use．Supplied with all parts，circuit diagrams and instructions．

ACCESSORIES

Suitable LS coupling electralytic
for 125 W model $\quad \mathrm{E} 1.00$ plus 250 p\＆p
Suitable LS coupling electrolytic \quad £1．25 plus 25 p p\＆p
for model
Suitable mains power supply unit for 125 W model $£ 7.50$ plus $£ 3.15$ p\＆p．
Suitable Twin transformer power supply for 200W model £ 13.95 plus $£ 4.00$ p \＆

MONO MIXER AMPLIFIERS

50 WATT six individually mixed inpurs for two pick ups （Cer．or Mag．），iwo moving coil microphones and two aux－ iliary for tape，tuner，organs，etc．Eight slider controls－six for levpl and two for master bass and treble，four extra ireb controls for mic and aux inputs．Size： $13 \%^{\prime \prime} \times 61 /{ }^{\prime \prime} \times 3 \%{ }^{10}$ app． Power butput 50 watts R．M．S．（continuous）for use with 4 to 8 ohm speakers．Altractive
$£ 39.95$ fascia ahd knobs．Ready to use．Plus $£ 3.70 \mathrm{p}$ ip．
 100 WATT

Brushed Aluminium Tascia and rot ary conirols，
$14^{\prime \prime} \times 4^{\prime \prime} \times 10^{1} /$ solume，tape level，mic level，deck level，PLUS INTERDECK FADER for periect graduated change from record deck No． 1 to No．2，or vice versa．Pre fade level controls（PFL）lets You hear the next disc before fading it in．
100 RMS
$£ 76.00$ 100w RMS outpul（200w peak）．

Plus $£ 4.60$ p\＆p．

回田试保

CALLERS ONLY
323 Edgware Rd，London W2．Tel：01－723 8432 Open $9.30 \mathrm{am} \cdot 5.30 \mathrm{pm}$ ．Closed all day Thursday Persons under 16 not served without parents authorisation．
ALL PRICES INCLUDE VAT AT 15\％

MAIL ORDER ONLY
21A HIGH STREET，ACTON，W3 6NG．
Note：Goods despatched to UK postal addresses only
For further information send for instructions 20p
plus stamped addressed envelope．

Sinclair 2X81 Personal the heart of a system that grows with you.

1980 saw a genuine breakthrough the Sinclair ZX80, world's first complete personal computer for under £100. Not surprisingly, over 50,000 were sold.

In March 1981, the Sinclair lead increased dramatically. For just $£ 69.95$ the Sinclair ZX81 offers even more advanced facilities at an even lower price. Initially, even we were surprised by the demand - over 50,000 in the first 3 months!

Today, the Sinclair ZX81 is the heart of a computer system. You can add 16 -times more memory with the ZX RAM pack. The ZX Printer offers an unbeatable combination of performance and price. And the $Z X$ Software library is growing every day.

Lower price: higher capability

With the $\mathbf{Z X 8 1}$, it's still very simple to teach yourself computing, but the 2X81 packs even greater working capability than the $\mathbf{Z X 8 0}$.

It uses the same micro-processor, but incorporates a new, more powerful 8K BASIC ROM - the 'trained intelligence' of the computer. This chip works in decimals, handles logs and trig, allows you to plot graphs, and builds up animated displays.

And the ZX81 incorporates other operation refinements - the facility to load and save named programs on cassette, for example, and to drive the new $\mathbb{Z X}$ Printer.

Every ZX81 comes with a comprahensive, specially-written manual - a complete course in BASIC programming, from first principlas to complex programs.

Kit: £49.95

Higher specification, lower price -

 how's it done?Quite simply, by design. The ZX80 reduced the chips in a working computer from 40 or so, to 21 . The ZX81 reduces the 21 to 4 !

The secret lies in a totally new master chip. Designed by Sinclair and custom-built in Britain, this unique chip replaces 18 chips from the ZX80!

New, improved specification

 - Z80A micro-processor - new faster version of the famous $\mathbf{Z 8 0}$ chip, widely recognised as the best ever made.- Unique 'one-touch' key word entry: the ZX81 eliminates a great deal of tiresome typing. Key words (RUN, LIST, PRINT, etc.) have their own single-key entry.
- Unique syntax-check and report codes identify programming errors immediately.
- Full range of mathematical and scientific functions accurate to eight decimal places.
- Graph-drawing and animateddisplay facilities.
- Multi-dimensional string and numerical arrays.
- Up to 26FOR/NEXT loops. - Randomise function - useful for games as well as serious applications. - Cassette LOAD and SAVE with named programs.
- 1K-byte RAM expandable to 16K bytes with Sinclair RAM pack. - Able to drive the new Sinclair printer.
- Advanced 4-chip design: microprocessor, ROM, RAM, plus master chip - unique, custom-built chip replacing 18 ZX80 chips.

Built: 56

Kit or built - it's up to you!

You'll be surprised how easy the ZX81 kit is to build: just four chips to assemble (plus, of course the other discrete components) - a few hours' work with a fine-tipped soldering iron. And you may already have a suitable mains adaptor - 600 mA at 9 V DC nominal unregulated (supplied with built version).

Kit and built versions come complete with all leads to connect to your TV (colour or black and white) and cassette recorder.

 for only £49., ${ }^{5}$
Designed exclusively for use with the ZX81 (and ZX80 with 8K BASIC ROM), the printer offers full alphanumerics and highly sophisticated graphics.

A special feature is COPY, which prints out exacily what is on the whole TV screen without the need for further intructions.

At last you can have a hard copy of your program listings - particularly
How to order your ZX81
BY PHONE - Access, Barclaycard or Trustcard holders can call 01-200 0200 for personal attention 24 hours a day, every day. BY FREEPOST - use the no-stampneeded coupon below. You can pay
useful when writing or editing programs.

And of course you can print out your results for permanent records or sending to a friend.

Printing speed is 50 characters per second, with 32 characters per line and 9 lines per vertical inch.

The ZXPrinter connects to the rear of your computer - using a stackable connector so you can plug in a RAM pack as well. A roll of paper (65 ft long $x 4$ in wide) is supplied, along with full instructions.
by cheque, postal order, Access, Barclaycard or Trustcard. EITHER WAY - please allow up to 28 days for delivery. And there's a 14 -day money-back option. We want you to be satisfied beyond doubt and we have no doubt that you will be.

WEBB ELECTRONICS

BURGLAR ALARM INSTALLATIONS \& ELECTRONIC COMPONENTS BURGLAR ALARM EQUIPMENT.
41 WINWICK STREET, WARRINGTON, CHESHIRE Tel: Warrington 54174.

CONTROL PANELS

1 Battery/mains
2 Entex, Batt/mains, timed entry
Exit timers

British Standard panels to order

CABLE

3 4-core 100 m	[9.00	SPACE PROTEC	
4 6-core 100 m	14.00	23 PE Beams ro order	
Lacing wire 250 m	63.9	24 Passive infra red 8 m	E45.00
CABLE FITTINGS		26 Uitrasonics \& long rans to order	passives
${ }^{6}$ Clips 3.5 mm	$44^{\text {p }}$		
7 Clips 5mm	$64 p$	BELL BOXES	
		$27{ }^{\prime \prime} 8{ }^{\text {c }}$ 'type (smaller)	65.90
CONTACTS		28 'C' type	$5 \cdot 00$
8 Small flush 4-wire	79p	METAL BOXES	
	¢1.09	hinged 18swg	
11 Aluminiun (Patio)	¢1.81	$299^{\prime \prime} \times 6^{\prime \prime} \times 3^{\prime \prime}$	66.33
		$3012{ }^{\text {²0 }} \times 9^{\prime \prime} \times 3^{\prime \prime}$	7.
PRESSURE MATS		31 Autodiallers to order	
12 stair mat 22t" $\times 6$ r $^{\prime \prime}$	41.17	WINDOW PROT	ON
13 5tandard mat	81.72	32 Window foil al	m
PERSONAL ATTACK		33 Fo	${ }^{63} \cdot 00$
14 Plastic	62.15		22
15 Metal	63.15		
		BATTERIES	
JUNCTION BOXES		34 Rechargaable 12v 2.6ah	110.50 62.30
16 White or ivory 6-way	22p	35 HP992 dry 6 v	6.30
		ANCILLARIES	
		36	20
17 Complete white or ivory	31p	385 P pass switch	3.00
18 6-core type	$94 p$	39 DP pass swirch	63.43

All prices are inclusive of VAT. P. \& p. $£ 1.50$ total. ALARM EQUIPMENT-RETAIL

All Goods By Return of Post.

It's easy to complain about advertisements.

The Advertising Standards Authority. If an advertisement is wrong, we're here to put it right.

AS.A. Lid., Brook House.Tornngton Place, London WCIE 7HN.

[NEW KITS

CDMBINATION SWITCH
Battery operated, would control solenoid lock or any
electrical device, virtuaily impossible to decode. Uses no power when in the off position. Complete kit E4.50,

A SECRET SWITCH

Can be hidden behind a panel, door, wallpaper, etc.
Will light the lamp or whatever device is secretily con
trolled and it will also latch itself on.
complete kit E 1.95 .
3 . 30 V VARIABLE VOLTAGE POWER SUPPLY UNIT With 1 amp DC output, for use on the bench, students, and overload protection. In case with a volt meter on the front panel. Complete kit $£ 13.80$
IONISER KIT
Refresh your home, office, shop, work room, etc. w work harder - complete mains operated kit, case f11.95. post f 1.50 .
BIG AMPLIFIERS
Complete kit (no case) 40 watt $£ 9.50 .115$ watl E13.50. T.V. AERIAL FILTER morse trainer
Complore kit 22.99
DRILL SPEED CONTROLLER
MAINS POWER SUPPL
Gives any voltage from $3 v$ to 16 v at up 10300 mA
Complete kis less case $\mathbf{E 1} .95$. Case 90 .
HOME BASE POWER SUPPLY
13.8 V 20 amp - built and regularly used by G3 VCJ, has all watt transformer and all parts including case $£ 39.50$ carriage $\mathbf{E 5}$.
AERIAL DIRECTION INDICATOR Kit includes 16 reed swiches, magner, 16 l.e. ds and chart aerial is poinung. $\mathbf{£ 5 . 9 0}$

AERIAL ROTATOR
Comprises yhp mitor with pulley and vee belt, electro to set your derial mast in any direction. $\mathbf{£ 1 9 . 5 0}$

SUPER HI -FI SPEAKER CABINETS
Made for an expensive Hi. Fi oulfi will sult any decor. Resonance iree. Cut-outs for $6 \mathrm{~K}^{\prime \prime}$ " wooter and 2 2" $^{\prime \prime}$ iweeter. The front material is pleasing. Supplied in pars, price CE. 90 per pair lithis is probably less than the original cost of one
cabinet) eatriage $£ 3.00$ the par
GOODMAN SPEAKERS
$6 x^{\prime \prime} 825$
No extro for

Vu METER SNIP
as a recording level meter poimer outpu dicator or many similar applications. Fu teer the scale. Special snip price $£ 1.00$, or 10

MOTORISED DISCO SWITCH
With 10 amp changeover switches. Multi-
adjustabie switches all rated at 10 amps this would provide a magnificent display. C6.25, 10 switch model $86.75,12$ swith E6.25, 10
odel 87.25. 12v MOTOR BY SMITHS wound and they become more power ul as load increases. Sire 3 " " long by $3^{\circ "}$ diun. These have a good lengit
of $\%$ " spindle - price $£ 3.45$. Ditto, but double ended 84.2

EXTRA POWERFUL 12v MOTOR

Made to work battery lownower, this probably develops up io compressor, etc. etc. $\mathbf{E 6 . 9 0}+\mathbf{E 1 . 5 0}$ post.

UNIVAC KEYBOARD BARGAIN

Il mounted trpe keys. together with 5 miniture toggle switches
 This is ler less than the value of
the switches alone. Diegram of the switches alone. Dizgram of
this keyboard is avsilable seper. ately. Price E 100

MULLARD UNILEX

 A mains operated $4+4$system, Rated one of the
finest performers in the flnest performers in the
slereo field this would make wondertul gift for almost anyone. In easy to assemble modular form this should sell'at about $\mathbf{£ 3 0}$
centive for you to buy this month we ofter in
tem complete at only E16.75 including VAT and post. FREE GIFT - buy this month and you will receive a pair
Goodman's eliptical $8^{\prime \prime} \times 5^{\prime \prime}$ speakers to match this amplifie

3 CHANNEL SOUND TO LIGHT KIT
complete kit
parts for
the ee channel
sound to light
 watts of light ling. Use this
rou wish
s plenty rugged enough for disco work. The unit is housed in an attractive two-tone metal case and has controls for each ch^{2}
and a master on/off. The audio input and output are by
$\%$ sockets and three panel mounting fuse holders provide thyristor protection. A tour-pin plug and socket facilitate ease of connec
ing lamps. Special snip price is $£ 14.95$ in kit form or $\mathbf{E 2 5 . 0 0}$

THIS MONTH'S SNIP.
STROBE LIGHT

MICRO SWITCH PARCEL 10 , all different and including one that can be operated by a puff
of wind and another by oniv 1 mm of movement. Also containeng lever rod and roller operated subminiature and standards. All
 SPIT MOTORS
These are powerful mains operated induction motors with gear box with square hole, so you have altern. ative couplingme thods - final speed is approx. 5 revs $/ \mathrm{min}$, price $£ 550$. EXTRACTOR FAN $80,100,160$ \& $200 \mathrm{r} \mathrm{p} . \mathrm{m}$. same price Mains operated - ex. compu 5" Woods extractor
$£ 5.75$ Post $£ 1.25$
Woods extractor
£6.90 Post $£ 1.50$ £6.90 Post $£ 1.50$
©
£6.50 Post $£ 1.25$ E. Muffun 115 N .
E4.50 Post 50 o . E4.50 Post 50 p
Muffin 230 v .
$\mathbf{6 5 . 7 5}$ Post 50 p

2) 4 (2 POWERFUL

TAPE PUNCH \&
BATTERY MOTORS For models, meccanos, drills,
remote control planes, boats, READER For comtrolling machine tools, efc, motorised 8 bit punch with
matching tape reader. Ex comouters be matching tape reader. Ex computers, be would be exchanged. $\mathbf{£ 1 7 . 5 0}$ pair. Post

MINI-MULTI TESTER
ing coil ing coil instrument, Se welled bearings - 2000 o.p.v. mirrored scale.
 AC volts $10.50,250,1000$
DC amps $0=100 \mathrm{~mA}$.

entinuity and resistance 0. \& meg ohms in iwo ranges. Complete with test prods and in
struction book showing how to measure cap acity and inductance as well. Untelievable value at only $£ 6.75+50$ p post and insurance REE Amps range kit to enble you to read C current from 0.10 amps , directiy
on the 0.10 scale it's fr on the 0 - 10 scale. It's free it you
purchase quickly, but of you alread own a Mint- Tester and would like ore, send $£ 2.50$.

FREE OUR CURRENT BARGAIN LIST WILL ge enclosed with all orders.
transmitter surveillance
Tinv, easily hidden but which will enabie conversation to be picked up with FM radio. Can be made in a matchbox-all olectronic RADIO MIKE
Ideal for discos and garden parties, allows compleye treetom ideal
movernent. Plas through $F M$ radio or tuner amp. $\mathbf{f 8 . 9 0}$ comp. kit (Not licenceable in the U.K.).
FM RECEIVER
a speaker, deal for use with ere witt scale and pointer needs only mike. 55.85 .
CB RADIO
Listen in with our 40 -channet monitor. Unique design ensures that you do not miss sender or caller. Complete kit with case, speaker

NEW ADDRESS FOR CALLERS:-
2. Bentham Road, Off Elm Grove, Brighton Tel: Brighton 671457 . Please phone before making a special journey for any advertised item

VENNER TIME SWITCH

 Mains operated with 20 amp switch, one on and one off per 24 hrs, repeats dely outomatically correcting for the lengthen switch but you can have it for only $£ 2.95$ These are new but without case, but we, can suppiy plastic cases (base and cover)$\mathbf{C 1 . 7 5}$ or metal case with window $\mathbf{C 2} 95$. Also available is adaptor kit to convert this into a normal 24 hr , time switch but With the added advantage of up 1012 on ofts per 24 hrs . This makes an ideal con-
rolter for the immersion heater. Price of
aptor kit is $\mathbf{~} 2.30$.

TIME SWITCH BARGAIN clock, which will slways show you the correct time + start and stop switches c2.50.
DELAY SWITCH Marns operated - delay can be accurately set with iac... suitable to swith 10 amps - second contact opens a few minutes after list contact. E1.95.
 Bandspread covering 13.5 to 32 metres. Based on curcuit which cludes case materiais, sux ransistors and diodes, condensers, resis ors, inductors, switches, etc. Nothing else to buy it you have an amplefier to co
Price $£ 11.95$.
MEDIUM \& 2 SHORT WAVE CRYSTAL RADIO All the parts to rake up the begnner's modet. Price E2.30. Crystal Kit includes chassis and front but not case.
RADIO STE THOSCOPE
Easy to fault find-start at the arial and work town ds the speaker NTERRUPTED BEAM
This kit enabies you to make a smitch that will trigger when a
steady beam of infra red or or dinary light is broken. Main comp ents - relay, photo transistor, resistors and caps etc. Circuit diagram but no case, Price E2.30

A highen DETERR ENT

connector. Will scare away any villain and bring heip. 22.50 com TANGENTIAL BLOW HEATER

12 V SUBMERSIBLE PUMP

Just join it to your car battery, drop it into the liquid to be moved very good head. Sultable for water, paraffin and any non yoxplosive non-corrosive liquid. One
a shower. Price: 68.50

MINI MONO AMP

On p.c.b., size $4^{\prime \prime} \times 2^{\prime \prime}$. Three uransistors and we estimate the Outrout to be 3 watts rms. Brand new, made up
offered at the very low price of $\mathbf{£ 1} 15$ each or 10 for $£ 10.00$.

Established 30 YEARS

MAIL ORDER TERMS: Cash, P.O. or cheque with order. Orders under $£ 10.00$, add $60 p$ service charge. Monthly account orders accepted from schools and public companies. Access \& Barclaycard orders phone Haywards Heath (0444) 54563. CALLERS: to Haywards Heath (closed Sat.), or 2, Bentham Road, Off Elm Grove, Brighton (closed Wed). BULK ORDERS: Please write for special quotation, Normal delivery by rerurn

BUY BRITISH—BUY DOUGLAS TRANSFORMERS MAIL ORDER FROM TITAN TRANSFORMERS \& COMPONENTS

CENTRAL HALL CHA MBERS, DUNCOMBE STREET, GRIMSBY, SOUTH HUMBERSIDE DN32 TEG DEPT. EE

PRICES INCLUDE $\mathbf{5 \%} \%$ V.A.T. SEND FOR OUR CATALOGUE
Please allow up to 28 days delivery.

ANNDUNVINTIE A NIE TW SIETIT NDIF MBA SMMC IEMMETCWITID NUNC

This 5 volume set contains over 500 pages, Bound in stiff linen. Cover size $81 / 2 i n \times 5 i n$. Price £ 10.00 per set (we pay the postage).
Book 1. Introducing Electronics Book 4. Merers/Voltage-dividers Book 2. Resistors/Capacitors Book 5. Transistor Project Circuitry Book 3. Inductors/Dlodes

The manuals are unquestionaby the finest and most up-to-date available and represent exceptional value
This series has been written in a fascinating, absorbing and exciting way. providing an approach to acquiring knowledge that is a very enjoyable experience. Suitable for industrial trainees, City and Guilds students, DIY enthusiasts and readers of electronic journals.
Each part explains electronics in an easy-to-follow way, and contains numerous diagrams and half tone blocks with construction details and circuit diagrams for making the following transistor projects: Lamp Flasher, Metronome, Wailer, Photographic/Monostable Timer, Metal Locator, Geiger Counter, Radio Receiver, Intercom., Intruder Alarm, Electronic Organ, Battery Eliminator, Ánemometer, Sound Switch, Light and Water-operated Switches, Pressure-operated Switches, Light meter, Radio Thermometer, Ice Alarm,

Order now:
Selray Book Company
Bis Aspon Copse
Bromiey, 12 Nz .

OUR 100\% GUARANTEE
Shatio, you docide to resurn the sel atter 10 dars exam.
ination, your money will be relunded by return of'post. , ination, your money will be relunded by return of "Dost.

Amount enclosed: $£$

Name

Address:

JONT UP WITH: HTHFSOTD

Litesold's new 'L' Series soldering iron - now at a bargain price
Outstanding performance. Lightwelght. Basy to maintain
Elements are enclosed in Stainiess Steel shafts. insulated with mica and ceramic. Non seize interchangeable bits. choose from copper' or long life: A very special tool at a very special 'direct' price. Just $\$ 5.22$ for iron fleted with 3.2 mm copper bit. Just $\$ 2.27$ for 3 spare copper bits ($1.6 ; 2.4: 4.7$) A mere 54 for professional spring stand! Or buy the lot for $£ 10.34$ and save 10%.

All pricesinc YAT PkP

 or phone 01.6890574 for Barclaycard/Access sales.

POPS COMPONENTS

38/40 Lower Addiscombe Road, Croydon CR0 6AA. 01-688-2950 \star POPS SPECIAL OFFERS THIS MONTH \star

P\&P 50p. List sent with every order

* NEW OFFER 3 NEW ETCH RESIST PENS * Fine for very accurate work-Med for lines etc.-Large for masking. Special Offer 3 for EPl^{20}
TRANSISTORIZED BLEEPERS-Ideal for winkers, rod and IIne indicators, Hi resistance for continuity testing. Low current 15 ma @
$6 \mathrm{v} 1^{\prime \prime} \times \frac{1}{2}$ " $\times{ }^{\frac{1}{2} \text { " P.C.B. mounting 90p each. }}$
RESISTOR PACKS. 500 Full spec carbon resistors. 10 of each 50 valves $£ 4.50$.
AUDIO CASSETTES C. $90+5 \mathrm{mins}$, good quality 60 p each, 4 for £2. 20 or 10 £5 00 .
CITIZEN BAND POWER PACKS. Square wheels, eye-ball eye-ball-cased 5 amp continuous, 7 amp surge fully protected 13.8 v used. Limited stock £16.50.
POPS POPULAR LINE. Video-R.F. Modulators calibrated channel 36 (625 line UHF) 9v supply $2 \frac{1}{2}$ metre R.F. lead with TV Ae plug use for video games, etc. $\mathbf{£ 2 . 5 0}$ each or 10 for $£ 18.00$!
MICRO SWITCHES-Pack of three different types $£ 1.00$.
* Lots more bargains. List sent with orders or send sae. *

WE WILL BEAT ANY LOWER ADVE FULL SOFTWARE BACKUP
 World's Most Powerful BASIC Pocket Computer
 FX-702P
 RRP $£ 134.95$
 ONLY
 £119.95

Plus FREE MiCROL Professtional Programming Pack* (RRP £9.95). Flattens the Sharp PC121I
Alpha/numeric dor matrix scrolling LCD. Variable input from 1680 steps 26 memories, to 80 steps, 226 memories, all reained when switched off. Up to 10 programs. Subroutines; 10 levels. FOR:NEXT looping; 8 levels. Debugging and Editing. 55 built in functions, including Regression and Correlation, all usable in programs. Program/Data storage on cassette via optional FA. 2 adaptor

World's Fastest Programmable?

FX-602P

* LCD alpha/numeric (dot matrix) scroling display.
* Variable input from 32 program steps with 88 memories, to 512 steps with 22 memories.
* Memory and program retention when switched oft.
* Up to 10 pairs unconditional jumps (GOTO).
* Conditional jumps and count jumps. Indirect addressing. Manual jump.
* Up to 9 subroutines, up to 9 levels
* 50 scientific functions, all usable
in programs.
* PAM (Algebraic) with 33 brackets at 11 levels.
* Program and data storage on cassette tape using optional FA-2 emore control ap Compatible with the FX-501P and X. 502P
- $9.6 \times 71 \times 141.2 \mathrm{~mm} .100 \mathrm{~g}$.

ONLY $£ 74.95$
(RRP $\mathbf{1 8 4 . 9 5)}$
Plus FREE MiCROL Professional Programming Pack* (RRP £9.95).
FP-10 MINI PRINTER
For FX-702P, FX-602P, FX-502P, FX-501P.

CASIO FX-702P SOFTWARE
 Produced by MiCROL exclusively for Tempus

 10\% discount on software, if you purchase your hardware from us. MiCROL 702 USER SUPPORTProfeselonal Programmine Paek. Ger the best from your FX-702P with: PROFESSIONAL PROGRAMMING - practical 702 programming from the ground up phs 702 REFERENCE MANUAL - definitive quide to every 702 MICROL 702PPP. Price $\mathbf{8 9 . 9 5}$
Advanced Professioand Programming Create power-packed programs with MiCROL's down-to-earth guide to the advanced 702 program commands. Create simple solutions to complex problems.
Available December, 1981 . MiCROL 202 APP. Price £7.95
MICROL 702 APPLICATIONS SOFTWARE
MSCROL 702 SupersCale. At last! The power of a VISICALC-type modelling system in a pocket computer! For all scientific, statistical, business and general computing users, SUPER:CALC has to be used to be believed - create powerful programs in minutes - answer 'what if questions - analyse trends - cut PRINT options FA. 2 recommended: FP-10 optional Full deinil plus Program List for direct entry. Ave Program List for direct entry

MICROL 702 StC . Price $£ 14.95$
MICROL 702 Basle:Plus. Add the power of up to 20 new commands to your programs! Custom-made to ease advanced programming - features include: String - number conversions; single-shot, await, timed KEY with user-controlled return values; programmable RAN \# generator; DATA-PACKING - up to 2000 single digit, single name variables; INTEGRATED DISPLAY COMMANDS dispiay data and text with extra-low memory overhesds. Modular design uses minimum memory: easy to customise. Full-detail User Manual plus Program Lis Available December. 1981.

MiCROL 702 B:P. Price $£ 14.95$

LOW COST PROGRAMMABLE

CASIO FX-3600P 10 digit LC display. 55 scientific functions including INTEGRALS and REGRESSIONAL ANALYSIS. Up to 38 program steps -2 programs. One independent memory, 6 constant memories, all steps -2 programs. One independent memory,
retained when switched off. 1,300 hour lithium battery. $9 / 32 \times 2 \frac{1}{5} \times 5 t^{\circ \prime \prime}$
ONLY $\mathbf{2 2} .95$ O-ly ow requex, at time of ordering. RRP of 702P/602P vertions, $\mathbf{~} 9.95$

World's Most Versatile
Alarm Chronograph Watch

AX-210

10 alternative displays; over 60 functions. LCD ANALOG display of time, plus: DIGITAL display of: Time (12 or 24 hour): Calendar; Fuil month calendar (this month and next month): Dual time (12 or 24 hour): Alarm time; Coundown alarm timer with memory function: Professional $1 / 100$ second stopwatch with laps. etc. Hourly time signal. Alarm - electronic buzzer or 3 selectable melodies. Rapid forward/backward setting. $9.4 \times 35.4 \times 36 \mathrm{~mm}$.
(RRP £34.95) ONLY £29.95

CASIO'S NEW JOGGING WATCH

J-100 PACE RUNNER

Sets the pace for 1982

Displays hours, minutes and seconds (12 or 24 hours system, day and date. Auto calendar. ceasuring tet laps and ist and 2nd place times: acer mode Can be used as a merronome 10 pece our runcin. or thy ather avent our tata:
94 pips per minute to 63 pipser signals, from Output data: Elapsed time, up to 24 hours. Distance covered, number of strides, and speed. (RRP £22.95) ONLY £19.95

Time and auto calendar. Alarm, hourly chimes, countdown alarm timer with repeat memory function, professional $1 / 100$ second stopwatch. Time is always on display, regardless of display mode.

THESE SPACE INVADERS WILL ALARM YOU Casio's most amazing watches ever. CA-90 (left) RRP $£ 22.95$ $£ 19.95$
Black resin case/strap.
CA-901 (right)
RRP $£ 34.95$
£29.95
Chrome plated case. S/S bracelet.
Time and auto
alendar. calculator.
alarm, hourly chimes.
stopwatch, dual time.
INVADER GAME.

LATEST PRODUCTS

AA-85 Restyled AA-81. Analog/digutal alarm cronograph.
BG-15 Calculator with built-in boxing game.
$£ 29.95$
116.95 f16.95 16.95

12.95

SHORT FORM CATALOGUE of latest calculators, keyboards and watches available on request. 14 p stamp appreciated.

Orders received by December 18th should be delivered in time for Christmas.
PRICE includes VAT and P\&P. Send your company order, cheque, PO or phone your Access or Barclaycard.
IFADING CASIO SPECIALISTS
Dept. EE,
164/167 East Road. Cambridge CB1 1DB
Telephone: 0223312866

It's true! As a special Christmas offer we've actually cut nearly $£ 5 \cdot 00$ off the price of 'Speechtime'-the first ever easy-to-build speaking clock kit. 'Speechtime's' combination of electronics and quartz technology plus clear instructions make it fun to build and fun to own-equally suitable for beginner or expert. 'Speechtime' also makes a great gift to build for someone else. Look at these 'plus' features:

- Accurate to a minute a year - Adjustable voice pitch
- Pocket size-approx. $5 \mathrm{in} . \times 2 \frac{1}{\mathrm{f}} \mathrm{in} . \times 1 \mathrm{in}$
- Grained stainless-steel case
- Useful in the home or office

SiliconSpeechSystems

PORTWAY INDUSTRIAL ESTATE, ANDOVER, HANTS.,
\square

SP10 3 MN

LIMITED OFFER!

As an introduction to CRICKLEWOOD ELECTRONICS LTO. tol: 01452 ' Old Shop), 40 Cricklewood Broadway, London NW2 3ET \$52 olbl Whilst stocks last and only if accomponied by this Ad.

DESOLDERING TOOL

Now every one can afford one of these superb, blue anodised aluminium high pressure hand desoldering cools at nearly half our normal price. Normal Price $66 \cdot 50+$ VAT with this ad $63 \cdot 85+$ VAT. Spare Teflon screw-in noses 75p + VAT.
JAPANESE TRANSISTORS May not be as hard to replace as you think. Phone our equivalent service on 014520161 (everyday except Wednesdays) or write. We have thousands of Transistors, ICs, LEDS in stock, as well as every conceivable type of component-Why not make CRICKLEWOOD ELECTRONICS your personal ELECTRONICS HOBBY CENTRE; We have the goods!
Now you need no longer grope in the
dark. For a miniature price you can watch those volts move! See those resistors jump to life!
THE MIGHTY MINI MULTI. TESTER 2,000 ohms per volt. DC \& AC Voltage ranges: 10v. 50v, 250v 1000 v . DC current ranges 100 mA Resistance ohms $\times 10$, ohms $\times 100 \mathrm{db}$ from - 10 db to +22 db . Mirror are
 scale, overload protected, complete with battery, lest leads \& instructions. Usual price 68.65 + VAT; with this Ad: 64.95 + VAT

ORDER FORM

Name
Address
Desoldering sools @ 63.85 Spare Teflon noses (@) 75 Mighey Mini Testers @ C4.95 Postage, packing and Insurance @ 60p per one device 25p for each additional device

> Sub total Add 15% VAT

Alternatively please credit my VISA/ACCESS no
Alternativ
Signature
This offer apol
This offer applies to UK only. Please allow 7 - 10 days delivery. Overseas customers please do not add VAT but ali
TRADE ENQUIRIES WELCOME.
CRICKLEWOOD ELECTRONICS LTD.
40 Cricklewood Broadway, London NW2 3ET tel 014520161

GIECTRONIC IGNITION KIT

TOTAL ENERGY DISCHARGE

ignition gives all the well known advantages of the best capa discharge systems.

PEAK PERFORMANCE __ higher output voltage under all conditions.
IMPROVED ECONOMY _ no loss of ignition performance between services
FIRES FOULED SPARK PLUGS no other system can better the capacitive discharge system's ability to fire fouled plugs.

ACCURATE TIMING - prevents contact wear and arcing by reducing load to a few volts and a fraction of an amp.
SMOOTH PERFORMANCE -- immune to contact bounce and similar effects which can cause loss of power and roughness.

PLUS

SUPER POWER SPARK $31 / 2$ times the energV of ordinary capacitive systems $-31 / 2$ times the power of inductive systems.
OPTIMUM SPARK DURATION 3 times the duration of ordinary capacitive systems - essential for use on modern cars with weak fuel mixtures.
BETTER STARTING full spark power even with low battery.
CORRECT SPARK POLARITY unlike most ordinary C.D. systems the correct output polarity is maintained to avoid increased stress on the H.T. system and operate all voltage triggered tachometers.
L.E.D. STATIC TIMING LIGHT for accurate setting of the engine's most important adjustment.
LOW RADIO INTERFERENCE fully suppressed supply and absence of inverter 'spikes' on the output reduces interference to a minimal level.

DESIGNED IN RELIABILITY an inherently more reliable circuit combined with top quality components - plus the 'ultimate insurance' of a changeover switch to revert instantly back to standard ignition.

IN KIT FORM

it provides a top performance electronic ignition system at less than half the price of competing ready. built systems. The kit includes every thing needed, even a length of solder and a tiny tube of heatsink compound. Detalled easy-to-follow instructions, complete with circuit diagram, are provided - all you need is a small soldering iron and a few basic tools.

AS REVIEWED IN ELECTRONICS TODAY MAGAZINE
JUNE '81 ISSUE
Quote "the kit is very impressive"
"well written instructions and a good performance".
"Exellent value for money. Highly recommended".
FITS ALL VEHICLES, 6 or 12 volt, with or without ballast NEGATIVE EARTH ONLY
OPERATES ALL VOLTAGE IMPULSE TACHOMETERS Some older current impulse types (Smiths pre '74) require an adaptor PRICE 2.95

STANDARD CAR KIT £ 14.85
 PLUS $\mathbf{E} 1$
 TWIN OUTPUT KIT £22.94

DIMENSIONS:

Length	12.5 cm
Width	8.9 cm
Height	4.3 cm
Lead length	100.0 cm

TECHNICAL DETAILS

The basic function of a spark ignition system is often lost among claims for longer "burn times' and other marketing fantasies. It is only necessary to consider that, even in a small engine, the burning fuel releases over 5000 times the energy of the spark, to realise that the spark is only a trigger for the combustion. Once the fuel is ignlted the spark is insignifican and has no effect on the rate of combustion. The essential function of the spark is to start that combustion as quickly as possible and that requires a high power spark.

The traditional capacitive discharge system has this high power spark but, due to it's very short spark duration and consequential low spark energy, is incompatible with the weak air/fuel mixtures used in modern cars. Because of this most manufacturers have abandoned capacitive discharge in favour of the cheaper inductive system with it's low power but very long duration spark which guarantees that sooner or later the fuel will ignite. However, a spark lasting $2000 \mu \mathrm{~S}$ at 2000 rev/min. spans 24 degrees and 'later' could mean the actual fuel ignition point is retarded by this amount.

The solution is a very high power, medium duration, spark generated by the TOTAL ENERGY DISCHARGE system. This gives ignition of the weakest mixtures with the minimum of timing delay and variation for a smooth efficient engine.

SUPER POWER DISCHARGE CIRCUIT A brand new technique prevents energy being reflected back to the storage capacitor, giving $31 / 2$ times the spark energy and 3 times the spark duration of ordinary C.D. systems, generating a spark powerful enough to cause rapid ignition of oven the weakest fuel mixtures without the ignition delay associated with lower power 'long burn' inductive systems.

HIGH EFFICIENCY INVERTER A high power, regulated inverter provides a 370 volt energy source - powerful enough to store twice the energy of other designs and regulated to provide sufficient output even with a battery down to 4 volts.
PRECISION SPARK TIMING CIRCUIT This circuit removes all unwanted signals caused by contact volt drop, contact shuffle, contact bounce, and external transients which, in many designs, can cause timing errors or damaging un-timed sparks. Only at the correct and precise contact opening is a spark produced. Contact wear is almost eliminated by reducing the contact breaker current to a low level - just sufficient to keep the contacts clean.

TYPICAL SPECIFICATION

	total ENERGY DISCMARGE	ORDINARY CAPACITIVE DISCHARGE
SPARK POWER (PEAK)	140 W	90 W
SPARK ENERGY (STORED ENERGY)	36 mJ 135 mJ	10 mJ 65 mJ
SPARK DURATION	$500 \mu \mathrm{~S}$	$160 \mu \mathrm{~S}$
OUTPUT VOLTAGE (LOAD 50pF EOUIVALENT TO CLEAN PLUGS)	38 KV	26 KV
OUTPUT VOLTAGE (LOAD 50pF + $500 \mathrm{~K} \Omega$ EQUIVALENT TO DIRTY PLUGS)	26 KV	17 KV
VOLTAGE RISE TIME TO 20 KV (Load 50pF)	$25 \mu \mathrm{~S}$	$30 \mu \mathrm{~S}$

TOTAL ENERGY DISCHARGE should not be confused with low power inductive systems or hybrid so called reactive systems.

Wheel of Fortune	ZB164	Aug. 81	£27.50
Simple P.H. Meter	ZB165	Aug. 81	£22.00
LED Sand Glass	ZB162	Aug. 81	£5.00
Morse Practice Osclllator	ZB163	Aug. 81	£10.95
Door Alarm	ZB166	Aug. 81	£6.00
CMOS Metronome	2B167	Aug. 81	E6.25
Xenon Strobe Lamp	ZB161	July 81	¢18.50
Combination Lock	ZB160	July 81	£13.75
Electronic Multimeter	Z8159	July 81	£32.50
-Tremolo Unit	ZB157	June 81	E8. 25
Loop Aerlal Crystal Set	ZB158	June 81	£5.25
Darkroom Timer	28155	June 81	£4.00
Tape Auto Start	Z8156	June 81	£ 10.25
Audio Test Set	2B152	May 81	£46.00
Soil Moisture Indicator	2B154	May 81	£3.95
Phone Bell Repeater or Baby Alarm	2B153	May 81	$£ 5.25$
Guitar Headphone Amplifier	28151	May 81	E4.00
Lights Reminder or Ignition Locator	2B150	May 81	£5.20
Intercom	2B149	April 81	£19.25
Digital Rule	2B148	April 81	£28-00
Freezer Alarm	2B147	A pril 81	£11.75
LED Dice	2B146	March 81	£ 8.50
Mini Siren	ZB145	March 81	£7.25
Modulated Tone Doorbell	ZB144	March 81	£6. 25
Bench Power Supply	ZB143	March 81	£48.50
Car Actuated Driveway Light	2B142	March 81	£22.00
3 Channel Stereo Mixer	ZB141	Feb. 81	¢16. 25
Signal Tracer	Z8140	Feb. 81	£7.50
Nicad Battery Charger	Z8139	Feb. 81	£12.00
Auto Slide Charger	2B138	Jan. 81	£9.00
Ice Alarm	2B137	Jan. 81	£ 7.25
Phaser Sound Effects	ZB136	Jan. 81	£23.30
Minil.C. Radio	2B126	Nov. 80	£10.35
Sound to Light	2 B 127	Nov, 80	£19.00
Guitar Practice Amplifier	28128	Nov. 80	£16.85
Transistor Tester	ZB131	Nov. 80	£9.00
Soll Moisture Monitor	2B132	Nov. 80	£5.00
Audio Effects Unit	2B122	Oct. 80	£12.25
Phone Call Charge Jogger	ZB121	Oct. 80	£6.00
Darkroom Controller	ZB123	Oct. 80	£18.25
Blcycle Alarm	2B124	Oct. 80	£9.25
TrL Power Supply Unit	Z878	Sept. 80	£9.50
- TTL Logic Probe	ZB76	Sept. 80	£3.75
Bedside Radlo	2B74	Sept. 80	£14.75
Signal Tracer	2B80	July 80	£5.50
A utowaa	Z883	July 80	£19.75
A.F. Signal Generator	2884	July 80	£20.50
Auto Phase	Z886	July 80	E19.75
Lights Warning System	ZB63	May 80	£4.00
Autofade	ZB66	May 80	£10.25
Cable and Pipe Locator	ZB54	March 80	£4.00
Micro Music Box	2B45	Feb. 80	¢17.50
Simple Short Wave Receiver	2B44	Feb. 80	£19.50
Morse Practice Oscillator	ZB43	Feb, 80	£6.00
Slide/Tape Synchroniser	ZB42	Feb. 80	£11-50
Burglar Alarm	ZB51	Dec. 79	£5.50
Baby Alarm	ZB40	Nov. 79	E8.50
Chaser Light	2B4	Sept. 79	£18.50
Simple Transistor Tester	ZB2	Sept. 79	£6.00
Varicap MW Radio	Z81	Sept. 79	£8.50
Electronic Tuning Fork	287	Aug. 79	£9.50
Warbling Timer	285	Aug. 79	£6.30
Electronic Canary	2B19	June 79	£5.00
Tremolo Unit	2B18	June 79	£10.50
One Transistor Radio MW/LW Micro Chime	ZB104	March 79	£7. 25
Micro Chime	ZB96	Feb, 79	¢13.00
Ulghts Reminder for Car	ZB32	Jan. 79	£5.00
Fuzz Box	ZB106	Dec. 78	£6.75
Sound to Light	ZB112	Sept. 78	£7.00
Weird Sounds Effect Generator	ZB113	March 78	£6.00

TEACH-IN 82

 List (1)

All parts in stock. List (2)
£ 19.75
Special Price List 1 and $2 \quad £ 10 \cdot 50$
All Prices Include Post \& VAT
Callers Please Ring To Check Avallability Of Kits
MAINS IONISER KIT 2013
This negative lon generator gives you power to saturate your home or office with millions of refreshing lans. Without tans or moving part it puts out a pleasant breeze. A pure fiow of lons flling your room. whe from a founiain, feels lithe tresh ocean air, pure crisp and wondertully refreshing. All parts PCB and full instruetions $\mathbf{E 1 2 . 5 0 , ~ A ~ s u l t a b l e ~}$ case including front panel, neon switch etc. Avallable at $\mathbf{5 6 - 5 0}$.

T. POWELL

ADVANCE WORKS.
44 WALLACE ROAD, LONDON N1 Tol: 01-226 14 E9
HOURS: MON-F FI 9-5.30p.m. Sat 9-4.30p.m

Minimum Telephone Orders $£ 5.00$ Minimum Mall Order $£ 1.00$

ELEGTROMALIE

Popular components from "CATALOGUE 82 "", alf primp sto
no seconds or fall-outs. Buy in quantity tor even better value. GOMPONENT PAGXS
CPI 100 ceramic capacitors from $1 \cdot 8 \mathrm{p}$ to $\cdot 1 \mathrm{u}$. The selection is determined by the popularity of different values. £4-20.
Resistor Decade Packs $1 / 3 \mathrm{~W}, 5 \%$ tolerance; each pack 100 items, s€lection determined by relative popularity of each value: Price $£ 1$ - 50 per pack.
RD: 1 RO-8RT; RD2: 1OR-82R; RD3: 100R820R; RD4: 1K-8K2; RD5: 10K-82K: RD6: 100K-82K; RD7: $1 \mathrm{M}-10-10 \mathrm{M}$. $£ 1 \cdot 50$ each Decade Pack

SEMHONDUHTOR PACKS \& Singles

LD30A red LED's (2.9 mm): 25 from $£ 1 \cdot 58$. L51RD red LED's (5 mm): 25 for £1-58. 1N4148 diodes: 25 for 68p.
1 N4007 (1000V, 1A) diodes: 25 for $£ 1$ - 30
1 N5402 (200V, 3A) diodes: 25 for $£ 2.80$. BC107/BC109: 25 for £2. 98.
BC182/182L/183/183L/184/184L: 25 for £1-88. BC212/212L/213/214/214L: 25 for £1-88.

Other popular Items: unlt prices

7805/12/15/24: 65
7805/12/15/24: $\quad 65 p$
85 505/12/15/24: 32p TIP42A
TiP 05/12/15/24: 32p TIP2955
723 (14 pin): 6 TIP3055 6 SP(14 pin): 36p
$25 \times 4116(300 \mathrm{nS}) £ 20 \cdot 00$ only.
Please mention this juurnal when ordering or writing.
 Surrey TWzo
Northern Branch (Personal Shoppers only) 680 O7arnage London 17). Telex 264475 , INA. Phone (061) 4324945 .

BEFORE AND AFTER SCIENCE

1.HEY DUMMY! A weekly transfusion of New Musical Express is all it
takes to make A REAL PERSON of you. With its scientlically-tested formula - truth and trivia, wit and gibherish-it's the modern music fan's complete life-support system. Every Thursday.

BHPAK BARCAINS

"JRRESISTABLE				
Pal Mo.	200	Dexcription Mined "All		
St11	400	Preformed	wath	
		Ressitors		
5112	200	¢ wat Cation	Resistors	
5×13	200	4 wall Carbon	esistors	c1
5114	150	4 walt Ressistor 2 m 2 Muxed	$3220 \mathrm{hm}$	¢1
5×15	100	1 and 2 wat Rest	$\text { sistors } 22$	
Paks 5×12.15 contam a ange of Carbon fulm Resistors ol assorted values fiom 22 ohms to 22 mee Save pounds on these ressitor pasks and have a full range to cover pout propects "Quantities apporoumare count oy weight.				

TRIACS - PLASTIC
4 AMP - 400 - T0202 - TAG 1366
 Co

Everyday Electronics leach in ' 8 Kit I CB. 65
 inction
8 pos
5×40250 silicon Olodes-Swilching like IN4148 DO-35. All guod-uncoded. Worth doubleourpice 45 v 75 mA ©1.25 0m200/202 Baxi3/16 Uncoded $30.100 \times 200 \mathrm{~mA} 00.7$
\qquad Presern
 $200 \mathrm{v} .2 \times 400 \mathrm{y}$ Super value less than in
 200r. 2×400. All coded Brand new. (- trueawayat π

-1

BARGAINS

cluz 20 smail 125 Red LED's Sx43 10 Rectanguial Gleen Lev Sx4s 30 Assorled tener mied waltapes all coded New
Sxul ABlach instiument ponter wo Knobs-winged wit sue 29a Standald Sciew.
20 mm Siss 20 Assorted 12 Means and Fiament Lamps Low sceo 12 Neons and miam-various types
voltage and mains
"capable
CAPACITOR PAKS'

AUDIO PLUGS, SOCKETS

 AND ACCESSORIES
25 pieces of Audio Pluess. Sockets und Connectior

 - in include DIN $180^{\circ} .240^{\circ}$. Inline $3-6 \mathrm{Pin}$. Speathers, Phono, Jack. Stereo and Mono, efc. elc. Valued of well over [3 normal Order No SX25. Our Price §1 50Sxa6 3 Prs of 6 pin 240° Oin Plugs ano Chassis
5×27 I a Right Angie Stereo dach Plug 63 mm plus matching metal chassis mounting socket 5×284 Phono plups and 2 dual ohono connecters $5 \times 291 \mathrm{n} 25 \mathrm{~mm}$ Plug to 35 mm Sochet 3 2ator 5×301 i 35 mm Plug to 25 mm Sochet adapto
Sx31 | x 3 5mm Plup to Phono Socket adaptor.

SEMICONDUCTORS FROM AROUND THE WORLD

100
A Collection of Transistors. Diodes. Rectifiers. Bridges. SCR's. Triacs. IC's both Logic and Linear plus Opto's all of which are current everyday usable devices

100 Guaranteed Value over $\$ 10$ at Normal Retal Pice

Sx32 I istandard lach Plua to Phono Socket 133 ddaptor S134 Iarogle Swith SPOI Minature. 125×104 5135 I Rocler Swoth SPOI Minature 240 5 su3 1 ingle 240 5
 (Bananal Mactine calours and such
10 Ascoted Suthe Io Sige Side
x 5010 Assorted Swiches loggle. Slide. Roche
510725 mised cao
piastic feet. Alwars sound tres round grom
piastic feet. Alwars sought by the propect
buider

1f1FREE PAK

Get a \&1 FREE PACK, Orders over 510 excluding WIT. Choose \&1 Pach free (or 2×50 p) add it to your order and sure even more money

This ofter onty applies to this acwetisement

 always been BI.PAK's GUARANTEE and it sill is All these Sate items are in stock in quantity and we will despatch the same day as your

IC SOCKETS

Thelowest price ever.
The more you buy the cherper the
$\begin{array}{llll}\text { Pin } & 10 \text { off } & 50 \text { off } & 100 \text { of } \\ 8 & 75 p & c 3.00 & {[5}\end{array}$
80p $\quad[3.25 \quad[5.50$
100 $\quad[3.25 \quad[5.50$

VOLTAGE REGULATORS

$T 0220 \begin{array}{lll}\text { Positive } 4 & \text { Negative }+ \\ 7805-50 p & 7905-55 p\end{array} \quad$ (please $\begin{array}{ll}7812-50 p & 7912-55 p \\ 79015-50 & \text { state }\end{array}$ $\begin{array}{ccc}7812-500 & 7912-550 & \text { voltage } \\ 7815-500 & 7915-550 & \text { required) } \\ 7824-50 p & 7924-550\end{array}$
Other trpes LM340K -5 wolt -18 volt -24 volt $103-40 \mathrm{p}$ Ua723-14 $\mathrm{pnDIL}=40 \mathrm{p}$
completely satistied FULL data etc included Ordor No. SX6 7.

MORE BARGAINSI
SK51 60 melles PVC covered Hoom-up wre single and stranded Mreed
SX5: 25 Assorted TTL Gates 7400
11
59 Series 1401.7460 ${ }_{10}^{10}$ Assorted flip Flops and MSi
Sxso 20 Assorted Sinder
5x51 Potentiometers
5×62 Potary, Owal, etc.
S17s 10 Retc. Assorted Pre Sets Hor/Vert
Sx7s 10 Reed Switch
3 Micro Switches - Plass tyoe

STILL MORE! SLIDER POTENTIOMETERS Plastic 40 mm fiavel mono

 \$x71 50 BC 108 "Fallouts." Manulacturers out of spec on ratts os ajtin, Coulest clao Board. Fibre Sx72 A mued bundie ol Single ano double suded and lantastic dargain sx7s Genuine MULARO OC71 Germ

5 watt (RMS) Audio Amp

High Quality audio amplifier Modute Ideal for use in record players tape reconders, stereo amps and cassette players, etc. full data and bach up diagrams with each moduve.
Specilication

- Power Output 5 walts RMS - Land Impedance 8.16 ohms - Frequency response $50 \mathrm{~Hz}_{2}$ to $25 \mathrm{MHz}-3 \mathrm{db}$ Sensitivity 70 mw lor full output © Input impedance 50 ohms - Size 85 a 64 a 30 mm - Total Harmonic distortion less than. 5%

- ≤ 2.25

you could not Build one

BI-PAK's COMPLETELY NEW CATALOQUE

Completely re designed. Fullo: the trpe of components you require. Dlus some wery intereshing ones you will soon be using ond of course. the laggest range of semiconductors for the Amateur and Piolessional you could hope to lind. There are no wasted pages of useless information so often included in Catalogues published nowadays Just solid lacis i.e. price. description and incimidual leatures of what we have avalabie. But remember, BurPak's poticy has alwars been to sell quality components at competitive prices and That WE SIIL 00 .
BI.PAK'S COMPLETEIY MEW CATALOGUE is now avalable to you. You will be amazed how much you can save when you shoo for Electronic Components win Bu. Pak Catalonue Have one by you all the tume-it pays to buy BI.Pan

Ir erecerve you copp send $\mathbf{7 5 p}$ plus 25 p p\&p

Send pout orders to Dept EE 1 Br.PAM PO BOX 6 WARE HERTS MOP AT 1 BALDOCK ST WARE HERIS
II RMS CASH WIIH OROL R SAME DAY OI SPATCH. ACCESS BARCL AYCARO AL SO ACCI PILO IIL (0920) 3182 GIRO 3887006 ADD 15% VAF AND 50 D PL R ORDE R POSTAGE AND PACKING

SX38 100 Silicon NPN Iransustors-all perfect Coded mired types with data and equ. sheet. No re rects. Real value $\quad \$ 2.50$ Sx3s 100 Siticon PNP Transistors-all perfect. Coded muned types with data and equ. sheet No rejects. Fantastic value. $\$ 2.50$

203055 The best known Power Iransistors in the world - 2 N3055 NPN 115w. Our Br. Pak Special Otfer Price 10 का $\quad 50$ का $\quad 100$ का $[3.50 \quad[16.00 \quad 130.00$
BO3 12 COMPLIMENTARY PNP POWER transistors to 2 N305S. Equivalent MJ295s - 80312-103 SPECIA PRICE CO. 70 axch

CLASSIFIED

The prepaid rate for classified advertisements is 28 pence per word (minimum 12 words), box number 60p extra. Semi-display setting £7. 24 per single column centimetre (minimum 2.5 cm). All cheques, postal orders, etc., to be made payable to Everyday Electronics and crossed "Lloyds Bank Ltd." Treasury
notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Everyday Electronics, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St. London SE1 9LS. (Telephone 01-261 5918).

When replying to Classified Advercisemencs

 please ensure:(A) That you have clearly scated your requiremencs.
(B) That you have enclosed the right remittance.
(C) That your name and address is writcen in block capitals, and
(D) That your lecter is correctly addressed to the advertiser.
This will assist advertisers in processing and despatching orders with the minimum of delay

Receivers and Components

300 SMALL COMPONENTS, transistors, diodes, $£ 1 \cdot 70$. 7lbs assorted components, $£ 4 \cdot 25$. $101 \mathrm{lbs} £ 5 \cdot 75,40$ assorted 74 series ICs on panel, $£ 1 \cdot 70$. 500 capacitors, $£ 3 \cdot 20$. List 20p, refundable. Post 60p. Optionable insur ance 20 p. J.W.B. RADIO, 2 Barnfield Crescent, Sale, Cheshire M33 INL.
TURN YOUR SURPLUS capacitors, tran. sistors etc., into cash. Contact Coles Harding \& Co., 103 South Brink, Wisbech, Cambs. 0945 4188. Immediate settlement. CASES, ABS witn p.c.b. slots L\&W, with aluminium recessed cover-panel to en hance your controls, $150 \times 90 \times 50 \mathrm{~mm} £ 1.55$. $196 \times 113 \times 60 \mathrm{~mm} \quad £ 2.05, \quad 130 \times 68 \times 41 \mathrm{~mm}$ $£ 1 \cdot 10,83 \times 54 \times 28 \mathrm{~mm} 80 \mathrm{p}$. Case6 pressed steel with aluminium base and panels, recessed and vented, $102 \times 86 \times 83 \mathrm{~mm} £ 1 \cdot 70$, $150 \times 61 \times 103 \mathrm{~mm} \mathrm{E} 2 \cdot 55,150 \times 76 \times 134 \mathrm{~mm}$ £3.04, $184 \times 70 \times 160 \mathrm{~mm}$ £4.08, $\mathrm{D} \times \mathrm{H} \times \mathrm{W}$. 19 -in Rack System, brushed aluminium front panel with chrome handles, with vented rear case including adjustable height chassis. L425 \times D250 $\times H 140 \mathrm{~mm}$, assembled $£ 23 \cdot 50$, flat pack $£ 19 \cdot 50$. All orders plus VAT at 15 per cent + P\&P 50 p; orders under £5. Lists 28p. Industrial and Trade enquiries welcome. RELAY-A-QUIP, Moat Lodge, Stock Chase. Maldon CM9 Moat Lodge, Stock Ch
7AA. (0621-58686) 24 hrs.

50 AMP/100V DIODES $£ 1.85$ each, 100 amp Transformers, various voltages, from $£ 12 \cdot 00$. List: R. Neville, Green Lane, Ellisfield, Nr Basingstoke, Hants.

ZZZHI: LEDs-green, yellow, amber, 5 mm , $12 p$. Capacitors- $100 \mu \mathrm{~F}, 40 \mathrm{~V}, 11 \cdot 5 \mathrm{p}$. Plus 30 p P\&P, STRAIGHTMAN ELECTRONICS, 35 Melbourne Road, Ilford, Essex.

For Sale

NEW BACK ISSUES OF "LVERYDAY ELECTRONICS". Available 85p each Post Free, cheque or uncrossed $P O$ returned if not in stock. BELL'S TELEVISION not in stock. BELL'S TELEVISION
SERVICES, 190 Kings Road, Harrogate, Yorkshire. Tel: (0423) 55885.

SECONDHAND ELECTRONIC TEST equipment including oscilloscopes, generators, psu's. NORFAB PLANT AND MACHINERY, Telephone Potter Heigham (069-27) 721.

A WISE INVESTMENT. A full technical library contained within six books-on three thousand pages full of circuits and data. The ideal gift for the enthusiast. Offer open for 3 months only at $£ 15 \cdot 00$. E.R. Books, West Haven, Marldon, Paignton, Devon TQ3 1ST.

Software

SIXTY-FIVE ZX81 PROGRAMS. Listing only $£ 4.95$, Barclaycard accepted. Includes many games, utility programs, home finance, maths, chequebook, plus more. Includes hints'n'tips, from SUSSEX SOFT. WARE, Wallsend House, Pevensey Bay, E. Sussex.

2X81 Temperature Sensors (single chan. nel), £19.50, includes UK P\&P. SAE leaflet: Cheshire Micro Design, 66 Close Lane, Alsager, Stoke on Trent.

Books and Publications

PARAPHYSICALS JOURNAL (Russian translations): psychotronic generators, Kir lianography, gravity lasers, telekinesis Details: SAE $4 \times$ 9in, Paralab, Downton, Wilts.

MUSIC MAKER. Typewriter keyboard replaces piano type. Amateur organ builders send $£ 1.00$ for your copy-post free"QWERTONIC MUSICAL KEYBOARD" a new book by P. G. Roche, to 71 Elmfield Avenue, Teddington, Middlesex TWll 8BX.

Service Sheets

BELL'S TELEVISION SERVICE for service sheets on Radio, TV etc. $£ 1 \cdot 25$ plus SAE Colour TV Service Manuals on request. SAE with enquiries to BTS, 190 King's Rd. Harrogate, N. Yorkshire. Tel: 042355885.

Any single service sheet $£ 1 /$ L.S.A.E. Thousands different Repalr/Service Manuals/Sheets in stock. Repair data your named T.V. £6.50) with circuits £8.50). S.A.E. Newsletter, Price Lists. Quotations.

AUSEE, 76 CHURCHES, LARKHALL, LANARKSHIRE (0898 883334).

Tuition

PAY AS YOU LEARN. Postal mathematic tuition. CONWAY, 23 St Luke's Close, Middlestown, Wakefield.

ORDER FORM please write in block capitals

Please insert the advertisement below in the next available issue of Everyday Electronics for insertions. I enclose Cheque/P.O. for \mathcal{L}.
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Everyday Electronics)

NAME

ADDRESS

Send to: Classified Advertisement Manager
EVERYDAY ELECTRONICS
Classifed Advertisements Depl., Room 23s7,
King': Reach Tower, Stamiord Street, London 8E1 gL8 Tulephone 01-2615018
Rate
R

Miscellaneous

OSCILLOSCOPE repair and callbration. Quick service, compettive rates. W. I. A. Electronics, 01-367 6816.
BALLARD's OF TUNBRIDGE FELLS have moved to 54 Grosvenor Road. No lists. SAE. All enquiries phone T/Wells 31803.

STORAGE CABINET

Sturdy metal cabinet. \$ize approx $12^{\prime \prime} \times 10^{\circ \prime} \times 8^{\prime \prime}$ con. talining is indluidual clear plastic drawers, approx 1 "" x $2^{\prime \prime} \times 51^{\prime \prime}$. Ideal for small capacifors, resistors, terminals, ofc. Only $i f 1$-5e Incluslve post a peckage. Send P/O, cash, cheque to d. Ramplin. 14 Litton. Stonydolph Tamworth, Stans E77 4JB.

ENAMELLED COPPER WIRE, 10 sWg to 45 swg. S.A.E. for quotation by retura, cheapest prices. 102 Parrswood Road, Manchester 20.

PREPACEED. Screws, nuts, washers, solder tags, studding. Send for price list. Al SALES (EE), PO Box 402, London SW6 GLU. CENTURION BURGLAB ALABM Quipment, send SAE for free list or a cheque/ PO for Ell.50 for our special offer of a full sized signwritten bell cover to: Centurion, Dept EE, 265 Wakefield Road, Huddersfield, W. Yorkshire. Access \& Barciaycard. Telephone orders on 0484 35527.

DIGITAL WATCH BATTERY REPLACEMENT KIT

These watches all require baccery (power cell) replacebatcery (power celi) replace This kit provides incervals. We supply eveglass, nonWe supply eyeglass, nonscrewdriver, case knife and screwback case opener Also one doz. assort, push-pieces full inseructions and baccery idencificacion chare. We chen supply replacement basceries supply replacement batceries Send 49 for complece kit and gec inco a fase growing business. Prompt despatch.

BOLSTER INSTRUMENT CO. (EE33)
II Percy Avenue, Ashford, Middx., TWI5 2PB

DIGITAL WATCH BATMEPIES any type £1.20 each. Send SAE or $15 p$ with number or old battery to DISCLEC Y, 511 Fulbridge Road, Werrington, Peterborough.

CORDLESS TELEPHONES, make your own inexpensive units. Send $£ 3.00$ for simple easy to follow plans to J. F. ASHLEY, Birley Grange, Cottage Farm, Baslow Road, Cutthorpe, Derbyshire.

THE SCIENTIFIC WIRE COMPANY

po mor m. Lendon E.4. Hisi 188 .

SWG	116	808		808
to 29	$2 \cdot 76$	1.60	0.80	0.60
30 to 34	$3 \cdot 20$	1-00	$0 \cdot 00$	0.70
38 to 39	$3 \cdot 40$	$2 \cdot 0$	$1 \cdot 10$	$0 \cdot 0$
40 to 43	4.75	2. 0^{0}	2. 0	148
44 to 47	5.60	$3 \cdot 40$	$8 \cdot 50$	8. 00
481049	15.08	9.58	C-3	a.e9

BILVER PLATED COPPER WIRE | 14 | to 30 | 8.50 | 3.75 | 2.20 |
| :--- | :--- | :--- | :--- | :--- |

> TIMMED COPPER WIRE
$\begin{array}{lllll}14 & \text { to } 30 & 3.85 & 2.34 & 1.34 \\ 0.30\end{array}$
Prices Incl. P \& P vat. Ordere under 22 add rop. SAE for Llat of Copper/Reslatance wire. Dealer enguirles welcome.

Registored Ohice 2t Coninesby Gerdens.

Educational

COURSES-RADIO AMATEURS EXAMINATION. City and Guilds. Pass this important examination and obtain your licence, with an RRC Home Study Course. For details of this and other courses (GCE, professional examinations, etc) write or phone-The Rapid Results College Dept JR1, Tuition House, London SW19 4DS. Tel: 01-947 7272 (9 a.m. 5 p.m.) or use our 24 hr Recordacall Service: 01.9461102 quoting Dept JR1.

INDEX TO ADVERTISERS

MIGHTY NINETY PACKS

SUPER VALUE PACKS ALL AT 90p each BUY SIX PACKS AND GET A SEVENTH FREE
Please add 15p per pack postage Please allow 7 days delivery.

MN3s. 10 sub-min SP. C/O slide switch
MN37, 10 asstd audio connectors. Din phono oic.
WN38, 1 PCB with triac conrol IC data inc.
MN33. 1 oscillator PCB loade of components (no MM4
MM46. 50 Polystyrene capaMN41. 12 BC540C (plastic BCiosc) transistors. M M A2. 10 BC 107 Transiators. MN43.10BC108 Transistors MN44. 10 Scrowfin S.P.C.O. min. slide switeho.
M M 45. 35 astid diodes ing. MMas. 15 asta Zoner diodes.
MMa7. 3×88 mid 16 ienta. lum bead capacitors.
MN4. 200 items 4BA asstd lenoth serews, nute \& washers.
MMAS. 200 Itoms BBA asstd length Berows nuts a washers.
Museful 3 piaces of veroboard inch sizes, min total 35 sa WNSI, $10 \times 0.2^{\prime \prime}$ red LED. WN52. $10 \times 0.185^{\prime \prime}$ red LED WNES. $20 \times 0.1 \mathrm{mfd} 25 \mathrm{v}$ ceramic MN54, $20 \times 0.01 \mathrm{mld} 25 \mathrm{v}$ MNSS. 10 watt audio amp board with chrcuit.
MC skt DIL.
mess. 1016 pin low pronie
Muss. $2 \times$ CATz3 Voltage Regulato
mmss. $1 \times$ Lm380 2 watt MNEV. 10 asetd TTLIC's. MNE1. $3 \times$ TIP 32 TransisMNEL. $3 \times$ TIP 31 Transistor. MNES, 50 mixed polyester caps Czeo, Seimens etc. MNM. 5 Press to make min MNES. 3 BF245 FETS.
mence. Bank of 11 push switches interlocked, \& MMEs. 200 assid veropine, turrel tags, PCB pins elc. mmas. 4 min push to break MN70. PCB with 3 - 250 v AC \& amp push sw with attractive chrome plasitic knobs

 holder +22 resistors, cspacitors, diodes etc.

CHORDGATE LIMITED
 75 FARINGDON ROAD

SWINDON, WILTS. Tel. (0793) 33877 Retail shop at above address

NO BATTERIES NO WIRES £29.95 PER PAIR VAT 24.50
P \& P1.95
The modern way of instant 2-way communications. Just plus into power socket. Ready to use. Crystal clear communications from room to room. Range t-mile on the same mains phase. On/oft switch. Volume control, with 'buzzer' call and light indicator. Useful as inter-office intercom. between ofice and warehouse, in surgery and in homes. Also availeble
NEW AMERICAN TYPE CRADL
TELEPHONE AMPLIFIER

£18.95 VAT 22.85
P \& P 1.65
Latest tramsiztorised Telephone Amplifier, with detached pluy-in speaker. Placing the receiver on to ihe cradle activates a switch for immediate two-way people can listen a time. Increase eficiency in people can isten at a iime, increase enciency in ollits: leaves the user's hands free to make notes. consult files. No long waiting. seves time with long: distance calls. On/ofl switch. volume control, Conversation recordine, model at $820 \cdot 95$ + VAT $£ 3$ - 15. P\&P \&1-65.

DOOR ENTRY SYSTEM
No house / business/surgery should be without a DOOR ENTRY SYSTEM in this day and age. The modern way to answer the door in safety to unwanted callers. Talk to the caler and atmit him which will open the door electronically. A boon for the invalid, the aged, and busy housewifc. Supplied complete d.i.y. Kit with one internal Telephone, outside Speaker panel, electric door lock release (for Yale type surface latch lock): mains power unit.
 $\mathbf{5 9 \cdot 9 5}+\mathrm{VAT} £ 9 \cdot 00+\mathrm{P} \& \mathrm{P}$ £2.58. Kit with two
phones $\mathbf{8 6 9 \cdot 9 5}+\mathrm{VAT} £ 10 \cdot 50+\mathrm{P} \& \mathrm{P} £ 2 \cdot 81$. PLEASE ALLOW 8-12 DAYS FOR DELIVERY

O-day price refund suarantee on all llems
ONDON DIRECT SUPPI

G9 KENSINGTON HIGH STREET.
LONDON. W8 Tel: 01-937 SS48

PLEASE MENTION EVERYDAY ELECTRONICS WHEN REPLYING T0 ADVERTISEMENTS

BAKER 50 WAT 50 WATT AMPLIFIER
 186900000

8uperlor quallty ideal fur Hally/PA syteinu. Disco'i amd Troupe Two (anpain Controle so wath R188. Three loudspeaker outleta 4, 8, 16 ohra.
AC 240V (120V avallable). Blue wordins an bleck oublnet.
BAKER I50 Watt AMPLIFIER 4 Inputs 889 DRILL GPRED CONTROLLRR LIGHT DIMDER KIT Rasy to bull
DRLUXB YODEL Roady Built. 800 wate. of STRERO PRE-AMP KIT. All parte to build thim pre-amp. 3 fnpute for high, medtrom or low gath per chanpel, with
volume control and P.C. Board. Can be ganged to make volume control and P.C. Board. Can be cranged to
multh-way trereo mizern. 8 s. 96

A.C. ELECTRIC MOTORB POST 75p

 $11 \cdot 80 ; 12 \times 8 \times 2 \mathrm{hn} .82 \cdot 60 ; 16 \times 10 \times 2 \mathrm{jln} .48 \cdot 20$

 $4 \times 24 \times 2 \ln , 81 \cdot 00 ; 3 \times 2 \times 1 \ln , 80 p ; 6 \times 4 \times 2 \ln , 41 \cdot 60 ; 8 \times 6 \times$
$\sin E 2 \cdot 50: 12 \times 5 \times 3 \sin 42 \cdot 75: 8 \times 4 \times \sin 41 \cdot 80 ; 10 \times 7 \times 3 \ln 23$.

 DE LUXE BSR HI-FI AUTOCHANGER

Btereo Ceramic Cartridge Playe 12in., 10 in ., of 7 im . recordis Auto or Manual. A high quality unit 240 V Ad. Blise 13t $\times 11$ ilin. Above motor board 31/n. Below motor board 2j/n.	120 Post on All Decks e2.
R8R Siagle Plager P207 cuelng ceramle cartridse.	2
Gartard single Player 730 BP metal turntable, cueing devlee. Bpake arm. Magnetic cartoldse. $\mathbf{2 7} .50$ pont $\varepsilon 2$	
B8R C172 Slim arm. Metal Turntable. Ceramic Head. Cueing Device. Auto Ito	2 post 42
B8R Auto Changer. IItn. Turntable. Budgel price. 8tereo ceramic, reliable unlt. S-apeed.	
Radio Component Specialists	
337, WHITEHORSE ROAD, CROYDON, SURREY, U.K. TEL: 01-884 1ce5	
oat 65 sp Minimum. Callors Wolcom ame day deapatch. Aceest-Barclay	Closed Wed.

[^4]
\star PROMPT DELIVERY \star PRICES INCLUDE V.A.T. * AMPLE STOCKS A PERSONAL SERVICE FROM A SMALL EXPANDING COMPANY

STEREO CASSETTE TAPE DECK MODULE Comprising of a top panel and lape mechan. ism coupled to a record/play back prinled board assembly. Supplied as one complete unit for horizontal instaliation into cabinet or console of own choice. These units are brand new, ready built and tested. Faatures: Three digit tape counter. Auto stop. Six piano type keys, record, rewind, fast forward, play, stop and eject. Automatic record level control. Main inputs plus secondary inputs for stereo microphones. mput Sensitivity: 100 mV to 2 V Input Im pedance: 68 K . Output level: 400 mV to both eft and right hand channels. Output Impedance: 10K. Signal to noise ratio: 45dB Wow and flutter: 0.1%. Power Supply requirements: $18 V$ DC at 300 mA Connections: The leth and right hand stereo inputs and outputs are via individual screened leads, all erminated with phono plugs (phono sockets provided. Dimensions. Top panel 5/rin x 11/ain. Clearance required under rop panel gram and connecting diagram. Attractive lack and silver finish
Price $£ 26.70+£ 2.50$ postage and packıng Supplementary parts for 18 BV D C. power supply (transformer, bridge rectifier and
smoothing capacitor) ${ }^{2} 3$.

NEW RANGE QUALITY POWER LOUDSPEAKERS (15 12 and 8 . These loudspeakers are ideal for both hi-fi and disco applications. Both the $12^{\prime \prime}$ and 15 units have heavy duty die-cast chassis and aluminium centre domes. All three units have white speaker cones and are (ground finish) fixing escutcheons Specification and Price

15' 100 watt R.M.S. Impedance Bohm 59 oz . magnet. 2 aluminium voice col Resonant Frequency 20 Hz . Frequenc Response to 2.5 KHz . Sensitivity 97 dB Price f32 each, f2.50 Packing and Car riage each

12' 100 watt R.M.S. Impedance 8 ohm, 50 oz magnet 2 aluminum voice coil Resonant Frequency 25 Hz . Frequency Response to 4 KHz Sensitivity 95 dB Price £23.70 each. $£ 2.50$ Packing and Carrage each
8' 50 watt R.M.S. Impedance 8 ohm, 20 oz magnet 1 aluminium voice colf Resonant Frequency 40 Hz . Frequency Response to 6 KHz Sensitivity 92 dB Also available with black cone and black protective grill. Price $\mathbf{f 8 . 9 0}$ each. f 125 Pack ing and Carriage each

PIEZO ELECTRIC TWEETERS - MOTOROLA

Join the Piezo revolution. The low dynamic mass (no voice coll) of a Piezo iweeter produces an improved transient response with a lower distortion level than ordinary dynamic tweeters. As a crossover is not required these units can be added to existing speaker systems of up to 100 watts (more if 2 put in series). FREE EXPLANATORY LEAFLETS SUPPLIED WITH EACH TWEETER.

Type ' A ' 3 in round with removable
 wire mesh. Ideal for bookshelf hi-h each.
Type 'B' $31 / 21 n$ super horn. For gen eral purpose speakers disco and PA systems, etc. Price $\mathbf{£ 4 . 3 5}$ each.
Type 'C' 2 in x 5 in wide dispersion horn. For hi-fi systems and quality disco etc. Price $£ 5.45$ each.
Type ' D ' 2 in $\times 6$ in wide dispersion horn. Frequency response ex tending down to mid-range 12000 c / s) suitable for h1-fi systems and quality disco. Price $£ 6.90$ each. Post and Packing, all types, 15 p each (or SAE for Piezo leaflets)

Piezo Level Control/Loudspenker Terminals. Com bines two spring loaded loudspeaker terminals. wire woung porentiometer and resister network All mounted on a smart brushed aluminium plate
Fits neatly through a 3×3 cut out on rear of Fits neatly through a ${ }^{3}{ }^{3}{ }^{3}{ }^{3}$. Cut out on real or
speaker cabinet Price 22.99 speaker

B.K. ELECTRONICS

37 Whitehouse Meadows, Eastwood, Leigh-on-Sea, Essex SS9 5TY

Matching 3-way loudspeakers and crossover
Build a quality 60 watt R M S. system

- 10° Woofer
- 3^{*} Tweeter
- 5 Mid Range

3-way crossover

Fitted with attractive cast aluminium fixing es cutcheons and mesti protective gulls which are removable enabling a unique choice of cabinet with or without conventional speaker fabrics with op without conventional speaker tabmes All and rolled loam surround Coseminals and becessed mounting panel
Price $\mathbf{5 1 9 . 9 5}$ per kit - $\$ 250$ postage and pack
nu Avalable separately, prices on request
2' 80 watt R.M.S. loudspeaker
A süperb general purpose twin cone loud speaker. 50 oz. magnet 2 aluminiun quency 25 Hz . Frequency response io 13 KHz . Sensitivity 95dB. Impedance 80 hm Attractive blue cone with aluminium centre dome.
Price f 16.49 ea - f2 50 P\&

5 Channel stereo dieco mixer with built in 7 band graphic equaliser L.E.D. Vu Display. Monltored output. Fader mix and equaliser defeat button, Microphone tall over s witch. Supplied complete and ready built Ideal for incor porating into high quality disco public address consoles etc. o may be used free standing for hl-f. (Inputs for dual turntables)

```
SPECIFICATION: 5Inpute:- Migh 50K, Low 6800hm
Phono X2 50Kohm
Tape/Tuner X2 50Kohm
Frequency Response :-
Mic:- 
Tape/Tuner X2 10HZ-80K HZ
Input Sensitivity:-
Phono X2 Mag. 3mV, Cry. 150m
Oapelput Impedance:- }\mathbf{70}0\textrm{ohm
Output impedance:-
Meadphone Dutput:-0.25W at }80\textrm{omm
Equaliser Control Frequencies:-60HZ,150HZ,400HZ,1K HZ, 2 5K HZ,
Control Range:-12 db Boost or Cut HZ, 15K HZ
Power:-220-240v AC
    M,
```

POWER AMPLIFIER MOOULES

00 and 150 WATTS R,M.S rawer Amplifier Modules with integral toroidal plied as one complete bullt and timk. SupCan be fited in minutes. Auxilliary stabilised an L.E.O. Vu meter available as an optional SPRECIFICATION:
Max. output power 100 watts R.M.S. (OMP 100) 150 watis R.M.S. (OMP 150) Loads: (Open and short circult proot) 4-16 ohms Loads: (Open and shortcircult proal Frequency Resporsity for 100 watts 500 mV at 10 K
Senshivity 150 watts 500 mV at 10 K 150 watts 500 m
T.H.D.
Size: $380 \times 115 \times 1 \%$

\star SAE for current lists. \star Official orders welcome. \star All prices include VAT. Mail order only. All items packed (where applicable) in special energy absorbing PU foam. Callers welcome by prior appointment, please phone 0702-527572

For personal service visit one of our stores.
Our new store at Hammersmith is conveniently situated near the end of the M4 and the North and South Circular Roads.
There is excellent street parking on meters a few steps away and
Hammersmith Underground Station is nearby. Call in and see us soon.

Over 100,000 copies sold already! Don't miss out on your copy. On sale now in all branches WH Smith or price $£ 1$.

* Same day service on in-stock lines
* Very large percentage of our stock lines in stock * All prices include VAT
* Large range of all the most useful components * First class reply paid envelope with every order * Quality components-no rejects-no re-marks * Competitive prices
* Your money is safe with a reputable company

On price. service, stock. quality and security it makes sanse now more than ever to make กาีคpulin your first choice for components every time!

[^0]: 19 MULBERAY WALK - LONOON SW3 60Z • TEL: 01.352 1897 • TELEX: 918867

[^1]: MAGENTA ELECTRONICS LTD.
 ER35, 135 HUNTER ST. BURTON-ON-TRENT. STAFFS.
 DE14 2ST. 0283 65435. MON.-FRI. 9-5. MAIL ORDER ONLY. ADD 40p P. \& P. TO ALL ORDERS. Normal despatch by relurn of posi ALL PRICES INCLUDE is $\%$ AT
 IRISH REPUBLIC \& B.F.PO EUROPE: Deduct 10% from prices shown Paymen must be in Steriling.
 ACCESS and BARCLAYCARD(VISA SAE ALL ENQUIRES.

[^2]:

[^3]: One of Scotland's bestknown industrialists, Peter Carmichael, CBE, Joint Managing Director of HewlettPackard, has been appointed Director, Small Business and Electronics, of the Scottish Development Agency.

[^4]:

