Easy to build projects for everyone JUNE 81 60p alscibincs

DISCRETE
 SEMICONDUCTORS

NEW SERIES
STARTS THIS MONTH त II

WATFORD ELECTRONICS MAIL ORDER, CALLERS WELCOME. Tel. Watford $40588 / 9$

Each book presents a collection of constructional projects, giving details of how the circuit works, how it is assembled and how setting up and troubleshooting problems may be solved. There are eight titles in the series, all at $£ 2.95$

Electronic Projects in Music
A.J. Flind 040800391 X

Electronic Projects in Audio R.A. Penfold 0408003383

Electronic Projects
in Hobbies
F.G. Rayer 0408003545

Electronic Projects in the Workshop
R.A. Penfold 0408003839

Electronic Projects in the Car M. George 0408003863

Electronic Game Projects F.G. Rayer 0408003790

Electronic Projects in the Home
Owen Bishop 0408003464

Projects in Radio and Electronics

Ian R.Sinclair 0408003456

Available from your local bookseller or in case of difficulty from the publisher.

TECHNICAL TRAINING: IN ELECTRONICS AND TELECOMMUNICATIONS

ICS can provide the technical knowledge that is so essential to your success; knowledge that will enable you to take advantage of the many opportunities open and if you are in your own horac. in your own ics guarantee coaching until you are successful.

City and Guilds Certificates:
Telecommunications Technicians
Radio, TV, Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
MPT Radio Communications Certificate
Diploma Courses:
Colour TV Servicing
Electronic Engineering and Maintenance
Computer Engineering and Programming Radio, TV, Audio Engineering and Servicing Electrical Engineering, Installation and Contracting

POST OR PHONE TODAY FOR FREE BOOKLET

IHS
 To: International Correspondence Schools

Dept 268H Intertext House, London
SW8 4UJ or teiephone 6229911
Subject of Interest
Name
Address

New

Presensitised PC Boards, Developer. U.V. units, Toyo miniature Fans $230 v$ AC $£ 9.95$
Mini Metal Detector/Voltage Tester for locating cable under plaster $£ 9.95$
Flow/Speed Sensors for monitoring fuel consumption electronically in vehicles

Just one of the exciting Leader range

£299+ VAT

LB0508A OSCILLOSCOPE With 20 MHz DC bandwidth and 10 mv input sensitivity on a $5^{\prime \prime}$ screen this universal oscilloscope is suitable for a wide
range of applications.

Send SAE for details of full range

Marshall's $80 / 81$ catalogue is now available by post, UK 75p post paid, Europe 95p post paid: Rest of world £1-35 post paid.

[^0]
Rapid Electronics

MUSICAL MICRO 24 TUNE DOOR BELL BUILD THE WORLD FAMOUS CHROMA-CHIME

Give your friends a warm welcome. Yes, think how delighted and amazed they will be to hear the musical Chroma-Chime play when they press your button!
The Chroma-Chime uses a microcomputer to play 24 well-known tunes. The kit is simplicity itself for ease of construction. Absolutely everything needed is supplied.
Plays 24 well-known tunes including:
Star Spangled Banner, William Tell Overture, Greensleeves, Rule Britannia, Colonel Bogey, Oh come all ye faithful, plus many other popular tunes.

* No previous microcomputer experience necessary
\star All programming retained is on chip ROM
\star Fully guaranteed

\star Ideal present any time

ALL CHROMATRONICS PRODUCTS SUPPLLED WITH MONEY BACK GUARANTEE
PIEASE ALLOW 7 -21 DAYS FOR DELIVERY
TO: CHROMATRONICS. RIVER WAY. HARLOW. ESSEX Telephone(0279)418611
please send me:
NAME
ADDRESS
I enclose cheque/PO value : \qquad
\qquad \square I account no

Signature

DIY MUSIC \& EFFECTS KITS

AUTOWAH UNIT

Automatically gives Wah or Swell sounds with each guitar note played. SET 58 CIB-04

GUITAR EFFECTS UNIT

Modulates the attack, decay and filter characteristics of a signal from most audio sources, producing 8 different switchable sounds that can be further modified by manual conKit order code

SET 42 E14-11

GUITAR FREQUENCY DOUBLER

Produces an output one octave higher than the input. Inputs and outputs may be mixed to give greater depth.
Kit order code
SET 98
E10-55

GUITAR MULTIPROCESSOR

An extremely versatile sound processing unit capable of producing, for example, fianging, vibrato, reverb, fuzz and with most electronic instruments. Some SW's not incl. in kit-see list for selection.

SET $85 \quad$ \&72. 50

GUITAR OVERDRIVE

Sophisticated versatlle fuzz unit incl variable controls affecting the fuzz quality whilst retaining the attack and decay, and also providing filtering.
Kit order code

GUITAR PRACTISE AMPLIFIER

A 3 watt mains powered amplifier suitable for instrument practise or as a test gear moniter. Drives 8 or 15 ohm speakers not
Kit order code SET 106 EIS 72

GUITAR SUSTAIN
Maintains the natural attack whilst extending note duration.
Kit order code
SET 75
$£ 11.77$

PHASER

An automatically controlled 5 stage phasing unit with internal oscillator. Depth can be increased with extension. Extenston kit
$\begin{array}{cc}\text { SET } 88 & £ 18 \cdot 34 \\ \text { EXT } 88 & £ 7.31\end{array}$

PHASING \& VIBRATO

includes manual and automatic control over the rate of phasing \& vibrato. Capable of superb full sounds. A separate Kower supply is included.
Kit order code

SMOOTH FUZZ

As the name implies! Order code SET $91 \quad$ E11-6

SPLIT-PHASE TREMOLO

The output of the internal generator is phase-split and modulated by an input sional. Output amplitudes, depth \& rate are panel controlled. The effect is simitar to a rotary cabinet.
Kit order code
SET 102 £27-55

SWITCHED TONE TREBLE BOOST

Provides switehed selection of 4 preset tonal responses.
Kit order code
SET 89 £is. 51

AUDIO EFFECTS UNIT

A variable siren generator that can produce British \& American police sirens, Star-Trek red alert, heart beat monitor Kit order code
E12.m

FUNNY TALKER

Incorporates a ring modulator, chopper \& frequency modulator to produce fascinating sounds when used with speech \& Kit order code

SET 99 E15-43

WIND \& RAIN EFFECTS

As the name says! Order code SET 28 fis? 4

DISCOSTROBE

A 4-channel 200 -watt light controller giving a choice of sequential, random or full \$trobe mode of operation.
Kit order code
SET 57

LIST

Send stamped addressed envelope with all U.K. requests for ree list giving fuller detalls of PCBS, kits and other components. Overseas enquiries for list-Europe send 50p.
other countries send $\mathbf{f 1} \cdot \mathbf{0}$.

TERMS: C.W.O., Mail Order or Coliection by appointment. Tel. M-302-*ist (Mon-Fri)

KIMBER-ALLEN KEYBOARDS

Claimed by the manufacturers to be the finest moulded plastic keyboards available. All octaves are C-C, the keys are plastic, slope fronted, spring loaded, fitted with actuators and mount ed on a robust aluminium frame.
3 -Octave $£ 25-50,4$-Oct $£ 32 \cdot 25$, 5 -Oct $£ 31-50$, Gold-clad contacts (i needed for each note) type GJ (SPCO) 33p each Type GB (2-PR n/0) 3ip each.

CHOROSYNTH

A standard keyboard version of the published Elektor 30-note chorus synthesiser with an amazing variety of sounds ranging rom violin to cello and flute to clarinet amongst many others
Kit plus keyboard \& contacts
SET 100
$\mathbf{E 1 1 4} \cdot 12$

FORMANT SYNTHESISER

For the more advanced constructor who puts performance ary sophisticated 3-octave puts pesiter with weal th of facilities, including 6 oscillators, 3 waveform con verters, voltage controlled filter, 2 envelope shapers and voltage controlfed amplifier. Case and hardware not in-ciuced-see our isis for further detais.
Kit plus keyboard \& contacis

P.E. MINISONIC SYNTHESISER

A very versatile 3-octave portable mains operated synthesiser with 2 osciliators, voltage controlled filter. 2 envelop shapers, ring modulator, noise generator, mixer, power supply and sub-min toggle switches to select the functions structional details.
KIt plus keyboard a contacts
KIt plus keyboard \& contacts SET 38 elsefer fis

PRICES INCLUDE

VAT@15\% \& U.K. P. \& P.

NEW KIT MAKE-UP -SEE BELOW

128-NOTE SEQUENCER

Enables a voltage conirolied synthesiser, such as the P.E. Minisonic, to automatically play pre-programmed tunes of up to 32 pitches and 128 notes long. Programs are initlated from the 4 -octave keyboard and note length and phythmic pater are externally variabie.

SET 78 £114.es

16-NOTE SEQUENCER

Sequences of up to 16 notes long may be pre-programmed by the panel controls and fed into most voltage controlled syn thesisers. The notes and rhythms may be changed whils KIt order code
SET 86 \&Ue

DIGITAL REVERB UNIT

A very advanced unit using sophisticated I.C. techniques instead of noise-prone mechanical sprino lines. The basic delay range of 24 to goms can be exiended up io extensions. $\begin{array}{lll}\text { Main kit order code } & \text { SET } 78 & \mathbf{2 8 7} \cdot \mathbf{2 2} \\ \text { Exfension kit } & \text { EXT 78 } & \mathbf{£ 4 5} \mathbf{8 4}\end{array}$

RING MODULATOR

Compatlble with the Formant and most other synthe wisers.

WAVEFORM CONVERTER

Converts aw-tooth waveform into sinewave, mark-space sawtooth, repular triangle, or squarewave with variable mark oscillator Kit orde

SET 67 E24.13

BASIC COMPONENT SETS

Include specially designed drilled \& tinned fibregiass printed circuit boards, all necessary resistors, capacitors, semiinclude basic hardware such and transformers. They also nominal amount of wire and solder. a photocopy of the original published text, and unless otherwise stated, a robust aluminium box. Most parts may be bought separa

Kits originate from projects published in PE, EE, and Elektor.

RHYTHM GENERATORS

Two different kits-The control units are designed around the M252 and M253 rhythm-gen chips which produce pre-pro grammed switch-selectable rhythms driving 10 effects instru ment generators feeding into a mixer. 2-Rhythm unit
15-Rhythm unt
$\begin{array}{ll}\text { SET 103-253 } & \text { £EA-10 } \\ \text { SET } & 103-252 \\ £ 5726\end{array}$

6-CHANNEL MIXER

A high specification tereo mixer with variable input im pedances. Specs given in our lists. The kit excludes some channels. Main kit code
$\begin{array}{ll}\text { SET } 90 & £ 8 \cdot 9 \\ \text { EXT } 90 & £ 11 \cdot 74\end{array}$
3-CHANNEL STEREO MIXER
Full level control on left and right or each channel, and with master output control and headphone monitor.
Kit order code
SET
\&is

3-MICROPHONE STEREO MIXER

Enables stereo llve recordings to be made without the "hol in the middle' effect. Independent control of each micro phone.

SET 108 £12.31

HEADPHONE AMPLIFIER

For use with magnetic, ceramic or crystal pick-ups tapedeck or tuner, and for most headphones. Designed with RIAA equalisation
Kit order code SET 104 £傹.f

VOICE OPERATED FADER

For automatically reducing music volume during disco talk ove

Kit order code SET 30 £7. 0
DYNAMIC NOISELIMITER
Very effective stereo circuit for reducing noise found in most tape recordings.
Kit order code SET 97 上12.47

DYNAMIC RANGE LIMITER

Automatically controls sound output levels. Kit order code

SET 62 Le. 5
TUNING FORK
Produces 84 switch-selectable frequency-accurate tones with led monitor displaying beat-note adjustments.
Kit order code
SET 46 E34.50

TUNING INDICATOR

A simple octave frequency comparitor for use with syn thesisers where the full versatility of KIT46 is not needed.
KIt order code
SET 69
$£ 14 \cdot 41$

PULSE GENERATOR

Produces controliable pulse widths from 100 NS to 25 ec Variable frequency range of 0.1 Hz to 100 KHz . KET 115 E 21.4

SIGNAL TRACER \& GENERATOR

Allows audio sionals to be injected into circuits under test and for tracing their continulty. Includes frequency a leve controls.
Kit order code

SET 109 £15-31

WAVEFORM GENERATOR

Provides sine, square and triangular wave outputs variable between 1 Hz \& 100 KHz UP to 10V P-P. SET $112 \quad £ 21$-st
KIt order code

SPEECH PROCESSOR

improves the Inteligibility of noisy or fluctuating speech signals, and ideal for Inserting into P.A. or C.B. radio sys tems.

Kit order code SET 110 ES.21

FRERUENCY COUNTER

A 4 -digit counter for 1 Hz to 99 KHz with 1 Hz sampling rate.
Kit order code
SET 79

EXPOSURE TIMER

Controls up to 750 watts in 0.5 sec steps up to 10 minutes, kith buitein audlo alarm.
Kit order code SET 93 E3-44

EXPORT ORDERS ARE WELCOME

Postage rates are shown in our lisis. All payments must be cash-with-order, in sterling by international monay order o To obtain list-Europe send 50 p, other countries send $\mathrm{El} \cdot 00$.

MORE KITS AND COMPONENTS ARE ON OUR LISTS

Prices are correct at time of press. E. O.E. subject to avallability.

New! Sinclair ZX81 Personal Computer. Kit: $£ 49 .{ }^{\text {s.compete }}$

Reach advanced computer comprehension in a few absorbing hours

1980 saw a genuine breakthrough - the Sinclair ZX80, world's first complete personal computer for under $£ 100$. At £99.95, the ZX80 offered a specification unchallenged at the price.

Over 50,000 were sold, and the ZX80 won virtually universal praise from computer professionals.

Now the Sinclair lead is increased: for just £69.95, the new Sinclair ZX81 offers even more advanced computer facilities at an even lower price. And the ZX81 kit means an even bigger saving. At £49.95 it costs almost 40% less than the ZX80 kit!

Lower price: higher capability

 With the ZX81, it's just as simple to teach yourself computing, but the ZX81 packs even greater working capability than the ZX80.It uses the same micro-processor, but incorporates a new, more powerful 8KBASICROM - the 'trained intelligence' of the computer. This chip works in decimals, handles logs and trig, allows you to plot graphs, and builds up animated displays.

And the ZX81 incorporates other operation refinements - the facility to load and save named programs on cassette, for example, or to select a program off a cassette through the keyboard.

Higher specification, lower price -

 how's it done?Quite simply, by design. The ZX80 reduced the chips in a working computer from 40 or so, to 21. The ZX81 reduces the 21 to 4 !

The secret lies in a totally new master chip. Designed by Sinclair and custom-built in Britain, this unique chip replaces 18 chips from the ZX 80 !

Built: £69.5

complete

Kit or built it's up to you!

The picture shows dramatically how. easy the ZX81 kit is to build: just four chips to assemble (plus, of course the other discrete components) - a few hours' work with a fine-tipped soldering iron. And you may already have a suitable mains adaptor -600 mA at 9 V DC nominal unregulated (supplied with built version).

Kit and built versions come complete with all leads to connect to your TV (colour or black and white) and cassette recorder.

New

Sinclair teach-yourself BASIC manual
Every ZX81 comes with a comprehensive, speciallywritten manual-a complete course in BASIC program-
 ming, from first principles to complex programs. You need no prior knowledge - children from 12 upwards soon become familiar with computer operation.

```
NIIR I=N THEN GO FD E
K=1 TロN
B(x)=111x
X=C
J#J+1
\NQR }\quad=N\mathrm{ THEN GD TD 4B
```



```
P=日:(J)
B(j)=m(t
A(J)=の日て
A(T)=F
C! THEN ED TD IE
```


New，improved specification

－Z80A micro－processor－new faster version of the famous Z 80 chip，widely 4hare recognised as the best ever made．
－Unique＇one－touch＇ key word entry： the ZX81 eliminates a great deal of tiresome typing．Key words （RUN，LIST，PRINT， etc．）have their own single－key entry．
－Unique syntax check and report codes identify programming errors immediately．

Full range of mathematical and scientific functions accurate to eight decimal places．
－Graph－drawing and animated－ display facilities．
－Multi－dimensional string and numerical arrays．

－Up to 26 FOR／NEXT loops．

－Randomise function－useful for games as well as serious applications．
－Cassette LOAD and SAVE with named programs．
－1K－byte RAM expandable to 16 K bytes with Sinclair RAM pack．
－Able to drive the new Sinclair printer （not available yet－but coming soon！）
－Advanced 4－chip design：micro－ processor，ROM，RAM，plus master chip －unique，custom－built chip replacing 18ZX80 chips．

Einclair ZX8I

Sinclair Research Ltd， 6 Kings Parade，Cambridge，Cambs． CB2 1SN．Tel： 027666104.
Reg．no： 214463000

If you own a Sinclair ZX80．．．

The new 8K BASIC ROM used in the Sinclair ZX81 is available to ZX80 owners as a drop－in replacement chip． （Complete with new keyboard template and operating manual．）

With the exception of animated graphics，all the advanced features of the ZX81 are now available on your ZX80－including the ability to drive the Sinclair ZX Printer．

Coming soon－ the EX Printer．

Designed exclusively for use with the ZX81（and ZX80 with 8K BASIC ROM）， the printer offers full alphanumerics across 32 columns，and highly sophisti－ cated graphics．Special features include COPY，which prints out exactly what is on the whole TV screen without the need for further instructions．The $Z X$ Printer will be available in Summer 1981， at around $£ 50$－watch this space！

16K－BYTE RAM pack for massive add－on memory．

Designed as a complete module to fit your Sinclair ZX80 or ZX81，the RAM pack simply plugs into the existing expansion port at the rear of the com－ puter to multiply your data／program storage by $16!$

Use it for long and complex pro－ grams or as a personal database．Yet it costs as little as half the price of com－ petitive additional memory．

How to order your ZX81

BY PHONE－Access or Barclaycard holders can call 01－200 0200 for personal attention 24 hours a day，every day． BY FREEPOST－use the no－stamp－ needed coupon below．You can pay by cheque，postal order，Access or Barclaycard．
EITHER WAY－please allow up to 28 days for delivery．And there＇s a 14 －day money－back option，of course．We want you to be satisfied beyond doubt－and we have no doubt that you will be．

GREENWELD

44D MILLBROOK ROAD, SOUTHAMPTON SOI OHX All prices include VAT-just add 40p post. Tel (0703) 772501

THE SPECTACULAR 1981 GREENWELD

Component Catalooue

Bigger and better than everill!

- 60p discount vouchers
- First Class reply paid envelope - Free Bargain List - Priority Order Form - VAT inclusive prices - Quantity prices for bulk buyers SEND 75p FOR YOUR COPY Now!!!
VEROBLOC BREADBOARD Now from Vero, this versatlie aid for bullding and testing cricuits can accommodate any size of ic. Blocs and be joined
together. Sus strips on $X \& \times$ axis-total together. Sus strips on X \& X axis-tot
300 connexion polnte for just E\&-15. (Pholo shows 2 blocs)

TTL AND REED PANEL 252974 Serles ICe-Gates and complex logic. 20 asetd. ICe on panele E : 100 ICa $25272 \times 8 \mathrm{~V}$ reed relays, 6×25030 or $252306 \times 400 \mathrm{~V}$ rects, + R'e. Only 59p.

IN4006 DIODES

Special purchase of 1A recte, Russian made. Packed in boxes of 300, £8.50 per box; 4 boxes E3s.ev; 10 boxes E7s. ct . DISC CERAMICS $0 \cdot 22 \mu \mathrm{~F} 12 \mathrm{~V} 9 \mathrm{~mm}$ dia. Ideal tor decoupling.

$\$ 12 \cdot \theta$.
TRANSISTOR PACK K516 Take advantape of this unbelievable offerll Small stonal NPN/PNP tranalatora In pricell. Almost all are marked with type number-alinost all are full spec devices. some have bent leads. Over 30 different types have been found by Us, including 8C184/212/239/307/32a BF19877; ZTX107 mixed pack at $\mathrm{E} 3 / 100 ; \AA 7 / 250 ; \AA 25 / 1000$.

CALC CHIPS 60p 111
New full spec, supplied with data. Type
MKS0321-full function Inc memory. Only Co.

$£ 1$ BARGAIN PACKS

Each pack £1; any 25 packs E22
K101 16 AC2398 translators
K102
K10
10
BC554
K104 $18 \mathrm{BC1} 28 \mathrm{~B}$ transistors
K105 50 1N4148 diodes
$K 10618$ BC184L translators
$K 10718$ EC2131 uranisistor
K108 82 N 5060 thyristors, 30 V 0.8 A T092
K100 is BCt1
$\begin{array}{ll}\text { K110 } \\ \text { K } \\ & \text { ED131 transistor }\end{array}$
K11 - BO132 transisistors
$\begin{array}{lll}\mathrm{K} 112 & 12 & 3 A \\ \mathrm{~K} 112 \mathrm{~V} & \mathbf{V} \text { rects, wire ended }\end{array}$
$\begin{array}{ll}\text { K113 } & 30 \\ \text { K114 } & 15 \text { XK0118 recte } 150 \mathrm{BF} 0.54 \\ \text { K }\end{array}$
$\begin{array}{ll}\text { K114 } & 15 \\ \text { KK8118 (8F241) transistors } \\ \text { K115 } & 18 \\ \text { SP1218 (2N3702) transistore }\end{array}$
$\begin{array}{ll}\text { K115 } & 18 \\ \text { SP1218 (2N3702) Transisto } \\ \text { K116 } & 10 \text { MPSLO1 NPN 140V TO92 }\end{array}$
K117
K10 BF450 PNP TV IF amp transietor
K10 ME4101 NPN ©
$K 11816$ MEd01 NPN 60V AF low nolse
K110 10 2N5401 NPN 180 V T092

K121 207 V 5400 mW zener

K124 $50.02 \mu \mathrm{~F}$ diec ceramic
K125 200 14 5% it W carbon fitm resistors

K129
K AA
K113
25
$470 R \mathrm{~V}$ diodes
K130 25 470R V 0.1W presele
$\begin{array}{ll}\text { K133 } \\ 20 \\ 3 & \text { way SA term blocks }\end{array}$
K134 50 unmarked untested DC71 type
K135 $30 \begin{gathered}\text { transistors } \\ 4.7 \mu \mathrm{~F} 10 \mathrm{~V} \text { radial elecs }\end{gathered}$
K136 4 AC187k transletors
$K 1375$ 18 F 100 V non-polarised caps K138 30 coll former with slug $\begin{array}{lll}\mathrm{K} 139 & 40 & 025 \mu \mathrm{~F} \\ \mathrm{~K} 140 & 30 & .05 \\ \mathrm{~K} 141 & 40 & \text { do }\end{array}$
$K 142{ }^{25} 0.01 \mu \mathrm{~F} 400 \mathrm{~V}$ axial cape (C296)
$K 14225$ wire ended neons std size, 20 V
K143 200 squares mice insulation 25 mm
K144 30 IRS. 3 W wirewound resistor
K145 10 1500 uF 16 V cape-radial PC
K140 is $\underset{330 \mu \mathrm{~F}}{\mathrm{mnta}}$ 4V axial capa
K147 3 150 5 F 350 V caps-radial PC mnie
K148 30 transtormer former type X228

K1s2 $100.2^{\text {m }}$ red LED'
K153 30 T05 neat sinks, same ae G104
$\begin{array}{ll}\text { K154 } & 15 \\ & 5 \text { pin } 180^{\circ} \text { Oin sockel, clip fix } \\ \text { K155 } & 100 \\ \text { metres thin flex }(50 \times 2 \mathrm{~m}\end{array}$

$\begin{array}{lll} \\ K 157 \\ 12 & 15 \\ \text { Kin gil } \\ \text { KIL-QIL IC sockels }\end{array}$
K158 6 SPCO centre of white rocker
$K 150200.3 W$ presels 500 kV with knurled
$K 161200 \cdot 3 W$ presete 2 ks
K162 $200.3 W$ presets $2 M 5 \mathrm{~V}$ with knurled
K183 400 15R IW 5\% preformed vert mnto K184 $50 \begin{aligned} & \text { resistors } \\ & 22 p F \\ & 2 \%\end{aligned}$ silver mica caps
$\begin{array}{lll}\text { K164 } & 50 & 22 \mathrm{pF} \\ \text { K165 } & 20 & \text { Sub-miln reed miltch cape } \\ \text { Sudy }\end{array}$
K1 $86100{ }^{3} 300 \mathrm{pF} 630 \mathrm{~V}$ polyeater PC mntg
K1 6650 AA144 diode pretormed as above
K169 308 V 2400 m W zener as K187
$K 1712511 \mathrm{~V}$ do
K173 12 1-5 $\mu \mathrm{F} 25 \mathrm{~V}$ tant bead caps K174 $120.47 \mu \mathrm{~F} 25 \mathrm{~V}$ tant bead capa $K 175100$ 2000pF $27 \% 125 \mathrm{~V}$ p/e caps K176 24 1SOR 0.1 W vert presete $K 17724$ 470R 0.1 Whorlz preset K178 24470 R 0.1 W vert prenef K179 242 k 0.1 W horiz presets K180 24 2k 0.1 W vert presets
K181 242 k 20.1 W horiz presete
K1ss 200 IR iW CF preformed R's for Horiz mntg, 15 mm centres K187 18 PEs030 NPN SI TG92 transistors. K188 18 FSM PNP S1 TO92 transistore Vce 20 V , hte 300
K189 30 1N859 coov 0.4A diodes, pre-

CONTINUE THEIR SPECIAL OFFER

$$
\begin{aligned}
& \text { Min: } 20 \\
& \text { ultinneter } \\
& \text { only f19.50 } \\
& \text { INCLUSIE OF Post } \\
& \text { PACKAGE V.A.t. }
\end{aligned}
$$

The Mini 20 is an ideal instrument for the constructor. This special offer is a wonderful opportunity to acquire an essential piece of test gear with a saving or nearly $£ 10$ on the normal retail price.
The 26 ranges cover all likely requirements. Operation is straight-forward, just turn the selection switch to the required range.

RANGES

d.c.V: $100 \mathrm{mV}, 1 \mathrm{~V}, \mathbf{1 0 V}, \mathbf{3 0 V}, 100 \mathrm{~V}, \mathbf{3 0 0 V}, 1000 \mathrm{~V}$.
a.c.V: 10V, 30V, $100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$.
d.c.I: $50 \mu \mathrm{~A}, 1 \mathrm{~mA}, 10 \mathrm{~mA}, 100 \mathrm{~mA}, 1 \mathrm{~A}, 3 \mathrm{~A}$.
a.c.I: $3 \mathrm{~mA}, 30 \mathrm{~mA}, 300 \mathrm{~mA}, 3 \mathrm{~A}$.

Ohms: 0-1k $\Omega, 10 k \Omega, 100 k \Omega, 1 \mathrm{M} \Omega$.
Movement protected by internal diode and fuse.
The instrument is supplied complete with case, leads and instructions.

For details of this and the many other exciting instruments in the Alcon range, including multimeters, component measuring and electronic instruments please write or telephone:

SUPERSOUND 13 HI-FI MONO AMPLIFIER A superb solid state audio amplifier. Brand new com ponents throughout. 5 silicon transistors plus 2 power Output approx. 13 watts r.m.s. into 8 ohms. Frequency response $12 \mathrm{~Hz}-30 \mathrm{KHz} \pm 3 \mathrm{db}$. Fully integrated preamplifier stage with separate Volume. Bass boost and Trebic cul controls. Suitable for $8-15$ ohm speakers nput for ceramic or crystal cartridge. Sensitivit and tested. with knobs, escutcheon panel ready buil output pluss. Overall size 3^{7} high $\times 6^{\circ}$ wide $\times 7^{\circ}$ deep. AC 200.250 V . PRICE 118.4 HARVERSONIC MODEL P.A. TWO ZERO An advanced solid state general purpose mono ampliGram. elc. Features 3 individually controlled inputs (each input has a separate 2 stage pre-amp). Input i 15 mV into 47 k . Input 2. 15 mV into 47 k (suitable for use with mic. or guitar etc.). Input 3. 200 mV into 1 meg suitable for gram. tuner, or tape etc. Full mixing facilities with full range bass \& treble controls. All inputs plug into standard jack sockets on front panel. Output socket on rear of chassis for an 8 ohm or 16 ohm peaker. Output in excess of 30 watts music power. Very atractively finished purpose built cabinet made from black vinyl covered sicel, with a brushed anodised $200-240$ volts. Size approx is in wide $\times 5$ in high tin decp. Special price $£ 29 \cdot 00+£ 3 \cdot 25$ carriage and packing. "POLY PLANAR" WAFER-TYPE, WIDE RANGE PLELYPLANAR WAFER-TYPE. WIDE RANGE ELECTRO-DYNAMIC SPEAKER
handling 20W r.ms. (40w only. Response $40 \mathrm{~Hz}-20 \mathrm{kHz}$. Can be mounce 8 ohm ceilings. walls, doors, under tables. etc., and used with Or without baffe. Send S.A.E. for full details. Only $£ 9 \cdot 20$ each + p. \& p. (one $£ 1 \cdot 40$, two $£ 1-80$). A brand new 22 transistor hi-fi stereo amplifier of superior design made hy a well-known British manufacturer, for a now cancelled contract order. The unit is supplied new \& tested on a printed circuit panc size approx. $6 t^{\prime \prime} \times 4 t^{\prime \prime}$
discrete components. Brief $1 t^{\prime \prime}$ h. using high grade
specification: 15 watts r.m.s. per channel O / P into 8 ohms. (o/p stages fully protected against s/c) I/P 60 mV , for ©ceramic cartridge Provision for tape i/p \& o/p. Only requires the addition of a 40 volt a 2 amp. power supply \& the bass, Creble, balance \& vol. conirol. (standard ivpes). FULL with edge connectors. Only $£ 900$ diails supplied. Price IF ORDERED WITH AMPLJFIER: 800 D \& D -2. 2 stage pre-amp for Mag. Cart. R1AA corrected Condenser $£ 4 \cdot 00 \div \Sigma 2 \cdot 50 \mathrm{p}$. \& p. -Set of 4 pots $\$ 2 \cdot 50$

MAINS OPERATED SOLID STATE AMFM STEREO TUNER

$200 / 240 \mathrm{~V}$ Mains operated Solid State FM/AM Stereo Tuner. Covering M.W. A.M.
KHz
5HF/FM
$88-108$

Built-in Ferrite rod aerial for M.W. Full AFC and $A G C$ on $A M$ and $F M$. Inderator Buil in Preampo Beacon Lamp Indicator. Built in Pre-amps with variable output $600 \mathrm{~m} / \mathrm{v}$ R MS into by pre-set control. Max o/p Voliage Will match almost any amplifier Size $84 \sim w \times{ }^{\prime \prime}$

91 "d approx
 LIMITED NUMBER ONLY a $1 \mathbf{2 9} \cdot 00+£ 2 \cdot 60$ P. \& P

 10/14 WATT HI-FI AMPLIFIER KITA stylishly finished mono-
ural amplifier with an EL84s in push-pull. Super reproduction of both music and speech with negligible hum. Separate inputs for mike and gram allow records and announcements to follow each other. Fully shrouded section wound match $3-15 \Omega$ speaker match $3-15 \Omega$ speaker and 2 independent p ontrols. and separate bass and treble controls are provided giving good lift and cut Valve line-up 2 EL84s. ECC83. EF86 and EZ80 rectifier. Simple instruction booklet. 50p + SAE (Free with parts) All parts sold separately. ONLY $\mathbf{5} 18 \cdot 40$, P. \& P £3-20. Also available ready built and tested $\mathbf{2 2} 50$. P. \& P. $£ 3 \cdot 20$

STEREO DECODER MK.I

SIZE $1 \frac{1}{2}^{*}$ * $2 \frac{1^{*}}{}{ }^{*} \times \frac{1}{*}^{*}$ ready built. Pre-aligned and cested for $10-16 \mathrm{~V}$ neg. earth operation. Can be fited to almost any FM VHF radio or tuncr. Stereo beacon light can be fitted if required. Full details and instructions supplied. $\$ 7.00$ plus 30 p. P. \& P. Stereo beacon light if required $40 p$ exira.
Mullard LP1159 RF-1F module 470 kHz - 2.50 P. \& P. 50n Fult specification and connection details Supplied. Pse VHF FM Tuner Head covering 88-108 MHz. 10.7 MHz I.F. nutput. $7.8 \mathrm{~V}+$ earth. Supplied geared $F M$, wang and $323 \mathrm{PF}+323 \mathrm{PF}$. M precision gang only $\mathrm{E} .40+$ P. \& P. $60 . \mathrm{D}^{+}$
STERE $\bar{O} \bar{A} \bar{G} \overline{\mathrm{O}} \overline{\mathrm{T}} \overline{\mathrm{C}}$ PRE-AMP. Sens 3 mV in for 100 mV out. 15 to 35 V PRe eamP. Sens. 3 mV in for 20 Hz to 20 KHz . Input impedance 47 K . Size $1 \mathbf{1}^{*}$ 20 Hz to 20KHz. Input impedance 47 K . Size $11^{\text {m" }}$

HARVERSONIC SUPERSOUNO 10
10

STEREO AMPLIFIER KIT

A really first-class Hi-Fi Stereo Amplifier Kit. Uses 14 transistors including Silicon Transistors in the first five stages on each channel resulting in even lower noise Bass. Treble and two Volume Controls. Suitable for use with Ceramic or Crystal cartridges. Very simple to modity to suit magnetic cartridge-instructions in cluded. Output stage for any speakers from 8 to 15 ohms. Compact design, all parts supplied including drilled metalwork, high qualitv ready drilled printed circuit board with component identifation ciearly marked, smart brusined anodised aluminium front panel with matching knobs, wire. Solder. nuts, boitsno extras to buy. Simple step by step instructions proud of Brief specification: Power autput: 14 wats r.m.s. per channel into 5 ohms. Frequency response. $\pm 3 \mathrm{~dB} \quad 12-30.000 \mathrm{~Hz}$ Sensitivity: better than 80 mV into $1 \mathrm{M} \Omega$: Full power bandwidth: $\pm 3 \mathrm{~dB} \quad 12-15.000 \mathrm{~Hz}$. Bass boost approx. to $\pm 12 \mathrm{~dB}$. Treble cut approx, to -16dB. Negative feedback 18 dB over main amp. Power requirements 35 v . at $1 \cdot 0$ amp.
Overall Size $12^{\prime \prime} \mathrm{w} . \times 8 \mathrm{~d}^{\circ} \mathrm{d} . \times 2$ " $^{\prime} \mathrm{h}$.
Fully detailed 8 page construction manual and parts list free with kit or send 50 p plus large S.A.E. AMPLIFIER KIT \quad. $£ 14.95$ P (Magnetic input components 33p extra)
POWER PACK KIT POWER PACK KIT
CABINET
£6. 20 P. P. £2.00 SPECIAL OFFER-only $£ 25 \cdot 80$ if all $\mathbf{3}$ items
ordered at one time plus $£ 3-00 \mathrm{p}$ p. \& D.
Also avail. ready built and tested $£ 32 \cdot 20$. P. \& P. £3•00. HARVERSONIC STEREO 44
A solid state stereo amplifier chassis, with an output of $3-4$ watts per channel into 8 ohm speakers. Using the buift in short term thermal overload protection. Alf components including rectifier smoothing capacitor. fuse. tone control, volume controls, 2 pin din speaker sockets \& 5 pin din tape rec./play socket are mounted on the printed circuit pancl. size approx. 91" $\times 21^{*} \times 1^{\text {² }}$ max. depth. Supplied brand new \& tested, with knobs. orushed anodised aluminium 2 way escutcheon (to allow the amplifier to be mounted horizontally or vertically) at only $£ 10.40$ plus 90 p P. \& P. Mains transformer with an 70 p P P . All prices and specifications correct at time of press and subject to alteration without notice.
PLEASE NOTE: P. \& P. CHARGES QUOTED
APPLY TO U.K. ONLY. SEND SAE WITH ALL APPLY TO U.K. ONLY. SEND SAE WITH ALL

A rew minutes from South Wimbledon Tube Station. Open 9.30-5.30 Mon. zo Fri, 9.30
Mon. to Fri, 9,30-5 Sot. Closed Wed

EDITOR

f. E. BENNETT

ASSISTANT EDITOR

B. W. TERRELL B.Sc.

PRODUCTION EDITOR

D. G. BARRINGTON

TECHNICAL SUBEDITOR

s. E. DOLLIN B.Sc.

ART EDITOR

R. F. PALMER

ASSISTANT ART EDITOR

P. A. LOATES

TECHNICAL ILLUSTRATOR

D. J. GOLDING

EDITORIAL OFFICES

Kings Reach Tower, Stamford Street,
London SE1 OLS
Phone: 01-281 0873

ADVERTISEMENT MANAGER
 R. SMITH

Phone: 01-281 6071

REPRESENTATIVE

R. WILLETS

Phone: 01-261 686

CLASSIFIED MANAGER

C. R. BROWN

Phone: 01-261 5762

MAKEUP AND COPY

DEPARTMENT
Phone 01-261 6615

ADVERTISEMENT OFFICES

KIngs Reach Tower
Stamford Street,
London SE1 OLS

Projects...Theory...

and Popular Features ...

HOME AND SAFE

One of the most sensible and valuable tasks the constructor can apply himself to (if he has not already done so) is the making of a burglar alarm systerm. The need for such a form of protection for our homes is all too clean
In presenting this Burglar Alarm System we believe the whole range of possibilities has been examined and a system devised that should give maximum security with minimum likelihood of false alarms. The electronics are but part of the story of course and the handyman will have plenty of scope to exercise his capabilities in the installation of sensors and wiring.

TWO NEW SERIES

The more you know about the subject the more fun and reward you can extract from it. And this certainly applies to the commonplace "discretes". Our four-part series, Discrete Semiconductors Explained takes a thorough look into these devices, ranging from diodes to triacs. It will provide useful data for all constructors regardless of level of experience.

We welcome the newcomers to electronics who are constantly joining the ranks of Everyday Electronics regular readers. To give them a helping hand we introduce a strictly down to earth treatment of the subject in the short series Back To Basics.

MICROS IN SCHOOLS

The government is funding a scheme to put a microcomputer into every secondary school by the end of 1982. The extra $£ 4$ million of public expenditure incurred is a welcome and necessary investment for the future.
The decision to restrict the choice to British made microcomputers is understandable. Whether the Department of Industry was wise in limiting its choice to just two computers is more debatable, particularly since they have not included the cheapest of all British microcomputers, the Sinclair ZX81.
Some schools will not be able to afford the $£ 130$ or $£ 425$ to meet the half-cost of the selected models, from Acorn and Research Machines respectively. The ZX81 costs half the price of the cheaper of these two, and even less in kit form.

The Department of Industry could have been more imaginative. A microcomputer in kit form would offer centain advantages, over and above mere cost, even if not fully meeting the official specification. Though not essential in order to punch a computer keyboard the practical work in assembling a micro would be a worthwhile experience for any young person.

Our july issue will be published on Friday, June 19. See page 395 for decals.

Readers' Enquiries

We cannot undertake to answer readers' letter requesting modifications, designs or Information on commercial equipment or subjects not published by us. All letters requiring a personal reply should be accompanied by a stamped self-addressed envelope.

We cannot undertake to engage in discussions on the telephone.
Component Supplies
Readers should note that we do not supply electronic components for buliding the projects featured in EVERYDAY ELECTRONICS, but these requirements can be met by our advertisers.

[^1]CONSTRUCTIONAL PROJECTSBURGLAR ALARM SYSTEM Triple protection for the home by H. G. Field380
DARKROOM TIMER Visible counting signal for photographic processing by T. R. de Vaux-Balbirnie 387
TAPE AUTO START Sound switch for battery operated recorders by F. G. Rayer 396
AUDIO TEST SET Part 2: Using the test set for checking t.h.d. by F. C. Judd 400
TREMOLO UNIT Sounds from the sixties by M. G. Argent 410
LOOP AERIAL CRYSTAL SET Low cost listening by R. A. Penfold 417
GENERAL FEATURES
EDITORIAL Home and Safe; Two New Series; Micros in Schools 378
DISCRETE SEMICONDUCTORS EXPLAINED Part 1: The Diode by J. B. Dance 390
READERS' LETTERS Your news and views 402, 429
FOR YOUR ENTERTAINMENT Video battle, Opto-electronic analysis by Barry Fox 403
INTRODUCTION TO LOGIC Part 2: Octal, Binary and Hexadecimal systems by J. Crowther 404
BACK TO BASICS Part 1: The electric circuit by George Hylton 406
EVERYDAY NEWS What's happening in the world of electronics 408
COUNTER INTELLIGENCE A retailer comments by Paul Young 413
RADIO WORLD Learning Morse, Professional designers by Pat Hawker G3VA 414
SQUARE ONE Beginners' Page: Components-Resistors 422
SHOPTALK Product news and component buying by Dave Barrington 425
SEMICONDUCTOR NEWS Some recently introduced discrete and i.c. devices 426
CIRCUIT EXCHANGE A forum for readers' circuit ideas 429

Back lasues

Certain back lseues" of EVERYDAY ELECTRONICS a avallable worldwide price 80 p Incluslve of postage and packing per copy. Enquiries with remittance should be sent to Post Salee Department, IPC Magaxines Ltd., Lavington House, 25 Lavington Btreet, London SE1 OPF. In the event of non-availability remittances will be returned. - Not available: October 1978 to May 1974.

Bindere

BInders to hold one volume (12 lssues) are avallable from the above address for C4. 40 (home and overseas) inclusive of postage and packing. Please state which Volume.

Subscriptions

Annual subscription for delivery direct to any address in the UK: £10.00, overseas: £11-00. Cheques should be made payable to IPC Magazines Ltd., and sent to Room 2815 KInge Reach Tower, Stamford Street, London SEl OLS.

- IPC Magaxines Limited 1011. Copyright in all drawings, photographs and articiea published in EVERYDAY ELECTRONICS is fully protected, and reproductions or imitatlone In whole or in part are expresely forbidden.

BY H.G. FIELD

Statistics show that burglary and housebreaking are increasing at an alarming rate, so it is the wise householder who takes precautions and protects his home and its contents.
The obvious first step is to fit locks and bolts to all possible points of entry, such as doors and windows. These will, if in the locked position, make it difficult for the would-be intruder to gain access to the premises. In many instances their attempts, whether successful or not, are unnoticed by the occupants or their neighbours. What is required therefore is a means of drawing attention to the fact that someone may be making a forced entry, and certainly if they have succeeded.

The Burglar Alarm System featured here provides many of these requirements when all possible means of access are made part of one of the three security loops incorporated in the design.

PRINCIPLE OF OPERATION

The system requires the fitting of a switch of some sort (see later) to doors and windows to be guarded. The switch can be either an open or a closed type that changes its state (from closed to open or vice versa) when the door or window is opened. A switch change for only a brief instant is enough to cause the alarm to latch on.

The closed loop is ideal for doors and windows, whereas the parallel loop is suitable for pressure mat type switches. These are normally open switches which close when pressure is applied, such as results when a person stands on the "mat". These are convenient if one does not wish to become involved in embedding switches in the woodwork.

AUDIO LOOP

These features are common to other loop alarm systems published and available commercially, but the third loop we believe is original. This is an "audio loop". Here, microphones are used as sensors, and these are glued to window panes. These will sense any disturbance of the pane/frame that would be produced by a person attempting to break-in by breaking the glass or forcing the frame. The disturbance will, cause the alarm to latch on. Microphone amplifier sensitivity can be adjusted to suit the en. vironment by means of a single control on board the main unit.

When the alarm is triggered it remains on until reset by a switch on the front panel. An internal local alarm in the form of a solid-state bleeper is included as well as an outlet for a power bell. The latter can be sited in the eaves of the building. d.c. power supplies for the circuitry and alarms are derived from the a.c. mains.

Short term exit and entry alarminhibit switches are included to enable the user to leave or enter the premises through a "protected" door without triggering the alarm but leaving it in a ready condition after a delay of about 23 seconds. This should be ample time for anyone entering or leaving the premises.

CIRCUIT DESCRIPTION

The complete circuit diagram for the Burglar Alarm System is shown in Fig. 1. It consists of three distinct sections: (1) microphone amplifier channel, (2) alarm control/latch, (3)

Abstract

^[]

$+$

Fig. 1. The complete circuit for the Burglar Alarm System. T2 has electrostatic screen (not shown).
power supply. We shall deal with each of these in turn.

The microphone channel consists of a two-stage amplifier composed of TR1 and TR2 and local components. These are connected in a common emitter configuration each with potential divider bias and capacitively coupled by C2.

Signals generated in the microphones are inductively coupled through T1 to the amplifier. VR1 across Tl secondary acts as a gain control, the output being from the wiper which is coupled to the first stage via d.c. blocking capacitor Cl . The amplified a.c. signal appears at TR2 collector where it is capacitively coupled (C3) to D1 and D2.

The arrangement of these diodes is two-fold, to rectify the signal from TR2 collector and to reference it to 0 V . Thus for no microphone signal the output is 0 V . A disturbance in the vicinity of the microphone will cause the output at D2 cathode to rise; this reaches the trigger input, the gate of CSR1 to trigger the alarm.

R8 and C4 ensure that the alarm is not triggered when the a.c. mains is first switched on. Before switch on, C4 will be discharged so TR2 emitter potential will at switch on be close to the positive supply rail-and so be off, dropping towards the 0 V rail as

C 4 charges up. With value for C 4 and R8 as shown, TR2 turns on approximately 1 to 2 seconds after a.c. mains is switched on. R1 and C5 decouple the amplifier positive supply from the +12 V rail.

The alarm control which includes exit and entry delay is seen in the middle tier of Fig. 1.

The device which is responsible for turning on the bleeper and alarm bell is thyristor CSR1. The path between anode and cathode in CSRl is effectively open circuit until it receives a positive voltage at its gate terminal, whereupon anode to cathode becomes a short circuit. This acts therefore like a switch causing power to be applied to WD1 and RLB. The latter through its contacts supplies a d.c. voltage to the bell connected at TB1/8 and TB1/9.

Only a brief pulse is required at CSR1 gate to cause this "switch" to latch on. It may be turned off by briefly interrupting the current flow
through the device and this is the function of S3 which cancels the alarm.
A positive potential can reach CSR1 gate from the microphone amplifier output described above, and from the output of unijunction TR5.

An output pulse from TR5 will result if the emitter reaches a certain threshold potential. This can be achieved by C8 charging up through R16 and D5. With loop switches in the closed and open positions as shown, TR3 is turned fully on and therefore its collector potential is close to 0 V . This prevents C8 from charging through D5.

If a series loop switch is opened or a parallel loop switch is closed (as would result from a door or window being opened), TR3 is turned off, effectively being out of circuit. C 8 is then able to charge up through D5, causing the unijunction to emit a pulse from bl resulting in CSR1 being triggered on.
Resistors

R1	$2 \cdot 2 \mathrm{k} \Omega$	R8	$2.2 \mathrm{k} \Omega$	R15	120Ω
R2	100k Ω	R9	47k	R16	47k
R3	270k	R10	$100 \mathrm{k} \Omega$	R17	100』
R4	3.3k	R11	$100 \mathrm{k} \Omega$	R18	$560 \Omega 2$
R5	$100 \mathrm{k} \Omega$	R12	470Ω	R19	$22 \Omega 2 \mathrm{~W}$
R6	$270 \mathrm{k} \Omega$	R13	$1 \mathrm{k} \Omega$		
R7	$2 \cdot 2 \mathrm{k} \Omega$	R14	2208		
	tW car		exc		

Capacitors

C 1	$2 \mu \mathrm{~F} 16 \mathrm{~V}$ elect.
C 2	$2 \mu \mathrm{~F} 16 \mathrm{~V}$ elect.
C 3	$2 \mu \mathrm{~F} 16 \mathrm{~V}$ elect.
C 4	$100 \mu \mathrm{~F} 16 \mathrm{~V}$ elect.
C 5	$220 \mu \mathrm{~F} 16 \mathrm{~V}$ elect.
C 6	$47 \mu \mathrm{~F} 16 \mathrm{~V}$ elect.

$$
\begin{array}{ll}
\text { C7 } & 100 \mu \mathrm{~F} 16 \mathrm{~V} \text { elect. } \\
\mathrm{C} & 0 \cdot 47 \mu \mathrm{~F} \text { polyester } \\
\text { C9 } & 0 \cdot 1 \mu \mathrm{~F} \text { polyester } \\
\mathrm{C} 10 & 470 \mu \mathrm{~F} 25 \mathrm{~V} \text { elect. } \\
\text { C11 } & 470 \mu \mathrm{~F} 50 \mathrm{~V} \text { elect. }
\end{array}
$$

Semiconductors
D1-D5 1N4148 silicon (5 off)
D6 BZX61 or similar 12V 1.3W Zener diode
TR1-TR4 BC107 silicon npn (4 off)
TR5 2N1671B unijunction
CSR1 BTX18-100 or any thyristor rated in excess of 30 mA 12 V

Miscellaneous

S1	single-pole key operated type
S2	push-to-make momentary action
S3	push-to-break momentary action
S4	mains on-off toggle
RLA	700 ohm reed operating coil and combined magnetic reed switch
RLB	with normally open contact miniature open 6 V relay, 410
	set or normally open contacts
T1	audio type KF2702PCB, $6 \cdot 3: 1,25$ ohm primary/1 kilohm secondary
2	mains primary/27 volt 1 amp secondary with screen (KF2700)
LP1	panel mounting mains neon
TB1	2A screw terminal block 11 -way
TB2	2A screw terminal block 3-way Se
WD1	miniature solid state 12 V d.c. bleeper
WD2	35 V d.c. bell (main alarm) 6in diameter
FS1	800 mA 20 mm (
FS2	250 mA 20 mm
VR1	1 kilohm standard horizontal preset page 425
MIC1-M	Post Office earpieces, moving armature type 4 T (6 0ff) page 425

MIC1-MIC6 Post Office earpieces, moving armature type 4T (6 off)
Stripboard: 0.1 inch matrix, 38 strips (including 4 unpunched) $\times 91$ holes; chassis mounting fuseholder or clips for FS1; panel mounting fuseholder for FS2; aluminium or mild steel for chassis; plastic guides-Swish curtain track, 310 mm (2 off); double-sided Veropins; 4BA fixings and solder tag; rubber grommets (2 off); sufficient length of bell wire for loop switches and microphones; sufficient length of cable for alarm bell; case.

Series loop switches: these should be normally open types which are in the closed position when the guarded entrance is shut. Suitable switches are micro switches and reed/magnet. Quantity as required.
Parallel loop switches: these should be normally open types if not fitted to doors or windows but normally closed types if they are, where when the entrance is "closed", they would be held open. Suitable switches are pressure mats, microswitches, and reed/magnet where the reed is a changeover type. Quantity as required.

C8 can also be inhibited by the closure of RLAl, which is part of the exit/entry delay circuitry. TR4 is normally off, so RLA is not energised. When S1 or S2 is pressed, TR4 is turned on and capacitors C6 and C7 charge up to +12 V . This results in RLA1 contacts closing, holding D5 anode at 0 V .

TR4 is held on after the switch is released due to the charge on C6 and C7. This charge leaks away through R10, R11 and the base of TR4 and is sufficiently discharged after about 23 seconds resulting in TR4 switching off and RLA being de-energised. During this period the opening and closing of the loop switches is ineffective. The microphone loop, however, remains active.
The d.c. power supply is derived from the a.c. mains via step down transformer T2, full-wave rectified by diode bridge D7 to D10 to provide a 40 V peak. Quiescent current voltage drop across R 19 leaves about 35 V d.c. smoothed by Cll. R18 and Zener D6 provide a stabilised +12 V for the alarm control circuitry.

COMPONENT BOARD

Most of the components are mounted on a piece of 0.1 in matrix stripboard size 34 strips $\times 91$ holes. This is fitted into two plastic guides (Swish curtain rail in fact) and held together by two metal chassis. One chassis accommodates the mains transformer and the other a length of screw terminal block for connection to the alarms and remote switches, see photographs.

This arrangement is by no means essential and constructors may alter this to suit their requirements.

Prepare the board by making the necessary breaks on the underside and the four fixing holes according to Fig. 2.

Relay RLB is mounted somewhat unconventionally, being upside down. Fixings on the usual top of the relay are used to bolt RLA to a small square of Paxolin (any insulating material will do) and this in turn is bolted to the board. Connection tags are now uppermost.

A metal heatsink for D6 is shown in the drawing and photographs which is bolted to the board via the stud fixing on this device. Connection to the cathode is through a solder tag fitted beneath the fixing nut. The

Fig. 3. Construction details for the two chassis pieces required in the prototype.

Fig. 4. Wiring up of mains input components on the larger chassis. Note that the two wires feeding through the grommet go to stripboard locations C1 and C7.
device used by the designer is rated at 20 watts, but a lower rating as specified in the component list is sufficient and much cheaper.

There are two connections from the underside of the board to off-board tags on RLB and D4. Double sided Veropins are ideal for this type of connection.
The author used thin strips of white tape to segregate the various sections on the component board. This we feel is a good idea as it allows construction within these areas to be checked more easily. They will also prove to be an aid during assembly.
Resistors R18 and R19 should be mounted so that their bodies are about 5 mm above the board to aid ventilation. Short ceramic pillars were used to protect the leads of these components on the prototype.
The wattage ratings of R18 and R19 as used by the author are 7W and 2W respectively and these have been drawn as such in Fig. 2, but 2 W for each should be adequate and are specified in the component list.

One component requiring care when positioning and soldering is the bridge rectifier. The four leads of this device are connected to adjacent tracks so this area especially should be viewed closely for solder bridges.

Order of construction is unimportant apart from the general rule of leaving semiconductors until last. Construction in five sections on the board would seem to be a good idea.

Wiring from S2 and S3 to the board has been drawn as built using wire bridges, but the leads could be soldered directly to the board, or Veropins used instead. Attach short lengths of lead to reach each of the 11 terminal block positions.

CHASSIS

Details of the chassis are given in Fig. 3. These are dimensioned to suit the component board size specified and plastic guides. Several pieces of channelled rubber were used to hold and support the board in the plastic track. The two bolts holding the terminal strip to the chassis should be long enough to pass through the board as well. Spacers between board and chassis produce a very secure fixture.

An end panel to hold some of the power supply components is required, but its size will be determined by the dimensions of the chosen housing for the unit. The wiring of the a.c. mains side of this section on its chassis with end panel is shown in Fig. 4.

One other panel of some description may be required to hold S2, S3 and the bleeper. The latter is useful in setting up and testing when you would not want the main alarm to sound. The connection to this external alarm bell must be made using heavy gauge wiring to reduce the voltage drop along this d.c. line.

BURCLAR ALARM SYSTEM

Fig. 5. One method of wiring to a microphone in the audio loop fitted to a swing window.
Fig. 6. Fitting a lever type microswitch to a door frame.
Fig. 7. Using a microswitch with a sash window.
Fig. 8. Cross section of a casement window fitted with a microswitch.
Fig. 9. A reed switch and magnet fitted in place on a door frame and door.

TESTING

With the unit completed according to Figs. 2 and 3, the circuitry should be checked out before proceeding with the installation of the loop switches and microphones.

Connect a normally closed pushbutton switch across TB1/6 and TB1/7 to simulate the series loop and a normally open switch across TBl/5 and TB1/6 to simulate the parallel loop. Connect WD1 (TB1/1 and TB1/2) but not WD2 at this stage.

Connect a single microphone across TB1/10 and TB1/ll with VR1 set fully anticlockwise. The exit delay and alarm cancel should already be connected. Plug in to the mains and switch on at S4. Nothing should happen, apart from the neon lighting up. Tap the microphone as VR1 is turned clockwise until WD1 is heard. Press alarm cancel to mute WDl.

Now connect a voltmeter across TBl/8 and TB1/9 (alarm bell position) and tap the microphone again to turn on WD1 agaìn. About 35 volts d.c. should be read on the voltmeter. Press the alarm cancel switch to mute WD1 and read $O V$ on the meter.
The voltmeter can now be replaced by the bell and the test repeated. Remove the bell and microphone after this test.
Press the switch across TB1/6 and TB1/7 (series loop) to cause WD1 to sound. Release the switch and the bleeper should continue to sound until S3 is pressed. Repeat with the switch across TB1/5 and TB1/6 (parallel loop).

DELAY SWITCHES

Now press the exit delay switch followed by either the series or parallel loop switch being repeatedly pressed. No sound should be heard from WD1 until after about 23 seconds when operation of either of the loop switches should cause the alarm to trigger on and the bleeper to sound. This verifies correct operation of the exit delay facility.

Connect a wire to TB1/l and after touching the other end briefly on TB1/2 repeatedly press the series or parallel switch. Once again no sound from WD1 should be produced until after about 23 seconds when operation of either loop switch will trigger the alarm on. This verifies correct operation of the entry delay facility.

It only remains to install the loop switches and microphones in the house and connect these to the main unit, and successfully repeat the above tests with these in place to complete the alarm system.

MICROPHONES

The "microphones" used by the author were in faot Post Office telephone earpieces type 4T. These are

Plan view of the component board. White tape has been used to segregate circuit functions which could prove useful in construction.
moving iron transducers having an impedance of 150 ohms at 1000 Hz (25 ohms d.c. resistance). It was envisaged that six of these will be required in a typical house. This gives a total parallel impedance of 25 ohms and T1 has been chosen to suit. The number of microphones used is not critical.
These need to be fitted to the window pane, see Fig. 5. The easiest method is to use double-sided Sellotape although this may not stand up to situations where there is heavy condensation. In these cases an epoxy type adhesive should be used. It is not thought that self-adhesive pads will be suitable as these will help to cushion the disturbance.
A problem arises with microphones fitted to swing (or sash) windows. Ample spare lead will need to be made available to allow the windows to be opened. Alternatively, a pair of contacts will need to be made such as those seen in Fig. 5. These are shown with a casement window. Strips and screw head contacts should be transposed for sash windows.

LOOP SWITCHES

The criteria for any of the loop switches is that they can be made to open (or close) when a door or window is opened. Almost any type can be used including toggle, push button, rocker, microswitch, reed/magnet, and even home made versions.

The most suitable switches however are the microswitch and reed/magnet combination. We shall take a closer look at installation of these two types.

The microswitch is operated by pushing down a small button on one of its faces, being flush when fully depressed. Operation of the button can be direct or by an incorporated lever or roller. The lever type is most suitable.
These should be fitted below the lower hinge on a door frame and embedded into the frame as shown in Fig. 6. When the door closes, its edge bears down on the lever which depresses the button to operate the switch contacts.

Usually, microswitches have a single pole changeover contact arrangement, which allows it to be
connected in either the series or parallel loop.

Microswitches are also suitable for fitting to sash windows where they are embedded in the frame, see Fig. 7.

With casement windows, the microswitch should be embedded in the fixed framework directly opposite and furthest from the hinged side of the frame, see Fig. 8.
Reed switches are turned on and off by means of a magnetic field, in this case by the field from a small bar magnet. A typical arrangement for a door is seen in Fig. 9. The reed switch is embedded in the frame below the lower hinge, and a magnet fitted in the door edge in a position so that when the door is fully closed the magnet causes the reed contacts to close.

This type of reed is suitable for including in the series loop only. Reeds can be obtained with a single-pole changeover contact arrangement which would then allow the switch to be used in the parallel loop if desired.

The advantage of reed switches over the microswitch is its much smaller size and that both reed and magnet can be embedded below the surface of the frame and door, filled in and painted to be invisible. The reed/magnet can be used to replace the microswitches shown in Figs. 7 and 8.
Finally, for windows, the home made contacts shown in Fig. 5 can be used as switches for the series loop by simply putting a link wire or strip across the two screws on the swinging frame.
No doubt there are countless other ways and means of fitting and realising these switches both with commercially available and home made versions that the constructor will employ to suit individual requirements. The above details, however, should serve as a guide to what is required.

The entry delay switch for obvious reasons needs to be situated outside the house, on the front door for example. This therefore should be a key operated switch.
Pressure mats have normally open contacts until pressure is applied and therefore are suitable for the parallel loop.

Several designs for darkroom timers have been published in the past. These enable the user to select a given exposure time so that, when a button is pressed, the enlarger lamp is illuminated for the correct time interval.
Some sophisticated circuits also measure the light arriving at the enlarger baseboard through the negative and lens thus giving the correct exposure automatically.
For the professional and serious amateur photographer these are fine, but the present project is far simpler and should appeal to those amateurs who only require a timer occasionally.

This timer takes the form of a simple lamp flasher circuit operated from the mains. A relaxation oscillator sets a neon lamp flashing once per second. The user simply counts the correct number of flashes (which have previously been determined by trial and error) out of the corner of his eye.
With very little practice this may be done almost subconsciously so that the user is free to attend to "dodging" and other darkroom techniques which need concentration. This method of timing is certainly more relaxing than trying to see a dimly-illuminated clock and far more accurate than counting seconds by guesswork. The author can see that there could be numerous other uses for the circuit apart from darkroom work.

ACCURACY

The accuracy of timing is not particularly high and this must be borne in mind at the outset. In trials on the prototype, however, it was found perfectly acceptable for black and white photography at least. Over the short term, that is, during the same darkroom session, the rate of flashing kept accurate to one flash per minute. Over the long term it was found to be acceptably accurate providing the mains voltage did not alter appreciably.

The circuit is also sensitive to changes in mains voltage but the effect is not large. In trials, voltage changes of plus or minus 10 per cent were used and the rate of flashing kept accurate to within about 3 flashes
per minute. This was considered acceptable as mains voltage changes of 10 per cent are rare. In any case the short term accuracy is more important, and during the same darkroom session it is unlikely that the mains voltage will change much. Changes in temperature likewise have a small effect on the timings.

CIRCUIT DESCRIPTION

The circuit for the Darkroom Timer is shown in Fig. 1. Mains current flows through the fixed resistor R1 then through the preset variable resistor VR1. From here it flows through the diode Dl which rectifies the a.c. current. This small d.c. current then charges the capacitor Cl .

A miniature neon lamp is connected across Cl in series with a limiting resistor R 2 . The voltage across the capacitor rises slowly and when about 80 volts is reached the gas in the tube "strikes" giving a red glow. The voltage soon falls below a certain threshhold value as Cl discharges and the neon extinguishes. The whole cycle then repeats indefinitely.
The time between flashes depends chiefly on the values of R1, VR1 and Cl . The larger these values then the greater will be the time constant. With the values given, the time will be about one second. To allow for tolerances in the values of individual components, VR1 gives some measure of control and will be set for the correct rate.

It will be noted that although the time between flashes is relatively long, the duration of the flash itself is short. This is because R2 has a small value so Cl discharges rapidly. A graph showing the voltage across Cl against time is shown in Fig. 2. It is called a "sawtooth" waveform for obvious reasons.

COMPONENTS

The choice of some of the components is important. It will be seen that R1 and VRl have much higher values than are normally encountered in electronic circuits. They are easily available, however. Although R1 was

Fig. 1. Full circuit diagram of the Darkroom Timer.

an ordinary carbon resistor in the prototype, some readers may wish to use a high stability type here with a view to perhaps improving the long term stability of the circuit.

The preset, VRI is a standard size type. It was thought that the miniature type was not up to the jobmechanically at any rate. Diode DI is a silicon diode capable of withstanding the mains peak reverse voltage that is, the maximum voltage across it in the non-conducting half cycles. This is about 350 volts. It must be remem. bered that, although the mains voltage is generally considered to be 240 volts, this is only an average figure. The peak of the a.c. waveform reaches approximately 350 volts and it is this figure which must be withstood.

Capacitor Cl must not be an electrolytic type. A good quality non-electro-

Fig. 2. Graph showing charge/discharge cycle of C 1 connected in parallel with the neon tube, LP1.

Photograph right shows top view of prototype circuit board. The mains switch is not shown in this photo but connects to the terminal block at the bottom left of the picture.

lytic capacitor must be used. It would seem that a working voltage of 80 volts would be sufficient for Cl as this is the maximum voltage developed across it before the neon strikes. This may be correct in theory but if a fault should develop preventing the neon tube from operating then Cl will charge up to peak mains voltage. This means that, once again, a component with a working voltage of at least 350 volts should be used.

MAINS SWITCH

A mains switch must be incorporated in the circuit and this should be of the double-pole type. This will ensure total isolation from the mains when the unit is switched off. Although the contacts for this switch must be rated for mains use, their current carrying capacity need only be small. A rating of 1 amp will be quite sufficient.

Take care when selecting the neon tube, LPI. This is not the usual mains panel indicator which incorporates a series resistor but the more simple miniature wide ended type without the resistor.
It is advisable to include a fuse in the circuit. If connections are made to an ordinary fused plug then a low value of fuse should be fitted. A 13 amp fuse should not be used. Despite what the man in the corner shop may tell you, it is possible to buy 1 amp plug fuses. You may have to settle for the more common 3 amp type, however. If the unit is not to be wired to a fused plug then a separate fuseholder must be wired in series with the mains live cable before the switch.

STRIPBOARD

The prototype was built on a small piece of 0.1 inch matrix stripboard 22
holes by 19 strips, and full details are shown in Fig. 3. Soldering must be carried out with care to avoid bridging between adjacent copper tracks. The strips should be broken in the places indicated using either the special tool or a small twist drill.

The neon tube is mounted on the opposite side of the circuit panel to the other components, that is, on the copper track side. When finally mounted in its case, the neon may then protrude slightly through a hole with a rubber grommet inserted in it. The grommet grips the neon and gives a neat appearance. In this way, with the back of the case removed, VRI is accessible for adjustment. The wire ends of the neon should be cut off to a convenient length and fitted with short lengths of scrap insulation removed from connecting wire.

External connections are made to the circuit by means of a 2 -way plastic screw terminal block mounted on the panel. The Live and Neutral connections should not be interchanged.

CASE

The finished project may be very small so a suitable plastics box should be chosen in which to house it. The choice of box has been left to the constructor. One hole should be drilled for the neon as mentioned previously. Another hole should be drilled in the side of the box for the mains lead. This should also be fitted with a grommet.

It will be noted that no provision for an earth connection has been made. This is not necessary as the unit is mounted in a non-conducting case. For this reason a metal case must not be used. The circuit panel must be securely mounted inside. The leads to the neon are not sufficient to support it.

Fig. 3. Stripboard layout. The mains switch, S1 may be located at any convenient position in the case. Note that the neon tube, LP1, is connected to the reverse of the board.

Underside view of the circuit board showing the neon lamp and its connections.

SETTING UP

Before connecting the unit to the mains, VRl should be set to approximately mid position. It should then be plugged in and switched on. From this point it must be remembered that the circuit panel is "live" and must not be touched. After a few seconds the neon should begin to flash regularly. The number of flashes in, say, 20 seconds may then be counted and after switching off, VR1 can be adjusted as necessary. Anticlockwise rotation will reduce its value, the flashing rate will increase.

After a while it will be found that VRl can be set to give 60 flashes per minute accurate to within one flash. It may appear that the brightness of the neon is too low under normal room lighting. Taking the unit into the darkness under normal safelight conditions will dispel any doubts. When the timing has been set to satisfaction, the back of the case should be fitted. It will probably be found necessary to adjust VR1 every now and again.

DARKROOM USE

The light from the flashing neon is not, in fact safe to bromide paper. Tests on the prototype, however, showed that no trouble would be experienced when the unit is used at normal working distances, say, more than 3 or 4 feet away. Anyone really worried about this point may do their own tests and fit a red plastic dome over the neon tube if necessary.

In exceptional cases the constructor may find that the correct timing is impossible to obtain even with VR1 set to its limit. This could happen if the true value of Cl is somewhat different to its nominal value. In this case a higher or lower value for Rl will need to be used. The higher value of Rl will produce fewer flashes per minute and vice versa.

ELECTRODES

Users will notice that only one of the electrodes flashes within the neon. This is correct as it is being used under d.c. rather than a.c. conditions. Another practical point is that, on first switching on, Cl must oharge up from zero. After that it only charges from the threshold value. This means that the unit takes three or four seconds to start flashing. It is better to leave it switched on for the entire darkroom session to avoid this inconvenience. It remains cool and consumes next to no power.

■

THis is the first of a series of articles covering discrete semiconductor components. This first part examines common types of semiconductor diodes available for many purposes. Subsequent parts of this series will cover transistors, Darlington devices, field effect and unijunction transistors, thyristors, diacs, triacs, varistors and various types of optoelectronic device.

DISCRETE COMPONENTS

What is a discrete component? As its name suggests, it is a single individual component contained in its own separate package. Discrete components are therefore essentially simple devices with only a few connections (usually two, three or four connections). Discrete components are easy to use, easy to solder into a circuit and are generally easy to test.

It is convenient to regard some components which actually contain more than a single device in each package as discrete components. For this reason this series will cover a few products of this type, such as bridge rectifiers which contain four separate diodes, and Darlington transistors which contain two transistors connected together to provide a higher gain than is provided by either of the transistors alone.

DIODES

Semiconductor diodes are one of the simplest types of semiconductor device, which, as their name implies, have only two electrodes or connections. Many diodes are specifically designed for applications in which they are required to pass appreciable current only in one direction (known as the "forward" direction), but some types of diode are used in applications in which they pass a current in the reverse direction.

The conventional symbols for a simple diode are shown in Fig. 1.1, either a full arrow or a half arrow being equally acceptable. Sometimes
the arrow or half arrow is placed in a circle to imply that the diode is encapsulated in a package, but often the circle is omitted.

FORWARD DIRECTION

The arrow in the circuit symbol for a diode shows the direction in which it will pass a conventional current easily, this direction being known as the forward direction, that is from the positive to the negative line.

A drawing of a typical small-signal glass-encapsulated diode is shown in Fig. 1.2. A coloured band or indentation or sometimes a red spot is placed near the end out of which the current flows when the diode is biased in the forward direction. Thus the arrow of the circuit symbol points towards the end carrying this coloured band or spot.

P AND N-TYPE MATERIALS

In order to understand why a semiconductor diode conducts easily only in one direction, we must consider the nature of the semiconductor materials employed in its construction. Most modern semiconductor diodes employ silicon as the semiconductor material, but germanium is used in some types, whilst other materials such as gallium arsenide are found in some diodes.

A pure or intrinsic semiconductor material is of extremely high purity. It contains relatively few charge carriers which are able to move and thus carry a current; such intrinsic semiconductor materials therefore pass little current and have a high resistivity. Many charges are present as the electrons and positive nucleii in such a material, but few are free to move unless the temperature is quite high.

If such an intrinsic material is doped by the addition of a very small percentage of an element such as arsenic, the arsenic atoms provide negative charge carriers (electrons) so that the conductivity of the material is greatly increased. Such a doped material is known as an n-type
material, since conduction occurs by means of the movement of the negative electrons.

In an n-type material, the mobile electrons can be shown as in Fig. 1.3, whereas the positive charges associated with them are encircled to show that these positive charges cannot move. Any material must contain roughly equal numbers of positive and negative charges or very high voltages would be developed.

If, however, an intrinsic material is doped with an element such as boron whose atoms readily accept an electron, an electron from a neighbouring atom can easily jump into the

Fig. 1.1. The symbols which can be used to represent a semiconductor diode.

Fig. 1.2. A small signal diode with polarity marking.
boron atom. This creates a vacancy or a hole in the neighbouring atom which can in turn be filled by an electron from its neighbour. Thus a number of electrons actually move in succession, but it is convenient to think of the movement of the hole rather than of many electrons.

The hole moves in the opposite direction to the electrons and therefore behaves as a positive charge carrier. Such a doped material can be represented as in Fig. 1.4 where the mobile positive holes move amongst the associated fixed negatively charged atoms which must be present for the material as a whole to be electrically neutral.

In such a material conduction occurs by the movement of the positively charged holes (or, at least, this is the most convenient way of thinking about it), and it is known as a p-type material.

JUNCTION DIODE

A junction diode consists of a piece of p-type material and a piece of n-type material brought together in a single crystal of the semiconductor material.

When such a junction is formed, some of the mobile (free) electrons of the n-type material diffuse across the junction into the p-type material whilst mobile holes from the p-type material move into the n-type section. This movement of charge results in the p-type material becoming negatively charged with respect to the n-type material.

Holes in the p-type material are therefore drawn away from the junction region under the influence of the
negative potential. Similarly electrons in the n-type material are drawn away from the junction deeper into the n-type material.

The junction region itself is therefore depleted of both types of mobile charge carriers (holes and electrons) and is known as the depletion region. Such a junction diode without any voltage applied as a bias can be represented as in Fig. 1.5. The voltage between the p - and n-type material is the natural junction potential.

FORWARD BIAS

When a bias is applied in the forward direction across the diode of Fig. 1.5, the p-type material is made more positive relative to the n-type. Little current will flow until the applied voltage exceeds the natural junction potential of the unbiased diode. As soon as the applied voltage exceeds the latter, holes from the p-type material are attracted across the junction and electrons from the n-type are attracted in the opposite direction. Both of these movements constitute a flow of conventional current from the p-type to the n-type material in the forward direction.

As the applied forward bias voltage is increased, the current which flows increases very rapidly and the diode would soon be damaged if the current were not limited by the effective resistance of the voltage source.

In a germanium diode the natural junction potential is only about $0 \cdot 2 \mathrm{~V}$, so such a diode will pass a forward current even when the applied voltage is quite small. Silicon diodes have at natural junction potential of about 0.65 V , so a somewhat
higher voltage is needed to cause a silicon diode to conduct, see Fig. 1.6.

REVERSE BIAS

If a reverse bias is now applied to the junction diode in Fig. 1.5 so that the p-type material is made negative with respect to the n-type material, the positive holes will be attracted away from the junction deeper into the p-type material. Similarly the negative electrons in the n-type material will be pulled away from the junction deeper into the n-type material on the right hand side of Fig. 1.5.

The application of such a reverse bias therefore increases the width of the depletion region and makes it more difficult for any current to fiow through the diode. This is why the diode does not show appreciable conduction in the reverse direction.

Any doped semiconductor material contains not only the large numbers of charge carriers of the wanted polarity (the majority carriers), but also far smaller number of mobile charges of the opposite polarity (the minority carriers). Thus the p-type material of Fig. 1.5 contains a relatively small number of free electrons and the n-type material contains a small number of mobile holes.

The application of a reverse bias voltage to the junction will cause these minority carriers to be attracted through the junction. This constitutes a reverse current in the opposite direction to the flow expected from the arrow of the diode symbol. However, the numbers of the minority carriers are so small that the reverse current which flows is far smaller

Fig. 1.3. N-type material has fixed positive charges and mobile negative electrons.

Fig. 1.4. P-type material has fixed negative charges and mobile positive holes.

A selection of small signal giass encapsulated diodes.

Fig. 1.5. A junction formed from p and n-type materials in a single crystal. The p-type material becomes negative with respect to the n-type owing to diffusion of the mobile charges.

than the forward current. The flow of reverse current is one way in which a semiconductor diode falls short of being a perfect rectifying devicewhich would allow current to flow in one direction only.

A typical small germanium diode will pass a reverse current of the order of a few hundred microamps, whereas a typical small silicon diode will pass a reverse current measured in nanoamps. The difference in these values is due to the fact that there are far fewer minority charge carriers present in silicon than are present in germanium. Reverse currents are sometimes known as-lealkage currents.

Reverse currents increase rapidly with temperature, since a rise of temperature causes a great increase in the number of minority carriers present.

REVERSE BREAKDOWN

If the reverse voltage applied to a diode is increased, a point is reached at which the reverse current increases very rapidly with the applied voltage. This is known as reverse breakdown and must be avoided in many rectifier circuits or damage will occur.
A maximum voltage is therefore quoted for diodes in the reverse direction which should never be exceeded; it is known as the peak inverse voltage (p.i.v.) or as the $V_{\text {rrm }}$ value. The diode manufacturers state that the diode will not breakdown at an applied reverse voltage less than this value.

CHARACTERISTIC

The characteristic of a diode is of the form shown in Fig. 1.6. As the
applied forward voltage V_{P}, is increased, little current passes at first, but then the forward current, I_{P}, increases very rapidly with $V_{\mathbf{F}}$. In the reverse biased mode, little reverse current, I_{R}, flows before the breakdown point is reached and then the reverse current increases very rapidly with the applied reverse voltage, V_{f}.
Power diodes are intended for higher currents and therefore have junctions with a greater cross sectional area than small-signal diodes. They are normally supplied in studmounting cases (Fig. 1.7) which can be screwed to a heat sink, the size of the heat sink required depending on the forward current. Power diodes have a larger reverse leakage current than small-signal types, owing to their greater junction area.

POINT CONTACT DIODES

A point contact diode consists of a fine coiled spring of tungsten wire

Fig. 1.7. A stud-mounted power diode.
which presses lightly against a crystal of the semiconductor material (normally germanium) as shown in Fig. 1.8. During manufacture a current passed through the wire causes a small amount of p-type material to be formed at the point of contact with the n-type crystal.

A point contact diode is therefore basically a junction diode of small area. Diodes of this type have a low capacitance, although the forward voltage is generally higher than that of the junction types. Point contact diodes are used mainly as radio frequency detectors and mixers.

GOLD BONDED DIODES

A gold bonded diode has a similar construction to the point rontact diode except that the tungsten wire is replaced by a fine gold wire. Gold bonded diodes have a low capacitance, but will pass a higher forward current at a given forward voltage than a point contact diode.

Fig. 1.8. A point-contact diode.

HALF-WAVE RECTIFIER

One of the most common applications of a junction diode is in a simple half-wave rectifier circuit like that of Fig. 1.9. Although a mains transformer and an electrolytic capacitor are shown, a similar circuit can be used at radio frequencies as a simple amplitude modulation detector.
Let us consider the case where the voltage across the transformer secondary winding is V_{ac} volts r.m.s. It follows from theory that the peak voltage across this winding is $\sqrt{ } 2 \times$ V ac. When the upper end is positive with respect to the lower end of the winding, a current will flow through the diode DI to charge the capacitor to a voltage which is equal to this peak voltage if the output current taken is small.

When the output voltage from the secondary winding changes in phase so that the lower end is positive, very little current will flow through the reverse biased diode. However, what is the peak voltage across this diode while it is non-conducting? The voltage across the transformer secondary winding has a peak value of $\sqrt{2} \times V_{n}$ with the lower end positive, but this lower end is connected to the negative side of C1. Thus the total voltage across the reverse biased diode is $\sqrt{ } 2 \times V_{\mathrm{ac}}+\sqrt{ } 2 \times V_{\mathrm{ac}}=2 \sqrt{ } 2 \times V_{\mathrm{ac}}=$ $2 \cdot 828 \mathrm{Vac}$.

Thus to ensure there is no danger of the diode breaking down, it should have a p.i.v. or $V_{\text {hrm }}$ rating of not less than 2.828 times the r.m.s. value of the transformer secondary voltage. If the secondary voltage is 50 V r.m.s., one requires a diode rated at not less than 142 V breakdown. In practice, it should be still higher to allow for any increases in the mains supply voltage!

FULL-WAVE CIRCUIT

The rectifier circuit of Fig. 1.10 is somewhat similar to that of Fig. 1.9 except that the secondary winding of the transformer has a centre tap and two diodes are used instead of one to obtain full-wave rectification. When the upper output from the secondary winding in Fig. 1.10 is positive, D1 conducts and charges C1. When the lower output is positive relative to the centre tap, D2 conducts and charges C1; thus charging occurs in both parts of the input waveform.

In this circuit both D1 and D2 should have a reverse breakdown voltage of no less than $2.828 V_{\text {ar }}$ where $V_{\text {ac }}$ is the r.m.s. voltage of each half of the transformer secondary winding. The output voltage is 1.414 V a.c. under no load conditions.

The transformer required for the circuit in Fig. 1.10 must provide the same secondary voltage across each half secondary as that in Fig. 1.9 for a given output voltage. However, the full wave rectification in Fig. 1.10
ensures that any output current taken from the circuit will produce a smaller fall in the output voltage than in the circuit of Fig. 1.9. Mains hum will also normally be less.

FULL-WAVE BRIDGE

Another much used full-wave rectifier diode circuit in which the need for a centre-tapped secondary winding is obviated by the use of four diodes in a bridge circuit is shown in Fig. 1.11. When the output from the upper end of the secondary winding is positive relative to the lower end, a current flows through D2 to charge C1 and returns from the lower end of C1 through D3. Similarly when the lower end of the winding is positive, a current flows through D4 to charge Cl and back via D1.

The output voltage is therefore 1.414 times the r.m.s. output from the transformer secondary winding under no load conditions.

The diode bridge circuit of Fig. 1.11 is widely used, so bridge rectifier modules are available which contain all of the four diodes required mounted in a single package (see Fig. 1.12). Low current bridge rectifiers (up to a few amps output current) need not be mounted on a heatsink, but a heatsink should always be used in high current circuits. The connections to diode bridges are marked on the devices, the two alternating input voltage connections being interchangeable.

VARICAP DIODES

Varicap (variable capacitor) diodes are silicon diodes especially designed for use in applications where the reverse voltage applied alters the width of the depletion region (refer to Fig. 1.5) and hence the capacitance across the diode.

Varicap diodes have been much used for tuning f.m. receivers and television receivers; such tuning systems are especially convenient when one requires remote "electronic" tuning using a potentiometer or pushbuttons. However, it is also possible to tune a.m. reecivers using the high capacitance varicap diodes now available which can have values up to at least 500 pF . A number of matched diodes are required for the signal frequency tuned circuits and the oscillator circuit in the case of a.m. receivers. No selection of the varicap diodes is necessary for f.m. receiver tuning.

ZENER DIODES

Zener diodes are silicon junction diodes which have been specially made so as to have a particular break. down voltage with a very sharp "knee" in their reverse characteristic (refer to Fig. 1.6). They are used to provide an output voltage which shows little variation with output load current or with the input voltage.

A simple Zener diode circuit is shown in Fig. 1.13. The breakdown

Fig. 1.9. A simple half-wave rectifier circuit.

Fig. 1.10. A full-wave rectifier circuit using two diodes and a centre-tapped transformer winding.

Fig. 1.11. A full-wave bridge rectifier circuit.

Three plastic encapsulated rectifier diodes (top) 1 N4001, 1 A (middle) IN5401, 3A (bottom) high power, 6A.

Table 1.1. Commonly used small diodes with some high current and high voltage units.

Diode type	$V_{\text {RRM }}$ (V)	Max. mean $I_{F}(\mathrm{~mA})$	$\underbrace{}_{V_{F}} \text { at }$	$\begin{gathered} I_{F} \\ (\mathrm{~mA}) \end{gathered}$		$\begin{gathered} V_{R} \\ (V) \end{gathered}$	Package	Remarks
Germanium Point contact								
AA119	45	35	$2 \cdot 6$	30	170	45	00.7	Detector diode
OA90	30	10	$2 \cdot 0$	30	400	30	DO. 7	High frequency detector
OA91	115	50	$2 \cdot 1$	30	57	100	D0.7	General purpose diode
O A95	115	50	$1 \cdot 85$	30	80	100	D0.7	General purpose diode
Germanium Gold Bonded								
AAY30	30	-	0.88	150	8	30	DO. 7	High speed switching diode
AAZ13	8	20	$0 \cdot 6$	10	30	8	D0.7	Fast switching diode
AAZ15	100	140	0.8	250	25	70	D0.7	High voltage type
OA47	30	48	0.54	30	10	30	DO.7	General purpose diode
Silicon junction types								
1N914	75	75	$1 \cdot 0$	10	0.025	20	DO.35	Fast computer diode
1 N3890 series	100-400	12 A	$1 \cdot 4$	12A	3 mA	$V_{\text {RRM }}$	DO. 4	Power rectifier, stud fitting
1N4148	75	75	$1 \cdot 0$	10	$0 \cdot 025$	20	DO. 35	Fast computer diode
1N4001 to 1N4007	50-1000	1 A	$1 \cdot 1$	1 A	10	$V_{\text {RRM }}$	DO. 15	General purpose 1 A diodes
1 N5401 to 1N5408	100-1000	3 A	1.0	3 A	15	$V_{\text {RRM }}$	SO-78	General purpose 3A diode
BY170	15kV	$2 \cdot 5$	35	100	7	15 kV	Plastic	E.H.T. rectifier
BYX38 series	300-1200	6 A	$1 \cdot 7$	20 A	200	Vrrm	DO. 4	Power rectifier, stud fitting
BYX42 series	300-1200	12 A	1.4	15 A	200	VRRM	DO-4	Power rectifier, stud fitting
BYX91 series	90 kV -180kV	200	225-450	2 A	10	Vrrm	Special	Silicon rectifier for X-ray equipment
BYX97 series	300-1600	47 A	1.05	40 A	4 mA	VRRM	DO. 5	Power rectifier, stud fitting
OA200	50	80	$1 \cdot 15$	30	0.01	35	DO. 35	General purpose diode
OA202	150	160	$1 \cdot 15$	30	$0 \cdot 01$	150	DO.35	High voltage small diode
OSS9410	30 kV	10A-30 A	$5 \cdot 4$	150 A	16 mA	30 kV	Special	High voltage rectifier unit

voltage of the Zener diode should be equal to the output voltage required; Zener diodes are available for voltages from $2 \cdot 7 \mathrm{~V}$ to over 200 V . The current flowing through R1 is equal to the difference between the input voltage and the Zener voltage divided by R1. This current must exceed the output current required, since it also has to supply the Zener current. Note that the Zener is reverse biased.

As the output current falls in Fig. 1.13 the Zener current increases by the same amount and the circuit designer must ensure that this will not cause the Zener to become too hot. High current power Zener diodes are available. Alternatively a lowcurrent Zener may be used with a following transistor current amplifier.

The output voltage from the Zener circuit varies somewhat with tem-

perature, but this variation is smallest for Zener diodes with a breakdown of about $5 \cdot 6 \mathrm{~V}$. Very stable temperature compensated Zener devices can be obtained in which the Zener is

Fig. 1.12. Three types of diode bridge module.
placed in series with one or more internal forward biased silicon diodes.

SCHOTTKY DIODES

Schottky rectifier diodes contain a metal-semiconductor junction instead of a $p n$ juction. They are used where fast switching is needed (especially in switched mode power supplies) in order to obtain maximum power conversion efficiency.

TESTING DIODES

Ordinary silicon and germanium diodes including Zener and varicap diodes can readily be given a rough test of their ability to function by checking that they show a much higher resistance in one direction than the other when the probes of a multimeter switched to a resistance range are connected across the diode. For the testing of Zener diodes with a breakdown of less than 15 V , the meter range(s) designed for the higher resistance values should not be used or the applied voltage may be adequate to cause reverse conduction.

The use of a meter switched to a resistance range has the advantage that the current is limited to a safe value by the meter circuit. However, one should remember that the terminal of the meter which is marked positive is actually the negative when the meter is switched to a resistance range. Never use a megger instrument to test a diode.

Next month: transistors.

ELECTRODII IIULTIIIETER

Analogue moving coil meter with single scale calibrated 0 to 5 in 50 divisions. Electronics based on four i.c.s mounted on p.c.b. Five ranges for voltage, current and resistance.
Overall coverage: Voltage 0 to 500 V a.c. and d.c. Current 0 to 500 mA a.c. and d.c. Resistance 0 ohms to 5 megohms.
Input impedance 20 megohms on all voltage ranges. Overload protection.

comsinhtion LOCH

A modern replacement for the standard mechanical lock. A five-digit combination is entered by means of a push-button key pad.

henon strobe LAMP

A useful instrument for "freezing" objects in motion in the garage, workshop or laboratory. Can also be used for dramatic lighting effects in discos.

TOUCH 5以ITCH with UOLTRCE-CONTROLLED CUT-OUT

A safety device for Ni -Cd powered equipment. Disconnects the batteries when the voltage falls below a preset level.

This Tape Auto Start operates in conjunction with a battery tape recorder with a remote stop-start control switch socket so that the recorder starts automatically when speech or other sounds to be recorded arise. Details are also given on how to modify other tape recorders to suit later on.

There is adjustable delay in switch. ing off, to avoid interruption of recording between words. Current in the stand-by condition is only 1 mA to 2 mA or so, from an internal 6 volt battery.

The Auto Start may be used for dictation where there will be delay between sentences or sections, or to start recording automatically for home
musical efforts. Changing from auto to manual control does not require any disconnection of the unit.

CONTROL CIRCUIT

The full circuit of the unit is shown in Fig. 1. The microphone is plugged into the MIC socket SK1. The signal is split and one path goes to a screened output lead to the audio input socket of the recorder. The other path is into the control circuit of the unit. The microphone control switch oable is plugged into the socket marked mic switch SK2.

The control output cable is plugged into the control switch socket on the tape recorder.

If Sl is set to manual, the switch on the microphone is connected directly to the CONTROL output cable, which is plugged into the tape recorder control socket. The Auto Start is then by-passed, and operation of the switch on the microphone starts and stops the recorder as usual.

With Sl set at auto the remote switch on the microphone is connected up to the Auto Start and turns this on and off. Components R1 and Cl couple the audio input from the microphone to the very high impedance input of TR1, an f.e.t. This is followed by ICl, with a gain control VR1 which allows adjustment of the audio level at which the Auto Start switches in the recorder.

Audio output from pin 6 of ICl provides negative bias for the base of TR2, due to rectification by D1. Audio signals thus produce a voltage drop in R9/VR2. This causes the base of

TR3 to go positive, and TR4 follows, so that current flows in the relay coil When the relay contacts close, the CONTROL output circuit is completed, and this switches on the recorder.

Charging of C5 produces a delay in switching off. The pre-set VR2 allows this to be adjusted from almost immediate operation, to a delay of many seconds.

PLUGS AND JACK SOCKETS

The microphone used had a dual plug, with 3.5 mm for audio and 2.5 mm control plugs side by side. This is the usual arrangement with this sort of recorder. At the Auto Start, separate 3.5 mm and 2.5 mm sockets were fitted, correctly separated.

The Auto Start has a screened a.f. lead with 3.5 mm plug, and twin flex control lead with 2.5 mm plug. These are simply inserted in the appropriate recorder sockets.

A dual plug could be used, but it was found a second recorder had different plug spacing, so the individual plugs were best.

Where a multiple-contact plug is present, a socket will need to be chosen to match.

CIRCUIT BOARD

The full circuit board layout is shown in Fig. 2. This board consists of $0 \cdot 15$ inch matrix stripboard size 22 strips by 25 holes and the strips run in the long dimension. Pins 1 , 5 and 8 of ICl are unused and should be cut short.

Breaks in the strips are necessary and are indicated in the diagram. These should be made before fitting the components, with a cutter or small drill.

Check that the breaks actually do go right through the strips and that copper fragments do not bridge over to adjacent strips. Note the breaks near the fixing bolts, to avoid short circuiting to the metal panel.

RELAY

The relay is also mounted directly onto the board. It will be necessary to drill holes for the coil connection pins and a larger cutout for the contact connections. This can be seen clearly in Fig. 2. Make sure that there is sufficient clearance around

HOW IT WORKS

The signal and control lines from the remote control microphone are fed into the unit. The signal line is split, one half going straight to the audio input of the tape recorder, the other into the unit.

When a signal is picked up by the microphone, it is amplified in the unit and operates an electronic switch placed in the control line to the tape recorder.

The minimum sound level that triggers the unit can be set by altering the gain of the amplifier.
the connections so that short-circuits are impossible.

The diode for reverse voltage protection, D2, is also mounted on the underside of the board in the position shown. Obviously if you are using a different relay to the one specified, then these cutouts will have to be in different positions and different sizes.

You should start assembly with the resistors, then capacitors, finally ending up with the semiconductors.
Solder on leads for positive and negative battery connections, and to those relay contacts which close when the relay is energised. These can be made up of light gauge stranded cable. Power is provided by four HP7 batteries connected in series in a special holder.

Exterior view of the completed prototype. The microphone and control sockets can be seen top right with manual/ auto switch below and in the foreground is a suitable interconnecting lead.

Photo right shows the completed front panel. Compare this with the layout drawing below.
 VIEW
Fig. 2. Full construction and circuit board layout. The circuit board is mounted on the rear of the front panel and all major controls and sockets are mounted alongside. Note that C1 is mounted such that one of its leads is wired directly to the board and the other is buttjointed to R1 which is then wired to SK1. On the underside of the board, you can see the cutouts for the relay mounting bolt, coil contacts and other contacts. These are hard-wired into the rest of the circuit and are not soldered to the copper strips.

PANEL ASSEMBLY

Full details of the case and front panel are also shown in Fig. 2. These consist of a plastic box $155 \times 95 \times$ 50 mm and a matching aluminium front panel. The board is mounted by means of three 8BA bolts and spacers, with extra nuts. A tag completes the negative circuit to the panel.

Resistor Rl is connected directly to the tip connection of the microphone socket. The sleeve is grounded to the panel and negative line. Switch Sl is connected to the socket taking the microphone switch plug, and it was found necessary to isolate this
socket from the panel. This can be done with insulated washers, or a fully insulated socket could be used instead.

The audio and control leads run through a grommet, and are of similar length.

RELAY

A small 170 ohm relay was fitted to the prototype, and battery drain is about 30 mA with this energised. A 47 ohm relay was also found suitable, with a 47 ohm series resistor to reduce current required from the battery.

COMPONENTS

Resistors
R1 $100 \mathrm{k} \Omega$

R2 $2 \cdot 2 \mathrm{M} \Omega$
R3 $4 \cdot 7 \mathrm{k} \Omega$
R4 $2 \cdot 7 \mathrm{k} \Omega$
R5 2.2M Ω
R6 $8 \cdot 2 \mathrm{k} \Omega$
All + W carbon $\pm 5 \%$

page 425
Capacitors
C1 50 nF disc ceramic
C2 50nF disc ceramic
C4 50nF disc ceramic
C5 $125 \mu \mathrm{~F} 16 \mathrm{~V}$ elect.
C6 $470 \mu \mathrm{~F} 16 \mathrm{~V}$ elect.

Semiconductors
IC1 741 op-amp, TO-99 metal can package
TR1 2N3819n-channel f.e.t.
TR2 AC128 pno germanium
TR3 BC108 npn silicon
TR4 2N3053 npn silicon
D1 OA47 germanium switching diode
D2 1 N 4001 silicon $50 \mathrm{~V}, 1 \mathrm{~A}$ rectifier
£10
Miscellaneous

S1 d.p.d.t. slider

RLA miniature relay with 170 ohm coil and one set normally open contacts
SK1 3.5 mm jack socket
SK2 2.5 mm jack socket
PL1 $\quad 3.5 \mathrm{~mm}$ lack plug
PL2 2.5 mm jack plug
VR1 $250 \mathrm{k} \Omega$ horizontal preset
VR2 $50 \mathrm{k} \Omega$ horizontal preset
B1 four HP7 type batteries in series mounted in special holder
Case, $155 \times 95 \times 50 \mathrm{~mm}$, plastics with metal front panel; stripboard, 0.15 inch matrix, 22 strips by 25 holes; screened cable; twin core cable; interconnecting wire; 8BA mounting hardware for circuit board; battery connector.

In general, a relay of about 100 to 250 ohm or so will be most satisfactory. It should operate properly with a 6 V supply, but not have a very low resistance coil for the reason mentioned.

TESTING AND ADJUSTMENT

With Sl at manual, the switch on the microphone should operate the tape recorder as usual. With VR1 set at maximum gain (slider at C3 end) and VR2 set for minimum delay (slider at R9 end) speech near the microphone should cause the relay to energise and contacts to operate almost immediately.
Subsequently gain can be reduced by means of VR1 so that unrequired noises do not operate the Auto Start, and VR2 set to provide a delay of a few seconds between the end of speech and stopping of the recorder.

MODIFICATIONS

This unit is specifically designed for use with tape recorders that are fitted with a remote switching control socket. This is in effect a normally closed switch in series with the positive battery supply line to the recorder and when the remote switch plug is inserted in this socket, it connects up a manually operated switch in series with the battery line. This switch is usually mounted on the microphone.

However a tape reconder without this facility can be modified so that the Auto Start can be used with it. You should get hold of a 2.5 mm jack socket with a set of normally closed contacts and mount this somewhere convenient in the recorder near to the positive battery supply line.

Cut the positive wire and solder the cut ends to the two contacts on the socket. The tape recorder is now ready to use with the Auto Start. You may also need to provide a remote control switch if you don't have access to a microphone with one fitted.

This is no more than an ordinary single-pole, single-throw type, soldered to a long length of wire with a 2.5 mm jackplug on the other end. You may well have to use some ingenuity when mounting this in a suitable holder or case for use.

HAving checked the 1 kHz oscillator waveform and output voltage and the calibration of the audio voltmeter section as described in Part One, the next stage is to verify that the t.h.d. bridge section is operating and at the same time check the oscillator for self distortion which should not exceed 0.03 per cent but should, if the circuit is functioning correctly, be as low as 0.02 per cent.

Variations in transistors may give rise to small differences. However, before carrying out this check it must be mentioned that all connecting leads used with the test set to and from external sources, for example to oscilloscope for monitoring, to any external audio signal generator and from any equipment being tested, must be screened otherwise 50 Hz hum and other stray noise will be picked up and produce false readings.

T.H.D. SECTION

The procedure for checking the t.h.d. section is as follows and will allow a simultaneous check on oscillator self distortion. First set the oscillator output attenuator for maximum output signal, that is 1 volt, and check this with the audio voltmeter set to the 1 volt range.

Set S2 to position 2, and couple the oscillator output socket via a screened lead to SK1 (thd input).

Leave the audio voltmeter to read 1 volt. Put the switch S1 to position SET. Now turn VR1 (SET 100 PER CENT) so that the meter once again reads full scale which is 1 volt. This also represents 100 per cent and all t.h.d. readings below this, that is at lower voltages, will be related to it. Connect an oscilloscope to the scope monitoring terminals using screened leads and display the 1 kHz sine-wave to the largest amplitude the 'scope screen will accommodate.

The next stage requires some concentration and steady hands. Set the controls VR3, VR2, VR4 and VR5 to
minimum, anti-clockwise, and put the switch S1 over to READ.

Now advance VR5, which is COARSE frequency, until a dip in the meter reading is noticed together with a reduction in amplitude on the 'scope screen. Now turn VR2, coarse balance, until a further dip in level is observed.

Now operate both controls very slowly and slightly backwards and forwards until the meter reads down to as near zero as possible. The amplitude of the signal displayed on the 'scope screen will have gone right down as well.

Now switch the meter to the next range down, that is, 100 mV and continue to null out the fundamental with the two coarse controls, because what we are doing is trying to remove all trace of the 1 kHz signal. You will now need to use the fine balance and fine frequency controls because the coarse controls will be too abrupt to use when getting down to very low levels.

The procedure now is to go to the next range down on the meter (10 mV) and continue with very slow and delicate movement of the fine con. trols to get the meter even lower. Continue on down to the 1 mV range and careful adjustment should bring the meter down to about 0.5 mV and then with ultra careful movement, right down to the oscillator self distortion of between 0.2 mV and 0.4 mV .

OSCILLOSCOPE GAIN

If you can increase the oscilloscope Y amplifier gain during the above procedures you will find it easier to watch the fundamental 1 kHz signal gradually disappear until only the harmonic distortion content remains as shown in Fig. 8.
The lower trace (trace B) is an actual oscillogram of the oscillator self distortion at 0.02 per cent and taken from the prototype test set as
described in this article. The upper trace A is the 1 kHz sine-wave from the oscillator but of course there is no relationship between the amplitudes shown.

If there were then the sine-wave would be about 5000 times larger than in the photograph. Remember that the frequency and balance controls become very abrupt at the lowest levels of distortion and it requires quite a bit of practice to get the fundamental right out.
This is why accurate distortion measurements with an instrument of this nature can only be carried with the aid of an oscilloscope. You must be able to see the remaining distortion signals as well measure the level.

RATIO

Now assuming that you have obtained a minimum reading of say, $0 \cdot 3 \mathrm{mV}$ and no further reduction can be obtained, then total harmonic distortion will be the ratio:

$$
\frac{0 \cdot 3 \mathrm{mV}}{1 \mathrm{~V}}
$$

Converting IV to millivolts this becomes:

$$
\frac{0.3 \mathrm{mV}}{1000 \mathrm{mV}}
$$

To obtain percent distortion divide each figure by 10 because 1000 mV represents 100 per cent.

So $\frac{0.3}{1000}=\frac{0.03}{100}$ or 0.03 per cent.
If your readout was 0.25 mV then the t.h.d. would be 0.025 per cent. Incidentally, distortion factors can also be expressed in decibels below the level of the fundamental.

Since distortion percentage is obtained from a voltage ratio we can convert to decibels using 20 $\log _{10}$ (V_{2} / V_{1}) where V_{2} is the largest amplitude, in this case the reference first used, that is, $1 V$ or 1000 mV and where V_{1} is the smallest amplitude or that of the distortion level.

For example, with 0.02 per cent t.h.d. the voltage ratio is $1000 / 0 \cdot 2=$ 5000 . The \log of 5000 is $3 \cdot 6989$, or say $3 \cdot 7$ which times $20=74 \mathrm{~dB}$, or rather -74 dB since the 1 V reference will be called 0dB.

As a further point of interest the noise level of the t.h.d. bridge is $0.05 \mathrm{mV}(50 \mu \mathrm{~V})$ which, with respect to $1 V$ r.m.s. output from the bridge (reference 0 dB) is $20 \log _{10}(1000 /$ $0 \cdot 05$) or -86 dB so any noise contributed by the bridge circuitry can be considered as negligible.

INSTABILITY

However, there is one further point that should be noted with regard to measuring distortion. When the lowest reading has been established it must be noted quickly because it will not remain steady.
Inherent drift of the oscillator frequency, even by a very small fraction of 1 Hz and variation in temperature will simply cause absolute minimum readings to drift, always higher of course.
Before attempting to carry out any distortion measurements have the set switched on for at least ten minutes to allow all the various circuit voltages to settle down and become stable.

Before attempting to carry out distortion checks on amplifiers practise with the controls on the 1 kHz oscillator signal and get the feel of manipulating them until the fundamental is completely removed to leave only the distortion components.

Fig. 8. Oscillograms showing A oscillator output and B self distortion.

The Wien bridge method of removing the fundamental is commonly used in harmonic distortion analysers and what really happens is that the test signal is put into anti-phase with itself and in this test set takes place after the t.h.d. bridge input transistor TR7.

The 1 kHz signal appears at both the collector and emitter of TR7 and is phase cancelled by the bridge network connected between these points. In some commercial distortion bridges the controls for coarse and fine balance are called coarse and fine phase.

AMPLIFIER DISTORTION

It must be remembered that total harmonic distortion is the sum total of the amplitude of all harmonics; 2nd, 3rd 4th, 5 th, and so on, remaining after the fundamental has been removed. The predominant harmonics are often the 2nd and 3 rd and can usually be identified on the oscilloscope when the fundamental has been nulled.

Measurement of the distortion produced by audio amplifiers is a little more complex since consideration must be given to the limit of the power output of the amplifier and the load into which it is designed to operate.

Audio signal voltage amplifiers normally require no output load as such and that provided by the t.h.d. bridge input circuit will suffice. However, remember that if the output from

Fig. 10. Showing A undistorted and B distorted input signals to voltage amplifiers.

OSCILLOSCOPE

Fig. 9. Experimental set-up to measure distortion in voltage amplifiers.
such amplifiers, for example, microphone pre-amps, microphone and signal mixers, pick up and tape head preamps, is below 200 mV then the distortion factor cannot be measured with this test set which must have an input signal of not less than 200 mV .

Higher levels can of course be attenuated and this is the reason for the input level control VRI (SET 100 PER CENT) which must always be used to obtain a meter reading of 1 volt f.s.d. and which is the 100 per cent reference.

VOLTAGE AMPLIFIERS

We deal first with the requirements and connections, for checking the distortion of purely voltage amplifiers. If an output of 200 mV or more is avail. able then connections are as shown in the block diagram Fig. 9. It is most important that the amplifier baing tested has the requisite input signal which must not exceed that to produce the full rated output signal level permitted by the gain of the amplifier otherwise false distortion readings will be obtained.

This is why an oscilloscope must be used for all distortion measurements to verify that the signal from any amplifier being checked is purely sinusoidal and not being distorted in any way by overloading due to too much input signal. If the input signal does exceed that required the result may be clipped or partially squared as shown in the oscillogram Fig. 10 (lower trace, B) and which would produce a distortion factor far in excess of what should be generated.

The upper trace, A, in Fig. 10 is how the output signal should look before distortion is measured and this also applies to power amplifiers which we will deal with shortly. Having established that a 1 volt f.s.d. reading is obtainable on the test set meter then the procedure for checking distortion is as fully described previously.

POWER AMPLIFIERS

With power amplifiers it is normal to check distortion at maximum rated r.m.s. sine-wave power output as well as at lower power levels. The amplifier output must however be connected to a dummy load of pure resistance equal to the impedance of the amplifier output stage the most common being 4,8 , and 15 ohms.

The majority of amplifiers with transistor output stages will operate into either 4 or 8 ohms but this must be verified and the appropriate load resistance used. It is very important that the dummy load is both noninductive and capable of dissipating the power fed into it without causing the load to heat up.
 distortion from power amplifiers.

For example if the amplifier has an output power of say 50 watts r.m.s. then the dummy load should ideally have a rating higher than this to ensure adequate heat dissipation.
The test set up for measuring distortion from power amplifiers is shown in Fig. 11. Again the t.h.d. input attenuator VRl must be set so than an input of 1 volt gives a 100 per cent meter reading. Make sure that the amplifier being tested is not overloaded at the signal input being used.

It is normal practice to set the amplifier gain control to maximum and then adjust the input signal (1 kHz from the test set oscillator) to obtain full rated sine-wave power output without the slightest indication of clipping. Refer again to the oscillograms in Fig. 10.

Fig. 12. Oscillograms showing about 1 per cent harmonic distortion.

The best way to make sure that clipping is not occurring is to increase the input signal until the sine-wave is just clipping visibly on the scope as in the lower trace, B, and then back off the signal until the clipping just disappears and the signal becomes perfectly sinusoidal as in the upper trace A.

It should be mentioned here that actual power output measurement also calls for this procedure and it may be prudent to check this before measuring distortion. However, having established the proper conditions the distortion can be measured as already described.

MORE EXAMPLES

Finally some examples from oscillograms showing typical harmonic

Fig. 13. Oscillograms showing \mathbf{B} distortion measurements from a distorted input \mathbf{A}.
distortion content. The upper trace A in Fig. 12 shows the sine-wave output from an amplifier which may look good but in fact has a large amount of distortion as in the lower trace B and which is about l per cent.

The oscillograms in Fig. 13 illustrate what happens if attempts are made to measure distortion from an amplifier which has run into overload, that is the output signal is clipped with the resultant high distortion of over 10 per cent in the lower trace B.

The last example in Fig. 14 is more typical with the upper trace A showing the output sine-wave and lower trace B showing the distortion which is virtually all second harmonic at a level of 0.3 per cent and was in fact from the through amplifier of a taperecorder.

It is not possible in this article to deal with the measurement of amplifier gain, power output, signal to noise performance and frequency responses, as quite considerable and detailed explanations of the procedures for doing so are necessary if results are to be accurate and meaningful.
However, it is hoped to cover all this in detail at a later date in a special article on checking audio amplifier performance using the audio test set described in this article together with other items of test equipment.

Fig. 14. Oscillograms showing 0.3 per cent second harmonic distortion.

LETTERS

Absorbing Challenge

I am writing to disagree with M. P. Horsey's letter "In Defence of Strip: board" in the April 1981 issue of EVERYDAY ELECTRONICS, in which he says that Veroboard is better than p.c.b.s. l used to use Veroboard but once I started making my own p.c.b.s I realised how much better and more convenient they are.

There are no wire links all over the board, there are no copper strips to break, you will not solder a wire into the wrong hole because there will only be holes that will be used. Because there will only be copper tracks where they are required the board will often take less space, and there is far less chance of bridging adjacent strips, and, as Mr. Hornsey said himself, they look much neater.

In reply to the extra time taken to produce a p.c.b. I am sure that most people are not interested in electronics purely so that they can produce gadgets to impress the neighbours cheaply, but also because they enjoy making them. I do not think that it is a bother making p.c.b.s, in fact designing and making
them can be an interesting and absorbing challenge. However, in spite of all this, if Mr. Horsey wants to use Veroboard, that is up to him.

I do agree with Mr. Horsey about pricing projects, however. Many magazines do not do this and so you only have a rough idea of the cost.

With regard to under-pricing mentioned by Mrs. C. J. Jones (see Letters Feb '81), the approximate price for some projects is much higher than they really are. The 3-Channel Stereo Mixer that was published in E.E. in February 1981, and that I am currently building, is quoted as costing $£ 14 \cdot 50$, but can be built for $£ 10$, on a p.c.b. of course!

Richard Smith,
Torbay, Devon

In the Picture

A hidden advantage of the vide o systems battle is that protagonists for each system, having run out of new features to sell, are now looking tow ards improved picture quality to attract cus. tomers. Few people would now argue that, although the VHS format is winning the domestic video standards battle, the Sony C7 recorder produces by far the best pictures. And that the Sony C 7 is, of course, working on the rival Beta for mat which has so far claimed less than half the sales of VHS.
It's really quite remarkable to think that the current and much improved V2000 machines and tapes from Grundig and Philips can produce pictures whic h compare fairly well with VHS. It's easy to forget that although V2000 and VHS tap es are the same width and run at arou nd the same speed, V2000 uses only half the tape width on each pass through the m achine.
Let's hope that the designers of these two systems can soon lick what has so far been their perennial problem; its best called the ragged edge effect. Although not immediately noticeable, this will usually irritate after you have got over the first thrill of seeing colour pic. tures moving on the screen.

Random Noise

Because domestic video recorders rely on very narrow tape tracks (less than the width of a human hair) the amount of magnetic signal that comes off the tape is very small. This puts a heavy strain on the video amplifier circuits and this in turn creates random noise on the picture.
It's fairly easy to conceal this noise in wide open spaces in the picture, but it's impossible to conceal it on the sharp edges of any object in the picture, such as a face or body. The object's edges are softened and polluted with noise and this produces a ragged shimmering effect.
The effect shows up more on some types of programme material than others but it can be very irritating once you've started to notice it. Hence the continued efforts by video tape chemists and machine designers to boost the output from
tase by improving head-to-tape contact and developing new tape coating formulations.

Because V2000 with only half the tape width to play with and the most narrow tracks (23 microns) has the toughest noise problem of all, Philips and Grundig are continually pushing the tape manufacturers to improve performance. RASF, who supply practically all the tape sold by Grundig, have responded well to this challenge.
However, DuPont, an American company which has been supplying Philips, and with whom Philips now has a joint production venture in Europe, seems to be coping rather less well. Doubtless this is why Philips is known to have ap-

Opto-electronic Analysis

A sophisticated opto-electronic equipment to analyse X-rays of miners unfortunate enough to have contracted pneumonoconiosis is one of Reading Universitys latest developments.

It isn't generally realised that when humans breathe dust of below 3 or 4 microns size it passes safely through the lungs and into the blood. If the dust is above 7 micron size we simply cough it up.

However, if the dust is between these sizes it sticks in the lung tubes and causes debilitating disease. Coal dust has a large percentage of these unfortunately sized particles; so does blue asbestos.

To analyse the amount of dust trapped in a human lung the Reading machine, which was developed for the Medical Research Council, scans a chest X-ray with a laser beam to produce a log of optical density variations. No less than 16 million readings are logged from a single X-ray picture, each reading optically sensing and registering the density of a discrete area one tenth of a millimetre wide.

Only a laser can provide accuracy of this order.
proached several Japanese manufacturers who have already responded with samples of V2000 tape.

Colour Smudging

Mercifully, the problem of colour smudging which bedevilled virtually all early video recorders, of all formats, seems now to have been solved by most manufacturers. There is a little-known story behind this.

In a video cassette recorder the luminance (black and white) signals and the chroma (colour) signals are handled by different circuits. If the luminance signal leaks into the chroma circuits then it is mistaken for colour information and produces spurious colours in moire patterns. If chroma leaks into the luminance circuit then the result is unsteady verticals in the picture. So meticulous filtering is necessary.

Even more important is the need to compensate for the different lengths of circuit path through which the chroma and luminance signals must travel in the recorder. If a delay line isn't used to compensate for any difference then the two halves of the signal will become out of step, and the pictures on the screen will look as if the colour has been smudged sideways.

Olympics the Cause

At first it seems an easy task to in. corporate simple delay lines in a video recorder to keep the chroma and luminance in step. But the issue is confused, believe it or not, by the 1936 Olympics which were held in Berlinl

German broadcasters wanted to televise the Olympics to as many people as possible and thus looked for the cheapest method of producing receivers. To cut a long story short, the engineers discovered that it was possible to compensate for poor high frequency performance in a receiver by doctoring the transmitted signal in a way which created a delay of 170 milliseconds in the high frequencies.

Although the need for this signal processing at the transmitter has long since disappeared, it has never been engineered out of some European TV systems. Also, it was never engineered into the British system; our signals are transmitted withcut any doctoring of the high frequencies and thus with no delays.
It so happens that the delay which is still inherent in some Continental TV signals is in exactly the frequency range which carries the colour or chroma information. So TV sets and video recorders over there must have compensation circuitry to counteract the delay effect. If not there is a smudge of around 3 mm on a 26 inch TV screen.

What this means is that (forgetting for present purposes the other differences in transmission standard, such as soundvision spacing) a video recorder designed for use on the Continent won't have the right in-built delay for the UK. So a recorder circuit that produces smudgefree pictures on the Continent will smudge in the UK and vice-versa.

It seems that this was overlooked by manufacturers of the early video recorders. And that is why they produced colour smudging which became especially noticeable on a large screen.

PARI 2 BY J.CROWTHER

OTHER CODING SYSTEMS

Although logic circuits and computers work in binary, I's and 0's, pure binary is tedious and cumbersome for humans to handle, being long and therefore liable to errors.

For example

$1024_{10}=10000000000$ (eleven columns in binary).
To make it more simple and convenient for humans other coding systems are used, the most common follow:

THE OCTAL SYSTEM

For the convenience of humans, octal address references are sometimes used instead of decimal. Since each column in octal is eight times the one to the right, three binary columns are equal to one octal column, so the numbers are less wieldy to handle.

example

Suppose a computer has 1024 memory addresses numbered 0 to 1023 (decimal). This is equivalent to 0 to 1111111111 in binary.

Converting 1023_{10} to octal:

$$
8 \lcm{1023}
$$

$8 \lcm{127}$ and 7 over
8) 15 and 7 over
$8 \lcm{1}$ and 7 over
0 and I over
Thus $1023_{10}=1777_{\mathrm{g}}$.

Decimal	Octal	Binary
1023	1777	111111111

By writing the binary number in columns of three, and writing the decimal equivalent for each column we get the octal number:

- Binary	001	111	111	111
Octal	1	7	7	7

So in a computer, memory address 1000 decimal would be given the octal address 1750. The address entry "switches" are then divided into groups of three. The switches in each group are then set to each octal number as shown in Fig. 2.1.

Exercises

2.1. Convert the following binary numbers to octal:
(a) 101010100 (b) 011110100000 (c) 111101001 .
2.2. Convert the following octal numbers to binary:
(a) 1,263 (b) 65,217 (c) 426 (d) 5.625 (e) 3,273.

BINARY CODED DECIMAL SYSTEM

The binary coded decimal system (b.c.d.) is a four-bit system representing a decimal character for use with digital display read-outs and in some computer calculations. It can also be used for addressing to make this more convenient for human use. Since the highest number possible on an l.e.d. display is usually 9, and binary nine requires four bits, the system is divided into blocks of four-bits, each block representing the decimal numbers 0 to 9 as shown:

b.c.d. number	1001	0010	0011	0000
decimal equivalent	9	2	3	0

Since the highest number that can be represented by four bits is $1111 .\left(15_{10}\right)$ and the highest b.c.d. number allowed is 1001 (9,10), there are six illegal numbers which are not allowed in b.c.d. namely decimal 10 to 15 (1010 to 1111).

Exercises

2.3. Convert the following decimal numbers to b.c.d.: (a) 94 (b) 429 (c) 2947 (d) 1736 (e) 538 (f) 735.
2.4. Convert the following b.c.d. numbers to decimal: (a) 10000101 (b) 01110001001 (c) 001101100100 .

THE HEXADECIMAL SYSTEM

The b.c.d. system is a very convenient system for humans to use but is very inefficient as far as the computer is concerned. A four-bit binary string can represent sixteen different numbers (or addresses) numbered 0 to 15 , and an eight-bit binary string can be represent 256 addresses numbered 0 to 255 . If b.c.d. coding is used, a four-bit binary string can only represent 10 addresses, numbered 0 to 9, and an eight-bit string 100 addresses numbered 0 to 99.
It can be seen that with b.c.d. coding there are six unused combinations within a four bit string, and 155 unused combinations in an eight-bit string. Since computer memory space is at a premium it can be seen that the b.c.d. system is very wasteful and inefficient.
In the hexadecimal system (HEX) the first 10 locations retain the numbers code as in the b.c.d. system but the six unused locations (1010 to 1111) are given a letter coding. A to F. The full coding for the HEX system is shown below:

Binary	Hex	Binary	Hex
0000	0	1000	8
0001	1	1001	9
0010	2	1010	A
0011	3	1011	B
0100	4	1100	C
0101	5	1101	D
0110	6	1110	E
0111	7	1111	F

Fig. 2.1. Switches grouped in threes for octal coding from binary.

examples

$$
\begin{array}{ll}
0100111=4 \mathrm{~F}_{\text {hex }} & 10000011=83_{\text {hex }} \\
11111010=\mathrm{FA}_{\text {hex }} & 10111100=\mathrm{BC}_{\text {hex }}
\end{array}
$$

The more usual way nowadays of signifying a hexadecimal number, is to append an " H " to the number. We shall use this identification of a hexadecimal number throughout the series.

example

$4096_{\text {hex }}$ is more usually written 4096 H .

Converting Hexadecimal to Decimal

Since there are sixteen symbols in the hexadecimal system, 0 to F, this is a counting system to the base of 16 , hence the radix is 16 , remembering that 10 is represented by $\mathrm{A}, 11$ by B and so on up to 15 by F.

Like all counting systems, the hexadecimal system is based on powers of the radix, powers of 16 as shown:

Powers of 16	16^{3}	16^{2}	16^{1}	16°
Decimal number	4096	256	16	1
Hexadecimal number	0	3	A	F
Thus 03AFH $=10 \times 4096$ $=0+768$	$\begin{aligned} & 3 \times \\ & 60+ \end{aligned}$	$\begin{array}{r} +(10 \\ =943 \end{array}$		

Converting Decimal to Hexadecimal

To convert decimal to hexadecimal divide by 16 until there is nothing left, then read the remainders up from the bottom as shown:

$16 \lcm{813}$

16L_50 and 13 over $=$ D
16 $\begin{array}{r}3 \\ 0\end{array}$ and 2 over $=2$
Therefore $813_{10}==32 \mathrm{DH}$.

Exercises

2.5. Convert the following binary bits to hexadecimal:
(a) 11100001 (b) 101110001111 (c) 11111100 (d) 00010011 .
2.6. Convert the following to binary:
(a) 4 FH (b) 1 ACH (c) 67 H (d) 2 A 8 H (e) EFH (f) $\mathrm{A} \mid \mathrm{BH}$.
2.7. Convert the following to decimal:
(a) 2DH (b) IAFH (c) 2IAH (d) IAEH (e) FBH (f) 57H.
2.8. Convert the following decimal numbers to HEX:
(a) 1632 (b) 494 (c) 5174 (d) 67 (e) 123.

BINARY ARITHMETIC

(a) Addition

Binary addition is similar to addition in decimal, except you have to carry one to the next column for every two instead of for every ten.

example

Add 37 and 25.

decimal binary I		
37	100101	
$\frac{25}{62}$	\cdots	011001
111110		

The same principle applies if more than two numbers are to be added, remembering to carry one for every two in the total.

Note

As a computer can only deal in 1 's and 0 's it could not carry 2. Therefore it would do three separate additions as follows:

Add 14 to 11 to obtain 25, add 7 to this to obtain 32 and finally add 3 to this to obtain the result, 35 .

Addition in b.c.d.

As stated earlier the b.c.d. system is divided into blocks of four, each block representing the decimal numbers 0 to 9 , the remaining numbers. 10 to 15 being illegal and not allowed in b.c.d. These six illegal numbers can present problems when performing addition in b.c.d.

example

Add 6 and 5 in b.c.d.

decimal	b.c.d.
6	0110
5	0101
11	1011

It will be seen that although the answer obtained in the b.c.d. addition is binary eleven, which is correct, it is an illegal number which is not allowed in the b.c.d. system. Eleven in b.c.d. is 00010001 .

When performing b.c.d. addition the two numbers are added together as above but if the answer is illegal, that means above 9, a further 6 must be added which will cause one bit to overflow into the next block of four giving the correct b.c.d. answer as shown:

Exercises

2.9. Evaluate the following b.c.d. additions:
(a) $0011+0101$ (b) $1001+0110$ (c) $0011+0110+1001$ (d) $00110001+01101001$.

Addition in Hexadecimal

As hexadecimal is a counting system to the base of sixteen. addition is similar to decimal addition except that you have to carry one to the next column for every sixteen instead of every ten, remembering that instead of writing $10,11,12,13,14,15$, write A. B, C, D, E, F respectively.

example

Add 4 F and 8 A .

$\frac{1}{4 F}$	carry
$\frac{8 \mathrm{~A}}{\bar{D} 9}$	
answer	

First add $A(10)$ to $F(\overline{15})$ which is 25 . This is (1 - 16) and 9 over, write 9 and carry 1 to the next column. Now add 1, 4, and 8, which is 13 , but 13 is represented by D in HEX, therefore write D in the second column of the answer.

Exercises

2.10. Evaluate the following hexadecimal additions:
(a) $1 \mathrm{~A}+21$ (b) $6 \mathrm{~B}+5 \mathrm{~A}$ (c) $23+4 \mathrm{~A}-\mathrm{BI}$.

Answers to Exercises in Part 1
I.I. (a) $27 \cdot 5$ (b) $395 \cdot 125$ (c) 186.
I.2. (a) 1331 (b) 325 (c) 175.
1.3. (a) $1020 \cdot 03$ (b) $200 \cdot 1043$ (c) $110 \cdot 14$.
1.4. (a) $13 \cdot 5$ (b) $78 \cdot 75$ (c) $36 \cdot 5$ (d) 887 .
1.5 (a) 111110 (b) 10000000000 (c) 101010.01 (d) 110011.001 .

BACK to BASICS The Electric Circuit

NewCOMERS to electronics naturally want to get cracking and build things that work. That's fine . . . and a lot more interesting than theory. But most of us also want to understand how things work and even do a modest bit of designing ourselves.

In some ways it's getting easier all the time, with integrated circuits (or microchips) to do most of the job for us. But a general understanding of circuit basics is still essential.

My aim is to provide a painless introduction to the subject. Off we go, then.

THE GREEKS HAD A WORD FOR IT

Some interest in electricity was shown a couple of thousand years ago by the ancient Greeks. It didn't lead anywhere, because the Greeks were poor scientists. They preferred sitting around and philosophising to making experiments.

But even philosphers have to start somewhere. The Greeks started with the observation that the natural substance amber (a fossilised resin) when rubbed with a piece of dry cloth acquires the ability to attract and pick up light objects such as dust and bits of fluff.

There the matter rested for many centuries. When, in Western Europe, the first scientific investigations were done it was quickly discovered that many other materials have this same odd property.

A word was needed to describe it.

People might have said that all these materials have the property of "amberness" but being scholars they went back to the Greek word for amber, which is elektron, and coined the new word electricity from it.

Some of the other substances which turned out to be "electrical" were sulphur, some kinds of stone and wax, and glass. Nowadays we call such materials insulators or dielectrics.

STATIC CHARGES AND MOVING SPARKS

Rubbing insulators with cloth or fur is tedious and in the 18th and 19th centuries experimenters designed all manner of "electrical machines" in which the rubbing was done continuously by turning a handle or wheel. This provided a ready supply of electric charge.

It was discovered that the charge could be stored for a while in a device called a condenser. (The modern word is capacitor.) This was called a static charge.

A highly-charged condenser could be discharged very quickly by connecting its terminals together or bringing them so close that a spark jumped from one to the other or from one to the earth.

Evidently electricity existed in two forms: static charges and moving sparks which travelled instantaneously from one point to another. Benjamin Franklin's famous but extremely dangerous experiment of flying a kite into a thunderstorm and detecting electric charges on the string suggested that lightning was a natural form of electricity and that thunder clouds must be electrically charged.

FLUID OR CURRENT?

But how was the electricity produced? How could it move from one place to another? Franklin suggested that electricity involved an invisible fluid which permeated all matter. An electric charge involved changing the quantity of fluid in the charged object.

Give an object more than its normal amount of electric fluid and it became positively charged.

Take fluid away and the charge was negative.

Fluids can flow. A flow of electric fluid must be an electric current. Sparks and lightning showed that the current went very quickly.

THE ELECTRIC CELL

Sparks and lightning are not very convenient for experiments. They are over too quickly and tend to kill people!

The great breakthrough came with the invention by Volta of the electric cell. This produced, not brief sparks but a continuous flow of electric current. You didn't even have to turn a handle.

A SIMPLE CIRCUIT

Let's consider a simple circuit (Fig.1.1a) with a single torch cell and bulb. The bulb gives us a great advantage over the earlier experimenters in lighting up to show that current is flowing. (Before electric light was invented they had to detect current flow by placing a compass near the wires. When current flows a magnetic field is created round the wire and this deflects the compass needle.)

The usual types of single cell produce enough output to light a $2 \cdot 5$ volt torch bulb. (Bulbs marked 1.3 volt or 1.4 volt may also be used.) What really happens is that the electrical energy created by the cell is turned into heat in the bulb. A thin wire (the "filament") inside the bulb glows white hot.

Cells can be connected together in various useful ways. Here we'll deal with only one way: connecting cells so that they aid one another by pushing current in the same direction through the circuit.

To achieve this the cells are connected "nose to tail" (Fig.1.1b). This increases their current-driving force and the bulb lights more brightly-so brightly in fact that it soon burns out. (Torches which employ two cells need 3 -volt bulbs.)

If you experiment, you'll find that the bulb burns just as brightly when connected as at (b) or as at (c). This illustrates an important point. The current is evidently the same everywhere in the circuit. It doesn't diminish as it travels along.

A MOVEMENT OF

PARTICLES

The modern way of explaining this is to regard an electric current not as a flow of invisible fluid but as a movement of charged particles. In most circuits the particles are electrons, which carry negative charges.

Now, just as the north pole of one magnet repels the north pole of another, so in electric circuits negative repels negative.

If, because of some electric bottleneck in the circuit the electrons piled up in a sort of traffic jam that bit of the circuit would become strongly charged negatively.

Any electrons coming along from behind would be repelled. They in turn would repel the electrons behind themselves, and so on all the way back to the battery.

The upshot of all this is that charges don't pile up in this sort of circuit and the current automatically regulates itself to be the same at all points.

A WATERWORKS ANALOGY

Inside the cell, the current must be flowing the wrong way, from negative terminal to positive.

If this seems peculiar, like water flowing uphill, remember that the water which comes out of the tap starts life uphill, in an elevated tank, water tower, or reservoir. It has to be pumped up there in the first instance.
The battery does this sort of job, in an electric circuit. It acts like the elevated tank from which things run downhill. But to keep the supply of electrons topped up it has to do some work.

How much current flows? Our two-cell circuits Fig 1.1b and Fig. 1.1c make the lamp shine brighter. Evidently more current flows when a number of cells all push the same way, like two or more locomotives pushing a line of wagons. But if the line of wagons is made longer they are harder to push.
In the electrical circuit, the work of the battery could be made harder by connecting two bulbs so that the current had to go first through one then through the other. Common sense says that the two-bulb circuit must offer more resistance to the flow of current.

Before we look into this further, consider Fig. 1.1d. If our ideas about cells helping one another are right, then in this circuit they ought to hinder one another since they are now trying to push currents in opposite directions.
Try it. You'll find, as you expected, that the bulb doesn't light.

RESISTANCE

At this point we can move away from drawings of actual cells and lamps and use a purely symbolic circuit (Fig. 1.2).
Each cell is shown as a thin line (the positive plate or electrode) and a shorter thick line (the negative). Ordinary connecting wires are shown as lines and are assumed not to impede the current flow significantly. The bulb, which offers an appreciable resistance, is drawn here as a zigzag. This is one way of drawing a resistance-any sort of resistance.
In the 19th century Georg Simon Ohm showed that, just as common sense suggests, the Intensity of the current (I) increases as the driving force of the battery increases. The driving force was called the Electromotive Force (E). But if the circuit Resistance (R) is increased the current diminishes.
Ohm's findings are illustrated in modern terms in Fig. 1.3. Each line represents a different resistance. You can see that doubling the resistance halves the current while doubling the Voltage (E) doubles the current.
This is the basic rule of battery circuits.

BATTERIES

Batteries come in all shapes and sizes. A large $1 \cdot 5$ volt cell produces the same voltage as a small one but is capable of driving the same current for a longer time. The capacity of a cell or battery is quoted in amperehours, the ampere being the unit of current.
A car battery rated at 30 ampere hours can when fully charged supply one ampere for thirty hours, or 2A for 15 hours, and so on.

There is however an upper limit to the current which can safely be drawn without damaging the battery, and in the case of dry batteries like those in transistor radios and torches this safe limit is often quite low.

Drawing heavy currents shortens life so battery size must be properly chosen. Giving a dry battery numerous rests between uses helps it to recover and increases its useful life.

Continued next month

Everyday News

HOME VIDEO

The story so far

Confidence abounds-video's the thing, and if the ad-men have their way, you will definitely feel a social outcast if you're not sporting the latest video hardware by the end of the year.

As if to emphasise the point, Michael Barratt, late of Nationwide, has recently predicted that, "by July 28, you will not ," be able to rent or buy a VHS or Beta video recorder".

Strong words, but there are a lot of manufacturers spending a lot of money to make the video dream come true.
For example, the RCA Corporation in America are spending a staggering $\$ 20$ million on promoting their SelectaVision VideoDisc alone! And there appears to be no shortage of buyers. Strangely enough, the recent recession has actually helped video sales. Perhaps people are even more anxious to escape from reality in times of uncertainty.

Midlands comedian Ken Wood entertains on the Sony stand at the Home Video Show.

Undoubtedly the biggest video event of the year so far has been the Home Video Show held at the Cunard Hotel in Hammer. smith. The emphasis here was certainly "public participation" and this meant manufacturers actually trusting the public with some of their most expensive equipment.

Of course it isn't much good having the equipment if there's nothing to aim it at, a point that hadn't eluded the people from Sony. They had laid on an endless procession of acts, including the delectable Serena, the Sony Disco Queen.

Not to be outdone, Philips had sponsored a dance troupe all of their own
"Who's this, then?"-Hercules the Bear previews his latest film.
called the Fabulous Apollo, an all girl singing and dancing team, guaranteed to liven up anyone's day, whilst JVC were rather more into the wild west approach with their bucking-bronco.

One visitor who needed no introduction was Hercules the Bear. He was putting in an appearance to promote his new film "Hercules the Wrestling Bear". This particular offering is exclusive to the Video Club, Britain's largest suppliers of prerecorded cassettes.

It need hardly be said that these cassettes represent a tremendous growth sector of the video market and this was reflected in the number of suppliers at the show.
Mind you, one wonders what will happen to them
all when the video disc really takes off. Certainly at an average $£ 40$, a cassette isn't cheap and who wants to watch the same old movie again and again anyway?
According to RCA, their SelectaVision discs will retail at between $\$ 14.98$ and $\$ 27.98$ with a player at around $\$ 500$ and that's for two hours playing time. But the software-that is the major feature films and other programmes-must be available because, as one astute member of the trade put it, "the software sells the hardware"
Still, all is not alarm and despondency, because, as Professor Martin Roberts of Los Angeles said, "the future for home video is a Just a taste of the many films available on video cassette from Rank Video.

—ANALYSIS

MPUs - THE FIRST DECADE

In 1968 the then 31 -year-old Dr. Marcian E. Hoff joined a new and virtually unknown semiconductor company called Intel. Given the task of producing eleven separate low-density LSI chips for a Japanese-designed desk-top calculator, Hoff did a redesign exercise to reduce the number of chips and in so doing developed by 1971 the Intel 4004, the world's first microprocessor or MPU.
The MPU is thus now 10 years old and in a single decade has transformed the electronics industry itself and practically every other industry in which the MPU can find a profitable application.
Where Dr. Hoff and Intel led, others were soon to follow although not necessarily on identical lines. Within a year National Semiconductor embarked on the bit-slice architecture which may be described as a range of standard building blocks from which more powerful microcomputers could be assembled. All the major manufacturers have since entered the MPU market.
Microprocessor technology is fascinating in its own right. But equally fascinating is the impact of the MPU on the way we live. Computing power is now cheap enough for everybody and its small size allows it to be incorporated in almost any piece of equipment, even children's toys.
The paradox of modern life is that while the husband is grumbling about redundancy in his factory through the introduction of MPU-controlled industrial robots, his wife at home is overcome with joy at her new MPU-controlled washing machine with its push-button selection of any nine programmes which together can provide any of 200 different wash conditions. Never has life been so blissful for her, yet so worrying to him.

Brian G. Peck

TV Beats The Gasman

The long suffering resi. dents of an area of East London will welcome the news of a new TV relay station that has just been installed on a block of flats in Hackney by the BBC and IBA.
The problem has been that local residents are situated near several gasholders and these have been playing havoc with reception, particularly "ghosting." As the demand for gas fluctuates day and night so the metal gasholders rise and fall causing TV reception to vary dramatically.
The only problem is that to take advantage of the new station, viewers will need group E or wideband aerials fitted outside, directed towards the new relay and mounted with the rods set vertically. Aerials used for reception from Crystal Palace are not suitable.
Wideband aerials with good anti-ghosting characteristics are particularly recommended. The BBC and IBA do not advise the use of set-top aerials.

The organisers and sponsors of Compec, London's annual computer exhibition, have announced "Compec North," to take place at Belle Vue, Manchester, from June 23 to 25.

The second Sussex Mobile Rally to be held at Brighton Race Course will be on Sun. day, July 19, from 10.30 a.m. to 6 p.m.

Entrance charge will be 50p. For disabled persons and children under 14 years there will be no charge.

The second "Electronic Hotel" exhibition and conference has been announced for June 3 and 4. This dual event will again be held at London's West Centre Hotel.

Global Specialities Cor. poration (UK) Ltd is. the new name for Continental Specialities.

This change in name falls in line with the parent com. pany in the US.

BY M.G. ARGENT

R
emember the good old sixties when the Shadows were top and petrol cost $2 / 6 \mathrm{~d}$ a gallon? Apart from a barnlike echo, the most sought after special effect was the tremolo.

Unfortunately times have changed and the tremolo isn't as popular as it was, although with the recent sixties revival, interest is again being shown in these units. The tremolo design featured here is easy to build and will be suitable for a wide variety of applications including electric guitars, organs and other similar instruments.

CIRCUIT

The full circuit diagram of the Tremolo is shown in Fig. 1. The heart of the unit is IC1, the MC3340 electronic attenuator. The prime function of this i.c. is to reduce the amplitude of an a.f. signal entering it at pin 1 by a predetermined amount. This can be achieved either by applying a control voltage, which may be fixed or varying, to pin 2 , or by controlling the resistance between pin 2 and 0 V .
In our case we have chosen to obtain the tremolo effect by generating a sinusoidal control voltage and applying this to pin 2 of IC1. This
slow sine-wave is generated by a twinT type oscillator built around TR1. The frequency of oscillation and hence speed of the tremolo is controlled by VR1.

The output of the oscillator is passed through C8, a d.c. blocking capacitor. Components R8 and C9 serve to iron out any irregularities in the waveform.

OP-AMP

The sine wave is passed next to an op-amp, IC2, which controls the gain of this signal producing a suitable control voltage for the attenuator i.c. The overall amplitude of this control voltage can be controlled by VR2, and this forms the depth control. The output of IC2 is fed via a footswitch, S1, and d.c. blocking capacitor C3 to the control input, pin 2, of IC1.

This switch is used to turn the effect on and off. When it is open, the varying control voltage is cut off from IC1 and the signal is not attenuated. When the switch is depressed and the circuit is completed, the control voltage can get to ICl and the input signal is varied producing the tremolo effect.

Fig. 1. Full circuit dia gram of the Tremolo Unit.

Power is provided by a 9V, PP3 type battery. It would be a good idea to use a long life battery such as the Duracell type, because current drain is relatively high when the unit is in use. An on/off switch $S 2$ is also provided. This is ganged to the SPEED control, VR1. The Tremolo should always be switched off when not in use.

STRIPBOARD

The bulk of the circuit is laid out on a piece of 0.1 inch matrix stripboard, 21 strips by 27 holes and the full layout is shown in Fig. 2. There are no special considerations here except to say that construction should start first with resistors and link wires, then capacitors and finally semiconductors.

If you are going to use i.c. sockets, make sure they are low profile types otherwise the finished board may not fit in the case. You will see that C 4 is connected between the board and SK2. Similarly Cl is connected between the board and R1 where these two are butt-jointed together. The other end of R1 is connected directly to SK1. Both of these unorthodox connections are necessary if the components are all going to fit inside the box.

CASE

The unit is housed in a wedge shaped case with a maximum width of 100 mm and maximum height of 45 mm . The length is 130 mm and the case is obtainable from Maplin Electronics, order code LH09K. Components should be chosen for their small size and compactness and the prototype layout and interwiring is shown in Fig. 3 and the accompanying photographs.

Use light gauge stranded wire for the interwiring. Drill two holes in the end of the case for the two variable resistors and one hole in either side for the two sockets. The hole for the foot switch is already punched.

Once interwiring is complete, the board can be slotted into position in the shallow end of the case, a battery fitted and the base screwed on. The metal top-plate that comes with the case can be labelled with the various control functions using Letraset and protected with clear lacquer if this is thought necessary. The unit is now ready for use.

An electronic sound source such as a guitar is fed into a voltage controlied attenuator. The voltage control input is connected to an oscillator via a foot switch.

When the switch is on, the sine wave output from the oscillator causes the amplitude of the signal passing through the attenuator to rise and fall giving a tremolo effect. The depth of the effect can be controlled by altering the gain of the oscillator amplifier and the speed of tremolo can be changed by altering the frequency of the oscillator.

TREMOLO

This tremolo unit is designed to be used between the instrument and the amplifier. With the unit switched off, plug the instrument lead into the input, SK1, and connect a second lead between the output, SK2, and the amplifier input.

Switch the unit on. The effect may or may not be heard depending on the setting of the footswitch, Sl. Assuming $S 1$ is in such a position that the effect is not working, check that the sound from the instrument is being reproduced satisfactorily without distortion or insertion loss.

TREMOLO UNIT

Another interior shot. Compare this with Fig. 3 opposite and this will show the control positions in the prototype unit.

Fig. 3. (right) Wiring for the off-board components. These are not shown in their final positions as this will be determined by the choice of case made by the individual constructor. Note that capacitors C1 and C4 are wired directly between the stripboard and the sockets.

Close-up view of the circuit board. Capacitor C4 can be seen to the upper left of the photograph and C1/R1 to the upper right.

Fig. 2. Stripboard layout of the Tremolo showing component positions and breaks in the copper strips on the underside of the board. Note that C1 and C4 are not shown on this diagram. One each of their leads is soldered directly to the board, the other directly to off-board components.

Resistors

R1	$15 \mathrm{k} \Omega$		
R2	$6 \cdot 8 \mathrm{k} \Omega$		
R3	$12 \mathrm{k} \Omega$		
R4	$100 \mathrm{k} \Omega$		
R5	$100 \mathrm{k} \Omega$		
R6	$10 \mathrm{k} \Omega$		
R7	$1 \mathrm{k} \Omega$		
R8	$12 \mathrm{k} \Omega$	See	
R9	$33 \mathrm{k} \Omega$		
R10	$22 \mathrm{k} \Omega$		
R11	$56 \mathrm{k} \Omega$		
R12	$2 \cdot 2 \mathrm{k} \Omega$		
R13 $4 \cdot 7 \mathrm{k} \Omega$			
All +W carbon $+5 \%$	page		

Capacitors

C1	$0 \cdot 1 \mu \mathrm{~F} \mathrm{C280}$ polyester
C 2	100 F polystyrene
C 3	$22 \mu \mathrm{~F} 16 \mathrm{~V}$ tantalum
C 4	$0 \cdot 1 \mu \mathrm{~F} 280$ polyester
C 5	$1 \cdot 5 \mu \mathrm{~F} 16 \mathrm{~V}$ tantalum
C 6	$0.47 \mu \mathrm{~F} 16 \mathrm{~V}$ tantalum
$\mathrm{C7}$	0.47 FF 16 V tantalum
C 8	$22 \mu \mathrm{~F} 16 \mathrm{~V}$ tantalum
C 9	$2 \cdot 2 \mu \mathrm{~F} 16 \mathrm{~V}$ tantalum

Potentiometers

VR1/S2 $50 \mathrm{k} \Omega$ miniature carbon log. with ganged d.p.d.t. mains switch
VR2 $100 \mathrm{k} \Omega$ miniature carbon lin.

Semiconductors

IC1 MC3340 voltage-controlled attenuator i.c.
IC2 741 op-amp, 8 -pin d.i.s.
TR1 BC109 npn silicon
Miscellaneous
SK1,2 standard mono jack socket (2 off)
S1 s.p.s.t. foot operated push-on, push-off switch B1 9V, PP3 type battery
Stripboard, 0.1 inch matrix, 21 strips $\times 27$ holes; wedge shaped plastics case, $130 \times 100 \times 45 \mathrm{~mm}$, maximum dimensions, Maplin type LH09K, or similar; knobs (2 off); battery clip; light gauge stranded wire for interconnections.

Depress S1 once and the tremolo effect should be immediately heard. Its speed can be varied with VR1 and its depth, that is the amount of attenuation between beats of the tremolo, can be controlled with VR2. As S1 is a sequentially acting switch, depressing it a second time should shut-off the tremolo effect, and so on.

countre

 ? NTELILGENCE

Tackling Electronics

I've always been an optimist myself and nothing is likely to change me now, even so, I still get saddened at the demise of any small business, especially if they sell electronic components.

This was brought home to me a few weeks ago when I wrote to a gentleman who wanted to join my buying group and had my letter returned "Gone away"'. This was followed a few days later by two customers, one from Colchester and one from Ipswich and each one told the same story, that they had a little man round the corner but he had closed down.

Always taking the optimist's view that "As one door closes another opens" I hurriedly scanned through the electronic journals to re-assure myself, and sure enough I found several new names presenting themselves to the public, perhaps for the first timel I'm told that the pessimist says, "As one door closes another shuts" but I am glad to report that in this instance they are wrongl

Mind you, it must be more difficult in the smaller towns and some of the retailers very sensibly diversify. For example, a friend of mine in a well known seaside town, switches to fishing tackle and buckets and spades during the summer.

Radio Chair

You may remember that a few months ago I asked readers if they could give me information on the construction of Radio Sets used in prisoner of war camps, because judging by the ones I had the opportunity of examining they contained sophisticated items such as valves, coils and tuning capacitors. I hinted that this looked as though bribery and corruption played a part.
I was delighted to receive a letter from one, Mr. Bill Stock, who told me that I had indeed hit the nail on the head. His letter makes such exciting reading that 1 feel justified in reproducing part of it here.
"I have still my pass allowing me out of camp after $5 \mathrm{p} . \mathrm{m}$. and also a photograph of a chair which was made from tea chests and covered in hessian. The chair was constructed by a carpenter and included a secret compartment in the base where the 'Canary' (radio) was hidden from time to time. The chair lived in the islolation ward in the camp hospital, where I too was bedded and became my favourite piece of furniture-the only piece, in fact.
"Periodically the camp was searched by troops of the S.S. and on one occasion they were thundering through the hospital and ended up in my room. The N.C.O. in charge thought my chair was too much of a good thing for a P.O.W. and without bothering to open the window hurled it through the glass. The radio burst through the back of the chair and lay in full view. I was petrified, but miraculously the N.C.O. had not spotted it. As it happened, a couple of our men were on the rounds emptying the swill bins: spotted the radio and with the utmost calm retrieved it and dropped it in the swill bin they were carrying. Needless to say, the canary was silent for a few days after that!"

Mind you' I don't think all the P.O.W.'s were as lucky as Bill and some had to fall back on Crystal Sets using a piece of coke and a strand of thin copper wire as the detector, but it's stirring stuff.

Moral Obligation

I see in the Letters page the question still being raised on the veracity of components Calalogues and our gallant Editor lucidly explaining the problems we face, which are mainly three:
(1) We never know the likely demandl
(2) We never know exactly the delivery time from our suppliers.
(3) Inflation has made it virtually impossible to carry large stocks.
I'm sure we all agree that if we catalogue an item we have a moral obligation to make sure it is available to the customer. Two things sometimes make that difficult. If there is only one supplier and this supplier discontinues the article and, as sometimes happens, the supplier suddenly raises his minimum order to three figures on a relatively slow selling line.
One reader raised a query on postage, where part of his order was delayed and he was requested to pay more postage on the balance. This is indefensible and speaking for myself and the majority of my colleagues, we would not expect a customer to pay more than one amount of postage on each order.

Finally, I think I can justly say, that in this present economic climate none of us is complacent, and try to give as good a service as possible. At any rate you won't see at the bottom of our advertisements, a statement to be seen at the bottom of many mail order firms adverts, dealing in general merchandise, usually written in small print, "Allow 28 days for delivery!!"

RADIO WORLD

By Pat Hawker, g3va

Learning Morse

In my experience one of the most difficult things to do is to persuade newcomers to amateur radio that learning the Morse code (necessary to obtain a licence to operate in the h.f. bands, although not for the v.h.f. Class B licence) is really worth the trouble.

Most people find the learning process tedious, with periods when they seem to be making little progress and soon become convinced that the whole system must by now be obsolete and hopelessly slow compared with modern data trans mission. It is often only after several years of operating that one becomes convinced that Morse is effective and enjoyable.
It has been astimated that the brain needs to hear each Morse letter, sent correctly, some 40,000 times before it gets used to responding automatically to the symbol. Some 70 to 100 hours of practice are needed to achieve the 12 words a minute necessary for the amateur licence-and then one needs "on air' experience to bring the speed up to about 18 to 22 words per minute, before one can really begin to sit back and enjoy the pleasure of good operating.

Yet once that sort of speed has been reached, it becomes a skill that is never really lost; it can last a lifetime and is still a system almost ideally suited to international communication with those not fluent in the English language as well as permitting long distances to be covered with simple and inexpensive equipment and aerials: a pleasure rather than a chore.

So 1 only wish it were easier to get people not just to take the first steps of memorising the code, but to keep at it until those early "humps' are overcome. Today, with practice tapes and random code generating machines, it is easier than in the days when one had to find an instructor who was often rather rusty himself.

High speed telegraphy

An American amateur radio journal is organising a "world championship" for those capable of copying Morse telegraphy at high speeds. They are hoping to find someone capable of challenging the long-standing record of Ted McElroy, ex-W1JYN, who in July 1939 succeeded in copying on a typewriter Morse signals at the incredible speed of $75 \cdot 2$ words per minute. Most of us would indeed be well pleased if we could show ourselves capable of copying at even half that speed!
This speed is appreciably more than that of a standard radio-teleprinter, the typewriter-like machine that prints incoming code signals (5-unit code and not Morse code) without requiring a human operator. For more than 30 years a number of radio amateurs have been using this form of machine-telegraphy (RTTY or
radio teleprinting) even though the basic system is not really well suited to longdistance radio transmission, having originally been used for "line" working in the Post Office telegraph services. Amateurs often acquire old Creed machines though a number now use more sophisticated systems that display the messages on a television screen.

The problem is that a single error in reception causes an entirely wrong letter to be printed out. To achieve perfect copy one needs either fairly strong signals, without interference, or the use of more sophisticated systems with error correction or multiple tones. A human operator can copy weak, fading Morse signals under heavy interference far more accurately than an RTTY machine.

Hellschreiber

Recently a number of European amateurs, in an effort to overcome the problems of the often poor copy of RTTY machines, have been reviving a system developed in the 1930s called "Hellschreiber" invented by Dr Rudolf Hell in Germany and later manufactured by Siemens-Hell.

The system was widely used by the Germans in World War II for military communications, it also came into worldwide use for a number of years for press messages. But after a few years it was largely superseded by the faster RTTY machines which printed at about 60 wpm compared with the 25 wpm or so of Hellschreiber.
But "Hell" had a number of advantages that continue to be valid even today when the only commercial use of the system is in China. The machines can, in effect, be used with almost any radio receiver or telephone line circuit without the special circuitry needed for the frequency-shift-keying of RTTY.
Since they use what might be called an "analogue" rather than a "digital" system the performance in the presence of interference degrades only gradually-and the machines never print cut wrong letters, although interference can cause a letter to become blurred and difficult to read. And although a "synchronous" system, the send and receive machines do not need to be kept accurately in step: they can run as much as 5 per cent out of synchronism.
A few years ago several Dutch and German amateurs managed to acquire old German field machines and got them going on the amateur bands. It was soon found possible to build such machines (particularly for reception) and various microprocessor-based systems have also been developed for displaying the messages on a television screen.
It is unlikely that this work will lead to any general revival of the system, but it still provides a good example of an interesting electromagnetic system.

Professional designers

The profession of electronics design engineer attracts many bright youngsters, offering as it does an opportunity for really creative work. The Institute of Electrical and Electronic Engineers in the USA recently asked 30 American design engineers, working in the semiconductor, instrumentation, systems and computer fields, what they thought of their work and what motivates them.
Looking through their comments one wonders whether "work" is the right word: if this was a really representative cross-section, then they all seem to be dedicated enthusiasts. Some indeed regard it more as "fun" than work ("I get a real kick out of it"), most look forward to starting work each morning ("I once got a speeding ticket rushing to work to try out an idea that came to me in the shower").

Some feel that "you can let your imagination run wild, because the boundaries aren't as defined as in other engineering areas". They really enjoy "being able to visualise a design and then building it".
This group of what I can only call "paragons", spread out from New York to "Silicon Valley" (near San

Francisco, California), reported that they regularly read engineering publications, attend trade shows and professional seminars, spend considerable time each week in technical discussion with colleagues and a quarter of them hold patents for designs they have developed.

Admittedly a few felt that even this idyllic profession has its share of headaches, including "constant pressure" to meet design objectives without sufficient resources, or enough time or help ("I don't like to sacrifice quality of performance to meet marketing schedules or money concerns"). Computer-aided design is now considered essential although the technology was felt to be always a few years behind design: "it may never catch up with the state of the art, because its always going to be dependent upon the technology used to build it."

In the field of semiconductors, design is seen as becoming so specialised that freelance designers and independent design groups are beginning to emerge: integrated-circuit designers can already command salaries in excess of $\$ 50,000$, which is perhaps one of the reasons why American designers seem a happy and contented group of engineers!

LP-1 Logic Probe

The LP-1 has a minimum detachable pulse width of 50 nanoseconds and maximum input frequency of 10 MHz . This 100 K ohm probe is an inexpensive workhorse for any shop, lab or field service tool kit. It detects high-speed puise trains or one-shot events and stores pulse or level transistions, replacing separate level detectors, pulse detectors, pulse stretchers and pulse memory devices. All for less than the price of a DVM

£31.00*

LP-2 Logic Probe
The LP-2 performs the same basic functions as the LP-1, but, for slower-speed circuits and without pulse memory capability. Handling a minimum pulse width of 300 nanoseconds, this 300 Kohm probe is the economical way to test circuits up to 1.5 MHz . It detects pulse trains or single-shot events in TTL, DTL, HTL and CMOS circuits, replacing separate pulse detectors, pulse stretchers and mode state anałysers.
(Available in kit form LPK-1 £11-92) £18.00*
The logic prooes shown are all surtable for TTL DTL HTL and CMOS circuits.

- price excluding P.8P. and 15% VAT

Spend Less
 Test More

LP-3 Logic Probe
Our LP-3 has all the features of the LP-1 plus extra high speed. It captures pulses as narrow as 10 nanoseconds, and monitors pulse trains to over 50 MHz . Giving you the essential capabilities of a high-quality memory scope at $1 / 1000$ th the cost. LP-3 captures one shot or low-rep-events all-but-impossible to detect any other way.
All without the weight, bulk,
inconvenience and power
 consumption of conventional methods.
$\mathbf{£ 4 9 . 0 0 * * ~}$

The New Pulser DP-1
The Digital Pulser: another new idea from G.S.C. The DP-1 registers the polarity of any pin, pad or component and then, when you touch the 'PULSE' button, delivers a single no-bounce pulse to swing the logic state the other way. Or if you hoid the button down for more than a second, the DP-1 shoots out pulse after pulse at 1000 Hz .
 The single LED blinks for each single pulse, or glows during a pulse train. If your circuit is a very fast one, you can open the clock line and take it through its function step by step, at single pulse rate or at 100 per second. Clever! And at a very reasonable price.
£51.00*

GLOBAL SPECIALTIES CORPORATION

G.S.C. (UK) Ltd. Dept. 4II

Unit 1, Shire Hill Industrial Estate,
Saffron Walden, Essex CB11 3AQ.
Telephone: Saffron Waiden (0799) 21682
G.S.C. (UK) Limited, Dept. 41I, Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex C811 3AQ: Prices include P.\&P. and 15\% VAT

\qquad or debit my Barclaycard/Access/ American Express card no. \qquad exp. date
FOR IMMEDIATE ACTION - The G.S.C. 24 hour, 5 day a week service. Telephone (0799) 21682 and give us your Barclaycard, Access. American Express number and your order will be in the post immediately.

FREE OUR CURRENT BARGAIN LIST WILL
transmitter surveillance
Thy, easily hidden but which will enable conversation to be picked up with FM radio. Can
parts and circuit. $\mathbf{2} .30$
RADIO MIKE
Ideal for discos and garden parties, allows complete freedom of
movement. Play through FM radio or tuner amp. $\mathbf{£ 6 . 9 0 \text { comp. }}$.
SAFE BLOCK
Mains quick connector will save you valuable time. Features include quick soring connectors, heavy plastic case and auto on and off LIGHT Chaser
Gives a brilliant dispolay - a psychedelve light show for discos. par ties and pop groups. These have three modes of flashing. two chase
patterns and a strobe effect. Total output power 750 watrs per parterns and a strobe elfect. Total output power 750 watrs
channel. Comiete kit. Psice $\mathrm{E16}$. Ready made up E 4 extra.
FISH BITE INOICATOR
Enables anglers to set up several lines then sit down and read a book. As soon as on
Price fa. 90 .
6 WAVEBAND SHORTWAVE RADIO KIT
appeared in a recent issue to 32 metres. Based on circuit which appoared in a recent issue of Radio Constructor. Complete kit in
cludes case materials, six transistors, and diodes. condensers, ors, thiuctors, switches, etc. Nothing else to buy if you have an
amolifier fo connect it to or a pair of high resistance headphones. Price E11.95
SHORT WAVE CRYSTAL RADIO
All the parts to make up the beginner's model. Price $£ 2.30$. Erystal
earpiece 65 p. High resistance headphones (gives best results) $\begin{aligned} & \text { E3.75 }\end{aligned}$. RADIO STETHOSCOPE
Easy 10 foult find - start at the arial and work towards the speake INTERRUPTED BEAM This kit enables you to make and ents - relay, photo transistor, resistors and caps etc. Circuit diagram OUR CAR STARTER AND CHARGER KIT has no doubt saved many motorists from embarrassment in an emergency you can star hours. The kit comprises. 250 w mains transformer, iwo 10 amp bridge rectifiers, start/charge switch and full instructions. You can
assemble this in the evening, box it up or leave 11 on the sheif in the garage, whichever suits vou best. Price $£ 11.50+£ 2.50$ post. GPO HIGH GAIN AMP/SIGNAL TRACER. In case measuring
only 5% in $\times 3 \%$ in $x 1 \%$ in ts an extremely high gain (70 dB) solid state amplifier designed for use as a signal tracer on GPO cables, etc. a simple coit to the input socket a useful mains cable tracer can be and on-off volume control, mounted flush on the output socke uses include general purpose amp, cueing amp, etc. An absolute bargain at only $£ 1.85$. Sutable 30 ohm earpiece 69 p .

NEW KIT THIS MONTH!
C8 RAOIO - Listen in with our 40-channer monitor
cailer.

8 POWERFUL BATTERY MOTORS

WATERPROOF HEATING WIRE
60 ohms per vard, this is a heating element wound on a fibre glass coil and then covered with p.v.E. Dozens of uses - around water
pipes, under grow boxes in gioves and socks. 23 per metre
COMPONENT BOARO Ref. WO998
This is a modern fibreglass board which contans a mult tude of
very useful parts, most important of which are: 35 assorted diodes and rectufiers including 43 amp 400 v types (made up in a bridge) 8 SCR ref $2 \mathrm{~N} 5062,250 \mathrm{ut} 100 \mathrm{VDC}$ and 100 uf 25 VOC and over 100 electrolytic and other condensers. A real snip at $\mathbf{£ 1 . 1 5}$.
FRUIT MACHINE HEART 4 wheeis with all fruts, moiorised and with solenoids for stopping the wheels with a hintie ingenuity you ca
defy your friends getting the "ackpot", $£ 9.95+£ 4$ carriage. 4.CORE FLEX CABLE

100 menes $£ 15$. Other mulninions, disco lights, etc. 10 metres $£ 2$ mugger deterrent
A high-note bleeper, Dush hateh ing switch, plastic case and battery

PUSH BUTTON G.P.O. TELEPHONES FOur $£ 25$ (Quickly recover able in saved rime) you will improve ex. G.P.O. thoroughly reconditioned, can be yours in a few days.

SUPER HI-FI SPEAKER CABINETS
Made for an expensive H_{1}.Fio outfl

- will suit any decor. Resonance free cut-outs for $8^{\prime \prime}$ wooter and
$4^{\prime \prime}$ I wheeter The 4 " iweeter. The front material is
carved Dacron. which is thick and carved Dacron. Which is thick and
does not need to be stuck in and dhe completed unit is most pleas. ing. Cotour black. Supplied in pans price 6 E.90 per pair (this is prob
ably less than the original cost

LOUDSPEAKERS

3 CHANNEL SOUND TO LIGHT KIT

Complete kit parts tor 2 a three-channel sound to light unit con troll. ing over 2000 wates of hight. ing Use this at home if

is plenty rugged enough for disco work. The unit is housed in an attractive two-tone meral case and has controls for each channel.
and a master onioft. The audio input and output are by $\%$. sockets and itree panel mourting fuse holders provide thyristor ing lamps. Speciat snip price is $£ 14.95$ in kit form or $£ 19.95$

THIS MOMTMSS SNMPE

UNIVAC KEYBOARD Model No. FI 308-00

$\frac{t+t x-7444}{-5888888888 \underbrace{2}}$

Has 57 encoded key switches and 10 mini toggle switches. As well as a P.C.B. with many IC's etc. These keyboards are in very good condition. Price only $\mathbf{£ 1 1 . 5 0 + \text { post }}$
£2.00. Well worth it for the switches alone.

POCKET AUDIO
COMPONENT TESTER

With it you can quickly test diodes, rectifiers, transistors, capachors, check wiring and p.c. boards for open circuits, find the is PNP or NPN, which are the or rectifier and whether a transistor
anoder and emitter connec ons. Condensers, if bad give a continuous signal but if good, give Thermittent signals of varying length depending on their value, The test current is very low (2uA) and the voltage onlv 1.4 v , so it is atso possible to check MOS devices, as well as sensitive
transistors with out fear of damaging them. The unit is supplied comolete with internal battery, which should last many moniths. Price $\mathrm{EBF}^{\mathbf{4}} \mathbf{4 5}$ p.

MINI-MULTJ TESTER Deluxe pocket size precision mov 1 instant range measures: OC volts $10,50,250,1000$. AC volts $10,50 \quad 250,1000$
 AC volts $10,50,250,1000$.
DC amps $0=100 \mathrm{~mA}$
Continuity and resistance 0.1 meg ohms twruction book showing how to measure cap. struction book showing how to measure cap-
acity and inductance as well. Unbelievable ar oniv $£ 6.75+50$ p post and insurance current from 0.10 amps, directly
on the 0.10 seale. It's tree if you purchase quickly, but of you alread own a Mini-Tester and would like

MULLARD UNILEX system. Rated one of the stereo field this would

make a wonder ful gift for almost anyone. in easy to assemble

 modular form this should self at about $£ 30$ centive for you to buy this mon th we offer the system complete at only $£ 16.75$ including VAT and FREE GIFT - buy this month and you will receive a pair

DELAY SWITCH
 STEREO HEADPHONES Japanese made so very good quality
8 ohm impedance. padded, term. plug. E2.99 Post 60p. BRIDGE RECIFIER LEVEL METER nd power but cover easily removable for to for $£ 2.50$. 100 for $£ 20.0$

TIME SWITCH BARGAIN Large clear mains frequency controlied correct time + start and stop switches $\mathbf{~} \mathbf{£ 2 . 5 0}$.

LAST MONTH'S SNIP - STILL AVAILABLE currently sething at $\mathbf{£ 6 . 3 5 \mathrm { p } \text { . The snip is perhaps the nost useful bre }}$ different computer panels containing parts which must have cas least $£ 500$. On these boards you will find over 300 IC's. Over 300 diodes, over 200 transistors and several thousand other parts, resist ors, condensors, multiturn pots, recifiers, SCR, ett. etc. If you act deduct the value of the desoldering pump, works out to fust a little over Δp per panel. Surely this is a bargain you should not miss!
When ordering please add $£ 2.50$ post and $£ 1.27$ VAT

MAINS MOTORS
Precision made in record plavers. blow heaters, etc.
Speed usually 1.400 . All have ample spindie length for coupling fan blade,
 44.50. Add 25% stack $£ 3.50$: $11 / 1^{\prime \prime}$ stack tage, and then add $15 \% \mathrm{~V}$

YOUR LAST CHANCE FOR THIS BARGAIN 61150 With these you tool shop price over E50. Vours for only £11.50. With these you will be able 10 drill meta, wood, plastic,
from the tiniest holes in P.C.8. right up to about $\%$ ". Don't mis this snip - send your order today.

MAGNETIC LATCH Low voltage 14 - 8
Onty E 1.50 each.

TAPE PUNCH
\& READER
for
matching tape reader Ex-computers, berised 8 bit punch, with

J.BULL(EIectrical) Ltd.

(Dept. EE), 34-36 AMERICA LANE, HAYWARDS HEATH, SUSSEX RH16 3QU.
J. BULL (Electrical) Ltd - Established 25 years. MAIL ORDER TERMS: Cash with order .-. please add 60 p to all orders under $£ 10$, to offset packing, etc. ACCESS \& BARCLAYCARD WELCOMED. Our shop is open to callers. BULK ENQUIRIES INVITED. Telephone: Haywards Heath (0444) 54563.

Although a crystal set does have advantages over other types of receiver, such as low cost, simplicity, and no running costs, unfortunately there are also drawbacks to this type of receiver. The main ones are the need for a longwire aerial in order to obtain an adequate signal pick-up, and the low output level which is only sufficient to drive an efficient pair of headphones or earpiece.

The crystal set which forms the subject of this article has been designed to operate without the need for a longwire aerial, making it usable in situations where such an aerial would be impractical, or at least very inconvenient. The receiver covers the normal medium wave broadcast band, and uses a loop type aerial.

A loop aerial really just consists of a large coil of wire although, as we shall see shortly, the size of the coil and number of turns on it are very important. It differs in this respect from a longwire aerial which is merely a substantial but random length of wire.

CONVENTIONAL CIRCUIT

The circuit diagram of a conventional crystal set is shown in Fig. 1. The longwire aerial picks up the electrical field radiated by the transmitter, this field producing voltage differences across the aerial wire, and giving the required signal voltages and currents.

The components LI and Cl form what is known as a tuned circuit, and this circuit can be adjusted to resonate at any frequency within the medium wave band by means of Cl . At this resonant frequency the tuned circuit has a high impedance, but it exhibits only a low impedance at frequencies significantly removed from the resonant one.

Fig.1.A conventional crystal set circuit.
Therefore, if the tuned circuit is set to resonate at the frequency of the desired transmission, little of this signal will be lost through the high impedance path of the tuned circuit.

Other stations will be at significantly different frequencies to the desired one, resulting in them being short circuited to the earth line through the tuned circuit. The unwanted signals are thus filtered out to leave only the wanted transmissions.

AMPLITUDE MODULATION

The signal picked up by the aerial is at a high frequency, or "radio frequency" (r.f.) as it is normally known. This signal will not produce an audible output from headphones or an earphone, but must first be demodulated to extract the audio frequency (a.f.) signal that is modulated onto the radio frequency "carrierwave" signal.
The form of modulation used by m.w. broadcast stations is "amplitude modulation" (a.m.), and in this system the strength (amplitude) of the carrier wave is varied (modulated) in proportion to the audio signal level, as shown in Fig. 2(a).
A crystal set uses the most simple method of demodulating the signal, and this consists of first rectifying it, as shown in Fig. 2(b). Diode D1 only passes positive-going half cycles of the carrier signal, and blocks nega-tive-going ones, since it is the function of a diode to only conduct in this one direction.
This demodulation or detection process was carried out using a "cat's

Fig.2.(a) An a.f. signal combined with a r.f. carrier wave to form a modulated r.f. signal. (b) Modulated r.f. signal that has gone through the first stage of demodulation, that is rectification. (c) Original a.f. signal recovered after second stage of demodulation, that is smoothing.
whisker" and a galena crystal, or other suitable crystal, in the original crystal sets. These days it is more normal to use a germanium diode to provide this rectification. Silicon types are inferior in this particular application because they have a higher forward resistance at the low voltages encountered here, resulting in poor efficiency.

OUTPUT SIGNAL

The rectified signal from the diode must be smoothed by a capacitor in order to produce an output signal that is a sort of average voltage. The average voltage of the rectified signal is determined by the modulting signal, and as can be seen from Fig. 2(c), the smoothed output is in fact the same as the modulating signal.

This ouput signal drives the earphone to produce an audible output. In this case the smoothing capacitance is provided by the self-capacitance of the crystal earphone. If a high impedance magnetic phone or phones were to be used it would be necessary to include a separate smoothing capacitor of a few nanofarads in value.

A crystal earphone is probably the better choice though, due to the low cost, easy availability, and high efficiency.

Resistor R1 provides a suitable discharge path for the smoothing capacitance so that it does not merely charge up to the peak value of the input signal and remain there.

LOOP AERIAL

A crystal set obviously needs to have a strong aerial signal in order to give a satisfactory volume level from the earphone, as it is actually the energy received from the transmitter that is used to drive the earphone!

There is no gain in the set to compensate for a weak input signal, and this discounts the use of a normal ferrite aerial which has an output level that is normally only a fraction of a millivolt. A longwire aerial is normally used as it can easily provide output levels of a few hundred millivolts from strong signals.

Loop aerials used to be quite popular in the days of the large, valved sets, when a large loop aerial could be wound around the inside of the case. This type of aerial was often referred to as a "frame aerial". Smaller more modern sets could only accommodate a comparatively small loop aerial, with a consequent reduction in the level of signal pick up, and so with the advent of the more convenient ferrite aerial the loop aerial virtually disappeared.

A loop aerial would seem to be a good choice for a crystal set however, as a loop of about 915 mm (3ft)

Fig.3. Complete circuit diagram of Loop Aerial Crystal Set.
square gives a signal level that is roughly comparable to an outdoor long wire aerial of about 10 metres or so in length, but is probably a more practical proposition in most situations.

CIRCUIT

The circuit diagram of a crystal set having a loop aerial is shown in Fig. 3. The aerial is really a very large inductor (in the physical sense) which forms part of a tuned circuit that is resonant at the desired reception frequency. In the case of a crystal set it is merely necessary to use the aerial winding as the tuning inductance, and it is for this reason that the size and number of turns on the aerial is important. An aerial of the wrong size simply will not tune the correct band of frequencies.

In other respects the circuit of Fig. 3 is identical to that of Fig. 1, except that there is provision to drive two crystal phones. This enables either two people to listen to a programme, or one person to use both phones in order to obtain better volume on weak stations. Two phones will also give better noise excluding properties, which is again an advantage on low volume stations.

RESULTS

In Essex (SE England) the prototype receiver provides good volume from Radio 2 and the BBC World Service. Lower but adequate volume is produced by Radio 1, Radio 3, a second Radio 2 frequency, BBC Radio Medway, and even one foreign station is just audible. The selectivity is perfectly adequate to separate two fairly closely spaced stations.

CASE

Virtually any small plastic or metal case should make a suitable housing for this project, provided of course that the case is large enough to accommodate the components, particularly Cl. The specified tuning capacitor requires a standard 10 mm diameter mounting hole, and those for the three sockets are about 6.5 mm in diameter.

HOW IT WORKS

Signals from the transmitter are picked up by the loop aerial which is part of a tuned circuit.
Here the unwanted frequencies are screened out and only the required signals are passed on to the next stage.

The detector or demodulator separates the audio signals trom the carrier by rectifying and smoothing the incoming signal.

This is finally taken to the earpiece where it is converted to sound waves.

THESE SPACE INVADERS WILL ALARM YOU-the price won't!

BECOME AN INSTANT MUSICIAN NO EXPERIENCE NECESSARY

Create your own music with a VL-TONE. You combine the sound, rhythm and tempo and the VL-TONE plays it back . . beautifully!

CASIO VL-TONE (VL-1)

Electronic Musi
and Caiculator

VL-1 Utilises Very Large Scale Integrated circuit advanced technology. This complete 29 -note synthesiser records and plays back. The octave shift switch expands the range of the keyboard to almost 5 octaves.
Preset sounds: Piano, Violin, Flute, Guitar, Fantasy and ADSR (sound wave that can be varied in over 80 million ways).
One key play: Record a melody. The notes are replayed in correct sequence simply by tapping the replay key and duration and tempo can be varied.
Auto play: ONE-KEY or MANUAL playing can be recorded and will be played back in the form of a melody.
Auto rhythm: 10 built-in rhythms, with variable tempo and balance, can be incorporated in manual playing or added to your recording.
Pacilities: LCD numerical display shows pitch, including sharps and programming information. Built-in amplifier and speaker. Output jack. Pitch control.
Calculator: 8 digits,,,$+- x_{,} \div$, square roots, $\%$, constants and full memory Power source: Four AA size batteries or AC adapter (price $\mathbf{f 5}$).
Dimensions: $30 \mathrm{~mm} \times 300 \mathrm{~mm} \times 75 \mathrm{~mm}\left(1^{\prime \prime} \times 111^{\prime \prime} \times 3^{\prime \prime}\right)$.
This compact, battery powered lightweight (438g, 15-4oz) can be played anywhere. Available May 1981

OTHER CASIOTONE KEYBOARDS

MT-30 Polyphonic, 22 instruments over 3 octaves. Battery/mains (RRP £115) 895 CT-301 Polyphonic, 14 instruments over 4 octaves. 8×2 rhythm accompaniments. Vibrato, delayed vibrato. Pitch control. Output jacks. AC only (RRP £285) £245 CT-401 As CT-301 but with Casio Auto Chord for one finger or auto accompaniment. Plays major, minor and seventh chords with bass. Integral sustain and paniment. Plays major,
hold. (RRP £345) $£ 295$

A CLASSIC IN ITS TIME

Battery powered, with integral stand. Ideal for car, caravan, boat, domestic or office use, or as a pocket watch (leatherette pouch with window included)
PQ-20
ALARM
CLOCK
(RRP £14.95)
ONLY
£12.95

Large LC Display of full digital time. Symphonic alarm (Mozart, No, 40), or buzzer, with snooze facility. Hourly time signal option. Integral speaker and amplifier. Rapid setting. Accuracy $+1-15$ secs $/$ month. One lithium battery lasts approx. 12 months. Dims: $9.3 \times 108 \times 48 \mathrm{~mm}$. ($\left.\times 4 \frac{1}{2} \times 1 \mathrm{i}^{\prime \prime}\right)$. $53 \mathrm{~g}(1 \cdot 9 \mathrm{oz})$ MA-1 Battery Alarm Clock
Similar to PQ-20 but has blue L.C Display, nightlight, 3 position volume control. 3 AA batteries last 15 months approx. Dims: $43 \times 115 \times 76 \mathrm{~mm}\left(13 \times 4 \frac{1}{2} \times\right.$ 3 inches). Ivory coloured case. (RRP £11.95) ONLY £9.95

OUR BEST SELLING SCIENTIFIC CASTBETK

Statistical regression and integrals. Non-volatile memories and stores. 38 functional (non-volatile) steps. 2 programme storage capability. Unconditional and conditional jumps. One independent, 6 constant (non-volatile) memories. 18 pairs of parentheses, nestable in 6 leveis. 61 built-in functions, including: integrals (Simpson's rule). Linear regression, logarithmic regression, exponential regression and power regression. Hyperbolics, sexagesimal and co-ordinates conversions 10 digit mantissa or $10+2$ exponent. Two silver oxide batteries give approximately 1,000 hours continuous use with power-saving automatic cut-off, with data and memory protection. Dims: $9 / 32 \times 21 \times 5 t$ inches. Supplied with leatherette ALL THIS FOR ONLY $£ 22.95$

CASIO'S MOST AMAZING WATCHES EVER

Display: Hours, minutes, seconds, am/pm, day and date. 12 or 24 hour format
Auto Calendar: Day, date, month, year Alarm: 24 hour, with "On" symbol.
Hourly Chimes: Time signal every hour, on the hour. Easily switched on or off.
Professional Stopwatch: Lap times etc, from $1 / 100$ second to 24 hours.
Dual Time: Second time zone
Calculator: 8 digits, four functions, with constants and display symbols.
FINGER-TOUCH KEYBOARD
DIGITAL SPACE INVADER GAME/with sound effects and scoring.
Water resistant case. Mineral glass.
CA-90: $46 \times 36 \times 10.55 \mathrm{~mm}$. Black Resin
CA.901. $40.5 \times 35.2 \times 10.5 \mathrm{~mm}$. Metal.

CA 901 (RRP £34.95) ONLY $£ 29.95$

The random digital invaders attack from the bottom right and move across the display. Every time you tap Alm your missile number, top number coincides with an invader, cap FIRE and number concides will disappear, adding to your that spaceship will disappear, adding to your
score. The game is over if 3 of the 16 spaceships in an encounter penetrate your defences.
There are 2 stages, each stage having 9 encounters. In stage 1 the game speeds up with each encounter and in stage 2 the invaders attack from a closer position. After stage 2 the game reverts to stage 1 but the score, displayed after each encounter, is incremental
CA 90 (RRP £29.95)
ONLY $£ 24.95$

SUMMER TIME!

Now is the time to buy a Sports Watch for you holidays and outdoor activities. These models (except HV027) are WATER RESISTANT TO 100 METRES and suitable for swimming, snorkelling, sailing and most other outdoor sports.
SEIKO DUAL DISPLAY
Analogue display of time with sweep second hand. Independent digital display of ime (12 or 24 hour format); day/date calendar; 24 hour alarm function; hourly time signal; $1 / 100$ second stop watch. Instant setting. Luminous dial. 2 year battery life. Battery life indicator. Stainless stecl case. HARDLEX glass. JET 088. Black outer bezel. 100 metre W/R case $36 \times 40 \times 9 \mathrm{~mm}$ approx

HV 027
WATER RESISTANT
A BEAUTIFUL SPORTS WATCH

SAVE £17!

ONLY
£72.50

CASIO ALARM CHRONOS

W-150
All stainless
steel
232.50*

W-150C
S/S case resin strap
$\mathbf{£ 2 5 . 9 5}$

Full time (12 or 24 hour) and catendar display. Half-hourly time signal option. Alarm. $1 / 100$ second stopwatch. Lap timing. Countdown alarm timer with repeater memory function. Time is always visible regardless of display mode.
Nightlight. 9.65 mm thick case. Mineral glass face. Amazing 5 year battery life.

PRICE includes VAT and P\&P. Send cheques, P.O. or phone your ACCESS or BARCLAYCARD number to

COMPONENTS

R1 $390 \mathrm{k} \Omega$ \& watt 5%
C1 500 p F variable solid dielectric (Jackson) or similar
D1 0A91 small signal german. ium diode
SK1-SK3 3.5 mm jack sockets (3 off)
PL1 3.5 mm jack plug
Verocase type 75 -2860J $(120 \times 80$ 35 mm) or similar plastic box; crystal earphone with 3.5 mm plug: 4 oz . of 20 s.w.g. enamelled copper wire to form L1; twin-core cable: in sulation tape; connecting wire; control knob.

Guidance only Approx. cost (See page 425)

Fig.4. Complete interwiring details of the Loop Aerial Crystal Set. Note that there are two earphone sockets. These are wired in parallel and means that two different crystal earphones can be used at the same time.

Incidentally, the tuning capacitor can be any type having a maximum capacitance of about 500 pF or so, and inexpensive surplus types are perfectly suitable.

WIRING

As can be seen from Fig. 4, there is very little wiring needed to complete the unit. Provided the tags of Cl and the sockets are generously tinned with solder prior to making a connection, and the ends of leads are similarly treated, there should be no difficulty in producing good strong joints. It is advisable to leave the leadout wires of D1 full length as this is a germanium device, and can therefore easily be damaged by overheating when being soldered into place if its leadout wires are trimmed short.

AERIAL CONSTRUCTION

The aerial is square in shape, and measures 915 mm (3ft) along each
side. It has five turns of 20 s.w.g. enamelled copper wire, and $40 z$ of wire is sufficient for the coil. It is necessary to have some form of rough temporary former on which to wind the coil, such as a large piece of chipboard with four nails or screws mounted at the corners of the square, and only partially driven home so that they act as corner posts for the coil to be wound around.

Any similar arrangement should do; the prototype aerial being wound around four loudspeaker cabinets set to form the appropriate sized square. It is really just a matter of using ones initiative here. Numerous bands of p.v.c. insulation tape are used to bind the turns of the coil together, and it can be removed from the former once this has been completed.
The aerial connects to the receiver via a piece of twin (figure of eight) lead which should be no more than about one metre long. A longer length is unsuitable as it would considerably add to the capacitance of the tuned circuit, making it impossible to tune
to the high frequency and of the m.w. band.

The aerial and lead can be joined using a two way terminal block, or alternatively soldered connections can be used with insulation tape being strategically placed in order to ensure that the two joints do not accidentally short together. The free end of the lead is terminated in a 3.5 mm jack plug which connects with SK1.

AERIAL MOUNTINGS

In use the aerial must be mounted vertically, and it should be possible to obtain good results with it simply hung over the edge of a table or shelf. Another method is to attach it to a wall using Bostic Blu-Tac. The aerial does not have to be kept perfectly square, and satisfactory results seem to be obtained even if it is considerably distorted. A loop aerial has the same directional properties as a ferrite type, giving maximum signal pick up with the wire in the horizontal sections of the aerial pointing towards the transmitter.

Rear view of front panel showing the component interwiring.

The Loop Aerial Crystal Set in use. Note that only the lower half of the loop aerial is shown. This is in fact about 3 m square and the horizontal sections should point towards the transmitter.

A A collection of fixed value resistors. Along the top of the picture are three high power wire-wound types. The large component on the right is an aluminium clad, 25W type.

Below this is a selection of various types of solid resistors, that is, resistors made from a solid mass or film of material. The largest component on the left is a 2W type and the resistors descend in power rating down to the tiny $\quad \mathbf{W}$ type third from the right.

The most common types of this sort of resistor are carbon film, carbon composition, metal film, and metal oxide. They are different in colour but different manufacturers tend to use different colours for the same type and there is no standard.

The actual value of each resistor is denoted by a standard colour code, and in the background is a booklet showing this code. Apart from the value, this code is also used to give other information such as tolerance, that is, the amount by which the actual value of the resistor deviates from the stated (nominal) value.

The first two bands give the first two digits of the value, the third band gives the number of zeros that follow these two digits. The fourth band denotes the tolerance, and may be omitted altogether.

Components - the elements from which all electronic circuits are built. They come in all shapes and sizes, some large and expensive, some small and cheap. To the beginner, it can be a very confusing business just identifying the various classes, let alone particular types, so, starting this month, we are presenting a visual guide to all the major component families.

Briefly, components may be classified into five major categories: resistors, capacitors (both of which may be variable), semiconductors, inductors, and sundries (plugs, sockets, switches, and so on). This month we concentrate on the first of these categories.

Resistors can be found in many sizes. The bigger the size, the bigger the power handling. This is expressed in watts and always quoted in our component lists. Resistors may be made of different materials some of which are designed for low noise characteristics, others for high stability, or a combination of both.

Variable resistors, often called potentiometers, come in two types: presets for infrequent adjustments, and ordinary types for major control purposes. Sometimes you will see two potentiometers fastened together and operated from the same spindle. This is a dual ganged type, often found in stereo amplifiers.

B A selection of potentiometers. In the front row we can see several preset types. On the far left is an old-fashioned enclosed type once common in TV sets, then a more modern enclosed type. After that is a vertical mounting skeleton preset followed by a similar horizontal mounting type. Just above that is a sub-miniature sealed trimmer below which is a miniature vertical skeleton preset. Finally on the right is a multi-turn trimmer.

Back row (left to right) shows first a standard type with integral d.p.d.t. mains switch. This is followed by a dual gang type of the sort often found in stereo amplifiers. Next to this is a miniature p.c.b. type with connections designed for slotting into a circuit board, and then a panel mounting miniature type. At the end is a standard size potentiometer.
All these components can be obtained with either a logarithmic (log) or linear resistance track. This denotes how the resistance between the terminals of the device changes with rotation of the spindle (see Down to Earth, April 1981).

Create One Yourself!

ILLUSTRATED HERE - PART OF THE ELECTRONIC "INSIDES" OF A WERSI

DOUGLAS transformeas foom TITAN

 NEW FRANCHISE AT FANTASTIC PRICES - EX STOCK WE GUARANTEE THESE PRICES TO BE UNBEATABLE ANMM/ERE!

By Dave Barrington

Portable Light

It is not until your car or motorcycle has broken down at night or you suffer a prolonged power cut that you realise the usefulness of a low voltage fluorescent lamp. Of course, to be low cost they are of necessity, due to their design, of limited power or light output but it is surprising how well they illuminate the average room.

Two slim line low voltage fluorescent lamps have just been produced by Elec. tronic Products (Coventry) Ltd., under their Euro-Lite range.

The Euro-8 is a 12 V or 24 V version rated at 8 watts and the Euro-13 is a 13 watt version. The 8 W version cost $£ 8 \cdot 60$ and the 13 W lamp cost $59 \cdot 72$. Postage, packing and VAT is extra.

Ideally suited for use in caravans, tents, boats and any vehicle, the lights have a on/off rocker switch mounted at one end and also incorporate a fuse-link to protect external wiring should the inverter develop a fault. The light diffuser is easily removed for tube replacement.

Electrically the inverters are square wave high efficiency "ringing" choke type, operating in the frequency range of 20 to 40 kHz . The lamps are claimed to be reverse polarity protected and radio frequency interference (r.f.i.) is minimal.

The camping models for use in tents come complete with metal hanging rings and long supply connecting leads term. inated with crocodile clips or cigar lighter plug.

For more details contact Electronic Products (Coventry) Ltd., Dept EE, 20 Duke Street, Chapelfields, Coventiy CV5 8BU.

Euro-Lites from Electronic Products.

Instant Circuit Boards

For those readers who do not like the idea of handling the various processes involved in making printed circuit boards but would like to make "instant" boards, without resorting to transfers and chemicals, should find the Quik-Circuit system now being marketed in the UK by Rastra Electronics worth a close look.

Consisting of pre-etched, pressure sensitive copper pads and strips, including transistor and i.c. outlines, with self-adhesive backing, the required circuit pattern is traced on plain or perforated board and suitable strips and patterns pressed into position on the board. Once complete the copper foil can be drilled or punched through with a sharp instrument according to type of base board used.

Also available in the Quik-Circuit range are "Cut-N-Peel" boards. These are plain or drilled matrix boards covered with adhesive copper foil on one or both sides. It is a simple matter to trace the circuit pattern on the foil, drilf or punch the component mounting holes and then cut through the foil to the board surface using a sharp knife or scalpel and straight edge. It is now only a matter of peeling away the excess copper foil to complete the printed circuit board.

We regret that we are unable to vouch for its behaviour under the stress of soldering as the sample we requested for testing in our workshop has still not yet arrived. However, it is claimed that al. though excessive heat can cause the copper pads to slide they regain full adhesion on cooling.

For full details of the complete range of Quik-Circuit prototyping systems write to Rastra Electronics Ltd., Dept EE, 275-281 King Street, Hammersmith, London W6 9NF. We would point out that there is a minimum order charge of $£ 10$.

O.K. circult-board repair kit.

РСB Repair Kit

Following on from p.c.b. foil transfers readers might like to investigate the latest p.c.b. repair kits from OK Machine \& Tool.

Offered in deluxe, standard and economy kits all contain master frames with tracks and fingers, eyelets and eyelet setting tools. Tools included in the kits are clamps, tweezers and trimming knife with various blades.

Also included are etchant aids, abrasives, epoxy glue, flux and cleaners. The deluxe kit also has a temperature controlled fine point soldering iron and high quality pliers.

One item surprisingly omitted which would certainly prove most useful is a
small tin of conductive paint. This would be useful for instant "running" repairs on hairline cracks which have a habit of appearing on the small copper tracks.
Details of price and nearest stockists of the 2570 series of PCB Repair Kits can be obtained from OK Machine \& Tool (UK) Ltd, Dept EE, Dutton Lane, Eastleigh, Hants, SO5 4 AA.

CONSTRUCTIONALPROJECTS

Tremolo Unit

The heart of the Tremolo Unit is the MC3340 audio attenuator i.c. This appears to be only available from Magenta and Watford Electronics.
It is not essential to use the special footswitch case shown and any robust case would be suitable. If readers do require the one specified then this is obtainable from Maplin Electronic Sup. plies and should be ordered as foot. operated switch box type LHO9K.

Darkroom Timer

When ordering components for the Darkroom Timer be sure to specify a working voltage not less than 350 V d.c. for capacitor C1.

The miniature wire-ended neons and all the remaining components are generally available from advertisers and should not cause problems.

Tape Auto Start

The components list for the Tape Auto Start calls for $4 \mu \mathrm{~F}$ and 50 nF capacitors. These may be difficult to locate but it is quite in order to use $3 \cdot 3 \mu \mathrm{~F}, 4 \cdot 7 \mu \mathrm{~F}$ and $47 n F$ values here.

Any 6 V to 12 V relay with suitable contacts and a coil rating of between 100 and 250 ohms should operate in this circuit.

Burglar Alarm System

The only source of supply we have been able to locate for the moving armature type 4 T earpiece used in the Burglar Alarm is J. Bull (Electrical). We understand that they are prepared to let any customer who orders six earpieces have them at the "bargain" price of $£ 5$, including postage, packing and VAT. If purchased individually they will cost £1.15 each.

If pressure mat switches are to be used for the parallel loop mode these are also available from the above company. Once again they are able to offer a special price for a large or small mat. The cost of four mats will be $£ 9.00$ for large and $£ 8 \cdot 00$ small, including post, packing and VAT. Single item price is $£ 2 \cdot 50$ large and $£ 2 \cdot 00$ small, postage, packing and VAT is extro.

Any reader who experiences difficulty in locating a 6 inch alarm bell may care to note that the one used in our unit was obtained from Command Alarm Ltd., Dept EE, 27a Burden Lane, Cheam, Surrey.

The mains (KF2700) and audio (KF2702PCB) transformers used in the prototype are available from Keston Manufacturing Co., Dept, EE, 69a Parkhall Road, Dulwich, London SE21 at an inclusive cost of $£ 7 \cdot 50$ and $£ 4.50$ respectively. Other mains transformers can be used, for example the TTC471 (with the two secondary windings connected in series) from Titan Transformers and Components.

Semiconductor News

INTEGRATED A.M. RADIO

With the number of specialised linear i.c.s around today, it is possible to build all sorts of signal processing circuits with little more than the single i.c. and a few passive components.

One major exception to this cosy situation is the radio receiver. It is certainly true that parts of the circuit have been incorporated into several chips, but a single i.c. containing all active functions has not been available.

Abstract

However, Mullard have now announced a new monolithic integrated a.m. receiver circuit that will do just that-namely perform all active functions between the aerial and the audio amplifier of an a.m. radio Designated the TDA 1072 this crafty design has a high signal to noise ratio, and low distortion figure which makes it surtable for use in high quality domestic and car radios. The two or three chip radio now looks a distinct possibility.

The TDA 1072 is particularly suitable for variable capacitance diode tuning

and covers both major broadcast bands as well as short-wave up to 30 MHz , so radio amateurs may well be interested

A separate local oscillator output is available for driv. ing a digital frequency counter and a logarithmic signal strength voltage output is provided for a field strength indicator.
The a.f. output voltage is 340 mV for an r.f. input of 2 mV and the device will operate from a supply voltage in the range 7.5 to 18 V . Only a few peripheral components are needed for a complete radio circuit

DIGITALKER

A rival to the recently mentioned SP0256 has been announced by National Semiconductor. This has been named the Digitalker and consists of a speech processor chip and several peripherals.

In fact this is a set of i.c.s rather than a single device and has the collective designation of the D1000. An emulator board is also available for evaluation and testing and provides 138 separate and individual "words". the term "word" including separate numbers, letters, tones. and so on.

The manufacturers hope that this chip set will be incorporated into such things as clocks, games, and other consumer products.

VIDEO MULTIPLEXER

The process of multiplexing signals is common to most data transmission systems and Harris Semiconductor have just come up with a
new four channel cmos Video Multiplexer to add to their line of data, acquisition products. Designated the HI-524 this device is a high per formance analog multiplexer designed to process video signals with bandwidths up to 10 MHz .
The makers claim that it can also be used where high channel isolation is required such as in telemetry and radar systems applications.

D/A CONVERTER

The latest addition to the Burr-Brown range is the DAC-72, a digital to analog converter with a $1 \mu \mathrm{~S}$ settling time.

This is a 16 -bit (or 4 digit BCD) device with a wide range of models, lower gain drift and higher operating temperature range.
Typical applications will include function generators test equipment, and graphic composition machines and the 24 -lead device comes in a welded metal, hermetically sealed package.

COMPUTER CHIPS

New from Fairchild is an advanced single chip 8-bit microcomputer known as the F3870 MicroMachine 2, specifically designed for use in the high volume cost sensitive industrial and commer. cial control market.
The chip features central control, 2 K bytes of ROM. 64 bytes of ram, on-board timer and 32 input/output lines. It will execute the full F8 processor instruction set of over 70 commands which allow it to be employed in multi-chip configurations with software compatibility.

Two versions of program memory are available-a mask programmed ROM or electrically programmed EPROM.

The latest addition to the popular Z80 microprocessor range is a controller-inter face chip the $\mathbf{Z 8 0 3 6 - Z}$ from Zilog.
This device contains three input/output ports and three independent 16 -bit counter/ timers. Sophisticated pattern match logic designed into the ports allows them to be used as interrupt controllers.

Two versions are available -one for multiplexed address/data bus structures such as the 28000 and another for non-multiplexed cPus like the $\mathbf{Z 8 0}$.

The latest offering from Motorola is a 32 K bit EPROM. This is designated the MCM2532 and has all the features one should expect from such a device including 5V operation and automatic power down and byte organisation. There is a choice of three access times and a low power version. The pin out arrangement of this device follows the usual industry standard and ensures full compatibility with other Motorola devices.

Not to be outdone, Intel are now offering a 64 K bit EPROM. This is the 2764 and is the fastest device of its size with a worst case access time of only $200 \mu \mathrm{~s}$. The 2764 is manufactured using Intel's hmos-e process and employs the lowest chip area of any 64 K EPROM currently in pro duction.
The 28 -pin package conforms to the JC-42 MOS memory standard of JEDEC and has been selected because it allows bytewide ROMS, RAMS and EPROMS to share the same pinout and allows two line control to ensure proper system opera. tion at high speed.

Another advantage is that different size memories can be plugged into the same 28 . pin socket which reduces tooling and production costs for the mounting boards.

PORCELAIN CIRCUIT BOARD

Next time you're soldering in the components on your latest project, spare a thought for the poor circuit board. Excessive heat may seriously weaken its structure and whilst this is not particularly important to the amateur, it could be vital in a space-craft or military aircraft.

With this in mind, Wayne Anderson and Dr Kenneth

Hang have developed a new kind of porcelain over steel circuit board at the RCA Laboratory in Princeton, New Jersey

The RCA porcelain is unusual in that it is highly crystallised as opposed to most porcelains that are glassy in nature. Indeed this new material is so good that it can be repeatedly heated to high temperatures without deforming so many different electronic components can be formed directly on the boards.

This 5 volume set contains over 500 pages. Bound in stiff linen. Cover size $81 / 2 i n \times 5 i n$.
Price $\mathbf{f} 10.00$ per set (we pay the postage).
Book 1. Introducing Electronics Book 4. Meters/Voltage dividers Book 2. Resistors/Capacitors Book 5. Transistor Project Circuitry Book 3. Inductors/Diodes
The manuals are unquestionaby the finest and most up-to-date available and represent exceptional value.
This series has been written in a fascinating, absorbing and exciting way, providing an approach to acquiring knowledge that is a very enjoyable experience. Suitable for industrial trainees, City and Guilds students, DIY enthusiasts and readers of electronic journals.
Each part explains electronics in an easy-to-follow way, and contains numorous diagrams and half tone blocks with construction details and circuit diagrams for making the following transistor projects: Lamp Flasher, Metronome, Wailer, Photographic/Monostable Timer, Metal Locator, Geiger Counter, Radio Receiver, Intercom., Intruder Alarm, Electronic Organ, Battery Eliminator, Anemometer, Sound Switch Light and Water-operated Switches, Pressure-operated Switches, Light meter, Radio Thermometer, Ice Alarm,

Order now
Selray Book Company
11, Aspen Copse.
11, Abpen
Bromley.

-
Amount enclosed: £

ADDS TOYOUR CAPABILITY

Already used in industry, this solderless breadboard is now available to the hobbyist Unique because of its universal interlocking facility meaning you no longer need lots of different boards.
Send now for the unique Verobloc. Order code 200-21092G. £4.16p inclusive.

No	Order Code	Description	Size (mm)	Price
1)	10-2845B	Microboard	160×100	5.66
2)	10-2846H	Microboard	160×233.4	12.41
3)	200-21084E	V-Q Board	147.83×73.66	1.65
4)	09-2196L	Veroboard	160×100	1.63
Carriage \& VAT included.				

Vero Electronics Limited, Retail Dept., Industrial Estate, Chandler's Ford, Hampshire SO5 3ZR. Tel (04215) 62829

AND THERE'S MORE WHERE THIS CAME FROM

It's a long time since one of our adverts was presented in 'list' form . but simply because we do not try to squeeze this lot in every time doesn't mean that it's not available. Our new style price list (now some 40 pages long) includes all this and more, including quantity prices and a brief description. The kits, modules and specialized RF components - such as TOKO coils, filters etc. are covered in the general price list - so send now for a fr
LINEARICS. NUMERIC LISTINGS

tealizes	1.00	KB4413	1.95
1200	1.95	KB4417	1.80
U2378	1.28	TDA4420	2.25
U2478	1.28	K144 208	1.09
U2578	1.28	KB4423	2.30
U2678	1.28	KB4424	1.65
[1301H	0.67	KB4431	1.95
L4301N	0.30	KB4432	1.95
LM308H	0.96	KB4433	1.52
LM308N	0.65	K84436	2.53
LM339N	0.66	KB4437	1.75
LM348N	1.86	KB4438	2.22
LF351N	0.38	KB4441	1.35
L-35 ${ }^{\text {N }}$	0.76	K84445	1.29
LM374N	3.75	KB4446	2.75
LM380N-14	1.00	KB4448	1.65
[M380N-8	1.00	NE5044N	2.26
IM381N	1.81	NES532N	1.85
2N419CE	1.95	SD6000	3.75
NES44N	1.80	SL6270	2.03
NESSSN	0.30	SL6310	2.03
NES56N	0.50	SL6600	3.75
NES60N	3.50	SL6640	2.75
NE562N	4.05	SL5690	3.20
NES64N	4.29	SL6700	2.35
NE565N	1.00	ICL8038CC	4.50
NES66N	1.60	MSL9362	1.75
NESTON	3.85	MSL9363	1.75
SU624	3.28	HAll211	1.95
TEA651	1.81	HAl1223	2.15
Wa 709 HC	0.64	HA11225	1.45
UA709PC	0.36	HA12002	1.45
UA710HC	0.65	HA12017	0.80
WA710PC	0.59	HA12402	1.95
UA7410	0.66	HAL2411	1.20
UA7410N	0.27	HA12412	1.55
4.7470N	0.70	LF1374	0.33
UA7480	0.36	SN76660N	0.80
La758	2.35	FREQUENCY DISPLAY	
teabioas	1.09	\& SYNTHESISERICS	
T8A820M	0.75		

LA758
TEABIOAS
TEAB10AS
TBAB20M
TDA1028
TLA1029
TLA1062

TDA1072	2.95
TIAA1074A	5.04

TDA1083
HAll
HAL
TRA \& SYNTHESISERICA

SAAL056	3.75
SAALO58	3.35
SAAIO59	3.35
110900 ${ }^{\text {c }}$	14.00
LN1232	19.00
LN1242	19.00
MSL2318	3.84
MSM5523	11.30
MSM5524	11.30

$\stackrel{\text { TM }}{\text { L }}$

TIL N and LSN		7443 N	1.15	74.5112	0.38
		7444 N	1.12	7455113	0.38
7400 N	0.13	7445 N	0.94	7415114	0.38
742500	0.20	7446 N	0.94	74118 N	0.83
7401N	0.13	$74 L S 47$	0.89	74120 N	1.15
74.501	0.20	7448 N	0.56	74121N	0.42
7402N	0.14	74.548	0.99	74122N	0.46
74.502	0.20	742549	0.99	74123 N	0.73
7403 ${ }^{\text {N }}$	0.14	745 ln	0.17	74LS124	1.75
74LS03	0.20	74.551	0.24	74125 N	0.38
7404 N	0.14	7453N	0.17	7415125	0.44
742504	0.24	7454	0.17	74126 N	0.57
7405N	0.18	74.554	0.24	7415126	0.44
741.505	0.26	74455	0.24	74128 N	0.74
7406N	0.28	7460 N	0.17	74132 N	0.73
7407N	0.38	741563	1.24	7415132	0.78
7408 N	0.17	7470 N	0.28	7415136	0.40
74.508	0.24	7472N	U. 28	7415138	0.60
7409N	0.17	747 N	0.32	74141 N	0.56
$74 \mathrm{LSO9}$	0.24	74.573	0.38	74142N	2.65
7410 N	0.15	7474 N	0.27	74143N	3.12
74.510	0.24	741574	0.28	74144 N	3.12
7411 N	0.20	7475N	0.38	7415145	0.97
74.511	0.24	7476 N	0.37	74147 N	1.75
7412N	0.17	74.576	0.38	74148 N	1.09
7413	0.30	741578	0.38	7415148	1.19
7414 N	0.51	7480 N	0.48	74150 N	0.99
74.515	0.24	7481 N	0.86	74151 N	0.55
7416N	0.30	7482 N	0.69	7415151	0.84
7417 N	0.30	7485 N	1.04	7415 3N	0.64
7420N	0.16	74.585	0.99	74LS153	0.54
74.520	0.24	74.586	0.40	74150 N	0.96
7421N	0.29	7489 N	2.05	74155 N	0.54
741.521	0.24	7490 N	0.33	7415155	1.10
7423N	0.27	74.590	0.90	74156 N	0.80
7425N	0.27	7491 N	0.76	74157 N	0.67
7427N	0.27	741591	1.10	7415157	0.55
741.527	0.44	7492 N	0.38	74.5158	0.60
7428 N	0.35	741592	0.78	74159 N	2.10
74.528	0.32	7493 N	0.32	74160 N	0.82
7430 N	0.17	74.593	0.99	7415160	1.30
74LS30	0.24	7494 N	0.78	74161 N	0.92
74320	0.25	7495 N	0.65	7415161	0.78
742532	0.24	741595	1.14	7415162	1.30
7437N	0.40	7496 N	0.58	74163	0.92
7438 N	0.33	$74 \mathrm{LS96}$	1.20	74.5163	0.78
74L538	0.24	74970	1.85	74164 N	1.04
7440 N	0.17	74 LSL107	0.38	7415164	1.30
74.540	0.24	74109 N	0.63	74165 N	1.05
7441N	0.74	7415109	0.70	7415165	1.04
744*2	0.70	741100	0.54	7416 TN	2.50
74 LS42	0.99	7411 N	0.68		

\section*{| P8 |
| :--- |
| 88 |}

CMOS 4000 SERIES

MC

MC MC HA H

\section*{| HA13 |
| :--- |
| HA3 |}

\section*{| MC |
| :---: |
| SI |}

SLI
SLl
SLI
SL1
SL1
SW
© VOLTAGE REGULATORS

78 series 0.95 $\begin{array}{ll}79 \text { series } & 1.00 \\ 78 M \operatorname{lncries} & 0.65\end{array}$ 78mseries 0.65
78 Lseries 0.35 $79 L 05 \quad 0.85$ $78 M G T 2 C \quad 1.75$ ${ }_{72900}^{790 \mathrm{CT}}$ 7230
L 200 TDA TDAL 412
NES553N
LM317MP
\qquad 1.48
1.48 $\mathrm{SLL6}$
$\mathrm{SL1} 6$
SL 62
SL1
SL1
SL

SL

TH

$\stackrel{C}{C A}$

$$
\begin{aligned}
& C \\
& C A \\
& C
\end{aligned}
$$

> CA

LM

KB34
KB4
KB406
KB4406
KB4412
$74 L 51692.00$
 ${ }_{7}^{74176 N} 0.75$ $\begin{array}{lll}74177 \mathrm{~N} & 0.78 \\ 74181 \mathrm{~N} \\ 1.65\end{array}$

 | $74184 \mathrm{~N}^{2}$ |
| :--- | :--- |
| 741.35 |
| 1.34 | 74185 NN

7
74.15190

7 | 741921 |
| :--- |
| 7 |
| 745192 |
| 1.05 | 74451921.1 .80

741931

7 | 741.519311 .80 |
| :--- |
| 74194 N |
| 1.05 | 74194 N

7
7145196
7 $7496 \mathbb{1}$
741.996
71.10
7 $74199 \mathrm{~N} \quad 1.50$
7
71199 N 7445247
$74 L 5257$
0.93

1.08 74452501.53 $\begin{array}{ll}7445279 & 0.52 \\ 74 L 5283 & 1.20\end{array}$ 74152930.95 | $74 L 5365$ |
| :--- |
| $74 L E 366$ |
| 0.49 |
| 0.49 | 74 LS367 0.43 74153680.49 $\begin{array}{ll}74 L S 374 & 1.80 \\ 74 L S 377 & 1.95\end{array}$ $74 L 53791.30$

$74 L 53931.40$ CATALOGUE 8Rs series 100uH -3 mH
lo
leries $33 \mathrm{md} 1-12 \mathrm{~mm}$ 10REH series 120 mb -1.5H MICROMARKET $8080 \mathrm{~A} / 27.50$ $\begin{array}{lll}6800{ }^{2} & 7.50 \\ 6810 & 5.95\end{array}$

MC2708	7.50
2114	6.50

2102
2112
2513
f194716
3.40
7.54
4.50

014597

$$
\begin{aligned}
& M M R D \\
& M M R D D \\
& M M R D D
\end{aligned}
$$ RADIO CONTROL CRYSTALS

(NO splits available)	
AM TX:-	
3rd OT 3OpF HC25U	1.65
AM/FM RX:-	
3rd OT 3OpF HC25U	1.65
FM TX :- HC25	
Fund 2OpF HC25U	1.85
Pairs FM	3.25
Pairs AM	3.10

CRYSTAL
32.768 kH
100 kHZ

1

3.
4.
5.

\qquad 2.70 \qquad

LED:

$$
\begin{array}{ll}
10.7 \mathrm{M} 12 & 2 \text { FOLE TYPES: } \\
10 \mathrm{MSA} & 15 \mathrm{KHZ} \text { 日W } \\
10.7 \mathrm{MHZ} & 8 \text { FOLE TYPS: }
\end{array}
$$ 0.12

$R \quad 0.15$ | $4 M$ | 0.15 |
| :--- | ---: |
| .5 | 0.15 | 3MM GN OLEAR SMM YELLOW

3.276 MWZ $4.000 \times 1 z$
4.194394
6.5536 MHz 10.0412
10.698510.70
10.24
10.245%
10.7 My
10.7 Mgz
11.524 H

SOHOTAKY DICEE BAL.

 MIXERS (SBLLI MSRLI $1-500 \mathrm{MHz}$ $\begin{array}{ll} \\ \text { SBLI- }-8.1-200 \mathrm{MHz} & 4.25 \\ 4.55\end{array}$ SBL1-X 10-1000\%H2 5.75 SRA1 . 5-50amiz SRAL-1 . 1-500 $\mathrm{MHz} \quad 9.25$

Please send an SAE with
enquiries.
enquiries.
Access/Barclaycod
(min $\mathbf{E 5}$ please)
(min E 5 please)
Callers welcome

VARICAP

TOKO COILS AND FILTERS SEE THE EXTENSIVE SECTION
IN OUR NEW PRICE LISTS AND

LF/HF FIXED INDUCTORS -FULL E12 RANGE

TRANSISTORS
AUDIO DEVVICE
CAPACITORS

\section*{| B |
| :--- |
| B |
| B |
| B |
| B |
| B |
| B |
| B |}

BC239	0.08

| BC 307 | 0.08 |
| :--- | :--- | 0.08 | BC308 | 0.08 |
| :--- | :--- |
| BC309 | 0.08 | $\begin{array}{ll}\text { BC309 } & 0.08 \\ \text { BC413 } & 0.10\end{array}$ $\begin{array}{ll}\mathrm{SC} 413 & 0.10 \\ \text { SC414 } & 0.11\end{array}$ $\begin{array}{ll}\text { AC4 } 15 & 0.07\end{array}$ C416 0.08 $\begin{array}{ll}\text { BC546 } & 0.12 \\ \text { BC556 } & 0.12\end{array}$ $\begin{array}{ll}\text { BC550 } & 0.12 \\ \text { BC560 } & 0.12\end{array}$ | BC560 | 0.12 |
| :--- | :--- |
| BC639 | 0.22 |

 $\begin{array}{ll}25 C 1775 & 0.18 \\ 2 S A B 72 A & 0.14\end{array}$ $\begin{array}{ll}\text { 2STO66AA } & 0.30 \\ \text { 2SB646A } & 0.30\end{array}$ $\begin{array}{ll}25 B 646 A & 0.30 \\ \text { ZSOE } 68 A & 0.40\end{array}$ $\begin{array}{ll}2 \text { SB6648A } & 0.40\end{array}$ $\begin{array}{lll}\text { 2SO760 } & 0.45 \\ 258720 & 0.45\end{array}$ 25825460.19 $\begin{array}{ll}\text { 2SA1084 } & 0.20 \\ \text { 2SC2547 } & 0.19\end{array}$ 2SAL085 0.20 AUDIO POWER DEVICES

$2 S 87723$	2.34
2SBK	
2SK	
2ST	48
3.00	

2SK 1343.10
$2 S K 135$
3.75
2.5150
3.75
ED535 0.5
$\begin{array}{ll}\text { B0536 } & 0.52 \\ \text { GD377 } & 0.33\end{array}$

$80378 \quad 0.33$ $\begin{array}{ll}\text { BO165 } & 0.30 \\ \text { BO166 } & 0.31\end{array}$ SMALL SIGNAL RF DEVICES $\begin{array}{ll}\text { BF194 } & 0.18 \\ \text { BF195 } & 0.18 \\ \text { BF224 } & 0.22\end{array}$ | BF241 | 0.18 |
| :--- | :--- | BF274 0.18 $\begin{array}{ll}\text { BF440 } & 0.21 \\ \text { BF441 } & 0.21\end{array}$ | $8 F 362$ | 0.49 |
| :--- | :--- |
| F395 | 0.18 | $\begin{array}{ll}\text { BF395 } & 0.18 \\ \text { BF479 } & 0.66\end{array}$ 8F679S 0.55 BFFF1 1.33 $\begin{array}{ll}\text { BFW92 } & 0.60 \\ \text { BFT95 } & 0.99\end{array}$ | BRY90 | 0.90 |
| :--- | :--- | $40238 \quad 0.85$ RF POWER $\begin{array}{ll}\text { UW66AF } & 0.95 \\ \text { 2N3866 } & 0.85\end{array}$ 2N3866 SIGNAL

SMALL SIGNAL

RFFET/MOSFET $\frac{\text { AF }}{\text { BF }} 256$ T/MOSFE $-\frac{1}{0.38}$ $\begin{array}{ll}2 \mathrm{SK} 55 & 0.28 \\ 2 \mathrm{~K} \times 168 & 0.35\end{array}$ $\begin{array}{ll}2 S K 168 & 0.35 \\ J 310 & 0.69\end{array}$ $\begin{array}{ll}J 176 & 0.69 \\ & 0.65\end{array}$ $\begin{array}{ll}40823 & 0.65 \\ 40673 & 3551\end{array}$ $\begin{array}{ll}40673 & 35 \pi 51 \\ 35 K 45 & 0.49\end{array}$ $\begin{array}{ll}35 K 45 & 0.49 \\ 3 S K 51 & 0.54\end{array}$ | $35 K 51$ | 0.54 |
| :--- | :--- |
| 3SK60 | 0.58 | $\begin{array}{ll}\text { MEM680 } & 0.75 \\ \text { BF961 } & 0.70 \\ \text { BF960 } & 1.24\end{array}$

CEFAMIC 50V
AP2,10P.15ر,18P. . 0.04
$22 \mathrm{P}, 27 \mathrm{P}, 33 \mathrm{P}, 47 \mathrm{P}$ 50P,220p,270P
330P,390p,470P . . . 0.055 1N0, 2N2, 3N3, 4N7, . 0.06 10 N (0.0luF) 0.05 2N , 4 TN. 0.06 1OON, 22ON. 0.0 on.100N. 0.1 FEEDTHR
INO SOLDER IN.... 0.09 POLYESTER (SI PMENS ITw LEAD SPACING $10 \mathrm{~N}, 22 \mathrm{~N}, 3 \mathrm{~N}0 .17$
$4 \mathrm{~N}, 68 \mathrm{~N}, 100 \mathrm{~N}, \ldots .0 .19$ $220 \mathrm{~N}, 470 \mathrm{~N} \operatorname{lon}^{0.22}$ POLYESTER (GENERAL) 10 mm LEAD SPACING $10 \mathrm{~N}, 15 \mathrm{~N}, 22 \mathrm{~N}, 3 \mathrm{~N}$. 0.06 20, 20mm LEAD SPACING 220N, 330N, $470 \mathrm{~N} . .0 .18$ 5 mmi IEAD SPACING INO, $10 \mathrm{~N}, 22 \mathrm{~N}, 33 \mathrm{~N}$. . 0.08 2amm Lead spacting 220N,470N. 0.1 POLYSTYRENE
10P, 15P, 18P, 22P, 0.08 27P,47P,56P,68P 100P, 180P, 220P. 270p,330P.390p. . 0.09 INO, 1N2,1N5,1N8 . . 0.11 $1 \mathrm{~N} 0,1 \mathrm{~N} 2,1 \mathrm{~N} 5,1 \mathrm{~N} 8 \ldots 0.11$
$2 \mathrm{~N} 2,2 \mathrm{~N} 7,3 \mathrm{~N} 3,3 \mathrm{~N} 9 \ldots 0.12$ 2N2,2N7,3N3,3N9..0.12

TANTALIM BEAD CAPS 16v: 0.22 .0 .33 ,

 16v: 2.2.4.7.10..0.0.19 $6 \mathrm{v} 3:$$10 \mathrm{v}:$
$22,1000 .0 .35$ ALUMIN ELECTROLYTICS RADIAL (VERT. MOUNT) (uF/voltage) 10/16.15/16.7.7/35 33/6, 3 , $22 / 16,33 / 10$ 0/63, 22/50 33/50 0 47/16,100/16..... 0.1 47/63,100/25,220/16 470/6.3.. 100/63,470/16 000/16. 470/63 1000/63,2200/16. . 0.30 1000/25.. 0.69
0.68 10000/70 . 0.88
. .3 .00
AXIAL (HORIZ. MOUNT) $1 / 25,4.7 / 16,6.4 / 25$ 4.7/63.22/10.22/16 $33 / 16 \ldots0 .09$
$47 / 25,100 / 26 \ldots .10$ 100/25..... 1000 16
2200/16. $1000 / 25 . . .0$. 1000/35,4700/16. 0.45 aEsistors

LCD Module

 CM161. Miniature clock. $12 / 24 \mathrm{hr}$., alarm. dav, date, All for....25 H 58 El 2 CARHON 1ohm-10M...........0.02 0.25w 1 El2 METAL FIL
1.10hm-1M........ 0.05

HORI 2 CARBON PRESETS 10 mm TYPE
ORIZ CERMET MRESETS

Сロ®COOT ERCMAMA Me

BURGLAR ALARM SYSTEM

I recently designed this circuit as part of a home burglar alarm system, but it obviously has other applications. The circuit can be used to detect and register a fault condition on any of four separate inputs. An input can be any normally closed circuit, a warning occurs when the input circuit is broken. Detection of a fault causes the "safe" green l.e.d. to be extinguished, the "warning" red l.e.d. to light and the audible alarm to sound.

The design uses two 7474 's each containing two D-type flip-flops, a 7420 four input NAND gate, and a 555 timer. More inputs can be added by using extra 7474's and a Nand gate with more inputs.
The circuit operation is very simple. The data and preset lines of the 7474 flip-flops are held at logic one. The

30 SECOND TIMER

This is a timer circuit, with a time period of approximately 30 seconds, but can be varied with the addition of a potentiometer. The circuit con sumes no current while it is not in use, owing to the normally open relay contacts, RLA1

As the pushbutton is depressed, TR2 turns on, through R3. This turns on the relay which closes RLA1, thus latching the relay on. $\mathrm{Rl}, \mathrm{Cl}, \mathrm{TR1}$ and R2 form a u.j.t. relaxation oscillator

LETTERS

Electro-Etching

I have just been reading the article in the January edition of E.E. on making p.c.b.s and I was impressed by the variety of methods shown, though I was surprised that you did not mention electro. lysis or electroplating. I have found this method very rewarding because I could use the same resist materials needed for etching (for example, etch resist pen, transfers and best of all, nail varnish!) to mask out the copper tracks.

After that has been done, the areas of unwanted copper are joined together electrically and connected to the positive terminal of a $6-12 \mathrm{~V}$ d.c. power supply. The
clear lines are initially at logic zero (setting the outputs $\mathbf{Q}=0$ and $\bar{Q}=1$, that is red l.e.d. off and green l.e.d. on), Cl and Rl then take the clear lines to logic one.

Any positive going pulse on the clock line will now cause the flip-flops

outputs to toggle $(Q=1$ and $\bar{Q}=0$, that is red l.e.d. on and green l.e.d. off). The change in state of the Q line from logic one to logic zero is detected by the Nand gate whose output changes to a logic one, triggering the 555 audible alarm. The circuit remains in this state even if the fault now clears.

The alarm may be silenced by closing switch S1. The circuit is reset by switching off the power, this will restore the original state provided all inputs are safe.
T. E. Valleby, Stockton-on-Tees

After 30 seconds, a pulse is fired into the gate of CSR1, which turns on and raises the base voltage at TR2, turning it and the relay off which opens RLA1. CSR1 is necessary to hold the voltage at A high until the relay turns off. The load is switched by a second set of contacts, RLA2.

If the time period is to be altered, R1 should be 22 kilohm, and a 470 kilohm linear potentiometer should be put in series with it, to give times up to a couple of minutes.

Nicholas Ray, Buntingford, Herts
copper board is then be placed in a solulion of dllute sulphuric acid.

The negative terminal of the power supply is connected to a piece of metal (I use a clean nail), and this is also placed in the solution. On switching on the current, hydiogen is liberated from the solution at the piece of metal, and copper from the board enters the solution as copper ions.

The following reactions take place:

$$
\begin{aligned}
& \text { at the p.c.b. } \\
& \mathrm{Cu} \rightarrow \mathrm{Cu}^{+}++2 \mathrm{e}^{-} \\
& \text {at the metal }
\end{aligned}
$$

$$
2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}
$$

The process depends on the voltage applied-this should not be too large as to produce an over-vigorous reactionand the concentration of the acid. Generally the acid should not be too strong or too weak. A concentration of 2 Molar is adequate. The end result is a very cleancut p.c.b.

Phillip Micallef, Sliema, Malta G. C.

This is an interesting method of p.c.b production and one that we hadn't considered when preparing the p.c.b. article mentioned above.
However, several points of caution must be borne in mind. Sulphuric acid is corrosive and although the strength specified is no more dangerous than battery acid, nevertheless it must be treated with respect.
Once the process is under way, hydrogen gas will be liberated. Although the quantities are not vast, the process should be carried out in a well ventilated area so that the gas is not given a chance to build up.
finally a word about the process it self. As stated in the letter, the speed of reaction depends on applied voltage and hence the size of the passing current. The bigger the current, the more vigorous the reaction: Unless you are very familiar with the process it would be very unwise to start off with large currents. The answer is to start with a very small current and then slowly increase it until satisfactory resulls are obtained.

TRANSFORMERS

Panel Meters，Bridge Rectifiers，Power Supply Units Multimeters－Semi Conductors－Timers－Safebloc

Bean म⿵冂䒑山己ONC MNCMMA：

Do something PRACTICAL about your future
Firms all over Britain are crying out for qualified people．With the right training，you could take your pick of these jobs．

Now，the British Institute of Engineering Technology will train you in your spare time to be an Electrical Engineer．

You risk nothing！We prom ise to get you through your chosen course－or，refund your fee！

So，join the thousands who have built a new future through home study Engineering courses．

POST COUPON FOR FREE 44 PACE CUDDE BRITISR INSTITUTE OF ENGINEERING TECHNOLOGY

Aldermaston Court．Dept．teE 62 Reading RG74pF

E．E．PROJECT KITS

Make us your No． 1 SUPPLIER OF KITS and COMPONENTS for E．E．Projects．We supply carefully selected sets of parts to enable you to construct E．E．projects．Kits include ALL THE ELECTRONICS AND HARDWARE NEEDED．Printed circuit boards（fully etched，drilled and roller tinned）or veroboard are，of course，included as specified in the original article，we even include nuts，screws and I．C．sockets．PRICES INCLUDE CASES unless otherwise stated．BATTERIES ARE NOT INCLUDED．COMPONENT SHEET INCLUDED．If you do no have the issue of E．E．which includes the project－you will need to order the Instruction reprint at an extra 45p each
Reprints available separately 45p each＋p．\＆p．40p．

DIGITAL RULE（ulerasonic）April 8
INTERCOM April 81
£27－46
FREEZER ALARM April 8
SIMPLE TRANSISTOR \＆DIODE TESTERS．Mar． 8
Ohmeter version ．．．．．
MINI SIREN．Mar． 81
． 1 1． 72
8 8

LED DICE．Mar． 81
LEO FLASHER．Mar． 8
MODULATED TONE DOORBELL．Mar． 81
Twin fig 8 wire extra 7p／metre．CONTROLLER．Mar． 8
less power supply．Smoothing parts 42p．Power supply parts 63.58 BENCH POWER SUPPLY．Mar 8
TREBLE BOOST Mar 81
TAR АСТ
THREE CHANNEL STEREO MIXER Feb $81 . .$.
SIGNAL TRACER．Feb， 81
£ 15.89
FOUR
probe
$£ 39.98$
Ni－Cd BATTERY CHARGER．Feb． 8
UNIBOARD 3－POWER SUPPLY．Feb． 81
ULTRASONIC INTRUDER DETECTOR．Jan． 81
AUTO SLIDE CHANGER．Jan． 8
PHASER SOUND EFFECTS．Jan． 81
ICE ALARM．Jan． 81
LOGIC PULSE GENERATOR．Jan． 81.
2 NOTE DOOR CHIME．Dec． 80.
LIVE WIRE GAME．Dec． 80.
SOUND TO LIGHT．Nov．80． 3 channel
inc．etched \＆drilled peb．Less light display，
GUITAR PRACTICE AMPLIFIER．Nov． 80
Standard case 63.58 High quality case $£ 8.33$ ．
SOIL MOISTURE MONITOR．Nov． 80
84.94 inc．probes

TRANSISTOR TESTER．Nov． 80 ．．．
AUDIO EFFECTS UNIT FOR WEIRD SOUNDS．Ocr．80．．．．．£10．75
PHONE CALL CHARGE JOGGER．Oce． 80 ．．．．．．．．．．．．．．．．．．．．．．．．．．．．． $66 \cdot 19$
BICYCLE ALARM．Oct． $80 \ldots \ldots18 \cdot 80$ less mounting brackets
DARKROOM CONTROLIER Oct． $80 \quad$ E 21.65 case differs
BEDSIDE RADIO．Sept 80 ．Oct． 80 ．．．．．．．．．．． $\mathbf{2 1} 65$ case difers
BEDSIDEGIC PROBE SER
£ $15 \cdot 98$
TTL POWER SUPPLY UNIT．Sept． 80
CRICKET GAME．Aug． 80
WEATHER GAME．Aug． 80 （exc hardware + wire for sensors．）
AUDIO MILLIVOLTMETER．Aug． 80.
613.72
617.42

AUDO MILLIVOLTMETER．Aug．80．．．78．78．
COURTESY LIGHT DELAY，June 80
A．F．SIGNAL GENERATOR．June 80
AUTOWAA，June 80．Rectangular Case
G．P．AMPLIFIER．June 80.
SIGNAL TRACER．June 80
ZENER DIODE TESTER．June 80
STATION RADIO．May 80
AUTOFADE．May 80
LIGHTS WARNING SYSTEM．May 80
BATTERY YOLTAGE MONITOR M
AUDIO TONE GENERATOR May 80

1981 ELECTRONICS CATALOGUE

KITS
I．C．s
TRANSISTORS
CAPACITORS

Hundreds of Illustrations，product data， educational courses．
Up to date pricelist included．All products are stock lines for fast dellvery．Send 70 p in stamps or add $70 p$ to order．

TOOLS RESISTORS HARDWARE
CASES

ADVENTURES WITH ELECTRONIGS ：suram

An easy to follow book suliable for all ages，Ideal for beginners．No Solciering．Usee an＇S Dec＇breadboard．Gives clear Instructlons with lots of pictures． 16 projects－ including three radios，siren，metronome，organ，intercom，timer，etc．Helps you learn
and the components for the projects．
Adventures With Electronics $\Sigma 190$ ．

ADVENTURES WITH MICROELECTRONICS

Same style as above book； 11 projects based on Integrateo circulis－Includes：dice， wo－tone doorbell，electronic organ，MW／LW radio，reaction timer，etc．Component pack Adventures with Microelectronics $£ 2.35$ ．Component pack $£ 26.95$ less battery．

Other Subjects
Accredited by CACC
POSTCODE

MAGENTA ELECTRONICS LTD.

GAS SENTINEL. April 80
AUTO LEVEL CONTROL. April 80
CABLE \& PIPE LOCATOR. Mar. 80
KITCHEN TIMER. Mar, 80
STEREO HEADPHONE AMPLIFIER. Mar. 80
67.69

5 range current limiter. Mar. 80
MICRO MUSIC BOX. Feb. 80
Grey Case 63.63 Wra.
SIMPLE SHORT WAVE RECEIVER. Feb. 80 Headphones 62.98 .
SLIDE/TAPE SYNCHRONISER Feb 80
MORSE PRACTICE OSCILLATOR. Feb. 80
SPRING LINE REVERB. UNIT. Jan. 80.
UNIBOARD BURGLAR ALARM. Dec. 79.
BABY ALARM. Nov. 79
OPTO ALARM. Nov. 79
MW/LW RADIO TUNER. Nov. 79
ONE ARMED BANDIT. Oct. 79
HIGH IMPEDANCE VOLTMETER. Oce. 79
CHASER LIGHTS. Sept. 79
VARICAP M.W. RADIO. Sept. 79
SIMPLE TRANSISTOR TESTER. Sept. 79
ELECTRONIC TUNING FORK. Aug. 79
Suirable microphone \& plug El .59 extra
WARBLING TIMER. AUg. 79
SWANEE WHISTLER. Aug. 79
DARKROOM TIMER. July 79
TREMOLO UNIT. June 79
ELECTRONIC CANARY. June 79
LOW COST METAL LOCATOR. June 79
Handle \& coll former parts exera $£ 5.55$.
QUAD SIM ULATOR. June $79 \ldots$
INTR UDER ALARM. May 1979
Less Ext. Buzzer \& Lamp and Loop Components.
THERMOSTAT. 'PHOTO' SOLUTIONS. May 79
Less socket, tube and grease.
TRANSISTOR TESTER. April 79
TOUCH BLEEPER. April 79 79
ONE TRANSISTOR RADIO. Mar. 79. With Amplifier \& Headser

MICROCHIME DOORBELL. Feb. 79 | 4.05 |
| :--- |

AUDIO MODULATOR. Feb. 796i. 56 less case and pins
THYRISTOR TESTER. Feb. 79
ADJUSTABLE PSU. Feb. 79.
HEADPHONE ENHANCER. Jan. 79
FUZZ BOX. Dec. 78
MIC. AMP. Dec. 78
AUDIBLE FLASHER. Dec. 78
VEHICLE IMMOBILISER. Ine. PCB. Dec. 78
AUDIO EFFECTS OSCILLATOR. Nov. 78 PASSIVE MIXER. Oct. 78.
FUSE CHECKER. Oct. 78
TREASUREHUNTER. Oct. $78 \ldots \ldots . . .$. \& 17.86 less handle \& coil former
SOUND TO LIGHT Spt. 78 Sept. 78............................ $64 \cdot 99$ in
SOUND
p.c.b.
E6.98

CAR BATTERY STATE INDICATOR. Sept. 7 less case inc. PCB
R.F. SIGNAL GENERATOR. Sept: 78

E1.79

SLAVE FLASH. Aug. 78
IN SITU TRANSISTOR TESTER. June 78
FLASHMETER. May 78 .
220.97

E12.84 less calc and dif 76
WEIRD SOUND EFFECTS GENERATOR Ma....................... $\mathbf{E 2} \cdot 98$
CHASER LIGHT DISPLAY FB. 7
CHASER LIGHT DISPLAY. Feb. 78
$28 \cdot 80$
$65 \cdot 12$
AUDIO VISUAL METRONOME. Jan. 78
ELECTRONIC TOUCH SWITCH. Jan. 78 RAPID DIODE CHECK. Jan. 78
 VHF RADIO. Nov. 77.

E14.36
ULTRASONIC REMOTE CONTROL. Nov./Dec. 77............... 616.09
ADD-ON CAPACITANCE UNIT. Sept. 77 65.99
ELECTRONIC DICE. March 77

MEMORY BANK SYNTHESISER

Miniature zynthestser featuring vibrato, envelope, tempo, volume

+ piteh control. Uses 24 push button switches in a keyboard style layout. Based on a custom desloned l.c. The accesslble
memory stores a 32 beat length sequence of notes t spaces. can be played nolles + sitted waces. an Internal speaker. Jack socket allows the use of an external amplifler it wished. Memory

3 BAND S.W. RADIO

Simple T.R.F. Deston. Coverlng
most A mateur Bands and Short most A mateur Bands and Short
Wave Broadcast Bands. Five Wave Broadcast Bands. Flve controls. Bandset, Bandspread Reactlon, Wavechange and
Altenuator. Coll sectlon is by Wavechange Switch. Use with Headphones or a Crystal earplece. KIt contalns all the components requlred Including the P.C. Board and Case. Instruc. KIT eif.s7. Headphone extra ع2.98.

MAGENTA ELECTRONICS LTD

EK29, 135 HUNTER ST. BURTON-ON-TRENT, STAFFS. DE14 2ST. 0283 65435. MON.-FRI. 9-4. MAIL ORDER ONLY. ADD 40p P. \& P. TO ALL ORDERS.
ALL PRICES INCLUDE 15% V.A.T. OFFICIAL ORDERS WELCOME IRISH REPUBLIC \& B.F.P.O. EUROPE: must be In Sterling.
ACCESS and BARCLAYCARD (VISA) ORDERS ACCEPTED BY PHONE OR
\square

TEACH-IN-80

E.E. 12 part series. Oct '79-Sept ' 80 . Covers the basics of electronics -lots of practical work. Circuïts are built on a plug-in Eurobread board, which is built into a wooden console which houses the power supplies, speaker, meter, pots and LED indicators. The series uses a range of electronic components in the experimental work including a photocell, I.C.s, transistors, etc. Wooden Console (Tutor Deck) kit $\mathbf{£ 5} 98$ extra. includes all the wood, glue, feet and strap handle.
Electronic components, including Eurobreadboard, for the console and the experiments $£ 25 \cdot \mathbf{4 0}$ (called list A + B + C by E.E.). Reprints avallable-Parts 1-12, 45p each. List 'C' only £2-45.

							LM2917N									
d		2N548	63 p	BF	23 p	55										
O	11p	40673	97	BFX88	32p	556 79	LM38									
		AC	29p		48 p	741 28	LM391	¢1.55								
OAZO2	18p	AC141	${ }^{3} \mathrm{p}$	MPSA65	39p	748	LM3914N	E2.89								
W005	33p	AC142	39p	RPY58A	£1-15	CA3080 \quad E1-21	LM3915N	E2. 8 E								
W06	47p	AC178	37p	tip31a	52p	CA3085A E1-32	MC3340	¢.2.15								
25J	¢2.92	BC182	11 p	TIP32A	83p	CA3130T 81.12	TBAB2	£1.05								
IN	5;p	BC182L	11 p	TIP33a	4 p	CA3140E 57	TL06	E2.59								
iN4005		8C183	11 p	T1P34		HA1388 £2-8	U237	¢1.69								
IN4148	p	BC184	$11 p$	T1P121	61.12	ICL7611 £1.0		$\underline{11.47}$								
INS 4	D	$8 \mathrm{BC184}$	11 p	TIP2955	69p	ICL8038CCE3.92	ZN1034E	E2.19								
IN5			$11 p$	TIP3055	${ }^{89}$	ICM7555 E1-11	ZN41	C1.09								
BF2448	87	$\mathrm{BC}^{\text {C212L }}$	$11 p$	TIS43	38 p	LF351 58	ZN419C	E2.59								
MPF1	${ }^{69} \mathrm{p}$	$8 \mathrm{BC213}$	$11 p$	TPSA13	35 p	LF353	ZN424E	C2. 14								
TIS88A	57p		$11 p$	2N3053	$25 p$	LF356 900	ZN425									
VN67AF	c. 21	$8 \mathrm{BC214L}$	11p	2N3055	59	LM301AN 39p	CMO									
2N3819	$2{ }^{29}$	8 C 131		2N3702	11	LM309K $\mathbf{8 2 . 9 2}$	4001	27p								
				2N3704	11	LM317K E 3.56	4011	28 p								
むW CARBON FILM RESISTORS EI2 SERIES. IR-10M 1p each MIN. HORIZ. PRESETS. $100 R 4 M 7$ i2p each MIDGETPOTS. LINEAR. 47OR-4M7 LOG. 4K7-2M3 37p each SWITCHED POTS. $4 K 7-1$ M. LIN. 75p. LOG 76p						LM324N 7	4017									
						LM380N 29	4020									
						381 N ¢1.	402	76								
						LM382N E1.62	4069	$31 p$								
						LM386N \quad E1.04	4081	29p								
						LM387N E1.3	4093									
POLYESTER (C2t0) CAPACITORS, 250V 10nF: 15 nF ; $22 \mathrm{nF} ; 33 \mathrm{nF}$; 47 nF 7 p atach. 68 nF : 100 nF 8 p . $150 \mathrm{nF} ; 220 \mathrm{nF} 12 \mathrm{p} .330 \mathrm{nF} 15 \mathrm{p} .470 \mathrm{nF} 20 \mathrm{p}$. $680 \mathrm{NF} 24 \mathrm{p} .1 \mu \mathrm{~F} 33 \mathrm{p} .1 \cdot 5 \mu \mathrm{~F} 43$ p. $2 \cdot 2 \mu \mathrm{~F}$ 65p.						¢2.										
SUB MINIATURE PLATE CERAMICS, 63V Values in PF: 2.2; 3.3; 4.7; 5.6; $6 \cdot 8 ; 8 \cdot 2,10 ; 15$; 22; 33; 47 \& 56 pF 7 p each. 68pF; 100 pF 7 p each. 1500F: 220pF, 330pF 11p each. 390pF, 470 pF , 1000 pF 5 p each. 2200 pF Ep each. $3300 \mathrm{pF}, 4700 \mathrm{pF}$ 7p each. 10 nF 13p. 100 nF 22 p .47 nF 14p.						ORP1										
						TIL32										
						LEDS WITH CLIPS 3 mm . Red 15p. Green 18p.										
						5 mm . Red 16p. Green Yellow 22p.										
ELECTROLYTIC CAPACITORS AXIAL Leads: $1 \mu F / 16 \mathrm{~V}$ 11p; $1 \mu \mathrm{~F} / 63 \mathrm{~V}, 1 \mu \mathrm{~F} / 100 \mathrm{~V}$ 12p: $2 \cdot 2 \mu \mathrm{~F}, 63 \mathrm{~V}, 3 \cdot 3 \mu \mathrm{~F} 63 \mathrm{~V}$. $4.7 \mu \mathrm{~F} / 63 \mathrm{~V}$ 12p; $10 \mu \mathrm{~F} / 16 \mathrm{~V}$ 11p: $10 \mu \mathrm{~F} / 25 \mathrm{~V}, 10 \mu \mathrm{~F} / 63 \mathrm{~V}$ I2p: $22 \mu \mathrm{~F} / 10 \mathrm{~V}$, Yellow 28 p. FLASHING LED RECTANGULAR. Red...... 35p MAINS PANEL. Neon 32p																
								FLASHING LED RECTANGULAR. Red...... 35p MAINS PANEL. Neon...... 32p								
$22 \mu \mathrm{~F} / 25 \mathrm{~V}$ 12p: $22 \mu \mathrm{~F} / 63 \mathrm{~V}$ 15p; $33 \mu \mathrm{~F} / 40 \mathrm{~V}, 47 \mu \mathrm{~F} / 25 \mathrm{~V}$ 12p;47 F/40V 15p; 47 FF/63V 18p: $100 \mu \mathrm{~F} / 16 \mathrm{~V}$ 12p;								ENER DIODES. 400 mW .								
						BZY88. R	2V7									
$220 \mu \mathrm{~F} / 10$	${ }^{\text {P }}$	$220 \mu \mathrm{~F} / 25$														
	V 36 p ;	470ر $\mathrm{F} / 40$		680 $\mu \mathrm{F} / 16 \mathrm{~V}$		I.C. SOCKET										
$1000 \mu \mathrm{~F} / 1$	30 p	$1000 \mu \mathrm{~F} /$	10	1000 μ F/25		8 p ¢ l 16 p										
							$\begin{aligned} & 24 \text { pin...... 4sp } \\ & 28 \text { pin..... 45p } \end{aligned}$									
SWITCHES MIN, TOGGLE spst 59p; spdt 69p; dpdt 78p. MIN. PUSH ON. 18p. PUSH OFF. 22 p . FOOTSWITCH \& ALT. ACTION spCo Ei 3s: dpco El . t . ROTARY SWITCHES. 1p 12 way, 2p 6w. 3p 4w. 4o 3w 12V 185R DPCO RELAY 69p each c2•						JACKSON										
						C80t Ver. Capac.: 10 pF E2.28. 25pF £2.46. 50pF £2.48. 100pF										
						£2.83. 150 pF E 3.44. ${ }^{\prime 0} 01^{\prime} 365 \mathrm{pF}$ £3-48. '02' $365 \mathrm{pF} \mathrm{EA}-49$.										
SOLDERING IRON STAND																
HOW TS SOLDER SHEET .. 12 p																
SOLDER BOBBIN																
HEAT SINK TWEEZERS ... 15p																
LOW COST LONG NOSE PLIERS WIRE STRIPPERS + CUTTERS																
PLASORREADBOARS																
5. DEC .. £3-98																
 24 S 37 H . 78 P . 24 S 50 H . 89 p . 36 S 37 H . sep. 36 S 50 H .99 p . TERMINAL PINS. PIN INSERTION TOOL c1. 69 SPOT FACE CUTTER $48 \mathrm{p} / 100$																
MULTIMETER TYPE 2. 20,000 opy with probes. $5^{\prime \prime} \times 31^{\prime \prime} \times 1$ n $^{\prime \prime}$...................... E14. 75 CROC CLIP TEST LEAD SET. 10 leads with 20 clips CONNECTING WIRE PACK. $5 \times 9 \mathrm{yd}$ colls RESISTOR COLOUR CODE CALCULATOR TOWERS INTERNATIONAL TRANSISTOR SELECTOR AM-FM AIRCRAFT BAND PORTABLE RADIO 2 STATION DESK INTERCOM $\mathbf{8 7} \cdot \mathbf{4} \quad 3$ STATION PLUG-IN POWER SUPPLY. $4.5 \mathrm{~V}, 6 \mathrm{~V}, 9 \mathrm{~V}, 300 \mathrm{~mW}$ DIMMER SWITCH PVC TAPE. 3 reals DENTISTS INSPECTION MIRROR JEWELLERS EYEGLASS HAND MAGNIFIER. $3^{\prime \prime}$ ILLUMINATED MAGNIFIER. If" £1-14																

HIGH POWER MODULE KITS

SPECIFICATIONS
Max．Output power，
Defating voltage（DC）
racis
requency response Measured at 100 watts Sensitivity for 100 warts ypical T．H．D．© 50 watts 4 ohms load －． 205×90 190． 0.1% Dimensions ．．．．．．．．．．．．．．．．．．．． 205×90 and $190 \times 36 \mathrm{~mm}$ The P．E．power amp kit sublic eddrese systems and even hioh powsico domestic systems．The unit is protected ageinst short circuiting of the oad and is safe in an open circuit condition．A large selaty margin axisis by usse of ofeneroushy rated compenents，result，a high powered rugged unit．The PC Board is backprinted，tched and rasdy to strill for ast of construction and the aluminium chassis is praformed and ready to use．Supplied with all parts，circuit diagrams and instructions ACCESSORIES
Suitable LS coupling electromtic for 125 W ．model $\mathbf{~} 1.00$ phus 25 pasp． Suitable LS coupling electrolytic for 200W．model $£ 1.25$ plus 25 p p\＆p． Uurtable Momes Power Sumply Unit for 125W．medel 19.50 plus c3 15 pap
（tith Tremslermer Power Suphty for 200W，model f13．95
$30+30$ WATT STEREO AMPLIFIER BUILT AND TESTED
Viscount IV unit in teak sumulate cabinat silver finished rotary controls and pushbuttons with matching fascia．red mains indicator and atereo and pushouttons with matching fascia．red mains indicator and stereot
jack sockst．Functions switch for mic magnatic and erystal pickups，tepe and auxilimery Rear penal features fuse holder OWN spesker and input
socket $30+30$ watts．AMS $60+60$ watts peak for use with 4 to 8 chm and avxiliery Rear penal features fuse holder．ON speaker and input
sockut $30+30$ watts．RMS $60+60$ watts peak for use with 4 to 8 otm speakers．Size 14 \％＂$^{\prime \prime} \times 10^{\prime \prime}$ approx
ready to play $£ 32.90$ plus
C 3.80 palep
50.80 Max ． 4.16 ohms $25 \mathrm{~Hz} \cdot 20 \mathrm{Khz}$

125 WATT MODEL
${ }^{\text {TVA }}$
plus $\mathbb{〔} 1.85$ pop；（illustrated）
200 WAT MODEL
f14．95
pulut 515 semp

FREE！

MULLARD LP1183
STEREO PREAMP
Original listed price over $\mathbf{5} 5.00$ ．Suitable for caramic and auxiliary inputs．when you purchase 2 power module kits

STEREO OISCO PREAMPLIFIER

Matching other modules． surtsble for twin dack mixing with P．F．L．output and

Mic／Tape input．Ready buift． ready to play with circuit dapram and application $\quad 221.95$ notes to suit our power modula kits．
pus 61.72 did

ass 1
 10＋10 WATT STEREO HI－FI AMPLIFIER KIT

－Featuring latest SGS／ATES／TDA 2006 10 watr output $1 . C$＇s with in buift themal

$£ 14.95$

 and shont circuit protaction plus $E 2.90$ pdp Attractive ready made black vinyl finish cabinat To complete you just supply connecting wire and solder Features include din input sockets for cersmic catridge microghone tape or include din input sockets for cersmic cantrioge．microphone．lape or button it transtorms into a 20 watt mono disc amplifier with twin deck button it transtorms into a 20 watt mono disc amplitier with twin deck power amplifier assembly kit and mains powers supply．Also featured 4 slider level controis，retery bass and treble controls and 8 push humton switches．Silues finish fascia penel with merching knobs and contrastion ready made blsck vinyd finish cabinet and ready made metal work For further information instructions are avsilable price 50 p ．Free mith kit Size $9^{\circ \prime} \times 8$ 8＂$^{\prime \prime} \times 3 \%^{\prime \prime}$ epproxSPECIFICATIONS Suitable for 4 to 8 ohms speaters Frequency response－ $40 \mathrm{~Hz} \cdot 20 \mathrm{KHz}$ Input Sensitivity－P．U． 150 mV Aux．200mV Mic， 1.5 mV ；Tone controls－Bass $\pm 12 \mathrm{do} @ 60 \mathrm{~Hz}$ Treble $\pm 12 \mathrm{~d}$ © 10 KHz ：Oistortion－ 1% typically © 4 watts；Mains supply $\mathbf{- 2 2 0 - 2 5 0}$ volts 50 Hz ．
BSR chassis recerd dect with mamual sat down md netum． complate with steceo ceramic cartridge．If 8.50 plusic3． 15 pap when purchased with amplifier Available separately $\mathbf{£ 1 0 . 5 0}$ plus f 3.15 p p 8＂SPEAKER KIT． 2 8＂approx．twin cone domestic use speakers $\mathbf{4 . 7 5}$ par pair plus f 1.70 p\＆ip when purchased with amplifier

STEREO MAGNETIC PRE－AMP CONVERSION KIT All components including P．C．B to conven your ceramic input on the $10+10 \mathrm{amp}$ to maphatic $£ 2.00$ whan purchased with kit teatured
shove． f 4.00 separately inc．plep．

回田回

 323 EDGWARE ROAD，LONDON W2 Meil Ordar 21A HIGHST．ACTONW36NG all PRICES IMCLUDE VAT AT 15% ．All itams subject to avairability．Price correct at 1.4 .81 and subject to change without notice．For further information sand for arthorisation．Pertean Swepers EDGWARE ROAD LONDON W2 Tol： 01.72384329 .30 am 5.30 pm ．Closed ell day Thursday．ACTOM：Mail Order aity．We cellers．

B．K．ELECTRONICS－A SOUND CHOICE

STEREO CASSETTE TAPE DECK MODULE
Full record and play－back facilities．Supplied as one complete unit for horizontal installation into cabinet or console of own choice．Brand new，ready buils and cested．Smart silver and black finish．Features：Three digit tape counser，Auto stop，Six piano type keys，Record，Rewind，Fase Forward，Play，Scop and Eject． Automatic record level control．Main inputs plus secondary inputs for stereo microphones．Input sensitivity $100 \mathrm{~m} V$ to 2 V ．Output level 400 mV nominal． Wow and fiutter $0 \cdot 1 \%$ ．Ideal for hi－fi，disco and computer applications etc Easily connected．Dimensions－rop panel $5 t^{\prime \prime} \times 11 t^{\prime \prime}$ ．Supplied complete with circuic and connecting diagrams．Power supply required－ 18 V DC at 300 mA PRICE $\mathbf{2 6 6} \cdot 70+62 \cdot 50$ post and packing．Power supply kit（including trans former）$£ 3 \cdot 00$ ．

G．E．C．TUNER AMPLIFIER CHASSIS－－AM／FM
Originally designed for inscallation into a music centre．Supplied as two separate fully built and cested units which are easily wired together．Circuit diagram and inter－connecting wiring diagram supplied．Rotary controls－tuning， A．F．C．F．M．（VHF），L．W．．M．W．S．W．Power output－ 7 watss RMS tape，dise into 8 ohms．Tape sensitivity Oucput sypically 150 mV ．Input 300 mV ．Disc sensitivity 100 mV （Ceramic cartridge）．Stereo Beacon indicator LED or bulb．Dimensions－Tuner $2 \frac{1}{n}^{\prime \prime} \times 15^{\prime \prime} \times 7 \ddagger^{\prime \prime}$ ．Power amp． $2^{\prime \prime} \times 7 \xi^{\prime \prime} \times 42^{\prime \prime}$ ． PRICE E23．50 $+\boxed{\text { b2 }} 50$ post and packing．

NEW RANGE QUALITY POWER LOUDSPEAKERS（ $15^{\prime \prime}, 12^{\prime \prime}$ and $8^{\prime \prime}$ ）． These loudspeakers are ideal for both hiefi and disco applications．Both the $12^{\prime \prime}$ and $15^{\prime \prime}$ units have heavy duty die－cas chassis and aluminium centre domes．All three unics have white speaker cones and are fitted with attractive cast aluminium （ground finish）fixing escutcheons．
$15^{\prime \prime} 100$ watt R．M．S．Impedance 8 ohm， $2^{\prime \prime}$ aluminium voice coil．Resonant Fre－ quency 20 Hz ．Frequency Response ${ }^{\text {to }}$
2.5 KHz ．Price $\$ 32$ each． $\mathrm{E2} \cdot 50$ Packing and Carriage each．
$12^{*} 100$ watt R．M．S．Impedance 8 ohm． 2^{μ} aluminium voice coil．Resonant Fre－ quency 25 Hz ．Frequency Response to
 and Carriage each．
$8^{\prime \prime} 50$ watt R．M．S．Impedance 8 ohm，$\left.\right|^{\prime \prime}$ aluminium voice coil．Resonant Fre－ quency 40 Hz ．Frequency Response to 6 KHz ．Price $\mathrm{Es} \cdot 90$ each． $\mathrm{El} \cdot 25$ Packing and Carriage each．Other units available．

PIEZO ELECTRIC TWEETERS－MOTOROLA
Join the Piezo revolution．The low dynamic mass（no voice coil）of a Piezo tweeter produces an improved transient response with a lower distortion level than ordinary dynamic tweeters．As a crossover is not required these
units can be added to existing speaker systems of up to 100 watts（more if 2 put in series）．FREE EXPLANATORY LEAFLETS SUPPLIED WITH EACH TWEETER．

Type＇A＇ 3 in round with protective wire mesh．Ideal for bookshelf hi－fi speakers．Price（Type＇A＇）$£ 3 \cdot 45$ each． Type＇B＇ 3 tin super horn．For general purpose speakers disco and PA syseems， etc．Price $\mathrm{f4} 4 \mathrm{3S}$ each．
Type＇C＇ $2 \mathrm{in} \times 5 \operatorname{Sin}$ wide dispersion horn． For hi－fi systems and quality disco etc． Price 65 ． 4 S each． Trpe＇D＇ $2 \mathrm{in} \times 6 \mathrm{Gin}$ wide dispersion horn． Frequency response extending down to Frequency response extending down
mid－range $(2000 \mathrm{c} / \mathrm{s})$ suitable for hi－fi mid－range（ $2000 \mathrm{c} / \mathrm{s}$ ）suitable for hi－fi
systems and quality disco．Price f 6.90 systems
each．
Post and Packing，all types， 15 p each（or SAE for Piezo leaflecs）

B．K．ELECTRONICS

Dept．EE， 37 Whitehouse Meadows，Eastwood，Leigh－on－Sea，Essex SS9 5TY
\star SAE for current lists．\star Official orders welcome．\star All prices include VAT．\star Mail order only．\star All items packed （where applicable）in special energy absorbing PU foam．Callers welcome by prior appointment．Please phone 0702－527572

First the EuroBreadBoard Now the EuroSolderBoard

Design on a EuroBreadBoard - Instal on a EuroSolderBoard First the EuroBreadBoard
Will accept 0.3" and 0.6" pitch DIL IC's, Capacitors, Resistors, LED's, Transistors and components with up to .85 mm dia leads.
500 individual connections PLUS 4 integral Power Bus Strips along all edges for minimum inter-connection lengths.
All rows and columns numbered or lettered for exact location indexing (ideal for educational projects)
Long life, low resistance ($<10 \mathrm{~m}$ ohms) nick el silver contacts
$£ 6.20$ each or $£ 11.70$ for 2

Now the EuroSolderBoard

New 100 mm square, 1.6 mm thick printed circuit board with pretinned tracks identically laid out, numbered and lettered to EuroBreadBoard pattern.
Four 2.5 mm dia fixing holes.
$£ 2.00$ for set of three ESB's

And don't forget the EuroSolderSucker

Ideal for tidying up messy solder joints or freeing multi-pin IC's, this 195 mm long, all metal, high suction desoldering tool has replaceable Teflon tip and enables removal of molten solder from all sizes of pcb pads and track. Primed and released by thumb, it costs only £7.25 including VAT \& PP

Snip out and post to David George Sales,

Unit 7. Higgs Industrial Estate, 2 Herne Hill Road, London SE24 OAU

David George Sales, HE4

Unit 7, Higgs Ind. Est., 2 Herne Hill Rd., London SE24 OAU.
Please send me:-

	1 EuroBreadBoard	@ $£ 6.20$	\bigcirc	
or 2 EuroBreadBoards	@ $£ 11.70$	\bigcirc	Please	
or	EuroSolderBoards	@ $£ 2.00$	\bigcirc	Tick
or	1 EuroSolderSucker	$@ £ 7.25$	\bigcirc	

All prices are applicable from Jan. 1st 1980 and include VAT and PP but add 15\% for overseas orders.
Name
Company.
Address.

Tel. No
Please make cheques/P.O. payable to David George Sales
and allow 10 days for cheque clearance and order processing

MIGHTY NINETY PACKS

SUPER VALUE PACKS ALL AT 90p EACH
POSTAGE 20p PER PACK UP TO FOUR PACKS FIVE OR MORE POST FREE
BUY SIX PACKS AND GET A SEVENTH PACK FREE!

MN1. 300 t-watt Resistors pre-formed for
PEC Mtg.
MN2. 200 t. AND t-watt Resistors.
MN3. 100 it 2 2-wait Restators.
MN4. 50 Wirewound Reslators.
MNS. 100 metal oxide Resistors. $1 \%, 2 \%$
and 5%. 12 asatd. potentlometers.
MN1. 25 asstd. pkeleton pre-set Resittors. MNE. 50 asstd. Eletrolytic Capacitors. MNs. 100 assatd. Ceramic Capacitors. Pite, dise, tub and monolytic etc.
MNis. 100 mixed capactiors. Polyester. Polystyrene. Metallised, Radial and Axiai
types. 20 asstd. Silver Mica Capacitors. MN12.8 Tantalum Bead Capactiors (useful values).
MN13. 20 asstd. Transistors. BC, $2 N$ Serios + Power otc.
MN15. 5 Light Sensitive Devices.
N1. 20 min. wire-ended Neons.
WN17. 2 t2-volt Relays. Ex nearly new equip.
MNis. 3 Encapsulated Reed Relayb. 9-12v. coll, d.-pole and t.-pole.
MN19. 224 -volt Relays. Ex nearly new MN20. 1 240-110 to 12-volt, t00ma Transformer. $1240-110$ to 24 -volt 100 ma TransMNREA. 1 240-110 to 24-volt foome Trans WN22. $8-2^{\prime \prime}$ Led's with clips. 4 red, 2 yellow, 2 green.

WN23. 1/b assid. screws, nuts, washers, self-tappers ofc.
MN24. 100 asstd. amatl springs. MN25. 50 asstd, pop rivets.
MN2. 50 assted. Insulated crimps. MN27. 200 items, grommets, spacers, cable mapa etc. MN2s. 20 asstd. fuses. $1 t^{\prime \prime} 20 \mathrm{~mm}$ etc. MN2. 75 m equipment wire, asstd. colours and sizes. MN3. $3 \times 2 \mathrm{~m}$ length, 3 core, mains cable. MN3. 12 assid. trimmer capacitors, comMNession film. Air-spaced etc. MN33. 20 coll formers, ceramic, platic, reed relay etc.
MN34. 25 min. glass reed switch.
MN35. 10 asstd. switches, toggle, slide. micro, etc. Phono otc. HN3. 1 oscillator PCB loads of com ponents (no date).
M40. 50 Polystyrene Capacitors.
MN42. 10 BC107 Transistors.
MNA4. 10 screw fix S.P. C.O. min. slide
Wwitch. 5 1.35V. $1,000 \mathrm{~mA} / \mathrm{H}$. Mercury batteries in diameter \times In high.
WN5
\times CA 723 voltage regulator MNGA. 5 press-to-make min. switches. MNES. 3 BF 245-FETS.

PLEASE QUOTE NO. OF PACKS When ORDERING

CHORDGATE LTD.

75 FARINGDON ROAD, SWINDON, WILTS.
Tel. Swindon (0793) 33877. Retall shop at above address.

GIECTRONTC IGNITION SAVES PEIROL

More and more new cars use electronic ignition to give the best performance and economy. Bring YOUR CAR up to top specification by fitting the latest TOTAL ENERGY DISCHARGE electronic system.
TOTAL ENERGY DISCHARGE gives all the
advantages of the best capacitive discharge ignitions:

* Peak Performmence-higher output voltage.
* Improved Economy-consistent high ignition performance.
* Better Startin -full spark power even with low battery.
* Accurate Timing-prevents contact wear without 'contactless' errors.
* Smooth Performance-immune to contact bounce effects.

PLUS
SUPER MIGH POWER SPARK— $3 \frac{1}{2}$ times the energy of ordinary C.D.
systems
OPTIMUM SPARK DURATION_to get the very best performance and economy with coday's lean carburettor settings.
DESIGNED IN RELIABILITY-with the 'ultimate insurance' of a changeover switch to revert instantly to standard isnition. TECHNICAL DETARLS
HIGH EFFICIENCY INVERTER. A high-power, high efficiency, regulated inverter provides a 400 -volt energy sourte-powerful enough to store twice the energy of other designs and regulated to provide full output even with the battery down to 4 volts.
SUPERB DISCHARGE CIRCUIT. A brand new technique prevents energy being reflected back to the storage capacitor, giving 3t times the spark energy and 3 cimes the spirk duration of ordinary C.D. systems, senerating a spark powerful enough to cause rapid ignition of even the weakest fuel mixtures without the iznition delay associated with lower power 'long burn' inductive systems. In addition this circuit maintains the correct
output polarity, thereby preventing unnecessary stress on the H.T. system.
SOPHISTICATED TRIGGER CIRCUIT. This circuit removes all unwanted signals caused by contact volt drop, contact shuffle, contact bounce, and external transients which, in many designs, can cause timing errors or damaging un-timed sparks. Only at the correct and precise contact opening is a spark produced. Contact wear is almost eliminated by reducing the contact breaker current to a low level-just sufficient to keep the contacts clean.
IN MONEY-SAVINGKIT FORM et Cl4.85 Inc. V.A.T.
ALSO MOTORCYCLE TWIN OUTPUT KIT 22.94
and P. \& P.
All you need is a small soldering iron and a fow basic tools - everything else is supplied with easy-to-follow instructions.

FITS ALL 6/12 volt NEGATIVE EARTH vehicles
ELECTRONIZE DESIGN
2 Hillside Rosd, Four Oaks
Sutton Coldfield. West Midlands, B74 4D
Phone 021-308 5877

ELEETIGITVKITI

Introducing our new CHIP SHOP KITS

Each CHIP SHOP KIT is complete in every way and contains all the components necessary to build and operate the project described. All you need is a Soldering Iron (see Kit No. 2) and a $9 v$ battery. Each kit includes step-by-step instructions on construction and detailed educational notes about the individual circuit, together with advice about soldering techniques.

Kit No. 2-SOLDERING IRON-contains a high quality British soldering iron, a 1 Amp fuse and solder together with straightforward instructions upon how to handle your soldering iron and the best techniques for its use and maintenance.

Kit No. 3-ELECTRONICS TOOLS-contains a selection of useful tools for anyone starting in electronics, together with instructions about the use and care of your equipment.

SOLDER is included with every kit.

Kit No.		Price
1 (a)	Morning Call plus	
1 (b)	Transistor Tester	$\{\mathbf{E 5} \cdot 00$
2	Soldering Iron	£5. 00
3	Electronics Tools	E4.50
4	Electronic Organ	£3-50
5	Morse Code Trainer and Siren Oscillator	£4.00
6	Light Operated Burglar Alarm	¢4.00
7	Buzzer-Aircraft	£3. 00
8	Light and Sound Alarm	£3-00
9	Lie Detector	£3-00
10 (a)	Lamp Flasher plus	
10 (b)	Sleep Inducer	£4.50
11 (a)	Cat Sound plus	
11 (b)	Night Light Reminder	£4.50
12 (a)	Bicycle Horn plus	
12 (b)	Electronic Shocker	£5.00
13 (a)	Light Sensitive Alarm plus	
13 (b)	Electronic Lamp	£5.00
14	2-Transistor Radio	£4.00
15	Morning Alarm	£4.00
16	American Police Siren	£4.00
17	Flashing Dual-tone Horn	£3. 50
18	Two-Way Interphone	¢5.00
19	4-Transistor Radio	£5.00
20	Clicker-Helicopter Oscillator	£3-00

All kits packed individually in attractive boxes. Loudspeakers are included with each kit (except nos. 2, 3, 14 where they are not required).
Kit nos, 1, 10, 11, 12, 13 contain two separate projects.
These kits are becoming available in Hobby and Electronics Stores all over the Country-look out for the CHIP SHOP DISPLAY in your local store.

If you cannot locate a stockist please order direct

 from Electroni-Kit Ltd. Please add 50p per kit for postage and packing.Trade and Educational Enquiries welcomed.
Cheque/P.O./Access/Barclaycard (or 23p for fullcolour illustrated literature) to DEPT. EECS.
,
\qquad

VALVE \& COMPONENT SPECIALISTS CONINGSBY HOUSE, WROTHAM RD. MEOPHAM; KENT.

VALVES
 DY86 DY 802

 PL508 DY802 EABC8EBF89 ECC81 ECC82 | ECC85 |
| :--- |

ECC807
ECF80
ECF82
ECHB1
ECL82
ECLB3
EF37A
EF80
EFB6
EF86
EF89
EF91
EF93

LED'S	
	ation
	Recimal Point Vectow or cren
ciol	
sHOP HOURS $9,30-8$ om (s pm Sat.). Cloeed every Thursday in May, June and July WEBB ELECTRONICS 41 WINWICK STREET, WARRINGTON, CHESHIRE. Tel. 54174	

VARI WIPE

 mperndiav controlThe Vari Wipe provides intermittent operation of the windscreen wipers with
adjustable control to delay each wipe between 3 and 60 seconds. Set the control to suit the conditions to clear light drizzle, fog, snow, sleet or spray. Easily fitted to British, Continental 8 Japanese cars with 12 volt self park wipers. Complete kit contains all components, including timer chip, PCB, case, mounting panel, wire, etc., with
full instructions.
VARI WIPE KIT $\mathbf{£ 6 . 9 5 \text { inc. } P \& P 1 0}$ ASSEMBLED

A A A Aor send large s.a.e. for details DEVELOPMENTS Dept EE 5 Card Holder ard Holders Pho
025327244 FREEPOST Thornton Cleveleys, Blackpool FY5 28 B

OHIO SCIENTIFIC COMPUTERS NOW series 2 Challongor CIP Choapo 4 K version exwe. special onfor: Superboard 3 with froe power supply and modulator kit and quard band kit (glves 32×32 extended dispay, 50% homputing aped ape $\mathrm{SOHz}_{\mathrm{I}}$ conversion) R150 the loi. Guaro band kit also sold separately $\mathrm{E10}$. 4 K uxtre ram Eis. W. Case ent. Cansette recorder E18. Cegmon Improved monitor rom cessor Eis. Dlaplay axpanslon klt 30 lines | coser |
| :--- |
| $\times \$ 4$ characters for superboard TWO Kl |

PRINTERE supplied with free interface and word proceserar for Su parboard and $50 \mathrm{E200}$. Bane 2800 MST E20.

- simclair products only are posi Irtes. SC110 oscillopeope E13 M, adaptor EA, reches, x10 probe el.

 dm30 ETB , dm450 2t17, daptor R4, case E. W. rachargesble batts 21.es.

MEMORIES 2114 . 450 n : E1. 85.4116200 na $\mathrm{Et} \cdot \mathrm{sm} .4027 \mathrm{ff} \cdot \mathbf{3 0}$. All low current.

- EATTERY ELImINATOR KITS 100ma radio typer with propas studs ov s1.78,
 74/912/188/18v 100 ma cs.12, 1 Amp at Stabllized power kjte 2-18y 100 ma Es. 12 computer supplies gv atablized TYL and 3A K14, 6A EDS. 12v cat convertor $6 / 73 / 20$ 1A $\frac{1}{2} \cdot \mathrm{~d}$.
-T-DEC AND s-DEC EREADEOAROS I-dec R4.50. еxpub ex.e4. exp300 EA.M. - BATTENY ELImanatons 3-way type 8/71/9v 300 ma E3.50. 100 ma radio types Car convertor 12v input output $4 \geq / 8 / 741 / 2 y$ 800 ma es. A .
TV ©AMES AY-3-8000 + kit E12.m. AY-3-8850 + klt Re. 28.
swanley Electronics
Dapt. EE, Jt coldsel hd., swanley Kent

Postage E3.50 on superboard, $84 \cdot 50$ on printore and 450 on other ordors. Liate 27% prost free. Ploak add YAT oxecpt to
pections marked with . Which already sections
include it.

Top Priority for every constructorHOME RADIO CATALOGUE

- About 2,000 items clearly listed. - Profusely illustrated throughout. - Large A-4 size pages.
- Bargain list, order form and 2 coupons each worth 25 p if used as directed, all supplied free.
Price £1, plus 50p for post, packing and insurance.
Send cheque or P.O. for $£ 1 \cdot 50$.
HOME RADIO Components Ltd
Oppt. EE P.O. Box 22, 215 London Road,
Mitheham, 8 mirey.

CLASSIFIED

The prepaid rate for classified advertisements is 24 pence per word (minimum 12 words), box number $60 p$ extra. Semi-display setting £6.16 per single column centimetre (minimum 2.5 cm). All cheques, postal orders, etc., to be made payable to Everyday Electronics and crossed "Lloyds Bank Ltd." Treasury
notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Everyday Electronics, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London SE1 9LS. (Telephone 01-2615942).

When replying to Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.

This will assizt advertisers in processing and despatching orders with the minimum of delay.

Receivers and Components

 QUALITY COMPONENTS at really low prices. S.A.E. list. RKS Electronics, 13e Queen's Terrace, Sherborne, Dorset DT9 4 ED.74 SERIES I.Cs. EI STO. 20 WIRE ENDED NEONS $\$ 1$ te 20.
SMALL 3 TRANSISTOR AUDIO AMPS 40p. ${ }^{3-1.300}$ SMALL COMPONENTS, TRANS, DIODES E1.
7LBS ASSORTED COMPONENTS ES. 5.3 ASSORTED
M.C. METERS \&3. LIST 20p. REFUNDABLE. POST SPp.
INSURANCE ADO 2tp. . R. RAOIO
2 BARNFIELO CRESCENT, BALE, CHESHIRE
M3s 1 ML

1000s OF ELECTRONIC COMPONENTS for sale, 35p for lists. JOHN E. Harris, 9 Ivybridge, Broxbourne, Herts.
TURN YOUR SURPLUS capacitors, transistors etc., into cash. Contact Coles Harding \& Co., 103 South Brink, Wisbech, Cambs. 0945 4188. Immediate settlement.
£1 EACH (MIXED) PACKS. 100 diodes. 6 switches. 150 resistors. 100 miniature components. 10 TTL ICs. 1000s components lists 15p. 1920s onward valves, wireless SAE. SOLE ELECTRONICS, EE, 37 Stanley Street, Ormskirk, Lancs L39 2DH.

Books and Publications

LEARN ELECTRONICS FAST. New. unique, brilliantly simple Tutronik system. Selected by BBC TV. No soldering. 30kwikbuild electronics projects. Speedilearn way to identify components, read circuit diagrams, break the colour code and connect circuits that really work. Kit complete with simple-to-follow instructions, cincuit plans, components in compact storage wallet. Only $£ 12.95$ plus 95p P\&P UK (P\&P £2.75 elsewhere). Only from Dept. EE, TECHNOCENTRE LTD, 140 Narton Road, Stockton-on-Tees 2BG.
OUT OF PRINT Book Service. 17 Fairwater Grove(E), Cardiff. Send S.A.E. for details.
BOOKS. BOOKS. BOOKS. Large range of radio and electronic books in stock. Send S.A.E. for lists. Servio Radio, Dept EE6, 156-158 Merton Road, Wimbledon, London SW19 1EG.

Software

CARDBOARD COMPUTER: Learn Assembly Language Programming and Computer Architecture. E8.97 inc VAT. Also Solar Cells, Science Kits, Energy Books, Stirling Engines, Space Blankets etc. etc. Send 25p for lists. Edencombe Ltd., Dept PM., 34 Nathans Road, North Wembley, Middlesex HAO 3RX.
SIXTY EX80/81 PROGRAMS. Specify which, listings only $£ 4 \cdot 95$, includes a multitude of games, utility programs, home finance, maths, cheque book, plus more in our "ZX80/81 Programs'. Includes hints ' n ' Tips. From Sussex Software, Wallsend House, Pevensey Bay, Sussex.

Service Sheets

BELL'S TELEVISION BERVICE for service sheets on Radio, TV etc. $£ 1$ plus SAB. Colour TV Service Manuals on requet. SAE with enquiries to BTS, 100 Kingie Rd, Harrogete, N. Yorkshire. Tel: 0423 6508s.

Any single service sheet £1/L.S.A.E. Thousands different Repair/Service Manuals/Sheets in stock. Repair data your named T.V. $£ 6$ (with circuits £8). $^{\text {8 }}$ S.A.E. Newsletter, Price Lists. Quotatlons.

AUSEE, 76 CHURCHES,
 LARKHALL, LANARKSHIRE (0698 883334).

ERRVICE BHEETE from 50p and BAR. Catalogue 25p and SAE. Hamilton Radio, 47 Bohemla Road, St. Leonards, Guster.

Veteran \& Vintage

"SOUNDS VINTAGE"

The only magazine for all vintage sound
enthusiasts, packed with articles by top
writers, covering gramophones, phono-
graphs, 78 s , wireless, news, history, reviews,
etc.
Bi-monthly. Annual subscription $£ 6 \cdot 60$
(airmail extra). Send 75p for sample copy.
28 Chestwood Close, Billericay, Essex

For Sale

NEW BACK ISSUES OF "EVERYDAE ELECTRONICS". Available 85p each Poat Free, cheque or uncrossed PO returned if not in stock. BELL'S TELEVISION SERVICES, 190 Kings Road, Harrogate, Yorkshire. Tel: (0423) 55885 .
SECONDHAND ELECTRONIC TEST equipment including oscilloscopes, generators, PSUs. Norfab Plant and Machinery. Tele phone Potter Heigham (069-27) 721.
HEATH 10/12U 5in Oscilloscope, £60. Heath C/3U R/C Bridge, £15. TE-20 RF Signal Generator, £25. A. Ewing, Pyeston Farm Cottages, By Star, Markinch, Glenrothes, Fife KY7 GLN, Scotland.

Miscellaneous

PRINTED CIRCUITS. Make your own simply, cheaply and quickly! Golden Fotoka Light Sensitive Lacquer-now greatly improved and very much faster. Aerosol cans with full instructions. $£ 2 \cdot 25$. Developer 35p. Ferric Chloride 55p. Clear Acetate sheet for master 14 p . Copper-clad Fibre-glass Board approx. 1 mm thick $£ 1.70$ sq.ft. Post/packing 75p. WHITE HOUSE ELECTRONICS, PO Box 19, Castle Drive, Penzance, Cornwall

ENAMELLED COPPER WIRE

SWG	1 lb	$\underline{16}$	t
10 to 19	2.95	$1 \cdot 70$	0.85
20 to 29	3.05	1.75	0.95
30 to 34	$3 \cdot 45$	1.90	1.00
35 to 39	$3 \cdot 75$	$2 \cdot 10$	1.15
40 to 43	4.95	$2 \cdot 75$	$2 \cdot 15$
44 to 46	5-90	$3 \cdot 50$	$2 \cdot 40$

FREE WIRE TABLES WITH EACH ORDER
INDUSTRIAL SUPPLIES
102 Parrawood Road, Withington, Manchester 20
Prices include P \& P in UK

BALLARD'S OF TUNBRIDGE WELLS have moved to 54 Grosvenor Road. No lists. SAE. All enquiries phone T/Wells 31803.

RECHARGEABLE BATTERIES

TRADE ENQUIRIES WELCOME

FULL RANGE AVAILABLE. SAE FOR LISTS. $81 \cdot 45$ for Booklet "Nlckel Cadmium Power" plus catalogue. Write or call, Sandwell Plant Lid, 2 Union Drive. Boldmere, Sutton Coldfleld. West Midiands, 021-354 9784.

* NEW SEALED LEAD RANGE NOW AVAILABLE \star

PROFESSIONAL DIITAL STOPWATCH

* $1 / 100 \mathrm{sec}$ quartz accuracy-lap \& total times
* BIG 1" Liquid Crystal Display
* Designed to fit snugly in the hand with large practical timing buttons for positive timing
* PLUS-clock/calendar-month; date; day; hrs; mins; secs
* Approx $3^{\prime \prime} \times 2 \frac{1}{n}^{\prime \prime} \times \frac{7}{1 "}^{\prime \prime}$-ideal for all critical timing requirements
\star Consult the clock/calendar at any time without disturbing the stopwatch timing
ONLY £15.95 VAT \& post pald
H. M. WHEELER \& CO.

15 Hawthorn Cres., Bewdley, Worcs. DY12 2JE

DIGITAL WATCH BATTERY REPLACEMENT KIT

These watches all require battery (power coll) replacement at regular intervals. This kit provides the means. We supply eyeglass, nonmagnecic eweezers, watch screwdriver, case knife and screwback case opener, Also one doz. assort. push-pieces. one doz. assiont. identification chart. We then supply replacement batteries -you fit them. Begin now. Send 69 for complece kit and get into a fast erowing business. Prompt despatch.

BOLSTER INSTRUMENT CO. (EE27)
II Percy Avenue, Ashford, Middx., TWIS 2PB

THE SCIENTIFIC WIRE COMPANY
po tor 30. London E.4. on sar 1sem.

ENAMELLED COPPER WIRE				
SWG	1 lb	808	402	208
寿 to 2	2.76	$1 \cdot 50$	$0 \cdot 0$	$0 \cdot 0$
30 to 34	3-20	1 -60	$0 \cdot 00$	0.70
35 to 30	$3 \cdot 40$	$2 \cdot 60$	$1 \cdot 10$	$0 \cdot 6$
40 to 43	4.75	$2 \cdot 60$	$2 \cdot 00$	1.48
44 to 47	5.90	$3 \cdot 60$	$2 \cdot 30$	2. 00
48 to 49	$15 \cdot 6$	9.58	$6 \cdot 38$	3.00

SILVER PLATED COPPER WIRE
1050 TIMMED COPPER WIRE 14 to $30 \quad 3.85 \quad 2.36 \quad 1.34 \quad 0.90$ Pricea Incl. P \& P vat. Ordere under Et add 20p. \$AE welcome.

ORDER FORM please write in block capitals

Please insert the advertisement below in the next available issue of Everyday Electronics for
insertions. I enclose Cheque/P.O. for £.
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Everyday Electronics)

NAME \qquad Send to: Classified Advertisement Manager EVERYDAY ELECTRONICS
GMG. Cinasithod Advortisoments Dept. Room 2087
KIng's Roach Tower, Stamford Stroet. London SEi sLs. Tolephone 01-2011 5842
Rate:
240 oer
24p per word, minimum 12 words. Box No. enp extra.

INDEX TO ADVERTISERS

Alcon Instruments			376
Ambit			428
Aura Sound			423
Ausee			438
Baydis			430
B.I.E.T.			430
Bi-Pak			371
B.K. Electronics			434
B.N.R.E.S.			420
Bolster Instruments			439
Bull J. ..			416
Butterworths			, 437
CB Radio			427
Chordgate			435
Chromatronics			372
Colour Print Express			Cov ii
David George Sales	.	.	435
Electronic-Kit			436
Electronize Design			435
Electrovalue			440

Radio Component Specialists 440
Radio TV Components 434
Rapid Electronics 372
Roden Products 439
Sandwell Plant Ltd. 438
Science of Cambridge 374, 375
Scientific Wire Co. 439
Selray Book 427
Sounds Vintage 438
Spimin 437
Swanley Electronics 437
Teleman Products 377
Tempus 419
Titan Transformers 424
T.K. Electronics 424
Vero Electronics 427
Watford Electronics 369
Webb Electronics 437
West London Direct Supplies 440
Wheeler H. M. 438
Wilmslow Audio 436
Gemini 15
Global Specialties 415
Greenweld 376
Harversons 377
Home Radio 437
Industrial Supplies 438
I.L.P. Electronics
-. 370
Intertext (ICS)
438
J. W. B. Radio
430, 431
Magenta ElectronicsLtd.
Cov iv
Marshalls 372
Phonosonics 373
PM Components 436
Powell T. Cov iii
"SPECIAL PRICES" POST £1.50 BAKER LOUDSPEAKERS

Model

 Major Mk II Superb AuditoriumGroup 45 Group 75 Group 100 Group 100
Dlaco 100 Ohms Size Power

OE-LUXE OISCO MIXER. 240 V , 4 stereo channels, 2 melers, he 2 coramichapa, mono wic channe, twin Y.u. or panel or desk mounting attractive orained siuminium obs, E44. Post \&
CHANNEL 8TEREO MIXER. 9 volt operated RE.Potas 8 . MINI MODULELOUDSPEAKERKIT E10-95 M1 $15 \times 83 \ln$. 3-way Loudspeaker Baffio. Sin. Base, sin Full asembly inetruction 0.000 CD. 18 matt Reis \& ohme fil opeplit Two kit
 GARRARD 6-200 SINGLE PLAYER DECK Brughed Aluminlum Arm with atoreo Coramic cartridge and Diamond Stylus, 3 -spede. Manual and Auto Stopl Stari. Large Matal Turntable.
Cueling Device and Paume Control, $\mathbf{2 2}$. Post 52 ,
METAL PLINTH CUT FOR GARRARD Size: $16 \times 14 \times 3$ in. © 4.60 Silver or Black finish. Post ee. SKRA SINGLE RECORD PLAYER EB Size $11 \mathrm{x} \times$ Buto stog, storeo cartridge. Basepiate. c. maing 240 V 3 epeod plays all size recorda. Post El
B.S.R. SINGLE PLAYER P170/2 E21.00 apeeds 11 in . sluminlum turntable. "ellm" arm, cuelng ator, adjustable stylue presesure, plays all records, eprine uspencion, 240 V AC. Post $£ 2$.
B.S.R. DE-LUXE AUTOCHANGER with stereo cartridge. plays all sire records. Post 52

WOODEN PLINTHS CUT FOR B.S.R. £4

Se hean. Belt drive dock, snake orm, cueing devie
TINTED PLASTIC COVERS POST E1.50

R.C.S. LOW VOLTAGE STABILISED POWER PACK KITS up to 100 mA or less. Please state voltage required.
PP BATTERY ELIMINATOR BRITISH Maina atabilized dower-pack 9 volt 400 mA max.
overlond cut out. Size $5 \times 3 t \times 2$ in. $£ 4.50$. Post 50 p . Switched 3: 6; 71:9 volt-stabilized E7. Se.

MAINS TRANSFORMERS

BLAMK ALUMINIUM CHAB8IS, 18 s.w.o. 2ivn. sldes
 E2.20. AHGLE BRACKET. 6
 ALUPIPIUM BOXES MAMY OTHER E1. 40 .

HIGH VOLTAGE ELECTROLYTICS $\begin{array}{lllll}1 / 450 \mathrm{~V} & 45 \mathrm{p} & 8+8 / 450 \mathrm{~V} & 75 \mathrm{p} & 50+50 / 300 \mathrm{~V} \\ 16 / 30 \mathrm{~V} & 3 \mathrm{p} \\ 8+16 / 450 \mathrm{~V} & 75 \mathrm{p} & 32+32 / 500 \mathrm{f} 1 \cdot 0\end{array}$ $32 / 500 \mathrm{~V} \quad 75 \mathrm{p} \quad 20+20 / 400 \mathrm{~V} \quad 75 \mathrm{p} \quad 100+100 / 275 \mathrm{~V}$ ह5p $3000 \mathrm{~V}-1.2032+32+32 / 325 \mathrm{~V} 0 \mathrm{p} \quad 220 / 450 \mathrm{~V} 5 \mathrm{p}$

Post 65p Minimum. Callers Welcome Access-Barclay-Visa. Lists 20p, Closed Wed

MAINS INTERCOM

 BATTERIES NO WIRES $£ 37.99$ PER PAIR PAT 85.70P $£ 1.95$
The modern why of instant 2-way communications. Just plug into power socket. Ready to use. Crystal t-mile on unications from room to room. Range Yolume control, with 'buzzer' call and On/off switch, Useful control, with buzzer call and light indicator. whrehouse, in surgery and in homes.
Also F.M. 2 channel "rouch" model $\mathbf{5 5} .95$ per pair

TELEPHONE AMPLIFIER

Latest Cransistorised Telephone Amplifier, with detached plug-in spesker. Placing the receiver on to converation with a swif or imucdiate two-way people can listen ut holdins the handact. Many office. shop, workshop. Perfect for "conference" calls: leaves the user's hands free to make notes, consult fles. No long waiting, saves time with longdistance calts. On/of switch volume control, Conersation recording, model at $\$ 20.95$ + VAT $£ 3.15$

DOOR ENTRY SYSTEM

No house / business / surgery should be without a modern way to Syswer the door in and age. The wanted callers. Talk to the caller and admit him only if satisfied by pressing a remote control button which will open the door electronically. A boon for the invalid, the aged, and busy housewife. Supplied complete d.i.y. kit with one internal Telephone, outside Speaker panel, electric door lock release (for Yale type surface latch lock): mains power unit. cable (4 pairs) $50 f t$ and wiring diagram. Price $\mathbf{2 5 9 . 9 5}+$ VAT £9.00 + P\&P £2.25. Kit with two ones $£ 69.95+$ VAT $£ 10 \cdot 50+\mathrm{P} \mathrm{\& P} £ 2.45$

Access and Barclaycard welcome.
WEST LONDON DIRECT SUPPLIES EE 6 GONDSINGTON HIGH STREEI

SPRING BARGAINS FROM ELECTROVALUE

FOR CLEARANCE BY MAY 31

[^3]
E.E. PROJECT KITS

Audio Effects Unit
Phone Call Charge Jogger
Darkroom Controller
Bicycle Alarm
Precision Parking Pad
Lights Failure Monitor
TTL Power Supply Unit
Duo-Decl Timer
*TTL Logic Probe Bedside Radio
Auto Lighting-Up Warning
Audio Millivoltmeter
Weather Centre (Electronics only)
Brakesafe Monitor
Cricket Game
Zener Diode Tester
Signal Tracer
General Purpose Amplifier
Voltage Converter
Autowaa
A.F. Signal Generator

Courtesy Light Delay
Auto Phase
Battery Voltage Monitor
Llghts Warning System
Autofade
Dual Line Game
Audio Tone Generator
"Pre-tuned 4-Station Radio
Gas Sentinel
Automatic Level Control
Cycle Direction Flasher
Cable and Pipe Locator
Stereo Headphone Amplifier
Doorbell Register
Five Range Current Limiter
Kitchen Timer
Touch Switch
Micro Music Box
Simple Short Wave Receiver
Morse Practice Oscillator
Slide/Tape Synchroniser
Spring-Line Reverb Unlt
Mains on/off Timer
Power Supply 3-9V
Loft Alert
Lightcall
Burglar Alarm
Baby Alarm
Opto Alarm
Radio Tuner MW/LW
3-Function Generator
One Armed Bandit
Lights-on Reminder

ZB122	Oct. 80	¢12. 25
ZB121	Oct. 80	¢6.00
ZB123	Oct. 80	E17.25
ZB124	Oct. 80	¢9.25
ZB73	Sept. 80	¢3.50
ZB77	Sept. 80	¢8.75
ZB78	Sept. 80	c. 9.50
ZB75	Sept. 80	¢8.50
ZB76	Sept. 80	£3.25
ZB74	Sept. 80	£14.25
2871	Aug. 80	£5.65
2B70	Aug. 80	¢17-75
ZB72	Aug. 80	¢47.50
ZB68	Aug. 80	£7. 50
ZB69	Aug. 80	¢14.95
ZB79	July 80	£5.00
2B80	July 80	£5.00
ZB81	July 80	¢6.00
ZB82	July 80	¢4.75
ZB83	July 80	¢19.25
ZB84	July 80	£20.00
ZB85	July 80	¢5-25
ZB86	July 80	£19-25
2B64	May 80	E4.80
ZB63	May 80	¢3. 60
ZB66	May 80	¢10.25
ZB65	May 80	¢25.00
ZB67	May 80	¢ $3 \cdot 50$
2862	May 80	E14.00
2861	April 80	¢27-00
2B60	April 80	¢8.00
ZB59	April 80	E14-50
ZB54	March 80	c3. 75
Z857	March 80	£15-25
Z858	March 80	¢3.60
ZB53	March 80	E4. 50
ZB55	March 80	¢12.75
ZB56	March 80	c9-00
ZB45	Feb. 80	E17-00
ZB44	Feb. 80	E18.00
ZB43	Feb. 80	E6.00
ZB42	Feb. 80	E11-50
ZB49	Jan. 80	£22-50
ZB48	Jan. 80	E30.00
Z847	Jan. 80	E. 50
ZB46	Jan. 80	£33.00
Z8103	Dec. 79	¢6.25
Z851	Dec. 79	£5.00
ZB40	Nov. 79	£8.50
ZB41	Nov. 79	¢5.00
ZB108	Nov. 79	¢14.75
Z852	Nov. 79	£25.00
ZB33	Oct. 79	£21-00
Z834	Oct. 79	¢4.60

* TEACH-IN 80 ฝ

Signal Level Indicator	Z836	Oct. 79	E4. 50
High Impedance Voltmeter	Z835	Oct. 79	£14.50
Universal Oscillator	ZB37	Oct. 79	c3.50
Chaser Light	ZB4	Sept. 79	¢17.50
Low Power Audio Amplifier	ZB3	Sept. 79	¢3.75
Stmple Transistor Tester	ZB2	Sept. 79	¢5.50
Varicap MW Radio	ZB1	Sept. 79	¢8.50
Quiz Referee	Z812	Aug. 79	¢4.75
Touch-on Pllot Light	Z810	Aug. 79	¢2.00
Trailer Flasher	Z89	Aug. 79	¢3-00
Swanee Whistler	ZB8	Aug. 79	¢3.50
Electronic Tunlng Fork	ZB7	Aug. 79	c8.90
Power Supply 9V	Z86	Aug. 79	¢8.25
Warbling Timer	Z85	Aug. 79	¢5-80
Water Level Indicator	Z8111	July 79	E4.50
Dolls House LIahts Economiser	ZB107	July 79	¢4.50
Darkroom Tlmer	ZB17	July 79	¢2.50
Soldering Iron Blt Saver	Z813	July 79	¢9.25
Voltage Splitter	Z815	July 79	c3. 25
Conference TImer	ZB14	July 79	£.38-00
Electronlc Canary	Z819	June 79	E4. 50
Tremolo Unit	ZB18	June 79	¢10.00
Meter Ampllfier	ZB21	June 79	c3. 50
Quad SImulator	ZB22	June 79	£8.00
Short Wave Converter	Z825	May 79	£13.75
Electronic Dice	Z824	May 79	¢13.50
Intruder Alarm	ZB23	May 79	¢23.00
Shaver Inverter	ZB26	Aprll 79	c8.00
Touch Bleeper	ZB27	Aprll 79	c3. 25
Choke Warning Device	ZB28	Aprll 79	E. 7.50
Transistor Tester	ZB100	April 79	E4.00
One Transistor Radlo MW/LW	Z8104	March 79	¢7. 25
Time Delay Indicator	Z898	March 79	E4.00
Micro Chime	Z896	Feb. 79	¢12.00
Lights Reminder for Car	ZB32	Jan. 79	64.50
Headphone Enhancer	ZB101	Jan. 79	c4.00
Solld-State Roulette	ZB95	Jan. 79	£18.25
I'm First	28105	Jan. 79	E3.70
Continulty Tester	28115	Jan. 79	¢4.30
Fuzz Box	28106	Dec. 78	c5.00
Vehicle Immobiliser	ZB110	Dec. 78	¢5.00
Audio Effects Osclllator	ZB109	Nov. 78	c.3.50
Tele-Tel	ZB94	Nov. 78	£17.80
Radio MW/LW	28116	Oct. 78	¢7.00
Sound to Light	Z8112	Sept. 78	¢7.00
R.F. Signal Generator	ZB93	Sept. 78	¢20.50
Guitar Tone Booster	Z8117	Sept. 78	c5.00
A.F. Signal Generator	ZB119	Aug. 78	¢10.00
Quagmire	Z 8120	July 78	¢9.50
Tele-Bell	28118	June 78	£12.25
Weird Sound Effects Generator	2B113	March 78	¢3.50
Catch-a-Light	Z8102	March 78	¢6. 00
Chaser Light Display	ZB97	Feb. 78	¢22.00
Car System Alarm	ZB92	Feb. 78	¢4.50

This popular monthly constructional series started in E.E. in 1979 and is must for beginners to electronics. The sheer simplicity of the whole project experiments lends itself to be made by any beginner young or old. Basic technical principles and symbols explalned in great detail. Start at the beginning with a hobby that could become a worthwhile career, our kit comes complete with all parts as specified by E.E.
List A, B and C $£ 22 \cdot 50$. Monthly reprints from October 1979 available at $\mathbf{4 0 p}$ each per month extra or $£ 4 \cdot 50$ for whole series.
*All E.E. project kits supplied with cases except items marked *. All kits come complete with items as specifed plus Texas i.c.sockets where required, also veroboard connecting wire etc.
If you do not have the issue of E.E. which contains the project we can supply a reprint at 40p extra.
Personal callers please ring to check availability of kits.
All prices include potst, packing and 15% V.A.T.

LATE EXTRA

MINI I.C. RADIO OCTOBER '80 ZB126 £10.35 DUSK/DAWN RELAY OCTOBER ' 80 ZB125 SOUND TO LIGHT ZB127 NOV. '80 GUITAR PRACTICE AMPLIFIER ZB128 NOV. '80 REACTION TESTER ZB129 NOV. 'B0 PRECISION TIMER ZB130 NOV. '80 TRANSISTOR TESTER ZB131 NOV. ' 80 SOIL MOISTURE MONITOR ZB132 NOV. ' 80 OTHER THAN STATED, PRICES ON APPLICATION.

Hours Mon-Friday 9-5.30 p.m. Sat. 9-4.30 p.m.
Callers by appointment only.
Telephone: 01-226 1489
T. POWELL

Advance Works, 44 Wallace Road, London N.1.

Visa/Access cards accepted
Minimum telephone Orders £5•00
Minimum Mail Order $£ 1$-00

[^0]: A. Marshall (London) Ltd., Kingsgate House,

 Kingsgate Place, London NW6 4TA. Industrial Sales: 01-328 1009. Mail Order: 01-0248532 24hr service. Also retail shops: 325 Edgware Road, London W2. 40 Cricklewood Broadway. London NW2, 85 West Regent St., Glasgow, 108A Stokes Croft, Bristol.

[^1]: All reasonable precautions are taken to ensure that the advice and data given to readers are reliable. We cannot however guarantee it, and we cannot accept legal respenelblilty for lt. Prices quoted are these current as we ge to press.

[^3]:

