In the home projects for everyone APRIL 81 60p alisiboics

AND THERE＇S MORE WHERE THIS CAME FROM

It＇s a long time since one of our adverts was presented in＇list＇form－but simply because we do not try to squeeze this lot in every time doesn＇t mean that it＇s not available．Our new style price list（now some 40 pages long）includes all this and more，including quantity prices and a brief description．The kits，modules and specialized RF components－such as TOKO coils，filters etc．are covered in the general price

LINEARICS NUMERIC LISTINGS

$\begin{array}{lll}\text { TBAL20S } & 1.00 & \text { KB4443 } \\ \text { L200 } & 1.95 & \text { KB4417 } \\ \text { U237B } & 1.28 & \text { TRA }\end{array}$
웅
U 247 B
U 257 B
U257B
M301H
M30LN
M308H
M 308 N
M 339 N
M 348 N
LF351N
M374N
M380N－14
N419CE
NES44N
ES556N
E562N
NE565N
NESTON

令令冬

ぶ多多

§思思

 TRAR20MTCA940E N受最容

TLA10
禾录

존

HAL

令気

LMi IMI MCI

HA1388
TDA1490
SLl610p
SL1611P
SL1613P
SL1620P
SL1 621P
SL1 $623 P$
SL1625P
SLl 626 P
SH1660P
SHE 640 P
SLL64
TLA2002
ULN2283B
CA3080E
CA3089E
CA3090AQ
CA3130E CA3130T

MC3 357 P LM390

$\square M 3909 \mathrm{~N}$
LM3909N
$\begin{array}{ll}\text { LM3915N } & 2.80 \\ \text { KB4400 } & 0.8\end{array}$
KB4406
KB4412

4043
すुす

Please send an SAE with
Access／Barclayod
（ $\min £ 5$ please）
Callers welcome

4．．．．．．．．．．．75p
part 1）

WATFORD ELECTRONICS
 35 CARDIFF ROAD, WATFORD, HERTS., ENGLAND
 MAIL ORDER, CALLERS WELCOME. Tel. Watford 40588/9

ALL DEVICES BRAMD NEW, FULL SPEC. AND FULLY GUARANTEED ORDERE

 PO. OR BANKERS DRAFT WITH ORDER. GOVERNMENT AND EDUCATIONIRY WELCOME. PEP ADD 50P TO ALL ORDERS UNDER \&10 OO. OVERSEASPOSTAGE AT COST. AIR/SURFACE. (ACCESS ORders by tephone welcome).
VAT
We etock many more Items. It paye to visit us. We are sltunted bohind Watford Football Ground. Nearest Underground/BR Statlon: Watford High street.
Saturday 8.00 am -600 pm . Ample Free Car ParkIng ppace avallable.

POLYESTER CAPACITORS: Axial lead type (Values are In $n A F$)
 48 p ; 4475 sp .

ELE CTROLYTIC CAPACITORS: (Values are In μ F) 500 V : 1052 p ; 47 7 $7 \mathrm{p} ; 250 \mathrm{~V}$: 10065 p :

 27P; $150031 \mathrm{p} ; 220036 \mathrm{p} ; 330074 \mathrm{p} ; 470079 \mathrm{p}$.

JACKSONS VARIABLE CAPACITORS

$\begin{array}{ll}\text { Dillicon } \\ 100 / 300 \mathrm{p} & 0 \\ 2 & 385 \mathrm{pF} \\ \text { slow mith }\end{array}$

 $\begin{array}{lll}\text { AB11DAF } 160 \mathrm{p} & \text { mötlön drlve 450p } \\ \text { Dlai Drlve } 4103 & \text { C804-5pF } 1015\end{array}$ $\begin{array}{llll}\text { B } 1 / 361 & \text { 775p } & \text { C } 804-5 \mathrm{pF} & 10 \\ 2550 \mathrm{pF} & 278 \mathrm{p}\end{array}$ \begin{tabular}{llll}
Drum $84 m m$ \& 59 p \& $\mathbf{2 5} 50 \mathrm{pF}$ \& $\mathbf{1 0 0}, 150 \mathrm{pF}$

\hline \& 352 p

$0-1 \cdot 385 \mathrm{pF}$ \& 325 p \& 'L' $3 \times 310 \mathrm{pF} 725 \mathrm{p}$

002365 pF \& 395 p \& $00.3 \times 25 \mathrm{pF}$

\hline
\end{tabular}

$\begin{array}{ll}\text { DENCO COILS } & \text { RDT2 } \\ \text { 'DP'VALVETYPE RFC } 5 & \text { 120p } \\ \text { R }\end{array}$

VEROBOARDS -1" $\begin{gathered}\text { COPPER } \\ \text { clad plain boards }\end{gathered}$

Pkt. of 36 pins	20 p
Spot Face Cutter 107p.	ride 1 lb.
Pin	
Anhydr, 225p	

DIODES	ZEMERS	
AA129 22	Rande $2 \vee 7$ to	
	39 V	$5 \mathrm{~A} / 400 \mathrm{~V}{ }^{40}$
	Range $3 \vee 3$ to	${ }^{3 A} / 000 \mathrm{~V}{ }^{48}$
CRO33 250	$1 \cdot 3 \mathrm{~W}$	$8 \mathrm{~A} / 300 \mathrm{~V}{ }^{60}$
OAP^{40}	15p ench	${ }_{8 A}^{8 A / 4000 V} 75$
044712		12A/400V 95
OA70 12	NOISE	12A/800 - ${ }^{\text {c88 }}$
OA79 18	25J 180	15A1700V 180
${ }^{\text {OAB }}$ OAB ${ }^{\text {a }}$		${ }^{2} \mathbf{N} 4444{ }^{2} 140$
\bigcirc_{0490}	ERIDGE	${ }^{2} \mathbf{2 N 5 0 6 2}$
OA91	RRCTIFIERS	$2 \mathrm{~S}^{5064}$ 35
OA95	(plastic caea)	8 CT 108150
OA200	$1 \mathrm{~A} / 50 \mathrm{~V} 20$	
OA202	$1 \mathrm{All00V} 22$	T
IN014	$1 \mathrm{~A} / 200 \mathrm{~V} 25$	TiCas 29
in916	1A	
[N4001/2	$1 \mathrm{~A} / 800 \mathrm{~V} 34$	
[14003	$1 \mathrm{~A} / 800 \mathrm{~V}{ }^{34}$	
iN4004/5	$2 \mathrm{~A} / 50 \mathrm{~V}{ }^{35}$	TRIACS
INAOOO/7	$2 \mathrm{~A} / 200 \mathrm{~V} 40$	3A/H00V 48
IN4148	$2 \mathrm{~A} / 400 \mathrm{~V} 46$	$3 \mathrm{~A} / 400 \mathrm{~V} 5$
3A/100V ${ }_{18}{ }^{\text {a }}$	$2 \mathrm{~A} / 800 \mathrm{~V}$ 6s	$8 \mathrm{Al} 100 \mathrm{~V}{ }^{60}$
$3 \mathrm{~A} / 400 \mathrm{~V} 16$	8A/100V 83	$8 \mathrm{~A} / 400 \mathrm{~V}{ }^{69}$
$3 \mathrm{~A} / 600 \mathrm{~V} 17$	$6 \mathrm{~A} / 400 \mathrm{~V} 95$	
$3 \mathrm{~A} / 1000 \mathrm{~V} 30$	10A/200V 215	${ }_{12} A^{\prime} / 400 \mathrm{~V}{ }_{82}$
6A/400V50p	10A/800 V 315	12A/800V 135
	25A/200V 215	leAl100V 103
	${ }^{25 A} / 600 \mathrm{~V} 395$	16A/400V 105
		25A/400V 185
lectio		25A/800V 258
Books and	DIAC	

[^0]147p Dalo Pen 90p

\therefore : $: 17$ NEW EXTENDED 1981 RANGE

LARGEST SELECTION - LOWEST PRICES

CHOOSE FROM OVER 20 TOP QUALITY MODULES

AL20A-30A aUDIO AMPLIFIER MODULES

AL80
AUDIO
AMPLIFIER MODULE 35 Watts RMS
AL120
AUDIO AMPLIFIER
50W R.M.S.
With integral heat sink and shortclrcuit protection
AL250 POWER AMPLIFIER

BI-PAK Audio Modules are famous for their variety, quality of design and ruggedness. For over 10 years BI-PAK have been suppliers to manufacturers of high quality audio equipment throughout the world-to date, well over 100,000 modules have been sold-this is why discerning amateur enthusiasts insist on using BI-PAK modules in their equipment. They know that every item is designed and tested to do the job for which it is entended before jt leaves the factory. Whatever you are building, there is a kit or module in the BI-PAK range to suit your every need from 5 watts to 125 watts, from amplifiers to equalisers. AND if you cannot see what you require in this advertisement, just write or phone us-we are waiting to help you!

AL60
AUDIO AMPLIFIER MODULE
PA12 STEREO PREAMPLIFIER 25 Watts RMS

PA100 \& PA200

STEREO PRE-AMPLIFIER

MM100 Suitable for disco mixer
Stereo 30
COMPLETE
AUDIO CHASSIS

-	AMPLIFIERS AL10. 3 watt Audio Amplifier Module 22-32v supply
COMPLETELY GUARANTEED	AL20. 5 watt Audio Amplifler Module 22-32v supply
	AL30A. 7-10 watt Audio Amplifier Module 2232v supply
	AL60. 15-25 watt Audio Amplifiep Module 3050 v supply
	AL80. 35 watt Audio Amplifier Module $40-60 \mathrm{v}$ supply
	AL120. 50 watt Audio Amplifier Module 50-70v supply $£ 13 \cdot 14$

BI-KITS

STA5. 5 watts per channel Stereo Amplifier Kit consisting of: $2 \times$ AL20 amplifiers, $1 \times$ PA12 pre-amplifier, $1 \times$ PS12 power supply, 1.2036 trahsformer and necessary wiring diagram.
STAi0. 10 watts per channel Stereo Amplifier Kit consisting of $2 \times$ AL30 amplifiers, $1 \times$ PA12 pre-amplifier, $1 \times$ PS12 power supply, 1×2036 transformer and necessary wiring diagrams.
$£ 20 \cdot 63$
STA15. 15 watts per channel Stereo Amplifier Kit consisting of: $2 \times$ AL60 amplifiers, $1 \times$ PA100 pre-amplifier, $1 \times$ SPM80 power supply, 1×2034 transformer, $2 \times$ coupling capacitors for 8 ohms 470 mfd 30 v and necessary wiring diagram.

BI-KITS

STA25. 25 watts per channel Stereo Amplifier Kit consisting of: $2 \times$ AL60 amplifiers, $1 \times$ PA100 pre-amplifier, $1 \times$ SPM120/45 power supply, 1×2040 transformer, coupling capacltors for 8 ohms 470 mfd 45 v
$1 \times$ reservoir capacitor 2200 mfd 100 v and necessary wiring diagram. $\quad £ 40 \cdot 50$

STA35. 35 watts per channel Stereo Amplifier Kit consisting of: $2 \times$ AL80 amplifiers, $1 \times$ PA200 pre-amplifier, 1×2035 transformer, $2 \times$ coupling capacitors 470 mfd at 50 v for 8 ohms, $1 \times$ reservoir capacitor 2200 mfd 100 V and necessary wiring diagram. $£ 45 \cdot 76$

BI-KITS

STA50. 50 watts per channel Stereo Amplifier Kit consisting of: $2 \times$ AL120 amplifiers, $1 \times$ PA200 pre-amplifier, 1×2041 transformer, $2 \times$ coupling capacitors 1000 mfd 63 v ,
$1 \times$ SPM 120/65
$1 \times$ reservoir capacitor 3300 mfd 100 v and necessary wiring diagram.

STA100. 100 watts per channel Stereo Amplifier Kit consisting of: $2 \times$ AL250 amplifiers, $1 \times$ PA200 pre-amplifier, $2 \times$ SPM120/65 power supplies, 2×2041 transformers, $2 \times$ coupling capacitors 1000 mfd 100 V and necessary wiring diagram. $£ 84 \cdot 68$

-1/9?

STABILISED POWER SUPPLY

SPM120
STABILISED POWER
SUPPLY

1,130
 MAGNETIC CARTRIDGE PRE-AMPLIFIER

S450 STEREO FM TUNER Fitted with phase lock-loop

EQUALISER

MONO PRE-AMPLIFIERS
MM100. Supply voltage $40-65 v$ inputs: Tape, Mag P.U. Microphone Max output 500 mv .
£12.43
MM100G. Supply voltage $40-65 v$ inputs: 2 Guitars, Microphones Max output 500mv.
$£ 12 \cdot 43$
POWER SUPPLIES
PS12. 24 v Supply. Suit: $2 \times$ AL10, $2 \times$ AL20, $2 \times$ AL30 \& PA12/S.450. £1-65
SPM80. 33v Stabilised supply. Suit: $2 \times$ AL60,
PA100 to 15 watts.
£4.84
SPM120/45. 45v Stabilised supply. Suit: $2 \times$ AL60, PA 100 to 25 watts.
SPM120/55. 55 V Stabilised supply. Suit: $2 \times$ AL80, PA200.
SPM120/65. 65v Stabilised supply. Suit: $2 \times$ AL120, PA200, $1 \times$ AL250.
SG30. 15-0-15 Stabilised power supply for
$2 \times$ GE100MK11.
£3. 80

MISCELLANEOUS

MPA30. Stereo Magnetic Cartridge Pre-Amplifier-Input $3 \cdot 5 \mathrm{mv}$, Output 100 mv
£3-27.
S.450. Stereo FM Tuner Supply Voltage 20-30v-Varicap tuned.
£25•66
STEREO 30. Complete 7 watt per cannel Stereo Amplifier Board-includes amps, pre-amp, power supply, front panel, knobs, etcrequires 2039 Transformer. £21. 09

Transformers are not included with power supplies SPM120 Range also require reservoir and output capacitors

BP124. 5 watt 12 v max.-Siren Alarm Module.
GE100MK11. 10 channel mono-graphic
equaliser, complete with sliders and knobs.
£23. 00
VPS30. Variable regulated stabilised power
supply 2-30v 0-2 amps.
£7. 60
PS250. Consists-1 capacitor \& 4 diodes for constructing unstabilised power supply for AL250 to 125 watts.

TRANSFORMERS
2034. 1 - 7 amp 35v. Suit SPM80.
2035. 2 Amp 55v.
e4.90
2036. 750 mA 17v. Suit PS12.
2040. 1-5 Amp 0-45v-55v. Suit: SPM120/45, SPM120/55v.
2041. 2 Amp 0-55v-65v. Suit: SPM120/55, SPM120/65v
2039. 1 Amp 0-20v. Suit: Stereo 30 £3. 50 2043. 150mA 15-0-15v. Suit: SG30. £2.40

ACCESSORIES

139. Teak Cabinet. Suit: Stereo 30, $320 \times 235 \times 81 \mathrm{~mm}$.
140. Teak Cabinet. Suit: STA15,
$425 \times 290 \times 95 m m$
$£ 9.50$
FP100. Front Panel for PA100 \& PA200. $£ 1$ - 80 BP100. Back Panel for PA100 \& PA200. $£ 1 \cdot 60$ GE100FP. Front Panel for one GE100MK11.
£1-75
141. Kit of Parts including Teak Cabinet,

Chassis, Sockets and Knobs, etc.
(To House STA15 Amplifier.)
£19.95

Full data sheets are available FREE on request, please enclose a S.A.E.

VPS30

REGULATED VARIABLE STABILISED POWER SUPPLY

KIT $\mathbf{£ 2 0}+\mathbf{V . A . t .}$

Stabilised Power Supply Kit Varlable from 2.30 volts and 0.2 Amps Kit includes :
1 VPS30 Module
125 volt 2 Amp Transformer
$10-50 v 2^{\prime \prime}$ Panel Meter
$10-2$ Amp 2" Panel Meter
1470 ohm Wirewound Potentiometer 14 K 7 ohm Wirewound Potentiometer Wiring diagram included

Access and Barclaycards accepted-just telephone our Orderline-Ware (STD 0920) 3182. All prices exclude V.A.T., add 50p postage per order. Terms: C.W.O., cheques,
Postal Orders payable to Bi-Pak.

BI-PAK - SATISFACTION OR YOUR MONEY BACK!

PLUGS AND SOCKETS

2 mm Plug RED
2 mm Plug BLAC
2 mm Socket RED
4 mm Plug BLACK
4 mm Plug RED
4 mm Socket BLAC
4 mm Socket RED
2 Pin DIN Chassis Socket
5 Pin 180° DIN Chassis Socket
5 PIn 240° DIN Chassis Socket 2.5 mm Chassis Socket
$\mathbf{3 . 5 m m}$ Chassis Socket
Metal Std. Jack Chassis Socket (Mono)
Metal Std. Jack Chassis Socket (Stereo)
Double Phono Socket
Coax Surface Socket
Coax Flush Socket
Plastic Std. Jack Socket (Mono)
Plastic Std. Jack Socket (Stereo) for headphones
AC Chassis Socket
4-Way Phono Chassis Socket
Plastic Std. Jack Chassis Socket stereo switched 2 Pin DIN Line Socket Socke
5 Pin 240° DIN Line Socket
2.5 mm Plastic Line Socket
Sidm Plastic Line. Socket
Sid. Jack Plastic Line Socket (Mono)
Std. Jack Metal LIne Socket (Mono)
Std. Jack Plastic Line Socket (Stereo)
Std. Jack Metal Line Socket (Stereo)
Coax Line Socket
AC Line Socket (2 pin USA Type)
Phono 8ack-Back Socket
${ }_{2}$ Pin DIN Plug
5 Pin 180° DIN Plug
5 Pin 240° DIN Plug
2.5 mm Plug (Metal)
3.5 mm Plug (Plastic)
3.5 mm Plug (Metal)
Std. Plastic Jack Plug (Mono)
Std. Metal Jack Plug (Stereo)
Plastic Phono Plug
Car Aerial Plug
Rigt t Angle Jack Plug (Mono)
2. 5 mm Plastic Plug
Std, Plastic Jack Plug (Stereo)
Metal Phono Plug
2.1 mm DC Plug
2.5 mm ON Plug
AC Plug (2 pin USA Type)
Cassette AC Input Plug
FM Aerial Plug
PL 259 Plug
SO239 Socket 4 -hole fixing
PL258 Double Ended Femaie Coupler
NC555 Reducer for PL259 (Small)
NC556 Reducer for PL259 (Large)
M359 Right Angle Coupler PL259 SO239
NC563 Inline Coupler PL259 $\times 2$
BNC1502 Chassis Mounting Socket
BNC1503 Chassis Mounting Socket single-hole fixing
BNC1520 BNC Male to SO239 Female BNC1520 BNC Male to SO239 Female
BNC1524 BNC Female to PL259 Male Junction Box on in two put 1730 Low Loss Splitter
BREADBOARD

2185 EXP325
 2196 EXP350
 2197 EXP650
 2199 EXP4B
 2199 EXP4B 2200 EXP600

VEROBOARD

2201 2.5* }\times5\mathrm{ 5" - 1 copper
2201 2.5* }\times5\mathrm{ 5" - 1 copper
203 2.5" }\times1.1\mp@subsup{7}{}{\prime\prime}+1 coppe
203 2.5" }\times1.1\mp@subsup{7}{}{\prime\prime}+1 coppe
204 3.75"\times 5 5" . .1 copper
204 3.75"\times 5 5" . .1 copper
2005 3.75% \times 3.75" + % copper
2005 3.75% \times 3.75" + % copper
2206 3.75"\prime}\times17\mp@subsup{7}{}{\prime\prime}-1/ cooper
2206 3.75"\prime}\times17\mp@subsup{7}{}{\prime\prime}-1/ cooper
2007 4.75" }\times17.\mp@subsup{9}{}{\prime\prime}+1\mathrm{ copper
2007 4.75" }\times17.\mp@subsup{9}{}{\prime\prime}+1\mathrm{ copper
2208 2.5N}\times1/1/ 5 in pack
2208 2.5N}\times1/1/ 5 in pack
210}3.7\mp@subsup{5}{}{\prime\prime}\times2.\mp@subsup{5}{}{\prime\prime}\mathrm{ 1 Plain
210}3.7\mp@subsup{5}{}{\prime\prime}\times2.\mp@subsup{5}{}{\prime\prime}\mathrm{ 1 Plain
511 5.0" }\times3.7\mp@subsup{0}{}{N/}-1\mathrm{ Plain
511 5.0" }\times3.7\mp@subsup{0}{}{N/}-1\mathrm{ Plain
2212 Vero Pins Double-sided -040mm -1" (in 100's)
2212 Vero Pins Double-sided -040mm -1" (in 100's)
2213 Vero Pins Single-sided 040mm \cdot1" (in 100's)
2213 Vero Pins Single-sided 040mm \cdot1" (in 100's)
214 DIP Breadboard
214 DIP Breadboard
215 Vero Cutter
215 Vero Cutter
2216 Insertion Tool -1
2216 Insertion Tool -1
2218 12 volt mini drilt
2218 12 volt mini drilt
2219 Right Angle Bracket 1\mp@subsup{}}{}{\prime\prime}\times5/\mp@subsup{8}{}{\prime\prime}
2219 Right Angle Bracket 1\mp@subsup{}}{}{\prime\prime}\times5/\mp@subsup{8}{}{\prime\prime}
2200 Right Angle Bracket 5/8'*}\times5/\mp@subsup{8}{}{\prime\prime
2200 Right Angle Bracket 5/8'*}\times5/\mp@subsup{8}{}{\prime\prime

EARPIECES AND BUZZERS

Solid State Buzzer 4-25y
Solid State Buzzer 4-25y
Crystal Earoiece
Crystal Earoiece
8 ohm Earplece 2.5mm Plug
8 ohm Earplece 2.5mm Plug
8 ohm Earpiece 3.5mm Plug
8 ohm Earpiece 3.5mm Plug

THE BI-PAK OPTO SHOW

KITS FOR SOUND EFFECTS AND OTHER PROJECTS
 PHONOSONICS
 DEPT EE2, 22 HIGH STREET

P.E. MINISONIC MK2 SYNTHESISER

A portable malns operated minlature sound synthesis er with
keyboard circuits. Although having slightly fewer facilities than the large Formant and P.E. synithesisers the functions offered by this design glve it great scope and versatility. Set of basic component kits (excl. KBD R's \& tuning potssee list for options available) and PCBs (Incl. layout charts) "'Sound Deslgn" booklet KIT $38-25 \begin{array}{ll}\text { £.80-14 } \\ \text { £. } 1400\end{array}$ P.E. 128-NOTE SEQUENCER

Enables a voltage controlled synthesiser to automatically play re-programmed tunes of up to 32 pitches and 128 notes ong. Programs are keyboard Inltlated and note length an Basic comps, PCBs and chatts Set of text photocoples

KIT 76-7 $£ 35.56$
P.E. GUITAR EFFECTS PEDAL

Modulates the attack, decay and filter characterlstics of a signal from most audio sources, producing 8 different switchBasic parts, PCB \& chart KIT 42-3 Text photocopy

P.E. GUITAR OVERDRIVE

Sophisticated versatile fuzz unit including varlable control decay, and also providing whilst retaining the attack and ectronic Instruments.
$\begin{array}{lll}\text { Basic parts; PCB \& chart } & \text { KIT } 56-3 & £ 11 \cdot 22 \\ \text { Text photocopy } & & 68\end{array}$
P.E. GUITAR SUSTAIN

Maintalns the natural attack whilst extending note duration. $\begin{array}{lll}\text { Text photocopy } & \text { KIT } \\ \mathbf{7 5 - 1} & \mathbf{5 6 . 9 9}\end{array}$ SIDCUP, KENT DAI4 6EH

MAIL ORDER SUPPLIERS OF QUALITY PRINTED CIRCUIT BOARDS, KITS AND COMPONENTS TO A WORLD.WIDE MARKET.
P.E. AUTO-WAH UNIT
sounds with
Automatic Wah or Swell
Basic comps, PCB \& chart Text photocopy
ELEKTOR CHOROSYNTH

A $2 \frac{1}{2}-$ Octave Chorus synthesiser with an amazing variety
of sounds ranging from violln to collo and fute to amongst many others. Experienced constructors can readlty extend the octave coverage.
Basic comps, PCBs \& charts
Basic comps, PCBs \& charts ELEKTOR FUN
ELEKTOR FUNNY TALKER
Incorporates a ring modulator, chopper and frequency
modulator to produce fascinating sounds when used with speech and music signals.
Basic comps, PCB (as publ.) KIT 99-1
Text photocopy
$£ .96$ ELEKTOR FREQUENCY DOUBLER
ELEKTOR FREQUENCY DOUBLER
FOR use with oultars and other electronic instrum
produce an oulout 1 octave higher than the inputents to and outputs may be mixed to glve greater the input. Inputs Basic comps. PCB (as publ.)
Text phom
KIT $98-48$ Text photocopy
P.E. SPLIT-PHASE TREMOLO 20

Simple but effective substitute
internal generator is phase-split and modulated cablnet, An
input signal and fed to 1 or 2 ampllflers. Suitable for muslc
tronic guitars and other instruments.
Easle comps, PCB \& chart
P.E. PHASER
P.E. PHASER

An automatlc 6 -stage phat

Set of basic comps, PCB \& chart | |
| :--- | :--- | :--- |

ELEKTOR PHASING \& VIBRATO UN

 includes manual and automatic control over the rate of phasing \& vibrato, and has been sllghtly modiffed to also include a 2 -input mixer stage.Set of basic comps, PCB \& layout chart KIT 70-2 $\quad £ 21 \cdot 87$ Text photocopy
P.E. PHASING UNIT
P.E. PHASING UNIT
A simple but effective manually controlled phasing unit

Set of basic comps PCB \& chart KIT $25-1$ E. 4.0
Text photocopy
P.E. SWITCHED TONE TREBLE BOOST

Provides switched selectlon of 4 preset tonal responses. Set of basic components, PCB \& chart KIT $89-1 \quad$ E.
Text photocopy
P.E. SMOOTH FUZZ

P.E. TUNING FORK

Produces 84 switch-selected frequency-accurate tones with
an LED monltor clearly displaying beat-note adjustments.
Set of basic comps, PCB \& chart KIT $46-3 \quad £ 23.32$ $\begin{array}{llll}\text { Set of basic comps, PCB \& chart } & \text { KIT } 46-3 & £ 23.32 \\ \text { Text photocopy } & & 97\end{array}$
P.E. CONSTANT DISPLAY FREQUENCY COUNTER An improved version of the project published in P.E. $\begin{array}{ll}\text { Readout does not count visibly or flicker due to. blanking } \\ \text { Set of basic components \& PCB } \\ \text { KIT } & \text { 79-4 } \\ £ 31\end{array}$ Text ohotocopy
DYNAMIC NOISE LIMITER
Effectively reduces tape-recording hiss. Stereo Unit.
Set of basic components, PCB \& chart KIT $97-1$ Text photocopy
MANY MORE KITS
for syntheslsers, Rhythm Generators, ElectronIc Planos and other projects, blg, small, simple or complex, are avallable, plus a range of keyboards, separate components and acces

COMPONENT SETS incl all necessary res, caps, s/cs, pots, t/formers. Hardware sueh as cases, skts, knobs, kbds, etc, are not incl, but most can be bought separately.
ADD : POST \& HANDLING
add 70 p, over $£ 20$ add add $\mathbf{~} \mathbf{3 5 p}$, under $£ 20$ Insurances agalnst postal mishaps: add

50p for cover up to $\mathbf{£ 5 0}$, $\mathbf{£ 1}$ for $£ \mathbf{1 0 0}$ cover. etc., pro-rata, must be added to credlt card countries are sublect to higher rates.
ADD 15\% VAT
(or current rate if changed). Must be added to full total of goods, post $\&$ handling on all U.K. orders. Does not apply to exports, or to
-photocopies.

LIST: Send stamped addressed envelope with all U.K. requests for free list glving
fuller detalis of our goods. Europe send 35 . other countrles send 75 p , or equivalent in International reply coupons
NEW MORE INFORMATIVE
LIST NOW AVAILABLE

TERMS: C.W.O., MAIL ORDER OR COLLECTION BY APPOINTMENT (TEL: 01-302 6184)

A PROFESSIONAL TOOLCASE FOR UNDER E4O

Designed for the professional Electronics, T.V or Instrument Technician who needs to carry a large number of specialist tools.
The TL99 sets a standard as a low cost alternative

- 2 sided Reversible Multi-purpose tool pallet
- Dócument area
- 90° opening lock back stays
- $3^{\prime \prime}$ deep ABS lid and base
- Twin handles with 8 fixing points on aluminium frames
- Burst proof toggle locks with keys
- Moulded adjustable tray in base
- Heat sink for hot soldering iron

EXPERIMENTOR BREADBOARDS

No soldering modular breadboards, simply plug components in and out of letter number identified nickel-silver contact holes. Start small and simply snap-lock boards together to build a breadboard of any size.
All EXP Breadboards have two bus-bars as an integral part of the board, if you need more than 2 buses simply snap on 4 more bus-bars with the aid of an EXP 18.

EXP $325 £ 1.60$ The ideal breadboard for 1 chip circuits. Accepts 8, 14, 16 ard up to 22 pin ICs. Has 130 contact points including two 10 point bus-bars,

EXP 350 f 3.15 Specially designed for working with up to 40 pin ICs perfect for 3 \& 14 pin ICs.
Has 270 contact points including two 20 point bus-bars.

EXP 300 E5. 75 The

 most widely bought bread-board in the UK With 550 contact points, two 40 point bus-bars, the EXP 300 will accept any size IC and up to 6×14 pIn DIPS. Use this breadboard with Adventures in Microelectronics.

EXP 600 E6.30Most MICROPROCESSOR projects in magazines and educatıonal books are built on the EXP 600 .

EXP $650 \mathrm{f} \mathbf{5 . 6 0}$ Has $\cdot 6$ " centre
spacing so is perfect for
MICROPROCESSOR applications

EXP 4B $\mathbf{2} \mathbf{2} \mathbf{3 0}$ Four
more bus-bars in
'snap-on' unit.
 ©

The above prices are exciusive of P\&P and 15% VAT

THE GSC 24 HOUR SERVICE TELEPHONE (0799) 21682

With your Access, American Express,
Barclaycard number and your order will be in the post immediately GLOBAL SPECIALTIES CORPORATION

G.S.C. (UK) Ltd, Dept. 4TT Unit 1. Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AQ.
Tel: Saffron Walden (0799) 21662
Telex: 817477

Available from selected stockists

 ELECTRONICS BY NUMBERS
No. 10 SOIL MOISTURE TESTER

No more wilting houseplants with this soil moisture test. Just place the probes into the soil and it will light up to tell you whether the soil is "too wet" or "too dry". You don't even need green fingers.

No. 11 DIGITAL ROULETTE

The suspense and excitement of the casino in your own home. Just press the button, the circle of lights go round and there is the sound of the roulette wheel as well, both gradually slowing down to reveal the winning number.

No. 12 EGG TIMER

How do you like your eggs done, hard or soft, just set the timer and it will sound when the egg is done to your liking. Long battery life because it switches itself off automatically. So get cracking nowl
Want to get started on building exciting projects, but don't know how? Now using EXPERIMENTOR BREADBOARDS and following the instructions in our FREE 'Electronics By Numbers' leaflets, ANYBODY can build electronic projects. For example, take one of our earlier projects, a L’.E.D. Bar Graph;

You will need; One EXP 300 or EXP 350 breadboard 15 silicon diodes
6 resistors 6 Light Emitting Diodes Just look at the diagram, Select R1, plug it into the lettered and numbered holes on the EXPERIMENTOR BREADBOARD, do the same with all the other components, connect to the battery, and your project's finished. All you have to do is follow the large, clear layouts on the 'Electronics by Numbers' leaflets, and ANYBODY can build a perfect working project.

Just clip the coupon

Give us your name and full postal address (in block capitals). Enclose cheque, postal order or credit card number and expiny date, indicating in the appropriate box(es) the breadboard(s) you require.

EXPERIMENTOR BREADBOARDS	CONTACT	IC CAPACITY 14 PIN DIP	UNIT PRICEINC PEP \& 15\% VAT	Oty
EXP 325	130	1	¢ 2.70	
EXP 350	270	3	¢ 4.48	
EXP 300	550	6	£ 7.70	
EXP 000			f 8.39	
EXP 80	270	use with 06 pitch [in's Strip Bus-Bar	¢ 5.00	
EXP 48	$\begin{aligned} & \text { Four } 40 \text { Point } \\ & \text { Bus-Bars } \end{aligned}$		f 3.50	

PROTO-BOARDS

PB8	630	6	$\mathbf{£ 1 1 . 7 3}$	
PB100	760	10	$\mathbf{£ 1 4 . 7 2}$	

For full detailed instructions and layouts of Projects 10, 11 and 12 , simply take the coupon to your nearest GSC stockist, or send direct to us, and you will receive the latest 'ELECTRONICS BY NUMBERS' leaflet.

If you have missed projects, 1, 2 and 3 , or 4,5 and 6 , or 7,8 and 9 , please tick the appropriate box in the coupon.

PROTO-BOARDS

The ultimate in breadboards for the minimum of cost Two easily assembled kits

PB6 Kit, 630 contacts, four 5 -way binding posts accepts up to six 14-pin Dips.
PROTO-BOARD 6 KIT 99.20

PB 100 Kit complete with 760 contacts accepts up to ten 14-pin Dips, with two binding posts and sturdy base. Large capacity with Kit economy.
PROTO-BOARD 100 KIT £11.80

GSC (UK) Ltd, Dept.4TT, Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AQ.
$\square \square \square$ Tel: Seffron Walden (0799) 21682. Telex: 817477. \square

EDITOR

F. E. BENNETT

ASSISTANT EDITOR

B. W. TERRELL B.Sc

PRODUCTION EDITOR

D. G. BARRINGTON

TECHNICAL SUB-EDITOR

S. E. DOLLIN B.Sc.

ART EDITOR

R. F. PALMER

ASSISTANT ART EDITOR

P. A. LOATES

TECHNICAL ILLUSTRATOR

D. J. GOODING

EDITORIAL OFFICES

KIngs Reach Tower,
Stamford Street,
London SE1 9LS
Phone: 01-261 6873

ADVERTISEMENT MANAGER

R. SMITH

Phone: 01-261 6671

REPRESENTATIVE

R. WILLETT

Phone: 01-261 6865

CLASSIFIED MANAGER

C. R. BROWN

Phone: 01-261 5762

MAKE-UP AND COPY
 DEPARTMENT

Phone 01-261 6615

ADVERTISEMENT OFFICES

Kings Reach Tower
Stamford Street,
London SE1 9LS

Projects...Theory...

and Popular Features ...

DO CATALOGUES LIE?

A letter published this month draws attention, once again, to a Mail Order problem which will have been encountered at some time by most constructors: the "out of stock" item.

In an attempt to dispel suspicion that catalogues tell lies we must first recognise that, with the best will in the world, it is not possbile for a retailer to guarantee that his stock level will be held as intended at all times. Certain items can quickly (and unexpectedly) become exhausted; because of a sudden rise in demand generated by an especially popular magazine project, for example.

Some components cannot be speedily replaced. Cash flow problems and high interest rates have a serious effect upon the component market, at all levels in the distribution chain, from manufacturer to retailer. The situation is further aggravated now that many components come from countries outside the UK.

What about the case where a retailer marks "cancelled" against an item although it was listed in that supplier's current catalogue?

This is less easy to explain, or to justify, in our opinion. The difficulties referred to above may cause a temporary out-of-stock situation. But having placed an item in a catalogue, we feel the retailer is honour bound to make every effort to maintain continuity of stock for a reasonable period following the issue of a catalogue.

Where one or more items on a customer's order happen to be out of stock there are three choices for the supplier:

1. Despatch promptly all those items available at the time and send the balance as soon as they become available.
2. Hold the entire order until all items can be supplied.
3. Supply those items available and close the order-making an appropriate refund, including a fair proportion of post and packing charges.
The nature of the order, variety of parts included and the supplier's knowledge of the likely date of arrival for replacement stock, all play a part in determining how the order will be handled.

The one vital requirement is that the customer be advised without delay just what the situation is and how the supplier proposes to deal with the matter. For a customer, to be left in the dark about the fate of his order is quite inexcusable, but we believe such discourtesy is rarely, if ever, experienced by our readers from our advertisers.

Our May issue will be published on Thursday, April I6. See page 25 I for details.

Readers' Enquirles

We cannot undertake to answer readers' letters requesting modifications, designs or information on commercial equipment or subjecte not published by us. All letters requiring a personal reply should be accompanied by a stamped self-addressed envelope.

We cannot undertake to engage in discussions on the telephone.
Component Supplies
Readers should note that we do not supply electronic componente for bullding the projects featured in EVERYDAY ELECTRONICS, but these requirements can be met by our advertisers.
All reaconable precautions are taken to ensure that the advice and data given to readers are reliable. We cannot however cuarantee it, and we cannot accept legal pesponelblity for It. Prices quoted are those curront as wo go to press.

GONSTRUGTIONAL PROJEGTS
INTERCOM Two-way speech system for the home by F.C. Judd 228
DEADMAN'S HANDLE Safety accessory for model electric train systems by D. Lindley 234
FREEZER ALARM Audible warning when mains supply fails by R. A. Penfold 238
SWITCH FOR INDUCTION MOTORS Electronic replacement for startercentrifugal switch by K. E. Langford 242
DIGITAL RULE Ultrasonics provide good measure by P. Leah 263
GENERAL FEATURES
EDITORIAL Do Catalogues Lie?-Out-of-stock and cancelled items 226
FLAT SCREEN TV Revolutionary design by British firm 237
COUNTER INTELLIGENCE A retailer comments by Paul Young 241
SHOP TALK Product news and component buying by Dave Barrington 247
LONG, LONG AGO! Early days of radio recalled by A. Douglas 248
FOR YOUR ENTERTAINMENT Perpetual motion; information problem by Barry Fox 252
SEMICONDUCTOR NEWS Some recently introduced discrete and i.c. devices 253
I.C.s EXPLAINED Part 7: Counters and decoders by O.N. Bishop 254
EVERYDAY NEWS What's happening in the world of electronics 260
JACK PLUG AND FAMILY Cartoon by Doug Baker 269
RADIO WORLD Tracking down illegal transmitters by Pat Hawker G3VA 270
SQUARE ONE Beginners Page: Circuit symbols 273
CIRCUIT EXCHANGE A forum for readers' ideas 274
READERS LETTERS Your news and views 277
DOWN TO EARTH Log, linear and other laws by George Hylton 279

Back Issues
Certain back lases* of EVERYDAY ELECTRONICS are available worldwlde price 80p inclusive of postage and packing per copy. Enquirios with remittance should be sent to Post Sales Department, IPC Magazines Ltd.p Lavington House, 25 Lavington Street, London SE1 OPF. In the event of non-avallablity remitfances will be returned.

- Not availoble: October 107t to May 1879.

Binders
Binders to hold one volume (12 issues) are available from the above address for $\{4 \cdot 40$ (home and overseas) Inclusive of postage and packing. Please state which Volume. Subscriptions

Annual subscription for dalivery direct to any address in the UK: £10.00, overseas: \&19-00. Cheques should be made payable to IPC Magazines Ltd., and sent to Room 2 gis Kings Reach Tower, Stamford Street, London SEI OLS.
-IPC Magazines Limited 19s1. Copyright In all drawings, photographe and articles published in EVERYDAY ELECTRONICS is fully protected, and reproductions or imitations in whole or in part are expresely forbidden.

An intercom system is always useful in the home, and this particular design can be used to communicate between two rooms and also as a doorbell with two-way speech capabilitya useful asset when it comes to screening unwanted visitors.

The system described here operates on the basis that everything is controlled from the Master unit. One switch sets the system either on standby, where either station can call the other but no speech is possible, or on talk, in which case speech is possible.

A second switch controls the direction of speech, that is determines whether Master talks to Slave, or vice versa. The Slave unit consists of no more than a loudspeaker/microphone
and a call button, whilst all the circuitry and power supply are housed in the Master unit.

CIRCUIT

The complete circuit diagram of the Intercom system is shown in Fig. 1. This consists of four sections: power supply, mic pre-amp, main amplifier and buzzer.

In common with many intercom systems, a loudspeaker is used both as microphone and loudspeaker; LS2 is used in the Master unit and LS1 in the Slave.
Because of this, a grounded base transistor pre-amplifier is necessary to provide a low impedance input to match the eight-ohm loudspeakers. This is built around TR1.

MAIN AMPLIFIER

The transistor pre-amp provides enough output power to fully drive the main amplifier built around a standard power amplifier i.c. (IC2), the LM380. This has the requisite low impedance output to drive either of the speakers in the normal way.

There is little to say about this part of the circuit as all the work is done inside the chip and the only extra components are a few support items necessary for stability and frequency compensation.

The input level into the main amplifier is controlled by VR1 and this acts as a volume control. Sensitivity and gain throughout the system are such that a person speaking at an average level about two or three feet from either unit will provide full output at the listening end with VR1 at maximum.

BUZZER

The buzzer sound is in fact derived from a simple timing circuit built around the ubiquitous NE555 timer i.c. This device, ICl , is connected as a square wave oscillator and its output is connected to an output coupling capacitor, C 5 , which differentiates the output signal producing a succession of short duration pulses. These provide a very loud buzzing sound without running the i.c. at full power all the time.

A mains transformer Tl provides a low a.c. voltage which is rectified by the bridge rectifier D1-D4 and then smoothed by Cl and C 2 , to provide a 12 volt rail for the rest of the system. A neon is connected across the primary of T1 and indicates when the equipment is switched on.

The Master unit showing front panel controls and the terminal block to the left of the unit.

Fig. 1. Full circuit diagram of the Intercom. The circuit of the Slave unit is shown in the inset bottom left.

CIRCUIT BOARDS

The construction of the Intercom system is based on three circuit boards. These are all mounted in the Master unit as are all the controls. The Slave unit is constructed in an identical box, but contains only the call push button S2 and a loudspeaker, LS1.

It is important that the board layout given in Fig. 2, 3, 4 are followed exactly including breaks in the copper strips, as adjacent strips can cause a certain amount of instability especially with i.c. amplifiers.

The first circuit board houses the pre-amp and main amplifier components. There is no particular order of construction for this board or indeed any other. It would be a good idea to use an i.c. socket for IC2. The transistor TRl should be soldered in position whilst using a heat shunt on its leads.

The power supply is similarly constructed on its own board, and the transformer Tl is bolted directly to the board

The buzzer is finally assembled on the third circuit board. It can be seen that this board is somewhat thinner than the other two and is only six strips wide. This is to enable the lid to be fitted onto the box without the panel mounted components fouling the circuit board mounted inside.

Resistors

R1	47Ω
R2	$2 \cdot 2 \mathrm{k} \Omega$
R3	$2 \cdot 2 \mathrm{k} \Omega$
R4	$68 \mathrm{k} \Omega$
R5	$33 \mathrm{k} \Omega$
R6	470Ω
R7	$100 \mathrm{k} \Omega$
All	4 W carbon $\pm 5 \%$

Capacitors

	$1,000 \mu \mathrm{~F} 25 \mathrm{~V}$ elect. $2,200 \mu \mathrm{~F} 25 \mathrm{~V}$ elect. $0.1 \mu \mathrm{~F}$ polyester 6,800p F polystyrene $0.1 \mu \mathrm{~F}$ polyester $100 \mu \mathrm{~F} 25 \mathrm{~V}$ elect. $1,000 \mathrm{pF}$ polystyrene $2 \cdot 2 \mu \mathrm{~F} 25 \mathrm{~V}$ elect.

R8 $10 \mathrm{k} \Omega$
R9 $12 \mathrm{k} \Omega$
R10 $10 \mathrm{k} \Omega$
R11 $1 \cdot 2 k \Omega$
R12 $2.2 \mathrm{k} \Omega$ R13 $4 \cdot 7 \Omega$

C9 $100 \mu \mathrm{~F} 25 \mathrm{~V}$ elect. C10 $2 \cdot 2 \mu \mathrm{~F} 25 \mathrm{~V}$ elect. C11 $2 \cdot 2 \mu \mathrm{~F} 25 \mathrm{~V}$ elect. C12 $0.01 \mu \mathrm{~F}$ polyester C13 $4 \cdot 7 \mu \mathrm{~F} 25 \mathrm{~V}$ elect. C14 $0.1 \mu \mathrm{~F}$ polyester C15 220 $\mu \mathrm{F} 25 \mathrm{~V}$ elect.

Semiconductors

$$
\begin{array}{ll}
\text { IC1 } & \text { NE555 timer i.c. } \\
\text { IC2 } & \text { LM380 audio amplifier i.c. } \\
\text { TR1 } & \text { BC109 npn silicon }
\end{array}
$$

D1-D4 W005 50V, 1 A bridge rectifier
Miscellaneous
$£ 22$

VR1 $10 \mathrm{k} \Omega$ carbon linear potentiometer
S1 single-pole mains rated miniature toggle
S2, 3 push-to-make, release-to-break single-pole (2 off)
S4, 5 d.p.d.t. miniature toggle (2 off) (see text)
T1 mains primary/12V 100 m A secondary
LS1, 270 mm miniature, 8 ohm impedance (2 off)
TB1 two-way screw terminal block
TB2, 3 three-way screw terminal block (2 off)
LP1 mains neon indicator with integral series resistor
Cases, plastic with plastics front panel $130 \times 100 \times 50 \mathrm{~mm}$. West Hyde type MIN030 or similar (2 off); $0 \cdot 1$ inch matrix stripboard, 37 holes by 14 strips (2 off), 37 holes by 6 strips (1 off); Veropins; interconnecting wire; knob; two-core screened cable for interconnecting units; 3A mains cable.

Fig. 2 Component layout on the main amplifier board. This is Board A.

$B E$	
	2930313233343536
	00
	- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0-000000-00000
	00000000000000000000000
$A G$	
AF	
$A C$	O 0 0 0 0 0 0 - 0
	0 0.0000000000

BA

Fig. 3.
Component layout and positioning of the mains transformer on the power supply board. This is Board B.

MASTER UNIT

When the circuit boards are all complete the Master unit can be tackled next. This is housed in a plastics box $130 \times 100 \times 50 \mathrm{~mm}$ with a plastics lid (West Hyde type MIN 030). The lid should be drilled to take all the components as seen in Fig. 5 and when these have all been mounted in place, then the final interwiring can be completed.

If the recommended case is used then the circuit boards will slide into the moulded slots on the inside of the case. If another case is used then some other method of securing the circuit boards will have to be devised.

The loudspeaker is mounted in place behind a matrix of holes drilled through the panel and secured with Araldite or similar adhesive. Care must be taken not to get the glue on the loudspeaker cone.

Finally the Slave unit is constructed. This is built into the same type of box as the Master and should present no difficulties (see Fig. 6). Loudspeaker mounting is also the same as that for the Master unit.

The two parts of the system are joined together using twin-core screened lead. The braiding or screen forms the common earth lead, one core the signal lead and the other core the buzzer lead. This cable is joined to each unit with a three-way screw terminal block (TB2 and TB3). The accompanying photographs should make this clear.

TALK/LISTEN

The specification of S5, the Talk/ listen switch deserves some comment. In the prototype this is a two-pole change over switch and means that the person using the Master unit can decide which way the speech is directed, set S5 accordingly, and leave it set.

Some constructors may wish to have a biased switch here whereby the speech direction is permanently from Slave to Master unless the biased switch was held in the opposite direction. Such biased switches are readily available and connection details are identical to those given in Fig. 5.

INSTALLATION AND USE

The two units, Master and Slave, should be installed in their final positions according to how the constructor wishes to use the system. Although it is unlikely that both units will be situated in the same room, care should be taken that they are not so close as to cause feedback problems.

The operation of this intercom system is governed by the two switches S4 and S5. The talk/listen switch, S5, determines the way in which the conversation can take place. In one

HOW IT WORKS

This two-station system can be broken down into several sectionsbuzzer, amplifier and listen/talk switch-all built into the Master unit. The Slave unit contains nothing more than a loudspeaker and call button.

The loudspeakers double up as microphones so a listen/talk switch is necessary to make sure that when one station is speaking, the other is ** listening.

To use the system, the call button is first pressed. This sounds the buzzer. The listen/talk switch should then be set to the appropriate position and the conversation can begin. All switch controls are situated on the Master unit.
position Slave can talk to Master (this is the listen position), in the other position Master can talk to Slave (this is the talk position).
The standby/talk switch, S4, controls the buzzer. In one position the buzzer will operate and conversation cannot take place (this is the STANDBY position); in the other conversation can take place (this is the talk position).

BUZZER

To use the system it must first be switched on with S1; S4 is set to the standby position and S5 to listen.

Suppose Slave wishes to talk to Master. He presses his call button S2. The buzzer sounds and to answer the call Master switches S 4 to the talk position. The call then goes ahead and at the end, the system is returned to its original state, that is all switches in their original positions.

Suppose now that Master wishes to talk to Slave. He presses his call button S3; S4 should be switched over to the talk position and S5 switched over to talk position after Slave answers. The call can then go ahead. Once again the system is restored to its original state afterwards.

MODEL RAILWAY DEADMAN'S HANDLE
 \author{ By D. LINDLEY

}

ONE OF THE problems associated with model electric trains, especially when using one of the more old fashioned "resistive" controllers, is that the speed control may be left just on but set too low to drive the train. This has been known to burn out the electric motor in the locomotive.

When a small child is operating the layout, he or she cannot be expected to appreciate this danger and is more likely to experience the above result.

To help avoid this happening, this Deadman's Handle has been designed.

It is suitable for use with most resis tive controllers and consists of a push-to-make switch controlling a relay wired between the controller and the track.

Releasing the switch will open-circuit the track supply and stop the train at any selting of the power controller. Since it could be inconvenient to keep this switch depressed all the time that the train is running, a time delay has been built in, so that provided the button is pressed every few seconds, the train will keep on running.

REALISTIC STARTING

Once the train has been stopped in this way, to ensure more realistic starting (that is to bring the controller up from minimum again rather than switch the power straight back on at say maximum voltage) an interlock has been built in. This ensures that the controller must be off before the Deadman's Handle can be re-energised to complete the controller output circuit.

An inexpensive resistive type controller is available from almost any model shop. The diagram in Fig. 1 shows how its circuit is modified so that the Deadman's Handle may be connected to it. It would be left to the constructors' discretion as to whether the Deadman's Handle is hard-wired into the controller or whether sockets are provided so that the connections can be removed.

CIRCUIT

The full circuit of the Deadman's Handle is shown in Fig. 2. With the controller rheostat set at maximum resistance (minimum speed), the junction of R1 and R2, and hence the base of TR1 will be negative with respect to its emitter. The transistor will turn on thus lighting D1. At the same time virtually maximum negative voltage appears at the emitter of TR1 which reaches S1.

Depressing S1 connects this negative voltage via R6 to the base of TR2. This transistor conducts activating the relay, RLA. When the contacts close, the controller to track circuit is completed via contacts RLA1. A second set of contacts, RLA2, completes the circuit via D2 and this bypasses TR1 and illuminates D2. Thus both D1 and D2 are now lit.

As the resistance of the controller rheostat is decreased the train will set off, the junction of R1 and R2 goes positive thus turning off TR1 and extinguishing D1, and control supplies are maintained via contacts RLA2 and D2.

CAPACITOR

At the same time capacitor Cl will be charged. If S 1 is now released while the train is running then, the charge on this capacitor is sufficient to keep TR2 switched on for a few seconds, but as the capacitor discharge current falls TR2 will turn off and the relay will de-energise stopping the train and extinguishing D2.

To restart, it will be necessary to turn off the controller.

Should Sl be depressed again before the relay has had time to deenergise then Cl will revert to its maximum charge and the train will not be stopped.

TIME DELAY

The length of this time delay is governed by components C1, R4 and R5 and the values of these were found largely by trial and error.

A low value of R 5 will give a high charging current which makes the charging curve of C 1 rather steep. In practice this means that different values of R5 will not make a significant difference to the time delay period provided that the value of this resistor does not become too large.

However, if the value of R5 is too large, then the current flowing into C1 will be so low as to flatten the charging curve so that Cl will not only take a long time to charge up but also the maximum base current flowing through TR2 as Cl discharges would be insufficient to saturate TR2.

In addition, R5 prevents the transistors and l.e.d.s being damaged by the maximum charging current of C1.

The function of R4 is to control the maximum charge which the capacitor can retain. With R4 open circuit the time delay is in excess of two minutes. With the value shown for R4 in circuit it is about four seconds. If the reader prefers he can replace R 4

HOW IT WORKS

A transistor controlled switch is connected in series in the controller track output.

A voltage sensing line comes from the controller and goes to a sensing circuit. If the control knob is set at zero, the voltage sensor detects this, lights up its l.e.d. and produces a voltage at its output, which is connecled to a push-button.

To start the train, the push-button is depressed. This activates the transistor controlled switch lighting up its l.e.d. The control knob is advanced extinguishing the l.e.d. on the voltage sensor and the train moves off.

If the button is released whilst the train is moving then, after a certain time delay, the switch will open cutting of the power to the track. The train cannot be restarted without returning the control knob to zero.
with a 50 kilohm preset and set up the time delay to suit his own taste.

A secondary function of R4 is to ensure that TR2 is turned hard off once Cl is discharged by making the base of TR2 positive via R5 and R6.

CIRCUIT BOARD

Most of the components are mounted on a small piece of 0.15 inch matrix stripboard 7 strips by 16
holes (see Fig. 3). It can be seen that the two l.e.d.s are also mounted on this board but on the "wrong" side and the method of securing the lead connections is shown clearly in the diagram, see Fig. 4.

The circuit board together with the relay and switch are all secured in a die cast box, size $115 \times 90 \times 55 \mathrm{~mm}$ and the basic layout can be-seen in Fig. 3 and the accompanying photographs.

Fig. 1. Interior schematic of part of the train controller showing connection points. Some models may not have a reversing switch so follow back connections from output terminals for points C and D. Some control rheostats may have only two terminals. Point B is the connection that leads to the output terminals and point E the other terminal.

Fig. 2. Full circuit diagram of the Model Railway Deadman's Handle. Points A, B, C, D, E correspond with similar points marked on Fig. 1 .

MODEL RAILWAY - DEADMAN'S HANDLE

Fig. 4. Detailed view showing how the l.e.d.s D1 and D2 are mounted and also how the circuit board is secured to the box lid.

Close-up view of circuit board showing l.e.d. mounting. Note how the diode leads pass through the board and then returns via adjacent holes to be soldered.

End-on view of relay contacts showing mounting bracket.

Fig. 3. Circuit board layout and component interwiring.

Resistors
R1 $10 \mathrm{k} \Omega$
R2 $47 \mathrm{k} \Omega$
R3 $1 \mathrm{k} \Omega$
R4 $33 k \Omega$ (see text)
R5 100Ω
R6 $10 \mathrm{k} \Omega$
All $\frac{1}{4} W$ carbon $\pm 5 \%$

Capacitor

C1 $100 \mu \mathrm{~F} 16 \mathrm{~V}$ elect.

Semiconductors

TR1, 2 AC128 pno germanium or any other similar transistor (2 off)
D1 TIL224 yellow l.e.d
D2 TIL223 green l.e.d.
D3 1 N4148 small signal silicon
The completed circuit board.
Miscellaneous
S1 single-pole push-to-make, release-to-break
RLA relay with $12 \mathrm{~V}, 110 \mathrm{obm}$ coil, and two sets of normally open contacts rated at least 12 V 5 A .
Die.cast aluminium case $115 \times 90 \times 55 \mathrm{~mm}$; stripboard, 0.15 inch matrix, size 7 strips by 16 holes; five-amp connecting wire; mounting bracket and 6BA nuts and bolts for relay; 6BA nuts, bolts and spacers to mount circuit board (2 off each); rubber grommet; hook up wire; five-way screw terminal block or other connector if required (see text).

The lid should be drilled to take the switch S1 and two holes should also be drilled for the l.e.d.s. These should be drilled in such a position that when the circuit board is also mounted on the lid, the l.e.d.s will protrude through these holes.

RELAY

The relay is fixed to one side of the box with an L-shaped bracket and 6BA nuts and bolts. It would certainly be a good idea to wire up the relay before finally fixing it in place
as it may be impossible to do the job any other way because of lack of space.
Finally the connections to the train controller can be installed (see Fig. 1). If you elect to hard-wire into the controller then the wires should be colour coded and cut to a reasonable length. The hole that they will pass through on the case side should be fitted with a rubber grommet to protect the insulation.

Of course the wiring that is going to carry current to the tracks should be sufficiently rated. In practice this means using 5 A mains wire for connections C and D. The other three connections are simply for power supply and voltage sensing purposes.

CONNECTORS

On the other hand if you want to terminate the connections to the controller on the die cast box then a suitable connection method will have to be decided on.

Plastic screw terminal blocks are suitable or you could use 4 mm sockets. Whatever method is chosen, the case will have to be drilled to take the connectors and space or rather lack of space will have to be considered.

It should also be remembered that the comments regarding wire rating made earlier still apply and any subsequent interconnecting cables will have to be sufficiently highly rated. I

FLAT SCREEN TELEVISION

a piece of cake for dundee

Aunique TV tube developed by Sinclair Research will go into production in a new plant at the Timex factory in Dundee, Scotland. One million tubes are expected to be produced per year.

These flat screen monochrome tubes will be incorporated into a multistandard Sinclair Microvision pocket TV with f.m. radio, measuring about $6 \times 4 \times 1 i n$. Retailing at $£ 50$ this set will receive transmissions almost anywhere in the world, and will be powered by a small 9 V battery.
The revolutionary tube, measuring $4 \times 2 \times 34 \mathrm{in}$, comprises two sheets of glass, the phosphor screen being coated on the rear one and is viewed through the front face from the same side that the electrons strike. The electron gun is set to one side of the screen with its axis parallel to the screen and the beam is bent towards the screen by electrostatic deflection plates.

Further applications of this unique kind of c.r.t. are likely. Sinclair foresees a three-tube projection TV with a 50 in diagonal full-colour display. The optics and electronics could fit into a shoe-box-sized unit projecting onto a wallmounted screen.

New Jobs For Scotland

The Secretary of State for Scotland welcomed these plans which are expected to create at least 1,000 new jobs. The Scottish Office has offered financial assistance towards the investment costs involved by The Sinclair Company.

The sub-contractor, Timex, has the world's largest watch plant at Dundee. This company will be installing advanced automated plant and machinery for the special processes involved in producing the new tube.

Clive Sinclair, founder of Sinclair Research, with a mock-up new multistandard flat screen television.

THE CIRCUIT

The full circuit diagram of the Freezer Alarm appears in Fig. 1. This really breaks down into two sections; the mains circuitry and a simple battery operated tone generator circuit.
The mains cable from the freezer to its plug is interrupted at a screw terminal socket to enable a mains relay to be permanently wired across the mains supply (L and N). A normally closed contact of the relay controls the alarm generator circuit.

With the mains supply present, the relay contacts open and cut off the power to the alarm generator. If the supply fails for some reason, the relay contacts close and switch on the alarm.

It would be possible to devise a purely electronic circuit which did not need an electro-mechanical relay, but using a relay has the advantage of extreme simplicity, and of complete isolation between the mains and the battery powered part of the circuit. This last point is very important, since there would otherwise be a risk of sustaining an electric shock when changing the battery.

AUDIBLE ALARM

A simple two-transistor circuit is used to generate the alarm signal. TR1 and TR2 are both connected as straight forward common emitter amplifiers with LS1 acting as the collector load for TR2, and interstage coupling being provided by C . Positive feedback from TR2 collector to TR1 base is provided by C 3 , and this gives an operating frequency of very roughly 1 kHz . Resistor R4 is included in series with C3 to limit the feedback current to a safe level.

Sl is included in series with the relay contact so that once the unit has been set off and discovered, the alarm can be turned off. C1 is merely a supply decoupling capacitor.

THis device sounds an audible alarm signal in the event of loss of mains to a freezer. Instant warning would be given of either a supply failure or the power being accidentally switched off, or if the fuse in the plug "blows," possibly saving a great deal of expensive food from being spoiled.

There are other possible uses for a device of this type and it could, for example, be used to monitor the mains supply to any other piece of mains operated equipment, in particular an item which would give erroneous results in the event of a brief mains failure passing unnoticed. This would include certain types of automatic, timing, and computer equipment. No doubt there are other situations where a unit of this type would prove useful.

Fig. 1. The compllete circuit diagram of the Freezer Alarm.

The current consumption of the unit is about 40 mA from the battery supply when the alarm is activated. The PP3 size battery is capable of supplying this for very many hours, particularly the Duracell version.

Of course, under normal circumstances the mains supply is present and the alarm is switched off, giving no battery consumption whatever. Thus the battery should have its shelf life of many months, and the unit is very economical to run.

The amount of power consumed by a normal mains relay is also very small and insignificant.

CIRCUIT BOARD

The circuit, with the exceptions of S1, LS1, and the relay, is constructed on a 0.1 inch pitch stripboard measur. ing 21 holes by 10 strips. As can be seen from Fig. 2, there are no breaks in any of the copper strips, and construction of the board is quite straightforward.
The two mounting holes are 3.3 mm in diameter and will accept either M3 or 6BA mounting bolts.

A plastic Verobox having approximate dimensions of about 180×110 $x 55 \mathrm{~mm}$ is used as the case for the unit, or any plastic box of about this size should be suitable.

A speaker grille is made on the front panel of the case. This merely consists of a matrix of holes about 3 or 4 mm in diameter. The speaker will almost certainly have to be glued in place as few miniature types have provision for screw fixing. Use a good quality adhesive such as an epoxy type, and be careful not to smear any onto the diaphragm.
Probably the best way of mounting the relay is to glue it in position. Again, a good quality adhesive must be used.

ASSEMBLY DETAILS

The layout of the components on the stripboard is shown in Fig. 2. There are no breaks required on the underside strips. Assemble the components in any order and attach suitable lengths of flying leads to reach the remote components.
The board in the prototype was mounted on the lid of the case by means of 6 BA fixings, and 5 mm long
spacers were used to hold the board clear of the lid.
The exact positioning of the components and mains cable inlet holes is not critical and may be altered to suit the position of the freezer relative to its power socket. The arrangement to suit the author's requirements is seen in Fig. 2, and its wiring is mainly straightforward.

However, be very careful to conneot the relay correctly, especially if it is of a different type to that employed on the prototype unit. A mistake here could cause either a short circuit on the mains supply, or the mains supply to be connected to the battery operated part of the circuit!
A small metal bracket to hold the battery in place can be fabricated from aluminium, or alternatively a piece of double sided tape can be used to fix it in place as was used in the prototype.

With all the components secured in place interconnect them, and wire up to the board according to Fig. 2. Note that if a relay type other than that specified is employed, then the base connections are almost certain to be different to that shown here, and must therefore be ascertained.

TESTING

In order to test that the unit is working, after a final check of all the wiring has been made, it is merely necessary to ascertain that the alarm sounds when the unit is

Resistors
R1 $1 \mathrm{M} \Omega$
R2 $3.9 \mathrm{k} \Omega$
R3 $120 \mathrm{k} \Omega$
R4 4•7k Ω
All: watt
carbon $\pm 5 \%$

Staop

page 247

Capacitors

C1 100μ F 10 V elect.
C2 $6 \cdot 8 \mathrm{nF}$ ceramic plate
C3 $6 \cdot 8 \mathrm{nF}$ ceramic plate
Semiconductors
TR1, 2 BC109C npn silicon (2 off)
Miscellaneous
S1 single pole on/off toggle
RLA mains relay, plug-in octal type with at least one set of normally open contacts (RS $348-762$ used in prototype, has 2 sets of changeover contacts)
LS1 miniature moving coil loudspeaker, 40 to 80 ohms
B1 9V type PP3
TB1 3-way screw terminal block Stripboard: 0.1 inch matrix size 10 strips $\times 21$ holes; battery connector to suit B1; suitable lengths and rating of 3 -core mains cable; 6 BA fixings and 5 mm long spacers; case, Vero type 202-21391 A.

Guidance only
Approx cost

The completed prototype. This does not have the latching facility incorporated.

Fig. 2. The layout of the components on the circuit board and interwiring of the remainder of the components mounted in the case.

Fig. 2a. Shows the connections to the base of the specified relay.
not connected to the mains, and ceases when it is plugged in.

Always unplug the unit from the mains when renewing the battery. Alternatively, a battery compartment that would permit the battery to be changed without removing the rear panel of the case can be obtained and might be a worthwhile proposition.

In some situations, such as where a freezer is mounted in an outbuilding, it would probably be beneficial to have the loudspeaker remotely located from the rest of the unit, and fitted in its own case. It is quite acceptable to do this, and no problems should arise even if a connecting cable many metres long is used.

LATCHING OPERATION

In some applications it may be necessary for the unit to activate the alarm continuously even if there is only a brief pause in the mains supply. Otherwise the unit would only give a very short alarm signal in this occurrence, which might well be missed.

Where necessary, this latching action can be provided by modifying the circuit as shown in Fig. 3a. Here a second relay contact (RLA2), of the normally open type, is used to dis-

Fig. 3a. Modifications to the circuit diagram to incorporate a latching action; 3(b) right, additional wiring to be carried out to realise the latching action.
connect the mains supply in the event that the supply fails and the relay deenergises. Thus, when the mains supply is restored the relay is not activated again. S2 is needed to SET the unit when it is initially turned on. It simply connects the mains supply to the relay so that contacts RLA2 close, maintaining the supply to the relay once S 2 is released.

Switch S2 can also be used to ReSET the unit when it has been triggered and the mains supply has been restored. If pressing S2 fails to reset the unit this simply means that the mains supply is still absent.

The additional wiring to be made to the wiring in order to obtain the latching action is detailed in Fig. 3b.

way to make sure that when they fail, they fail "safe" and announce to the world loud and clear (particularly the operators) that they are malfunctioning. Mind you I cannot deny they are fascinating little beasts.

In Russia they are taking over a large amount of diagnostic medicine, and to think that they can actually play chess! They are not yet capable of beating the champions, as they can only think five moves ahead and a top player thinks at least ten.

Components to Computers

I now move on to the more worrying aspect, from the home constructors angle. In the last year, at least three of my colleagues have decided to drop components and go into computer hardware and software.

I know it is very tempting for any components retailer like myself, especially when I think of them selling items at three figures, while I am struggling to sell a few sixpenny resistors. You will also hear a deep sigh when see them going off on their Caribbean cruises while lam wondering whether I can afford a week with British

Waterways. However I know I shall not change direction, because my heart would not be in it, but I just hope that not too many of my friends will follow their examplel

Bio-electrics

I am always very intrigued by the medical effect of electricity on the human body. For example, now we know that the muscles, heart and brain are all electrically operated. What effect do huge discharges of current, such as a thunderstorm have on them? I know my wife usually feels queer whenever a storm is around. I offered to fit her with a lightning conductor, but although I was joking I know her case is by no means unique.

I think this is a huge field that could be seriously studied, in other words, what deleterious effect does it have on the human body and could it be used to make us feel better instead of worse? I wonder if I have any doctors among my readers. I only know of one, my youngest son, who would regard it as a filial duty to read my articles, but unfortunately he happens to be a Doctor of Philosophy which doesn't help at all.

After sales service

We sell a small kit of parts to make a radio receiver and have been selling it for over ten years. Quite recently I had two returned by cutomers. I have never refused to help a customer when they are really stuck and in each case I found incorrect wiring and a faulty transistor. My query is this. Am I obligated other than morally to help them and am I entitled to charge for the time spent? My own feelings are that the answer is "Yes" in both cases.
 \section*{ELECTRONIC
SMAGG
FOR STARTING
 \section*{ELECTRONIC
SMAGG
FOR STARTING

 ELECTRONIC
SNACG
FOR STARTING

 ELECTRONIC
SNACG
FOR STARTING INDUCTION
MOTORS INDUCTION
MOTORS inductio
MOTORS} inductio
MOTORS}

Single phase mains voltage a.c. motors of fractional horse power rating appear in many and varied designs but, apart from a few serving specialised applications, fall into two basic types: brush motors, some of which are called "Universal" when designed to run on either a.c. or d.c., and induction motors which run only on a.c.

BRUSH MOTORS

Brush motors have windings on both field (stator) and armature (rotor), contact to the moving member being made by copper/carbon brushes rubbing against a segmented copper commutator. Such motors have a very high power to size ratio and an excellent starting torque, finding many applications in the household for driving vacuum cleaners, food mixers, lawn mowers, portable power tools and so on.

The rotor winding may be either in series with those on the stator (series wound) which is usual with mains voltage machines or in parallel where they are encountered in low voltage applications for driving models.

This type of motor is self-starting and may be reversed by changing the polarity of the rotor with respect to that of the stator; their speed may be controlled using a triac.

INDUCTION MOTORS

Induction motors have a field winding and a solid (actually laminated) rotor without any.wiring. Rotation is
induced by the fluctuating field in the rotor caused by the repeated changes in direction of the a.c. in the stator.
Such motors are heavy and robust in construction, have a poor starting torque but in the absence of brush gear need little maintenance apart from periodic lubrication.
They are frequently used to drive stationary power tools such as lathes, millers and drilling machines and for refrigeration pumps together with other light engineering applications where a three phase supply may not be available.
In general such motors can be designed to be reversible but with one exception are not self-starting, the odd man out being the shaded-pole type which has very poor starting torque and low electrical efficiency and is suitable only for light duties like driving tape decks, record players, and small ventilating fans.

The shade rings, which distort a portion of the field in the stator, induce rotation and are fixed at the time of assembly. These motors are not reversible.

STARTER WINDING

The other types of induction motor are all very similar to each other in requiring some artificial method of starting but once started will run in either direction, speed of rotation being a function of the mains frequency.

To start such a motor electrically as opposed to mechanical priming, it is necessary to convert it briefly into

K.LANGFORD

a two phase machine. This is achieved by including on the stator a second set of windings (starter or subsidiary windings) which are fed by a current out-of-phase with that in the main (running) windings. Reversal may be easily arranged by changing the polarity of the starter windings with respect to those on the stator using a heavy duty d.p.d.t. switch. Such
motors are generally referred to as split-phase types.

The out-of-phase current is normally provided in one of two ways; by means of a capacitor in series with the starter windings which causes a leading current to flow in them or, by altering their inductance by using wire of different gauge and arranging the number of turns so that a phase shift is created.

Since many of these motors are used in power applications they may need a high starting torque for example when driving compressors. This requirement is satisfied by designing the starter windings to draw a heavy current, perhaps up to four times the running current for a brief period until the motor reaches top speed.

CENTRIFUGAL SWITCH

To cut out the subsidiary windings a centrifugal switch is fitted inside the motor. This consists of movable weights attached to a fixing on the shaft and these fly outwards as the speed builds up.

A suitable linkage mechanism allows the action of the weights to open the normally closed contacts of a switch so isolating the starter windings. When the motor is switched off, spring pressure restores the weights and the switch contacts to their original positions ready for the next start.

Readers will appreciate that the switch contacts have to break a heavy inductive or capacitive current (perhaps 10 amp) depending on the type of motor. Destructive arcing and consequent contact burn is quite common.

Many such switches fail long before the motor reaches the end of its useful life, usually because the linkage mechanism wears or the contacts burn out. The author experienced such a failure on a one-third h.p. motor driving a 3_{2} inch lathe.

Returning such a motor to the makers is precluded by transport costs while spare parts are frequently
unobtainable due to obsolescence. An alternative was sought and after some experimenting the circuit below was evolved to function in place of the switch, the latter being removed from the motor.

CIRCUIT DESCRIPTION

The unit described here works equally well for motors with a capacitor in series with the starter windings (capacitor start) or for those relying on different inductances to give the phase shift and is applicable to either reversing or non-reversing motors.

The circuit diagram is shown in Fig. 1. To avoid mechanically breaking the heavy currents involved a triac is used, the gate current (less than 20 mA) being controlled by a reed switch.

The motor should reach full running speed after about 1 to 2 seconds after which time the starter winding is no longer required. This on-time is set by the time constant of the timing circuit, R1 and C2.

Any transistor with a gain of at least 100 is suitable. The higher gain of TR1 the smaller the timing capacitor needed.

Resistor R1 cannot be greatly altered since sufficient base current must flow to provide the minimum collector current to operate the reed coil.

A reed switch is preferred to a relay as the former is small, totally enclosed and capable of several million operations.

Any transformer capable of delivering about 12 V after rectification and smoothing is suitable. Battery operation is uneconomic since the drain is about 20 mA while the motor is run-

ning and separate switching for the a.c. and d.c. would be needed.

A 10A triac will cover most requirements but if in doubt measure the a.c. load on the starter windings with the motor stalled.

D.C. VOLTAGE

The required d.c. voltage is derived from a step-down mains transformer with centre-tapped secondary to provide full-wave rectification with D1 and D2. Cl smooths the resulting pulsed d.c. to provide a smooth d.c. level of about 16 volts. A highly smoothed supply is not required.
When the motor master on-off is turned on, power is applied to the starter winding through CSR1 which is triggered into conduction via the normally closed contact in S1.

Fig. 1. Circuit diagram of the Electronic Switch.

The d.c. applied to the timer circuit, causes C2 to charge up through R1. Initially C2 is discharged and so the voltage at TR1 base is at 0 V , consequently TRl is turned off, and no current flows through the relay coil. After about 1 to 2 seconds the voltage at TR1 base reaches 0.6 V and base current flows.

As soon as base current flows TR1 is fully turned on and collector current passes through the operating coil of the reed switch and the latter changes over.

REED CONTACTS

As soon as the reed contacts open, the triac is deprived of gate current and the starter windings are cut out of circuit. Thus the short time delay of the R1/C2 combination has an identical function to that of a centrifugal switch.

The normally open contact closes and switches on a mains voltage neon indicator lamp which acts as a fail safe indicator. Should the motor start and the neon not light then it has either burnt out (rare) or the reed has stuck leaving the windings in circuit. The motor should immediately be switched off and the fault investigated otherwise the subsidiary windings will overheat and ultimately fail.

For most motors a time delay of about 1 to $1^{1}{ }_{2}$ seconds is ample for speed to build up. For a machine started on full load, two seconds may be desirable. Longer time can be arranged by increasing the value of C 2 keeping R1 as given.

If Rl is increased, a point will be reached at which, for any particular transistor, insufficient collector current will be passed to operate the reed. Thus the higher the gain of TR1, the greater the permissable value of R1 and the smaller the timing capacitor C 2 which may be used.

COMPONENTS

Resistors
R1 $68 \mathrm{k} \Omega \frac{1}{2} \mathrm{~W}$
R2 $24 \mathrm{k} \Omega 3 \mathrm{~W}$
Both carbon $\pm 5 \%$
Capacitors
C1 $1000 \mu \mathrm{~F} 25 \mathrm{~V}$ elect
C1 $1000 \mu \mathrm{~F} 25 \mathrm{~V}$ elect.
C2 $1000 \mu \mathrm{~F} 25 \mathrm{~V}$ elect.
C3 $0.1 \mu \mathrm{~F}$ polyester
Semiconductors
TR1 BC107 npn silicon
CSR1 NAS1004W5 400V 10 A triac
D1,2 1N4148 small signal silicon diodes (2 off)

Miscellaneous
LP1 Panel mounting mains neon indicator with integral resistor
RLA 800Ω reed operating coil
S1 single-pole changeover dry reed switch
T1 miniature mains trans former with $12 \cdot 0 \cdot 12 \mathrm{~V}$ 250 m A secondary
Metal case, $150 \times 105 \times 55 \mathrm{~mm}$; piece of s.r.b.p. board, $105 x$ 150 mm ; five-way 10 A screw terminal block; four-way 10 A cable or equivalent; 10 A single core cable: stranded interconnecting wire: 6BA nuts and bolts (6 off); fixing brackets.

Fig. 2. Interwiring details. Topside of the board is seen at the top of the page with underside below.

Interior view shopwing board displaced. The transformer and underside of the component board can be clearly seen.

HYBRID

From Fig. 2 it can be seen that the circuit is something of a hybrid, a.c. mains and 12 V d.c. being intermingled, and although many layouts are possible, the one chosen aims to keep apart the 240 V and 12 V circuits as far apart as practicable. Readily available components are employed throughout.

The circuitry is housed in an AB13 aluminium box $152 \times 102 \times 51 \mathrm{~mm}$ with the centre portion kept free of components and wiring so that if desired the neon indicator may be mounted in the centre of the lid, space being available for the body of the lamp.

Those wishing to mount the neon separately will need an extra grommet hole to take out the lead wires. The box lid will not then be drilled.

First drill the two grommet holes for the three mains leads live, neutral and earth and the single lead from the starter windings of the motor. Next mount the transformer as near to one bottom corner of the box as is practicable leaving 2 or 3 mm clearance. Use 6BA bolts for attachment.

The diagram shows the transformer mounted horizontally from one end of the box leaving space above for the other components. Again 6BA clearance holes are used in the brackets.

Now drill two more holes in the bottom of the box for fixing the fiveway 10 A terminal block. If placed in a position near to that illustrated then space is left for the two capacitors beneath the circuit board. If countersunk headed 6BA screws are at hand this will give a neater job leaving no protrusions on the base.

A final hole is needed for the triac which is mounted 50 to 60 mm from the end of the box remote from the transformer and just under the top edge. A 4BA or 6BA bolt and nut will be required.

CIRCUIT BOARD

Now cut a piece of plain s.r.b.p. board approx $150 \times 100 \mathrm{~mm}$ and drill two holes to coincide with those in the angle bracket. Since the brackets are inaccessible with the board in position attach a 6BA bolt to each using Araldite under the head so that the thread is upwards allowing the circuit board to slip on and be finally fixed with two nuts.

Interior view of the unit showing mounting position of CSR1, circuit board, and reed operating coil.

Now drill the board for all the components in the approximate positions indicated. A No 55 drill is a useful size but is not critical. If the neon is to be mounted in the box lid make a generous clearance hole in the centre of the board to accommodate the body section.
Finally make two holes to take the mains leads from the two anode leads on the triac, close to each corner of the board. The triac specified needs no separate heat sink or mounting set and is insulated internally so that the box itself will conduct away any heat generated during the brief period it is switched on.
Mounting points for components or flying leads may be provided where needed by drilling two holes about 5 mm apart and threading through a piece of copper wire and soldering the free ends to make a closed loop.

This may be easier for the novice than attempting the drill to the exact size for mounting pins. Perforated s.r.b.p. could be used in place of the panel used by the author if desired.
The reed coil needs special attention and is best attached by drilling suitable clearance holes, passing the connecting lugs through and twisting a loop of tinned copper wire round each.

If a generous blob of solder is now applied the coil is held rigidly in position. Attach and wire up all the components except the triac using their own leads where possible and stiff tinned copper or insulated wire for longer connections.

FINISHING OFF

All components should be rigidly fixed and there should be no loose wires. To make wiring easier do not solder the flying leads from the transformer secondary until everything else is in position.

Use sleeving for any crossing connections or for those in close proximity. Next tackle the triac. For the mtl and mt2 connections which may carry up to 10 A use stranded wire such as 10A household cable.
Tin the leads well and fix a length of this cable to the anode tags of the triac then run on a length of sleeving to give complete insulation from each other and from the side of the box.

Next solder on the gate connection (20 mA load only) using thin flexible insulated wire, again adding sleeving for insulation at the solder joint. Connect the loose ends of the triac leads to the terminal block. Finally solder the three transformer secondary leads into their correct positions, mount the triac on the box and the unit is ready for test.

TESTING

Firstly check all connections very carefully, then connect a low wattage mains lamp to terminals 4 and 5 on the terminal block and a three core mains cable to terminals 1,2 and 3 according to Fig. 2. Be sure that the earth link between terminal 3 and the transformer is in place.

Now switch on the mains. If the wiring is correct the lamp will light
for between one and three seconds, extinguish and then the neon will light.

Switch off, wait for about ten seconds and try again. This time the time will be shorter due to the fact that C2 will be still holding some of its charge.

Only if everything is satisfactory can the device be wired to the motor. In the event of the reed relay not working either the position of the reed within the coil is incorrect, or the gain of the transistor is too low to allow sufficient current to flow into the coil.

INSTALLATION

There are two types of motor with which this device can be used, nonreversing and reversing. In either case before any work commences, the motor must be isolated from the mains.

For a non-reversing motor the first step is to remove the terminal cover on the motor itself and disconnect the mains supply noting carefully to which terminal each of the three mains leads is attached.

Loosen the terminal block by removing the retaining screws and identify the wires attached to the other side. There should be two to the starter windings via a capacitor, if fitted, and two to the main running windings.

One of the two starter winding leads will go via a centrifugal switch to the starter winding itself, the other will usually be connected in oommon with one of the running windings.

Disconnect all the wires that were connected to the back of the terminal block apart from any earth terminals and connect the common lead to the terminal that carried the mains "live" lead.

Locate the other running lead, using a bulb and battery to establish continuity if necessary, to the terminal that carried the "neutral" mains lead.

CENTRIFUGAL SWITCH

When this is completed, remove the motor end casing to expose the old centrifugal starter switch. Remove as much as possible of this switch, particularly any loose moving parts attached to the shaft but ignoring rigidly fixed rotating parts. Interfering with these could upset the balance of the shaft.

At this stage the second wire from the starter winding will have been located. If the motor uses a capacitor to provide phase shift then this will be attached to this lead, and any connections should be made via this capacitor.

A piece of 10 A stranded wire should be attached to the second
starter winding lead. The other end of this is attached to terminal 5 on the terminal block in the starter unit.

TERMINAL BLOCK

The final step is to refix the terminal block on the motor in position and reconnect the mains cables in the same positions. Mains leads should also be taken to the terminal block in the new starter unit and connected to the appropriate terminals; terminal 1 for live, 2 for neutral, and 3 for earth. These can be taken from the mains connections on the terminal block on the motor.

It now only remains to find a suitable mounting position for the starter unit not too far from the motor it is operating. The interwiring consists of mains rated 10A cable. Fourcore cable would be ideal but as it is somewhat difficult to get hold of, ordinary three core plus an additional wire will suffice.
Whichever wiring is used it should be neat and not excessively long or untidy.

REVERSING MOTOR

In the case of reversing motors the principle is the same but the presence of a reversing switch complicates matters. You will find that there are four leads plus earth running into the motor terminal block from the reversing switch. Two are direct mains, and the others have their polarity changed by the reversing switch.

As described above, identify all four leads from the windings and their locations underneath the block, remove the centrifugal switch and lengthen the lead from the starter winding.

Connect one lead from the running winding to the "live" position on the motor terminal block and the second to the "neutral" position. Note that there will be no common lead.

Since "live" and "neutral" have no real meaning in a.c. work, call one of the reversing wires A and the other B for identification.

Connect the unlengthened starter winding lead to position A under the block. No connection is made to B.

The lengthened lead is then either taken directly to position 5 on the terminal block in the starter unit or via the capacitor on the motor, if fitted, to the same place.

Reconnect the two reversing leads on the outside of the motor terminal block to positions A and B and reconnect the power leads and mains lead to the new starter unit as described above. The switch is now ready for use.

If, during testing, the motor is found to run backwards then reverse the leads to the reversing switch in
the motor. This will ensure that the markings on the reversing switch are correct:

LIMITATIONS

Although this electronic device is an excellent substitute for a centrifugal switch one snag should be appreciated. Since the timer capacitor only loses its charge slowly about ten seconds must be allowed after switching off the motor before another start is possible.

This is no hardship since this type of motor is never recommended for frequent start/stop duty and machines where this is required normally incorporate a clutch mechanism so that the on/off sequence is not on the motor.

For readers who may have purchased a secondhand motor and had difficulty in identifying the two sets of windings: if they are accidentally interposed the motor will usually start but run roughly with vibration, lack power and heat up rapidly.

W ARNING

Some types of motor have what is called a resiliant mount, the body being supported in a metal cradle on two rubber discs and retained in place with split clamps. The rubber insulates the motor from the mounting cradle and from any machine to which the motor is attached so that although the motor is correctly earthed, the machine may not be.

Normally the makers run a flexible earth lead from motor to cradle and anyone buying a secondhand machine should ascertain that the link is in place.

The starter unit is best mounted on as rigid a foundation as possible and not on the motor itself as vibration might limit the life of both the neon and reed switch.

Finally capacitors associated with these motors charge to mains peak during operation that is to something in the region of 350 V . This can administer a very nasty electric shock, so before handling, discharge via an insulated conductor across the leads.

Amateur and CB Radio

Not wanting to enter into the pros and cons regarding amateur and citizens band radio and its frequency allocation and use, we can appreciate the main arguments centred around foreign imported goods "stealing" a march on UK manufacturers.
To show that we are keeping a careful eye on the situation and not neglecting this important new area, we would like to mention two items that are suitable for both amateur and CB radio enthusiasts. And they are all British designs and manufacture.
To aid better reception ZL Communications have marketed two new versions of the Slim Jim aerial, claimed to be used by over 80 per cent of British 2 metre amateurs, for both 27 MHz and 2 metre use.
Aimed at citizen band reception, the Big Jim-Omni-directional Base Station Attenna-BJ27, to give it its full title, aerial is al so available for mobile mounting. Measuring 9 ft long, the aerial has a claimed gain of 3 dB (EIA) and an impedance of 50 ohms.
It is claimed to have low angle radiation for local or DX working. Two-way CB contacts between the UK and US have produced S9 plus signals and 10-4 copy both ways.
For the radio amateur, the 2 metre Slim Jim Super aerial is only 42 inches long and is claimed to be 50 per cent more efficient than other similar aerials. The smaller dimensions and high efficiency have been made possible by a unique high " Q " helical stub matching system.

On the base station model the helical stub and main element is completely enclosed in a $\frac{3}{\text { sin }}$ diameter housing giving full protection against all weather conditions. The mobile version is constructed with a stainless steel flexible main element and the stub section is completely sealed against the weather.
Brief technical spec. for the 2 metre aerial is as follows. Type: Omni-directional vertical, $144-146 \mathrm{MHz}$. Gain: 3dBi or approximately 6 dB over a typical quarterwave ground-plane. Angle of Maximum Radiation with Respect to Ground: approximately 5 degrees. Impedance: 50 ohms. VSWR: Average 1.2 to 1 or less across the band $144-146 \mathrm{MHz}$.

For more information contact ZL Communications, Dept EE, Cantley, Norwich, Norfolk NR13 3RT.

Speech Processor

A new bandwidth filter or speech processor for communications systems has recently been introduced by T \& T Elec. tronics.
For many years different methods of putting information onto a transmitted carrier wave have been tried in the search for greater efficiency and single sideband transmissions have long been regarded as one of the best, especially among radio "hams", when compared with the older a.m. or f.m. systems. Nevertheless, it is possible to improve these systems by 'processing" the speech waveform before applying it to the transmitter.

Exhaustive testing and field trials have resulted in the Persuader speech processor from T \& T Electronics. It is simple to install and connects between the existing microphone and the transmitter.

A switch is provided so that it may be switched in or out of circuit as required. When switched into circuit the Persuader will remove unwanted speech frequencies below 300 Hz and above 3 kHz and is claimed to increase the average level of speech relative to the peaks.

The Persuader from T. \& T. Electronics
An average gain of 15 dB can be achieved which is equal to an increase in "Talk Power" of 32 times. The input will accept signals over the range of 0.5 millivolts to 100 millivolts and is suitable for most standard microphones. Once the "Set Level' control has been adjusted to show the correct level on two light emitting diodes (l.e.d.s) the output will automatically be correct for the rig and microphone in use.

Full details of the Peısuader speech processor can be obtained from T \& T Electronics, Dept EE, Green Hayes, Surlingham Lane, Rockland St Mary, Norwich, NR14 7HH.

Newsletter

It was only recently that Maplin announced the discontinuance of their News/etter/Price List. We have just been informed that they have had a change of heart and that they will again be issuing regular editions throughout the year.

For more details write to Maplin Electronic Supplies at Dept. E.E, 284 London Road, Westctiff-on-Sea, Essex. A stamped addressed envelope would be appreciated.

CONSTRUCTIONAL PROJECTS

Intercom
As the circuit boards and components for the Master unit in the Intercom are a very tight fit it would be a good idea to use a larger case, allowing for different board fixings. The ones used in our prototype units were the MINO3O (black) with metal front panels from the West Hyde Developments, (Dept EE, Unit 9, Park Street Industrial Estate, Aylesbury, Bucks HP20 1ET), Minos range.

If a metal plate is used for the front panel of the Intercom, the first action to take when building would be to incorporate an "Earthing" lead to the metal front panel for added safety.

This can best be achieved by using a three-way terminal block (in place to the two-way type), solder tag and earthing lead. The three-core mains lead is connect to one side of the block and the earthing lead, with the solder tag fixed at the opposite end, run from the other side to the metal panel. The solder tag can be fastened under the switch.

Looking at the details for the mains transformer this seems to be a fairly standard type and should not cause purchasing problems. However, the one used in our unit is the Bi-Pak 2021 type.
Model Railway Deadman's Handle
The only item that may present problems in the Model Railway Deadman's Handle is likely to be the relay. Depending on the type finally selected it may necessitate a different layout within the case.

The one shown in the prototype is one of the old ex-GPO types which only seems to be available from surplus shops and not as a new item. However, the type called-up in our components list is an RS "Open" two-pole changeover type, order as No. 348835 . Also, Maplin, Electrovalue, Watford and Home Radio are able to supply power relays which are suitable for this project.

Certain relays have their metal frame connected to the moving contacts and this type should NOT be used if mounted in a metal case.

Freezer Alarm

Although an octal-base mains relay was used in the author's Freezer Alarm, practically any mains relay may be used. This will, of course, mean different pinning arrangements.

As we are dealing with mains voltages be extra careful when wiring to the relay pins and double check all wiring before switching on.

Digital Rule

The ultrasonic transducers for the Digital Rule are available from Arrow Electronics, Dept EE, Leader House, Coptfold Road, Brentwood, Essex. Suitable transducers can also be purchased from Electrovalue, Maplin and Watford.

The semiconductor and display devices are fairly common items and should be stocked by people like Marshalls, Magenta, Electrovalue, and Watford Electronics.

Electronic Switch for Motors

The triac, reed relay coil and contacts for the Electronic Switch for Starting Induction Motors are available from Electrovalue. An equivalent triac, with internal diac connected to gate, is the Q4010L T listed by Electrovalue.

When all the woods were green. Time: Summer 1924. Location: Near Esher, Surrey. The attentive listeners in this verdant setting include (far left) W. James, of Wireless World, and J. Dainty, Editor of Wireless Trader. Far right is Alan Douglas, designer of the portable radio (the centre piece of this picture) and author of these reminiscences.-Wireless World photo.

E
Electronic hobbies differ from other hobbies; the elusive nature of electricity means that the experimenter is always working by proxy, as it were. The steam enthusiast can see the motive power; woodworkers, photographers and motorists all have easy access to the fundamentals of their hobbies.
Not so the electronics man. He can never see, never even visualise, his prime mover-the electron. So he is much more influenced by the design of the moment, he can't argue, and must take the "black box" as it is.
Does this affect his outlook, patience and skill? I think it can. The hobbyist who has only to "put together" can never know the satisfaction of constructing from the raw materials, starting from the bare bones and so involving himself from the fundamentals up.
Yet at one time, the enthusiast had to do just this with radio-the beginning of electronics. No results from a sophisticated circuit of today can ever equal the excitement of hearing a voice in space. a voice where previously there had been nothing except occasional Morse.

Really Home Made

Did you know that at one time experimenters had to build their own variable capacitors, wind their own a.f. transformerś, and certainly could not get any signals at all without an external aerial perhaps 80 ft long and 40 ft high?

Can one place oneself in the position where there were no amplifiers of any kind, no mains units, and if any signal was lost, no means of recovering it?
This was the position when I built my first receiver in 1913. How well I recall getting the cardboard tube, 10 inches long and 4 inches wide, carefully shellacing it with many coats, and laboriously winding some 200 turns of 18 gauge cotton covered wire to form the tuning inductance. How I sat with this and the crystal detector for hours on end, waiting for messages that never came-only the time signals from the Eiffel Tower!

Crystals

The rectifying properties of "crystals" were discovered in 1874, but for radio, the first use appears to have been by General Dunwoody in the USA in 1906.

Now let me quote from a paragraph in a book which I wrote in 1923. Certain crystalline materials function best as rectifiers when used in conjunction with a metallic contact; for the most sensitive rectifiers the metal contact should take the form of a wire point, hermetically sealed and preferably of gold or platinum; e.g., a gold whisker bearing upon silicon or lead sulphide. Does this ring a bell today, 58 years later?
Then again, one of the contacts should have a large area where it meets the crystal; this is to a great extent to prevent the other contact
from forming an opposing and undesirable second rectifier. Not so undesirable today! For when the carborundum detector was first used with an applied d.c. potential, as by Col. Fessenden in 1910, it was within an inch of becoming a transistor as we know it.
It is interesting to note how the wind blows in circuit element design. First, we had the condition above when no signal could be lost. This meant thick stranded aerial wire with excellent end insulation; low-loss coils properly wound with Litz (fine multistrand insulated wire) and pure ebonite panels. Of course, high sensitivity headphones were essential.
If a receiving set incorporating these features, such as the 1918 Mk III Trench Receiver, is used today, the range and selectivity are incredible.

Valves and Note Magnifiers

It was during the First World War that valve amplifiers were introduced to the Army. A common type had three transformer-coupled stages consuming 3 amp at 6 V and having a tapped input transformer for gain control.

At this time, frequency response was unheard of and these units were called note magnifiers because they were meant for Morse reception. The 120 ohm headphones were fed from a step-down transformer but, though I cannot now recall the gain, it must have been quite low.

It will be realised that in trench warfare aerials would be very inefficient, usually being attached to bayonets stuck in the ground. Therefore the valve amplifiers were very welcome. Equally, however, it was very easy to interfere with or jam this kind of signal, and one of the most fearsome devices to do this was called the power buzzer.
Just a very large and powerful buzzer, weighing I think about 201b, and producing hundreds of volts at the contact breaker; this back e.m.f. was fed to a simple V-shaped aerial about 6 inches above the ground, and when turned on, blotted out every kind of signal for hundreds of feet. I was always sorry for the unfortunate 6 volt accumulators driving the buzzer-it was certainly a short life and a gay one per charge!

Valve amplifiers did not have it all their own way; the heavy heater current made them weighty and the brilliant light emitted by the straight tungsten wire filaments could be seen a long way off; this made them unsuitable for light aircraft.

Carbon Amplifier

The indefatigable S. G. Brown invented a carbon amplifier which consisted of two carbon granule capsules face to face, driven at the common centre point by a vibrating reed which formed part of his famous A type headphones-slightly enlarged for this purpose.
The two carbon capsules were connected to a centre-tapped transformer and powered by a small dry battery; a magnified and distorted replica of the input signal was delivered to a pair of headphones and certainly it

was possible to receive Morse on this device; incredible though it may seem, these amplifiers were used on some scout aircraft.
As with all Brown products, they were exquisitely made and remarkably stable. The push-pull drive was to increase the signal and reduce the noise. Years later, a double button carbon microphone with a similar push-pull drive was used by the BBC for a very long time; it was made by the Western Electric Co.

R.F. Amplification

It is interesting to note that a.f. amplification was thought to be much more important than r.f. at this time; but soon, attention was being turned
to the input signal. Losses in the aerial or tuning circuits were not now so important, so the mass of the coils could be greatly reduced.

Just at the end of the 1914-18 war, a 5 valve receiver of great sensitivity was introduced by the RAF, the Mk 10. It had two r.f., one detector, and 2 a.f. stages; it was highly efficient and in this I saw the Marconi V24 valve for the first time. See Fig. 1.

The simple but ingenious design of the V24 reduced the inter-electrode and base capacitances since the electrode paths were so far removed from each other. Compact, strong and reliable, this valve was used for many years in Marconi marine equipment.

Not all valves behaved so well, one Marconi valve had a small "pip" at the top which had to be heated with a match for some time before the vacuum was good enough to apply the h.t.!

Telephony and Broadcasting

All the foregoing was related to Morse transmissions, speech had not yet really arrived. A delightful little book which was published in 1913 says (of Wireless telephony) The method is not making much headway at present, as considerable power is necessary, much more than is wanted for telegraphy, and the results seem somewhat capricious.

But of course it had to come. Experimental speech and music trans missions had been made as long ago as 1910, but transmissions for public entertainment did not arrive until 1921-PCGG of the Hague. Soon Writtle appeared (2MT), then 2LO and included here is a photo of one of the early Savoy Hill studios.

Fig. 2. The Sykes-Round moving coil microphone. The diaphragnt was in fact the sile covered wire used to wind the edgevise coil, and it was made rigid by the wax with which it was impregnated while winding it between polisbed brass discs.

BBC studio of 1923 sbowing Sykes-Round magnetic ("moving coil") micropbone on rubber cradle-BBC photo.

Marconi A amplifer, back vien with the screening covers removed. Designed by Capt. H. J. Round this amplifier was introduced in 1923 to work with the Sykes-Round microphone. It had five resistance-capacity coupled stages with transformers at the input and output. Marconi DEV valves were used througbout. The valve-bolders were süspended by elastic bands to minimise microphony. Note the enormous wire-wound coupling resistors for the valves! Two were used together in such a way that the windings opposed each other; this made them noninductive. Note also the large Siemens $1 \cdot 5 V$ dry cells in the grid bias boxes and the metal-cased mica capacitors coupling between the stages. The front of the box, the base panel and the whole of the inside were thick sheet copper for effective screening; and after all this, you could only just bear on good microphones!BBC photo.

Incidentally, people often ask why the heavy drapes. In those days everything was resonant; microphones, amplifiers, speakers all had peaks and troughs. It was to prevent these peaks from arising, as far as possible, that the drapes were used to cut down any possibility of echo or reverberant sound. As the resonances in the equipment were gradually eliminated, so were the damping curtains.

Moving Coil Microphone

Much has been written about the early days of British broadcasting, but I don't think details of the first co-ordinated studio system are so readily available. After many trials with various microphones, the search for quality with low background noise and no resonances stimulated Dr. Sykes and H. J. Round to devise the moving coil microphone. See Fig. 2.

The idea of designing a moving coil to act also as a diaphragm resulted in a precarious piece of apparatus. The coil was made from silk covered aluminium wire of 44 s.w.g. wound edgewise, that is one turn on top of the next, until the final diameter was reached. This was only possible by winding in hot wax between two rigid discs.

When cold, the 40 ohm coil could easily be removed and, in spite of the wax, was extremely light. It was held in the polepiece gap by a touch of rubber solution on three tufts of cotton wool. Precarious indeed, especially when the studio got warm! The whole thing was slung in very heavy rubber to reduce mechanical shocks.

Naturally the signal output was very small, so the " A " amplifier (see photo) was designed; a very low noise triode stage, fed four further stages, raising the signal to head-

phone level. Further amplifiers, the " B " and " C ", increased the signal for line transmission or monitoring loudspeakers. Of course, all were battery driven.

Receivers

Receivers at this time were very simple; as the power of the transmitters was limited to 1.5 kW , an outside aerial was a necessity if more than a few miles from the station.

It was not long before the idea of a portable receiver was attacked by a number of investigators, and the author designed the first portable to include a self-contained aerial. (This receiver is shown in the heading photograph.)

Alas, there were no compact loudspeakers at that time, but none the less, interest was very great when this portable receiver was shown at the Wembley Exhibition of 1924 and the first set was bought by Dame Clara Butt, the second by Ivor Novello. I was lucky enough to obtain French valves with the then incredibly low filament consumption of 60 mA , which made the design possible, and enabled reception at Dame Clara's home at Goring-on-Thames.

End of an Era

The Reisz carbon microphone (Fig. 3) which succeeded the first moving coil microphone marked the end of an era of experimenting and improvising; so much was now known about acoustics that subsequent progress was rapid and all the foregoing was soon forgotten; but we must never forget that were it not for the pioneers we would not be able to sit back and enjoy our TV, tapes or discs covering a range of 20 to $20,000 \mathrm{~Hz}$ which in those days would have been thought madness to even contemplate!

By BARRY FOX

Perpetual Motion

If you are passing through Oxford do try and call in at the Clarendon Laboratories (just opposite Keble Road) and ask to see their "dry pile" battery. It's on display in a large glass case alongside some other interesting scientific relics, such as the first British laser of 1962 and the equipment used to liquify helium for the first time in 1933.

There are also the first klystron valves made in 1941 and 1942. These helped us win the war with radar.

The dry pile appears at first sight to be a working perpetual motion machine! But it isn't and the Clarendon Laboratories are by their own admission rather touchy about anyone describing it as such. Nevertheless, people still come from all round the world to look at what they have often been told is the only real perpetual motion machine in the world.

The dry pile is in fact a dry battery. To be strictly accurate it's not even a dry battery, it's a battery which contains just enough water to serve as electrolyte but not sufficient to cause internal short circuits.

Two yellow pillars stand upright"under a glass bell jar. Each yellow pillar is a stack of 2,000 pairs of zinc foil and paper discs impregnated with manganese dioxide. The yellow colour comes from a coating of molten sulphur which keeps the internal moisture content stable

Each pillar generates around 2,000 volts at a current of just one nano-ampere and has a small bell cup fixed to the bottom. A tiny metal ball striker hangs on a thread between the two bells.

The two batteries are oppositely poled, so one bell is at 2 kilovolts positive and the other at 2 kilovolts negative. As the striker touches the positive bell it charges positive and is attracted to the negative bell. It there takes up a negative charge and is attracted to the positive bell and so on. So day in, day out, like a perpetual motion machine, the bell jingles away.

It's been going on like this since at least 1840 . when the dry pile bell was bought from a Lond on shop by an Oxford scientist. No one knows how long it will go on ringing but it could be for several hundred years more. It seems more likely that the little metal striker will be physically worn away before the battery finally runs down.

Dry Image

The dry pile idea proved very useful during the war when the Admiralty needed a very high voltage, very low current source for the image converter tube of an infrared telescope. An Oxford physicist, working in the Admiralty, suddenly remembered that he had once seen the dry pile in the Clarendon. He searched and found a recipe for making dry pile batteries which had been published in the old magazine, The English Mechanic, way back in 1915.

During the war years a large number of dry pile replica batteries were built and they successfully supplied the 3 kV necessary for the lead sulphide cathode of the telescope image tube.

Most Secret

While on the subject of electronic technology in the last war I can't recomment too highly Professor R. V. Jones's excellent book on the subject Most Secret War, now available in Coronet paperback for £1-95.

Although nearly 700 pages long it's a gripping account of how the two sides jockeyed for electronic superiority. On the light side there was the myth of the radioactive death ray which never existed: on the serious side there was the dilemma of whether planes should transmit radar to reap the benefits of electronic navigation but at the same time risk detection by the enemy's electronic homing devices,

It seems that scientific intelligence has much in common with science journalism. Professor Jones soon learned what most journalists discover early in their careers. The most effective way of getting a dull document read from cover to cover is to ask urgently for its immediate return.

Occasionally consumer electronic companies send out a panicky letter to the press asking that a previous press release be returned or destroyed. On several occasions l've burrowed through my waste paper basket desperately looking for a release which seemed innocuous but in fact contained some gold-plated error which I would never have noticed if the company hadn't panicked and told me to tear it up.

Professor Jones also used a routine working technique with which many journalists will have much sympathy.

Essentially it relies on a room full of box files, each with a general title. Every incoming document is read and filed in what seems the most appropriate box file.

As few people as possible are involved, not because of security, but because the larger the field any one person is covering the better their chance of making a correlation between one fact buried in one box file and another apparently unrelated fact. buried in another box file. This kind of happy-chance cross correlation can't work with a computerised system because you are always at the mercy of whoever has originally stored and indexed the information in the computer memory. You just can't prophesy in advance what correlations may in the future prove vital.

It's highly unlikely for example, that any computer could, even today, have told the Admiralty that the answer to their problem of power for an infrared telescope was to be found in pseudo perpetual motion machine contained under a glass bell jar in the Clarendon Laboratories.

Information Overload

The snag, of course, is that we are now suffering from information overload. No one human being has the time, energy or brain capacity to read and digest every document that may one day prove relevant.
Small wonder then that the Japanese are believed to be working hard, mainly in secret on so-called "cognitive" electronic equipment to interface the human brain with electronic circuitry. Already speech sensitive circuits will respond to human command and reply in a synthesised voice.

The next stage will be a machine to type a letter from an input of spoken words. Electronic 'readers' will soon be used to convert written or printed words into electronic data. Witness the trend towards postal codes on mail; this is the basis of electronic sorting.

But none of this equipment has any true intelligence. So for the foreseeable future those fortuitous cross correlations which enabled wartime scientists to piece together intelligence information from a wide range of sources, will rely on that most remarkable of all memory banks, the human brain.

Near Criminal

Professor Jones, for many years a pillar of Aberdeen University, was recently counting his box files because, as he puts it, they're "going to be something of a problem when I move from my present office on my retirement next year". He finished the war with around 400 files and now has 1500.
Much of the original wartime scientific material, for instance secret decoded messages that came from the now famous cipher team at Bletchley, remained with the Ministry of Defence. But in 1970 some faceless person inside the Ministry decided that the space they were occupying was too valuable and destroyed nearly all of that original material.

Professor Jones describes the decision as "near-criminal". What it means is that future historians and scientists will never have the opportunity of discovering first hand from original documents how science, and especially electronics, helped us win a war we could so easily have lost.

S
 emiconduct

SPEECH SYNTHESIS CHIP

A new speech synthesis microchip has just been unveiled by the American company General Instrument Microelectronics. Designated the SP0256, the makers claim that the new chip is a "considerable advance in low cost solid state speech synthesis and will lead rapidly to many product applications".

The SP0256 has a complex lsi structure resembling a single-chip microcomputer and incorporates four major function blocks. The first a software programmable digital filter, is made to model the vocal tract.

The second, a 16 K rom, stores both the basic elements of human speech, as data, and instructions on how to handle that data.

The third section is a central processor which controls the flow of data from the rom to the filter and the necessary instructions to make sense of that data.

Finally there is a digital to analogue converter to convert digitally synthesised speech into an audio signal voltage.

The combination of the software controlled filter and micro-controller allows the SP0256 to emulate almost any human sound and even allows for difference in accent and pitoh. Unlike other devices this also offers the designer a trade-off between voice quality and size of vocabulary.

The 28-lead LsI device is intended for use in many professional and consumer applications and it will be up to the user to specify the vocabulary and speech quality he requires. GIM will then programme that part of the ROM with the requisite instructions.

In addition to this the company intends to release the chip with several standard vocabularies to enable the home constructor to take advantage of this technology.

Facilities are also available to extend the rom by attaching external memory. This gives the user scope for extremely complex word repertoires or very high quality speech synthesis which would be beyond the capacity of the chip memory alone.
In practical terms this means that the SP0256 is capable of reproducing up to 256 discrete sequences (usually words or phrases) without the extra ROM and up to 3,825 sequences when fully expanded. In fact it is capable of addressing up to 491K bits of extra memory.

GIM say that the SP0256 chip will be available in this country complete with preprogrammed memory within the next few months. No price has been fixed but $£ 15$ to $£ 20$ seems quite likely.

NEW RECTIFIERS

New diode developments from Mullard include a range of fast recovery rectifier diodes. The BYV30 and BYV92 have average forward currents of 12 A and 35 A and a fast recovery time of less than 100 ns .

Further new types are fast soft recovery diodes 1N3899 and 1N3909. These are designed for use in high frequency power supplies and inverters.

Mullard is also phasing out its range of plastic rectifier diodes and replacing them with glass bead types. Glass types, it is claimed, are more reliable and have avalanche capacity.

Still on diodes, TRW are introducing arange of snubberless Schottky devices (a snubber network being a sort of interference suppression network). These are designed for rectification in high current 5 V logic supplies in strategic and industrial applications.

ASEA MAFO has developed a new high radiance infra-red emitting diode. This gallium aluminium arsenide device designated as 1AX124 is specifically designed for optical fibre applications and is hermetically sealed into a modified TO-18 case so there is no risk of damaging the chip.

FIBRE OPTIC KIT

Fibre optics technology is rapidly becoming the "inthing" for data transmission but suffers from one major draw-back, namely connections.

However, a new low cost fibre optic link kit has just been developed by Hewlett Packard and is claimed to represent a new era in this technology because of the ease with which the connectors are attached to the fibre optic cables. Coupling, it is claimed, can be achieved within three minutes.

Much more extensive use of fibre optics should be possible with this kit and such applications as factory floor data communications and short distance telecommuni cations becomes a distinct possibility.

Priced at $£ 32.67$ it may even appeal to the more ad venturous constructor. The kit comprises a transmitter, receiver, 5 m of fibre optic cable with connectors attached, additional connec tors and polishing $k i t$ Further details may be obtained from the UK agents, Celdis Ltd, in Reading.

TDC 1023J SIGNAL CORRELATOR

Signal pattern comparisons are an important part of many data processing systems and a new single chip correlator from TRW LSI Products may well find a big market.

Designated the TDC1023J, this 28 -pin d.i.l. device has the ability to compare a stored 64-bit reference word against incoming data at a sampling rate of 20 MHz .

Furthermore, it can be clocking in the next word whilst comparison is taking place and shorter word engths can be accommodated if necessary. Incoming data words are continuously compared bit for bit with the reference word and an output is generated for each word showing the number of correct bits. This is in the form of a 7-bit binary weighted output.
There are even facilities for loading a minimum number of correct correlations per word into a flag register on the chip. If the 7 -bit output equals or exceeds this number then a separate output signal is generatedvery useful for statistical analysis.

-IN BRIEF

Memory Chip

"A new stage in the evolution of its non-volatile memory product family" is how GIM describes their new EAROM, the ER4201. The EAROM, the ER4201. The posed line of n-channel N-mos products. This new chip has been designed with the microcomputer in mind and has a 128×8 bit memory. It offers 5 V operation in Read mode and a 350 ns maximum access time.
In common with other EAROMS the ER4201 will have in-circuit electrical word alterability with onboard address, mode and data latching.

Floppy Disc Controller

The TMS9909 floppy disc controller (F.D.C.) is a new member of the Texas Instru ments 9960 microprocessor family. It features enhanced data transfer rates and a wide range of new control facilities as well as generat ing up to 64 error status returns

Hence in a 9909 based sys tem, it will be able to specify what has gone wrong should a floppy disc system fail in stead of just indicating that something is wrong.

Function Converter

Converting a logarithmic function into a linear one is often a problem in'some processes. The DIV100KP presion log-antilog divider from Burr-Brown is designed to get round this and comprises four op-amps and four logging transistors integrated into a single monolithic circuit.

Potential applications include transducer and bridge linearisation, process control and bio-medical instrumentation.

Push-button Telephone i.c.
The heart of every telephone is the interrupt current loop dialling system. A new low power смоs device from Mullard, the MH321, is designed to fulfil this role and convert pushbutton telephone keyboard entries into correctly timed line current interruptions.

Additional facilities available with this chip include the ability to redial a previously dialled complete number string. The circuit remembers up to 23 digits and will. also insert pauses if necessary.

The MH321 requires a low, voltage supply and is available in the standard 18 pin d.i.l. package.

AST MONTH we looked at some sequential circuits-those whose state now depends partly on what their state was in the past. Counters also belong to this class of circuit.
A counter changes from one state to another every time it receives a pulse at a particular input terminal. This terminal is usually called the clock terminal. The outputs of the counter indicate a number, in one of various ways that will be described presently. As each successive pulse arrives, the outputs of the counter go through a series of states representing, for example, the numbers $0,1,2$, 3,4 , and so on. Eventually the counter has gone through all possible states and returns to the state at which it began.

The number of pulses required to take the counter through all its states is the modulus of the counter. Most cmos counters have a fixed modulus of 10, 16 or one of the higher powers of 2 (see Table 1). In a few cases the modulus can be set to a required value.

BINARY COUNTERS

Many counters consist of a chain of J-K flip-flops or their cmos equivalents. In Fig. 7.1 we see how three flip-flops can be joined to make a modulo-8 counter. Their $J-K$ inputs are all held high which, as explained last month, makes the outputs change state whenever clock input goes from

Fig. 7.1. A chain of flip-flops that makes up a counter.
high to low (the negative-going edge of a pulse). A high pulse on the clear (or reset) line forces all Q outputs to low (0) and all \bar{Q} outputs to high (1).

Consider what happens as a chain of pulses arrives at the clock input (Fig. 7.2). At the first negative-going edge, flip-flop 1 changes state (A). Nothing happens on a positive-going edge, but on the next negative-going edge (B), flip-flop 1 changes back again. The negative-going pulse from its output ($Q 1$) causes flip-flop 2 to change state (C). As the clock pulses arrive, flip-flop 1 changes state at half the rate of the clock, while flip-flop 2 changes state at a quarter of the rate of the clock. Negative-going edges from Q2 cause flip-flop 3 to change state (D). Thus flip-flop 3 runs at oneeighth of the rate of the clock.

If we consider the outputs to represent a series of " 0 "s or " 1 "s, as at the bottom of Fig. 7.2, and read them in the order Q3-Q2-Q1, we obtain a series of numbers in the binary scale. This series has 8 members running from 000 to 111, or from 0 to 7 in the decimal scale. This is a modulo-8 counter. In general, a chain of n flipflops produces a modulo- 2^{n} binary counter.
Before leaving this counter there are two further points to note. The first is that each flip-flop changes state at exactly half the rate of the flip-flop before it (or of the clock, if it is the first flip-flop). The frequency is halved at each stage. To put it another way, while the clock produces eight pulses, flip-flop 1 produces four, flip-flop 2 produces two, and flip-flop 1 only one.

As their name implies, counters can count pulses. They can also be used to divide. If x clock pulses are fed in, we obtain $x / 8$ pulses from Q3. As will be seen, many counters are specially designed for dividing rather than for counting
The second point applies only to this particular kind of counter. The change of state of any stage follows after the change of state of the stage before it. There is a small but definite gap between the time when the clock causes Q1 to change (B) and the time when Q1 causes Q2 to change (C).

INVALID COUNTS

Fig. 7.3 shows the time-scale enlarged. Instead of counting " $0,1,2$ " the chain actually counts " $0,1,0,2$ ". The invalid " 0 " is present for only a microsecond, perhaps less, and is often unimportant. For instance, if we are counting a series of events (e.g. cars going into a car-park) and showing the results on a l.e.d. display, the invalid " 0 " will not be seen. The count will appear to be correct and, for practical purposes, is correct.

Fig. 7.2. Waveforms of the counter of Fig. 7.1.

Fig. 73. Invalid counts produced by delays in the counting chain.
from 7 to 6 to 4 to 0 . In a counter with more stages there are more invalid states.
A counter in which each stage is changed by the one before it is called a ripple counter. A change at the clock input causes a ripple of changes to run along the chain. If our application will not tolerate this effect, we must employ a counter in which all outputs change state at exactly the same time. This is what is called a synchronous counter.

SYNCHRONOUS COUNTERS

In synchronous counters the clock inputs of all flip-flops are connected to one line (Fig. 7.4). Consequently, all flip-flops change state simultaneously. Flip-flop 1 changes state at every negative-going pulse, as before. Other flip-flops change state only if their J and K inputs are high.
For example, if Q1 is high and Q2 is low, the next clock pulse will change Q1 to low and Q2 to high-we go from 01 to 10 (or 1 to 2 in decimal).

In other instances the invalid state can cause trouble. Suppose we want to flash a "Full" sign when there are eight cars in the park. This is the stage at which the counter returns from 7 back to 0 again. We could detect this stage by wiring a 3 -input NOR gate to Q1, Q2, and Q3. Such a gate would detect the invalid " 0 " state and trigger the sign to switch on as soon as the second car entered the park.

The invalid " 0 " is not the only unwanted state. One or more invalid states occur at every count. At the final transition, 7 to 0 , the output goes

Fig. 7.4. A walking ring or Johnson counter.

If Q1 and Q2 are both low, the next pulse changes Q1 to high, but Q2 remains unchanged as its J and K inputs were both low at the instant of change. We go from 00 to 01 .

JOHNSON COUNTER

Another type of synchronous counter is based on what is known as a walking-ring counter, or Johnson counter. This consists of a chain of D-type flip-flops (Fig.7.5). As explained last month, a D-type flip-flop is a bistable latch. As the clock input goes low, the output Q stays at whatever state input D is at. To begin with all Q outputs are 0 (Fig. 7.6). This means that the \bar{Q} output of flip-flop 4 is at 1 (see lowest waveform); Q4 is the data input to flip-flop 1. Consequently, as clock goes high, Q1 takes the state of Q4, becoming high. At the next posi-tive-going clock pulse, Q2 changes because Q1 is now high. In this way the " 1 " travels down the chain. When it reaches flip-flop 4, Q4 becomes "0". Now a " 0 " travels down the chain, clearing away all the " 1 "s.

Like the counter of Fig. 7.1 this counter has eight stages, so is modulo8. In a walking-ring counter the modulus is double the number of stages. The output sequence is not a

Fig. 7.5. A synchronous counter (clear inputs omitted).
binary number sequence but, by suitable logic, we can decode the outputs to produce any required output.

For instance, if we and Q1 with Q4 we get a high output only at stage 0 . If we and Q1 and Q2 we get a high output only at stage 1. It is easy to arrange for eight outputs, each of which goes high at only one stage of the count. This is done in the 4017 and 4022 i.c.s, which have 5 and 4 flip-flops with 10 and 8 decoded outputs respectively, see Table 7.1.

When a walking-ring counter is first switched on, the flip-flops may assume states such that the output of the counter is not one of those shown
in Fig. 7.6. The counter would not work. In most practical counters, a few additional logic gates are included to reset flip-flops that are in unallowable states.

THE CMOS RANGE OF COUNTERS

The information in Table 7.1 is a selection guide to the 26 most commonly used cmos counters. The meaning of entries in the "modulus" and "synchronous/ripple" columns has already been explained. The 4045 is a ripple counter but the only output available is from the last stage so

Table 7.1. Selection guide to some common CMOS counters/dividers.

Device Type No.	Modulus	Sync/ Ripple	Up/ Down	Output		Inputs			$\begin{aligned} & \text { Preset } \\ & \text { (load) } \\ & \text { (Yes/ } \\ & \text { No) } \end{aligned}$	Other features/remarks
						Clock edge + Rising - Falling	Reset or clear (Yes) No)	Enable (Yes) No)		
4017	10	S	U	-	1-of-10	+	Y	Y	N	-
4018	N(2 to 10)	S	U		-	$+$	Y	N	Y	-
4020	2^{14}	R	U	14-stages (except 2 and 3)	-	-	Y	N	N	-
4022	8	S	U	-	1-of-8	+	Y	Y	N	-
4024	2^{7}	$\stackrel{R}{R}$	\cup	7 -stages	-	-	Y	N	N	
4026	10	S	\cup	-	7 -segment	$+$	Y	Y	N	Display enable
4029	10/16	S	UD	4-stages/	-	+	N	Y	Y	\{ Settable to binary/b.c.d. and
4033	10	S	U		7-segment	$+$	Y	Y	N	\{Ripple-blanking: drives low
4040	2^{12}	R	U	12-stages	-	-	Y	N	N	Input pulse shaper
4045	2^{21}	(R)	U	Last stage	-	*	N	N	N	*Crystal driven
4060	2^{14}	R	U	Stages 4 to 10 and 12 to 14	-	-	Y	N	N	Contains oscillator
40102	$\begin{aligned} & N(1 \text { to } \\ & 100) \end{aligned}$	S	D	Last stage	-	+	N	Y	Y	-
40103	$\begin{aligned} & N(1 \text { to } \\ & 256) \end{aligned}$	S	D	Last stage	-	+	N	Y	Y	-
40110	10	S	UD	-	7 -segment	+	Y	Y	Y	\{ Drives I.e.d.s. Separate up and \{down clocks. Latched outputs
40160	10	S	U	b.c.d.	-	+	Y	Y	Y	Asynchronous resel
40161	16	S	\cup	4-stages	-	$+$	Y	Y	Y	Asynchronous reset
40162	10	S	U	b.c.d.	-	+	Y	Y	Y	Synchronous reset
40163	16	S.	U	4-stages	-	+	Y	Y	Y	Synchronous reset
40192	10	S	UD	b.d.c.	-	+	Y	N	Y	Separate up and down clocks
40193	16	S	UD	4-stages	-	+	Y	N	Y	Separate up and down clocks
4510	10	S	UD	b.c.d.	-	+	Y	Y	Y	Up/down input
4516	16	S	UD	4-stages	-	$+$	Y	Y	Y	Up/down input
4518	10	S	\cup	b.c.d.	-	+1-	Y	Y	N	Dual counter
4520	16	S	\cup	4 -stages	-	+/-	Y	Y	N	Dual counter
4522	$\mathrm{N}\left(1 \mathrm{to}^{10}\right)$	R	D	b.c.d.	-	+	Y	Y	Y	-
4526	$\mathrm{N}(1$ to 16)	R	D	4-stages	-	+	Y	Y	Y	-

Fig. 7.6. Waveforms of a walking ring counter.
flip-flops are fed to logic circuits that decode them to produce outputs of a different form. We have already mentioned the 1 -of-10 and 1-of-8 decoded outputs from the 4017 and 4022 walk-ing-ring counters.

Another useful type of decoding is to provide the seven outputs needed for driving 7 -segment displays. At each count the outputs are such as to cause the appropriate segments to light up to produce the corresponding numeral. Some of these i.c.s can drive l.e.d. displays directly making for economy and for simplicity of wiring.

In the 4033 a ripple-blanking input can be used to automatically blank all leading zeros. Thus a 4-digit display would show " 25 " instead of "0025".

The 40110 i.c. has latches, which hold the outputs and so hold the display, even though counting may be continuing meanwhile. This function is used for sampling and holding a rapid count in a digital voltmeter, for example.

DECODERS

A list of decoding circuits that are available as separate i.c.s is seen in
there is no disadvantage in its ripple action. This i.c. is used for dividing the high-frequency oscillation of a crystal by 2^{21}, or $2,097,152$ to give an accurate low-frequency oscillation.

UP AND DOWN COUNT

The counters we have previously described have all been up-counters, counting from zero upward to 10,16 or more, before returning to zero. It is possible to make down-counters. These are usually preset to a given value and then count down toward zero. When zero is reached a special zero-output goes high.

The 4522 can count down from any number in the range 1 to 10 giving a b.c.d. (binary coded decimal) output on the way. The 4526 ranges from 1 to 16 with a 4-bit binary output. The 40102 and 40103 can be preset to much higher values if required, but give indication only when the zero count is reached.

There are a number of up/down counters that can be made to run in either direction. Some of these have two clock inputs, one for counting up and one for counting down. It must be arranged so that it is not possible for both clocks to operate at once. Other counters have a special up/ down-control input.

The outputs of most of the counters come directly from the flip-flops, though in the high-value binary counters (e.g. 4060) there may not be enough pins on the i.c. to provide an output from every stage. Some

Table 7.2. A selection of cmos decoding i.c.s.

Device Type No.	Latched			
	Input	Output	Output	Other features
4028	3-bit binary or 4-bit b.c.d.	$\begin{aligned} & 1 \text {-of }-8 \text { or } \\ & 1-\text { of-10 } \end{aligned}$	N	-
4055	4-bit b.c.d.	7-segment	N	l.c.d. driver
4056	4-bit b.c.d.	7-segment	Y	l.c.d. driver
4511	4-bit b.c.d.	7-segment	Y	l.e.d. driver, blanking, lamp test
4514	4-bit binary	1-of-16	Y	Selected output high
4515	4-bit binary	1-of-16	Y	Selected output Iow
4555	2-bit binary	1-0f-4	N	Dual decoder: selected output high
4566	2-bit binary	1-of-4	N	Dual decoder: selected output Iow

four-stage counters run up to 10 and then automatically reset to zero giving a b.e.d. output. Others run through the full 4-bit binary sequence from 0 to 16 before returning to zero.

Counters vary in their control inputs. Some step on at a positive-going pulse, others at a negative-going pulse. The 4518 and 4520 may be wired so as to step on at either, as selected. Most counters have a reset input. Many have a clock-enable, which can stop the counter at any stage, without resetting and losing the count. The facility to preset the counter to a given value present on a number of data inputs is a feature of many counters.

DECODED OUTPUTS

Several of the counters of Table 7.1 do not take their outputs direct from the flip-flops. Instead, outputs of the

Table 7.2. These may be used to decode the direct outputs from counters, as in the project seen in Fig. 7.8 and in many other applications. The 4511 has 25 mA outputs for driving large l.e.d. displays. The 4055 and 4056 provide the alternating output required for driving liquid crystal displays.

LIGHT TRIGGERED COUNTER

Fig. 7.7 shows the 4024 being used to count a series of events and indicating when a given number of events has occurred. The counter is stepped on whenever there is an interruption of the beam of light falling on the light dependent resistor, PCC1.

The circuit can count cars entering a car-park, people entering an exhibition, or objects on a conveyor belt. It can also be used as a lap-counter for model racing cars, though a photodiode would be faster-acting.

The count at which the bistable is triggered and the l.e.d. comes on is determined by which output of IC2 is connected to the bistable. The table in Fig. 7.7 shows which pins to use. Pressing S 1 resets both the counter and the bistable.

Since this circuit is only triggered by the first occurrence of a given high output or combination of high outputs, it is not affected by the invalid " 0 "s that occur in ripple-counting.

ELAPSED TIME INDICATOR

The use of a counter as a divider is illustrated in Fig. 7.8. The clock frequency of ICl is about 17 Hz . At pin 15 we have this frequency divided by 2^{11} which is 1 cycle per 2 minutes.

The binary count from the 4 outputs runs from 0 to 16 , changing once a minute. It is decoded by IC3 to light each one of the l.e.d.s for a minute each during the first 10 counts.

The advantage of using a clock of relatively high frequency is that we can use a polystyrene capacitor which has much greater stability than the electrolytic capacitors so frequently used in timing circuits. Also there is no need to reset the timer i.c. When S1 is pressed, the timer i.c. may be at any stage of its cycle, and timing begins at the next negative-going edge. Since a whole cycle takes only 0.06 seconds the error is negligible.

This circuit indicates how many complete minutes have elapsed since S1 was pressed. If a 4514 is used instead of the 4028 the timing period can be extended to 16 minutes. Next Month:
Special function i.c.s.

Fig. 7.7a. Light triggered counter, (b) decoding two outputs to light the l.e.d. when a count of 40 is reached.

Fig. 7.8. A 10 -minute timer.

PORTABLE
RADIO CASE
approx. Made from ply wood, pleasingly cover radio circu tor mounting 5
and the front is the front is dilltimet sor in the centue e slist
normal cont
side $\mathbf{F 2} 30+1$ so

LAST MONTH'S SNIP - STILL AVAILABLE And still carfies atreen gil of a desoldering pump, which we are
currently selling at 66.35 p . The snip is perhaps the most usel ut bre down parcel we have ever offered It is a parcel of 50 nearly all
different computer panels containing parts which must have cos least E 500 . On these bcards you will find over 300 IC's. Over 300 diodes, over 200 transsistors and several thousand other paris, resist ors, conden sors, multi- turn pots, recifiers, SCR, erc. etc, If you act
promptly, you can have this rarcel tor only $\mathrm{E8} .50$, which uhen deduct the value of the desoldering pump, works out to iust a little over $4 p$ per panel. Surely this is a bargain you should not miss!

MAINS MOTORS Precision made as ed in record players, blow healers, etc.
Speed usually 1.400 . All have ample Speed usuall 1,400 . All have ample
spindie length far coupling fan blade,

 tage, and then add 15% VAT.

YOUR LAST CHANCE FOR THIS BARGAIN too whist drills, regular tool shop price over $£ 50$, yours for only
$£ 11.50$. With these you will be able to drill meal £11.50. With these you will be able to drill metal, wood, plastic. ex.
from the tiniest holes in P.C.B. right up to about Y^{\prime}." Don't miss MAGNETIC LATCH Low voltage (4. 8 .
Only $£ 1.50$ each.

PUNCHED TAPE
 EQUIPMENT
matching tape reader. Ex-computers, believed Ingood working

SOLENOID WITH PLUNGER Mains operated $£ 1.99$ $10-12$ volts DC
operated fi 1.50 . MOTORISED DISCO SWITCH nduamp changeover switches. Multi-
adjustabie switches all rated at 10 amps. this would provide a magnificent display.
For mions operated 8 suatch model For mains operated 8 switch model
$66.25,10$ switch model $66.75,12$ swith

PANEL METERS

$2 \%^{\prime,}, 0 \cdot 100$ UA 2.85 simit, size 2% 2×1. 100 uA , scaled Vu. Ditto, but scaled 0-100. Inote: front covers easily
cemovable if you want to rescale these c2. 30 each) Ditto bur size $1 \psi_{1} \times 1 \%$
ed Vu, sensitivity 100 UA, $£ 1.50$.

MINI-MULTI TESTER Deluxe pocket size precision moving 11 instant range measures: DC vots $10,50,250,1000$

DC amps $0-100 \mathrm{~mA}$.
Continuity and resistance 0.1 meg ohms in two
ranges. Complete with test prods and insruction ranges. Complete with test prods and insfuction
book showing how to measure capasity and inductance as well. Unbellevable value at only on the 0.10 scale. It's free if you purchase quickly, but of you already
own a Mini-Tester and would like own a Mini-Teste,
one, send $£ 2.50$.

SUPER HI-FI SPEAKER CABINETS
Made for an expensive HiFi out

- will suit any decor. Resonance free cut-outs for $8^{\prime \prime}$ wooter and 4" We: ter. The front material is
carved Cacron which is thick and carved Cacron, which is thick and does not need to be stuck in and the completed unit is most pleas-
ing. Colour black. Supplied in pa price $£ 6.90$ per pair (this is prob ably less than the original cost of
one cabinet) carriage $£ 3.50$ the

ELECTRONIC VOLT METER/ SENSITIVE RELAY
Consists of a 4% " square drop
through panel volt meter fed. Buitt into the fromt of the meter are two screw adjusters down the scale, 10 set a minimum
der and maximum. A unique "under" and "over" circuit inside the mete operates one of two reed relays to

action. The scale plate is detachable via two scews to be calibrat ed to your own individual requirements. The 10 transistor 'under' and over' circuit is completely separate from the meter moveme so does not have to be connected to use this as a standard 0-1 meter. Many uses including level controls, light controls, auto ba
tery chargers, alarm units, btc. Manufacturers list price of over f 120 each An unbelievable snip at f 9.95 (less than the value

THM MONTMSSNMPI
 Vu METER
 power output indicator or many similar applications. Full vision front cover easily removable if you wish to alter the scale Soecial snip arice $\mathbf{~} 1$

MULLARD UNILEX
 modular form this should sell at about E 3 d - but due to a spectal bulk buy and as an in-
centive lor you to buy this month we offer the system complete at only $£ 16.75$ including VAT and pos FREE GIFT - buy this month and you will receive a pair of

VENNER TIME SWITCH Mains operated with 20 amp switch, one
on and one off per 24 hrs repeats daily automatically correcting for the tengthen ing or shortening day. An expensive time
switch but you can have it for only $£ 2.95$. These are new but without case, but we
can supply plastic cases (base and cover) can supply plastic cases (base and cover)
$\mathbf{£ 1 . 7 5}$ or metal case with window $£ 2.95$. 81.75 or metal case with window $£ 2.95$.
Also available is adapior kir to convert this into a normal 24 hr . time switch but
with the added advantage of up to 12 on offs per 24 hrs . This makes an ideal con-
of
ofler tor the immersion heater. Price of adaptor kit is $£ 2.30$

DELAY SWITCH

\qquad set with pointers knob for periods of up
10 2 Yhrs. 2 contacts suitable to switch amps - second contact opens

LEVEL METER
size approxMmatelver square, scaled signal
and power but cover eassily removabie for

ADVANCE ADVERTISING BARGAINS LIST!
OUR FREE monthly list gives details of bargains arriving or just
arrived - often bargains which sell out before our advertisement arrved - often bargains which sell out before our advertisemen
appear - it's an interesting list and it's free - just send S.A. appear - 11 s an interesting list and it's free -
Below are a tew of the Bargains ssill available.
TRANSMITTER SURVEILLANCE
Tiny. easily hidcice bar which wil enable conversation to be picke parts and circuit. £2.30.

RADIO MIKE

movern Play through FM radio or runer amp. $£ 6.90$ comp. kit.
Mains quick connector will save you valuable time. Features includ Guick spring connectors, heavy plastic case and auto on and on witch. Complete k k.1. $\mathbf{E 1 . 9 5}$
LIGHT CHASER
Gives a brilliam display - a psychedelic light show for discos, par-
ties and pop groups. These have three mos ties and poo groups. These have three modes of llashing, two chase
patterns and a strobe effect. Tolat output power 750 watts per channel Comiete kit. Price $\mathbb{E} 16$. Ready made up $£ 4$ extra. Fish bite indicator
Enables anglers to ser up several lines then sit down and read a book. As soon as one has a bite the loudspeaker emits a shrill note. Kit. 6 WAVEBAND SHORTWAVE RADIO KIT

Bandspread covering 13.5 to 32 metres. Based on circuit which apluared in a recent isssux or Rase materials, six transistors, and diodes, condensers, resist ors, inductors, switches, etc. Nothing eise to buy if you have an | ampintier to |
| :--- |
| Price $£ 11.95$ |

SHORT WAVE CRYSTAL RADIO
All the parts to make up the beginner's model. Price $£ 2.30$. Crystal
earpiece 65 . High resistance heandphones (gives best resulis) $£ 3.75$. Kit inclu des chassis and front but not case
RADIO STETHOSCOPE
Easy to fault ind - start at the arial and work towards the speaker INTERRUPTED BEAM
This kit enables you to make a switch thal will trigger when tready beam of infra red or ordinary light is broken. Main compon but no case. Price $\mathfrak{£ 2} .30$
OUR CAR STARTER AND CHARGER KIT has no doubt saved car off mains or bring your battery up to full charge in a couple of hours. The kit comprises: 250w mains transformer, two 10 amp bridge rectifiers, start /charge switch and full instructions, You can assemble this in the evening, box it up or leave it on the shelf in
garage, whichever suits you best. Price $£ 11,50+£ 2.50$ post. GPO HIGH GAIN AMP/SIGNAL TRACER. In case measuring GPO HIGH GAIN AMP/SIGNAL TRACER In case measuring
only 5% in $\times 3 \%$ in $\times 1 \%$ in is an extremely hlgh gain (70 dB) solid only amp $\begin{aligned} & \text { state amplifer designed tor use as a signal tracer on } G P O \text { cables, et }\end{aligned}$ With a radlo it functions very well as a signal tracer. By connecting a simple coil to the input socket a useful mains cable tracer can be
made Runs on standard 4//v battery and has input, output sockets made. Runs on standard 41/2y battery and has inpyt, output socker
and on-off volume control, mounted flush on the top. Many other uses include general control, mountedush omp erc. An absolut bargain at only $£ 1.85$. Suitable 800 hm earpiece 69 . 3 CHANNEL SOUND TO LIGHT KIT
Complete kit of parts for a three-channel sound to light unit con but it is more than rugged enough for Disco work The unit is to ed in an attractive two-tone metal case and has controls for exch channel, and a master on/oft. The audio input and output are by sockets and three paner mount ing tuse holders provide thyristor
protection. A four-pin plug and socker facilitate ease of connecting protection. A four-pin plug and socker facilitate ease of connecting 8 POWERFUL BATTERY MOTORS
. $\varepsilon 2.50$ WATERPROOF HEATING WIRE
 pipes, under grow boxes in gloves and socks. 23p per meitre. COMPONENT BOARD Ref. WO998
This is a modern tibreglass board which contarns a multitudy of
very useful parts, most important of which are: 35 assorted diodes and rectifiers including 43 amp 400 v types tmade up in a bridge) 8 Iransistors type BC 107 and 2 type BFY 51 electrolytic condensers Cher park including vaibe tixed and wire wound and over to electrolytic and other condensers. A real snip at $£ 1.15$.
FRUIT MACHINE HEART. 4 wheels with all, fruits, motorised and defy your friends getting the "iackpot". £9.95. + £4 carriage. DESOLDERING PUMP
Ideat for removing components from computer boards as well as f service work generally. Price E6. 35 .
4-CORE FLEX CABLE
White pvc for telephone extensions, disco lights, etc. 10 metres $£ 2$ Moomes Det he
MUGGER DETERRENT
Ahighnote bleeper, push latching switch, plastic case and batte
connector. Will scare away any villain and bring helo $\mathrm{E2} 20 \mathrm{cos}$ plete kit.

HUMIDITY SWITCH

American made by Honeywell. The action of this device depends upon the dampness causing a membrane to stretch and trigger a
sensitive microswitch. Very sensitive breathing on it for instance
swither EXTRACTOR FANS M 25 V ace. Only
EXTRACTOR FANS - Msins Voltage
Ex-Computer, made by Woods of Col
ideal also as biower; centual heating
s.
idealems, tume extraction att. Easy fixing
through panel very powertul 2.500 rom
but quiet running. Choice of 2 sizes,
$5 "$ f5.50. $6^{\prime \prime}$ ⒍50. post $£ 1$ per fan.

TIME SWITCH BARGAIN

Large clear mains frequency controlled clock, which witl always show you the correct time + start and stop swi es with dials. Complete with knobs.

J. BULL (Eiectrical) Ltd.

(Dept. EE), 34 - 36 AMERICA LANE, HAYWARDS HEATH, SUSSEX RH16 3QU.
J. BULL (Electrical) Ltd -- Established 25 years. MAIL ORDER TERMS Cash with order -- please add 60 p to all orders under $£ 10$, to offset packing. etc. ACCESS \& BARCLAYCARD WELCOMED. Our shop is open to callers. BULK ENQUIRIES INVITED. Telephone: Haywards Heath (0444) 54563.

Everyday News

MOBILE POLIGE TO GET COMPUTER BACK-UP
 Soon it will be no use arguing a point with your friendly mobile policeman. Thanks to microelectronic technology, he will soon be in possession of the latest aid to crime fighting in the shape of an incar digital data terminal with TV type screen readout on which he will be able to call up all sorts of information, including registration details and points of law.

This breakthrough in police and emergency services communications is expected with the introduction of the new Plessey Universal Mobile Communications Terminal (UMCT). The dashboard mounted unit allows transmission of digital data and computer information retrieval over speech band radio from all types of vehicles.

Already undergoing field trials in Europe, and operational in the United States and Canada the initial reaction has been extremely enthusiastic. There is also strong support for the unit from Belgium, Spain and Italy.

The UMCT allows an operator to transmit digital data messages at 4,800 bits per second. It is claimed that a full screen text message of 315 characters can be transmitted in $0 \cdot 6$ seconds, therefore allowing up to 300 out-stations or véhicles to operate on one radio channel. Automatic retransmission, memory
storage, and graphic transmissions are a few of the unit's capabilities.
The ability to access information from a central data base over the normal radio link has far-reaching implications in emergency, police, security, public utility and purely commercial fields. The time taken to access information can be as fast as two seconds.

The UMCT can be easily installed in a vehicle requiring only the connection of two leads, one to the battery and one to the mobile radio. No extras or vehicle rewiring are required and the unit can be transferred
from one vehicle to another fairly quickly.

Acquisition of particulars of vehicles and property, registered owners and secure communications for the police are of great importance. Maps and diagrams of streets and buildings for fire and emergency services, accessed in seconds and displayed in vehicles at the scene of an incident, could save lives. Also, more efficient resource deployment and instant computer update from the cab of an express delivery vehicle,
where immediate receipts could be given from a hard copy printer on the side of the UMCT, could cut costs of road haulage operators.

Who knows, perhaps the next stop will be the "backseat courtroom" with the mobile terminal linked, by radio, to a central computer control where a residing judge/s or magistrate/s will deal out instant justice. Of course, the poor old patrol man will have to be a computer programmer, lawyer and in emergencies a doctor.

Robots in Parliament

The British Robot Association is to stage a robot exhibition in the Houses of Parliament from April 13-17. This should give a further boost to government support for the greater use of robots in British industry.

BUSINESS DISH

Ferranti is first in the field with small dish terminals for the user trials of the British Telecom business satellite service through the European Space Agency's Orbital Test Satellite (OTS). Tenders from other manufacturers have been invited and when the service starts in 1983 some 25 to 30 terminals will have been installed.

Watch out for these terminals near the premises of some of the larger companies.

Audio Discs

It now seems probable that the Philips compact digital audio disc will become the world videodisc standard system. The probability has been enhanced through its adoption by Matsushita in Japan who own trade names Technics and Panasonic.

[^1]
ANALYSIS

SPACE INVADERS

Science fiction does not inevitably become science fact but is often not too far off the mark

Take the death ray, already popular when I was a boy. When war was approaching in the late 1930s there were rumours that the death ray had already been achieved. The sudden appearance of unusual antenna arrays encouraged the idea that enemy bombers might be vaporized in flight by a lethal radiation.

Official denials could not be made without revealing the true nature of the new invention which happened to be radar. The radiation was certainly high-powered by the standards of the day but nowhere near sufficient to destroy an aircraft, only to detect its presence and fix its location.

Today, over 40 years later, the death ray is within reach. Its final form has not yet been decided but defence scientists in the United States and the Soviet Union are known to be working on what are called directed energy weapons, the most promising employing high energy lasers. These would be deployed in space and used against enemy ballistic missiles as well as spy-in-the-sky and communications satellites.

Turning to more peaceful applications of electronics I notice that one electronics manufacturer who has just installed automatic test equipment has cut down test time of a complex PC board by a skilled engineer from $3 \frac{1}{2}$ hours to 5 minutes by an unskilled operator.

When you look at growing unemployment one begins to wonder whether electronics for peace is not just as "lethal" in its way as electronics for war.

Brian G. Peck

Help for Disabled

A two-pronged attack is in motion to implement the "Year of Disabled People".

On the one hand there is momentum to apply microelectronics to various aids, on the other to examine how employment possibilities for the disabled can be expanded in the microelectronics manufacturing industry.

TRAINING OUR NEXT GENERATION

The Minister for Information Technology made an important statement concerning computer training in schools, when he attended the launch of the Microsystems Centre in London recently.

[^2]tisation should not have to be repeated for our next generation of businessmen. We must, I firmly believe, ensure that our young people are offered, as early as possible in their school life, the chance to use and to be taught in the use of computers. It is, however, a very disquieting fact that only about onequarter of the nation's secondary schools have computer facilities on which to train the citizens of tomorrow. I intend as Minister for Information Techrology to encourage and promote a much wider appreciation of the importance and value of a familiarity with computers to a young person in today's changing technological environment."

CB GETS BIG FOUR!

Operation authorised (from August 1981) on 27 MHz F.M. and 930 MHz F.M.
Moves to stop illegal shop sales and advertising being considered.

Shuttle Service for Experimenters

Plans to carry small selfcontained payloads (SSCP) on Space Transportation System flights for educational, commercial and government experimenters $h a v e$ been announced by NASA.

The SSCP must weigh less than 200lb and occupy less than $5 c u$ ft of space. The cost of $\$ 10,000$ per payload is fixed for a three year period. Reflight guarantees are given in case of mission failure.
Experimenters who are interested should contact D r L. Goldstone of the Research and Technology Requirements and Space Division, Department of Industry, from whom full details are available.

Speech Recognition Club

Speech is man's primary means of communication. Direct input of speech into a machine is therefore an important element in the range of man-machine interfaces. Advantages include the possibility of use by untrained people, the poten tial speed of interaction (again especially with untrained people) and the ease with which a person can talk and listen while simultaneously carrying out some other task.

To develop and exploit the direct input of speech from man to machine, the National Physical Laboratory has formed a speech recognition club in collaboration with leading UK electronics firms and systems houses. It has been formed to assist the transfer of the considerable technology already developed by NPL and subscribers will help formulate the continuing research and development programme to meet their requirements.

Members of the club include Ferranti Computer Systems, Plessey, Systems Designers, Quest Automation Research and Nexos Office Systems.

ELECTRDAlokiti

Introducing our new

 CHIP SHOP KITSEach CHIP SHOP KIT is complete in every way and contains all the components necessary to build and operate the project described. All you need is a Soldering Iron (see Kit No. 2) and a $9 v$ battery. Each kit includes step-by-step instructions on construction and detailed educational notes about the individual circuit, together with advice about soldering techniques.

Kit No. 2-SOLDERING IRON—contains a high quality British soldering iron, a 1 Amp fuse and solder together with straightforward instructions upon how to handle your soldering iron and the best techniques for its use and maintenance.

Kit No. 3-ELECTRONICS TOOLS-contains a selection of useful tools for anyone starting in electronics, together with instructions about the use and care of your equipment.
SOLDER is included with every kit.

Kit No.		Price
1 (a)	Morning Call plus	$\{¢ 5.00$
1 (b)	Transistol Tester	
2	Soldering Iron	c5-00
3	Electronics Tools	£4-50
4	Electronic Organ	£3.50
5	Morse Code Trainer and Siren Oscillator	£4.00
6	Light Operated Burglar Alarm	£4.00
7	Buzzer-Aircraft	£3.00
8	Light and Sound Alarm	£3-00
9	Lie Detector	£3.00
10 (a)	Lamp Flasher plus	£4.50
10 (b)	Sleep Inducer	E4-50
11 (a)	Cat Sound plus	
11 (b)	Night Light Reminder	£
12 (a)	Bicycle Horn plus	
12 (b)	Electronic Shocker	$\underline{5}$
13 (a)	Light Sensitive Alarm plus	
13 (b)	Electronic Lamp	25.00
14	2-Transistor Radio	£4.00
15	Morning Alarm	£4.00
16	American Police Siren	£4.00
17	Flashing Dual-tone Horn	£3.50
18	Two-Way Interphone	£5.00
19	4-Transistor Radio	£5.00
20	Clicker-Helicopter Oscillato	£

All kits packed individually in attractive boxes. Loudspeakers are included with each kit (except nos. 2, 3, 14 where they are not required).
Kit nos, 1, 10, 11, 12, 13 contain two separate projects.
These kits are becoming available in Hobby and Electronics Stores all over the Country-look out for the CHIP SHOP DISPLAY in your local store.
If you cannot locate a stockist please order direct from Electroni-Kit Ltd. Please add 50p per kit for postage and packing.
Trade and Educational Enquiries welcomed.
Cheque/P.O./Access/Barclaycard (or 23p for fullcolour illustrated literature) to DEPT. EECS.

BOSS INOUSTRIAL MOULDINGS ITD

> 2 Herne Hill Rd, London SE24 OAU, England Telephone 01-737 2383 Telex 919693 Cables \& Telegrams: LITZEN LONDON SE24

Please send me MPUroBreadBoard(s) at the special, limited period, introductory offer price of $£ 15.00$.
This price includes VAT \& PP, is applicable from Sept 11980 but please add 15\% for Overseas Orders, make cheques/P.O payable to BOSS Industrial Mouldings Ltd and allow 10 days for order processing and cheque clearance etc.
I enclose a cheque/P.O. to the value of $£ .$.
Name
Company
Address

This project should appeal to all those Do-It-Yourself enthusiasts who would prefer to stay in their armchairs reading their latest copy of Everyday Electronics than perform the usual acrobatics and contortions required when measuring a room for either wallpapering or carpeting. Using this Digital Rule it is possible to measure those distances without rising from that armchair by merely pointing the instrument directly at the wall or ceiling to be measured and reading the distance directly from the digital display on the front panel.

PRINCIPLE OF OPERATION

The general principle of operation is shown in the block diagram, Fig. 1 and is based on a simple radar technique. The output from the Transmitter Oscillator is tuned to the 40 kHz resonant frequency of the transducer. This output waveform is gated with a short enable pulse of approximately 0.2 milliseconds from the Control. Consequently the Trans mitter sends only a short burst lasting 0.2 milliseconds (equivalent to eight pulses). This transmitted waveform is reflected off an object back to the Receiver transducer to be shaped and amplified before the Receiver sends a Pulse Received signal to Control.

Control enables the Counter to count for the period between the pulses being propagated and being received and this is displayed on a three-digit display. A separate Calibration Oscillator is provided to clock the Counter at the desired rate depending on whether inches or centimetres are to be measured. After approximately one second, Control resets the Counter and the measurement is repeated.

The period between the pulses being propagated and being received is directly proportional to the distance
the pulse has travelled. This depends on the speed of sound in air. At sea level this is approximately 13,543 inches per second. Hence the transmitted pulses will take $7 \cdot 38$ milliseconds to travel from the Rule to an object 100 inches away, and a further $7 \cdot 38$ milliseconds to be reflected back, giving a total period the Counter is enabled to count of 14.76 milliseconds.

During this time the Counter must count 1,000 pulses (assuming the instrument is calibrated to measure to $0 \cdot 1$ inch). The frequency of the calibration frequency should be $17 \cdot 2 \mathrm{kHz}$.

Similarly the transmitted waveform will take a total of $7 \cdot 38$ milliseconds to be propagated from the instrument to an object 50 inches away and be reflected back to the instrument, while the total count displayed will be 500 .

The receiver and transmitter ultrasonic transducers are purpose built for this type of application. Their operation relies on a conical aluminium resonator which vibrates a piezoelectric ceramic element to produce a high sensitivity, wide bandwidth device and smaller in size than a conventional microphone.

TRANSMITTER AND RECEIVER CIRCUIT

The Transmitter circuit is shown in Fig. 2 and comprises gates ICla, IC1b, IC1c and TR1. IC1b and IClc are used as straightforward inverters in the oscillator circuit. The frequency of the oscillator is controlled by the RC time constant of C3 and the series value of R3 and VR1. VR1 is variable to permit calibration of the transmitter oscillator so that it oscillates at the resonant frequency of the transducer, that is, 40 kHz . Resistor R4 is a compensating resistor which provides stability to the oscillator.

The output from the oscillator is gated with the 0.2 ms pulse from the control circuit B via ICla which only allows a burst of eight pulses at 40 kHz to the transmitter transistor TR1. TR1 is used in the emitter follower mode for maximum current gain to drive the transmitter transducer X1. R1 provides d.c. bias for the transistor as the resistance of the transducer varies with frequency. At resonance it is approximately 500 ohms.

The Receiver circuit is also shown in Fig. 2 and comprises the three

common emitter amplifier círcuits using transistors TR2, TR3 and TR4. Resistors R9 and R10 provide the d.c. bias for TR2 and provide a high input impedance for connection to the receiver transducer X 2 . The second common emitter amplifier is d.c. coupled to the previous stage to provide high voltage amplification of the waveform appearing at the transducer. The third amplifier stage is a.c. coupled to the previous stage via C8.
Transistor TR4 is biased using resistors R15 and R16 to operate in the switching mode, and is in the off condition when no input signal is present but switches hard on when the input signal is detected.
Capacitors C7, C9 and C12 provide a.c. voltage gain to these amplifier circuits, in addition to the normal d.c. voltage gain provided by the d.c.
biasing emitter resistors R12, R14 and R18.
As the gain is frequency dependent, spurious low frequency noise which is picked up by the receiver transducer will be filtered out. Capacitor C10 filters out the 40 kHz signal which has previously been amplified, to leave the envelope shape of the received waveform.
This envelope will vary in duration depending on the strength of the received signal, from a narrow pulse of 0.2 ms due to a single relatively weak signal, to several milliseconds duration from a very strong signal made up of multiple reflections from a number of objects which have reflected the transmitted pulse back to the receiver.

To ensure that a standard width "pulse received" signal is sent to Control, the Receiver waveform appearing at the collector of TR4 is RC coupled via R19 and C11 before connection to ICld. Resistor R20 and capacitor C13 are used to decouple noise appearing on the supply rail.

CONTROL AND COUNTER CIRCUITS

The Control circuit is regulated by the Control oscillator comprising IC2a and IC2b. It is similar to the Transmitter oscillator. Capacitor C4
and resistor $R 5$ provide the $R C$ time constant for the oscillator which oscillates at approximately 10 Hz . The actual frequency of oscillation is not critical and hence no calibration or compensating resistor is required. The output from the oscillator, A, is connected to the clock input of a decade counter IC3 shown in Fig. 3.
This counter is not binary coded but provides ten decoded outputs which are normally "low" and go "high" only for their appropriate time period which in this case is 100 ms . After the fifth clock pulse the " 5 " output goes high and sends a reset pulse to the dual $J-K$ flip-flop IC4, and the counter IC5. At the sixth clock pulse, the " 6 " output goes high and initiates the measurement sequence by enabling the transmitting gate ICla via interconnection B.
As only a short enable pulse of 0.2 ms is required rather than the 100 ms available, the enable pulse is $R C$ coupled via R2 and C2 so that at the rising edge of the pulse, the input (pin 6) to gate ICla will rise but exponentially decay to its steady state value of 0 V in approximately 0.2 ms . The transmitter is activated only for this brief period as explained earlier.
The pulse occurring at B also initiates the Counter circuit by initially

Fig. 2. Shows the circuit diagram of the Transmitter, Receiver, Calibration and Control Oscillator in the Digital Rule.

being reduced in duration to 0.2 ms via the R8 and C6 coupling network and then being inverted by IC2e. The output is connected directly to the nand gate ICld.

A negative going pulse on either of the inputs to ICld will cause a positive going output pulse from the gate on interconnection C. This pulse is connected to the clock input of one of the J-K flip-flops in IC4, which will change output states with the initial output pulse on C caused by the transmitted pulse. The Q2 output hence switches from the high to the low state and thus enables the counter IC5.

RECEIVED PULSE

When the transmitted pulse has been reflected back to the Receiver and then amplified and shaped, the input (pin 9) to IClc will go "low" which will send another pulse to C to clock the J-K flip-flop which will revert to its original states and disable the counter IC5. The positive going edge of this disable command will also clock the other J-K flip flop in IC4 which will disable the first flipflop by placing a low state on input $J 2$.
Hence, any further clock pulses from the receiver on C caused by
later reflections of the transmitted pulse will be ignored, so that the counter IC5 will only be enabled for the period between the pulse being propagated and its first reflection being received.

During this enable period 1C5 is clocked from the Calibration oscillator, IC2c and IC2d. This is again similar to the Transmitter oscillator and the time constant of the series combination of R7 and VR2 and C5 allows the oscillator frequency to be set at 67.8 kHz . R 6 provides the compensation resistance. The output of this oscillator D connects directly to the counter clock input pin 12 of IC5. This counter is a three digit b.c.d. counter which provides a multiplexed output ideal for use with l.e.d. displays. The four b.c.d. outputs are connected to IC6, a b.c.d. seven segment decoder driver, which drives the l.e.d.s directly via the current limiting resistors R22-R28. R21 provides the current limit for the decimal point.

DIGIT DRIVERS

The digit driver transistors TR5, TR6 and TR7 operate directly from the digit select output of IC5 to switch on the displays as appropriate. The l.e.d.s are the principle current drain from the battery and therefore
a capacitor C14 is required to smooth the supply. Capacitor C16 controls the multiplexing frequency of IC5 while capacitor C15 filters out noise spikes appearing from the output of ICld.

The measured distance is displayed for approximately 900 milliseconds while the control counter IC3 continues to count up to Q9 and around to Q5 again when IC4 and IC5 are reset and the measurement is retaken. If no received signal is detected the count will continue until the reset pulse occurs, while the display will appear to show "888" due to the speed the counter is being clocked.

PRINTED CIRCUIT BOARDS

The circuits are laid out on two separate single-sided printed circuit boards, which are mounted one above the other in a plastic instrument case.

Fig. 3. The remainder of the circuit diagram for the Digital Rule containing Control, Counter and Display sections.

The component layout and solder side of board A is shown in Fig. 4, while the component layout and solder side of board B is shown in Fig. 5.

Board A mounts the predominantly discrete components of the circuit shown in Fig. 2 while board B mounts the predominantly digital components of the circuit shown in Fig. 3. The p.c.b. patterns are shown full size.

Begin construction by assembling the components on both boards. The use of sockets for the cmos devices is advised, and if these are used, order of assembly is unimportant.

Due to limited space around the i.c. positions, low profile sockets or

COMPONENTS

Resistors

R1	$1 \cdot 2 \mathrm{k} \Omega$	$\mathrm{R} 12 \mathrm{2} 2 \mathrm{k} \Omega$
R2	$27 \mathrm{k} \Omega$	$\mathrm{R} 1311 \mathrm{k} \Omega$
R3	4.7k Ω	R14 $7.5 \mathrm{k} \Omega$
R4	$100 \mathrm{k} \Omega$	R15 $100 \mathrm{k} \Omega$
R5	$10 \mathrm{M} \Omega$	R16 $6.2 \mathrm{k} \Omega$
R6	$100 \mathrm{k} \Omega$	R17 100k
R7	$10 \mathrm{k} \Omega$	R18 $11 \mathrm{k} \Omega$
R8	$220 \mathrm{k} \Omega$	$\mathrm{R} 19 \mathrm{M} \Omega$
R9	$1 \mathrm{M} \Omega$	R20 470
R10	$220 \mathrm{k} \Omega$	R21 820 ${ }^{\text {R }}$
R11	$100 \mathrm{k} \Omega$	R22 to 28680Ω (7 off)
All	$\frac{1}{4}$ W carb	n $\pm 5 \%$

Capacitors

C1 $0.01 \mu \mathrm{~F}$ polyester
C2 $0.01 \mu \mathrm{~F}$ polyester
C3 1000 pF polyestyrene
C4 $0.01 \mu \mathrm{~F}$ polyester
C5 220pF polystyrene
C6 $0.01 \mu \mathrm{~F}$ polyestey
C7 $0.1 \mu \mathrm{~F}$ polyester
C8 $0: 1 \mu \mathrm{~F}$ polyester
C9 $0.1 \mu \mathrm{~F}$ polyester
C10 1.5 nF disc ceramic
C11 $0.01 \mu \mathrm{~F}$ polyester
C12 $0.1 \mu \mathrm{~F}$ polyester
$\mathrm{C} 13220 \mu \mathrm{~F} 10 \mathrm{~V}$ elect.
C14 $220 \mu \mathrm{~F} 10 \mathrm{~V}$ elect.
C15 1.5 nF disc ceramic
C16 1.5nF disc ceramic

Semiconductors

TR1-TR4 BC109 silicon npn (4 off)
TR5-TR7 2 N 3702 silicon pnp (3 off)
!C1 4011 CMOS quad 2 -input NAND gates
IC2 4069 CMOS hex inverters
IC3 4017 CMOS decade counter
IC4 4027 CMOS dual J-K flip-flop
IC5 4553 CMOS three-digit counter
IC6 4511 CMOS b.c.d./seven
segment decoder
LD1-LD3 DL704 common cathode seven segment display (3 off)

Miscellaneous
VR1, $210 \mathrm{k} \Omega$ sub-miniature horizontal preset (2 off)
S1 momentary action push-to-make
B1 9V type PP3 YDuracell preferred)
X1 EFR-OAB 40 K 440 kHz ultrasonic transmitting transducer
$\times 2$ EFR-RAB 40 K 440 kHz ultrasonic receiving transducer PL1, 2 phono plugs (2 off)
Printed circuit boards (2 off) approximate size $95 \times 70 \mathrm{~mm}$ and $90 \times 70 \mathrm{~mm}$; PP3 battery clip; red Perspex sixe $40 \times 20 \times 1 \mathrm{~mm}$; case, Bimbox type BIM $2005 / 15$ size $150 \times 80 \times 50 \mathrm{~mm} ; 6 \mathrm{BA}$ fixings; foam rubber,

Fig. 4. The layout of the components on the top side of board A and connection details to board B. Lower diagram shows full-size master of the p.c.b. pattern for this board.

Soldercon pins will be required. Do not insert the i.c.s. until all soldering work has been completed to eliminate iron "leakage" damage. Veropins are advised for connection to the screened cable for ease of construction and a strong anchorage.

With the components soldered in place interconnect the two boards and solder the phono plugs on the ends of the screened cable. Finally, connect the battery terminal and switch.

MECHANICAL ASSEMBLY

The prototype was mounted in a plastics case measuring $150 \times 80 \times$ 50 mm . The two p.c.b.s are mounted

Fig. 5. The layout of the components on board B. The lower half shows the full size pattern required on the underside of board B.

VIEWED FROM UNDERSIDE

on top of each other supported from the lid of the case, such that the solder sides of the p.c.bs face each other, but obviously do not touch each other. This is seen in the photographs. A rectangular hole $35 \times 13 \mathrm{~mm}$ was cut into the lid of the case for the display, and is backed with a red Perspex lens, Araldited to the lid, to emphasise the display digits.

Two holes 10 mm in diameter need to be drilled in the side of the instrument case for the transducer connectors, while the body of the transducers are firmly attached on the side of the case using Araldite. It is essential that the transducers are mounted squarely on the surface of the case
to ensure that both the transmitter and the receiver are pointing in exactly the same direction.

Connection to the transducers is made using phono plugs which are connected to the p.c.b. using approximately 100 mm of screened cable. This length allows the instrument lid to be removed and gain comfortable access to the p.c.b.s for calibration, or to change the battery.

PRACTICAL CONSIDERATIONS

Sound waves cannot be directed as easily as light waves or microwaves, and they tend to quickly disperse over a relatively wide angle.

As mentioned previously, the ultrasonic transducers are particularly sensitive and the transmitter is in such close proximity to the receiver that the transmitted pulse disperses such that it is picked up by the receiver transducer.

Also the ceramic transducers rely on vibrating an aluminium cone which resonates at 40 kHz and for optimum effect, this cone is very lightly damped. Consequently, the receiver transducer tends to continue vibrating for a relatively long period after the incident sound wave has declined which causes the duration of any received signal such as the initial transmitted pulse to be extended and a false reading could result if the distance between the instrument and the object to be measured is too short.
A further point to be aware of is that the sound wave can be propagated both inside the instrument case as well as towards a distant object. Unfortunately the completely closed instrument case provides an ideal resonant chamber for sound waves and if these waves would also cause false readings on the instrument.
To prevent the sound waves propagating in the case, it is necessary to surround both the phono plug connectors to the transducers, and the battery, position at the other end of the instrument case, in foam rubber which absorbs the sound waves. It also provides a means of securing the battery in position.

LOWER LIMIT

To overcome these potential false readings occurring immediately after the transmitted pulse is propagated, the time constant of the $R C$ network used to initiate the enable pulse (R8 C6) for the display counter is relatively long and overrides any received signal for a period of approximately 1.5 milliseconds. However, while this precaution inhibits false readings, it also prohibits the measurement of objects less than 10 inches away from the instrument.

Completed prototype showing tier construction method of mounting the two boards to the specified case.

Close-up view of the two prototype printed circuit boards with all components in position.

The 9V PP3 battery, although physically small and ideal for a portable instrument has a limited capacity and would be unsuitable for this application if the instrument was in constant use. Current requirements are 50 to 60 milliamps under normal load which is predominantly required to drive the l.e.d. display.

A push-button on-off switch is provided to ensure that the instrument is on only when measurements are being taken and as this takes only a few seconds to perform, the push-button has not been found to be a disadvantage, and certainly extends the life of the battery. Even with this precaution, the use of a Duracell battery is strongly recommended.

TESTING AND SETTING UP PROCEDURE

Testing and setting up of the Rule is greatly eased if an oscilloscope is available, but it can be accomplished using a voltmeter. Only two adjustments are required to set up the
instrument: (1) the tuning of the transmitter oscillator to 40 kHz , and (2) the calibration of the counter oscillator. It may be a good idea to short out the push-button on-off switch while setting up and testing.

The transmitter oscillator should be tuned by varying VR1 and monitoring the received signal. If a voltmeter is used, the Rule should be pointed at a large flat surface about 12 inches away and the received signal at the collector of TR 4 should be monitored.
The voltage at this point will normally be about 8 V but will dip to 0 V only when a received signal appears which should occur approximately once per second. VR1 should be adjusted until the maximum dip is detected.
If an oscilloscope is used, the Rule should be moved approximately 24 inches from a large flat surface and the peak-to-peak waveform occurring at either the collector of TR2 or TR3 should be displayed. VR1 should be adjusted to give a maximum peak-topeak voltage waveform.

The Calibration oscillator is readily calibrated by placing the Rule directly in front of a large flat surface so that there is exactly 24 inches between the surface and the face of the instrument which mounts the transducers. A tape measure should be used to measure this length. VR2 should then be adjusted until the display reads exactly " $24 \cdot 0$."

If the instrument is required to display in metres, $C 5$ should be replaced by a $2,000 \mathrm{pF}$ polystyrene capacitor and the distance between the surface and the Rule face increased to 50 cm . VR2 should then be adjusted until the display measures " $0 \cdot 50$ ".

Also, the decimal point on the display should be moved. The track to LD2 pin 9 should be changed to reach LD1 pin 9.

FAULT FINDING

There is, unfortunately, no easy method of fault finding if the Ruler fails to operate correctly and it is a case of laboriously plodding through the circuitry. Check for the obvious things first, such as ensuring that the supply voltage has not fallen below about 8 V .

Next test the oscillators by monitoring their outputs at interconnections D, A and ICl pin 11. The waveforms should switch between the supply rails and will read approximately $4 \cdot 5$ volts if using a voltmeter. The receiver and transmitter stages may be tested more readily if interconnection B is disconnected at board B and connected to 9 V directly while capacitor C6 is short circuited. This permanently enables ICla which consequently enables the transmitter and a 40 kHz pulse train is propagated and therefore received, all of the time, rather than briefly once per second.

When fault-finding in the cmos control or display areas, the low logic state should be at 0 V while the high voltage state should be +9 V , the supply voltage. However, any voltage below approximately 4 V will appear as a low logical state, while any voltage in excess of 5 V will appear as the high logical state to the input of a смоs device.

USE OF THE DIGITAL RULER

As explained previously, the instrument relies on picking up a reflected ultrasonic pulse, and hence the stronger the reflected pulse, the greater the distance may be between the instrument and the object to be measured. Large flat surfaces such as walls and ceiling are ideal but smaller solid objects may be detected within a shorter range.

The Ruler should be pointed directly at the object, not at an angle,

The two transducers specified have integral phono socket connections. Screened cable fitted with phono plugs is required to connect these to the rest of the circuitry. You can see some of the foam rubber filling mounted directly behind the transducers to absorb any sound waves entering the case cavity.
so that the pulse is reflected directly back to the instrument. Uneven surfaces or absorbent surfaces such as curtains, do not reflect well but tend to diffuse or absorb the sound waves, so that the range is again limited.

The transmitter propagates the sound waves over an angle of at least 50 degrees of arc to the left and right of the transducer axis and reflections may be picked up from objects which do not appear to be in direct
line with the transmitter, and may cause the user to falsely believe the instrument is reading incorrectly.

Any sonic or ultrasonic wave propagates through air and a disturbance in the flow of air will cause variations in the time taken for the pulse to be transmitted and reflected. In normal household use such variations may be ignored but if the instrument is used for outside use, the accuracy may be affected by wind speed by as much

Phono connections to the transducers securely glued to the case.

Close-up view of the transducers squarely mounted on the outside of the case.
as 5 per cent in a strong breeze, and up to 10 per cent in a gale force wind.

Most objects greater than 2 square feet will be detected up to a distance of 60 inches, and detection will be extended to the full range of 99.9 inches if a large flat surface is to be measured. The overall accuracy of measurement has been observed by the designer to be within 2 per cent.

Д

JACK PIUA \& FATIIY...

Finding Undercover Transmitters

Many of the 27 MHz "CB" operators who, during the past year or so, have been hauled into the Magistrates Courts are there because some police forces have taken to the habit of looking over any vehicles seen to be carrying unusual aerials (a practice that has given many unhappy moments to licensed amateurs of whom the police seem often to have little knowledge). Relatively few owe their appearances to the use of sophisticated direction-finding techniques (D/F)-although the story still arouses chuckles of how one journalist "offender" was actually spotted using a hand-held 27 MHz unit from the windows of the Home Office Radio Regulatory Department of whose location he was apparently ignorant|
The seemingly low risk of being suc. cessfully tracked down by D / F when operating mobile has made many people wonder what has happened to the craft of hunting down hidden transmitters, and whether it would not be equally simple to get away with using two-way radio for more serious purposes. If 100,000 or so CB "pirates" can get away with all the activity one now hears on 27 MHz then what, it is argued, has happened to radio security and surveillance?
The radio amateurs retain an interest in D / F contests, mostly on 1.8 MHz , where with the help of loop and ferrite-loop aerials it is possible to track down as many as three carefully hidden transmitters in a single afternoon. And indeed direc-tion-finding was one of the earliest applications of radio in the heady days of 1900-1910 when pioneers such as S. G. Brown, E. Bellini, A. Tosi and H. J. Round were all making history.
The 1914-18 war also gave a tremendous fillip to the craft as it did to so many other aspects of radio. The naval Battle of Jutland was brought about by a skilful and effective combination of $D / F_{\text {, }}$ interception, codebreaking and human deduction.

High Frequency D/F

Short wave (h.f.) D/F proved a more difficult nut to crack, though the 1919 patent of F. Adcock for "an improvement in means of determining the direction of a distant source of electromagnetic radiation' formed the basis for many later installations, while the introduction some 40 years ago of the cathode-ray tube display as a result of American, French and British work led to the so-called 'Huff-Duff' system, that enabled bearings to be taken on fleeting signals. In their turn, the Germans developed the 'Wullenweber ring" or wide-aperture-aeri lechnique as one of their least publicised but most effective weapons of World (Nar 2.
In recent years the massive Wullenweber circular aerials have been further
improved by the use of high-speed electronic scanning and digital computers. A really large modern h.f. system can measure the incoming direction of a signal to better than 0.1 degrees which is an order of magnitude less than the deviations that can occur on distant signals due to the effects of the ionosphere.
For smaller installations it is now possible to locate these in remote places and operate them entirely unattended with all information brought back to base using telemetry systems. Combined with modern band-scanning techniques it is possible to check hundreds of frequency channels per second and to select for bearings only stations of interest.

City Reflections

However, despite the fantastic accuracy of modern D / F techniques there is a particular problem when taking bearings on v.h.f. transmitters located in city streets, due to the many reflections and changes in polarisation caused by buildings and high structures. But "pirates" should not rely on this.
A recent publication by the German firm of Rohde \& Schwarz provides a graphic illustration of what can now be achieved, by using extremely sophisticated equipment, in difficult circumstances. In trials in Munich they installed Doppler wide-aperture D/F systems in two of their premises 1360 metres apart and these were used to track vehicles moving around the city at distances up to about 5 km . The transmitters were in the frequency range 20 to 1000 MHz .

On average, the position of the transmitter was determined to within 200 metres of its correct position, with a spread of individual bearings of about $2 \cdot 5$ to 3 degrees. Accurate bearings can be obtained with such systems provided the transmitter is active for more than just one-tenth of a second-and even in that short time the results are the average of a considerable number of electronic sweeps or scans of the aerial system.
Such installations, in radio contact with police or security vehicles, could undoubtedly quickly account for a lot of illegal operation, although one doubts if many authorities would wish to mount such an elaborate and expensive operation unless the objective was something more serious than CB chatter. The German firm points out the value of such tech. niques for keeping track of police, fire or rescue vehicles, to allow them to be guided to their destinations.
Rather more specialised and intriguing are such suggested applications as "personal protection' and 'trailing'" prepared vehicles. By this one assumes they mean that a vehicle containing a VIP could be followed on its passage through a city, or the police or security services could fix a small beacon transmitter to a suspect vehicle and then, by "radio
shadowing", find out exactly where it goes.

On v.h.f. a wide-apeiture Doppler D/F aerial involves only a compact ring of dipoles but some very complex electronics.

Black Aspidistra

Being one of those insomniacs who spend part of most nights listening to the BBC World Service transmissions on its 648 kHz medium wave channel, I have been following with interest the agitation in the press over the change later this year from its present transmitter site at Crow. borough, Sussex to more directional aerials at Orfordness in Suffolk; a fact that may make it more difficult for some UK listeners to receive the service.

Those who have been appealing to the BBC to change its plans all seem to overlook one important but relatively little known, though not secret, fact. Neither the Crowborough nor the Orfordness transmitters are owned, engineered or operated by the BBC, but belong to the Foreign and Commonwealt|, Office.

Although the BBC seldom draws attention to the subject, the present Crowborough 600 kW transmitter is the famous wartime "Aspidistra" transmitter purchased in the USA in 1941 at the order of the Ministry of Economic Warfare without the knowledge of the BBC. It was operated from January 1943 until the end of the war by the Political Warfare Executive as a "black" propaganda station, making full use of its ability rapidly to change frequency in order, when required, to "intrude" on German broadcasts. Then (and since) Aspidistra and the other FCO broadcast transmitters overseas have been the cause of much discussion and quite a bit of friction between "Auntie" BBC and the Government.
In 1968, I became one of the very few journalists ever to be invited to look at Aspidistra in its underground transmitter hall at Crowborough. This building bears a remarkable resemblance to some of the old 1930s super cinemas-a fact that may not be unconnected with the coincidence that the same architect was involved.
Although ancient in broadcasting terms, the FCO have always keot the "Largest Aspidistra in the World" (in the words of the old Gracie Fields song from which the name was derived) in good shape. It was, for example, the first high-power broadcast transmitter in this country to be modified to use an all-solid-state power supply.
Soon to be retired, Crowborough still puts out a potent signal and I suppose that not one in a thousand listeners ever realise that over many years the FCO and not the BBC have been responsible for the highest power m.f. transmitter in the UK, something that seems to have led from time to time to more than a little professional jealousy and friction, although since the FCO foots the bill the BBC engineers cannot really complain!

ONE of the first things that the newcomer to electronics must learn is how to "read" circuit diagrams. This requires an understanding of the symbols that are used to represent electronic components in such diagrams. This month we present the most commonly used symbols. Study these symbols and memorise what they stand for.

CAPACITORS

MISCELLANEOUS

Loudspeaker

Light dependent resistor

Fixed value inductance

Variable inductance coil with ferrite core

Transformer with laminated core, no tappings

Two conductors crossing with no connection
Junction or connection of three conductors
"Earth" connection: (a) to earth (b) to chassis

Continuous screened

MULTI-CHANNEL CHASER

Reading through the "Chaser Light Display" (September '79), it seemed rather limited with only three lights
so I decided to design a multichannel chaser.
My idea is to use 7495 shift registers controlled by an astable multivibrator built from two gates of a 7400. The circuit is shown below. This was 16 l.e.d.s but could easily be expanded by adding more 7495 devices.

The user then has to program in his own pattern. By pressing S1 at the correct time the l.e.d.s will come on in turn and it is a simple matter to leave gaps to establish the pattern.

If S3 is pressed this will disconnect the output of the last shift register from the input of the first so an output pulse illuminating D12 will not be passed on to Dl so there will be a gap in the pattern-part of the pattern will have been deleted.

The oscillator (IC1) is disconnected from the shift register by pressing $\mathbf{S} 2$ and this freezes the display.

Hugh Pyle, Dorking, Surrey

ELECTRONIC FUSE

An immediate spin-off from a power supply I have been designing is an electronic fuse. Many circuit designs have been published but none has been fully satisfactory using solidstate devices.
I think I have solved the problem by the addition of a single diode to divert the currents that occur, enabling a very fast fuse action to be achieved with a very low current consumption when the fuse circuit has latched.
The fuse works as a switch to reduce the voltage reference in a regulated supply to near zero when a limit current has been detected. A practical circuit is shown in Fig. 1 for a simple follower-amplifier. (The value of DI will be set by the output voltage you require.) It may work just as well with feedback regulators.
The important new component is D2 as you will see if you trace the

current paths out. It causes the latch formed by TR2 and TR3 to operate when the voltage across VR1 attains approximately $(0.55+0.6) \mathrm{V}$ and then isolates the latch from VR1 so current from TR2 collector goes only into the base of TR1.
In previous designs without D2 the latch is quenched because the latch could not sustain the high current needed through VR1 to maintain the p.d. across it. Here it is not required.

The supply goes into a complete shutdown. Latching action is quenched by using a normally open push
button switch providing an even lower impedance path than the electronic switch. The current limit level can be varied by altering the resistance value set by VR1.
P. J. Ratcliffe,

Stevenage, Herts

Sorry MarkI

Our apologies to Mark Davidson whose name was incorrectly given under his contribution Diode Polarity Tester in the February issue. (We got it right on the cheque thoughl)

MAGENTA ELEGTRONICS LTD．

E．E．PROJECT KITS

Make us YOUR No． 1 SUPPLIER OF KITS and COMPONENTS for E．E．Projects．We supply carefully selected sets of parts to enable you to construct E．E．projects．Project kits Include ALL THE ELEC TRONICS AND HARDWARE NEEDED－we have even Included approprlate screws，nuts and I．C．sockets．Each project klt comes complete with its own FREE COMPONENT IDENTIFICATION SHEET．We supply－you construct．PRICES INCLUDE CASES UNLESS OTHERWISE STATED．BATTERIES NOT INCLUDED． IF YOU DO NOT HAVE THE ISSUE OF E．E．WHICH CONTAINS THE PROJECT－YOU WILL NEED TO ORDER THE INSTRUCTIONS／ REPRINT AS AN EXTRA－ 45 p ．each．

LATEST KITS：S．A．E

OR＇PHONE FOR PRICES

FOUR BAND RADIO．Feb．81．£39．98． CAR ACTUATED DRIVEWAY LIGHT CAR ACTUATED DRIVEWAY
Feb． 81 ．E21－73 less malns socket．
THREE CHANNEL STEREO MIXER THREE CHAA
Feb．81，£15－89．
SIGNAL TRACER．Feb．81．£6．95，Less probe．
Ni－Cd BATTERY CHARGER．Feb． 81 E11．57．
UNIBOARD 3－POWERSUPPLY．Feb 81．£15－20．
ULTRASONIC INTRUDER DETEC TOR Jan．81．© \＆5．98，Less case \＆chassIs． AUTO SLIDE CHANGER．Jan．81．EE 44 PHASER SOUND EFFECTS．Jan． 81 c22． 83.
ICEALARM．Jan．B1．E6． 71
LOGIC PULSE GENERATOR．Jan． 89 C8． 80
2 NOTE DOOR CHIME Dec．80．Es－78． LIVE WIRE GAME．Dec．80．反9．95．
SOUND TO LIGHT．Nov． 80.3 channel f18．95 inc，etched a driled peb．Les Ilght display．
PRECISION TIMER．Nov．80．£24－48． GUITAR PRACTICE AMPLIFIER Nov． $80.610 \cdot 96$ less case．Standard case
£3．58．High quality case $£ 8.33$ ． SOII MOISTURE MONITOR
SOIL MOISTURE MONITOR．Nov． 80
TRANSISTOR TESTER．Nov． 80 e．9．89 inç．test leads．
AUDIO EFFECTS UNIT FOR WEIRD SOUNDS．Oct． $80 . £ 10.75$
PHONE CALL CHARGE JOGGER．Oct 80． $66 \cdot 19$
BICYCLE ALARM．Oct，80．£8•60 less mounting brackets．
IRON HEAT CONTROL．Oct．80．©4．99． DARKROOM CONTROLLER．Oct． 80 21.65 case difers．

BEDSIOE RADIO．Sept．80．£15－98． TTL LOGIC PROBE．Sept．B0，E4－41 TTL POWER SUPPLY UNIT．Sept ELECTRO
ELECTRONIC TOUCH SWITCH AUTOPMASE．June BO．E21－41 Rectangular Caso
CDURTESY LIGHT DELAY．June 80 E609．
A．F．SIGNAL GENERATOR．JUNE BO AUTOWAA．June 80，E21．33．Rec tangular Caso．
G．P．AMPLIFIER．June B0，£6－60． SIGNAL TRACER，June 80． 55.50 ． ZENER DIODE TESTER．June 80 $65 \cdot 67$
CRICKET GAME．Aug．80．£17．42
WEATHER CENTRE，Aug．80．ET3．7
exc．hardware＋wire for sensors．
AUDIO MILLIVOLTMETER．Aug． 80
STATION RADIO．May BO．E13．9 less case．
AUTOFADE．May 80．£9．86．
LIGHTS WARNING SYSTEM，May BATTER
BATTERY VOLTAGE MONITOR AUDIO TONE GENERATOR．May 80 GAS SENTINEL．AprII 80．£26． 32. SPRING LINE REVERB．UNIT，Jan 80．£21．05．
MICROCHIME DOORBELL．FEb． 79 c13．48．
AUTO LEVEL CONTROL．April 80 E7．69．
CABLE \＆PIPE LOCATOR．Mar． 80 33.50 less coll forme

KITCHEN TIMER，Mar．80．£12．46， STEREO HEADPHONE AMPLIFIER Mar．80，E14－94．
5 RANGE CURRENT LIMITER．Mar． 80 E－24．
MICRO MUSIC BOX．Fgb， 80 £13． 2. Gray Case 3 3．63 extra．
SIMPLE SHORT WAVE RECEIVER Fob．80． $\mathbf{\text { E21－65，headphones }} \mathrm{f2}$－98． SLIDE／TAPE SYNCHRONISER．F日b 80．C10． 98.
MORSE PRATICE OSCILLATOR．Feb 80．53．93．

UNIEOARD BURGLAR ALARM Dec UNIEOA
BABY ALARM．NOV． 79 ER． 20
OPTO ALARM．Nov． 79 E5．77 Inc． optlonal ports．
MW／LW RADIO TUNER．Nov．7P £15－50 ee dial．
ONE ARMED BANDIT，Oct 79．E18．39， caso extra c3．08．
HIGH IMPEDANCE VOLTMETER． Oct． 10. E15

CHASER LIOHTS．Sept．79．E19．9E
VARICAP M．W．RADIO．Sept． 79 － 1 P
SIMPLE TRANSISTOR TESTER Sept．79．£6．2t．
LECTRONIC TUNING FORK Aug． 79 E．15．Sultable mlerophone \＆plug $£ 1 \cdot 59$

WARBLINGTIMER．Aug．79．EE 25 IV POWER SUPPLY Aug．79．©． 9.94 Inc pb．
8WANEE WHISTLER Aug． 79 es－19
DARKROOM TIMER．July 79．E2．47．
TREMOLO UNIT．June 79．£11－20
ELECTRONIC CANARY．June 79．E5．18． LOW COST METAL LOCATOR．JUNe 9． $\mathrm{EJ} \cdot 44$.
Handle \＆coll former parte extra Es．5s．
QUAD SIMULATOR．June 79，Ef 25 ．
NTRUDER ALARM．May 1979．C1E．71 Lasa Ext．Buxzer \＆Lamp and Loop Com－ onents．
THERMOSTAT．＇PHOTO＇SOLU－ TIONS．May 79．E16－02．Less socket，tube TRANSIS
TRANSISTOR TESTER．AprII 79 OUC
TOUCH BLEEPER，Aprll 79．£3．52 ONE TRANSISTOR RADIO．Mar． 79 With Amplifter \＆Headset．Leas case．

AUDIO MODULATOR．Feb．79． 11 －50 hust cate and pine．
THYRISTOR TESTER．Feb．79．£3． 22
 Cses（horlzontal layoui）$£ 5 \cdot 21$ extra． FUZZ BOX．Dec，78．Es 20.
VEHICLE IMMOBILISER．Inc．PCB． Dec．78．E6．68．
AUDID EFFECTS OSCILLATOR．NOY 78．$£ 3.99$ Inc．board，
FUSE CHECKER．Oct．78．ET－ 7 ．
TREASURE HUNTER．Oct．78．£17－81 las handle \＆coll former
GUITAR TONE BDOSTER．Sept． 78. $5 \cdot 30$ Inc．p．c．b．
SOUND TD LIGHT．Sept．78．£7－48． FILTER，E1•68
SLAVEFLABH．Aug．78．£3－20less SKI LOOIC PROAE．July 78．£2．53．
N SITU TRANBISTOR TESTER June 7B．ES．98．
FLASHMETER．May 78．£11－98 leat calc and diffueer．
POCKET TIMER．AprII 78．E2．98
WEIRD SOUND EFFECTS GENERA－ TOR．Mar，78．£4－50．
CHABER LIOHT DISPLAY．FEb． 78 £23．59 Inc．p．c．b，case extra ©5．21． AUDIO VISUAL METRONOME．Jan． 78 E． 12.
RAPID DIODE CHECK，Jen．78．£2．54． AUTOMATIC PHASE BOX．Dec． 77 cs． 5 S Inc．p．c．b．
VHF RADIO．Nov．77．£14．38
ULTRABONIC REMOTE CONTROL Nov．／Dec．77．£16－03．
ELECTROMIC DICE，March 77，E4－53，
PHONE／DOORBELL REPEATER，July 77．ES． 38.
CAR BATT世RY ETATE INDICATOR Sept．78．E1．79 fose cate Inc．PCB． R．F．BIONAL GENERATOR．Sept． 78 E18：17 lese case．
ADD－ON CAPACITANCE UNIT．Sept． 77．©5．00，
HIADPHONE ENHANCER．Jan． 70 E2．60．
PAssive mixer．Oct．78．£3．72
MIC AMP，D＊C．78，©2•＊0，
AUDIBLE FLABHER，D\＆C．78．©1．21．

80／81 ELECTRONICS CATALOGUE
KITS
1．C．s
TRANSISTORS
CAPACITORS
Ircuits，and detalls of all our kits and educational courses．
Up to date pricellstincluded．All products
are stock lines for fast dellvery．Send 70 p in stamos（ 5×14 p or 7×10 petc．）．

TOOLS RESISTORS HARDWARE CASES

ADVENTURES WITH ELECTRONIOS Eyvoim

An easy to follow book suitable for all ages，ideal for beginners．No Soldering．Use anciudec＇breadboard．Glves clear Instructions wlth lots of plctures， 16 projects－ bout electronic components and how clrcults work．Component pack Includes an $\$$－Dec and the components for the projects．

MARCH 81 EE KITS

BENCH

MINI SIREN，Mar． 81 EE－84．
SIMPLE TRANSISTOR／DIODE TESTER OHMMETER VERSION \＆1－72，LED VER SION E2．33．

MODULATED TONE DOORBELL，Mar． 81
©5•65， M．E．D，DICE，Mar．81，$£ 7 \cdot 1$ 18． TROLLER 55.24 less power supply SMOOTHING PARTS 42p．POWER SUP
L．E．D．FLASHER，Mar．81，£3．70．
PLY PARTS，£3．58

The INStructor
 A FULLY CONSTRUCTIONAL PROJECT
 INCORPORATING AN INS8060 MICROPROCESSOR CHIP

The Instructor is a low cost assembly which provides a practical introduction to microprocessors and their functions．It is not a com－ puter but it is a working circuit which allows microprocessor working to be followed，one program step at a time．Butld the Instructor and you will gain microprocessor experience．The series is based on the INS 8060 microprocessor IC，also known as the SC／MP Mk．2．Circuits are bulit on a plug in Eurobreadboard． Kit is available with or without the breadboard．INSTRUCTOR COMPONENT PACK：Including Eurobreadboard £27•85；or less Eurobreadboard £21•65

INSTRUCTOR COURSE NOTES AND OPERATINGINSTRUCTIONS－ \＆2． 98 extra．

3 BAND S．W．RADIO

Slmple T．R．F．Design．Covering most Amateur Bands and Short Wave Broad－ cast Bands．Flve controls：－Bandset， Bandspread，Reaction，Wavechange and Attenuator，Coll solection is by Wave－

TEACH－IN－ 80

E．E． 12 part series．Oct＇79－Sept＇80．Covers the basics of electronics －lots of practical woik．Circuits are built on a plug－in Eurobread－ board which is bult into a wooden console which houses the power supplles，speaker，meter，pots and LED indicators．The series uses a range of electronic components in the experimental work including a photocell，I．C．s，transistors etc．
Wooden Console（Tutor Deck）kit $\mathbf{£ 5} \mathbf{9 8}$ extra．Includes all the wood，glue，feet and strap handle．
Electronic components，Including Eurobeadboard，for the console and the experiments $£ 25.40$（called list $\mathrm{A}+\mathrm{B}+\mathrm{C}$ by E．E．）．Re prints avallable－Parts 1－12，45p each．
LIst＇C＇only $£ 2.45$ ．
TOWERS INTERNATIONAL TRANSISTOR SELECTOR £10．35

ANTEX X25 SOLDERING IRON． 25 W ．
ANTE
SOLDERINGIRON STAND．E2．03．
SPARE BITS．Small，standard，large
65 pach．
SOLDER．
SOLDER．Handy size． 98 p ．
EUROBREADBOARD．EO．20．
LOW COST LONG NOSE PLIERS．
LOW COST CUTTERS．E1．69．
LOW COST CUTTERS．£1．69．
P．C．B．ASSEMBLY JIG．£11－9：
MONO HEADPHONES． 2 K Padded． Superior 6 enslitive．$£ 2.98$ ．
STERES HEA
Oadded．£4．29．
MAGENTA ELECTRONICS LTD．
EH27， 98 CALAIS ROAD，BURTON－ON－TRENT，STAFF8． DE13 OUL．0283－65435．9－12，2－5 MON．－FRI．MAIL ORDER ONEY ADD 40 p P．\＆P．TO ALL ORDERS． ALL PRICES INCLUDE 15% V．A．T． ETC．WELCOME．
ENQUIRIES MUST INCLUDE S．A．E． OVERSEAB：SEND ORDER WITH INTERNATIONAL POSTAL COUPONS WE WILL QUOTE EXACT PRICE BY AIR MAIL．

HOW TO SOLDER BOOKLET．120 HEAT SINK TWEEZERS．15p． SOLDER BOBEIN．30p．
DESOLDER PUMP．£5．98．
CONAECTING WIRE PACK． $5 \times 5 \mathrm{yd}$ colls． 65 p
VERO SPOT FACE CUTTER，E1． 23 VERO PIN INSERTION TOOL．O．1＂ 1－66．015 £1．67
RESISTOR COLDUR CODE CALCU
 With probes， $2^{\prime \prime} \times 31^{\prime \prime} \times 1^{\prime \prime}$ ．f6． 66.

MAGENTA gives you FAST DELIVERY OF QUALITY COMPONENTS AND KITS． All products are stock lines and are new and full specification．We and quallty products to all our customers－HAVE YOU TRIED US

SUPERSOUND 13 HI-FI MONO AMPLIFIER A superb solid state audio amplifier. Brand new components throughout. 5 silicon transistors plus 2 power Output approx. 13 wats response $12 \mathrm{~Hz}-30 \mathrm{KHz} \pm 3 \mathrm{db}$. Fully integrated preamplifier stage with separate Volume. Bass boost and Treble cut controls. Suitable for $8-15$ ohm speakers. Input for ceramic or crystal cartridge. Sensitivity and tested, with knobs, escutcheon panel, input and output plugs. Overall size $3^{\prime \prime}$ high $\times 6^{\prime \prime}$ wide $\times 7$ n $^{\prime \prime}$ deep. AC $200 / 250 \mathrm{~V}$. PRICE \& $18 \cdot 40$, P. \& P. £2. 50 . HARVERSONIC MODEL P.A. TWO ZERO An advanced solid state general purpose mono ampliGram, etc. Features 3 individually controlled inputs (each input has a separate 2 stage pre-amp). Input 1 , 15 mV into 47 k . Input $2,15 \mathrm{mV}$ into 47 k (suitable for use with mic. or guitar etc.). Input $3,200 \mathrm{mV}$ into 1 meg . suitable for gram, tuner, or tape etc. Full mixing facilities with full range bass \& treble controls. All inputs plug into standard jack sockets on front panel. Output socket on rear of chassis for an 8 ohm or 16 ohm peaker. Oly finished purpose built cabinet made from black vinyl covered steel, with a brushed anodised luminium front escutcheon. For ac mains operation $200-240$ volts. Size approx. $12 \operatorname{tin}$ wide $\times 5$ in high \times 74 in deep.
Special price $£ 29 \cdot 00+£ 3 \cdot 25$ carriage and packing. "POLY PLANAR" WAFER-TYPE, WIDE RANGE ELECTRO-DYNAMIC SPEAKER
Size $11 \frac{7}{\prime \prime}^{\prime \prime} \times 14+6^{\prime \prime} \times 1 \frac{7^{\prime \prime}}{7^{\prime \prime}}$ deep. Weight 190z. Powe: handling 20W r.m.s. (40W peak). Impedance 8 ohm only. Response $40 \mathrm{~Hz}-20 \mathrm{kHz}$. Can be mounted on ceilings, walls, doors, under tables, etc., and used with or without bafte. Send S.A.E. for full details. (20, two fl.80) A brand new 22 transistor hi-fi stereo amplifier of superior design made hy a well-known British manuacturer, for a now cancelled contract order. The unit is supplied new \& tested on a printed circuit panel discrete components. Brief specification: 15 wadts r.m.s. per channel O/P into 8 ohms. (o/p stages fully protected against s / c) I/P 60 mV . for ${ }^{+}$ceramic cartridge. Provision for tape i / p \& o/p. Only requires the addifion of a 40 volt (\&) 2 amp. power supply \& the bass, reble, balance \& vol. control, (standard tvpes). FULL Circuit diagram \& connection details supplied. Price with edge connectors. Only $99,00+80 \mathrm{p}$ D \& D . F ORDERED WITH AMPLIFIER: - ${ }^{2} .2$ stage pre-amp for Mag. Cart. RIAA corrected
 Condenser $£ 4 \cdot 00+$
(while stocks last).

STEREO TUNER
200/240V Mains ted Solid State FM/AM Stereo Tuner. Covering M.W. A.M. 540-1605 KHz VHF/FM 88-108 MHz . Built-in Ferrite rod aerial for M.W. Full AFC and AGC on AM and FM. Indicator. Built in Pre-amps with variable output voltage adjustable by pre-set control. Max o/p Voltage $600 \mathrm{~m} / \mathrm{y}$ RMS into 20 K . Simulated Teak finish cabinet. Will match almost any amplifier. Size 88^{n} w $\times 4^{\text {H }} \mathrm{h} \times$ $9 \frac{1}{2}$ d approx
LIMITED NUMBER ONLY at $£ 29 \cdot 00+£ 2 \cdot 60$ P. \& P. 10/14 WATT H1-FI AMPLIFIER KIT
A stylishly finished mono-
aural amplifier with an
output of 14 watts from 2 EL84s in push-pull. Super reproduction of both music and specch with negligible mike and gram allow records and announcements to follow each other. Fully shrouded section wound
 output transformer to Q Q \& match $3-15 \Omega$ speaker and 2 independent volume controls, and separate bass and treble controls are provided giving good lift and cut. Valve line-up 2 EL84s, ECC83, EF86 and E280 rectifier. Simple insiruction booklet. $50 \mathrm{p}+\mathrm{SAE}$ (Free with parts). $\mathbf{£ 3} \cdot 20$ Also available ready built and tested $\mathbf{£ 2 2 . 5 0}$. P. \& P. $£ 3 \cdot 20$.

STEREO DECODER MK.II
SIZE $1 \frac{1}{2}^{\prime \prime} \times 2 \frac{1}{4}^{\prime \prime} \times \frac{4}{4}^{\prime \prime}$ ready built. Pre-aligned and ested for $10-16 \mathrm{~V}$ neg earth operation. Can be fitted o almost any FM VHF radio or tuner. Stereo beacon light can be fitted if required. Full details and instructions supplied. $\mathbf{£ 7} \cdot \mathbf{0 0}$ plus 30 p. P. \& P. Stereo beacon light if required 40p extra.
Mullard LP1159 RF-IF module 470 kHz 82.50 P. \& P. 50n Full specification and connection details supplied. PJe VHF FM Tuner Head covering 88-108 $\mathrm{MHz}, 10.7 \mathrm{MHz}$ I.F. nutput. 7.8 V + earth. Supplied pre-aligned. with full circuit diagram with precision
geared F.M. gang and 323 PF +323 PF A.M. Tuning gang only $£ 3.40+$ P. \& P. 60.D STEREO MAGNETIC PRE-AMP. Sens. 3 mV in for 100 mV out. 15 to 35 V neg. earth. Equ. $\pm 1 \mathrm{~dB}$ from 20 Hz to 20 KHz . Input impedance 47 K . Size $1 \mathrm{~m}^{\prime \prime}$

HARVERSONIC SUPERSOUND $10+10$ STEREO AMPLIFIER KIT
A really first-class Hi-Fi Stereo Amplifier Kit. Uses 14 ransistors including Silicon Transistors in the first five stages on each channel resulting in even lower noise evel with improved sensitivity. Integral pre-amp with Bass, Treble and two Volume Controls. Suitable for use with Ceramic or Crystal cartridges. Very simple to modity to suit magnetic cartridge-instructions included. Output stage for any speakers from 8 to 15 ohms. Compact design, all parts supplied including circuit meard with component identification plearly marked smart brushed anodised aluminium front panel with matching knobs, wire, solder, nuts, boltsno extras to buy. Simple step by step instructions enable any constructor to build an amplifier to be proud of. Brief specification: Power output: 14 watts r.m.s. Der channel into 5 ohms. Frequency response: $\pm 3 \mathrm{~dB} \quad 12-30,000 \mathrm{~Hz}$ Sensitivity: better than 80 m into $1 \mathrm{M} \Omega$: Full power bandwidth: $\pm 3 \mathrm{~dB} \quad 12-15,000 \mathrm{~Hz}$. Bass boost approx. to 16 B . 18 dB . Power requirements 35 v at 1.0 amp. Power requirements $35 v$. at 1.0 amp.
Overall Size $12^{\prime \prime} \mathrm{w}$. $\times 8^{\circ} \mathrm{d}$. $\times 2 \frac{1}{n \prime \prime}^{\prime} \mathrm{h}$.
Fully detailed 8 page construction manual and parts list free with kit or send 50 p plus large S.A.E. AMPLIFIER KIT \&14-95 P. \& P. \&1-20 (Magnetic input components 33p extra)
 SPECIAL OFFER-only $£ 25-80$ if all 3 items ordered at one time plus 53.00 p p. \& p.
Also avail. ready built and tested $\mathbf{3 2} \mathbf{2 0} \mathbf{2 0}$ P. \& P. £3-00. HARVERSONIC STEREO 44
A solid state stereo amplifier chassis, with an output of 3-4 watts per channel into 8 ohm speakers. Using the latest high technology integrated circuit amplifiers with
built in short term thermal overload protection. All components including rectifier smoothing capacitor. fuse, tone control, volume controls, 2 pin din speaker sockets $\& 5$ pin din tape rec,/play socket are mounted on the printed circuit panel, size approx. $9 t^{\circ} \times 2 \frac{1}{}^{*} \times 1^{\text {" }}$ max. depth. Supplied brand new \& tested, with knobs, brushed anodised aluminium 2 way escutcheon (to allow he amplifier to be mounted horizontally or vertically) at only $£ 10 \cdot 40$ plus 90 p P. \& P. Mains transformer with an output of $17 v$ a/c at $500 \mathrm{~m} / \mathrm{a}$ can be supplicd at $\& 2$. if required. Full connection All prices and specifications correct at time of press and subject to alteration without notice.
PLEASE NOTE: P. \& P. CHARGES QUOTED APPLY TO
ENQUIRIES.

Rapid Electronics

Pack No.			Pack No.		
A 10	10 PP 3 battery leads	50p	F331	1 BD 139 transistor	45
A 72	103.5 mm jack plugs	80 p	F421	1 MJ2955 transistor	110
A 73	103.5 mm jack sockets	80 p	F43	578 LOS regulators	130
A74A	5 Standard jack plugs	80p	F46A	17805 regulator	70
A75A	5 Std. jack sockets	90 p	F47A	17812 regulator	
A84A	55 pin 180 DIN plugs	70p	F49A	17905 regulator	
A85A	55 pin 180 DIN sockets	55p	F53	1 LM 317 T variable reg.	200
C21	5 Min . slide switches	75 p	F54	1 LM 323 K 3 A 5 V reg.	500
C28	5 Push to make switches	70p	H11	20 IN4002 diodes	75
C29	5 Push to break switches	90 p	H30	2 W005 bridge rectifiers	5p
C50	208 pin DIL sockets	170p	H60	100 IN4148 diodes	18
C51	2014 pin DIL sockets	200p	H73	2 C 106 D thyristors	
C52	2016 pin DIL sockets	220p	J5	100.2 in red LEDs	100
E10	Resistor kit. 650 resistors	W	J25	100.2 in green LEDs	150
	10 ea value 4.7 to 1 M	480p	J45	100.2 in yellow LEDs	150
-	Single potentiometers		J 70	200.2 in LED clips	
	$5 \mathrm{~K}-1 \mathrm{M} \log$ or lin	35p	J7	100.125 in red LEDs	00p
-	Slide potentiometers. 60 mm		J27	100.125 green LEDs	50
	travel. $5 \mathrm{~K}-500 \mathrm{~K} \log$ or lin	65 p	J47	100.125 yellow LEDs	150
E26	10.100 K min. presets	70p	J72	200.125 LED clips	
E31	10 lu 63 V electrolytics	50p	J75	1 FND500 CC display	100
E33	104 u 763 V radial elec.	50p	K 5	5741 op amps.	
E34	1010 u 25 V radial elec.	50p	K 20	5 CA3140 op amps.	225
E37	10100 u 25 V radial elec.	75p	K30	5 LM301A op amps.	14
E44	10 lu 35 V bead tants.	100p	K40	1 LM 324 op amp.	
E50	100.01 C 280 polyester	50p	K 50	1 LM380 2W amp.	
E54	100.1 C280 polyester	50p	K75	[LM3914 LED bar gr	320
E10	10 BC 107 transistors	90 p	K85	5 NE555 timers	110
F11	10 BC 108 transistors	90p	K90	1 NE556 timer	
F12	10 BC 109 transistors	90p	K100	5 TL081 op amps.	175
F17	10 BC 214 L transistors	90p	L8	54011 CMOS	130
F27A	5 2N3819 transistors	100p	L9	14013 CMOS	
F311	1 BD 131 transistor	45p	L! 1	14017 CMOS	
F312	1 BD 132 transistor	45p	L22	14049 CMOS	

All prices include VAT. Please add 50 p postage and packing. Send SAE for our complete catalogue.

Rapid Electronics Limited
Hilleroft House, Station Road, Eynsford, Kent

TOP PRIORITY for every

 constructor...

HOME RADIO

 CATALOGUEAbout 2,000 items clearly listed.

- Profusely illustrated throughout.

Large catalogue, A-4 size pages.

- Bargain List, Order Form and Pre-paid Envelope included. Also 2 coupons each worth 25 p if used as directed.

Catalogue $f 1$, plus 50 p for post, packing and insur-

HOME RADIO (Components) LTD.,
Dept. EE., P.O. Box 92, 215 London Road, Mitcham, Surrey.

P.C.B. Repair

Some years ago I built a radio control system for my model aeroplanes. However I have recently discovered that the copper on the printed circuit board has "corroded" in places and this of course has affected the equipment.
I think that the "corrosion" was caused by dampness. Can you give any advice on how to "re-copper" the corroded parts of the p.c.b.

James McQueen,
Portadown, N. Ireland
A damaged p.c.b. can usually be repaired by replacing the missing copper with silver conductive paint. The surface of the board must be clean and grease free before starting and the paint is then applied with a soft bristled brush to obtain a thin coating. It takes about fifteen minutes to dry.

The board can be further protected by applying a coat of plastic seal. This is available in Aerosol form and keeps away the moisture and dirt which can lead to corrosion.

Ultrasonics and Small Animals

Would you please advise if the Ultrasonic Intruder Detector, which appeared in the January 1981 issue of E.E. can be adjusted to ignore small moving things like cats or birds whilst still retaining the ability to register human movement.
P. Bullard,

Petts Wood, Kent
For a position within the transmitter main beam, the size of the object plays little part in causing a trigger pulse to be generated through the receiver section. It is the velocity of the object which determines this and its magnitude. Even a tiny object moving within this area will cause the alarm to be triggered.

Decreasing the sensitivity by means of $\checkmark R 3$ will require an object at a set distance from the unit to move faster to produce the same trigger amplitude. On the periphery however, the body size will play a more dominant role, where the larger the body size, the more "disturbance" it can create.
If the bird referred to is in a cage, it should be possible to find a low sensitivity spot in the room, certainly by adjusting $V R 3$ and positioning the unit and/or transducers, without interfering with the ability of the device to detect a person moving in or out of the room. Certainly if the bird was "covered up". (assuming you are concerned about this problem during the dark hours) this could be realised.

Cats (and dogs for that matter) present a different problem as they usually stay close to the ground. It may be possible to reduce the sensitivity at ground level by suitable positioning of the unit and/or transducers. However, if the cat jumps up on the furniture or leaves the ground for any other reason, then your efforts would have been wasted. The only sure answer is to prevent the cat from entering the guarded area if you want to install this device.

In Defence of Stripboard

In reply to the readers in Australia (Feb. 81 edition), who asked why circuits were not printed in p.c.b. fashion, 1 feel that having used both systems, I must jump to the defence of Veroboard designs.

I am sure that part of the reason for the popularity of EVERYDAY ELECTRONICS is the detail provided, and the ease with which projects may be constructed. There can surely be little doubt that a Veroboard project is both cheaper and quicker than its equivalent p.c.b. layout. I wonder how many readers would really want to bother with the etch resist pens and/or transfers required, not to mention the hazardous etching chemicals, and drilling required to produce a p.c.b.?

I would agree that a well made p.c.b. looks more professional than its Veroboard equivalent, but surely the p.c.b. is really intended for mass production rather than a "one off" home constructed project.

Mention was also made of your policy of pricing each project-and the need for accuracy in this respect. Having been a reader of Practical Wireless and Practical Electronics I found the inclusion of estimated costs one of the most helpful aspects of EVERYDAY ELECTRONICS when it first appeared. Long may this practice continue.

This, combined with the helpful advice offered in Shop Talk should enable even the most inexperienced constructor to tackle a project with confidence-and keep EVERYDAY ELECTRONICS at the top.
M. P. Horsey,

Chatham, Kent

No Stock

I am prompted to write to you, having read Mr. Paul Young's comments in Counter Intelligence in the February 1981 edition of Everyday Eiectronics in which he says he takes exception to Mr. E. F. Good's view that catalogues show goods which are not available.

In this connection you may find of interest the enclosed (copy) invoice which shows items 1 ordered approximately February 1980 from this company's then recently supplied 1980 catalogue. (See note below).

In this month's (Feb. 81) edition I have also read your well considered advice on page 130 "Letters' regarding the matter of costs and in this connection I would add that in instances where a components supplier "takes a bite out of an order" the balance of the order may then become subject to the addition of postage and packing charges by that supplier who supplies what is left of the order.

This is a point concerning Mail Ordering that Mr. Good may have been intending to convey. I do not think Mr. Good would write contrary to his experience.
G. K. D. Lester, Leicester
This invoice shows three items (out of a total of eight) marked "No Stock-Cancelled".

We do not mention the name of the supplier in question since it could be unfair to single out one company in this way; this particular kind of complaint is by no means uncommon and could be directed towards other component retailers, on occasions. See Editorial article in this issue.

A Garrulous C.B. Buff

I am a regular reader of your magazine and am of the opinion it is one of the best around. I read with interest the editorial of February. As I am a "garrulous C.B. buft" I was particularly interested. Interference can nearly always be eliminated by using a suppressor but an effective one costs $£ 15-£ 20$. As this is out of reach of a lot of schoolboys who enjoy C.B. why not include a suppressor project in one of your projects. I know it would be well received here in West Clare and I presume it would also be welcome to fellow buffs in England.

Francis Keane,
Kilrush, Co. Clare, Eire
There will be something to interest you in next month's E.

Sensible Decision

I have just started to get into elec. tronics and I have been reading some of the magazines supposedly devoted to this subject, and I reckon that yours is the best for the money. It has plenty of interest for both the beginner and professional alike. | especially like the Square One series for beginners. Unfortunately I have only been able to scrounge, October 78, January 79, January 1980 and February 1981 (which bought myself) off my brother. I am now going to buy your excellent publication myself every month.
T. Fellow,

Telford, Shropshire

Sound-to-Light

I have been reading E.E. for many months now, and I think it's a great magazine. However having decided to build the Sound-to-Light unit in the November 1980 issue, I came across a few problems when trying to buy all the components.
Firstly looking through various catalogues, the type number of the toroidal ferrite core you had given didn't appear to be there (Siemans type 29830).
Secondly, I have looked through many catalogues, and haven't been able to locate a $0.15 \mu \mathrm{~F}$ plastic 630 V a.c. capacitor.
I also have two other minor points. I would like to know if the 6 V secondary transformer you have listed can be a $6-0-6 \mathrm{~V}$ or is that the same as a 0.6 V secondary? Finally, concerning the Bulgin socket-why do pins 7 and 8 have to be joined when pin 8 isn't used from what I can see of the diagrams?

Mr. A. Buchinger,
Wimbledon, London
The part number printed for the ferrite ring came from the Siemens catalogue and later turned out to be its computer sorting code. The correct retail part number is B64290-J0046-X830.
As for the capacitor, perhaps we were rather optimistic and a 400 V a.c. polyester type will be satisfactory.

A 6-0-6V secondary transformer is not the same as a 0-6V type (see Down to Earth, March 1981) but in this case can be used pravided you make connections to one of the 6 V tags and the OV tag.

Finally the wiring of SK3 follows a standard pattern used by manufacturers of this sort of equipment and is designed to give interchangeability between light boxes designed for different numbers of channels.

ADDS TOYOUR CAPABILITY

Already used in industry, this solderless breadboard is now available to the hobbyist. Unique because of its universal interlocking facility meaning you no longer need lots of different boards.

Send now for the unique Verobloc.

Order code 200-21092G. £4.16p inclusive.

Vero Electronics Limited, Retail Dept., Industrial Estate,
Chandler's Ford, Hampshire SO5 3ZR. Tel (04215) 62829

Laws

A frequent question from my postbag is: Why are some potentiometers specified as "log. law"? What is a law, and why "log"'?
A law, in this sort of context, just means the way in which different things are related. Ohm's Law, for instance, says how voltage, current, and resistance are related in a d.c. circuit. The law of a potentiometer says how the resistance varies as the wiper is moved over the 'track'.

Linear Law

The simplest kind of law is the one which applies to a potentiometer whose resistive track is uniform along its whole length. This is the linear law and is illustrated by the straight line in Fig. 1.
Here the amount of resistance between the wiper contact and the bottom end of the track is exactly proportional to the distance through which the wiper is moved. So moving the wiper through 20 per cent of its possible travel puts in 20 per cent of the total track resistance and so on.

Linear potentiometers like this are useful for many purposes. They are the easiest to make and for this reason they tend to be more precise than other types. This shows up even among the usual cheap carbon-track potentiometers, where it is common to find that the linear types have a resistance tolerance of 20 per cent while the other types have a tolerance of 30 per cent.

The effect shows up particularly clearly in wire wound potentiometers. These are made by close-winding resistance wire on an insulating "former". The resulting coil of resistance wire is usually bent into a circle and mounted rigidly so that the wiper, pivoted at the centre, can slide along its circumference.
So long as the wire and the former are uniform and the wiper arm central the percentage change of resistance is accurately related to the amount of wiper rotation.
For applications where very fine adjustment is called for a multi-turn potentiometer is often used. This is often also a helical potentiometer because screwthread spiral shaping is used in some way to arrange that not one but several turns of the control shaft are needed to propel the wiper from one end of the track to the other.

Potentiometers with three, five, ten, twenty and even more turns are made. The percentage of resistance is often related to the percentage of spindle rotation to within a tenth of one per cent.

Non-linear

Unfortunately, there are many applicatlons in which a linear law gives the wrong kind of performance. The best-known example is the volume control.

An ideal volume control should produce a steady increase in volume as the wiper is moved. If moving the wiper up 10 per cent from minimum produces a certain volume, and moving it on by another 10 per cent (to 20 per cent) doubles the volume, then at 30 per cent the volume should be trebled, at 40 per cent quadrupled, and so on.

A linear potentiometer cannot produce this result. What it does is to make the voltage between wiper and the "earthy" end of the track increase smoothly. If the voltage at the 10 per cent mark is 1 V , then at 20 per cent it is 2 V , at 30 per cent $3 V$, and so on.

This sounds fine, but unfortunately volume is not the same as voltage and with a linear law the rate of increase in volume is far from smooth. There is a very rapid increase as the wiper is moved up from minimum then less and less increase.

The reason is that volume is not an electrical quantity but a human quantity. It depends on the human sense of hearing. Hearing is not linear. Doubling the amount of sound energy does not double the volume.

To double the volume it is necessary to increase the sound energy (or the power from the amplifier) about nine times. To produce equal increases in volume for every 10 per cent of wiper movement the resistance must roughly treble for each 10 per cent of movement. (This trebles the voltage and since power is proportional to voltage squared it gives the required ninefold power increase.)
Putting in some actual numbers, if the resistance at the 10 per cent mark is $10 \mathrm{k} \Omega$ then for double the volume at 20 per cent it must then be $30 \mathrm{k} \Omega$ and so on, trebling for every additional 10 per cent of movement.
This rate of increase is very far from linear but it is needed because the human ear is not linear either. The law of a potentiometer used for a volume control must match the ear's own law.
One word for des. cribing the ear's response to sound intensity is logarithmic. The ear responds, not to the simple increase of audio energy but to the logarithm of the increase.

If, for example, an amplifier's output were raised in three steps, each giving a little more than double the volume of the last, the actual power outputs might
be say $10 \mathrm{~W}, 100 \mathrm{~W}$ and 1000 W . Now the logarithms of these numbers are just 1, 2 and 3 . The logs increase smoothly, in linear steps, just like the ear's sense of volume. They match, in this respect.
A practical, commercial log law carbontrack volume control potentiometer is supposed to behave in just the way needed to produce the smooth increase in volume we've been talking about. It doesn't, in practice, because a precise "log law" is difficult to engineer. Practical carbontrack volume controls are really combinations of two (occasionally three) linear sections of track which together approxlmate to the desired non-linear track.

The lowest two curves in Fig. 1 are typical examples of two-section log law volume controls. You can see that they are really made up of two straight (linear) sections, with a bent transitional section in the middle where they join.

The potentiometer specification tells you how far the resistance has got at the 50 per cent of movement mark. In a 10 per cent log law potentiometer it has got to 10 per cent of the total track resistance; in a 20 per cent log law potentiometer' to 20 per cent.

The upper two curves are 'inverse log law" potentiometers, used for jobs where the resistance has to decrease in a non-linear fashion as the wiper is moved in the usual direction for an increase in volume.

Other Laws

For analogue computing there are sine/cosine potentiometers. Square law potentiometers are sometimes used in RC oscillators.

Air-spaced tuning capacitors are made with vanes of different shapes to provide different laws. A straight line capacitance (s.l.c.) capacitor has semicircular moving vanes and is the equivalent of a linearpotentiometer.

This law gives fierce tuning at the highfrequency end of the range when the capacitor is used in a tunable $L C$ circuit. So instead of an s.l.c. law a straight line frequency (s.l.f.) law is often used. In this case the tuned frequency scale is linear, though the capacitance change is very non-linear.

Fig. 1. Potentiometer "laws', connecting the amount of wiper movement with the amount of resistance change.

When, in 1971. Ian L. Potts founded his now world-famous company, When, in 1971 . Ian L. Pottsfounded hisnow world-famous company.
he saw the need for a different and more rational approach to exploitung to the full, the potential that lay in moodular constructuon.
New thinking was badly needed. The result was a range of modules exp thinking was badily needed. The eresult was a a range of modules
Newolutionary inconcept. The righness of his new thinking is shown
rever by he stize o by constructors as she modules to build with. The range
accept
grows bigger and grows bigger and better. Exciting new lines (in no way connicting I.L.P are simply ahead and staying there.

BRITAIN'S LEADING QUALITY MODULE SUPPLIERS To: I.L.P ELECTRONICS LTD. CANTERBURY CT2 7EP
 \star

$10.94+£ 1.64$ VAT $£ 10.94+£ 1.64$ VAT
$£ 13.04+£ 1.96$ VAT
$£ 13.32+£ 2.00$ VAT
$£ 15.92+£ 2.39$ VAT
$£ 1620+£ 2.43$ VAT

When ordering or writing about IL. P products, you do not need to stamp
the envelope. Mark it FREEPOST plus the code shown in the addres3
below. We pay the postage for you.

- Freepost facility

I enclose Cheque \square Postal Orders \square International Money Order \square
Please debit my Access/Barclaycard Account No.

> ADDRESS
> Signature

ELECTRONICS

Telephone (0227) 54778 (Technical (0227) 64723 | Telex 965780
Available also from MARSHALLS. WATFORD ELECTRONICS and certain other selected retallers
PSU

Get a grear	al from
CRIMSON ELEKTRIK HI FI MODULES	ILP HI FI MODULES Power Amplifiers
CE 608 Power Amp £20.09	HY30 E7.29
CE 1004 " " £23.43	HY60
CE 1008 ." . $£ 26.30$	HY120 ${ }^{\text {¢17.48 }}$
CPS 1 Power Unit ${ }_{\text {E19 }} 19.52$	Pre Amplifiers
CPS 3 ", £23.52	HY6 £6.44
	HY66 ${ }^{\text {¢12.19 }}$
CPR 1 Pre Amp CPR 1S	Power Supplies
	PSU30 £4.50
SINCLAIR INSTRUMENTS	
	PSU70 PSU180
INSTRUMENTS	PSU180 £21.34
	CADMIUM CELLS
Digital Frequency Meter PFM200 $£ 49.80$	
Low Power Oscilloscope SC110 £139.00	Friwo Chargers for above Penlight 4: accommodates
200 Frequency Meter	1-size HP7Combibox FW611:
£145.00	
TGF 105 Pulse Generator	accommodates HP7, HP11
NEW	
LCD Multimeter TM351 £99.00	NOTE ALL PRICES
	NET. EXCLUDING
TM352 £49.95	
$\begin{array}{llll}\text { escater } & \text { YP600 } & £ 37.50\end{array}$	PACKING

New

Presensitised PC Boards, Developer. U.V. units, Toyo miniature Fans 230 v AC $£ 9.95$
Mini Metal Detector/Voltage Tester for locating cable under plaster £9.95
Flow/Speed Sensors for monitoring fuel consumption electronically in vehicles

Just one of the exciting Leader range

£299+ VAT

LB0508A

OSCILLOSCOPE
With 20 MHz DC bandwidth and 10 mv input sensitivity on a $5^{\prime \prime}$ screen this universal oscilloscope is suitable for a wide range of applications.
Send SAE for details of full range
Marshall's $80 / 81$ catalogue is now available by post, UK 75 p post paid, Europe 95 p post paid: Rest of world £1.35 post paid.

[^3]Kingsgate Place, London NW6 4TA. Industrial Sales: 09-328 1009. Mail Order: 01-624 8582 24 hr service. Also retail shops: 325 Edgware Road, London W2. 40 Cricklewood Broadway, London NW2, 85 West Regent St., Glasgow, 108A Stokes Croft, Bristol.

Wilmslow Audio

THE firm for speakers!

SEND 50p FOR THE WORLD'S BEST CATALOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS ETC. AND DISCOUNT PRICE LIST

```
AUDAX AUDIOMASTER BAKER BOWERS \& WILKINS CASTLE CELESTION CHARTWELL COLES DALESFORD DECCA EAGLE ELAC EMI FANE GAUSS GOODMANS HARBETH ISOPHON I.M.F. JORDAN JORDAN WATTS KEF LOWTHER McKENZIE MISSION MONITOR AUDIO MOTOROLA PEERLESS - RADFORD RAM ROGERS RICHARD ALLAN SEAS SHACKMAN TANNOY TANGENT VIDEOTONE WHARFEDALE
```


WILMSLOW AUDIO LTD.
 (Dept. EE)

35/39 CHURCH STREET, WILMSLOW, CHESHIRE SK9 1 AS
Tel: 0625-529599 FOR MAIL ORDER \& EXPORT OF DRIVE UNITS, KITS ETC.
Tel: 0625-526213 (SWIFT OF WILMSLOW) FOR HI-FI \& COMPLETE SPEAKERS

SINGLE TRACE (UK c/p ote 0 : 50)
$\mathrm{Hm} 307-310 \mathrm{mHZ}, 5 \mathrm{mV}, 6 \times 7 \mathrm{~cm}$ display plus component Test $£ 158.78$ C013030 $5 \mathrm{mHZ}, 10 \mathrm{mHZ}, 7 \times 7 \mathrm{~cm}$ display $\quad 6109.25$
 (Optional case $£ 8.86$, Nicads $£ 8.63$, Malns unit $£ 4.00$) -Lb0512A 10 mHZ . 10 mV . $5^{\text {n }}$ display $\quad \mathbf{E 1 9 5 . 5 0}$ CS1559A $10 \mathrm{mHZ}, 10 \mathrm{mV} .5^{\text {n }}$ display \quad E232.00 -V151 $15 \mathrm{mHZ}, 1 \mathrm{mV}, 5^{\text {n }}$ display \quad C241.50

OPTIONAL PROBES (ALL MOLELS
X $66.50, \times 10<8.50, \times 100 \leqslant 12.95, \times 1-\times 10<10.95$
SAFGAN DUAL TRACE IOMHZ-K194.35, 12 MHZ

HAMEG TRIO LEADER SINCLAIR HITACHI

DUAL TRACE (u

Hm 312 mHZ , $1 \mathrm{mV} 5^{\prime \prime}$ display CS1566A $20 \mathrm{mHZ}, 5 \mathrm{mV}, 5^{\prime \prime} \times 10 \mathrm{~cm}$
-LBD $308570 \mathrm{mHZ}, 2 \mathrm{mV}, 5 \times 6.3 \mathrm{~cm}$ display.
$\mathrm{Hm} 412-420 \mathrm{mHZ}, 5 \mathrm{mV}, 8 \times 10 \mathrm{~cm}$ display
Hm $412-420 \mathrm{mHZ}, 5 \mathrm{mV}, 8 \times 10 \mathrm{~cm}$ display
CS1577A 35 mHZ . $2 \mathrm{mV}, 5^{n}$ display
CSI $83030 \mathrm{mHZ}, 2 \mathrm{mV}, 5^{\prime \prime}$ display plus Sweep
$H \mathrm{~m} 512-85 \mathrm{mHZ}, 5 \mathrm{mV}, 10 \times 8 \mathrm{~cm}$ display,
Delay 5 weep
LB0514 10 mHZ
V152 15 mHZ , 1 mV (5 mV). $5^{\prime \prime}$ display
-V302 30 mHZ ImV 5" display

- V 30230 mHZ ImV $5^{\prime \prime}$ display
- V550 $50 \mathrm{mHZ} \mathrm{ImV} 10 \times 8 \mathrm{~cm}$

Delay sweep +3 channel display
\&201-25, 15MHZ-£216-20.
*PRICES INCLUDE FREE PROBE(S)

A range of Scopes in stock from 5 mHZ Single Trace to 50 mHZ Dual Trice

A range of signal generators to cover audio RF and pulsing. Mains operated (TG series batteryl.

RF

SG402 $100 \mathrm{KHZ}-30 \mathrm{mHZ}$ with AM madulation
LSG16 $100 \mathrm{KHZ}-100 \mathrm{mHZ}(300 \mathrm{mHZ}$ on Harmonics
SG2030 $250 \mathrm{KHZ}-100 \mathrm{mHZ}$ low cost ARF300 $18 \mathrm{HZ}-200 \mathrm{mHZ}$ Low cost

PULSE

$20011 \mathrm{HZ}-100 \mathrm{KHZ}$ (Function) TGIO5 5 HZ .5 mHZ
$40010.5 \mathrm{HZ}-5 \mathrm{mHZ}$ TT100 (Function 10KHZ) AUD) (All sin AG202A $20 \mathrm{HZ}-200 \mathrm{KHZ}$ LAG26 $20 \mathrm{HZ}-200 \mathrm{KHZ}$
AG203 $10 \mathrm{HZ}-1 \mathrm{mHZ}$ Sine/Square
LAG120A $10 \mathrm{HZ}-1 \mathrm{mHZ}$

DIGITAL MULTIMETERS
kAISE - SINCLAIR - LasCAR

- thurlay

HAND HELD
 (UK post etc 85p)

TM352 ${ }^{3 \frac{1}{2} \text { Digit LCD plus }} 10 \mathrm{ADC}$ and HFe checker TM354 3 $\frac{1}{2}$ digit LCD 2A AC/DC $\quad \mathbf{4 5 . 9 4}$ ME502 3y Digit LED plus
10A DC and Hfe checker $\quad 443.95$
 $62003 \ddagger$ Digit LCD 0.2 A ACIDC 220 A 6200 lus l0A ACIDC $\mathbf{E 4 5}$.95 6100 As 6200 plus Cont. rest/ 6110 As 6100 plus IOA AC/DC $\quad \mathbf{8 8 5 . 9 5}$

£68.00
C63.25

C46.95

676.95
$£ 89.70$
$£ 92.50$
6109.25 £ 90.85

A range of LED and LCD Bench and Hand DMM's
battery operated with optional Mains Adaptors battery operated with optional Mains Adaptors-
some with optional Nicads. All supplied with
batteries and leads.

LOGIC PROBES/

 MONITORS scopes can miss. All circuit powered for aill that LP3 50 mHZ logic probe LP2 $1 \frac{1}{2} \mathrm{mHZ}$ logic probe LM1 Logic monitor\qquad probe with cas Also in stock range of Protoboard f51.00 PROMUTIMETERS M1200 100 KV Volt 30 range plus AC/DC 15 amp
K 1400 range large 20 Kc M1500 20 KNotz 42 range plus AC/DC 10 amp (UK c/p $£ 1.20$) K 20038 range FET 10 m ohm input
20 Hz to 30 MHz 20 Hz to 30 MHz

BENCH PORTABLES

(UK c/p $£ 1$ 00)
DM23s
0.5%
34
0.
Digit
LE
LED 21 ranges.

TM351 3\& Digit LCPO AC/DC 10 amp
$L M 1003+$ Digie LCD AC/DC LM $\operatorname{limp}_{\text {amp }} 3 \frac{1}{2}$ Digit LCD AC/DC DMA50 $4 \frac{1}{2}$ Digit LED 34 ranges AC/DC 10 amp E113.85

FREQUENCY COUNTERS

CSC SINCLAIR SPC OPTO ELECTRONICS
Portable and Bench LCD and LED Counters up to 600 mHZ . Prices include batteries and leads.

HAND HELD (ux pose orc 85p) PFM200 20 HZ to 200 mHZ a Digit LED $\mathbf{~ M A X 5 0 ~} 100 \mathrm{HZ}$ MAX550 30 KHZ to 550 mHZ 6 Digit LED \quad E 106.00 BENCH PORTABLES
(UK c/p © (1.00)

MAX100 8 Digit LED 5 HZ to $100 \mathrm{mHZ} \quad \mathbf{~} 89.00$ | $1010 A 9$ | 9 Digit LED 10 HZ to 600 mHZ | $£ 166.75$ |
| :--- | :--- | :--- |
| 169.00 | | | 200 SPC 6 Digit 100 mHZ LED built into 0.002 HZ - 5.5 mHZ pulse generator $\quad 437.00$ $\begin{array}{lr}\text { TP600 } 600 \mathrm{mHZ} \text { Prescaler for TF200 } \\ \text { TF040 } 8 \text { digit LCD } 20 \mathrm{MHz} & \mathbf{£ 4 3 . 1 3} \\ \mathbf{£ 1 2 6 . 5 0}\end{array}$

SOLDERLESS BREADBOARD AND KITS

EXP350	$£ 3.45$
EXP300	$£ 5.95$
EXP650	$£ 3.95$
EXP600	$£ 6.50$
KITS	
PB6	$£ 9.95$
PB100	$£ 12.95$
PB101	
(UK c/p-EXP's 30p. KITS	$\mathbf{5 1 7}$)

MINI DRILLS
AND KITS
($9-12$ Volt ${ }^{\prime \prime}$ chucks) Small Drill plus 3 collers
Medium Drill plus 3 collets $\quad \begin{aligned} & \mathbf{1 0} \cdot \mathbf{2 5} \\ & 5\end{aligned}$

Mains Drill
Mains Drill

SWR/FS AND POWER METERS

Range in stock covering up to
150 mHZ and up to PL259 sockers to IK watt power. SWR SWR/S 3.150 mHZ Grid Dip. $3 /-150 \mathrm{mHZ}$
$10-1000$ watts 13.95 110 SWR/Power $1 \frac{1}{2}-144 \mathrm{mHZ}$ 171 As 110 Twin mețer plus E/S 50 Plus large range of BNCIPL 659 . 50 leads / plugs/adaptors / connectors always in stock.
176 SWR Pow
$5-50$ wate

MULTIMETERS
 (UK post otc 75p)

KRTIOI IK/Vole 10 range pocker ATMI/LTI IK/Volt 12 range pock ATI $2 \mathrm{~K} / V$ Vole 12 range pocket de luxe YN 360 TR $20 \mathrm{~K} /$ Volt 19 range pocket ATlus hife test
olt 19 range deluxe $708150 \mathrm{~K} /$ Vole 36 range plus
10 £15.95 AT $2020 \mathrm{~K} / \mathrm{V}$ olt 21 range de luxe plus AT205 $50 \mathrm{~K} /$ Volt 21 range de luxe $\quad \mathbf{~} 21.95$ Alus 10ADC
plat 21 range de luxe
7080 24.95 10 ADC plus 5 KV range largescale, $\quad 626.05$

 360 TR $100 \mathrm{~K} / \mathrm{Volz} 23$ range plus hie
checker and $\mathrm{AC} / 0 \mathrm{C} 10$ amps $\quad 634.95$

CHOOSE FROM THE UK's LARGEST SELECTION

New! Sinclair 2X81 Personal Computer. Kit: £49. ${ }^{2 s_{\text {compele }}}$

Reach advanced computer comprehension in a few absorbing hours

-1980 saw a genuine breakthrough - the Sinclair ZX80, world's first complete personal computer for under £100. At $£ 99.95$, the ZX80 offered a specification unchallenged at the price.

Over 50,000 were sold, and the ZX80 won virtually universal praise from computer professionals.

Now the Sinclair lead is increased: for just £69.95, the new Sinclair ZX81 offers even more advanced computer facilities at an even lower price. And the ZX81 kit means an even bigger saving. At £49.95 it costs almost 40% less than the ZX80 kit!

Lower price: higher capability With the ZX81, it's just as simple to teach yourself computing, but the ZX81 packs even greater working capability than the ZX80.

It uses the same micro-processor, but incorporates a new, more powerful 8KBASICROM - the 'trained intelligence' of the computer. This chip works in decimals, handles logs and trig, allows you to plot graphs, and builds up animated displays

And the ZX81 incorporates other operation refinements - the facility to load and save named programs on cassette, for example, or to select a program off a cassette through the keyboard.

Higher specification, lower pricehow's it done?
Quite simply, by design. The ZX80 reduced the chips in a working computer from 40 or so, to 21 . The 2×81 reduces the 21 to 4 !

The secret lies in a totally new master chip. Designed by Sinclair and custom-built in Britain, this unique chip replaces 18 chips from the ZX 80 !

Built: \{69.95

Kit or built -
 it's up to you!

The picture shows dramatically how easy the ZX81 kit is to build: just four chips to assemble (plus, of course the other discrete components) - a few hours' work with a fine-tipped soldering iron. And you may already have a suitable mains adaptor -600 mA at 9 V DC nominal unregulated (supplied with built version).

Kit and built versions come complete with all leads to connect to your TV (colour or black and white) and cassette recorder.

New

Sinclair teach-yourself BASIC manual

Every ZX81 comes with a comprehensive, specially written manual-a complete course in BASIC program-
 ming, from first principles to complex programs. You need no priorknowledge - children from 12 upwards soon become familiar with computer operation.

```
KN ITRMILN EHEN GO TMG
A(x)=1:1*
:x
J=J+1
|N DR }\quad1=N\quadTHEN\quadG\square TD|&O
```



```
P=R(J)
日(J)=日(T)
R(T)=P
<<:1-1/HEN [G T口 1:口
```


New，improved specification －Z80A micro－processor－new faster version of the famous Z80 chip，widely recognised as the best ever made．

－Unique＇one－touch＇ key word entry：

 the ZX81 eliminates a great deal of tiresome typing．Key words （RUN，LIST，PRINT， etc．）have their own single－key entryUnique syntax－ check and report codes identify programming errors immediately
－Full range of mathematical and scientific functions accurate to eight decimal places．
－Graph－drawing and animated－ display facilities．
－Multi－dimensional string and numerical arrays
－Up to 26 FOR／NEXT loops．
－Randomise function－useful for games as well as serious applications．
－Cassette LOAD and SAVE with named programs．
－1K－byte RAM expandable to 16 K bytes with Sinclair RAM pack．
－Able to drive the new Sinclair printer （not available yet－but coming soon！）
－Advanced 4－chip design：micro－ processor，ROM，RAM，plus master chip －unique，custom－built chip replacing 18 ZX80 chips．

Sinclair Research Ltd，
6 Kings Parade，Cambridge，Cambs， CB2 1SN．Tel： 027666104.
Reg．no： 214463000

isis

re．Supplied as two separate er， 240 volts A／C operation． diagrams supplied．
and bass．
FM（VHF），LW，MW，SW hms（ 10 wates music） omv for rated output．
p．$-2^{\prime \prime} \times 7 \frac{1^{\prime \prime}}{2} \times 4 \frac{1}{2}$＂approx Id Packing．

Ludio Technica ATIO stereo
size $12^{\prime \prime}$ platter，t Precision ）．Damped cueing lever \star Cut out template supplied
and Packing．

（Dept．EE）

h－on－Sea，Essex，SS9 5TY． ial orders welcome． order only．
energy absorbing PU foam．

on of constructional he circuit works，how it ，p and troubleshooting re are eight titles in the
${ }^{3}$ ctronic Projects in the Car George 0408003863
ectronic Game Projects
G．Rayer 0408003790
3ctronic Projects in e Home
ven Bishop 0408003464

ojects in Radio and

ectronics
R．Sinclair 0408003456

sal Books

s，Kent TN15 8BR

I Please sendme
I
I title
1
1 at $£ 2.50$ each．Find enclosed cheque／postal order 1 for £

Name
Address

The Catalogue that means FREE POSTAGE IN U．K．

ATTRACTIVE DISCOUNTS GUARANTEED SATISFACTION kEEN PRICES

GOOD STOCKS GOOD DELIVERY
we pay postage Semi－Conductors • I．C．s • Opto－ devices \bullet Rs and Cs in great variety
－Pots • Switches • Knobs • Accessories • Tools • Materials • Connectors

ELECTROVALUE

HIGH POWER MODULE KITS

SPECIFICATIONS
Max．Output power
Operating voltage（DC）
Loads
Frequency response Measured at 100 watls
Sensitivity for 100 watts
Typical T．H．D．＠ 50 watts 4 ohms load
Dimensions．
The P．E．power amp kit is a module ．．．． 205×90 and $190 \times 36 \mathrm{~mm}$ The P．E．power amp kit is a module for high power applications－disco domestic systems．The unit is protected against short circuiting of the load and is safe in an open circuit condition．A large safety margin exists by use of generously rated components，resuth，a high powere rugged unit．The PC Board is backprinted，etched and ready to drill for ease of construction，and the aluminium chassis is preformed and ready to use．Supplied with all parts，circuit diagrams and instructions． ACCESSORIES
Suitable LS coupfing electrolytic for 125W．model f 1.00 plus 25 p p\＆p． Suitable LS coupling electrolytic for 200W．model E 1.25 plus 25 p p\＆p Suitable Mains Power Supply Unit for $\mathbf{1 2 5 W}$ ．model $\mathbf{£ 7 . 5 0}$ plus
C3．15：p\＆p．
Suitable Twin Transformer Power Supply for 200W．model £13．95 plus $£ 4000 \mathrm{p} \&$ ．

$30+30$ WATT STEREO AMPLIFIER BUILT AND TESTED

Viscount IV unit in teak simulate cabinet silver tinished rotary controls and pushbuttons with matching fascia．red mains indicator and stereo jack socket．Functions switch for mic magnetic and crystal pickups，tape and auxiliary．Rear panel features fuse holder．OIN speaker and input socket $30+30$ wátts．RMS $60+60$ watts peak for use with 4108 ohm speakers．Size $143 / 4^{\prime \prime} \times 10^{\prime \prime}$ approx．

heady to play $£ \mathbf{3 2 . 9 0}$
（3．80 po

125 WATT MOOEL £10．50 plus $f 1.15 \mathrm{p} \& \mathrm{p}$ ）（Illustrated） 200 WAT MODEL £14．95 plus $£ 1.15 \mathrm{pl} \mathrm{p}$

MULLARD LP1183 STEREO PREAMP
Original listed price over $£ 5.00$ ．Suitable for ceramic and auxiliary inputs．when you purchase 2 power madule kits．

＂E watt output＂fies ady onchad \＆punchal P．C． 8 ．
All comporates supplossion circeivs＂Wow with tape input sockel
All components and instructions to betild the ra dio you supply onty the wire and solder．Pre－set tuning with five push button options，black illuminated tuning scale，matching control knobs，one combining on／off volume and tone． control，the other for manual tuning．
The P．E．Travelier has a 6 watts output neg ground and an integrated circuit output slage a Multard IF modute LP1181 ceramic filter type．pre－aligned and assemblad and a Bird pre－aligned push burton tuning unit．Fits easily in or
under dashboards．

Suitable stainless steel fully retractable locking aerial and speaker（approx $6^{\prime \prime} \times 4^{\prime \prime}$ ）is $\mathrm{f} 1.95{ }^{\text {perpack }}$

STEREO DISCO PREAMPLIFIER
Matehing other modules，
suitable for twin deck mixing suith P．F．L．output and Mic／Tape input．Ready built Mic／Tape input．Ready built．
ready to play with circuit diagr diagram a
 notes to suit our power modula kits．
$£ 21.95$ notes to suit our power module kits．plus f 1.72 pap

（7x） $\begin{aligned} & \text { 10＋10 WATT } \\ & \text { STEREO HI－FI }\end{aligned}$ AMPLIFIER KIT

－Featuring latest SGS／ATES／TDA 2006 10 watl output I．C．＇s with in－built themal and short circuit protection

E14．95 Mullard Stereo Preamplifer module

 plus $\mathbf{5} 2.90$ p\＆p Conventstio a 20 Watt Disco amplifier cabinet plas 22.90 pap Converts to a 20 Watt Disco amplifier To complete you just supply connecting wire and solder．Features tuner，Outputs－ button it transforms into a 20 watt moad disc a Blifier with win a mixing．The kit incorporates a Mullard LP 1183 pre amp module deck power amplifier assembly kit and mains power supphy Also featured 4 slider level controls，rotary bass and trable controls and 6 push button switches Silver finish fascia panel with matching knobs and contrasting ready made blact vinyl finish cabinet and ready kades and contrasting further information instructions are available price 50p．Free with hit Size $9^{\prime \prime} \times 83^{3 \prime} \times 3 \%^{\prime \prime}$ approzSPEECIFICATIONS Suitable for 4 to 8 ohms speakers Frequency response $-40 \mathrm{~Hz}-20 \mathrm{KHz}$ ：Input Sensitivity－P．U． 150 mV Aux． 200 mV Mic． 1.5 mV ；Tone controls－Bass $\pm 12 \mathrm{db} @ 60 \mathrm{~Hz}$ ； Trebid $\pm 12 \mathrm{db} @ 10 \times \mathrm{Hz}$ ；Oistortion－1\％typically＠ 4 watts：Mains
supply -220.250 volts 50 Hz supply -220.250 volts 50 Hz ．

BSR

complete with stereo ceramicicartidgel set down and retum． purchased with amplifier．Available separately fl 5 I .50 .15 p ip when 8＂SPEAKEP KIT 2 ＂＂．${ }^{\circ}$ ． $\mathbf{8 4 . 7 5}$ per pair plus f 1.70 p 8 p when purchased with amplitier Available separateły $\mathbf{5} 5.75$ plus f 1.70 p\＆p

STEREO MAGNETIC PRE－AMP CONVERSION KIT

 All components including P．＇C．B．to convert your ceramic inpur on the $10+10$ amp to magnetic．$£ 2.00$ when purchased with kit featuredabove． $\mathbf{5 4 . 0 0}$ separataly inc．p $8 p$ ．

This 5 volume set contains over 500 pages． Bound in stiff linen．Cover size $81 / 2$ in $\times 5 i n$ ． Price $£ 10.00$ per set（we pay the postage）．
Book 1．Introducing Electronics Book 4．Meters／Voltage－dividers Book 2．Resistors／Capacitors Book 5．Transistor Project Circuitry Book 3．Inductors／Diodes
The manuals are unquestionaby the finest and most up－to－date available and represent exceptional value
This series has been written in a fascinating，absorbing and exciting way，providing an approach to acquiring knowledge that is a very enjoyable experience．Suitable for industrial trainees，City and Guilds students，DIY enthusiasts and readers of electronic journals．
Each part explains electronics in an easy－to－follow way，and contains numerous diagrams and half tone blocks with construction details and circuit diagrams for making the following transistor projects：Lamp Flasher，Metronome，Wailer，Photographic／Monostable Timer，Metal Locator，Geiger Counter，Radio Receiver，Intercom．，Intruder Alarm， Electronic Organ，Battery Eliminator，Anemometer，Sound Switch， Light and Water－operated Switches，Pressure－operated Switches，Light meter，Radio Thermometer，Ice Alarm，

Order now：

Selray Book Company
11，Aspen Copse，
Kromisy
ロUP 1ロロ\％GUARANTEE
Should you decide to return the set after 10 days exum．
ination，your money will be refunded by return of post．

Amount enclosed：$£$

Address：

ALARM EQUIPMENT

CONTACTS Flush 4－wlre Flush 5 －screw Aluminium（patlo） Surface	70 p8130fis830830	SIRENS 12v Rotary 12v2－tone Mains rotary	$\mathbf{8 8 . 1 9}$$\mathbf{6 9 . 7 5}$$\mathbf{6 . 2 5 . 0 0}$			
BELL BOXES Top quality metal，plastle coated	£6．09	CONTROL UNITS Battery operated alarm module， standby current Malns／battery unit		500μ $\begin{array}{r}5.55 \\ \mathbf{f} 29.60 \\ \hline\end{array}$ E29．60		
PRESSURE MATS$\begin{aligned} & 222^{\prime \prime} 1^{\prime \prime} \times 66^{\prime \prime \prime} \\ & 29^{\prime \prime} \times 15^{\prime \prime} \end{aligned}$	$\begin{array}{r} £ 1 \cdot 00 \\ \qquad 1 \cdot 50 \end{array}$					
		${ }_{\text {CABLE }}^{\text {4．core }}$	¢7．88			
Add 15% VAT．Carriage add $£ 2 \cdot 50$ Excess will be refunded．SAE for full list， Trade enquirles welcome．						
We Are WARrington＇s Suppliers of cb gear！						
SHOP HOURS 9．30－6PM（5pm Sat．）						
WEBB ELECTRONICS						
41 WINWICK STREET，WARRINGTON．Tel． 54174						

GIECTRONIC IGNITION SAVES PETROL

More and more new cars use electronic ignition to
give the best performance and economy. Bring YOUR
CAR up to top specification by fitting the latest TOTAL ENERGY DISCHARGE electronic system.
TOTAL ENERGY DISCHARGE gives all the
advantages of the best capacitive discharge ignition

* Peak Performance-higher output voltage
* Improved Economy-consistent high ignition performance.
* Better Starting-full spark power even with low battery
* Accurate Timing-prevents contact wear without 'contactless' errors
\star Smooth Performance-immune to contact bounce effects.
PLUS
SUPER HIGH POWER SPARK—3t times the energy of ordinary C.D. OPTIMUM SPARK DURATION-to get the very best performance and economy with today's lean carburettor settings.
DESIGNED IN RELIABILITY-with the 'ultimate insurance' of a changeover switch to revert instantly to standard ignition
TECHNICAL DETAILS
HIGH EFFICIENCY INVERTER. A high-power, high efficiency, regulated inverter provides a 400 -volt energy source-powerful enough to store twice the energy of other designs and regulated to provide full output even

UPERB DISCHARGE CIRCUIT
being reflect
 ing a spark powerful espark fuel mixtures without 'long burn' inductive systems. In addition this circuit maintains the correct output polarity, thereby preventing unnecessary stress on the H.T. system.
SOPHISTICATED TRIGGER CIRCUIT. This circuit removes all unwanted signals caused by contact volt drop, contact shuffe, contact bounce, and external transients which, in many designs, can cause timing errors or damaging un-timed sparks. Only at the correctand precise contact opening is a spark produced. Contact wear is almost eliminated by reducing the contact breaker current to a low level-iust sufficient to keep the contacts clean.
IN MONEY-SAVING KIT FORM at $£ 14.85$ Inc. V.A.T.
All you need is a small soldering iron and a few basic tools - everything else is supplied with easy-to-follow instructions.

FITS ALL $6 / 12$ volt NEGATIVE EARTH cars
ELECTRONIZE DESIGN
2 Hillside Road, Four Oaks
Sutton Coldfield West Midlands, B74 4DE Phone 021-308 5877

inTERESTED IN ELECTRONICS?

TRY A ZEDPACK!
COMPONENTS AT A PRICE EVERYONE CAN AFFORD $\begin{array}{ll}Z 1 & 300 \text { mixed } \\ 72 & 150 \text { mixed } \\ \text { and } \\ 2\end{array}$ $73 \quad 300$ mixed and 2 watt resistors E1-50 Z3 300 mixed capacitors, most types $£ 3.95$
Z4 100 mixed electrolytics $\begin{array}{lll}\text { Z4 } & 100 \text { mixed electroiytics } & £ 2 \cdot 20 \\ \text { Z5 } & 100 \text { mixed polystyrene caps } & £ 2 \cdot 20 \\ \text { Z6 } & 300 \text { mixed printed circult } & \end{array}$ componed printed circult
Z ${ }^{\text {components }} \mathbf{3 0 0}$ mixed printed circult resis
900 mixe £ 1.45
plate caps
21025 assorted pots. E1. 20
$E 1.50$ Z11 25 assorted presets, skeleton etc. Z12 20 assorted vdr's and thermistors $£ 1.20$ 213 11b mixed hardware. Nuts bolts
seli-tappers, sleeving, etc.
$\mathbf{E 1} \cdot \mathbf{2 0}$ 214100 mlxed , new and marked, full spec. transistors, Pack Includes:- BC148, PBC108 and, or fots of slmilar types
EA.95 215100 mixed diodes including:-2ener, power, bridge, signal, germanium. Z 1620 1N4148
21720 1N4003/10D2
Z18 20 assorted zeners. 1 watt and $\begin{array}{r}400 \mathrm{~m} w \\ £ 1 \cdot 50\end{array}$ Z19 12-125" TIL 209 RED. LED'S
${ }_{Z 20} 19$ - $125^{\prime \prime}$ TIL 209 RED. LED'S £1 button, slide, multipole, miniature etc UHF MODUL Fantastic value. £1-20. UHF MODULATORS
Video in UHF out. Calibrated to channel 36 (625 line UHF) housed in metal box $2 \frac{1}{2}{ }^{\prime \prime} \times$ connectlon data. $£ 2.50$ ea. 3 for $£ 5$. Aluminium finish slider knobs, standard fitting. 10 for $£ 1$ 200μ A Miniature level/batt. meters. as fitted to many caissette recorders. otching kits.
Includes 100° sa ins. of copperclad F/G board. TIb ferric chloride, (made for U.S. army to MIL, SPEC.), 1 dalo etch resist pen, and instructions. OUR PRICE £5.95 IIb of FeCl. £2.25,

150 sa. ins. single sided board. 150 sa . ins. double slded board. 100 Subminiature Reed Swit SMALL MAGNETS
With hole in MMALL MAGNETS

E2. 20 $\mathbf{E S} .30$

 E3. 30$£ 2.30$ With hole in SWITCH BANM 6 for El These cost a fortunel Ware made for various muslc centres. Includes Independent and interdependent latching types multl pole c/o etc. Can be modified KNOBS for Switch Banks 10 for E 1 Chrome or spun aluminium finlsh MINIATURE MAINS TRANSFORMERS Top quality. Split bobbin construction will give $4 \cdot 5 \mathrm{~V}-0-4.5 \mathrm{~V}$ at 250 MA . $1 \frac{1}{2}{ }^{\prime \prime} \times 1 \frac{1}{3}$ $\times 1$, , all sons of uses. ONLY $£_{3}$ for $£_{2} \cdot 50$ PP3 Battery Connectors 10 for 50 p . MIniature Press to Make Swltches, Red knob. 3 for 50p
Subminiature S.P.C.O. Slide Switches. 6 for 50p.
6 for 50 D D.P.C.O. Slide Switches. Standard 2P. 3 Position Slide Switch 4 for 50p;
$4 \times$ HP1i
$4 \times$ HP11 Battery Holders $(2 \times 2$ Flat type) With leads. 2 for 50 p .
A.C. Pa Fuse Holders Including 20 mm for 50 p 3.5 mm Jack Sockets, switched. En closed type PC or panet mountio Wlit nuts and washers. 4 For 50 p . 9 Section, Chrome on Brass Telescopic A erial. Plugs into any 3.5 mm socket Approx $25^{\prime \prime}$ extended $£ 1$ each. 3 for $£ 2 \cdot 50$ 250V. $1^{\prime \prime} \times$ R.C. SUPPRESSORS $250 \mathrm{~V} .1^{\prime \prime} \times{\frac{5}{b^{\prime \prime}}}^{\prime 2} \times \frac{1}{2 \prime}^{\prime \prime}$. Ideal for fluorescent
light suppresslon, car, and relays, Also for snubber networks. $\quad 50$ peach 3 for $£ 1$

ALTERNATOR RECTIFIERS

 Make lovely 60 amp bridges. Ideal forHigh Power Battery Chargers. Type 4 AFI. Set of 4 (2 neg. casert 2 pos. case) £2

Special Purchase enables us to
offer Mullard Czso polyester Capa offer Mullard Czso Polyester capa unbeatable price of E 2 for 100 mixed. $\AA 15$ for 1000 . These consist of factory clearance lots i.e. spillages, floor
sweeplngs, cosmetlc rejects etc

TO: "GEMINI ELECTRONIC COMPONENTS" DEPT EE
"THE WAREHOUSE" SPEEDWELL ST. LONDON S.E.8. Please Quote ZED Code. Where shown. Send Cheque or Postal Order. Plus 60p P\&P ZED PACKS now avallable for Callers at 50 Deptford Broadway, London, S.E.8.
 follow step-by-step instructions make it easy to build any Heathkit kit

And with your special offer discount you can afford to see jusit how easy it is.

Full details of this FREE offer are available in the Heathkit 48 page catalogue. So send the coupon for your copy now.

To: Heath Electronics (UK) Limited. Dept. (EE4). Bristol Road. Gloucester, GL2 6EE

Please send me a copy of the Heathkit catalogue. I enclose 25p in stamps

Name
Address

NB: If you are already on the Heathkit mailing list you will automatically receive a copy of the latest Heathkit catalogue without having to use this coupon.
НЕАТНКT

Youcan make it...

Dressing table and stool

Full instructions for making this stunning bedroom furniture, using the laminating or stacking technique. This dressing table and stool are by the noted American designer/craftsman, Wendell Castle, who often looks to natural forms for his inspirations. Theexciting approach he adopts to his work is discussed in a special full-length feature.

Home-made biplane!

The incredible story of a 'PW' reader who constructed a full-size model of a Hawker Fury in his

A lavish full-colour feature on a veteran sports car that bears a marked resemblance to lan Fleming's Chitty Chitty Bang Bang. Actually this handsome model is styled on the classic French roadster, the Berliet.

Nest of tables

This prizewinning design is an unusual variation on the traditional - no fewer than four small triangular tables fitting snugly under a larger square one.

PROJECT PACKS

Pools predictor (79053) An analogue computer that may win you a fortune ع8.15
Talk Funny (80052) A ring modulator circuit that produces very strange results when fed with a human voice Pest Pester (80130) An electronic insect repellant.

Steam train sound effects (80019) Simulates the sound of steam and whistle

Electronic Nuisance (80016) Makes an annoying noise, but only in the dark!

c. 8.5

Cackling Egg timer (9985) An ego timer with a difference, it clucks like a hen.

Chorosynth (80060) A cheap mini synthesizer. Send for details.

$£ 8.35$

Elektor Vocoder (80060) The first Vocoder designed to be built in kit form. 10 Channel modular construction

Analogue Reverberation Unit (9973) Uses a SAD 1024 which can produce a delay up to 100 mS .

ع57.90

Guitar Preamp (T7020) With three tone controls.

Linear Thermometer (80127) Simple but effective meter reading thermometer using a diode as sensor.

Precision Power Unit (80514) Produces accurate reference voltages at presetable current limits up to 2 Amps.

$£ 6.50$
$£ 13.45$

Top-preamp (80031) Mini, all IC preamplifier for use with most power amplifiers.

848.65

Programmable Slide Fader (81002) Mixes audio signals on tape with operation of two slide projectors.

ع 34.40

Stereo dynamic Preamp (80532) A low noise high quality disc preamplifier.

STAMP (80543) Super tiny amplifier with up to 1 Watt output.

Transister ignition (80082) The most significant advantages of other systems combined in one.

Dipstick Probe (80102) Direct warning of high oil temperature. State long or short dipstick required.

Intelligent Wiper Delay (80086) Can be set to produce delayed wipes at any predetermined interval.

Fuel Economiser (81013) Audible guide to cheaper driving.

$\mathbf{8 5 . 2 0}$
$\mathbf{8 3 . 7 5}$

Disco Proiection

£11.25

Disco Projects.

E15.85

Minimixer (81068) 5 channel high quality stereo mixer.

details

Bath Thermometer (81047) LED display of your bath temperature.

$£ 6.85$

Process Timer (81101) Versatile timer circuit.

P.O.A.

Our Project Packs include the electronic components, the PCB, sockets and solder together with assembly instructions. Cases, knobs etc can be supplied as extra items if required. This is only part of our wide range of projects. See our catalogue for details of other projects that we can supply. You can also ring our number between 12.30 p.m. and 1.30 p.m. any weokday for a recorded announcement of any new items we have avallable.

To order send cheque or postal order $+40 \mathrm{p} P \& \mathrm{P}$ to DORAM ELECTRONICS LTD All prices include VAT a de boer company

Telephone: (0760) 21627 Telex: 817912

MIGHTY NINETY PACKS

SUPER VALUE PACKS ALL AT 90p EACH POSTAGE 15p PER PACK UP TO FOUR PACKS FIVE OR MORE POST FREE
BUY SIX PACKS AND GET A SEVENTH PACK FREE!

MN23. 11b asstd. screws, nuts, washers, self-tappers etc.
MN24. 100 assid. small springs.
MN25. 50 asatd, pop rivets.
MN27. 200 items grommets. cable markers, plastic screws, spacers, tie wraps etc. MN2s. 20 asstd. fuses. $14^{\prime \prime} 20 \mathrm{~mm}$ ote colours and equipment wire, asetd. WN $30.3 \times 2 \mathrm{~m}$ length, 3 core, malns cable. MN31. 12 asstd. trimmer capacitors, compression
MIIm. Alr-spaced etc.
MNT3. 20 coll formers, ceramic, plastic
reed relay etc.
MN35. 10 assid. switches, toggle, ollde, mlcro, etc.
MN35. 10 .
rubblish) ex equlpment panel lamps (no WM57. 10 asstd. audio connectors. Din phono etc. NM3. 1 PCB with triac control IC data inc.
M M3. 1 oscllator PCB loads of com: ponents (no data).
MN 4.50 Polymentrene Capacitors.
MN4. 50 Polystyrene Capacitor
MN42. 10 BC 107 Transistora.
MN43. 10 BC 108 Translators.
MW4. 10 screw fix S.P. C.O. min. sllde
WNHS. $51-35 \mathrm{~V}$. $1,000 \mathrm{~mA} / \mathrm{H}$. Mercury

PLEABE QUOTE MO. OF PACK\& WHEN ORDERUNG

CHORDGATE LTD.

75 FARINGDON ROAD, SWINDON, WILTS.
Tel. Swindon (0793) 33877. Rotail shop at above address.

TECHNICAL TRAINING IN ELECTRONICS AND TELECOMMUNICATIONS

ICS can provide the technical knowledge that is so essential to your success: knowledge that will enable you to take advantage of the many opportunities open to you. Study in your own home, in your own time and at your own pace and if you are studying for an examination ICS guarantee coaching until you are successful.

City and Guilds Certificates:
Telecommunications Technicians
Radio, TV, Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
MPT Radio Communications Certificate
Diploma Courses:
Colour TV Servicing
Electronic Engineering and Maintenance Computer Engineering and Programming Radio, TV, Audio Engineering and Servicing Electrical Engineering, Installation and Contracting

POST OR PHONE TODAY FOR FREE BOOKLET

난
 To: International Correspondence
 Schools

Dept 268F Intertext House, London
SW8 4UJ or telephone 6229911
Subject of Interest
Name
Address \qquad . Tel:
1: . Age

OHIO SCIENTIFIC COMPUTERS New series 2 Challenger C1P Cheapo 4 K version £202. Ohio 8K version £259. Special offer: Superboard 3 with free power supply gives 32×32 extended display, 1200 and 300 baud tape speeds, 50% higher computing speed and 50 Hz conversion) £15s the lot. Guard band kit also sole separately sette recorder $\mathbf{1 1 7}$. Cegmon improved monitor rom $£ 29 \cdot 50$. Assembler/Editor $£ 25$. Word processor E 10 . Display expansion it 30 lines $\times 54$ characters for superboard TWO $£ 20$.
PRINTERS supplied with free interface and word processor for Superboard and
UK101. Seikosha GP80 $£ 225$. Oki Microline $80 £ 32$. Base 2 800MST $£ 293$.
-SINCLAIR PRODUCTS only are post tree. SC110 oscilloscope $£ 139$, adaptor $£ 4$, rechargeable batteries $\mathbf{5 7}$.95, $\times 1$ probe
 pfm200 £54.50, adaptor £4, case £t.73. connector klt $£ 11 \cdot 27$. PDM35 £32.95, adap-
tor $£ 4$, case $£ 1 \cdot 73$, dm235 $£ 55 \cdot 50$, dm350 tor
78.50 , dm450 $£ 107 \cdot 95$, adaptor $£ 4$, case $£ 18 \cdot 30$, rechargeable batts $£ 7$.95. Micro-
vision TV $£ 69$. Adaptor $£ 8$ e8t.

MEMORIES 2114 450ns £2•15. 4116 200ns 2-83, 4027 £1-30. All low current.
-BATTERY ELIMINATOR KITS 100ma radio types with press studs 9v £1-79,9 + $94 £ 2 \cdot 50$. Stabilized 8-way types 3/4/6/6/7/1

 computer supplies $5 V$ stablized $1 \frac{1}{2} \mathrm{Eg}$, A $£ 12,6 \mathrm{~A} £ 20$. 12 v car convertor $6 / 7 \frac{1}{1} / 9 \mathrm{v}$ A E1.62.
-T-DEC AND S-DEC BREADBOAROS s-dec E3.76. t-dec E4.59. exp4b E2.64,
exp 300 \& 6 . 61 .
BATTERY ELIMINATORS 3-way type $17 \$ / 9 v 300 \mathrm{ma} £ 3.50$. 100 ma radio types
 800 ma £ $3 \cdot 04$.
TV GAMES AY-3-8600 $+{ }^{\circ}$ kit E12. 98 TV GAMES AY-3-860
AY-3-8550 + kit $£ 9 \cdot 26$.

SWANLEY ELECTRONICS
Dept.EE, 32 Goldsel Rd., Swanley, Kent post 45p extra. Add VAT except on secSwaniey 64851. Officiai and overseas orders welcome.

MULTIBAND RECEIVER WITH 27MHz

Frequency Range: AIR $108-145 \mathrm{MHz}$ PB $\quad 145-176 \mathrm{MHz}$ WB $\quad 162.5 \mathrm{MHz}$ TV, $\quad 54-87 \mathrm{MHz}$ FM $\quad 88-108 \mathrm{MHz}$ CB 1-40 Channels
 others.

Inclusive

A CLASSIC IN IT'S TIME

You don't have to be a highbrow to appreciate the beauty of this clock. Battery powered, it is ideal for office, lounge, bedroom, caravan or boat.
MA-1
ALARM
CLOCK

Large blue LCD display of full digital time. Symphonic alarm or buzzer, with snooze facility. Hourly time signal. Integral loudspeaker and amplifier with 3 position volume control. Built-in night time illumination. Alarm: "Symphonie Nr. 40 G moll" (W. A. Mozart, K. 550) for about 30 seconds, or buzzer for
60 seconds. Three AA size batteries last approx 15 months. Quartz accuracy. Dims: $43 \times 115 \times 76 \mathrm{~mm}\left(1 \frac{4}{4} \times 4 \frac{4}{2} \times 3\right.$ inches $)$.

JOIN THE KEYBOARD REVOLUTION

By closely analysing the natural sound variations in the waves and pitches of different instruments, Casio have been able to trace the characteristics peculiar to each traditional instrument. Pitch, timbre and harmonics have been measured, digitalised and stored in electronic chip mernory for faithful and exciting reproduction of the clarity and beauty of the onginals.

CASIOTONE 401

RRP $£ 345$ ONLY $£ 295$

Full polyphonic. 8-note playing of 14 instruments and sounds over 4 octaves. Rhythm accompaniment. 16 different rhythms with full-in auto-rhythm
Casio Auto Chord. Allows one finger accompaniment. Just press one, two or three keys and play major, minor and seventh chords, with bass accompaniment, automatically. Combines with auto-rhythm for professional sounds.
Vibrato, delayed vibrato, sustain and hold are incorporated in the at-a-glance, simple to use operationa! panel. Pitch control makes group tuning easy.
Compact $48 \times 318 \times 127$ inches with integral amplifier and speaker. The light weight ($28 \cdot 2 \mathrm{lb}$) allows playing anywhere there is an A.C. socket. Stand $£ 39$.

CASIOTONE 301

The same size and basic specification as the 401 above, the 301 does not have Casio Auto Chord or built-in sustain and hold facilities. There are 8 rhythm voices with a variation on each. Weight 27 l bs.
$\lfloor 245$
CASIOTONE MT-30

RRP $£ 115$ ONLY $£ 95$

Full polyphonic playing of 22 insiruments and sounds over 3 octaves. 4-position sound memory lets you switch between pre-selected sounds without pause. Built-in vibrato and sustain functions greatly enhance the overall musical effect.
Compact $2 t \times 22 t \times 6 \pm$ inches, with built-in amplifier and loudspeaker.
Battery/mains power source and light weight (6/b) allows playing anywhere.

CASIOTONE 201 and M-10

Please telephone for availability
201 Mains version of the MT-30. 29 instruments over 4 octaves. £245. M-10 Four instruments over $2 \frac{1}{2}$ octaves. Battery/mains. £69.

CASIO CALCULATORS

BQ-1100 Biolator calculator with calendar, two alarms, countdown alarm, stopwatch, time memory, three date memories ($£ 17.95$) £14.95 MG-880 Digital space invader game and calculator $£ 10.95$
SEND 20p (postage) for our illustrated catalogue of Casio watches and calculators and selected Seiko watches.

KEEP A DATE WITH GASSIO

You always wanted a musical calculator with date memories and date/time alarmsHERE IT IS!
UC-365 UNIVERSAL CALENDAR

Clock, universal calendar, date memories, daily alarm, 2 daily or date/time alarms, hourly chimes, stopwatch, countdown alarm, time memory, calculator.
Clock display: Hours, minutes, seconds, am/pm, or hours, minutes, full calendar. Calendar: Pre-programmed from 1901 to 2099. Full month display.
Date memories: Any day or days pre-settable within 12 month period. (Birthdays etc.)
Alarms: Alarm 1-Daily alarm. Alarm 2 \& 3-Daily alarms or time alarms on pre-set dates. (Pre-programmed melodies or electronic buzzer)
Stopwatch: $1 / 10$ second to 24 hours; net, lap and first and second place. Or Time memory: 24 hour system. The time of any other zone can be stored.
Calculator: Optional musical keys, full memory and percentage.
Two silver oxide batteries last approx 1 year. RRP £22.95
$4 \times 4 \frac{1}{2} \times 2 \frac{1}{2}$ inches. Leatherette wallet with window
UC-360 Card sized version of above. $7 / 32 \times 3 \frac{3}{3} \times 2 \frac{1}{6}$ " 519.95
UC- $\mathbf{3 0 0 0}$ Office desk version. Angled display. $1 \frac{1}{4} \times 4 \times 64^{n} \times 27.95$

CASIO'S AMAZING NEW

FX-3500P

Programmable. Non-volatile memories and stores Statistical regression and integrals.
38 functional (non-volatile) steps. 2 programmé storage capability. Unconditional and conditional jumps. 7 (non-volatile) memories; one independent, 6 constant memories. 18 pairs of parentheses, nestable in 6 levels.
61 built-in functions, including: Integrals (Simpson's rule). Linear regression, ogarithmic regression, exponential regression and power regression.
Hyperbolics, sexagesimal and co-ordinates conversions. 10 digit mantissa or $10+2$ exponent. Two silver oxide batteries give approximately 1,000 hours continuous use with power-saving automatic cut-off, with data and memory protection.
Dims. $9 / 32$
Dims: $9 / 32 \times 27 \times 5 \frac{1}{8}$ inches. Supplied with

ALL THIS FOR ONLY $\mathbf{E 2 2 . 9 5}$

FX180P. Hand held version without hyperbolics. $2 \times$ AA batteries, $8 \times 3 \times 5$? £19.95
FX-2700P. As FX3500P but $8+2$; without integrals, regression, 1 program $£ 19.95$ FX-8100 scientific with clock, calendar, alarm, chimes, stopwatch etc. $£ 24 \cdot 95$

CASIO'S BEST SELLING WATCHES

AA81

M1200

W150B

LCD ANALOGUE/DIGITAL ALARM CHRONOGRAPH with countdown alarm. AA-81 chrome, s/s bracelet $£ 29.95$. AA-81G Gold plated $£ 49.95$. AA-82 All stainless steel $\mathbf{1 3 9 \cdot 9 5}$.
12 MELODY ALARM CHRONOGRAPHS with countdown alarm. M-12 resin case/strap $£ 24 \cdot 95$. M-1200 all stainless steel $£ 29 \cdot 95$.
100 METRE WATER RESISTANT Alarm chronographs with countdown alarm. W-100. Resin case/strap $£ 19 \cdot 95$. W-150C Stainless steel case/resin strap $£ 25 \cdot 95$. $\mathbf{W}=150 \mathrm{~B}$ Stainless steel case/bracelet $£ \mathbf{3 2} \cdot \mathbf{5 0}$.
NEW F-500 sports chronograph. Resin case/strap $£ 9.95$

The prepaid rate for classified advertisements is 24 pence per word (minimum 12 words), box number 60p extra. Semi-display setting £6•16 per single column centimetre (minimum 2.5 cm). All cheques, postal orders, etc., to be made payable to Everyday Electronics and crossed "Lloyds Bank Ltd." Treasury
notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Everyday Electronics, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London SE1 9LS. (Telephone 01-2615942).

When replying to Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.

This will assist advertisers in processing and despatching orders with the minimum of delay.

Receivers and Components

GEARED MOTORS 1 R.P.M. to 120 R.P.M. TRANSFORMERS, RELAYS, SOLENOIDS, TIME SWITCHES, METERS.

> QUANTITY DISCOUNT

Quotations and delalls:
Dept. S.T., 46 Vine Clpse, Ramsgate, Kent CT11 7B.J Phone: Thanet 52293 (0)43)

100 resistors 85 p, 100 diodes $£ 1 \cdot 00,100$ transistors $£ 5 \cdot 00,25$ I.C.s $£ 1 \cdot 50,50$ C 280 £1•00. Lists 15 p. Pre-war onward valves, wireless. SAE SOLE ELECTRONICS, (EE), 37 Stanley Street, Ormskirk, Lancs L39 2DH.


``` SMALL 3 TRANSISTOR AUOIO AMPS \({ }^{40} \mathrm{D}{ }^{3}{ }^{3} \mathrm{E1} .3000\) SMALL COMPONENTS. TRANS. DIODES E1.60.
TLBSASSORTEDCOMPONENTSE3. 35.3 ASSORTED 7 LBS ASSORTED COMPONENTS E3. D5. 3 ASSORTED M.C. METERS E3. LIST 20p. REFUNDABLE. POST 50p. NSURANCE ADD 20 D.
2 BARNFIELD CRESCEENT MALE, CHESHIRE
```

TURN YOUR SURPLUS capacitors, transistors etc., into cash. Contact Coles Harding \& Co., 103 South Brink, Wisbech, Cambs. 0945 4188. Immediate settlement.

Software

THIRTY ZX80 program listings only £4.95, includes a multitude of games, home finance, basic maths, chequebook and more in our publication, ZX80 programs Part I. Also includes hints and tips, from Sussex Software, Wallsend House, Pevensey Bay, Sussex.

CARDBOARD COMPUTER: Learn Assembly Language Programming and Computer Architecture. £8.97 inc VAT. Also Solar Cells, Science Kits, Energy Books, Stirling Engines, Space Blankets etc. etc. Send 25 p for lists. Edencombe Ltd., Dept PM., 34 Nathans Road, North Wembley, Middlesex HA0 3RX.

Books and Publications

LEARN ELECTRONICS FAST. New, unique, brilliantly simple Tutronik system. Selected by BBC TV. No soldering. 30kwikbuild electronics projects. Speedilearn way to identify components, read circuit diagrams, break the colour code and connect circuits that really work. Kit complete with simple-to-follow instructions, circuit plans, components in compact storage wallet. Only £12.95 plus 95p P\&P UK (P\&P £2.75 elsewhere). Only from Dept EE, TECHNOCENTRE LTD, 140 Norton Road, Stockton-on-Tees 2BG.

For Sale
 NEW BACK ISSUES OF "EVERYDAY ELECTRONICS". Available 85p each Post Free, cheque or uncrossed PO returned if not, in stock. BELL'S TELEVISION SERVICES, 190 Kings Road. Harrogate, Yorkshire. Tel: (0423) 55885.

FOR SALE-surplus components, to pay for my future projeots. Pots, semiconduc tors, switches, ex-equipment p.c.b.s packed with i.c.s etc. $£ 6 \cdot 00$ per bag of assorted goodies, CANT, 83 Malone Road, Woodley, Reading, Berks.

A SET OF BACK ISSUES of "Everyday Electronics" from 1972. £45 including postage. Heathkit oscillosoope and manual, £85. Delivery extra. Maldon (Essex) 740755.

EVERYDAY ELECTRONICS, 96 copies, December 1971 to March 1981. £45•00. Phone 0734760068 after 6 p.m.

Service Sheets
 BELL'S TELEVISION SERVICE for service sheets on Radio. TV etc. $£ 1$ plus SAR. Colour TV Sorvice Manuals on request. SAE with enquiries to BTS, 190 King' Rd, Harrogate, N. Yorkshire. Tel: 042355886.

Any single service sheet £1/L.S.A.E. Thousands different Repair/Service Manuals/Sheets in stock. Repair data your named T.V. £6 (with circuits £8). S.A.E. Newsietter, Price Lists. Quotations.

AUSEE, 76 CHURCHES, LARKHALL, LANARKSHIRE (0698 883334).

SERVICE SHEETS from 50p and SAE Catalogue 25p and SAE. Hamilion Radio, 47 Bohemia Road, St. Leonards, Susex.

Veteran \& Vintage

"SOUNDS VINTAGE"
The only magazine for all vintage sound
enthusiasts, packed with articles by top
writers, covering gramophones, phono-
graphs, 78 s , wireless, news, history, reviews,
etc.
Bi-monthly. Annual subscription $£ 6 \cdot 60$
(airmail extra). Send 75 p for sample copy.
28 Chestwood Close, Billericay, Essex

Situations Vacant

NORTH EAST LONDON POLYTECHNIC

Faculty of Engineering-
Barking Precinct, Longbridge Road, Dagenham, Essex
SCHOOL OF CHEMICAL \&
SYSTEMS ENGINEERING

Senior

$\underset{\text { Ref: } 83 / E / 80}{\text { Techician T5 }}$
Required to control and supervise technicians working within the microprocessor laboratory, under the supervision, of the Principal ' Technician. Other duties will include planning and progression of technician work, maintenance of progress and financial reports, and development, including design assistance, of equipment within the laboratory. Candidates should hold a full technological certificate and/or HNC/HND qualifications, and have had $5-10$ years experience in a technical environment.
The inclusive annual salary will be on a scale from $£ 7,233$ to $£ 7,695$ according to age, qualifications and experience.
For further details and application forms please contact the Personnel Office (R), North East London Polytechnic, Asta House, 156/164 High Road, Chadwell Heath, Romford, Essex, RM6 6LX. Telephone 01-590 7722 Extn. 3121 or 3135, quoting the above reference number.
Closing date for receipt of applications: 3rd April, 1981.

PLEASE MENTION EVERYDAY ELECTRONICS WHEN REPLYING TO ADVERTISEMENTS

Miscellaneous

PRINTED CIRCUITS. Make your own simply, cheaply and quickly! Golden Fotoka Light Sensitive Lacquer-now greatly improved and very much faster. Aerosol cans with full instructions. $£ 2 \cdot 25$. Developer 35p. Ferric Chloride 55p. Clear Acetate sheet for master 14p. Copper-clad Fibre-glass Board approx. lmm thick £1.70 sqift. Post/packing 75p. WHITTE HOUSE ELECTRONICS, PO Box 19, Castle Drive, Penzance, Cormwall.

PROFESSIONAL DIGTAL STOPWATCH

* $1 / 100$ sec quartz accuracy-lap \& total times
* BIG t" Liquid Crystal Display
\star Designed to fit snugly in the hand with large practical timing buttons for positive timing
\star PLUS-clock/calendar-month; date; day; hrs; mins; secs
* Approx $3^{\prime \prime} \times 2 \frac{1}{2}{ }^{\prime \prime} \times \frac{3^{\prime \prime}}{}$-ideal for all critical timing requirements
\star Consult the clock/calendar at any time without disturbing the stopwatch timing

VAT \& post paid
H. M. WHEELER \& CO.,

15 Hawthorn Cres., Bewdley, Worcs. DY12 2 JE

THE SCIENTIFIC WIRE

 COMPANYPO Box 30. London E.4. 015311568.

ENAMELLEO COPPER WIRE				
SWG	11 lb	8 oz	4 ox	2 oz
8 to 29	2.76	1.50	0.80	0.60
30 to 34	3.20	1.80	0.90	0.70
35 to 39	3.40	2.00	1.10	0.80
40 to 43	4.75	2.60	2.00	1.42
44 to 47	8.37	5.32	3.19	2.50
48 to 49	15.96	9.58	6.38	3.69

SILVER PLATEO COPPER WIRE
 $\begin{array}{lllll}14 \text { to } 30 & 6.50 & 3.75 & \text { 2.20 } & 1.40\end{array}$
 TINNEO COPPER WIRE
 $\begin{array}{lllll}14 & \text { to } 30 & 3.85 & 2.36 & 1.34 \\ 0.90\end{array}$

Prices Include P \& P vat and Wine Data. Orders under $£ 2$ please add 20p. SAE for List. Dealer enquifies welcome. Registered Offce 22 Coningsby Gardens.

ELECTRONIC KITS. Largest range of kits in the UK. Everything from stroboscopic lights to transmitters, at unbeatable prices -send SAE for free catalogue to: EAST LING ELECTRONICS (Kits), 64B Hawthorn Road, Winton, Bournemouth.

DIGITAL WATCH BATTERY REPLACEMENT KIT

These watches all require These watches all require battery (power cell) replaceThis kit provides the means. We supply eyeglass, me supply eyeglass, nonscrewdriver case knife and screwback case opener, Also one doz. assort push-pieces full instructions and batery identification chart We then supply replacement batreries -you fit them. Begin now Send $f 9$ for complete kit and get into a fast growing business. Prompt despatch.

BOLSTER INSTRUMENT CO. (EE25) II Percy Avenue, Ashford, Middx., TWI5 2PB

ENAMELLED COPPER WIRE			
SWG	1 lb	$\underline{+16}$	$t \mathrm{lb}$
10 to 19	2.95	1.70	0.85
20 to 29	3.05	1.75	0.95
30 to 34	3.45	1.90	1.00
35 to 39	$3 \cdot 75$	$2 \cdot 10$	$1 \cdot 15$
40 to 43	4.95	2.75	2.15
44 to 46	$5 \cdot 90$	$3 \cdot 50$	$2 \cdot 40$
FREE WIRE TABLES WITH EACH ORDER INDUSTRIAL SUPPLIES 102 Parrswood Road, Withington, Manchester 20 Prices include P \& P in UK			

MAKE YOUR OWN
FIBRE OPTIC LIGHT
Approx 7500 optical fibres mounted in a sheath at the base. Only $£ 10.20$ each.

ART AND CRAFTS, Button Bridge Lane, Kinlet, Bewdley, Worcs.

BALLARD'S OF TUNBRIDGE WELLS have moved to 54 Grosvenor Road. No lists. SAE. All enquiries phone T/Wells 31803.

LEARN
 ELECTRONICS WITHOUT SOLDER

Build electronic circuits without solde on a Roden S-Dec
This has built-in
contacts and holes into
which you plug your components Suitable for all ages. Can be used time after time. Ideal giff for time after time. Ideal gift for
students or experimenters. students or experimenters.
Full instructions and 2 circuit diagrams with each $\mathrm{S} \cdot$ Dec. Send cheque or P.O. to. hoden Products, Deo eE High March, Daveniry. Northants, NN11 4OE CHOB

INDEX TO ADVERTISERS

Audio Electronics 283
Baydis. 291287
B.N.R.E.S.262
Buli J.GeminiGlobal Specialities89
GMT Electronics 286
Greenweld 286
Harvers ons 276
Heath-Kit 289
Home Radio 276
I.L.P. Electronics 280, 281
Intertext (ICS) 292
Keelmoor 278
Magenta Electronics 275
Maplin Electronic Supplies Ltd. Cover ivMarshalls282
N.I.C. 292
Phonosonics 224
PM Components 282
Powell T^{\prime}. Cover iii
Radio Component Specialists 296
Radio TV Components 288
Rapid Electronics 276
Science of Cambridge 284, 285
Selray Book 288
Spimin 296
Swanley Electronics 292
Teleman Products 224
Tempus 293
Titan Transformers 272
T.K. Electronics 272
Vero Electronics 278
Watford Electronics 217
Webb Electronics 288
West London Direct Supplies 296
Wilmsiow Audio 282

"SPECIAL PRICES" POST \&1-50 BAKER LOUDSPEAKERS					
Model	Ohm	Siz.	Power	Type	Our
Malor	4, 8, 16	12	30	HI-FI	1812
Doluxe Mh II	d	12	15	Hi-Fi	14
Superb	8, 16	12	30	Hi-Fi	¢20
Auditorlum	8, 16	12	45	$\mathrm{Hi}-\mathrm{Fl}$	¢20
Auditorium	8, 16	15	60	HI-FI	¢35
Group 45	4, 8, 16	12	45	PA	¢15
Grous 75	4, 8, 16	12	75	PA	$\ldots 22$
Group 100	8, 16	12	100	PA	¢24
Groud 100	8. 16	15	- 100	PA	$\ldots 29$
Disco 100	8, 16	12	100	Disco	c20
Disco 100	8. 16	15	100	Disco	$\ldots 29$

4 CHANNEL MIXERS $\mathbf{\& 8} \cdot \mathbf{0 0}$ Add muslcal highlights and sound effects to recordings. conirols Into single output. \% volt battery operated with DE-LUXE DISCO MIXER 240V. 4 Stereo Channels plus Vu meters Headphone Monltor £44, Post 51 MIN MODULELOUDSPEAKERKIT E10-95 EMI $15 \times 8 \mathrm{jln}$. 3-way Loudspeaker Baffe, 5in. Bass, 5 in , Middle. 31n. Tweeter; 3-way Crossover \& Ready Cut Baffle. Full assembly Instruetions supplied. Response 60 to
20,000 c. D.s. 12 watt RMS 8 ohms fio. 35 per kit. Two kit £ 20 . Suitabi. Booksheff Cabinot $81-50$ each. Post $£ 1-50$ GARRARD 6-200 SINGLE PLAYER.DECK Brushed Aluminlum Arm with stereo ceramic cartridge Start, Large Metal Turntable.
Cueing Device and Pause Conirol. $£ 22$. Post $£ 2$. ISKRA SINGLE RECORD PLAYER \&8 Fitted with auto stop, stereo cartridge. Baseplate.
 B.S.R. SINGLE PLAYER P170/2 $£ \overline{21.00}$ 3 -speeds 11 in . aluminlum furntable. "silm" arm, cueing device, stereo ceramic cartridge, silver trim, blas compenator, adjustable stylus pressure, plays all records, spring
B.S.R. DE-LUXE AUTOCHANGER E20 with stereo cartridge, plays all slye records. Post $£ 2$ WOODEN PLINTHS CUT FOR B. S.R. £ Size: $15 \times 15 \times 3 i n$. Teak effact. Post $£ 1$.日SA P200,
E28. Post $£ 2$.
METAL PLINTH CUT FOR GARRARD Slze: $16 \times 14 \times 3$ in, $£ 5.03$ Silver or Black finish. Post $£ 2$. TINTED PLASTIC COVERS POST $£ 1 \cdot 50$
 R.C.S. LOW VOLTAGE STABILISED POWER PACK KITS
£2-35 Post 45p
All parts and instructions with Zener diode printed ci rcult, mains transformer 240 V a.c. Output 6 or $7 \frac{1}{}$ or 9 or 12 V d.e. up to 100 mA or less. Please state voltage required. PP BATTERY ELIMINATOR BRITISH Mains stabilized power-pack 9 volt 440 mA max.
overload cut out. Size $5 \times 3 \frac{1}{2} \times 2 \mathrm{in}, \mathrm{\Sigma 4} \cdot 50$. Post 50 p .
MAINS TRANSFORMERS POST
 $6 \times 4 \mathrm{in}$. $£ 1 \cdot 20: 8 \times 6 \mathrm{in}$. £1-50; 10×7in. $£ 1$. $90 ; 14 \times 9 \mathrm{in}, \mathrm{E} 2 \cdot 50$

 $90 \mathrm{p} ; 14 \times 9 \mathrm{in} .1-20 ; 12 \times 12 \mathrm{in}$. 1 I. $30 ; 16 \times 10 \mathrm{in}$. 41.40 . ALUMINIUM BOXES. MANY OTHER SIZES IN $1 \cdot 30 ; 8 \times 6 \times 3 \mathrm{in} . \mathrm{\varepsilon 2} \cdot 10 ; 9 \times 4 \times 4 \mathrm{in}, \mathrm{\varepsilon 2} \cdot 30 ; 10 \times 7 \times 3 \mathrm{in}$

HIGH	H VOLTAGE ELECTROLYTICS				
8/450V	45p	$8+8 / 450 \mathrm{~V}$	75p	$50+50 / 300 \mathrm{~V}$	50
16/350V	45p	$8+16 / 450 \mathrm{~V}$	75 p	$32+32 / 500 \mathrm{~V}$	
$32 / 500 \mathrm{~V}$	75p	$20+20 / 450 \mathrm{~V}$	75p	$100+100 / 275 V$	
$50 / 500 \mathrm{~V}$	¢1-20	$32+32 / 350 \mathrm{~V}$	75p	$150+200 / 275 \mathrm{~V}$	2p
$8 / 800 \mathrm{~V}$	¢1. 29	$32+32+32 / 325$	$\checkmark 90 \mathrm{p}$	$220 / 450 \mathrm{~V}$	
Post 50p					
Access-	B	ay-Visa Lis		Closed	

Radio Components Specialists
337 WHITEHORSE ROAD
CROYDON, SURREY, U.K. Tel. 01-684 1665

Every week, millions of advertisements appear in the press, on posters or in the cinema.

Most of them comply with the rules contained in the British Code of Advertising Practice and are legal, decent, honest and truthful.

But if you find one that, in your opinion, is wrong in some way, please write to us at the address below.

We'd like you to help us keep advertising up to standard.

The Advertising

Standards Authority
A.S.A. Ltd ,Brook House, Torrington Place, London WCIE 7HN.

The modern way of instant 2-way communications. Just plug into power socket. Ready to use. Crystal clear communications from room to room. Range $\frac{1}{2}$-mile on the same mains phase. On/off switch Volume control, with 'buzzer' call and light indicator Useful as inter-office intercom. betw
warehouse, in surgery and in homes.
Warehouse, in surgery and in homes.
Also F.M. 2 channel "touch" model $\mathbf{5 5} .95$ per pair + VAT $£ 8 \cdot 40+P \& P £ 2 \cdot 15$.

NEW AMERICAN TYPE CRADLE TELEPHONE AMPLIFIER

葛

$£ 18.95$

+ VAT $£ 2.85$
$+\quad$ \& \&
Latest transistorised Telephone Amplifier, with detached plug-in speaker. Placing the receiver on to conversation without holding the handset. Many people can listen at a time. Increase efficiency in office, shop, workshop. Perfect for "conference" calls: leaves the user's hands free to make notes, consult fles. No long waiting, saves time with longdistance calls. On/off switch, volume control, Conversation recording, model at $\mathbf{£ 2 0 - 9 5}+$ VAT $£ 3 \cdot 15$ \& \& £ $1 \cdot 65$

DOOR ENTRY SYSTEM

DOOR ENTRY SYSTEM in this day and without modern whr SYSTEM in this day and age. The wanted callers. Talk to the caller and admit him only if satisfied by pressing a remote control button the invalid, the the door electronically. A boon for complete d.i.y. kit with one internal Telephone outside Speaker pane), electric door lock release (for Yale type surface latch lock): mains power unit cable (4 pairs) 50 ft and wiring diagram. Price $\mathbf{2 5 9 \cdot 9 5}+$ VAT $£ 9 \cdot 00+P \& P$ £2. 25 . Kit with two phones $\mathbf{1 6 9 . 9 5}+$ VAT $£ 10.50+$ P\&P £2.45.

10-day price refund guarantee on all ilems
Access and Barclaycard welcome.
WEST LONDON DIRECT SUPPLIES (EE3) the LONDON, W8 Tel: 01-937 5548

ENGINEERING REFERENCE BOOKS

E. R. BOOKS, PO BOX 47, PAIGNTON, DEVON TQ3 1TE

ITT COMPONENTS GROUP M \& OE DIVISION, DEPT 52732 BRIXHAM RD., PAIGNTON TQ4 7BE

TEXAS INSTRUMENTS

SEMICONDUCTOR BOOKS
TTL Data Book
Optoelectronics Data Boo
Opto Theory \& Practice
9900 Family Systems Design Book Sotware Design Guide for
Mieroprocessors Mieroprocessors Interface Circuits Data Booh Bipolar Microcomputer Data Book MOS Memory Data Book Book MOS Memory Data Book

S
UNDERSTANDING
Microprocessors
Digital Electronics
Solld State Electronics Calculator Math

TEXAS INSTRUMENTS
CALCULATOR BOOKS

Sourcebook for Programmahle Calcs
 55.50

Calculator Analysis Business \&
Finance
Math On Keys
£ 7.50
£. 00
RCA
Audio Amplifier Manual C/Mos IC Technical Manua Electro-optic Handbook
Solid State Devices Manua Linear Devices Databook Microprocessors Memorles and
 Microprocessors Memorles and
Support Systems Databook

NATIONAL

Audio Handbook
Fet Handbook

ALL PRICES QUOTED INCLUDE POSTAGE/PACKING.

E.E. PROJECT KITS

Audio Effects Unit
Phone Call Charge Jogger
Darkroom Controller
Bicycle Alarm
Precision Parking Pad
Lights Failure Monitor
TTL Power Supply Unit
Duo-Deci Timer
*TT Logic Probe
Bedside Radio
Auto Lighting-Up Warning
Audio Millivoltmeter
Weather Centre (Electronics only)
Brakesafe Monitor
Cricket Game
Zener Diode Tester
Signal Tracer
General Purpose Amplifier
Voltage Converter
Autowaa
A.F. Signal Generator

Courtesy Light Delay
Auto Phase
Battery Voltage Monitor
Lights Warning System
Autofade
*Dual Line Game
Audio Tone Generator
*Pre-tuned 4-Station Radio
Gas Sentinel
Automatic Level Control
Cycle Direction Flasher
Cable and Pipe Locator
Stereo Headphone Amplifier Doorbell Register
Five Range Current Limiter Kitchen Timer Touch Switch Micro Music Box Simple Short Wave Receiver Morse Practice Oscillator Slide/Tape Synchroniser Spring-Line Reverb Unit
Mains on/off Timer
Power Supply 3-9V
Loft Alert
Lightcall
Burglar Alarm
Baby Alarm
Opto Alarm
Radio Tuner MW/LW
3-Function Generator
One Armed Bandit
Lights-on Reminder

ZB122	Oct. 80	£12.25
ZB121	Oct. 80	£6.00
ZB123	Oct. 80	£.17-25
ZB124	Oct. 80	£9. 25
ZB73	Sept. 80	£3.50
ZB77	Sept. 80	£8.75
ZB78	Sept. 80	£9.50
ZB75	Sept. 80	£8.50
ZB76	Sept. 80	£3. 25
ZB74	Sept. 80	£14.25
ZB71	Aug. 80	£5.65
ZB70	Aug. 80	£17.75
ZB72	Aug. 80	£47.50
ZB68	Aug. 80	£7.50
ZB69	Aug. 80	£14.95
ZB79	July 80	£5.00
ZB80	July 80	£5.00
ZB81	July 80	E6.00
ZB82	July 80	£4.75
ZB83	July 80	£19.25
ZB84	July 80	£20.00
ZB85	July 80	£5. 25
ZB86	July 80	£19.25
ZB64	May 80	£4.80
ZB63	May 80	£3.60
ZB66	May 80	£10.25
ZB65	May 80	£25.00
ZB67	May 80	E3.50
ZB62	May 80	£14.00
ZB61	April 80	£27.00
ZB60	April 80	E8.00
ZB59	April 80	£14.50
ZB54	March 80	¢ 3.75
ZB57	March 80	£15-25
ZB58	March 80	£3.60
ZB53	March 80	¢4.50
ZB55	March 80	£12.75
ZB56	March 80	E9•00
ZB45	Feb. 80	£17.00
ZB44	Feb. 80	£18.00
ZB43	Feb. 80	£6.00
ZB42	Feb. 80	E11.50
ZB49	Jan. 80	£22.50
ZB48	Jan. 80	£30.00
ZB47	Jan. 80	£4.50
ZB46	Jan. 80	£33.00
ZB103	Dec. 79	¢6. 25
ZB51	Dec. 79	£5.00
ZB40	Nov. 79	£8.50
ZB41	Nov. 79	$£ 5.00$
ZB108	Nov. 79	£14.75
ZB52	Nov. 79	£25.00
ZB33	Oct. 79	£21.00
ZB34	Oct. 79	£4.60

Signal Level Indicator	ZB36	Oct. 79	£4.50
High Impedance Voltmeter	ZB35	Oct. 79	£14.50
Universal Oscillator	ZB37	Oct. 79	£3-50
Chaser Light	ZB4	Sept. 79	£17.50
Low Power Audio Amplifler	ZB3	Sept. 79	£3.75
Simple Transistor Tester	ZB2	Sept. 79	£5.50
Varicap MW Radio	ZB1	Sept. 79	£8.50
Quiz Referee	ZB12	Aug. 79	£4.75
Touch-on Pilot Light	ZB10	Aug. 79	£2.00
Trailer Flasher	ZB9	Aug. 79	£3.00
Swanee Whistler	ZB8	Aug. 79	£3.50
Electronic Tuning Fork	ZB7	Aug. 79	£8.90
Power Supply 9V	ZB6	Aug. 79	£8.25
Warbling Timer	ZB5	Aug. 79	£5.80
Water Level Indicator	ZB111	July 79	£4.50
Dolls House Lights Economiser	ZB107	July 79	£4.50
Darkroom Timer	ZB17	July 79	£2.50
Soldering Iron Bit Saver	ZB13	July 79	$£ 9 \cdot 25$
Voltage Splitter	ZB15	July 79	¢3.25
Conference Timer	ZB14	July 79	£38.00
Electronic Canary	ZB19	June 79	£4.50
Tremolo Unit	ZB18	June 79	£10.00
Meter Amplifier	ZB21	June 79	£3.50
Quad Simulator	ZB22	June 79	£8.00
Short Wave Converter	ZB25	May 79	£13.75
Electronic Dice	ZB24	May 79	£13.50
Intruder Alarm	ZB23	May 79	£23.00
Shaver Inverter	ZB26	April 79	E8.00
Touch Bleeper	ZB27	Aprll 79	E3. 25
Choke Warning Device	ZB28	April 79	£7.50
Transistor Tester	ZB100	April 79	£4.00
One Transistor Radlo MW/LW	ZB104	March 79	£7. 25
Time Delay Indicator	ZB98	March 79	£4.00
Micro Chime	ZB96	Feb. 79	£12.00
Lights Reminder for Car	ZB32	Jan. 79	£4.50
Headphone Enhancer	ZB101	Jan. 79	£4.00
Solid-State Roulette	ZB95	Jan. 79	£18.25
I'm First	ZB105	Jan. 79	£3. 70
Continuity Tester	ZB115	Jan. 79	£4.30
Fuzz Box	ZB106	Dec. 78	£5.00
Vehicle Immobiliser	ZB110	Dec. 78	£5.00
Audio Effects Oscillator	ZB109	Nov. 78	£3.50
Tele-Tel	ZB94	Nov, 78	$£ 17.80$
Radio MW/LW	ZB116	Oct. 78	87.00
Sound to Light	ZB112	Sept. 78	£7.00
R.F. Signal Generator	ZB93	Sept. 78	£20.50
Guitar Tone Booster	ZB117	Sept. 78	$\mathbf{8 5} \mathbf{0 0}$
A.F. Signal Generator	ZB119	Aug. 78	£10.00
Quagmire	ZB120	July 78	£. $9 \cdot 50$
Tele-Bell	ZB118	June 78	£12. 25
Weird Sound Effects Generator	ZB113	March 78	£3.50
Catch-a-Light	ZB102	March 78	£6.00
Chaser Light Display	ZB97	Feb. 78	£22.00
Car System Alarm	ZB92	Feb. 78	£4.50

* TEACH-IN 80 ћ

This popular monthly constructional series started in E.E. in 1979 and is a must for beginners to electronics. The sheer simplicity of the whole project experiments lends itself to be made by any beginner young or old. Basic technical principles and symbols explained in great detail. Start at the beginning with a hobby that could become a worthwhile career, ourkit comes complete with all parts as specified by E.E.
List A, B and C £22.50. Monthly reprints from October 1979 available at 40 peach per month extra or $£ 4.50$ for whole series.
*All E.E. project kits supplied with cases except items marked *. Ali kits come complete with items as specified plus Texas i.c. sockets where required, also veroboard connecting wire etc.

If you do not have the issue of E.E, which contains the project we can supply a reprint at 40p extra.
Personal callers please ring to check availability of kits.
All prices include post, packing and 15% V.A.T.

LATE EXTRA

MINI I.C. RADIO OCTOBER '80 ZB126 £10.35
 DUSK/DAWN RELAY OCTOBER 'BO ZB125 £7.45
 SOUND TO LIGHT ZB127 NOV. '80
 GUITAR PRACTICE AMPLIFIER $2 B 128$ NOV. '80
 REACTION TESTER ZB129 NOV. '80 PRECISION TIMER ZB130 NOV. ' 80 TRANSISTOR TESTER 2B131 NOV. '80 SOIL MOISTURE MONITOR 2B132 NOV. 'sO

Shop Hours Mon-Friday 9-5.30 p.m. Sat. 9-4.30 p.m.
Telephone: 01-226 1489

T. POWELL

306 St. Pauls Road, Highbury Corner, London N.1.

Visa/Access cards accepted
Minimum telephone Orders $£ 5 \cdot 00$
Minimum Mail Order $£ 1$-00

Make it for a Song!

The New Maplin in Matinée

Amazing Value For Only

Easy to build. Latest technology - means less cost less components and 80\% less wiring Comparable with organs selling for up to $£ 1,000.00$. Two 49-note manuals. 13-note pedalboard. All organ voices on drawbars. Preset voices: Banjo, Accordion, Harpsichord, Piano, Percussion. Piano sustain Sustain on both manuals, and pedalboard. Electronic rotor, fast and slow. Vibrato and Delayed vibrato. Reverb. Manual and Auto-Wah. Glide (Hawaiian Guitar Sound). Single finger chording plus memory. 30 Rhythms! 8-instrument voicing. Major, Minor and Seventh chords. Unique walking bass lines with each rhythm. Unique countermelody line with each rhvthm. Truly amazing value for money. Full construction details in Electronics \& Music Maker magazine.

The complete buyers' guide to electronic components. With over 300 pages, it's a comprehensive guide to electronic components with thousands of photographs and illustrations and page after page of invaluable data. Get a copy now - it's the one catalogue you can't afford to be without.
Post this coupon now for your copy of our 1981
catalogue price $£ 1$.
Please send me a copy of your 320 page catalogue. I
enclose $£ 1$ (Plus 25 p p\&p). If I am not completely
satisfied I may return the catalogue to you and have my
money refunded. If you live outside the UK send $£ 1.68$
or 12 International Reply Coupons.
I enclose $£ 1.25$.
Name.
Address.

กา7ำค니ำ

Maphn Electronic Supplies Ltd
All mall to PO Box 3, Rayleigh, Essex SS6 8LR
Telephone Southend (0702) 554155 Sales (0702) 552911
Shops
159.161 Kıng Street, Hammersmith, London W6 Telephone (01) 7480926 284 London Road, Westclitf-on-Sea, Essex Telephone Southend (0702) 554000 Both shops closed Mondays

[^0]: Eにな~ TTEX
 7400
 7401
 7402

 \qquad

[^1]: As official UK importers of OHIO Scientific products Watford Electronics have just introduced the new Superboard II Series 2 single board computer.

[^2]: "A reorganisation of $m y$ Department has taken place and I am giving urgent consideration to the role which central Government can play in encouraging the entrepreneurial spirit which characterises so many British Information Technology companies. And it must be stressed that zrgency is the key word, for, though very significant business opportunities exist, we are not the only country to appreciate them. If we are to be truly competitive, both domestically and internationally, we must move quickly.
 I am, however, concerned that this process of acclima-

[^3]: A. Marshalf (London) Ltd., Kingsgate House,

