Easy to bulld projects for everyone
 AUG 79 45p andionlcs

EIFHROUIE TUIITS FOM

SQUARE OIAE BEGNRES
 ov power supply

SOLAR QUARTZ LCD 5 Function

Genuine solar panel with battery back-up. Hours, mins., secs., day, date. Fully adjustable bracelet. Back-light. Only 7 mm thick.
£8.65
Guaranteed same day despatch.

M2

FRONT-BUTTON

 Alarm Chrono Dual Time

SOLAR QUARTZ LCD Chronograph

HANIMEX
 Electronic

LED Alarm Clock
four manute dicplay, Lacge LED display with on aff control. Display flathing tor power fors noication. Repertable 9 minute snooce Dimp
 Weignt: $1.43 \mathrm{fts}(0.65 \mathrm{~kg})$.
$£ 9.65$ Thousands sold
Mains operated.
Guaranteed same
day despatch.

SEIKO Alarm Chrono
 LCD, hours, mins. secs. day of week, 24 hour Alarm, 12 hour chronograph. 1/10th secs, and lap time. Back li stainiess steel. List Price $£ 130.00$ METAC PRICE £105.00

HANIMEX portable LCD clock radio

- Time set \& alarm controls.
- Snooze \& sleep controls.
- Wake to music or alarm.
- AM/PM indicator.
- Battery operated. No plug required.
- Receives all standard AM radio broadcasts.
- Drawstring carrying case included.
- Back-light. B - A . 17.95
- Quartz crystal controlled.

M14

HOW TO ORDER

 Battery fitting sefvice is aveilable at our shops. All prices include VAT. 24 hour phone service at both shops: $01-723475303272-76545$Payment can be made by sending cheque, postaf order, Barclay. Access or American Express card or the amount stated. Wo do not wait to clear your checquctearly, enclose 30 p for post and packing not delay delivery. All products carty 1 year guaranteee and full montey back 10 day reassurance

Trade encuiries: Send for a complete list of trade prices - minimum order value $£ 100$
Telephone Ordess Credit card customers can telephone ordets direct to Diventiy or Edgware Rd

CALLERS WELCOME Shops open 9.30-6.00.

QUARTZ LCD ALARM 7 Function

Guaranteed same day dispatch. M4

ALARM CHRONO

 with 9 world time zones- 6 digits, 5 flags.
$* 6$ basic functions.
.8 further time zones. - 8 further time zones.
- Count-down alarm. - Count-down alarm.
- Stop-watch to 12 hours 59.9 secs.
59.9 secs.
in $1 / 10 \mathrm{sec}$. steps. in $1 / 10 \mathrm{sec}$ steps.
- Split and timing modes. Alarm.
- 9 mm thick

Back-light.
£29.65

SEIKO-STYLE
Dual time-alarm Chronograph

Mineral glass

face.

Battery hatch
for DIY battery
replacement.
Top quality finish
with fully
adjustable bracelet.
£35.00

Price breakthrough only

 £18.95OUTSTANDING FEATURES

- DUAL TIME. Local time always visible and you can set and recall any other time zone (such as GMT). Also has a light for night viewing.
- CALENDAR FUNCTIONS include the date and day in each time zone. - CHRONOGRAPH/STOPWATCH displays up to 12 hours, 59 minutes, and 59.9 seconds.
On command, stopwatch display freezes to show intermediate (split/lap) time while stopwatch continues to run. Can also switch to and from timekeeping and stopwatch modes without affecting either's operation.
ALARM can be set to anytime within a 24 hour period. At the designated time, a pleasant, but effective buzzer sounds to remind or awaken youl Guaranteed same day dispatch. M16

South of England 327 Edgware Road LONDON W. 2 Telephone: (01) 7234753

WATFORD ELECTRONICS
 35 CARDIFF ROAD, WATFORD, HERTS., ENGLAND
 MAIL ORDER, CALLERS WELCOME. Tel. Watford $40588 / 9$

Abstract

ALL DEVICES BRAND NEW, FULL SPEC. AND FULLY GUARANTEED ORDERS P.O.S OR BANKERS DRAFT WFITH ORDER. GOVERNMENT AN: CASH/CHEQUE UCATIONAI INSTITUTIONS' OFFICIAL ORDERS ACCEPTED. TRADE AND EXPORTIMOUHRY INSTITUTIONS' OFFICIAL ORDERS ACCEPTED. TRADE AND EXPORT INOUIRY WELCOME. P\&P ADD $30 D$ TO ALI ORDERS UNDER \&I0-00. OVERSEAS ORDERS

 VATExport orders no VAT. Appllcable to U.K. Customers only. Unless stated otherwise,
all prices are exclusive of VAT. Please add 8% to devices marked $\$$. To the rest add
We stock many more items. It pays to visit us. We are situated behind Watford Football
Ground. Nearest Underground/BR Station: Watford High Street. Open Monday to Ground. Nearest Underground/BR Station: Watford High Street.
Saturday 9.00 am- 6.00 pm. Ample Free Car Parking space avallable.
POLYESTER CAPACITORS

POLYESTER RADIAL LEAD (Values In $\mu \mathrm{F}) 250 \mathrm{~V}$:	FEED THROUGH
$0-01,0-015,0-022,0-0275 \mathrm{p}: 0-033,0-047,0-068,0-17 \mathrm{p} ; 0-1510 \mathrm{p}$;	CAPACITORS
$0-22,0-3313 \mathrm{p} ; 0-4717 \mathrm{p}: 0-6819 \mathrm{p} ; 1-022 \mathrm{p} ; 1-530 \mathrm{p} ; 2-234 \mathrm{p}$.	$100 \mu \mathrm{~F} 350 \mathrm{~V}$

250V: $10065 \mathrm{p} ; 63 \mathrm{~F}$
$0 \cdot 47,1 \cdot 0,1 \cdot 5,2 \cdot 2,2-5,3-3,4-7,6-8,8 \quad 10,15,228 \mathrm{p} ; 47,32,5012 \mathrm{p} ; 63,10027 \mathrm{p}$
 $35 \mathrm{~V} ; 10,837 \mathrm{p} ; 330,47032 \mathrm{p} ; 100049 \mathrm{p} ; 25 \mathrm{~V}: 10,22,476 \mathrm{p} ; 80,100,1608 \mathrm{p} ; 220,250 \mathrm{~F} ; 13 \mathrm{p} ; 470,640$
$25 \mathrm{p} ; 100027 \mathrm{p} ; 150030 \mathrm{p} ; 220045 \mathrm{p} ; 330068 \mathrm{p} ; 470085 \mathrm{p} ; 16 \mathrm{~V}: 10,40,47,687 \mathrm{p} ; 100,1258 \mathrm{p} ; 220$,
$33014 \mathrm{p} ; 47015 \mathrm{p} ; 1000,150020 \mathrm{p} ; 220034 \mathrm{p} ; 10 \mathrm{~V}: 1006 \mathrm{p} ; 64012 \mathrm{p} ; 100014 \mathrm{p}$. TAG-END TYPE: 70V 2000 89p; 4700 135p; $50 \mathrm{~V}=10,000255 \mathrm{p} ; 40 \mathrm{~V}=250065 \mathrm{p} ; 3300,470070 \mathrm{p}$;
$15,000299 \mathrm{p} ; 25 \mathrm{~V}: 470070 \mathrm{p} 220043 \mathrm{p} ; 325 \mathrm{~V}: 200+100+50+100190 \mathrm{p} ; 32+32175 \mathrm{p}$. TANTALUM BEAD CAPACI- POTENTIOMETERS: (ROTARY) OPT

MYLAR FILM CAPACITORS
$100 \mathrm{~V}=0.001,0.002,0.005,0.01 \mu \mathrm{~F} 6 \mathrm{p}$
$0.015,0.02,0.04,0.05,0.056 \mu \mathrm{~F} \quad 7 \mathrm{p}$
$0.1 \mu \mathrm{~F}, 0.29 \mathrm{p} \quad 50 \mathrm{~V}=0.47 \quad 12 \mathrm{p}$
 COMPRESSION TRIMMERS
$3-40 \mathrm{pF}, 10-80 \mathrm{pF} 30 \mathrm{p} ; 25-190 \mathrm{pF} 33 \mathrm{p}$
$100-500 \mathrm{pF} 45 \mathrm{p} ; 1250 \mathrm{pF} 60 \mathrm{p}$ $100-500 \mathrm{pF} 45 \mathrm{p} ; 1250 \mathrm{pF}$ 60p
POLYSTYRENE CAPACITORS
10pF to 1nF 8p; $1-5 \mathrm{nF}$ to 10 nF 10 p . Linear Value. (Lin, only) Single 27p
$500 \Omega, 1 \mathrm{~K} \& 2 \mathrm{~K}$
$5 \mathrm{~K}-2 \mathrm{M} \Omega$ single grang
$5 \mathrm{~K}-2 \mathrm{M} \Omega$ single with DP switch 655 p

$5 \mathrm{~K}-2 \mathrm{M} \Omega$ double gang ELECTRONICS k | SK-2 M Ω double gang |
| :--- |
| SLIDER POTENTIOMETER |
| $0.25 W \mathrm{log}$ and linear values 60 mm |
| $5 \mathrm{~K} \Omega-500 \mathrm{~K} \Omega$ single gang 70 |
| $10 \mathrm{~K} \Omega-500 \mathrm{~K} \Omega$ dual gang | $\begin{array}{ll}\text { TiL209 Red } & 13 \\ \text { THL211 Grn } & 17 \\ \text { TIL212 Yellow } & 18 \\ 2^{\prime \prime} \text { Red } & 15 \\ 2^{\prime} \text { Yellow Green } & 18\end{array}$ 10pF to inF 8p: 1-5nF to 10nF 10p.

SIL VER MICA (Values in pF) $3-3$,
$4-7,6-6,10,12,18,22,33,47,50,68$,
$75,82,85,100,120,150,180$, 3 p each
$220,250,300,330,360,390$,

 Square L
orpi2
2 N 577
$1000,1200,1800,2000 \quad 20 \mathrm{p}$ each
SOLDERCON PINS
100 50p: 500200 p
E.E. INTRUDER ALARM
All parts NOW avallable

JACK PLUGS			SOCKETS		S-DEC 250pt
	Screened	Plastic	open	moulded	T-DEC 400p*
2.5 mm	13p	body	metal	with	U-DEC ' A '
3.5 mm	15 p	10p	${ }_{8}{ }^{\text {p }}$	contacts	465pt
MONO STEREO	25p	14p	13p	${ }^{20 p}$	U-DEC 'B'
STEREO	32p	18p	15 p	24p	699pt

DP clof
DPDT

345 Pin Audio	$\begin{aligned} & 10 p \\ & 13 p \end{aligned}$	$\begin{gathered} 6 p \\ 10 p \end{gathered}$	$0 \mathrm{p}$	SWITCHES \star Miniature Non-Locking Push to Make 15p Push to Break 25p ROCKER (white) 10A 250 V
CO-AXI				
plastic				
	18p	10p	22p	SP changeover centre of ROCKER: SPST on/off $10 \mathrm{~A} 250 \mathrm{~V} \quad$ 35p
PHONO assorted colours Metal Screened				
	10p	8p couble	15p	Lights when on: 3A 240 VROTARY: (ADJUSTABLE STOP) 1 pole 2-12 way $2 \mathrm{p} / 2-6 \mathrm{~W}, 3 \mathrm{p} / 2-4 \mathrm{~W}, 4 \mathrm{p} / 2-3 \mathrm{~W}$. 41 p
	15p	15 p 4 -way	20p	
BANANA 4	11p	12p		ROTARY: Mains 250 V AC, 4 Amp $\begin{aligned} & 41 p \\ & 45 p \end{aligned}$
	10p	10 p	-	DIL SOCKETS \star (Low Profile - Texas) 8 pin 10p; 14 pin 12p; 16 pin 13p; 18 pin 15p; 20 pin 22p; 24 pin $25 \mathrm{p} ; 28$ pin $39 \mathrm{p} ; 40$ pin 50 p .
	6 p	6 p		
	6p	6 p		

JACKSONS CAPACITORS

ODES	zeners	
$\begin{array}{ll}\text { AA119 } \\ \text { AA129 } \\ & 25 \\ 20\end{array}$	ge	
BA100 ${ }^{\text {A }}$	${ }^{\text {Po meath }}$	
${ }^{88126}$	1.33	
${ }^{8 \times 127}{ }^{12}$	15 p	
	ISE	
	160	
OA47 ${ }^{12}$	大BRIDGE	
A 470		
	${ }^{\text {colastic case) }}$	
85	1A/100V	${ }_{\text {BT106 }}$
	1A/200V	C1060
	${ }^{1 A / 400}$	T1C45
42002	${ }^{1 / 4}$	TRIA
$1{ }^{14}$	${ }_{2} 2$	
	45	3,
	2A/400V 53	
N400055*	2A1600V 65	${ }_{8 A 8000}{ }^{68}$
	4A, 100 V	
	4 A 1200 V	
	4AA400V 79	
	4 A 600V 105	${ }^{16454500 V}$
	6A/100V 73	25A800 ${ }^{\text {25A1000 }}$
	6A $1200 \mathrm{~V}{ }^{78}$	
A/600		DIAC*

50 OC 71 TRANSISTORS untested for $75 p$.
50 BCT07-9.g TRANSISTORS assorted, untested © 57 p .
MINIATURE CERAMIC TRIMMERS 2 to $6 \mathrm{pf}, 3$ to $10 \mathrm{pf}, 4-7$ to 20 p . All at 15p

HIE MINITTURE CERAMIC
(a) 5 ench

AOMP RIACS 400 PIV at a for 2 .
NON-POLARISED CAPACITORS $1 u f$ 63v,w,, \& $5 \mathrm{p}, 4.7 \mathrm{uf} 63 \mathrm{v}, \mathrm{w}$., \& 10 p , 10 uf

SPECIAL VARIABLE CAPACITOR WITH S.M. DRIVE $250+250+20+20$ +20pf@ ${ }^{+15 \mathrm{p}} \mathrm{F}$.
MULLARD POLYESTER CAPACITORS, fuf $160 \mathrm{v} . \mathrm{w}$, at 20 p doz .
MINIATURE LOUDSPEAKERS 高" Dla. o ohm at 75 p .
TOOMULLARD Czi0 CAPACITORS assortod for 57 p .
MULLARD TRANS1STORS BC 548 or BC 549 at 8 for 50 p .
PLASTIC BC 108 TRANSISTORS with House Numbers at 10 for 60 p .
VARIABLE CAPACITORS Direct Drive. 5 pf @ $75 \mathrm{p}, 10 \mathrm{pf}$ @ $75 \mathrm{p}, 30 \mathrm{pf}$ © 85 p , $125+125 \mathrm{pf} @ 35 \mathrm{p}, 100+200 \mathrm{pf}$ @ $55 \mathrm{p}, 200+200+17+17 \mathrm{pt}$ @ 55 p . With S.M. Drive 5+25+250t (51 R.F. TRANSISTORS AF 239 @ 50 p , MPS 6514 @ $15 \mathrm{p}, 2 \mathrm{~N} 5180$ @ 50 p , 2N 517 B

 112 @ 10p

ELECTROLYTIC CAPACITOR $5000+5000 u f 25 \mathrm{v}, \mathrm{w}$., © 75 p .
PLESSEY 44 WAY PLUG AND SOCKET at EI per palr.
IRON CORED CHOKE 2 MH at 4 amp for 50 p (PQP 20p).
CLOSETOLERANCE CAPACITORS 1288pI@ 5 p, 1670 pf © $5 \mathrm{p}, 5979 @ 5 \mathrm{p}, 19689 \mathrm{pF}$, © Sp. All 1\% 01uf 2\% \& 6p, 11uf 1\% \& 8p. GYXB12 MINIATURE SILICON DIODES IIke OA 202, 10 for 25 p . O ASSORTED PUSH BUTTON BANKS less knobs for $£ 1-30$.
MIDGET 20pf AIR SPACED TRIMMERS for 10 p each.
100 ASSORTED DISC CERAMIC CAPACITORS \& 57 p .
10 SLIDER POTENTIOMETERS assorted for
5 WATT NPN DARLIWGTON TRANSISTORS TO5 case @ 3 for 50p.
10 ASSORTED PHONO SOCKETS $2,3,4$ wey for 30 p .
20 PHOTO TRANSISTORS AND DARLINGTONS assorted unteated © E1. SILICON SOLAR CELLS .5 volt 5 mA \& 35 p each,
50 YARI-CAP DIODES like BA 102 , untested Q 57 p .
 CRYSTALS CRYSTALS $_{6}$ E1-10,
Please add 20p for post and packing, unless otherwise stated, on U.K. orders under 22. Overseas postage at cost.

J. BIRKETT

RADIO COMPONENT SUPPLIERS
25 The Strait, Lincoln LN2 1JF Tel. 20767

Our new catalogue lists a whole range of metal cases to house all your projects. And we've got circuit boards, accessories, module systems, and plastic boxes - everything you need to give your equipment the quality you demand. Send $25 p$ to cover post and packing, and the catalogue's yours.

VERO ELECTRONICS LTD. RETAIL DEPT.

Industrial Estate, Chandlers Ford, Hants. SO5 3ZR
Telephone Chandlers Ford (04215) 2956

1. Build an oscilloscope.

As the first stage of your training, you actually build your own Cathode ray oscilloscope! This is no toy, but a test instrument that you will need not only for the course's practical experiments, but al so later if you decide to develop your knowledge and enter the profession. It remains your property and represents a very large saving over buying a similar piece of essential equipment.

2. Read, draw and understand circuit diagrams.

In a short time you will be able to read and draw circuit diagrams, understand the very fundamentals of television, radio, computers and countless other electronic devices and their servicing procedures.
3. Carry out over 40 experiments on basic circuits.
We show you how to conduct experiments on a wide variety of different circuits and turn the information gained into a working knowledge of testing, servicing and maintaining all ty pes of electronic equipment, radio, t.v. etc.

4. Free Gift.

All students enrolling in our courses receive a free circuit board originating from a computer and containing many different components that can be used in experiments and provide an excellent example of current electronic practice.

Post now, without obligation, to:-

BRITISH NATIONAL RADIO \& ELECTRONICS SCHOOL

P.O. Box 156 , Jersey, Channel Islands.

NAME
ADDRESS \qquad I

KITS FOR SOUND EFFECTS AND OTHER PROJECTS
 PHONOSONICS
 MAIL ORDER SUPPLIERS OF QUALITY PRINTED CIRCUIT BOARDS, KITS AND COMPONENTS TO
 |ІІІІІІІІІІІІІІІ

 A WORLD-WIDE MARKET.GUITAR EFFECTS PEDAL (P.E. July 75) Modulates the attack, decay and filter characteristics of an
audio signal not only from a guitar but from any audio source audio signal not only from a guitar but from any audio source modified by manual controls. Possibly the most interesting of all the low-priced sound effects units in our range. Circuit does not duplicate effects from the Guitar Overdrive Unit.
Component set with speclal foot operated switches $£ 7.69$ Alternative component set with panel switches GUITAR FREQUENCY DOUBLER (P.E. Aug. 77)

A modified and extended version of the circuit published. Component set and PCB
GUITAR OVERDRIVE UNIT (P.E. Aug. 76) Sophisticated, versatile Fuzz unit, including variable and
switchable controls affecting the fuzz quallty whilst retaining switchable controls affecting the and and decay and also providing filtering. Does not the attack and decay and also providing fitering. Does not be used with it and with other electronic instruments. Component set using dual rotary pot
GUITAR SUSTAIN (P.E. Oct. 77)
Maintains the natural attack whilst extending note duration. Con set PCB and panel switches
WIND AND RAIN UNIT
A manually controlled unit for producing the above-named ounds.
Component set (incl. PCB)
COMPONENTS SETS include all necessary resistors, capacitors, semi-
conductors, potentiometers and gransformers. Hardware such as cases, sockets, knobs, keyboards, etc, are not included 10\% DISCOUNT VOUCHER (EES4) TERMS: Goods in current adverts \& Ilsts over $£ 50$ goods value (excl. P\&P \& VAT).
Correctly costed. C.W.O.. U.K. orders Correctly costed. C. W.O.. U.K. orders
only. This voucher must accompany order.
Valid until end of mor

ADD: POST \& HANDLING

U.K. orders-Keyboards add $£ 2.00$ each plus VAT. Othe plus VAT. Recommended: optional ínsurance against postal mishaps, add 500 for cover up to $£ 50, \Sigma 1$-00 for \&100 cover, etc, pro-rata.
N.B. Eire, C.I., F.P.O. an N.B. Eire, C.I., B.F.P.O. an oth

VOICE OPERATED FADER (P.E. Dec. 73)
For automatically reducing music volume during "talk-ove -particularty useful for Disco work or for home-movie shows. PHASING UNIT (P.E. Sept. 73)
A simple but effective manually controlled unit for introducing the phasing sound into live or recorded music.
PHASING CONTROL UNIT (P.E. Oct. 74)
For use with the above Phasing Unit to automatically control
the rate of phasing.
Component set (incl. P
Based upon P.E. Sound Design circuit

TREBLE BOOST UNIT (P.E. Apr. 76)

Gives a much shriller quality to audio sionals
The depth of boost is manually adjustable.
Component set (Incl. PCB)
WAH-WAH UNIT (P, E. Apr. 76)
The Wah-Wah effect produced by this unit can be
Component set (incl. PCB
P.E. Mar. 777

Automatically produces Wah- Mar. 77) $£ 3.63$
Automatically produces Wah-ped
each time a new note is played.
Component set, PCB, speclai foot switches

FUZZ UNIT

Simple Fuzz unit based upon P.E. "Sound Design" circult
Component set (inci. PCB)
P.E. TUNING FORK (P.E. Nov. 75)

Produces 84 switch-selected frequency-accurate tones. A ED monitor clearly displays all beat note adlustments. Ideal rtuning acoustic or elactronic musical instruments. $£ 14-93$ $\begin{array}{ll}\text { Main component set (incl. PCB) } & \text { P14.93 } \\ \text { Power supply set (incl. PCB) } & \text { EE-28 }\end{array}$

SYNTHESISER TUNING INDICATOR

(P.E. July 77)

A simple 4-octave frequency comparator for use with synthe P. the P.E. Tuning Forkis not required.
DYNAMIC RANGE LIMITER (P E Apr (YNAMIC RANGE LIMITER (P.E. Apr. 77) Component set (incl. PCB)

CONSTANT DISPLAY FREQUENCY

METER (P.E. Aug. 78)

A 5 -digit frequency counter for 1 Hz to 99999 Hz with a 1 Hz sampling rate. Readout does not count visibly or fllcker due to isplay blanking.
Component set
Component set
$224-05$
23.03^{*}

MANY MORE KITS

for Synthesisers, Rhythm Generators, Electronic Pianos and other projects, big, small, simple or complex, are avallable, plus a range of keyboards, separate components and able, plus a range of keyboards,

siricuirin intiarour paganms una umilise		

PHONOSONICS - DEPT. EE98 - 22 HIGH STREET - SIDCUP - KENT DAI4 6EH

CRESCENT RADIO LTD.

I, ST. MICHAELS TERRACE, WOOD GREEN, LONDON, N22, 4SJ. PHONE 01-888 3206

Push button heads or tails. Complete kit and full instructions supplied.
A pocket game.
Easy to build and great to play. Kic price- $\mathbf{8 5} \cdot \mathbf{2 5}+8 \%$ VAT. Post free.

4 OHM DOOR MOUNTING
CAR LOUDSPEAKERS

High performance, door mounting. 51
10 of of magnet, 12 watts, 4 ohms. In attractive see-through carton. $12.60+12 \frac{1}{2} \%$ VAT. per pair.

HEAVY DUTY XOVER
2 WAY 8 OHM 2 WAY 8 OHM
A 2 way 8 ohm H/D Xover suitable for L/S systems up to 100 watt.
fitted with screw terminals for input and a three position 'HF LEVEL' switch which selects either Flat, -3 dB or -6 dB .

ONLY $£ 3 \cdot 00+8 \%$ VAT
A CRESCENT 'SUPERBUY' Goodmans $5^{\prime \prime} 8$ ohm long throw H/D loudspeaker.
Mounting plate is integral with L/S chassis and has fixing holes with centres spaced at $5 z^{\prime \prime \prime}$ (diagonally

ONLY $55 \cdot 00+12 \%$ VAT

LOUDSPEAKERS
$2 \frac{1}{2}^{\prime \prime}(57 \mathrm{~mm}) 8$ or 75 ohm $\quad+12 \frac{90}{2} \%$ VAT (please state impedance req'd)

Thaxilatir
 MORSE KEY CR. 38

All metal, cast base, professional high speed key. Fine adjustment. Mounted on bakerlite base.
Dimensions: (Base) $120 \times 75 \mathrm{~mm}$
$63.90+8 \%$ VAT

ONLY $£ 6+8 \%$ VAT High suction pump with automatic ejection. Knurled, anti corrosive casing. Teflon nozzle.
3 KILOWATT PSYCHEDELIC
LIGHT CONTROL UNIT
1000W lighting per channel, max This 3 channel sound to light unic is housed in a robust metal case, with a sensitivity control for each channel i.e. Bass, middle and treble. Full instructions supplied. S.A.E. for spec.
sheet. ONLY $f 20 \cdot 00+8 \%$ VAT sheet. ONLY $£ 20.00+8 \%$ VAT CRLVI 12 v DRILL

612.00 Nefen Pis 8% VAT BRITISH MADE "Versadrill", 12 volts DC. Compact battery operated power cool, sufficiently powerful to periorm all the operations associated with 40y drills. Dimensions:-
240 v drills. Dimens
$150 \times 50 \mathrm{~mm}$ (dia.)

M.E.C.A.

BAPEION STR
WESTLOTHIAN
Tel: Bathgate 632337

TERMS: C.W.O. No Min. 12p P \& P
ACCESS AND BARCLAYCARD ACCEPTED Min. £5 Post \& Packing 25p.

GOVERNMENT, SCHOOLS, COLLEGES ORDERS ACCEPTED Send or Phone for Catalogue.

, 11 GREEN LANES, PALMERS GREEN, NI3 ALSO. 13 SOUTH MALL, EDMONTON GREEN, EDMONTON.

24 TUNE DOOR CHIMES

DOOR TUNES EIEM + VAT

Waddingun's Vidanaster announce a doorbell ther doesn't go 8minggg. Ding-Dong or Bumu. listead it plays 24 difterant diassical and poputar tunes. It will play the tume vau select for your mood the season or the visior you are erpecting to call. Coar tunes is nith orly great fun and a wonderful ice bresker, but is abo very funcionaly and beavitifly designed to enhance your home. There is something for Dhrimmes something for your comtinental vators or your relations from the states, and evem sometiong for the Oueen. Door tunes is ezsy to instell and has separate controis for volume, tone and tempo.

T.V. GAMES

PROGRAMMABLE EXA.50 + VAT

COLDUR CARTRIDEE T.V. GAME.
The IY gare cen be coripaced to an autin casserte deck and s progranned tis play a multitude of different games in COLOUR, sing various plug-in cartidges: At. long lay a TV gane is annitble which will kesp pace with improving tectintigy ty alowing you to extend your libray of games whth the purchase of adtitional cartriges as new games are denboped. Each carridge contains up to ten difterent actor gemes and the first cartridge containing ten sports ganes is includad tree with the console. Other cartidges re curnenty avajable to enable you to play such games as Grand Pax Motor Racing. Super Wipeout and Suint Rider. Firthes castridges are to be released later this year, nduding Tank Bartik, Hunt the Sub and Target. The console canses camplete with two removable joystick playe controls to enable you to move in al four birections lipidowifightileft and bult into these postick controls are all serve and target fire buttons. Other features include sevaral difficuity option switches, automatic on screen Gigizal scoring and coleur coding on scores and talls, Lfelike sounds are transmitred through the TV's speakar, simulating the sctus garne being played.
simulating the actus game being played
Manuactured by Waddington's Vdeamasser and 10 Gume COLOUR SPaRTSiWORLD $2250+$ VAT. guaranteed for one year.

XIRA CARTHIDGES
ROAD RACE - $53 . B 7$ + VAT
Grand Pixk moter racing with gear changes, creh noises SUPER WIPEOUT - E217 + VAT.
10 different games of blarting obstacles off the scrien STUNT RIDER - E12.15 + VAT
Motorcycle speed tries, pumping obstacles, leaping various rows of Lu to 24 huses etc.
NONPROGRAMMABLE TV GAMES
5 Game - COLOURSCORI II - 21350 + VAT. CHESS COMPUTERS

STAR CHESS - EES.29 + VAT
PLAY CHESS AGAIMST YOUR PARTMER,
using yout own TV to displey the board and pieces. Star nterest and excte all ages The unit plugss into the aeral socket of your TV set and disploys the board and pieces in fuill colour lor tlack and whitel in your TV screen, Based on the moves of chess. it adds even more euctement and miterest to the ganne. For those who have never played, Ster Chess is a novel introduction to the classic game of chess. For the experienced chess player, there are whole new dimensions of unpredictabify and chance added to the stretegy of the game. Not only can pieces be taken in converitional chess rype moves, buf each piecs can also exchange rocket fire with its opponents. The unit comes canglete with a tree 18V mans adeator, full instructigns and twelve months quarante.
CHESS CHMLLENGER 7 - ERS. 85 + VAT.
PLAY CHESS AGAINST THE COMPUTER.
The styish, compact, ponable console can be set to play at seven different levels of ability from beginner to expen nciuding "Mate in wo" and "Chess by mei". The computer will only make responses which obey intemational chess rules. Casting, on passant, and promoting a pawn are all nciuded as pant of the compute's progremme it is possible to enter any given problem from magaines or newspepers or ahernatively estabish your own boerd position and watch the cemputer react. The positions of all peces can be verfled by using the computar memary real button
Price includes unit with wood graired housing, and Staunton design chess pieces. Compiter plays bleck or whine and aganst itseff and comes conplete with a mans adeptor and 12 months guarantee.
OTHER CHESS COMPUTERS IN OUR RANGE INCLUDE CHESS CHAMPION - 6 LEVELS 582.87 + VAT CHESS CHALIENGER - 10 LEVELS - fl43.05 + vat.
BOAIS - MULTHEVEL TALKING DISPLAY £165 28 + VAL,

ELEGTRONIC CHESS BOARD TUTOR $£ 19.75$ inc. VAT.
A specal buk purchase of these amozing chess reaching machines enables us to offer them at only E19.75 less than hat recommended resail price. The electronic chess rutor is a simple battery operated machine that car actualy teach nyone to play chass and improve ther game right up to championstip level. This mechine is not only for total beginners bur also for essablished players warting to play berrer chess Unit conmins the electronic chesstoard with 32 chess pieces, a 64 page explenarory boodcet and a ser of 2 progressive proyamme cards including 6 beginners cards, 16 check mete positions, 9 miniruse ganes, 5 aperings, 3 end games, 28 chess problens and 2 mastar ganes.

DRAUGHTS COMPUTERS

CRECKER CHALIEMGER 2 LEVELS Y 23.98 + VAT, 4 LEVELS ESAOS + VAT. The draughts computer enaties you to sharpen your skilis improve your game, and play whenever you want. Ihe onmputer nicompurates a sophissicated, resate, decuson tinking actoprenables it to respond with its best counte noves like a skiled human opponent. You can selec offence or defence and change playing tiffituhy levels ai any time. Positions can be verified by computer memory recal. Machne does not permit ilegel maves and can salve set problens Computer comes complete wan instructions.
mains adapator and twelve months guaranteg:

FOR FREE BROCHURES - SEND S.A.E

For FREE illustrated brochures and reveis on TV and chess games please send a stamped addressed envelope, and state which perticular games you requre information on
 Io order by telephone please quote vour name, address and Accessi Barclaycard nimber-
AJD DIRECT SUPPLIES LIMITED, Dept.EE5, 102 Bellegrove Road, Welling, Kent DA16 300. Tel: 013039145 (Day) $01-8508652$ (Evenings)

ELECTROVALIE

Your leading direct suppliers for

NASCOM MICROCOMPUTERS AND FULL SUPPORTING RANGE OF ITEMS TO ENABLE YOU TO WORK AT PROPER
PROFESSIONAL LEVELS
\star At newest reduced prices.

* Widest possible range stocked
\star Information on request
* Enquiries from trade, industrial and educational users invited

Appointed distributors for the

fine products of:

SIEMENS, ISKRA, RADIOHM, VERO AND MANY OTHER FAMOUS MANUFACTURERS

It's a good deal better from

ELEGTRONALUE LTD

We pay
postage
in U.K. on orders list value 35 or over. If under, add 30 p handling charge.

We give

discounts
on C.W.O. orders, except for a few Items marked Net or N in our catalogues.
on orders, list value \% £10 or more on orders list value 10% £25 or more. Not on Access or Barclay card purchase orders.

We stabilise

prices.
by keeping to our printed price lists which appear but three or four times a year.

- We guarantee

 all products brand new, clean and to maker's spec No seconds, no surplus.- WE WILL SEND YOU OUR 120-PAGE CATALOGUE No. 9 REE ON REQUEST. Comprehensive, intorWrite, phon wr call foryour Wrie, phone or call foryoun itest current pice list latest current price Iist.

Dept. EEB, 28 St. Judes Road, Englefield Green, Egham, Surrey Twzo ohB.
Phone: Egham 3603. Telex 264475.
Northern Branch (Personal shoppers only), 680 Burnage Lane,
Burnage, Manchester M19 1NA. Phone (O61) 4324945.

443D MILLBROOK ROAD, SOUTHAMPTON SO1 OHX All prices include VAT-just add 25 p post

CABINET
IDEAL FOR THE
NEWCOMER TO ELECTRONICS
Contains huluruck of brand new
resistors, capacitors, transistors diodes and I.C.'s. All useful values carefully chosen to help the new finding himself short of some vital parts!
All parts contained in clearly marked pags in a plastic storage cabinet which all parts can be neatly located.
If bought individually parts plus case if bought individually parts plus case
would cost over $\$ 45$ but we are offering this for ONLY $£ 29 \cdot 95+81$ p \& p .
Simply send a cheque or P / O for $£ 30 \cdot 95$ Simply send a cheque or
for Immediate despatch.
CONTENTS:
$200 \frac{1}{2}$ watt resistors
${ }_{70} 90$ Wire wound resistors
70 Ceramic Capacito
70 Mylor Capacitors
50 Polyester Capacitor
56 Electrolytic Capacitors
61 Transistors
12 IC''s
12 I.C.'s
20 L.E.D.'s
20 L.E.D.'s
55
Diodes and rectifiers
Altogether 614 components.
Price Includes current catalogue and Greenweld pen for reordering supplies lus free surprise gift.

PC ETCHING KIT MK III Now contains 200 sq. ins. copper clad board, 1lb. Ferric Chloride, DALO etchresist pen, abrasive cleaner, two miniature drill bits, etching dish and instructions. £4.50

THE NEW 1978-9 GREENWELD CATALOGUE
FEATURES INCLUDE:

- 50p Discount Vouchers
- Quantity prices for bulk buyers - Bargain List Supplement
- Reply Paid Envelope
- Priority Order Form
- VAT inclusive prices PRICE $30 \mathrm{p}+15 \mathrm{p}$ POST

KITS OF BITS FOR EE PROJECTS

We supply parts for nearly all EE projects-for a detalled components list of this month's, andi previous articles, please send SAE.
Examples from earifer Issues:
MW MINI £2-50
SOUND TO LIGHT UNIT £1: 35 AIR FRESHENER 27 -95
FUZZ BOX E4-60
TRANSISTOR TESTER $£ 2.85$
TREMELO UNIT \&6.95
LOW COST METAL LOCATOR $£ 3.25$ EIECTRONIC CANARY E3-15 inc BoX ELECTRONIC CANARY $£ 3 \cdot 15$
DOING IT DIGITALEY $£ 23-25$ Glasgow : 85 West Regent Street, G2 2QD Tel: 041-332 4133 and Bristol: 108A Stoke's Croft, Bristol. Tel: 0272 426801/2.

LEDS + OPTO
 BY SIEMENS

Displays 7 seg LEDS	Red	Gr	Vell
Com anode or cath Sml 3 mm	18	19	19
Red			19

8 mm
HT
£1-50 Earge

10 mm HT | 14 mm | E1.55 Bright | 40 | 40 |
| :--- | :--- | :--- | :--- |
| 1.57 | 40 | | | 18 mm HT \& 1.85 lR receiver Full range + data in our 79 catapler $\begin{aligned} \text { E1.5.5. } \\ \text { catalo }\end{aligned}$

RAACO STORAGE BOXES
Strong durable high impact polystyrene boxes with B5 81 - 92

LINEAR (See catalogue for full range)

LM339N	0.60	LM1828N
LM34NT-5	0.88	LM1330N
LM340T-12	0.38	LM1345N

LM340T-12
LM340T-24
LM341P-12
LM341P-15
LM341P-2
LM345K
LM345K
LM348N
LM350K
LM380N
LM370N
LM370
LM371
LM373
LM374N
LM377N
LM378N
LM378N
LM379S

LM3014
LM332N
LM3s2N
LM334N
$L M 338 N$
$L M 387 N$
LM388N
LM389N
LM392N
LM7018
LM7018
LM701C
LM702C
LM702C
LM703LN
zT
O
20
3
LM779-8
LM709-14
LM710C
LM710-1
LM711CN
LM723CH
LM723C-1
LM741CH
LM741C-1
LM747CN
LM748-8
LM748-1
LM900
LM900
LM911
LM921
LM923
LM923
LM1304N
LM1305N
LM1307N
LM1310N
LM1351N
LM1458N
LM14960
LM1801N
LM1808N
LM1312N
LMiazo

MEMORIES (see catalogue for full range)

CMOS (see catalogue for full range)

74 C 32 N	0.24	74 C 90 N	0.15	74 C 162 N	1.11	CD4011B	0.20	CD 4021
74 C 42 N	0.92	74 C 93 N	0.85	74 Cl 63 N	1.11	CD 4012	0.20	CD 40928
1.00								

NEW 1979 CATALOGUE Marshall's

 largest range of quallty components from franchised suppliers available in UK. All VAT tots more. 45 p post paid or $35 p$ to callers at any of our four branches.\author{

* MAIL ORDER *
}

Quick service on all orders-please add 40 p for cards $£ 10.00$ minimum

Marshill's

31 DIGIT LCD AND LED PANEL METER KITS
Interail 7106/7 A/D convertors
Intersil's 7106 is the first single-chio CMOS ADD for driving LCD displays -including backplane - directly. The 7107 is the first single-chip CMOS AD for driving instrument-size LED displays directly without buffering, Each provides parallel seven segment outputs, ideal for DVMs, OPMs and reference and clock and both are CMOS so you get low noise 112 to
and 15 W) compax. a 10 V).
mW el meter. Assembly time is only \& hour

1CL. 7106 EV (LCD)	c26.99	SPECIAL OFFER	19.90
ICL 7107 EV (LED)	221.99	SPECIAL OFFER	815.90

1200 - 5 Tarminal Adjustablo Voltage and Current Regulator The L200 is a silicon monolithic integrated circuit for voltage and current programmable regulation

- ADJUSTABLE OUTPUT CURRENTUPTO $2 A$
- ADJUSTABLE OUTPUT VOLTAGE DOWNTO 2.85 V
REDUCED PRICE NOW ONLY $£ 1.95 \mathrm{each}$.

TRIACS
POWER PRICES AT UNEEATABLE

PRICES			
TIC206D	Plastic T068	400 y	4A
T1C2250	Piastic T065	400\%	6A
TIC226D	Plastic T060	400 V	8 A
TIC236D	Plastic TO66	400 v	12 A
TIC246D	Plestic TO66	400 v	16A
T1C253D	Plastic TO3	4000	20A
TIC263D	Plastic TO3	400 V	25A
40576			

\qquad

THYRISTORS

TTL. (see catalogue for full range)

		3 N		74LS183N	
74H10N	0.58	$74 \mathrm{LS73N}$	0.42	74LS189N	74
SN74H11N	$0 \cdot 55$	74 LS 74 N	0.42	74LS190N	100
SN74H20N	0.55	74LS75N	$0 \cdot 58$	74LS191N	1-00
SN74H21N	$0 \cdot 55$	74LS76N	0.42	74LS192N	0.95
SN74H3ON	0.55	741578 N	0.42	74LS193N	2. 95
SN75H40N	$0 \cdot 55$	74LSE3AN	0.90	74LS194N	0.70
SN74H51N	0.55	74LS85N	0.95	74LS185N	0.70
SN74H53N	0.55	74LS86N	0.44	74LS196N	0.80
SN74H54N	0.55	74 LS 90 N	0.64	74LS197N	0
SN74H55N	$0 \cdot 55$	74LS91N	1-20	74LS221N	0.80
SN74H60N	0.55	74LS92N	0.70	74LS240N	1.50
SN74H62N	$0 \cdot 55$	74LS93N	0.64	74LS241N	1.50
SN74L00N	0.55	74LS95AN	0.90	74LS242N	1.25
SN74L02N	$0 \cdot 56$	74LS96N	1.35	745 S243N	1.25
SN74L04N	0.60	$74 \mathrm{LS107N}$	0.42	74LS244N	1.50
SN74L47N	$3 \cdot 10$	74LS109N	0-42	74 LS 245 N	1-65
SN74L74N	0.90	74LS112N	0.42	74LS247N	
SN74L85N	2.62	74LSI13N	0.42	74LS248N	
SN74L93N	$2 \cdot 30$	74LS 114 N	0.42	74 LS 249 N	5.
74LSOON	$0 \cdot 26$	74LS122N	$0 \cdot 62$	74LS251N	1-00
74LS01N	0.26	74LS123N	0.83	74LS253N	1.00
$74 \mathrm{LSO2N}$	0.26	74LS 124 N	1.70	74LS257N	
74LSO3N	0.26	74LS125N	0.60	74LS258N	1.
$74 \mathrm{LSO4N}$	0.29	74LS126N	0.50	74LS259N	1.55
74 LS 05 N	0.29	74LS132N	0.85	74LS261N	3-25
74LSO8N	0.25	74LS136N	0.42	74LS286N	0.44
74LS09N	0.26	74LS138	0.65	74LS273	
74LS10N	$0 \cdot 26$	74LS139N	0.65	74LS275N	3-20
$74 \mathrm{LS11N}$	0.25	74LS145N	1.30	74LS279N	
74LS12N	0.26	74LS147	1.85	74LS28	
$74 \mathrm{LS13N}$	0.58	74LS148N	1.35	74LS283N	1-20
74LS14N	0.75	74LS151N	0.53	74LS289N	3.74
$74 \mathrm{LS15N}$	0.26	74LS153N	0.58	74LS290N	
$74 \mathrm{LS20N}$	0.26	74LS154N	1-45	74LS293N	1.00
$74 \mathrm{LS21N}$	$0-26$	74LS155N	0.80	74LS295N	1.35
74 LS 22 N	0.26	74LS156N	0.80	74LS298N	1.35
74 LS 26 N	0.32	74LS157N	0.50	74LS299N	
T4LS27N	$0 \cdot 26$	74LS158N	0-85	$74 \mathrm{LS323N}$	
74 LS 28 N	0.29	74LS 160 N	0.	74LS324N	
$74 \mathrm{LS30N}$	0.26	74LS161N	0.85	74LS325N	
74LSS2N	0.27	74 LS 162 N	0.80	74LS326N	2.70
74LS33N	- 29	74LS163N	0.85	$74 \mathrm{LS327N}$	2.55
74LS37N	0.32	74 LS 166 N	1-10	74LS348	1.10
74LS38N	0.32	$74 \mathrm{LS165N}$	1.15	74LS352N	1.07
74LS40N	0.26	74LS166N	1.65	74LS353N	1.07
74LS42N	0.80	74LS168N	1.45	74LS365N	0.55
74.547 N	1.09	74LS169N	1.45	74LS366N	0.55
$74 \mathrm{LS48N}$	1.00	74L5170N	1.90	74LS367N	0.55
$74 \mathrm{LS49N}$	1.09	74LS173N	1-10	74LS368N	0.55
$74.551 N$	0.26	74LS174N	0.75	74LS373N	0.85
$74.554 N$	0.25	74LS175N	0.75	74LS374N	0.
5 N	25	74LSIE1N	2.75	74LS375N	

KNOBS for $\frac{1}{4}$ " spindles

EDITOR

F. E. BENNETT

ASSISTANT EDITOR
B. W. TERRELL B.Sc.

PRODUCTION EDITOR

D. G. BARRINGTON

TECHNICAL SUB-EDITOR
T. J. JOHNSON G8MGS

ART EDITOR

R. F. PALMER

ASSISTANT ART EDITOR

P. A. LOATES

TECHNICAL ILLUSTRATOR

D. J. GOODING

EDITORIAL OFFICES
Kings Reach Tower,
Stamford Street,
London SE1 9LS
Phone: 01-261 6873

ADVERTISEMENT MANAGER

R. SMITH

Phone: 01-261 6671

REPRESENTATIVE

N. BELLWOOD

Phone: 01-261 6865

CLASSIFIED MANAGER

C. R. BROWN

Phone: 01-261 5762

MAKE-UP AND COPY

DEPARTMENT
Phone 01-261 6618

ADVERTISEMENT OFFICES

Kings Reach Tower
Stamford Street,
London SE1 9LS

Projects...Theory ...

and Popular Features ...

Every household needs an electronics constructor.

Without such an enthusiast in the house, the family is in serious danger of missing out on an awful lot. A home may be replete with expensive electronic consumer products like audio centres, TV, radio and recorders; it may even boast a microwave oven, a home computer, and a video recorder, yet be without some very desirable additional services and facilities that electronics can provide quite cheaply.

Why such an oversight?
Well these kind of electronic devices are not always available in the shops; or if they are do not receive the lavish promotion in the glossy Sunday Supplements and other media that is bestowed upon the more prestigious and expensive products. So the public by and large is ignorant of a whole range of interesting and useful electronic devices, instruments, or gadgets, that can help the smooth running of the home and add to personal pleasure and comfort in countless unexpected ways.

This underlines the importance to the community of the electronics constructor. One role he or she performs is filling-in deficiencies that the commercial market cannot or will not cover.

Electronics provides something special in the way of creative pastimes, the pursuer of this hobby is kept in touch with developments in the most exciting technology of our
times, and the permanent spin-off from his or her efforts can be of lasting value to the whole family.

Look at this month's projects. Is there a single household that could not make use of one if not more of these designs? Strictly functional devices for the kitchen, the bedroom, the front porch and even for the holi-day-home-on-wheels, are complemented by some that come into the amusement category: an electronic quiz master, a tuning aid for the guitarist, and a Swanee Whistler! Finally, less glamorous but indispensable in the constructor's workshop, there is a mains operated power unit.

Just as every householder needs an electronics constructor, so every electronics constructor needs Everyday Electronics. With selections of designs such as these every month the enthusiast is in clover-and the only possible regret will concern the shortness of time at his or her disposal for this exciting and worthwhile pastime.

If you are a newcomer to electronics, please note it's never too late to start. Study Square One regularly and stand by for our new 12 Part Series Teach In 80 , commencing in our October issue. We have the right method for home study-as will be confirmed by former "graduates" of 72, 74, 76 and 78 Teach In's.

Our September Issue will be published on Friday, August I7. See page 495 for detalls.

Readers' Enquiries

We cannot undertake to answer readers' letters requesting modifications, designs or information on commercial equipment or subjects not published by us. All letters requiring a personal reply should be accompanied by a stamped self-addressed envelope.

We cannot undertake to engage in discussions on the telephone.

Component Supplies

Readers should note that we do not supply electronic components for building the projects featured in EVERYDAY ELECTRONICS, but these requirements can be met by our advertisers.

[^0]VOL. 8 NO. 8
AUGUST 1979

CONSTRUCTIONAL PROJEGTS

WARBLING TIMER Versatile, variable timing range by O. N. Bishop 474
9V POWER SUPPLY Variable supply for the workshop by S. V. Essex 479
MINI MODULE: 10—SW ANEE WHISTLER Novel sound effects by George Hylton 482
ELECTRONIC TUNING FORK Audio and visual tuning aid for guitars by R. A. Penfold 490
TRAILER FLASHER Direction indicators for towed vehicle by J. Bloxham 500
TOUCH-ON PILOT LIGHT for short-term low level illumination by F. G. Rayer 510
LIGHT PLUS BELL Economical 2-way signalling circuit by S. Vaughan . 515
QUIZ REFEREE Precedence detector with time-up indicator by A. P. Donleavy 516

GENERAL FEATURES

EDITORIAL 472
CROSSWORD NO. 18 by D. P. Newton 478
DOING IT DIGITALLY Part 10: Binary addition and subtraction by O. N. Bishop 484
BRIGHT IDEAS Readers hints and tips 489, 495
READERS LETTERS Your news and views 494
VIDEO REVOLUTION Developments in TV home recording by Adrian Hope 496
SHOP TALK Retail news, products and component buying by Dave Barrington 499
COUNTER INTELLIGENCE A retailer comments. by Paul Young 503
SQUARE ONE Beginners Page. Photo guide to soldering 504
EVERYDAY NEWS What's happening in the world of electronics 506
RADIO WORLD A commentary by Pat Hawker 508
WORKSHOP MATTERS Metal working by Harry T. Kitchen 512
MICROPROCESSOR BASICS Part 6: Programming a microprocessor (cont.) by R. W. Coles 521
JACK PLUG AND FAMILY Cartoon by Doug Baker 522
RUMMAGING AROUND Money saving ideas for the constructor by Keith Cadbury 524
PROFESSOR ERNEST EVERSURE The Extraordinary Experiments of. by Anthony J. Bassett 525
PLEASE TAKE NOTE Metal Locator, Pocket Radio 526

Back Issues

Certain back issues of EVERYDAY ELECTRONICS are available worldwide price 70p inclusive of postage and packing per copy. Enquiries with remittance should be sent to Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. In the event of non-availability remittances will be returned.

Binders

Binders to hold one volume (12 issues) are available from the above address for $\mathbf{£ 2} \mathbf{- 8 5}$ (U.K.), $£ 3.45$ (overseas) inclusive of postage and packing. Please state which Volume. Subscriptions

Annual subscription for dellivery direct to any address in the UK: £8.50, overseas: £9.50. Cheques should be made payable to IPC Magazines Ltd., and sent to Room 2613 Kings Reach Tower, Stamford Street, London SE1 9LS.
© IPC Magazines Limited 1979. Copyright in all drawings, photographs and articles published in EVERYDAY ELECTRONICS is fully protected, and reproductions or imitations in whole or in part are expressly forbidden.

Is on page 504

$=\frac{2}{2}$

By O. N. Bishop

THIS device emits a warbling tone at the end of a pre-set period of time. The tone is loud and distinctive, yet reasonably melodious, so the timer is suitable for many applications in the home. It can time periods of a few minutes duration or periods as long as two or three hours.

TIMING CIRCUIT

The timing circuit consists of a field effect transistor TR1 and a low-value capacitor Cl together

with a resistor R1 connected as in Fig. 1. The source-drain resistance of the f.e.t. is high when the circuit is first switched on; it immediately begins to decrease rapidly but later decreases more slowly. The effect of the change of resistance is to produce a change in the potential-divider. As the resistance of the f.est. decreases, the potential at A rises. (If you connect these three components together as shown in Fig. 1, using a patchboard or wires with crocodile clips, you can use a voltmeter to observe
what happens.) After the circuit is switched on, the potential rises rapidly during the first second. Next it continues to rise but much more slowly, over a period lasting several minutes, Fig. 2. It eventually becomes steady at around $5 \cdot 75 \mathrm{~V}$ (assuming a 9 V supply). Typical values are:

C1 (pF)	Rapid limited rise to	Time to reach 5.75 V
120	2.5 V	1.5 minutes
6800	1.2 V	2 hours

Fig.1. The timing circuit. Changes of potential at point A may be examined by a voltmeter as shown.

Fig. 2. Rise in potential at point A: (a) with low value capacitor (b) with capacitor of greater value.

Fig. 3. The trigger circuit: $b=b a s e$, $\mathrm{c}=$ collector, $\mathrm{e}=$ emitter.

Thus the operating period of the timer is partly determined by the value chosen for C1. For periods up to 1.5 minutes, Cl can be 120 pF . For longer periods (up to about 45 minutes) Cl should have a greater value, say 1500 pF. For periods of 2 -3hours, Cl should be 6800 pF .

TRIGGER CIRCUIT

The trigger circuit consists of two transistors TR2, TR3 and their associated resistors R3-R6 as shown in Fig. 3. When the potential at the base of TR2 exceeds a certain triggering level, a base current flows so switching TR2 on. The potential at the collector of TR2 falls and the base current to TR3 is thus reduced. TR3 is switched off. Since it is no longer conducting, the potential at its collector (point B) rises to almost 9 V . Current then flows to the integrated circuit that generates the warbling tone.

The trigger circuit comes into action when the potential at the base of TR2 rises above $2 \cdot 7 \mathrm{~V}$. VR1 and R2 (Fig. 4) form a potential divider. As the potential at A rises to 5.75 V , the potential at the wiper rises to a lesser value. If the wiper is set at the end of VR1 nearer to A , the potential at the wiper exceeds $2 \cdot 7 \mathrm{~V}$ relatively quickly and timed periods are short.
To increase the length of timed periods, the wiper is set round the end of VR1 nearest to R2. If set too

Fig. 5. The two states of an astable multivibrator, as used in the warble-tone generator. Parts of the circuit shaded are at "high" potential; other parts are at "low" potential.
close to the R2 end, the potential may never reach $2 \cdot 7 \mathrm{~V}$.

WARBLE TONE GENERATOR

The tone generator consists of two multivibrators, each built from two nand gates.
The four gates are contained in a single cmos integrated circuit IC1, type CD4011. In this circuit the two inputs of each gate are connected so that each gate acts as an inverter. When both gate inputs are "high" (9V), its output goes "low" (OV) and vice versa.

MULTIVIBRATOR ACTION

The action of a single multivibrator is shown in Fig. 5. In (a) the output of gate 1 has just gone 'low', making the input to gate 2 'low' also. This causes the output of gate 2 to go high, so raising the potential of all parts of the circuit that are shaded in Fig. 5a.

Current flows from plate Y of the capacitor through the 27 kilohm
resistor to the part of the circuit that is at "low" potential, as indicated by the arrows. As the circuit current flows, the potential of this part of the circuit rises giving a steadily increasing input potential at gate 2 . The rate at which potential rises depend on the values of the resistor and capacitor.

When the imput potential becomes high enough to count as a "high" input the gate begins to change state. Its output potential begins to fall, giving a low input to gate 1, which then produces a "high" output.

We have now arrived at the state shown in Fig. 5b. Now the reverse conditions apply and the current begins to flow through the resistor in the reverse direction and charges plate Y. The input potential of gate 2 gradually falls. When it has fallen to a sufficiently low value, the gate changes state again and the astable returns to the original state shown in Fig. 5a. Thus this arrangement of 2 gates changes state regularly at a rate

dependent on the value of the capacitor and resistor.

TWO ASTABLES

In the warble-tone generator we have two such astables, one with a $0.05 \mu \mathrm{~F}$ capacitor oscillating at a few hundred hertz to give an audible tone, the other with a $33 \mu \mathrm{~F}$ oscillating at about 0.5 Hz to produce the warbling effect. The two astables are coupled by capacitors C4 so that each astable has an effect on the action of the other. The result is not a simple combination of the two frequencies but a complex warbling tone that is very suited to this application. The combined output is fed through C5 to the final stage of the timer, the amplifier. This consists of a single transistor TR4 which drives the loudspeaker LS1.

COMPONENT BOARD

The unit is built on a single piece of stripboard (Fig. 7). Begin by constructing the timing circuit (TR1, C1, R1). If you have a Testmeter set it to a suitable voltage range and connect it between the ground rail (battery negative, strip B) and the source terminal of TR1. Switch on and observe the potential rise (Fig. 2).

Depending on the applications you have in mind for the timer, you may decide at this stage to use a capacitor of higher or lower value. Alternatively, if you need just a slight increase in the timing period, you can connect a second capacitor between strips L and Tin parallel with Cl .
(When two or more capacitors are connected in parallel, their total capacitance is the sum of their individual capacitances. For example, if your Cl has a capacitance of 1000 pF and the potential rises to 5.75 V in only 25 minutes, but you would like to be able to time up to 30 minutes, you can either use a capacitor value of 1200 pF , or add a capacitor of value, 200 pF in parallel with Cl ,

The finished Warbling Timer showing positioning of board and components mounted on the front panel.
whichever is more convenient.)
Next build the trigger circuit (TR2, TR3, R3-R6) and the poten-tial-dividing network (VR1, R2). Test the output of this circuit by increasing the voltage at the collector of TR3 (S31). At switch-on this should remain low (a fraction of a volt) but rise sharply to almost 9 V at the end of the timing period.

Altering the setting of VR1 varies the length of this period. The nearer the wiper of VR1 is set to the "R2" end of VR1, the longer the period. Note that if it is set too near this end, the wiper potential may never reach $2 \cdot 7 \mathrm{~V}$ and the circuit will not be triggered. For initial testing, it is best to set it at the end nearest point A (Fig. 4), so that it is triggered after the shortest possible time.

The amplifier section is best built next, including C5. To test roughly, switch on and then join the free terminal of C5 (G23) alternately to battery positive and negative. Loud clicks should result.

INTEGRATED CIRCUIT

ICl is a cmos device and needs special handling precautions. It is better to solder most of the other components in position first (C2-C4, R7-R10 and the various wire links) before soldering the i.c. Note that pins 3 and 12 and also pin 5 and 10 are to be joined by the copper strips beneath the board, so the strips should NOT be cut away at G9 and E9.

Keep the i.c. in its original pack-
ing until you are ready to solder it in place. Then spread a rectangle of kitchen foil on your workbench and connect this by wire to earth (for example, a cold water pipe). Alternatively use an earthed "tin" lid (unpainted) such as the lid of a biscuit tin.

Place the circuit board on the metal sheet. Roll up your sleeves if you are wearing clothing made of nylon or other man-made fibre. Touch your fingers against the earthed sheets before unwrapping the i.c. or removing it from the black conduction foam in which

The completed circuit board.

Fig. 6. The complete assembly with inter-wiring between the circuit board and the other components mounted directly onto the aluminium box.

you received it. Handle the i.c. as little as possible. Before each soldering operation, touch the tip of the soldering iron briefly against the metal sheet.

If you solder all 14 pins in rapid succession, the i.c. will become unduly hot. Solder two or three pins at a time and allow a period for cooling-off. Note that there are

(a)

Fig. 8. (a) Positions of the knob of VR1, during calibration. (b) Calibration graph (see text) For 30 min setting the knob should be set to 140°.
several wire links to be soldered between adjacent copper strips, so as to connect pairs of pins (1 to 2, 5 to 6,8 to 9 and 12 to 13). Finally solder R7 and R9 in position, and thereafter there is no further need for the precautions described above.

TESTING

The circuit is now complete. After switching on, the speaker should be silent during the timing period. Then the warbling note
begins and continues until the device is switched off.

Before enclosing the board in its case experiments can be made with different values of C 2 and C 3 to vary the warbling sound. Reduction in the value of C2 give tones of higher pitch. Reduction in the value of C3 gives a more rapidly modulated warble.

If the sound is not loud enough, it is worth altering the value of R11 which supplies the bias current to TR4. Changing the value of this to say 39 kilohm or 56 kilohm alters the volume and may also alter the quality of the note providing a harsher or a more gentle tone, as required.

CASE AND BATTERIES

The board, loudspeaker, switch and VRI may be mounted in a simple aluminium box, as shown
in Fig. 6. There is space for a PP6 battery which may be held in position by a double-sided adhesive "Sticky Fixer". Such a battery is suitable for operating the timer for periods in the $10-20$ minute range.

If it is intended to run the timer frequently for periods exceeding 1 hour, it is advisable to use a bigger case to allow a larger battery to be accommodated. For example: two 4.5 V heavy duty batteries, such as are used for electric bell systems; a single 6 V bell battery; or a battery holder containing four HP2 cells.

For use in the workshop one could dispense with batteries and mount two terminals on the front panel instead. These could be connected to the workshop d.c. supply (6 V to 9 V) such as a low voltage power pack.

CALIBRATION

The final operation is to calibrate the setting of VR1. The quickest procedure is to set the knob to the seven positions shown in Fig. 8a and measure the time taken for each position. Find the positions which give the shortest and the longest useful timing periods. For these positions and for the positions between plot a graph, Fig. 8b. You can then use this to read the exact position for any derived time and mark out a scale (calibrated in minutes) on the instrument case.

EE CROSSWORD No 18
 BY D. P. NEWTON

ACROSS

1 Deliberate decaying of an oscillation.
4 Together with 27 Across, undesirable elastic property on making contact.
7 Wire attire.
9 Designator of operative conditions on $I_{0}-V_{0}$ characteristic $(4,4)$.
10 Grief.
11 Referring to ourselves in wave.
13 A conveyance characteristic of a transistor.
14 Module assembly with a purpose.
17 Compensating op-amp null pin.
20 Characteristic electronic reveille? $(4,4)$.
22 Knock off the end of an electron.
23 Drilling tools.
24 Aerial element of managerial status.
25 Standard twin emission reproducing extra orchestration.

27 See 4 Across.
28 Device with axe-like properties for converting a slowly changing waveform to a high frequency one.

DOWN

1 Lack of clarity often resulting from overloaded input.
2 Imperial honour.
3 In virtually all cases, this process turns signals over.
4 Areas of poor u.h.f. reception owing to material obstruction.
5 Renders a molecule charged.
6 Resistors, for example, have such a specialised language.
8 Square voltage on the top and resistance underneath.
10 Pole to aid walking.
12 Battery measure (6,4).
15 Gates, but for some vehicles rather than for electronic purposes.
16 One of the smaller current carriers?

18 Circuit contraction of low resistance.
19 Charge at a slow rate.
20 Automaton.
21 Common prefix in this hobby.
24 Nothing is so dead.
26 About par for a blow.

9POWER SUPPII
 By S. V. Essex

0NE OF THE first pieces of equipment a beginner to the hobby of electronics finds a need for, is a power supply. What is usually required is not an elaborate bench type supply with a high specification, but merely a battery substitute. To maximise the utility of the unit, it would be an advantage if it could be used to power a radio, cassette recorder or calculator when it is not being used for experimental purposes.

The power supply described in this article enables this to be done by simply using an ordinary phono socket as the output connection-by making
up several different leads which will all plug into this socket, connections to different pieces of equipment can be changed readily and quickly. The number of different connectors that can be used on the ends of the leads is quite large; battery connectors (to connect in place of batteries), jack power plugs, ordinary connecting plugs or crocodile clips for use when experimenting, and so on. This enormously increases the versatility of the unit.
The circuit provides a continuously variable output from 0 to 9 volts at a maximum current of about 400 mA . The power supply is fully protected against an accidental short circuit applied across the output-an essential requirement for use when experimenting. It can be built into quite a small box, and will therefore take up little space on the experimenters crowded workbench.

CIRCUIT DESCRIPTION

The complete circuit diagram of the unit is shown in Fig. 1

As can be seen, this is entirely conventional. A transformer, T1, has its two 12 V secondary windings connected in parallel to provide 12 V r.m.s. This is then rectified by the bridge rectifier consisting of diodes D1 to D4, and the resultant d.c. is smoothed by reservoir capacitor C1.

The output voltage is regulated by transistors TR2 and TR3; they are connected as a Darlington pair emitter follower, and are controlled by the voltage applied to TR2 base. This voltage is derived from the Zener diode D5, across which an almost constant voltage is developed, via a potentiometer VRI which is used to alter the output voltage.

Bias for D5 is provided by resistors R2 and R3, hum and ripple being reduced to a minimal level by C2 and C3.

Output short circuit protection is provided by TRI. When the output current rises above about 400 mA , the
voltage developed across R1 (about 0.6 V) turns on TR1.

The collector of this transistor is connected to the base of TR2, so this action results in a drop in output voltage to counteract the increase in output current. This ensures that even when the output is completely short circuited, the current is limited to a safe value (about 430 mA), proteoting the power supply from damage.
Resistor R5 is included between the slider of VR1 and the base of TR2 to isolate the action of the overload protection circuit from C3. If this resistor were not present, operation of the protection circuit would mean that TRI has to discharge C 3 before any change in output voltage occurred. Not only would this lead to an increase in the reaction time of the circuit, but it entails TR1 having to pass a relatively heavy discharge current, which leads to unreliability, hence inclusion of R5.

Resistor R6 is included to stabilise the circuit at low output currents.

COMPONENTS

All components are readily available, but one or two points require noting.

The transformer used in the prototype featured two separate $12 \mathrm{~V}, 0 \cdot 25 \mathrm{~A}$ secondary windings, which were connected in parallel to provide 12 V , $0 \cdot 5 \mathrm{~A}$ but in reality any transformer capable of providing 12 V at 0.5 A with a single secondary can be used. Note that it would be wise to obtain the transformer before obtaining the box into which it is to be built, if any doubt exists over its dimensions, especially if the constructor intends to follow the prototype layout described here.

The bridge rectifier can either be bought as one encapsulated unit as used in the prototype, or four discrete diodes can be used. For the former, any bridge rectifier rated at $50 \mathrm{~V}, 0.5 \mathrm{~A}$ or more can be used-a BY164 is suitable. If four separate diodes are used, 1N4001's would be suitable.

Fig. 1. Complete circuit diagram for the Nine Volt Power Supply.

FOMPIIEITS apगr|uximele HISt f 6.50 excluding p.c.b.

Fig. 2. (Right). Complete wiring details for the power supply. The case has been opened out for clarity. Note that TR3 is mounted with its metal face down towards the panel. Insure that the p.c.b. is mounted on short spacers (5 mm) otherwise there is a risk of shorting out to the earth tag on the transformer. Careful positioning of the transformer and switch is also important.

Fig. 3. (Below). Printed circuit board as used in the prototype, also showing the component layout. This is shown full size and may be traced.

The prototype was built in an aluminium box, type AB5, size 100 x $63 \times 50 \mathrm{~mm}$, with the on/off switch, neon indicator (LP1), and output voltage control (VR1) mounted on the lid. The output socket was mounted on one side of the box.

The drawing of Fig. 2 shows the internal layout adopted. As can be seen, a printed circuit board was used to support the majority of the components, with the exception of the mains input components, the bridge rectifier, which was mounted directly onto the secondary transformer tags, and R6, which was soldered directly onto the output socket.
Layout is not critical and other methods of construction, for example stripboard, can be used if desired. The printed circuit layout used in the prototype is shown in Fig. 3.
Transistor TR3, because it has to dissipate a reasonable amount of heat, should be firmly mounted to the box

using a mica washer insulation kit and silicon grease. It will be found that the box will get quite warm if the output is left short-circuited for any length of time, and if the temperature of the box is thought to be excessive it can be painted matt black to allow it to dissipate the heat more readily.
The mounting hole for TR3 should be clean and free from burrs, to avoid puncturing the mica washer and to ensure good thermal contact.

Resistors
R1 $1 \cdot 2 \Omega$
R2 220Ω
R3 220Ω
All $\frac{1}{2} W$ carbon $\pm 10 \%$

Potentiometer

VR1 $4 \cdot 7 \mathrm{k} \Omega$ carbon lin.
Capacitors
C1 $1000 \mu \mathrm{~F} 25 \mathrm{~V}$ elect.
C2 $100 \mu \mathrm{~F} 10 \mathrm{~V}$ elect.
C3 $220 \mu \mathrm{~F} 10 \mathrm{~V}$ elect.
Semiconductors
TR1 BC108 npn silicon
TR2 BC108 npn silicon
TR3 BD131 npn silicon
D1-D4 BY164 bridge or 1N4001 silicon diodes (4 off)
D5 BZV88C10V 10 V 400 mW Zener diode
Miscellaneous
T1 mains primary, $0-12,0-12 \mathrm{~V} 250 \mathrm{~mA}$ secondaries S1 single pole on/off toggle
LP1 panel mounting mains neon
R4 680Ω
R5 $2 \cdot 2 \mathrm{k} \Omega$
R6 $3 \cdot 3 \mathrm{k} \Omega$

FS1 100 mA 20 mm with chassis mounting holder
SK1 single insulated phono socket
Aluminium case type AB5, $100 \times 63 \times 50 \mathrm{~mm}$ or similar; printed circuit board; insulating kit for TR3; one small round knob; four rubber feet; 6BA hardware; $\frac{1}{4}$ inch grommet; length of mains cable as required; connecting wire.

For obvious safety reasons, the metal box must be reliably earthed and all components on the low voltage side of the circuit must be kept well clear of those carrying mains voltage. It will be found advantageous to leave the output electrically floating, i.e. with neither side of the output earthed, so insulation of all components, especially the output socket, should be ensured.

If the transformer is fitted with a screen this should be connected to earth.

TESTING

The simplicity of the circuit means that there is very little to go wrong, but the following points are worth mentioning.

If, during testing, it is discovered that the input voltage to the bridge rectifier is almost zero then this, assuming the use of a transformer with two 12 V secondaries will be due to them being connected in anti-phase, so that the voltage in each opposes the other. Changing the conneotions to one of the windings is the answer.

One common error is to connect the Zener diode into the circuit the wrong way-the voltage across it is then about 0.6 V and the fault is easily detected using a multimeter.

A test of the short-circuit pratection circuit can be done by connecting an ammeter on its 1A range directly across the output for a few seconds, if the current exceeds about 500 mA , the circuit is not functioning correctly and a careful check should be made of TR1 and its associated components.

If all the tests perform satisfactorily, and there are no faults the unit can then be put into use. After a period of use you will wonder how you ever managed without a power supply-except of course the saving on the cost of numerous batteries! IT

THis month's Mini Module can serve either as a simple musical instrument or as a variable frequency audio oscillator for sound effects. Musical readers will be familiar with the Swanee Whistle. This is a simple wind instrument on the lines of a penny whistle, but instead of placing the fingers over stop holes to change the note you do so by moving a piston in the barrel of the instrument. This shortens or lengthens the pipe and so adjusts the note.

The Swanee Whistler does the same sort of thing but note adjustment is by moving a slider potentiometer. The output power is only a few milliwatts but is quite sufficient to produce an audible note in a high-impedance loudspeaker.

LOUDSPEAKER

A speaker of more than about 50 ohms impedance may be connected directly to the output. Speakers of lower impedances require a matching transformer for maximising the output, though no harm will come to the circuit from connecting a lowimpedance speaker direct.

A transformer which converts the speaker impedance to 500 ohms will receive about 20 mW . The d.c. through the primary is only about 5 mA . These figures show that it should be possible to salvage a push-pull output transformer from an old pocket portable and connect to the Swanee Whistler using the pocket portable original speaker of 3-8 ohms impedance.

Any kind of high-impedance earphone may be connected.
If the output is used to drive an amplifier, several volts are available. If the amplifier input circuit has no d.c. blocking capacitor it will be necessary to add one: $0.1 \mu \mathrm{~F}$ should be suitable.

THE CIRCUIT

Readers who have been following this series may have noticed that the Swanee Whistler circuit (Fig. 1) bears a close resemblance to the circuit of
the Continuity Tester which formed Number 4 of the series. This is no accident. While developing the Continuity Tester I realised that essentially the same basic arrangement could be used as an audio source, and here it is.

The two transistors TR1, TR2 form an amplifier. This is turned into an unstable amplifier by applying positive feedback from the emitter of TR2 to the emitter of TR1 via R4.

FEEDBACK

By itself this (d.c.) feedback would merely turn TRI hard off while allowing TR2 to be turned hard on by current through R1. However there is also some negative feedback via VR1 and R3. This tries to stabilise the circuit but its action is delayed by C1, which takes time to charge or discharge. The result is that the circuit first flips into one state because of the positive feedback then, after a while, the negative feedback catches up and resets it.

Components

Resistors	
R1	$100 \mathrm{k} \Omega$
R2	$10 \mathrm{k} \Omega$
R3	$3.3 \mathrm{k} \Omega$
R4	$10 \mathrm{k} \Omega$
R5	330Ω

Potentiometers

VR1 $47 \mathrm{k} \Omega$ or $50 \mathrm{k} \Omega$
slider potentiometer log law

Capacitors

C1 $47 \mathrm{nF}(0.047 \mu \mathrm{~F})$ polyester

Transistors
 TR1, TR2 BC107, BC108 or BC109 (2 off)

Miscellaneous

Knob for slider pot. Case (twinswitch box). Formica for panel. Pins. Hardboard. 8BA nuts, solder tags, and $5 / 8$ inch bolts. (4 of each). 4BA bolts (4).

Fig. 1. Swanee Whistler circuit diagram.

The process continues, the negative feedback always lagging behind. TR2 is periodically turned on for a time then off and the current through it comes in pulses. Changing VRI adjusts the rate at which CI charges and this controls the frequency.
Quite large frequency sweeps can be obtained but the wider the coverage the harder it is to hit the right pitch by adjusting the slider pot VR1. So R3 is included to limit the frequency range at the high end. With the values shown the range is about $400-4,000 \mathrm{~Hz}$ when a 100 ohm load is connected, falling to $300-1,000 \mathrm{~Hz}$ when the load is of very high impedance.

EFFECTS

For sound effects use it may be preferable to dispense with R3 and connect the left-hand end of the potentiometer straight to C1 and TR1 base. This will enable the frequency to shoot up to infinity (or more likely to go high then stop) with VR1 set to zero resistance.
Battery drain is less than $100 \mu \mathrm{~A}$ when no load is conneoted and rises to about 5 mA with a low-resistance load.

CONSTRUCTION

The circuit board used in the prototype is designed for economy. A copy of the component layout diagram (Fig. 2) is laid over a suitably-sized piece of hardboard and pins inserted at each junction point to serve as solder tags for the components and wiring.
I used ordinary domestic pins one inch long then cut off the heads but domestic pins are easily bent and it may be preferable to substitute bright new half-inch panel pins which are much stiffer.
The four lead-outs are 5_{8}-inch 8 BA bolts, with a solder tag for connections on the inside and a nut on the outside.
end and break out the slot material carefully with the tip of a screwdriver.
The case for the prototype is a metal twin-switch box of the deeper kind as used for mounting the older sorts of light switches in the wall. Any other kind of case will serve and it need not be made of metal.

USING THE SWANEE WHISTLER

The circuit as it stands will enable you, with the addition of a suitable speaker, to make enough noise indoors to amuse yourself or drive the family mad: continuous sounds are very penetrating even at low volume.

Fig. 2. Component layout on hardboard base. This is secured to the Formica panel by the four 8BA bolts.

They can then serve to fix the board to the panel as well.
The panel is a piece of Formica. Cutting the slot for the slider control can be done either by drilling a straight row of small holes, close together, then breaking down the divisions and finally tidying up with a nail file, or by using a Stanley scoring knife to cut through the Formica from the decorative side.
This second method is neater but requires patience. When the cut has gone almost through to the back of the board drill a small hole at each

Fig. 3. An optional add-on amplifier stage.

If however it is desired to make serious musical use of the circuit some additions are desirable. First, a power amplifier to increase the volume. A low-power battery operated amplifier will be described later in this series, but it is possible to add-on a very simple low-power stage in the form of a complementary pair of transistors, Fig. 3.

Since we are dealing with square pulses and distortion is unimportant the transistors may be operated unbiased. If desired a volume control in the form of a 10 kilohm log law pot can be interposed between the Whistler output and the power amplifier. It can conveniently include an on-off switch.
If a separate tuning adjustment is needed it can be provided by substituting for R2 a linear pot of 22 kilohms or thereabouts, connected as a simple variable resistance.

CORRECTION

Mini Module 8 (June). Formula second line 355 should read:

R4 (new) $=100$ kilohms $/(A-1)$.
Next Month: Mini Amplifier.

Starting
Oct. 79
issuo

Solving Jack Plug's Problem (Part 9) and adding two and two to get four have one thing in common-they are joth logical operations. That being so, TTL can deal with arithmetic as well as the more perplexing problems that beset the Plug family. Since TTL has only two kinds of input and output, high $(=1)$ and low $(=0)$, it operates on numbers in binary form. This presents no difficulty, for it is easy to arrange a coding circuit (such as the keyboard coder described in Part 5) to turn decimal numbers into binary form, and a decoding circuit (such as the 7447 i.c.s of the Test-Bed display system) to convert the binary numbers back to decimal when the calculations are completed.

BINARY ADDITION

Since a digit can have only one of two values in binary arithmetic, a short truth table, Table 11.1, covers all the possible addition operations.

The equation for the last line of the table would be $1+1=2$, if written in decimal form. The carry digit (C) is added to the next column of figures to the left when you are adding two numbers each consisting of more than one digit. If we look for logical relationships in the truth table, we find that the carry column (C) is the aND of A and B. The sum column (S) is the exclusive-or of A and B. ExclusiveOR is a little different from the ordinary or operation we met earlier. In exclusive-or the output is high if one or the other but not both of the two inputs are high. In Fig. 11.1 we obtain the exclusive-or function by using five nand gates. If you ever need this function in other applications, this is the way to obtain it, but if you need several exclusive-or circuits use the 7486 i.c., which has four twoinput exclusive or gates on one chip.
In Fig. 11.1 we obtain and, by inverting NaND, so constructing the entire half-adder with NAND gates. With two 7400 i.c.s on the Test-Bed you can assemble the half-adder and carry out all the basic binary additions listed in the truth table.
The circuit is called a half-adder because it has no input for accepting

By O. N. Bishop

PARI

Table 11.1. Binary addition

Inputs (the numbers to be added together)	Outputs (the result of addition) Carry	Sum A	B

a carry from a previous stage of addition. For example, to add binary 11 and I, we set out the addition like this:

$$
11
$$

Answer

The half-adder can perform the first stage, adding the "units" column (or least significant digits), and giving the outputs $S=0, C=1$. The "units" digit of the answer is 0 , and we carry 1 to the next most significant digit, the "twos" column. Here the half-adder
could accept the 1 and 0 (not actually written but implied), but there is no way to tell it that there is a 1 carried over from the previous operation. We need a full-adder circuit that can accept this carry and work out that $1+0+1$ (carried over) $=0$, carry 1 .
A third operation is required to work out the "fours" column (most significant digit), for which a fulladder would give $0+0+1$ (carried over) $=1$, carry 0 . This gives us the final answer, $11+1=100$. In decimal, the equivalent operation is written $3+1=4$.

Fig. 11.1. Half-adder made from exclusive-OR and AND sub-units.

FULL ADDER I.C.

To assemble a full-adder we need several more gates, but fortunately we can buy a complete full-adder in a single i.c., the 7480 pinning details in Fig. 11.2. This contains a full-adder circuit which adds together two input digits $(A$ and $B)$ and the carry-in digit. The input gating allows us to vary the way we use the adder. The rules for inputs at the " A " set of pins are listed below.
(1) If A_{0} is low, the input to the adder circuit is high $(=1)$ whatever the state of the other A inputs. Normally we wire A_{0} to $V_{\text {co }}$, to allow the other inputs to function as in rules (2) and (3) or for short-periods use we leave it disconnected, effectively high.
(2) If A^{*} is high, the input to the adder is the and of A_{1} and A_{2}.
(3) If A^{*} is low, the input to the adder is the NAND of A_{1} and A_{2}.

The same rules apply to the B inputs. In the circuit and Test-Bed layout shown in Figs. 11.3a and b, we make A_{0} and B_{0} high, we leave A_{2}, A^{*}, B_{2} and B^{*} disconnected ($=$ high), and use A_{1} and B_{1} to input the digits to be added. If A_{1} is high, the adder receives the and of A_{1} ($=$ high) and A_{3} (=high), which is high. If A_{1} is low, the adder receives low. The inputs to the adder are thus identical with those appiled at A_{1} and B_{1}, and their sum S is obtained from ICI pin 5 , with the carry digit appearing inverted, at pin 4. If we require a carry-in, this can be applied to pin $3\left(C_{n}\right)$, so for the first stage of an addition we always make C_{n} low.

SERIAL AND PARALLEL ADDITION

The 7480 can add only one pair of digits and the carry-in at a time. To add numbers with more than one digit, we can work in one of two ways: (1) SERIAL. Add the columns one at a time, working from right (least significant digit) to left (most significant digit), just as we do when working with pencil and paper.
(2) parallel. Add all columns simultaneously, taking carries into account. For parallel adding we need a row of 7480 's, one for each column to be added, with the carry from one i.c. fed to the i.c. dealing with the next most significant digit. Serial addition requires fewer i.c.s, for we simply present the pairs of digits to the i.c., one pair at a time in order from l.s.d. to m.s.d., and arrange for a memory unit to retain the carry digit until the next stage of addition. In this month's adding circuit we use serial addition.

SHIFT REGISTER

Before we can put the 7480 to work we must have some means of registering the numbers we wish to add, and

(a)
(b)

Fig. 11.2a Pinout details for the 7480 Full-adder i.c. and (b) gating on A inputs (B input gating is identical).

Fig. 11.3a. Circuit diagram for a Full-adder using the 7480.

Fig. 11.4. Pinning details for the 7495 shift register.
presenting them to the adder, digit by digit, in order. In the previous series of Doing It Digitally we punched a paper tape to represent the rows of digits and fed this through a special home-made tape-reader. In this series we store the numbers electronically in a device called a shift register.

Many types of shift register are available, a suitable one being the 7495, see Fig. 11.4. It contains four flip-flops A, B, C, and D, each of which can be set (output $=1$) or reset (output $=0$) when one of the clock inputs changes from high to low.

MODE CONTROL

To load the flip-flops we make the mode control input high, make the inputs A to D high or low (depending

$\begin{array}{llllllllllllll}24 & 24 & 35 & 28 & 30 & 32 & 35 & 36 & 38 & 40 & 42 & 45 & 46 & 28 \\ & 50\end{array}$

Fig. 11.3b. The circuit of Fig. 11.3a wired on the Test-Bed for testing the 7480 Full-adder.
on what number we wish to store) and wait for the clock to change from high to low. At that instant the data at the inputs is transferred to the flip-flops, and their outputs become identical with their inputs. Once the clock has gone low, the data is stored (or loaded) and changing the inputs does not alter the outputs (until the next time the clock goes low).

If the mode control is made low, data is shifted the next time the clock goes low. At that instant the content of flip-flop A is transferred to flipflop B (all inputs A to D are ignored), the content of B is transferred to C, the content of C is transferred to D, and the content of D is lost. What
happens to flip-flop A depends upon the state of the "serial in" input (pin 1). Whatever is applied to this input, is tranferred to flip-flop A when shifting occurs.
In Fig. 11.5a, serial A is grounded, so flip-flop A goes low when shift occurs. The i.c. has two clock inputs. Clock 1 input is used during shifting, and clock 2 input during loading, so that the two functions can, if required, be clocked independently. Here we clock both functions from the same clocking sequence by joining the pins together.

The easiest way of applying data to the register is to use the keyboard decoder described in Part 5 (February 1979). Note that corrections to the keyboard appeared last month. One of the spare keys is used to apply mode control. We use the lower left-hand spare key; join the drawing-pin to ground by inserting a wire link from BB24 to I24, and cut the copper strip at $B B 23$; solder a soldercon socket at AA28, to provide a connection to mode control, and cut the strip at AA29. We call this the shift key, for when the key is pressed, mode control is grounded and shifting occurs. The four l.e.d.s display the state of each register.

KEYBOARD SHIFT REGISTER ANNOTATION

There is some unavoidable confusion over the lettering on the keyboard diagram and that on the 7495 . The keyboard (and also the outputs of the in-built counters IC4 and IC5, and the inputs to the Test-Bed display system) are labelled so that the l.s.d. is called A and the m.s.d. is called D. When using the shift register, we use flip-flop A to store the m.s.d., and flipflop D to store the l.s.d. The l.e.d.s are lettered according to the shift registers so that they display a number just as it is written on paper, with the l.s.d. on the right. It is very helpful to know the state of the clock output and for this purpose a clock l.e.d. is incorporated.

To load a number, press one of the number keys while the clock output is high; hold the key until the clock goes low, when the binary version of the number should appear on the l.e.d.s A to D. Unless you continue to hold the number key down, the number is cleared when the clock next goes low, for the input will have become 0000 if the key is released. However, if (while the clock is high) you press and hold the shift key, the number shifts one place to the right each time the clock goes low. Since "serial in" is grounded, the display is cleared digit by digit from the left.
Try entering various numbers and shifting them, to gain experience at keeping your key-pressing in time with the clock, see Fig. 11.5b.

Fig. 11.5b. The circuit of Fig. 11.5a wired on the Test-Bed for testing the 7495.

A SIMPLE CALCULATOR

Now we are ready to combine two shift registers and an adder to make a calculator, but let us get it clear that this is in no way a substitute for your pocket calculator. The most it can do is add 7 plus 7 .

The main purpose of setting it upas with almost all the other projects set up on the Test-Bed-is to give you some insight into how logic circuits work. With only three i.c. sockets available, the Test-Bed can never carry any really complex logical circuit. Its purpose is simply to try out simple combinations of i.c.s which, once understood, can be built into a permanently wired unit.

This simple calculator is particularly valuable as it is a good example of a sequential logical circuit. This is a circuit in which the output is not decided simply by its present inputs, but partly by inputs at earlier stages. The circuit (Fig. 11.6a) is designed to add together two three-digit binary numbers, which we shall represent by $X Y Z$ and $L M N$. We first load $X Y Z$ into shift register 1 , then shift it serially in shift register 2 ; as it leaves register 1, we enter LMN in register 1. The digits are then shifted out of the D flip-flops of both registers and into the adder, which sums Z with N, Y with M, and X with L, making any carries that are necessary.

SHIFT SEQUENCE

Since Register 2 has simply to receive number XYZ shifted from Register 1, its mode control is permanently grounded and only the clock 1 input is required. The output from flip-flop D, Register 1, is shifted direct to flip-flop A, Register 2 by way of the serial-in pin.
The addition sequence, reading from top to bottom is illustrated in Fig. 11.7. Remember that loading and shifting occur as the clock goes from low to high. To feed in the clock pulses, the Go key must be pressed and held all the time. To halt the sequence, release go when the clock is high; to resume the sequence press Go when the clock is high. If go is pressed when the clock is low, this may cause multiple low pulses which will shift the data one or even more places along. You will probably need to watch the clock state l.e.d. and count out aloud as you run through the stages of calculation.

CLOCK SPEED

If the clock runs too fast for you to keep up with it, try feeding the clock output into IC4 (pin D47) and use the output from pin F47 as a clock running at half frequency (or even pins I47, J49, or G49 for lower frequencies). You may find it easier to keep count if you wire up IC5 as a

Fig. 11.6a. Circuit diagram for a simple calculator (without carry facility).

Fig. 11.6b. The circuit of Fig. 11.6a wired on the Test-Bed.

counter, connecting its output to the right-hand 7 -segment display. The display changes each time the clock goes low.

OPERATION

In Fig. 11.7 it can be seen that the answers appear on the SUM and CARRY l.e.d.s immediately after counts 5 to 8. The l.s.d. comes first. You will have noticed that this calculator has only a 3 -digit input, input A of Register 1 being wired to ground. This is necessary because a blank space is needed between X and N to make room for the final carry after X and L have been added.

Since this circuit has no provision for carry, use it only with additions in which no carry is required, for example, $1+10,101+10,1000+101$.

When you have tried out a few additions you will begin to realise how much easier it would be if there could be additional control circuits to make shifting take place at exactly the right stages, and to record the serial output from the adder. It is possible (and not really difficult) to shift the answer digits back into Register 1 and display a four-digit answer, but there is just no room on the Test-Bed to mount both the calculator circuit and the few control circuits that are needed. Perhaps the reader may be motivated to design and build a slightly more sophisticated calculator incorporating these refinements.

CARRY

The carry function can be performed manually by disconnecting the carry input from ground at each step of the calculation when the previous step has produced a low output at CARRY. With so many other things to think about at the same time, manual carrying taxes the patience of the most cool-headed, and an automatic carry is almost essential. Fortunately it can just be fitted on to the TestBed, making use of the remaining built-in circuits.

CIRCUIT DESCRIPTION

The complete carry circuit is shown in Fig. 11.8a. The bistable changes state when a low pulse appears on lines P or Q, depending upon which state it is in already; P and Q cannot both go low at the same time, and neither can go low while the clock is high. The bistable can change state only during the second half of a clocking period, that is to say the time leading up to a "count" when loading or shifting occur.

During the first half of a time period, immediately after a count, the two digits presented to the adder are added and CARRY becomes high (=carry 0) or low (= carry 1). This has

Fig. 11.7. The sequence of operations for adding two binary numbers $X Y Z$ and $L M N$.
no immediate effect on the bistable, but CARRY remains high and when clock next goes high, P goes low. This triggers the bistable to change state (if the bistable is not already in that state) giving a low output to the carryin terminal of the adder.

When the clock goes low again, at the next count of the calculation sequence, there is no change in state of the bistable. Its output remains low, giving low carry-in to the next stage of the calculation. Thus the low carry from one stage gets added in with the new pair of digits of the next stage. Suppose that this addition results in CARRY going low (=carry 1). There is no immediate effect on the bistable, but when the clock goes high Q goes low and it changes state. This gives a high input to carry-in and this is retained ready for the next stage of addition. Note that when the clock goes high and there is a change of state of the bistable the new carryin is being fed to the adder, which may then give a different output. This does not affect the carry-over operation but may affect the sum display. This display should therefore be read immediately after each count, while the clock is still low.

USING DISCRETES

To make this carry circuit we use in-built IC3 to provide the bistable, the invert gate and one of the nand gates. The other NaND is made from discrete components. This is a useful reminder that although we use i.c.s. most of the time, there are occasions

Fig. 11.8a. Circuit diagram for carry function and circuit of a discrete NAND gate.
when it is more convenient to go back to first principles and build a gate from a few transistors and resistors.

From Fig. 11.8a it can be seen that the output is high unless both transistors are switched on. When both are switched on, by applying high inputs to both bases, the output is effectively connected to ground, and becomes low. Almost any npn transistor can be used to build this gate. The additional wiring for the carry circuit is shown in Fig. 11.8b. The link from AA29 to EE29 (Fig. 11.6b) is removed, and the CARRY l.e.d. is no longer required.
When the carry circuit has been connected, try calculations involving carrying, such as $1+11,1111+1111$, $110+110$.

SUBTRACTION

The Test-Bed is looking more like a bird's nest than ever before, but there is still one more improvement to make.

Luckily, binary subtraction can be carried out by a process involving addition. The rule is simple; for example, to subtract 110 from 1000 , we first find the complement of 110 . We do this by replacing all the l's by 0 's and all the 0 's by l's, so the complement of 110 is 001 . We then add the 001 to 1000 and finally add 1 to the total:

$$
\begin{aligned}
& \text { + complement of } 110 \\
& +1 \\
& \text { equivalent to } 1000-110=10
\end{aligned}
$$

Ignore the first 1 in the answer, arriving at 010 , which is the difference required.

In our calculator we can find (XYZ. LMN) by loading XYZ in the normal way, but when LMN is being fed to the adder at input A_{1} we make A^{*} low, so that the inverse of each digit it presented to the adding circuit of the 7480 . We can use a third spare key on the keyboard to ground A^{*} when it is pressed.

Fig. 11.8b. The circuit of Fig. 11.8a wired on the Test Bed.

The top left key is used, by soldering a wire link between N29 and 129, inserting a soldercon socket at R24 and cutting the strip at R28. Call this the complement key.

To add in the extra 1, we make the carry-in high at the first stage of addition. This can be done by grounding the CARRY output briefly when clock is high, just before the first count of the subtraction sequence. The top right-hand key (ADD ONE) can be used for this; the connection to ground is already wired in; solder a socket at R34 to connect to CARRY. The sequence for subtraction is as follows:

Load and shift $X Y Z$, as in counts 1 to 4 of Fig. 11.7.

Just before count 5, press the ADD one key briefly, then press the number key for LMN.
After count 5, release the number key, but press complement key down for the rest of the sequence.
Press and hold shift key as in Fig. 11.8.

The answer to the subtraction is found by reading the digits obtained after counts $5,6,7$, and 8 . the digit at count 9 is normally 1 , and should be ignored when writing down the answer.

Problem

What happens when you take 1001 from 1000, or 111 from 1? What does it mean when the digit at count 9 is 0 ?

To be continued

COMPONENT HOLDER

When constructing a circuit it is usual to have the components in front of you. I normally use plastic bags and small boxes. This has not really been suitable, due to the time involved sorting out the right component. I then decided to use a piece of foam plastic. The components, resistors, capacitors etc, are simply pushed in the foam.
Using this method I find it easier to pick out the required components. Also when they are accidently knocked on to the floor, as with boxes the components go everwhere, but with foam they stay put.
L. Privett, Barking, Essex.

THIRD HAND HEATSINK

To allow a free hand when soldering I have developed a simple peg heatsink to protect components against excessive heat.

All that is necessary is two 200 mm lengths of 1.5 mm dia. copper wire and a wooden clothes peg, see diagram. The peg can easily be clipped onto the lead being soldered and will remain there without being handheld.
D. G. Taylor, Merseyside.

THIS DEVICE is primarily intended to permit quick and easy tunning of a guitar, but it has also been used successfully with a violin and could no doubt be employed with other musical instruments of this general type. Like an ordinary tuning fork the unit has an audible output against which the unit can be tuned by ear. Each of the six guitar notes can be selected by means of a front panel switch.

BEAT NOTE

An additional and very useful feature of the unit is the ability to compare the frequency of the guitar with the internal reference oscillator, and produce an output note which is equal to the difference in the two frequencies,

normally termed the beat note. The beat note can be heard in the earphone as a sort of phasing effect due to the interaction between the two input signals. The note itself is usually too low to be audible as such.

A light emitting diode has therefor been incorporated in the unit, and this flashes on and off at a rate equal to the beat frequency. This gives a clear indication of the tuning error, and facilitates accurate and easy tuning merely by adjusting the guitar for the lowest attainable flashing rate. In this way it is very easy to bring the guitar to within 1 Hz of the reference oscillator's frequency, which is far more accurate than most people can achieve by usual means.

CIRCUIT DESCRIPTION

The complete circuit diagram of the Electronic Tuning Fork is shown in Fig. 1.

With an acoustic guitar the input signal to the unit must be obtained via a microphone, but an electrical signal can obviously be taken direct from an electric instrument. In either case only
a fairly low signal level will be obtained, paticularly in view of the fact that the output from a guitar quickly decays to only a small fraction of its initial peak level. This makes it necessary to considerably amplify the input signal to bring it up to a suitable level to drive the next stage of the unit.
This amplification is provided by TR1 and TR2, both of which are connected as high gain common emitter amplifiers. Less than 1 mV . is needed at the input in order to drive TR2 beyond the clipping threshold. This is adequate to give good results if the unit is fed direct from an electric instrument, or driven from an acoustic guitar via a low impedance dynamic (cassette type) microphone. An electret microphone having an internal preamplifier should also be suitable, but a crystal type is unlikely to prove satisfactory due to the fairly low input impedance of the circuit.

REFERENCE OSCILLATOR

The reference oscillator uses an NE555V device, IC1 in the astable mode. The six preset resistors, VR1

Fig. 1. Complete circuit diagram of the Electronic Tuning Fork.

to VR6, are each tuned to a different open string guitar note, with the desired preset and note being selected using S2. A rough squarewave output is obtained at pin 3 of IC1, and this is fed to an earphone socket by way of a simple top cut filter comprised of R9 and C 8 . The purpose of the filtering is to attenuate the harmonics on the output which are otherwise excessive, and tend to drown the fundamental frequency.
Some of the output from ICl is coupled by $C 7$ to one input of a passive mixer formed by R8 and R6. The output of TR2 is coupled to the other input by C3.

MIXING

If the two signals are at the same frequency the mixing will either result in the two signals adding together if they are in phase (if they rise and fall precisely in step and are of the same polarity), or cancelling one another out if they are out of phase (if they rise and fall in step but are of opposite polarity to one another). This results in either a rapid stream of pulses being fed to TR3 base via the rectifier circuit consisting of D1 and D2, or no signal at all being fed to TR3.
Transistor TR3 has l.e.d. indicator D3 and current limiting resistor R7 as its collector load, and the positive pulses to TR3 base will result in D3 glowing brightly. If the signals are out of phase and there is no input to TR3, D3 will switch off. The important thing is, that, the l.e.d. indicator remains in the same state and does not switch on and off. Of course, the two input signals may not be perfectly in or out of phase as has been assumed above, but may be somewhere in between these two extremes. This causes the two
signals to either partially add together or cancel one another out, producing an intermediate but steady level of illumination from D3.

PHASE EFFECT

If the two input signals are at slightly different frequencies they will not have a fixed phase relationship, but will alternate between the in phase and out of phase states. This results in the signals first adding together and switching on D3, and then cancelling out and switching off D3. This happens continuously with D3 flashing on and off in consequence. The greater the difference in the
two input frequencies the quicker the changes in phase relationship, and the faster the flashing rate of D3. In fact D3 switches on and off at a rate equal to the difference in the two input frequencies.

The mixing process produces an audible phasing effect at the junction of R6 and R8, and this can be heard using a crystal earpiece plugged into SK2. Note that only a crystal earphone is suitable for use with this unit, and magnetic types are unsuitable.

On/off switching is provided by S1. The current consumption of the unit from a 9 volt supply is approximately 18 mA , and this is provided by a PP6 size battery which gives many hours of operation.

Most of the components are assembled on a $0 \cdot$ linch matrix stripboard which measures 13 copper strips by 37 holes. This

HOW IT WORKS

A note from either an acoustic or electric guitar is applied to a high gain amplifier which turns the very low input from the guitar into a much larger signal which is sufficient to be applied to one input of a mixer. The other input is connected to a stable reference oscillator having six switched frequencies which correspond to the six notes of a guitar.
The output from the mixer is equal to the difference between the two input frequencies. The guitar is then tuned for minimum output frequency (zero beat) so that it is brought to the same pitch as the reference oscillator. Both audible and visual indication is provided, the latter being useful for fine tuning.

ELECTRONIC TUNING FORK

The completed circuit board for the Electronic Tuning Fork.

The finished unit showing how the preset potentiometers are mounted on the tuning switch.

Fig. 2. Complete wiring details for the unit also showing the stripboard layout and breaks to be made. All the tuning presets are mounted on the switch to save space on the board. It is not neccessary to use screened wire when wiring to the sockets, as the metal case provides sufficient screening.
must be cut down from a larger board using a hacksaw, and any rough edges are then filed smooth. Next the two 3.3 mm diameter mounting holes and the breaks in the strips are made at the points indicated in the component panel layout diagram of Fig. 2.
The components are then soldered into place with the semiconductor devices being left until the end. D1 and D2 are germanium diodes, and these are more easily damaged by overheating than the other devices. Either a heatshunt should be used on each of their leadout wires as it is soldered into place, or the leads should be connected fairly swiftly so that there is no chance for the diodes to overheat. Be careful not to omit the four link wires around IC1.

CASE

A metal instrument case having approximate outside dimensions of $152 \times 120 \times 51 \mathrm{~mm}$ was used as the case for the prototype, and any similar case should provide a suitable housing. It is recommended that a metal case should be used as this will screen the sensitive amplifier circuitry from possible sources of electrical interference.

The general layout of the unit can be seen from the photographs, but is not critical and any sensible layout can be used.
Many low impedance dynamic microphones have a 2.5 mm jack plug as well as the 3.5 mm one which carries the output signal, and it is quite common for the two plugs to be contained in a single moulding. If a microphone of this type is to be used with the unit it will be necessary to mount a 2.5 mm jack on the front panel to accommodate the unused 2.5 mm plug. Alternatively an ordinary 3.5 mm plug can be fitted to the microphone in place of the original.

In order to minimise the amount of wiring between the component panel and the controls, VR1 to VR6 are mounted on S2 rather than on the component panel. The component panel is mounted using 6BA screws about 12 mm or so long, and spacers are used to ensure that the connections on the underside of the panel are kept well clear of the metal case.
The small amount of point to point wiring must be completed before the panel can finally be bolted into position.

Resistors		Capacitors
R1 $2 \cdot 2 \mathrm{M} \Omega$	R6 $100 \mathrm{k} \Omega$	C1 $100 \mu \mathrm{~F} 10 \mathrm{~V}$ elect.
R2 $4.7 \mathrm{k} \Omega$	R7 680Ω	$\mathrm{C} 210 \mu \mathrm{~F} 10 \mathrm{~V}$ elect.
R3 220Ω	R8 $220 \mathrm{k} \Omega$	C3 3300pF ceramic plate
R4 $1 \mathrm{M} \Omega$	R9 33k Ω	C4 $2.2 \mu \mathrm{~F} 10 \mathrm{~V}$ elect.
R5 $4 \cdot 7 \mathrm{k} \Omega$	R10 1k Ω	C5 $10 \mu \mathrm{~F} 10 \mathrm{~V}$ elect.
All $\frac{1}{4} \mathrm{~W}$ carbon $\pm 5 \%$		C6 $100 \mu \mathrm{~F} 10 \mathrm{~V}$ elect.
Potentiometers VR1-6 $100 \mathrm{k} \Omega$ miniatur	re vertica	C7 $10 \mu \mathrm{~F} 10 \mathrm{~V}$ elect. $\mathrm{C} 80.033 \mu \mathrm{~F}$ ceramic plate C $90.15 \mu \mathrm{~F}$ polyester

Semiconductors

Miscellaneous
SK1 $\frac{1}{6}$ inch mono jack socket
SK2, $3 \quad 3.5 \mathrm{~mm}$ jack socket (2 off)
S1 standard single pole toggle
S2 2-pole 6 -way rotary switch (only one pole used)
B1 9V PP6 battery
Stripboard, 0.1 inch matrix 13 strips by 37 holes, metal case 152×120 $\times 51 \mathrm{~mm}$ or similar; PP3 type battery connector for B1; small round control knob; mounting clip for D3; extra 2.5 mm jack socket if required -see text; 8 pin i.c. socket if required; low impedance dynamic microphone (200 ohm cassette type); connecting wire; crystal earpiece with 3.5 mm plug.

ADJUSTMENTS

Initially VR1 to VR6 should all be set for about half maximum resistance. With an earphone connected to SK3 and the unit switched on, a fairly low audio tone should be produced with S2 set to any of its positions. If this does not happen, switch off at once and check the wiring for errors.
The presets are adjusted by ear against a piano, pitch pipes, or other such source, to give the six open string notes of a guitar at the six settings of S2. This should obviously be done as accurately as possible. Once set, the unit should not need any readjustment for a considerable period of time as the reference oscillator is very stable, and is not, for instance, significantly affected by variations in the battery voltage.

IN USE

In use, each guitar string must be brought fairly close to the correct pitch before D3 will flash on and off at a rate which is slow
enough to be perceived. The unit must therefore be used as a conventional tuning fork when making the initial adjustments to an instrument which is badly out of tune. With the earphone connected to SK2. an audible beat note will often be heard before the indicator light flashes at a slow enough rate to be perceived, but once the tuning is almost correct, the flashing light will probably give a clearer indication of the beat note.
It should be borne in mind that harmonics of the two input signals to the mixer can interact to produce beat notes even when the guitar is well off tune. However, this is not really too much of a problem as these spurious results only occur when the tuning is so far out that it should be obvious that it is an erroneous response.
Also, the flashing of D3 is far less pronounced at these secondary responses, with only minor fluctuations in its brightness occurring. At the main response it will vary from full brightness to no output whatever.

LETTERS

Subjective Response

Having just read Adrian Hope's article (For Your Entertainment) in the June issue of Everyday Electronics I feel it necessary to reply to that part subtitled "Sound off",
Sound level meters measure sound pressure and not energy. These meters generally incorporate an " A " weighted network which closely relates to the subjective response of the normal human ear to sound. In the field of acoustics the " A " weighting is accepted as the best descriptor of human perception to sound.
The difference between subjective response to a shout and speech recorded at identical energy levels lies in the frequency content of the sounds rather than the energy output. Since the ear is sensitive to frequency changes these differences are readily noticeable.

A great deal of work has been done by persons such as Stevens, Zwicker and Beranek to establish equal loudness contours and their results are remarkably similar, from large but differing samples of people. Modern microtechnology has made the incorporation of these equal loudness contours into a sound level meter a real possibility although of limited use to the acoustician.

Finally, I should like to offer a possible solution to the mystery of the differing maximum frequency sensitivity between the sexes. In young children the threshold of audibility of 4 kHz can be as low as -2 dB . This alters with age and more important noise exposure. Men are generally subjected to greater noise exposure than women. This exposure leads to a shift in the maximum frequency sensitivity from around 4 kHz to 3 kHz or less. This shift is characteristic of noise induced hearing loss both temporary and permanent.
R. N. Lovett Dunstable

Matter of "Sferics"

I find your Counter Intelligence articles very interesting and informative. In the May issue you query the usefulness of static electricity and I wonder if my memory of an article in the magazine "Scientific American" back about 1956 would be of help.

It was on the use of old radio material rewired to measure the "crackles" that in some cases was due to static and the suggestion for using the machine was to predict the nearness of lightning. If I can find the copy I will send it to you for passing on to Mr. Young, as I feel the task would be helped by your colleagues upgrading the apparatus to modern terms and it might even be of use.

I am hesitant about mentioning this as it was quite a time ago but I know most libraries can obtain this publication and its unusual in that it gives good scientific reports and practical schemes in esoteric fields. I mention this before saying
that the static should be measured in units called "sferics", but I think it really was a serious article (I once was told by a technical officer that they would make the apparatus if I got a research grant of about $£ 50$! I am afraid I never tried).

I hope this is of interest and you can make something of it as this might be the time when technology has the means to discover what static can be used for, rather than shocking us in our synthetic world.

D. S. Mayne,
 Armagh.

Suitable definition

In reply to Mr. Young's question concerning static electricity (Counter Intelligence, May 1979 issue), first a suitable definition must be found; for this I have decided upon-an electric charge which is at resti.e., a charge which remains on an object without change.

This reveals the basic difference between static electricity and ". the ordinary sort..." since the latter must travel to produce an effect. Coincidentally this movement is due to attempts, by the electrons, to produce an equilibrium of potential, i.e. to become static electricity.

By definition static electricity is therefore unable to do anything useful except to attract and repel an electron beam, i.e. move the dot on an oscilloscope.

David R. Clarke (aged 15)
Rugby.

Static Charge

As regards to Mr. Young's query about static electricity (Counter Intelligence, May 1979 issue), I hope the following information might be useful.

As we all know, "electricity" is due to the fact that charged particles (electrons) move from one point to another, e.g. down a wire, their movement being caused by a difference in potential at the two ends of the wire. Now static electricity is due to the build up of charges on an object.

The charges that have built up do not "move" and so there is no current flow. If, however, the charges are allowed to leak away by contact with something at earth potential, there is an associated current, which is the result of the much lower potential to which charges tend to flow.

So, electricity is the flow of charge whereas static charge is the result of the build up of charge on an area; giving the same effects when they move as do electric currents due to a battery for example. However, in electrostatics we are usually dealing with a small charge (few microcoulombs) and several kV ; in current electricity the opposite is usually the case.

Well, what use is static charge? Today's modern technology has put electrostatics into some quite useful situations.

Coal-fired power stations, steel, cement and chemical industries use electrostatic precipitation in order to contain flue gas outputs which would otherwise be discharged into the atmosphere. The flue gases pass through some positively and some negatively charged grids. The gas particles pick up the charge from one of the grids and are thus attracted by the other, causing collection of the particles on the grids.

Electrostatic spraying of paints is possible; electrostatic loudspeakers and microphones are in common use as are electrostatic copying machines. In nuclear physics electrostatic generators are used to produce static which then generates several million volts and is used to accelerate atomic particles for research.

A knowledge of static electricity is also needed to combat situations where the static could produce disastrous results. Static charges build up on wings of aircraft in flight and on plastics in industry creating potential explosion hazards if not combated; lightning conductors are used to protect buildings.

Nearer home ground, static charges come into play when a capacitor is fully charged and no more charge flows from one plate to the other.
But as we can appreciate, most of the functions described need "current" electricity to produce the charged surface in the first place, but we can consider functions such as employed using Van de Graff generators (e.g. nuclear physics) as being static electricity on its own performing useful functions.

George Kesic Leeds

Measuring A.C. Current

Many multimeters currently on the market do not have a high a.c. current range for measuring mains current for example. You can easily adapt a meter by using a simple bridge rectifier. The circuit is shown in the diagram. A full wave bridge, rated at about 5 amps is used, and a meter set to a d.c. current range which has a f.s.d. equal to the peak a.c. current to be measured.

As the meter will indicate only the peak value of the current, a shunt can be made up and connected across the meter so that it will indicate true r.m.s. instead of peak

STORAGE

I have found a simple and cheap method of storing components. Components are placed into plastic bags of the press to seal variety about $150 \mathrm{~mm} \times 100 \mathrm{~mm}$. A hole is punched through the unused plastic above the seal in the centre. The bags are then hung on a length of string, fastened between any two points.
A simple hook is made from stiff wire 55 mm long which provides an easy method of removal when required. A system of this kind I think compares favourably with commercial storage bins etc.
J. Fleming, London E7.

CROCODILE CLIPS

Needing a few additional crocodile clips (when the shops were closed) I made up suitable alternatives, using just an ordinary clothes peg and thin insulated wire. The clothes pegs can be shaped to a point similar to that on pliers. The leads are then stripped for about 150 mm and then wound round the ends as shown in the diagram.
S. Moss, Bath.

COMPONENT BREADBOARDING

As a devoted electronics enthusiast, I construct projects purely for the fun of it. As such I very rarely keep the projects so constructed. Therefore I have found it wise to mount certain components on a board. A size of $25 \mathrm{~cm} \times 15 \mathrm{~cm}$ seems about right.

The component, for example a speaker, is mounted on one side of the board, plywood for instance and nails driven through from the other side. When the component is to be used I just connect it up using crocodile clips.
A. White, Burbage, Leicestershire.

TOOTHPASTE TERMINALS

When constructing test equipment etc. the cost of terminals can be quite high, and is often cheaper for the constructor to make his own. My idea is to use an old toothpaste cap. The drawing above shows how this is made.
Thus the external wire can then be gripped firmly between the two washers when the terminal is screwed down.
P. Baily, Rutherglen, Scotland.
 modes of flashing-two chase patterns and a strobe effect. Total output power 750 watts per channel.

UARILCAP POCHET REEEIUER

A unique feature of this receiver is the unusual use of a varicap diode in tuning a ZN414 t.r.f. radio i.c.

REFLE LOUDPERHER

An advanced top quality system, incorporating three drive units in a 62 litre (3cu ft) enclosure. 50-70 watts handling

capacity.
 ...and much, much more besides!

SEPTEMBER ISSUE ON SALE AUGUST 17

BY ADRIAN HOPE

Suddenly video is happening. There are two reasons why the long awaited video revolution has now finally arrived. Most people who can afford a hi fi system already have at least one and are "in the market" for another electronic gadget; and the new generation of video cassette recorders, which are now selling from a wide variety of UK shops, offer greatly increased playing time and drastically reduced "feeding" cost.

This latter phrase neatly sums up the cost in blank cassette tape of using a video recorder.

Until a year or so ago feeding costs were high enough to be a marked deterrent for all but the very wellheeled. Now they are at a very low level, $£ 5.00$ an hour or less.

FIRST GENERATION

The first generation of domestic video recorders (the N1500 series)
came from Philips of Eindhoven in 1974, the result of research and development work carried out by a Philips team in Austria.
It costs around $£ 25$ an hour to record television programmes off-air using one of the original N1500 series Philips video recorders. This was fine if you re-used the same cassette over and over again but not so fine if you wished to store a programme. Also the cassette had a maximum playing time of one hour.

Everyone recognised that tape cost must be reduced and playing time per cassette increased. The break-through came from Japan with announcement by JVC of the VHS system and by Sony of Betamax. Although VHS and Betamax are very similar they are not the same and are not compatible, that is to say a cassette recorded on the VHS machine will not replay on a Betamex machine and vice-versa.

LONGER PLAY

Both VHS and Betamax machines are now available in the UK and both have in common a much increased playing time, around three hours per cassette, and a greatly reduced feeding cost, less than $£ 5 \cdot 00$ an hour. This is achieved by a very low tape speed which enables a lengthy recording to be made on a relatively short tape.
In response to the Japanese competition, Philips launched a Long Play version of their original N1500 series machines, the N1700 series. Grundig then launched SVR a Super Long Play version of the long-play Philips format. It is only necessary to compare tape speeds over the years to get some idea of the astonishing rate at which video technology has moved. All domestic machines use tape which is 1_{2} inch wide.
The original Philips N1500 recorders ran the tape past the recording heads at 14.29 cm per second. To enable the tape to hold a bandwidth of 3 MHz (which is necessary for recording colour television) the recording heads spin round very rapidly indeed laying a series of

I-Philips N1702 video recorder (VRC).
2-Toshiba Betavideo V5250B (Beta).
3-Ferguson Videostar 3V00 (VHS).
olosely packed helical strips across the slowly moving tape. Hence the term "helical scan recorder".

All domestic video recorders work on the helical scan principle, the heads rotating up to 20 miles an hour to "write" the necessary video information onto the tape.

TAPE SPEED

The Philips Long Play video cassette recorder (N1700) uses the same video cassettes as the original N1500 but the tape speed is reduced to 6.56 cm per second. But even this is a much higher tape speed than the two Japanese systems and the German Grundig modification.

The VHS system as marketed in this country for instance by JVC, Akai and Ferguson (most VHS machines are actually made by JVC) relies on the almost unbelievably low tape speed of $2 \cdot 34 \mathrm{~cm}$ per second.

Think about that figure: 3 MHz bandwidth on half-inch wide tape moving at 2.3 cm per second. Just a few years ago anyone who dared to suggest that this might be possible would have been publicly mocked.

But Betamax recorders suitable for use in the UK run at an even lower tape speed-just 1.9 cm per second. And in an "anything you can do we can do slower" confrontation the Beta and VHS designers in Japan have recently announced even slower tape speeds to offer up to nine hours recording from a single cassette.

Initially Philips also responded to the commercial challenge of lower feeding costs from Japan by slashing the price of blank cassettes by as much as 40 per cent. Although the price of Philips format blank cassettes in the shops varies widely, depending on where you shop, it is now possible to buy a Philips format LVC 150 that runs for $2^{1}{ }_{2}$ hours on an N1700 machine for as little as $£ 15 \cdot 00$.

PRICE CUTTING

But video cassettes are expensive to make and price cuts such as these
must have left the tape manufacturers with a very tight profit margin.
Usually firms tend to sell hardware (such as cameras and recorders) cheaply and then make their money on the software (blank tape and raw film). Doubtless this is one reason why Grundig chose the different approach of launching SVR. This uses what at first appears to be a standard Philips format video cassette and a tape running speed of 3.95 cm per second. (ITT incidentally are selling the German-made Grundig SVR recorder under their own name.)
Although the SVR machine appears to take standard Philips-format cassettes it is in fact designed to take only Philips-format cassettes which have been modified by the addition of a special lug. Grundig say that the very low tape speed on which the machine relies necessitates the use of especially good tape and precision cassette construction and that Philips format cassettes with the extra lug and labelled SVC can be relied on this respect.
Inevitably this has created some confusion in the shops. Also it initially created some pretty bad will because the price of special lugged Philipsformat SVC video cassettes was at first higher than the cost of apparently, but not actually, identical Philips-format cassettes without lug. Now the situation has improved because some tape firms, like BASF, are simply selling only SVC lugged Philips-format video cassettes which can be used on either Philips N1700 series or Grundig SVR machines.

FIVE STANDARDS

But the trade and public is still confronted with a choice between five video standards two generations of the Philips-format, the Grundig modification of the Philips-format plus VHS plus Betamax. And that is by no means all. At the Berlin Radio Show in August it is almost certain that some new formats will be launched.
It is almost certain, for instance, that BASF will introduce its Linear

Video Recording System. In LVR a length of tape shuttles very fast backwards and forwards past a fixed recording head which switches position at each pass of the tape, rather like the heads of a car cartridge plaver.

Moreover, although Grundig's new video factory in Nuremburg is producing 500 SVR machines a day, and although Philips has launched the N1702, a slightly improved version of the basic Long Play N1700, it is expected that Philips and Grundig will very soon make a joint announcement about their future plans for a new format.

Meanwhile the overall uncertainty caused by such rumours has created a drastic fall in video recorder prices. You can now buy a brand new machine for under $£ 500$, instead of the $£ 700$ or $£ 800$ it cost just a few months ago.

VIDEO DISCS

As explained, a helical scan video tape recorder captures the wide bandwidth colour television signal (around 3 MHz) by spinning the record heads fast past slowly moving tape. A video disc player adopts a more obvious approach, although the technology involved is equally daunting. All video discs systems, and many have been proposed, work by spinning the disc very fast under a stationary pick-up head.

The first video disc was made by John Logie Baird in 1928 who used an old, ordinary 78 r.p.m. disc to capture the low bandwidth signals necessary to generate a muzzy picture on his mechanical TV system. Some discs were actually sold for seven shillings each at Selfridges in the mid 1930's. Video discs then virtually died for forty years.

INSTANT REPLAY TV

Many television companies now use a computer-style magnetic disc which rotates very fast to capture short TV picture sequences. This is how freeze

4-Sony Betamax (Beta).
5-An early Philips/MCA videodisc player.
6-The Philips Compact Disc player.
frame and instant replay pictures are presented on TV. The transmitted signal is continually recorded onto the magnetic video disc. The disc has around half-a-minute recording ability. Thus at any moment the broadcaster can instantly replay up to half a minute of the programme just transmitted, slowing down or speeding up or freezing the picture, for instance to highlight a goal in a football match.

A SERIOUS LIMITATION

On the domestic market many systems have been developed but none yet commercially marketed in the UK. All systems so far are for replay, that is, they do not enable the user to make recordings of his own. This is one reason why video discs have not yet succeeded commercially.

No one yet seems quite sure what kind of material the public will be prepared to buy on a pre-recorded video disc. After all, very few television programmes or feature films bear watching once, let alone several times! And there is an unsolved problem over royalties for the performers.

TELDEC SYSTEM

The first domestic video disc system to be announced was the Teledec system developed by Telefunken (of Germany) and Decca. The Teldec system was first publicly shown in Berlin in 1971 and by 1975 Teldec discs and players were actually being sold in some Continental countries.

A Teldec disc is not really a disc at all. It is a thin flexible sheet of plastics foil with the video information encoded in a spiral groove superficially similar to that of an ordinary gramophone record. But the video information is encoded by frequency modulation and the groove is cut in vertical or hill and dale fashion.

The Teldec disc rotates at 1,500 r.p.m. and is tracked by a special diamond stylus and piezo transducer. Each disc holds up to ten minutes of colour video. But the system has never succeeded commercially or met with much enthusiasm from engineers.

RCA DISC SYSTEM

RCA in the USA has meanwhile developed a video disc with a groove in which the video information is encoded as capacitance variations. These are sensed by a pick-up serving as an electrode. Very few people have seen the RCA system in action and no one seems to know when or whether it will ever be launched. But recently when I was in New York I was given a very professional demonstration of the newest prototype RCA player, whioh is mechanically very simple and performed well.

OPTICAL SYSTEMS

Most people still regard the optical system developed by Philips in Europe and MCA in the States (with a similar system independently developed by Thomson in France and Sony in Japan) as the front-runner.

According to the Philips system the video information is encoded as variations in reflection on the surface of a rapidly rotating shiny disc. A tiny laser beams a narrow pencil of light down onto the surface where minute pits vary the strength of the beam reflected up again onto a sensor. (The French Thomson system uses a transparent disc with variation in light transmission.)
For several years Philips and MCA annually promised to launch their system "next year" but it never quite seemed to happen. But just before Christmas 1978 the Philips subsidiary Magnovox started marketing Philips disc players and discs in Atlanta Georgia and the company demonstrated the system in the UK.

Performance of the Philips player is beyond reproach; the reproduced pictures are of broadcast standard.

VISC SYSTEM

The Japanese company Matsushita have developed the Visc system which is in many respects a modern version of Teldec. Visc looks like an ordinary vinyl audio disc. In fact it is an ordinary vinyl disc except that the
groove is of very fine pitch and (like Teldec) contains video information of around 3 MHz bandwidth recorded as frequency modulation in hill and dale fashion. But whereas Teldec only provides 10 minutes of colour video on one side of the flimsy foil disc, a Visc can carry over an hour of colour video and stereo sound on each side.
Visc was first demonstrated in 1978 and has subsequently been modified to squeeze longer playing time from smaller disc sizes. But now the future of Visc is in doubt because Matsushita has signed a deal with the sister company JVC, who had developed a completely different system. This relies on capacitance, like the RCA disc, but has no grooves. The electrode stylus tracks across the smooth disc surface under electronic seryo control.
Although Sony is "flexible" over standardisation the company has so far shown most enthusiasm for an aptical system, like the Philips disc. Other Japanese companies, including Pioneer, have made similar moves. So it seems likely that in the future the main battle will be between Sony, Philips, Pioneer and a few others on the one hand and Matsushita and JVC on the other, with RCA in the middle.

FUTURE SYSTEMS

It remains to be seen now what further video disc systems are launched by other companies prompted into disclosing their researches by the USA marketing moves by Philips. Companies like RCA and JVC will not lightly ditch their own systems in favour of that of a rival. But while there is rivalry and no standardisation, no system will succeed. There is even the added problem that video discs tailored for the USA or Japan will be incompatible with European TV.
Although video discs may seem an irrelevancy to anyone who has no desire to buy a pre-recorded TV programme or feature film, they do have massive potential for education. Also they happen, by a happy coincidence, to be the ideal medium on which to record digital sound.

T-Grundig SVR4004 with 10 day timer (SVR).
8-Latest Philips YR2020 uses paper-back size cassettes.
-Hitachi YKC500 colour video camera for use with the VT5000E 10 day recorder shown in our heading pic.

By Dave Barrington

THIS month we have some new products which should be of particular interest to the constructor and should prove useful acquisitions,

PCB Etcher

For the person keen on making his own printed circuit boards, a new bubble etcher aimed at both the hobbyist and professional has just been marketed by Mega Electronics.
Designated the type PLBE-1210 bubble etcher this new p.c. production ancillary has a fluid capacity of 5 litres, and accepts printed circuit boards up to $305 \times 254 \mathrm{~mm}$. Extra capacity in the tank has been achieved by positioning the heating element so that it does not obtrude into the tank.
The average etching time for both single-sided and double-sided boards is claimed to be 4 to 5 minutes. Other features include full thermostatic control of the fluid temperature and protection against evaporation and splashing
The PLBE-1210 bubble etcher is priced at £55 including VAT and further details can be obtained from

The PLBE-1210 bubble etcher from Mega Electronics.

Mega Electronics Ltd., Dept EE, 9 Radwinter Road, Saffron Walden, Essex, CB11 3HU.

Mini Stripper

Anyone who has tried stripping and using the very fine gauge wire now commonly used for interwiring multipin devices will welcome the latest offering from OK Machine \& Tool (UK) Ltd.

The CAS-130 "Clip and Strip" is claimed to cut and strip without nicking 0.025 mm wire and is ideal for Kynar wire-wrapping wire. Shaped similar to a miniature paper fastener, the stripper is held between thumb and finger and the wire placed in the jaws which are squeezed together to clip and strip a 25 mm length of wire.

Produced primarily for the hobby market and selling for $£ 1.52$ (excluding packageing and VAT), the CAS-130 wire stripper could prove equally useful for the prototype wireman in industry.

Further information and addresses of nearest stockists can be obtained from OK Machine \& Tool (UK) Ltd., Dept EE, 48a The Avenue, Southampton, Hants, SO1 2SY.

T111111年11111

Miniature terminal assemblies from Vero Electronics.

Terminal Posts

Designed as terminal posts for test points on circuit boards for clipping test probes such as multimeter or oscilloscope leads, we are sure readers will find many applications for the new terminal assemblies from Vero Electronics.

The sprung metal "split" pin is surrounded by a sintered glass bead which allows the eye of the pin to stand proud from the board for easy access and will remain in place when the board is reversed for soldering.

Intended for "through-hole-plated" printed circuit boards, we found that the terminals made ideal mounting posts for components on 0.15 in plain perforated board. The interwiring is easily soldered on the underside of the board between the protruding pins.

Details of prices and nearest stockists can be obtained from Vero Electronics Ltd., Dept EE, Industrial Estate, Chandler's Ford, Eastleigh, Hants, SO5 3ZR.

The OK CAS-130 wire stripper.

CONSTRUCTIONAL PROJECTS

Although we have a bumper number of constructional projects this month no buying problems are envisaged as components are available from a number of sources.

Trailer Flasher Unit

It is most important that first grade components are used for the Trailer Flasher project, the 2N3055 transistors must be new types. Also particular care must be taken when mounting the mica washer to ensure it is not punctured during mounting.

This is usually caused by insufficient cleaning of the metal work after drilling to accept the power transistors. When the drilling is completed for the power transistors it is a good idea to clean the surface with a damp rag and some household cleaning powder to remove any surplus swarf.

9V Power Supply

Any transformer with a 12 V at 0.5 A secondary will be suitable for the 9 V Power Supply. The only limitation is the physical size of the component and the one used in our prototype used two secondaries of 12 V at 250 mA wired in parallel.

Mini Module

Although this months Mini Module, Swanee Whistler calls for a slider type potentiometer there is no reason why a normal rotary potentiometer should not be used. These are approximately 50 per cent cheaper and more likely to be to hand in the spares box.

Apart from the above comments, readers should have no difficulty in obtaining components for the rest of our projects this month as they are listed in most advertisers catalogues.

VAT

Due to recent change of VAT rates at time of going to press, readers are advised to check prices in advertisements before ordering any components.

TRAIIER FLASHER

CMPPING and caravanning have enjoyed a considerable growth in popularity in recent years and many D.I.Y. motorists will be tackling the job of wiring up a trailer socket so as to connect the motor car lighting circuits to a trailer or caravan. In the case of the tail lights and brake lights these are usually straightforward d.c. connections. However complications arise in the connection of the flashing indicator lights.

OPERATING FREQUENCY

Nearly all car flasher systems are affected by the number of bulbs in circuit, and connecting extra lamps will usually upset the flasher frequency, often causing the lights to flash much too fast, or, perhaps, not at all.

To be legally correct the flasher system must operate between 60 and 120 times per minute, and also, when the trailer is connected,
there must be some means of indicating the failure of the trailer flasher lamps to the driver.

The purpose of the unit described here is to drive the trailer flashers correctly and to monitor their operation.

CIRCUIT PRINCIPAL

Fig. 1 is a simple illustration of the basic circuit. A 21 watt flasher bulb (LP2) has a much lower resistance than a 2 watt panel lamp (LP1), so that if the two are connected in series as shown and connected across a 12 volt car battery nearly all the 12 volts appears across LP1. LP1 lights up therefore, there being insufficient voltage across LP2 to illuminate it. LPl remains lit as long as the filament of LP2 is intact, and therefore acts as a monitor.

If switch S1 is now closed LP1 is shorted out and the full 12 volts appears across LP2, causing it to

light. If Sl is made to operate in unison with the car flasher system then both LP1 and LP2 would flash, alternatively but at the correct speed.

FULL CIRCUIT

Fig. 2 shows the full circuit of the trailer flasher unit connected to the motor car circuits. The dotted line encloses the additional components comprising the unit.

It will be seen that a 12 volt feed, via a 4 amp fuse FS1, supplies two parallel circuits-one for each trailer lamp. The panel lamp LP1 is in series with the trailer right rear lamp via the 7 -pin trailer socket, likewise LP2 is in series with the trailer left rear lamp.

SWITCHING

Instead of mechanical switches two npn power transistors are connected across the panel lamp, with their emitters connected to the trailer lamps. Each transistor base is connected via a 10 ohm 1 watt resistor and series diode to the left and right flasher feeds from the car direction indicator switch. When the flashers are not working there are no base voltages for the transistors and they are therefore virtually open circuit. This means that the panel lamps remain lit, showing that the trailer lamps are intact.

If S1 is moved, say, to the right, the right hand flasher lamps are energised via the car flasher unit, which causes them to flash as usual. 12 volt pulses are fed via D1 and R1 to the base of TR1,

UnIT

配causing it to turn hard on, shorting out LP1 and switching on LP3. Thus both LP1 and LP3 flash (alternately) in time with the car circuit, which only has to provide a few milliamps base current for TR1-a negligible loading. Virtually all the current for LP3 comes via FS1 and TR1. A similar sequence occurs when S1 is moved to the left, to operate LP4.

CONSTANT REMINDER

It will be seen that when the trailer plug is disconnected from the socket there is no connection to chassis and the unit is effectively switched off. Inserting the trailer plug completes the circuits and causes both panel lamps to come on-providing the trailer lamps are intact of course. The twin lights give a constant reminder that the trailer is connected-some small camping trailers are invisible through the driving mirror!
The base resistors R1, R2 are of a low value (10 ohms) to give some limit to the base current yet ensure that the transistors turn fully

COMPONENTS

Resistors
R1 10Ω
R2 10
All 1 W carbon $\pm 10 \%$
Diodes
D1 1 N4002
D2 \quad 1N4002
Transistors
TR1, TR2
NEG. EARTH page 499
2N3055, 2N3054,
AD2161, BD130,
TIP33A etc.
POS. EARTH
AD162,AD143,
AD19,BD132
OC36 etc.

Miscellaneous

FS1 4 amp fuse.
LP1,2 $12 \cdot 5 \mathrm{~mm}$ plastic panel lamp 12V 2W (2 off) Five-way terminal strip. Fuseholder. "Scothloc" connectors. Sheet aluminium.

Fig. 2. Full circuit diagram of the Trailer Flasher Unit (within broken line) shown connected to the car circuits and, via trailer socket, to the trailer or caravan circuits. For positive earth TR1 and TR2 must be replaced by pnp types.
on. The diodes D1, D2 have no effect on circuit operation, but they were found necessary in the prototype to prevent reverse leakage through the base/emitter junctions of TR1 and TR2. This caused LP1 and LP2 to glow slightly when the trailer plug was disconnected.

The circuit shown is for negative earth vehicles. For positive earth operation the transistors must be $p n p$ types and the diodes D1, D2 reversed.

COMPONENTS

Almost any type of power transistors may be used, providing they have a current rating of at least two amps, and some suitable types are shown in the components list. Nondescript surplus transistors should not be used. One should bear in mind that the failure of a cheap transistor when on the road might bring all sorts of unpleasant consequences.

The 2 watt panel lamps are standard plastic types which are usually a push fit into a 12.5 mm hole. These are readily available from motor shops and will
probably have spade-type push-on terminals, to which connecting wires may be soldered directly. It is important that the lamps are isolated from their mountings if they are to be fixed into a metal panel.

The five-way terminal strip is cut from a mains connector block as sold in Woolworths.

The wiring of the unit and its connections to the car circuits should be of reasonably stout insulated wire. Motor shops do sell proper automobile type connecting wire, but wire stripped from 13 amp mains cable is just as good and somewhat cheaper. The four amp fuse FS1 should be mounted in an in-line fuseholder as used for car radios.

The constructional layout is not important and will depend to a great extent on the layout of the motor car and the materials to hand. The panel lamps may be mounted in the dashboard proper, if space permits, and remotely connected to the other components which may be mounted anywhere convenient.

The transistors do not really need heatsinking in this application as they are being operated as switches, that means fully on or fully off, and so generate little heat. However, it is by far the simplest method to bolt up the transistors in the normal way, one arrangement is shown in Fig. 3.

CHASSIS

Here the complete unit is built on a simple chassis made up from aluminium sheet about $60 \mathrm{~mm} x$ 180 mm , and is intended to be mounted under the dashboard or parcel shelf. The panel should be drilled before being folded up. No

Fig. 3. The complete Flasher Unit shown "opened up" for clarity. The chassis is made from a single piece of 18 or 20 s.w.g. aluminium, with two bends as indicated. All drilling should be carried out before bending. See text for further details.
dimensions are given as these will vary with the devices used. The transistors must be isolated from the metal panel with the usual mica washer which may, with care, be used as a template for making the holes.

Fig. 3 shows the wiring connections with the chassis opened out for clarity but in fact the connections should be fairly short and rigid. When connecting wires into the terminal block ensure that the screws bite firmly onto the wire and not the insulation. Plastic sleeving should be used on any bare component leads.

INSTALLATION

The unit may be mounted under the dashboard or parcel shelf with

PIN	CIRCUIT
1	L.H.FLASHER
2	SPARE
3	EARTH (CHASSIS)
4	R.H.FLASHER
5	R.H.REAR AND
	NUMBER PLATE
6	BRAKE LIGHTS
7	L.H.REAR

Fig. 4. Pin connections to Trailer Socket. The pin numbers are usually marked on the socket.
small bolts or self-tapping screws, using spacers if necessary. Wires may then be run from the car circuits to the terminal block. The five numbered terminals in Fig. 3 correspond with the circled numbers in Fig. 2.

Connections 2 and 3 are probably best made to the wiring loom alongside the steering column. The car wiring diagram will show the correct wires to tap into if the connections to the indicator switch are not visible.

Sound insulated connections are required and the simplest method is to use "Scotchloc" connectors, also available from motor shops.

The two wires to the trailer socket from the unit should be tucked out of the way under the carpet or behind the trim, taking care that they are not likely to chafe on sharp metal edges. Fig. 4 shows the internationally agreed pin connections for the trailer socket and it should be wired accordingly.

HAZARD SYSTEM

The 12 volt feed via FS1 should be connected to the car fuse box, or perhaps to the ignition switch directly, so that the supply is live only when the ignition is turned on. If there is a spare fuse position in the fuse box it may be used instead of an in-line fuse holder.

The reason for this arrangement is that most modern cars are fitted with a "hazard" flasher system which causes all four flashers to light, to give warning of a breakdown etc. If the trailer is connected and the Trailer Flasher Unit in use this would cause both trailer lamps to flash as well-a useful feature.
However, six flasher bulbs means a load in excess of 120 watts, which could drain the car battery if left on for a lengthy period. Providing the engine is kept running, and therefore the charging system working, there is not likely to be any difficulty.
If the unit is wired to an igni-tion-controlled source as described, then switching off the engine will extinguish the trailer lamps and limit the hazard system load to the four lamps on the car.

Electronic wizards

am sure that one of these days some of my readers are going to tick me off for my predilection for poking fun at computers. The truth is, I think, we all have a certain animosity towards these electronic wizards and I believe the reason for it is this, we feel that they are getting too smart for us.
They can beat us at any game from noughts and crosses to chess, solve arithmetical problems that are far beyond our mental capacity and there are now pocket translators that can handle any language including Japanese. In short they tend to give us a massive inferiority complex.
Consequently when one falls flat on its nose (perhaps they do not have noses, so perhaps I had better rephrase it and say falls flat on its software) our mirth is not only uncontrollable but understandable because it has re-established our self esteem. What we must never lose sight of is the fact it was the human brain that conceived and built the computer in the first place.

To redress the balance I will say something in their favour. About seven years ago we bought an electronic calculator, that would do any calculation and give a print-out. It was a splendid machine but it measured about eighteen inches by eighteen inches by six inches and weighed about forty pounds. To-day we have replaced it with a Cannon P10 which does the same job, only measures about four inches by six inches by three inches and weighs a few ounces. It is completely portable and operates from a rechargeable cell.

Poste Haste

In this connection I would like to give a pat on the back to the suppliers "Poste Haste". Every calculator is supplied complete with a charger, so when one of my staff said "We want some new batteries in the P10" looking very superior I said "not at all, you simply plug in the charger; here, let me show you." Do you think I could find the charger? I could not!

So I telephoned "Poste Haste" and explained my predicament. The girl who answered the phone said "I
do not deal with it, but I will get my colleague who does to contact you".
The very next morning a parcel arrived in the post containing one P10 charger and to date I have had no billl With all the tales one hears of poor service, it is nice to discover there is another side to the coin!

Static reply

I was pleased to receive letters from readers on my static query. In particular I would like to thank David Mayne, David Clarke and George Kesic for their helpful suggestions and I would ask them to accept my apologies for not sending individual replies. I can honestly claim pressure of business. Some of these letters are reproduced in this issue.

If I sum up the answers correctly the concensus is that static and ordinary electricity are basically the same thing, but with static we are dealing with a very high voltage and very low current and with the more familiar sort, the voltages are usually lower and the current correspondingly higher.

Readers also reminded me of the innumerable uses to which static is put, from moving the spot on your television screen, to photocopying and even the plating of plastics. One even mentioned the uses to which the piezo electric phenomena is put, but I have the feeling that this is something different again.

Of course, what I had in my mind was static being used to power some kind of electric motor, perhaps with enough urge to drive a carl That really would be something. Here is a chance for you inventors!

Soldering is the most important aspect of project building. Unless you are competent in this "art" your projects are more than likely to fail. The importance of good, neat, clean soldering cannot be overstressed. As with most things a good soldering technique comes with practice.

STAGE 1

The tools required are few and simple. Choose an iron with a bit size appropriate to the job in hand. Always use a resin-cored solder of $60 / 40 \mathrm{tin} /$

FOR
BEGNNERS
lead composition.

STAGE 2

Tinning the bit. The tip is "tinned" with a thin coat of solder, Do not allow the solder to run down the main body of the bit.

STAGE 3

An essential part of soldering is clean components. Use a piece of fine sandpaper and then tin the lead.

STAGE 4

A tidy looking board is a pleasure to see, so don't insert components as on the right! Be neat.

STAGE 5

The joint is now ready to be soldered. This shows the correct position of iron. Note that it is in contact with both lead and copper strip.
STAGE 6
An even flow of solder is necessary to produce a sound, bright looking
joint as the one on the left. Bad workmanship produces dry joints (centre) and bridges, etc (right).

STAGE 7

Stranded wires should always be tinned. Here we show how this is done, and the final result if you are unlucky (far right).

STAGE 8

The correct way to solder a wire to say, a Veropin. The wire on the right is obviously wrong, the loose wires could cause a short circuit.

STAGE 9

As in the previous photo, a good mechanical joint is essential when wiring up to tagged components. Do not let the wire "hang" in the tag.

STAGE 10

Although nothing to do with good soldered joints, the use of a heat shunt on heat sensitive component leads is a "must".

STAGE 11

One tricky operation is the soldering of an i.c. Here we show the correct angle for the iron bit and solder.

## SEMICONDUCTORS TRANSISTORS Type BD184 		
rice		
119	Type	
BiP20		 Price $\begin{aligned} & \text { Type } \\ & \text { This } \\ & \text { Tis }\end{aligned}$

Type
74110
74111
74118
74119
74121
74122
74123
74136
74141
77450
7415
7453
74454
74155
74156
74157
74161
74162
74163
74165

CMOS ICs

LINEARICs

 DIODES

Type AA110	Price 20.09	Type BAX13	Price £0.08	Type BY154	Price 80.55		Price 50.37	Type SD10	Price §0.05
AA120	80.09	BAX16	20.09	BY176	£0-24	0 O447	20-09	SD19	± 0.05
AA129	20.09	BY100	20. 23	BY206	£0-32	OA70	20.09	1N34	$\underline{60.08}$
AAY30	$\pm 0 \cdot 10$	BY101	¢0-23	BYZ10	£0.48	OA79	E0-11	IN34A	20
AAZ13	E. $0 \cdot 16$	BY105	20.23	BYZ11	E0-48	OA81	20-11	IN914	20.05
BA100	£0. 11	BY114	20.23	BYZ12	¢0-48	OA35	20-11	IN916	20.06
BA102	£0.34	BY124	20-24	BYZ13	£0-43	OA90	E0-11	IN4148	± 0.05
BA148	± 0.16	BY126	£0.16	BYZ16	£0-44	OA91	E0.11	IS44	20.05
BA154	80-13	BY127	80.17	BYZ17	20-38	OA95	E0.11	1S920	± 0.06
BA155	£0.15	BY128	20-17	BYZ18	20.38	OA182	£0.14		
BA173	20.18	BY130	£0.18	BYZ19	20-36	OA200	80-08		
BB104	£0-16	BY133	¢0.23	OAS	£0.64	OA202	£0.09		

TRIACS

2 amp Volts 100 200 400	$\begin{aligned} & \text { T05 Case No. } \\ & \text { TR12a/100 } \\ & \text { TR2a/200 } \\ & \text { TR12a/400 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Price } \\ & 20-33 \\ & £ 0-53 \\ & \sum 0 .-7 \end{aligned}$	10 amp Volts			
			100	TR110a/100		20.83
			400	TR100a/200		¢0.99
			400	TR100a/400		\&1-21
6 amp			10 a			
Volts			Volts			
100	TR16a/100		400			E1-21
200	TR16a/200	20.66		Diacs		
400	TR16a/400	20. 33	BR100	40-22	032	50-22

ORDERING. Do not forget to state order number and your name and address.
V.A.T. All prices include V.A.T. at the appropriate

P\&P35p unless otherwise shown.

Everyday News

SATELLITES AND SUPERTITLES

At a recent open day at the Independent Broadcasting Authority (IBA) Engineering Centre at Crawley Court, some of the many areas of activity were demonstrated. Of particular interest are the use of space Satellites for broadcasting and the work being carried out to help the deaf and hard of hearing to receive subtitles on normal television programmes.

Satellites

Studies are at present underway using a transportable trailer-mounted 2.5 metre dish antenna transmitting at 14 GHz to a geostationary Orbital Test Satellite (OTS) situated 22,300 miles above the Earth. Transmissions from the satellite are received on a 3.5 metre parabolic dish antenna part of a compact satellite receiving terminal located at Crawley Court.

This set-up provides temporary links from remote places (reached by truck and trailer) allowing "live" news and other programmes
to be received. This could eventually lead to directbroadcasting satellites providing programmes direct to the home.
The IBA's prime concern is to secure suitably frequency allocations for mobile satellite operations and provided suitable terminals can be made available, it would be possible to set up a temporary outside broadcast link via a satellite very quickly, with a minimum of forward planning.

Theoretically, with a smaller dish, a roving reporter in a news car could make use of the satellite.

Supertitles

Optional subtitles on television programmes, or "Supertitles" as the IBA have named them, for persons with impaired hearing are being researched and developed by the IBA and the ITCA in conjunction with a team led by Dr. Alan Newell at Southampton University.

The idea is to make use of the Oracle teletext system which incidentally has not been as enthusiastically received by the general public as all concernèd had expected. The reception of Supertitles requires the use of a t.v. capable of teletext reception.
The main concern has been the time and cost involved in the preparation of the subtitles requiring manhours in the order of 20 to 30 times the programme running time for perfect subtitling. This makes subtitling of "live" programmes impossible.
In an effort to overcome this, a system is being explored that uses a Palantype shorthand machine linked to an electronic processor. In
basic form the subtitles require some experience and training on the part of the viewer, phonetic spellings being one problem.
Subtitled test programmes are being shown to deaf and hard of hearing viewers for their reactions and comments. Later a number of experimental transmissions will be made through the Oracle service.

The UK-developed microprocessor chip used in the Chromatronics 24 -tune door chime is now available as a component for home constructors.

Officials of the EEC are keeping a watch on Japanese TV and other electronic goods companies seeking to set up manufacturing units in Spain.

They see the current Japanese interest in Spain as a back-door entry into the EEC by the Japanese in advance of Spain becoming an EEC member by the mid1980s.

Electronic White Sticks

An experimental guidance system for the blind is in use in a Swedish shopping centre. It uses an underground cable and a portable receiver.
An unsighted person can follow a prescribed route by listening to a signal which changes tone if deviation takes place. A further development suggested for the blind is a stick fitted with laser-beam equipment which will allow detection of obstacles up to six feet away. Again the user is warned by an audible signal.

ANALYSIS

Abstract

HOPPING MAD! Superficially, radio communications and radio broadcasting appear to be the same thing. Yet there is a major difference. Communication is person-to-person or organisation to organisation and is essentially private in charac ter. In contrast, broadcasting, as the name implies, is something for everybody to hear.

Technically, however, they are the same thing. Once a radio transmitter goes on the air everyone within range who has appropriate receiving equipment can listen equally well to the transmission whether it be a radio communications link (private) or a broadcast (public). The general rule is that if one inadvertently hears a transmission not intended for public reception then it should be ignored, and if not ignored then the message content should certainly not be passed on to a third party or in any way made public.
As well as amateur listeners there are professional listeners, mainly government and defence services. They constantly monitor diplomatic radio links of friendly as well as potentially enemy powers and also listen in to military networks. They want to know what's going on and it goes under the name of communications intelligence (COMINT), a branch of electronics warfare and an esoteric form of spying.

The traditional way of keeping such communications private is by enciphering the messages so that they are meaningless unless the recipient has the key to the cipher. The trouble is that modern code-breaking by electronic computer is now so powerful that nobody can really be sure that even the most complex cipher cannot be broken by the key being discovered in a matter of hours.

One solution is to make unauthorised reception more difficult for casual or, more important, intentional listeners. And one way of doing this is by frequency hopping. Imagine you are sitting down in front of your radio and the signal you are trying to listen to is hopping from one spot on the dial to another and then to a third and so on. It would be hard to keep up.

Imagine the frequency hops are at the rate of hundreds of hops per second, each new frequency at which the signal settles appearing to be completely random with no detectable sequence. This is now being achieved.
In fact radio system designers are now hopping mad! The frequency synthesizer, broad-band r.f. circuits which need no tuning, microprocessor control and large scale integration are the new tools which make frequency hopping possible in even military manpack sets.
The pattern of the hopping sequence is determined in a similar way to modern electronically generated ciphers so that if you haven't got the key there is no way of telling where the next hop will be. The technical problem of making the receiver tuning hop in exact synchronism with the transmitter has been overcome, at least in the laboratory, and the first UK-designed frequency hopping tactical field radio will be demonstrated later this year.

Apart from communications security, frequency hopping in the battlefield has another advantage. If several radio nets are all operating and all hopping about at the same time it would be immensely more difficult for an enemy direction finding station to detect their individual locations.
Neediess to say, while one bunch of radio boffins are slaving away perfecting frequency hopping radio, another bunch are spending sleepless nights solving the problem of perfecting the broadband receivers and hopping analysers which may be able to follow the hops and so allow COMINT to continue unchecked.

Brian G. Peck

The National Television Rental Association is one of the bodies leading the campaign to popularise the Prestel TV-based information service among the UK's 20 million TV viewers.
The rental companies, members of NTRA, expect rental charges of Prestelequipped receivers to be about £24 a month.

FLY-BY-TOUCH

The Royal Aircraft Establishment is evaluating the Digilux "touch mask" developed by Marconi Radar for use in the cockpits of combat aircraft. The "touch mask" enables a large number of controls and func tions to be centralised on a single panel on which the pilot can exercise command by merely placing a finger at the appropriate point instead of operating conventional switches and knobs.
The "touch mask" is already in use in air traffic control functions and this is the first time it has been tried in aircraft cockpits with the intention of easing the pilot's work load.

Underground Gomputer
 Military mainframe com

 puters are generally well fortified, even underground, to protect them from nuclear attack. Now the first civilian computer has been built in an underground bunker.Not from military threat by a foreign power but against internal terrorists and vandalism. It has happened in Italy which has experienced over two dozen attacks on computer installations in the last three years.

SOLAR WITCHORAFT

Mass production of solar cells on a continuous strip is now a fact in the United States. Dr Paul Maycock of the US Department of Energy states that four years ago this technology looked like witcheraft and today it is a viable solar alternative.
He believes that such techniques will so lower costs of direct conversion of sunlight to energy that solar energy will become economically viable in the USA by the mid1980s rather than earlier forecasts of the year 2000.

The new Eurovision Control Centre in Brussels is now in operation. Crow of Reading supplied the monitoring and control system which provides push-button routeing for 30 audio and video channels.
The equipment was built in the UK and shipped to Brussels in a single 12 -ton consignment.

Speed of light

The IBM Company is working on solid state devices with switching speeds more than 10 times faster than the fastest transistor logic circuits. The technique is called current injection logic and to obtain a switching speed as little as 7 picoseconds the circuits need to operate at extremely low temperatures.

Total switching time is 13 picoseconds because it takes 6 picoseconds for the signal to move from one circuit to the next. And if you wonder what a picosecond is-it is a trillionth of a second.

SHOWING THE WAY AHEAD

For the first time ever, the British telecommunication industry is joining forces to present a co-ordinated display of its systems, equipment and capability to the world.
Five leading firms are joining with the Post Office to show their products and services at Telecom 79-the world telecommunications exhibition and conference to be held in Geneva from September 20 to 26. The companies are: GEC Telecommunications, Plessey Telecommunications, Standard Telephones and Cables, Marconi Communication Systems and Pye TMC
The six co-ordinated exhibits will form, with a working model of System X, Britain's all-electronic telephone exchange system for the 80s and beyond. This will include the full range of services, systems and marketing skills available to meet the needs of overseas telecommunications administrations.

By Pat Hawker, gзva

Helping travellers

The BBC is due shortly to begin field trials of CARFAX, the timemultiplexed area-broadcasting system intended'to provide local traffic information over an interlocking network of transmitters sharing a single channel at the low-frequency end of the medium-wave band.
While technically the system now seems promising (although the original proposals ran into the problem of poor definition of areas and had to be modified) I still find it difficult to believe that motorists really need or want a 24 -hour information system.
However in the USA, with its vastly greater geographical area, the Federal Highway Administration has commissioned a research organisation to conduct a systems analysis and provide guidelines for a chain of "Highway Advisory Radio Stations" designed to provide a "travellers information service". These will be low-power, short-range stations operating on 530 or 1610 kHz (i.e. both ends of the present a.m. broadcast band). Stations may also be set up by city authorities.
In some cases, apart from announcements about traffic conditions, detours, emergencies and weather news, the broadcasts will draw attention to historic sites and local recreational areas. Road signs will tell the motorist when he is coming into range of one of these stations, and no special form of decoder or automatic switching will be needed.

Crackles and buzzes

Certainly in the London area, and I suspect elsewhere, the levels of manmade electrical interference (r.f.i.) continue to rise over most of the l.f. m.f, h.f, and v.h.f. bands. Thermostats and small motors and hundreds of other sources continue to clobber or mask weak signals, while the Russian "Woodpecker" radar, broadcast jammers and military pseudo-noise spread spectrum systems all go to show that Governments are among the worst offenders. We really do need a society for the preservation of the ionosphere and the elimination of pollution!
Among the latest noises are those coming from "home computers" (and even pocket calculators) and in the United States the Federal Communications Commission have begun a special enquiry into this new source of r.f.i. Part of the troubles are faulty
modulators used to connect into the TV sets (a problem also with videogames) but there is also interference from the pulses surging around in the logic circuitry. This problem of digital techniques seems to be often overlooked by those who believe that conventional analogue techniques are now becoming obsolete.
With the Post Office looking ahead to an all-digital telephone network (System Xetc) one wonders how much thought has been given to the question of radiation from telephone circuits (at least until we all use optical fibres to carry the signals in the form of light). Is this why the P.O. keep promoting that confounded bird "Buzby"?
And there is trouble coming in the kitchens. Sir Bernard Lovell has recently drawn attention to the way microwave ovens can play havoc with weak radio astronomy signals. He claims that poorly constructed ovens can interfere with his radiotelescopes at distances of several miles.

It has also been suggested that microwave ovens may present a problem when it comes to direct-broadcast satellites working on 12 GHz -a sort of TV/dinner confrontation?

Cow and pig power

The search for alternative, small-isbeautiful technology that would free us from dependence on electricity supply mains is being taken seriously by some radio amateurs. Quite a lot has been written about harnessing wind, water, sunshine and even muscle power (an energetic man with a pedal generator can deliver about 100 watts of electric power for a short time).

At least two radio amateurs, Tim Hutchinson, 5Z4D V in Kenya and LarsErik Johansson, SM4AQL in Sweden, have found a practical way of obtaining power not only for their amateur radio equipment but also for their domestic and farm appliances. Both use "output" from farm animals to obtain a regular supply of methane gas which can then be used to generate electricity.

Tim Hutchinson began using a cow and pig powered transmitter as long ago as 1955, using a modified 2 HP paraffin engine to charge a 32 -volt bank of large Nife cells. This engine has clocked up over 60,000 hours running on "biogas" (methane/carbon-dioxide mixture) produced from cow and pig manure, coffee skins, grass etc, roughly the equivalent of 10 gallons of fuel a day, and providing him also with a rich organic fertiliser for his coffee crop.

The Swedish amateur has an even more impressive installation, using a 22,000 gallon methane-digester which produces 70 cubic metres of methane gas from the "throughput" of 50 Friesian cows and 40 heifers and again ending up as non-smell fertiliser.

STEMENSON Electronic Components

REGULATORS

$78 \mathrm{LO5}$ 30p 7805 60p 79L05 70p 7912 80p 78 L 12 30p 7812 60p
78 L 15 30p 7815 60p
HARDWARE mINATURE TRANSFORMERS
240 Volt Primary
Secondary rated at 100 mA . Available with secondaries of: 6-0-6,9-0-9 and 12-0-12.

92p. each.

LOUDSPEAKERS

56 mm dia. 8 ohms 64 mm dia. 8 ohms 64 mm dia. 64 ohms 70 mm dia. 8 ohms 70 mm dia. 80 ohms

TERMINALS

Rated at 10A. Accepts 4 mm plug, black, blue, green, brown and red . . . 22p

SWITCHES

Subminiature toggle. Rated at 3A 250V SPDT 70p SPDT centre off 75p DPDT 80p DPDT centre off 95p Standard toggle SPST 34p DPDT 48p
Wavechange switches.
1P12W, 2P6W, 3P4W or 4P3W all 43p ea.
Miniature switches (non-locking)
Push to make 15p Push to break 20p Slide switches (DPDT)
Miniature 14p Standard 15p

CONTROL KNOBS

Ideal for use on mixers etc. Push on type

with black base and marked position line. Cap
available in red, blue, green, grey, yellow and black. 14p

ORDERS

 DESPATCHED BY RETURN POSTQuantity alscounts on any mix TTL, CMOS, 74 LS and Linear circuits: $100+10 \%, 1000+$ 15%. Prices VAT inclusive. Please add 30p for carriage. All prices valid to April 1980. Official orders welcome.

BARCLAYCARD
\& ACCESS WELCOME \qquad
 Mail orders to: STEVENSON (Dept EE)

CAPACITORS
 TANTALUM BEAD

$0.1,0.15,0.22,0.33,0.47,0.68$,
$182.2 \mathrm{LF} @ 35 \mathrm{~V}$
$4.7,6.8 .10 \mathrm{uF} @ 25 \mathrm{~V}$
22@16V.47@6V.100@3V
$0.001,0.01,0.022,0.033,0.047$
0.068, 0.1

STER
POLYESTER
Mullard C280 ser
Mullard C280 series
$0.01,0.015,0.022,0.033,0.047,0.068,0.1 .5 p$ $0.15,0.22$
$0.33,0.47$ 0.33, 0.47 0.68
1.0 uF

CERAMIC

Plate type 50 V . Available in E12 series from 22 pF to 1000 pF and $E 6$ series from 1500 pF to
RADIAL LEAD ELECTROLYTIC
$\begin{array}{lllllll}63 V & 0.47 & 1.0 & 22 & 4.7 & 10 & 5 p\end{array}$

100					
					13p
		220			20p
25 V	10	22	33	47	$5 p$
100					$8 p$
220					10 p
				470	$15 p$
1000					23p

CONNECTORS			
JACK PLUGS AND SOCKETS			
	screened	unscreened	socket
2.5 mm	9 p	13p	7 p
3.5 mm	9 p	14p	8 p
Standard	16p	30 p	15p
Stereo	23p	36p	18p
DIN PLUGS AND SOCKETS			
	plug	chassis	line
		socket	socket
2 pin	70	7 p	7 p
3 pin	11 p	9 p	14D
5pin 180	11p	10 p	14p
$5 \mathrm{pin} 240^{\circ}$	13p	10p	16p

1 mm PLUGS AND SOCKETS
Suitable for low voltage circuits, Red \& black. Plugs: $6 p$ each Sockets: 7p each.
4 mm PLUGS AND SOCKETS
Available in blue, black, green, brown, red, white and yellow. Plugs: 11p each Sockets: 12 p each PHONO PLUGS AND SOCKETS Insulated plug in red or black Screened plug
$9 p$
$13 p$ Single socket. 7p Double socket 10 p

VERO

$\left.\begin{array}{lllll} & 4 \mathrm{~A} & 8 \mathrm{~A} & 12 \mathrm{~A} \\ 100 \mathrm{~V} & 36 p & 45 \mathrm{p} & 62 \mathrm{p} \\ 200 \mathrm{~V} & 42 \mathrm{p} & 53 \mathrm{p} & 68 \mathrm{p} \\ 400 \mathrm{~V} & 51 \mathrm{p} & 66 \mathrm{p} & 86 \mathrm{p}\end{array}\right]$

CMOS		$\begin{aligned} & 4018 \\ & 4023 \end{aligned}$	$\begin{aligned} & 55 p \\ & 12 p \end{aligned}$	4066	$5 p$
		4024	40p	4068	p
4001	12p	4026	90p	4069	2 p
4002	12p	4027	30 p	407	12p
4007	12p	4028	48p	4081	13p
4011	12p	4029	50 p	4093	45p
4013	28p	4040	60 p	4510	$65 p$
4015	50p	4042	50 p	4511	65
4017	30p	4046	90 p	4518	65
4017	48p	4049	$25 p$	452	
FULL DETAILS IN CATALO					

SKTS

Low profile

8 pin $8 p-16$ pin 11 p 28 pin 22 p $\begin{array}{llll}8 \text { pin } & 8 p & 16 \text { pin } 11 p & 28 \text { pin } 22 p \\ 14 & \text { pin } 10 p & 24 \text { pin } 18 p & 40 \text { pin } 32 p\end{array}$ Soldercon pins: 100:50p. 1000:370p

OPTO

LED's 0.125 in . 0.2 in each $100+$ Red TIL209 TIL220 9p 8p Green THL211 TIL221 13p 12p Yellow TIL213 TIL223 13p 12p Clips 3p 3p DISPLAYS
DL704 0.3 in.CC 130p 120p DL707 0.3 in CA 130p 120p FND500 0.5 in CC 100p 80p

TOUCH-ON PILOT LIGHT
 \author{ By F. G. Rayer

}

THE SIMPLE project described here operates from a 4.5 V dry battery and so is completely safe. It is not necessary to locate and operate a switch in darkness, as the light is put on by light finger contact with a touch pad. The lamp remains on until extinguished by a switch fitted on the unit.

CIRCUIT DESCRIPTION

The circuit of the unit is shown in Fig. 1. The lamp receives current through the silicon controlled rectifier CSR1. As CSR1 is normally in a non-conducting state, the lamp is extinguished. Push switch S1 is normally closed.
The touch pad has no circuit from TR1 collector to base, so there is no base current for TR1. As a result, no collector current flows and the emitter cannot provide gate current for CSR1.
When a finger is placed on the touch pad, base current flows and the emitter of TR1 moves positive since TR1 is now turned on. As gate g of CSR1 is connected to the emitter, it is triggered into conduction. Current through CSR1 then lights the lamp. It now remains in the conducting state once triggered, even though gate current is no longer available when the finger is withdrawn from the touch pad.
When the light is no longer required, Sl is pressed. This breaks the anode supply to CSR1, so that it reverts to its non-conducting state.
A 3.5 V 0.3 A bulb is used, but a $6.3 \mathrm{~V} 0 \cdot 15 \mathrm{~A}$ bulb can be substituted if only a relatively weak light is needed, as for seeing the time. Capacitor, Cl was found
necessary to avoid occasional triggering of a sensitive thyristor when S1 closes. The value is not critical.

Most of the components are mounted on a piece of 0.15 inch matrix stripboard, 5 strips by 16 holes. This is shown in Fig. 2. Only one break is required and can be made with a sharp drill or cutter.
Pass the component wires through the holes shown, and solder them below. Snip off unwanted wires. External wires, of thin flex, are then soldered on as required.

CASE

It is clear that any insulated box large enough for the battery and board will be suitable. However, the case shown was made from plywood and looked quite presentable.
Two pieces $90 \times 50 \mathrm{~mm}$ and two pieces $100 \times 50 \mathrm{~mm}$ form the sides The top is $100 \times 90 \mathrm{~mm}$. Fit these together with panel pins and woodworking adhesive, and glasspaper the joints later.
The bottom is about 3 mm larger all round, and is fixed with four small screws. The whole box can then be painted or varnished.

TOUCH PAD

A piece of 0.15 inch stripboard, 5 strips by 10 holes is used as the
touch pad. Short wires are soldered to alternate strips and pass down through holes in the top as shown in Fig. 3. The stripboard is cemented to the box, foils upwards, and the leads are joined as shown, and taken to the circuit board.
The circuit board is fixed with two screws, with nuts or other spacers underneath it.
The "lens" is quite simply a white aerosol can top. Choose one which is fairly opaque so as to let the most amount of light through.

Three small cheese head screws are placed equally around a circle corresponding to the internal diameter of the aerosol top. The top can then be simply pushed into place, whereby the screws should hold the top fairly well. It is not advisable to glue the top into place, as changing of the bulb would be difficult at a later date.

Depending on its height the lamp holder can either be mounted on top of the case, or, as in the prototype on the underside, with just the bulb projecting through.

IN USE

A 4.5 V 1289 type flat battery fits in the case. Make tinplate clips for its contacts, or solder positive and negative leads directly to it. Polarity must be correct.

Light finger contact anywhere on the pad should bring the bulb on. Pressing S1 resets it to off. The pad should be clean, and connections to it properly insulated, or the bulb may come on too easily. Sensitivity can be reduced by placing a 2.2 megohm resistor connected between TR1 base and the negative line, but this was found to be unnecessary with the prototype.

Fig. 1. Complete circuit diagram for the Touch-on Pilot Light.

Fig. 2. Stripboard layout. Only one break is required. Insure that the thyristor and transistor are inserted correctly. If a metal case is used then it is necessary to isolate the mounting holes by means of breaks either side of the holes.

Resistor

R1 $3.9 \mathrm{k} \Omega \frac{1}{4} \mathrm{~W}$ carbon $\pm 10 \%$

Capacitor

C1 $0.047 \mu \mathrm{~F}$ polyester

Semiconductors

TR1 2N3706 silicon nPD
CSR1, CRS1/05 or similar 50 V
1 A thyristor

Miscellaneous

LP1 $3.5 \mathrm{~V} \mathrm{0.3A}$ (or 6.3 V $0 \cdot 15 \mathrm{~A}$, see text) MES bulb
S1 single pole push-tobreak switch
B1 4.5 V , type 1289 battery Stripboard 0.15 inch matrix, 5 strips $\times 16$ holes, and 5 strips $\times 10$ holes (one off each); MES type batten holder for LP1; white aerosol can cap; material for case or ready made type as required; connecting wire.

MATTERS

By Harry T. Kitchen

Metal Working

The art and science of "chassis bashing" disappeared with the advent of semiconductors. This is in many ways a great pity. "What," you may well ask "has this to do with modern electronics?". A great deal, I do assure you. Chassis bashing required a variety of skills, skills that can be usefully incorporated into "cabinet bashing" to coin a phrase.
Equipment, ancient or modern, requires cabinets, and commercially available cabinets are both expensive and rarely suit the project in hand; rather the project has to be tailored to suit the cabinet available, and thus there is considerable incentive to make your own cabinets.

What do we require, where do we start? Let us consider tools first, then techniques.

Marking Out

Cabinets vary in size and in shape, they have a number of holes, probably of varying size. The project will determine the size of the cabinet, and will require the holes to be in specific positions, sometimes to a high degree of accuracy.

We can, of course, use an ordinary rule for marking out our piece of virgin aluminium sheet, but a better method is to use a proper combination square. This enables a rule to be fixed at a precise position with respect to the frame, and thus repetitive accuracy, if required, is assured. It also enables marking-off at right angles to the edge of the aluminium to be effected automatically, and most also provide for a, fixed 45 degree angle.

An ordinary rule can slide about on the aluminium sheet; the combination square will not since the frame is in contact with the edge of the aluminium sheet. For more involved work, a fully adjustable combination square is available, but this is of course much more expensive.

If the combination square does not incorporate a scriber-most do-then you will need to buy one.

Cutting Tools

However you buy your aluminium sheets, sooner or later you will need to cut them, into smaller sizes say. Basically you can use a hacksaw or a pair of tin snips. Which do you buy?

Ideally both, and both come in various shapes and sizes. So let us look at hacksaws first.

The most common saw is the 12 inch; most of these will also accept 10 inch blades by adjusting the frame. Most will also allow the blade to be rotated through 90 degrees permitting long lengths of metal to be cut, but the width is limited by the distance between the frame and the blade.

Then we have the little 6 inch saw, sometimes called the "junior" saw. This is a handy little tool since it can be used where space precludes the use of the larger saw.

Hacksaw Blades

Hacksaw blades do not, in my experience, get the attention they deserve from amateurs. Essential, when selecting a blade, is to discover the number of teeth per inch and the metal from which it is made.

The number of teeth per inch, or per 2.54 cm for our metricated friends, must be chosen to suit the application; the thinner the metal, the more teeth you require per unit of length. A reasonable compromise is a blade having around 20 teeth per inch.

Blade material is selected by the manufacturer to suit different applications. Looking at the Eclipse catalogue, three types stand out for amateur use. These are the HiCut blades, claimed to be unbreakable under normal use, as are the Flexible blades. For use on soft materials, such as our aluminium sheets, are the Low Alloy blades.

Before leaving hacksaws, let us look at a most useful adjunct to these, the pad saw handle. This permits odd lengths of broken blades to be used, and is almost indispensable when cutting out straight-sided holes in sheets of metal once a hole has been started the length of the blade.

We can now look, briefly, at tin snips. Large or small, straight or curved? Four basic choices. Personally I prefer the straight snips, and whilst a large and a small snips may occasionally prove useful for coarse and fine work say, the large snips will prove adequate for most of the work.

Drilling

An electric drill on a stand, preferably, or on its own, is a useful aid to drilling holes. On the other hand a good
quality hand drill will prove to be capable of coping easily with much of our work.

The drill should be one having machine-cut gears as these mesh better and run much more smoothly than cheap cast gears. An idler gear, opposite to the driving gear, assists greatly in reducing the sort of excessive slop that makes precision drilling difficult.

Most such drills have a chuck that will accept drill bits with a maximum shank diameter of $\frac{1}{4}$ inch, and this is perfectly adequate as larger holes can be filed or cut out as necessary. If the drill is to be used for very fine drill bits, for p.c.b. drilling say, then it is essential that the chuck will close sufficiently; many do not.

Drill Bits

Drill bits come in several sizes, denoted in four ways: letter, number, fractional, metric. Letter drills cover from $A=0.234$ inch to $Z=0.413$ inch; Number drills cover from No: $1=0.228$ inch to No: $80=0.0135$ inch; Fractional drills cover from $\frac{1}{64}$ to $\frac{1}{2}$ inch in $\frac{1}{10}$ th inch increments; Metric drills cover from 0.5 mm to 25 mm .

The problem resolves into selecting any particular system-if you are starting from scratch. Undoubtedly metric will win the day, and this is perhaps, the way to go. Top quality drills, of any denomination, are expensive, but looked after they will give years of service.

If you are into p.c.b. work to any appreciable extent, then it will pay you to investigate one of the little electric drills and stands that are specifically marketed for this application. The motors are generally 12 volts d.c. working and can be run from a battery or from a power pack, and most of us have one of those lying around. If the power pack has a variable voltage output, this can be used to control drill speed, but of course the drill should not be operated above its rated voltage.

"Wouldn't you think they'd have a quicker method of smoothing the grass."

THREE

 ELECTRONICS BY NUMBERS

 ELECTRONICS BY NUMBERS

 LED BAR GRAPH UNIVERSAL

 LED BAR GRAPH UNIVERSAL INDICATOR

 INDICATOR} FROM CSC

Now using EXPERIMENTOR BREADBOARDS and following the instructions in "Electronics by numbers" ANYBODY can build electronic projects.
Look at the diagram and select R1, this is a resistor with a value between 120 to 270 ohm. Plug it into holes X20 and D20, now take LED 1 and plug it into holes E20 and F20. Do the same with the Diodes e.g. plug D7 into holes G7 and G10.

YOU WILL NEED

EXP-ANY EXPERIMENTOR BREAD-

BOARD

D1 to D15 - Silicon Diodes (such as 1N914) R1 to R6 - From 120-270 ohm resistors $1 / 2$ watt.
LED1 to LED6 - Light emitting diodes.
LED BAR GRAPHS are replacing analogue meters as voltage-level indicators in fany instances.
This circuit uses the forward voltage drop of diodes to determine how many LEDs light up. Any type of diode can be used but you must use all the same type. For full working details of this circuit fill in the coupon. If you have already built the Two-transistor Radio and the Fish'n'cliks projects you will find that you can reuse the components from these projects to büild other projects in the series.

FILL IN THE COUPON AND WE WILL SEND YOU FREE OF CHARGE FULL COPIES OF "ELECTRONICS BY NUMBERS" PROJECTS No 1 , No 2 and No 3.

PROTO-CLIP TEST CLIPS.

Brings IC leads up from crowded PC boards. Available plain or with cable with clips at one or both ends.
$P C-16$ pin. £2.75
$P C-16$ pin with cable. £6.00.
$P C-16$ with cable and 16 pin clips at both ends. $£ 10.25$.

CONTNENTAL FECAIIES COMPORAION
Europe, Africa, Mid-East: CSC UK LTD. Dept 4T2, Unit 1, Shire Hill Industrial Estate, Saffron Waidon, Essex CB11 3AQ. Telephone: SAFFRON WALDEN 21682. Telex: 817477.

EXPERIMENTOR BREADBOARDS.

No soldering modular breadboards, simply plug components in and out of letter number identified nickel-silver contact holes. Start smail and simply snap-lock boards together to build breadboard of any size.
All EXP Breadboards have two bus-bars as an integral part of the board, if you need more than 2 buses simply snap on 4 more bus-bars with the aid of an EXP.4B.

EXP.325. The ideal breadboard for 1 chip circuits.
Accepts 8,14,16 and up to 22 pin IC's. ONLY $£ 1.60$.

THE ULTIMATE IN BREADBOARDS FOR THE MINIMUM COST.
TWO EASILY ASSEMBLED KITS.

Es= oonrmatmat spicmucs connotarion

PB. 6 Kit, 630 contacts, four 5 -way binding posts accepts up to six 14-pin Dips.
PROTO-BOARD 6 KIT.
£9.20.

PB. 100 Kit complete with 760 contacts accepts up to ten 14 -pin Dips, with two binding posts and sturdy base. Large capacity with Kit economy.
PROTO-BOARD 100 KIT £11.80.
More bus-
series. bars. £2.30.

ALL EXP. 300 Breadboards mix and match with 600

HOW TO ORDER AND RECEIVE FREE COPY OF TWO-TRANSISTOR RADIO PROJECT, FISH'N'CLIKS AND LED BAR GRAPH.

CSC UK LTD. Dept 4T2ぇ Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AQ.
It's easy. Give us your name and full postal address, in block capitals. Enclose cheque, postal order or credit card number and expiry date. OR telephone 079921682 and give us your Access, American Express or Barclaycard number and vour order will be in the post that night.
EXPERIMENTOR.
CONTACT HOLES.
IC CAPACITY
14 PIN.DIP.
UNIT PRICE
BREADBOARDS.
14 PIN.DIP.
INCLUDING POSTAGE AND V.A.T. 15%

EXP. 325	130
EXP. 350	270
EXP. 300	550
EXP. 650	270
EXP.4B.	Four 40 Point Bus-Bars

1
3
6
use with 0.6
pitch Dip's
Bus-Bar Strip
$\begin{array}{ll}£ & 2.70 \\ £ & 4.48 \\ £ & 7.76 \\ £ 4.99 \\ £ 3.51 \\ \\ & \\ £ 4.03 \\ £ 8.05 \\ £ 12.94 \\ £ 11.73 \\ £ 14.72\end{array}$
Bus-Bars
TEST CLIPS
PC. 16.

PC. 16-18.

		$£ 8.05$
		$£ 8.05$
630	6	$£ 11.94$
760	10	$£ 14.72$

PC. 16-18 Dual Clip.
PROTO-BOARDS.
PB. 6.
760
10
NAME
ADDRESS
DEPT, 4 T2

ELECTRONIC BOOKS

Ref. No. TitleBoys Book of Crystal Sets
How to Make Aerials for TV (Band 1-2-3)
Coil Design and Construction Manual
AF-RF Reactance-Frequency Chart for Constructors
Handbook of Practical Electronic Musical Novelties
Practical Transistorised Novelties for Hi-Fi Enthusiasts
Handbook of Integrated Circuits (IC's) Equivalents and Substitutes
IC's and Transistor Gadgets Construction Handbook
First Book on Hi-Fi Loudspeaker Enclosures
Practical Transistor Circuits for Modern Test Equipment
Practical Electronic Science Projects
Practical Stereo and Quadrophony Handbook
The Complete Car Radio Manual
First Book of Diode Characteristics Equivalents and Substitutes 95p
Electronic Circuits for Model Railways (Reprinting) $\quad 1.00 \mathrm{p}$
Audio Enthusiasts Handbook
Shortwave Circuits and Gear for Experimenters and Radio Hams 85
s
Electronic Gadgets and Games
Solid State Power Supply Handbook
Build Your Own Electronic Experimenters Laboratory
Solid State Novelty Projects
Build Your Own Solid State Hi-Fi and Audio Accessories
28 Tested Transistor Projects
Solid State Short Wave Receivers for Beginners
50 Projects Using IC CA 3130
50 CMOS IC Projects
A Practical Introduction to Digital IC's
How to Build Advanced Short Wave Receivers
Beginners Guide to Building Electronic Projects
Essential Theory for the Electronics Hobbyist
Resistor Colour Code Disc Calculator
Price
25p 25p 75p 15p 50p 35p ${ }^{0.00 p}$ 60p
203 IC's and Transistor Gadgets Construction Handbook 75p 75p
206 Practical Transistor Circuits for Modern Test Equipment 207 Practical Electronic Science Projects
208 Practical Stereo and Quadrophony Handbook
210 The Complete Car Radio Manual
211 First Book of Diode Characteristics Equivalents and Substitutes 95p 213 Electronic Circuits for Model Railways (Reprinting) 1.00p
215 Shortwave Circuits and Gear for Experimenters and Radio Hams 85
216 Electronic Gadgets and Games
85p
217 Solid State Power Supply Handbook
Build Your Own Electronic Experimenters Laboratory 85p
220 Build Your Own Solid State Hi-Fi and Audio Accessories 28 Tested Transistor Projects
222 Solid State Short Wave Receivers for Beginners 50 Projects Using IC CA 3130
50 CMOS IC Projects
解
Beginners Guide to Building Electronic Projects
Essential Theory for the Electronics Hobbyist

First Book of Transistor Equivalents and Substitutes
Handbook of Radio, TV \& Industrial \& Transmitting Tube \& Valve Equivalents
${ }_{50}^{60 p}$
Engineers and Machinists Reference Tables (Reprinting) 50 p
BP7 Radio and Electronic Colour Codes and Data Chart (Reprinting) 25p
BPII Practical Transistor Novelty Circuits
BP14 Second Book of Transistor Equivalents and Substitutes
$1 \cdot 10 \mathrm{p}$
$\begin{array}{lll}\text { BP14 Second Book of Transistor Equivalents and Substitutes } & \text { I.10p } \\ \text { BP22 } & 79 \text { Electronic Novelty Circuits } & \text { 75p }\end{array}$
BP23 First Book of Practical Electronic Projects
BP24 52 Projects Using IC741 95p
How to Build Your Own Electronic and Quartz Controlled
Watches \& Clocks
Watches \& Clocks
BP26 Radio Antenna Handbook for Long Distance Reception and Transmission
85p
Symbols 60 p
BP29 Major Solid State Audio Hi-Fi Construction Projects
BP30 Two Transistor Electronic Projects
BP31 Practical Electrical Re-Wiring and Repairs
BP32 How to Build Your Own Metal and Treasure Locators
BP33 Electronic Calculator Users Handbook
BP34 Practical Repair and Renovation of Colour TVs (Reprinting)
BP35 Handbook of IC Audio Preamplifier and Power Amplifier
Construction (Reprinting)
BP36 50 Circuits Using Germanium Silicon and Zener Diodes
BP37 50 Projects Using Relays, SCR's and TRIACS
BP38 Fun and Games with your Electronic Calculator
BP39 50 (FET) Field Effect Transistor Projects
BP40 Digital IC Equivalents and Pin Connections
BP41 Linear IC Equivalents and Pin Connections
BP42 50 Simple L.E.D. Circuits
BP43 How to Make Walkie-Talkies
BP 44 IC555 Projects
BP45 Project in Opto-Electronics
BP46 Radio Circuits Using IC's
BP47 Mobile Discotheque Handbook
BP48 Electronic Projects for Beginners
BP49 Popular Electronic Projects
BP50 IC LM 3900 Projects
BPS
active Tape Recording 85 p
85 p
Long Distance Television Reception (TV-DX) For The Enthusiast
BP53 Practical Electronic Calculations and Formulae
Your Electronic Calculator and Your Money
Radio Stations Guide

Please add 20p p. \& p. Der book
Send SAE for our large range of Components

TECHNOMATIC LTD

17 BURNLEY ROAD, LONDON NWIO IED
(2 minutes from Delis Hill Tube station)

$7^{n} \times 9^{n} \times 1 \frac{3}{4}{ }^{n}$ ULTRA QUALITY HIGH POWER $5^{n} \times 5^{n} \times \mathbf{2}^{n}$ New D.C. Coupled Design AMPLIFIERS

Featuring-Electronic Short Open and Thermal Overload Protection, Brief Spec.-Input Sensitivity 0.775 V. R.M.S. (O.D.B.) at 25 K Ohms. Frequency Response $20 \mathrm{~Hz}-20 \mathrm{KHz}$. T.H.D. at full power 0.1%. Hum and Noise- 100 dB Relative full output.
T.D. 500 300W into 20 hms .220 W into 40 hms . 140 W into 245-00

T.D. 150 150W into 4 Ohms. 100 W into 80 hms $£ 26.25$ Power supply P.S. 150 ... $\mathbf{~} \mathbf{7 5}$
T.D. 15060 Version 60 W into 8 Ohms. 40 W into $150 \mathrm{hms} \$ 19-75$ Power supply P.S. 60 $\mathbf{2 1 9 . 7 5}$
$\mathbf{2 1 5 . 5 0}$ Note-P.S. 300 will drive 2 T.D. 150 amplifiers All output ratings are R.M.S. continuous sine wave output.

TO ORDER BY POST

Make cheques/P.O.s payable to TUAC LTD., or quote Access/Barclay Card No. (We accept holders phone orders 01-672 9080).
Post to-
TUAC LTD., 121 CHARLMONT ROAD, LONDON SW 17 gAB.
Send stamp for our free 36 page catalogue of LIGHTING \& AMPLIFIER MODULES, etc.

Wilmslow

 Audio
THE firm for speakers!

SEND 15P STAMP FOR THE WORLD'S BEST CATALOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS ETC. AND DISCOUNT PRICE LIST.

```
AUDAX - BAKER - BOWERS & WIL-
KINS CASTLE CELESTION -
CHARTWELL COLES O DALESFORD
DECCA EMI EAGLE ELAC
FANE GOODMANS O HELME I.M.F.
- ISOPHON - JR O JORDAN WATTS
- KEF LEAK LOWTHER MCKENZIE
- MONITOR AUDIO PEERLESS -
RADFORD RAM O RICHARD ALLAN
- SEAS - TANNOY - VIDEOTONE
WHARFEDALE
```


WILMSLOW AUDIO

SWAN WORKS, BANK SQUARE, WILMSLOW, CHESHIRE SK 1HF
Discount WiFi Etc. at 5 Swan Street and 10 Swan Street Speakers, Mail Order \& Export 0625529599 HI-FI 0625526213

ECONOMIGAL 2-WAY SICNALLING GIREU1T

THe SImple project described here came about due to a situation which arose at the author's home. It was suggested that it would be a good idea to have a small light over the front door number, but without the trouble of another pair of wires running around the house. At the same time, it was decided not to use batteries.

Although originally intended for this purpose, the idea of sending two sets of conditions down a single pair of wires could have other possibilities.
a circuit exists when S1 is pressed, but will only work on positive portions of the a.c. waveform. In effect, the diodes are being used in pairs, to steer both positive and negative voltages in the required directions.

Think of it another way. Assume that the a.c. waveform has gone positive, D1 conducts and passes this current via WD1 to the junction of D3 and D4. The current cannot go via D4, as this diode will be reverse biased. The only route for the current is via D3.

COMPONENTS

Semiconductors
D1-D4 IN4002 rectifiers (4 off)
Miscellaneous
W1 1 PD1 Part of the existing
WD1 S1 electric bell system
LP1, LP2 Type depends on the secondary voltage of T1 and size and shape required.

> Approx cost Guidance only $£ 1.25$ excluding bell circuit and case

CIRCUIT DESCRIPTION

The circuit for the device appears in Fig. 1. It was decided to use the only pair of wires available, and these were in fact for an eleotric bell. Many of the components in the circuit, will probably already exist. Components such as T1, WD1 and Sl will form the normal front door bell set-up.

Assume for the moment that diodes D1, D3 and the bell WD1 are not in circuit. A circuit therefore exists via LP1/LP2, D4 and D2, thus the bulb illuminates but only on negative portions of the a.c. produced by the transformer. Now with the other components,

The prototype unit used to prove the circuit.

A similar situation arises when the a.c. goes negative; D2 conducts, D3 is reverse biased and the current passes via D4 to light the bulbs.

Lamps LP1 and LP2 are the additional lamps fitted over the front door number.

CONSTRUCTION

It is left to the reader to decide how best to wire the circuit. The diodes at the transformer end can easily be fitted somewhere inside the transformer. Those at the bellpush could even be wired inside the switch itself. The only extra wires that are required, are from the bell-push to the lamps.

The photograph shows the author's prototype demonstration unit, which was used to prove the circuit. It is not therefore necessary to construct the unit exactly as per the photograph.

Once constructed the circuit will prove to be trouble-free in operation, and will have solved quite a common problem; that is, getting four down two!

THE UNIT to be described here can be used by a quiz-master to referee more fairly a contest between two individual players or two teams. Each team is provided with a button or buttons to press when an answer to a question has been found. By means of two light emitting diodes the unit displays whichever team has answered first.

A timer is incorporated which allows a preset time in which the answer must be offered. If no replies have been given during this time, the unit will automatically prevent any further pressing of the buttons from illuminating the l.e.d.s.

The unit is very easy to build and should be ideal for the beginner.

CIRCUIT DESCRIPTION

The complete circuit for the Quiz Referee is shown in Fig. 1 and can be conveniently split into two sections: a timer and flip-flop.

Timer

The timer part of the circuit is formed by gates Gla and Glb of ICI. Together they form a monostable multivibrator, the timing interval being dependent on the values of VR1 and C1. With the values given, a maximum time of about 40 seconds is obtained.

To set the multivibrator in operation a momentary depression of S1 applies the positive supply to one input of Gla. This is quite sufficient to start the circuit. When
it is desired to stop the multivibrator a short depression of S2 inhibits the charging action of Cl thus stopping the multivibrator.
Gate Glc is used merely to invert the signal applied to IC2. During the timing period, the light emitting diode D1 is extinguished. At the end of the time it illuminates, thus alerting the user that "time is up".

Flip-Flop

The flip-flop part of the circuit is IC2 and associated components. There is in fact two separate flipflops in this i.c., one for each player or team. Consider just one, Flip Flop 1.

During the timing period, the input to the sET terminal, pin 6

Fig. 1. Complete circuit diagram for the Quiz Referee.

is normally low. When S3 is pressed, a pulse is applied to the clock terminal, pin 3 . This causes the flip-flop to change state, producing a low output at pin 1 and a high output at pin 2. The low at pin 1 illuminates D2 thus indicating that player A has answered the question first. At the same time the high condition at pin 2 is applied to pin 9 of Flip Flop 2 preventing it from changing state if player B presses his button.

Precisely the same happens if player B presses his button first, this time however it is Flip Flop 2 which changes state and Flip Flop 1 which is inhibited. The circuit is quite precise at recognising which button is pressed first, a time difference of less than a microsecond is average.

At the end of the timing period the inputs to pins 6 and 8 of IC2 go high turning off which ever l.e.d. is on, and also prevents either flip-flop from changing state with further depressions of S3 or S4. If a further question is to be asked before the end of the timing period, the stop switch is pressed thus ending the timing and reseting the flip-flops.

Although S3 is shown as a single switch it may be paralleled with as many as required depending on the number in each team. The same applies to S4.

CIRCUIT OPTIONS

If the timing section of the unit is not required then all the components to the left and including $\mathrm{D} 1 / \mathrm{R} 2$ may be omitted. If this is done the flip-flop part of the circuit

Fig. 2. Modification required to the circuit of Fig. 1 if the timing period option is not required.

HOW IT WORKS

The unit consists of two flip flops, one for each player or teams. A flip flop is an electronic circuit which has two stable states; a short clock pulse applied to the input will cause the device to change state. In this circuit, if player A presses his button the flip flop will change state and illuminate the light. At the same time a second output from the flip flop will inhibit player B^{\prime} s flip flop.

Thus the circuit detects who was first in pressing his own button. At no time however will both lights be on, due to this "cross coupling" between flip flops. A further refinement to the circuit is a fimer which only allows the flip flop to operate during a certain preset time, after which they are inhibited.
will require a reset switch. The circuit of Fig. 2 shows how this is done. The remainder of the circuit remains the same as in Fig. 1.

In the prototype, VR1 was a small preset mounted on the circuit board. This could easily be replaced by a standard potentiometer mounted on the case. If it is fitted with a pointer knob, a scale can be drawn and be directly calibrated in seconds.

COMPONENTS

Although the two l.e.d.s D2 and D3 are both coloured red, it may be an advantage if different colours were used. The push switches as used on the prototype were miniature types, although larger types such as bell pushes will be more suitable. The unit is powered by a 9 V battery, although the circuit will work with any voltage in the range 3 to 15 V . If different voltages are used then it may be necessary to adjust the values of R3 and R6 to compensate for the varying brightness in the l.e.d.s.

Both i.c.s are of the cmos type and as such must be handled with care. The use of sockets is recommended although they were not used on the prototype.

Quiz referee

Fig. 3. Complete wiring details for the unit, also showing the stripboard and breaks to be made. There is nothing critical about the layout and can be varied if required.

The prototype Quiz Referee with lid removed showing the mounting of the component board.

Most of the components are mounted on a piece of 0.1 inch matrix stripboard having 16 strips by 30 holes, the layout of which is shown in Fig. 3. This drawing also shows the remainder of the wiring to the switches and l.e.d.s.

CASE

The case used in the prototype was a small Verobox type 652516G, having overall dimensions of $100 \times 50 \times 40 \mathrm{~mm}$, although any similar size can be used. However it must not be significantly smaller as the components might not fit in.
The l.e.d.s can be simply a tight push fit into their respective holes or standard mounting clips can be used. The battery is fitted to the lid using double sided sticky tape. A small plastic connecting block is screwed to one end of the case facilitating connection to the push switches.

Lettering can be applied using Letraset or similar and finally given a thin coat of protective clear varnish. Ordinary twin bell wire can be used to connect the push switches to the unit. Be sure to identify which is player A and

COMPONENTS

Resistors
Resistors
R1 $10 \mathrm{k} \Omega$
R2 330Ω
R3 330Ω
R4 $10 \mathrm{k} \Omega$
R5 $10 \mathrm{k} \Omega$
R6 330Ω
All $\frac{1}{4} \mathrm{~W}$ carbon $\pm 10 \%$

Potentiometers

VR1 $500 \mathrm{k} \Omega$ vertical preset

Capacitor

C1 $100 \mu \mathrm{~F} 10 \mathrm{~V}$ tantalum

Semiconductors

IC1 CD4001 quad 2-input NAND gate
IC2 CD4013 dual " D " flip flop D1, 2, 3 TIL209 red light emitting diode (3 off)

Miscellaneous

S1-4 miniature push-to-make release-to-break (40 off)
S5 miniature single pole toggle
B1 9V PP3 battery
Stripboard 0.1 inch matrix, 16 strips by 30 holes; Verobox type $652516 \mathrm{G}, 100 \times 50 \times$ 40 mm or similar; PP3 battery connector; 14 pin i.c. sockets (2 off); 4-way plastic connecting block; 8 metres thin bell wire; connecting wire.
which is player B! Depending on the situation in which it is to be used a length of four metres for each set of switches seems reasonable.

IN USE

Before finally screwing the lid into place, VR1 will have to be adjusted for the time period required (assuming that a preset is used). Do this by switching on the unit whereupon D1 will light. Press S1 and D1 will go out for the duration of the timing period. Adjust VR1 by trial and error until you obtain the required time interval.

If a panel mounting potentiometer is used then the above process is carried out, but after each time period, a mark is made on a scale around VR1.

After the unit has been calibrated it is ready for use. Switch on by means of S5 and press the start button. The time l.e.d. will go out indicating that the timing period is running. If now either S3 or $\$ 4$ is pressed, the appropriate l.e.d. will light, and will go out at the end of the timing period, whereupon the time l.e.d. will come on once more.

If another question is to be asked before the end of the time, the sTOP switch is pressed terminating that period, and the start switch pressed to start a new timing period.

If an answer is given after the end of time, no l.e.d.s will come on, indicating to the players that they have failed. The unit is then reset and a new timing period started.

If the timing part of the circuit is not used then the unit becomes a simple precedence detector with a reset switch, S 6 .

Subscription Rates

Money Orders, etc. should be made payable to IPC Magazines Ltd.
Subscription Applications must be accompanied by payment.
IPC Magazines Ltd. Regd. Office: King's Reach Tower, Stamford Street. London SE1 9LS. Regd. No. 53626
England.
A subsidiary of
Reed International Ltd.

MAGAZINE SUBSCRIPTIONS MAKEIDEAL GIFTS

You can order magazines covering a wide range of interests for friends or relatives at Home or Abroad.

Tick this box and we will send you details of all IPC Magazines available by Postal Subscription.

Eluerdaionncs

SUBSCRIPTION APPLICATION FORM

Please send EVERYDAY ELECTRONICS
by post for 1 year to the address below:

Name.

Please print
Address.

[^1]
Newnes

* More books in our series for the electronics enthusiast.

मे There are now eight titles available at $£ 2.25$ each (US $\$ 5.25$)

Electronic Projects in the Workshop R.A. Penfold
Electronic Projects in Music A./. Flind
Electronic Projects in Audio R.A. Penfold
Electronic Projects in Hobbies F.G. Rayer
\title{ Electronic Projects in the Car M. George

Electronic Game Projects F.G. Rayer

Electronic Projects in the Home Owen Bishop

Projects in Radio and Electronics Ian R. Sinclair }

Each book contains a collection of constructional projects, giving details of how the circuit works, how it may be assembled and how setting-up and trouble-shooting problems may be solved. The skilful use of colour in the text helps to clarify circuit operation, and circuit board layouts are suggested. Shopping lists of components are included.

Write for a free colour brochure about all our hobby books to

Heathkit electronic test equipment course.

Section 1. Analogue and digital meters. Section 2. Oscilloscopes.
Section 3. Frequency generation and measurement.
Section 4. Special measuring instruments.
Heathkit car electrical
systems course.
Section 1. Electrical principles of the car. Section 2. Starting system fundamentals. Section 3. Car charging systems.
Section 4. Accessories and body electrical
Two new self-instruction courses from Heathkit. Based on step-by-step programmed instructions, they let you learn at your own pace in your own home.

Each course is complete and contains audio/ visual material, text, and parts for 'hands on' experiments with the optional Heathkit experimenter trainer. So all you need is a cassette player and the will to learn.

Full details of Heathkit courses are available in the Heathkit catalogue, together with hundreds of kits you can build for yourself - computers, oscilloscopes, transceivers etc. ... Send for your copy now.

There are Heathkit Electronics Centres at 233 Tottenham Court Road. London (01-636 7349) and at Bristol Road, Gloucester (0452 29451). Registered in England, No. 606177.

MIGROPROGESSOR

THis month we complete our look at Instruction Types, and then discuss Addressing Modes.

TRANSFER OF CONTROL GROUP

Most programs are written in the form of "loops". This means that instead of starting at the beginning, working through to the end, and then "dropping-off", at some point control is transferred back to near the start of the program so that the program operations are repeated. Programs also contain many "minor" loops which make more efficient use of program memory than would be possible with in-line code.

Have a look at Fig. 6.1. This is a very simple program to demonstrate the action of loops. It does not do anything useful as it stands, but it is typical of the structure of other programs which are useful.

Fig. 6.1. Example of conditional and unconditional jump instructions.

The program is shown in "flowchart" form. This is a useful way to sketch out programs before finally coding them for entry into a micro' system, and is a big help in visualising program operation. This program does nothing more complicated than count down from 9 to 0 in a register I have called register B.

After reset, register B is loaded with the value 9 (decimal) which is 9 (hexadecimal) and 00001001 (binary). After this we enter the main loop and start by decrementing (counting down by one) register B. After the first decrement, register B will contain the value 8 , and so on.

Conditioned-jump. Now we come to the important bit, the transfer of control operation, and in this case we have what is known as a "conditional-jump" instruction. When this instruction is carried out, program flow can continue from one of two points depending on the contents of register \mathbf{B}.

If register B contains zero then the net instruction in sequence is carried out, but if it contains a number other than zero, then control is transferred back to the location known as LOOP.

In this way, microprocessors can be programmed to take decisions on the basis of data supplied to them, and this is a very important ability indeed. An SC/MP instruction which could be used in this program is:
JNZ (Jump if not zero). Add to the contents of the program counter the data following this instruction if the accumulator does not contain zero. (The data can be negative.)
Unconditioned-jump. On nine occasions out of 10 , our program will loop. On the tenth pass, the contents of register B will reach zero and when this happens we reload register B with 9 (decimal).

Since the program must continue to run, we now need to get back to the start of the loop once more, and so we use an instruction which performs an "unconditional-jump" or in other words "jump-always." An SC/MP instruction to do this is:
JMP Add to the contents of the program counter the data following this instruction. (The data can be negative.)
Notice that the program of Fig. 6.1 will not stop until the "Reset" button is pressed or power is removed. Many control programs operate in this way.

Jump to subroutine. Another very important transfer of control operation which is unfortunately not available on the SC/MP chip is the "jump to subroutine". This is very useful where we have a small program segment, let's say a multiplication routine, which has to be used in several places in our main program. Rather than repeat it each time we need it, the multiplication routine can be entered once and accessed from anywhere in the main program using a "jump to subroutine" instruction.

If you have a look back at the action of the two jumps from the SC/MP instruction set you will see that in each case the contents of the program counter are modified by new data. The old contents are destroyed by this replacement, but not when a "jump to subroutine" is carried out. In this case the previous contents are saved in a special register or RAM area called "the stack", so that they can be retrieved later when required.

Return from subroutine. To complete the picture we need another instruction often called a "return from subroutine", which has the effect of restoring the original program counter contents after the "multiply" has been performed.

The return from subroutine does not cause a jump to a specific address, but to the address which was saved on the stack, whatever it was. This means that our "multiply" can be called from several points in a program, and control will always be passed back to the area from which the call was made.
Nesting. Taking this a stage further, most microprocessors allow subroutines themselves to call other subroutines and so on. This requires a multiple entry "stack" so that control can be passed back from one subroutine to the next until a proper return to the main program is made. This is known as subroutine "nesting", a very powerful and efficient technique.

MISCELLANEOUS GROUP

After removing the instructions which fall neatly into the other groups, there will always be some left over. Since those remaining form a rather rag-tag bunch, it's easiest to call them the "miscellaneous group"! Examples from SC/MP include:
ccl Clear the carry flip-flop to zero.
nop Don't do anything at all.
dly Don't proceed until a given delay count has been decremented to zero.

ADDRESSING MODES

Many instructions need access to data in memory. This is not only
true of data transfer instructions such as LD, but also of others such as $O R$ and ADD. To provide flexibility, many microprocessors allow a variety of memory addressing formats to be used, in some cases ten or more memory reference modes are available. It is possible to write successful programs using only a few of the available modes, and some of the more exotic combinations certainly won't appear to have obvious applications until you are adept at the programming art!
To make the whole business a bit less complicated I have decided to look only at the more basic modes. Such goodies as "indirect-indexed-addressing" (used by the 6502 microprocessor), can wait until later!

Immediate Addressing. This is easy, the data is stored immediately after the instruction itself. This mode is useful for loading constants.

Direct Addressing. Still easy, the data can be found at the address given after the instruction. For an eight-bit microprocessor direct addressing will usually mean a three-byte instruction, one opcode byte and two address bytes. Any address in memory can be specified, and this mode is ideal for access to variables. This mode is not available with the SC/MP chip.

Indirect Addressing. A bit tricky, the address following the instruction points to a location where the address of the data can be found.

The location holding the data address can be in ram or it can be an on-chip register. This mode is useful for stepping through tables of data in memory, and for "looking up" an entry in a table.

One particular variation on the indirect-addressing theme is that of indexing. In this case special registers called Index Registers are used to hold all or part of the data address, and microprocessors with these facilities are capable of very fast data transfers from one area of memory to another. The SC/MP pointer registers can be used for indexing if required.
Relative Addressing. This mode of addressing is used with transfer of control instructions only. The destination of a jump is specified as a displacement from the current program counter value. This is like the jumps we looked at earlier because what happens is that a displacement value (usually one byte) is added or subtracted from the current program counter-value. The resultant jump is therefore "forwards n bytes" or "backwards n bytes", rather than to an absolute address.

THAT'S IT

Well, that's all there is to it. All you have to do now is to put the theory into practice by writing some programs of your own. If you really do feel inclined to try it, there are a few practical hints on how to set about the job in last month's Microprofile feature.

To be continued

JICN PIUG \& FATIIY... by douc baker

HIGH PERFORMANCE MODULAR UNITS BACKED BY NO-QUIBBLE 5 YEAR GUARANTEE

all the purpose-built power amplifier modules by IL.P.. the HY50 is understandably the most popular with those wanting to build or up-grade a hil-fi system, run a small high quallity P.A. system, amplify a musical instrument (say for practise or small range use) or use it for lab work, Its useful 30 watts RMS outputinto 8 ohms, its rugged construction and freedom from heatsink worries make HYSO the Ideal all-purpose quality power amp-and It is unconditionally guaranteed for five years. Ten of thousands are in use throughout the world
and a spec that means what it says!

Encapsulated power amp with Integral full-rated heatsink. Input500 mV .
Output 30 watts RMS/8 Ω.
Load Impedance-4 to 16Ω.
Distortion- 0.04% from 100 mW to 25 watts at $1 \mathrm{KHz} / a \Omega$. Supply Voltage $\pm 25 \mathrm{~V}$. Size $105 \times 50 \times 25 \mathrm{~mm}$. Inc. V.A.T. and postage in U.K.

Nothing has been overlooked in the design and manufacture of I.L.P. Modular Units. Heavy duty heatsinks, encapsulated circultry, no-compromise production standards and true professional finish ensures world leadership for I.L.P. Now we have upgraded output ratings and down-graded prices to bring I.L.P. within easler reach of all who want the best.

New production techniques enable us to reduce prices by an average of 20%. making 1.L.P. a better buy than ever.
USE OUR FREE POST SERVICE for sending your orders, requests for Information sheets etc. Simply address envelope. No stamps required.

Everyday Electronics, August 1979

MUCH has been written in this magazine and its contemporaries concerning the production of printed circuit boards. It occurs to me that the reason we so often read how easy it is to make our own "one-off" p.c.b.s, is that so many beginners are hesitant to try for themselves. Such was certainly true in my case: over a year elapsed before 1 ventured to make my first p.c.b. in spite of a wellknown lack of reticence!
Those among us who have delayed attempting p.c.b.-making by reason of limitations imposed by a strict budget may find encouragement from various cost-cutting ruses that have helped me.

The basic "ingredients" you will need are: a method of laying an etch-resistant image on to the copper-clad board; etching solution a tray or dish to hold the board and solution; a suitable piece of copper-clad board and something to clean it with; and (for finally preparing the board when etching is complete) a method of drilling 1 mm holes in the p.c.b.

Maybe I am biased, having been using Letraset-type of products for graphic design since the days when it involved a gauze frame and water, but I have found that the rub-down transfer method of producing an etch-resistant image by far the best.

A set of suitable transfers can be purchased for about £2, or an extra economy would be to purchase a sheet of various pads, corners, etc., plus a sheet of straight lines.

Graphic designers do not usually use a ball-pen to transfer the image, as a nylon or polythene rubbing-tool is available for a few pence from any decent art shop that stocks rub-down lettering. If you cannot locate such a device (and I do not know of any mail-order electronics supplier that offers it), then use a ball-pen as the only alternative. But to avoid getting the sheet in an awful mess, use an old pen that has run-out of ink.

You will of course have cleaned the copper side of the board thoroughly before laying the imagea sheet of fine abrasive paper, such as "flour-paper" is an easy way.

I have tried producing the circuit image completely freehand, with an etch-resistant pen, and also using rub-down pads and the pen for lines only. Neither to my mind was as satisfactory as the exclusive use of rub-down transfers-the pen lines may be a lot quicker to apply, but are never so clear-cut and well-defined, and I have found that the pen lines are inclined to spread just enough to make checking the finished boards of "tight" circuits a drudge.

Large areas of board that require to remain copper-clad can be covered with plastic tape.

If you are a photographer who makes his own photographic prints, you will own dishes suitable for holding the etching solution, if not, the cost of developing trays from a photographic shop will hasten the selection of an alternative.

A plastic carton from the freezer is ideal-failing which, treat the family to two litres of ice-cream, at a cost of about 21 . If you are impatient to use the plastic carton and the family will not oblige by consuming vast amounts of the stuff immediately, I suppose you could transfer it to other suitable receptacles, like jam jars.

I have never attempted to mix etching fluid from anhydrous ferric chloride crystals and water, indeed, my local electronics shop does not stock it. The etching fluid available ready-mixed, in plastic bottles of about a half-pint has sufficed to date, and 1 hear from
some other enthusiasts that mixing the crystals and water is a messy and time-consuming operation.

I have calculated that I etched about 200 square inches of board with one bottle of etching fluid, at which rate it is quite viable to forgo one's own mixing.

If you feel the need for tongs of some sort, to remove the p.c.b. from the fluid, do not of course use metal ones. Plastic tongs can be made by cutting a plastic bottle, of the type often used to hold indigestion preparations. See diagram.

The satisfaction derived from producing your own p.c.b.s, rather than buying a board from a manufacturer (in the case of a published project) is not the only reason for attempting your own etching. The board layout can easily be adapted from the drawings published, to use alternative components, or to incorporate additional circuits.

If your design doesn't work you have got a problem, but checking your diagram against the p.c.b. can be an absorbing past-time-it is when things go wrong that my young children learn new words with which to impress the vicar and his wife.

I have not yet found a make of rub-down lettering that is not etch-resistant, so for the cost of a suitable sheet of small lettering, you can also etch your initials, or a name or some other circuit recognition, to make the finished board more professional-looking.

It only remains to drill the p.c.b. before inserting the components, and if you have to date used a hand-drill, or the normal do-ityourselfer's electric drill, next months RA could be written especially for you.

The Extra Ordinar Experiments of

 Eversure
by Anthony John Bassett

Bob and the Prof. have been discussing the various aspects of energy carrying beams. Just at that moment a warning bleep sounded inside the helmet of the Prof's. spacesuit, and a message appeared on a nearby computer viewscreen.
"Time to renew our life-support system, Bob, and as the display indicates that we are expecting visitors, perhaps we'd better take off the space suits and let the robots recharge them."

VISITORS

So it happened that the visitors, Tom and Maurice, were just in time to see Bob and the Prof. stepping out of the airlock of the vacuum chamber still dressed in their amazing space suits. The Prof's experimental robots helped them out of the suits, as Bob's friends Tom and Maurice watched astounded, the robots whisked the suits away for recharging.
"Prof.," whispered Tom, gradually recovering from his surprise, "were those real robots and real spacesuits, or were we dreaming?"
"They were real, Tom," the Prof. assured him, "Bob and I have just been doing some experiments with energy beams in a simulated space environment."

SPACE AGE ROCK

"That's great, Prof.," Maurice broke in, "Tom and I are forming a Space Age Rock Band and the members of the band want to dress up as robots and spacemen and to have all sorts of electronic equipment, amplifiers, sound effects, synthesisers, electronic drums and percussion."
"Yes!" said Tom, "a real show-band offering comprehensive entertainment with as many weird and unusual musical instruments and effects as possible, unusual lightshows, strange sounds, anything we can manage to get on stage, almost to give an image of modern and futuristic technology along with the basic instruments and equipment to produce good music!"
"Trouble is," said Maurice, "we've got much more enthusiasm than 'know how' and we're starting almost from scratch. Also as we'll be playing mainly for charities, with only a few paid bookings, we can't afford anything expensive. Some of our friends in more well-to-do bands have let us have their old equipment, but most of it is in need of repairs.
"We're hoping that your knowledge of real robots, spacesuits and gadgets can be brought to a more
down-to-earth use and that you will be able to help us with some technical advice on equipment for the Band!"
"I see," said the Prof.; "it seems that you would like me to advise and help you with almost all the technical aspects of the equipment of a band, right from the beginning! Rather interesting, as your band seems to have some special requirements."

WAH WAH

"I'm keen to help with this too," Bob remarked, "It will be good practice for me and I'd like to learn a lot more about Band equipment and electronics! By putting in some work on repairs, and construction of new equipment, I'll gain experience, and by saving the band some money, this will help the charities they work for!"
Maurice dug into his huge dufflebag and brought out a variety of small items of band equipment, a fuzz box, wah wah, reverberation unit, microphones, and amplifier.
"Your duffle bag seems bottomless!" the Prof. was amazed at the quantity and variety of bits and pieces which Maurice was in the habit of carrying around.
"These are some of the things we got as the result of a charity
appeal for the band. The reverberation unit doesn't work," Maurice held up the offending item, which rattled ominously.
"The wah wah works but it isn't very effective. The amplifier gets hot and stops working after a few minutes use."
"How does a wah wah work, Prof?" Bob asked.
"It is a selective audio filter which boosts a narrow band of audio frequencies at the expense of others. The boosted band of frequencies can be moved gradually from treble boost through midrange boost to bass boost. This is usually done by moving a hinged foot control, but some wah wah units work automatically, sweeping up and down at a rate which can be determined by a speed control.
"Some others are triggered by the attack as each sting of a guitar is plucked, and automatically produce 'wah wah' effects in time with the player."

The Prof. picked up the wah wah which Maurice had brought. It was of the pedal variety and when he plugged it into the audio amplifier and fed white noise into the input of the wah wah, he noticed that when the pedal was moved, the effect on the sound from the speakers was not very great.

IMPROVED CIRCUIT

The Prof. opened up the wah wah unit and removed a 470 ohm resistor, which he replaced with a 470 ohm miniature preset resistor, as he adjusted this, the quality of the sound from the loudspeakers became altered dramatically, the effectiveness of the wah wah circuit improved greatly until a point was reached where a loud howl was heard from the speakers. The Prof. then adjusted the preset to a slightly higher resistance so that the oscillation howl was not produced at any position of the foot pedal.

However, as he moved the foot pedal, the effect on the sound was now very much greater than before.
"You've made the old wah wah sound better than a new one, Prof. with only a few minutes' work!" They were all delighted and very surprised.

The Prof. sketched out a circuit diagram, Fig. 1, and began to explain to Bob.

Fig. 1. The Prof's improved wah wah circuit.
"Here is a circuit which is used in most of the commercially produced wah wah units, and the alteration which I have just done can be used to improve almost any wah wah unit which has this type of circuit. The 470 ohm resistor in the emitter circuit of TR1 is used to define the sharpness of the filtering effect of the wah wah, so it has a critical effect on the circuit. By replacing it with a preset, the effectiveness of the wah wah can usually be greatly improved with no detrimental effects.
"However, if the resistance is decreased below a certain value, which is different for each individual circuit, oscillation begins at the filter frequency, which can be varied by means of the foot-controlled 100 kilohm potentiometer."

SPOOKY SOUNDS

The Prof. demonstrated. As he reduced the resistance of the 470 ohm preset, the circuit once more broke into a strange and eerie howling sound whose pitch varied in a striking manner as he manipulated the foot control.
"That's really spooky!" cried out Tom, "we could use that sound on stage, it would sound great through an echo chamber!"
"I think I'll fit an extra footswitch to this wah wah," remarked Maurice, "then by pressing it we could 'short out' the 470 ohm preset and cause the wah wah to oscillate whenever we want. By playing an instrument through it whilst it is oscillating, we should hear some very strange and interesting sound-effects!"

To be continued

SHAVER INVERTER (April 1979)
Transformer T1 should be a $0-20 \mathrm{~V}$, $0-20 \mathrm{~V}$ type, not as stated in the components list. The circuit is correct.
POCKET RADIO (Jane 1979)
Diodes D1 and D2, both in the circuit diagram and layout are shown incorrectly orientated. The cathode ends should be connected to the negative line.
LOW COST METAL LOCATOR
(June 1979)
Resistor R5 has been omitted from the components list and should be 390 ohms.

Crossword No. I8-Solution

IT'S FREE

Our Monthly Advance Advertising Bargains List gives details out before our advertisement can appear-It's an interesting oust and it's free-lust send S.A.E. Below are a few of the Bargains still available from previous lines.

EX GPO TELEPHONES

Normal black dosk instrument with dial and internal bell, latest tye E8.-85 each, preceeding type $£ 4$-05 each.
TELEPHONE SWITCHES

TELEPHONE SWITCHES

Deak mounting. These are the older, winking eye type almost tarting at $£ 15+\Sigma 1.20$ plus carriage at cost.
BLOWER BARGAIN
mith's industries-mains operated blowerfan-a real air mover that takes uo very little space as it's balanced four pole motor is let into the air turbulator-overall size approx $7^{\prime \prime}$ air circulating etc etc only Et.
THREE MORE TRANSFORMERS are added to our list this month. TM54 This is an upright mounting-varnish impregnated, it has a main secondary of 200 v 500 mA and another of
6.3 v 1amp price $\mathrm{E4}-50+340$ post $\mathrm{E1}$. 6.3v 1amp price $54.50+34$ post 51 . two secondary windings both 12 Vamp so it can be used as
12v 10amp -24 v 5 mp or $12-0-12 @ 5 \mathrm{mp}$, price $£ 4: 95+40 \mathrm{p}$ post E1.25.
TM56 One secondary of 4 v 2 zamp - thls is quite a small transformer and could also be used as a $60-1$ matching TANGENTIAL BLOWER
Metal bladed Smiths made super sllent unlt with dozens of applications, cooker hoods-fume extractor-blower heater-

A 10 watt $£ 2 \cdot 10,38$ w
We have at least 150,000 small battery operated motors in stock, mostly Japanese made and good quality, all will work
on 3 volts upwards, some will work from singie $1 \frac{1}{2}$ volts cell. on 3 volts upwards, some whil work from single el voits cell
some are very smalt and the smallest requiros no on/of some are very small and the smallest requiros no
switch asit won'tstart untit it is spun and when it stops it will
get into a no current position if possible. The largest is get into a no current position if possible. The largese
powerful enough to operate a hand drill. We have a leafle which briefly describes these but if you're contemplating making a toy or a novelty needing a motor then send $£ 2.50$ for our assortment of 8 motors- find the right one for yout
NOW SOME BIGGER 12 VOLT MOTORS
12v MOTOR BY CROUZET- a powerful motor virtually 12 Mossible to stop by hand size approx $2 z^{\prime \prime}$ " long and $22^{\prime \prime}$ dia,
ithlo is a permanent magnet field type so is reversible simply
this this is a permanent magnet field type so is revers
by changing polarity and has a relatively constant speed with or without load. Fitted with a splined shaft which could directly engage a toothed gear wheel or to which a pulley could be
Price E. . 25.
12 VOLT MOTOR EY SMITHS INDUSTRIAL
Made for use in cars these are series wound and become more powerful as load increase - they will in fact butr
themselves out if over loaded to stoping point-reversible themselves out if over loaded to stopping point-reversice
by rewiring. Being series wound they will also work of a.c mains through a step down transtormer and if you use a
variable voltage type then the motor speed can be varied by

 MAINS OPERATED LOW SPEED MOTORS
Type as fitted into time switches etc-we hav
tion and can offer the following final speeds:

These are powerful mains operated induction motors with
 with final speed 110 rpm $E 5-1$.
SUB MINIMICROPHONE
SUB MINI MICROPHONE
Size only $t^{\prime \prime} \times$ PR
ex hearing alds but guiaranteed. Price $21-50$.
American make size approx ${ }^{1}$,
tacts-three types in stock, hutton operated 35 , lever $40 \mathrm{p}+3 \mathrm{D}$. MEDIUM AND LARGE MICRO SWITCHES -may we have your enquiries pease with a sample it possible. OP DT TOGGLE SWITCH
 WU 33 . E 22 per hundred.
We have mini types e $40 \mathrm{p}+5 \mathrm{p}$ available in the following
combinations 4 pole 3 way, 3 pole 4 way, 2 pole 6 way and 7 STANDARD TYPES
Ti* wafer made to your specification at $E 1+12$ per wafer stock are 1 pole 12 way, 1 pole 10 way, 2 pole 9 way, 2 pole 8 way, 2 pole 6 way, 3 pole 5 way, 4 pole, 4 way, 6 pole 3 way, and
8 pole 2 way. We can stack up to 10 wafers 50 could make say pole 12 way or 80 pole.
INSTRUMENT SWITCHES
These use a smaller moulded wafer slize approx $\frac{1^{\prime \prime}}{}$ dlaavailable in some combinations as standard switches price
$\Sigma 1-50+19 p$ for each wafer and $75 \mathrm{p}+5 \mathrm{p}$ for clicker and spindle. WALL MOUNTING THERMOSTAT
By Dantoss in a really pretty two tone grey case with scalo and
dial. Setting temperature from $0-30 \mathrm{c}-13$ amp 250 v contacts. Price es 4.3 .
UPTO 5 MINUTE TIMER
Mains motorised, the dial of this is callibrated in $1 / 10$ th of a minute up to 5 minutes-slipping clutch motor takes preset
time to travel to its stop, then it slips until switched off. time to travel to its stop, then it slips until switched off.
Fitted micro switch operates at the stop. Micro switch could
be used to make the timer repeat, switch off etc. American be used to make the timer repeat, switch off etc. A
mad 0 -ox equipment-believed unused. Price $E 3 \cdot 25$.
MAINS STEPPER is a 24 way stud switch controlled by
two solenoids. One ratchets the switch arm round one stud two solenoids. One ratchets the switch arm round one stud
per lmpulse- the second solenold returns the switch arm on a metal chassis size approx $4^{\prime \prime \prime} \times 3^{\prime \prime}$ \&4: 86 .
MINIATURE MAGNETIC CIRCUIT BREAKERS will trip taster than a fuse can blow, use to control your
service bench etc will save you the trouble of renewing uses.
or sor roplace your fuse box with a lite of these. Available as
follows: 1amp-2amp-5amp-10amp-15amp-25amp. All follows: 1 amp-2amp-5amp-
same price 22.25 each
CASETTE MECHANISMS
With record and playback heads, all electronics, switches and with record and
speakers. Price $E Q$ Eay 95 (Surely th this must be the bargain of the year). Stereo with head
JUNCTION BOXES
ideal for ring main or lighting installations. Brown bakelite

24 HOUR TIMERS

VENNER
As illustrated with sun correction made for G.P.O. phone boxes used peri
$E 2.95,20$ amp switching contacts.

SHORTWAVE CRYSTAL SET
Although this uses no battery it gives really amazing results. You will re-
ceive an amazing asortment of
stations over the $10,25,29,31$ metre stations. Kit contains chassis front panel and all the parts £1.94-crystal

12v SIREN/BLEEPER

Makes a sound very similar to the Black \& Decker smoke alarm. 8-12ac or 12-14v ac. mugging device, car or motor antitheft American made, compact about
the size of an egg. E1-35. Order Delta the size of an egg. $81 \cdot 35$. Order Delta
Bleeper. A large quantity in stock so we will be glad to quote special price for quantity user.

ELECTRONIC VOLTMETER SENSITIVE RELAY
Consists of a large, extremely
readable,
At
square drop through panel volt meter, opo-1 isd. Built into the front of the
seter are fwo scrow adjusters heter are two scrow adjusters
which move two separate pointers one red and one graen, up and
down the scale, the, purpose being to set a minimum and maximum level so that when the needle falls below or rises
above the preset levels a unigue under' and 'over' circuit insidie
'une e meter operates one of two reed relays to bring an 'under or 'over' circuit into action. The scale plate is detachable via two scrows to be calibrated to your own individual requirements. The 10 transistor 'under' and 'over' circuit is completely separate from the meter movement so does not have
to be connected to use this as a standard $0-1$ meter. Many o be connected to use this as a standard $0-1$ meter. Many uses including level controis. light controis, auto battery over $£ 120$ each. An unbelievable snip at $87 \cdot 75+62 p$, p \& p Bop. (Les

BURGLAR ALARM ITEMS
(Circuit free on application)
Trigger mats $24 \mathrm{in} \times 18 \mathrm{in}$
Relay 24 volt
Relay 24 volt
$9-12$ volt
Alarm Bell 24 volt
M-12 volt
Mains
Mains
Reset, switch, ordinary
Secret type with k

SWITCH PAD

Made for the GPO for incorporation, we understand, in push-button dialling units, this has the usual 10 digits, each
of which when depressed operates two pole switch. Really beautiffully ${ }_{\text {E2 } 2.95 \text {. }}$. slze approx $4^{\prime \prime}$ square. Price

MAINS BLOWER

The Torrin-quiet but powerful outetc. will extract if outlet is blowing Outwards price $£ 5.50 .10$.

6 DIGIT COUNTER
One pulse at mains voltage
moves 1 digit-not resettable-
moves 1 digit-rot resettable-
real bargain © 80p.

BUS BARS FOR PUSH ON TAGS Type
as used in cookers eti ${ }^{2}$ a parel approx $3^{\prime \prime}$. $2^{\text {" }}$ with two hefty cable trap terminals, amrked $\mathrm{N} \&$ and bus bars will take 12 push on tags each-useful on work bench or would halp

CONNECTOR STRIPS

Norms 12 screw down in polythene base, $3-5$ amp 10 for E2, $15 a m p$. 10 for $£ 3,25$ amp 10 for $£ 4$.
NUMERERED CONNECTION STRIP
For 25 amp cables this 1 s very compact only $34^{\prime \prime}$ Iong. $\frac{10}{1 "}$ wide. The body is not polythene but a harder material probably and simiar installations. Price 10 for \&it 50
PLUG-IN-ABLE CONNECTOR STRIP Female usual screw downs on ane side, but sprung hoies on
other. Male has screw downs one side and plugs on the other. The plugs are tightly gripped by the sprung holes. Female portion is avallable in strips of 3 connectors 16p or 12 connectors 50p. Male portion only in strips of3 connectors price 25 p . 500 OHM WIRE WOUND RESISTOR
SPRING FIXINGS FOR 15 WATT RESISTORS
Specially shanaed spring clip pushes into resistor, 20 for $£ 1$.
or 20 mm fuse. Chassis mounting, polythene base with hole
for fixing. Strips of 10 Price 54 p .
THYRISTOR TRIGGER MODULE
By Mullard their ref MY5001, brand new in maker's sealed packing. Price $£ 6-50$.
NOVEL 50 Hz FREQUENCY CHECKER
NOVEL 50 Hz FREQUENCY CHECKER
or checking frequency of invertors etc, is a frequency con-
trolled motor with reduction gear box-simply fit a cardboard disc to spindle, connect direct to the unknown supply-ii $200-250 \mathrm{i}$ not use a transformer-if the disc revolves at
$16 \mathrm{r} .0 . \mathrm{m}$. then supply is correct frequency if less than $16 \mathrm{r}, \mathrm{p} . \mathrm{m}$. tis slow, if more then it is fast. Price E1-50 +12 p .
More and more appliances, wo have tags and to quickly hook
hese up you need female ended leads: wo offer an assortment of twenty leads ending with push on connectors, all for E1. 08 will save their cost in no
KETTLE LEAD AND PLUG
Fits all normal kettles: a robust plug with a good length of heavy duty three core lead. Price 85p, 10 for $£ 8$.
With twin 20 amp changeover contacts, coil voltage is 24
voits D.C. or 50 volts A.C. Four of these with coils in series ould be used to switch lighting etc. Price 88p.

MAINS OPERATED CONTACTOR

eautifully made in West Germany, his has 3 poles swit on, and a fourth pole with changeover, all contacts look big enough tor $10-1$ samps and the crosing coilis matns operated. $3^{\prime \prime}{ }^{\prime \prime}$ high, Price $E 4 \cdot 50$.
5 VOLT RELAY
Standard open single screw fixing with 3 pairs 10amp ClO MAINS POIE 21 -08, WATER VALVES ${ }^{\text {? }}$
Made by Asco. Two models avainable both suitable for water and non corrosive liquids, both for normal mains operation. Ref V_{1} for $t^{\prime \prime}$ pipes and low pressure operation, V2 is fo MINIATURE 24 HOUR TIME SWITCHES
Superb plece of precision engineering: measures only $2^{\prime \prime} \times$
解别 mains operation, with provision for up to 36 independent on/offs, massive 16 amp contacts enable many switching applications Brand new with one set of
triggers at $£ 7 \cdot 25$. Additional on/off triggers $£ 1$ a pair
INTEL 4004
4 bltMPU , this is the forerunner of the 8008 MPU chlp and is deal for breadboarding etc. to control keyboards, CRT's instruction set and as there is a great amount of established sottware avallable thls is a tremendous offer at only $23-47$

SPERRY-UNIVAC

Servo Driven Tape Cassette System. This superb unit consists of an attractive desk standing console with twin servo as "block transfer" "data transfer" "electronic LED tape position locator are Inbuit. No data is presently available for these unlts but they seem to be selling very fast. As we nly have a few ielt wo must restration. Price L7s. STandard 240 vor
SPERRY UNIVAC UNISCOPE 300
As described in our previous nowsietter we still have a few As described VDU, Keyboard, PSU controller systems avallable. They ere not in as good a condition as previously mentioned, th
TAPE READERS AND PUNCHES
The cheapest way of non volatile memory-programmes is via mag. tape or paper tape. We have a few Viatron tape decks,
ह125 each also Burroughs high speed optical tape readers $£ 50$ and High speed tape punches E45. Still avilable 8 bit NCR ape punch at e18-50.
RACAL CIO SUPERGRADE CASSETTES
Supergrade 10 minute cassettes complete with llbrary cases, top quality made for data storage
adhesive die cut labels 20 for $£ 1$.
VERBATIM MINI DISCS
Solt Sectored, ideal for Tandy TRS 80 Disc System ete
E3-50 each or 10 for 235 . FREE LIBRARY CASE INCLUDED ON PURCHASE OF 10.
PHILIPS 9 TRACK DIGITAL TAPEDECKS
Just arrived for personal callers are these small 9 track tape decks, measuring only 15 . 12×12 they are complete with all T.T.L. controllers and
PHILIPS QWERTY KEYBOARDS
Uncoded keyboards with standard typewriter keyboard mounted on PCB, complete with cover and inbuilt 8 blt optical tape reader $£ 25 \cdot 00$.

MINIATURE UNISELECTOR

12 pole 8 way, thls has 4 wiper arms coming out so it could be used for continuous motoring, the speed of which can be GPO these are nev and unused very compact all the connectlons coming out of the bottom. Thousands of switching combinations are possible, Price $£ 8-50$.
IMPULSE CLOCKS
$10^{\prime \prime} \mathrm{dla}$, white face and a large clear hands. Require two impulses per min to give correct time but they are also useful
educationally as they can be set to any time very quickly. educationaliy as they can be set to
Really beautiful clock, price only $£ 6 \cdot 50$.

REGULATED POWER SUPPLIES

Precision bullt on stout metal chassis using only top class components, normal malns Input. Slx different models are available. Simply order by output specification.
$100 \mathrm{v}-225 \mathrm{~mA}$
$150 \mathrm{v}-200 \mathrm{~mA}$
$200 \mathrm{v}-200 \mathrm{~mA}$
$175 \mathrm{v}+225 \mathrm{v}-150 \mathrm{~mA}$
$225 \mathrm{v}+275 \mathrm{v}-150 \mathrm{~mA}$
(A DIVISION OF GOTHIC ELECTRONIC COMPONENTS LTD) PO Box 290 8 Hampton Street
ELECTRONICS Birmingham
ALL PRICES IN PENCE EACH UNLESS OTHERWISE STATED

TOTAL AMPIIFICATION FROM CRIMSON ELEKTRIK

-WE NOW OFFER THE WIDEST RANGE OF SOUND PRODUCTS-

STEREO PRE-AMPLIFIER

POWER AMPLIFIER

CPR
CPR 1-THE ADVANCED PRE-AMPLIFIER
The begt pre-amp fier in the U.K. The superiority of the CPR 1 is probably high slewing rate ensures clean top, even wilt high output cartridges tracking heavily modulated records. Common-mode distortion is ellminated by an unusual design. R.I.A.A. is accurate to $10 B ;$ signal to noise ratio is 70 dB relative to 3.5 mV ; diofortion < 005% at 30 d 8 overload 20 kHz .

Following this stago is the flat gain/balance stage to bring tape, tuner, etc., up
 There is no provision for tone controls. CPR 1sizo is $138 \times 80 \times 20 \mathrm{~mm}$. Supply to be ± 15 volts.

MC 1-PRE-PRE-AMPLIFIER

Sultable for nearly all moving-coil cartridges. Sensitivity $70 / 1704 \mathrm{~V}$ switchable on the p.c.b. This module brings aignals from the now popular low output dise inputs). Can be powered from a 9V battery or from our REG 1 regulator board.
REG 1-POWER SUPPLY
The regulator module, REG 1 provides $15-0.15 \mathrm{v}$ to power the CPR 1 and MC 1 . It can be used with any of our power amp supplies or our smail transformer TR 6 . The power amp kit will accommodate it.

POWER AMPLIFIERS

If would be pointiess to list in so small a space the number of recording studios, educational and government establishments, etc. who have been using
CRIMSON amps satisfactorily for pulte some time. We have a reputation for the highest quanty at the lowest prices. The power amp is avallable in five ypes, thay all have the same specificatlon: T.H.D. typically 01% any power 1 KHz 8 ohms: T.I.D. insignificant; slew rate liimit 25V/US; signal to nolse ratio
 tlon-drives any toad safely; sensitivity 775 mV (250 mV or 100 mV on request);
size $120 \times 80 \times 25 \mathrm{~mm}$.

POWER SUPPLIES

We produce suitable power suppiles which use our superb TOROIDAL transformers only 50 mm high with a $120-240$ primary and single boit fixing (includes capacitorsjbridge rectifier).
POWER AMPLIFIER KIT
The kit includes all metalwork, heatsinke and hardware to house any two of our power amp modules products. Comprehensive instructions and full back-up service enables a novice to build it with confidence in a few hours.

PRE-AMPLIFIER KIT

This Includes all mstalwork, pots, knobs, etc., to make a complete pre-amp with the CPR $1(\mathrm{~S})$ module

ACTIVE CROSSOVERS X02214-83 $\mathrm{XO3}$.E23-06	POWER AMP KIT …... $532 \cdot 90$ QRE-AMPS	CRIMSON ELEKTRIK IE STAMFORD STREET,
POWER AMPLIFIER MODULES	PRE-AMPS:	IE STAMFORD STREET, LEICESTER, LE1 ENLL
	These are available in two ver-	Tel: (0535) 553508
1008 100W/8 ohms 45-0-45v ± 24 -	sions-one uses	
E 1704 170W/4 ohms $45-0-45 \mathrm{v}$ E29	standard compo-	
E $1708170 \mathrm{~W} / 8$ ohms $60-0-50 \mathrm{v}$ ess	nents, and	
OIDAL POWER SUPPLIES	other (the S) uses	All prices shown are UK only and
S1 for $2 \times$ CE 608 or $1 \times$ CE 1004		clude VAT and post. COD 90p extra,
88		Export is no proble
S3 for	cit	apecific quote. Send large SAE
1704		International Reply Coupons for
34 for 1×0		alled information,
CPS5 for $1 \times$ CE 1708 CPS6 for $2 \times$ CE 1704 o		
	Pre-amp kit E37-24	
		Distributors'
	$\begin{aligned} & \text { REGI } \\ & \text { TR6 } \ldots 5-75 \\ & 〔 1-92 \end{aligned}$	BADGER SOUND SERVICES BTD.,
Disco/group, 150 mm , $1.1{ }^{\circ} \mathrm{C} / \mathrm{W}$ E2.85		
Fan, 80 mm , state 120 or $240 \mathrm{v} \ldots \ldots \mathrm{E} 18$	$\begin{aligned} & \text { BRIDGE } \\ & \text { DRIVER, EDI } \end{aligned}$	LANCASHIRE, FYB 10G
Fan mounted on two drilled 100 mm heatsinks, $2 \times 4^{\circ} \mathrm{C} / \mathrm{W}$.	DRIVER, BDI Obtain up to 340 W	LANCASHIRE, FYB 1QG
C max. with two 170W	$\text { using } 2 \times 170 \mathrm{~W}$	"MINIC TELEPRODUCKTER
dules $\Sigma 29$	amps and this	42035:
IRMAL CUT-OUT, 701C., £	module BDI $\mathbf{2 5} 40$	UPPSALA 12, SWEDEN"

Bean HA:CHIONC मCHNAR

Do something PRACTICAL about your future.
Firms all over Britain are crying out for qualified people. With the right training, you could take your pick of these jobs. Now, the British Institute of Engineering Technology will train you in your spare time to be an Electrical Engineer.

You risk nothing I We promise to get you through your chosen course-or, refund your fee!

So, join the thousands who have built a new future through home study Engineering courses.

Courses in

$C \& G$ Elect. Technicians C \& G Elect. Installations Telecomms. Technicians Exams Television Servicing Radio Maint, \& Repairs (BIET) Pract. Radio \& Electronics Plus over 60 other home study courses.

POST COUPON FOR FREE 44 PACE CUIDE BRIIISE INSIITUTE OF ENGINEBRING TECENOLOGY
 Aldermaston Court. Dept. TEE 46 Reading RG7 4PF.

NAME (Block capitals please) ADDRESS

POSTCODE
Other Subjects
Accredited by CACC
Member of ABCC

SINCLAIR PRODUCTS New 10 MHz scope poa, PFM200 £49-48, case $£ 3-19$,
 Microvision TV UK model $£ 49.95$, mains
adaptor $£ 6.73$. PDM35 $£ 27 \cdot 95$, mains
 DM450 $295 \cdot 95$, DM235 $\mathrm{E49} \cdot 45$, rechargeable batts $£ 7 \cdot 50$, mains adaptor $E 3 \cdot 70$, case 88.45. Enterprise prog. calculator with accessories ≈ 21 1.95.
COMPUTER GAMES Star chess E58.45. Chess champlon 6 Ess.50. Chess chailes-
ger 7 E.95. Chess challenger 10 £153-50. Voice chalienger poa. Checker challenger $2 \mathrm{E44}$, checker challenger $4 \mathrm{ES4}$ Atari video computer E138, cartridges $E 13.45$. COMPONENTS 1 N4143 1.4 p . 1 N 400 og
2.9 p . 741 17p. be182b, bce 83 b , bci84b, 2.9p. 71 17p. bc182b, bc183b, bci84b,
bc212b, bc213b, bc214c 5 F . Resistors tW 5% E12 10 R to $10 \mathrm{M} 1 \mathrm{p}, 0.8 \mathrm{p}$ for $50+$ of one

 Dalo pen 79 p , 40 sq ins peb 60 p . Poly-
styrene capacitors E12 63 V 10 to 1000 p 13 styrene capacitors E12 63 V 10 to $1000 \mathrm{pt} 3 \mathrm{p}_{6}$
1 n 2 to 10 n 4 p . Ceramic capacitors 50 V E6 22 pf to 47 n 2 p . Zeners 400 mW E24 2277 to 3 sV 7 p . Preset pots submin 0.1 W 100 to 4M7 ${ }^{\text {G. }}$ GAMES AY-3-8500 + kit ce.95. Riffe kit $£ 4.95$. AY $-3-8610+$ kit $£ 15-70$. Stunt
cycie chip + kit $£ 15 \cdot 70$. AY $-3-8803$ chip

EVERYBODY'S DOING IT!

Doing what? Sending for the latest Home Radio Catalogue It's the most comprehensive components catalogue you can get. 128 pages, about 2,500 items listed, and profusely illustrated. Now only $£ 1.25$ with a free bargain list. Send your cheque or postal order now.

HOME RADIO

COMPONENTS LTD
Dept. EE, 234 London Road Mitcham, Surrey CR4 3HD

VALVE MAIL ORDER CO. (EE®) CLIMAX HOUSE, FALLSBROOK ROAD, LONDON SW16 6ED

 Special express mail order service
SEMICONDUCTORS

0

VAL	58			$\begin{aligned} & \text { EL32 } \\ & \text { EL33 } \\ & \text { EL34 } \\ & \text { Thorn) } \end{aligned}$	$\begin{aligned} & 1.69 \\ & 3.94 \\ & 2.48 \end{aligned}$
${ }_{\text {A } 231}$	1.24 1.69	$\begin{aligned} & \text { ECC83 } \\ & \text { ECCB4 } \end{aligned}$	0.99 1.34	EL34 (Mu	(tard)
CL33	2.25	ECC85	1-35	EL41	1.41
CY31	1.13	ECC88	2.03	EL. 42	1.97
DAF91	0.45	ECC91	7.45	EL81	1.24
DAF96	1.13	ECC188	1.87	EL84	1.13
DF91	0.45	ECFPO	1.22	EL86	2.43
DF96	1.13	ECF82	1.35	EL91	6.92
DK91	1.18	ECH35	2.25	EL95	1.49
DK92	1.41	ECH42	1.29	EL360	5.98
DK96	1.24	ECH81	$1 \cdot 35$	EM80	1.24
DL92	1.24	ECH83	1.41	EM81	1.13
0194	1.35	ECH84	1.44	EM84	1.13
DL96	1.24	ECL82	1.13	EM85	1.41
DY86/7	0.72	ECL83	1.69	EM87	1.69
DY802	0.95	ECL86	1.35	EN91	2.76
E80CC	6.22	EF37A	3.94	EY51	1.97
EABC80	1.35	EF39	3.09	EY86	0.95
EAF42	1.41	EF40	1.29	E240	1.41
EAF801	1.97	EF41	1.35	E241	1.41
EB41	2.25	EF42	2.25	E280	0.95
EB91	0.95	EF50	1.69	E281	0.95
E8C33	1.97	EF80	0.90	E290	1.35
88C41	1.41	EF93	1.97	G232	1.41
E8C81	1.24	EF85	0.90	GZ33	4.50
E8C90	0.96	EF86	1.71	G234	2.14
E8F80	0.57	EF89	1.80	KT61	3.94
EBF83	1.41	EF91	2.03	KT86	7.03
EBF89	0.96	EF92	5.63	KT88	9.00
E8L31	2.81	EF98	1.41	KTW61	1.97
ECC40	1.41	EF183	0.90	KTW62	1.97
ECC81	0.99	EF184	0.95	KTW63	1.97
ECC82	0.81	EH90	1.58	MU14	1.13

integrated circuits

7400	0.17	7412	0.28	7432	0.32
74401	0.17	7413	0.35	7433	0.39
7402	0.17	7416	0.35	7437	0.35
7403	0.17	7417	0.35	7438	0.35
7404	0.18	7420	0.18	7440	0.19
7405	0.17	7422	0.22	$74414 N$	0.92
7406	0.43	7423	0.35	74422	0.78
7407	0.43	7425	0.32	$7447 A N$	0.97
7408	0.22	7427	0.32	7450	0.19
7409	0.22	7428	0.46	7451	0.19
7410	0.17	7430	0.18	7453	0.19

MAGENTA ELECTRONICS LTD．

E．E．PROJECT KITS

Make us YOUR No． 1 SUPPLIER of KITS and COMPONENTS for E．E．Projects． Wa supply carefully selected sets of parts to enable you to construct E．E．prolects． Appropriate hardware－nuts，screws，1．C．sockets are Included．Each project kit
comes complete with its own FREE COMPONENT IDENTIFICATION SHEET． We supply－You construct，UNLESS OTHERWISE STATED．BATTERIES NOT INCLUDED
＂NPROJECT INSTRUCTIONS ONLY SUPPLIED AS EXTRA 39p EACH＂．

TREMOLO UNIT．June 79．£10－87． ELECTRONIC CANARY．JUNe79． $24 \cdot 50$ ． L．OW COST METAL LOCATOR．June 79．E5－14．
Handle \＆coll former parts axtra \＆4．75． METER AMPLIFIER，June 79， $23-64$ ． INTRUDER ALARM．May 1979．※15．02． Less Ext．Buzzer \＆Lamp and Loop Com－筑HORT WAVECONVERTER．May 79. THERMOSTAT，＇PHOTO＇SOLU－ THERMOSTAT．＇PHOTO＇SOLU－ and grease iNVERTER．April 79．\＆12－36． TRANSISTOR TESTER．April 79. TOUC TOUCH BLEEPER．April 79，E3．29． with Amplifler \＆Headset．Less case． TIME DELAY INDICATOR．Mar． 79. VERSATILE POWER SUPPLY．Mar． 79．玉8．10．
OK WARNING DEVICE．Apr， 79 AU．6등 MODULATOR．Feb．79．\＆1．58 legs case and pins．
LW CONVERTER．
LW CONVERTER．Feb．79，E6－02． ADJUSTARLE PSU．Feb．79．E23．70． Case（horizontal layout） $23 \cdot 89$ extra． IM FIRST．Jan， 79. E $3 \cdot 37$ less case LIGHTS REMINDER．Jan，79．ఓ4．55． less case．
FUZZ BOX．Dec，78，£4－98．
VEHICLE IMFIOBILISER．Inc．PCB Dec．78．£4－15
WATER LEVEL ALERT．Nov．78．25－30． HOT LINE－GAME．Nov．78，£4－65 less AUDIO EFFECTS OSCILLATOR．NOV 78．E3．03inc．board．
SUBSCRIBERS
SUBSCRIBERS TELE TEL METER． Nov． 78 ，£17－53 caso extra £4．13．
C．MOS RADIO．Oct．78，E8－57．
TREASURE HUNTER．Oct．78．£16．98 less handle \＆coil former．
GUITAR TONE BOOSTER．Sept． 78. ．4．78 inc，p．c．b．

SOUND TO LIGHT．Sept．78．£6．58． FILTER．E1．38
SLAVEFLASH．Aug．78，£2－92lees SK1． LOGIC PROBE．July 78，$£ 2.52$ ．
IN SITU TRANSISTOR TESTER． June 78． $\mathbf{2 5}$－20．
VISUAL CONTINUITY CHECKER． June 78，£3－26 Inc．probes．
FLASHMETER．May 78， $\mathbf{2 1 2}$－ 42 less calc and diffuser，
POCKET TIMER．April 78．©3．10．
WEIRD SOUND EFFECTS GENERA TOR．Mar，78．E4．00．
CHASER LIGHT DISPLAY．Feb． 76. A21 76 inc p．c．b．case extra 23－90．
AUDIO VISUAL METRONCME．Jan． 78 E4．64，RID DIODE CHECK RAPID DIODE CHECK．Jan．78．£2－17．
AUTOMATIC PHASE BOX．Dec． 77 ． f10． 58 inc，g．c．b．
JHF RADIO，Nov． $77, ~$
$12 \cdot 60$ ． ULFRADIO，NOV，77，£12．50． Nov．Dec．77．L15：13． case extra． 22.55 ．Less handle，etc． 29.65
ELECTRONIC DICE，March 77 ，\＆4－67， case extra． 22.55 ．Less handle，etc．
ELECTRONIC DICE，March 77 ，£4－67，
SOIL MOISTURE INDICATOR．Jun SOIL MOISTURE INDICATOR．June
$77.53-40$ Inc．probe． 77.53 .40 Inc．probe．
PHONEDOORBELL REPEATER．July $77,25 \cdot 50$. WAVE RECEIVER．Aug． 77
SHORT E12．09 case extra $£ 1.64$ ．
CAR BATTERY STATE INDICATOR． CAR BATTERY STATE INDICATOR．
Sept． 78, £1－69 lees case inc．PCB． R．F．SIGNAL GENERATOR．Sept． 78. E16． 83 less case．
TRANSISTOR TESTER．Oct．77．$£ 6.98$ case extra \＆3．90． ELECTRONIC TOUCH SWITCH．Jan． AD．E1－59．CAPACITANCE UNIT．Sept． ADD．ON CAPACITANCE UNIT．Sept．
77． $24-91$ ． A．F．SIGNAL GENERATOR．Aug． 78 less dial．E12－10．
QUAGMIRE．July $78 . \& 8-26$ less case pins \＆counters．
CATCH－A－LIGHT．Mer．78，£7－42． CAR SYSTEM ALARM．Feb．78，$£ 5-21$ ． HEADPHONE ENHANCER．Jan． 79 PASSIVE MIXER，Oct．78，$£ 2$－ 90 ． MIC AMP．Dec，78，E2 41．
AUDIBLE FLASHER，Dec，78，£1－19．

LATEST KITS：S．A．E．OR＇PHONE FOR PRICES

1979 ELECTRONICS CONSTRUCTORS CATALOGUE

MAGENTA＇S CATALOGUE HAS BEEN READERS PROOCT DATA E．E． READERS．PRODUCT DATA AND GENTA CATALOGUE AN INDIS． CIRCUIT IDEAS FOR YOU TO

NO MINIMUM ORDER－ALL PRO DUCTS ARE STOCK LINES．FIRST CLASS DELIVERY OF FIRST CLASS COMPO AND SEE HOW EASY IT IS TO UUE THE MAGENTA CATA． LOGUEI WRITE TODAY ENCLOSING

MAGENTA gives you FAST DELIVERY BY FIRST CLASS POST OF QUALITY We give personal service \＆quality products to all our customers－HAVE YOU TRIED
US？

LOW cost
METAL LOCATOR
E．E．JUNE 79.
WE HAVE MADE UP A COMPLETE HARDWARE KIT FOR THIS PRO－ JECT．WITH TUBULAR PLASTIC COLLAPSIBLE HANDLE，HAND GRIP，COIL FORMER，AND ALL SCREWS，NUTS，CLIPS，TAPE，
FOIL SPACERS etc．

Everything you need for the project including elec－ tronics and case £9•89 Or separately：
Electronics \＆Case $\mathbf{2 5} \cdot 14$ Hardware Kit £4－75

MULTIMETER TYPE $1.1,000$ o．p．v．with

 probes， $2^{\prime \prime} \times 3 \frac{3}{2 "}^{\prime \prime} \times 1^{\prime \prime}, \varepsilon 6$ ． 78. MULTIMETER TYPE 2，20，000 0，p． y ，with case and probes． $5^{\circ} \times 3 \psi^{\prime \prime} \times 11^{\circ} \times \Sigma 14 \cdot 25$ ANTEX X25 SOLDERING IRON 25 W ．SOLDERINGIRON STAND．Antex ST3． 2．03．
SPARE BITS， $2.3 \mathrm{~mm}, 3 \mathrm{~mm}, 4.7 \mathrm{~mm}, 65 \mathrm{p}$ ． DESOLDER BRAID．69p．
HEAT SINK TWEEZERS．45p．
DESOLDER PUMP．Easy to use． $\mathbf{E 6 . 5 8}$ F．M．INDOOR AERIAL．57p．
TELESCOPIC AERIAL． $120 \mathrm{c} . \mathrm{m} . ~ £ 2 \cdot 08$ ， TELEPHONE PICK－UP COIL． 72 p ． CRYSTAL MICROPHONE INSERT 63 p．
SPEAKERS MINIATURE． 8 ohm 87p． 4 ohm $98 \mathrm{p}, 80 \mathrm{ohm} £ 1$－． 28
PILLOW SPEAKER． 8 ohm E1－03p．
$6^{\prime \prime}$ ROUND SPEAKER． $80 \mathrm{hm}, 5 \mathrm{~W} . \varepsilon 2 \cdot 18$ ， CABINET SPEAKER． 8 ohm， 5 W ，${ }^{5}$ REANTRANT CabInt Ohm S．W Horn HORN SPEAKER． ARPIECES，Crystal 43p．Magn
ARPIECES，Crystal 43p．Magnetic 18p． STETHOSCOPE ATTACHMENT．Fits ur earpieces 69p．
UZZER． 6 V 82p． 12 V 25p．
MONO HEADPHONES．2K．Padded． uperior．Senaitive．E3－28． Padded，£4－24． MICROPHONE DYNAMIC． 600 ohm DENTISTS MIRROR．Adjustable，£2－37． JEWELLERS EYEGLASS．E1－08p
TRIPLE MAGNIFIER．£1－63．
HAND MAGNIFIER． $3^{\prime \prime}$ Lens．$£ 3$－28．

TEACH－1N－78

COMPLETE KIT E16－48
INCLUDES FREE COMPONENT IDEN－ TIFLCATION CHART TEACH－IN REPRINTS EXTRA $38 p$ EACH
ALL 12 PARTS AVAILABLE．

DOING IT DIGITALLY

Complete kit IN STOCK NOW for FAST DELIVERY by FIRST CLASS POST．All top quality components as specified by EVERYDAY ELEC TRONICS．Our kit comes complete with FREE TTL \＆COMPONENT IDENTIFICATION SHEETS，$£ 25 \cdot 25$ for the TTL TEST BED．$£ 4 \cdot 13$ for ADDITIONAL COMPONENTS for first 6 months．
NEXT 6 MONTHS PARTS：－BPX25， £1－42．ORP12，76p．555，49p． 80 ohm speaker，£1－28，2N2926，12p． $0 \cdot 1 \mu \mathrm{~F}$ $6 \frac{1}{2}$ p．Resistors， $1 \frac{1}{2} \mathrm{p} .100 \mu \mathrm{~F} 10 \mathrm{~V}, 9 \frac{1}{2} \mathrm{p}$ ． $7404,30 \mathrm{p} .7408,30 \mathrm{p} .7410,29 \mathrm{p} .7413$ 51p．7430，29p．7447，£1－21，7454，49p． 7490,55 p．7492，75p．
spectacle frame．\＆4－38
LLUMINATED MAGNIFIERS． $1 \frac{1}{}^{\prime \prime}$ Ien £1－09． $3^{\prime \prime}$ lens £3．07．
SIGNAL INJECTOR．£5－48，
POCKET TOOL SET， 20 plece．E4－09． SCREWDRIVER SET．Six piece．£2．
 ＂ $22 \cdot 41$ ．$\frac{7}{2 \prime}^{\prime \prime}$ E2．30．
DRILL 12V，Hand or stand use，玉15．42． Stand 27.57 ．
CAPACITANCE SUBSTITUTION QUICKTEST．Mains connector，£5．03． PLUG IN POWER SUPPLY， $6,7 \cdot 5-9 \mathrm{~V}$ PLUG IN POWER
d．c． 300 mA ． $24-05$ ．

SPRINGS－SMA

SMALL． 100 Asstd， 81.08
CROC CLIP TEST LEAD SET． 10 leads with 20 clips， $\mathbf{E 1 - 0 6}$ ，
DIMMER SWITCH． $240 \mathrm{~V} .800 \mathrm{~W}, ~ £ 4-13$ TRADITIONAL STYLE BELL． $3-8 V$ ． 70 mm chrome pong． $\mathbf{E 1} .60$ ．
UNDERDOME BELL．4－10V．Smart．Dia 70 mm ， $21-97$ ．
TOWERS INTERNATIONAL TRAN－ SISTOR SELECTOR．New edjtion． 6．22．
F．M．TUNER CHASSIS． $88-108 \mathrm{MHz}$ ． 9 V d．c．29－19．
MORSE KEY．High speed．$£ 3-83$ ．
PANEL METERS． $60 \times 45 \mathrm{~mm}$ ，Modern style． $50 \mathrm{uA}, 100 \mathrm{uA}, 1 \mathrm{~mA}, 1 \mathrm{~A}, 25 \mathrm{~V}$ d．c． 26． 33 ．
NIGHT LIGHT．Plug type， 81 －68，
CONNECTING WIRE PACK． $5 \times 5 \mathrm{y}$ ． oils．55p．
YERO SPOT FACE CUTTER．E1－ES，
VEKO PIN INSERTION TOOL． $0 \cdot 1^{\circ}$
ESISTOR
ATOR．COLOUR CODE CALCU
EVERYDAY ELECTRONICS FEB 7 G．P．POWER SUPPLY
VARIABLE O－20V 0－1A WITH CALIBRATED VOLTMETER AND AMMETER ALL COMPONENTS AND HARDWARE £23．70．CASE

MAGENTA ELECTRONICS LTD．
EH7， 98 CALAIS ROAD，BURTON－ON－TRENT，STAFFS．， DE13 0UL．0283－65435．9－12，2－5 MON．－FRI．

OFFICIAL ORDERS FROM SCHOOLS， UNIVERSITIES ETC．WELCOME． MAIL ORDER ONLY．

ALL PRICES INCLUDE 15% VAT AND FIRST CLASS POST．ADD 30 D TO ORDERS UNDER E10 EN－
QUIRIES MUST INCLUDE S．A．E．

COMPONENTS
KITS
SERVICE
QUALITY PRICES MAGAZINE PROJECTS
S．A．E．for list of EE projects
I enclose 30p＊，please send catalogue．
Adaross
＊Refundable with future orders over $£ 5.00$ ．

BUILD A SYNTHESISER!

SPECIAL SKILLS SPECIAL EQUIPMENT

Using Devtrol (Reg'd) PROFESSIONAL MODULES

Over 20 different electronic modules to select what YOU want to build a synthesiser; simple or complex. Start simple and add to it as you can afford. New attractive prices for the long-popular, welltried range of Dewtron synthesiser and other effects modules.

Send 25p for Musical Miracles Catalogue NOWI
D.E.W. LTD.

254 RINGWOOD ROAD, FERNDOWN, DORSET BH22 9AR

TECHNICAL TRAINING IN ELECTRONICS AND TELECOMMUNICATIONS

ICS can provide the technical knowledge that is so essential to your success: knowledge that will enable you to take advantage of the many opportunities open to you. Study in your own home. in your own the guarantee coaching pace and if you are studying for an examination ICS guarantee coaching City and Guilds Certificates: Telecommunications Technicians Radio, TV, Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
MPT Radio Communications Certificate
Diploma Courses:
Colour TV Servicing
Electronic Engineering and Maintenance Computer Engineering and Programming Radio, TV, Audio Engineering and Servicing Electrical Engineering, Installation and Contracting

POST OR PHONE TODAY FOR FREE BOOKLET

HE

To: International Correspondence Schools

Dept K 268 Intertext House, London
SW8 4UJ or telephone 6229911
Subject of Interest.
Name
Address

Logically laid out to accept both $0.3^{\prime \prime}$ and $0.6^{\prime \prime}$ pitch DIL packages as well as Capacitors. Resistors, LED's, Transistors and components with leads up to .85 mm dia.
500 individual connections in the central breadboarding area, spaced to accept all sizes of DIL package without running out of connection points, plus 4 Integral Power Bus Strips around all edges for minimum inter-connection lengths.
All connection rows and columns are now numbered or lettered anabling exact location indexing.
Double-sided nickel silver contacts for long life (10K insertions) and low contact resistance ($<10 \mathrm{~m}$. ohms).
Easily removable, non-slip rubber backing allows damaged contacts to be rapidly replaced.
No other breadboard has as many individual contacts, offers all these features and costs only $£ 5.80$ each or $£ 11.00$ for 2 - inclusive of VAT and P.P.

Snip out and Post
David George Sales, r/o 74 Crayford High St., Crayford, Kent DA1 4EF

[^2]Please send me 1 EuroSolderSucker @ $£ 6.80$ \square Please
or 1 EuroBreadBoard @ $£ 5.80$ \qquad Tick (All prices include VAT and P.P., but add 15% for overseas orders).
Name.
Company.
Address.

Tel. No

Please make cheque/P.O.'s payable to David George Sales

EUROSOLDERSUCKER

This 195 mm long, all metal, high suction, desoldering tool with replaceable Teflon tip enables removal of molten solder from all sizes f pcb pads. Primed and released by thumb, it incorporates an anti ecoil system and built in safety guard. Only $£ 6.80$ inc. VAT \& P.P.

NOTICE TO READERS

When replying to Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block

That your name and address is written in block
cepitals, and
(D) That your

This will assist advertisers in processing and despatch-
This will assist advertisers in processing
Ing orders with the minimum of delay.

For Sale

NEW BACK TISSUES of "EVERYDAY ELECTRONICS". Available 60p each Post Free, open PO/Cheque returned if not in stock. BELL'S TELEVISION SERVICES 190 Kings Road, Harrogate, Yorkshire. Tel: (0423) 55885.
E.E. BACK ISSUES. Volume 1 issue 1 to date. Complete Volumes 1 to 7 in selfbinders with indexes. $£ 25$ ono plus carriage. Lanfear, 53 College Street, Camborne, Cornwall.

4600 MUSIC SYNTHESIZER complete with construction manual. Small faults on three individual modules, hence $£ 350$ ono. Kinghorn, Fife. Telephone 890342 .

PHILLIPS X40 and X40A (amplifier) kits, complete. £20 pair ono. Back issues E.E. Jan. '79 to present; offers. 59 Bay Road, Wormit, Newport-on-Tay, DD6 8LW.

SMALL ADS

The prepaid rate for classified advertisements is 18 pence per word (minimum 12 words), box number 60 p extra. Semi-display setting $£ 4-40$ per single column centimetre (minimum 2.5 cm). All cheques, postal orders, etc., to be made payable to Everyday Electronics and crossed "Lloyds Bank Ltd." Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Everyday Electronics, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London SE1 9LS. (Telephone 01-261 5942).

CONDITIONS OF ACCEPTANCE OF CLASSIFIED ADVERTISEMENTS

1. Advertisements are accepted subject to the conditions appearing on our current advertisement rate card and on the express understanding that the Advertiser warrants that the advertisement does not contravene any Act of Parliament nor is it an infringement of the British Code of Advertising Practice.
2. The publishers reserve the right to refuse or withdraw any advertisement.
3. Although every care is taken, the Publishers shall not be liable for clerical or printers' errors or their consequences.

Service Sheets

SERVICE SHEETS for Radio, Television, Tape Recorders, Stereo, etc. With free fault-finding guide, from 50 p and s.a.e. Catalogue 25 p and s.a.e. Hamilton Radio, 47 Bohemia Road, St. Leonards, Sussex.
BELL'S TELEVISION SERVICE for service sheets of Radio, TV etc. £1 plus SAE. Colour TV Service Manuals on request. SAE with enquiries to BTS, 190 King's Road, Harrogate, N. Yorkshire. Tel: 0423 55885.

Miscellaneous

TUNBRIDGE WELLS COMPONENTS, BALLARD'S, 108 Camden Road, Tunbridge Wells, Phone 31803 . No lists, enquiries S.A.E.

RECHARGEABLE BATTERIES

TRADE ENQUIRIES WELCOME

FULL RANGE AVAILABLE, SAE FOR LISTS, \&1-25 Tor Bookiet Nickel Cadmium Power", plus catalogue. Write
or call, Sandwell Plant Ltd, 2 Union Drive, Boidmere, or call, Sandwell Plant Ltd 2 Union Drive, Boldmere,
Sutton Coldfeld, West Midands. $021-354$ 9784. Or see tham at TLC, 32 Craven Street, Charing Cross, London WC2.
AUDIO OSCILLATOR Sine - Square A.I.A.A. outputs: 15 Hz to 200 KHz in four ranges. Thermistor stabilised. Assembled PCB ready to use. 9 V supply required. SAE data. $£ 16 \cdot 30$ inclusive. Quantec, 40 Aln Court, Ellington, Morpeth, Northumberland. Morpeth 860101.
PRINTED CIRCUIT BOARDS from your tape or film masters, prototypes or short runs. Photographic masters from your layout. SAE for details. Dia-Dim Audio Visual, 21 Brammay Drive, Tottington, Bury BL8 3HS.

AERIAL BOOSTERS

Improves weak VHF radio \& television reception.
B45-UHF TV, BII-VHF RADIO.
For next to the set fitting.
PRICE £5. S.A.E. FOR LEAFLETS.
ELECTRONIC MAILORDER LTD. Ramsbottom, Bury, Lancs, BLO 9AG.

BUILD 25 PROJECTS with our Multi-purpose kits, details supplied. Send $£ 19 \cdot 00$ to Major Oak Services, 33 Lillian Avenue, London, W3.

THE SCIENTIFIC WIRE COMPANY

PO Box 30, London E.4.

NAMELLED COPPER WI				
	${ }_{2} 16$	802 1.45	4.02	2.02
20-29	2.65 2.85	1.65	90	. 70
	2.85		90	75
30-34	3.05	1.75	$1-00$	75
35-40	$3 \cdot 40$	1.85	$1 \cdot 15$	84
41-43	$4 \cdot 55$	2. 55	1.95	1-30
44-46	5.05	3.05	$2 \cdot 15$	1-70
47	8.00	5.00	$3 \cdot 00$	$1 \cdot 80$
48	15.00	9.00	6.00	3-30
SILVER PLATED COPPER WIRE				
14, 16, 18	$18.4 \cdot 50$	2.25	1.44	. 90
$20 \% 22$	5.00	2.85	1.74	$1-06$
24.26	$5 \cdot 70$	$3 \cdot 31$	2.00	1-22
28 \& 30	6.67	3-86	2-35	1-44

Prices include P \& P and VAT.
SAE brings list of copper \& resis
SAE brings list of copper \&\& resistance Wires.
Dealer enquililes Invited.

Receivers and Components

AF/RF SIGNAL INJECTORS $£ 2 \cdot 50$, with instructions. SAE for list, Bobker, 29 Chadderton Drive, Unsworth, Bury, Lancs.

ORDER FORM PLEASE WRITE in block capitals

Please insert the advertisement below in the next available issue of Everyday Electronics for
insertions. I enclose Cheque/P.O. for $£$.
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Everyday Electronics)

Receivers and Components

sale. Everything must go most at half price. Transistors, general purpose BC109, etc, 6 p ; power from 20 p ; triacs from 30 p ; jack plugs and sockets sub-min DPDT 50 p . Send your list and SAE for quotation. J.A.I. ELECTRONICS, 30 Balvernie Grove, SW18 5RR.

NO LICENCE EXAMS NEEDED

To operate this miniature, solid-state Trans-mitter-Receiver Kit. Only $\mathbf{E 1 0 - 2 5}$ plus 25p P. \& P.
'Brain-Freeze' 'em with a MINI-STROBE Electronics Kit, pocket-sized 'lightning fiashes',
vari-speed, for discos and parties. A mere £4-50 vari-speed, for discos and parties. A mere $24-50$ plus $25 p$ P. \& P. Experiment with a psychedelic DREAM LAB, or pick up faint speech/sounds multi-function modules. 25 each plus 25 p P. \& P.

LOTS MORE! Send 25 p for lists.
Prices include VAT.
BOFFIN PROJECTS
4 CUNLIFFE ROAD, STONELEIGH EWELL, SURREY. (E.E.)

NEW AND UNUSED COMPONENTS. Surplus to teaching experiments. Die cast boxes $6{ }^{3}{ }_{4}$ in $\times 43_{4} \times 4, £ 1-60$; mains transformers $9-0-9$ at lamp, $£ 1 \cdot 60$; capacitors electrolytic wire ended $10,000 / 40 \mathrm{~V} 50 \mathrm{p}$; $1,500 / 16 \mathrm{~V}, 20 \mathrm{p} ; 470 / 25 \mathrm{~V}, 10 \mathrm{p}$; polyester pcb type $1.0,0.68,0.47,0.22,0.1,0.047,0.01$, E7 per 100 any mix and quantity. Add 15% P\&P. INEXPENSIVE ELECTRONIC LOGIC EXPERIMENT KIT-send large SAE for details. S. E. Warren, 15 Moorland Terrace, Skipton, North Yorkshire. Tel: 3270.
TIRRO's new mail order price list of electronic components now available on receipt of SAE. TIRRO Electronics, Grenfell Place, Maidenhead, Berks.
TURN YOUR SURPLUS capacitors, transistors, etc, into cash. Contact COLESHARDING \& CO, 103 South Brink, Wisbech, Cambs, 0945 4188. Immediate settlement.

200 COMPONENTS $£ 410$ L.E.D.S 0.12590 p. Lists 15p. Sole (E, E.), 37 Stanley Street, Ormskirk, Lancs L39 2DH.
DISCOVER ELECTRONICS. Build forty easy projects including: Metal Detector; Wireless Transmitter; Breathalyser; Radios; Stethoscope; Lie Detector; Touch timeswitches; Burglar Alarms, etc. Circuits, plans all for $£ 1-29$ including FREE circuit board. Mail only, RIDLEY PHOTO/ELEC. TRONICS, Box 62, 111 Rockspark Road, Uckfield, Sussex.
SMALL AUDIO AMPLIFIERS, 3 transistors equivalent to AC128, OC72 with circuit 3 for $£ 1.300$ small components, transistors, diodes, $£ 1 \cdot 60$. Wire ended neons, 20 for £1. Panel with 4074 series ICs, $£ 1 \cdot 50,100$ assorted C280 polyester capacitors £1.20 no Postage. List 15 p refundable. Insurance add 15 p . J.W.B, RADIO, 2 Barnfield Crescent Sale, Cheshire MJ3 INL.
ELECTRONIC COMPONENTS. Send SAE for list. Special offers monthly. Radnor Supplies, 23 Arbury Road, Nuneaton, Warks.
ELECTRONIC COMPONENTS and E.E. project kits 1973 -now. Catalogue SAE, plus 30 p Jadebond Ltd., Middridge Drift Ind. Est., Middridge, Shildon, Co. Durham. Tel: Shildon (038884) 3845.

C.P. ICs. 74 series $00 / 9 \mathrm{p}$ 01/11p $02 / 11 \mathrm{p}$ $03 / 11 \mathrm{p} \quad 04 / 11 \mathrm{p} \quad 06 / 24 \mathrm{p}$ 08/13p $00 / 12 \mathrm{p} \quad 10 / 12 \mathrm{p}$ | $11 / 15 \mathrm{p}$ | $12 / 15 \mathrm{p}$ | $13 / 24 \mathrm{p}$ | $14 / 50 \mathrm{p}$ | $16 / 23 \mathrm{p}$ |
| :--- | :--- | :--- | :--- | :--- |
| $10 / 12 \mathrm{p}$ | | | | | $\begin{array}{llllll}30 / 12 \mathrm{p} & 37 / 22 \mathrm{p} & 40 / 20 \mathrm{p} & 45 / 65 \mathrm{p} & 47 / 55 \mathrm{p} & 70 / 25 \mathrm{p}\end{array}$ $72 / 24$ p $73 / 24$ p $74 / 24$ p $75 / 30$ p $76 / 28$ p $85 / 60$ p $86 / 24 \mathrm{p}$ 89/135p $90 / 32 \mathrm{p} 92 / 35 \mathrm{p}$ 93/33p $95 / 50 \mathrm{p}$ $\begin{array}{lllll}121 / 24 \mathrm{p} & 122 / 33 \mathrm{p} & 123 / 40 \mathrm{p} & 125 / 35 \mathrm{p} & 132 / 48 \mathrm{p}\end{array}$ $\begin{array}{lllll}141 / 58 \mathrm{p} & 164 / 65 \mathrm{p} & 190 / 72 \mathrm{p} & 191 / 72 \mathrm{p} & 192 / 60 \mathrm{p}\end{array}$ CMOS $4000 / 15$ p $01 / 15$ p $02 / 15$ p $11 / 15$ p $12 / 15$ p $\begin{array}{lllll}13 / 30 \mathrm{p} & 15 / 57 \mathrm{p} & 17 / 55 \mathrm{p} & 18 / 60 \mathrm{p} & 20 / 60 \text { p }\end{array}$ 23/15p 24/45p $25 / 15$ p $27 / 32$ p $28 / 50$ p $29 / 80$ p $30 / 35$ p $35 / 60$ p $40 / 65$ p $42 / 50$ p $46 / 100 \mathrm{p} 49 / 30 \mathrm{p} 50 / 30$ p $66 / 40 \mathrm{p} \quad 71 / 16 \mathrm{p}$ 81/20p. Linears and Regs $555 / 25 \mathrm{p}$ 741/16p 747/40p 1458/40p 7805/60p $7812 / 60 \mathrm{p} \quad 7815 / 60 \mathrm{p} \quad 7818 / 60 \mathrm{p} \quad 7824 / 60 \mathrm{p}$ $78 \mathrm{~L} 05 / 45 \mathrm{p} \quad 78 \mathrm{~L} 12 / 45 \mathrm{p} \quad 78 \mathrm{~L} 15 / 45 \mathrm{p} \quad 7905 / 90 \mathrm{p}$ $7912 / 90$ p $7924 / 90$ p. Many more. SAE list 25 p P\&P. 22 Oakfield Road, Croydon, Surrey.

Record Accessories

STYLII, CARTRIDGES FOR MUSIC CENTRES \&c. FREE List No. 29. For S.A.E, includes Leads, Mikes, Phones, etc. FELSTEAD ELECTRONICS (EE), LONGLEY LANE, GATLEY, CHEADLE, CHES SK8 4EE.

Kits

CONSTRUCT YOUR OWN VHF TRANS. MITTEER (not licensable in UK), hand-held, range 500 yds. Complete kit $£ 5 \cdot 25$. NEW SERVICE:-PCB's produced from your exact drawing 17 p sq in. WEBB ELECTRONICS, 41 Winwick Street, Warrington.

Books and Publications

INTRODUCTION TO MICROPROCESSORS and Computing. 50 pages of diagrams and explanation to get you stanted. Price $£ 2 \cdot 30$ plus 45 p postage. EDUCATIONAL DATA AND TECHNICAL SERVICES, 59 Station Road, Cogenhoe, Northampton NN7 ILU.

Complete repair information any requested T.V. e5 (with diagrams $\approx 5 \cdot 50$). Any requested service sheet for 21 plus SAE. SAE brings newaletter \& special offersservicf sheets from 50 p, bargain vouchers, unique publications

AUS (EE)
76 Church St., Larkhall, Lanarkshire.

SPECIAL $\frac{1}{2}$ PRICE OFFER i $: 8$ "RIGHT FROM THE START"

The only PRACTICAL Home Study Course for you! Projects and experiments introducing Audio, Radio, Logic and Measurement techniques,
A progressive practical MINIMUM MATHS course at a SPECIAL SUMMER OFFER price of only $\mathbf{1 1 7}-50$ covering all necessafy components, including printed circuit type solder boards.
The profusely illustrated MANUAL, aspecially written for the beginner, may also be purchased separately for ONLY $£ 5 \cdot 00$.
Prices include P. \& P., etc. C.W.O. to:

MAIL ORDER PROTECTION SCHEME

The Publishers of Everyday Electronics are members of the Periodical Publishers Association which gives an undertaking to the Director General of Fair Trading to refund moneys sent by readers in response to mail order advertisements, placed by mail order traders, who fail to supply goods or refund moneys owing to liquidation or bankruptey. This arrangement does not apply to any failure to supply goods advertised in a catalogue or in a direct mail solicitation.
In the unhappy event of the failure of a mail order trader readers are advised to lodge a claim with Everyday Electronics within three months of the date of the appearance of the advertisement, providing proof of payment. Claims lodged after this period will be considered at the Publisher's discretion. Since all refunds are made by the magazine voluntarily at its own expense, this undertaking enables you to respond to our mail order advertisers with the fullest confidence.
For the purpose of this scheme, mail order advertising is defined as:- 'Direct response advertisements, display or postal bargains where cash had to be sent in advance of goods being delivered. 'Classified and catalogue mail order advertising are excluded.

TAMTRONIK LTD (${ }^{\text {gemp }}$)

217, Toll End Road, TIPTON, West Midlands DY4 OHW TEL:021-557-9144

Kits can be supplied excluding P.C.B's and/or case. Send SAE for details naming kit and kit reference and free catalogue.

TRADE \& EDUCATIONAL.
 ENQUIRIES WELCOME

minimum
ORDER 23
P\& PRICES INCLUDE

A Vero-board(s)
With screen printed component layout
Tag strip
As E but with exclusions-Please ask for details
G Dil and/or tranaistor sockets and/or soldercon pin
H Hardware includes Switches, Knobs, Lamps \& Holders, Fuses \& Holders, Plugs \& Sockets, Microphones, Transformers, Speakers, Meters, Relays, Terminal Blocks, Batfery Connectors, etc. BUY excludes nuts, boits, washers, connecting wire
As H but with exclusions- P
K As H but including connecting wire
Suitable Case(s)
Sultable Case with Screen printed facia.
Full kit with professional finish incorporating all prime features including screen printed PCB and case where appropriate

Doing-it-Digitally TTL ELECTRONIC

 TEST BEDComplete kit E040
£26. 40
Components for
first 6 parts E041 £4-95 (including additional components)

TELE-TEL

Nov. 78
Ref. E044
Subscribers phone call charge meter
A kit with a professional finish similar to magazine photograph but Includes provision for 3rd digit.
An aluminium subfacia panel is aiso provided with screen printed access to preset potentiometers.
PCB
designed to incorporate 3rd digit facility and is screen printed for ease of assembly.
Basic kit (2 digits) $£ 24 \cdot 50$ (s digits) $228-00$

BARGAIN CORNER

$100 \times 1 \mathrm{w} 1 \mathrm{k}$ carbon resistors 30p $10 \times 1 w 5 \% 1 \mathrm{k} 5$ resistors 10 p $10 \times 1 w 5 \% 7 \mathrm{k} 5$ resistors $\quad 120$ $10 \times 1 \mathrm{w} 5 \% 100 \mathrm{R}$ resistors 12 p $10 \times 6 \mathrm{w} 5 \% 390 \mathrm{R}$ wirewound 50 p $10 \times 47 \mathrm{u} 10 \mathrm{v}$. Axial Elec. Caps ${ }_{25 \mathrm{p}}$
$4 \times$ NE55 Timer $\quad \mathbf{2 1 - 0 0}$
Plug in mains PSU
$3 \mathrm{v} / 6 \mathrm{v} / 9 \mathrm{v} / 12 \mathrm{v}$ DC
300 mA sultable for
calculators \& T.V. Games $\mathbf{2 2 - 9 9}$

CHRONOSTOP

Aug. 78 Ref. E032

SPLIT \& TAYLOR lap timing modes plus normal start/stop operation.

A kit with a professional finlsh Including
CASE with screen printed
PCB with a screen component Iayout Full Assembly Instructions PRICE INC. VAT $£ 33.95$

SOLDERING IRONS \& ACCESSORIES

Solder-Savbit 20 inch
Ideal for Höme Constructor

Tamtronik Ltd. reserves the right to change kit content without notice where necessary to incorporate current modifications or to make valld substitution for temporarily unavailable components. The majority of the kits we advertise can be supplied from stock or complled at short notice from component stocks held, but when ordering you should be prepared to ale your order.

for every one you send in for processing by the Everyday Electronics Colour Print Service!

Send no money

But don't send any money until you see the colour of your prints. We're so confident in the reliability of the service and the quality of our prints, every one of which is checked by professionals at our laboratories. Luxury colour prints
You'll be amazed at the crisp, sharp, high-definition sheen finish of the prints we supply . . . borderless to give you maximum picture area. And coming with the prints will be your FREE Kodak colour film, worth around $£ 1$, the same size as the one you sent us for processing.

Unbeatable value

What about prices? Ours are certainly much less than those you would pay in most shops - quite apart from the free film you get every time we develop and print for you.
Our Colour Print Service charges you only 15p for each print, plus 85 p towards developing, postage and packing. The minimum charge is 85 p inc. VAT (that is, if no prints can be made). The offer is limited to the UK, Eire, CI and BFPO.

Reliability at less cost

Photography can cost you a lot less these days. If you know how to go about it. Like the hundreds of thousands of magazine readers who are delighted with this reliable Colour Print Service -and the replacement films that come FREE to every customer! So why don't you give it a try? Here's what you do. Send us any make of colour print film inside the envelope enclosed in this issue. Or fill in the coupon below and send it with your film in a strong envelope to: The Everyday Electronics Colour Print Service, Freepost, Teddington, Middlesex, TW11 8BR. No stamp is required.

More benefits to you

You benefit in two additional ways. Firstly, you enjoy a personal service with every care taken over each individual order. And secondly, you pay only for what you get - with no credit vouchers as with many other companies. An invoice comes with your prints so it's a straight business transaction.

Use this label if you haven't got an envelope, or pass it to a I friend who might like to take advantage of our offer. It is I used to send your prints and free film.
I Offer Exc. Minolta \& Sub-minianure. Roll Film IOp surcharke 400 ASA 20p suicharzec).
From: Everyday Electronics Colour Print Service, Freepost, Teddington, Middlesex TW11 8BR
Mr/Ms
Address - I

A quality range of British macte electricat acces- sories plus a How to.." book. Doyour own home

 efectrical work with complete conficince See cat pages 129 to 134

Aad-on bass pecal um tor organs. Has excenten bass guitar stop for guitarists accompaniment. Specification in our catalogue.

This superb organ-build the first working section for just over $£ 100$. Full specification in our catalogue.

 |IIIIIIIIIIIIIIIIIITII
 The 3800 synthesiser build it yourself at a fraction of Fulldetails one ready-made

กinㄹpulin

ELECTRONIC SUPPLIES LTD

All mail to:-
P.O. Box 3, Rayleigh, Essex SS6 8LR Telephone: Southend (0702) 554155
Shop: 284 London Road,
Westcliff-on-Sea, Essex
(Closed on Monday).
Telephone: Southend (0702) 554155

กTEPLI®

A supert-technical bookshop in your homel All you need is our catalogise. Post the coupon nowt

- $\Delta \Delta \Delta \Delta \Delta \Delta \Delta$.

Touch operated rhythm generator, the 'Drumisette' Construction details 25 p. (Leaflet MES49). Specifica fionin our catalogue.

A wide range of disco accessories at marvellous prices. Our cataiogue has all the details.
B

[^0]: All reasonable precautions are taken to ensure that the advice and data given to readers are reliable. We cannot however guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]: I enclose payment of $£$. Signed:
 Send this application form, with payment, to:
 Room 2613 King's Reach Tower, Stamford Street, London SE1 9LS. Allow 4 weeks for processing.

[^2]: David George Sales r/o 74 Crayford High Street, Crayford, Kent, DA1 4EF.

