Jasy to bulld projects for everyone

 -Give di a Whind 50, 5

Iron out the little problems...

The TCSUI soldering station with the XTC 50 watt - $24 / 28$ volt soldering ifon or the CTC 35 watt - soldering ron to pin point precision and exceptionally fast recovery time. We have put at least twice as much power into irons which are already well known for good recóvery time. The temperature control stops themfrom over-heating: the" fail-safe" electronic circuit provides protection even if the thermocouple fails TESUI Soldering station £38.10 XTC and CTC irons £14.85 inclusive of VAT and P.\&P.

Model SK3 Kit Model SK4 Kit

Model CX 17 watts
(illustrated) a miniature iron with the element enclosed tirst in a ceramic a muniature iron with the element enclosed fist in a ceranic
shatt then in a staindess steef. Virually leak-tree Only $7 / 5$ shatt then in a staintess steel. Vititually leak-tree Only 7 Range of 5 other bits available from 4 " down to $3 / 64$

Model X25-25 watts

A general purpose iron aiso with a ceramic and steel shatt to give you toughness combined witn near-perfect insulation Elted with $1 / 8^{\circ}$ bit and priced at E4.37 inclusive of VAT and P\&P Fange of 4 other bits availabie.
Model MLK Kit
The soldering iron in this kitcan be ogeeated fromiany ondinary car battery It is fitted with 15 teet flexiple cable and battery clios Packed in a stong
plastic snvelope it can be left in a plastic envelope it can be left in a car, a beat or a caravan teady 103 soldering in the field. Price $£$

Model SK1 Kit

This kit contains a 15 wat miniature soldering iron, completec with 2 spare bits, a coil of solder, a heat sink and a tooklet How to solder' Priced at E6.48 inclusive ol VAT and P \&

Mayflower House, Armada Way,
Plymouth, Devon.
Te: 0752 67377/8 Telex: 45296

...with Antex

The ANTEX multi purpose range of solis 19
equipment is fast becoming a must for eviry home. Built with precision for long life, each iron is fully tested and guaranteed.
ANTEX soldering irons are made in England
to strict local and international standards of safety.
Our name for reliability is spreading from all over Europe to U.S.A to Japan and to many other countries.

Stocked by many wholesalers

and retailers or direct from

us if you are desperate.

WATFORD ELECTRONICS
 35 CARDIFF ROAD, WATFORD, HERTS, ENGLAND
 MAIL ORDER, CALLERS WELCOME. Tel. Wattord $40588 / 9$

ALL DEVICES BRAND NEW, FULL SPEC. AND FULLY GUARANTEED ORDER DESPATCHED BY RETURN OF POST. TERMS OF BUSINESS: CASH/CHEQUE/ INSTITUTIONS' OFFICIAL ORDERS ACCEPTED. TRADE AND EXPORT INQUIRY WELCOME, P\&P ADD SAP TO ALL ORDERS UNDER EIO.00. OVERSEAS ORDERS

VAT
Export orders no VAT. Appicable to U.K. Customers only. Unless stated otherwl se,
all prices are exclusive of VAT. Please add 8% to devices marked *. To the rest add
We stock many more items. It pays to visit us. We are situated behind Watford Football Saturday 9,00 am- 6.00 pm . Ample Free Car Parking space available.
POLYESTER CAPACETORS: Axial lead type (Values are in $\mu \mathrm{FF}$
$460 \mathrm{~V}: 0.001,0.0015,0.0022,0.0033 \mathrm{zp} ; 0.0047,0.0068,0.01,0.015,0.0189 \mathrm{p}: 0.022 .0 .033,10 \mathrm{p}$

 FEED THROUE

 $25 \mathrm{p} ; 100027 \mathrm{p} ; 150030 \mathrm{p} ; 220041 \mathrm{p} ; 330052 \mathrm{p} ; 470054 \mathrm{p} ; 16 \mathrm{~V}: 10,40,47,687 \mathrm{p} ; 100,125 \mathrm{8p} ; 220$,

TANTALUM BEAD CAPACITORS $35 \mathrm{~V}=0-1 \mu \mathrm{~F}, 0-22,033,0-47$. $0.68,1 \cdot 0,2 \cdot 2 \mu \mathrm{~F}, 3.3,4 \cdot 7,6 \cdot 825 \mathrm{~V}$. $1-5,1020 \mathrm{~V}: 1596 \mathrm{~V}: 10 \mu \mathrm{~F}$ 13p each $47,10040 \mathrm{p}, 10 \mathrm{~V}: 22 \mu \mathrm{~F}, 33,6 \mathrm{~V}: 47$, 68, 100, 3V: $68,100 \mu \mathrm{~F} .20 \mathrm{p}$ each				TIOMET GEN) Track. 1 alues K\&2K OII		$\begin{array}{r} \text { igle } 27 \mathrm{p} \\ 27 \mathrm{p} \end{array}$
MYLAR FILM CAPACITORS $100 \mathrm{~V}: 0.001,0.002,0.005,0.01 \mu \mathrm{~F} 6 \mathrm{p}$ $0.015,0.02,0.04,0.05,0.056 \mu \mathrm{~F}$ 7p $0-1 \mu \mathrm{~F}, 0.29 \mathrm{D} 50 \mathrm{~V}=0-47$ 11p					ing D	
			5 K .	dual	ster	
			SL	0	IOME	
MINIATURE TYPE TRIMMERS						
2-5: 6pF, 3-10pF, 10-40pF 5-25pF, 5-45pF, 60pF, 88 pF				$\mathrm{K} \Omega$ dua		
				Gra	Beze	22p
COMPRESSION TRIMMERS			PRESET POTENTIOMETERS			
$\begin{aligned} & 3-40 \mathrm{pF}, 10-80 \mathrm{pF}_{x} 25-190 \mathrm{pi} \\ & 100-500 \mathrm{pF} \end{aligned}$		$\begin{aligned} & \text { 25p } \\ & 33 \mathrm{p} \end{aligned}$	Vertical \& Horizontal$0-1 W 50 \Omega-5 \mathrm{M} \Omega$ Miniature			
POLYSTYRENE CAPACITORS 10 pF to $1 \mathrm{nF} 8 \mathrm{p} ; 1.5 \mathrm{nF}$ to 47 nF 10 p .			0-25W $200 \Omega-4.7 \mathrm{M} \Omega$ Vert			
SHLVER MICA (Values in pF) 3-3,			RESISTORS-Erie make 5% Carbon Miniature High Stability,			
$4-7,6-8,10,12,18,22,33,47,50,68$, $75,82,85,100,120,150,2209 p$ each $250,300,380,360,390$.						
			$\begin{array}{lllll}\text { Low noise } \\ \text { RANGE VAL } & 199 & 100\end{array}$			
			IW 2-2 2 -47M E24 1.5 p , ip			
$250,300,330,360,390 \text {, }$ 600, 820 16p each						
1000, 1800, 2000, 2200 20p each						
CERAMIC TRIMMERCAPACITORS						
2-7pF, 4-15pF, 6-25pF, 8-30pF 20p						
SOLDERCON PINS* 100 50p; 1000 395p			SPECIAL OFFER			
JACK PLUGS			SOCKETS			
2.5 mm 3.5 mm MONO STEREO	Screened Plasfic chrome body 12 p 8 p 15 p 10 p 23 p 13 p 31 p 18 p					

DIN 2 PIN Loustinkr 345 Pin stidin	Plugs 17p 13g	$\begin{gathered} \text { Sockets } \\ 7 p \\ 8 p \end{gathered}$	$\begin{gathered} \text { In Line } \\ \text { 18p } \\ 20 \mathrm{p} \end{gathered}$	SWITCHES \star Miniature Non-Locking Push to Make 15p Push to Ereaik 25p ROCKER (white) 10A 250 V
CO-AXIAL (TV)	14p	14p	14n	$\begin{array}{ll}\text { SP changeover centse off } & 30 \mathrm{p} \\ \text { ROCKER: (black) orfor } & 104.250 \mathrm{~V} \\ \text { ROCK }\end{array}$
gyano anctited eolours Metal Screened	$\begin{aligned} & 9 p \\ & 12 p \end{aligned}$	5p single肋 double 10p3-way	15p	ROCKER: lluminated (white) Hohts when on: 3 A 240 V ROTARY: (AD SUSTABLE STOP) 1 polel
BANANA 4 mm	14p	12p:		ROEARY: Mains 250 V AC, 4. Amp 45p
2 mm	10p	10p	-	DIL SOCKETS $*$ (Low Profile-Texas)
WANDER 3 mm	7p	78	-	8 pin 10p; 14 pin 12p; 16 pin 13p; 18 pin 20p:
WANDER 3 mm	8 p	8 p		20 pin 27 p i 24 pin 30p; 28 pin42p; 40 pin 35 p .

[^0]

12×3108

"GEDUCATIONAL KITS OF EXCEPTIONAL QUALITY'
 (AUDIO magazina)

THIS IS A POWERFUL RADIO RECEIVER!

The same kit is also 150 other different actual working projects e.g.:

Radio Receiver, Transmitter Amplifler, Audio Generator Signal Tracer \& Injector, Continuity Tester, Telegraph Photoradio Receiver, Radio Recsiver/Microphone Mixer Ammeter, Sound Level Meter, Ohmmeter, Diode \& Transisto Tester. Transparency Indicator Etc., Etc.

The above is just a selection of the circuits availableyou can also design your own circuits with these superb new Denshi-Gakken "EX" construction kits.
No previous experience of electronics is required but you learn as you construct and have a great deal of fun too. The kits are completely safe for anyone to use.
Kits are complete with very extensive construction manuals PLUS Hamlyn's "All-Colour" 160 page book "Electronics" (free of charge whilst stocks last).
ALL KITS ARE FULLY GUARANTEED. Addon sets (to increase the scope of each kit) are available, plus spares and accessories as required. 150 PROJECT KIT £39. 7560 PROJECT KIT $£ 25.75$ 120 PROJECT KIT $£ 33.7530$ PROJECT KIT $£ 18.95$ 100 PROJECT KIT £29.25 15 PROJECT KIT £16.75

Prices include educational manuals, free book, VAT, p \& p (in the U.K.).

Callers at 20 Bride Lane will be very weicome Trade and Educational enquiries invited.
Cheque/P.O./Barclaycard/Access No. (or $14 p$ for illustrated literature) to DEPT. EE

ELECTRONI-KIT LTD.
20 BRIDE LANE, LUDGATE CIRCUS;
LONDON EC4Y 8DX (01-353 6430)

1, ST. MICHAELS TERRACE, WOOD GREEN, LONDON, N22. 4SJ. PHONE 01-888 3206

AN ELECTRONIC "FLIC VERSION OF TWO-UP OR ODDS AND EVENS. We supply a complese kit of parts which includes a strong case and attractive front panel to give the finished game a long life and professiona appearance. full assembly instructions are supplied
If you can solder you can make this great game." An ideal first project to introduce you to electronics
Not only will sut start you on a great hobby but you will own a game which will amuse you and your friends COMPLETE KIT: $65 \cdot 25+8 \%$ VAT FERRIC CHLORIDE Anhydrous ferric chloride in doyble ealed llb, 'poly packs'
PRCIE: 65 p per lb. $+8 \%$ VAT
HEAVY DUTY XOVER 2 WAY 8 OHM
A 2 way 8 ohm H/D Xover suitable for L/S systems up to 100 watt.
Fitted with screw terminals for input and a three position 'HF LEVEL' switch which selects either Flat, ${ }^{30} \mathrm{~dB}$ or- 6 dB .

ONLY $\$ 3.00+8 \%$ YAT
A CRESCENT 'SUPERBUY' Goodmans $5^{\prime \prime} 8$ ohm long throw H/D Goodmans 5
Mounting plate is integral with i/ Mounting plate is integral with L/S chassis and has fixing holes with centres spaced at $5 \frac{1}{4}$ (diagonally)

ONLY $65 \cdot 00+12 \frac{1}{2} \%$ VAT
TELESCOPIC AERIAL $+12 \frac{1}{2} \%$ VAT
II section celescopic aerial.
Extended length: 1 metre ($39 \frac{1}{\prime \prime}^{\prime \prime}$)
Fully closed: 135 mm ($5 \mathbf{z}^{\prime \prime}$)
Fixing: nut and bolt fixing through recess at base of aerial

ONLY 75p EACH!

LOUDSPEAKERS $+12 \frac{1}{2} \%$ V.A.T.
$2^{1 / \prime}(57 \mathrm{~mm}) 8$ or 75 ohm
$2 \frac{1}{\prime \prime}^{\prime \prime}(57 \mathrm{~mm}) 8$ or 75 ohm
(please state impedance reg'd $22^{\prime \prime}(60 \mathrm{~mm}) 8$ ohm (limited stocks) 60 p $2 \mathrm{~L}^{\prime \prime}(70 \mathrm{~mm}) 8$ ohm (limired stocks) 60 p $5^{\prime \prime} 80 h m$ Ceramic 5 El 50 a" "ELAC" 8 ohm 15 W dual cone $E 5 \cdot 00$ 8" "GOODMANS" 'Audiom SPA"
8 ohm 15 WW
$7^{\prime \prime} \times 4^{\prime \prime} 8$ ohm 4 W

LOUDSPEAKERS $+8 \%$ VAT

$2^{\prime \prime}$ "McKENZIE" 8 ohm 75W Bass
£23.62
12 " "McKENZIE" 8 ohm 75W dual cone 2" "MicKENZIE" 8 ohm 75W general purpose
\&18.37

3 KILOWATT PSYCHEDELIC

LIGHT CONTROL UNIT
1000W lighting per channel, max.
This 3 channel sound to lighe unit is housed in a robust metal case, with a sensitivity control for each channel i.e. Bass, middle and treble. Full ineet. ONLY $620 \cdot 00+8 \%$ VAT

MINIATURE TOOL SET A 20 pc. Tool Set, precision made írom quality industrial forged steel. Contents: 1 swivel handle, 3 screwdrivers 1.5 to $3.5 \mathrm{~mm}, 2$ Philips type screwdrivers 3.5 mm ., 2 Philips type screwcrivers,
1 awi, 3 Allen keys $/ .5$ to 2.5 mm ., 5 sockets 3 to 5 mm 5 hex keys 4 to 5 sockets 3 to 5 mm ., 5 hex. keys 4 to price: only $E 3-25+8 \%$ VAT.

BABCLAYCARD

> P\&P' ORDERS UP TO $£ 5$, Add 30 p ORDERS $£ 5-\leqslant 10$, Add 50 p All orders over $£ 10$ post free! Please add VAT as shown. S.A.E. with all enquiries please

Personal callers walcome at 21 GREEN LANES PALMERS GREEN, NI3 ALSO. 13 SOUTH MALL, EDMONTON GREEN, EDMONTON.

BUILD A SYNTHESISER!

Using Dewtrol (Reg'd) PROFESSIONAL MODULES

Over 20 different electronic modules to select what YOU want to build a synthesiser; simple or complex. Start simple and add to it as you can afford. New attractive prices for the long-popular, welltried range of Dewtron synthesiser and other effects modules.

Send 25p for Musical Miracles Catalogue NOW!

D.E.W. LTD.

254 RINGWOOD ROAD, FERNDOWN, DORSET BH229AR

AL120 AUBID AMPLIFIER (With integial
hear sink and short-circuit £11.95

OUTPUT POWER	50
SUPPLY	70
LOADIMPEDANCE	8
TOTAL HARMONIC DISTORTION	05
FAEQUENCY RESPONSE	0
SENSITIVITY	25
MAX HEAT SANK TEMP.	50
DIMENSIONS	45

50 Watts R.M. S.
8-16 ohms
05% Max. (Typically 02%
500 mV
45 deg. C
$192 \times 89 \times 49$ man

Irtroduced to fulfili the demand for a fully protected power amp., capable of driving high quality speaker systems at up to 50 w . with distortion levels below 05% Ideal for domestic use, Discos, P.A. systems, electronic organs etc. The generously rated com-

SPM120

SPM120/45 SMP120/55 SMP120/65
f5.80
$+12 \frac{1}{2} \%$ V.A.
P. \& P. 35 p

ACINPUTS	
SPM $120 / 45$	$40-48 \mathrm{~V}$
SPM $120 / 55$	$50-55 \mathrm{~V}$
SPM120/65	$60-65 \mathrm{~V}$
OUTPUT CURRENT	2.5 A
RIPPLE	7 A .100 mV
	2A. 150 mV

SPM 120 is a fixed voltage stabiliser available with an output voltage of oither $45 \mathrm{~V}, 55 \mathrm{~V}$, or 65 v . Designed primarily for use in audio
applications, the stabiliser which provides output currents up to 2.5 A . operates direct from a mains transformer requiring only the addition of 2 Electrolytic capacitors to complete the s/o protection.

Contral Range	$\pm 12 \mathrm{~dB}$
Dynamic Range	110 dB
Maximum Output	+15 dB
Frequency Response	$30 \mathrm{~Hz}-20 \mathrm{KHz} \mathrm{H} \pm 1 \mathrm{~dB}$
Power Supply	$15-0-15 \mathrm{~V}$.
Voltage Handling fnput	$3 \mathrm{~V} . \mathrm{M} . \mathrm{S}$
T.H.D	005%

Only $155 \mathrm{~mm} \times 65 \mathrm{~mm} \times 50 \mathrm{~mm}$ including the $10 \times 10 \mathrm{~K} 1 \mathrm{in}$ stider potentiometers and knobs which are mounted on a boarc positioned above the circuitry. In the frequency range of 31 Hz to 20 KHz you can cut and boost $\pm 12 \mathrm{~dB}$ with the 10 sliders; each of

VPS30 REGULATED VARIABLE STABILISED POWER SUPPLY £7.60 $\quad+8 \%$ V.A.T.
 PA200
 STEREO
 PRE-AMPLIFIER

Aclnput Maximum	25 V
Voftage Regulation	$2-30 \mathrm{~V}$
Regulated Current	$0-2 \mathrm{~A}$
Incorporating short circuit protection	

This NEW versattle Regulated Variable Stabiliseo Power Supply with short circuit protection and current limiting, is a must for all there is no need to build a separate power supply for each of your proients, with the simple addition of a transformer (old 2033). 0-1ma (ovd 1310 or 1305), plus a suitable shunt, a voltmeter (o/d 1311 or 1306) a a 470 ohm pot (o/d 1896) a $4 \mathrm{K7}$ pot (o/d 18991. it can be used again and again as a self-contain
ELs
£16.55
+12z\%

8.

The PA2OO is kD Si Al. 250 amplifiers.

HEADPHONES

A top quality neadphone with cushioned earpads and heacoand Separate balance, 8 ohms. Frequency 30 or Mono switch. mpedance: 8 ohms. Frequency $30-$
$18,000 H z .0 / n 884, \pm 8.70 .-12 \frac{1}{2} \%$ V.A. $1 . p \& p 70 p$. A brillant compromise between price and perfor-
mance. Supertj stereo eproctuction for the newcomer to HL-Fi, mpertance \& ohms frequency: new
$30.15,000 \mathrm{~Hz}$ ofn $885 . \mathrm{E4,40}+12 \frac{1}{2} \%$ V.A.t. $\mathrm{p} \$ 0$
50 m

B1B
 HI-FI ACCESSORIES

garatlel Trackng GROOV KLEEN

The very latest in automatic record cleaning. Dosi

 ned tus silt all modesn single pliy decks. Simple to fik it is extemely efficient. Complete with two types ofDase sidd thene height extensions, of 8101 . £3.68. $+8 \%$ VAT pap 35 p .

Gassette Tape Editing Kit

Enditles cassette tapes wo be edited and joined easily, 7uickly and accurately- Kit comprises: Tape Splicer ${ }^{(N}{ }^{\omega}$
13.2 mm
2 Precision Tape Cutters. Tape Piarcer, 9 Self-zchesive Labels Reer of Splicing Tape. 3 Windes sind removers 2 . ind inuctions, 911 in GROOV-STAT
The bla Groov-stat seasic reducet Devtralises the
 Cassette Head Cleaner
Esscotial for cleaning of tape beads, capstans and rohers: Pack contains Tape Head Applicator and tape
head polisher toois. Plus bottie of special formula head polisher toois, Pios bottile of special formula
cleaning fluid and fuil insteuctions, oin 832. E0.56. clearing flaid and fall in
$122 \frac{1}{2} \%$ V.AT, p\&op 35 .

FREQUENCY RESPONSE		20 Hz to $20 \mathrm{KHz} \times 18 \mathrm{BB}$	
TOTAL HARMO	NIC DISTORTI	Less than $\%$ \% (Tvicical	-70951
SENSITMTY INPUTS	1. TAPE 2. RADIO TUNER 3 MAGNETICP:U	$100 \mathrm{mv} / 100 \mathrm{~K}$ ohms $100 \mathrm{mV} / 100 \mathrm{~K}$ ohem $3.5 \mathrm{mV} / 50 \mathrm{~K}$ ohms	Foran output 500 mV
EQUALISATION		Within $\pm 1 \mathrm{~dB}$ from20 Hz to 20 kHz	
BASS CONTROL RANG		$\pm 15 \mathrm{dBs}$ ar 75 Hz	
treble controlrang		+10.20abs ar 15	
SIGNALINOISE RATIO		Better than 65 dibs (All inpurs)	
InPUT OVERLOAD		Betrer than 2dBs (All ioputs)	
SUPPLY		35 to 706 v	
Surt		33mm	

-

ADAPTORS

$A C$ DC enables a large range of battery powered radios, recoriers, calculators to be run off the mains, $1220-240 \mathrm{~V}$ AC) Switchable for 6
75 or 9 volts. Eurent rating 2.500 mA polarity reversing switch
 DC-DC for use in all cars, boats etc., with pos. or neg. earth for a
regulated output of $6,2.5$ or 9 volis DC at 1 A max. For radios.

CROSSOVER NETWORKS

high to tweeters, low to woofers. Complete with instructions. Fre high to tweeters, low to woofers. Complete with instruction
quency: $3,000 \mathrm{~Hz} .0 / \mathrm{n} 1904 . \mathrm{E1.10}+12 \frac{\pi}{7} \%$ V. A.T. p 8 p 35 p . 2. WAY for 8 ohm speakers up to 30 watts Frequency. 3 KHz a/n
1905. f1. $65,+12+5$ V.A.T. o8p 350 . 3-WAY for 8 ohms speakers up to 30 wats. Frequency: 800 Hz and
$4.5 \mathrm{KHz}, 0 / \mathrm{n}$ 1906. $£ 2.95,-12 \% \%$ V.A.T. p\&p 35 p .

BI-PAK

DEPT. E.E.1, P.O. BOX 6, WARE, HERTS.

METERS

MICROPHONES

DYNAMIC CASSETT

For equipment requiring a high quality microphone. Sturdy, sold moulded body in black with neat chrome surround, Pink-up pattert is
omnidirectional. On/Off switch, 1 metre of tough lead with floating 2.5 omnidirectional. On/Oft switch, 1 metre of tough lead with froating 2.5
and 3.5 mm plugs. Matching moulded strut Impedance: 200 ohms. and 3.5 mm plugs, Matching moulded strut mpedance: 200 onms, 120 mm of 1326 .f $1.50 .+12 \frac{1}{2} \%$ V.AT- p\& p 35 p .

DYNAMIC MICROPHONE

Superior quality portable cassette recorder mike with built-in remote
contral switch and lead fitted with 5 -pin 240° DIN plug (remore control switch and liN fitted with -pin ${ }^{\text {swith }}$ and 3 pin DiN plug (microphone). Provides a direct replacement for those supplied with recorders. With detachable stand.
Omnidirectionat
Impedance: 200 ohms. Frea response: 100 to Omnidirectional Impedance: 200 ohms. Frea response: 100 to
$10,000 \mathrm{~Hz}$ Sensitivity: 79 dB at 1.000 Hz /o/n $1327.22 .85,+12 \frac{1}{2} \%$ VAT. p\&p 35p.
RE-317: DYNAMIC MICROPHONE
tighly sensitive, high-grade desk or hand mike suitable for use with many popular cassette docks. Incorporates On/Off switch and 1 metre Oadrith maitded standard jack plag. Complete with desk stand VA.T.DR 35 p
OMNIDIRECTIONAL CARDIOID
Powered by a :ly battery located within the aluminium body. Satin Silver finish with front disk pratection to the diaphragm housing,
On/Off switch. Also with Busby type windstield, $y^{\text {an }}$ bracket and stem and extremely supple cable. Consumption: 0.2 mA from tive battery providing approx, 8-10.000 hours continuous lifc. Impedarice. 600 ohms Sensitivity. 70dB, Frequency $30-16,000 \mathrm{~Hz}$,
dia +267 mm oin $1329 . \mathrm{E12.80}$. $12 \frac{18}{2 \%}$ V.A.T. p\& 35 p .
UNIDIRECTIONAL CARDIOID
Dual tmp, 600 and 50000 ohms Respanse 50 to $14,000 \mathrm{~Hz}$.

STANDS

GOOSENECK CHROME FLEXIBLE HOLDERS

FLOOR STAND Hewy cheme Srow-away fee with rubber ende tor

BOOM ARM for use with the above stand Heavy chromed meta it gives 30° reach from the stand, of 1337 E8.00. $+123 \%$ V. AT. D8p

WINDSHIELD COVERS

1531 Medum

AUDIO LEADS

MAGENTA ELEGTRONIGS LTD
 EHI2. 98 CALAIS ROAD, BURTON-ON-TRENT, STAFFS. DEI3 oHL. PHONE

E.E. PROJECT KITS

Make us YOUR No. I SUPPLIER of KiTS and COMPO-
NENTS for E.E. Projects. We supply carefully selected sets
of parts to enable you to construct E.E. projects. Appropriate hardware-nuts, screws, I.C, sockets are Included. Each project kit comes complete with its own FREE COMPONENT IDENTIFICATION SHEET. We supply-You construct.

FUZZ BOX Dec. 78. £\&-36 inc. case.
VEHICLE IMMOBILISER DEC, 78. £8.77 case extra 71 p .
WATER LEVEL ALERT. Nov. 78. E4.77 inc. cases.
"HOT LINE" GAME. Nov, 78. £3.83 ess case a rod.
AUDIO EFFECTS OSCILLATOR. Nov. 78. £2.75inc. board a case

SURSCRIBERS TELE TEL, METER. Nov.
FUSE CHECKER. Oct. 78. £1.40 inc.
C.MOS RADIO. Oct. 78. $£ 7.55$ inc. case. TREASURE HUNTER. Oct. 78. £14.20 inc. cases less handie \& coif former.
R.F. SIGNAL GENERATOR. Sept. 78. $215 \cdot 30$ less case.
GUITAR TONE BOOSTER. Sept. 78. \$4-13 inc. case and p.c.b.
SOUND TO LIGHT. Sept. 78. $£ 5-77$ inc. case.
FILTER. \&1. 25.
SLAVE FLASH. Aug. 78. £2.65 inc. case A.F. SIGNAL GEN. Aug. 78, 28.21. A.F. SIGNAL GEN, Aug. 78, LOGIC PROBE. July 78. $£ 2 \cdot 29$ inc. case. QUAGMIRE. July 78, $£ 7$ - 31 less case IN SITUTRANSISTOR TESTER, June 78. 84.49 inc. case.

VISUAL CONTINUITY CHECKER. June 78. 22 - 96 inc, case \& probes.
TELE BELL. June 78. E10:14 case exträ
FLASHMETER, May 78. ₹8-87, case extra POCKET TIMER. April 78. 22.82 inc case.

WEIRD SOUND EFFECTS GENERATOR. Mar, 78, $23-64$ inc, case, CATCH-A-LIGHT. Mar, 78 . $84-36$
case extra $21-34$. Switch cases $47 p$.
CHASER LIGHT DISPLAY. Feb. 78 , £19.78. inc. p.c.b. case extra £3.54. AUDIO VISUAL METRONOME. Jan. 78. el4-17 inc. case.

RAPID DIODE CHECK. Jen, 78; $21-97$ inc. case.
RUTOMATIC PHASE BOX. Dec. 77 E9-45 inc. p.c.b. \& case. VHF RADIO. Nov, 77. $\mathfrak{z 1 1 - 0 8}$ inc. case. ULTRASONIC REMOTE CONTROL NRAVANISTOR TESTER. Oct. 77.

TREASURE LOCATOR. Oct $77,88-77$ case extra $\mathbf{2}$-32. Less handle \& coil case extra 22 . l . Less handle \&
former. ELECTRONIC DICE. March 77. 84.09 inc Case. MOISTURE INDICATOR. June 77. £2-89 inc. case and probe. PHONE/DOORBELL REPEATER. JUIY 77. E4-92 inc. case.

SHORT WAVE RECEIVER. Aug. 77 FUZZTONE UNIT. July 77. $25-68$ less ADD-ON CAPACITANCE UNIT. Sept MATNS TESTER May 78.60 p fess plug Araldite 72p.ic TOUCH SWITCH Jan CAR SY STSEM ALARM Feb, 78.12 .88 case extra \&1.56. CAR BATTERY STATE INDICATOR Sept 78 , £1.54 less case inc. PCB.

ALL PRICES INCLUDE VAT AND FIRST CLASS POST: ADD 15p TO ORDERS UNDER E5. COPIES OF EE. CONSTRUCTIONAL ARTICLES 39p. CATALOGUE - SEND 3×90 STAMPS.

TEACH - IN - 78
 COMPLETE KIT $£ 14.50$

IMCLUDES FREE COMPONENT IDENTIFICATION CHART. TEACH-IN REPRINTS 39p. EACH PART.
ALL 12 PARTS AVAILABLE.

1979 ELECTRONICS CONSTRUCTORS CATALOGUE

HAVE YOU GOT YOUR COPY YET? MAGENTA'S NEW CATALOGUE INCLUDES MANY NEW PRODUCTS - CAREFULLY CHOSEN FOR EVERYDAY ELECTRONICS READERS, PRODUCT DATA AND ILLUSTRATIONS MAKE THE MAGENTA CATALOGUE AN INDISPENSABLE GUIDE FOR CONSTRUCTORS, FULEY INCLUSIVE PRICES RIGHT NEXT TO THE PRODUCTS MAKE ORDERING EASY. NO MINIMUM ORDER - ALL PRODUCTS STOCK LINES. FIRST CLASS DELIVERY OF FIRST CLASS COMPONENTS. SEND FOR YOUR COPY AND SEE HOW EASY IT IS TO USE THE MAGENTA CATALOGUEI
WRITE TODAY ENCLOSING 3×9 STAMPS.

MULTIMETER TYPE $4 . \quad 1,0,1$
with probes $2^{\prime \prime} \times 3_{2}^{\prime \prime} \times 1^{\prime \prime} \times 5 \cdot 95$
wh probes $2^{\circ} \times \frac{31^{\prime \prime}}{} \times 1^{\prime \prime}$ 5.95. O.p.v. with case and probes $5^{2}, 20,000$ o.p.v. ANTEX X25 SOLDERING IRON 25 W . deal for alectronics \&3-95.
SOLDERING IRON STAND. ANTEX OLDERIN.
DESOLDER BRAID, 620,
HEAT SINK TWEEZERS. 13p.
DESNLDERPCMP, Easy to us
DENTISTS MIRROR. Adjustable $£ 1-70$. JEWELLERS EYEGLASS, 93p
TRIPLE HAGNIFIER, ミi• 15 .
BUZZER. SV 74. 12 V . 77 p .
TELEPHONE PICK-UP COIL. 65p.
SPEAKERS. Mintature 8 ohm 59p. 64
ohm 85 p . 80 ohm $£ 1 \cdot 15$.
EARPIECES. Crystal 38p. Magnetic 15p.
STETHOSCOPE ATTACHMENT fits
ur earpieces 58p.
HEADPHONES. MONO. $2 K$ Padded
uperior Sensittle. $£ 2 \cdot 98$.
HEADPHONES. STEREO. 8 ohm
INTERCOM. 2 STATION, E5-95.
INSTRUMENT SCREWDRIVER SET.
6 precision screwdrivers with blades from
.8 mm to 3.8 mm . 21.98 .
MICROPHONE DYNAMIC 600 OHM
and plastic desk stand. E1-25.

DOING IT DIGITALLY

New Series-complete kit or separate parts IN STOCK NOW for FAST DELIVERY by FIRST CLASS POST. All top quallty components as specifled by Everyday Electronics, Our kit comes complete with FREE TTL and COMPONENTIDENTIFICATION CHART. Follow this educational series-start today-and learn about digital electronics. CHART. Follow this educationa

With nopreviousknowledge you can build thisradio
 The DORAM Electronic Hobble Catalogue is now avallable.

 onvix23:FREE 100 page Instruction Book FREE BOOK Hamiyn's 150 page 'Electronics' and 99 other projects as well including:Electric Organ: Electronic Gun Automatic Lamp Fiashing Circut
Altermaing Carent Generator. 2 Transistor I.C. Electronic. 2 Tran
Siren

2 Transistor Wireless Microphone. Wireless Water Shortage Warring Device. 1.transistor - 1 Cl Li Detector. Basic cincuit of Electroric limer Light and Sound Morse code Practice Circtil: Wireless Morse Telegraph Electronic Bird /speaker ypel
1 Iransistor - 16 amplifion simnai tracer. Siteless water feve warsing device: Pyysical agility tesie

AC Exidge (for Capacion) Touch bazzer.
Electronic horm. Ltght Contral Cricuit:

Yes in one 100 projects . . and its as simple to change

This electronic Kit is educational for the learner while useful to the more advanced student. It's ingenious, it's safe and it's funt The circuitry is varied by your positional changes of the plug-in blocks on the basic matrix. All blocks are marked with electrenic symbols. It's as easy as "Painting by Numbers', and you're learning all the time.

You must have one of these Kits! Just $£ 23.55$ is great value for 100 projects, and the knowiedge you gain is priceless.

IECHNICAL SPECIFICATION

- Shock resistant ABS case

- Audio Qutput: 500 mW (from internal output module and loudspeaker).
- Size: $260 \mathrm{~mm} \times 200 \mathrm{~mm} \times 50 \mathrm{~mm}$
- Batteries: $4 \times$ HP7 (Not Supplied).

Accessories provided:

- Crystal Earpiece.
- Aerial \& Connecting Wire (ferrite red aerial built in)
- Ciips \& Test Rods

To Doram Electronics Lid PO Box TR8 LS12 2 UF (0 -551 Kit(s) at $£ 24.50$ ea ($£ 23.55+95 \mathrm{p}$ \& Please send a Hobbies Catalogue
1 enclose cheque/PO for $\&$
1 am paying via National Giro Centre Bootie Lancs to your Account Number 00/643/7257
 1 expect delivery within 25 days Signature
Name.
(BLOCK LETIERS) Address

Doram Electronics Ltd Reg 1155856
EE 1.79

Personal Shoppers EDSWARE ROAD LONDON W2 Tal: $01-7238432.9 .30 \mathrm{am}-5.3 \mathrm{pmm}$. Haff day Thursday. ACTON: Mail Order only. No callers GOODS NOT DESPATCHED OUTSIDE UK

ACE MAIITRONIX LTD
Deat. Tootal Street

You must try our fabulous new range of 'ELEKITS' for an easy build introduction to electronics. All kits, and there are many to choose from, come complete with case, easy to follow instructions and ALL COMPONENTS. Battery powered (not supplied) for safety and economy ELEKITS will give hours of enjoyment learning as you build. A small selection from the 'ELEKIT' range is shown below. Wakefiedt WYorkshire WFi war Watch this space for future kits

WATFORD ELECTRONICS

35, CARDIF ROAD, WATFORD, MERTS, ENGLAND.
MAIL ORDSR CALLERS WBL CONE. Tet: Watord Aoss3j
Send S.A.E. for descriptive leaflet.
VAT please add 8% to all kits. P \& P 30 on orders under £10 00

ENJOY YOURSELF! Build a

'SUNDAY KIT' this weekend

American Patrol FM101K Siren Kit * illus. $\quad £ 7 \cdot \mathbf{7 0}$

Electronic Bird Kit FM102K \&6. 20°

Dawn Bird Kit FM103K E6.90*

Water Detector Kit FM104K

Cycle Flasher Kit "illus.

FM105K E6.45*

2 Diode Buzzer FM107K Time Kit

Photo Electric FM108K
Switch £6. 20^{*}

Flashlight \& Mini FM109K Lighthouse Kit \&6.20

Mini Electronic FM111K
Organ
£7.95*

TECHNICAL TRAINING IN ELECTRONICS AND TELECOMMUNICATIONS

ICS can provide the technical knowledge that is so essential to your success; knowledge that will enable you to take advantage of the many opportunities open to you. Study in your own home, in your own time and at your own pace and if you are studying for an examination ICS guarantee coaching until you are successful.

City and Guilds Certificates:
Telecommunications Technicians
Radio, TV, Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
MPT Radio Communications Certificate
Diploma Courses:
Colour TV Servicing
Electronic Engineering and Maintenance Computer Engineering and Programming Radio, TV, Audio Engineering and Servicing Electrical Engineering, Installation and Contracting

POST OR PHONE TODAY FOR FREE BOOKLET

To: International Correspondence Schools

Dept C268 Intertext House, London
SW8 4UJ or telephone 6229911
Subject of Interest
Name
Address
Tel:
Age:

All you want for Christmas Fast and Easy
 Leave this page open where it will do the most good!

Lektrokit Breadboards
FROM £3.25, inc p \& p and VAT
Hole for hole, top value! Lektrokit breadboards are modular, so they can be linked together to form any size. With a pitch of $0.1^{\prime \prime}$, even the smallest breadboard-217L-can accept 8,14,16 or 18 pin Dil sockets. You just take a component, choose a hole, and push it in.
Model No. 217L 234 L 248L 264R 264 L 264L
Contacts

170	$£ 3.25$	\square
340	$£ 5.75$	\square
480	$£ 6.65$	\square
512	$£ 6.65$	\square
640	$£ 8.32$	\square

Lektrokit

 Super Strip SS2
ONLY £11.05 inc p \& p and VAT

Super Strip accepts all DIP's-as many as nine 14 -pin at a time-and/or TO-5's and discrete components. With interconnections of any solid wire up to 20 AWG.

Super Strip has 840 contact points, combining a power/signal distribution system with a matrix of 640 contacts in groups of 5 . Distribution system has eight bus-bars, each with 25 contact points.

Lektrokit's policy, as you know, is the right product, whatever the project, at the right price. And i's backed by a nationwide network of retailers.

But it could be that, whoever you get to complete your Christmas, doesn't know where the Lektrokit retailers are. So we've included an order coupon to help them-and you out!

You know, almost as weil as we know, where to go to get the components a home projects constructor needs to pursue his hobby.
Either your nearest Lekrokit dealer. Or direct from Lektrokit by mail order.
Because Lektrokit offer the most comprehensive range of breadboarding and testing devices on earth.
Trouble is, the nice people who might give you Lektrokit for Christmas probably haven't the faintest idea what we -or even you-are on about.
So just tick the items you'd particularly like for Christmas. And then leave this page open in a strategic place!

Lektrokit IC Test Clips
ONLY £3.08 inc p \& p and VAT
Ten models to fit all DIP sizes.
Test clip grips IC's without slipping or shorting between pins-makes testing IC's on boards easier, aids removing Model Price and inserting DIP's without darnage. Each IC pin can be brought up to a convenient contact post for hooking test leads or probe connections. IEKTROKIT COMPIETES THE CIRCUIT-FOR CHRISTMAS:
LEKTROKIT COMPLETES THE CIRCUIT-FOR CHRISTMAS!

All I want for Christmas is what I've marked above.
To Lektrokit Limited, London Road, Reading, Berks, RG6 1AZ. Telephone Reading (0734) 669116/7.
Please supply the above (tick items required)-IMMEDIATELY.
CUT OUT THE COMPLETE ADVERTISEMENT AND SEND TO LEKTROKIT
(All prices include packing, postage and VAT. All deliveries include name of nearest Lektrokit dealer-plus a FREE catalogue!)
lenclose P.O./cheque for $£$. .
Name
Address

EDITOR

F. E. BENNETT

ASSISTANT EDITOR

B. W. TERRELL B.Sc.

PRODUCTION EDITOR

D. G. BARRINGTON

TECHNICAL SUB-EDITOR

T. J. JOHNSON G8MGS

ART EDITOR

R. F. PALMER

ASSISTANT ART EDITOR

P. A. LOATES

TECHNICAL ILLUSTRATOR

D. J. GOODING

EDITORIAL OFFICES

Kings Reach Tower, Stamford Street,
London SE1 9LS
Phone: 01-261 6873

ADVERTISEMENT MANAGER

V. PIER!

Phone: 01-251 6727

REPRESENTATIVE

N. BELL WOOD

Phone: 01-261 6727

CLASSIFIED MANAGER

C. R. BROWN

Phone: 01-261 5762

MAKEUP AND COPY

 DEPARTMENTPhone 01-261 6618

ADVERTISEMENT OFFICES

Kings Reach Tower
Stamford Street,
London SE1 9LS

Projects...Theory ...

and Popular Features ...

There are two principal methods of circuit construction in general use. One uses the standard off-the-shelf stripboard which is versatile and suitable for most designs. The majority of projects in EE are built this way. The other method involves a printed circuit board (p.c.b.).

A p.c.b. takes time to produce-or acquire, whereas stripboard, or plain s.r.b.p. for that matter, is usually at hand. Thus if one wishes to commence building a project immediately, the latter methods have the advantage. This is especially so with the smaller projects.
But without doubt, the larger and more complex the circuit the greater the advantage there is in using a printed circuit. A classic example is provided by our 2020 Tuner Amplifier. If a project of this magnitude were tackled using stripboard the task would be irksome and fraught with danger of errors occurring during the making of numerous connections.

A detailed illustrated account of the making of a printed circuit board appears in this issue. This article should interest all readers, including those who may in the end prefer to purchase ready made p.c.b.s from firms specialising in this business.

The constructors own exhibition Breadboard held in London in November was a resounding success. That this hobby attracts people of all ages was well demonstrated by the
enthusiastic throng that turned up each day. We were pleased to meet many of our readers and to have the opportunity of letting them see some of our projects in the flesh. Here's to the next time!

Besides introducing entirely new games electronics is playing a lively part in restoring the popularity of party or parlour games known to our grandparents. The Solid-State Roulette is our latest offering in this field. Then as a complete contrast to the "gaming scene" we revive memories of more innocent childhood amusements with an electronic version of a game of skill. This version of Snap is called I'm First!

Because of matters over which we have little control, this issue of Everyday Electronics may arrive a little late to permit building the larger project Roulette before Christmas. But you should be able to build "Tm First!"- even if you are a beginner-in the time available.

Whatever you build, have fun. And seasonal greetings to you all from all of us at EE.

[^1]
Readers' Enquiries

We cannot undertake to answer readers' letters requesting modifications,
 designs or information on commercial equipment or subjects not published by us. All letters requiring a personal reply should be accompanied by a stamped self-addressed envelope.

Telephone enquiries should be limited to those requiring only a brief reply. We cannot undertake to engage in discussions on the telephone, technical or otherwise.

Component Supplies

Readers should note that we do not supply electronic components for building the projects featured in EVERYDAY ELECTRONICS, but these requirements can be met by our advertisers.

VOL. 8 NO. I
JANUARY 1979
CONSTRUGTIONAL PROJECTS
SOLID-STATE ROULETTE With good simulation of the decelerating ball by E. M. Lyndsell 10
I'M FIRST! Stops arguments when playing "snap" by F. G. Rayer 18
MINI-MODULE: 4-CONTINUITY TESTER For the newcomer (and others) by George Hylton 24
EE 2020 TUNER AMPLIFIER Part 2: Construction of Boards A, C and E by E. A. Rule 35
HEADPHONE ENHANCER More realistic stereo on headphones by R. A. Penfold 43
LIGHTS REMINDER Sounds an alarm if car lights are left on by P. J. Tyrrell 48
GENERAL FEATURES
EDITORIAL 8
FOR YOUR ENTERTAINMENT Digital Sound and Curious Sensation by Adrian Hope 17
DOING IT DIGITALLY Part 4: Counting with flip-flops by O. N. Bishop 20
SQUARE ONE Beginner's page. Resistors and capacitors 26
MAKING PRINTED CIRCUIT BOARDS From raw board to finished p.c.b. by E. M. Lyndsell 28
EVERYDAY NEWS What's happening in the world of electronics 32
SHOP TALK Guidance on component buying by Dave Barrington 34
JACK PLUG AND FAMILY Cartoon by Doug Baker 34
CROSSWORD NO. 11 by D. P. Newton 41
COUNTER INTELLIGENCE A retailer comments by Paul Young 45
BRIGHT IDEAS Reader's hints and tips 46
PLEASE TAKE NOTE Treasure Hunter Licence 46
RADIO WORLD A commentary by Pat Hawker G3VA 53
PROFESSOR ERNEST EVERSURE The Extraordinary Experiments of. by Anthony J. Bassett 54

Back issues of EVERYDAY ELECTRONICS June 1977 onwards (October to December 1977, January to March 1978 NOT available) are available worldwide at a cost of 60 p per copy inclusive of postage and packing. Orders and remittance should be sent to: Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF.
Binders for Volumes 1 to 7 (state which) are available from the above address for $£ 2-85$ inclusive of postage and packing.
© IPC Magazines Limited 1979. Copyright in all drawings, photographs and articles published in EVERYDAY ELECTRONICS is fully protected, and reproductions or imitations in whole or in part are expressly forbidden.
All reasonable precautions are taken to ensure that the advice and data given to readers are reliable. We cannot however guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

THIS unit has been designed to bring the excitement to be experienced at the casino roulette table to your home．It should pro－ vide endless hours of entertain－ ment for all the family especially during the imminent festive holi－ days and other similar occasions．

Roulette is a game of pure chance and this basic requirement has been retained in the solid－state version to be described here．

A roulette wheel contains thirty－ seven digits numbered from 0 to 36 some appearing on red squares and some on black．The basic idea is to forecast on which number， group of numbers or colour（red or black）that a ball will land on a spinning wheel，with a shade under straight＂odds＂being paid out to a correct forecast．For example，the odds offered for an individual number forecast is 35 to 1 ；mathematical odds for this occurrence is 36 to 1 ．The differ－ ence here is the＂ 0 ＂square which is introduced to favour the bank． When the ball lands on this zero special rules are evoked，see later．

ELECTRONIC VERSION

The Solid－State Roulette operates on identical lines to that described， the only difference being a static wheel instead of the usual rotating one．A fast circularly running light（representing the conven－ tional ball）is，by the action of a switch，caused to decelerate and come to rest alongside a number on the static wheel．

The circuit is tailored for 37 positions on the wheel but can

COMPONENTS雨承酸

easily be extended to accommo－ date up to 100 positions．This extended circuit could therefore be employed as a random number generator．

CIRCUIT DESCRIPTION

The complete circuit diagram of the Solid－State Roulette is shown in Fig．1．Since trl devices are being used and current consump－ tion is in the order of 60 mA a mains derived power supply is more economical than batteries

Mains voltage enters the unit
via FS1 and appears across the primary of T1．This is stepped down by T1 and appears across its secondary where half－wave recti－ fication is afforded by D1 and smoothed by reservoir capacitor C1．The d．c．voltage at this point is about 7.8 volts which appears at the collector of TR1．Zener diode D2 holds the base of TRI at $5 \cdot 6$ volts producing about 5 volts at TRI emitter；C2 across the power supply output affords addi－ tional smoothing．

The next stage encountered is the oscillator built around IC1，the much used timer i．c．type 555．This
is wired as an astable multivibrator whose frequency is arranged to be voltage controlled; VRI also affects the frequency.

Transistors TR2 and TR3 form a constant current source which charges up the timing capacitor C4 via VR1. The value of this current is determined by the base current of TR2; TRI acts as a diode to clamp the base of TR2 at 0.6 volts when the former is forward biased. A transistor of the same type number is used for close matching of base/emitter voltage drop.

When S1 is in the SPIN position, C3 is discharged, thus the junction of C3/R3 is almost at 0 volts. Hence base current for TR3 is at a maximum and the oscillator runs fast. If S1 is now turned to the PLAY position C3 begins to charge up via R2 which reduces the voltage across R3 thereby reducing TR3 base current.

The charge current is proportionally reduced and so the oscillator frequency decreases. After a time determined by the values of R2 and C3, the voltage across the latter reaches and exceeds 4.4 volts (rail voltage less drop across TR2 base/emitter) and IC1 ceases to oscillate due to TR3 being biased off.

OSCILLATOR OUTPUT

The output from the oscillator -a train of rectangular pulses-is passed to the BCD/decade counter IC2. Output from here is in binary form. The most significant digit of the binary count acts as a
divide-by-ten (oscillator frequency divided by ten) and this is connected to the input of a second decade counter IC3. Each counter is connected to a decimal decoder, IC4 and IC5. There are as the name suggests ten outputs labelled 0 to 9 .

As seen from a truth table for a 7442 i.c., at any one time nine of these outputs are high (logic 1) and the remaining one low, the position of the latter depending on the binary output count from the counters. Decoder IC4 functions as the "unit" position indicator of the input pulses to IC2 and IC5 the "tens" position indicator. Only four outputs from IC5 are required as will become evident soon, and these are inverted by the Nand gates in IC7 (inputs linked to produce inverting action). Therefore the outputs from IC5 (via IC7) will consist of one "high" and the remainder "low".

DIODE MATRIX

By forming a matrix of diodes (light emitting diodes) at the intersections of the inverted outputs from IC5 with those from IC4, at any one time there will always be one high output from IC5 and one low output from IC4. Thus the l.e.d. connected across these outputs will be forward biased and will light.

A running oscillator will therefore cause all the l.e.d.s to light one at a time. Arranging these l.e.d.s in a circular format will give the impression of movement-a ball rolling around a wheel-the desired effect.
The fourth used output of IC5 ("tens") and the seventh output of IC4 ("units") are fed to the input of IC6 logic circuitry, four NAND gates wired as a two-input nor gate. This gives a high output only when both inputs are low, and this is fed to the reset pins on

IC2 and IC3. Thus the counters are reset to zero after count 37 and the counting sequence starts again to repeat for as long as pulses are produced by the oscillator.

Diodes D3 to D6 are included to eliminate possible damage to the l.e.d.s by reverse biasing.

Low power TTL integrated circuits were used throughout to reduce the overall power consumption to about 60 mA . These devices are recognised by the interjection of $L S$ in the type number, eg, a low power 7400 is identified as 74LS00. Standard types may be substituted but current supply capabilities will need to be increased accordingly.

The prototype Solid-State Roulette used two separate circuit boards, one for the power supply section and the other for the main circuitry. However, there is no reason why a single circuit board cannot be used if desired. The layout is not critical but outputs to
the l.e.d.s should be routed away from the counter inputs to avoid spurious triggering causing the "ball" to skip position towards the end of its motion. This was experienced on an early prototype and could be viewed as more realistic, but was not the effect desired by the author.

The main circuitry was built on a piece of $0 \cdot 1$ inch matrix stripboard size 36 strips x 53 holes and is shown in Fig. 2 which also shows the breaks to be made on the underside.

Although not essential, i.c. sockets were used to facilitate easy replacement of devices should this prove necessary. Use of

Fig. 1. The complete circuit diagram of the Solid-State Roulette including power supply.

R04L3Trs

Fig. 2. The layout of the components on the main circuit board, showing inter-track links and breaks to be made on the underside.

Fig. 3. The layout of the components on the topside of the power supply board and interwiring on the underside.

Photograph of the topside of the completed main circuit board with flying leads attached.

A close-up plan view of the numbered wheel. The angles between the l.e.d.s can be measured to produce a full size wheel.
sockets also enables quick isolation of a particular circuit section from other active elements without the need for desoldering.

Mount the sockets and then make all the inter-track link connections. Some of these can be made with tinned copper wire but others will require insulated wire; for these solid insulated wire will be better than the stranded type.

Next position and solder the resistors and capacitors. The holes for locating VRI may need to be enlarged to accommodate the leads. Finally assemble the transistors and diodes making use of a heatshunt on their leads if you are a novice at soldering.

The next stage is to attach all the flying leads. For this, use stranded insulated wire of sufficient length to reach the wheel assembly and power supply board. There are eighteen leads in all so it is a good idea to use as many different colours as possible for easy identification later.

POWER SUPPLY BOARD

The power supply board is constructed on a piece of 0.1 inch matrix perforated board sixe 38 x 26 holes. The layout of the components on the topside and the interwiring on the underside of the board is shown in Fig. 3. The transformer is secured to the board by means of 4 BA , bolts and shakeproof washers. One of these fixings is fitted with two solder tags for earthing purposes, one on the topside and the other on the underside of the board.

Power supply lines, 0 V and +5 V from power supply board to main board are via terminal pins on the former to allow easy separation and connection when fitted in the case.

When the power supply board is completed, it should be tested. Connect a voltmeter set to 10 V d.c. across the two terminal pins. The meter should indicate 5 volts or very close to this value. Only if this is so is it safe to connect to the main board later.

WHEEL

The wheel in the roulette game is made up of thirty-seven l.e.d.s D7-D43 equispaced around the circumference of a circle 200 mm in diameter.

In the prototype, the l.e.d.s were fitted to a circular panel of 2 mm thick cardboard but can be plywood or hardboard. The overall diameter of this panel will be decided by the internal diameter of the roulette bowl; a 254 mm diameter (10 inch) plastic flower pot tray was used with the lower section removed. This was later sprayed matt black. Alternatively, a sandwich cake tin, or the plastic coil cover employed in the Treasure Hunter in the October 1978 issue could be used.

Prepare the circular panel to fit the bowl chosen and drill the holes to suit the l.e.d.s. In the model shown, Letraset and coloured paper were used directly onto the card panel. It is recommended that this lettering be carried out before fitting the l.e.d.s and protected by
clear varnish or similar, and then the panel glued to the bowl.
Fit all the l.e.d. mounting clips to the complete panel and then secure the l.e.d.s so that all cathodes are facing innermost and

The completed prototype roulette viewed from the underside with the base panel removed, showing positioning of the boards.
then wire up the 37 l.e.d.s according to Fig. 4. Use tinned copper wire for anode bus bars.

The SPIN/PLAY switch is mounted at the centre of the wheel and should be fitted next. It only remains to connect the 14 flying leads from the main board to the l.e.d. complex, board to S1 and the tested power supply board to complete the electronic construction.

FINISH

The appearance of the finished product will be the personal choice of the constructor, but for those wishing to build a unit similar to the prototype details are contained in Fig. 5.
A single piece of self-adhesive green baize with a rectangular cutout covered the whole of the unit, the cut-out allowing the "table" to show through. The latter was produced using Letraset and coloured paper and then protected by a transparent plastic film.

TESTING

With Sl set to the SPIN position and VR1 set almost fully clockwise, plug the unit into the mains and switch on. The l.e.d.s will all appear to be on and flashing on and off so as to produce a sensation of fast clockwise motion. Turning S1 to play will cause this motion to reduce speed with fewer and fewer l.e.d.s appearing to be on until there is only one moving very slowly which eventually and definitely comes to a rest.

Board mounted control VR1 controls the spinning speed and "speed decay" time and should be set to suit. The spinning speed

Table 1: Forecasts and their odds.

Forecast	Odds
Any number 0-36	$35-1$
Any two adjacent table numbers	$17-1$
Any row of three	$11-1$
Any four adjacent table numbers	$8-1$
Ans ix adicent table numbers	$5-1$
Group 1-12 (1st Dazen)	$2-1$
Group 13-24 (2nd Dozen)	$2-1$
Group 25-36 (3rd Dozen)	$2-1$
Any vertical column	$2-1$
All even numbers (Evens)	$1-1$
All odd numbers (Odds)	$1-1$
All numbers on red background (Red)	$1-1$
All numbers on black background (Black)	$1-1$
Numbers 1-18	$1-1$
Numbers 19-36	$1-1$

Fig. 4. Shows the underside of the "whee!" showing interconnections. It is essential that insulated wiring be used for interconnecting the l.e.d.s whereas stout tinned copper wire is best for the bus bars connecting the l.e.d. anodes. Note that the cathode is shown marked with a "plus" sign.
the l.e.d. position lit when the oscillations cease.

Depending on the form of your forecast, various odds ranging from evens (1 to 1) to 35 to 1 can be obtained. Forecasts to choose from and their odds are shown in Table 1.

Any number of people may play. One player elects to be banker and plays against the rest.

Forecasts are "made" by placing a counter on the "table" in the squares provided. Some of the forecasts require special placing of the counters, see Fig. 6 for details.

SPIN AND PLAY

While players are making their forecasts by placing counters on the table, at the bankers invitation, the wheel is set to spin (by S2). The banker may then call ne va plus rien (nothing more) indicating that no more forecasts can be accepted, and then sets S1 to play.

The electronic wheel selects a number/colour; the banker then collects all the incorrect forecasts and gives the requisite number of counters to the players with a correct forecast according to Table 1. The banker then repeats his invitation to play and the game continues as above.

ZERO PLAY

When " 0 " is the winning number, any player on zero receives 35 to 1 and all others lose with the exception of those on Red, Black, Odd, Even, Numbers 1 to 18 and Numbers 19 to 36 , in fact all forecasts whose odds are evens. The counters on these forecasts are placed in suspense until a further spin of the wheel. If they lose on this second spin, the counters are collected by the banker; if they are correct the counters are left on the table for a third and last spin and results paid according to Table 1.

No further forecasts can be made during these extra spins.
Some "local" rules concerning the banker probably need to be devised such as a time limit for the length of time a person can remain banker and/or the number of counters he holds (a minimum count). It is assumed that these finer points will be suitably determined by the players themselves. Bon chance!

ROULETTE TABLE CUTTING LIST

Frame
$685 \times 50 \times 21$ (2 0if) $263 \times 50 \times 21$ (2 off)

Softwood
Top Board $685 \times 305 \times 4$ (1 off) Plywood

Base Board $643 \times 263 \times 4$ (1 off) Plywood

Wheel
254 dia. $\times 3$ (1 off) Card, Hardboard or Plywood (Dimensions in mm)

Fig. 6. Specially placed counters: A covers 1i: B (upper) covers 5 and $6 ; B$ (lower) covers 13 and 16; C covers 7, 8, and 9; D covers 8, 9, 11, and 12; E covers 13 to 18 inclusive.

Fig, 5. An exploded view of the case showing the method of construction. The depth of the frame may need to be increased if a deeper transformer is used.

End of the Dinosaur

Sooner or later that Dinosaur, 405 line television will finally be allowed to die off. Currently, of course, it soaks up valuable air space by occupying a string of channels on v.h.f. Bands I and III. What a waste. All that lovely available bandwidth devoted to low definition monochrome pictures and a.m. sound. Had there been just a little more forethought after the war and we wouldn't have the current ridiculous situation of all colour TV on u.h.f. Bands IV and V and Bands I and III tied up by an obsolete system.

How it happened is a glorious tale of bureaucratic bumbling. Pre-war television was 405 line, v.h.f. During the war there were no transmissions so the public's sets stood idle in attics and cellars. After the war the government was faced with a choiceeither start up transmissions again as before and enable existing owners to continue using their old sets or start up on a different, higher definition, line standard and compensate existing set owners.

In fact everyone, including the public, would have won hands down from a compensation scheme because most of the stored sets were "kaput" anyway, their electrolytics leaking gunge all over the chassis. But the government economised and played safe. They kicked off again with 405 lines TV and even now the BBC and ITV are still stuck with transmitting programmes in this derelict format.

Digital Sound

But time is finally running out for low definition TV and when the transmitters finally close down at least Band I will be available for something else.
There are now all kinds of exciting plans for what that something else may be. The BBC is currently running a series of Band I tests which involve
the transmission of programmes in digitally encoded sound. The "Beeb" already has encoding equipment for transmitting digital sound over microwave lines, to relay live stereo outside broacasts across the country and back to the studio.

Engineers are now using the same equipment to transmit digital stereo from the Pontop Pike transmitter near Newcastle while engineers drive around the area in cars fitted with whip aerials and receivers capable of picking up the digital programmes, decoding them and reproducing them as in-car entertainment. Another series of tests is designed to check out reception on portable digital receivers with internal ferrite rod aerials just like an ordinary "trannie",

As domestic digital sound equipment, such as the Sony and Matsushita p.c.m. adaptors for use with home video recorders, becomes available there will be growing interest in the possibility of receiving programmes in digitally encoded form. After all, there is no point in having a p.c.m. recorder, capable of flat response from OHz to 20 kHz and a dynamic range of up to 100 dB if the only thing available for recording is an f.m. broadcast of 15 kHz bandwidth or a commercially pressed disc knee deep in snap crackle and pop.

Curious Sensation

Here's a puzzle. A leading hi fi systems manufacturer produces a stylish range of amplifiers and tuners that have a brushed aluminium finish and controls. Once in a while this produces a so far inexplicable problem: a few people using the equipment feel a curious electric shock-like sensation when touching the aluminium metal.

It's mild but disturbing to those who feel it. But even when the surface film of oxide that insulates all alu-
minium in air has been scraped away, or needle electrodes used, it is impossible to read a voitage on the chassis using a voltmeter.

The effect isn't the result of mechanical vibration and it can usually, but, not always, be cured simply by reversing the mains power leads, neutral to live and live to neutral, in the mains plug. This is in fact quite safe because the chassis isn't earthed, there is no earth in the mains lead and all the electronics are insulated to meet British standards.

But what is the cause of the sensation? Is it induction from the transformer? If so, then why does reversing the mains supply sometimes cure the problem? Is it capacitative leakage? At first sight this seems the most likely solution, but again why does reversing the mains lead sometimes but not always cure the problem?

Even more puzzling is the fact that the firm's research lab, in looking for an explanation, have found that an aluminium ash tray placed alongside an electrical appliance such as a table lamp can produce the same effect. Perhaps readers might like to try this one for themselves.

Meanwhile, the firm has a knotty problem on its hands. Apart from not knowing how this curious sensation is generated they dare not make too much fuss about telling the world that it can usually be cured by reversing the mains leads. To do this would quite unnecessarily scare the general public who could quite easily get the wrong end of the stick and assume that there was a risk of electric shock from equipment that is in fact perfectly safe.

If any readers have any theories to offer !'ll gladly pass them on to the firm involved who would (for the time being at least) quite understandably prefer to remain anonymous.

Surprise Offer

I am eagerly anticipating the first court case, arbitration dispute or whatever, on computer salaries.

Almost every day in the newspapers classified advertisement section you will see under the "Computer Personnel" job spot some computer orientated firm or other advertising for staff and offering salaries of $£ 4 \mathrm{~K}$, $£ 5 \mathrm{~K}, £ 6 \mathrm{~K}, £ 8 \mathrm{~K}$ and so on. I assume the firms are taking K as a handy buzz abbreviation of the word thousand, rather as the Americans call a thousand a "grand".

Well if so, they don't know too much about computers. In computer language the abbreviation " K " stands not for 1,000 but 2^{10} which is actually 1,024. So a firm advertising jobs at $£ 8 \mathrm{~K}$ instead of $£ 8,000$ could well be in for a surprise which costs them an extra $£ 192$ per year per employee.

THIS is probably the simplest "snap" or priority indicator which the beginner can make. It has two transistors, two resistors, two bulbs, and two push switches -plus battery and containers. The small number of components thus makes it an ideal starter project for the beginner.

GAMES PEOPLE PLAY

Snap played with ordinary or snap cards depends on the quickest response to win. With quiz games, the person first ready to answer may win. Another game can have a third person read quite slowly, the two competitors each trying to be first when a word with "B" (or other chosen letter) arises. Another game is coin tossing by a third person, the first to

Fig. 1. Circuit diagram of the I'm First game.
signify "head" correctly, making one point and a first, though incorrect call, losing a point.

With all such games, there is eventually a dispute as to who was in fact first. A snap or priority indicator such to be described here avoids such argument or dispute.

CIRCUIT DESCRIPTION

The circuit for the complete unit is shown in Fig. 1. No on/off switch is necessary, because S1 and S2 are normally open. One player has a unit containing S1 and LP1, and the other a unit carrying S2 and LP2.

Base current for TR1 is normally supplied via R1 from TR2 collector, and TR2 base current is supplied via R2 from the collector of TR1. As LP1 and LP2 are not lit, R1 and R2 are for practical purposes connected to the positive line.
Now if S1 is closed first, connecting the emitter of TRI to ground, TRI can draw base current through R1. Collector current can then flow through LP1, thus illuminating this lamp. If S 2 is now closed, the supply point for R2 has moved negative, since TR1 is conducting, so there is no base cur-
rent for TR2, collector current cannot therefore flow, hence LP2 remains unlit.

Should S 2 be pressed first, the situation is reversed, and LPI cannot then be lit by pressing S1. So the first player captures the circuit instantaneously.

The winner's indicator lamp remains lit so long as he/she holds the switch closed. When it is released, the circuit reverts back to its original state.

Construction can commence by cleaning and thoroughly drying the inside of both containers. Those used were "Dip and Blow" bubble liquid, found in many toy shops. At this point it is worth mentioning that a plastic rather than metal container should be

The completed units showing the wiring to the lid of one of the plastic containers. Note the use of four-core "ribbon" cable.
used. This will alleviate any problems with insulation. Any container of suitable size can of course be used.

Two solder tags are fitted to the lids as shown in Fig. 2, together with the switches and bulbs. The two transistors and resistors can

Fig. 2. Wiring details for the two units. All components are mounted on the lids, and wired direct. The length of connecting cable between the units is a matter of choice, but one metre, seems reasonable.

COMPONENTS

then be wired up. Note the base lead of each transistor is "floating", and if required can be glued to the lid with an epoxy glue to prevent shorting to other components.

A length of four-core cable is then passed through holes in the bottom of each container, and wired up as shown. We now have one unit complete which can be assembled in its entirety. If the containers are at this stage rather dingy in appearance, they can be painted to suit or covered in Fablon if easier.

The second unit is still unfinished and requires the batteries to be inserted. Four HP7 size batteries are used. Secure them together with adhesive tape and connect each cell in series by joining
the positive of one to the negative of another and so on. Solder two leads to the batteries to form the positive and negative connections. These two leads are finally wired into the second unit as shown. Observe polarity - the centre raised cap of the cells are positive. Place the batteries in the container, with some insulating material between them and the lid.

IN USE

As the circuit is very simple, you cannot really test it until it is actually being used. However with all home-built projects it is important to check for errors, in particular solder splashes and short circuits.

If all checks out the units can be put to use-it is just a matter then, of: Who's First!

Another view of the completed units. Note how the batteries are taped and wired together.

By O. N. Bishop

PARI 4

LAST month we saw how the action of a bistable circuit can be latched by suitable gating of the input pulses. By using more complex gating circuits we can obtain even fuller control over the action of the bistable. Such a circuit is rather complicated to build from individual gates, but is available as a completely integrated circuit, the flip-flop. Several variations are obtainable in different i.c.s of the 74 series, but we will confine our attention to one particular i.c., the 7473. Pinning details for this device are shown in Fig. 4.1.

J-K FLIP-FLOP

The letter J and K refer to the two control inputs. The i.c. diagram of Fig. 4.1 does not show the many gates of which the flip-flop is built, but simply shows it as a rectangle with various inputs and outputs. Similarly, we shall not go into the details of its internal circuitry but simply treat it as a "black box". We shall investigate what it does-what outputs are obtained when given combinations of inputs are applied. Later we shall see how we can use it.

The 7473 contains two identical flip-flops, and we shall investigate the behaviour of one of these on the Test-Bed. The circuit for this is shown in Fig. 4.2 a and the interwiring of this on the Test-Bed shown in Fig. 4.2 b . Note that +5 V and OV connections of this i.c. are via pins 4 and 11 -not at pins 14 and 7 as in so many other TTL i.c.s.

Switch the clock to low frequency. The right-hand l.e.d. D10 indicates the state of the clock output, which is being fed to the clock input of the flip-flop. The other two l.e.d.s indicate the flip-flop outputs.

Now try various combinations of high and low inputs at J and K. Try to discover the rules of behaviour of the flip-flop. When you have worked them out, investigate the effect of connecting the clear input (pin 2) to 0 V instead of to the +5 V rail.

Fig.4.1. Pinning details for the 7473 dual $\mathrm{J}-\mathrm{K}$ flip-flop integrated circuit. Note that power supply pins are at pin 4 and pin 11.

The action of the flip-flop can be summarised by the points listed below. How many did you discover?
(1) \bar{Q} is the inverse of Q (i.e. \bar{Q} is not Q), so that when Q is high, \bar{Q} is low, and the reverse. These are the two outputs of the bistable.
(2) The bistable is triggered to change state by the clock input.
(3) Triggering occurs at the instant the clock input changes from high to low.
(4) The effect of triggering depends on the state of inputs J and K.
(a) If J and K are both low, there is no change of Q or $\overline{\mathrm{Q}}$
(b) If J is low and K is high, Q goes low (or remains low, if low already)
(c) If J is high and K is low, Q goes high (or remains high, if high already)

Fig. 4.2a. Circuit for investigating the operation of a $J-K$ flip-flop.
(d) If J and K are both high, Q changes state.
(5) The above changes occur only if the clear input is held high. If, at any time, clear is made low, Q immediately goes low. This change is not triggered by the clock input, so can be used to reset the flip-fiop at any time without waiting for the falling pulse from the clock.

USING TWO FLIP-FLOPS

The single flip-flop has a number of applications as a memory or data store. Two flip-flops or more connected together can be used to build some useful counting circuits. In Fig. 4.3a the Q output from flip-flop A becomes the clock input of flip-flop B. For both flipflops, J and K are high, so that each flip-flop changes state when it receives the falling edge of a pulse at its clock input terminal.

Connect up the circuit as shown in Fig. 4.3b and switch the clock to low frequency. When the clock is low, clear both flip-flops by touching the clear wire to ground (0 V). When this has been done, all the 1.e.d.s will be off. Watch what happens next. Record what happens in the table above, using " 1 " to indicate a high output (l.e.d. on) and "0" to indicate a low output (1.e.d.

Table 4.1

	Flip- flop B (B)	Flip- flop A (A)	Clock
Flip-flops cleared	0	0	0
	[.	..	
Flip-flops	\because	.	
Changing	.	\because	
	\cdots	\because	
	(..	..	
Recording complete	0	0	0

Check your table with that appearing on page 23.
off). Continue recording until the stage is reached when all l.e.d.s are off.

Check your table with that appearing on page 23 .

What do you notice about the sequence of figures in the table? (see answer (1)).
(Note: The flip-flops will be needed again later, so do not disconnect them yet.)

FLIP-FLOPS AS COUNTERS

The state of the l.e.d.s can be read as a binary number, which tells us how many times the clock
output has gone low since the system was last cleared. In this way we can count the number of clock pulses. We can do this for a regular series of pulses, such as we obtain from the clock, or for an irregular series.
For example, a photocell circuit can be used to generate a pulse whenever a person passes through the doorway. If this is connected to a number of flip-flops in series, the number of persons passing through can be counted. A practical circuit for this will be given later in the series.

COUNTER

The counter we have built is an 8 -stage counter, counting from 0 to 7 and then returning to 0 . It repeats this sequence for as long as the counter is running and the clear input remains high. To count numbers larger than 7 we simply connect more flip-flops to the chain, the Q output of one to the clock input of the next.
To count up to a hundred or more would mean a lot of connections to the three or more i.c.s required, but fortunately the manufacturers have provided us with a range of i.c.s in which four or more flip-flops are ready connected to

Fig. 4.2b. The interwiring details on the Test-Bed for the experiment of Fig. 4.2a.

Fig. 4.3a. Investigating the action of two of the flip-flops connected in series.
form a counting chain, their J and K inputs being permanently connected to Vcc. These i.c.s we shall meet later.

FLIP-FLOPS AS DIVIDERS

There is another way of looking at the output of a series of flipflops, see Fig. 4.4. If the total time represented in Fig. 4.4 is one second, the frequencies of the clock, Q_{A} and $Q_{\text {B }}$ are 16,8 , and 4 Hz respectively. The output of each flip-flop in a chain has a frequency that is exactly half that of the flip-
flop before it. Flip-flops can act as frequency dividers. Turn the clock control knob to high frequency and listen to the note you get when you touch the tip of the plug of an earphone to each of the l.e.d. pins in turn, with the stem of the plug connected to the 0 V line by means of crocodile clips.

The note from Q_{A} is one musical octave below that taken direct from the clock. A musical octave represents a halving of frequency and if you have a reasonably musical ear you will recognise that the two notes are an octave apart.

Similarly the musical interval between the note from Q_{A} and the note from Q_{B} is also an octave.

We can use our chain to divide frequencies by two or by fourhow can we use it to divide by three? How this may be done is shown in Fig. 4.5a. When the outputs (read left to right) reach binary 6 (110) the inputs to the NAND gate are both high. Its output goes low, and this clears the flipflops to zero. Thus Q_{B} produces one pulse for every three pulses of the clock. Used as a counter, this circuit counts up to six, then returns

Fig. 4.3b. The circuit of Fig. 4.3a wired on the Test-Bed.
to zero, and so on. The layout on the Test-Bed for this experiment is shown in Fig. 4.5b.

Problem: Design a circuit to count up to five (answer (2)).

Answers

(1) Taking clearing as zero, the sequence is as shown in the table below. There are eight steps 0 to 7). If the figures in the Q_{B}, Q_{A} and

Fig. 4.4. Output sequence of the series flip-flop and the clock of Fig. 4.3a.

Fig. 4.5a. (above). A six step counter (-3). Similar to the circuit of Fig.4.3a, but the NAND gate (in-buift IC3) is used to clear the flip-flops.
clock columms are read as binary numbers $(000,001,010 \mathrm{etc})$, we find that these are equal to the decimal numbers in the STEP No. column.

Readers unfamiliar with binary notation can think of the clock column as a record of single pulses or "units", the Q_{A} column records pairs or "twos", the Q_{B} column records "fours". Thus at step two, the binary equivalent is 010 (no "fours", one "two", no "units" therefore total $=0+2+0=2$; at step seven, the equivalent is 111 (one "four"; one "two"; one "unit"; total $=4+2+1=7$).

Table 4.2

Q_{B}	Q_{A}	CLOCK STEP NO.	
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7
0	0	0	0

(2) A NaND gate can be used to detect binary 101, by using clock and Q_{B} as its inputs. The counter resets after counting to step 4.
(To be continued)

Fig. 4.5b. The circuit of Fig. 4.4a wired up on the Test-Bed.

minl-mopules
By George Mylton
Handy "Beginner" projects based on simple circuits and featuring a variety of building methods.

1CONTINUUTTY TESTER

THE continuity tester in this article is a sort of electronic buzzer which takes less than 10 mA (normally about 5 mA if set carefully). The voltage applied to the circuit under test is also low, even when this has a high resistance. The actual voltage depends on how high the circuit resistance, since this determines the current. This tester can be used safely on all but the most delicate circuit components.

PRINCIPLE OF OPERATION

Plain connections in electronic equipment are comparatively short and even when made with thin wire their resistance is unlikely to be more than a few ohms and is usually only a fraction of an ohm. There are circumstances in which an accidental increase in resistance from something very low to say half an ohm can have disastrous effects. (A case in point is stray resistance in the common connection of a power amplifier, which can cause enough accidental positive feedback to destroy the output transistors.)
What is needed, therefore, is a tester which can tell the difference between a genuine "short circuit" (that is a very low resistance) and a small but possibly important resistance such as a few tenths of an ohm.

The strategy adopted in this design is to use the resistance of the circuit under test (R_{d}) to control the amount of negative feedback applied to an amplifier. See Fig. 1. The greater the resistance the greater the negative feedback. The amplifier also has positive feedback, applied via a different route (R_{a}, R_{b}).
By itself, this positive feedback is enough to make the circuit oscillate. The regative feedback tends to suppress the oscillation.

PRACTICAL CIRCUIT

Our mini-module project employs two discrete transistors rather than the op amp implied by Fig. 1. It is,

Fig. 1. General principle. Positive feedback set by Ra and Rb is offset by negative feedback via Rc and Rd.
in fact, an unusual form of relaxation oscillator in which the timing circuit is R3 and C2. (C1 and C3 are merely r.f. bypass capacitors to prevent highfrequency interference and oscillation.) Adjustable positive feedback is applied emitter-to-emitter via R2 and VR1 and
negative feedback via R4 and the resistance of the circuit under test. This is fed to the base of TRI via the timing capacitor C2.

To set the tester to its most discriminating condition the test leads are connected together (making a zero-resistance circuit-under-test) and VR1 is adjusted until steady oscillation (a high pitched whistle) is just obtained. The tester is then ready for use.

In the prototype the sound source is a $2^{1}{ }_{2}$ inch 80 -ohm loudspeaker. The precise impedance is not important and any small high impedance speaker (or a telephone earpiece of not more than a few hundred ohms) will probably work.

For non-critical work where the greatest sensitivity to small amounts of resistance is not needed it is sufficient merely to switch on and use VR1 to set the tester to give any convenient pitch of note when the test leads are connected together. The

Fig. 2. The circuit of the continuity tester.

COMPONENTS

Resistors

R1	$100 \mathrm{k} \Omega$	R 3	$1 \mathrm{M} \Omega$
R2	$10 \mathrm{k} \Omega$	R4	330Ω

All carbon, $5 \% \div$ ol. $\frac{1}{4} \mathrm{~W}$

Potentiometer

VR1 $10 \mathrm{k} \Omega \log$. with d.p.s.t. switch (S1)

Capacitors

C1 10 nF polyester
C2 100 nF polyester
C3 10 nF polyester

Semiconductors

TR1, TR2 BC108 npn transistor (2 Off)

Miscellaneous

LS1 $2 \frac{1}{2}$ inch loudspeaker 80Ω approx
B1 9V PP3 battery
S1 see VR1
Perforated s.r.b.p. $550 \times 500 \mathrm{~mm}$. Two terminal posts. Hardboard and Formica for box. Knob.
tester is then just a straightforward substitute for a buzzer or lamp (but with much lower power level, of course).

CONSTRUCTION

The Continuity Tester should be given an insulated case and operated from a built-in battery. The speaker should also be built in; do not use a headphone in case of accidental connection to a live high-voltage circuit. A small low-power 9 V battery such as a PP3 is adequate since the standby drain is only about $100 \mu \mathrm{~A}$. (A 6 V battery is also usable.)

The prototype is housed in a homemade box measuring $140 \times 80 \times$ 40 mm , with sides of hardboard and back and front of Formica. The hardboard was fixed rough side out and stained with ink to improve its appearance. (For details of simple case construction see Box It in the December issue.) The size of box is governed by the speaker diameter and the depth of the potentiometer VRI which serves as the setting-up resistance and has the on/off switch Sl ganged to it.
A battery compartment was formed
by gluing a small strip of hardboard to the bottom and one side of the case to form a "slot" for the PP3. The connector is made from the connector on an old battery, with due regard to the changed polarity when used in this way.

The easiest way to fix the speaker is with glue. Before doing so drill a few small holes in the panel (from the decorative side of the Formica if this is the material) to let the sound out.

The circuit was built on a piece of perforated insulating board, 550 x 500 m . The component leads were threaded through the small holes and soldered together behind the board. The finished board was fixed by blobs of glue to the speaker magnet and the potentiometer. (It would probably be sufficient to support it on its own connections, however.)

Two small insulated screw terminals are used for the external connections but if these are not readily obtainable a piece of 2 -amp screw terminal strip with two connections will do quite nicely.

Next Month: Audio Modulator

Fig. 4. Hardboard case for the continulty tester.

S0 far in this series the resistor, the capacitor, and the transistor have been introduced. These are the most important components used in electronic circuits and one must get familiarised with them and learn how to handle them.

This month we look further into the resistor and the capacitor.

FIXED RESISTORS

The fixed-value resistor is the most common of all electronic components. The two types widely used are the carbon and the metallised film. The resistor comes in various sizes-that is physical dimensions-according to the power rating. The smallest is tenth-watt, then come eighth-, quarterwatt, half-watt and one-watt. The latter two are less frequently used, in general, than the smaller ratings.

Remember that in electronics, much of the work is performed at very low power levels. Power supplies of 9 volts or less and currents of the order of 1 or 2 milliamperes (mA) are commonplace. Thus a resistor capable of handling ${ }_{10} \mathrm{~W}$ or ${ }_{4}{ }_{4} \mathrm{~W}$ is often more than adequate.

There is no harm in using a resistor with a higher wattage rating than specified for a given circuit. But it is pointless; the larger wattage resistor costs more and being physically bigger may cause problems in mounting on the circuit board.

But never use a resistor with a lower rating than specified. This will prove false economy. If a resistor is called upon to handle higher-power than it is designed for, the result will be overheating of the component. If this is excessive or prolonged, breakdown of the resistor will occur.
This may not be a terrible disaster so far as one small component is concerned, but the consequences upon neighbouring parts of the circuit may be more serious. For example, a transistor could be destroyed through the failure of a tiny, insignificant, inexpensive resistor.

Fixed resistors are non-polarised; that means they have no particular "right way" round when wiring into a circuit: either way will do. However,

it is good practice to mount resistors so the coloured bands run in the same direction. This helps when reading values on a circuit board, since one is not constantly turning one's head this and that a'way. A small point, but well worth noting and observing right from the start. And it helps to make the fininshed article "professional looking".

CAPACITORS

Number two in the popularity stakes amongst passive circuit components is the capacitor. This single term does however cover a multitude of types and varieties. Getting to know capacitors is a bigger task than for resistors.

First, we can divide capacitors broadly into two distinctive categories: polarised and non-polarised.

Non-polarised capacitors, as with resistors, have no right or wrong way -they may be connected into the circuit either way round. So far so good. But the variety of types and range of capacitances available makes
the selection and/or identification of these components a bit of an art. The wisest course for the inexperienced is to strictly obey the components list and use the identical type as specified.

When you have become familar with capacitors, you will know just what alternatives may be employed with perfect safety in given instances. Examine some components lists in this magazine. Following each capacitor value there appears a term, for example: polyester, tantalum, or paper. This describes the kind of dielectric used in the manufacture of the capacitor. Dielectric is the insulating material between the two "plates" of the capacitor; this is an important feature in a capacitor, contributing towards the component's ability to maintain its nominal value under various conditions, and to withstand certain a.c. voltages, and other characteristics.
Thus when selecting a capacitor it is not sufficient merely to choose the correct value: we have to select the kind of capacitor that will perform satisfactorily in the particular circuit.
Apart from the electrical character istics, capacitors of similar values can differ considerably in physical shape and size and lead configuration. It will be obvious that difficulties may arise in accommodating a capacitor on a circuit board if this component is greatly different from that used in the original model and specified in the component list.
This is not an insurmountable problem, for experienced constructors do adjust the location of components on a circuit board in order to fit in a component that is not entirely as specified; but this can only be done with proper knowledge.

Fig. 1. (left) Outlines of typical capacitors, approximately two thirds actual size.

Fig. 2. (above) Outlines of carbon and metallised film resistors, approximately two-thirds actual size.

for RADIO 4-t.w. convertor

atzarion

FEBRUARY
ISSUE ON SALE
FRIDAY, JANUARY 19

making printep CIICUIT BOARDS

By E. M. Lyndsell

THE use of printed circuit boards (p.c.b.s) in the design of constructional projects is becoming somewhat of a regular feature in Everyday Electronics. At least one has appeared every month since the September issue. This month sees the start of the construction of the EE2020 Tuner Amplifier which in all uses five p.c.bs.
In view of this it seems only fitting to feature an article about making your own p.c.b.s thereby giving those unfamiliar with p.c.b. manufacture a choice between making their own or buying ready-made boards on offer by advertisers.
Several methods are available to the home constructor and each will be described here in detail.

PRINTED CIRCUIT BOARD

What is a printed circuit board? A p.c.b. is a piece of insulating material -usually synthetic resin bonded paper (s.r.b.p.) or fibreglass-and bonded to this is a particular pattern of copper designed to link all the components on the board in accordance with the circuit diagram.
The copper pattern is peculiar to the project circuit and cannot, except in unusual circumstances, be used for any other project.

The copper pattern can appear on one or both sides of the insulating material, the latter being employed for highly complex circuitry.

The latter is described as "double sided" p.c.b. but we shall not concern ourselves with this variety here as special precision techniques and equipment is demanded for its manufacture, although not outside the scope of the home constructor.

In its raw state the material for making a p.c.b. is a piece of insulating material that has bonded (glued) to
one face a thin sheet of copper, see Fig. 1. To produce the required pattern on this board certain areas need to be removed. For simple rectangular patterns, this can be done with a sharp hobby knife cutting around a pencilled pattern line and the unwanted copper literally "wrenched" from the board. Heat from a soldering iron applied to one corner of the copper to be stripped will cause the effect of the adhesive to lessen to enable a pair of pliers to grip the copper foil.

For any pattern other than the simplest, a process known as "etching" must be adopted. This requires the use of a chemical solution, ferric chloride, which is a solvent of copper.
By masking the areas of copper to remain on the board (protecting them from the solvent) and then immersing the board in the chemical solution the unwanted copper will be "etched" away leaving the required copper pattern, see Fig. 2. The masking material is known as the "etch resist" and can take several forms.

ETCH RESIST

All constructional articles using a p.c.b. includes a full-size drawing of the copper-side of the p.c.b., black regions representing the copper, see Fig. 3 so these areas must be masked and it is this process that can be done in several ways.

Self adhesive resist

Self-adhesive materials such as Fablon and Contact used for covering objects make an efficient etch resist. A white or other light colour is recommended.

Place a sufficient area of either of these materials under the page containing the master pattern and place a sheet of carbon paper between the two sheets. Trace through the pattern

Fig. 1. Printed circuit board consists of a copper foil bonded to an insulating material.

Fig. 2. The exposed copper areas will be etched away.

Fig. 3. The master copper pattern printed in the magazine. This appears full-size and is viewed from the copper side. Black regions represent copper to remain.

(a) Raw and etched p.c.b.s.

(d) Tracing the copper pattern directly onto the copper slde of the board.

(g) Etch resist transfers and ink-resist pen.

(j) Section of a board with all transfers and tape positioned.

(b) The self-adhesive resist.

(e) Painting on an enamel resist.

(h) Rubbing the transfers directly onto the copper.

(c) Cutting around the self-adhesive pattern glued to the copper side.

(f) Pricking through the pad centre points onto the copper board.

(i) Interconnections between the pads being made with resist pen.

(k) A stencil made for the copper pattern appearing in Fig. 3.

(l) Removing the protective film from a photo-sensitive resist treated board.

(0) A photographically produced positive master on film.
onto the Fablon and when complete stick this to the copper clad board.

Using a hobby knife cut around the pattern and remove the sections to be etched. Rub down well all edges and the board is ready for etching.

Paint

An early etch resist used was enamel paint and nail varnish. The paint or nail varnish is applied to a thoroughly cleaned board that has had the pattern traced onto it by the carbon paper method described above. Using a fine artist's paint brush, the areas of copper to remain after etching are covered with paint and left to dry thoroughly before etching.

This method is "old fashioned" and tedious but could allow a project to proceed if components for the other methods described were not available at the time.

Transfers

A significant step up from the previous method is the use of rub-down transfers. A vast range of different "pad" sizes are available in single or specific configuration to suit transistors, i.c.s, etc.

With this method, the board is placed under the master drawing and the pad hole position pushed through using a pin or bradawl. It is not necessary to make any marks for the interconnecting tracks.

(m) Making a master pattern on tracing paper for use with photo-resist boards.

Next with reference to the master, position the appropriate transfers over the pin-pricks (pad centres) and rub the transfer sheet with a pencil lead to "glue" the pad to the board. Position all the pads.

The interconnecting tracks can be made using "tape" or a special pen containing an etch resist ink. Experience proves that the tape gives a more professional finish and eliminates possibility of smudging before the ink is dry, although the pen is quicker.

For the artistically skilful, the pen can be used for both pads and tracks.

Stencil

Making several boards with the same pattern by any of the above methods would consume much time and patience. For limited quantity runs one can make use of a stencil.

Trace through from the master via carbon paper onto a piece of thin cardboard. Use a hobby knife to cut out from this board all the areas of copper to remain after etching. Place the stencil on each board to be made and "fill-in" using paint/varnish or etch resist ink.

This method may not be suitable for some designs especially maximum copper type patterns as the stencil will be in many pieces.

Photo-sensitive etch-resist

Copper-clad board is available coated with a photo-sensitive film on the copper which also acts as a resist to ferric chloride. When exposed to ultraviolet light, the exposed areas "soften" and can then be removed with a solution of sodium hydroxide (caustic soda).

Aerosol sprays containing such a resist can be purchased and sprayed onto a thoroughly cleaned copper board. Experience shows that a near dust free area is required which may be difficult to obtain in domestic surroundings. Dust on the film produces unsatisfactory results.

For this method to be used, the master mask pattern must be put onto a transparent film. Special polyester

(n) Laying tape for interconnecting the pads on a tracing paper master.

(p) Ferric chloride crystals.
film is available but virtually any transparent semi-transparent paper/ film will do. Tracing paper for instance has been used by the author with satisfactory results.
Lay the transparent paper over the published master, and copy this onto the sheet using transfers/tape or Indian ink or any combination.

Alternatively, a photograph of the master can be taken and a positive of the correct size produced on film (i.e. black pads/tracks on a clear background).

Either of these masters is laid on the photo-sensitive treated copper, a piece of glass laid on top of this to hold the film/board closely together and then exposed to ultraviolet light (e.g. light from a mercury lamp) for about 10 minutes. The exact time will vary from lamp to lamp and is best determined by trial and error on off-cuts of the board.

After exposure, you will be able to see in the "right light", the pattern on the resist. This should now be placed in a dish containing a weak solution of sodium hydroxide (N/10) and the unwanted resist will be seen to dissolve and the solution become tinted blue. Agitating the contents of the tray will cause the exposed copper to be seen more quickly. When completed remove the board using a pair of tweezers and thoroughly wash in running water. The board is now ready for etching.

The resist in some cases also acts as a protective and flux and so it is not necessary to be cleaned off after etching.

A "negative" photo-sensitive resist is also available-used mainly by industry in which a negative of the master is required. Exposing the marked board to u.v. causes the exposed areas to become insoluble in sodium hydroxide.

ETCHING

Whatever method is used to produce the masked board, the following etching process applies to all.

As previously mentioned ferric chloride solution is used which is a solvent for copper. Now ferric chloride is a corrosive and poisonous substance and therefore requires care when handling. It is not generally available in liquid form, instead it is usually in crystalline form and requires adding to water. A concentration of $500 \mathrm{~g} /$ litre is suitable for an etching time of about 20 minutes.
Rubber gloves are recommended to avoid any contact with skin; if contact with the skin does occur wash off immediately under running water. A measuring cylinder with glass rod is a suitable mixing receptacle.
Tip the made-up solution into an enamel or plastic photographic tray (or similar), sufficient quantity to immerse the board. (Do not use bare metal trays, especially aluminium.)

Using a pair of tweezers carefully place the board copper side down in the solution and leave to etch. From time to time, agitate the contents of the tray and after about 20 minutes use the tweezers to inspect the board. A little heat (e.g. from a hair dryer) will reduce etching time.

After all the unwanted copper has been removed, place the board in a second tray alongside to remove any excess ferric chloride and then thoroughly wash the board under running water.

Except for certain photo-sensitive resist, remove the resist; for paint, ink or transfer resist, an abrasive domestic powder or steel wool is suitable to yield a bright copper pattern.

To protect this from oxidation, special aerosol laquers are available which also act as a flux.

DRILLING

The final stage in the preparation of the board is drilling the holes for the component leads. A lightweight high-speed electric drill and bit such as the Bimdrill shown are required, a mini drill-stand for best and easiest results. A 1 mm diameter hole will suit most miniature components; for i.c.s and transistors, smaller holes can be drilled, but it is not essential. Drill out any larger holes, e.g. fixing holes, presets, terminal pins etc. to suit, using the 1 mm holes as guides.

(q) Making up a solution of ferric chloride in a measuring cylinder.

(t) Cleaning off the resist with an abrasive cloth.

(v) The p.c.b. is ready for component assembly.

(r) Carefully place the board in the solution using tweezers.

(s) Etching underway with board face down.

(u) Completing the drilling.

(w) The completed board.
(x) A typical di.i.y, printed circuit and panel labels kit from Mega Electronics Ltd., called the Photolab kit comprising an ultraviolet exposure unit, drafting aids and film, positive resist coated epoxy glass laminate sheets, developing and etching trays, label and panel materials, highspeed drill, and all the requisite developers.

DIAL-A-VIDEO MESSAGE

A voice plus video transmission system over ordinary telephone lines is under development by Philips in Holland. The telephone has a video display unit and a writing pad. The idea is that you can draw diagrams and talk simultaneously. Very useful in a technical discussion or, for example, to draw a map while giving directions by phone.
Both the voice and video signals can be recorded on a normal cassette recorder for replay if desired. Both-way voice is continuous but while one end is writing or drawing the other can only receive the graphics. The Scribofoon, as it is to be called commercially, is based on a research programme at Delft University of Technology.

SITUATIONS VACANT

The new British l.s.i. company INMOS has suffered a set-back through the resignation of three senior designers who have decided to set up their own company in the United States. INMOS, backed by the National Enterprise Board, is reported to be having difficulty in recruiting good designers but this is a common problem with all the IC manufacturers at the present time.

In-Filight TV

Long-haul civil air transport has long offered cinema shows to ease the boredom of flight for passengers. Now colour TV is taking to the air. Curtis and Green Engineering Ltd is producing a video-cassette system for airborne use. It replays prerecorded programmes in PAL, NTSC or SECAM systems and is approved for all phases of flight including take-off and landing.
'Electronica 78', held in Munich last November is now the Number One electronics exhibition in the world. There were 1,800 exhibitors from 30 different countries.
In all, the exhibition needed 20 large halls at the Munich exhibition centre to house all the exhibits.

TEACH-IN

A family of low-cost easy-to-use conversational computers which, it is claimed, office staff can teach themselves to use, has been announced by NCR.

Called the $1-8130$ and the I-8150, they are intended principally for smaller organisations that are not familiar with computing techniques.

WELCOME TO THE CLUB

Sony UK is the first large Japanese-owned company to gain admittance to membership to the Confederation of British Industries (CBI). Sony manufactures colour TV sets in Bridgend, South Wales. Current workforce is 620 people making 85,000 sets a

\% 8

In the first eight months of 1978 colour TV deliveries to the trade topped one million sets according to the British Radio Equipment (BREMA). Eighty per cent of deliveries were British made sets.
The overall demand for radio and TV is stated to be stable but prices and profits continue to be squeezed.

BAR ON RADIO TIMES

Among future developments in broadcasting is the possibility of choosing a number of radio programmes in advance with the radio switching on automatically and tuning to the correct station. The receiver would have a memory into which is fed coded information using a light-pen from bar-
codes printed against each programme in the Radio Times.
This is one of many new ideas in broadcasting put forward by the Director of Engineering, BBC, in his inaugural address as President of the Institution of Electrical Engineers.
year of which half are exported, mainly to Western Europe.

Now that Sony has been accepted, will Matsushita, Hitachi and the new joint Rank-Toshiba companies swell the list of Japanese members?

Automatic MAC

The Post Office has signed up a new $£ 10$ million ally in its drive to improve Britain's telephone service.

It is a system of 61 Maintenance and Analysis Centres (MACs) and its aim is to reduce telephone faults dramatically by spotting them automatically and alerting engineers to deal with them more quickly. The "brain" of the MAC is a GEC 2050 mini-computer.

The task of each MAC is to send test phone calls at a rate of about twenty per minute spread over all the exchanges in its locality, throughout Britain's telephone network, and keep a record of what happens to them. If they do not get through because of a fault, the MAC traces the location and immediately alerts engineers to put things right.

ANALYSIS

ENQUIRE WITHIN

After massive publicity, few people in the UK can still be unaware of public information networks such as Viewdata, now to be known as Prestel. And there is yet more publicity still to come from field trials and the official launch of the system.
The only new aspect of Prestel is that it is for the general public and can be accessed from the home using a TV receiver as a video terminal. Little known to the public at large is that video information technology is long established in business and professional circles and that dozens of databases are already operating.

We are in the middle of a great information explosion which has generated a new academic discipline known as information Science. Without it and the electronic computers which go with it, the professionals who need specialised information would never keep up with the flow.
Take the case of patents in science-based industry. Some 12,000 are published weekly, 9,000 of which are in languages other than English, Rather than scan through all these, assess them, classify them and set up a filing system, most firms who need patent information subscribe to a central database such as that run by Derwent Publications who employ 400 full time staff (120 of whom are chemists and engineers) and another 400 freelance specialists.

Another British database is INSPEC (International Information Services for the Physics and Engineering Communities). This year alone INSPEC added 160,000 items to its database. To achieve this, INSPEC classified and indexed 130,000 articles from 2,300 journals, 25,000 papers from over 500 conferences, 1,500 technical reports and university theses and some 300 scientific books.
But as well as commercial services there are many private systems. Police forces, for example, who keep on computer file, and constantly updated, registers of missing and wanted persons, vehicle registrations, stolen vehicles, owners of weapons and, using electro-optics, the matching and sorting of fingerprints.

On-line data access has been made possible by modern communications and data processing technology. But that is the easiest part and the least costly. You need a lot of manpower. Systems and software specialists, compilers and cataloguers. For science-based databases you need qualified scientists to make abstracts of scientific papers or patents. Even more mundane commercial and financial databases you need experts in the various fields to sort and classify the mass of incoming information.
The electronics in the system is magnificent for storage and retrieval of information. But it is only a tool. Without brainpower and human beings nothing would work.

Water Divining

A weather radar is being installed on Hameldon Hill, Lancashire, by Plessey. It will measure water precipitation to improve flood warning facilities and control of water resources in the area. The new radar will be operated by the North West Water Authority.
Partners in the scheme are the Meteorological Office, the Ministry of Agriculture, the Water Research Centre and the Central Water Planning Unit.

The Fairchild-GEC joint venture to mass produce $1 . s . i$. circuits in the UK is on schedule. The new plant will produce memories and MPUs with production in late $19 \% 9$.

CHECKOUT WITH A COMPUTER

The supermarket chain, Tesco, has ordered seven minicomputers from Computer Automation Inc. (UK) Ltd. The first is being used for system development and the other six will be in-

DVM BOOM

The digital multimeter market is booming. The John Fluke Corporation which has a European manufacturing unit in Holland and a sales and service base in the UK reports sales of over 150,000 of their original 8000 A DMM and 80,000 of the hand-held 8020A since its launch just over 18 months ago.
stalled at six of Tesco's distribution warehouses serving 500 stores.
They are to be used for on-line entry of incoming goods to the warehouses and for stock control.

8 8
After a fierce international competition, Racal Electronics Group emerged winner for re-equipping the Australian defence forces with transportable h.f. communications equipment. The contract is worth $£ 8.8$ million and the great bulk of the equipment will be built in Britain.

JUST THE JOG

If your really looking for that something different for Christmas then the Toshiba EMH-1000 fitness trainer is just the item for off-loading some of that festive spirit.

Inspired by the current jogging mania, the trainer consists of two units; an on the spot running mat incorporating a pressure pad and a battery powered control unit.

The control unit allows the user to preset the length of the exercise period up to 30 minutes or to preset the number of paces to be jogged
up to 9,990 . A pacesetter is also incorporated with a "bleep" signal, adjustable from 100 up to 220 paces a minute.

The fitness trainer can be used indoors or outside, so the less athletic looking who might feel bashfull about running in public can jog happily in the privacy of their own homes.
The recommended retail price of the Toshiba EMH. 1000 fitness trainer is $£ 94.50$ including VAT. You should certainly get a good run for your money.

By Dave Barrington

Component Catalogues

We have just received the first of many of the 1979 Components catalogues and most are up to the usual high standards set by our advertisers.
The new Home Radio Components catalogue contains 128 pages and a profusion of illustrations and photographs are included. This catalogue has now been streamlined compared with previous issues and a lot of the very old and obsolete components have been omitted.

This catalogue contains a very good range of hardware including cases and soldering irons. The section on capacitors, particularly variable types, is one of the best we have seen in a components catalogue.
Like most component suppliers today, Home Radio issue separate price lists during the year which now include Bargain Lists.

The price of the Home Radio Components Catalogue is £1 plus $25 p$ postage and packing (No re-
deemable vouchers). Orders should
be sent to Home Radio (Components) Ltd., Dept EE, 234-240 London Road, Mitcham, Surrey CR4 3HD.

We were most disappointed with the quality and reproduction of the Ace Mailtronix mail order catalogue and feel it does not do justice to the service this company provides.

However, at 30p this 35 -page catalogue is still good value for money and gives a fairly comprehensive list of popular semiconductor devices and ready made modules. Component prices are given separately on their current mail order forms and it would be nice to see the month of issue stamped on the form to help in keeping up to date with prices.

Copies of the Ace Mailtronix Mail Order Catalogue can be obtained from Ace Mailtronix Ltd., Dept. E.E, Tootal Street, Wakefield, West Yorkshire, WF1 5JR. Catalogue outlay is refunded on first order over $£ 5$.

Readers who are interested in home computers might like to obtain a copy of the Transam Computer Products catalogue.

This is a new company formed specially to cater for the growing needs of home computer enthusiasts and carries details of hardware and software equipments, including a complete home computer design.

Supplies of the Computer Products catalogue can be obtained from Transam Components Ltd., 12 Chapel Street, London N. W.1.

Special Gift

Are you still looking for those last minute Christmas gifts to keep the young amused during the Christmas holidays? if so, we can strongly recommend the very latest "fun projects" from Watford Electronics.
Known as Sunday Kits there are nine projects available at the moment ranging from a Photo Electric Switch to a Cycle Indicator Flasher. These kits come packed in a plastic "bubble" which also forms the case.

The bicycle indicator flasher was impressive and would easy mount on a child's tricycle and give hours of fun. The mini electronic organ was very unimpressive.

The price of the kits range from $£ 6.20$ to $£ 7.95$ and for further details readers should contact Watford Electronics, Dept EE, 35 Cardiff Road, Watford, Herts. (Wat. 40588/9).

Constructional Projects

No real problems should be encountered with Car Lights Reminder.

Although we have not tried it in the model, it would seem perfectly feasable to use a 33 ohm resistor in place of R1 if the specified value proves difficult to obtain. If the speaker specified is hard to locate then a larger type of the same impedance can be used but, of course, a larger case will be required.

The I'm First is a very simple project and there should be no problems.

The containers used were, in fact, "bubble liquid" holders used by children for blowing bubbles. They can be bought from most toyshops. If you're a photographer then plastic film cans may be used, but the components may be a tight fit.

No problems are envisaged for the Roulette game. As 37 l.e.d.s with holders are called for in this project readers should be able to obtain a special price from advertisers.

An ideal mounting tray for the l.e.d. array would be the coil detector covers called for in our Treasure Hunter project published recently. These are available from Arrow Electronics Ltd., Dept. EE, Leader House, Coptfold, Brentwood, Essex.

The Headphone Enhancer, and the Continuity Tester in our Mini Module series are very simple projects and should not create any problems.

All component difficulties which are likely to be encountered with the EE2020 Tuner Amplifier were covered last month.

BY DOUG BAKER

EE2020 TUNER AMPLIFIER HIFFI SERIES

THis Second Part of the 2020 Series deals with the printed circuit boards A, C, and E. (The remaining two boards will be dealt with next month.

COMPONENTS

A fully detailed components list for each board is given. Components that are duplicated for left and right stereo channels are identified by the suffix "a" and "b" respectively. For example R25a, b. Those components
that are mounted off the board, that is on the main chassis, or front or rear panel, are indicated by an asterisk in the components lists. Reference to the block diagram Fig. 1.1 and to the circuit diagram Fig. 1.2a and Fig. 1.2 b will make clear the close electronic relationship of such components to particular boards; and also how the physical interconnections are made via terminal pins (TAl etc.).

A list of hardware items is also included this month.

Although it does not matter in which order these three boards are tackled, it is recommended that the two smaller ones, C and E, be assembled first. This will allow experience to be gained in handling the boards, mounting the components, and soldering in position.

In the case of the two larger boards, A and B, pushbutton switch units have to be fitted before any other work is commenced. Details of this operation appear later in this article.

General view of the 2020 Tuner Amplifier.

The five circuit boards of the 2020 Tuner Amplifier arranged in their relative chassis positions.

DI.Y. OR READY MADE P.C.B.S

Full-size patterns of the printed circuits are included in the following pages. Constructors who are already experienced in making their own p.c.b.s can proceed straight away with the production of boards A, C, and D. Others who are interested in this procedure should study the special article in this issue Making Printed Circuit Boards, and then gain some practical experience by making a trial-run with a small board before setting out to make the 2020 boards.

Grade 1 Fibreglass should be used for all printed circuit boards.

Drilling Details:
(a) normal component holes 1 mm .
(b) coils, pushbutton switches, preset potentiometers, and terminal pins $1 \cdot 2 \mathrm{~mm}$.
(c) board fixing and presets VR4 VR8 4 mm .
An alternative to d.i.y. is to purchase these p.c.b.s ready made from one of the several firms who specialise in offering this service to our readers.

EXAMINING THE BOARDS

Before assembling the components onto the printed circuit boards, hold each board in turn with the track side towards you and shine a bright light through the board from its rear. By doing this it is possible to clearly see if there are any broken tracks or bridges of copper between tracks and pads.

Examine each board carefully, because failure to find a possible fault at this stage could mean expensive and/or time consuming fault finding later. Although it is unlikely that any faults will be found with commercially made boards, don't start assembly without a thorough examination first.

ASSEMBLING COMPONENTS

Assembly of the components can now proceed. Do not rush this stage of the construction, allow about five hours each for the completion of the larger boards and one or two hours each for the smaller. Each time a component is fitted, check and then double check that it is the correct way round (i.e. polarity of electrolytics), the soldering is good and, last but not least, that solder hasn't shorted across to adjacent track or pads.
Remember all the time that an unnoticed mistake or solder bridge at this stage of the construction could mean many hours of frustrating time spent chasing faults later.

Have the appropriate p.c.b. pattern and the component layout diagram before you, also the circuit diagram Fig. 1.2a,b (December issue). It is a good exercise to cross-check each component on the circuit diagram before mounting in position according to the component layout diagram.

Start by identifying and fitting the terminal pins. These pins are inserted from the top of the board and are a tight push-fit. Once fitted they are soldered on the underside to ensure good electrical contact to the track.

Next fit the resistors. The resistor wire ends are bent down at right angles to the body and then pushed through the board; after soldering, the surplus wire is cut off. Warning. Hold the free end of the wire when cutting to prevent the wire "flying" and causing possible personal injury. If the wires are bent slightly outwards after insertion in the board, this helps to hold the component secure when the board is turned over for soldering.

When all the resistors are in position a final check should be made for accuracy of location and value.

Continue, step by step, as detailed below:

Fit the capacitors, observing the correct polarity in the case of electrolytics. Check values and working voltage where mentioned.

Fit the semiconductors. The transistor leads may require bending or "forming" to suit the appropriate holes on the p.c.b.s. The types as specified (with "TO5" suffix) will fit directly.

Observe the correct polarity with the diodes. Fit the heat sinks to TR24 and TR25 (Board E).

Fit the i.c.s, taking care that pin No. 1 is in the correct position and that all pins are through the p.c.b. before soldering.

Fit the skeleton preset potentiometers.

Fit the multi-turn tuning potentiometers, the filters F1, F2, F3, and the coils L1, L2 (Board A).

Fit any wire links that may be shown.

Set all the skeleton presets to the midway setting. Fit the knobs onto the pushbutton switches (Board A). These are a press fit and will snap on with a little pressure.

The completed boards should be carefully stored to keep clean and safe from damage.

PUSHBUTTON SWITCHES

Only the specified pushbutton switches, made by Jean Renaud, are suitable for this project.

After initially inspecting board A, the first job is to fit the pushbutton switches. These are supplied as single units and some of them have to be assembled into switch units of 6 and 4 pushbuttons, for Boards A and B respectively.

At present we are concerned just with board A.

Referring to Fig. 2.7, take six of the single push switches and remove the bronze 'hold-on" clips and links. Carefully pulling the clips upwards with a small pair of pliers will enable

BOARD A
C14 $2 \cdot 2 \mu \mathrm{~F} 63 \mathrm{~V}$ elect.
C15 $\quad 0.22 \mu \mathrm{~F}$ polyester
C16 $\quad 0.47 \mu \mathrm{~F}$ polyester
C17a,b $0.01 \mu \mathrm{~F}$ polyester (2 off)
C18a, b $2 \cdot 2 \mu \mathrm{~F} 63 \mathrm{~V}$ elect. (2 off)
C19 500pF polystyrene
$\mathrm{C} 20 \mathrm{a}, \mathrm{b} 2 \cdot 2 \mu \mathrm{~F} 63 \mathrm{~V}$ elect. (2 off)
$\mathrm{C} 21 \quad 100 \mu \mathrm{~F} 16 \mathrm{~V}$ elect.
$\mathrm{C} 22 \quad 2 \cdot 2 \mu \mathrm{~F} 63 \mathrm{~V}$ elect.
C67 $0.01 \mu \mathrm{~F}$ disc ceramic
All electrolytics (elect.) are the small single-ended p.c.b. type; all polyester are Mullard type C280.

* mounted on r.f. unit

Resistors

R1	270Ω
R2	100Ω
R3	$10 \mathrm{k} \Omega$
R4	330Ω
R5	$47 \mathrm{k} \Omega$
R6	$100 \mathrm{k} \Omega$
R7	470Ω
R8	470Ω
R9	$1 \mathrm{k} \Omega$
R10	$1 \mathrm{k} \Omega$
R11	$3 \cdot 9 \mathrm{k} \Omega$
R12	47Ω
R13	$10 \mathrm{k} \Omega$
R14	$10 \mathrm{k} \Omega$
R15	$4 \cdot 7 \mathrm{k} \Omega$
R16	$100 \mathrm{k} \Omega$
R17	$4.7 \mathrm{k} \Omega$
R18	1.5k
R19	4.7k
R20	$100 \mathrm{k} \Omega$
R21	$33 \mathrm{k} \Omega$
R22	$2.7 \mathrm{k} \Omega$
R23	$33 \mathrm{k} \Omega$
R24	$33 \mathrm{k} \Omega$
R25a,b.	$4.7 \mathrm{k} \Omega$ (2 off)
R26	$1 \mathrm{k} \Omega$
R27	$15 \mathrm{k} \Omega$
R28	$2.7 \mathrm{k} \Omega$
R29a,b	$330 \mathrm{k} \Omega$ (2 0ff)
R30a, b	$330 \mathrm{k} \Omega$ (2 off)
R31a, b	$1 \mathrm{k} \Omega$ (2 off)
R32a,b	$1 \mathrm{k} \Omega$ (2 off)
R33	$1 \mathrm{M} \Omega$
R34a, b	$1 \mathrm{k} \Omega$ (2 off)
R35	$1 \mathrm{M} \Omega$
R36a,b	$3 \cdot 9 \mathrm{k} \Omega$ (2 off)
R37	$4.7 \mathrm{k} \Omega$
R38	$4 \cdot 7 \mathrm{k} \Omega$
R39	$10 \mathrm{k} \Omega$
R40	$10 \mathrm{k} \Omega$

All $\frac{1}{4} \mathrm{~W} \pm 5 \%$ high-stability carbon film

Capacitors

*C1 $2 \cdot 2 \mu \mathrm{~F} 6 \cdot 3 \mathrm{~V}$ elect, $\mathrm{C} 2 \quad 0.01 \mu \mathrm{~F}$ disc ceramic $2 \cdot 2 \mu \mathrm{~F} 63 \mathrm{~V}$ elect. $22 \mu \mathrm{~F} 63 \mathrm{~V}$ elect. $0.01 \mu \mathrm{~F}$ disc ceramic $0.01 \mu \mathrm{~F}$ disc ceramic $0.47 \mu \mathrm{~F}$ polyester $0.01 \mu \mathrm{~F}$ disc ceramic 68 pF polystyrene (with L2)
$2 \cdot 2 \mu \mathrm{~F} 63 \mathrm{~V}$ elect.
$2 \cdot 2 \mu \mathrm{~F} 63 \mathrm{~V}$ elect.
$0.047 \mu \mathrm{~F}$ polyester

Potentiometers

VR1
-184
*VR3 Tune $\quad 184 / 5$ linear
VR4 Preset 1 100k Ω
VR5 Preset $2100 \mathrm{k} \Omega$ special log. law for diode tuning
VR6 Preset $\left.3 \quad 100 \mathrm{k} \Omega \quad \begin{array}{ll}100 \mathrm{k} \Omega\end{array}\right\}$ multi-turn type AB47 (Ambit) (5 off)
VR7 Preset $410 \mathrm{k} \Omega$
VR8 Preset $5 \quad 100 \mathrm{k} \Omega$
VR9
VR10 $\quad 10 \mathrm{k} \Omega$ horizontal mounting skeleton preset cermet type RS 185-432

* mounted on tuning drive assembly

Pushbutton Switches

(Manufactured by Jean Renaud)

St Mute 2-pole changeover
S2 AFC
S3 Tune
S4 Preset 1
S5 Preset 2
S6 Preset 3
S7 Preset 4
S8 Preset 5
One6-switchlatching assembly (for S3-S8) RS type 338-614; IT T type 44020R

Semiconductors

TR1	BC212L/TO5 pnp silicon
TR2	BC384L/TO5 npn silicon
TR3a,b	BC384L/TO5 npn silicon (2 off)
TR4a,b	BC212LTO5 pnp silicon (2 off)
1C1	CA3189E f.m. i.f. system, 16-pin d.i.1. (RCA)
IC2	SN76115AN stereo decoder, 14-pin d.i.I. (Texas)
IC3	747 dual op-amp, 14-pin d.i.1 (
*D1	light-emitting diode TIL 211 (green)
(D2	light-emiting diode TIL 209 (red)
*D3	light-emitting diode TIL 209 (red)

* mounted on front panel

Miscellaneous

F1, F2
F3
L1
$\stackrel{L 2}{* M E 1}$
**SK1
10.7 MHz ceramic filter CFSE/SFE 10.7 (Ambit) (2 off) stereo filter BLR3107N (Ambit) chake, $220 \mathrm{~K} 22 \mu \mathrm{H}$ (Ambit) coil KACSK586HM (Ambit) (C10 inside coil) edgewise tuning meter $60-0-60 \mu$ A movement. (Ambittype906) coaxial socket RS type 455-539

* mounted on front panel
** mounted on rear panel

BOARD C

Resistors

R70a,b	$150 \mathrm{k} \Omega$	R71a, b	$100 \mathrm{k} \Omega$
R72a,b	150k Ω	R73a,b	5.6k
R74a, b	3.9k Ω	R75a, b	$5.6 \mathrm{k} \Omega$
R76a,b	820Ω	R77a, b	$220 \mathrm{k} \Omega$
R78a, b	$15 \mathrm{k} \Omega$	R79a, b	8.2k Ω
R80a, b	3.3k Ω	R81a, b	$1 \mathrm{k} \Omega$

All $\frac{1}{4} \mathrm{~W} \pm 5 \%$ high-stability carbon film (2 off throughout)

Semiconductors

TR11a,b	BC384/TO5 npn silicon (2 off)
TR12a,b	BC384/TO5 npn silicon (2 off)
TR13a.b	BC212/TO5 pnp silicon (2 off)

Capacitors

C40a,b
C41a,
C42a,b
C43a, b
C44a,
C45a,b
$10 \mu \mathrm{~F} 63 \mathrm{~V}$ elect.
$100 \mu \mathrm{~F} 16 \mathrm{~V}$ elect. $0.015 \mu \mathrm{~F}$ polyester 5%
5,600 p polystyrene 2%
$2 \cdot 2 \mu \mathrm{~F} 63 \mathrm{~V}$ elect.
$100 \mu \mathrm{~F} 16 \mathrm{~V}$ elect.
All electrolytics (elect.) are the small single-ended p.c.b. type. (2 of throughout)

Sockets

SK4a, b Disc phono socket single-hole chassis mounting RS type 477-848 (2 off)

BOARD E

Resistors

R102	$10 \mathrm{k} \Omega$
R103	$2.2 \mathrm{k} \Omega$
*R104	$100 \Omega 25 \mathrm{~W}$ wirewound $\pm 10 \%$
R105	$1 \mathrm{k} \Omega$
R106	$2.2 \mathrm{k} \Omega$
R107	$2.2 \mathrm{k} \Omega$
R108	$2.7 \mathrm{k} \Omega$
R109	$4.7 \mathrm{k} \Omega$
R110	$4.7 \mathrm{k} \Omega$
R111	$2.2 \Omega 10 \% \frac{1}{2} \mathrm{~W}$

All $\frac{\mathrm{W}}{4} \pm 5 \%$ high-stability carbon film, except where otherwise stated.

* mounted on rear panel

Potentiometers

VR17
$10 \mathrm{k} \Omega$ horizontal miniature skeleton preset RS type 184/5

Capacitors
$0.22 \mu \mathrm{~F}$ polyester
$4,700 \mu \mathrm{~F} 63 \mathrm{~V}$ elect. single-ended
$220 \mu \mathrm{~F} 63 \mathrm{~V}$ elect.
$4,700 \mathrm{pF}$ polystyrene
$22 \mu \mathrm{~F} 63 \mathrm{~V}$ elect.
$10 \mu \mathrm{~F} 63 \mathrm{~V}$ elect.
100 p F polystyrene
$0.047 \mu \mathrm{~F}$ polyester
$0.47 \mu \mathrm{~F}$ polyester

Unless otherwise stated, all electrolytics (elect.) are the small single-ended p.c.b. type. All polyester are Mullard type C280.

* mounted on main chassis.

HARDWARE

Terminal pins, double-sided RS type 433-630
Terminals 4 mm , black RS type 423-201
red RS type 423-239
Knobs RS type 499-949
Buttons, grey (for S1-S16) RS type 338-658; IT T type 44037B Heat sinks T05 RS type 401-548
P.C.B. spacers $\frac{1}{2}$ inch RS type 543-737

Screws self- $\operatorname{tap} 9.4 \mathrm{~mm}$ No. 6
Screws 8BA C/SK $\frac{1}{2}$ inch
Nuts 8BA full
Lock washers 8BA
Washers 8BA
(80 off)
(3 off)
(2 off)
(5 of) (16 off) (2 off) (20 off) (20 off) (14 off) (14 off)
(14 off)
(14 off)

WIRE

Tinned stranded copper

Screened leads
*LP1 Meter lamp 12 V 13 mA , wire ends, supplied with ME1
*S17 miniature toggle, d.p.d.t. RS type 316-715
Mains transformer, toroidal 50VA type: primary $120 / 240 \mathrm{~V}$;
secondaries: $0-20 \mathrm{~V}, 0-20 \mathrm{~V}$.
RS type 207-431. (Available from T \& T Electronics
Green Hayes, Surlingham Lane, Rockland St. Mary, Norfolk)

* mounted on front panel
** mounted on main chassis
**T1

Miscellaneous
mountad on main chasis.

Fig. 2.3. Board C of the 2020 Tuner Amplifier: underside view showing printed circuit (full size).

Fig. 2.4. Board C of the 2020 Tuner Amplifier: top view showing components in position.

Fig. 2.5. Board E of the 2020 Tuner Amplifier: underside view showing printed circuit (full size).

Fig. 2.6. Board E of the 2020 Tuner Amplifier: top view showing components in position.

Fig. 2.7. Assembling the pushbutton switches into switch units, as required for Boards A and B.
the clips and links to be removed without damage to the switches. The clips and links can then be discarded.

Place the latch bar into the switch frame as shown in the diagram. (Fig. 2•7).

Supplied with the latch bar kit is a small latching spring, this is inserted into the right hand side of a pushbutton switch, under the top part of the clear (or white) plastic switch moulding. The switch is then assembled into the right hand position of the latch bar frame as shown in the diagram.

Only the switch in the extreme right hand position is fitted with a latching spring. The other switches are then assembled into the remaining positions in the latch bar frame.

Bend over the top lugs of the frame as shown to hold the switches in position, check that the unit works correctly, i.e., pressing in any one switch releases all the others.

Finally, very carefully cut off the ends of the frame as shown either with a sharp junior hacksaw or a pair of tin snips. Be careful not to distort the frame. Recheck the switch action.

Fit the switch assembly onto board A, ensuring that all pins come through the holes in the board.

Mount the single 2-pole switch (S1) and the 4-pole switch (S2) on board A.

To be continued

EE CROSSWORD No 11 BY D.P.NEWTON

Across

2 Some bridges have such a balancing point $(4,5)$.
7 Cloth tape for a microphone.
8 Wire easily develops these deviant behaviours.
10 For the DIY enthusiast these have everything for the job.
12 Refrain from component balancing.
13 The third line $(4,4)$.
15 Three times at a high pitch.
17 Tail-end of seven across to release the flow.
18 Solar blemishes often interfering with reception.
21 Slow spinner.
22 Part of the switch characterized by its projecting nature.
23 Electronic entitlement on a regular basis.
25 Thin layer.
26 To stumble on a switch.
28 Terminated.
30 A garment-fitting characteristic of many calculators.
31 Very small storage unit.

DOWN

1 Initial circuit as an integral unit (5,5).
2 Of distinguished character.
3 Small, electrical connections between units.
4 Liquid measure.
5 Liquid used in three down.
6 Messing about with something which just might work better.
9 Half-a-mind to conduct.
11 Mean session of duty.
13 Lots of feedback from such a crazy circuit.
14 Spirited device for measuring output $(5,5)$.
16 Planked out to deter intruders $(7,2)$.
19 Not a general member of the animal kingdom.
20 She doesn't stop at laying bare the wire!
24 Elemental fin.
25 A final layer of material was added.
27 House covering.
29 The medical section of a document.

Solution on page 52

Electronics. Make a job of it....

Enrol in the BNR \& E School and you'll have an entertaining and facinating hobby. Stick with it and the opportunities and the big money await you, if qualified, in every field of Electronics today. We offer the finest home study training for all subjects in radio, television, etc., especially for the CITY AND GUILDS EXAMS (Technicians' Certificates); the Grad. Brit. I.E.R. Exam; the RADIO AMATEUR'S LICENCE, P.M.G. Certificates; the R.T.E.B. Servicing Certificates; etc. Also courses in Television; Transistors; Radar; Computers: Servo-mechanisms; Mathematics and Practical Transistor Radio course with equipment. We have OVER 20 YEARS experience in teaching radio subjects and an unbroken record of exam successes. We are the only privately run British home study College specialising in electronics subjects only. Fullest details will be gladly sent without any obligation.

Become a Radio Amateur.

Learn how to become a radio-amateur in contact with the whole world. We give skilled preparation for the G.P.O. licence.

NAME

ADDRESS

Get kitted out for winter.

Heathkit electronics kits are perfect for the winter evenings. There are hundreds of things you can make yourself, with easy-to-follow instructions to guide you.

There are kits for the home or car, and there's a whole range of computers and peripherals too.
And for a thorough and
practical understanding of the principles of electronics, there's a complete range of educational courses and experi-menter-trainers. Full details are in the Heathkit catalogues. Send the coupon now.

1
To: Heath (Gloucester) Litd., Dept.EE1/79, Bristol Road, Gloucester, ㅇ․ 26 6ER Please tick the literature you want and incluce the approprate amount in postage stamps. \square Heathkit Catalogue only (enclose 20 p). $\square 16$ page Computer Brochure oniy (enclose 20p).

Soldering iron worth \$4.50. Full detals when you send the coupon.

Name
There are Heathixit Electronies Centres at 53 Tottenham Courk Hoad London (01-6367349) andat Brasw! Roan, Gloucestere (Gloucester 29451)

Adidess

ALTHOUGH stereo hifi headphones offer a very high level of performance at relatively low cost, they have a minor drawback in that they do not provide a proper stereo effect from ordinary stereo programme sources.

The basic technique used when making a stereo recording or transmission is to have a microphone each side of the sound stage, and one in the middle. The right hand microphone feeds the right hand stereo channel, the left hand one feeds the left hand stereo channel, and the signal from the centre microphone is mixed equally into both channels. This is something of an over simplification of course, but it illustrates the general principle employed.

On playback through suitably placed loudspeakers the original sound stage will be simulated by an audio delusion, and will stretch from one speaker to the other.

When such a signal is played through headphones, the sound stage will still extend from one transducer to the other, giving a sound stage from one ear to the other.

This results in some sounds seeming to emanate from actually inside the listeners head, which can be distracting and even unpleasant.

BINAURAL RECORDING

This phenomena can be overcome by the use of the binaural recording technique where two microphones are used and they are fitted into the ears of a dummy head. The dummy head is placed in the middle of the audience (or where the audience would normally be) so that the microphones pick up the sounds that would be heard by someone sitting at that position in the audience. Anyone listening to this signal through headphones
will hear these sounds and will gain a very realistic impression of being actually in the audience at the performance, from a purely audio stand point anyway.

The effect is more like a quadraphonic one than an ordinary stereo one and can be extremely realistic indeed. Unfortunately though, very little programme material is currently in binaural sound as most people prefer to use loudspeakers, and binaural recordings do not produce a good conventional stereo effect when played through loudspeakers.

This has resulted in many attempts to produce signal processors for giving a less localised stereo image when using headphones to listen to a conventional stereo signal. Most simple devices of this type use some form of blend circuit where the two channels are mixed together in some way, but a number of experiments along these lines carried out by the author did not prove very successful. In fact they tended to give a more localised signal.

HAFLER CIRCUIT

Sometimes when listening to a conventional stereo signal through headphones a spacious effect is produced, but this is more by accident than design.

Fig. 1. Four speaker Hafler arrangement.
This widening and general extending of the sound stage away from the listeners head is due to ambience signals. These are produced by sounds which are reflected off the walls, floor, and ceiling before being picked up by a microphone. It is these ambience signals that are used in most quasiquadraphonic systems to give a spacious surround sound effect, and a similar technique can be used to give increased ambience and thus a less localised stereo image when listening to an ordinary stereo signal through headphones.

This is achieved by using a form of circuit which has become known as the "Hafler arrangement", after its originator. The four speaker Hafler arrangement is illustrated in the circuit of Fig. 1.

The front speakers are wired up in the same way as the speakers in a conventional two channel system, and the rear speakers are almost connected in the same manner, but the common connection of the rear speakers is not connected to the negative amplifier output.

REAR LOUDSPEAKERS

The rear speakers therefore respond to the difference in the output amplitudes of the two channels. Signals at the centre of the sound stage will not be reproduced by the rear speakers, since they will be comprised of identical signals in each channel. Thus, as the voltage at the left hand positive output rises and falls, the voltage at the right hand positive output will vary in precisely the same way. No voltage will be developed across the rear speakers and they will produce no output.

Signals slightly either side of centre will be reproduced at reduced level, because although both outputs will rise and fall in amplitude simultaneously, one output will be at a greater amplitude than the other, and a small difference signal will be developed across the rear speakers.

Signals forming the left and right limits of the sound stage will only appear at one or other of the outputs, and no cancelling of these will occur. They are therefore reproduced at normal volume.

AMBIENCE

Any ambience signals will be randomly phased, and may well be cancelled out in precisely the same way as the centre of sound stage signals were. However, by chance it is likely that some ambience signals will be out of phase. In other words, some of these signals will be positive in polarity at the right hand output when they are negative at the left hand output, and vice versa.

Such a signal might produce an output potential of (say) +1 volt at one output, and -1 volt at the other output. This would give a potential of 2 volts across the rear speakers, and so such a signal
would be reproduced twice as loudly from the rear speakers as from the front ones.

In this way the Hafler circuit gives an output from the rear speakers which has boosted ambience and an attenuated main signal. From suitable programme material this produces an extremely effective quadraphonic type effect.

HEADPHONE APPLICATION

This same basic technique can be applied to a headphone enhancer unit using the extremely simple circuit shown in Fig. 2. Here the common connection of the headphones is connected to the common output of the amplifier via a 5 kilohm log. potentiometer, rather than directly as would normally be the case.

Fig. 2. The circuit of the Headphone Enhancer.

With VRI adjusted to insert minimum resistance into circuit the headphones will obviously be fed with an ordinary stereo signal and the unit will have no effect. With VR1 adjusted for maximum resistance the headphones are connected in what is virtually the rear speaker Hafler arrangement.

Because VRI will still provide a signal path, albeit a rather poor one, the ordinary left and right signals will still be reproduced, but at a low level which will be insignificant in comparison to the Hafler difference signal.

In practice VR1 is adjusted for a compromise between these two
extremes. This gives a signal having the centre of the sound stage somewhat attenuated and the amount of ambience increased. One effect this has is to polarise most signals to one side or other of the sound stage, thus helping to eliminate the stereo image from appearing actually inside the listeners head.

The absolute centre of the sound stage will still be present, but the reduced signal level and increased ambience give the signal a rather distant sound, again helping to remove the sound stage from actually within the listeners head.

This does not give the same effect as listening to the signal using loudspeakers, neither does it give a true binaural effect, but does give a more realistic effect than a straightforward stereo signal, and most people seem to find the effect more pleasant than that produced by an ordinary stereo signal.

The unit can be housed in any small case with VR1 and a stereo jack output socket mounted on the front panel. An entrance hole for the input cable is made in the rear of the case. This lead can consist of about 2 to 3 metres of thin 3 -core mains cable terminated in a stereo jack plug (which plugs into the headphone socket of the amplifier). The common input lead connects to the left hand terminal of VR1 (when viewed from the rear) and the centre tag of VR1 is connected to the common tag of the output socket. It is then only necessary to connect the two remaining input leads, one each to the so far not connected tags of the output socket, and the unit is complete.

Fig. 3. Layout of the components on the back of the front panel of the case and interwiring.

I
like to think of you curled up in the armchair in front of the fire on Christmas afternoon, comfortably full of turkey and Christmas pudding, and occasionally nodding off. In one hand you have your copy of Everyday Electronics and in an effort to keep awake you start to read "Counter intelligence". This has the effect of sending you to sleep until teatime.

Under the circumstances on this occasion 1 do not feel called upon to be too serious and the Editor always allows me to reminis a little. It must have been an Irishman who said that "Nostalgia ain't what it used to be" but even so it is great fun especially because we tend to remember the good times and the funny things rather than the bad times and the tragedy.

Brief Encounter

I suppose but for an odd chance meeting, I should have finished up during the War as a wireless operator or in radar. It happened this way. I was walking one day past the Dominion Cinema, Tottenham Court Road, when standing outside having his boots polished was an old friend of mine, Fred Brandt. We were both Service Engineers at Radio Rentals
at one time, but I had lost touch with him, so naturally I asked him what he was doing, "I am flying" he replied. 1 was quite incredulous (you must remember in those far off days we used to look skywards, whenever we saw an aeroplane, they were so rare).
Before I could recover, he said "Come over to Heston on Sunday and I will take you for a trip". Fred was as good as his word and on the Sunday took my wife and myself up in a Leopard Moth. After that I was hooked and within a month I had joined the RAF reserve and the following April started my flying training.

The chances were, that I might never have come back into radio but for two things. After seven years of war time flying and surviving one crash, I was weary of it all, and when my brother, who was a Captain in the signals, suggested we start up our own radio business, I agreed. If it had not been for those two things there would have been no Paul Young.

Outside, the reader who said "What a pityl" Starting a business just after the war had its problems. The biggest stumbling block was, that there were no new sets being made and consequently no stock!

SETTING UP

With the equipment set up for use and VR1 adjusted fully anticlockwise, ordinary operation should be obtained. Adjusting VRI in a clockwise direction should produce progressively enhanced results until a point is reached where the stereo effect begins to die away and virtually a mono signal (the Hafler signal) is obtained.

Results will probably be at optimum with VR1 just slightly backed off from this point.

How effective the unit is depends to a large extent on the amount of ambience present on the signal, but it should provide improved results with any stereo signal. The effect of the unit is most apparent on a programme source having plenty of ambience and a soloist at the centre of the sound stage.

I well remember I had the good fortune to re-establish contact with an old friend of my pre-war days named Jimmy Reygate. Jimmy used to buy up old wireless sets and repair them. He was a butcher by trade and although he had a heart of pure gold and made marvellous sausages his radio knowledge was minimal, and if the set did not go after changing the valves followed by a swift kick, he would call me in.

A Good Time

Jimmy would let me know, if he heard that anyone was disposing of an old set and we would be round there in a flash. One of these episodes comes back vividly to me. Jimmy had heard that someone had a large HMV radiogram to sell. It was rather a nice model with an automatic record changer and a good quality output consisting of two PX4's in push-pull.

Being worried that if we were too eager, they would push the price up too high he suggested we should pretend we wanted to buy the pianola instead. So there was Jimmy pumping out tunes on the old pianola while we tried to find out the price of the radiogram without appearing all that interested. It took some doing, but we managed it and thus acquired one more piece of stock.

Needless to say there was not the slightest difficulty in selling anything you could obtain. It was an unusual situation, but you have to remember that the public had been unable to buy any consumer goods for over five years! Fortunately supplies of new goods gradually improved so we had something to sell before we starved to death.

A Happy Christmas to you all!

GREENWVEL

443 Millbrook Road Southampton SO1 OHX Tel:CD703) 772501
All prices quoted include VAT. Add 25 , UKIBFPO Postage, Most orders despatch@c on day of receipt, SAE with enquiries please. MiNIMUM ORDER VALUE
Ei. Official orders acceptod from schools, efc. (Minimum invoice charge E5). EXport) Wholesale enquiries welcome. Wholesale list now available for bona-fide traders. Surpius components always wanted.

THE NEW 1978-9

 GREENWELD
CATALOGUE

FEATURES INCLUDE:

- 50p Discount Vouchers
- Quantity prices for bulk buyers
- Bargain List Supplement
- Reply Paid Envelope
- Priority Order Form
- VAT inclusive prices PRICE $30 \mathrm{p}+15$ p POST

KITS OF BITS

FOR THIS MONTH'S EE PROJECTS

CONTINUITY TESTER

All parts except box $\boldsymbol{\Sigma 2}-40$
LIGHTS REMINDER
All parts including box $\mathbf{E 3}-35$
I'M FIRST
All parts exeluding containers $£ \mathbf{£ 1 - 5 5}$

ROULETTE

All parts as specified except materials fo case and bowl for £11.95
I.C. sockets 21 extra if required.

E.E. $20+20$ TUNER

AMPLIFIER
We can supply all parts required except the components for the RF unit for approx.

AIR-FRESHENER KIT

See our half-page ad. elsewhere in this issua for detalls.

NOTE: A more detailed lisi of parts supplied in these and other kits is avallable on receipt of a SAE.
Kits of last month's projects still available.

"DOING IT DIGITALLY"

This new series which started last month s bound to be a blo success. We supply a is bomplete set of partes (as we did for last years' Teach-in series) for tust sis-75 + 81 post for the Electronle Test Eed, and 2.75 for additional parts required for

The GREENWELD

Amplifier Kit

deal for the beginner to make, this kit is complete right down to the last screwt! the 4 transistor circuit will give 2 W output from a crystal cartridge. Battery version Ei.75, or with transiormer for mains operation \&3-95

PC ETCHING KIT MK III
Now contains 200 sq. Ins. copper clad
board, 11b. Ferric Chloride, DALO etchresist pen, abeasive cleaner, two miniafure drill bits, etehing dish and instructions. E4-25

BUY A COMPLETE RANGE OF COMPONENTS AND THESE PACKS WILL HELP YOU

$*$ SAVE ON TIME-No delays in whating for parts to come or shops to open!

* SAVE ON MONEY - Bulk buying means lowest prices-just
compare with others!
* HAVE THE RIGHT PART-No
guesswork
or guesswork
necessary!
ALL PACKS CONTAIN FULL SPEC. BRAND NEW. MARKED DEVICES INCLUSIVE PRICES.
K001 50 V ceramic plate capacitors, 5%. 10 of each value 22 pF to 1000 pF . Total 210 .
Ke02 Extended range. 22 pF to 0.1 nF . 330 values $E 4 \cdot 90$
$K 003$ Polyester capacitors, 10 each of these values: $0.01,0.015,0-022,0.033,0.047$ $0.068,0.1,0-15,0.22,0-33,0.47 \mathrm{mF}, 110$ altogether for 84.75
K004 Mylar capacitors, min 100 V type, 10 each all values from
$K 005$ Polystyrene capacitors. 10 each value from 100F to $10,0000 \mathrm{FF}$, E12 series 5% K0V. Total 370 for 21230 .
the following: $0.1,0=15,0,2,0$ each of the ollowing: $0.1,0.15,0.22,0.33,0.47$, $\begin{array}{llll}0 \cdot 68.1,2 \cdot 2,3.3,4-7 ; 6: 8 ; ~ a l l ~ & 35 \mathrm{~V} ; 10 / 25 \\ 15 / 18 & 22 / 16 & 33 / 10 & 47 / 6 \\ 100 / 33\end{array}$ tants for $£ 14$-20
K007 Electrolytic capacitors 25 V working ular values: $1,2.2,40$ each of these popTotal 70 tor 53.50
K009 including 220,470 and 1000 as . Total 100 for ${ }_{50} 5.00$ Ministure carbon fitm 5% resistors CR25 or similar. 10 of each value from 10R 01 M . E12 series. Total 610 resistors, $\mathbf{E 6} \cdot 00$ K022 Extended range, total 850 resistors
from 1R to 10 M \&s- 30 . from 18 to $10 \mathrm{M} \mathrm{Es} \cdot 30$
tc. 10 of each value from $5 \% \mathrm{BZY88}$ E24 series. Total 280 for $£ 45 \cdot 30$
K0L2 As above but 5 of each value $\boldsymbol{\varepsilon 8}-70$

TRANSFORMERS

 $20 \mathrm{~V} @ 300 \mathrm{~mA}$ twlce $52 \cdot 50 ; 12 \mathrm{~V}$ as 250 mA wice s2.00

RELAYS

W347 Low profile PC mntg $10 \times 33 \times 20 \mathrm{~mm}$ 6 V coll, SPCO 3A contacts. 93p W832 Sub, min type, $10 \times 19 \times 10 \mathrm{~mm} 12 \mathrm{~V}$ W701 6 V SPCO 1 A contacts $20 \times 30 \times 25 \mathrm{~mm}$ Oniy 560
Wรi7 11 pin plug in relay, rated 24 V ac but works well on 6 V DC. Contacts 3 pole WFis 42 V 1250 R DPCO 1A contacts SIze $29 \times 22 \times 18 \mathrm{~mm}$, min plug-in type 720 W8s3 50 V ac (24 V DC) coli. 11 pin plug in type. 3 pole clo 10A contacts. Only 85 p Weic open construction mains relay. 3 sets 10 A e/o contacts. E1-20
Send $S A E$ for our relay list- 84 types listed and illustrated.

HEAT SINK OFFER

Copper TO5 sink 17 mm dia $\times 20 \mathrm{~mm}$. 10 for 40p: 100 for £3: 1000 for $£ 25$

POLYTHENE SHEET

Size $36 \times 18 \quad 200 \mathrm{~g}$. Hundreds of uses around the home, 100 sheets for $\mathrm{Ef} \cdot 50$.

HEATSINK

With reference to my letter in the August '78 issue concerning heat dissipation in encapsulated circuits. I have found that kitchen foil can be used as a very effective heat sink on individual components. The diagram shows how this is done. The foil is tightly wrapped round the component, and carefully arranged so that when the circuit is encapsulated a small piece is lying on the outside.

By natural conduction the heat will be dissipated away from the component to the cool outside.
D. Clarke,

Rugby

PLUG AND SOCKET

A very cheap multiway plug and socket can be made using standard plastic connecting blocks and split pins. The diagram shows how this is done. The split pins should have a diameter just smaller than that of the holes in the socket. The split pins should protrude about 10 mm from the edge of the socket. I used this method very successfully when building the Sound to Light unit.

TREASURE HUNTER
(October 1978)

We have been informed by the Home Office that the cost we published for a licence is incorrect. A licence for five NOTE years costs £1:80

Electrovalue Buying

If you have bought before from Electrovalue, you know just how unusually large and varied our stocks are. If you have yet to know, we are sure you wil benerite information and prices on the most montrant items we carry. These ads. appear in stepped rotation in five journals-so that the complete series is available each month BY DETACHING AND SAVING THESE PAGES, YOU CAA BUIID UP A VALUABLE AND COMPREHENSIVE MONEY SAVING REFERENCE GATALOGUE, AND YOU WILL FIND OUR SERVICE PERSONAL, EFFICIENT AND DEPENDABLE WHEN YOU BECOME AN ELECTROVALUE CUSTOMER.

Transistors/Zeners

- GOODS SENT POST FREE U.K. WITH C.W.O. orders over $£ 5$ list value. If under add 27 p handling charge.
- ATTRACTIVE DISCOUNTS on C.W.O mail orders- 5%. Where list value is £ 10 ; 10% where list value is over $£ 25$.
- TOP QUALITY MERCHANDISE-ALL GUARANTEED.
- V.A.T.-Add 8% to value of order. For items marked *, add $12 \frac{1}{2} \%$

For ACCESS or BARCLAYCARD orders, just phone or write your number.
No discounts allowable on prices marked NET or N .

- TAKE GOOD CARE OF THIS PAGE AND REMEMBER TO LOOK OUT FOR NEXT MONTH'S TO ADD TO IT.
- OUR COMPUTER-AIDED SERVICE TAKES GOOD CARE OF YOUR ORDER NO MATTER HOW LARGE OR SMALL.
Comprehensive price list free on request.

${ }^{12 p}$

BU208
BU 208
$\mathrm{BU} \times 28$ BUX28
BY164
BY238 BY 238
$\mathrm{BY} \times 38-300$ BYX38-300R
Cl06DI
C0326-SCR
C 64407 .
C
C407*
C1406
C1406
C1412
CS2925
E99A40-Triac
E2506
E2512
E2512
M 1481
M1491
M12955

M1E340
MiE2955

MjE2955
MjE3055
MKY7C38E
MPF102*
MPS6531.
MPS65534
NAS206.S.S-SCR
NAS206.S.W-SCR
NAS654×5

NASO65W5
NAS 1001×5

NASL1001X5
NAS 1004 W5
NAS 1004×5
NKT211
NKT212
NKT274
NKT275
NK OA 47
OA90
OA91
OA95
OA202
OC28
OC29
OC29
OC35
OC36
$0 \subset 36$
$0 \subset 45$
$0 C 71$
$0 \mathrm{Cl1}$
0072
0.81
$0 \mathrm{CB1}$
$0 \mathrm{CB3}$
0.83
0 OC84
PM7A

PMTA2
PN70:
PN72:
PN109
PN1613*
PN2904 *
S1OMI
T2700D
T2800D-Triac
T2800D-Triac
TAG3-400-SCR
TAG302-400-Triac
TAG302-600-Triac
TIP3IA

 }
 \title{
Section 1
 \title{
Section 1
 Guide
}

Section 2-Capacitors 3 -. CsiOpto/Display
Section 4-Resistors Pots /Knobs
Section 5-Ferrites/Solder Tools/Switches

$63 \cdot 90$ 64.20	$\begin{aligned} & \text { TIP32A } \\ & \text { TIP41A } \end{aligned}$		$\begin{aligned} & 45 p \\ & 60 p \end{aligned}$
90 p	TIP4IC		64 p
7 p	TIP42A		60p
65p	TIP42C		64 p
65 p	T1543*		35p
45p	W02		25p
64.40 N	Z1×107*		12 p
65.14N	ZTX108*		$11 p$
17p	Z1×109 *		12p
90p	ZTX300*		12p
90p	ZT $\times 301$ *		$16 p$
-87N	ZTX302**		14 p
.81.48	ZTX303		$18 p$
E1. 14	ZTX304		$21 p$
E1-48	ZTX330		8 p
E1.63	ZTX331*		19p
78 p	ZTX500*		12 p
78p	ZTX500		$15 p$
72p	ZTX502		17 p
68 p	ZTX503		19 p
70 p	ZTX504		22p
44p	ZTX530		8 p
24p	ZTX530		20 p
24p			
R 81p			
Triac 58 p	HEAT	INKS	
$\begin{array}{r} 80 p \\ \text { fI-04 } \end{array}$			
60 p	Type		53p
5I-60	2 YTO3	$1 \times$ TO3	54p
El-04	$2 Y 7066$	1×7066	57p
20p	2.75R	-	62.80
20p	$5 \cdot 5 R$		63.95
20p	5 F	TO5 clip	10 p
20p	5 F 2	TOS clip	10 p
20p	6 Wl		£2.05
12p	6W4	$2 \times$ TO3	E2. 25
6p	IODNA	-T03	88p
6 p	10DNC	$2 \times T O 3$	CI-14
8p	$17 C 2$	$2 \times$ AD161	20p
10p	18F	TO18 clip	10p
¢1-02	18F2	TO18 clip	10p
E1.07	224 F	TO1 clip	10p
81.07	2445	DOI clip	10p
E1. 02	266F	DO3 clip	10p
E1. 15	Al032	TOI clip	6p
70p	A1053	$2 \times \mathrm{TOI} \mathrm{clip}$	P 8p
70p	Al058	$1 \times$ TO3	22p
80 p	TO92!	T092 clip	7 p
70p	TO922	$2 \times 7092 \mathrm{cl}$	lip 9p
70p	TV2	TO66	24p
62. 68	TV3	TO3	25p
5 p	TV4	BDI31	21p
5p 5p	TV5	TO220	21p
$5 p$			
5p			
10 p	ZENER	DIODES	
C1-55			9 p
61-04	$\begin{aligned} & 400 \mathrm{~mW} \\ & 1=3 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 2 \cdot 7-33 \mathrm{~V} \\ & 3-200 \mathrm{l} \end{aligned}$	15 p
CR ¢1-00 - Triac $85 p$	$1.5 \mathrm{~W} ~ 3$	$3-75 \mathrm{~V}$	
-Triac 85p	(1-5W	re metal case	
Triac $\begin{array}{r}\text { ¢1.05 } \\ 45\end{array}$	(1-5W 20 W 7.5	re metal case	5 each

```
NASCOM 1 MICRO
                                    COMPUTER
Tomorrow's electronicg in your hands today.
From scock (ner) from
```

 + V.A.T
    ```
```

 + V.A.T
    ```
Quantity discounts. Enquifies invited.
MOTOROLA MICROPROCESSOR
D. 2. Evaluation Kic (for the
M. 680 microprocessor)
Net)
\(£ 175.87+\) VAT

ELEGTROVALUE LTD
28, ST. JUDES ROAD, ENGLEFIELD GREEN.


WHEN driving during daylight hours the occasion sometimes arises to use lights, as a result of sudden rainfall or a temporary darkening of the sky. It is on these occasions that one is most prone to leave the car parked with the lights left on, particularly if the sky has brightened up again. This simple device provides a two tone audible warning of this condition.

It was decided to have the warning activated when all of the following conditions arise:

\section*{1. Car lights on.}
2. Ignition switched off.
3. Car driver's door open.

Thus, the warning sounds as the car door is opened, if the lights are switched on. When the door is closed the alarm stops, a useful feature if one wishes to leave one's lights on when parked. Also,

the alarm is inhibited if the ignition is switched on. Again useful for dropping off passengers without triggering the device.

\section*{CIRCUIT DESCRIPTION}

The circuit for the Lights Reminder is shown in Fig. 1 and consists basically of two oscillators. One oscillator operates at an audible frequency, whilst the other operates at a much lower frequency. The output from the low
oscillator is used to "shift" the frequency of the higher which thus produces the two-tone sound.

The high frequency oscillator comprises one half of a dual timer i.c., an NE556, and timing components R8, R9 and C3. In this circuit the frequency is about 700 Hz . The low frequency oscillator uses the remaining half of IC1, and the timing components \(\mathrm{R} 5, \mathrm{R} 6\) and Cl to produce a frequency of about 4 Hz . The two oscillators are directly coupled via R7.

Fig. 1. Circuit diagram of the Lights Reminder (negative earth).


The waveforms of Fig. 2 show how, when the low frequency oscillator switches on and off, the frequency of the second oscillator is "shifted" up and down in frequency. The resultant two-tone composite output is taken from pin 5 of IC1, via R10 and C4 to the loudspeaker.


Fig. 2. Typical waveforms appearing at the outputs of the two oscillators.

\section*{OPERATION}

For the circuit to operate, 12 volts must be applied. This is obtained as follows: when the lights are switched on, 12 V from the light switch appears at the Lights input. In this state the circuit does not operate since there is no 0 V connection. Now when the car door is opened, courtesy switch closed, the 0 V or ground condition required now appears at the courtesy switch input. The unit thus operates and sounds a warning.
The above is only true if the ignition is switched off. This constitutes the main function of the device which is to alert the driver when the car is parked, that the lights are still on.
A useful feature is provided in the unit whereby if the ignition is left switched on, and the door is opened the alarm will not sound. This is useful if it is required to drop off passengers without the amnoyance of the alarm.
This part of the circuit is TR1, and operates as follows. With the ignition switched on, +12 V appears at the IGNition input. The transistor is thus turned hard on, its collector potential falls to almost zero. In this condition a "low" potential is presented at pins 4 and 10 of IC1. These pins are in fact the reset terminals of the i.c. and when taken low inhibit the timers from operating.
Zener diode, D2 and R1 stabilises the supply voltage at 15 volts, which is the maximum the i.c. can take without being destroyed. Diode D1 prevents reverse current


Fig. 3. The original circuit is modified slightly to enable it to operate on positive earth car systems.
flowing through the circuit, as would otherwise happen when the lights are off and the courtesy switch open.

\section*{POSITIVE EARTH}

To enable the circuit to operate with positive earth cars, a modification is included to cater for the reverse in supply polarity. This is shown in Fig. 3 and consist of just one extra transistor, TR2, and a resistor, R11.

We can think of a positive earth car as having +12 volts connected to earth, and 0 volts as the supply, rather than the more obvious 0 volts connected to earth
and -12 volts as the supply. If this is remembered then the circuit description will be easier to understand.

When the ignition switch is in the off position, the potential at the ignition input is +12 volts, transistor TR2 is therefore turned on and the collector becomes 0 volts. This causes TR1 to turn off, its collector potential being at +12 volts. The two oscillators are thus free to operate.

Now when the ignition is turned on, a potential of effectively zero volts is applied to the input of TR2, this transistor is thus biased off. Its collector voltage will now assume a potential equivalent to

\footnotetext{


The unit consists of two oscillators, one operating at a very low frequency, the other at a much higher audible frequency. The low frequency oscillator is used to vary the output of the high frequency oscillator thus shifting the frequency up and down producing a two-tone alarm. An electronic switch controlled effectively by three different inputs is used to operate the alarm as required.
If the car lights are switched on and the car door is opened the alarm will sound, thus informing the driver that the lights are switched on when for instance the car is parked for the night.
A facility is incorporated whereby if the ignition is on, and the lights are on the alarm will not sound, useful when actually driving! This facility is also used when the car door is opened to let passengers out, the alarm not sounding in this condition.
}


\section*{Electronic Air Freshener Kit}


This novel kit contains everything you need to make one of the most advanced air fresheners of its kind. styled to take its place in any room in your home and do its job quietly and unobtrusively.

\section*{ONLY \(£ 7.95\)}
+55 p P \& P .

The automatic timing circuit switches on a fan for a few seconds at regular intervals to send an odour neutralising fragrance into every corner of your room.
The kit includes components for EITHER a 4 or 15 minute ciming circuit, miniature D.C. motor and moulded parts in high impact styrene to provide an easily maintained, elegant appearance.

\section*{As featured in Nov EE}

\section*{CREENWELD \\ 443 Milbrook Foad Southernpton SO1 OHX}

\begin{abstract}
SINCLAIR PRODUCTS microvision Sinciar PDM35 s. \(27 / 25\). Mains adaptor 23.25, Case 23 -25. DM235 £48-30. Rechargeable battery units \(\begin{aligned} & \text { charger } 23 \cdot 70 \text {. Case } £ 850 \text {. Cambridge }\end{aligned}\) prog calculator £13.15. Prog library 23-45. Mains adaptor \(£ 3 \cdot 20\). Enterprise prog. calculator accessories e221-95.
COMPONENTS send sae for fuil list. \(1 \mathrm{fb} \mathrm{FeCl} \mathrm{Et} \cdot 05\). Dalo pen 73 p .60 sq ins peh 55p. Laminate cutter 75p. Small
 ior radio 2p- 741 15p. NF555 23p. bc1a2b. be183b, bci84b, bc212b, bc213b, bc214c 4.5 p . Plastic equivs, bcto7, bc109
4.8 W . \(5 \%\) E12 resistors 10 R to \(10 \mathrm{M} 1 \mathrm{p}, 0.8 \mathrm{p}\) for \(50+\) of one value. 10 v electrolytics. \(5 / 1 / 2 / 5 / 10 / 22 \mathrm{mf} 5 \mathrm{p}\), \(100 \mathrm{mi} 16 \mathrm{p}, 1000 \mathrm{mf}\) 10p. Polyesters \(250 \mathrm{y} .015,068,-1 \mathrm{mf} 1{ }^{15} \mathrm{p}\). Ceramics 50 V Es 22pi to 47n 2p. Polystyrenas \(63 y\) E12 10 7p.
TY GAMES send sae for data. AY \(3-8500\) + kit Es.95. AY-3-8600 + kit £12.50. Tank battles chip \(£ 6 \cdot 90\), kit \(\mathbf{~ x 7} \cdot 05\). Stunt cycle chip \(85-80\), kit \(\$ 5-50\). Rifle kit \(\mathrm{E} 4-85\) IC AUDIO AMPS with peb JC12 6W
\(£ 4 \cdot 60, \mathrm{JC20} 10 \mathrm{~W} £ 2.35\). JC 40.20 W E. 3.95 .
\end{abstract}

TRANSFORMERS \(6-0-6 \mathrm{~V}\) 100ma 74 p ,

1af2-49. BATTEY ELIMINATORS 3 -way type \(6 / T_{\mathrm{z}} / 9 \mathrm{v} 300 \mathrm{ma} 22.95\). 100 ma radlo type vith press-studs \(9 v \quad 53-35,9+9 \mathrm{v}\) e4-50, 18 y Car convertors \(3 / 4 \frac{1}{2} / 6 / 7 \frac{1}{3} / 9 \mathrm{v}\) 800ma
E2-50. BATTERY ELIMINATOR KITS send sae for data. 100 ma radio types with press-

 \(100 \mathrm{ma} \mathrm{E} 3-20\), 1 Amp \(£ 6-40\). Stabilized power kits 2-18v 100 ma E3.60, 2-30v 1A \&6-25. 2-30y 2a \(\mathbf{8 1 0} \cdot 25\). 12 y car convertor 6/7 7 OV la A1-95. ESC BREADBOARDS s-dec \(\mathrm{x3}\)-17, t-dec es-02, u-deca £4-40, u -decb \(£ 7 \cdot 05\). 16 dil adaptor \(£ 2 \cdot 14\). exp 300

22.48. AKIOMODULES 5450 E23. 51


SWANLEY ELECTRONICS (Dept EE), 32 Goldsel Rd., Swanley. Kent

PRECISION HAND TOOLS


SIZES. WATCHMAKERS 4 inch; INSTRUMENT MAKERS \(4 \frac{1}{2}\) inch British-made precision box-jointed hand tools with insulated handles, each tool packed in an attractive pvc wallet.
Only £3-85 each OR any 3 tools FOR ONLY £ 10.80 inc P\&P
C.W.O. to QUINTON TOOL SUPPLIES, Dept. E.E., 52 Grayswood Park Road, Birmingham B32 1HE

82 Bath Street, Walsall, WS1 3DE. Phone: (9) 614791
Name
Address
Phone your order with Access or Barclaycard
Inc. V.A.T. and PP. (U.K. only.) QUANTITY RECOB.
\begin{tabular}{|l|l|}
\hline X4 KIT £16.65 & \\
\hline \begin{tabular}{l} 
TACHO PULSE \\
SLAVE UNIT \\
SL3.85
\end{tabular} & \\
\hline
\end{tabular}

PLEASE STATE POLARITY POS OR NEG EARTH.

I enclose chequelPQ's for

登
Cheque No.
Send SAE if brochure oniy required

Access or Barclaycard No.
Sparkite X 4 is a high performance, high quality oapacitive discharge, electronic ignition system in kit form. Tried, tested, proven, reliable and complete. It can be assembled in two or three hours and fitted in \(1 / 3 \mathrm{mins}\).
Because of the superb design of the Sparkrite circuit it completely eliminates problems of the contact breaker. There is no misfire due to contact breaker bounce which is eliminated electronicaty by a pulse suppression circuit which burn is eliminated by reducing the current to about. \(1 / 50\) th of the norm. It will perform equally well with new, old, or even badly pitted points and is not
dependent upon the dwell time of the contact breakers for recharging the system Sparktite incorporates a short circuit protected inverter which eliminates the problems of SCR lock on and, therefore, eliminates the possibility of blowing the transistors or the SCR. IMost capacitive discharge ignitions are not completely tooiproof in this respect). The circuit incorporates a voltage regulated output for greatly improved cold starting. The circuit includes built in static timing light, systems function light, and security changeover switch. All kits fit vehicles with

Die pressed epoxy coated case. Rieady dritied, aluminium extruded base and heat sink, coil mounting clips, and accessories. Top quality 5 year guaranteed
transformer and components, cables, connectors, P.C.B., nuts, bolts and silicon grease. Full instructions to assemble kit neg. or pos, earth and fully illustrated installation instructions.
NOTE - Vehicles with current impulse tachometers (Smiths code on dial BVI) will require a tachometer pulse slave unit. Price 23.85 inc. VAT. post \(\&\) packing. Electronics Design Associates, Dept. EE 1
(U.K. oniy).

Electronics Det Walsall WSi 30E. Phone: (9) 614791
\(\qquad\)


Electronics Design Associates ept. EE I

 Hnnoueliony trom Sparkhite the quickest fitting CLIP ON capacitive discharge electronic ignition in KIT FORM

S
In
L
8
0
Smoother running
Instant all-weather starting
Continual peak performance
Longer coil/battery/plug life
Improved acceleration/top speeds Optimum fuel consumption


Whar \(\square\)
a "high" condition. This turns TR1 on, resulting in the collector voltage going low, thus inhibiting the oscillators thereby preventing the alarm from sounding.


The prototype unit was constructed in a small plastic case \(70 \times 50 \times 20 \mathrm{~mm}\). The size is determined entirely by the loudspeaker used, and if the one specified cannot be obtained then a different case must be used.

All components are mounted on a piece of 0.1 inch stripboard having 26 strips by 14 holes, the wiring of which is shown in Fig. 4.

Begin by cutting a hole for the speaker, this needs to be 20 mm in diameter and can be cut using either a tank cutter, or by drilling a series of small pilot holes and filing the hole round. At this stage the breaks in the copper strips can also be made. Next the wires links and the i.c. socket can be soldered in position. The remaining components can then be soldered in place, taking note of the transistor leadouts.

To ease construction, Veropins are used to connect the flying leads to the board.


The completed circuit board for the Lights Reminder mounted in a suitable case.

The stripboard can be fixed to the speaker using either glue or double sided sticky tape. If the components are similar in size to those used in the prototype then the stripboard and speaker need no additional fixings, being held in place by the lid of the box.

\section*{POSITIVE EARTH}

The diagram in Fig. 5 shows the modified layout which is to be used when constructing the positive earth version. Note there is one extra break to be made. The base lead of TR2 should be extended as required. Resistor R11 is a vertically mounted component, and needs to be of small size otherwise the lid will not be a flush fit when finally screwed down.

\section*{COMPONENTS 解的E}

Resistors
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline R1 & \(30 \Omega\) & R5 & \(1 \mathrm{k} \Omega\) & & R9 & \(47 \mathrm{k} \Omega\) \\
\hline R2 & \(10 \mathrm{k} \Omega\) & R6 & \(18 \mathrm{k} \Omega\) & & R10 & \(56 \Omega\) \\
\hline R3 & \(2 \cdot 2 \mathrm{k} \Omega\) & R7 & \(10 \mathrm{k} \Omega\) & & R11 & \(10 \mathrm{k} \Omega\) \\
\hline R4 & \(2 \cdot 2 \mathrm{k} \Omega\) & R8 & \(1 \mathrm{k} \Omega\) & & & \\
\hline All \(\frac{1}{6}\) & carbo & & & & & See \\
\hline Capac & & & & & & \\
\hline C1 & \(10 \mu \mathrm{~F}\) & & & & polyester & \\
\hline C2 & 22 nFP & & C4 & 10ر & 25 V elect. & \\
\hline Semic & aductor & & & & & \\
\hline 1 Cl & NE556 & ri.c. & & D1 & IN4001 re & tifier \\
\hline TR1 & BC184 & & & D2 & BZX61C & V \(1 \cdot 3\) \\
\hline TR2 & BC184 & (see & ext) & D3 & IN914 sili & on dio \\
\hline
\end{tabular}

\section*{Miscellaneous}

LS1 8 ohm 38 mm diameter speaker
Stripboard 0.1 inch matrix, 26 strips \(\times 14\) holes; small plastic box, \(70 \times 50 \times 25 \mathrm{~mm}\); socket to suit IC1; heavy gauge connecting wire; Veropins as required.

Remember to complete all the other wiring as shown in Fig. 4 as well as the modification. The unit will not function on the modification alone!

Finally the external wires should be labelled as appropriate for whatever polarity you are using.

\section*{IN USE}

Once construction is finished the unit can be tested. Insert the i.c. into the circuit, observing the correct polarity, and connect the circuit to, say, a car battery. The circuit should now be heard to oscillate, connecting the IGNITION input to +12 volts should stop the oscillation. If all performs well the unit can be mounted in any convenient position in the car.

The diagram of Fig. 6 shows very simply how the unit is wired into the car's electrical system. Refer to your workshop manual. I

\section*{Crossword No. II-Solution}


\author{
By Pat Hawker, gsva
}

\section*{Older by the year}

It is said that when one of the first trunk telephone circuits was set up in the United States, somebody said to Emerson: "Isn't it wonderful that Maine can now speak to Florida?". "Yes" came the reply "but has Maine anything to say to Florida?".

The question of what as well as how to communicate has always been in the forefront of the questions that radio amateurs are asked by those observing the hobby from the outside. It is not, however, a question that is often asked by amateurs themselves; they remain more interested in the means than the messages, as brought out in the famous skit by the late Tony Hancock.
Many amateur "contacts" follow fairly stereotype, rubber-stamp form: location, signal report, name, equipment, weather etc are duly exchanged whatever the modes of operation. Recently, however, I seem to detect a growing tendency of American amateurs to exchange "age". While this statistic undoubtedly adds an interesting personal glimpse of the distant amateur behind the microphone or morse key, I wonder if I alone have hesitations in replying in kind to young Americans who insist on telling me that they are 15 or 16 years old, and often, if older, their occupation.

I feel sometimes like replying "Yes 1 had a licence at that age but it was more years ago than l care to commit to the air-waves". Yet one international amateur contest attracts support despite the "serial number" being made up of the age of the participants. At least "young lady" operators are permitted to send " 0 ". Perhaps all males over 18 and under 70 should be allowed to use " 00 ".

\section*{No waves in ESP?}

As someone with a sceptical attitude towards some, but by no means all forms of extra-sensory perception, I have often wondered whether any form of electromagnetic radiation is involved in such phenomena as dowsing and telepathy, as well as in such matters as direct detection of radio signals in the brain or those curious long-delayed radio echoes which I am convinced have occurred, I strongly doubt whether, as sometimes suggested, they have any connection with unidentified flying objects.

However a long, detailed letter in "Nature" from Professor John Taylor and E. Balonovski of King's College, London seems calculated to send us all back to the drawing board. Professor Taylor, who at one time was a strong advocate of scientific investigation of metal bending as practised by Uri Geller and others, has apparently now lost all belief that such phenomena might be explained by forms of radio signals.

A very detailed investigation using a series of sensors capable of detecting signals from d.c. to infra-red and so including the entire radio spectrum has failed to come up with any signs of natural radiation from the participants. Indeed, the experiments has also failed to find any convincing examples of E.S.P. (an ability to make floating needles swing was found to have been due to static electricity caused by rubbing the surrounding Perspex cylinders).
Even dowsing, which it is accepted happens, is dismissed as due to "muscular twitches brought about by subconscious mental activity" which rather begs the whole question; faith healing he now ascribes to "psychological effects of the healer on the patient". Yet a year or two ago the professor was among the strongest supporters of the metal benders.
Personally, in these days of antimatter, I wonder whether the r.f. sensors were capable of detecting signals at negative frequencies? There is a hypothesis that a whole unused radio spectrum exists on the other side of OHz , just as every electrical engineer uses the square root of minus one!

\section*{Paying for TV}

The problem of financing ever more radio and television broadcasting has long occupied many minds: advertising, licence fees, pay-TV, Government grant-in-aids, public voluntary contributions, all are in use The United States has successfully added a Public Broadcasting Service to its fantastically large advertisingfinanced output still without introducing licence fees.

Less well-known is that four European countries have no licence system: Spain, Luxembourg, Monaco and Vatican City; Portugal has a TV licence costing only about \(\mathrm{£5}\); in Austria it works out at about £1 per
week. In Greece, payment is made in the form of a surcharge on the domestic electricity bill so that the more electricity you use for any purpose, the more you contribute towards the cost of broadcasting.

In Yugoslavia you have to pay a radio licence, but not if you use a crystal set; in Holland you pay more for a TV set on a wired system. The search for the ideal system continues.

\section*{Next steps?}

In his presidential address to the Institution of Electrical Engineers, James Redmond, shortly before his retirement from the post of BBC Director of Engineering, listed six possibilities for new radio services and seven for television. For radio, these comprised: quadraphonic (surround) sound on v.h.f.; stereo on f.m.; new modulation systems such as multiplexed p.c.m or wideband f.m. for economic interference-free coverage; a dedicated motoring information service; data transmissions; and channel identification.

The seven possibilities to liven up the TV scene that he put forward were: programmed transmissions for domestic recorders; additional sound channels including stereo; optional subtitling for the hearing impaired; multiple still-picture and sound services; remote writing for teaching programmes; data and software services; and the use of the home TV receiver as a domestic data terminal.

As he pointed out, these are all innovations that would be technically feasible today with current technology (indeed they have all been demonstrated in various parts of the world) although some would require significant investment of risk capital by the set makers. For the industry, of course, the critical question is not whether such systems would work, but whether the public would want them sufficiently to pay the extra costs, in economic numbers.

The relatively slow build up of Teletext users during the past four years has not encouraged the industry to bank on a ready public response to all innovations.

\section*{Australian novices}

My recent remarks on the desirability of introducing a new form of "novice" amateur licence in the U.K. are supported by reports from Australia where the 1000 -plus novice licences are proving a popular and useful introduction to the hobby, with none of the problems that have marked the new Citizen's Band facilities in that country.

\title{
The Extra ordinar Experiments of Proiessor Epnest Eversure \\  \\ \\ by Anthony John Bassett
} \\ \\ by Anthony John Bassett
}

BOB and the Prof. have discussed various likely causes of breakdown of the output transformer in a valve audio amplifier, and some remedies and preventive measures. Here they continue with two methods of protecting against breakdown caused by "high voltage spikes" which may occur for reasons discussed earlier.

\section*{SPARK GAPS}
"One very simple method of protecting against high voltage spikes is by the use of spark gaps, Bob." The Prof. drew a sketch, Fig. 1.
"Here is a diagram of how this would work with a class A, onevalve output stage. If high voltage spikes were induced across the primary of the output transformer, they should dissipate by causing electrical breakthrough of the air insulation between the metal con-


Fig. 1. Using spark gap pretection on a simple output stage.
ductors of the spark gap. Sparks would then be seen, and as long as the breakdown voltage of the spark gap is lower than the breakdown of the insulation of the output transformer, the transformer will be protected.
"By adjusting the distance between the metal conductors of the spark gap the breakdown voltage may be raised and lowered, and for most amplifiers a distance of about one or two millimetres is usually appropriate.
"Prof. I've not come across this method of protecting the output transformer using a spark gap. It seems so simple and inexpensive, why isn't it used more widely?"
"Several reasons Bob, mainly to do with variation of the breakdown voltage of a spark gap. The breakdown voltage is affected by a large number of factors all of which can change the effectiveness of the protection given by a spark gap.
"Another problem is that whenever sparking occurs, a harsh crackling sound may be heard from the loudspeaker.
"In spite of these problems, spark gap protection is used on a small number of amplifiers with considerable success, in some, an open air spark gap used, whilst in others a sealed gap may be used, with an inert gas instead of air.
"The gas may be used to a pressure greater or less than atmospheric according to application. A spark gap using a gas under high pressure will have a high breakdown voltage, whilst a gas such as neon under low pressure may have a breakdown voltage so low that neon bulbs may even be used for the protection of transistors against voltage spikes."
"That's interesting, Prof! It seems there are quite a lot of things to be learned about spark gaps, and many experiments which could be done with them. But you have yet another circuit for protection of an output transformer from voltage spikes. Does this overcome the snags which may be experienced with spark-gap protection?"

\section*{RE-ROUTING DIODES}
"Yes Bob, it does, but at greater expense. However, this extra expense can easily be justified where reliability is important to the individual user. Basically it is a circuit for protection by using diodes to re-route the inductive surge in such a way that no harm is done. Here is how this would work with a simple class A, single valve circuit."
The Prof. produced another sketch, Fig. 2.
A. Marshall (London) Ltd. Dept. EE Head Office mail order: Kingsgate House, Kingsgate Place, NW6 4TA. Tel: \(01-6240805\). Retail Sales London : 40-42 Cricklewood Bdwy, NW2 3ET. Tel: 01-452 0161/2. Telex; 21492. London; 325 Edgware Rd., W2. Tel: 01-723 4242. Glasgow : 85 West Regent St., G2 2QD. Tel: 041-332 4133. Bristol: 1 Straits Pde., Fishponds Rd., BS16 2 LX . Tel: 0272 654201.

"The electrolytic capacitor charges up by way of the diode and the 470 ohm resistor so that in use, the voltage on the capacitor is about the same as the peak voltage of the positive half of the audio waveform. This means that if the capacitor is uncharged and the amplifier is then switched on and


Fig. 2. In this circuit a diode is used to re-route the inductive surges. Using series neons the protection circuit can to some extent be regulated.
brought into use, there will be distortion noticeable for a short time, which may be only a few seconds, until the capacitor becomes charged to a suitably high level.
"Don't some electrolytic capacitors have different leakage characteristics, Prof?" Bob asked. "This would affect the performance of the protection circuit. Is there some way in which the action might be regulated?"

\section*{NEONS}
"Yes, Bob, quite a good method is the use of a number of neon bulbs and a limiting resistor in series. The neon bulbs should be selected so that the sum of their
break-down voltages is equal to the voltage at which the protection circuit is to operate.
'That's a good idea, Prof! In most high power amplifiers the voltage needed would be higher than 300 volts, so that more than four neons would be required. I think that owners of such amplifiers would like to see all of the overload neons on display on their equipment!"
"I agree Bob, and on a high power amplifier the many neons could light up to form quite a spectacular display on overload. With the increased h.t. voltage used in a push-pull power amplifier suitable for stage and band use, public address or similar purposes, it may be necessary to connect extra diodes and capacitors in series with each other to give higher effective working voltages. Here is a circuit suitable for use with pushpull power amplifiers such as the VOX AC30". The Prof. sketched out a circuit diagram, Fig. 3.

\section*{CAPACITIVE DIVIDER}
"Although the circuit uses high speed avalanche diodes such as type G2K, or even better, fast recovery silicon diodes such as type BYX71, it is advisable to use a high voltage disc ceramic capacitor in parallel with each diode for added protection against fast transient spikes, which might otherwise easily cause breakdown of the diodes. Because in this application the capacitors act as a 'capacitive potential divider' they should be of equal values."
"A capacitive potential divider remarked Bob, that sounds interesting. After we've done this amplifier, can you tell me some more about this?"
"Yes Bob, and we could quite easily rig up one or two circuits to demonstrate the actions of a capacitive potential divider and to show


Fig. 3. Applying the protection methods just discussed to the VOX AC30 amplifier.
what happens when the values of the capacitors are not equal. The circuits I have in mind are quite simple, and have a good visual impact, they also generate some interesting sound effects, and could make a good school science project! Look, there is another capacitive potential divider in this circuit, so they can be quite useful. It is formed by the two electrolytic capacitors Cl and C2. Because in this circuit the voltage produced may exceed 450 V , two electrolytic capacitors are connected in series and they then divide the high voltage between them. This way neither capacitor is subjected to over-rating voltage."
"Prof. I notice that there are two sets of neons in this circuit. Why is this?"

\section*{PROTECTION CIRCUIT}
"Because, in the capacitive potential divider formed by Cl and C2 the voltage may not be divided equally between the two capacitors due to differences in their values within the wide tolerance limits, a separate series string of neon lamps, together with a discharge limiting resistor, is provided for each capacitor. Each capacitor will then be partially discharged by its own string of neon lamps when the voltage across it reaches the firing voltage of the string of neon bulbs."

Bob constructed the circuit of Fig. 3 on a tag board and mounted it inside the amplifier so that the neons could be perceived through the ventilation slots. When he played some loud music through the amplifier, the neons flashed on some of the loudest musical peaks, and this showed that the protection circuit was coming into action.
The Prof. turned down the music volume and disconnected the loudspeakers. Now when he turned the music up again, the neons lit much more often and more brightly even at a lower setting of the volume control.
"This shows," he told Bob, "that this circuit comes into action to protect the output of the amplifier immediately if the loudspeakers become disconnected, or if the speech coils become open-circuits."

He switched off the amplifier and re-connected the loudspeakers.

To be continued

\title{
LOOK! Here's how you master electronics. ... the practical way.
}

This new style course will enable anyone to have a real understanding by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to further your career in electronios or as a self. employed electronics engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write, at any time, for advice or help during your work. A Certificate is given at the end of every course.

\section*{1. Build an oscilloscope.}

As the first stage of your training, you actually build your own Cathode ray oscilloscope! This is no toy, but a test instrument that you will need not only for the course's practical experiments, but also later if you decide to develop your knowiedge and enter the profession. It remains your property and represents a very large saving over buying a similar piece of essential equipment.

\section*{2. Read, draw and understand circuit diagrams.}

In a short time you will be able to read and draw circuit diagrams, understand the very fundamentals of television, radio, computers and countless other electronic devices and their servicing procedures.
3. Carry out over 40 experiments on basic circuits.
We show you how to conduct experiments on a wide variety of different circuits and turn the information gained into a working knowledge of testing, servicing and maintaining all ty pes of electronic equipment, radio, t.v. etc.

\section*{4. Free Gift.}

All students enrolling in our courses receive a free circuit board originating from a computer and containing many different components that can be used in experiments and provide an excellent example of current electronic practice.

Post now, without obligation, to:-

\section*{BRITISH NATIONAL RADIO \& ELECTRONICS SCHOOL}
P.O. Box 156, Jersey, Channel Islands.

NAME
ADDRESS


\section*{TAMTRONIK LTD}
217. Toll End Road, TIPTON. West Midands DY4 OHW
(DEPT. E.E.)
```

Magg
Jan. }78\mathrm{ Project
Jan. Audio Visual Metronome
Touch Switch
Rapld Dlode Chea
Feb. }7
Car Alarm
Chaser Light Display
A.C. Meter Converter
Mar. }7
G.R. Substitution Box
Catch-a-Light
Apr. }78\mathrm{ Roof Rack Alarm
Mains Delay Switch
Packet Timer
May 78 Flash Meter
Malns Meter
Power Amp-Teach-In
Jun.78 Tele-Bell
Insitu Transistor Tester
8.W, Receiver-Teach-In
VIscal Continulty Tester
Jul. }78\mathrm{ Auto Night Light
Short Wave Radio
Logic Probe
Aug.78 Slave Flash
M.W. Mini Radio
Audio Frequency Signal Generator
Sept. 78 RF Signal Generator
Sqund to Light
Car Battery State Indicator
Oct. 78 CMOS Radio
Treasure Hunter
Nov. }78\mathrm{ Audio Effects Oscillator
Water Level Alert
Hot Line Game
Dee. }78\mathrm{ Car flasher warning
Fuzz Box
gnition Immobiliser
Mini-Module Micro Amp

```

Tel: 021-557-9144

\section*{Ref} Comp.
Pack
 \(T_{0 \text { tal }}\)
\(5 \cdot 50\)
\(1-80\)

\section*{TTL ELECTRONIC TEST BED} Full kit £21-50

Additional components for first six parts only \(£ 3.00\) BOTH KITS (special price)
£24-20
Price include VAT and \(P\) \& \(P\)
\begin{tabular}{|l} 
PLUS -Special Free Offer with every Test Bed Kit purchased \\
\\
50 Asst. tw carbon resistors \\
10 Asst. Capacitors \\
Voucher worth 50 por next purchase.
\end{tabular}

\section*{CHRONOSTOP}

Aug 78 EE32
Complete Kit including CASE with Screen printed facia PCB with screened component fayout
Full assembly instructions
PRICEinc. \(\forall A T\) and \(P \& P\)
A Kit E29-50
A Kit with a professional finish
Part kits available on request,
TELE-TEL METER Nov 78 EE44
Complete Kit Including PCB with screened component Fayout Fullce inc. VAT and \(P\) \& \(P\)
£19.50
An optional extra Display and Drive inc. components is avail-
able at \(£ 2.75\).

OVER 150 KITS NOW AVAILABLE for projects from EVERYDAY ELECTRONICS; HOBBY ELECTRONICS \& ELECTRONICS TODAY INTERNATIONAL. TRADE \& EDUCATIONAL ENQUIRIES WEL.COME.
Please send S.A.E. for details, naming kit and kit ref. and free Catalogue P.C.B's designed to E.E. Circuit specifications.

\section*{VISIT OUR SHOP AT Telenone 32 Market Place,} Great Bridge, Tipton, West Midlands.

\section*{MINI MULTI METER \(£ 5.60\)}


SPECIFICATION : \(1 \mathrm{~K} \Omega \mathrm{VOLT}\).

DC RANGE:
\(0-10,0-50\). \(0-250,0-1000\)

AC RANGE 0-10-0-50 0-250 0-1000

RESISTANCE
\(0-150 \mathrm{~K} \Omega\)
(2K5 CENTRE SCALE)
DECIBELS
-10 TO +22 dB
Measuring 60W \(\approx 95 \mathrm{D} \times 33 \mathrm{H}(\mathrm{mm})\) and weighing 100 grams this makes an ideal beginners meter or a 'second' unit. Comes complete with two \(23^{\prime \prime}\) leads, instructions and battery.

\section*{NORMAL PRICE £7. 51}

OUR PRICE- \(\mathbf{5} 5.60\)
+ 40p POST \& PACKING
DELIVERY GUARANTEED WITHIN 4 WORKING DAYS

\section*{SEN NOW TO}
M. D. MARKETING
P. O. BOX 4, HINCKLEY, LEICESTERSHIRE. REG. OFFICE, 22, STATION ROAD, HINCKLEY.

MINIATURE 3 GANG VARIABLE \(25+25+25\) pf@ 75 p. MYLAR CAPACITORS \(50 \mathrm{v.w}\). - oluf or - fuf. Both 20p doz.
50 BC 107-3-9 TRANSISTORS Assorted Untested for 57p.
VARIABLE CAPACITORS Direct Drive, 5pt © 75p, 10pf @ 75p, 30pf @ 85p,
 \(365+365 p t\) © 65p.
McMURDO 8 PIN PLUG AND SOCKET with cover @ 55 p .
MINIATURE ROTARY SWITCHES 2 Pole 4 way @ 20p, 3 Pole 3 way @ 40p, F COIL FORMERS with core @ 6 for 25 p.
UNMARKED 400 mW GOOD ZENER DIODES \(3.6 \mathrm{~V}, 5.8 \mathrm{~V}, 10 \mathrm{v}, 11 \mathrm{v}, 12 \mathrm{v}, 13 \mathrm{v}, 16 \mathrm{v}\) \(18 v, 24 \mathrm{~V}, 30 \mathrm{v}, 33 \mathrm{v}, 36\) volt. AH at 10 for 40 p . 1 WATT TY
\(6.8 \mathrm{v}, 8.2\) volt all 15 p each. 5 WATT 9 voif © 30 oach .
PHOTO TRANSISTORS @ 15p, PHOTO DARLINGTONS @ 22p.
MULLARD TRANSISTORS BC 548 @ 10p, 6 for \(50 \mathrm{p}, \mathrm{BC} 549\) @ \(10 \mathrm{p}, 6\) for 50 p . 30 ASSORTED CRYSTALS 10XAJ Type for E11-10, 20. FT 243 Type Assorted CRYSTALS assorted for E1.50. (PEP ET:50) WIPE ENDED CRYSTALS CRYSTALS assorted for \(£ 1.50\). (P8P
\(28 \mathrm{KHz}, 25.5 \mathrm{KHz}, 29.75 \mathrm{kHz}, 29.76 \mathrm{KRz}, 31-5 \mathrm{KHz}, 83-997 \mathrm{KHz}\), all at 50 p each. COMPRESSION TRIMMERS 10 pf , 30 pi , 50 pt , 1000 pf all at 10 p each.
MULLARD SEMM AIRSPACED TRIMMERS 1 to 3-5pf@ 15p, 1.8 to \(10 p\) @ @ 15p 2 to 18 pt (8) 18p, VHF TETFER TRIMMERS 10 p © @ 18p each.
ELECTRONIC ATTENUATOR MC 3340 P with data @ 50 p each.
100 MiNIATURE SILICON DIODES CV 9637 Pre-formed leads @ 50 p .
POLYSTYRENE CAPACITORS SUFFLEX TYPE 12, 15, 20, 25, 30, 50, 55, 100 , 120, 1000pf All 20p doz. 014f 125v.w. \(\pm 1 \%\) @ 10 each. 50 VARI-CAP DIODES LIKE BA 102 Untested @ 57p.
100 MULLARD C 280 CAPACITORS Assorted@ 57p.
200 RESISTORS \(\frac{1}{2}+\frac{1}{2}\) wath assorted for 75 p .
FT 241A CRYSTALS 21-1, 21.2, 21-5, 21-7, 21-3, 22, 22.2, 22:7, 22.8, 22.9, 23.2, HC6U CRYSTALS 27-1765, 27-178, 27-181, 27-184, 27-187, 27-1885, 27-190, 27-193 \(\frac{27 \cdot 1945,27 \cdot 1975,27-199,27 \cdot 205 ; 27 \cdot 2035,27-2065 ' 32-2222}{3 \text { for } 81 \cdot 30 .} 1\)

 amp@ \((\) P\&P 95p). Type 5 , 45 volt 2 amp 45 volt \(500 \mathrm{~mA} @ \& 3.50\) (P\&P 85 p ), Type 6.16 volt 2
 Type 10. 22 volt \(500 \mathrm{~mA} @ 88 \mathrm{p}\) (P \& P 20p), Type 11, 12 volt 100 mA © 88 p (P\&P 20p). Type 12. 22 volt 1 amp, 7.5 volt 500 mAA , \(6 v 1\) amp@ \(81-60 \mathrm{PaP} 25 \mathrm{p}\).
type 13. 16. \(32=0-32\) volt 500 mA . 60 (PaP 25p). Type 14. 12 volt 1 amp © 81 -80 (PaP
Please add 20p for post and packing on U.K. orders under £2 unless stated otherwise.

> Overseas orders at cost.

\section*{J. BIRKETT}

RADIO COMPONENT SUPPLIERS
25 The Strait, Lincoln LN2 1JF Tel. 20767


Our new 1978 catalogue lists a card frame system that's ideal for all your module projects - they used it in the ETI System 68 Computer. And we've got circuit boards, accessories, cases and boxes - everything you need to give your equipment the quality you demand. Send 250 to cover post and packing, and the catalogue's yours.

VERO ELECTRONICS LTD. RETAIL DEPT. Industrial Estate, Chandlers Ford, Hants. SO5 3ZR Telephone Chandlers Ford (04215) 2956


Everyday Electronics, January 1979


Logically laid out to accept both \(0.3^{\prime \prime}\) and \(0.6^{\prime \prime}\) pitch DIL packages as well as Capacitors, Resistors, LED's, Transistors and components with leads up to .85 mm dia.
500 individual connections in the central breadboarding area, spaced to accept all sizes of DIL package without running out of connection points.
4 Integral Power Bus Strips around all edges for minimum inter connection lengths.
Double-sided, nickel silver contacts for long life (10K insertions) and low contact resistance \((<10 \mathrm{~m} . \mathrm{ohms}\) )

Easily removable, non-slip rubber backing allows damaged contacts to be rapidly replaced.
What other breadboarding system has as many individual contacts, offers all these features and only costs \(£ 5.80\) inclusive of VAT and P.P. - NONE.

At \(£ 5.80\) each The EuroBreadBoard is unique value for money. At \(£ 11\) for 2 The EurobreadBoard is an maispensavle design aid. Snip out and Post
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{David George Sales r/o 74 Crayford High Street, Crayford, Kent, DA1 4EF.} \\
\hline \multicolumn{2}{|l|}{\(\begin{aligned} \text { Please send me } & 1 \text { EuroBreadBoard @ } £ 5.80 \square \text { Please } \\ \text { or } & 2 \text { EuroBreadBoards @ } £ 11.00 \square \text { Tick }\end{aligned}\)} \\
\hline \multicolumn{2}{|l|}{(All prices include VAT and P.P., but add 15\% for overseas orders).} \\
\hline \multicolumn{2}{|l|}{Name. . . . . . . . . . . . . . . . . . . . . . . . . . . . .} \\
\hline \multicolumn{2}{|l|}{Company. . . . . . . . . . . . . . . . . .} \\
\hline \multicolumn{2}{|l|}{Address. . . . . . . . . . . . . . .} \\
\hline & \\
\hline \multicolumn{2}{|l|}{Tel. No. . . . . . . . . . . . . . . . . . . . . . . . . . EEI]79} \\
\hline Please make ch & que/P.O.'s payable to David George Sales \\
\hline
\end{tabular}

\section*{TRANSFORMERS}

\section*{ALL EX-STOCK-SAME DAY DESPATCH. VAT \(8 \%\)}


\begin{tabular}{ll} 
RES & \\
E & PaP \\
2.57 & 0.55 \\
2.85 & 0.78 \\
2.14 & 0.38 \\
4.59 & 0.38 \\
2.77 & 0.71 \\
3.53 & 0.78 \\
1.99 & 0.38 \\
2.80 & 0.78 \\
3.41 & 0.78 \\
4.80 & 0.96 \\
3.59 & 0.96 \\
6.04 & 0.96 \\
2.57 & 0.38 \\
2.64 & 0.78
\end{tabular}

COMPONENT PACKS 5 High Quallity Metat Oxide \(\times 5 \%++1\) Wetal Oxide \(5 \% \frac{1}{2}+\frac{1}{4} W\) resistors.

AMPLI
(AL 30\()\) 25 W (AL60) 35 W (AL80)
125W (AL250)
Power Supply PS12
Pre-amp PA12
PAT PA100.
VAT \(12 \%\) \% \& \& P 35 p.
ABS PLASTIC BOXES insei brass nuts, slots to take P.C cards flush fiting 10 .
PB1 \(180 \mathrm{~mm} \times 62 \times 40\) \(\mathrm{PB2} 100 \mathrm{~mm} \times 75 \times 40\) PB3 \(120 \mathrm{~mm} \times 100 \times 45\) PB4 \(215 \mathrm{~mm} \times 130 \times 85 £ 2.5440 \mathrm{p}\) ) pp P29p VA1 \(8 \%\)
12 way Grelco heavy black piastic terminal block \(35 p\) \& \& \(P 15 p\). Fuse holder \(1 \frac{11}{1 / \prime}\) completely enclosed 25 p P \& P 15 p
\(2 \times\) Fuse boards -2 with open \(1 \frac{1}{2}\) fuse holders \(2 \frac{1}{\prime \prime}^{\prime \prime} \times 3^{\prime \prime} 30 \mathrm{p}\) \& \& \(P 15 \mathrm{p}\).
Magnelic to Ceramic Cartridige Converier operating voltages

MINI-MULTIMETER
DC-1000V AC-1000V DC-100mA RES-150k MINIATURE
TRANSFORMERS
\(1000 \mathrm{\Omega} / \mathrm{V}\) Bargaln \(\mathrm{EE}-14\). VAT \(8 \%\) P \& P 62 p . 20,000 ohm/V Multimeter, mirror scale. Ranges
ACDD to 1000 V DC curent to 250 mA . Resist-
 \(\frac{5^{\prime \prime} \times 3 \frac{1^{\prime \prime}}{2} \times 1 \frac{1}{2}^{\prime \prime} \text { E14.35. VAT } 8 \% \text {. P \& P £1.05 }}{\text { TEST METERS }} 1\) U4315 Budget Meter \(20 \mathrm{~K} \Omega / \mathrm{V}\) DC 2 KIV AC
1000 V ACIDC \(2-5 \mathrm{~A}\) ACIDC 500 K res in steel Case and leads E15-85. Ref. Volts Amps Price
171 O-CT- 15 v
500 mA 2.09

\section*{TRANSFORMERS}

SPECIAL OFFER
PW Scope 250-0 \(0-12.9 \mathrm{~V}\). \(\therefore 6 \cdot 50 \mathrm{P}\) \& P 90 p . \(\begin{array}{ll}\text { EE3 } 100 \mathrm{~V} \text { line to } \\ 4 \Omega & 7 / 10 \mathrm{~W} \\ \Sigma 20 & 05\end{array}\) P\& P66\%.
EE4 \(0-120 \mathrm{~V} \times 2\)
120 V or 2401 Screen sec \(9-0-9 V\)
1A \(\hat{21} 188\) P \& 38 p BE515W matching \({ }^{\text {trans. }}\) sec suit EL89 151.50 . suit EL89
P \& P 30 p .
BE6 Pri 0.220V sec 4500 V 10MA
\(\Sigma 4.50 \mathrm{P} \& \mathrm{P} \& 1.00\). BE70-110-120-220V Pri. 240V, Sec. 20 V
\(1 \mathrm{~A} .21-50,30 \mathrm{p} 8 \mathrm{n}\)
 solator 200 VA
E .20 P Ref. P \& P 96 p . Ref. \(62240-240\)
isolator 250 VA

\section*{VU Ind Panel \(48 \times 45 \mathrm{~mm} \quad 0.100 \mathrm{j} 1 \mathrm{~A}\)}

VU Ind. Panel \(48 \times 45 \mathrm{~mm} 250 \mathrm{pa}\) FSD
VU Ind. Edge \(54 \times 14 \mathrm{~mm} 250 / \mathrm{ma}\) FSD
65 p Carriage \(8 \%\) VAT.
Prices correct 17
call (opan \(99 m=5 \mathrm{pm}\) Mon-Fri) or send vour requirements Electrosil and semiconductor stockists. Audio accessories.

\section*{the MIGHTY MIDGETS \\  \\ MINIATURE SOLDERING IRONS ACCESSORIES}
\begin{tabular}{|c|c|c|}
\hline 18 WATT IRON inc. No. 20 BIT & RETAIL PRICE each inc. v.a.t. £3. 78 & \[
\begin{aligned}
& \text { POSTAGE } \\
& \text { extra. } \\
& 22 p \\
& \hline
\end{aligned}
\] \\
\hline SPARE BITS & 44p & - \\
\hline STANDS & £3. 25 & 65p \\
\hline SOLDER: SAVBIT \(20^{\prime}\) & 52p & 9p \\
\hline " 10' & 26p & 4p \\
\hline LOWMELT \(10^{\prime}\) & 65p & 9 p \\
\hline I.C. DESOLDERING BIT & 88p & 9p \\
\hline BIT SIZES: \(\quad\) No. \(19(1.5 \mathrm{~m}\) & \[
\begin{array}{ll}
\text { m) } & \text { No. } 20 \\
\text { m) } & \text { No. } \\
\hline 2
\end{array}
\] & \[
\begin{aligned}
& (3 \mathrm{~mm}) \\
& (6 \mathrm{~mm})
\end{aligned}
\] \\
\hline
\end{tabular}

From your Local Dealer or Direct from Manufacturers S:B. Bi=USIERLM 86-88 Union St-Plymouth PLI3HG TE: 075265011 TRADE ENQUIRIES WELCOME

\section*{PROTO DESIGN}

14 DOWNHAM ROAD, RAMSDEN HEATH, ESSEX
Printed circuit boards for E.E. projects
Ready drilled and tinned in Grade 1 fibreglass
EE2020 TUNER AMPLIFIER
£ 10.95
Complete set of 5 boards
\begin{tabular}{lcc}
\multicolumn{1}{c}{ PROJECT } & PCB & COMPONENTS \\
\hline Automatic Phase Dec 77 & 1.00 & 8.20 \\
Tone Booster Sept 78 & 1.00 & 4.50 \\
Fuzz Box Dec 78 & 0.70 & 5.20 \\
Treasure Hunter Oct 78 & 1.40 & - \\
Vehicle Immobiliser Dec 78 & 1.00 & - \\
\hline \multicolumn{2}{c}{ ADD 25p for postage and packing on all orders under \(£ 10\)} \\
CROUNDHOG I.B. METAL. \\
DETECTOR \\
Injection moulded ABS plastics and aluminium shaft & E29.50
\end{tabular}

\section*{EE SOLID-STATE ROULETTE}

DESIGNER APPROVED KIT
Complete set of electronic components including full-size coloured printed

\section*{MAIL ORDER ONLY}

\section*{15-240 Watts!}

The HY5 is a mono hybrid amplifier ideally suited for all appllcations, All common input unctions (mag Cartridge, tuner, etc) are catered for internally. The desired function is achieved ither by a mult-way switch or direct connectlon to the appropriate pins. The internal volume and tone circuits merely require connecting to external potentiometers (not inciuded). The HYs s compatible with all. L.P. power amplifers and power supplie

-Low distortion-High overload-Two simply combined for stereo.
APPLICATIONS: HI-Fi-Mixers-Disco-Guitar and Organ-Public address SPECIFICATIONS:
NPUTS. Magnetic Pick-up 3 mV ; Ceramic Pick-up 30 mV : Tuner 100 mV ; Microphone 10 mV ; Auxillary 3 -100mV input impedance \(4-7 \mathrm{k} \Omega\) at 1 kHz
ACTIVE TONE CONTROLS. Treble \(\pm 12 \mathrm{~dB}\) at 10kHz; Bass \(\pm\) at 100 Hz .
DISTORTION. \(0.1 \%\) at 1 kHz . Signal/Noise Ratio asdB
Price \(\mathbf{2 6}-27+78 \mathrm{p}\) VAT P\&P free.
The HY30 is an exciting New kit from 1.L.P. It features a virtually indestructible N.C. with short circuit and thermai protection. The kit consists of I.C, heatsink, P.C. board. 4 resistors, 6的 This amplifier is ideally suited to the beginner in audio who wishes to use the most up-to-date echnology available.
FEATURES: Complete Kit-Low Distortion-Short, Open and Thermal Protection-Easy to Build.
APPLICATIONS: Updating audio equipment-Guitar practice ampllier-Test amplifierudio osciliator.
OUTPUTPATIOR 15 W R.M.S. into \(8 \Omega\) : DISTORTION \(0.1 \%\) at 1.5 W .
INPUT SENSITIVITY 500 mV , FREQUENCY RESPONSE \(10 \mathrm{~Hz}-16 \mathrm{kHz}-3 \mathrm{~dB}\)

\section*{SUPPLY VOLTAGE \(\pm 13 \mathrm{~V}\)}

\section*{Price \(56 \cdot 27+78\) p VAT P\&P free.}

HY50
25 Waits into \(8 \Omega\)

HYI2O
60 Watts into \(8 \Omega\)

HY200
120 Watts into \(8 \Omega\)

HY400
240 Watts into \(4 \Omega\)

POWER SUPPLIES

The HY50 leads I.L.P's total integration approach to power amplitier design. The amplifier eatures an integral heatsink together with the simplicity of no external components. During the past three years the amplifier has been refined to the extent that it must be ore of the most reliable and robust HIgh Fidelity modules in the Worid.
FEATURES: Low Distortion-Integral Heatsink-Only five connections-7 amp output tran-istors-No external components
APPLICATIONS : Medium Power Hi-Fi systems-Low power disco-Guitar amplifier
SPECIFICATIONS: INPUT SENSITIVITY 500 mV
WER 25W RMS into \(8 \Omega\) LOAD IMPED ANCE \(4-16 \Omega\) DISTORTION \(0.04 \%\) at 25 W
SIGNAL NOISE RATIO 75 dB FREQUENCY RESPONSE \(10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}\).
SUPPLY VOLTAGE \(\pm 25 \mathrm{~V}\) SIZE 1055025 mm
Price 28 18 + E1-02 VAT P\&P free
The HY120 is the baby of I.L.P.'s new high power range, Designed to meet the most exacting requirements including load line and thermal protection this amplifier sets a new standard in modular design.
FEATURES: Very low distortion-Integral heatsink-Load line protection-Thermal protec-tion-Five connections-No external components
APPLICATIONS: Hi-Fi-High qualify disco-Public address-Monitor amplifier-Gultar and organ.
SPECIFICATIONS
NPUT SENSITIVITY 500 mV . Into \(8 \Omega\) LOAD IMPEDANCE \(4-16 \Omega\) DISTORTION \(0.04 \%\) at 60 W
SIGNAL/NOISE RATIO 9OdB FREQUENCY RESPONSE \(10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}\) SUPPLY VOLTAGE

Price \(£ 19-01+\) E1-52 VAT P\&P free.
The HY200 now improved to glve an output of 120 Watts has been designed to stand the most maned conditions such as disco or group while still retaining true Hi-FI performance.
FEATURES: Thermal shutdown-Very low distortion-Load line protection-lntegral heatsink - No external components

APPLICATIONS: Hi-Fi-Disco-Monitor-Power slave-Industrial-Public Address SPECIFICATIONS
SPECIFICATIONS
OUTPUT POWER 120 W RMS into B \(\Omega\) LOAD IMPEDANCE 4-16 2 DISTORTION \(0-05 \%\) at 100 W SIGNAL/NOISE RATIO 9GdB FREQUENCY RESPONSE \(10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}\) SUPPLY VOLTAGE \(\pm 45 V\)
SIIE 11450
55 mm
Price \(£ 27 \cdot 98+£ 2.24\) VAT P\&P free.
The HY 400 is 1.L.P's "Big Daddy" of the range producing 240 W into \(4 \Omega\) ! it has been designed or high power disco address applications. It the amplifier is to be used at contlnuous high of the family to lead the market as a true high power hi-fidelity power module.
FEATURES: Thermal shutdown-Very low distortion-Load line protection-No external comporients.
APPLICATIONS: Public address - Disco-Power slave-Industrial
SPECIFICATIONS
OUTPUT POWER 240W RMS into \(4 \Omega\) LOAD IMPEDANCE 4-16a DISTORTION \(0.1 \%\) at 240 W SIGNAL NOISE RATIO 94dB FREQUENCY RESPONSE \(10 \mathrm{~Hz}-45 \mathrm{kHz}\)-3dB SUPPLY VOLTAGE INPUT SENSITIVITY 500 mV SIZE 11410085 mm Price £38. \(61+\AA 3\) 09 VAT P\&P free.
PSU36 suitable for two FY30's 26.44 plus \(81 p\) VAT. P/P free. PSU50 suitable for two HY50's \(£ 8 \cdot 18\) plus \(£ 1.02\) VAT. P/P free. PSU90 suitable for one HY200 \(£ 15-19\) plus \(\& 1-21\) VAT. F/P free. SU180 \(£ 25.42+£ 2: 03\) VAT. \(81 \approx 0: 48+80.05 \mathrm{VAT}\)


TWO YEARS' GUARANTEE ON ALL OUR PRODUCTS

\section*{I.L.P. ELEGTRONICS LTD., CROSSLAND HOUSE, NAGKINGTON GANTERBURY, KENT, GT4 7AD.}

Please Supply
Total Purchase Price
1 Enclose Cheque Postal Orders \(\square\) Money Order \(\square\)
Please debit my Access account \(\square\) Barclaycard account \(\square\)
Account number
Name and Address \(\qquad\) Signature


\section*{NOTICE TO READERS}

When replying to Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the
advertiser.

This will assist advertisers in processing and despatch
ing orders with the minimum of deflay.

\section*{Books and Publications}

SIMPHIFIED TV REPAIRS. EuII repair instructions individual British sets \(£ 5.00\) request free circuit diagram. Stamp brings details unique TV publications. Ausee, 76 Church Street, Larkhall, Lanarkshire.

\section*{WHY NOT START YOUR OWN BUSINESS REWINDING ELECTRIC MOTORS}

A genuine opportunity to success. LARGE PROFITS You can't help but make money if you follow the easy, step by step, instructions in our fully ilustrated Manua
showing how to rewind Electric Motors. Armatures and Fleld coils as used In Vacuum Cleaners, Electric Drills and Power Tools. NO PREVIOUS KNOWLEDGE IS REQUIRED, as the Manual covers in 13 Chapters, where to obtain all the work you need, materials required, all instructions rewind charts and how to take data, etc: workshop and how to cost each iob to your customer. \& 4 -00 plus 30 p P. \&P. U.K. CWO to:

INDUSTRIAL SUPPLIES
102 Parrswood Road, Withington, Manchester 20, Dept. EE

\section*{Service Sheets}

SERVICE SHEETS for Radio, Television, Tape Recorders, Stereo, etc. With free fault-finding guide, from 50 p and s.a.e. Catalogue 25p and s.a.e. Hamilton Radio 47 Bohemia Road, St. Ieonards, Sussex.

BELL'S TELEVISION SERVICE for service sheets of Radio, TV etc. £1 plus SAE. Colour TV Service Manuals on request. SAE with enquiries to BTS, 190 King's Road, Harrogate, N. Yorkshire. Tel: 0423 55885.

\section*{For Sale}

EVERYDAY ELECTRONICS Nov. 71 to Aug 77 six Vols, incl. binders. Offers SAE Box No. EES.

\section*{SMALL ADS}

The prepaid rate for classified advertisements is 16 pence per word (minimum 12 words), box number 60p extra. Semi-display setting \(£ 4.40\) per single column centimetre. All cheques, postal orders, etc., to be made payable to Everyday Electronics and crossed "Lloyds Bank Ltd." Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Everyday Electronics, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5918).

\section*{CONDITIONS OF ACCEPTANCE} OF CLASSIFIED ADVERTISEMENTS
1. Advertisements are accepted subject to the conditions appearing on our current advertisement rate card and on the express understanding that the Advertiser warrants that the advertise ment does not contravene any Act of Parliament nor is it an infringement of the British Code of Advertising Practice.
2. The publishers reserve the right to refuse or withdraw any adverfisement.
3. Although every care is taken, the Publishers shall not be liable for clerical or printers" errors or their conse quences.

NEW BACK ISSUES of "EVERYDAY ELECTRONICS". Available 60p each Post Free, open PO/Cheque returned if not in stock. BELL'S TELEVISION SERVICES 190 Kings Road, Harrogate, Yorkshire. Tel: (0423) 55885.

\section*{Receivers and Components}

\section*{NO LICENCE EXAMS NEEDED}

To operate this miniature, solid-state Transmitter-Receiver Kit. Only \(\mathrm{E9}-75\) plus 25p P\&P;
'Brain-Freeze' 'em with a MINI STROBE Kit, pocket-sized lightning flashes', vari-speed, for discos and parties. A mere \(44 \cdot 10\) plus 20 p P\&P Experiment with a psychedelic DREAM LAB, or pick up faint speech/sounds with the BIG EAR sound-catcher; ready-made multifunction modules. \(£ 5-00\) each plus 20p P\&P.
LOTS MORE: Send 20 p for lists.
Prices include VAT. (Mail order
U.K. only).

BOFFIN PROJECTS
4 CUNLIFEE ROAD, STONELEIGH
EWELL, SURREY. (E.E.)

DISCOVER ELECTRONICS. Build forty easy projects including: Metal Detector, Wireless Transmitter; Breathalyser; Radios; Stethoscope; Lie Detector; Touch time switches; Burglar Alarms, etc. Circuits, plans all for E1-29 including FREE circuit board. Mail only. RIDLEY PHOTO/ELEC TRONICS, Box 62, 111 Rockspark Road, Uckfield, Sussex.

71b ASSORTED COMPONENTS \(£ 3 \cdot 60.3^{1} 2 \mathrm{lb}\) £1.95. Small Audio Amplifiers. 3 Transistors equivalent to \(\mathrm{AC} 128,0 \mathrm{OC72}\), with circuit, 3 for E1, 300 small components, Transistors, Diodes \(£ 1-50\). Wire ended Neon's 7p, 20 for £1. No postage. List 15 p refundable. Insurance add 15p. J.W.B. RADIO, 2 Barnfield Crescent, Sale, Cheshire MK3 INL.

FULL SPEC COMPONENTS. Brand new no surplus. \(9 p\) for list. TERO, 109 Clitheroe Road, Sabden, Blackburn, Lancs.

\section*{Miscellaneous}

\section*{RESISTORS \(\frac{1}{6}\) W 5\% 2R2-2M2 (E12).}

10 each or more of each value 90p/100. 100 assorted, our mixture \(75 \mathrm{p} / 100\). C60 cassettes in 1 lbrary cases 30 p each. miniature relays \(17 \times 30 \times 28 \mathrm{~mm} 600 \Omega\) coll 4 sets change over contacts 30 p each.
Prices include V. A.T. Add \(10 \%\) postase.
SALOP ELECTRONICS. 23 Wyle Cap. Shrewsbury:

AERTAL BOOSTERS improve weak VHF radio and television reception, price \(£ 5\). SAE for leaflets, Electronic Mailorder Ltd. Ramshottom, Bury, Lancashire, BL0 9AG.

TUNBRIDGE WELLS COMPONENTS ballard's, 108 Camden Road, Tunbridge Wells, Phone 31805 . No lists, enquiries S.A.E.

\section*{THE SCIENTIFIC \\ WIRE COMPANY}

PO Box 30 , London E.4.
Reg. Office, 22 Coningsby Gardens.
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{4}{|l|}{ENAMELLED COPPER WIRE} \\
\hline SWG & 1 lb & 802 & 4 oz & 202 \\
\hline 10-19 & 2.85 & 1.45 & . 75 & . 60 \\
\hline 20-29 & 2.85 & 1.55 & -90 & . 70 \\
\hline 30-34 & 3.05 & 1.75 & 1.00 & 75 \\
\hline 35-40 & 3.40 & 1.95 & 1-15 & 84 \\
\hline 41-43 & 4. 55 & 2-55 & 1.95 & 1-30 \\
\hline 44-48 & 5.05 & 3.05 & 2-15 & 1.70 \\
\hline 47 & 8.00 & 5.00 & 3.00 & 1-80 \\
\hline 48 & 15.00 & 9.00 & 8-00 & 3-30 \\
\hline \multicolumn{5}{|c|}{SILVER PLATED COPPER WIRE} \\
\hline 14816 & 4.50 & \(2 \cdot 25\) & 1.44 & 90 \\
\hline \(20 \& 22\) & 5:00 & 2.85 & 1.74 & 1-06 \\
\hline 24826 & 5-70 & 3.31 & 2.00 & 1.22 \\
\hline 28 \& 30 & 6.67 & 3-86 & 2-35 & 1-44 \\
\hline
\end{tabular}

Prices include P \& P and VAT.
resistance Wires. Dealer enquiries invited.

\section*{Tapes}

C60 CASSETTE TAPES in library cases 32p each. POST PAID. Send your order to: A. W. \& J. M. West, 56 Frankwell Drive, Coventry CV2 2 FB .

\section*{Educational}

COURSES-RADIO AMATEURS EXAMINATION. City and Guilds. Pass this important examination and obtain your G8 Licence, with an RRC home study course. For details of this, and other courses (GCE, professional examinations etc), write or phone:- THE RAPID RESULTS COLLEGE, Dept. JRI Tuition House, London SW19 4DS. Tel: 01 9477272 (Careers Advisory Service) or phone for a prospectus only ring 01-946 1102 ( 24 hr recording service).

\section*{Record Accessories}

STYLI for Hi-Fi, Music Centres. III list free for SAE. Also cartridges, leads, accessories details. Felstead Electronics (EE), Longley Lane, Gatley, Cheadle, Ches, SK8 4 EE .

\section*{PLEASE MENTION}

\section*{EVERYDAY}

ELECTRONICS
WHEN REPLYING
TO
ADVERTISEMENTS

EHROWASOMTE electronics
your soundest connection in the world of components

DEPT EEI, 56 FORTIS GREEN ROAD, MUSWELL HILL, LONDON NIO 3 HN.

Tel: 01~883 3705

\section*{LOW POWER SCHOTTKY and TTL}
\begin{tabular}{|c|c|c|c|}
\hline 7400 & \[
\frac{13^{\prime \prime}}{}
\] & \[
\begin{aligned}
& \text { LS } \\
& 19 * \\
& \hline
\end{aligned}
\] & \[
\mathrm{N}_{-30^{+}}
\] \\
\hline 7401 & -13" & 19* 7478 & \\
\hline 7402 & -15* & -19* 7482 & 73* \\
\hline 7403 & -15* & -19* 7483 & \\
\hline 7404 & 16* & 21-7485 & 1-18* \\
\hline 7405 & -16* & 21* 7486 & 25* \\
\hline 1406 & -26* & - 7489 & 2.60* \\
\hline 7407 & -26* & -7490 & \(34^{*}\) \\
\hline 3408 & -17* & -19*7491 & 73* \\
\hline 7409 & -17* & \(-19=7492\) & \(46^{*}\) \\
\hline 7410 & -15** & -19* 7483 & \(34^{*}\) \\
\hline 7414 & 25* & -18* 7495 & \(54^{*}\) \\
\hline 7412 & -18* & -19* 7496 & 67* \\
\hline 7413 & 27* & -40 74107 & \(-27^{*}\) \\
\hline \(7 \leqslant 14\) & -79* & -78*74109 & .44* \\
\hline 7415 & & -19 \({ }^{\text {\% }} 74111\) & \\
\hline 7416 & -25* & - 74113 & \\
\hline 7417 & -34 & - 74114 & \\
\hline 7420 & -16* & -18* 74121 & \(27^{*}\) \\
\hline 7491 & & \(19 * 74122\) & \(50^{*}\) \\
\hline 7422 & - & -19* 74123 & 60* \\
\hline 7423 & \(25^{\circ}\) & - 74124 & \\
\hline 7425 & -25. & - 74125 & \(51^{*}\) \\
\hline 7327 & -25 & \(-19+74126\) & 54* \\
\hline 7428 & .39* & -19* 74132 & -72* \\
\hline 7429. & -38+ & -214.74133 & \\
\hline 7430 & - \(16^{\text {² }}\) & -19. 74136 & \\
\hline 7432 & 25* & -25* 74138 & \\
\hline 7433 & & -19* 74139 & \\
\hline 7437 & \(25^{*}\) & -25** 74141 & 764 \\
\hline 7438 & 25* & 25* 74145 & 75** \\
\hline 7440 & \({ }^{47}{ }^{\text {* }}\) & 19*74147 & 1.59* \\
\hline 7441 & -70** & - 74148 & 1.32* \\
\hline 7442 & - \(60 *\) & -35* 74150 & 1-02* \\
\hline 7445
7446 & \(\cdots{ }^{60 *}\) & - 74151 & . \(61{ }^{*}\) \\
\hline 7446 & \(60^{*}\)
60 & . \(87 * 74153\) & .67** \\
\hline 7448 & . \(60^{*}\) & -87* 74154 & 1.21* \\
\hline 7448 & & -87 \(=74156\) & 674 \\
\hline 7450 & 16*********** & - 74157 & \(67 *\) \\
\hline 7451 & -16* & -19* 74158 & - \\
\hline 7453
7454 & \(15^{*}\) & - 74150 & 1-21* \\
\hline 7455 & & 19* 74161 & 1.21* \\
\hline 7460 & -16* & -19. 74162
-74163 & 1-21* \\
\hline 7470 & -27* & - 74164 & 1.02* \\
\hline 7472 & 23* & 74165 & \\
\hline 7473 & 23* & -29* 74166 & 1.02* \\
\hline 7474 & -28\% & +29* 74168 & \\
\hline 7475 & 44* & -43*) 74168 & - \\
\hline
\end{tabular}


CMOS


BIIS and PiEcEs

V.A.T. Inclusive prices \({ }^{*} 8 \%\) others \(12.5 \%\). Export Customers deduct V.A.T. \(2 / 27\) from 419 from others

Postage and Packing 25p. Trade and Export Inquiries most Welcome. Hours \(9.00 \mathrm{am}-5.00 \mathrm{pm}\)
will be despatched the same day ( min tel order \(\& 5.00\) ).
or Barclaycard

\section*{Mail Order Protection Scheme}

The Publishers of Everyday Electronics are members of the Periodical Publishers Association which has given an undertaking to the Director General of Fair Trading to refund monies sent by readers in response to mail order advertisements, placed by mail order traders, who fail to supply goods or refund monies owing to liquidation or bankruptcy. This arrangement does not apply to any failure to supply goods advertised in a catalogue or in a direct mail solicitation.
In the unhappy event of the failure of a mail order trader readers are advised to lodge a claim with Everyday Electronics within three months of the date of the appearance of the advertisement, providing proof of payment. Claims lodged after this period will be considered at the Publisher's discretion. Since all refunds are made by the magazine voluntarily and at its own expense, this undertaking enables you to respond to our mail order advertisers with the fullest confidence. For the purpose of this scheme, mail order advertising is defined as:-
Direct response advertisements, display or postal bargains where cash had to be sent in advance of goods being delivered'. Classiffed and catalogue mail order advertising are excluded.

\section*{Clef Kits}


Designer approved quality kits for Electronic Musical Instrument Construction.
JOANNA 72 \& 88 PIANOS
Six and \(7 \frac{1}{4}\) Octave Electronic Pianos with unique Touch Sensitive Action, as used in the P.E. JOANNA, which electronically simulates piano key inertia - a feature not available in any other design. A new physical layout has been adopted to simplify construction.

\section*{P.E. STRING ENSEMBLE}

The only kit available to the proven A. J. Boothman Design for this versatile String Machine. Sent S.A.E. to:

\section*{Clef Products (Dept E.E.)}

16 Mayfield Road, Bramhall, Cheshire SK7 1JU.

\section*{MULTI RANGE TEST METER}

A general purpose meter covering all usual ranges of A.C. and D.C. volts current and resistance measurements

\section*{AUDIO SIGNAL GENERATOR}

New design covering 10 Hz to 10 KHz
and variable output. Distortion less than
\(0.01 \%\) Ideal for HIFI Testing.

\section*{OSCILLOSCOPE}

A basic \(3^{\prime \prime}\) general purpose cathode ray oscilloscope for simple testing and servicing work. Sensitivity 0.3 volts/cm



\section*{THIS MONTH'S STAR BUY NEW Just announced \\ This is the one we have been waiting for and it is due in just in time for Christmas! \\ CASIO ALARM/ \\ CHRONOGRAPH}

24 hour afarm. Optional hourly chimes. \(1 / 100 \mathrm{sec}\). stopwatch with lap time facility etc. Optional 12 or 24 hour clock display. All stainless steel case. Mineral glass face. Water resistant to a depth of 100 feet. 46CS-27B
Provisional price
£74.95


NEW


\section*{TRAVEL ALARM CLOCK}

Battery powered quartz alarm clock with repeat
feature Gountdown alarm/timer. \(1 / 10\) second stopwatch. Consfant LC Display. Nightlight. I year batteries.
4. \(\mathrm{x} 11 \times\) inch 1.602

For car caravan or boat.

\section*{(22495)}
£19.95
CO-81 Caiculating alarm clock plus two alarm/timers. LCD 1 year batteries. 17x.2娄 \(\times\) Sins.
\(£ 17.95\)
CQ-2. Very Special Offer. Clock, caiendar. 4 alarms, stopwatch, Time/Date calculator (RRP £39.95)
PH-G1 FOUR DIGIT (Left)


6 digits, up to 23 tunctions. Net, lap \& 1st \& 2nd place times to \(17100,24 \mathrm{hr}\), alarm. Hours, mins, sec S/S case, Mineral glass
\(£ 39.95\)
FAIRCHILD 8300 ALARM CLOCK
C6110
STILL THE BEST!
 Large LED display 24 hour alarm
9 minute snooze Concealed controls \(3 \frac{1}{4} \times 5 \frac{1}{8} \times 3 \frac{1}{6} \mathrm{ins}\) Wood grain finish £10.95

CASIO AQ-1000 Calculating alarm clock and 3 way stopwatch RRP \(£ 26.95\)
\(£ 21.95\)
CASIO QL-10 cigarette lighter and calculating alarm clock. Provisional price
\(£ 39.95\)
See last month's advertisement for details of the above and our wide range of Casio catculators and superb quartz digital watches, or send \(25 p\) ( \(p\) \& \(p\) ) for our illustrated mall order
Citizen and Seiko products

Prices inelude VAT, P \& P
Send cheques, P.O. or phone your cretit card No. to:

\section*{TEMIPUS \\ Dspt, EE, \\ Th 21 Frroy sices Telephone \((0223) 312866\)}

\section*{INDEX TO ADVERTISERS}

\author{
Ace Mailtronix \\ Amtron ... ... ... ... 64
}

Antex ...
Cov 11
Barrie Electronics ... ... ... 60
Bi-Pak ...
Birkett 58
B.N.R.E.S.

42, 57, 63
Boffin Projects ... ... ... 62
Brewster S. R. ... ... ... 60
Chromasonics ... ... ... 63
Clef Projects ... ... ... ... 63
Crescent Radio ... ... ... 2
Dewtron Electronics Ltd. ... ... 2
Doram ... ... ... ... 4
E.D.A. ... ... ... ... 51

Electroni-Kit ... ... ... ... 2
Electrovalue ... ... ... ... 47
George Sales, David ... ... ... 59
Greenweld ... ... ... 46,51
Heath-Kit ... ... ... ... 42
Home Radio ... ... ... ... 59
I.L.P. Electronics Ltd. ... ... 61

Industrial Supplies ... ... ... 62
Intertext (ICS)
Letrokit Ltd.... ... ... ... 7
Magenta Electronics ... ... ... 4
Maplín ... ... ... Cov IV
Marshall A. ... ... ... ... 55
M \& D Marketing ... ... ... 58
Proto Design... ... ... ... 60
Quinton Tool Supplies 51
Radio \& TV Components ... \&... 5
Salop Electronics ... ... ... 62
Scientific Wire Co.... ... ... 62
Swanley Electronics ... ... ... 51
Tamtronik ... ... ... ... 58
Tempus \(\quad . . \quad \ldots \quad\)...... 64
TUAC... ... ... Cor 11
Vero Electronics ... ... ... 59
Watford Electronics...

\title{
TUAC
}

TRANSISTOR UNIVERSAL AMPUIFICATION CO. LTD. PHONE 01.672 \(3137 / 6729080\) MANUEACTURERS OF QUALITY AMPUFICATION AND LIGHTING CONTROL SYSTEMS

\section*{TO ORDER BY POST}

Make cheques/P.O.s payable to TUAC LTD or quote Access/Barclaycard No. and post to TUAC LTD. 121 Charlmont Road, London SW17 9AB. We accept phone numbers from Access/Barclaycard Holders, Phone 01-672 9080.

\section*{NEW FROM TUAC ULTRA QUALITY HIGH POWER New D.C. Coupled Design AMPLIFIERS}
reaturing
Electronic
Electronic Short Open \& Thermal Ovenoad Protection Briei Spec Inpul Sersitivity \(0.775 . \mathrm{V}\). R.M.S. \(10 . \mathrm{D}\). B. 1 at 25 K Ohms Frequency Response \(20 \mathrm{~Hz}-20 \mathrm{KHz}\) Hum \& Noise - 100 dB Relative full output
T.H.D. at full power 0.1\% T.D. 500300 W into 20 hms 220 W into 4 Ohms 140 W into 8 Ohms Power supply P.S. 300 T.D. 150 750W into 40 mms loow into Ohms Power supply P.S. 150 T.D. 150.60 Version 50 W into 8 Ohms Power supply P.S. 60 40 W into 15 Ohms

Note P.S. 300 will drive 2 T.D. 150 amplifiers

AMPLIFIER MODULES

- 35 watt 10 amp

TL60 \(5^{\prime \prime} \times 5^{\prime \prime} \times 3^{\prime \prime}\)
60 watt R.M.S. continuous sine wave output
- 2 R.C.A. 110 watt 15 amp outnout tranzistors
TL100 \(5^{\prime \prime} \times 5^{\prime \prime} \times 3^{\prime \prime}\)
- 100 watt R.M. S. continuous sine wave output

TP \(1257^{\prime \prime} \times 6 \frac{1 / n}{} \times 3^{\prime \prime}\)
* 125 watt \(R . M . S\). continuous sine wave output
-4 R.C. 150 watt 15 amp output transistors
£13.25
£18.50
\(£ 21.50\)
f27.50

4 CHANNEL SOUND TO LIGHT SEQUENCE CHASER -4LSMI
- Full wave contro
tooow per channel
- Fully supressed and fused
- Switched master control for sound operation from \(\frac{1}{2} \mathrm{~W}\) to 125 W
- Speed control for fixed rate sequence from 8 per minute 1050 per second
- Full logic integrated circuitry with optical isolation for amplifier protection
\(£ 21.50\)
Model 501500 W per channel as
Modef 501500 W per channet as
above without sound triggering


FRONT PANEL FOR LIGHTING EFFECT MODULES
(complete with switches, neons and knobs) as illustrated


FUZZLIGHTS
Red, Green. Blue
Amber \(£ 24.50\)


4 LSMI \(£ 6.00\)
Size \(61 / 2^{\prime \prime} \times 4 / 2^{\prime \prime}\)


STLMB f8. 25
Combined with 3SDM Size \(9^{\prime \prime} \times 4 \frac{1^{\prime \prime}}{2}\)


\section*{STEREO DISCO MIXER}

With touch sensitive switching and auto fade
INPUTS: Four identical stereo inputs available with any equalisation Two magnetic and two that supplied as Sensitivity mag. 3mV (B. A. A. comn) Flat 50 mV at 7 kHz . Bass controls \(=18 \mathrm{~dB}\) at 60 Hz . Treblecontruls 18 BdB at 15 ktiz , OUTPUF: Up to 3 volts ( +12 dB ) available Attenuoted output for TUAC Power Modules Rotary master and balance contuols Band width \(15 \mathrm{~Hz}-25 \mathrm{kHz}=\mathrm{dB}\). P.FL: Output 250 mi into 8 ohms, Rotary volume control Monitoring facility for all 4 channels. Selection via touch sensitive illuminated switches. Switched visual cure medicator: Miscellaneous Facilities Two ilfuminated deck on off switches. Mains illuminated on off swirches. Auto fode
illumbated on/ off switch Mains powered with integral screen and back Sire 25 in long \(\times 6\) in high k 3 in deep Mono Disco Mixer with autotade \(£ 49.00\)
\(£ 149.00\)

\section*{3 CHANNEL LIGHT MODULATOR SILMB}
- RCA BA Triacs
- RCABA Tnass
- Earh h hannoll fully suppressed and fused
- Mast fuser contro - Master control
IW to 125 W - Full wave control
\(£ 20.75\)

Single Channel Version 1500 Warts
£9.75



Vacuum varnish impregnated. Transformers with supply board incorporating pre-amp supply:
\begin{tabular}{ll} 
PS250 for supplying 2 TP125s & \(£ 30.00\) \\
PS200 for supplying to TLT00s & \(£ 30.00\) \\
PS60060 for supplying 2 TL60s & \(£ 30000\) \\
PS125 45 volts for TP125 & \(£ 18.50\) \\
PS100 \(\ddagger 43\) volts for TL100 & \(£ 17.00\) \\
PS60 \(\pm 38\) volts for TL60 & \(£ 15.50\) \\
PS30 \(\ddagger 25\) volts for TL30 & \(£ 11.75\) \\
PSU2 for supplying disco mixer & \(£ 7.50\)
\end{tabular}

STOCKISTS - CALLERS ONLY
A1 Music. 88, Oxiord Streat, Manchaster (Tel 061-236 0340) Geo Mathews, 85\%87, Hurst Street. Birmingham (Tel 021-622 1941) Soccodi 9. The Friars (Tal Canterbury 60948)
Cookies Disco Centre, 126/128. West Street (Trei Grewe 4739) Garland Bros. Ltd. Deptard Broadway. London \(01-6924412\) Luton Disco Cantre, S8, Welifington Streat, Luton (Tel Luton 411733) Sassion Music, 163, Mitcham Road, Tooting (Tal 04-672 3413). Mon-Sat 10 am to 6pm. Closed Wed
Erectra Contre, 5 L Lancaster Road, Preston (Tel Presion sesty) THADE \& EXPORT ENQUIRIES 01-672 3137

\section*{ launch their new Catalogue}

A massive new catalogue from Marlin that's even bigger and better than before If you ever buy electronic components this is the one catalogue you must not be without Over 240 pages -some in full colour-its a comprehensive guide to electronic components with hundreds of photographs:and illustrations and page after page of invaluable data.
We stock just about every useful component you can think of In fact some 5.000 different lines, many of them hard to get from anywhere else Over 1000 new lines in our new catalogue. And with the service only Maplin provides, you wont regret sending for a copy of our fantastic catalogue. Orders paid before publication date will receive a set of 10 special offer coupons. Big Discounts on popular lines:


\section*{nisplin \\ EIECIRONICSUPPUES}

PO Box s, naycie
Tale sone. southan tee 1555

foleonglon (ord y)

\section*{Post this coupon now for your copy of our 1979-80 catalogue price 75p.}

Please send me a copy of your 280 page catalogue as soon as it is published (8th Jan 1979). I enclose 75 p but understand that if I am not completely satisfied I may return the catalogue to you within 14 days and have my 75 p refunded immediately. If you live outside U.K send £1 or ten International Coupons.
NAME \(\qquad\) ADDRESS```


[^0]:    RANSISTORS
    
    
    
    
    
    
    
    

[^1]:    Our February issue will be published on Friday, January 19. See page 27 for details.

