lasy to buthd projacts for everyone $3:-2$,

COMOTE SVSTROL SYM

scor Marshall's

A. MARSHALL (LONDON) LTD. DEPT. E.E

ONDON-40-42 Cricklewood Broadway, NW2 3ET
LONEON-d 325 Edgware Road W2. Tel: 01-723 4242/3 GLAEGOW-85 West Regent Street, G2 20D

BRISTOL- 1 Stralts Parade, Fishponds Rd. BS16 2LX

NEW CATALOGUE 77

2ND EDITION FOR AUTUMN OVER 8,000 LINE ITEMS
Plenty of New Products and Ideas
35p POST PAID (25p to callers)

TOP 400 SEMICONDUCTORS FROM THE LARGEST RANGE IN THE U.K. EXPRESS M.O. SERVICE BY RETURN POST-al

orders received despatched same day on stock items			
2N696	.35	2 N 3703	15 $2 \mathrm{N6} 6126$

69\%	35	2N3703	15	2N6126	45	BC159	75	BD116	$1 \cdot 20$
2N697	30	2N3704	15	40361	50	BC160	35	BD131	51
2N698	62	2N3705	15	40362	55	BC161	35	BD132	54
2N699	55	2N3706	16	40363	1.30	BC167	12	BD135	37
2N706	2	2N3707	11	40406	60	BC168	12	BD136	37
2N706A	2	2N3708	13	40407	52	BC169	12	BD137	31
2N708	20	2N3709	15	40408	75	BC170	18	BD138	31
2N709	50	2N3710	-16	40409	75	BC171	16	BD139	40
2 N 718	27	2N3711	16	40410	75	$8 \mathrm{BC172}$	14	DB140	40
2N718A	50	2N3712	$1 \cdot 20$	40411	2.5	BC177	20	BD239	10
2N720A	80	2N3713	2.30	40594	80	BC178	20	BD240	45
2 N 914	35	2N3714	2.45	40595	90	BC179	23	BD241	45
2N916	30	2N3715	2.55	40673	75	8C182	11	BD242	50
2N918	38	2N3716	3.00	${ }^{\text {AC1 }} 126$	45	BC182L	14	BD243	60
2 N 929	25	2N3779	1.45	$A^{\text {A }} 127$	45	BC183	11	BD244	5
2N930	26	2N3772	2.00	AC128	45	BC183L	14	BD245	5
2N1131	30	2N3773	2.90	AC151V	40	BC184	12	BD246	66
2N1132	37	2N3789	2.90	AC152V	50	BC184L	14	BD529	45
2N1613	30	2N3790	3.10	AC153	55	BC207	16	BD530	50
2 N 1711	30	2N3791	$3 \cdot 10$	AC153K	55	BC208	14	BDY20	1.00
2 N 1893	31	2 N 3792	3.50	${ }_{\text {A Cli }}{ }^{\text {c }}$. 50	BC212	14	BF115	38
2N2102	91	2N3794	20	AC176K	65	BC212L	17	BF121	55
2N2218	33	2 N 3819	36	AC187K	60	BC213	14	BF123	55
2N2218A	37	2N3620	38	AC188K	-60	BC213L	18	BF152	
$\begin{aligned} & \text { 2N2219 } \\ & \text { 2N2219A } \end{aligned}$	35	2N3823 2N3904	21	AD161	1.00 1.00	${ }_{\text {BC214 }}$	-17	$\mathrm{BF}^{\text {B }} 53$	
2N2220	35	2N3906	22	AF106	. 55	${ }_{\text {BC237 }}$. 14	BF154	5
2N2221	25	2N4036	\%	AF103	75	BC238	12	BF159	35
2N2221A	25	2N4037	55	AF124	65	BC239	15	BFF161	
2N2222	25	2N4058	20	AF125	65	BC251	16	BF166	
2N2222A	25	2N4059	15	AF126	65	BC253	22	BF167	35
2 N 2368	25	2N4060	20	AF139	69	BC257A	17	BF167 BFil3	5
2N2369	25	2N4061	17	AF186	50	BC258A	17	${ }_{\text {BFipl }}$	
2N2369A	25	2N4062	18	AF200	$1 \cdot 20$	BC259B	18	BF177 BF178	5
2N2648	- 75	2N4126	17	AF239	65	BC261A	24	BF178	25
2 N 647	140	2N4289	20	AF240	1.14	BC262B	24	BFi79	30
2 N 2904	36	2N4918	65	AF279	80	BC263C	30	BF180	35
2N2904A	37	2N4920	75	AF280	45	BC300	40	BF181	5
2N2905	- 37	2N4921	50	BC107	15	BC301	40	BF182	5
$2 \mathrm{~N}^{2905 A}$	- 38	2N4922	55	BC108	-15	BC303	50	BF183	10
2N2906	- 28	2N4923	70	日C109	15	BC307	. 15	BF184	3
2N2906A	35	2N5190	60	BC113	20	BC308	-15	BF185	35
2N2907	- 25	2N5191	70	BC115	20	BC309C	15	BF194	15
2N2907A	25	2N5192	75	BC116	19	BC317	14	BF195	15
2N2924	15	2N5195	90	BC116A	20	BC318	13	BF196	15
2N2925	-17	2N5245	. 34	BC117	22	BC327	20	$8 F 197$	17
2N3019	- 55	2N5294	- 40	BC118	20	BC328	19	8F198	18
2 N 3053	- 28	2N5295	10	8C19	30	BC337	19	BF200	3
2 N 3054	- 60	2N5296	40	BC121	45	BC336	21	BF225	25
2 N 3055	- 70	2N5298	40	BC132	30	BC547	12	BF 244	35
2 N3390	20	2N5447	- 15	BC134	20	BC548	12	BF245	40
2 N 3391	20	2N5448	15	BC135	20	BC549	13	8F246	75
2N3391A	20	2N5449	- 19	BC136	19	BCY30	1.00	BF254	24
2N3392	16	2N5457	32	BC137	20	BCY31	1.00	BF255	24
2 N 3393	15	2N5458	33	BC140	35	BCY32	1.00	BF257	37
2 N 3394	- 15	2N5459	29	BC141	40	BCY33	1.00	BF258	4
2 N 3439	59	2N5484	34	BC142	30	BCY34	1.00	BF259	49
2 N 3440	64	2N5486	-38	BC143	30	BCY38	2.00	8F459	50
2 N 3441	${ }^{31}$	2N6027	-60	BC147	12	BCY42	60	BFR39	28
2 N 3442	1.35	2N6181	45	BC148	12	BCY58	25	BFS21A	$2 \cdot 60$
2 N 3638	16	2N6107	42	BC149	14	8 CY 59	25	BFS28	1.38
2 N3638A	18	2N6109	- 50	BC153	27	BCY70	25	BFS61	30
2 N 3639	30	2N6121	. 38	BC154	27	BCY71	26	BFS98	30
2 N 3641	20	2N6122	- 41	BC157	14	BCY72	24	BFX29	35
2 N3702	13	2N6123	43	BC158	14	BD115	80	BFX30	35

 BFX87

BFX88
BFX88
$8 F Y 88$ INTEGRATED CIRCUITS
WE STOCK MORE

NATIONWIDE SERVICE

II IV I DIGITAL

Bulli and rested-reaurires only swilches
and
and alarm modules

 MATOOS CAR CLIOCK MODULE

DIODES

AA $A 1$
AA1
AA

				OA47	0.13	IN4006	0.11
AA119	0.14	BA202	0.09	OA90	0.08	IN4007	0.12
AA129	0.09	BAX13	0.07	OA91	0.08	IN4148	. 07
AAZ17	0.18	BAX16	0.10	OA95	0.10	1N4150	0.19
BA100	0.18	BB103	0.30	OA200	0.10	in5400	0.14
BA 102	0.18	BB104	0.40	OA202	0.14	IN5401	185
BA144	0.12		0.30	IN914	0.07	IN5402	175
BA145	0.18	BY126	0.29	IN916	0.07	IN5404	135
BA154	0.10	BY127	0.38	IN4001	0.06	IN5406	225
BA155	0.12	BY182	1.50	IN4002	0.07	INS407	0.27
BA 856	0.15	BY206	0.20	IN4003	0.08	IN5408	-. 40
BA157	0.29	BY207	0.22	IN4004	0.09	IS44	-. 07

OPTO ELECTRONICS
Full range of Opto devices
in our New Catalogue
in our New Catalogue
LEDS

74C MOS		LOW PROFİ
${ }_{7}^{74600}$		SKTS
744C08		
${ }^{74410}$	0.28 $0.24 C 15151$ 0 0	a) 5
${ }_{\substack{74 C 42 \\ 74 C 48}}$	(eat	
${ }^{74}$	0.58 $14 \mathrm{CCHa4} 1.04$	8 pin 0.15
${ }_{7}^{74 C 746}$	(e.	340 gm

CMOS
LOW POWER SCHOTTKY

CD40000	CD40181. 15	CD40410	CD40595. 45	CD40830.25	24	27
CD40010	CD40190 70	CD40420	CD40601-27	CD40820.25	74LS04 0.27	13
CD40061	CD4021115	CD40431 15	CD40631-25	CD		74LE51571 17
CD40070.24	CD40229 10	CD40451	CD40674.25	CD40860. 11		
CD4008 1-10	CD 40230.24	CD40461	CDA0580 25			
CD40090. 64	CD 40240.84	CD40471	CD40690.25			5
CD40100. 64	CD40250.24	D40	CD40700-65	CD40951. 19		0
40110	CD40270			CD409	T45750.60	74LS1631.50
12		CD	CD40720	CDA5102.00	74LS 760.40	5
				CD45112.30	74LS85 1-45	
	CD40300	CD40531 106	CD40750.26	CD45162.00	74LS86 0.48	
CD40151.15	CD40312	CD40541 32	CD40761 17	CD45182.00	74LS $901 \cdot 00$	T

TTL FROM NATIONAL, ITT, TEXAS, SIGNETICS, ETC

740	0	${ }^{7412}$			0.55	7460	0.21	7485	1.85	74118	0.90	74160	1.41				
$\begin{aligned} & 7401 \\ & 7402 \end{aligned}$	- 0.18	${ }_{7414}^{7413}$	0.51 1.80	7440 741	- 0.21	7470	0.46 0.38	7486	0.41	7419	1.80	74161	1. 41				
7403	0.16	7416	0.61	7442	0.76	7473	0.43	7491	0.61 0.98	${ }_{74122} 74121$	- 0.49	${ }_{74163}^{74162}$	1. 41				
7404	0.28	7417	0.61	7445	1.35	7474	0.43	7492	0.61	74123	0.58	71164	23				
7405	0.26	7420	0.21	7446	$1 \cdot 23$	7475	0.58	7493	0.	74	1.03	74165	23				
7406	- 0.74	${ }^{7423}$	-39	7447	1	7476	0.51	7494		74145	1.06	74167	3.70	74184	2.46	74192	
7408	${ }_{0} .29$	${ }_{7427}$	- 0.38	${ }_{7450}$	1.17 0.29	${ }_{7481}^{748}$		74995	0.78 1.03	${ }_{74151}^{74151}$	1.11	74174 74175	1.52 1.35 1	74185	2.48	74.93	1. 62
7409	0.29	${ }^{7430}$	0.31	7451	0.21	7482	0.67	7497	4.60	74154	1.85	74176	1.35 1.23 1	${ }_{74189}^{74188}$	2.00 3.99		17
7410 7411	0.21 0.29	74	0.39 0.55	7453 7454	$0 \cdot 21$	7484	1.33	74100	1.15	74155	1.11	${ }^{74180}$	1.77	74190	1.91	74195	
			0.5	454	0.21	7484	0.8	74107	0.4	7415	0.98	7418	3.70	74191	1	7419	$2 \cdot 93$

VEROBOARD

2.5ATRIX COPPER BACKED BOARD

SOLDERING EQUIPMENT Antex Irons Mod "C"' 15 watt
Stand $£ 1.40 \mathrm{Mod} \times 2525$ watt
$£ 3.40$
$£ 3.40$ Stana
Spare tlos \& efements avallab
Multicore solder dispenser

SWITCHES
SPST 60 ,
DPDT 700
APDT Cloff 80 p

AS above but milero SPST 50 D SPDT

Full range of rocker, slide and rotal
WE ALSO STOCK MOST
COMPONENTS FOR E.E.
-PROJECTS*

CAPACITORS
Ceramic 63 volt 1p1
Polyester C280 250 V

ulm range of mica Polystyrene. Tantaalways in stock.

RESISTORS

10R-10Meq 25w 2ρ ench, $5 w$ Ip each
also $1 w 2 w 2.5 w 5 w 10 w+$ metoxide in
sioch

TRIACS plastic pack 400 V $\begin{array}{cccc}6 \mathrm{Amp} & 0.70 & 16 \mathrm{Amp} & 1.10 \\ 8 \mathrm{Amp} & 0.75 & 20 \mathrm{Amp} & 170 \\ 12 \mathrm{Amp} & 0.35 & 25 \mathrm{Amp} & 2.00\end{array}$ THYRISTORS Plastic C106 118	4 A 200 V 0.358 AA 200 V 0.43
0.42 A	
1200 V	VOLTAGEREGULATORS

500 mA TO202 Positlve 5, 12. 15, $24 \mathrm{v} 1 \cdot 10$
500 mA TO202 Negalive 5; $12,15,24 \mathrm{v} 1.05$
1 Amp TO220 Positive 5, 12. 15, 244 1.55

The Sinclair PDM35. A personal digital multimeter for only $\mathbf{£ 2 9 . 9 5}$
 Technical specification

Now everyone can afford to own a digiral multimeter

A digital multimeter used to mean an expensive, bulky piece of equipment.

The Sinclair PDM35 changes that. It's got all the functions and features you want in a digital multimeter, yet they're neatly packaged in a rugged but light pocket-size case, ready to go anywhere.

The Sinclair PDM35 gives you all the benefits of an ordinary digital multimeter - quick clear readings, high accuracy and resolution, high input impedence. Yet at $£ 29.95$ ($+8 \%$ VAT), it costs less than you'd expect to pay for an analogue meter!

The Sinclair PDM35 is tailormade for anyone who needs to make rapid measurements. Development engincers, field service engineers, lab technicians, computer specialists, radio and electronic hobbyists will find it ideal.

With its rugged construction and battery operation, the IP)M35 is perfectly suited for hand work in the field, while its angled display and optional AC power facility make it just as useful on the bench.

What you get with a PDM35

 $31 / 2$ digit resolution.Sharp, bright, easily read LEE) display, reading to ± 1.999.
Automatic polarity selection. Resolution of 1 mV and 0.1 nA (0.00014 A).
Direct reading of semiconductor forward voltages at 5 different currents. Resistance measured up to 20 Mr . 1% of reading accuracy.

Operation from replaceable battery or AC adaptor.
Industry standard $10 \mathrm{M} s$ input impedance.

Compare it with an analogue meter!

The PDM 35's 1% of reading compares with 3% of full scale for a comparable analogue meter. That makes it around 5 times more accurate on average.

The PDM35 will resolve 1 mV against around 10 mV for a comparable analogue meter - and resolution on current is over 1000 times greater.

The PDM35's DC input impedance of 10 Mr is 50 times higher than a $20 \mathrm{ks} /$ volt analogue meter on the 10 V range.

The PDM35 gives precise digital readings. So there's no need to interpret ambiguous scales, no parallax errors. There's no need to reverse leads for negative readings. There's no delicate meter movement to damage. And you can resolve current as low as 0.1 nA and measure transistor and diode junctions over 5 decades of current.
DC. Volts (4 ranges)

Range: 1 mV' to 1000 V .
Accuracy of reading $1.0 \% \pm 1$ count.
Note: 10 Mr input impedance.
AC Volts ($40 \mathrm{~Hz}-5 \mathrm{kHz}$)
Range: 1 V to 500 V .
Accuracy of reading: $1.0 \% \pm 2$ counts.
DC Current (6 ranges)
Range: InA to 200 mA .
Accuracy of reading: $1.0 \% \pm 1$ count.
Note: Max. resolution $0.1 \cap A$.
Resistance (5 ranges)
Range: 112 to 20 Ma .
Accuracy of reading: $1.5 \% \pm 1$ count. Also provides 5 junction-test ranges.
Dimensions: 6 in $\times 3$ in $\times 1 \frac{1}{2}$ in.
Weight: $61 / 2 \mathrm{oz}$.
Power supply: 9 V battery or Sinclair AC adaptor.
Sockets: Standard 4 mm for resilient plugs.
Options: AC adaptor for 240 V
50 Hz power. De-luxe padded carrying wallet. 30 kV probe.

The Sinclair credentials

Sinclair have pioneered a whole range of electronic world-firsts - from programmable pocket calculators to miniature TVs. The PDM35 embodies six years' experience in digital multimeter design, in which time Sinclair have become one of the world's largest producers.
Tried, tested, ready to go!
The Sinclair PDM35 comes to you fully built, tested, calibrated and guaranteed. It comes complete with leads and test prods, operating instructions and a carrying wallet. And getting one couldn't be easier. Just fill in the coupon, enclose a cheque/ $P($ for the correct amount (usual 10-day money-back undertaking, of course), and send it to us.

We'll mail your PDM35 by return! Sinclair Radionics Ltd, London Road, St Ives, Huntingdon, Cambs., PE174HJ, England. Regd No: 699483.

B. BAMBER ELECTRONCCS

Dept. E.E., 5 STATION ROAD, LITTLEPORT, CAMBS., CBG $10 E$

 Telephone: ELY (0353) 860185 (2 lines) Tuesday 10 SaturdayPLEASE ADD 8\% VAT UNLESS OTHERWISE STATED
A MERRY XMAS
TO ALL OUR CUSTOMERS
PLUS A XMAS PRESENT FROM US IN TME FORM OF A
10\% DISCOUNT
ON ALL ORDERS RECEIVED FROM 1st to 31st DECEMBER

For liems in our current
THIS OFFER IS FOR 1 MONTH ONLY
Slider Switches, 2 pole make and break (or can be used as i pole change-over by linking the two cente pine), aror sop
A NEW RANGE OF QUALITY BOXES INSTRUMENT CASES
AB10 ${ }_{5 i} \times 4$ mith Lide
$\begin{array}{ll}\text { AB10 } & 5+\times 4 \times 14 \\ \text { AB13 } & 6 \times 4 \times 2 \\ \text { AB14 } & 7 \times 5 \times 24 \\ \text { AB15 } & 8 \times 6 \times 3 \\ \text { AB16 } & 10 \times 7 \times 3 \\ \text { AB17 } & 10 \times 4 \times 3 \\ \text { AB25 } & 5 \times 4 \times 3\end{array}$
Vinyl Coated Instrument Caues
toht Blue tops and Whlto lower sactiont Vory
omart filinigh.
WB1
WB2
WB3
WB4
WB4
WBS
WB6
W86
W87

$8 \times 5+\times 34$	$[2.00$

MAINS TRANSFORMERS. TyPS 602. Mains input 200-210-220-230-240-250V atc... output 0-20It $\times 4 \times 4$, fully fused (ideal for PSU) $£ 3 \cdot 00$
ach.
MAINA TRANBFORMERS. Type is 300240 V put. 15 V at 300 mA output. E1.50 each.
MAINS TRANSFORMERS. Type $45 / 100.240,220$.

MAONETIC DEVICES PROGRAMMERS. COT tain 9 fully adjustable came and g change over Noed awithes frated approx. 1A at 240VAC plied). Ideal for dieco IIghts. sequence switching. etc. ex equipment 11.50 each.
vIDICON SCAN COIL (Trangiator type, but no data) complete with vidicon bese tipe. out no Brand New.

FULL RANGE OF BERNARDS/BABANI ELECTRONICS BOOKS IN BTOCK. S.A.E. FOR LIST.
NEW FOR THE VHF CONSTRUCTOR. A ange of tuned circulte on formers with aluge and icreening cans. Frequencies quoted aro spproximate, and range can be grestly exiended by using varying capacitore in paraliel.
Type S (itin. square, dumpy type).
Type SB 35 to 30 MHz (when 33 pl fitted in paraliat) Type SC 7010100 MHz (with link winding). Type SO 70 Io to 100 MHz (with \|ink winding). Type SO 135 to $175 \mathrm{MHz}_{2}$ (with link winding)
Type M (Min. fin. Mquare types). Type M (Min. fin. equare types), Type MB 22 to 32 MHz (when 330 F Nitted in parallel). Typo MC 25 to 35 MMZ (when 33 pF fitted in parallele). Tyoe MO 30 10 50 MHz (when 33 pF fitted in paralle). Type ME 45 to 60 MMz (when 33 DF fitted in parallel). Tyoo MF 100 to 200 MHz (without slug) when 0 to 30pF variable fitted in abspalle
Alline above coils available in pecke of tive only (same
type) at sop per pack of 5 .
SEMICONDUCTORS
BSX20 (VHF Onc. Multy. 3 for 50 p
BC108 (metai can), 4 for 50 p . PBC108 (plastie BC108), 5 for sop. BCY72 Tranalstors, for 50p.
PNP audio type TO5 Transidora, 12 for 250 . BF152 (UHF amp/mixer). 3 for 50p. 2N3 219 Fet. 3 for $80 p$.
BC14 NPN SLICON.
BC148 NPN SILICON. 4 tor 50p
BAY31 Signal Diodes 10 for 35
Bal21 varicep Diodes. 4 for 50 p .
741CG op ampe by RCA. 4 for $\mathbf{C 4}$
AED LEDE (Min. type) 5 for rop.

PLEASE ADD 8\% VAT UNLESS OTHERWISE STATED

PLAgTIC PRONECT GOXES with acrew on lids (In black ABS wilh brass inserts.

 MULLARO $35 A 2$ asV stabilisen Valves (Brand Now) TOp each of 2 for $\mathrm{E1}-20$, TO3 tranalator insuletor sets. 10 for 50 p

PERSPEX TUNER PANELS (for FM Band 2 (unera) marked 88-108MHz and Channels $0-70^{2}$ clear numbars, rent blacked out, marn modern appespance, size approx. $8 \mathrm{l} \ln \times 1 \mathrm{k} \mathrm{m} ., 2$ for

PLUOS ANO SOCKETS
WType plugs 50 ohm, 60p each, 3 for $11-50$.
L259 Plugs (PTFE), brand new, packed with reducers, 65p each
yper). Sop each (PTFE), brand new (4hole fixing
SOLOER SUCKERS (Piunger type). Standerd
Model, ES. Skirted Model c5.50. Spare Nozzles op each.
NEW MARKSMAN RANGE OF SOLDERING MONB.
S1250 25 W 240 V E3. 80 .
51400 40W $240 \mathrm{~V} \$ 4$. 20
1250k 25 W 240 V + bits etc. KIT E4.00
BENCH STAND with spring and sponge for
Marksman lrons $52-36.1$. 50 . MT5 (for 25 W) 45p.
ATL PAICES + Sop.
TCPZ TEMPEAATUAE CONTROLLED IRON Tempersture controiled iron and PSU. $30+$ VaT (E2.40).
SPARE TIPS
Type CC sungle flet. Type K double tiat fine tip. MOST SPARES AVAILABLE.
MULTICORE SOLOER
Size 5 Savbi 18 a.w.g. in alloy dispenser,
$32 \mathrm{p}+\mathrm{VAT}(3 \mathrm{p})$.
Size $\mathrm{C} 1 \mathrm{SAV10}$
.

EXPERT. Bult-in-spotight Hluminates work Pistol grip with fingertip triggar. High efficiency
copper soldering thp. EXPERT SOLDEHCUUN H100D 59.90
EXPERT SOLDER OUN KIT (spare bits. case, elc.) $£ 12 \cdot 90$.
Spare bite $35 p$ palr.
A LARGE RANGE OF CAPACITORS AVAILABLE AT BARGAIN PRICES. S.A.E. FOR LIST. MIXED COMPONENT PACKS. containing nesistors, capacitors, pots. ote. All new,
Hundreds of tieme of per pack, while lant.

ALU-sOL ALUMINIUM SOLDER (made By Multicore). Solderi aluminium to liseif by copper, biass, steel, nickel or tinplate, is sww. 0 with multicore flux, with instructions. Approx.
metre coll 40 p pack. Lerge real $\mathbf{5 2 - 7 5}$. metre coll 40p pack. Large reel [2-75
VARICAP TUNERS Mullard type ELCroas.0s. Brand New, $54.40+12+\%$ VAT.
BARGAIN PACK OF LOW VOLTAOE ELECTROLYTIC CAPACITORS. UP TO $50 V$ working. Seatronic Manulacture. Approx to 20 par pack + 12t\% VAT.
OSMOR MEED RELAY COILS (for reed ralays up to fin die.. not suppliad) $12 \mathrm{~V}, 500$ ohm coil, 2 for sop.
We now atock Spiralux Tools for the electronic Metric sizes. Sop river gut spanners, BA and

Dutir Eletronit souF.

Dubiliter Electrolytics, $50 \mu \mathrm{~F}, 450 \mathrm{~V}, 2$ for 50 p . Dubilar Electrolytice. 100 uF . $275 \mathrm{~V}, 2$ for 50 . TCC Electrolytics. 1000 uF 30 V 3 for 800 p Dubillar Electrolytics, 5000 uF 35 V . 00 pean . Dubiliur Electrolytics. $5000 \mu \mathrm{~F}$, 50 V . 60 p each Tr Electrolytics, $6000 \mathrm{uF}, 25 \mathrm{~V}$, high grade, screw PLEASE, with mounting clips, 50 p esch. CAPACITORS. 12d\%

TV PLUAS AND SOCxETS TV Pluge (metal type), 4 For sop. TV Sockets (metal type), ifor 50 p.
TV Line Connectors (back-to-back sockets), 4 for
50p.

Terms of Business: CASH WITH ORDER. MINIMUM ORDER (2. ALL PAICES INCLUDE POST \& PACKING (UK ONLY). SAE with ALL ENOUIRIES Please. please add vat as shown. all goods in stock despatched by retufn callers welcome by appointment only

70010
 WAS MADE FOR YOU

VERO QUAD BOARD was designed to provide a simple circuit board capable of accepting nearly all types of integrated circuits, plus transistors, resistors, capacitors and many other components.

ASK FOR V-Q - IT WAS MADE FOR YOU No track cutting. 1,624 holes on $0.1^{\prime \prime} \times 0.1^{\prime \prime}$ matrix. Packed complete with layout sheet. Fits Vero Plastic Cases 1237, 1238 and 1239. Costs about 90 p from your local shop or mail order company
Send for our booklet describing many other products made for you, S.A.E. $7^{\prime \prime} \times 9^{\prime \prime}$ plus 10p to:

VERO ELECTRONICS LTD. RETAIL DEPT. INDUSTRIAL ESTATE, CHANDLERS FORD, HANTS. SO5 3ZR.

SEND STAMP ADDRESSED ENVELOPE NOW FOR THE EASY TO USE ACE ORDER FORM CONTAINING 500 TOP OUALITY POPULAR ELECTRONIC COMPONENTS AT PRICES YOU CAN AFFORD. P\&P FREE ON ORDERS OVER \&2, OTHERWISE 20p. ALL PRODUCTS GUARANTEED ONE YEAR IF CORRECTLY USED. SOME EXAMPLES FROM THE COMPETITIVE ACE RANGE WITH VAT INCLUSIVE PRICES ARE SHOWN BELOW

BC107/108/109 Metal__13p	4W Resistors CF 5 5\% _ 3 for $6 p$
BC207/208/209 Plastic $\quad 11 p$	Minpresets Horiz/vert. $\quad 8 p$
2N3055 65p	Electrolytic $100, \sqrt{25 v}$
741 Op Amp-8pin _ 30p	Polyester C280 0.1,F 8p
555 Timer _ 50p	LED Red 0.2°
W04 1A Bridge 31 p	Phono plugs $\quad 80$
7400.TTL 15p	Mintoggle SPST _ 800
IN4148 Diode ___ _	Wire-PVC Stranded 10m_25p
IN4001Rec	Veroboard $0.12 .5 \times 3.75 \quad 500$
BZY88 Zeners _ 12p	S-DEC Breadboard $\quad 216 p$

SOUND TO LIGHT UNIT

Add colour or white light to your amplifier. Will operare box all ready to work. 88.95 plus E) 00 VAT \& Postage.

MAINS OPERATED SOLENOIDS

Model TT2-small but powerful Model Tr2-small but powerfu itin. $11 \cdot 00$. in pull. Size 24 $2 \times 14 \mathrm{in}$. E 1.50 . Model TT10-1tin. pull. Size 3 $2 \frac{1}{2} \times 2 \mathrm{in} .44 \cdot 50$
Prices include VA

PP3/PP9 REPLACEMENT MAINS UNIT
 Japanese made in with ieads size $2^{\prime \prime} \times 1 \frac{1}{n}^{*} \times 1 \xi^{2} \times$. this is Ideal to power a calculator or radto. It has a full wave rectified and smoothed output of 9 volts suitable for a loading of ud to 100 mA .

3 NEW BOOKS BY
 G. C. DODDS

Practical Test Equipment describes the theory, the construction, and the operation of 7 instruments for beginners to make from readily obtainable components: Transistor Tester-Transistor checker-Sillar and signal oscillator-AC Bricer combined in a Multi Checker-Dual range ohm meter, the final chapter deals with a range of test leads and give more detailed notes on signal injecting and signal tracing.
Published price 75p our price 50p.
Practical Flectronle Projects describes the construction and uses of 9 projects for beginners, all made from easily obtainabie parts describes construction and operation of:-Windscreen wiper delay-Electronic Siren-Drum beat simulator-Lamp dimmer-Light/ Dark operated switch-electronic bird, emotional state indicator-lelephone amplifer--
Published price 75p our pop
Shortwave Recelvers for Beginners after a few pages of general notes on wave bands, band spreading etc, the
author gives constructional details of a one transistor radio then a two transistor and finaliy a multi stage receiver with band spreading and reaction
Published price 60 p our price 450.
FREE If you purchase the other two you get the shortwave one free.

RADIO STETHOSCOPE
Easiest way to fault find. traces, signal from aerial to speaker, when Use it on Radio, TV, amplifer, anything. Kit comprises transistors C $\begin{aligned} & \text { and parts including probe } \\ & \text { and iwin stetho-set. } \\ & 23.95 \text { VAT and postage inc. }\end{aligned}$

Breakdown Parcel-four unused. made for computer units containing most useful components, and these components unlike those from most com-
puter panels, have wire ends of usable puter pancls, have wire ends or usable have leads over 1^{\prime} long-the diodes have approx. t' leads.
List of the major components is as follows:-17 assorted transistors- 38 assorted diodes- 60 assorted resistors and condensers- 4 gold plated plugs in units which can serve as multipin plugs or as hook up boards for experi-
mental or quickly changed circuits (note we can supply mental or quickly changed cirere made to receive pese the socket boards whits). The price of this four units parcel is $£ 1$ includipg transistor or diodes alone) DON'T MISS THIS SPLENDID OFFER
FLUORESCENT TUBE INVERTER

For camping-car repairing-emergency lighting,
from a $12 v$ battery you can't beat fluorescent lighting, it will offer plenty of well distributed light and is economical. We offer Philips invertor for $12^{\prime \prime}{ }^{8}$ watt
miniature tube for only 83.25 with tube and tube miniaure
holders as well.

ROTARY PUMP
Self priming, portable, fits drill 1 clectric motor, pumps up to
gallons per hour depending upon revs. Virtually uncorrodable. uss. IO suck water, oril, perror,
Iertiliser chemicais.
anything feritisect chemicais, anything liquid. Hose connectors each end.
\&2.00 Post Paid.

MULLARD UNILEX
A mains operated $4+4$
stereo system. Rated one of the finest performers In the stereo fied this
would make a wonderful would make a wonderful gift
for almost any one in casy-to for almost any one in easy-to-
assemble modulas form and assemble modula, form and
 Plessey speakers this should sell at about $\mathrm{c}^{\mathbf{3}} \mathbf{3 0 \text { -but }}$ due to a special bulk buy and as an Incentive for you to buy this month we offer the system complete at only \&14.00 including VAT and postage.

SHORTWAVE CRYSTAL SET

Although this uses no battery It
gives really amzzing results. ${ }^{\text {Y }}$ ou will receive an amazing assortment
of stations over the $19,25,29,31$ of stations over the $19,25,29,31$
metre bands. Kit contains chassis front panel and sll the parts $11 \cdot 90$ VATystal carphane 55p including

MEASURING A.C. AMPS with

 POPULAR MULTI-TESTERSThis is not usually possible because a current transformer is reculred-We can now offer a kit of parts to make a suitable transformer which will enable you to measure A.C. amps directly on your $0-1$ amp and two ranges would be avaliabs-usually 0 a-10 amps. This current transformer is quite casy to o-10 amps. This current transformer fill instructions-
construct with our kit and we provide full construct with our kit and we provid.
price 22.55 post and V.A.T. paid.

ROOM THERMOSTAT

Famous Satchwell, ele rant design, Intended for wall mounting. Will switch up to 20 amps at mains voltake. covers the range
Special snip this month $23 \cdot 00$, post and VAT pald.

MAINS RELAYS

Whth triple 10 amp changeover con-
tacts--operating coil wound for 230 wolts AC. chassls mounting. one screw axing. ex unused equipment 60 p each, 10 for $£ 5$ post and VAT

LEARNERS PLEASE NOTE

P.W. associated publication "Everyday Electronics" is just starting a series called Teach in 78. This is a practical course with simple theory explained. We are offering a kit of paris forme practica $i 12$ cash.
CENTRAL HEATING HEARTS
Randal dillustrated) replaceHORTSMAN $\mathbf{E 6} \cdot \mathbf{3 0}$ SMITHS Controller 101100 complete in wall mounting

THIS MONTH'S SNIP TEACH IN ${ }^{78}$

Start right away Order the parts for
this series-send $£ 3$
deposit and $£ 2$ monthly
for 5 months or $£ 12$ cash

TANGENTIAL HEATER UNIT

A most efticient ard quiet run-tron-stme type as is fitted to many famous name heaters \rightarrow Comprises mains induction motor-long turbo fan-split 2 kw heating eiement and thermostatic safety tripfor immediate heat-mount in a simple wooden or onto base of say' kitchen unit price 44.95 post $£ 1.50$ control swltch to give 2 kw , 1 kw , cold blow or off available
3kW MODEL
$\mathbf{5 5 . 9 5}+$
$\mathbf{1 1 . 5 0} \mathrm{p}$ \& 60 p extra.

TERMS:

Cash with order-but orders under $\mathbf{8 6}$ mutt add 50D to offset packing ere.
BULK ENQUIRIES INVITED. PHONE: 01-688 1833

J. BULL ($\operatorname{\text {ELECRRPACA)LTD}}$
 (Dept. EE), 103 TAMWORTH RD. CROYDON CR9 1SG

IT'S FREE

Our monthly Advance Advertising Bargains List gives details of bargains arriving or just arrived-otten bargains which sell out before our advertisement can appear it S A, ing list and it's free-just send S.A.E. Below are a few of the Bargains still available from previous lines.
20 Amp Car Starter/Cherger kit still available £7.95p, Solo and VAT pald
Solo Mastermind. Practical Wireless. October issue, describes this novel device which we think will be very popular now with the dark evenings.
the electronic components as follows
Transistor type BCY $71-8$ required. 200 each Transistor type BC 109-8 required 150 each General purpose silicon diodes 10D each
2 Pole 6 was midget wafer switch- 8 required 40 p each
Push to make switch 25p each
Pack of 12 Resistors (note $2 \cdot 2 \mathrm{~K}$ are 50p pack
1 mel Panel meters, oblong, full vision,
22.70p each or Round ex equipment 1 mA meters scaled $0-10 £ 2$ each Plain knobs - 4 required 15 p each Pointer knos-4 requlred

150 each

EP3 Battery clip
 15p each

Or all the above parts parcel $£ 13.50 \mathrm{p}$ Or all the above parts purchased as a parcel $£ 13 \cdot 50 \mathrm{D}$ Humidity Sinas Humdity Stats. These are damp sensitive devices, in fact increasing dampness. breathing on it for Instance will switch on a micro switch which can control a water spraying areangement to increase humidity or a fan heater to lower the humidity. We have two modeis, the Ranco Jll which is a preset model, reated 3 amps 250 v , has a screwdriver control for setting up, once set it cannot easily be tampered with. Overall size of this 3) long and wide and is by Honeywell of America and is a little larger. overall size $3^{\circ}{ }^{\circ}$ long 1° wide 2^{2} deep is adjustable by spindle which comes out of the front end and to which can be fitted a normal control knob. This operates 5 amps at 240 v AC. price $£ 1 \cdot 00+8 \mathrm{p}$. Bridee Rectiffers suitable for instruments encapsulated and wire ended 100 volts 2 amp $500+4 p$.
Ditto suitable for power circuits. "battery charging etc. $200 \mathrm{v}, 10 \mathrm{amp}$. Price $\mathrm{£1} \cdot \mathbf{2 5 p}+6 \mathrm{p}$ each.
Tine and Set Switch. with the cost of heating golng up and up it is not good economics to leave the heating on when there is no-one at home. On the other hand it is not nice to come home to a cold house so the time and set switch made by Smiths could be the answer. This is mains driven device which has contacts capabie of
switching 25 amps. Delay of up to 18 hours is possible switching 25 amps. Delay of up this. Glass fronted and with control knob this is nice looking instrument easy to mount in a box or on a pancl, made by Smiths price $\mathbf{4 4} \cdot \mathbf{3 5}$ p +35 p. Post $500+4 p$. made by Kelly Acoustical, we can thoroughly recommend these are $£ 27 \cdot 50 p+£ 2 \cdot 20 p$, carriage $£ 3 \cdot 00+$ 24p. We fecl certain that at this price these will be quickly snapped up so advise early action
Water Pump ex Washing Machine. We believe that this comes from the Indesit Automatic Machine, these are really for callers as obvio
one. Price $£ 7 \cdot 00+56 \mathrm{p}$.
12 Hour Switch On made by Crouzet, this device consists of a 12 hour mains operated motor mounted on a chassls with two 5 amp irip switches. Througn the front a chrome and red push switch which would protrude through the pancl, in fact the main untt being held behind the panel with wo screws depressing the circuit and after 12 hours the motor will have rotated completely and will then switch off itself and the main completely and where is obviously many uses for this device, one being to charge batteries for 12 hours or to 5 witch on lighting or heating for 12 hours and no doubt many other uses will be found for it. $£ 3.95 \mathrm{p}+32 \mathrm{p}$.
Bead Thermister, glass encapsulated. This is a very sensitive device. you can see it decreases iss resistance as you hold it in a warm hand. Resistance a 60 if approx. 18k, at $100^{\circ} \mathrm{f}$ (approx. blood heat) it drops to 2 k so you can sce it is quite a sensitiv
G.P.O. equipment, price $50 \mathrm{D}+4 \mathrm{p}$.
Experimenters Resistor Assortment. Parcel comprising $500 \frac{1}{2}$ and $\frac{1}{2}$ watt carbon resistors 10 each of 50 different values covering 10 ohms to 20 megs. Supplied with a copy of the resistor colour code $\ell 4 \cdot 00+50 \mathrm{p}$.
Resistors In Bulk. we have over 2 million resistors and 2 watl types, price 750 per 100 for tand t's, $\mathbf{2} 2$ per 100 for 1 watt. i4 per 100 for 2 watt. List your requirements and state if near value may be sent if any out of stock. V.A.T. is $12 \frac{1}{\%}$
Electrical Tape made bs Scotch, this is polyester film, thermosetting pressure sensitive, yellow, $1 \frac{1}{2}$ wide and is on a big recl 66 m (70 yards approd.) McMurdo Plues \& Sockets. Some additional types have price $40 \mathrm{p}+4 \mathrm{p}$ per palr. 12 way $50 \mathrm{p}+4 \mathrm{p}$ per pair, 25 way $600+40$ per pair
Time Delay Module, mains working perspex type cover plugs into $87 G$ base. Connect this through a mains relay want it io seconds approx the relay will close. If you maintain the circuit to the coil. The delay as set is approx. 15 seconds, screwdriver control can alter this, still bigger alternatives to the 15 second time delay can be made by replacing the 1 pre set resistor with an
external pot. The module contains a $4 \mathrm{amp} 400 \mathrm{v} \mathbf{S C R}$, external pot. The module contains a 4 amp
an FET transistor, all ancillary components also circuit is suppliect. Priced at only $£ 1.50 \mathrm{p}+12 \mathrm{p}$. It is obviously quite a bargain.

Sparkitamb Capacitive discharge electronic ignition kit

vOTED BEST of Systems

 TESTED BY popular motorimc machzine* Smoother running
* Instant all-weather starting
* Continual peak performance
* Longer coil/battery/plug life
* Improved acceleration/top speeds
* Optimum fuel consumption

Sparkrite Mk. 2 is a high performance, high quality capacitive discharge electronic ignition system in kit form. Tried, tested, proven, reliable and complete. It can be assembled in two or three hours and fitted in $15 / 30$ mins
Because of the superb design of the Sparkrite circuit it completely eliminates problems of the contact breaker. There is no misflre due to contact breaker bounce which is eliminated electronically by a pulse suppression circuit which prevents the unit firing if the points bounce open at high R.P.M. Contact breaker burn is ellminated by reducing the current to about $1 / 50$ th of the norm, It will perform equally well with new. old, or even badly pitted points and is not dependent upon the dwell time of the contact breakers for recharging the system. Sparkrite incorporates a short circuit protected inverter which eliminates the problems of SCR lock on and, therefore, eliminates the possibility of are not completely foolproof SCR. (Most capachive discharge ignitions are not completely foolproof in this respect). All kits fit vehicles with
coil/distributor ignition up to 8 cylinders. coil/distributor ignition up to 8 cylinders.
THE KIT COMPRISES EVERYTHING NEEDED
Ready drilled pressed steel case coated in matt black epoxy resin, ready and cormonenents, cables, coll quality 5 year guaranteed transformer and components, sablicon grease full colit connectors. printed circuit board, nuts positive earth, and 10 page installation instructions positive earth, and 10 page installation instructions.
OPTIONAL EXTRAS
Electronic/conventional ignition switch
Gives instant changeover from "Sparkrite" ignition to conventional gnition for performance comparisons, static timing etc., and will also switch the ignition off completely as a security device, includes switch connectors, mounting bracket and instructions. Cables excluded.
Also available RPM limiting control Also available RPM limiting control for dashboard mounting (titted in case on ready built unit).
CALLERS WELCOME. For Crypton tuning and fitting service hone
PRICES INCLUDE VAT, POST AND PACKING
IMPROVE PERFORMANCE \& ECONOMY NOW
Note-Vehicles with current impulse tachometers (Smiths code on dial RVI) will require a fachomeler pulse slave unit. E. 3.35 inc. V. A T. P \& p.
E.D.A. 82 BATH STREET, WALSALL WS1 3OE.

Electronics Design Associates, Dept., EE 12 82 Bath Street, Walsall, WS1 3DE. Phone: (0922) 33652 Name ...
Address

ienciose cheque/Pós ${ }^{\text {for }} \boldsymbol{\Sigma}$ Cheque No. only required.
 B St. Wh Wh 36 dress ...

$\frac{\text { Vall amisimas }}{\text { S.R.B }}$

MINIATURE UDE: for HOBBY or TRADE

Solder 28, 56. I8 watts of power at 240 v . straight to the bit BIT SIZES: $19(1.5 \mathrm{~mm}) 20(3.0 \mathrm{~mm})$ $21(4.5 \mathrm{~mm}) \quad 22(6.0 \mathrm{~mm})$ Trade Enquiries Welcome

S. ${ }^{2}$ R. BREWSTER Ltd. 86-88 UNION ST • PLYMOUTH Tel 0752.650II

LOOK! Here's how you master electronics.

....the practical way.

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to further your career in electronics or as a selfemployed electronics engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write, at any time, for advice or help during your work. A Certificate is given at the end of every course

1 Buildan oscilloscope.
As the first stage of your training, you actually build your own Cathode ray oscilloscope! This is no toy, but a test instrument that you will need not only for the course's practical experiments, but also later if you decide to develop your knowledge and enter the profession. It remains your property and represents a very large saving over buying a similar piece of essential equipment.

2 Read, drawand understand circuit diagrams.

In a short time you will be able to read and draw circuit diagrams, under stand the very fundamentals of television. radio, computors and countless other electronic devices and their servicing procedures

3 Carry out over 40 experiments on basic circuits.

We show you how :o conduct experiments on a wide variety of differen circuits and turn the information gained into a working k nowledge of testing, servicing and maintaining all types of electronic equipment, radio, i.v etc.

All students enrolling in our courses receive a free circuit board originating from a computer and containing many different components that can be used in experiments and provide an excellent example of current electronic practice.

To find out more about how to learn electronics in a new, exciting and absorbing way, just clip the coupon for a free colour brochure and full details of enrolment.

British National Radio \& Electronic School

P.O. Box 156 , Jersey, Channel Islands.

NAME

ADDRESS

A FREE CATALOGUE (value f1) when you buy our COMPLETE KIT OF PARTS for ELEPday

The price of the Kit, complete with batteries, is £19, including VAT, Postage, Packing and Insurance. With it, at no extra cost, you get the magnificent Home Radio Catalogue; over 200 pages, 5000 items, nearly 2000 illustrations. Also included is a price list and bargain list. It's a must for the beginner. Use the left-hand coupon.
If you are not a beginner yet have no catalogue, don't labour under the disadvantage any longer-send the right-hand coupon. You will also learn about our credit scheme. Easy to join, no references required, and once enrolled you can order your components any hour of day or night, any day of the week. But you need a catalogue first. The price, to those not buying the Teach-in Kit, is $£ 1 \cdot 40$ including postage and packing, or $£ 1$ over the counter. Send today.

"fyou missed the October and November issues of Everydoy Elactronics, containing the first Teach-ins,
they are araflable from the publishers of this magazine

HOME. RADIO (Components) LTD. Dept. E.E.ij, 234 -240 Londoni Rodd. Mitcham.CR4 3HO Phone $01-6488422$

WE SUPPLY
THE COMPLETE KIT OF
ELECTRONIC COMPONENTS
FOR THE
TEACH-IN 78 SERIES
AT £11.25 INC. VAT \& P/P
THE COMPONENT CENTRE
7, Langley Road, Watford, Herts
WD1 3PS Tel: Watford 45335

For Semi-conductors including

Small Signal Transistors
Power Semi-conductors
TTL, CMOS, I.Cs
Linear I.Cs
Signal and Power Diodes
Zener Diodes
Magneto Resistors
Magnetic Proximity Switches Opto-electronic devices

For passive components
including
Plastic Film Capacitors Electrolytics
Semi-precision capacitors
Transformers
Pot Cores
R.M. Cores

Ring Cores, etc.
Cara
ELEGTROALUE
THE PROJECTS YOU BUILD

The Open Door to Quality

It's the Electrovalue Catalogue No. 8 (4 th edition black and white cover) with completely up-dated prices. 144 pages, well illustrated and informative. $40 p$ post free with $40 p$ voucher usable on orders for 65 or more. Send for yours now and order in confidence.
GOODS SENT POST FREE IN U.K. FOR C.W.O. ORDERS. Keenly comperitive prices plus ATTRACTIVE DISCOUNTS and only best quality goods.

ELEGTROTALIE LTD

(Dept. EE.11), 28 St. Jude's Rd., Englefield Green, Egham; Surrey TW20 OHB Phone Egham 3603. Telex 264475
North-680 Burnage Lane, Burnage, Manchester. Phone (061) 4325945.

THE 'NUTS \& BOLTS' OF THOSE PROJECTS

AUDIO LEADS

S127 5 pin DIN plug to 4 phono pluge length $1.5 \mathrm{~m} \quad$ E1. 30° S128 5 pin DIN plug to 8 pin DIN socket length 1.5 m £1.05* S129 5 pIn DIN plug to 5 pin DIN plug mirror Image length S130 2 pIn DIN plug to 2 pin DIN eocket length $5 \mathrm{~m} \quad$ sta* Si3t $\begin{gathered}5 \text { pin DIN plug to } 3 \text { pin DIN plug } 1 \& 4 \text { and } 3 \text { \& } 5 \text { length } \\ 1.5 \mathrm{~m}\end{gathered}$ S132 2 pin DIN plug to 2 pin DIN aocket length $10 \mathrm{~m} \quad 3 \mathrm{D}^{\circ}$ S133 5 oln DIN plug to 2 phone pluge connected to pine 3 a 5 S134 8 pin DIN plug to 2 phono sockete connected to pine ${ }^{3}$ 31358 pln DIN zocket to 2 phono pluge connected to pln 3 a S138 Colled stereo headphones extension cord extends to 7 m S124 3 pin DIN olug to 3 pin DIN plug length $1 \cdot 5 \mathrm{~m} \quad 75 p^{\circ}$ Sist EIn DIN plug to 5 pIn DIN plug length 1.5 m S113 3.5 mm Jack to $3 \cdot \mathrm{mmm}$ Jack length 1.5 m Sil4 5 pin DIN plug to $3-5 \mathrm{~mm}$ Jack connected to plns 3 a plug to 3.5 jack connected to plate 14 $1 . \mathrm{Bm}$ N plug to 3.5 Jack connected to pins 144 longth

G.P. SWITCHING TRANS.

TO18 SIM. TO 2N700/8
BSY27/28/05A. All ueable devicee. No open and thorte ALSO AVAILABLE IN PNP simliar to 2N2906. BCY 70.
 When ordering please state NPN or PNP

SIL G.P. DIODES
300 mW 40 PIV (min) SUB-MIN
ULLY TESTED
Ideal for Organ bulldera

NUTS AND BOLTS

告

-packs o

EDITOR

F. E. BENNETT

ASSISTANT EDITOR
B. W. TERRELL B.Sc.

TECHNICAL SUBEDITOR

T. J. JOHNSON G8MGS

ART EDITOR

J. D. POUNTNEY

TECHNICAL ILLUSTRATOR

P. A. LOATES

GENERAL ARTIST

K. A. WOODRUFF

EDITORIAL OFFICES

Kings Reach Tower,
Stamford Street,
London SE1 9LS
Phone: 01-261 5000

ADVERTISEMENT MANAGER

D. W. B. TILLEARD

Phone: 01-261 5000

REPRESENTATIVE

P. J. MEW

Phone: 01-261 5000

CLASSIFIED MANAGER

C. R. BROWN

Phone: 01-261 5762

MAKEUP AND COPY
 DEPARTMENT

Phone 01-261 5000
ADVERTISEMENT OFFICES
Kings Reach Tower,
Stamford Street
London SE1 9LS

Projects...Theory ...

and Popular Features ...

In terms of projects to build it is difficult, if not well nigh impossible, to please all our readers all of the time. But we've had an especially hard try this month. Those of you who ride a motorcycle, play in a pop group, or indulge in indoor photography will certainly be happy. If you happen to do all three, you ought to be deliriously happy. And quite busy for the next couple of weeks or so, we guess.

Those "missed out" on this occasion still have the Ultrasonic Remote Control System to think about. As mentioned here last month, the possibilities for its use are endless. So we shall be pleased to hear from in. dividuals who come up with particularly striking applications for this equipment. Send us a detailed descrip. lion. The most interesting original ideas will be published, with due reward to their creators of course.

In this month's issue will be found the Index for Volume 6. This single leaf can be cut out, leaving the rest of the magazine intact, and then trimmed down to the original page size prior either to fitting into the binder holding issues dated January to August 1977, or filing with loose copies belonging to that volume.

It is no secret that a certain hiatus has been caused by the timing of the change in our format, introduced with the September issue. Ideally, this should have taken effect from the January issue, which normally starts a new volume. We again apologise to
readers, many of whom have raised this matter with us. Printing and publishing exigences don't always wait for the new year, unfortunately.

One other relevant point. Readers can be reassured that the new binders made to suit the enlarged format of Everyday Electronics will accommodate all 16 issues that will make up this present Volume (No. 7). Thereafter, that is from January 1979, things will return to normal.

Still dealing with domestic affairs, we have another apology and explanaton to make to our readers. This concerns lateness of publication of recent issues, including this one. Relocation of our offices is the chief cause of this failure to meet the scheduled dates. However all these problems should be resolved when the current moves are completed and we are installed at our new address, hopefully before this partitular issue goes to press.

STOP PRESS

Power cuts are with us alas, once more. As a service to readers we are reprinting in a slightly abridged form the Emergency Lighting Unit first published in our February 1974 issue. It seems this design will, regrettably, be in much demand again.

Our January issue will be published on Friday, December 16. See page 175 for details.

Readers' Enquiries

We cannot undertake to answer readers' letters requesting modifications,
designs or information on commercial equipment or subjects not published by us. All letters requiring a personal reply should be accompanied by a stamped self-addressed envelope.
Telephone enquiries should be limited to those requiring only a brief reply. We cannot undertake to engage in discussions on the telephone, technical or otherwise.

Component Supplies

Readers should note that we do not supply electronic components for building the projects featured in EVERYDAY ELECTRONICS, but these requirements can be met by our advertisers. or mortise.

CONSTRUCTIONAL PROJECTS

AUTOMATIC PHASE BOX A musical effect unit for guitars and organs by E. M. Lyndsell 154
HAZARD WARNING SYSTEM For use in breakdowns and emergencies by T. I. R. de Vaux-Balbirnie 160
EMERGENCY LIGHTING Provides electric lighting during power cuts by M. Hughes 170
ULTRASONIC REMOTE CONTROL SYSTEM Part 2: The Receiver by R. A. Penfold 176
PHOTOFLASH SLAVE UNIT Enables the use of a remote second flashgun by R. A. Penfold 181
GENERAL FEATURES
EDITORIAL 152
FOR YOUR ENTERTAINMENT Linear motors, Teletext paging system by Adrian Hope 159
TEACH-IN 78 Part 3. Resistance, capacitance and module construction by George Hylton 164
BRIGHT IDEAS Readers' hints and tips 172
WHAT DO YOU KNOW? Transformers 172
SQUARE ONE Resistor and capacitor tolerance 173
SHOP TALK Component buying for constructional projects by Brian Terrell 174
DOWN TO EARTH (Beat frequency oscillator) by George Hylton 180
please take note Physics Is Fun, V.H.F. Portable Radio 180
PROFESSOR ERNEST EVERSURE The Extraordinary Experiments of. by Anthony J. Bassett 184
INDEX FOR VOLUME 6 185

Back Number Service and Binders
Back issues of EVERYDAY ELECTRONICS (June 1977 onwards) are available worldwide at a cost of 60 p per copy inclusive of postage and packing. Orders and remittance should be sent to: Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF.
Binders for Volumes 1 to 6 (state which) are available from the above address for $£ 2 \cdot 10$ inclusive of postage and packing.

[^0]

Nowadays musical effects units form an essential part of the infantry of a "pop group" or "band". It is not uncommon to find several effects used during a performance, or even during a single number.
The number of different effects available, to the author's knowledge is over twenty but from this list the most popular ones are: Fuzz, Waa-Waa, Tremolo, Treble Boost, Reverberation and Echo. Designs for some of these units have appeared in past issues of Everyday Electronics to meet public demand. A relative newcomer to this family of effects is the Phasing Unit, known generally as a "Phaser" and by all accounts is very popular
A typical cost of a commercial phaser is about $£ 30$ with some costing much more. This was thought to be too high a price for the
author and prompted him to design and build his own ...for less than half price! Initially stripboard was used but demanded a larger housing than was required to be compatible with similar commercial units. To meet this requirement a printed circuit board was called for

Although a p.c.b. takes a fair amount of time and effort to produce, it is usually worth it. There are no link wires to make (or forget) and no breaks to be made on the underside as with stripboarc for example. It is simply a matter of inserting components in the correct holes according to the diagrams and soldering the component leads to the copper tracks on the underside of the board. Besides this the construction has a professional appearance compared to the usual construction methods.

PRINTED CIRCUIT BOARD

The major part of the construction of this project will be in the preparation of the printed circuit board. A full-size drawing of the underside of the board showing the copper pattern to be etched is shown in Fig. 1. The black areas represent the areas of copper to remain.

Several methods of p.c.b. production are available to the amateur constructor and many p.c.b. manufacturing kits are on the market. Some include rubdown transfers and the use of these is recommended. The "pads" are intended to be rubbed down directly onto the copper side of the board and form the etchant resist. Interconnections can be made with rub-down tracks or more easily with an etchant resist from a Dalo pen.

One way of locating the exact positions of the pads is to place the printed circuit board, copper side up, immediately beneath the copper pattern of Fig. 1 and then with a needle or similar pointed object, mark through the page to prick the copper at the centre of each pad position. Next rubdown the transfers directly over this mark and then connect the pads according to Fig. 1 using the Dalo pen.
An alternative to this method is to use a board that has been treated with a photo-resist but this calls for an ultra-violet light source. Here a piece of tracing paper should be secured over Fig. 1 and the pattern traced through using Indian ink and the rub-on pads. If you have photographic equipment, you may be able to produce this pattern on film.
The film or tracing is then placed on the resist side of the board and a small sheet of glass placed on top of this to hold the two closely together. This lamination should then be exposed to ultra-violet light for about five minutes. The light source should be shielded from the eyes.

The next stage is to develop. The chemical for this is normally supplied with the photo-resist treated board in the form of pellets of sodium hydroxide. This must be dissolved in water to produce a solution. Mix details should accompany the pellets. On placing the exposed board in this solution, the areas of resist that have been exposed to the light will dissolve. After a short time remove the board from the solution using a pair of tweezers and thorougly wash under running water. Check that all the areas to be etched away are exposed (bright copper). If not replace in the developer until this state is reached.

ETCHING

You have now reached the stage where the board is ready for etching. Ferric chloride solution is the compound to use for this. It is sold as a solid and needs to be mixed with water to form a solution. A concentration of $50 \mathrm{gm} / \mathrm{litre}$ is suitable.
Ferric chloride is a very corrosive substance and contact with the skin or clothing should be avoided. It is advised that rubber gloves be worn. A suitable tray for etching in is the plastic variety used by photographers for developing. Metal trays should be avoided, especially aluminium, as the latter reacts energetically with ferric chloride.

Make the solution in the tray using warm water and then place the board face down in the tray. Agitate the contents from time to time and after about 20 to 30 minutes remove the board from the tray using your tweezers to see how the reaction has progressed.

When all the unwanted copper has disappeared, thoroughly wash the board under running water and then using a Brillo pad or other fine abrasive, clean off the remaining resist. It only remains now to drill the component lead holes. A 1 mm drill will suit most components but slightly larger holes must be made for the preset, VR2.

ASSEMBLY

The layout of the components on the topside of the printed circuit board is shown in Fig. 2. Begin by inserting the resistors and capacitors followed by the integrated circuits. Finally insert and solder the two f.e.t.s. It is a good idea to

unplug the soldering iron when soldering in these devices as they can easily be damaged by leakage currents from the iron. Also use a heatshunt on the leads of these transistors to prevent thermal damage.

Connect suitable lengths of flying leads to reach the other components when fitted to the case.

The case used was an aluminium diecast box with internal dimensions of $111 \times 60 \times 31 \mathrm{~mm}$. This was found to be the smallest size that would accommodate all the components including the battery. Drill the case according to Fig. 3 and then wire up between the components and component board as shown. Note the wire connected from SK2 to the case of VR1. This was found necessary to eliminate clicking sounds originating in the oscillator.

It was not found necessary to use screened cable anywhere as the leads are very short. If a larger case is used resulting in longer leads, it may be necessary to use screened cable between SK1/board, SK2/board and S1 to SK1 and SK2.

It is essential to place a piece of cardboard between the component board and the case to prevent shorting against the case. No fixing nuts and bolts were found necessary as the board was designed to fit snugly against the case sides. A piece of foam could be placed above the component board so that it is held in place when the lid is attached.

SETTING UP

The unit should be connected between the instrument and the amplifier. Input is by way of a screened lead (usual) terminated in a standard jack plug and enters at SK1. Inserting this plug also switches on the unit. Output is taken from SK2.
With the unit connected via a screened lead to the amplifier, plug in the instrument lead but do not have it connected to the instrument. Set VR1 to about half way. You should hear a sweeping sound in the loudspeaker. Touching the end of the input lead will produce a phased hum. Adjust VR2 until the up and down sweeping effect

Photograph of the completed prototype unit with the lid removed showing positions of components and inter-wiring.

RUTOM PHESE BOK

Fig. 2 (below). Shows the positioning of the components on the topside of the printed circuit board.

Fig. 1. The underside view of the printed circuit board. The black regions show the areas of copper to remain after etching. Shown full size.

CIRCUIT DESCRIPTION

The complete circuit diagram of the Automatic Phase Unit is shown in Fig. 5. Input is at SK1 via d.c. blocking capacitor C1 to the buffer amplifier composed of ICI and associated components. This has an input impedance of 150 kilohms which makes it suitable for most electric guitars and organs.

The buffer amplifier consists of a differential operational amplifier type 741 operated in a non-inverting mode and having a gain set at two. The output of ICI is directly coupled to the first of two identical phase delay networks, IC2 and associated components. The action of this circuitry will be better understood by re-drawing this particular section with a slight modification as shown in Fig. 4, and with the aid of some mathematics.

Fig. 4. A simplified phase delay sogment.
Consider an input signal $V_{\text {in }}$ at the junction of $\mathrm{C} 3 / R_{\mathrm{r}}$. The signal reaching the non-inverting input (pin 3) is derived by the potential divide effect of $C 3$ and $R_{\text {t }}$ and is given by:

$$
V_{3}=\frac{R_{\mathrm{f}} V_{\mathrm{in}}}{R_{\mathrm{f}}+X_{\mathrm{c}}}
$$

where X_{r} is the impedance of $C 3$ and equal to $\frac{1}{j \omega C 3}$ where $\omega=2=f$ Therefore

$$
V_{3}=V_{\mathrm{ln}}\left(\frac{R_{\mathrm{f}}}{R_{\mathrm{f}}+1} \frac{j \omega \mathrm{C} 3}{}\right)
$$

Resistors

Capacltors

3	$0.047 \mu \mathrm{~F}$ type C280
4	$0.01 \mu \mathrm{~F}$ type C280
5	$0.047 \mu \mathrm{~F}$ type C280
C6	$0.01 \mu \mathrm{~F}$ type C280
	$10 \mu \mathrm{~F} 10 \mathrm{~V}$ tantalum

Semiconductors

```
IC1, 2, 3,4 differential operational amplifier type 7418 pin d.i.l. (4 off)
TR1,2 2N3819 n-channel f.e.t. (2.off)
```

Miscellaneous
SKI Jack socket type SR 25
SK2 Standard jack socket (or as SK1)
S1 Single-pole double-throw successional action push switch
B1 9V type PP3
Printed circuit board size $60 \times 50 \mathrm{~mm}$; battery clip; aluminium diecast box type 339 (internal dimensions $111 \times 60 \times 31 \mathrm{~mm}$); knob; connecting wire; etching materials and equipment; etchant resist pen and/or transfers; solder.

$$
=\left(\frac{j \omega \mathrm{C} 3 R_{\mathrm{f}}}{1+j \omega \mathrm{C} R_{\mathrm{f}}}\right) V_{\mathrm{in}}
$$

Now IC2 is operated in the differential mode so the output is equal to the difference in voltage at the two inputs. That is,

$$
V_{\text {out }}=V_{\mathrm{in}}\left(1-\frac{j \omega \mathrm{C} 3 R_{\mathrm{f}}}{1+j \omega \mathrm{C} 3 R_{\mathrm{t}}}\right)
$$

which can be re-written after some mathematical manipulation as

$$
V_{\text {out }}=\frac{V_{\text {in }}\left(1-j \omega \mathrm{C} 3 R_{\mathrm{f}}\right)}{1+\left(\omega \mathrm{C} 3 R_{\mathrm{f}}\right)^{2}}
$$

Students familiar with complex numbers will notice that this last equation is of the form

$$
V_{\text {out }}=a+j b
$$

where a represents the magnitude and b information regarding the phase (in fact this is the tangent of the phase lead or lag).

In our equation we can see that this is a lag (because of the - ve sign) on the original signal by an amcunt given by

$$
\tan \theta=\frac{\omega C 3 R_{\mathrm{f}}}{1+\left(\omega C 3 R_{\mathrm{r}}\right)^{2}}
$$

which can be simplified to yield

$$
\tan \theta / 2=\frac{1}{\omega C 3 R_{f}}=\frac{1}{2 \pi \mathrm{C} 3 R_{\mathrm{f}}}
$$

The values of $C 3$ and R_{1} are chosen such that for a frequency within the required range, there is a phase lag of 90 degrees. Substituting this value in the above equation gives

$$
\begin{gathered}
1=2 \pi f \mathrm{C} 3 R_{\mathrm{f}} \\
\text { or } f=\frac{1}{2 \pi \mathrm{C} 3 R_{\mathrm{f}}}
\end{gathered}
$$

Comparing Figs. 4 and $5, R_{f}$ is seen to be equivalent to the resistance obtained between the source and drain terminals of the field effect transistor TR1. The value of this resistance is dependent on the voltage appearing on the gate of TR1 with respect to that on the source. This voltage must be negative. Therefore the frequency that receives the required phase lag can be controlled by a voltage on the gate of TR1.

It can be seen that the network around IC2 is identical to that around IC3. It follows therefore that a frequency can be selected that differs in phase from the original by an amount equal to 180 degrees i.e. in anti-phase. When this is mixed with the original via R19 and R6, cancellation results.

Fig. 5. The complete circuit diagram of the Automatic Phase Box.

Other frequencies are unaffected and are available at the output.

Now by varying the voltage on the gates of TR1 and TR2, the frequency at which cancellation occurs also varies. This can be viewed as a "notch", sweeping up and down the audio spectrum. It is this action that produces the "phased" effect.

Field effect transistors TR1 and TR2 are used as voltage controlled resistors, and provided the drain/ source a.c. voltage level is low, they have a near linear voltage/resistance relationship. One disadvantage is that they will produce harmonic distortion. This can be virtually eliminated by feeding the gate with half the a.c. signal appearing on the drain terminal. This is accomplished by the network composed of R11, R12 and C4 (R17, R18 and C6 in the case of TR2).

SWEEP OSCILLATOR

Integrated circuit ICA is wired as an astable multivibrator producing a square wave at its output as the capacitor charges and dis-
charges between threshold levels set by R9, and causes it to switch. Components VR1 and R8 control the rate of charge and discharge and therefore the frequency of this oscillator.

The square wave is unsuitable for feeding to the gates since a gradual changing voltage level is required. A suitable waveform, approximately triangular is available across the capacitor (charge and discharge curves). A peak-topeak control voltage of about $1 \cdot 5$ to 2 volts is required to vary the resistance of each f.e.t. to cover the selected phasing range and is obtained by the potential divide effect of R13 and R14, the junction of these being fed to the gates of TR1 and TR2. This voltage needs to be negative with respect to the voltage on the source terminals, the latter being finely adjustable by means of preset VR2.
The unit is switched on by inserting the input jack plug into SK1. A successional action footswitch is incorporated so that the unit can be by-passed when required.
is symmetrical. If there is not enough control to reach this condition, reduce or increase slightly the value of R21 as required. The next preferred value either side of that recommended may need to be installed, i.e. $5 \cdot 6$ or $3 \cdot 9$ kilohm. Turning VR1 anticlockwise will prolong the sweep time whereas clockwise rotation will produce a fast rate of phase.

If all is well the unit can be dismantled for painting. It is not necessary to disconnect any wires because with a little inanipulation the whole assembly can be removed in one piece.

The prototype was rubbed down with "wet and dry" after any sharp edges and burrs were removed and then sprayed with a red oxide primer. When dry the case/lid was given a few coats of satin finish spray-on paint (sold in garages etc for use on cars) and later labelled with Letraset to produce a professional appearance.

In use the unit will prohably be sited on the floor, and to prevent sliding it is advisable to attach rubber feet to the base.

By ADRIAN HOPE

ANY ELECTRONICS enthusiast harbouring a secret desire to go and see the new James Bond film, The Spy Who Loved Me, and wanting an excuse, can always say they went to see Professor Eric Laithwaite's linear motor. During the film, as one of the obligatory death-dealing gadgets, a tray of tea hovers in the air and shoots along a track to decapitate a dummy. It isn't trick photography: it's the real thing, borrowed from Laithwaite's laboratory for the film and with Laithwaite's assistant on screen.
When the history of linear motors is finally told, it will make a fascinating story. Professor Laithwaite is himself writing a book about it all at the present time, but for political reasons it's highly unlikely that everything he wants to say will get into print.

Linear Motors

Briefly, the basic idea of a linear motor, effectively a rotary motor strung out along a track, is not new, but it was Laithwaite who made it a practicable possibility for vehicle transport. In the late Sixties the British company Tracked Hovercraft Limited were working on a transport system which relied on an air-cushioned hovercraft guided along a massive concrete track. Laithwaite became consultant to the company in 1967, and worked on a linear motor to provide a drive for the hovering craft. Eventually, and this is where much unreported politics comes in. the project was scrapped.

For a while a length of track and a prototype vehicle sat forlorn in a field at Cranfield; but I understand that bulldozers have now moved in. It was during Laithwaite's involvement with the company and shortly before the project was scrapped, that Laithwaite made the crucial discovery that could have (and perhaps still can) changed the face of transport. It had also been known for some time that magnetic fields could be used to levitate metal objects in the manner of an air cushion. But such levitation was always unstable.

Magnetic Rivers

By juggling with the direction of the current and coils, Professors Laithwaite and Eastham produced the so-called "magnetic river", which is a linear motor that at the same time lifts, guides and propels a metal object, all through a single set of coils. And it can do so with an efficiency of up to 95 per cent. At a stroke, the use of an air cushion becomes unnecessary, and the way is open for fast, silent and creap monorail transport.

Currently other countries are working on other systems, and although magnetic rivers are being used in industry for all manner of guidance and conveyor systems there is no sign yet of a magretic river transport system being developed. On paper it all sounds rather fanciful; but if you see the Bond film, watch out for the magnetic river in brief action and judge for yourself.

Teletext

Of course it's all very exciting that the commercial TV companies have now started transmitting a full-time, almost continually updated, Oracle service. But something said at the launching press conference was actually far more dramatic. Only a few technical journalists present leapt at it, and the point wasn't widely reported in the national press. While working on Oracle at the Winchester Laboratories, the IBA engineers devised a local paging system. They introduced code words into the spare digital space present in the Oracle system (only about half the possible 800 pages are being transmitted) and devised bleep-style paging receivers to respond to individual code words. Then it dawned on the engineers that there was more than enough digital space in the system to provide an individual code woro for every single member of the British population

Paging System

From there was born the idea of a nation-wide paging system. It would work
like this. Every member of the population would be assigned a digital code word, and if they wished to subscribe to the paging system would buy or hire a pocket receiver tuned, or tunable, to their local ITV frequency. This receiver would not have a screen or loudspeaker but simple circuitry to produce an audible bleep when triggered by reception of the users digital code word buried in the TV wave-form. The bleeped individual would then call a central telephone number, to receive whatever message was there for him. There is of course, no guarantee that the Home Office would allow the IBA to run such a scheme, and the IBA has not yet thought the idea fully through. But they have no doubt that it would be feasible.
The main technical problem would be field strength and receiver sensitivity. Here a good guide of practicality can be had from what the police are currently doing with their walkie-talkies. Police on the beat are equipped with u.h.f. transceivers, which work on u.h.f. bands a little below those used for TV. The short wavelength enables them to have conveniently short aerials.
The police walkie-talkies pick up signals transmitted from very low-powered trans. mitters (around 10 watts a time) on the roof of the local police stations, and there is no doubt that the system works well. Indeed, if it didn't, the police wouldn't use it. Whereas the police system is analogue speech, the Telefext paging system is digital, and in fringe areas it can be more difficult to receive than conventional TV pictures. This suggests that digital reception is rather more tricky than analogue. But provided a digital bleep call were repeated many times, it would stand a good chance of triggering the intended receiver as it moved around with the wearer through areas of good and bad field strength.

All this brings us back to James Bond. In the film, Bond receives a teletype message through a wristwatch receiver. The audience laughs and thinks, "How ridiculousl" In the light of the IBA idea for nation-wide paging using existing u.h.f. TV transmitters, it doesn't seem quite such a crazy idea after all.

"I must ask you nol to touch those touchplates, sir."

INTRODUCTION

Ahazard warning system is a very valuable addition to any vehicle, so car drivers and motorcyclists will benefit from this design. Newer vehicles are fitted with such a device, but the vast majority on the roads are not. This system is suitable for cars and motorcycles operating on 12 volts. It is not however suitable for 6 V vehicles.
For the benefit of those readers who are not familiar with such a system a short description is given.
When the hazard switch is operated all four existing direction indicator lamps flash together even with the ignition switch off. It must only be used for real emergencies. For example, when the vehicle has broken down in such a position as to present a real and immediate danger to traffic. In this respect, it is particularly valuable at night.

DESIGN POINTS

There have been several published designs for this purpose so it was decided to take a fresh look and to bear the following points in mind.

It had to be inexpensive to build -electronic circuits are all very well and may be fun to build but the whole exercise is not worthwhile if a commercial non-electronic unit is cheaper. It had to be reliable and use no moving parts apart from the switch and existing flasher unit.

Although originally designed for negative-earth vehicles, it was thought essential to allow its use in positive-earth vehicles with only minor changes.

In some designs a complicated switch is required. It was therefore decided to look into the price of 3 and 4 pole switches with the correct current-carrying capacity. The cost was prohibitive being very much greater than the more usual double-pole-double-throw type. It was also found that there was little choice in the appearance. For the present design, it was therefore considered essential to use a d.p.d.t. switch. This simpler type of switch has one disadvantage which the operator will have to remember each time he uses the unit. This point will be amplified later-sufficient to say at the moment the inconvenience is very small as the project is for occasional use only.

ESTIMATED COST OF COMPONENTS

£3.00

Coming out of all this is a circuit so simple that it makes an ideal beginners project.

As there is a drop of approximately one volt across the circuit, the nearside set of lamps will operate slightly more dimly than the offside pair. The effect is small and of little significance. It could even be argued that the life of the affected lamps will be increased on account of the under-running.

EXISTING UNITS

Normal flasher units fitted to vehicles operate with a load of 42 watts i.e. two standard 21 watt

direction indicator bulbs, as shown in Fig. 1. Being current-sensitive, the rate of flashing will be affected by relatively small changes in load. It would, therefore, be quite out of the question to operate all four bulbs by simply connecting them directly to the standard unit.
This project retains the existing flasher unit to operate the offside pair of bulbs in the normal manner but a connection from it actuates a transistorised "repeater" circuit. Two transistors do the actual job of switching the current to the nearside bulbs, the connection simply provides a small triggering current so the extra load imposed on the flasher unit is negligible. All four bulbs will therefore flash in unison at the correct rate between 60 and 120 flashes per minute provided the existing unit is in good order.

THE SWITCH

The hazard switch $S 1$ fulfils the functions of completing the circuit to the repeater device and enabling the system to be used with the ignition switch off. When the hazard system is on, the existing warning lamp will operate and the flasher unit will tick in the familiar way. It is considered essential, however, to fit an additional warning lamp, preferably of a bright type in a prominent position. This will ensure that the driver will not drive away until the system has been cancelled. This lamp is not required for the motorcyclist.
It will be seen that the switch, if needed to interrupt the current to four bulbs would need a rating of 7 amps (four bulbs at 21 watts $=$ 84 watts. $\mathrm{I}=\mathrm{W} \div \mathrm{V}=84 \div 12=7$ amps.) A rather lower rating, say 5 amps, is quite suitable and saves on cost.

When choosing a switch beware of figures given for a.c. operation, these are generally higher than the corresponding figure for d.c. appli-

Fig. 1. The circuit diagram of a typical indicator

cations and are therefore misleading. If the figure is given for 30 volts d.c. then it may be uprated a little for 12 volts use.

Switches rated at 5 amps have been used in both positive and negative-earth prototypes with complete satisfaction. Do not be tempted to use a miniature slide switch, this would give little service.

COMPONENT PANEL

The electronics of the unit are constructed on a small three-way group board, the layout for each version is shown in Figs. 2 and 3. If the back of the board is not insulated a piece of insulating material must be fixed between it and the tin. This is very important otherwise short-circuits which may
occur could be dangerous. Wires leading from the circuit to the tags of TR2 must be particularly sound and should be kept clear of one another.

The circuit itself must be built in a small metal box. This is important as it is used as a heat sink carrying excess heat away from TR2. The method of fixing TR2 to the tin is shown in Fig. 4. It is important to bolt TR2 tightly to ensure good mechanical stability and to ensure good heat transfer.

When the unit has been built, the lid may be attached in a convenient position on the car with self tapping screws. The rest of the tin is then simply pressed into place. External connections to the circuit are made by way of the terminal block, attached on the outside of the tin .

Fig. 5 (above). Complete connectlon details of the unit to the existing vehicle wiring and additional wiring to be made. The existing wire between flasher (B) and the ignition switch needs to be removed as indicated.
Connection X should be made to the fuse side of the ignition switch as explained in the text. All connections have been shown as soldered joints but will be by the usual push-on types fitted to most vehicles.

COMPONENTS

Resistors
R1 470Ω carbon $\ddagger W \pm 10 \%$
Semiconductors
BFY50 silicon non (for
TR1 $\{$ negative earth vehicle BC461 silicon pnp (for (positive earth vehicle)
TR2 TIP3055 silicon npn

Miscellaneous

S1 d.p.d.t. toggle switch (see text)
LP1 12V 3W lamp.
Small metal box about $90 \mathrm{~mm} \times$ $80 \mathrm{~mm} \times 25 \mathrm{~mm}$ (a tobacco tin will suffice); insulating kit for TR2; three way group board; bulb holder for LP1; three way 10 amp terminal block; rubber grommet; connecting wire; pushon connections as required.

[^1]

Fig. 6. The complete circult diagram of the Hazard Warning System for both negative and positive earthing systems.

CIRCUIT DESCRIPTION

NEGATIVE EARTH SYSTEM

Consider the circuit shown in Fig. 6 the two transistors, TR1 and TR2 are connected as a Darlington pair. This type of transistor configuration provides a large current gain. This gain is approximately equal to the product of both transistor's $H_{\text {te }}$ value times the base current of TR1. Expressed as an equation;
gain $=$
$h_{\text {FE }} 1$ (TR1) $\times h_{\text {FE }} 2(T R 2) \times I_{\mathrm{b}} 1$ (TR1)
A small amount of current flowing into the base of TRl would result in a large amount of current flowing through the emitter of TR2. Resistor R1 limits this amount to a safe value.

When the pulse from the P out-

FITTING THE UNIT

Proceed carefully, following the diagram shown in Fig. 5. It should be noted that there is a small difference according to whether the flasher unit fitted to the vehicle is of the two or three terminal type. There are probably more three terminal types in use and on these the P connection is made to the centre terminal which feeds the
put on the flasher unit goes high, the Darlington pair is turned on. TR2 in effect is acting as a switch. When the pulse goes low the transistors are turned off, no current then can flow, the lights therefore turn off.

A regeneration effect then takes place with the offside lights turned on and off in unison. The offside lights by the vehicles own flasher unit, the nearside lights by the transistors.

POSITIVE EARTH SYSTEM

The positive earth system as shown in Fig. 6 operates in a similar manner, except TRI is a pnp transitor, this being turned on by a negative pulse, the output is then taken from TR1 collector.
existing indicator warning lamp. This is often labelled P on the unit itself but may be identified in case of doubt by removing the wires one by one with one set of indicators working in the usual way. When the indicator warning lamp fails to work but everything else does, then the correct terminal has been located. A piggy-back connector will be found particularly useful to make the P connection.

The B connection will, again, probably be so marked but if necessary it can be found by the following method. A small 12 volt test bulb is made up and one side is earthed. When the other end is touched on the terminals of the flasher unit with the ignition switched on the bulb will glow continuously. This connection goes straight to the ignition switch.

The connection remaining on the flasher unit is generally labelled L and it will not be used unless the unit is of the two terminal pattern. In this case the P connecttion from the component board will be taken to it.

The H connection is made to a suitable connector which feeds the nearside lights. A block of connectors may usually be found near the steering column and these will have to be removed one by one to find the required point. A suitable connector will need to be used to enable the connection to be made without spoiling the existing one.

Another connection worthy of mention is that called X in the circuit diagram. This needs to be taken to a suitable fuse which supplies current with the ignition switch off. Be sure to make the connection to the correct side of the fuse so that it is not bypassed. The test bulb can be used for this checking that it goes out when the fuse is removed. See that the fuse rating is sufficient to meet the needs of the present circuit (7 amps) plus whatever current is needed for existing equipment connected to it.

Stranded wire of 7 amp capacity should be used for all external wiring and the runs should be kept as short as practicable. All connections must be made with the correct type of connector. These should be of the insulated type. Do not break wires or make twisted taped connections. These will not last long. As mentioned previously piggy-back connectors are useful where it is necessary to double up on spade connections.

IN USE

In use the hazard switch is operated, and the existing traffic indicator is put to the offside position. As was mentioned earlier this is inconvenient but necessary.

One day this design may save your life or that of others. In terms of the very modest outlay it is very wortizwhile.

We shall take the opportunity this month to expand on the subject of resistance and capacitance. Later, we shall build our pot and voltage INDICATOR, both of which will be used widely in our experiments.

RESISTANCE

Early experimenters thought of an electric current as the flow of an invisible fluid, which somehow managed to run through solid conductors as water runs through pipes. The American Benjamin Franklin originated this idea. It made people ask questions.

How far, they wondered, did the resemblance to water in pipes go? In the case of water, the longer the pipe the harder it is for the water to flow. Also the narrower the bore of the pipe the harder it is to flow. To get the same amount of water through a 10 mm bore pipe as, say a 15 mm bore the pressure has to be increased.

In an electrical circuit, the voltage of the battery seemed to be equivalent to the pressure in a water system. Was it also true that thin wires, like narrow pipes, resisted the flow of water?

To be able to do so it was necessary to get away from cumbersome ideas about length and thickness and so on. In place of all these it is possible to substitute one simple quantity which tells you how much the flow of current in a circuit is impeded, without going into details about the shape and size of the conductors. This quantity is resistance.

A long wire offers more resistance to the passage of current than a short one of the same material. A thin wire has more resistance than a thick one. To push the same amount of current through a high

Fig. 3.1. Typical graphs drawn to iliustrate the relationships between voltage (V), current (I), and resistance (R).

TABLE 3.1. RESISTOR COLOUR CODE

Colour	First band 1st figure	Second band 2nd figure	Third band Multiplier	Fourth band Tolerance
Black	0	0	$\times 1$	-
Brown	1	1	$\times 10$	1%
Red	2	2	$\times 100$	2%
Orange	3	3	$\times 1000$	-
Yellow	4	4	$\times 10,000$	-
Green	5	5	$\times 100,000$	-
Blue	6	6	$\times 1,000,000$	-
Violet	7	7	$\times 10,000,000$	-
Grey	8	8	$\times 100,000,000$	-
White	9	9	$\times 1,000,000,000$	-
Gold	-	-	$\div 10$	5%
Silver	-	-	$\div 100$	10%

Examples; Red-violet-orange-brown $=27 \mathrm{k} \Omega, 1 \%$
Brown-black-gold-red $=1 \Omega, 2 \%$
resistance as through a low one the voltage must be increased, and more energy expended.

The way in which the three quantities, voltage, current and resistance, are related to one another can be illustrated by drawing graphs, Fig. 3.1.

These show how much current flows when a certain voltage is applied to a certain resistance. Taking the line marked 1 ohm, you can see that 8 volts applied to 1 ohm makes 8 amperes flow. But 8 V to 2 ohms makes only 4 amperes flow. Doubling the resistance halves the current. Reducing the voltage reduces the current. So 4 volts to 1 ohm drives only 4 amps. Reducing the resistance increases the current: 4 volts to 0.5 ohm drives 8 amps .

UNITS

By electronics standards, an ampere is a fairly large amount of current. In most circuits the currents are in thousandths of amperes (milliamperes, mA) or millionths (microamperes, $\mu \mathrm{A}$). Similarly you may find yourself dealing with millivolts (mV) and microvolts ($\mu \mathrm{V}$). The symbol, μ, meaning micro or one millionth is really a small " m " in the Greek alphabet (called MU and pronounced like the word MEW).

As for resistance, in electronics circuits you seldom have to deal with much less than 1 ohm, but frequently with thousands of ohms and millions of ohms. The Greek capital letter omega Ω is used for ohms, the prefix kilo, small k, for thousands and mega, capital M, for millions.

The words kilo-ohms and mega-ohms are a bit hard to say, so we slide the two halves together to make kilohms and megohms. There is nothing specially remarkable about very large numbers of ohms. This is reflected in the price of resistors. A $1 \mathrm{M} \Omega$ resistor costs no more than a similar 1Ω resistor.

TOLERANCE

In electronics, as in other forms of engineering, precision costs money. For this reason resistors with precise values are expensive. Fortunately, in most circuits, great precision is not needed. If a circuit specifies a resistance of 100 ohms , the chances are that anything from say 90 ohms to 110 ohms will do.

We need not pay good money for a resistor guaranteed to be very close to 100 ohms. This idea of a permissible deviation from the nominal value is called the tolerance, which means that a nominal 100 ohm resistor could be as low as 95 ohms or as high as 105 ohms. For resistances above 1 megohm, 5 per cent tolerance may be more expensive so we shall put up with 10 per cent types.

PREFERRED VALUES

One of the first things a beginner notices about electronic circuit diagrams is that they are full of odd-looking resistances like 27 kilohms or 82 ohms or $5 \cdot 6$ megohms. These odd-looking numbers are really quite sensible. Most of the resistors in common use belong to what is called the El2 series. This series contains these basic numbers:
$10,12,15,18,22,27,33,39,47,56,68,82$.
Each number in this series is about 20 per cent greater than the previous one. So you can always find, in the E12 series, a resistance within about 10 per cent of the value needed by. your design calculations. For higher or lower resistances you just multiply or divide the basic numbers by $10,100,1000$ and so on.

The value of resistance is usually indicated by printing a colour code on the body of the resistor. Each figure in the series 0 to 9 is represented by a colour.

The tolerance is also indicated, by a fourth band. Table 3.1 sets out the code.

CAPACITORS

A capacitor is a storage device, what it stores is an electrical charge. The idea of a stored charge is familiar but in a different context. When you rub a plastic ball-pen on your sleeve and pick up tiny bits of paper with it, an electric charge is at work.

You know that the plastic remains charged for a certain time after you stop rubbing it, but the charge in time slowly leaks away.

A capacitor is deliberately made to be efficient at storing charge. Most capacitors are designed to store a lot of charge in a small space. As the ball-pen
example shows, charge can be stored by an insulator. In a capacitor, the insulator often takes the form of a thin sheet of insulating material, such as paper or plastic film. The electrical connections are made by sandwiching the insulating sheet between sheets of metal, called plates. A particularly neat construction uses an insulating sheet which is coated with a very thin film of metal on each side to form the plates. Fig. 3.2.
and this enables capacitances of up to a few tens of microfarads to be packed into a reasonably small space. However the amount of voltage the dielectric will withstand is reduced as the film is made thinner. All capacitors have a maximum working voltage which must not be exceeded in case the film is punctured.
An electrolytic capacitor achieves high capacitance in small volume by exploiting various constructional

Fig. 3.2. A typical form of construction in capacitors. The symbol shown to the right, reflects the "sandwich" construction of a capacitor.

A long strip of this can be rolled up to form a compact capacitor. Two connections are provided-one to each plate. A special manufacturing process enables plastic film to be metallised without melting the plastic. The sandwich construction of a capacitor is reflected in the symbol for capacitance-two lines representing the metal with a gap in between for the insulator. The insulator is in this case called a dielectric, which means something which allows an electric field to pass through. It is clear then, that an electric current cannot pass through, since the insulator stops it.
If a battery is now connected to a capacitor, positive to one plate and negative to the other, the capacitor "charges up" to the battery voltage. There is a brief flow of current, which stops when the dielectric has absorbed as much charge as it can. If the battery is removed, the capacitor remains charged to the battery voltage.

A charged capacitor is something like a battery in that, if connected across a resistor, the stored charge now flows out again as a current. The big difference is that while a battery can go on delivering a constant current to a resistor until it runs down a capacitor cannot. It starts to run down at once, that is the voltage falls as soon as any current is drawn out.

CAPACITANCE

The electrical size of a capacitor, called its capacitance, depends on the quantity of charge it can store when charged to one volt. The amount of capacitance which stores enough charge to enable one ampere to flow out for one second is called a farad.

A farad is a very large capacitance. Practical capacitors have capacitances which are measured in microfarads ($\mu \mathrm{F}$-millionths of a farad); nanofarads (nF - thousand-millionths); or picofarads (pF -million-millionths).

The capacitance increases if the plates are brought closer together, for example, if the dielectric layer of the sandwich is made thinner. Plastic film can be made down to the thickness of a few micro-metres,
tricks. First, its dielectric is an extremely thin film of aluminium oxide formed on the surface of aluminium foil which gives support and also acts as one plate. Some dielectric substances store more charge than others. The oxide film is one of these, so this too helps to increase the capacitance. If aluminium foil is immersed in acid its surface become pitted with holes. This increases the surface area when the dielectric is formed, and this "etched foil" technique also increases the capacitance.

If a reverse voltage is applied the film breaks down in a few seconds and current can then flow through the capacitor.

Despite these disadvantages, its ability to pack a relatively large capacitance into a small volume makes the electrolytic capacitor one of the most frequently used types in electronics, éspecially in circuits where the signals are at d.c. or low frequencies. By using tantalum instead of aluminium better electrolytics are possible but at a higher price.

POTENTIOMETERS

The word "potentiometer" originally meant a device for measuring voltages. However, it has come to mean just any variable resistance with three terminals. The volume control in a radio receiver is a potentiometer in this sense. Technicians usually abbreviate the word to "pot".

To understand its function, take another look at your resistor chain. This has ten equal resistances and you are by now reasonably certain that when it is connected across the battery each resistance absorbs one-tenth of the voltage. Such a chain of resistances is called a voltage divider. The reason is fairly obvious. With your voltage divider you can put in 10 V and by selecting the appropriate tap take out 1 V , $2 \mathrm{~V}, 3 \mathrm{~V}$. . etc up to 9 V . The 1 V tap divides the voltage by 10 , the 2 V by 5 , the 3 V by 3.3 and so on. Evidently you would get the same voltages with any ten equal resistances. They do not have to be 1 kilohms resistances: ten 330 ohms would give the same selection of outputs.

Your resistance chain has ten resistances, and gives nine different divided voltages. If you wanted only one voltage, you could get it by using only two resistances of the appropriate value. For 3 V , for example, you could combine all the seven $1 \mathrm{k} \Omega$ resistances above point 3 into one single $7 \mathrm{k} \Omega$ resistance and the three below it into one $3 \mathrm{k} \Omega$ resistance. By using different resistances, you could divide the input voltage by any number you like. In experimental work, of course, you may want to divide by all sorts of different numbers, and you do not know, in advance, what they would be. If you want to divide 10 V by 20 to get 0.5 V you cannot do it with your resistor chain. It would be a nuisance if you had to build a different chain every time you needed a different voltage.

Fig. 3.3. Circuit symbol for a variable
resistor. The zigzag line represents
Fig. 3.3. Circuit symbol for a variable
resistor. The zigzag line represents the track, the arrow head the wiper.

When used as a-volume control the connections are made in such a way that a clockwise turning of the control shaft moves the slider towards A, increasing the volume. When used as a variable resistance, only two terminals are required. If connections are made to B and C the resistance increases when the shaft is turned clockwise.

Fig. 3.4. Constructional details for the POT module. The three wires, A, B, and C are terminated on the nails which have been pushed through the holes shown in Fig. 3.5.

To avoid this, we use a variable divider, which can be adjusted to give any division you like, within reason. This is a potentiometer, and its circuit symbol, Fig. 3.3, gives a picture of how it works. The variable "tap" (B) slides up or down the resistance. In doing so it climbs from 0 V at the bottom to the full battery voltage at the top, passing through every possible intermediate voltage on the way. So it can be set to divide by any number.

CONSTRUCTION

For our next experiments we shall use a "pot" (potentiometer) constructed in a similar style to our previous modules, only this time it is constructed in a small box. Constructional details are shown in Fig. 3.4. The top is covered with a piece of white card onto which is drawn a circular scale. Fig. 3:5. The precise value of resistance is not too important, so

Fig. 3.5. Covercard required for the POT module. This is shown full size and may be traced. The individual markings are correct. Shown alongside is a photograph of the completed module.
long at it is at least 100 kilohms. A log law is required, and since this type is easily obtainable this is the type we shall use.

Most "pots" require a mounting hole 10 mm in diameter. If your drill is too small, drill the biggest hole you can and widen it with a round file. Many pots have a small projection on their bodies to prevent accidental slipping as the shaft is turned. To prevent this getting in the way you can either drill a small hole for it to fit into, or just cut it off.
Fix the pot firmly and then attach the knob in such a way that when turned round it covers the rotation as shown.

Connect the modules as shown in Fig. 3.6. Here we can see that the LED is being driven by an amplifier. An unknown voltage is applied across the pot at points A and C, the pot is then adjusted so that the

Fig. 3.6. In this experiment we are using an amplifier, driven by a voltage from the POT to light the LED
LED just lights. The position of the pointer on the scale now depends on what the unknown voltage is. If we can mark off the scale in 1 volt steps by applying a known voltage and setting the pointer correctly for each value, then we can afterwards use the device to measure unknown voltages. With a new battery connected, your resistor chain gives you 10 volts in 1 volt steps, we can therefore use this to calibrate the scale. But don't be in a hurry. After checking out the circuit you will make up a special voltage indicator with its own pot inside, and keep this separate pot for general experiments.

First, however, let's use it to test the idea that each $1 \mathrm{k} \Omega$ of the resistor chain drops IV. Connect the pot (A and C) to 1 and 0 as in Fig. 3.7 then set the pointer so that the led just glows, not brightly. Take A from tap 1. Charge a $1000 \mu \mathrm{~F}$ module to IV then apply the charge to the pot, leaving the pointer alone.

Fig. 3.7. Using a capacitor module to test the idea that the RESISTOR CHAIN really does divide the battery voltage by ten.

The led should just glow as before. Leaving the pointer alone, charge the $1000 \mu \mathrm{~F}$ by connecting it across each $1 \mathrm{k} \Omega$ in turn. (Allow 30 seconds charging time.) You should find that the Led glows equally each time, though there may be a small variation in brightness, due to the fact that the resistors are not all exactly the same value.

Having checked that the resistor chain really divides the voltage into ten equal parts you know that it can be used to calibrate a "pot". However, there is one more improvement to be made first. This is to increase the current amplification. If it takes 10 mA to light the LED, and the current amplification is 100 , then a current of $10 \mathrm{~mA} / 100$ has to be applied to the amplifier. This current $(0 \cdot 1 \mathrm{~mA}$ or $100 \mu \mathrm{~A})$ is still large enough to upset circuit conditions. To reduce it further we amplify the current twice, by taking the output of one transistor and connecting it to the input of another. Then if each transistor amplifies by 100 the combination amplifies by 100×100 or 10,000 and the input current needed is now only $1 \mu \mathrm{~A}$.

The current could be reduced further by adding a third stage of amplification, but two are enough for our purposes.

Fig. 3.8. Using the transistor modules to prove that a much reduced current may be used to light the LED.
Connect the modules as shown in Fig. 3.8. Experiment with the por by varying the voltage on the base (b) of the NPN module. You should find that a smaller voltage is required to light the Led. Now work out how much less voltage is needed and compare this with the value in your previous experiment.

This setup with the modules is rather a messy arrangement for most practical purposes, so instead we combine all the modules into one circuit. This is shown in Fig. 3.9. This is our voltage indicator which we shall use over and over again in our experiments. After the series it will still remain a useful tool when constructing other projects.

Fig. 3.9. A more compact version of the previous figure. This is the circuit diagram of our VOLTAGE INDICATOR.

Fig. 3.10. The card vired to go inside the box, glued to the inside of the lid. Nails or pins are mounted in all positions as shown. Be careful when inserting the pins that they do not come all the way through the other side. The two nails marked X are the only two to be inserted from the outside of the box. They then form of the box. They then form
the terminals.

underside views

Fig. 3.11. The covercard required, shown full slze, to be affixed to the top. No intermediate markings have been glven, as the position of each depends on the Individual tolerances of the components used to construct the module.

VOLTAGE INDICATOR CONSTRUCTION

The voltage indicator is constructed in a small box with overall dimensions of $130 \mathrm{~mm} \times 70 \mathrm{~mm} \times 38 \mathrm{~mm}$. This can be plywood or hardboard as preferred. The top is permanently glued to the four sides, whereas the bottom is removable, this facilitates easy replacement of the internal PP3 battery.

The top card (B) is stuck onto the outside of the top, and holes made to suit the components. As the drawing is full size the hole sizes given should be correct for most components. Letter the card as shown.

Card A, goes on the inside of the top and is glued in place. When wiring the components it might be easier to temporarily remove the top.

The voltage indicator can then be calibrated in one volt steps, marking the values on the scale. A small pointer knob is used on the potentiometer for this purpose. The resistor chain provides a good source of one volt steps.

ANSWERS (To Part Two)

1. cathode end (b)
2. $3 \cdot 3 \mu \mathrm{~F} 100 \mathrm{~V}$ electrolytic (c)
3. last (a)
4. 100 (a)
5. 4 volts (a)
6. 6 (b)

QUESTIONS

1. If $V=10$ volts, $I=2 \mathrm{amps}$. Calculate the resistance.
2. When $I=2$ amps and the voltage V is 20 volts, what is the resistance?
3. A current of 5 amps flows through a circuit with a resistance of 10 ohms. What is the voltage?
4. A voltage of 12 volts is applied across a resistor of 3 ohms. What is the current flowing?
5. Calculate the current flowing through a resistor of 46 ohms, if the voltage applied is 23 volts.

Answers next month

Next month we shall introduce the subject of transistor measurements.

Automatically switches on an auxiliary

 lighting system when mains supply fails
INTRODUCTION

In these days of perpetual electricity failures it is convenient to have an auxiliary source of lighting in the home. It is mandatory that clubs and public areas have an emergency lighting circuit capable of running from a source independent from the mains.

The simple solution, in either case, is to have a circuit, or circuits, running 12 volt bulbs from an accumulator. This, however, requires that the accumulator is in a constant state of charge. This project is basically a battery charger that is used to keep the accumulator "topped up" but wired into it are two switchable output sockets for running auxiliary lighting and facility is built in for automatic change over to the emergency system, should the mains fail.

CIRCUIT

The circuit is shown in Fig. 1. A tapped input mains transformer is used that gives a nominal output of 12 V r.m.s. (17 V peak) at up to 5 A . This, is fed to a low voltage, high current bridge rectifier giving a full wave rectified output that is fed via a switchable series limiting resistor R2 and ammeter circuit to the terminals of the unit. The stand-by accumulator would be connected to these terminals.

With the series resistor in circuit charge current is limited to about 0.5 to 1 A (for trickle charge purposes) but when shorted out with S2 the circuit current is limited only by the internal resistance of the transformer, the resistance of the ammeter circuit and the state of charge of the accumulator. Current could be up to 5 A (and even greater). Should there be some major fault with the accumulator or the output was shorted then current could exceed the 5A (maximum) and a fuse is inserted to prevent overheating etc.

LIGHTING CIRCUITS

The auxiliary lighting circuits are taken from the battery terminals via the relay contacts to switches S3 and S4 to output sockets on the front panel. These circuits are connected on the front side of the same fuse. Because the relay (normally held in by the 12 V a.c. from the transformer) is connected with its "normally closed" contacts in the auxiliary circuit, current cannot flow through the bulbs unless the mains fails. When this happens the relay drops out and current from the battery flows the other way through the fuse into the auxiliary circuit. Thus both circuits are protected by the single fuse.

CURRENT

If the unit is to be run from the mains via a fused 13A plug there is no need for an internal fuse on the mains input but take note that this is essential if the unit is to be run from non-ring main domestic wiring (a 500 mA fuse is sufficient)

Fig. 1. Complete circuit diagram of the Emergency Lighting Unit.

Fig. 2. Layout and wiring of the Emergency Lighting Unit.

With this system the maximum output current to the bulbs is 5 amps (not displayed on the meter) thus the total power loading must not exceed 60 watts. In a domestic situation this is more than is necessary and in practice two circuits with a loading of 2 amps each is quite
sufficient. Switches S 3 and S 4 allow selection of either or both external circuits.

Remember that this unit provides high currents, consequently heavier gauge wire than usual should be used (10 amp rating preferably) for all internal and external connections (Fig. 2).

COMPONENTS

Resistors

```
    R1 22\Omega2 W (see text)
    R2 2.2\Omega 5W
```


Capacitor

C1 $1,000 \mu \mathrm{~F}$ elect. 25 V

Semiconductors

Page 174

D2 $5 \mathrm{~A}, 24 \mathrm{~V}$ silicon bridge rectifier (A51
D4 type PM7A6) or equivalent wired group
D4

Switches

$\left.\begin{array}{l}\text { S1 } \\ \text { S2 } \\ \text { S3 } \\ \text { S4 }\end{array}\right\}$ (Bo pole 3 a 240 V on/off toggles.

Miscellaneous
ME1 5 A moving iron meter
RLA1 6 V coil, 260 hms with 5A changeover contacts
LP1 240 V neon indicator-incorporating limiting resistor
T1 Mains transformer. Primary 0-210, 230, 240, 250. Secondary 12 V at 5A (Douglas type MT 85AT.
FS1 Bulgin panel mounting fuse holder and 5 A fuse
SK1/2 2 plug/socket pairs for auxiliary circuits (5A capacity)
SK3/4 1 red, 1 black 5A screw terminals, 2 large crocodile clips for accumulator. Heavy gauge insulated wire, 3 core mains lead, grommet and cable clamp. Case approx. $200 \mathrm{~mm} \times 150 \mathrm{~mm} \times 150 \mathrm{~mm}$.

The completed unit with front panel removed to show construction.

INSTALLATION

When installing the equipment make sure the accumulator is in a well ventilated area because hydrogen and oxygen are liberated during charging-a localised build up of these gases could cause an explosion if exposed to a naked flame. Ideally it should be contained in a wooden (frost protected) box outside

When charging a badly exhausted accumulator it is best to charge at the trickle rate for an hour or two before changing to full rateotherwise current in excess of 5 amps might be drawn. Use can be made of the tapped mains input of the transformer (if such a transformer has been used) to slightly increase or decrease the maximum charging rates. The output of 12 V r.m.s. assumes the supply is connected to the input tapping of the same magnitude (e.g. 240 V). If, however, you connect 240 V across the 210 V tappings the output voltage will increase by about 15 per cent. Connecting to higher voltage tappings will reduce the output voltage and hence the charge current. Should the maximum charge current be higher than required a 0.5 or 1 ohm resistor (5 watt) should be inserted between S2 and FS1 at point A Fig. 1).

What do you know?

TRANSFORMERS

1. What are eddy currents?
2. A transformer has a turns ratio of 3 to 1 . Is this a step-up or step-down type?
3. 240 volts is applied to a transformer with a turns ratio of 6 to 1 . Assuming a "perfect" transformer, what is the output voltage?
4. The input to a transformer is rated at 2.4 watts of 240 volts. If the total current drawn from the secondary is 100 mA . What is the output voltage? Assume negligable losses.

ANSWERS

ләмsue aцt sanis

sjocos ot s

jeay se

Readers' Bright Ideas; any idea that is published will be awarded payment according to its merit. The ideas have not been proved by us.

STORAGE

When finding storage space for small components such as transistors and resistors, it can be expensive if plastic drawers are purchased. To solve this problem ordinary matchboxes can be glued together to form a matrix. Handles may be made from paper fasteners fixed to the trays. Using this method a simple storage system can be built up with very little outlay.
C. Walker, Darwen.

WIRE STRIPPERS

An idea which came to me recently is to use the end teeth of small crocodile clips as wire strippers. Simply place the end of the wire to be stripped in the end of the crocodile clip, hold the clip firmly at the end and pull. This action effectively strips the wire with very little or no damage to the wire itself.

Different sizes of clips can be tried for different size wires.
A. Moore, Preston.

TOLERANCE

oNE of the first things a beginner finds when using various components. is the wide range of different tolerances. If a circuit specifies a resistor with a tolerance of plus or minus ten per cent, then quite naturally the beginner would make an all out effort to obtain such a resistor, when in fact a smaller tolerance component would suffice.

Why is this? First however let us consider the manufacturer, who produces resistors. When looking through electronic component catalogues you will observe various types of resistors and note that there is a vast range of different types, all constructed differently. For example; carbon composition, metal film, wirewound, etc. Exactly how they are made is beyond our scope for the present, suffice to say that many thousands are produced each week.

Now on a large scale such as this it is very difficult for the manufacturer to keep an accurate check on the tolerance of each individual resistor, To do so would waste valuable time, not to mention the money involved. So instead the manufacturer specifies to his client that the resistors he makes will be within a certain tolerance.
In this way once a production run of say 10,000 resistors is completed they are tested by taking random samples of, say, every 500 thus insuring the manufacturing process has done its job properly, and the resistors are within the required tolerance. Certainly some rogue resistors will pass through the system and will be sold to the client. However since the manufacturing process has already been kept within tight limits, this is usually a very rare occurrence.

So much for how they are made, what is the importance in Everyday Electronics?

Well, let us suppose that a circuit calls for a 100 ohm ± 10 per cent carbon resistor, and you have either been supplied from a retailer or bought yourself a 100 ohm ± 5 per

WE ARE HERE TO HELP YOU-

 NO MATTER HOW NON-TECHNICAL YOU MAY BE, JUST READ ON!| Table 1. Typical tolerances for resistors and capacitors. Capacitors
 Resistors | | | |
| :---: | :---: | :---: | :---: |
| Type | Tolerance | Type | Tolerance |
| Electrolytic | -10% to $+100 \%$ | Metal oxide | $\pm 1 \%$ or $\pm 2 \%$ |
| Silver mica | $\pm 1 \mathrm{pF}$ or $\pm 1 \%$ | Metal film | ± 1 |
| Polystyrene | $\pm 2 \cdot 5 \mathrm{pF}$ to ± 10 | Carbon film | $\pm 5 \%$ to \pm |
| Ceramic | $\pm 0 \cdot 5 \mathrm{pF}$ to $\pm 10 \%$ | Moulded carbon | $\pm 5 \%$ to \pm |
| Polyester | $\pm 5 \%$ to ± 20 | Wirewound | $\pm 5 \%$ to ± 10 |

Although these are typical of components made today, wide variations are often found. The tolerance is usually marked on the body of the component in some form of coloured band or other marking.
cent resistor. Would this be suitable? The simple answer is, yes.

When building a circuit, the designer has calculated the values of resistors exactly. For instance his calculations may reveal that a 97.56 ohm resistor is called for. Since no one makes a resistor to such a precise (if not weird!) value, the desginer uses the nearest standard value, in this case it is 100 ohms. He relies then on the 100 ohm resistor to be some other value than that specified. This is where tolerance comes in.

A nominal 100 ohm 10 per cent resistor may have a value anywhere between 90 and 110 ohms, it thus encompasses our wanted value of $97 \cdot 56$ ohms.

Okay, what about our 5 per cent resistor, will this be suitable in our circuit? Simple arithmetic tells us that the value may lic between 95 and 105 ohms, it thus still encompasses our wanted value. Very good you might say, what if I have a 1 per cent resistor, with a range of 99 to 101 ohms, will this be suitable? In most circumstances it would. With our example the difference is only one and a half ohms, this in most circuits should not affect the operation of the circuit, in others it might. It all depends on the type of circuit. Timing circuits for example need close tolerance resistors, such as 2 per cent types, in which case 10 per cent types would not be suitable for the same accuracy.

One point to notice is that the majority of circuits already have varying tolerances. For example a transistor amplifier may be designed using high tolerance resistors in the bias circuit to give a specific gain with a certain supply voltage. It is not much good if the supply voltage can
vary by as much as 25 per cent! It is surprising in fact how the different tolerances in a circuit virtually cancel each other out. A simple rule is :

You may substitute a close tolerance resistor for a wide tolerance type, but not the other way round.
That is you cannot put a 10 per cent type in place of a 2 per cent type and expect the same results.

CAPACITORS

Capacitors are, of course, a completely different story. We saw last month how many types of common capacitors there are.

The main factor which determines the tolerance of capacitors is basically the same as with resistors; the manufacturing process. Expense is also ancther factor which is largely predominate. We cannot comment on all the types in the space available here, so instead a few general points will be considered.

1. In timing circuits high tolerance components is of course a necessity.
2. In r.f. circuits where a capacitor is made to resonate at a particular frequency with other components, the variation in the value could cause a shift in frequency. Again close tolerance components are used.
3. In circuits where it is desired to couple one stage with another, at say, autio frequencies, the wide variation is of no great importance.

In general then, if a circuit calls for a $100 \mu \mathrm{~F}$ capacitor and a $125 \mu \mathrm{~F}$ is the only type available then it would be perfectly in order to use it.

The same rule which is applied to resistors applies to capacitors, the only difference being the voltage rating of capacitors. A subject we hope to deal with later on this page:

By Brian Terrell
New products and component buying for constructional projects.

Automatic Phase Box

Regular readers of Everyday Elec. TRONICS will notice the different construction techniques used in the Automatic Phase Box article. As a rule, our constructional projects employ general purpose boards such as stripboard and plain matrix boards. These can be adapted for almost any circuit. From time to time boards that are dedicated to one particular circuit are devised, taking the form of a printed circuit board (p.c.b.). This is the case here. A requirement of the project is the production of a p.c.b. Two methods are outlined in the text and both require a chemical for etching, ferric chloride solution.

This is a very corrosive substance and is not available in liquid form by mail order. Your local dispensing chemist may be able to supply you if you explain your requirements. It can be obtained in anhy. drous form from Crescent Radio Limited., 1 St. Michael's Terrace, Wood Green, London N22 4SJ at a cost of $£ 1 \cdot 35$ inclu. ding V.A.T. for a 11 b package. Also, Greenweld, 443 Millbrook Road, Southampton, SO1 OHX can supply a llb pack. age for $£ 1.02$ including V.A.T. Their advertisement last month contained details of a p.c.b. kit.
Printed circuit transfers, if required can be obtained from P.K.G. Electronics, Oak Lodge, Tansley, Derbyshire; a starter pack of 5 sheets costs $£ 1 \cdot 45$ including post and packaging.
For those wishing to use the photoresist method, we have been unable to find a supplier of the treated board. However, Doram tell us that they can obtain such a board, size $203 \times 114 \mathrm{~mm}$ at a cost of $£ 2.25$ excluding V.A.T. Order as Photo Resist Copper-Clad Board type $434-166$. There is a minimum order charge of $£ 5.00$.
For those not wishing to get involved in the production of the p.c.b. we have contacted a p.c.b. manufacturer, Proto Design, 4 Highcliffe Way, Wickford, Essex who can supply the board ready tinned and drilled \ddagger r a cost of $£ 1 \cdot 15$ inclusive. They can also supply a complete set of elec-
tronic components, excluding the case and battery for an additional $£ 7.00$.
It is important to obtain the miniature resistors and capacitors as speclfied in the component list, since the p.c.b. has been designed to accommodate these. Larger types will not fit on the board.

The prototype used two SR25 jack sockets, but these are not essentlal SK1 could be a stereo jack and SK2 a standard jack, but they should not be too large if they are to be fitted in the specifled case. The SR25 are manufactured by Re . An Products who say their products are now available from many musical shops. They do not supply direct to readers. Still on the subject of component size, for similar reasons given above, VR1 should be of the "midget" variety.

The diecast box can be obtained from Home Radio, 240 London Road, Mitcham, Surrey at a cost of $£ 1.60$ inclusive of V.A.T. and postage/packing. Order as "Case type 939".

Photoflash Slave Unit

A Darlington type phototransistor, 2N5777 is called for the component list of the Photoflash Slave Unit which may present a buying problem for some readers. In case of difficulty this may be obtained from Arrow Electronics Ltd., Leader House, Coptfold Road, Brentwood, Essex, for an inclusive cost of $£ 1-25$.

Two very high valued resistors are specifled being 10 megohms each and need to be of small physical size to be accommodated on the component board. If you experience any supply difficulties for these components, a suitable type, CR25, can be obtained from Electrovalue, 28 St. Judes Road. Englefleld Green, Egham, Surrey, who hold stocks of this value.
The unit required a socket for connection to the second flashgun. Unfortun. ately these are not available (as far as we know), however, a flashgun extension lead is: this has a female connector at one end and a male type at the other. The plug needs to be cut off and this end of the lead soldered to the board. Photographic shops will be able to supply this extension. We have contacted Dixons Photographic who can supply at a cost of $£ 1 \cdot 95$.

Ultrasonic Remote Control System

The transducers required for the Ultrasonic Remote Control System were discussed in Shop Talk last month. The relay used in the prototype unit was a type available from Doram Electronics Ltd., P.O. Box TR8 Wellington Industrial Estate, Wellington Bridge, Leeds, LS12 2UF. Their Catalogue number is 72.730 .9 and the cost is $£ 2 \cdot 16$ inclusive of V.A.T. postage and packing.
The remainder of the components should be readily available. You may be interested to know that Arrow Electronics can supply a complete set of electronic components for the transmitter and receiver, including cases, at an inclusive cost of $£ 14 \cdot 32$. See above for their address.

Hazard Warning System

Not many components are required to build the Hazard Warning System and all should be easily obtainable. Make sure you use the correct type of transistor (TR1) to suit your vehicle earthing system. It is
important that the insulating washer and bush be used for mounting TR2 to the case/heatsink so order the correct type to suit the transistor case. The 2N3055 is available in two versions, flat plastic case as shown, and a TO3 package.
The best place to buy the switch is probably a car/motorcycle accessory shop. They should have many different types to choose from to suit other dashboard switches (in the case of a car). We understand that switches are available that have a hose-clip type fixing to secure to motorcycle handlebars.
The "piggy-back" type push-on connectors should be available from the same stockists. If you have a choice, select the insulated type.

Emergency Lighting

Let's hope that by the time this issue reaches you the power workers' problems have been resolved and the miners reach a peaceful settlement. In case this is not the position we have included the Emergency Lighting project that first appeared in the February 1974 issue of E.E.
The prototype used an AEI bridge rectifier type number PM7A6. This is in fact rated at 9 amps 500 V but any bridge with a minimum rating of 5 A 24 V will do. Observe any heatsinking requirements of the device you obtain. Alternatively you can make up a bridge using four discrete stud rectiflers (5 amps each) which are available from a number of sources. They should however be bolted on to a panel of insulating material prior to fixing in the case.
Ideally a 12 V a.c. coil relay with 5 amp contacts should be used straight across the secondary of T 1 , but relays with low voltage a.c. coils are rare. If you can locate such an animal, D1 can be omitted along with R1. The prototype used a 6 V d.c. 26 ohm coil, hence the inclusion of D1 and R1. If you can only obtain a 12 V d.c. type, R1 should be omitted. The type used in the Ultrasonic Remote Control System project (Doram 72-730-9) is suitable.
A suitable meter is available from Maplin Electronic Supplies, P.O. Box 3 , Rayleigh, Essex at an inclusive cost of $£ 3 \cdot 96$. Order as type M1/5A.

OUR JANUARY ISSUE WILL BE ON SALE FRIDAY, DECEMBER 16

By R. A. Penfold

PART TWO the receiver

The complete system can be used to remotely switch on and off electrical appliances rated at up to 1200 watts at mains voltage.

INTRODUCTION

LAST month we gave full constructional details for the transmitter section of this project and outlined the operation of the complete system. We continue this month with full constructional details of the receiver-half with hints on use.

START HERE FOR CONSTRUCTION

Provided a minature relay is used, a plastic or metal case measuring about $130 \mathrm{~mm} \times 100 \mathrm{~mm}$ $\times 38 \mathrm{~mm}$ will be large enough to house all the components.

The transducer is mounted on one of the smaller sides of the case, which then becomes the front of the unit. Mount the transducer using the same method that was
adopted for the transmitter. Two 4 mm sockets are mounted on the left hand side of the case, towards the front, and these are the power input sockets. Two further sockets are mounted opposite these on the right hand side of the case, and these will then be connected to the relay contacts.

RELAY

The relay is mounted next to these sockets, and it will be necessary to construct a simple mounting bracket for the relay. If the specified component is used, this can consist of a piece of plain 0.1 inch matrix stripboard having 19×13 holes. Five of the holes in the board are enlarged using a 2 mm diameter drill so that the relay will fit onto it. The tags of the relay are then bent over at right angles on the underside of the panel so that it is securely fixed to the board.

Leads about 100 mm long are then connected to the four relay terminals which are used. This assembly can then be bolted in position, with approximately 6 mm long spacers being used to hold the relay contacts clear of the base panel of the case.

COMPONENT PANEL

All the remaining components are mounted on a 0.1 inch matrix stripboard having 44 holes by 17 copper strips. Full details of this panel are shown in Fig. 2, which also shows all the other wiring of the unit. This panel is constructed in the same manner as the one for the transmitter. The i.c. is mounted in a 16 pin d.i.l. socket. All three diodes are germanium types, and as such are easily damaged by heat. It is therefore advisable to use a heatshunt on each of their leadouts as they are soldered into circuit. The i.c. being of the cmos type is very sensitive and easily damaged by static. Be careful therefore when inserting the device into the socket taking care not to touch any of the pins.

When the panel has been completed, it is wired up to the rest of the unit before it is mounted at the rear of the case. Again 6 mm long spacers are used to hold the panel clear of the case.

The connection to the transducer must be made via screened cable, about 100 mm long, which is terminated in a phono plug.

Finally, the two leads from the relay contacts are connected to the appropriate sockets.

ULTRASONHC REMOTE CONTROL SYSTEM

Fig. 2. The layout uf the components on the stripboard and the breaks to be made on the undersidem

ULTRASONIC RECEIVER

Fig. 1. Circuit diagram of the receiver section of the Ulitrasonic Remote Control System.

CIRCUIT DESCRIPTION

AMPLIFIER

Transistors TR1 and TR2 are both used as high gain common emitter amplifiers, and they are connected in a simple direct coupled arrangement. The transducer, X 1 is coupled direct to the base of TR1 with no d.c. blocking capacitor being necessary here. This is due to the fact that the transducer has an extremely high resistance, and so it does not upset the biasing of the amplifier. Neither does the small voltage at TR1 base have any detrimental effect on the transducer.

Although the transducer is not very sensitive to audio frequencies, it does produce some output from such signals. In order to prevent spurious triggering of the device by ordinary sounds it is necessary to use an amplifier which has only a relatively low gain at audio frequencies. In this circuit the required a.f. roll off is achieved by using a low value emitter bypass capacitor for TR2. Due to the low value of C2, TR2 has a voltage
gain of less than one at audio frequencies, whereas at 40 kHz it has a gain in the hundreds.

This seems to be quite effective in practice since nothing short of physically hitting the unit, or blowing hard into the transducer will cause spurious triggering.
The amplifier has a considerable gain regardless of gains of the particular transistors used. However, if the system is to be used near the limit of its range, the high gain BC109C transistors should be used in TR1 and TR2 positions. This will then give improved reliability.

Capacitor C3 couples the output of the amplifier to a simple rectifier and smoothing network using D1, D2, and C4. The d.c. voltage produced across C4 in the presence of a suitable input signal is fed to the Schmitt trigger.

SCHMITT TRIGGER

The active devices of the Schmitt trigger are TR3 and TR4. With a zero input signal, TR3 is cut off while TR4 is biased into saturation
by the base current it receives via R5 and R6.
When an input potential of about 1.65 V , or so is reached, TR3 will begin to conduct, and it's collector voltage will begin to fall. This reduces the base current to TR4, which in consequence conducts less heavily. This reduces the voltage across R8 which is the emitter resistor common to both transistors. Decreasing the emitter voltage of TR3 causes it to conduct more heavily, as this increases the base/emitter voltage. This further reduces the base current to TR4, which results in a further drop in the voltage across R8.

A regenerative action is taking place here, and this continues until TRS is biased into saturation and TR4 4 is cut off. Thus, when the input threshold voltage of the Schmitt trigger is reached, TR4 very rapidly switches from the "on" to the "off" state, and this produces a rapid positive going output pulse at TR4 collector. This

Interior view of the receiver showing positioning of component board, relay, transducer and sockets.
happens regardless of the speed at which the input voltage is rising, and so the slowly rising input signal is speeded up to a level which will reliably operate the next stage.

When the input signal is removed, the trigger circuit resumes its original state.

FLIP FLOP

The output of the Schmitt trigger is connected to the clock input of a 4027 cmos JK flip flop. This device can be used to perform quite complex functions, but here it is connected as a simple divide by two circuit. The output of the device (p in 1) will therefore change state each time a positive input pulse is received.

The output of the flip flop is used to drive a common emitter amplifier, TR5, via a current limiting resistor R10. Transistor TR5 has the relay coil as its collector load, and the relay is activated whenever the output of the flip flop is in the high state. Diode D3 is the usual protective diode which clips the high back e.m.f. voltage which would otherwise be developed across the relay coil each time it was turned off

USING THE SYSTEM

The unit has a current consumption of about 2.5 mA when the relay contacts are open, this increasing to approximately 25 mA when the relay contacts are closed. Since in virtually all applications it will be necessary to leave the receiver switched on for long periods, economic operation from internal dry cells is not really practical. For this reason the receiver is equipped with sockets which enable an external rechargeable battery or mains derived supply to be used. A nominal supply voltage of between 7.5 and 12 V is required.
It is not essential for the relay to be of the specified type, and any
relay which will physically fit into the case, has a coil resistance of about 200 ohms or more, an operating voltage of 6 V (nominal), and has suitable contacts, should be perfectly suitable.

When using the system, remember that the ultrasonic beam emitted from the transmitter is fairly directional and it is necessary to aim the beam at the receiver's transducer. This effect may not always be apparent if the system is used indoors, where it may well be found that correct operation is even obtained if transmitter is pointed in completely the wrong direction.

This is due to the soundwaves being reflected around the room. I

GEORGE HYLTON down

READER asks how the b.f.o. (beatfrequency oscillator) in his communications receiver works, and wonders if the same principles are used in other equip. ment. In particular, he suggests that a b.f.o. might be a convenient device for generating an audio voltage of variable frequency.

Tremolo Effect

Let's start by saying what a beat frequency is. Most of us will be quite familiar with the phenomenon that when two instruments such as violins or clarinets play the same note and sustain it, a sort of "wobble" or tremolo is heard. Instead of the steady . . . $0000000 \ldots$ of a single instrument you hear a sound which gets periodically louder and softer, a sort of . OOWOOWOOWOOW . . . The effect arises when the two instruments are not absolutely in tune. It they are playing the note A, which should be 440 Hz , but one is really playing 441 Hz , you hear a wobble at the difference frequency of 1 Hz . That is the volume rises, falls and comes back again once a second. The wobble is a beat note, beat tone, or beat frequency.

If you have a plano, you can produce beats by putting your foot on the sus. taining pedal and striking two notes which are an octave apart. In this case the upper note has twice the frequency of the lower. However, the piano generates harmonics, that is multiples of its notes. So striking the lower note also produces a "second harmonic" which is double its frequency. This should be exactly equal to the higher note, but it seldom is (not for long, anyway). So you hear a beat note.

Troughs and Peaks

Ok so far? Right. But I can hear you asking: why do I hear the beat note? Leaving the physiology of the ear out of it, the basic reason is pratty clear. Two

Fig. 1. Two waves of different frequency superimposed to show how beats are generated. The beat frequency ls a functlon of the difference in frequency of the two waves.
identical audio waves can reinforce one another, if they are in phase (peaks at the same points in time). Or they can weaken one another if the peaks of one coincide with the troughs of the other. But if the two waves are not identical in frequency they can't behave like this. The faster wave's peaks keep catching up on the slower one's.

At these moments they add. But then the faster peaks overtake the slower ones, and begin to catch up on the slower troughs. So the two waves now oppose one another. Then, having overtaken the troughs, the faster wave begins to catch up on the slower peaks, so they add again, and so on. If the two frequencies, though different, are constant, the process follows a regular timing, producing a steady sequence of reinforcement, weakening, reinforcement, weakening . . . the beat note, in fact.

Waveforms

This process is illustrated in Fig. 1, where two waves of different frequency are superimposed. You can see how they drift in and out of step. One important point, however, is that there are still only the two original frequencies present. To produce a real third frequency, the beat frequency, this getting in and out of step must somehow be changed into a genuine variation of energy. If the waveforms in Fig. 1 are not sound waves but voltages or currents then the beat frequency can be made real by rectifying the composite waveform.

A diode, for example, will conduct only when the instantaneous sum of the two waves happens to be positive. The result is that after the output of the rectifler is given a certain amount of smoothing to remove the instantaneous ups and downs a sine wave appears at the beat frequency.

The BFO

So far we've been talking about situations in which both the original frequencies are audio frequencies. However, it is quite possible to have beats between frequencies above audio. Since the beat occurs at the difference frequency this can be an audio frequency even when both the original frequencies are radio frequencies.

This is what happens in a radio with a b.f.o. The signal carrier frequency arrives at the aerial and is frequency-changed to some standard intermediate frequency, such as 455 kHz , then amplified and fitered. The b.f.o. is usually tunable over a short range, from a few kilohertz below the intermediate frequency to a few kilohertz above, say 452 to 458 kHz .

Simultaneous application of signal and b.f.o. frequencies to a detector (rectifier) then generates a beat note variable in the range $3-0-3 \mathrm{kHz}$; i.e. anything from

3 kHz down to zero and up again to 3 kHz .
The audio beat is thus variable over 0 to 3 kHz . It is quite feasible to make the range much greater. For example, if the signal is replaced by a fixed oscillation at say 100 kHz and the b.f.o. by a variable oscillation of 100 to 120 kHz , the beat varies from 0 to 20 kHz , covering the entire audio range in one sweep. This is the basis of the suggestion that a b.f.o. could form a useful audio-frequency source.
There was a time when b.f.o.'s were almost the standard form of variable a.f. source. They have the great advantage that a large frequency range can be covered in one "sweep". They have gone out of fashion because distortion and variation of output as the frequency is changed are worse than what is obtained with a well-designed R / C oscillator of the Wien Bridge type.
Nevertheless the b.f.o. still has its uses. A common application of the b.f.o. is in a metal detector. This is based on the fact that when a piece of metal comes into the magnetic fleld of a coil which forms the tuning inductance of an oscillator the frequency of the oscillator changes. The change is often very small. For example, when a coln is situated an inch or two away from a 100 kHz oscillator the fre. quency may change by 5 Hz . It is not easy to detect such a small change at 100 kHz . But if the 100 kHz oscillation is "beaten"" against another on nearly the same frequency, to produce a beat of, say, 200 Hz , the change of this from 200 Hz to 205 Hz is easily detectable by the ear.

Physics is fun (November 1977)
In the last paragraph on page 115, the voltage should be measured with the lamp still in circuit. Not removed as stated in the text.
V.H.F. Portable Radio (November 1977)

In Fig. 2. The link from the collector of TR5 should go to the junction of C16/R13, not as shown.

would not be completely true to say that the flashguns are fired simultaneously by this method, since it is obviously necessary for the first gun to fire before the second one is triggered. However, in most practical situations the delay before the second gun fires is too short to be of significance.

POWER SOURCE

The current commercial practice seems to be to use a batteryless circuit. This has the obvious advantage of no running costs, and it also enables a smaller, lighter unit to be produced.

Perhaps the most obvious way of achieving this is to use a solar battery to generate the trigger pulse for the control device (which is invariably a thyristor). This is not quite such a good idea as it may seem as solar cells tend to be more cipensive than other photo-electric devices, and in general they respond far too slowly.

INTRODUCTION

THERE now seems to be a very wide range of electronic aids available to photographers, and most such aids appear to be fairly complex devices. Although a photoflash slave unit is probably the most simple of these devices it is nevertheless one of the most useful.

Conventionally an adapter is used when multiple flash lighting is employed, and this enables the switch contacts of the camera to fire the flashguns simultaneously. A wire to connect each flashgun to the adapter is required with this method which is, in consequence, rather inconvenient. There is also a tendency for the cables to become entangled and a source of hinderance.

SLAVE UNIT

A flash slave unit overcomes this problem by triggering a secondary flashgun when it receives a pulse of light from the main flashgun. It

HOW IT WORKS

The high voltage (low current) which is normally available from the flashgun is rectified by the bridge rectifier. This provides the correct polarity for the electronic switch to tunction correctly. Capacitor C then charges up to the reference voltage. When light from the main flashgun strikes the photocell, capacitor C discharges quickly, thus providing the necessary high current. This high current is enough to turn the electronic switch on. Thus the switch operates and fires the secondary flashgun.
The entire action takes place almost instantaneously as the camera flashgun fires.

Fig. 1. Complete circuit diagram of the Photoflash Slave Unit.

CIRCUIT DESCRIPTION

The complete circuit diagran of the unit is shown in Fig. 1.

A thyristor is a unilateral device, and it will therefore only function properly if it is fed with a voltage of the correct polarity. In order to avoid any problems here, a bridge rectifier consisting of D1 to D4 has been added in series with the flash lead, and this provides a signal of the correct polarity to the thyristor (CSR1) regardless of which way round the flash lead is connected.

Resistors R1, R2, and diode D5 form a simple Zener shunt regulator, and these limit the voltage which can be fed to the gate of CSR1 via the photo-Darlington amplifier TR1. Capacitor Cl is needed in order to provide the current required to trigger CSR1. As we pointed out earlier, the cur-
rent available across the flash lead is inadequate. All that happens here is that when the flash gun is charged up, a voltage will appear across the flash lead, and Cl will then charge up via Rl and R2 until the Zener voltage is reached.

While Cl charges up it is receiving a current of only a few micro amps for about one second. When the light from the main flashgun is received by the photocell (TR1), it's normally very high resistance falls to a level of only about a few hundred ohms. This happens extremely quickly, and as a result Cl almost instantaneously discharges through TR1 and into the gate of CSR1. Because the charge on Cl is released so rapidly, the discharge current is many times greater than the charge current. It is thus sufficient to switch on CSR1 which then places a low impedance path across the flash lead and so fires the flashgun.

After the flashgun has gone off.
the current through CSR1 falls to virtually zero and this component switches off. The circuit is then ready to start a fresh cycle when the flashgun is recharged again.

The photocell used in this circuit is an inexpensive photo-Darlington amplifier type 2 N 5777 . This has a very fast response time but is a little oversensitive for this application. Resistor R3 has therefore been included to reduce its sensitivity. Without this component the ordinary ambient light level would be sufficient to turn on TR1, and the current through R1 and R2 would be diverted away from Cl and through TRI and the gate of CSR1. Capacitor Cl could not then charge up sufficiently, and the unit would be unable to trigger the flashgun.

It is also necessary to use two series connected resistors in the position taken up by R1 and R2 since a single resistor of this value is not readily available.

PRACTICAL METHOD

A more practical method, and the one used in the device described here, is to obtain the power for the slave from the flashgun. There is no need to modify the gun in any way because it is possible to tap off power direct from the flash lead. Only one real problem exists here, and that is due to the fact that the flash lead supplies something in the region of 175 volts at only a few microamps, whereas a thyristor needs a trigger signal of less than one volt with the current being in the order of a few milliamps.

START HERE FOR CONSTRUCTION

All the components are wired up on a 0.1 inch matrix stripboard panel which has 11 copper strips by 14 holes. Details of this panel are shown in Fig. 2. There are no breaks in any of the copper strips.

When assembling the com-
ponents on a small board such as this it is probably easier to solder the components into position on one corner of a large panel and then carefully cut out the required piece of board, rather than the usual method of initially cutting out the board.
The unit should preferably be housed in a small transparent plastic case, but any small case can be used. If a metal case is employed it will be necessary to take steps to insulate the wiring from the case. Drill a hole in the case adjacent to the curved side of the photocell (this being the light

sensitive area), if an opaque housing is used. This hole then enables the photocell to receive light from the main flashgun.

Whatever type of case is used it will be necessary to drill a small hole in the case so that a lead can be threaded through. It is not possible to make connection to the flashgun via a chassis mounted socket since these sockets seem to be unobtainable. Instead a flash extension lead must be used. The plug is removed from this, and then this end is threaded through the hole in the case and connected to the appropriate points on the component panel.

COMPONENTS

Resistors

R1 $10 \mathrm{M} \Omega$
page 174
R2 $10 \mathrm{M} \Omega$
R3 $4.7 \mathrm{k} \Omega$
All resistors are carbon $\ddagger W \pm 10 \%$
Capacitors
C1 220nF polyester

Semiconductors

TR1 2N5777 photo darlington npn
CSR1 2N1599 200V 1 A thyristor or equivalent D1 to D4 IN4003 rectifier (4 off) D5 BZY88C6V8 6.8 V 400 mW Zener

Miscellaneous

SK1 extension lead for flash. gun (see text)
Small transparent plastic case, $50 \mathrm{~mm} \times 40 \mathrm{~mm} \times 25 \mathrm{~mm}$; strip. board 0.1 inch matrix 11 strips $\times 14$ holes; small rubber grommet; solder.

Three extra rows of holes are provided on the component panel so that there is space for mounting holes to be drilled, should it be necessary to bolt the panel to the case. It was not in the case of the prototype because the panel was found to be a firm fit into the housing.

USING THE UNIT

The circuit will operate in the presence of a fair amount of ambient light, but it is still quite sensitive and can normally be
triggered at distances of up to about 5 metres without any difficulty. It is usually irrelevant as to which direction the photocell is aimed, but it may sometimes be necessary to aim it at the main flashgun.

It is possible to considerably increase the sensitivity of the unit, if required, by increasing the value of R3. Note though, that the more sensitive the circuit is made, the greater the risk of the circuit action being blocked by the ambient light level.

Photograph of the completed prototype unit

The Extra ordinar Experiments oif Proiessor Eversure

 by Anthony John Bassett

 by Anthony John Bassett
 We continue this month by discussing further the source
 "Do you have a book which
 worked in the microphone. Some

follower, and introduce the subject of quantisation. The Prof. continued.
"There is another interesting property of follower type circuits, such as source followers, emitter followers, cathode followers and so on, which you might wish to consider in your study of them, and this is their very useful ability to absorb and 'damp out' various forms of interference. This can be extremely useful where long lengths of signal carrying cable are used, and interference can be a big problem, I have been examining this f.e.t. pre-amplifier with the unmarked faulty transistor, and have decided to let you tackle the problem!"
Bob saw that the Prof. had brought back the pre-amplifier together with a small selection of f.e.t.s, most of which did not look anything like the faulty one, in whose place the Prof. had soldered a transistor socket. He soldered the pre-amplifier back in place in the microphone, but with sufficient length of connecting wire to make the circuit accessible to Bob.
"Somewhere in this little lot, there should be at least one suitable transistor. See if you can find it!" The Prof. handed Bob a small assortment of f.e.t.s.
gives the information as to leadout wires on all of these, Pro?"
"The information is scattered about in a number of books and data sheets, Bob, and to save you the trouble of looking them all up I will let you use one of my computers."
The Prof. quickly showed Bob how, by pressing a few buttons on one of the computers, he could feed in the type number of the transistor. On the viewscreen of the computer he could then see a large, clear diagram showing the position of the source, drain and gate leads of each transistor together with other specifications. Guided by this information Bob was able to try the transistors by inserting them, one at a time, into the transistor socket.
Many of the transistors did not appear to work at all in the circuit, and Bob found that when he used a multimeter to measure the voltage between the source and the battery negative, the full 1.5 volts was indicated.
"These transistors require an offset bias voltage greater than 1.5 volts and are unsuitable for use in this circuit," the Prof. informed him.
Bob tried some more of the transistors and found a number which
were better than others, and when Bob measured the source voltage of each he obtained a different reading for each transistor.

The transistors with the highest source voltage readings of 1 volt or more were the least satisfactory. Although most of them gave a reasonably clear sound at low volumes, at higher volumes there was obviously distortion.

Bob tried a number of transistors which gave a reading below 1 volt, and although he could not exactly match the reading of 0.6 volts given by the original transistor before the fault appeared, he eventually found one which gave a reading of about 0.7 volts and which gave a good sound even at high volume levels.

Bob removed the transistor socket and very carefully soldered the replacement transistor into place on the tiny p.c.b.

He carefully re-assembled the pre-amplifier into the microphone body, and before finally closing up the microphone to complete the repair, took a note of the type number of the transistor he had used, for future reference. This was a MEF102 type.

Now with the microphone all in one piece, and plugged into the amplifier, Bob was jubilant.

Continued on page 188

everyday electromics

CONSTRUCTIONAL FEATURES

AUDIO PEAK LEVEL INDICATOR by R. A. Penfold ADAPTER. QUASI QUAD
ALARM. CAR BURGLAR
ALARM. TUMBLE DRYER
AMPLIFIER. GUITAR PRACTICE ATTRACTOR. SIGHT AND SOUND FISH

BELL REPEATER. PHONE/DOOR
BRAKE LIGHT WARNING DEVICE
by T. R. de Vuax-Balbirnie
CAR BURGLAR ALARM by A. D. Huff
CHECKER. TRANSISTOR
CLOCK. ELECTRONIC STOP
CONTINUITY TESTER by A. Irwin
CONTROLLER. MODEL RAILWAY
CONTROLLER. MOTOR
CONTROLLER. MUMBLE DRYER
CRYSTAL SET. GRANDAD'S
DELAY. WIPER
DICE. ELECTRONIC
DOOR CHIME INHIBITER by T. R. de Vaux-Balbirnie
ELECTRONIC DICE by R. A. Penfold
ELECTRONIC STOP CLOCK by R. A. Penfold
EXPERIMENTERS POWER UNIT by A. P. Stephenson EXPOSURE UNIT by D. I. Fraser

FUZZ TONE UNIT by E. M. Lyndsell
GAME. PAPER/SCISSORS/STONE
GRANDADS CRYSTAL SET by A. Sproxton
GUITAR PRACTICE AMPLIFIER by M. Feeney
INDICATOR. AUDIO PEAK LEVEL
INDICATOR. TRANSISTOR LEAD OUT
INHIBITOR. DOOR CHIME
METER. RESISTANCE
METRONOME by A. J. Flind

374 114
165
MODEL RAILWAY CONTROLLER by F. G. Royer 162
MONITOR. SOIL MOISTURE 281
MOTOR CONTROLLER by G. Ruddick 358 210
MULTIBAND TUNER by F. G. Royer Part.One
MULTIBAND TUNER by F. G. Royer Part.One
MULTI-TESTER by A. P. Stephenson 28, 196
PAPER/SCISSORS/STONE GAME by A. W. Gibbs 183
PHONE/DOOR BELL REPEATER by R. A. Penfold 308
PHOTOCUBE RECEIVER by F. G. Rayer 15
PORTABLE SHORT WAVE RECEIVER by R. A. Penfold 352
POWER SWITCH. TOUCH OPERATED 326
POWER UNIT. EXPERIMENTERS 136
QUASI QUAD ADAPTER by K. Lenton-Smith 114, 196
RECEIVER. PHOTOCUBE 15
RECEIVER. PORTABLE SHORT WAVE 352
REMOTE READING THERMOMETER by F. G. Rayer 216
REPEATER. PHONE/DOOR BELL 308
RESISTANCE METER by R. A. Penfold 234
SHORT WAVE RECEIVER. PORTABLE by R. A. Penfold 352
SIGHT AND SOUND FISH ATTRACTER by A. J. Bassett 258
SOIL MOISTURE MONITER by J. Jenkins $28 i$
STEADY HAND TESTER by M. G. Argent 304
TESTER. CONTINUITY 174
TESTER. MULTI- 28
TESTER. STEADY HAND 304
THERMOMETER. REMOTE READING 216
TOUCH OPERATED POWER SWITCH by R. W. Coles and B. Cullen 326
TRANSISTOR CHECKER by A. J. Flind 82
TRANSISTOR LEAD OUT INDICATOR by A. J. Olivera 276
TUMBLE DRYER ALARM by A. J. Bassett 132 10
210
TUMBLE DRYER CONTROLLER by A. J. Bossett
TUMBLE DRYER CONTROLLER by A. J. Bossett
TUNER. MULTIBAND Part One 287
WIPER DELAY by A. Yeomans 58

GENERAL FEATURES

BACK ISSUES ANNOUNCEMENT
BOOK REVIEWS
BRIGHT IDEAS
COUNTER INTELLIGENCE by Poul Young
285,341,357
285, 338, 384
$33,81,138,175$,
EDITORIAL $8,56,112,160,208,256,302,350$
JACK PLUG AND FAMILY $39,62,125,181,237,267$.
PLEASE TAKE NOTE: 307, 379
Clunk-Click Jogger September 1976
27
Doing it Digitally March 1977266

Guitar Practice Amplifier February 1977
244
Instant Info. for Constructors March 1977 131, 244, 266
Light Flasher November 1976
Mini Organ December 1976
27
$\begin{array}{ll}\text { Multi-tester January } 1977 & 196\end{array}$
Teach-In 76 September 1976
Quasi Quad Adapter March 1977196
READERS LETTERS
22. 190, 286, 325, 356

READERS LETTERS
SHOP TALK by Mike Kenward
by Brian Terrell
$43,63,144,173,231$
263, 311, 367

ABBREVIATIONS

BOAT SHOW ' 77
ELECTRONICS IN MEDICINE by S. McClelland FOR YOUR REFERENCE
LET'S FIGURE IT OUT by Phil Allcock

MICROVISION LAUNCHED
126 NOISE REDUCTION SYSTEMS-A by Adrion Hope

34,91

RAPIER MISSILE SYSTEM by G. A. G: Brooke SOLDERING IN EASY STEPS
USING YOUR MATRIX MARKER

SPECIAL SERIES

DOING IT DIGITALLY by O. N. Blshop4 The J-K Flip Flop205 Flip Flops and Trigger Circuits 68
6 The Additlon of Binary Numbers 122
7 Pulse Generator, Wired OR, Schmitt Trigger, and Card Reader 168
8 Applications of Counting Circuits 219
9 Application of Digital Circuitry 268
10 Digital Thermometer and Noughts and Crosses Game 312
11 Model Railway Systems 362
DOWN TO EARTH by George Hylton
Inductance Calculations-How to avoid them 44
Theory and Practice 98
Audio Delay Circuits
Audio Delay Circuits 148 148
Noise 196
Problems With R.F. 244
Using Old Meters
Using Old Meters 292 292The Oscilloscope340
Operational Amplifiers 388
FAULT FINDING by Douglas Vere
1 Fault Location Techniques 224
272
272
3 Two Stage Amplifier and Measurement Errors 318
4 Using a Multimeter 380
FOR YOUR ENTERTAINMENT by Adrian HopeProjector Lamp Protection and Calculator Batteries23
Free Charge and Design Features 67Loudspeaker Overdrive, Handwriting Analysis andBionics121

ILEA TV, VAT and Space Junk

233Intercoms and the Post Office
Intercoms and the Post Office
Products at Recent Exhibitions 280
Batterles and Telephones 371
PHYSICS IS FUN by Derrick Doines Radio Resonance 19
Calibrating a Meter 93
Random EventsSound182
Sound Waves 232
Pitch and Volume 339Home-made GalvanometerSelf InductionPROFESSOR ERNEST EVERSURE by Anthony J. BassetBias and Impedance40
Game of Skill 94°
Spurious TriggeringPick-ups192
ExperImental Contact Microphones 242
Polarisation 284
Home-made Electrophorus 337
Electrets 385
YOUR CAREER IN ELECTRONICS by Peter Verwig
Radio Communications. 78
Opportunities at EMI 128
Television Capital Equipment

Opportunities at Kelvin Hughes | 178 |
| :--- |
| 238 |

The Electronics Industry 322Review of Current Opportunities

SPECIAL INSERTS AND OFFERS

SOLDERING KIT OFFER

INSTANT INFO. FOR CONSTRUCTORS

BUYERS GUIDE TO COMPONENTS-8 page supplement
MATRIX MARKER
April 1977
May 1977

TECHNICAL TRAINING IN ELECTRONICS AND
 TELECOMMUNICATIONS

ICS can provide the technical knowledge that is so essential to your success; knowledge that will enabie you to lake advantage of the many opportunities open to you. Study in your own home. in your own time and at your own pace and if you are studying for an examination ICS guarantee coaching untll you are successful.

City and Guilds Certificates: Telecommunications Technicians Radio, TV, Electronics Technicians Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
MPT Radio Communications Certificate
Diploma Courses:
Colour TV Servicing
Electronic Engineering and Maintenance Computer Engineering and Programming Radio, TV, Audio Engineering and Servicing Electrical Engineering, Installation and Contracting

POST OR PHONE TODAY FOR FREE BOOKLET

To: International Correspondence Schools

Depi 268P Intertext House, London
SW8 4US or telephone 6229911
Subject of Interest
Name
Address
Tel: Age:

PLEASE MENTION EVERYDAY

ELECTRONICS WHEN REPLYING

TO ADVERTISEMENTS

NEW CATALOGUE TEACH-IN '78

Doram's new catalogue is one of the great events of the electronic year, 64 pages of new ideas in construction kits, capacitors, resistors, semiconductors, wires and cables, transformers, plugs and sockets, hardware, indicators, switches, radio equipment, tools and test equipment, audio equipment, books. All top quality and terrific value because you can depend on Doram.

TAKE THE SHORTCUT.

GREAT INVENTION

"All systems go!" he shouted into the microphone, "Prof I've just made a great invention! It's fantastic!'
"What is it, Bob?"
"It's a field effect transistor with a tiny adjusting screw to alter the offset-bias voltage that it requires. As this voltage varies from one transistor to the next, and obviously has a big effect on its performance, why not make each transistor adjustable?"
"How does your invention work, Bob?"
"I don't know, Prof.," Bob admitted, "it's only an idea!"
"Maybe we'll see about that later!" the Prof. commented.

STRANGE EQUIPMENT

As Bob looked around the Prof's laboratory, crammed with strange inventions, computers and gadgets, most of which had been constructed by the Prof. with the superhuman assistance of his experimental robot, he spotted a newly arrived piece of apparatus. It was standing amongst the remains of the crate in which it had arrived, and which had just been carefully demolished by the robot. As the robot whisked away the packing from around it, Bob examined this newly arrived piece of equipment, but could not understand it at all.
"Whatever is this, Prof?" Bob called out, puzzled.
The Prof. came over.
"It is an experimental magnetic-line-of-force communicator", he told Bob, "which has been sent to me because the experimenter who has been building it has been having difficulties with the magnetic transducers, and has asked for iny assistance. He has some unusual and unconventional ideas about magnetic fields, lines of force and transducers, and some very interesting thoughts about the possibilities of long-distance communication, and the detection of distance phenomena, by means of magnetic effects. So he has been struggling mightily to use his ideas, in an attempt to overcome some of the problems associated with the Inverse Square Law which seems to affect in a very adverse way, most attempts to detect magnetic fields at great distances."

INVERSE SQUARE LAW

"We have been learning about the Inverse Square Law at school, Prof. It affects light, sound, radioactivity, radio waves, electric fields, magnetic fields, gravitational and all sorts of phenomena, whose effect diminishes in proportion to the square of distance from the source. According to this law, Prof, your friend should have just as much difficulty as anyone else who has attempted to use magnetic fields for long-distance communication."

The Prof. agreed. "I warned him about this, Bob, but he claims that he has some ideas on a way of overcoming the difficulty, and has built this apparatus in an attempt, unsuccessful so far, to prove his claims. His idea is that, since magnetic lines of force are theoretically capable of extension to immense distances, it should be possible to link his apparatus to almost any point by means of a magnetic line of force directed by rotating a magnet in the apparatus. Then by vibrating the magnet, or by other means to cause a vibration to travel along the line of force that it can be detected at the distant point which he has chosen."
"But Prof., we have been taught at school that the lines of force are simply a notion and do not really exist, and that the magnetic forces are in the form of a uniform field whose strength diminishes very rapidly with distance. How does this compare with your friend's experiments?"

MAGNETIC QUANTA

"Some of the latest theories of magnetism", the Prof. informed Bob, "tend towards quantisation of the field, and according to these theories the field itself is just a notion, with the magnetic forces being exerted by myriads of tiny quanta of magnetic energy, travelling rapidly through the space in which the field is perceived. Now the man who has built this apparatus believes that the lines of force are tracks through space, along which magnetic quanta travel. So he believes in lines of force as a working proposition and basis for his experiments. This is a subject we shall discuss at a later date."

To be continued

Electronics. Make a job of it

Enrol in the BNR \& E School and you'll have an entertaining and facinating hobby. Stick with it and the opportunities and the big money await you, if qualified, in every field of Electronics today. We offer the finest home study training for all subjects in radio, television, etc., especially for the CITY AND GUILDS EXAMS (Technicians Certificates); the Grad. Brit. I.E.R. Exam; the RADIO AMATEUR'S LICENCE; P.M.G. Certificates; the R.T.E.B. Servicing Certificates; etc. Also courses in Television; Transistors; Radar; Computers; Servo-mechanisms: Mathematics and Practical Transistor Radio course with equipment. We have OVER 20 YEARS experience in teaching radio subjects and an unbroken record of exam successes. We are the only privately run British home study College specialising in electronics subjects only. Fullest details will be gladly sent without any obligation

Become a Radio Amateur.

Learn how to become a radio-amateur in contact with the whole world. We give skilled preparation for the G.P.O. licence.

Brochure without obligation 10 :

British National Radio \& Electronic School
 P.O. Box 156. Jersey. Channel Islands.

NAME
ADDRESS

You can work wonders with your free time.

There's immense satisfaction in making your own equipment. And you'll get excellent results with Heathkit.

Every kit is absolutely complete down to the last nut and bolt. The quality is the best. And each kit has an easy to follow instruction manual that explains exactly what to do at each step.

So you enjoy assembling your kit and you finish with first-class equipment every time.

That's why Heathkit are so successful. And that's why the range is the biggest in the world.

It's all in the new edition of the free Heathkit catalogue. Everything from the simplest to the most sophisticated. Alarms, digital clocks, testers, transceivers and lots more ...even the tools are there!

See for yourself. Send the coupon now.
NEW CATALOGUE NEW TEST INSTRUMENTS NEW DIGITAL BATHROOM SCALES NEW AMATEUR RADIO EQUIPMENT NEW AUDIO SYSTEMS AND MANY OTHER NEW ITEMS

The new Heathkit catalogue.Out nowFREE
To:Heath (Gioucester) L.td., Dept.EE-127. . Gloucester, GL2 6EE Please send me my Heathkit catalogue. I enclose an llp stamp for postage.

SMALL ADS

The prepaid rate for classified advertisements is 16 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $£ 4 \cdot 00$ per single column centimetre (minimum $2 \cdot 5 \mathrm{~cm}$). All cheques, postal orders, etc., to be made payable to Everyday Electronics and crossed "Lloyds Bank Ltd." Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Everyday Electronics, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5918).

Wanted

SURPLUS?? Turn it into cash. Phone: 0491 35529 (Oxon).

Service Sheets

BRLL'S TELEVIBION SERVICE for service sheets of Radio, TV etc. 75p plus SAE Colour TV Service Manuals on request SAE with enquiries to BTS, 190 King's Road, Harrogate, N. Yorkshire. Tel: 0423 558855.

SERVICE SHEETS for Radio, Television, Tape Recorders, Stereo, etc. With free fault-finding guide, from 50 p and s.a.e. Catalogue 25p and s.a.e. Hamilton Radio, 47 Bohemia Road, St. Leonards, Sussex.

Receivers and Components

71b A880RTED COMPONENTS $£ 2 \cdot 95$. Small audio amplifiers. 3 transistors equivalent to AC128, OC72, with circuit. 3 for $£ 1$. Goods post paid. List 15p. Refunds on purchase. Insurance add 15p. J. W. B. Radio, 2 Barn field Crescent, Sale, Cheshire M33 iNL.

Small Roed Switch Large Reed Switch	$\begin{aligned} & \text { 18p } \\ & \text { 12p } \end{aligned}$	Miniature Push To Teat Switch Red Button 18p
Large Red L.E.D.e	200	Miniature Stide Switch
Croc Clips Red/Biack	$7 p$	Double Pole D.T. ${ }^{14 \mathrm{p}}$
Croc Jumper Lande	120	Bank Of 6 Large Reed
Jack Pluge 3.6 mm	12 p	Switches
$240 v$ AC Relay	sep	
Small Plastic Pulloy	4 p	GPO 4 Digit Counter
* Bulb $\&$ Moider	$14 p$	
Intercom Caset	23 P	3 Digit Counter 160
f" Traniletor IFs	P	Maine Motor 250 RPM
Phono of Coax Pluge	14p	230 NAC
Control Knobs $1^{\prime} \mathrm{d}$		Loud Sirene by D.C.
Small Magnel	4p	ct-30 on. Buzzer Alarme
BC107/0/0	180	1.5v D.C. 4p
BC147//9	15p	5-80 Earphones
80 Earphone A Plug	18p	20 Untested AC128
Cryatal "*	4 Sp	25 Untested I.C.s 340
An Spenker 2t゙/24*	TS^{p}	50 Asstd Realators 25p
Resistore WW 5\% Prices Include	$\begin{aligned} & \times 10 \\ & \text { VA } \end{aligned}$	ms-10 Meg 2ρ each. Add Ifp Poitage.

100's of bargalns of our Lambert Rd. Componente ehop (open Saturdays). Liet No. 12. 10p or eend S.A.E.

TRAN8ISTOR TESTER. Drilled and labelled case, components, construction details and transistor data. KIT-send £4.95. BUILT5.95. Details $2 \times 9 p$ stamps. MAGENTA EDII. 61 Newton Leys, Burtion on Trent Staff S DE 15 0DW
DISCOVER ELECTRONICS. Build forty easy projects including: Metal Detector, Wireless Transmitter, Breathalyser, Radios, Stethoscope, Lie detector, Touch time switches, Burglar Alarms, etc. Circuits, plans; all for $£ 1 \cdot 29$ including FREE circuit board. Mail only. RIDLEY Photo/electronics, Box 62, 111 Rockspark Rd, Uckfield, Sussex.
I.C.s., TTL.C/Mos, Unear, Capacitors, Reaistors (E12) SIL/hectifers, Diodes, LED, Thyristors, Zenors, Voltage Reo. DIL Sochets, Bridge Rectifers, Potentiomaters. Preenta. Triace, Dlac, Pluge, Sockete, Cabie, Vero. Carefuily selectod range, excelient despalch service. same day turn round. S.A.E. List. Suppliere to A.E R.E., U.K.A.E.A., Government Depts, Schools, Unlversitien, Manutecturers. Accounte opened for trede sad smateur. doin the profesilonale, Phone by 4 p.m. Goode out 1 st clese by sp.m. Try us and prove It!

ORCHARD ELECTRONICS

Fllm Hewce. Nigh Streot, Walligeford, Oxom.

NO LICENCE EXAMS NEEDED
To operate this miniature, solid-state Transmitter-Receiver Kit. Only £9.75 plus 25p P\&P
'Brain-Freeze' 'em with a MINI. STROBE Kit, pocket-sized Jghtning fiashes', vari-speed, for discos and parties. A mere $£ 4 \cdot 10$ plus 20 p P\&P. Experiment with a psychedelic DREAM LAB, or pick up faint speech/sounds with the BIG EAR sound-catcher; ready-made multifunction modules. $£ 5 \cdot 00$ each plus 20p P\&P.
LOTS MORE! Send 20p for lists. Prices include VAT. (Mail order U.K. only).

BOFFIN PROJECTS
 4 Cunliffe Road, Stoneleigh Ewell, Surrey. (E.E.)

Educational

COURSES-RADIO AMATEURS EXAMINATION. City and Guilds. Pass this important examination and obtain your G3 licence, with an RRC home study course. For details of this, and other courses (GCE, professional examinations, etc.), write or phone: THE RAPID RESULTS COLLEGE, Dept. JRI, Tuition House, London SW19 4DS. Tel: 01.9477272 (Careers Advisory Service), or phone for a prospectus only, ring $01-9461102$ (24 hr recording service)

Books and Publications

SIMPLIFIED TV REPAIRS. Full repair instructions individual British sets $£ 4.50$, request free circuit diagram. Stamp brings details unique TV publications. Ausee, 76 Church Street, Larkhall, Lanarkshire.

WHATS THE SECRET OF MAKING MONEY? The Knowledge, and ability, that very few people possess, to undertake work in a specialised field that is crammed with opportunities. We are supplying a Manual that will enable you, in your own home, with no previous experience, to repair vacuum cleaners, drills, and portable tools, by showing in easy, step by step stages, how to diagnose faults, rewind armatures and fields and make up test equipment. 13 chapters covering test procedures, apparatus required, test charts, where to obtain materials and where to find work. Packed with diagrams and information. Get your copy now. Only £4 plus 30p P\&P. CWO. COPPER SUPPLIES, 102 Paars wood Road, Withington, Manchester 20. Dept. EEI.

Aerials

AERTALS FOR FM ATV

Types for ell bende I to V aveileble

FOR SALE-SCOPEX 4S6 oscilloscope, single beam, DC-6MHz. £80. Phone Hare: field 2725 .

DESIGN YOUR OWN MIXER. Eight program and Microphone mixer circuits. 60 p and large s.a.e. to AMC, 2 Roche Gardens, Bletchley, MK3 6HR

Miscellaneous

ELECTROLYTICS $10 \mu \mathrm{~F}-220 \mu \mathrm{~F}$ £2.00/100 P\&P 20p. J. Bruere, 17 Heald Close, Rochdale.

STYLI, CARTRDGES \& AUDIO LEAD8 ETC. For the best at keenest prices send SAE for free list to: FELSTEAD ELEC TRONICS (EE), Longley Lane, Gatley, Cheadle, Cheshire SK8 4EE

INSTRUMENT CA8Es, Loudspeaker cabinet kits, Teak sleeves for Amplifier etc. Post today for free illustrated list to Curtis Furniture, Junction Road, Totton, Hants.

CAPACITORS, MIXED, ceramic, Poly, Mica 100 , £1. Mullard C280s, 100 £1. Resistors assorted, 100, 75p. BC 107/8/9. assorted, un tested, 40 , £1. P.\&P. 25p. S.A.E. for lists. GALLOWAY, 10 Osborne Gardens, Falkirk Stirlingshire FK1 5EU

ENAMELEED COPPER WIRE

SwE	1 lb	8 Oz	40	2
14.19	$2 \cdot 40$	1.20	. 6	. 50
20-29	2.45	1.60	. 3	. 5
30-34	$2 \cdot 60$	1.70	8	64
35-40	$2 \cdot 25$	1.90	1.04	75

Inclusive of P莫D and VAT
SAE brings Catalogue of coppor and resistance
wirgs in all coveringsic WIRE COMPANY O Box ${ }^{30}$ L London E4 98W Reg. office 22. Coningsby Gardens.

IMMEDIATE BY RETURN delivery. Large range of miniature synchronous motors many speeds, 1 rev per hour to 1 rev per 2 days. $£ 1 \cdot 10$ to $£ 2 \cdot 50$ each. 3 and 4 digit mechanical counters, 45 p to 85 p . 10 amp micro switches at 20 p . SAE for list: WALES (ELECTRICAL) LTD., Queen St., Newton Abbot.

RECHARGEABLE BATTERIES

'AA' pencell (HP7) $\mathrm{Cl} \cdot 32$; Sub 'C' $\mathrm{CH} \cdot 64$; 'C' (HPII) E2-43; 'D' (HP2) E3.92; PP3 C4.96. Matehing charger E5.91 each except PP3 charger $\mathbf{4 4 . 9 9 \text { . Charging }}$ holders for $2,3,4,5$ or 6 pencells 50 p . ' C ' ' D ' size holders. 4 cell only 80 p. Prices include VAT. Add 10% post packege and insurance orders under c20. 5% over 220. 5AE for full details plus 75p for 'Nickel Cadmium Power' bookiet. Mail orders to SAN DWFLL PLANT LTD., Dept. EE. 201 Menmouth Orive, Sutton to T.L.C., 32 Craven Street, Charing Crose Lenden W.C. 2
"250/12 Vole Inverters now evailable"

GREENWELD

 443 Millbrook Road Southampton SO1 OHX Tel:(O703) 772501
TEACH-IN'78

Complete kit of parts for the New Series started last month. Everything for \&/3.50 including Post and VAT. Order Early!!

1977/78 catalogue

Big new illustrated catalogue with 50p discount vouchers! Complete range of resistors capacitors, semiconductors, knobs and boxes, etc., all at discount prices!l Only 30p + 15p post.

PC ETCHING KIT MK III

 Now contains 200 sg. The. copper clad board, 1 lb . Ferric Chloride. OALO etchresiet pen, abrasive cleaner, two miniaturedrill bitt, etching dish and Instructions EA. IS Inc. doal and VAT.

VERO OFFCUTS
Pack A, All $0.9^{\prime \prime}$
Pack C. Mixed
Pack O. All $0.1^{\prime \prime}$ plain
Each pack contalins 7 or 8 pleces with a total area of 400 sa. Ins. Each pach is $\mathrm{K1} \cdot 45$ Inc. post and VAT.

DEVELOPMENT

PACKS

Buy a complete range of componente In ane $g 0$ and ave time and moneyl! marked devicese, sent by return of post. All prices include VAT, Just add 25p post for any quantity.

Kent 50 V ceramlc plate capacitors, 5%. 10 Ki each value 220 pF to 1000 pF . Total 210 .

Kenz Extended range, 22pF to $0.1 \mu \mathrm{~F}, 330$ alues EA . m .

K0e3 Polyester capacitors 10 each of these valuen: $0.01,0.018,0.022,0.033,0.047$, $\begin{array}{lll}0.068, & 0.1,0.45,0.22, & 0.33,0.47 \mu \mathrm{~F} .110\end{array}$ allogether for et-75.

Ke4 Mylar capacitors, min 100 V type. 10 Total 130 for EA .45 .

Kows Tantalum bead capacitors. 10 each af the following: 0.1, 0.15, 0.22, 0.33, 0.47, $0.58,1,2 \cdot 2,3.3,4.7,6 \cdot 8$. all 35V, 10/25 lor E 14 -2\%.

Ken 7 Electrolytle capacitors 25 V working, mall physical size. 10 each of these popular values: $1,2 \cdot 2,4 \cdot 7,10,22,47,100 \mu \mathrm{~F}$. Totat 70 for Ej 50.

Kezt Minlature carbon film 5% resiertors. CR25 or similisr. 10 of each value from 10R to Cf . m .

Kez2 Extended range, total 850 realators rom 1R to 10M EA. 30 .

K04t Zener dlodes. $400 \mathrm{~mW} 5 \%$. BZY8s atc. 10 of each value from 27 V to 36 V . E24

Become

a radio amateur.
Learn how to become a radio amateur in contact with the whole world. We give skilled preparation for the G.P.O. licence.

Brechure, withou tobligation to
\qquad

TEACH-IN '78 COMPONENT KIT

Send for the complete set of components for the Teach-In '78 Series and we'll also send you a

FREE TEACH-IN QUERY COUPON

Send this back to us with details of any queries or problems you have about the series and our technical department will do their best to help you out.

EACH COMPONENT KIT CONTAINS

> 95 resistors $\quad 4$ potentiometers 37 capacltors $\quad 26$ semiconductors plus ferrite, speaker, wires, bulb, batteries, cable, clips and knobs etc.
everything you're going to need, specially selected and all in one package........................ $£ 16 \cdot 00$

Plus all the back-up service you'd expect from the UK's largest electronic store.

Send sae for full list of kit contents and indivicual prices.
Telephone orders accepted for Barclaycard \& Access

DENCO (CLACTON) LIMITED
 Dept. E.E.
 357-8-9 OLD ROAD CLACTON-ON-SEA ESSEX CO15 3RH

Our components are chosen by technical authors and constructors throughout the world for their performance and reliability, every coil being inspected twice plus a final test and near spot-on alignment.
General Catalogue showing full product range 34 p . Overseas Customers 70p, Air-Mail Post Paid.

U.K. \& OVERSEAS MANUFACTURERS/STOCKISTS ENQUIRIES WELCOME

Australian Readers Please NoteOur Complete Range of Coils are available from Watkin Wynne Pty. Ltd., 32, Falcon Street, CROWS NEST, 2065, AUSTRALIA. P.O. Box 392.

Beam HNCIMA:

Do something PRACTICAL about your future
Firms all over Britain are crying out for qualified people. With theright training, you could take your pick of these jobs.

Mnw, the British Institute of Enginet ing Technology will train you in hur spare time to be an Ele: trical tigineer.

You riskoothing! We promise to get ${ }^{\text {O. }}$ through your chosensourse-or, reftad vour fer

So, join the thousands who have built a new future through home study Engineering courses.

POST COUPON FOR FREE 44 PACE CUDDE BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY
 Aldermaston Court. Dept. TEE 28 Reading RG74PF.
 NAME (Block capitals please)
 adDress
 POSTCODE
 ```Other Subjects```
 AGE
 Accredited by CACC
 Member of $A B C C$

CRESCENT RADIO LTD.

MAIL ORDER DEPT. 1 St Michaels Terrace, Wood Green London N22 4SJ Phone 888-4474

MAINS INTERFERENCE SUPPRESSOR
ocsigned to reduce unwanted mains oesigned to reduce by fridges, boilers etc. The unit is fitted with a 3 -pin 13 A mains socket and 1.5 m of 3 core cable and comes housed in a black plastic box with silvet front panel.
Approx size: $116 \times 77 \times 54 \mathrm{~mm}$
Max current loading 3A.
OUR PRICE $£ 9.35 \quad$ B n.. V.A.T.

ABS PLASTIC BOXES
Ideal for the constructor. Fitted with 1 mm front panels
$1005=105 \times 73 \times 45 \mathrm{~mm}=90 \mathrm{p}$. $1006=150 \times 74 \times 47 \mathrm{~mm}=£ 1.10$ $1007=185 \times 124 \times 60 \mathrm{~mm}=£ 2.65$ $1022=107 \times 85 \times 45 \mathrm{~mm}=82 \mathrm{p}$.
(sloping front) plus 8°., V.A.T

MAINS 'KEYNECTOA.
This connecting
block connects any
electrical equip-
ment to the mains
supply in seconds.
ldeal for bench.
garare, demonsira-
tions, etc. Max.
load i 3 fused.
A bargain at $£ 5-85$

TI MULTI-METER

Ideal tester for everybody interested in elec tronics. Weighing less than 100 gm . and only $60 \times 24 \times 90 \mathrm{~mm}$
RANGES: A.C, volts: $0-10 \mathrm{v}, 50 \mathrm{v}, 250 \mathrm{v}, 1.000 \mathrm{v}$ D.C. volts: $0-10 \mathrm{v}, 50 \mathrm{v}$. $250 \mathrm{v}, 1,000 \mathrm{v}$. D.C. cur OUR PRICE: $£ 5 \cdot 80$ - 8 VA.T 50 Kohm OUR PRICE: $£ 5 \cdot 80-8$ "V.A.T
Anhydrous ferric chloride in double sealed I! poly. packs.at $£ 1.25 \quad 8{ }^{\circ}$ V.A.T. nér 16

LOW NOISE LOW PRICE CASSETTES

 8% V.A.TGood quality tanc in well made screw ivpe casselues. Presented in single plastic cases
$\mathrm{C} 60=45 \mathrm{p} ., \mathrm{C} 90-55 \mathrm{D}, \mathrm{C} 120=65 \mathrm{p}$
$10{ }^{\circ}$ DISCOUNT on ten or more cassettes of one type.

ACCESS AND BARCL AYCARD ACCEPTED - IHONE ORDERS WELCONED ACCESS AND BARCLAYCARD ACCEPTED-HHONE ORDERS WELCOMED.
ALL PRICES INCLUDE IOSTAGE-PLEASE ADD V.A.T. AS SHOWNALL WRITH ALL ENOUIRIES PLEASE
personal Calkers Welcome at: $164-166$ HIGH ROAD, WOOD GREEN, LONDON Personal Calkers Welcome at $164-166$ HIGH ROAD, WOOD GREEN. LONDON
N22. Phone: 888-3206 and 13 SOUTH MALI. EDMONTON. N9. Phone: 803-1685.

Published information on mobile audio equipment has not kept pace with the rapidly growing interest in the subject. This book fills that gap, setting out the relative merits of mono, stereo and quad in the car, and giving invaluable advice on choice and installation of cartridge and cassette players, car radios and antennas.

CONTENTS

The Car Equipment Scene. Mono, Stereo or Quad? Mobile Tape Plavers. The Cartridge Player. The Cassette Plaver. Cassette or Cartridge? Car Radios. Car Antennas. Interference Suppression. Installing the System. Trouble Shooting.

123 pages
£2.50

MORE BOOKS

A SELECTION FROM OUR WIDE RANGE

Beginner's Guide to Radio - 8th Edition
Gordon King
1977
243 pages
$\mathscr{E} .75$

Foundations of Wireless and Electronics - 9th Edition M.G. Scroggie
1975
552 pages
£3.75

Questions and Answers Riadio and Television 4th Edition - H.W. Hellyer and I.R. Sinclair
1976
123 pages
£1. 25

Questions and Answers on Transistors - 3rd Edition C. Brown

1972
$9 €$ pages
£1.00

Questions and Answers on Integrated Circuits
R.G. Hibberd

1974
96 pages
£1.00

0Newnes Technifecl Books
BOROUGH GREEN, SEVENOAKS, KENT TN15 8PH

[^0]: (5) IPC Magazines Limited 1977. Copyright in all drawings, photographs and articles published in EVERYDAY ELECTRONICS is fully protected, and reproductions or imitations in whole or in part are expressly forbidden.

 All reasonable precautions are taken to ensure that the advice and data given to readers are reliable. We cannot however guarante it, and we cannot accept legal reponsibility for it. Prices quoted are those current as we go to press.

[^1]: Prototype negative earth unit.

