Easy to buld projacts for everyone Nov. 77 40p ROIGS

Pirdhe. Dess

FITIIIUIII

 IESI:```
 #-
```


## ULTRASONTC

 REMOTE CONTROL SVSTEMM

## LOOK! Heres how you master electronics. the practical way. <br> This new style course will enable anyone to


have a real understanding of electronics by a modern, sractical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to further your career in electronics or as a selfemployed electronics engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write, at any time, for advice or help during your work. A Certificate is given at the end of every course.


## 1 Buildan oscilloscope.

As the first stage of your training, you actually build your own Cathode ray oscilloscope! This is no toy, but a test instrument that you will need not only for the course's practical experiments, but also later if you decide to develop your knowledge and enter the profession. It remains your property and represents a very large saving over buying a similar piece of essential equipment.


## 2 Read,drawand understand circuitdiagrams.

In a short time you will be able to read and draw circuit diagrams, under stand the very fundamentals of television, radio, computors and countless other electronic devices and their servicing procedures.


## 3 Carry out over 40 experiments on basic circuits.

## We show you how to conduct

 experiments on a wide variety of different circuits and turn the information gained into a working knowledge of testing, servicing and maintaining all types of electronic equipment, radio, I.v etc.

All students enrolling in our courses receive a free circuit board originating from a computer and containing many different components that can be used in experiments and provide an excellent example of current electronic practice.

To find out more about how to learn electronics in a new, exciting and absorbing way, just clip the


## British National Radio \& Electronic School

P.O. Box 156, Jersey, Channel Islands.

NAME
ADDRESS

SOUND TO LIGHT UNIT
Add colour or white light to your
amplifier. Will operate 1 . 2 or 3 amplifer. Will operate 1 (maximum 450 W . Unit In 950 VAT \& Postage


## MAINS OPERATED

 SOLENOIDS2Model TT2-small but powerful $\operatorname{lin}_{12 \mathrm{in} .} \mathrm{f} 1 \cdot \mathrm{00}$.
Model $4001 /-i n$. in. pull. Size 21
$2 \times 14 i n . ~$
E
$2 \times 14$ in. $£ 1 \cdot 50$. $\underset{24}{\text { Model TT10 }} \mathbf{2 i n}$. 14 itin. pull. Size 3 $2 \ddagger \times 2 i n .24 \cdot 50$.
Prices include $V A T$ Prices include VAT \& postage.

## PP3/PP9 REPLACEMENT MAINS UNIT

Jepanese made in plastic container
with leads size $2^{\prime \prime} \times 1^{\prime \prime} \times$ this with leads size $2^{n} \times 11^{\prime \prime} \times 1 \frac{1}{} \times$ this
is ideal to power a calculator or is ideal to power a calculatot or
radio, it has a full wave rectifled and smoothed output of 9 volts 22.53.

## 3 NEW BOOKS BY

## G. C. DODDS

Practical Test Equipment describes the theory, the construction, and the operation of 7 instruments for beginners to make from readily obtainable components:
Transistor Tester-Transistor checker-Square wave Transistor Tester-Transistor checker-Square wave tracer combined in a Multi Checker-Dual range ohm metre, the final chapter deals with a range of test leads and give more detailed notes on signal injecting and signal tracing.
blished price 750 our price 50 D .
Practical Electronic Projects describes the construction and uses of 9 projects for beginners, all made from easily obtalnable parts describes construction and operation of:-W Indscreen wiper delay-Electronic Siren-Drum beat simulator-Lamp dimmer-Light// Dark operated switch-electronic bird, emotional state
indicator-telephone ampllter-Solar powered radio. indicator-telephone amplifer- -5 .
Published price 75 p our price 50 p.
Shortwave Receivers for Beginners after a few pages of general notes on wave bands, band spreading etc, the
author gives constructional details of a one transistor author gives constructional details of a one transistor receiver with band spreading and reaction.
Published price 60 p our price 45p.
FREE. If you purchase the other two you get the


RADIO STETHOSCOPE
Easiest way to fautt find, traces, signal from aerisl to speaker, when
signal stops you've found the fault signal stops you've found the fault.
Use it on Radio, TV, amplifier. anything. Klt comprises transistors and parts includina probe tube and twin stethosset.
$£ 3.95$ VAT and postage inc. (unbe and ind postage inc.

Breakdown Parcel-four unused, made for computor units containing most useful components, and these computor panel, have wire ends of usable putor Danel, have wire ends of usable have leads over $1^{\text { }}$ " long-the diodes have approx. t" leads.
List of the major components is as follows:-17 assorted transistors- 38 assoried diodes- 60 assorted resistors and condensers- 4 gold plated plugs in units which can serve as multipin plugs or as hook up boards for experimental or guickly changed circuits (note we can supply
the socket boards which were made to receive these units). The price of this four units parcel is il Including VAT and post (considerably less than value of the transistor or diodes aione) DON'T MISS THIS
SPLENDID OFFER.

MINI-MULTI TESTER


Amaxing, deluxe pocket slze precition moving coll instru-
ment-tewelied bearings- 1000 opv-mirrored scale.
11 Instant ranges measure:-
DC volts $10,50,250,1000$ DC volts $10,50,250,1000$
AC volts $10,50,250,1000$ AC volts $10,30,250,1000$
DC amps $0-1 \mathrm{~mA}$ and $0-100$ DC amps 0.1 mA and $0-100 \mathrm{~mA}$ Continuly
150 K ohms Complete with insulated probes, leads, battery, clrcut diagram
and instruction, and instructions.
only $\mathbf{2 5 . 5 0 p}+$
Unbelievab
insurance.

## FREE

Amps ranges klt enable you to read AC and DC current from $0-10$ amps, directly on the $0-10$ scale. It's free if you purchase quickiy but if you giready
mini tester and would like one send $£ 1 \cdot 500$.

## MULLARD UNILEX

A mains operated $4+4$
stereo system. Reted one stereo system. Rated one of the inest performers
in the stereo field this in the stereo field this for almost any one in easy-to-
 assemble modalat form and Plessey speakers this should sell at about e30-but due to a special bulk buy and as an incentive for you to buy this month we offer the system complete at only
$\mathbf{1 1 4 . 0 0 \text { includiag } V A T \text { and postage. }}$

## DISTRIBUTION PANELS

Just what you need for work bench or lat. $4 \times 13 \mathrm{amp}$ sockets in metal box to take standard 13 amp fused
plugs and on/off switch with plugs and on/off switch with
neon warning light. Supneon warning light. Supneon warning fied complete with 6 feet of ncx cable. Wired up ready to work. \& $2 \cdot 75$, VAT \&
postage 85 p.

## SHORTWAVE CRYSTAL SET

Athough this uses no battery it
gives really amazing results. You will receive an amazing assortment of stations over the 19, 25, 29, 31
metre bands. Kit contains chassls front pancl and all the parts $\& 1 \cdot 90$ VAT and postige.

## ROOM THERMOSTAT

Famous Satchwell, elegant design, intended for wall mounting. Will switch up to 20 amps Special snlp this month $£ 2.50$, rast and YAT Specia
paid.

MAINS RELAYS
 With triple 10 amp changeover con-
acta-operating coil wound for 230 cacta-D Derating coil wound for 230
volts AC
chas sia mounting one Yolts AC. chassia mounting, one 60 c cach. 10 for 35 post and VAT ${ }^{600}$ pald.
TEACH IN 78
Start right away. Order the parts for this series-send $£ 3$ deposit and $£ 2$ monthly for 5 months or $£ 12$ cash

## CENTRAL HEATING

## HEARTS

Randal (dilustreted) replace-
ment in 3060 etc. $\mathbf{2 6}$.75.
ment in 3060 erc. 36.7
HORTSMAN $26 \cdot 30$.
SMITHS Controller 101100
complete in
casc $£ 7 \cdot 50$.

## THIS MONTH'S SNIP

## HI FI RECORD PLAYER



Stereo
channel. Russian per but guaranieed repairabic. Travel damaged or test line reiects, in need of attention, consist of mains operated record deck-mounted in wooden .Dllnth with super 10 walt
amplifier Controls are, "on/off"' "Tape/phone" "Volume". We are offering these at price of record deck only so are a bergain not to be missed onl, $\mathbf{8 6} \mathbf{7 5 \mathrm { D }}$. post £2.00p. Note cartridge arid all spares are avallable at

TANGENTIAL HEATER UNIT A most eftacient and quiet running blower-heater by Solato many famous name heaters -Comprises mains induction motor-long turbo fan-split 2 kw heating element and thermostatic safety iripsimply connect to the mains for immediate heat-mount in a simple wooden or
metal case or mount direct metal case or mount direct onto base of $35 y$ kitchen unit

- price 44.95 post $£ 1.50$ control switch to give 21 kw . 1 kw , cold blow or oft avallable 60p extra.
TERMS8 Cash with order-but orders under 26 BULK ENQUIRIES INVITED. PHONE: 01-6881833


## IT'S FREE

Our monthly Advance Advertising Bargalns List gives details of bargains arrivint or just arrived-often bargalns which sell out before our advertisement can appear-it's an interestare a few of the Bargains still available from previous linas.
Spares: for Party Times. Circuit diagrams-50D, Cartridges $£ 2 \cdot 25$, Record mats 85 p . Mains transformer £3-00. Amplifiers $\& 2 \cdot 50$, Gram motors $\$ 3 \cdot 00$.
Ask about any other spares you require-and when you have it working o.k. we can supply the proper Party and VAT.
250 watl Malns Transformers-40v secondary, made up of four 10 v sections, all the ends of which are brought out to the tag panel, so they can be separated if required noushe 10 v coils are all a very heavy gauge wire. thick be loadec up to the full 250 wats. or this wattage can be spreac over two or more colls. We can recommend this transformer for heavy duty battery charging-high power amplifier-plastic sealing-soll heating-light welding and dozens of other lobs. Price. still only $\mathbf{~} 4 \cdot 50$ +36 p . Post E1-50 + 12D
Save Yourself A Fortune. Build your own rechargeable batteries; using our ex-Home Office nickel cadmium cells-these cells are German made, ref. NCB 22M, Which we understand are $\frac{1}{\frac{1}{2}}$ amp hour reting. Normally, these cells retail at about $£ 1 \cdot 00$ each, but a special pur-
chase enables us to offer them at only 30 each, or four for $\mathrm{EI} \cdot 0 \mathrm{E}$. Post $30 \mathrm{D}+3 \mathrm{D}$. or 21 .
Free Gift: All those who purchase 12 cells, will receive, free of charge, a mains operator ni-cad charger unlt. DON Tiss this ofter
Self Repalring Fuses-not exactly; but our magnetic circuit breakers do the same job and are a boon for the test bench, saving valuable time. In the event of a short. they trip almost instantly, before the fuse can
blow. They are rated at 1.5 amps (enough for the average repair bench). Simply wire it in parallel with your bench switch-you would then use the circuit breaker to switch bench supply on, but keep your normal switch for loads over 1.5 amps-a real bargain at $1 \cdot 00+8 \mathrm{p}$.
9v-0-9v Malns Transformer. "C" core construction, $\$$ amp continuous rating. Very compact, but there is or to change the a few extra turns for an extra winding. former uses a separate bobbin for the secondary-its not varnished so if you want a special voltage transformer quickly, then this could be the answer. Price $£ 1 \cdot 50+12 \mathrm{p}$. Post $20 \mathrm{D}+2 \mathrm{D}$.
6-5v.0.6.5v Mains Transformer. Continental make, but has 3 tandard $230 / 40 \mathrm{v}$ 50hz primary and is upright mounting, and is rated at 0.75 A . Price $21 \cdot 75+14 \mathrm{~d}$. Post $20 p+2 p$.
Multcore Flex Cables: 14 coloured coded cores. rated at 3 amp , with circular p.v.c. outer-suitable for module inter-connections etc. 10 meter coil $11 \cdot 00+8 \mathrm{D}$.
Sub-Miniature Variable Resistor. 500 ohms, p.c.b.
mounting, have had dozens of applications. 10 for $\mathbf{2 1} \cdot 00$ +8 p .
This has aclay. American made (EIM EC), ref. no. V. 5.2 aerial switching and similar applications. Price 22.50 +20 p . Post $60 \mathrm{p}+5 \mathrm{p}$. Operation is by coll over one arm-we do not include the coil, nor do we have any
in stock. but they are promised: watch future New: In stock. but the
Rotary Switch. Heavy duty-made for switching d.c., these will make and break really high a.c. currents. We guess these at 30 or more amp-we have type (A) cover engraved on/off. Price $\$ 1 \cdot 00$. (B) cover ensraved "on", "high". "off". "low". Six wires can be brought to the and in the other position, 1 to 3 and 2 to 4 . Prices: and in the other position, 1 to 3 and 2 to 4. Prices: (A) $21.00+8 \mathrm{p}$. (D) $2150+12 \mathrm{D}$.

Motor with Fan Blades, mains operated, nicely made motor with long bearing for quiet operatlon and good quality set of fan blades, made by Smiths (air moving 14 gauge (clothes line) wire, you then have a simple but efticient sesk fan. Or if you fit this behind a heating lement. In box, you have a fan heater. Price of motor and fan, $22 \cdot 50+32 \mathrm{p}$. Post $50 \mathrm{p}+6 \mathrm{p}$.
Malns Driven Blowers: all have square or oblong outlets for easy fitting to cabinet or trunking. We have a smali one, outlet size approximately 2 square, made by Woods. This is a centrifugal type of blower, Price $\& 4 \cdot 00$ + 50D. Post 20p +30 . We also have a larger unit, made by Smiths, outlet size $303 \frac{1}{2}^{\circ}$. Actually it is a simple matter to stand this on a shelf or counter, put feew paper streamers to the oute and you start of harme wey inside the casing. Price $55.75+46 \mathrm{D}$. Post $80 \mathrm{p}+6 \mathrm{p}$.
This Menth's Special Lighthe Snipe-camplng or emergency lights, thll made up ready to loin to your
 Post 50D $+4 D$

## BLACK LIGHT

As used in disco's and stage effecte etc.-Wirtually no white light appear untll rays impinge on white collars and cuffs etc-we offer mains B.L. lampi, 173 watts plugs into any lamp holder requires no choke or control gear price $47.00+95 \mathrm{p}$ post and VAT or for glamorsing rock epectmens, looking for watermarks all for $44-50$ post and VAT paid

MB ELECTRONICS
22 Newland Street, Kettering, Northants. Mail order, phone Kettering 83922. All other enquiries Kettering 520910.
Shop open, Monday to Saturday 9.00 to 6.00 . Early closing Thursday 1.00 p.m. Closed daily for lunch 1.00 to 2.00 .

PROBABLY THE LARGEST ALL ELECTRONICS STORE IN THE UK WITH 1000's OF SQUARE FEET DEVOTED TO THE BEST IN CONSTRUCTIONAL ELECTRONICS.

## TEACH-IN '78 COMPONENT KIT

Send for the complete set of components for the
Teach-In '78 Series and we'll also send you a

## FREE TEACH-IN QUERY COUPON

Send this back to us with details of any queries or problems you have about the series and our technical department will do their best to help you out.

## EACH COMPONENT KIT CONTAINS

> 95 resistors $\quad 4$ potentiometers
> 37 capacitors $\quad 26$ semiconductois
> plus ferrite, speaker, wires, bulb,
> batteries, cable, clips and knobs etc.
everything you're going to need, specially selected and all in one package.........................£16•00

Plus all the back-up service you'd expect from the UK's largest electronic store.

Send sae for full list of kit contents and individual prices.



| SEND STAMP ADDRESSED ENVE USE ACE ORDER FORM CONTAIN ELECTRONIC COMPONENTS AT FREE ON ORDERS OVER £2, OTH GUARANTEED ONE YEAR IF CORP FROM THE COMPETITIVE ACE PRICES ARE SH | LOPE NOW FOR THE EASY TO ING 500 TOP QUALITY POPULAR PRICES YOU CAN AFFORD. P\&P HERWISE 20p. ALL PROOUCTS RECTLY USED. SOME EXAMPLES RANGE WITH VAT INCLUSIVE OWN BELOW |
| :---: | :---: |
| BC 107/108/109 Metal _ 13p | 1,W Resistors CF $25 \%$ [ 3 for $6 p$ |
| BC207/208/209 Plastic $\quad 11 \mathrm{p}$ | Minpresets Horiz/vert._ \&p |
| 2N3055 65p | Electrotytic 100, $\mathrm{F}^{25 \mathrm{v}}$ [10p |
| 741 Op Amp-8pin 30p | Polyester C280 0-1, $\sqrt{2}$ |
| 555 Timer $\quad 50 \mathrm{p}$ | LED Red 0.2-_15p |
| W04 1A Bridge _ 31p | Phono plugs . 8p |
| 7400 TTL 15p | Mintoggle SPST $\quad 800$ |
| IN4148 Diode ___ 4 P | Wire-PVC Stranded 10m 25p |
| IN 4001 Rec ___ 5p | Veroboard $0.12 .5 \times 3.75 \quad 500$ |
| BZY88 Zeners _ 12p | S-DEC Breadboard $216 p$ |

## CRESCENT RADIO LTD. <br> MAIL ORDER DEPT. 1 St Michaels Terrace, Wood Green

 London N22 4SJ Phone 888-4474
## MAINS INTERFERENCE SUPPRESSOR

Designed to reduce unwanted mains interference caused by fridges, boilers. etc. The unft is ftted with a 3-pin 13A mains socket and 1.5 m of 3 core cable and comes housed in a black plastic box with silver front panel.
Approx size: $116 \times 77 \times 54 \mathrm{~mm}$.
MUR PRICE ${ }^{\text {E } 9.35}+8 \%$ V.A.T.


ABS PLASTIC BOXES
Ideal for the constructor. Fitted with imm front panels.
$1005=105 \times 73 \times 45 \mathrm{~mm}=82 \mathrm{p}$. $1006=150 \times 74 \times 47 \mathrm{~mm}=11 \cdot 00$ $1007=185 \times 124 \times 60 \mathrm{~mm}=52 \cdot 20$ $1022=107 \times 85 \times 45 \mathrm{~mm}=82 \mathrm{p}$.
(sloping front) plus $8 \%$ V.A.T
BARGAIN TRANSFORMERS 240v PRIMARY-12-0-12v $500 \mathrm{~m} / \mathrm{A}$ SEC. Approx. size: $60 \times 40 \times$ 50 mm . Fixing centres: 75 mm .

PRICE: 11.80 + 8\% V.A.T.
Also available MAINS TRANSFORMER with $18 v$ 500mA SEC. Price and size same as above.

BARGAIN PROJECT BOX A plastic box with moulded extrusion rails for PC or Chassis pancls, with metal front plate fitted with four screws (all supplied). Internal size: $81 \times 51 \times 28 \mathrm{~mm}$.
OUR PRICE: $70 p+\varepsilon \%$ V.A.T.

POWER SUPPLY UNIT TYPE "PP1"
Switched 3. 44, 6. 7t, 9 With 12 volts a: 500 mA pllot light. $\times 55 \mathrm{~mm} \times$ Size: 130 mm 75mm approx.
OUR PRICE:
OUR PRICE:
Only $26 \cdot 00+8 \%$ V.A.T.

PLEASE ADD 8\% VAT UNLESS OTHERWISE STATED


RED LED: (Min. type) 5 for 70p.
vioicon scan cails Iransistor tion bur data) complete with vidicon base fe fe. 50 each data) comple
Brand Now

FULL RANGE OF BERMARDS/BABANI ELECTRONICS BOOKS IN STOCK. S.A.E. FOR LIST.
NEW FOR TME VHF CONSTRUCTOR, A range of tuned circuits on formers with slugs end screaning funed circuits on formers with slugs and screoning can de greatly extended by using varying capacitors in parallel.
Type S (ttin, square, aumpy typel)
Type SA 20 to $30 \mathrm{MH}_{2}$ (when 33pl fitted In paralle)).
Type SB 35 to 50 MHz (with link winding).
Type SD 135 to 175 MHz (with link winding)
Type M (M.n. Jin. square hroes).
Type MA 19 to 28 MHZ (when 330 FFfred in parallel).
Type ME 22 to 32 MHz (when 33 pF fited in parallel). Type ME 22 to 32 MHz (when 33pF fitted in parallel))
Type MC 25 to 35 MHz (when 33pF fitted in parallel) Type MC 25 to 35 MHz (when 330F fitted in parallel)
Type MO 38 to 50 MHz (when 330F fitted in parallel) Type ME 45 to 60 MHz (when 33 pF sitted in parallel). Type MF 100 to 200 MHz (without slug) when 0 to 30 pF variable fitted in parallel.
Ast the above coils available As the above colls avaingle in packs of five only (same
type) al sop per pack of 5 .

PLASTIC PROJECT BOXES with screw on lids (in black ABS) with brass inserts. Type NB1 approx 3 in . $x 2 \dot{\mathrm{in}}, x i \not \mathrm{in}$. 40 p each. Type NB2 approx. $3 \mathrm{iln} . \times 24 \mathrm{in} \times 1 \mathrm{in}$. 50 p each.
Type NB3 approx. $4 \mathrm{in} . x 3 \mathrm{in} \times 1 \mathrm{in} .60 \mathrm{peach}$ Type NB3 approx. 4 in . $x$ 3ilin. $x$ ifin. 60p eac (Brand New) 70p each or 2 for $\$ 1.20$. TO3 Uansistor insulator sets. 10 for 50p

BSX20 (VHF Osc/Mult). 3 for 50 p . BC 108 (metal can) 4 for 50 p . PBC108 (plastic BC108), 5 for 50 p . BFY51 Transistors, 4 for 80 p .
BCY72 Transistors, BCV72 Transistors. ${ }^{4}$ for 50 p
PNP audio type TOS Transisiore, 12 for 25p. BF 152 (UHF gmp mixer), 3 for 50 p . 2N38 t9 Fet. 3 for 80 p .
BC148 NPN SILICON 4 for 50 p .
BC158 PNP SILICON 4 for 50 p .
BC158 PNP SILICON 4 for sop.
Bay31 Signal Diodes. 10 for 3 3p.

## PLEASE ADD 8\% VAT UNLESS OTHERWISE STATED

## 74iCG op amps by RCA. 4 for $\mathrm{C1}$

PERSPEX TUNER PANELS (tor FM Band puners) marked $88-108 \mathrm{MHz}$ and Channels $0-70$ clear numbers, rest blacked out, smart modern 35p.

## Plugs and sockets

N-Type Plugs 50 ohm, 60 p each, 3 for $£ 1.50$. PL259 Plugs (PTFE), brand now, packed with SO239 Sockets (PTFE) tyot) 50 p each
SOLDER SUCKERS
Model © SUCKERS (Plunger type). Standard Model, 45. Skirted Model $55 \cdot 50$. Spare Nozzle
sop

WELLER SOLDERINGIRONS
EXPERT. Built-in-spotlight illuminates work. Pistol grip with fingertip trigger. High efficiency COPper soldering tig.
EXPERT SOLDER GUN KIT EPare bis ceso etc.) 12 -90. Spare bits 33o pair
NEW MARKSMAN RANGE OF SOLDERING IRONS
S115D 15W 240 V t3. 80
S145D 25 W 240 V E3.80
S125DK $25 \mathrm{~W} 240 \mathrm{~V}+$ bits etc., KIT E4.90
SPECIAL 12 V version Si25-12 25W 12 V E3-80 BENCH STAND with spring and sponge for Marksman frons [2. 34 . MT10 (for 40 W ) 50 p .
ALL PRICES + B\% VAT.
TCP2 TEMPERATURE CONTROLLEOIRON
Temperature controlled lion and PSU. $500+$ VA
( $\mathrm{C} 2-40$ ).
Type CC single flat. Type $K$ double flap line tip. Type P. very line tip. IT each + VAT (80).

MULTICORE SOLOEA
Size 5 Savbit 18 s.w.g. in alloy dispenser
$32 p+$ VAT (3p).
Size C1SAV18 Savblt 18 s.w.g. $56 p$ - VAT (40)


14 OIL REEO RELAYS, 5 to 12 V OC, 450 ohm coil. Oesigned to work directly from TTL Logic. Single Pole Change over. Contact ratings $28 \mathrm{~V}+\mathrm{A}$ W. $\{1.75$ each

ALARGE RANGE of CAPACITORS aVaILABLE AT BARGAIN PAICES, S.A.E. FOR LIST.
MIXED COMPONENT PACKS, COntaining
Pesistors, capacitore, pots. etc. AII new. Hundreds of tems. is per pack. while stocks last.
ALU-SOL ALUMINIUM SOLDER (made by Multicore). Soldera aluminium to itsell of copper, brass, tetel, nickel or tinglate, 16 s.w.g with multicore flux. with ins ructions. Approx. motre coll 40p pack. Large real E2-75. VARICAP TUNERS Mullard type ELC 104305.

BARGAIN PACK OF LOW VOLTAGE ELECTROLYTIC CAPACITORS. Up to 50 V working. Seatronic Manufacture. Approx. 100 E1. 50 per pack +12$\} \%$ VAT.
OSMOR REEO RELAY COILS (for reed relays up to in dia., not supplied) 12 V . 500 ohm coil. 2 for sop.

We now stock Spiralux Tools for the electronic enthusiast. Screwarivers, Nut spanners, BA and Metric ines. pop rivet guns, etc. S.A.E. for list TWIN I.F, CANS, approx. Iin. $x$ tin. $x$ lin. high. around $3.5-5 \mathrm{MHz}, 2$ separate transformers in ean. Internally screened, 5 for $50 \mathrm{p}+12 \% \%$ VAT.
Oubiller Electrolytics. $50 \mathrm{uF}, 450 \mathrm{~V}, 2$ for 50 p .
Dubiliar Electrolytics, $100 \mu \mathrm{~F}, 275 \mathrm{~V}, 2$ for 50 p . Plessey Electrolytics. $470 \mu \mathrm{~F}, 63 \mathrm{~V}, 3$ for 50 p TCC Electrolytics. $1000 \mathrm{\mu F}, 30 \mathrm{~V}, 3$ for 60 p . Dubilier Electrolytics, $5000 \mu \mathrm{~F}$. $35 \mathrm{~V}, 50 \mathrm{p}$ each Oublier Electrolytics, $5000 \mu \mathrm{~F}$, $50 \mathrm{~V}, 60 \mathrm{p}$ each. iTP Eiactrolytics. $6300 \mu \mathrm{~F}, 25 \mathrm{~V}$, high grade, screw
terminals, with mounting cllps. 50 p each. PLEASE ADO $12 \| \%$ VAT TO ALL
CAPACITORS.
TV PLUGS ANO SOCKETS
TV Plugs (metal type), 4 for sop.
TV Sockels (metal type), 4 for $\$ 0$.
V Une Connectors (back-to back sockets), 410 50p.

Terms of Business: CASH WITH ORDER. MINIMUM ORDER E2. ALL PRICES INCLUDE POST \& PACKING (UK ONLY). SAE with ALL ENQUIRIES Please. please add vat as shown. all good in stock despatched by return. callers welcome by appointment only

## You can work wonders with your free time.

There's immense satisfaction in making your own equipment. And you'll get excellent results with Heathkit.

Every kit is absolutely complete down to the last nut and bolt. The quality is the best. And each kit has an easy to follow instruction manual that explains exactly what to do at each step.

So you enjoy assembling your kit and you finish with first-class equipment every time.

That's why Heathkit are so successful. And that's why the range is the biggest in the world.

It's all in the new edition of the free Heathkit catalogue. Everything from the simplest to the most sophisticated. Alarms, digital clocks, testers, transceivers and lots more . . . even the tools are there!

See for yourself. Send the coupon now.

## NEW CATALOGUE

NEW TEST INSTRUMENTS
NEW DIGITAL BATHROOM SCALES NEW AMATEUR RADIO EQUIPMENT NEW AUDIO SYSTEMS AND MANY OTHER NEW ITEMS



## The new Heathkit catalogue. Out now FREE

To: Heath (Gloucester) Ltd..Dept. EE-117, , Giloucester: GL2 2 6EE. Please send me my Heathkit catalogue. I enclose an 11p stamp for postage.

## Postcode

Showrooms at 233 Tottenham Court Road, London (Phone 01.636 7349) and Bristol Read, Gloucester (Phone Gloucester 29451).

## PAKS-PARTS-AUDIO MODULES

## PANEL METERS

| 4" RANGE |  |  |
| :---: | :---: | :---: |
|  |  |  |
| Value | No. | Price |
| 0.50 U | 1302 | 64.50 |
| 0.100UA | 1303 | 64.50 |
| 0.500 UA | 1304 | 64.50 |
| 0.1MA | 1305 | 66.00 |
| 0.50 V | 1306 | 56.00 |
| 2 RANGE |  |  |
| Sire 2t" $\times 1 z^{\prime \prime} \times 1 t^{\prime \prime}$ |  |  |
| Value | No. | Price |
| 0-50UA | 1307 | 63.50 |
| - looua | 1308 | 63.50 |
| 0-500UA | 1309 | 63.50 |
| 0.1MA | 1310 | 63.50 |
| 0.50V | 1311 | C3. 50 |
| MR2P TYPE |  |  |
| Size $42 \times 42 \times 30 \mathrm{~mm}$ |  |  |
| Value | No. | Price |
| 0.50UA | 1313 | 64.80 |
| 0.1 MA | 1315 | 6320 |
| EDGEWISE |  |  |
|  |  |  |
| Value | No. | Price |
| O-IMA | 1316 | 44.05 |
| 0.500 UA | 1317 | 44.05 |
| miniature |  |  |
| BALANCE/ |  |  |
| TUNING METER |  |  |
| Size $23 \times 22 \times 26 \mathrm{~mm}$ Sensivity 100/0/100 MA |  |  |
| No. Price |  |  |
| 1318 C.1.95 |  |  |
| BALANCE/TUNING |  |  |
| Size $45 \times 22 \times 34 \mathrm{~mm}$ Sensitiviey 100/0/100UA |  |  |
| No. |  | Price |
| 1319 |  | 62.00 |

## MIN. LEVEL METER

Size $23 \times 22 \times 26 \mathrm{~mm}$
Sensitivity 200UA
No.
1320
C1.95

Vu Meter
Size $40 \times 40 \times 29 \mathrm{~mm}$
Sensitivity IJOUA
No.
No.
1321
Price
$<2.00$

## MINI

MULTI-METER
Size $60 \times 24 \times 90 \mathrm{~mm}$
Sensitivity 1000 ohms/V
AC VOLTS $0.10,50,250,1000$ DC VOLTS $0.10,50,250,1000$ DC CURRENT 0-1-100mA
Resistance $0-150 \mathrm{~K}$ ohms No.

Price
65.95
P\&P
Postage and Packing add 25p unless otherwise shown. Add extra for airmail. Minimum order

95

TRANSISTORS


7
7
7
7
7
7

| Type | Price | Type | Price | Trpe | Price | Type | Price | Type | Price | Type | Price |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7400 | 0.14 | 7409 | 0.15 | 7441 | 0.64 | 7482 | 0.35 | 7493 | 0.40 | 74122 | 0.50 |
| 7401 | 0.14 | 7410 | 0.14 | 7442 | 0.64 | 7483 | 0.95 | 7494 | $0 \cdot 8$ | 74123 | $0 \cdot 70$ |
| 7402 | 0.15 | 7411 | 0.21 | 7445 | 0.90 | 7484 | 0 - | 7495 | 0.75 | 74141 | 0.80 |
| 7403 | 0.15 | 7412 | 0-2] | 7446 | 0.90 | 7485 | 1.20 | 7496 | 0.80 | 74154 | 130 |
| 7404 | 0.15 | 7413 | 0.27 | 7447 | 0.78 | 7486 | 0.30 | 74100 | 1.00 | 74180 | 1.10 |
| 7405 | 0.15 | 7414 | 0.58 | 7448 | 0.80 | 7489 | 2.20 | 74110 | 0.50 | 74181 | 2.00 |
| 7406 | 0.30 | 7416 | 0.28 | 7475 | 0.48 | 7490 | 0.42 | 74118 | 0.90 | 74190 | 1.50 |
| 7407 | 0.30 | 7417 | 0.28 | 7480 | 0.50 | 7491 | 0.75 | 74119 | 1.85 | 74198 | 2.00 |
| 7408 | 0.15 | 7440 | 0.15 | 7481 | 0.95 | 7492 | 0.45 | 74121 | 0.30 | 74199 | 1.90 |

## CMOS IC'S

| Type | Pr |  |  |  |  |  | Price | Type | Price | Type | Price |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CD400 | 0.20 | CD4012 | 0.20 | CD4022 | 0.98 | CD4031 | $2 \cdot 20$ | 304046 | 10 | CD4071 | 0. 23 |
| CD4001 | 0.20 | CD4013 | 0.52 | CD4023 | 0.20 | CD4035 | 1.30 | CD4047 | 10 | CD4072 | 0.23 |
| CD4002 | 0.20 | CD4015 | 0.98 | CD4024 | 0.80 | CD4037 | 0.05 | CD 4049 | 0.55 | CD4031 | 0.22 |
| CD4006 | 0.98 | CD4016 | 0.52 | CD4025 | 0.20 | CD4040 | 0.05 | CD 4050 | 0.55 | CD4042 | 0.23 |
| CD4007 | 0.20 | CD4017 | 0.98 | CD 4026 | 1.95 | CD4041 | 0.12 | CD4054 | 1.20 | CD4510 | 1.30 |
| CD4008 | 0.98 | CD4018 | 1.00 | CD4027 | 0.80 | CD4042 | 0.62 | CD4055 | 65 | CD4511 | 1.60 |
| CD4009 | 0.58 | CD4019 | 0.35 | CD4028 | 0.98 | CD4043 | $0 \cdot 98$ | CD4056 | 1.35 | CD4516 | 1.40 |
| CD4010 | 0.58 | CD4020 | 1.10 | CD4029 | 1.15 | CD4044 | 0.94 | CD4069 | 0.40 | CD4518 | 1.25 |
| CD4011 | 0.20 | CD4021 | 0.98 | CD4030 | 0.55 | CD4045 | 1.40 | CD4070 | 0.40 | CD4520 | 1.25 |

## LINEAR IC'S



## NEWNES TECHNICAL BOOKS

No. 229 Beginners Guide to Electronics. Price $22 \cdot 254$

No. 230 Beginners Guide to Television. Price $\mathbf{2} \cdot 25 \dagger$

No. 231 Beginners Guide to Transistors. Price ©2.25t

No. 233 Beginners Guide so Radio. Price $2 \cdot 25 \dagger$

No. 234 Beginners Guide to Colour Television. Price $\mathbf{6 2} \cdot \mathbf{2 5} \uparrow$

No. 235 Electronic Diagrams Price $\mathbf{E 1}$-80†

No. 236 Electronic Components Price $£ 1$ 08

No. 237 Printed Circuic Assembly Price $\mathbf{E 1}$-08 $\uparrow$

No. 238 Transistor Pocket Book. Price $\{3.90 \dagger$

No. 225110 Thyrlstor Projects Using SCRs \& Triacs. Price $\mathbf{£ 2} \cdot 50 \dagger$

No. 227110 COS/MOS Digital IC Projects For the Home Conscruc. cor. Price E2.25

No. 226110 Operational Amplifier Projects for the Home Conseructor. Price $\mathbb{2} .504$

No. 242 Electronics Pocket Book. Price 13. $^{2}$ 75 $\dagger$

No 23930 Photoelectric Circuics \& Systems. Price $\& 1.80 \dagger$

## ORDERING

PLEASE WORD YOUR ORDERS EXACTLYAS PRINTED. NOTFOR. GETTING TO INCLUDE OUR

## VAT

ADO $12 t \%$ TO PRICES MARKED. ADO $8 \%$ TO OTHERS EXCEPTING THOSE MARKED $\dagger$. THESE ARE ZERO RATED

Just a selection from our huge stocks!

## SEE OUR

1977 CATALOGUE
126 pages packed with valuable information

## ORDER NOW

ONLY 50p plus 15p p \& p

## E.E. TEACH-IN-KIT

BI-PAK OFFER YOU A
FULL KIT OF PARTS
(LESS BATTERIES) WHICH WILL ENABLE YOU, SUCCESSFULLY, TO COMPLETE ALL THE TO COMPLETE ALL THE
PROJECTS IN THIS PROJECT
COURSE.
ONLY £11.50 incl. V.A.T. \& P.P.

## EDITOR

F. E. BENNETT

## TECHNICAL EDITOR

B. W. TERRELL B.Sc.

TECHNICAL SUB-EDITOR
T. J. JOHNSON GBMGS

## ART EDITOR

J. D. POUNTNEY

## TECHNICAL ILLUSTRATOR

## P. A. LOATES

## GENERAL ARTIST

K. A. WOODRUFF

## EDITORIAL OFFICES

Fleetway House
Farringdon Street
London EC4A 4AD
Phone: 01-634 4452

## ADVERTISEMENT MANAGER

D. W. B. TILLEARD

Phone: 01-634 4504

## REPRESENTATIVE

P. J. MEW

Phone: 01-634 4181

## CLASSIFIED MANAGER

C. R. BROWN

Phone: 01-261 5762
MAKE-UP AND COPY
DEPARTMENT
Phone 01-634 4372

## ADVERTISEMENT OFFICES

Fleetway House
Farringdon Street
London EC4A 4AD

# Projects...Theory... 

## and Popular Features ...

We endeavour to present all our p:ojects in such a way so that anyone with but a rudimentary knowledge of electronics will be able to build them successfully. The one special skill needed is in soldering. With today's small components a correspondingly small soldering iron is essential and therefore the whole operation demands a fair degree of finesse. Once equipped with the right kind of instrument and a few small tools, practice will make perfect.
How to solder was explained in the opening part of Teach-In 78, last month, and newcomers should certainly study the relevant sections of that article before tackling their first constructional project. As regards the soldering iron, we are happy to give details of a Special Offer to everyday electronics readers-see page 124.

Ultrasonics provide a way of communicating over short distances without interconnecting leads. This technique also keeps us free of licensing regulations. Using sound pressure waves, we find that the air is literally free!
Commercial examples of this use of ultrasonics are commonplace in the form of remote control units for television sets. Other applications will r.o doubt occur to our readers. We only offer a few suggestions in this month's article Ultrasonic Remote Control System, because this is obviously an opportunity for individual ideas to be generated.

All details of the construction of the two units involved in this system will be covered in two articles. The first article describes the transmitter; next month the receiver unit will be covered. So while building the first unit, start considering exactly how you will use this system. You will then be prepared with ideas for any ancillary circuitry and electro-mechanical devices that may need devising to meet the particular need.
(An open-ended project such as the Ultrasonic Remote Control System is especially valuable since it encourages further involvement by the constructor other than just following a published design.)

The more immediately obvious applications will be those where electrically operated equipment is simply switched on or off remotely. No great problems here, and the specified receiver relay will cope with a load of up to 1,200 watts. But there are bound to be possible applications where the electrical signal is required to be translated into some form of mechanical action-with the aid of intermediary electric motors or such like. Electronic constructors with a mechanical bent will find something to get their teeth into in solving the electro-to-mechanical interface in such cases.


Our December issue will be published on Friday, November 18. See page 123 for detalls.

[^0]
CONSTRUCTIONAL PROJECTS
ULTRASONIC REMOTE CONTROL SYSTEM
Part 1: The Transmitter. For remote control of electrical appliances by R. A. Penfold ..... 104
PROBE-LESS CONTINUITY TESTER
A handy piece of equipment for the home and workshop by C. J. Mair ..... 109
V.H.F. PORTABLE RADIO
For reception of amateur and broadcast transmissions within the range 55 to 198 MHz by F. G. Rayer ..... 125
FIND THE PAIR An ideal fund-raiser for school and church fetes by F. G. Saddler ..... 131
GENERAL FEATURES
EDITORIAL ..... 102
SHOP TALK Component buying for constructional projects by Brian Terreil ..... 108
SQUARE ONE Identifying components-resistors and capacitors ..... 112
FOR YOUR ENTERTAINMENT Hi fi journalism by Adrian Hope ..... 113
PLEASE TAKE NOTE Probophone, Enlarger Timer, Treasure Locator (see Shop Talk) ..... 113
PHYSICS IS FUN A.c. measurement by Derrick Daines ..... 114
BRIGHT IDEAS Readers' hints and tips ..... 115
TEACH-IN 78 Part 2. Module construction and experiments by George Hylton ..... 116
SOLDERING IRON SPECIAL OFFER A money saver for E.E. readers ..... 124
READERS' LETTERS Your news and views ..... 130
JACK PLUG AND FAMILY Cartoon ..... 130
PROFESSOR ERNEST EVERSURE The Extraordinary Experiments of. by Anthony J. Bassett ..... 135

Back Number Service and Binders
Back issues of EVERYDAY ELECTRONICS (June 1977 onwards) are avallable worldwide at a cost of 60 p per copy inclusive of postage and packing. Orders and remittance should be sent to: Post Sales Department, IPC Magazines Litd., Lavington House, 25 Lavington Street, London SE1 OPF. Binders for Volumes $i$ to 6 (state which) are available from the above address for $\boldsymbol{£ 2} \cdot \mathbf{1 0}$ inclusive of postage and packing.

[^1]

By R. A. Penfold

## THE TRANSMITTER

The complete system can be used to remotely switch on and off electrical appliances rated at up to 1200 watts at mains voltage.

## INTRODUCTION

THis ultrasonic system provides a simple and inexpensive remote control link for which no Home Office licence is required. The maximum operating range of the system is not very large, being something in the region of 10 metres. However, this is sufficient to enable the unit to be employed in a number of useful applications, and this aspect will be fully dealt with later on.

## GENERAL ARRANGEMENT

The block diagram which appears in Fig. 1 shows the general arrange-
ment used in the complete system.
A 40 kHz oscillator forms the basis of the transmitter, and the output of this circuit is fed to an ultrasonic transducer. The transducers are sold in pairs, one being used in the transmitter and the other in the receiver. These transducers are piezoelectric devices, and can be regarded as being something like a mixture of a crystal earpiece, a crystal microphone, and a quartz crystal.

Like a crystal earpiece, the transducer at the transmitter will produce soundwaves if a suitable electrical stimulus is applied to it, but it does not work very efficiently at ordinary audio frequencies. It does operate efficiently at frequen-
cies just outside the upper limit of human hearing, or ultrasonic frequencies as they are usually termed.

The efficiency of the transducer reaches a peak at a frequency of 40 kHz , and it is for this reason that the oscillator in the transmitter is given an operating frequency of 40 kHz . This frequency is, in effect, the resonant frequency of the transducer, and is a similar property to that possessed by the piezoelectric quartz crystals which are used in highly stable r.f. oscillators.

A push button switch is connected in the supply line to the oscillator, and the transmitter is activated by operating this switch.


Fig. 1. The block diagram of the complete Ultrasonic Remote Control System.

## RECEIVER TRANSDUCER

The second transducer is used at the input of the receiver, and this one acts as a sort of crystal microphone, but again, it is very inefficient at audio frequencies. Also as before, it works well at ultrasonic frequencies, and has a response which peaks at 40 kHz . Thus a small 40 kHz electrical signal will be produced by the transducer at the receiver when it picks up the ultrasonic sound from the transmitter.

This signal will have only a very low amplitude when the transmitter is at some distance from the receiver, and a considerable amount of amplification must be used if a reasonable operating range is to be attained. The necessary amplification is provided by a simple and very economic twotransistor circuit in this case.

The output of the amplifier is rectified and smoothed to a d.c. bias which is fed to the input of a Schmitt trigger circuit. The voltage at the input of the Schmitt trigger rises and falls only relatively slowly as the transmitter is switched on and off. The stage which follows the Schmitt trigger is a flip-flop divide-by-two circuit, and this must have an input signal with a fast rising waveform if it is to operate reliably. The purpose of the Schmitt trigger is merely to produce a fast rising output from the slow rising input. Provided an adequate input signal is obtained, this arrangement is highly reliable.

Operation of the flip-flop circuit is quite straightforward. This is a logic circuit and as such it can only have an output which is in one of two possible stable states. The output must either be low (logic 0 or at virtually zero volts)

## CIRCUIT

## TRANSMITTER CIRCUIT

The transmitter is an extremely simple device, as will be apparent from its circuit diagram which is shown in Fig.2. It is based on an astable multivibrator which uses a simple cmos quad 2 -input nor gate (4001) or a quad 2-input Nand gate (4011). Only three of the four gates are used, and they are not in fact used as logic circuits, but instead they have their two inputs connected in parallel so that they act as simple inverters. This is why either a 4001 or a 4011 i.c. can be used.

Components VR1, R1, R2, C1, plus the two inverters in the left hand section of the i.c. form the

## DESCRIPTION

multivibrator circuit, and R1 enables the frequency of oscillation to be adjusted to 40 kHz . The third inverter is used as a buffer stage between the output of the astable (ICl pin 3) and the transducer. This is necessary in order to prevent the transducer from upsetting the correct operation of the astable.

Switch Sl is a push button on/ off type, and the unit has a current consumption of about $3 \cdot 5 \mathrm{~mA}$ when this switch is operated. The peak to peak output voltage swing to the transducer is virtually equal to the supply potential, and despite the simplicity of the transmitter circuit it provides quite a good operating range.
or high (logic 1 or at virtually the full supply potential).

The state of the output will change state each time a positive input pulse is received. Thus if the output goes to the low state when power is initially applied to the circuit, it can be triggered to the high state by pressing the push button on the transmitter. When the push button is released there will be no effect on the flip-flop, since this causes a negative input pulse to be generated and the flipflop will only respond to positive pulses.

If the push button is then pressed again, another positive going input pulse will be applied to the flipflop and in consequence its output will now go low. There will be no effect on the flip-flop when the push button is released, just as before.

The output of the flip-flop is fed to a relay via a single transistor driver stage. The circuit is arranged so that the relay contacts are closed when the output of the flip-flop is high, and open when its output is low.

Thus if the relay contacts are closed, they can be made to open by briefly operating the push button on the transmitter. They can be closed again by operating the push button a second time, and in fact the relay contacts will change state with successive operatiors of the push button on the transmitter.

## START HERE FOR CONSTRUCTION

A plastic box having dimensions of about $120 \times 65 \times 40 \mathrm{~mm}$ is used as the housing for the prototype transmitter, but any metal or plastic box of around this size should be suitable. The layout of the unit is very straightforward, as can be seen in Fig. 3 and the photographs of the unit.

The transducer is fitted with a phono socket at the rear, and a 12.7 mm diameter hole is drilled in the case to accommodate this. The transducer is then glued to the

## ULTRASONHC REMOTE CONTROL SYSTEM

Fig. 3 (Right). The layout of the components on the stripboard and the breaks to be made on the underside.


Fig. 4. (Above). The positioning of the component board and other components within the case.


aimed at the transducer, and VRl is adjusted for maximum reading on the millivoltmeter.

If no suitable test gear is available, the adjustment of VRI will have to be left until the receiver has been constructed; VR1 can then be tried at various settings in an attempt to find the one which gives the greatest range. This method is not quite as fast or accurate as the other two, but it will give excellent results provided due care is exercised.

## APPLICATIONS

Perhaps the most obvious use for this equipment is in an intruder alarm. In this application the two transducers would be mounted either side of a door or corridor. Ultrasonic sound is very directional and is easily blocked by an obstruction such as a human being. Normally the transmitter would be on and would be directing a beam of sound at the receiver, which would have open relay contacts connected in series with an alarm.

If an intruder should pass down the corridor or through the door, the signal to the receiver would be cut off as they passed through the sound beam, and then restored again once they had passed. As the beam was restored the relay contacts would close and activate the alarm.

The system could probably be adapted for use in car burglar alarm circuits. Here it could be used to switch the alarm on and off from outside the car without the need for any external switches or key switches.

Other applications include the remote control of garage doors, radios, televisions, lights, etc., and there must be many other possible uses for this system.

With the relay specified in the Receiver components list (next month), mains voltages up to 5 amps can be switched i.e. electrical appliances rated up to 1200 watts. If it is required to operate equipment of larger capacity, a suitable relay will need to be found and probably a larger case than specified used to house all the circuitry in the receiver.
For d.c. appliances, the specified relay contacts can handle 150 watts (eg 5 amps at $30 \mathrm{~V}, 3 \mathrm{amps}$ at 50 V etc.).

To be continued


By Brian Terrell
New products and component
buying for constructional projects.

AN ENORMOUS number of enquiries resulted from the Treasure Locator article published in last month's issue due mainly to a number of technical errors that appeared in the article and the difficulty encountered by many in obtaining some of the components required to complete the project. We offer our apologies for these errors and detail below the modifications to be made to the article:

1. In Fig.2, the integrated circuit IC1 is incorrectly labelled, it should read MC3360P (as was listed on this page last month).
2. In the component list under the heading of capacitors, there are two C15's. The first of these, 10 nF plastic or ceramic should be deleted.
3. Add to the list of capacitors, $\mathrm{C} 170.022 \mu \mathrm{~F}$ plastic or ceramic.
4. IC1 in the component list should be ammended to read MC3360P.
5. In Fig.3, the capacitor labelled C17 should be labelled C16.

## Treasure Locator Component Suppliers

Components that proved difficult to obtain were C3, C4 20 nF silver mica capacitors 1 or 2 per cent or polyester with 1 per cent tolerance; C2 1250pF compression trimmer; C16 50pF air spaced trimmer.
Dealing with these in order our investigations proved that 20 nF siver mica capacitors are not avaliable on the amateur market the highest value to be obtained being 10 nF . Two of this value can be wired in paraliel to provide the required $20 n F$ but this will prove to be very expensive.
Closer inspection of the protoype unit revealed that polyester types were used. Tolerance was not marked. The only markings on these capacitors was Yamoto Nissei .02 on a green body. We have been unable to trace a supplier of these. However, Mylar film capacitors of the required value are available with a
tolerance of 5 per cent and this will be suitable for this project. They can be obtained from Watford Electronics, 33/35 Cardiff Road, Watford, Herts. The cost is $6 \nmid p$ each including VAT. There is a postage and packing charge of 25p on all orders under $£ 10$. You can also obtain the 1250pF compression trimmer and 50 pF air spaced trimmer from this firm for a cost of 41 p and $£ 1-52$ respectively.
Another supplier of the 1250 pF compression trimmer is Home Radio, 240 London Road, Mitcham, Surrey. The cost is 60 p including VAT but the postage and packing charge is rather on the high side -85 p . This makes the single item very costly but is less noticeable if buying more components. Home Radio have been receiving orders for many parts of the Treasure Locator and are in a position to offer a complete set of electronic components for this project at an inclusive price of $£ 14$.
Also Arrow Electronics have been supplying parts for this project and are able to offer a complete set of electronic components at an inclusive price of $£ 9.99$. They also tell us that they can supply a pair of moulded plastic discs that can be fitted on either side of the coil to offer protection and produce a professional looking job. The inclusive price is $£ 1 \cdot 40 \mathrm{p}$ per pair.

## V.H.F. Portable Radio

The V.H.F. Portable Radio has the highest component count amongst this month's constructional projects but most components should be readily available. Trimmer capacitors are items that often cause supply problems and this project uses two. If you experience any difficulty in obtaining these two devices, you can obtain them from Watford Electronics at a cost of $£ 1.51$ for the 10 pF type 804 trimmer and 23p for the 30pF beehive trimmer. Both prices include VAT. Add 25p to cover post and packing.
The component list specifles a potentiometer/switch combination (VR2/S1) fitted with a single-pole switch. There is no reason why the more readily available d.p.d.t. type cannot be used and one half of the switch ignored.
The two field effect transistors TR1 and TR2 may have unfamiliar type numbers but are generally available as was borne out by the first three lists of semiconduc. tors that we looked at, these being Maplin Electronic Supplies, Watford Electronics and Marshalls.
If trouble is encountered in locating a telescopic aerial, Maplin and Home Radio list these in their catalogues. The latter also hold stocks of Universal chassis.

## Probe-less Continuity Tester

Not many components are required to construct the Probe-less Continuity Tester and none should be difficult to obtain. The battery used in the prototype PX- 28 is a silver oxide type and should be avallable from camera shops and stores such as Boots. We contacted Dixons Photographic to find that this can be obtained from them for a cost of $£ 1 \cdot 68$.
As you will notice this is a large proportion of the total cost of the project; fortunately it is not essential-It was chosen for its longer life than standard
cells and its small physical size. Any other 6 volt battery can be used but a larger case will undoubtedly be called for.

## Ultrasonic Remote Control System

Only the components for the trans. mitter . part of the Ultrasonic Remote Control System are listed in the component list this month but has been costed to include the receiver transducer as these are only sold in pairs.

As far as we know, the type specified is only available from Arrow Electronics Ltd., Leader House, Coptfold Road, Brentwood, Essex. The price for a pair of transducers is $£ 5 \cdot 29$ which includes VAT. postage and packing. Order as RL400PP.

Arrow Electronics plan to offer a set of electronic components for the complete system-transmitter and receiver. More details of this will be available next month.

## Find The Pair

No component buying problems are envisaged for the Find The Pair project as all are considered to be "standard" and will be available from many sources.


## Adjustable Vice

A precision made bench vice which should interest both the model making and electronic constructor enthusiast is now available: from Greenwood Elec. tronics, manufacturers of professional soldering irons and equipment.

The Oryx Model 1B vice is a versatile tool with 89 mm jaws and is fully adjustable to rotate through 360 degrees and can be locked in any position. The vice is equipped with nylon jaw linings giving a firm grip with no damage to the work plece. Jaw linings are replaceable.

The maln components of the vice are cast in high tenslle strength lightweight alloy and finished in stove enamelled green.

Cost of the Oryx 1B bench vice is $£ 19.95$ plus VAT at 8 per cent and is available from Greenwood Electronics, Dept E.E., Portman Road, Reading, Berks, RG3 1NE.

## INTRODUCTION

1F you have ever wondered whether a fuse is blown, the polarity of a diode, the type of a transistor, if a capacitor is holding charge, or if a wire has a break in it, and you have gone to get your multimeter and then had to juggle with the two probes, the component, and tried to watch the meter at the same time, this instrument should appeal to you.

In the time it took you in the past to dial an ohms range, with this instrument your testing will be complete. You hold the instrument, which acts as one "probe", in one hand and your other hand becomes the other "probe". So if you can hold, or touch the component, you can test it. A light emitting diode is provided which gives a quick, yes or no, indication.


## START HERE FOR CONSTRUCTION

The case is made from an aluminium tube in which one gram vitamin C tablets are sold. Firstly the paint is removed using wire wool. The cardboard in the plastic top, which retains moisture absorb-
ing chemicals, is removed and the top washed out. The plastic protrusior is then cut back to give more available space in the tube. A metal disc, preferably of copper or aluminium, and of approximately 25 mm diameter is then attached to the plastic top using a 20 mm 6BA bolt. Finally file a slot and drill the holes for the slide switch.

Most of the components including the battery are mounted on a small piece of 0.1 inch pitch stripboard 10 strips by 19 holes. It has to be cut oversize then filed down until the board makes a tight fit in the tube. Next break the copper strips at the points indicated in Fig. 2. The battery should be fitted first, leads are soldered on to the

## HOW IT WORKS...

The component under test and the resistance due to one's body are placed in series when the component is held against the contact disc. This completes the circuit (if there is an electrical path through the component) and current flows into the amplifiers. This is only a minute current but is sufficient to cause a much larger current to flow through the light emitting diode, illuminating it to show continuity.


## Probe.less CONTINUITY TESTER



Flg. 2. The layout of the components on the stripboard and the breaks to be made along the copper strips on the underslde. Above left shows wiring up to the disc and switch within the tubular case. Note the expanded polystyrene insulating washer below S1.
then curl underneath the board and not tangle up in the components. A loop of strong cotton should also be attached to the board to facilitate the removal of the board in the future. If a tag is used to connect the wire to the bolt holding the disc in place, the top can easily be replaced with a top which has a length of 6BA rod sharpened at one end to make a probe.

Solder the remaining components on the board using a heatshunt on the leads of the transistors and l.e.d. which should now be connected to its appropriate wires. Then bolt the switch in position, ensuring it is off before doing so, place a piece of expanded polystyrene in the tube to ensure the switch and board are always separated. If the board has been made too small the polystyrene can be replaced with a circular piece


COMPONENTS


All resistors are carbon $\frac{1}{4} \mathrm{~W}$ $\pm 10 \%$

Semiconductors
TR1 BC108 silicon npn
TR2 BC108 silicon npn
D1 TIL209 light emitting diode

## Miscellaneous

B1 6 V silver oxide battery type PX-28
S1 d.p.d.t. miniature slide switch
Stripboard 0.1 inch matrix, 10 strips $\times 19$ holes; copper or aluminium disc 25 mm diameter; case (see text); 6BA hardware; small length of 6BA rod; $6 \overline{B A}$ solder tag; connecting wire; plastic sleeving; solder.


Fig. 1. The complete circult diagram of the Probe-less Continuilty Tester.

## CIRCUIT DESCRIPTION

The circuit is basically a very high gain d.c. amplifier with a light emitting diode as its load. In order to achieve very high gain and a high input impedance two transistors are used in a Darlington pair configuration. The circuit diagram is shown in Fig. 1. This arrangement provides very high gain as the emitter current of TR1 becomes the base current of TR2, so the total gain is approximately equal to the product of the individual gains of TR1 and TR2.

When testing a component the case is held in one hand and the component touched against the metal disc with the other. In this way the base current for TR1 flows through you (it is limited to $17 \mu \mathrm{~A})$ and the component. Resistor Rl is included to ensure that the circuit cannot be damaged by accidental shorting of the case to the disc. This base current is amplified and illuminates the light emitting diode.

The input impedance of this
of wood with a groove cut to support the board. Now place the board in the tube, ensuring that if the transistors have metal cases they are not touching the metal tube. It is also advisable to place plastic sleeving on the leads of the transistors, as a safeguard against short circuits. Once a hole is made for the l.e.d. it should be held in place with Araldite or similar glue. When this has set, the top can be put on and the instrument tested
Switch on, hold the case in one hand and touch the metal disc with your other hand. The l.e.d. should light up. If it does not recheck the
type of transistor configuration is very high as the input impedance of TR2 becomes the emitter load for TR1. In this way the input impedance is large compared with the resistance of the person using the instrument. This combined with the circuit being designed to put TR2 into saturation easily, makes the brightness of the l.e.d. largely independent of the resistance of the person using the instrument. So when testing fuses, diode action, transistor junctions and continuity the action is very positive. On the other hand when testing capacitors, they can actually be seen to charge up as the time constant is very large due to the high input impedance.

Although the silver oxide battery used to drive the circuit is expensive, a significant current is only taken from it during the short time the l.e.d. is on, the battery should therefore last two or three years even with frequent use.
wiring, the battery polarity and that of the l.e.d. If all is well the tester is then ready for use.

## LIMITATIONS

Due to the necessity of making the tester's action independent of the resistance of the person using it, only a very small current, in the order of 2 or $3 \mu \mathrm{~A}$, needs to flow to light the l.e.d. This means that components with leakage currents of this order cannot be tested; this usually applies to germanium devices and not the more common silicon ones. Д


## ...FOR BEGINNERS <br> WE ARE HERE TO HELP YOUNO MATTER HOW NON-TECHNICAL YOU MAY BE, JUST READ ON!

## IDENTIFYING COMPONENTS

Electronic components come in an enormous range of shapes, colours and sizes with their values and type numbers either printed on the body, colour coded or numerically coded. The newcomer to electronic construction may at first be bewildered when opening a package of components but in a short time should be able to instantly recognise components and readily "decipher" their values.
This month we shall deal with the most commonplace basic passive components namely resistors, and capaoitors to aid identification together with circuit connection details.

## RESISTORS

Resistors are generally cylindrical in shape with a connection lead emerg. ing from each end and can be connected in circuit either way round. Some resistors are made specifically for p.c.b. construction and have short preformed leads pointing in the same direction, but these are rarely featured in these pages and are not readily available on the amateur market. You may see these in surplus stores on computer panels, etc.
The value of the resistor is either in the form of a colour code (see Data Card given free with last month's issue) or simply printed on the side. Printed values can be straight forward such as $6.8 \mathrm{k} \Omega$ or $180 \Omega$ or may be coded e.g. 1k2 ( $1 \cdot 2$ Kilohms) 5R6 (5•6 ohms) M47 ( 0.47 megohms or 470 kilohms).

## CAPACITORS

Capacitors can broadly be split into two categories, non-electrolytic and electrolytic types.

The former are colour coded or have their values printed on the body. They come in a multitude of shapes, sizes and colours depending to a large extent on their composition which can be: polyester, ceramic, silver mica, paper, metallised foil, poly. carbonate, plastic foil, polystyrene, mixed dielectric mylar film carbonate, to mention the common types,
see Fig. 1 for some examples.
Most non-electrolytic capacitors have their values printed directly on the body i.e. 680pF (picofarads), $0 \cdot 22 \mathrm{UF}$ or MFD (microfarads)

You may find some capacitors marked $\mu \mu \mathrm{F}$ (especially high quality types) eg. $3940 \mu \mu \mathrm{~F}$. This is another way of writing 3940 pF . Alternatively this can be read as 3.94 nF (nanofarads). Sometimes a $K$ is printed together with the number. eg. 22 K ; this is $22,000 \mathrm{pF}$ or could be read as $22 n F$.
It is not uncommon nowadays to receive Russian manufactured capacitors and in particular ceramic plate types where the value on the body may read 3 H 3 or 10 H ; these are $3 \cdot 3 \mathrm{nF}$ and 10 nF respectively.

Some capacitors such as the Mullard C280 series use colour coding to indicate the value in nanofarads. See the Data Card given in last month's issue for details.

Also marked on the body is the working voltage $250 \mathrm{~V}, 63 \mathrm{~V}$ etc. The value of the voltage across the capacitor should never exceed this value, but can usually be any value below it. Non-electrolytic capacitors are not polarity conscious, that is to say they can be connected in circuit either way round.

Electrolytic capacitors are easily recognised by their physical size (quite lange) and by the fact that they are enclosed in a metal case (usually covered in a plastic sleeve. One lead is connected to the metal case, this being the - ve terminal while the + ve lead is marked on the case with a "+" sign. An annular indentation at one end also marks the + ve lead.

The value is always printed on the body together with the working voltage (colour coding is never used). Connections to the capacitor are either axial wires (one from each end) or radial wires or tags (both from same end).

Electrolytic capacitors are polarity conscious and must be conneoted in the circuit the right way round otherwise they can be destroyed, See Fig. 2, for a selection of electrolytic capacitors.


Fig. 1. A selection of non-electrolytic capacitors: A plastic (polypropylene); B polycarbonate; C metallised paper; D and E ceramic plate; F,G,H and i metallised polyester film; $J$ polystyrene; K disc ceramic.


Fig. 2. Electrolytic capacitors: A $2000 \mu \mathrm{~F}$ 50 V ; B $2200 \mu \mathrm{~F} 25 \mathrm{~V}$; C $1000 \mu \mathrm{~F} 40 \mathrm{~V}$; $100 \mu \mathrm{~F} 40 \mathrm{~V}$; E $33 \mu \mathrm{~F} 25 \mathrm{~V}$; $100 \mu \mathrm{~F} 6 \mathrm{~V}$; $10 \mu \mathrm{~F} 10 \mathrm{~V}$ tantalum.


By ADRIAN HOPE

ACURIOUS situation has arisen in the hififield over recent years. What was once a semi-cottage industry, with firms turning out only a few hundred amplifiers, tuners or loudspeakers a week to meet the demands of only a relatively few devoted enthusiasts, has now become a full-scale industry with mass production. Increasing sales of equipment have created increasing interest in hifi as a hobby in its own right and this increased interest has stimulated the growth of a whole new industry-hi fi journalism. As even a casual glance round your local bookstall will show, there is now an extremely wide range of different journals. The disease has also spread to the Continent, with almost as many French magazines and some very im. pressive publications from Germany and Italy.

Although it is easy for a production line to churn out more amplifiers and tuners to meet increased demand, it is far less easy for journalists to do likewise with interesting copy. So there is a continual search in the hi fi world for new authors with something interesting and accurate to say. Inevitably some mistakes have been made, and less-than-accurate statements have found their way into print.

## Reviewing

In some cases, without doubt, serious damage has been done to the reputation of essentially good products, and some essentially bad products have been quite unreasonably lauded. The whole business of "amateur" reviewing of sophisticated equipment has been causing such concern, not only to reputable manufacturers but also to professional journalists and reviewers, that it was made the subject of an Audio Engineering Society meeting.
Some interesting points were brought up, that readers should bear in mind when using published technical reviews as a guide to what equipment they buy.

## Quality Control

One approach to reviewing is simply to check the specification of a piece of equip. ment as claimed by the manufacturer in
his advertısing literature. This is useful, provided the reader understands that small variations between claimed and actual sperification (e.g. 99 watts output is measured instead of 100 watts claimed) is significant only in the strictly legal context of the Trade Descriptions Act. The important point to watch here is for reviewers' measurements that drastically differ from those claimed. Such differences may be as a result either of foor Quality Control on the part of the manufacturer (in which case the reviewer has taught the potential buyer something useful), or reliance by the manufacturer on outdated measuring equipment (certainly not unheard of and hardly an encouragement to buy his products).
The other main possibility is that the reviewer is an amateur working with poor or mis-used equipment. Peter Walker, of the Britist: firm, Quad, cited the example of how the incorrect use of 3 -terminal (i.e. common earth) testing equipment across the input and output of a 4 -terminal amplifier (i.e. without common earth) can drastically and quite unfairly increase the distortion measurements of that amplifier.
Peter Walker also pointed to another pitfall for the inexperienced reviewer trying to compare the performance of
 NOTE
different loudspeakers. It has recently been proved by the BBC Research Department that if two loudspeakers are compared side by side, and one of those loudspeakers has a bad dip in it's frequency response, the human ear will compensate for this dip (rather like the automatic gain control of a radio) and thus mare the other loudspeaker, which has a gocd, flat response, sound horribly peakyl

## Mcratorium

Another approach to reviewing is to start with the question, "Is the product suitable for a given purpose?" But this brings personal opinion into the matter. Indeed, one AES member went so far as to propose a moratorium on all measurements. "Electronics is a technical subject, but hi fi is not," he said. "Measuring the persormance characteristics of a piece of hifi equipment is as pointless as counting the number of words used in the first act of Hamlet. In each case it is the sound tha: matters.'
Currently there is a move afoot to form a club of accredited reviewers. But so far no one has agreed on what the basic minimum requirements should be for entry. One thing is certain, whatever the requirements, I shan't be a member. I have neither the ability nor the test gear to measure equipment, and thus never review on a technical level.

## X-Rays

Columns like these can be a useful clearing house for information. A topic to be looked at in the future is the possible detrimental effect that $X$-rays, as used for heavy dose security checks at airports and docks, can have on electronic equipment such as transistors, i.c.s, and perhaps even liquid crystal displays. If any readers, so far unaware of this phenomenon, suddenly find two and two making five, for ins:ance by recalling how a calculator or electronic watch went haywire after a security check at an airport. I'd be pleased to hear of them, c/o Everyday Electronics.
In the meantime, just to be on the safe side it might be worth trying to have any such equipment you are carrying abroad haridled like film-that is examined by harid, rather than $X$-rayed.

## Probophone (September '77)

There is link missing between pins 2 and 6 of the i.c. in the circuit diagram of Fig. 7. This is shown correctly on the PCB and stripboard layouts. In the components ist resistors R1 and R2 have been interchanged, the values are correct on the circuit diagram. In Fig. 2, the stripboard layout, the two wires to the left hand tag and wiper of VR1 should be transposed. The PCB layout is correct. On the circuit diagram of Fig. 7 the values for the presets are given as $20 \mathrm{k} \Omega$ although in the components list they are $22 \mathrm{k} \Omega$. Although either value would work in the circuit, the $22 \mathrm{k} \Omega$ presets are more readily available. On the PCB layout for the keyboard, the wire which is annoted TO PROBE should in fact go to the circuit board.

## Enlarger Timer (October 1977)

In Fig. 3 on page 80, an additional break needs to be made on the underside of the stripboard at location J22 add D2 should be reversed.
Treasure Locator (October 1977). See Shop Talk


A NY oscilloscope will show that an alternating current yaries or alternates about zero volts. For example, the heating element ( 6.3 volts) of a transformer. Other less usual alternating currents may vary about a datum line that is measurably above or below zero volts, while yet others are square, triangular, spiky or any combination of these, Fig. 1. All are loosely termed alternating currents although strictly the term should be restricted to those in which the polarity changes every half-cycle-that is, those that alternate about zero volts.


Fig. 1. Examples of different waveforms as seen on the screen of an oscilloscope.
needle will indicate a figure above zero volts, but nowhere near the peak voltage of the wave.

Waveforms
Now sometimes we need to know the peak voltage; sometimes we need to know the peak-to-peak voltage, which is twice the peak; sometimes we need to know the power in the current. It all depends. With a sinewave it's all pretty easy; if we know one, we can work out the others, but with other waveforms it can get tricky.

For peak-to-peak measurements we really need a calibrated oscilloscope. If our scope is not calibrated, we can do it for ourselves with the aid of a signal generator. We set the output of the generator at (say) 4 volts peak-peak and then adjust the trace on the scope so that it traces exactly over 4 squares on the graticule, Fig. 3. Each square is thus equal to 1 volt. We make no further adjustments to the scope, but apply the unknown a.c. signal to it, thus by counting off the squares the peak-peak voltage can be measured.

This technique applies to any sort of a.c. signal, even with the datum above or below zero volts.


Fig. 3. Calibrating an oscilloscope with the aid of a signal generator.

Power
The power of an a.c. signal is a different matter. Power is the ability to do work and as our experiments on static electricity have shown us, we can have spikes of enormous voltage but little power. Model train enthusiasts will have come across the "pulse power" technique in which pulses of high voltage for a model train are applied continuously, but because they are "off" for as long as they are "on", the model loco creeps along the track and does not race. It is worth noting here that the power of a square wave alternating about zero volts is the same as the power in direct current of the same voltage since the polarity has nothing to do with the power available.

Mathematics has shown us that the power in a sinewave is based on the


Fig. 4. The perfect sinewave. Note the different relationships. A square wave has also been drawn to compare with.
square root of 2 , which is 1.414 ; Fig. 4 should make the relationships clear. The power available at any instant is based on the voltage, represented by the height of the curve above or below the line. If such a sinewave is traced onto graph paper and the squares counted, it will be found that the average (or mean) is 0.707 of the height of the peak above and 0.707 of the depth below. Twice 0.707 is 1.414 . In other words, the effective voltage of a sinewave is 0.707 time the peak voltage. (Note the terminology; peak voltage is half the peak-to-peak voltage.)

## Heating effect

Another way of looking at the whole thing is to say that the power contained in an alternating current is based upon the effective voltage and that the power is the same as that in a direct current which will produce the same amount of heat in a given resistor as that of the a.c. current under consideration. A simple experiment


Fig. 5. Circuit arrangement to prove that the effective voltage of a sinewave is 0.707 times the peak voltage. In terms of power, 6.3 V a.c. is equal to 4.45 V d.c.l
will serve to illustrate the point.
Obtain a bell transformer driven from the mains, with a $6 \cdot 3 \mathrm{~V}$ output. Connect a suitable 6.3 volt lamp to this, Fig. 5. Adjacent to it mount another 6.3 volt lamp connected to a source of variable d.c A suitable method is a variable resistor in series with three or four cell batteries. Adjust the variable resistor until the two lamps are of a similar brilliance. Under
these conditions both are consuming the same amount of power and a measurement across the terminals of the second lampwith the lamp removed-will reveal that the voltage here is roughly 4.5 volts, any discrepancy being due to the different resistance of the meter, plus human error.
The experiment shows that in the a.c. circuit, $6.3 \times 0.707$ equals 4.45 -the effective voltage!


Readers' Bright Ideas; any idea that is published will be awarded payment according to its merit. The ideas have not been proved by us.

## BUOYANCY SWITCH

After reading the article on the Sight \& Sound Fish Attractor in the June issue of Everyday Electronics, I came up with another method of switching the unit on and off and so replace the gravity switch. Details of my construction are shown below.

When the unit is submerged in the water, the pingpong ball will try to float to the surface thus bending one brass strip against the other thereby "making" the switch and turning on the unit. If this method is adopted a heavier bed-weight might be needed.

David Hewitt, Headington, Oxford


## WIREBOARD

I often find that stripboard is hard to get and when I eventually do find a supplier it is very expensive. To solve this problem I have made an alternative, wireboard. Take a piece of wood the same size as the stripboard, mark on it a matrix of lines about 10 mm apart, bang nails in at these points and join them with tinned copper wire. You then have a perfect piece of wireboard which, in my opinion, is equally as good as stripboard.
D. Strong,

Tiverton,
Devon

## SOLDERING IRON STAND

A simple and useful soldering iron stand can be made very simply by using two crossed nails in a block of wood. The diagram shows the arrangement. In use it is a simple matter to rest the iron between the two nails.
G. Duggan,

New Ross, Co. Wexford


## CLEANING PCB HOLES

When using copper-clad printed circuit board, it can be very difficult to clear the holes of solder when it is required to replace any component. Take a fairly large pin, which you sometimes get from a new shirt, and using the pointed end push it through the hole with the aid of a soldering iron.

The solder is then wiped away leaving a clean hole. J. R. Hunt, Eastbourne,
East Sussex


## CIRCUIT MODULE CONSTRUCTION

THis month we continue by describing how to construct the first set of modules to be used in the series. These are the led, $1000 \mu \mathrm{~F}$ CAPACITOR PNP and NPN modules. Also described is the foundation for all our experiments; the module board. When conducting any experiments, the modules to be used are placed on the module board, interconnections are then made easily to the supply lines, etc.

## CIRCUIT MODULES

In our experiments we shall need to connect the same transistors, diodes, etc. into many different circuits. These components are delicate and easily damaged by excessive heat. So to protect them against repeated handling and soldering we shall make them up into small sub-assemblies, which we shall call modules, each with its own individual soldering points and some built-in protection against overload. In this way, the delicate components need only be soldered once. Afterwards, all soldering will be done to the soldering points, which are not the same as the component lead-outs but are separated from them by lengths of wire or resistors.

## LED MODULE

Our first circuit module is for a light emitting diode (l.e.d.) the circuit is shown in Fig. 2.1. This is a kind of lamp which lights up when the right amount of current is passed through it, in the right direction. If an l.e.d. is connected straight across the battery it takes too much current and is destroyed.


Fig. 2.1 (left). Circuit diagram for the LED module. Fig. 2.2 (right). Full size under card used for the module. This may be traced and used as a template.
To avoid this we shall connect a resistance of 330 ohms permanently in series with the l.e.d. and afterwards make all connections in such a way that this 330 ohms is in the path of the current. This limits the amount of current to a value which is quite safe for the l.e.d. specified (and for most other types too). This protective resistance alone may not be enough, however. We have said that the l.e.d. acts as a lamp if the right current is passed through it in the right direction.


Fig. 2.3. The top card required for the LED module. Again this is drawn full size and may be used as a template. After the symbol and lettering has been finished, it can be sprayed with a colour of the constructor's choice. Shown alongside is a $p$ hotograph of the completed module.

If current flows in the wrong direction the l.e.d. may again be destroyed. To avoid this, we shall include a second protective device. This will allow current to flow only in one direction. Any current in the reverse direction will be blocked. Provided that we connect this second device to the l.e.d. in the right way, it will be impossible for current to flow except in the right direction. This second protective device is a silicon junction diode of a kind designed to pass easily the sort of current needed to light the l.e.d.

## CONSTRUCTION

Two methods of construction may be used by the reader, one is by using pins in hardboard, the second uses nails in plywood. Both methods will be described in detail for the led module only. It is therefore up to the constructor to decide which method is best suited to his needs.

## USING PINS

Refer to Fig. 2.2 this shows full size the card required to be fixed to the base and method of wiring up, the same layout is used either for the hardboard or plywood version. First, draw the layout onto stiff white card and then stick it down on the base. If you are using hardboard stick it to the rough side.

We need to hold the pins firmly in the hardboard otherwise any strain imposed on the pins will pull them out and possibly damage the components. We therefore use a simple trick. Instead of inserting the pins into the board from above we shall insert them from below, and pull the shanks through as far as they will go. The heads then prevent the pins from being pulled out.

Insert the pins through the appropriate points on the diagram, pushing or knocking them deep enough for their points to come through the back of the board. To hold the pin steady when hammering grip it with pliers near its head. Now pull the pins out,
turn the board over, and insert them through the holes they made on the back of the board. Pull them right through, as far as they will go. You are now ready to wire up the boards on the diagram side.

Bend over the pointed ends so that the points press against the shanks, out of harm's way. If you have found, from earlier soldering, that your pins take solder very easily, you can proceed to the wiring up. If not, tin the lowest parts of the shanks first. Next attach the plain connections. Use tinned copper wire except in the case of connections which cross others: use insulated wire for these. Do not stretch the wire tightly between the pins: leave it loose.

As you solder, slide the wire down the stem of the pin to press against the base, and hold it there with pliers or the tip of screwdriver until the solder hardens.

Next connect the resistor, then the diode and finally the l.e.d. It may help to tin the ends of their leads first. When doing this grip the lead you are working on firmly with the pliers, so that heat running along the lead from the iron towards the body of the component is diverted into the pliers. Use the same technique whenever you solder a component, especially a semiconductor or a plastic capacitor.

Make sure that you identify the anode and cathode of the diode and l.e.d. and connect them to the appropriate points. Similarly with any silicon diode you might substitute for the IN4001.

Most silicon diodes have a band of colour printed round their body near the cathode. Some have the cathode marked with a + sign. Light emitting diodes usually have a "flat" on the plastic casing near the cathode, also, the cathode lead may be shorter than the anode lead. Solder the l.e.d. so that its plastic body sticks up above the board. Stick some cardboard over the back of the board to insulate the pinheads. Cut off or bend over all pins except the four at each corner. Cut a piece of cardboard to fit the module and cut holes to slide over the shanks of the four long pins, also make a hole for the l.e.d. to poke through.
Mark the stiff white card on top of the components with the signs and letters shown in Fig. 2.3 and fit it,
by working the shanks of the four pins through the holes. Turn the module over and press a small blob of Blu-Tak to the plain cardboard near each corner. This anchors the module when it is placed on your baseboard.

To avoid snagging yourself on the bent over points of the four long pins, fill the loops with solder.

## USING NAILS

Once again draw the layout shown in Fig. 2.2 and stick this down on your piece of plywood. Hammer one inch long veneer pins through the points on the card indicated. The components are then mounted on the nails using our newly found soldering technique as shown in Fig. 2.2 only this time the short nails are cut off whereas in the previous method the pins were bent over. The same card shown in Fig. 2.3 is then placed on top of the components, only this time small pilot holes are made at the appropriate points and forced over the long nails.

The following wiring-up order, designed to minimise the risk to components, should be used for all modules and circuits.

1. Bare wires
2. Insulated wires
3. Resistors
4. Capacitors
5. Semiconductors.

## MODULE BOARD

We said in Part One that we are going to use a "module board" as the "base" for doing our experiments. The size and materials have already been mentioned all that remains is to describe the actual


Fig. 2.4. The layout of the Module Board. This is made from a piece of 15 mm fibreboard or similar material measuring $305 \times 216 \mathrm{~mm}$. The tinned copper wire "supply lines" should be raised above the board, soldered close to the heads of the pins or nalis as possible.
construction. The module board material is covered with a sheet of white card the layout is shown in Fig. 2.4. The only components to be soldered onto the board is the supply lines from the battery and the bulb holder.
Although the board was sprayed blue in our particular case there is no reason why the colour cannot be changed.
Begin by banging in nails or pins, whichever method you have chosen, and solder the tinned copper wire to the pins. Screw the bulb holder firmly to the
base. It does not matter which shape the holder is, it just depends on the type supplied with the kit of components.
Once this has been done your module board is ready for use.
Having made your led module you can now light the l.e.d. by connecting it to the battery. However, it will be as well first to take a precaution against shorting the battery and damaging it. The safety device we shall use is a 6.3 V or $8 \mathrm{~V} 300 \mathrm{~mA}(0.3 \mathrm{~A})$ bulb connected permanently between the positive terminal of the battery and any circuit you are using. Fig. 2.5.


Fig. 2.5. Circuit diagram of the Module Board. Compare this with the layout of Fig. 2.4.
Therefore the " + " battery terminal ( $B$ ) is not to be connected to anything but the bulb. Battery power for circuits is to be taken from point $C$. If $A$ and $C$ are shorted the bulb lights brightly (at any rate if the battery is new) and may quickly burn out if left on. The battery will quickly run down, too, so disconnect instantly if the bulb ever lights up.

The use of a bulb holder will enable you to switch the power on and off by screwing in or unscrewing the bulb. Connections to the battery terminals can be made with a battery press connector.

So far we have two modules; a series string of ten 1 kilohm resistors and an LED module with protective diode and resistor.

Used in combination these two modules give a rough and ready support to the idea that resistance tends to reduce the flow of current.

Connecting the led module to the battery supply. Positive to positive and negative to negative will make it light up, connecting it the wrong way round won't.

Now take your chain of $1 \mathrm{k} \Omega$ resistors and connect the negative end to the negative supply and the positive end of the led to various points along the chain from the positive end downwards as shown in Fig. 2.6. The arrow-head and wiggly line on the diagram indicate a movable connection. The l.e.d. gets progressively dimmer as you move down the chain towards the negative end. On point 3 it scarcely lights, and it does not light at all on 2 and 1 . Naturally, not on 0 either, because it is "shorted".

With the resistor chain across the battery each resistance uses up one-tenth of the battery's voltage. So for a 10 V battery each resistance absorbs 1 V . Tap 10 is then at 10 V , being connected straight to the battery. Tap 9 is at $9 \mathrm{~V}, \operatorname{tap} 8$ at 8 V and so on. Tap 1 is at 1 V , but more than 1 V is required to light the l.e.d. Tap 2 is at 2 V , but about $2 \cdot 4 \mathrm{~V}$ is needed. On Tap $3(3 \mathrm{~V})$ it should light. Of course, as soon as the l.e.d. lights, the current it now passes upsets all the voltages along the resistor chain. This is because the current in the l.e.d. must flow through all the series resistances above the tap to which it is connected. This additional current further increases the voltages
absorbed by these resistances, leaving less voltage for the l.e.d. itself than would normally be found at whatever tap it is connected to.


Fig. 2.6. Demonstrating the effect that any resistance tends to reduce the flow of current. Fig. 2.7. (Right). If the RESISTOR CHAIN has one end unconnected-no current flows.

With the resistor chain connected with its bottom end floating as in Fig. 2.7 no current flows until the led is connected. So there is no voltage loss in the resistances and the bottom end is at the full battery voltage, say 10 V . Naturally when the Led is connected to the bottom tap and current flows through the resistor chain this voltage is drastically reduced. If the bottom end of the resistor chain is not connected to the negative end of the battery, but left "floating" the full 10 V must appear at point 0 . However, as soon as anything is connected between 0 and negative, current flow in the resistors reduces the voltages.

If you had a perfect voltmeter, you could prove by measurement that with one end the resistor chain floating (and no LED) the full battery voltage really does appear at the floating end of the chain, despite the resistances. A perfect voltmeter should draw no
current. We do not have such an instrument, but by using a simple trick we can achieve the same result. The trick involves the use of a new circuit element. This is called capacitance and the component which embodies it is called a capacitor.

## CONSTRUCTION

Make up two $1000 \mu \mathrm{~F}$ capacitor modules as shown in Fig. 2.8. Each module carries the standard circuit symbol for the component. The white plate is positive and the black plate negative. We shall use these capacitors to collect and store voltages from our resistor chain.

To illustrate what happens when a capacitance is charged by a battery via a resistance a water-flow analogy is helpful, Fig. 2.9. The battery is a water tank whose water level is kept constant. The level corresponds to the voltage. The capacitor is a container with an inlet at the bottom and the resistance is the pipe. You can see that, however wide or narrow, long or short the pipe may be, water flows into the container until the level is the same as in the water tank. Then stops. Using a longeŕ or narrower pipe (that is, increasing the resistance) slows down the process. But given enough time, the container must


FIg. 2.9. The water-flow analogy shown here is helpful in understanding how a capacitor is charged.


Fig. 2.8. The $1000 \mu \mathrm{~F}$ capacitor module. Only one card is required for each module, and is shown full size.
fill to the same level, however high the resistance. If you think about it, you will see that when the tap is first opened water flows into the empty container quickly, but as the container fills the flow is slowed down. This is because the water in the container is now pressing down on the inlet, opposing the inward flow. This effective "head of water" is the difference between the level in the tank and the level in the battery. As the container fills this head of water is reduced. When the container is nearly full the flow is very small indeed. Perhaps the container never gets quite filled up to the tank level, even down to the last drop!

The equivalent electrical circuit shown in Fig. 2.10 shows the same sort of behaviour. When the switch $S$ is first closed, there is no voltage on the


Fig. 2.10. The equivalent electrical circuit of Fig. 2.9.
capacitance. So the full battery voltage $V$ drives current through R. But as soon as any voltage builds up in $C$, it opposes $V$ and the current decreases. When the capacitor is charged to very nearly $V$, the current through $R$ is very small. Perhaps $C$ never quite gets charged to $V$, though obviously it can be charged to something so close to $V$ that it makes no practical difference.

Anyway, it is clear that if we charge our $1000 \mu \mathrm{~F}$ module via a resistance it will eventually charge to the battery voltage, as near as makes no difference. If the complete resistor chain is used, making a total of $10 \mathrm{k} \Omega$ it takes about 30 seconds to charge almost completely to the battery voltage.

Before using newly bought electrolytics it is advisable to connect them to the battery for a few minutes, observing polarity. This reforms the oxide film if it has deteriorated in storage. A charged $1000 \mu \mathrm{~F}$, applied to the LED with the correct polarity produces a brief flash of light. Check that your $1000 \mu \mathrm{~F}$ modules are holding their charge by leaving them disconnected for 5 minutes after charging and then applying them to the Led. If they fail this test discard them.

You can now connect your resistor chain across the battery, Fig. 2.11. Charge a $1000 \mu \mathrm{~F}$ from various points, apply to the LED and see the flash. Equal flashes should indicate equal voltages. Your earlier experiment with the resistor chain connected across


Fig. 2.11. Lighting the LED with a charged $1000 \mu \mathrm{~F}$ module.
the battery showed that the voltage drop across the bottom three resistors is just enough to turn on the led. In fact the drop across any three adjacent resistors just lights the led. (Test this.) You know, however, that the voltages in the resistor chain are changed when the led is connected. So you cannot be sure that this test gives a true picture of the way in which the battery voltage is shared between the series resistors.

If the capacitor is connected across any three adjacent resistors, making sure to connect the positive plate to whichever of the resistors is nearest the positive end, it will, given time, charge up to whatever voltage exists across the three resistors. After that, it will take no further current and so will not upset the voltages at all. Having charged the $1000 \mu \mathrm{~F}$ to the true voltage you can then remove it and apply it to the led.

Experiment with the $1000 \mu \mathrm{~F}$ and Led, comparing voltages across equal numbers of adjacent resistors. Also, prove that when the 0 end of the chain of resistors is disconnected and the $1000 \mu \mathrm{~F}$ is charged via the whole chain for a long enough time the flash is as great as when the $1000 \mu \mathrm{~F}$ is charged directly from the battery. Also, get an idea of the charging time by connecting the Led as shown dotted then tapping the $1000 \mu \mathrm{~F}$ to the same points. The Led goes out then comes on again when $C$ is charged. By now you will have realised that although these " $1000 \mu \mathrm{~F}$ and LeD" tests give a rough indication of circuit voltages they are not precise or convenient. In particular, the short durations of the flashes make careful comparisons difficult. The problem is that the charge in the $1000 \mu \mathrm{~F}$ is used up too rapidly. The led takes too much current, and quickly drains it away.

What is needed is some way of slowing down this discharge of $C$. A much larger $C$ would achieve this but then it would take longer to charge, too, which


Fig. 2.12. Simple method of reducing the current taken by the LED, is by using a current ampl/fier.
might be tedious. A better way is not to apply the $1000 \mu \mathrm{~F}$ to the LED directly, but via a current amplifier Fig. 2.12. If the current from the $1000 \mu \mathrm{~F}$ is amplified 1000 times, then only a thousandth of the current needed to light the LED need be taken, and it will take 1000 times as long to discharge.

## TRANSISTOR MODULES

A transistor is a current amplifier. A transistor is a device with three connections Fig. 2.13. A small input current flowing between base(b) and emitter(e) makes a much larger current flow from the battery through collector(c) and emitter(e), typically 100 times larger. This amplified current can be made to light up the led.


Fig. 2.13. Circuit symbol for a transistor. The current flow of each path is shown by the arrows.


Fig. 2.14. Details of the NPN module. Construction is the same for the previous modules. Both cards are shown full size. Be extra careful when soldering the transistor.


Fig. 2.15. The PNP module. This is constructed in the same manner as the NPN module. So be careful not to get them mixed upl


CIRCUIT MODULE
CONSTRUCTION

Two photographs of the NPN and PNP modules. It is preterable if the two are sprayed in different colours. This then provides a further ald to identification.


Figs. 2.16 and 17. Testing each of the NPN and PNP modules. If you do not get the correct results, re-check the wiring and in particular that of the transistors.


Fig. 2.18. An improvement on the circuit of Fig. 2.11. This time the LED stays illuminated for a longer period of time.

We now make up three transistor modules, two NPN and one PNP. Each consists of a transistor, protective resistors, and pins (or nails) for making the connections. Construction is as before; pins, plain connections, resistors, and finally the transistors. The circuit of each module and their construction are shown in Figs. 2.14 and 2.15
Be careful to connect the transistors correctly as shown. The BC108 has a tag on it's case which is a marker for the emitter lead(e). Similarly the flat on the 2 N 3702 serves the same purpose. Use pliers or tweezers as a heat shunt when soldering and blow on the joint as soon as it is made, to cool it. Mark the top of the modules as shown.

Now connect the led, the resistor chain and one NPN module as shown in Fig. 2.16. You should find that the Led lights when the base(b) of the NPN module is connected to any tap on the resistor chain except for 0 . This means that the current flowing into the base of the NPN module is enough, after amplification to light the led, even when the voltage from the resistor chain is only 1 volt. We found earlier that it takes over 2 volts to turn the led on. Evidently less than 1 volt will turn on the transistor in the NPN module.

Now test the PNP module by connecting the modules as shown in Fig. 2.17. This time you should find that the led lights on all taps expect 10 .

Reconnect the NPN/Led modules as shown in Fig. 2.18. But this time instead of connecting the base(b) to the resistor chain, charge up one of the $1000 \mu \mathrm{~F}$ capacitor modules from the resistor chain (any tapping will do) and then transfer the charged capacitor to the base(b) of the NPN module. The led now lights for a length of time which will vary depending on the amount of charge in the capacitor.

This is a much better arrangement than just the capacitor and the led module. The time that the LED stays illuminated now gives some indication of the voltage. Even so, it is not an entirely satisfactory way of measuring voltages. For one thing, the duration of the LED is not exactly proportional to the voltage. If it were, then it would last ten times as long for a 10 volt charge as for a 1 volt charge, but it doesn't, then again timing the LED is rather tedious.
Have you been wasting your time? Not at all.

Next month we shall return to the subject of resistance and capacitance, but in greater detail.

## QUESTIONS

1. Most silicon diodes have a band of colour printed round the;
a. middle
b. cathode end
c. anode end
2. When wiring up circuits, semiconductors should be connected;
a. last
b. first
c. after the resistors
3. If a 12 volt battery is connected to a 2 kllohm and a 1 kilohm resistors in series, the voltag across the 1 kilohm resistor is:
a. 4 volts
b. 6 volts
c. 8 volts
4. A capacitor is required to pass audio frequency voltages from a point at +18 Vdc to a point at +5 Vdc . Which of these capacitors is most likely to be suitable?
a. $10 \mu \mathrm{~F} 10 \mathrm{~V}$ electrolytic
b. 560 pF polystyrene
c. $3 \cdot 3 \mu \mathrm{~F}$ pooV electrolytic
5. The typical current amplification of a transistor is;
a. 100
b. 5
c. 3000
6. A potential divider of 10 kilohms and 2 kilohms divides it's input voltage by:
a. 3
b. 6
c. 5

Answers next month


## NIXT <br> MOY 

 HAZARD WARNING SYSTEM...

This unit allows the existing car or motorcycle
Basher unit to be used as a hazard warning system lamps flashing simultaneously.

## Automatic PHASE BOX

A unit designed for electric guitar and organ for live performances. Has a range of three octaves with a sweep rate variable from 0.2 to 5 Hz

## Photoflash SLAVE UNIT

A very simple circuit that
will trigger a second that tronic flash when receiving the light from the main flash

$$
3
$$

Also... ULTRASONIC REMOTE CONTROL SYSTEM - Part 2
yxyadiaycs

OUR DECEMBER ISSUE WILL BE ON SALE FRIDAY, NOVEMBER 18


The normal cost of this SRB 1 iron direct from the manus postage and packing. The SRB 1 is a lightweight powered ( $220-240 \mathrm{~V}$ a.c.) and conomately 2 metres of fitted with a 3 mm bit. It is mains pow The iron is fitted with approxim details is included protection regulation BS3456 2/14. Tiction leaflet containing wirn is approximately three-core mains lead and an instrs. The overall length Each iron is guaranteed for with all irons despatched to readers. Thespension hook. Each iron 19 cm with the three months

Please complete both parts of the coupon opposite in BLOCK CAPITALS. Offer closes on 30th December, 1977.

Orders are normally despatched within 28 days but please allow time for carriage. You will be notified if a longer delay may be expected. Remittances must be by postal order or cheque (name and address on back of cheque, please) crossed and made payable to IPC Magazines Ltd. This offer is open to readers in England, Scotland, Wales, Northern Ireland, and Channel Islands only. We regret it is not available in Eire or overseas.


THE super-regenerative type of v.h.f. receiver is of particular interest on the grounds of simplicity (compared with a superhet) and the ease with which it can be adapted to cover a wanted range of frequencies. It has high sensitivity, is relatively inexpensive to build, and has no ganging or trimming difficulties. It lacks the selectivity of a superhet, but this does not generally prove to be too important over the range of about 55 MHz to 198 MHz or so which can be tuned here.
The present design has been well proven and tested, and although we make no claims about the quality of reproduction, it will give the constructor an insight to what goes on at v.h.f. frequencies. For this reason no set frequency band has been mentioned, instead a table of values for particular components has been provided together with the associated frequency range covered in each case. It should therefore be clear to the constructor that the present design can be modified to cover any frequency desired, within the frequency ranges shown and is suited to those who wish to experiment with radio reception within the v.h.f. bands.

## START HERE FOR CONSTRUCTION

## CASE

This needs to be prepared first, as the r.f. section is built directly onto the front panel. The box is a $150 \times 100 \times 50 \mathrm{~mm}$ universal chassis, with an extra $150 \times 100 \mathrm{~mm}$ flat plate for the back. All the niajor dimensions are shown in Fig. 1. First cut a hole about 45 to 50 mm in diameter for the speaker, which is near the bottom of the panel. This can be done with a large chassis punch, with an adjustable hole or tank cutter, or by drilling a ring of small holes and cutting away the excess metal. Also drill or punch holes for C5, VR1 and VR2, and for the two tagstrips, as well


## ESTIMATED COST OF COMPONENTS $£ 10$ excluding case

as for 6BA bolts to secure the sides by their flanges, and for the audio board. Correct fitting for the latter can be obtained by drilling the board and metal panel together, in advance.

The receiver front was finished by securing fabric over the speaker opening with adhesive, bolts for the audio board having been fitted with lock nuts. These bolts are countersunk, as are those holding the tag strips, this part of the front being covered with selfadhesive material.

Bolts to secure the aerial pass through a strip of insulating material and insulating washers. This side is bolted on when wiring is finished.

## RF WIRING

The layout of the r.f. section is shown in Fig 2. Note that C1, C2 and C3 should be tubular or disc ceramics, which are convenient for their small size, this type may also be used in other positions. Connections to $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 5, \mathrm{C} 6$, and C 8 , in particular, should be as short as possible.

The trimmer C6 is soldered directly to the solder tags of C5, and a stout wire just clearing the moving plates goes to the rotor tag. Note that TR1 and TR2 have different drain, gate and source lead positions. A tag on one bolt holding the aerial is connected to TR1 gate.

Resistor R3, and the leads to VR1 wiper and C9 to VR2 should be kept close against the metal panel.

Of various transistors tried, the BF244 was found best for TR1, and an MPF102 for TR2. True, equivalents should be suitable, but similar types intended for lower
frequencies (such as the 2N5459/ MPF105) ceased to regenerate at frequencies over about 100 MHz so cannot be used here. There is of course no reason why different types cannot be tried.

## COIL CONSTRUCTION

Coil Ll is wound with solid insulated wire, and has two turns fairly close together, with an outside diameter of about 10 mm or $0 \cdot 4 \mathrm{in}$.

The second coil, L2 is of similar diameter, and can be 18s.w.g. or 20s.w.g. wire.

With three turns, spaced to occupy about 15 mm coverage was 155 to 165 MHz with C6 fully unscrewed. Screwing C6 down lowers the frequency.

A coil with four turns, 15 mm long, covers approximately 130 to 155 MHz with C6 fully unscrewed, this changing to 115 to 130 MHz with C6 slightly screwed down, and 85 to 115 MHz with C6 nearly half closed.
Stretching or compressing L2 will also alter the frequency coverage. Amateur 2-metre signals will be found around 145 MHz . Coil Ll is placed quite close to L 2 , but not so near that regeneration is not obtained.

## HOW IT WORKS...

Signals induced into the aerial are selected by the tuned circuit. This part of the circuit consists of a coil and variable capacitor to select the required frequency. The signal is then passed via a buffer amplifier which merely isolates the aerial from the remainder of the circuit. The selected signal is then rectified by the detector which consists of a transistor which goes in and out of oscillation at the working frequency. The rate of oscillation is controlled by the regeneration control. The detected signal is then passed to the audio amplifier where it is amplified to a sufficient level to drive a loudspeaker.


The radio frequency choke L3 consists of approximately 40 turns of 42s.w.g. enamelled copper wire, wound side by side, on a 4 mm diameter insulated former. A $2 \cdot 2$ megohm resistor, was actually used, with the 42s.w.g. wire soldered to the resistor leads. The choke was not found to be critical, and can be wound on a small piece of insulating material. The winding should not be covered with
adhesive, varnish, or wax.
Although not exactly a coil, capacitor C7 needs to be constructed from wire. It consists of two insulated wires twisted tightly together for a length of 50 mm . The two free ends are then soldered to the appropriate points on the wiring diagram. On no account should a single piece of wire be used, it could short out the transistor.


Flg. 1. The front panel with major dimensions. This is shown with the inside facing the reader. A photograph of the prototype component board and other front panel components is shown right.


## V.H.E. POTRBBE RARIO



Fig. 2. Complete wiring details for the V.H.F. Portable Radio. The audio board is mounted on two.long spacers arranged to clear the speaker underneath. The two Insulated wires which form C 7 should be arranged to point down towards the audio board. It wlll then be easler to adjust.

## 

Resistors

| R1 | $47 \mathrm{k} \Omega$ | R10 | $220 \mathrm{k} \Omega$ |
| :---: | :---: | :---: | :---: |
| R2 | $180 \Omega$ | R11 | 270 k ת |
| R3 | $560 \Omega$ | R12 | $1.5 \mathrm{k} \Omega$ |
|  | $1 \mathrm{k} \Omega$ | R13 | $1 \cdot 5 \mathrm{k} \Omega$ |
| R5 | 10k $\Omega$ | R14 | $680 \Omega$ |
| R6 | 15k $\Omega$ | R15 | $47 \Omega$ |
| R7 | $5 \cdot 6 \mathrm{k} \Omega$ | R16 | $2 \cdot 2 \Omega$ |
| R8 $1 \cdot 8 \mathrm{M} \Omega$ R17 $2 \cdot 2 \Omega$ <br> R9 $8 \cdot 2 \mathrm{k} \Omega$   |  |  |  |
|  |  |  |  |
| All resistors are carbon $\ddagger W \pm 5 \%$ |  |  |  |
| PotentiometersVR1VR2VR2 |  |  |  |
|  |  |  |  |
|  |  |  |  |

Capacitors

| C1 | 1 nF | C9 $0.1 \mu \mathrm{~F}$ polyester |
| :---: | :---: | :---: |
| C2 | 1 nF | C10 10nF |
| C3 | 1 nF | C11 4-7nF |
| C4 | $22 \mu \mathrm{~F} 10 \mathrm{~V}$ elect. | C12 $0.1 \mu \mathrm{~F}$ polyester |
| C5 | 10pF variable (Jackson type C804) | C13 $0.47 \mu \mathrm{~F}$ polyester C14 $125 \mu \mathrm{~F}$ 10V elect. |
| C6 | 30 pF beehive trimmer | C15 20nF |
| C7 | 1.5 pF see text | C16 $1000 \mu \mathrm{~F} 10 \mathrm{~V}$ elect. |
| C8 | 5 nF | C17 470 4 F 6.3 V elect. |

All low value capacitors are tubular or disc ceramic, except where stated.
Semiconductors
TR1 BF244 n-channel f.e.t.
TR5 AC141 germanium npn
TR2 MPF102 $n$-channel f.e.t.
TR3 BC108 silicon npn
TR4 BC149 silicon npn
TR6 AC142 germanium pnp

Miscellaneous
AEi telescopic aerial, about 90 cm long
L1 two turns insulated wire, 10 mm diameter, see text
L2 four turns $18 \mathrm{~s} . w . g$. wire, 10 mm diameter spaced to 15 mm , see text
L3 r.f. choke, 402 turns of $42 \mathrm{~s} . w . g$. wire, wound on a $2 \cdot 2 \mathrm{M} \Omega$ resistor, see text
B1 PP3 9V battery
LS1 8 ohm 55 mm round loudspeaker
Universal chassis $150 \times 100 \times 50 \mathrm{~mm}$; extra flat plate $150 \mathrm{~mm} \times 100 \mathrm{~mm}$; plain stripboard 0.15 inch matrix $19 \times 14$ noles; one 6 -way tagstrip with two tags earthed; one 5 way tagstrip with one tag earthed; two small round knobs; one large round knob; covering for the front panel; 6BA hardware; insulating material for aerial; sleeving; connecting wire; solder.

Table 1. Frequency coverage ( $\mathbf{M H z}$ ) for different values of $\mathbf{L 2}$ and C6

| Setting of C6 | Two | Number of turns <br> Three | Four |
| :--- | ---: | :--- | :--- |
| Fully Unscrewed | 168 to 198 | 144 to 174 | 58 to 70 |
| Slightly screwed down | 114 to 170 | 128 to 146 | 55 to 98 |
| Screwed halfway down | 118 to 120 | 106 to 114 | 80 to 88 |

[^2]

Photograph of the prototype with lid removed. Note the insulator between aerial and case.

## USING THE RECEIVER

When the receiver is in use, VR1 is rotated until a loud rushing sound is obtained, which ceases when a signal is tuned in. This sound, which indicates quenching of the regeneration, may not be obtained if C6 is screwed down too far, or if TR2 cannot operate at the frequency wanted, or if L1 is too close to L2. The value of C7 also influences results, and may if wished be substituted by a small trimmer capacitor instead of the short insulated wires. Individual adjustment can then be made, if wished.
Ideally, the hiss should be obtained with VR1 rotated clockwise about one-half to two-thirds, but its setting is not very critical, except for exceptionally weak signals. With signals of ordinary strength, a type of self-limiting effect is obtained.

## AUDIO BOARD

Both sides of the audio section board are shown in Fig 2, and uses plain $0 \cdot 15$ inch matrix board. Temporarily secure two solder tags at the points marked mc. In most places the wire ends of components will reach to the necessary points and sleeving only need be added where wires might touch each other. Provide leads for the speaker and battery connections, and bring the lead from R7/Cll up through the board, so that


Flg. 3. Circult diagram of the V.H.F. Portable Radio. The circult may be logically split into twe sections, the r.f. and a.f. stages.

## CIRCUIT DESCRIPTION

## RF SECTION

Referring to Fig. 3 this shows (to the left of the dotted line), the r.f. (radio frequency) section of the receiver, AE1 being the telescopic aerial.

Transistor TR1 is operated as a grounded source amplifier, whose main purpose is to isolate the aerial from the detector stage. Bias for the transistor is provided by resistor R1, R2 and R3. Coil Ll couples signals from the aerial to the second coil L2. This coil together with the variable capacitor C5 and trimmer C6 form a tuned circuit. The trimmer C6 provides some adjustment to the band covered by C5.

Transistor TR2 is the superregenerative detector, with re-
generation controlled by VR1. In operation TR2 goes in and out of oscillation at a frequency determined by the values of L2, C5 and C6, this results in high sensitivity, and a slight background hiss. The latter ceases when a signal is tuned in.

Detection of the signal is arranged by TR2, the gate to source junction providing the actual rectification. The radio frequency choke, $\mathrm{C} 8, \mathrm{Cl} 0$ and R 5 are provided to filter out any remaining r.f. before the audio is passed to the amplifier via R6 and C9.

Since we are using a fairly simple circuit we do not obtain the full benefits from the hi fi quality of f.m., the mode used on these sort of frequencies. Nevertheless good quality can be obtained by this method of slope-detection.

The upper limit to the frequency depends on the indivicual transistor used for TR2, and short wiring. For this reason a holder was used for TR2, and wiring kept as short as possible. It is therefore
recommended that the front panel layout be followed as closely as possible.

## AUDIO AMPLIFIER

The circuit of this section is also shown in Fig. 3 and is to the right of the dotted line.

Should a receiver for headphone reception be wanted, TR3, with $\mathrm{Cl1}, \mathrm{C} 12, \mathrm{R} 7$ and R 8 may be assembled on a small board or tag strip, and high impedance phones may be wired in place of R9. With the full amplifier, TF3 is the first a.f. stage, followed by TR4 to drive the complementary output pair TR5 and TR6. This provides enough volume for an 8 oim or similar speaker fitted in the case. It would be possible to use headphones by adding ar output jack socket, but caution should then be taken to keep VR2 turned well back.

This part of the receiver is wired on a board, afterwards fitted behind the speaker.
it can be connected to VR2. If the layout is followed carefully, no difficulty should arise here. If wished, the amplifier can be tested by taking an audio input to R7/C11, keeping this quite low to avoid overloading.

A piece of insulating material is fixed to the back of the speaker with adhesive, as a precaution against short circuits, and the board is fixed by the long bolts previously described, and held with washers and lock nuts. Space is left for a PP3 9 volt battery at the side of the board.
Volume is controlled by VR2 in
the usual way, but generally this will not be turned to maximum, and advancing VR2 too far may easily cause overloading with some signals.

The aerial actually fitted extends to about 86 cm , but this is unnecessarily long for the higher frequencies. There is little adavantage in using a length of more than about $5_{8}$-wavelength at the working frequency. A dipole or similar aerial with a feeder can be used by closing the telescopic aerial and attaching the feeder conductors to receiver case and aerial.



Improved steady hand
When building the Steady Hand Tester in the July issue, I have found the following improvements can be made;

1. A switch can be included in the circuit so that sensitivity can be selected between high and low. In practice the switch is placed across VR1 and R1.
2. A switch can be included between the coilector of TR3 and TL1. This will allow the buzz to be disconnected if it causes annoyance to other people.
3. A third switch can be included to provide a "panic" facility. In use the switch connects a potentiometer between
the positive supply and the positive end of C 1 . When the unit is switched on, current will flow through the resistor and charge up C1. After a certain time the voltage on C1 will cause TR1 to conduct and operate the alarm. In this way a player is given a certain time to complete the course. Thirty seconds is a reasonable figure.
S.D. Lang,

Stepps, Glasgow.

We thank you for your improvements to the Steady Hand Tester. We are always pleased to hear from readers who find our projects interesting, and are able to improve them.

It's not all electronics!
Electrician: Thats an old Volks Wagor you have there,
Car owner: Yes, but the problem is that the VW is only 6 volts,
Electrician: Whatl only 6 VW , it must have a huge capacity.
A. W. West,

Potters Green,
Coventry.

## The reason why

Like many readers I can only praise you on an excellent magazine, with quite an interesting and varied selection of projects. But, I feel I must say this, why oh why does some bright spark have to change the size of the magazine two thirds of the way through the year, expecially as I like many others have all six binders.
D. Walker, Nottingham

Thank you for your recent letter, and fo the fine comments you make concerning our magazine.
Regarding your criticism of the change to a larger size, we agree with you that the timing was rather unfortunate. This was a decision made elsewhere, and was governed chiefly by the paper supply situation. As you will have noted, we have started a new volume (No. 7) with the September issue, and the new binder will accommodate 16 issues. Volume 8 will commence in January 1979, and then things should be back to normal, we hopel



By F. G. Saddler

## INTRODUCTION

THE ELECTRONIC game to be described here was originally designed to be used at school fetes as part of a fund-raising scheme. By all accounts it was very successful, a small prize being given to the person who found the pair. Use is made of two multivibrators, one operating a pair of lamps, the other operating a small loudspeaker to indicate a successful attempt. By using two multiway switches a large number of different pairs may be switched into the circuit, this of course being necessary so everyone who tries to find the pair has an equal chance, thus foiling the person with a good memory!

## START HERE FOR CONSTRUCTION

Construction can begin with the case. This has a size of $255 \times 115 \times$ 75 mm , and is constructed from


This Find The Pair game consists of two oscillators connected in parallel. One oscillator will produce an audible tone while the other is wired to cause two lamps to flash on and off. Normally both oscillators are off. The probes are used to complete the circult when they are in contact with the correct pair of pins (selected by the switches) which then results in the production of a tone and flashing lights.

3 mm ( ${ }^{1} 8$ inch) hardboard. The case is first constructed as a four-sided box, with wood or metal angle at each of the four corners.
Two pieces of wood are then screwed to each of the longer sides thus providing a mounting for the base. One open end now forms the top. This is covered with a sheet of Formica similarly fixed by two pieces of wood as before. The layout of the top panel really depends on the choice of the constructor and the size of components. For
this reason no drilling dimensions have been given.

The matrix comprises a sheet of perforated board, 0.1 inch matrix, $16 \times 33$ holes. This is fixed to a small piece of wood $155 \times 75 \times$ 12 rrm , this being mounted on the Formica panel. A cut-out in the wood needs to be made to allow access to the pins on the board, a similar size cutout is also made in the Formica; the two panel lamps and the loudspeaker are similarly provided with holes in the Formica.


Fig. 1. The complete circuit dlagram of the Find The Pair game.

## CIRCUIT DESCRIPTION

The complete circuit for the game is shown in Fig. 1. It consists of two astable multivibrators, one driving a pair of lamps and the other a loudspeaker. The two separate multivibrators are similar in appearance but one uses pnp transistors and the other npn. Since the action of each is virtually similar apart from the voltages being opposite, the $n p n$ type, which is the most common, will be described. The operation of the second multivibrator will then be easily understood if the voltages are reversed.

When power is first connected to the circuit both transistors will begin to turn on, as both will be receiving base current via the
appropriate resistor. However, due to component tolerances one will begin to turn on faster than the other, for the sake of this explanation we will assume that it is TR3 that turns on the faster.

As it does so it will provide a negative signal to the base of TR4 via C3. This has the effect of turning TR4 off. TR3 thus turns hard on while TR4 is held in the off state. When the potential on the collector of TR3 has fallen to that of the negative supply voltage, obviously no further signal can be applied to the base of TR4 via C3. This capacitor therefore charges via R5 until about 0.65 V is present at the base of TR4. TR4 then begins to turn on, in doing so a negative signal is applied via C4 to the base of TR3. This has the effect of turning TR3 hard off, the positive signal thus produced across R3 is fed by way of C3 to the base of TR4, turning it fully on.

Capacitor C3 then begins to charge through R4 and when about 0.65 V is present at the base of TR3, TR3 begins to turn on. A regenerative action similar to that which has just occurred will now take place, except that it is TR3 which finishes hard on, and TR4 hard off.

It should now be possible to follow the action of the second multivibrator, only this time all the voltages are reversed when reading the above description.
Transistor TR5 is a simple amplifier which is used to provide enough output to drive a small loudspeaker.
The supply to each multivibrator is applied via the two switches and the matrix of pins. Each switch is able to select up to ten different pins, we thus have a total of 100 pins which means 50 pairs. A very large number indeed, even for any "memory man"!


ESTIMATED COST OF COMPONENTS £7 excluding case

Photograph of the prototype unlt showing layout of pin board, loudspeaker and lamps.


## COMPONENTS

## Resistors

R1 $2 \cdot 2 \mathrm{k} \Omega$
R2 $2 \cdot 2 \mathrm{k} \Omega$
R3 $1 \mathrm{k} \Omega$
R4 $100 \mathrm{k} \Omega$
R5 $100 \mathrm{k} \Omega$
R6 $1 \mathrm{k} \Omega$
R7 $100 \Omega$
All resistors are carbon $\frac{1}{2} W \pm 10 \%$

## Capacitors

C1 $220 \mu \mathrm{~F} 10 \mathrm{~V}$ elect.
C2 $220 \mu \mathrm{~F} 10 \mathrm{~V}$ elect.
C3 $0.01 \mu \mathrm{~F}$ polyester
C4 $0.01 \mu \mathrm{~F}$ polyester
C5 $2 \cdot 2 \mu \mathrm{~F} 10 \mathrm{~V}$ elect.
Semiconductors
TR1, 2 AC128 germanium pnp
TR3, 4,5 BC108 silicon npn
Miscellaneous
S1, 2 1-pole 12-way rotary switch, two tags unused (2 off) B1 PP16V battery
LS1 $\quad 80$ ohm 70 mm round loudspeaker
LP1, 26 V 40 mA m.e.s. bulbs complete with lampholders (2 off) Plain stripboard 0.1 inch matrix $16 \times 32$ holes; Veropins 112 off; two large round knobs; seven-way tagboard; stripboard $0 \cdot 1$ inch matrix, 10 strips $\times 24$ holes; 1 mm diameter sleeving for TR1 and TR2; material for case; hardboard, sizes as required, Formica for front panel, metal or wood brackets, four strips of softwood, block of wood $150 \times 75 \times 12 \mathrm{~mm}$; speaker grill (often used as airvents for cupboards); wood screws or glue as preferred for making case; connecting wire; battery clip; solder.


Photograph of the low frequency oscillator component board.
The general arrangement is shown in the photographs.

Sufficient space has been provided inside the case to mount the two multivibrators and a battery. The exact position of each is a matter of personal choice, the layout is not critical in any way.

As arranged in the prototype the two circuit boards are mounted by means of wood screws to the sides. A piece of wood may be mounted across the case to hold the battery in place, thus preventing it from damaging the electronics if it is
knocked around too much.
The speaker may either be glued in place or as in the prototype solder tags were used, together with 6BA nuts and bolts to form clamps which hold the speaker in place without damaging it.

The two rotary switches are mounted at one end of the case, these being provided with two large knobs. The two multi-
vibrators are built separately, one on tag board the other on a small piece of stripboard. All the necessary wiring is shown in Fig. 2.

## WIRING OF THE MATRIX

As shown in Fig. 2, only part of the matrix is shown. There is a total of 112 veropins mounted on the perforated board, in a pattern similar to that shown. There is a total of 20 connections to be made from the switches to the matrix, the exact wiring details are left to the constructor, six examples are shown. It might be a good idea to wire two or three pins together and take the connection to one tag of the switch, similarly with the other switch several pins may be wired together. This will then prove even more difficult to find the pair.

## PROBES

The probes are made from discarded ball pens which have had the ink thoroughly cleaned away. A length of stranded insulated wire is then pushed down the inside of the ink container, the brass tip is temporarily removed and mounted in a vice to make soldering easier. The end of the wire is then carefully soldered to the tip. Once the soldered joint has cooled the pen can then be reassembled. The remaining end is constructed in a similar manner.

Finally the case is painted in a colour of the constructor's choice, after which the game is then ready to infuriate those who try to find the pair!


# The Extra ordinar Experiments of Profess Eversure <br> <br> by Anthony John Bassett 

 <br> <br> by Anthony John Bassett}

BOB and the Prof. were repairing some electret condenser microphones. Whilst the Prof. went to investigate possible replacements for an unmarked faulty transistor which appeared to carry no means of identification other than a coloured splodge on top, Bob had connected the electret unit directly through to an audio amplifier by means of a length of screened cable.

He found that the microphone still worked quite well, but did not sound so natural as one where an f.e.t. pre-amplifier is used between the electret unit and the audio amplifier.

## CABLE CAPACITANCE

"This is caused by the effects of the capacitance between the screen and the inner wire of the connecting cable, whereby the higher audio frequencies tend to be shunted to the screen and partially lost. Although you can compensate for this by turning up the treble control on the amplifier, the compensation is usually not accurate, and as you have just found, Bob, the microphone will still not sound so natural as one which is fitted with an f.e.t. preamplifier, even though there is plenty of treble sound present."
"What is so magical, then Prof., about these f.e.t.s? I thought that


Fig. 1. A length of screened cable at the input of an amplifier acts as a capacitor (dotted) across the input.
they just amplified the signal a bit, to give more volume without having any effect, good or bad, on the tone."
"The f.e.t. pre-amplifier does not itself have much effect on the tone, Bob," the Prof. informed him, "but it does very effectively reduce the problems caused by cable capacitance. Let us first consider what these problems are, when you connect up a signal source such as this electret unit, to an amplifier, by way of a length of screened audio cable."

The Prof. drew a sketch. Fig. 1.
"The effect of the cable capacitance is so great that we may as well represent the cable, in this diagram, by way of a capacitor connected between the signal source and the amplifier. Now it is important to remember that the
electret unit is not a very energetic signal source, but a very sensitive one.
"The sensitivity of the electret unit is achieved by use of a very thin diaphragm, typically only a few thousandths of a millimetre in thickness and this is what enables it to give a good audio response over the entire audible range. In graph form this is what an ideal response (A) would look like (Fig. 2 ), and the output of the electret unit conforms more closely to this than do most other microphones.

## RESPONSE CURVES

"However if the electret unit is connected to a capacitive cable, or a capacitor as in this diagram (Fig. 1) it has to charge and discharge the capacitor at audio frequencies. This means at the higher audio frequencies, charging and discharging the capacitor several thousand times a second. As you know, Bob, each time a capacitor is charged it absorbs energy, and stcres it. At higher frequencies the rate of absorption of energy by the capacitor is higher than at the lower frequencies of the same amplitude.
"At these higher frequencies the diaphragm simply does not receive sufficient energy from the audio vibration in the air, to charge the


Fig. 2. Typical response curve (A) of an electret microphone. Curve (B) shows effect of capacitive loading each I nput lead and (C) and (B) the results of the attempts to reduce this effect by boosting the high frequencies by means of a treble boost control.
capacitor up to the voltage level represented by the ideal response curve.
"It needs an additional source of energy if this is to be achieved, and in these microphones the additional source of energy is usually a 1.5 volt cell. The release and disposal of this energy in order to achieve the desired response is controlled from the electret unit by means of the f.e.t. circuit."

The Prof. sketched out a few more response waves.
"When the electret unit is loaded by the cable capacitance, the resultant loss of high frequencies would make its response curve 'droop' at the upper end, like curve $B$, and when you try to compensate by turning up the treble controls, this usually improves matters. However, the action of the treble control on the amplifier is unlikely to match the action of any particular length of screened audio cable which you might happen to use, and the result will be a response curve with humps and dips in it (curves $C$ and $D$ ), this does not sound quite so natural as the level curve. This is because the level of response signifies the least amount of interference with the sound which has been produced naturally."

## IMPEDANCE

"Prof., I've quite often seen references to the use of f.e.t.s for conversion of signals from a high impedance source to a low impedance load, but here we do not seem to be doing this, as the microphone is connected to a high impedance input on the audio amplifier."
"Ah, but Bob, here, it is the connecting cable which is of low impedance at high frequencies due
to the capacitance between the screen and centre wires, although the microphone will operate well into an amplifier input of low impedance, usually as low as 600 ohms or even 200 ohms.
"The concept of impedance can be the basis of a very useful form of 'intellectual shorthand' enabling people to interconnect complex items of electronic equipment without having to consider in detail, or even know, what they are really doing. This helps enormously by giving people more confidence in the handling and setting-up of electronic equipment whose technical operation they do not understand.
"It will be very interesting to relate your experiment, Bob, to the extremely useful concept of impedance. This concept of impedance is often in order to avoid description or detailed consideration of the various factors which limit the transfer of energy from one point to another. Factors such as capacitance, inductance, resistance, and mechanical factors such as friction, and inertia which are important in transducers such as the electret unit we have here.
"In these terms the electret unit is a high impedance signal source with a very limited current output. The input of the f.e.t. pre-amplifier is an almost ideal match for this, provided that it is connected with very short lengths of wire; and the 'source-follower action' at the output of the f.e.t. to match various lengths of cable, and loads of both high and low impedance with very little distortion or loss of high frequencies."

## FOLLOWER CIRCUITS

"Prof. I have seen that there are quite a lot of books and magazine larticles which describe this source follower action of f.e.t.s and I think I will have to study some of these a little more, as I did not know how such a simple circuit can compensate for various load impedances and conditions. This simple experiment has really given me food for thought!"

To be continued



## 20 watts output (continuous sine wave) . . .

 Less than $0.2 \%$ total harmonic distortion at all powers, al/frequencies... And totally electronically indestructible!Until recently, all monolithic IC chips suffered from two basic design weaknesses. First, thermal runaway causing heat to build up as current increased; and second, short circuiting.


Standard plastic package with copper slug.
Until the SOC20 IC chip! This extraordinary new power amplifier chip is uniquely designed to improve thermal dissipation. It also has two separate built-in circuits, one of which measures on-chip temperature. If this should rise above $150^{\circ} \mathrm{C}$ the output transistors are switched off thus preventing thermal runaway.

And short circuits? The other circuit continuously monitors both current and voltage. If the product of current and voltage rises above a critical level, the


SOC20 plastic package with chip directly soft-soldered to copper slug.
drive is adjusted to bring the transistors within safe operating limits.

The amplifier can drive speakers of any impedance - maximum power will only fall outside the recommended $4 \Omega-8 \Omega$ range.

And any pin on the chip may be shorted to any voltage in the system for any length of time . . . and no damage will occur!
Superb quality . . .
extraordinary power
The SOC20 isn't only safe . . . it's also extraordinarily sophisticated. Total harmonic distortion is less than $0.2 \%$ at all powers and all frequencies - and in normal use is well below $0.1 \%$.

If power is at a premium, use two SOC20 amplifiers in 'Full Bridge' to give over 40 watts continuous into $8 \Omega$ speakers.

The SOC2O is naturally guaranteed unconditionally for one year. Although with the SOC20's unique patented design, we think you'll have little cause to make use of any guarantee!

## Specification

Maximum supply voltage $\pm 22 \mathrm{~V}$ ( 44 V total)
Output power
20 watts continuous $4 \Omega$ or $8 \Omega$
Open loop gain
100 dB
Supply voltage rejection 50 dB
Input noise voltage 4 nV
Number of transistors 18
Supplied with free printed circuit board, heat sink mounting bracket, comprehensive instructions, and suggested applications.

The SOC20 will work on any supply from 12-44 volts and therefore can be used for in-car as well as domestic applications. Apart from its obvious audia uses the fact that it is DC coupled throughout makes it ideally suited for servo systems - in radio-controlled models for example.
Incorporate the SOC20 in your equipment today!
SOC20's cost $£ 4.95$ each, or $£ 7.95$ a pair for, say, stereo applications. Only a few readily-available components are needed to build a full amplifier unit.

Of course, the SOC2O comes with a 10 -day money-back guarantee.
Science of Cambridge Ltd, 6 Kings Parade.
Cambridge, Cambs., CB2 1SN.
Tel: Cambridge (0223) 311488.
To: Science of Cambridge Ltd, 6 Kings To:Science of Cambridge Ltd, 6 Kings
Parade, Cambridge, Cambs., CB2 1SN.
Please send me $\qquad$ (qty)
SOC20 Monolithic IC Amplifiers ( $£ 4.95$ each or $£ 7.95$ per pair, inclusive of p\&p and VAT at 8\%). I enclose cheque/money order/ postal order for $£$
Name $\qquad$



I'd been reading Home Radio's adverts for years and kept telling myself I must send off tor a copy of their famous catalogue. But being an expert procrastinator 1 kept putting it off. I muddled along, picking up bits here and pieces there, often calling at several shops before locating a partlcular component I needed.

If only I'd got a Home Radio catalogue in the first placewhat time, energy and frustration I would have saved myself! I really do wonder now how I managed-this catalogue really has solved my component buying problems. In its 200 pages I hardly ever fail to locate just the piece I need. Not surprising when you consider it llsts over 5,000 items, nearly 2,000 of them illustrated. Home Radio Components Ltd do everything possible to make ordering quick and

We stock all the parts for the Teach-in Series.
easy, and with their simple Credit Scheme I can order by phone any time of day or night, and settle up once a month.

Don't dilly dally like I did-take the plunge now by sending the coupon below with £.1-40, and in a few days you can start on a wonderful new era of simplified component buying.


HOME RAOIO (Camponents) LTD. Dept. E.E., , 234 - 240 London Rodd. Mitcham. CR4 3HO Phone 01-648 8422

## GREENVNELD <br> 443 Millorook Foad Southampton SD1 OHX Tel:(0703) 772501

## TEACH-IN'78

Complete kit of parts for the New Serles started last month. Everything for $\$ 13.50$ including Post and VAT. Order Early!!

## 1977/78 CATALOGUE

Big new illustrated catalogue with 50p discount vouchers! Complete range of resistors, capacitors, semiconductors, knobs and boxes, etc., all at discount prices!! Onily 30p + 15p post.

PC ETCHING KIT MK III Now contains 200 sq. Ine. copper clad oard, 1 lb . Ferric Chloride, DALO etchdrill bits, etching dish and Instructions. i4. 15 Inc. post and VAT.

## VERO OFFCUTS

Pack A. All $0.1^{\prime \prime}$
Pack B, All $0.15^{\prime \prime}$
Pack C, Mixed
Pack
O
Each pack containe 7 or 8 pleces with
 inc. poll and VAT

## DEVELOPMENT

 PACKSBuy a complete range of componenta in one go and save time and moneyll All pack: contain full pec brand new marked devices, sent by return of post. Alt prlees include VAT, Just add 25p post for any quantity.

K001 50 V ceramic plate capacitore, $5 \%$. 10 of each value 22 pF to 1000 pF . Total 210 ,

Ke02 Extended range, 22pF to $0.1 \mu \mathrm{~F}, 330$ values £4.00.

K003 Polyester capacitors 10 each of these $\begin{array}{lll}\text { values: } \\ 0.01, & 0.015, & 0.022, \\ 0.033, & 0.047\end{array}$ $068, \quad 0.1,0.15, \quad 0.22,0.33,0.47, \quad 0.110$ alrogether for Es-75.
xeot Mylar capacitors, min 100 V type. 10 aach all valuas from 1000 pF to $10,000 \mathrm{pF}$. otal 130 for E 4.45.
xees Tantalum bead capacitors. T0 each of the following: $0.1,0.15,0.22,0.33,0.47$, 5/16 22/18 $33 / 1047 / 18$ 100/3. Total 170 tant lor E14-20.
koo Electrolytic capacitors 25 V working, small phyalcal size. 10 each of these opular valuet: 1,2 -2, 4-7, 10, 22, 47, 100 $\mu \mathrm{F}$ otal 70 for EJ. 50.

K02t Minlature carbon film $5 \%$ resiatore CR25 or Eimilar. 10 of each value from 10R to 1 M , E12 series. Total 610 resistora,

K022 Extended range, total 850 reslatore rom IR to 10 M £s 30

Kal Zener dlodes, $400 \mathrm{~mW} 5 \%$, BZYss efc 10 of each value from 27 V to 36 V , E24 or each value from 27.


Learn how to become a radio amateur in contact with the whole world. We give skilled preparation for the G.P.O. licence.


## Whe thotet tol COMPONENT SOURCE DiRECTORY a PWpull-out booklet

This invaluable guide, which folds into a 24 -page booklet, lists suppliers of electronic components and accessories and is just what you need when you're buying components.

## AND HERE'S YOUR CHANCE TO USE IT

## Wide-range Voltmeter

 AC-DC, reliable, 6 ranges to 1000 V . Input impedance of $11 \mathrm{M} \Omega$ plus a variety of probes for measurement at RF.
## RF Resonance Indicator

indicates resonant frequency of a tuned circuit up to around 30 MHz . Also selects values of capacitance and inductance for a given frequency.

Tune in to


November issue on sale 1 October 45p


Doram's new catalogue is one of the great events of the electronic year, 64 pages of new ideas in construction kits, capacitors, resistors, semiconductors, wires and cables, transformers, plugs and sockets, hardware, indicators, switches, radio equipment, tools and test equipment, audio equipment, books. All top quality and terrific value because you can depend on Doram.

## DRYAm

TAKE THE SHORTCUT.



## from NEWNES TECHNICAL BOOKS RADIO CIRCUITS EXPLAINED

Gordon J. KING

* Circuits in mocern radio receivers are examine - from the simple transistor set to the specialised hi-fi receiver.
* Written by one of the best known authors in radio and electronics.
* Invaluable to the radio and audio technician, student and enthusiast.
* Richly illustrated, with a minimum use of mathematics.

CONTENTS: Block and flow diagrams - R. F. amplifier and mixer circuits - Frequency changer and r.f. oscillator circuits - Intermediate frequency circuits - Detector circuits - Audio amplifier circuits - Power amplifier circuits - Power supply circuits - Stereo coding and circuits for decoding - Index.
Available now 160 pages


Order now from your local bookseller or from NEWNES TECHNICAL BOOKS, Borough Green, Sevenoaks, Kent TN 15 8PH

## BURGLAR ALARM

```
EQUIPMENT SUPPLIES (TRADE)
Magnetlcally operated door switch surface fype
Magnetlically operated door swlich flush type
Preso sensitlve swltch
Pressure pads large 29" x 15" & wires
Pressure pads stair tread size 4 wires
Aluminlum window foll 100tt. self adhesive
Take of blocks for window foll per palr
Slren 12V
3'bell.
Key swlich single pole + chrome plate
Battery for above large MP
Kolak horn
CONTROL UNITS
Battery operated model
Battery & malns model - malns
D.I.Y. battery model
ALL PRICES + 12j% VAT. NO VAT EXPORTS
DISCOUNTS PER ITEM 5+ 10%, 25+ 15%, 100+ 20%. POST FREE
SAE FREE LIST FOR SPECIALEQUIPMENT
ASTRO ALARMS
25 STOCKTON RD. SUNDERLAND. TYNE \& WEAR. ENG. TAI: 07E3 7732S
```


## NEW CATALOGUE TEACH-IN '78

Its bigger A better than before. NEW
PRODUCTS - Illustrations - data-clreult ideas. Inclusive prices fight next to the products make ordering easy. No minimum order. Fast - first class delivery. All products are stock Ines. Includes retools. test equipment hardware, cable, speakers, connectors etc. SEND NOW FOR YOUR COPY - $2 \times 9 \mathrm{stamps}$

COMPONENT PACKS
RESISTORS = \& W carbon film. IR - 10M. (280) - 2420. C280 -mixed polyester casa-
cltors - $£ 2 \cdot 20$. ELECTROLYTIC caps. popular values up to $100 \mu \mathrm{~F}-\mathrm{E2}-95$. CAPACITORS mixed - polystyrene, cero-
mic etc - $£ 2.80$. TR 4 SISTORS - popu mic etc - $\mathbf{E 2} \cdot 80$. TRANSISTORS - pop-
lar types BC 183, BFY51 etc- $£ 3.50$. lar types BC183, BFY5! Ate- 53.50 .
DIODES -1 N4148, 1 N 005 , TIL 209 LED etc- $£ 2.50$. WIRE -connecting. Mixed types \& colour $=$ II $\cdot 50$. Alt prices Inclusive - top quality new
components.

MAGENTA Electronics Ltd., EK IO, 61 Newton Leys, Burton on Trent, Staffs, OE15 ODW

## For Semi-conductors

 includingSmall Signal Transistors
Power Semi-conductors
TTL, CMOS, I. Cs
Linear I. Cs
Signal and Power Diodes
Zener Diodes
Magneto Resistors
Magnetic Proximity Switches Opto-electronic devices

Cato
EIEGTROVALUE
TO MAKE THE BEST OF

For passive components including

Plastic Film Capacitors Electrolytics
Semi-precision capacitors
Transformers
Pot Cores
R.M. Cores

Ring Cores, etc

## The Open Door to Quality

It's the Electrovalue Catalogue No. 8 (th edition black and white cover) with completely updated prices. 144 pages, well illustrated and informative. 40p post free wish 40 p voucher addible on orders for 65 or more. Send for yours now and order in confidence.
GOODS SENT POST FREE IN U.K. FOR C.W.O. ORDERS. Keenly competitive prices plus ATTRACTIVE DISCOUNTS and only best quality goods.

## ELEGTROVALIE LTD

(Dept. EE. ${ }^{1}$ ), 28 St. Jude's Rd., Englefield Green, Egham, Surrey TW20 OHB Phone Egham 3603. Telex 264475
North-680 Burnage Lane, Burnage, Manchester. Phone (061) 4325945.

# Sirac Mk1 valve Amplifier 

 Circuit DiagramsOutline Drawings
Exploded Views...

all you need to know for constructing Chris Rogers' outstanding new valve amplifier Then compare the musicality for yourself with a transistor-type unit!

## Controversial Comparison

An evaluation of the new crop of moving-coil phono cartridges and their complementary voltage step-up devices. Among those tested are the Fidelity Research FR 3, Entré I, Sony XL55, Ultimo 10A, and Nakamichi 1000 , and 7 others.

## Win some Aiwa Super-fi

Another big competition, with the new Autumn range of Aiwa equipment to be won.

## Listening with Beyer

A special review of the Beyer infra-red headphone system.

## Amplifiers Examined

This series for the more technically-minded looks this month at the 'Pulse Width Modulation' philosophy. We also test Cambridge's P80 amplifier - and the new Meridien loudspeaker/power amplifier and pre-amplifier.


## Brownitank Capacitive discharge electronic ignition kit

 OF SSYSTEMS TESTEDBY popular MAGAZIME* Smoother running
* Instant all-weather starting
* Continual peak performance
* Longer coil/battery/plug life
* Improved acceleration/top speeds
* Optimum fuel consumption

Spark rite Mk, 2 is a hign performance, high quality capacitive discharge electronic ignitlon system in kit form. Tried. tested, proven, reliable and complete. It can be assembled in two or three hours and fitted in $15 / 30$ mins.
Because of the superb deslgn of the Sparkrite circuit it completely elimirates problems of the contrct breaker. There is no misfire due to contact breaker bounce which is eliminated electronically by a pulse suppression circuit whith prevents the unit firing if the points bounce open at high R.P.M. Centact breaker burn is eliminated by peducing the current to about $1 / 50$ th of the norm. It will perform equally well with new, old, of even badly pitted coints and is not dependent upon the dwell time of the contact break ars for recharging the system. Sparkrite incorporates a short circuit prosected inverter which eliminates the problems of SCR lock on and, therefore, eliminates the possibility of blowing the transistors or the SこA. (Most capacitive discharge ignitions are nat completely foolproof ir this respect). All kits fit vehicles wlith coil/distributor ignition up to 8 cylinders.
THE KIT COMPRISES EVERYTHING NEEDED
Readv drilled pressed steel case coated in matt black epoxy resin, ready drilled base and heat sink, top cuality 5 year guaranteed transformer and components, cables. coll ccnnectors, printed circuit board, nuts, bolts, silicon grease, full instructions to make the kit negative or positive earth. and 10 page inst blation instructlons.

## OPTIONAL EXTRAS

Electronic/conventional ignillo) switch
Gives instant changeover from "Sparkrite" ignition to conventiona ignition for performance comparisons, static timing etc., and will also switch the ignition off corrpletely as a security device. Includes switc 1 connectars, mounting bracket and instructions. Cables excluded Also svailable RPM limiting comerol for dashboard mounting (fittey in case on ready built urit).
CALLERS WELCOME. Fo Crypton funing and titting service phone (0922) 33008
PRISES INCLUDE VAT, POST AND PACKING
IMPROVE PERFOPMANCE \& ECONOMY NOW
Note-Vehicles with current impulse tachometers (Smiths code on dial Note-Vehicles with curpent inpulse tachometers (Smiths code on dial
RVí will require a tachometer pulse slave unit. $£ 3.35 \mathrm{inc}$. V.A.T. p \& p . E.D.A. 82 BATH STREET, WALSALL, WSI 3DE.


Electronics Design Associates, Dept., EE 11 82 Bath Street, Walsall, WSI 3DE. Phone: (0922) 33652 Name Address



## Receivers and Components

SPECIAL OFFER. IN4148 4p, OA916p, BC107 $10 \mathrm{p}, \mathrm{BCl17} 20 \mathrm{p}$, BY94 1200V 1A diodes 11p, $\mathbf{P} \& P$ 20p. Send S.A.E. for further lists. C. \& M. ELECTRONICS, 60 Marshallstown Road, Carrickfergus BT38 9DE.

71b A88ORTED COMPONENTS £2.95. Small audio amplifiers. 3 transistors equivalent to AC128, OC72, with circuit. 3 for £1. Goods post paid. List 15p. Refunds on purchase. Insurance add 15p. J. W. B. Radio, 2 Barnfield Crescent, Sale, Cheshire M33 1NL.

TIRRO ELECTRONICS the mail order division of RITRO ELECTRONICS UK offers a wide range of components for the amateur enthusiast. Large SAE or 20 p brings list. GRENFELL PLACE, MAIDENHEAD, BERKS. SL6 1HL.
I.C.C., TTL.C/Mos, LInear, Capacliors, Reaistore (E12) SILRecilfors, Dlodes, LED. Thyrlstors, Zenore, Voltage Reg, DiL Sockete, Bridge Rectifiers, Potentlometers, Preete, Triace, Dlac. Pluge, Sockete, Cable, Vero. Carefully eelected range, excellent deapatch service. Same day turn round. S.A.E. Llet. Suppliors to A.E.R.E., U.K.A.E.A., Government Depte, Schools, Univerelities, Manufacturera. Accounte opened for trade and amateur. Join the professionals. Phone by 4 p.m. Goode out iet clase by 5p.m. Try us and prove itt

## ORCHARD

ELECTRONICS
Filnt Mowee. Migh Streot, Wallingford, Oxon.

DISCOVER ELECTRONICS. Build twenty easy projects including; Metal Detector; Wireless Transmitter; Breathalyser; Minia ture Radios; Stethosoope; Lie Detector; Touch, time switches; Burglar Alarms; etc. Circuits, plans all for $\mathbf{E l} 29$ including circuit board. Mail only. Ridley photo/ electronics, Box 62, 111 Rockspark Road, Uckfield, Sussex.

## NO LICENCE EXAMS NEEDED

To operate this miniature, solid-state Transmitter-Receiver Kit. Only $£ 9.75$ plus 25p P\&P
'Brain-Freeze' 'em with a MINISTROBE Kit, pocket-sized 'lightning flashes', vari-speed, for discos and parties. A mere $£ 4 \cdot 30$ plus 20 p $\mathbf{P \& P}$. Experiment with a psychedelic DREAM LAB, or pick up faint speech/sounds with the BIG EAR sound-catcher; ready-made multifunction modules. $£ 5 \cdot 00$ each plus 20 p P\&P.
LOTS MORE! Send 20p for lists Prices include VAT. (Mail order U.K. only).

## BOFFIN PROJECTS <br> 4 Cunliffe Road, Stoneleigh Ewell, Surrey. (E.E.)

## SMALL ADS

The prepaid rate for classifled advertisements is 16 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $£ 4.00$ per single column centimetre. All cheques, postal orders, etc., to be made payable to Everyday Electronics and crossed "Lloyds Bank Ltd." Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classifled Advertisement Manager, Everyday Electronics, Room 2337, IPC Magazines LImlted, KIng's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5918).

CONDITIONS OF ACCEPTANCE OF CLASSIFIED ADVERTISEMENTS

1. Advertleomente are aseopted sublest - the conditiont appeanng on our survent advertsoment rate eard and on the oxprece underatanding that the Advertleer warrants that the advertiesment does not sentravene any Aet ef Parlament nor le it an Infringement of the Aritish Cede of Advertising reotle.
2. The publishere reeerve the pleht to refuse or withdraw any adverilsement.
3. Athough every sare is taken, the ublishers shall not be liable fer aledeal or pelnters' orrors of thelr censequences

## Miscellaneous

STYLI, CARTRIDGES \& AUDIO LEADS ETC. For the best at keenest prices send SAE for free list to: FELSTEAD ELECTRONICS (EE), Longley Lane, Gatley, Cheadle, Cheshire SK8 4EE.

ELECTROLYTICS $10 \mu \mathrm{~F}-220 \mu \mathrm{~F}$ £2•00/100 P\&P 20p. J. Bruere, 17 Heald Close, Rochdale.

INSTRUMENT CASES, Loudspeaker cabinet kits, Teak sleeves for Amplifiers etc. Post today for free illustrated list to Curtis Furniture, Junction Road, Totton, Hants.

##  <br> 10 smeh of any value

Send etamped envelope for free sample
C60 CASSETTES 30p All Caesettes In Plastlc Case
000 CASSETTES 45p with Inder and Scrowed Aesembly.
All prices Include VAT. Add Postige 100 in $\& 1$ Quantly Diecounts BALOP ILECTRONICS. 10 Unil $5 \%$ WYLECOP. 100 Units $10 \%$ T\$1. E320

INVENTORS. "Profit from Your Invention". Sources of Finance and other assistance. Details: Large S.A.E. Delta (EV), 15 St. Mary Street, Southampton, Hants.

| ENAMELLED COPPER WIRE |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| iwE | 1 Ib | 8 oz | 4 oz | 2 oz |
| $14-19$ | 2.40 | 1.20 | .69 | .50 |
| $20-29$ | 2.45 | 1.60 | .82 | .59 |
| $30-34$ | 2.60 | 1.70 | .89 | .64 |
| $35-40$ | 2.85 | 1.90 | 1.04 | .75 |
| Inclusive of p\&pand VAT. |  |  |  |  |

Inclusive of $p$ and $p$ and.
SAE brings Catalogue of copper and resistance ires in all coverints.

THE SCIENTIFIC WIRE COMPANY PO Box 30, London E4 9RW Reg. office 22, Coningsby Gardens.

## Service Sheets

SERVICE SHEETS for Radio, Television, Tape Recorders, Stereo, etc. With free fault-finding guide, from 50 p and s.a.e. Catalogue 25p and s.a.e. Hamilton Radio, 47 Bohemia Road, St. Leonards, Sussex.

BELL'S TELEVISION SERVICE for service sheets of Radio, TV etc. 75p plus SAE. Colour TV Service Manuals on request. SAE with enquiries to BTS, 190 King's Road, Harrogate, N. Yorkshire. Tel: 0423 558855.

## Books and Publications

SIMPLIFIED TV REPAIRS. Full repair instructions individual British sets $£ 4 \cdot 50$, request free circuit diagram. Stamp brings details unique TV publications. Ausee, 76 Church Street, Larkhall, Lanarkshire.

## Wanted

SURPLUS?? Turn it into cash. Phone: 0491 35529 (Oxon).

WANTED: Issues of "Everyday Electronics" from November 1971 to September 1977. Complete set or single issues. Good price. Please write to Roar Hove, Hyllvegen 11B, 3408 Tranby, Norway.

## For Sale

BARGAIN PACK of 15 miscellaneous transistors plus five diodes. Some unmarked, all tested. £1 post free. Naughton, 242 St. Mary's Road, Manchester M10 0AY.

## Kits

## R. W. ELECTRONICS PRESENT:

For your pleasure or profit EASY TO BUILO Electronic Kits.

Kit No. 100 Watt amplifier baeed on a deelgn used 24.0. by top manufacturars. Complementary eymfull output.

Kit No. 03 Power eupply kit for Kit 01. Contente: Mains Iraneformer, bridge rectifer, cmpacitors, plane and Instructione.

Kit No. 4430 watt Amplifier, one of the most advanerd dealone avalisble. Uete alngle i.C. driviog Simple leyout ualng minimum of components. 500 Mv . Input for 30 watte out. $35 \mathrm{~V} / 2 \mathrm{~A}$
Supply required.

Kif No. is Power supply kit for KIt No. 4
ci.se

KIf No. 6 Guitar/Disco pre amp. (Sultable for ute with E3.50 Kite Nos. 1 a 4.) Features 2 Inpute, base, ireble and volume controie, 10 Mv . Input for 1 volt output.

Kit No. 7 Advanced Gultar pre amp. Includes top boost and eustain, both escential for serlous gultar work aleo base, treble, pro-sense and volume controle

Kif No. S Undilled Aluminium Chassle alze $18^{\prime \prime} \times 8^{\prime \prime} \times$
EA. 40 2t". Sultable for any of the above kite.

KII No. $10 \begin{aligned} & \text { Heavy Duty } \\ & 30 \mathrm{~W} \\ & \text { miluminium finned heat aink for }\end{aligned}$ 30 W 100W O/P tranelatore. Increases rellability.

All treneletors, Diodes, Triace, Integrated circulte.
Circuit Bomrda ars supplied with each kit plue plene and netructione.

Please send caah with order.
Poetege and packing: 70p for power euppiles and 28p for Pach other kit.
R. W. ELECTRONICS MARKETING 143 Lynchford Road, Farnborough, Hampshire

## Educational

COURSES-RADIO AMATEURS EXAMINATION. City and Guilds. Pass this important examination and obtain your G3 licence. with an RRC home study course. For details of this, and other courses (GCE. professional examinations, etc.), write or phone: THE RAPID RESULTS COLLEGE, Dept. JR1, Tuition House, London SW19 4DS. Tel: 01-947 7272 (Careers Advisory Service), or phone for a prospectus only, ring $01-9461102$ ( 24 hr recording service).

## PLEASE MENTION EVERYDAY ELECTRONICS when replying to advertisements

## NOTICE TO READERS

When replying to Classiffed Ad. vertisements please ensure:
(A) Thas you have clearly staced your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.
This will assist advertisers in processing and despatching orders with the minimum of delay.

## DENCO (CLACTON) LIMITED <br> Dept. E.E. <br> 357-8-9 OLD ROAD CLACTON-ON-SEA ESSEX CO15 3RH



Our components are chosen by technical authors and constructors throughout the world for their performance and reliability, every coll being inspected twice plus a final test and near spot-on alignment.
General Catalogue showing full product range 34p. Overseas Customers 70p, Air-Mail Post Paid.

## U.K. \& OVERSEAS MANUFACTURERS/STOCKISTS ENQUIRIES WELCOME

Australian Readers Please NoteOur Complete Range of Coils are available from Watkin Wynne Pty. Ltd., 32, Falcon Street, CROWS NEST, 2065, AUSTRALIA. P.O. Eox 392.

## Electronics. Make a job of it

Enrol in the BNR \& E School and you'll have an entertaining and facinating hobby. Stick with it and the opportunities and the big money await you, if qualified, in every field of Electronics today. We offer the finest home study training for all subjects in radio, television, etc., especially for the CITY AND GUILDS EXAMS (Technicians' Certificates); the Grad. Brit. I.E.R. Exam; the RADIO AMATEUR'S LICENCE; P.M.G. Certificates; the R.T.E.B. Servicing Certificates; etc. Also courses in Television; Transistors; Radar; Computers: Servo-mechanisms; Mathematics and Practical Transistor Radio course with equipment. We have OVER 20 YEARS' experience in teaching radio subjects and an unbroken record of exam successes. We are the only privately run British home study College specialising in electronics subjects only. Fullest details will be gladly sent without any obligation.


Become a Radio Amateur.

Learn how to become a radio-amateur in contact with the whole world. We give skilled preparation for the G.P.O. licence.

Brochure without obligation to

# British National Radio \& Electronic School <br> P.O. Box 156, Jersey, Channel Islands. 

NAME
ADDRESS

## ELELTRTIT:Kís



## The Famous DENSHI kits -now even better value

The kits aresuitable both for the beginner to gain a wide practical understanding of electronics and for the more experienced to carry out many advanced experiments not available elsewhere.

Illustrated is the SR-4ADX klt-over 150 different actual working projects can be buile, dismantled and rebuilt any number of times, plus any circuits of your own design
Each component is beautifully encapsulated in transparent plastic, ongraved with its electronic symbol. No soldering is involved with any kit and yet this fantastic versatility is provided. The kits are complete in every respect, Including educational manuals and batteries. NOTHING ELSE NEEDED.
This is the mose practical and effective way to learn about electronics-the kits are also first-class testing kits for laying-out and testing new circuits quickly. There is no danger whatsoever in the use of these kits.
Add-on kits and spares are available too, to increase the scope of each kit If required.
SR-IA-16 different projects-madio receivers and transmitters, signal injectors and eracers, amplifiers, morse code amplifiers and transmitters, etc., etc.

E10.75 COMPLETE
SR-2A-30 different projects-similar to SR-2A but with more powerful circuits.
\& 13.45 COMPLETE
ST-45-45 different projects-1, 2 and 3 transistor radio recoivers and transmitters of various types, amplifiers, continuity testers, discontinuity warning devices, electronic birds, guns, metronomes, sirens, time buizers, metal detectors, morse ampllifiers and transmitters, burglar alarms, atc., itc. This kit fastures a built-in loud-spasker and amplifiar unit and is ideal for oducational purposes.
\& 18.45 COMPLETE
PRICES INCLUDE VAT, P \& P, MANUALS, BATTERIES, ttc. NOTHING MONEY.
Educational and Trade enquiries welcomed.
Parsonal callers walcome
CHE QUE/P.O. (or IIp for illustrated literature) to: Dept. EE
ELECTRONI-KIT LTD., 20 Bride Lane, Ludgate Circus, London, EC4Y 8DX Tel: 353-6430.

FOR THOSE AWKWARD JOBS!


## AND

 FREE 48-PAGE HEATING SUPPLEMENTCut costs and keep cosy. That's the message for this winter. See what various heat sources are costing, ways of reducing expenditure and still staying warm - and a new gas-fired centralheating system that saves you money automatically. Great value!
Also home electrics info, design for a super bathroom, building a luxury kitchen and many more real moneysaving projects.

## FREE-ENTRY f1,000 VALUE COMPETITION

Home insulation products as prizes.

## ALL IN

PRACTICAL

## gex Marshall's

NEW CATALOGUE 77
2ND EDTTION FOR AUTUMN OVER 8,000 LINE ITEMS
Plenty of New Products and Ideas 35p POST PAID (25p to callers)



NATIONWIDE SERVICE

## 1: F: Elolock modules

Bull anj tested-requires only 5 witches
and transtormer to complete. 12 or 24 hr
alarm
alarm modules. MA1002 24 hr 5 in display
MA1010E 12 hr 84 In dlsplay
MA1010G 24 hr 84in display MAI003 BAR CLOCK MODULE four-dloth Builf Tested 12 V supply and four-dight module. Cirsial controlled
17-00. Dind Sheet $5 p+$ SAE.

| DIODES |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AA116 | 0. 12 | BA158 | 0.38 | BYX10 | 0.27 |  |  |
| AA118 | - 12 | BA159 | 0.51 | 0447 | 0.13 | iN4006 | 0.10 0.11 |
| AA119 | 114 | BA202 | 0.09 | OA90 | 0.08 | iN4007 | 0.12 |
| AA129 | - 09 | BAX13 | 0.07 | OA91 | 0.08 | IN1148 | 0.07 |
| AAZ17 | 0.18 | BAX16 | 0.10 | OA95 | 0.10 | IN 1150 | 0.18 |
| BA102 | - 18 | 88103 88104 | 0.30 0.40 | OA200 | 0.10 | IN5400 | 0.14 |
| BA144 | 0.12 |  | 0.30 0.30 | - ${ }^{\text {OA202 }}$ | 0.14 0.07 | IN5401 | 165 .175 |
| BA145 | $0 \cdot 18$ | BY126 | 0.29 | IN916 | 0.07 | IN5402 | -175 |
| BA154 | a. 10 | BY\{27 | 0.38 | IN4001 | 0.06 | IN5406 | - 2185 |
| BA155 | 0.12 | BY182 | 1.50 | IN4002 | 0.07 | IN5407 | 0.27 |
| BA156 BA157 | 0.15 | BY206 | 0.20 | ind003 | 0.08 | IN5408 | 0.40 |
| BA157 | 0.29 | BY207 | 0.22 | IN4004 | 0.09 | IS 44 | 0.07 |
| OPTO ELECTRONICS <br> Full range of Opto devices in our New Catalogue |  |  |  |  |  |  |  |
| $\begin{aligned} & \text { LEDS } \\ & \text { TII } 209 \text { 19p } 100+p c s ~ 12 p \end{aligned}$ |  |  |  |  |  |  |  |
| 3 mm Red 13p, Green 25p. Yellow 25p |  |  |  |  |  |  |  |
| MANY MORE TYPES LISTED IN |  |  |  |  |  |  |  |
| OUR NEW CATALOGUE-SOLAR |  |  |  |  |  |  |  |
| CELLS, | LIGH | SWIT | HES. | eic. |  |  |  |
| DISPLAES 7 segment |  |  |  |  |  |  |  |
| DL704 ${ }_{2}$ Single Double Disolay |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |

WHY NOT PAY US A VISIT AT OUR NEW CENTRAL LONDON BRANCH AT 325 EDGW ARE ROAD, W2, ABOUT 100 Y ARDS NORTH OF THE WESTWAY FLYOVER. EXTENSIVE STOCK RANGE. MANY SPECIAL OFFERS TO PERSONAL SHOPPERS ONLY.

| 74 C MOS |  |  |  |
| :---: | :---: | :---: | :---: |
| 74.000 | 026 | 74C85 | 1.90 |
| 74 CO 2 | 0.26 | 74 C 86 | 0.68 |
| 74 CO 4 | 026 | 74 C 90 | 0.91 |
| ${ }_{74} \mathrm{C} 08$ | 0.26 | 74C107 | $1 \cdot 30$ |
| 74 C 10 | 021 | 74 C 151 | $2 \cdot 62$ |
| 74 C 20 | 0.26 | 74 C 157 | 2.35 |
| 74 C 30 | 026 | 74C160 | 118 |
| 74 C 32 | 0.26 | 74 C 161 | 1-18 |
| 74 C 42 | 0.92 | 74 Cl 162 | 1-18 |
| 74 C 48 | 2.30 | 74 C163 | 1-18 |
| $74 \mathrm{C73}$ | 0.58 | 74 C 164 | 1.04 |
| $74 \mathrm{C74}$ | 0.69 | $74 C 173$ | 0.95 |
| 74 C 76 | 0.58 | 74C174 | 0.95 |

CMOS LOW POWER SCHOTTKY


| CD 40000.24 CD 40010.24 | CD 4018 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CD40010. 24 <br> CD $40020 \cdot 24$ | CD40190.70 CD40201-27 |  | CO40600 27 | CD40820 25 | 74504027 | 74LS1381. ${ }^{27}$ |
| CD40061.34 |  | CD40441.05 | CD.0660 |  |  | 74LS1571-17 |
| 40070.24 |  |  | CD40674.25 | CD40891.77 |  |  |
| 0 |  |  | CDS0680 \% 25 |  |  |  |
|  | C | 7 | CD40690.25 |  |  |  |
|  | CO40250 24 | CD40490.64 | CD40700.65 |  |  |  |
| 40110 | CD40270.64 | CD40500. 64 |  |  |  |  |
| CD40120.24 | CD40281. 02 | CD40511.06 |  |  | 74LS75 0.60 |  |
| CD40130 |  |  | CD40730.25 | CD4512. 30 | T4LS780.0.40 |  |
| CD40141 15 |  |  | CD40750. 26 |  | 7445650.48 |  |
| CD40151 15 | CD40312. 53 | 32 | CD40761. 17 | CD45182.00 | 8 | 0 |
| 40171. 15 | CD40351 34 | CD40551 50 | 40770.66 | CD45202.00 | 74LS92090 |  |
|  |  |  | 40780. | LSOO | 74LS107-44 |  |





[^0]:    Readers' Enquiries
    We cannot undertake to answer readers' letters requesting modifications, designs or information on commercial equipment or subjects not published by us. All letters requiring a personal reply should be accompanied by a stamped self-addressed envelope.
    Telephone enquiries should be limited to those requiring only a brief reply. We cannot undertake to engage in discussions on the telephone, technical or otherwise.

    ## Component Supplies

    Readers should note that we do not supply electronic components for building the projects featured in EVERYDAY ELECTRONICS, but these requirements can be met by our advertisers.

[^1]:    (3) IPC Magazines Limited 1e77. Copyright in all drawings, photographs and artleles publlshed in EVERYDAY ELECTRONICS is fully pretected, and reproductions or imitations in whole or in part are expressly forbidden.
    All ieasonable precautions are taken to ensure that the advice and data oiven to readers are reliable. We cannot however guarantee it, and we cannot accept legal responslbility for lt. Prices quoted are those current as wo go press.

[^2]:    The frequencies covered in each case are only typlcal, variations in component tolerances will alter the final reaults obtained.

