An exciling hobby－．．．for everyone

everyday 35p

 electronics

 electronics}

－5 5 5 5 5 （1）है ？ह $\because 10$

．．．Also

Gai
BURCLAB ALARM

大hんなんなかんなく

Bring 'scope'to your interest.

'There's only one way to master electronics... to see what is going on and learn by doing:

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to further your career in electronics or as a selfemployed electronics engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is ayailable to whom you can write, at any time, for advice or help during your work. A Certificate is given at the end of every course.

1Bulld an oscilloscope.
As the first stage of your training, you actualky build your own Cathode ray oscilloscope! This is no toy, but a test instrument that you will need not only for the course's practical experiments, but also later if you decide to develop your knowledge and enter the profession. It remains your property and represents a very large saving over buying a similar piece of essential equipment.

2Read,draw and
undierstand circuit
diaggrams
nnand
In a short time you will be able to read and draw circuit diagra ms, understand the very fundamentals of television, radio, computors and countless other electronic devices and their servicing procedures.

3 Carry out over 40 experiments on basic clrcuils.

We show you how to conduct experiments on a wide variety of different circuits and turn the information gained into a working k nowledge of testing, servicing and maintaining all types of electronic equipment, radio, t.v. etc.

All students enrolling in our courses receive a free circuit board originating from a computer and containing many different components that can be used in experiments and provide an excellent example of current -electronic practice.

It's justlike anelectrönic supermarket

Doram has everything for the home constructor available by speedy mail order service.
"We've built our name on quality and reliability -TRY US!"

DORAM ELECTRONICS LTD., PO BOX TR8, LEEDS LS12 2UF

(O 'seas orders except for N . Ireland please add 30 p p \& p surface only).
AN ELECTROCOMPONENTS GROUP COMPANY
\qquad
ADDRESS

\qquad

GLASEOW - 85 West Regent Street, G2 2QD T이. 041-332 4133 Marshall's
 NEW CATALOGUE 77
 68 page catalogue with 500 new lines, 55p post paid (40p to callers)

SEE US AT THE ALL ELECTRONIC SHOW, GROSVENOR HOUSE 19-2I APRIL

Abstract

\section*{SN7400} SN7400 SN7401 SN7402 SN7401 SN7402 SNT403 SN7404 SN7405 SN7405 SN7406 SN7407 SN7406 SN7407 SN7408 SN7408 SN7408 SN7409 SN7410 SN7410

SN74118 0 $\begin{array}{ll}\text { SN74119 } & 1.80 \\ \text { SN74121 } & 0.8\end{array}$ SN74121 SN74122 SN74123 SN74141 1 . $\begin{array}{ll}\text { SN74145 } & 1.06 \\ \text { SN74150 } & 1.65\end{array}$ SN74150 1.66 $\begin{array}{ll}\text { SN74151 } & 1.11 \\ \text { SN74153 } & 1.11\end{array}$ $\begin{array}{ll}\text { SN74153 } & 1.11 \\ \text { SN74154 } & 1.85\end{array}$

SN74157 SN74157 SN74160 SN74160 SN74161 SN74161 SN74162, SN7416? SN74164 SN74164 SN74165 SN74167 SN74174 1.52	SN74176	1.23	SN74199	2.93

VEROBOARD

1 MATRIX COPPER BACKED BOARD $\begin{array}{llll}2 \cdot 5^{\prime \prime} \times 5^{\prime \prime} & 50 p & 3.75^{\prime \prime} \times 5^{\prime \prime} & 56 \mathrm{p} \\ 2 \cdot 5^{\prime \prime} \times 3.75^{\prime \prime} & 42 \mathrm{p} & 3.75^{\prime \prime} \times 3.75^{\prime \prime} 50 \mathrm{p} \\ 2 \cdot 5^{\prime \prime} \times 17^{\prime \prime} & 1.54 & 3.75^{\prime \prime} \times 17^{\prime \prime} & 1.98\end{array}$ Spot Face Cutters 74p pkt. 36 pins 36p

SOLDERING EQUIPMENT

$\begin{array}{ll}\text { Antex Irons Mod "C" } 15 \text { watt } & £ 3.20 \\ \text { Stand } £ 1.40 \text { Mod } 2525 \text { watt } & £ 3.20\end{array}$
Spare tips \& elements available
Multicore solder disoenser

CLOCK MODULES

Built and tested-requires only switches and transformer to complete. 12 or 24 hr alarm modules,
MA1002F 12 hr -5" display
MA1002H $24 \mathrm{hr} \cdot \mathbf{5}^{\prime \prime}$ display MA1002H 24hr $\cdot 5^{\prime \prime}$ display MA1010E $12 \mathrm{hr} \cdot 84^{\prime \prime}$ display MA1010G $24 \mathrm{hr} \cdot 84^{\prime \prime}$ display
Transformers $\mathbf{~} .50$

CAR CLOCK MODULE

 MA1003 Built Tested 12 v supply 4digit module

An exciting NEW series from Wewnes TechnicaliBooks

Each of the books in this series is written by an expert in his own particular field. The books are authoratative yet easily understood by those with no technical knowledge whatsoever, and the texts are supplemented by many highly informative illustrations.

MASTER ELECTRONICS

IN MUSIC
T. D. Towers

Contents: Creating Musical Sounds by Electricity - Making Musical Instruments Louder - Musical Special Effects by Electronics Electronic Keyboard Instruments Electric Guitars - Magnetic Tape Music - The Robot Drummer Music Synthesisers - Music by Computer - Index.
130 pages $040800262 \times \quad £ 2.50$

MASTER HI-FI INSTALLATION
Gordon J. King
Contents: How it Works - The Amplifier - Programme Signal Sources Importance of a Good F.M. Signal The Loudspeaker - Mono, Stereo and Quadrophonic Sound - Fourchannel Techniques - Room Effects - Best Use of Controls - Terminology - Index.

B. BAMBER ELECTRONICS

Dept. EE, 5 STATION ROAD, LITILEPORT, CAMBS., CBG 10E Tolephone: ELY (0353) 860185 (2 linas) 'Tuesiday to Saturday

PLEASE ADD 8\% VAT UNLESS OTHERWISE STATED

MASTER STEREO

 CASSETTE RECORDING
I, R. Sinclair

Contents: Stereo Systems - Signal Sources - Controls and Facilities Making the Recording - Replaying and Monitoring - Essential Maintenance - Aids to Better Recording - Noise Reduction Systems - Cassette Recorder and $\mathrm{Hi}-\mathrm{Fi}$.

PLEASE ADD 8\% VAT UNLESS OTHERWISE STATED

Terms of Business: CASH WITH ORDER. MINIMUM ORDER E2. AlL PRICES IWCLUDE POST \& PAGKING IUK ONL PLEASE ADO VAT AS SHOWN. ALL GOOOS IW STOCK DESPATCHED BY RETURN. CALIERS WEICOME BY APPOIWTMENT ONLY.

LOW, LOW PRICES ON BRANDED COMPONENTS.
 - All 'big name' manufacturers Same day service Money back guarantee

Rosebank Parade, Plough Road, Yateley, Camberley, Surrey, Tel: 0252871388.

ROWNSGEM LTD.

TECPNLCRE TRAINENG IN ELECTRONICS RND TELECOMNUNICRTIONS

ICS can provide the technical knowledge that is so essential to your success; knowledge that will enable you to take advantage of the many opportunities open to you. Study in your own home, in your own time and at your own pace and if you are studying for an examination ICS guarantee coaching until you are successtul.
City \& Guilds Certificates:
Telecommunications Technicians
Radio, TV, Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
MPT Radio Communications Certificate
Diploma Courses:
Colour TV Servicing
Electronic Engineering and Maintenance
Computer Engineering and Programming
Radio, TV, Audio Engineering and Servicing
Electrical Engineering, Installation
and Contracting
POST OR PHONE TODAY FOR FREE BOOKLET THi To: International Correspondence Schools
Dept 710 E Intertext House, London
SW8 4UJ or telephone 6229911
Subject of interest
Name
Address

NEWS FROM JOSTY KIT

AT 365 3-CHANNEL DISCO LIGHT
A new concept in psychedelic lighting. Uses built-in microphone. Avoids awkward connections to ampliffers. Position
 light-show to best advantage without long trailing leads, just plug in to nearest power point. Circuit combines latest integrated circuit techniques with solidstate power control. Quad op. amp. makes selection of bass, midrange and treble frequencies easy. Three thyristors (SCRs) control three separate lampbanks. Kit includes fused dc power supply and FET zero light adjustment. WARNING. Only experlenced persons should attempt the
interconnection of mains equipment.
£17.00

HF 385-2 VHF/UHF AERIAL AMPLIFIER
A quality, printed circuit, no trimming, aerial amplifier. Fantastic frequency range due to use of printed coils, 21 dB ampllification at 400 MHz . Two separate inputs for UHF and VHF. No loss of signal or intercommunication problems.

NT 410 AERIAL AMPLIFIER CURRENT SUPPLY

NT 410 is a current supply, specially built for aerial amplifiers, such as HF 385-2, but can also be used for other aerial amplifiers
NT 410 is supplied with in- and output clamps for 75 Ohm or 50 Ohm aerial cables. It is therefore not necessary to solder-iust cut the aerial cable and attach to NT 410. The aerial signal from the aerial amplifier to the receiver passes without complications and the current to the aerial amplifier passes through the same cabie. NT 410 describes how to use NT
£4.50 410 together with HF 395 and HF 385-2.

HIGH SPEC components FAST!
Agents for VERO - ANTEX -

BIB MULTICORE SOLDER

$250 / 64$	$20 p^{*} 3300 / 30$	$4 p^{*}$
Post \& Packing 25p per order.		

```
DISCOUNTS, ORDER VALUE OVER
£5=5% £10=7\frac{1}{2}%\quad£15=10%
```


NEW -- FROM OUR BOOKSHOP VAT - - FREE!!!

First book of Transistor Equivalents \& Substitutes-40p. Handbook of Tested Transistor Circuits- 40 p . Handbook of Simple Transistor Circuits-35p. Radio \& Electronic Colour Codes \& Data Chart-15p. Modern Crystal \& Transistor Set Clircuits for Beginners- $\mathbf{3 5 p}$. Practical Transistor Novelty Circuits-40p. Electronic Novelties for the Motorist-50p. Second Book of Transistor Equivalents-95p. Constructors Manual of Electronic Circuits for the Home-50p. Handbook of Electronic Clrcuits for the Amateur Photographer-60p. Radio Receiver Construction Handbook using IC's \& Transistors-60p. Boys \& Beginners Book of Practical Radlo \& Electronics-60p. 79 Electronic Novelty Circuits-75p. First Book of Practical Electronic Projects-75p. 52 Projects using IC741 (or Equiva-ents)-75p. How to Build your Own Metal \& Treasure Locators \rightarrow 85p. Handbook of IC Audio Preamp. \& Power Amplifier Con-struction-95p. Boys Book of Crystal Sets-25p. Coil Design \& Construction Manual-50p. Modern Transisfor Circuits for Beginners-40p. Handbook of Practical Electronic Musical Novelties-50p. Practical Transistorised Novelties for $\mathrm{Hi}-\mathrm{Fi}$ Enthusiasts-35p. Handbook of Integrated Circuits (IC's) Equivalents \& Substitutes-75p. IC's and Transistor Gadgets Construction Handbook-60p. Practical Electronic Science Projects-75p. The Complete Car Radlo Manual- 75 p. Electronic Circuits for Model Railways-85p. Audlo Enthusiasts Handbook-85p. Electronic Gadgets \& Games-85p. Solid State Power Supply Handbook-85p. Build your own Electronic Experimenters Laboratory- 85 p. Solid State Novelty Projects85 p. Build your own Solid State Hi-Fi \& Audio Accessories85p. 28 Tested Transistor Projeçts-95p. Solid State Short Wave Recelvers for Beginners-95p. 50 Projects using IC CA3130-95p. 50 CMOS IC Projects-95p.

ORCHARD ELECTRONICS

Flint house, high street, wallingford, oxon, oxio ode Teleohone 048135529.

SOLDERLESS BREADBOARDING-DECS

The famous DEC System of Solderless Breadboarding is Ideal for both the young and more mature students of Electronic Englneering as It enables circults to be signed contacts allows components to be used over and over again. It is also extremely useful for the Circult Designer who wlshes to experiment with and perfect his zircult quickly yet economlcally.
S-DEC (Model PB11)
This, the most popular Board, is deslgned solely for the use of discrete components and is particularly useful for basle educational purposes
(No. of Contacts: 70)

T-DEC (Model PB21)
This Board allows 2 TO5 or 1 DIL IC Station to be used and so is primarily intended for discrete work or for IInear IC applicatlon where considerable numbers of discrete components may
(No. of Contacts: 208)
1 off $£ 3 \cdot 62$
5 off $£ 3 \cdot 21$
$\dot{\mu}$-DEC 'A' (Model PB31)
The μ-DEC 'A' Is speclally designed for ease of use whth IC's
and allows 2 DIL or 4 TO5 stations to be used but will accom. and allows 2 DIL or 4 TO5 stations to be used but wIII accommodate discrete components with equal facllity.
(No. of Contacts: 208)
(No. of Contacts: 208)
1 off $£ 3 \cdot 97$
5 off $£ 3.53$
μ-DEC 'B' (Model PB41)
The μ-DEC 'B' is for similar uses as μ-DEC ' A ', but has two 16 lead IC sockets as part of the Board. (No. of Contacts; 208)

DEC ACCESSORIES

16 DIL adaptor (with socket) PB062
10 TO5 adaptor (with socket) PB072
Single ended leads (set of ten) P8101
Dauble ended leads (set of ten) PB102
All prices include 8% VAT. P. \&P. 25 p .
Our retail counter is now open, stocking a large variety of audio and electronle parts and accessorles, branded and surplus.
WE ARE SITUATED 2 MIN. WATFORD JUNCTION STATION
THE COMPONENTS CENTRE
7 Langley Road, Watford, Herts., WD1 3PS. Tel.: Watiord 45335

ELECTRONICS 54 Montagu Street Kettering Northants Phone Kettering $\$ 3922$ shop open Monday to Saturday 9.00 to 6.00 early closing Thursday 1.00 pm closed dally for lunch 1-2 p.m.			
T.T.L.			CRYSTALS FILTERS CRYSTALS $1.0 \mathrm{MHZ} \mathrm{HC33/u}$
7400	16p	7445 100p	
7401	46p	7446 100p	
7402	16p	7447 72p	
7403	16p	7448 75p	300p
7404	16p	7450 16p	3.2768 MHZ HC-
7405	16p	7451 16p	33/4 300p
7406	30p	7453 16p	4-194304 MHZ HC-
7407	35p	7454 16p	$33 / \mathrm{u}$ 300p
7408	18p	7460 56p	4.7 MHZ HC33/u
7409	22p	7470 30p	300p
7410	19p	7472 28p	6.364068 MHZ HC-
7411	24p	7473 28p	$33 / \mathrm{L}$ 300p
7412	26p	7474 28p	$27 \mathrm{MHZ} \mathrm{HC25/u}$
7413	30 p	7475 47p	39 215p
7414	70p	7476 30p	39 MHZ HC25/u
7415	34D	7480 45p	215p
7416	$32 p$	7481 100p	
7417	30p	7482 85p	
7420	16p	7483 100p	
7421	40p	7484 120p	
7422	20p	7485 120p	CFT 455 B 70p
7423	36p	7486 34p	SFD 455B 79p.
7424	30p	7489 7490 240p	CDA $10.7 \mathrm{MA} \mathrm{150p}$
7426	24p	7491 70p	
7427	36p	7492 45p	
7428	40p	7493 45p	
7430	16p	7494 80p	BULK OFFERS
7432	27p	7495 70p	Red Leds $0.2110 /$
7437	27p	7496 75p	
7438	27p	74100110p	Clear Leds 0.2 160/
7439	27p	74107 35p	741 Op Amp 8 Dil
7440	16p	74109 65p	741 Op Amp 8 Dil
7441	68p	74110 50p	230/10
7442	68p	$7411885 p$ 74129 32p	741 Dil ${ }^{\text {Op }}$ Amp 140
7444	100 p	74123 70p	IN4148 32/10
C.M.O.S.			$\begin{array}{ll} \text { BC184L } & 90 / 10 \\ 555 \text { Timer } 8 \text { Dil } \\ 180 / 10 \end{array}$
${ }^{\text {CD }}$		$\mathrm{CD}^{\text {c }}$	
4000	$21 p$	4011 24p	Reed Inserts 55/10
4001	21p	4012 21p	4 Amp Trlax 400v
4002	23p	4013 60p	TO22D 420/10
4007	23p	4015 93p	022μ ¢ 250 V poly-
4008	95p	4016 63p	ester cap C280
4009	70p	4017 93p	25/40*
4010	66p	4018 120p	* High VAT.

Bediant Wall Heaters for bathrooms, workshop etc. advantage with this type of heater is that the benefit is felt mmediately, there is virtually no carm ofter the Epringfeld 750 w . This is a 750 p heater $20 \neq$ inches long. Quite nice deslgn with highiy polished reflector and crome plated guard wall mounting brackets and pull cord switch Retail price originally intended to be $86-50 \mathrm{p}$, we are able to see these at $23.95 \mathrm{p}+32 \mathrm{p}$. Post $70 \mathrm{p}+6 \mathrm{p}$ 4 Pole Motor. Carefully balanced spindle fitte with belt drive pulley for tape recorders ete. 21-50p +19 p . Post $30 \mathrm{p}+13 \mathrm{p}$.
100watt Main Transformer. 240v 50 hz prlmary wound in separate halves, primary screen. This has three secondries $24-0-24 \mathrm{v}, 0-49 \mathrm{v}$ and $0-88$ tapped to 80v. Any one of these secondries may be loaded up to the 100 watts or the load can of course be spread over to all the secondries Upright mounting, impregnated and varaished. Size $4 \times 3 t^{\prime \prime} \times 3$. Price $53.50 \mathrm{p}+28 \mathrm{p}$ Post $80 \mathrm{p}+6 \mathrm{p}$,
Stereo Flex twin screen ing. 8 type. PVC insulated overall. 10 metres for $81+8$ p.
Latching Relay by Guardian Electric, mains Latching Reisy by Guardian Electric, main metal base plate. The relays being mounted in such a way to ensure that when one closes th other opens and vice verss thus when closed telay A would remain locked untll manually released or electrically released by energising relay B. Each relay has 2 sets of 10 amp changeover contacta. Should be ideal for burglar alarm and similar applications. Price s1. $05 p+16 p$. Connocting Wire, 7 atranded PVC Insulated o
600 metre drums, 6 diferent colours available price $\& 4$ per 500 metres +32 p . Post $\& 1+8 \mathrm{p}$ price si per 500 metres +32 p . Post $£ 1+$, 8 Track Stereo Cassette Deck. Complete mechanism with push button operated track selection. Tap head and pre-amp, Japanese made with front flap
for cassette entry. Price ${ }^{5} 550 \mathrm{p}+82 \mathrm{p}$. Post for cassel
$40 \mathrm{p}+6 \mathrm{p}$
8 Track Staren Supply to sult deck $22+25$ p. 8 Track stareo Car Cassetto Piayer. 12 voli Fith polarity reveraing switch. speakers not incladed just under $£ 20$ each. The ones we have were faulty on arrival from Japan but have been serviced Price $49.60 \mathrm{p}+81-99 \mathrm{p}$. Post $50 \mathrm{p}+7 \mathrm{p}$. We also complete snd we belleve quite repairable. Price $86.50 \mathrm{p}+82 \mathrm{p}$. Post $50 \mathrm{p}+7 \mathrm{p}$.
Shaver Light with fiolated socket. As you know
normal mains sockets must not be used in bath normal malns sockets must not be used in bath rooms on account of the danger of an acciden through bath or sink etc. However, provided it is isolated from earth a shaver socket is allowable and the one we are offering conplles with this requirement. It is also fitted with a pull cord
switch and is Ideal for use over the mirror in the 8 witch and is Ideal for use over the milrror in the
bathroom. Price $\$ 8 \cdot 50 p+68 p$. Post $21 \cdot 60 \mathrm{p}+12 \mathrm{p}$ bathroom. Price $88 \cdot 50 \mathrm{p}+68 \mathrm{p}$. Post el.60p +12 p of the U.S.A., their ref. no. 836. Completely of the U.S.A., their ref. no. 836. Completely
adjustable from $30^{\prime \prime}$ of vacuum to zero then up to adjustable from 30° of vacuum to zero then up to 751 be per square inch of air pressure. This also ha
an adjustable diferential which can be set to pressure tolerance of between 2-15 psi. Th switch operates changeover contacts which look capable of breaking up to 15 amps AC. Few only of these, price $815+81-20 \mathrm{p}$.
Air Flow senser, American made by the Fox borough Company. We have two different types One bears ref. NF8-503A and the other MF8-
502B. These are beautifally made precision obviously intended for fitting into very high pressure air or gas lines. There is an inbuilt pressure air or gas hines. There is an inbuine and transducer/convertor with electrica contacta but other than this we have no information on these sensers, price is negotiable. Convertor Amplifler, again made by the Foxborough Company, their part no, above air flow sensers, price again negotiable.
Motor with Gear Box made by Klaxon, their type no. EK 3Q J2-M21. This is a very popular type motor, final drive shaft comes out at right angles to the motor. Final speed is 10 rpm . Approximate
size of the motor casing $07^{\prime \prime}$ long \times 年 These are ex-equipment but guranteed supplted complete with transformer for use on
standard 230 y 50 hz mains. Prtce $84+32 \mathrm{p}$. Post 80p +6 p .
Malna Table Radio, Japanese made. This ts a
Medium wave valve receiver with built in aerial, Medium wave valve recelver with built in aerial, plenty of volume and reasonable tone. Whl receive all strong and medium powered stations on the wave bands-medium wave. This type of radio is coming back into popularity owing to the very
high price of batteries. Price $84.850+500$ Post 21.50p + 19p.
Auto Transformer 20 watt 240 volt to 110 volt. This is the same as the transformer above as this has a centre tapped primary. Price $81 \cdot 50 \mathrm{p}+10 \mathrm{p}$. Maina Battery Eliminator, Japanese made. Bakelite enclased with two prongs for shaver and adaptor. This has output of $4.5 \vee$ at 100 mA and is, theretore, suaf use three 1.5 cells or by small internal that use three $1 \cdot 5$ cells or by small internal 6 volts very easily or 9 v and 12 v . Price $22 \cdot 00+25 \mathrm{p}$. dilto but 9V, Prlce $28-50 \mathrm{p}+30 \mathrm{p}$.
Car Starter, Most drivers who use their car around town find that on a very cold morning they have difficulty in atarting because the battery has not any charge left in it. This always seems to happen on the morning when you are in a particular hurry so a charger/starter is well worth having. Our kit and full wave rectifier which for short periods will deliver 20 amps. Thls is ugually enough to get the car started, directly it has started of course tt can be disconnected from the battery as the car"s internal charger will take over. Special offer price of this is 88.50 p including post and VAT.

MULLARD UNILEX
mains operated $4+4$ stereo system. Rated one of he fnest periormers in tae stereo held this Fould assemble modular form and complete with a pair of Celestion speakers. This should sell at about $£ 30$--but due to a special bulk buy and as an incentive for you to buy this month we offer the system complete at only $£ 14$ including VAT and

PAPST MOTOR

West German make, these fine motors are noted for their performance and rellability. Apectal features are the rotating heavy outer which acts as a
flutter and switchable reversing flutter and switchable reversing. We have four types in stock, all 1350 revs., including starting
(1) Reference No. KLZ $20.50-4$, 290 volts 50 HZ , price $25-50$
2). Reference No. KLZ $32.50-4,230$ volts 60 Z 2 , price $\mathbf{2 6 - 5 0}$
(3) Reference same as above, 115 volts 50 HZ , price 28.60

Post and VAT 80p each extra.

AEROSOL RELEASE LUBRICANT

Dry Pilm Lubricant. In aerosal can for easy application and for putting lubricant nto places where the normal all can cannot reach. Home and everyday uses. We Eer them to Fou for about half of the original list price. 88 per $80 z$ can or 12 cans for 46 Post \& VAT Patd. The lubricant ts I.C.I. finon Lil69.

MAINS MOTOR

Precision made-as used in record decka and tape recorders-ideal also for extractor fans, blower, heaters,
etc. New and perfect. Snip at $865+\nabla A T$ \& Postage $35 p$.
 motor. $82+$ VAT and Postage 40 p .

MULTI SPEED MOTORS

in speeds are available 500, 850 and 1,100 r.p.m. and 7,000 , 000 and 11,000 r.p.m. Shaft is $t \mathrm{in}$. dilameter and approxim the use of our Thyristor controller. Very powerful and ugeto thotor size Post \& VAT. Speed control switch $50 \mathrm{p}+4 \mathrm{p}$.

DISTRIBUTION PANELS

Just what 7ou need for work bench or lab. $4 \times$
13 amp sockets in metal bor to take standard 13 amp fused plugs and on/of switch with neon warning light. Supplied complete with 6 feet of warning light. dupplled complete with 6 eet of
flex cable. Wired up ready to work. 82.75 ,
VAT \& posta 85 p . VAT \& postage 85 p .

MOTORISED DISCO SWITCHES

With six 10 amp changeover switches. Multi- adjustable switches are rated at 10 amp each so a total of 2000 w 's can be controlled and this would provide a witch \&4.95 Post \& VAT Paid. DITT0 BUT 128 SITCH 25.75 POST \& VAT

BATTERY CONDITION TESTER

Made by Mallory but suitable for all batteries made by Ever Ready and others, most of which are zinc carbon types but also mercury manganese-nicad-silver puts a dummy load on the battery and the meter scale puts a dummy load on the battery and the meter scate the pointer rests, The section reads "replace" "weak"" or "good". The tester is complete in its case, size $3{ }^{\prime \prime} \times$
$6 \frac{1}{\prime \prime}_{\prime \prime} \times 2^{\prime \prime}$ with leads and prod. $84 \cdot 50$ post \& VAT paid.

CENTRIFUGAL BLOWER

Miniature mains driven blower centrifugal type blower unit by Woods. Powerial but specially built for quick
ranning - driven by cushioned induction motor with spectally built low noise bearings. Overall size 4$\}^{\prime \prime} \times$ the equlpment but to suck it out mount from centre uslag clamp. Ideai for cooling electrical equipment or fitting into a cooker hood, film drying, cabinet or for removing flux mone when soldering, etc. etc. A real bargain at $83 \cdot 30.60$ p post \& VAT.
BREAK-DOWN UNIT

Contains hundreds of useful parts some of wich are as follows - 66 , ilicon diodes equivalent 0A91, 68 resistors, montly
covering a wide range of values 4×-1 mid 400 v mif condensers, $15 \times 01 \mathrm{mfd} 100 \mathrm{v}$ con densers. 2 RF chokes $8 \times$ B9 valve holders, $1 \times 4 \mathrm{H}$ choke, $1 \times 115 \vee$ transformer, 1 bored unit containing 4 delay lines also tag panels, trimmer condensers, suppressors, etc., on a
uaeful chasals sized approx. $9^{\prime \prime} \times 5^{\prime \prime} \times 7^{\prime \prime}$. Only useftul chasals elized approx. $9^{\prime \prime} \times 5^{\prime \prime} \times 7^{\prime \prime}$. Only
750 (the 66 diodes would cost at least 10 times 75 p (the 66 diodes would cost at least 10 times
this amount). This is a snip not to be missed. this amount). This
Post and Vat 75 p .

HONEYWELL PROGAMMER

 This is belng calibrated to equal divisions for switch-setting parposes with trips which are infinitely adjustable for position.They are aiso arranged to allow 2 opTrations per switch per rotation. There are 10 amp type operated by the trips, thus 15 circuits may be changed per refolution. Drive motor is mains operated 5. revs per
 min. Some of the many uses of this timer are Machinery control. Boller firing, Dispensing and Vending machines, Display lighting animated and olgns. Signalling, etc. Price frem makers probsbly over s20 earh
el 100 Post and $\nabla \mathrm{AT}$. Don't miss this terrifc bargaln.

TERMS: Whor order is midor 46 please add 50 p surahare to ollet packing

TS FREE!
Bargains List gives details of bargaing arriving or just arrived-often bargain which sell out before our advertisement can appear-It's an interesting list and fow of the Bargains stili available from Light for Grow
Light for Growing. With the ever increasing price of oll, more and more growers are using insulated buildings without any daylight and are using electric lamps for light and heat. Varlous differen typea of lamps are recommended, amongat thes reflector. We recently acquired a quantity of thes with suitable control gear and can, therefore make a special offer as follows: if you buy 100 sets each set comprising 8ft tube, instant start ballast current regulating capacitor, two bi pin tube connectors and two terry clips for holding the tube Price $83+24 p$ per set. Collected from our depo in Sussex or dellyered to you-dellvery charge a cost. We have only 1000 of should be takea up quickly.
Another irritating thing which heppens in Another irritating thing which happens in cold can often drop to such a low point as to mat soldering trons unusable or very slow in operation and also upsets the working of other instruments Even in normal weather II you put a long line through to a distant workshop you may find tha the voltage ts low, due to voitage drop along the line so the compensation transformer may be the cheap way of restoring voltage to normal. The Our 500 w Anto Tranalormer will glve voltage which tapping you use. Price 30 . $50 \mathrm{p}+36 \mathrm{p}$ Post $21 \cdot 00+8 \mathrm{p}$.
70293 core and also all the 1.5 mold out of all the 70293 core and also all the 1.5 mm 3 core. We ar also rapidly going through our stocke of 70293 core and earth and $1 \cdot 5,3$ core and earth. You will at $49.60 \mathrm{p}+176 \mathrm{p}$ and $25.60 \mathrm{p}+44 \mathrm{p}$. 80 if you have at $99 \cdot 60 \mathrm{p}+76 \mathrm{p}$ and $25 \cdot 60 \mathrm{p}+44 \mathrm{p}$. So if you have
ingtallation work planged then we advige you to buy early to avold djsappolntment. We have most other sizes of cabie in stock but of course thes are not so popular.
Variable Inductance Chozo. In an unsatursted core state a choke will oppose the flow of AC very much more than when its core is saturated therefore, if the choke is butlt with a separate col to deliberately saturate the core, a very smal regulator. Use this for lamp dimming and a multitade of other purposes. We ofter and choke of 8 amps AC rating requiring $75 \mathrm{~mA} D C$ chose oi
control current at bargain price of $298-50 \mathrm{p}$
e1.88p. Carriage $25.00+40 \mathrm{p}$. Weigha app. 601 bs
 Panel Meter 0-1 nad. Japanese made tull vislon
perspex front, flush mounting. Price $82-00+16 p$ Constant Voltage Auto Traniformer for operating 110 v equipment on our standard 230/240v malna voltage wlll be astead 115 volts, beantif voltage will
by an Am
500 w 235 500 w £35 $+82 \cdot 80 \mathrm{p}$. Post $\mathrm{E2}+18 \mathrm{p}$. 750 w mode $250+4$. Carriage $23+24 \mathrm{p}$
Tangential Blower, paddle type metal impelle
driven by a powertul but quiet mains operated Induction motor. These give a real blow operated with the minimum of noise. The ow (or gack $9 \mathbf{1}^{\prime \prime} \times 11^{\prime \prime}$ approz. so they are ideal for fitting Price 33.00 head, forced dral Price $83.00+24 \mathrm{p}$. Post $80 \mathrm{p}+6 \mathrm{p}$
wound Heating Element. Spiral wire element wound on a porcelain tube approx. $1 i^{\prime \prime}$ dia. and
$34^{\prime \prime}$ long. 500 w rating at 240 volts with flat tag connectors. Internal diameter of the porcelain tube is $\xi^{\prime \prime}$ and it is completely free from obstruc tions and live parts so this can be sllpped over tube to heat the contents of the tube or the tube could simply be used to support the element, for instance if this was belag mounted in front of the Rectangular Fot Plate. Polished sinminium + 4y with ridged top end angle ina aiminum pane en it. Thts is approx $10^{\prime \prime} \times 41^{\prime \prime}$ of flat plate Bencath plate is 100 w element and sensor switch which will maintain the suriace of the plate jus too hot to touch. With leads and tags. This is idea if you are making up a fitted warmer or for an
airling cupboard etc. Price $75 p+6 p$. Post $20 \mathrm{p}+2 \mathrm{p}$. Miniature Mainı Transformer, standard primary centre tape secondary giving $4-5 v-0-4-5 v 200 \mathrm{~mA}$ Price $81 \cdot 60 \mathrm{p}+12 \mathrm{p}$
Main! Tranalormer 20volt \& amp. Upright mountfeet. Price $81.50 \mathrm{p}+19 \mathrm{p}$
Inmidity 8 witch, American made by Ranco, their type No. J' 11 . The action of this device depends upon the dampness cansing a membraln to stretch and dryness causing it to contract. The stretching of the membraid through the
dampness whil trigger a The actual The actual point of switching is adjustable by breathing on it for instance will switch sensitiv cating of the micro-switch we understand is 3 amp at 250 v Av. Overall aize of the device approx Charge/Discharge indication meter. This is heavy panel mounting instrument made originally for the G.P.O., rather old design but btill we fee will fill an urgent need. Basically the operation this depends upon a Mercury motor which upon whether the batiteries are charging or discharging. A pointer shows the state of charge of the batteries at any time. Also fitted within the instruments are auxliliary contacts which could be used to set of alarms like lamps etc. Price $24-50 \mathrm{p}+36 \mathrm{p}$. Post $\mathrm{El} \cdot 00+8 \mathrm{p}$.

IDEAS ABOUND

Readers' suggestions for projects continue to arrive at our office in a steady flow. This is a good sign for it indicates a lively interest and frequently a very fertile imagination on the part of those who write.

All ideas are looked at carefully, and those judged to be viable are actively pursued. Our investigations do not always come up trumps, however. Some suggestions will not stand our three-part test which involves these considerations: (1) technical feasibility, (2) practicability and (3) cost to the builder.

Sometimes it happens that alternative approaches can be made to a problem. An example is given by the recent projects for use with tumble dryers. Last month's Tumble Dryer Alarm was a spin-off from an earlier design and had the advantage of being battery operated, simpler in design and less expensive to build. The original Tumble Dryer Controller (published in January) offered automatic control of the mains supply to the machine-a valuable facility but one that had to be paid for of course, both in cash and in the more demanding nature of the construction work because of the more complex design.

Some readers may feel that their particular suggestions take a long time to materialise. But never give up hope! For instance the Model Railway Controller is an answer to a model railway enthusiast whose comments appeared in Everyday Electronics exactly a year ago. At that time we promised that some designs for

Our May issue will be published on Friday, April 15 See page 177 for detalls.
model railways would be forthcoming. In this case, the longer-than-normal delay in publishing was not due to design problems, but simply because of prior commitments in our available space.

We strive to give every specialist interest a fair crack of the whip. But because electronics is so universal in use, the range of possible applications is immense and it is inevitable that suggestions have to take their turn in the queue.

BUYING COMPONENTS

Isn't this remarkable? A vast number of electronics constructors will never have stepped across the threshold of an electronic component shop-and as likely as not they have never even seen such a shop. The answer of course is Mail Order. Without this service thousands of constructors would be deprived. Despite the odd stories one does hear from time to time, mail order works very well.

The Guide To Component Buying which comes as a special supplement in this issue, gives a listing of component retailers who advertise in Everyday Electronics and indicates the kind of components they normally stock. A useful reference for all constructors, both those who order by post and those who can indulge in personal shopping. For the privileged latter-a reminder also of those shops that are in their own neighbourhood or within easy reach.

EDITOR F. E. Bennett - ASSISTANT EDITOR M. Kenward - TECHNICAL EDITOR B. W. Terrell B.Sc.
ART EDITOR J. D. Pountney - P. A. Loates - K. A. Woodruff
ADVERTISEMENT MANAGER D. W. B. Tilleard P.Mew

[^0]
EASY TO CONSTRUCT SIMPLY EXPLAINED

VOL. 6 NO. 4
APRIL 1977

CONSTRUCTIONAL PROJECTS

MODEL RAILWAY CONTROLLER Provides realistic speed control by F. G. Rayer 162
CAR BURGLAR ALARM Protect your vehicle and equipment by A. D. Huff 165
CONTINUITY TESTER A versatile piece of test gear by A. Irwin 174
PAPER/SCISSORS/STONE GAME Modern version of an old game by A. W. Gibbs 183
GENERAL FEATURESEDITORIAL160
DOING IT DIGITALLY Part 7 Pulse generator, wired OR, Schmitt trigger, and card reader by O. N. Bishop 168
SHOP TALK Component buying and catalogues by Mike Kenward 173
COUNTER INTELLIGENCE A retailer's comments by Poul Young 175
FOR YOUR ENTERTAINMENT IIEA TV, VAT and Space Junk by Adrian Hope 176
YOUR CAREER IN ELECTRONICS Television Capital Equipment by Peter Verwig 178
JACK PLUG AND FAMILY Cartoon 181
PHYSICS IS FUN. Sound by Derrick Daines 182
RAPIER MISSILE SYSTEM by G.A. G. Brooke 186
READERS' LETTERS 190
ABBREVIATIONS 191
PROFESSOR ERNEST EVERSURE The Extraordinary Experiments of. by Anthony J. Bassett 192
DOWN TO EARTH Noise by George Hylton 196
PLEASE TAKE NOTE 196
SPECIAL SUPPLEMENT
gUIDE TO COMPONENT BUYING

BACK NUMBERS, LETTERS AND BINDERS

[^1]
FITEE NEXT MONTH MATRIX MARKER

Don't miss your issue-see page 195!

W
HEN power for a model train is derived from a.c. mains, by means of a transformer and rectifier, speed control is easily provided by incorporating a silicon controlled rectifier or thyristor. The thyristor does not act as a series resistive element, as when using a variable power resistor and similar circuits, but provides full-voltage pulses whose length can be controlled. This results in better slow speed starting and running of the engine, than does variable voltage control.

CIRCUIT OPERATION

The controller circuit is shown in Fig. 1 where Tl is the mains transformer, which reduces the voltage and isolates the model circuit. The full-wave rectifier bridge D3 to D6 provides pulsating d.c. for the control circuit and model. During each half-cycle the rectifier output rises from zero to
peak voltage, then falls away again to zero. This pulsating d.c. is present across the speed control VR1.

The rectifier output is also taken to the thyristor which supplies power for the model. When the thyristor gate g , receives a trigger pulse, an avalanche discharge causes the thyristor to conduct, and continues until the voltage across it falls to a low level, resulting from the zero output part of the rectifier half cycle. If the thyristor conducts for the whole of the half cycle, full output is obtained. But as VRI slider is moved towards the negative line the required trigger pulse is delayed, so that the thyristor only conducts for part of the half cycle.
Switch S1 is the main on-off switch, and S2 a reversing switch with central off position. The lamp LP1 is to limit current in the event of a short circuit. The filament is of low resistance when
cold so it has negligible effect on running.

Capacitors Cl and C 2 of the values shown were found to give the best results, though these values are not critical; C 3 helps quiet running of the motor, as does D1. With the usual popular model engines, VR1 providés

FOR GUIDANCE ONLY

 OF COMPONENTS * excluding VAT.£6.40 excluding case

Fig. I. Circuit diagram of the Model Railway Controller.

control from a standstill to full speed.

CONSTRUCTION

The prototype case was made from 6 mm plywood for the front, back and sides and 4 mm plywood for the top and bottom such that the control panel was on top and sloping from the rear to the front, Any convenient metal or insulated box could be used.

It is a good idea to provide some ventilation holes in the case back and bottom, and stand the case on four small rubber feet.

The layout of the components within the case and complete wiring up details are shown in Fig. 2. The transformer is bolted to the back of the case. One side carries two output sockets, and a strap of metal formed so that it holds the lamp, which sits under a coloured lens in the control panel.

Anchor the mains lead at a tag strip as shown, taking the earth lead (yellow-green) to the d.c. negative line (which will include the metal box, if used).

Most items are supported by a tag-strip, which is bolted at X-X. Four 1N4001 diodes could be used instead of the full-wave bridge rectifier if these are more readily available. Diode D2 has a band at the positive end, and the larger diode Dl tapers to indicate positive.
The thyristor anode , stud was fitted with a solder tag, and then soldered to the tagstrip as shown. No difficulty arises in fitting items here with the tagstrip already bolted to the side of the case. (Pinning for CSR1 is shown in Fig. 1.)

The transformer used was tapped for 2, 6 and 12 volts charging, at 1 ampere, and delivers approximately 17 volts peak. A 12 volt 12 watt lamp at LP1 will limit current to 1 ampere, if derailment or other circumstances result in a short circuit, which is indicated by the indicator lamp fitting above LP1 being illuminated.

Assuming that any such mishap will soon be cleared, a 21 watt lamp can be used here. Another alternative to the 12 watt lamp is a 10 watt festoon bulb, which does not of course cause any temporary overload. A lamp of unnecessarily low wattage should not be used.

There is some latitude in components, but it is wise to fit a thyristor and D1 rated at over 1A, even though this is the normal
maximum load for the controller.
Speed controller, VR1, should have a large control knob and it must not be overlooked that S2 needs a central off position which avoids any short-circuit of power.

RUNNING

It should be found that VRI allows the train to be started and run at a very low speed if wished, and that tractive effort is good at low speed. The engine is less likely to stall, when running very slowly and encountering additional friction or load, than when a series resistance controller is used.

Track and wheels should be clean, as at low speed there is no momentum to carry the engine over any dirty spots where contact is poor.

Capacitors
CI $25 \mu \mathrm{~F}$ elect. 25 V
C2 $12 \mu \mathrm{~F}$ elect. 25 V
C3 $470 \mu \mathrm{~F}$ elect. 25 V
Semiconductors
See

D1 IN4001
D2 IN5400
D3-D6 2A 50V bridge rectifier
CSRI CRS3/05 or similar 3A 50 V thyristor
Miscellaneous
SI mains on/off toggle
S2 d.p.d.t. with centre off position
TI mains primary /I2V |A secondary transformer
VRI |k』 I watt lin. potentiometer
LPI 12 V 12 W lamp with coloured lens
FSt 200 mA fuse
SKI, 2 insulated screw terminals 1 red, 1 black (2 off) Tagstrip: 10 way and 3 way: mains cable; BA fixings; connecting wire; fuseholder for FSI; case.

W${ }^{\text {ITH }}$ crime on the increase, and the cost of cars and "in-car" stereo equipment, radios etc, also on the increase, a cheap effective car alarm is essential for the everyday motorist.
If a car is fitted with a trembler switch in the engine compartment and microswitches on the doors and boot, the following protection is afforded.

Anyone tampering with the wheels, spotlights and such will set off the alarm (car horn) due to the trembler switch. The alarm will sound off and reset itself.

If the thief opens the car door the horn will sound, two things may happen. If he runs away leaving the door open the horn will continue to sound until the battery is exhausted, the door is closed or the alarm switched off.

It was thought disadvantageous in the design to have the horn switch off automatically whilst the door is left open. If the would-be thief closes the door in an effort to stop the horn sounding, it will only switch off after the pre-set time has elapsed.

The time that the horn-will sound has been designed to be between 5 and 25 seconds. In fact with one component change the range can be extended to be between 12 and 45 seconds. Longer times than these should not be required for a car alarm.

An automatic turn off saves having to switch the alarm off if it is accidentally triggered by children for example.
With this design the driver will not return to his car to find a flat battery if the alarm has been sounded in his absence.

CIRCUIT

The complete circuit diagram of the Car Burglar Alarm is shown in Fig. 1. It is simply a monostable feeding a relay driver. The monostable is composed of TR1 and TR2 and associated components. With the microswitches and trembler open circuit, and the unit turned on, TR1 is fully on and TR2 is fully off. There is no drive to TR3 hence the relay is not energised.

The circuit will remain in this state until a microswitch or the trembler is caused to short D1 cathode to ground. Transistor TR1 is then caused to switch off and TR2 on thereby supplying drive to TR3 and causing the relay to be energised; the relay contacts close and supply power to the horn. The horn will continue to sound even though the microswitch or trembler become open circuit and will remain in this state until capacitor C3 discharges through the resistance formed by ($\mathrm{R} 3+\mathrm{VR} 1$), so that the potential on the base of TR1 exceeds that on TR2 when the circuit will revert to its original state i.e. TR1 on TR2 off.

Thus the relay on time is controlled by the value of VR1 and C3. An approximate formula for the on time of the relay is $\mathrm{T}=0.7 \times \mathrm{C} 3 \times(\mathrm{R} 3+\mathrm{VR} 1)$ seconds where C 3 value is in microfarads and resistance is in ohms. It can be seen that doubling the value of C3 doubles the on time.

SOME ASPECTS OF THE CIRCUIT

Capacitor C2 is incorporated to prevent the ripple on the + ve supply line (caused by the horn operating), from prematurely resetting the monostable. The back e.m.f. from the horn is prevented from re-triggering the unit by the inclusion of D4.

Diode D'3 is used to suppress the back e.m.f. developed across the relay coil when de-energised. Diode D2 is included to limit the reverse bias on the base/emitter junction of TR1 due to the large negative voltage present on C3.

If more than one horn is connected to the circuit the value of the 5 amp fuse will have to be increased. Also a relay with a higher contact current rating will have to be used. It is a good idea to check the current consumption of your horn circuit before building this unit and selecting the relay to suit if greater capacity than $5 A$ is required.

CONSTRUCTION AND FITTING TO CAR

The prototype unit was constructed on a piece of $0 \cdot 1$ inch matrix stripboard measuring 19 strips by 39 holes. The layout of the components is shown in Fig. 2 as are the breaks to be made on the underside of the board. The holes to take the relay tags should be enlarged to suit the size of the tags. There are two copper strips that need to be reinforced to carry the current to the horn. This is easiest done by soldering

By A. D. Huff

Fig. I. The Complete circuit diagram of the Car Burghar Alarm.

Resistors

Potentiometer
VRI $100 \mathrm{k} \Omega$ horizontal preset
Capacitors

CI $100 \mu \mathrm{~F} 25 \mathrm{~V}$ elect.
C
C
C
$0.47 \mu \mathrm{~F}$ plastic or ceramic
C
C

Miscellaneous

FSI 5A with in-line fuseholder
RLAI 12V 1640 ohm coil with 5A normally open contacts (Doram 349-131)
SI Trembler type switch
S2 Microswitches (number to suit)
S3 Key operated switch
LPI 12 V 100 mA m,e.s. with holder and lense to suit
Stripboard: 0.1 in . matrix 1.9 strips $\times 39$ holes; robust case; screened lead; 5 A connecting wire.

FOR GUIDANCE ONLY

```
ESTIMATED COST
OF COMPONENTS *
        excluding V.A.T.
            &4.80
excluding switches
    and case
```

$\mathrm{CI} 100 \mu \mathrm{~F} 25 \mathrm{~V}$ elect.
$0.47 \mu \mathrm{~F}$ plastic or ceramic
C4 $100 \mu \mathrm{~F} 25 \mathrm{~V}$ elect.

Fig. 2. The layout of the components on the topside of the stripboard and the cut-outs to be made on the underside and wiring details to the car. Note the stout copper wire soldered along the strips to enable high current flow.

EVERYDAY ELECTRONICS EASIBINDER

Three new circuits are discussed in this month's section: a single pulse generator; the wired-or connection and the Schmitt trigger. We will also look at two useful input devices which can be made quite easily from a piece of stripboard some drawing pins and paper clips.

A SINGLE PULSE GENERATOR

The single-pulse generator is a useful circuit which produces a short high pulse every time its input changes from low to high. A typical use for this circuit might be after a light operated switch whose output goes from low to high at dusk. The single pulse may then be used to clock a flip-flop or some other counting device.

The basic circuit is shown in Fig. 7.1a and it can be seen that
the heart of the circuit consists of two NOR gates. One of the gates is connected to form an inverter. Normally the input is low which causes the output of the inverter to be high and hence the output of the second gate to be low. In this state the voltage across the capacitor $C 1$ will be zero.

If the input is now taken high (Fig. 7.1b) the output of the inverter will immediately go low. The voltage across CI will gradually rise towards the high input but for a certain time (determined by the values of C1 and RI and the switching threshold of the gate) gate ICIb will see a low on both its inputs and so its output will be high.

Eventually C1 will charge to such a voltage that it presents a high input to gate ICIb (Fig. 7.1c) and the output will there-

(b)

(d)

Fig. 7.I. Single pulse generator (a) shows the circuit before it is activated. The shaded areas indicate a high level. (b) shows the state of the circuit just after the input has gone high (c) shows the state after the capacitor has had time to charge and (d) shows the circuit when the input returns to low.

(a)

(b)

(c)

Fig. 7.2.(a) Using a NAND or NOR gate as an INVERTER (b) Combining two NAND gates to form an AND (c) Two NORs forming an $O R$
fore go low again.
If the input now goes low the output will be unaffected since the inverter will immediately present a high input to gate IClb keeping its output low. Capacitor Cl will now discharge through Rl until its voltage falls to that equivalent to a low input and sufficient time must be allowed for this to happen before the generator is once again ready for action.

The length of the pulse can be varied by changing the value of C1. With the value shown the pulse length will be about five milliseconds.

WIRED-AND CONNECTION

On looking through the list of 7400 integrated circuits it will be found that there are many containing nand gates and quite a few containing nor gates. Most logic combinations can be formed with just these two types but sometimes other functions such as INVERT, AND and or are required.

If only one of these gates is required it is easy to make them from NaNDS and NORS and this saves the trouble of buying a package containing four gates.

In Fig. 7.2 various functions which can be obtained from combinations of NAND and NOR gates are illustrated. If several and gates are required then it is wise to buy the 7408 i.c. which con-
tains four such gates and if several inverters are needed then one would use the 7404 i.c. which contains six.

Rather than waste two NAND gates just to make a single and gate, there is a way of using just a few discrete components to achieve the required result.

Remember that TTL (transistor transistor logic) gates work by drawing current from the following gate when the input is taken low. In other words we can say that if no current is being drawn from the input of a gate then that input must be high.

Referring to Fig. 7.3, input to gate D will be high if no current is drawn from the gate through any of the diodes D1 to D3. No current can be drawn from the gate through the resistor since it is connected to the positive sup-ply-it is called a pull-up resistor as it "pulls up" the voltage on the input when no current flows through the diodes.

Now if the outputs of any of the gates A to C goes low (Fig. 7.3 b) the respective diode will conduct and the voltage at the input to gate D will fall to a value equal to the forward voltage drop across a diode (about 0.6 V) which is seen by the gate as a low input and hence current flows from the input. (This assumes that the voltage at the output of a gate when it is low is zero which is not exactly true,

there always being about $0 \cdot 2 \mathrm{~V}$ present.)

From this description it can be seen that the input to gate D will only be high if the outputs from gates A to C are all high (Fig. 7.3c)-hence D1 to D3 and Rl form an and gate.

It is an unfortunate fact that diodes are as expensive as gates so it is not an economic proposition to use this method of making AND gates if many are needed. The use of 7408 i.c.s means that one is restricted to two-input gates. Happily there is a way of forming AND gates with as many inputs as required without using any gates!

Suppose one has a circuit with a number of outputs from NaND gates and one wishes to and their outputs to give a single output which only goes high when all the outputs from the gates are high. The outputs could be combined with a diode gate as described above but if, instead of ordinary type 7400 nand gates, one uses a special type of NaND gate then no diodes are re-quired-the outputs are simply joined together with wire, the common connection being taken to the positive supply through a resistor.
This method of connecting the outputs of special gates with wire to form and gates gives rise to the name "wired-and". The special i.c.s containing these gates

(a)

Fig. 7.3.(a) An AND gate using three diodes and a resistor connected to the output of three gates. Gates A, B, C and D can be any type of gate. (b) Current flow when the output of one of the gates is low (c) State of the circuit when the output from all gates are high.

Fig. 7.4. Pin connections for three types of open collector i.c.s. (a) the 7401 quad two-input NAND gate (b) the 7403 quad two-input NAND gate and (c) the 7405 hex INVERTER.
are usually referred to by the manufacturers as "open collector" gates.

The internal connections of three i.c.s containing open collector gates are shown in Fig. 7.4. The 7401 is a quad two-input open collector nand gate i.c. as is the 7403. The pin connections of the 7403 are identical to those of the 7400 but the 7401 is different. Also available is the 7405 which contains six inverters with open collector outputs which can be WIRED-AND connected.

When wired together the outputs of the 7405 are anded but if the inputs of these gates are considered it will be seen that if any one or more of them is high its output is low and the anded out put is therefore low. This takes us once more to nor. Thus a nor

Fig. 7.5.(a) Type 7403 or 7401 i.c.s. wired together to form a WIRED-AND gate (b) Gates in a 7405 wired 'together form a WIRED-NOR gate.
gate with many inputs can be formed using the 7405 i.c. (see Fig. 7.5b).

This type of gate is sometimes seen referred to as a wired-NOR gate for obvious reasons. By placing an INVERTER after the WIREDNOR gate, a WIRED-OR gate is obtained.

It can be seen that a gate is not always what it appears to be-a NAND gate may in fact be part of an INVERTER and an INVERTER may be part of an or gate! When in doubt either build the circuit on the experimental board and test it or write the truth table for the gate.

It is permissible to WIRE-AND as many as eight outputs together using 7401 or 7403 or 7405 i.c.s and the anDed output can be used to feed up to seven inputs.

THE SCHMITT TRIGGER

One of the problems of operating counters and flip-flops is that they require clock pulses with very short rise and fall times. This is because with a slowly changing clock pulse the input to a gate may be biased into a region of uncertainty where the gate changes from being an on/ off switch into an amplifier with very high gain. This can in turn lead to oscillation which can cause serious malfunctioning of a system.

Fig. 7.6. Pin connections of the 7413 four-input Schmitt NAND.

One method of overcoming the problem is to use a circuit called a Schmitt trigger. An integrated circuit type 7413 is available which contains two four-input NAND gates with a rather special property. Its pin connections are shown in Fig.7.6.

The Schmitt trigger nand gates differ from the ordinary NAND gate in that the switching voltage differs depending on whether the input is going from high to low or low to high.

As the voltage rises from zero the gate will switch at about $1 \cdot 7 \mathrm{~V}$, the output then going low. If the input voltage is now reduced nothing will happen when it passes through $1 \cdot 7 \mathrm{~V}$. In fact the voltage has to fall below about IV before the output of the gate will go high. The gate switches at 1.7 V "on the way up" and 1 V "on the way down."

A slowly changing input is shown in Fig. 7.7a with the output states of the gate. Even with slowly changing inputs the Schmitt trigger produces an out-

(a)

(b)

Fig. 7.7(a) The output of the 7413 with a slowly changing input (b) the elimination of noise using the Schmitt.

Fig. 7.8(a). A transistor connected to an ordinary gate provides a path for current to ground (b) A
battery connected to an ordinary gate does not provide a current path to ground. (c) A $1 \cdot 5 \mathrm{~V}$ battery connected to a Schmitt gate acts as a low input
put with fast transitions.
The Schmitt trigger is also useful for removing "noise" from waveforms as illustrated in Fig. 7.7 b . The input is a waveform which wanders up and down rather than switching from on to off directly. This "wandering" would cause many pulses to be generated by an ordinary gate but the Schmitt trigger only produces one transition.

There is another use for the 7413 because it depends only on its input voltage to make it change state. Other i.c.s need to have a certain type of inputone that will let current flow from the gate to ground. Even a slight voltage at the input will be equivalent to a bigh input, as shown in Fig. 7.8.

The Schmitt will treat any input voltage below 1V as low and "on the way up" and will treat any voltage below 1.7 V as low. There is no need to provide a path to ground.

This means that the gate can be operated by devices other than transistors or other gates or direct connection to positive or ground.

For instance the input can be from a potentiometer connected across a 6 V battery as shown in Fig. 7.9a. It is possible to connect the spindle of the pot to a working model using a pulley or gearwheel so that as some part of the model moves it produces a
logic output.
Since the light operated switch shown in Fig. 7.10 using the ORP12 is really a potential divider the ORP12 can be connected directly to the 7413 Schmitt gate to give a clean changeover as the light increases or falls. Because the switching levels of the Schmitt vary according to whether the input is on the way up or down, the light level for "on" will be different to that for "off". This can be an advantage for example, if the device is being used to turn a radio on at sunrise a passing cloud will not turn it off again.
The Schmitt can also be used to detect when the voltage of a battery falls below a certain

Fig. 7.10. The light operated switch described in an earlier part may be used to drive the Schmitt
level. Suppose the battery must not fall below $5 \cdot 1 \mathrm{~V}$. The circuit is shown in Fig. 7.11a.

The Zener diode stops the voltage to the potential divider from

Fig. 7.11.(a) Circuit for a low battery indicator. The potential divider can be made from a preset and two resistors for setting the switehing point, as at (b).

(b)

Fig. 7.9.(a) The input to the Schmitt can be from a potentiometer connected across a 6 V battery. The potentiometer can be part of a working model as shown in (b).
rising above $5 \cdot 1 \mathrm{~V}$ but if the battery goes flat this voltage will fall below $5 \cdot 1 \mathrm{~V}$. When the voltage is $5 \cdot 1 \mathrm{~V}$ the voltage at point A will be one fifth of this i.e. nearly 1 V .

To activate the low battery indicator the switch S1 is closed which applies a high voltage to the Schmitt causing its output to go low. The switch is then released. Now if the voltage ever falls below 1 V the output of the gate will go high indicating a low battery.

Single Pulse Generator
RI 270Ω - $\mathrm{A} W$
CI $50 \mu \mathrm{~F}$ elect. ${ }^{6} \mathrm{~V}$
ICI 7402
Wired-AND
RI 560Ω to $1 \mathrm{k} \Omega \frac{1}{4} \mathrm{~W}$
DI-D3 IN 914 (3 off)
ICI 7403
IC2 7401
IC3 7405
Schmitt Trigger
RI $5.6 \mathrm{k} \Omega$
R2 $1 \mathrm{k} \Omega$
VRI $10 \mathrm{k} \Omega$ lin.
VR2 $1 k \Omega$ preset
DI 5.1 V 400 mW Zener diode
ICI 7413
Keyboard/Card Reader
Stripboard: 0.15 in . matrix 25 holes $\times 16$ strips; drawing pins (10 off); large paper clips (10 off); terminal pins (20 off).

The circuit of Fig. 7.11a shows two fixed resistors making up the potential divider. In practice it might be hard to find two resistors with a ratio of exactly four to one and this, together with the fact that the Schmitt may not trigger at exactly 1 V makes the use of a preset potentiometer as shown in Fig. 7.11b more apt. The preset can then be adjusted so that the \$chmitt triggers when the voltage of the battery falls below $5 \cdot 1 \mathrm{~V}$

This is just one example of the use of the Schmitt trigger. It has applications in many other circuits as a voltage level detector.

SIMPLE KEYBOARD

It is very useful to have a set of keys ready made especially when working with flip-flops. The set of keys to be described here is easy to construct and gives five switches very cheaply.

The keyboard is assembled on one half of a piece of $0 \cdot 15$ in matrix stripboard as shown in Fig. 7.12. The card reader to be described next uses the other half of the board. If required the board could be sawn in half and the two units used separately.

The method of construction is similar to that used with the paper tape reader described last month. The drawing pins are soldered into the board as shown

Fig. 7.12. Layout of the card reader (left) and keyboard (right) on the 0.15 in matrix stripboard. Note the cuts in the strips under the board. The board can be sawn in half if the two units are to be used separately.
and their ends cut off. They are all joined together and the wire is taken to a terminal pin at the side of the board. The paper clips are then bent as shown and placed in position on the board. A piece of Blu-Tack or Plasticene is then used to hold the clip in position while it is soldered. The clip must
lie so that it is slightly above the drawing pin, only making contact when it is pressed.

Keys or switches made in this way are called "push to make" switches: when they are pressed they make contact; when pressure is released they open.

Photograph of the keyboard and card reader.

CARD READER

The card reader is similar to the keyboard except that the keys are normally touching the drawing pins. When a card is pushed between the keys and the drawíng pins, some contacts (depending on how the card is cut) are broken (see Fig. 7.13). The method of construction is the same but when soldering in the paper clips hold them firmly in contact with the drawing pins.

Fig. 7.13. A card inserted into the card reader. It has been cut so as to produce a high on pins two, three and five.

By Mike Kenward
New products and component buying for constructional projects.

FEOR the first time in the history of Marshall's they have produced a second catalogue (now available) with in 12 months. This has been necessary mainly due to the "unprecedented increase in component prices, stemming partly from the falling pound, but also from an all round rationalisation of prices and product ranges from our main suppliers," more about this aspect later. The new catalogue also includes an additional 500 lines which come mainly from National Semiconductors, these lines include various microprocessor items.

It was unfortunate that the very day we received the new catalogue we also received the sad news that Mr. Marshall had died a few days earlier. His firm have always been helpful and provided an excellent service which we are sure will be continued by his able staff.

Rationalising

Many of the larger semiconductor suppliers have recently been looking
closely at their range of products and have taken steps to rationalise the range. This has resulted in the axeing of some lines and also in large price increases in lines which are deemed to be "specialist". It can also mean lengthy delays in the supply of some of these specialist items because they are no longer manufactured continually and because the supplier might well be trying to discourage their use in order to delete them from the new streamlined range.

Fortunately this has not affected many of our projects since we tend to use the most common devices. However two transitors specified for our Transistor Assisted Ignition, published three years ago, now cost about $£ 5$ each and are not expected to be available again for a good few months. This obviously makes that particular circuit redundant since it would now be cheaper to buy a commercial unit, even if supplies of the transistors were readily available.

Continuity Tester

As is mentioned in the article none of the parts for the Continuity Tester are particularly critical and those constructors who have been around for some time will probably find they have something suitable for most of the parts at hand.
The case for this project can be any of suitable size and no doubt many constructors will build their own.

Car Burglar Alarm

Some items used in the Car Burglar Alarm requíre a special mention, they are the relay which is a Doram type available direct from them-see the buyers guide for details of how to order etc.-and the trembler switch. Although this switch is not essential it is a useful addition to the circuit, however we have not been able to locate a source of supply of new switches but we are informed that one can usually be purchased from a breakers yard. This should provide a suitable source for

As with the keyboard, join the drawing pins together and to a terminal pin at the side. If the keyboard is on the same piece of board as the card reader, make . sure the cuts in the copper strips are made as shown.

Some of the pins in the card reader are not for electrical connections but serve merely to guide the card in straight.

The card reader can serve as a keyboard if required since contact will be broken if the paper clips are pressed at the end farthest from the drawing pin.

To be continued
most readers although we feel that it must be possible to buy such a switch on its own as a replacement unit.
A similar thing applies to the key switch-although some of the larger suppliers can provide suitable switches these are usually expensive and an old ignition switch would be a cheap alternative.

Train Controller

None of the components for the Train Controller should cause any buying problems but readers should make sure that they obtain the correct type of switch-a centre off type-for S2.

Paper/Scissors/Stone

A number of switches are employed in the Paper/Scissors/Stone Game and these are rather special in that they are double pole push buttons. Since there are six to buy it is important that they are reasonably priced-we suggest you contact Electrovalue who can supply Castelco switches cheaply; see the buyers guide for their details.

Catalogue

Just as we were about to submit the copy for this page a Maplin catalogue "landed" in the office. Having only had a brief chance to scan the pages we must say that it appears to have been well worth waiting for and is probably the most comprehensive catalogue we have ever come across. How they have managed to provide it and send it out for 50 p is beyond us.

The range of available items is vastcovering components, kits, tools, instruments and books with many items of allied interest such as hi fi, disco and organ parts and equipment. We are sure they should be able to proyide most constructors with all their requirements.

The unit described is of triple purpose; it can be used as a morse code practice oscillator, as a continuity tester, or test oscillator.

A morse code practice oscillator is often required for the training of scouts, cadets and radio amateurs. This unit can be built up mostly from spare components as none of the values of capacitors or resistors are critical. It is desirable, however, to use a high-gain type of transister and high-resistance phones.

CIRCUIT

The oscillator (Fig. 1) is a basic three section dippy type which relies on the phase shift created
by the network consisting of Cl to C3 and R1 to R3 to provide positive feedback and thus cause TRI to oscillate. The transistor itself provides 180 degrees phase shift, which would give negative feedback if applied to the base but this signal is taken via the phase shift network, which provides a further 180 degrees shift, to the base of TR1.
Potentiometer VRI alters the base bias on TRI and thus provides some control of the tone, whilst the output is taken from VR2 which acts as a volume control.

CONSTRUCTION

Commence construction by

Fig. 1. The circuit diagram of the tester.

drilling a suitable panel to take the main components and tag board as shown in Fig. 2. Next mount the various components on the tag panel together with link and connecting wires. Fix the tag panel and other parts to the front panel and complete the wiring up of the unit.

The metal box is large enough to take any type of 4.5 volt battery. It is essential that red and black leads are used to connect the battery so that the transistor will not be harmed by incorrect connection.

USE

Used as a continuity tester when trying to trace faults, the unit has several advantages over an ordinary buzzer. It delivers a clear, audible note which can be adjusted to ones liking. It will stand a lot of knocking about and the note does not depend on a critical mechanical adjustment,

like a buzzer, and will remain constant throughout tests. One other advantage, it is not necessary to look up from the work

Resistors	
R1	$2 \cdot 2 \mathrm{k} \Omega$
R2	$2 \cdot 2 \mathrm{k} \Omega$
R3	$2 \cdot 2 \mathrm{k} \Omega$
R4	$220 \mathrm{k} \Omega$
All	$\frac{1}{2} W$
	$\pm 10 \%$

Potentiometers

VRI	$250 \mathrm{k} \Omega$
VR2	$2.2 \mathrm{k} \Omega$

Capacitors

Capacitors	
Cl^{2}	$0.1 \mu \mathrm{~F}$
C	$0.1 \mu \mathrm{~F}$
C 3	$0.1 \mu \mathrm{~F}$
C	$0.1 \mu \mathrm{~F}$
C	$0.1 \mu \mathrm{~F}$

Sino

Any small types
Transistor
TRI 2N3702 silicon pnp
Miscellaneous
S1 \quad s.p.s.t. toggle switch
SK1 mono jack socket
SK2 single screw contacts (2 o.f)
B1 4.5 V battery
Six way double tag board; knobs
for VR1 and VR2; case, approx
$150 \times 100 \times 75 \mathrm{~mm}$; connecting $150 \times 100 \times 75 \mathrm{~mm}$; connecting wire; 4BA fixings etc.
to read a meter as when a visual type of indicator is used.
To use the unit as a test oscillator to feed an amplifier or
other audio equipment, simply short the two terminals of SK2 and take an output from SKl to the unit being tested.

Fig. 2. Mechanical construction and wiring of the unit.

NE big advantage you have dear reader, which I would like to stress, is that you are dealing almost exclusively with people who are enthusiasts. The staff of EVERYDAY ELECTRONICS are dedicated to giving you the best, and right the way down the chain to the humble retailer like myself, because we are extremely interested in our subject we want you to be also.

Obviously the most useful way we can do this is to give you good service. In case a cynically minded reader suggests we do it for money, I would assure him there are many easier ways available. In addition none of the firms you buy your supplies from are very big, which means that any grumble is dealt with at the top; as it should be.

In my own case I always insist on dealing with any dissatisfaction. I am pleased to report that not much of my time is taken up in this way. I even go further, I demand that all orders that are incomplete be brought to me. I then go through them to see if I can offer a reasonable substitute. There is usually plenty of scope here.

For example if we are out of a particular value of resistor in $\frac{1}{6}$ watt, one can send a $\frac{1}{4}$ watt, or if the customer wants a capacitor we may not have it in 10 volts but we have it in 16 volts. What is less obvious, is that a single pole double throw toggle switch could be replaced by a double pole, double throw. In fact you will probably have worked out for yourself that the latter could be used to replace all of them
except the centre off variety and the biased types.
If there are items on the order which are out of stock, we photostat the order and send them on later. If there is likely to be long delay, we return the money in the form of a credit note.

We may not please all the people all the time, but we do try, and believe me in this day and age this is really something. I am also very optimistic that in time we shall improve our performance and this will be done by narrowing down our selection. With a smaller range we can stock in greater depth and the chance of running out of stock will be much less.

It would be nice if all the component retailers got together and stated the items they were going to concentrate on. It would mean that you would have to purchase from more than one source but I have said previously that you may have to deal with about four suppliers to be completely covered.
know in the past, we have erred in giving customers too large a choice. To quote, we were offering electrolytic capacitors in the following voltages: 2.5 V 6.4 V 10 V 16 V when obviously the 16 V one would have covered the lot. I often wonder, is it correct to offer a choice of 10 different colours, when probably the customer would be just as happy if we repeated Henry Fords' dictum, "you can have any colour you like as long as it's black."

By ADRIAN HOPE

HAVE you ever wondered how it is that schools can receive television programmes without a roof aerial?

In the London area, 500 miles of coaxial cable were laid underground by the Post Office ten years ago. One object was to provide good TV reception for all ILEA schools without the need to erect aerials. Another was to enable those schools to receive closed circuit broadcasts originating from an educational TV studio at Battersea. This coaxial cable can carry nine seperate TV channels (BBCI: BBC2, ITV and several special ILEA programmes) to every educational establishment in the London area, and the school sets each have a tuner with switching between nine channels.

Standard

The sets are unusual in that; although they operate on 625 -line standard, they can accept only v.h.f. (rather than u.h;f.) signals. This is because it is easier to distribute television signals on v.h.f. frequencies rather than u.h.f., there being more loss of signal in a cable the higher the frequency it carries. Even so, the Post Office have to provide underground repeater amplifiers every mile along the main route and every half mile along the spur routes which use thinner cable. As the channel spacing on the educational distribution network differs from that adopted for normal broadcasting, the TV sets you find in schools are usable only in schools.

Although it comes as a surprise to some schools this is why an ordinary, off-the-shelf video recorder (videocassette or reel-to-reel) intended for domestic use will almost certainly not work if plugged straight into a school TV set.

Colour

Although all the ILEA distribution network to schools is colour-capable and the BBC and the ITV stations are piped down the line in colour, very few schools have colour sets. There was a plan a few years ago to start replacing old monochrome sets in London schools with colour sets, and the Post Office have been updating the distribution network with improved colour quality in mind. But with money for education so short, all hope of introducing colour sets to schools is now gone, at least for the foreseeable future.

There is even talk of axing the distribution network for London schools. This would surely be madness, because, apart from anything else, it would involve every school in the London area in the need to expensively erect an aerial to receive off-air signals in u.h.f. They would then have to convert the signals to v.h.f. for feeding to the school TV which, of course, can only work with v.h.f.

Let's hope that no decisions are taken over this by politicians who don't understand the technology involved and end up spending more money than axing the system saves!

Anyone using a London school TV set may wonder why and how educational TV programmes a're sometimes interrupted by the sound of airline pilots talking to ground control. It's one of the disadvantages of using a v.h.f. distribution network. Some of the channels operate on exactly the same frequencies as the very powerful transmitters installed in modern airliners. If one is approaching London Airport only a thousand feet above a TV set tuned to the same frequency, breakthrough is virtually linevitable.

VAT Calculation

As we are stili cursed with multi-rate VAT and some shops are still advertising exclusive prices, there is often a need to convert exclusive to inclusive, at one rate or another. How odd that no-one made any effort to tell the public that the original Budget reduction (25 per cent to $12 \frac{1}{2}$ per cent) was actually an overall ten per cent cut on retail prices, and was thus a very easy calcutation if you knew how.
In fact most exclusive-to-inclusive and vice verso calculations can be made with an equally simple single step, if you know how. To convert a VATexclusive price to a VAT-inclusive price, all you do is multipily the exclusive price by the VAT rate with the digit I ahead of the decimal point. It may sound complicated, but actually it's dead easy.
To get a price including 8 per cent VAT, you simply multiply the exclusive price by 1.08, and to get a price including $12 \frac{1}{2}$ per cent you multiply by 1.125, and so on. Even more convenient, the formula works in reverse. So, to get an exclusive price you divide the inclusive price by 1.08 , or 1.125 and so on. I find it somewhat odd that officialdom has never let the public into this. simple secret-or wasn't I listening when they told us?

Space Junk

Here's a final unrelated thought for the month. It is topical and fashionable to bemoan the amount of valuable waste that we throw away, usually because it is too expensive to repair or reclaim. But the ultimate in waste must be the $1 \frac{1}{2}$ million dollars' worth of electronic, mechanical and photographic hardware that I understand the USA left on the moon because it was cheaper to junk it than bring it back home again with the astronauts.

" Of course I can't cook like your mother used to-I haven't got the electronic devices her husband made for her!"

Electronics

by Peter Verwig

TV CAPITAL EQUIPMENT

Television today is so commonplace that we hardly give a thought to the fact that it is a comparatively recent invention, much newer, for example, than the automobile which equally had a profound effect on our life-style. Of course imaginative people had dreamed about it long before it became a practical system. Transmitting still-pictures by electric telegraph was not too difficult. An elementary system was being worked on in France as early as the 1860s although the first practical system was not to be demonstrated before 1904 .

The invention of the selenium cell in 1873 provided the means of defining light and shadow in terms of electrical current and the famous scanning disc invented by Paul Nipkow in 1884 provided the basic elements of a crude lowdefinition television system. But it was not until 1925 that the British pioneer John L. Baird made his first public demonstration in Britain and in the same year Charles Jenkins demonstrated a similar system in the USA.

EARLY SYSTEMS

Although the early systems using mechanical scanning with either the Nipkow disc or mirrordrums showed considerable ingenuity it soon became obvious that an all-electric system would be the ultimate solution. The theoreticians had already worked out that for reasonable picture through the Dartford Tunnel.
quality some 100,000 picture elements would need to be transmitted and, to obviate flicker, at a rate of more than 20 times a second. A mechanical system relying on spinning discs or drums would be expensive to build and extremely difficult to synchronize at such operating speeds.

The famous British experimenter A. A. Campbell-Swinton had foreseen all this and had suggested that electronic scanning tubes would be the answer as early as 1908 but it was not until Dr Vladimir Zworykin invented the iconoscope in 1928 that electronic scanning and the all-electric TV system became a practical possibility. From then on TV developed at remarkable speed.
The furst public regular highdefinition TV service in the world was transmitted by the BBC in 1936 from Alexandra Palace in North London. In the same year RCA in the United States started experimental transmissions from the Empire State Building in New York and television was here to stay. Except, that is, for the wartime years when all stations closed down because the TV transmitters might be used as "homing" beacons by enemy bombers.

FREQUENCY

It was not only the problem of the camera tube and the picture tube in receivers that delayed high-definition TV for so long. Because of the wide bandwidths required to carry all the picture

CCTV in action. Six camera channels monitor the road traffic

Mini-Mobile OB van introduced by Marconi last year. Note the cameraman with his hand-held portable camera protruding through the vehicle roof.
information plus the synchronizing signals, it was necessary to transmit and receive on v.h.f. and this part of the frequency spectrum had been virtually unexplored. So not only did electrooptics need developing but transmitting and receiving valves which would work at v.h.f. with acceptable efficiency. In fact the early TV work on developing v.h.f. and u.h.f. valves, circuits and antennas, enormously helped radar development; then in its experimental period, and a lot of the technological advances made in the crash research programmes on radar during the war were to enhance new TV developments when services resumed after the war.

An interesting point to note is whereas with radio the early development was for professional communications with broadcast entertainment only coming after some 30 years with the BBC, for example, not being formed until 1926, TV started life as a system for entertainment and only later found application in other areas.

The BBC re-started the TV service on June 7, 1946, using the pre-war equipment and a second station serving the Midlands started transmission on December 17, 1949. The North was next to be served by Holme Moss which came into service on October 12, 1951. Thereafter, the programme went smartly ahead to give complete coverage of the United Kingdom.

On June 6, 1954, international viewing became possible through the Eurovision network and a month later the Independent Television Authority was formed
to provide the viewer with alternative programmes and ITA's first transmissions were put out to London area in September 1955.

DEVELOPMENT

In the past 20 years TV development has been spectacular with nation-wide coverage now in colour, Eurovision supplemented by intercontinental broadcästs via earth satellites, and the imminence of new types of service via TV such as information on demand through CEEFAX and ORACLE. And TV is no longer confined to the technologically developed nations. You find it today in all the great subcontinents and even in the poorer areas of the world.

When I started preparing this report I thought of heading it Television Broadcasting. By this I meant not the receivers in your home which belong to that broad category of products we call consumer electronics, but the professional end meaning TV cameras, studio equipment, transmitters and antennas. But this sector is only half of the professional TV sector.

APPLICATIONS

TV may have started as an entertainment but its value has now been recognised in dozens of other ways. Most of us have seen closed-circuit television at main railway stations, at airports, on motorways and as security devices in shops.

Less well known are the remarkable developments in lowlight TV as used in military
applications which enable bright pictures to be resolved with natural ambient lighting no brighter than starlight. Military aircraft are flying today armed with TV-equipped stand-off missiles and bombs. These are released in safety well away from the target area and are guided to their target by a built-in TV camera and transmitter in the nose, the aircraft crew observing the progress of the bomb on their airborne TV receiver.

The effect is just as if you, yourself, were in the bomb guiding it to its destination, the target approaching at what seems higher and higher speed and growing larger and larger until the moment of impact when the picture suddenly goes blank.

One such system is Martel, an Anglo-French development with the TV guidance and command system engineered by Marconi Elliott Avionic Systems. Performance figures are secret but informed guesses estimate the range of the Martel missile at about 40 miles although this would depend on the height of release from the parent aircraft. If this figure is anywhere near accurate it means that the missile can be released, say, 20 miles away from the target and be directed from the TV screen by the missile operator while the aircraft is already on its way home.

An American TV-guided missile, the Condor, made a direct hit on a ship target at a range of nearly 40 miles from the parent aircraft during trials in 1971. Both Martel and Condor are now deployed with the armed
services of their respective countries.

We might also mention in passing that TV is used in medicine, in all sorts of hostile environments such as atomic power stations and the bottom of the ocean, and in hundreds of industrial applications. This is why I broadened the title of the article to Television Capital Equipment.

COMPANIES

It can thus be seen that TV is today a lot more than Angela Rippon, or Poldark, Panorama or Kojak. It is true that today's professional TV engineer may have some connection with these programmes by working in the BBC engineering department or with the Independent channel equivalents by working for the IBA, but these jobs are only a fraction of the total. At the user end the TV engineer might equally work in a hospital or with an underwater salvage firm or with a security company.

At the manufacturing end the engineer is likely to be in the TV division of one of the major companies such as Pye TVT, Marconi, or EMI, all with considerable
business in TV equipment supply, or with a smaller specialist equipment company such as Crow of Reading or Prowest, or with Ampex who specialise in professional video recorders. Or as a TV specialist in a Ministry $\mathbf{R} \& D$ establishment or in the Services.
as

SPECFALISING

TV engineering is a good career because it embraces so many different engineering disciplines. Once you have found employment and have some fundamental training behind you it is possible to specialise. I have met people who have spent upwards of 20 years solely on successive designs of TV cameras: Others might wish to specialise in other areas which interest them, perhaps TV transmitters or mixing consoles or telecine equipment.

Some super-specialists have even narrower interests, perhaps concentrating only on the allimportant electro-optics or in such delicate subjects as video recording heads. The fact is that there is room for everybody who has his wits about him (or her) and who is willing to learn and to make a contribution. In the factory environment there is
nearly always a demand for test engineers and for those who like knocking around the world and seeing how the other half lives there are opportuaities to travel as installation and commissioning engineers.

In fact a willingness to travel is almost a necessity nowadays. If you join a TV manufacturing company as an apprentice or trainee it is quite likely that at a late stage in your training programme you will do a stint on commissioning equipment on site. Even if you are eventually destined for the R and D laboratories such outside experience in the field is invaluable in revealing the real-life problems that need to be faced. What worked quite well in the temperate conditions in the UK may not do so well in the high temperatures and humidity of the tropics or survive the salt-spray of the marine environment. Of course all export equipment is built to withstand such hazards and are tested in environmental chambers at home, but it is hard to appreciate the working conditions, for example, an outside broadcast van and its equipment has to cope with until you've actually experienced it.

Marconi Mark VIII colour cameras in final assembly at Chelms ford.

MARKET

First the bad news. The home market for TV broadcast equipment is stagnant. Very little business is being done because (a), the nation is virtually saturated with transmitters and studios. The great build-up is virtually over, including the transition to colour, which leaves only a replacement market and it's a fair bet that the manufacturers are wishing now that they hadn't built such long-lasting equipment. And (b), even if most of the equipment was falling to pieces (which happily it isn't) the BBC and IBA are not by any means flush with cash in these hard times.
Now for the good news. TV broadcast equipment exports are doing very nicely. Among the reasons for this is that no other country in the world has such long experience in the game as the British. The technical quality of British TV equipment is in the world leadership class. Those reared only on British TV should give themselves a treat and see what passes for TV in New York and here I'm talking of picture quality, not programme content although that's pretty awful there, too. In short, the British have a deservedly fine reputation for TV engineering and a present currency exchange rate which makes our exports attractive.'

OVERSEAS

Another reason why we are
doing well overseas is because although we have reached saturation in the UK with 94 per cent of all households equipped with TV (each on average used 21 hours a week!) there are dozens of other countries who have hardly yet started on monchrome systems, let alone got around to colour. So there is still plenty of business about provided the British product remains competitive in the world market.

What's more, the larger British companies supply complete turnkey projects. This is virtually the complete package from surveying a country or territory to decide on location of transmitters and aerials, laying the first brick, equipping the studios and right through to getting the first programmes on the air. Such contracts go down to the last detail such as provisioning of spares and supplying emergency generator sets in case of power supply failure.

This is the sort of service that won Pye TVT an $£ 8$ million contract in the great complex of over 3,000 islands forming the Indonesian archipelago. Marconi was also in on the same deal with orders worth over $£ 5$ million for both sound radio and vision equipment.

Many countries are in the process of changing to colour equipment. Egypt's changeover to colour, for example, brought another $£ 4$ million worth of orders to Marconi as a follow on to other substantial orders from

Jordan and the Lebanon when they, too, made the change. More recently further TV contracts came from Nigeria and the equipment is to be air-freighted there later this year.

SUBSYSTEMS

As well as complete systems, British companies supply subsystems and individual pieces of equipment. Crow, for example, is doing very well with the Berkshire colour receiver/monitor now selling by the thousand at $£ 850$ each. You can see from the price that professional quality equipment is of a different standard to that found in the home.

Marconi enjoys a big export trade with telecine equipment and TV cameras, both monochrome and colour. The Marconi telecine won the Queen's Award for technology last year and orders are now well in excess of $£ 5$ million and the Mk VIII colour camera is used by broadcast authorities all round the world including China, the Soviet Union and the U.S.A. The new portable version for TV news action shots and interviews is another winner.
Thus, we see television engineering as still an expanding field of enterprise with a secure future. Those entering this exciting activity as young people today will see further startling developments. TV transmission through fibre-optics, domestic coverage by satellites, seven stereoscopic 3-D pictures, perhaps.

DEEK FIUA \& FMUIIY...

Physics is FUN! mamax mans

APUPIL was walking with his tutor in a garden. "What is happening, Grasshopper?" the old man asked.
"The temple bell is ringing, master," replied the young man.
The old man did his proverbial nut. "You are ignoring a long string of miracles" he shouted. Indeed he was, from the effect of gravity on the bell, kinetic energy, the impact of the clapper causing the bell to vibrate, and so on, all the way to the transmutation of tiny electrical signals to the brain into knowledge that it was the temple bell ringing and not some other bell. A great string of miracles; an exciting string of miracles, that it behoves us not to ignore.

Fig. I. Simple experiment with sound.
Sound is produced by vibrations, easily observable when a cymbal is struck. Even a pin firmly held in a piece of wood will give off a very high-pitched sound, while strips of tin or phosphor-brónze wire will sound louder. The vibrations of the metal cause the air around to vibrate thus being transmitted to the ear. Solids and liquids however will transmit sound far better than does air and we've all seen films in which
the cowboy puts his ear to the ground, thus hearing hooves sooner.

EXPERIMENTS

A fascinating series of simple experiments may be conducted as shown in Fig. 1. Take a piece of hard thin string about 2 or 3 feet long and tie the middle of it round a spoon. Wrap the ends once or twice round the forefingers and put the forefingers into the ears. Bend forwards so that the spoon swings freely and allow it to strike the table edge. The spoon will sound like a gong. Any number of other objects may be substituted for the spoon and you will soon get an instinct for the type of thing that will vibrate.
Similar but softer sensations can be heard with the string held in the teeth, while the sound can be heard very loudly if the vibrating object is held directly between the teeth. Some kinds of deafness can be by-passed in this way, giving rise to the science of dentophonics.

Fig. 2. The construction of a Kaffir Piano:
the chromatic scale-or any other arrangement desired. In use the wooden part is held between the teeth, leaving the fingers of both hands free to pluck the reeds. The writer has observed Africans playing such an instrument on numerous occasions and has no doubt that much pleasure is to be obtained from one.

The string, telephone is another well-known instance of the transmission of sound along a solid object but I pose the question, is it capable of transmitting intelligible speech? (Fig. 3). I ask because although sounds

Fig. 3. Arrangement of a string telephone.

KAFFIR

A versatile and genuine musical instrument that used to be known as the Kaffir Piano is commonly seen in use in Africa, combining dentophonics and vibrating metal reeds. It is very easily made, and has the overwhelming. advantage that only the player can hear it! See Fig. 2.

The base is a piece of hard wood smoothed and polished and is of a size to fit easily and comfortably in the mouth. Strips of springy metal of various lengths are tacked to it and then trimmed with scissors to achieve
can certainly be transmitted and received, personally I have never been successful in understanding speech. I begin to suspect that there might be an element of the Indian rope trick about it, or that the speech heard has been transmitted through the air. Anyway, I would be interested to hear of successful experiments under test conditions.
The velocity of sound in air is easy to remember- 333 metres per second, although barometric pressure has an effect.

THis is based on an old game for two players which can be played with no preparation or equipment, but it allows the maximum of gamesmanship, "guessability" or E.S.P.

The basic idea is that Paper wraps STONE, STONE blunts scissors, and scissors cuts PAPER; these are represented by both players simultaneously offering a hand as a clenched fist-sTONE, or an open palmPAPER, or with fingers in a V-sign -scissors. One will win over the other, or it will be a draw.

Although there is some satisfaction in playing the game physically, it can be inconvenient or impossible to do so, and in any case it is essentially a contest of minds.

The device described here is the application of this old principle to circuitry so that, instead of making hand signs, each player presses one of three switches on his hand-held control. The result of the players "conflict" will be shown by a lit lamp on
one or both sides of a central box. This enables the game to be played at any time without the players having to stand and face each other, and to play it at a faster rate than is possible with the hands only.

CIRCUIT DESCRIPTION

The circuit diagram of the Scissors, Stone, Paper Game is shown in Fig. 1 and is seen to be a simple switching arrangement with diodes used to steer to produce the required results.

The wiring has been designed so that the indicator lamps will light on the winning players side according to the above statements. In the event of the same name button being pressed by each player, a lamp will light on each side of the display box (this is accomplished by the steering diodes).

CONSTRUCTION

The lid of the display box (of any convenient size and material) is first drilled or cut to take the six lampholders-three at each end. These can be of three colours, but it is not essential because the bulbs positions indicate what they represent. They should preferably be low voltage types.

Six-way miniature tag strip is fixed to the lid between them, and the connections are made as
angles before soldering to fit snugly down the sides of the lamps and along the surface of the lid to go into the tag strips from the inside as indicated in Fig. 2. All the tag strips can then be soldered from the middle of the strips away from the wires.

The prototype used 6-core screened cable (about one metre or so) to connect the players boxes to the display box. The screening braid is used as the seventh conductor between the boxes. Begin by cutting the leads to their respective differing

FOR

 GUIDANCE ONLY> ESTIMATED COST OF COMPONENTS excluding V.AT.

$$
\begin{aligned}
& \text { SCSSORS. } \\
& \text { STONE•PAPER } \\
& \text { GAIME ByA..GBBS }
\end{aligned}
$$

Fig. I. The circuit diagram of the Scissors-Stone-Paper Game.
lengths so that they fit along the edge of the box. Attach the battery clip to the screening from each lead and cover the joint with insulating tape.

Next the diodes should be soldered as shown in Fig. 2again these are best bent at right angles where necessary to fit before being soldered to the tags. In the prototype the diode leads were insulated.

The sides of the display box can then be cut at the top to ailow the leads to pass under the lid when it is screwed down. There should be enough space in the box to comfortably accommodate the PP3 type battery.

The hand controls need be only as wide and deep sufficient to take three double pole switches. In this case the switches can be positioned in the box itself.

Where the material is thick it may be necessary to shave the edges of the holes to allow the cap to be screwed down far enough for the buttons to be depressed fully. This was found necessary on the prototype.
The double pole switches will have four lugs. (Where they are of a different type to that shown, the respective terminals can be found by using a loose battery and bulb):
A notch is cut at the edge of the box to allow the lead to be passed through the front of the box but held in place by the

Diodes
D1 to D3 iN914 or similar (3 off)
Lamps
LPI to LP6 12 volt 0.1 amp Lilliput screw types (6 off)
Switches
SI to 56
double pole push-to-make release-to-break (6 off)
Miscellaneous
BI 9 volt type PP3 Tagboard miniature 6-way; 6-core screened cable (about 2 metres); battery clip to suit; square head, indicator lamp holders with coloured lenses (6 off); plastic cases size $110 \times 60 \times 30 \mathrm{~mm}$ (3 off).
screwed down lid. (Alternatively, a hole can be drilled in the box and the wire pulled through before work is started-a grommet will keep the lead in place).

The switch buttons tops can be chosen to correspond with the lamp colours if required or the names of the switches can be printed/typed on. Wiring up details within the player boxes are given in Fig. 2.

PLAYING THE GAME

No lamp lights until two buttons are pressed, but if more than one button is pressed on one or both sides, then two lights will show on one side indicating a "cheat". The controls are held cupped in the hands so that both thumbs can be used and without the other seeing which button is pressed.

The game will suit all ages and moods. Children can simply press the buttons as quickly as they like without regard to their significance, and they can play the "best of five" or the first one to get, say, ten wins. Adults can play more slowly trying to anticipate the other's reaction. Usually, one player somehow obtains dominance over the other at different times. As well as the previous games, adults can see which player gains three consecutive wins. A game is drawn say after three consecutive draws,
Further rules can increase the sophistication, such as barring the use of the same button for more than twice consecutively, or awarding an extra point for a sequence such as the second PAPER (say red) light, on the opposite side.

SCISSORS•STONE•PAPER GAME

The BAC "Rapier" low-level anti-aircraft missile system was in the news recently as having been re-ordered by Iran. In service with the British Army, the R.AF and the forces of other countries it is the most successful weapon of its type. Unlike the Franco-German "Roland" which uses a proximity fuse, a Rapier missile is designed to score a direct hit.

When you think of the fleeting chance offered by a modern, small fighter-type aircraft crossing at the speed of sound about a mile away, the fact that Rapier constantly scores a very high percentage of hits, borders on the miraculous. Add that the operator is usually a young soldier of unflappable demeanour but no special qualifications and one is even more impressed. How does it work?

BASICS

Though the new order calls for a self-contained tracked vehicle
with which the two parts of the system are integrated, the standard Rapier consists of a Launcher (incorporating a generator) towed by a Land Rover, in which is carried the Tracker. To deploy the system the Launcher is detached from the Land Rover, which, after depositing the Tracker about 30 metres away, moves off to hide. Launcher, Tracker and generator are then connected by cabling. Four missiles are mounted on the Launcher in the top of which is a search radar aerial. There is also a computer and a missile control (command) radio transmitter with a dish aerial mounted in front. The Tracker consists of an optical sight, a TV camera and control facilities.

On being brought into action the radar carries out a normal 360 degree search. When a target is detected it is automatically interrogated by IFF (Identification Friend or Foe) and the radar ceases to respond to information from any other sector. If a
friendly reply is received full surveillance is resumed, but if not, an alarm is initiated. This alerts the operator and also slews the optical Tracker head onto the bearing indicated. The Tracker's bearing is transmitted to the Launcher turntable, on which the missiles and their command radio aerial are mounted, and the turntable follows this bearing.

The operator, whose optical sight will be already on the target for bearing searches for and locates it in elevation. He then switches to the "track" mode which stops the radar control of the Tracker bearing, leaving the optical tracking of the target under his full control. It also causes the missile launcher arms (hitherto immobile in elevation) to elevate as necessary,

While the operator keeps dead on target, the computer, which is being fed with information from both the radar and the Tracker's sight, assesses whether or not the target is engageable and informs

RAPIER MISSLLE SYSTEM

From target search through its destruction.

By G.A.G. Brooke

to

the operator. If the computer's answer is yes it lights an IN COVER indication lamp in the operator's field of view and he can then press the FIRE button when he wishes.

On being launched the missile receives an initial correcton which directs it inta the field of view of the Tracker's vidicon camera. Flares in the tail of the missile are picked up by the camera which is mounted as one with the optical sight. The camera then measures the amount by which the missile is off the line of sight (the error) and transmits this to the computer. The necessary corrections are formulated by the computer and transmitted by the command radio transmitter to a guidance receiver in the missile. Thus the missile is made to fly as near as possible along the operator's line of sight.
In this article we are particularly concerned with the surveillance radar and command transmitter elements (designed and manufactured by Decca Radar

Limited) and let us now go back over the sequence of events, with particular emphasis on these two aspects.

RADAR

The computer in the Launcher, in order to work out whether a detected target is (or will soon be) engageable by the missile system, needs more radar information than can be supplied by a standard pulse radar of the type described in the January 1975 issue (How Radar Works). In particular it needs the ability to detect moving low-level targets in heavy ground clutter. This require's a radar with the facility of extracting target velocity.

The Doppler principle is best explained by the train whistle analogy. When the train is approaching a stationary listener the note rises due to the fact that the distance between the sound source and the listener is decreasing and hence each successive sound wave has less distance to
returning from moving objects. When an aircraft is circling at constant range there will be no change of frequency (i.e. no Doppler shift) but as soon as it closes or retires a change occurs and can be translated into radial velocity by comparison with the outgoing frequency (crystal controlled to ensure consistency). Radial velocity of the target can be obtained from the amount of Doppler frequency shift, and the direction of travel (i.e. approaching or receding) from the polarity. of the Doppler frequency shift.
In the Rapier radar a solid state drive unit is used to provide the transmitter drive, the first and second local oscillator signals and the clock pulse for r.f. generating range gates. As the transmitter drive and the first local oscillator signals are derived from the same crystal oscillator they are coherent (i.e. spaced apart by a constant frequency) any variation occurring equally to both. Any Doppler shift of frequency due to a moving target) can

Shows the Rapier System in operation: the Tracker is shown in the foreground and the Launcher in the background containing four missiles.

The end result of a successful missile launch-a direct hit.
that is, reach the rest of the receiver. Similarly, the next range gate pulse passes echoes from 2 to 3 km through the second range channel and so on.

The result is that an echo from a certain range channel generates a signal representing that range, the information being passed to the computer as target range. The measurement is imprecise but very accurate range is not required in the Rapier system.

RADIAL VELOCITY

Radial velocity is obtained by comparing the echo frequency with the emission frequency on the Doppler principle described. The Rapier operator is not interested in stationary targets (those without any change of frequency) and these are rejected by a clutter filter tuned to second i.f. centre frequency. Signals from moving targets, which pass through the filter in any range channel, are amplified and applied to a bank of ten frequency-conscious filters. Each one covers a band of frequencies corresponding to a 50 metre per second range of radial velocities.

The first velocity channel covers from about 37 microseconds to 87 microseconds, the next from 87 to 137 microseconds and so on, in much the same: way as the range channels cover discrete sections of the total range coverage. The presence of an output from any particular velocity channel, in the relevant range channel, indicates target velocity and this information is fed to the computer.

In the context of velocity information, it should be mentioned that the presence of sidebands in the Doppler receiver results in an ambiguity which can cause a slow approaching target to appear as a fast receding one, and vice versa. This ambiguity is resolved in the computer.

BEARING MEASUREMENT

Bearing (or azimuth) measurement is a combined operation on the part of an azimuth pulse generator (situated in the radar head), the Doppler radar receiver and a digital counter and store in the Tracker. The aerial beamwidth is 8 degrees and it is necessary to ascertain the bearing of the aerial (relative to the fore and aft line of the Launcher) when the target is in the centre of the beam.

There is an optical system in the pulse generator comprising a lamp, lens, and a disc which revolves between these and photo electric cells. The disc has two concentric tracks, one of which is half clear and half blank, and the other divided into 2048 porforations. The disc is driven by the gearbox of the aerial which revolves at 60 r.p.m., and so it follows that the intermittent light falling on the photoelectric cells will be in square waveform of 1 Hz and 2048 Hz respectively.

Electrical signals of this nature are passed to the second element of the combination, a counter. This uses the 1 Hz signal as an azimuth zero reference. As soon as the radar detects a moving target, a target width pülse is
generated in the Doppler receiver which causes the counter to stop counting and transfer its contents to the store. But the bearing at this moment is that of the leading edge of the beam, not its centre, and to obtain the latter it is necessary to add half the beamwidth.
This is done by feeding pulses at half azimuth pulse frequency (i.e. half-speed pulse) from the Doppler receiver into the Tracker store for the whole of the duration of the target width pulse. The resultant final count then equals aerial bearing at target start plus half the beamwidth, which is the same as when the target is at the centre of the beam.

So we now have the ability to assess a target's range, bearing and radial velocity. The bearing data is used (in the SEARCH mode) to turn the Tracker head and the Launcher onto the target bearing when a radar alarm is raised. The range and velocity data are used together, with information from the Tracker, during coverage computation. This takes place between the time when the operator switches from SEARCH to TRACK and when he presses the FIRE button. When the missile is fired the role of the computer changes from coverage computation to guidance computation and the TV vidicon camera then comes into the story.

VIDICON CAMERA

As soon as the missile flare appears in the camera's field of vision, the latter informs the computer of the error between the
flare position and the centre of the camera's field of view. Though there is no c.r.t. involved as with normal TV the principle is similar but in reverse. Instead of a picture being built up by a scanning process, the bright light from the flare is recorded by what can be termed a reverse scanning process which transmits its findings to the computer.

To convert the vidicon output into flare-spot position information, it is first necessary to find the flare spot on the image plate. During the initial period of an engagement, the television is operating in the widefield flare acquisition mode and a systematic search is performed over an area of the image plate which is slightiy larger than the area of the optical field of vision presented to it

The search is made by a fine electron beam which scans the underside of the vidicon image plate, and an output from the vidicon occurs when the electron beam passes across the flare image. After flare acquisition the TV optics change to high magnification and narrow field.

In order to scan the designated area of the image plate, the beam makes 625 horizontal sweeps across the plate. These sweeps are said to cover a frame, and take 10 mS to do so. At the end of each sweep the beam returns very quickly to a new starting point on the same side of the plate from which it started but slightly displaced perpendicularly from the last starting point. The displacement is brought about by the vertical sweep which takes place at the same time as the horizontal sweep.

In effect, when the beam ends its return journey it finds that it has been slightly deflected from its original starting point. As only one vertical sweep is required for the whole series (frame) of horizontal sweeps needed to scan the designated area of the image plate, the vertical sweep speed is much slower than the horizontal, and lasts for 10 mS .

AZIMUTH AND ELEVATION

Now, the beam is caused to sweep across the image plate by supplying a current, increasing with time, to the vidicon control circuits required. For a particular current magnitude then, the beam is moved to a defined spot
on the image plate. Conversely, by measuring the current supplied, the position of the beam at any instant can be determined. This feature is made use of in the television system, for the length of the horizontal sweep is made to represent the full ambit of the TV system in azimuth, and the vertical sweep the ambit in elevation. It has been explained that when the electron beam passes the flare image, the vidicon tube produces an output.

Considering the azimuth alone, the vidicon output is used to switch a sample of the horizontal sweep current to the azimuth error channel. As explained, the magnitude of this current is indicative of the point reached by the beam during the horizontal sweep and is thus directly related to the azimuth of the flare image. For elevation, the vidicon output causes the vertical sweep current to be sampled and switched to the elevation error channel. The magnitude of this current is indicative of the distance of the path of the vertical sweep in progress, from the path of the first horizontal sweep in the frame, and is thus directly related to the elevation of the flare image.

The outputs to the error channels are processed within the 'TV system so that when the flare image is at a point on the image plate which is coincident with the TV optical axis, a zero output is given in each channel. If the image is offset from this position in a channel, an output is given with polarity dependant on the direction of offset.

The computer receives 'error' signals from the vidicon camera which are derived from the flare's position relative to the line of sight. Resolving these the computer produces pitch and yaw demands for the command transmitter to send to the missile.

TRANSMITTER AND MISSILE
The command radio transmitter changes the characteristics of the pulses so received in accordance with the code used by the particular Rapier in question. If this did not happen an adjacent Rapier might be affected by mistake. The specially coded pulses are applied to the modulator which fires the magnetron, which in turn changes them into r.f. pulses for beaming to the missile.

Two aerials are employed for this. The first is a flared horn type with wide beam for "gathering" the missile in its early stages. After allowing a short time for the latter to settle, an automatic waveguide changeover switch switches to the second aerial, a dish with narrow beam.

The command signals are received as pulses in the missile, detected, amplified and converted into voltage analogues of the original yaw and pitch demands, and passed eventually to the guidance assembly. This demands control solenoid valves regulating the flow of a hot gas to cylinder and piston actuators operating the four control surfaces near the tail of the missile. Manipulation of these is the last link in the chain of operations, the missile being brought onto the line of sight of the vidicon camera, and therefore of the operator.

The missile carries an impact fuse, and all the operator has to do, having pressed the FIRE button, is to keep his sight exactly on the target. This is done with a sensitive joy-stick control, simply a lever that can be pressed in any direction to transmit information in the two modes with an urgency varied by pressure on the stick. The effect of a hit is devastating, far more destructive than a proximity fuse.

Comments about a Retailer

Having just read Counter Intelligence in my copy of February EVERYDAY ELECTRONICS, I would suggest that you inform Mr. Paul Young of the existence of Orchard Electronics in particular. and most component retailers in general (except, it seems, for the establishment he orders from) who have a remarkable service.

They remit your order within a few hours of receiving it, and the only reason for an order taking more than three days to return is either that a $6 \frac{1}{2} p$ stamp was used or the terrible postal service has just put its third foot in the grave.

Orchard are so fast that inflation does not have a chance to act. Please ask Mr. Young to try their services or print a retraction.
S. Phillips,

Chislehurst, Kent

... and more

What on earth was the writer of Counter Intelligence (Feb. 1977) thinking of? Having read the article I half expected customers to crawl in on their hands and knees apologising for intruding and begging forgiveness for having the gaul to come in at all.
Is he trying to kill off the component business? He writes-'ll am always baffled by the customer who phones to say their order was a fortnight in coming and they consider it disgraceful'. The customer is the baffled one. The order comes in, is checked for accuracy, is packed and sent out. What is difflcult about that?
Two weeks delay!! a month!! this guy says two months. Come off it. We advertise a by return post service and we mean it. If your goods fail to arrive in 7 days let us know. The inference that component suppliers are a lazy bunch of inefficient layabouts is just not on.

The magazines spends weeks preparing projects. The customer pays good money for the magazine. He is tempted to build a project and by the time he gets the bits two more issues of the publication are on his bookshelf. The writer of Counter Intelligence is baffled:

Dear reader, disassociate Orchard Electronics from such clap-trap. "By return post" means what it says.

Inflation is another matter, we are all suffering with that one. The clearly written and accurately calculated order is a joy to deal with. The only part of our service we cannot control is the postal system. According to our records about a dozen packages have failed to arrive. Not bad when one considers that at least half of these went up in smoke when some goon set fire to the local Post Office.

Finally we are proud to be part of the fastest developing industry in the world today. Proud to be British, the most advanced nation in electronics today.

So we suppliers may have problems, so what, that's what business is all about. If it were humanly possible we would deliver in two hours (in fact on more than one occasion we have even done that) but 2 months or 2 weeksNO! Electronics should be a pleasure not a pain in the neck.
D. M. Trueman
(Orchard Electronics)

Thank you for your letter and constructive criticism. As you know 1 am as keen about the electronics industry as you. Ithink that I should perhaps have made it clearer in my article that two weeks is not the norm for the delivery of goods. We do manage on immediate turn round, or the same day where a customer has an account. No, this only occurs on out of stock items,
Where you have two unknown variables, (length of time for supply, and weekly demand) and where you are dealing with about 500 to 600 orders a week it is difficult not to be occasionally cought out.

The point that I was trying to make and failed, that compared to other hobbies our component retailers do superbly well. Anyway we can do with lots more enthusiasts like yourself in the business, so keep up the good work, even if it means criticising yours truly from time to time.

Paul Young, Surrey

Appeal from abroad

I am writing on behalf of the international Voluntary. Service in the Seychelles. We are part of the British Volunteer Programme which is a voluntary organisation with a view to training technicians etc in the developing countries.

At present the college in which I am teaching has a City and Guilds of London 235A and 235B Electricians Course. We are trying to start a Basic Electronics course, which is (in the "Electrical Industry") a vital part of training.
The Islands I should explain have just received independance, and of course
have a limited budget, therefore we have problems in supplying texts for our students, and components for building circuits. I would add that a lot of British Technology is exported to the Islands but only limited training is avaitable.

Part of the plan is to expand on this training, so 1 would like to appeal to you and your readers, to help in as many ways as possible. One very practical way would be to receive unwanted back issues of your magazine which I feel would be a tremendous help in the work. Also old or used texts, would certainly be gratefully received, and, of course, what we in the trade call "junk" such as old p.c.b.s, resistors, diodes, transistors, capacitors etc.

The students are hard working and would be grateful for any help in developing the skills of our industry.

My colleagues and I, some of whom are directly employed by the Seychelles government all feel that the possibilities that exist are excellent. British people have given political independance to the seychelles, we can give them economic independance by giving as generously as possible the technical training that they need.

If anyone would like further information on our school please write and I would be only too willing to forward it.

Gordon Catto,
Seychelles Technical School, Education Department, P.O. Box 48, Victoria Mahe, Seychelles.

Can anybody help?

Your readers will be interested to know that large sheets of fibreglass can be obtained extremely cheaply-sometimes even for nothing-from any car breaker who deals with lorrjes and vans, particularly ex-GPO vehicles. Many of these have fibreglass roofs, etc, which the average breaker has no use for and is glad to get rid of.
I have used this material very successfully for circuit boards, and with the aid of a glass-fibre and resin car repair kit very neat and professional looking boxes, housings and cabinets can be constructed with it.
In common with many other electronic enthusiasts, I have a large collection of integrated circuits etc. mainly removed from computer and surplus panels which I cannot identify as I do not know the makers and they bear totally unfamiliar type letters and numbers which I cannot find in any reference book. Consequently they are completely useles's to me.

Does anyone know how or where I can obtain identification and data on these devices? After all, somebody somewhere must know what they are and what they do!

Possibly someone might be interested in starting a "'Postal Identification and Data Service'

How about it, some of you boffins? Possibly some scheme where for a reasonable fee (say $£$ l?) you undertake to attempt to identify and supply brief essential data on up to 10 different devices-preferably; of course, on a "no identification-no fee" basis!

Some such service would be a godsend to people like myself, and should show a good profit to anyone who cares to operate it.
J.M. Pascoe, B.H.S.P.I.,

Kent.

We shall be pleased to forward any correspondence to Mr. Pascoe concerning the points raised in his letter. Please ensure that the letter to be forwarded is accompanied by a stamped envelope.
at different levels in electronics.
I was impressed with the Brake Light Warning Device (Jan. '77) and decided to build this as my first project. I have however experienced a little difficulty in buying some of the components, namely DI (TIL 209) and RI (0.47 ohm $\frac{1}{2}$ W, 4 off).
I did manage to find a 0.56 ohm resistor but rated at I watt. Four of these resistors wired in parallel gives the exact value quoted in the text (0.14 ohm) but gives a wattage of 4 watts instead of 2 watts. Is this wattage acceptable in this project?
The difficulty with the diode (I.e.d.) was finding one of the correct voltage. Shops locally do not seem able to translate the reference you gave (TIL 209). Please could you tell me where this component can be purchased or possibly state an alternative.
B. F. Scott

Sittingbourne, Kent.

What's watt

1 have just started with electronics as a hobby and decided that the best way to enjoy my new hobby was to take a magazine regularly. Having purchased your magazine I was delighted to find that it contained projects to suit people

When a resistor wattage is specified, it is in most cases the minimum preferred rating for the job. In your case the four
0.56 ohm 1 watt resistors are o.k.provided the physical size of the components is acceptable. We are surprised you have had difficulty in obtaining the general purpose light emitting diode TIL209. Voltage ratings are never quoted. Any small l.e.d. will be suitable.

Improvement

On the Transistor Checker in the February edition of EVERYDAY ELECTRONICS, because of the wiring of the switch SI, to put it in npn you have to take it through prp before you can test npn transistors, If you rewire the switch so all the connections which go to tag 1 , go to tag 2 , and all the connections which go to tag 2 , go to tag 1 . Thus you do not have to put the switch to pnp before npn because off is in the middle. All the connections which go to tag 3 stay the same.
1 read Everyday Electronics every month and enjoy it very much.

David Stratt (Age IO)
High Wycombe, Bucks.

...For Your Reference

a.c.	alternating current
a.f.	audio frequency
a.f.c.	automatic frequency control
a.g.c.	automatic gain control
a.m.	amplitude modulation
BA.	British Association (nut and bolt sizes)
cm	centimetre
d.c.	direct current
d.p.d.t.	double-pole.double-throw
elect.	electrolytic
e.h.t.	extra high tension
e.m.f.	electromotive force
f.e.t.	field effect transistor
f.s.d.	full scale deflection
f.m.	frequency modulation
g.	gram
h.t.	high tension
i.c.	integrated circuit
l.e.d.	light emitting diode
l.d.r.	light dependent resistor
lin.	linear
log.	logarithmic
m	metre (measurement of length)
mm	millimetre
m.w.	medium wave
$n p n$	
$p n p$	transistor structure
	(two types)

oz	ounces (avoirdupois)
p.i.v.	peak inverse voltage
p.v.c.	polyvinyl chloride
r.f.	radio frequency
r.m.s.	root mean square
s.p.s.t.	single-pole single-throw (switch)
s.r.b.p.	synthetic resin bonded paper
s.w.g.	standard wire gauge
t.r.f.	tuned radio frequency
u.h.f.	ultra high frequency
u.j.t.	unijunction transistor
v.h.f.	very high frequency
$\% \%$	per cent
X	reactance
Z	impedance
A	ampere (amp)
dB	decibel
F	farad
H	henry
Hz	hertz $(c y c l e s ~ p e r ~ s e c o n d) ~$
Ω	ohm
V	volt
W	watt
p	pico $(\div 1,000,000,000,000)$
μ	micro $(\div 1,000 ; 000)$
m	milli $(\div 1,000)$
k	kilo $(\times 1,000)$
M	Mega $(\times 1,000,000)$

The Extra ordinar Experiments of

 Proiressor Eversure
by Anthony John Bassett

WE will not occupy the reader unnecessarily with any detailed description of the joyful departure of Tom and Maurice from the Professor's laboratory, carrying with them impedance converters which allow connection of extra loudspeakers to an amplifier without mismatch, and an Electronic Steady Hand Tester.

Tom and Maurice have been "roped in" to assist with voluntary charity work, and the interesting technical problems which crop up ensure that they will be regular visitors to the Professor's laboratory. One of the ideas they have left with the Prof. is for a simple coin-collecting mechanism which can be connected to a number of simple but fascinating electronic amusements.
Meanwhile the ever-enquiring mind of the Prof.'s young friend Bob had prompted him along another channel of thought.

PICK-UPS

"I have been wondering, Prof., why there are so many different kinds of pick-ups for hi-fi, and for musical instruments. I have come across crystal, ceramic and magnetic pickups and microphones, and it is quite a puzzle to me why there should be so many different kinds. For instance, what
are these mysterious crystals which are used in so many microphones and pick-ups?"
"These are crystals which, when a changing force is applied to them in certain directions, produce a changing output of electrical charges on the faces of the crystal. This electrical change can be picked up by an electrically conducting substance such as thin sheet metal, and taken by wires to the input of an amplifier.

A large number of chemical substances produce crystals which behave in this way, and are known as piezo-electric crystals. Each type of crystalline substance differs in its properties from the others, so that there is a large range of substances available for the purpose of experiments.
One which is very commonly used is known as Rochelle salt, and consists of sodium potasium tartrate. The particular properties which make it a favourite material for use in record-player pick-ups and crystal microphones are high sensitivity and large electrical output, low cost and ease of production. Also it is nonpoisonous and is a safe chemical substance to experiment with. I have some in the laboratory stores".
The Prof. summoned his experimental robot and, using a strange code, quickly instructed
it to bring some Rochelle salt from the stores. A few minutes later, guided by its electronic brain, a masterpiece of experimental electronic wizardry which the professor has connected using microprocessors and other miniature and integrated-circuit type devices, the robot returned and carefully presented to the Prof. a jar labelled 'Sodium Potassium Tartrate (Rochelle Salt)' and containing a white powder. It also gave the Professor a small package, which he unwrapped, and inside, Bob could see two clear colourless crystals of Rochelle salt.

SLICING

"You could expériment with one of these crystals Bob, by slicing it up carefully into thin slices in various directions parallel to the crystal faces, and across them. But you must take considerable care, because three of the physical properties of Rochelle salt may cause difficulty; one is that the crystals are brittle and must not be subjected to heavy stress or shock. So the material must be handled gently to avoid breakage.
Another property of Rochelle salt is that it is soluble in water, and the crystals may easily be destroyed by water or damaged

HOME RAOIO (Components) LTD. Dept. EE., 234-240 London Road Mitcham.CR4 $3 H D$ Phone $01-6488422$

SEvEN SEGLENT LED DISPLAYS BRIGHT DLITO COM ANODE \&
 DIGITAL CLOCK IC 51224 ع4** RED LEDS IDP.
RED LEDS 209 STYLE $0,125^{\prime}$ OR O.2" DIA, NO CLIP. 10D* TIL209 RED LLBD \& CLIP 12 p *
 ORP12 54p*2N5777/OCP71 34p*

TRAMPUS
THE GREAT
BRITISH
DISTRIBUTOR

INDUSTRIAL, EDUCATIONAL,TRADE E EXPORT SUPPLIED, SEND FOR OUR PREE CATALOGUE LIST SAE PURCHASED, DISCOUNTS 10% OFP $100 \mathrm{ap} .15 \%$ OFF 1000 up, 1

TOP DISCOUNTS.

INTEGRATED CIRCUITS 555 TIMER 34p* $\begin{array}{ll}5562 \times 555 & 90 \mathrm{p} \\ 703 \mathrm{RF} / \mathrm{FF} \text { AlP } & 29 \mathrm{p}\end{array}$ 709 T099 or DIL26p 710 DIL14 ${ }^{7}$ 35p* $\begin{array}{ll}723 \text { Regulator } & \text { 44p* } \\ 741 \text { DIL } 8 \text { pin } & 21 p^{*}\end{array}$ $\begin{array}{ll}723 \text { Regu 8pin } & 21 p^{*} \\ 741 \text { DIL 14pin } & 31 p^{*}\end{array}$ | 741 | DIL 14 pin | $31 p^{*}$ |
| :--- | :--- | :--- |
| 741 | T099 | $33 p^{*}$ |
| 747 | DUAL | 741 | $\begin{array}{ll}747 & \text { DUAL } 741 \\ 748 & 69 p^{*} \\ 74 & \text { p1n } \\ 32 p^{*}\end{array}$ 748 DIL 8 pin 32p*

7805 5V1A + reg $£ 1,35{ }^{*}$ 7812 \% 7815eae1,40* 76013 GH AF $£ 1.50$ AY51224 CLOCK £ $£ 4$ CA3046 CLOCK $54 \mathrm{p}^{*}$ ICL8038 Sigen EA^{4} ? LM300H LM301A D11 8 (33p* LM309K 5V reg e2

Emas TT

4000 14p* 7400 12p* $\begin{array}{llllll}4001 & 15 p^{*} & 7401 & 13 p^{*} & 7491 & 75 p^{*}\end{array}$ \begin{tabular}{lllll}
4002 \& $16 p^{*}$ \& 7402 \& $15 p^{*}$ \& $7492 / 93$

4007 \& $16 p^{*}$ \& 7404 \& $19 p^{*}$ \& $7495 / 96$

\hline 102

 4009 50p* $7408 / 1018 \mathrm{p}^{*} \quad 74100$ £1.25* 4011 16p* 7413 29p* 74107 32p* $\begin{array}{cccccc}4012 & 17 p^{*} & 7440 & 16 p^{*} & 74121 & 29 p^{*} \\ 4049 & 50 p^{*} & 7441 & 71 p^{*} & 74123 & 69 p^{*}\end{array}$

4069 \& 20p* \& 7442 \& $72 p^{*}$ \& 74141 \& $74 p^{*}$

\hline

 $4501{ }^{26 p^{*}} \quad 7447 \quad 78 p^{*} \quad 74145 \quad 85 p^{*}$ 4511£1,65* 7470/7227p* 74147 £2.50*

4528 \& $\varepsilon 1 *$ \& $7473 / 74$ \& $31 p^{*}$ \& 74151

4543 \& $\varepsilon 2 *$ \& $7475 / 36$ \& $35 p^{*}$ \& 74154

\hline

4543 \& $\varepsilon 2 *$ \& $7475 / 36$ \& $35 p^{*}$ \& 74154

4553 \& £ \& 7486 \& $35 p^{*}$ \& 74196

\hline
\end{tabular} DIL SOCKETS PROFRSSIONAL QUALITY

8pin,14pin 16pin ALL 12 p ea *
SOLDERCONS 100 49p* 1000 £3.95*
LM380(60745): : $£ 1$ LM381 Preamp c2 MC1303 2xpre 53 p hC1310 stereof2 KC1312P SQ $£ 1.70$ MC1330 75p MC1339 Preampe2
 NFC6030 \& 1

 $\begin{array}{cc}\text { NBS55 TIMER } & \text { 34p* } \\ \text { NE556 } & 2 \times 555 \\ 90 p^{*}\end{array}$ NE560/1/2/5/6/7£3 SN72741-AB 741 SN76660 IF 74p SN76611 IF TBA800 5 W AF 84 p TBA810 TH AF 94p ZN414 Radio $£ 1,19$ NEW 1466/69 \& 4

HEW LOW PRICES.

TRANSISTORS AND DIODES
THS BUSB SET 5p ea* TIP31/32. 50p* NATCBING $20 \mathrm{p} \mathrm{Pr}^{*}$ TIP31c32c68p

 $\begin{array}{lll}\text { BC107 } & 8 p^{*} \text { TIP2955 69p* }\end{array}$ $\begin{array}{llll}\text { BC107B } & 13 p^{*} & \text { TIP3055 } & 65 p^{*}\end{array}$ $\begin{array}{lrlll}\text { BC1078 } & 13 p^{*} & \text { TIP } \\ \text { BC108 } & 8 p^{*} & \text { TIS43 UJT } & \text { 65p } & 26 p\end{array}$ BC108B or C 13p* ${ }^{8,1 N 914 / 4148 ~ 4 p}$ $\begin{array}{lll}\mathrm{BC109} & 9 \mathrm{p} \\ \mathrm{BC109B} \text { or } \mathrm{C} & 1 \mathrm{~N} 4001 / 2\end{array}$ $\begin{array}{lll}\mathrm{BC109B} \text { or C 12p } & 1 N 4004 \\ \mathrm{BC1} 47 / 8 / 9 & 8 \mathrm{p} & 1 \mathrm{~N} 4007\end{array}$ $\begin{array}{lll}\mathrm{BC147/8} / 9 & 8 \mathrm{p} & 1 \mathrm{~N} 4007 \\ \mathrm{BC157/8} / 9 & 11 \mathrm{p} & 2 \mathrm{~N} 706 / 8\end{array}$

 BC177/8/9 16p 2N2904/5pmp29p* BC182/3/4a/l10p 2N2926 ory 7p* BC212/3/4a/212p $2 \mathrm{~N} 3053^{\circ}$ 17p* BCY70/1/2 15p* 2N3055 90\% 33p*

 $\begin{array}{llll}\text { BFYS2/53 16p* } & \text { 2N3702/3/4 10p }\end{array}$ BSX 19/20/2119p* 2N3705/6/7 9p $\begin{array}{lllll}\text { BZY88 ZENER } & 10 p & 2 N 3708 / 9 & 9 p \\ \text { C106D SCR } & 54 p^{*} & 2 N 3710 / 11 & 15 p\end{array}$
 $\begin{array}{lll}\text { MU2955 TO3 } & \text { 99p* } & 2 N 3819 \text { 2 } 23 \text { e17p } \\ \text { MJE2955 } & 99 p^{*} & 2 N 3820 \text { PRET40p }\end{array}$ $\begin{array}{lll}45 \mathrm{E} 3055 & \text { 65p } & \text { 2N3904/5/615p }\end{array}$ OA81/91 5 5p 2N5457 PET 32p TR29 \& 30 40p BRIDGE1A50 20p*
BARGAIN PAKS FULL sPEC siee,
PAK A: 11 RED LEDS full gpec 11 *

PAK E: 11 BC182 \&1 F 11 2N3704 £1
PAX G: 7 BrY51 £1* H 8 2N3819 $\frac{\text { \& } 1}{}$
PAK J: 6 2N3053 £1* K 40×1 N914 $£ 1$
PAK M: 3 T099 3055 £I*N 25 OA91£1
PAK P: 20 PLASTIC BC109 TYPEapa£1
10-365PP TUNER, SINGLE GANG FOR
MED/SEORT WAVE, ITAL SET etc £1*
SET3/IF CANS $455 / 470 \mathrm{KHZ}$ TOKO £1*

Full spec devices

pen 75p
PCB ETCH XIT 3 ITRMS \&2* ETCH RESIST PEN 2TIPS 75p* PRC ETCH PAK TUB 600 gm E1\% 6K4" SRBP 45p*NYLON F/GE1*
SCR ${ }^{\text {® }}$ AND TRIACS BR100 25p* TAG 1A400V 50p*1A600V 69p* 1A50V 37p*.C106D 4A400 60p TRIACS:SC146D 10A400V £1* DISCO TRIAC 15A400V E. ${ }^{*}$ AUDIBLE WARNING BLEEEPER 12V35mA $\mathrm{\varepsilon 1}, 20+10$ of1 $\mathrm{E1}$ * CAPACITORS 22p1 - .01 5p ELECTROLFTIC IN $10 \& 25 \mathrm{~V}$ $1 / 2 / 10 / 50 / 1007 \mathrm{p} 50 \mathrm{~V}$ 10p 200/500 10p. $1000 / 25$ 20p POTENTIONETERS AB etc 20 p PRESETS 6p 3 WRESISTORS 2p HEATSINES TOS or 187 p T03 16p. T03 4"finned 50p DIN:PLUGS all 15p, Sock 10p SWITCHES SPST 20p Dpdt 29p GAS DETECTOR TGS 308etce4*

vero

VERO $0,1^{\text {" }}$ PITCH COPPERCLAD 2年"x5" 40p* 3\&"x5" 45p*
 DIL BREADBOARD 2 " $x 4$ " $\varepsilon 1$ or 6"x4" £2, XERO PINS 36 30p* bLACK PLASTIC CASES 42 mmx $80 \times 6050 \mathrm{p}$ *100×75 60p $\$ 99 \mathrm{x}$ 120 70p,DESOLDER BRAID 50p

Giothitamk Capacitive discharge electronic ignition kit

VOTED BEST OF 8 SYSTEMS TESTED BY cpopular. MOTOPNHG

* Smoother running
* Instant all-weather starting
* Continual peak performance
* Longer coil/battery/plug life
* Improved acceleration/top speeds
* Up to 20\% better fuel consumption

Sparkrite Mik. 2 is a high performance, high quality capacitive discharge, electronic ignition systern in kit-form. Tried, lested. proven, reliable and complete. It can be assembled in two or three hours and fitted in 15/30 mins.
Becsuse of the superb design of the Sparkrite circuit it completely eliminates problems of the contact breaker. There is no misfire due to contact breaker bounce which is eliminated electronically by a pulse suppression circuit which prevents the unit firing if the points bounce pen at high R.P.M. Contact breaker burn is eliminated by reducing the urrent to about $1 / 50$ th of the norm. It will perform equally well with ew. old, or even badly pitted points and is not depend well time of the contact breakers for recharging the system. Sparkrite problems of SCA loct on and therefore eliminates the possibility of problems of SCR iock on the SCR. Most eapactive dischassibity of ore not completely footproof in this respect) All kits fit vehicles with re not completely foolproof in this respect). All kits fit vehicles with coil/distributor ignition and up to 8 cylinders
THE KIT COMPRISES EVERYTHING NEEDED
Ready dritled pressed steel case coated in matt black epoxy resin, ready drilled base and heat-sink. top quality 5 year guaranteed transformer and components, cables, coil connectors, printed circuit board, nuts, bolts, silicon grease, full instructions to make the kit negative or positive earth, and 10 page installation instructions.
OPTIONAL EXTRAS
flectronic/conventional ignition switch
Gives instant changeover from "Sparkrite" ignition to conventional ignition for performance comparisons. static timing etc., and wil also switch the ignition off completely as a security device. Includes switch connectors, mounting bracket and instructions. Cables excluded Alsoavailable:RPMlimiting control for dashboard mounting (fitted in case on ready built unit)
CALLERS WELCOME. For Crypton tuning and fitting servlce phone (0922) 33008
PRICES INCLUDE VAT, POST AND PACKING.
Improve performance \&economy NOW
Note:- vehicles with current lmpulse taehometers (Smiths code on dial
'RV1) will require a tachometer pulse slave unlt. Price $£ 3.35$ inc post s packing.

POST TODAY!

Quick installation
Ho engine modification required
Electronics Design Associates, DEPT EE/4
82 Bath Street, Walsall, WS 1 3DE. Phone: (0922) 33652
Name
Address

Cheque No.

CRESCENT RADIO LTD.

164-166 HIGH ROAD LONDON N22 6EJ 888-3206 (also) 13 SOUTH MALL, Edmonton, N. 9 803-1685 MAIL ORDER DEPT, 1 St Michaels Terrace Wood Green London N22 4SJ Phone 888-4474

PP1 POWER PACKS

PP1 Swltched 3 , 4t, 6, 71, 9 and 12 volt (3) $800 \mathrm{~m} / \mathrm{a}$, with, on/off awitch and pllot light.
Slue $=130 \mathrm{~mm} \times 55 \mathrm{~mm} \times 75 \mathrm{~mm}$ ONLT $-25.50+8 \%$

CASSETTE MICROPHONE

On/Off switch for Remote Control. Split Lead with 2.5 mm and 3.6 mm pluge, Standard Cassette Mifes to suit all tryes. Complete with Desk Rest. Please state which. Impedance required 2000hm/50K.0hm.

PRICE $21-60+12 \% \%$ VAT.

P.O. ETCHITA EIT

This itt contains all that the constructor -1il need to etch the circuits of his own deslga.
Contents-Plastlc etching diah. Sample copper clad board. Laminate Cutter. io Ferric Chlorice. Large Plagtic Instructions. Complete and BIg Kit Value at $44-28 \mathrm{p}$ $+8 \%$ VAT.

FERRIC CELORIDE
Anhydrous ferric chloride in double sealed one pound Poly packs.

ABS PLASTIC BOXES
Handy boxes for construction Moulded extrusion rails for projects. chassis panels. Fitted with for P.C. or panels
$005=105 \mathrm{~mm} \times 73 \mathrm{~mm} \times 45 \mathrm{~mm}=60 \mathrm{p}$ $1006=150 \mathrm{~mm} \times 74 \mathrm{~mm} \times 47 \mathrm{~mm}=800$ $1007=185 \mathrm{~mm} \times 124 \mathrm{~mm} \times 60 \mathrm{~mm}=21.80$ $1021=106 \mathrm{~mm} \times 74 \mathrm{~mm} \times 45 \mathrm{~mm}=57 \mathrm{p}$ (sloping front) Plus 8% VAT "C100" 100 WATT AIFPLIFIMR All built and teated, mounted on a plain aluminium chassts which measures $18^{\prime \prime} \times 9 \frac{1}{\prime \prime}^{\prime \prime} \times 4^{\prime \prime}$ and which you can mount into a cabinet of your cholce. Four Controlled Inpats, Master Voiame, Treble, Mddle and Bass Controls. S/C protected output. 100 watts Clean nto sohm L/S. Ideal for Disco, Music roup
Bargainat $448+21$ carr. $+8 \%$ VAT. TI MULTI-MCTER
deal teater for everybody inter in lectronics wh entranes. Weyl rammes Range.
Ranges: AC volts: $0.10 \mathrm{v}, 50 \mathrm{v}, 250 \mathrm{v}$, 000v. DC volts: $0.10 \mathrm{v}, 50 \mathrm{~F}, 250 \mathrm{v}$. ,000\%. DC current: $0-1 \mathrm{~m} / \mathrm{a}, 0-100 \mathrm{~m} /$ Reslstance: 0.150 K ohm. PRICE $25 \cdot 50+$ VAT 8%
 put of this unit to minals of an minals of an amplifier and conuect threc s50V up to you produce a fascinating soundi-light display, and 50 p unless otherwise all prices are excluding VAT. Please stated ACCESS AND BARCLAYCARD ACCEPTED

Learn how to become a radioamateur in contact with the whole world. We give skilled preparation for the G.P.O. licence.

Fig. I. The crystal pick-up constructed by Bob.
by perspiration during handling. So to avoid this, use a pair of plastic tweezers instead of picking the crystals up in your hands.

The third property is sensitivity to high temperatures. You must be careful not to overheat the material by rapid sawing, drilling or polishing as the crystal is likely to melt".

Now Bob, who had a few moments previously been full of enthusiasm, began to feel dubious.
"What if I damage one of those crystals, Prof., and make it unusable? Then there would only be another one left, and I would not be happy to break that as well".
"Don't worry about that, Bob. "The Professor advised. "You can experiment all you like with these two, as we can easily grow some more from the Rochelle salt in the bottle. By referring to a suitable book on the subject of
physical chemistry you can easily find out how to grow the crystals from a saturated solution of water, using the same type of procedure as for say, copper sulphate crystals".

Bob was reassured, and began to very carefully cut one of the "crystals into slices of about 1 mm thick, rubbing the cut smooth with fine emery paper. Although he broke one or two of these delicate slices, he soon had a number of them ready.

CONTACTS

"Usually the metals used for the purpose of contacting the crystal surfaces are silver, or aluminium foil, Bob. Would you like to attach a piece of aluminium foil to each face of some of these slices of crystal, using quick set epoxy resin, whilst I try out some silver conductive paint
on the others?"
Bob cut some aluminium foil into narrow strips, and, using quick set epoxy resin, bonded some of the foil to each crystal slice as shown in Fig 1, leaving plenty of spare foil loose, for the purpose of making connections.

A few minutes later, when the epoxy resin was set, Bob, knowing that it would be difficult to attempt to solder the aluminium foil, and that this would almost certainly melt the crystal, prepared a length of thin screened wire with a pair of crocodile clips at one end. He connected the crocodile clips to the aluminium foil as in Fig. 1, plugged the other end of the screened wire into the input of an audio amplifier and carefully turned up the volume control. Now, by gently tapping the crystal, the tapping sound could be clearly heard through the loudspeaker and it was obvious to Bob that he had made a simple crystal pickup capable of converting sounds and vibrations into electrical signals suitable for amplification.

Meanwhile the Prof. had been doing some experiments with the other crystal slices, and was busily making another type of pick-up, which could be used as a contact microphone.
Continued next month.

Do you always get your copy? if not-fill in the coupon below without delay!

To ...
(Name of Newsagent)
ADDRESS Please reserve/deliver the MAY issue of EVERYDAY ELECTRONICS (35p) on sale APRIL 15th, and continue every month until further notice.

GEORGE HYLTON down

THE idea that a resistance, any resistance, just sitting by itself, minding its own business, should automatically generate a voltage seems at first sight to be very strange. Why should it? An electric cell ، sitting alone, can generate an e.mif., a voltage, because the chemicals inside it work that way. But a simple resistor, with no electro-chemical contents ... surely not?

Yet the plain fact is that it happens. Resistors do generate voltages, and these voltages manifest themselves as electrical noise. How do they do it? Well, any source of electrical energy must have some sort of driving power. In the case of a cell, it's the chemicals. In a power station, it's the steam or water which turns the tur bogenerators. In a cycle dynamo it's the muscle power of the cyclist, turning the wheel. In a resistor, it is heat.

Enérgy

Any piece of matter, solid liquid or gas, contains energy in the form of heat. If you cool it, you extract heat, which proves that the heat was there in the first place. If you could go on cooling it until all the heat was extracted it would have a temperature of about minus 273 degrees C, known as absolute zero (0 degrees K). But real-life resistors, even if they are at the South Pole, have temperatures far above absolute zero. So they all contain thermal energy.
This means that the atoms which they are made of are in a state of thermal agitation. The electrons which orbit the atomic nucleus can gain or lose energy from their neighbours. If they gain enough energy they may escape from their parent atom and skip to another. Since an electron is a charged particle, this movement is a tiny local current inside the resistor. (A current is just a movement of electrical charges.)

So, all the time, in the atoms and molecules which make up the resistor, there are tiny currents. They can flow in any direction and frequently they must happen to flow in opposite directions and cancel out. However, there's a definite chance that at any one instant enough charges will be moving in the same direction to set up an appreciable voltage across the resistor. This voltage changes constantly, both in size and polarity and is quite unpredictable.

Random a.c. voltages like this are called noise voltages. This thermal noise is an equal mixture of all frequencies. By analogy with white light, which is an equal mixture of all colours, this sort of noise is called white noise.

Power

If the resistor is large, there are more moving charges but also a greater chance that at any instant there will be opposite movements whose effects cancel one another. For this reason the the amount of noise is the same for all shapes and sizes of resistor. Similarly it turns out that the noise power is the same for all values of resistance. In a low resistance the noise voltage is low but the current high. In a high resistance it's the other way round. But the power, which is current times voltage, is the same.
The noise power, in fact, depends on only two factors. One is the temperature: the hotter the noisier. The other is the range of frequency over which you measure the noise.

Since white noise is an equal mixture of all frequencies, the more frequencies you take into account the greater the noise. So the essential factor which controls noise power is temperature times bandwidth, or TB for short. To get the noise power in watts you have to multiply this by a fixed number, a constant. It's called Boltzmann's constant, after the physicist who first
computed it, and it's written K for short. So noise power in any resistance is KTB watts.
This may sound like a lot of noise power. In fact, K is a very small number indeed so the power (at ordinary temperatures) doesn't really come out in watts, or even microwatts. At room temperature (which is about 300 degrees on the absolute or Kelvin scale, which is the one to use here) the available noise power over the whole audio band up to 20 kHz is only $80 \mu \mu \mathrm{~W}$. The noise voltage depends on the resistance. For a resistance of 10 kilohms it is, over the entire audio band, $2 \mu \mathrm{~V}$.
In most ordinary audio circuits this noise voltage is appreciably increased by noise generated by transistors in the amplifiers used. Also, carbon resistors themselves generate extra noise when d.c. flows in them. However, the thermal noise imposes an absolute limit on signal-to-noise ratio.

The Sky

In radar and radio astronomy there is another source of noise-the sky. For example, the sun, being a hot body, generates noise. Radar engineers often describe this noise in terms of a temperature. If the temperature of the aerial and receiver were raised, just as much noise would be generated as arrives from space. So you can say, that a radar receiver pointed at the sun has a noise temperature of so many degrees.
It is impossible to escape entirely from noise from space. The whole of space generates a tiny amount of background noise, equivalent to a temperature of about 3 degrees above absolute zero. Astronomers who think that the universe began as a huge fireball which exploded and spread out regard this 3 degrees as the temperature to which the universe has now cooled since the original "Big Bang."

We apologise for a mistake in the Quosi-Quod Adoptor, March 1977. In Fig. 5 the signal wires of the screened leads to VRI should be transposed.
There is a link wire missing from the drawing shown in Fig. 2 in the MultiTester, January 1977. On switch Sle the link between positions 2 and 4 (Ω and mA) has been ommitted.

Careers and Hobbies in Electronics.

Enrol in the BNR \& E School and you'll have an entertaining and fascinating hobby. Stick with it and the opportunities and the big money await you, if qualified, in every field of Electronics today. We offer the finest home study training for all subjects in radio, television, etc., especially for the CITY AND GUILDS EXAMS (Technicians"Certificates); the Grad. Brit. I.E.R. Exam; the RADIO AMATEUR'S LI CENCE; P.M.G. Certificates; the R.T.E.B. Servicing Certificates; etc. Also courses in Television; Transistors; Radar; Computers; Servo-mechanisms; Mathematics and Practical Transistor Radio course with equipment. We have OVER 20 YEARS' experience in teaching radio subjects and an un broken record of exam successes. We are the only privately run British home study College specialising in electronics subjects only. Fullest details will be gladly sent without any obligation.

Become a

 Radio Amateur.Learn how to become a radio-amateur in contact with the whole world. We give skilled preparation for the G.P.O. licence.

amand

IT'S EASY WHEN YOU KNOW!

To avold missing your copy of EVERYDAY ELECTRONICS-simply complete this order form and hand It to your newsagent. ORDER FORM
(name of newsagent)
Address
\qquad
Please reserveldeliver every month one copy of EVERYDAY ELECTRONICS untir further notice.
My Name \qquad Address \qquad

TECHNOMATIC LIMITED

54 Sandhurst Road, London NW9

DISTRIBUTORS OF SEMICONDUCTORS

Please see our advertisements in W.W., P.E., P.W., TV., E.T.I., \& Elektor.

MAIL ORDER ONLY

BUILD 5 TRIED AND TESTED CIR. CUTTS. Digital precision timer (2-30 min.). Sensitive burglar alarm, Voltmeter/ammeter. A.F. Circuit Tracer Metal Detector. Diagrams 50 p each + SAE ($£ 2$ for 5). Buildit, 100 Coltstead, New Ash Green, Kent DA3 8LW.
P.C.Bs Paxolln, $5 \ln \times 51 / n, 6$ for $85 \mathrm{p}, 12 \ln \times$
 70 p . Neons, 20 for \&1. 5 Flgure Resettable Counter $18 / 22 \mathrm{~V}$ works on $12 \mathrm{~V}, ~ £ 3$. Aseorted 74 series l.Ca on panel(s), 10 for $90 \mathrm{p}^{3}{ }^{3}$ Assorted Meter急 £2-10. 100 Assorted S/Mica Caps 75 p . Silic on Diodes $650 \mathrm{~V} 1 \mathrm{i} \mathrm{A}, 10$ for 60 p . list 15p. Refundion purchase.

$$
7 \mathrm{lb} \text { Assorted Components, £2:75. }
$$

2 Barnfield Crescent, Sale, Cheahire, M334NL
All Items post pald: Mall order only.-

NO LICENCE EXAMS NEEDED

To operate this miniature, solidstate Transmitter-Receiver Kit. Only £B- 25 plus 20p P\&P.
'Brain-Freeze' 'em with a MINISTROBE Kit, pocket-sized 'lightning flashes', vari-speed, for discos and parties. A mere $£ 3 \cdot 80$ plus $20 \mathrm{p} P \& P$. Experiment with a psychedelic DREAM LAB, or pick up faint speech/sounds with the BIG EAR sound-catcher; ready-made multifunction modules. $£ 5 \cdot 00$ each plus 20 p P\&P.
LOTS MORE! Send 20p for lists. Prices include VAT. (Mail order U.K. only).

BOFFIN PROJECTS

4 Cunliffe Road, Stoneleigh Ewell, Surrey. (E.E.)

[^2]
SERVICE SHEETS

SERVICE SIIEETS, Radio, TV etc, 50 p and SAE. Catalogue 20p and SAE Hamilton Radio, 47 Bohemía Road, St. Leonards Sussex,

BELL'S TELEVISION SERVICE for service sheets of Radio, TV etc. 75 p plus SAE, Colour TV Service Manuals on request. SAE with enquiries to BTS, 190 King's Road, Harrogate, N. Yorkshire. Tel: 042355885.

SMALL ADS

The prepaid rate for classified advertisements is 14 pence per word (minimum 12 words), box number $40 p$ extra. Semi-display setting $£ 9.00$ per single column inch (2.5 cm). All cheques, postal orders, etc., to be made payable to Everyday Electronics and crossed "Lloyds Bank Ltd." Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Everyday Electronics, Room 2337, IPC Magazines Limited, King's Reach Tower; Stamford St., London, SE1 9LS. (Telephone 01-261 5918).

BOOKS and PUBLICATIONS

SIMPLIFIED TV REPAIRS. Full repair

 instructions individual British sets £4.50, request free circuit diagram Stamp brings details unique TV pub lications. Ausee, 76 Church Street Larkhall, Lanarkshire.
Start your own business printing pound notes

Printing pound notes? Well not quite-but "Start your own businese rewinding electric motors" could eas lly be your licence to make money in 1077.

Lavichly Ilustrated, this unlque Instruction menual shows step by step how to rewind motors, Everything you fult time, without experience. Inciuding where to obttin materiale, how to get all the work you need, etc, etc.
A goidmine of information and knowiedge. Only £3.90 plus 26 p P \& P from:
MAGNUM PUBLICATIONS, Dept EES, Brinksway Trading Eatate, Brinksway,
Stockport sks
SBZ.

FOR SALE

NEW ISSUES OF 'EVERYDAY ELECTRONICS' available from April 1974 up to date, cover price plus 15p postage per copy-BELL'S TELEVISION SERVICES, 190 Kings Road, Harrogate, N. Yorkshire. Tel: (0423) 55885,

WANTED

WANTED EE MAY 1972 or Photocopy of half term test answers. 01-907 2096.

WANTED. Nov. 71, Dec 71, Jan. 72, March 72, March 73, April 73, May 73, E.E. Magazines. £1. each offered. PACKER, 21 Calder Close, Swindon, Wilts,

MISCELLANEOUS

RECHARGEABLE NICAD BATTERIEB 'AA' (HP7)-£1-26. Sub 'C'- $£ 1 \cdot 29$, 'C' (HP11)-£2.38. 'D' (HP2)-£2.92. PP3£4.98. Matching chargers, respectively, $£ 4 \cdot 48, £ 4 \cdot 48$, $£ 5 \cdot 24$, $£ 5 \cdot 24, £ 3 \cdot 98$. All prices include VAT add 10% Post \& Package. SAE for full list, 1 plus, if wanted, 50 p for 'Nickel Cadmium Power' Booklet. Sandwell Plant Ltd. 1 Denholm Road, Sutton Coldfield, West Midlands B73 6PP. Tel. 021-354 West
9764.

diy burglar alarm equipment

COMPLETE DIY INSTALLATION KITS Magnetle switches. Pressure Mats. Bells and Bell HousIngs. Junction Boxes. Control Panels. Foil, etc.
Send s.a.e. for $1 /$ sts:
DACH ELECTRONICS, 13 Hamilton Square, Birkenhead, Merseyside, L416BP

Tol. 0516475030

CONDTTONS OF ACCEPTANCE OFCLASSIIED ADVERTSEMENTS

1. Advertisements are accepted subject to the conditions appearing on our current advertisement rate card and on the express understanding that the Advertiser warrants that the advertisement does not contravene any Act of Parliament nor is it an infringement of the British Code of Advertising Practice.
2. The publishers reserve the right to rafuse or withdraw any advertisement. . Although every care is taken, the Publishers shall not be liable for clerica or printers' eprors or their consequences.

STYLI, CARTRIDGES \& AUDIO LEADS ETC. For the best at keenest prices send SAE for free illustrated list to: FELSTEAD ELECTRONICS, (EE) Longley Lane, Gatley, Cheadle Cheshire SK8 4EE.

GLASS FIBRE P.C.8.'s

From your own tape film or ink master.
Send S.A.E. for quotation.
EVERYDAY ELECTRONICS P.C.B.'s In glass EVERYDAY ELECTRONi.'76. MIni organ E2. 48.
PRACTICAL ELECTRONICS P.C.B.'s
Send S.A.E. tor list. C.W.O. please.
PROTO DESIGN, 4 Highcliffe Way, Wickford, Ebeex SSII 8 L.A.

BARGAIN BOX for BEGINNERS containing 2 Transistor/component panels, 1 Relay, 1 Rectifier, 1 earphone insert, 1 mike insert, 2 diodes, 4 buzzer, 3 core cord, 1 salvaged tool-an Ideal collection for experiments: £1-80 Inc. VAT \& P.P. 5 digit counter. 10 digits/sec., 24-48v. nonreset, brand new GPO type 85p Inc. Also 3, 4, 5, 6 \& 9 core cords many other telephone spares at 6 \& 9 core cords
give away prices!
Trade enqulries welcome. S.A.E. for llsts or orders to:

B. B. SUPPLIES

141, Shalmsford St., Near
Canterbury, Kent. CT4 7QZ.

I.C. EXPERIMENTER'S KITS
 Learn about modern electronics with our new eerles of Kits on digital logic techniques, Each Kit contains specialiy selected I.C.s, Holders, Veroboard, LEDs and Instructions. Available \&4-00 each (including P \& P) KIt One-Gates Kit Two-Filp-Flops Kit Four -Counters Kit Five-D S.A.E. for further details to: AUTOMATED HOMES
 69 High Street, Ryton, Coventry CV8 3FJ (Mall order only)

LOUDSPEAKERS

 Speakers, kits and cabinets for D.I.Y., HiFi, P.A., Dlisco, etc. by EMI, Fane, Goodmana, Baker, Kef, Elac, Richard Allan, Wharfedale, etc. Send etamp for freabooklet "Choosing a speaker"
 WILMSLOW AUDIO
 Dept. EE, Swan Works. Bank Souare Wilmslow, Cheshire SK9 1HF Tel. Wilmslow 29599

ENAMELLED COPPER WIRE				
swg	1 lb	802	402	207
14-19	2.40	1.20	-69	. 50
20-29	2.45	1.60	- 8	. 59
30-34	$2 \cdot 60$	1.70	-19	64
35-40	$2 \cdot 85$	1.90	1.04	.75

Incluslive of p\&p and VAT.
SAE brIngs Catalogue of copper and resistance whras in all coverings.

THE SCIENTIFIC WIRE COMPANY PO Box 30, London E4 9BW Reg: office 22, Coningsby Gardens.

DENCO (CLACTON) LIMITED
 Dept. E.E.
 357-8-9 OLD RD., CLACTON-ON-SEA ESSEX C015 3RH

Our components are chosen by technical authors and constructors throughout the world for their performance and reliability, every coil being inspected twice plus a final test and near spot-on alignment.
General Catalogue showing full product range 34 p . Overseas Customers 70p, Air-Mail Post Paid.

U.K. \& OVERSEAS MANU. FACTURERSISTOCKISTS ENQUIRIES WELCOME

Australian Readers Please NoteOur Complete Range of Coils are available from Hobipak, Box 224, South Carlton, 3053, Victoria, Australia and Watkin Wynne Pty. Ltd., 32, Falcon Street, CROWS NEST, 2065, AUSTRALIA: P.O. Box 392.

Solve your communication problems with this 4-Station Transistor Intercom system (1 master and 3 Subs), in robust plastic cabinets for desik or wall mabs to Master. Ideally suitable for Business, gur gery, Schools, Hospitals and Office. Operates on one 9 V battery. On/of switch. Folume control Complete with 3 connecting wires each 66 ft . and other accessories. P. \& P. 90 p .
MAINS INTERCOM NEW MODEL Ho batteries-no wires. Just plag in the mains for instant two-way, loud and clear commamication. per pair P. \& P. 90p.

PRINTED CIRCUIT KIT £3-65
Make your own printed circuits. Contains etching dish, 100 sq ins of pc board, 1 lb ferrle chlorlde, etch resist pen, dril
6W IC audio amp
with free data and
printed circult $£ 1.95$
DELUXE KIT FOR JC12
Contalns extra parts except JC12 needed to complete the amp including balance, volume, bass and treble controls. Mono $£ 2 \cdot 09$. Stereo £5. 25
JC12 POWER KIT
Supplies 25V 1 Amp £3-65.
JC12 PREAMP KITS
Type 1 for magnetic plckups, mics and tuners. Mono 2 .50. Stereo £3.00. Type 2 for ceramlc or
crystal plckups. Mono 88p. Stereo $£ 1 \cdot 76$.
SINCLAIR IC20
1C20 $10 \mathrm{~W}+10 \mathrm{~W}$ stereo Integrated circult ampIlfier kit with free printed circult + data ع4-95.
PZ20 Power supply kit for above £3-65
VP20 Volume, tone-control and preamp klt e8.95,
JC6 AMPLIFIER
New Integrated circuit 20 W amplifler kit complete with chip, printed circuit and data $£ 3 \cdot 95$.

FERRANTI ZN414

IC radio chlp £1.44, Extra parts and pcb for radlo £3-85. Case £1. Send sae for free data.

BATTERY ELIMINATORS

RADIO MODELS
50 mA with press-stud battery connectors.9V $£ 3.45$. $6 \mathrm{~V} £ 3 \cdot 45.9 \mathrm{~V}+9 \mathrm{~V} £ 5 \cdot 45.6 \mathrm{~V}+6 \mathrm{~V} £ 5 \cdot 45.4 \mathrm{~V}+41 \mathrm{~V}$ CAS5.
CASSETTE MAINS UNITS
7 V with 5 pin din plug. 150mAE3.65.
W-WAY MODELS
With switched output and 4 -way multi-jack connector, Type $1: 3 / 4 \mathrm{t} / 6 \mathrm{~V}$ at 100 mA e2.30. FULE 2: $6 / 7 \frac{1}{1 / 9 V}$ at $150 \mathrm{~mA} £ 2 \cdot 90$.
FULLY STABILISED MOD
Swlithed output of $3 / 6 / 7 / 9 \mathrm{~V}$ stabilised at 400 mA .
CAR CONVERTERS $~$
5.10
Input12V DC. Output 6/71/9V DC1Amp stablilised
BATTERY ELIMINATOR KITS
Send sae for tree leafiet on range. 100 mA radio types with press-stud battory $4 \frac{1}{2} V £ 2 \cdot 50.6 \mathrm{~V}+6 \mathrm{~V} £ 2 \cdot 50.9 \mathrm{~V}+9 \mathrm{~V} £ 2 \cdot 50$.
100 mA cassette type $7 \frac{\mathrm{i}}{3} \mathrm{~V}$ with 5 pln din plug £2.10.
Transistor tabilised 8-way type for low hum. $3 / 41 / 6 / 71 / 9 / 12 / 15 / 18 \mathrm{~V}$. 100 mA £ 3 -20. 1 Amp $£ 5.50$. Heavy duty 13 -way types $41 / 6 / 7 / 81 / 11 / 13 / 14 / 17 /$ 21/25/28/34/42V. 1 Amp model £4.95. 2 Amp model £7.95.
Car convartor kit Input 12 V DC. Output $6 / 71 / 8 \mathrm{~V}$
DCiA translstor stabllised ES-95,
MILLENIA KITS
5 Translator highly stabillsed power unlts. Switched 1 to 30 V In 0.1 V steps. Send sae for free leaflet. 1 Amp kit $£ 12 \cdot 45$. 2 Amp klt $£ 14 \cdot 95$. Case E2.95 extra.
MAINS TRANSFORMERS
6-0.6V 100mA 94p. $9-0-9 \mathrm{~V} 75 \mathrm{~mA} 94 \mathrm{p}$. $18 \mathrm{~V}^{\prime} 1 \mathrm{~A}$ £1-95. $0 / 12 / 15 / 20 / 24 / 30 \mathrm{~V}$ 1A £3-65. 12-0-12V 50 mA 94 p .

$6-0-6 V$
$£ 2 \cdot 49.15-0-15 V$

S-DeC £1-94.
T-DeC £3.61.
T-DeC £3.61.
μ-DeCA £3.97.
M-DeCB £6-97.
IC carriers with
sockets:-

SINCLAIR CALCULATORS AND
SINCLAIR
Cambrldge Memory 85.95. Cambridge Sclentific £8.95. Oxford Sclentifle £13-30. Microvision pocket TV £1.65. Mains adaptors for other models (state type) E3.20. Assembled Grey Watch with free stalnless steel bracelet $£ 18 \cdot 45$. White watch £13-95.
SINCLAIR PROJECT. 80 AUDIO MODULES PZ5 £4.95. Z40 £5-75. Pro. 8050 £18-95.
Bi-PAK AUDIO MODULES. S 450 . PANer 80.95 . 200 £14.g5. MK60 audlo kit £31•95. Teak $60 £ 12: 95$. Stereo 30 £16.95. SPM80 £3.95. BMT $80 £ 3 \cdot 62$. Send sae for free data.
free data. ENTERTAINMENTS MODULES
SA1208 £20.50. SA1204 £14. SA608 £13. SA604 $\begin{array}{llll}\text { £12. PM1201/8 } & \text { £12. PM1202/8 £19. PM1201/4 }\end{array}$ £12. PM1202/4 £19. PM601/8 £12.

SWANLEY ELECTRONICS Dept E.E. PO BOX 68, 32, GOLDSEL ROAD, SWANLEY, KENT BR88TQ.

 Mall order only. We will not serve callers under any circumstances. Post 30 p on orders under £4.50, otherwise free. Prices Include VAT, please deduct VAT. Send S.A.E. for free leafiets please don kits.

So the biking bug's got you? Great. But first there are things you must know. Our special 6-page "Begin Biking" feature tell's you about - the law, insurance, finance, paper-work, best buys, buying new, buying old, riding gear, training, clothing and costs.
Also ALL ABOUT FINISHES.
HONDA 125 CG Commuter bike put through its paces
Go ride your bike-in style-with any unauthoriged cover by way of Trade, or aficed to or as part of any publication or advertising, literary or pictorial matter whatsoever.

PAKS-PARTS-AUDIO MODULES

PANEL METERS

4" RANGE

Size $4 \frac{1}{\prime \prime}^{\prime \prime} \times 3 \frac{1}{4 \prime}^{\prime \prime} \times 1 \frac{1}{2}^{\prime \prime}$		
Value	No.	Price
0.50UA	1302	£4.50
0-100UA	1303	£4.50
0.500 UA	1304	£4.50
0-1 MA	1305	£6.00
0.50 V	1306	£6.00
2" RANGE		
Size $2 \frac{1}{4}^{\prime \prime} \times 1 \frac{1}{4}{ }^{\prime \prime} \times 1 \frac{1}{2}^{\prime \prime}$		
Value	No.	Price
0.50 UA	1307	£3.50
0-100UA	1308	£3.50
0.500 UA	1309	£3.50
0-1 MA	1310	£3.50
0.50 V	1311	£3.50

MR2P TYPE
Size $42 \times 42 \times 30 \mathrm{~mm}$

Value	No.	Price
0-50UA	1313	E.80 0.1 MA

MINIATURE BALANCE/

 TUNING METERSize $23 \times 22 \times 26 \mathrm{~mm}$
Sensitivity $100 / 0 / 100 \mathrm{MA}$
No.
1318
Price
$\mathbf{~} 1.95$

BALANCE/TUNING

Size $45 \times 22 \times 34 \mathrm{~mm}$
Sensitivity 100/0/100UA No.
1319

MIN. LEVEL METER
Size $23 \times 22 \times 26 \mathrm{~mm}$ Sensitivity 200 UA
No.
$\$ 320$
Price
£ 1.95

Vu METER

Size $40 \times 40 \times 29 \mathrm{~mm}$
Sensitivity 130 UA No.
1321

Price
£2.00

MIN:

MULTI-

METER

Size $60 \times 24 \times 90 \mathrm{~mm}$
Sensitivity 1000 ohims/V
AC VOLTS 0-10,50, 250, 1000 DC VOTS 0-10, 50, 250, 1000 DC CURRENT $0-1-100 \mathrm{~mA}$ Resistance $0-150 \mathrm{~K}$ ohms ${ }_{1322}$

Price
$\mathbf{5 5} .95$

Postage and Packing add 25p unless otherwise shown. Add extra for alrmi il. Minimum order $£ 1$.

74 SERIES TTL IC'S
BI-PAK STILL LOWEST IN PRICE
FULL SPECIFICATION GUARANTEED ALL FAMOUUS MANUFACTURERS

Type	Price										
7400	0.14	7409	0.15	7441	0.64	7482	0.85	7493	0.40	74122	0.50
7401	0.14	7410	0.14	7442	0.64	7483	0.95	7494	0.88	74123	0.70
7402	0.15	7411	0.23	7445	0.90	7484	0.98	7495	0.75	74141	0.80
7403	0.15	7412	0.23	7446	0.90	7485	1.20	7496	0.80	74154	1.30
7404	0.15	7413	0.27	7447	0.78	7486	0.30	74100	1.00	74180	1.10
7405	0.15	7414	0.58	7448	0.80	7489	2.90	74110	0.50	74181	2.00
7406	0.30	7416	0.28	7475	0.48	7490	0.42	.74118	0.90	74190	1.50
7407	0.30	7417	0.28	7480	0.50	7491	0.75	74119	1.85	74198	2.00
7408	0.15	7440	0.15	7481	0.95	7492	0.45	74121	0.30	74199	1.90

 \begin{tabular}{ll|ll|ll|llllll}
CD4000 \& 0.14 \& CD \& 01212 \& 0.18 \& CD4022 \& 0.95 \& CD4031 \& 2.20 \& CD4046 \& 1.30 \& CD4071

CD4001 \& 0.18 \& CD4013 \& 0.50 \& CD4023 \& 0.18 \& CD4035 \& 1.05 \& CD4047 \& 1.10

CD 4002 \& 0.18 \& CD4015 \& 0.9072

CD4024 \& 0.72 \& CD4037 \& 0.95 \& CD4049 \& 0.55 \& CD4081
\end{tabular}

 $\begin{array}{ll}\text { CD4007 } & 0.18 \\ \text { CD4008 } & 0.35\end{array}$ $\begin{array}{ll}\text { CD400 } & 0.55 \\ \text { CD } 4019 & 0.55\end{array}$ $\begin{array}{ll}\text { CD4010 } & 0.55 \\ \text { CD4011 } & 0.18\end{array}$ \qquad $\begin{array}{ll}\text { CD4020 } & \mathbf{1 . 1 0} \\ \text { CD4021 } & 0.98\end{array}$

CD4028
CD4029
CD4030 CD4043
CD4044 $C D 4055$
$C D 4056$

$C D 4069$	CD4021	0.98	CD4030	$\mathbf{1} .15$
0.55				

LINEARIC'S

SPEEIAL 8 PAGE SUPPIEMENT

THE information contained in this guide has been supplied by the various companies at our request. The initial list shows each company's name, address and-where submitted-telephone number and brief data about the firm and its trading policy.

The following five pages carry charts showing which of a selected list of components each firm can supply. These charts can be used in two ways, either to check on what a known firm can supply-do this by
looking up the firm's name in the left hand column and following the line across the pages, each marked square represents one type of component (Ilsted at the top) that the firm normally holds in stock. Or to find a supplier of a particular type of component-do this by finding the component required, along the top (listed in alphabetical order) and looking down the row, each marked square represents a company (listed on the left) that can supply the required item.

Arrow Electronics Ltd., Mail Order Department, Leader House, Coptfold Road, Brentwood, Essex. Telephone: 0277 219435 (Retail) 0277226470 (Trade), Telex: 995393.

Catalogue 40p including P \& p. Prices inclusive of V.A.T.
We have introduced an "availability reference" which should assist customers. Terms: Cash with order, Order under $£ 5.00$ in value 25 p p \& p. Orders over $£ 5.00$ postage free. The shop in Brentwood is open 9- 5.30 p.m. 6 days per week (open during the lunch hour during winter months). The shop has many lines in addition to current catalogue and advertised items, and a popular feature is the wide range of semiconductor special offers.
B. Bamber Electronics, (Electronic Components and Equipment Suppliers), 5 Station Road, Littleport, Cambs, CB6 IQE. Telephone 0352860185.

Terms of Business: Cash with order 'except Government Departments). Minimum Order $£ 2.00$ post paid (U.K. only, except where stated). Goods in stock normally despatched same day, or within 36 hours. List published from time to time (s.a.e. required). Faulty goods replaced or money refunded without quibble.
B. H. Components Factors Ltd., 59 North Street, Leighton Buzzard, Beds, LU7 7EG. Telephone 052532316.
Bi-Pre-Pak Ltd., 222 West Road, Westcliffe-on-Sea, Essex
J. Bull (Electrical) Ltd., 102-3 Tamworth Road, Croydon, Surrey, CR9 ISG. Telephone 016881833.

The company holds very large stocks and a new catalogue is in preparation, also monthly newsletters are issued which give details of new bargains as they arrive, these will be sent free upon receipt of a stamped addressed envelope and will be mailed automatically to all who subscribe $£ 1.25$ p per annum, which just about covers the cost of stamps and envelopes.

Trading terms are cash with order except to schools and public institutions whose orders are accepted on a monthly credit basis. There are generous discounts for quantity orders.

Extra carriage on heavy items must be sent regardless of size of order. Letter weight items will be sent post free providing the order for these items exceeds 66.00 --below this an amount of 40 p should be added to cover cost of postage and the servicing of the order.
Chromasonic Electronics, 56 Fortis Green Road, London, NIO 3HN.
The Components Centre, 7 Langley Road, Watford, Herts, WDI 3PS. Telephone 45335.
Crescent Radio Ltd., 164-166 High Road, London, N22 6EJ (also) 13 South Hall, Edmonton, N9. Mail order Department, It. Michael's Terrace, Wood Green, London N22 4SJ. Telephone 018884474.
Our minimum postage and packing charge for mail order customers is 50p per order unless otherwise stated. The postage and packing charge is subject to 8 per cent V.A.T.

Quantity trade prices will be quoted on application.
Denco (Clacton) Ltd., 355-7-9 Old Road, Clacton-on-Sea, Essex, COI5 3RH. Telephone Clacton 22807.
We offer a complete range of coils for valve and transistor useage plus a range of formers and cores, base cans etc.

Our products are available from most home constructor outlets or direct mail order. In order to cover high postal rates we require 15p postage and packing for goods up to the value of $£ 2$ and 5 p per $£ 1$ thereafter, any overpayment will be refunded.

We manufacture a multitude of coils of customers own requirements and are always pleased to offer quotations to home constructors clubs, education authorities etc., for purpose wound coils, providing they can order minimum 100 quantities.

Doram Electronics Ltd., P.O. Box TR8, Wellington Road Industrial Estate, Leeds, LSI2 2UF. Telephone 053234222 or 252548.

The Doram edition 3 catalogue carries full information on the 3,500 different items currently held in stock. The price of 60 p includes free postage and update information for the duration of the catalogue.

The range of Doram construction kits is detailed in the full colour Kit Brochure, price 25 p . If ordered together with the catalogue the price is 70p, which can be offset by using the two 25 p vouchers on two separate orders of $£ 5.00$ or more.

Postage and packing is free for all goods with the exception of a minimum order charge of 40 p for orders with a total value (excluding VAT) of less than $£ 1.00$. We offer a return of post service for all items in stock and guarantee components for one year.

Electrovalue Ltd., 28 St. Judes Road, Englefield Green, Egham, Surrey, TW 20 OHB. Telephone 07483 3603. Telex 264475.

Catalogue 40p retail. Small order surcharge 15 p if order under $£ 2.00$. Company accounts opened with suitable references. No minimum order value but minimum invoice value is $£ 1.00$.

Greenweld Electronics, 443 Millbrook Road, Southampton. SOI OHX. Telephone 0703772501.

Greenweld Electronics was founded in Feb. 1973 and started life as a mail-order only business in West Wickham, Kent. As trade increased, so did the need for larger premises and a shop in Deptford was purchased, which is still operating today.

As the South Coast seemed to be lacking in component shops, a move to Southampton was made where, after a year in a smaller shop, the business was transferred to its present address on the main Southampton-Bournemouth (A36) road.

From here, all mail-orders are despatched, mostly on the day of receipt. The policy of the company is to offer a broad range of components used in designs within this and other magazines at a very favourable price.

Apart from advertised goods, our catalogue (new issue out April, price 30 p with discount vouchers) lists thousands of components for the home constructor.

Callers are welcome at the shop between 9 and 6 Mon.-Sat. where many odd lines at bargain prices may be found.
Home Radio (Components) Litd., 240 London Road, Mitcham, Surrey, CR4 3HD. Telephone: 016488422.

Home Radio started as a radio and television business in 1946. The company was incorporated in 1967. We branched into components in 1951.

First catalogue produced in 1959 and has been continued until present date: Present cost $£ 1.00$ plus 40 p postage. Over 200 pages with separate twenty page supplement, listing about 5000 items with over 1500 illustrations. Fixed rate of postage and packing 75 p, irrespective of size of parcel.
Although 90 per cent of our business is mail order we have a shop and enjoy meeting our customers personally. Shop hours are: 9a.m.-5p.m.; 9a.m.-Ip.m. Wednesday; 9a.m.5.30p.m. Saturday.

Josty Kit (UK) Ltd., 16 Borough Road, Middlesbrough, Cleveland, TSI SDQ. Telephone 064244542.
Josty Kit, (U.K.) Ltd., Mail Order Division, are the Sole U.K. distributors of the range of Josty kits. Our kits use only the very best components available from the world market.

The range of kits offered are for the beginner right through to the professional, and many industrial and military establishments find them invaluable.

All kits are sold direct through mail order and are priced including VAT. Please add 25 p, postage and packing with your order.
LRS Electronic Supplies, 3 Clivesway, Hinckley, Leicestershire.

We are now offering a 24 hour turn round quote service. The client sends us a list of components he requires along with a s.a.e. we will then price it or give availability and return it within 24 hours.

As regards our terms, no minimum order charge, all our prices include postage and all orders are cash only with order.

We intend to make LRS a manufacturer only and have set up a separate company to deal with mail order, this company is called M.D. Marketing, P.O. Box 4, Hinckley, Leicestershire

All our mail orders should now be addressed to this company.
Magenta Electronícs, Ltd., 61 Newton Leys, Burton-onTrent, Staffordshire, England, DEI5 ODW. Telephone: 028365435.

Magenta Electronics Ltd., was set up to provide a fast efficient no-nonsense source of components and hardware for constructors.

Our catalogue lists a wide range of carefully selected items all held in stock for same day despatch. It is available for $25 p$, and includes 25 p in vouchers. To simplify ordering all our prices are fully inclusive. There is no minimum order value, but 20 p must be added to orders under $£ 2.00$
Our product range is constantly increasing to include components used in the latest projects, and those items frequently requested by our customers.

Items not listed in the catalogue can usually be obtained-a stamped addressed envelope with your requirements will bring a quote.

A range of kits is currently being introduced-including a transistor tester, an experimenters power supply, and a multimeter range extender. Send a large s.a.e. for details of kits.
Magenta's aim is to give a friendly personal service with full technical back up.

Maplin Electronic Supplies, P.O. Box 3، Rayleigh, Essex,

 SS6 8 LR.Maplin's 216 page catalogue is priced 50 p. Over 4,000 items listed with over 1,000 photographs and drawings, and several complete projects to build: Professional 4 to 16 channel audio mixer; sine/square oscillator; organists/guitarists I3-note bass foot pedal unit; electronic Ignition system; light show with a.v.c.; stabilised power supply for cassette-players, radio etc., (mains or car battery operation). Also includes 30 pages on i.c.s with complete circuits to build.
Maplin's trading terms: Same-day-service (on in-stock items). Prices guaranteed for two monthly periods, Bimonthly newsletter/price list details-customers can check the actual prices before buying. Anyone can join the newsletter mailing list for 30 p and receive one year's issues of the newsletter. Subscribers can take advantage of special offers that can save pounds. Discount vouchers given with orders valued over $£ 2$. Reply-paid envelope returned with every order and catalogue. Handling charge 20p on orders valued under $£ 2$. Prices include VAT and postage and packing.
A. Marshall (London) Ltd., 42 Cricklewood Broadway, London, NW2 3ET. Telephone 01452 0161/2/3. Telex 21492. Also at 85 West Regent St., Glasgow, Scotland. Telephone 041332 4133; I Straits Parade, Fishponds, Bristol, Telephone 65420I, and 27 Rue Danton, Issy Les Moulineaux, Paris, France. Telephone 6442356.

No minimum charge where cash with order. Postal charges extra as per catalogue. Orders normally despatched same day as received. Orders in excess of $£ 10.00$ sent recorded delivery or registered post. Credit accounts available.
G. F. Milward, Electronics Components, 369 Alum Rock Road, Birmingham, B8 3DR. Telephone 0213272339.

Orchard Electronics, Flint House, High Street, Wallingford, Oxon, OXIO ODE. Telephone $0491364588,35529$.
We re-print our stock list once a month and every item listed is in stock. All orders are dispatched ist class post on day of receipt, we are very serious about this, we cannot afford to allow any orders to be carried over-night. Trade, authorities and account holders (amateurs) may phone by 4 p.m. goods will be dispatched by 5 p.m.
P.B. Electronics (Scotland) Ltd., 57 High Street, Saffron Walden, Essex. Telephone: 0799228 76. Also at 62 Largo Road, St. Andrews, Fife, Scotland. Telephone St. Andrews 2641.
P.B. supply the professional and the home constructor with everything to produce printed circuit boards and also manufacture p.c.b.s

We manufacture S-DeC, T-DeC, U-DeC breadboards and accessories; Blob-Boards and Sketch-N Etch.

No minimum order charge, free information, callers welcome.

Radio Component Specialists, 337 Whitehouse Road, West Croydon, Surrey.

Radio Component Specialists was established in the early 1950's by John Ladd to provide a service in South London previously only to be found in Central London. Return of post despatch is their mail order slogan,

Counter service in the shop is given on all aspects of the products on sale. In addition to stocks there is a range of hi-fi and disco equipment, amplifiers, lights and loudspeakers.

Baker Loudspeakers Ltd., is an associated company and with their factory next door to the components showroom in Whitehouse Road, audio service and expertise is second to none!

Everything in our advertisements is in stock before advertising and we ensure that sufficient stocks are held for mail orders and callers alike.

Rownsgem Ltd., Rosebank Parade, Plough Road, Yateley, Camberley, Surrey. Telephone 0252871388.

Radio Exchange (Bedford) Ltd., 6/A High Strèet, Bedford, MK40 ISA. Telephone 52367.
We are manufacturers and suppliers of transistor kits. We do not supply components to clients other than those who have purchased kits and require spares.

Tandy Corporation (Branch U.K.), Bilston Road, Wednesbury, West Midlands, WSIO 7JN.

We supply a large range of electronic components and equipment. The catalogue, which is free from the above address, lists over 2,000 items.

There are over 150 Tandy shops in the country, eliminating the need for mail order. There is no postal delay and most shops stock the complete range.

Trampus Electronicis Ltd, 58/60 Grove Road, Windsor, Berkshire SL4 INS. Telephone Windsor 53779.

The company was formed in 1972 to market new technology. Now speciatising in fast service semiconductor sales, carrying over one million devices in stock and a wide range of passive components.

[^0]: © IPC Magazines Limited 1977. Copyright in all drawings, photographs, and articles published in EVERYDAY ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by EVERYDAY ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, zuarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press. Editorial Department: Everyday Electronics, Fleetway House, Farring don Street, London EC4 4AD. Phone 01-634 4452.
 Advartisement Departments: Everyday Electronics Advertisements, Fleetway House, Farringdon Street, London EC4 4AD. Phone 01-634 4504. Everyday Electronics Classified Advertisements, Kings Reach Tower, Stamford St., London SEI 9LS.

[^1]: Wo are unable to supply back copies of Everyday Electronics or reprints of articles and cannot undertake to answor readers' letters requesting modifications, designs or Informstion on commercial squipment or subjects not published by us. An s.a.e. should be enclosed for a personal reply. Letters concerning published articles should be addressed to: The Editor, those concerning advertlsements to: The Advertise. ment Manager, at the address shown opposife.
 Binders for volumes 1 to 6 (state which) are avallable for $\mathbf{2 2} \mathbf{1 0}$, Including postage, from Post Saloz Department, Lavington House, 25 Lavington St., London SE1 OPF

[^2]: Loud Sirens for Burglar Alarms otc. 6 v. D.C. £1-25. Buzzer Alarms $65 p$. Reed Switch small 10 p Magnets 6p. Large Reed Swltch 12p. Micro Switches 10p. Bulgin Key Switch 89p. Electro lytics $680 \mu \mathrm{f} 25 \mathrm{v} 10$ for $57 \mathrm{p} .8 \Omega$ Earphone \& Plug $18 p .5$ pin Din Plugs 15p. Component Panels $85 p$.
 Jap Radio Tuning Capacltors 30 p . Knobs 5 p , Jap Radio Tuning Capacitors 30p, Knobs 5p,
 90 v Neons 8p. Resistors iW $10 \Omega-10 \mathrm{M} 2 \mathrm{p}$ ea, 90 v Neons 8 p . Resistors $\operatorname{id} 10 \Omega-10 M$ 2p ea
 PRICES INCLUDE VAT. ADD 15 p POST GRIMSBY ELECTRONICS
 64, Tennyson Rd., Cleethorpes, Humberside Veroboard, Pots etc, at our Lambert Road Com

