An exciling hobby....for everyone

everyday electronics

.INSIDE... this Double Sided Four Fold

111 1

$65 p$. plus $33 \mathrm{p}_{\mathrm{PACK}}^{\text {Post AND }}$

Send off the coupon today. It's your first step to solving your component buying problems.

I've often wondered How CAN you compare one catalogue with

After all, few firms can give you more than a brief description. Take the Home Radio Components Cataloge for instance. They could have said that the cover is in full colour and shows Barbara Hepworth's beautiful "Theme on Electronics". Or that it consists of no less than 240 pages of quality art paper, has over 1,700 illustrations, and lists about 6,800 different items.

What really counts however, is the organisation behind the catalogue, and in this connection I give full marks to Home Radio Components, because from my experience they really care about helping their customers. But don't merely take my word for it-find out for yourself. The best way to do that is to get a copy of their catalogue right away. Just send them a cheque or postal order for 98 pence (65 p for the catalogue and 33 p for postage, packing and insurance). By the way, they include 14 coupons in the catalogue, each worth 5 pence if used as directed, so you can get not only the cost of the catalogue back, but $5 p$ towards the postage as well. If that's not philanthropy I don't know what is! It's just one of the ways Home Radio Components think of their customes. Send for your catalogue today-you'll never regret it.

[^0]
CRESCENT RADIO LTD.

$11-15$ \& 17 MAYES ROAD, LONDON N22 6TL (also) 13 SOUTH MALL, EDMONTON, N. 9

MAIL ORDER DEPT.
II MAYES ROAD, LONDON N22 6TL Phone 8883206 \& (EDM). 8031685

ABS PLASTIC BOXES

Handy boxes for constraction projecta. Moulded extrusion railn for P.C. or penele.
$1005=105 \mathrm{~mm} \times 79 \mathrm{~mm} \times 45 \mathrm{~mm}=51 \mathrm{p}$. $1008-150 \mathrm{~mm} \times 7 \mathrm{mmm} \times 47 \mathrm{~mm}=86 \mathrm{p}$. $1007=185 \mathrm{~mm} \times 124 \mathrm{~mm} \times 60 \mathrm{~mm}=88 \mathrm{p}$. $1021=106 \mathrm{~mm} \times 74 \mathrm{~mm} \times 45 \mathrm{~mm}=509$. (sloping front)

CLEAR PLASTIC PANEL METERS

Bize $89 \mathrm{~mm} \times 46 \mathrm{~mm} \times 35 \mathrm{~mm}$ these meters requiro a 38mim hole for
monnting. to 50 micro amp Fall Scale MET - 0 to 100 micro amp
$\mathrm{MRE}^{\mathrm{ME}}=0$ to 500 micro amp
MES $=0$ to $1 \mathrm{~m} / \mathrm{a}$
$M E 10=0$ to $5 \mathrm{~m} / \mathrm{a}$
ME11 = 0 to $10 \mathrm{~m} / \mathrm{s}$
$M E 12=0$ to $50 \mathrm{~m} / \mathrm{z}$
ME13 $=0$ to $100 \mathrm{~m} / \mathrm{s}$
$\mathrm{ME14}$ - 0 \&o $500 \mathrm{~m} / \mathrm{s}$
$\begin{aligned} & \text { ME15 }=0 \text { to } 1 \mathrm{amp} \\ & \text { ME16 }\end{aligned}=0$ to 50 voltn
ME16 $=0$ to 50 volts A.C. Full Scaie $M E 17=0$ to 300 volts A.C. Foll Srale ME19 "VV" Meter OUR PRICE : 83.00

LOW VOLTAGE

AMPLIFIER

5 tranuistor amplifier consplete with ralume control. is auliable for 95 , d.c. shal a.c. supplex. Whif girr With high TMP Inppe thiWinplifice tin tork as is record slaye wori as a ctc., ampliner. $£ 1$ - 75

LIGHT EMITTING

DIODES
Til 209 (Red) with Clip Th 209 (Green) with Clip Til 209 (Yeilow) with Cip mod 500 TOM2 The

22p each 38 p each
90 cach 18 p exch

LED READOUTS

Litronix
DL707: 3 Chwacter 14 Pin Dil $\$ 2.00$ DL701 As abovo but ± 1.. es.00 DL747-6 Character Minitron
30157 Begment 16 Pin Dil 52.62 $3016 G$ segment 16 Pin Dil s1-18
e1-18

CLOCK CHIP

 CT7001 MOSJL8I Bigtal Clock Calender Chip plus full Circuits and Information Leaflet Circuita and Informstion Sheet Lit704 Led Display for abore Or 4 for 35.85
3 KILOWATTS

PSYCHEDELIC LIGHT CONTROL UNIT

Three Channel; Hars-- Middle-Treble Ench channel bas its own meanitivity control. Just conaect the input of this unit to the loudspeaker terminals of an amplifer, and connect three 250 V np to 1000 W lamps to the ontrut terminas of the anil. and-light display. (All guaranting
\& 18.50 plus 38p P. $\$ P$.

Pin lnaertion tool
Spot face Catter

LOUDSPEAKERS

$2 t^{\circ} 8$ ohm 50 g
21
40 ohm 50 m
$2{ }^{\prime \prime} 80 \mathrm{ohm} 50 \mathrm{p}$
80 hm ceramic $£ 1-25$
$61^{\prime \prime} 8$ onm Dual cone ceramic
$10^{\prime \prime} 8$ ohm Dral cone ceramic
$7^{\prime \prime} \times 4^{\prime \prime} 8 \mathrm{obm}$ ceramic $\$ 1.80$
$8^{\prime \prime} \times 5^{\circ} 8$ ohm Permanent Yagnet 81.60
EMI $13 \times 8^{\prime \prime} 450 \mathrm{Kit} 3-8-15$ ohn 83.75
$E 7.50$ EMI 13×8 " 350 Kit 8 ohm Fane Ulera hlgh power loudspeakers
"Pop 25/2 30 watt $150 h m 122^{*} \quad 88.18$ ${ }^{*}$ Pop 25/2 55 fo Watt $8 / 150 \mathrm{hm} 12^{\prime \prime}$ els.50 - Pop 5050 Watt $15 \mathrm{ohm} 12^{\circ}$ E11-82 - PoD 6060 Watt $8 / 150 \mathrm{hm} 15^{\prime \prime} E 15.40$ *Pop 100100 Watt $8 / 150 \mathrm{hm} 18^{-1} 597.00$ *Carr un L/8 over $13 \times 8^{\prime \prime}$ and $12^{\prime \prime} 50_{\mathrm{P}}$ per I/G.

S. G. BROWN "DIPLOMAT"

 HEADSETFuest quadity BriLish mada Light weirht Healphones.
Incurporates cernmic piezo electric tranaducers.
Specification:-
Frequency- $20 \cdot 17.500 \mathrm{CHs}$.
Impelance-Predomimantly capacitive, it .001MFD per earplece an be re garded as 150K at 1ken.
Weight-3.50z. (93 grams).
A Bargain at $\leq 1 \cdot 25$ cach set

TWO WAY STEREO
 \section*{ADAPTOR}

Steres lack pluk to two stereo line sockets cornplete with 110 mm of cablePockets cornglete plesginy two stereo inputa into eate Barrain al 85 p .
STEREO/MONO HEADPHONE
YOLUME CONTROL BOX
Plag Sterto pbones into this control box and you then incorporate a right and left hand volonse control and siereo jack plug and 2 m cable.
A Bargain at 21 :
12-0-12 VOLT $500 \mathrm{~m} / \mathrm{a}$ 240 VOLT PRIMARY TRANSFORMER spprox. slxe - $60 \mathrm{~mm} \times 40 \mathrm{~mm}$ $\times 5 \mathrm{~min}$. Fixing centres - 75 mm .
A REAL BARGAIN AT EI -20 each A REAL BARGAIN AT \&i-20 each

DECON-DALO
33 PC ETCH RESIST PEN The Decoa-Dalo SSPC is a unique fastrument for the profesolonal and anmateur elechronica engineer. a perfect priated circuit voard.
printed circuit OUR PRICE 80p + VAT
POWER PACKS
PP1 Britehed 3-6-7!-9voit $4003 / \mathrm{A}$ Transistor \& Zencr Stabilised On/ owitch, th a black metal case
P') Switched 6-73.9 volt Battery Fliminator. Apprnx sixe 21"
 corders. f2.75 each (Philips type 2800)
PPS Car converter. From 12r Pak, or Neg to $=6.7 t-9$ volt. Fass to it and transistor regulated 12.50 each.
C.K. CARr.

15p uniess otherwise
ifated

8\% VAT to be to all orders

"I MADE IT MYSELF"
Imagine the thrill you'll feel ! Imagine how impressed \} people will be when they're hearing a programme on a. modern radio you made yourself.

Now! Learn the secrets of radio and electronics by building your own modern transistor radio!

Practical lessons teach you sooner than you would dream possible.

What a wonderful way to learn-and pave the way to a new, better-paid career! - No dreary ploughing through page after page of dull facts and figures. With this fascinating Technatron Course, you learn by building!

You build a modern Transistor Radio . . . a Burglar Alarm. You learn Radio and Electronics by doing actual projects you enjoymaking things with your own hands that you'll be proud to own? No wonder it's so fast and easy to learn this way. Because learning becomes a hobby! And what a profitable hobby. Because opportunities in the field of Radio and Electronics are growing faster than they can find people to fill the jobs!

No soldering - yet you learn faster than you ever dreamed possible.
Yes! Faster than you can imagine, you pick up the technical know how you need. Specially prepared step-by-step lessons show you how to read circuits-assemble components - build things - experiment. You enjoy every minute of it! You get everything you need. Tools. Components. Even a versatile Multimeter that we teach you how to use. All included in the course. AT NO EXTRA CHARGE! And this is a course anyone can afford. (You can even pay for it by easy instalments)

So fast, so easy,

this personalised course will teach you even if you don't know a thing today!
No matter how little you know now, no matter what your background or education, we'li teach you. Step by step, in simple easy to-understand language, you pick up the secrets of radio and electronics.
You become a man who makes things, not just another of the millions, who don't understand. And you could pave the way to a great new career, to add to the thrill and pride you receive when you look at what you have achieved. Within weeks you could hold in your hand your own transistor radio. And after the course you can go on to acquire highpowered technical qualifications, because our famous courses go right up to City \& Guilds levels.

Send now for FREE

76 pgae book - see how easy it is - read what others sayl
Find out more now! This is the gateway to a thrilling new career, or a wonderful hobby you'll enjoy for years. Send the coupon now. There's no obligation.

MODEL TH12
 20,900 ogrv. Overlond $50 / 150 / 1000 \mathrm{~V}$ DC. $0 / 10 /$ $50 / 2501000 \mathrm{~V}$ AC. O/ $50 / A / 25 / 200 \mathrm{~mA}$ D $0 / 3 \mathrm{k} / 30$ +50 dB.

HIOKI 720X VOM

U4323 MULTIMETER

HIOKI 750X VOLT.OHM-

1

OUR PRICE $\mathbf{E} 12.50 \quad$ P\&P 20 p

OUR PRICE $£ 7.70$ P\&P300 Case for above $£ 1.75$
 \section*{\section*{.}}
 \section*{\section*{.}}

MODEL U4311 Sub-standard
Multi-range Volt-Ammeter Sonsitivity 330
and
AC
DC
Sce
DC. 1% AC.
Sca

Scale isngth
0/300/750,
$1.5 / 3 / 5.5 / 15 /$
$30 / 75 / 150 / 300 /$
$750 \mathrm{~mA} 1.5 / 31$ /

$7.5 A$ OC. $0 / 3 /$
$7.5 / 75 / 30 / 751$

$150 / 300 / 750 \mathrm{~mA}$
1.5/3/77.5A AC.
$0 / 75 / 150 / 300 / 750 \mathrm{mV} / 4.5 / 3 / 7.5 / 15 /$
$30 / 75 / 750 / 300 / 750 \mathrm{~F}$ $30 / 5 / 3 / 7.5 / 15 / 30 / 75 / 150 / 300 / 750 \mathrm{~V}$ AC. Automatic cut out device Supplied complete with test leads, manual OUR PRICE E52.00 P\&P 50p

MODEL AF. 105 VOM
50,000 opu. M
scalc. Mater
protection.
0/-3/3/12/60/120; $300 / 600 / 120$
$0 / 6730 / 120 /$ 300/600 1200 V DC 0/30 $\mathrm{HA} / 6 /$
12 Amp. 0/10K
12 Amp. 0/10K
Meg Ohms. - 20 to 17
OUR PRICE E12.50 PEP30p.
LB3 TRANSISTOR TESTER
Texts ICO and B.
from 9V battery.
OUR PRICE
E3.95 P\& P 20p
LB4 TRANSISTOR
TESTER
Tests PNP or NPN
iransistork. Audio
on two 1.5 V perate
batteries. Complate with instructions OUR PRICE
E4.50 F\&P 20p
KAMODEN TT35
TRANSISTOR TESTER
Migh quality
instrument to
instrument to
test reverse legk
current and DC
current and DC
curtent Ampli-
fication factor of
Tication factor of
NPN, PNP. diodos.
transiftoris. SCR's
etc. 4" square
etc. $4^{" \prime}$ square
clear scole meter.
internas batteries
Complete with
instructions, leso

OUR PRICE E17.5

370WTA MULLTIMETER

U4341 Multimeter \&
Transistor Tester 27 ranges. 16,700ogv. Orarioed protected.
Aanges. $0.3 / 1.5 / 6 /$
$30 / 50 / 550 / 300 / 900 \mathrm{~V}$ $30 / 50 / 250 / 300 / 900 \mathrm{~V}$
$\mathrm{DC} .1 .5 / 7.5 / 30 / 150 /$ $300 / 750 \mathrm{~V}$ AC. Current: 0.0610 .5 $0.3 / 3 / 30 / 300 \mathrm{mAA}$. Rejstance: 0.06 / 0 , 0 . Battery operated. Supplied complet: with probes, londi and xtorl carrying
case. Size. $115 \times 215 \times 90 \mathrm{~mm}$. OUR PRICE E10.50

SiooTR MULTIMETER
TRANSISTDR TESTER
100.000 opv . Mirror
scale. Overiond
protection. 0 a. 121
protection. $0 / 1.12 /$
$0.5 / 3 / 2 / 30 / 120 /$
600 V OC 0/6/30/
$120 / 600 \mathrm{AC}$
10
0/12/600uA12
$300 \mathrm{~mA} / 6 / 12 \mathrm{~A} D$
0/ $10 \mathrm{k} / 1 \mathrm{Med}$
100 Meg -
-20 to 80 dB .
$0.01=0.2 \mathrm{MFD}$
Transistor testar measurts Aphs. Bote
and ICO. Complett with instruetions
bageriis and and icter compiets OUR PRICE £19.95

PSP 259

SWR METER Model SWR3

Handy SWR meter for
transmiteor antenna align
ment, with bxith-in fiold
strength metor. Accurticy
E\%. Impedence 52° Indic. 6\%. mperdence 52° indic-
ator $100 u A D C$. Futh acmle 5 section collappible antenna. Size $145 \times 50 \times$ 60 mm
OUR PRICE E4.25 P\&P 30p
ALL PRICES
EXCLUDE VAT
Also see following pages

CIS PULSE OSCILLOSCOPE
 OUR PRICE E19.95 P\&P 30p
TRANSISTORISED LC.R. A.C.
BR/B' MEASURING BRIDGE

- 2

MODEL MG 100 SINE SQUARE
WAVE AUDIO
GENERATOR
Henop 9.
220.000 Hz Sime Wave 19100.000 Hz Square Wave.
Output Sine or Square wave 10 V P to
Size 180 So Size $180 \approx 90 \approx 90 \mathrm{~mm}$ Operation OUR PRICE £19.9

 Siza: $560 \times 340 \times 255 \mathrm{~mm}$ appox.
Wzood grain finish with black fronts.
. OUR PRICE $\mathbf{f} 22.50$ PR. P\&P EI

Single hote fixing. X.. diame
Bulk quantities availabie.
位
25 WATT 10/25/50/100/500/8000/ 2500 ohms. E1.15 P8P 10p 50 WATT 10/50/100/250/500 7500/5000 ohnis.
£1.62 P\&P ${ }^{100}$
100 WATT 1/5/10/25/50/250/500/

 Your amplifior. Volume control snd
deom of reverberation control Bew. OUP PRICE 575

SPECIAL PURCHASES?
\} RECORD DECK PACKAGE Sby Famous Manufactures GARRARD SP2S Marth 111 with
GBOO cartidge in luxurious Dlinth with cover.
 deck timed KS 40 A cartridge.

LHOZS STEREO HEADPHONES Light we whith head.
phorse with $/$ endiod
eas pieces 416 ohms $20-20,000 \mathrm{~Hz}$. Compleste with
lead and plus.

OUR PRICE E1.97 P\&P 30p

DHOZS STEREO HEADPHONES Wonserful valu
und excellient
combinimed. Adjust-
Mble hazd band. impedence 8 ol
Conpplete with
DUR PRICE 22.25 P\&P 30p
TE1035 Stereo HEAOPHONES Low cost with axc.
elient rexponse.
elient response. Fanm
rabber earcups. Adjust rabber earcups. Adjust-
abto headband. 8 odms
imped impedence. Freauency,
reponse $25 \mathrm{~Hz}-18 \mathrm{kHz}$. Comonete with coble OUR PRICE E2. E 0
SDH8V MONO/STEREO
HEADFHONES
Volume control for
ooch chennel $4 / 16$ ohms
impedence. Fr foutency impedence. Frowiency
response $20 \mathrm{~Hz}-18 \mathrm{kitz}$ remponse 20Hz-18xH2
Complete with 1012
coiled lead ind jock plug OUR PRICE $£ 4.97$

BHOOS HEADSET and Boom
Microphone
Moving coit. Id
for lantuzge
teaching

reaching comimui- citlome

Cations otc.
Heedphone impederce 16 ohms: Mic-
rophone inpedence 200 ohmms
OUR PRICE E5. 95 P\&P 30p
HANIMEX HRC 3075
CASSETIE RADIO

direct from rodio or throughbuik
incondenser microphane. Com
plete with batteries, earphone.
and cassette.
OUR PRICE $£ 24.30$ P \& P SOp
SPECIAL BARGAIN !!
STEREOSOUND SPEAKER
Matched pair of
nicreo book shelf

FM TUNER CHASSIS

high quasiey

$101 \times 63 \mathrm{~mm}$
31 F stages
2
Double tuned

discriminator.
Ample output zo feed moss amplifitiers
Operates on $9 V$ battery. Covers $88-1$ Oparataz. Reody built, resody for use. FUR Patic value for money.
OUR PRICE E8.95 P\&P 200

SPECIAL OFFER! SAVE OVER 50\%

AMSTRAD 8000/2 Sterec amplifier for zuner tape, phono. Headphone sockel. List price $£ 29.95$.
OUR PRICE E12.95 P \& P 60p
SPECIAL OFFER! CONVERT YOUR STERED SYSTEM TO 4D SOUND
FOR UNDER

Exclusive offer of GOODWIN 4-
CHANNEL CONVERTEA and a pair
of AD15 10 watt 8 ohm booksheif of AD15 10 watt 8 ohm booksheif
speakers enables you to add 40 speakera enables you to add 40
sound to your existing tystem Complete with simple connection dezaits. Normal rereir value 25.50. GOODWTN CONVERTER available separately $\mathbb{E} 3.95 \mathrm{P}$ \& $P 50 \mathrm{p}$.

Model A1018

For use with most amplifiers Covers
$88-109 \mathrm{MHz}$ Powered by 9 V hatter $88-108 \mathrm{mHz}$. Powered by 9 V battery.
DUR PRICE $\mathrm{E} 13.50 \quad$ P\&P 30p Stereo multiplex jdapter 2595 extra.

ELECTRONIC CALCULATORS

We carry a tremendous range of
We carry ztremendous range of tors from as little as 59
Dossible to include them in this advertisement, so send for our
lotest price list or call into any
SINCLAIR SYSTEM 2000 STEREO AMPLIFIER AND TUNER

2000 AMPLIFIER
Anmplifier output \& watts per channol RMS. Distortion less than 0.06%. Silicon transistors. Two pick-up plus radio and rapo inputs. Eape output and scrazch
Exemilent Valus, List £39.95 OUR PRICE £27.50 P\& 960 p

2000 FM TLNER

Excellent seicetivity and senzitivliy. Twin dual-verieap tuning.
4 polo caramic filter, 19 transiztor 4 polo caramic filter. 19 transistor
stereo demodulator giving 40 d 8 separation. Distortion 0-2\% output.
OUR PRICE 527.50 P\& P 60p.
SINCLAIR ICI2
INTEGRATED
CIRCUIT
AMPLIFIER
printed circui
OUR PRICE E1.50
SINCLAIR Project 80 Modules

SINCLAIR Project 80 Packages

All kits complete with compre coivered by full garantee.
Poat and Put 15 par
AF20 Mono amplifier.............. $\mathbf{E 5 . 6 1}$
AF25 Mixer.................
Af35 Emitter amplitive. .

AF310 2 Mono Amplifier ... 7755
M160 Mruli vibrator-...
M1302 Transstor tester
M191 VU Meter...
M192 Stereo balance meter
LF380 Cuadraphonic device.. \& $\quad 8=2$

AT50 400W uriac light
dimmerfspeed control
dimmetspeed contuol, £6.75 AJE5 3 channel sight control. $\frac{5}{20} 16.52$
$\begin{array}{ll}\text { GU330 Tramolo unit............... } £ 3887 \\ \text { HF61 Drode detoctor........... } & \text { E3 } \\ \text { H7 }\end{array}$
HF55 FM transmite
HF75 FM feccrver
HF310 FM zuner
HF325 Deluxe FM! zunes -........ 1632
\& 2633
HF330 Decoder (HF310/325) £t0.55
EP310 Stereo pre amplifier
for use with $2 \times$ AF 310 ..
GP312 Circurt board.
GP304 Circuit board
HF380 tw/wh aetral smplifier $£ 6.02$
NT10 bioadband aerial amp. £2 10
$100 \mathrm{~mA}, 9 \mathrm{~V}$........... $£ 627$
NT300 Stibitised D. supply.... £ 13.16 NT 2×18 Power C. at 2 amps $\quad 5.64$
or NT305 Voltage converter_-. E. 64 NT315 Power supply 240 VAC
Amateur Electronics by Josty-Kft, the protessuonal book for the amateur -covers the subject from basic prinuas. Complete with circuit board for
AE1 to AE 10 listed below.
OUR PRICE £3.30 INO VAT

AEt 100 mW output stage. AE2 Pre-amplifier.	$\begin{aligned} & 61.55 \\ & 63.32 \end{aligned}$
AE3 Orode recerver	¢ 2.05
AEA Flasher.	E1. 26
AES Astabie multivibrato	£ 2.14
AEG Monostable multi-vibrator	[1.13
AE7 AC generatur.	E.1.08
AE8 Eass fitter	E105
- 4 E9 Trebie filter	£ 1.05
AE 10 CCIR filter	¢1.05

AE 10 CCIR filter

Also see previous page
ALL PRICES
EXCLUDE VAT

ST., BRANCHES or order by post.

USED EXTENSIVELY BY INDUSTRY, GOVERNMENT DEPARTMENTS, EDUCATIONAL AUTHORITIES ETC Over 200 ranges in stock-other ranges to order. Ouantity discounts available. Send for fully illustrated brochure

CLEAR PLASTI
Size: $100 \times 80 \mathrm{~mm}$

50uA 44.60			
7004 A	¢4.50		
500uA	64.30		
$50.0-50 \mathrm{HA}$ -	64.50	$\stackrel{1}{4}$	
100-0.100uA.	14.45		
$\lim _{1 A}{ }^{\text {d }}$	14.30	-	
${ }^{1 / 2} \times 1 \mathrm{DC}$	44.30 54.30	-	
SADC	4430 6430	150 V AC	¢4.45
$50 \cup$ DC	¢4.30	300 V AC	
3COV DC . -	84.30	VU Meter	14.90

Size: $90 \times$
$500 A .$.
1000 a

FOR
MAIL ORDER

TOTAL PURCHASE PRICE
(inc. P\&P and Vall

We offer a speed I weh so poyt tr Barclaycarduaccess

and efficient
 NAME

 service by matto add 8% VAT
ADDRESS

10 total value of

post and packing.
Signature
Pegritorea in fnytind No 34,9 a7 at lzt Jwer Grusvenoi Placus London 5vil ocx

CALL INTO YOUR HEAREST LASKY S BRANCH OR SEND COUPON BELOW FOR NEW 16 PAGE HI-FI PRICE LST

CENTRAL LONDON

481 OXFORD ST.	$01-4938541$
3 LSLEST. WCR	01-4378204
34 LISLE ST. WC2	01-4379355
118 EDGWARE RO. W2	01-7239789
193 EDGWARE RD. W2	$01-7236211$
207 EDGWARE RD. W2	$01-7233271$
311 EDGWARE RD. W2	01-262 0387
346 EOGWARE RO W2	01-7234453
382 ED-GWARE RD. WZ	$01-7234194$
109 FLEET ST, EC4	01.3535812
152/3 FLEET ST. EC:	01-353 2833
10 YOTTENHAM CT. RD.	01-637 7332
27 TOTTENHAM CT. RD.	01.6363715
33 TOTEEHHAM CT. RD.	01-636 2605
42/45 TOTTENHAM CT. RD.	01-6360845
257/8 SOTTENHAM CJ. RD.	01-580 0670
SSSEX	
S6 SOUTH ST. ROMFORO	20218
205/206 CHURCHILI WEST. VICIORIA CIRCUS. SOUTHEN	0702612

VICIORIA CIRCUS. SOUTHEND KENT
$\begin{aligned} & \text { S3/57 CAMDEN RD. TUNBRIDGE WELLS } \\ & \text { 0692-23242 }\end{aligned}$
LEICESTERSHIRE
4S MARKEI PLICE, LEKESTER
O533-537678
NORTHAMPTONSHIRE
73 AEINGTON STREET,
HORTHAMPTON (OPENING Novomber)
STAFFORDSHIRE
30 WULRUN WAY, WOLVERHAMPTON
NOWOPEN̄
SURREY

J046 WHITGIFT CENTRE. CROYDON
27 EDENST. KINGSTOH Ol-681 3027 $38 / 40$ EDEN ST., KIMGSTON OI.546 1271 32 HILL ST. RICHMOND Ol-948 I46I

WARWICKSHIRE
116 CORPORATION ST., BIRMINGHAM

OUR CUSTDMER
SERVICES DIVISION at head alfice
whil answer all your enquiries:
fust ring 01-200 1321

EXPORT Personsl $\times x$ ports arranged for overseas visitors. Goods specralty packert, insured and despaichers to insured and despalche at to all parts of the warld at mumum cast exclusive of VAT. Cast exclusive of VAT. Payment by bank transfer. certified cheque, postal order. or money ordär in any
 NO DEPOSIT TERMS available on most goods for personal callers
 CMEQUES TOTHE VALUE OF ES.
 ACCIPTED FROM PERSOMAL SHOPPES WIFK BAAKERS CARD. IS OTME CASES AKO FOR AMOUMTS IN EXCESS OF ETM. PIKKSE ALLOW TIME FOR CLEARAWCE. PATIERAS ORATTS ACCEPIE. All prices correct at 1 lito 72 bert subject to change without notico E.E.E.E

ENGINEERS

Hult

YOURSELFFORA BETTER JOB ".

Do you want prutaotion, a better jub you how to get them through a low-coet home study coursc. There are no hooks to bay and yuu can pay-at-ynu-1ram

H1!

This helptul guide to succees ahould be rcad by every ambitious engineer. Sead for this helpfil 76 page FREE book now. No obligation and nobode will call on yoa.
ever did.

POS_ CHOOSE A BRAND NEW FUTURE HERE!
 Tick or state subject of interest: Post to the address delow.

FULL 12 MONTH AFTER SALES SERVICE We give a FULL 12 MONTH GUARANTEE on all products purchased at any branch parts and labour absolutely FREE
\qquad
birmingham
1ivoli Shopping Centro.
1535 Coventry Road. Yardier TISS:
4 Higat View Panade. Woodfard Avenue. Ilfotd, Tol: 01-550 1085

\sum \vdots \vdots \vdots

63.95 ${ }_{2}$ Ins 25.75
$51-95$
58.50 48.50
 TUNER/AMPLIFIERS
Please add $£ 1 \cdot 21$ for p \& p \& Ins
Please add 5000
Amstrad
On
 Goodmans 1-10 Module ... $x 108 \cdot 50$ SPEAKERS
SPEAKERS
Add $£ 1.82$ for p \& p ins per Pa
Add $51 \cdot 82$ for Amstrad 1500
Celestion County
Celestion Ditton 15
Celestion Ditton 25
Celestion Ditton 44
Celestion Ditton 68
Celestion Hadlelgh ör
Goodmans Dimenslon 8
Goodmans Havant SL
Goodmans Magisters
Goodmans Magnum K2
Goodmans Minister
SPEAKER KITS
Please add £1-82 Carr. and Ins
Whariedale Linton KIt
Wharsedale Giendale
Wharfedale Denion 2
Wharfedale Dovedale
Wharfedale Glendale.
CARTRIDGES
please add $12 p$ for p \& p \& Ins
Goldring G800H
Goldring G800E
Goldring G800
Shure V15 Type 3
Shure M7SEJType 2

AMSTRADIC2000.MkII STEREO SYSTEM
Amstrad JC2000 Mkll with increased Amstrad 25 watts amplifier Com plete with a palr of A mstrad Accustra 2500 speakers. Garrard SP25 MkIV deck. G800 Cart. Plinth/Cover (Non
Hinged) all leads. E80-75
GLOBALSPRIC
STEREO. HEADPHONES
Please add $42 p$ for $D \& p$ ins
Koss ESP 6
$E 4 \cdot 85$
$E B 4 \cdot 50$
Koss K7/11 Red Devil
Koss K6
Koss K6jLC
Koss KD727E
Koss 747.
Koss HVi
Koss HV1/LC
Koss PROS ShC
Koss K7/11 Black
Sennheiser HDA14
Sennheiser HD424

LONOON
328 Edgware Rod. WZ
328 Edgware Roa
Tal: 01-262 3847
174 Pentonville Read. M1
174 Pentonville Re
Tel: $01-2781769$
120 Notting Hill Gare. Wit
Til : 0t-223 1437
50 Stamlosd Hill. N16.
Tel: 01-3064695

NO HIDDEN PRICES AT GLOBAL AUDIO-ALL OUR PRICES ARE SHOWN WITH VAT INCLUDED

PE RSONAL CALLERS YERY WELCOME! compare our pacts why ary in taf took
opeh mondin to sitaroat ijo ea ito

112 p．GATALOGUE－FREE POSTAGE（U．K．）－ATTRACTIVE DISCOUNTS－SPECS．GUARANTEED

A 100 OF THE BEST
From our transistor stock

2N1307	47p	BC149C	14p
2 N 2646	51p	BC1588	15p
2 N 3053	28 D	BC159	15p
2N3054	60p	BC167B	13 p
2N3055	700	BC1688	12D
2 N 3702	11p	BC169B	12p
2N3703	$10 p$	BC189C	13p
2 N 3704	110	BC179	26p
2 N 3705	10p	BC182L	28 p
2N3794	18p	BC194L	${ }^{265}$
2N3819	25 p	BC212L	12p
2 N 4062	110	BC214L	14p
2 N 4443	93p	BC257A	14p
2N5062	42D	BC2598	14 p
2 N 5163	20D	BCY58	30p
2N5459	32D	80130	90p
40361	48 p	8D131	48 p
40362	44 D	BD132	52 p
40602	$46 p$	$8 \mathrm{BD35}$	37 p
40636	E1．36	BD136	39p
40659	£1－10	BDY20	83 p
AC128	170	BF194	15p
AC151R	23 p	BFR39	23p
AC153	278	BFR79	${ }^{235}$
AC153K	370	BFX29	33 p
AC178	24p	8FX84	27p
AC176K	38口	8FY51	23p
AC187K	310	BRY38	45p
AC188K	29p	BY164	51 p
AD133	$E 1.92$	C10681	42 p
AD136	E1． 11	C106D1	82p
AD149	65 p	C1406	77
AD161	42 p	M J481	${ }^{81} 120$
AD162	${ }^{40 \mathrm{p}}$	${ }_{\text {M M }}$ M 29855	81－35
AF200U	70 p	M 32955	80 p
AF239	80 p	MJE371．	89
B1806	$36 p$	MuE521	810
BA138	31 p	MJE2955	¢1．12
B8103	24p	MJE3055	Esp
B8105	34 p	OA91	${ }^{69}$
88109	18p	SD4	${ }^{8 p}$
BC107A	$15 p$	TIP31A	70 p
8 Cl 1078	$15 p$	TIP32A	80 p
BC108E	14p	TIP41A	88
BC108C	14 p	TIP42A	£1．00
8C1098	18 p	WO2	30 p
BC109C	18 p	ZTX300	14p
BC147A	12 p	2TX304	${ }^{23} \mathrm{p}$
BC147B	13p	ZTX500	14p
8C148B	12p	ZTX504	45p

BAXANDALL SPEAKER KIT
As designed by P．J．Baxandall and deseribed originatly in＂Wireless Word．＂ Simple to assemble，fantasticaliy good results and a greater money saver．Carries 10 wattg RMS， 15 ohms impedance．Size $\sin \times 12 \operatorname{in} \times 10 \mathrm{in}$ ．Complete kit，Ineluding pack－flat cablnet．$£ 14$－90．
The size and weight of thls product obliges us to charge 70 p part cosi of carr．in U．K． Equaliser Assembly，£2． 30 ．
Loudspeaker Unit 59RMi09，$£ 2 \cdot 45$
Cabinet Kit（to Baxandall design），£10．45． Cross－over choke for additional wooler to above， $\mathrm{Ef} \cdot 50$ ．

DISCOUNTS

Avallable on all items except those shown 50% on orders from 5 to $£ 14.99$ ． 55% on FREE
POSTAGE
in U．K．for pre－paid mall orders．For mail orders for $£ 2$ tist value additional handling charge olli0p．Overseats orders－carriage char－ ged at cost．

38／671／4002

RESISTORS

Code	Watts	Ohms	$1 \text { to } 9$	$10 \text { to }$ ree ñot	$\begin{aligned} & 100 \mathrm{up} \\ & \text { below) } \end{aligned}$
c	$1 / 3$	4－7－470K	1．3	5－1	0.9 nett
c	$1 / 2$	4．7－10M	$1 \cdot 3$	1－1	0.9 nett
C	$3 / 4$	4．7－10M	$1 \cdot 5$	1－2	0.97 nett
C	1	4．7－10M	3－2	$2 \cdot 5$	1.92 nett
HO	1／2	10－1M	4	$3 \cdot 3$	$2 \cdot 3$ nett
WW	1	0．22－3．9	11	10	e
－WW	3	1－10K	9	8	6
－WW	7	1－10K	11	To	8

ELECTROLYTIC CAPACITORS

Axlal				16 V	25 V	40 V	63 V	100 V
9F	3 V	6.3 V	10 V	Iov	2 V	40 V	110	8p
0.47 1.0						11p	110	8 p
$2 \cdot 2$	－		二		11p		8 p	90
$4 \cdot 7$				11p	号	8 p	9 p	8 p
10	二	－	－	11p	8 p	$9 p$	8 p	8 p
22	－	－	8 p	－	$9 p$	8 p	8 D	10p
47	8 p	－	9 p	8p	8 p	8 p	10 p	13p
100	9 p	$8 p$	8 8	8	$9 p$	10p	12 p	19p
220	$8 p$	8 p	9p	10 p	10p	11p	17p	28p
470	$9 p$	10p	10p	11 p	13p	17p	24p	45p
1，000	11p	13 p	13p	17p	20p	25 p	$41 p$	
2，200	15p	18p	23p	280	37 p	$41 p$	－	－
4．700	260	30 p	39p	44p	58p	－	－	－
10，000	42p	46p						

MINITRON DIGITAL INDICATORS
3015F Seven segment filament compatible with standard logic modules， $0-9$ and decimal point： 9 mm characters in 16 lead DIL
Sultable BCD decoder driver 7447 3015G showing + of $-\& 1 \&$ dec．pt．
LEDS（Llght Emitting Dlodes）
Photo Cells，each

ANTEX Soldering Irons

CN240 CCN240

$\begin{array}{ll}52 \cdot 15 & \text { Spare blts } \\ 52-76 & \text { Spare bits }\end{array}$

DESOLDER BRAID

 6 tt strip $^{\text {WAVECHANGE SWITCHES }}{ }^{79 p}$ ． WAVECHANGE SWITCHES 1 pole 12 way； 2 pole 6 way3 pole 4 way； 4 pole 3 way each 29p
TAG STRIP 28 way TAG STRIP 28 way
NUTS，SCREWS，etc． in lots of 100 each
4BA NUTS 2Ap：6BA NUTS 28ρ
 threaded olllars 6BA．i＂hexagonai Plainspacers $\frac{1 \pi}{2}$ round $£ 1.12$ Other sizes available
ENAMEL COPPER
WIRE in 2 ounce reels 16．18．20， 22 SWG 34p
24，26，28， 30 SWG $40 p_{36}, 38,40$ 5p
DIN CONNECTORS

1 way loudspeaker 3 wau audlo
5 way audio 180
5 way audlo 240
$12 p$ 15
120
EV CATALOGUE 7
and printing－Green and yellow 112 pages，thousands of Items： Illustrations；dlagrams；much useful technical information．The 2nd printing has been updated as much as poseible on pree including refund voucher for 250 for spending when orderling goods llst value $£ 5$ or more．

QUALITY

GUARANTEE
All goods are sold on the understanding that they con－ specifications and satisfac－ specifications and salus－ no relects，＇seconds＇or \＄ub－ standard merchandise is offered for sale．
Prices quoted oo not incturde V．AT．for which 8% must be added to todal nett value of order．Every effort is made to ensure the correctiness of
information and prices of time of going to press．Prices sume of going to siteration withour

The largest selection

EX COMPUTER BOARDS

Packed with tramsistork, diodes, capacitora and resistors
3 for 0 COMPY
C
TPECLAL ORE as above PLUS Power Transistors ONLY 55 g cach +p \& $\mathrm{p}{ }^{15 p}$
PAKOLIEE BOARDS ${ }^{-1}$
FIBRE-GLASS PRINTED
CIRCUIT BOARDS
$18 \% \times 4^{\prime \prime}$ approx. 2 for 559
DECON-DALO 33PC Marker
Etch resiotant printed clrcuit marker pen
E9D exch
VEROBOARDS
Packs contalning approx., 50sq. inn. varions
aizes, all 1 matric 55p
REPANCO CHOKES \& COILS RF Chokes
CH 1.2 .5 mH 29 CH 2.50 mH 30 D CH3. 7.5 mH 81 D CE4. 10 mH 33 D corrs
DRXI Crgatal ret 815 DRR2 Dual range 45D
COIL FORMERS \& CORES
NORMAN $z^{\prime \prime}$ Cores \& Formers 8p
$1 \sim$ Cores a Formers 10p

SWITCHES

DPIDT Togrle 38p SP/8T Toggle 30p

FUSES

$11^{\prime \prime}$ and $20 \mathrm{~mm} .100 \mathrm{~mA}, 200 \mathrm{~mA}, 250 \mathrm{~mA}$ $500 \mathrm{~mA}, 1 \mathrm{~A}, 1.5 \mathrm{~A}, 2 \mathrm{~A}$
QUICK-BLOW 3 D ea.

EARPHONES

Cryatal 2.5 mm plug 429

8 ohms 3.5 mm plog 22p
DYNAMIC MICROPHONES
B1223. 200 ohms plus on/orf switch and B1223. 200 ohtms plus on $/ 011 \mathrm{~s}$
2.5 mm and 3.5 mm plags 81.85

3-WAY STEREO HEAD.

PHONE JUNCTION BOX H2012 81.87

2-WAY CROSSOVER

NETWORK
K 4007.80 ohms Imp. Insertion loss 3 dB 51.21
CAR STEREO SPEAKERS
(Angled) 28.85 per palt

BI-PAK

CATALOGUE AND LISTS
Send S.A.E. and 10p.

INSTRUMENT CASES

(Blect Vinyl covered)
No. Length Whdth Helgh

BV2 12"
ALUMINIUM BOXES

BAI	5t'	\times	$3{ }^{\prime \prime}$	\times	14*	427
BA2	$4{ }^{\prime \prime}$	\times	4	\times	$1{ }^{\text {1 }}$	42D
BA3	4^{*}	x	240	\times	$1{ }^{1 /}$	22p
rat	515	\times	4	\times	1"	50p
BAS	$4^{\prime \prime}$	\times	21*	\times	2	42 D
B.A6	$3^{\prime \prime}$	\times	2	\times		34 D
BA7	7	\times	$5{ }^{*}$	\times	$22^{\prime \prime}$	700
BAB	$\mathrm{g}^{\prime \prime}$	\times	$6^{\prime \prime}$	\times	3	${ }^{20 p}$
BA9	$6^{\prime \prime}$	\times	$4{ }^{\prime \prime}$	\times	2	58D

De Luxe Groov-Kleen Model 42 £1-95 Chrome Finish Model 60 £1-50

Kct. B Stytus \& Torntable Cleanius Eit 340 Ret. 36A. Record/Stylus Cleanios Kit 33p Ref. 43. Record Care Kit $£ 2.42$ Fet. 31. Cassette Head Cleaner 58y Ref. 32. Tape editing Kit $81 \cdot 68$ Model 9. Wire stripper/Catter 83p

ANTEX SOLDERING IRONS

x25. 25 watt 52.03
CCN 240.15 watt $£ 2.48$
Model G. 18 wstt 52.28
sk2. Soldering Kit 83.05
STANDS: 8T3, Suitable for all models 81 SOLDER: 18SWG Multicore 702 f1-61 22swa 7ox 51-61. 188WG 22ft 51p 2eswa Tube 83p

ANTEX BITS and ELEMENTS

Bits No

102 For model CN2 $403 / 32^{\prime \prime}$
104 For model CN240 $3 / 18^{\prime \prime}$
1100 For model CCN240 \$/32"
1101 For model CCN240 3/8 1102 For model CCN240 ${ }^{2}$ 1020 For model G240 $3 / 32^{\prime \prime}$ 1021 For model G240 1/8" 1022 For model G240 3/16"
50 For model X25 $3 / 52^{\prime \prime}$
51 For model X25 $1 / 8^{\prime \prime}$
52 For model $\mathrm{X} 253 / 16^{*}$
ELEMENTS
ECN 24081.30
ECCN 140 县. 82
EG $240 \leq 1 \cdot 07$ EX 25 21-18

ANTEX HEAT SINKS 10p

V.A.T. Included in all prices. Please add 10p P. \& P. (U.K. only). Overseas orders-please add extra for postage.

NEW COMPONENT PAK

 BARGAINSPek
Fio. Qty. Description C1 200 Resirtora mized ralues approx. C2 150 Capacitorn mixod valoes approx. count bs weight
$1 \%, 2 \%$
C3 50 Precision Resist
red pr 5 th W Re values
C5 5 Pleces assorted Perrita Rods 0.55
C8 2 Tunlig Gangs, MW/LW VHF 0.55 C7 1 Pack Wire 50 metrea sasorted colours
C 810 Rced 8 witches
C 9 Yicro Surtchen
C10 15 Arsorted Pota \& Pre-Seta
CLI 5 Jack Sockets $3 \times 3.5 \mathrm{zm} 2 \times$ Standard 8ritch Type C12 30 Paper Condensera preferred types mixed values
C13 20 Electrolytics Trans. types
Cl4 1 Pack assorted Envinare-
NatajBolts, Grommets etc. 0.55 raing sulde Swl C18 20 Assorted Tag atrips \& Pa C17 10 Asoorted Control Knobs C18 4 Rotary Ware Change 8 witch 0.55 C20 1 Relays 6-24V Operating 0.55 peck sheet
20 sq. ins

Ref. 46. Spirit level 62p Ref. P. Hi-Fi Clesner 81, $_{\text {p }}$
Ref. \$2a. 8tylus Balanca $11-8$ y Ref. J. Tape Head Cleaning KIt 69; Bet. 56. Hj-Fi gtereo Fints \& Tips 48p
Rel. 45. Auto changer groove cleaner E1-08

PLUGS AND SOCKETS

 PLUGsPS I D.I.N. 2 Pta (Bpeaker)
PS 2 D.I.N. 3 Pin
PS 3 D.EN. 4 Pin
PS 4 D.I.N. 5 PM 180
Pg 5 D.I.N. 5 Pin 240 ${ }^{\circ}$
PG 6 D.I.K. 6 Pin
PS 7 B.I.N. 7 Pin
PS 8 Jack 2.5 mm 8creened
PS 9 Jack 3.5 mm Pleatic PS 10 Jeck 3.5 mm Bcreened PS 11 Jack !" Plastlo
PS 12 Jack $1^{\prime \prime}$ Bareened PS 13 Jecir Stereo gereened PS 14 Phono
Pg 15 Cer Aerial
PS 16 Co-Axlal
HLDEE SOCEETS
PB 21 D.I.N. 2 Pin (Speaker)
PS 22 D.I.N. 3 Pin
Pg 23 D.I.N. S Pin 180°
PS 24 D.IN. 5 PIn 240°
PS 25 Jeck 2.5 mm Plastic
FS 26 Jack 3.5 mm Ritatic
P\$ 27 Jack ${ }^{1 \times 1}$ Plastic
PS 28 Jack ' $^{\prime \prime}$ Screened
PS 29 Jack Btereo Plantic
P8 30 Jeck Btereo Screened
Ps 31 Pbano Screened
P8 32 Car Aerial
PS 33 Co-Axial

SOCKETS

PS 35 D.Y.N. 2 Pin (Speaker)
PS 36 D.I.N. S Pin
PS 37 D.I.N. 3 Pin 180°
P8 38 D.I.N. 5 Pin 240° PS 39 Jack $2 \cdot 5 \mathrm{~mm}$ Switched PS 40 Jaok 3 -5mmen $\$$ witched PS 41 Jack $1^{\prime \prime}$ 8witched PS 43 Jack Stereo Swltched PS 43 Phono Single
PS 44 Phono Dorible
PS 46 Co-ixial Surface F's 47 Co-Axial Flush

LEADS
IS 1 gpeaker lead 2 pin D.I.N. plug tong (coded)
0.20
CABLES
CP 1 Single Lapped Screen
CP 2 Twin Common screen
CP 3 Stereo Screened
CP 4 Four Core Common Bereen
CP 5 Four Core Individually Screened 0.80
CP 6 Microphone Fully Braided Cable 0-10 CP 7 Three Core Mains Cable CP 8 Trin Oval Mains Cable CP 9 Speaker Cable CP 10 Low Low Co-Axin!

CARBON

POTENTIOMETERS

40 K and L in $, 25 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K}, 220 \mathrm{~K} .470 \mathrm{~K}$,
1M, 2M
FC 2 gingle D.P. Bwitch
VC 3 Tandem Less Switch
VC 4 IK Lin Lese Switch
VC 5 100K Log anti-Log

HORIZONTAL CARBON

PRESETS

$0-1$ watt 0.08 each
$100,220,470,1 \mathrm{~K}, 2.2 \mathrm{~K}, 4.7 \mathrm{~K}, 10 \mathrm{~K}, 22 \mathrm{~K}$,
$4 \mathrm{~K}, 100 \mathrm{~K}, \mathrm{in}, ~ 470 \mathrm{~K}, 1 \mathrm{M}, 2 \mathrm{M}, 4.7 \mathrm{~K}$

WORLD SCOOP

JUMBO

semiconductor pack
Transistors - Germ. and silicon Rectiters Diodes - Trisce Thyristora ILO's and

APPROX 100 PIECES

Ottering the amateur a mantactic hargain Pak and an enormons saring-Identidication and data thet in every Pats.

Only $£ 2$ p. \& p. 20p
RECORD STORAGE/
CARRY CASES

CASSETTE CASES

Holdn $12.10^{\prime \prime} \times 3 z^{\prime \prime} \times 5^{\prime \prime}$. Lock \& Frandle.

SPECIAL PURCHASE

253055. Silicon Power Transistors NPN. Famous mannfactarers out-of-spec devices thle! 115 w . TOS. Metal Case.

OUR SPECIAL PRICE 8 Lot 11

LOW COST CAPACITORS

-010F 400 r.
8p. esch
500 EF 50 v . Elect.
10p eseh

REPANCOTRANSFORMERS

240v. Primary. Secondary voltages available from selected tappings $4 \mathrm{v}, 7 \mathrm{v}, 8 \mathrm{v}, 10 \mathrm{v}, 14 \mathrm{~s}$,
$15 \mathrm{r}, 17 \mathrm{v}, 19 \mathrm{v}, 21 \mathrm{r}, 25 \mathrm{v}, 31 \mathrm{r}, 33 \mathrm{v}, 40,50$ ${ }^{50} \mathrm{~d}$. $25 \mathrm{v}-0-25 \mathrm{v}$.

CARBON FILM RESISTORS

The E12 Range of Carbon Film Realstora, 1/8th watt arallsble in PAKS of 50 pieces. asported into the following groups:$\begin{array}{lll}\text { R1 } 50 \text { Mixed } 100 \text { ohma- } 820 \text { ohms } & 50 p \\ \text { R2 } 50 \text { Mixed } 1 \mathrm{~K} \text { ohms }-8.2 \mathrm{~K} \text { ohms } & 500\end{array}$ $\begin{array}{lll}\text { Ri } 50 \text { Mtxed } 1 \mathrm{~K} \text { ohms }-8 \cdot 2 \mathrm{~K} \text { ohms } & 505 \\ \text { Es } 50 \text { Mixed } 10 \mathrm{~K} \text { ohme- } 82 \mathrm{~K} \text { ohms } & 505\end{array}$ R4 50 Mixed 100 K ohms-1 Meg. ohms 50 THESE ARE UNBEATABLE PRICES JUBT 1产 EACH INCL. V.A.T.
BI-PAK SUPERIOR QUALITY
LOW - NOISE CASSETTES

VISIT OUR COMPONENT SHOP
18 BALDOCK ST., WARE, Herts. (A10)
Open Mon.-Aai. ?-5.3n p.m. Tel. 51533

-the lowest prices!

AL10/AL20/AL30 AUDIO AMPLIFIER MODULES

BI-PAK QUALITY COMES TO AUDIO!
NOW WE GIVE YOU 50w PEAK (25w R.M.S.) PLUS THERMAL PROTECTION! The NEW AL60 Hi-Fi Audio Amplifier FOR ONLY £3.95
The AL10, AL20 and AL30 maith are gencral specification. Howerer, careful selection of the plastic power devices has resulted in a range of outjut powers from 3 to 10 watts R.M.S.
The versatility of their dealgn makes them theal for unc in record players, tape recorders. sterto amplitiers and cassette and cartridge tape players in the car and at home.

Parameter	Conditions	Parformance
KARMONIC DISTORTION	$\mathrm{Po}=3 \mathrm{WATT8} \mathrm{f}-1 \mathrm{KHz}$	0.25\%
LOAD IMPEDANCE	-	8-16
INPUT DPPEDANCE	t-1KHz	$100 \mathrm{k} \Omega$
FREQUENCY RESPONSE $\pm 3 \mathrm{~dB}$	RO-2 WATT8	$50 \mathrm{~Hz}-25 \mathrm{KHz}$
SENAITIVITY for mated O/P	$\mathrm{Fs}-25 \mathrm{~V} . \mathrm{Kl}=8 \Omega \mathrm{i}-1 \mathrm{KHz}$	75 mV . RMS
DIMENEIONS	-	$3^{n} \times \mathrm{Sa}^{\prime \prime} \times 1^{\prime \prime}$

The above table relstes to the AL10, AL20 and AL30
The above table relstes to the ALIO, AL.20 and AL30 in their working conditions.

Parsmeter	ALIO	Aleo	ALS0
Maximum Supply Voltage	25	30	30
Power output for 2% T.F.D. ($\mathrm{RL}=8 \Omega \mathrm{i}-1 \mathrm{KHz}$)	3 watts RMS Min.	$\begin{aligned} & 5 \text { watts } \\ & \text { RMS Min. } \end{aligned}$	10 watts RM8 MIn.

AE 10.	3 watts	RMS	12.10
AL 20.	5 watta	RMS	82.69
AL 80.	10 \#atts	RM8	88.01

POWER SUPPLIES

Ps 12. (Usc with AL10, AL20, AL30) 88p APM 80 . (Use with AL60) POONT PANELS $8 P 12$ wlth 5 28.25

PRE-AMPLIFIERS

PA 12. (Une with AL10 5 AL20) 14.85 PA 100. (Use with AL30 \& AL60) £18-15

TRANSFORMERS

T461 (Une with AL10) $41 \cdot 88$ P \& P 15p Ti538 (Use with ALi20, AL30)
BMT80 (Use with AL60) 82.15 P \& $P{ }_{25 P}^{15 P}$

PA 12. PRE-AMPLIFIER SPECIFICATION

The PA 12 pre-amplitier has been designed to match into moat budget stereo syatems. It lis compatible with the LL 10, AL 20 and AL 30 audio power amplifiers and it cas be uupplied from their associated power uupplies. There are two atereo Inputa, ore has been designed for use With Ceramic cartildges while the aurfilary inpat will oult most tMagnetle cartridgea. Full detanls are given in the apeclication table. The four controls are, from left to right: Voimme and on/of switch, balence. baco and treble. | Fequencs reaponse |
| :---: |
| $20 \mathrm{~Hz}-20 \mathrm{c}$ | Bass conz $\pm 12 \mathrm{~dB}$ at 60 Kz $\pm 14 \mathrm{~dB}$ at 14 KHz Input 1. Impedance 1 Meg 8ensitivity 300 mv

tinpat 2. Impedance Sensitirity 30 K olum Sensitivity 4 mv $81 z e ~ 152 \mathrm{~mm} \times 84 \mathrm{~mm} \times 36 \mathrm{~mm}$.

Look for our
SEMICONDUCTOR ADVERTISEMENTS in
Practical Wireless Wireless World Radio Constructor

ALL PRICES INCLUDE V.A.t.

The STEREO 20

The 'Sterco 20° amplifier is mounted, ready wired and tested on a one-plece chasis measuring $20 \mathrm{~cm} \times 14 \mathrm{~cm} \times 5.5 \mathrm{~cm}$. This counpact unit comes complete whith on/oIf awitch rolutne control. balance, bass and troble cont Transiormer, Yower aupply and Power amps. ting control knobs. The 'sterto 20 ' has boen deaigned to fit into most turntable plinths without interfering with the mechanism or alternatively. into scparate cabinet. Output power 20 w peak. Input 1 (Cor.) 300 mV lnto 135 . Freq. res. $25 \mathrm{~Hz} \cdot 25 \mathrm{kFz}$ Input 2 (Anx.) 4 mF into 30 K . Harmonic Inpat 2 (Anx.)
dlatortion. Bana control $\pm 12 \mathrm{~dB}$ at
60 Hz typically 0.25% at 1 watt.
Trable con. $\pm 14 \mathrm{~dB}$ st 14 k F .

TC2O TEAK VENEERED CABINET

For Stereo 20 (trant bosrd undrilled) size $10 \frac{1}{\prime \prime}^{\prime \prime} \pm 88^{\prime \prime} \pm 33^{*}, 9895$. plus 30 p postage
SHP80 STEREO HEADPHONES
4-16 ohms fmpedance. Frequency response 20 to $20,000 \mathrm{~Hz}$ stereofmono switch and volume controls 24.96

8Max Heat Sink temp. $90^{\circ} \mathrm{c}$ Frequency Response 20 Hz to 100KH:
Distortion better than 0.1% at $0 \cdot 1 \mathrm{KHz}$
Supply voltage $\mathbf{1 5}-50$ volts

Especially designed to a strict specification. Only the finest components have been used and the latest solid state circuitry incorporated in this powerful little amplifier which should satisfy the most critical A.F enthusiast.

STABILISED POWER

MODULE SPM80

SPM80 is especially designed to power 2 of the AL60 Ampliters, up to 15 watt (r.m.s.) per channal atmul. taneoanly. This module embodies the latest components and circaft techniques incorporating complete shori circuit protection. With the addition of the Majns Translormer BMT80, the unit will provide outputs of ap to $1-5$ amps at 35 volts. Blxe: $63 \mathrm{~mm} \times 105 \mathrm{~mm} \times 30 \mathrm{~mm}$. trese units enable you to build Audlo 8 gateme of the highent quality at a hitherto nnobtainsble price. Aloo fdeal for many other applications including:-Disco Systems, Public Addreas PRICE $23 \cdot 2$
TRANSFORMER BMT80 £2•15 p. \& p. 28p STEREO PRE-AMPLIFIER TYPE PA100
Built to a specificatlon and NOT a price, and yet atill tho greateet value on the market, the PA100 stereo preampllfer has been conceived from the latest circuit techniques. Designed for use with the AL50 power amplifiersyatern. this quality made unit incorporate no less than eight ailicon planar transistors, two of these are speciaily selected low noise ThN defices for use to the input atages.
hree amiched sereo inatich filters are featares of the PA100, bass and treble controls.

SPECIAL COMPLETE KIT COMPRISING 2 AL50's, 1
SPM80, 1 BMT80 \& 1 PA100 ONLY $£ 25.30$ FREE p. \& p.

MK 60 AUDIO KIT

Comprising: $2 \times$ AL $60,1 \times S P M 80,1 \times$ BTM30, $1 \times$ PA 100, 1 front panel, 1 kit of parts to
 Completo Price: 828.75 plas 30 p postage

TEAK 60 AUDIO KIT

Comprising: Teak venecred cabinet size 16$\}^{\prime \prime} \times 111^{\prime \prime} \times 33^{\circ}$. other parts include sluminiom chassis, bestsink and tront panel bracket, plus back panel and appropriate eockets etcEit price: 29.95 plus 30p postage

Giro No. 388-7006
Please send all orders direct to warshouse and despatch department

Postage and packing add 11p. Overseas add extra for airmail. Minimum order 55p. Cash with order please Guaranteed Satisfaction or Money Back

Now-two fascinating ways to enjoy saving money! NEW! Sinclair Scientific kit

Britain's'most original calculator now in kit form

The Sinclair Scientific is an altogether remarkable calculator.
It offers logs, trig, and true scientific notation over a 200 -decade range features normally found only on calculators costing around f 100 or more.
Yet even-ready-built, the Sinclair Scientific costs a mere $£ 32.35$ (including VAT).
And as a kit it costs under E20!

Forget slide rules and four-figure tables!

With the functions available on the Scientific keyboard, you can handle directly
sin and arcsin,
cos and arccos,
tan and arctan,
automatic squaring and doubling,
$\log _{10}$, antilog ${ }_{10}$, giving quick access to x^{\vee} (including square and other roots),
plus, of course, addition, subtraction multiplication, division, and any calculations based on them.
Infact, virtually all complex scientific or mathematical calculations can be handled with ease.

So is the Scientific difficult to assemble?

No. Powerful though it is, the Sinclair Scientific is a model of tidy engineering.

All parts are supplied - all you need provide is a soldering iron and a pair of cutters. Complete step-by-step. instructions are provided, and our Service Department will back you throughout if you've any queries or problems.
Of course, we'll happily supply the Scientific or the Cambridge already built, if you prefer - they're still exceptional value. Use the order form.

Components for Scientific Kit
(illustrated)

1. Coil
2. LSI chip
3. Interface chips
4. Case mouldings, with buttons, windows and light-up display in position
5. Printed circuit board
6. Keyboard panel
7. Electronic components pack (diodes, resistors, capacitors, etc)
8. Battery assembly and on/off switch
9. Soft carrying wallet
10. Comprehensive instructions for use

Assembly time is about 3 hours.

Features of the Sinclair Scientific
12 functions on

$$
8.6529-01
$$ simple keyboard Basic logs and trig functions (and their inverses). all from a key board as simple as a normal arithmetic calculator's. Upper and lower case operation means basic arithmetic keys each have two extra functions.

Scientific notation Display shows 5-digit mantissa, 2 -digit exponent, both signable.

200-decade range $10^{-99} 1010{ }^{699}$.

Reverse Polish logic Post-fixed operators allow chain calculations of unlimited length - eliminate need for an = button.

25-hour battery life 4 AAA manganese alkaline batteries (e.g. MN2400) give 25 hours continuous use. Complete independence from external power.
Genuinely pocketable $41 / 3^{\prime \prime} \times 2^{\prime \prime} \times 11 / 16^{\prime \prime}$. Weight 4 oz . Attractively styled in grey, blue and white.

Sinclair Cambridge kit

At its new low price, the original Sinclair Cambridge kit remains unbeatable value.

In less than a year, the Cambridge has become Britain's most popular pocket calculator.
it's not surprising. Check the features below - then ask yourself what other pocket calculator offers such a powerful package at such a reasonable price.

Components for Cambridge Kit

1. Coil
2. LSI chip
3. Interface chip -
4. Thick film resistor pack
5. Case mouldings, with buttons, window and light-up display in position
6. Printed circuit board
7. Keyboard panel
8. Electronic components pack (diodes, resistors, capacitors, transistor)
9. Battery clips and on/off switch 10. Soft wallet

Assembly time is about 3 hours.

Features of the Sinclair Cambridge

Take advantage of this money-back, no-risk offer today The Sinclair Cambridge and Scientific kits are fully guaranteed. Return either kit within 10 days, and we ll refund your money without question. All parts are tested and checked before despatch - and we guarantee any correctly-assembled calculator for one year. (This guarantee also applies to calculators supplied in built form.)

Simply fill in the preferential order form below and slip it in the post today.

Scientific
Price in kit form $£ 19.95$ inc. VAT.
Price built $£ 32.35$ inc. VAT. Cambridge
Price in kit form $£ 14.95$ inc. VAT. Price built $£ 21.55$ inc. VAT.

To: Sinclair Radionics Ltd,
FREEPOST St ives,
Huntingdon, Cambs. PE1748R
Please send meSinclair Scientific kit at $£ 19.95$Sinclair Scientific built at $£ 32.35$Sinclair Cambridge kit at $£ 14.95$ Sinclair Cambridge built at $£ 21.55$
All prices include 8% VAT.
 made out to Sinclair Radionics Lid, and crossed.
*Please debit my *Barclaycard/ Access account. Account number
*Delete as required.
Signed

Sinclair Radionics Ltd,
FREEPOST St. Ives,
Huntingdon, Cambs. PE174BR.

PROJECTS THEORY.

TRANSMITTING IN FREE SPACE

Just eighty years ago (as near as makes no difference) a young man barely in his twenties persevering with his experiments in an attic finally achieved the success he so earnestly sought. A key depressed at one end of the room caused a buzzer to sound at the opposite end of the room. There were no physical connections between the transmitting and receiving apparatus. Thus was wireless telegraphy born.

That initial success of young Guglielmo Marconi set in train great and staggering developments in communications without the use of intervening wires. Today, life as we know it would not be possible without the great variety of services we have become dependent upon (knowingly or unknowingly) and which are bourne along on electromagnetic waves.

Yet, somewhat ironically, the technique that gives freedom from wires is not freely available for all and sundry to use for themselves as they wish. (Conld young Guglielmo ever have imagined the restrictions that would be imposed upon future generations of amateur experimenters by his own brilliant success!)

It is a fact, though apparently not always properly understood, that any form of transmission in the radio frequency spectrum is subject to regulations based on the Wireless and Telegraphy Act. It is illegal to make transmissions (regardless of power) without a proper licence from the Home Office (Radio Regulatory

Division). There are various kinds of transmitting licences. These are granted for specific purposes and permit operation only within particular frequency bands allocated exclusively for such purposes.

This in a few words makes clear the legal position in the UK, frustrating though it may be to budding experimenters. It should explain also why we do not (despite frequent requests) publish designs for radio transmitters, other than those intended for few exceptional applications where licences to operate will be granted with the minimum of formality to ordinary members of the general public. Model control and metal sensing devices are two obvious examples.

All is not lost, however. Sound or pressure waves operating above normal human hearing range can be employed in a rather similar fashion to electromagnetic waves for remote control, signalling, and certain other purposes over short distances through air.

Ultrasonic waves cannot provide a complete alternative to radio waves of course. But for certain limited purposes they offer an ideal solution to the problem of how to dispense with undesirable interconnecting wires. Furthermore, this technique has the great advantage that it can be used without let or hindrance from official-dom-as yet!

Our January issue will be published on Wednesday, December 18

EDITOR F. E. Bennett - ASSISTANT EDITOR M. Kenward - B. W. Terrell B.S.c.'
ART EDITOR J. D. Pountney - P. A. Loates - K. A. Woodruff
ADVERTISEMENT MANAGER D. W. B. Tilleard

[^1]
EASY TO CONSTRUCT SIMPLY EXPLAINED

VOL. 3 NO. 12

DECEMBER
1974

CONSTRUCTIONAL PROJECTS DATA CHECK CARD

ULTRASONIC REMOTE CONTROL Part I Receiver by J. B. Dance 670
ACROSS THE RIVER A novel game for everyone by F. G. Rayer 684
TRANSISTOR ASSISTED IGNITION $6 V$ version alterations 690
M.W. REFLEX RECEIVER A simple set with loudspeaker output by R. A. Penfold 694
GENERAL FEATURES
EDITORIAL 668
RUMINATIONS by Sensor 674
THE WORLD OF THE I.C. by S. R. McCelland 675
BEGIN HERE I Passive Components by Donald Maynard 680
COUNTER INTELLIGENCE A retailer comments by Poul Young 687
PHYSICS IS FUN Opposite Charges by Derrick Daines 688
MULTIMETER COMPETITION RESULTS 693
SHOP TALK. Component buying and new products by Mike Kenward 698
JACK PLUG AND FAMILY Cartoon 698
PROFESSOR ERNEST EVERSURE The Extraordinary Experiments of. by Anthony J. Bassett 701
DOWN TO EARTH Induced Hum by George Hylton 705

[^2]

A simple ultrasonic transmitter and receiver employing integrated circuits for ease of construction and reliability.

THIS article describes how a simple ultrasonic transmitter and receiver can be constructed for a host of applications such as remote control, intruder alarm, signalling system, leak testing, garage door opening, object counter etc.

When a 40 kHz ultrasonic beam from the transmitter falls on the receiver, a relay in the latter closes and can be used to carry out any desired operation. The maximum operating range in the open air is about 12 metres (40 feet).

Integrated circuits are employed in the design so that the number of components required is greatly reduced. Unlike many other ultrasonic circuit designs, the relay specified for this receiver is not a delicate reed relay, but one which has two pairs of large change over contacts. Each pair of contacts can switch up to 10A at 250 V a.c.

TRANSDUCERS

The transducers used in the circuits to be described contain piezoelectric "bimorph" plates which resonate at the ultrasonic frequency concerned. These plates are a few square millimeters in area and are sealed in the transducer.

In the transmitter a square-wave voltage of the ultrasonic frequency is applied to the transducer. The latter produces ultrasonic pressure waves which are just like sound waves except that their frequency is much too high for them to be detected by the human ear. Ultrasonic waves are much more directional than ordinary sound waves.

A similar transducer in the receiver converts the incoming waves into a 40 kHz electrical signal.

The voltage across the terminals of the receiver transducer varies greatly with its distance from the transmitter, but is normally in the range of some tens of microvolts up to hundreds of millivolts. This signal must therefore be amplified considerably before it can be used to operate a relay.

The transducers will operate only at or near to their resonant frequency. If the transmitter circuit feeds signals to the transmitter transducer at any other frequency, the ultrasonic output will be very small.

The transducer in the transmitter behaves like a miniature loudspeaker which will operate at only one frequency, whilst the one in the receiver acts like a microphone which is sensitive only to signals near to its resonant frequency.

A relatively new type of miniature transducer, the 96D-40, was selected for use in the prototype equipment. It is available as the " T " and " R " versions which are designed for use in the transmitter and in the receiver respectively.

Although it is possible to interchange these units, optimum results can be expected only if a " T " type unit is used in the transmitter and an " R " type unit in the receiver.

Both types have an identical appearance. They have a metal grille at the front of the unit through which the ultrasonic waves pass. There are two connecting pins at the back, one of which is connected to the metal case of the device.

THE RECEIVER

The low level signal from the tranducer in the receiver must be amplified at 40 kilohertz to bring the level up to a few volts. The gain

required is around 80 db if the transmitter is well away from the receiver.

The two transducers are themselves frequency selective and it is not necessary to include circuits to control the bandwidth of the system.
The amplification at 40 kilohertz can be carried out using discrete transistors, but it was felt that the use of an integrated circuit would be desirable to reduce the circuit complexity. A type TAA 930B i.c. was selected.

This device contains four cascaded wide-band differential amplifier stages and is intended for use in the sound section of television receivers at a 5.5 megahertz intermediate frequency.

Each amplifier stage is coupled to the succeeding one by an internal emitter-follower buffer stage in an arrangement which allows a high gain to be obtained with good stability.

RECEIVER CIRCUIT

The complete circuit of the receiver unit is shown in Fig. 1. All of the decoupling capacitors
are 10 microfarads in value so that the impedance of these capacitors is less than 0.5 ohm at 40 kilohertz.

The output from the " R " type transducer is applied to the input of the TAA 930B pins 4 and 6.

In order that the metal case of the transducer can be earthed, the connection to pin 6 is made via C1.

The input impedance of the TAA 930 B is typically 15 kilohm, but the resistor R1 must be included in the circuit to bias the input stage correctly. The input capacitance of the device, 8 picofarads, is negligible when compared with that of the transducer.

The differential amplifier stages of the TAA 930B incorporates a limiter circuit so that the output at pin 10 of the device is twice the emitter-base voltage of a forward biased silicon transistor.

In pratice this means that a square wave output of just over 1 volt at 40 kilohertz is

Fig. 1. Complete circuit diagram of the ultrasonic receiver.

 BOTH VEWED FROM UNDERSIDE

Fig. 2. Layout and wiring of both sides of the component panel.

ULTRASONIC REMOTE CONTROLLER

Fig. 3. Wiring of RLA1 and C8 to the circuit panel. RLA1 socket has been mounted in the case side so that space is left inside the case for a battrey or power supply.
obtainable at pin 10 no matter what the input level from the transducer provided that the latter exceeds the minimum threshold of 50 microvolts at pin 4.

Initially it had been intended to use the output from pin 10. However, this signal is internally coupled to further circuits inside the integrated circuit which were designed for use as an f.m. detector. It was found that a 40 kilohertz signal of about 8 volts could be obtained from pin 1 of the device and this proved very satisfactory for the operation of the succeeding circuits shown in Fig. 1.

A 47 picofarad capacitor, C4, is connected from the output of pin 14 to ground, since this was found to improve r.f. stability.

The voltage at pin 14 is fed through an internal emitter-follower to pin 1 where a low impedance output (100 to 150 ohm) is available. The capacitor C6 blocks the steady voltage at the output.

DIODE PUMP

The two diodes D1 and D2 form a diode pump circuit. Each cycle of the 40 kilohertz voltage at pin 1 causes a certain amount of charge to be "pumped" into C7.

A high impedance voltmeter connected across C 7 will give a reading up to about 8 V as the transmitter transducer is pointed at the receiver transducer. The voltmeter may consist of a $50 \mu \mathrm{~A}$ meter in series with a 200 kilohm resistor.

relay drive circuit

When the voltage across C7 exceeds about 0.5 volt, a current is driven into the base of the high gain transistor TR1 and causes it to conduct. A current of about 5 milliamps can then flow from the base of TR2 into the collector of TR1.

Photograph of the completed unit.

Components....

Resistors

R1	$6 \cdot 8 \mathrm{kS} \Omega$
R2	100Ω
R3	$10 \mathrm{k}!$
R4	$2 \cdot 2 \mathrm{k} \Omega$
All	$\pm 10 \%$ + W carbon

Capacitors
C1 101 F elect. 15 V
C2 $101 / \mathrm{F}$ elect. 15 V
C3 $10, \ldots \mathrm{~F}$ elect. 15 V
C4 47pF polystyrene 15 V
C5 $25 \mu \mathrm{~F}$ elect. 15 V
C6 $0.1 / 1 \mathrm{~F}$ polyester 63 V
C7 $1 / \mathrm{F}$ elect. 15 V
C8 $25 \mu \mathrm{~F}$ elect. 25 V

Semiconductors

TR1 BC109 silicon npn
TR2 2N2904, 2N2905 or 2N1132 silicon pnp D1, D2 IN914 (2 off)
IC1 TAA930B integrated circuit and holder X1 96D-40(R) ultrasonic transducer [96D-40(T) required for the transmitter] (Hall Electronics)

Miscellaneous
RLA1 12 V relay (coil resistance 100s. or greater) with at least 1 set of changeover contacts rated as required (R.S. plug-in type 1A used in prototype); socket to suit relay if required; 0.1 inch matrix component board $90 \times 50 \mathrm{~mm}$; connecting wire; on-off switch if required; battery and connectors (see text); case approx. $120 \times 100 \times 55 \mathrm{~mm}$; 6BA fixings.

The pnp transistor TR2 therefore becomes saturated and almost the whole of the supply voltage appears across the output relay.

The capacitor C 8 absorbs the transient voltage generated when the current ceases to flow through the relay. It also increases the time constant of the circuit and helps to prevent the relay from "chattering" rapidly when the input signal is barely adequate to switch on the relay.

POWER SUPPLY

The absolute maximum permissible power supply voltage to the TAA 930B is 15 volts, but 12 volts should be regarded as the upper limit for the circuit of Fig. 1. The current required by the device is about 15 milliamps from a 12 volts supply or about 11 milliamps from a 9 volt supply.

When the relay is switched on, an additional current of about 100 milliamps will be required.

In some applications a smaller relay may be used. This will reduce the current taken by the receiver when the relay is energised and this can be important if the power supply is a battery.

Two photographs showing the construction of the prototype circuit board.

RECEIVER CONSTRUCTION

The prototype receiver was housed in an Eddystone die-cast box size $120 \times 95 \times 55 \mathrm{~mm}$. The circuit is built on a piece of 0 lin matrix board size $85 \times 50 \mathrm{~mm}$. Both sides of the board are used for mounting the components and the layout of each side is shown in Fig. 2. Cut the board to size and drill the fixing holes.

Begin construction by inserting the Veropins and integrated circuit holder and then one by one, position and solder the other components on the board, leaving the transistors and diodes till last. A heatshunt should be used on the latter when soldering. The pin of the transducer connected to its metal case should be earthed.

The die-cast box should now be prepared to accept the relay socket and the latter fitted in place.

Now offer up the board to one of the shorter sides of the case and a 12 mm diameter hole drilled in line with the transducer and the fixing holes drilled to secure the board in this position.

Mount the component board using 6BA fixings and spacers to ensure that the transducer does not touch the die-cast box, otherwise vibrations from the relay may be picked up, and then wire the board to the relay socket (Fig. 3).

In some applications the receiver will be switched on for long periods. It is then most convenient to employ a mains power supply in fhe box rather than a battery; a suitable supply can be obtained from the Battery Eliminator, E.E. Nov. '74.

Next month: the transmitter, testing and applications.

Ruminations By Sensor

Down on the Farm

Electronics is slowly finding a place in agriculture. The electronically operated fencer is now used extensively throughout the industry and has earned the respect of the farmer and his stock. Cattle are not slow to discover when a fencer is not working and invariably do so before the farmer does. They then seem to take a particular pleasure in dragging the wire around the field and pulling all the insulator posts out of the ground, this, of course, in addition to breaking out of the grazing area where the electric fence was intended to keep them.

The result of their uncontrollable wanderings is, at best, a
great nuisance; hence the farmer's insistence on reliability.

Perhaps surprisingly, electronic equipment can be more robust than the equipment is replacesthe simple transistor operated grain moisture meter comes to mind in this category. It's predecessor was more a laboratory instrument than a general farm tool, consequently, it was not used as often or as widely as was desirable. Kept in a box at the back of the wardrobe in the farmer's bedroom, it could well be overlooked during the hustle and bustle of harvest time.

X Marks the Spud

The electronic potato harvester is currently the most exciting development in farm machines. It enables one man-the tractor driver-to carry out the harvesting. On the earlier potato harvesters, a squad of workers rode on the machine and sorted stones and clods of earth from the potatoes as they were raised from the ground; the new machine is fitted
with an electronic sorting unit in which X-ray beams distinguish potatoes from stones and earth clods and actuate sorting fingers to separate the crop from the rubbish.
Every effort has been made to simplify the electronic equipment, and simple replacement parts are available that can be fitted easily by the tractor driver.
The savings in time and labour are considerable and the electronic unit is claimed to be reliable in operation. Other vegetables and bulbs can be harvested with the aid of special fitments.
The manufacturers point out that the electronic sorting devices works at faster-than-human speeds, is more accurate and does not need a tea-break. However the tractor driver still needs his tea-break-but electronics may have the answer to this, too, a tractor guided by a magnetic tape can be made to follow a predetermined course around the field and will continue to run until it breaks down or runs out of fuel!
 concept in electronics. It certainly stretches one's imagination even to think of an eatire electronic circuit on a tiny silicon chipa chip perhaps no larger than the central dot of the marker used at the end of this article!

However, the increasing importance of i.c.s in electronics is not only because of their minute size but also because they offer us increased reliabilty over conventional circuits.

Often they alone can perform as specified over long periods of time in extreme and variable conditions, and provide the vital link from man or machine to civilisation. In this context, the Apollo moon-programme immediately
springs to mind.
These microcircuits also have much more down-to-earth applications-domestic uses in circuitry for colour TV sets and ultra-miniature radios, and commercial uses as in ever more complex computers and pocket calculators.

Simple to use and even simpler to replace, integrated circuits are producing an electronics revolution comparable with the impact of the transistor itself.

FROM THE TRANSISTOR
To begin with, let's look at a conventional low power silicon transistor. If it's of the usual cylindrical can type, it will occupy a small volume, typically rather less than a cubic centimetre.

However, the active part of the device, the silicon chip, is very much smaller than this (perhaps one thousandth of the volume of the can). Even then, the actual transistor is considerably smaller than the chip. In other words, the vast bulk of the physical transistor is either unused or used only for the protection and support of its tiny semiconductor. Not much more volume would be needed if more transistors were included in the package. In fact, if we could find some way of electrically isolating the transistors, we could even produce many of them on the same chip.

This can be achieved but one would think that the only components permitted in such an assembly would be those normally produced from semiconductors, i.e. transistors and diodes.

However due to the unusual properties of semiconductors, particularly those of the pn junction, other components such as resistors and capacitors can be formed. In fact, almost all the components to be found in a normal electronic circuit can be manufactured simultaneously on the same silicon chip, even, in theory at least, an entire circuit.

We have arrived at the i.c.

TO THE I.C.
The technology of the i.c. although complete in itself, has much in common with that of the transistor. Both usually begin life, for example, as a very pure crystal of silicon which is doped to give p or n type silicon.

The actual manufacturing processes of both devices are similar too. They rely on the phenomenon of diffusion-the name given to the entrance and subsequent spread of one substance into another. In this case, special impurity atoms are allowed to diffuse into the silicon wherever p and n type regions are wanted. Devices of both types which are conventional (i.e. are not field-effect) are made by the same process. It is the silicon planar epitaxial process.

MAKING AN I.C.

In the silicon planar process, i.c. chips, like transistors, are mass produced in thin slices, which is why they are such inexpensive pieces of a highly complex technology.

They begin life as a circular slice of p type silicon upon which a very thin layer of n type silicon is specially grown. This layer is called the epitaxial layer and it will be the one to receive the impurity diffusions. We now have a composite slice about $25 \mathrm{~cm}^{2}$ in area and only about 0.3 mm thick but it will yield many hundred i.c. chips. Let us follow the manufacture of a single $n p n$ transistor of one of these chips in the slice.

FORMING TRANSISTORS

The slice has a layer of silicon oxide formed on it initially by heat treatment. In the area selected for the base of the transistor the oxide layer is etched away, exposing the slice beneath (Fig. 1).

This etching is defined and controlled by a method rather like "photographic stencilling" using a photographic mask and light sensitive chemicals. The process is similar to making a printed circuit board or contact print in photography. The slice is now placed in an atmosphere of p type impurity which diffuses into the epitaxial layer via its etched areas. The unétched oxide acts as a barrier to diffusion elsewhere.

After the formation of this p type (base) region, the slice is re-coated with oxide and the etching process is repeated with a smaller area of oxide. This time n type impurity is allowed to diffuse into central part of the base region to form the emitter region.

(i)

SILICON OXIDE LAYER ETCHED READY FOR EMITTER REGION DIFFUSION

(f)

(j)

The Ferranti ZN414 integrated circuit-much magnified.

The slice is once more oxidised and then etched to prepare for the deposition of aluminium which will act as the component interconnections on the surface of the slice. A final etching removes the unwanted metal. Thus it can be seen that in cross section the familiar $n p n$ transistor structure is built up. All the regions reach the surface of the slice, the epitaxial layer itself acting as the collector of the transistor.

N+ REGIONS

The description of the silicon planar epitaxial process as applied to i.c.s above is considerably

UNWANTED METAL ETCHED
LEAVING CONTACIS

(k)

Fig. 1. Processes in the manufacture of a transistor by the silicon planar process.

Fig. 2. Schematic drawing of an actual i.c. transistor.
simplified. In practice the first diffusion is not the base diffusion but a diffusion of n type material into the p type substrate before the epitaxial layer has been grown, forming an $n+$ region (Fig. 2).

This diffusion takes place under the collector region of the transistor and will of course be covered over by the epitaxial layer. It is therefore called the "buried layer" and its function is to combat the collector resistance problems which arise from having the collector in such a configuration.

Two other $n+$ regions will be seen. One is the actual emitter diffusion, the other a diffusion which takes place simultaneously at the position of the collector contact to reduce contact resistance.

OTHER COMPONENTS

If a diode is required in the circuit, a transistor is made as above, and then one of its $p n$ junctions is simply short-circuited to leave a diode junction.

Capacitors, provided they are of small value, can be formed from diodes by employing the capacitative properties of the $p n$ junction. Resistors, too, are easily formed. They are merely p type diffusions in the epitaxial layer of varying length and thickness.

ISOLATION

All the components above-transistors, diodes, capacitors and resistors will be formed in the same epitaxial layer of the same i.c. chip. They will therefore be electrically interconnected through this layer as well as by the wiring on top of the slice. Clearly, these short-circuits are unacceptable in i.c. chips but the amazing versatility of the $p n$ junction comes to our rescue once again.

A p type "ring" is formed by diffusion around the position of each component by diffusion. The diffusion takes place early in the manufacturing process-between the buried $n+$ diffusion and the base diffusion-and penetrates the epitaxial layer so deeply that it reaches the p type layer underneath it. Thus a "shell" of p type material surrounds each component.

Holding a 120 component decade counter chip.
When this is connected to a negative poiential, a reverse biased $p n$ junction is formed between it and the epitaxial layer and the short circuits are eliminated.

ENCAPSULATION

Each i.c. on the slice is tested before the slice is broken up into individual, identical chips each of which is bonded to a supporting "header" in preparation for packaging. The package will protect the tiny delicate i.c. chip and enable it to be easily connected to circuits in the outside world.

There are several types of i.c. packages available, the more usual ones being the TO-configurations (like conventional transistor housings) and the dual-in-line (d.i.1.) configurations which are rectangular blocks of plastic. The metal "flatpack" system is also available.

MOS DEVICES

Until now only bipolar i.c.s have been discussed, but there also exists a i.c. technology

An enlarged view of an i.c. chip.

parallel to, and employing, field effect transistors (f.e.t.s). These are the metal-oxide-silicon (MOS) devices. There are three contacts. source, gate and drain in f.e.t.s, roughly corresponding to the emitter, base and collector respectively in bipolar devices.

Here, however, the resemblance ends. Because of the different principles on which MOS devices operate, they can be made considerably smaller than bipolar devices of similar function. This arises partly because no isolating channels between components are needed. The fact that the device doesn't need an epitaxial layer either makes some stages of the manufacturing processes easier but the device has certain special problems associated with it, particularly concerned with the gate.
The design of the MOS makes is particularly suitable for digital applications, and it is very useful where size is at a premium. For example, the Sinclair Executive pocket calculator uses an MOS chip containing 7,000 transistors. (This calculator now costs less than $£ 30$).

CDI TECHNOLOGY

Although MOS devices are more suitable for some applications than bipolar devices, they are less suitable for other applications. Thus, until recently, no general technology has existed. However, several paths have been explored and the collector diffusion isolation (CDI) process, largely developed by Ferranti Ltd., appears to be an extremely promising one.

Already, using this technology which combines the advantages of the two previously mentioned technologies, Ferranti have introduced a t.r.f. i.c. tuner, the ZN 414 . This chip needs only a few external components to turn it into a radio receiver-yet the actual chip is only about $0.5 \mathrm{~mm}^{2}$ in area!

SPECIFICATION

In each stage of the manufacture of an i.c., precision work is required for the device to perform as specified. For example, the epitaxial layer in bipolar i.c.s must be carefully grown although it is only of the order of a hundredth of a millimetre thick, while exacting manufacturing techniques, indeed, are needed to form a silicon oxide layer about one ten thousandth of a millimetre thick for MOS device gates!

Even before the manufacture proper of an i.c., the amount of impurities in the silicon crystal to be processed must be known with little error. In an i.c., as in every other semiconductor device the semiconductor properties of the silicon depends on the extent to which it is "doped" with p and n impurities.

TEMPERATURE

The semiconductor properties also depend upon the temperature at which the device is

The Sinclair Executive pocket calculator.
operated and this is another critical factor which must enter its design.

For military purposes an i.c. has often to be designed to withstand an incredible temperature range-one of 180 degrees C is typical. This is equivalent to requiring the i.c. to operate below arctic temperatures and then, not long afterwards, at temperatures well above the boiling point of water! Commercial applications don't usually call on i.c.'s to be so rugged. They employ less tolerant devices with temperature characteristics more like conventional transistors.

LINEAR AND DIGITAL

All electronic devices-whether integrated or discrete-fall into two classes, those which are linear and those which are digital in operation. Linear devices have no particular electrical states of operation but instead function over a continuous range. Amplifiers, for example, are in this class-they must provide a faithful reproduction of a continuously changing input signal.

Digital devices; on the other hand, are designed to handle only particular levels of signal-usually only two levels in fact. Thus, at any time digital devices will be in only one of two states. Bistables are a good example of this type of device. Both linear and digital devices are found in i.c. form, but because the latter is the more important type, only it and the principles underlying it will be discussed.

An engineer works on a visual display unit which employs MOS memory chips.

BINARY OPERATION

The two states in digital electronics are usually taken to be an "on" or "high" state and an "off" or "low" state. In practice the high level will be of the order of a few volts (positive, with $n p n$ devices) and the low level about 0 volts.

So that we can perform calculations with digital systems we assign numerical values to the two states-the high state is " 1 ", the low state " 0 ". Using only these two numbers we can build up a counting system-called the binary system to distinguish it from our normal or denary counting methods using ten as a base.

LOGIC

If we can predict the output of a digital circuit i.e. whether the output will be " 0 " or " 1 " for a given input or combination of inputs at " 0 " or " 1 ", we say the circuit is operating logically i.e. we are using the principles of logic to get our results. Conversely, if we want to produce a certain output from a certain input or combination of inputs we can again use logic principles to tell us what basic circuit (called a logic element or function) or arrangement of basic circuits we need to achieve this.

If you have been wondering what i.c.s have to do with this, this is where they come in. There are only a few logic elements but large numbers of them are often needed to make a digital system. They can be regarded as the building blocks of digital devices, so each element must be as cheap as possible to manufacture and use.
Integrated circuits offer us, by the mass production methods of their manufacture real economy, and also reliability and a great complexity in a very small space. Thus they are ideally suited to the requirements of large digital systems.

DTL AND TTL

In most industrial fields, there is more than one solution to a given problem. It is no less true in microelectronics where there are several different ranges of i.c.s with the same logic function. The differences have arisen from the manufacturers' attempts to improve speed or power dissipation, say of a logic element, and it is really a matter of the customer deciding for himself what particular electrical characteristics are important in his digital systems and then deciding accordingly.

Thus we have in bipolar digital i.c.s, logic elements the active components of which are diodes and transistors using diode-transistorlogic (DTL) and also logic elements the active components of which are only transistors using transistor-transistor logic (TTL). Some other abbreviations for alternative systems the reader may find are RTL (resistor-transistor logic) and ECL (emitter-coupled logic). TTL is now used extensively and the others are seldom found.

USING I.C.S

Although i.c.s are internally far more complicated than transistors the constructor should find them considerably easier to work with than discrete components.

The same basic rules still apply to i.c.s as to discretes, and they include:
(1) Using soldering irons specifically adapted to such miniature work and soldering as quickly as possible. In fact, soldering problems can be largely eliminated if you use an i.c. holder.
(2) Checking that i.c. leads are correctly connected up and that no shorts are present at i.c. package connections.
(3) Checking power supplies especially in digital systems.

THE FUTURE-L.S.I. AND T.S.I.

In the future more and more electronic circuits will become integrated. In the predictable future there seems to be an era of total system integration (t.s.i.) where entire, almost ready to use, circuit systems are manufactured on a single chip.

We have seen the beginnings of this already with large scale integration (l.s.i.) techniques where much of the system is already integrated and needs relatively few discrete interface components to make it work. So, for as long as consumer demand continues, we can look forward to further exciting and spectacular developments in the world of the integrated circuit.

ACKNOWLEDGEMENTS

The author wishes to thank the following firms for theirhelp: Ferranti Ltd., Mullard Ltd., Sinclair Radionics Ltd., Texas Instruments Ltd.

For a newcomer to electronics, the prospect of building anything from a circuit diagram can be daunting. In this short series of articles it is intended to help newcomers by giving them practical information about components and also about methods of construction.
In this first part we take a look at resistors, capacitors, inductors, transformers and potentiometers. The second part is concerned with semiconductors and we will go on to see how to test the various components and how to assemble them together to make up a circuit.

RESISTORS

A resistor is a component which dissipates power, usually in the form of heat. Its use is summed up in the relationship called Ohm's law:

$$
V=I \times R
$$

where V is the voltage across the resistor in volts, I is the current through the resistor in amps and R is the value of the resistor in ohms. The symbols for a resistor are shown-in Fig. 1.1. Either we can use the resistor to change the voltage at a point in the circuit, or we can use it to alter the current at a given point.

The resistor's value can be determined from the coloured bands around it. There are three bands which give us this information (Fig. 1.2). The bands are coloured and each band corresponds to a number as shown in Table 1.1.

If the bands are brown, red and orange for example, then the value is $12 \times 1,000$ or 12,000 ohms; 1,000 ohms is usually called a kilohm or $\mathrm{k} \Omega$ while $1,000,000$ is called a megohm or $\mathrm{M} \Omega$. The last band indicates the tolerance, or variation, in the actual resistor value. Gold indicates a plus or minus 5 per cent ($\pm 5 \%$) tolerance while silver shows that it is plus or minus 10 per cent $(\pm 10 \%)$. If no band is present the tolerance is ± 20 per cent. Some older types of

[^3]

Fig. 1.2 The resistor and significance of the coloured bands

TABLE 1.1 Resistance Colour Code

Colour	Number	Multiplier
Black	0	$\times 1$
Brown	1	$\times 10$
Red	2	$\times 100$
Orange	3	$\times 1,000(k \Omega)$
Yellow	4	$\times 10,000$
Green	5	$\times 100,000$
Blue	6	$\times 1,000,000(\mathrm{M} \Omega)$
Violet	7	$\times 10,000,000$
Grey	8	$\times 100,000,000$
White	9	

Tolerance-no band $\pm 20 \%$, silver band $\pm 10 \%$, gold band $\pm 5 \%$, red band $\pm 2 \%$, brown band $\pm 1 \%$. Goid and silver are sometimes used as multipliers, they represent $\lambda 0.1$ and $x 0.01$ respectively.
resistor have the colours in the form of a general body colour (lst. number), one end another colour (2nd. number) and a spot or band in the middle (multiplier).

In general, the larger the resistor, the more power it can handle. The rating in watts can vary from $1_{8} \mathrm{~W}$ up to several watts. This power is simply the voltage (V) multiplied by the current (I) through it. Using Ohm's law we can say that the power (P) dissipated by a resistor is $P=V \times I=I^{3} R=\frac{V^{2}}{R}$ where R is the resistor's value.

There is no electrical disadvantage in using a resistor that is physically larger than required, only the disadvantage of increased mechanical size and possibly cost.

CAPACITORS

The old name for a capacitor was condenser, but the new name is more in keeping with its function. It has the capacity for storing energy. The simplest way of thinking about a capacitor is that it will pass an alternating current (a.c.) through it but not a direct current (d.c.).

The other important point is that if a d.c. voltage, say from a battery, is applied across a capacitor, ideally that voltage will remain there until either a component such as a resistor connected across it, or you happen to touch both ends simultaneously, when the capacitor will

Fig. 1.3 Symbols for capacitors (a) fixed (b) variable (c) electrolytic
lose its voltage by passing a current through you! In case this makes you decide to give up without going any further, I had better hasten to add that at most of the voltages we meet these days- $9,12,18$, or similar-no sensation will be felt at all. Beware, though, if the voltage should be a hundred or more it could be very dangerous. Various symbols are shown in Fig. 1.3.

A selection of resistors (above) and some electrolytic capacitors (below).

A selection of capacitors-a variable type is shown in the centre.

CONSTRUCTION

Basically, a capacitor consists of two plates separated by an insulating material called the dielectric. The dielectric may be air, paper, ceramic, polystyrene or any other suitable material. For larger values of capacitance an electrolyte is used for the dielectric and this has the property of greatly increasing the energy storage capability of the capacitor. A steady potential is usually necessary for these, and so on circuit diagrams the positive side of the capacitor is shown as an open block (Fig. 1.3.c).

Variable capacitors (Fig. 1.3.b) have rotating vanes separated by an air gap. The amount of overlap of the vanes, and therefore the capacitance, is then variable.

Capacitance is measured in Farads, although a one Farad capacitor would be very large indeed. Practically, capacitors are marked either in microfarads ($\mu \mathrm{F}$) or in picofarads (pF). There are a million picofarads in one microfarad, and a million microfarads in one Farad. Occasionally one meets nanofarads (nF) and one nanofarad is a thousand picofarads.

Some small capacitors are colour coded in a similar fashion to resistors (Fig. 1.4). The values can be worked out in pF from Table 1.1. The bottom two bands indicate the tolerance and working voltage.

Fig. 1.4 (a) Colour coding of a "banded" capacitor (b) an electrolytic capacitor.

a.c. signals from appearing in other parts of the circuit they are usually called radio frequency chokes (r.f.c.). Inductors may also be used with capacitors to form tuned circuits.

TUNED CIRCUITS

A tuned circuit (Fig. 1.6), consisting of an inductor L and a capacitor C, will, ideally, either pass one frequency and stop all others, or else will stop one frequency and pass the others. A measure of the selectivity of a circuit is its Q (for quality) factor.

At the resonant frequency (f_{0}, measured in hertz or cycles per second) the series circuit (Fig. 1.6.a) has a low loss but the parallel circuit (Fig. 1.6.b) has a high loss. When we talk about loss in this context we mean the ratio of voltage across, to current in, the circuit. This is also termed its impedance (Z). The impedance of specific components sometimes has another name, e.g. resistance (R) for resistors and reactance (X) for inductors and capacitors.

TRANSFORMERS

Transformers are used to modify alternating voltages or currents, and also to isolate one part of a circuit from another. Two transformers are shown in Fig. 1.7. We can denote everything on the primary, or input, side by the suffix " 1 ", the secondary, or output side, having the suffix " 2 "; T_{1} and T_{2} are the number of turns on the primary and secondary respectively. Then:

$$
\frac{V_{2}}{\bar{V}_{1}}=\frac{T_{2}}{T_{1}} \quad \frac{\mathrm{I}_{2}}{\mathrm{I}_{1}}=\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}
$$

and

$$
\frac{\mathrm{Z}_{2}}{\mathrm{Z}_{1}}=\frac{\mathrm{V}_{2} \times \mathrm{I}_{2}}{\mathrm{~V}_{1} \times \mathrm{I}_{1}}=\left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)^{2}
$$

In a transformer for converting mains voltage (240 volts) to a low voltage, say 6 volts, the

A selection of preset and standard potentiometers.

Fig. 1.7 Symbols for transformers-both are with laminated cores (a) with two winding (b) with a tapped secondary winding.
primary winding will have many turns of relatively fine wire while the secondary will have far fewer turns but of thicker wire to take a heavier current.

If the transformer is tapped (Fig. 1.7.b), a voltage will appear across each winding proportional to the number of turns in each section. The overall voltage across the secondary will still be in accordance with the relationship shown above. For any transformer its size will depend on the secondary current required. The larger the current the larger the transformer.

Some transformers (those used in the intermediate frequency [i.f.] sections of radios for example) are purchased with capacitors connected across the windings. This has the effect of tuning the transformer in much the same way as when we connected the inductor and capacitor together. This causes the transformer to be selective in the band of frequencies that can pass from input to output.

POTENTIOMETERS

The potentiometers that we meet are used as variable resistors or as potential dividers. Shown schematically in Fig. 1.8, they are made either of a high resistance wire wound round a former, or else they utilise a track made from a carbon compound. The slider (B or E) moves along the carbon track or coiled wire changing the relative resistance between A to B and B to C (or D to E and E to F). If B is connected to A, then we have a variable resistor from effectively zero up to the maximum value of resistance i.e. A to C.

Values are again in ohms but in addition we may have a linear, logarithmic or antilogarithmic variation in resistance as the spindle is turned. If unspecified, a linear type would normally be used. Logarithmic types are used for volume controls as the human ear responds to change in volume in a logarithmic, rather than linear way.

Fig. 1.8 Symbols for a potentiometer.
Next month: semiconductor devices.

An interesting electronic puzzle for all the family.

THis solo game is played electronically, and is derived from an old puzzle. Once the solution is seen, it is extremely easy, but until this moment it can be very puzzling. The whole unit is self contained, and can be handed to any one who wishes to try their skill.

A story leads up to the presentation of the puzzle, and the attempt at a solution is then made by moving switches, which are wired to produce a warning sound when an error is made.

STORY

Once upon a time a farmer was carrying a fox, a hen, and a sack of corn. When he reached the east bank of a shallow river he found that he could only carry any one item at a time in the small boat. His problem is to get the items to the west bank of the river safely.

If he carries the corn over first, thus leaving the hen with the fox on the east bank, the fox will attack the hen. If he carries the fox over first time, leaving the hen with the corn, the hen will eat the corn. On the other hand, if he carries the hen over to the west bank first, leaving the fox and corn together on the east bank, this is so far in order, and he can leave the hen safely on the west bank, and return to fetch the fox or corn. But now, if he carries the fox over; and leaves it with the hen on the west bank, the fox will attack the hen while he returns for the corn. Should he take the corn over at this stage, the hen on the west bank will eat it while he returns for the fox.

So what does the farmer do to transport his items, one at a time, with safety?

The problem may appear impossible, but a solution does in fact exist. It will be observed from the story that hen and corn, or fox and hen, may safely be on one bank together when the farmer is present, as he would of course prevent the danger to hen or corn, which may arise when he is not present.

CIRCUIT

The complete circuit diagram is shown in Fig. 1; TR1, TR2 and the associated components form an oscillator, and values were chosen in an attempt to produce a sound which might be looked upon as that made by a startled hen.

However, almost any two audio pnp transistors are likely to work satisfactorily in a multivibrator of this type, and none of the component values are critical. They may, in fact, be modified to change the sound produced, as may the battery voltage.

The switch network completes the circuit only when a mistaken move is made (e.g., fox left alone with hen) and this sounds the warning speaker.

In Fig. 1. all the switches are at the east bank

position. The problem is thus to move them all to the other position without completing the circuit. A maximum of two switches are allowed to be moved at one time, one being the farmer.

As example, if the farmer should take the fox across, the battery negative circuit is completed via A of $S 2, B$ of $S 3, C$ of $S 4$ and D of $S 1$, sounding the warning. (That is, hen is eating corn which is an unsatisfactory attempt).

SWITCHES AND LOUDSPEAKER

In the prototype the four switches were mounted on the removable lid of a plastic case of dimensions $160 \times 90 \times 50 \mathrm{~mm}$. A metal case is also suitable provided precautions are taken to ensure there is no shorting of the battery or other components against the case walls.

Four standard-size slide switches were chosen as these are inexpensive, robust, and more easily operated than miniature types.

Begin construction by making the slots and fixing holes in the front panel (lid) to accommodate the slide switches and then drill a matrix of holes to suit the loudspeaker. Glue (or screw) the latter in position and then secure the four switches. Now wire up in accordance with Fig. 2.

OSCILLATOR BOARD

The oscillator components were wired on a short length of standard tagboard, as shown in Fig. 2, a screw afterwards fixing this to the base of the case. The transistors should be soldered in last of all and a heatshunt used on their leads to prevent thenmal damage.

As mentioned previously, Cl and C2 need not be the same values, nor need the two transistors be the same type number. Reducing the values of R2 and R3 will raise the pitch, and increasing the values of Cl and C 2 will lower it.

Solder two flying leads to the tag board and connect these to the loudspeaker and solder the

Components

Resistors

R1 $5 \cdot 6 \mathrm{ks}$?	SEE
R2 100 ks ?	
R3 1 Ms 2	
All $\frac{1}{4} \mathrm{~W}$ carbon 10%	

Capacitors
C1 0.047 $\mu \mathrm{F}$
C2 $0.047 \mu \mathrm{~F}$
Trañsistors
TR1 AC128 germanium pnp or similar
TR2 AC128 germanium pnp or similar
Miscellaneous
S1, 2, 3, 4 d.p.d.t. standard slide switch 4 off)
LS1 80 ohm loudspeaker (65 mm dia.)
B1 9 volt PP4
Battery clips for PP4; plastic or metal case, $160 \times 90 \times 50 \mathrm{~mm}$; standard tagboard 3-way.
lead between board and S1. Finally solder the two battery leads in position and secure the board to the base of the case, and connect the battery. The battery can be held in position by means of a Terry-clip or a home-made aluminium bracket.

LABELS AND USE

Labels should be marked CORN, HEN, FOX and FARMER and placed near the appropriate switches.

Some embellishment would be possible for children, such as a panel drawn and painted with a river, with pictures for the corn, hen, etc., as in our heading design.

Though the "old story" was preferred, it would

Fig. 1. The complete circuit diagram for the Across the River puzzle.

MAROSS RIVE

Photograph of the completed prototype:

Fig. 2. The layout of the components on the tag board and complete wiring up details.

be possible to modify or up-date this. For example, the Corn, Hen, Fox and Farmer may become a Bomb, Violent Anarchist, Pacifist and Policeman respectively.

If the Violent Anarchist is left alone with the Bomb, he will explode it, while if Pacifist and

Violent Anarchist are left alone, the Violent Anarchist will attack the Pacifist. Though it is, of course, in order to leave the Bomb with the Pacifist, unattended by the Policeman.

Check that wiring is correct by following the moves already given. No warning is produced with all switches at the East Bank or all at the West Bank, or with Fox and Corn unattended either side, or with any combination where the Farmer is present.

SOLUTION

As with many things, this is easy when the secret is known. All start at the East Bank.
(1) Farmer carries Hen over, leaving Fox and Corn at East Bank.
(2) Farmer returns to East Bank.
(3) Farmer carries Fox to West Bank.
(4) Farmer returns to East Bank taking Hen with him.
(5) Farmer carries Corn to West Bank.
(6) Farmer returns to East Bank.
(7) Farmer carries Hen to West Bank.

A retailer discusses component supply matters.
A^{T} the end of September (when the birds migrate south in search of millionaire husbands) the British winter will soon be on us, between then and Christmas many thousands will join the ranks of the electronic hobbyist. This is hardly surprising when you weigh up the advantages.

All you need is the corner of a kitchen table, a few simple tools, some bits and pieces and an indulgent wife or mother. Then for a few hours a day you are a would be Faraday, Fleming, or Davey. Even if intially, your knowledge is nil, there are such excellent magazines as Everyday Electronics to guide you along the right lines.
We retailers naturally have a vested interest in keeping it that way. We know that inevitably we must lose a few novices by the sheer frustration of being unable to obtain the right parts easily and quickly.

BEGINNERS

It is with the beginners and
particularly the last few in mind, that I direct this article. With any hobby, a certain amount of patience is required and electronics is no exception, so let me assume that you're raring to go and just need a few vital components to get started. How do you set about it. A few of you may be fortunate enough to have some good shops locally but the majority will have to rely on mail order firms which brings me to my first point, which is this. No one firm will be able to supply 100 per cent of your wants and it is as well to accept that from the very beginning.
So your first task is to read through the more popular electronic magazines and purchase as many varied component catalogues as you can afford. I assure you this is a good investment and even if your outlay is a pound or two, spread over a year or so its fairly small, and many firms return their catalogue price when you make purchases. If you find all your wants in any one of them, try that firm out first, but be resigned to dealing with three or four.

Now to deal with the actual ordering. If the firm concerned enclose an order form-use it. It is quicker for them to deal with their own order forms than scraps of paper. If not, I suggest you buy a duplicate order book not smaller than $200 \times 120 \mathrm{~mm}$ from W. H. Smiths or Rymans. These have about 100 duplicate pages and carbon paper. Put your address at the top in block letters and then put down your requirements, with the quantity you require first.

If the firm has catalogue numbers use them, if not make sure your descriptions are adequate, i.e., if you order a pot, say if- its \log. or lin. do not forget to write down colours if applicable. Now carefully check prices and totals and if you pay by cheque do make sure (a) you sign it, (b) the date is correct, (c) that the words and figures agree.

DELAY

Don't be worried if a week or ten days goes by before the arrival of your goods, that excellent organisation the Post Office is very undermanned at present. One way of avoiding frustration is to plan ahead i.e., while you are constructing one project select your-next project and order the bits for that.

OPPOSITE CHARGES

I am told that I have left one or two things unexplained.
(1) Why do the tufts of the electroscope not fly apart until the charged plastic sheet is lifted off the table?
(2) Why does the hair of the head lift when a charged sheet is brought near it, but not actually touching?
(3) Why do all these static experiments work best in a dry atmosphere?
The first two questions are really the same question couched in different terms. But let's do experiments to see it.

Charge a plastic sheet by rubbing it with wool; prove it with the electroscope. Now lay the sheet down again-the tufts of the electroscope collapse. Remove the electroscope and pass the hand over the sheet, stroking it gently. Replace the electroscope and lift the sheet. The electroscope remains collapsed.

Stroking with the hand conducts away the charge

Fig. 1. On removing a charged plastic sheet the tufts remain extended.

Make a second tufted electroscope (it won't take long). Now put the discharged plastic sheet on a tall insulator, such as a vase or china mug, and on it put the two tufted electroscopes, just touching.
Charge another sheet of plastic film and bring it up close to one of the tufts. Both tufts will fly out, just what we would expect! Take the charged sheet awayboth tufts collapse. Fine-nothing odd about that. Now try this.

Bring the charged sheet near to one of the tufts again-both fly apart. Now holding the sheet steady, slide between the metal boxes of the electroscopes an insulator, such as a piece of glass or plywood about 50 mm wide. Leave it there and remove the charged sheet. The tufts stay up, Fig. 1.

What on earth has happened? Let us assume for the sake of argument that the charged sheet had a negative charge on it. The tufts nearest to it become positively charged.

As long as the two metal boxes were touching, the second tuft also had a positive charge, but when we insert the insulator the second tuft assumed a negative charge. Removing the charged sheet thus left the two tufts of opposite polarity attracting each other and hence unable to collapse.

You can prove that they are opposite polarity by bringing the charged sheet close to each tuft in turn and observing their different behaviour; one repelled by the sheet, one attracted by it, Fig. 2.

We can say then that when a charge is brought close to an insulator a charge of opposite polarity is induced on its surface. This is of vital consequence to electronics, since capacitors depend entirely upon this effect.

Fig. 2. Bringing a charged plastic sheet up to the two electroscopes shows that the tufts are oppositely charged.
When the charged sheet is lying on the table, an equal and opposite charge is therefore present on the surface of the table! We will return to this point another time, Fig. 3.
As for the third question, dry atmosphere, you can see that if the table and sheet have equal and opposite charges, there is a tendency for the negative electrons to migrate across the gap, thus cancelling out. This tendency is increased in a damp atmosphere. This, too, we will return to another time.

Fig. 3. A charged plastic sheet lying on a table top causes the table to acquire an equal and opposite charge.

2 Band SUPERHET TUNER...

A m.w. and l.w. tuner that can be used with almost any amplifier. Employing readymade i.f. transformers this tuner is easy to build but provides good sensitivity and selectivity.

Just right for beginners: This very simple and inexpensive dévice can be a great help to the housewife at this time of the year.

cyeryay cectronics JANUARY ISSUE ON SALE 18 DECEMBER

Fig. 1. The complete circuit diagram of the Transistor Assisted Ignition. Values in brackets are for the 12 V version.
that the capacitor (sometimes referred to as a condenser) be removed from the distributor and fitted into the unit (see "testing" and "installation' later).
The complete circuit diagram is shown in Fig. 1. The points are connected via switch S1a (in the position shown) and resistor R2 to transistor TR1. When the points are open, TR1 is cut off by R1, fed from the positive battery connection. Each time the points close the base of TR1 is connected to earth through R2 switching it into its conduction state. The current passing through the points is about 7 mA (13 mA for 12 V system), instead of the 3 amp or so normally required.

The current flowing through the collector of TR1 and R3 in turn switches on TR2, which in turn switches on TR3 thereby connecting the coil to earth every time the points close. Thus TR3 takes the place of the points and passes the 3 amps or so required by the coil. Diode Dl is necessary to protect TR2 and TR3 from high voltage spikes generated when the points open.
If Sl is switched to the "normal" position the points are connected directly to the coil. In this position the capacitor is connected across the points in the conventional manner, except that the capacitor is housed in the diecast case instead of the distributor.

CONSTRUCTION

The prototype unit was housed in a diecast aluminium case measuring $115 \times 90 \times 50 \mathrm{~mm}$. All the components are mounted on the lid of the case as shown in Fig. 2. The exact positioning of the components is not critical and can be estimated from the full-size photograph of Fig.
2. Begin construction by drilling all the components' fixing holes in the lid.

The wire attached to the capacitor is taken to an insulated terminal and screwed into position. Make the insulated terminal by bolting a 4BA nylon screw and nut through the lid and then screwing a 25 mm 4 BA tapped metal spacer onto the nylon screw thread projecting above the nylon nut.

The diode and power transistors must be mounted very carefully on their mica washers; insulating bushes must bè used for fixing TR2 and TR3; check after fitting that they are properly insulated from metal lid. If in doubt use two mica washers on the transistors, or mica washers from larger power transistors.

All wiring must be mechanically fixed to each solder point and soldered to a high standard. Under the adverse operating conditions which this unit has to work poor soldering will very quickly give rise to failure.

The capacitor) Cl must be removed from the distributor and mounted without modification to its leads, the capacitor can then easily be returned to the distributor if required. All distributor capacitors are bolted to earth with a metal clip. The lid must be drilled to suit the particular capacitor fitted to the car.

TESTING

No car owner will willingly fit an untested unit to his car, nor allow the capacitor to be removed from the distributor. Fortunately the unit can easily be tested without removing the capacitor.

First remove the centre lead from the distributor and fix it with adhesive tape so that the

Components
 Resistors
 R1 1 ks ?
 R2 $4 \cdot 7 \mathrm{k} \Omega$ (10kS, 12 V)
 R3 100s? (220s $2,12 \mathrm{~V}$)
 All $\frac{1}{4}$ watt $=5 \%$ metal oxide

Semiconductors

TR1 BC214 silicon pnp
TR2 TIP49, TIP50, or TIP53 silicon npn
TR3 TIP53 silicon npn
D1 1 S415 or similar 4 amp 450 V stud cathode type

Miscellaneous

S1 double-pole double-throw 250 V 3A with insulated toggle. Diecast aluminium box, $115 \times 90 \times 50 \mathrm{~mm}$; 5 way tag strip; mica washers and bushes to suit TR2 and TR3; insulating washer/bush to suit D1; 25 mm long 4BA tapped metal spacer; 4BA nylon nut and bolt; 6BA nuts, bolts and washers (6 off each); 6BA 6 mm long spacers (2 off); rubber grommet; solder tags, 2BA (2 off) 4BA (1 off).

Fig. 2 (above). Position and wiring up details of the components on the lid of the diecast box. Wires leave the case through the grommet.

Photograph of the completed unit.
metal end is about 6 mm from some earthed point on the car. This will enable you to see when a spark is generated.

Secondly disconnect from the ignition coil, the wire leading to the contact breaker. This connection may be labelled CB on some coils. Twist the brown lead from the ignition unit onto this connection. The red lead is twisted onto the other side of the coil without removing the existing wiring. Thirdly, connect the green wire to an earth point such as under the mounting clip of the coil. The system is now ready to test.

Switch the unit to "assisted" and switch on the car ignition, then dab the orange wire on and off an earthed point. Each time the orange wire breaks contact from earth it should make a spark leap from the centre lead of the coil to its nearest earth point 6 mm away.

The "normal" switch position may be tested the same way, but don't touch the bare end of the orange wire. Use an insulated screwdriver to push the wire firmly against the earth point for this test. When this test is complete turn the ignition off and reconnect the two leads so that the car is ready for use again.

INSTALLATION

The unit is installed in a cool part of the engine compartment not forgetting to mount it
on some form of rubber shock absorbers. It is very important to remove the capacitor (condenser) from the distributor and refit it into the unit immediately prior to installation.

Due to the inherent voltage drop of about $1 \cdot 2$ volts across D1 and TR3 the system may not be able to provide a good enough spark for cold starting or for starting with a low battery voltage. This voltage drop will be no more than that experienced with a normal system operating with worn points. (The points should be cleaned, or a new set installed, and adjusted before installation.)

To overcome the starting difficulty simply switoh to the normal position during very bad weather or when the battery voltage is low. Because the points will have been saved from electrical wear by the ignition system they will be able to provide a much better spark than would be the case had the normal system been in continual use-thus in an indirect way the system can help with cold weather starting. It is not advisable to switch over to the assisted position with the engine running.

There is no doubt that with this system chang. ing the points and retiming can be carried out at very much greater intervals than would otherwise be the case, thus saving the cost of the unit in a relatively short period.

EVERYDAY ELECTRONICS "MULTIMETER" COMPETITION

Winners

First: (Chinaglia Dino multimeter) Mr. Frederick J. Pavey, Petersfield, Hants

Second: (Chinagla Minor multimeter) Mr. David E. Young, Ashford, Kent.

Third: (Chinaglia Minor multimeter) Mr. K. Reed, Bracknell, Berks.

Runners-up: (each wins a Chinaglia Cito pocket multimeter) Mr. W. Barry, East Boldon, Co. Durham; Mr. I. Brownlee, Stranraer; Mr. M. Coles, Clynder, Dunbartonshire; Mr. 1. Juliff, Livingston, West Lothian; Mr. P. Kimmance, Horton, Bristol; Mr. J. Malham, Selby, Yorks; Mr. C. Mannix, Liverpool; Mr. J. Noonan, Stoke Poges, Bucks; Mr. N. Patrick, Orpington, Kent; Mr. R. Thomson, Salford, Lancs.

Left: Mr. Frederick J. Pavey (right) being presented with the Dino multimeter (1st prize) by the editor, Mr. F. E. Bennett (left) in the presence of sponsor Mr. Alberto Coniglio (Managing Director, Chinaglia U.K.). Right : runner-up, Mr. David E. Young receives his Minor multimeter.

Thus a single transistor provides two stages of gain and Fig. 2 shows the effective circuitry around TRI during r.f. amplification and detection (Fig. 2a), and during a.f. amplification (Fig. 2b).

Referring to Figs. 1 and 2, L1 is the tuned winding on the ferrite aerial, and C2 is the tuning capacitor. The high impedance signals across Ll are matched into the low input impedance of TR1 by L2. Capacitor C4 provides d.c. blocking.

Resistor R1 is the biasing resistor for TR1, and $\mathrm{L3}$ is its collector load. Components R2 and C3 form an r.f. decoupling network, and prevent the r.f. signal from entering other parts of the circuit via the supply lines.

Coils L3 and L4 form a wideband transformer, and unlike L1 and L2 which only operate over a narrow range of frequencies at one time, these operate satisfactorily over the entire m.w. band.

The signal across L3 is therefore induced into L4, and from here fed via C5 to an ordinary diode detector, D1. Capacitor C4 smoothes the positive r.f. half cycles remaining after detection, leaving an insignificant d.c. bias, and the required audio signal.

In Fig. 2 there are two capacitors marked "C4", but if reference is made to Fig. 1 it will be seen that this is in fact one component, and that it is used twice. It will also be seen that the audio signal across C 4 is coupled into the base circuit of TR1 via L2.

At audio frequencies L3 has a negligable reactance, and appears as a virtual short circuit, and can be ignored. Resistor R1 still operates as the biasing resistor, and R2 now becomes the collector load for TR1.

The reactance of C 6 is too high at audio frequencies to have any noticeable effect on the circuit, and can also be ignored. This leaves the simple a.f. amplifier circuit of Fig. 2b. The amplified audio signal appears across R2; and is coupled via C7 to the volume control, VR1.

REGENERATION
The two main disadvantages of this type of circuit are that the r.f. amplification is fairly low, there being only one stage of this, and the selectivity (the ability of the receiver to reject signals in close proximity to the desired one) is poor as there is only one tuned circuit. Both these can be improved by adding regeneration, and this is the purpose of C3.

Everyday Electronics, December 1974

Fig. 1. The complete circuit diagram of the receiver.

This merely couples some of the amplified r.f. at TRI collector back to the tuned circuit, where it is sent back through the circuit for amplification for a second time. This differs from reflexing in that the signal has not been detected, and is still at r.f.

There is a limit to the amount of regeneration that can be applied, and if this is exceeded, TRI will oscillate, and the receiver will be unable to resolve signals properly. Capacitor C3 has an extremely low value, and merely consists of two pieces of wire in close proximity to one another.

AUDIO AMPLIFIER

The amplifier is quite conventional, and has a high gain common emitter input stage, TR2, a common driver stage, TR3, and a complementary emitter follower output stage, TR4 and TR5.

A break contact on the earphone socket disconnects one of the speaker leads when the earphone plug is inserted. Any type of earphone can be used, although ideally a magnetic phone of about 60 to 250 ohms impedance should be used.

WIDEBAND TRANSFORMER

There is no ready made component suitable for use as the wideband transformer, and this is home made using an FX1593 ferrite ring, and two lengths of $38 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. enamelled copper wire. Details of this are shown in Fig. 3.

There is no need to keep the two windings particularly neat, but an attempt should be made to keep the turns of each coil running in the same general direction along the core.

Fig. 2. The same circuit being used to amplify r.f. and then detected r.f. (a.f. slgnals).

Components....

Resistors

R1	1MS	R6	470s2
R2	$2 \cdot 2 k s 2$	R7	10 kS
R3	2.7kS	R8	56kS)
R4	1-5MS?	R9	$1-2 \mathrm{k} \Omega$
R5	4.7ks 2	R10	470s?
All $\div W \pm 10 \%$ carbo			

Capacitors

C1 Trimmer section of C2
C2 208pF (front part of 208-176 Jackson 00 , with trimmers)
C3 See text
C4 0:01, F
C5 0.047, F F Mullard C280
C6 $0.022_{1} \mathrm{~F}$
C7 $1,1 \mathrm{~F}$ elect. 16 V
C8 $100 \mu \mathrm{~F}$ elect. 10 V
C9 $0 \cdot 22, \mathrm{~F}$ Mullard C280
C10 1nF polystyrene
C11 0.47ıF Mullard C280
$\left.{ }_{4}^{\text {SEE }} 1\right](1)$

C12 100 F F elect. 10 V
C13 220,"F elect. 10 V
Semiconductors
D1 OA91
TR1 BC107 silicon npn
TR2, 3 BC109 silicon npn (2 off)
TR4 BC184L silicon npn
TR5 BC214L silicon pnp
Miscellaneous
VR1 5 kS) log. pot with switch (S1)
L1/L2 Denco MW/5FR ferrite aerial
L3/4 FX1593 ferrite ring and 38 s.w:g. enamelled copper wire
LS1 25 ohm loudspeaker ($150 \times 100 \mathrm{~mm}$ size used in prototype)
B1 9V PP3 battery and clips
SK1 3.5 mm jack socket with switch and earphone with plug to suit, control knobs (2 off), 0.1 inch matrix component board $150 \times 65 \mathrm{~mm}$, materials or ready made plastic case, connecting wire, 6BA fixings.

THE CASE

The case is home made from 6 mm plywood and 12 mm square timber, Fig. 4 shows constructional details of this, and also details of the aluminium front panel. The various wooden parts of the case can be either pinned or glued together (or both).

It is advisable to make the speaker cut-out before assembly. It can be made using a fret saw. A piece of speaker fret is glued behind this, and then the speaker glued to the fret.

The front panel is glued to the four corner pieces. The back of the case is made from 6 mm ply, and is drilled so that four wood screws can pass through this, and into the four corner pieces, so holding the back in place. The case is finished by being covered with a self adhesive plastics material (Contact, Fablon, etc).

A mounting bracket is required for the com-
ponent panel, and this is made from 18 s.w.g. aluminium. This fits behind the front panel, and is held in place by C2, VR1, and SK1 when these are mounted on the front panel. For the time being these are mounted on the bracket. The component panel is mounted on the bracket by two 6 mm long 6BA bolts.

COMPONENT PANEL

A diagram showing the component side of the component panel, and all external connections is given in Fig. 5. The ferrite rod is tied to the board by two tethers made from thin p.v.c. sleeving. The coil former is slid along the rod to one end, as shown in the diagram. The coil assembly L3/L4 can be secured to the panel in the same way as the ferrite rod.

The other components can then be mounted, and their leadouts bent over at right angles on the reverse side of the panel. These are then soldered together, as shown in the diagram, the underside wiring is shown dotted. Where leads pass close to each other, and there is a danger of a short circuit, one of the leads should be insulated with p.v.c. sleeving.

At any points where interconnecting leads are too short to reach one another, extension leads made from thin.tinned copper wire (about 22 s.w.g.) are used to join them.

Connections to SK1, VR1, etc. can then be made. The leads to LSI are about 300 to 450 mm long. The two insulated leads forming C 3 are each about 8 to 12 mm long, and preferably of single core wire. Cl is ready wired across C2.

ADJUSTMENTS

Before mounting the component assembly in the case, the unit should be checked for mistakes, and then turned on.
Initially, the two wires comprising C3 should be kept well apart. Rotating the spindle of Cl should enable several stations to be received. The two wires forming C 3 should now be brought together. If this causes an increase in sensitivity, the two lead outs of L2 should be swopped.
It should be checked that the frequency coverage is correct. If this is found to be incorrect, adjusting Cl should enable this to be ammended. The unit can then be mounted in the case. The battery is wedged between two corner pieces.

Capacitor C3 can then be adjusted. The two wires are brought as close together as possible without either quality seriously breaking up, or the circuit oscillating (which is heard as a whistle as the receiver is tuned over a station).

It may be possible to twist the wires together as shown in the diagram, but in many cases they will only be able to be brought to within 25 mm or so of each other. They can in this circumstance, be taped to the side of the case to ensure that they are not accidentally moved once correctly adjusted.

New products and component buying for constructional projects

SHOP TALK

By Mike Kenward

When is a toy not a toy? That is a question one could ask about the Fischertechnik range of construction kits. We recently received an invitation to the launch of their range in this country (the product is of German origin) and wondered quite why they thought an "electrouic" magazine would be interested. It turned out that they produce electro-mechanical and electronic kits that can be used to control and drive the models made from the basic kits. The electronics are supplied in module form with sensors-light sensitive, heat sensitive etc.supplied as plug-in parts. A modular relay is also provided to drive the model motors or lights.

The basic construction set (suitable for age 6 upwards) costs $£ 12.05$ and to this can be added a motor kit $£ 6-95$ and an elec-
tronics kit $£ 14: 55$, however, the range and versatility are vast.

The kits are made of moulded nylon (non-toxic) are guaranteed against breakage-the electronic parts are also said to be protected against damage from wrong connection. They should be available from your local toy shop by the time you read this.

U/trasonic Remote Controller

The receiver for the Ultrasonic Remote Controller requires one or two parts that are not generally available-the TAA 930B integrated circuit and the ultrasonic transducer.

Phoenix Electronics Ltd, can supply the i.c.-they do advertise in our pages-the i.c. costs $£ 1 \cdot 23$ including VAT.

The transducer costs $£ 3 \cdot 75$ and it would be a good idea to get the " R " and " T " versions in one go (receiver and transmitter) since the " T " will be required for the construction detailed next month. Total cost for the two including p. and p. and VAT is $£ 7-00$. They come from Hall Electronics, 48 Avondale Rd., Leyton, E17.

Other components in the receiver should not be difficult to get-almost any metal case could be used to house the unit.

M.W. Reflex Receiver

Once again just a couple of unusual components are required for the M.W. Reflex Receiver. The ferrite ring is available from Henry's Radio and the ferrite aerial from Denco for 66p plus VAT, plus postage-a total of

85p. Denco are at 355/9 Old Road, Clacton-on-Sea, Essex, CO15 3RH.
The case for the receiver can be home made or the complete unit could be housed in one of the plastic cases that are generally available.

The River

None of the components specified for The River should be difficult to get hold of. The 75 or 80 ohm speaker may need looking for, but most of the larger supplies should be able to provide it for you.

The tagboard used to mount the components is becoming rather outdated but does provide a simple and satisfactory base for this unit.

Ignition System

As regular readers of this page will know after the publication of the original Transistor Assisted Ignition system A. Marshall ran out of the TIP49 transistors and have still not been able to replenish their stocks. This means that two TIP53 transistors have to be used instead - at an increase in cost.

Once Marshalls receive some more 49's they will resume supply at the lower price ($£ 2 \cdot 85$); until then, the cost of the semiconductors (diode and all transistors) from them is $£ 3 \cdot 80$ including postage and packing and VAT. Since it is very difficult to say quite when supplies from the manufacturers will resume we suggest readers send the larger amountthose who send off in a few months time may get a refund!

JICK FIDA \& FADILY...

Now there's Doram, you need never wait for electronic components.

7-day service.

Buy the new Doram catalogue and you could have your components within 7 days of our receipt of your order.

If you don't, you'll have your money back and no questions ásked.

What you won'tget is a tedious wait. Which goes on. And on. And on. And on. Youknow just where you are with Doram.

Millions of components.

Doram is a brand-new deal for serious amateurs. It's a complete door-to-door components service operated by mail order.

You buy the Doram catalogue for 25 p lthat's a yearly reference book for the price of a pintl and then you orderfrom it.

We're big enough to offer you stocks of millions of components on over 4,000 product lines.

And so confident of our service thatif we can't supply the part you want within 7 days of receiving your order, we'll give you your money back. Immediately.

No-quibble guarantee.

It's just about impossible to buy a defective parffrom us.
Because our checking is so pains-taking.

But even if the unthinkable does happen-and you're unlucky-then we'll still make you happy quickly.

Because we offera noquibble replacement part seivice.

And our guarantee is guaranteed by the fact that we belong to the biggest electronics distribution Group in Britain.

All branded goods.

All goods supplied are branded goods. Made by bigname manufacturers like RS, Mullard,SGS-ATES,Ferranti,

Doram brings the amateur the sort of service only professionals have enjoyed before.

So don't delay. Use the coupon. Send today for your first Doram catalogue. It can make your life a whole lot easier.

For 25p that can't be bad, can it?

SUPPLIERS OF SEMI-CONDUCTORS TO THE WORLD

EX. G.P.O.

Telephone Comer

COMPLETE TELEPHONES Normal Household Type only 1
TELEPHONE DIALS
Standard Post Office type, Guaranteed In only 95 working order.

4P POST \& PACKI G 16 D

Ote Unmarked Untested Paks

B1 50 | Germanium Transistors |
| :--- |
| PNP. AF And AF | 50 p B66 150 Germanium Dlodes $\quad 50 \mathrm{p}$

B83 $200 \begin{gathered}\text { Transistors; manuiacturers } 50 p \\ \text { reiects, } A F \text {, } R F \text {, } \text { SIl and }\end{gathered}$

OA202.
Bis $100 \begin{gathered}\text { Sill Dlodes sub. min. } \\ \text { ingit and IN916 types }\end{gathered} \quad 50 \mathrm{p}$

H87 $10 \begin{gathered}\text { 3819N Channet FETs } \\ \text { plastic case type }\end{gathered} \quad 50 \mathrm{p}$

Make a rev counter

for your car
The 'TACHO BLOCK'. Thie encapsulated block will turn any 0-1mA meter Into a linear and accurate rev. counter for any car with normal coll ignition syafom.
$\cos ^{4} 11$ peach

Electronic Transistor Ignition £6.00 Conplet.eth
Now In kit form, we offer this "up-to-theminute" electronic lonition system. Simple to makio. fuil instructions supplied with these ventional switchability, burgiar proof lock-up and automatlic alarm, nogative and positive compatablily.

Extension Telephones

Ideal for childrens toys 70 p eaçh P. $\&$ P. 25po

New X Hatch

Our new vastly Improved Mark Two Cross Hateh Generator is now available Essential for alignment of colour guns on all colour T.V. receivers. Featuring plug in ic's case is virtually unbreakabie-ideal for the englneer's toolbox-only measures $3^{\prime \prime \prime} \times 55^{1 /} \times 3^{\prime \prime}$. $\begin{gathered}\text { Ready bullt } \\ \text { unit } \\ \text { only }\end{gathered} \mathrm{L}=1 \mathrm{i} \quad$ Complete $\mathrm{kft}=0$

> (Anclydes o. \& but no bsteries)

We have lust received a large consionment of LM380 IC's. These are specially selected to a hlgher grade and are marked with the number SL60745.
This fantastic little 3watt audio IC only requires two capacitors and two potenllometer to make an amplifier with volume and rone control. The quality is good and has to be heard to be
Our completo with special 5 ea data and prle c projects boak over 1,000,000 Iransistors

in stock

We hold a very large range of fuliy marked, tested and guaranteed translators, power translstors, dlodes and rectifters at very competitive prices. Please send for free catalogue.
Our very popular 4p transistors TYPE "A" PNP SIllcon alioy, TO-5 can TYPE "B", PNP Silicon, plastic oncapsulation TYPE "E"' PNP Germanium AF or RF
TYPE ' ${ }^{\prime}$ "' NPN Sillcon Dlastic encapsulation TYPE "G" NPN sillicon slmilar ZTX 300 range

RELAYS FOR
varlous types
p \& p $27 p$ - 1 UHF TV Tuner Units
Brand new by a famous manufacturer

Plastic Power

 TransistorsNOW IN

TWO

RANGES

These are 40W and gow Silicon Plastic Powor Transistors of the very iatest design, available prices of all time. We have been seliling these successfuily in quantity to all parts of the world and we ape proud to offer them under our Tested and Guaranteed terms.
Range 1. VCE. MIn 15. HFE MIn 15.

Prease state NPN or PNP on order.
High Speed Magnotic Counters 4 digit (nonresef) 24 V or $48 \mathrm{~V} 4 \times 1 \times 1 \mathrm{lt} 33 \mathrm{p} p \mathrm{~F} \mathrm{p} 5 \mathrm{p}$.

INTEGRATED CIRCUITS

We slock a large range of l. Ce at very com petitive prices (from 10p each). These are all Ifsted In our FREE Catalogue, see coupon below.
METRICATION CHARTS now avallable This fantastically detalled conversion calculator carries thousands of ciassified references between metric and British (and U.S.A.) measurements of length, area, volume, liquid measure, welghts etc.
Pocket Size 12p Wall Chart 18p
LOW COST DUEL IN LNE I.C. SOCKETS 14 pin type at 95 p each Now new low profile 16 pin type at 17p each type

BOOKS

We have a large selection of Reference and Technical Book In stock. Detalis are In our the coupon below. N.B. Books are vold of V.A.T.

Send for lisfs of publicalions

Our famous P1 Pak

is still leading in value
Full of Short Lead Semiconductors $\&$ Etectronic Componenls, approx. 170 . We guarantee at least 30 realy high quatity factory marked
Transistors PNP $\&$ NPN, and a host of Dlode $\&$ Rectlflers mounted on Printed Circult Panels. identification Chart supplied to glve somb Information an the Transistors.
Please ash for Pak P.1. only $5 \mathrm{D}_{\mathrm{P}}$

Please send me the FREE Bt-Pre-Pah Catalogut enchose large SAE whth 50 stamp

NAME

ADDRESS

Please add current VAT rate MINIMUM ORDER 50p. CASH WITH ORDER PLEASE. Add 15 post and packing por order OVERSEAS ADD EXTRA FOR POSTAGE

The Extraordinarp Experiments OI Proiess Eversure by \#nthony Jomp Bassett

Professor Ernest Eversure, or the Prof. as his friends call him, has been experimenting in electronics for more years than anyone can remember and we thought that you might like to hear of, and perhaps repeat, some of his extraordinary experiments. Anthony J. Bassett will be recounting some of the experiments every month so why not follow the Prof's work and learn along with young Bob, his friend.

A5 the robot drew even nearer to him, the startled Professor saw that the unusual movements caused by Bob's oscillator seemed to be making the robot perform a strange dance. Despite this, the robot seemed to be keeping to its original instructions. It seemed to dance towards the Prof. in time with Bob's tune. It gently placed the ohm-meter on the work bench, then danced off and disappeared amongst the equipment at the other end of the room.
The Prof. interrupted Bob's musical attempts, which were now taking the form of a series of gently rising and falling notes, rather like the electronic music sometimes heard from the soundtrack of a science-fiction fantasy film, and pointed out to him that the ohm-meter had now arrived.

What the robot had brought was actually a multimeter but Bob picked it up and switched it to a resistance range. He soon found, by applying the test probes of the meter to various pencils, that each one did in fact have a different resistance (as deduced from his experiments described
in the last issue) and that by sliding the probes to different distances apart along the pencil line on his piece of Paxolin, different resistance readings appeared on the meter scale.
Meanwhile, the Prof. had prepared a few more experimental resistors similar to the ones described earlier. He had painted graphite paste around the solder tags, but had not yet put a carbon conducting track across from one tag to the other.
"Now," said the Prof., "We can use these to produce a number of different values of carbon resistor."
"Can I do some?" asked Bob. The Prof. gave some of the partly made resistors to Bob and together they began to make a variety of resistors.

Bob painted resistors with wide tracks between the tags, medium tracks, and narrow tracks down to about 1 mm . Some of the tracks were made up of several layers of mixture and some consisted of ouly one thin layer. The Prof. had meanwhile made up another mixture of graphite and quick-drying varnish using more graphite so
that the mixture was a thick paste which could be spread like butter. He spread a thick layer of this from one tag to the other about 3 mm wide by 3 mm deep on some resistors. Bob painted a thin zig-zag line from one tag to another.
After a break for lunch the pair returned to the now dry resistors and Bob began using the multimeter to measure the resistance values of the various resistors they had made.

The resistors covered a really wide range of values. The lowest value was the one with the thickest, deepest track and this measured 12 ohms. The highest value was the one with the thin zig-zag track and this measured about four megohms. Between these were resistors of a variety of values and Bob knew immediately that it should be possible to make any value of resistor from a few ohms up to a few megohms, quite easily.
"Suppose I wanted to make a 15 ohm resistor, Prof?" asked Bob. "Could I alter the 12 ohm resistor sufficiently?"
"Yes," said the Prof, "Just use a craft knife to scrape off some of the mixture and the value will rise."
Bob connected the meter to the 12 ohm resistor and checked the resistance reading. He left the meter leads connected while carefully scraping away thin layers of
graphite mixture. As the mixture was removed, the meter reading gradually changed ... 12 ohms... 13 ohms ... 14 ohms ... 15 ohms ... $15 \cdot 5$ ohms . . "Whoops! I've taken too much off!" said Bob, looking wryly at the meter reading. The Prof. picked up a very soft lead pencil and carefully rubbed the surface of the resistor, using very light pressure. Gradually, the meter, reading crept back down to 15 ohms.
"Now, let's try some high value resistors. We should be able to trim the values of all these resistors to our preferred values," the Prof. stated. He changed the range on the multimeter and connected it to the four megohm resistor. Bob saw that the meter needle moved to the same reading as previously. Using a typist's ink eraser, the Prof. very carefully rubbed the fine carbon track, using very light pressure. The meter reading altered slowly as he did so, until a reading of. five megohms was obtained.
"Prof.," said Bob, "The carbon line on that four megohm resistor is very thin and while you were altering it to five megohms suppose you rubbed a little too hard and broke the line?"
"If I broke the line,". replied the Prof., "It would break the electrical connection so that no current would flow through the resistor. The meter would then read open-circuit. Let me demonstrate." The Prof. rubbed the line with the eraser and as he did so, the meter needle moved even higher until at one point the carbon track was severed and the meter swung to read open-circuit.
"Now," said the Prof. "We can repair the break in the carbon track quite easily by rubbing it with a hard pencil, or by using more graphite mixture." He selected a 8 H pencil and rubbed it carefully across the track at the point of the break. The meter needle began to move and gradually crept back to five megohms.
"If we wanted a lower value resistor, say one megohm, just by continuing to rub with the pencil, the value will become lower." The Prof. demonstrated by continuing to rub with the pencil. The meter reading went back to four then lower, three, two, one megohm. "To go much lower, we would have to use a much softer pencil," observed the Prof. He used the eraser to bring the resistor up
once again to five megohms.
"It all looks so simple, Prof.," remarked Bob. "But I'm sure I would not find it so easy to alter such fine lines to the accuracy you have just demonstrated!"
"The higher the value of the resistor you are making and the finer the carbon track which you must produce, the more difficult this becomes," agreed the Prof. "But if you start off by making resistors of a few kilohms, rather than a few megohms, it is much easier to do."
"I see. So if I practice first with some of these other resistors

One of the Prof's experimental resistors. This one uses a zigzag track to obtain high resistance
with the wider tracks, I could tackle more difficult ones later."
"Now that we can make resistors of almost any value," said Bob, "we should be able to connect a few of them together to make a simple note selector for my musical note generator. Something similar to a keyboard!"
"Yes," agreed the Prof. I will show you how to build a note selector, using a number of resis-

The value of the resistor can be raised by rubbing away the track
tors which we can make and connect together on a single piece of printed circuit board or Paxolin. It will enable you to use the oscillator to produce melodies or to produce musical notes which can be tape-recorded to make some electronic sound effects!"
At this moment an amazing sound effect became apparent in the laboratory. An electronic tone rising and falling like a siren.
"Oh, no!" wailed Bob. 'I know that sound. It is the alarm signal for your latest experiment. It's out of control and could be dangerous. We cannot go near it and if we don't stop it soon it could synchronise the brain wave patterns of everyone nearby. What can we do, Prof.? "Think of something quickly!"
To Bob's amazement, the Prof. seemed impervious to the blaring alarm signal and completely unaware of the obvious danger. Could it be that the experiment had already begun to affect his brain wave patterns?
Continued next month!

Oh, no! wailed Bob. I know that sound. It is the alarm signal for your latest experiment."

 previous knowledge no unnecessary theory no "'maths"

RAPY

BUILD, SEE AND LEARN step by step, we take you through all the fundamentals of electronics and show how easily the subject can be mastered. Write for the free brochure now which explains our system.

1/ BUILD AN OSCILLOSCOPE

You learn how to build an oscilloscope which remains your property. With it, you will become familiar with all the components used in electronics.

2/ READ, DRAW AND UNDERSTAND CIRCUIT DIAGRAMS

as used currently in the various fields of electronics.

3/ CARRY OUT OVER
 40 EXPERIMENTS ON BASIC ELECTRONIC CIRCUITS \& SEE HOW THEY WORK, including :

valve experiments, transistor experiments amplifiers, oscillators, signal tracer, photo electric circuit, computer circuit, basic radio receiver, electronic switch, simple transmitter, a.c. experiments, d.c. experi= ments, simple counter, time delay circuit. servicing procedures.

This new style course will enable anyone to really understand electronics by a modern. practical and visual method-no maths, and a minimum of theory-no previous knowledge required. It will also enable anyone to understand how to test, service and maintain all types of electronic equipment, radio and TV receivers, etc.

$\frac{1}{\text { foshin chary }}$

 PRICES
5
 TRANSISTORS. VALVES AND SEMI CONDUCTOR DEVICES - ANY QUANTITIES UK'S LARGEST STOCKISTS

(Post/Packing 15p per
items GB unless stated) Fibre optics

- 01 diam. mono filamen $25 \cdot 50$ per 100 metres $0.13^{\prime \prime}$ diam. 64 fibres EI per metra
15 m diam mares tails
Radio Control XTALS M. F2 pr. ran
Handsets
Lishtweight relephone handsecs brand new com plete with diagrams for intercomms $\mathbf{E 3 - 0 0} \mathrm{pr}$.
MARRIOT TAPE
HEADS

17. High Impedance ≤ 2.50 18° Med. Impedance $£ 3.50$ '63' Med.保 mono High lmp.
$17{ }^{£ 1}$ 1.75 18' and ' 36 ' 43' Erase Head for '63' 75p sterco Cassetre Head $\mathbf{£ 1 - 2 0}$ Boben UL290 Erase $£ 1.50$

(Post, etc. 15p any quantity)
 \section*{with datafcircuts 65.90 pr}

 50 w . light display projector with wheel $523 \cdot 50$ MXIOO deluxe 4 channel mixer lifier $£ 10 \cdot 50$ MP126-CH. Slider control mixer MD802 steo phone adapto

CIS200 stereo phones
G1301 and G1305 stereo phone controls ar stereo speakers in pods. Special Crystal lapel microphone El052 car speakers irontirear isdar Bib Record cire kit (Ref. No. 43) Bib cassecte recorder care kit (Re Bib casset No. 24)
ASF reel-reel Hobby Box 4000 OHM Headphones
Cassecte Recorder Mic. $\left(2 \frac{1}{1} \times 3 \frac{1}{2} \mathrm{~mm}\right.$ 420 E5 Microscope UP050 Low cost 9 volt eliminator RE 527 K Tape Head Demagnetiser BC817 Memory pocket calc 8CM 850% and memory cllculator Antex soldering ironkir (SKi) Spe Chassis puneh kit
ang: desoldering too
amp in line mains suppressars
BSS2 (E1013) 7 way stereo speaker
Weller 8200D-PK expert gun kir
'S' Dec breadboard
4. Dee breadboard instant head soasrd

Ceramic Filters Miniature 10.7 MHZ filcers 40p pair.

ZN414 Radio IC witb circuic El-20

Strobe Tubes 2FT8A (simiar ZFTI2A $\quad 4.00$ 7 sagment
indieators
data $41 \cdot 70$ ex
Spring delay
HR42 9° zwin spring $\mathbf{6 3 . 3 0}$ pp 20p HR16" twin spring $\mathbf{8 6 . 8 5}$ pp 25p

IC Clock
MM 5314 single chip clock with CCT $£ 9.00$

Uitrasonie cransducers 61.25
623.50
$10 \cdot 50$
27.95

627.95 $\mathbf{2 R} \cdot 25$ $\mathbf{2} .25$

"Living Sound"" made specizlly for Henry's by EMP Tapes Led. 5 serew type with library case
 C 60 $\mathrm{C9O}$ C 12
 ELECTRONIC COMPONENTS \& EQUIPMENT

$\begin{array}{r}22.95 \\ 60.60 \\ \hline 1\end{array}$ 50

27 Noise reduc
\qquad

615
230
240
275
525

(carr-/packing 35p) ase
1435. 29.25

steel case
4323. $20 \mathrm{k} / \mathrm{V}$ pius IKHZ 465 KHZ
T1-2, with case
THL33D (L33DX) 2k/V Robust
TP5SN, 20k/V (Case ©2-00)
TPIOS $2 \mathrm{~K} / \mathrm{V}$
TW20S 20 K V
TW50K $50 \mathrm{~K} / \mathrm{N}$
EPIOKN 10 KN

EPIOKN $10 K N$	$£ 11.25$
9.95	

AFI $0550 \mathrm{k} / \mathrm{V}$ Deluxe (ease £1-90) \&12-50
S100TR 100 kN Plus trans. zester $22-50$
General Test Equipment
(\dagger carr/packing 50p. * carr. packing 30p)
New Revolut
Superterter 680R Accessorias Electronic vole. Ampclamp
Temp. probe
Gauss meter
Signal injector
Phase 5equence
Shunts $25 / 50110 \mathrm{~A} \quad 545$

t 3100 IMA Seripchare recorder $£ 4400$ tTE40 AC Multi voltmeter f19.75 £ 19.95 tTk200 RF Gencrator 120 KHZ 500 MHz
†TE22D AF Gen $20 \mathrm{HZ}-200 \mathrm{KHZ}$ \& $£ 18.95$
\& 19.95 $\begin{array}{lllll}C 90 & £ 1.47 & E 2.85 & £ 4.65 & £ 11.37 \\ C 120 & £ 1.83 & £ 3.54 & £ 5.60 & £ 14.00\end{array}$
SPECIAL OFFER CASSETTESTORAGE * C M350 in eireuit transistor tester $\mathbf{C} 19.50$ Rotaxing unit up to 32 cassectes TT145 Compact transistor tester $£ 14-75$
$+G 3-36$ RUC ose $20 \mathrm{HZ}-200 \mathrm{KHZ}$ £ 19.75 - 3042 SWR Merer SE350A Deluxe sirnal
stackable 63.60 pp . $15 p$ for 10 Car unit with brack SE350A Deluxe signal tracer $£ 12.95$ cassettes $\$ 2.80$ pD 10p CI- 5 Scope 500 a00 KHZ (arre El) 643.00

More selection - bigter ponents and equipment for supply purpose. Let us quote for your

NULTIKTE
 Ready to use and use again. Educational and practical full handbacks.
 10 in 1,10 projects 15.95 Post 20p
 50 in 1, 50 projects $\begin{gathered}\text { 43.9S post 25p. }\end{gathered}$

 Radionic $\times 20,20$ (Elec.)
 Projects $\mathbf{4 4} 95$ Post 20p
 Radionic $\times 4040$ (Radio)
 Projects 89.45 Post 20

C 30435 CH FIA meter I-300 MHZ ES. 75 Resistance sub box $\}$ Post, erc. $\{82.40$ Capacitor
2 amp var, transformers (earr. fl) 82.10
20.45 2 amp var, transformers (arr. £1) 66.45
Radio activisy counter 0 - 10 (carr. $£ 1$) Mains unit for above (carr, 50p) $\begin{aligned} & 69.97 \\ & 63.75\end{aligned}$
PA-DISCO-LIGHTING Equipment

Without doubt UK's vest range of modular and compleze equipment, Lighting, mixing, microphones, accessories. speakers, amplificrs, lenses, eqc., etc. FREE stock lists (Ref. No- I8) on rcquest CALL IN AND SEE FOR YOURSELF AT HENRY'S DISCO CENTRE 309
EDGWARE ROAD OI- 7246963.
8% TO BE ADDED TO ALL ORDERS (Export VAT FREE)

FOR MORE ELECTRONICS, SEE

BACK PAGE

Capacitive
Burgular
835 E E7.
35 Eui
40 Delay
840 Delay car alarm
875 CAP. Discharge
iznition for ear
engine $(-\mathrm{Ve}$
engine (-Ve
Earth) $£ 13.19$
80 Scope Calibrator $\& 2.65$
255 Level indicator
66.98
$120-160 \mathrm{mHz}$ VHF cim
\{i: 1 .

795 switch E8.97 Electronic
continuity continuity
tester $f 4$-gy 860 Photo timer f|5-5|
235 Acoustic Alasm for driver
\&
465 Quartz XTAL checker 59.90
220 Signal
390 VOX $\{13 \cdot 62$
432 Testakit $E 21 \cdot 83$
670 Buffer Battery

ธounco:pinir By GEORGE HYLTON

> "My transistor radio hums when placed close to an electric clock on the bedside table, but only when it's tuned into a station. What is happening?"

Well, here's a deceptively simple question! Hum-mains hum, that is-can get into circuits in at least three ways: leakage through imperfect insulation; capacitive coupling; magnetic coupling. I'm going to stick my neck out and declare in a firm, confident tone that the present case is clearly one of magnetic coupling.

MODULATION HUM

The really clinching clue, as I see it, is the observation that the hum appears only along with a programme. This makes it almost certain that we have a case of what's usually called "modulation hum." Modulation is usually thought of as something that happens at radio tnansmitters rather than at receivers. It's the term used to describe how the audio programme-signal is impressed on the radio frequency carrier wave which the transmitter broadcasts.

In an amplitude-modulated (a.m.) transmission the strength (amplitude) of the carrier wave is made to vary in sympathy with the programme. In an f.m. transmission it's the frequency of the carrier wave that varies. Either way, some form of modulation circuit is involved. Receivers, oddly enough, also contain bits of circuitry which are quite capable of functioning as modulators, even though that's not their purpose, e.g., frequency changers, amplifiers, and detectors.

If you apply to any of these two signals simultaneously, one a high frequency, the other a low frequency, and at the right relative strengths, then the strength of the high frequency will be made to vary in sympathy with the low one, just as in an a.m. transmission.

In our reader's case, the h.f. signal is the carrier frequency
of the incoming station. The low frequency is the 50 Hz mains, picked up from the electric clock.

Why am I so confident that it's a case of magnetic pickup? Well, both clocks and transistor radios are usually in well-insulated plastic cases, which more or less rules out leakage. It would be hard to get the clock and radio close enough together to cause an appreciable amount of capacitive pickup. But transistor a.m. radios have a beautifully efficient gadget inside them for picking up magnetic signals, in the shape of a ferrite rod aerial.

AERIAL

It's true that the aerial isn't designed to work at 50 Hz , but it does. Not as well as at r.f., of course, but well enough to pick up a good strong signal from the magnetic field of the clock motor. The input circuitry of the average transistor portable is on the lines of Fig. 1. The first transistor is a frequency changer, to which the incoming transmissions are applied via the coupling winding of the ferrite rod aerial (L2) and the local oscillation via the winding of the oscillator coil in the emitter circuit.
The 50 Hz signal that does the
Fig. 1. The first stage of an average transistor portable radio.

The Josty appointed stockists

＊ALL KITS PÖST FREE！＊ALL PRICES INCLUDE VAT！
It makes practical sense to invest in Josty Kits．They come complete with everything you need－all the components ready to use，including even the solder．Plus easy－to－understand， fully comprehensive instructions，and a cast－iron guarantee． Just look at the list of Josty Kits available now from Electro Spares．Remember，every price includes VAT，and every Kit is post free．

Model		Total ${ }^{\text {a }}$ AP	AT30	to	$6 \cdot 27$
	Retail Pric				
20	Mono Transistor		AT50	400w Triac Light Dimmer	
$\begin{aligned} & \text { AF25 } \\ & \text { AF30 } \end{aligned}$	Mixe	3.96	AT56	Ti	
	Mono Transistor			Speed Contr	7.59
	Pre．		AT	Aitomatic Light Co	． 84
$\begin{aligned} & \text { AF35 } \\ & \text { AF8O } \end{aligned}$	Emitter Amplifier	2.50		Temelo Unit for	
	Smail 0．5 W Ampli			guita	
	formi		Hf6	Diode Detecior	
$\begin{aligned} & \text { AF305 } \\ & \text { AF316 } \end{aligned}$	Interco	8.28	Hf6	Freque	
	Mono Amplif				
	deo	6.50	HF75	FM Transist	
M1302	Mullivibra	1.88		Recti	
	2 Transistor Te	9.30		fM Tuner	$17 \cdot 3$
M191	Vu －Meter	5.01	HF32	De－Luxe FM Tun	it26．5
$\underset{\text { LF380 }}{\text { M192 }}$	Stereo Balance Meter	er $5 \cdot 47$		硡	
	Quadrophonic Bevice	e 12.50		硣	
AT60	Psychedelic Light Cont	ontrol．		HF325	10－9
	Single Channel			ereo Pre－Amp	
AT				with 2，AF310	$3 \cdot 3$
	Control， 3 Channel	116.00		10，	
25	Window Wiper fobot	6．4			

＇AMATEUR ELECTRONICS＇

Specially produced by the makers of Josty Kits to give you 3 professional insight into the fascinating world of electronics． Written with the amateur in mind from start to finish．＂Amateur
 Electronics＂is an ideal introduction to the whole subject－ from first principles to advanced electronic techniques．The price includes a circuit board for making ten Josty Kit projects．Only £3． $\mathbf{3 0}$ plus $20 \mathrm{p} p \& \mathrm{p}$ ．No VAT
Send S．A．E．now for a free 8－page colour brochure all about Josty Kits and Amateur Electronics．

COMPONENT LISTS FOR

＂EVERYDAY ELECTRONICS＂PROJECTS
You only need to have constructed a few projects as published in＂Everyday Electronics＂，to know what a problem it is to get every component just when you need It．Electro Spares have devised the complete solution．Now you can get lists
 of all the components required for any of the projects in this issue．fust send us a stamped addressed envelope，and tell us which project you are interested in．The list shows a separate price for each item，as well as a price for the complete kit．You can buy any one or more components to suit yourself． GUARANTEED COMPONENTS FROM ELECTRO SPARES Every single component you buy from us is a new branded product from a reputable manufacturer．And it carries the manufacturer＇s full guarantee．

Trannies

4 Bush House
Harlow，Essex
＊Price inelusive of VAT
＊Retril shop open 9－5．30 Mon so Sat．
＊Post 2 Packing 13p

El 10 NPN Power transistors（ike 2N3055）tested no opens no
EI 30 Plastic FET＇S like 2N3819 UTTest random test shows good E1 Yield．
like 2N3055 untested
EI 250 mixed capacitors．
£1 500 mixed resistors．
£ 125 potentiometers
＊Any 5 paeks $£ 4.50$＊
p．\＆p．10p per pack．
We stock a large range of electronic semi－ conductors at competitive prices．Our new＇74 catalogue is now available at 20p．

Electrolytic
 Capacitors

6.3 VOLT 16 VOLT

 $68 \mu \mathrm{~F}$ 6年 $220 \mu \mathrm{~F}$ 9p $150 \mu \mathrm{~F}$ 6\％ $470 \mu F$ 11p$680 \mu \mathrm{~F}$ $1500 \mu \mathrm{~F}$ 18p $2200 \mu \mathrm{~F} 18 \mathrm{p}$ $3300 \mu \mathrm{~F} 26 \mathrm{p}$
10 VOLT
$47 \mu \mathrm{~F}$ 6jD
$\begin{array}{ll}100 \mu \mathrm{~F} & 6 . \mathrm{p} \\ 220 \mu \mathrm{~F} & 8 \mathrm{p}\end{array}$
$\begin{array}{lr}220 \mu \mathrm{~F} & 8 \mathrm{p} \\ 330 \mu \mathrm{~F} & 10 \mathrm{p}\end{array}$
$\begin{array}{ll}330 \mu \mathrm{~F} & 10 \mathrm{p} \\ 470 \mu \mathrm{~F} & 10 p\end{array}$
$1000 \mu \mathrm{~F} 11 \mathrm{p}$
$1500 \mu \mathrm{~F} \mathrm{20p}$
$1500 \mu \mathrm{~F} 20 \mathrm{p}$
$2200 \mu \mathrm{~F} 24 \mathrm{p}$
16 VOLT
$15 \mu \mathrm{~F}$ 6ㄴ
$33 \mu \mathrm{~F} \quad 6 \mathrm{p}$ $150 \mu \mathrm{~F}$ 6i p $\begin{array}{llll}50 \mu F & 8 p & 33 \mu F & 6 \div p\end{array}$

40 VOLT $\begin{array}{ll}47 u \mathrm{~F} & 6 \% \mathrm{p} \\ 100 \mu \mathrm{~F} & 9 p\end{array}$ $68 \mu \mathrm{~F} \quad 10 \mathrm{p}$ 220んF 11p $470 \mu \mathrm{~F}$ 19p $680 \mu \mathrm{~F}$ 25p $1000 \mu \mathrm{~F} 25 \mathrm{p}$ 2200pF 44p

$$
\begin{aligned}
& 63 \\
& 1 \mu
\end{aligned}
$$

\qquad $1 \mu \mathrm{~F}$ 6！ $\begin{array}{ll}2 \cdot 2 \mu F & 6 \frac{1}{2} p \\ 4 \cdot 7 \mu \mathrm{~F} & 6\end{array}$ $\begin{array}{ll}4 \cdot 7 \mu F & 6 \pm p \\ 6 \cdot 8 \mu F & 65 p\end{array}$ $\begin{array}{ll}6.8 \mu \mathrm{~F} & 6, p \\ 10 \mu \mathrm{~F} & 6, p\end{array}$ $\begin{array}{ll}10 \mu F & 6 \pm p \\ 22 \mu F & 6 \frac{2}{3} p\end{array}$ $\begin{array}{ll}22 \mu \mathrm{~F} & 6 \% \mathrm{j} \\ 68 \mu \mathrm{~F} & 10 \mathrm{p}\end{array}$ $68 \mu \mathrm{~F}$
$100 \mu \mathrm{~F}$ IJp
$150 \mu \mathrm{~F}$ 150 $\mathrm{\mu F}$ 13p 220 $\mu \mathrm{F}$ 19p $330 \mu \mathrm{~F}$ 22p $470 \mu \mathrm{~F} 26 \mathrm{p}$ $1000 \mu 744$

Volume Controls

Potentiometers
Carbon track 500Ω arbon $\mathbf{2 . 2}$ Single 13p．Dual zane 44 p ．
single zype with D．P．switch 26p．

Veroboard

Veroboard	0.15 0．1
matrix	matrix macrix

32	matrix	mat
$2 \frac{1}{3} \times 5$	220	24p
$3 \frac{12}{31} \times 3 \frac{2}{4}$	22p	24p
$3 \pm \times 5$	28p	28p
$2 \frac{1}{8} \times 17$	60p	79p
$3!\times 17$	81p	E1．05
Pin insertion tool	－	82p
Spot face cutcer	520	52p
Pack of 36 pins	42p	42p
	20p	20p

Resissors

2 watt 5% carbon Ip
watt 50° carbon ip
1 wate 10% carbon $31 p$
250VP．C POLYESTER CAPACITORS C280 SERIES $4 \mathrm{p}, 0.1 \mu \mathrm{~F}, 4 \mathrm{f}$ ． $0.15 \mu \mathrm{~F}, 0.22 \mu \mathrm{~F}, 5 \frac{1}{2} \mathrm{p}, 0.33 \mu \mathrm{~F}, 7 \mathrm{p} .0 .47 \mu \mathrm{~F}, 9 \frac{1}{2} \mathrm{p}, 0.68 \mu \mathrm{~F}, 12 \mathrm{p}$ 1－0 μ F．14p．1－5 μ F．22p．2－2 $\mu \mathrm{F} .27 \mathrm{p}$ ．
MULLARD POIYESTER CAPACITORS CTI6 SERIES
$400 \mathrm{~V}: 0.001 \mu \mathrm{~F}, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F} .0 .0033 \mu \mathrm{~F} .000047 \mu \mathrm{~F} .23 \mathrm{p} .0 .0068 \mu \mathrm{~F}$ $0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F},{ }^{3} \mathrm{y} \mathrm{p} .0-047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0 \cdot 1 \mu \mathrm{~F}$ ，4ip $0 \cdot 15 \mu \mathrm{~F} 6_{1}^{3} \mathrm{p} \cdot 0-22 \mu \mathrm{~F}, 8 \frac{1}{2} \mathrm{p} \cdot 0 \cdot 33 \mu \mathrm{~F} .12 \mathrm{p} \cdot 0 \cdot 47 \mu \mathrm{~F}, 14 \mathrm{p}$ ．

YOUR CAREER in RADIO \＆ ELECTRONIGS？

Big opportunities and big money await the qualified man in every field of Electronics today－both in the U．K．and throughout the world．We offer the finest home study training for all subjects in radio，television，etc．，especially for the CITY \＆GUILDS EXAMS（Technicians＇Certifo cates）；the Grad．Brit．I．E．R．Exam．；the RADIO AMATEUR＇S LICENCE；P．M．G．Certificates；the R．T．E．B．Servicing Certificates；etc．Also courses in Tele－ vision；Transistors；Radar；Computers；Servo－mech－ anisms；Mathematics and Practical Transistor Radio course with equipment．We have OVER 20 YEARS＇experience in teaching radio subjects and an unbroken record of exam．successes．We are the only privately run British home study College specialising in electronics subjects only． Fullest details will be gladly sent without any obligation．

To：British National Radio \＆Electronica School，Dept E．E．C． 114 P．O．Box 156，Jersey，C．I．
Please send FREE BROCHURE to
NAME
．．Block
ADDRESS
Caps．
．．．．．Please

BRITISH NATIONAL RADIO AND ELECTRONICS SCHOOL

42 Cricklewood Broadway London NW2 3HD Telephone 01-452 0161/2 Telex 21492
\& 85 West Regert Street Glasgow G2 20D Telephonc 041-332 4133

Everything you need is in our New Catalogue available now price 20p (100 pages of prices and data)

Call in and see us 9-5.30 Mon-Fri 9-5.00 Sat
Trade and export enquiries welcome

Popular Semiconductors

Integrated Circuits TTL (SN 7400 Series)

5N7400	$16 p$	SN7410	$16 p$	SN7437	3Sp	SN7454	$16 p$	SN7484
SN7401	$16 p$	SN7411	$25 p$	SN7438	35p	SN7460	$16 p$ SN7485	

 \begin{tabular}{c|ccccc}
SN740IAN \& SN7412 \& $28 p$ \& SN7440 \& $16 p$ \& SN7470

\& $38 p$ \& SN7413 \& 50p \& SN7441 \& $85 p$

SN7472

SN7402 \& 16 p \& SN7416

SN7403
\end{tabular}

 $\begin{array}{lllllll}\text { SN7404 } & 24 p & \text { SN7420 } & 16 p & 5 N 7446 \\ \text { SN740S } & 24 \mathrm{p} & \text { SN7423 } & 37 \mathrm{p} & \text { SN7447 } & \text { SN747S } \\ \text { SN0 }\end{array}$

 $\begin{array}{llll}\text { SN7407 } & \text { 25p } & \text { SN7427 } & \text { 16p } \\ \text { SN7408 } & \text { SN7451 } & \text { 16p } & \text { SN748 } \\ \text { SN7409 } & 33 & \text { SN745 } & \text { SN7482 }\end{array}$ $\begin{array}{llllll}\text { SN7408 } & \text { 25p } & \text { SN7430 } & \text { 16p } & \text { SN7451 } & \text { 16p } \\ \text { SN74 } & \text { SN7482 } \\ \text { SN7 }\end{array}$
$95 \mathrm{SN} \mathbf{5 N 1 0 7}$ 43p, SN74154 $1-66$, SN74176

 $65 p$ SN74121 57p SN74160 .5s SN74190 10 SN74122 80p 75p SN74123 $\quad 72 \mathrm{p}$ SN74162 1.58 SN74192 1.95 65p SN74141 1.00 SN74164 2.01 SN74193 2.05 \begin{tabular}{l|ll|lllll}
$65 p$ \& SN7414S \& $1-44$ \& SN74165 \& 2.01 \& SN74196 \& 1.30

$85 p$ \& 80p \& SN74150 \& $1 \cdot 44$ \& SN74167 \& $4 \cdot 10$ \& SN74197

SN

 .00 SN74151 I - 10 5N74174 1.00 SN74197 1.58

$1 \cdot 16$ \& SN74153 \& $1 \cdot 00$ \& SN74175 \& $1-29$ \& SN74198 \& 3.16

SN \& SN4 \& 289
\end{tabular}

Diodes \& Rectifiers

Bridge Rectifiers

Plastic	$1 A$	$2 A$	$4 A$	$6 A$
50	0.24	0.32	0.60	0.62
100	0.36	0.37	0.70	0.75
200	0.30	0.41	0.75	0.80
400	0.36	0.45	0.85	1.10
600	0.40	0.52	0.95	1.25
SCR's	$100 V$	$200 V$	400 V	600 V
1 A	0.43	0.44	-	-
$1 A$	0.45	0.50	0.60	-
$1.2 A$	0.38	0.42	0.53	0.75
$3 A$	0.47	0.53	0.60	0.90
$4 A$	0.50	0.55	0.65	-

PW Teletennis Kit as feacured on BBC Nationwide and in the Daily Mailily. No need to modify your TV family. No need to modify your T
sec, just plugs in co aerial socker.

Parts lise as follows: A Resistor Paek
fi.00 0 20p: Borentiomecer fl.00 p \& p 20p: B Potentiomecer
Pack $1-25 p$ \& 20p: C Capacitor Pack El-25p \& p 20p: C Capasitor
Pack E3-10 p \& $20 p: D$ Semi-
 Transformers \&1.15 P \& p 25p: \mathcal{F}
25p:
 E4-50 D \& p 20p:
$E 7 \cdot 20$ \& $20 p$.

Special Prices complete kit excluding case $82 \cdot 00$ p \& p 50p.
Sections A-F incl $83-50$ p \& $30 p$. Assembly instructions with complece kit or 75p on request.
P.C. Marker Pen Dalo 33pe Price 87p. Zeners $400 \mathrm{MW} 2-7 \mathrm{~V}-43 \mathrm{~V}$ 11p, 1W $3-3 \mathrm{~V}-120 \mathrm{~V}$ 17p. IC Sockees
8DIL-16p. 14DIL-i7p, 16DIL20p.
Liquid Cryseals- $£ 13 \cdot 00$.
Ex scock S.A.E. for details of CMOS bartery operated clock kit using
LCD's.

Scorpio Car Ignaltion Kit-£11.50 BSTB0246 E1-05 Transformer $\mathbf{2} 2 \cdot 75$ $\begin{array}{ll}\text { Minitron } \& 1-55 \\ D L 707 & £ 2.35 \text { or } 4 \text { for } \& 8.00\end{array}$

```
Resistor:
W Tol Price
5% 1p
ll
10% 6p
5%
10 5% 10p
Tant Beads Value
\begin{tabular}{ll}
\(-1 / 35\) & \(14 p\) \\
\(-22 / 35\) & \(14 p\) \\
\(-47 / 35\) & \(14 p\) \\
\(2.2 / 35\) & \(14 p\) \\
\(4.7 / 35\) & \(18 p\) \\
\(10 / 16 V\) & \(18 p\) \\
\(47 / 6 \cdot 3 V\) & \(10 p\) \\
\(100 / 3 V\) & \(-20 p\)
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Verobozrd & Copp & & Plain \\
\hline & 1 & -15 & \(1 \cdot 15\) \\
\hline \(21 \times 3\) & 28p & 20p & 14p \\
\hline \(21 \times 5\) & 30p & 30p & 14p \\
\hline 32 \(\times 3 \frac{3}{4}\) & 30p & 30p & - - \\
\hline \(3 \frac{2}{2} \times 5\) & 34p & 35p & 24p \\
\hline \(3 \pm \times 17\) & ¢1.21 & 95p & 76p 69p \\
\hline Ping \(\times 36\) & 24p & 24p & \\
\hline \(\times 200\) & 89p & 92p & \\
\hline
\end{tabular}
```

Trade and Retail Supplifed

```
Potentionmeters
Linear or Log Single Double
Rozary Pors 18p 45p
Sliders Sop
Full range of Capacitors
stocked. See catalogue for
detail:
Presets Horizontal or Vertieal
- IW 6p -2W 6p -3W 6p
```

Construction Kits

.04
.74
.22
.53
OUR NEW GLASGOW
VAT all prices exclusive
p\& P P20
Maif Order

Due to price we cannot name maker,-bur rest 2ssured you're settine one of the BESTI Expensive "PIANO KEYBOARD" CONTROL PANEL (or latest MASTER SWITCH control) and AUTOMATIC LEVEL CONTROL No fiddling with awkward tape and reeis, just siap-in a cassette. Superb taping \& reproductionl Takes 30.60 or 90 minute sundarocassette tapes. Beautiful tone from a whisper to a roar! Remote control microphone! Rapid rewind! Fast forward! Complere-record anywhe Separare jacks outl Runs on standard batteries AND 220/240v, A.C, mains. esparster vary
 slishely. With catly hande. 26971 OUR PRICE Ell.85, past, ete., 50p. recommended sellyg price Kefund if not delishted. BONUS OFFER: Cassette tape, batteries and microphone stand 55 p if required. ALSO Super de luxc model with VHF AMIFM radio (recommended retail price f44!), only $\mathbf{2 2}$. 15 , carr. 50 p (batteries and cassetre tape $45 p$ extra if required)
 CALLERS: ACCESS \& BARCLAYCARDS ACCEPTED AT STORES.

SHOPERTUNITIES LTD.

Latest sensation in the world of soundl First class makers! Fabulous VHF AM/FM RADIO and CASSETTE TAPE RECORDER \& PLAYER combined! Runs off standard barceries or Mains (simply plug in mains 220/240v. A.C. line cord supplied)-NOW you can record \& play back anything WE OFHera! MPORTERS RECOMMENE! Partassic specificasion:- -Auto matic recording level control! : Monitor switch! Expensive calibrated matic recording level control! "Monitor switch! Expensive calibrated fast forward, stop, play\& rapid rewind control! "Superbbuilt-in Speakerl fast forward, stap standard 30.60 , or 90 minute Cassetre tapes, obtainable everywhere. *Earphone \& extension speaker sockets PLUS separate input/output DIN iack socket! "Built-inswivol 7 section telescopic aerial (25"approx.) ©Magnifficent case (approx, l0ins. high) in luxurious Black \& Silver finish with "teak-finish" speaker grille. "Built-in carry handle, "Wonderful VHF AM/FM Radio with instant switch-over waveband selection a pinpoint station tuncr. Superb ciarity and tone. Amazing station selection home \& abroad including local reception of city \& regional seations in every part of the country (even those scheduled for the future) plus BBC National VHF. Also fabulous in Car! You could pay zefs more for a Radio or Car Cassette player ALONE! Yes, only. Written Guarantee $\&$ complete with remo sONUS OFFER:- Barteries, Cassette Tape, personal simpie instructions, mierophone stand, ail for only 55p extra, If required. Send eotal $£ 24$ (ro include Bonus carr. ecc.) and rest on 7 days mail order approval from receipt of goods. REFUND IF NOT DELIGHTED. Or call at either Shopertunities score.

Dept. EEj30, 164 UXBRIDGERD. (facing Shepherds Bush Green), LONDON W12 BAQ. (Thurs. 1, Fri. 7). Also at $37 / 39$ HIGH HOLBORN (opposite Chancery Lane), LONDON, W.C.I. (Thurs. 7 p.m.). BOTH Opposite Chancery Lanc., LANDON, W.C.i.

learn how to become a radio-amateur in contact with the whole world. We give skilled preparation for the G.P.O. licence

BRITISH NATIONAL RADIO \& ELECTRONICS SCHOOL

Dept EEB 12 s P.O. BoX 15̈6, JERSEY
NAME
ADDRESS

QUALITY' STEREO SOUND_

mmos $\frac{1}{2}$ PRICE OFFER! SOLENT AUOIO SYSTEM ewar $\frac{1}{2}$ PRICE OFFER!

MADE TO SELL AT OOUBLE THE PRICE WCABINET FORM

, O:

-000000000
-Stereo Tuner Amplifier chassis with AM/FM radio covering long medium short and Stereo FM wavebands. Separate Base and Treble controls. Power output 7 watts R.M.S. per channel (frequency response $25-20,00 \mathrm{~Hz}$) Tape record and playback facilities. Dimensions $18^{\prime \prime} \times 8 \frac{1^{\prime \prime}}{} \times 3 \frac{1^{\prime \prime}}{4}$. The very latest BSR automatic record deck with cue and pause control. Two matching elliptical speaker units.
Order early limited stocks available cash price £49. $\mathbf{5 5}$. Credit Sale $\mathbf{£ 5 . 0 0}$ deposit 9 monthly payments of $£ 5.75$ (Total Credit price £56.75). P. \& P. £2.50. Send £7.50 today.
Chassis only available for cash at $£ 3500$.
Full 12 months Guarantee.
CALLERS WELCOME.
(4)

Stereo headphones supplied with every order. LEWIS radio

EE $12 / 74$ CHASE SIDE SOUTHEATE ONDON N14 5PL Telephones: 01-886 9666/3733

RECORD PLAYBACK HEADS (TRUVOX)
radirifaal pricen of these are
3 track record playback heads 50 p each.
4 track record playback heeds 72 p each.
Krase hoedd ano also svailsble separately:
2 track 38p; 4 track 55p
7 trl
plate fith thield mixed on heavy mounting
CONTROL DRILI SPEEDS

U

DRILL

CONTROLLER NEW IKW MODEL Electmpically change speed from approxi-
nately
10
revo. maximum. Full power at all ppeens by finger-tip control.
Kit includes all parts, case, tions 2 2.95 plas 25 p post and
insurance. 3 ande op model alno avallable. $82 \cdot 95$ plus 25 p poot \& p .

TIME SWITCH

Smith'e malns driven clock with showlng how you can wake up with muaic playlng. kettle
boiling or come botue to a wamm bouse, warn ofir burglars, keep pets warm, halve your heating
bills, etc. $£ 1.95$.

EXPERIMENTER PRINTED

CIRCUIT KIT BUILD 60
INTERESTING PROJECTS
CONTENT8: (1) 2 Copper Leminato Boards 43 ml . $\times 2$ inin. (3) $\frac{1}{\text { B Board for Matchbox Radio. (3) } 1}$ Board for Wristratch Radio. etc. (4) Resist,
(1) Resist Solvent. (6) Btchant. (7) Cleanser) Degreamer. (8) 16 -page Boollet Printed Circait: for Amateurs. (9) 2 Ministure Radio Diale $\mathrm{SW} /$ MW/LTW. Also free with each kit, (10) Easential Dexirn Data Circuits, Chaesis Plases, etc. for 60 ant erersone sisequircmentg. Price \&1, post pald.

EXTRACTOR FAN

 Cleans the air st the rate of Suitable for k itchens, baut rooms, factories, changing rooms, etc., it's so quilet it car handly be heard: Compact. 51° casing with $5 t^{2}$ fan baldes. Kis compriaes shoct stect casing. fan lades. xing brackets. $52.75 \div 290$
E1

 7

ELECTRIC MOTORS
I powerfint battery mutors as used in racing cars and power modex. Output and typer vary to make thern wuitable for hondreds of ditierent everatile and for 14 to 12 v . Hats. wiring dia crams included. Post and VAT 30 p .

FREE, Details of bow to make

TELESCOPIC AERIAL tranmitter. Chrome platedsix sections, extends from 7% to ihin. Hole in bottom for 6 BA screw.

 42p. KNUCKLED MODFL FOR F.M. 55p
LIGHT DIMMER KIT

For dimming up to 2xow without beat sink on 50% with heat sink. This comprises, quairac, ariahle control potentioneter, condenser, resis ors, tag atrip for mounting and data. Price $81 \cdot 50$.

INTEGRATED CIRCUIT BARGAIN

A parcel of integrated circults made by the famous Mexecy Company. A once in-a-ifetime outer of mina-ciectronic devices well beiow cost of manufacture The parcel cintains 5 IC all new and perfect, irst-grade device, definitely no ab etadard or acconde 4 of the 10a are single eilicon chip GP anplicien. Poll circuit detaik of the C are of many difterent TC a railable at hargaln prices 95 pprants rith circoit and technical dista of esch. Compicte parcel only et port paid. DON'T MISS THIS TERPIPIC BARGAIN.

THYRISTOR LIGHT DIMMER

For any lamp up to 1 kw . Momnted on switch plate to ft in place of standard switch. Virtually no radio interference 5 A $53-30$. Not on plate post and insurance. Industrial mode

MULLARD UNILEX STEREO SYSTEM

 There is no doubt thet it is a good oyrtem, we believe that for the monesit is withoat comparison. We demon. It in without comparlson. We demonEtrate gladls at our Tamworth Road depot. P
I Unilex Amplifer Ref. EP. 9000 \$1-80 1 Unilex Amplifer Ref. EP. 9000 E1-80
1 Unflex Pre-Amp Ref. EP. 9001 E1-80
1 Gnilex Power Unit Ref. EP. $9000 ~$
52.30 1 Gnilex Power Unit Ref. EP. 900282.30
 Pair of 15 ohm epeakers made by E.M.I. are also arailable if required, es-30 the pair. No ertra postage if ordered with the above, otberwise add 20 p .

DISTRIBUTION PANELS
Just what you need for work benchor lab.
4×13 amp sockets in metal box to take standard 13 amp fused plugs and onfor switeh with neon warting light. Supplied
complete with 6 feet of flex cable. Wired up ready to work. $£ 2.75$ plas 25 p . \& P.

THIS MONTH'S SNIP

SOUND TO LIGHT UNIT

Add colour or white light to your amplifier. Will operate 1, 2 or 3 lampa (maximum 450 w). Thit in box all ready to work 87.95 plus 95 p V.A.T and prostage.

RADIO STETHOSCOPE

Easient way to fault ind-traces signal from aerial to Epeaker - whea rignal stops 50u've found the fault. kit comprises two special tratusistors and all parts including probe tobe aṇ crsital earpiece. $58-20$ twin stetho-set nstead of earplece 83p extre pont and ins. 200

SWITCH TRIGGER MATS

So thin is undetectable under carpet but will witch on -ith elinhtest prexure, Ror burglar alarms, ahop doors.

SHORTWAVE CRYSTAL SET
Although this unes no battery it gives really amazing results. You will recelve an smazing assortment of
otations over the 19.25 .20 .39 \& 49 metre bands. Kit oontains ctuasis front panel and all the partm. $£ 1-25$ cystai earphone 83p.

WANT A CHEAP OSCILLOSCOPE

We offer this month a laboratory type Instrument made by G.F.C. for their communleations lahoratory in a xteel case with cantying bandle. It is mainx opersted and has its own internal time base and plenty of room to add another basc if you wish. Frobabic cost of this instrament is in excess of 8100 . We offer tis for each 100 milea after.

MAINS TRANSISTOR POWER PACK
Designed to operate transiotor nets and amplifters. Adjustable outprot 6v., 9\%. 12 voltt for up to 500 mA (class B working). Takes the place of any of the fol owing battcries: PP1, PPS, PP4. PPG. PPT, PPQ and others. Kit comprise tions. Real snip at only 110 , plus 20 p poskage.

PORTABLE CABINET OFFER

A nicely made portable cabinet. soft padded black finleh intended for portable stereo systern. Dlmenslons as intended ior portable stereo system, Dimenslons as obvtously a very costly cabinet originally mode for I de-luxe record plager. Offered at tilos phas 21 carriage free if bought with the farrard or $\mathbf{8 8 Z}$ record decks.

TANGENTIAL HEATER UNIT

This heater unit is the rery intest type. most efficient. and quiet running. Is as fitted in Hoorer zud blower healers Compplees molor, Imyeler, 2kw. element cut-out. Can be fitted into any metal line case o cabinet. Only needs control switch. \&2-75. Don't miles this. Control Switch, 44p. P. \& P. 40 p .

TERMS:-

Add 8\% V.A.T
Send postage where quoted-other
items, pose frec if order for these
items is $\mathbf{2 6} \cdot \mathbf{0 0}$. otherwise add 30 p .

MULTI-SPEED MOTOR Six speeds are available 500,850 and 1,100 天.p.m. and $8,000,12,000$ and $15,500 \mathrm{~F}$-p.rn. Shaft is $\frac{1}{4} \mathrm{in}$. diameter and approxinuatel $5 \frac{1}{1} \mathrm{in}$. long, $330 / 240$. 1 ts apeed susy be urther controlled with the use of ar Thyristor controller. Vess powerful and natul motor size approx. 2 in dia $\times 5$ in long. insurance.
ind sop postage and

MULIARD AUDIO AMPLIFIERS

All in module form, each ready built complete
with heat rins and with heat rinks and
connection tags, data supplied. Model 1153500 mm Model 115: 750 mW power output 94p Model EP9000 \& Watt EP power output El. 80 stereo pre-latp. 51.89

SPIT MOTOR

$200-250 \mathrm{~V}$ induction motor driving a Carter gearbox जith a 1$\}^{\prime \prime}$ output drive chaft runuring at 5 reve chicicens, aleo for driving models-windinalls, colour ed 3 jec fighting efiects, etc. $£ 2 \cdot 25$ plus 20 p post NUMICATOR TUBES
For digital instramenta, counters, titwerx. For digital inktranienta, counters, titners.
clocks, ete. Hi-sax XN.S. Price 29 each. clocks, etc.
10 for 59.

SEALED RELAYS

STC sealed relay. Makers trpe rel. 694t, Theoe are metal encased plag In with two pairs chargeover contacts. Approx. aize 1t high x whderatand these are vacuum, sealed. Two types available 6r (45 ohms coll) price $\operatorname{en}-50$; 24v (700 ohms coil) price $\mathbf{5 1 7 5}$.
$5 \times \mathrm{c}$ seated relay. Again. type 6945, realed metal case plug in but for 12v operation (a70 ohms coil) and with 2 pairs normal open contacte \$1-25.

AM/FM TUNER

Unit made by the American GEC company. 8 transistor, all-wired reads to work. Complete With tumer condenser, needs only scale and pointer. Tomes AM ranse 540 to 1620 KHz . FM range 88 for MXP or direct. Special anip price 55 plus $30 p$ post. Three or more poet free.

20 WATT CAMPING LIGHT

Aloo makes good car emergeney light. This nees a
standard 2 foot 20 watt tobe and operatea front a Ins. car battery drawing approx. IL This gives illumination per amp/hour of battery Hic far in excess to filament lamps and in fact to the minimCompicte unit ready to operate, in strons white Compincte unit reary to operate, in strong white eell at 26 , are onnsed but elighty solied and we ofler theme at $\mathbf{2 4 . 5 0}$ plus 40 p pont and packing.

MAINS MOTOR

Precision made an used in record decks and tape recor-ders-ideal slso for extractor and perifet. Snip at 65 p . Postage 20 p for , one then 1 stackmotor 94 p .
1f" olsckmotor $\$ 1.10$.

6 DIGIT COUNTER

 Resettable. 440 ohm coll \quad mp to 25 impulses per second. Ex-equipment but gutaranteed perfect, 28.20 each.4 digit counter as specified 1

PRESSURE SWITCH

Containing 215 amp. change over
witch operated by a diaphragni wressure through a momall metal tube. The operating pressure is adjustable
 but is set to operate in spprox. 10 in. of water. These are quite iow presaure devices and can in faet be operated simply by blowing into the Inlet tube. Original use was for washing machines to turn of water when tab has reached correct level but no doubt hae naany other applfoations $51-38$, each.

 I2 VOLT It AMP
 POWER PACKK
 This comprises double transformer with fall mans rectifer and $2000 \mathrm{~m} / 4 \mathrm{f}$ smoothing. Price $20.20+$

Hasvy Duty Main Power Pack. Output voltage
adjustable from $15-\frac{10 \mathrm{~V}}{}$ in Etepe maximum losd 250 W -that is from 5 amp at 40 V to 15 amp st 15 V . This really is a high power hears duty milt with dozens of workshop user Outpat voltage adjustment is very quick- timply interchange puth on leads, Elificon rectifiers and amoothing by 3.000 mF . Prfoe 28.33 plus 65 p poot.

Everyday Electronics Classified Advertisements

RATES: 11 p per word (minimum 12 words). Box No. 30 p. extra. Semi-display- $£ 7.50$ per single column Inch. Advertisements mustbe prepald and addressed to Classified Advertisement Department, "EVERYDAY ELECTRONICS," I.P.C. Magazines Ltd., Fleetway House, Farringdon Street, London EC4A 4AD.

EDUCATIONAL

C AND G EXAM

Make aure you succeed with an ICS home sludy courge for C and E Electrical installation Work \& Technicians Radio/TV/Electronlce Techniciane. Telecommus Techniclane and Radio Amateure.

COLOUR TV SERVICING

Make the most of the current booml Learn the lechnlques of eervicing Colour and Mono TV eete through new home study courses, approved by leading manufacturers.

TECHNICAL TRAINING

Home atudy courses in Electronice and Electrical Engineering, Maintenance, Radio, TV, Audlo, Computer Engineering and Programming. Also self-bulld radio kits. Get the quallfications you need to succeed.
free detalfs from:
INTERNATIONAL
CORRESPONDENCE SCHOOLS,
Dept 731 B. Intertext House, London SW8 4US. Or Phone $01-1229951$

FOR SALE

CABINET DEMO DECK. All E.E. to date. Many spare components. $£ 12 \cdot 00$ o.n.o. Leatherhead 77164.

MICROPHONES: AKG D109, £12.65; AKG D202E1, £43.45; AKG D190C £18.70; AKG D190E, $£ 20$; AKG D224, E55; Sennheiser MD211N, £49-50; Sennheiser MD413N, $£ 29 \cdot 70$. All brand new and boxed. Send CWO to J. J. Francis (Wood Green) Ltd., Manwood House. Matching Green, Harlow, Essex. Tel: Matching 476.

RECEIVERS and COMPONENTS

TUNBRTDGE WELLS. Components from Ballard's, 108, Camden Road, Tunbrdge Wells. Tel: Tunbridge Wells 31803. S.a.e. for all enquiries.

3 AS̄S. M.C. METERS \&i 15 (35p). LARGE COM-
PUTER PANELS. $35-50$ Transistors, LONQ Leads PUTER PANELS. $35-50$ Transistors, Long Leads $85 p(30 \mathrm{p})$.
COPPER
COPPER CLAD PAX PANELS $5 t^{\prime \prime} \times 5 t^{\prime \prime} .6-50 \mathrm{p}$

500 cON DIODES 650 V 1\&A. 10 on Tagboard 50 p c.p.
T. V. CONVERGEANCE PANELS $2 \times$ AC1 28 3 Slugged Colls, 3 SIlde Switches, 11 W. W. Pots, 3 Carbon Presets, 2 Ferritte Chokes etc. $\mathbf{y 1} \cdot 10$ c.p.
VALUPAKS. P9 100 S/Mica Caps $67 p$ c.p. send i0p for Lists of others plus Panels etc. Refund on
7 purchase.
J.W.B. RADIO

2 Earnfteld Crestent, Sale, Cheshire M33 inL
Postage In brackets
Mail Order only

LOWEST COST IC SOCKETS. Use Soldercon IC socket pins for 8 to 40 pin oIL's. In strips of 100 pins: $100+$ pins $70 \mathrm{p}, 300+50 \mathrm{p}, 1000+40 \mathrm{p}$. Instructions supplied. 10p p\&p for orders under £2. Add 8% VAT. SINTEL, 53 e Aston Street, Oxford

RADIO, TV and other valves. Large stocks 1930 to 1974. Many obsolete types. SAE for quotation. Price List 15p. Also avaifable a large range of Transistor and Stili. Cox Radio, The Parade, East Wittering, Sussex. West Wittering 2023.

COMPONENTS GALORE. Pack of 500 mixed components manufacturer surplus plus once used. Pack include Resistors, carbon and W.W., capachtors various, tranbistors, diodes, 5 mpmers, potentiometers etc. ponents, Strathore Road, Thornton, Fife.

MISCELLANEOUS

SUPERB instrument cases by Bazelli, manufactured from heavy duty P.V.C. faced steel. Hundreds of Radio, Electronic and Hi-Fi enthusiasts are choosing the case they require from our range of over 200 models. Generous trade discount, prompt dispatch. Free literature, Bazelli, Department No. 24, St. Wilfrids, Foundry Lane, Halton, Lancaster, LA2 6LT.

> AERIAL EOOSTERS-E3.30 We make three types of aerial boosters 845-UHFTV. B12=VHF-TV, B11 VHF-Radio.
> VALVES BARGAINS
> ANY 5-54p, 19-75p, 100-E3.30.
> ECC82, EF80, EF183. EF184, PCC189, PCF80, PCF802, PCL82, PCL84. PCL85/805, PFL200, PL36, PL504, PY800, PY88.
> COLOUR TV VALVES-PL508, PL509, PY50025D each.
> Prices includes VAT, PAP 10D, SAE-leaflet
> Electronic Mall OrdorLid, 62 BrIdge Streot,
> Ramebottom, Bury, Lancs. Tol RAMS 3036.

AUTUMN BONANZA!

B.B. SUPPLIES Offer:-

LIEVER key swltch, t-pole, lock-off-lock, in black plastic slackable case app. $120 \mathrm{~mm} x$ $120 \mathrm{~mm} \times 25 \mathrm{~mm}$. Brand new
PUSH button switching unit, 3 two-pole c/o units, one cancels others, room for one more unit. App. $75 \mathrm{~mm} \times 60 \mathrm{~mm} \times 35 \mathrm{~mm}$. Brand new Witred and numbered) RELAY, 24 voit, 3600 ohms, $4 \mathrm{c} / 0$ contacts, size: $00 \mathrm{~mm} \times 33 \mathrm{~mm} \times 15 \mathrm{~mm}$ (wired and LAMP fitting, 6 volt-contained In hammer finished, grey steel box on wood plinth, Ideal case for small projects. Size apd. $75 \mathrm{~mm} \times 75 \mathrm{~mm}$ $x 70 \mathrm{~mm}$. Brand new
SPECIAL price until 28.2.75 for all 4 above Items + useful accessory. All prices include VAT and p. \& p. Many other All prices include VAT and p. \& p. Many other
Govi. surplus, new and sinand items at bargain prices. S.A.E. for Autumn Catalogue of teletronic prices.
38 HEATHWOOD GARDENS, SWANLEY KENT BRA THN

CONSTRUCTION ADDS. Screws, nuts, spacers, etc., in small quantities. Aluminium panels punched to spec. or plain sheet supplied. Fascia panele etched aluminium to individual requirements. Printed circuit boardsmasters, negatives and boards, oneoff or small numbers. Send $6 p$ for list. RAMAR CONSTRUCTOR SERVICES, 29 Shelbourne Road. Stratford-onAvon, Warks.

Sinciair calculators
 SENSATION!!
 CAMERIDGE 8D. 815.95 SCIENTIFIC 215.95 825.95 on 7 days pald aporoval-Write now-BRETT EXPORTS Dep\& "pr, 16 Hengistbury Rd, Dept "p", 16 Mengistbury Rd, Southbourre, Bournomouth: Please add 8\%VAT + 45p P.\&P.

BEGINNERS, a complete course in electronics for only $£ 3 \cdot 45$, post free. Basic electricity, switching and amplifier circuits. Instructions and components provided, For details of this and nents provided, For details of this and other kits send S.A.E. to Electrolern,

PSYCHEDELICATESSEN

io the only way to describe the parodise of FREAKY gear now available from Boffin. LOOK!
Kits
NO LCENCE EXAM. Transmittor/
Receivar BRIGHT-FLA5H, Pocke 66.90 Variable-rate, BRIGHT-FLASH, Pockes
Mini-Strobo Readr-Made Experimental Modulee Maxi-Volt SPARK GENERATOR (tinch Mini DRREAM-LABORATORY Mini IREAM-LABORATORY SENSITIVE nOn-anatomical olect
Eloctronic 'VOICE-THROWER'
GHOST-HUNTING AID
GHOST-HUNTING AID
SPEAK.THRU.WATER-FONE
PSYCHEDELIC MEDITATION ADD
Bird-Watchers' REMOTEMONITOR
Psycholozical CROSS-EYED EARS
'Big Ear's SOUND-CATCHER 61.90
83.20 (All prices include VAT, packing postage)
Send remittance to
BOFFIN PROJECTS
4 Cunllfie Road, Stoneleigh,
Ewall, Surrey
(Mail order U.K. anly)
Or for more deatils, send 20 p for liste, plua

GADGETS GALORE!!
Alarms - Test Gear - Musical Instruments Timers - Audlo - Disco - Sound Effects * ready built a TESTED t Sample prices: Slgnal Injector 5195 PRICES INCLUDE U.K. POSTAGE \& BATTERIES Mail Order Only-SAE Ilst to:
G. K. SERVICES, 83 Westdale Rd. London SEiA 3BQ

FERRIC CHLORIDE Anhydrous technleal quality in sealed 1 lb packs Alb 80 p : $3 \mathrm{lb} £ 1 \cdot 60 ; 101 \mathrm{~b}$ £ $4 \cdot 40$.
 COMPUTER PANELS
 3lbs agstd £1.40; 71b $£ 2 \cdot 60$; 561 b £i6, 12 hlgh quality panels with trimpots, IC's, power transtetors etc $£ 2 \cdot 50.100$ panels $£ 14$. Pack of boards containlng at least 500 components Inc. at least 50transistors 90 p .
 3 WATT TAPE AMPLIFIERS
 2xECCS3, EL84, EZ80 on $12 \times 5 \times 3^{\prime \prime}$ chassis with tone \& volume controls, 3 watts output to $7 \mathrm{x} \mathrm{c}^{\prime \prime}$ 3Ω speaker (provided) $53 \cdot 00$. Also in case $14 \times 13 \times 9^{\prime \prime}$ with non-standard tape deck $\frac{£ 4 \cdot 50}{}$ Sultable cassettes $\mathrm{fi} \cdot \mathbf{0 8}$, tape 74 p , head 30 p .
 7Ib BARGAIN PARCELS
 Hundreds of resistors, capacitors, pots. switches + PC boards with translstors \& diodes and loads of odds \& ends. Still only $£ 2 \cdot 25$.
 > PC ETCHING KIT

 PC ETCHING KIT

 PC ETCHING KIT
 Contains Ferrle chloride, DALO etch-reslst pen, 100 gq. Ins. copper laminate board, etching dish, abrasive powder and Instructions $£ 3 \cdot 30$. £3. 30 .
 VEROBOARD
 Officuts, 100 sa. Ins (no triny pleces) $£ 1-10.500$ assorted resistors $\Sigma 1-40$. 150 mlcm , ceramic, poly capacitors 80p. 250 1 $\%$, 2% 5\% H1-stabs £1-30. LEO Ill COMPUTER. all parts avallable.
 GREEWWELD ELECTRONICS [EE8]

Mail order, retall \& wholesale shop 51, Shirley Pask Road, Southampton, Tel (0703) 772501 . Also callers at 21 Deptford Broadway SE8, Tel $01-6922009 \& 38$ Lower Addiscombe Rd Croydon, Tel M-688 2950 .
ALL PRICES QUOTED INCLUDE 8% VAT

SERVICE SHEETS

SERVICE SHEETS for over 6,000 models of Television, Radios, Transistors, Stereo, Tape Recorders, Record Players, etc., at only 30p plus S.A.E. with free Fault-Finding Guide. Over 50,000 sheets in stock for 10,000 models. S.A.E. enquiries. Catalogue 20 p plus S.A.E. Hamilton Radio, 47 Bohemia Road, st Leonards, Sussex. Telephone Hastings 429066.

Same as i-Station Intercom for two-way Instant communication. Ideal as Baby Alarm and Door Phome. Compiete with 66ft. connecting wire and Battery. P. \& P. 40 p

clency with this incredible Telephonsiness eff. clency with this incredible Telephone Amplifer. Take down long telephone messagea or converse without hoiding the handset. A userai omith Battery. P. \&witch 30 p . Fall price retunded If not satistled in

WEST LOKDON DIRECT SUPPLIES (E/E) 169 KGNSIEGTON FIGH STREET, LOMDON. W. 8.

IISTRUMENTAL AUDO EFFECTS

SUPER "FUZZ" UNIT KIT. CONNECTS BETWEEN GUITAR \& AMPLIFIER. OPERATES FROM ov BATTERY (not oupplled). ALL COMPONENTS AND PRINTED CIRCUIT BOARD WITH FULL INSTRUCTIONS. KIT PRICE: \& 300 post paid.

CREATE "PHASE" EFFECT ON YOUR RECORDS, TAPES ETC., UNIQUE CIRCUITRY ENABLES YOU TO CREATE PHASE EFFECT AT THE TURN OF A KNOB. OPERATES FROM ov BATTERY (not supplled) COMPLETE KIT OF COMPONENTS WITH PRINTED CIRCUIT BOARD \& FULLINSTRUCTIONS. KIT PRICE: $E 3-00$ poit paid.

MAIL ORDER ONLY.
S.A.E. ALL ENQUIRIEE.

PLEASE ADD Y.A.T. TO ALL ORDERS

DABAR ELECTRONIC PRODUCTS

*, LICHFIELD 8TREET,
WAL8ALL, 8TAFFS. WSI IUZ

LENGTH 85°

WIDTH 1-5'
Available from your Local Retailer
0.1 and 0.15 pitch Vero Strip is suitable for all applications where Tag Boards can be used.

VERO ELECTRONICS LTD
INDUSTRIAL ESTATE
CHANDLERS FORD HANTS.

ELEETRDTIVKKiT

Electronic fun for all ages
The most versatile electronics kits All componenes are beautifully encapsulated in unbreakable transparent plastic blocks. Perfect connections are made WITHOUT SOLDERING, SCREWING OR WIRING
INCREDIBLE VALUE. Build, dismantle and rebuild projects any number of times and invent your own experiments
COOMPLETELY SAFE. Instructive and FUN-all kits operate from 9 v . batcery only.
VALUABLE MANUALS included with every kit. No previous knowledge is required, even with the largest kirs. KIT $2 A-30$ projects $£ 10 \cdot 45$. Radios. amplifiers, alarms, microphories, morse, etc. KIT 3A- 100 projects $\mathbf{2 0} \mathbf{2 0}$. As 2 A plus electronic birds, cats, sirens, organs, metronome, guns, light and sound, burglar alarms, ctc.
3ADX - 105 projects $\mathbf{2 5 - 2 5}$. As 3A plus solar cell experiments and complete sophisticated control panel, etc.
4ADX -150 projects $\ddagger 33$-95. As 3ADX plus Relay and Meter experiments; ion concentration- volume-, out-put-. field intensity-, volt-, resistance meters. field intensity-, ammeter,
many more.
ADD-ON parts and manuais available as required.
The three larger kits include Electrical experiments too.
All prices include Battery, Manual, VAT \& p. \& p.
ChequelP. O. (or 6 P for literature) to:
Satisfaction guaronteed
ELECTRONI-KIT LTD, 408 St. John's Street, London, EC1. [01-278 4579]

New surplus stock as illustrated. Size $7^{\prime \prime} \times 4^{\prime \prime} \times 3^{\prime \prime}$
Smiths Time Swltch with 24 hour dial which is simple to set to switch onfoft twice per day at any times required. Also fitted with two lever switches which can be set to operate two circuits which can each be set to operate on Tlme Switch twice per day, all day, continouus, or off. Mounted in robust white plastic casing Drilled for fixNew surplus stock as illustrated. AC240 voits. Input power 100 VA. Instant heat at touch of trigger switch in handle. Constructed in robust plastic casing with work light in front and 4' $\times 3$ core cable.

PROGRAMME

and hot water onjoff twice a day. Sultable for any electrical appliance up to 3 amps 240 volts A.C.

$15 \cdot 40$

P \& P 28p
ing on back supplied with wiring instructions. Ideal for shop

Ilghting and many other applications.

SAE FOR CATALOGUE WITH MANY OTHER BARGAINS TO

C. W. WHEELHOUSE \& SON, 9/13 BELL ROAD, HOUNSLOW.
PHONE 01-570-3501.
 atchbox size amplifiers have an exceptionally The 5 W amp will run from a 12 V car battery making it very sultable for portable volce reinforcement such as public functions. Two amplifiers are ideal for stereo. Complete connection details and treble, bass, volume and balance control circuit diagrams are supplied with each unit. Discounts are available for quantity orders. More detalls on request. Cheapest in the UK. Built and tested.

Now available for $5 \% 10 W$ AMPS

Pre-assembled printed circult boards $2^{\prime \prime} \times 3^{\prime \prime}$ available in stereo only, wIII fit 15 edge connector.
Stereo Pre-Amp 1 (Pre 1). This unit is for use with low gain crystal or ceramic pick-up cartridges.
Stereo Pre-Amp 2 (Pre 2). This unit is for use with magnetlc plck-up cartridges. $\mathbf{\Sigma 1 \cdot 5 5}$
Stereo Tone Control (STC). This unit is an active tone control board and when used with the right potentlometers will give bass and treble boost and cut.
Instruction leaflef supplied with all units. Post and packing included in prices. VAT at current rate.

enclose $£$.

3W Amps/.
5W Amps/
toW Ampsi
Stereo Pre-Amps 1 Stereo Pre-Amps 2
Stereo Tone Conirols
(Please insert quantities and delele those not applicable)
Name

Address

BIPPREPAKDept. D, 222/224 West Road, Westcliffe-on-Sea, Essex SSO 9DF Telephone: Southend (0702) 46344 . "

 on

5W \& 10W AMPS

-

Phoenix Electronics

 (Portsmouth) Ltd.139. 141 Havant Road. Drayton. Portsmouth. Hants PO6 2AA

Full member of AFDEC-the industry's association of franchised electronic component distributors.
Our prices include VAT at the current rate-and carriage on all goods is free
Send for our catalogue and price list-we ll mail that to you free. too.

COMPONENTS FOR I.C. APPLICATIONS BY MR. J. B. DANCE

Please send your catalogue-free!

Name

Address

[^0]: Please write your Name and Address in block capitals
 NAME...
 ADDRESS
 (Regn. No.
 London 912966)

[^1]: (9) IPC Magazines Limited 1974. Copyright in all drawings, photographs, and articles published in EVERYDAY ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden.

 All reasonable precautions are taken by EVERYDAY ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press. Everyday Electronics Fleetway House, Farringdon Street, London, E.C.4. Phone: Editorial 01-634-4452; Advertisements 01-634-4202.

[^2]: Publisher's Annual Subseription Rate, Including postage Inland $£ 2.95$, Overseas $£ 3 \cdot 00$. International Giro faciliffes Account No. 5122007 . State reason for payment "message to payeas, Address to Everyday Electronics, Subscription Depariment, Carlton House, Great Queen Street, London, WC2E 9PR. Binders for volumes 1 to 3 (state which) and indexes for volume 1 and 2 avallable for $£ 1,25$ and 30 p respectively, including postage, from Binding Department, at the above address.
 We are unable to supply back copies of Everyday Eiectronics or reprints of articles and cannot undertake to answer readers' letters requesting designs, modlfications or information on commercial equipment or subjects not published by us. An s.a.e. should be enclosed for a personal reply. Letters concerning published articles should be addressed to: The Editor, those concerning advertisements to: The Advertisement Manager, both at the address shown opposite.

[^3]: Fig. 1.1 Symbols for a resistor. Typical values have been shown beside the symbol as on a circuit diagram.

